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Zusammenfassung

In dieser Arbeit untersuchen wir das Zusammenspiel bestimmter dreifacher

Massey-Produkte mit assoziativen r−Matrizen und den sogenannten Szegö-Kernen.

Im ersten Kapitel wiederholen wir die algebraisch-geometrische Theorie der as-

soziativen Yang-Baxter-Gleichung, die diese Identität mit der Untersuchung von

Vektorbündeln über Kurven des arithmetischen Geschlecht 1 in Beziehung setzt.

Ausgehend von bestimmten Vektorbündeln auf der kubischen Weierstraÿ-Kurve,

berechnen wir im zweiten Kapitel Lösungen der oben genannten Gleichung, die

sogenannten assoziativen r−Matrizen. Im dritten Kapitel stellen wir Szegö-Kerne

vor, beweisen, dass sie schiefsymmetrisch sind, und zeigen, dass sie durch dreifache

Massey-Produkte beschrieben werden können, die mit Vektorbündeln über Goren-

stein-Kurven assoziiert sind. Darüber hinaus leiten wir zwei Identitäten ab, die

solche Kernfunktionen erfüllen müssen, insbesondere sollte die Zweite als eine gar-

bentheoretische Version der matrixwertigen Fay Identität betrachtet werden. Im

letzten Teil dieser Arbeit wiederholen wir einige Ergebnisse bezüglich Linienbün-

deln über Riemannschen Flächen und Theta-Funktionen, um als besonderen Fall

unserer Identität die trisekante Identität von Fay abzuleiten.

Abstract

In this thesis we investigate the interplay of certain triple Massey products with

associative r−matrices and the so called Szegö kernels. In the �rst chapter we

recall the algebro-geometric theory of the associative Yang-Baxter equation which

relates this identity to the study of vector bundles over curves of arithmetic genus

one. In the second chapter, starting with certain vector bundles over Weierstraÿ

cubic curve, we compute solutions, the so called associative r−matrices, of the
aforementioned equation. In chapter three we introduce Szegö kernels, we prove

that they are skew-symmetric, and we show that they can be described through

triple Massey products associated with vector bundles over Gorenstein curves.

Moreover, we derive two identities which these kernel functions have to satisfy,

in particular the second one should be considered as a sheaf-theoretic version of

the matrix-valued Fay's identity. In the �nal part of this thesis we recall some

results regarding line bundles over Riemann surfaces and theta functions in order
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to deduce, as a particular case of our identity, the Fay's trisecant identity.
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Introduction

In this thesis, we study tensor-valued functions satisfying the associative Yang-

Baxter equation and their analogs. Such functions arise from appropriate triple

Massey products in the derived category of coherent sheaves on Gorenstein curves

or as Szegö kernels associated with vector bundles on such curves with vanishing

cohomology. In the �rst part of this work, we study the algebro-geometric aspects

of the associative Yang-Baxter equation and we compute solutions, also called asso-

ciative r−matrices, of this identity. In the second part, we identify certain Massey

products with the aforementioned Szegö kernels via canonical isomorphisms. We

also investigate some identities that these kernel functions satisfy.

The associative Yang-Baxter equation (AYBE) appeared for the �rst time in a

work of Fomin and Kirillov [23] in the context of intersection theory on �ag vari-

eties. Later, it was studied in connection with deformation theory of Hopf algebras

by Aguiar in [1, 2]. Finally, Polishchuk [39], in the framework of A∞-categories,

introduced the version with spectral parameters as follows.

Let r : (C4, 0) → Matn×n(C)⊗Matn×n(C) be the germ of a meromorphic function,

then the associative Yang-Baxter equation is the identity

r12(m1,m2; z1, z2)r
23(m1,m3; z2, z3) =

= r13(m1,m3; z1, z3)r
12(m3,m2; z1, z2) + r23(m2,m3; z2, z3)r

13(m1,m2; z1, z3),

where rij = σij ◦ r and σij are appropriate embeddings of Matn×n(C)⊗2 into

Matn×n(C)⊗3, for instance σ12(a ⊗ b) = a ⊗ b ⊗ 1. We shall study solutions of

the AYBE which satisfy the property

r12(m1,m2; z1, z2) = −r21(m2,m1; z2, z1)

VI



CONTENTS

and that are invertible, for generic points (m1,m2; z1, z2), viewed as elements in

End(Matn×n(C)) ≃ Matn×n(C)⊗2; these r−matrices are called skew-symmetric

and non-degenerate, respectively.

The approach of Polishchuk, which was further developed by Burban and Kreus-

sler in [18], permits to obtain a skew-symmetric, non-degenerate and associative

r−matrix from a pair of non-isomorphic, stable vector bundles over a Calabi-Yau

curve and a pair of distinct points belonging to the same irreducible component.

These solutions are obtained by computing appropriate triple Massey products in

the bounded category of coherent sheaves on such curves. Irreducible Calabi-Yau

curves are just Weierstraÿ cubic curves W ⊂ P2(C), i.e. curves given by the equa-

tion zu2 = 4v3 − a1vz
2 − a2z

3; where a1, a2 ∈ C.
The smoothness of these curves is controlled by the discriminant Disc(a1, a2) =

a31 − 27a22. In the case a1 = a2 = 0, the singularity of the corresponding Weier-

straÿ cubic is a cusp; it is a node for any other non-trivial solution of the relation

Disc(a1, a2) = 0, whereas it is smooth, in particular it is an elliptic curve, when

Disc(a1, a2) ̸= 0.

Using the theory of stable vector bundles over W , Burban and Kreussler obtained

a more explicit description of the aforementioned Massey products which permits

a direct computation of r−matrices. Inspired by this method, we obtain solutions

of the AYBE as follows.

We know, from the theory of elliptic curves, that for any couple (a1, a2) such that

Disc(a1, a2) ̸= 0, there exists a τ ∈ C, with the property ℑ(τ) > 0, such that the

corresponding Weierstraÿ cubic is isomorphic to the 1−dimensional complex torus
Tτ = C/(Z+τZ). Let (n, d) ∈ N+×Z be two coprime integers and M(n, d) be the

moduli space of stable vector bundles of rank n and degree d over Tτ . Moreover,

let U(n, d) be a universal family on M(n, d), take ζ = exp(2πid
n

) and de�ne the

matrices

B1 :=


1 0 . . . 0

0 ζ . . . 0
...

...
. . .

...

0 0 . . . ζn−1

 and B2 :=


0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

1 0 . . . 0

 .

We can now state the �rst result of this thesis:
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Theorem A. Let (n, d) ∈ N+ × Z be a pair of coprime integers. Then the fol-

lowing is a solution of the associative Yang-Baxter equation corresponding to the

universal family U(n, d)

r(m; z) =
n−1∑
a,b=0

exp
(−2πid

n
az
)
κ
(d
n

(
b− aτ

)
+
m

n
, z
)
B∗
ab ⊗Bab,

where

κ(m, z) =
θ′1(0|τ)θ1(m+ z|τ)
θ1(m|τ)θ1(z|τ)

is the Kronecker function, m = m2 −m1, z = z2 − z1 and Bab = Ba
2B

−b
1 whereas

B∗
ab =

1
n
Bb

1B
−a
2 .

In the case of nodal and cuspidal Weierstraÿ curves, using the description of stable

vector bundles over singular Weierstraÿ cubic curves due to Bodnarchuk and Bur-

ban, see for instance [12, 15], we perform computations of associative r−matrices
for n = 3 and d = 1.

As mentioned above, in the second part of this thesis we study Szegö kernels.

They owe their name to the mathematician Gábor Szegö, who introduced them in

the context of complex analysis, however their fame, in the framework of algebraic

geometry, is due to Fay [20, 21]. Inspired by the paper of Polishchuk [41], which we

elaborate and further develop, we relate these kernel functions to appropriate triple

Massey products as well as, in particular cases, to solutions of the Yang-Baxter

equation.

Let C be a Gorenstein, reduced, projective curve of positive arithmetic genus

g and X be a non-empty regular irreducible subset of C. Let E be a vector bundle

over C, we shall denote by E∗ its dual and by E∨ the bundle E∗⊗ΩC ≃ Hom(E ,ΩC),

where ΩC is the dualising sheaf of C. We shall also introduce the concept of a good

triple, which is a tuple (E , x, y) such that: E is a vector bundle on C, x ̸= y ∈ X,

the canonical maps H0(C, E) → E|y and H0(C, E∨) → E∨|x are zero. In this setting
one can de�ne a triple Massey product

mE
x,y : Hom(OC ,Cx)⊗ Ext1(Cx, E)⊗ Hom(E ,Cy) → Hom(OC ,Cy)
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as well as a map SE(x, y)

H0(C, E(x))
resx

wwww

evy

%%

(E ⊗ Ω∗
C)|x

SE(x,y)
// E|y,

where resx and evy are canonical maps de�ned in Section 3.3. Using Serre Duality

and applying some canonical maps which are explicitly described in Section 3.4,

we obtain an isomorphism

Lin(Hom(OC ,Cx)⊗ Ext1(Cx, E)⊗ Hom(E ,Cy),Hom(OC ,Cy)) ≃ (1)

≃ Lin((E ⊗ Ω∗
C)|x, E|y).

Theorem B. For any good triple (E , x, y), the map SE(x, y) is the image of the

Massey product mE
x,y via the isomorphism (1).

The existence of the aforementioned identi�cation, already observed by Polishchuk

in [41], is here proved in a new and more general form, since the underlying curve

C is not required to be smooth. Moreover, if we further suppose H0(C, E) = 0 =

H1(C, E), there exists an isomorphism

H0(C ×X, E∨ ⊠ E|X(∆))
res∆−−→ H0(C,End(E|X)),

where ∆ is the image of the diagonal embedding δ : X → C ×X.

Thus we call Szegö kernel the unique element S̃ ∈ H0(C×X, E∨⊠ E|X(∆)) whose

residue along the diagonal is the identity matrix; i.e. res∆(S̃) = 1End(E|X).

Using the Riemann-Roch theorem, one can easily see that the vanishing of coho-

mology immediately implies that (E , x, y) is good for all distinct points x, y ∈ X.

We shall recall the existence of a canonical isomorphism

E∨|x ⊗ E|y ≃ Lin((E ⊗ Ω∗
C)|x, E|y)

so that we can state the following result.

Theorem C. If E is a vector bundle over C such that H0(C, E) = 0 = H1(C, E),
then, for any x, y ∈ X ×X \∆, the tensor S̃(x, y) and the map SE(x, y) get iden-

ti�ed via the canonical isomorphism above.
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Let us now introduce the map τ : X ×X → X ×X, which sends (x, y) to (y, x),

and λ : E∨ ⊠ E → E ⊠ E∨, which permutes both factors of the product at the level

of appropriate local sections. The following holds:

Theorem D. The Szegö kernel S̃ is skew-symmetric, i.e.

λ(S̃) = −τ ∗(S̃)

viewed as a meromorphic section of E∨ ⊠ E.

The skew-symmetry of the Szegö kernel S̃, at least in the case of smooth curves,

seems to be known, nevertheless we could not �nd a clear proof in the algebro-

geometric framework.

At this point, an observation made by Polishchuk [41] is useful. Unfortunately it

seems that the author does not provide any proof of this, so we have independently

developed his proposal, obtaining the next result:

Theorem E. Let E1, . . . , En be vector bundles over C. Let T : E1 ⊗ · · · ⊗ En → ΩC

be a morphism of vector bundles and x1, . . . , xn be points of X such that the triples

(Ej, xj, xi) are good for any i ̸= j. Then the following relation is true:

n∑
i=1

Txi(idEi⊗Ω∗
C |xi ⊗

⊗
j ̸=i

SEj(xj, xi)) = 0.

Since the triple (OC(y1 − x1), x1, z) is good for all distinct points x1, y1, z ∈ X,

the element SOC(y1−x1)(x1, z) is well-de�ned, moreover it is an isomorphism. We

denote it by s(z) and we state the following result.

Theorem F. Let E be a vector bundle such that H0(C, E) = 0 = H1(C, E).
Then the following equality holds:

SE(x1−y1)(x0, y0)s(x0)s(y0)
−1 = SE(x0, y0)−SE(x1, y0)·SE(x1, y1)

−1 ·SE(x0, y1), (2)

where x0, x1, y0, y1 ∈ X are four distinct points.
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The latter equation is a sheaf-theoretic version of the celebrated matrix-valued

Fay's trisecant identity. This relation appeared for the �rst time in line bun-

dle cases in [20], as an equality between theta functions, and it owes the name

trisecant to Mumford [36], who used it to show that the family of trisecants of

the Kummer variety of a Riemann surface of positive genus is four-dimensional.

Later, it was generalized by Fay in [21], who developed the vector bundle case. In

order to see that the equation (2) and the one in [21] are equivalent, we have to

work over smooth curves, then, using the theory of theta functions, one obtains

s(x0)s(y0)
−1 = E(x0,x1)

E(x0,y1)
E(y0,y1)
E(y0,x1)

, where E is the prime form as in [36].

Under this identi�cation, the equation in Theorem F reduces directly to the matrix-

valued Fay's identity. As an ulterior corollary, in the case of line bundles, the

equation in Theorem F immediately gives the one in [20]. Furthermore, when the

genus of C is equal to one, the Szegö kernel S̃ is given by the Kronecker function

mentioned in Theorem A. Moreover, a straightforward computation shows that in

this case the Fay's identity and the associative Yang-Baxter equations are equiva-

lent.

Organization of the material:

In Chapter one, we introduce the AYBE and we recall results of Polishchuk [39] as

well as those of Burban and Kreussler [18] regarding triple Massey products and

their description through residue and evaluation sequences.

In Chapter two, we summarize classical results about vector bundles over ellip-

tic curves from [5, 37] and on their degenerations from [12, 13, 15, 18]. We then

perform computations of r−matrices in particular cases of nodal and cuspidal cu-

bics. Afterwards, we obtain the elliptic solutions cited in Theorem A above. These

results can be found in Sections 2.7, 2.8 and 2.9. We conclude the chapter relating

those solutions to other forms of Yang-Baxter equation, namely the quantum and

the classical one.

In Chapter three, we start recalling some results from [25], which relate Szegö ker-

nels to the classical Yang-Baxter equation. Then we proceed comparing the kernel

function S̃ with SE and the triple Massey product mE
x,y, demonstrating Theorems
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B, C and D; these are contained in Sections 3.3, 3.4 and 3.5. We conclude the

chapter with Section 3.6 in which we prove the results stated in Theorems E and F.

In Chapter four, we recall some classical results about Riemann surfaces and theta

functions, we also construct a universal line bundle over C×C×Picg−1(C) due to

which we can deduce Fay's identity and the scalar associative Yang-Baxter equa-

tion from Theorem F.

Acknowledgements. I wish to express my sincere gratitude to my advisor Igor

Burban for introducing me to the topic of this thesis and for having shared with

me his mathematical knowledge. I thank the DFG for �nancially supporting me

via the grant CRC/TRR 191.
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Notations

• We denote by W ⊂ P2(C) the Weierstraÿ cubic curve, i.e. a plane projective

curve de�ned by the equation zu2 = 4v3 − a1vz
2 − a2z

3; where a1, a2 ∈ C.
It is irreducible and its arithmetic genus is 1. Moreover, it is smooth if

a31 − 27a22 ̸= 0, its singularity is cusp if a1 = a2 = 0, whereas it is a node in

any other case if a31 − 27a22 = 0.

• We use the symbol Db
Coh(W ) to denote the triangulated category of bounded

complexes of O-modules with coherent cohomology. Whereas Perf(W ) is the

full subcategory of Db
Coh(W ) admitting a bounded locally free resolution.

• Let C be a reduced projective Gorenstein curve, n : C̃ → C its normalization,

ΩC be its dualising sheaf and denote by MC̃ the sheaf of meromorphic 1-

forms over C̃. Then ΩC can be identi�ed with the sheaf of regular 1-forms

de�ned as follows. For any open set U ⊂ C a regular 1-form over U is an

element ω ∈ Γ(U, n∗MC̃) such that for any x ∈ C and any f ∈ OC(U) one

has ∑
xi∈n−1(x)

resxi((f ◦ n)ω) = 0,

where res is the standard residue on the smooth curve C̃.

Observe that on any non-singular part of C, a regular 1-form is holomorphic.

• If E is a vector bundle over a curve C and x ∈ C, E|x is the �ber of E over x.

Whereas we denote by Cx the skyscraper sheaf supported at x. Moreover,

we will denote by V ec(C) the category of vector bundles over C.

• For any vector bundle E over a curve C the symbol E∗ stands for the dual of

E whereas E∨ = E∗ ⊗ ΩC ≃ Hom(E ,ΩC).

XIII



CONTENTS

• The notations Hom(−,−) and Ext(−,−) are mainly used for global mor-

phisms and extensions between coherent sheaves or vector bundles, while

Lin(−,−) denotes maps between vector spaces.

• We denote by hn(C, E) the dimension of the space Hn(C, E) for all n ∈ N.

• Especially in chapter four, we shall identify classes of line bundles over a

Riemann surface with divisors modulo linear equivalence.

• Given a curve C and a vector bundle E we will denote by S̃ the associated

Szegö kernel and by SE the morphism corresponding to S̃ via the identi�ca-

tion described in Section 3.3.
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Chapter 1

Associative Yang-Baxter equa-

tion

In this chapter we introduce the associative Yang-Baxter equation starting

with the algebraic de�nition and giving its solution. We then introduce appro-

priate triple Massey products and recall the results of Polishchuk [39], Burban

and Kreussler [18] in order to show how these products can be used to construct

solutions of the associative Yang-Baxter equation starting with a geometric data.

Continuing with such an approach, we conclude this chapter de�ning the residue

and evaluation sequences, so that we will be able to give a di�erent and more

explicit description of the aforementioned Massey products. Such products will

be related to the study of vector bundles over a Weierstraÿ cubic curve. This last

description of the Massey products will be used in chapter two in order to compute

solutions of the associative Yang-Baxter equation.

1.1 Associative Yang-Baxter equation

Let M = Matn×n(C) be the algebra of n× n matrices over C, with n ∈ N. Let
r : (C4, 0) →M⊗M be the germ of a meromorphic function and σij :M⊗2 →M⊗3,

i ̸= j, i, j ∈ {1, 2, 3}, be the map which sends a simple tensor A ⊗ B ∈ M ⊗M

to the element with A in i-th spot, B in the j-th spot and 1 in the remaining

tensor factor; for instance σ13(A⊗B) = A⊗1⊗B. If we de�ne rij = σij ◦ r, then
the most general version of the associative Yang-Baxter equation (AYBE) is the

following

1



1.1. ASSOCIATIVE YANG-BAXTER EQUATION

r12(m1,m2; z1, z2)r
23(m1,m3; z2, z3) = (1.1)

= r13(m1,m3; z1, z3)r
12(m3,m2; z1, z2) + r23(m2,m3; z2, z3)r

13(m1,m2; z1, z3).

If r satis�es the latter relation, it is said to be a solution of the AYBE or, equiva-

lently, an associative r−matrix or simply r−matrix.

De�nition 1.1.1. Let r(m1,m2; z1, z2) be an r−matrix.

(i) r is called non-degenerate if, under the canonical isomorphism M ⊗M ≃
End(M) induced by the trace map, it is invertible for generic (m1,m2; z1, z2).

(ii) Let g : (C2, 0) → GLn(C) be the germ of a holomorphic function, then the

function r′(m1,m2; z1, z2) equal to

(g(m1; z1)⊗ g(m2; z2))r(m1,m2, z1, z2)(g(m2; z1)
−1 ⊗ g(m1; z2)

−1)

is still an r−matrix, which is said to be gauge equivalent to r.

(iii) r is called skew-symmetric if r12(m1,m2; z1, z2) = −r21(m2,m1; z2, z1).

Observe that gauge equivalence preserves skew-symmetry.

In this thesis we will mainly work on skew-symmetric solutions of (1.1) that

depend on the di�erence m = m1 − m2. Then, once we introduce the notation

r(m1,m2; z1, z2) = r(m, z1, z2), the AYBE can be rewritten as follows

r12(n; z1, z2)r
23(n+m; z2, z3) = (1.2)

= r13(n+m; z1, z3)r
12(−m; z1, z2) + r23(m; z2, z3)r

13(n; z1, z3).

One can easily specialize the de�nitions of non-degeneracy, skew-symmetry and

gauge equivalence to this case.

Example 1.1.2. We take M = Mat2×2(C) with the standard basis given by the

vectors ejk, j, k ∈ {1, 2}. Then the following expression is a solution of (1.2)

r(m; z) =
1

2m
1⊗ 1+

1

z

2∑
i,j=1

eij ⊗ eji

which can be proved by a straightforward computation.

