Fault-Tolerant Consistency Management
in Model-Driven Engineering

'L‘ PADERBORN UNIVERSITY

The University for the Information Society

Nils Weidmann

FacurLty oF COMPUTER SCIENCE, ELECTRICAL ENGINEERING
AND MATHEMATICS

PADERBORN UNIVERSITY

Dissertation submitted in partial fulfillment
of the requirements for the degree of
Doktor der Naturwissenschaften (Dr. rer. nat.)

Paderborn, December 20, 2021

There was never a sound beside the wood but one,
And that was my long scythe whispering to the ground.
What was it it whispered? I knew not well myself;
Perhaps it was something about the heat of the sun,
Something, perhaps, about the lack of sound—

And that was why it whispered and did not speak.

It was no dream of the gift of idle hours,

Or easy gold at the hand of fay or elf:

Anything more than the truth would have seemed too weak
To the earnest love that laid the swale in rows,

Not without feeble-pointed spikes of flowers

(Pale orchises), and scared a bright green snake.

The fact is the sweetest dream that labor knows.

My long scythe whispered and left the hay to make.

Robert Frost: Mowing (1913)

Acknowledgements

This thesis would not have been possible without the support of many others, to whom
I want to express my gratitude at this point. As there are quite a lot of people who
supported me during the last four years, I can mention just a few of them explicitly, and
further appreciate the help of others as members of one or more groups.

First of all, I want to thank Anthony Anjorin and Gregor Engels for being my supervisors
in the first and second half of my time as a PhD student, respectively. Tony, from the first
semester of my Master studies on, you have shared your enthusiasm for MDE research
with me. Whenever I needed the help of an experienced researcher to discuss new ideas,
transform drafts into papers, or overcome technical challenges, you spent far more time
and energy on it than one could ever expect.

Gregor, I can imagine how difficult it is to supervise ten or more PhD students with
diverse topics at the same time, but it is probably even more challenging to take over
someone after one and a half years without pushing the topic into another direction.
From you, I learned how to communicate results in a way that they can be understood by
a broader audience. Thank you!

Furthermore, I am grateful for the external review of my thesis by Andy Schiirr. From
you, Andy, I received valuable feedback for early ideas, papers, and especially for the thesis
itself. I further like to thank Stefan Sauer and Thomas Vogel for being members of my
examination board.

For giving me the opportunity to work in two research projects with different partner
companies, I want to thank Stefan Sauer, as well as Bernd and Lisa Kleinjohann. I got
valuable insights into the business processes of such companies, established interesting
contacts, and got a view beyond the horizon of my PhD thesis.

Also, I would like to thank all my present and former colleagues at the SICP, C-Lab, and
the AG Engels at Paderborn University, and the Real-Time Systems Lab at TU Darmstadt.
I felt comfortable and welcome every single day, became part of a productive team, and
enjoyed spending my time with you both during and after work. Many colleagues became
friends, and I am sure that this will outlast our time at university.

Numerous students who wrote their Bachelor and Master theses under our supervision,
and/or participated in the project group “VICToRy”, contributed a lot to my research as
well. Without your commitment, it would not have been possible to develop the mature
tool support that exists today. The same holds for all SHK and WHB students, who
substantially helped us to make a success of different research projects.

Science is about working in a team, so special thanks go to all co-authors with whom
I worked on different research papers. Similarly, I am also grateful for all — positive and
negative — feedback we received from numerous anonymous reviewers: With the help of
your suggestions and impressions, it was possible to improve the quality of publications.

Last but not least, I want to thank my friends and my family, especially my parents
Gabriele and Reinhard and my sister Lara, for their unconditional support in these times.
As more than half of my PhD studies took place during the COVID-19 pandemic, content-
related problems often receded to the background. Thank you for reminding me that life
happens before, after, and also while doing research!

Abstract

Models play an important role in nowadays’ software engineering processes, providing
stakeholders with a suitable level of abstraction for specifying software systems. While
models are often used for design and documentation purposes, Model-Driven Engineering
(MDE) places models in the centre of the development process, such that source code and
test cases can be generated directly from the specification.

In practice, software development of this kind involves multiple models which often
have a semantic overlap, and which are usually created by multiple (teams of) domain
experts concurrently. To develop software systems of high quality, it is necessary to es-
tablish mechanisms to maintain and restore consistency between such models, which are
commonly denoted as consistency management operations. While such operations can be
specified separately in principle, Bidirectional Transformation (BX) approaches pursue the
idea of formally describing a consistency relation between two models, and subsequently
deriving all consistency management operations from this relation.

