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Abstract

In this work, the electromagnetic wave propagation in integrated optical waveguides is studied
by using semi-analytical and numerical simulation methods.

In the first part, 2-D high-index contrast Si/SiO2 dielectric slab waveguide configurations are
investigated. The structures are excited with semi-guided waves at oblique angles of propa-
gation. Due to this, power transfer to specific outgoing modes can be suppressed, resulting
in completely lossless configurations. In particular, the wave propagation in bent slab waveg-
uides, compositions of bent and straight slab waveguides, representing corner- and step-like
structures, and optical microresonators, consisting of one or two rectangular cavities, is studied.
The structures are investigated for their modal properties, transmission/reflection and resonance
behavior. The excitation is further examined for incoming, laterally confined wave bundles of
semi-guided waves to realize practically more relevant 3-D configurations. Additionally, a step-
wise angular spectrum method in combination with full vectorial 2-D finite element solutions
for subproblems of lower complexity to numerically simulate the wave propagation in full 3-D
planar lens-like waveguides is presented. The method offers a fast design optimization of these
3-D lens structures.

In the second part, the wave propagation in lithium niobate waveguide structures is examined,
which are used for quantum optical effects. On the one hand, superconducting nanowires on ti-
tanium in-diffused lithium niobate waveguides with an additional tapered silicon layer are used
for single photon detection. The wave propagation in these 3-D multiscale tapers is studied
by introducing a unidirectional finite element modal matching method based on a staircase ap-
proximation, where eigenmodes are propagated along the waveguide segments with constant
2-D cross sections. The method enables an efficient and fast optimization for 3-D taper shapes.
On the other hand, lithium niobate rib waveguides on silicon dioxide platforms are analyzed,
focusing on the nonlinear parametric down-conversion process used for the generation of en-
tangled photons. Examples for structures that exhibit an appropriate nonlinear coupling of the
involved fields are presented. Concepts, as discussed in the context of semi-guided waves, can
be applied here.
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Zusammenfassung

In dieser Arbeit wird die elektromagnetische Wellenausbreitung in integrierten optischen Wel-
lenleitern mit Hilfe von halb analytischen und numerischen Simulationsmethoden untersucht.

Im ersten Teil werden 2-D Si/SiO2-Wellenleiterkonfigurationen mit hohem Brechungsindex-
kontrast betrachtet. Die Strukturen werden mit halb geführten Wellen unter schrägen Ausbrei-
tungswinkeln angeregt. Dadurch kann die Leistungsübertragung zu bestimmten ausgehenden
Moden unterdrückt werden, wodurch vollständig verlustfreie Systeme entstehen. Betrachtet
wird insbesondere die Wellenausbreitung in gebogenen Schichtwellenleitern, in Zusammenset-
zungen aus gebogenen und geraden Schichtwellenleitern, die ecken- und stufenförmige Struk-
turen darstellen, sowie in optischen Mikroresonatoren, die eine oder zwei rechteckige Kavitäten
besitzen. Die Strukturen werden bezüglich ihrer modalen Eigenschaften, ihres Transmissions-
und Reflexionsverhaltens sowie ihres Resonanzverhaltens analysiert. Zusätzlich dient die Anre-
gung mit einem seitlich begrenzten, einfallenden Wellenbündel aus halb geführten Wellen dazu,
praktisch relevantere 3-D Konfigurationen zu realisieren. Darüber hinaus wird eine schrittweise
Winkelspektrum-Methode (engl.: angular spectrum method) vorgestellt, die es ermöglicht, in
Kombination mit voll vektoriellen 2-D Finite-Elemente-Lösungen für Teilprobleme mit gerin-
gerer Komplexität, die Wellenausbreitung in planaren, linsenförmigen Wellenleitern numerisch
in drei Raumrichtungen zu berechnen. Die Methode ermöglicht eine schnelle Designoptimie-
rung dieser 3-D Linsenstrukturen.

Im zweiten Teil dieser Arbeit wird die Ausbreitung in Wellenleiterstrukturen aus Lithiumnio-
bat untersucht, welche für quantenoptische Effekte genutzt werden. Zur Detektion einzelner
Photonen werden supraleitende Nanodrähte auf eindiffundierten Lithiumniobat Wellenleitern
mit zusätzlicher Taperschicht aus Silizium betrachtet. Um die Wellenausbreitung in diesen 3-D
Wellenleitern zu beschreiben, wird eine einseitig gerichtete Finite-Elemente “Modal Matching”
Methode eingeführt. Diese basiert auf einer Stufenapproximation, bei der sich Eigenmoden ent-
lang der Wellenleitersegmente mit konstanten 2-D Querschnitten ausbreiten. Auch hier eignet
sich die Methode für eine effiziente und schnelle Optimierung der 3-D Taperformen. Abschlie-
ßend werden Rippenwellenleiter aus Lithiumniobat analysiert, die auf Siliziumdioxid Plattfor-
men aufgebracht sind. Der Schwerpunkt liegt hier auf dem nichtlinearen “Parametric Down-
Conversion” Prozess, der für die Erzeugung verschränkter Photonen verwendet wird. Verschie-
dene Beispiele für Strukturen werden vorgestellt, die eine entsprechende nichtlineare Kopplung
der beteiligten Felder aufweisen. Hier können Konzepte, wie sie im Zusammenhang mit halb
geführten Wellen diskutiert wurden, angewandt werden.
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Chapter 1

Introduction

Silicon photonics has become a promising platform in integrated optics as it offers many advan-
tages [1–3]. One major benefit is the compatibility with standard complementary metal-oxide
semiconductor (CMOS) fabrication technologies [4]. Thus, the integration of silicon-photonic
devices combining optical and electric components on the same chip is feasible. Moreover,
the strong light confinement in high-index contrast silicon structures enables a high-density in-
tegration of photonic components within a small area and makes it robust, e.g., for bends or
crossings [2, 5, 6]. Furthermore, it is a cost efficient and reliable solution with an extensive
supply for the future [2,3,6]. Its applications cover a broad spectrum in the fields of computing,
communication, sensing and imaging [6].

The basic building block of an integrated optical device are optical waveguides which are used
to interconnect various components on the chip with relatively low losses [7]. Dielectric waveg-
uides consist of a core with higher medium than the surrounding cladding region, so that an
electromagnetic wave is guided in a specific direction and confined in the core region due to to-
tal internal reflection. Dielectric slab waveguides are the simplest form of an optical waveguide
because the Maxwell equations can be solved almost analytically. The guided waves in these
2-D structures are semi-guided because their field profile is localized in only one transverse di-
rection. The study of these simple waveguide structures is fundamental to get an understanding
of more complex structures in photonic technologies [8, 9].

In the first part of this work, we will especially focus on 2-D dielectric slab waveguides that
connect to a “discontinuity” region of rather arbitrary shape, such as bends or gaps. Discon-
tinuities in dielectric slab waveguides are commonplace in many optoelectronic systems and
usually cause losses and reflections [9]. But they are necessary to manipulate the field behavior
for prescribed applications and functionalities. We are particularly interested in the excitation
of these 2-D structures at oblique angles of propagation normal to the waveguide axis because
radiation losses as well as power transfer to certain outgoing modes can be suppressed beyond
specific incidence angles [10–21].

We start in Chapter 2 with the introduction of some basic 2-D optical waveguide concepts,
including Maxwell’s equations, dielectric slab waveguides and optical fibers. The theoretical
part is concluded with the derivation of the modal properties of the fields in slab waveguide
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1. Introduction

discontinuities at oblique propagation angles, and with an analysis of the excitation of these
2-D structures with laterally confined beams of semi-guided waves to realize more realistic 3-D
structures.

The propagation of light in these dielectric waveguides is described by the Maxwell equations.
In most cases, they are solved by numerical methods. Throughout this work, we use the simula-
tion software COMSOL Multiphysics [22], which is based on the finite element method [23,24].
Therefore, we introduce the theory of the finite element method in Chapter 3 and outline the
required settings for the simulations in COMSOL.

Specific 2-D slab waveguide discontinuities are then analyzed in Chapters 4–6. We start in
Chapter 4 with a semi-analytical derivation of the modal properties of spiral modes guided at
oblique angles in bent slab waveguides [18]. This includes the calculation of their wavenum-
bers and the corresponding mode profiles. A combination of different bent and straight slab
waveguides – step and corner structures – serving as couplers for full power transmission on
different levels [13, 25–27], is then studied in Chapter 5 regarding their transmission and re-
flection behavior depending on the incidence angle. The bent steps are further analyzed in a
3-D setting for incoming laterally confined wave packets of semi-guided waves. Another field
of 2-D concepts are optical microresonators which are considered in Chapter 6 consisting of
two parallel slab waveguides connected via a rectangular cavity, serving as a power divider or
add-drop filter [28, 29], and are analyzed for their resonance behavior.

Dielectric waveguide lenses are basic building blocks in integrated optics for focusing, imaging,
spatial filtering, Fourier transforming and convolving operations [30]. In Chapter 7, we consider
these in full 3-D. One basic tool to calculate the propagation of light in optical systems is the
angular spectrum method [31–46], as a part of diffraction theory [47–49]. The method was
already extended to calculate the diffraction of light from or to curved surfaces [46]. We present
a modified version of the stepwise angular spectrum method to calculate the wave propagation
in curved waveguide structures. This concerns, on the one hand, 2-D curved interfaces of
different materials, for which the method is derived mainly for illustration, and, on the other
hand, full 3-D waveguide lenses consisting of slab waveguides with different cross sections
which are separated via one or two curved surfaces. The method requires less computational
time and memory space compared to rigorous 3-D simulation techniques. Furthermore, we
show that different optimization algorithms can be easily applied to our method with reasonable
effort.

Besides silicon, lithium niobate has become a promising material in integrated photonics due
to its large electro-optic coefficient and large second-order nonlinear susceptibility [50, 51]. It
provides an ideal platform for integrated quantum photonics [52], e.g., for photon absorption
[53–55] or nonlinear interaction of waves to generate entangled photons [56–58]. We do not
intent to go into details in quantum optics, but study the wave propagation in optical waveguide
structures that are used for quantum optical effects.

For photon detection, superconducting nanowires are deposited on top of titanium in-diffused
lithium niobate (Ti:LN) waveguides [53–55]. Ti:LN waveguides offer a promising platform
because they have the advantage of low loss and high efficient coupling to standard optical
fibers [59]. But the detection rate is limited as the guided modes of the Ti:LN waveguide are
distributed some micrometers below the waveguide surface, thus the overlap with the detecting
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1. Introduction

nanowires is small. A possible way to increase the detection rate is by applying an additional
high refractive index silicon taper on top of the Ti:LN waveguide to pull up the mode closer to
the wires [55].

Tapers are a fundamental component for photonic integrated circuits to achieve efficient cou-
pling with minimal loss between optical waveguides of different cross sections by changing the
size and the shape of the optical waveguide mode [60–67]. However, an efficient design requires
an appropriate software that correctly simulates the wave propagation in these 3-D structures.
A simple and effective simulation technique offers the modal matching method [60–63, 68],
which describes the modal behavior at a waveguide junction of different cross sections. In
Chapter 8, we introduce a unidirectional finite element modal matching method to calculate the
wave propagation in 3-D multiscale tapers. The approach is based on a staircase approximation
of the taper, where eigenmodes are propagated along the waveguide segments with constant
2-D cross sections. We are searching for taper geometries that exhibit a high transmission and
compact size. Additionally, optimization algorithms are applied that provide swift results. An
optimized shape of the taper is presented that leads to a high absorption for small taper lengths.

Finally, lithium niobate on insulator (LNOI) rib waveguides are studied for their nonlinear in-
teraction of waves to generate entangled photons in Chapter 9 [69]. LNOI waveguides combine
the advantages of lithium niobate and silicon used in integrated quantum photonics [70–72].
One of the most common nonlinear processes to generate entangled photons is the paramet-
ric down-conversion process [50], where the signal, idler and pump photons are interacting.
Usually, the signal and idler photons exhibit different group velocities, but this is compensated
by considering LNOI rib waveguides of specific size [73, 74]. By choosing the geometry ac-
cordingly, the signal and idler fields are (quasi) degenerate modes of the waveguide, propagate
together, but still have different mode profiles. In Chapter 9, we present specific rib waveguide
structures that enable nonlinear interaction. Finally, circling back to the beginning of this thesis,
we show that an excitation of the structure with a pump mode, guided by the adjoining slab of
the rib at oblique angles of propagation, can also lead to nonlinear interaction of the involved
fields.

The work on this thesis was supervised by and carried out in cooperation with colleagues from
the Theoretical Electrical Engineering group at Paderborn University. Chapters 4 and 5 are
already part of a bachelor and master thesis, but for the sake of completeness, we include the
results as they fit thematically very well to the topic of this thesis. The work on Chapters 8 and
9 was accompanied by colleagues from the departments of Mesoscopic Quantum Optics and
Theoretical Quantum Optics at Paderborn University, respectively.
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Chapter 2

Optical waveguide theory

In the following chapter, the theoretical basics for our numerical simulations are presented.
Fundamentals are the Maxwell equations introduced in Section 2.1. Most of the content in
this work deals with dielectric optical waveguides, in particular, dielectric slab waveguides and
optical step-index fibers. The mathematical foundations are presented in Section 2.2. Note that
the theory is subject of standard textbooks on optical waveguide theory, e.g., [8, 9, 78].

We are specifically interested in compositions of dielectric slab waveguides separated by al-
most arbitrary shaped 2-D linear discontinuities and the excitation of these structures with a
semi-guided mode propagating at oblique angles. Beyond certain incidence angles, excitation
of specific outgoing modes is forbidden and losses are fully suppressed, i.e., completely loss-
less 2-D waveguides can be realized. The modal properties of the involved fields are derived
analytically and presented in Section 2.3.

For practically more relevant full 3-D solutions, we consider excitation by laterally limited 3-D
wave bundles of semi-guided waves into the 2-D waveguide structures. These wave packets
can be excited by placing a wide rib waveguide in front of the structure to excite a mode that is
confined in the transverse plane. The theory of excitation with a rib waveguide mode is derived
in Section 2.4.

The discussion of lithium niobate on insulator (LNOI) waveguides in Chapter 9 requires a
review of certain aspects of the theory of nonlinear optics. For convenience, these are introduced
directly at the beginning of that respective part of the thesis.

2.1 Maxwell’s equations
The Maxwell equations are the fundamental laws of classical electrodynamics and describe the
behavior of electromagnetic fields in the presence of charges and currents. These are coupled
partial differential equations for the electric field Ê, magnetic field Ĥ, dielectric displacement D̂
and magnetic flux density B̂. The four macroscopic Maxwell equations, consisting of Gauss’s
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2. Optical waveguide theory

law, no-monopole law, Faraday’s law and Ampère’s law, are written as [79]

∇ · D̂ = ρ,

∇ · B̂ = 0,

∇× Ê = − ∂

∂t
B̂,

∇× Ĥ = ∂

∂t
D̂ + Ĵ,

(2.1)

with the current density Ĵ and charge density ρ. All electric and magnetic field components are
assumed to be time t and space (x, y, z) dependent. The constitutive equations

D̂ = ε0Ê + P̂,
B̂ = µ0(Ĥ + M̂)

(2.2)

complete the set of equations [79]. Here, P̂ and M̂ are the polarization and magnetization, and
ε0 and µ0 are the free space permittivity and free space permeability, respectively.

We are interested in stationary optical electric Ê and magnetic Ĥ fields with a harmonic time
dependence ∼ eiωt, thus(

Ê
Ĥ

)
(x, y, z, t) = Re

{(
Ẽ
H̃

)
(x, y, z)eiωt

}
, (2.3)

where Ẽ and H̃ are the optical fields in the frequency domain. The fields are characterized by
their angular frequency ω = k0c0 = 2π c0

λ0
with vacuum wavelength λ0, vacuum speed of light

c0 = 1
√
ε0µ0

and vacuum wavenumber k0.

Thus, the Maxwell equations can be written in the frequency domain as

∇ · D̃ = ρ,

∇ · B̃ = 0,
∇× Ẽ = −iωB̃,
∇× H̃ = iωD̃ + J̃

(2.4)

with the material equations

D̃ = ε0εrẼ,
B̃ = µ0µrH̃

(2.5)

for a linear, dielectric material with polarization P̃ = ε0χeẼ and magnetization M̃ = χmH̃,
electric susceptibility χe, magnetic susceptibility χm, relative permittivity εr = 1 + χe and
relative permeability µr = 1 + χm.

The considered medium is assumed to be lossless, dielectric, isotropic, non magnetic and space
dependent, thus µr = 1 and εr(x, y, z) = n2(x, y, z). Here, n is the refractive index of the
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2. Optical waveguide theory

material. Furthermore, currents and free charges are not included, thus J̃ = 0 and ρ = 0.
Then, the Maxwell equations in the frequency domain for a dielectric, linear, non-magnetic and
isotropic material are given by

∇× Ẽ = −iωµ0H̃,

∇× H̃ = iωε0εrẼ.
(2.6)

These can be combined to the wave-equations for either the electric Ẽ or magnetic H̃ field with
non constant permittivity ∂εr 6= 0

∇× (∇× Ẽ)− k2
0εrẼ = 0,

εr∇× ( 1
εr
∇× H̃)− k2

0εrH̃ = 0.
(2.7)

2.2 Dielectric waveguides
Light can be confined in optical dielectric waveguide structures. A typical dielectric waveguide
consists of a core that is coated with a cladding medium of lower refractive index than the core
medium. Due to total internal reflection, the light is confined in the core region and the wave
is able to propagate in the direction of the core. There are several types of optical waveguide
structures, e.g., slabs or fibers are among the many types of optical waveguide structures [8,78].

We assume a waveguide with arbitrary but finite cross section in the x-y-plane, that is constant
along the z-axis with ∂zεr = 0. Potential waves are propagating in the z-direction, thus they
exhibit a field dependence(

Ẽ
H̃

)
(x, y, z) =

(
E
H

)
(x, y)e−ikzz, (2.8)

where kz is the propagation constant or wavenumber, and (E,H)T is the mode profile depend-
ing on the transverse coordinates only.

When considering regions with constant refractive index εr, the wave equations (2.7) can be
rewritten by using the ansatz in Eq. (2.8)

∆TE + (k2
0εr − k2

z)E = 0,
∆TH + (k2

0εr − k2
z)H = 0,

(2.9)

where ∆T = ∂2
x + ∂2

y is the Laplacian operator in the transverse plane only. This represents
a system of partial differential equations which is to be completed by suitable boundary and
interface conditions. Applying these conditions results in an eigenvalue problem of the abstract
form

M(kz)A = 0. (2.10)

Here, A represents a vectorial profile or field and M is the system matrix depending on kz .
Both depend on the specific system under study. We will see examples on this in the following
sections.
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2. Optical waveguide theory

Modes are solutions of the eigenvalue problem (2.10). Generally, we are looking for guided
modes that have a real propagation constant kz ∈ R and are confined in the core region, thus
the integral over the cross section of the Poynting vector

S = 1
2Re{E∗ ×H} (2.11)

in propagation direction z should be finite, i.e.,∫
Szdxdy <∞. (2.12)

The integral (2.12) represents the power flow of the electromagnetic wave in propagation direc-
tion.

By using the ansatz (2.8), it is possible to express the transverse components Ex, Ey, Hx and
Hy through the electric and magnetic components in propagation direction, Ez and Hz . Thus,
it is only necessary to solve a coupled system of 2-D partial differential equations for the two
longitudinal electric and magnetic components Ez and Hz

∆TEz + (k2
0εr − k2

z)Ez = 0,
∆THz + (k2

0εr − k2
z)Hz = 0.

(2.13)

The remaining components are obtained directly by transforming Maxwell’s equations to

Ex = −i
k2

0εr − k2
z

(kz∂xEz + ωµ0∂yHz),

Ey = −i
k2

0εr − k2
z

(kz∂yEz − ωµ0∂xHz),

Hx = −i
k2

0εr − k2
z

(kz∂xHz − ωε0εr∂yEz),

Hy = −i
k2

0εr − k2
z

(kz∂yHz + ωε0εr∂xEz).

(2.14)

Alternative formulations are possible as well, relying on the transverse electric components Ex
and Ey or on the transverse magnetic components Hx and Hy as principal components (instead
of Ez and Hz).

Finally, we can further distinguish between different classes of modes, where the longitudinal
field components are either vanishing or not [8]:

• Ez = Hz = 0: Transverse electromagnetic modes (TEM modes) that have electric and
magnetic field components orthogonal to the propagation direction z. They only exist if
k2

0εr − k2
z = 0

• Ez = 0, Hz 6= 0: Transverse electric modes (TE modes) with electric field components
orthogonal to the propagation direction z.

• Hz = 0, Ez 6= 0: Transverse magnetic modes (TM modes) with magnetic field compo-
nents orthogonal to the propagation direction z.

• Hz 6= 0, Ez 6= 0: Hybrid modes with all six components non-zero. They can further
be distinguished in TE-like (EH) and TM-like (HE) modes, where either the electric or
magnetic principal field component is dominant.
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2. Optical waveguide theory

2.2.1 Slab waveguide

In the following, we discuss the optical dielectric slab waveguide in more detail, which is one
of the simplest forms and can even be considered almost analytically [8, 9, 78].

Figure 2.1 shows a configuration of such a slab waveguide that consists of three layers with
different dielectric materials nc, ns and nf . The whole structure is infinitely expanded in the y-
z-direction and the wave is propagating in the z-direction. The core has a thickness of d, while
the cladding regions are half-infinite in ±x-direction. If the refractive index in the core nf is
larger than the ones in the cladding nc and substrate ns, waves can be guided in this structure.

x

y

z

nf
ns

d

kz nc

Figure 2.1: Dielectric slab waveguide with refractive indices nc, nf , ns, thickness d and wave
propagation in the z-direction with wavenumber kz = k0Neff .

The fields are assumed to propagate in the positive z-direction with wavenumber kz . As the
structure is constant along the y-direction, we are also looking for fields that are constant along
that direction with ∂y = 0. Thus, we can predict a field dependence(

Ẽ
H̃

)
(x, y, z) =

(
E
H

)
(x)e−ikzz. (2.15)

In this case, the Maxwell equations (2.6) reduce to two separate sets of equations, representing
either the transverse electric (TE) modes or the transverse magnetic (TM) modes as introduced
in the previous section.

For the TE modes, the solution of the Maxwell equations is given by

E(x) =

 0
Ψ(x)

0

 and H(x) = 1
ωµ0

−kzΨ(x)
0

i∂xΨ(x)

 , (2.16)

where the principal electric field component Ey(x) = Ψ(x) has to fulfill the TE-Helmholtz
equation (2.7) (with ∂yεr = ∂zεr = 0)

∂2
xΨ + (k2

0εr − k2
z)Ψ = 0. (2.17)
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On the other hand, the solution for the transverse magnetic modes is

E(x) = 1
ωε0εr

 kzΨ(x)
0

−i∂xΨ(x)

 and H(x) =

 0
Ψ(x)

0

 , (2.18)

where the principal magnetic field component Hy(x) = Ψ(x) has to satisfy the TM-Helmholtz
equation (2.7) (with ∂yεr = ∂zεr = 0)

εr∂x( 1
εr
∂xΨ) + (k2

0εr − k2
z)Ψ = 0. (2.19)

Looking for guided modes that are localized around the core region, Ψ(x) is a trigonometric
function in the core and an exponential decaying function in the claddings. Considering the
continuity conditions at both interfaces (Ey, Hx and Hz are continuous for TE modes; Hy, Ey
and εrEx are continuous for TM modes), one obtains an eigenvalue equation for either TE or
TM modes in the form of Eq. (2.10). This transcendental equation has to be solved numerically
to find eigenvalue solutions kz .

The calculated TE and TM modes are determined by their mode profile Ψ(x) and their propa-
gation constant kz = k0Neff , where Neff = kz/k0 is the unitless effective refractive index or
mode index of the mode. For symmetric waveguides with nc = ns, the solutions can be further
classified in even and odd TE and TM modes. The number of guided modes in the waveg-
uide depends on the considered wavelength, the geometry and the material parameters of the
structure [8, 9].

For a mode to be guided in the waveguide, the value of kz needs to satisfy the guidance condition
[9]

max(ns, nc) ≤ Neff ≤ nf . (2.20)

If Neff < max(ns, nc) applies, the field is radiating in at least one of the cladding regions and
is no longer localized around the core. Thus, Neff = max(ns, nc) is the cut-off condition of the
waveguide. Contrarily, for Neff > nf , no modal solutions exist at all. With “fundamental TE”
(TE0) or “fundamental TM” (TM0) mode, we refer to guided modes with the largest effective
refractive index for either the TE or TM case.

nc nf ns d/ µm λ0/ µm NTE0 NTM0 Ref.
1.6 1.7 1.6 1 1.3 1.6603 1.6575 Chapter 4
1.5 2 1.5 0.4 1.3 1.7979 1.7241 Chapter 4

1.45 3.4 1.45 0.25 1.55 2.8612 2.2280 Chapter 5
1.45 3.45 1.45 0.22 1.55 2.8227 2.0397 Chapters 6–7
1.45 3.45 1.45 0.05 1.55 1.7245 1.4612 Chapter 7
1.0 1.5 1.0 0.4 1.55 1.2303 1.1091 Section 6.4
1.0 2.1565 1.4589 0.25 0.775 1.9281 1.7804 Section 9.4
1.0 2.2242 1.4589 0.25 0.775 1.9943 1.8401 Section 9.4

Table 2.1: Effective mode indices NTE0 and NTM0 of specific slab waveguide configurations
with refractive indices nf (core), nc (cladding), ns (substrate) and core thickness d for vacuum
wavelength λ0.
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The fundamental TE and TM modes guided by the slab waveguide structures considered in this
work, defined by their material ns, nf and nc, their thickness d and the wavelength λ0, are
displayed in the following Table 2.1. All configurations only support the fundamental TE and
TM modes with effective mode indices NTE0 and NTM0 , respectively [80].

2.2.2 Step-index fiber

Optical waveguide fibers are mainly used in long distance telecommunication because of their
huge advantage of low losses combined with low dispersion effects. Among others, the step-
index fiber or the gradient-index fiber belong to this category of waveguides. In this section, we
will consider the step-index fiber in more detail, as it can also be analyzed almost rigorously [8].

nc

x

z

y
nf

ρ

θr

Figure 2.2: Cross section view of an optical step-index fiber with core radius r, core refractive
index nf and cladding refractive index nc. The cladding region is assumed to be sufficiently
large. The modes are propagating along the fiber axis in the y-direction.

The step-index fiber consists of a core with refractive index nf and radius r, which is surrounded
by a cladding material with refractive index nc < nf , as illustrated in Figure 2.2. Note that we
now introduce the y-axis as the propagation direction while the x-z-coordinates represent the
transverse cross section plane, so that it fits to the notation in Chapter 4.

The structure is described in cylindrical coordinates (ρ, θ, y). We consider time harmonic elec-
tric and magnetic fields that propagate in positive y-direction(

Ẽ
H̃

)
(ρ, θ, y) =

(
E
H

)
(ρ, θ)e−ikyy. (2.21)

The modes that are guided by the fiber satisfy the Maxwell equations (2.6), which are given in
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cylindrical coordinates as

1
ρ
∂θEy + ikyEθ = −iωµ0Hρ,

−ikyEρ − ∂ρEy = −iωµ0Hθ,

1
r
∂ρ(ρEθ)−

1
ρ
∂θEρ = −iωµ0Hy,

1
ρ
∂θHy + ikyHθ = iωε0εrEρ,

−ikyHρ − ∂ρHy = iωε0εrEθ,

1
ρ
∂ρ(ρHθ)−

1
ρ
∂θHρ = iωε0εrEy

(2.22)

and the wave equations (2.7) are given by

∂2
ρΨ + 1

ρ
∂ρΨ + 1

ρ2∂
2
θΨ + (k2

0εr − k2
y)Ψ = 0, (2.23)

for either Ψ = Ey(ρ, θ) or Ψ = Hy(ρ, θ) in regions with constant refractive index εr. The
remaining other components are then calculated as

Eρ = −i
k2

0εr − k2
y

(ky∂ρEy + ωµ0
ρ
∂θHy),

Eθ = −i
k2

0εr − k2
y

(ky
ρ
∂θEy − ωµ0∂ρHy),

Hρ = −i
k2

0εr − k2
y

(ky∂ρHy −
ωε0εr
ρ

∂θEy),

Hθ = −i
k2

0εr − k2
y

(ky
ρ
∂θHy + ωε0εr∂ρEy).

(2.24)

We assume Ψ(ρ, θ) = f(ρ)g(θ) with radial and angular functions f and g, respectively. The az-
imuthal dependency, g(θ), of the electromagnetic fields in axially symmetric fibers is expressed
by the dependence

g(θ) ∝ e±iνθ, (2.25)

where ν is an integer, representing the angular order of the mode. The optical fiber modes are
degenerate in the sense that any eigenvalue ky corresponds to two solutions ±ν.

Alternatively, the angular ansatz sin(νθ) or cos(νθ) can be chosen instead of the one introduced
in Eq. (2.25). Both approaches are valid solutions of the differential equation. The former
represents traveling-wave modes that have a vorticity in ±θ-direction. These modes exhibit
a specific orbital angular momentum (OAM), thus they are called OAM modes [81–83]. In
contrast to this, the latter is of standing-wave type [84]. However, complex superposition of two
modes of opposite angular order ±ν and suitable amplitudes easily transforms the approaches
into each other. Both solutions are valid, they only differ in the choice of basis functions.
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Applying Eq. (2.25), transforms Eq. (2.23) to

∂2
ρf + 1

ρ
∂ρf + (k2

0εr − k2
z −

ν2

ρ2 )f = 0, (2.26)

where f only depends on the radial component ρ. The solution for a finite field in the core and a
decaying field in the cladding is given by the Bessel function Jν in the core and by the modified
Bessel functions Kν in the cladding [85].

Apart from TE (Ey = 0) and TM (Hy = 0) modes, hybrid modes (Ey, Hy 6= 0) are also
present in optical fibers. All of them have to satisfy Eq. (2.26), but only the hybrid modes
have all six components non-zero. Additionally, the hybrid modes can be split into HE and EH
modes depending on the polarization character of the mode. TE-like hybrid modes exhibit a
comparably small electrical field component Ey in propagation direction, thus these are called
EH modes, and TM-like modes have a small Hy component and are called HE modes [86].

The tangential components of the electric and magnetic fields have to be continuous at the
core-cladding interface ρ = r, from which follows (after some considerations, see [9]) that the
integer order ν of the Bessel functions has to be equal to zero when considering TE or TM
modes. Then, Eqs. (2.24)–(2.26) can be further simplified. For TE modes, Hy has to fulfill

∂2
ρHy + 1

ρ
∂ρHy + (k2

0εr − k2
y)Hy = 0 (2.27)

with the remaining non-zero components given by

Eθ = iωµ0
k2

0εr − k2
y

∂ρHy,

Hρ = −iky
k2

0εr − k2
y

∂ρHy.

(2.28)

And for TM modes, Ey has to satisfy

∂2
ρEy + 1

ρ
∂ρEy + (k2

0εr − k2
y)Ey = 0 (2.29)

with the non-zero components

Eρ = −iky
k2

0εr − k2
y

∂ρEy,

Hθ = −iωε0εr
k2

0εr − k2
y

∂ρEy.

(2.30)

The eigenvalues ky are again determined by an eigenvalue equation in the form of Eq. (2.10)
(exchanging kz by ky) that has to be solved for the eigenvalues ky. For a guided mode the
wavenumber has to fulfill the condition

nc ≤
ky
k0

= Neff ≤ nf . (2.31)
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In accordance to the step-index slab waveguide, it is also possible to define a fiber with three
layers [78]. The mathematical approach is almost identical to the two-layer structure, however,
the additional interfaces have to be considered as well. The mode is now guided in the middle
layer, which exhibits the highest refractive index. The distinction between TE, TM and hybrid
modes is still possible.

2.2.3 Power orthogonality

Modal orthogonality properties, e.g., reciprocity or power orthogonality [78, 87], play an im-
portant role in the theory of guided wave systems. These are briefly derived in the following.