2



1.2. TRIPLE MASSEY PRODUCTS AND AYBE OVER IRREDUCIBLE
CALABI-YAU CURVES

1.2 Triple Massey products and AYBE over irre-

ducible Calabi-Yau curves

A Calabi-Yau curve is a reduced projective Gorenstein curve with trivial du-

alising sheaf. A complete classi�cation of such curves is given by the following

list:

(i) a generic con�guration of n ≥ 3 concurrent lines in Pn−1,

(ii) a cuspidal plane cubic curve,

(iii) a tachnode cubic curve,

(iv) a cycle of n ≥ 1 projective lines, that is, for n = 1, a nodal cubic,

(v) an elliptic curve.

A proof for the latter classi�cation can be found in [47], Section 3. If we also

assume our curve to be irreducible, then the Calabi-Yau curves are exactly the

Weierstraÿ cubics that we are going to de�ne now.

Let W ⊂ P2(C) be a Weierstraÿ cubic curve, i.e. a plane projective curve de�ned

by the equation zu2 = 4v3 − a1vz
2 − a2z

3, where a1, a2 ∈ C. These curves are

irreducible and they have arithmetic genus one. Let us de�ne the discriminant ofW

as Disc(a1, a2) := a31− 27a22. It is well-known that W is smooth if Disc(a1, a2) ̸= 0,

in this case W is an elliptic curve, it is a nodal curve (ordinary double point) if

Disc(a1, a2) = 0 and (a1, a2) ̸= (0, 0), whereas it is a cusp if (a1, a2) = (0, 0).

Let W be a Weierstraÿ curve over C. It is well-known that the choice of a

non-zero element ω ∈ H0(W,ΩW ) induces an isomorphism ΩW ≃ω OW , so that we

can always identify these two sheaves. Let z1 ̸= z2 ∈ W be two distinct points and

E1 ≇ E2 be two non-isomorphic vector bundles such that rank(E1) = rank(E2),
moreover

Hom(E1, E2) = 0 and Ext1(E1, E2) = 0. (1.3)

Observe that non-isomorphic simple vector bundles of same rank and degree satisfy
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1.2. TRIPLE MASSEY PRODUCTS AND AYBE OVER IRREDUCIBLE
CALABI-YAU CURVES

the latter condition. We call triple Massey product the following map

Hom(E1,Cz1)⊗ Ext1(Cz1 , E2)⊗ Hom(E2,Cz2)

m
E1,E2
z1,z2

��

Hom(E1,Cz2),

(1.4)

where Cz1 and Cz2 are skyscraper sheaves and the map is de�ned as follows. Let

e ∈ Ext1(Cz1 , E2), f ∈ Hom(E1,Cz1) and g ∈ Hom(E2,Cz2). The element e can be

represented by a short exact sequence

0 // E2 a // B b // Cz1
// 0 .

The conditions (1.3) imply that there exist unique lifts of f and g to morphisms

f̃ : E1 → B and g̃ : B → Cz2 . This gives the following commutative diagram:

E1
f̃
��

f

!!

e : 0 // E2
g

  

a // B
g̃

��

b // Cz1
// 0

Cz2

and the triple Massey product is de�ned asmE1,E2
z1,z2

(f⊗e⊗g) = g̃f̃ . We now observe

that Serre Duality, for a curve with trivial dualising sheaf, assures the existence of

a bifunctorial isomorphism:

Ext1(F , E) ≃ Hom(E ,F)∗, (1.5)

for any vector bundle E and F over W . Using the isomorphism (1.5), we can

rewrite mE1,E2
z1,z2

as follows

m̃E1,E2
z1,z2

: Hom(E1,Cz1)⊗ Hom(E2,Cz2) → Hom(E2,Cz1)⊗ Hom(E1,Cz2). (1.6)

In fact

Lin(Hom(E1,Cz1)⊗ Ext1(Cz1 , E2)⊗ Hom(E2,Cz2),Hom(E1,Cz2) ≃
Lin(Hom(E1,Cz1)⊗ Hom(E2,Cz2),Hom(E2,Cz1)⊗ Hom(E1,Cz2)).
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1.2. TRIPLE MASSEY PRODUCTS AND AYBE OVER IRREDUCIBLE
CALABI-YAU CURVES

Observe now that m̃E1,E2
z1,z2

can be thought as a linear map

m̃E1,E2
z1,z2

: E∗
1 |z1 ⊗ E∗

2 |z2 −→ E∗
2 |z1 ⊗ E∗

1 |z2 .

Let ψ be the following canonical isomorphism of vector spaces

ψ : Hom(E∗
1 |z1 ⊗ E∗

2 |z2 , E∗
2 |z1 ⊗ E∗

1 |z2) → Hom(E2|z1 , E1|z1)⊗ Hom(E1|z2 , E2|z2),

then we de�ne

rE1,E2z1,z2
:= ψ(m̃E1,E2

z1,z2
). (1.7)

The following theorem is due to Polishchuk [39], for the case when W is smooth,

and it has been generalized by Burban and Kreussler [18] to the singular cases.

Theorem 1.2.1. Let W be a Weierstraÿ cubic curve, then

(i) rE1,E2z1,z2
satis�es the associative Yang-Baxter equation

(rE1,E3z1,z3
)13(rE3,E2z1,z2

)12 − (rE1,E2z1,z2
)12(rE1,E3z2,z3

)23 + (rE2,E3z2,z3
)23(rE1,E2z1,z3

)13 = 0. (1.8)

(ii) The tensor rE1,E2z1,z2
is skew-symmetric:

τ(rE1,E2z1,z2
) = −rE2,E1z2,z1

,

where τ is the map which �ips the entries, i.e. τ(a⊗ b) = b⊗ a.

(iii) Moreover, rE1,E2z1,z2
is non-degenerate.

Proof. Let us give an idea of the proof.

(i) Let us denote by Db
coh(W ) the triangulated category of bounded complexes

of OW− modules with coherent cohomology and by Perf(W ) its full-subcategory

admitting a bounded locally free resolution. Since W is Gorenstein, we have

Perf(W )� _

��

// HotbCoh(I(W ))� _

��

Db
Coh(W ) // Hotb+coh(I(W )),

where the horizontal lines are isomorphisms and HotCoh(I(W )) is the sub-category

of the homotopy theory, whose objects are complexes such that all cohomologies
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1.2. TRIPLE MASSEY PRODUCTS AND AYBE OVER IRREDUCIBLE
CALABI-YAU CURVES

are coherent sheaves on W. As a consequence of the homological perturbation

lemma of Kadeishvili [31], Perf(W ) is an A∞-category. This means that, for any

collection of objects Z0, . . . , Zn ∈ Perf(W ), we have linear maps⊗n
s=1 Ext

is(Zs−1, Zs)

mn

��

Exti1+···+in−(n−2)(Z0, Zn),

satisfying the identities∑
i,j,l>0,i+j+l=n

(−1)i+jlmi+j+l(1
⊗r ⊗mj ⊗ 1

t) = 0.

By de�nition m2 is the usual composition of morphisms. It is well-known that, in

the sense of triangulated category for E1, E2 satisfying (1.3) and z1 ̸= z2 ∈ W, m3

is a map from Hom(E1,Cz1)⊗Ext1(Cz1 , E2)⊗Hom(E2,Cz2) to Hom(E1,Cz2) equal

to mE1,E2
z1,z2

de�ned in (1.4). The latter relation and the vanishing of Hom and Ext,

which allows us to cancel all terms mj, j ̸= 3, lead to

(m̃E3,E2
z1,z2

)12(m̃E1,E3
z1,z3

)13 − (m̃E1,E3
z2,z3

)23(m̃E1,E2
z1,z2

)12 + (m̃E1,E2
z1,z3

)13(m̃E2,E3
z2,z3

)23 = 0,

viewed as a map

Hom(E1,Cz1)⊗ Hom(E2,Cz2)⊗ Hom(E3,Cz3) −→
−→ Hom(E2,Cz1)⊗ Hom(E3,Cz2)⊗ Hom(E1,Cz3).

Applying (1.7) to this equation we get the statement.

(ii) The skew-symmetry remains to be proved. We now supposeW to be an elliptic

curve and we take a1 ∈ Hom(E1,Cz1), β1 ∈ Ext1(Cz1 , E2), a2 ∈ Hom(E2,Cz2),

β2 ∈ Ext1(E2,Cz1). Then the skew-symmetry follows from the compatibility of the

A∞ structure with the Serre pairing given by p : Hom(E ,F) × Ext1(F , E) → C.
Namely:

p(m3(a1, β1, a2), β2) = −p(a1,m3(β1, a2, β2)) = −p(m3(a2, β2, a1), β1).

It remains to apply the isomorphism ψ to get the statement. A generalization

to the cuspidal and nodal case follows from the continuity of the Massey product

with respect to a family of Weierstraÿ cubic curves, see [18, Section 6] for more
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1.3. RESIDUE AND EVALUATION SEQUENCES

details.

(iii) One can prove, see [39, Theorems 3 and 4], that r̃E1,E2z1,z2
is non-degenerate if

and only if Ext1(E1(z2), E2(z1)) = 0. The statement follows by conditions (1.3) and

using Riemann-Roch theorem.

Remark 1.2.2. Observe that the AYBE which appears in Theorem 1.2.1 is more

abstract than the one introduced in Section 1.1. They match under a choice of

a trivialization of the universal family of stable vector bundles. Details will be

treated in the next chapter.

1.3 Residue and Evaluation sequences

Let W be a Weierstraÿ cubic curve, Wreg be the set of smooth points of W

and ΩW be the sheaf of global di�erential 1-forms on W . Recall that we have an

isomorphism ΩW ≃ω OW , where ω is a non-zero global section of ΩW . We then �x

such an ω and for any p ∈ Wreg we de�ne the following short exact sequence

0 −→ ΩW −→ ΩW (p)
resp−−→ Cp −→ 0. (1.9)

Lemma 1.3.1. Let E1, E2 be two vector bundles over W such that

Ext1(E1, E2) = 0 = Hom(E1, E2)

and ω be as above, then for any point p ∈ Wreg the following map is an isomorphism

resE1,E2p,ω : Hom(E1, E2(p)) −→ Lin(E1|p, E2|p). (1.10)

Proof. We recall the proof of Burban and Kreussler in [18].

We take the sequence (1.9), we use the isomorphism, which depends on the choice

of ω, ΩW ≃ OW to get the sequence

0 −→ OW −→ OW (p)
resp,ω−−−→ Cp −→ 0.

We now tensor the sequence above by E2 and we apply Hom(E1,−), so we get

0 −→ Hom(E1, E2) → Hom(E1, E2(p))
Res

E1,E2
p,ω−−−−−→ Hom(E1, E2 ⊗ Cp) −→ Ext1(E1, E2).
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1.3. RESIDUE AND EVALUATION SEQUENCES

By hypothesis Ext1(E1, E2) = 0 = Hom(E1, E2), then

Hom(E1, E2(p)) ≃ Hom(E1, E2 ⊗ Cp).

We now conclude de�ning resE1,E2p,ω as ResE1,E2p,ω composed with the canonical isomor-

phism Hom(E1, E2 ⊗ Cp) ≃ Lin(E1|p, E2|p).

We now introduce another short exact sequence. Let q ∈ Wreg, the evaluation

sequence is the following

0 −→ O(−q) −→ O evq−−→ Cq −→ 0. (1.11)

Burban and Kreussler in [18] noticed that it induces another important isomor-

phism.

Lemma 1.3.2. Let E1, E2 be two vector bundles over W such that

Ext1(E1, E2(p− q)) = 0 = Hom(E1, E2(p− q)),

then for any two points p, q ∈ Wreg, such that p ̸= q, the following map is an

isomorphism

evE1,E2(p)q : Hom(E1, E2(p)) −→ Lin(E1|q, E2|q). (1.12)

Proof. We tensor the sequence (1.11) by E2(p), then we get

0 −→ E2(p− q) −→ E(p) Evq−−→ E2(p)⊗ Cq −→ 0.

Applying the functor Hom(E1,−) we get

0 → Hom(E1, E2(p− q)) → Hom(E1, E2(p))
ev

E1,E2(p)
q−−−−−→ Hom(E1, E2(p)⊗ Cq) →

→ Ext1(E1, E2(p− q)).

Since Ext1(E1, E2(p− q)) and Hom(E1, E2(p− q)) are both 0 and E2(p)|q ≃ E2|q, the
map in the statement is obtained composing evE1,E2(p)q with the canonical morphism

Hom(E1, E2(p)⊗ Cq) ≃ Lin(E1|q, E2|q).
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1.3. RESIDUE AND EVALUATION SEQUENCES

Then, according to the previous two lemmas, the map

R̃E1,E2
p,q = evE1,E2(p)q ◦(resE1,E2x,ω )−1

is well-de�ned, i.e.

R̃E1,E2
p,q : Lin(E1|p, E2|p)

(res
E1,E2
x,ω )−1

// Hom(E1, E2(p))
ev

E1,E2(p)
q

// Lin(E1|q, E2|q).
(1.13)

Before stating the main theorem of this section, recall that we have the following

isomorphism of vector spaces

Hom(E2|p, E1|p)⊗ Hom(E1|q, E2|q) ≃ Lin(Lin(E1|p, E2|p),Lin(E1|q, E2|q)). (1.14)

Theorem 1.3.3. ([18, Section 4]) The map R̃E1,E2
p,q de�ned as above is the image

of rE1,E2p,q (1.7) under the canonical isomorphism (1.14).

The latter theorem allows us to compute the triple Massey products in terms

of residue and evaluation sequences. In the next sections we will provide a triv-

ialization of vector bundles over cubic curves and consequently also an explicit

description of the maps which appear in (1.13). Once we �x a trivialization, we

will have that the AYBE (1.8) corresponds to the associative Yang-Baxter equation

(1.1), see [18] for further details.
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Chapter 2

Vector bundles on irreducible

Calabi-Yau curves

In this chapter we will study vector bundles over irreducible Calabi-Yau curves

that, as already stated in Section 1.2, are just Weierstraÿ cubic curves. Why are

we interested in studying those vector bundles? The answer is given by a theorem

of Burban and Kreussler [18]. Let M(n, d) be the moduli space of stable vector

bundles of rank n and degree d over a Weierstraÿ curve W, U be a universal family

and ϕ = {Uα, ϕα} be a trivialization of U . Recall that U is a vector bundle over

W ×M(n, d) such that, for any vector bundle V over W , there exists a unique v ∈
M(n, d) such that V ≃ U|W×{v} := Uv. We take z1, z2 ∈ W , m1,m2 ∈ M(n, d) and

we consider the corresponding vector bundles Um1 , Um2 on W. Then, if we denote

by rϕ(m1,m2, z1, z2) ∈ Matn×n(C)⊗Matn×n(C) the image under the trivialization
ϕ of the map rU

m1 ,Um2

z1,z2
∈ Hom(E2|z1 , E1|z1) ⊗ Hom(E1|z2 , E2|z2), which appears in

equation (1.7), the following theorem holds.

Theorem 2.0.1. [18] Provided that gcd(n, d) = 1, the tensor rϕ(m1,m2, z1, z2):

(i) is an r−matrix in the sense of Section 1.1, i.e. it satis�es the associative

Yang-Baxter equation (1.1);

(ii) is skew-symmetric;

(iii) is non-degenerate;

(iv) a di�erent trivialization ψ provides a solution rψ gauge equivalent to rϕ.
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2.1. CATEGORY OF TRIPLES AND VECTOR BUNDLES ON THE
PROJECTIVE LINE

Namely, one can associate to any coprime couple of numbers (n, d) ∈ N×Z an

associative r−matrix with the properties stated above.

2.1 Category of triples and vector bundles on the

projective line

In this and the next sections we will study vector bundles on singular cubic

curves following the approach of [18]. In order to deal with them we have to

introduce the category of triples.

Let C be a reduced singular projective curve. Consider the following commu-

tative diagram

Ã

ñ
��

α̃ // C̃

n

��

A
α // C,

where:

(1) n : C̃ → C is the normalization of C;

(ii) Con := HomO(n∗(OC̃),OC) = AnnO(n∗(OC̃)/OC) is the so called conductor

ideal sheaf;

(iii) α : A = V (Con) ↪→ C is the closed artinian subspace de�ned by Con and

supported at the singular points of C, whereas α̃ : Ã→ C̃ is its pull-back in

Ã.

Let us denote ν = αñ = nα̃.

De�nition 2.1.1. The category Tpl(C) of triples is de�ned as follows.

(i) Objects: They are triples (Ẽ ,V , λ̃), where Ẽ is a vector bundle over C̃, N ∈
V ec(A) and

λ̃ : ñ∗V → α̃∗Ẽ

is an isomorphism of OÃ modules.
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PROJECTIVE LINE

(ii) Morphisms: HomTpl(C)((Ẽ1,V1, λ̃1), (Ẽ2,V2, λ̃2)) consists of all pairs (f, g),

where f : Ẽ1 → Ẽ2 and g : V1 → V2 are morphisms of vector bundles such

that the following diagram is commutative

ñ∗V1

ñ∗(g)

��

λ̃1 // α̃∗Ẽ1
α̃∗(f)
��

ñ∗V2
λ̃2 // α̃∗Ẽ2.

(2.1)

It is easy to see that Tpl(C) has a natural interior tensor product

(Ẽ1,V1, λ̃1)⊗ (Ẽ2,V2, λ̃2) = (Ẽ1 ⊗ Ẽ2,V1 ⊗ V2, λ̃1 ⊗ λ̃2).

The main theorem about category of triples and its relation with the category of

vector bundles over C is the following.

Theorem 2.1.2. (i) There exists an equivalence of categories

Φ : V ec(C) → Tpl(C)

given by

Φ(E) = (n∗E , α∗E , λ̃V),

where λ̃E : ñ∗(α∗E) → α̃∗(n∗E) is the canonical isomorphism. Furthermore,

Φ(E1 ⊗ E2) ≃ Φ(E1)⊗ Φ(E2)

and the determinant commutes with the functor Φ; i.e. Φ ◦ det ≃ det ◦ Φ.

(ii) The quasi-inverse

Ψ : Tpl(C) → V ec(C)

associates to a triple (Ẽ ,V , λ̃) the locally free coherent sheaf

E := Ker(n∗Ẽ ⊕ α∗V
(c,m)−−−→ ν∗α̃

∗Ẽ),

where c = cẼ is the canonical morphism n∗Ẽ → ν∗α̃
∗Ẽ and λ is the composi-

tion α∗V
can−−→ ν∗α̃

∗V ν∗(λ̃)−−−→ ν∗α̃
∗Ẽ.
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(iii) Let T1 = (Ẽi,Vi, λ̃i), i ∈ {1, 2}, be a pair of objects in Tpl(C) and Ei = Ψ(Ti).
Then Φ(HomC(E1, E2)) is isomorphic to

(HomC̃(Ẽ1, Ẽ2),HomA(E1, E2), h(λ̃1, λ̃2)),

where h arises from the commutative diagram:

ñ∗HomA(E1, E2)
h(λ̃1),λ̃2

//

can

��

α̃∗HomC̃(Ẽ1, Ẽ2)

can
��

HomÃ(α̃
∗E1, ñ∗E2)

cnj(λ̃1,λ̃2)
//HomÃ(α̃

∗Ẽ1, α̃∗Ẽ2)

and cnj(λ̃1, λ̃2)(ϕ) = λ̃2 ◦ ϕ ◦ λ̃1.

The proof of the latter theorem can be found in [13, 15].

According to what was said so far, we have to describe the normalization of cubics

we are working on. The next lemma is a classical result in algebraic geometry, we

will follow the proof given in [38].

Lemma 2.1.3. The normalization C̃ of the cubics W1 = V (zu2 − v3) and W2 =

V (zu2 − v3 − v2z) is the projective line P1. Moreover, for any l ∈ C, there exist

bijections Picl(W1) ≃ C and Picl(W2) ≃ C∗.

Proof. Both curves have singularities just at [0 : 0 : 1] and normalization can be

computed locally. Thus we work over the a�ne curves u2 = v3, u2 = v3 + v2 and

we prove that their normalization is A1.

Regarding the cuspidal curve, consider the ring R = C[v, u] = C[v, u]/(u2 − v3).

Since the class of u is equal to the class of ( v
u
)2, then v

u
is integral over C[v, u]

which is not integrally closed. Thus C[v, u]/(u2 − v3) ⊂ C[v, u, v
u
]. Now observe

that C[v, u, v
u
] = C[t], where t = v

u
, in fact v = u( v

u
). The proof follows observing

that C[t] is integrally closed since it is a unique factorization domain. The proof

for the nodal curve is analogous.

A straightforward computation shows that Con(W1) = ⟨t2, t3⟩ whereas Con(W2)

is equal to ⟨t2 − 1, t3 − t⟩. Moreover C[t]∗ = C∗, (C[t]/Con(W1))
∗ ≃ C∗ ⊕ C,

(R/Con(W1))
∗ ≃ C∗. Furthermore, if we denote by R′ = C[v, u]/(u2 − v3 − v2),

we also have (R′/Con(W1))
∗ ≃ C∗ and (C[t]/Con(W2))

∗ ≃ C∗⊕C∗. We now need

the following lemma, see [38] for a proof.

