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Abstract

One central aspect in the analysis of dynamical systems is the characterization of their
long-term behavior. Thus, we are interested in accurately describing the so–called global
attractor of the dynamical system, which is an invariant set that attracts all the tra-
jectories. By definition, the global attractor contains every steady state, every periodic
orbit and, in particular, their related unstable manifolds. Moreover, when the underly-
ing system depends on a parameter it is crucial to analyze the change of the attractor
with respect to this parameter. For the study of invariant sets such as the attractor or
an unstable manifold we rely on numerical algorithms for their approximation in gen-
eral. However, typically those tools can only be applied to finite-dimensional dynamical
systems, described for instance by ordinary differential equations or discrete maps.

In the first part of this thesis we present a framework for the global dynamical analysis
of infinite-dimensional systems. We will utilize embedding techniques for the definition
of a dynamically equivalent finite-dimensional system, the so–called core dynamical sys-
tem (CDS). This system is then used for the approximation of corresponding embedded
invariant sets, i.e., one-to-one images of invariant sets in the infinite-dimensional state
space. Here, we focus on set-oriented numerical tools that generate coverings of the set
of interest and adapt them to the CDS. In particular, we extend the subdivision scheme
to parameter-dependent systems which allows us to efficiently track the corresponding
parameter-dependent attractor. To this end, we will numerically realize a set-valued
linearization that serves as an initial guess for a consecutive corrector step.

For the construction of the CDS it is crucial to choose an appropriate observation map.
Moreover, its corresponding inverse is in general not known and has to be numerically
designed. Hence, in the second part of this thesis we will present suitable numerical
realizations of the CDS for delay differential equations and partial differential equations
for the approximation of embedded invariant sets via set-oriented algorithms. For a
subsequent geometric analysis we will consider a learning technique called diffusion maps.
This nonlinear dimensionality reduction method applied to the generated coverings reveals
its intrinsic geometry. In this context we present a set-oriented landmark selection scheme,
that computes points that sample the generated covering sufficiently well, and an intrinsic
dimension estimator.

Finally, in the last part of this thesis, we apply the developed numerical tools for the
global dynamical analysis of some well-known (infinite-dimensional) dynamical systems.
We will compute the global attractor of a reduced order model for shear flows and of the
Mackey-Glass delay differential equation for a range of delay times. Furthermore, we ap-
proximate the unstable manifold of the one-dimensional Kuramoto-Sivashinsky equation
as well as the unstable manifold of an edge state in a plane Poiseuille flow.
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Zusammenfassung

Ein zentraler Aspekt in der Analyse von dynamischen Systemen ist die Charakterisierung
ihres Langzeitverhaltens. Wir sind daher daran interessiert, den sogenannten globalen
Attraktor des dynamischen Systems, welcher eine invariante Menge ist, die alle Trajek-
torien anzieht, genau zu beschreiben. Per Definition enthält der globale Attraktor jeden
stationären Zustand, jeden periodischen Orbit und insbesondere die damit verbundenen
instabilen Mannigfaltigkeiten. Wenn das zugrundeliegende System von einem Parame-
ter abhängt, ist es außerdem wichtig, die Änderung des Attraktors in Bezug auf diesen
Parameter zu analysieren. Für die Untersuchung invarianter Mengen wie des Attraktors
oder einer instabilen Mannigfaltigkeit stützen wir uns im Allgemeinen auf numerische Al-
gorithmen, um sie zu approximieren. Typischerweise können diese Methoden jedoch nur
auf endlichdimensionale dynamische Systeme angewendet werden, die zum Beispiel durch
gewöhnliche Differentialgleichungen oder diskrete Abbildungen beschrieben werden.

Im ersten Teil dieser Arbeit präsentieren wir ein Werkzeug für die globale dynamische
Analyse unendlichdimensionaler Systeme. Wir werden Einbettungstechniken zur Defi-
nition des sogenannten core dynamical system (CDS) verwenden, welches ein dynamisch
äquivalentes, aber endlichdimensionales System ist. Dieses System wird dann zur Approxi-
mation entsprechender eingebetteter invarianter Mengen, also Eins-zu-eins-Bildern von in-
varianten Mengen im unendlichdimensionalen Zustandsraum, benutzt. Hier konzentrieren
wir uns auf mengenorientierte numerische Methoden, die Überdeckungen der invarianten
Menge erzeugen, und passen diese an das CDS an. Insbesondere erweitern wir den Un-
terteilungsalgorithmus auf parameterabhängige Systeme, mit dem wir den entsprechenden
parameterabhängigen Attraktor effizient verfolgen können. Zu diesem Zweck werden wir
numerisch eine mengenwertige Linearisierung realisieren, die als erste Schätzung für einen
danach folgenden Korrekturschritt dient.

Für die Konstruktion des CDS ist es wichtig, eine geeignete Beobachtung zu wählen.
Darüber hinaus ist deren entsprechende Umkehrung im Allgemeinen nicht bekannt und
muss numerisch entworfen werden. Daher werden im zweiten Teil der Arbeit geeignete
numerische Realisierungen des CDS für retardierte und für partielle Differentialgleichun-
gen für die Approximation eingebetteter invarianter Mengen mittels mengenorientierter
Algorithmen vorgestellt. Für eine nachfolgende geometrische Analyse betrachten wir eine
Lerntechnik namens diffusion maps. Diese nichtlineare Dimensionsreduktionsmethode,
die auf die erzeugten Überdeckungen angewendet wird, offenbart ihre intrinsische Geome-
trie. In diesem Zusammenhang präsentieren wir ein mengenorientiertes Auswahlschema
für landmarks, das Punkte berechnet, die die erzeugte Überdeckung ausreichend gut ab-
tasten, sowie einen intrinsischen Dimensionsschätzer.

Schließlich nutzen wir im letzten Teil dieser Arbeit die entwickelten numerischen Me-
thoden für die globale dynamische Analyse einiger bekannter (unendlichdimensionaler)
dynamischer Systeme. Wir werden den globalen Attraktor eines reduzierten Modells für
Scherströmung sowie der Mackey-Glass-Gleichung für einen Bereich von Verzögerungszei-
ten berechnen. Darüber hinaus approximieren wir die instabile Mannigfaltigkeit der eindi-
mensionalen Kuramoto-Sivashinsky-Gleichung sowie die instabile Mannigfaltigkeit eines
edge states in der ebenen Poiseuille Strömung.
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1 Introduction

Behind every process that changes in time hides a dynamical system. May it be a simple
problem such as a pendulum and a mass-spring-damper or even the complex motion of the
bodies in the solar system. In addition to processes in solid mechanics, dynamical systems
also have their ”raison d’être“ in other scientific areas such as physics (e.g. climate models
[MB20]), biology [Fre80], epidemiology [BCC12], chemistry (e.g. molecular dynamics
[PWS+11]), economics [Gan71] and medicine [JR15]. They are also utilized in non-STEM
fields such as history [Tur08] and social science [Con13]. In this thesis we will mostly
consider problems from physics, especially from fluid dynamics.

Mathematically, a dynamical system is given by three components: the time, the state
space and an evolution law. The time is either discrete (e.g. N or Z) or continuous
(e.g. R≥0 or R) and we note that one can always discretize the time of a time-continuous
system which is especially helpful for the numerical analysis. Often the state space is a
finite-dimensional Euclidean space such as Rn (e.g. consisting of positions and velocity
components in mechanical systems) but in this thesis we focus our attention on infinite-
dimensional spaces. More precisely, the state space will be a space of functions on some
domain, e.g., velocity fields of a fluid in a channel. The evolution is a map on the state
space that models the underlying dynamical process. In continuous time the evolution is
often given by a set of differential equations. Typically, one distinguishes between ordinary
differential equations (ODEs), partial differential equations (PDEs) and delay differential
equations (DDEs). Observe that the latter two induce an infinite-dimensional state space
and hence will be considered in this thesis. For the sake of completeness we note that there
are also mixed systems such as hybrid systems which consist of time-discrete and time-
continuous subsystems and algebraic-differential equations where an algebraic constraint
is added to the differential equations. In any case, under appropriate assumptions, the set
of differential equations generates a flow that maps a given initial condition in state space
onto its corresponding evolved state at some prescribed time. Hence, it generates the
so–called trajectory of an initial state. A dynamical system where the temporal evolution
does not depend on the initial time but only on the initial state is called autonomous and
we restrict ourselves to the analysis of such systems. However, some results which will be
presented in this thesis may be extended to the non-autonomous case. In particular, we
will only consider deterministic systems and leave stochastic processes for future research.
For an introduction in the theory of dynamical systems and also for further reading we
refer the reader to [KH95, GH13].

The central questions in the context of dynamical systems primarily concern their long-
term behavior (e.g. stability, chaos and ergodicity). Thus, typically the object of interest
is the so–called global attractor of the dynamical system. The global attractor is an
invariant set in state space that attracts every trajectory under the temporal evolution.
That is, every state inside the global attractor stays in that set for all times and every
initial condition outside of the attractor eventually converges to the global attractor.
More precisely, the distance between the evolved states and the attractor gets arbitrarily
close to zero. Thus, by definition, the global attractor contains every equilibrium, i.e., a
steady state under the dynamics, and every periodic orbit. Both objects are crucial for
the dynamical behavior of trajectories. Other important sets for the long-term analysis
of dynamical system are the invariant stable and unstable manifolds of a steady state or
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1 Introduction

periodic orbit. These sets consist of all states that converge to the corresponding object in
forward respectively backward time. In particular, the unstable manifold is also contained
in the global attractor. In analogy to the eigenspace decomposition in a linear system such
invariant manifolds generalize this concept and decompose the state space. For instance,
they can be used for efficiently solving optimal control problems [FOBK12].

For a general nonlinear dynamical system the computation of the (un)stable manifolds
or the global attractor by direct numerical simulation of (some) initial values is not feasible
or even possible. That is why efficient numerical algorithms for the approximation of such
invariant sets are required. For an overview of methods that allow the computation of
invariant manifolds we refer to [KOD+05]. For instance, two dimensional manifolds can
be approximated by geodesic level sets obtained by solving a boundary value problem
[KO03, KO07]. There are also several approaches for the computation of attractors. In
[JK17] a variational approach has been developed where the distance between a set of
states and their image under the dynamics is minimized. Furthermore, a linear program
can be formulated such that its feasible solutions are real-valued functions whose preimage
contain the attractor and for the optimum this approximation gets tight [SK20]. Another
class of algorithms that allow the computation of invariant sets is given by so–called set-
oriented numerical methods [DH96, DH97, DFJ01, DJ02]. The basic idea of such tools
is to generate coverings of the object of interest such as the global attractor or invariant
manifolds by outer approximations which are created by subdivision techniques. Moreover,
such methods allow the approximation of the Perron-Frobenius operator by Ulam’s method
[Ula60, BM01] which can be used for the computation of the invariant measure of the
underlying dynamical system, i.e., the fixed point of the operator (see [DJ99, DFS00,
KKS16]). In particular, eigenvalues close to one can be utilized for the identification of
almost invariant sets, i.e., sets in which typical trajectories stay inside on average for a
quite long time [FD03, Fro05]. We note that these methods also have been extended to
non-autonomous systems for the approximation of coherent sets [FP09, FLS10, DH12] and
the analysis of transport [DFHP09] as well as to random dynamical systems [KO99]. These
set-oriented techniques have been successfully applied in several different areas such as
molecular dynamics [DDJS99, SHD01, DGM+05], astrophysics [DJK+05, DJL+05, DJ06]
and ocean dynamics [FPET07, DFH+09, SFM10, FHR+12]. They can also be utilized for
uncertainty quantification from a global point of view [DKZ17]. In the software package
GAIO (Global Analysis of Invariant Objects) [DFJ01] available on GitHub all set-oriented
methods are implemented.

Until recently, the set-oriented algorithms have been restricted to dynamical systems
with a finite-dimensional phase space. Even though an infinite-dimensional system can be
numerically approximated by a (possible very) high but finite-dimensional system using
an appropriate discretization of each state, the classical set-oriented methods remain
infeasible. In order to gain an idea of the dynamics of an infinite-dimensional system,
one typically performs long-term simulations of arbitrary initial states. However, this
is not sufficient for the analysis of global long-term behavior. To this end, a novel set-
oriented framework for the computation of finite-dimensional invariant sets of infinite-
dimensional systems has been developed [DHZ16, ZDG19]. Dynamical systems with an
infinite-dimensional state space, but finite-dimensional attractors arise in particular in two
areas of applied mathematics, namely in certain types of dissipative PDEs [CFT85, Hal10]
and in DDEs with small constant delay [Dri68, Chi03, CMRV05]. Examples of such PDEs
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include the Kuramoto-Sivashinsky equation (KSE) [KT76, Siv77, JKT90, Rob94], the
Ginzburg-Landau equation [DGHN88] and scalar reaction-diffusion equations with cubic
nonlinearity [Jol89].

Both types of systems may possess a so–called inertial manifold, which is a finite-
dimensional invariant manifold that attracts all trajectories exponentially fast [Tem97,
CFNT89, FJK+88]. In particular, the global attractor lies inside the inertial manifold.
Furthermore, the inertial manifold allows to set up an appropriate finite-dimensional
reduced order model (ROM), e.g., by Galerkin expansion - that can be used for the analysis
of the long-term behavior instead. The dimension of such a ROM is then given by the
dimension of the manifold, which can be much larger than the dimension of the attractor
itself (see, e.g., [CEES93, Rob94, TW94, Tem97]). Moreover, the conditions known to be
sufficient for proving the existence of an inertial manifold are very restrictive [FST88] and
there are cases in which one can prove the existence of a finite-dimensional attractor but
not (yet) of an inertial manifold. Arguably, the most interesting example that falls into
this category might be the Navier-Stokes equation [Lad85, MN96, MW96, Rob13]. Thus,
it is desirable to construct a ROM that has a dimension comparable to the dimension
of the attractor and possesses the same dynamics as the underlying infinite-dimensional
system on the attractor. To this end, we employ the idea of observing the system by real-
valued functions that are one-to-one on the invariant set under appropriate assumptions.
In other words, we reconstruct the underlying dynamics by embedding the invariant set
into a finite-dimensional space.

As a first fundamental result in the theory of embeddings, Hassler Whitney proved that
every finite-dimensional manifold M can be embedded into some Rk, provided k ∈ N is
large enough [Whi36, Whi44]. In particular, such an embedding is injective and its image
is one-to-one on the given manifold M. For the needed embedding dimension k ∈ N it
turns out that k > 2d is sufficient, where d is the dimension of the manifoldM. Moreover,
the set of such embeddings is generic (with respect to a particular topology), i.e., open
and dense. Thus, given any (smooth) map R :M→ Rk there is, in particular, an embed-
ding arbitrary close to such a map R. Additionally, every arbitrary small perturbation of
an embedding remains an embedding. In this context R could be given by k independent
measurements, also called observations, of an experiment. Hence, we will call R observa-
tion map and the corresponding embedding space Rk observation space. Later, inspired
by Whitney’s work, Floris Takens strengthened this result to the case where there is an
underlying dynamical system defined on the finite-dimensional manifold [Tak81]. Instead
of making k independent observations it is enough to choose one real-valued observable
and observe the system at k delayed time instances, that is, k consecutive snapshots
in time. More precisely, his theorem states that for pairs (Φ, f) of a dynamical system
Φ : M → M and an observable f : M → R it is a generic property that the delay
coordinate map Dk[f,Φ] :M→ Rk given by

Dk[f,Φ](x) = (f(x), f(Φ(x)), . . . , f(Φk−1(x)))

is an embedding. Note that in this form of the theorem the dynamical system is not fixed.
In order to formulate an analogous result for a given (fixed) dynamical system Φ, addi-
tional assumptions on the underlying system concerning the number of periodic points
and the eigenspectrum of the linearization at those periodic points have to be made (see,
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1 Introduction

e.g., [Huk06]). With his celebrated theorem Takens laid the theoretical foundation for the
dynamical analysis of complex systems and experiments (see [BK86] and [BSS+83, BS87]
for fluid flow problems) and the prediction of chaotic time series [FS87, Cas89]. How-
ever, a generic property is not immediately a property with high (Lebesgue) probabil-
ity. In particular, from a numerical and experimentalist’s point of view, it is desirable
to know if a given observation or delay coordinate map is an embedding with proba-
bility one. The problem with such a statement is that the space of observation maps
is an infinite-dimensional function space and there is no obvious generalization to such
infinite-dimensional spaces from finite-dimensional spaces. In fact, for an arbitrary Banach
space there is not even a measure that corresponds to the Lebesgue measure on finite-
dimensional subspaces [HSY92]. Thus, in [HSY92] the measure-theoretic term prevalence
is introduced which extends the condition for a property to hold “almost-everywhere” in
a finite-dimensional space. This notion even turns out to be a more appropriate condition
than the topological concepts of “open and dense” in the context of probabilistic results
on the likelihood of a given property as desired. The mentioned embedding theorems are
not directly applicable to infinite-dimensional systems such as DDEs and PDEs since for
the reconstruction of its attractor it has to be contained in a finite-dimensional manifold
which is in general not the case. In order to directly embed the attractor instead, two
additional ingredients are needed. First, we replace the finite-dimensional manifold with a
(fractal) set with box-counting dimension dbox ∈ R≥0. For the definition of this fractal di-
mension the set is covered by a minimal number N of balls with radius ε > 0 and then dbox

describes the scaling law N ∼ ε−dbox for ε→ 0. Utilizing this notion Takens’ theorem was
extended in [SYC91] to dynamical systems on RN where a compact finite-dimensional
invariant set is embedded into Rk. Additionally, in the case of an infinite-dimensional
state space it is necessary to know how well the invariant set can be approximated by
finite-dimensional subspaces. This information is given by the thickness exponent τ intro-
duced in [HK99] and the authors showed that “almost every” (in the sense of prevalence)
Lipschitz map R : H → Rk is one-to-one on a prescribed compact dbox-dimensional set
A contained in a Hilbert space H, provided k > 2dbox. Moreover, its inverse on A is
Hölder continuous with exponent θ which depends on the embedding dimension k, the
box-counting dimension dbox and the thickness exponent τ . In particular, this result ex-
tends Whitney’s theorem to the infinite-dimensional setting. We note that this result can
also be formulated for finite-dimensional spaces but without the use of the thickness ex-
ponent since in this case τ = 0 [Rob10]. Finally, Robinson combined the work of [SYC91]
and [HK99] and proved a delay embedding theorem for infinite-dimensional dynamical
systems on a Hilbert space. Unfortunately, the analogous result where the ambient space
is a general Banach space given in [HK99] is not true (see [Rob09]). In this case one has
to consider the dual thickness exponent [Rob09] or assume that the thickness exponent
is bounded by τ < 1 [MR19]. However, many of the attractors arising in mathematical
physics have a thickness exponent of zero [OHK06]. For instance, by [FR99] the thickness
exponent is in some sense inverse proportional to smoothness and hence zero for smooth
systems. We note that there are several further extensions of Takens’ delay coordinate
theorem, e.g., for forced systems [Sta99, SBDH03] or for the general infinite-dimensional
non-autonomous case [Rob08].
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The main goal in this thesis is the development of a set-oriented numerical framework for
the (global) analysis of (parameter-dependent) infinite-dimensional dynamical systems re-
garding their invariant sets and their (geometric) structure. Given an infinite-dimensional
dynamical system Φ with compact finite-dimensional invariant set A we will utilize the
infinite-dimensional embedding results of [HK99] and [MR19] for the construction of the
so–called core dynamical system (CDS) ϕ. The CDS is a finite-dimensional dynamical
system that reconstructs the original infinite-dimensional dynamics on A. More precisely,
we will embed A into the observation space Rk for some k ≥ 2dbox(A) using an observa-
tion map R. In particular, this embedded invariant set Ak = R(A) will be one-to-one to
the original set A and hence can be considered for the analysis instead. Moreover, there
is an inverse Ẽ of R|A defined on Ak that can be extended to a map E on the entire space
Rk. Finally, the CDS is defined by the composition of the three maps R,Φ and E (see
Figure 1.1 for an illustration), i.e.,

ϕ = R ◦ Φ ◦ E.

This CDS then serves as a surrogate model defined on the observation space for the
approximation of embedded attractors and embedded invariant manifolds of the infinite-
dimensional system Φ. In this thesis we will particularly consider parameter-dependent
infinite-dimensional dynamical systems Φλ, where a one-dimensional real-valued param-
eter λ influences the complexity of the dynamics. To this end, we will construct a
parameter-dependent core dynamical system (pCDS) ϕλ as follows. We choose a dense
subset of parameter values λn and utilize an observation map that is independent of all
λn. Then it turns out that we can embed the parameter-dependent attractors Aλn with
a uniform observation map and proceed as before. The pCDS is then defined by

ϕλ = R ◦ Φλ ◦ E

for all λ. In this form ϕλ only reproduces the dynamics of Φλn on Aλn . For the remaining
parameter values the observation map may not be one-to-one but close to it, provided the
invariant set Aλ behaves well under parameter perturbation. Thus, we can use ϕλ for the
numerical analysis of the dynamics of Φλ for every λ.

Function Space Observation Space

Figure 1.1: Illustration of the definition of the CDS ϕ.

5



1 Introduction

As a starting point for the presented numerical methods for the analysis of infinite-
dimensional systems in this thesis, we will review an extension of the classical subdivision
scheme [DH97] developed in [DHZ16]. This tool allows us to compute the relative global
attractor which is part of the embedded (global) attractor. Starting with an initial cov-
ering of the embedded invariant set in observation space we successively subdivide all
sets in the covering and delete those sets which do not contain any part of the relative
global attractor [DHZ16]. Repeating these two steps eventually leads to convergence to
the relative global attractor. Hence, we can stop after a prescribed number of iterations
or after the desired accuracy of the approximation is obtained. This procedure can be
seen as a combination of cell mapping techniques [Hsu87] with a subdivision scheme.

Next, we will extend this subdivision algorithm to the efficient numerical approxi-
mation of attractors of parameter-dependent (infinite-dimensional) dynamical systems.
Inspired by the numerical path following of steady states [AG03] we develop two set-
oriented path following methods for the approximation of parameter-dependent attractors
[GZED20, ZGD20] by reusing previously computed approximations. These algorithms al-
low us to track the attractor with respect to a one-dimensional parameter without restart-
ing the whole subdivision scheme anew. In particular, we significantly reduce the overall
computational cost since one computation of an attracting set might be very expensive.
Note that these methods indirectly allow the numerical analysis of global bifurcations
[Wig88, GS02]. For example, these types of bifurcations occur when invariant sets, such
as periodic orbits, collide with equilibria. Therefore, typical examples are formations of
homoclinic and heteroclinic orbits. We start with the approximation of the attractor Aλ0

k

for a parameter value λ0 using the (classical) subdivision method. Then we choose a
computed covering of Aλ0

k as an initial guess for the approximation of the attractor for
a parameter λ1 > λ0 sufficiently close to λ0. Finally, we employ the subdivision method
on this initial computational domain and obtain an approximation of the attractor Aλ1

k .
Hence, repeating these two steps yields approximations of the attractor for discrete val-
ues in parameter space. We improve this scheme by developing an efficient set-oriented
predictor-corrector method which will enhance the performance significantly [ZGD20].
That is, we use two previously computed coverings of the attractor for two consecutive
parameter values in order to predict an initial overset of the attractor corresponding to
a third parameter. This prediction step can be viewed as numerical realization of a set-
valued Taylor expansion. Then a modification of the selection step in the subdivision
algorithm serves as a corrector step such that ultimately the attractor is approximated.

Inspired by the classical continuation algorithm introduced in [DH96] the second method
developed in this thesis aims at approximating embedded unstable invariant manifolds by
set-oriented numerics [ZDG19]. Here we first employ the (extended) subdivision scheme
on a small neighborhood of an unstable fixed point in observation space which yields a
covering of its local unstable manifold. In a second step this covering is then globalized
by a continuation procedure, that is, we successively compute parts of the embedded
unstable manifold in a prescribed computational domain.

For the subsequent geometric analysis of the obtained approximation of some embed-
ded invariant set of an infinite-dimensional dynamical system we will utilize manifold
learning techniques [TDSL00, RS00, DG03, BN03, ZZ04]. In particular, we will focus on
a tool called diffusion maps introduced in [CL06a]. Different from linear dimensionality
reduction methods, such as principal component analysis (POD, cf. Section 4.1.2), this
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nonlinear feature extraction method allows the identification of intrinsic coordinates of a
given data set and hence revealing its intrinsic geometry. These coordinates are given by
the eigenvectors and eigenvalues of a diffusion operator on the data. We note that the dif-
fusion maps algorithm is robust to noise perturbation such that it can deal with the outer
approximations of the set of interest generated by the proposed set-oriented schemes. In
order to apply diffusion maps to such a covering, we will develop a novel landmark selec-
tion scheme that generates points that sample the embedded set sufficiently well. This
scheme is inspired by 3d point cloud simplification methods (see, e.g., [PGK02] and the
reference therein). Given an initial point cloud approximating the covering, we will iter-
atively move the points away from each other according to an repelling force that decays
linearly with distance and becomes zero at a fixed radius r > 0. If during this procedure
a point leaves the covering we project it back onto the covering. In the end, we obtain a
point cloud such that the pairwise intersection of the r-balls around these points is (close
to) empty. These landmarks will then be used as the underlying data for the construction
of the diffusion maps embedding. In order to embed additional out-of-sample points, we
extend the diffusion map algorithm inspired by the Nyström method [BPV+04, CL06b].
This allows us to compute the diffusion coordinates of (dynamically) import features con-
tained in the invariant set such as equilibria, periodic orbits or long-term simulations
which further reveal the intrinsic structure of the underlying set. For the construction of
the diffusion maps a crucial parameter – the bandwidth of a kernel – has to be carefully
chosen. To this end, we will employ an intrinsic dimension estimator that approximates
the intrinsic dimension of the underlying data set and – in doing so – also automatically
extracts an appropriate bandwidth [CSSS08, BH16]. Originally, this tool was designed
for the analysis of uniformly sampled data which we will extend to the non-uniform case
in this thesis.

This thesis is organized as follows. In Chapter 2 we give a detailed review of embedding
theorems in the context of finite-dimensional manifolds and fractal sets. We will employ
the ideas and arguments used for a finite-dimensional ambient space for the treatment of
sets contained in general Banach or Hilbert spaces. This allows us to state and prove the
main results of [HK99] and [MR19], where in this thesis the latter is slightly extended
to a prevalent version. Moreover, we briefly review some results in the context of delay
coordinate embeddings. We note that in this thesis the original construction of the CDS
given in [DHZ16] is improved such that the (p)CDS is not only continuous but even Hölder
continuous. Moreover, we reformulate [DHZ16, Proposition 1] and prove that a prevalent
set of Lipschitz maps generates a CDS.

In Chapter 3 we present the numerical set-oriented framework for the approximation of
embedded invariant sets. We start by reviewing the extension of the original subdivision
scheme [DH97] such that it is applicable to the CDS [DHZ16]. Based on this work
we will develop a path following method for the approximation of parameter-dependent
attractors [GZED20, ZGD20]. Finally, we present an extension of the continuation method
introduced in [DH96] for the approximation of embedded invariant manifolds [ZDG19].

In principle these algorithms are applicable to arbitrary infinite-dimensional dynami-
cal systems. However, in this thesis we will restrict our attention to DDEs and PDEs.
Therefore, in Chapter 4 we will propose a suitable numerical realization of the CDS for
both types of systems. On the one hand, we will utilize the delay coordinate map where
the observable is the evaluation of the function at a prescribed point for the analysis of

7



1 Introduction

DDEs. On the other hand, for PDEs, we decompose the state into modes and observe
its corresponding coefficients. At the end of this chapter we introduce the diffusion map
framework for the subsequent geometric analysis. In particular, we present the landmark
selection scheme and the intrinsic dimension estimator.

In Chapter 5 we apply the developed numerical algorithms to several examples. We will
approximate the attractor of a reduced order model for turbulent shear flows for a range of
Reynolds numbers. Moreover, we will employ the path following method for the approx-
imation of the attractor of the Mackey-Glass equation for a range of delay times showing
its bifurcation behavior on a global level. For a parameter value that presumably shows
chaotic behavior we will investigate the generated covering using diffusion maps. Fur-
thermore, the embedded unstable manifold of the one-dimensional Kuramoto-Sivashinsky
equation in different regimes will be computed and its intrinsic structure will be analyzed
by the diffusion map framework. Finally, we approximate the unstable manifold of the
edge state in a plane Poiseuille flow.

We conclude this thesis with Chapter 6, where we summarize the findings and give
potential directions for future research.

Parts of this thesis grew out of publications to which the author has made substan-
tial contributions. They are referenced at the beginning of the respective chapters and
sections.
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2 Embedding Theory

In this chapter we will lay the theoretical foundation for the following numerical analysis
of infinite-dimensional systems such as partial differential equations (PDEs) and delay
differential equations (DDEs). Following [Rob99] we will consider as a leading example
for the discussion a dissipative PDE on a Hilbert space H of the form

∂

∂t
u(t, x) = F(u(t, x)), u ∈ H, (2.1)

that generates a semi-flow S(t) for t ≥ 0, i.e., a strongly continuous semigroup

S(0) = Id, S(s)S(t) = S(s+ t), S(t)u0 continuous in t and u0, (2.2)

such that a unique solution S(t)u0 = u(t;u0) exists for every initial condition u0 ∈ H.
The corresponding infinite-dimensional system in continuous time is then given by

u(t, x) = S(t)u(0, x), t ≥ 0. (2.3)

In addition to that we will also consider the time-T -map Φ of (2.3) as the corresponding
dynamical system in discrete time, i.e.,

uj+1(x) = Φuj(x), j = 0, 1, . . . , (2.4)

where the time T > 0 is fixed.

As in the study of finite-dimensional systems such as ordinary differential equations, the
asymptotic behavior of solutions and properties of globally attracting sets are of particular
interest. Thus, we further assume that (2.1) possesses a global attractor A ⊆ H, i.e., a
maximal compact invariant set which attracts all bounded sets:

S(t)A = A, dist(S(t)B,A)→ 0 as t→∞ for all bounded sets B ⊆ H, (2.5)

where the distance for two subsets B,C of H is given by

dist(B,C) = sup
u∈B

inf
v∈C
‖u− v‖ , (2.6)

where ‖·‖ denotes the norm on H. It has been shown that many dissipative PDEs
possess (nontrivial) globally attracting sets which are finite-dimensional, even though the
underlying state space is a suitable infinite-dimensional space. We will later define an
appropriate measure for the dimension of arbitrary subsets of a Banach space. Equations
that fall into this category are, for instance, reaction-diffusion equations [Jol89], the 2D
Navier-Stokes equation, the Kuramoto-Sivashinsky equation [KT76, Siv77], the Ginzburg-
Landau equation and other examples (see [Tem97, Hal10]).