2.2.3.1 Lorentz reciprocity

We assume two particular fields (Ẽ1, H̃1)T and (Ẽ2, H̃2)T (depending on (x, y, z)) that exist
is the same medium (same εr) and fulfill the time harmonic Maxwell equations (2.6)

∇× Ẽj = −iωµ0H̃j , (2.32)

∇× H̃j = iωε0εrẼj , (2.33)

with j ∈ {1, 2}. By performing the dot products of H̃2 with the complex conjugate of Eq. (2.32)
for j = 1 and the dot product of Ẽ∗1 with Eq. (2.33) for j = 2 and subtracting the equations,
results in

∇ · (Ẽ∗1 × H̃2) = iωµ0H̃2 · H̃∗1 − iωε0εrẼ∗1 · Ẽ2. (2.34)

In an analogous manner, this can be done for Eq. (2.32) with j = 2 and Eq. (2.33) with j = 1,
resulting in

∇ · (Ẽ2 × H̃∗1) = −iωµ0H̃∗1 · H̃2 + iωε0εrẼ2 · Ẽ∗1. (2.35)

Combining Eq. (2.34) and Eq. (2.35) leads to

∇ · (Ẽ∗1 × H̃2 + Ẽ2 × H̃∗1) = 0. (2.36)

Eq. (2.36) is the Lorentz reciprocity relation. It is applicable to all lossless media.

2.2.3.2 Orthogonality of guided modes

Now, we further consider that the waveguide has a uniform cross section and is infinitely long
in the z-direction. Looking at two guided modes that are propagating in positive z-direction
along the waveguide, their field dependence is given by(

Ẽj

H̃j

)
(x, y, z) =

(
Ej

Hj

)
(x, y)e−ikz,jz, j ∈ {1, 2}, (2.37)

where kz,j are positive wavenumbers of each propagating mode with kz,1 6= kz,2.

Substituting the field dependence in Eq. (2.36) yields to

∇ · [(E∗1 ×H2 + E2 ×H∗1)ei(kz,1−kz,2)z] = 0 (2.38)
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or

∇ · (E∗1 ×H2 + E2 ×H∗1) = i(kz,2 − kz,1)(E∗1 ×H2 + E2 ×H∗1). (2.39)

Integrating the equations over the cross sectionA of the waveguide and applying the divergence
theorem results in∫

A
∇ · (E∗1 ×H2 + E2 ×H∗1)dA︸ ︷︷ ︸

=
∫
C(E∗1×H2+E2×H∗1)·d~s

=
∫
A

i(kz,2−kz,1)(E∗1×H2 +E2×H∗1) ·ezdA, (2.40)

where C is a closed contour of the cross section of the waveguide. For optical waveguides, the
fields |Ej | and |Hj | for j ∈ {1, 2} of the guided modes decay exponentially outside the core
region, thus the contour integral vanishes completely when the contour tends to infinity, and so
does the right hand side of Eq. (2.40). Since the two modes are not degenerate, kz,1 6= kz,2, this
gives ∫

A
(E∗1 ×H2 + E2 ×H∗1) · ezdA = 0. (2.41)

Eq. (2.41) is the orthogonality relation of guided modes, depends only on the transverse field
components and holds for guided modes that are not degenerate or identical.

Considering a single mode j of the waveguide, the total time-averaged power carried by this
mode is given by [78]

Pj = 1
2

∫
A

Re{Ẽ∗j × H̃j} · ezdA

= 1
4

∫
A

(E∗j ×Hj + Ej ×H∗j ) · ezdA. (2.42)

Combining Eq. (2.41) and Eq. (2.42), we get the power orthogonality relation

(Φ,Ψ)x,y := 1
4

∫ ∞
−∞

∫ ∞
−∞

(E∗1xH2y − E∗1yH2x +H∗1yE2x −H∗1xE2y)dxdy

=
{

0, kz,1 6= kz,2

P1, kz,1 = kz,2
(2.43)

with Φ = (E1,H1) and Ψ = (E2,H2).

For 2-D structures with waveguides that exhibit a 1-D cross section, e.g., slab waveguides, a
respective analysis needs to take into account the vanishing y-derivatives of all fields. This leads
to the product of fields

(Φ,Ψ)x := 1
4

∫ ∞
−∞

(E∗1xH2y − E∗1yH2x +H∗1yE2x −H∗1xE2y)dx (2.44)

that allows to express power orthogonality in 2-D.
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2.3 Slab waveguide discontinuities
The structures considered in this work consist of compositions and connections of different
waveguides to achieve a desired functionality. In particular, we study slab waveguides that are
connected via a linear and (almost) arbitrary discontinuity, and excited at oblique angles of
propagation. Certain general properties of these 2-D composited configurations can be derived
analytically [10–20]. A variant of Snell’s law applies to these structures, which implies that be-
yond particular incidence angles, power transfer to specific outgoing modes can be suppressed,
thus power transfer to non-guided modes can be excluded, resulting in a completely lossless
structure (within the theoretical model that disregards material attenuation and surface rough-
ness). Hence, in this section, we consider a 2-D scattering problem, where slab waveguides
encounter a discontinuity at oblique angles of propagation ϕ, as illustrated in Figure 2.3.

x

y

z

φ

Figure 2.3: Slab waveguide discontinuity with incoming wave guided at oblique angles of prop-
agation ϕ.

Before deriving the critical angles for power suppression to specific outgoing modes, we briefly
introduce oblique propagation with respect to the coordinate axes in dielectric slab waveguide
structures. This is equivalent to a rotation of the coordinate system for the slab waveguides
considered in Section 2.2.1.

2.3.1 Oblique propagation in dielectric slab waveguides

Rotating the coordinate system leads to a rotated version of the TE and TM modes, which
still solve the Maxwell equations. However, the rotation can also be interpreted as oblique
propagation of the wave with respect to the coordinate axes as shown in Figure 2.4. The wave
reaches the waveguide at an oblique angle of propagation ϕ normal to the z-axis. Hence, the
fields are no longer constant in the y-direction (∂y 6= 0). But the whole waveguide structure is
invariant in y-direction, such that, at all positions, the overall field solution can be restricted to
a single Fourier component given by the in-plane wavenumber ky in the form(

Ẽ
H̃

)
(x, y, z) =

(
E
H

)
(x)e−i(kyy+kzz). (2.45)
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2. Optical waveguide theory

The wave is now propagating in the y-z-direction, thus the wavenumbers ky and kz are non-
zero and have to fulfill the dispersion equation k2 = k2

0N
2
eff = k2

y + k2
z , to be a valid solution

of the Maxwell equations. Fixing ky = k0Neffsinϕ results in kz = k0Neffcosϕ (resulting
from geometrical considerations, see Figure 2.4). Here, Neff is still the mode index from the
waveguide solution with normal incidence.

x

y

z

nf

ns
d

ky

nc

φ
k

kz

Figure 2.4: Dielectric slab waveguide with refractive indices nc, nf , ns and thickness d with
oblique propagation in the y-z-direction at an angle ϕ.

With the help of ansatz (2.45), the Maxwell equations (2.6) lead to fields for TE modes

E(x) =

 0
kzΨ/k2

−kyΨ/k2

 and H(x) = 1
ωµ0

 −Ψ
iky∂xΨ/k2

ikz∂xΨ/k2

 , (2.46)

where Ψ(x) has to fulfill the equation

∂2
xΨ + (k2

0εr − k2)Ψ = 0. (2.47)

And for TM modes the components are given by

E(x) = 1
ωε0εr

 Ψ
−iky∂xΨ/k2

−ikz∂xΨ/k2

 and H(x) =

 0
kzΨ/k2

−kyΨ/k2

 , (2.48)

and Ψ(x) has to satisfy the differential equation

εr∂x
1
εr
∂xΨ + (k2

0εr − k2)Ψ = 0. (2.49)

2.3.2 Critical angles
A 2-D cross section of the slab waveguide discontinuity is shown in Figure 2.5. The structure
as well as the electromagnetic field solution is supposed to be constant along one axis, here
the y-axis. Two half-infinite slab waveguides, both not necessarily of the same thickness, are
connected via the discontinuity, illustrated by the elliptic darker region, which can be of arbi-
trary shape. The incoming semi-guided wave, guided by the waveguide parallel to the z-axis, is
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2. Optical waveguide theory

propagating in z-direction and reaches the discontinuity at an oblique incidence angle ϕ. Pos-
sible back reflections are guided waves in negative z-direction and transmitted waves, that have
passed the discontinuity and are guided by the remaining slab waveguide, are propagating in
ξ1-direction in the x-z-plane. Radiating fields are propagating in arbitrary ξ2-direction.

nf

ns

nc

R

T
ξ1

ξ2

x

y z

Figure 2.5: Slab waveguide discontinuity of two slab waveguides (potentially different thick-
nesses) with refractive indices nc, nf , ns. The connected discontinuity is of arbitrary shape.

The incoming semi-guided wave is propagating in the y-z-plane at an oblique incidence ϕ,
which results in a field dependence

∼ Ψin(ky;x)e−i(kyy+kzz). (2.50)

Here, Ψin = (Ein,Hin)T is the vectorial profile of the incoming oblique wave with effective
refractive index Nin and wavenumbers ky = k0Ninsinϕ and kz = k0Nincosϕ, which fulfill the
relation k2

0N
2
in = k2

y + k2
z as already introduced for the slab waveguide in Section 2.2.1.

In an analogues manner, the outgoing waves are defined by a mode profile
Ψout = (Eout,Hout)T and an effective refractive index Nout with a field dependence

∼ Ψout(ky; .)e−i(kyy+kξξ). (2.51)

The wave is propagating in the ξ-y-plane, i.e., ξ = −z for the reflected waves, ξ = ξ1 for the
transmitted waves, and ξ = ξ2 for scattered waves in arbitrary direction ξ2.

Since the whole structure is assumed to be constant along the y-direction, all fields share the
field dependence ∼ e−ikyy with wavenumber ky = k0Ninsinϕ. Furthermore, the dispersion
equation k2

0Nout = k2
y + k2

ξ has to be fulfilled for all types of outgoing waves, resulting in an
equation for kξ. Looking at one particular outgoing wave with effective mode index Nout, two
cases have to be distinguished:

• k2
0N

2
out > k2

y: The wavenumber kξ = k0Noutcosϕout is a real value, describing a prop-
agating wave, where ϕout is the outgoing propagation angle calculated via a variant of
Snell’s law

sinϕout = Nin/Noutsinϕ. (2.52)
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• k2
0N

2
out < k2

y: The wavenumber kξ = −i
√
k2
y − k2

0N
2
out becomes imaginary and the

outgoing fields are evanescent.

Altogether, it is possible to define a critical angle with k2
0N

2
out = k2

y given by

sinϕcrit = Nout/Nin. (2.53)

Power transfer to the outgoing mode with mode index Nout is suppressed, if the structure is
excited at angles larger than ϕcrit.

Now, one can identify certain critical angles in relation to the structure of interest in Figure 2.5.
In this work, we assume the fundamental TE0 mode as the incoming field (otherwise the fol-
lowing has to be adapted), hence Nin = NTE0 . Then critical angles can be defined by:

• Considering the cover region, there is no optical power radiating in that layer for angles
ϕ ≥ ϕc with sinϕc = nc/NTE0 because all modes that relate to scattered waves with
oscillatory behavior in the cladding (“cladding modes”) have effective indices below nc,
i.e., Neff ≤ nc.

• Considering the substrate region, there is no optical power radiating in that region for
angles ϕ ≥ ϕs with sinϕs = ns/NTE0 because fields that can propagate in that region
are given by an effective mode index of Neff ≤ ns.
For the case nc ≤ ns < nf , there is no power lost in the cladding regions. Hence, all
radiation losses vanish.

• For an incidence angle ϕ ≥ ϕm with sinϕm = NTM0/NTE0 , whereNTM0 is the effective
refractive index of the fundamental TM0 mode with NTE0 > NTM0 , all power is carried
away by TE modes, since all TM polarized modes supported by these waveguides have
effective mode indices below NTM0 .

For a standard 2-D setting, meaning normal incidence with ϕ = 0◦, the configuration results in
separate problems for either TE or TM polarized waves. For the more general case of oblique
incidence ϕ 6= 0◦, the polarization states become coupled. Then, this is no longer a scalar
2-D problem. Apart from the transverse coordinates x and z, also the given strictly harmonic
dependence on y becomes relevant. Hence, we call this a 2.5-D or quasi-2-D problem.

2.4 Excitation of wave bundles
The previously introduced 2.5-D slab waveguide discontinuities involve oblique incoming semi-
guided waves that are infinitely extended along the y-direction. To consider more practically
relevant 3-D solutions as well, we investigate x-guided, laterally y-limited wave bundles of
semi-guided waves as the incoming field in our structures [13, 14, 19, 75, 88].

The general form of a 2-D wave packet in the y-z-plane, propagating in the z-direction, is
calculated as a weighted superposition of oblique plane waves via a Fourier transform [48]

1
2π

∫ ∞
−∞

w(ky)e−i(kyy+kzz)dky, (2.54)

where w(ky) is the weighting function that defines the spectral shape of the wave in the lateral
direction, e.g., a Gaussian function, and the exponential term covers the plane wave propagation
in directions (ky, kz) [9].
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2. Optical waveguide theory

In our case, these plane waves are replaced by the 2.5-D slab waveguide solutions, hence the
solution is further restricted in the x-direction. Then, a 3-D wave bundle for incoming pri-
mary incidence angle ϕ0 is given by a superposition of weighted 2.5-D slab waveguide solu-
tions for a range of wavenumbers ky (or incidence angles ϕ) around the primary wavenumber
ky0 = k0Neffsinϕ0 (or primary incidence angle ϕ0) and is evaluated by(

E
H

)
(x, y, z) = 1

2π

∫ ∞
−∞

w(ky){Ψ0(ky;x)e−ikz(ky)(z−z0)}e−iky(y−y0)dky. (2.55)

The term in curly brackets depicts the former 2.5-D slab waveguide solutions in the x-z-plane
with the vectorial mode profile Ψ0, where the index indicates TE0 incidence. The last phase
factor represents the individual harmonic y-dependence of the elementary quasi-2-D solutions.
Offsets y0 and z0 serve to adjust the global phase of the bundle. The weighting function is again
given by w(ky), which can be of Gaussian shape [13,14,19,88] or determined by the excitation
of an incoming rib waveguide with shallow etching in front of the structure [75]. The second
approach is used in this work and therefore derived in the following.

2.4.1 Excitation by a waveguide mode

Such wave bundles can be excited by placing a rib waveguide in front of a slab waveguide,
as illustrated in Figure 2.6. Here, we consider rib waveguides of width W , thickness d and
shallow etch depth d′. A wave that is guided in the rib waveguide and confined in the core
center, remains to be reasonably confined in the adjoining slab. To avoid spreading of the wave
and to guarantee beams that almost resemble the fundamental guided slab modes, the width
of the rib is assumed to be much larger than the etch depth W � d′. Furthermore, we can
assume that back reflections at the transition between rib and slab waveguide are negligible. To
realize oblique incidence, the rib waveguide is presented in local coordinates (x, y′, z′), where
the z′-direction is parallel to the waveguide axis, i.e., parallel to the propagation direction of
the incoming beam at incidence angle ϕ0 (cf. Figure 2.6 (b)). The global coordinate system is
given by (x, y, z).
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Figure 2.6: (a) Connection of a rib and slab waveguide of thickness d, width W and etch depth
d′ with refractive indices nf , nc and ns in rotated coordinates (x,′ y, z′). (b) The view from
above with primary incidence angle ϕ0.
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Assuming TE incidence, the unknown weight w(ky) from Eq. (2.55) is now determined by the
TE-like mode Φ0(x, y′) of the adjoining rib waveguide. For simplicity, the following deriva-
tions are only shown for normal incidence ϕ0 = 0◦. Otherwise, for ϕ0 6= 0, the fields and
coordinates have to be rotated by the appropriate angle and calculations are carried out respec-
tively.

At the junction, where rib and slab waveguide adjoin each other (z = z0), the incoming rib
mode profile Φ0(x, y) can be written as a superposition of wave packets (2.54) of individually
weighted slab modes Ψp(x) with mode order p and weight wp(ky)1

Φ0(x, y) = 1
2π
∑
p

∫ ∞
−∞
wp(ky)Ψp(ky;x)e−iky(y−y0)dky. (2.56)

Using the product for mode orthogonality (2.44), i.e., multiplying the equation with (Ψ0, ·)x,
and assuming mode orthogonality and normality of all slab waveguide modes results in

(Ψ0,Φ0)x = 1
2π

∫ ∞
−∞

w0(ky)e−iky(y−y0)dky. (2.57)

Then, the weight w0 for the excited TE0 slab mode is given by a Fourier transformation

w0(ky) =
∫ ∞
−∞

(Ψ0,Φ0)xeiky(y−y0)dy. (2.58)

Here, it is only necessary to consider the weight w0(ky) of the TE0 slab mode. Because of the
wide rib and low etching, the fundamental TE-like rib mode becomes more the TE slab mode.
Thus, contributions from higher order or TM modes in Eq. (2.56) can be neglected.

2.4.2 Power transmittance

For some configurations it may further be of interest to calculate the power of the outgoing beam
after passing the discontinuity, as sketched in Figure 2.7. Therefore, a second rib waveguide is
placed at the outset of the structure (here, the outgoing waveguide is parallel to the incoming
waveguide). Again, we only derive the equations for normal incidence ϕ0 = 0◦.

For the configurations in this work, we assume the outgoing slab waveguide to be identical
with the incoming slab (same thickness), hence the incoming and outgoing angles are identical
ϕout = ϕ0 and the same local coordinate systems can be used (x, y′′, z′′) = (x, y′, z′). The
position of the outgoing rib waveguide, i.e., the outgoing beam, strongly depends on the ge-
ometry of the discontinuity and the incoming and outgoing incidence angles. Here, the spatial
variation of the outgoing beam is represented by the displacement δ. Furthermore, the incoming
and outgoing field profiles of the fundamental TE0 mode of the rib waveguide match and only
differ in their amplitude with a pre-factor u0 ∈ C that represents the transmission coefficient.
To determine this coefficient, the outgoing field profile Ψout(x, y) (given by Eq. (2.55) with

1Strictly speaking, Eq. (2.56) holds only for the transverse components of the involved fields. However, since we
apply a orthogonality product (cf. Eq. (2.43)) in Eq. (2.57), which only includes transverse components, the notation
is acceptable for the derivation of wp.
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Figure 2.7: Top view of the slab wave-
guide discontinuity with additional in-
coming and outgoing rib waveguides,
rotated by the primary incidence an-
gle ϕ0. The discontinuity is illustrated
by the darker region and the spatial
displacement of the outgoing beam is
given by δ [13].

rib weight w(ky)) can be written as a superposition of all modes guided by the rib waveguide
Φq(x, y), which leads to 2

Ψout(x, y) =
∑
q

uqΦq(x, y). (2.59)

Using the 2-D mode orthogonality product (2.43) and assuming mode orthogonality and nor-
mality of all guided modes of the rib waveguide, the transmission coefficient of the quasi-TE0
rib mode is determined as

u0 = (Φ0,Ψout)x,y, (2.60)

and the transmittance T is directly given by |u0|2.

2Again, this holds strictly only for the transverse components; see footnote 1 on page 24 for a detailed explana-
tion.
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Chapter 3

Finite element method

The behavior of electric and magnetic fields in optical systems is described by Maxwell’s equa-
tions with appropriate boundary conditions. Together they describe a system of partial differen-
tial equations (PDE). Solving a partial differential equation analytically is usually impossible,
except for certain very simple structures. Instead numerical methods are required to approxi-
mate a reasonably accurate solution. Rather famous methods are the finite difference time do-
main method (FDTD), finite integration method (FIT), boundary element method (BEM) and
the finite element method (FEM). The latter is implemented in the simulation program COM-
SOL Multiphysics [22], which is used throughout this work and therefore the theory is briefly
introduced in this section. More details can be found in references [23, 24, 89].

For the configurations considered in this work, the electric or magnetic wave equation (2.7)
are the PDEs of interest. Together with suitable boundary conditions (BC) on the boundary
of the domain, they describe the complete boundary value problem. Here, we consider two
types of problems. On the one hand, scattering or mode propagation problems are studied by
exciting a structure with an input field that is propagating through the structure, e.g., a slab
waveguide discontinuity as discussed in Section 2.3. On the other hand, eigenvalue or mode
analysis problems are considered when calculating the guided modes of a 2-D waveguide cross
section.

We introduce the finite element theory in Section 3.1. Corresponding boundary conditions
used in this work and implemented in COMSOL are explained in Section 3.1.3. Finally, some
remarks on the settings in the COMSOL software, also concerning the appropriate boundary
conditions, as required for the structures in this thesis, are collected in Section 3.2.

3.1 Theory
The finite element method calculates an approximated solution of the original PDE by discretiz-
ing the problem in small, finite elements. The basic steps include the following [23, 24]:

1. Deriving the weak form of the original PDE.

2. Division of the computational domain into small, finite, non-overlapping elements (mesh-
ing).
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3. Finite element method

3. Approximation of the solution by basis functions to yield local matrices for each element.

4. Assemble local matrices to a global matrix, and solve the corresponding system of linear
algebraic equations.

To illustrate the principles of the finite element method, we consider an abstract problem of the
form

Du = f in Ω (3.1)

with partial differential operator D, source f , unknown u and a domain Ω. Mathematically, this
is an inhomogeneous, linear partial differential equation that needs to be solved for the unknown
variable u.

In principle, scattering problems exhibit an incident field that leads to a non-zero right hand side
f 6= 0 in Eq. (3.1). Contrarily, eigenvalue problems are described by a homogeneous PDE with
f = 0, as we are interested in the eigenvalues of the system. We will give some more details on
the specific BCs in Section 3.1.3.

3.1.1 Weak formulation

The first step to calculate a valid approximated solution of the original PDE is to transform
Eq. (3.1) into an integral formulation, called the weak formulation, which is an equivalent
re-formulation of the original PDE. Therefore, the equation is multiplied with an arbitrary,
vectorial test function Φ ∈ V , where V is an infinite dimensional function space, and integrated
over the domain Ω∫

Ω
(Du)ΦdΩ =

∫
Ω

fΦdΩ, ∀Φ ∈ V. (3.2)

The formulation is called weak, since it weakens the requirement of Eq. (3.1) to hold for every
point u in the domain Ω to every test function Φ in the space of test functions V . The weak
formulation only requires equality in an integral sense and is reduced in differentiation order,
which is mostly easier to solve than the original PDE. It can be shown that a solution of the
weak formulation is also a solution of the original PDE [23].

3.1.2 Galerkin-method

To discretize the PDE, finite-dimensional subspaces Vh ⊂ V with dim(Vh) = N < ∞ are
created. The Galerkin-method, also called method of weighted residuals, requires an approxi-
mation ũh of the solution ũ to a subspace Vh ⊂ V . The better Vh approximates the space V ,
the better is the approximation ũh of ũ. Now, one has to find a discrete solution uh ∈ Vh of
Eq. (3.2) that solves the equation∫

Ω
(Duh)ΦdΩ =

∫
Ω

fΦdΩ, ∀Φ ∈ Vh. (3.3)

uh represents the discrete solution of Eq. (3.1) in Vh. One can show that a solution uh exists, is
unique and the discrete problem is well posed.
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3. Finite element method

We assume a finite-dimensional subspace Vh with basis (Φ1, ...,ΦN ) of piecewise polynomial
ansatz functions that are just non-zero over a small interval. Then, the solution ũh of the discrete
problem can be approximated by

u ≈ ũh =
N∑
i=1

ciΦi ∈ Vh, (3.4)

where ci are coefficients and Eq. (3.3) can be written as

N∑
i=1

ci

∫
Ω

(DΦi)ΦjdΩ =
∫

Ω
fΦjdΩ, j = 1, ...,N . (3.5)

This can further be identified as
N∑
i=1

ciaji = bj , j = 1, ...,N , (3.6)

with matrix elements

aji =
∫

Ω
(DΦi)ΦjdΩ, (3.7)

and right hand side

bj =
∫

Ω
fΦjdΩ. (3.8)

This is a linear system of equations of the form

Ac = b, (3.9)

where A = (aji)1≤i,j≤N is the system or stiffness matrix of sizeN ×N , b = (bj)1≤j≤N is the
source and c = (ci)1≤i≤N is the unknown vector.

The advantage of the choice of basis functions is that they are just non-zero over a small interval
and therefore the integrals from Eq. (3.5) are zero everywhere, except for a few limited regions
where the test functions Φj and basic functions Φi match. Hence, most of the entries of the
matrix A are zero because each triangular element consists only of a few neighboring elements.
The matrix A is therefore sparsely populated, which simplifies the numerical solution of the
system (3.9).

The division in subspaces Vh is equivalent to discretizing the domain Ω in arbitrary elements
Ωh. Mostly the domain Ω is discretized in triangular elements, since they approximate complex
structures sufficiently good. This is called triangulation T of the domain Ω. On each of these
elements one defines piecewise linear functions, which are chosen as the basis functions Φi of
Vh.

The error of the Galerkin approximation is at most a constant factor worse than the distance of
the solution to its best approximation of Vh. The error can therefore essentially be controlled
by the choice of suitable approximation spaces Vh. The denser the discretization (the meshing),
the better the approximation of the solution to the real solution. More details about the meshing
for the structures considered in this work are explained in Section 3.2.
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3.1.3 Boundary conditions

So far we did not specify the boundary conditions that determine the right hand side of Eq. (3.1)
in more detail. As mentioned before, we consider scattering and eigenvalue problems, where
both require different boundary conditions. This section briefly records and explains the bound-
ary conditions used in this work which are implemented in COMSOL [90]. A closer look on
the implementation in the software COMSOL Multiphysics [22] is given in the next section.

3.1.3.1 Electric boundary conditions

The electric boundary condition is the simplest BC, since the tangential components of the elec-
tric field are zero along that boundary. Consequently, the normal component of the magnetic
flux density is zero as well. By setting the matrix entries in A at the specific points to zero,
the BC is easily implemented. The electrical boundary condition behaves like a perfect elec-
trical conductor (PEC), thus it is also often called PEC boundary condition [90, 91]. Here, we
use these for our mode analysis studies. As we mainly consider waveguide structures with a
finite core region, the fields are zero at the outer cladding boundaries. Thus, PEC is a suitable
boundary condition.

3.1.3.2 Perfectly matched layer

Perfectly matched layers (PML) are used to model open boundaries in a finite computational
domain. By placing PMLs around the structure of interest, a wave that is entering the PML
region is damped in that layer without undesired boundary effects like back reflections. Hence,
PMLs create open boundaries that are transparent to any radiation to simulate an infinite struc-
ture [91, 92]. We apply PMLs around the structures, when considering scattering problems
like the waveguide discontinuity introduced in Section 2.3 to absorb all types of radiation and
simulate an open domain.

3.1.3.3 Port boundary conditions

Sometimes it is advantageous to excite or absorb waves of specific shape and direction at the
boundaries of a structure. Therefore, port boundary conditions can be added to a boundary.
They are helpful to excite and absorb waves of specific shape [90]. We use ports for guided wave
excitation and absorption in combination with PMLs, when considering scattering problems.
The incident field from the port contributes to the right hand side of Eq. (3.1).

3.2 Settings in COMSOL
COMSOL Multiphysics [22] provides an implementation of the FEM for a variety of physical
problems. In our case, the differential equations are given by the Maxwell equations for our
2.5-D structures. Additionally, the “radio frequency” [90] module is used to specifically solve
electromagnetic wave problems, e.g., wave propagation in optical waveguides or mode analysis
of waveguide cross sections. The module offers ports to excite the structure and calculate S-
parameter, and perfectly matched layers to simulate an infinite space.

A variety of different port types are available, but in this work we use “numeric” ports that
excite and absorb a specific mode that is calculated via a “boundary mode analysis” on the
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corresponding boundary. With the help of this property, COMSOL is able to directly calculate
the incoming modes of the considered slab waveguide – by giving a value close to Nin as
an input value – and excites the structure with this mode. Ports have the advantage that they
directly calculate the transmittance and reflectance scattering parameter |Sij |2, where Sij is the
time averaged power transmission or reflection coefficient from port j to port i. Additionally,
one can directly define an “out-of-plane wave number” ky that realizes oblique excitation in a
2-D environment. Here, COMSOL automatically includes the field dependence ∼ e−ikyy for
given wavenumber ky = k0Ninsinϕ. Thus, to simulate our oblique 2.5-D problems that are
homogeneous along one spatial direction, only a 2-D model setting is necessary.

Furthermore, PMLs are placed around the 2-D simulation domain. They absorb all kinds of
radiation by damping the waves in thickness-direction. Optimal behavior is achieved by using
unstructured meshing for the PML region, e.g., mesh of rectangular shape in 2-D models. For
our 2.5-D models, the typical wavelength that reaches the PMLs is given by 2π/(k0Neffcosϕ)
due to the oblique incidence, whereNeff is the effective refractive index of the mode that reaches
the outgoing PML region. In most of the cases considered in this work, the 2.5-D simulations
concern incidence angles larger than the critical angle for loss suppression (cf. Section 2.3).
As a result, PMLs are not required because the power is completely transmitted through the
guided modes of the waveguide system and outgoing guided modes are directly absorbed by
respective ports. Omitting the PMLs reduces the size of the computational domain and thus the
computational time. However, to implement a model that is applicable for arbitrary incidence
angles, we added PMLs around our structures.

In addition to wave propagation problems, i.e., exciting the structure with a port, COMSOL is
further used for mode analysis, thus calculating the mode profiles of a waveguide with finite
and constant 2-D cross section along the propagation direction. Here, mode analysis is carried
out only on the 2-D cross section. For guided modes, which exhibit localized fields in the
core region, and sufficiently large cladding regions, PMLs are mostly not needed as the fields
are already decayed at the outer simulation domain, thus PEC boundary conditions are used
instead.

The right choice of the mesh size is important as it strongly influences the required compu-
tational time. In COMSOL, structured (rectangles) and unstructured (triangles) elements are
offered for 2-D simulations [91]. As mentioned before, PMLs require structured mesh, while
the remaining domain is filled with unstructured mesh to accurately discretize all objects of
the configuration, e.g., curves. For the following 2.5-D simulations, we always choose mapped
mesh in the PML region with a PML thickness of λ0. Otherwise, triangular mesh with a maxi-
mum element size of λ0/10 is selected. For all configurations, convergence could be observed
for this choice of element size [93]. The corresponding computational 2-D runtimes require
5− 60 s for our 2.5-D settings depending on the geometry under study and the size of the sim-
ulation domain, e.g., the bent steps from Figure 5.6 require approximately 25 s.

30



Chapter 4

Bent slab waveguides1

Bends in dielectric waveguides usually cause losses that are more or less pronounced depending
on the considered properties of the system under study [9]. But they are basic building blocks
in integrated optics, thus there is keen interest in studying the losses in bent waveguides, fo-
cusing on their appearance, their strength and the possibility to suppression. The last point was
already addressed in Section 2.3 for dielectric slab waveguide discontinuities at oblique angles
of propagation.

In this chapter, a simple 2-D slab waveguide that is regularly bent around one axis is considered.
Such structures have already been studied theoretically [95–97] and experimentally [98], with
focus on resonant properties [95], far-field properties [97] and excitation by external free-space
plane waves or focused Gaussian beams. But we are interested in the modal properties, i.e.,
propagation constants and mode profiles, of the guided (attenuated) modes depending on the
geometry and material parameters. The modal analysis related to the curvature of the waveguide
can be studied by looking at analytical 2-D models [9, 99] of bent slab waveguides with 1-D
cross sections. In line with the arguments of Section 2.3, we have a particular look at waves that
propagate at oblique angles of incidence. The modes are guided in the waveguide and spiral
around the center of curvature, thus we call these modes “spiral modes” [18, 94].

The mathematical formulation (Section 4.1) leads to an eigenvalue problem, which is solved by
numerical methods using the computer algebra system Maple [100]. The results, concerning the
propagation constants and mode profiles, are displayed in Section 4.2. Our approach describes
the transition from bend modes [14] at normal incidence to general spiral modes at arbitrary
angle of incidence to a discrete number of lossless OAM modes (Section 2.2.2) at specific
incidence angles beyond the critical angle (see Section 2.3).

