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Abstract

Computational sciences play an ever-growing role in many academic disciplines.
One particularly active field is computational chemistry where insight into chemical
bonds and the structure of molecules and solids is gained by running large computer
simulations, driving the development of new substances and materials. These sim-
ulations are often based on quantum mechanical calculations which provide high
accuracy but are very compute intensive.

To be able to make effective use of today’s large high performance computing
(HPC) clusters for these simulations, the time consuming computations must be
parallelized across thousands of compute nodes. Additionally, utilizing dedicated
accelerator hardware such as GPUs and FPGAs becomes more and more impor-
tant. These accelerators are particularly energy efficient and nowadays provide large
parts of the available floating-point performance in many HPC clusters. However,
using them effectively poses new requirements on the used methods and their im-
plementation.

This thesis tackles both of these challenges in the context of ab-initio molecu-
lar dynamics simulations where the movement of a number of interacting atoms
is simulated based on forces computed from first principles using electronic struc-
ture methods. In particular, we deal with linear scaling density matrix based density
functional theory (DFT) as underlying electronic structure method. To reach the goal
of massive parallelism and to make effective use of accelerator hardware, we lever-
age the idea of Approximate Computing. We introduce targeted approximations
to break up dependencies between computations on different compute nodes and
exploit low-precision arithmetic in the involved computations.

Specifically, we examine iterative algorithms for two central linear algebra ker-
nels of the considered DFT method, namely matrix inverse p-th roots and the matrix
sign function, and demonstrate their resilience against errors introduced by using
low-precision arithmetic. Furthermore, to apply these algorithms to large sparse
matrices in a massively parallel way, we introduce the Submatrix Method as an ap-
proximate method to distribute matrix operations on sparse matrices onto a large
number of compute nodes and multiple accelerator devices. By partitioning the in-
put matrix into submatrices and resolving dependencies between computations on
these submatrices, the Submatrix Method provides a high level of parallelism and
allows to easily distribute workload among many processing cores as well as any
present accelerator devices. As a result, the computations can make effective use of
large, heterogeneous HPC clusters and their different accelerators.

We demonstrate the practical integration of the presented methods in the open
source quantum chemistry code CP2K. Doing so, we are able to integrate both GPUs
and FPGAs in a highly scalable way and allow trading off accuracy of the results
against the floating-point performance achieved on these accelerators. This lays the
foundation to efficiently run ab-initio molecular dynamics simulations on modern,
heterogeneous HPC systems and to apply them to larger molecules.
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Zusammenfassung

Rechnergestiitzte Wissenschaften spielen in vielen akademischen Disziplinen eine
zunehmend wichtige Rolle. Dies gilt besonders im Bereich der Computerchemie. In
diesem werden mit Hilfe von grofien, computergestiitzten Simulationen Einblicke
in chemische Bindungen und den Aufbau von Molekiilen und Festkorpern gewon-
nen und die Entwicklung neuer Stoffe und Materialien vorangetrieben. Oft basieren
diese Simulationen auf quantenmechanischen Rechnungen, die die Realitdt gut ab-
bilden, jedoch sehr rechenintensiv sind.

Um die heutigen grofien Hochleistungsrechner fiir solche Simulationen effek-
tiv auszunutzen, miissen die zeitaufwandigen Rechnungen auf Tausenden von Re-
chenknoten parallelisiert werden. Auflerdem gewinnt die Nutzung spezieller Hard-
warebeschleuniger, wie GPUs und FPGAs, zunehmend an Bedeutung, da diese be-
sonders energieeffizient arbeiten und heutzutage in vielen Hochleistungsrechnern
einen grofSen Anteil der verfiigbaren Fliefkomma-Rechenleistung bereit stellen. Die-
se Beschleuniger effektiv zu nutzen stellt jedoch neue Anforderungen an die ver-
wendeten Methoden und deren Implementierung.

Diese Arbeit behandelt diese beiden Herausforderungen im Kontext von Ab-
Initio Molekulardynamik-Simulationen. In diesen wird die Bewegung von intera-
gierenden Atomen auf Basis von Kriften simuliert, die mit Hilfe von Elektronen-
strukturmethoden ausgehend von grundlegenden physikalischen Gesetzen berech-
net werden. Im Speziellen behandelt diese Arbeit linear skalierende Dichtematrix-
basierte Dichtefunktionaltheorie (DFT) als zugrunde liegende Elektronenstruktur-
methode. Um das Ziel einer massiv parallelen Ausfithrung zu erreichen, und die
effektive Nutzung von Hardwarebeschleunigern zu ermdglichen, verfolgen wir den
Ansatz von Approximate Computing. Wir fiihren gezielt Approximationen ein um
Abhéngigkeiten zwischen Rechnungen auf verschiedenen Rechenknoten aufzulo-
sen und fithren Rechnungen mit geringer Prézision aus.

Im Detail untersuchen wir iterative Algorithmen zur Berechnung zweier Funk-
tionen aus der linearen Algebra, die in der betrachteten DFT-Methode elementar
sind - die Berechnung inverser p-ter Wurzeln sowie der Signumfunktion von Ma-
trizen — und demonstrieren ihre Robustheit gegen Fehler, die durch Rechnungen
mit geringer Prazision eingefiihrt werden. Um diese Algorithmen fiir diinn besetz-
te Matrizen aufserdem massiv zu parallelisieren fithren wir die Submatrix-Methode
ein. Diese approximative Methode verteilt Operationen auf diinn besetzten Matri-
zen auf eine grofse Anzahl von Rechenknoten und Hardwarebeschleuniger. Die Ein-
gabematrix wird dabei in Submatrizen zerlegt und Abhéngigkeiten zwischen Rech-
nungen auf diesen Submatrizen aufgeltst, sodass ein hoher Grad an Parallelitit und
eine einfache Verteilung von Rechnungen auf viele Prozessorkerne sowie vorhande-
ne Hardwarebeschleuniger erreicht werden. Im Ergebnis konnen diese Rechnungen
somit grofie, heterogene Hochleistungsrechner sowie ihre verschiedenen Hardware-
beschleuniger effektiv nutzen.

Wir demonstrieren die praktische Integration der vorgestellten Methoden in den
Open Source Quantenchemie-Code CP2K. Dadurch sind wir in der Lage, sowohl
GPUs als auch FPGAs in einer hoch skalierbaren Art einzubinden und erlauben
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eine Abwagung zwischen der Genauigkeit der Ergebnisse und der Flie(komma-
Rechenleistung, die auf diesen Beschleunigern erreicht werden kann. Damit wird
die Grundlage geschaffen, Ab-Initio Molekulardynamik-Simulationen effizient auf
modernen, heterogenen Hochleistungsrechnern auszufiihren und fiir die Simulation
grofierer Molekiile zu verwenden.
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Chapter 1

Introduction

Since the dawn of electronic computers in the mid 20th century, there has been an
immense increase in computing power and with that, computers became more and
more part of our lives. Certainly most visible are consumer electronics, the abun-
dance of web services and the automation of everyday processes, such as banking,
accounting, etc. However, often only visible to scientists working with these sys-
tems, is the ever growing importance of large-scale computer simulations in scien-
tific research. Examples for such scientific computing applications are climate sim-
ulations, atomistic simulations, the simulation of electromagnetic fields, biological
processes such as protein folding, fluid dynamics and many more. These simula-
tions provide us with weather forecasts and advisories, drive the development of
entirely new materials and technologies, help understanding diseases and allow the
development of new drugs.

One of the most prevalent research areas on today’s High-Performance Comput-
ing (HPC) clusters is chemistry and material science. To understand how materials
behave under certain conditions and how molecules form and interact, large atom-
istic simulations are performed. This computational chemistry is nowadays an impor-
tant connecting link between theory and experiment in that it allows to perform and
closely observe experiments in a virtual laboratory. One category of atomistic simu-
lations is Ab-Initio Molecular Dynamics (AIMD), where the movement of atoms and
their interaction is simulated from first principles, which means that the simulation
is entirely based on quantum mechanical electronic structure methods such as Den-
sity Functional Theory (DFT). While this kind of simulation provides a high level
of accuracy, it is computationally demanding and typically only allows to simulate
systems of thousands or in the case of special Linear Scaling DFT (LSDFT) methods
up to a million atoms.

To cope with the ever growing demand for computational power, increasingly
large HPC clusters are required, driving the cost of these systems and therefore sci-
entific computing overall. At the same time, the systems need to become more en-
ergy efficient in order to keep energy and cooling costs manageable. One visible
trend to increase the energy efficiency is to make use of specialized hardware accel-
erators, such as GPUs or Field Programmable Gate Arrays (FPGAs). To efficiently
scale applications over increasingly large clusters and to make use of hardware ac-
celerators are major challenges when developing HPC methods and codes.

1.1 Contributions

In this thesis, we tackle both of these challenges in the context of one particular
LSDFT method which is density matrix based DFT. It is based around the so-called
matrix sign function which in the context of large AIMD simulations needs to be
computed on large, sparse matrices that are stored in a distributed fashion on all
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compute nodes. Next to the matrix sign function, one other particularly important
kernel is the computation of inverse square roots of matrices, or more generalized,
the computation of inverse matrix p-th roots. We leverage the concept of Approxi-
mate Computing (AC) in that we allow small approximation errors in the computed
results in order to increase performance and scalability of the involved algorithms
and make them suitable for acceleration on GPUs and FPGAs. The main contribu-
tions of this thesis are:

1. We study the effect of using low-precision floating-point arithmetic and stor-
age for iterative methods that are commonly used for computation of inverse
matrix p-th roots and the matrix sign function. We evaluate the resulting errors
using real-world input data and application-specific error metrics to specif-
ically evaluate the use of low-precision arithmetics in the context of Linear
Scaling DFT. This lays the foundation for using high-performance low-preci-
sion accelerators such as modern GPUs and FPGAs for the computation of
these matrix functions.

2. We present the Submatrix Method as a general method to compute approximate
results for unary matrix functions for large, sparse input matrices in a highly
parallel fashion. It transforms the computation of a function on a large, sparse
input matrix into independent computations of this function on a set of much
smaller, dense submatrices. These computations can then be distributed over
many compute nodes or accelerator devices, making the overall method highly
scalable and efficient.

3. We describe and evaluate an implementation of the Submatrix Method in the
open source code CP2K. In this way, we not only show how practical im-
plementation challenges can be overcome, but also demonstrate the practi-
cality of using the Submatrix Method in the context of Linear Scaling DFT.
Our submatrix-based approach shows to be highly scalable and, if accuracy
requirements do not exceed a certain limit, shows favorable performance com-
pared to the previously used approach. The presented approach and our im-
plementation has been included in CP2K.

4. We demonstrate the computation of the sign function for the generated sub-
matrices using GPUs and FPGAs and evaluate both performance and energy
efficiency for these implementations. For the GPU accelerator, we additionally
evaluate using low or mixed precision arithmetic in order to fully exploit the
capabilities of these devices. For FPGA acceleration, we describe in detail how
the discussed iterative methods are implemented on an FPGA.

1.2 Thesis Structure

The thesis is structured as follows: In Chapter 2, we lay the foundation for the
thesis contents by introducing basic terms and principles from the areas of High-
Performance Computing, Approximate Computing and basic linear algebra. Chap-
ter 3 provides a brief introduction into Ab-Initio Molecular Dynamics and Density
Functional Theory, as well as the density matrix based DFT method that is the target
of this work and its implementation in CP2K. Chapter 4 covers the effect of low-
precision arithmetic and storage onto the considered iterative schemes. In Chapter 5,
the Submatrix Method is presented and evaluated for different use cases, including
but not limited to Linear Scaling DFT. The implementation of this method in CP2K
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as well as the evaluation of this implementation is presented in Chapter 6. Offload-
ing the submatrix operations to accelerator devices is covered in Chapter 7. Finally,
Chapter 8 summarizes the results of our work and concludes this thesis.






Chapter 2

Foundations

In this chapter we want to lay the foundation for the topics presented in this work. In
particular, we describe the basic concepts of High-Performance Computing (HPC)
and GPUs and FPGAs as accelerator technology in Section 2.1. We present the idea of
Approximate Computing (AC) which drives the concepts of this work in Section 2.2
and introduce necessary concepts of linear algebra in Section 2.3.

2.1 High-Performance Computing Systems and Applications

High-Performance Computing clusters, or supercomputers, are optimized towards
the workload that the applications from computational sciences pose. These typi-
cally contain large amounts of floating-point calculations on large datasets. To over-
come the limitations of a single computer, supercomputers are in fact large clusters
of compute nodes that communicate using a high-performance interconnect. Each
node within the cluster provides powerful processors with a high core count and
support for wide floating-point vector instructions, in order to maximize data par-
allelism already within a single node. Another focus lies on high memory band-
width to be able to provide the processors with enough data to feed their compute
pipelines. The nodes are connected using specialized networking technologies such
as InfiniBand, which provide much lower latency than typical Ethernet networks.

The 500 most powerful publicly known supercomputers in terms of floating-
point operations per second (FLOP/s) are regularly ranked in the TOP500 list [1].
As of writing this thesis, the most powerful system in this list is the Fugaku super-
computer in Japan which in total provides 7,630,848 CPU cores, providing a peak
performance of 537 PFLOP/s. Apart from raw compute power, energy efficiency
becomes more and more important nowadays. In the GREENS500 list [2], the most
energy efficient systems in terms of GFLOP /] are ranked. Here, Fugaku only reaches
26th place with around 15 GFLOP/]J while the top of the list reaches 39 GFLOP/]J.
Key to this high efficiency seems to be the use of accelerator devices, as the first 21
systems in the list use either GPUs or special-purpose chips in addition to regular
CPUs.

Applications running on supercomputers must be able to distribute their data
and computational load across the available nodes in an efficient manner to be able
to exploit the available computational resources. This requires focusing on a high
level of parallelism when developing methods and algorithms that are supposed
to run on these machines. Optimally, they should be able to scale over thousands
of nodes without communication and data exchange becoming a bottleneck. To be
able to run on particularly energy-efficient clusters, applications need to be able to
offload large parts of their computations onto accelerator devices, such as GPUs,
FPGAs or special purpose accelerators.
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To allow programming applications with this kind of parallelism, there are var-
ious established libraries and programming interfaces. One of these libraries is
the Message Passing Interface (MPI) [3] which allows implementing communica-
tion in distributed memory systems, i.e., clusters comprised of numerous indepen-
dent compute nodes. It supports different communication schemes like point-to-
point communication and collective routines which exchange data between mul-
tiple nodes. It also supports Remote Direct Memory Access (RDMA) operations,
where data can be directly loaded from or stored to memory of other nodes, without
involving the remote processor. Another widely used framework is OpenMP [4],
which is a pragma-based language extension to C, C++ and Fortran. It focuses on
shared-memory parallelism through threading and data-level parallelism using the
processor’s vector instructions. The latter is also referred to as Single Instruction
Multiple Data (SIMD) because vectors of multiple data elements are processed us-
ing a single instruction. OpenMP also provides basic support for GPU programming
in that code can be annotated to be automatically offloaded to GPUs.

2.1.1 HPC Clusters Used in This Work

Throughout this work, concepts and implementations will be evaluated on two HPC
clusters hosted at the Paderborn Center for Parallel Computing.

OCulLUS

The OCuLUS cluster has been installed in 2013. It features different classes of com-
pute nodes with varying features. In total, it contains of 619 nodes that are connected
by a 40 Gbit/s InfiniBand network and have access to 500 TB of shared storage [5].
In this work, we use two kinds of nodes of the OCuLUS cluster:

Compute Nodes contain two Intel Xeon E5-2670 CPUs with a total of 16 Sandy
Bridge EP cores with a base clock of 2.6 GHz. The nodes are equipped with
64 GiB of DDR3 main memory.

GPU Nodes additionally contain an NVIDIA RTX 2080 Ti [6] GPU card equipped
with 11 GiB of on-board GDDR6 memory. It is connected to the host via PCle-
3.0 x16.

Noctua 1

The Noctua 1 cluster has been inaugurated in 2018. Its 272 nodes are connected via
a 100 Gbit/s Intel Omni-Path network and have access to 720 TB of shared storage.
In total, it contains 10,880 CPU cores and 51 TiB of main memory and has been
benchmarked with a total of 535 TFLOP/s [7]. The cluster contains two different
kinds of nodes which are both used in this work:

Compute Nodes contain two Intel Xeon Gold 6148 CPUs with a total of 40 Skylake
SP cores with a base clock of 2.4 GHz. The nodes are equipped with 192 GiB of
DDR4 main memory.

FPGA Nodes are based around two Intel Xeon Gold 6148F CPUs and additionally
contain two BittWare 520N [8] cards connected via PCle-3.0 x8. These cards
each contain an Intel Stratix 10 GX 2800 FPGA and 32 GiB of on-board DDR4
memory.

Thttps:/ /pc2.uni-paderborn.de/
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Table 2.1: Overview over different floating-point types. The table lists the number
of stored mantissa bits, not counting the implicit bit. Each data type contains an

additional sign bit.
Name Total Bits  Exponent Bits ~ Mantissa Bits
Double-Precision (FP64) 64 11 52
Single-Precision (FP32) 32 8 23
TensorFloat-32 (TF32) 19 8 10
Half-Precision (FP16) 16 5 10
Brain Floating Point (bfloat16) 16 8 7

2.1.2 GPUs as Accelerator Platform in HPC

GPUs have their roots in the acceleration of 3D graphics applications. They became
interesting for general computational workloads such as fast linear algebra when
they started to provide support for floating point arithmetic. While in the begin-
ning any computational problem needed to be formulated using graphic primitives,
NVIDIA in 2006 released the CUDA programming model [9] that allows general
purpose programming for their own GPUs. In 2009 OpenCL [10] was introduced
as a vendor independent language and framework for programming GPUs. Both
CUDA and OpenCL are currently widely used for GPU programming with CUDA
being limited to NVIDIA devices.

Generally, a GPU can be considered as a collection of multi-threaded SIMD pro-
cessors, i.e., processors that support running many hardware threads in parallel
where each of these threads is a sequence of SIMD instructions [11, Ch. 4.4]. Con-
ceptually this is not entirely different from modern multi-core CPUs that typically
support hardware multi-threading and SIMD instructions as well. However, GPU
architectures are optimized for high throughput of many concurrent and indepen-
dent calculations. In particular, the number of processors and the number of hard-
ware threads running on each processor are typically much higher than on a general
purpose CPU. Additionally, the GPU processing cores focus entirely on the execu-
tion of SIMD operations. Conditions and branches can be executed without jumping
between different instructions by using predication and mask registers. To support a
high number of concurrent hardware threads, each SIMD lane features a large num-
ber of registers that are divided among the running threads.

To better suit machine learning and in particular deep neural network applica-
tions that gained much attention over the last years, GPUs for high-performance
applications have gained special support for low-precision matrix multiplications.
For example, NVIDIA GPUs provide specialized tensor cores that perform Multiply-
ACcumulate (MAC) operations on matrix blocks in different precisions, such as
double-precision (FP64), single-precision (FP32), half-precision (FP16) and more spe-
cialized floating-point types such as bfloatl6 (BF16) and TensorFloat-32 (TF32) as
well as different integer types (INT8, INT4, BINARY) [12]. An overview over dif-
ferent floating-point data types is given in Table 2.1. Mixed-precision multiply-
accumulate where multiplications are performed in low precision (FP16, BF16, TF32)
and accumulation is performed using single-precision are supported as well. Uti-
lizing these tensor cores, especially using low-precision, allows to fully exploit the
performance of these GPUs. For example, the NVIDIA A100 [12] GPU has a peak
performance of 9.7 TFLOP/s when using conventional FP64 arithmetic. Utilizing
tensor cores raises this number to 19.5 TFLOP/s (FP64), 156 TFLOP/s (FP32) and



8 Chapter 2. Foundations

312 TFLOP/s (FP16, BF16) and even up to 624 TOP /s (INT8) and 1,248 TOP /s (INT4)
when performing integer instead of floating-point arithmetic.

Programming GPUs in CUDA or OpenCL is done on the level of single SIMD
lane operations (referred to as thread in CUDA or work item in OpenCL) and groups of
these operations that are executed on the same processor and therefore have access to
a shared local memory (referred to as thread block in CUDA or work group in OpenCL).
Combining these operations into threads of SIMD instructions (referred to as warp
in CUDA) is then performed by the compiler. Scheduling the thread blocks on the
different processors is performed at runtime by the GPU’s thread block scheduler.

Due to the different programming models and terminologies compared to CPU
programming, and due to the need to optimize algorithms and code towards the
architecture of GPUs, utilizing the full potential of GPUs can be challenging. To ease
the development for GPUs, pragma-based programming standards such as OpenMP
and OpenACC [13] have been developed that allow offloading computationally ex-
pensive parts of code to GPUs without explicitly writing CUDA or OpenCL code.
While this removes the burden of learning entirely new programming models, a
good understanding of the underlying architecture is still required to achieve good
performance. Over time, a number of libraries has been published that can be used
to utilize GPUs without the need for any custom GPU programming. Many com-
putational tasks from high performance computing applications have been imple-
mented, such as dense and sparse linear algebra and FFTs. In the context of this
work, we will make use of NVIDIA’s cuBLAS [14] library that implements basic
dense linear algebra on NVIDIA GPUs.

2.1.3 FPGAs as Accelerator Platform in HPC

With GPUs being the most prevalent type of accelerators in HPC systems, provid-
ing high floating-point throughput for highly parallel computations, application-
specific accelerators can be found as well. While these may offer the best possible
performance for a certain application, the development and production of Appli-
cation-Specific Integrated Circuits (ASICs) comes with high costs and is therefore
commercially suitable only for widely used applications, with machine learning be-
ing the most dominant example in the current HPC landscape.

Another promising hardware architecture for accelerators are Field Programma-
ble Gate Arrays (FPGAs). These are also referred to as programmable hardware, as they
can be programmed by the developer to behave like any arbitrary digital circuit.
This allows profiting of a special-purpose hardware accelerator without the need of
going through the development and production of completely custom ASICs. In-
stead, they can be bought readily available from vendors, together with the required
software for programming.