13



2.1. CATEGORY OF TRIPLES AND VECTOR BUNDLES ON THE
PROJECTIVE LINE

Lemma 2.1.4. Let S = C[x, y]/p(x, y), where p is a polynomial, and N be the

normalization of S, then the following is an exact sequence

0 → S∗ → N∗ × (S/Con)∗ → (S/Con)∗ → Pic(A) → Pic(N)⊕ Pic(S/Con).

We now apply the latter lemma to the curves W1 and W2 and we observe that

Pic(C[t]) = 0 = Pic(C). We get:

0 → R∗ → C∗ × C∗ → C∗ ⊕ C f−→ Pic(R) → 0

and

0 → R′∗ → C∗ × C∗ → C∗ ⊕ C∗ f ′−→ Pic(R′) → 0.

We conclude that Pic(R) ≃ (C∗ × C)/ker(f) and Pic(R′) ≃ (C∗ × C∗)/ker(f ′),

but in both cases a tedious computation shows that ker(f) = ker(f ′) = C∗ In

order to conclude the proof, we have to come back to projective versions of both

curves. Due to exercise 6.9 in [27], one gets the short exact sequences

0 → C → Pic(W1) → Pic(P1) → 0

and

0 → C → Pic(W2) → Pic(P1) → 0.

The claim follows observing that, see next theorem, Pic(P1) ≃ Z and therefore

Pic(W1) ≃ Z⊕ C and Pic(W2) ≃ Z⊕ C∗,

so, once we �x the degree, we have the thesis.

The next step is to obtain an explicit description of stable vector bundles over

a singular cubic curve W . We then take C = W and its normalization C̃ = P1. In

order to understand the category of triples, we need a description of vector bundles

over the projective line.

Theorem 2.1.5. (Birkho�-Grothendieck) Every vector bundle E over P1 is iso-

morphic to a direct sum of line bundles, i.e. E ≃ OP1(n1) ⊕ · · · ⊕ OP1(nj). Fur-

thermore, there exists an isomorphism deg : Pic(P1)
∼=−→ Z.
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Proof. We proceed by induction on the rank. If rank(E) = 1 then the statement

is trivial. Let us suppose we have proved the theorem for rank r vector bundles

and suppose we have a bundle E of rank r + 1. According to classical results of

Serre regarding ample line bundles and Serre duality, there exists a unique s0 ∈ N
such that H0(P1, E(s0)) ̸= 0 and H0(P1, E(s)) = 0 for any s < s0. Then we have a

map σ : OP1 → E(s0) which provides a short exact sequence

0 → OP1 → E(s0) → E ′ → 0,

where the third term is locally free. In fact the quotient E(s0)/Im(σ) is tor-

sion free, otherwise OP1(D) ↪→ E(s0) for some e�ective divisor D. This would

lead to a contradiction, in fact in that case we would get H0(P1, E(s0)(−D)) =

H0(P1, E(s0)(−deg(D))) ̸= 0. On E ′ we can use the inductive hypothesis, then it

splits. It remains to prove that the latter short exact sequence splits, then, tensor-

ing it by OP1(−s0) we would get the statement. We can tensor the short exact se-

quence above by OP1(−1) and we can pass to cohomology to get H0(P1, E ′(−1)) =

H0(P1, E(s0−1)) = 0, where the last equality follows from the de�nition of s0. We

now use the induction on E ′ ≃ OP1(d1)⊕· · ·⊕OP1(dn) and we obtain di < 0 for any

i. We can conclude Ext1(E ′,OP1) ≃ H1(P1, E ′) ≃
⊕

iH
0(P1,OP1(di − 2))∗ = 0.

Uniqueness. Suppose that we have two di�erent splitting E ≃
⊕

iOP1(di) ≃⊕
iOP1(d′i) and, without loss of generalities, let db be the �rst integer such that

db ̸= d′b and db > d′b. Then if we tensor both compositions by OP1(db), we have two

isomorphic vector bundles with di�erent number of holomorphic sections which is

not possible.

Thus it follows that if (Ẽ ,V , λ̃) is a triple on a Weierstraÿ cubic curve, we have

(i) Ẽ = ⊕l∈ZOP1(nl)
kl .

(ii) V = Orank(E)
A .

(iii)
∑

l∈Z kl = rank(E)

Something more can be said about the structure of a bundle of the form n∗E .

Lemma 2.1.6. Let E be a vector bundle over a singular Weierstraÿ cubic curve

W and n : P1 → W be its normalization, then we have:
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2.2. STABLE VECTOR BUNDLES OVER A CUSPIDAL CUBIC CURVE

(i) E is stable if and only if it is simple;

(ii) The bundles E and n∗E have the same degree;

(iii) there exist (a, r1, r2) ∈ Z × N × N such that n∗E ≃ OP1(a)r1 ⊕ OP1(a + 1)r2

and r1 + r2 = rank(E).

Proof. The proof can be found in [18, Section 9].

Observe that, due to the latter theorem, we now know that, for a singular

Weierstraÿ curve, simple is equivalent to stable, then we will work on stable vector

bundles.

According to what we said so far, we know how to describe the �rst two terms of

a triple, it remains to describe λ̃ in terms of matrices. However this will be done

in two separated steps, one for the cuspidal curve and the other one for the nodal

cubic.

2.2 Stable vector bundles over a cuspidal cubic

curve

According to the de�nition the map λ̃ is an isomorphism of OÃ-modules, how-

ever, in order to write λ̃ as a matrix in GL(OÃ), some choices have to be done.

In fact while ñ∗V is canonically isomorphic to On
Ã
, where n = rank(Ẽ), we need a

trivialization to get α∗(Ẽ) ≃ On
Ã
. First of all we have to �x coordinates as follows.

Let W1 be the cuspidal curve described by the equation zu2 = v3 and n : P1 → W1

be its normalization n([z0 : z1]) = [z20z1 : z30 : z31 ]. Once we have chosen such a

normalization, we have that the preimage of the singular point s = [0 : 0 : 1] is

given by n−1(s) = [0 : 1] = ∞. Using these coordinates we have

(supp(A),OA) = ({s},Cs) and (supp(Ã),OÃ) = ({∞},C[t]/t2).

Then, for any section σ ∈ H0(P1,O(l)), l ∈ Z, and for any open set U ⊂ P1 which

does not contain the point [1 : 1], we de�ne

ϕ(σ) =
σ

(z0 − z1)l

∣∣∣∣
Ã

.
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Thus λ̃ is represented by

µ = µ0 + tµt ∈ GLn(OÃ),

where µ0 and µt are matrices in Matn×n(C). Moreover, due to the fact that µ is in-

vertible and acting with elementary transformations, one can prove that µ0 can be

taken equal to 1n and µt is upper triangular. We would like to prove that a certain

subcategory of triples is equivalent to an appropriate category of matrices. In order

to obtain such an equivalence we have to prove that a morphism between triples

induces a function between matrices in GLn(OÃ). Observe that, if (f, g) is a mor-

phism of triples, then n∗(g) has a natural identi�cation with a matrix inMatn×n(C)
whereas f is a matrix with coe�cients in C[z0, z1]j−i ≃ Hom(OP1(i),OP1(j)). Thus,

after choosing the trivialization ϕ, if q is a homogeneous polynomial of degree j− i
of the form q = a0z

j−i
0 + a1z

j−i−1
0 z1 + . . . aj−iz

j−i
1 , then

α∗(q) = aj−i−1 + taj−i ∈ Mat(OÃ).

Moreover, f is presented by a lower block triangular matrix.

De�nition 2.2.1. Let (r1, r2) ∈ N+ ×N such that r1 + r2 = n, then the category

Blc(W1) is de�ned as follows.

(i) Objects are matrices

B =

(
B00 B01

∗ B11

)
where any block Bij is a matrix of size ri × rj with coe�cients in C. Here ∗
is an empty block.

(ii) Morphisms between two objects B and B′ are matrices

F =

(
F00 ∗
F10 F11

)
with blocks of the same size of B and B′ such that FB = B′F . The compo-

sition of two morphisms is given by the standard product between matrices.

Let us denote by V ec0,1(W1) the full subcategory of vector bundles E over W1

such that their pull-back over P1 splits into a sum of terms of the form OP1 and

OP1(1). Similarly, let Tpl0,1(W1) be the corresponding subcategory of the category

Tpl(W1). Then the following proposition holds.

17
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Proposition 2.2.2. There exists an equivalence of categories Φ̃ given by the fol-

lowing commutative diagram

V ec0,1(W1)

Φ

''

Φ̃ // Blc(W1)

Tpl0,1(W1),

Φ′
88

where Φ′ is the functor induced by the trivialization described above and Φ is as in

Theorem 2.1.2. Moreover, if B ∈ Blc(W1) is simple, then the block B01 is a full

rank matrix.

Proof. A proof can be found in [13].

Example 2.2.3. Any element of Pic1(W1) can be written as OW1(p) for a point

p ∈ P1 \ {∞} ≃ C, here we identify the regular part of W1 with its image in P1

via the normalization map. Moreover, a straightforward computation shows that

Φ sends OW1(p) to the triple (OP1(1),Cs, 1− pt).

2.3 Stable vector bundles over a nodal cubic curve

The case of the nodal curveW2 de�ned by the equation zu2−v3−v2z is similar
to the previous one. Let us �x some coordinates such that, n−1(s) = {0 : ∞} ∈ P1,

where s = [0 : 0 : 1] is the singular point of W2. It is easy to check that one has

(supp(A),OA) = ({s},Cs) and (supp(Ã),OÃ) = ({0,∞},C0 ⊕ C∞).

Then, similarly to what was already done in the previous section, for any section

σ ∈ H0(P1,O(l)), l ∈ Z, and for any open set U ⊂ P1 which does not contain the

point [1, 1], we de�ne

ϕ(σ) =
σ

(z0 − z1)l

∣∣∣∣
Ã

.

Therefore λ̃ is represented by a couple of invertible matrices µ0 and µ∞ over C.
Moreover, acting with elementary transformations of matrices, one can always

suppose that µ∞ = 1.

Again, proceeding as in the previous section, we want to prove that a certain

subcategory of triples is equivalent to that one of appropriate matrices. Then we
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have to describe morphisms of triples. Similarly to the cuspidal case, if (f, g) is a

morphism between triples, then g can be naturally viewed as a matrix in Mat(C)
whereas f can be described as follows. After choosing the trivialization ϕ, if q is

a homogeneous polynomial of degree j − i of the form q = a0z
j−i
0 + a1z

j−i−1
0 z1 +

. . . aj−iz
j−i
1 , then

α∗(q) = ((−1)j−ia0, aj−i) ∈ Mat(C)×Mat(C).

Moreover, f is presented by a lower block triangular matrix.

De�nition 2.3.1. Let (r1, r2) ∈ N+ × N such that r1 + r2 = n then the category

Bln(W2) is de�ned as follows.

(i) Objects are invertible matrices

B =

(
B00 B01

B10 B11

)
where any block Bij is a matrix of size ri × rj with coe�cients in C.

(ii) Morphisms between two objects B and B′ are couples (F,G) of block matri-

ces

F =

(
D1 0

D′ D2

)
G =

(
D1 0

D′′ D2

)
such that FB = B′G. Here F and G have blocks of the same size of B

and B′. The composition of two morphisms is given by the usual product

between matrices.

Let us denote by V ec0,1(W2) the full subcategory of vector bundles E over W2

such that their pull-back over P1 splits into a sum of terms of the form OP1 and

OP1(1). Let Tpl0,1(W2) the corresponding subcategory of the category Tpl(W2).

Similarly to the previous case, the following proposition holds.

Proposition 2.3.2. There exists an equivalence of categories Φ̃ given by the fol-

lowing commutative diagram

V ec0,1(W2)

Φ

''

Φ̃ // Bln(W2)

Tpl0,1(W2),

Φ′
77
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where Φ′ is the functor induced by the trivialization described above and Φ is as in

Theorem 2.1.2. Moreover, if B ∈ Bln(W2) is simple, then the block B01 is a full

rank matrix.

Analogously to the previous section, a proof can be found in [13].

Example 2.3.3. We conclude this section with the following example. Any element

of Pic1(W2) can be written as OW2(p) for a point p ∈ P1 \ {0,∞} ≃ C∗. Here we

identify the regular part of W2 with its image in P1 via the normalization map.

Moreover, a straightforward computation shows that Φ sends OW2(p) to the triple

(OP1(1),Cs, (p, 1)).

2.4 Vector bundles on elliptic curves

Let τ ∈ C such that ℑ(τ) > 0 and consider the full rank lattice Γ = Z+ τZ ⊂
R2 ≃ C. We call (1-dimensional) complex torus the quotient space

T = Tτ = C/Γ.

One can prove that Wτ , de�ned by the equation zu2 = 4v3 − a1(Γ)vz
2 − a2(Γ)z

3,

is an elliptic curve; where

a1(Γ) = 60
∑

0 ̸=γ∈Γ

1

γ4
and a2(Γ) = 140

∑
0 ̸=γ∈Γ

1

γ6
.

Conversely, for any elliptic curve W , one can �nd a lattice Γ′ such that the

corresponding elliptic curve Wτ ′ is isomorphic to W . Let us denote by ℘ the

Weierstraÿ function

℘(x,Γ) =
1

x2
+
∑
γ ̸=0

(
1

(x− γ)2
− 1

γ

2
)
,

then the following holds.

Theorem 2.4.1. The complex torus Tτ and the elliptic curve W are isomorphic

both as manifolds and as groups. The isomorphism is given by:

T → W ⊂ P2(C)

t→ [℘(t,Γ), ℘′(t,Γ), 1].
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2.4. VECTOR BUNDLES ON ELLIPTIC CURVES

A proof of this classical result can be found in [46].

We can then identify a complex torus with an elliptic curve. The latter isomor-

phism will be strongly used in what follows, in fact the classi�cation of stable

vector bundles over elliptic curves is known (see [5]) and an explicit description of

vector bundles over a torus can be given through automorphy factors.

De�nition 2.4.2. The category of automorphy factors associated with τ ∈ C,
ℑ(τ) > 0, is de�ned as follows.

(i) Objects: They are couples (F, n), where n ∈ N+ is a positive integer and

F : Γ× C → GLn(C) is a holomorphic function such that

F (γ1 + γ2, z
′) = F (γ1, z

′ + γ2)F (γ2, z
′), ∀γ1, γ2 ∈ Γ, z′ ∈ C.

(ii) Let (F, n1), (G, n2) be two automorphy factors, then morphisms are described

by holomorphic functions M : C → Matn1×n2(C) such that

M(z′ + τ)G(γ, z′) = F (γ, z′)M(z′)

and the composition is given by the usual product of matrices. Two auto-

morphy factors (F, n1) and (G, n2) are isomorphic if and only if n1 = n2 and

G is related to F as follows

G(γ, z′) =M−1(z′ + γ)F (γ, z′)M(z′).

Lemma 2.4.3. There exists an equivalence of categories of automorphy factors

and vector bundles over a complex torus T . In fact:

(i) An automorphy factor (F, n) de�nes a vector bundle

EF := (C× V )/ ∼

over T , where V is a vector space of dimension n and

(z′, v) ∼ (z′ + γ, F (γ, z′)v),∀(γ, z′, v) ∈ Γ× C× V.

(ii) Conversely, for any vector bundle E over T there exists an automorphy factor

(F, n) such that E ≃ EF as in point (i).
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2.4. VECTOR BUNDLES ON ELLIPTIC CURVES

Proof. A proof of the correspondence between automorphy factors and vector bun-

dles can be found in [30].

In order to simplify computations, we impose the conditions

F (0, z′) = F (1, z′) = 1n,

so it is su�cient to study the behaviour of an automorphy factor along the gener-

ator τ .

Since our goal is to describe vector bundles over an elliptic curve with coprime

rank and degree, we need a way to produce automorphy factors. We start with

the next theorem which provides a way to explicitly describe the Picard group of

T .

Theorem 2.4.4. Let W be an elliptic curve and E be a vector bundle over W such

that rank(E) and deg(E) are coprime. Then:

(i) E is univocally de�ned by the triple (rank(E), deg(E), det(E)) ∈ N × Z ×
Picl(W ),

(ii) e(z′) = e(τ, z′) = exp(−πiτ − 2πiz′) is an automorphy factor of dimension

1. Let w ∈ W be a point and D = [p] be the divisor of degree 1 supported at

p, then there exists an isomorphism:

OW (D) ≃ Ee(z′−p+ 1+τ
2

).

(iii) Furthermore, a divisor of degree l can be written as D = (l− 1)[q] + [q − p].

Then, if we de�ne f(z′) = e(z′ − p+ 1+τ
2
)el(z′), we have OW (D) ≃ Ef .

Proof. The �rst statement is a result from Atiyah [5]. The last two statements

can be found in [18].

We now know how to describe all possible line bundles over a torus T . We

then would like to describe all possible vector bundles over T . An algorithm which

provides such a description will be given in Section 2.6.
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2.5 Algorithm: stable vector bundles over singular

Weierstraÿ cubics

In this section we present an algorithm, established in [12, 18], which permits

to describe the universal family of stable vector bundles over W1 and W2 in terms

of block matrices. The theory developed in this section is valid for simple vector

bundles. However, as already stated, for a Weierstraÿ cubic curve simplicity is

equivalent to stability.

Theorem 2.5.1. Let W be a singular Weierstraÿ cubic curve and Sim(n, d) be

the set of all isomorphism classes of simple vector bundles of rank n and degree d.

If gcd(n, d) ̸= 1, then

Sim(n, d) = ∅.

Otherwise the map

det : Sim(n, d) → Picd(W )

is a bijection .

A proof can be found in [18, Sections 9.2 and 9.3.].

We are then obliged to suppose gcd(n, d) = 1, the question is: how do we describe

the family Sim(n, d)? According to Lemma 2.1.6 and supposing, without loss of

generality, that 0 ≤ d < n, we can always decompose a bundle in order to reduce

it to the form Or1
P1 ⊕OP1(1)r2 . In fact we can simply take r1 = n− d and r2 = d.

For any pair of positive coprime integers (r1, r2) we de�ne the following objects of

Blc.

(i) We generate a sequence of pairs of natural numbers replacing at each step

(r1, r2) by (r1 − r2, r2) if r1 > r2 and by (r1, r2 − r1) if r2 > r1. We iterate

the process until we get (1, 1), then it terminates.

(ii) We now start, motivated by Proposition 2.2.2, with the matrix

M1,1(m) =

(
0 1

0 m

)
and we produce a sequence of matrices as follows.

If we consider

M c
r1,r2

(m) =

(
B1 B2

B3 B4

)
,
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then we place

M c
r1+r2,r2

(m) =

 B1 B2 0

0 B4 1r2

0 0 0


if we go from (r1, r2) to (r1 + r2, r2).

If instead we go from (r1, r2) to (r1, r1 + r2), we take

M c
r1,r1+r2

(m) =

 0 Ir1 0

0 B1 B2

0 0 B4

 .

(iii) Let M c′(m) be the matrix we obtain after the last step, we then replace all

diagonal entries of M c′(m) by m
n
.

(iv) If M c(m) is the matrix we get at the end of this algorithm, then the corre-

spondent λ̃ in the category of triple is presented by 1n + tM(m).

Remark 2.5.2. The step (iii) is needed in order to make the family of vector bundles

compatible with the action of Pic0(W1) ≃ C, i.e. M c(nβ +m) = β1n +M c(m).

Such a choice will provide a solution of the associative Yang-Baxter equation which

depends just on the di�erences of the moduli space parameters.

We now describe a similar algorithm for the nodal cubic curve.

(i) We produce a sequence of integers (r1, r2) as in the previous algorithm.

(ii) We now start, motivated by Proposition 2.3.2, with the matrix M1,1(m) =(
0 1

m 0

)
and we produce a sequence of matrices as follows.

If we go from (r1, r2) to (r1 + r2, r2), we send the matrix

Mnod
r1,r2

(m) =

(
B1 B2

B3 B4

)
to

Mnod
r1+r2,r2

(m) =

 B1 B2 0

0 0 1r2

B3 B4 0

 .
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If instead we go from (r1, r2) to (r1, r1 + r2), we take

Mnod
r1,r1+r2

(m) =

 0 1r1 0

B1 0 B2

B3 0 B4

 .

(iii) For the same reason of Remark 2.5.2, we replace all the non-zero entries of

the �nal matrix by m.

(iv) We then take µ∞ = 1n and µ0 = Mnod(m), where Mnod(m) is the matrix

resulting from the �rst three steps.

Example 2.5.3. The universal family of stable vector bundles of rank 3 and degree

1 over W1 is given by (O2
P1 ⊕OP1(1),C3

s, µ), where

µ(m) =

1 0 0

0 1 0

0 0 1

+ t

m 1 0

0 m 1

0 0 m

 ,m ∈ C.

Example 2.5.4. The universal family of vector bundles of rank 3 and degree 1 over

W2 is given by the triple (O2
P1 ⊕OP1(1),C3

s, µ), where

µ0(m) =

 0 m 0

0 0 m

m 0 0

 ,m ∈ C∗ and µ∞ = 13.