While MDE established itself as a subfield of software engineering, a frequently named
argument against the use of MDE techniques in practice is its lack of flexibility, though,
especially in later phases of the development process. Current consistency management
tools can only operate on consistent, i.e., fault-free input models. This forces users to
remove all faults from the input models, before being able to continue working with the
respective modelling tools.

To address these issues, consistency management is considered as an optimisation prob-
lem in the scope of this thesis. Instead of enforcing perfect consistency, a solution that
is consistent to the largest possible extent is determined in case of faulty input models.
A hybrid framework is proposed that synergetically combines Triple Graph Grammars
(TGGs) — a declarative, rule-based BX approach — and optimisation techniques, including
Integer Linear Programming (ILP) and different meta-heuristics. The hybrid framework
supports various consistency management tasks, including model transformations, con-
sistency checking, and the synchronisation of (concurrent) updates. Advanced language
features such as graph constraints and attribute conditions increase the expressive power
of the consistency management operations. Based on this approach, users can be equipped
with powerful and flexible consistency management tools, such that the applicability of
MDE techniques in practice is improved.

The conceptual solution is entirely implemented as part of eMoflon, an MDE tool suite
for various model management tasks. To support the users’ understanding for different
consistency management processes, the MDE debugger VICToRy was developed as an add-
on component for eMoflon. The applicability of the fault-tolerant framework in practice
is demonstrated via two industrial case studies, including a BX between a formal and
a semi-formal language for railway systems engineering, and a model-driven solution for
optimal test scheduling, i. e., allocating human resources and testing tasks.

Zusammenfassung

Modelle spielen in heutigen Softwareentwicklungsprozessen eine wichtige Rolle, indem sie
Stakeholdern ein angemessenes Abstraktionsniveau zur Spezifizierung von Softwaresyste-
men bieten. Wahrend Modelle oft zu Entwurfs- und Dokumentationszwecken verwendet
werden, stellt Modellgetriebene Softwareentwicklung (MDE) Modelle ins Zentrum des En-
twicklungsprozesses, sodass Quellcode und Testfille direkt aus der Spezifikation generiert
werden konnen.

In der Praxis umfasst Softwareentwicklung dieser Art mehrere Modelle, welche oft se-
mantische Uberschneidungen aufweisen, und normalerweise von mehreren Doméanenexper-
ten(-teams) parallel erstellt werden. Um hochqualitative Softwaresysteme zu entwickeln,
ist es notwendig, Mechanismen zur Konsistenzerhaltung und -wiederherstellung zwischen
solchen Modellen einzusetzen, welche tiblicherweise als Konsistenzmanagementoperatio-
nen bezeichnet werden. Wéhrend solche Operationen prinzipiell unabhéangig voneinander
spezifiziert werden konnen, verfolgen Ansétze der Bidirektionalen Transformation (BX)
die Idee, eine Konsistenzrelation zwischen zwei Modellen formal zu beschreiben, und alle
Konsistenzmanagementoperationen anschliefend aus dieser Relation abzuleiten.

Wihrend MDE sich als Teilbereich des Software Engineering etabliert hat, ist ein haufig
genanntes Argument gegen den Einsatz von MDE-Techniken in der Praxis jedoch deren
fehlende Flexibilitat, besonders in spateren Phasen des Entwicklungsprozesses. Aktuelle
Konsistenzmanagementwerkzeuge konnen nur konsistente, d.h. fehlerfreie Eingabemodelle
verarbeiten. Das zwingt Anwender, zunéchst alle Fehler aus den Eingabemodellen zu ent-
fernen, bevor sie in die Lage versetzt werden, mit den jeweiligen Modellierungswerkzeugen
weiterzuarbeiten.

Um diese Themen zu adressieren, wird im Rahmen dieser Arbeit Konsistenzmanage-
ment als ein Optimierungsproblem betrachtet. Anstatt perfekte Konsistenz zu erzwin-
gen, wird im Fall von fehlerhaften Eingabemodellen eine Losung bestimmt, die so weit
wie moglich konsistent ist. Ein hybrides Rahmenwerk wird vorgestellt, welches Triple-
Graph-Grammatiken (TGGs) - einen deklarativen, regelbasierten BX-Ansatz - mit Opti-
mierungstechniken wie Ganzzahliger Linearer Optimierung (ILP) und verschiedenen Meta-
Heuristiken synergetisch kombiniert. Das hybride Rahmenwerk unterstiitzt verschiedene
Konsistenzmanagementaufgaben, wie Modelltransformationen, Konsistenzchecks, und die
Synchronisierung von (parallelen) Anderungen. Weitergehende Sprachfeatures wie Graph-
Constraints und Attributbedingungen erhéhen die Ausdrucksméchtigkeit der Konsistenz-
managementoperationen. Basierend auf diesem Ansatz kénnen Nutzer mit méchtigen
und flexiblen Konsistenzmanagementwerkzeugen ausgestattet werden, sodass die Anwend-
barkeit von MDE-Techniken in der Praxis verbessert wird.