Structure

FPGAs are available from different vendors, with Xilinx and Intel being the two
most dominant. While the hardware architecture slightly differs, FPGAs from both
vendors basically contain the following elements:

¢ Lookup Tables (LUTs) that can be used to model arbitrary combinatorial logic,

¢ registers or Flip Flops (FFs) for data storage and to implement synchronous
logic,
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Figure 2.1: Simplified illustration of the typical architecture of an FPGA.

* a programmable interconnect that can be configured to route signals between
different logic elements,

¢ dedicated SRAM blocks (referred to as BRAM) that can hold several kilobytes
each,

¢ specialized Digital Signal Processing (DSP) blocks used for arithmetic opera-
tions,

¢ Phase-Locked Loops (PLLs) to generate clock signals and dedicated clock net-
works to route them across the chip, and

¢ /O banks and serial transceivers to communicate with peripherals.

A simplified illustration of the architecture of an FPGA is shown in Figure 2.1. For
the use of FPGAs in HPC systems, the FPGA is typically combined with additional
memory (DRAM or High Bandwidth Memory) on a PCle board that can be installed
in the compute nodes of a cluster.

The single elements of the chip can be combined to build larger structures and
are often configurable in itself. One noticeable difference between the two main ven-
dors lies in the configurability of the DSP blocks. With respect to floating-point oper-
ations, on current Intel Stratix 10 FPGAs a single DSP block performs one MAC op-
eration in single-precision [15]. On current Xilinx UltraScale+ devices, a DSP block
works on two inputs of 27 bit and 18 bit length, such that multiple blocks or a block
and additional logic need to be combined to perform a single-precision MAC op-
eration [16]. While the latter architecture seems less optimized for single-precision
computations, it provides more flexibility in input data widths and in choosing the
resources used for arithmetic operations.
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Capabilities

One of the main advantages of FPGAs is the possibility to physically distribute the
logic across the chip and therefore allow highly parallel execution. For example,
independent iterations of a loop do not have to be computed sequentially by a pro-
cessing core but instead can be unrolled in space and computed in parallel using
different logic elements of the FPGA. To deal with data dependencies, deep com-
puting pipelines can be constructed, where data is processed in ten thousands of
consecutive pipeline stages, avoiding the need for any memory loads and stores.

Due to these possibilities, FPGAs are most common in streaming-based applica-
tions, where data is constantly streamed into the FPGA, processed by the application-
specific pipeline and results are constantly streamed out. However, while this kind
of application is a strong case for using FPGAs, they are also well suited in other
applications. For example, we have demonstrated highly efficient execution of a
branch and bound search algorithm on FPGAs [A7], utilizing the flexibility of FPGAs
by generating problem-specific hardware designs for each concrete search problem.
Others have successfully used FPGAs to implement finite difference methods and
finite element methods to solve Maxwell’s equations [17, 18] and to implement shal-
low water simulations [19]. Large FPGAs that are specifically tailored towards HPC
environments also provide high floating-point compute capabilities. However, cre-
ating designs that achieve near peak floating-point performance is often challenging
because designs need to utilize most of the DSP blocks in each clock cycle and run
at high frequencies.

Development Models

Traditionally, FPGAs are programmed using Hardware Description Languages, such
as Verilog, SystemVerilog and VHDL. These languages provide some abstraction
over the concrete logic design in that circuits can be described based on their be-
havior. Tools provided by the vendor then synthesize a hardware netlist from these
descriptions, map parts of these netlists to components available on the FPGA, fi-
nally allocating specific elements on the FPGA and generating a routing to connect
all elements accordingly. However, the behavioral description is still on a low level,
requiring precise description of combinatorial logic and clock synchronous logic.

To allow for an easier development process and to allow the design of more com-
plexlogic on large FPGAs, higher-level abstractions and High-Level Synthesis (HLS)
tools are nowadays very common. Here, the logic behavior is automatically synthe-
sized from a software-like description in C, C++ or OpenCL. There are also domain
specific languages such as Maxeler’s Max] that is a Java-based language used to de-
scribe data flow engines that are then synthesized into FPGA designs [20]. Apart
from the much more accessible development flow that is provided by HLS tools,
they can often generate deeply pipelined designs that allow high clock rates and
that would be barely possible to design by hand.

However, even when using these high level abstractions, the developer still needs
to guide the design tools with pragmas or similar code annotations. For example,
unrolling factors for loops can be specified to control the number of loop replicas and
therefore the amount of parallelism in the FPGA design. Additionally, the developer
has to closely examine compiler reports to identify any performance obstacles in the
design, locate opportunities for further optimization and to scale the logic depend-
ing on the available resources. Due to the fact that hardware synthesis often takes
hours or even days, this can be a very time consuming process.
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2.2 Approximate Computing

Calculations with limited precision and the use of approximate algorithms are not
uncommon in computing. In fact, all of the commonly used floating-point data types
shown in Table 2.1 on page 7 have inherently limited precision. Approximation
algorithms allow finding solutions to optimization problems that are not necessarily
the best solution but good enough.

In recent years, Approximate Computing (AC) has gained attention as a para-
digm to specifically exploit approximations and imprecise calculations in order to
increase the performance or energy efficiency of computing systems [21, 22]. The
approximations can thereby reach across all parts of the computing stack, i.e., down
from the design of logic circuits and their operating conditions up to the running ap-
plication with its internal algorithms and data structures. Optimally, an AC system
would exploit opportunities for approximation on all these levels of the computing
stack in a way to maximize performance or efficiency while retaining the function-
ality of the application. Working towards this goal makes AC a very wide and com-
plex research field, requiring understanding of the application domain, the involved
algorithms as well as the underlying computer architecture. In the following, goals,
techniques and typical areas of application are briefly presented.

2.2.1 Goals and Restrictions

Approximate Computing can be used to optimize a system towards different goals.
One of these goals is performance, i.e., minimizing the time required to come to a
solution (time to solution) or growing the maximum problem size that can be handled
in a certain amount of time. Other possible goals are to minimize power or energy
consumption of a system. Since energy consumption is determined as a product of
the time to solution and the average power consumption, it can often be reduced
by optimizing towards performance or power consumption. Naturally, power and
energy consumption have always played an important role in the design of mobile
systems. However, nowadays these two factors become more and more important
also in large-scale computing systems such as HPC clusters. Due to increasing en-
ergy costs and increasing cooling effort, these systems require operators and users
to make the best possible use of the consumed electrical energy.

Next to performance, power and energy efficiency considerations, also hardware
area constraints can be a reason to consider approximations in a systems and appli-
cation design. For example, when designing ASICs or programming FPGAs, the
available logic resources are limited. In addition, large and complex logic designs
can make routing difficult and thus lower the achievable clock rates of the design.

Calculations cannot be approximated arbitrarily as the final result still has to
be acceptable. However, what result accuracy can be deemed acceptable and how
large the final error is for a given type of approximation in the involved calculations
is very application specific. In fact, it can also heavily depend on the input data
given to that application. Error metrics used to assess the quality of results need to
be chosen accordingly. Certain applications may also allow to refine approximate
results if necessary or repeat calculations where the resulting error exceeds a certain
threshold, allowing more aggressive approximations.
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2.2.2 Applications

Certain kinds of applications are predestined to profit from approximations [23].
One group of applications are those where the output is targeted at human percep-
tion which is often incapable of noticing small variations or errors. Examples are im-
age, audio and video processing algorithms. In fact, lossy compression techniques,
which are common in this area of application, can be considered as approximate stor-
age. Another area are applications that process data from sensors that is inherently
noisy or output data to actors that have limited accuracy. Here, small approximation
errors may be entirely hidden by noise that is inherent to the input or output of the
system. A last category of typical candidates are applications where no golden out-
put exists or we cannot determine this golden result in a practical amount of time.
Examples are heuristics, machine learning and approximation algorithms. Here we
already accept results that are good enough, so considering the introduction of fur-
ther approximations seems natural.

Next to the kind of application, also the internally used algorithms can provide
opportunities for approximation. In particular, iterative algorithms may be able to
correct errors introduced in one iteration in any subsequent iteration. We will look
at this potential more closely in Chapter 4.

So far, scientific applications are rarely considered a typical target of AC. How-
ever, they often exhibit some of the aforementioned properties. In particular, they
often already use certain approximations in their underlying models and might use
random or noisy input data. Scientific codes may also use iterative algorithms to per-
form their computations. For these reasons we consider AC a promising paradigm
also for HPC environments.

2.2.3 Levels of and Techniques for Approximation

As Approximate Computing covers all parts of the compute stack, manifold tech-
niques to exploit approximations have been proposed over time. Here we only give
a coarse overview to convey the width of the field.

On the bit level of computations, a natural approach is to lower the precision of
used data types and provide support for such low-precision computations in hard-
ware. In fact, over the last years we have seen increasing support for low-precision
floating-point types such as half-precision or bfloat16 in hardware, mainly to accel-
erate inference in neural networks. However, also more unconventional paths can
be chosen. For example, arithmetic circuits such as adders and multipliers can be
designed in a way to require fewer logic elements but introduce small errors for cer-
tain inputs [24, 25]. Logic circuits may also be overclocked or operated at supply
voltages that are lower than what is required to guarantee correct operation (voltage
over-scaling) [26, 27]. Another low level approach is to use entirely different comput-
ing paradigms such as analog computing [28] or stochastic computing [29] where
numbers are not represented by fixed bit patterns but either by analog voltage levels
or stochastic bit streams.

On the application level, entirely new approximate methods and algorithms can
be developed that partly or entirely replace accurate computations. One approach
that does not require explicit modelling of the approximation is to train and use
neural networks to replace compute expensive parts of the application [30]. Many
of these approaches are highly experimental and are difficult to apply in productive
HPC environments. In this work, we therefore focus on the use of low-precision data
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types and the explicit design of approximate methods. Generally, low-precision data
types can be used for any arithmetic calculations, for the storage of data or both.

Approximate Arithmetic

Approximating the arithmetic operations using low precision can be beneficial for
overall performance or the energy efficiency, depending on the underlying compute
platform. As discussed in Section 2.1.2, recent GPUs targeting the data center, such
as the NVIDIA A100, support low-precision data types such as half-precision or
bfloat16, often doubling the peak performance compared to single-precision arith-
metic and in case of the A100 even increasing performance sixteenfold compared to
double-precision arithmetic.

For custom hardware accelerators, the data width also plays an important role.
Reduced precision can significantly lower resource requirements on FPGAs, e.g. for
current Xilinx devices using less than 17 stored mantissa bits reduces the number of
required DSPs by half compared to single-precision. For custom CMOS designs it
has been shown that the power consumption of multipliers rises at least quadrati-
cally with the number of input bits [31]. Because the delay increases too, this has an
amplified effect on the energy consumption. Using fixed-point arithmetic with only
few bits can further simplify custom designs for FPGAs or ASICs.

Approximate Storage

In scientific applications, often large amounts of data need to be stored, commu-
nicated and processed. This not only leads to great computational demands but
also requires large memories and high memory bandwidth. Even if calculations are
performed precisely, the required memory space and bandwidth can be reduced by
storing intermediate results as well as the input data itself with less precision, using
fewer bits. If the computations are to be performed on special hardware accelerators
such as GPUs or FPGAss, the data needs to be transferred between the host and these
devices. In this case, bandwidth quickly becomes a limiting factor, motivating the
use of low-precision representations for the transferred data.

We will consider both scenarios, approximate arithmetic and approximate stor-
age, in Chapter 4 for two linear algebra algorithms.

2.3 Linear Algebra Basics and Definitions

In the following, we define fundamental terms from the field of linear algebra and
briefly recollect basic rules that are relevant in the context of this thesis. After that,
two particularly important matrix functions, the inverse p-th root and the sign func-
tion, are presented in detail.

2.3.1 Fundamental Terms

Definition 2.1. We call a set of vectors linearly independent, if none of the vectors can
be represented as a linear combination of other vectors in the set.

Definition 2.2. We call two vectors @ and b with nonzero length orthogonal if their
dot product is zero, i.e., 4 - b = 0. A set of vectors is orthogonal if all vectors in the
set are pairwise orthogonal. If vectors are orthogonal and additionally have a norm
of 1, we call them orthonormal.
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Definition 2.3. With I we denote the identity matrix defined as

1 0 0
I— 0 1

0

0 0 1

Definition 2.4. If for a square matrix A € C"*" we can find a matrix B € C"*" for
which
AB=BA =1

holds, we call A invertible and B = A~ ! its inverse.

Definition 2.5. If for a matrix A € C™*" it holds that AA = I, i.e,, A is its own
inverse, we call A involutory.

Definition 2.6. For a matrix A € C"*" we define the trace of A as
n
TI‘(A) = Zﬂii-
i=1

Definition 2.7. For a matrix A € C"*" we call the matrix given by transposition of
the matrix and complex conjugation of all elements its conjugate transpose or Hermi-
tian transpose and write A" or A*.

Definition 2.8. If for a matrix A € C"*" it holds that A = AT, we call A symmetric.
If for a matrix A € C"™*" it holds that A = A", we call it Hermitian.

Definition 2.9. A Hermitian matrix A € C"*" is called positive-definite if for all vec-
tors X € C"\ {0} it holds that X*AX > 0. It is called positive semi-definite if for all
vectors X € C" it holds that ¥*AX > 0.

Definition 2.10. For a square matrix A € C"*" we call vectors with nonzero length
U; for which
AT; = Aiv;,

holds (right) eigenvectors. The corresponding A; is called the corresponding eigenvalue.

Definition 2.11. If a square matrix A € C"*" has n linearly independent eigenvec-
tors, it is called diagonalizable and can be represented as

A=QAQ7,

where Q = (0103 - - - U,) is the matrix constructed from the eigenvectors and

A 0O - 0
A— 0 A

S 0

0 --- 0 Ay,

is a diagonal matrix with the corresponding eigenvalues on its diagonal. This par-
ticular decomposition of A is called eigendecomposition. If A is symmetric, then or-
thonormal eigenvectors can be chosen such that Q~! = QT. Real symmetric matri-
ces are always diagonalizable. If A is diagonalizable and all eigenvalues of A are
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nonzero, it is also invertible and its inverse can be computed by inverting the indi-
vidual eigenvalues in A:

a7 = (eae) "
— oA lQ!

Definition 2.12. For a matrix A € C"*", we define the following matrix norms:
Al =
Al =
Al =

1A]lF =

where Amax denotes the largest eigenvalue. || A||, is referred to as spectral norm. || Al|
is referred to as Frobenius norm.
2.3.2 Matrix Powers and (Inverse) p-th Roots

As for scalar values, matrix powers with integer exponents can be seen as multiple
matrix multiplications, i.e.,

A"=A-A- ... A.
—
n times

Based on this, we can also define matrix roots:

Definition 2.13. Let B be a matrix such that B = A. Then we call B a p-th root of
A.

However, this is not a unique definition for B. This can easily be seen by the fact
that all involutory matrices are square roots of the identity matrix I. We therefore
literally adopt the definition by Higham [32, Theorem 7.2] for a unique principal p-th
root:

Definition 2.14. Let A € C"*" have no eigenvalues on R™. There is a unique p-th
root B of A all of whose eigenvalues lie in the segment {z : —7t/|p| < arg(z) <
7t/|p|}, and it is a primary matrix function of A. We refer to B as the principal p-th
root of A and write B = A'/7.If A is real then A'/? is real.

Definition 2.15. For a matrix B = A~!/? with p > 0 we use the term inverse p-th root
of A.

Note that, to avoid any ambiguity with the inverse of the root function (i.e., the
matrix power), a more distinct term would be the reciprocal p-th root. However, the
term inverse p-th root is commonly used in literature and therefore also throughout
this thesis.
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Calculation of Inverse Matrix p-th Roots

For the calculation of the p-th root A/? of a matrix A, a commonly used algorithm
is the one described by Higham and Lin [33, 34]. For the calculation of inverse p-th
roots, i.e., A~1/P, there are also iterative methods available, such as the one described
by Bini et al. [35] which is briefly presented in the following.

Let X, k = 0,1,... be the sequence of intermediate result matrices. Starting
with an initial guess Xy, in each iteration the result is refined by

1
X = ((p—|— 1)X; —X;’“A) . 2.1)

If the initial guess X, was already close to A~!/7 such that
11— XJA|, <1, (2.2)

X for k — co converges against A~1/7. For p = 1 the algorithm corresponds to the
well-known Newton-Schulz method [36] used to iteratively calculate inverse matri-
ces. There are different possible choices for Xy. Throughout this work, we use

-1
Xo = (|A]l; - All) AT, (2.3)

which is proven to always fulfill constraint (2.2) and therefore guarantees conver-
gence [A4, Proposition 4.1]. The shown method can be extended to perform more
matrix multiplications within a single iterations and therefore require fewer itera-
tions overall which we have shown in related work [A4]. For simplicity, we will
however stick to the original method throughout this work.

An alternative to using iterative methods is to compute the eigendecomposition
of A and compute the inverse p-th roots of all eigenvalues:

A=QAQ"
NYELY P (2.4)
A*l/p — QA/Qfl‘
For symmetric matrices, the same approach can be followed using A = QAQT as a
decomposition.

2.3.3 Matrix Sign Function

For scalar values, the sign function denotes whether the real part of that value is
positive or negative. Formally, it can be defined as follows.

Definition 2.16. For a scalar value x € C with x not on the imaginary axis, i.e.,
Re(x) # 0, the sign function is defined as

om(x) _ {71 1 Re() >0
M=) 21, if Re(x) < 0

The sign function can also be computed as

sign(x) = = x(x?) -2,

2l
N
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Using this scheme, we define the sign function for square matrices as follows.

Definition 2.17. For a matrix A € C"*" with no eigenvalues on the imaginary axis,
the matrix sign function is defined as

sign(A) = A(A?) /%,

The sign function maps all eigenvalues A;(A),i =1...nto

41, ifRe(A;(A)) >0

—1, ifRe(A;(A)) <0 @3)

\i(sign(4)) = {

while leaving the eigenvectors of the matrix unchanged. From Definition 2.17 it is
obvious that the matrix sign function can be computed using matrix powers and
inverse matrix square roots. Additionally, there are different iterative schemes avail-
able to compute the matrix sign function. One of them is the Newton-Schulz itera-
tion [36, 32, Chapter 5.3] given by

1
Xo=A4, Xiq= EXk(31 — X?) 26
sign(A) = kh_}nrgo Xk, .

Convergence is guaranteed if ||[I — A?|| < 1 for any of the norms from Defini-
tion 2.12. Beyond the Newton-Schulz method, there is the Padé family of itera-
tions [37, 32, Chapter 5.4] whose member functions converge with different order.
For example, a possible third order scheme is given by

1
Xo=A, Xpi1= gXk(151 —10X7 + 3X}) o7
sign(4) = lim X;. '

Next to the use of iterative schemes, the sign function can be computed based
on the eigendecomposition of the input matrix by applying the scalar sign function
from Definition 2.16 to all eigenvalues:

A=QAQ™
Aj; = sign(Ai;) (2.8)
sign(A) = QA'Q L.
For symmetric matrices, the same approach can be followed using A = QAQT as
a decomposition. Since A’ is a matrix with only £1 on its diagonal and all other of

its elements being zero, it is involutory. From this we can easily deduct that for all
matrices A, sign(A) is involutory:

(sign(A))’ = QA'Q'QA'Q ' =QA'A'Q ' =QQ ' =1 (2.9)
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Chapter 3

Ab-Initio Molecular Dynamics and
Electronic Structure Calculations

Electronic structure calculations such as Density Functional Theory (DFT) calcula-
tions nowadays make up a large portion of the worldwide HPC workload. Statis-
tics published by some of the TOP500 HPC centers specify 25% to 50% of the com-
pute time being dedicated to chemistry and material science applications, leading
to estimates of the share of compute time consumed by these applications to about
35% [38]. With that, this field also significantly contributes to the high energy de-
mands of today’s HPC systems and optimizations of widely used methods poten-
tially have a large global impact. In this chapter, one particular application of elec-
tronic structure methods, namely Ab-Initio Molecular Dynamics (AIMD), and CP2K
as the DFT and Molecular Dynamics (MD) code used in this work are briefly pre-
sented.

3.1 Molecular Dynamics Simulations

Computational chemistry is, next to theoretical chemistry and practical lab experi-
ments, one of the major sources of new insights into chemistry. MD simulations [39,
40] can be regarded as experiments in a virtual lab, allowing to closely observe the
interaction of up to trillions of atoms [41, 42] in precisely determined environments.
With that, they are especially well suited to determine chemical properties of certain
substances under conditions that cannot be easily produced or observed in labora-
tories, or to get insights on a molecular level that can barely made visible under
modern scanning tunneling microscopes [43]. Apart from basic research, helping to
understand physical, chemical and biological processes, these simulations drive the
development of new materials, technologies and drugs.

MD simulations are a kind of n-body simulation in which the dynamic of a sys-
tem comprised of a number of particles (here: atomic nuclei) is simulated in time.
For that, each of the particles is assigned an initial position R;(ty) and velocity 7;(to).
In each simulation step that covers a certain discrete time interval At, the forces E(t)
that act on the particles at time t are computed and positions and velocities are up-
dated accordingly.

3.1.1 Computation and Integration of Forces

In an MD simulation, position and velocity of each particle are updated in every
simulation step based on the forces that act on the particle. As these forces continu-
ously act on the particles, it is necessary to integrate Newton’s equations of motion.
There are many different integrators available. One relatively simple and popular
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one is the Velocity Verlet method [44]. It approximates positions and velocities of the
particles as follows:

Ri(t4 At) = Ri(t) + 7;(t) - At + Pl';t) AP (3.1)
Ti(t+ AF) = Ti(t) + Fi(t+A;>+Pi<t> - At (3.2)

The forces between the particles can be determined using different approaches.
One is to use classical empirically determined force fields. Nowadays, also artificial
neural networks can be trained and used to process atomic positions and output
forces [45, 46, 47]. However, both of these methods rely on reference data and the
accuracy of the resulting models. A much more general but also more compute
intensive method is to compute the forces from first principles. This last form is
called Ab-Initio Molecular Dynamics (AIMD) [48] and is the method targeted by
this work.