The �nal step is to return to the category of vector bundles. One can prove,

see [18], that, if a curve C is either W1 or W2, then there exists a universal family

U of stable vector bundles of rank n and degree d such that, for any point m of

the moduli space, the corresponding vector bundle Um is given by

Ψ(On−d
P1 ⊕Od

P1(1),Cs, µ).

Recall that Ψ is the functor de�ned in (2.1.2) and µ is the gluing map obtained,

respectively for the cuspidal and nodal cubic, from the algorithms described above.
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2.6 Algorithm: stable vector bundles on the com-

plex torus.

In order to describe vector bundles over a 1-dimensional complex torus T , we

have to recall an important result from Oda [37].

Theorem 2.6.1. Let σn : Tnτ → Tτ be an ètale covering of degree n and E → Tτ

be a stable vector bundle of rank n and degree l such that gcd(n, l) = 1. Then,

there exists a line bundle L → Tnτ such that E ≃ σn∗(L). Conversely, for any line

bundle L → Tnτ of degree l, the bundle σn∗L ≃ E is stable of rank n and degree l.

The last theorem, the description of Picl(W ) established in (2.4.4) and a

straightforward computation imply that we can describe any vector bundles of

rank n and degree l, gcd(n, l) = 1, through an automorphy factor (F, n) as follows.

The automorphy factor which represents the set of stable vector bundles of

rank n and degree l can be de�ned by the algorithm:

(i) We start with the one dimensional automorphy factor

ẽ(z′) = ẽ(τ, z′) = exp

(
πilτ − 2πi

n
z′
)
;

(ii) We use Oda's theorem to get

F̃ (z′) = exp

(
−2πim

n

)
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

ẽn(z′) 0 . . . 0

 ; (2.2)

(iii) We de�ne F (0, z′) = 1n and for any j ∈ N+ we place

F (jτ, z′) = F̃ (z′ + (j − 1)τ) . . . F̃ (z′) and F (−jτ, z′) = F (jτ, z′ − jτ)−1;

(iv) Moreover, we also set the condition:

F (n1τ + n2, z
′) = F (n1τ, z

′),

for any n1, n2 ∈ Z.
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Finally, if we use the isomorphismM(n, d) ≃ T , then we have that Um ≃ EF (m,γ,z′),

where F (m, γ, z′) is the automorphy factor de�ned through (2.2) and the latter

algorithm. Observe that now we are considering m as a variable. It is the moduli

parameter coming from the description of the Picard group in Section 2.4.

2.7 Associative r−matrix obtained from a cuspidal

cubic curve

Once we know how to represents vector bundles over the cubic curve zu2 = v3,

we are ready to perform the computation of an r−matrix. Let U be the universal

family of stable vector bundles of rank n and degree d over W1, gcd(n, d) = 1.

According to what was said so far, we can always map a bundle Um1 on W1 to

its corresponding triple via the functor Φ as in Theorem 2.1.2. Moreover, for

any triple (Ẽ ,V , λ̃), let F : Tpl(W1) → V ec(P1) be the functor F(Ẽ ,V , λ̃) = Ẽ
and let Um1 , Um2 be two non-isomorphic vector bundles over W1. We de�ne

the space Solc := Im

(
HomTpl(W1)(Φ(Um1),Φ(Um2))

F−→ HomP1(B̃, B̃(1))

)
, where

B̃ := On−d
P1 ⊕Od

P1(1).

Theorem 2.7.1. Let ω be the rational 1-form over P1 given by dp, where p is a

coordinate in P1 \ {∞}. Let Um1 and Um2 be two non-isomorphic vector bundles

over W1 and z1, z2 be two distinct points of W1. Then the map

Lin(Um1|z1 ,Um2|z1)
(resU

m1 ,Um2
z1,ω

)−1

// Hom(Um1 ,Um2(z1))
ev

Um1 ,Um2 (z1)
z2 // Lin(Um1|z2 ,Um2|z2)

de�ned in Section 1.3 can be identi�ed, under the trivialization introduced in Sec-

tion 2.2, with the map

Matn×n(C)
res−1

z1−−−→ Solc
evz2−−→ Matn×n(C). (2.3)

Here we put

resz1(F ) = F (1, z1) and evz1(F ) =
F (1,z2)
z2−z1 .

Moreover, let r(m1,m2; z1, z2) be the image of evz2 ◦ res−1
z1

under the canonical map

Matn×n(C)⊗Matn×n(C) → Lin(Matn×n(C),Matn×n(C)) (2.4)
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induced by the trace, i.e. X ⊗ Y is sent to Z → Tr(XZ)Y .

Then the tensor-valued function r(m1,m2; z1, z2) is a solution of the AYBE

r12(n; z1, z2)r
23(n+m; z2, z3) = (2.5)

= r13(n+m; z1, z3)r
12(−m; z1, z2) + r23(m; z2, z3)r

13(n; z1, z3).

Moreover, r(m1,m2; z1, z2) is skew-symmetric and non-degenerate.

We now perform the computation of the associative r−matrix obtained from

the universal family of vector bundles described in example (2.5.3), namely

(O2
P1 ⊕OP1(1),C3

s, µ) and µ = 13 + tJ3(m)

where J3(m) is the Jordan block with m along the diagonal. This computation is

the �rst original result of this thesis.

A morphism F in Hom(On−d
P1 ⊕Od

P1(1),On−d
P1 (1)⊕Od

P1(2)) is a matrix whose entries

are polynomials of degree at most two that has to be evaluated on Ã in the way

described in Section 2.2. We get

F |Ã =

 a′′ + a′ε b′′ + b′ε h

c′′ + c′ε d′ + d′′ε s

e′′′ + e′′ε f ′′′ + f ′′ε g′′ + g′ε

 .

Moreover the diagram (2.1) which appears in point (ii) in the de�nition of the

category of triples has to be commutative, which, due to our trivialization, gives: a′ b′ 0

c′ d′ 0

e′′ f ′′ g′

+

 a′′ b′′ h

c′′ d′′ s

e′′′ f ′′′ g′′


m1 1 0

0 m1 1

0 0 m1

 =

=

m2 − z1 1 0

0 m2 − z1 1

0 0 m2 − z1


 a′′ b′′ h

c′′ d′′ s

e′′′ f ′′′ g′′

 .

The latter condition leads to the system (⋆): a′ = (m− z1)a
′′ + c′′ b′ = (m− z1)b

′′ + d′′ − a′′ b′′ = (m− z1)h+ s

c′ = (m− z1)c
′′ + e′′′ d′ = (m− z1)d

′′ + f ′′′ − c′′ d′′ = (m− z1)s+ g′′

e′′ = (m− z1)e
′′′ f ′′ = (m− z1)f

′′′ − e′′′ g′ = (m− z1)g
′′ − f ′′′

 ,
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where m = m2 −m1. We now have to compute Resz1(F ) = F (1, z1), that gives a′ + a′′z1 b′ + b′′z1 h

c′ + c′′z1 d′ + d′′z1 s

e′ + e′′z1 + e′′′z21 f ′ + f ′′z1 + f ′′′z21 g′ + g′′z1

 =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 .

Using (⋆), we can solve the last system and write every entrance, on the left

hand side, in terms of αlm. We explicitly write down some of them:

h = α13

s = α23

b′′ = (m− z1)α13 + α23

b′ = α12 − z1(m− z1)α13 − z1α23

a′′ = 1
3m

(α11 + α22 + α33)− 2
3
α12 +

2m
3
(m− z1)α13 + (m− z1

3
)α23

a′ = α11 − z1
1
3m

(α11 + α22 + α33) +
2
3
z1α12 − 2m

3
z1(m− z1)α13 − z1(m− z1

3
)α23

c′′ = α11 − 1
3
(α11 + α22 + α33) +

2m
3
α12 − 2m2

3
(m− z1)α13 −m(m− z1

3
)α23

c′ = α21 − z1c
′′

e′′′ = α21 −mα11 +
m
3
(α11 + α22 + α33)− 2m2

3
α12+

+2m3

3
(m− z1)α13 +m2(m− z1

3
)α23

e′′ = (m− z1)e
′′′

e′ = α31 − z1me
′′′

g′′ = 1
3m

(α11 + α22 + α33) +
1
3
α12 − m

3
(m− z1)α13 + (2

3
z1 −m)α23

g′ = α33 − g′′z1

d′′ = 1
3
α12 +

1
3m

(α11 + α22 + α33)− 1
3
m(m− z1)α13 − z1

3
α23

d′ = α22 − d′′z1

f ′′′ = mg′′ − α33

f ′′ = (m− z1)f
′′′ − e′′′

f ′ = α32 − f ′′z1 − f ′′′z21 .

We are now ready to compute evz2(F ) = 1
z2−z1{βlm}l,m∈{1,2,3} ∈ Mat3×3(C). We

get
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1

z2 − z1

 a′ + a′′z2 b′ + b′′z2 h

c′ + c′′z2 d′ + d′′z2 s

e′ + e′′z2 + e′′′z22 f ′ + f ′′z2 + f ′′′z22 g′ + g′′z2

 =
1

z

β11 β12 β13

β21 β22 β23

β31 β32 β33

 ,

where z = z2 − z1. According to what we said so far, we can write any βlm in

terms of α-coe�cients:

β13 = α13

β23 = α23

β12 = α12 + z[(m− z1)α13 + α23]

β11 = α11 + z[ 1
3m

(α11 + α22 + α33)− 2
3
α12 +

2m
3
(m− z1)α13 + (m− z1

3
)α23]

β21 = α21 + z[α11 − 1
3
(α11 + α22 + α33) +

2m
3
α12 − 2m2

3
(m− z1)α13+

−m(m− z1
3
)α23]

β22 = α22 + z[ 1
3m

(α11 + α22 + α33) +
1
3
α12 − m

3
(m− z1)α13 − 1

3
z1α23]

β33 = α33 + z[ 1
3m

(
∑
αll) +

1
3
α12 − m

3
(m− z1)α13 + (2

3
z1 −m)α23]

β31 = α31 + z(m+ z2)[α21 −mα11 +
m
3
(α11 + α22 + α33)+

−2m2

3
α12 +

2m3

3
(m− z1)α13 +m2(m− z1

3
)α23]

β32 = α32 + z(m+ z2)[−α33 +
1
3

∑
αll +

m
3
α12+

−1
3
m2(m− z1)α13 + (2mz1

3
−m2)α23]− z[α21 −mα11 +

m
3

∑
αll − 2m2

3
α12+

+2m3

3
(m− z1)α13 +m2(m− z1

3
)α23].

We conclude using the isomorphism

Lin(Mat3×3(C),Mat3×3(C)) → Mat3×3(C)⊗Mat3×3(C)

which sends the linear map eij → γklikekl to the tensor γ
kl
ij eji ⊗ ekl.
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The last isomorphism gives the associative r−matrix:

r(m; z1, z2) = +
1

3m
(1⊗ 1)− 2

3
e21 ⊗ e11 +

1

3
e21 ⊗ (e22 + e33)

+
2m

3
(m− z1)e31 ⊗ e11 + (m− z1

3
)e32 ⊗ e11 +

1

z

3∑
k,l=1

ekl ⊗ elk+

+(m− z1)e31 ⊗ e12 + e32 ⊗ e12 +
2

3
e11 ⊗ e21 −

1

3
e22 ⊗ e21 −

1

3
e33 ⊗ e21

+
2m

3
e21 ⊗ e21 −

2m2

3
(m− z1)e31 ⊗ e21 −m(m− z1

3
)e32 ⊗ e21+

−m
3
(m− z1)e31 ⊗ e22 −

1

3
z1e32 ⊗ e22+

−m
3
(m− z1)e31 ⊗ e33 + (

2z1
3

−m)e32 ⊗ e33 + (m+ z2)e12 ⊗ e31+

−2m

3
(m+ z2)e11 ⊗ e31 +

1

3
m(m+ z2)(e22 + e33)⊗ e31+

−2m2

3
(m+ z2)e21 ⊗ e31 +

2m3

3
(m− z1)(m+ z2)e31 ⊗ e31+

+m2(m− z1
3
)(m+ z2)e32 ⊗ e31 −

2

3
(m+ z2)e33 ⊗ e32+

+
1

3
(m+ z2)(e11 + e22)⊗ e32 +

m

3
(m+ z2)e21 ⊗ e32+

−m
2

3
(m− z1)(m+ z2)e31 ⊗ e32+

+(
2mz1
3

−m2)(m+ z2)e32 ⊗ e32 − e12 ⊗ e32+

+
2m

3
e11 ⊗ e32 −

m

3
(e22 + e33)⊗ e32 +

2m2

3
e21 ⊗ e32+

−2m3

3
(m− z1)e31 ⊗ e32 −m2(m− z1

3
)e32 ⊗ e32.

2.8 Associative r−matrix obtained from a nodal

cubic curve

Here, similarly to the previous section, we perform a computation for the curve

W2 = V (zu2 − v3 − v2z). Let U be the universal family of stable vector bundles

of rank n and degree d, with gcd(n, d) = 1. Let Φ be the functor de�ned in

Theorem 2.1.2 and let F : Tpl(W2) → V ec(P1) be the functor whose image is
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the �rst term of a triple. Then, analogously to the previous section, we de�ne

the space Solnd := Im

(
HomTpl(W2)(Φ(Um1),Φ(Um2))

F−→ HomP1(B̃, B̃(1))

)
, where

B̃ := On−d
P1 ⊕Od

P1(1).

Theorem 2.8.1. Let ω = dp
p
be the rational 1-form over P1, where p is a coordinate

in P1 \ {0,∞}. Let Um1 and Um2 be two non-isomorphic vector bundles over W2

and z1, z2 be two distinct points of W2. Then the map

Lin(Um1|z1 ,Um2|z1)
(resU

m1 ,Um2
z1,ω

)−1

// Hom(Um1 ,Um2(z1))
ev

Um1 ,Um2 (z1)
z2 // Lin(Um1|z2 ,Um2|z2)

de�ned in Section 1.3 can be identi�ed, under the trivialization introduced in Sec-

tion 2.3, with the map

Matn×n(C)
res−1

z1−−−→ Solnd
evz2−−→ Matn×n(C). (2.6)

Here we put

resz1(F ) =
1
z1
F (1, z1) and evz1(F ) =

F (1,z2)
z2−z1 .

Moreover, let r(m1,m2; z1, z2) be the image of evz2 ◦ res−1
z1

under the map (2.4)

Matn×n(C)⊗Matn×n(C) → Lin(Matn×n(C),Matn×n(C)).

Then the tensor-valued function r(m1,m2; z1, z2) is a skew-symmetric and non-

degenerate solution of the AYBE (2.5).

We now compute the associative r−matrix derived from the family described

in example (2.5.4). The triple is given by (O2
P1 ⊕OP1(1),C3

s, µ)), where µ
∞ is the

identity matrix whereas µ0 is:  0 m 0

0 0 m

m 0 0

 .

As in the previous case we have to compute F |Ã, where F is a morphism in

Hom(On−d
P1 ⊕Od

P1(1),On−d
P1 (1)⊕Od

P1(2)). A straightforward computation gives

F 0 =

 −a′ −b′ t

−c′ −d′ s

e′ f ′ −g′


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and

F∞ =

 a′′ b′′ t

e′′ d′′ s

e′′′ f ′′′ g′′′

 .

Moreover, it has to makes commute the diagram (2.1) in the de�nition of triples

in Section 2.1. The latter condition leads to: t −a′ −b′

s −c′ −d′

−g′ +e′ f ′

 = z1m

 c′′ d′′ s

e′′′ f ′′′ g′′

a′′ b′′ t

 , (⋆)

where m = m2

m1
. Computing the residue we obtain:

z1

α11 α12 α13

α21 α22 α23

α31 α32 α33

 =

 a′ + a′′z1 b′ + b′′z1 t

c′ + c′′z1 d′ + d′′z1 s

e′ + e′′z1 + e′′′z21 f ′ + f ′′z1 + f ′′′z21 g′ + g′′z1

 .

If we now solve the last system using (⋆), we �nd the relations (⋆⋆):

t = z1α13

f ′ = mz21α13

c′′ = α13

m

c′ = z1α21 − z1
m
α13

f ′′′ = α13

m2 − α21

m

f ′′ = α32 − z1(m+ 1
m2 )α13 +

z1
m
α21



s = z1α23

e′′′ = α23

m

b′ = −mz21α23

b′′ = α12 +mz1α23

e′ = mz1α12 +m2z21α23

e′′ = α31 −mα12 − z1(m
2 + 1

m
)α23

and 

a′ = − z1
1−m3 (m

3α11 +m2α33 +mα22)

a′′ = 1
1−m3 (α11 +mα22 +m2α33)

g′ = − z1m
1−m3 (α11 +mα22 +m2α33)

g′′ = + 1
1−m3 (mα11 + α33 +m2α22)

d′ = − z1
1−m3 (m

2α11 +mα33 +m3α22)

d′′ = + 1
1−m3 (m

2α11 +mα33 + α22).

(⋆ ⋆ ⋆)
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We now have to compute the evaluation map evz2(F ) =
1

z2−z1 (βij)i,j∈{1,2,3}, namely:

1

z2 − z1

 a′ + a′′z2 b′ + b′′z2 t

c′ + c′′z2 d′ + d′′z2 s

e′ + e′′z2 + e′′′z22 f ′ + f ′′z2 + f ′′′z22 g′ + g′′z2

 =
1

z

β11 β12 β13

β21 β22 β23

β31 β32 β33

 ,

where z = z2 − z1. We now solve the last system and observe that, due to (⋆ ⋆)

and (⋆ ⋆ ⋆), we can write every βij as linear combinations of αkl. We then end up

with:
β12 = z1zmα23 + z2α12

β23 = z1α23

β31 = −zmα12 + z2α31+

+z1z2(−m2 − 1
m
+ z1

z2
m2 + z2

z1m
)α23


β13 = z1α13

β21 = z1α21 +
z
m
α31

β32 = z2α32 +−z2 zmα21+

+z1z2(
z1
z2
m−m− 1

m2 +
z2

z1m2 )α13

and 
β11 =

z2−z1m3

1−m3 α11 +
zm

1−m3α22 +
zm2

1−m3α33

β22 = + zm2

1−m3α11 +
z2−z1m3

1−m3 α22 +
zm

1−m3α33

β33 = + zm
1−m3α11 +

zm2

1−m3α22 +
z2−z1m3

1−m3 α33.

Similarly to the previous case we have to apply the isomorphism

Lin(Mat3×3(C),Mat3×3(C)) → Mat3×3(C)⊗Mat3×3(C)

which sends the linear map eij → γklikekl to the tensor γ
kl
ij eji ⊗ ekl. We then get:

r(m; z1, z2) =
z2 − z1m

3

z(1−m3)
(e11 ⊗ e11 + e22 ⊗ e22 + e33 ⊗ e33)

+
m

1−m3
(e22 ⊗ e11 + e33 ⊗ e22 + e11 ⊗ e33)+

+
m2

1−m3
(e33 ⊗ e11 + e11 ⊗ e22 + e22 ⊗ e33)+

+
z2
z
(e21 ⊗ e12 + e13 ⊗ e31 + e23 ⊗ e32)+

+
z1
z
(e32 ⊗ e23 + e31 ⊗ e13 + e12 ⊗ e21)+

+
1

m
e13 ⊗ e21 −me21 ⊗ e31 + z1me32 ⊗ e12+

+
z1z2
z

(−m2 − 1

m
+
z1
z2
m2 +

z2
z1m

)e32 ⊗ e31 −
z2
m
e12 ⊗ e32+

+
z1z2
z

(
z1
z2
m−m− 1

m2
+

z2
z1m2

)e31 ⊗ e32.
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2.9 Associative r−matrices obtained from elliptic

curves

As we have seen in Section 2.4 we can identify an elliptic curve with a 1-

dimensional torus. Let τ ∈ C be a complex number such that ℑ(τ) > 0 and

T = Tτ ≃ C/(Z+ τZ) be the corresponding complex torus. Let U be the universal

family of stable vector bundles of rank n and degree d, such that gcd(n, d) = 1.

Recall that U ≃ T and let Um be the corresponding vector bundle on T at the

point m.

Let A be the automorphy factor de�ned by A(1, z′) = diag(1, ζ, . . . , ζn−1) = B1,

where ζ = exp(2πid
n

) and A(τ, z′) = ẽ(z′) exp
(−2πim

n

)
B2, with (B2)i,j = δi−j+1≡n0.

Here ẽ(z′) is the function in (2.2). Namely

B1 :=


1 0 . . . 0

0 ζ . . . 0
...

...
. . .

...

0 0 . . . ζn−1

 and B2 :=


0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

1 0 . . . 0

 . (2.7)

De�nition 2.9.1. We denote by S the space of holomorphic functions

G : C →M = Matn×n(C)

such that

S =

{
G : C →M

∣∣∣∣G(z′ + l) = χ(l)BlG(z
′)B−1

l

}
.

Here we put

χ(l) =

{
1 if l = 1

exp
(−2πim

n

)
h(z′) if l = τ

and h(z′) = − exp(−2πi(z′ + τ − z1)), z1 ∈ C.