Die konzeptionelle Losung ist vollstandig als Teil von eMoflon implementiert, einer
MDE-Tool-Suite fiir verschiedene Modellierungsaufgaben. Um das Versténdnis verschiede-
ner Konsistenzmanagementprozesse auf Anwenderseite weiter zu féordern, wurde der MDE-
Debugger VICToRy als eine Zusatzkomponente fiir eMoflon entwickelt. Die praktische An-
wendbarkeit des fehlertoleranten Rahmenwerks wird mithilfe zweier industrieller Fallstu-
dien verdeutlicht, einschlief$lich einer BX zwischen einer formalen und einer semi-formalen
Sprache im Bereich Bahnsystemtechnik, sowie einer modellgetriebenen Losung zur opti-
malen Testplanung, welche personelle Ressourcen und Testaufgaben einander zuweist.

Contents

| Foundations and Related Work

1 Introduction and Motivation

1.1
1.2
1.3
1.4

Motivation and Problem Statement.
Stakeholders and Requirements.
Solution Overview and Contribution
Publication Overview

2 State of the Art: Fault-Tolerance in MDE

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Motivation.
Related Literature Reviews and Mapping Studies.
Survey Procedure.
Scope and Classification
Use Cases and Application Domains
Benefits and Challenges
Result Analysis
Solution Approach
Summary and Discussion e

3 Modelling Software Systems: Languages and Transformations

3.1
3.2
3.3
3.4

SysML: A Semi-Formal Language
Event-B: A Formal Language,
Bidirectional Model Transformations with TGGs
Summary and Discussion e

4 A Feature-Based Classification of Triple Graph Grammar Variants

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Existing Work on TGG Language Features
Feature Model and Expressiveness.
Basic Rules
Attribute Conditions
Application Conditions.
Multi-Amalgamationt
Completed Running Example
Summary and Discussion o

Il Conceptual Solution

5 Fault-Tolerant Model Transformation and Consistency Checking

5.1
5.2
5.3
5.4
9.5

Motivation.
Related Work.o
Solution OVerviewt
Operationalisation e
Rule Pattern Matching

11
15

17
17
19
20
23
27
31
34
35
37

39
39
41
44
ol

53
53
95
o6
99
63
69
74
77

XII

Contents

5.6 ILP Construction i
5.7 Optimisation and Filter
5.8 Evaluation.
5.9 Summary and Discussion

6 Integrating Domain Constraint into the Fault-Tolerant Framework

6.1 Motivation.
6.2 Related Work.o
6.3 Solution Overview,
6.4 Integrating Graph Constraints
6.5 Correctness and Completeness.
6.6 Evaluation.
6.7 Summary and Discussion o ...

7 A Fault-Tolerant Approach to Concurrent Model Synchronisation

7.1 Motivation.
7.2 Related Work.
7.3 Solution OVerviewt
7.4 Operational Rules
7.5 Rating of Rule Applications
7.6 Constructing the Optimisation Problem.
7.7 Evaluation.
7.8 Summary and Discussion

8 Concurrent Model Synchronisation with Multiple Objectives

8.1 Motivation.
8.2 Related Work.
8.3 Solution Overview
8.4 Adaptation of Meta-Heuristics
8.5 Evaluation.
8.6 Summary and Discussion
8.7 Wrap-up of the Hybrid Approach

I1l Tools and Applications

9 The eMoflon Tool Suite

9.1 Introduction and a Brief History
9.2 Related MDE Tools
9.3 Graph Transformation with IBeX-GT
9.4 Bidirectional Model Transformation with IBeX-TGG
9.5 Consistency and Model Management with Neo.
9.6 Scalability Analysis
9.7 Teaching MDE with eMoflon.
9.8 Summary and Discussion

10 The VICToRy Debugger

10.1 Introduction and Motivation.
10.2 Related MDE Debuggers
10.3 Architecture.

10.4 Breakpoint Concept

101

...... 101
...... 102
...... 104
...... 104
...... 112
...... 117
...... 121

123

...... 123
...... 125
...... 126
...... 127
...... 129
...... 134
...... 140
...... 144

145

...... 145
...... 146
...... 147
...... 149
...... 151
...... 158
...... 159

161

163

...... 163
...... 165
...... 166
...... 168
...... 172
...... 178
...... 180
...... 181