The force that acts on a particle j can be determined as negative gradient of the
total energy of the system:

2o dE(Ro(t),. . Ri(h), .. Ri(t))
Fi(t) = aF (1) (3.3)

This energy can be split into two parts: The electrostatic energy between the nuclei
Eion and the energy of the electrons in their ground state Egje, i.e.:

E= Eion + Eelec' (34)

Eion is purely based on the position of the nuclei and can be computed based on
classical physics:
ZiZie*

——— (3.5)
Ri—E;

Eion = Z

i#j 4718

where Z; and Z; are the positive charges of the corresponding nuclei in units of the
elementary charge ¢! and ¢y is the vacuum permittivity?. To compute the remaining
part Egec of the total energy, and therefore to be able to compute the forces in an
AIMD simulation, quantum chemical electronic structure methods need to be used.
DEFT as one very popular electronic structure method will be described in Section 3.2.

3.1.2 Statistical Ensembles

MD simulations can be performed for different statistical ensembles. These ensem-
bles describe which observables of the system are fixed and which are variable.
Three such ensembles are relevant in the context of this work, namely the micro-
canonical ensemble, the canonical ensemble and the grand canonical ensemble.

In the microcanonical ensemble (also called NVE ensemble), the number of par-
ticles N, the volume V and the total energy of the system E is fixed, with the tem-
perature T being variable. This can be imagined as a perfectly isolated container
that does not allow particles or energy to enter or leave the system, as illustrated in

le=1.602...x10719C
Ze) = 8.854... x 10712,
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Figure 3.3: Grand canonical (#VT) ensemble: Fixed chemical potential, volume and
temperature.



22 Chapter 3. Ab-Initio Molecular Dynamics and Electronic Structure Calculations

Figure 3.1. This ensemble is naturally simulated when integrating the equations of
motion as discussed in the previous section.

In the canonical ensemble (also called NVT ensemble), the number of particles,
the volume and the temperature are fixed, while the energy of the system is variable.
This can be imagined as a closed container in which a known number of particles is
enclosed and which is held at a constant temperature by either adding or removing
thermal energy from the system, as illustrated in Figure 3.2. In classical physics, the
temperature is determined by the average kinetic energy of the particles. Hence,
when simulating a canonical ensemble, where a fixed temperature needs to be held
during the entire simulation, the kinetic energies need to be controlled accordingly.
To achieve this, a so-called thermostat needs to be implemented that for example
rescales the velocities after applying the forces to match a given temperature.

In the grand canonical ensemble (also called u VT ensemble), the number of par-
ticles as well as the energy of the system are variable. Volume, temperature and
additionally, the so-called chemical potential y, are fixed. The chemical potential p
is a potential that is conjugate to the number of particles. Therefore a larger chemi-
cal potential will lead to a decrease in the number of particles. The grand canonical
ensemble can be imagined as a container connected to an infinite reservoir of par-
ticles, so that the number of particles can vary to match the given temperature and
chemical potential, as illustrated in Figure 3.3.

3.2 Density Functional Theory

So far we have discussed the general mechanisms of MD simulations and the fun-
damental idea to compute forces from first principles as gradients of the total en-
ergy of the simulated system. However, to compute the energy of the electrons
in their ground state E.je., quantum chemical electronic structure methods are re-
quired. One very wide-spread electronic structure method is Density Functional
Theory (DFT) [49, 50, 51, 52, 53]. It has gained such a high relevance in the field
that in 1998 Walter Kohn was awarded with the Nobel Prize in chemistry for its in-
vention [54, 55]. In DFT, the electron density is computed and used to determine
fundamental properties of the system. In the context of AIMD, the electron density
determines Egj. and therefore the so far missing part of the total energy from Equa-
tion 3.4 which ultimately determines the forces. In the following, we briefly describe
how Egje. can be determined using DFT.
The state of an isolated electron i is described by a so-called wave function

¥i(7) : R® — C. (3.6)

This wave function assigns a complex value to each point in the three dimensional
space. Given the wave function ¥; of an electron, the density distribution of that
electron n,(7) is defined as
ni(7) = i) (3.7)
When describing a system with multiple electrons, the domain of the wave func-
tion grows exponentially, rendering computations with many electrons infeasible.
In DFT, therefore the so-called Kohn-Sham system is considered. This is a fictitious
system in which different electrons do not interact with each other. Therefore the
electron states can be described by separate single-electron wave functions as intro-
duced in Equation 3.6. An additional fictitious potential is then added to the system
that acts on the electrons in a way such that the resulting electron density matches
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that of the original many-electron system. Due to this approach, the method de-
scribed here is also referred to as Kohn-Sham DFT (KS-DFT).

Another simplification is to assume that all electrons, due to the very small mass
of electrons compared to that of the nuclei, immediately follow any movements of
the nuclei and therefore not leave their ground state. This simplifying assumption is
called Born-Oppenheimer approximation [56].

To determine the electron density for the ground state of the system, the wave
functions corresponding to the ground state need to be identified, i.e., the wave
functions that correspond to the lowest energy. All possible electron states and their
energies are described by the Schrodinger equation. The Schrédinger equation for
the Kohn-Sham system is given as

h2v2
B 2m,

+ Ve_ion (?) + Ve (7/ Tl(?)) lpz(?) = Eilpi(?)l (3-8)

where 1;(7) are the single-electron wave functions and ¢; are the corresponding en-
ergies. The kinetic energy of the electron is described by

h2v2
- 2m,

(3.9)

where 7 is the reduced Planck constant?, V2 is the Laplace operator and m, is the
electron mass*. The electrostatic potential of the nuclei acting on the electron is de-
scribed by

eZZi

Ve—ion (7) = - (310)

T 4meg }?— ﬁi"
Lastly,
Ve(7,n(7)) (3.11)

is the fictitious potential added to model electron-electron interaction of the original
many-electron system.

To make the wave functions accessible by numerical computations, they are rep-
resented as a combination of a finite number of so-called basis functions f}, i.e.,

)

These basis functions can be plane waves, in which case the representation resem-
bles a Fourier series, localized functions that are centered around the nuclei or com-
binations of these. Examples for localized functions are Slater-type orbitals [57],
Gaussian-type orbitals [58] or wavelets [59]. From here on, we will only consider
localized, atom-centered basis functions. The concrete basis functions used in this
work will be described in more detail in Section 3.3.2.

In terms of these basis functions f] and coefficients cij, the so-called Hamilton
matrix H can be defined with elements

| B2V
Hyj = /dgr ¢ (7) [— o,

3h =1.054... x 10~34]s
41me =9.109... x 107 3kg

+ Ve—ion (7) + Ve (?/ n (7)) f] (?) . (3-13)




24 Chapter 3. Ab-Initio Molecular Dynamics and Electronic Structure Calculations

It is also referred to as Hamiltonian or Kohn-Sham matrix. The so-called overlap matrix
S can be defined with elements

5= [ € P 619
The Schrodinger equation can then simply be written as
H¢; = ¢;Sc;. (3.15)

This form resembles a generalized eigenvalue problem. Its solution provides possi-
ble electron states in terms of the coefficients ¢; and the corresponding energies ¢;.
Orthogonalizing the Hamilton matrix leads to a conventional eigenvalue problem:

I:IE,' = EiEi/ (316)
where H = S~'H (asymmetric orthogonalization) or H = S~1/2HS~1/2 (symmetric
Lowdin orthogonalization [60]).

3.21 SCF Cycle

As shown in Equation 3.11, the electron density is required to compute the fictitious
potential V; and therefore to compute the electron density itself in KS-DFT. To handle
this cyclic dependency, the density is calculated iteratively, following the so-called
Self Consistent Field (SCF) iteration:

—_

. Start with an initial guess of the electron density n(7).

Compute V, based on currently assumed electron density n (7).
Construct Hamilton matrix H.

Solve eigenvalue problem from Equation 3.16 to determine ground state.

Compute electron density n(7).

AL

If electron density changed: Go back to step 2, otherwise finish.

In practice, this iteration scheme is often slightly altered to improve convergence
behavior. In particular, the newly computed electron density is typically mixed with
the previous one to reduce the step size of this iterative algorithm.

3.2.2 Density Matrix Based DFT

Although the electron density is sufficient to describe observables of the Kohn-Sham
system, a more extensive but useful representation is the single-particle density ma-
trix. At thermodynamic equilibrium and zero temperature it is defined as

D(7,r") =} O —e)pi(F)y; (r"), (3.17)

where © is the Heaviside step function. The term ®(u — ¢;) assigns the value 1
to all energy levels ¢; that are below the chemical potential y, and 0 to all energy
levels above y. This term therefore mathematically describes the fact that in the
ground state, the lowest energy levels up to the chemical potential u are occupied
with electrons.
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Figure 3.4: Fermi function for different temperatures. For T — 0, it becomes closer
and closer to the step function ®(y — ¢;).

While for the moment we stick to zero temperature here, it is important to note
that the definition of the density matrix changes for finite temperature, in that the
Heaviside step function © is replaced by the Fermi function

1
W(e;) = <exp (S;'C;T” ) + 1) , (3.18)

where kp denotes the Boltzmann constant® and T the temperature. Figure 3.4 de-
picts the Fermi function for different temperatures. For T — 0, the Fermi function
becomes closer and closer to the step function ®(y — ¢;).

Going from the wave functions to a representation using basis functions and
their coefficients, the density matrix D can be defined as [61]

D= % (1 — sign <S’1H . ;u)) s! (3.19)
" D= %5*1/2 (1 — sign (5*1/2H5*1/2 - yI)) s12, (3.20)

depending on the chosen orthogonalization scheme. In the form shown here, we
assume that there is no spin polarization and therefore only electrons with one of
the two possible spin quantum numbers need to be considered (see Section 3.3.2).
The electron density can directly be determined from the diagonal elements of
the density matrix, i.e.,
n(r) =2-D(7,7). (3.21)

Skp =1.380... x 1072 =8617...x 107°¢/
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Off-diagonal elements represent the covalency of the system. Also the energy of the
electrons Egje. can be determined directly from the density matrix as

Eelec =2+ _¢; =2-Tr(DH). (3.22)
i

Computing the density matrix directly from the Hamilton matrix (in the following
also referred to as purification) using Equation 3.19 or 3.20, can therefore substitute
explicitly solving the eigenvalue problem shown in Equation 3.16.

3.2.3 Linear Scaling DFT

The computational effort required to solve the eigenvalue problem shown in Equa-
tion 3.16 or to compute the sign function in Equation 3.19 or 3.20 scales cubically
with the size of the Hamilton and density matrices. This size directly corresponds to
the number of basis functions used to represent the electron configuration. For lo-
calized basis sets, the size therefore depends on the chosen basis set and the number
and kinds of atoms in the system.

This computational complexity severely limits the maximum size of systems that
can practically be examined using DFT. However, to reduce this complexity, a physi-
cal property referred to as the nearsightedness of electronic matter [62] can be exploited.
It states that in a large system, the interaction of electrons that are far apart becomes
negligible. Consequently, the corresponding values in the density matrix, which de-
scribes the state of that system, become negligible. Truncating very small values
in the considered matrices H, S and D makes them sparse for sufficiently large sys-
tems. Increasing the system size further then still grows the matrices accordingly
but at the same time the matrices become more sparse and the number of nonzero
elements in the matrices only grows linearly with the number of atoms. Exploiting
this behavior using sparse linear algebra, DFT methods can be developed that scale
linearly instead of cubically with the number of atoms. We refer to these methods as
Linear Scaling DFT (LSDFT) [63, 64, 65].

3.3 LSDFT in the Quantum Chemistry Code CP2K

CP2K [66, Al] is an open source software package for atomistic simulations, provid-
ing support for different modeling and simulation methodologies, including Molec-
ular Dynamics simulations. Forces between atoms can either be computed using
classical force fields or using electronic structure methods such as DFT. In this work,
we focus on the DFT implementation Quickstep [67, Al] within CP2K. In the follow-
ing, we briefly describe the parts of CP2K that are relevant for this work.

3.3.1 Distributed Block Compressed Sparse Row (DBCSR) Matrix Library

Key to the implementation of LSDFT methods is to exploit the sparsity of the in-
volved matrices. To implement efficient sparse matrix arithmetic in a distributed
memory system, CP2K uses the l[ibDBCSR [68] library. 1ibDBCSR follows the idea
that the sparsity patterns of the processed matrices are not random but typically
show certain patterns. A matrix stored in DBCSR format is divided into a 2D grid of
relatively small matrix blocks which typically contain 5-30 rows and columns. The
information which blocks are zero and which contain nonzero elements is stored
in Compressed Sparse Row (CSR) format. The blocks with nonzero elements are
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stored in a dense format. For efficient processing with MPI, libDBCSR arranges the
MPI ranks in a 2D cartesian topology and creates a mapping from matrix block rows
and block columns to MPI ranks that store these blocks.

libDBCSR provides routines for many matrix operations, in particular matrix-
matrix multiplication which is implemented based on a modified Cannon’s algo-
rithm [69]. As part of this algorithm, many multiplications of the small DBCSR
matrix blocks need to be performed. While this is generally possible using stan-
dard Basic Linear Algebra Subprograms (BLAS) implementations, these are typi-
cally not optimized for operation on such small matrices. libDBCSR therefore con-
tains a custom library libsmm for small matrix-matrix multiplications. Alternatively,
libxsmm [70] can be used for Intel-based systems and there is also a GPU-accelerated
version named libsmm_acc [71] (formerly libcusmm) included in libDBCSR.

3.3.2 Basis Sets Relevant for This Work

Using localized basis functions with a limited range is key for obtaining sparse
Hamilton and overlap matrices for large systems. While the number of the basis
functions used for certain elements (the basis set) and their range is limited, they still
need to cover all relevant quantum states of the electrons of that element. In this
section, we briefly cover the basis sets used in this work. Before that, we describe
the quantum states that need to be covered by the basis sets.

In general, the quantum state of an isolated electron in a non-relativistic case is
determined by the following quantum numbers:

Principal quantum number n € IN. This number determines the shell on which the
electron is located and therefore the energy level of the electron. The shells are
either denoted by natural numbers or by letters (K = 1,L = 2,M = 3,N =
4,..)).

Azimuthal quantum number ! € {0,...,n — 1}. This number determines the sub-
shell or orbital on which the electron is located and it is also referred to as the
angular momentum. The subshells are often referred to by letters (s = 0,p =
1,d =2,f =3,g =4,...). To name a specific subshell, we use the format NI,
e.g., 2s for the s-subshell on the L-shell.

Magnetic quantum number m; € {—I,...,1}. It specifies the orientation of the sub-
shell as shown in Figure 3.5. The number of possible orientations is 2/ + 1.

Spin quantum number m; € {—s,...,s}. For electrons, s = %, such that for elec-
trons ms € {—1,1}.

According to the Pauli exclusion principle [73], each quantum state can only be
occupied by a single electron. Therefore an s-subshell can only hold two electrons,
a p-subshell can hold six electrons and a d-subshell can only hold ten electrons. The
subshells are filled in a specific order, following the so-called aufbau principle [74,
Ch. 2.5.7].

When working with CP2K, throughout this thesis we will use the basis sets pro-
posed by VandeVondele and Hutter [75] which are implemented in CP2K. These ba-
sis sets are all Gaussian type orbitals, and there are different variants provided. All
of them are optimized to describe molecules and only cover the valence electrons,
i.e., the electrons on the outermost occupied shell. The electrons on inner shells are
considered bound to the core and their influence on the valence electrons is modelled
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Figure 3.5: Shapes of the orbitals 1s, 2s and the three 2p orbitals 2p., 2p, and 2p,.
The illustration is based on [72].

using a pseudopotential. Furthermore, no spin polarization is considered and there-
fore only one spin direction is computed, i.e., electrons with spin quantum number
—3 and 3 are not considered separately. This effectively halves the number of ba-
sis functions per quantum state. Regarding the number of basis functions, it can be
chosen between the following variants:

Single-Zeta Valence (SZV) This is the smallest available basis set. Here, one, three,
five, ... functions are used to covers, p, d, ... subshells, respectively. A hydro-
gen atom, which only has an electron on the K shell, is therefore represented
by a single function (s). An oxygen atom, which has six valence electrons on
the L shell, is represented by four functions (one for s, three for p).

Double-Zeta Valence Polarized (DZVP) In a double-zeta basis set, the number of
functions used to describe the valence electrons is doubled. Additionally, there
are so-called polarization functions added for higher subshells that allow to
better describe chemical bonds. A hydrogen atom here is represented by five
functions (two for s, three for p) and oxygen by 13 functions (two for s, six for
p, five for d).

Triple-Zeta Valence Polarized (TZVP) Here, the number of functions used to de-
scribe the valence electrons is three times higher compared to SZV. Similar to
DZVP, polarization functions are added.

There are further variants of basis sets available, e.g., adding more polarization func-
tions, which are not relevant for this work. Two basis sets also come in a Short Range
(SR) variant, which contain especially short ranged basis functions that are opti-
mized for LSDFT®. Throughout this work, we will use these two LSDFT-optimized
basis sets, namely SZV-MOLOPT-SR-GTH and DZVP-MOLOPT-SR-GTH.

3.3.3 Computational Hotspots in AIMD Simulations

So far we have discussed the fundamentals of AIMD and DFT, including the ba-
sics of the LSDFT implementation in CP2K. Before focusing more on this method
throughout this thesis, we want to assess the impact that these DFT computations
have on the overall run time of an AIMD simulation.

CP2K comes with an integrated timing measurement framework that automat-
ically on each run measures the number of calls to certain functions as well as the
time spent within those functions. This allows to easily spot computational hotspots,

Shttps://github.com/cp2k/cp2k/blob/1e5aa65/data/BASIS_MOLOPT#L26


https://github.com/cp2k/cp2k/blob/1e5aa65/data/BASIS_MOLOPT#L26

3.3. LSDFT in the Quantum Chemistry Code CP2K 29

Table 3.1: Reduced timing output of CP2K using an SZV basis set. Shown are the
main hotspots of the entire AIMD simulation.

Subroutine # Calls Time (s) Relative Time
CP2K 1 1058 100%
Is_scf 11 989 93.5%
density_matrix_sign 29 656 62.0%

guiding the optimization of the implemented methods as well as the implementa-
tion itself. To get an overview over the significance of different parts of an AIMD
run, we simulate systems of bulk water with CP2K on a single compute node of the
Noctua 1 cluster described in Section 2.1.1.

For this evaluation, we perform an MD simulation covering ten simulation steps
with a timespan of 0.5 fs between each time step. We consider a microcanonical
(NVE) ensemble, i.e., a constant number of particles, a constant volume and a con-
stant total energy. For the DFT calculations, we use the LSDFT method described in
Section 3.2.2, i.e., we use the sign iteration to compute the density matrix. For the
SCF cycle, we set the convergence threshold escg to 107¢ and the maximum number
of iterations to 30. In our simulation, the SCF iterations always converges with fewer
iterations. Lastly, we set the ey argument to 107° as well. This argument enables
filtering out all matrix elements that are smaller than the given threshold after ma-
trix operations, such that the matrices stay sparse. Furthermore, we use an easy to
scale system from the CP2K benchmarks for our simulation: a cube filled with liquid
water (32 H,O molecules) that can be replicated in all three dimensions.

Timing Profile Using an SZV Basis Set

Using an SZV basis set, we replicate the cube of water four times in each dimension,
leading to a system comprised of 4% - 32 = 2048 water molecules. The most relevant
output of the integrated timing measurement framework is shown in Table 3.1. The
entire program ran for over 17 minutes, of which the electronic structure computa-
tions using the SCF cycle took 93.5%. Computing the matrix sign function for the
density matrix is the main hotspot of the SCF cycle and consumed overall 62.0% of
the entire run time, or 66.3% of the SCF cycle.

Timing Profile Using a DZVP Basis Set

Using a DZVP basis set, the matrices become much larger compared to the previous
run. To be able to simulate the system on a single node of the Noctua 1 cluster, we
therefore need to reduce the system size by replicating the basic block only twice in
each dimension. We therefore consider a system comprised of 2% - 32 = 256 water
molecules. The timing results are shown in Table 3.2. The overall program ran for
over 18 minutes. The iterative SCF cycle takes up 97.8% of the total run time with
75.9% of the total run time and 77.6% of the SCF run time spent computing the sign
function of the density matrix.

Both for SZV and DZVP it is evident that solving the Schrodinger equation using
the iterative SCF cycle is the main computational hotspot in an AIMD simulation in
CP2K with the presented configuration. Within the SCF cycle, computing the matrix
sign function dominates the run time and it is therefore the most promising part of
the computation to optimize in order to get an overall speedup of the simulation.
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Table 3.2: Reduced timing output of CP2K using a DZVP basis set. Shown are the
main hotspots of the entire AIMD simulation.

Subroutine # Calls Time (s) Relative Time
CP2K 1 1115 100%
Is_scf 11 1090 97.8%
density_matrix_sign 29 846 75.9%

3.4 Motivating Approximations in DFT Computations

There are multiple aspects that suggest that DFT computations, in particular in the
context of AIMD, are suitable for acceleration using targeted approximations. One
is that DFT computations and MD simulations already incorporate certain approxi-
mations.

Firstly, while DFT itself is an accurate theory, in practice approximations of the
real world need to be performed to make computations feasible. For example, with
the Born-Oppenheimer approximation we neglect any deviation from the ground
state of the electrons. Moreover, any interaction between electrons is represented by
a functional of which only approximations are known. Secondly, when approach-
ing DFT numerically, we need to represent the electron wave functions by a finite
set of basis functions which is not able to precisely match the original wave func-
tions. When performing MD simulations, we simulate discrete time steps of finite
length, whereas infinitely small time steps would be required to perfectly simulate
real trajectories.

Next to these fundamental approximations that are already contained in the
method, specific implementations further limit precision of the computed results.
CP2K includes configurable thresholds to specify the targeted precision of the SCF
cycle and to deliberately neglect values from matrices that are below a certain ab-
solute value. This shows that in the practical application of DFT and AIMD, there
is always a trade off between the accuracy of the results and the invested compu-
tational resources. Furthermore, AIMD simulations with certain approximations in
the DFT computations can still provide qualitatively better results than classical MD
based on empirically determined force fields.