Theorem 2.9.2. Let ω = dz′ be a nowhere vanishing global 1-form over T . Let

Um1 and Um2 be two non-isomorphic vector bundles over T and z1, z2 be two dis-

tinct points of T . Then the map

Lin(Um1|z1 ,Um2|z1)
(resU

m1 ,Um2
z1,ω

)−1

// Hom(Um1 ,Um2(z1))
ev

Um1 ,Um2 (z1)
z2 // Lin(Um1|z2 ,Um2|z2)
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de�ned in Section 2.6 can be identi�ed, under the trivialization introduced in Sec-

tion 2.4, with the map

Matn×n(C)
res−1

z1−−−→ S
evz2−−→ Matn×n(C). (2.8)

Here for any G ∈ S we put

resz1(G) =
G(z1)

θ′3(
1+τ
2

|τ) , evz2(G) =
G(z2)

θ3(z2−z1+ 1+τ
2

|τ) ,

with

θ3(z
′|τ) =

∑
l∈Z

exp(πil2τ + 2πilz′). (2.9)

Moreover, let r(m1,m2; z1, z2) be the image of evz2 ◦ res−1
z1

under the canonical map

(2.4)

Matn×n(C)⊗Matn×n(C) → Lin(Matn×n(C),Matn×n(C)).

Then the tensor-valued function r(m1,m2; z1, z2) is a skew-symmetric non-degenerate

solution of the AYBE

r12(n; z)r23(n+m;w) = r13(n+m; z + w)r12(−m; z) + r23(m;w)r13(n; z + w),

that is a particular case of (1.1) when r(m1,m2; z1, z2) = r(m1 −m2, z1 − z2).

Proof. One can easily see that S represents Hom(Um1 ,Um2(z1)) under the trivi-

alization induced by the automorphy factor A = A(m, γ, z′) above. In fact S is

Hom(A(m1, γ, z
′), h(z′)A(m2, γ, z

′)), where h(z′) = hz1(z
′) is the automorphy fac-

tor of OT (z1). The theorem is then proved as in [18], see in particular Section 8.2.

In that article the statement was demonstrated for the space

S ′ =

{
G : C →M

∣∣∣∣G(z′ + l) = χ(l)BlG(z
′)B−1

l

}
where B1 = 1n and B2 = F (z′) as in (2.2). A straightforward computation shows

that the automorphy factor in (2.2) can be reduced, up to the rescaling by a

constant matrix, to that one in (2.7). In fact one can obtain the automorphy

factor (2.7) from (2.2) just acting with the matrix diag(ẽn−1, . . . , ẽ, 1). Therefore

the argument in [18] is automatically adapted to this new description.

If we de�ne the function θ1(z′, τ) =
θ3(z′+

1+τ
2

|τ)
i exp(−πiz′−πi τ

4
)
, we introduce the notations
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Bab = Ba
2B

−b
1 , B∗

ab =
1
n
Bb

1B
−a
2 , a, b ∈ {0, . . . , n− 1},

and the Kronecker elliptic function [49]

κ(m′, z′) =
θ′1(0|τ)θ1(m′ + z′|τ)
θ1(m′|τ)θ1(z′|τ)

,

we are ready to state the main result of this section.

Theorem 2.9.3. The following is a solution of the associative Yang-Baxter equa-

tion given by the universal family of stable vector bundles U under the trivialization

described at the beginning of this section:

r(m; z) =
n−1∑
a,b=0

exp
(−2πid

n
az
)
κ
(d
n

(
b− aτ

)
+
m

n
, z
)
B∗
ab ⊗Bab, (2.10)

with m = m2 −m1 and z = z2 − z1.

Proof. (i) First of all we observe that the set Bab form a basis for the vector

space M = Matn×n(C), in particular any element in G ∈ S can be written

as G(z′) =
∑
gab(z

′)Bkl.

(ii) A straightforward computation shows that

B1B
−1
ab B

−1
1 = ζaBab,

while

B2B
−1
ab B

−1
2 = ζbBab.

Moreover the conjugations, AdBj
(−) = Bl −B−1

j , j ∈ {1, 2}, commute.

(iii) Then ga,b(z′) ∈ S if and only if

gab(z
′ + 1) = ζaga,b(z

′), and gab(z
′ + τ) = ζ l exp

(−2πim
n

)
h(z′)gab(z

′),

with h(z′) = − exp(−2πi(z′ + τ − z1)).

(iv) We observe that, from the theory of theta functions [35], the unique solution

of the system

{
gab(z

′ + 1) =gab(z
′)

gab(z
′ + τ) =h(z′)gab(z

′)
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is given by the function θ3(z′+ 1+τ
2
−z1|τ). Then we can adapt this machinery

to solve the system which appears in (iv), therefore

gab(z
′) = exp

(
−2πid

n
az′
)
θ3

(
z′ − z1 +

1 + τ

2
− d

n
(aτ − b)

∣∣∣∣τ).
(v) A straightforward computation shows that, once we apply res−1

z1
followed by

evz2 , we get

g̃(m, z) = exp

(
−2πid

n
az

)
θ′3(

1+τ
2
|τ)θ3(z + m

n
+ 1+τ

2
− d

n
(aτ − b)|τ)

θ3(
m
n
− d

n
(aτ − b) + 1+τ

2
|τ)θ3(z + 1+τ

2
|τ)

.

(vi) We conclude the proof using the relation θ1(z, τ) =
θ3(z+

1+τ
2

|τ)
i exp(−πiz−πi τ

4
)
and ob-

serving that the canonical morphism (2.4)

Matn×n(C)⊗Matn×n(C) → Lin(Matn×n(C),Matn×n(C)),

acts as follows

can(B∗
ab ⊗Bab)(Ba′b′) =

{
Bab if (a′, b′) = (a, b).

0 otherwise.

2.10 Classical and Quantum Yang-Baxter equations

Let g be a simple complex Lie algebra, U(g) its universal enveloping algebra

and r : (C2, 0) → g⊗g be the germ of a meromorphic function in a neighbourhood

of 0. Then the classical Yang-Baxter equation (CYBE) is de�ned by the relation

[r12(z1, z2), r
23(z2, z3)]+[r12(z1, z2), r

13(z1, z3)]+[r13(z1, z3), r
23(z2, z3)] = 0, (2.11)

where rij are the appropriate embeddings of g ⊗ g → U(g) ⊗ U(g) ⊗ U(g) which
send g1 ⊗ g2 to the element who has g1 in the i − th spot, g2 in the j − th spot

and the identity in the remaining one. A solution of the above relation is called

classical r−matrix.
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Example 2.10.1. A straightforward computation shows that the simplest solution

of the CYBE which depends just on the di�erence z = z2 − z1 is given by

r(z) =
1

z

[
1

2
(e22 − e22)⊗ (e11 − e22) + e12 ⊗ e21 + e21 ⊗ e12

]
,

where g = sl2(C).

The de�nitions of non-degeneracy, skew-symmetry and gauge equivalence from

(1.1.1) can be easily adapted to this version of the Yang-Baxter equation.

De�nition 2.10.2. Let g = sln(C) be the simple lie algebra of traceless matrices.
Then we will say that a classical r−matrix has in�nitesimal symmetries if and only
if there exists g ∈ sln(C), g ̸= 0, such that

[r(z1, z2), g ⊗ 1+ 1⊗ g] = 0.

Classical r-matrices were classi�ed by Belavin and Drinfeld, such a classi�cation

is given by a certain lattice of poles.

Theorem 2.10.3. ([8, 9, 10])

Let r(z1, z2) be a non-degenerate classical r−matrix, then:

(1) r(z1, z2) is gauge equivalent, after a change of variables, to a solution which

depends only on the di�erence z = z1 − z2 and it is skew-symmetric.

(2) r(z) extends to a meromorphic function on the whole complex plane C.

(3) The set of poles of r(z) forms a lattice Γ ⊂ C and rank(Γ) speci�es the type

of r. In fact one of the following holds:

(i) if rank(Γ) = 2, then r(z) is called elliptic, this means that it is equiv-

alent to a linear combination of elliptic functions. Moreover, such a

solution exists if and only if g = sln(C).

(ii) If rank(Γ) = 1, then r is said to be trigonometric, i.e. there exists

a rational function f(z) and λ ∈ C such that r(z) is equivalent to

f(exp(λz)).

(iii) If rank(Γ) = 0, then r(z) is equivalent to a rational function f(z), in

this case the solution is called rational.
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For instance the r−matrix in example (2.10.1) is rational.

A natural question is: what is the interplay between the two Yang-Baxter equations

we introduced so far?

First of all observe that we have a natural projection Prj : Matn×n(C) → sln(C),
given by M → M − trace(M)

n
1. Then, if r(m; z1, z2) is an associative r−matrix, it

is well-de�ned the tensor Prj⊗2(r(m, z)) and the following proposition holds.

Proposition 2.10.4. Let r(m; z1, z2) be a skew-symmetric associative r−matrix

and suppose the limit

lim
m→0

Prj⊗2(r(m; z1, z2)) = rc(z1, z2),

exists.

Then the tensor rc(z1, z2) in sln(C)⊗2 satis�es the classical Yang-Baxter equation.

Furthermore, suppose that r(m; z1, z2) has a Laurent series given by

r(m; z1, z2) =
1⊗ 1

m
+

∞∑
i=0

miri(z1, z2). (2.12)

In that case:

(i) Any other solution gauge equivalent to r is of the form (2.12) and the corre-

sponding solutions of the CYBE are gauge equivalent to each other;

(ii) If r(m; z1, z2) is non-degenerate, rc(z1, z2) is also non-degenerate;

(iii) Suppose that r(m; z1, z2) is non-degenerate and that rc is either elliptic or

trigonometric or has no in�nitesimal symmetries. Then, for �xed m0 ∈ C,
m0 ̸= 0, the tensor r(m0; z1, z2) = rm0(z1, z2) solves the quantum Yang-

Baxter equation (QYBE), i.e. the following relation

r12m0
(z1, z2)r

13
m0

(z1, z3)r
23
m0

(z2, z3) = r23m0
(z2, z3)r

13
m0

(z1, z3)r
12
m0

(z1, z2). (2.13)

The �rst part of this theorem can be found in [17], Lemma 1.2. The second

part was proved by Polishchuk and generalized by Henrich see for instance [28].

Example 2.10.5. (i) Clearly the solution obtained in (2.10) is of the form (2.12)

and it is elliptic. Thus, for �xed m = m0, it satis�es the QYBE (2.13) and
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gives the classical r−matrix:

r(z) =
n−1∑

a,b=0,(a,b)̸=(0,0)

exp
(−2πid

n
az
)
κ
(d
n

(
b− aτ

)
, z
)
B∗
ab ⊗Bab.

Observe that we obtain the same solution computed in [17].

(ii) The associative r−matrix computed at the end of Section 2.7 is of the form

(2.12) and gives the rational solution:

rc(z1, z2) = +
1

z

3∑
k,l=1,k ̸=l

ekl ⊗ elk +
1

z

3∑
i=1

(−1)i+1vi ⊗ vi

−z1e32 ⊗ v2 − e21 ⊗ v1 − e12 ⊗ e32

−z1e31 ⊗ e12 + e32 ⊗ e12 + v1 ⊗ e21

+z2e12 ⊗ e31 + z2v2 ⊗ e32,

where v1 = 1
3
diag(2,−1,−1), v2 = 1

3
diag(1, 1,−2) and v3 = v2 − v1. More-

over, a straightforward computation shows that it has no-in�nitesimal sym-

metry, thus the corresponding associative r−matrix solves the quantum

Yang-Baxter equation. We �nally observe that rc is the same computed

in [17].

(iii) One can show that

r(m; z) =
1

2m
1⊗ 1+

1

z

2∑
i,j=1

eij ⊗ eji

is an associative r−matrix who also solves (2.13) and the CYBE, however

any g ∈ sln(C), g ̸= 0, is an in�nitesimal symmetry of the corresponding

classical solution.
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Chapter 3

Szegö kernels

In this chapter we introduce the so called Szegö kernels. These kernel functions

are closely related to solutions of a speci�c form of the Yang-Baxter equation that

we shall introduce. Therefore, they are also related to the Yang-Baxter relations

described in chapter two. Moreover, inspired by the ideas in [41] and following

the approach of the �rst chapter of this thesis, we will prove that Szegö kernels

have an alternative description both via appropriate triple Massey products as

well as through residue and evaluation sequences. A �rst di�erence with respect

to the topics treated in the �rst two chapters is given by the genus of the curve,

which can also be taken to be greater than one. In the last part of this chapter,

after we proved the skew-symmetry of the aforementioned kernel functions, we also

demonstrate some identities that Szegö kernels have to satisfy. In particular we

will obtain a sheaf-theoretic version of the matrix-valued Fay's identity.

3.1 Szegö kernels and classical Yang-Baxter equa-

tion

First of all we have to introduce a new form of the Yang-Baxter equation.

De�nition 3.1.1. Let r be a meromorphic function r : C × C → g ⊗ g, where g

is a �nite-dimensional complex Lie algebra. The generalized classical Yang-Baxter

equation (GCYBE) is the following:

[r12(z1, z2), r
23(z2, z3)]+ [r12(z1, z2), r

13(z1, z3)]+ [r32(z3, z2), r
13(z1, z3)] = 0, (3.1)
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where rlm are the same as in equation (2.11).

A solution of the GCYBE is called skew-symmetric if r12(z, w) = −r21(w, z) for
all z, w where r is de�ned.

Remark 3.1.2. It is clear that a skew-symmetric solution the of GCYBE is also a

classical r-matrix, i.e. it solves the CYBE

[r12(z1, z2), r
23(z2, z3)] + [r12(z1, z2), r

13(z1, z3)] + [r13(z1, z3), r
23(z2, z3)] = 0.

Example 3.1.3. Let g be a simple complex Lie algebra. Then a straightforward

computation shows that the following function is a non-degenerate solution of the

GCY BE which does not satisfy the classical one:

r(z, w) =
w

z − w
γ.

Here γ is the Casimir element of g. It is easy to see that the latter solution is not

skew-symmetric.

Let C be a reduced, complex, projective Gorenstein curve, X be an irreducible,

a�ne open subset of C such that ΩX ≃ OX . Then (see either [16] or [25]) there

exists a short exact sequence

0 → OC×X → OC×X(∆) → δ∗(HomX(ΩX ,OX)) → 0,

where δ : X → C ×X is the diagonal embedding and ∆ = Im(δ). The existence

of such a sequence will be proved in the next section, see formula (3.2). We now

use the fact that ΩX ≃ω OX , recall that such a trivialization is given by the choice

of a non-zero section ω of H0(C,ΩC). We obtain:

0 → OC×X → OC×X(∆) → O∆ → 0.

If we now tensor everything by G ⊠ G, we end up with

0 → G ⊠ G|X → G ⊠ G|X(∆) → δ∗(G|X ⊗ G|X) → 0,

where G is a sheaf of Lie algebras satisfying the following conditions.

(i) G is a coherent OC-module.

(ii) H0(C,G) = 0 = H1(C,G).

43



3.2. CURVES OF POSITIVE GENUS AND SZEGÖ KERNELS

(iii) For all p ∈ X we have G|p ≃ g.

Then, using the vanishing of cohomology of G, applying the global sections functor
and due to the Künneth formula, we get an isomorphism

resω∆ : H0(C ×X,G ⊠ G|X(∆)) → H0(X,G|X ⊗ G|X).

The latter isomorphism in particular implies the existence of a unique section

rω ∈ H0(C × X,G ⊠ G|X(∆)) such that resω∆(r
ω) = γ. Here we denote by γ the

unique element of H0(C × X,G ⊠ G|X(∆)) which is sent to the identity by the

isomorphism H0(X,G|X ⊗ G|X) ≃ EndC(G|X).

De�nition 3.1.4. The unique element r := rω is called Szegö kernel or equiva-

lently geometric r−matrix.

Remark 3.1.5. We are only interested whether the Szegö kernel r solves the GCYBE

or not, in this case it is possible to suppress its dependence on ω, see [25] for more

details.

One can prove that the following theorem holds.

Theorem 3.1.6. [25] For any three distinct points x, y, z ∈ X the Szegö kernel r

is a non-degenerate solution of the generalized classical Yang-Baxter equation

[r12(z1, z2), r
23(z2, z3)] + [r12(z1, z2), r

13(z1, z3)] + [r32(z3, z2), r
13(z1, z3)] = 0.

In particular, if we work with locally free sheaves and if there exists a global

nowhere vanishing one form ω ∈ ΩC , the Szegö kernel r is skew-symmetric. There-

fore it also solves the classical Yang-Baxter equation.

3.2 Curves of positive genus and Szegö kernels

Let C be a reduced, projective Gorenstein curve of (arithmetic) genus g > 0,

X ̸= ∅ be a regular irreducible subset of C and δ : X → C × X be the diagonal

embedding, i.e. ∆ = Im(δ). Recall that, if C is smooth, its dualising sheaf ΩC

is isomorphic to the sheaf of holomorphic 1-forms, otherwise one has to introduce

the sheaf of regular 1-forms.
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De�nition 3.2.1. Let C be a reduced projective Gorenstein curve, n : C̃ → C its

normalization and denote by MC̃ the sheaf of meromorphic 1-forms over C̃. Then,

for any open set U ⊂ C a regular 1-form over U is an element ω ∈ Γ(U, n∗MC̃)

such that, for any x ∈ C and any f ∈ OC(U), one has∑
xi∈n−1(x)

resxi((f ◦ n)ω) = 0,

where res is the standard residue on the smooth curve C̃.

Remark 3.2.2. Observe that a regular 1-form is holomorphic on any smooth part

of C. One can prove, see for instance [6], that the dualising sheaf ΩC of a reduced

projective Gorenstein curve can be identify with the sheaf of regular 1-forms.

Recall Serre duality for a Gorenstein curve, see [27].

Theorem 3.2.3. For any V ,W ∈ Perf(C) we have a non-degenerate bilinear

form

b(−,−)s : Hom(V ,W)× Ext1(W ,V ⊗ ΩC) → C.

In particular there exists a bifunctorial isomorphism

Ext1(W ,V ⊗ ΩC) ≃ Hom(V ,W)∗.

Proposition 3.2.4. For any vector bundle E over C the following residue sequence

on C ×X is exact:

0 → π∗
1E → π∗

1E(∆)
res∆−−→ δ∗(E ⊗ Ω−1

C ) → 0, (3.2)

where π1 : C ×X → C.

Proof. We start demonstrating that the sequence

0 → OC×X → OC×X(∆) → δ∗(Ω
−1
C ) → 0 (3.3)

is exact.

The �rst map is trivially de�ned, we have to describe the second one.

Let B = C × X, x ∈ X and Ux ⊂ B be an open neighbourhood of (x, x). We

observe that any section s ∈ H0(U,OC×X(∆)) can be locally written as s′(p,q)
p−q ,

with s′ ∈ H0(U,OC×X). We take any ω ∈ H0(δ−1(Ux ∩∆),ΩC), clearly ω can be
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locally written as ω = ω′(p)dp, with ω′ holomorphic on X ≃ ∆. We observe that

Ω−1
C ≃ Hom(ΩC ,OC), then the residue map is the map which takes z ∈ δ−1(Ux∩∆)

and sends it to ω′(z)s′(z, z). The statement follows taking the tensor product of

the sequence (3.3) with π∗
1E .

Corollary 3.2.5. In particular, if we take E equal to ΩC, we obtain the following

sequence:

0 → π∗
1ΩC → π∗

1ΩC(∆)
res∆−−→ O∆ → 0. (3.4)

We now consider both projection maps π1, π2

C ×X
π1

{{

π2

##

C X

and we observe that, if we tensor the sequence (3.4) by π∗
1E∗⊗π∗

2E|X := E∗⊠ E|X ,
we get

0 → E∨ ⊠ E|X → E∨ ⊠ E|X(∆) → δ∗(End(E|X)) → 0. (3.5)

Here E is a vector bundle on C and we are using the notation E∨ := E∗ ⊗ ΩC .

Lemma 3.2.6. Let E be a vector bundle over C such that

H0(C, E) = 0 = H1(C, E),

then

H0(C ×X, E∨ ⊠ E|X) = 0 = H1(C ×X, E∨ ⊠ E|X).

Moreover, we get an isomorphism of vector spaces

H0(C ×X, E∨ ⊠ E|X(∆))
res∆−−→ H0(C,End(E|X)).

Proof. Observe that applying Riemann-Roch formula we immediately see that

H0(C, E) = 0 = H1(C, E) if and only if H0(C, E∨) = 0 = H1(C, E∨).

The �rst statement follows easily using Künneth formula. In fact we multiply any

factor of the decomposition by an element of the form H∗(C, E∨) = 0.

The last part follows from the sequence (3.5) applying the global sections functor.

Similarly to the previous section we can introduce the next de�nition.
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De�nition 3.2.7. The unique section S̃ ∈ H0(C × X, E∨ ⊠ E|X(∆)) such that

res∆(S̃) = 1End(E|X) is called Szegö kernel.