Contents XIIT
10.5 An Overview of the User Interface. 188
10.6 Concurrent Synchronisation Component 192
10.7 Evaluation. 194
10.8 Summary and Discussion 200

11 Automating Model Transformations for Railway Systems Engineering 201
11.1 Industrial Context and Motivation 201
11.2 Related Work. e 203
11.3 Motivating Example. 204
11.4 TImplementation 205
11.5 Evaluation. 207
11.6 Summary and Discussion 212

12 Automating Test Schedule Generation with Domain-Specific Languages 215
12.1 Industrial Context and Motivation 215
12.2 Approaches to Test Scheduling 216
12.3 Related Work. e 217
12.4 Test Schedule Optimisation via Correspondence Creation 219
12.5 Domain Analysis via Metamodelling 220
12.6 Defining Test Schedule Validity via a TGG 222
12.7 Configuration via a Domain-Specific Language. 225
12.8 Applied Techniques to Improve Scalability. 226
12.9 Evaluation. 228
12.10 Summary and Discussion 233

13 Conclusion and Future Work 235
13.1 Requirements Revisited 235
13.2 Future Work e 240

Bibliography 245

A Example TGGs 283
A1l FamiliesToPersons 283
A2 JavaToDoc. 286

B Runtime Measurements

289

List of Figures

1.1 Swim-lane diagram: Model transformations in railway systems engineering . 5
1.2 Malformed SysML model and semantically equivalent Event-B code 6
1.3 Concurrent changes on both models result in a conflict 7
1.4 Multiple solutions for a backward synchronisation 8
1.5 Thesis structure. 12
2.1 SLR metamodel 22
2.2 Component diagram: Tool chain 23
2.3 Consistency in MDE o 24
2.4 Fault-tolerant MDE 26
2.5 Modelling with uncertainty oL 27
2.6 Number of sources per year e 34
2.7 Number of relevant sources per year 35
2.8 Features of the proposed solution with respect to consistency 36
2.9 Features of the proposed solution with respect to fault-tolerance 37
3.1 SysML state machine o oL 40
3.2 Event-B: Schema for machines 42
3.3 Event-B: Machine with variables 42
3.4 Event-B: Invariants 43
3.5 Event-B: Completionevent oL 43
3.6 Event-B: Initialisationevent Lo o oo 44
3.7 Triple graph instance L Lo L 46
3.8 Triple metamodel: SysML to Event-B 47
3.9 Rule: PortToVariable 48
3.10 Rule: PortToVariable (compact notation) 49
3.11 Rule: StatemachineToMachine 49
3.12 Second application of PortToVariable on the instance of Fig. 3.7 50
4.1 Classification of TGG variants as a feature model 55
4.2 Rule: AddRegion 56
4.3 Rule: StateToVariable L 60
4.4 Partial metamodel with data vertices and vertex attribute edges 61
4.5 Changed attribute values (equals operator) 61
4.6 Changed attribute values (concat operator) 62
4.7 Rule: TransitionToEvent with a PAC 63
4.8 Rule: SourceStateToLeaveAction with a NAC 64
4.9 Rule: TargetStateToEnterAction with a NAC 65
4.10 Rule: StatemachineToMachine with a negative constraint 66
4.11 Construction algorithm for generating a NAC from a negative constraint . . 67
4.12 Desired target graph after adding the initial state 70
4.13 Rule: PseudostateToActions using multi-amalgamation 71
4.14 Construction of a multi-amalgamated rule 72