Lastly, when performing AIMD simulations, we are often not interested in the
exact trajectories of single particles with precisely determined initial positions, but
instead want to determine ensemble averages of certain observables. Based on the
fluctuation dissipation theorem [76], errors in the forces used in an MD simulation
can be entirely compensated if the error in the forces resemble white noise. In related
work, we have shown that even for errors that are in the same order of magnitude as
the forces themselves, we can still obtain precise values for ensemble averages [A3].
Based on this observation, introducing approximations into the force calculation and
therefore the underlying DFT code, is a promising approach to accelerate this com-
putational hotspot of AIMD. In the following chapter, we follow this idea by ap-
plying low-precision computations onto two computational kernels from density
matrix based DFT.
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Chapter 4

Iterative Methods as Target for
Approximations

Iterative schemes are an interesting target in the Approximate Computing paradigm.
One reason is that naturally, iterative algorithms that converge against the sought so-
lution can be terminated early to obtain an approximate solution. This approach has
direct influence on the run time and therefore the energy consumption of the pro-
gram. Another approach is to approximate the computations within each iteration.
The idea here is that errors introduced within one iteration may be corrected or com-
pensated for in a succeeding iteration and approximate computations may suffice to
converge against a good solution. A third aspect that makes iterative schemes inter-
esting is that they often can be used to refine an approximate result to obtain more
precise solutions if needed.

We have seen that the iterative computation of the matrix sign function is the
main computational hotspot in CP2K’s LSDFT implementation and therefore using
approximate arithmetic in this computation is a promising approach to accelerate
the entire method. In this chapter, we therefore examine how the relevant iterative
methods handle the use of low-precision computations within each iteration. In par-
ticular, we look at the computation of matrix inverse p-th roots, which cannot only
be used for computation of the matrix sign function following Definition 2.17 on
page 17 but which is also needed for the orthogonalization of the Hamiltonian, and
the computation of the sign function following the Newton-Schulz iteration shown
in Equation 2.6. Parts of this chapter have been presented at the Approximate Com-
puting Workshop in 2016 [B6] and in 2018 have been published as an article in the
IEEE Embedded Systems Letters [A5].

4.1 Computation of Inverse p-th Roots

We first focus on the computation of inverse p-th roots of matrices using the iteration
scheme described in Section 2.3.2. To assess the resiliency of the given algorithm to
certain errors, we simulate simple approximation techniques. First, we use custom-
precision floating-point and fixed-point arithmetic for all involved calculations in or-
der to get an understanding of the required data ranges and precision. Second, we
restrict the use of these data types to the input data and stored intermediate results,
simulating approximate storage or data exchange of the involved matrices.

41.1 Problem and Data Set

We simulate the use of low-precision data types for the orthogonalization of the
Hamiltonian by extracting overlap matrices for different systems of liquid water



32 Chapter 4. Iterative Methods as Target for Approximations

0 256 512 768

256 A

512 A

768 s l

Figure 4.1: Structure of an examined overlap matrix S (N = 768).

from a DFT code and then iteratively calculating $~!/2. The matrices are obtained

from a Daubechies Wavelet-based DFT code [59]. Similar to the basis described in
Section 3.3.2, this code uses a minimal set of localized basis functions suitable for
Linear Scaling DFT.

Figure 4.1 shows one such overlap matrix S of size N = 768 which we used for
our evaluation. It is a symmetric positive definite matrix with 25% nonzero elements
in the range of [—1, 1], representing a system of 128 H,O molecules. For larger ma-
trices density decreases to 12.4% (N = 1536), 6.2% (N = 3072) and 3.1% (N = 6144)
nonzero elements.

4.1.2 Methodology

For the presented simulations we use Python along with NumPy and SciPy [77],
which provide the required data structures and numeric operations. This allows us
to define entirely custom data types, e.g. floating-point types with a custom number
of bits in the exponent and mantissa, and fixed-point types with a selectable number
of bits and selectable scaling factor. Implementing basic arithmetic operations like
addition, subtraction and multiplication for our custom data types enables NumPy
to use these data types in its own array data structures and numeric operations.
This approach allows a very flexible and fast implementation of simulators for
different approximation techniques. Besides the mentioned floating-point and fixed-
point data types, influences like noise or random bitflips can be easily implemented
and adjusted. This flexibility comes at the cost of a performance penalty as each
arithmetic operation now implies doing a function call, performing the necessary
simulation steps and instantiating a return object. We deal with this performance
degradation by implementing all classes in Cython [78], producing statically typed
C-code which executes orders of magnitude faster than interpreted Python code,
and distributing the simulations over many machines of a large compute cluster.
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Figure 4.2: Computation of inverse p-th roots: Convergence behavior when using
custom-precision floating-point for (a) all arithmetic operations and (b) only for stor-
age of intermediate results (N = 768, p = 2).

4.1.3 Results

In the following, we present the results of our simulations and evaluate the influence
of different parameters, such as size and condition of the input matrices and the
choice of p, onto the resulting error.

Overall Error Resiliency

To assess the overall error resiliency of the algorithm, we initially choose an overlap
matrix of dimension N = 768 and set p = 2 to calculate the inverse square root for
these matrices. With simulation, we determine the convergence of the algorithm, de-
pending on the given precision. The iterative algorithm shows to be rather resilient
to low precision, both for storage of intermediate matrices as well as for all used
arithmetic operations.

Figure 4.2 shows the error between the intermediate solutions Xy obtained from
the algorithm using floating-point with custom mantissa widths and a solution that
was precomputed using double-precision. As error metric we use the Frobenius
norm

N N

|Xe=s77| = LY [ — s

i=1j=1

2

, (4.1)

where x;; are the elements of X; and s;; those of s r,

The observed convergence of the algorithm can be split into two phases: First,
the error steadily decreases according to the algorithm’s quadratic order of conver-
gence [35]. In the second phase, being limited by the given precision of the data
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Figure 4.3: Computation of inverse p-th roots: Convergence behavior when using
custom-precision fixed-point for (a) all arithmetic operations and (b) only for storage
of intermediate results (N = 768, p = 2).

type, the algorithm does not converge further but oscillations may be observed.
This shows that the convergence in the first phase is barely influenced by the in-
troduced errors. Only for less than 10 mantissa bits the algorithm does not converge
at all. Consequently, half-precision floating-point arithmetic is sufficient to retain
convergence. Approximation does however increase the lower bound for the error.
Therefore, the second phase of conversion starts earlier for lower precision.

Increasing the precision in later iterations allows the algorithm to further con-
verge against a lower error, opening the possibility for dynamic precision scaling.
Observing the changes introduced in each iteration, the necessity of increased preci-
sion can be detected at runtime. Note that the use of low-precision arithmetic in the
first iterations does not increase the overall number of iterations, even when using
higher precision in later iterations to achieve more precise results. This allows gains
in performance or energy efficiency as soon as a single iteration can be executed
more efficiently using approximation techniques. The gain in energy efficiency G
can be estimated by

G Eprec - #iterations,yig

4.2
Eprec - #iterationSprec + Eapprox * #iterationsapprox (4.2)

where Eprec (Eapprox) denotes the energy consumption of a precisely (approximately)
performed arithmetic operation.

Approximating only the storage of any intermediate results allows significantly
stronger approximation while achieving similar precision in the output. E.g., storing
only 10 mantissa bits allows a similar error as doing all calculation using 18 mantissa
bits. In our use case the algorithm still converges if only two mantissa bits are used
for all stored values.



4.1. Computation of Inverse p-th Roots 35

102 .
1 —8— FP, 10 mant. bits, N=768
1 —@— FP, 10 mant. bits, N=1536
€ :K\. —¥— FxP, 18 frac. bits, N = 768
5 FxP, 18 frac. bits, N=1536
c 10!
7)) ]
=
c
(]
O
o
j .
L
— 10° E
O ]
&=
L
10_1 T T T T
0 2 4 6 8 10
lteration k

Figure 4.4: Computation of inverse p-th roots: Convergence behavior using custom-
precision floating-point (FP) and fixed-point (FxP) for different matrix sizes (p = 2).

Figure 4.3 shows similar behavior when using fixed-point arithmetic with low
precision. To retain convergence, 18 fractional bits are required for arithmetic oper-
ations. Again, restricting the approximation to stored intermediate results permits
stronger approximation. In our evaluation, storing only four fractional bits showed
to be sufficient to retain convergence.

Influence of the Matrix Size

Most of the results presented before apply directly to larger matrices from our prob-
lem set, in particular when only approximating the storage of intermediate results.
Approximating all arithmetic operations using low-precision fixed-point arithmetic
however exhibits a limitation. As depicted in Figure 4.4, using 18 fractional bits is
sufficient to retain convergence for N = 768 but for N = 1536 the error eventually
increases. The reason for this behavior is that larger matrices from our set are more
sparse (see Section 4.1.1) and therefore their inverse contain smaller values which
cannot be represented appropriately with the given number of fractional bits.

For floating-point this effect is not relevant, as depicted in Figure 4.4. The slightly
larger final error for N = 1536 can be explained by the use of the Frobenius norm as
error metric since it adds up the quadratic errors of all matrix elements and therefore
is not invariant to the matrix size.

Influence of p

Calculating the inverse p-th root for p # 2 shows similar behavior as for p = 2,
as shown in Figure 4.5 for custom-precision floating-point arithmetic and storage.
With increasing p the algorithm in general needs an increasing number of iterations
to converge. This effect is independent of the applied approximation.
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Figure 4.5: Computation of inverse p-th roots: Convergence behavior for different p
using custom-precision floating-point with 22 mantissa bits (N = 768).

Influence of the Matrix Condition

The condition of the overlap matrices S depends on the system, in particular the
element, that is simulated. The matrices for systems of HO molecules used in our
evaluation have condition numbers around x = 1.5. Calculating the inverse p-th
root of matrices with larger condition numbers requires overall more iterations, as
we discuss in related work [A4]. Additionally, the resulting matrix is expected to be
full so that exploiting sparsity of the matrix becomes more difficult.

4.2 Iterative Computation of the Sign Function

We now take a look at the computation of the matrix sign function using custom-
precision floating-point and fixed-point calculations. The definition of the sign func-
tion given in Definition 2.17 on page 17 shows that it can in principle be computed
based on matrix powers and inverse matrix square roots. Based on the results in
the previous section, it can therefore be effectively computed using low-precision
arithmetic as well.

In this section we will however consider the iterative 2nd order Newton Schulz
approach from Equation 2.6. Also we use slightly different input data than in the
previous section. While the overlap matrix § was a realistic input set for the calcu-
lation of inverse p-th roots, the sign function in the LSDFT scenario is computed for
the orthogonalized Hamilton matrix H, as shown in Equations 3.19 and 3.20. We
therefore extracted this matrix from the same wavelet-based DFT code, simulating
the same system of liquid water.

The orthogonalized Hamilton matrix is more dense than the overlap matrix and
has 93.6% nonzero values for 128 H,O molecules (N = 768). However, the density
decreases with increasing system size as for the overlap matrix. For N = 1536 there
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Figure 4.6: Computation of sign function: Convergence behavior when using
custom-precision floating-point for (a) all arithmetic operations and (b) only for stor-
age of intermediate results (N = 768).

are 63.3%, for N = 3072 there are 32.4% and for N = 6144 there are 16.1% nonzero
values. In the following evaluation, we will use the matrix representing 128 H,O
molecules as input data. Its eigenvalues range from —0.83 to 0.58 and its condition
number is ¥ = 10.1.

4.2.1 Rate of Convergence

We first look at the convergence criterion of the Newton Schulz iteration. Since the
sign functions maps all eigenvalues towards +1, the resulting matrix is involutory,
i.e., for any matrix A it holds that

X = sign(A) = X> = I. (4.3)

This property is typically used to determine convergence of the iterative algorithm.
Similar to before, we use the criterion for all intermediate results X} in combina-
tion with the Frobenius norm to determine a single value || X7 — I|| that we use as
convergence metric.

The results are shown in Figures 4.6 and 4.7. Overall we see a very similar be-
havior as for the inverse p-th root iteration. The method converges also when using
low-precision floating-point and fixed-point arithmetic and the convergence rate in
the first iterations is very similar among all precisions.

4.2.2 Error Accumulation

While the convergence behavior of the Newton-Schulz iteration suggests robust-
ness against errors induced by low-precision arithmetic, these results needs to be
verified by comparing the computed solution against a golden result computed
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Figure 4.7: Computation of sign function: Convergence behavior when using
custom-precision fixed-point for (a) all arithmetic operations and (b) only for storage
of intermediate results (N = 768).

using double-precision arithmetic. We therefore now look at the absolute error
in the computed result, again using the Frobenius norm to derive a single value
HXk — sign(H) HF as error metric.

The results are shown in Figures 4.8 and 4.9. We observe that after the algorithm
has converged, the quality of the result degrades with further iterations when using
low-precision arithmetic for the calculations. The reason is that the Newton-Schulz
iteration within the iteration step does not take the original matrix into account. This
allows small errors to accumulate over time. While the algorithm still produces an
involutory matrix after each additional iteration, this result moves further and fur-
ther away from the sign function of the initial input matrix. When using low preci-
sion only for the storage of intermediate results, this effect showed to be neglectable
for the scenario evaluated here.

4.3 Summary of Findings

The presented results demonstrate the overall resiliency of the examined algorithms
against errors introduced due to low-precision arithmetic and storage. It stands out
that the number of iterations required to reach a certain precision does not signif-
icantly increase with the amount of approximation. This sets the examined algo-
rithms apart from other iterative methods like the preconditioned conjugate gradi-
ent method which was modified to run on approximate hardware by Scholl et al. [79]
and showed to require additional iterations when using approximation.

This opens up great opportunities for the acceleration of applications that require
the calculation of inverse p-th roots of matrices or the matrix sign function, such as
the LSDFT method discussed in this work. The availability of high-performance
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Figure 4.8: Computation of sign function: Error accumulation when using custom-
precision floating-point for (a) all arithmetic operations and (b) only for storage of
intermediate results (N = 768).
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low-precision arithmetic in modern hardware accelerators like GPUs and FPGAs al-
lows to run these algorithms with reduced precision. Since both discussed methods
are based around matrix multiplications, this directly increases the achievable per-
formance. The possibility to store approximate results without reducing the result
quality too much allows the reduction of required memory space and bandwidth on
these devices.

For computation of the matrix sign function using the Newton Schulz method,
we have seen that errors introduced by using low precision accumulate instead of
being corrected in later iterations, because the original matrix is not considered by all
iterations. It is therefore important to avoid any superfluous iterations. In contrast,
when computing the inverse p-th root, errors can be corrected in later iterations. In
particular, results obtained using low precision can be refined into a precise solution
in very few additional iterations using higher precision arithmetic.
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Chapter 5

Submatrix Method: Algorithmic
Approximation of Matrix Functions

After having examined the effect of low-precision arithmetic on selected iterative
schemes, we now introduce a second level of approximation. In certain applica-
tions, matrix functions need to be computed on very large matrices which are not
fully populated but sparse. In particular, this holds for the matrices handled in Lin-
ear Scaling DFT. To efficiently deal with these matrices, it is essential to exploit the
sparsity of the matrices in all demanding computations. One particular challenge is
fill-in generated when matrix functions are applied to a sparse input matrix, causing
the result becoming more densely populated.

In this chapter, we present a new method to compute approximate solutions for
unary matrix functions of large, sparse, symmetric matrices. It enforces the sparsity
pattern of the input matrix to the result, avoiding any fill-in. At the same time the
method allows massive parallelization of the required computations. We call the
method proposed in this work the Submatrix Method.

The method has originally been thought of by Stephan Mohr [80, Section 5.1.7.2]
for the computation of inverse square roots and later been generalized and evalu-
ated by the author of this work. Large parts of this chapter have been presented at
the Platform for Advanced Scientific Computing Conference (PASC) in 2018 and are part
of the proceedings published by ACM [A6]. Parts of this chapter have also been
published at the International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC) in 2020 [A2].

This chapter is structured as follows: In Section 5.1, the fundamental idea of the
Submatrix Method as well as an algorithmic description are presented. In Section 5.2
we evaluate the practical impact of using the Submatrix Method onto the results. We
look at performance and scaling of the method on a theoretical basis in Section 5.3
and on a practical basis in Section 5.4.

5.1 Algorithm Description

The fundamental idea of the Submatrix Method is to transform a matrix operation f
on a large, sparse n X n matrix A into n operations on smaller dense matrices. The
overall scheme is shown in Figure 5.1 and can be summarized as follows:

1. For each columni € 1...n, a principal submatrix a; is assembled by removing
all rows and columns j from the original matrix, where A;; = 0. The size of
the submatrix a; is therefore determined by the number of nonzero elements
in the i-th column of A.
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Figure 5.1: Submatrix Method: Overview.

2. The matrix operation of interest is performed on all submatrices a;, resulting
in result submatrices f(a;).

3. Let k be the column within a; that contains the values originating from the i-th
column of A. Then the values from the k-th column of f(a;) are used to assem-
ble the i-th column of the approximate result matrix f(A), while retaining the
sparsity pattern of the original input matrix A.

In the following, we describe the single steps of the method in more detail.

5.1.1 Building the Submatrices

Implementing the Submatrix Method typically follows a constructive approach (i.e.,
copying elements of the original matrix) instead of the destructive approach (i.e.,
removing rows and columns of the original matrix) described above. An procedure
to build all submatrices constructively from the original input matrix is described
in Algorithm 5.1. To simplify comprehension of the algorithm, all matrices have
a dense representation in our pseudocode. As will be discussed in Section 5.1.4,
in practice a sparse representation should be used for the sparse input and output
matrices. Also note that, although we only discuss a column-based approach for
building the submatrices, the method can as well be applied in a row-based manner
since we are dealing with symmetric matrices.

To construct the j-th submatrix, the j-th column of the input matrix A is evalu-
ated. We determine the set R of row indices i for which A;; # 0. The submatrix
is then constructed by taking all values A,, from the input matrix where x,y € R.
For an input matrix of size n x n we obtain a set of n submatrices. The size of each
submatrix is determined by the number of nonzero elements in the corresponding
column of the input matrix.

5.1.2 Performing Submatrix Operations

For all of the submatrices, we now perform the operation which should originally be
performed on the input matrix, i.e., we either invert all submatrices, calculate their
inverse p-th roots or compute the matrix sign function. Note that the method and
implementation for these submatrix operations can be freely selected and this choice
is entirely orthogonal to the Submatrix Method.
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Algorithm 5.1 Construction of submatrices.
n < number of rows/columns of input matrix
A[l...n][1...n] < input matrix
forj<1...ndo

R {j}
fori<+ 1...ndo > locate nonzero elements in column j
if A[i][j] # 0 then
R + RU{i}
end if
end for
m < R.length() > m: dimension of submatrix j
fork<1...mdo > assemble submatrix j

for/ < 1...mdo
submatrices[j][k][!] < A[R[k]][R[I]]
end for
end for
indices[j] < R > store indices required for result assembly
end for

Algorithm 5.2 Assembly of result matrix.

n < number of rows/columns of input matrix
indices[1...n] < from submatrix generation stage
submatrices[1...n][1...?][1...?] - result matrices
X < zeros(n X n)
forj<1...ndo

R < indices]j]

m < R.length() > m: dimension of submatrix j
fori<1...mdo > fill column j of result matrix
X[R[i]][j] ¢ submatrices][j][i][R.indexof(})]
end for
end for

5.1.3 Assembling the Result Matrix

After having applied the matrix operation of interest to each submatrix, we have
n result submatrices. From these result submatrices we assemble an approximate
solution X for the whole matrix. This procedure is shown in Algorithm 5.2. Similar
to the construction of the submatrices, the j-th column of the final result matrix is
determined by the j-th result submatrix. We take the values from the column of the
result submatrix which was originally filled with values from the j-th column of the
input matrix, and copy them back to their original position in the original matrix.

5.1.4 Implementation Notes

Although the inverse (root) of a sparse matrix is typically not sparse, the approxi-
mate solution provided by the Submatrix Method exhibits the exact same sparsity
pattern as the input matrix. This allows for efficient implementation of the method
based on matrices in the Compressed Sparse Column (CSC) format which consists
of a value array (val), a list of row indices (row_ind) and a list of column pointers
(col_ptr). In particular, the result assembly stage can be implemented by concate-
nating the corresponding columns of all result submatrices to obtain the value array
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val for the approximate result matrix. row_ind and col_ptr from the input matrix
can be reused for the output matrix without any changes. If the method is applied
in a row-based manner, the same holds for matrices in the CSR format.

5.2 Applicability and Approximation Error

The result obtained by the Submatrix Method is only an approximation of the correct
result. Whether this result is still of use for an application depends on three aspects:
Is the application able to deal with results that contain a certain error? How large
can this error be to be still tolerable? And how large is the error introduced into
results by using the Submatrix Method?

In this section, we demonstrate the error caused by using the Submatrix Method
in different scenarios. For computing the inverse p-th root, we look at randomly
generated inputs as well as real-world inputs from different applications. For the
matrix sign function, we test the applicability with real-world input data taken from
a Linear Scaling DFT code.

5.2.1 Computation of Inverse p-th Roots

We first evaluate using the Submatrix Method for the computation of inverse p-th
roots.

Error for Random Input Matrices

To get an impression about the error introduced for arbitrary symmetric positive-
definite matrices, we generate random matrices A using the sprandsym! function in
Matlab. This allows us to sweep over different sizes n, densities d and condition
numbers x and assess the influence of these matrix properties onto the error. For
each set of these parameters, we generate ten different matrices. For all of these
matrices we then use the Submatrix Method to obtain an approximate solution X
for the inverse p-th root A~1P To assess the error of these results, we calculate the
spectral norm of the residuals

IR|[, = [ XPA —=1I]|,. (5.1)

Since for a precise solution it should hold that X¥ A = I, R is a good indicator for the
introduced error. We choose the spectral norm of R as a metric because in contrast
to other matrix norms like the Frobenius norm it is relatively invariant of the matrix
size.

Our initial evaluation has not shown a significant influence of the density of the
randomly generated matrices onto the precision of the result. We therefore neglect
this parameter in the evaluation presented here, focus on matrices with density d =
0.05 and discuss the influence of the size and the condition number of the matrices.
Figure 5.2 shows the relationship between these matrix properties and the calculated
residual for p = 1. It shows that the error increases for matrices with larger size and
larger condition numbers. For small matrices, the error stays relatively low even for
higher condition numbers. Similarly, for well-conditioned matrices, the error stays
low even for large matrices.