The name kernel is due to the sequence (3.5).

3.3 Residue and Evaluation sequences

Let C, X be as in the previous section, E be a vector bundle over C. We say

that p ∈ X is a base point for E if the map H0(C, E) → E|p is zero.

De�nition 3.3.1. Let x, y be two points of X. We say that a triple (E , x, y) is
good when:

(i) x ̸= y;

(ii) x is a base point for E∨;

(iii) y is a base point for E .

Remark 3.3.2. Note that if H0(C, E) = 0 = H1(C, E), then, using Serre duality or

Riemann-Roch theorem, one can easily see that the triple (E , x, y) is good for any

x, y ∈ X as long as x ̸= y.

Lemma 3.3.3. Let E be a vector bundle over C and x ∈ X, then the following

are equivalent:

(i) x is a base point for E∨;

(ii) H0(C, E∨(−x)) ≃ H0(C, E∨);

(iii) H1(C, E) ≃ H1(C, E(x)),

Moreover, if x ∈ X is a base point for E∨, the following relation is satis�ed:

h0(C, E(x)) = rank(E) + h0(C, E).

Proof. Consider the exact sequence

0 → OC(−x) → OC
evx−−→ Cx → 0.
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We tensor it by E∨ and apply the functor H0(C,−), we get

0 → H0(C, E∨(−x)) → H0(C, E∨) → E∨|x → H1(C, E∨(−x)) → H1(C, E∨) → 0.

The base point hypothesis immediately implies point (ii). In fact the map

H0(C, E∨) → E∨|x is zero. Conversely, if the �rst two terms of the latter sequence
are isomorphic, then Kern(H0(C, E∨) → E∨|x) = H0(C, E∨), giving the equiva-

lence between the points (i) and (ii).

The second part, (ii) ⇐⇒ (iii), follows from a chain of Serre isomorphisms:

H0(C, E∨(−x)) ≃ HomC(E(x),Ω) ≃ Ext1(OC , E(x))∗ ≃ H1(C, E(x))∗. A simi-

lar chain of morphisms for H0(C, E∨) and the isomorphism (ii) lead to the thesis.

The last statement is a straightforward computation. One has to write down

the Riemann-Roch relations for both E(x) and E , then solve the system using (ii)

and Serre duality, such a process leads to

h0(C, E(x)) = deg(E) + rank(E) + h0(C, E)− deg(E).

The previous lemma assure that, for any natural number r = rank(E), there
exists always at least a non-trivial section of E(x) which does not belong to E .

Remark 3.3.4. Observe that the residue sequence (3.6), on the subspace C × {x},
x ∈ X, can be identi�ed with the following sequence:

0 → ΩC → ΩC(x)
resx−−→ Cx → 0. (3.6)

In fact π∗
1ΩC over C is just ΩC , OC(∆) reduces to OC(x) and everything on the

right hand side, since it is a restriction on a �ber, is trivial. Note that resx(ϕ) is

just the classical residue for any local meromorphic 1-form ϕ with at most a simple

pole at x.

We now tensor the sequence (3.6) by E ⊗Ω∗
C and we pass to cohomology. Then

we get

0 → H0(C, E) → H0(C, E(x)) resx−−→ (E ⊗ Ω∗
C)|x → H1(C, E) → H1(C, E(x)) → 0.

Using Lemma 3.3.3 we see that resx : H0(C, E(x)) → (E ⊗ Ω∗
C)|x is surjective and

its kernel is H0(C, E). Here we use the same symbol for a morphism of sheaves

and for the map of global sections.
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We now introduce the evaluation sequence, let y ∈ X ⊂ C, then the following

is a short exact sequence:

0 → OC(−y) → OC
evy−−→ Cy → 0. (3.7)

If we tensor the latter sequence by E(x) and we pass to cohomology, we get

0 → H0(C, E(x− y)) → H0(C, E(x)) evy−−→ E(x)|y → H1(C, E(x− y)) . . . . (3.8)

We observe that E(x)|y ≃ E|y as long as x ̸= y, then, due to the good triple

hypothesis, evy : H0(C, E(x)) → E|y vanishes on H0(C, E), that is the kernel of

resx. Therefore, due to homomorphism theorem, there exists a unique linear map

SE(x, y) which makes the following diagram commutative:

H0(C, E(x))
resx

wwww

evy

%%

(E ⊗ Ω∗
C)|x

SE(x,y)
// E|y.

(3.9)

Remark 3.3.5. Observe that the sequence (3.8) implies that y is a base point for

E(x) if and only if H0(C, E(x− y)) ≃ H0(C, E(x)), which is equivalent, due to the

Lemma 3.3.3, to h0(C, E(x− y)) = rank(E) + h0(C, E)).

Remark 3.3.6. Note that, if we suppose H0(C, E) = 0 = H1(C, E), the maps resx
and evy become isomorphisms. In fact, due to the semi-continuity theorem (see

[27], Theorem 12.8), H∗(C, E(x − y)) are zero in a Zaritsky open subset of C.

Hence SE(x, y) = evy ◦ res−1
x .

Example 3.3.7. We claim that the triple (OC(z−x), x, y) is good for any x, y, z ∈ X

such that x ̸= z and x ̸= y. Observe that since H0(C,OC(z−x)) = 0 the condition

for y is already ful�lled. Moreover, consider the canonical sequence

0 → OC(z − x) → OC(z) → Cx → 0

and pass to cohomology. We obtain

0 → H0(C,OC(z))
≃−→ C → H1(C,OC(z − x)) → H1(C,OC(z)) → 0.

The latter sequence implies H1(C,OC(z − x)) ≃ H1(C,OC(z)), the statement

follows from Lemma 3.3.3.
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Example 3.3.8. Let x, y, z be three distinct points of C and E = O(z − x), then it

is easy to see that SE(x, y) is an isomorphism.

If instead we take y = z, then SE(x, y) = 0. In fact, due to Remark 3.3.5, y is a

base point of E(x), which immediately implies evy is the zero map.

We now wish to investigate the relation between S and the Szegö kernel S̃

de�ned in the previous section, see De�nition 3.2.7. For this purpose, observe

that, for an arbitrary bundle W , there exists a morphism tr : W∗ ⊗ W → OC ,

given by f⊗w → f(w). Then for any vector bundle V , there exists an isomorphism

V∨|x ⊗ V|y ≃ Lin((V ⊗ Ω∗
C)|x,V|y), (3.10)

where the action of a tensor g ⊗ v on the element u ∈ (V ⊗ Ω∗
C)|x is given by

(g ⊗ v)(u) = g(u)v.

Lemma 3.3.9. Let E be a vector bundle over C such that H∗(C, E) = 0. For any

x ̸= y x, y ∈ X, consider the linear map SE(x, y) = evy ◦ res−1
x

(E ⊗ Ω∗
C)|x

res−1
x−−−→ H0(C, E(x)) evy−−→ E|y.

Then the value of the Szegö kernel S̃ at the point (x, y), i.e. S̃(x, y) ∈ E∨|x ⊗ E|y,
is the image of SE(x, y) under the isomorphism (3.10).

Proof. Consider the bi-orthogonal system, with respect to the trace map, given by

{e1, . . . , en} basis of E ⊗Ω∗
C |x and {e∗1, . . . , e∗n} basis of E∗ ⊗ΩC |x. We can also �x

a basis {E1, . . . , En} of H0(C, E(x)) determined by the relations resx(Ei) = ei. We

can then write S̃|{x}×X =
∑
ẽ∗i⊗Ei, where any element of ẽ∗i is a linear combination

of the basis {e∗1, . . . , e∗n}, i.e. ẽ∗i =
∑
hijej

∗. We conclude that ẽ∗j = e∗j from the

fact that resx(Ei) = ei and
∑
e∗i ⊗ ei = 1. It remains to observe that both S and

S̃, under the isomorphism (3.10), send ei to Ei evaluated in y.

3.4 Szegö kernels and triple Massey products

In this section, similarly to what was done in the �rst chapter, we de�ne a

certain triple Massey product. We prove that for a good triple (E , x, y) such a

product is related by a canonical isomorphism to the map SE(x, y) de�ned in the
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previous section. Let C be a reduced, projective Gorenstein curve of arithmetic

genus g > 0, X be a non-empty regular irreducible subset of C. Let x, y ∈ X be

two distinct points and E be a vector bundle over C such that the triple (E , x, y)
is good. Then we de�ne the triple Massey product

Hom(OC ,Cx)⊗ Ext1(Cx, E)⊗ Hom(E ,Cy)

mE
x,y

��

Hom(OC ,Cy)

(3.11)

as follows.

Let f ∈ Hom(OC ,Cx), w ∈ Ext1(Cx, E) and g ∈ Hom(E ,Cy). Observe that by

de�nition w is represented by

0 → E → W → Cx → 0.

Moreover, since f and g are given, we can write the following diagram:

OC

f̃
��

f

!!

0 // E
g

  

//W
g̃

��

// Cx
// 0

Cy,

(3.12)

where f̃ : OC → W and g̃ : W → Cy, if they exist, are lifts of f and g. The triple

Massey product is then de�ned by mE
x,y(f ⊗w⊗ g) = g̃f̃ . It remains to prove that

the de�nition is well-posed.

Lemma 3.4.1. If the triple (E , x, y) is good, then the triple Massey product mE
x,y

is well-de�ned and uni-valued.

Proof. First of all, we have to prove the existence of the maps f̃ and g̃. We take

the short exact sequence

0 → E → W → Cx → 0
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and we apply the functor Hom(−,Cy). We get

0 → Hom(Cx,Cy) → Hom(W ,Cy) → Hom(E ,Cy) → Ext1(Cx,Cy) → . . . .

Using the properties of skyscraper sheaves supported at the distinct points x and

y, one can easily see that Hom(Cx,Cy) = 0 = Ext1(Cx,Cy). The latter conditions

imply Hom(W,Cy) ≃ Hom(E ,Cy), therefore there exists a unique g̃.

We now repeat the procedure applying the functor Hom(OC ,−), we obtain

0 → Hom(OC , E) → Hom(OC ,W ) → Hom(OC ,Cx) → Ext1(OC , E) → . . . .

Observe that if H0(C, E) = 0 = H1(C, E) the proof is similar to the previous

case, moreover f̃ is unique. In the general case, we have to prove that the map

Hom(OC ,W) → Hom(OC ,Cx) is surjective. Consider the pull-back

0 // E //

��

W ′ //

��

OC
//

f
��

0

0 // E //W // Cx
// 0.

If the map F : Ext1(Cx, E) ⊗ Hom(OC ,Cx) → Ext1(OC , E) sends w ⊗ f to the

zero extension, we get the map f̃ we are searching for. In fact the upper sequence

in the previous diagram would split. Observe that using Serre duality we have

Ext1(Cx, E) ≃ (E ⊗ Ω∗
C)|x as well as Ext1(OC , E) ≃ H0(E∨)∗. Due to the iso-

morphism Hom(OC ,Cx) ≃ C, one can see that the map F can be rewritten as

F ′ : (E ⊗Ω∗
C)|x → H0(E∨)∗ that is dual to evx : H

0(E∨) → E∨|x. F ′ is zero due to

the base point hypothesis, thus we have a surjection Hom(OC ,W) → Hom(OC ,Cx)

and so we get f̃ .

We conclude the proof observing that the triple Massey product is uni-valued if

and only if the triple (E , x, y) is good. In fact any factorization of the form

OC
// E //

��

Cy

E|y

>>

gives no contribution to the diagram (3.12).

We are now ready to state the main result of this section.
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Theorem 3.4.2. Let C and X be as at the beginning of this section, let E be a

vector bundle over C and x, y ∈ C such that (E , x, y) is a good triple. Then the

Massey product mE
x,y in (3.11) is the image of the map SE(x, y), de�ned by the

commutative diagram (3.9), under the isomorphism:

Lin(Hom(OC ,Cx)⊗ Ext1(Cx, E)⊗ Hom(E ,Cy),Hom(OC ,Cy)) ≃
≃ Lin((E ⊗ Ω∗

C)|x, E|y).

Proof. Before proving the main theorem we need some preliminary steps.

Lemma 3.4.3. There exists an isomorphism of functors

αx : Hom(Cx,−⊗ Ω∗
C ⊗ Cx) → Ext1(Cx,−),

between vector bundles over C and complex vector spaces.

Proof. Let E be a bundle over C such that rank(E) = r and x ∈ C. Consider the

short exact sequence

0 → E ⊗ ΩC → E ⊗ ΩC(x)
resx−−→ E ⊗ Cx → 0

and apply the functor Hom(Cx,−⊗Ω∗
C). Using the vanishing of the �rst two terms

due to Serre duality, we get

0 → Hom(Cx, E ⊗ Ω∗
C ⊗ Cx)

αx−→ Ext1(Cx, E) → Ext1(Cx, E(x)) →

→ Ext1(Cx, E ⊗ Ω∗
C ⊗ Cx) → 0.

We conclude the proof observing that the last two terms are both of dimension

r. In fact: Ext1(Cx, E(x)) ≃ H0(Ext1(Cx, E(x))), whereas Ext1(Cx, E ⊗ Ω∗
C |x) is

isomorphic, due to Serre duality, to the r dimensional vector space E ⊗ Ω−2
C |x.

Therefore αx is an isomorphism.

We now observe that, using the residue sequence (3.6) and for w ∈ Ext1(Cx, E)
as in diagram (3.12), we have the following commutative diagram

0 // E a //

id
��

W //

��

Cx
//

α−1
x (w)
��

0

0 // E // E(x) // E ⊗ Ω∗
C ⊗ Cx

// 0.
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The latter diagram, together with the de�nition of Massey product (3.12), can be

extended to:

OC

f̃
��

f

&&

// OC ⊗ Cx

fx
��

0 // E a //

id
��

W //

λ
��

Cx
//

α−1
x (w)
��

0

0 // E // E(x) // E ⊗ Ω∗
C ⊗ Cx

// 0.

Remember that by de�nition resx : H
0(C, E(x)) → (E ⊗Ω∗

C)|x ≃ E ⊗Ω∗
C ⊗Cx and

recall that Hom(OC ,−) ≃ H0(C,−). Thus we have

α−1
x (w)fx = resx(λf̃).

Note that, if we tensor everything by Cy, we also get

OC ⊗ Cy

f̃y
��

E ⊗ Cy
ay
//

��

W ⊗ Cy

λy
��

E ⊗ Cy
// E(x)⊗ Cy,

therefore

evy(λf̃) = a−1
y f̃y.

If we now recall the de�nition of the triple Massey product, we immediately get

(mE
x,y)(f ⊗ w ⊗ g)y = gy ◦ a−1

y ◦ f̃y = gy ◦ SE
x,y(α

−1
x (w)fx).

In order to conclude the proof, we have to describe mE
x,y under a sequence of

isomorphisms. We claim that the following relation holds:

γ1(f ⊗ w ⊗ g) = γ2(f ⊗ s(w))(g).

Here s : Ext1(Cx, E) ≃ Hom(E ⊗ Ω∗
C ,Cx)

∗ is the isomorphism given by the Serre

pairing and

γ1 ∈ Lin(Hom(OC ,Cx)⊗ Ext1(Cx, E)⊗ Hom(E ,Cy),Hom(OC ,Cy)),

54



3.4. SZEGÖ KERNELS AND TRIPLE MASSEY PRODUCTS

whereas

γ2 ∈ Lin(Hom(OC ,Cx)⊗ Hom(E ⊗ Ω∗
C ,Cx)

∗,Lin(Hom(E ,Cy),Hom(OC ,Cy))).

Clearly there exists a canonical isomorphism between the spaces in which the two

elements γ1 and γ2 live.

We now claim that s(w) is sent to α−1
x (w) ∈ Hom(Cx, (E ⊗ Ω∗

C)|x).

Lemma 3.4.4. The following is a commutative diagram:

Ext1(Cx, E) s //

α−1
x

��

Hom(E ⊗ Ω∗
C ,Cx)

∗

��

Hom(Cx, E ⊗ Ω∗
C ⊗ Cx)

τ // Hom(E ⊗ Ω∗ ⊗ Cx,Cx)
∗,

where the map τ is induced by the canonical isomorphism of vector spaces

Hom(U, V )∗ ≃ Hom(V, U).

Proof. Given a vector bundle W over C, using the residue sequence (3.6) and

applying Hom(W ,−), we obtain a commutative diagram

Hom(W|x,W|x)
trx

��

// Hom(W ,W ⊗ Cx)

β1
W
��

νx // Ext1(W ,W ⊗ ΩC)

β2
W
��

C //

**

H0(C,Cx)
νx //

��

H1(C,ΩC)

t̃
ttC

Here we are adopting the following notation: trx is the usual trace map, t̃ is the

"trace" on a Gorenstein variety G of dimension r1, i.e. t̃ : Hr1(G,ΩG) → C (see

[27], III.7); νx is the connecting morphism, β1
W , β2

W are again trace maps and all

the non-labeled functions are canonical morphisms.

The commutativity of the last diagram implies that, for any f ∈ Hom(W ,W⊗Cx),

one has

t̃(β1
W(νx(f))) = tr(fx).

We conclude the proof observing that:

tr(θ ◦ α−1(w′)) = tr(α−1(w′) ◦ θ) = t̃(β1
V(νx(α

−1
x (w′) ◦ θ))) = s(w′)(θ)

for any θ ∈ Hom(E ⊗ Ω∗
C ,Cx) and w′ ∈ Ext1(Cx, E) .
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We now come back to the proof of the main statement. Observe that α−1(w)

can be viewed, up to isomorphism, as an element in (E ⊗ Ω∗
C)|x. Any map γ2, as

above, is then sent to a map

γ3 ∈ Lin(Hom(OC ,Cx)⊗ (E ⊗ Ω∗
C)|x,Lin(Hom(E ,Cy),Hom(OC ,Cy)))

such that γ3(fx ⊗ α̃−1
x (w))(gy) = γ1(f ⊗ w ⊗ g)y.

If we now observe that Hom(OC ,Cx) ≃ C ≃ Hom(OC ,Cy) and that Hom(E ,Cy) is

isomorphic to E∗|y, we deduce that γ3 is sent to a linear map γ4 in Lin(E⊗Ω∗
C |x, E|y)

such that the following diagram is commutative

(E ⊗ Ω∗)|x

γ1(f⊗w⊗g)y
((

γ4(α̃
−1
x (w)fx)

// E|y

gy
xxC

The theorem is proved observing that γ4 = SE
x,y while γ1 = mE

x,y.

Corollary 3.4.5. If moreover H0(C, E) = 0 = H1(C, E), then the triple Massey

product mE
x,y is isomorphic, in the sense of Lemma 3.3.9, to the Szegö kernel

S̃(x, y), for any x, y ∈ C, x ̸= y.

3.5 Skew-symmetry

In this section we prove that Szegö kernels are skew-symmetric, but before

proceeding with this intent we need some remarks.

Let C be a reduced, projective Gorenstein curve of arithmetic genus g > 0, X ̸= ∅
be a regular irreducible subset of C and E be a vector bundle over C with vanishing

cohomology. In particular deg(E) = (g − 1)rank(E). As already stated several

times, using Riemann-Roch theorem, one can see that E∨ has the same properties

of E . In fact

H0(C, E) = 0 = H1(C, E∨) and H1(C, E) = 0 = H0(C, E∨).

The latter conditions imply that the residue map can be de�ned for the bundle

E∨. We then have an isomorphism

resx : H
0(C, E∨(x)) → E∗|x.

56



3.5. SKEW-SYMMETRY

Moreover, we can de�ne

SE∨
(x, y) := evy ◦ res−1

x : E∗|x → (E∗ ⊗ ΩC)|y.

Let τ : E∨ ⊠ E → E ⊠ E∨ be the morphism which switches the factors on the level

of appropriated local sections and λ : X×X → X×X be the map which �ips the

entries. Recall that S̃ is the Szegö kernel from De�nition 3.2.7.

De�nition 3.5.1. The Szegö kernel S̃ is skew-symmetric if and only if

τ(S̃) = −λ∗(S̃)

for any x, y ∈ X × X \ ∆, where S̃ is viewed by restriction as a meromorphic

section of E∨ ⊠ E .

Recall that SE(x, y) : E ⊗ Ω∗
C |x → E|y and that we have trace map

tr : E∗ ⊗ E ≃ End(E) → C.

Lemma 3.5.2. The following are equivalent:

(i) The Szegö kernel S̃ is skew-symmetric;

(ii) trx(resx(s2), evx(s1)) = −try(resy(s1), evy(s2)) for any couple of distinct points
x, y ∈ X and for all s1 ∈ H0(C, E∨(y)), s2 ∈ H0(C, E(x)).

Proof. Observe that, due to isomorphism in Lemma 3.3.9, that uses the trace map,

the �rst condition can be rewritten as

trx(S
E∨
(y, x)(a), b) = −try(a,SE(x, y)(b)), (3.13)

for all (a, b) ∈ E∗|y × (E ⊗ Ω∗
C)|x.