4.1 Spiral modes theory
The structure under study (see Figure 4.1 (a)) consists of a three-layer bent slab waveguide with
core thickness d. The refractive indices are given by ns in the interior region, nf in the core

1The chapter is based on [18, 94]. Parts of the results were already part of the candidate’s bachelor thesis [94].
However, we extended our investigations on bent slab waveguides even further [18]. For the sake of completeness,
we show the results here, as they fit perfectly to the topic of this thesis.

31



4. Bent slab waveguides

region and nc in the outer cladding region with ns ≤ nf > nc. The waveguide is regularly bent
around the y-axis with an outer core radius r. Such a structure can be considered as a kind of
discontinuity (Section 2.3) when connecting the bent slab waveguide to a normal straight slab
waveguide (Figure 4.1 (b)). The incoming wave is guided in the y-z-plane at oblique angles of
propagation ϕ.

As a first step, we are interested in the semi-guided modes that propagate in the curved segment.
Thus, we neglect the transition between straight and bent slab waveguide initially and analyze
the modal properties of the bent part only. This work was motivated by a similar study [99] of
bend mode configurations for normal incidence ϕ = 0◦. For that case, scalar 2-D bend modes
of particular TE- or TM-polarization are present.

x

y z

kz

k

ky

φ

ky

φ'
kθ

(b)

θ

nf

ns

nc

d

r

ρ

z

x

(a)

Figure 4.1: (a) Bent slab waveguide structure with refractive indices nf , ns and nc and core
thickness d. The structure is regularly bent around the y-axis with outer curvature radius r,
and constant along the y- and θ-direction. (b) Illustration of an imagined excitation of the bent
waveguide by a straight slab waveguide with the same parameters. The incoming semi-guided
wave reaches the structure at oblique angles of incidence ϕ in the y-z-plane. This leads to
wavenumbers ky and kθ in the bent structure. The propagating mode in the bent part “spirals”
at an angle ϕ′ [18].

Here, we consider a 2-D cross section, as shown in Figure 4.1 (a). Because of the symme-
try of the structure under study, further investigations are carried out in cylindrical coordinates
(ρ, θ, y). The whole system is constant along the y- and θ-direction. We are interested in quasi-
guided attenuated waves that propagate along the curved slab with non-zero wavenumbers ky
and kθ, thus waves that propagate in y-θ-direction at an angle ϕ′, with a confined mode pro-
file along the radial r-direction. Note that the outgoing propagation angle ϕ′ is not necessarily
identical to ϕ due to different guidance properties. The wavenumber ky is determined by the in-
coming oblique semi-guided wave of the (imagined) adjoining straight slab waveguide because
the structure is constant in the y-direction, and therefore we can adopt the field dependence also
for the bent part. These kind of waves describe spirals along the waveguide segment, thus we
call these modes “spiral modes”. Depending on the considered incidence angle of the spiral
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mode, three different scenarios are distinguished:

• For normal incidence ϕ = 0◦ or ky = 0, scalar 2-D bend modes are present [99].

• For angles ϕ � ϕc, ϕs (cf. Section 2.3) and close to 90◦, the waves become lossless
(cf. Section 2.3) and for real and integer angular orders, the segment can be continued to
a full tube with guided OAM modes, as introduced in Section 2.2.2.

• In between exists a continuum of hybrid, vectorial waves – spiral modes – that propagate
along the core segment and spiral around the tube axis with different levels of radiation
losses (depending on the incidence angles ϕ or wavenumber ky, respectively). In line
with the argumentation in Section 2.3 the losses fully vanish beyond an incidence angle
ϕ > max(ϕs, ϕc).

Hence, a smooth transition from 2-D lossy bend modes, to lesser-damped 2.5-D hybrid spiral
modes, to guided OAM modes emerges, as we shall see below.

4.1.1 Mathematical formulation
The field solution for the electric and magnetic field in cylindrical coordinates is given by(

Ẽ
H̃

)
(ρ, θ, y) =

(
E
H

)
(ρ, θ)e−ikyy, (4.1)

with fixed wavenumber ky = k0Neffsinϕ, which is determined and adopted from the field
dependence of the adjoining straight slab waveguide. Here, Neff is the effective refractive index
of the straight slab waveguide and ϕ is the oblique incidence angle of the incoming wave that
is propagating in the y-z-plane.

Substituting the ansatz in the Maxwell equations (2.6) in analogy to Section 2.2.2, the Hy and
Ey components have to fulfill the electric and magnetic wave equation (2.23) in regions with
constant refractive index

∂2
ρΨ + 1

ρ
∂ρΨ + 1

ρ2∂
2
θΨ + (k2

0εr − k2
y)Ψ = 0, (4.2)

with Ψ = Hy or Ψ = Ey. The remaining components are again given by Eq. (2.24). In contrast
to the fiber modes, we do not make the assumption of an integer order in angular direction.
Here, we consider a more general approach and use separation of variables by defining

Ψ(ρ, θ) = f(ρ) g(θ) (4.3)

to solve Eq. (4.2), where f is a radial- and g an angular-dependent function. Replacing the
assumption in Eq. (4.2) leads to two separate differential equations for f and g

g′′ + αg = 0 ∧ ρ2f ′′ + ρf ′ + (ρ2(k2
0n

2 − k2
y)− α)f = 0, (4.4)

where the dashes denote derivatives, α ∈ C is a constant and n2 = εr is the refractive index of
the considered layer.

Now, we can define an angular order ν and a propagation constant kθ by α = ν2 and ν = kθr,
such that the general solution of Eq. (4.4) can be written as

g(θ) ∝ e−i
√
αθ = e−ikθrθ. (4.5)
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Note that the definition of kθ depends on the definition of the bend radius r [99] and has to
be adjusted for other definitions. We are interested in propagating waves that decay in positive
θ-direction, therefore we restrict the discussion to values kθ ∈ C with positive real and nega-
tive imaginary part. The outgoing propagation angle ϕ′ is then determined by the propagation
constant (real part of kθ) via

ϕ′ = tan−1
(

ky
Re{kθ}

)
. (4.6)

To find a solution for the radial function f , two cases have to be distinguished:

(I) For k2
0n

2 > k2
y , Eq. (4.4) is a standard Bessel differential equation, and its elementary

solutions are Bessel functions of the first kind Jν and of the second kind Yν with complex
order ν = kθr [85].

(II) For k2
0n

2 < k2
y , Eq. (4.4) can be transformed into the modified Bessel equation

ρ2f ′′ + ρf ′ − (ρ2(k2
y − k2

0n
2)− α)f = 0, (4.7)

with positive value k2
y − k2

0n
2. The solutions are the modified Bessel functions of the

first kind Iν and the second kind Kν [85], which can be expressed through the Bessel
functions Jν and the Hankel function H(2)

ν of complex order ν = kθr.

The exact choice of solution functions depends on the considered region and is determined
by the physical conditions that have to be fulfilled: in the center of the structure (ρ = 0) the
fields should be zero, which is only fulfilled by the Bessel function of the first kind Jν for
case (I) and by the modified Bessel function Iν for case (II). The functions fulfill the relation
Iν(x) ∼ Jν(ix), thus we can use the Bessel function Jν for both cases with either real (I) or
complex (II) argument.

For the cover region, where outgoing (partly decaying) propagating fields are physically cor-
rect solutions, the Hankel function H(2) fulfills this condition when looking at the asymptotic
expansion for large arguments [85, 99]. For the second case (II), the solution is given by the
modified Bessel function Kν , which can again be rewritten as the Hankel function H(2) with
negative and complex argument.

In the core region, the refractive index always fulfills nf ≥ nc, ns, which implies that k0nf ≥
ky and case (I) is always valid. The solution is therefore given by a linear combination of the
Bessel function Jν and the modified Bessel function Yν .

Then the full ansatz for Ψ = Ey or Ψ = Hy is

Ψ(ρ, θ) =


A Jν(ρχs) e−iνθ, 0 ≤ ρ ≤ r − d,
(B Jν(ρχf ) + C Yν(ρχf )) e−iνθ, r − d ≤ ρ ≤ r,
DH(2)

ν (±ρχc) e−iνθ, ρ ≥ r,

(4.8)

where for simplicity we define χj =
√
k2

0n
2
j − k2

y , j ∈ {s, f, c}, where the square root symbol
is meant to indicate the positive real root, for a positive radicand, or the imaginary root with
positive imaginary part, in case of a negative radicand. In the third case, the±-sign distinguishes

34



4. Bent slab waveguides

the cases for ky ≶ k0nc. Note that different expressions (4.8) need to be written for Ey and
Hy, with separate coefficients AE , BE , CE and DE for the electric field component Ey and
AH , BH , CH and DH for the magnetic field component Hy. As mentioned before, the other
components are given by Eq. (2.24).

Now, the remaining unknown parameters are the eight amplitudes and the complex angular
propagation number kθ. In order to identify these values, the boundary conditions of the struc-
ture are considered (till now Eq. (4.8) is only valid in the layers, not yet on the boundaries): the
tangential electric field components Ey, Eθ, all magnetic field components Hy, Hθ, and Hρ,
and the normal component n2Eρ of the dielectric displacement are continuous at the boundaries
ρ = r− = r−d and ρ = r. Setting up the equations for Ey, Hy, Eθ andHθ (the other variables
do not provide any further insights) leads to a system of eight equations,

AEJν(r−χs) = BEJν(r−χf) + CEYν(r−χf), (4.9)
AHJν(r−χs) = BHJν(r−χf) + CHYν(r−χf), (4.10)

1
χ2

s

(
− i

kyν

r−
AEJν(r−χs)− ωµ0χsAHJ′ν(r−χs)

)
= 1

χ2
f

(
− i

kyν

r−
(
BEJν(r−χf) + CEYν(r−χf)

)
(4.11)

−ωµ0χf
(
BHJ′ν(r−χf) + CHY′ν(r−χf)

) )
,

1
χ2

s

(
− i

kyν

r−
AHJν(r−χs) + ωε0n

2
sχsAEJ′ν(r−χs)

)
= 1

χ2
f

(
− i

kyν

r−
(
BHJν(r−χf) + CHYν(r−χf)

)
(4.12)

+ ωε0n
2
f χf

(
BEJ′ν(r−χf) + CEY′ν(r−χf)

) )
,

BEJν(rχf) + CEYν(rχf) = DEH(2)
ν (±rχc), (4.13)

BHJν(rχf) + CHYν(rχf) = DHH(2)
ν (±rχc), (4.14)

1
χ2

f

(
− i

kyν

r
(BEJν(rχf) + CEYν(rχf))

−ωµ0χf
(
BHJ′ν(rχf) + CHY′ν(rχf)

) )
(4.15)

= 1
χ2

c

(
− i

kyν

r
DEH(2)

ν (±rχc)∓ ωµ0χcDHH(2)′
ν (±rχc)

)
,

1
χ2

f

(
− i

kyν

r
(BHJν(rχf) + CHYν(rχf))

+ωε0n
2
f χf
(
BEJ′ν(rχf) + CEY′ν(rχf)

) )
(4.16)

= 1
χ2

c

(
− i

kyν

r
DHH(2)

ν (±rχc)± ωε0n
2
cχcDEH(2)′

ν (±rχc)
)
,

which can be written as an eigenvalue problem

Mky(kθ)A = 0, (4.17)
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where the matrix Mky ∈ C8×8 for fixed ky depends on the unknown wavenumber kθ, and
the vector A = (AE , BE , CE , DE , AH , BH , CH , DH)T lists all unknown amplitudes from
Eq. (4.8). For a propagating and/or decaying hybrid spiral mode, we are searching for complex,
non-zero values of kθ. This is the case, if the matrix M becomes singular, i.e., the determinant
of the matrix is zero. The equations can not be solved analytically, therefore numerical methods
have to be used (see Section 4.2).

4.1.2 Bend modes
As mentioned before, the now introduced vectorial quasi-guided spiral modes are a general
formulation for the complete range of incidence angles ϕ ∈ [0◦, 90◦). For vanishing axial
wavenumber ky = 0, meaning an incidence angle ϕ = 0◦ when considered in the context of an
adjoining straight slab waveguide, standard 2-D bend modes [9,99] are found. Eqs. (2.22) then
split into two separate sets of TE and TM modes. The TE modes have non-zero components
Hρ, Hθ and Ey given by

Hρ = i
ωµ0ρ

∂θEy, (4.18)

Hθ = −i
ωµ0

∂ρEy (4.19)

and Ey has to fulfill the scalar TE wave equation (cf. Eq. (4.2))

∂2
ρEy + 1

ρ
∂ρEy + (k2

0εr −
k2
θr

2

ρ2 )Ey = 0. (4.20)

For the TM case, the non-zero components Eρ, Eθ and Hy are given by

Eρ = −i
ωε0εrρ

∂θHy, (4.21)

Eθ = i
ωε0εr

∂ρHy (4.22)

and Hy has to fulfill the magnetic wave equation (cf. Eq. (4.2))

∂2
ρHy + 1

ρ
∂ρHy + (k2

0εr −
k2
θr

2

ρ2 )Hy = 0. (4.23)

Hence, the problem reduces to a scalar problem for either Ey or Hy.

4.1.3 OAM modes
When considering large oblique incidence angles with ϕ > ϕc or ky > k0nc, the spiral modes
are guided in the curved structure without any losses. Looking at Eq. (4.8), the argument
χc =

√
k2

0n
2
c − k2

y for the Hankel function is then always imaginary, representing a decay-
ing function. Hence, the fields become evanescent in the cladding region. Consequently, we
expect real eigenvalues kθ of the eigenvalue equation (4.17). One can find a continuum of
lossless spiral modes.

In case the angular order ν = kθr (with real kθ) is of integer order ν ∈ Z, the solutions match
those of the OAM modes presented in Section 2.2.2. The bent waveguide structure can then be
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continued to an entire tube, where the spiral modes are valid solutions and match those of the
OAM modes with distinct angular order ν. Since only a discrete number of OAM modes exists,
the set of spiral modes with integer angular order should be countable as well.

To identify these OAM modes in our approach, one can change the roles of ky and kθ. We
assume and predict an integer angular order ν = kθr and ky represents the unknown parameter,
accordingly. Hence, Eq. (4.17) can be written as

Mν(ky)A = 0, (4.24)

which is a standard eigenvalue problem as described in Section 2.2.2. The matrix Mν is now
defined for given angular order ν. We are searching for real values of ky. To fulfill the guidance
condition (2.31), k0nc < ky < k0nf has to be satisfied.

4.2 Results
This section provides some example results for spiral modes. Parameters, as already intro-
duced in Table 2.1, with high (hc) and low (lc) refractive index contrast, for fixed wavelength
λ0 = 1.3µm and varying outer radius r are considered:

(lc) nc = ns = 1.6, nf = 1.7, d = 1µm (values adopted from [99] for benchmark)

(hc) nc = ns = 1.5, nf = 2, d = 0.4µm (standard high index contrast Si/Si02 waveguide)

As discussed in Section 2.3, the critical angles for radiation suppression are given by
ϕc = ϕs = 74.5◦ for the low index contrast and by ϕc = ϕs = 56.54◦ for the high index
contrast, since we assume nc = ns.

4.2.1 Implementation

When determining the spiral modes, we are searching for complex values for kθ, with
Re{kθ} > 0 and Im{kθ} < 0, that solve the eigenvalue problem Mky(kθ)A = 0 by looking
for values where the determinant of Mky vanishes, i.e., det(Mky(kθ)) = 0.

Therefore, we use the complex secant method [101] to find zero points of the determinant,
which we implemented in the computer algebra system Maple [100]. As a starting point, for
fixed incidence angle and large curvature radius, we choose the value of kz as we know that
the solution for large radii converges to the wavenumber of the corresponding straight slab
waveguide kθ ≈ kz = k0Neffcosϕ with an additional small imaginary part. The curvature
radius is then decreased and the new start point is adopted from the determined solution before.
Hence, we trace the solution step by step, using the solution of the preceding step as the next
initial value.

4.2.2 Spiral mode eigenvalues

The calculated real and imaginary part of the effective mode index kθ/k0 for TE- and TM-like
spiral modes for low and high index contrast are shown in Figures 4.2–4.5. The complex mode
indices are illustrated twice, either depending on the curvature radius r (left panel) or on the
incidence angle ϕ (right panel). Note that the imaginary part is plotted on a logarithmic scale
for the dependence on the radius (left panel).
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Figure 4.2: TE-like spiral mode wavenumbers for low refractive index contrast (lc) waveguide
parameters. The real and imaginary part are shown depending on the curvature radius r or
incidence angle ϕ (critical angle ϕc = 74.5◦) [18]. The gray region for ϕ > ϕc marks the
corresponding TE-like OAM modes and the black crosses are reference values from [99].
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parameters. The real and imaginary part are shown depending on the curvature radius r or
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The following characteristics can be identified. For large radii and arbitrary angle of incidence,
one expects the real part of the mode indices to correspond to those of the straight waveguide
with oblique propagation. Hence, ky = k0Neffsinϕ and kθ ≈ kz = k0Neffcosϕ. This explains
the convergence behavior (in the limit of large bend radii) of the real parts in the left panels and
the cosine function shape of the real parts in the right panel of the figures. The values agree
well, just small differences for strongly curved structures are observed due to the bending. The
imaginary part represents the attenuation of the spiral modes that relate to mode profiles with
pronounced oscillatory behavior in the cladding region. We observe a logarithmic dependence,
as seen in the lower left linear plots. For small curvature radii, the attenuation is strong, while
it decreases as the angle of incidence increases, since the bending has less effect.

For incidence angles ϕ = 0◦ or wavenumber ky = 0, the bend modes [99] are present. The
Maxwell equations are separated and can either be solved for TE or TM modes. The calculated
values from [99] (just for the low refractive index contrast) are marked in Figures 4.2–4.3 by
the black crosses for ϕ = 0◦ and varying curvature radius. They coincide perfectly with the
calculated values of the spiral modes. The attenuation of the bend modes is strong, but decreases
with increasing curvature radius and converges against the values of the corresponding slab
waveguide with ky = 0 and kθ ≈ kz = k0Neff .

As discussed, for the lossless region ϕ > ϕc, i.e., large propagation angles, the spiral modes are
fully lossless and for specific integer angular orders ν = kθr ∈ Z, the wavenumbers match those
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of a circular dielectric fiber with a single layer refractive index contrast (Section 2.2.2). Our ap-
proach can be modified to calculate these OAM modes by additionally assuming ν = kθr ∈ Z.
Hence, the OAM modes are a special case of the spiral modes that have the additional condition
of an integer order (instead of complex real values). The solution (ky, ν = kθ/r) can then be
transferred to a corresponding incidence angle for the spiral modes via sinϕ = ky/(k0Neff).
The calculated wavenumbers for the OAM modes are illustrated by the gray markers in the
figures and match with some of the spiral modes. An enlargement of this region is shown in
Figure 4.6 for fixed curvature radius r in the region ϕ > ϕc. As can be seen, the wavenumbers
for the spiral modes match those associated with the discrete OAM modes for equal radius and
polarization. Finally, for high index configurations (Figures 4.4–4.5), one observes a qualita-
tively similar behavior for both TE and TM modes with substantially higher losses.

4.2.3 Mode profiles

For some specific configurations (fixed incidence angle and curvature radius), the radial mode
profiles are illustrated in Figure 4.7. The gray bar marks the core of the bent waveguide struc-
ture. Shown is the transverse electric field component

E⊥ = cosϕEy − sinϕEθ (4.25)

that is perpendicular to the in-plane wavevector (kθ, ky), hence perpendicular to the propagation
direction. The fields are power normalized to unit power, in a sense that the angular optical
power flow per axial unit length

Pθ = 1
2

∫ ∞
0

Re{E∗ ×H} · eθdρ (4.26)

is unity, where eθ is the unit vector in angular direction θ. As previously stated, the losses
reduce drastically for increasing curvature radius or incidence angle, which is observed by a
less pronounced oscillatory behaviour in the cladding region. Furthermore, for small curvature
radius and incidence angle, the maximum of the mode profile is shifted to the outer region of
the core and the mode profile becomes more symmetric for increasing radius/incidence angle
(more similar to the shape of a TE slab mode). Additionally, the mode profiles of the bend
modes (ϕ = 0◦) are shown in the first row, which have the strongest attenuation for small
curvature radii.

Figure 4.8 and Figure 4.9 show the propagation of the spiral modes along the waveguide core for
small fixed curvature radii and varying incidence angle. Next to the transverse field component
E⊥, the energy density w

w = 1
4(ε0ε|E|2 + µ0|H|2) (4.27)

is also shown. For small incidence angles, the wave is propagating along the core section with
decaying amplitude and radiating in the radial direction, i.e., the external cladding region with
ρ > r. Increasing the angle of incidence leads to less pronounced radiation up to complete
lossless guidance of the fields.
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line), the real part (dashed), and the imaginary part (dotted) of the transverse component E⊥
[18].
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Figure 4.8: Transverse electric fields Re{E⊥} (top row) and energy density w (bottom row) for
TE-like spiral modes supported by a low index contrast bent waveguide with curvature radius
r = 5µm for different angles of propagation ϕ. The contour lines (bottom row) mark the levels
of the absolute value at 2%, 5% and 10% [18].
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Figure 4.9: Transverse electric fields Re{E⊥} (top row) and energy density w (bottom row) for
TE-like spiral modes supported by a high index contrast bent waveguide with curvature radius
r = 3µm for different angles of propagation ϕ. The contour lines (bottom row) mark the levels
of the absolute value at 2%, 5% and 10% [18].
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Figure 4.10: Transverse electric fields Re{E⊥} and the electromagnetic energy density w of
TE-like OAM modes with angular order ν = 8 or spiral modes with incidence angle ϕ, for
high and low refractive index contrast and fixed curvature radii r = 5µm (left column) and
r = 3µm (right column) [18].

Furthermore, Figure 4.10 shows two examples of OAM modes or spiral modes with integer
order. Here, the bent segment can be extended to a full circular cylinder, since the continuity
condition at θ = 0 and θ = 2π is additionally fulfilled. Shown are the field patterns of OAM
modes of angular order ν = 8, for the small radii as considered in Figure 4.8 and Figure 4.9.
The fields coincide with the spiral modes of identical geometry with incidence anglesϕ = 78.6◦
(lc, left column) and ϕ = 71.4◦ (hc, right column).

4.2.4 Polarization
The introduced spiral modes are full vectorial hybrid modes, thus an interesting property is the
polarization character of these modes. Therefore, we consider the relative strength

ΓE =
∫ ∞

0
|E⊥|2dρ

/∫ ∞
0
|E|2dρ (4.28)

of the in-plane electric field component E⊥ perpendicular to the local wavevector. For large
curvature radii, i.e., nearly a straight slab waveguide, the value is given by 1 for 2-D TE slab
modes, and by 0 for the TM slab modes. Additionally, for incidence angle ϕ = 0◦ and arbitrary
curvature radii, the values are also given by 1 or 0, respectively, as the problem also splits into
the scalar TE or TM bend modes. Figure 4.11 shows the polarization ratios for the hybrid spiral
modes for both index contrasts.

As expected, for large radii or normal incidence angles, the values are given by 1 or 0 for
the TE or TM case, respectively. For increasing but intermediate angles the modes become
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Figure 4.11: Polarization ratios ΓE for the hybrid spiral modes for low (a) and high (b) refractive
index contrast and different radii r depending on the propagation angle ϕ [18].
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Figure 4.12: Electric profiles of TE- and TM-like hybrid spiral modes supported by a low-
contrast bend of radius r = 10µm. These are modes with equal ky, given by angles ϕ = 45.0◦
(TE) and ϕ = 45.1◦ (TM). The curves show the absolute value (continuous), the real part
(dotted), and the imaginary part (dashed) of the electric components in radial direction Eρ, and
in-plane in directions perpendicular E⊥ and parallel E‖ to the direction of propagation [18].

more hybrid, especially for small curvature radii. We observe that for a higher refractive index
contrast (hc), which exhibits a stronger field confinement, the mixture in polarization is lesser
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than for the low index contrast (lc). To have a closer look at the polarization character of these
hybrid modes, Figure 4.12 compares the normalized vectorial electric field profiles of TE and
TM spiral modes at intermediate angle ϕ ≈ 45◦ and curvature radius r = 10µm for the low
index contrast.

In addition to the radial component Eρ and the transverse component E⊥, also the longitudinal
electric component

E‖ = cosϕEθ + sinϕEy, (4.29)

parallel to the local in-plane wavevector (kθ, ky) is shown.

The fields still resemble the major electric components of straight slab TE and TM modes,
except that they also exhibit strong transverse fieldsEρ andE⊥. The modes differ in the relative
signs of these large transverse electric profile components.
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Chapter 5

Bent corner and step configurations1

New proposals for 3-D integrated platforms with compact, high-index-contrast dielectric opti-
cal waveguides at different height levels on photonic platforms have been presented [25–27].
However, the challenging task is the transfer of optical power between levels without too much
losses and/or crosstalk. Moreover, configurations that fulfill this property should ideally work
for arbitrary vertical distances.

A variety of concepts that are able to transfer power between different levels were already
introduced, e.g., vertically stacked integrated couplers [102], vertically overlapping tapered
cores [103, 104], radiative transfer through grating couplers [105] or resonant interaction be-
tween vertically stacked microrings [106]. But, as far as we know, all these structures have
certain disadvantages, e.g., large size, difficulties in design or fabrication, incomplete power
transfer or tight tolerances. Alternatively, in [14, 107] two slab waveguides of different heights
are connected by a third vertical segment, representing a step waveguide configuration with
sharp kinks. When the structure is excited at oblique angles of incidence, full transmission is
achieved for certain heights. This is due to a resonance effect that depends strongly on the
height and angle.

In this chapter, we study an almost similar step configuration by replacing the sharp edges with
bends (see Figure 5.1). These investigations are especially important in terms of manufactur-
ing. The sensitive conditions on sharp edges are difficult to realize and mostly result in slight
curvatures. We adopt the waveguide parameters from [14], i.e., slab thicknesses and Si/SiO2
index contrast, to have a direct comparison of both configurations. We will see that the rounded
edges are advantageous in terms of manufacturing tolerances and the strong condition on the
angle of incidence and vertical distance, which lead to the resonance effect of full transmission,
is mitigated.

More specifically, we study 2-D slab waveguides connected by a curved discontinuity, repre-
senting corner (Section 5.1.1) or step configurations (Section 5.1.2) with small bends as shown
in Figure 5.1. Due to the oblique propagation of the incoming semi-guided wave and the high
refractive index contrast, it is possible to guide waves without losses even in bent slab waveg-

1This topic was already part of the candidate’s master thesis [93]. We show the results of the corresponding
published paper [13] for the sake of completeness.
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Figure 5.1: Bent corner (a) and bent step (b) configuration. The incoming wave is propagating
at an incidence angle ϕ. Images show incoming, reflected (R) and transmitted (T) waves [13].

uide configurations with very small curvature radii (cf. Chapter 4). We are interested in high
transmittance values to transfer power to another level of height on a photonic chip.

The FEM software COMSOL Multiphysics [22] is used to simulate the wave propagation in
these structures by applying port boundary conditions, for exciting the structure, and perfectly
matched layers, for simulating infinite space. Furthermore, we consider full 3-D solutions by
exciting the structure with a laterally confined wave packet in Section 5.2.

The shapes of the structures are motivated by earlier studies investigating discontinuities of
sharp corner-, step-, bridge- or U-turn-like structures [14–16, 107], straight interfaces of differ-
ent heights [17] and bent waveguides at normal [99] or oblique incidence [18,93] (cf. Chapter 4).

5.1 2-D bent structures
Sketches of the 2-D cross section of the bent corner and bent step structure are shown in Fig-
ure 5.2. The corner configuration (a) consists of an incoming and outgoing dielectric slab
waveguide that are connected by a curved slab waveguide. The step configuration in Fig-
ure 5.2 (b) comprises two bends that are connected by a third vertical segment of height h.
Thus, the step can be considered as a combination of two corner structures. For both configura-
tions, the refractive indices are given by nf = 3.45 in the core and nc = 1.45 in the claddings
for vacuum wavelength λ0 = 1.55µm, representing a standard high-index Si/SiO2 waveguide.
The thickness of the core is given by d = 0.25µm. The bends possess an outer curvature ra-
dius r with a constant slab thickness d = 0.25µm. The structures are assumed to be constant
along the y-direction and the incoming wave is semi-guided in the y-z-plane at oblique angles
of propagation ϕ (Figure 5.2 (a)). Hence, we can consider the whole problem in a 2.5-D setting.
We are interested in transmittance T and reflectanceR values for both configurations depending
on the curvature radius r, the incidence angle ϕ and the vertical height h.

The considered slab waveguides only guide the fundamental TE and TM modes, as intro-
duced in Table 2.1. In line with the arguments from Section 2.3, critical angles are defined
as ϕc = 30.45◦ and ϕm = 51.14◦ for either radiation or TM suppression, when assuming TE0
incidence.
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Figure 5.2: Side view of the cross section of the bent corner (a) and bent step (b) structure
from Figure 5.1; waveguide parameters are given by the refractive indices nf in the core, nc
in the cladding regions and the core thickness d. The bends have an outer curvature radius r.
Additionally, the step structure (b) has a vertical segment of height h [13].

Note that other definitions of the curvature radius give different results. In [93], equal curva-
ture radii for inner and outer interfaces of the bends are considered, which leads, in certain
circumstances, to strong resonance effects with full reflection. Since we are interested in full
transmission, we stay with the introduced definition which also fits to the studies in Chapter 4.

5.1.1 Bent corner

We start by analyzing the bent corner configuration from Figure 5.2 (a). The calculated trans-
mittance T and reflectanceR values, further separated in TE or TM, are illustrated in Figure 5.3
for fixed curvature radii r ∈ {0.26, 0.35, 0.5}µm and varying incidence angle ϕ ∈ [0, 90)◦.
The critical angles ϕc and ϕm are additionally marked in the plots.

φ/°

r=0.26μm r=0.5μmr=0.35μm

φc φm

P
ou
t

φc φm φc φm

Figure 5.3: Calculated transmittance T and reflectance R values for TE and TM modes of the
bent corner structure for varying incidence angle ϕ and different curvature radii r. Critical
angles ϕc and ϕm are marked [13].

Considering the angular dependence, it can be observed that radiation losses appear for inci-
dence angles smaller than ϕc, as already predicted in Section 2.3. For angles larger than ϕc,
losses are fully vanishing and the power is completely guided by the fundamental TE or TM
modes. Additionally, for angles larger than ϕm, no power is transferred to TM modes and
only TE modes are present and excited. Hence, our results agree with the derived theory in
Section 2.3.
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Apart from this, with regard to the radial dependence, it can be generally stated that with in-
creasing radius of curvature, the reflectance R decreases, while the transmittance T tends to
increase. Furthermore, the TE reflectance increases rapidly at angles close to 90◦. Maximal TE
transmission is achieved in the area ϕ ∈ [ϕm, 90◦] and maximal TM transmission in the range
ϕ ∈ [ϕc, ϕm].
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φ=55° Figure 5.4: Field plots

of the absolute electric
field |E| for the config-
urations of Figure 5.3 at
maximal TE (top row)
or TM transmittance (bot-
tom row) [13].

To illustrate the field behavior, Figure 5.4 shows the corresponding field pattern of the absolute
electric field |E| for fixed radius r and incidence angles ϕ that belong to either maximal TM
(C1,C3,C5) or TE (C2,C4,C6) transmittance, taken from Figure 5.3. All selected angles belong
to the lossless case ϕ > ϕc. One observes less reflection in the incoming slab and higher
transmittance in the outgoing slab for increasing curvature radius.

5.1.2 Bent step

The combination of two curved corner structures results in a step-like configuration as shown
in Figure 5.2 (b). Now, the waves propagate upward and downward between the two bends,
resulting in a Fabry-Pérot-like effect. Such a structure is of great relevance for the power transfer
from one level to another of different height. For our studies, the height h between the bends is
a new variable parameter in addition to the radius of curvature r and the angle of incidence ϕ.