To demonstrate the latter, we now focus on well-conditioned matrices with xk = 2
and d = 0.05, varying only their size. Results are shown in Figure 5.3. It shows that

lsprandsym(size,density,1/condition,kind) with kind=1
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Figure 5.2: Residual for approximately calculated inverses of random matrices using
Submatrix Method, for different sizes and condition numbers.
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Figure 5.3: Residual for approximately calculated inverses of random matrices with
x = 2 using Submatrix Method, in relation to size of input matrix.

for a fixed condition number, the error introduced by using the Submatrix Method
is limited even when further increasing the matrix size. As shown, this not only
holds for calculating the inverse of a matrix but also for calculating inverse p-th
roots where p > 1.

Orthogonalization Within Electronic Structure Codes

We demonstrated that using the submatrix method for well-conditioned matrices
yields results very similar to a precisely calculated solution. However, whether er-
rors are acceptable in an application depends on the the kind of matrices used in
the application and the effect that small deviations have on the final result. In this
section, we show a specific application of the Submatrix Method and demonstrate
its limited influence on the final result.

We look at using the Submatrix Method for orthogonalization of the basis func-
tions used in DFT. As described in Section 3.2, the inverse or inverse square root of
the overlap matrix S is required to transform the generalized eigenvalue problem
into a conventional eigenvalue problem. To evaluate the effect of using the Subma-
trix Method in this scenario, we use the same matrices as in Chapter 4, obtained from
a Daubechies Wavelet-based DFT code [59]. The extracted overlap matrices all have
condition numbers around x = 1.5 whereas the density decreases with increasing
system size as described in Section 4.1.1.

In addition to the overlap matrices S, we also extract the density matrix D as
well as the Hamilton matrix H from our DFT code. This allows us to calculate the
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Table 5.1: Influence of using the Submatrix Method for orthogonalization of basis
functions onto electronic band structure energy calculations.

Matrix size n Density(S) Egs Exd AE.
768 0.25 -372.83597 -372.83600 6.96x1078
1536 0.12 -747.13928 -747.13933 7.60x1078
3072 0.06 -1492.25282 -1492.25297 1.01x10~7
6144 0.03 -2986.25656 -2986.25683 8.76x1078
12288 0.02 -5976.31525 -5976.31576 8.64x1078
24576 0.01 -11951.19504 -11951.19598 7.85x1078
band-structure energy as
EBS = TI‘(DH) (52)
To orthogonalize the Hamilton matrix, we calculate
H=HS, (5.3)

where S~! is computed using the Submatrix Method. From this, we again calculate
the band-structure energy as

%8 = Tr(SDH), (5.4)
and evaluate the relative error caused by the approximate inversion of S as

Eps — Egg

Ens . (5.5)

AErel = ’

Results are shown in Table 5.1. For all evaluated matrix sizes, the relative error
caused by using the Submatrix Method for orthogonalization is rather small and
throughout below or around 10~7.

The band structure of the considered overlap matrices may suggest that the low
deviation between Eps and Eg comes from the similarity between S and the identity
matrix I, and therefore I could be used in Equation (5.3) as an approximation for S~*.
However, doing so leads to relative errors between 1.15 x 1072and 1.21 x 1072, i.e.,
five orders of magnitude higher than when using the approximate inverse provided
by the Submatrix Method.

Application as Preconditioner

While we focus on LSDFT as the application of interest throughout this work, it
is interesting to note that the Submatrix Method can be used in entirely different
applications as well. One example, where the computation of approximate inverse
(roots) of matrices is of interest, is preconditioning. We therefore now demonstrate
using the Submatrix Method to process ill-conditioned matrices in order to obtain a
preconditioner that can be used to iteratively solve systems of linear equations.

To demonstrate this application scenario, we obtain sparse, symmetric, positive
definite matrices from the SuiteSparse matrix library [81]. We select all matrices A
with size 1000 < n < 5000 that fulfill these requirements. For these matrices we
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Table 5.2: Number of iterations required to solve Equation (5.6) for different matrices
A using Conjugate Gradient with different preconditioners.

Matrix n K None SM ILU(0)
1138_bus 1138  8.5x10% 2120 151 139
bcsstk08 1074  2.6x10% — 41 27
besstk09 1083  9.5x10% 194 56 —
besstk10 1086  5.2x10% — 85 182
besstk11 1473  2.2x10% — 273 477
besstk12 1473  2.2x10% — 273 477
besstk13 2003  1.1x10% — 409 —
besstk14 1806  1.2x10'0 — 54 262
besstk15 3948  6.5x10% — 177 591
besstk16 4884  4.9x10% 464 32 35
besstk21 3600  1.8x10% — 224 —
besstk23 3134  2.7x10'2 — 1269 —
besstk24 3562  2.0x101 — 300 244
besstk26 1922 1.7x10% — 325 337
bcsstk27 1224  2.4x10% 907 66 19
besstk28 4410  9.5x10% — 668 755
besstm12 1473  6.3x10% 2790 7 12
Chem97ZtZ 2541  2.5x10% 86 10 1
crystm01 4875  2.3x10% 70 8 2
ex10hs 2548  5.5x101 — — —
ex10 2410  9.1x10M — — —
ex13 2568  1.1x10% — — —
ex33 1733 7.0x1012 — 1052 —
ex3 1821  1.7x10% — — —
ex9 3363  1.2x1013 — — —
mhd3200b 3200 1.6x10'3 — 6 3
mhd4800b 4800  8.2x1013 — 6 2
msc01050 1050  4.6x10%° — — —
msc01440 1440  3.3x10% — 89 155
msc04515 4515  2.3x10% 4411 357 —
nasal824 1824  1.9x10% — 275 264
nasa2146 2146 1.7x10% 282 67 12
nasa2910 2910  6.0x10% — 282 760
nasa4704 4704  4.2x10% — 1100 570
plat1919 1919  1.2x10Y7 — — —
plbuckle 1282  1.3x10% 1965 76 69
sts4098 4098  2.2x10% — 67 119

Trefethen_2000 2000 1.6x10% 435 6 5
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Table 5.3: Influence of using the Submatrix Method for computation of the matrix
sign function onto electronic band structure energy calculations. After symmetric
orthogonalization of the Hamiltonian, values with an absolute value below 1077
have been truncated to obtain a sparse input matrix to the matrix sign computation.

Matrix size n Density(H) Egs Exd AE.q

768 0.67 -372,83598 -372,83609 2.96x10~7

1536 0.36 -747,13928 -747,13925 3.41x1078

3072 0.18 -1492,25283 -1492,25272 7.42x1078

6144 0.09 -2986,25658 -2986,25458 6.70x10~7

12288 0.05 -5976,31522 -5976,31929 6.80x10~7

24576 0.02 -11951,19484 -11951,19065 3.51x1077

solve the system

A¥=0b, b=1[1,1,...,1]" (5.6)

using the Conjugate Gradient (CG) method. We set the threshold for the residual
to 107® and limit the number of iterations by 2n. Table 5.2 shows the number of
iterations required for CG to converge towards a solution. For preconditioning, we
use the Submatrix Method to obtain an approximate solution for

K~ A2 (5.7)
Instead of solving Equation (5.6), we now solve the system given by
K'AKij=K'b (5.8)
using the CG method. The solution ¥ for Equation (5.6) can then be computed as
¥ = Ky. (5.9)

Again, results are shown in Table 5.2. For comparison, we also include the number
of iterations required when using an ILU(0)? preconditioner. The results show that
using the Submatrix Method for preconditioning is not only competitive to the use
of ILU(0) but enables CG to converge in more of the cases.

5.2.2 Computation of the Matrix Sign Function

In addition to the computation of inverse p-th roots, we now consider using the
Submatrix Method for computation of the matrix sign function. As shown in Def-
inition 2.17, sign(A) can be constructed from A and the inverse square-root of A?
suggesting that the sign function is a sufficiently related operation that is also suit-
able for use with the Submatrix Method. To practically evaluate if the Submatrix
Method can be applied to the computation of the matrix sign function as part of a
LSDFT method, we use it to purify the Hamiltonian into a density matrix and then
compute the resulting band structure energy. However, since the Submatrix Method
relies on a symmetric input matrix, we need to use the symmetric orthogonalization

Zincomplete LU decomposition with zero fill-in
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scheme from Equation 3.20. Hence, we compute
H=s"2HS!? (5.10)

and set all matrix elements with an absolute value below 1077 to zero to obtain a
sparse matrix. We then recompute the density matrix D as

D =S"V2(I —sign (A — pI)) $7/2 (5.11)
and compute the band structure energy as
Eps = tr(DH). (5.12)

We repeat these computations using the Submatrix Method when computing the
matrix sign function to calculate a corresponding E3g' and evaluate the relative er-
ror. The results are shown in Table 5.3. The values for Egg slightly differ from those in
Table 5.1 due to the different orthogonalization scheme and the truncation of small
matrix elements. E5% exhibits a relative error smaller than 10~° for all considered in-
puts. As part of electronic structure methods, the Submatrix Method therefore shows
to be applicable not only to the computation of inverse roots as part of the orthogo-
nalization but also to the computation of the matrix sign function when computing
the density matrix.

5.2.3 Controlling the Approximation Error

We have demonstrated the use of the Submatrix Method for computation of inverse
p-roots and the matrix sign function in different parts of LSDFT methods as well as
preconditioning, all of which can highly benefit from the speedup and the additional
parallelism and still yield good results. However, there may be applications that are
less tolerant to errors but still can benefit from using the submatrix method.

If an application requires a lower error than what is provided by the solution cal-
culated using the Submatrix Method, it may be possible to use iterative methods to
refine the solution obtained from the Submatrix Method, as discussed in Chapter 4.
The result obtained by using the Submatrix Method then acts as an initial guess for
these iterative methods. While we validated that such a refinement of a solution gen-
erated by the Submatrix Method works in principle and converges within very few
iterations, a detailed evaluation of combining the Submatrix Method with iterative
methods remains for future work.

In the contrary case, if the application has a particularly high resiliency against
errors in the inverse matrix, the Submatrix Method can also be combined with other
approximation techniques to achieve further performance gains. Since using the
Submatrix Method is orthogonal to the implementation of the operations performed
on the single submatrices, these submatrix calculations can be performed in an ap-
proximate manner as well. Using an iterative method, precision can be scaled by
the number of iterations. Additionally, calculations can be performed using low-
precision arithmetic as has been shown in Chapter 4.

5.3 Complexity and Scalibility

We now want to discuss the time complexity and scalability of the submatrix method
and show that, although for an n x n matrix n submatrices need to be processed, it
can still provide a significant reduction in time required for determining a matrix
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inverse, its inverse p-th root or its sign function. Note that for simplicity the fol-
lowing sections only discuss matrix inversion. However, the results apply to the
computation of inverse p-th roots and the matrix sign function as well.

The considerations in this section only hold if the nonzero elements are spread
relatively evenly over all columns (or rows) of the input matrix. An obvious coun-
terexample are arrowhead matrices, where using the Submatrix Method cannot pro-
vide any speedup since the first submatrix has the same size as the original input
matrix.

5.3.1 Single-Threaded Scenario

We first want to discuss the general complexity of matrix inversion, both using
conventional methods and using our proposed Submatrix Method. While from a
theoretical standpoint, inversion of matrices is not harder than multiplication, and
therefore O(n?8!) using Strassen’s algorithm [82, Ch. 4.2], or even O (n*%"3) using
Coppersmith and Winograd’s algorithm [83], in practice methods such as Gaussian
elimination or building and using the LU decomposition for inversion which have
time complexity O(n®) are commonly used. In the following, we define I(n) as the
time required for a precise matrix inversion, abstracting from a concrete implemen-
tation.

For a sparse 1 X n input matrix, using the Submatrix Method requires performing
n matrix inversions for smaller but dense matrices. To be more efficient in a single-
threaded application scenario, these submatrices have to be significantly smaller
than the original input matrix. In the following, we assume a uniformly filled, sparse
input matrix. Let d be the density of this matrix, then the average size m x m of the
submatrices is determined by m = d - n. If the density d is small enough, such that

n-1(d-n) <I(n), (5.13)

then the Submatrix Method has lower run time than a precise inversion, even in a
single-threaded scenario.

We now want to determine, by what rate the density d has to decrease so that for
increasing matrix sizes the asymptotic run time does not grow faster than using con-
ventional methods for matrix inversion. We therefore assume that matrix inversion
has at least time complexity 2, i.e., I(n) = Q(n?). To fulfill Equation (5.13), it then
needs to hold that for sufficiently large n

n-(d-n)* < n?
d<n 0. (5.14)

From this we can deduce the following asymptotic relation:
d=0(n""%)=S(nd) =0((n)), (5.15)

where S(n,d) is the time required to calculate an approximate inverse using the
Submatrix Method. If d decreases faster than with rate n=%5, then S(n,d) increases
slower than I(n) for larger n. Using methods where I(n) = Q(n?®) further relaxes the
requirements on d, in that d = O(n~'/3) suffices to fulfill Equation (5.13) for large n.

Note that we neglect the time required for building the submatrices and assem-
bling the final result matrix, as their influence on execution time is negligible com-
pared to the involved matrix inversions in asymptotic considerations.
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5.3.2 Parallel Execution of Submatrix Operations

Although using the Submatrix Method can reduce execution time even in a single-
threaded environment for very sparse matrices, its strength is to allow massively
parallel execution. All submatrix operations are entirely independent from each
other such that the inversion of an n x n matrix can be distributed over n compute
nodes. Each compute node can construct its own submatrix from the input matrix.
The final result matrix has to be assembled on a single node but as described in Sec-
tion 5.1.4, this step consists of a simple concatenation of n arrays. Communication
between nodes is only required for initial data distribution and for the final collec-
tion of all results. Provided that n compute nodes can be used for execution of the
algorithm, a speedup is already achievable if all submatrices are significantly smaller
than the original input matrix, i.e., each column of the original matrix contains a sig-
nificant fraction of zero-elements.

5.3.3 Application to Electronic Structure Methods

A major target for our method are Linear Scaling DFT methods that rely on the near-
sightedness of electronic matter. With respect to the matrices for which an inverse
(root) or the sign function needs to be calculated, this means that while for growing
systems the total number of matrix elements increases with n? where  is the matrix
dimension, the density of the matrix decreases linearly with n-L Consequently, the
number of nonzero elements in the matrix increases only linearly with n.

Based on this fact, the Submatrix Method is particularly suitable for solving these
problems. In particular, since for n > 1

nt<n 0 (5.16)
holds, the density of matrices decreases faster than required in Equation (5.15). From
that it follows that the asymptotic run time of the Submatrix Method in a single-
threaded environment is limited by that of a precise inversion for the applications
discussed here.

Again, the strong advantage of the Submatrix Method is the possibility of par-
allel execution on many compute nodes. In the case of linear scaling methods in
density functional theory, this means that for growing systems the execution can be
parallelized onto more and more nodes while the size of the single submatrices stays
constant. As long as the number of compute nodes can be scaled with 1 as well, the
overall execution time can even be held constant.

5.4 Performance Evaluation

To evaluate the performance and scalability of the proposed method, we built a dis-
tributed implementation using MPI and OpenMP. We run this implementation on
65 compute nodes of the OCuLUS cluster described in Section 2.1.1. We use one node
as a control node, leaving the remaining 64 nodes with a total of 1024 CPU cores for
handling the workload. In the following, we first describe details of our implemen-
tation, and then present results obtained from running our implementation on our
compute cluster.
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5.4.1 Implementation Details

Our implementation makes use of Intel MPI [84] to distribute work over a large
number of compute nodes and to collect all results in order to build up the final
result matrix. The MPI rank 0, in the following called main process, reads the input
matrix stored in CSC format from persistent storage into memory. Metadata such as
an identifier for the matrix, as well as its total size and number of nonzero elements,
are then sent via MPI_Bcast to all nodes.

Data Distribution and Work Assignment

There are different possible ways to make the input matrix available to all other MPI
ranks, which we call worker processes in the following. In principal, it would be suf-
ficient to send single submatrices to the workers which then perform the inversion.
In this case, all submatrices would have to be constructed within the main process,
which would clearly present a bottleneck. Instead, we make the whole input matrix
available to all worker processes which then autonomously construct their subma-
trices. In our environment all systems have access to a shared file system which
allows all processes to read in the input matrix from persistent storage. Since this
scenario cannot generally be assumed, we additionally implemented distribution of
data via MPI_Bcast to all worker processes. We found that, for the data we use in
our evaluation, both variants provide comparable performance.

Assuming we have w workers, each worker needs to process x = n/w submatri-
ces. In our implementation, each worker processes a contiguous set of submatrices,
i.e., the worker with rank k is responsible for submatrices (k — 1)x to kx — 1. There-
fore, depending on its rank and the total number of ranks, each worker process can
determine autonomously, which of the submatrices it has to process.3 It builds the
submatrix according to Algorithm 5.1 and calls the Linear Algebra PACKage (LA-
PACK) [85] functions dgetrf to obtain an LU decomposition and dgetri to calculate
the inverse of the submatrix. In our evaluation we use Intel MKL [86] as a highly
optimized implementation for these LAPACK routines. After inversion, the worker
selects the section of the result matrix which is relevant for the final result matrix and
stores it in a buffer. Since the main process just needs to concatenate these buffers
to create the final result matrix, a single call to MPI_Gatherv is sufficient to perform
data collection and assembly after all submatrices have been processed.

Multi-Threading using OpenMP

The described implementation already allows to distribute the load over many nodes
and CPU cores. To utilize multiple CPU cores on a single node, multiple MPI ranks
could be placed on a node, or multiple cores could be used for processing a single
submatrix by using a multi-threaded LAPACK implementation. Having multiple
MPI ranks on the same node comes at the cost of data duplication in memory and
overall increased MPI communication load. Using multiple cores for processing a
single submatrix operation has shown to provide lower speedup than using these
additional cores to process more submatrices in parallel.

In our implementation, we therefore use OpenMP to process ¢ submatrices in
parallel on a node featuring ¢ CPU cores. We do so by calling all submatrix opera-
tions within an OpenMP parallel for loop:

3Note that if the number of worker processes does not divide the size of the matrix, some workers
need to process one additional submatrix.
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#pragma omp parallel for schedule(dynamic)

To allow OpenMP to fully utilize the available CPU cores, we explicitly disable
the multi-threading functionality provided by Intel MKL by performing a call to
mkl_set_num_threads(1).

Discussion of our Implementation

As described, each worker process is responsible for a contiguous set of submatri-
ces and all workers are responsible for the same number (1) of submatrices. This
can lead to workload imbalance between the different workers, if the input matrix
exhibits a pattern such that certain sets of columns contain significantly more or sig-
nificantly fewer nonzero values than other sets of columns. It is important to note
that this is a limitation of our implementation and not a conceptual issue of the pro-
posed Submatrix Method. In practice, there are different ways to deal with this issue
in order to create an optimized implementation that does not exhibit this load im-
balance:

Shuffling input matrices: To balance the load between all worker processes, the
mapping between submatrices and workers can be shuffled randomly. Clusters of
full columns which result in larger submatrices would then not be assigned to a sin-
gle worker but distributed over all workers. This can, for example, be implemented
using a pseudo-random but deterministic permutation, so that each worker can still
autonomously determine the submatrices it is responsible for.

In our implementation, each worker concatenates the results of its submatrix op-
erations in a buffer which is then sent as a whole to the main process. The main
process therefore only needs to collect and concatenate w arrays for w worker pro-
cesses. If submatrices are shuffled, collection and concatenation of n arrays would
be required in the main process instead. Apart from this, there is no additional com-
putational effort required for this load balancing technique.

Dynamic work scheduling: Instead of assigning a fixed set of submatrices to a
worker process, work can be scheduled dynamically. Each worker could request
work packages from the main process using MPI. The size of these work packages
can be chosen in the range from one single submatrix up to n/w submatrices in order
to trade off load balancing and additional communication effort. Concepts similar
to OpenMP’s guided scheduling could also be implemented to minimize scheduling
overhead. Note that in our implementation, we already use dynamic work schedul-
ing for the parallel processing of multiple submatrices on a single node by using
OpenMP’s dynamic scheduler.

Availability

The described prototypic implementation of the Submatrix Method has been made
available under MIT license [B5]. The archive also contains the scripts that have been
used in the following evaluation.

5.4.2 Results

We now evaluate our implementation wrt. scalability and overall performance.
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Figure 5.4: Scalability of the Submatrix Method for a random matrix of size
n = 32768 and density d = 0.01.

Scalability with the Number of CPU Cores

We use our implementation of the Submatrix Method to calculate an approximate
inverse of multiple random matrices with size n = 32768, condition number ¥ = 2
and density d = 0.01. We vary the number of utilized CPU cores in the range from 1
to 1024 and measure the total wall clock time required to obtain a result. We consider
a set of balanced matrices whose columns have roughly the same number of nonzero
elements* and a set of unbalanced matrices which exhibit visible patterns in the
distribution of values®. Results are shown in Table 5.4 and Figure 5.4. As a reference,
we also show the time required for a precise matrix inversion using Intel MKL's
implementation of the dgetrf and dgetri routines, utilizing up to 16 CPU cores on
a single node.

The results show that the Submatrix Method overall scales well over a large num-
ber of processors. Comparing the data for balanced and unbalanced matrices, two
distinct effects can be observed:

1. Even for a low number of CPU cores, the Submatrix Method performs bet-
ter for balanced matrices. The reason for this is that if some columns contain
significantly more nonzero elements than others, the resulting submatrices are
larger in size and the time to process them increases cubically with their size.

2. For the imbalanced matrices in our scenario, the curve starts to flatten at around
256 cores and scaling beyond 512 cores provides diminishing returns. The
reason for this is that the number of submatrices per worker becomes small
enough such that load imbalance between workers has an increasing effect.

4generated using Matlab’s sprandsym(size,density,1/condition,kind) with kind=2
5generated using Matlab’s sprandsym(size,density,1/condition,kind) with kind=1
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Table 5.4: Time in ms required for inversion of a matrix with size n = 32768 and
density d = 0.01 using the Submatrix Method on 1-64 nodes (1-1024 cores).