Since the attractor is finite-dimensional, a natural question that arises in this context is
whether there exists a finite-dimensional dynamical system that possesses the asymptotic
dynamics on the attractor of the original flow (2.3). That is, can we embed the dynamics
of S (or Φ) on A into some Rk, where k ∈ N is chosen appropriately? More precisely,
the task is to find an embedding R : H → Rk of A into Rk, i.e., a homeomorphism
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2 Embedding Theory

R : A → R(A) ⊆ Rk and, for the continuous time case, a system of ordinary differential
equations (ODEs)

ẋ(t) = f(x(t)), x ∈ Rk, (2.7)

with unique solutions and global attractor Ak = R(A) on which the dynamics is conju-
gated to those on A via R. That is, if T (t) is the flow of (2.7), we have

T (t) ◦R = R ◦ S(t) on A.

Accordingly, for a discrete dynamical system Φ : H → H we search for a continuous map
ϕ : Rk → Rk such that

ϕ ◦R = R ◦ Φ on A.

However, proving the mere existence of such an embedding R is not sufficient for our
purpose since we want to numerically analyze the finite-dimensional systems (2.7) and ϕ.
To this end, the map R has to be explicitly known or constructed such that it can be
implemented numerically. If this is not possible, we at least desire that the class of such
embeddings R is in some sense “large”, e.g., it is a generic property that a map R is an
embedding. In the following section we discuss various solutions to this problem.

2.1 Inertial Manifolds

One approach to tackle the problem at hand is to prove the existence of a so–called
inertial manifold, a finite-dimensional, positively invariant manifold M that attracts all
trajectories exponentially fast [CFNT89, FJK+88, Tem97], i.e.,

S(t)M⊆M and dist(S(t)u0,M) ≤ Cu0e
−κt, ∀t ≥ 0,

for some κ > 0 and constant Cu0 > 0 depending only on the initial condition u0 ∈ H. In
this case the attractor A ⊆ H lies inside the manifold M, that is, A ⊆ M. Thus, the
problem can be simplified to embedding the inertial manifold instead. However, there are
some drawbacks that will be discussed later.

For the sake of completeness we summarize how the existence of such inertial manifolds
can be proven (see [FST88] for details). Typically, they have been studied for systems of
the form

∂

∂t
u(t, x) + Au(t, x) = f(u(t, x)),

where A is a positive, linear and self-adjoint operator with compact inverse and f is a
Lipschitz function from the domain D(Aα) into H for some 0 ≤ α < 1. According to
[RR06] such operators have a set of orthonormal eigenfunctions {vk}k with corresponding
(ordered) eigenvalues {λk}k such that

Avk = λnvk, λk+1 ≥ λk, λk →∞.

10



2.1 Inertial Manifolds

In this situation one can define finite-dimensional projection operators Pk and their or-
thogonal complements Qk by

Pku =
k∑
i=1

〈u, vi〉vi, Qku =
∞∑

i=k+1

〈u, vi〉vi,

where 〈·, ·〉 is the scalar product on H. If there is a certain sufficiently large spectral gap
in the eigenvalues λk, one can construct a (at least) Lipschitz function φ : PkH → QkH
that allows one to define the manifold M as a graph over one of the finite-dimensional
subspaces PkH, i.e.,

M = { p+ φ(p) p ∈ PkH } .

The ordinary differential equation (2.7) is then given by restricting the flow (2.2) to the
manifold M. For p = Pku this yields

ṗ+ Ap = Pk(f(p+ φ(p))), (2.8)

where the fact that Pk commutes with A is used. Since p ∈ PkH ' Rk and φ is Lipschitz,
(2.8) has unique solutions by the Picard-Lindelöf theorem (see, e.g., [Tes12, Theorem
2.2]). On PkA the solutions are precisely those projected down from A such that

p(t) = PkS(t)(p(0) + φ(p(0))).

It follows that PkA is the global attractor of (2.8) because M is invariant. Finally, with
P−1
k x = x+ φ(x) we precisely obtain a finite-dimensional system of the form (2.7).

At a first glance, one might think that this approach can not be used directly for
numerical applications since the map φ, and thus the embedding R, is not explicitly
known. However, its construction is based on a fixed point problem that is solved using
the Banach fixed point theorem (see, e.g., [For13]) . Consequently, φ could at least be
approximated and there are also error bounds. If one neglects the construction of M,
embedding techniques like Whitney’s theorem (see Section 2.2.1) still allow the definition
of an equivalent system on R2k+1. But this is not preferable due to the increase of the
system’s dimension. In fact, since A ⊆M the dimension k ∈ N of the manifold, and hence
of the derived system of differential equation (2.8), is much larger than the dimension of
the attractor itself (see for example [CEES93, Rob94, TW94, Tem97] for the Kuromoto-
Sivashinsky equation). Thus, especially from the numerical point of view, the goal is to
produce a system of ordinary differential equations of dimension which is comparable to
the dimension of the attractor. That is, with the idea of Whitney’s theorem in mind, we
aim to embed A into Rk for some k ∈ N.

In addition to that, the conditions known to be sufficient for proving the existence of
an inertial manifold are very restrictive. While they are satisfied for those examples men-
tioned above there are cases in which one can prove the existence of a finite-dimensional
attractor but not (yet) of an inertial manifold. Arguably, the most interesting example
that falls into this category might be the 2d Navier-Stokes equation [Rob13].

This is why in the thesis we are going to directly work with the attractor and embed
its dynamics into Rk as discussed in the following sections.
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2 Embedding Theory

2.2 Embedding Finite-dimensional Sets into Rk

A different solution to the question stated at the beginning of this chapter is given by uti-
lizing embedding techniques. More precisely, we show that so–called observations enable
us to embed the attractor A into a finite-dimensional Euclidean space of sufficiently high
dimension in a generic way.

However, if one embeds the dynamics only on the attractor, one neglects the transient
behavior (which is included to some extent for the inertial manifolds). That is why we
have to make sure that the asymptotic behavior of solutions of the infinite-dimensional
systems is determined to some extend by the dynamics on the global attractor in order
to justify the restriction to the attractor. Proposition 2.1 solves this issue for our guiding
example. It shows that solutions u(t) are followed by trajectories on the attractor more
and more closely for longer and longer time.

Proposition 2.1 ([LR99, Corollary 3.2]). Given a solution u(t) of (2.1) there exists a
sequence (εn)n,

εn > 0, εn → 0 as n→∞,

a sequence of times (tn)n,

tn+1 > tn ≥ 0, tn+1 − tn →∞ as n→∞

and a sequence of points (vn)n ⊆ A such that

‖u(t)− S(t− tn)vn‖ ≤ εn for all tn ≤ t ≤ tn+1.

Furthermore, the jumps |vn+1 − S(tn+1 − tn)vn| decrease to zero as n→∞.

We note that the corresponding proof only relies on the attraction property of A and
the continuity of solutions with respect to initial conditions. This allows us to use this
result for more general flows and, in particular, it covers delay differential equations as
well.

2.2.1 Finite-dimensional Manifolds

To motivate the idea of embedding A into a finite-dimensional space, we will summarize
some results on embeddings in the context of finite-dimensional manifolds. For simplicity
we will consider a smooth compact manifold M of dimension d ∈ N and show that M is
generically embedded in R2d+1, that is, the set of all smooth embeddings fromM to R2d+1

is open and dense. To begin with, let us state the celebrated result of Hassler Whitney
[Whi36].

Theorem 2.2 (Whitney’s Embedding Theorem, [Lee13, Theorem 6.15]). Every smooth
manifold of dimension d ∈ N admits a smooth embedding into R2d+1.

A few years later in [Whi44], this result was improved to the so–called strong Whitney
embedding theorem, reducing the required dimension to 2d. But for reasons of comparison
to the results in the infinite-dimensional context, Theorem 2.2 is sufficient for our purpose.
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2.2 Embedding Finite-dimensional Sets into Rk

With this at hand, the existence of an embedding is guaranteed. But in particular for
numerical applications and for experiments, a stronger result is required. To this end,
we introduce a topology on all smooth maps between two smooth manifolds in order to
improve the mere existence to openness and denseness of embeddings.

Definition 2.3 ((Weak) Topology on C∞(M,N )). LetM, N be smooth manifolds and
f ∈ C∞(M,N ). Given charts (φ, U), (ψ, V ) on M, N , a compact set K ⊆ U such that
f(K) ⊆ V and ε > 0, we define a basis neighborhood

U(f ; (φ, U), (ψ, V ), K, ε) (2.9)

to be the set of smooth maps g :M→N such that g(K) ⊆ V and

sup
x∈φ(K),r∈N0

∥∥Dr(ψfφ−1)(x)−Dr(ψgφ−1)(x)
∥∥ < ε.

This means that the local representation of f and g, together with all their derivatives,
have a distance less than ε at each point in K. The (weak) topology on C∞(M,N ) is
then generated by these sets (2.9) and it defines the topological space C∞W (M,N ).

We remark that there is also the strong or Whitney topology, but for a compact manifold
M the resulting topological spaces are the same. Endowing C∞(M,R2d+1) with that
topology allows us to state that embeddings are open and dense.

Theorem 2.4 ([Hir12, Proposition 1.0 & Theorem 1.4]). Let M be a compact smooth
manifold of dimension d ∈ N. Then the set of embeddings M→ R2d+1 is open and dense
in C∞W (M,R2k+1).

Thus, given an embedding, every small perturbation remains an embedding and there
exists an embedding arbitrary close to every smooth map, regardless whether it is an
embedding or not. This (partially) justifies to assume that an arbitrary smooth map
R :M→ R2d+1 is, in particular, one-to-one.

2.2.2 Fractal Sets in RN

For the moment let us consider a finite-dimensional subset A of RN for which we will
derive a corresponding embedding result before moving on to infinite-dimensional spaces.
We will see that the underlying ideas will be helpful for proving the desired infinite-
dimensional embedding results.

First of all, we formally introduce the measure of dimensionality for a set A ⊆ RN we
consider in this thesis.

Definition 2.5 (Box-counting dimension, see, e.g., [Fal14]). Let X be a metric space and
A ⊆ X . For ε > 0, denote by N(A, ε) the minimal number of closed balls of radius ε with
centers in A necessary to cover A. The (upper) box-counting dimension of A is defined by

dbox(A) = lim sup
ε→0

logN(A, ε)

− log ε
,

essentially N(A, ε) ∼ ε−dbox(A) as ε→ 0.
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2 Embedding Theory

Clearly, by definition, if d > dbox(A) then there exist ε0 > 0 and CA,d > 0 such that

N(A, ε) < CA,d · ε−d for all ε < ε0, (2.10)

which will take an important role in the proof of the upcoming embedding results. In
addition to that, we note that there are several equivalent definitions, e.g., using the
diameter instead of the radius, and refer to [Fal14] for further reading.

Remark 2.6. In this thesis we will utilize set-oriented numerical tools that generate
successively finer coverings Q` of a set of interest A ⊆ X . Hence, we can estimate an
upper bound for the box-counting dimension by approximating N(A, ε) by the number of
sets forming the covering (see [ST06] for corresponding error estimates).

In the following proposition we summarize some key properties of the box-counting
dimension that will be used later on.

Proposition 2.7. Let (X , ρX ) and (Y , ρY) be metric spaces.

(a) If A ⊆ B ⊆ X , then dbox(A) ≤ dbox(B).

(b) Suppose X × Y is equipped with the “p-metric” ρp, p ≥ 1, i.e.,

ρp((x1, y1), (x2, y2)) = (ρX (x1, x2)p + ρY(y1, y2)p)
1
p ,

or the “maximum metric” ρ∞, where

ρ∞((x1, y1), (x2, y2)) = max { ρX (x1, x2), ρY(y1, y2) } .

Then for A ⊆ X and B ⊆ Y it follows that

dbox(A×B) ≤ dbox(A) + dbox(B).

In particular, we can apply the above proposition to the case where Z ⊆ A × A and
d > dbox(A). That is,

dbox(Z) ≤ dbox(A× A) ≤ 2dbox(A) ≤ 2d. (2.11)

This equation will also be important in the upcoming proofs.

According to Theorem 2.4 embeddings on a manifold are open and dense. One might
conclude that open and dense sets are large in terms of probability, but this is not neces-
sarily the case as the following example shows.

Example 2.8 (cf. [Arn12, SYC91]). Consider the family of circle diffeomorphisms
gω,k : S1 → S1 given by

gω,k(x) = x+ ω + k sin(x) mod 2π,

where 0 ≤ ω ≤ 2π and 0 ≤ k < 1 and define for each k the set

Stab(k) = { 0 ≤ ω ≤ 2π gω,k has a stable periodic orbit } .
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2.2 Embedding Finite-dimensional Sets into Rk

Then the set Stab(k) is a countable union of disjoint open intervals of positive Lebesgue
measure for 0 < k < 1 and, additionally, is an open dense subset of [0, 2π]. But the
Lebesgue measure of Stab(k) approaches zero for k → 0. Thus, the Lebesgue measure of
an open and dense set can be arbitrary small.

With that in mind we would like to make a stronger statement. Given a particular map
f we would like to show that almost every map near f is an embedding. More precisely,
the central statement of the main theorem in this section is to show that µ-almost every
linear perturbation of a smooth map f : RN → Rk is one-to-one on A ⊆ RN and has
Hölder continuous inverse on A, provided k ∈ N is large enough. Here µ is a probability
measure on L (RN ,Rk) with compact support defined as follows.

Any linear map L ∈ L (RN ,Rk) is given by k linear maps RN → R and each of
them corresponds to taking the scalar product with some lj ∈ RN . We write l∗j for the
corresponding linear map from RN into R given by x 7→ lTj x. This construction might be
unnecessary and complicated since L is just a matrix, but we explicitly use this notation
to establish a connection to infinite-dimensional Hilbert spaces H discussed later, where
the corresponding dual space H∗ along with the Riesz–Fréchet representation theorem is
used. The support of µ is then defined as all linear maps with ‖lj‖ ≤ 1, j = 1, . . . , k, i.e.,

E = {L = (l∗1, . . . , l
∗
k) lj ∈ BN } ,

where BN = B(0, 1) = {x ∈ RN ‖x‖ ≤ 1} ⊆ RN is the unit ball in RN . Now we identify
E with (BN)k and equip E with the product measure µ =

⊗k
j=1 λN , where λN is the

normalized Lebesgue measure on BN ⊆ RN . Note that µ is a probability measure with
compact support E. Furthermore, the following estimate is essential for the proof of the
embedding theorem in this section.

Lemma 2.9 ([Rob10, Lemma 4.1]). For any α ∈ Rk and x ∈ RN we have

µ {L ∈ E |α + Lx| ≤ ε } ≤ cNk/2

(
ε

|x|

)k
, (2.12)

where c > 0 is an absolute constant.

The embedding theorem then states that there is a “large” set of maps that embed A
into Rk with Hölder continuous inverse on A provided k > 2dbox(A).

Theorem 2.10 ([HK99, Theorem 3.1]). Let A ⊆ RN be a compact set with box-counting
dimension dbox(A) = d. Let k > 2d be an integer and θ ∈ R with

0 < θ <
k − 2d

k
.

Then, given any Lipschitz function f : RN → Rk, for µ-almost every map L ∈ L (RN ,Rk)
there exists C = CL > 0 such that

|x− y| ≤ C |(f + L)(x)− (f + L)(y)|θ for all x, y ∈ A. (2.13)

In particular, f + L is one-to-one on A with a θ-Hölder continuous inverse on A.

15



2 Embedding Theory

Note that for f = 0 it follows that µ-almost every L ∈ L (RN ,Rk) satisfies (2.13) and is
one-to-one on A ⊆ RN . But keeping f arbitrary is the key idea in the notion of prevalence
which allows for similar results in the infinite-dimensional context and will be discussed
later on. Also observe that the smoothness of the inverse depends on the embedding
dimension k ∈ N. In particular, in the limit k →∞ the bound on the Hölder exponent θ
converges to one, i.e., f + L is a bi-Lipschitz map on A ⊆ RN in this limit.

Proof. We follow the proof given in [Rob10, Theorem 4.3]. First, we aim to bound the
measure of linear maps L ∈ E that do not satisfy

|(f(x) + L)(x)− (f + L)(y)|θ > |x− y| for some pair (x, y) ∈ A× A.

Thus, we define

Zn =
{

(x, y) ∈ A× A |x− y| ≥ 2−nθ
}
⊆ A× A

and set

Qn =
{
L ∈ E |(f + L)(x)− (f + L)(y)| ≤ 2−n for some (x, y) ∈ Zn

}
.

Essentially, Qn represents the set of “bad” maps for which (2.13) fails for some (x, y)
with |x− y| ≥ 2−nθ. According to Proposition 2.7 or (2.11) we estimate the box-counting
dimension of Zn by dbox(Zn) ≤ dbox(A× A) ≤ 2dbox(A), where we endowed RN×RN with
the 1-metric, that is,

|(x1, y1), (x2, y2)|1 = |x1 − x2|+ |y1 − y2| .

Thus, after choosing and fixing d > dbox(A), we can cover Zn by no more than CA,d · 22nd

balls B((xj, yj), 2
−n) of radius 2−n whose centers (xj, yj) lie in Zn. That is, we consider

ε = 2−n in (2.10). Since E is compact, ‖L‖ is uniformly bounded. Hence, there is a
Lipschitz constant M > 0 that is uniformly valid for f + L for all L ∈ E. Suppose there
is (x, y) ∈ Yj = Zn ∩B((xj, yj), 2

−n) with |(f + L)(x)− (f + L)(y)| ≤ 2−n. Then

|(f + L)(xj)− (f + L)(yj)| ≤M |xj − x|+M |yj − y|+ |(f + L)(x)− (f + L)(y)|
≤M |(xj, yj), (x, y)|1 + 2−n

≤ (M + 1)2−n

= Cf · 2−n,

where the constant Cf > 0 only depends on f . Finally, using Lemma 2.9 we can estimate

µ
{
L ∈ E |(f + L)(x)− (f + L)(y)| ≤ 2−n for some (x, y) ∈ Yj

}
≤ µ

{
L ∈ E |(f + L)(xj)− (f + L)(yj)| ≤ Cf · 2−n

}
= µ

{
L ∈ E |(f(xj)− f(yj)) + L(xj − yj)| ≤ Cf · 2−n

}
≤ cNk/2

(
Cf · 2−n

|xj − yj|

)k
≤ Cf,N,k ·

(
2−n

2−nθ

)k
= Cf,N,k · 2(θk−k)n, (2.14)

where CN,k,f > 0 only depends of N, k and f .
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2.2 Embedding Finite-dimensional Sets into Rk

Thus, the total measure Qn is bounded by

µ(Qn) ≤ CA,d · 22nd · Cf,N,k2(θk−k)n = CA,d,f,N,k · 2(2d−k+θk)n

and we have 2d−k+θk < 0 by assumption. Hence, the series
∑∞

n=1 µ(Qn) <∞ converges
and the Borel-Cantelli lemma (see, e.g., [Kle13, Theorem 2.7]) implies that µ-almost every
L ∈ E belongs to only finitely many Qn. For such an L, there exist a nL such that L 6∈ Qn

for all n ≥ nL, i.e.,

|x− y| ≥ 2−nθ =⇒ |(f + L)(x)− (f + L)(y)| ≥ 2−n for all n ≥ nL.

Since A is bounded, so is the set A− A = {x− y x, y ∈ A } and thus there exist R > 0
such that |x− y| ≤ R for all x, y ∈ A. We conclude that for |x− y| > 2−nLθ we have

|(f + L)(x)− (f + L)(y)| ≥ 2−nL ≥ 2−nL

R1/θ
|x− y|1/θ

and if |x− y| ≤ 2−nLθ, then there is n ≥ nL such that 2−(n+1)θ ≤ |x− y| < 2−nθ. Thus,

|(f + L)(x)− (f + L)(y)| ≥ 2−(n+1) ≥ 1

2
|x− y|1/θ ,

which implies the conclusion as

|(f + L)(x)− (f + L)(y)| ≥ max

{
1

2
,
2−nL

R1/θ

}
|x− y|1/θ .

Remark 2.11.

(a) In 1991 Sauer et al. already proved a similar result but without Hölder continuity
of the inverse [SYC91, Theorem 2.3], i.e., f + L is one-to-one on A. However, they
additionally added that f + L is an immersion on each compact subset of a smooth
manifold contained in A. This has great importance when computing and analyzing
invariant manifolds that lie inside the attractor.

(b) As seen in the proof, a feasible embedding dimension k ∈ N is connected to the
dimension of A× A, that is,

k > 2d > 2dbox(A) ≥ dbox(A× A) ≥ dbox(Zn).

That is why the Hausdorff-dimension (see [Fal14] for a definition) can not be used in
this theorem, since only the reverse inequality holds, i.e.,

dH(A× A) ≥ 2dH(A),

even though dH behaves similar to dbox under Lipschitz- or Hölder maps (cf. Propo-
sition 2.7).

17



2 Embedding Theory

2.2.3 Infinite-dimensional State Spaces

In order to prove a similar result to Theorem 2.10 for a subset of an infinite-dimensional
space, we have to adapt a number of ingredients. Recall that the measure µ constructed
in the last section is given as the product of normalized Lebesgue measures. In particular,
for k = 1, the space of linear maps RN → R is identified with the finite-dimensional space
RN itself. Analogously, if the underlying space is an infinite-dimensional Hilbert space H,
we could identify the dual space H∗, i.e., the space of (bounded) linear maps H → R, with
H itself using Frèchet-Riesz representation theorem (see, e.g., [Wer11, Theorem V.3.6]).
However, since H is infinite-dimensional, the Lebesgue measure can not be used anymore
and we have to adapt the construction of µ. In fact, there is no measure on a Banach space
that corresponds to the Lebesgue measure on finite-dimensional subspaces. This is why we
first have to extend the notion of “Lebesgue almost every” linear map to an appropriate
concept. To this end, the term prevalence was coined in [HSY92] (see also [OY05]) which,
additionally, turns out to be a more appropriate condition than the topological concepts
of “open and dense” in the context of probabilistic results on the likelihood of a given
property in a function space.

Definition 2.12 (Prevalence, [HSY92]). A measure µ is transverse to a Borel set S ⊆ V
of a vector space V if the two following conditions hold:

(i) There is a compact set U ⊆ V for which 0 < µ(U) <∞.

(ii) µ(S + v) = 0 for every v ∈ V .

In this case S will be called shy (with respect to µ). If S is not a Borel subset, we say that
S is shy if it is contained in a shy Borel subset. The complement of a shy set is prevalent.

By condition (i) a transverse measure µ can be restricted to a probability measure on
the compact set U . In fact, if S is shy with respect to µ, S is also shy with respect to the
restricted measure. This is why we can replace condition (i) if needed with

(i∗) µ is a probability measure with compact support E ⊆ V .

In this case, for a more intuitive understanding of prevalence, one can think of E as the
probe space of allowable perturbations. In this sense, S ⊆ V is prevalent if for every
v ∈ V , v+ e ∈ S for µ-almost every e ∈ E. This means that µ-almost every perturbation
of any point in the ambient space V lies inside S. With that in mind, the construction
of a the set E and a corresponding measure µ on E is critical for proving that a set is
prevalent.

Additionally, it turns out that the support of the restricted measure can be taken to
have arbitrary small support. To see this, cover the compact set U by a finite number of
balls of (arbitrary small) radius ε > 0. Then at least one of those balls must intersect U
in set of positive µ measure. The intersection of U with the closure of that ball is compact
and condition (ii) also holds for the restriction of µ to this set.

Nonetheless, for applications it is often useful to consider measures which are neither
finite nor have compact support such as the Lebesgue measure. Roughly speaking, the less
concentrated the measure µ is, the more sets it is transverse to. In particular, for a Dirac
measure only the empty set is shy and thus only the entire space V is prevalent. In order to
show that prevalence extends the notion of “Lebesgue almost all” to infinite-dimensional
spaces, we summarize some of its properties.
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2.2 Embedding Finite-dimensional Sets into Rk

Proposition 2.13. Let V be a vector space.

(a) If S ⊆ V is shy (resp. prevalent), then the translated set S+v = { s+ v ∈ V s ∈ S }
for v ∈ V is also shy (resp. prevalent).

(b) The countable union of shy sets in V is itself shy. Therefore, a countable intersection
of prevalent sets in V is itself prevalent.

(c) Suppose V is finite-dimensional. Then S ⊆ V is shy if and only if S has Lebesgue
measure zero.

(d) A prevalent set S ⊆ V is dense.

Proof.

(a) This is an immediate consequence of the definitions of shyness and prevalence in
Definition 2.12.

(b) For the proof we restrict ourselves to considering only finite collections of shy sets and
refer to [HSY92] for the general case. We only consider two shy sets S, T ⊆ V with
transverse probability measures µ and ν. The result for arbitrary finite collections
follows then by induction. A measure which is transverse to both S and T is then
given by the convolution µ ∗ ν of µ and ν defined for a Borel subset B ⊆ V by

µ ∗ ν(B) = µ× ν(BΣ),

where µ×ν is the product measure on V ×V and BΣ = { (x, y) ∈ V × V x+ y ∈ B }
is a Borel subset of V ×V . Since µ and ν are finite, so is µ×ν and by Fubini’s theorem
(see, e.g., [DS88]) it follows

µ ∗ ν(B) =

∫
V

µ(B − y)dν(y) =

∫
V

ν(B − x)dµ(x).

Note that the characteristic function of BΣ is integrable with respect to µ× ν. Thus,
µ ∗ ν is transverse to S and T and for v ∈ V it follows

µ ∗ ν([S ∪ T ] + v) ≤ µ ∗ ν(S + v) + µ ∗ ν(T )

=

∫
V

µ(S + v − y)dν(y) +

∫
V

ν(S − x)dµ(x)

= 0,

i.e., S ∪ T is shy with respect to µ ∗ ν.

(c) Without loss of generality we can assume that V = Rn and S ⊆ Rn is a Borel set,
since we are only interested in whether or not sets have measure zero and subsets of
Borel sets with Lebesgue measure zero also have Lebesgue measure zero. If S has
Lebesgue measure zero, then certainly the Lebesgue measure itself is transverse to S
and thus S is shy. On the other hand, if S is shy, then there is probability measure µ
on Rn with compact support which is transverse to S. It follows by Tonelli’s theorem
(see, e.g., [DS88]) that

0 =

∫
Rn
µ(S − y)dλ(y) =

∫
Rn
λ(S − x)dµ(x) = µ(Rn)λ(S) = λ(S),

where λ is the Lebesgue measure on Rn.
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2 Embedding Theory

(d) As already mentioned above, for a shy Borel set S the support of its corresponding
measure can be taken to have arbitrary small diameter. Hence, S has no interior and
the same is true for every shy set, since those are contained in a shy Borel set. It
follows that a prevalent set is dense.

In this work, the notion of prevalence will be used in the context where the underlying
vector space V is a function space. From now on we will say that “almost every” map in
a function space V satisfies a certain property if the set of such maps is prevalent, even
in the infinite-dimensional case. In this case this property will also be called generic (in
the sense of prevalence).

Remark 2.14.

(a) In [SYC91] Whitney’s embedding Theorem 2.4 is strengthened using the notion of
prevalence. Let M be a compact smooth manifold contained in RN of dimension
d ∈ N. Then almost every (in the sense of prevalence) smooth map RN → R2d+1 is
an embedding of M⊆ RN .

(b) Theorem 2.10 can be reformulated in terms of the notion prevalence, that is, under
the assumptions made there, almost every (in the sense of prevalence) Lipschitz map
RN → Rk satisfies (2.13).

Hilbert Spaces

As already discussed in the beginning of this section our goal is to extend the finite-
dimensional embedding Theorem 2.10 to an infinite-dimension ambient space. To this
end, we first consider a Hilbert space H and use the ideas in Section 2.2.2 and construct
a probe space E and a measure µ with support E on the set of bounded linear maps
H → Rk as follows.

In the finite-dimensional setting we essentially defined E to be k-fold Cartesian product
of the unit ball BN . However, for a infinite-dimensional Hilbert space this idea has to be
slightly adjusted since E would not be compact. To begin with, we consider k = 1, i.e.,
the dual space H∗, and define a probe space E0 that afterwards serves as the basis for the
general case k ∈ N.

Let V = {Vn}∞n=1 be a sequence of subspaces Vn ⊆ H with dimension dn < ∞ and let
Sn be the unit ball in Vn. As in the finite-dimensional case, for l ∈ H we denote by l∗ the
element in H∗ given by x 7→ 〈l, x〉, where 〈·, ·〉 denotes the scalar product in H. Note that
l 7→ l∗ is in fact an isometric (anti-)isomorphism by Frèchet-Riesz representation theorem.
Then we define the probe space E0 by

E0(V) =

{(
∞∑
n=1

n−2φn

)∗
φn ∈ Sn

}
⊆ H∗.

Since Vn is finite-dimensional, it is straightforward to show that E0 is indeed compact
by Tychonoff’s theorem (see, e.g., [Jä05]). Note that Sn can be identified with the unit
ball Bdn ⊆ Rdn by choosing an orthonormal basis of Vn. Thus, the uniform probability
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2.2 Embedding Finite-dimensional Sets into Rk

measure on Bdn induces a measure λn on Sn and we obtain a probability measure µ0 on
E0 by

µ0 =
∞⊗
n=1

λn.

For arbitrary k ∈ N we again take the k-fold Cartesian product of E0 and define E as

E(V) = E0(V)k =

{
L = (l∗1, . . . , l

∗
k) lj =

∞∑
n=1

n−2φj,n, φj,n ∈ Sn

}
. (2.15)

Again by Tychonoff’s theorem E is also compact and we define a probability measure µ
as the k-fold product measure

µ =
k⊗
j=1

µ0. (2.16)

Rephrasing [Rob10, Lemma 5.6] we can bound the measure µ as follows.