We assume the same waveguide parameters as for the corner structure (Section 5.1.1). To
simplify our calculations further, we additionally fix the curvature radius r and the angle of
incidence ϕ, which correspond to maximal TE or TM transmittance (cf. Figure 5.4) and vary
only the step height h.

The transmission T and reflection R values of the fundamental guided TE and TM modes for
varying step height h are shown in Figure 5.5, when exciting the structure again with the TE0
mode. The adopted radii r and angles ϕ from Figure 5.4 are displayed in the plots.
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Figure 5.5: Transmittance and reflectance values of the fundamental TE and TM modes for
the bent step structure depending on the vertical step height h for fixed curvature radii r and
incidence angles ϕ. The vertical lines mark the heights with maximal TE transmittance [13].

For the configurations with large incidence angles (C2) and (C4), we observe a strong periodic
behavior which is comparable to a Fabry-Pérot interferometer, where the waves propagate up
and down between the vertical slab and the corners play the role of the reflectors. At smaller
angles, this oscillating behavior becomes more irregular, as upward and downward propagating
TM modes are now also involved in the interference process. With increasing radius of curva-
ture (cf. (C4),(C6)), this periodic behavior becomes less pronounced. Full transmission to the
TE mode is achieved, independent of the vertical step height h for (C6). For the remaining con-
figurations (C1)-(C5), respective heights h that belong to maximal TE transmittance are marked
by vertical lines.
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Figure 5.6: Field plots of the absolute electric field value |E| of the bent step structure for
different waveguide parameters (ϕ, r, h) for maximal TE transmittance from Figure 5.5 [13].
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Corresponding 2-D field plots of the absolute electric field value |E| for step heights h that lead
to maximal TE transmittance are shown in Figure 5.6. The incidence angles ϕ and curvature
radii r are similar to Figure 5.5. The interference in the vertical part can be best observed in
configurations (C1)-(C3) and (nearly) full transmission with only little to no interference pattern
in (C4)-(C6).

Additionally, Figure 5.7 shows the transmittance and reflectance values depending on the inci-
dence angle ϕ for a range of angles around the angle for maximal TE or TM transmission that
was chosen from Figure 5.4. This plot becomes relevant in Section 5.2 when considering full
3-D solutions and is therefore analyzed later.

5.2 3-D wave bundles in bent steps
Finally, we take a closer look at full 3-D bent step configurations that are practically more
relevant. Now, the incoming wave is laterally confined also in the y-direction by exciting the
structure with a rib waveguide mode, as already introduced in Section 2.4. After propagating
between the steps, the outgoing mode is trapped by a second rib waveguide, identical to the
incoming one, at the end of the structure. A sketch of the top view of the rib waveguides in
combination with a discontinuity was already shown in Figure 2.7. Both rib waveguides are
rotated around the primary incidence angle ϕ0 of the incoming and outgoing wave bundles.
The displacement δ between the axes of the incoming and outgoing ribs is related to the vertical
propagation through the step (marked by the gray bar in the middle of Figure 2.7) and is selected
depending on the vertical height. Also, the distance between step and rib, which depends on the
width of the rib and the angle, is adjusted so that any back reflections do not touch the incoming
rib.

We assume a wide rib of width W and low etch depth d′ = 0.01µm to guarantee lateral
guidance of the mode and to avoid too much spreading at the transition between rib and slab
waveguide. The form and dispersion of the wave packet depends strongly on the lateral beam
width, which is related to the rib width W .

We adopt the waveguide configurations from Figure 5.6 and choose the 2-D incidence angles
as the primary incidence angles ϕ0 of the incoming beams for the 3-D simulations. The smaller
the beam width, the wider the range of incidence angles/wavenumbers of the 2-D solution that
have influence on the field properties. Thus, Figure 5.7 provides information about the angu-
lar dependence of the 3-D bent step fields. The figure shows the transmission and reflection
values for the 2-D configurations depending on the incidence angle ϕ, around the primary in-
cidence angle ϕ0, for fixed height h and curvature radius r. As can be observed, (C6) shows
only small deviations for varying incidence angle, so a small rib width is possible to yield com-
parable transmittance values to the 2-D case also in 3-D. However, if the transmission values
change more rapidly, e.g., as for (C2), a substantially wider beam is required in 3-D to guaran-
tee a similar transmission to the 2-D solution. Altogether, we observe that for small curvature
radii, the angular dependence changes more rapidly by slightly varying the incidence angle,
which leads to a change in transmission and reflection values. Hence, these structures require
larger rib widthsW to guarantee transmittances comparable to the corresponding 2-D solutions.
However, the rib width can be reduced when considering a larger curvature radius because the
angular dependence is lower.

52



5. Bent corner and step configurations

φ/°

r=0.35μm
h=0.89μm

φ0=59° φ0=55°

φ0=37°

φ0=55°

φ0=39°φ0=39°
(C1) (C3) (C5)

(C6)(C4)(C2)

P o
ut

r=0.35μm
h=1.18μm

r=0.26μm
h=1.51μm

r=0.26μm
h=1.68μm

r=0.5μm
h=0.83μm

r=0.5μm
h=1.0μm

Figure 5.7: Transmittance and reflectance values of the fundamental TE and TM modes for the
bent step structure depending on the incidence angle ϕ for fixed curvature radii r and vertical
step heights h. The vertical lines mark the primary incidence angles ϕ0 with maximal TE
transmittance from Figure 5.5 [13].

This behavior can also be observed in Figure 5.8. Shown is the outgoing/transmitted TE power
for the six configurations (C1)-(C6) for different incoming beam widths W . According to Sec-
tion 5.2, the TE transmittance (see Eq. (2.60)) is directly given by the coefficient |u0|2. For
increasing width W , the values converge towards the transmittances that are achieved for the
2-D solution with infinite beams. For smaller widths, the transmittances decrease. In particu-
lar, for configurations with small radii of curvature, which have a strong angular dependence,
the outgoing transmittance changes significantly. However, the reduction of the width has less
influence for configurations with a larger radius of curvature.
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Figure 5.8: Outgoing transmitted TE0 power
versus the rib waveguide widthW for the 3-D
bent steps.
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Figure 5.9: Field plots of the absolute electric field |E| for the bent step structure with fixed
curvature radius r = 0.26µm, primary incidence angle ϕ0 and vertical step height h, adopted
from Figure 5.6 for rib widths W = 20µm (a) or W = 60µm (b) [13].
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Figure 5.10: Field plots of the absolute electric field |E| for the bent step structure with fixed
curvature radius r = 0.35µm, primary incidence angle ϕ0 and vertical step height h, adopted
from Figure 5.6 for rib widths W = 20µm (a) or W = 40µm (b) [13].
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Figure 5.11: Field plots of the absolute electric field |E| for the bent step structure with fixed
curvature radius r = 0.5µm, primary incidence angle ϕ0 and vertical step height h, adopted
from Figure 5.6 for rib widths W = 20µm [13].

Some 3-D configurations for incoming beams with specific rib widths W are shown in Fig-
ures 5.9–5.11. The width W is chosen such that comparable transmission values to the 2-D
solutions are achieved and that neither pronounced reflections nor significant scattering of the
wave bundles are present. For each configuration the figure shows a cross-sectional view of
the x-z-plane in the upper left image, the field in the vertical segment that is propagating in
the x-y-plane in the lower left image, and top views of the horizontal slabs for the incoming
wave and transmitted wave in the y-z-plane in the middle and right image. All figures show the
absolute electric field value |E|. Note that only the fields propagating in the step structure are
shown, not the fields in the adjacent rib.

As expected, small to no reflections can be observed for large radii, while for small radii they
are still present. We hardly see any divergence of the wave bundles excited by the incoming rib
mode. For the present parameters, widths between 20µm to 60µm are sufficient to guarantee
good transmission values. For the structures with sharp edges in [14], much larger beam widths
up to 180µm are necessary to avoid unintentional reflections and to yield comparable trans-
mission values. Thus, the step structure with smooth/bent corners provides better performance
when considering the practically relevant 3-D solutions.
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Chapter 6

Optical dielectric microresonators1

Another important group of applications, where oblique propagation of semi-guided waves of-
fers new advantages, are optical microresonators. They are typically used for numerous func-
tionalities in integrated optics such as wavelength modulation, switching or filtering. Due to
their small size, strong light confinement and broad spectral tunability, they have attracted re-
markable interest. Thus, they are an important building block in silicon photonics integrated
circuits, especially in the area of optical telecommunication [29].

One of the basic configurations is a four-port system consisting of a microcavity that is sur-
rounded by an upper and lower slab waveguide. The lower slab serves as the input bus and
the upper slab as the output bus or receiver [84]. When the structure is excited at resonance
conditions, power transfer from the input to the output bus via evanescent excitation of the cav-
ity mode is possible. Many varieties of cavity shapes are feasible, but earlier concepts mostly
deal with circular cavities [108–113]. In recent works, rectangular cavities have also gained
interest [10,84,88,114–116]. So far, the disadvantage of these usually 2-D concepts is that they
are inherently lossy [29] and require certain cavity dimensions to observe resonant behavior of
sufficient quality [84, 114, 115].

Four-port microresonators have been studies theoretically, using a time domain coupled mode
theory [84] or by general analysis of tunneling processes through localized resonant states [117,
118]. At resonance, it is predicted that a configuration with one localized state (here, one guided
mode in the cavity) is able to drop half of the input power to the receiver (upper waveguide),
while the remaining part is transferred to the input bus (lower waveguide) or is lost to radiation.
Thus, for a lossless configuration, a quarter of the input power is transmitted to each output port.
Furthermore, a lossless configuration that consists of two localized states is able to achieve full
power drop to the forward port. Here, this is caused by even and odd modes guided by the
cavities that are “accidentally” degenerate due to the presence of the slabs.

In this chapter, we analyze the 4-port systems in a 2.5-D setting with incoming waves at oblique
angles of propagation, as shown in Figure 6.1 (a). For sufficiently large angles, losses are
suppressed regardless of the selected cavity dimension (Section 2.3). As mentioned before, a
single cavity is able to drop a quarter of the input power to each of the four output ports [84].

1Sections 6.1–6.3 are based on the publication [28] of the candidate, Section 6.4 is based on our publication [21].
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Figure 6.1: 3-D (a) and 2-D cross section (b) sketch of a dielectric resonator with rectangular
micro-strip cavity of width w and height h. The cavity is evanescently excited by adjoining
upper and lower slab waveguides of thickness d at a distance g. Material parameters are given
by the refractive indices nf and nc. The incoming semi-guided wave propagates at oblique
angles ϕ. PA, PB, PC and PD indicate the outgoing power at the respective ports [28].

When a second cavity is added, the input power is, under certain circumstances, fully transferred
to one single output port, realizing an add-drop filter [119]. Therefore, after analyzing a single
cavity in Section 6.2, we also consider a microresonator with two cavities due to its resonance
behavior in Section 6.3.

An almost identical structure, comprising a slab waveguide with a single cavity on top (two-port
system) was already considered in one of our previous works [10]. Oblique excitation leads to a
system with non-radiating bound state (the guided modes of the cavity) and a wave continuum
(the semi-guided modes of the slab) that realizes, what we call, a “bound state coupled to a
continuum” [10]. For consistency and comparison, we adopt the slab and cavity parameters for
this work.

Furthermore, we studied 2-port microresonators consisting of a circular cavity in some of our
works [19, 21]. The structures are also excited at oblique angles of propagation and generate
traveling-wave resonances related to OAM modes of specific high angular order. Therefore, we
will conclude this chapter by briefly showing some of the results in Section 6.4.

6.1 4-port rectangular microresonator
The considered microresonators consist of a rectangular, standing wave micro-strip cavity of
width w = 0.5µm and height h = 0.22µm. Two dielectric slab waveguides of thickness
d = 0.22µm are placed above and below the cavity at a varying distance g, as shown in Fig-
ure 6.1 (b). In contrast to standard notions of open dielectric cavities with a more or less
confined resonance mode, in the present 2.5-D setting, the strip is infinitely extended along
its axis and supports a mode that is propagating in y-direction. The resonances observed in our
structures are based on these lossless guided modes. We consider a standard Si/SiO2 waveguide
structure with refractive index nf = 3.45 in the core and nc = 1.45 in the surrounding cladding
region for vacuum wavelength λ0 = 1.55µm. The structure is constant along the y-direction
and excited by the lower left port A with a semi-guided TE0 mode that is propagating in the y-
z-plane at oblique angles ϕ. Again, the slabs only support the fundamental TE and TM modes
(cf. Table 2.1), which results in the two critical angles (Section 2.3) ϕc = 30.9◦, beyond which
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radiation losses are completely suppressed, and ϕm = 46.3◦, beyond which the input power
is fully reflected and/or transmitted into one of the four outgoing TE modes, as all TM modes
become evanescent.

We are interested in the resonance behavior of the two configurations for varying incidence an-
gle ϕ and gap g. The FEM Software COMSOL Multiphysics [22] is used to solve the frequency
domain Maxwell equations using port boundary conditions and perfectly matched layers in a
2-D setting (Section 3.1.3).

All the results discussed in this work refer to structures that are infinitely extended in the y-
direction; especially the infinite extent of the incident wave is important for the calculated
results. To use this structure in real 3-D integrated photonic circuits, it is necessary to assume
incoming waves that are also confined in the lateral direction. This is possible by exciting the
structure with an additional wide and weakly etched rib waveguide, as introduced in Section 2.4
and applied to the bent steps in Section 5.2. Assuming wide and extremely narrowband incom-
ing beams, that cover only a small range of wavenumbers ky, the structures behave comparably
to the present infinite 2.5-D models.

6.2 Single cavity resonator
Our considerations start with the mode analysis of the cavity. For the given waveguide param-
eters, COMSOL predicts a fundamental TE mode with effective refractive index Nk = 2.4192
(further modes are supported as well). To excite the cavity mode with the evanescent fields of
the incoming oblique slab waveguide mode, reasonable matching

k0Nk = ky = k0NTE0sinϕk (6.1)

of y-wavenumbers can be expected to be necessary. Here, NTE0 is the effective refractive index
of the TE0 slab mode. Rearranging the equation leads to a cavity angle

ϕk = sin−1
(

Nk

NTE0

)
= 58.99◦. (6.2)

When the incoming wave is oriented at a specific incidence angle – called the resonance angle
ϕr – close to ϕk, the cavity mode is evanescently excited and resonance behavior can be ob-
served. Note that the resonance angle ϕr does not necessarily have to be equal to ϕk because of
a coupling induced resonance shift [120] caused by the presence of the slab waveguides. The
larger the distance between slabs and cavity, the smaller the influence of the slabs and the more
ϕr equals ϕk.

To identify the resonance angle ϕr, Figure 6.2 (a) presents respective sweeps over the incidence
angle ϕ for different gap distances g ∈ {200, 300, 400} nm. Shown are the reflection at port
A and transmissions to ports B–D. For all cases, the presented range of incidence angles is
above the critical angles ϕc = 30.9◦ and ϕm = 46.3◦. Thus, the structure is lossless and TM
modes are not excited. For each gap, we can identify a specific resonance angle ϕr at which the
incident power is evenly distributed to all output ports, i.e., PA = PB = PC = PD = 25%. At
resonance, the incoming slab mode evanescently excites the mode in the cavity, which in turn
radiates equally into both slab waveguides along the positive and negative z-directions, which
leads to the same output power at each port [117, 121]. As predicted, the resonance angle ϕr is
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Figure 6.2: (a) Outgoing power to port A (reflection), and B, C and D (transmissions) for a
single cavity resonator depending on the incidence angle ϕ (around the predicted cavity angle
ϕk) for different gaps g. (b) Corresponding logarithmic field plots of the absolute electric field
log10|E| at resonance angle ϕr for different gaps g from (a). The contour lines indicate the
levels of 2%, 5% and 10% of the overall field maximum [28].

close but not equal to the cavity angle ϕk. For increasing gap the difference becomes smaller,
while the resonance peak sharpens and the curves for PA, PC and PD become more similar
(they overlap in the plots).

To make a comparison, at normal incidence ϕ = 0◦ and small cavity gap g = 200 nm (not
shown in the plots), the wave just passes by and hardly notices the presence of the cavity.
COMSOL predicts a transmitted power of PB = 98.93% to port B and little to no power transfer
(in the range of 10−4) to port A, C and D. Radiation losses occur, but remain negligible.

To illustrate the field behavior, some corresponding field plots of the absolute electric field
log10|E| at resonance angle ϕr for the considered gaps g are shown in Figure 6.2 (b). One
observes that the field in the cavity resembles the fundamental TE cavity mode, as the gap
increases. We chose a logarithmic scaling of the plots so that the field strength in the slabs is
visible as it is much smaller compared to the strength in the cavity. In particular for large gaps,
the field amplitude in the cavity is much larger.

This behavior is also visible in Figure 6.3. The resonance angles ϕr are displayed for varying
gap g (see (a)). To calculate the resonance angles, we use a bisection method, starting with
a relatively large range of incidence angles and reducing this to the resonance angle ϕr that
satisfies PA = PB = PC = PD = 25% best. As noted before, the resonance angle converges
against the cavity angle ϕk for increasing gap g because the coupling induced resonance shift
shrinks.

Furthermore, the field intensity in the cavity |Ec|2 related to the intensity |Eo|2 in the incoming
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Figure 6.3: Resonance angles ϕr (a) and absolute square of the electric field maximum Ec in
the center of the cavity relative to the absolute square of the field maximum E0 of the isolated
slab at ϕ = 58.99◦ (b) depending on the gap g for a single cavity resonator [28].

slab is illustrated (see Figure 6.3 (b)). More precisely, the normalized ratio

log10(|Ec|2/|Eo|2) (6.3)

of the electric field magnitude in the center of the cavity at resonance, to the field in the cen-
ter of the incoming slab without cavity and upper slab is shown in logarithmic scaling. The
curve shows exponential growth for increasing gap, which is equivalent to a high quality factor
(Q-factor) [29]. For this reason, we chose the logarithmic scaling of the field pattern in Fig-
ure 6.2 (b). Generally, we can state that the resonance behavior is controlled by the interaction
between the cavity and the slabs, which strongly depends on the gap g.

6.3 Add-drop filter
To realize an add-drop filter [84], two identical rectangular cavities, separated by a horizontal
distance s, are placed between the slabs as shown in Figure 6.4. Such a configuration is able
to transfer the complete input power to one output port [84, 117, 118, 121]. In this work, we
consider a symmetric structure with identical gap distance g to the slabs for both cavities and
the waveguide parameters stay the same as for the single cavity resonator, i.e., nf = 3.45,
nc = 1.45, d = h = 0.22µm and w = 0.5µm. The incoming wave, guided by the lower slab
waveguide, reaches the structure at oblique angles of propagation ϕ. Thus, variable parameters
are again the incidence angle ϕ, the gap g and now also the separation s.

Again, we start with analyzing the cavity modes first. Since we consider a system of two
cavities, the mode analysis depends strongly on the separation s. For a small horizontal distance,
the coupled system needs to be considered, as the cavities directly interact with each other.
Then, two “supermodes” of even and odd symmetry with respect to the plane x = 0 are guided
in this structure. The effective refractive indices are indicated as Nk,e (even) and Nk,o (odd) in
the following. Generally, these values are not identical for small separations, e.g., for a small
cavity distance of s = 530 nm, COMSOL predicts values ofNk,e = 2.4199 andNk,o = 2.4186,
which can again be translated with Eq. (6.1) to cavity angles ϕk,e = 59.01◦ and ϕk,o = 58.95◦,
respectively.

When the separation s is sufficiently large, the cavities do not directly affect each other anymore
and can be considered separately. Each cavity then guides the same modes as in Section 6.2,
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Figure 6.4: Cross section view of a microresonator consisting of two identical rectangular cav-
ities of width w, height h and separation s. The input and output slabs, of thickness d and
refractive indices nf and nc, exhibit a gap g to the cavities. The incoming semi-guided wave
propagates at oblique angles ϕ (cf. Figure 6.1 (a)). PA, PB, PC and PD indicate the outgoing
power at the respective ports [28].

i.e., the fundamental TE mode with Nk = 2.4192 and ϕk = 58.99◦. For increasing separation
distance s, the values of Nk,e and Nk,o converge to Nk, representing the transition from a
coupled to an uncoupled system. The variation of the effective refractive indices Nk,e and Nk,o

with the separation s is displayed in Figure 6.5. The convergence towards the single cavity
mode Nk is clearly visible.
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Figure 6.5: Effective refractive indices of
even Nk,e and odd Nk,o cavity modes de-
pending on the separation s.

We know from [84] that full power transfer to the forward drop (outgoing port C) is possible,
when modes of even and odd symmetry (here, with respect to the symmetry plane x = 0) are
present. Thus, we will mainly focus on the transmission PC to port C in the following.

6.3.1 Directly coupled cavities

At first, we consider a configuration with sufficiently small separation s = 100 nm, for which
a coupled cavity system must be assumed. The transmission values PC for varying incidence
angle and different gap distances g ∈ {200, 300, 400} nm are displayed in Figure 6.6 (a) by the
dotted red line. For this narrow distance, we can find an even and odd supermode that belong
to cavity angles ϕk,e and ϕk,o, respectively, which are indicated in the plots. By exciting the
structure at a resonance angle ϕr close to these values, either the even or odd supermode is
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evanescently excited in the cavity. This results in an identical behavior as for the single cavity
resonator in Section 6.2. The input power is equally split to the four ports, each with 25%.
Again, the resonance peaks become sharper for increasing gap g. For a small gap g = 200 nm,
the curves even overlap as they are quite wide. So it is not possible to excite only one supermode
and the outgoing power is slightly larger than 25%.
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Figure 6.6: (a) Outgoing power PC to port C (forward drop) depending on the incidence angle ϕ
(in the range around ϕr) for different separations s and gaps g ∈ {200, 300, 400} nm. The even
and odd cavity angles ϕk,e and ϕk,o for a separation s = 100 nm are indicated. (b) Logarithmic
field plots of the absolute electric field log10|E| at resonance (ϕr, sr) for different gaps g.
Contour lines indicate the levels at 2%, 5% and 10% of the overall field maximum [28].

In the following, we will indicate resonance states that lead to full transmission to port C with
(ϕr, sr). To find these, we again use the bisection method, but now for a range of incidence
angles ϕ and separations s, and fixed gap g. The results are also shown in Figure 6.6. The
absolute electric field value (logarithmic scale) at resonance (ϕr, sr) for different gaps g ∈
{200, 300, 400} nm is displayed in (b). Additionally, the transmission PC depending on the
incidence angle in the range around ϕr for fixed gap g and resonance separation sr is illustrated
in (a) by the solid blue line. At resonance angle ϕr, the even and odd modes are excited
simultaneously, which leads to full power drop to the forward port, i.e., PC = 1. In the graph,
this becomes obvious by the coincidence of the positions of the overlapping peaks.

Analogously to a single cavity at resonance, here, the incoming slab mode excites the even and
odd modes in the cavity, which in turn leak into the slab waveguides in both directions. How-
ever, now two supermodes are relevant. At resonance, the even mode excites the slab modes in
forward and backward directions with the same phase, while exciting the odd mode results in
a π-phase-shift between the forward and backward propagating slab modes. At resonance, the
two modes are excited simultaneously because of accidental degeneracy. Thus, both processes
occur and the waves in backward direction get fully canceled due to the phase-shift. Further-
more, the incoming wave interferes destructively with the forward slab mode excited by the
cavities, which results in a full power drop into the upper waveguide [117, 121].
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6.3.2 Interpretation in terms of leaky modes

For a separation of s = 100 nm in Figure 6.6 (a), the resonance peaks for the even and odd
modes show different shapes. On the one hand, one observes a wide hill for the odd mode, and
on the other hand, a narrow sharp peak that corresponds to the even mode at a larger incidence
angle. To explain the difference, we have a look at the guided modes of the complete system,
meaning the structure including the cavities and the slabs. In such a structure, the modes are
leaky due to the presence of the slabs. The calculated complex effective refractive index values
Ns of the leaky modes for varying separation s are shown in Figure 6.7. The positive real part
(see (a)) and the negative imaginary parts (see (b)) are illustrated for the even (solid line) and
the odd (dashed line) modes and different gaps g ∈ {200, 300, 400} nm.

500 1000 1500
2.35

2.4

2.45 g=200nm
g=300nm
g=400nm

Re
{N

s}

s/nm

Im
{N

s}

(a)

(b)

500 1000 1500
-0.03

-0.02

-0.01

0

s=100nm

Figure 6.7: Real (a) and imaginary (b)
parts of the effective refractive index Ns

for the even (solid line) and odd (dashed
line) leaky modes of the overall struc-
ture (including cavities and slabs) depend-
ing on the separation s for different gaps
g ∈ {200, 300, 400} nm [28].

Comparing the even and odd modes at a separation of s = 100 nm shows that the imaginary
part of the even mode is almost zero (nearly a guided mode), while that of the odd mode is
comparably large. Generally, the imaginary part corresponds to the strength of the leakage
of the mode. Thus, the large imaginary part of the odd mode indicates a strong leaky mode
and explains the broad resonance in the plots. As the even mode is hardly a leaky mode, the
resonance peak is very narrow.

Furthermore, one observes a periodic behavior of the imaginary parts in Figure 6.7 (b) for in-
creasing separation s. This can be explained by analytical arguments, as both cavities radiate
into the slab waveguide where the fields overlap. Depending on the separation s, this interfer-
ence is either destructive or constructive, which results in a periodic behavior. The curves for
the even and odd modes are shifted by half a period due to a phase-shift of the contributions of
the individual cavities.

Another advantage of considering the leaky modes of the overall structure is a more accurate
prediction of the resonance angle ϕr. Before, we just considered the cavity modes and their
corresponding cavity angles ϕk,e and ϕk,o as approximated values for the resonance angles.
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But the calculated mode indices for the leaky modes can also be transferred to a corresponding
angle via Eq. (6.1). At resonance, the modes are degenerate, thus they exhibit the same real part
of the effective refractive index. Looking at Figure 6.7 (a), the real parts match at separations
s = 520 nm, s = 585 nm and s = 680 nm (for increasing gap g ∈ {200, 300, 400} nm). This
results in corresponding angles of 57.53◦, 58.72◦ and 58.94◦, respectively. These values agree
very well with the resonance angles ϕr from Figure 6.6 (a), which have been determined by
solving the scattering problem of the full system.

In the same way, this analysis is also applicable for the single cavity resonator in Section 6.2.
Again, mode analysis is done with COMSOL for the complete system comprising the slabs
and the cavity. For increasing gap, the structure possesses leaky modes with complex effective
refractive indices that correspond to incidence angles 57.54◦, 58.71◦ and 58.94◦. These values
also provide better approximations for the resonance angle ϕr in Figure 6.2 (b). Even if the
values fit very well for both configurations, it must be noted that completely different problems
are considered (leaky eigenvalue problem versus mode propagation problem).

6.3.3 Wavelength filter
The microresonators with two cavities also represent an add-drop filter for one specific wave-
length λr = 1.55µm when considered in terms of wavelength dependence. Respective sweeps
over the wavelength λ0, around the resonance wavelength λr, are shown in Figure 6.8 for dif-
ferent gaps g ∈ {200, 300, 400} nm, fixed resonance separation sr and fixed incidence angle
ϕr from Figure 6.6 (a). One observes full power transfer PC = 1 at resonance wavelength
λr = 1.55µm.
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Figure 6.8: (a) Outgoing power scans PC over the wavelength λ0 for different gap distances g at
resonance with the corresponding values (ϕr, sr) adopted from Figure 6.6 (a). (b) Enlargement
of the resonance peak for a smaller range of wavelengths around the resonance wavelength
λr = 1.55µm [28].

Again, the shape of the peak consists of a wider lower hill at a level of 25% with an additional
superimposed narrower peak at a level of 100%. For increasing gap, the lower hill becomes
narrower, just as for the single cavity resonator in Figure 6.2, and the upper peak widens. This
can especially be seen in the enlargements of the wavelength scans in Figure 6.8 (b). The width
of the hill is attributed primarily to the width of the elementary cavity resonances, while the
width of the peaks is determined by the positions of the resonances of the individual cavity
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supermodes [28]. Apparently, these positions depend more on the angle/wavelength parameter
for smaller distances g, resulting in the narrower peaks.

6.3.4 Indirectly coupled cavities
Finally, we investigate the two-cavity system for large separations s. The cavities do not directly
affect each other, i.e., they are uncoupled and must be considered individually. We restrict our
analysis to a single small gap of g = 200 nm. Furthermore, the resonance angle ϕ = 57.56◦
for a single cavity resonator (cf. Section 6.2) can also be adopted for the uncoupled system, as
the resonance angles should be the same for both systems. The solid blue line in Figure 6.9 (a)
shows the outgoing power to port C depending on the separation s. For certain equal distances,
the power is fully dropped, i.e., PC = 1. Otherwise, for distances above s ≈ 500 nm, the
power is equally dropped to 25% at each of the four output ports (the remaining outputs are not
displayed). At these positions, the composite system behaves similar to a single cavity resonator
from Section 6.2. Respective logarithmic field plots of the absolute electric field log10|E| are
shown in Figure 6.9 (b) for separations that belong to the second and third full transmission peak
in Figure 6.9 (a). The first peak belongs to the coupled system with separation s = 530 nm, as
shown in Figure 6.6 (b) (first image).

500 1000 1500 2000
0

0.25

0.5

0.75

1
numeric
semi-analytic

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

z/μm

x/
μ
m

φ=57.56°g=200nmg=200nm φ=57.56°

sr=1033nm sr=1544nm

s/nm

P
C

(a) (b)

φ=57.56°
g=200nm

Δs

Figure 6.9: Outgoing power PC in the forward drop port depending on the cavity distance s for
fixed gap g = 200 nm and incidence angle ϕ = 57.56◦ (a) and corresponding logarithmic field
plots of the absolute electric field log10|E| at resonance separations sr (b) [28].

The periodicity of PC(s) in Figure 6.9 (a) can also be predicted by semi-analytical arguments.
For sufficiently large separation distances s, the system can be split in three subsystems, as
illustrated in the sketch of Figure 6.10. The first and third subsystem are single cavity resonators
(Section 6.2), consisting of two parallel slab waveguides with a rectangular cavity in between,
representing the left and right cavity of the overall configuration. The remaining middle part
comprises two identical parallel slab waveguides separated by the distance 2g + h that connect
the two single cavity systems. We can assume that the slabs themselves do not interact with
each other.

The scattering behavior of the subsystems is described by its transfer or scattering matrices.
For the single cavity resonator, the transfer matrix TI ∈ C4×4 at resonance is determined by
the numerically calculated scattering parameters from COMSOL (Figure 6.2 (a)). In the par-
allel slabs, we can assume harmonic forward and backward z-propagating waves with a field
dependence ∼ e±ikzz . Thus, the transfer matrix is given by

TII = diag
(

eikzL, e−ikzL, eikzL, e−ikzL
)
, (6.4)

65



6. Optical dielectric microresonators

TI TITII

L

Pin

PD

PB

PC

PA

Figure 6.10: Division of a microresonator with two cavities in three subsystems. Each subsys-
tem is described by its transfer matrix TI or TII.

where L is the distance of the second subsystem. Note that L differs from s depending on the
size of the single cavity systems. Combining the three elements via

T = TITIITI (6.5)

determines the behavior of the overall system depending on the separation s.

The semi-analytical results are shown in Figure 6.9 (a) by the dashed red line and agree very
well with the simulations, except for the area s < 500 nm. Here, we can not make the assump-
tion of an uncoupled system and thus the division in three subsystems gives wrong results. In
this area, the cavities are directly interacting with each other and not only via the slab waveg-
uides. The calculated semi-analytical results depend sensitively on the scattering parameters
calculated numerically with COMSOL. Already small changes lead to different values.