Balanced matrix Unbalanced matrix
Cores Wall time Speedup Wall time Speedup
1 578,140 1.0 1,150,366 1.0
2 255,081 2.3 586,778 2.0
4 118,534 4.9 304,941 3.8
8 63,644 9.1 162,792 7.1
16 32,405 17.8 82,571 13.9
32 16,216 35.7 42,760 26.9
64 8,485 68.1 22,692 50.7
128 4,242 136.3 12,447 924
256 2,339 247.2 7,402 155.4
512 1,293 4471 5,447 211.2
1024 870 664.5 4,765 241.4

This effect could be countered by implementing some form of load balancing,
as discussed in Section 5.4.1.

For over 512 cores, even for the balanced matrices in our scenario the additional
speedup is limited. This is caused by the overall short run time of the algorithm and
therefore increased influence of communication time (around 32% of the wall time).

On a single node, Intel MKL as well nearly scales linearly with the number of
CPU cores. Only for 16 cores there is a slight efficiency drop, likely caused by the
NUMA architecture of our compute nodes. Using ScaLAPACK [87] to distribute
execution of the utilized library functions over multiple nodes may allow to fur-
ther increase the number of CPU cores. However, due to increasing communication
overhead, the potential for scaling is limited in this case. Related work that uses
ScaLAPACK for matrix inversion, describes decreasing performance for execution
on more than 64 CPU cores [88].

Run Time for Growing Matrices

We now evaluate how the total execution time develops for increasing matrix sizes,
given a fixed number of CPU cores. We consider two different scenarios: a fixed
density of d = 0.01 and matrix sizes ranging from 2!! to 2!® and a density that
decreases linearly with 7 as encountered in LSDFT. For the latter, we set d = 0.16 -
1024 /n and consider sizes from 219 to 2%

The results of this evaluation are shown in Table 5.5 and Figure 5.5. In the ta-
ble we also show the fraction of the total wall clock time spent on communication
and the fraction of compute time spent on building the submatrices. Note that the
assembly of the result matrix is performed implicitly by MPI_Gatherv and therefore
accounted as communication time. It clearly shows that for matrices with linearly
decreasing density, the required run time only increases linearly with the matrix size,
as expected based on the discussion in Section 5.3.3. Combining this result with the
possibility for linear performance scaling with the number of CPU cores, the run
time can be held constant by increasing the number of cores with n for growing ma-
trices. The data also shows that for increasing size of the submatrices, as shown
in the upper half of Table 5.5, the overhead required for communication and for
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Figure 5.5: Required time for inversion of matrices using the Submatrix Method on
64 nodes (1024 cores) and Intel MKL on a single node (16 cores).

Table 5.5: Time in ms required for inversion of a matrix using the Submatrix Method

on 64 nodes (1024 cores).

Size Density Wall time MPI Comm. Submatrix Construction
2,048 1.0 x 1072 1 — —
4,09 1.0 x 1072 2 — —
8,192 1.0x 102 14 57.1% 58.8%

16,384 1.0 x 1072 87 39.1% 60.5%
32,768 1.0 x 1072 868 31.7% 57.8%
65,536 1.0 x 1072 8,380 13.5% 56.8%
131,072 1.0 x 1072 87,977 5.0% 47.0%
262,144 1.0 x 1072 1,085,176 1.5% 36.8%
1,024 1.6 x 107! 9 22.2% 61.3%
2,048 8.0 x 1072 15 26.7% 61.0%
4096 4.0x 1072 32 37.5% 60.5%
8,192 2.0x 1072 48 33.3% 60.3%
16,384 1.0 x 1072 96 38.5% 60.4%
32,768 5.0x1073 220 51.7% 60.9%
65,536 2.5x1073 482 54.4% 61.4%
131,072 13 x 1073 990 54.7% 62.2%
262,144 63 x 1074 1977 55.2% 63.0%
524,288 3.1 x 1074 4020 56.8% 63.7%
1,048,576 1.6 x 1074 7609 49.9% 64.0%
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building the submatrices decreases. For fixed-size submatrices, the overhead stays
relatively constant.

5.5 Summary of Findings

In this chapter we presented the Submatrix Method, which can be used to calculate
an approximate solution for unary matrix functions, such as the inverse of matrices,
as well as inverse p-th roots and the matrix sign function, for large sparse matri-
ces. Following the idea of Approximate Computing, it allows the result to deviate
from an exactly calculated solution in order to utilize the sparsity of the input matrix
and to allow massively parallel execution of the involved calculations. For an n x n
matrix, the workload can be distributed over n nodes. The method is particularly
interesting for LSDFT where for growing matrices their density decreases linearly at
the same time. In this case, the Submatrix Method exhibits a linear increase in exe-
cution time for growing systems. As long as the number of available CPU cores can
be scaled with the same rate, execution time can even be held constant. The method
however also shows to be suitable for entirely different areas of application, such as
preconditioning, and is likely to be applicable to different unary matrix functions as
well. It therefore should be considered as a general approximation method beyond
the scope of this work.
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Chapter 6

Integration of the Submatrix
Method into CP2K

After we have demonstrated the suitability of the Submatrix Method for different
computational problems based on test inputs and we have evaluated the perfor-
mance and scaling based on a prototype using MPI and OpenMP in Chapter 5, we
now discuss its integration into CP2K and thereby evaluate its behavior in a realistic
application scenario. More specifically, we show how the Submatrix Method can
be applied to the calculation of the matrix sign function within density matrix based
LSDEFT to yield a novel massively-parallel Linear Scaling DFT method.

In Section 3.3.3 we have seen that the dominant computational hotspot in CP2K’s
LSDFT code is the computation of the matrix sign function. Although inverse square
roots are explicitly computed in CP2K for orthogonalization of the Hamiltonian, this
orthogonalization is performed only once before running the SCF cycle and therefore
not repeated as often as the sign computation. We therefore focus on computing the
matrix sign function using the Newton Schulz method throughout this chapter.

We begin by describing a necessary extension of the matrix sign definition used
in CP2K in Section 6.1, followed by a detailed description of the specific require-
ments posed by CP2K and the resulting implementation of the Submatrix Method
as part of the LSDFT method in Section 6.2. The accuracy and parallel scaling prop-
erties of the new method for representative benchmark cases are then evaluated in
Section 6.3. The contents of this chapter have been presented at the International Con-
ference for High Performance Computing, Networking, Storage, and Analysis (SC) in 2020
and have been published by ACM and IEEE as part of the corresponding proceed-
ings [A2].

6.1 Extension of the Matrix Sign Function Definition in CP2K

When using the Submatrix Method to compute the matrix sign function, we need to
compute the sign function for all of the generated submatrices. We therefore need to
make sure that the sign function is actually defined for all submatrices.

The matrix sign function can be calculated for square matrices which have no
eigenvalues on the imaginary axis. In CP2K, the sign function is only applied to
square matrices and by construction all submatrices generated as part of the Sub-
matrix Method are also square. However, the requirement that no eigenvalues are
on the imaginary axis, cannot be guaranteed in CP2K, since the chemical potential p
can be an arbitrarily chosen in a grand-canonical ensemble and it directly influences
all eigenvalues. In CP2K, the definition of the sign function is therefore extended,
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such that in addition to Equation 2.5

Ai(sign(A)) = +1, ?f Re(2(4)) >0 (2.5 revisited)
—1, if Re(A;(A)) <0
we also handle the case
Ai(sign(A)) =0, if Re(A;(A)) =0. (6.1)

When using the sign function for computation of the density matrix, this extension is
consistent with the physically underlying Fermi function (see Equation 3.18), since

-1
: E— U _1
ggmy <exp (kBT > + 1> =5 (6.2)

The modification allows us to compute the sign function for all square matrices and
therefore also for all submatrices.

6.2 Implementation of the Submatrix Method Within CP2K

A basic implementation of the Submatrix Method has already been described in Sec-
tion 5.4. This implementation however makes several simplifying assumptions and
therefore can only serve as a reference for an implementation within CP2K.

One of these assumptions is that the input matrix is known to all MPI ranks so
all of them can create their own submatrices independently. In contrast, in CP2K
the matrices are stored in the DBCSR format and therefore in a distributed fashion.
Ranks only know about their own blocks of the data. Another difference coming
from the DBCSR storage format is that the sparsity of the matrix is only exploited
at the level of blocks and not single elements of the matrix. Lastly, the matrices
in CP2K have a certain sparsity pattern that depends on the represented chemical
system. This pattern needs to be taken into account to minimize data transfers and
required floating-point operations and to balance the load between all ranks.

In the following Sections 6.2.1-6.2.5, we discuss all of these implementation de-
tails. Afterwards, we discuss the operation performed on all submatrices in Sec-
tions 6.2.6 and 6.2.7.

6.2.1 Overview

To enable all ranks to assemble their submatrices, a couple of initialization steps
need to be performed. Major steps are the following;:

Create Global View on the Sparsity Pattern of the Matrix

For the input matrix in DBCSR format, each rank only knows which rank is responsi-
ble for which blocks of the matrix. However, whether a block is zero or if it contains
data is only known to the rank holding that block. To assemble submatrices, each
rank needs to know the sparsity pattern of the entire matrix. We achieve this by cre-
ating a list of nonzero blocks in a COOrdinate format (COO) representation, which
stores row and column of each nonzero block. This list is deterministically sorted
by columns and rows such that it is identical on all ranks. This way, the position of
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a nonzero block in this COO representation also serves as a unique ID for the block
throughout our implementation.

Create a Mapping Between Ranks and Submatrices

The responsibility for creating and processing the submatrices needs to be distributed
among all ranks. This happens in a deterministic fashion such that all ranks know
which submatrices are solved by which rank. The details of this mapping will be
discussed later on.

Determine Required Matrix Block Transfers

To assemble a submatrix, the corresponding rank needs a copy of all nonzero blocks
that are part of this submatrix. Therefore, we iterate through all blocks of the locally
processed submatrices, determine the origin rank and collect the IDs of blocks to
be transferred. Additionally, we store a list of all blocks that will be filled with the
results calculated locally. These blocks need to be copied back to their origin after
finishing the computations.

6.2.2 Data Transfers

To keep overall communication time low, any unnecessary data transfers need to be
avoided. We do so by ensuring that matrix blocks are transferred only once between
ranks and that the number of blocks required by a rank is minimized.

Deduplication of Data Transfers

In general, data exchange could be implemented as part of the submatrix assem-
bly, such that only blocks required for the currently processed submatrix need to
be exchanged and stored. However, we know that blocks are included in multiple
submatrices and these blocks would have to be transferred multiple times between
the same ranks. To avoid any duplicate transfers, we make sure that blocks are
only transferred once between a pair of nodes by exchanging all required blocks al-
ready during the initialization. Each rank stores all blocks that are required for its
own submatrices in a local buffer such that submatrices can be assembled without
further communication. With this approach we avoid duplicate data transfers and
make sure that submatrix assembly becomes a purely local operation.

Minimization of Memory Use and Data Transfers

To minimize the amount of data that needs to be held in memory and to further
reduce the amount of data transfers, ranks should process a set of similar submatri-
ces, such that reuse of locally buffered blocks is maximized. Submatrices a; and a;
are similar if they share many blocks. This is the case, when columns i and j of the
original sparse matrix exhibit a similar sparsity pattern, which depends on the index
order of atoms. A similar sparsity pattern of neighboring columns can for example
be achieved by indexing the atoms in an order that minimizes the real-space dis-
tances between adjacent indices. For a system constructed of smaller cells of atoms
as building blocks, the orthogonalized Kohn-Sham matrix usually exhibits a banded
structure if the indexing is consecutive in the building blocks. Figure 6.1 shows an
example for the orthogonalized Kohn-Sham matrix for a system of 864 water mole-
cules built up of blocks of 32 water molecules. Thus, in this case a minimization of
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Figure 6.1: Block-based sparsity pattern of an orthogonalized Kohn-Sham DBCSR

matrix H for 864 HyO molecules, using the SZV basis set and a cutoff value of 107>,

exported from CP2K. Each column corresponds to a water molecule and each black
area corresponds to a block that contains at least one nonzero matrix element.
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memory use can be achieved by assigning a consecutive sequence of submatrices to
each rank.

6.2.3 Minimization of Floating-Point Operations

To maximize throughput, we also want to minimize the floating-point operations
required to obtain a result in addition to data transfer and reuse optimizations. The
Submatrix Method allows a certain trade-off here: While the original idea of the
Submatrix Method is to generate a submatrix for each column of the original matrix,
there is also the possibility to generate submatrices from multiple columns.

So far, we apply the Submatrix Method at the level of DBCSR blocks. This way,
we automatically generate submatrices from b consecutive columns, where b is the
block width of the corresponding column of the DBCSR matrix. However, there
is still the possibility to further split up submatrices to get submatrices for single
columns or to combine submatrices built from single block columns.

Splitting up Submatrices

After assembling a submatrix at the level of DBCSR block columns, it is a regular,
densely stored matrix which however still may be sparse. The Submatrix Method
can be applied a second time at the level of single columns to split the submatrix into
even smaller, more dense sub-submatrices. Note that it is not required to generate
sub-submatrices for all columns of the submatrix. Since submatrix a; only provides
values to the overall solution that originate from block column 7 from the original
matrix, it is sufficient to build and solve sub-submatrices for columns originating
from block column i.

Generating Submatrices From Multiple Block Columns

We can also go the other way and combine even more block columns to lower the
total number of submatrices Ns that need to be assembled and processed. In con-
trast to splitting up submatrices, combination of multiple submatrices already needs
to be taken into account during the initial assembly of submatrices. Different strate-
gies can be followed to combine block columns. Assuming a relatively homogenous
system where all submatrices are of roughly equal size, one can follow a simple
heuristic. Given that the operation performed on all submatrices requires O(n?)
floating-point operations, the total number of floating-point operations can be esti-
mated from the size of the first submatrix as

operations ~ 73 - Ny, /1, (6.3)

where n; is the dimension of the submatrix generated from the first i block columns
and Ny, is the dimension of the original matrix in blocks. During the initialization of
the Submatrix Method, one can determine all possible n; and then choose the i for
which the model provides the lowest number of floating-point operations.

This simple heuristic is however prone to produce unfavorable results when the
system does not conform to the assumptions taken, e.g., when the system is not
homogeneous and therefore the sparsity of different block columns varies signifi-
cantly. In our publication [A2], we describe a more sophisticated heuristic based on
a clustering of atoms based on their position in real space. This method also allows
generating submatrices for a block columns that are not directly adjacent to each
other in the matrix.
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In CP2K, the block size of the DBCSR matrix is chosen based on physical prop-
erties of the system, e.g., one block of the DBCSR matrix corresponds to an atom
or a molecule. Based on this property, we can assume single blocks to be relatively
dense, such that splitting up submatrices provides no benefit. Still, combining mul-
tiple block columns to create a submatrix can generate a benefit in the amount of
required arithmetic operations. For the rest of this work, we will stick to a simple
clustering of consecutive block columns.

6.2.4 Shared-Memory Parallelism

CP2K supports both distributed memory parallelism and shared memory paral-
lelism. To make use of shared memory parallelism, we use OpenMP to parallelize
parts of the initialization of the Submatrix Method. Routines for the generation of
a specific submatrix and for extracting results from a result submatrix are imple-
mented in a thread-safe way, such that these steps as well as solving the submatrices
can be implemented using thread-parallelism in the calling code. In our use of the
Submatrix Method for solving the sign function, we distribute the work among all
available threads using OpenMP work sharing clauses.

6.2.5 Load Balancing

Depending on the chemical system, block sizes and sparsity pattern of the DBCSR
matrix, the submatrix dimensions can vary between different columns of the ma-
trix. For example, a large molecule in solution may have different atom species and
exhibit different interactions between its atoms than within the solvent. The ma-
trix columns containing the atoms of the large molecule will therefore induce much
larger submatrices. For achieving a good load balance, we therefore cannot just as-
sign the same number of submatrices to each rank but need to consider the estimated
computing time to reduce the deviation in execution time between different ranks.

We employ a greedy algorithm to assign submatrices to ranks such that they
have similar load. As discussed in Section 6.2.2, we need to find a mapping that
assigns one consecutive chunk of submatrices to each rank. Our approach computes
the expected number of floating-point operations assuming that processing a sub-
matrix takes O(n®) FLOP and assigns submatrices to ranks as long as their load is
expected to be lower than FLOP,, /#ranks. Additionally, we make sure that each
rank obtains at least one submatrix.

6.2.6 Sign Calculation Based on Diagonalization

So far, we have described the implementation of the Submatrix Method in CP2K.
The submatrices can generally be processed using the same mechanism as originally
performed on the orthogonalized Kohn-Sham matrix, e.g., by applying a Newton-
Schulz iteration scheme. An alternative approach is to use diagonalization to com-
pute the sign function of all submatrices.

To guarantee that the input to the sign function is diagonalizable, we require it to
be symmetric. However, although both S~! as well as H in Equation 3.19 are sym-
metric, their product and therefore the input to the sign function is not. We there-
fore follow the same approach as in Section 5.2.2 and modify the orthogonalization
scheme in CP2K to use the symmetric Léwdin orthogonalization from Equation 3.20.
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The density matrix D can then be computed as
D = %5*1/2 (I — sign (Sfl/zHS’l/2 - yI)) §1/2 (3.20 revisited)

As described in Section 2.3.3, the matrix sign function can be conceived as an
application of the scalar sign function to all eigenvalues. Instead of using iterative
schemes, it therefore can be computed using an eigendecomposition of the matrix,
for which we use the BLAS routine dsyevd in our implementation. We use the ex-
tended definition of the scalar sign function, i.e., including

sign(0) =0, (6.4)
and utilize the fact that all submatrices are symmetric:

A= QAQ"
Aj; = sign(A;) (6.5)
sign(A) = QA'QT.

For computing the sign function of our dense submatrices, we found this ap-
proach to be superior to iterative approaches on CPUs. Also, it allows to easily
apply our method to systems at finite temperature by replacing the sign function in
Equation 6.5 by the Fermi function.

6.2.7 Adaptation of the Method to Canonical Ensembles

As described so far, the Submatrix Method is a method for grand canonical com-
putations where the chemical potential y is fixed, as is the original Newton-Schulz
approach. However, solving the submatrices using eigendecompositions allows us
to adapt the method also for canonical ensembles, where i needs to be dynamically
adjusted to compute a density matrix that matches a certain fixed number of elec-
trons.

Using a grand canonical method for a canonical ensemble requires us to compute
the total number of electrons as

Nelec = 1r (; (I — sign (5_1/2HS_1/2 — yI))) (6.6)

and to compare it against the actual number of electrons of the underlying system.
If the number of electrons deviate, i needs to be adjusted, e.g., using a simple bi-
section algorithm. Normally this would require recalculation of the sign function
in each bisection step, leading to massively increased run times depending on how
many bisection steps are required. Having computed the eigendecomposition of all
submatrices allows us to perform this adjustment of x without recomputing the sign
function or the eigendecomposition in each step, as shown in Algorithm 6.1.

Based on the determined value for y, the sign function for all submatrices can be
computed following the scheme from Equation 6.5 while adjusting all A;; according
to the new p.

In practice, storing all eigendecompositions may be infeasible due to the high
memory requirements. However, as shown in Algorithm 6.1, calculating u only
requires certain rows from the matrix of eigenvectors Q. Most of the additional
memory requirements can be saved by only keeping these rows in memory. The
downside of this approach is that after determination of the correct value for y, the
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Algorithm 6.1 Adjustment of u based on eigendecompositions of all submatrices.
The single decompositions QAQT only need to be computed once.

Heorr < 0
repeat
Helec <— 0
for all submatrices a”*" = QAQ" do
for all diagonal elements A; of A do
Al = sign(A; — peorr)
end for
for all columns k of a that contribute to the
sparse result matrix do
Nelec € Melec T % - %lel...n Qk,12 : A;
end for
end for
update pcorr based on error of #gjec
until error of 7. is sufficiently small

M U+ Heorr

submatrices need to be decomposed again in order to compute the final result for
the sign function. Still, this approach is superior to recomputing the decomposition
in each step of the u-bisection and we consider it a practical compromise.

6.2.8 Availability

The implementation described in this chapter has been included in the official CP2K
repository and is therefore available to all of its users. A copy of the exact implemen-
tation used in the following evaluation has been archived [B4]. Additionally, scripts
and input data used in the evaluation are publicly available [B3].

6.3 Evaluation

To evaluate our method, we use it within CP2K to compute the density matrix from
the Kohn-Sham matrix, following Equation 3.20 with a fixed value for y, i.e., we
consider a grand canonical ensemble. The submatrices are solved using our diago-
nalization approach, as described in Section 6.2.6. For comparison, we look at the
default alternative for grand canonical computations which is a 2nd-order Newton-
Schulz scheme to compute the sign function of the sparse DBCSR matrix. To make
results comparable, we use the same symmetric orthogonalization approach from
Equation 3.20, also when using Newton-Schulz iterations.

We perform all computations on a typical benchmark system, which contains
liquid water, and use a single-zeta valence basis set (SZV-MOLOPT-SR-GTH). The
benchmark systems are generated from a fixed-size region containing 32 H,O mol-
ecules that is repeated in each dimension by a certain factor NREP. The total num-
ber of atoms in the system therefore increases with NREP?. Due to the fact that
the heuristic described in Section 6.2.3 has not been integrated into CP2K yet, sub-
matrices have instead been combined based on a simple greedy heuristic that only
considers using a single block column or combining multiples of these basic regions.

For evaluation of the Submatrix Method, all measurements have been run using
a single thread per MPI rank. For measurements of the standard Newton-Schulz
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Figure 6.2: Run time of Submatrix Method and 2nd-order Newton-Schulz for vari-
ous &jter 0N 80 cores for a system of 20,736 atoms.

method, we used eight ranks per node and five threads per rank, as we found this
combination to scale well on our infrastructure. All measurements in this evalua-
tion have been performed on compute nodes of the Noctua 1 cluster described in
Section 2.1.1.