Lemma 2.15 (cf. [Rob10, Lemma 5.6]). For any n ∈ N, α ∈ Rk and x ∈ H we have

µ {L ∈ E |α + Lx| ≤ ε } ≤ c

(
n2d1/2

n

ε

‖Pnx‖

)k
, (2.17)

where c > 0 is a constant independent of n and α, and Pn is the orthogonal projection
onto the dn-dimensional subspace Vn ⊆ H.

In the proof of the finite-dimensional embedding result we applied the key inequality
(2.12) with ε ∼ 2−n and |x| ≥ 2−nθ (see (2.14)). In order to make a similar argument
using the estimate made in Lemma 2.15, we have to pay special attention to the choice of
the subspaces Vn and their dimensions dn. Ideally, for ‖x‖ ≥ 2−nθ we would like to have
‖Pnx‖ ≥ c2−nθ, where c > 0 is some constant. This is indeed possible if Vn is sufficiently

close to the set A ⊆ H. Suppose dist(A, Vn) ≤ 2−nθ

3
and x is of the form x = xj − yj with

‖xj − yj‖ ≥ 2−nθ (as in the proof), then we have

‖Pnx‖ = ‖Pn(xj − yj)‖ ≥ ‖xj − yj‖ − ‖xj − Pnxj‖ − ‖yj − Pnyj‖ ≥
2−nθ

3
. (2.18)

Since the dimension dn also occurs in the estimate (2.17), we need to control how the
dimension dn of Vn grows with n, or in other words, as dist(A, Vn) decreases. This can be
done via the thickness exponent also introduced in [HK99].

Definition 2.16 (Thickness exponent, [HK99]). Let X be a Banach space and A ⊆ X .
For ε > 0, denote by d(A, ε) the minimum dimension of all finite-dimensional subspaces
V ⊆ X such that dist(A, V ) ≤ ε. The thickness exponent of A is defined by

τ(A) = lim sup
ε→0

log d(A, ε)
− log ε

,

essentially d(A, ε) ∼ ε−τ(A) as ε→ 0.
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2 Embedding Theory

Roughly speaking, τ(A) is a measure for how well A can be approximated by finite-
dimensional subspaces of the ambient space X . In particular, if τ > τ(A), then we can
find ε0 > 0 and finite-dimensional spaces Vn ⊆ X with

dim(Vn) ≤ CA,τ · ε−τ <∞ and dist(A, Vn) ≤ ε for all ε < ε0. (2.19)

Thus, the thickness exponent provides the existence of subspaces that can be used in the
construction of a transverse measure µ as described above.

In order to further understand this notion, we list some key properties of it.

Proposition 2.17. Let X be a Banach space and A ⊆ X .

(a) The thickness exponent of A is bounded by the box-counting dimension dbox(A), i.e.,
τ(A) ≤ dbox(A).

(b) If A ⊆M for a finite-dimensional Cs-manifold, then τ(A) ≤ dbox(A)
s

.

(c) Suppose X = L2(Ω) for some minimally smooth bounded region Ω ⊆ Rm (see [EE18]
for a definition of minimally smooth) and A is compact. If A is uniformly bounded in
the sobolev space Hs(Ω) for some s > 0, then τ(A) ≤ m

s
. In particular, if A consists

of “smooth functions”, i.e., A is uniformly bounded in Hs(Ω) for every s ∈ N, then
τ(A) = 0.

Proof.

(a) This follows directly from the definition. Suppose A is covered by N(A, ε) balls of
radius ε > 0. Then A lies within ε distance of the space spanned by the centers of
these balls. Thus, d(A, ε) ≤ N(A, ε) which completes the proof.

(b) As in [HK99] we only sketch the proof. Let ε > 0 and cover A with the minimal
number N(A, ε) of balls of radius ε that is needed. Then one can approximate the
manifoldM within each ball to within εr distance by a Taylor polynomial. It follows
that d(A, εs) ≤ Cs,dim(M) ·N(A, ε) as desired. Here Cs,dim(M) is the number of terms
in the Taylor polynomial that only depends on s and the dimension of M.

(c) This statement is the main theorem in [FR99] and we refer to that article for the
corresponding proof. However, as pointed out in [Rob05] there is a small gap in the
proof that is fixed in the footnote of [Rob05, Proposition 3.2].

We remark that part (b) and (c) of the above proposition roughly says that τ(A) is
inversely proportional to “smoothness” of A. Hence, in our later numerical studies it is
reasonable to assume that A is smooth, i.e., τ(A) = 0.

The notion of the thickness of A allows us to state and prove the embedding result
by Hunt and Kaloshin for the case where A is a subset of a possible infinite-dimensional
Hilbert space.
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2.2 Embedding Finite-dimensional Sets into Rk

Theorem 2.18 ([HK99, Theorem 3.6]). Let A ⊆ H be a compact set with box-counting
dimension dbox(A) = d and thickness exponent τ(A) = τ . Let k > 2d be an integer and
θ ∈ R with

0 < θ <
k − 2d

k(1 + τ/2)
. (2.20)

Then for almost every (in the sense of prevalence) Lipschitz function f : H → Rk there
exists C > 0 such that

‖x− y‖ ≤ C |f(x)− f(y)|θ for all x, y ∈ A. (2.21)

In particular, f is one-to-one on A with θ-Hölder continuous inverse on A.

Note that for τ = 0 the bound for the Hölder exponent θ is the same as in the finite-
dimensional embedding Theorem 2.10. In particular, for k →∞ the (sharp) upper bound

2
2+τ

becomes one in this case. But in general the thickness exponent further controls the
smoothness of the embedding.

Proof. To incorporate the ideas of Section 2.2.2 we give an in-depth proof of this result.
At first let us define the corresponding transverse measure µ to test for prevalence. Choose
and fix τ > τ(A) such that still

0 < θ <
k − 2d

k(1 + τ/2)
. (2.22)

Then by definition of the thickness exponent it follows that there are finite-dimensional
subspaces Vn ⊆ H such that

dn := dim(Vn) ≤ CA,τ · 2nθτ <∞ and dist(A, Vn) ≤ 2−nθ

3
. (2.23)

That is, we consider ε = 2−nθ

3
in (2.19) and merge the arising additional factor 3τ in

the constant CA,τ . Let V = {Vn}∞n=1, E = E(V) and µ be the probability measure on E
defined in (2.15) and (2.16).

With that at hand the remainder of the proof follows closely to the proof of Theo-
rem 2.10. Thus, we recall the definitions and results made there. Let f : H → Rk be a
Lipschitz function. Define

Zn =
{

(x, y) ∈ A×A ‖x− y‖ ≥ 2−nθ
}
⊆ A×A

and set

Qn =
{
L ∈ E |(f + L)(x)− (f + L)(y)| ≤ 2−n for some (x, y) ∈ Zn

}
.

Again, for a fixed d > dbox(A), we can cover Zn by no more than CA,d · 22nd balls
B((xj, yj), 2

−n), where we use the 1-metric on the product space H ×H.
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2 Embedding Theory

Now ‖L‖ is uniformly bounded by

‖L‖2 ≤
k∑
j=1

∣∣l∗j ∣∣2 =
k∑
j=1

|lj|2 ,

since the map l 7→ l∗ is an isometry, and

|lj|2 =

∣∣∣∣∣
∞∑
n=1

n−2φj,n

∣∣∣∣∣ ≤
∞∑
n=1

n−4 <∞.

Thus, there is a Lipschitz constant M > 0 that is valid for f +L for all L ∈ E. Applying
the same arguments as in the previous proof it follows

µ
{
L ∈ E |(f + L)(x)− (f + L)(y)| ≤ 2−n for some (x, y) ∈ Yj

}
≤ µ

{
L ∈ E |(f + L)(xj)− (f + L)(yj)| ≤ Cf · 2−n

}
= µ

{
L ∈ E |(f(xj)− f(yj)) + L(xj − yj)| ≤ Cf · 2−n

}
.

Now Lemma 2.15 allows us to further bound the measure, i.e.,

µ
{
L ∈ E |(f(xj)− f(yj)) + L(xj − yj)| ≤ Cf · 2−n

}
≤ c

(
n2d1/2

n

Cf · 2−n

‖Pn(xj − yj)‖

)k

and by (2.23) and (2.18) we have

c

(
n2d1/2

n

Cf · 2−n

‖Pn(xj − yj)‖

)k
≤ c

(
n2 · C1/2

A,τ · 2
nθτ/2 · Cf · 2−n · 2nθ · 3

)k
= CA,τ,f,k · n2k · 2[θk(1+τ/2)−k]n.

Thus, we can estimate the measure of Qn by

µ(Qn) ≤ CA,d · 22nd · CA,τ,f,k · n2k · 2[θk(1+τ/2)−k]n = CA,d,τ,f,k · n2k · 2[2d−k+θk(1+τ/2)]n

which yields a converging series
∑∞

n=1 µ(Qn) <∞ by (2.22). Finally, the rest of the proof
follows as in Theorem 2.10 using the Borel-Cantelli lemma.
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2.2 Embedding Finite-dimensional Sets into Rk

Banach Spaces

The authors of [HK99] tried to extend their result for subsets of a Banach space X .
However, in their proof it is claimed that there exists a linear isometry from the dual of
any finite-dimensional subspace of Y to a subspace of the dual of Y . This is only true if
(and only if by Riesz–Fréchet representation theorem) Y is a Hilbert space [Kak40, KM44].
Thus, we can not directly extend the construction for Hilbert spaces, where we identified
elements φn ∈ Sn via the Riesz’ mapping x 7→ 〈·, x〉, to Banach spaces. That is why we
will directly start with a sequence of subspaces in the dual space X ∗.

So let V = {Vn}∞n=1 be a sequence of subspaces Vn ⊆ X ∗ with dimension dn < ∞ and
let Sn be the unit ball in Vn. In analogy to the Hilbert space case we define the (compact)
probe space E0 for k = 1 by

E0(V) =

{
∞∑
n=1

n−2φn φn ∈ Sn

}
⊆ X ∗.

Now we choose a basis for Vn, so that we can identify Sn with a symmetric convex set
Un ⊆ Rdn via the coordinate representation. Again, the uniform probability measure on
Un induces a measure λn on Sn and we obtain a probability measure µ0 on E0 by

µ0 =
∞⊗
n=1

λn.

For arbitrary k ∈ N we again take the k-fold Cartesian product of E0 and define E as

E(V) =

{
L = (L1, . . . , Lk) Lj =

∞∑
n=1

n−2φj,n, φj,n ∈ Sn

}
. (2.24)

The corresponding probability measure µ is then the k-fold product measure

µ =
k⊗
j=1

µ0. (2.25)

This is, indeed, an extension since the Vn of a Hilbert space H are simply replaced by the
subspaces V ∗n obtained by the isometry x 7→ 〈·, x〉, the unit ball Sn in Vn corresponds to
the unit ball in Vn under the same mapping and Un = Bdn .

This measure can also be estimated as follows by rephrasing [Rob10, Lemma 5.10].

Lemma 2.19 (cf. [Rob10, Lemma 5.10]). If α ∈ Rk and x ∈ X , then for every n ∈ N we
have

µ {L ∈ E |α + Lx| < ε } ≤
(
n2dn

ε

|g(x)|

)k
for any g ∈ Sn.
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The last ingredient needed is the definition of an Auerbach basis for a finite-dimensional
Banach space.

Definition 2.20. Let W be a d-dimensional Banach space. An Auerbach basis for W
is formed by a basis {w1, . . . , wd } of W and a corresponding basis {w∗1, . . . , w∗d } of the
dual space W ∗ that satisfies ‖wi‖ = ‖w∗i ‖ and w∗i (wj) = δi,j for all i, j = 1, . . . , d. For the
existence of such a basis see, for instance, [Wer11, Satz II.2.6].

With that at hand we are in the position to formulate the embedding result for a subset
of a Banach space.

Theorem 2.21 (cf. [MR19, Theorem 3.2]). Let A ⊆ X be a compact set with box-counting
dimension dbox(A) = d and thickness exponent τ(A) = τ < 1. Let k > 2d be an integer
and θ ∈ R with

0 < θ < (1− τ)
k − 2d

k(1 + τ)
. (2.26)

Then for almost every (in the sense of prevalence) Lipschitz function f : X → Rk there
exists C > 0 such that

‖x− y‖ ≤ C |f(x)− f(y)|θ for all x, y ∈ A. (2.27)

In particular, f is one-to-one on A with θ-Hölder continuous inverse on A.

Note that in contrast to Theorem 2.18, for k →∞ the bound of the thickness exponent
is in (2.26) given by 1−τ

1+τ
which is less than or equal to the bound 2

2+τ
(cf. (2.21)), allowing

for less smooth embeddings. But for zero thickness we still obtain a maximal bound of
one.

Proof. We will proceed as in the proof of Theorem 2.18 and also reuse some arguments.
Take 1 > τ > τ(A) and d > dbox(A) such that still

0 < θ < (1− τ)
k − 2d

k(1 + τ)
. (2.28)

By definition of the thickness exponent there are finite-dimensional subspaces Wn ⊆ X
such that

dim(Wn) = dn ≤ CA,τ,β · 2nθβτ <∞ and dist(A,Wn) ≤ 2−nθβ

3
, (2.29)

where β > 1 will be specifically chosen later. In order to construct the sequence of
subspaces Vn of X ∗, we will consider an Auerbach basis for Wn. Let

{
en1 , . . . , e

n
dn

}
be a

basis for Wn and
{
rn1 , . . . , r

n
dn

}
be the corresponding basis for W ∗

n which satisfies

‖rni ‖ = 1 ∀i and rni (enj ) = δi,j, ∀i 6= j.

Applying the Hahn-Banach theorem (see, e.g., [Wer11, Theorem III.1.5]) we extend the
elements of

{
rn1 , . . . , r

n
dn

}
to a set

{
fn1 , . . . , f

n
dn

}
⊆ X ∗ and set Vn = span{fn1 , . . . , fndn},
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2.2 Embedding Finite-dimensional Sets into Rk

which is an at most dn-dimensional subspace of X ∗. Let V = {Vn}∞n=1, E = E(V) and µ
be the probability measure on E defined in (2.24) and (2.25).

Refer to the proofs of Theorem 2.10 and Theorem 2.18 for the definitions of Zn, Qn, the
covering of Zn and Yj. Again ‖L‖ is uniformly bounded and we obtain

µ
{
L ∈ E |(f + L)(x)− (f + L)(y)| ≤ 2−n for some (x, y) ∈ Yj

}
≤ µ

{
L ∈ E |(f(xj)− f(yj)) + L(xj − yj)| ≤ Cf · 2−n

}
Now Lemma 2.19 allows us to further bound the measure, i.e.,

µ
{
L ∈ E |(f(xj)− f(yj)) + L(xj − yj)| ≤ Cf · 2−n

}
≤
(
n2dn

Cf · 2−n

|gn(xj − yj)|

)k
for all gn ∈ Sn. For the explicit choice of gn we refer to [MR19] and only sketch the ideas.

Consider (xn, yn) ∈ Wn ×Wn such that ‖(xn, yn)− (xj, yj)‖1 ≤
2nθβ

3
. Setting β =

1

1− τ
one finds gn ∈ Sn such that

|gn(xn − yn)| ≥ d−1
n ‖xn − yn‖ and |gn(xj − yj)| ≥ C · 2−nθβ

with some constant C > 0. Thus, (2.29) and Lemma 2.19 yield

µ(Qn) ≤ CA,τ · 22nd ·
(
n2dn

Cf · 2−n

C · 2−nθβ

)k
≤ CA,τ,f,k · n2k · 2[2d−k+θβτk+θβk]n.

Finally, by (2.28) the exponent 2d−k+ θβk+ θβτk = 2d−k+ θβk(τ + 1) < 0 is negative
and the series

∑∞
n=1 µ(Qn) converges as desired. Using the Borel-Cantelli lemma as in

Theorem 2.10 finishes the proof.

Remark 2.22.

(a) Theorem 2.21 was originally proven in [MR19] for µ-almost every linear map. How-
ever, it turns out that slightly adjusting the proof allows us to extend the result to
incorporate the notion of prevalence.

(b) Based on the approximation required in the course of the arguments in Theorem 2.18,
the dual thickness exponent τ ∗(A) was introduced in [Rob09]. Its definition allows for
the same result as in Theorem 2.18, where τ/2 is replaced by τ ∗. Unfortunately, there
is no known general relationship between both exponents in the context of Banach
spaces, yet. However, one can prove that zero thickness implies zero dual thickness
[Rob10], which fits perfectly for our standing assumption τ(A) = 0 in the upcoming
numerical analysis. In addition to that, τ ∗ is bounded by twice the box-counting
dimension of A [MR19] (cf. Proposition 2.17).
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2 Embedding Theory

2.3 Delay Coordinate Embeddings

In the previous sections we considered finite-dimensional compact sets in an (possibly
infinite-dimensional) ambient space. We did not take into account that this set is invari-
ant under the dynamics of an underlying dynamical system. That is why we will now
summarize some embedding results in which the dynamics is observed by a real-valued
map using delay coordinates.

As before we start with the case where the set is a smooth manifold. Based on the results
of Whitney (see Section 2.2.1), Floris Takens was able to prove that delay coordinates of
a generic discrete dynamical system Φ on M can also be used to generate an embedding
[Tak81]. Here, we will fix Φ which entails some additional assumptions.

Theorem 2.23 (Takens’ (unstated) Theorem, [Huk06]). Let M be a compact smooth
manifold of dimension d ∈ N. Let Φ : M → M be a diffeomorhism with the following
properties:

1) Φ has finitely many periodic points of period less or equal to 2d.

2) If x ∈M is a periodic point with period p ≤ 2d, then the eigenvalues of the linearization
DΦp(x) are distinct.

Then for generic f ∈ C2(M,R) the delay coordinate map D2d+1[f,Φ] : M → R2d+1

defined by

D2d+1[f,Φ](x) = (f(x), f(Φ(x)), . . . , f(Φ2d(x)))

is an embedding.

Here, generic means “open and dense” in the C1-topology, even though f is C2. Some-
times the delay coordinate map Dk[f,Φ] is also called k-fold observation map. Condition
1) is responsible for the fact that D2d+1[f,Φ] is injective whereas condition 2) is a needed
property to show that it is, indeed, an embedding. By replacing genericity with prevalence
Sauer et al. [SYC91] proved an analogous result for sets in RN with finite box-counting
dimension. In the following we will denote the set of p-periodic points of a map Φ by
Ap(Φ), that is, Ap(Φ) = {x ∈ A Φp(x) = x }.

Theorem 2.24 ([SYC91, Theorem 2.7.]). Let A ⊆ RN be compact with box-counting di-
mension dbox(A) = d. Let k > 2d be an integer and let Φ : RN → RN be a diffeomorphism
with the following properties:

1) dbox(Ap(Φ)) < p/2 for all p ≤ k.

2) If x ∈ A is a periodic point with period p ≤ k, then the eigenvalues of the linearization
DΦp(x) are distinct.

Then for almost every (in the sense of prevalence) smooth map f : RN → R the delay
coordinate map Dk[f,Φ] : RN → Rk is one-to-one on A ⊆ RN and an immersion on each
compact subset of a smooth manifold contained in A.

Observe that the first assumption in this theorem is clearly satisfied if Φ has finitely
many periodic points of period p ≤ k since the box-counting dimension is zero in this case.
Thus, the assumptions made here are weaker compared to the ones in Theorem 2.23. We
note that condition 2) is only needed for proving that Dk[f,Φ] is an immersion.
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2.3 Delay Coordinate Embeddings

Finally, Robinson [Rob05] combined this result with the Hilbert space embedding The-
orem 2.18. That is, first A ⊆ H is embedded by a map L via Theorem 2.18 in RN for
a large enough N ∈ N and then a “Hölder version” of Theorem 2.24 provides a delay
coordinate embedding of L(A) ⊆ RN using the composition L ◦ Φ ◦ L−1.

Theorem 2.25 ([Rob05]). Let Φ : H → H be a Lipschitz map, where H is a Hilbert space.
Let A ⊆ H be a Φ-invariant compact subset with box-counting dimension dbox(A) = d
and thickness exponent τ(A) = τ . Let k > 2(1 + τ/2)d be an integer and further suppose
dbox(Ap(Φ)) < p

2+τ
for all p ≤ k. Then for almost every (in the sense of prevalence)

Lipschitz map f : H → R the delay coordinate map Dk[f,Φ] : H → Rk is one-to-one on
A ⊆ H.

Again the condition on dbox(Ap(Φ)) is satisfied if Φ has finitely many periodic points of
period p ≤ k. Observe that Φ is not differentiable and therefore the immersion property
of Dk[f,Φ] provided by condition 2) in Theorem 2.24 is not valid. Even considering
a smoother dynamical system Φ would not yield an analogous result since the delay
coordinate map defined on RN is “lifted” to a map on A via a map that is only Hölder
continuous (cf. (2.21)).

If the ambient space is a Banach space, it is straightforward to show that the above
theorem is also valid provided τ(A) < 1, using Theorem 2.21 instead of Theorem 2.18.
Note that in this case the embedding dimension and the bound on the box-counting
dimension of the periodic points have to be adapted as well.

Theorem 2.26. Let Φ : X → X be a Lipschitz map, where X is a Banach space. Let
A ⊆ X be a Φ-invariant compact subset with box-counting dimension dbox(A) = d and
thickness exponent τ(A) = τ < 1. Let k > 21+τ

1−τ d be an integer and further suppose

dbox(Ap(Φ)) < p(1−τ)
2(1+τ)

for all p ≤ k. Then for almost every (in the sense of prevalence)

Lipschitz map f : X → R the delay coordinate map Dk[f,Φ] : X → Rk is one-to-one on
A ⊆ X .
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2 Embedding Theory

2.4 The Core Dynamical System (CDS)

Given a discrete dynamical system of the form

uj+1 = Φ(uj), j = 0, 1, . . . , (2.30)

where Φ : X → X is a Lipschitz continuous map on some (possibly) infinite-dimensional
Banach space X , we will employ the embedding results in order to construct the so–called
core dynamical system (CDS). To this end, we assume that Φ has an invariant compact
set A ⊆ X with finite box-counting dimension dbox(A) and thickness exponent τ(A). A
typical example for such a map Φ is the time-T -map of a partial differential equation
(cf. (2.4)) or a delay differential equation. In this setting the set A could be the global
attractor of the system.

Originally defined in [DHZ16] the CDS is a finite-dimensional continuous dynamical
system ϕ that possesses an invariant set on which the dynamics are topologically con-
jugated to those of Φ on A. Thus, the CDS allows for the (numerical) analysis of the
infinite-dimensional system Φ. More precisely, the CDS is constructed utilizing an em-
bedding R (cf. Chapter 2). In particular, every such embedding R generates a different
CDS. We will include this observation and prove that a prevalent set of Lipschitz maps
generates a Hölder continuous map ϕ that essentially has the same dynamics as Φ on
the attractor. Also note that in contrast to [DHZ16] the dynamical system ϕ is not only
continuous but even Hölder. In order to use the embedding Theorem 2.21, we additionally
have to assume that τ(A) < 1. Choose and fix an integer k ∈ N with k > 2dbox(A) such
that the corresponding result is valid. Then there is a prevalent set of Lipschitz maps
R : X → Rk that are one-to-one on A. In the following we will call such a map R an
observation map. Denote by Ak the image of A ⊆ X under a chosen observation map R,
that is,

Ak = R(A) ⊆ Rk.

By Theorem 2.21 this observation map R is invertible as a mapping from A to Ak which
implies the existence of a unique map Ẽ : Ak → X satisfying

(Ẽ ◦R)(u) = u ∀u ∈ A and (R ◦ Ẽ)(x) = x ∀x ∈ Ak. (2.31)

In addition to that, for some θ ∈ R such that (2.26) holds, there is a constant C > 0 such
that

‖u− v‖ ≤ C |R(u)−R(v)|θ for all u, v ∈ A.

In particular, Ẽ is Hölder continuous with Hölder exponent θ. On Ak ⊆ Rk we define the
CDS ϕ as the composition of the three maps R, Φ and Ẽ, that is,

ϕ = R ◦ Φ ◦ Ẽ.

By construction ϕ is θ-Hölder continuous and Ak ⊆ Rk is an invariant set of ϕ. In order
to define ϕ(x) for x ∈ Rk, it remains to extend the map Ẽ to a map E : Rk → X with

E|Ak = Ẽ. To this end, we employ the following extension theorem of Whitney type by
Stein [Ste70].

30



2.4 The Core Dynamical System (CDS)

Theorem 2.27 ([MS03, Therorem 2.2]). Let A ⊆ Rk be a non-empty set, X be a real
Banach space and g : A → X be a Hölder continuous map with exponent θ ∈ (0, 1].
Then there exists an extension ḡ : Rk → A of g that is Hölder continuous with the same
exponent.

Utilizing this theorem we can extend Ẽ to a map E : Rk → X that is still θ-Hölder
continuous and, in the end, the CDS is defined on the observation space Rk by

xj+1 = ϕ(xj) = (R ◦ Φ ◦ E)(xj), j = 0, 1, . . . . (2.32)

In Figure 2.1 we illustrate the construction of the CDS.

Function Space Observation Space

Figure 2.1: Definition of the CDS ϕ.

Note that after extending Ẽ the set Ak remains invariant under ϕ, i.e., ϕ(Ak) = Ak.
Finally, we summarize the arguments made above in the following proposition.

Proposition 2.28. Let X be a Banach space and Φ : X → X be a Lipschitz map that
has an invariant compact set A ⊆ X with finite box-counting dimension dbox(A) = d and
thickness exponent τ(A) = τ < 1. Let k > 2d be an integer and θ ∈ R such that (2.26)
holds. Then for almost every (in the sense of prevalence) Lipschitz function R : X → Rk

there is a θ-Hölder continuous map ϕ : Rk → Rk satisfying

ϕ(R(u)) = R(Φ(u)) for all u ∈ A.

Remark 2.29.

(a) In [DHZ16] the map Ẽ is only continuously extended using a generalization of Tietze’s
extension theorem [DS88, I.5.3] proven by Dugundji [Dug51, Theorem 4.1] which leads
to a continuous core dynamical system ϕ.

(b) If X is in fact a Hilbert space, then the assumption τ(A) < 1 can be dropped and
θ ∈ R has to satisfy (2.20) instead. In this case Theorem 2.18 provides the existence
of the prevalent set of Lipschitz functions generating ϕ.

(c) By adjusting the assumptions on Φ and the embedding dimension k ∈ N one can also
utilize the delay embedding Theorem 2.26 or 2.25 for the construction of the CDS. In
this case the term prevalence is with respect to the space of Lipschitz maps X → R.
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2 Embedding Theory

(d) A crucial drawback in the arguments made above is that the map E is unknown.

Even though the extension procedure E of Ẽ by Theorem 2.27 is partly constructive,
the embedding result only guarantees the existence of Ẽ. That is why the particular
realization of E will depend on the application at hand and we will discuss possible
choices for DDEs and PDEs in Chapter 4.

In particular, the set of Lipschitz functions generating a CDS ϕ is non-empty and
dense (see Proposition 2.13). After choosing a specific observation map R we obtain a
finite-dimensional dynamical system ϕ whose dynamics on the embedded invariant set
Ak = R(A) is topologically conjugated to that of the infinite-dimensional system Φ on A.
Thus, we reduced the problem of computing A (or subsets of it) to the approximation of
corresponding embedded sets.

The Parameter-Dependent CDS

In this section we will introduce a one-dimensional real-valued parameter to the system
(2.30). More precisely, we now consider a dynamical system of the form

uj+1 = Φ(uj, λ), j = 0, 1, . . . , (2.33)

where Φ : X × Λ → X is Lipschitz continuous in u ∈ X for each parameter value λ in
a compact interval Λ ⊆ R and uniformly continuous in λ on bounded sets. For brevity,
we will write Φλ for Φ(·, λ). Moreover, we assume that Φλ has a compact invariant set
Aλ ⊆ X with finite box-counting dimension dbox(Aλ) and thickness exponent τ(Aλ) for
every λ ∈ Λ. The aim in this section is to construct corresponding parameter-dependent
core dynamical system (pCDS) ϕλ that reconstructs the dynamics of Φλ on Aλ using an
observation map that is independent of the parameter λ. Note that this construction goes
beyond the current definition in [DHZ16] since the same arguments as before can not be
directly applied.

A straightforward approach for the definition of the pCDS would be to embed all the
sets Aλ simultaneously. More precisely, ideally we would like to have a prevalent set of
Lipschitz maps R : X → Rk that are one-to-one on Aλ for every λ ∈ Λ. In particular,
such a map R is independent of λ and R would be one-to-one on the union

AΛ =
⋃
λ∈Λ

Aλ.

However, this approach causes some technical issues that we will discuss in the following.

In order to prove the existence of such a prevalent set, a first idea would be to use
the embedding Theorem 2.18 or 2.21 on each Aλ individually. In fact, this yields for
every λ ∈ Λ the existence of a prevalent set Lλ of Lipschitz maps Rλ : X → Rk that are
one-to-one on Aλ with θ-Hölder inverse. In general, this set Lλ depends on λ ∈ Λ, which
is emphasized by the subscripts of Lλ and Rλ, respectively. Note that the embedding
dimension k ∈ N and the Hölder exponent θ can be made independent of λ by choosing
k ∈ N sufficiently large, i.e.,

2 max
λ∈Λ

dbox(Aλ) < k <∞.
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2.4 The Core Dynamical System (CDS)

Additionally, the Hölder exponent can be made independent of λ by choosing θ sufficiently
small, i.e.,

θ <
k − 2 maxλ∈Λ dbox(Aλ)
k(1 + maxλ∈Λ τ (Aλ) /2)

, if X is a Hilbert space,

θ <

(
1−max

λ∈Λ
τ
(
Aλ
)) k − 2 maxλ∈Λ dbox(Aλ)

k(1 + maxλ∈Λ τ (Aλ))
, if X is a Banach space,

(cf. (2.21) and (2.27)). Then the intersection of all these sets Lλ, that is,

LΛ =
⋂
λ∈Λ

Lλ

will be a set of Lipschitz maps R : X → Rk that are one-to-one on the union AΛ with
θ-Hölder inverse. In particular, LΛ is independent of λ as desired. Unfortunately, LΛ

is an uncountable intersection and hence not prevalent in general. Observe that directly
embedding AΛ using Theorem 2.18 or 2.21 is not possible, since the uncountable union
AΛ is, in general, not compact even though each individual Aλ is.