4.15 Construction of a multi-amalgamated rule (details) 73

XVI List of Figures

4.16 Rule: EffectToAction 74
4.17 Sample instance without guards and triggers 76
4.18 Rule: TriggerToGuard 77
4.19 Rule: GuardToGuard 7
4.20 Summary: Expressiveness of TGG variants 78
5.1 Process for fault-tolerant consistency management 84
5.2 Consistent triple indicating which models are required as input per operation 86
5.3 Operational rules for CO, CC, FWD_OPT and BWD_OPT 87
5.4 Construction of the FWD_OPT rule for TriggerToGuard 88
5.5 Operational rules for TriggerToGuard, 89
5.6 Modified source metamodel Lo 90
5.7 Rule: AddSubRegion oo 90
5.8 Greedy choice of rule applications can lead to dead ends 90
5.9 Rule application candidates collected for the FWD_OPT operation 91
5.10 Inconsistent source model due to cyclic dependencies 95
5.11 Comparison of greedy and ILP-based operations 98
5.12 The FamiliesToPersons benchmark example 98
6.1 Work-flow for fault-tolerant consistency management with constraints . . . 104
6.2 Graph constraints for the TGG SysMLToEventB 106
6.3 Inconsistent example instance with annotations for rule applications and
constraint matches L L 108
6.4 Runtime: CO e 120
6.5 Number of variables: CO 120
6.6 Runtime: CC e 120
6.7 Number of variables: CC 120
6.8 Runtime: FWD_OPT 120
6.9 Number of var.. FWD_.OPT 120
6.10 Runtime: BWD_OPT 120
6.11 Number of var.. BWD_OPT 120
7.1 Concurrent changes on both models result in a conflict 124
7.2 Work-flow for fault-tolerant concurrent model synchronisation 127
7.3 Construction of operational rules L. 128
7.4 Rule variants for StateToVariable 129
7.5 Unchanged elements 131
7.6 Deletedelta e 132
7.7 Createdelta 133
7.8 Induced delta 134
7.9 Rule variant application L 0 o 135
7.10 Source model constraints. L. 136
7.11 Faulty input model Lo 137
7.12 Final solution L 138
7.13 Runtime measurements for increasing model sizes 141
7.14 Runtime measurements for increasing number of conflicts 141
7.15 Tool comparison for increasing model sizes 142
7.16 Tool comparison for increasing number of conflicts 143
8.1 Generic work-flow of heuristic optimisation 148

8.2 Simplified metamodel for JavaToDoc 152

List of Figures XVII

8.3
8.4
8.5
8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20

10.1
10.2
10.3
10.4
10.5
10.6
10.7

11.1
11.2
11.3
11.4
11.5
11.6

12.1
12.2
12.3
12.4
12.5
12.6

13.1

Conflicting changes on Java code and documentation 153
Case study: Conflicting changes for geometric figures 154
Average ratings for parameter combinations 156
Runtime analysis L 157
Quality analysis oL 157
Overview of publications related to the conceptual solution 160
History of eMoflon 164
Most important components and classes in eMoflon::IBeX 167
Communication between APl and GT Interpreter 168
Component diagram: Architecture of eMoflon::IBeX 169
Activity diagram: Uniform consistency management algorithm 170
SysML o 171
Event-B 171
Correspondences oo 171
Rule: StateToVariable L 172
PlantUML visualisation 172
Architecture of eMoflon::Neo 174
Core cycle for consistency management 175
SysML metamodel 176
Example instanceo 176
TGG: SysMLToEventB o 177
Rule: StateToVariable L. 177
Runtime measurements: FamiliesToPersons 179
Runtime measurements: ClassDiagramToDatabaseSchema 179
Runtime measurements: CompanyTolT 179
Student feedback 181
Data exchange with VICToRy 186
Integrating VICToRy into the eMoflon tool suite 186
Breakpoint concept of the VICToRy debugger 187
Visualising rules and matches L. 190
Element type breakpoint oL 192
Combined breakpoint L 192
Front-end of the concurrent synchronisation component 193
Process overview L. Lo 202
Point machine case study (left) and SysML state machine (right) 204
Overview of the tool integration setup 207
Test case 1: Log-in form 208
Test case 2: Light system 209
Test case 3: Trip planning system, 210
Conceptual overview of the test schedule generation process 219
Source, correspondence, and target metamodels L. 222
Marking a first execution of a task (FirstExec) 223
Negative constraint for guaranteeing sufficient availability 223
Marking further executions of a task (FurtherExec) 224
Evaluation Results: Schedule Quality 230

TGG-specific contributions 239

XVIII

List of Figures

A.1 FamiliesToPersons: Triple metamodel 283
A.2 FamiliesToPersons: TGGrules 284
A.3 FamiliesToPersons: Graph constraints 285
A.4 JavaToDoc: Triple metamodels 286
A5 JavaToDoc: TGGrules 287
A.6 JavaToDoc: Graph constraints 288
B.1 F2P: CO without constraints 289
B.2 J2D: CO without constraints oL 289
B.3 F2P: CO with negative constraints 289
B.4 J2D: CO with negative constraints 289
B.5 F2P: CO with implications constraints 290
B.6 J2D: CO with implications constraints 290
B.7 F2P: CC without constraints 290
B.8 J2D: CC without constraints 290
B.9 F2P: CC with negative constraints 290
B.10 J2D: CC with negative constraints 290
B.11 F2P: CC with implications constraints 290
B.12 J2D: CC with implications constraints 290
B.13 F2P: FWD_OPT without constraints 291
B.14 J2D: FWD_OPT without constraints 291
B.15 F2P: FWD_OPT with negative constraints. 291
B.16 J2D: FWD_OPT with negative constraints 291
B.17 F2P: FWD_OPT with implications constraints 291
B.18 J2D: FWD_OPT with implications constraints 291
B.19 F2P: BWD_OPT without constraints 291
B.20 J2D: BWD_OPT without constraints 291
B.21 F2P: BWD_OPT with negative constraints 292
B.22 J2D: BWD_OPT with negative constraints 292
B.23 F2P: BWD_OPT with implications constraints 292
B.24 J2D: BWD_OPT with implications constraints 292