6.3.1 Performance and Error for Various &g, Thresholds

To exploit the nearsightedness in quantum mechanics, to obtain sparse matrices and
therefore enable linear scaling methods, values below a certain threshold need to be
neglected. In CP2K this threshold is called egje; and it is configurable in the input
file. For the Newton-Schulz iteration scheme, ey, also determines the convergence
criterion. Figure 6.2 shows the time required for computation of the density matrix
based on different values for ey, for a system where NREP = 6 (20,736 atoms) on
two compute nodes (80 cores). The chosen value for gy, significantly influences
the run time as for higher values the matrices become more sparse. This effect is
even more emphasized for the Submatrix Method which strongly benefits from the
sparsity of the input matrix. For egyer > 107°, we observe that the Submatrix Method
becomes quicker than the default Newton-Schulz approach.

Of course, also the resulting error of the cutoff needs to be taken into account. For
that we compute the band-structure energy as Tr(DH) (see Equation 3.22) after com-
putation of the density matrix and compare it against a reference value computed
with egjrer = 10715, Results are shown in Figure 6.3. The Submatrix Method overall
shows a resulting error similar to Newton-Schulz which means that the approxima-
tion inherent to the Submatrix Method does not negatively impact the results too
much.



68 Chapter 6. Integration of the Submatrix Method into CP2K

Submatrix Method gpos. errorg ° Eneg. errorg x

Newton-Schulz (pos. error) = neg. error) 4
— ]_01 E T T T T T T
= :
£ 100 [ .
=
—1
i 107 ¢ o -
% 1072 | : :
g
T 108 [ ]
=
5 107* L x i
5
o 1070 ]
=R
10—6 1 1 1 1 1 1
1072 107% 1007 107% 107 107* 107% 1072

filter
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positive or negative, as shown by different markers. The plotted line serves as vi-

sual guidance, leaving out data points that show a lower absolute error due to the
error transitioning between positive and negative values.



6.3. Evaluation 69

100 ——— ——— :
i Submatrix Method —e—
Linear

10 | ]
=
g
=

1} 1

0.1 L——u1 ' N -

1000 10000 100000

Number of atoms

Figure 6.4: Run time of Submatrix Method for increasing system sizes on 80 CPU
cores and ey = 1072,

6.3.2 Scaling

We verify the linear scaling behavior of the Submatrix Method by scaling up our
benchmark system from NREP = 2 (768 atoms) to NREP = 8 (49,152 atoms) while
keeping the amount of computing resources constant at two nodes (80 cores). Re-
sults are shown in Figure 6.4 and match very well with a linear function.

To evaluate the strong-scaling behavior of the Submatrix Method, we take the op-
posite approach and scale the amount of computing resources between two nodes
(80 cores) and eight nodes (320 cores) while keeping the system size fixed at NREP =
7 (32,928 atoms). Results are shown in Figure 6.5. For comparison, we also show a
hypothetical perfect scaling based on the time required on two nodes and the num-
ber of nodes used. Going from two to eight nodes, we retain an efficiency of 83%.

Finally, we evaluate weak scaling, where we increase system size and the amount
of compute resources at the same time. To allow more fine-grained control over the
system size, we do not replicate the system in all three dimensions but instead use a
sufficiently large system of 12,000 atoms (NREP = 5) as basis and further replicate it
in only one dimension while increasing the number of nodes.

To put the weak-scaling efficiency into perspective, we repeat the same measure-
ments using the standard Newton-Schulz approach, which relies on libDBCSR to
scale well over many nodes. Results are shown in Figure 6.6. While there is certainly
a loss in efficiency when scaling from one to 32 nodes, we see that weak-scaling effi-
ciency is generally higher than for the default Newton-Schulz method.

6.3.3 Larger Basis Sets

To obtain a Linear Scaling DFT method as shown in the evaluation, the number of
nonzero blocks in a block column needs to stay constant when growing systems.
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Figure 6.7: Dimension of submatrices dim(sm) (block-based, dashed lines) com-

pared to the overall dimension of the orthogonalized Kohn-Sham matrix dim(H)

(solid lines) for a cube of liquid water with periodic boundary conditions described

in an SZV (blue, circles) and a DZVP (orange, cubes) basis set and a cutoff value of
107° for the matrix elements.

We obtain this behavior already for relatively small systems due to our use of short-
range basis sets where matrix elements between basis functions decay rapidly with
the distance of atoms they belong to. The minimum system size for which this lin-
ear scaling comes becomes effective, i.e., reaching the linear scaling regime, heavily
depends on the used basis set and the chosen cutoff value.

Figure 6.7 compares the dimension of the Kohn-Sham matrix to the dimension
of the submatrices for different sizes of our benchmark system using two different
basis sets and a cutoff value of 10°. Going from a single-zeta valence basis (SZV-
MOLOPT-SR-GTH) to a double-zeta valence basis (DZVP-MOLOPT-SR-GTH), the
Kohn-Sham matrix grows due to the increased number of basis functions per atom.
At the same time we observe that a larger number of water molecules is required be-
fore reaching the linear scaling regime at around 1000 water molecules, whereas for
SZV-MOLOPT-SR-GTH the submatrices stop growing already at around 200 water
molecules. Additionally, the obtained submatrices are significantly larger, showing
dimensions above 10* whereas submatrices for SZV-MOLOPT-SR-GTH in this sce-
nario have dimensions below 10°.

In addition to the size of the submatrices, the sparsity of the generated submatri-
ces depends on the chosen basis set as well. This correlation is shown in Figure 6.8
which for the same scenario plots the block-wise sparsity of the Kohn-Sham matrix
and the resulting submatrices and additionally the element-wise sparsity of the gen-
erated submatrices. While on a block level the sparsity of the generated submatrices
is very similar when using SZV-MOLOPT-SR-GTH or DZVP-MOLOPT-SR-GTH, we
can observe that element-wise we obtain much more sparse submatrices when using
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(orange lines) basis set and a cutoff value of 107> for the matrix elements.
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DZVP. The reason is that blocks are considered nonzero as soon as a single element
in that block is above the cutoff value. For the overall larger blocks using DZVP this
causes more sparse blocks being included in the submatrices.

In cases where a minimal basis such as SZV-MOLOPT-SR-GTH is not sufficient
to achieve the desired chemical accuracy, the Submatrix Method can also be com-
bined with larger basis sets. However, due to the increased sparsity of the generated
submatrices, sparse linear algebra algorithms may be favorable for processing the
submatrices. Alternatively, the Submatrix Method could be applied in an element-
wise manner to the generated submatrices to obtain smaller and more dense matri-
ces, even when using larger basis sets.

6.4 Summary of Findings

In this chapter, we have demonstrated that the Submatrix Method is a promising
new method to realize Linear Scaling DFT computations. Using it in CP2K to com-
pute the density matrix from the Kohn Sham matrix via the matrix sign function, the
Submatrix Method outperforms traditional, iterative approaches if the matrices are
sufficiently sparse. At the same time, it exhibits better weak-scaling properties due
to the fact that operations on different submatrices are embarrassingly parallel and
do not require any communication.

Although the Submatrix Method is an inherently approximate method, the qual-
ity of the results is comparable to that of the originally implemented method which
directly applies the Newton-Schulz iteration to the distributed sparse Hamiltonian.
We have also seen that the mechanism in CP2K to trade off output quality against
computational effort via an eg)ie, cutoff value applies well to the Submatrix Method
where the cutoff value directly affects the size of the submatrices. By now, our im-
plementation of the Submatrix Method including its use for computing the density
matrix has been included in CP2K and can be easily accessed through corresponding
configuration flags in the input file.
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Chapter 7

Hardware Acceleration of
Submatrix Operations

The Submatrix Method transforms the original operation on a large sparse input
matrix into many independent operations on smaller more dense matrices. In the
case of large HPC applications it can also be used to transform an operation on a
distributed input matrix into operations on locally stored matrices. In the case of
the CP2K implementation presented in Chapter 6, the original input matrix is a dis-
tributed block sparse DBCSR matrix. Using the Submatrix Method, the operation
can be performed on locally stored dense matrices whose size is limited by the short
range of the used basis functions. All this makes the processing of the generated
submatrices an ideal target for hardware offloading.

In this chapter we describe different ways to offload the iterative computation
of the sign function for the generated submatrices to GPUs and FPGAs. For GPU
offloading, we will combine the Submatrix Method with the use of low-precision
arithmetic as evaluated in Chapter 4 to be able to fully exploit the performance of
the GPUs. For FPGA offloading, we will consider two approaches: First, only matrix
multiplications are offloaded to the FPGA, allowing use of the most performant ma-
trix multiplication kernel. In the second approach, all computations required for the
sign iteration are offloaded to the FPGA, allowing to design a more general FPGA
offloading library for iterative schemes.

Parts of this chapter have been published at the International Conference for High
Performance Computing, Networking, Storage, and Analysis (5C) in 2020 and are part of
the corresponding proceedings published by ACM and IEEE [A2]. The GPU accel-
erator described in Section 7.1 and the first FPGA acceleration approach described
in Section 7.2 have mainly been developed and evaluated by the second author of
our publication, Robert Schade. The second FPGA acceleration approach described
in Section 7.3 has been developed and evaluated by the author of this work.

7.1 GPU Acceleration Using Tensor Cores

As presented in Section 2.1.2, GPUs provide high floating-point performance and are
therefore well suited for compute-limited matrix operations. With their specialized
tensor cores, current NVIDIA GPUs provide support for low-prevision arithmetic,
for example using half-precision or mixed-precision arithmetic. Here, we demon-
strate the use of consumer-grade NVIDIA RTX 2080 Ti cards to accelerate the ma-
trix sign computation of submatrices generated as part of CP2K’s modified LSDFT
method.
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Figure 7.1: Convergence of the third-order sign iteration in different precisions on a

NVIDIA RTX 2080 Ti for the combined submatrix of 32 water molecules in a system

of 4000 water molecules described in an SZV basis. The large graph shows the en-

ergy difference for the 32 water molecules from the converged FP64 result. The inset
shows the absolute energy difference on a logarithmic scale.

To compute the sign function, we implement the sign iteration based on the third-
order Padé-approximation from Equation 2.7

1
Xo=A, Xpy1 = -X(15I —10X? +3X})
8 (2.7 revisited)
sign(A) = klglt;lo Xk.

using the NVIDIA cuBLAS [14] library. We differentiate between four different vari-
ants of this implementation: double-precision (FP64), single-precision (FP32), half-
precision (FP16) and mixed precision (FP16’) where multiplication is performed us-
ing half-precision arithmetic and accumulation is performed using single-precision.
All steps of the iterative scheme have been implemented on the GPU using CUDA
10.2. The input matrix is only transferred once to the GPU and the result matrix is
only transferred once back to the host.

We evaluate the convergence behavior and the performance of our GPU accelera-
tor on a GPU node of the OCuLUS cluster introduced in Section 2.1.1 using a subma-
trix that has been generated for multiple block columns such that it covers 32 water
molecules. The underlying system is the same as used in Section 6.3 with NREP set
to 5, such that the entire system contains 4000 water molecules. SZV-MOLOPT-SR-
GTH was used as basis set. The implementation of the GPU accelerator, as well as
scripts and inputs that have been used in this evaluation, are publicly available [B3].
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Figure 7.2: Deviation from the involutority condition X? = I in every step of the
third-order sign iteration in different precisions on a NVIDIA RTX 2080 Ti for the
same situation as in Figure 7.1.

The convergence is shown in Figure 7.1. All curves depict the difference of the
energy computed using a certain precision and a certain number of iterations and a
result precomputed using double-precision arithmetic. For all of the different vari-
ants, we observe convergence within 6-8 iterations. This matches our findings pre-
sented in Section 4.2 in that the initial rate of convergence does not significantly
decrease when using low-precision computations. Overall the resulting energies are
within 5 meV /atom of the double-precision result. In particular, the mixed-precision
approach provides results close to single-precision, if the iterations are stopped be-
fore errors start to accumulate. Using the computed energy itself as convergence
criterion, i.e., running the iteration until the energy is minimized, shows not to be
suitable, as for example in the FP16’ case the energy tends to drift downwards with
additional iterations. Instead, using the involutority as convergence criterion shows
to be reliable also in the low-precision cases, as shown in Figure 7.2. Again this con-
firms our initial findings in Section 4.2 in that error accumulation can become an
issue when too many iterations are performed using low-precision arithmetic.

Performance results are shown in Table 7.1. We distinguish between three val-
ues: the peak performance that is theoretically achievable on a NVIDIA RTX 2080 Ti
for the given precision, the measured performance for matrix multiplications which
was measured for submatrices of size 3972 that have been constructed as described
above, and the overall sign algorithm performance which includes all auxiliary op-
erations as well as data transfers from and to the host and necessary type conver-
sions. With a theoretical peak performance of 108 TFLOP /s at 250 W, the RTX 2080 Ti
provides a peak energy efficiency of 432 GFLOP /] when using half-precision arith-
metic. For matrix multiplications, we achieve around half of the peak performance
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Table 7.1: Peak performance of a NVIDIA RTX 2080 Ti, practical matrix-matrix mul-

tiply performance for the given matrix size 3972 and overall performance of the sign

algorithm including type conversions, data transfer and convergence tests for the
different precision modes.

Precision Peak Performance Matrix Multiplications Sign Algorithm
FP16 108 TFLOP/s 56.4 TFLOP/s 35.2 TFLOP/s
FP1eé’ 56 TFLOP/s 38.2 TFLOP/s 27.8 TFLOP/s
FP32 13 TFLOP/s 12.2 TFLOP/s 10.4 TFLOP/s
FP64 0.5 TFLOP/s 0.5 TFLOP/s 0.5 TFLOP/s

at 56.4 TFLOP/s (225 GFLOP/]J). For the entire algorithm, we achieve around one
third of the peak performance at around 35 TFLOP/s (140 GFLOP/J). Looking at
both performance and accuracy of the results, we see that mixed-precision provides
a good compromise at around 28 TFLOP/s (112 GFLOP/J) and an accuracy much
closer to single-precision arithmetic compared to half-precision.

7.2 FPGA Acceleration of Matrix Multiplications

Next to GPUs, FPGAs pose a promising architecture for offloading of computation-
ally intensive hotspots. Since FPGAs are a relatively new emerging technology in
HPC environments, the range and capabilities of available libraries is much smaller.
Furthermore, since the compute logic is directly mapped to resources on the FPGA
and the selection and amount of resources greatly varies between different FPGA
vendors and models, it is difficult to design universal libraries. For the sign itera-
tion, the computationally demanding operation is the matrix-matrix multiplication.
As a first step, we therefore focus on offloading this multiplication to the FPGA and
implement the rest of the iterative scheme on the host CPU. The implementation of
this FPGA acceleration approach, as well as scripts and inputs that have been used
in this evaluation, are publicly available [B3].

Our target hardware is the BittWare 520N board which is contained in the FPGA
nodes of the Noctua 1 cluster introduced in Section 2.1.1. The board contains an Intel
Stratix 10 GX 2800 FPGA and 32 GiB of DDR4 memory. It is connected to the host
via a PCI-E 3.0 x8 interface. Since this FPGA contains DSP units that are optimized
towards single-precision floating-point operations, we stick to single-precision arith-
metic. Instead of developing a new matrix multiplication kernel, we use the exam-
ple provided as part of the Intel FPGA Software Development Kit (SDK) for OpenCL
19.2 [89]. We were able to place two instances of this kernel on the FPGA with both
kernels performing a matrix multiplication C = A - B of size 2048 x m x 2048. The
design reaches a frequency of 424 MHz and uses 71% of the available DSP resources.
The peak performance is measured at 3.4 TFLOP/s. At 110 W measured power con-
sumption, this corresponds to 31 GFLOP/]. However, this does only take the power
consumption of the FPGA into account.

The designs uses a significant portion of the available resources and with its
424 MHz it achieves a relatively high clock frequency. However, it has some draw-
backs that limit its energy efficiency and its practicality. The first disadvantage is that
the kernels need to be fed with matrix blocks by the host in a very specific fashion.
In fact, this requires constant block transformations on the host, utilizing one of the
two host CPUs. Taking into account the 129 W measured power consumption of this
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CPU as well, the theoretically achievable energy efficiency drops down to around
14 GFLOP/]. A second disadvantage is that the matrices are constantly transferred
between the host and the FPGA. Moving the entire iteration scheme to the FPGA
is impossible due to the need for block transformations that require complex index
operations and need to be performed on the host.

For the submatrices of dimension 3972, we observe a practical performance of
the matrix multiplications of 2.7 TFLOP/s, corresponding to nearly 80% of the theo-
retical peak performance. However, considering the entire sign iteration, this drops
down to 1.75 TFLOP/s, caused by the overhead of block transformations and data
transfers. With that, energy efficiency drops to about 16 GFLOP /] when only con-
sidering the FPGA or 7.3 GFLOP/] when considering both FPGA and host CPU.
While this is significantly lower than the 41 GFLOP /] measured for the GPU imple-
mentation in single-precision, we see that an FPGA would be able to achieve similar
energy efficiency, if overheads could be significantly reduced and the entire iteration
scheme could be offloaded to the FPGA.

7.3 FPGA Accelerator for Iteration Schemes

The first FPGA acceleration approach provides good performance but has two ma-
jor drawbacks. Firstly, only the matrix multiplication is implemented on the FPGA.
Therefore all other parts of the iteration need to be performed on the host CPU, re-
quiring regular transfers of updated matrices from and to the FPGA. Secondly, the
used matrix multiplication kernel that is provided by Intel requires compute inten-
sive preparation of matrix blocks. This pre- and post-processing of matrix blocks
utilizes multiple CPU cores, increasing the overall workload of the system. We now
present a more general design for an FPGA accelerator that allows not only offload-
ing matrix multiplication but entire iteration schemes to the FPGA. This avoids the
need to copy matrices or matrix blocks from and to the FPGA during the iteration
and relieves the host CPU from all compute intensive tasks.
The accelerator is designed with the following requirements in mind:

1. Support for the Newton-Schulz sign iteration and related operations such as
the computation of inverse p-th roots of dense (sub-) matrices.

2. Input matrices shall only be copied once to the FPGA before starting the itera-
tion scheme. Output matrices shall only be copied once back to the host after
all computations have finished.

3. The accelerator should be able to utilize an Intel Stratix 10 FPGA and large
parts of the available DSP resources.

4. The accelerator should be easily accessible from any HPC application.

7.3.1 Required Kernels

One major design constraint is that there should be no necessity to copy matrices
back and forth between host and FPGA more than once. That implies that the FPGA
accelerator needs to be able to perform all numeric operations involved in the itera-
tive computational scheme. The Newton-Schulz iteration for computing the matrix
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sign function is given by

1
Xo=A4, X1 =5X0I-X{)
" 2 ¢ (2.6 revisited)
sign(A) = klg?o Xk.

Hence, the following operations need to be performed on the FPGA:
1. Matrix multiplication,
2. scaling of matrices by constants,

3. addition of matrices.

Looking at the iterative step required for computation of inverse p-th roots, given by

X1 = ;19 ((p + )X — X} “A) p (2.1 revisited)

it shows that this iteration scheme can be implemented as well using the exact same
kernels. In fact, likely many more iterative schemes can be implemented using these
fundamental operations.

In addition to the iteration itself, also the convergence criterion must be com-
puted on the FPGA to be able to terminate the algorithm as soon as a suitable result
has been found. For that, a suitable matrix norm must be implemented on the FPGA,
leading to a fourth required kernel in our design:

4. Computation of a matrix’s Frobenius norm.

In the following, all of these kernels including their optimization are briefly de-
scribed. All kernels operate on single-precision floating-point numbers.

Matrix Multiplication

The matrix multiplication is the only compute limited kernel. It needs to be designed
in a way to utilize large parts of the FPGA, in particular the DSP resources, make
effective use of them in most clock cycles and at the same time allow high clock
rates. This makes the development of well-performing matrix multiplication for
large FPGAs such as the Intel Stratix 10 challenging. Instead of designing a custom
kernel, we use the design proposed and published by Gorlani et al. [90]. It does
not require a complex blocking scheme like the kernel used in Section 7.2 and its
OpenCL code is well readable and can be customized if necessary.

The kernel is based on a pipelined implementation of Cannon’s algorithm [69]
that performs multiplications of two 8 x 8 matrix blocks with an Initiation Interval
(II) of one, i.e., it performs 1024 FLOP in each clock cycle. An outer blocking of
configurable size (dimension: 360-1024) serves caching purposes and increases the
arithmetic intensity of the entire kernel such that it becomes mainly compute bound.

The kernel is available as open source [91] and its performance as well as area
requirements can be controlled by (1) changing the size of matrix blocks that are
cached and (2) replicating the entire compute kernel to process multiple blocks in
parallel. Caching larger blocks allows increasing the arithmetic intensity and there-
fore reduces the time spent for data transfers from and to DRAM.

To fulfill the needs for implementation of the iterative schemes, the kernel’s func-
tionality needs to be extended. These extensions are described in the following.
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Figure 7.3: Original and improved load balancing between matrix multiplication
kernels. Instead of entire block columns, individual blocks are assigned.

Performing a Full SGEMM Operation The kernel originally was designed to per-
form the operation
C=A"B, (7.1)

where A, B and C are square matrices. To allow a more flexible use of the kernel and
avoid any unnecessary scaling and addition operations, we extend the functionality
to a full SGEMM operation, i.e.,

C=aA B+BC, (7.2)

where a and S are scalar values. This extension requires two modifications to the
kernel code:

1. The output blocks for matrix C need to be properly initialized by the block
currently held in memory and all elements need to be multiplied by . This
requires introducing another data loading loop that is executed when starting
to process a new block.

2. The computation itself needs to be extended to scale the multiplication result
by « and to accumulate on top of the previously loaded value.

Although these modifications introduce additional logic, they do not signifi-
cantly impact the synthesis result in terms of achieved clock rates and consumed
resources. While loading more data from DRAM does take additional run time, this
time is negligible compared to the overall run time of the kernel, in particular if block
sizes are rather large, e.g., 512 x 512 elements.

Optimized Load Balancing The original kernel supports an arbitrary number of
kernel replicas. Blocks are then distributed column-wise to kernels. As an example,
let us assume three kernels that jointly process a matrix composed of 4 x 4 = 16
blocks. This example is shown in Figure 7.3. The first kernel gets assigned two block
columns, i.e., eight blocks. The other kernels get assigned one block column, i.e.,
four blocks each. Consequently, the first kernel would take double the execution
time of the other kernels.