In order to circumvent the problem that Λ ⊆ R is too “large”, we will consider a
countable enumeration ΛN = {λn}n∈N of Q ∩ Λ. Then the corresponding sets

LΛN =
⋂
n∈N

Lλn and AΛN =
⋃
n∈N

Aλn

reduce to a countable intersection and a countable union, respectively. Note that in
general AΛN still may be not compact and the embedding Theorem 2.18 or 2.21 can not
be applied on AΛN . To do so one has to consider a finite subset in parameter space.
However, LΛN will be a prevalent set by Proposition 2.13 (b) and thus almost every (in
the sense of prevalence) Lipschitz map RΛN : X → Rk will be one-to-one on AΛN ⊆ X . In

particular, there is a unique θ-Hölder continuous map ẼΛN = R−1
|AΛN which can be extended

to a map EΛN : Rk → X by Theorem 2.27 such that

(EΛN ◦RΛN) (u) = u ∀u ∈ AΛN and (RΛN ◦ EΛN) (x) = x ∀x ∈ AΛN
k ,

where AΛN
k = RΛN

(
AΛN

)
. The parameter-dependent core dynamical system (pCDS) is

then defined by

xj+1 = ϕλn(xj) = (RΛN ◦ Φλn ◦ EΛN)(xj), j = 0, 1, . . . ,

where the parameter value λn can be taken from the dense subset ΛN ⊆ Λ. By construction
Aλnk is an invariant set of ϕλn and the dynamics of ϕλn on Aλnk are topologically conjugated
to those of Φλn on Aλn for every λn ∈ ΛN.

In the numerical realization of the pCDS we will design an observation map R that
at most depends on a chosen fixed λ̂. The corresponding map E is then constructed
in such a way that (R ◦ E)(x) = x is in fact satisfied for every x ∈ Rk. The second
condition (E ◦ R)(u) = u is then enforced at least approximately by a bootstrapping
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2 Embedding Theory

method. Therefore, we actually define the pCDS for every λ ∈ Λ by

xj+1 = ϕλ(xj) = (R ◦ Φλ ◦ E)(xj), j = 0, 1, . . . . (2.34)

According to the above discussion, ϕλ reproduces the dynamics of Φλ on Aλ for a dense
subset ΛN ⊆ Λ. For the remaining parameter values the map R may not be one-to-one
but close to it, provided the invariant set Aλ behaves well under parameter perturbation
(cf. Definition 3.15). With that in mind we will use ϕλ (2.34) for the numerical analysis
of the dynamics of Φλ for every λ ∈ Λ.

Remark 2.30.

(a) If there is a (large) compact set A ⊆ X with finite box-counting dimension that
contains Aλ for all λ ∈ Λ, one can avoid the discretization of Λ and instead embed A
using Theorem 2.18 or 2.21.

(b) Typically, for the numerical analysis of parameter-dependent systems such as Φλ, one
discretizes the parameter space by some finite set ΛN = {λ0, λ1, . . . , λN} ⊆ Λ instead
of choosing a countable subset and in the following we proceed in this way. However,
choosing a dense subset of the parameter space Λ allows for a “smoother” (theoretical)
definition of the pCDS, that is, it actually reconstructs the dynamics of Φλ for almost
all (in the sense of denseness) parameter values.
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3 Set-Oriented Numerics for
Infinite-Dimensional Systems

In this chapter we present a family of tools, so-called set-oriented methods, for the ap-
proximation of invariant sets. The basic idea of such tools is to construct coverings of
the object of interest, e.g., attractors and (un-)stable manifolds of a steady state, by
outer approximations which are generated via subdivision and continuation techniques.
Those methods have been successfully applied in several areas such as molecular dynamics
[DDJS99, SHD01, DGM+05], astrophysics [DJK+05, DJL+05, DJ06] and ocean dynamics
[FPET07, DFH+09, SFM10, FHR+12]. The purpose of this chapter is to extend the sub-
division scheme [DH97] for the approximation of attractors and the continuation method
[DH96] for the computation of invariant manifolds to infinite-dimensional systems. To
this end, we will employ embedding techniques (cf. Sections 2.2.3 and 2.3) which allow
the construction of the finite-dimensional CDS (see Section 2.4). Since the CDS is in
general not a homeomorphism, the original subdivision scheme [DH97] has to be adapted
to continuous dynamical systems which then enables us to approximate the embedded
attractor [DHZ16]. Furthermore, we will present a path following method for the approx-
imation of parameter-dependent attractors. That is, we will introduce a one-dimensional
real parameter to the system and aim to compute the corresponding attractors by reusing
previously computed coverings. In doing so, we will develop a set-oriented predictor-
corrector technique. Finally, applying the subdivision scheme to the (embedded) local
unstable manifold and using the continuation technique developed in [DH96] afterwards
leads to the computation of embedded unstable manifolds [ZDG19]. We note that large
parts of this chapter are also contained in [ZDG19], [GZED20], [ZGD20] and [GZ20] to
which the author has made substantial contributions.

Throughout the remainder of this chapter we will consider a dynamical system of the
form

xj+1 = ϕ(xj), j = 0, 1, . . . , (3.1)

where ϕ : Rk → Rk is continuous. Moreover, we assume that ϕ has a compact invariant
set Ak ⊆ Rk. In particular, the CDS (2.32) is of such a type. In this case, there is an
underlying (infinite)-dimensional Lipschitz continuous system Φ on a Banach space X ,
that possesses a finite-dimensional compact invariant set A ⊆ X and Ak = R(A) for the
embedding R chosen according to Theorem 2.21 or 2.26 (cf. (2.30)).
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3.1 The Subdivision Scheme

In this section we review the contents of [DHZ16] for the approximation of the set Ak ⊆ Rk.
To this end, we will employ a subdivision scheme as defined in [DH97] that has been
extended to the CDS in [DHZ16]. Let Q ⊆ Rk be a (large) compact set that contains Ak.
The global attractor relative to Q is then defined by

AQ =
⋂
j≥0

ϕj(Q). (3.2)

By construction AQ ⊆ Q and AQ is compact since ϕ is continuous. Also observe that AQ
is a subset of the global attractor A of (3.1). However, in general we have AQ 6= A ∩ Q.
In particular, every backward invariant set is contained in AQ.

Lemma 3.1 ([DH97, Lemma 3.3]). Let B ⊆ Q such that ϕ−1(B) ⊆ B. Then B ⊆ AQ.

Proof. By ϕ−1(B) ⊆ B it immediately follows that B ⊆ ϕj(B) for all j ≥ 0. Hence,

B ⊆
⋂
j≥0

ϕj(B) ⊆
⋂
j≥0

ϕj(Q) = AQ

as desired.

Applying this lemma to the ϕ-invariant set Ak ⊆ Q ⊆ Rk we obtain the following result.

Proposition 3.2 ([DHZ16, Proposition 2]). Let AQ be the global attractor relative to the
compact set Q and suppose that Ak ⊆ Q. Then

Ak ⊆ AQ.

Unfortunately, we can not expect that Ak = AQ in general as desired. In fact, AQ may
contain several invariant sets and related heteroclinic connections besides Ak. However,
if Ak = R(A) for some embedding R and some attractive, Φ-invariant set A, utilizing
sufficiently high powers of Φ “tightens” this inclusion Ak ⊆ AQ (see Section 3.1.1 for
details). In particular, this will become important for the approximation of the local
unstable manifold (cf. Proposition 3.21). With Proposition 3.2 in mind we will present a
method for the approximation of AQ in the remainder of this section. Roughly speaking,
the idea is as follows.

Suppose we have a finite collection B0 of compact subsets of Rk that cover Q, that is,

Q =
⋃
B∈B0

B.

Then one recursively obtains new collections B`, from B`−1, for ` = 1, 2, . . . , by first
subdividing each of the sets B ∈ B` into smaller ones and afterwards throwing away
those subsets that do not contain any part of the relative global attractor AQ. Clearly,
continuing this process leads to successively better approximations. More precisely, we
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first construct a refined box collection B̂` such that⋃
B∈B̂`

B =
⋃

B∈B`−1

B

and diam(B̂`) < diam(B`−1), where the diameter is given by diam(B`) = max
B∈B`

diam(B).

This step guarantees that the collections B` consist of successively finer sets for increasing
`. In fact, by construction the diameter converges to zero for `→∞. We then define the
new collection B` by removing each subset in B̂` whose preimage does neither intersect
itself nor any other subset in B̂`. This step is responsible for the fact that the unions

Q` =
⋃
B∈B`

B

approach the relative global attractor. This process will be stopped when a predefined
lower bound on the diameter of B` relative to Q is reached. We summarize the obtained
scheme in Algorithm 1.

Algorithm 1: The Subdivision Scheme

Initialization: Choose a compact set Q ⊆ Rk such that Ak ⊆ Q and set
B0 = {Q}. Fix ε > 0 and 0 < θmin ≤ θmax < 1.

Repeat the following two steps until diam(B`) < ε diam(Q).

1) Subdivision Step: Construct a new collection B̂` such that⋃
B∈B̂`

B =
⋃

B∈B`−1

B

and
diam(B̂`) = θ` diam(B`−1), (3.3)

where 0 < θmin ≤ θ` ≤ θmax < 1.

2) Selection Step: Define the new collection B` by

B` =
{
B ∈ B̂` ∃B̂ ∈ B̂` such that ϕ−1(B) ∩ B̂ 6= ∅

}
. (3.4)
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Remark 3.3.

(a) Algorithm 1 is included in the software package GAIO (Global Analysis of Invariant Ob-
jects) [DFJ01]. There, the compact sets B ∈ B are given by generalized k-dimensional
rectangles, hence called “boxes”, of the form

B(c, r) =
{
y ∈ Rk |yi − ci| ≤ ri for i = 1, . . . , k

}
,

where c ∈ Rk is the center and r ∈ Rk contains the radii ri > 0 for i = 1, . . . k. In
each subdivision step every box B of the current collection is subdivided by bisection
with respect to the j-th coordinate, where j is varied cyclically. This procedure leads
to two new rectangles B−(c−, r̂) and B+(c+, r̂) where

r̂i =

{
ri for i 6= j

ri/2 for i = j
, c±i =

{
ci for i 6= j

ci ± ri/2 for i = j.

This construction allows the storage of the boxes in a binary tree which enables fast
search algorithms for the selection step (and the continuation step later on, see (3.17)).

(b) In the selection step (3.4) we have to decide whether or not a preimage of a set B ∈ B̂`
has a non-empty intersection with another set B̂ ∈ B̂`. For simple problems this may
be done analytically, but in general we have to discretize each set B̂ ∈ B̂` by a finite
set of test points x ∈ B̂ and replace (3.4) by

∃x ∈ B̂ such that ϕ(x) ∈ B.

Thus, a box B is kept in the collection B` if there is a least one test point x such that
ϕ(x) ∈ B. Obviously, this is a weaker condition and we make the algorithm more
robust by reintroducing boxes if the image ϕ(x) of a test point x is not contained in
any B ∈ B`.

(c) There are several strategies for the choice of the test points. For instance, one can
choose them from a regular grid within each box or sample them at random with
respect to the uniform distribution. In this thesis, we will take the k-dimensional
Halton sequence which is a quasi-random sequence [Hal64]. Also note that there even
is a rigorous discretization possible that reduces the numerical effort, provided that
local Lipschitz constants for ϕ are known [Jun00].

Because the unions Q` define a nested sequence of compact sets, that is, Q`+1 ⊆ Q`,
we have, for each m,

Qm =
m⋂
`=1

Q`. (3.5)

Additionally, we can also consider the limit m→∞, i.e,

Q∞ =
∞⋂
`=1

Q`,

which is the set one obtains after performing infinitely many subdivision and selection
steps.
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In order to prove the convergence of Algorithm 1, we start by showing that Q∞ is
contained in the relative global attractor AQ.

Lemma 3.4 ([DHZ16, Lemma 4.2]). Let AQ be the global attractor relative to the compact
set Q and let Q∞ be the set obtained after infinitely many subdivision and selection steps.
Then Q∞ ⊆ AQ.

Proof. Let x ∈ Q∞, i.e., x ∈ Q` for all ` ∈ N. Thus, for every ` ∈ N there is a set
B`(x) ∈ B` such that x ∈ B`(x). Due to the selection step (3.4) there are points y` ∈ Q`

with ϕ(y`) ∈ B`(x) and we may assume that y = lim`→∞ y` by choosing a convergent
subsequence of (y`)` since (y`)` is contained in the compact set Q. By construction we
have y ∈ Q∞ and since the diameter of B`(x) converges to zero for ` → ∞ we conclude
with lim`→∞ ϕ(y`) = x. Finally, the continuity of ϕ yields x = ϕ(y) ∈ ϕ(Q∞). Hence,
Q∞ ⊆ ϕ(Q∞) and Lemma 3.1 yields Q∞ ⊆ AQ as desired.

Remark 3.5. The sequence (y`)` is a so–called diam(B`)-pseudo orbit, i.e.,

y` ∈ Q` and ϕ(y`) ∈ B`+1(y`+1) ∀` ∈ N,

where B`+1(y`+1) denotes a set in B`+1 such that y`+1 ∈ B`+1(y`+1). Observe that the sets
B` do not have to be unique since sets in B` may have non-empty intersections. It turns
out that (y`)` converges (after taking a subsequence if necessary) and then applying ϕ to
the limit y yields the point x ∈ Q∞ since ϕ(y`) ∈ B`(x). The concept of such a pseudo
orbit will also be useful later on (see the proof of Proposition 3.24).

In order to further show that AQ is always contained in Q` for every ` ∈ N and, in
particular, AQ ⊆ Q∞, we have to introduce an additional assumption, namely

ϕ−1(AQ) ⊆ AQ.

This would be automatically satisfied if ϕ is in fact a homeomorphism. Alternatively, it
also follows if Ak is attracting and Ak = AQ. These observations justify this assumption.

Lemma 3.6 (cf. [DH97, Lemma 3.2]). Let AQ be the global attractor relative to the
compact set Q and B0 be a finite collection of compacts set such that Q0 =

⋃
B∈B0

B = Q.
Suppose AQ satisfies ϕ−1(AQ) ⊆ AQ. Then AQ ⊆ Q` for all ` ∈ N. In particular,
AQ ⊆ Q∞.

Proof. We will prove this result by induction. By definition AQ ⊆ Q = Q0. Now suppose
AQ ⊆ Q`−1 and there is a point x ∈ AQ ⊆ Q`−1 such that x 6∈ Q` for some ` ∈ N.

Then there is a set B ⊆ B̂` containing x that is removed in the selection step (3.4), i.e.,
ϕ−1(B) ∩ Q`−1 = ∅. Hence, ϕ−1(x) 6∈ Q`−1 which contradicts the standing assumptions
ϕ−1(AQ) ⊆ AQ.
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Combining both lemmas finally yields the convergence result of Algorithm 1.

Proposition 3.7 ([DHZ16, Proposition 2]). Suppose the relative global attractor AQ sat-
isfies ϕ−1(AQ) ⊆ AQ. Then

AQ = Q∞.

Since Q∞ may be seen as the limit of the Q`, Proposition 3.7 can be restated as

lim
`→∞

h(AQ, Q`) = 0,

where h(B,C) is the Hausdorff distance between two compact subsets B,C ⊆ Rk.

Remark 3.8. In order to guarantee that the approximation of Ak is a one-to-one image
of A, the embedding dimension k ∈ N has to be chosen sufficiently large (see Sections 2.2
and 2.3). If an estimate of the dimension of A is not available or where known bounds
are extremely large, a sequential procedure has been developed to adaptively increase k
without restarting the subdivision scheme 1 [Zie18].

We finish this section by illustrating the proposed scheme 1 on an example.

Example 3.9 (Lorenz attractor). We apply Algorithm 1 on the well-known Lorenz system
[Lor63] given by

ẋ = σ(y − x),

ẏ = x(ρ− z)− y,
ż = xy − βz,

(3.6)

where we use the standard parameters σ = 10, β = 8/3 and ρ = 28. For these values
the system possesses a chaotic attractor [Tuc99, Ste00] which we will approximate using
Algorithm 1. To this end, we consider the time-T -map of (3.6) with T = 0.2 as the
dynamical system (3.1). In Figure 3.1 we show successively finer box coverings Q` of AQ
for Q = [−30, 30]× [−30, 30]× [−13, 67].

(a) Q9 (b) Q18 (c) Q27

Figure 3.1: (a)-(c) Successively finer coverings Q` of the relative global attractor AQ of
the Lorenz system (3.6) obtained by Algorithm 1. In (c) we show transparent
boxes in order to illustrate the wing shape of AQ.
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3.1.1 Approximation of Attracting Sets

Let us now specifically consider the CDS (2.32) as the dynamical system in (3.1). In
this situation the relative global attractor AQ contains a one-to-one image Ak = R(A)
of the invariant set A ⊆ X of Φ according to Proposition 3.2. We will show now that
the subdivision scheme 1 actually computes Ak if A is attracting using sufficiently high
powers of Φ.

Thus, suppose in this subsection that A is an attractive set with fundamental neigh-
borhood U ⊆ X , that is, A attracts all bounded sets within U (cf. (2.5)). For instance,
A could be the global attractor of the time-T -map Φ of a DDE or PDE. Moreover, we
assume that the computational domain Q ∈ Rk is chosen such that

Ak ⊆ Q and E(Q) ⊆ U , (3.7)

where E is the extended inverse map of the chosen embedding R (see Section 2.4). Hence,
for every x ∈ Q, the trajectories Φj(E(x)), j ∈ N, will eventually approach the attracting
set A. Unfortunately, these assumptions do not guarantee that Ak is also an attracting
set for the CDS ϕ. Due to the fact that the observation map R is only one-to-one on A
there may exist “spurious fixed points” x̄ ∈ Q in the sense that

x̄ = ϕ(x̄)

even though Φ(E(x̄)) 6= E(x̄) may be closer to A than E(x̄). To overcome this problem
we replace the map Φ in the definition of the CDS with higher powers Φm for m ∈ N, i.e,
we define a family of continuous maps by

ϕm = R ◦ Φm ◦ E. (3.8)

Keep in mind that in general ϕm 6= ϕm since equality can only be guaranteed on the
embedded set Ak ⊆ Rk. Nevertheless, Ak remains an invariant set for ϕm since A is an
invariant set for Φm for every m ∈ N. Thus, the embedding results in Sections 2.2 and
2.3 are still valid and the chosen observation map R remains one-to-one on A.

We will denote the corresponding global attractors relative to Q with respect to ϕm by
AmQ and see that AmQ covers Ak by (3.7) and Lemma 3.1 since Ak is ϕm-invariant.

Lemma 3.10 ([DHZ16, Lemma 4.4]). Let AmQ be the global attractors relative to Q with
respect to ϕm. Then

Ak ⊆ AmQ for all m ∈ N.

Finally, by considering

A∞Q =
⋂
m≥1

AmQ (3.9)

as the “limit” of AmQ for m → ∞ we have Ak ⊆ A∞Q by the previous lemma and we can
even prove equality.
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Proposition 3.11 ([DHZ16, Proposition 4]). Let AmQ be the global attractors relative to
Q with respect to ϕm and A∞Q =

⋂
m≥1A

m
Q . Then

Ak = A∞Q .

Proof. Suppose that there is a point x ∈ A∞Q \ Ak. As Ak is compact, this implies
dist(x,Ak) = ε > 0. In addition, since A is compact and R is continuous, there is δ > 0
such that for u ∈ X :

dist(u,A) < δ ⇒ dist(R(u), Ak)) <
ε

2
.

Now for V = E(Q) we have V ⊆ U by assumption (see (3.7)) and since A is attracting
and V is bounded within U (E is continuous, Q is compact) there is m ∈ N such that

dist(Φm(V),A) < δ.

By the choice of δ it follows that

dist(ϕm(Q), Ak) = dist(R(Φm(V)), Ak) <
ε

2
.

This implies x 6∈ ϕm(Q) since dist(x,Ak) = ε > 0. Thus, x 6∈ AmQ and, in particular,
x 6∈ A∞Q which contradicts the initial assumption.

Proposition 3.11 roughly says that it is possible to approximate a one-to-one image of
an attracting set A of Φ if we perform the computations with appropriately high iterates
of Φ. In this sense we can close the “gap” in the inclusion Ak ⊆ AQ (cf. Proposition 3.2).
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3.2 A Path Following Method

As discussed in the last section Algorithm 1 allows the approximation of the (relative)
global attractor which we will now extend to parameter-dependent systems. Therefore,
we introduce a real-valued parameter to the system (3.1) and develop a path following
method for the approximation of corresponding parameter-dependent invariant sets that
is based on the ideas of Algorithm 1. That is, we will consider a dynamical system of the
form

xj+1 = ϕ(xj, λ), j = 0, 1, . . . , (3.10)

where xj ∈ Rk and ϕ : Rk × Λ → Rk is continuous for each parameter λ in a compact
interval Λ ⊆ R and uniformly continuous in λ on bounded subsets of Rk. In what follows,
for fixed λ ∈ Λ, we use the abbreviation ϕλ(x) := ϕ(x, λ). Moreover, we assume that ϕλ
has a compact global attractor Aλk ⊆ Rk for each λ ∈ Λ. Later on, we will additionally
assume that Aλk is upper semi-continuous in λ.

Remark 3.12. For a parameter-dependent infinite-dimensional system Φ : X × Λ → X
(2.33) with finite-dimensional compact global attractor Aλ ⊆ X the corresponding pCDS
ϕλ : Rk → Rk (2.34) does not directly fall into the class of systems we are considering
here. In fact, the set Aλk := R(Aλ) may not be attractive for ϕλ even though Aλ is the
global attractor of Φλ = Φ(·, λ) (see “spurious fixed points” in Section 3.1.1). However,
in this thesis we still assume that Aλk is indeed the compact global attractor for ϕλ. This
allows us to actually compute the one-to-one image Aλk of the attractor Aλ using the
subdivision scheme 1 for some finite number of parameter values λ. Otherwise, we will
only compute the parameter-dependent relative global attractor AλQ which contains Aλk
(see Proposition 3.2).

In this section we develop two path following algorithms that allow us to compute the
relative global attractor for various parameter values λ ∈ Λ of (3.10) by reusing previously
obtained coverings. For the first method we approximate the relative global attractor Aλ0

Q

for some λ0 ∈ Λ and then use a covering of this set, denoted by Qλ0
` , as a starting point to

compute the relative global attractor Aλ1
Q for λ1 ∈ Λ sufficiently close to λ0. The second

algorithm improves this idea by predicting a good initial covering from the approximation
of two previously computed attractors using a set-valued Taylor expansion. Afterwards a
corrector step actually computes the invariant set for the current parameter value. Large
parts of this section are also contained in [GZED20] and [ZGD20] to which the author
has made substantial contributions.

We start with the following observation that an attractor Ak can be approximated using
different initial sets Qi ⊆ Rk, provided they each cover Ak.

Lemma 3.13 (cf. [GZED20, Lemma 2.3]). Let ϕ : Rk → Rk be continuous with compact
global attractor Ak ⊆ Rk. Furthermore, let Q1, Q2 ⊆ Rk be compact sets such that Ak ⊆
Qi, i = 1, 2. Then

AQ1 = Ak = AQ2 ,

where AQi is the global attractor relative to Qi for i = 1, 2.

Proof. This statement follows directly from the definition of the global attractor relative
to a compact set Q (cf. (3.2)) and the fact that Ak ⊆ Qi for i = 1, 2.
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Combining this lemma with the convergence result 3.7 allows the computation of A
using Algorithm 1. As a direct consequence of Lemma 3.13 we obtain the following.

Proposition 3.14 (cf. [GZED20, Proposition 2.4]). Let ϕ : Rk → Rk be continuous with
compact global attractor Ak ⊆ Rk. Let Q1, Q2 ⊆ Rk be compact sets such that Ak ⊆ Qi and
ϕ−1(AQi) ⊆ AQi for i = 1, 2. Denote by Qi

`, i = 1, 2, the corresponding approximations of
AQi obtained after ` subdivision and selection steps (see (3.5)). Then

lim
`→∞

h(Q1
` , Q

2
`) = 0,

where h(B,C) is the Hausdorff distance between two subsets B,C ⊆ Rk.

Proof. By Proposition 3.7 and Lemma 3.13 we have, for i = 1, 2,

lim
`→∞

h(Qi
`, AQi) = lim

`→∞
h(Qi

`, Ak) = 0

and the triangle inequality finishes the proof.

This result says that by performing sufficiently many subdivision and selection steps
we obtain a good approximation of the same set, which is indeed the attracting set
Ak, no matter how we choose the computational domain Q as it contains Ak. Note
that in contrast to the original Proposition 2.4 in [GZED20] we additionally assume
ϕ−1(AQi) ⊆ AQi which is required in Proposition 3.7 since ϕ is just continuous.

In what follows, we assume that the computational domain Q ⊆ Rk is large enough
such that it contains every attractor Aλk for all λ ∈ Λ. For a number of iterations m ∈ N of
Algorithm 1 we denote byQ(λ0) the generated family of compact sets Qλ0

` , ` = 0, 1, . . . ,m,
using the map ϕλ0 . Note that every such Qλ0

` contains the global attractor Aλ0
Q relative

to Q of the map ϕλ0 .

In the next step we want to approximate Aλ1
k for a parameter value λ1 ∈ Λ in a

neighborhood of λ0. To this end, we either fix λ1 ∈ Λ and choose L ≤ m sufficiently small
such that Aλ1

k ⊆ Qλ0
L or we fix L ≤ m and choose λ1 ∈ Λ sufficiently close to λ0 such that

Aλ1
k ⊆ Qλ0

L . In both scenarios Lemma 3.13 and Proposition 3.14 allow us to approximate
the relative global attractor Aλ1

Q of the map ϕλ1 using the initial covering Qλ0
L with the

subdivision Algorithm 1. Note hat L = 0 is always a feasible choice for every λ1, since
Qλ0

0 = Q and Aλ1
Q ⊆ Q for λ1 ∈ Λ by assumption. Note that in order to achieve the same

approximation quality, we only have to perform m − L subdivision and selection steps
which yields a smaller computational effort compared to starting Algorithm 1 with the
initial set Q ⊆ Rk.

To discuss the choice of λ1 for fixed L we have to make sure that Aλk behaves well under
small perturbations of λ in a certain sense. To this end, we choose the distance between
two sets (see (2.6)) in order to compare the attractors. This allows us to characterize
upper semi-continuity of attractors as follows.
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Definition 3.15. A family of attractors Aλ ⊆ X in some metric space X is upper semi-
continuous in λ0 ∈ Λ if

lim
λ→λ0

dist(Aλ, Aλ0) = 0. (3.11)

The attractor Aλ is called upper semi-continuous if Aλ is upper semi-continuous for each
λ0 ∈ Λ.

Observe that upper semi-continuity at λ0 implies that for every ε > 0 there exists
a neighborhood Uδ(λ0) ⊆ Λ of λ0 such that Aλ ⊆ Uε(A

λ0) for all λ ∈ Uδ(λ0), where
Uε(A

λ0) ⊆ Rk denotes the ε-neighborhood of Aλ0 . Therefore, the attractor can not
suddenly “explode” by slightly varying λ which is a naturally needed property for our
proposed path following scheme. Otherwise, if the attracting set grows too much we can
not assure that any previously computed covering Qλ0

L besides L = 0 still covers Aλ1
k . In

this case the subdivision scheme 1 fails to approximate the global attractor Aλ1
k but still

generates a covering of the global attractor A
Q
λ0
k

relative to Qλ0
L of the map ϕλ1 . This set

may miss some parts of the whole attractor Aλ1
k and to counteract this phenomenon we

will use the recovering technique described in Remark 3.3 (b).

For the sake of completeness we note that lower semi-continuity of Aλ, i.e.,

lim
λ→λ0

dist(Aλ0 , Aλ) = 0 ∀λ0 ∈ Λ

prevents a sudden “shrinking” of Aλ which holds for instance for gradient systems with
hyperbolic fixed points [HR89]. But this is, in general, no issue for the proposed algorithm.

Under the assumption that Aλk is upper semi-continuous we can actually prove that for
every L ∈ {0, . . . ,m} there is indeed a range of parameter values λ ∈ Λ such that the
attractor Aλk can be approximated by the subdivision scheme 1 with initial compact set
Qλ0
L .

Proposition 3.16 ([GZED20, Proposition 2.6]). Let Q(λ0) = {Qλ0
0 , . . . , Q

λ0
m } be the fam-

ily of sets generated by m steps of the subdivision scheme 1. Suppose that there is ε > 0
such that Uε(A

λ0
k ) ⊆ Qλ0

` for all ` = 0, . . . ,m and Aλk is upper semi-continuous at λ0. Then
for every ` = 0, . . . ,m there exists δ = δ(`) > 0 such that Aλk ⊆ Qλ0

` for all λ ∈ Uδ(λ0).
In particular, Aλk can be approximated by using the initial compact set Qλ0

` .

Proof. Let ` ∈ {0, . . . ,m} be fixed. Due to the upper semi-continuity of Aλk in λ0 there is
δ > 0 such that

dist(Aλk , A
λ0
k ) < ε for all λ ∈ Uδ(λ0).

Thus, we conclude by assumption that

Aλk ⊆ Uε(A
λ0
k ) ⊆ Qλ0

` for all λ ∈ Uδ(λ0).

The assumption that a small neighborhood of Aλ0
k is still contained in the approxima-

tion Qλ0
` is only technical and always satisfied in practice. It is only invalid when their
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boundaries have non-empty intersection. In the following we will call λ ∈ Uδ(λ0) feasible
and Proposition 3.16 guarantees the existence of feasible λ ∈ Λ. However, the size δ(`) of
the neighborhood Uδ(λ0) is not known in practice and we will discuss this issue later on
(see Section 3.2.1).

In order to utilize Proposition 3.16 for the pCDS (2.34), we make use of the following
observation.

Lemma 3.17. Let Aλ ⊆ X be upper semi-continuous in λ0 ∈ Λ and R : X → Rk be a
Lipschitz continuous map that is one-to-one on Aλ for all λ ∈ Λ. Then Aλk = R(Aλ) ⊆ Rk

is upper semi-continuous in λ0 ∈ Λ. In particular, if Aλ ⊆ X is upper semi-continuous
then Aλk ⊆ Rk is also upper semi-continuous.