List

1.1
1.2
1.3

2.1
2.2
2.3

4.1

6.1
6.2

7.1

10.1
10.2
10.3

12.1
12.2
12.3

Al

of Tables

Mapping of requirements to stakeholders 10
Overview of underlying publications 16
Overview of other related publications 16
Categorization of papers for the review 22
Number of relevant papers per research domain 27
Top 10 conferences by number of relevant papers 35
Match of PseudostateToActions (Fig. 4.13) in the example instance (Fig. 4.12) 71

Quota for generating JavaToDoc instances 118
Quota for generating FamiliesToPersons instances 118
Optimisation problem 139
Size of rule groups: MoTE and eMoflon 195
Feedback for specific breakpoints oL 197
General feedback for the VICToRy debugger 198
Available human resources and their characteristics 220
Testing tasks together with their characteristics and all relevant constraints 221
A feasible test schedule for our running example 221
FamiliesToPersons: Rule refinement 285

List

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
9.9
5.10
5.11
5.12

6.1
6.2
6.3
6.4

of Definitions

Definition (Graph (Morphism)) 44
Definition (Triple Graph (Morphism)) 45
Definition (Typed Triple Graph (Morphism)) 45
Definition (Triple Rule) 48
Definition (Triple Rule Application) 49
Definition (Triple Graph Grammar) 50
Definition (Language of a Triple Graph Grammar) 51
Definition (Expressiveness of sets of Triple Graph Grammars) 56
Definition (Basic Rules) 57
Definition (TGG Variant: Basic Rules) 57
Definition (Size of a Graph) oL L 57
Definition (Data Graph) 59
Definition (TGG Variant: Rules with Attribute Conditions) 60
Definition (Graph Condition) 64
Definition (Satisfaction of Graph Conditions) 65
Definition (Application Condition) 65
Definition (Negative Application Condition) 65
Definition (TGG Variant: Rules with Application Conditions) 66
Definition (Graph Constraint) 66
Definition (Negative Constraint) 66
Definition (Kernel Rule, Multi-Rule, Interaction Scheme) 70
Definition (Maximally Amalgamable) 72
Definition (Multi-Amalgamated Rule) 72
Definition (Multi-Amalgamated Triple Graph Grammar) 72
Definition (TGG Variant: Multi-Amalgamation) 73
Definition (Starting Triple Graph) 85
Definition (Consistent Input and Consistent Solution) 85
Definition (Markable Elements and Created Elements) 86
Definition (Operational Rule and Marking Elements) 87
Definition (Marked, Created and Required Elements) 88
Definition (Constraints for Derivations) 92
Definition (Sum of Alternative Markings for an Element) 92
Definition (Constraint 1: Mark Elements at Most Once) 92
Definition (Constraint 2: Guarantee Context for Derivations) 93
Definition (Dependency Cycles) 94
Definition (Constraint 3: Forbid Dependency Cycles) 94
Definition (Optimisation Problem) 95
Definition (Schema Compliance) 105
Definition (Consistent Input and Consistent Solution (Refined)) 106
Definition (Constraints for Graph Constraints) 109
Definition (Required Elements for Graph Constraints) 110

XXII

List of Definitions

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
7.4

8.1

12.1

Definition (Constraint 4: Guarantee Context for Graph Constraints) 110
Definition (Constraint 5: Satisfy Graph Constraints) 111
Definition (Optimisation Problem (Refined)) 112
Definition (Proper Subset of Rule Applications) 113
Definition (Maximal Proper Subset of Rule Applications) 114
Definition (Maximally Marked Triple Graph) 114
Definition (Progressive TGGs) 115
Definition (Essential and Superfluous Rule Applications) 115
Definition (Final Derivations with Operational Rules) 116
Definition (Operational Rule and Marking Elements) 128
Definition (Special Rules) 128
Definition (Delta Structures and Unchanged Elements) 130
Definition (Optimisation Problem (Refined)) 135
Definition (Multi-Objective Optimisation Problem) 150
Definition (Optimal Test Scheduling) 225

List of Abbreviations

AADL
AC
API
ATL
BX
CPS
DSE
DSL
EA
EMF
eMSL
fUML
GA
GPL
GT
IDE
ILP
JDK
JRE
JTL
JVM
LCDP
MBSE
MDE
NAC

NSGA-II

Architecture Analysis and Design Language
Application Condition

Application Programming Interface
Atlas Transformation Language
Bidirectional Transformation
Cyber-Physical System