With this model, we are now also able to predict the distance

∆s = λ0/(2NTEcosϕ) (6.6)

between the resonance separations sr that lead to full transmission. The value ∆s = 512 nm
for our waveguide parameters agrees well with the numerical COMSOL calculations. When
one resonance state sr is found, the following resonances occur at distances sr +n∆s, where n
is an integer. Increasing the distance by ∆s adds another hotspot, representing a standing wave
pattern in the slabs between the cavities. This can be seen easily by comparing the two pictures
in Figure 6.9 (b), which differ exactly by one field maxima.

6.4 Circular cavities
Two-port resonator systems can just as well be of interest in the present context of semi-guided
waves [10]. As an example, we investigated configurations with circular cavities [19, 21], as
illustrated in Figure 6.11. The cavity consists of a step-index fiber with outer radius r and inner
radius r− d. With an outer layer with refractive index nf > nc, the structure supports possible
OAM modes (cf. Section 2.2.2) of specific angular order ν.

On the contrary to the rectangular shape, which supports resonances of standing-wave type
[84], traveling-wave resonances can be excited in the structure with the circular cavity [122].
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Resonant fields with large orbital angular momentum and strong fields in the core are observed,
similar to the OAM modes in Section 2.2.2.

We are interested in the generation and excitation of OAM modes of high angular order. A va-
riety of approaches exist, including spiral phase plates [123], tailored lens arrangements [124],
spatial light modulators [125], and helical gratings [126,127], fiber couplers [128] or nonlinear
parametric processes [129]. In this work, we show some of the results derived in [21], where
the fiber is evanescently excited by the semi-guided mode of the adjoining slab waveguide at
oblique angles of propagation. For more details, we refer the reader to [19, 21].

nf

nc

ns

d
g

nfd

nc

r

x

z

Figure 6.11: Two-port resonator sys-
tem consisting of a circular step-index
cavity of radius r and thickness d that is
evanescently excited by a slab waveg-
uide of thickness d separated by the
distance g with refractive indices nf in
the core and ns and nc in the cladding
region [21].

The slab waveguide parameters are given by refractive indices ns = nc = 1.0 and nf = 1.5
with slab thickness d = 0.4µm for vacuum wavelength λ0 = 1.55µm. The correspond-
ing effective refractive index values of the fundamental slab modes are NTE0 = 1.23026 and
NTM0 = 1.10914 (cf. Table 2.1), which result in critical angles ϕc = 54.37◦ and ϕm = 64.36◦,
respectively, when assuming TE0 incidence. For our studies, we restrict the incidence angle to
the region ϕ > ϕc to suppress radiation losses.

The tube exhibits the same core thickness and material parameters as the slab waveguide. The
OAM±ν,l modes are strictly degenerate. Here, ν refers to the angular order and l ∈ [1, 2] to the
number of modes that exhibit an angular order ±ν, which are TE- (l = 1) or TM-like (l = 2).
For the given waveguide parameters, the structure guides 48 modes: TE0, TM0, OAM±ν,1,
ν ∈ [1, 14] (TE-like), OAM±ν,2, ν ∈ [1, 9] (TM-like).

Simulations are carried out with the 2-D FEM simulation software COMSOL Multiphysics [22]
and validated with the hybrid analytical/numerical coupled mode theory (HCMT) model intro-
duced in [130]. Advantageous is that the latter offers a clear distinction between the degenerate
OAM modes of opposite angular order ±ν, so that much more details are discussed and ana-
lyzed in [21].

Respective sweeps over the incidence angle are illustrated in Figure 6.12 for different gap dis-
tances g ∈ {1.0, 1.4, 1.8}µm showing the transmission T and reflection R to the fundamental
TE and TM modes. Resonances are observed for incidence angles that fulfill the phase match-
ing in the y-direction (cf. Eq. (6.1), where Nk represents the corresponding effective refractive
index of the OAM mode). Each pronounced reflection peak, observed at angles close to ϕk,
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Figure 6.12: Transmission T and reflection R values of the fundamental TE and TM modes
for incoming TE0 mode depending on the incidence angle ϕ for different gap distances
g ∈ {1.0, 1.4, 1.8}µm calculated with COMSOL. The lighter curves belong to the HCMT re-
sult from [21]. The vertical solid lines indicate the angle ϕk for the guided OAM modes in the
structure and the dashed lines refer to the critical angles ϕc, ϕm.

corresponds to a pair of degenerate OAM modes. The resonances are mostly well separated,
except in the area of grazing incidence ϕ ≈ 90◦, where the peaks overlap. Again, the gap
distance g has strong influence on the resonance characteristics as the peaks become narrower,
more defined and move close to the predicted cavity angles ϕk for increasing gap.

Figure 6.13 shows field profiles |E| for different selected resonance angles ϕ and a fixed
gap g = 1.4µm. The fields in (a)-(e) consist mostly of degenerate OAM±l,1 modes for
l ∈ {13, 12, 5, 2, 1}. However, the field in (f), even if the angle ϕ is close to the TE0 mode
angle ϕk, consists of a superposition of the TE0 and OAM±1,1 mode as the peaks are not
strictly separated for the chosen gap g = 1.4µm. This is further visible due to the difference in
amplitude along the angular direction in the tube core where both fields overlap. However, for
increasing gap, the influence of the OAM±1,1 mode reduces.

As we know from [21], the degenerate OAM modes are excited with highly differing ampli-
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Figure 6.13: Field plots of the absolute electric field |E| for different incidence angles ϕ at
resonance and fixed gap g = 1.4µm that excite OAM modes of different angular order in the
tube. The contour lines mark the levels of the absolute field at 2%, 5% and 10%.

tudes, as directly noticed by the HCMT solver. For high angular order (corresponding to smaller
incidence angles), mostly exclusively the anticlockwise propagating OAM mode with angular
order −ν contributes to the fields. Thus, the fields in (a) and (b) exhibit a constant amplitude
along the fiber core, since only the OAM−13,1 (a) and OAM−12,1 (b) modes are excited. The
interference pattern becomes more pronounced for lower angular order (or increasing resonance
angle) in the subplots (c)-(e), where OAM modes of opposite order are almost equally excited.

The whole setting, with more realistic material parameters (silicon and silicon dioxide), was
further analyzed in 3-D for incoming Gaussian beams of limited lateral width [19]. For the
considered high-index contrast configurations, a substantial amount of the input power – around
80% for the examples in [19] – can be transferred to the guided OAM modes, with a distinction
between degenerate modes of opposite angular order ±ν by several orders of magnitude.

69



Chapter 7

Integrated optical waveguide lens1

So far, we only investigated structures that are constant along one outstanding spatial direction
(here, the y-direction). Thus, our studies were always carried out in a 2.5-D setting with oblique
excitation. However, in this chapter, we want to focus on configurations that are no longer
constant in the previous outstanding region. Especially, dielectric slab waveguide lenses are
investigated, i.e., the considered systems consist of curved interfaces.

Sketches of potential slab waveguide lenses are illustrated in Figure 7.1 for a convex (a) or
concave (b) shape. The structures consist of a dielectric slab waveguide with an additional
lens shaped part of higher or lower, but constant, thickness. Such a configuration is able to
focus the input light at the output to a specific focal point depending on the properties of the
waveguide and the shape of the lens. We are interested in numerical simulation methods that
rapidly calculate the diffraction behavior in these slab waveguide lenses.

x

y

z

(a) (b)

Figure 7.1: Sketches of a convex (a) and concave (b) integrated-optical slab waveguide lens
[75].

Optical waveguide lenses are basic components for many integrated devices used for informa-
tion processing or optical communication [131, 132]. They were already discussed in earlier

1Sections 7.1–7.4 are based on the publication [75] of the candidate.
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concepts [132–137], e.g., mode-index, geodesic or grating types, which were mostly investi-
gated experimentally. When comparing the considered wavelength (λ0 = 1.55µm) to the size
of the structure (several tens of micrometers), these configurations are potentially huge. Thus,
rigorous full 3-D simulations require a lot of memory space and computation time. More recent
techniques to simulate wave propagation in optical waveguides are the effective index method,
where the 3-D system is reduced to two spatial dimensions, or variants of the beam propagation
method, that rely on the slowly varying envelope assumption. They are mostly used for systems
with low radiation losses and small refractive index contrasts. However, the high index contrast
Si/SiO2 configurations considered in this work exhibit comparably large, pronounced radiation
losses and non-negligible back reflections. Hence, both methods are not applicable and give
inconsistent results.

A more promising approach offers the angular spectrum method (ASM), which is a powerful
tool to calculate the diffraction of an imaging system consisting of curved interfaces [42–46,75].
Thus, in this chapter, we are presenting a numerical method, which is based on an extended ap-
proach of the ASM that needs less time and space to simulate the wave propagation in slab
waveguide lenses. A modified version of the ASM was already introduced in [46] to simulate
the scattering of fields from or to 2-D curved surfaces. The interface is divided into a finite
number of small, flat elements to calculate the propagation of the fields. Here, we extend the
stepwise angular spectrum method (SASM) to make it also applicable to full 3-D slab waveg-
uide lenses.

We start our studies by introducing the basic concept of the ASM in Section 7.1. The extended
stepwise ASM is then adapted to a simple 2-D interface, mainly for illustration of our approach
consisting of two different materials separated by a curved interface. The theory and examples
are presented in Section 7.2. A system consisting of two curved interfaces, where the waves
propagate between the surfaces, is considered in Section 7.3. This already represents a simple
2-D lens. Again, the theory of the approach is derived and corresponding examples are shown.
Finally in Section 7.4, we extend our ansatz to full 3-D slab waveguide lenses by combining
the stepwise ASM with full vectorial 2-D COMSOL [22] solutions of lower complexity. All
presented examples are validated by rigorous 2-D and 3-D FEM COMSOL simulations.

Finally, we show the versatility and applicability of the SASM by applying standard optimiza-
tion algorithms to the 3-D slab waveguide lens. The mathematical formulation of optimization
theory, which can be found in standard textbooks [138], is briefly recalled in Section 7.5.1. The
basic concepts of the global optimizers used in this chapter are explained in Sections 7.5.2–
7.5.3, and finally we show some optimized lens configurations in Section 7.5.4.

7.1 Angular spectrum representation of optical fields
The angular spectrum method is a rigorous and essential technique in diffraction theory [31–46]
to model the propagation of a light wave in homogeneous media by expanding the field into a
series of plane and evanescent waves. The mathematical background lies in the field of Fourier
Optics [47], but has been further investigated in the area of integrated optics.

Some of the oldest and most general formulations describe the propagation of light from an
input to an output plane. Almost all of these concepts are based on the scalar diffraction theory,
which was invented by Huygens, Fresnel, Kirchhoff and others [47–49]. All these concepts
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are built up from the behavior of spherical waves from point sources (Huygens principle) and
diffraction is developed by the superposition of these spherical waves. A big advantage is that
these methods can easily be extended to more complex structures like tilted, shifted [36–41] or
curved [42–46] surfaces. The angular spectrum method offers another useful tool to describe
the propagation of an optical field from an input plane to an output plane by identifying the
optical fields as a superposition of plane and evanescent waves.

In this chapter, we review the theory behind the angular spectrum representation [139]. For
simplicity, we introduce the schematic in a 2-D setting in the y-z-plane (the fields are assumed
to be constant in the x-direction).

Given is a scalar input field E0(y) = E(y, z = 0), defined along the y-axis at position z = 0.
Its inverse Fourier transform

A(ky) =
∫
E0(y)eikyydy

= F−1{E0(y)}
(7.1)

describes the amplitude of various plane-wave components that comprise the input source ac-
cording to the basic principle of Fourier transformation. Naturally, the input field is then the
Fourier transform of the angular spectrum

E(y, z = 0) = 1
2π

∫
A(ky)e−ikyydky

= F{A(ky)}.
(7.2)

The complex exponential e−ikyy is the projection on the y-plane of a plane wave propagating
with the wavevector (ky, kz) with kz =

√
k2 − k2

y . Thus, the input field can be identified as

a projection of many plane wave components propagating in various directions (ky, kz) with
complex amplitudes A(ky).

After propagation over a distance z0, each plane wave component acquires a phase factor e−ikzz0

so that the outgoing field at position z = z0 is

E(y, z = z0) = 1
2π

∫
A(ky)e−i(kyy+kzz0)dky

= F{A(ky)e−ikzz0},
(7.3)

which is the Fourier transform of A(ky)e−ikzz0 . An extended version of the ASM method is
now applied to our lens configurations.

7.2 2-D curved interfaces
At first, we start our investigations with a simple 2-D curved interface, as illustrated in Fig-
ure 7.2. The structure consists of two media n1 and n2 separated by a curved surface that is
determined by the function g(y). The interface can have an almost arbitrary shape, but multiple
reflections at the same interface are not included in our method, so the shape is restricted to
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this limitation. The whole structure is assumed to be constant along the x-direction. Thus, we
consider electromagnetic fields(

E
H

)
(y, z) (7.4)

that are also constant along x. A laterally y-restricted wave packet serves as the incoming field
and reaches the boundary at oblique angles of incidence ϕ0 with respect to the z-axis. Thus, the
wave is propagating in the y-z-plane with a range of wavenumbers ky and kz around a primary
wavenumber ky0 = k0n1sinϕ0.

n1

y

z

Δy

φ0

g(y)

yn=nΔy

gn(y) n2

Figure 7.2: 2-D sketch of an interface with materials n1 and n2 separated by a curved surface
g(y). The incoming wave propagates in the y-z-plane at oblique angles ϕ0. The SASM approx-
imation is illustrated by the red dashed lines [75].

We are interested in the transmitted and reflected fields at the interface for a given incoming
wave bundle. To calculate the fields, we make use of an extended variant of the angular spectrum
method and apply it to an approximation of the curved surface. Therefore, the interface is
discretized in N equidistant elements along the transverse y-direction of width ∆y with center
yn, n ∈ [1,N ] [46]. Each element is approximated by a piecewise flat surface gn(y), tangential
to the interface at yn. This stepwise approximation is illustrated in Figure 7.2 by the red dashed
lines.

Then, the stepwise angular spectrum method (SASM) is applied to the approximated structure
and requires four important steps:

1. Calculating the incoming field on each of the N elements.

2. Inverse Fourier transformation of the fields to receive their angular spectra.

3. Determining the scattered fields via a Fourier transform.

4. Superposition of the individual results to get the overall field solution.

This ansatz is further an extension of the approach from [46], where straight elements perpen-
dicular to the longitudinal direction (z-axis) were used to approximate the curved surface. We
compare the two approximation techniques with straight and oblique elements in Section 7.2.3.
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Generally, the piecewise composite function (dashed red line in Figure 7.2) that approximates
the curved interface is most likely discontinuous. But this does not have a strong negative
influence on the results because the smooth scattered fields from theN individual elements are
superimposed for the overall solution. Additionally, we choose the number of elementsN large
enough to observe convergence. Furthermore, the curved elements are less discontinuous than
the staircase approximation used in the original method [46], where already good results are
achieved.

7.2.1 Rotation of the coordinate system

y

z

yn

g(yn)

αn

y'

z'

Figure 7.3: Rotation of the coordinate system (y, z)
by the inclination angle αn to obtain the shifted local
coordinate system (y′, z′) for the approximated n-th
element of the curved surface. The red dashed ele-
ment indicates an approximated element from Fig-
ure 7.2.

When using oblique approximation elements, the solution for each element is, for simplicity,
calculated in a new rotated, local coordinate system (y′, z′) such that the flat surface of the
approximated element is parallel to the y′-direction (see Figure 7.3). The rotation is useful as
now in local coordinates (y′, z′), the setting for each element is similar to a simple 2-D plane
wave interface [79]. Therefore, the global coordinate system (y, z) has to be rotated by the
inclination angle αn defined by

tanαn = dg(y)
dy

∣∣∣
y=yn

(7.5)

and the local, rotated and shifted coordinate system for the n-th element is

y′ = cosαn(y − yn) + sinαn(z − g(yn)) =: ξn(y, z),
z′ = cosαn(z − g(yn))− sinαn(y − yn) =: ηn(y, z).

(7.6)

A rotation of the coordinate system implicitly leads to a rotation of the wavenumbers (ky, kz)
with

k′y = cosαnky + sinαnkz,
k′z = cosαnkz − sinαnky.

(7.7)

7.2.2 Calculation of the scattered fields
Step 1: Calculating the incoming wave

As mentioned before, the incoming wave is laterally limited in the y-direction, constant along
the x-direction and propagating in the y-z-plane at oblique angles ϕ0. Analytically, these
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2-D wave bundles are a weighted superposition of plane waves that are propagating in vari-
ous oblique directions (ky, kz) with amplitudes w(ky;ϕ0) (cf. Eq. (2.54)). More precisely, the
incoming wave packet is determined by an integral over a range of wavenumbers (or incidence
angles ϕ) around the primary wavenumber ky0 (or primary incidence angle ϕ0) via

Ψin(y, z) = 1
2π

∫
w(ky; ky0)e−ikz(z−z0)e−iky(y−y0)dky (7.8)

that represents a Fourier transform

Ψin(y, z) = F{w(ky; ky0)e−ikz(z−z0)}[y − y0] (7.9)

with ky = k0n1sinϕ and kz = k0n1cosϕ =
√
k2

0n
2
1 − k2

y . The primary incidence angle of the
overall wave bundle is ϕ0, determined by the primary wavenumber ky0 = k0n1sinϕ0. The last
two exponential terms depict the propagation in y-z-direction and (y0, z0) positions the focus
of the beam. For our 2-D setting, Ψ indicates the principal electric or magnetic component Ex
or Hx for TE or TM modes, respectively. The weight w is assumed to be a Gaussian function

w(ky; ky0) = e
−

(ky−ky0 )2

w2
k (7.10)

and defines the shape of the incoming beam in lateral direction. Correspondingly, the Gaussian
weight of half width is wk = 4cosϕ0/Wc, where Wc is the full lateral beam width perpendic-
ular to the propagation direction [14].

In the next step, to calculate the angular spectrum, the incoming field from Eq. (7.8) must be
rotated by the angle αn to the local coordinate system (y′, z′; k′y, k′z). Then, the incoming field
on the n-th element is

Ψin,n(y′) = 1
2π

∫
e
−

(k′y−k′y0 )2

w
′2
k eik′zz′0e−ik′y(y′−x′0)dk′y (7.11)

or again via the Fourier transform

Ψin,n(y′) = F{w(k′y;ϕ0 + α)eik′zz′}[y′ − y′0]. (7.12)

Note that in the local coordinate system, the incoming wave reaches the surface at an inci-
dence angle ϕ0 + α. This implicitly results in a rotation of the primary incidence wavenumber
k′y0 = k0n1sin(ϕ0 + α) and also of the Gaussian weight w′k = 4cos(ϕ0 + α)/Wc. The focus
(y′0, z′0) of the incident wave is adapted to the new coordinate system and since the origin is
(yn, g(yn)), the field on the interface is given at z′ = 0.

Step 2: Determination of the angular spectrum

The angular spectrum for the n-th rotated element is given by an inverse Fourier transform

An(k′y) =
∫

Ψin,n(y′)rect(y
′−n∆y′

∆y′ )eik′yy′dy′ (7.13)

or

An(k′y) = F−1{Ψin,n(y′)rect(y
′−n∆y′

∆y′ )}[k′y], (7.14)
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with ∆y′ = ∆y/cosαn. The window function is used to guarantee that only the element under
consideration has an influence and is selected to be of rectangular shape with

rect(y) =
{

1, |y| ≤ 1
0, otherwise.

(7.15)

Of course, the window function can also be replaced by functions that achieve similar behavior,
e.g., a Gaussian window function.

Step 3: Calculation of the scattered fields

The radiated fields (in forward or backward direction) generated from the n-th segment are cal-
culated by propagating the fields from each element using their angular spectrum (Eq. (7.13)).
Thus, the outgoing field from the n-th element, back-transformed in global coordinates (y, z),
is

Ψj,n(y, z) = 1
2π

∫
aj(k′y)An(k′y)e±ik′zηn(y,z)e−ik′yξn(y,z)dk′y, j ∈ {in, r, t}, (7.16)

or similarly by the Fourier transform

Ψj,n(y, z) = F{aj(k′y)An(k′y)e±ik′zηn(y,z)}[ξn(y, z)], j ∈ {in, r, t}, (7.17)

where the negative sign in the exponential term refers to forward (transmitted) propagating
waves and the positive sign to backward (reflected) propagating waves.

With j = r we indicate the reflected and with j = t the transmitted fields, respectively. This
approach is also valid to determine the incoming field (j = in) because Eq. (7.16) leads to an
identical solution for the incoming field like Eq. (7.8). Depending on the considered field, the
wavenumbers are

ky = k0njsinϕj and kz = k0njcosϕj , (7.18)

i.e., for the incoming and reflected fields nr = nj = n1 and ϕr = ϕj = ϕ, and for the
transmitted field nt = nj = n2 and ϕt = ϕj = β, where β = β(ϕ) is the transmittance angle
and determined by Snell’s law [79]

n1sinϕ = n2sinβ. (7.19)

Analogue to a simple plane wave interface, the wave amplitude functions aj(ky) for this 2-
D setting are defined by the Fresnel coefficients [79]. Since the shape of the incoming wave
is given by w(ky) or An(k′y) (cf. Eq. (7.16)), the incoming amplitude ain is set to one. The
coefficients for the reflected waves ar(ky) = r(ϕ(ky)) are

rs = n1cosϕ− n2cosβ
n1cosϕ+ n2cosβ (TE) and rp = n2cosϕ− n1cosβ

n2cosϕ+ n1cosβ (TM), (7.20)

depending on the polarization of the incoming wave. For the transmitted field
at(ky) = t(ϕ(ky))), the coefficients are

ts = 2n1cosϕ
n1cosϕ+ n2cosβ (TE) and tp = 2n1cosϕ

n2cosϕ+ n1cosβ (TM). (7.21)
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Our approach also allows kz to become imaginary so that at high angles of incidence, leading
to total reflection, evanescent waves are generated in the corresponding area.

Step 4: Superimposing to the overall solution

Finally, summing up the intermediate results for each of the N elements leads to the overall
field solution (incoming, transmitted and reflected field)

Ψj(y, z) =
N∑
n=1

Ψj,n(y, z) j ∈ {in, r, t}. (7.22)

7.2.3 Examples
Now, we show some specific configurations, where we apply the 2-D SASM with oblique ele-
ments (indicated as SASMo) and compare it to the approach from [46], where a general staircase
approximation consisting of straight elements is used (indicated as SASMs). Additionally, full
2-D FEM COMSOL (indicated as C) solutions [22] are presented, serving as a reference solu-
tion. In COMSOL, we again make use of port boundary conditions to excite the structure with
an incoming Gaussian beam and perfectly matched layers to simulate an infinite structure. The
2-D interface consists of a simple circular curve

g(y) = r −
√
r2 − y2 (7.23)

with curvature radius r. Such a configuration is able to focus the incoming beam and thus
represents a simple lens. The material parameters are further given by n1 = 1 and n2 = 2
for a vacuum wavelength of λ0 = 1.55µm. The incoming field is TE polarized with non-zero
principal field component Ψ = Ex that is propagating at oblique angles ϕ0. We choose a
Gaussian beam width of Wc = 10µm. The discretization is done by dividing the interface in
N = 50 elements (this applies also for the following sections) and all integrals are numerically
calculated using numerical quadrature [23].

Figures 7.4–7.5 show the absolute field value of the electric field component |Ex| for different
curvature radii r and incidence angles ϕ0. The following scenarios are shown from top to bot-
tom: top views for the SASMo, SASMs and COMSOL (C) solution, field cross sections along
the y-direction at the z-position of the focus and along a line through the focus in propagation
direction. Contour lines are added for the first set of graphs at 2%, 5% and 10% of the absolute
field to make the results more comparable. Generally, we observe that the curvature radius de-
termines the position of the focal point in the z-direction, while the oblique incidence shifts the
focal point along the x-axis.

One observes very good agreement with the COMSOL solution for both SASM approaches.
However, the amplitude in the focal point using straight elements (SASMs) is slightly smaller to
the reference FEM solution (C), especially for small curvature radii which can be best observed
in the last two line graphs. Contrarily, the SASMo line plots match perfectly with the reference
solution with just minor differences near the focal point.

Taking a closer look at geometrical optics [48], the focus of the beam can be predicted by the
Lensmaker’s equation for a single interface, which is

f = n2r

n2 − n1
. (7.24)
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Figure 7.4: Field plots of the absolute electric field component |Ex| for different incidence
angles ϕ0 and fixed curvature radius r = 20µm. Shown are the results using the SASMo (a),
SASMs (b) and the corresponding COMSOL solution (c). Additionally, line plots for fixed z-
and y-coordinate (d, e) along a line through the focus are shown. The contour lines mark the
levels of the absolute field at 2%, 5% and 10% [75].

For the structures considered in Figures 7.4–7.5, focal spots at distances f = 30µm and
f = 60µm for curvature radii r = 20µm or r = 40µm, respectively, are calculated. A com-
parison with the figures confirms the agreement with our results.

We can state that our oblique SASM approach shows good agreement with the reference so-
lution and works slightly better than the SASMs, especially for small curvature radii. Further-
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Figure 7.5: Field plots of the absolute electric field component |Ex| for different incidence
angles ϕ0 and fixed curvature radius r = 40µm. Shown are the results using the SASMo (a),
SASMs (b) and the corresponding COMSOL solution (c). Additionally, line plots for fixed z-
and y-coordinate (d, e) along a line through the focus are shown. The contour lines mark the
levels of the absolute field at 2%, 5% and 10% [75].

more, the approximation of the curved surface is also more accurate for even smaller values of
discretization elements N .
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7.3 Two curved surfaces
Next, two of these curved interfaces are combined, as sketched in Figure 7.6. Here, the fields
are propagating between the two surfaces resulting in a superposition of forward and backward
propagating waves. Possible configurations are convex or concave lens systems that focus the
incoming light at specific focal points.

y

z

Δyn

n1

φ0

g(1)(y)

g(1)
n (y)

yn=nΔyn

g(2)(y)

n2 n1g(2)
m(y)

ym=mΔym

Δym

Figure 7.6: Two curved surfaces g(1)(y) and g(2)(y), separating outer regions with refractive
index n1 from an inner region with refractive index n2. The incoming wave reaches the first
surface at an incidence angle ϕ0. The red dashed lines represent the approximation of the curved
interfaces [75].

At first, we discuss the 2-D case again, meaning a structure that is constant along the x-direction
with a field ansatz analogue to Eq. (7.4). Material parameters are n2 in the middle layer sur-
rounded by n1 in the outer regions. Of course, three different materials are possible as well.
The interface functions are g(1)(y) and g(2)(y). The incoming wave reaches the first surface at
oblique angles of propagation ϕ0.

To calculate the wave propagating in these configurations an adapted, cascaded approach of
the stepwise ASM for a single interface, presented in Section 7.2, is applied. The method
has to be extended for multiple reflections. After calculating the scattered fields from the first
boundary, the transmitted field serves as the new incoming field on the second boundary. Then,
the scattered fields from the second interface are calculated and the reflected field serves as the
new incoming field for the first boundary again. This process needs to be repeated several times
to achieve a suitable, convergent solution.

The discretization is carried out analogously to the process for a single interface in Section 7.2.
Both interfaces are divided inN (first interface) orM (second interface) equidistant, tangential,
piecewise flat surfaces g(1)

n (y) and g(2)
m (y) with center yn or ym and widths ∆yn or ∆ym with

n ∈ [1,N ] and m ∈ [1,M], respectively. The number of discretization elements does not have
to be equal for both surfaces, but in this work we assumeN =M. Again, for each element the
coordinate system needs to be rotated by the inclination angle α(1)

n or α(2)
m . Since we assume

N = M, the angles are abbreviated as α1 and α2 in the following for a better overview. We
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identify with (y′, z′) the rotated coordinate system for the first interface and with (ŷ, ẑ) the one
for the second interface. Both are defined by Eq. (7.6), where the parameters for the respective
interface are adjusted accordingly. The relation between the local coordinate systems is further
determined by

y′ =: ξ̂n,m(ŷ, ẑ) = cos(α2 − α1)ŷ + cosα1(ym − yn)
− sin(α2 − α1)ẑ + sinα1(g(2)(ym)− g(1)(yn)),

z′ =: η̂n,m(ŷ, ẑ) = cos(α2 − α1)ẑ + cosα1(g(2)(ym)− g(1)(yn))
+ sin(α2 − α1)ŷ − sinα1(ym − yn),

(7.25)

or

ŷ =: ξ′n,m(y′, z′) = cos(α1 − α2)y′ + cosα2(yn − ym)
− sin(α1 − α2)z′ + sinα2(g(1)(yn)− g(2)(ym)),

ẑ =: η′n,m(y′, z′) = cos(α1 − α2)z′ + cosα2(g(1)(yn)− g(2)(ym))
+ sin(α1 − α2)y′ − sinα2(yn − ym).

(7.26)

The corresponding rotated wavenumbers are related as

k′y = cos(α2 − α1)k̂y − sin(α2 − α1)k̂z,
k′z = cos(α2 − α1)k̂z + sin(α2 − α1)k̂y

(7.27)

or

k̂y = cos(α1 − α2)k′y − sin(α1 − α2)k′z,
k̂z = cos(α1 − α2)k′z + sin(α1 − α2)k′y.

(7.28)

To calculate the propagating fields, we divide the derivation of the method for two interfaces in
two parts by initially considering the first and second interface individually.

7.3.1 Scattered fields from the first interface
The angular spectrum on the first interface comprises two terms: the angular spectrum of the
incoming wave bundle and a superposition of the angular spectra of all reflected fields from the
second interface. Hence, the combined angular spectrum on the first interface is calculated via

A(1)
n (k′y) = An,0(k′y) +

∞∑
ν=1

An,ν(k′y), (7.29)

whereAn,0(k′y) = An(k′y) identifies the angular spectrum of the incoming wave from Eq. (7.13)
and the second summation is a Fourier transformation equivalent to Eq. (7.13)

An,ν(k′y) =
∫

Ψin,n,ν(y′)rect
(y′−n∆y′n

∆y′n

)
eik′yy′dy′, (7.30)

where the incoming field is the reflected field from the second interface

Ψin,n,ν(y′) = 1
2π

M∑
m=1

∫
r(k̂y)Am,ν(k̂y)eik̂zη′n,m(y′,0)e−ik̂yξ′n,m(y′,0)dk̂y. (7.31)
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Note that Eq. (7.31) depends on the angular spectrum from the second interface Am,ν(k̂y).
Thus, the whole process is iterative and needs to be calculated step by step.

Then, the scattered forward and backward fields from the first interface are a superposition of
the individual solutions for each element

Ψj(y, z) = 1
2π

N∑
n=1

∫
aj(k′y)A(1)

n (k′y)e±ik′zηn(y,z)e−ik′yξn(y,z)dk′y, (7.32)

where the negative sign refers to the transmitted (j = t) and the positive sign to the reflected
(j = r) waves, respectively. The coordinate transformation from (y′, z′) to (ξn, ηn) is again
given by Eq. (7.6) with the inclination angle α1. Furthermore, the amplitudes are

aj(ky) =
{
t(ky), j = t (transmitted wave)
r(ky), j = r (reflected wave)

(7.33)

as introduced in Eqs. (7.20)–(7.21) depending on the considered polarization.