Proof. Let LR > 0 be the Lipschitz constant of R. By assumption R is one-to-one on Aλ
and it immediately follows that

lim
λ→λ0

dist
(
Aλk , A

λ0
k

)
= lim

λ→λ0

sup
x∈Aλk

inf
y∈Aλ0

k

|x− y|

= lim
λ→λ0

sup
u∈Aλ

inf
v∈Aλ0

|R(u)−R(v)|

≤ LR lim
λ→λ0

sup
u∈Aλ

inf
v∈Aλ0

‖u− v‖

= LR lim
λ→λ0

dist(Aλ,Aλ0) = 0,

which proves the claimed upper semi-continuity of Aλk in λ0.

Thus, provided that R is one-to-one on Aλ for all λ ∈ Λ it is sufficient to assume
that the attractor Aλ ⊆ X of Φλ is upper semi-continuous since it carries over to the
attractors Aλk ⊆ Rk of ϕλ. In fact, this assumption is justified by several classical results,
e.g., [Klo06] for delay differential equations or [Hal80] for dissipative systems on metric
spaces. However, we recall that the observation map R is only one-to-one for a dense
subset ΛN ⊆ Λ as discussed in Section 2.4. Throughout the remainder of this section
we now suppose that Aλk is upper semi-continuous and the additional assumptions in
Proposition 3.16 are satisfied.

After discussing the choice of λ1 ∈ Λ for fixed L ∈ {0, . . . ,m} the following proposition
tells us, how to choose L ∈ {0, . . . ,m} for a fixed step size δ > 0 in the parameter space
Λ. To this end, we additionally assume that the distance dist(Aλ1

k , A
λ0
k ) depends on δ.

Proposition 3.18. Let δ > 0 and λ1 ∈ Λ with |λ1 − λ0| ≤ δ. Suppose there is a constant
C > 0 such that

dist(Aλ1
k , A

λ0
k ) ≤ Cδ (3.12)

and UCδ(A
λ0
k ) ⊆ Qλ0

L for some L ∈ {0, . . . ,m}. Then Aλ1
k ⊆ Qλ0

L and, in particular, λ1 is
feasible for the approximation of Aλ1

k with initial set Qλ0
L .

Proof. By (3.12) the Cδ-neighborhood UCδ(A
λ0
k ) of Aλ0

k contains Aλ1 and by assumption
we immediately obtain

Aλ1
k ⊆ UCδ(A

λ0
k ) ⊆ Qλ0

L

as claimed.
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In practice, however, checking upper semi-continuity of attractors is hard for a nonlinear
dynamical system. In particular, proving the assumption made in Proposition 3.18 is not
possible in general and the result has only theoretical significance. We summarize the
proposed path following method in Algorithm 2.

Algorithm 2: Set-Oriented Path Following Method

Initialization: Let Q ⊆ Rk be compact such that Aλk ⊆ Q ∀λ ∈ Λ and λ0 ∈ Λ.
Apply m iterations of the subdivision scheme 1 on Q with respect to ϕλ0 to
obtain a family Q(λ0) =

{
Qλ0

0 , . . . , Q
λ0
m

}
of approximations of Aλ0

k .

Path Following: For j = 0, 1, . . .

1) Choose Lj+1 ∈ {0, . . . ,m} and take a feasible λj+1 > λj such that

A
λj+1

k ⊆ Q
λj
Lj+1

.

2) Perform m− Lj+1 subdivision and selection steps starting on Q
λj
Lj+1

with
respect to ϕλj+1

in order to generate a new family

Q(λj+1) =
{
Q
λj+1

0 , . . . , Qλj+1
m

}
of approximations of A

λj+1

k , where Q
λj+1

` = Q
λj
` for ` = 0, . . . , Lj+1.

Remark 3.19.

(a) In step 1) of Algorithm 2 one can also always take λj+1 < λj and follow the path in
the negative direction.

(b) Intuitively, choosing a larger Lj+1 decreases the range of feasible parameters λj+1

since the set Q
L
λj
j+1

gets smaller. However, one has to perform less subdivision and

selection steps to reach the same approximation quality of the final box covering of
A
λj+1

k . With more knowledge on the upper semi-continuity property (3.11) this can
be made more precise (see Proposition 3.18).

(c) If λj+1 is not feasible, i.e., λj+1 /∈ Uδ(λj), Q
λj
Lj

might not contain all of A
λj+1

k and

thus the subdivision algorithm does not approximate the whole attractor A
λj+1

k but
only parts of it. Therefore, to make the algorithm more robust, we reintroduce sets
if the image ϕλj+1

(x) of a test point x ∈ Rn is not contained in any set of the current
collection Bk(λj) (cf. Remark 3.3 (b)).
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Finally, in Figure 3.2 we illustrate two steps of Algorithm 2 applied to the Lorenz
system (3.6) where we use β as our parameter of interest (cf. Example 3.9). We note
that the derivation of the Lorenz model shows that β is related to the aspect ratio of the
convection cells.

(a) Qβ09 (b) Qβ015 (c) Qβ021

(d) Qβ012 and Aβ1Q (e) Qβ012 (f) Qβ021 and Qβ121

Figure 3.2: Illustration of Algorithm 2 for the Lorenz system (3.6) with β0 = 8/3 and
β1 = 2.5. (a)-(c) Successively finer box coverings Qβ0

` of the attractor Aβ0

Q . In

(c) the final approximation m = 21 is shown. (d) Neighborhood Qβ0

12 (trans-
parent boxes) such that Aβ1

Q ⊆ Qβ0

12 (red). (e) Initial box covering Qβ0

12 for

the approximation of Aβ1

Q . (f) Final box covering Qβ1

21 of Aβ1

Q after 9 subdivi-
sion and selection steps. Here, the blue boxes are the previously computed
approximation Qβ0

21 illustrating the slight change of the attracting set.
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3.2.1 A Set-Oriented Predictor-Corrector Method

Depending on the underlying dynamics a small change of the parameter of interest typi-
cally leads to a small change of the attracting set (cf. Definition 3.15). Hence, Algorithm 2
is able to follow the attracting set very efficiently. However, if changing the parameter
results in a rapid growth of the attractor, we either have to choose a significantly smaller
parameter value or a very coarse covering for the next parameter, which makes Algo-
rithm 2 inefficient. For instance, this can be seen in Figure 3.2 (d) where one has to
go m − L = 9 steps back in order to find a suitable covering. This occurs in particular
in higher dimensions which we illustrate by the Mackey-Glass delay differential equation
[MG77] where the parameter of interest is the delay time τ . For τ ∈ [5, 13], this system
possesses a stable limit cycle that grows and rotates in state space for increasing time
delays τ . Thus, an embedding dimension of k = 5 suffices for the approximation of a
one-to-one image of the global attractor via the pCDS (2.34). A detailed discussion of
this particular dynamical system can be found in Section 5.2. In Figure 3.3 (a) we show
a projection of the embedded attractor which is indeed a (perturbed) circle. Changing
the parameter to τ1 leads to a larger orbit which is slightly rotated in the embedding
space. Therefore, we have to use a very coarse covering of Aτ0k such that Aτ1k is covered
(see Figure 3.3 (b)). Moreover, it is not clear a priori how coarse this covering has to be.

(a) Qτ045 (b) Qτ015 and Aτ1k

Figure 3.3: Illustration of a possible inefficiency of Algorithm 2 by means of the Mackey-
Glass equation for τ0 = 6.00 and τ1 = 6.05. (a) Approximation Qτ0

45 (blue) of
Aτ0k obtained by Algorithm 1. (b) Best initial covering Qτ0

15 for Aτ1k such that
Aτ1k ⊆ Qτ0

15. In this case, we have to perform L = 30 subdivision and selection
steps in order to obtain a covering Qτ1

45 (red) of Aτ1k of the same approximation
quality as the covering of Aτ0k .

Motivated by this observation, we propose an improved method for the computation of
parameter-dependent attractors. In view of the discussion in the last section we want to
utilize previous computations of the attracting sets in order to accelerate further approx-
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imations under slight variations of the parameter of interest. To this end, we propose a
set-oriented predictor-corrector method (cf. [AG93] for standard approaches of numerical
continuation methods). More concretely, let us consider the map

ι : Λ→ P(Rk), λ 7→ Aλk ,

which maps a parameter value λ ∈ Λ onto the attractor Aλk ⊆ Rk. Then the aim in this
section can be rephrased by numerically evaluating this map for some discrete subset of
Λ. Now given three parameters values λj−1 < λj < λj+1 formal Taylor expansion of this
map ι yields

ι(λj+1) ≈ ι(λj) + ι′(λj)(λj+1 − λj)

≈ ι(λj) +
λj+1 − λj
λj − λj−1

(ι(λj)− ι(λj−1)),

where we formally approximated the derivative ι′(λj) by finite differences. Again we
want to emphasize that this equation is only formally correct since there is no well-
defined set-valued difference operator on arbitrary subsets of Rk let alone a well-defined
derivative. But note that there are several concepts for compact convex subsets (see [BJ70,

CCRFJG11, KTZ15] and the references therein). Thus, A
λj+1

k is formally approximated
as

A
λj+1

k ≈ A
λj
k + hj(A

λj
k − A

λj−1

k ), (3.13)

where hj =
λj+1−λj
λj−λj−1

. Now suppose we approximated Aλj−1 and Aλj by Q
λj−1
m and Q

λj
m ,

respectively, using Algorithm 1. Then in the spirit of (3.13) we predict an initial guess

for the approximation of A
λj+1

k by

Q
λj+1

L ≈ Qλj
m + hj(Q

λj
m −Qλj−1

m ). (3.14)

Here, we choose a level L for some L ≤ m to compensate for possible errors and a
consecutive corrector step will achieve the same approximation quality as before, i.e, we
compute Q

λj+1
m by using Q

λj+1

L . In the following we will develop a numerical realization of
(3.14).

Since, in general, there is no one-to-one correspondence between the boxes contained
in the coverings Q

λj−1
m and Q

λj
m or corresponding discretizations X = {xj−1

p }
n1
p=1 ⊆ Q

λj−1
m

and Y = {yjq}
n2
q=1 ⊆ Q

λj
m , it is not immediately clear how to define a box B ⊆ Q

λj+1

L .
In our numerical realization we consider every point yjq ∈ Y that lies inside a predefined
neighborhood U of xj−1

p ∈ X as a potential image point under the underlying map X → Y .

Then, with (3.14) in mind, for every yjq ∈ Y we compute zj+1 = yjq + hj
(
yjq − xj−1

p

)
for

every xjp ∈ U . The initial guess Q
λj+1

L will then be constructed by all boxes B ∈ BL that
contain some zj+1 for a predefined partition BL of the computational domain Q ⊆ Rk.

Roughly speaking, this procedure can be interpreted as a set-valued finite difference
approach and we summarize the scheme in Algorithm 3. We note that a similar predictor
method has been developed in [Pei17] for parameter-dependent multi-objective optimiza-
tion problems.
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3.2 A Path Following Method

Algorithm 3: Set-Oriented Predictor Step

Initialization: Let Q
λj−1
m and Q

λj
m be approximations of A

λj−1

k and A
λj
k ,

respectively, and 0 ≤ L ≤ m and K ∈ N. Let B0 = {Q} and set hj =
λj+1−λj
λj−λj−1

.

1) Discretize Q
λj−1
m and Q

λj
m by finite sets of points X = {xj−1

p }
n1
p=1 and

Y = {yjq}
n2
q=1.

2) Search Radius: For every xj−1
p ∈ X find the K nearest neighbors in Y and

denote by Ip ⊆ {1, . . . , n2} the corresponding indices and their distances by
dp,i for i = 1, . . . , K. Set

r = max
p∈{1,...,n}

dp,2

and remove in each index set Ip those indices î ∈ Ip such that dp,̂i > r.

3) Construct a partition Bj+1
L of Q using only step 1) of Algorithm 1. Set

Q
λj+1

L = ∅.

4) Prediction Step: For p = 1, . . . , n1:
For each i ∈ Ip compute the point

zj+1 = yji + hj
(
yji − xj−1

p

)
and add the box B ∈ Bj+1

L such that zj+1 ∈ B to the covering Q
λj+1

L , i.e,

Q
λj+1

L = Q
λj+1

L ∪B.

Remark 3.20.

(a) In order to discretize Q
λj−1
m and Q

λj
m in step 1) of Algorithm 3, one can simply choose

the midpoints of the boxes of the coverings which generate a grid. Sometimes more
sophisticated choices can be useful (cf. Algorithm 9) but, in general, those require a
longer computational time.

(b) A good choice for the number of neighbors is K = 2k + 1 since a k-dimensional box
has 2k hyper surfaces. This corresponds to a 2k + 1-point stencil in Rk for the finite
difference approximation of the derivative.

(c) By defining a cut-off radius r > 0 we neglect points that are too far away for the
ensuing computation. In fact, we only want to consider those points that are within r
distance, where r is the largest distance between all first nearest neighbors. Note that
in practice we compute r with respect to the distance to the second nearest neighbor
since often times the first nearest neighbor will be the point itself due to the grid
structure chosen in (a). In particular, if X ⊆ Y then r would be zero, if it had been
computed with respect to the first nearest neighbor. We also note that the nearest
neighbor search has to be performed only once which can be done fast using a k-d
tree [FBF77].

(d) The partition Bj+1
L does not have to be stored in memory. In fact, in GAIO the boxes

B ∈ Bj+1
L will be added as leaves at level L in the binary tree.
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The predictor step introduced in Algorithm 3 can significantly improve the initial guess
for the next parameter value and we illustrate this using the Mackey-Glass example dis-
cussed at the beginning of this section (cf. Figure 3.3). After computing the attracting
sets Aτ0k and Aτ1k we use Algorithm 3 in order to create an initial box covering for the
attracting set Aτ2k . In Figure 3.4 (a) we show the covering Qτ0

45 (blue) of Aτ0k and the cov-
ering Qτ1

45 (red) of Aτ1k , both obtained by Algorithm 1. Using these coverings, we compute
an initial covering Qτ2

40 obtained via Algorithm 3 (gray). This covering is an acceptable
initial guess for Aτ2k (green) which is illustrated in Figure 3.4 (b).

(a) Qτ045, Q
τ1
45 and Qτ240 (b) Qτ240 and Aτ2k

Figure 3.4: Illustration of the set-oriented predictor step by means of the Mackey-Glass
equation for τ0 = 6.000, τ1 = 6.05 and τ2 = 6.10. (a) Using the coverings Qτ0

45

(blue) of Aτ0k and Qτ1
45 (red) of Aτ1k we obtain an initial guess Qτ2

40 (gray) for
Aτ2k by Algorithm 3. (b) In addition to the initial guess Qτ2

40 we show the box
covering Qτ2

45 (green) obtained by Algorithm 1. Observe that our initial guess
perfectly covers the approximation of Aτ2k .

Now let us assume we have obtained an initial guess Q
λj+1

L of A
λj+1

k by Algorithm 3.
Then it remains to define a set-oriented corrector step, which takes the dynamics depend-
ing on λj+1 into account. In Algorithm 2 we applied m−L steps of the original scheme 1
in order to achieve the same approximation quality. Here, however, we want to accelerate
the computation by proposing a modified selection step (cf. (3.4)). Instead of performing
m−L subdivision and selection steps we subdivide the current box collection m−L times
and then do one selection step with an appropriate power of ϕλj+1

, that is, we remove

those boxes whose preimage under ϕm−Lλj+1
does neither intersect itself nor any other box.

Analogously to the original selection step (3.4), we will numerically realize this modified
step using test points (see Remark 3.3 (b)). We summarize this idea in Algorithm 4.
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3.2 A Path Following Method

Algorithm 4: Set-Oriented Corrector Step

Initialization: Let
Q
λj+1

L =
⋃

B∈Bj+1
L

B

be an initial guess for the approximation of A
λj+1

k .

1) Refinement: Define B̂j+1
L = Bj+1

L and make m− L subdivision steps on B̂j+1
L

in order to construct a collection B̂j+1
m such that⋃

B∈B̂j+1
m

B =
⋃

B∈Bj+1
L

B

and
diam(B̂j+1

m ) = θm−L diam(Bj+1
L ), for some 0 < θ < 1.

2) Modified Selection Step: Define the new collection Bj+1
m by

Bj+1
m =

{
B ∈ B̂j+1

m ∃B̂ ∈ B̂j+1
m such that ϕ

−(m−L)
λj+1

(B) ∩ B̂ 6= ∅
}

(3.15)

and set Q
λj+1
m =

⋃
B∈Bj+1

m
.

Finally, alternating between both Algorithms 3 and 4 results into a novel set-oriented
predictor-corrector method (SOPCM) which we summarize in Algorithm 5.

Algorithm 5: Set-Oriented Predictor-Corrector Method (SOPCM)

Initialization: Let λ0 < λ1 < . . . < λN be a discretization of Λ and let
m,L ∈ N such that L ≤ m. Approximate Aλ0

k and Aλ1
k by Qλ0

m and Qλ1
m ,

respectively, using Algorithm 1.

SOPCM: For j = 1, . . . , N − 1 repeat the following two steps.

1) Predictor Step: Apply Algorithm 3 on Q
λj−1
m and Q

λj
m in order to obtain an

initial guess Q
λj+1

L for the approximation of A
λj+1

k .

2) Corrector Step: Use Algorithm 4 on Q
λj+1

L to get an approximation Q
λj
m of

A
λj+1

k .
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3.3 The Continuation Method

In the last sections we presented an algorithm for the approximation of (one-to-one images
of) the (relative) global attractor of a (infinite-dimensional) dynamical system. Applying
this method to a small neighborhood of an unstable steady state allows the approximation
of the corresponding local unstable manifold. Hence, combining the subdivision scheme
1 with a continuation step [DH96] extends this local manifold to larger parts of the
(global) unstable manifold. Moreover, we will prove that the developed algorithm actually
approximates the closure of the (global) unstable manifold in the limit of infinitely small
boxes, provided that the manifold is attractive. We note that large parts of this section
are also contained in [ZDG19] to which the author has made substantial contributions.

For the sake of clarity we will only consider the CDS ϕ (2.32) as the underlying dy-
namical system and present an algorithm for the approximation of so-called embedded
invariant manifolds. In the setting where ϕ is an arbitrary diffeomorhism on Rk we refer
the reader to [DH96]. However, the following underlying ideas are based on this work as
well.

Given an unstable steady state u∗ ⊆ A of Φ (2.30) we denote by

Wu
Φ(u∗) ⊆ A (3.16)

the unstable manifold of u∗ ∈ A and we define the embedded unstable manifold W u(p) as
the image of Wu

Φ(u∗) under the observation map R, that is,

W u(p) = R(WΦ(u∗)) ⊆ Ak,

where p = R(u∗) ∈ Rk. Note that we assume Wu
Φ(u∗) ⊆ A which implies W u(p) ⊆ Ak.

In particular, this implies that W u(p) is an invariant set of ϕ by construction (cf. (2.31)).
The assumption made in (3.16) is automatically satisfied if A ⊆ X is the compact global
attractor of Φ.

The aim in this section is to develop an algorithm for the approximation of compact
subsets of W u(p) or even the entire closure W u(p) via subdivision and continuation. To
this end, we denote by Wu

Φ,loc(u
∗) ⊆ A the local unstable manifold of the steady state u∗

and choose a compact neighborhood C ⊆ Ak such that

W u
loc(p) = R(Wu

Φ,loc(u
∗)) ⊆ C.

We will call W u
loc(p) embedded local unstable manifold. It turns out that W u

loc(p) is compact

sinceR is continuous andWu
Φ,loc(u

∗) is compact as a closed subset of a compact set C ⊆ Rk.

Proposition 3.21 ([ZDG19, Proposition 3.1]).

(a) Let AC be the global attractor relative to C. Then

W u
loc(p) ⊆ AC .

(b) SupposeWu
Φ,loc(u

∗) is a compact attracting set with basin of attraction U ⊃ Wu
Φ,loc(u

∗).
If C ⊆ Ak is chosen such that W u

loc(p) ⊆ C ⊆ Ak and E(C) ⊆ U , then

W u
loc(p) = AC .
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3.3 The Continuation Method

Proof.

(a) By Lemma 3.1 it suffices to show that W u
loc(p) ⊆ ϕ (W u

loc(p)) which is true by the
construction of the CDS (cf. (2.31)). In fact, by continuity of R, Φ and E we have

W u
loc(p) = R(Wu

Φ,loc(u
∗)) ⊆ R(Φ(Wu

Φ,loc(u
∗))) = ϕ(W u

loc(p)).

(b) Recall the definition of ϕm and A∞C (see (3.8) and (3.9) where C = Q). Then by
Proposition 3.11 (b) we obtain W u

loc(p) = A∞C and it remains to show that A∞C = AC .
Since C ⊆ Ak and (2.31), it follows that

ϕm(C) = ϕm(C) for all m ∈ N

and relabeling the indices in definition of A∞C and AC yields the desired statement,
that is,

A∞C =
⋂
m≥1

⋂
j≥0

ϕjm(C) =
⋂
m≥1

⋂
j≥0

ϕjm(C) =
⋂
i≥0

ϕi(C) = AC .

Remark 3.22.

(a) Observe that Proposition 3.21 (b) states that the embedding of the local unstable
manifold is identical to the local embedded unstable manifold, i.e., the global attractor
relative to C. In particular, this implies that W u

loc can be approximated by the
subdivision scheme 1.

(b) The assumed properties on the compact set C ⊆ Ak are mild in the sense that, if the
steady state u∗ ∈ A is hyperbolic, then Wu

Φ,loc(u
∗) is attractive since by assumption

its dimension is finite (cf. (3.16)).

In the following we assume that the assumptions of Proposition 3.21 (b) are satisfied.
Hence, Algorithm 1 generates a covering of W u

loc(p) which will be globalized in the upcom-
ing continuation algorithm in order to obtain an approximation of the entire embedded
unstable manifold W u(p).

Let Q ⊆ Rk be (large) compact set containing p = R(u∗) ⊆ Rk and we assume W u(p) ⊆
Q for simplicity. If this is not satisfied, then it can in general not be guaranteed that we
approximate the entire set W u(p) or even W u(p) ∩ Q (see [ZDG19, Remark 3.5 (a)] for
details). The purpose of the continuation method is to approximate subsets Wj ⊆ W u(p)
where W0 = W u

loc(p) and

Wj+1 = ϕ(Wj) for j = 0, 1, 2, . . ..

Thus, in a first step we approximateW0 using Algorithm 1 where we realize the subdivision
process using a family Pn of partitions of Q. Here, a partition P of Q is a finite family of
compact subsets of Q such that⋃

B∈P

B = Q and intB ∩ intB′ = ∅ for all B,B′ ∈ P , B 6= B′,

and we consider a nested sequence Pn of successively finer partitions of Q, such that for
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all B ∈ Pn there exist B1, . . . , Bm ∈ Pn+1 such that

B =
m⋃
i=1

Bi and diam(Bi) ≤ θ diam(B)

for some 0 < θ < 1. Moreover, we denote by Pn(x) ∈ Pn the element of Pn containing
x ∈ Q.

In what follows, we assume that C = Ps(p) ⊆ Ak for s sufficiently large such that p ∈
intC. Hence, performing ` ∈ N0 steps of Algorithm 1 gives an approximation C

(s,`)
0 of

W0 = W u
loc(p) by Proposition 3.21 (b), where we assume that Algorithm 1 constructs box

collections that are contained in the partitions Pn, n > s. Then in order to compute
Wj we introduce a continuation step that iteratively adds those boxes B ∈ Ps+` to C

(s,`)
j

which satisfy B ∩ ϕ(B̂) 6= ∅ for some B̂ ∈ Ps+`, starting with C
(s,`)
0 .

We summarize the proposed method for the approximation of embedded unstable man-
ifolds in Algorithm 6.

Algorithm 6: The continuation method for embedded unstable manifolds

Initialization: Choose a compact set Q ⊆ Rk such that W u(p) ⊆ Q and p ∈ Q.
Let Pn be a sequence of partitions of Q and choose s ∈ N and C ∈ Ps such that
p ∈ C. Fix ` ∈ N0.

1) Subdivision Step: Perform ` steps of Algorithm 1 on B0 = {C} to obtain a

collection B` ⊆ Ps+` that covers W u
loc and set C

(s,`)
0 = B`.

2) Continuation Step: For j = 0, 1, 2, . . . define

C(s,`)
j+1 =

{
B ∈ Ps+` ∃B̂ ∈ C(s,`)

j such that B ∩ ϕ(B̂) 6= ∅
}
. (3.17)

Remark 3.23.

(a) In practice, it is not necessary to perform the subdivision step 1 in Algorithm 6. If
we desire a better approximation of the unstable manifold it is sufficient to increase
s, i.e., to perform the computation in a finer partition, while keeping ` = 0 fixed.

(b) Again we have to decide whether the intersection of two sets is non-empty which is
replaced by

ϕ(x) ∈ B for at least one test point x ∈ B̂

in the numerical realization of the continuation step (3.17) (cf. Remark 3.3 (b)).
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(c) If ϕ (resp. Φ) is a time-T -map of a continuous time system the continuation step
(3.17) in Algorithm 6 can be modified in order to avoid “holes” in the approximation
of the unstable manifold. To this end, one defines a finite time grid {t1, . . . , tN} with
tN = T and gathers all the boxes that are visited at each time instance ti to the
collection C(s,`)

j+1 . Note that this procedure does not increase the numerical effort since,
typically, a time-T -map is realized using a numerical integrator with some step size.
In addition to that, it is possible to approximate the manifold by performing only one
continuation step but with a (very) large number of test points and a (very) large
integration time T .

Intuitively, it is clear that

C
(s,`)
j =

⋃
B∈C(s,`)

j

B

will cover Wj and the larger s and ` are chosen the better the approximation should be.

Observe that C
(s,`)
j forms a nested sequence in s and `, i.e,

C
(0,`)
j ⊃ C

(1,`)
j ⊃ · · · ⊃ C

(s,`)
j . . . and C

(s,0)
j ⊃ C

(s,1)
j ⊃ · · · ⊃ C

(s,`)
j . . . . (3.18)

In fact, by the continuity of ϕ it is also a nested sequence in j, i.e.,

C
(s,`)
0 ⊆ C

(s,`)
1 · · · ⊆ C

(s,`)
j . . . .

Due to the compactness of Q this procedure will terminate after finitely many, say J`,
steps and we denote the final covering by

G(s,`) =

J⋃̀
j=0

C
(s,`)
j = C

(s,`)
J`

which covers W u(p) ⊆ Ak. In the following proposition we prove that the continuation
method 6 converges.

Proposition 3.24. Let s ∈ N be fixed.

(a) The sets C
(s,`)
j cover Wj for all j, ` = 0, 1, . . .. Moreover, for fixed j, we have

∞⋂
`=0

C
(s,`)
j = Wj.

(b) Suppose that W u(p) is linearly attractive, i.e., there is a λ ∈ (0, 1) and a neighbor-
hood U ⊃ Q ⊃ W u(p) such that

dist(ϕ(y),W u(p)) ≤ λ dist(y,W u(p)) ∀y ∈ U. (3.19)

Then the final covering obtained by Algorithm 6 converges to the closure of the
embedded unstable manifold W u(p) for `→∞. That is,

∞⋂
`=0

G(s,`) = W u(p).
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Proof.

(a) In step 2) of Algorithm 1 we obtain a collection B` ⊆ Ps+` such that

AC ⊆ Q` =
⋃
B∈B`

B,

which yields the first statement by definition of the continuation step (3.17). For
the second statement we note that by Proposition 3.21 (b) AC = W u

loc(p) = W0 and
by Proposition 3.7 the covering Q` converges to AC for ` → ∞. Finally, since j is
fixed a continuity argument shows that the sets C

(s,`)
j converge to Wj for ` → ∞,

i.e.,
∞⋂
`=0

C
(s,`)
j = Wj.

(b) For every ` ∈ N0 Algorithm 6 yields a covering G(s,`) of W u(p) and therefore

∞⋂
`=0

G(s,`) ⊃ W u(p).

For the other inclusion suppose there is x ∈
⋂∞
`=0G

(s,`) \ W u(p). Since W u(p)

is compact it follows that dist(x,W u(p)) > 0. By definition of x, for every ` ≥
0 Algorithm 6 generates a diam(B`)-pseudo orbit {x0, . . . , xj(`)}, where xj(`) = x
(cf. Remark 3.5). That is,

xj ∈ C(s,`)
j and ϕ(xj) ∈ Ps+`(xj+1) ∀j ∈ {0, . . . , j(`)− 1}.

Here Ps+`(xj+1) ⊆ C
(s,`)
j+1 denotes the unique element of Ps+` containing xj+1 ∈

C
(s,`)
j+1 and j(`) = min

{
j ∈ {0, . . . , J`} x ∈ C(s,`)

j

}
, i.e., x ∈ C

(s,`)
j for j ≥ j(`)

continuation steps. Observe that the sequence j(`) is monotonically increasing in `
(cf. (3.17) and (3.18)) and

‖xj − ϕ(xj−1)‖ ≤ diam(B`) ∀j ∈ {0, . . . , j(`)− 1}. (3.20)

We first show by contradiction that j(`) is unbounded. Suppose that j(`) is bounded
by some J ∈ N0, i.e., max j(`) = J . Hence, by monotony of j(`) there is `0 ∈ N0

such that j(`) = J for all ` ≥ `0 and by (3.18) we have

x ∈
∞⋂
`=0

C
(s,`)
j(`) =

(
`0−1⋂
`=0

C
(s,`)
j(`)

)
∩

(
∞⋂
`=`0

C
(s,`)
J

)
⊆

∞⋂
`=`0

C
(s,`)
J =

∞⋂
`=0

C
(s,`)
J .

However, by Proposition 3.24 (a) it follows that x ∈ WJ ⊆ W u(p) which is a
contradiction to dist(x,W u(p)) > 0. Thus, j(`) must be unbounded. By assumption
W u(p) is linearly attractive in a neighborhood U . Hence, we can use (3.19) and
(3.20) on the diam(B`)-pseudo orbit {x0, . . . , xj(`)} in combination with the triangle
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inequality to obtain

dist(x,W u(p)) ≤ dist(ϕ(xj(`)−1),W u(p)) + diam(B`)
≤ λ dist(xj(`)−1,W u(p)) + diam(B`)
...

≤ λj(`) dist(x0,W u(p)) + diam(B`)
j(`)−1∑
i=0

λi

≤ λj(`) dist(x0,W u(p)) +
diam(B`)

1− λ
−→ 0 for `→∞.