We now consider (s1, s2) ∈ H0(X, E∨(y))×H0(C, E(x)) such that a = resy(s1) and

b = resx(s2). Then, using the symmetry of tr, equation (3.13) can be rewritten as

trx(resx(s2), evx(s1)) = −try(resy(s1), evy(s2)),

for any (s1, s2) ∈ H0(C, E∨(y))×H0(C, E(x)).
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Applying −⊗ ΩC to tr : E∗ ⊗ E → OC yields

trΩC : E∨ ⊗ E → Ωc,

which allows us to demonstrate the next result.

Theorem 3.5.3. The Szegö kernel S̃ is skew-symmetric.

Proof. First of all we prove that the Szegö kernel S̃ is skew-symmetric if and only

if

resx(tr
ΩC (s1, s2)) + resy(tr

ΩC (s1, s2)) = 0,

for any s1 ∈ H0(C, E∨(y)), s2 ∈ H0(C, E(x)) and for all (x, y) ∈ X ×X \∆. We

observe that we have the following commutative diagram

E∨(y)⊗ E(x)
resy ⊗ evy

��

// E∨ ⊗ E ⊗OC(x+ y)

trΩC

��

E∗|y ⊗ E|y
tr

��

Cy ΩC(y)⊗OC(x).resy
oo

In fact a straightforward computation shows that in both ways we get

try(evy(s1), evy(s2)) · evy(µ) · resy(λ),

where λ ∈ ΩC(y) and µ ∈ OX(x) are local sections. Observe that here occurs

an abuse of notation. In fact the vertical residue at y is the map between vector

bundles already de�ned in diagram (3.9), whereas the lowest one is the classical

residue over a curve.

The statement at the beginning of this proof follows using the latter diagram

and the previous lemma; i.e. resy(tr
ΩC (−,−)) = try(−,−). Using the symmetry

of the trace map we get also resx(trΩC (−,−)) = trx(−.−). The proof of the lemma

follows applying the residue theorem. In fact the residual sum has to vanish, see

for instance [3], over all closed points of C, but it obviously vanishes on any point

that is neither x nor y.
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3.6 Identities for Szegö kernels

Let C and X be as in the previous sections and (E , x, y) be a good triple. We

prove some relations satis�ed by the function SE(x, y). In particular, we compute

a sheaf-theoretic version of the matrix-valued Fay's trisecant identity. The �rst

result of this section is the following:

Theorem 3.6.1. Let E1, . . . , En be vector bundles on C. Let T : E1⊗· · ·⊗En → ΩC

be a morphism of vector bundles and x1, . . . , xn be points of X such that the triples

(Ej, xj, xi) are good for any i ̸= j. Then the following relation is true:

n∑
i=1

Txi(idEi⊗Ω∗
C |xi ⊗

⊗
j ̸=i

SEj(xj, xi)) = 0. (3.14)

Proof. For any j ∈ {1, . . . , n}, we can choose sj ∈ H0(C, Ej(xj)) \H0(C, Ej) with
the properties resxj(sj) = aj ∈ (Ej ⊗ Ω∗

C)|xj . Observe that one has the following

commutative diagram⊗n
l=1H

0(C, El(xl)) //

resx1 ⊗ evx1 ⊗···⊗evx1

��

H0(C,
⊗n

l=1 El(xl))

T

��

(Ω∗
C ⊗

⊗n
l=1 E)|x1

Tx1

��

H0(C,ΩC(x1 + · · ·+ xn))

resx1

��

Cx1 Cx1
oo

which implies resx1(T (s1 ⊗ · · · ⊗ sn)) = Tx1(resx1 ⊗ evx1 ⊗ . . . evx1(s1 ⊗ · · · ⊗ sn)).

Writing down the same commutative diagram for any xi we get:

resxi(T (s1 ⊗ · · · ⊗ sn)) = Txi(ev
⊗(i−1)
xi

⊗ resxi ⊗ ev⊗(n−i)
xi

(s1 ⊗ · · · ⊗ sn)).

Applying residue theorem we end up with:
n∑
i=1

Txi(ev
⊗(i−1)
xi

⊗ resxi ⊗ ev⊗(n−i)
xi

(s1 ⊗ · · · ⊗ sn)) =
n∑
i=1

resxi(T (s1 ⊗ · · · ⊗ sn)) = 0.

We now observe that, using the properties resxj(sj) = aj ∈ (Ej ⊗ Ω∗
C)|xj , we have

resxi(si) = idEi⊗Ω∗
C |xi and evxi(sj) = SEj(xj, xi). Thus the statement follows.
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Remark 3.6.2. Note that relation (3.14) reduces to the skew-symmetry once we

take n = 2. In fact we can set: E1 = E , E2 = E∨, with the properties H0(C, E) =
0 = H1(C, E), and T := trΩC : E∨ ⊗ E → ΩC as in Section 3.5. .

As already mentioned in Section 3.3, if one considers a vector bundle E with

vanishing cohomology and takes two distinct points x1, y1 ∈ X, then the bundle

E(x1 − y1) has vanishing cohomology. Moreover the maps SE and SE∨
are locally

invertible. Recall from Remark 3.3.7 that (OC(y1 − x1), x1, z) is a good triple

for any three distinct points x1, y1, z ∈ X. Let us denote by s(∗) the element

SOC(y1−x1)(x1, ∗), which we know to be an isomorphism (Remark 3.3.8), we can

now prove the following result.

Theorem 3.6.3. Let E be a vector bundle such that H0(C, E) = 0 = H1(C, E), let
x0, x1, y0, y1 ∈ X be four distinct points. Then the following equality holds

SE(x1−y1)(x0, y0)s(x0)s(y0)
−1 = SE(x0, y0)− SE(x1, y0)S

E(x1, y1)
−1SE(x0, y1).

(3.15)

Proof. Step I

We apply relation (3.15) to the bundles E1 = E∨, E2 = E(x1 − y1) and E3 equals to
OC(y1−x1). Observe that in this case the map T is naturally de�ned via the trace

map, i.e. E1 ⊗ E2 ⊗ E3 ≃ E∗ ⊗ ΩC ⊗ E → ΩC . We then compute everything at the

distinct points y1, x0, x1. If we denote SOC(y1−x1)(x1, z) = Ix1,z, we immediately

get

Ty1(idE1⊗Ω∗
C |y1 ⊗ SE(x1−y1)(x0, y1)⊗ Ix1,y1) + Tx0(S

E∨
(y1, x0)⊗ idE2⊗Ω∗

C |x0 ⊗ Ix1,x0)+

+Tx1(S
E∨
(y1, x1)⊗ SE(x1−y1)(x0, x1)⊗ IdE3⊗Ω∗

C |x1 ) = 0.

We recall that SOC(y1−x1)(x1, y1) = 0 (see Remark 3.3.8). Thus we obtain

trx0(S
E∨
(y1, x0)(a), b · Ix1,x0) + trx1(S

E∨
(y1, x1)(a),S

E(x1−y1)(x0, x1)(b) · c) = 0,

where (a, b, c) ∈ E∗|y1 × (E(x1 − y1)⊗Ω∗
C)|x0 × (OC(y1 − x1)⊗Ω∗

C)|x1 . Using skew-
symmetry and non-degeneracy of the trace map as well as the fact the inverse of

SE is well-de�ned, we end up with

SE(x1−y1)(x0, x1) = −(SE(x1, y1))
−1SE(x0, y1)S

OC(y1−x1)(x1, x0).
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Step II

We repeat the step I one in a slightly di�erent way. We take the bundles E1 = E∨,

E2 = E(x1 − y1) and E3 = OC(y1 − x1). We compute everything at the distinct

points y0, x0, x1. We can write

try0(a,S
E(x1−y1)(x0, y0)(b)Ix1,y0(c)) + trx0(S

E∨
(y0, x0)(a), b · Ix1,x0(c))

+trx1(S
E∨
(y0, x1)(a),S

E(x1−y1)(x0, x1)(b) · c) = 0,

with (a, b, c) ∈ E∗|y0 × (E(x1 − y1) ⊗ Ω∗
C)|x0 × (OC(y1 − x1) ⊗ Ω∗

C)|x1 . The latter
equation, proceeding as in the previous step, gives the relation

SE(x1−y1)(x0, y0) · SOC(y1−x1)(x1, y0)− SE(x0, y0) · SOC(y1−x1)(x1, x0)+

−SE(x1, y0) · SE(x1−y1)(x0, x1) = 0.

Step III

We substitute the equation obtained in the �rst step inside that one got in the

previous one, the statement follows reordering terms.

The latter can be considered as a generalization in the case of Gorenstein curves

of the celebrated Fay's identity which appears in [20, 21]. In order to reduce it to

that identity, we shall work over Riemann surfaces. Details are treated in the next

chapter.
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Chapter 4

Line bundles over complex tori

and Fay's identity

This chapter is devoted to the study of line bundles over smooth projective

curves of positive genus, i.e. Riemann surfaces. In order to study sections of those

bundles we have to investigate the theory of complex tori and their line bundles.

We have to introduce the Jacobian of a Riemann surface, that is a speci�c torus

which can be used to describe many properties of the surface itself. In particular

we will de�ne a Poincaré bundle over the Jacobian and we will pull it back to the

curve. We conclude this thesis describing the identities obtained at the end of the

third chapter in terms of theta functions.

4.1 Line bundles over complex tori

Before studying line bundles over a g−dimensional complex torus, we need a

preliminary and well-known lemma.

Lemma 4.1.1. Any line bundle over Cg is trivial.

Let V be a complex vector space of dimension g and Γ be a full rank lattice in

V. We call the complex, compact and connected g-dimensional manifold T = V/Γ

complex torus of dimension g. Observe that T has a natural structure of an abelian

group. We denote by π : V → T the canonical projection and we observe that,

due to the previous lemma, π∗L is a trivial bundle for any line bundle L over T .

Thus we can write π∗L ≃ V ×C. Moreover the natural action of Γ over V can be
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4.1. LINE BUNDLES OVER COMPLEX TORI

lifted to an action on V ×C in order to have L isomorphic to V ×C modulo such

an action. An element γ ∈ Γ acts on the �bers as follows:

γ(v, z) = (v + γ, aγ(v)z),

for any v ∈ V , z ∈ C and where aγ is a holomorphic invertible function on V. The

latter equation de�nes a group action of Γ on V × C if and only if it satis�es the

cocycle relation, i.e.

aγ1+γ2(z) = aγ1(z + γ2)aγ2(z).

A function aγ as above is called automorphy factor and any line bundle on the

torus is de�ned by a family of automorphy factors.

De�nition 4.1.2. Let (aγ)γ∈Γ be a family of automorphy factors, then a holomor-

phic function θ : V → C, which satis�es the relation

θ(v + γ) = aγ(v)θ(v)

for all v ∈ V and γ ∈ Γ, is called theta function.

Lemma 4.1.3. Let L be a line bundle on T and (aγ)γ∈Γ be a family of automor-

phy factors for L. Then the space of theta functions for (aγ)γ∈Γ is canonically

isomorphic to the space of sections of H0(T,L).

Proof. We recall a proof from [7].

Any section σ of L lifts to a section σ′ of π∗L given by σ′(v) = (v, σ(π(v))). One

can easily check that σ′ is invariant under the action of Γ, in fact σ′(v+γ) = γσ′(v).

This means that it is a theta function. Conversely, any section of π∗L, which is

invariant under the action of Γ, is the lift of a section of L. Moreover, using the

trivialization of the pull-back bundle, i.e. π∗L ≃ V × C, we can see that any

section of such a bundle is of the form v → (v, f(v)), where f is a holomorphic

function from V to C. We conclude the proof observing that those kind of sections

are invariant, under the action of Γ, if and only if f is a theta function.

Thus, in terms of sheaves, for any L ∈ Pic(T ) and for any U open set of T we

have

L(U) = {θ : Ũ → C|θ(γ + v) = aγ(v)θ(v),∀γ, v ∈ Γ× Ũ},
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4.1. LINE BUNDLES OVER COMPLEX TORI

where Ũ = π−1(U).

We would like to give a description of factors of automorphy.

Let H : V × V → C be a Hermitian form anti-linear in the �rst variable and

linear in the second one. Let z, w ∈ C, we de�ne R(z, w) = ℜ(H(z, w)) and

I(z, w) = ℑ(H(z, w)). Observe that R and I are symmetric and skew-symmetric

real bilinear forms, respectively. Moreover, if one ofH, R, I is non-degenerate, then

all of them are non-degenerate. Let H be a Hermitian form such that I(γ1, γ2) ∈ Z
for all γ1, γ2 ∈ Γ. Let f be a function from Γ to S1 = {z ∈ C||z| = 1} such that

f(γ1+γ2) = f(γ1)f(γ2)(−1)I(γ1,γ2) and denote by H the set of all pairs (H, f) with

the properties just stated, then we are ready to state the next theorem.

Theorem 4.1.4. (Appel-Humbert)[33]

There exists a group isomorphism H → Pic(T ), where:

(i) The group structure of H is de�ned by

(H1, f1) · (H2, f2) = (H1 +H2, f1f2);

(ii) whereas the isomorphism is given by (H, f) → L(H, f), with the line bundle

L(H, f) de�ned by the automorphy factors

aγ(v) = f(γ) exp(π(H(γ, v) +
1

2
H(γ, γ)).

We further suppose H to be positive de�nite and we observe that I = ℑ(H)

can be considered as a non-degenerate, skew-symmetric form from Γ × Γ to Z.
Then, due to Frobenius lemma [24], there exists a basis of Γ such that the matrix

which represents I is of the form (
0 D

−D 0

)
,

where D = diag(d1, . . . , dg) is a diagonal matrix whose elements are di ∈ Z such

that di divides di+1.

Theorem 4.1.5. The dimension of the space H0(T,L(H, f)) is equal to
∏g

i=1 di.

Proof. This is a well-known result, a proof can be found either in [7] or in [33].
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4.2. POINCARÉ BUNDLE

4.2 Poincaré bundle

Given a complex torus T = V/Γ, we consider the space V = Homa(V,C) of
anti-linear maps L : V → C. Observe that there exists an isomorphism of real

vector spaces between V and HomR(V,R) which provides a non-degenerate bilinear
form

(−,−) : V × V → R

de�ned by (L, v) := ℑ(L(v)).
Therefore, the dual lattice Γ∗ = {L ∈ V |(L, v) ⊂ Z} is a lattice in V . Thus

we can de�ne the dual torus T ∗ = V /Γ∗. It satis�es the property (T ∗)∗ = T .

Observe that the non-degeneracy of the bilinear form (−,−) implies that the map

α : V → Hom(Γ,S1), given by L → exp(2πi(L,−)), is surjective. Moreover, it is

not hard to see that the kernel of the latter map is precisely Γ∗.

Lemma 4.2.1. The map α induces an isomorphism T ∗ ≃ Pic0(T ).

Proof. The map α gives an isomorphism between T ∗ ≃ Hom(Γ,S1). Moreover,

using the Appel-Humbert theorem, one can prove that there exists an isomorphism

Hom(Γ,S1) ≃ Pic0(T ), see [33] for more details.

We are then ready to prove the following theorem.

Theorem 4.2.2. There exists a unique holomorphic line bundle P over T × T ∗

such that:

(i) For any line bundle L ∈ T ∗ one has P|T×{L} ≃ L;

(ii) P|{0}×T ∗ ≃ OT ∗.

Moreover, if A is any normal analytic space and L′ is any line bundle on T ×A

satisfying the conditions:

L′|T×{x} ∈ Pic0(T ) for any x ∈ A and L′|{0}×A is trivial.

Then there exists a unique holomorphic map ν : A → T ∗ such that L′ ≃ (id×ν)∗P.
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4.3. JACOBIAN OF A RIEMANN SURFACE

Proof. We give a sketch of the proof from [33].

We have to de�ne a Hermitian form. We then pose

H : (V × V )×2 → C,

where H((v1, L1), (v2, L2)) = L2(v1) + L1(v2). Observe that by de�nition H, re-

stricted to (Γ × Γ∗)×2, takes integer values. We also de�ne f : Γ × Γ∗ → S1 as

f(γ, L′) = exp(πi · ℑ(L′(γ))). According to Theorem 4.1.4, we have just de�ned

a line bundle, that we will denote by P , over T × T ∗. The automorphy factors

associated with such a bundle is given by

aγ((γ, L
′), (v, L)) = f(γ, L′) exp

(
πH((v, L), (γ, L′)) +

1

2
πH
(
(γ, L′), (γ, L′)

))
.

We immediately observe that aγ((0, L′), (0, L)) = 1 for all L ∈ Γ∗, L ∈ V , so the

property (ii) is proved. The �rst one is easy to prove, in fact we take a line bundle

L ∈ T ∗ ≃ Pic0(T ), de�ned by a certain L ∈ Γ∗, i.e. L = L(exp(2πiℑ(L)), 0).
A straightforward computation shows that exp(2πiℑ(L) is equivalent, up to a

non-zero holomorphic map, to aγ((γ, 0), (v, L)), which proves (i). The uniqueness

follows easily from the See-saw Theorem 4.8.2.

The �nal part of the statement follows again from the See-saw Theorem 4.8.2. In

fact, de�ne ν : A → T ∗ by x 7→L′|T×{x}, the map is well-de�ned and unique by

the See-saw theorem. It remains to prove that ν is holomorphic, however it is not

hard to see that graph(ν) is bi-holomorphic to A, therefore ν is holomorphic.

Thus, we shall identify x ∈ T ∗ with the line bundle P|T×{x}.

4.3 Jacobian of a Riemann surface

In this section we connect the theory of line bundles over a complex torus to that

one of locally free sheaves over Riemann surfaces. Let C be a smooth projective

curve of genus g > 0, i.e. a Riemann surface of genus g. It is well-known that

H1(C,Z) ≃ Z2g and H0(C,ΩC) ≃ Cg. Moreover, as a consequence of Poincaré

and De Rham duality, there exists a well-de�ned non-degenerate intersection form

⟨−,−⟩ between elements in H1(C,Z). Using such an intersection form one can

choose a basis {ai, bi}gi=1 of the �rst homology group H1(C,Z) such that
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4.3. JACOBIAN OF A RIEMANN SURFACE

⟨ai, aj⟩ = 0 = ⟨bi, bj⟩ and ⟨ai, bj⟩ = δij,

where δij is the Kronecker delta function.

Once we �x a basis of H1(C,Z) as above, that is said to be canonical, we can use

the Gram-Schmidt algorithm to get a basis {ω1, . . . , ωg} of H0(C,ΩC) such that∫
ai

ωj = δij.

Theorem 4.3.1. Let C be a compact Riemann surface of genus g > 0, {ai, bj}gi=1

be a canonical basis of H1(C,Z) and let {ω1, . . . , ωg} be a basis of H0(C,ΩC) such

that (∫
ai

ωj

)
i,j=1,...,g

= δij.

Then the matrix B =

(∫
bi
ωj

)
i,j=1,...,g

is symmetric and its imaginary part is

positive de�nite. The matrix B is called period matrix of C.

As a consequence of the latter classical theorem, whose proof can be found for

example in [11], we can de�ne the full-rank lattice ΓC = Zg + BZg.
We then call Jacobian of C the complex torus

J = J(C) := Cg/ΓC .

In order to relate the curve C to its Jacobian we need the next de�nition.

De�nition 4.3.2. Let p0 be a point of C. We call Abel map with base point p0
the map A : C → J(C) de�ned by

A(p) =

(∫ p

p0

ω1, . . . ,

∫ p

p0

ωg

)
=

(∫ p

p0

ω⃗

)
.

The integration is taken on any path from p0 to p, since ωi are holomorphic,

therefore closed, the integral depends just on the class of the path in H1(C,Z).
Thus, since we are working on the quotient by the lattice generated by {ai, b1}gi=1,

the de�nition is well-posed.

The Abel map has the following remarkable properties.
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Theorem 4.3.3. The Abel map is an embedding. Moreover, it induces an isomor-

phism α : Pic0(C) → J ,

OC(p1 + · · ·+ pn − q1 − · · · − qn) →
n∑
i=1

(A(pi)−A(qi)),

for any p1, . . . , pn, q1, . . . , qn ∈ C. The function α is called Abel-Jacobi map.

Proof. This result is well-known and a reference for the proof can be found in

[11].

4.4 Theta functions and theta divisor

Let B′ be a symmetric g × g matrix with complex entries and such that its

imaginary part is positive de�nite. We call the holomorphic function θ : Cg → C
de�ned as follows:

θ(z,B′) = θ(z) =
∑
n∈Zg

exp(πintB′n+ 2πintz),

theta function associated with B′ or simply theta function. One can prove that

this series converges uniformly on compact sets and thus it de�nes a holomorphic

function on Cg.

According to the previous section's discussion, we can de�ne the theta function

associated with the period matrix B of a Riemann surface C. Let ΓC = Zg+BZg,
then θ transforms in the following way:

θ(z + γ) = θ(z)

θ(z + Bγ) = exp(−πiγtBγ − 2πiγz)θ(z)

for any γ ∈ Zg. So θ is quasi-periodic with respect to the lattice ΓC .