Design Space Exploration
Domain-Specific Language
Enterprise Architect

Eclipse Modeling Framework
eMoflon Specification Language
foundational UML

Genetic Algorithm

General Purpose Language

Graph Transformation

Integrated Development Environment
Integer Linear Programming

Java Development Kit

Java Runtime Environment

Janus Transformation Language
Java Virtual Machine

Low-Code Development Platform
Model-Based Software Engineering
Model-Driven Engineering
Negative Application Condition

Non-Dominated Sorting Genetic Algorithm II

XXIV

List of Definitions

OCL
OMG
PAC
PL

PN
QVT-0
QVT-R
SA
SAT
SBSE
SE
SLR
SMT
SysML
TGG
Ul
UML
XMI

Object Constraint Language

Object Management Group

Positive Application Condition
Programming Languages

Petri Net

Query /View/Transformation-Operational
Query/View/Transformation-Relations
Simulated Annealing

Boolean Satisfiability Problem
Search-based Software Engineering
Software Engineering

Systematic Literature Review
Satisfiability Modulo Theories
Systems Modeling Language

Triple Graph Grammar

User Interface

Unified Modeling Language

XML Metadata Interchange

Part |

Foundations and Related Work

1 Introduction and Motivation

Software plays an ubiquitous role for nowadays society, with even increasing importance
through advancing digitalisation. One reason why software could pervade many areas of
life is the emergence of software engineering methods as a reaction to the software cri-
sis [Dij72]. The need for defined and standardised procedures for software development
became apparent to reduce error rates and thereby life-cycle costs, making the use of soft-
ware profitable in industry. During the last 50 years, software development became an
engineering discipline with different branches and paradigms, such as structured program-
ming, formal methods, and agile development [Brol8|.

Model-Driven Engineering (MDE), another sub-domain of software engineering, places
models in the centre of the development process. Models are used to provide the stake-
holders with a suitable level of abstraction [Béz05], which is crucial for building complex
software systems of high quality. The use of models enables domain experts to specify,
validate and maintain software systems, as no advanced programming skills are required
to create these models. Thereby, communication problems that lead to misunderstood
requirements are avoided by design to some extent. In the beginning of the 21st century,
MDE established itself as a mature software engineering paradigm and was successfully
applied to industrial use cases [HRW11].

As a special form of Model-Based Software Engineering (MBSE), in which models are
used to support a common understanding of all involved stakeholders and for documenta-
tion purposes, MDE treats models as primary artefacts throughout the entire software de-
velopment process. This involves tasks such as requirements specification, system design,
code generation and model-based testing. Well-known examples for modelling languages
are the Unified Modeling Language (UML)! as a general-purpose modelling language for
software development, and the Systems Modeling Language (SysML)?2, which both re-
stricts and leverages the expressiveness of UML for systems engineering.

When developing software systems of realistic size, multiple models are usually used.
They describe the system from different perspectives, are often created and maintained
by different (teams of) domain experts and have a semantic overlap. To build software
systems that meet high quality standards, it is therefore essential to maintain consistency
between semantically interrelated models throughout the development process to preserve
the shared information. This task is commonly denoted as model management or consis-
tency management. In the context of MDE, intra-model consistency denotes a property
that states whether a model is consistent in isolation, whereas inter-model consistency
refers to semantically interrelated models.

Maintaining consistency between multiple models recently gained importance in several
subfields of computer science. The development of intelligent modelling environments,
e.g., involves different sorts of models, which interact with each other in a shared ecosys-
tem [MCK™20]. Descriptive models are used to describe the real world on a higher abstrac-
tion level, whereas prescriptive models are used to define how a software system should
operate (which is in line with the role of models in MDE). Finally, in the emerging field of
artificial intelligence, predictive models are used to derive knowledge from data sources.

"https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/SysML/1.6/PDF

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/SysML/1.6/PDF

4 1.1. Motivation and Problem Statement

Consistency management can be broken down into several subtasks: Model transforma-
tion describes the process of transforming a model into another model that is expressed in
a different language, which means that the new model is generated from scratch, whereby
certain rules or constraints must be respected to reach a consistent state. When applying
model synchronisation, in contrast, we assume that two models already exist and have
been consistent with each other at some point of time. One model has been modified since
then, i.e., model elements have been created, deleted, or attribute values have changed.
These updates have to be propagated to the other model to restore consistency. In settings
where multiple teams work on their models in parallel, concurrent updates on all involved
models can occur, such that update propagation in various directions is necessary, also
denoted as concurrent (model) synchronisation.