Here, the last expression converges to zero because λ ∈ (0, 1) and diam(B`) converges
to zero for `→∞ (cf. (3.3)). Again we have a contradiction to dist(x,W u(p)) > 0
and it follows that

∞⋂
`=0

G(s,`) ⊆ W u(p),

which yields the desired statement.

Remark 3.25.

(a) The assumption in Proposition 3.24 (b) is not satisfied if, for instance, W u(p) forms
a heteroclinic connection between the steady state p and another unstable hyperbolic
steady state q. In this case the algorithm would also generate a covering of the
embedded unstable manifold of q since its embbeded local unstable manifold W u

loc(q)
will eventually be covered by the continuation step (3.17).

(b) If (3.19) is not satisfied, but Wu
Φ(u∗) is attractive, one can apply the subdivision

scheme 1 to G` in order to approximate W u(p) more accurately (cf. Proposition 3.11)).
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Finally, we illustrate the continuation method 6 in Figure 3.5 on the Lorenz system
(cf. Example 3.9) and compute the unstable manifold of

x0 = (
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1) (3.21)

using the time-T -map of (3.6) for T = 0.2. As the initial level of the the partition we
choose s = 27 and skip step 1) of Algorithm 6, i.e., we perform ` = 0 steps of Algorithm 1.

(a) j = 50 (a) j = 60 (c) j = 85

Figure 3.5: Computation of the unstable manifold of the unstable equilibrium (3.21) of
the Lorenz system (3.6) using Algorithm 6. (a) For up to j = 10 steps the
unstable manifold grows like a disc. (b) After j = 60 the other “wing” is
reached. (d) The computation is finished after j = 85 steps. Observe that the
obtained covering is the same as for the subdivision scheme in Figure 3.1 (c).
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4 The Choice of the Observation Map

As mentioned in Section 2.4 the CDS heavily depends on the particular choice of the
observation map R or the observable f when using delay coordinates. In addition to that,
the map E is not explicitly known and has to be designed according to the problem at
hand. This is why in the first part of this chapter we will present possible (linear) choices
for delay differential equations [DHZ16] and partial differential equations, where the latter
is also contained in [ZDG19] to which the author has made substantial contributions.

From now on we assume that upper bounds for both the box-counting dimension dbox(A)
and the thickness exponent τ(A) < 1 are available. This allows us to fix k ∈ N according
to Theorem 2.21 or 2.26. In order to numerically realize the CDS ϕ = R ◦ Φ ◦ E as
described in Proposition 2.28, we have to choose a map R, design an appropriate map E
such that (2.31) holds at least approximately and numerically implement the time-T -map
Φ. For the latter we rely on standard tools for the forward time integration of DDEs
[BZ13] and PDEs, e.g., a fourth-order time stepping method for the one-dimensional
Kuramoto-Sivashinsky equation [KT05]. The map R will be linear and bounded, and for
the numerical construction of the map E we will employ a bootstrapping method that
re-uses results of previous computations. In this way we will in particular ensure that the
identities in (2.31) are at least approximately satisfied.

We will see that with a linear observation map R it is easy to define a map E such that
the second required condition (R◦E)(x) = x is not only satisfied for every point x ∈ R(A)
(cf. (2.31)) but also for every x ∈ Rk. In contrast, the first condition (E ◦ R)(u) = u
for all u ∈ A does, in general, not hold. However, since we want to apply the CDS to
the numerical schemes described in Chapter 3, we will enforce this identity utilizing the
following observation (cf. Remark 3.5).

Remark 4.1.

(a) Taking a closer look at the selection step (3.4) we see that, if a box B ∈ B` then

there must have been a box a B̂ ∈ B`−1 such that x̄ = R(Φ(E(x̂))) ∈ B for at least

one point x̂ ∈ B̂.

(b) Analogously, according to the continuation step (3.17) we can conclude that, if a box

B ∈ C(s,`)
j+1 then there must have been a box a B̂ ∈ C(s,`)

j such that x̄ = R(Φ(E(x̂))) ∈ B
for at least one point x̂ ∈ B̂.

Therefore, we can use the information on the trajectories of Φ(E(x̂)) that were mapped
into B by R in the previous step for a good approximation of (E ◦R) on A.

In the second part of this chapter we turn our attention to one particular nonlin-
ear observation map. Driven by the desire to obtain further intuitive understanding
of the geometric structure of the (embbeded) invariant set (and thus hopefully also of
the corresponding dynamics on them), the aim will be to identify nonlinear coordinates
revealing their intrinsic geometry in the embedding space. To this end, we will dis-
cuss a tool called diffusion maps that allows us to obtain the geometric and dynam-
ical structure of the covering of an embedded invariant set. Diffusion maps are one
among many data–driven manifold learning techniques that find intrinsic coordinates of
a data set [TDSL00, RS00, DG03, BN03, ZZ04]. First introduced by Coifman and La-
fon [CL06a, CLL+05], diffusion maps is a nonlinear feature extraction algorithm that
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4 The Choice of the Observation Map

computes a family of embeddings of a (possibly) high-dimensional data set into a low-
dimensional space, whose coordinates are given by the eigenvectors and eigenvalues of a
diffusion operator on the data. Different from linear dimensionality reductions methods,
such as principal component analysis (POD, cf. Section 4.1.2), diffusion maps focus on
discovering the underlying manifold from which the data set is sampled. For instance,
this tool has been successfully applied to data from turbulent Rayleigh-Bénard convec-
tion revealing the large-scale flow structure [KW20]. Moreover, the algorithm is robust
to noise perturbation such that it can deal with the outer approximations that cover the
set of interest generated by the set-oriented numerical methods.

Ideally, one would like to approximate the set of interest in its intrinsic coordinate right
away using the diffusion maps as the observation map R. However, at the current state
this is not possible and we leave this to future research. Some ideas towards this will be
given in the outlook in Chapter 6. Thus, in this thesis we will compute the (embedded)
invariant set using a linear observation map and afterwards apply diffusion maps on the
generated data.

4.1 Linear Operators

To begin with we will start with linear observations since they can quite easily be realized
numerically and there is a natural approach for finding an inverse. Typically, in order to
solve an infinite-dimensional system such as a PDE or DDE, the underlying state space
is discretized, i.e., the Banach space X is replaced by RN for some (large) N ∈ N. Thus,
for now let us consider a linear map R : RN → Rk, that is, by exploiting the notation, R
can be seen as a matrix in Rk×N where N � k. Then the following remark will be useful
in the design of an appropriate map E : Rk → RN , respectively matrix E ∈ RN×k.

Remark 4.2. Suppose R ∈ Rk×N has full rank, then the pseudo inverse

E := R+ = RT (RRT )−1

satisfies RE = Ik. In particular, E as a mapping Rk → RN fulfills (R ◦ E)(x) = x for all
x ∈ Rk.

4.1.1 Point Evaluation for DDEs

A simple, yet effective, observable is the evaluation of a function at prescribed points
in space and/or time. It turns out that this choice perfectly fits in the framework of
delay differential equations (DDEs). In contrast to ordinary differential equations, for
DDEs (also called time-delay systems) the derivative with respect to time of the unknown
function depends on the state at the current and, additionally, at previous times [Kua93].
Thus, for numerically solving a DDE an initial history over a time interval, which serves
as an initial function, has to be given. Hence, the solution operator will be defined on a
function space generating an infinite-dimensional dynamical system. Typically, DDEs are
used for modeling dynamical phenomena that require time-delayed aftereffects, e.g., for
applications in population dynamics, epidemiology and mechanics [Kua93, NP02, Del20,
AHD07, KM13].
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4.1 Linear Operators

In this section we consider a DDE with a (small) delay of the form

ẏ(t) = g(y(t), y(t− τ)), 0 ≤ t ≤ tf ,

y(t) = y0(t), t ≤ 0,
(4.1)

where y(t) ∈ Rn, τ > 0 is a constant time delay and g : Rn × Rn → Rn is a smooth map.
For the case where the time delay depends on the state we refer to [Zie18]. For simplicity,
we will only consider the one-dimensional case n = 1 and refer to [DHZ16] for n > 1.

Following [HL93] we denote by X = C([−τ, 0],Rn) the (infinite-dimensional) state space
of (4.1) which is indeed a Banach space when equipped with the maximum norm. For
a given initial condition u ∈ X let yu(t) be the trajectory generated by (4.1). Then the
flow Φt : X → X of (4.1) is given by

u 7→ Φt(u), where Φt(u)(s) = yu(t+ s) for s ∈ [−τ, 0].

Next, we choose and fix T > 0 as a natural fraction of τ , that is,

T =
τ

K
for K ∈ N.

and consider the corresponding time-T -map ΦT : X → X as the infinite-dimensional
dynamical system (2.30) with invariant set A ⊆ X .

Numerical Realization of R

For the definition of R we will make use of part (c) of Remark 2.29 and consider a delay
coordinate embedding R = Dk[f,Φ]. Thus, we have to specify an observable f and simply
choose the point evaluation of u ∈ X at −τ , that is,

f(u) = u(−τ).

Hence, in this case the delay coordinate map Dk[f,Φ] is

Dk[f,Φ](u) = (u(−τ),Φ(u)(−τ), . . . ,Φk−1(u)(−τ))

and, provided k ∈ N is large enough, Dk[f,Φ] is one-to-one on A (cf. Theorem 2.26).

Remark 4.3.

(a) A quite natural choice for K would be K = k − 1. In this case, the delay coordinate
map extracts the point values of a function u ∈ X at k equally distributed time steps
within the interval [−τ, 0]. Thus, Dk[f,Φ] coincides with the observation map

R(u) =
(
u(−τ), u(−τ + τ

k−1
), u(−τ + 2τ

k−1
), . . . , u(0)

)
, (4.2)

which allows one to apply Theorem 2.21 instead and R would be a matrix whose k
rows are appropriate canonical vectors in RN . We illustrate this observation map in
Figure 4.1 (a).
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4 The Choice of the Observation Map

(b) Later on we will consider the time delay τ as a bifurcation parameter and vary τ ∈ Λ
for some compact interval Λ ⊆ R≥0. In order to properly compare the numerical
results, we need a universal state space as well as a common observation map for all
τ ∈ Λ. To this end, we fix τ̄ = max Λ and set X = C([−τ̄ , 0],Rn). The observation
map is then given by (4.2) with τ = τ̄ .

Numerical Realization of E

Given a point x ∈ Rk the image E(x) has to be an adequate initial condition for the
forward integration of the DDE (4.1). In addition to that we have to enforce the identities
(2.31) (at least approximately), i.e., E has to be designed in such a way that it is the
inverse of R on A. Thus, according to the choice of R in Section 4.1.1 and Remark 4.2 a
first idea for a function u = E(x) is R+(x), that is,

u(t) =

{
xi, t = ti

0, otherwise
(4.3)

for ti = −τ + i · T, i = 0, . . . , k − 1. However, we can improve this by constructing
a piecewise linear or spline function u = E(x) with u(ti) = xi instead. By this choice
the second condition (R ◦ E)(x) = x is also not only satisfied for every point x ∈ R(A)
(cf. (2.31)) but for every x ∈ Rk. We show these three numerical realizations of the map
E in Figure 4.1 (b).

(a) Numerical realization of R (b) Numerical realization of E

Figure 4.1: Illustration of the numerical realization of R and E for k = 5. (a) The
observation map R extracts the value xi of u ∈ X (dark blue curve) at k = 5
equally distributed time instances ti (red crosses). (b) The original function
u ∈ X is approximated by R+(x) (see (4.3)) as the light blue discontinuous
function, by a green linear curve and a spline interpolation shown in orange.
Note that all three realizations fail to reconstruct u ∈ X between the observed
point values xi.
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4.1 Linear Operators

In order to enforce the first condition (E ◦R)(u) = u for all u ∈ A at least approxi-
mately, we utilize Remark 4.1 and in every step of both procedures, for every box B ∈ B`
(resp. B ∈ C(s,`)

j+1 ) we save ki ≥ 1 additional equally distributed function values of Φ(E(x̂))
for each interval (−τ + (i− 1)T,−τ + iT ), i = 1, . . . , k − 1. This allows us to improve
the construction of E for exactly those test points. When ϕ(B) needs to be evaluated
using test points in B, we first use the points in B for which additional information is
available and generate the corresponding initial value functions via linear or spline inter-
polation. Note that the more information we store, i.e., the larger ki, the smaller the error
‖Φ(E(x̂)) − E(x)‖ becomes for x = R(Φ(E(x̂))). That is, we enforce an approximation
of the identity (E ◦R)(u) = u for all u ∈ A (see (2.31)). If the additional information is
available only for a few points in B, we generate new test points in B at random and con-
struct the corresponding trajectories by interpolation as described before. In particular,
this is the case in the first step of Algorithms 1 and 6.

4.1.2 Coordinate Representation for PDEs

Another useful observation is the representation of a function with respect to a prescribed
basis which for instance works for partial differential equations of the form

∂

∂t
u(y, t) = F(y, u), u(y, 0) = u0(y) (4.4)

with suitable boundary conditions, where u ∈ X for some Banach space X and F is a
(nonlinear) differential operator. Assuming that the PDE (4.4) has a well-defined semi-
flow on X we will consider the time-T -map of (4.4) as the dynamical system Φ in (2.30).

Numerical Realization of R

A widely used approach for constructing reduced order models is Galerkin projection
[KV99, SV10]. The general concept of such a projection is to find a finite-dimensional
representation of an unknown function u ∈ X (see, e.g., [HLBR12]), i.e, we assume in
what follows that the function u ∈ X can be represented in terms of an (ordered) basis
{ψi}∞i=1, i.e.,

u(y, t) =
∞∑
i=1

xi(t)ψi(y), (4.5)

where the ψi are elements of a suitable space. Then the proposed observation is a function
that simply maps u ∈ X onto the truncated coordinate vector, i.e.,

R(u) = (x1, . . . , xk) ∈ Rk. (4.6)

Observe that R is linear and bounded and hence, for k sufficiently large, Theorem 2.21
guarantees that generically (in the sense of prevalence) R will be a one-to-one map on A.

In order to find an adequate basis {ψi}∞i=1, we summarize some key aspects that are
required. First of all, every function u ∈ X should be represented exactly by {ψi}∞i=1, i.e,
the system must be complete. This representation should be unique, which follows from
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4 The Choice of the Observation Map

linearly independence. In practice, an orthogonal or orthonormal system is beneficial.
Every element ψi must satisfy the boundary conditions of (4.4). We note that these three
properties have been discussed in the context of reduced order models for PDEs [Pei17].
Finally, we want a basis as small as possible, i.e, we desire to find a truncation of (4.5)
to a small number S of basis function:

u(y, t) ≈
S∑
i=1

xi(t)ψi(y).

Obviously, this contradicts the assumption that {ψi}∞i=1 is complete. On the one hand we
search for a basis that is capable of representing u ∈ X with an error as small as possible
and on the other hand is of small size S. For the Hilbert space X = L2(Ω) for some spatial
domain Ω ⊆ Rn this problem is addressed by the proper orthogonal decomposition (POD)
(cf. [Sir87, BHL93, Cha00, HLBR12]), also known as the principal component analysis or
the Karhunen-Loève transformation and can be formulated as an optimization problem
([Row05, Vol11, Fah00]):

min
ψ1,...,ψS∈L2

∫ T

0

∥∥∥∥∥u(·, t)−
S∑
i=1

〈u(·, t), ψi〉L2ψi

∥∥∥∥∥
2

L2

dt

s.t. 〈ψi, ψj〉L2 = δi,j, 1 ≤ i, j,≤ S.

That is, the average (squared) error between u ∈ X and its projection onto the space
spanned by the basis function {ψi}Si=1 is minimized. In this sense, POD modes contain
the “most characteristic” data from an ensemble of functions. This optimization problem
is practically realized by discretizing time in 0 = t0 < t1 < . . . < tr < T and taking
r snapshots u(·, tj) at theses time instances [Sir87]. Hence, this approach is also called
method of snapshots. Thereby we can equivalently transform the optimization problem
(4.1.2) into

max
ψ1,...,ψS∈L2

S∑
i=1

1

r

r∑
j=1

〈u(·, tj), ψi〉2L2

s.t. 〈ψi, ψj〉L2 = δi,j, 1 ≤ i, j,≤ S.

(4.7)

see, e.g., [HLBR12, Pei17]. In particular, for S = 1 this yields

1

r
〈u(·, tj), ψ1〉2L2 = 〈ψ1,Rψ1〉L2 ,

where the operator

Rψ1 =

∫
Ω

(
1

r

r∑
j=1

u(·, tj)u(y, tj)

)
ψ1(y)dy

is linear and self-adjoint. Thus, the operator R, also called two-point correlation [Pop00],
possesses a set of orthonormal eigenfunctions {ψi}ri=1 with associated positive eigenvalues
σ1 ≥ σ2 ≥ . . . ≥ σr. It turns out that the S < r eigenfunctions corresponding to the S
largest eigenvalues of R are precisely the solution of the optimization problem (4.7) (see
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[BHL93] or [Fah00]), that is, {ψi}Si=1 forms a basis of size S which optimally represents
the kinetic energy within the snapshots [HLBR12]. Moreover, the eigenvalues contain the
amount of information that is neglected by truncating the basis to the size S < r [Sir87]:

ε(S) :=

∑S
i=1 σi∑r
j=1 σj

. (4.8)

What remains to discuss is how we can compute such a POD basis. To this end, we
first generate r snapshots from a long-time simulation for some set of initial conditions
of the underlying PDE. More precisely, we denote by uh(ti) ∈ Rnx , ti ∈ {t1, . . . , tr}, the
numerical solution of (4.4) defined on a finite-dimensional grid at nx nodes obtained at r
time instances. Then we arrange the data in the so–called snapshot matrix

SM =

 | |
uh(t1) · · · uh(tr)
| |

 ∈ Rnx×r.

Since there is a close relationship between the proper orthogonal decomposition (POD)
and the singular values decomposition (SVD) [Cha00, LLL+02, Vol11] we perform a SVD
of the matrix SM and obtain

SM = UΣV > (4.9)

where U ∈ Rnx×nx ,Σ ∈ Rnx×r and V ∈ Rr×r. The columns of U give us a discrete
representation of the POD modes ψi, whereas the diagonal elements σi of Σ can be
utilized to determine the amount of information that is neglected by truncating the basis
to size S < r, i.e., ε(S) is close to one (cf. (4.8)). For many applications the eigenvalues
decay fast such that a truncation to a small basis is possible.

Remark 4.4.

(a) Since the POD basis is orthogonal we can compute the POD coefficients xi for the
observation map R in (4.6) by taking the scalar product of u and ψi, i.e.,

R(u) = (〈u, ψ1〉, . . . , 〈u, ψk〉)

(b) The matrix R is given by Û ∈ Rk×nx , where the i-th row of Û is the i-th column of
U in the SVD (4.9) for i = 1, . . . , k.
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Numerical Realization of E

By Section 4.1.2 the state space of the CDS ϕ is given by the first k POD coefficients
x ∈ Rk. Analogous to the numerical realization of E for DDEs in Section 4.1.1, we have
to define a function u = E(x) ∈ X and according to Remark 4.2 when no additional
information (cf. Remark 4.1) is available we simply construct u by u = R+(x), i.e.,

E(x) =
k∑
i=1

xiψi.

Observe that in the language of matrices the rows of R are orthonormal and hence R+ =
RT . By this choice we have (R ◦ E)(x) = x for all x ∈ Rk. To enforce (E ◦ R) on A we
extend this expansion and augment the state space to RS using the remaining S−k POD
coefficients that we can compute. More precisely, we construct an initial function by

E(x) =
k∑
i=1

xiψi +
S∑

l=k+1

xlψl. (4.10)

Since only the first k POD coefficients are given by the coordinates of points inside a
box B ⊆ Rk, it remains to discuss how to choose the POD coefficients xk+1, . . . , xS. The
idea is to use a heuristic strategy that utilizes statistical information provided by earlier
numerical integration.

Suppose we want to evaluate ϕ for a large number of test points in a box B ∈ Rk. By
Remark 4.1 we can compute the POD coefficients x̄k+1, . . . , x̄S of x̄ = R(Φ(E(x̂))) ∈ B
by

x̄i = 〈Φ(E(x̂)),Ψi〉, i = k + 1, . . . , S.

Then we sample the box B with all points x̄ for which additional information is available
and compute E(x̄) according to (4.10). However, the number of these points x̄ might be
too small, such that B is not discretized sufficiently well and we have to sample additional
test points. To this end, we choose a certain number of points x̃ ∈ B ⊆ Rk at random and
extend these points to elements in RS as follows: We compute the componentwise mean
value µi and the variance σ2

i of all POD coefficients x̄i, for i = k+1, . . . , S which allows us
to make a Monte Carlo sampling for the additional coefficients of x̃i for i = k + 1, . . . , S,
i.e.,

x̃i ∼ N (µi, σ
2
i ) for i = k + 1, . . . , S.

Thus, we obtain S POD coefficients that generate an initial function of the form in (4.10).
By this construction we expect in each step to generate initial functions that satisfy an
approximation of the identity (E ◦R)(u) = u for all u ∈ A.
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4.2 Diffusion Maps

In the last section we presented two linear observation maps suitable for the construction
of the CDS ϕ (2.32). On the one hand we considered a delay coordinate map were the
observable is a point evaluation for DDEs and on the other hand we projected a solution
of a PDE onto an appropriate basis and then observed the corresponding coefficients.
Thus, combining embedding techniques with set-oriented numerical methods allows the
computation of one-to-one images of attractors and manifolds of the infinite-dimensional
dynamical system (2.30). However, the embedding can still be high-dimensional, even
though the box-counting dimension is low (k > 2dbox). Thus, the embedded set is topo-
logically uninformative and it is hard to identify geometrical features of the underlying
attractor or manifold. To highlight these important features and possibly further de-
crease the embedding dimension we rely on feature extraction methods that are typically
nonlinear. One particular example of such a nonlinear dimensionality reduction method
is diffusion maps which we will consider in detail in the following. We note that some
parts in this section are contained in [GKD19] to which the author has made substantial
contributions.

First, we will review the diffusion maps method introduced in [CL06a] for our purposes.
Suppose X ⊆ Rk is an approximation of the embedded attractor Ak ⊆ Rk or the embedded
unstable manifold W u(p) ⊆ Ak and let k : X × X → R be a symmetric and positivity
preserving kernel, that is,

k(x, y) = k(y, x) and k(x, y) ≥ 0 for all x, y ∈ X. (4.11)

For the construction of the diffusion maps any kernel k that satisfies (4.11) works, but
since X ⊆ Rk it is tempting to use an isotropic (rotation-invariant) kernel, e.g.,

k(x, y) = h

(
‖x− y‖2

2

ε

)
(4.12)

for some carefully chosen bandwidth ε > 0. In our application we will use the Gaussian
kernel, that is, h(z) = exp(−z), and we will discuss the choice of ε in Section 4.2.1.
This kernel represents the similarity between points in X and one can think of them as
being nodes in a symmetric graph (X, k) whose weight function is given by the kernel k.
Hence, we can define a reversible Markov chain on X by the normalized graph Laplacian
construction [CG97] given by

d(x) =

∫
X

k(x, y)dy and p(x, y) =
k(x, y)

d(x)
.

Then the new kernel p still is positivity preserving but no longer symmetric. However, it
is now a transition kernel of a Markov chain on X since∫

X

p(x, y)dy = 1.
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Hence, the operator P defined by

Pf(x) =

∫
X

p(x, y)f(y)dy

preserves constant functions f : X → R. It is easy to see that the Markov chain has a
stationary distribution given by

π(y) =
d(y)∫

X
d(z)dz

.

If the graph is connected, which we from now on assume, it follows that the stationary
distribution is unique. Furthermore, it is reasonable to assume that k(x, x) > 0 as this
represents the affinity of x with itself and as a consequence the Markov chain is aperiodic.
Since the graph is connected by assumption, it is also irreducible. In particular, it follows
that the chain is ergodic. In addition to that, the chain is reversible and it follows the
detailed balance condition

π(x)p(x, y) = π(y)p(y, x). (4.13)

It turns out that the operator P contains geometric information about the underlying set
X and one of the main ideas of the diffusion framework is advancing the Markov chain
forward in time, that is, taking larger powers of P . Thus, for t ≥ 0 we will consider the
kernel of P t which is given by pt(x, y) describing the probability of transition from x to y
in t time steps. A classical way to describe the powers of P is to employ spectral theory,
namely eigenvectors and eigenvalues. By (4.13) and a mild additional assumption (see
(4.15)) we can prove that P has a discrete sequence of eigenvalues λi and eigenfunction
φi, i ≥ 0, such that

1 = λ0 > |λ1| ≥ |λ2| ≥ . . . . (4.14)

In fact, conjugating p with
√
π yields a kernel

a(x, y) =

√
π(x)√
π(y)

p(x, y) =
k(x, y)√
π(x)

√
π(y)

that is symmetric. The corresponding integral operator A with kernel a is therefore
self-adjoint in L2(X) and also compact if we assume∫

X

∫
X

a(x, y)2dydx <∞ (4.15)

(see, e.g., [Ped99]). Observe that this condition is always satisfied if X is finite, that
is, X is a finite discretization of the embedded invariant set, as A is just a matrix. By
compactness A possesses a discrete set of eigenvalues {λi}i≥0 and an orthonormal set of
eigenfunction {φi}i≥0 forming a basis of L2(X), where φ0 =

√
π. Thus,

a(x, y) =
∑
i≥0

λiφi(x)φi(y)
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and defining ψi(x) = φi(x)/
√
π(x), in particular ψ0(x) = 1, and ϕi(y) = φi(y)

√
π(y) we

have
p(x, y) =

∑
i≥0

λiψi(x)ϕi(y).

For the kernel of the powers P t of P this yields

pt(x, y) =
∑
i≥0

λtiψi(x)ϕi(y). (4.16)

Furthermore, by [Ped99] λ0 = 1 and since the chain is ergodic, apart from λ0 all other
eigenvalues have a magnitude strictly less than 1.

What remains to discuss is the relationship between the spectral properties of P and
the geometry of the set X. To this end, we introduce a family of diffusion distances
{Dt}t∈N given by

Dt(x, y)2 = ‖pt(x, ·)− pt(y, ·)‖L2(X,dz/π(z)) =

∫
X

(pt(x, z)− pt(y, z))2 dz

π(z)
.

That is, Dt(x, y) is a weighted L2 distance between the distributions z 7→ pt(x, z) and
z 7→ pt(y, z). In particular, for a fixed t, Dt defines a distance on X and Dt(x, y) will be
small if there is a large number of short paths connecting x and y and vice versa. Thus,
it reflects the connectivity of X at a given scale t. Moreover, Dt(x, y) is very robust to
noise perturbation as it involves summing over all path of length t connection x and y a
vice versa.

It turn outs that Dt(x, y) can be computed using the eigenvector and eigenvalues of P
(cf. (4.16)) by

Dt(x, y)2 =
∑
i≥1

λ2t
i (ψi(x)− ψi(y))2 ,

where i = 0 is neglected because ψ0 is constant. Given a prescribed accuracy δ > 0 we
can truncate this sum according to (4.14). To this end, define

s(δ, t) = max
{
i ∈ N |λi|t > δ |λ1|t

}
and the family of diffusion maps {Ψt}t∈N is then given by

Ψt(x) = (λt1ψ1(x), . . . , λts(δ,t)ψs(δ,t)(x)).

The components of Ψt are called diffusion coordinates and the relationship between Ψt

and Dt can be summarized as follows.

Proposition 4.5 ([CL06a, Proposition 1]). The diffusion map Ψt embeds Y into Rs(δ,t),
such that, the Euclidean distance in Rs(δ,t) is equal to the diffusion distance up to relative
accuracy δ: ∥∥Ψt(x)−Ψt(y)

∥∥
2

= Dt(x, y).

In particular, Proposition 4.5 states that Ψt reorganizes the points in X according to
their mutual diffusion distances.
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4 The Choice of the Observation Map

Now in order to utilize diffusion maps numerically, we consider X to be a finite set of
sample points of Ak or W u(p), respectively, and from now on we call X landmarks. For
instance, X can be the midpoints of the boxes B ∈ B that cover the set of interest. With
that choice the embedded invariant set is discretized by a grid, although the number of
landmarks is very large in general. To decrease the number and reduce the numerical
effort we will later develop a novel landmark selection scheme that generates points that
sample the underlying set sufficiently well (see Section 4.2.2). Since the sampling of
X is generally not related to the geometry of the underlying embedded set, one would
like to recover the structure regardless of the distribution of the points. That is why we
adjust the procedure described above and introduce a family of anisotropic diffusion maps
parameterized by a real-valued parameter α which specifies the amount of influence of the
density. Instead of applying the graph Laplacian normalization on a graph with isotropic
weights we first renormalize the kernel into an anisotropic one. We formulate the idea in
Algorithm 7.

Algorithm 7: Anisotropic Diffusion Maps

Initialization: Let X = {xi}mi=1 ⊆ Rk be a finite set of landmarks and let
kε(x, y) be a rotation-invariant kernel of the form (4.12). Choose α ∈ R and
s ∈ N.

1) Renormalization: Form a new kernel k
(α)
ε on X by

k(α)
ε (xi, xj) =

kε(xi, xj)

qαi q
α
j

, where qi =
m∑
j=1

kε(xi, xj). (4.17)

2) Graph Laplacian Normalization: Employ the graph Laplacian

normalization to k
(α)
ε in order to obtain a transition matrix P , that is,

P (α)
ε (xi, xj) =

k
(α)
ε (xi, yj)

di
, where di =

m∑
j=1

k(α)
ε (xi, xj).

3) Diffusion Maps: Compute the first s+ 1 eigenvalues {λi}si=0 and

eigenvectors {ψi}si=0 of P
(α)
ε . Then the anisotropic diffusion maps {Ψt}t∈N are

given by
Ψt(xi) = (λt1ψ1(xi), . . . , λ

t
sψs(xi)).
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Remark 4.6.

(a) In Algorithm 7 the quantities k
(α)
ε and P

(α)
ε are m × m matrices and the argument

(xi, xj) corresponds to the entry at the i-th row and j-th column.

(b) In order to increase the sparsity of P and reduce the numerical effort, a Gaussian ker-
nel with a cut-off is often used. More precisely, h has the form h(z) = cr exp(−z)1z≤r
with some cutoff radius r > 0 and constant cr such that

∫
h(‖z‖2)dz = 1. For sim-

plicity one can choose r =
√

2ε, to assure that interaction between data points further
apart than r is sufficiently small. This allows to employ a range search algorithm on
a k-d tree [FBF77] for fast distance computations.