Let us denote

Θ := {z ∈ J(C)|θ(z) = 0},

such a zero locus is called theta divisor. In fact it is a (g − 1)-dimensional sub-

variety of J = J(C). Observe that despite the quasi-periodicity of θ, the variety Θ

is well-de�ned. Moreover, according to Theorem 4.1.5, the function θ is the only

section of OJ(Θ). In fact one can easily see that in this case d1 = · · · = dg = 1.

The variety Θ can be described, via the Abel map, as follows.
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Theorem 4.4.1. (Riemann's theorem)([11, 33]) A point z ∈ J belongs to Θ, i.e.

θ(z) = 0, if and only if there exist g − 1 points p1, . . . , pg−1 ∈ C such that

z = K +

g−1∑
i=1

A(pi),

where A is the Abel map and K ∈ J is the Riemann point. Such a point depends on

the choice of the basis of H1(C,Z) and on the base point of the Abel map. However

the sum on the right hand side of this theorem does not depend on the choice of

the base point of the Abel map.

Moreover, there exists a unique K ∈ Picg−1(C) such that K2 ≃ ΩC and, if K is

equal to OC(q1 + · · ·+ qg−1) for some points qi ∈ C, then K = −
∑g−1

i=1 A(qi).

We wish to give a di�erent formulation of the latter theorem. Observe that, if

we �x an element Ld ∈ Picd(C), we have an isomorphism

Ld ⊗− : Pic0(C) → Picd(C))

induced by the tensor product. In particular, we get a commutative diagram

J

Pic0(c)
K⊗−

//

α

;;

Picg−1(C),

αK

ee

where αK is the map OC(Dg−1) → −K +A(Dg−1) and where Dg−1 is a divisor of

degree g − 1. Moreover, the map αK gives another commutative diagram

Picg−1(C)
αK //

i∨

��

J

i

��

Picg−1(C)
αK // J,

where i∨(L) = L∨ and i(z) = −z.
Furthermore, if we denote

W = {L ∈ Picg−1(C)|h0(C,L) > 0},

the Riemann's theorem can be translated as follows
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Lemma 4.4.2. W is a divisor in Picg−1(C) and αK(W ) = Θ.

We conclude this section observing that we also get an isomorphism

{L ∈ Picg−1(C)|L2 ≃ ΩC}
αK−−→ {z ∈ J |2z = 0}

which sends K to 0. Elements of both sets are called theta characteristic.

4.5 Poincaré bundle over a Riemann surface

We wish to use the Poincaré bundle over a torus in order to de�ne a universal

line bundle over a Riemann surface C. We need some preliminary results.

Proposition 4.5.1. There exists an isomorphism ΦΘ : J → J∗ = Pic0(J) de�ned

by

x→ t∗x(Oj(Θ))⊗OJ(−Θ),

where tx : J → J is given by c→ x+ c.

Proof. See [7, Theorem 2.8] or [33, Section 2.4].

We also need the following:

Theorem 4.5.2. (i) The Abel map A : C → J induces an isomorphism

A∗ : Pic0(J) → Pic0(C).

(ii) The following diagram is commutative

Pic0(C)
(A∗)−1

//

α

��

J∗

J
i // J.

ΦΘ

OO

(iii) For any x ∈ J let Lx ∈ Pic0(C) be the corresponding element via the Abel-

Jacobi map. Then we have

A∗(t∗−xOJ(Θ)) ≃ L−1
x ⊗K ⊗OC(p0),

where p0 is the base point of the Abel map.

70



4.5. POINCARÉ BUNDLE OVER A RIEMANN SURFACE

Proof. See [33] for a proof of these classical results.

The last theorem implies that Q := (A × A#)∗P , where A# = (A∗)−1, is a

universal family over C × Pic0(C) such that:

(i) Q|{p}×Pic0(C) ≃ OPic0(C);

(ii) For any L ∈ Pic0(C) we denote L̃ = A#(L). Then

A∗(P|L̃×J) = A∗(L̃) ≃ L.

Similarly, we get a universal family R := Q⊗π∗
C(K) over C×Picg−1(C), where

πC is the canonical projection along the �rst term.

Denote R∨ := Hom(R, π∗
CΩC), take δ(x, y) : C×C → J de�ned by δ(x, y) =

∫ x
y
ω⃗

and denote ∆̃ = ∆× Picg−1(C). Here ∆ is the diagonal in C × C. Finally, recall

that i : J → J is the involution i(v) = −v, then the following holds.

Theorem 4.5.3. There exists an isomorphism

R∨ ⊠R(∆̃) ≃ (δ × αK)
∗Q, (4.1)

where Q := (id× i)∗(id×ΦΘ)
∗P ⊗ π∗

1(OJ(Θ)) and π1 : J × J → J . Moreover,

denote C4 = C × C × C × C and consider

C4 × Picg−1(C)
δ(2)×αK−−−−−→ J × J,

where δ(2)(x1, x2, y1, y2) =
∫ x1+x2
y1+y2

ω⃗. Then

(R∨ ⊠R)⊗2(∆̃2) ≃ (δ(2) × αK)
∗Q, (4.2)

where ∆̃2 := Picg−1(C)× (∆12 +∆14 +∆23 +∆34 −∆13 −∆24) and ∆ij is the

divisor in C4 where the entries i and j coincide.

Proof. The results stated in this theorem seem to be known, however we could not

�nd a good reference in the literature, so we provide a proof.

First of all observe that

(i) Since Q comes from the Poincaré bundle of a torus, we have

Q|{0}×J ≃ OJ .
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(ii) Moreover, using Proposition 4.5.1, we deduce

Q|J×{ξ} ≃ t∗−ξ(OJ(Θ))

for any ξ ∈ J .

Now we recall a variant of the See-Saw Theorem from [34, chapter III, Section 10].

Theorem 4.5.4. Let X1, X2 and X3 be varieties such that X1 and X2 are complete

whereas the last one is connected. Let L be a line bundle over the product X1 ×
X2 × X3 and suppose there exists a triple (x1, x2, x3) ∈ X1 × X2 × X3 such that

the bundles

L|{x1}×X2×X3, L|X1×{x2}×X3 and L|X1×X2×{x3}

are trivial. Then L ≃ OX1×X2×X3.

We use the latter theorem to prove the equation (4.1).

(1) Let τ ∈ Picg−1(C) be a non-singular odd characteristic, i.e. τ 2 ≃ ΩC ,

h0(C, τ) = 1 and λ := α(τ −K) ∈ J is such that 2λ = 0 (or equivalently λ = −λ).
Mumford in [36] proved that such a τ always exists. Clearly the LHS of (4.1)

gives

(R∨ ⊠R(∆̃))|C×C×{τ} ≃ (Lτ ⊠ Lτ )(∆),

where Lλ is the line bundle corresponding to τ via the universal family R. The

RHS of (4.1) gives, according to what we said at the beginning of this proof,

δ∗(t∗−λ(OJ(Θ)).

Therefore, observing that λ = −λ and Lτ ≃ L∨
τ , equation (4.1) give

δ∗(t∗λ(OJ(Θ)) ≃ (Lτ ⊠ Lτ )(∆).

We are allow to write they are isomorphic according to what we will see regarding

the prime form in Section 4.6.

In fact we will prove that θ[τ ](x− y) has D×C +C×D+∆ as divisors of zeroes.

Here D is a divisor such that τ ≃ OC(D) and θ[τ ] is the translated of theta by

the vector λ ∈ J ≃ Pic0(C)). The statement follows from See-saw Theorem 4.8.2

applied to {p} × C and C × {p}.
(2) We now consider the restriction to C × {p} × Picg−1(C). One can easily see
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that, since R|{p}×Picg−1(C) is trivial, the LHS is isomorphic to R∨ ⊗ π∗
C(OC(p)).

Observe that we have a diagram

C × C × Picg−1(C)
δ×αK // J × J

C × Picg−1(C)
A×αK //

?�

OO

J × J.
?�

id×id

OO

We have to prove that

(A× αK)
∗(Q|C×J) ≃ R∨ ⊗ π∗

C(OC(p)).

Clearly a further restriction to {q} × Picg−1 gives the trivial line bundle on both

sides. We then take ζ ∈ Picg−1(C), so that R∨|C×{ζ} = ζ−1 ⊗ ΩC . We can now

write ζ = K⊗ ν, where ν ∈ Pic0(C). Thus R∨|C×{ζ} = ν−1 ⊗K. Therefore, using
Theorem 4.5.2, we get

A∗(t∗−ν(OJ(Θ))) ≃ L−1
ν ⊗K ⊗OC(p).

The latter condition implies the result once we use the See-saw Theorem 4.8.2.

(3) The third point follows from the commutativity of the diagram:

C × C × Picg−1(C)
δ×αK //

τ×i∨
��

J × J

i×i
��

C × C × Picg−1(C)
δ×αK // J × J,

where i(x) = −x, τ(x, y) = (y, x) and i∨(L) = L∨. In fact the Poincaré bundle P
on J × J∗ satis�es, due to the self-duality of (J∗)∗, both relation (i× id)∗P ≃ P∗

and (id× i)∗P ≃ P∗. Therefore

i∗(OJ(Θ)) ≃ OJ(Θ).

So the third point can be reduced to the second one.

The equation (4.2) can be proved using the See-Saw Theorem 4.8.2 over the space

C4 = C2 × C2 and using relation (4.1).
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Remark 4.5.5. A remark about the notation is needed. For any β ∈ Picg−1(C),

we have the corresponding β′ ∈ Pic0(C), given by K ⊗ β′ = β, as well as β′′ ∈ J

de�ned by α(β′) = β′′. The last theorem implies that

(R∨ ⊠R)⊗2(∆̃2)|{β}×C×C×{t0}×{t0} ≃ L∨
β ⊠ Lβ(∆).

Moreover

L∨
β ⊠ Lβ(∆) ≃ δ∗(t∗−β′′OJ(Θ)), (4.3)

where Lβ and L∨
β are line bundles corresponding to β via the universal families R

and R∨, respectively.

Then we denote by θ[β′′] the unique (up to scalar) section of the bundle t∗β′′(OJ(Θ)).

Observe that any β′′ can be written as β′′ = Ba1 + a2, with a1, a2 ∈ R. Therefore,
after a straightforward computation, we have

θ[β′′](z) = θ[a1, a2](z) = exp(πia1Ba1 + 2πia1(z + a2))θ(z + Ba1 + a2).

We pose, with an abuse of notation, θ[β] := θ[−β′′]; so that θ[β] is considered as

a section of δ∗(t∗−β′′OJ(Θ)) ≃ L∨
β ⊠ Lβ(∆).

4.6 Prime form

Let P1, . . . , P g−1 be points of C such that h0(C, τ) = 1 and τ 2 ≃ ΩC , where

τ = OC(P1 + · · ·+ P g−1). Mumford [36] proved that such a τ always exists.

Lemma 4.6.1. If τ as above, then the divisor of zeroes of

θ[τ ](x− y)

is given by

(P1 + · · ·+ P g−1)× C + C × (P1 + · · ·+ P g−1) + ∆,

where ∆ is the diagonal in C × C

Proof. We follow [36] for this proof.

According to Riemann's theorem, θ[τ ](0) if and only if h0(C, τ(y − x)) > 0 or

equivalently if and only if τ(y−x) ∈ W . If h0(C, τ) = 1, then h0(C, τ(y)) is either

1 or 2.
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(i) If h0(C, τ(y)) = 1, then there exists a section whose zeroes are y, P1, . . . , P g−1.

Since h0(C, τ(y−x)) > 0 still has to hold, we deduce that such a section has

to vanish in x. Thus x ∈ {y, P1, . . . , P g−1}; which gives part of the thesis.

(ii) Suppose h0(C, τ(y)) = 2. Then, using Riemann-Roch theorem and the iso-

morphism τ 2 ≃ ΩC , we deduce h0(C, τ(−y)) = 1. Hence the unique section

of τ has to vanish in y, therefore y ∈ {P1, . . . , P g−1}.

Remark 4.6.2. The previous argument �lls the missing details in the proof of

Theorem 4.5.3.

Observe that, due to Theorem 4.5.3 and following its notation, we can consider

θ[τ ](x−y) as a section of the bundle Lτ⊠Lτ (∆). We now take sτ ∈ H0(C,Lτ ), ob-
serve that, since Lτ ≃ L∨

τ , one has sτ ∈ H0(C,L∨
τ ). Moreover sτ has P1, . . . , P g−1

as divisor of zeroes. Using Künneth formula sτ (−) · sτ (−) can be considered as

a section of Lτ ⊠ Lτ . Thus θ[τ ](x−y)
sτ (x)sτ (y)

can be regarded as a holomorphic section of

O(∆) on C × C.

De�nition 4.6.3. We call prime form the expression

E(x, y) =
θ[τ ](x− y)

sτ (x)sτ (y)
. (4.4)

Remark 4.6.4. Observe that since τ 2 ≃ ΩC the element s2τ is a global 1-form. Thus

res∆
1

E(x, y)

is well-de�ned. Furthermore, we suppose the prime form to be normalized in order

to have resx=y
1

E(x,y)
= 1.

Let τ ∈ Picg−1(C) such that h0(C, τ) = 1 and τ 2 ≃ ΩC , then the ratio

E(t, x)

E(t, y)
(4.5)

can be considered a meromorphic section of the line bundle OC(x) whose only pole

is in y, for any x, y ∈ C.

75



4.7. FAY'S TRISECANT IDENTITY

Corollary 4.6.5. Let E be a vector bundle over C such that H0(C, E) = 0 and

H1(C, E) = 0. Let x0, x1, y0, y1 ∈ C be four distinct points. Then the following

relation is true:

SE(x1−y1)(x0, y0)
E(x0, x1)

E(x0, y1)

E(y0, y1)

E(y0, x1)
= SE(x0, y0)− SE(x1, y0)S

E(x1, y1)
−1SE(x0, y1).

Proof. It follows from Theorem 3.6.3 observing that s(x0)s(y0)−1 is equal to
E(x0,x1)
E(x0,y1)

E(y0,y1)
E(y0,x1)

. In fact evx0(res
−1
x1
(E(t,x)
E(t,y)

)) = E(x0,x1)
E(x0,y1)E(x1,y1)

. Similarly we have

evy0(res
−1
x1
(E(t,x)
E(t,y)

)) = E(y0,x1)
E(y0,y1)E(x1,y1)

.

The relation above is equivalent to the matrix-valued Fay's trisecant identity

which appears in [21, 22, 43].

4.7 Fay's trisecant identity

Let λ ∈ Picg−1(C) and Lλ be the corresponding line bundle, under the isomor-
phism (4.1) restricted to {x} × C × {λ}, x ∈ C, such that H0(C,Lλ) = 0. Then,

using Riemann-Roch theorem, one can easily see that H1(C,Lλ) = 0. Therefore

the element Sλ(x, y) as in (3.9) is well-de�ned. Moreover, according to Remark

4.5.5, we can consider the function θ[λ](x − t) as a section of the bundle Lλ(x).
Thus, due to what was said about the prime form (4.4), the element

s(t) =
θ[λ](x− t)

E(x, t)
(4.6)

can be thought as a, necessarily meromorphic, section of the bundle Lλ whose

divisor of poles is supported at x. In particular we can compute the residue map

of s(t). In fact, due to Remark 4.6.4 and the fact that θ[λ](0) = 0 if and only if

h0(C,Lλ) > 0, we have

resx(s(t)) = θ[λ](0) ̸= 0.

Thus, the element Sλ(x, y) = evy(res
−1
x (s)) is given by

Sλ(x, y) =
θ[λ](x− y)

E(x, y)

1

θ[λ](0)
. (4.7)

In a similar way one can take the universal family (4.2) in order to get

Sλ(x1−y1)(x, y) =
θ[λ](x− y + x1 − y1)

E(x, y)

1

θ[λ](x1 − y1)
.
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Corollary 4.7.1. Let λ ∈ Picg−1 \W and x, y, x1, y1 ∈ C. Then the following

relation holds true

E(x, y)E(x1, y1)θ[λ](x−y1)θ[λ](x1−y)+E(x, y1)E(y, x1)θ[λ](x−y)θ[λ](x1−y1) =

= E(x, x1)E(y, y1)θ[λ](x− y + x1 − y1)θ[λ](0)

Proof. The proof follows from (4.6.5) taking Sλ as in (4.7), reordering terms and

using E(p, q) = −E(q, p) for all p, q ∈ C.

The latter is the Fay's trisecant identity, it appeared for the �rst time in [20].

4.8 The case g = 1 and the AYBE

We now suppose g = 1 so that C is an elliptic curve. Moreover, the choice of a

basis of H1(C,Z) �xes a nowhere vanishing element ω of H0(C,ΩC) and therefore

an isomorphism ΩC ≃ω OC . In this setting the isomorphism (4.3), for τ ∈ Pic0(C)

such that L2
τ ≃ OC and H0(C,Lτ ) = 1, reduces to

δ∗(OJ(Θ)) ≃ OC(∆).

Over a complex torus, the unique τ with the properties above gives the theta

function

−θ1(z) = −2q
1
4

∞∑
n=0

(−1)nqn(n+1)sin(2(n+ 1)πz),

where q = exp(πiB) and B is the period matrix which reduces to a complex number

whose imaginary part is positive.

Thus the prime form is given by

E(x, y) =
θ1(x− y)

θ′1(0)
,

where the denominator is due to the normalization with respect to the residue as

in Remark 4.6.4.

Since the theta divisor is sent to the zero element in Pic0(C), that one whose

section is given by θ1, any element λ ∈ Pic0(C), λ ̸= 0, gives a line bundle with
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4.8. THE CASE G = 1 AND THE AYBE

vanishing cohomology. Thus we can compute the element Sλ. Observe that, since

θ1(0) = 0, a section of t∗−λ(Θ) is given by θ1(x− y − λ) so that:

Sλ(x, y) =
θ1(x− y − λ)θ′1(0)

θ1(−λ)θ1(x− y)
.

We now observe that from Theorem 4.5.3, which in particular implies that θ1 is

an odd function, we have

θ1(x− y − λ)θ′1(0)

θ1(−λ)θ1(x− y)
= −θ1(y − x+ λ)θ′1(0)

θ1(λ)θ1(y − x)
.

Therefore the RHS of the equation above is equal to the Kronecker function κ

which appears in Theorem 2.10. A straightforward computation shows that in this

case the relation in Corollary 4.7.1 reduces to

θ1(x− x1)θ1(y − y1)

θ1(x− y1)θ1(y − x1)
θ1(λ)θ1(λ+ y − x+ y1 − x1)− θ1(λ+ y1 − x1)θ1(λ+ y − x)+

+
θ1(y1 − x1)θ1(y − x)

θ1(y1 − x)θ1(y − x1)
θ1(λ+ y1 − z)θ1(λ+ y − x1) = 0.

Moreover, the latter identity is the scalar Yang-Baxter equation

κ(u; v)κ(u+ u′; v′) = κ(u+ u′; v + v′)κ(−u′; v) + κ(u′; v′)κ(u; v + v′),

where u = y − x, v = λ, u′ = x− y1 and v′ = y1 − x1.

Remark 4.8.1. In the case of line bundles over elliptic curves, the function S and

the associative r−matrix as in (2.10) can be both identify with the Kronecker

function κ. Moreover, the Fay's identity reduces to the scalar associative Yang-

Baxter equation.
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See-Saw theorem

In this appendix we provide a proof, slightly readjusted, of the See-Saw theorem

which appears in [33].

Theorem 4.8.2. Let V and W be complex varieties such that V is complete and

let L be a line bundle over V ×W . Then:

(i) the set

WL = {w ∈ W |L|V×{w}is trivial}

is Zaritsky closed in W ;

(ii) there exists a line bundle N over WL such that L|V×WL ≃ π∗
2N , where

π2 : V ×W → W ;

(iii) If V and W are compact complex manifolds and L is a holomorphic line

bundle such that L|V×{w} and L|{v}×W are trivial respectively for any v ∈ V

and w ∈ W . Then L is trivial.

Proof. (i) Observe that on any complete variety M a line bundle L is trivial if

and only h0(M,L) and h0(M,L∗) are both greater than 0. In particular

WL = {w ∈ W |h0(L|V×{w}) > 0 and h0(L∗|V×{w}) > 0}.

Using the semi-continuity theorem for cohomology, one immediately deduces

that WL has to be closed.

(ii) We now consider N = π2∗(L|X×WL). For any w ∈ W there exists an isomor-

phism, provided by the base change theorem, f : R0N (w) → H0(L|X×{w}) ≃
C. We now observe that, since f is surjective, the function

H0(π2∗L|X×{w}) → H0(L|X×{w})
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4.8. THE CASE G = 1 AND THE AYBE

is surjective for all w ∈ W as well. The second part of the theorem is now

proved, i.e.

π∗
2(N ) ≃ L|X×WL .

(iii) The last point is a simple corollary of the �rst two points.
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