We modify this logic in that the load balancing does not operate on block columns
but on single blocks. In the above example, this leads to the first kernel processing
six blocks and all other kernels processing five blocks. In this specific scenario, this
optimization provides a speedup of 8/6 = 1.3x. However, the impact greatly varies
for different number of kernels and different matrix sizes.
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Listing 7.1: OpenCL copy kernel.

#pragma unroll 16
for (uint i = 0; i < len; i++) {
B[i] = A[i];

Listing 7.2: OpenCL scaling and addition kernel.

#pragma unroll 16
for (uint i = 0; i < len; i++) {
C[i] = A[il*alpha + B[il*beta;

Allowing Use of Seperate Memory Channels The matrix multiplications kernel
performs best when matrices A, B and C are placed in different memory banks and
automatic interleaving of memory channels is turned off. To be able to fulfill this
constraint at all times, we need to be able to copy over matrices from one memory
bank to another. This functionality is provided by an additional copy helper kernel
that is implemented in OpenCL by a simple loop as shown in Listing 7.1. The un-
rolling factor of 16 gives a total data width of 512 bits that is read and written in a
single clock cycle. With that, the kernel is able to fully exploit the available memory
bandwidth.

Scaling and Addition

Although the extension of the matrix kernel allows performing scaling and addition
during a matrix multiplication, it is still reasonable to provide a kernel that allows
to perform these operations independent of matrix multiplications. Both of these
operations can be combined in a single kernel that performs the operation

¢ = ad + b, (7.3)

where « and B are scalars and E,E and ¢ are vectors. As matrices are stored consec-
utively in memory, they can be passed in and out as vectors as well. Similar to the
copy kernel, this operation is purely memory bound such that the only optimization
goal is to fully utilize the available memory bandwidth. Again this is achieved using
an unrolling factor of 16 as shown in Listing 7.2.

Frobenius Norm Computation

The decision when to terminate the iteration is usually based on some distance norm.
In case of the iterative sign computation, in addition to ||A — I|| for some matrix A,
codes often additionally require ||A||; to normalize the convergence criterion wrt.
size and contents of the matrix. The Frobenius norm kernel is designed to compute
both of these values, such that they can be transferred back to the host where the
decision for or against continuation of the iteration is taken.
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The Frobenius norm from Definition 2.12 is given by

lAllF = (74)

Computing the square root is an expensive operation to perform on an FPGA which
takes up valuable resources. At the same time, computing the square root of two
scalar values can be quickly done on the host CPU. Therefore the kernel does not
compute the Frobenius norm but ||A||% and ||A — I||}, leaving proper interpretation
of these values to the host code.

Computing the Frobenius norm is a purely memory bandwidth limited opera-
tion. In general, the implementation approach therefore closely resembles the for-
merly described kernels. However, computation of ||A — I||% requires to identify
elements on the matrix diagonal and handling them differently by subtracting one
before squaring. Performing this distinction between elements based on their posi-
tion and performing the corresponding arithmetic operation turned out to be chal-
lenging for the OpenCL High-Level Synthesis tools. Another operation that could
not automatically be handled by the tools is the accumulation of products into a
single scalar value. Synthesis tools tend to introduce high Initiation Intervals into
loops that contain this operation. However, to work close to the available memory
bandwidth, an II of one is required.

To cope with these issues, shift registers have been introduced at multiple places
to introduce delay cycles and shorten critical paths within single clock cycles. At the
same time, the loop needs to be unrolled by a factor of 16 to fully utilize the available
memory bandwidth. Therefore all shift registers need to be replicated by 16 as well.
Overall, the kernel now consists of the following elements, replicated 16 times:

1. Upcoming diagonal index computation: If one of the 16 parallel loop iterations
has dealt with a diagonal element, compute the index of the next upcoming
diagonal element.

2. Diagonal index identification: If the currently processed matrix element corre-
sponds to the awaited diagonal element, emit a corresponding signal to trig-
ger computation of the next upcoming diagonal element. This signal is passed
through a shift register to introduce delay cycles.

3. Element computation: Square current matrix element. If the currently pro-
cessed matrix element corresponds to the awaited diagonal element, subtract
one before squaring when computing ||A — I ||%

4. Accumulation: Pop leftmost value from accumulation shift register, add com-
puted element and push result from the right.

This concept is visualized in Figure 7.4 which shows the part of the kernel which
computes |A — I H‘?ﬁ HAH‘;:_ can easily be computed by bypassing the logic that dis-
tinguishes between diagonal and non-diagonal elements and accumulating into a
second set of shift registers.

After the entire matrix has been processed, the results are spread over 16 shift
registers each, where each shift register contains twelve elements, i.e., 192 values
need to be accumulated to get the final result. This operation is performed in a loop
with an IT larger than one. Allowing a non-optimal IT has no significant performance
impact due to the low number of iterations but allows to save resources on the FPGA.
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Figure 7.4: Visualization of the computation of ||A — I H% within the Frobenius ker-

nel. After completion, the upper set of shift registers holds fractional results which

need to be accumulated before returning to the host. In practice, 12 accumulation
cycles and two signal cycles are used.



7.3. FPGA Accelerator for Iteration Schemes 85

7.3.2 Host Code Design

While all involved matrix operations are implemented on the FPGA such that ma-
trices do not need to be transferred repeatedly between the FPGA and the host, the
main control flow remains on the host. While in general also the control flow can
be implemented as part of the FPGA accelerator, such that it performs the entire it-
eration scheme autonomously, this requires resynthesis of the entire design when
changes to the algorithm are required or new algorithms should be implemented. In
contrast, when the main control flow remains on the host, new methods can easily
be implemented based on a fixed FPGA design that contains the kernels discussed
above.

Next to this extensibility, the host code needs to provide an easy interface to sci-
entific software that wants to take advantage of the FPGA accelerator. It is therefore
wrapped in a library that provides the following functionality:

1. Allocation of available FPGA devices. Using environment variables, the set
of available devices can be restricted. This allows integration into workload
managers that manage the available resources, including accelerator devices.

2. Programming of the FPGA using presynthesized bitstreams. This step is auto-
matically performed if an accelerator routine is called that requires a different
bitstream than what is currently programmed on the FPGA.

3. Running an accelerator routine, e.g., to compute the matrix sign function. All
OpenCL-specific code is transparently handled, such that the application does
not need to be aware of the concrete accelerator platform or the kernels imple-
mented on this accelerator.

Each accelerator routine needs to abstract away data transfers from and to the FPGA
as well as the kernel calls required to implement the offloaded operation. For the
sign function computation, the routine performs the following steps:

1. Data preparation:

(a) To guarantee convergence, the matrix elements need to be scaled. This
operation, i.e., determining a suitable scaling factor and scaling each ele-
ment of the matrix, are performed in software.

(b) The size of the input matrix needs to be a multiple of the block size sup-
ported by the matrix multiplication kernel. A suitable size is determined
and the padded area is filled with ones on the diagonal and zeros on all
off-diagonal positions.

2. Setup of OpenCL buffers required as input and output memory for the differ-
ent kernels.

3. Transfer of input data to the corresponding bulffer.
4. Iteration loop:

(a) Perform kernel calls to compute the result of a single iteration step.
(b) Perform kernel calls to compute ||A||12D and ||[A -1 ||% for A = X2.
(c) Transfer these two scalar values back to the host.

(d) Post-process returned values to compensate for the padding of the input
matrix and compute the square root to obtain the Frobenius norm.
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Table 7.2: Resources available on the Intel Stratix 10 GX 2800 FPGA and resources
consumed by the static portion of the BittWare BSP. Shown are the numbers of Adap-
tive Logic Modules (ALMs), Flip Flops (FFs), on-chip memory blocks (RAMs) and DSPs.

ALMs FFs RAMs DSPs
Static Portion 227,620 (24%) 910,480 (24%) 2,627 (22%) 1,047 (18%)
Available 705,500 (76%) 2,822,000 (76%) 9,094 (78%) 4,713 (82%)
Total 933,120 (100%) 3,732,480 (100%) 11,721 (100%) 5,760 (100%)

(e) Repeat step 4 until convergence.
5. Remove the initially added padding from the result matrix.

The accelerator routine to compute inverse p-th roots can be programmed analo-
gously.

Availability

The described FPGA accelerator, including kernels, host code and an abstraction
library are available under MIT license [B1].

7.3.3 Evaluation

The used matrix multiplication kernel generally provides lower floating-point peak
performance than the kernel used in Section 7.2 and the performance depends on
the block size used by the kernel, the achieved clock frequency and the size of the
input matrix.

There are elaborate performance measurements for the used matrix multiplica-
tion kernel in the original publication [90]. On the BittWare 520N board with an In-
tel Stratix 10 FPGA, a design consisting of five kernels and a block size of 512 x 512
elements performs best with around 1.3 TFLOP/s. Placing six kernels is only possi-
ble when reducing the block size to 360 x 360 which increases the impact of data
transfers onto the overall run time. At the same time, the achievable clock fre-
quency is reduced from 294 MHz to 224 MHz, reducing the overall performance
to 1.12 TFLOP/s. Therefore, we use the configuration of five kernels and 512 x 512
block sizes for the FPGA accelerator design.

Combining five instances of the modified matrix multiplication kernel with the
additional kernels described above, a final accelerator design has been synthesized
for the BittWare 520N board using the Intel FPGA SDK for OpenCL in version 20.2.0
and Quartus in version 19.4.0. In total, 20 designs have been synthesized using
different seeds in order to obtain a design that comes close to the best achievable
clock frequency. With seed=7, a design running at 298.24 MHz could be synthesized,
which is even slightly faster than what has been presented before.

Resource Consumption

A significant portion of the FPGA’s resources is already taken up by the Board Sup-
port Package (BSP), or the static portion of the design, as shown in Table 7.2. The
resource consumption of the kernels is given as percentage of the remaining usable
resources in Table 7.3.
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Table 7.3: Resources consumed by the different kernels. Percentages are given wrt.
the available resources. Shown are the numbers of Adaptive Logic Modules (ALMs),
Flip Flops (FFs), on-chip memory blocks (RAMs) and DSPs.

Kernel ALMs FFs RAMs DSPs
copy 2,510 (0.36%) 6,205 (0.02%) 34 (0.37%) 0 (0.00%)
frobenius 28,028 (3.98%) 62,513 (2.22%) 16 (0.18%) 52 (1.10%)
sgemm_0 66,517 (9.43%) 212,633 (7.53%) 1,665 (18.3%) 669 (14.2%)
sgemm_1 66,659 (9.45%) 212,255 (7.52%) 1,665 (18.3%) 669 (14.2%)
sgemm_2 66,877 (9.48%) 213,030 (7.55%) 1,665 (18.3%) 669 (14.2%)
sgemm_3 66,824 (9.47%) 231,630 (8.21%) 1,665 (18.3%) 669 (14.2%)
sgemm_4 66,699 (9.45%) 214,223 (7.59%) 1,665 (18.3%) 669 (14.2%)
scale_add 3,071 (0.44%) 7,912 (0.28%) 48 (0.53%) 32 (0.68%)
Total 395,664 (56.1%) 1,248,313 (44.3%) 8,497 (93.4%) 3,429 (72.8%)

The combined resource consumption of the SGEMM kernels is close to the values
reported by the original kernel author [90]. Only few additional DSP blocks (in
total: 3345 instead of 3223) are required to implement the additional functionality
provided by the proposed kernel extensions. It can also be seen that five kernels
with block size 512 x 512 take up 91.5% of the available on-chip memory blocks, i.e.,
instantiating additional kernels would require lowering the block size.

The additional kernels require only little additional resources. Most noteworthy
is the consumption of adaptive logic modules and flip-flops by the Frobenius kernel
which is caused by the extensive use of shift registers and the accumulation logic
that is replicated for each unrolled loop instance.

Performance Evaluation

The performance of all kernels is evaluated for matrix sizes that are multiples of the
block size 512 x 512. Since other matrix sizes are padded up to the next multiple
of this block size, performance for those matrix sizes can be determined from these
measurements.

Due to the deterministic behavior of all kernels and the fixed clock frequency,
the content of the matrices does not have any influence on the performance. For
performance evaluation, therefore identity matrices of the corresponding size are
generated on the host and transferred to the device before running the kernels. All
kernels are executed 50 times to obtain reliable measurements. Data transfer times
are not included in this performance evaluation since all kernels are designed to
be executed as part of an iterative scheme without the need of large data transfers
between kernel invocations.

Floating-Point Performance The only compute limited kernel is the matrix multi-
plication kernel. Due to multiple kernels operating on blocks of a fixed size of 512,
optimal performance will only be achieved if the input matrix sizes are a multiple
of this block size. Otherwise, matrices will be padded and the kernels will spend
additional time on the appended rows and columns. In addition, there will be load
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Figure 7.5: Performance of the matrix multiplication kernel for different input ma-
trix sizes. Required padding and non-optimal load balancing show in the visible
sawtooth pattern and the fluctuating height of its peaks.

imbalance between the kernels unless

512
{—‘ mod ng =0, (7.5)
SB

where S is the matrix dimension, sg is the block size (in this evaluation: 512) and ng
is the number of kernel replicas (in this evaluation: 5).

Figure 7.5 shows the measured performance in TFLOP/s for different matrix
sizes. The sawtooth pattern is caused by the required padding. As expected, the
performance impact of padding gets reduced for larger matrices, as shown by the
shrinking height of the saw teeth.

The impact of load imbalance can be seen in the non-monotonic increase of the
performance peaks. For example, at matrix size 1536 (9 blocks), only one of the
five kernels runs idle before the execution finishes, while at matrix size 2048 (16
blocks), four of five kernels run idle while a single kernel computes the last block.
Therefore, the overall performance drops when increasing the matrix size from 3 x 3
to 4 x 4 blocks. This effect becomes less pronounced for larger matrices where the
performance for matrices that do not require padding generally comes close to the
peak performance. Overall, the highest measured performance is 1.29 TFLOP/s for
a matrix size of 10240 x 10240.

Throughput The three remaining kernels, i.e., computation of the Frobenius norm,
scaling and adding of vectors and copying of vectors, are purely memory-bandwidth
limited. The optimization goal for these kernels is therefore to utilize the perfor-
mance of the memory channels that are available.
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Figure 7.6: Performance in terms of throughput of the remaining kernels for different
input matrix sizes. For comparison, the maximum theoretical throughput of one,
two and three memory channels for the used DDR4-2400 memory are shown.

To allow the matrix multiplication kernel to perform best, it is necessary to dis-
able automatic memory interleaving and to access different matrices over different
memory channels. The throughput of the three evaluated kernels therefore depends
on how many memory channels they can utilize. For the Frobenius kernel, this is
just a single memory channel since only a single matrix is read. The copy kernel can
utilize two memory channels, one reading in a vector and the other one writing out
the copy. The scaling and adding kernel can utilize three channels as it takes two
input vectors and writes out one result vector.

Figure 7.6 shows the measured throughput for all three kernels. In all cases,
throughput already comes close to the measured peak values for matrix dimensions
below 2000. The measurements confirm the performance expectations based on the
number of memory channels. In particular, they show that the optimization of the
Frobenius kernel allows it to fully utilize its input memory channel while still con-
suming only little FPGA resources.

Entire Sign Iteration In addition to the performance of the single kernels, we also
evaluate the performance of running the entire sign iteration on the FPGA. We do
so using the same scenario as used in Sections 7.1 and 7.2, i.e., for a submatrix of
dimension 3972. We measure a practical performance of the entire sign iteration of
1.01 TFLOP/s. This is close to the performance of the matrix multiplication kernel,
showing the low overhead caused by the additionally required operations. Dur-
ing execution, the FPGA consumes up to 110 W, leading to an energy efficiency of
9.18 GFLOP/J. Including data transfers from and to the host, we measure an overall
performance of 0.96 TFLOP/s (8.73 GFLOP/]). Since data is only transferred once
before and after execution of the sign iteration, the corresponding overhead varies
with the number of iterations performed on the FPGA. The presented numbers have
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been measured by performing six iterations which required 1.62 s for the computa-
tions on the FPGA and 79 ms for data transfers.

While the raw performance numbers of this accelerator design are behind what
was achieved in Section 7.2 by offloading only matrix multiplications, its practical
performance is at around 78% of the peak performance of the used matrix multipli-
cation kernel and the overhead of data transfers becomes negligible. In addition, it
relieves the host CPU from all compute and memory intensive tasks and therefore
allows the CPU to be used for other tasks.

7.4 Summary of Findings

In this chapter, three approaches to offload the computations on submatrices to hard-
ware accelerators have been presented. For the iterative methods discussed in this
work, i.e., computation of the matrix sign function and matrix p-th roots, matrix
multiplications are the only compute limited operation. As shown in Section 7.1,
modern GPUs such as NVIDIA GPUs with tensor cores provide high performance
and energy efficiency, in particular when using low-precision arithmetic. The Sub-
matrix Method now allows to utilize this performance for matrix operations on large
sparse matrices and with that for the LSDFT method discussed in this work.

For offloading computations to FPGAs, we have shown two approaches. Of-
floading only the matrix multiplications allows to use the most performant matrix
multiplication kernel available for a given FPGA. However, as shown in Section 7.2,
this approach comes with high overheads caused by regular data transfers between
host and FPGA. We therefore also showed how a dedicated iteration accelerator de-
sign can be constructed from a set of kernels. While providing less performance,
this approach comes with less data transfer overhead and allows to easily imple-
ment further iterative schemes based on the same FPGA design.

The performance of the FPGA accelerator is limited mainly by the floating-point
performance of the used matrix multiplication kernel. Recently, a new matrix mul-
tiplication design for Intel FPGAs has been proposed which achieves 3 TFLOP/s on
the used Stratix 10 FPGA [92]. Incorporating this new kernel into the accelerator
design proposed in this chapter has the potential to bring performance and energy
efficiency of the FPGA accelerator closer to what has been achieved with GPUs.
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Chapter 8

Conclusion

In this chapter, we conclude this thesis by providing a brief summary of its contents
and results as well as an outlook on possible future work.

8.1 Summary

In this thesis, we described and evaluated two approximation approaches in the
context of Linear Scaling DFT and used them to accelerate ab-initio molecular dy-
namics simulations. Specifically, we looked at density matrix based DFT as it is
implemented in the quantum chemistry code CP2K.

First, we examined iterative algorithms for two central kernels of the considered
method, namely the computation of inverse p-th roots and the matrix sign function
of matrices. We evaluated them with respect to their resilience against errors caused
by low precision in the used floating-point arithmetic or for the storage of interme-
diate results. For both kernels, the considered algorithms still converge when using
half-precision arithmetic and even when using much lower precision for the storage
of intermediate results. Interestingly, the initial rate of convergence is barely influ-
enced by the reduced precision. Additionally, for the computation of inverse p-th
roots, a refinement of the computed solution using higher precision arithmetic is
possible.

As a second approximation technique, we introduced the Submatrix Method,
which transforms the application of a unary matrix operation on a large sparse input
matrix into a set of independent applications of this matrix function on much smaller
dense matrices. Although results computed using this method are only approxima-
tions of the solutions, we showed that they are sufficiently accurate for application in
Linear Scaling DFT as well as entirely different areas, such as preconditioning. The
fact that the operations on different submatrices are entirely independent of each
other allows massive parallelization of these computations. At the same time, the
much smaller dense submatrices are very well suited to be processed by hardware
accelerators such as GPUs and FPGAs.

We demonstrated these properties and the practicality of the described approxi-
mation techniques by providing an open source implementation within CP2K. Sim-
ulations of benchmark systems containing liquid water showed absolutely linear
scaling with the system size and overall good strong and weak scaling properties.
Compared to the conventional method implemented in CP2K, the submatrix based
approach showed favorable weak scaling properties and overall better performance
if accuracy requirements on computed energies do not exceed a certain limit. Finally,
we demonstrated how the submatrix operations can be offloaded to GPUs and FP-
GAs and how low-precision arithmetic units of modern GPUs can be exploited in or-
der to increase the achievable floating-point performance and energy efficiency. On
a single NVIDIA RTX 2080 Ti we achieved a practical performance of 35 TFLOP/s
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and an energy efficiency of 140 GFLOP/] using half-precision arithmetic, which cor-
responds to a third of its theoretical peak performance and energy efficiency.

8.2 Outlook and Future Work

The work presented in this thesis provides manifold starting points for future work,
both in research and in practical development of software and hardware libraries.

¢ In this work, only the main computational hotspot of AIMD is considered as
a target for the Submatrix Method. Consequently, submatrices regularly need
to be constructed from distributed sparse matrices and results have to be regu-
larly collected back into the original, distributed sparse format. A worthwhile
goal is to move more of the involved computations into the realm of subma-
trix computations, such that data transfers can be reduced. In fact, follow-up
research has already started where submatrix elements are computed directly
instead of being extracted from a large distributed matrix, allowing to move
the computations involved in generating the input matrices to accelerators as
well. Using a cluster of 1536 NVIDIA A100 GPUs, up to 100 million atoms
could be simulated using this approach achieving 324 PFLOP/s using mixed
precision [B2].

¢ We have demonstrated that the Submatrix Method can be used for different
matrix functions and in different application areas. It is reasonable to assume
that there are more applications than electronic structure methods that can
profit from utilizing this method, warranting further research. In this context
it can be worthwhile to implement the method as a generic, parameterizable
library to ease the adoption by other researchers.

¢ For the use of GPUs in HPC, there are different comprehensive libraries avail-
able and many scientific codes already incorporate support for GPUs. So far,
the selection of corresponding libraries for FPGAs is rather limited. Due to the
high entry barrier of FPGA development, the presence of such libraries seems
vital for a broad adoption of this accelerator type in HPC. The approach for an
FPGA accelerator library for iterative schemes that is discussed in this work
has great potential as a starting point for a more comprehensive linear algebra
library.

Overall, the methods presented in this thesis and their integration into Linear
Scaling DFT prepare ab-initio molecular dynamics simulations for the ever-growing
degree of parallelism that needs to be exploited in today’s HPC clusters and the
growing importance of hardware accelerators in these systems.
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