Observe that the diffusion maps generated by Algorithm 7 are only defined on the
landmarks X. Thus, in order to embed some out-of-sample point x ∈ Rk of the approx-
imation of the invariant set, we have to extend this scheme. To this end, we interpolate
the diffusion coordinates inspired by the Nyström method [BPV+04, CL06b]. The reason
why we present this extension method is that we want to apply diffusion maps not only to
the given data points X but also to new data points without the costly recomputation of
the entire diffusion maps. Therefore, we can easily embed trajectories of the underlying
dynamical system to reveal the dynamics in diffusion coordinates or add additional data
points to obtain a finer discretization. We summarize the obtained method in Algorithm 8.

Algorithm 8: Nyström Interpolation

Initialization: Let X = {xi}mi=1 ⊆ Rk be a finite set of landmarks and x ∈ Rk

an out-of-sample point. Let kε(x, y), qi and Ψt as in Algorithm 7.

1) Renormalization: Evaluate the kernel k
(α)
ε for all pairs (x, xj), that is,

k(α)
ε (x, xj) =

kε(x, xj)

q̃αqαj
, where q̃ =

m∑
j=1

kε(x, xj).

Note that qj was computed in (4.17).

2) Graph Laplacian Normalization: Normalize k
(α)
ε (x, xj) by

p(α)
ε (x, xj) =

k
(α)
ε (x, xj)

d̃i
, where d̃i =

m∑
j=1

k(α)
ε (x, xj).

3) Interpolation: Then the i-th diffusion coordinate of x ∈ Rk is given by

Ψ̃t
i(x) = λt−2

i p(α)
ε Ψt

i(x1, . . . , xm) = λt−1
i

m∑
j=1

p(α)
ε (xj)ψi(xj).
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4 The Choice of the Observation Map

Remark 4.7.

(a) Similar to Algorithm 7 the quantities k
(α)
ε and p

(α)
ε in Algorithm 8 are just 1×m row

vectors and the argument (x, xj) corresponds to its i-th entry (cf. Remark 4.6 (a)).
In particular, we note that this method can naturally be vectorized.

(b) Note that this construction is consistent with the definition on the data set X, i.e.,

for every landmark xi ∈ X we have Ψ̃t(xi) = Ψt(xi).

(c) In the case where a kernel with some cut-off radius r > 0 (cf. Remark 4.6 (b)) is
used, it is possible that there is no landmark in the r-ball of x ∈ Rk and thus x
will be mapped to the origin (p

(α)
ε = 0). To prevent this phenomenon we adapt the

extension method as follows: We successively increase r by 10% until there are k
neighbors without changing ε to obtain a coefficient vector p

(α)
ε that has at least k

non-vanishing entries. However, this approach is not optimal. In fact, the proposed
extension method is only accurate for points within the kernel bandwidth [LF17].

Concerning the choice of α ∈ R we refer to the result of [CL06a]. LetM be a compact
C∞ submanifold of Rk and let q(x) be the density of the points on M. Denote by ∆
the (positive semi-definite) Laplace–Beltrami operator onM. Then ∆ has eigenfunctions
that satisfy the Neumann condition at the boundary ∂M and form a Hilbert basis of
L2(M). Let Es be the linear span of the first s+ 1 Neumann eigenfunctions of ∆.

Proposition 4.8 ([CL06a, Theorem 2 & Proposition 3]). Let L
(α)
ε = I−P (α)

ε

ε
be the

(discrete-time) infinitesimal generator of the Markov chain. Then for a fixed s > 0,
we have for f ∈ Es

lim
ε→0

L(α)
ε f =

∆(fq1−α)

q1−α − ∆(q1−α)

q1−α f.

In other words, the eigenfunctions of Pε,α can be used to approximate those of the following
symmetric Schrödinger operator:

∆φ− ∆(q1−α)

q1−α φ,

where φ = fq1−α. In particular, for α = 1 we have

lim
ε→0

L(1)
ε = ∆

and for any t > 0 the Neumann heat kernel e−t∆ can be approximated on L2(M) by(
P

(1)
ε

) t
ε
:

lim
ε→0

P
t
ε
ε,1 = e−t∆.

Thus, for α = 1 the infinitesimal generator is simply the Laplace-Beltrami operator
∆ and the Markov chain converges to the Brownian motion on M. Consequently the
normalization removes the influence of the density and we recover the Riemannian geom-
etry of the data set as desired. Hence, we can separate distribution of the data from the
geometry of the underlying manifold M and from now on we choose and fix α = 1. It
remains to discuss the choice of the bandwidth ε and the landmarks X which is done in
the next sections.
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4.2 Diffusion Maps

4.2.1 An Intrinsic Dimension Estimator

In this section we present a method for the approximation of the intrinsic dimension.
Moreover, this tool finds a good choice for the bandwidth ε. To this end, we will consider
a dint-dimensional manifoldM as the underlying set. According to an observation made in
[CSSS08] the kernel localizes the data set when the data is drawn according to a uniform
distribution on the manifold and ε is well tuned such that

S(ε) =
1

m2

∑
i,j

kε(xi, xj) ≈
(πε)dint/2

vol(M)
, (4.18)

where dint is the intrinsic dimension of the M. Note that S(ε) → 1 for ε → ∞ and
S(ε)→ 1

m
for ε→ 0. Moreover, S(ε) should be locally well approximated by a power law

S(ε) ∼ εdint/2, where

dint = 2
d(logS)

d(log ε)
(4.19)

is the local slope at appropriate values ε of the logS versus log ε curve. Thus, following
[BH16] we evaluate S for a large range of εi and approximate the derivative by finite
differences

di = 2
logS(εi+1)− logS(εi)

log εi+1 − log εi
. (4.20)

A good choice for ε would be a value in the linear region in the log ε vs. logS plot, i.e.,
the log ε vs. dint curve is constant. If there is no obvious region we choose a value near the
maximizer ε∗ of dint. Observe that this machinery allows in particular the approximation
of the dimension dint of M.

However, this estimation only works if the data is uniformly sampled which is in practice
never satisfied. In order to extend this tool for data drawn according to an arbitrary
distribution, say q, it is necessary to remove the influence of q in this estimation. To
this end, let us recall that for α = 1 the underlying distribution q is separated from the
geometry by Proposition 4.8. Hence, considering (4.17) for α = 1, i.e,

k(1)
ε (xi, xj) =

kε(xi, xj)

qiqj
, where qi =

m∑
j=1

kε(xi, xj),

instead of k
(0)
ε in (4.18) should give us the desired result. In fact, let us assume q to

be smooth and, for simplicity, take the kernel function kε(x, y) = exp
(
−‖x−y‖

2
2

ε

)
. If ε is

sufficiently small in comparison to the scale on which q varies (essentially governed by
the gradient of q), then by interpreting the following sum in the Monte Carlo sense, we
obtain

1

m
qi →

∫
M
kε(xi, y)q(y)dy ≈ Cq(xi)
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4 The Choice of the Observation Map

for m→∞ almost surely, where

C =

∫
TxiM

exp

(
−‖xi − y‖

2
2

ε

)
dy

is independent of xi. Now we can identify TxiM with Rdint and it follows that C =
(πε)dint/2. Since the xi are drawn i.i.d., the pair (xi, xj) is for i 6= j distributed according
to q ⊗ q and we obtain in the Monte Carlo sense∑

i,j

k(1)
ε (xi, xj) ≈

∫
M

∫
M

kε(x, y)

C2q(x)q(y)
(q ⊗ q)(x, y)dxdy

≈ 1

C2

∫
M

∫
Rdint

exp

(
−‖x− y‖

2
2

ε

)
dxdy

=
vol(M)

(πε)dint/2
.

Here the first approximation works if ε is sufficiently large, such that the point cloud

{xi}mi=1 “resolves” the functions exp
(
−‖·−xj‖

2
2

ε

)
properly, such that the Monte Carlo esti-

mation is valid. The second approximation is valid if ε is sufficiently small, such that the

integral
∫
M exp

(
−‖·−y‖

2
2

ε

)
dx is well approximated by the same integral on the tangent

space Rdint of M at y. To this end, the “Gaussian bell” should be sufficiently localized,
i.e., ε is small enough. It is assumed that in between there is a sweet spot for the values
of ε that both approximations hold. We emphasize that this argumentation is also used
in [KW20, Appendix A.2] for uniformly sampled data.

Thus, for non-uniformly sampled data one should use k
(1)
ε in (4.18) instead of kε in

(4.18) to form a sum over all pairs of data points. With that choice, we have S(1)(ε) :=
1
m2

∑
i,j k

(1)
ε (xi, xj)→ − 1

m2 for ε→∞ and S(1)(ε)→ − 1
m

for ε→ 0. Also note that in this

case we have to add a minus sign in (4.19) and (4.20), respectively, since S(1)(ε) ∼ ε−dint/2,
i.e, εdint/2 is now in the denominator. Even though this estimation is theoretically only
valid when the underlying set is a manifold we will also employ this tool if the data is
sampled from an arbitrary (fractal) set.

Remark 4.9. For the approximation of the dimension dint the kernel k
(1)
ε has to be eval-

uated for all data points and a lot of bandwidths εi. Thus, in order to keep the numerical
effort within reasonable limits, we first compute the pairwise distances ‖xi − xj‖2 ≤ r for

some cut-off radius r > 0 and store d̃i,j = −‖xi − xj‖2
2 in memory. Here, we emphasize

that the cut-off radius has to be chosen sufficiently large, e.g., r =
√

2 maxi εi, such that
it is still appropriate for larger bandwidths. Afterwards for each prescribed εi we evaluate

kε(xi, xj) = exp
(
d̂i,j
εi

)
and compute qi. Note that for the computation of k

(1)
ε (xi, xj) one

does not have to store k
(1)
ε (xi, xj) as a m ×m matrix. Finally, we build S(1)(ε) by sum-

ming over all entries and approximate the derivative of the log(ε) versus log
(
S(1)

)
curve

by finite differences (cf. (4.19)).
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4.2 Diffusion Maps

In order to illustrate the diffusion maps embedding as well as the automated choice for
the bandwidth ε, we will consider a popular example given by the swiss roll. This set
is a rolled up 2-dimensional rectangle embedded in R3 (see Figure 4.3 (a)). We choose
m = 104 random landmarks and compute S(1)(ε) for ε ∈ [10−4, 105] and the quantities
di. The corresponding curves are shown in Figure 4.2. Unfortunately, we do not see a
clear (large) linear region in (a), or a constant region in (b), respectively. However, at
around ε ≈ 100.5 we see a slight hint of a plateau whose level is close to the exact value
of dint = 2. Note that for a larger bandwidth we overestimate the dimension. This is due
to the fact, that the “Gaussian bell” is too large such that it does not represent a local
intrinsic neighborhood of a point anymore.

log10(ε) vs. log10

(
S(1)(ε)

)
log10(ε) vs. dint

Figure 4.2: Illustration of the estimation of the intrinsic dimension. The red cross de-
picts the appropriate bandwidth ε = 100.5 and its corresponding values
log10

(
S(1)(ε)

)
and dint(ε), respectively.

In Figure 4.3 (b) we show the set in diffusion coordinates scaled by the constant function
ψ0, where we additionally embed 106 additional out-of-sample points using Algorithm 8.
Note that the diffusion coordinates unroll the rectangle as desired. The first coordinate
corresponds to the direction in which the rectangle is rolled up, whereas the second coor-
dinate corresponds to the y direction in Cartesian coordinates.

Now having a tool for estimating the intrinsic dimension as well as finding a suitable
bandwidth ε it remains to discuss how to discretize an embedded invariant set sufficiently
well.
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4 The Choice of the Observation Map

(a) Cartesian coordinates (b) Diffusion coordinates

Figure 4.3: Illustration of the diffusion maps embedding 7 and 8 on the swiss roll. In gray
we show the randomly chosen landmarks and their corresponding embedding,
whereas the out-of-sample points are colored according to their first diffusion
coordinate.

4.2.2 A Set-Oriented Landmark Selection Scheme

In order to employ diffusion maps in our framework, we have to choose a set of landmarks
that discretize the embedded set of interest Q given by a box collection B. The simplest
strategy to discretize such a collection by pointsX = {xi}mi=1 ⊆ Rk is to take the midpoints
of each box B ∈ B, that is, xi = ci according to Remark 3.3 (a). However, in general the
number M = |B| of boxes in B will be very large and hence not suitable for the diffusion
map Algorithm 7. More precisely, the computation of the pairwise distance and the
eigendecomposition will be computationally infeasible. Thus, the purpose of this section
is to present a novel algorithm that generates m � M landmarks that are well-sampled
in the sense that the r-balls for some r ≥ 0 around the points cover the embedded set
and its pairwise intersection is small, ideally empty.

Starting with a random subset X = {xi}mi=1 ⊆ {ci}Mi=1 we employ a point cloud sim-
plification method (see [PGK02] for an overview and the references therein) for the com-
putation of the landmarks. We note that the developed method is inspired by the works
of Turk [Tur91, Tur92]. There, surfaces dicretized by polygons are re-sampled by first
seeding points on the surfaces and then moving them around by repulsion between neigh-
boring points. If during this procedure a point is pushed off one polygon, it is moved
onto an adjacent polygon. Thus, the idea is to push the points xi ∈ X that (coarsely)
approximate the embedded set of interest around by a repelling force that decays linearly
with distance and becomes zero at a fixed radius r > 0. If during that procedure a point
leaves the covering, we project it onto the nearest box in the box collection. The proposed
scheme is formulated in Algorithm 9.
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4.2 Diffusion Maps

Algorithm 9: Set-Oriented Landmark Selection Scheme

Initialization: Let B be a box collection and X = {xi}mi=1 a finite discretization
of the corresponding covering Q =

⋃
B∈B. Fix a repulsion radius r > 0.

Particle Simulation: Repeat the following steps.

1) For each xi ∈ X compute all neighbors {yj}nij=1 ⊆ X of xi such that
‖xi − yj‖ ≤ r. Set

Fi =

ni∑
j=1

(r − ‖xi − yj‖)
xi − yj
‖xi − yj‖

.

2) Update xi by xi = xi + κiFi for some κi > 0.

3) If xi 6∈ B for all B ∈ B, project xi onto the boundary of the nearest box B ∈ B.

In what follows we will discuss the choice of the repulsion radius r > 0, the factor κi > 0
and how to realize the projection step 3) in Algorithm 9. For a good choice of r > 0 let
us recall a helpful property of the box-counting dimension (cf. Definition 2.5), that is,

m(Q, r) ∼ r−dbox(Q),

where Q =
⋃
B∈B is a cover of the embedded set and m(Q, r) is the minimal number

required to cover Q with balls of radius r. Hence, in order to find a good covering by a
fixed number m of r-balls, the radius should be of the form

r ∼ m−1/dbox(Q).

However, for the final definition of r we have to take the size of Q into account. To this
end, let us consider the intervals Q1 = [0, 1] ⊆ R and Q2 = [0, 2] ⊆ R. Observe that the
box-counting dimension of both sets coincides and is one. Then for a fixed number m of
balls that should cover Q1 one has to choose a radius r1 ≥ 1/(m + 1), whereas for Q2 it
is r2 ≥ 2/(m+ 1). That is why for general Q ⊆ Rk we define r > 0 as

r = diam(Q)m−1/dbox(Q).

For the choice of κi > 0 let us consider the graph that is implicitly generated in step 1)
of Algorithm 9, i.e., we connect xi with xj if their pairwise distance is less or equal than
r. Suppose xi is only connected to xj before the update in step 2) and vice versa. Then
the corresponding lengths of Fi and Fj coincide but they point in opposite directions, i.e.,
Fi = −Fj. In order to keep xi and xj connected after the update in step 2), κi and κj
must be smaller or equal than 1/2. In the case where there are more connections this
translates to

κi ≤
1

ni + 1
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by the triangle inequality, where ni ∈ N0 is the number of neighbors of xi, that is, the
degree of the node xi in the graph. Thus, in the hope of a fast convergence of Algorithm 9
while preserving existing edges we choose the maximal allowed value

κi =
1

ni + 1
. (4.21)

In step 3) in Algorithm 9 we want to project a point x onto the boundary of the nearest
box which we realize as follows. Let c ∈ B ∈ B be the closest midpoint to x. Then we
reduce the problem to finding a point on the intersection of the line between x and c and
the boundary of the box B. Thus, let d = x − c ∈ Rk be the direction vector from c to
x and r ∈ Rk the generalized radius of B (see Remark 3.3). The task is then to find the
interval I = [L0, L1] such that c+ ld ∈ B if and only if l ∈ I. In other words,

ldi ≤ ri and − ldi ≤ ri (4.22)

for all i = 1, . . . , k. We can rewrite (4.22) in a vector valued constraint, that is,

l

(
d
−d

)
≤
(
r
r

)
.

Since ri > 0, positive entries ui give the upper bound L1 and negative ui the lower
bound L0. If ui = 0 the direction is parallel to the i-th box constraint and provides no
information on the bounds. Thus, L0 and L1 are given by

L0 = max
i:ui<0

ri
ui

and L1 = min
i:ui>0

ri
ui

(also see [TvBP13, Section 3.2]). Since we want the closest intersection of that line and
the boundary, we choose l = L1 and define the projection of x as

x(p) = c+ L1d = L1x+ (1− L1)c.

Remark 4.10.

(a) As in Algorithm 3 the neighbor search step 1) of Algorithm 9 can be numerically
realized by a k-d tree which accelerates the computation. Here we have to build a
new tree or rebalance the previous one in each iteration since the points xi ∈ X
change their location. Hence, the neighbor search can be computationally expensive,
in particular, if m < M is large.

(b) Instead of considering the r-ball around each point xi one can also only compute the
nearest neighbor and define Fi analogously. In this case, κi should be less or equal to
1/2 according to (4.21). However, in practice this modification yields that the points
“jump around” and the range search proposed in step 1) is much smoother.
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(c) A stopping criterion for Algorithm 9 can be to perform a prescribed number of itera-
tions or to compute the minimal distance between the current points and the updated
points (after step 3), for instance. If this distance is then lower than a predefined value
Algorithm 9 ends. With our choice of r > 0 and κi one can also design a stopping
criterion based on the number of neighbors remaining in each r-ball and the cor-
responding distances. In the following we will simply stop after a fixed number of
iterations.

Finally, we illustrate Algorithm 9 on a simple example in Figure 4.4.

(a) Initial landmarks (b) Step 2) (c) Step 3)

(d) 10 iterations (e) 50 iterations (f) 200 iterations

Figure 4.4: Illustration of Algorithm 9 on a covering of the unit disc. (a) m = 100 random
initial landmarks X. (b) The points were moved according to step 2). Green
points are still inside the set, while red ones moved slightly outside the disc.
(c) The red points are projected onto the boundary. (d-f) Further iteration of
the algorithm. We see that the distribution of the points is forming a grid like
structure and we also observe that there are more points on the boundary in
each iteration.
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In this chapter we apply the developed numerical tools for the numerical analysis of
(infinite-dimensional) systems on several examples. First, we will employ the set-oriented
path following method 2 for the approximation of the global attractor of a reduced order
model for turbulent shear flows. Moreover, we will use the set-oriented predictor-corrector
method 5 for the approximation of the attracting set of the Mackey-Glass delay differential
equations for a range of delay times. In the chaotic parameter regime we investigate the
geometry of the generated covering using the diffusion map scheme (see Section 4.2). For
the computation of an embedded unstable manifold we will consider the one-dimensional
Kuramoto-Sivashinsky equation, where we will also reveal its intrinsic structure using
diffusion maps. At the end of this chapter we will approximate the embedded unstable
manifold of the edge state in a plane Poiseuille flow.

We note that some parts of this chapter are also contained in [ZDG19, GKD19, GZED20]
and [ZGD20] to which the author has made substantial contributions.

5.1 A Four-Dimensional Model of Self-Sustained Flows

We start with using the set-oriented path following method 2 in order to explore the
dynamics of shear flows during the transition to turbulence. Analyzing the dynamics in
the full phase space is very complicated because of the high-dimensionality. In order to
prepare for the application to such computationally expensive examples such as plane
Poiseuille flow considered later in Section 5.4, we begin here with an analysis of a simple
model that capture much of the phenomenology. Thus, in this thesis, as a model of shear
flows where the modes have a physical interpretation, we will consider the four-dimensional
model proposed by Fabian Waleffe [Wal95a, Wal95b]: the four components represent the
transversal velocity components, the vortices, the streak, and the mean velocity. We also
note that in [GZED20] the proposed method has been applied successfully to a Fourier
based nine-dimensional model for turbulent shear flows with free slip boundaries and a
sinusoidal base profile [MFE04, MFE05].

The corresponding four-dimensional model is given by the following nonlinear ordinary
differential equation

d

dt


u
v
w
m

 =
1

R


0
0
0
σ

− 1

R


λu
µv
νw
σm

+


0 0 −γw v
0 0 δw 0
γw −δw 0 0
−v 0 0 0



u
v
w
m

 , (5.1)

where R > 0 is the Reynolds number and λ, µ, ν, σ, γ, and δ are positive parameters. For
the following computations we fix λ = µ = σ = 10, ν = 15, δ = 1 and γ = 0.5. In this case
the attractor of (5.1) does not contain any invariant structures besides the laminar profile
(u, v, w,m) = (0, 0, 0, 1) up to the critical Reynolds number Rc = 98.6325, where a saddle-
node bifurcation occurs. The aim in this section is to numerically analyze the change of the
attractor for the Reynolds number R ∈ [99, 400]. To this end, we consider the time-T -map
of (5.1) for T = 20 as the dynamical system ϕR (cf. (3.10)) where R > 0 is the parameter
of interest. Furthermore, we choose Q = [−0.9, 1.1]×[−0.8, 1.2]×[−1, 1]×[−0.8, 1.2] ⊆ R4
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as the initial box in which we want to approximate the relative global attractor ARQ using
Algorithm 2 where we choose m = 36 and fix L = 32. This yields a box diameter of
0.004 of B ∈ Bm in the final approximation QR

m. Following Remark 3.19 (a) we start the
scheme at R0 = 400 and define Rj+1 = Rj − 1 for j = 0, . . . , 302 such that the interval
Λ = [98, 400] is discretized equidistantly.

In what follows we will analyze the attractor from a global point of view. To this
end, we show in Figure 5.1 and Figure 5.2 three-dimensional projections (u,v,m) of the
relative global attractor obtained by Algorithm 2 for different Reynolds numbers. For R
just above the saddle node bifurcation, i.e., for Rc = 98.6325, Figure 5.1 (a) shows that
the attractor now contains an upper branch steady solution, as well as the lower branch
saddle state, also called edge state. This situation persists up to R = 100.0232, after
which the upper branch undergoes a supercritical Hopf bifurcation. The emerging limit
cycle is stable (see Figure 5.1 (b)) until R = 101.0311, where it disappears in a homoclinic
bifurcation. We observe that the attracting set does not change significantly, although
the dynamics does: in the homoclinic bifurcation the attractor rips open and becomes a
transient saddle. Hence, a trajectory initialized near the unstable upper branch eventually
converges to the laminar solution again (see Figure 5.1 (c)). In fact, for R = 101 there is
a strict separation in the attractor by the edge state which breaks up for R = 102. Note
that the obtained box coverings do not only cover the laminar profile but also the unstable
manifolds since they are backward invariant (see Lemma 3.1). To further demonstrate
this phenomenon the average lifetimes for each box in the attractor have been computed
in [GZED20].

(a) R = 99 (b) R = 101 (c) R = 102

Figure 5.1: Three-dimensional projections of ARQ at subdivision level m = 36 for the low-
dimensional model of a self-sustained flow (5.1). Stable and unstable equilibria
are shown in green and red, respectively. The green equilibrium at the top
of each figure depicts the laminar solution (u, v, w,m) = (0, 0, 0, 1) which
remains stable for all values of R [Wal95b]. In (b) and (c) we show a long-
term simulation initialized near the unstable upper branch state.

84



5.1 A Four-Dimensional Model of Self-Sustained Flows

For 102 < R ≤ 356 the attractor develops a more complicated structure with folds and
other features (see Figure 5.2), that arise from the projection from the four-dimensional
state space to the three-dimensional image plane. Finally, for 356 < R < 435 another
stable limit cycle appears (see Figure 5.2 (e) and (f)) and the edge state separates the
attractor again.

(a) R = 150 (b) R = 200 (c) R = 300

(d) R = 356 (e) R = 357 (f) R = 400

Figure 5.2: Three-dimensional projections of ARQ at subdivision level m = 36 for the low-
dimensional model of a self-sustained flow (5.1). Stable and unstable fixed
points are shown in green and red, respectively. The green fixed point at the
top of each figure depicts the laminar solution (u, v, w,m) = (0, 0, 0, 1) which
remains stable for all values of R [Wal95b]. Additionally, we show a long-term
simulation initialized near the edge state.
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5.2 The Mackey-Glass Equation

As a first example where the underlying system is infinite-dimensional we consider the
well-known delay differential equation introduced by Mackey and Glass in 1977 [MG77]
defined by

u̇(t) = β
u(t− τ)

1 + u(t− τ)η
− γu(t), (5.2)

where β = 0.2, γ = 0.1, η = 10 are fixed parameters. This equation models the concentra-
tion of blood production at a specific time t which also depends on the concentration at
an earlier time t− τ , i.e., when the request for more blood is made. Here, we choose the
constant time-delay τ ∈ Λ ⊆ R≥0 as our parameter of interest and consider Λ = [6, 20].
For this parameter regime a detailed analysis can be found in [Far82]. Given the param-
eters β, γ and η as above, this system possesses the equilibria u1(t) = 0 and u2(t) = 1,
where u2 is a stable fixed point for τ < 4.53. At τ ≈ 4.53 the equilibrium u2 undergoes a
supercritical Hopf bifurcation which results in a stable limit cycle attractor.

(a) Qτ045 (b) Qτ7945 (c) Qτ15945

(d) Qτ19945 (e) Qτ23945 (f) Qτ27945

Figure 5.3: Three-dimensional projections of the box covering of the embedded attracting
set for the Mackey-Glass delay differential equation (5.2). (a) Qτ

45 for τ = 6
is obtained by Algorithm 1 whereas the rest is computed by Algorithm 5. (b)
Stable periodic orbit for τ = 10. (c) Period-doubled orbit for τ = 14. (d)
Periodic-doubling bifurcation sequence for τ = 16. (e) Chaotic behavior for
τ = 18. (f) Transparent boxes depicting the chaotic attractor for τ = 20.
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For τ > 4.53 the stable limit cycle grows with increasing values of τ and loses its
stability in a period-doubling bifurcation at τ ≈ 13.3. This initiates a period-doubling
bifurcation sequence that reaches its accumulation parameter at τ = 16.8. For τ > 16.8
numerical simulations show chaotic attractors.

In what follows we want to reproduce the results discussed in [Far82] from a global
point of view, i.e., we want to show how the attracting set changes under variations of
the time delay τ . To this end, we choose the embedding dimension k = 5 which should
be large enough according to Theorem 2.21 and the dimension analysis made in [Far82].
Since a solution of (5.2) represents the concentration of blood, we are only interested
in positive solutions. Direct numerical simulations then indicate that it is sufficient to
choose the initial box Q = [0, 1.5]5. Furthermore, we set T = 5τ̄ for τ̄ = 20, τ0 = 6 and
define τj+1 = τj + 0.05 for j = 0, . . . , 279. Moreover, we set m = 45 and L = 40. The
initial step of Algorithm 5 computes the box coverings Qτ0

45 and Qτ1
45 of the corresponding

attracting sets Aτ0k and Aτ1k , respectively. For both parameter values the sets consist of
two-dimensional unstable manifolds of u2(t) = 1 which accumulate in a stable periodic
orbit at their boundaries. However, since we are only interested in the stable limit cycle
attractor, we remove a small open neighborhood U of the embedded equilibrium R(u2)

from the initial box Q = [0, 1.5]5 and approximate Aτ0k and Aτ1k using Q̃ = Q\U .

(a) Intrinsic dimension of the landmarks (b) Box-counting dimension of the covering

Figure 5.4: Estimation of the dimension of the covering for τ = 20. (a) Intrinsic dimension
according to Section 4.2.1. (b) Box-counting dimension (see Definition 2.5).
Note that the estimated dimensions coincide with the results made in [Far82].

A three-dimensional projection of Qτ0
45 is shown in Figure 5.3 (a). Then Algorithm 5

computes successively the box coverings Q
τj
45 for j = 2, . . . , 279. In Figure 5.3 (b) we show

the box covering of Qτ
45 for τ = 10 obtained after j = 79 steps. As expected, the stable

limit cycle grows in diameter with increasing values of the time delay τ . Using direct
numerical simulation we observe that the stable limit cycle loses its stability in a period-
doubling bifurcation at τ ≈ 13.3. In Figure 5.3 (c) and (d) we show the attracting sets
obtained for τ = 14 and τ = 16 using Algorithm 5 and the periodic solutions obtained
by direct numerical simulation. For τ = 14 we see a Möbius strip like structure with
the period-doubled periodic solution at its boundaries. Further increasing τ induces a
period-doubling bifurcation sequence (cf. Figure 5.3 (d)) and this Möbius strip like set
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grows and develops additional loops which increases the complexity of the attracting set.
In Figure 5.3 (e), i.e., for τ = 18, a direct numerical simulation of a random initial value
depicts a chaotic behavior of (5.2). This set even becomes more complex for increasing
values of τ (cf. Figure 5.3 (f)).

For a further insight in the intrinsic geometry of the chaotic attractor for τ = 20
we employ the framework of diffusion maps presented in Section 4.2. We sample m =
104 landmarks out of M ≈ 4.6 · 106 box midpoints after 50 iterations. According to
Section 4.2.1 the intrinsic dimension is estimated by dint ≈ 2.33 for an optimal value
ε ≈ 10−3.1 (see Figure 5.4 (a)). In Figure 5.4 (b) we estimate the corresponding box-
counting dimension dbox by approximately 2.46 (cf. Remark 2.6).

The discretized embedded attracting set and its corresponding diffusion coordinates
scaled by the constant function ψ0 are shown in Figure 5.5. Even for the chaotic parameter
regime of τ = 20 we reveal a Möbius strip like structure that is already seen in delay
coordinates for τ = 14 (cf. Figure 5.3 (c)).