7.3.2 Scattered fields from the second interface
The angular spectrum for the second interface consists only of the angular spectra of the trans-
mitted fields from the first surface. Thus,

A(2)
m (k̂y) =

∞∑
ν=1

Am,ν(k̂y), (7.34)

where the individual angular spectra for the n-th element is

Am,ν(k̂y) =
∫

Ψin,m,ν(ŷ)rect
( ŷ−m∆ŷm

∆ŷm
)
eik̂y ŷdŷ (7.35)

and the incoming fields on the second interface are

Ψin,m,ν(ŷ) = 1
2π

N∑
n=1

∫
cν(k′y)An,ν−1(k′y)e−ik′z η̂n,m(ŷ,0)e−ik′y ξ̂n,m(ŷ,0)dk′y (7.36)

with the amplitude

cν(ky) =
{
t(ky), ν = 1
r(ky), otherwise

(7.37)

from Eqs. (7.20)–(7.21) for the two polarizations. The radiated forward and backward fields
from the second interface are then determined as

Ψj(y, z) = 1
2π

M∑
m=1

∫
aj(k̂y)A(2)

m (k̂y)e±ik̂zηm(y,z)e−ik̂yξm(y,z)dk̂y. (7.38)

Again, j ∈ {r, t} and the coordinate transformation (7.6) from (y′, z′) to (ξm, ηm) enters, but
with the inclination angle for the second interface α2.
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7.3.3 Examples

Also for the structure consisting of two interfaces, we present some examples to validate our
approach. Therefore, the results are again compared to full 2-D FEM solutions calculated with
COMSOL. The two surfaces are circular functions of the form

g(i)(y) = rj ±
√
r2
j − y2 + zp j ∈ {1, 2}, (7.39)

that can either describe a convex (r1 > 0, r2 < 0, g(1) with−, g(2) with +) or concave (r1 < 0,
r2 > 0, g(1) with +, g(2) with −) lens. The refractive indices have to be chosen accordingly
to focus the incoming beam. For a convex lens, we assume n1 = 1 < 3 = n2 and for the
concave case n1 = 3 > 1 = n2. The displacement zp moves the circle along the z-axis to
position the interfaces. Furthermore, the Gaussian beam width is again Wc = 10µm and the
operating wavelength is λ0 = 1.55µm. The incoming field is TE polarized with principal field
component Ψ = Ex, which is propagating at an incidence angles ϕ0.

Eqs. (7.29)–(7.34) usually require an infinite number of calculations. But, to keep the simulation
time low, we reduce this to a finite number. The change in the field amplitude decreases after
each interface transition. Thus, we observe that convergence is reached, in general, after a few
iterations. The number of iterations is chosen such that the maximum absolute level of the
change in field amplitude on the second interface (cf. Eq. (7.36)) is below 0.5% of the initial
input field. Typically, 6-10 iterations are required depending on the properties of the considered
structure.

The results are shown in Figure 7.7 for convex (a)-(c) and concave (d) lenses with different
curvature radii and normal incidence angle ϕ0 = 0◦. The left column shows the calculated
SASMo results and the right column the corresponding 2-D COMSOL solutions, respectively.
Furthermore, contour lines are indicated at different levels for a better comparison. The solu-
tions are in very good agreement. Additionally, Figure 7.8 illustrates results for several convex
lenses with oblique propagation angles ϕ0 > 0 and different curvature radii r1 and r2. The
corresponding COMSOL solution is also shown and good agreement is observed.

Again, the focus of the outgoing beam can be predicted by the Lensmaker’s equation

1
f

= n2 − n1
n1

(
1
r1
− 1
r2

+ d
(n2 − n1)
r1r2n1n2

)
, (7.40)

for a lens [48] with thickness d = |z2 − z1|. This gives focal distances
f ∈ {17.19, 21.44, 18.41, 32.14}µm for the structures considered in Figure 7.7 from (a)-(d).
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Figure 7.7: Field plots of the absolute electric field component |Ex| for convex (a-c) and con-
cave (d) lens configurations for different curvature radii r1, r2 and normal incidence angle
ϕ0 = 0◦ using the SASMo (left column) and the corresponding COMSOL (C) solution (right
column). The contour lines mark the levels of the absolute field at 2%, 5% and 10% [75].
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Figure 7.8: Field plots of the absolute electric field component |Ex| for convex lens configura-
tions with different curvature radii r1, r2 and incidence angles ϕ0 > 0◦. Shown are the results
using the SASMo (left column) and the corresponding COMSOL (C) solution (right column).
The contour lines mark the levels of the absolute field at 2%, 5% and 10% [75].
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7.4 3-D slab waveguide lens
The more interesting case is the simulation of waves that propagate in dielectric slab waveguide
lenses, as introduced in Figure 7.1. That means, we no longer assume that our structures are
constant along the x-direction (cf. Figure 7.2 or Figure 7.6). Instead slab waveguides of specific
thicknesses serve as the incoming and outgoing parts, as illustrated in Figure 7.9 (at first, just
shown for a single interface). Therefore, the incoming wave is also no longer constant in that
direction, but a semi-guided mode of the slab waveguide with a fully vectorial electromagnetic
field dependence on all three spatial coordinates(

E
H

)
(x, y, z) =: Ψ(x, y, z). (7.41)

The top view of the structure in Figure 7.9 (a) is identical to the 2-D case. Thus, again we
consider an almost arbitrary interface given by the function g(y). In contrast, the side view (b)
comprises two dielectric slab waveguides with material parameters nf , nc and ns in the core,
cladding and substrate region, respectively. To ensure guidance, the refractive indices have to
fulfill nf > nc, ns. Furthermore, the waveguides have a thickness of d1 and d2. The incoming
wave is a bundle of semi-guided waves of the left waveguide that is propagating at oblique
primary angle ϕ0 in the y-z-plane.

ns
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x
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yn=nΔy
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Figure 7.9: (a) Curved interface between two different slab regions. (b) Cross section of an
interface between two slab waveguides of thicknesses d1 and d2 with refractive index nf , nc
and ns in the core and cladding regions [75].

To calculate the wave propagation in these 3-D structures, a combination of a modified version
of the 2-D stepwise angular spectrum method (in the y-z-plane, cf. Section 7.2) with a set
of 2.5-D solutions of the cross section (in the x-z-plane) is used. Similar to the 2-D case,
the structure is discretized in a finite number of piecewise, flat elements gn(y) of width ∆y,
tangential to the boundary at position yn. Generally, the SASM is then applied on each of these
elements and superimposed to the overall solutions with some modifications.

In the 2-D case, the SASM was calculated as a superposition of plane waves that are constant
along the x-axis and propagate in various directions (ky, kz). Now, these plane waves are
replaced by fully vectorial 2.5-D solutions of the interface cross section in Figure 7.9 (b). The
structure is assumed to be infinite in the y-direction. As before, the solution is required for a
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range of incidence angles ϕ or wavenumbers ky. Thus, the x-dependence of the 3-D fields in
Eq. (7.41) is now determined by the 2-D COMSOL solution.

The SASM is further modified such that it operates with the effective refractive indices Neff1

and Neff2 of the corresponding slab waveguide modes instead of n1 and n2, as used before for
the 2-D case. Now, the effective refractive indices model the propagation of the guided modes
supported by the slabs. Note that potentially several modes are guided.

Applying these modifications to the steps from Section 7.2 results in the following: the in-
coming field Ψin,n(y′) (Eq. (7.11)) and the angular spectra An(k′y) (Eq. (7.13)) can directly be
adopted for the 3-D case, by just replacing n1 with Neff1 and n2 with Neff2 . Note that now
TE and TM modes are potentially excited at the interfaces, leading to scattered fields for each
polarization. Therefore, angular spectra for each guided mode have to be considered at the
interface. Furthermore, the weight of the incoming field is no longer of Gaussian shape. We
assume an incoming rib mode by placing an additional rib waveguide in front of the structure,
as introduced in Section 2.4.

The scattered fields in the third step need to be modified, as the plane waves are now replaced
by the 2-D COMSOL solutions for a range of incidence angles ϕ

Ψn(x, y, z) = 1
2π

∫
An(k′y) {Φ0(x; k′y)e−ik′zηn(x,z) + %(x, z)}︸ ︷︷ ︸

COMSOL solution

e−ik′yy′dk′y. (7.42)

Here, {Φ0(x; k′y)e−ik′zηn + %} =: ΦC(x, z; k′y) indicates the COMSOL solution for incidence
wavenumber k′y, where Φ0 is the vectorial oblique mode profile of the incoming wave and % is
a remainder. Since full vectorial 2.5-D COMSOL solutions are used, Ψn already includes the
incoming, reflected and transmitted fields. Superposition leads to the overall 3-D field solution

Ψ(x, y, z) =
N∑
n=1

Ψn(x, y, z). (7.43)

Advantageous is that by considering full vectorial 2-D solutions of the cross section, as out-of-
plane losses are fully taken into account. Additionally, compared to rigorous 3-D simulations,
our approach requires less computational effort (time and memory space). We will remark on
that later in this chapter.

7.4.1 Expansion of the 2-D COMSOL solution
Sometimes, the focal point is far away from the origin of the interface. This is especially ob-
served for low refractive index contrasts and single interface structures. Therefore, depending
on the waveguide and interface properties, the computational domain to calculate the 2.5-D
COMSOL solutions needs to be quite large. Consequently, a large computational effort is re-
quired to generate the set of 2-D COMSOL solutions at different incidence angles.

This problem can be solved with the expansion of the fields. Since the slabs are constant in
both directions z ≷ 0, we can easily propagate the corresponding lossless 1-D slab modes in
the respective direction analytically. To that end, the amplitudes of the 1-D mode profiles are
extracted from the 2-D COMSOL solution for each guided mode in the incoming and outgoing
slabs.
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More precisely, the fields are extracted at two cross-section lines along the x-direction at posi-
tions z = ±zt for the incoming/reflected and outgoing fields, assuming that the discontinuity is
positioned at z = 0 (Figure 7.9 (b)).

The incoming and outgoing fields in the slabs of the 2-D COMSOL solution ΦC can then
be written as a superposition of all guided slab waveguide modes Ψp with amplitudes ap,
wavenumbers kz,p and a remaining scattered field Ψsc

2

ΦC(x, z; ky) =
∑
p

ap(ky)Ψp(x; ky)e±ikz,pz + Ψsc(x, z; ky), (7.44)

where p counts the guided slab modes.

Again, we make use of the product from Eq. (2.44) to extract the amplitudes ap(ky) by project-
ing the numerical field ΦC onto each of the slab modes Ψq at position zt

(Ψq,ΦC)x =
∑
p

ap(Ψq,Ψp)xe±ikz,pzt + (Ψq,Ψsc)x. (7.45)

Assuming mutual orthogonality of the guided slab modes (Ψq,Ψp)x = 0, if q 6= p, orthogo-
nality of the slab modes and the scattering field (Ψq,Ψsc)x = 0, ∀q, and power normalization
(Ψq,Ψq)x = 1, the amplitudes are determined as

ap = (Ψp,ΦC)xe∓ikz,pzt . (7.46)

The huge advantage of the extension is that the computational window in COMSOL can now
be relatively small, independent from that used for the SASM, leading to substantial advantages
in computation time and memory. Additionally, we choose the points zt as small as possible,
such that out-of-plane radiation losses occurring at the interface are almost fully decayed. In
this way, almost no approximations apply when expanding the 2-D field solutions.

7.4.2 Single interface

In the following, 3-D results are shown for a single interface using the 3-D SASM. The incom-
ing slab is assumed to have a thickness of d1 = 0.05µm and the outgoing slab a thickness
of d2 = 0.22µm. We consider Si/SiO2 waveguides with refractive indices nf = 3.45 and
nc = ns = 1.45 for vacuum wavelength λ0 = 1.55µm. Both waveguides guide the fundamen-
tal TE and TM mode (cf. Table 2.1). The TE0 mode of the adjoining rib waveguide, with rib
width W = 15µm, height d = 0.05µm (identical to the incoming slab waveguide) and etch
depth d′ = 0.02µm, serves as the incoming field. The curvature is again defined as a circular
function of the form

g(y) = r −
√
r2 − y2 (7.47)

with positive curvature radius r.
2This holds strictly only for the transverse components; see footnote 1 on page 24 for a detailed explanation.
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Figure 7.10: Top view (upper row) and side view (bottom row) of the absolute electric field |Ey|
for different curvature radii r = 20µm (a) and r = 30µm (b) and incidence angles ϕ0 = 0◦.
The corresponding full vectorial 3-D COMSOL solution is shown on the right side (C). The
contour lines mark the levels of the absolute field at 2%, 5% and 10% [75].

Figures 7.10–7.11 show a few examples for a single interface. Shown is the absolute value of
the principal electric field component |Ey| for different curvature radii and incidence angles.
The upper row shows the top view of the field, while the bottom row illustrates the side view
along the direction y = tan(β)z, where β (see Eq. (7.19)) is the transmittance angle of the
outgoing field. Note that despite the excitation by an adjacent rib waveguide, the rib itself is not
shown in the plots, and only the fields in the slab regions are illustrated.

The 2.5-D COMSOL solutions of the cross section are calculated over a range of incidence
angles from ϕ = −85◦ to ϕ = 85◦ with steps of 0.5◦ in the spatial area z ∈ [−5, 20]µm, where
the discontinuity is positioned in z = 0 µm, and the 2-D solution is further expanded with the
method used in Section 7.4.1. Furthermore, for each element the solution needs to be rotated
and shifted depending on the position of g(y) and the inclination angles αn.
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Figure 7.11: Top view (upper row) and side view (bottom row) of the absolute electric field
|Ey| for different curvature radii r and incidence angles ϕ0 > 0◦. The contour lines mark the
levels of the absolute field at 2%, 5% and 10% [75].

For validation, Figure 7.10 compares our results to full rigorous 3-D FEM solutions calculated
in COMSOL (shown on the right side of the figure). Here, we also use an etched rib waveguide,
with the same parameters as mentioned before, to excite the structure. The incoming rib mode is
calculated by using port boundary conditions and perfectly matched layers are added to simulate
open boundaries. For the single interface, the focal point is quite far away from the origin of the
boundary, therefore a large computational domain is required. For simplicity and analogue to
the arguments introduced in Section 7.4.1, we simulate the full 3-D solution only in the range
z ∈ [−5, 20]µm and extend it in both directions. Beyond this range, scattered non-guided
fields are almost entirely absent, thus a good approximation is obtained. We observe very good
agreement between our SASM results and the direct 3-D FEM solution.

The full 3-D FEM solutions are calculated in parallel on a SMP node with 32 cores and 1 TB
RAM. This requires a calculation time of around 20 h and the full memory space is used to
receive accurate 3-D solutions. Even then, the mesh did not fully converge, as there was not
enough memory space available. In contrast, the SASM results are calculated on a computer
with 16 cores and 32 GB RAM and the calculation took just about 10 minutes. Note that this
does not include the constituting 2.5-D COMSOL solutions, as these were pre-calculated and
can be used for arbitrary two interface configurations with the same layering. Furthermore, it
should be noted that the 3-D COMSOL solution determines the full 3-D field, while our SASM
evaluates the fields only on a cut plane as required for the presented field plots.

Comparably high losses already appear for a 3-D single curved interface as can best be observed
in the side plots in Figures 7.10–7.11. To get an impression of these losses, it is advantageous
to study the losses of the superimposed corresponding 2-D solutions. Therefore, Figure 7.12
shows the relative outgoing power for TE and TM modes (transmittance T and reflectance R)
and the total outgoing power to guided modes Pout depending on the incidence angle ϕ for
incoming TE0 (a) or TM0 (b) mode. We observe that losses can not be neglected especially for
small incidence angles and TM excitation.
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Figure 7.12: Reflection R and transmittance T for fundamental guided TE-/TM-modes depend-
ing on the incidence angle ϕ of the 2-D solutions for either TE (a) or TM (b) excitation [75].

However, from the theory in Section 2.3, we know that for incoming TE mode losses are fully
suppressed beyond a specific incidence angle ϕc = 57.23◦ and reflected TM waves are sup-
pressed beyond ϕm = 57.92◦. Transmitted TM waves do always exist.

7.4.3 Two interfaces

ns
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d1 z

x

d3
d2

s
Figure 7.13: Cross section of a
slab waveguide lens consisting
of two interfaces at a distance s.
Parameters are the thicknesses
d1, d2 and d3 and the refractive
indices nf in the core and nc and
ns in the cladding regions.

For a configuration with two interfaces, the method needs to be modified according to Sec-
tion 7.3. Now, potential TE and TM modes are propagating between the interfaces. Hence, the
2.5-D COMSOL solutions need to be calculated for both, TE and TM excitation. To simulate
the two interfaces, we calculate the 2-D fields for each interface separately and then combine
them to generate the full field.

Calculating the solution by directly including both interfaces requires a significantly larger num-
ber of 2-D fields. In addition to the angle of incidence ϕ, the distance s between the interfaces
has to be varied depending on the position y. So we preferred calculating the interfaces sepa-
rately. The disadvantage is that for small distances s between the two interfaces, radiating or
evanescent waves resulting from one interface do not lead to further reflections or transmissions
on the other interface. Only guided modes are assumed to propagate between the interfaces and
generate the diffracted fields from each surface. We observe that for the configurations consid-
ered in this work, the approximation appears to be adequate.

A sketch of the side view is illustrated in Figure 7.13, the top view is identical to Figure 7.6. We
assume a symmetric structure, i.e., incoming and outgoing slabs have identical height and the
same refractive indices. The waveguide thickness in the middle is higher than the surrounding
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Figure 7.14: Top view (upper row) and side view (bottom row) of the absolute electric field
|Ey| for different curvature radii r1 = 30µm, r2 = −30µm (a) and r1 = 40µm, r2 = −40µm
(b) and normal incidence ϕ0 = 0◦. The corresponding full vectorial 3-D COMSOL solution is
shown on the right side (C). The contour lines mark the levels of the absolute field at 5% and
10% [75].

slabs but consists of the same refractive indices (of course, a configuration with etched mid-
dle part is also possible). The waveguide parameters are adopted from the single interface in
Section 7.4.2, i.e., thicknesses d1 = d3 = 0.05µm, d2 = 0.22µm and material parameters
nf = 3.45 and nc = ns = 1.45. The incoming wave is the fundamental TE mode of an ad-
joining rib waveguide of width W = 15µm, height d = 0.05µm and etch depth d′ = 0.02µm
(cf. Section 2.4). The constituting 2.5-D COMSOL solutions are again calculated in the area
z ∈ [−5, 20]µm and extended with the method introduced in Section 7.4.1. To validate our
results, the solutions are compared to full 3-D FEM solutions.

Figures 7.14–7.15 show the absolute electric field |Ey| for different incidence angles and radii.
Again the top (upper row) and side view (bottom row), along the direction of the outgoing
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Figure 7.15: Top view (upper row) and side view (bottom row) of the absolute electric field |Ey|
for curvature radii r1 = 30µm, r2 = −30µm and incidence angles ϕ0 = 15◦ (a), ϕ0 = 30◦
(b). The corresponding full vectorial 3-D COMSOL solution is shown on the right side (C).
The contour lines mark the levels of the absolute field at 5% and 10% [75].

propagating beam, is shown. For clarity, the contour lines are only shown at the levels of 5%
and 10% because the radiated fields produce a rather confusing field pattern. Note that for
oblique incidence angles (Figure 7.15), it was easier to move the interfaces than to rotate the
incident rib port in COMSOL. This shows the flexibility of the 3-D SASM.

The results fit well to the corresponding 3-D FEM solution despite the partially converged
mesh of the COMSOL simulation and the piecewise linear approximations of the interfaces in
the SASM. As can be clearly seen from the side views of the plots, losses can not be neglected
for these high refractive index contrast waveguide lenses.
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7.5 Optimization
The manipulation of light is one of the main challenges in integrated optics to achieve efficient
on-chip integration in planar circuits [140]. Lenses are mostly used to project, focus and control
the propagation of light from one point (the emitter) to another (the detector) within an optical
system [131]. The optimal design of the lens must consider the beam width, side lobes, the
efficiency and the imaging performance, which is restricted by the Rayleigh diffraction limit
[48, 141–143]. Spherical aberrations and the lateral size of the focal spot can be customized
by optimizing the curvature of the lens to meet special requirements for various applications
[131, 144–146].

Rigorous numerical simulations of these waveguide lenses in full 3-D are rather expensive in
terms of computational effort. Already the calculation of a single lens configuration, such as
in Figures 7.14–7.15 (C), on a massively parallelized machine, takes about 20 h of computa-
tion time. This effort renders series of 3-D FEM simulations, as would be required for design
optimization, practically impossible. Instead, we will apply the much faster and more memory
economic SASM-technique. In the following, we show that standard optimization algorithms
can be easily applied to 3-D waveguide lenses with two interfaces by using our SASM.

We make use of global optimizers, which are available in MATLAB’s “Global Optimization
Toolbox” [147]. Here, we choose the genetic (GA) and pattern search (PSA) algorithms because
the integration of nonlinear constraints is directly possible and they provided the best results for
our problem. After optimizing the structure with the global optimizer, a local optimizer is
applied on the solution to yield a more accurate optimized result. We use a local “interior-
point” solver [148–150], which is also directly implemented in MATLAB. While other solvers,
not necessarily implemented in MATLAB, may fit better to the problem at hand and might be
able to provide better and faster results, here, we just intend to show the applicability of our
SASM approach for the purpose of design optimization.

7.5.1 Mathematical formulation

Optimization aims to find a maximum or minimum point x of an objective function f depending
on certain constraints. This is mathematically expressed as

min
x∈Rn

f(x) subject to
cj(x) = 0, j ∈ E
cj(x) ≥ 0, j ∈ I, (7.48)

where E and I are sets of indices for equality and inequality constraints, x is the vector of
unknown variables, f : Rn → R with n ≥ 1 is the objective or cost function and cj : Rn → R
are the constraint functions.

By defining a feasible set of points x that satisfy the constraints

Ω = {x | cj(x) = 0, j ∈ E , cj(x) ≥ 0, j ∈ I}, (7.49)

Eq. (7.48) can be written in a more compact form

min
x∈Ω

f(x). (7.50)
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In some cases one is interested in the maximum of an objective function f(x). For uniformity,
this can be rewritten as an equivalent minimization problem

min
x∈Ω

f̃(x), (7.51)

with f̃(x) = −f(x).

A distinction is made between “constrained” and “unconstrained” optimization problems. An
unconstrained optimization problem has no constraints, i.e., E = I = ∅, while the sets are
not empty for constrained optimization problems. In this work, we will deal with constrained
optimization problems, which are further divided in “linear” and “nonlinear” constraints. In the
first case, the considered constraints and the objective function are linear and, in the second case,
at least one of the constraint functions or the objective function has a nonlinear dependence on
x.

Many algorithms are created to seek local solutions for nonlinear optimization problem, mean-
ing a point x at which the objective function is small compared to all other feasible points
nearby. Finding the global solution, which is the point with the lowest objective function value
of all feasible points, is mostly very difficult, especially for unconstrained optimization. In
some cases, an improvement can be achieved by defining constraints that limit the region of
feasible points.

7.5.2 Genetic algorithm

Generic algorithms are adaptive algorithms to find a global solution of an optimization problem.
They are derivative-free, robust and applicable for many problems. The approach is based on
the evolution process and natural selection (“survival of the fittest”) [151–153].

Initially, a random population – generation – consisting of a certain amount of points – individu-
als – is created that covers the whole search space. The next generation is created by combining
and adapting the fittest individuals of the old generation via selection, crossover and mutation.
The new generation is then tested, whether they have an improved objective function value.
This process is repeated until the population converged. In the following, the three operations
are briefly described.

1. Selection:
The best individuals – parents – of the current generation, i.e., those with the best objec-
tive function value, are directly copied/selected for the new generation. The better the
objective function value, the higher the probability of contributing to the solution. These
points are then selected for crossover and mutation to produce the individuals – children –
for the new population.

2. Crossover:
The selected parents from the previous step are mated to produce the children of the new
generation. In this process, the crossing points correspond to the mated parents and are
generated in different ways [152].

3. Mutation:
Finally, some of the offspring are mutated by replacing their positions with random num-

95



7. Integrated optical waveguide lens

bers from the search space, creating new “genetic” material. Mutation is done to maintain
diversity within the population and to prevent premature defective convergence.

We can summarize the procedure of the algorithm with the following four steps:

1. Initialization of the population.

2. Evaluate objective function values.

3. Create a next generation via selection, crossover and mutation.

4. Go back to step 2 until convergence.

7.5.3 Pattern-search algorithm

Pattern-search is a derivative free optimization algorithm to find global solutions of a smooth
objective function. Starting from the current point x ∈ Ω, the method searches in a certain
set of directions D for a point x + γp, with p ∈ D, with a lower objective function value
f(x+ γp) < f(x). In each direction, the objective function is evaluated at a specific step length
γ. Thus, the points x+ γp form a “stencil” around the current best point x. If an improvement
is found, the corresponding point is identified as the new best point and the search process is
repeated. If no point with lower function value is found, either the search lengths γ along the
current search directions are increased or even new search directions are generated. However,
the search directions or lengths are anyways updated (they shrink or grow depending on the
system properties) after each step even if an improvement was achieved or not [138].

A sketch of the implementation is given by the following:

1. Initialization of a point x with step length γ and directions p ∈ D.

2. Calculate the objective function values f(x).

3. If the updated position exhibits a lower objective function value f(x + γp) < f(x) for
some p ∈ D, update x← x+ γp and increase γ.
Otherwise, x is not shifted, but γ is decreased.

4. Go back to step 2 until convergence.

Pattern-search can further be used on a set of j points xj with search directions pj ∈ Dj and
search length γj to search iteratively for optimized solutions [154–156].

7.5.4 Optimized 3-D slab waveguide lens

An appropriate objective function for optimization depends always on the application purpose.
Here, we present one of many ways to optimize the planar slab waveguide lens. A conceivable
goal is to maximize the transmittance or to minimize the spot size of the outgoing beam, e.g.,
for a better spatial resolution when it comes to image processing [30].

To combine both, we consider the maximum of the absolute field amplitude at of the transmit-
ted field Ψt (cf. Eq. (7.42)) at position (x0, y, zopt) normalized to the maximum amplitude ain
of the incoming wave Ψin (cf. Eq. (7.11)) at position (x0, y, z0) as our figure of merit. Theo-
retically, the higher the output amplitude, the larger the transmission and the smaller the size
of the focal point due to energy conservation. Due to the flexibility of the SASM, we assume a
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primary incidence angle ϕ0 = 0◦, since the oblique incidence can always be realized by adjust-
ments of the shapes g1(y) and g2(y), i.e., by rotating the lens boundaries accordingly. Thus, the
maximum field amplitude of the incoming field Ψin is given at position (x0, 0, z0).

For simplicity, we interpolate the two interfaces using splines [23] to have as few unknowns
as possible. Therefore, we define a specific number P of equally distributed basis points
ỹj , j ∈ [1,P], compactly written as the vector ỹ, along the y-direction of the computational
domain and interpolate them using a cubic spline to receive g1(y) and g2(y). The variables
for optimization are then given by z̃(1)

j = g1(ỹj) and z̃(2)
j = g2(ỹj), which we combine to

z̃ = (z̃(1), z̃(2))T with elements z̃(k)
j , k = 1, 2. Here, we assume P = 9 and a size of the

computational domain in the y-direction limited to y ∈ [−20, 20]µm. As we consider the lens
with two interfaces, optimization is carried out with 18 variables.

The transmitted field is sampled only along the y-direction at specific positions z = zopt,
which is the position of the focal point in propagation direction that is to be optimized and
x0 = 0.025µm, which is a point in the core region of the outgoing slab. Hence, the field has
to be evaluated explicitly only on a single line, which decreases the computation time of the
SASM drastically.

Then, assuming ain = |Ψin(x0, 0, z0)| = 1 results in an objective function

max
z̃

(
max
y
|Ψt(x0, y, zopt)|

)
. (7.52)

We restrict our optimization only to a single component Ψ = Ey in order to keep the required
simulation time to a minimum, even if the amplitude of |E| would be more appropriate since it
covers the full vectorial properties of the wave.

Further simplifications are implemented to make the SASM faster without changing the major
field behavior: only the initial transition from the first to the second interface, thus setting ν = 1
in Eq. (7.34), is considered, as the iterations between the two boundaries require most of the
calculation time. Additionally, we reduce the number of elements to N =M = 25 (before,
N =M = 50) for each interface. Applying these simplifications and evaluating the field only
along the line (x0, y, zopt), results in a computation time of 2 s per lens configuration (before
around 10 minutes to calculate the 2-D cross sections in Section 7.4).

However, for the subsequent refinement steps, a local optimizer is applied. Unlike the global
optimizer, the local one is applied to the full SASM without simplifications. Thus, the original
settings from Section 7.4 are valid again, with N =M = 50 SASM elements and about 6-10
iterations. Then, the calculation time for a single lens configuration requires about 60 s.

We excite the structure with the quasi-TE0 mode of a rib waveguide of width W = 15µm,
height d = 0.05µm and etch depth d′ = 0.02µm positioned at z0 = −10µm in front of the
structure. Refractive indices for the target wavelength λ0 = 1.55µm and waveguide thicknesses
for the lens configuration can be adopted from Section 7.4.3.

In addition to the just mentioned simplifications, some limitations on the boundaries are neces-
sary to achieve reliable and physically correct optimization results. Thus, the following (non-
linear) constraints must be applied:
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1. The interfaces are not allowed to cross each other and should be separated at least by a
distance of the vacuum wavelength λ0 to ensure that evanescent waves from one interface
do not touch the other

g1(yn) < g2(yn) + λ0, n ∈ [1,N ]. (7.53)

The assumption that the condition only applies to the basis points ỹj , j ∈ [1,P] is not
sufficient, as the curves could still have intersections due to the spline interpolation.

2. We assume an upper and lower boundary for the interfaces given by the position of the
incoming wave lb = z0 and the optimized point ub = zopt

lb < gj(yn) < ub, n ∈ [1,N ], j ∈ {1, 2}. (7.54)

3. To avoid multiple reflections, strong kinks in the interfaces are not allowed. Hence, we
restrict the change in the angle of two adjoining elements by α0

|αj,n − αj,n+1| < α0, n ∈ [1,N − 1], j ∈ {1, 2}, (7.55)

where the individual angles are αj,n = tan−1(dgj(yn))).

7.5.4.1 Optimized focal point

In the first step, we only optimized the transmittance T . The result comprises a structure con-
sisting of two parallel, (almost) straight boundaries rotated by an angle of approximately 59◦
with nearly full transmission. However, the outgoing beam is not focused and exhibits almost
an identical width as the incoming beam. The shape becomes evident when re-considering
Section 2.3 as losses are fully suppressed for incidence angles larger than ϕc. This applies for
structures that are homogeneous in one outstanding direction, which is satisfied by the parallel
straight boundaries. For the first interface, the angle needs to be larger than ϕc,1(TE) = 57.23◦
(for TE input), and for the second interface larger than ϕc,2(TE) = 30.91◦ (for TE input) or
ϕc,2(TM) = 45.31◦ (for TM input) to suppress radiation losses. Apart from that, the parallel
surfaces lead to a Fabry-Pérot effect to achieve high transmittance. Thus, such a structure is
able to achieve full power transmission. Apparently, the optimizers are able to find the config-
urations (only slight curvatures in the boundaries due to the spline approximation lead to little
reflections).

For the optimization of the outgoing amplitude, we start the two solvers with a population of
50 elements and an initial element matrix of points that represent rotated circular curvatures
of arbitrary but suitable radii and incidence angles. GA converges after around 100, and PSA
after around 250 iterations. Additionally, the local solver converged at around 90 iterations for
both cases. The number of iterations depend strongly on the choice of the initial values. The
optimizers stop when the predicted change in the objective function is less than a predefined
function tolerance of 10−6.

Note that our results do not necessarily represent a global optimum because the initial points
strongly influence the behavior of the optimizer and its solution. We are aware that there could
be better optimization tools and algorithms for this problem, e.g., a multi-objective optimizer
can be used to optimize the amplitude and transmittance simultaneously. In the context of this
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work, we only want to demonstrate the applicability of optimization algorithms to our SASM
and highlight the versatility of the approach.
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Figure 7.16: Top view (upper panel) an side view (lower panel) of the absolute electric field
|Ey| for the optimized lens structures using PSA (a) and GA (b). The respective transmitted
amplitude at, the transmittance T and the full width at half maximum FWHM are indicated for
both results.

Figure 7.16 shows the top (upper panel) and side (lower panel) view of the optimized lens when
maximizing the amplitude at at a rather arbitrary position zopt = 35µm using pattern search
(a) and genetic (b) algorithms. We fixed the adjustable parameters lb = −10µm, ub = zopt =
35µm (Eq. (7.54)) and α0 = 45◦ (Eq. (7.55)). Shown is the Ey-component at fixed positions
x = 0.025µm (top view) and along a path in the propagation direction of the outgoing beam
(side view). The maximum outgoing amplitude at, the transmittance T and the beam size along
the y-direction at full width half maximum (FWHM) are displayed for both results. In contrast
to the optimization itself, where we only considered the outgoing Ey component, the displayed
transmittance is calculated fully vectorial when post-processing the solution. Even though it is
not shown in the field plots, the computational range in y-direction was chosen from −20µm
to 20µm, so that there is enough space to realize oblique outgoing beams.