(a) Delay coordinates (b) Diffusion coordinates

Figure 5.5: Employing the diffusion maps technique to the covering of the embedded at-
tracting set for τ = 20. In gray we show the selected landmarks generated by
Algorithm 9, whereas a long-term simulation (embedded by Algorithm 8) is
shown in black.
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5.3 The Kuramoto-Sivashinsky Equation

For the computation of the embedded unstable manifold of a PDE we consider the well-
known Kuramoto-Sivashinsky equation (KSE) in one spatial dimension which is given
by

ut + νuyyyy + uyy +
1

2
(u2)y = 0, 0 ≤ y ≤ L,

u(y, 0) = u0(y), u(y + L, t) = u(y, t),
(5.3)

where ν > 0 is a fixed damping parameter and L > 0 denotes the size of a pattern.
This equation has been studied extensively over the past 40 years. For instance, it has
been used to model phase dynamics in reaction-diffusion systems [KT76] or small thermal
diffusive instabilities in laminar flame fronts [Siv77]. It turns out that increasing L leads
to more complicated spatio-temporal dynamics. Following [HNZ86, KNS90] we normalize
the KSE to an interval length of 2π and set the damping parameter to the original value
derived by Sivashinsky, i.e., ν = 4. Then equation (5.3) can be written as

ut + 4uyyyy + µ

[
uyy +

1

2
(u2)y

]
= 0, 0 ≤ y ≤ 2π,

u(y, 0) = u0(y), u(y + 2π, t) = u(y, t),

(5.4)

where, additionally, the state u and the time t has to be rescaled. The newly introduced
parameter µ = L2/4π2 then directly relates to the size of a typical pattern scale L > 0.
In [HNZ86, KNS90] numerical and analytical studies were made by varying µ over a finite
interval, showing the complex hierarchy of bifurcations. We note that (5.4) is equivariant
with respect to the action of O(2) defined by

Rαu(y, t) = u(y + α, t) and Su(y, t) = −u(−y, t). (5.5)

due to the periodic boundary condition.

In this section we are interested in computing and analyzing the unstable manifold of the
trivial unstable steady state u∗ = 0 for parameter values µ ∈ [15, 18]. For the computation
we will employ the continuation method 6 on the pCDS ϕµ defined in (2.34). Thus, for
the construction of the CDS we need a good estimate of the box-counting dimension of the
invariant set Aµ. In [Rob94] it has been shown that the dimension of the inertial manifold
of (5.3) for ν = 1 is d ≤ L2.46, i.e., each invariant set has finite-dimension. However, these
estimates are very pessimistic and we expect that we will obtain one-to-one images of the
unstable manifold for smaller related embedding dimensions k ∈ N. Thus, in what follows
we choose k = 7 which should suffice according to the discussion on the dimensions later
on.

According to Section 4.1.2 the observation space is defined by the first k POD co-
efficients and thus p = R(u∗) = 0 ∈ Rk. We compute the POD basis by using the
snapshot-matrix obtained through a long-time integration with the initial conditions

u0(y) = 0.0001 cos (y) · (1 + sin (y)) .

Furthermore, we choose S such that ε(S) > 0.99999 (cf. (4.8)). For the purpose of
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comparing the parameter-dependent manifolds, we fix the POD basis that is computed for
µ = 15 if not said otherwise. Hence, the observation space Rk given by the corresponding
coordinate representation in that basis is fixed as well.

For the upcoming computations we choose Q = [−50, 50]7 and initialize a fine partition
Ps of Q for s = 28, 42, 56. Next we set T = 2 and define a finite time grid {t0, . . . , tN},
where ti = ih for h = 0.001 according to Remark 3.23 (c) and integrate 128 · 103 points
in the small initial box.

Remark 5.1. For the computations and simulations made in [ZDG19] the normalized
KSE (5.4) was considered but the state u and time t was mistakenly not rescaled. Hence,
in this thesis related quantities such as T in the time-T -map of (5.4) and the magni-
tude of states u or the corresponding POD coefficients x differ from [ZDG19]. However,
qualitatively the results will be the same.

5.3.1 The Traveling Wave

For the parameter value µ = 15 the KSE possesses two stable traveling waves (limit cycles)
traveling in opposite directions due to the O(2)-symmetry (5.5) imposed by the periodic
boundary conditions [KNS90]. In addition to that, we numerically find an unstable steady
state v∗ 6= 0 by long-term simulation for the construction of the POD basis. It turns
out that a long-term simulation starting near u∗ = 0 first approaches the point v∗ and
then eventually converges to one of the traveling waves. We illustrate this behavior in
Figure 5.6.

(a) Numerical simulation of u0(y) (b) Numerical simulation of u0

(
y − π

2

)
(c) Observation space (POD)

Figure 5.6: Direct simulation of the Kuramoto-Sivashinsky equation (5.4) for µ = 15.
(a) The initial condition u0 is first attracted to another (unstable) steady state
v∗, then leaves this state and converges to a traveling wave. (b) Shifting the
initial condition by π

2
leads to convergence to the wave traveling in opposite

direction. (c) Corresponding embedding in observation space of both simula-
tions (light blue and gray). Here, the red curve depicts the loop of unstable
steady states (v∗ and its translates) to which u0(x), respectively u0(x− π

2
), is

attracted first. The corresponding stable limit cycles are shown in dark blue
and green.
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Thus, due to the O(2) symmetry there is an entire (topological) circle of unstable steady
states that surrounds u∗ = 0. Note that according to [KNS90] the point v∗ emerges in
a pitchfork bifurcation already at µ = 4 as a stable steady state but loses its stability
at µ = 13.005 to the attracting limit cycles. Numerical analysis of the stability of u∗

and v∗ shows that u∗ has two unstable directions (with the same eigenvalue) whereas v∗

has only one. Therefore, according to the long-term simulation analysis (cf. Figure 5.6)
we are in the situation of Remark 3.25 (a). More precisely, we expect that Algorithm 6
initialized at u∗ = 0 first approximates the 2-dimensional unstable manifold of the origin
and afterwards continues to cover all the 1-dimensional unstable manifolds of all trans-
lations of v∗, i.e., a 2-dimensional manifold. We conclude that we will in fact cover two
connected 2-dimensional manifolds. Therefore, assuming that the thickness exponent is
zero, we have to choose k ≥ 5 in order to obtain a one-to-one image and our choice k = 7
should be large enough.

(a) ti = 0 (b) ti = 0.2 (c) ti = 0.7

(d) ti = 0.8 (e) ti = 0.9 (f) ti = 2

Figure 5.7: Three-dimensional projection of the box covering at level ` = 56 of parts of the
embedded unstable manifold of the Kuramoto-Sivashinsky equation (5.4) for
several integration times ti. If necessary we show transparent boxes such that
the internal structure is visible. (a) Initial neighborhood of p = 0. (a) Points
were integrated until ti = 0.2. (c) At ti = 0.6 the manifold accumulates
in a loop of unstable equilibria (red). (d-e) The algorithm continues and
approximates the unstable manifold of the loop for ti = 0.8 and ti = 0.9,
respectively. (f) The manifold accumulates in two periodic orbits (blue and
green) at ti = 2.
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In Figure 5.7 we show how the embedded manifold(s) grows with respect to the inte-
gration time ti. As expected Algorithm 6 first covers the embedded unstable manifold of
the origin (see (a) and (b)), that accumulates in a whole loop of other unstable states (see
(c)) . Hence, in (d) and (e) we also compute the embedded unstable manifolds of each of
those unstable states which eventually accumulate in the two limit cycles (see (f)).

In order to reveal the internal geometric structure of the approximated object, we
employ the framework of diffusion maps presented in Section 4.2. Using Algorithm 9 we
sample m = 104 landmarks out of M ≈ 2.5 · 106 box midpoints after 50 iterations. With
the help of the machinery developed in Section 4.2.1 we find an optimal value of ε ≈ 13.3
(see Figure 5.8 (a)) and an intrinsic dimension of dint ≈ 2.56. We note that we slightly
overestimate the dimension of the two connected 2-dimensional manifolds which is due to
the outer approximation of the object. In fact, the 2-dimensional manifold of the origin
spirals into the loop of unstable states v∗ and its translates. Hence, our box covering
approximates a solid 3-dimensional torus at the boundary of the manifold of the origin,
that is, the loop is covered by a solid 3-dimensional torus. To support this observation
we estimate the corresponding box-counting dimension of the covering by approximately
dbox ≈ 2.66 (see Figure 5.8 (b)).

(a) Intrinsic dimension of the landmarks (b) Box-counting dimension of the covering

Figure 5.8: Estimation of the dimension of the covering for µ = 15. (a) Intrinsic dimension
according to Section 4.2.1. (b) Box-counting dimension (see Definition 2.5).
Note that we overestimate the assumed dimension of 2 in both cases which is
due to our outer approximation of the set.
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In Figure 5.9 we show the discretized embedded manifold(s) and its diffusion coordinates
scaled by the constant function ψ0. We see that the first two diffusion coordinates like the
first two POD coordinates form a circular disc as expected. However, the third diffusion
coordinate reveals more structure than the third POD coefficient. In fact, it distinguishes
between both limit cycles: ψ3 < 0 represents convergence to the first limit cycle where
analogously ψ3 > 0 shows the convergence to the second limit cycle. In addition to
that, ψ3 = 0 marks the inner part of the manifold which connects the unstable steady
state u∗ = 0 with the entire loop of unstable steady states (plotted in red), that lie at
the boundary of the disk. We observed that the higher order coordinates are so–called
higher harmonics, i.e., functions of the first three diffusion coordinates and thus not giving
any additional topological information. In conclusion, the shape of the manifold(s) can be
described as a cylinder that has a disk inside it cutting it perpendicularly to its cylindrical
axis. A corresponding long-term simulation starting near u∗ in these coordinates first
radially leaves the origin to the boundary of the disc and then spirals up- or downwards
on the cylinder to the limit cycles.

(a) POD coefficients (b) Diffusion coordinates

Figure 5.9: Employing the diffusion maps technique to the covering of the embedded man-
ifold(s) for µ = 15. In gray we show the selected landmarks generated by
Algorithm 9. The loop of unstable steady states is illustrated in red, whereas
a long-term simulation is shown in light blue. (a) POD coordinates of the box
midpoints colored in the third diffusion coordinate distinguishing between
both limit cycles (blue and green). (b) Diffusion maps embedding of the land-
marks and (subsequently) box midpoints by Algorithm 8. The coloring is
according to the third diffusion coordinate as well.
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5.3.2 The Stable Heteroclinic Cycle

For µ = 18 the observed long-term behavior consists of a pulsation between two states w∗1
and w∗2, which are π/2-translations of each other, that is, w∗2(x) = w∗1(x− π

2
) = w∗2(x−π).

In particular, they are symmetric with respect to the reflection (cf. (5.5)). The transients
linger close to one of these states for a comparatively long time before they pulse back to
the other (cf. Figure 5.10 (a) and (b)). Those states are bimodal and thus the pulsation
projected onto the cos(2x) and sin(2x) coefficient plane, respectively, appears as a straight
line passing through the origin [KNS90]. In addition to that, different pulsations, resulting
from different initial conditions, give straight lines that are rotations of each other about
the origin. By projecting the pulsation onto the first three POD coefficients, we observe a
similar behavior in observation space which is shown in Figure 5.10 (c). Thus, we expect
that the unstable manifold will be of dimension at least three. In fact, numerical analysis
of the eigenspecturm of the linearization at the origin u∗ shows two pairs of unstable
eigenvalues. Hence, our chosen embedding dimension k = 7 might be too small and we
expect to approximate just a projection of the unstable manifold. For related discussion
in the finite-dimensional context we refer the reader to [SYC91]. Additionally, we note
that according to [KNS90] the unstable states w∗i are born in a pitchfork bifurcation from
the origin u∗ at µ = 16 and merge with the unstable states v∗ (see the discussion for
µ = 15) at µ = 16.1399 in another pitchfork bifurcation. Observe that this bifurcation is
invisible to simple simulations since both branches participating are unstable.

(a) Numerical simulation of u0(x) (b) Numerical simulation of u0

(
x− π

2

)
(c) Observation space (POD)

Figure 5.10: Numerical simulation of the Kuramoto-Sivashinsky equation (5.4) for µ = 18.
(a) The initial condition u+

0 pulsates between the (unstable) states w∗1 and
w∗2(x) = w∗1(x − π

2
) starting with w∗1. (b) Shifting the initial condition by π

2

we first approach w∗2. (c) Corresponding embedding in the observation space
of both simulations (blue and green). Here, the red dots depict the states w∗1
and w∗2.
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In Figure 5.11 we show projections of three box coverings obtained by the continuation
method 6 for different values s ∈ N of the partition Ps of Q. We see that the object is
bounded on the one hand by the long-term simulation (cf. Figure 5.10 (c)) and on the
other hand by the O(2) orbit of w∗i , which corresponds to a circle in the x3–x4 plane
(see Figure 5.11 (d)-(f)). As expected the embedded unstable manifold appears to be
a solid three-dimensional object in this projection. This coincides with the observation
mentioned above. In fact, the analysis made in the following section will yield a dimension
larger than three.

(a) s = 28 (b) s = 42 (c) s = 56

(d) s = 28 (e) s = 42 (f) s = 56

Figure 5.11: Three-dimensional projections of the successively finer box coverings of the
embedded unstable manifold of the Kuramoto-Sivashinsky equation (5.4) for
µ = 18. The red dots depict the (unstable) states w∗i , i = 1, 2, between which
a long-term simulation pulsates. First row (a)-(c): projection onto the first
three POD coefficients. Second row (d)-(f): projection onto the coefficients
x3, x4 and x5. The translates of w∗i are illustrated in orange.
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5.3.3 Further Intrinsic Geometric Analysis

Previous research [HNZ86] shows that the unstable manifold strongly changes its structure
depending on the parameter µ. To further investigate this behavior we will analyze
how the cylindrical shape that is revealed in diffusion coordinates for µ = 15 changes
by increasing the parameter. Thus, now our focus lies in trying to follow these three
coordinates as long as possible before considering newly arising diffusion coordinates.
To this end, we employ Algorithm 6 in order to approximate the embedded invariant
manifold(s) of the origin for several parameter value µ ∈ [15, 18]. Afterwards, we utilize
the selection scheme 9 to sample m = 104 landmarks after 50 iterations. We note that this
is a very coarse sampling for larger values of µ since it grows in diameter. For instance,
for the final value µ = 18 the covering of the embedded manifold has approximately
M ≈ 7 · 107 boxes. However, with this choice we do not rely on a cut-off radius for
the kernel and we can consider all pairwise distances, e.g., for the approximation of the
intrinsic dimensions. In Figure 5.12 we show the behavior of the estimated intrinsic and
box-counting dimensions of the computed embedded invariant manifold for µ ∈ [15, 18].
We see a clear increase in dimension when the parameter value µ grows. Starting at
dint ≈ 2.58 and dbox ≈ 2.66 for µ = 15 the dimensions reach values of dint ≈ dbox ≈ 3 at
around µ = 16 which further goes up to dint ≈ 3.34 and dbox ≈ 3.26 for µ = 18. Note
that both dimensions behave similarly as expected. Indeed, we obtain a dimension larger
than three for µ = 18 (cf. Section 5.3.2).

(a) Intrinsic dimension of the landmarks (b) Intrinsic and box-counting dimension

Figure 5.12: Estimation of the dimension of the coverings for µ ∈ [15, 18]. (a) Local slope
approximation of the intrinsic dimension. The coloring is from µ = 15 (blue)
to µ = 18 (red). (b) Estimated intrinsic and box-counting dimension.

For the corresponding diffusion maps embedding we compute the first s + 1 = 10
dominant eigenvalues of the matrix P

(1)
ε (see step 3) in Algorithm 7), where ε is chosen

according to Figure 5.12 (a). In Figure 5.13 we show the embedding for specifically chosen
parameter values in the interval of interest. It turns out that the cylindrical shape can
only be revealed up to µ = 15.46, where we even have to take larger eigenvalues into
account. For larger parameter values the clear separation of the two limit cycles starts to
fade. However, another structure that is comparable to the geometry in POD coordinates
arises (cf. Figure 5.11).
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(a) µ = 15.44 (b) µ = 15.46 (c) µ = 15.66

(d) µ = 15.68 (e) µ = 17.00 (f) µ = 18.00

Figure 5.13: Intrinsic geometry of the unstable manifold of the Kuramoto-Sivashinsky
equation (5.4) for several parameter values µ. The coloring is according to
the chosen third diffusion coordinate. (a)-(b) The cylindrical shape revealed
for µ = 15 in Figure 5.9 is still visible. (b) Note that for µ = 15.46 we have
to consider the seventh diffusion coordinate already. (c) The clear separation
of the two limit cycles is fading. (d) For µ = 15.68 the cylindrical shape
is lost, but another structure starts to appear. Note that we consider the
third diffusion coordinate again. (e-f) This structure remains dominant up
to µ = 18.

Finally, we note that in [ZDG19] the parameter value µ = 32 is also considered. For
this parameter the global attractor consists of the union of a two-dimensional unstable
manifold of the origin, two one-dimensional unstable manifolds of so-called bi-tri states
(which form part of the boundary of the two-dimensional unstable manifold of the origin),
a stable bimodal state and an unstable bimodal state whose two-dimensional unstable
manifold accumulates in a limit cycle (cf. [JJK01, Figure 1 (c)] and [ZDG19, Figure 10
(b)]).
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5.4 Plane Poiseuille Flow

Lastly, we compute the unstable manifold of the edge state of a plane Poiseuille flow (PPF)
for a Reynolds number of Re = 650 [ZE15]. More precisely, we consider the Navier-Stokes
equations (NSE) with (infinite) channel geometry where x points in the streamwise, z in
the spanwise and y in the wall-normal direction. In addition to that, we employ periodic
boundary conditions in x and z and no-slip (Dirichlet) boundary conditions at the wall.
We apply a base profile that is parabolic in y, i.e. the laminar profile in dimensionless
units is ul(t) = [U(y), 0, 0] with U(y) = U0(1 − y2), where we choose U0 = 2/3. For the
calculations we consider a computational domain of length 2π, width π and height 2 and
restrict the computations to the subspace that is symmetric to reflections at the midplane
and to spanwise reflections at the plane defined by z = 0, i.e.,

sy[u, v, w](x, y, z) = [u,−v, w](x,−y, z),
sz[u, v, w](x, y, z) = [u, v,−w](x, y,−z)

(cf. [ZE15]). In this setting the edge state (cf. Figure 5.14) is a periodic solution with one
unstable direction.

Streamwise velocity u Wall normal velocity v Spanwise velocity w

Figure 5.14: Visualization of the edge state in PPF. The coloring is according to the
velocity components, respectively. Note that v = 0 in the midplane.

This so–called chaotic saddle separates initial conditions that decay directly to the
laminar profile and those that swing up to turbulent dynamics [SYE06, SEY07]. Typically,
such a state is found by the method of edge tracking described in [SYE06, TI03]. Also
note that edge states have practical relevance, for instance in drag reduction [Gra14], and
they can also be stabilized [LKZE20].

For the approximation of the embedded unstable manifold of the edge state we first
compute a long-term simulation for T = 700 time units using a step size of dT = 1
which yields 700 snapshots for the computation of the POD basis (see Figure 5.15 for a
visualization of its first three modes). Here we choose the parameter S such that ε(S) >
0.99 (cf. (4.18)). Since the edge state has only one unstable direction, an embedding
dimension of k = 5 should suffice. In fact, the edge state is a periodic solution and, hence,
with that choice we also obtain a one-to-one image of the two dimensional manifold of
the whole periodic orbit.
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ψ1 ψ2 ψ3

Figure 5.15: Visualization of the first three POD modes obtained by the methods of snap-
shots. The coloring is according to the magnitude of the flow field.

According to the embedded long-term simulation (see Figure 5.16 (a)) the box

Q = [−11, 61]× [−36, 36]× [−36, 36]× [−34, 38]× [−36, 36] ⊆ R5

should be large enough for the calculations and we initialize a fine partition Ps of Q for
s = 45. As the dynamical system we consider the time-T -map of the flow with T = 7
which is approximately the period of the edge state. We also utilize Remark 3.23 (c) and
additionally add all the boxes in between, i.e., which are visited during the integration at
the time steps ti = ih, i = 1, . . . , 350 where h = 0.02. This allows us to approximate the
manifold of the whole periodic orbit. In Figure 5.16 we show projections of the obtained
covering. As expected the embedded manifold connects the edge state with the laminar
profile given by the origin in POD coordinates. In the other direction it appears as if the
embedded unstable manifold accumulates in another periodic solution.

(a) x2, x3 and x1 (b) x2, x3 and x4 (c) x2, x3 and x5

Figure 5.16: Three-dimensional projections of the embedded unstable manifold of the edge
state in PPF. Here we show the edge state in red as one point on its periodic
orbit, whereas the embedded long-term simulation is shown in blue.
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5 Applications

For the sake of completeness we embed the unstable manifold into diffusion coordinates
as well. According to Algorithm 9 we sample m = 104 landmarks out of M ≈ 3.3 · 104

box midpoints after 50 iterations. The dimension estimator developed in Section 4.2.1
yields an optimal bandwidth of ε ≈ 0.32 and an intrinsic dimension of dint ≈ 2.08 (see
Figure 5.17 (a)), whereas the box-counting dimension is estimated by dbox ≈ 2.04 (see
Figure 5.17 (b)). Observe that we almost find the correct dimension of two in both cases.

(a) Intrinsic dimension of the landmarks (b) Box-counting dimension of the covering

Figure 5.17: Estimation of the dimension of embedded unstable manifold of the edge state.
(a) Intrinsic dimension. (b) Box-counting dimension. Observe that the exact
dimension of two is only slightly overestimated in both cases.

In Figure 5.18 we show the corresponding diffusion maps embedding scaled by the
constant function ψ0. It turns out that the coordinates shown in (a) can be compared to
the first three POD coefficients (see Figure 5.16 (a)). Analogously, the second, third and
fourth diffusion coordinates look similar to the projection shown in Figure 5.16 (b).

(a) λ1ψ1, λ2ψ2 and λ3ψ3 (b) λ2ψ3, λ3ψ3 and λ4ψ4

Figure 5.18: Diffusion coordinates of the unstable manifold of the edge state. In gray we
show the selected landmarks. The edge state is illustrated in red, whereas a
long-term simulation is shown in dark blue. We also embed all box midpoints
using Algorithm 8 which we color according to λ1ψ1 in (a) and λ4ψ4 in (b).
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6 Conclusion and Outlook

The central goal in this thesis is the numerical analysis of (parameter-dependent) infinite-
dimensional dynamical systems. As for finite-dimensional systems one typically aims to
characterize the long-term dynamical behavior of its trajectories. To this end, invariant
sets such as the global attractor or unstable manifolds crucially influence the complexity
of the dynamics. In this thesis we extended the classical set-oriented numerical schemes
for the approximation of invariant sets by subdivision and/or continuation techniques
to parameter-dependent infinite-dimensional dynamical systems. We utilized embedding
techniques for the construction of the dynamically equivalent (parameter-dependent) core
dynamical system defined on a finite-dimensional observation space. This system is then
used for the approximation of corresponding embedded invariant sets. Moreover, we ex-
tended the subdivision scheme for the approximation of parameter-dependent attractors.
This path following method allowed us to efficiently track the attractor with respect to the
parameter without restarting the entire procedure anew. In this context we numerically
realized a set-valued linearization that served as prediction step followed by a corrector
step given by a modified selection step. These one-to-one images of the original invariant
sets contained in the infinite-dimensional state space then allow a further analysis regard-
ing their intrinsic geometry. Manifold learning techniques such as diffusion maps are tools
that precisely reveal the underlying geometry. In this thesis we adapted the diffusion map
scheme such that it can be efficiently applied on the generated coverings. We developed a
set-oriented landmark selection scheme that computes points which sample the covering
sufficiently well. Furthermore, we presented an intrinsic dimension estimator for point
clouds approximating finite-dimensional sets.

6.1 Embedding Techniques

The basis for our analysis of infinite-dimensional systems are the embedding Theorems
2.18 and 2.21. Given a finite-dimensional set A those theorems state that a prevalent set
of Lipschitz maps is one-to-one on A and its corresponding inverse is Hölder continuous,
provided the embedding dimension k ∈ N is large enough. Hereby, the maximal possible
Hölder exponent is controlled by the thickness exponent τ of A and the chosen embedding
dimension (see (2.20) and (2.26)). In the case where the ambient space is a Hilbert space
the sharp upper limit for k → ∞ is 2

2+τ
. Hence, for zero thickness the bound is one,

i.e., A admits an embedding for any positive θ < 1. This is also true in the context of
Banach spaces. However, in Theorem 2.21 it is assumed that the thickness exponent is
less than one and it is an interesting open problem whether there is a result that extends
Theorem 2.21 for thickness τ ≥ 1.

As noted the thickness exponent plays a crucial role for the smoothness of the embedding
and hence it is desirable to compute or at least bound the thickness exponent. Even
though there are some results that relate the thickness exponent to other quantities such
as the Lipschitz deviation [OR10], the dual thickness exponent [MR19, Section 4] or
the box-counting dimension (see Proposition 2.17), there is no general framework for
estimating the thickness exponent. In particular, there is also no numerical scheme for
its approximation.
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6 Conclusion and Outlook

6.1.1 The Core Dynamical System (CDS)

By utilizing the embedding techniques discussed in Chapter 2 we first defined the core dy-
namical system on the one-to-one image of the finite-dimensional invariant set of interest.
Afterwards we employed Theorem 2.27 on the inverse of the observation map in order to
extend the CDS on the entire Rk. The obtained system is a finite-dimensional system that
exactly reproduces the original dynamics on the invariant set of the infinite-dimensional
dynamical system. However, this approach has two main drawbacks when used for the nu-
merical analysis. On the one hand for each evaluation of the CDS the underlying infinite-
dimensional system has to be evaluated as well as opposed to other surrogate models. In
general this is computationally expensive since for instance a complex PDE such as the
Navier-Stokes equation has to be numerically solved. This problem has been addressed in
[Zie18]. There the numerical effort has been reduced by modifying both the selection step
(3.4) in Algorithm 1 and continuation step (3.17) in Algorithm 6. In addition to that,
the author combined Koopman Operator based models [Mez13, WKR15, KKS16] with
the CDS for a further numerical improvement. On the other hand it is not really clear
how to choose the observation map R and we will discuss this issue in the next section in
more detail.

6.2 The Choice of the Observation Map

Even though in principle (almost) every observation map can be used for the construction
of the CDS several factors have to be taken into account. First of all, the map R should
not be too complex in the sense that its evaluation is computationally less challenging
than numerically solving the infinite-dimensional system. In addition, there should be
an appropriate realization of the inverse map E such that the conditions in (2.31) are
at least approximately satisfied. This is why in this thesis linear observation maps were
used which particularly allow for a natural (initial) choice for designing the inverse map
E (see Remark 4.2) that can be improved by using additional information (see Sections
4.1.1 and 4.1.2). For DDEs we observed the state at equidistant points whereas for PDEs
we projected the function onto a POD basis and observed the corresponding coefficients
with respect to that basis. For simple systems the eigenvalues σi containing the amount
of information of the POD modes quickly decay such that the basis can be truncated.
However, for complex dynamics such as turbulent flows the POD basis may be not suitable
anymore. For instance, it is well known that POD neglects small scale structures by
construction, regardless of whether these may be important for the dynamics. Hence,
other basis such as Fourier modes [DBS09] or DMD modes [Sch10] and variations of
thereof [CTR12, WPGG13] may be more appropriate.
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6.2 The Choice of the Observation Map

6.2.1 Diffusion Maps

In this thesis we first approximated the embedded object of interest using observations
such as delay coordinates and POD coefficients. Afterwards, we applied diffusion maps
on the generated data to learn the intrinsic geometry. In future research one can aim to
approximate the invariant set in diffusion coordinates right away such that we construct
the core dynamical system with diffusion maps as the observation map R. To this end,
one has to solve several problems.

For nonlinear maps, such as the diffusion maps embedding (see Algorithm 7 and Al-
gorithm 8), it is in general difficult – or even impossible – to construct an appropriate
inverse E, i.e, we have to reverse the diffusion maps embedding. In particular, for given
x ∈ Rk a point u ∈ RN , which is a discretization of the state in the infinite-dimensional
space X , has to be computed such that R(u) = x holds at least approximately, where
R is the diffusion map. A first approach to this problem is to compute the nearest im-
ages xi ∈ Rk of the landmarks ui ∈ RN to x and then use the corresponding landmarks
ui ∈ RN to obtain u ∈ RN , e.g., by computing their mean. We note that for an exact
computation of the unknown point u it is sufficient to know the pairwise distances of u
and its neighboring landmarks ui. In this case one can combine multidimensional scaling
(MDS) and procrustes analysis [Seb09]. First, one computes ũ ∈ RN and ũi ∈ RN such
that their pairwise distances match those of u and ui using MDS. Then one determines
a linear transformation T of the points ũi to best conform them to the points ui. The
desired point u is then given by u = T (ũ).

Moreover, we have to specify an initial set of landmarks in the infinite-dimensional
state space (see Algorithm 7). Note that our proposed landmark selection scheme 9 is not
applicable for this kind of problem since there is no existing underlying covering (yet).
For chaotic dynamical systems a long-term simulation of the system may be used, but for
higher dimensions of the invariant set the “uniformity” of samples of the set will play a
role. A promising idea though is to update the initial landmarks during the set-oriented
schemes. To this end, the kernel, respectively the diffusion coordinates, and the box
covering has to be updated whenever the set of landmarks changes, e.g., additional points
are added.

The Set-Oriented Landmark Selection Scheme

In Section 4.2.2 we developed a landmark selection scheme that suits for generating sam-
ples of a covering that are in some sense equally distributed. The illustrative example
in Figure 4.4 showed that the point cloud spreads apart and forms a grid like structure,
where the type of the grid depends on the chosen metric. For instance, the euclidean
norm in 2d generates equilateral triangles as observed in the example, while choosing the
Chebychev distance (the maximum metric) instead yields squares in the two dimensional
plane. In higher dimensions these structures are translated to equilateral regular hyper
tetrahedra and hyper cubes, respectively.

In further research it would be interesting to explore if Algorithm 9 actually converges
to such a grid like structure (far from the boundary of the set). In particular, we suggest
that this tool may also be helpful for investigating the dispersion problem of a swarm of
agents inside a static shape in the plane (see, e.g., [CP06]).
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