To have a comparison, the lens configurations of the previous section (see Figures 7.14–7.15)
exhibit outgoing amplitudes at that are in the range between 1.44 to 1.76 that belong to trans-
mittance values from 55% to 58%. Note that when comparing the figures, the position in
x-direction is now fixed to x0 = 0.025µm (before x0 = 0.1µm).

We observe that the transmittance did not increase compared to the circular lens configurations
from Figures 7.14–7.15. However, we did not optimize the transmittance precisely. Instead, we
optimized the amplitude of the outgoing wave in the focus plane, which has improved by a factor
of around 1.4. We observe almost identical results for both optimizers. The interfaces differ
mainly at the borders, but this has only a minor influence on the field behavior. Both solvers
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give results that do not exhibit a large propagation angle relative to the rotation of the interfaces.
Thus, losses are present and best visible in the side views of the plots. This can be explained, as
we only considered theEy component and did not optimize the transmittance directly. Probably,
higher angles would widen the focal point resulting in a smaller amplitude. Thus, to achieve
a result with lesser losses but still a focused outgoing beam with high amplitude, different
optimizers or cost functions need to be used. The objective function could directly include the
FWHM and the transmittance. Additionally, a multi-objective optimizer would be adequate for
the purpose of simultaneously optimizing different objective functions.
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Chapter 8

Modal matching method for 3-D
simulations of waveguide tapers

The detection of single photons is one among the challenges faced in quantum optics [52].
One of the approaches in a framework of integrated optics is the integration of superconduct-
ing nanowire single-photon detectors (SNSPD) made of amorphous tungsten silicide on top of
titanium in-diffused lithium niobate (Ti:LN) waveguides [53, 54, 157, 158]. The waveguides
are fabricated by in-diffusing a titanium layer with a certain width and height on the surface
of the lithium niobate (LN) crystals. SNSPDs are a standard tool for quantum photon detec-
tion [159, 160] due to their high efficiency [161] and low noise [162]. As long as no photon
is absorbed, the detectors are superconducting below their critical temperature and no resis-
tance is measured. After a photon is absorbed, the nanowires are heated up and the detector is
no longer superconducting as the temperature reached the critical value. This leads to a short
resistance and measurable voltage drop that can be detected with external connections to the
nanowires [163].

However, a challenging task is the coupling efficiency, which is determined by the overlap
between the guided mode of the Ti:LN waveguide and the position of the nanowires. The
guided modes of the waveguide are mostly distributed in the LN substrate and therefore the
overlap with the nanowires is small. A possible way to increase the detection rate is by applying
an additional tapered silicon layer on top of the Ti:LN waveguide [53, 55]. Silicon has a higher
refractive index than LN. Hence, the additional layer can be expected to pull up and to centralize
the optical field closer to the nanowires.

In this chapter, we consider these Ti:LN waveguides with additional tapered silicon layer from
a viewpoint of strictly classical guided-wave optics. Tapers are used to change the size or
the shape of a mode to achieve a high coupling between waveguides of different cross sections
[60–67]. In order to achieve a low-loss taper, one usually considers linear tapers [64] and makes
them long enough so that the fundamental or first-order mode propagates through the waveguide
without coupling to higher order or radiation modes [65]. However, non-linear tapers have
also been introduced, which can be much shorter due to stretched regions of larger coupling
strength [66, 67]. A variety of applications based on tapered waveguides have been presented,
e.g., fiber-to-chip couplers [60, 164, 165], mode size converter [166], polarization-insensitive
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couplers [67], polarization splitter and rotating devices [64, 167].

We are searching for taper geometries that lead to a high field overlap with the nanowires. For
the simulation, we use a customized modal matching method [62, 63, 68, 87, 166, 168–171],
which has its origin in the late 1960s [168, 172, 173] and started with the consideration of
mode matching at a simple waveguide junction. Here, we introduce a stepwise modal matching
technique to simulate the wave propagation in multiscale 3-D tapers by dividing the taper in a
finite number of segments with constant cross sections.

Other simulation techniques are applicable as well, e.g., the beam propagation method [8]. Ad-
vantages of the mode matching method are that it can be easily used in combination with COM-
SOL Multiphysics to precisely discretize waveguides with cross sections of different scaling,
and that optimization is much faster due to pre-calculation of the individual coupling coeffi-
cients for each transition step between the segments.

We start by introducing the birefringent LN material in Section 8.1. Then, to simulate the field
behavior in the tapered part, we derive the theory of our finite element modal matching method
(FEMMM) in Section 8.2. Examples for different taper geometries are shown in Section 8.3.
Finally, we optimize the taper using a particle swarm algorithm implemented in MATLAB [174]
and the results are presented in Section 8.4.
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Figure 8.1: (a) Cross section of the Ti:LN waveguide with silicon layer of width w and height
h on top covered by a SiO2 layer. (b) Top view of the tapered silicon layer of length L. Addi-
tionally, the SNSPDs are illustrated beyond the tapered part.

A sketch of the structure under investigation is shown in Figure 8.1 with a cross section view
(a) and a top view (b). The Ti:LN waveguide with refractive index profile nTi:LN is covered by
a silicon layer of width w = 3.0µm, height h = 60 nm and refractive index nSi = 3.48. The
silicon taper (here, for simplicity of linear shape) is of length L. The SNSPDs are sandwiched
between the Ti:LN waveguide and the silicon top layer, starting after the taper section. The
whole structure is covered with silicon dioxide which has a refractive index nSiO2 = 1.36675.
We chose the values according to [53] for a vacuum wavelength λ0 = 1.55µm. The structure is
excited with the fundamental TE mode of the Ti:LN waveguide that is propagating in positive
y-direction. In this chapter, we changed the coordinate system so that it fits to the crystalline
Z-cut configuration of Ti:LN waveguides under study [175].
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8.1 Refractive index profile
Lithium niobate is an anisotropic material with a trigonal crystal structure and characterized by
a large electro-optic coefficient and large nonlinear second-order susceptibility [50]. Referring
to the coordinate system for the present Z-cut Ti:LN waveguides, as introduced in Figure 8.1,
the material is birefringent with the permittivity tensor

εr(x, z) =

n2
o 0 0

0 n2
o 0

0 0 n2
e

 , (8.1)

where no = 2.2112 is the ordinary and ne = 2.1381 is the extraordinary refractive index at the
target wavelength λ0 = 1.55µm.
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Figure 8.2: Extraordinary ne(x, z) (a) and ordinary no(x, z) (b) refractive index profile of the
Ti:LN waveguide.

After titanium in-diffusion, the refractive index profile becomes space-dependent and can be
described by analytical functions [176]. Assuming that y is the propagation direction and x and
z are the transverse coordinates, the refractive index profile is then given by

εr(x, y) =

n2
o(x, z) 0 0

0 n2
o(x, z) 0

0 0 n2
e(x, z)

 (8.2)

with the functions

ne(x, z) = n(0)
e + deEc(x, z),

no(x, z) = n(0)
o + do(Fc(x, z))γ ,

(8.3)

the refractive indices for the bulk LN n
(0)
e = 2.1381 and n(0)

o = 2.2112, the diffusion constants
Dx = 4.105, Dz = 4.85, the profile constant c = 1.0553 × 1021 and the remaining constants
de = 0.8621, E = 1.2 × 10−23, do = 0.7083, F = 1.3 × 10−25 and γ = 0.55 [176]. The
concentration c is defined as

c(x, z) = cg(x)f(z), (8.4)
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where

g(x) = 1
2erf

(( W

2Dx

)(
1 + 2x

W

))
+ 1

2erf
(( W

2Dx

)(
1− 2x

W

))
(8.5)

f(z) = exp
(
− z2

D2
z

)
(8.6)

with the titanium stripe width W = 7µm and the error function erf. The resulting refractive
index profiles ne(x, z) and no(x, z) are shown in Figure 8.2. The titanium in-diffusion results
in a higher refractive index on the surface that is gradually decaying in the substrate. For more
details on LN and the diffusion process, we refer the reader to [177].

8.2 Finite element modal matching method
In place of a prohibitively expensive rigorous full 3-D simulation of the taper problem, a fast
and efficient modal matching method (MMM) can be used [63, 68, 77, 87, 166, 168–171]. The
smooth taper is divided in N piecewise elements with constant cross sections using a staircase
approximation, as illustrated in Figure 8.3 (a). The vectorial eigenmodes of each constant 2-D
cross section then propagate along the waveguide segments. The theory behind this hybrid nu-
merical/analytical mode matching method to simulate 3-D multiscale tapered waveguides is ex-
emplary displayed for a single transition between two waveguide segments (see Figure 8.3 (b)).
Analogously, this procedure can be applied to the entire structure to simulate the full 3-D taper.
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Figure 8.3: (a) Stepwise approximation of a full taper in N cascaded elements with constant
cross sections and lengths ∆yn, n ∈ [1,N ]. (b) Transition between two waveguides of different
widths wn and wn+1 and lengths ∆yn and ∆yn+1, respectively.

A single transition consists of two waveguides with different cross sections, as shown in Fig-
ure 8.3 (b), i.e., for the configuration under study, two silicon layers of width wn and wn+1 (but
constant height h) are considered. Before deriving the method, we make two assumptions: only
slightly varying neighboring cross sections are considered, i.e., wn+1 = wn+∆w with constant
∆w, such that reflections at the transition between the two waveguides can be neglected. Thus,
we assume only unidirectional propagation. Furthermore, the transfer of power to subsequent
segments through non-guided modes is excluded.

The incoming waveguide of width wn guides a set of modes with profiles Ψin,p(x, z) and prop-
agation constant ky,p. The overall incoming field is given by a superposition of all the incoming
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8. Modal matching method for 3-D simulations of waveguide tapers

modes with amplitudes ap propagating in positive y-direction

Ψin(x, y, z) =
∑
p

apΨin,p(x, z)e−iky,py. (8.7)

The outgoing waveguide of widthwn+1 supports a set of modes with mode profiles Ψout,q(x, z)
and unknown amplitude a′q. At the transition, after the incoming field propagates the distance
∆yn, the incoming and outgoing fields have to match1

Ψin(x,∆yn, z) =
∑
p

apΨin,p(x, z)e−iky,p∆yn =
∑
q

a′qΨout,q(x, z). (8.8)

Projections on each of the outgoing modes, using the mode product (Ψout,l, ·)x,z from
Eq. (2.43) for the l-th outgoing mode (with the roles of the coordinates adapted), and assuming
normalized and orthogonal modes, i.e., (Ψout,l,Ψout,q)x,z = δlq results in∑

p

ap(Ψout,l,Ψin,p)x,ze−iky,p∆yn =
∑
q

a′q(Ψout,l,Ψout,q)x,z = a′l. (8.9)

Thus,

a′q = (Ψout,q,Ψin)x,z. (8.10)

Assuming two incoming (with amplitudes a1, a2) and outgoing modes (with amplitudes a′1, a′2)
results in

a′1 = a1c11e−iky,1∆yn + a2c12e−iky,2∆yn

a′2 = a1c21e−iky,1∆yn + a2c22e−iky,2∆yn
(8.11)

with the coupling coefficients cqp that represent the coupling efficiency from mode p to mode q

cqp = (Ψout,q,Ψin,p)x,z, p, q ∈ {1, 2}. (8.12)

By applying this procedure to each element of the approximated taper leads to the field behavior
of the complete 3-D tapered structure. The outgoing transmittance is directly given by the
amplitude coefficients

T =
∑
q

|a′q|2. (8.13)

The length and shape of the taper can be controlled by the choice of varying segment lengths
∆yn, n ∈ [1,N ] for each individual element, while the width is constantly widening by ∆w
with each segment, as shown in Figure 8.3 (a).

The vectorial 2-D mode profiles Ψ are calculated using the finite element software COMSOL
Multiphysics [22] to discretize the different scales of the small Si-layer (3µm × 0.06µm) and
the large LN substrate (20µm × 15µm) precisely. Thus, we call this ansatz the finite element
modal matching method (FEMMM) [77]. By pre-calculating the power overlap products (8.12)
once for each combination of cross-sections, different taper geometries can be simulated within
milliseconds. Thus, this enables highly efficient optimization procedures.

1This holds strictly only for the transverse components; see footnote 1 on page 24 for a detailed explanation.
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8.3 Tapered silicon layer on Ti:LN waveguides
At first, we have a look at the guided mode profiles of the Ti:LN waveguide itself (without
additional silicon layer). The structure guides fundamental TE and TM modes with slightly
different effective refractive indices NTE0 = 2.2127 and NTM0 = 2.1398. Power normalized
field plots of the absolute electric field |E| are illustrated in Figure 8.4. The modes have their
maximum field amplitude some micrometers below the waveguide surface, therefore the overlap
with the nanowires is really small. Thus, the absorption is low and only a few photons are
detected.

x/μm

z/
μm

x/μm

z/
μm

TE TMNeff=2.2121 Neff=2.1398

|E| |E|
Figure 8.4: Ab-
solute electric
field value |E| (in
V/µm) of the TE
and TM mode pro-
files of the Ti:LN
waveguide. The
fields are power
normalized to unit
power.

Therefore, a silicon ridge waveguide of width w = 3.0µm with a higher refractive index than
the LN waveguide, is placed on top of the structure to pull the mode up. The composite config-
uration guides a TM mode and two TE modes. We assume excitation of the structure with the
fundamental TE mode of the Ti:LN waveguide. Thus, excitation of TM modes can be neglected
due to the different polarization character and we only concentrate on the guided TE modes of
the composited structure in the following. The two relevant TE mode profiles are illustrated
in Figure 8.5 (a, b). Note that we are not looking at the tapered structure yet, but at the sili-
con layer of full width w = 3.0µm. Again, the normalized absolute field value |E| is shown.
Figure 8.5 (a) shows the silicon mode that is mainly concentrated in the silicon layer and is
indicated as Si-mode. Additionally, Figure 8.5 (b) shows the guided “supermode”, indicated as
Si:LN-mode, with field amplitudes in both, the silicon and LN layers. The Si-mode has a higher
effective refractive index than the Si:LN-mode. Thus, it represents, in a sense, the fundamental
mode of the waveguide composition.

As for the specific shape of the taper, as a first trial, one could assume a constant silicon width
w = 3.0µm over the full length L. Then, the incoming guided TE0 mode of the Ti:LN waveg-
uide reaches the composite structure of full width. Due to this abrupt transition, only little
power is transmitted to the Si-mode, which is about 20% (75% is transmitted to the Si:LN-
mode and about 5% is lost to radiation). Thus, it is potentially advantageous to taper the silicon
layer to achieve a smooth transition between Ti:LN waveguide and the composed configuration
with additional silicon layer. Thereby, the mode power is slowly pulled up to the fundamental
Si-mode so that the field intensity is mainly concentrated in the silicon layer and the overlap
with the nanowires is larger. Hence, one expects a better efficiency of the envisioned detectors.

The power transmitted to each mode depends strongly on the length and shape of the taper.
To get an overview of the guided modes in the taper depending on the width w, Figure 8.5 (c)
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Figure 8.5: Relevant mode profiles |E| (in V/µm) of the Si-mode (a) and Si:LN-mode (b) at
full silicon width w = 3.0µm. (c) Effective refractive indicesNeff of the in-diffused waveguide
with silicon layer on top versus the waveguide width w. (d) Mode profile |E| (in V/µm) at an
intermediate width w = 2.0µm.

shows the effective refractive indices of the two modes. It can be noted that the Si:LN-mode
(blue curve) exists only beyond a certain width w ≈ 2.0µm. For smaller widths, only one
(relevant) mode is guided that belongs to the red curve. For w = 0µm the mode is equal to
the incoming TE0 mode of the Ti:LN waveguide in Figure 8.4. Looking at the field distribution
for increasing width w, this mode becomes more and more localized in the silicon layer up to
a mode that is fully guided in the silicon core – the Si-mode from Figure 8.5 (a). Thus, the
mode that belongs to the red curve exhibits a transition from the TE0 mode of the pure Ti:LN
waveguide to the Si-mode of the composed structure.

For our studies, we search for a high transmission to the Si-mode to guarantee a large overlap
with the position of the nanowires. But, the transition from the incoming Ti:LN mode to the
Si-mode is disturbed by the presence of the Si:LN-mode, as seen in Figure 8.5 (c). To overcome
this, the first idea is to choose a different final width of the silicon taper so that a second mode
does not exist. So we end the taper at a width of w = 2.0µm. Then, the power needs to fully
pass to that mode for sufficiently large taper lengths. But at a width of w ≈ 2.0µm, the field
is still strong in the region of the LN waveguide, as illustrated in Figure 8.5 (d), and is not yet
fully localized in the silicon region. Thus, the width needs to be increased further, taking into
account that coupling to the Si:LN-mode is possible.
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We search for taper geometries and lengths that lead to full transmission to the Si-mode even in
the presence of the Si:LN-mode. We denote the amplitude coefficients for the Si-mode as a1 and
that of the Si:LN-mode with a2 in the following. Therefore, we make use of the unidirectional
finite element modal matching method (cf. Section 8.2), dividing the taper in N elements with
constant cross sections using a staircase approximation. The modes for each of the N cross
sections are calculated using the FEM mode analysis in COMSOL Multiphysics [22].

8.3.1 Linear taper

We start with the analysis of a simple linear taper, as sketched in Figure 8.1 (b), meaning
the distance in propagation direction ∆yn is equal for each of the n ∈ [1,N ] elements.
To check the convergence of our approach and the amount of required elements, we di-
vide the taper in N ∈ {10, 30, 60, 100, 150, 300} elements, i.e., the width is increased by
∆w ∈ {0.3, 0.1, 0.05, 0.03, 0.02, 0.01}µm. For sufficiently large taper lengths, the power
should almost fully couple to the Si-mode and nearly nothing to the Si:LN-mode.
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Figure 8.6: Transmittance values |a1|2 (Si-mode) and |a2|2 (Si:LN-mode) for a linear taper as a
function of (a) the taper length L and for different number of elements N or (b) depending on
the number of elements N for fixed length L = 1500µm.

Figure 8.6 shows the power transmitted to both modes for linear tapers of different lengthsL and
different number of elements N . The outgoing power is pictured for different taper lengths L
and different number of elementsN in(a). As expected, for increasing taper lengths, the power
is almost fully coupled to the Si-mode. However, a certain number of elements is required,
otherwise the smooth taper is not precisely approximated and additional losses are predicted as
numerical effects. We can state that taper lengths larger than L = 1500µm are necessary to
achieve almost full power transmission to the Si-mode. Additionally, in Figure 8.6 (b) results
for varying number of elements and fixed taper length L = 1500µm are presented. The power
coupled to the Si-mode converges for increasing number of elements. Already for a quite low
number of elements N = 60, the results show sufficient accuracy. Note that for N = 300,
the power again decreases slightly because the higher the number of elements, the higher the
involved inaccuracies. Therefore, we choose N = 150, i.e., ∆w = 0.02µm, for the following
simulations.
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8.3.2 Coupling efficient taper

To decrease the length of the taper, we now investigate more complex structures [67]. To that
end, we consider the coupling efficiency of the two modes, which depends strongly on the
waveguide width wn of the approximated elements. Generally, strong coupling can be expected
when the effective refractive indices are relatively close to each other. Then, the modes are
almost degenerate and are able to interact with each other. Looking again at Figure 8.5 (a)
shows that the effective indices are the closest in the area around w = 2.3µm.

Hence, we should create a structure that is long in the area of strong coupling and short in the
area of low coupling. A sketch of this concept is shown in Figure 8.7. The taper is divided
in three parts: the first part (tip) of length L1 is quickly widening up to the width w1, the
longer middle part of length L′ is slowly increasing up to a width of w2, and the last part (tail)
increases up to the full width w = 3.0µm over a length L2. The complete taper has a full
length of L = L1 + L′ + L2. As the coupling is the strongest in the area around w = 2.3µm,
we fix w1 = 2.2µm and w2 = 2.5µm. Furthermore, we assume small but arbitrary lengths of
L1 = L2 = 10µm for the tip and the tail and vary only the length of the middle layer L′.

x

yz
L

L'L1 L2

w1 ww2

Figure 8.7: Adjusted taper structure
with rapidly increasing tip (of length
L1) and tail (of length L2). The slowly
varying middle part is of length L′ and
starts from a width w1 to a width w2.
The waveguide exhibits a total length
L = L1 +L′+L2 with a final width of
w = 3.0µm.

For such a tip-and-tail taper, the power |a1|2 transmitted to the Si-mode is shown in Figure 8.8
as a function of the overall length, i.e., for varying length L′. We see that 95.5% power trans-
mission to the Si-mode is already achieved for a taper length of L = 322µm, which is much
smaller compared to the linear taper (around 1000µm is necessary). Furthermore, we observe
an oscillating behavior for increasing length L, which is due to the interference of the two
guided modes in the middle part.

|a
1|
2

L/μm

322μm 723μm

L1=10μm
L2=10μm

ΔL

Figure 8.8: Transmission to the Si-
mode |a1|2 versus the total taper length
L = L1 + L′ + L2 for vary-
ing middle part L′ and fixed lengths
L1 = L2 = 10µm.
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The distance between two peaks is approximately given by

∆L ≈ λ0
2|Neff,1 −Neff,2|

. (8.14)

For our case, assuming effective indices Neff,1 = 2.21309 (Si-mode) and Neff,2 = 2.21112
(Si:LN-mode) that belong to a width of w = 2.3µm, results in ∆L ≈ 393µm. Note that the
width is not constant over the full length of the middle layer. Therefore, this value does not
fit precisely, but as an estimation this result fits sufficiently well. Thus, with such a split taper
structure, much higher transmissions can be achieved for smaller total taper lengths compared
to the linear taper.

8.4 Optimization
In the last step, we want to increase the transmittance even further and also confirm the three-
part taper shape. To that end, the structure is now optimized using particle swarm optimization
(PSO) implemented in MATLAB [174]. This solver was chosen as it was the most efficient and
fastest optimizer available in MATLAB’s “Global Optimization Toolbox” [147] for the taper
optimization. After applying PSO to our problem, we additionally ran a local “interior-point”
solver [148], directly implemented in MATLAB, to obtain an even more accurate solution,
starting from the relatively rough solution found by the PSO.

Again, the goal is to optimize an objective function (cf. Section 7.5.1). More precisely, we
are searching for high transmittance values to the Si-mode for fixed taper length L = Lf .
Therefore, we define our cost function or objective function, as

min
z
f(z) = min

z

(
α|Lf − L(z)| − β|a1(z)|2

)
, (8.15)

where z = (∆z1, ...,∆zN )T comprises allN element lengths ∆zn, n ∈ [1,N ] of the individual
cross sections and a1(z) identifies the transmission coefficient to the Si-mode. Thus, |a1(z)|2
represents the transmittance, and

L(∆z) =
N∑
n=1

∆zn (8.16)

is the length of the optimized taper. With α and β, we insert weighing constants, which we fix
to α = 1/Lf and β = 1 to emphasize the transmittance. The optimal value of this function is
given by f(zopt) = −1 with L = Lf and |a1|2 = 1.

We start by explaining the basic concept of PSO in Section 8.4.1 before showing the optimized
results in Section 8.4.2.

8.4.1 Particle swarm optimization

The particle swarm optimization (PSO) algorithm was introduced by Eberhart and Kennedy in
1995 [178]. It is an iterative population based search algorithm inspired by the social behavior
of insects for the optimization of nonlinear functions. The concept is quite easy and briefly
explained in the following [179–181].
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The method is initialized with a population – a swarm – of arbitrary size, where each j-th entity
– a particle – exhibits a random position zj ∈ Ω, in the search space Ω, with velocity vj . The
position corresponds to a certain objective function value f(zj) and the velocity determines
the movement of the particle. During iteration, each particle keeps track of its coordinates
associated with the current best position.

A single particle is useless, but a swarm of particles that know and interact with each other is
powerful. The so far best known position of the particle is given by pj,best and the best position
of the neighboring particles by pg,best. In each step, the velocity is updated depending on the
best known position pj,best and current velocity vj of the particle itself, and the best position
pg,best of the neighboring particles via

vj ← wvj + c1γ1(pj,best − zj) + c2γ2(pg,best − zj)
zj ← zj + vj

(8.17)

with positive constants c1, c2 (confidence in its best performance and the best performance
of the swarm), γ1, γ2 ∈ (0, 1) two random variables and w is the initial weight (confidence
in its own movement) [179–181]. Thus, the new velocity then determines the movement of
the particle and its new position, corresponding to the new objective function value. After
each iteration, it is checked whether the new function value pj = f(zj) at position zj has
improved compared to the best positions pj,best and pg,best. If the position of the particle has
improved, the best position is updated. The method is repeated several times until either a
certain number of iterations or a minimum error is reached. The following gives an overview
of the implementation:

1. Initialization of the swarm with random positions zj and velocity vj in the multidimen-
sional search space.

2. Evaluation of the particle’s objective function value pj = f(zj) and comparison to its
personal best pj,best. If the current value is better, update pj,best = pj .

3. Identification of the personal best in each particle’s neighborhood and assign it to pg,best.

4. Change the velocity and position of the particle accordingly to Eq. (8.17).

5. Go back to step 2 until convergence.

8.4.2 Results

When using MATLAB’s implementation of the particle swarm algorithm for optimization, we
can define lower lb = 0.05µm (the value is chosen slightly higher than zero to reflect on the
resolution of the fabrication process) and upper ub = Lf bounds for each of the N element
lengths. Furthermore, we assume a population size of 100 elements and randomize the start
points of the PSO by choosing an initial swarm matrix

Z0 = lb + A(ub − lb), (8.18)

where A is a matrix with randomly created elements aij ∈ (0, 1). Additionally, we add the
modified, coupling efficient taper structure from Section 8.3.2 as an initial point as it gave
already good results.
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Figure 8.9: Optimized shape of
the taper using PSO for a desired
taper length Lf = 300µm.

Lf 200µm 300µm 400µm
PSO 0.9486 0.9704 0.9709

linear taper 0.6669 0.6909 0.7213

Table 8.1: Comparison of the linear taper and optimized taper using PSO for different taper
lengths L = Lf . Displayed is the transmittance value |a1|2 to the Si-mode.

The optimized taper structure for a fixed length of Lf = 300µm is shown in Figure 8.9. The
solver converged after around 150 iterations with a computation time of about 5 s (a single func-
tion call requires approximately 5 ms). As expected, a separation in three parts is necessary,
where the middle part is the longest with widths around 2.3µm. The corresponding transmit-
tance value |a1|2 is determined to be 97%. Additionally, further optimized transmittance results
are displayed in Table 8.1 for different taper lengths Lf . Here, the values are further compared
to the corresponding transmission value of a linear taper of identical length L = Lf . The op-
timized structures achieve significantly higher transmission values for identical taper lengths.
Even if not shown, the shapes of the optimized taper for lengths Lf = 200µm or Lf = 400µm
are almost identical to Figure 8.9, scaled to the respective lengths. The results confirm our sug-
gestions that the coupling is the strongest in the area around w = 2.3µm and the taper needs
to be divided into three parts to yield high transmission values to the Si-mode for comparably
small taper lengths. Furthermore, we can state that the FEMMM offers a very fast and effi-
cient method to optimize the shape functions of multiscale 3-D tapers within seconds (note that
this does not include the pre-calculation of the mode profiles and overlap products, which need
some hours of calculation time depending on the number of approximation elements N ).
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Chapter 9

Nonlinear interaction in LNOI
waveguides1

Lithium niobate on insulators (LNOI) combine the large second-order nonlinear susceptibil-
ity of lithium niobate (LN) and the advantages of silicon photonics on the same platform, and
are used for a wide range of nonlinear interactions relevant for integrated quantum photonic
circuits [70, 183]. We are particularly interested in the process of parametric down-conversion
(PDC) for the generation of entangled photon pairs [56,57,69]. Especially for quantum telecom-
munication, sources of entangled photons that exhibit different properties are required as they
reduce mode chromatic dispersion, propagate long distances [184] and improve the quantum
light-matter interaction [182, 185].

The PDC process is an important effect in quantum optics because of its excellent properties
and wide applicational use, e.g., in photon engineering [186], quantum cryptography [187],
photon interference [188] or, as already mentioned, the entanglement between signal and idler
photons [189, 190].

In PDC, a pump pulse at high frequency interacts with a nonlinear optical crystal and generates
signal and idler photons of lower frequency. For this to happen, the fields must meet a certain
phase-matching condition and have a large field overlap [191]. Generally, signal and idler
photons have orthogonal polarizations and different group velocities (they are not degenerate).
Thus, they neither propagate together nor do they fulfill the phase-matching. While in bulk
systems this delay can be easily compensated, it requires more complex structures in integrated
photonics to generate degenerate signal and idler photons [73,74]. However, we do not want to
go into the details of quantum optics, but show how the process can be realized using optical
waveguides supporting (quasi) degenerate modes. For more details on nonlinear optics, we
refer the reader to [50, 191, 192].

In this chapter, we present the nonlinear interaction of modes in LNOI rib waveguides with
anisotropic LN core layer on a silicon dioxide substrate. We investigate these waveguides in Z-
cut and X-cut configurations and demonstrate how the geometry of the rib needs to be adjusted

1Sections 9.1–9.2 are based on the publication [182] of the candidate.
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to achieve degenerate signal and idler modes that propagate together, i.e., fulfill the phase-
matching condition for nonlinear interaction.

In Section 9.1, we briefly review certain aspects of the theory of nonlinear optics, focusing
especially on the process of parametric down-conversion [50]. Then, we present different sce-
narios for the nonlinear interaction in rib waveguide structures in Sections 9.2–9.4. We show
that quasi-phase-matched as well as phase-matched structures exhibit a strong interaction of
the involved fields. The last Section 9.4 contains a proposal on a concept, where the oblique
excitation scheme, as discussed in Chapters 4–6, can be exploited to realize phase-matching for
enhanced nonlinear interaction of guided waves.

9.1 Classical nonlinear optics
So far, the response of an optical medium to an external electric field was described by the linear
equation [50]

P̃ = ε0χ
(1)Ẽ, (9.1)

where P̃ is the dielectric polarization and χ(1) is the linear susceptibility of the material. The
constitutive equation for the electric field and electric displacement is then simply given by

D̃ = ε0Ẽ + P̃ = ε0εrẼ (9.2)

with εr = 1 + χ(1) the relative permittivity.

When substantially strong electric fields are present, the linear approximation is no longer suf-
ficient and higher order contributions become important as well. The polarization needs to be
expressed through a series expansion P̃ = P̃(1) + P̃(NL) with a linear part P̃(1) = ε0χ

(1)Ẽ
and an additional non-linear part P̃(NL) [50]. Accordingly, the electric material equation can be
written as

D̃ = ε0Ẽ + P̃ = ε0Ẽ + ε0
∑
j

χ(j)Ẽj = ε0εrẼ + P̃(NL) (9.3)

with the nonlinear polarization term

P̃(NL) = ε0
∑
j≥2

χ(j)Ẽj = P̃(2) + P̃(3) + ..., (9.4)

the j-th order nonlinear susceptibilities χ(j) and polarizations P̃(j).

We again consider fields (Ẽ, H̃)T in the frequency domain with angular frequency ω that solve
the nonlinear Maxwell equations in the frequency domain [50]

∇× Ẽ = −iωµ0H̃ and ∇× H̃ = iωε0εrẼ + iωP̃(NL). (9.5)

They can be transformed to a nonlinear wave equation for the electric field in regions with
constant refractive index [50]

∆Ẽ + k2
0εrẼ = − ω2

ε0c2
0
P̃NL. (9.6)
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We are particularly interested in second-order nonlinear optical interactions in media, where
the second-order nonlinear susceptibility χ(2) is non-zero. The presence of this term allows the
creation of electric fields at different frequencies. Considering two fields Ẽ1eiω1t and Ẽ2eiω2t

at different frequencies ω1 and ω2, respectively, results in various frequency components of the
second-order nonlinear polarization

P̃(2)(2ω1) = ε0χ
(2)Ẽ2

1, (SHG)
P̃(2)(2ω2) = ε0χ

(2)Ẽ2
2, (SHG)

P̃(2)(ω1 + ω2) = 2ε0χ
(2)Ẽ1Ẽ2, (SFG)

P̃(2)(ω1 − ω2) = 2ε0χ
(2)Ẽ1Ẽ∗2, (DFG)

P̃(2)(0) = 2ε0χ
(2)(Ẽ1Ẽ∗1 + Ẽ2Ẽ∗2). (OR)

(9.7)

Here, we omitted the space dependence (x, y, z) for clarity. Three different processes can
generate fields at a new frequency ω3: second-harmonic generation (SHG) at ω3 = 2ω (where
ω = ω1 or ω = ω2), difference-frequency generation (DFG) at ω3 = ω1−ω2 and sum-frequency
generation (SFG) at ω3 = ω1 + ω2. The last one is optical rectification (OR).

Typically, only one process is present at a time since a specific phase-matching condition (see
Section 9.1.2) needs to be satisfied. But, this is usually just fulfilled for one of the frequencies
ω3. In an analogous manner, the third order nonlinear polarization term leads to processes at
3ω, called third harmonic generation [191].

9.1.1 Nonlinear coupling in waveguides

For a specific waveguide structure with constant cross section (in the x-y-plane) along the prop-
agation direction z, we can write the electric and magnetic field as a complete set of forward
and backward propagating waves with propagation constants kz,q and amplitudes aq(z), varying
with the propagation distance z at frequency ω,(

Ẽ
H̃

)
(x, y, z) =

∑
q

aq(z)√
Nq

(
Eq

Hq

)
(x, y)e∓ikz,qz. (9.8)

The couple (Eq,Hq)T identifies the mode profiles in the transverse plane propagating in ±z-
direction. We introduce a power normalization coefficient

Nq = 1
4

∫
A

(E∗q ×Hq + Eq ×H∗q) · ezdA. (9.9)

Here, we use the value Nq instead of Pq, as introduced in Eq. (2.42), to avoid confusion with
the polarization P̂.

This mode expansion ansatz is the fundamental formalism of the coupled mode theory [192,
193]. The evaluation of amplitudes aq(z) is then governed by the coupled amplitude equations.
They are derived by considering the Lorentz reciprocity theorem (cf. Eq. (2.40))

∂z

∫
A

F · ezdA =
∫
A
∇ · FdA (9.10)
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with F = Ẽ∗q×H̃+ Ẽ×H̃∗q . By inserting our ansatz from Eq. (9.8) and the nonlinear Maxwell
equations (9.5) in the reciprocity theorem and applying the mode orthogonality relation from
Eq. (2.43), the amplitudes change according to

∂zaq(z) = − iω
4
√
Nq

e±ikz,qz
∫

E∗q(x, y) · P̃(NL)(x, y, z)dA. (9.11)

9.1.2 Parametric down-conversion
In addition to the processes mentioned above, there are also processes that function in a com-
plete reverse manner. We are especially interested in the process of parametric down-conversion
(PDC), i.e., a field E3 at frequency ω3 can split into two new fields E1 and E2 at lower frequen-
cies ω1 and ω2, respectively, with ω3 = ω1 + ω2 [191].

Without going too much into details, the coupled amplitude equations (9.11) for the PDC pro-
cess are derived in the following. Here, three modes at different frequencies are interacting: ω3
belongs to the pump mode and ω1 and ω2 to the signal and idler modes. Considering only these
three relevant forward propagating modes, we can set q ∈ {1, 2, 3} in Eq. (9.11). Hence, for
each mode the amplitude is described by the differential equation (9.11) with the corresponding
frequency. The nonlinear polarization density components are [50]

P̃(NL)
1 (ω1 = ω3 − ω2) = 2a∗2a3ε0√

N2N3
χ(2)E∗2E3e−i(kz,3−kz,2)z,

P̃(NL)
2 (ω2 = ω3 − ω1) = 2a∗1a3ε0√

N1N3
χ(2)E∗1E3e−i(kz,3−kz,1)z,

P̃(NL)
3 (ω3 = ω1 + ω2) = 2a1a2ε0√

N1N2
χ(2)E1E2e−i(kz,1+kz,2)z,

(9.12)

which results in

∂za1(z) = − iω1ε0

2
√
N1N2N3

a∗2a3e−i∆kz
∫ ∑

j,m,l=x,y,z
χ

(2)
jmlE

∗
j,1E

∗
m,2El,3dA,

∂za2(z) = − iω2ε0

2
√
N2N1N3

a∗1a3e−i∆kz
∫ ∑

j,m,l=x,y,z
χ

(2)
jmlE

∗
j,2E

∗
m,1El,3dA,

∂za3(z) = − iω3ε0

2
√
N3N1N2

a1a2ei∆kz
∫ ∑

j,m,l=x,y,z
χ

(2)
jmlE

∗
j,3Em,1El,2dA

(9.13)

with ∆k = kz,3 − kz,1 − kz,2 as the phase mismatch. Note, that the frequency dependence of
χ(2) is directly neglected by applying Kleinman’s symmetry condition (see Section 9.1.3) for
the processes considered in this work [50].

For convenience, we define the complex values κ1, κ2 and κ3 via

κ1 = ω1ε0

2
√
N1N2N3

∫ ∑
j,m,l=x,y,z

χ
(2)
jmlE

∗
j,1E

∗
m,2El,3dA,

κ2 = ω2ε0

2
√
N2N1N3

∫ ∑
j,m,l=x,y,z

χ
(2)
jmlE

∗
j,2E

∗
m,1El,3dA,

κ3 = ω3ε0

2
√
N3N2N1

∫ ∑
j,m,l=x,y,z

χ
(2)
jmlE

∗
j,3Em,1El,2dA.

(9.14)
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The coupled amplitude equations are then simplified as

∂za1(z) = −iκ1a
∗
2a3e−i∆kz,

∂za2(z) = −iκ2a
∗
1a3e−i∆kz,

∂za3(z) = −iκ3a1a2ei∆kz.

(9.15)

For the waveguide structure considered in this work, we can assume a no pump depletion ap-
proximation, i.e., a3 is constant. Hence, with κ′1 = κ1a3 and κ′2 = κ2a3, we can define the
differential equations as

∂za1(z) = −iκ′1a∗2e−i∆kz,

∂za2(z) = −iκ′2a∗1e−i∆kz.
(9.16)

Generally, when considering a non phase-matched structure ∆k 6= 0, the solution to these
differential equations oscillates with the propagation distance z and the magnitude is mainly
determined by the values of κ1 and κ2. To overcome this oscillating behavior, a quasi-phase-
matched periodically poled structure can be constructed with poling period Λ = 2π

∆k [50].

9.1.3 Properties of the nonlinear susceptibility

Now, we briefly give some formal properties of the χ(2)-tensor. The second-order nonlinear
susceptibility can be drastically simplified when applying some symmetry conditions because
not all elements are independent from each other [50]. Generally, χ(2) is a 3-rank tensor, but
when applying Kleinman’s symmetry conditions (considering lossless media)

χ
(2)
jml = χ

(2)
ljm = χ

(2)
mlj = χ

(2)
lmj = χ

(2)
mjl = χ

(2)
jlm, (9.17)

which predicts full permutation symmetry of the tensor. This implies independence of the
frequency and a contracted notation djn = 1

2χ
(2)
jml can be defined. The indices are related to the

rules in the following table.

ml 11 22 33 23,32 31,13 12,21
n 1 2 3 4 5 6

Then, the d-coefficient is given by the matrix

d =

d11 d12 d13 d14 d15 d16
d16 d22 d23 d24 d14 d12
d15 d24 d33 d23 d13 d14

 (9.18)

with elements djn. In this chapter, we focus on LN materials that exhibit a specific trigonal
crystal structure. This further restricts the form of the d-matrix to [50]

d =

 0 0 0 0 d31 −d22
−d22 d22 0 d31 0 0
d31 d31 d33 0 0 0

 (9.19)
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with the values d33 ≈ 25 pm/V, d31 ≈ 4.6 pm/V and d22 ≈ 2.2 pm/V adopted from [194, 195].
Then, the nonlinear second-order polarization density from Eq. (9.12) can be written as

P̃(NL)
1 = 4ε0a

∗
2a3√

N2N3
d[E∗2,E3]e−i(kz,3−kz,2)z,

P̃(NL)
2 = 4ε0a

∗
1a3√

N1N3
d[E∗1,E3]e−i(kz,3−kz,1)z,

P̃(NL)
3 = 4ε0a1a2√

N1N2
d[E1,E2]e−i(kz,1+kz,2)z,

(9.20)

with

[Ei,Ej ] =



Ei,xEj,x
Ei,yEj,y
Ei,zEj,z

Ei,yEj,z + Ei,zEj,y
Ei,xEj,z + Ei,zEj,x
Ei,xEj,y + Ei,yEj,x

 , i, j ∈ {1, 2, 3}, (9.21)

which simplifies (9.14) to

κ1 = ω1ε0√
N1N2N3

∫ ∑
j=x,y,z

E∗j,1

6∑
n=1

djn[E∗2,E3]ndA,

κ2 = ω2ε0√
N2N1N3

∫ ∑
j=x,y,z

E∗j,2

6∑
n=1

djn[E∗1,E3]ndA,

κ3 = ω3ε0√
N3N1N2

∫ ∑
j=x,y,z

E∗j,3

6∑
n=1

djn[E1,E2]ndA.

(9.22)

9.2 Quasi-phase-matched structures
A general 2-D sketch of the LNOI rib waveguide is shown in Figure 9.1 with either X-cut (y is
propagation direction) or Z-cut (x is propagation direction) coordinate system. The structure is
assumed to have a constant cross section along the propagation direction and the optical axis of
the crystal is always along the z-direction. The width of the waveguide is given by w, the height
by τ and the etch depth by h. Additionally, the angle θ is introduced to include manufacturing
tolerances and is fixed to 45◦ initially. We are searching for degenerate signal and idler modes
(ω1 = ω2) at wavelength λs,i = 1.55µm and pump modes (ω3 = ω1 + ω2) at λp = 0.775µm.

The corresponding refractive index values are displayed in Table 9.1 for both relevant wave-
lengths. Respective wavelength scans are shown in Figure 9.2. The refractive index values for
silicon dioxide are adopted from [196]. For lithium niobate, measurements using spectroscopic
ellipsometry are fitted using a Tauc-Lorentz oscillator model [197], as introduced in [182].
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nLN(ne,no)

nSiO2

w

h τ
θ
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y z

x
y

z

Z-cut

X-cut

Figure 9.1: 2-D sketch of the LNOI rib waveguide of width w, height τ , etch depth h and angle
θ. Different coordinate systems are applied for either X- or Z-cut structures [182].

SiO2 LN
nSiO2 ne no

λp = 0.775µm 1.4589 2.1565 2.2242
λs,i = 1.55µm 1.4483 2.122 2.1837

Table 9.1: Refractive index values for signal/idler wavelength λs,i = 1.55µm and pump wave-
length λp = 0.775µm for the structure in Figure 9.1 [182].
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Figure 9.2: Wavelength dependence of the refractive index for (a) lithium niobate (ordinary
no (blue line) and extraordinary ne (red line) refractive index) and (b) silicon. Corresponding
signal, idler λs,i and pump λp wavelengths from Table 9.1 are marked by the vertical dashed
lines [182].

The nonlinear interaction of the optical fields is described by the coupled amplitude equations
(Eq. (9.15); depending on the orientation of the crystal, the propagation direction has to be
adapted properly, cf. Figure 9.1) and more specifically by the magnitude of the κ-coefficients
(see Eq. (9.22)) and the phase-matching ∆k or the poling period Λ [50]. When considering
the κ-coefficients, the relevant area for integration is limited to the LN layer, which only has a
non-zero second-order susceptibility. Furthermore, we can identify the equality

κ1 = κ2 = 1
2κ
∗
3 =: κ (9.23)
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Figure 9.3: X-cut structure with geometry parameters w = 2000 nm, h = 193.1 nm and
τ = 300 nm. Field plots of the absolute electric field |E| (in V/ µm) for (a) signal (S) and
idler (I) modes and (b) possible pump modes (P1)-(P4). (c) The effective refractive index Neff
versus the wavelength λ0 for signal and idler modes (left plot) and possible pump modes (right
plot). All modes are power normalized, i.e.,

∫
SydA = 1 W [182].

because of the symmetry of the χ(2)-tensor [50]. Therefore, we will only indicate the value for
κ in the following. When considering degenerate signal and idler modes, the phase-matching
∆k = 0 is never fulfilled for the structures considered in this section. Hence, a quasi-phase-
matching, determined by the poling period Λ, is needed to suppress an oscillating behavior of
the amplitudes.

To calculate the guided modes (degenerate signal/idler and pump modes), we made use of the
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Figure 9.4: Z-cut structure with geometry parameters w = 2000 nm, h = 300 nm and
τ = 450 nm. Field plots of the absolute electric field |E| (in V/ µm) for (a) signal (S) and
idler (I) modes and (b) possible pump modes (P1)-(P4). (c) The effective refractive index Neff
versus the wavelength λ0 for signal and idler modes (left plot) and possible pump modes (right
plot). All modes are power normalized, i.e.,

∫
SxdA = 1 W [182].

finite element mode analysis solver in COMSOL Multiphysics [22]. For simplicity, searching
for suitable modes is carried out in reverse to the PDC process itself: we first look for degenerate
signal and idler modes at λs,i = 1.55µm by varying the geometry parameters w, h and τ of
the waveguide. The resulting geometry then determines the corresponding variety of possible
pump modes at λp = 0.775µm.
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The calculated |κ|-coefficients for different pump modes (TE0-TE2 and TM0) are displayed in
Table 9.2 for X-cut and Z-Cut, respectively. In both systems, the appropriate degenerate signal
and idler modes are the TM0 and TE2 mode. Field plots of the absolute electric field |E| are
shown in Figure 9.3 (a, b) for the Z-cut structure and in Figure 9.4 (a, b) for the X-cut structure
with corresponding wavelength scans of the effective refractive index in (c). We see that the sig-
nal and idler modes are degenerate at the desired wavelength λs,i = 1.55µm. Additionally, the
poling period Λ is shown in the table. The greatest value of |κ| is achieved by the Z-cut structure
for the TE2 pump mode with an absolute value of 220.40 W−1/2 m−1. To get an impression of
the magnitude of this result, standard bulk LN waveguides exhibit coupling coefficients that
are approximately three times smaller (|κ| ≈ 70 W−1/2 m−1) than our best value [192]. This
can be explained by the fact that the mode matching is higher when localized fields in the rib
waveguide are considered and losses are not taken into account. Thus, our quasi-phase-matched
structure can be used as a flexible source of entangled photons that propagate together, but have
different polarizations, spatial mode profiles and frequency distributions [182].

X-cut Z-cut
pump TE0 TE1 TE2 TM0 TE0 TE1 TE2 TM0

|κ|[W−1/2 m−1] 11.54 34.87 7.44 40.15 65.91 9.50 220.40 1.86
Λ[µm] 1.65 1.73 1.86 1.80 1.75 1.84 2.01 2.27

Table 9.2: Calculated coefficients |κ| and periods Λ for the X-cut and Z-cut structure for differ-
ent pump modes. Signal and idler modes are assumed to be the TM0 and TE2 mode, respec-
tively. Corresponding field plots are shown in Figure 9.3 (a, b) and Figure 9.4 (a, b).

9.3 Phase-matched structures
The structures considered in Section 9.2 do not fulfill the phase-matching condition

∆k = kp − ks − ki or Np −
1
2(Ns −Ni) = 0, (9.24)

because the effective indices of the considered pump modesNp are always higher than the mean
value of the mode index of the signal Ns and idler Ni mode. To fulfill the phase-matching, it
may be advantageous to consider even higher order pump modes (with lower mode index)
and low order/fundamental signal and idler modes (with higher mode indices). Therefore, we
calculated the effective mode indices of a variety of guided signal and idler and corresponding
pump modes by again varying the geometry parameters w, h and τ . Furthermore, we chose
different edge angles θ ∈ {45, 90}◦.

We could find intersection points that satisfy the phase-matching condition for the X-cut and Z-
cut structure. Here, it turned out that the fundamental TE0,0 and TM0,0 modes (we now use two
indices to characterize the modes, as we also consider modes with horizontal modal lines) are
the best choice as signal and idler modes since they have the largest effective refractive indices.
Hence, the mean value is also high. The choice of the pump mode varies (TM1,1, TE1,1 or TE2,0)
depending on the considered structure (X-cut or Z-cut and θ = 45◦ or θ = 90◦). The field
profiles of the derived modes are shown in Figure 9.5 (X-cut for (a) θ = 45◦ and (b) θ = 90◦)
and in Figure 9.6 (Z-cut for (a) θ = 45◦ and (b) θ = 90◦). The corresponding values for the
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Figure 9.5: Mode profiles of the absolute electric field |E| (in V/ µm) for signal (S), idler (I)
and pump (P) mode for the phase-matched X-cut structure. (a) θ = 45◦, (b) θ = 90◦. All modes
are power normalized, i.e.,

∫
SydA = 1 W.
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Figure 9.6: Mode profiles of the absolute electric field |E| (in V/ µm) for signal (S), idler (I)
and pump (P) mode for the phase-matched Z-cut structure. (a) θ = 45◦, (b) θ = 90◦. All modes
are power normalized, i.e.,

∫
SxdA = 1 W.

κ-coefficient are displayed in Table 9.3. The highest value is achieved for the Z-cut structure
with the TE2,0 pump mode, angle θ = 90◦ and a magnitude of |κ| = 58.51 W−1/2 m−1, which
is comparable to bulk LN [192]. The phase-matching is now directly fulfilled. Thus, a periodic
poling is not required anymore, but signal and idler photons do not propagate together because
of different effective refractive indices.
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X-cut Z-cut
45◦ 90◦ 45◦ 90◦

pump TM1,1 TM1,1 TE1,1 TE2,0
|κ|[W−1/2 m−1] 1.58 2.80 21.99 58.51

Table 9.3: Calculated coefficients |κ| for the X-cut and Z-cut structure (θ = 45◦ and θ = 90◦)
for suitable phase-matched pump modes. Signal and idler modes are assumed to be the TM0,0
and TE0,0 mode, respectively. Corresponding field plots are shown in Figure 9.5 and Figure 9.6.

9.4 Oblique excitation pumpscheme
Another possibility to fulfill the phase-matching is by considering a different type of excitation.
Before, the pump mode was fully guided by the rib waveguide. Now, we want to come back to
our approach of semi-guided waves in slab waveguide structures, as introduced in Section 2.3.
Instead of defining the pump mode as a guided mode of the rib waveguide, it is possible to excite
the structure from the left with an incoming semi-guided wave at oblique angles of incidence.
The oblique wave is then propagating and interfering between the rib edges and, at specific
incidence angles, excites a mode in the rib waveguide – a leaky pump mode. Additionally,
trenches are etched next to the rib to act as reflectors and amplify the field amplitude in the
central part further. Signal and idler remain guided modes of the rib waveguide.

A schematic sketch is shown in Figure 9.7 of the cross section (a) and the top view (b). Identical
to Figure 9.1, the geometry parameters are again given byw, τ , h and θ = 90◦. The trenches are
etched at a distance γ next to the rib and have a rather arbitrary width of s = 50 nm (the value
can also be adapted to wider trenches). The incoming wave is the fundamental TE mode guided
at oblique angles of propagation ϕ. Additionally, corresponding field pattern and propagation
directions for signal, idler and pump modes are illustrated in the sketch.

x

y z

x

y

z

s

S,I

P
φ

s

(a) (b)

γ γ

Figure 9.7: Oblique excitation of the LNOI rib waveguide structure for the X-cut configuration.
(a) Cross section view; parameters are identical to Figure 9.1 with additional trenches of width
s and distance γ next to the rib waveguide. (b) Top view; oblique excitation at angle ϕ. Signal
(S), idler (I) and pump (P) mode profiles are illustrated.

Before simulating the structure, some theoretical considerations are necessary. The pump mode
is propagating in the y-z-plane (X-cut) at oblique angles of incidence ϕ with – in general –
non-zero wavenumbers ky and kz , depending on ϕ. To take into account the anisotropy of the
LN slab of thickness τ − h, for the present approximate reasoning, we distinguish two cases:
if the incoming wave is fully propagating in y-direction, the relevant refractive index seen by
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the TE wave (with electric field component Ez) is given by the ordinary value ne. Otherwise,
if the wave is propagating only in z-direction (with non-zero electric field component Ey), the
structure sees the extraordinary refractive index no. Therefore, we identify with No and Ne the
effective refractive indices for the two slab waveguide configurations with either no or ne core
index. Thus, by considering oblique excitation, both values have influence on the wavenumbers
given by ky = k0Neffsinϕ and kz = k0Neffcosϕ. Here, k0 = 2π

λp
corresponds to the pump

wavelength and the oblique effective refractive index Neff is approximated as

Neff ≈
√
N2
e sin2ϕ+N2

o cos2ϕ. (9.25)

For efficient resonant excitation of the leaky pump wave, the wavenumber of the incoming
slab mode in y-direction ky has to match the real part of the wavenumber kp = k0Np of the
corresponding pump mode. Thus,

k0Re{Np} = k0Neffsinϕ. (9.26)

Now also considering the phase-matching ∆k = kp − ks − ki = 0 with λs = λi = 2λp yields
the equation

2sinϕ
√
N2
e sin2ϕ+N2

o cos2ϕ−Ns −Ni = 0, (9.27)

which determines the incidence angle ϕ for given values of Ns and Ni. Note that the former
considerations concern only the real parts of kp.

As an advantage of this excitation scheme, the angle of incidence can be adjusted to fulfill
the phase-matching condition for quite arbitrary geometry. Rather randomly, we fix the width
w = 2000 nm, the height τ = 700 nm and the etch depth h = 450 nm so that the TM0,0 mode
and the TE2,0 mode, serving as the signal and idler modes, are guided in the structure. The
precise fundamental ordinary No and extraordinary Ne effective refractive index values of the
adjoining slab waveguide modes of thickness τ − h = 0.25µm are displayed in Table 2.1. We
excite the structure with the fundamental TE slab mode.

The trench distance γ was also chosen quite randomly, at first. The mode indices of the signal
and idler fields determine the incidence angle ϕ (c.f. Eq. (9.27)) at which the structure is excited
and that determines the real part of the corresponding pump mode (see Eq. (9.26)). For fixed
incidence angle, the distance γ of the trenches is then arranged such that full transmission is
achieved. This leads to strong field intensities in the central rib region.

The resulting modes for the configuration that fulfill the phase-matching condition are shown
in Figure 9.8. The corresponding incidence angle is ϕ = 70.24◦ and the trench distance was
determined as γ = 641.4 nm, which leads to a transmittance of T > 0.99. As mentioned
before, the corresponding pump mode is a leaky mode with complex wavenumber or effective
refractive index.

We are aware that this section considers a completely different excitation scheme. Thus, the
κ-coefficients are not directly comparable to those calculated in Sections 9.2–9.3. Furthermore,
normalization of the leaky pump mode is difficult, as the field profile is not limited to a finite
domain. To that end, we normalize the leaky pump mode to the size of the computational
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domain, which, of course, is variable and thus the normalization coefficient N3 is not uniquely
defined. However, the amplitude of the leaky mode is only varying slightly when changing the
computational domain (increasing the computational domain in z-direction by 1µm decreases
the field amplitude of the “normalized” mode in the range of 0.005). This is due to the presence
of the trenches that localize the main field amplitude in the region of the rib waveguide. Thus,
we can compare the coupling coefficients up to a certain degree.
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z/μm z/μm z/μm
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Figure 9.8: Field plots of the absolute electric field value |E| (in V/ µm) for signal (S), idler (I)
and leaky pump (P) modes for the X-cut configuration with oblique excitation. All modes are
power normalized, i.e.,

∫
SydA = 1 W.

Considering the “normalized” leaky pump mode leads to a magnitude of
|κ| = 9.29 W−1/2 m−1. Alternatively, since we actually excite the structure with a port
from the left that has an input power of 1 W/m, the value of the pump amplitude is fixed to
a3 ≈ 1.76× 104 W1/2. Thus, we can identify |κ′| = |κa3| ≈ 1.64 × 105 m−1 (cf. Eq. (9.16)).
The value for |κ| is (up to some degree) comparable to the previous results in Sections 9.2–9.3
and thus does not lead to stronger interaction of the fields.

It should be noted that we chose a rather arbitrary structure for our calculations and only con-
sidered the X-cut configuration, so there may be structures with even better performance. Fur-
thermore, the transmission values are very sensitive to changes in the distance of the trenches.
For the fabrication of such a structure, further investigations are necessary. For the purpose of
this work, the aim was to determine whether an interaction is possible or not, i.e., values other
than zero occur. Hence, we can state that oblique excitation of the LNOI rib waveguide can
lead to nonlinear interaction of the fields.
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Chapter 10

Conclusion and outlook

In this work, we discuss different semi-analytical and numerical methods to describe the wave
propagation in integrated optical waveguides. Initially, we briefly recapitulate some basic con-
cepts of optical waveguide theory, starting with Maxwell’s equations, dielectric slab waveguides
and optical fibers. We are interested in the excitation of 2.5-D slab waveguide configurations
with semi-guided waves at oblique angles of propagation. Modal properties are derived and
critical angles are identified beyond which power transfer to specific outgoing modes is sup-
pressed. Thus, the structures operate without losses. Furthermore, we discuss the excitation of
laterally limited 3-D wave bundles in these 2-D structures by assuming wide and shallow etched
rib waveguides placed in front of the configurations. The subsequent topics of this thesis make
use of this theory and can be divided in three parts:

Oblique excitation of 2-D slab waveguide configurations:

Our investigations concern dielectric bent slab waveguides that support a continuum of full
vectorial spiral modes. A semi-analytical ansatz is derived, leading to an eigenvalue equation
that needs to be solved for complex wavenumbers. Our approach covers the whole range from
bend modes at normal incidence with pronounced radiation losses, over the lesser damped spi-
ral modes, to the lossless OAM modes at angles larger than the critical angle. Results for low
and high refractive index contrasts are presented, including the calculated complex wavenum-
bers and the corresponding mode profiles. For the high refractive index contrast, the mode
confinement increases so that the effect of the curvature becomes visible only at smaller bends.
For increasing curvature radius and incidence angle, we observe a reduction in losses and even
almost lossless spiral modes at angles smaller than the critical angle.

Connecting straight slab waveguides with bent segments results in the considered corner and
step configurations. We are searching for structures that satisfy the resonance condition at
full transmission for different angles of incidence, radii of curvature and vertical step heights.
For large radii the incoming wave is almost completely transmitted for arbitrary angles and
heights, while substantial reflections are observed for small radii. Here, full transmission is
only achieved for certain heights and angles, as a Fabry-Pérot-like resonance effect appears
when scanning over the step height.

To consider more realistic 3-D settings, the step structure is further investigated for incoming
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laterally limited bundles of semi-guided waves. Rib waveguides are placed in front and at
the output to calculate the 3-D transmittances, which depend strongly on the beam width. To
achieve results comparable to the 2-D case, a relatively wide range of wavenumbers have to
fulfill the resonance condition. This is mainly only valid for larger curvature radii, where the
resonance effect has little influence. For small curvature radii, slightly larger rib widths are
required. Thus, 3-D bend structures with comparatively small lateral widths can achieve high
transmittances.

Furthermore, a four-port lossless microresonator with either one or two standing-wave type op-
tical rectangular micro-strip cavities is demonstrated as a power divider or add-drop filter. We
observe resonance behavior for specific incidence angles, fixed gap distances and rather arbi-
trary cavity dimensions. For a single cavity at resonance, the power is equally dropped to each
of the four output ports, as the incoming mode evanescently excites the cavity mode which in
turn radiates back evenly in the upper and lower slabs. Assuming two identical cavities of spe-
cific separation, the structure is able to transport the complete input power to the forward drop
with full transmission. The strength of the interaction between slab and cavity depends strongly
on the gap distance. Furthermore, we briefly introduce resonators with a circular cavity. At res-
onance, degenerate high angular order OAM modes are evanescently excited by the incoming
oblique semi-guided wave of the adjoining slab waveguide.

Slab waveguide lens:

A stepwise angular spectrum method is presented to calculate the wave propagation in 3-D pla-
nar, dielectric slab waveguide lenses. The method approximates the curved surface by a finite
number of flat, plane elements, tangential to the interface. For each element, its angular spec-
trum determines the field behavior of the reflected and transmitted waves. Superposition of the
partial contributions leads to the overall solution. We study the configurations in both, 2-D and
3-D. In 2-D, the configuration consists of different materials separated by a curved interface,
while in 3-D, slab waveguides with different heights connected by curved surfaces are consid-
ered. For the latter, the method is used in combination with vectorial 2.5-D COMSOL solutions
of the cross section for achieving full vectorial 3-D solutions. For validation, the presented
examples are compared to rigorous 3-D FEM solutions and a substantial lower computational
effort is observed.

Due to the versatility and efficiency of our SASM approach, optimization algorithms are easily
applied to our method. The advantage is that the field in the sectional area can be evaluated
without having to calculate the entire 3-D field, which is useful for an efficient and fast op-
timization. We apply a genetic and pattern search algorithm implemented in MATLAB. The
results are shown for an optimized maximum outgoing field amplitude to reduce the focal beam
width. Here, we just demonstrate the use of optimization tools on our method. This can be fur-
ther extended when applying alternative optimization tools, e.g., a multi objective optimizer or
by adjusting the cost function to yield even better results depending on the type of application.

Additionally, one could study 3-D slab waveguide lenses with “thick” incoming and outgoing
waveguides and an etched, thin middle part. In order to focus, the lens must be of concave
shape. Applying the SASM is straightforward and similar to the convex lens configurations
considered in this work. Both configurations can be easily compared, e.g., concerning critical
angles, losses or polarization coupling.
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Integrated waveguides used for quantum optics:

A unidirectional finite element modal matching method is presented to calculate the wave prop-
agation in 3-D multiscale tapered waveguides. The method is based on a staircase approxima-
tion of the taper, where eigenmodes of the 2-D cross sections calculated with COMSOL are
propagated along the segments. We consider titanium in-diffused lithium niobate waveguides
that guide fundamental modes with a field maximum some micrometers below the waveguide
surface. For photon absorption, superconducting nanowires are placed on top of the surface. To
pull up the mode profile closer to the nanowires and increase the detection rate, an additional
silicon layer of tapered shape is added. Examples for different taper geometries using the modal
matching method are shown. We are interested in high transmittances to the silicon mode to
increase the detection rate. Considering the coupling efficiency of the structure along the taper
width allows to predict an optimized taper shape that consists of three parts with a large, strong
coupling efficient middle section. To validate our suggestions, we apply a particle swarm opti-
mization algorithm implemented in MATLAB. The results fit to the predicted coupling efficient
shape.

Finally, the nonlinear interaction of waves in LNOI rib waveguides is studied, with emphasis
on the parametric down-conversion process. By suitably varying the rib geometry, degenerate
modes can be identified that directly satisfy the phase-matching condition (but require a higher
order pump mode). Alternatively, guided modes of lower order are quasi phase-matched by
periodic poling of the waveguide. In both cases, strong nonlinear interaction is identified, where
the pump, signal and idler modes are guided by the rib waveguide. Furthermore, an alternative
scheme has been proposed, where the structure is excited via an oblique semi-guided pump
mode that is guided by the adjoining slab of the rib waveguide. By adjusting the angle of
incidence accordingly, the phase matching can be directly fulfilled. For fabrication purposes,
further investigations are necessary, but we could confirm that, in principle, the oblique pump
scheme leads to nonlinear interaction of the involved fields. However, the examples in this work
are not yet optimized and there may exist structures that show even stronger interaction.
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S Poynting vector
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r Curvature radius
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P Time-averaged power
ϕ Incidence angle
ϕs, ϕc, ϕm Critical incidence angles
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R Reflectance
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