A technique of special interest is Bidirectional Transformation (BX), in which the syn-
chronisation of two models is performed based on the same specification for all involved
tasks [ASCG'16]. By defining the consistency relation once, the previously mentioned
tasks can be automatically derived, such that it is not necessary to implement, e.g., for-
ward and backward transformation separately. This reduces the implementation effort for
the tool developer and supports the understandability and trustworthiness of the tool, as
only one specification needs to be understood by the integration expert. In order to char-
acterise the involved stakeholders in more detail and motivate the role of fault-tolerance in
this scenario, a concrete example from the railway systems engineering domain is used in
the upcoming Sect. 1.1 and 1.2, before the structure and main contributions of this thesis
are introduced in Sect. 1.3, and an overview of published research that builds a basis for
this thesis is provided in Sect. 1.4.

1.1 Motivation and Problem Statement

Maintaining consistency between semantically interrelated models has been an inten-
sively studied research topic for several years and has attracted interest in industry as
well [GHN10,BPD*14, AYL"18]. To motivate the aspect of fault-tolerance in such pro-
cesses, we consider a collaborative systems engineering scenario of the railway domain, in-
volving the semi-formal language SysML and the formal language Event-B [AH07,Hoal3].
SysML as a de-facto standard for modelling mechatronic systems is often used in safety-
critical contexts, as it is well-known among systems engineers. As software faults in
safety-critical systems can cause serious damage, the developed components need to be
verified and validated to guarantee that they work as expected. A formal proof of cor-
rectness cannot be given for SysML models, such that the system specifications need to
be transformed into models of a formal language (Event-B in the concrete use case), and
enriched with safety constraints that cannot be expressed in SysML. The formal semantics
of Event-B makes it possible to verify safety-related properties, but is only understood by
experts of this field and therefore not adequate for modelling (software) systems. Con-
sequently, there is a need for transforming SysML models into Event-B code and, as a
reaction to the verification process, propagating changes back to the SysML models to
keep all software engineering artefacts up to date.

The automated process for systems engineering with SysML and Event-B is depicted
in Fig. 1.1 in an informal notation inspired by Stevens [Stel7]. First, the SysML engineer
creates an initial version of the system model (i). Subsequently, an integration expert
transforms the SysML model to Event-B code (ii). An Event-B expert can now add safety
constraints (iii.1) to validate the model to guarantee formal properties. According to the

1. Introduction and Motivation 5

validation results, the Event-B model needs to be updated (iii.2). In order to also keep
the SysML model up to date, the changes have to be propagated back by the integration
expert (iv).

a

S
SysML Engineer
SysML Event-B
o (i) To
Event-B SysML
Integration Expert :

i1} ii.2 @
Event-B Expert

Model [:] Step _m, | Upddts

Figure 1.1: Swim-lane diagram: Model transformations in railway systems engineering

The transformation and synchronisation steps can be considered as the critical part of
the development process, as the results of the formal verification might be invalidated by
errors in the transformation process. As human work tends to be error-prone, it seems to
be adequate to use a transformation engine which — as soon as its specification is proven
to be correct — meets the requirements for reliable model and consistency management.
All actions of the transformation engine are based on a consistency relation between the
two languages at hand: Model pairs which are contained in this relation are considered
to be consistent with each other and can be the result of a successful transformation,
synchronisation or consistency check. The development of such a transformation engine,
however, requires a solid formal basis and stable tools which abstract from the concrete
use case to consistency management problems in general.

In principle, the described scenario of synchronising SysML models and Event-B code
can be automated using existing model transformation approaches. However, these con-
cepts and tools enforce perfect consistency each time the transformation engine is used,
i.e., the input models must be consistent in themselves (intra-model consistency or well-
formedness) and it must always be possible to create a transformation result that is con-
sistent with the input (inter-model consistency). Strict consistency at any point of time
is almost impossible to achieve in practical applications and is often not even a desirable
goal, which makes concepts and tool support for fault-tolerant consistency management
inevitable. In her seminal paper on fault-tolerance in MDE [Stel4], Stevens points out that
realistic application scenarios always involve inconsistent aspects which makes the suit-
able handling of inconsistent system states necessary as well. In the following, her three
arguments are applied on the concrete use case of a BX between SysML and Event-B.

6 1.1. Motivation and Problem Statement

Partial consistency relation

As models of heterogeneous languages must be handled, there might be well-formed SysML
models, which cannot be consistently transformed into Event-B code, as the set of transfor-
mation rules does not cover the specific model instance. Likewise, there might be correct
Event-B models which do not have a consistent counterpart in SysML: In Fig. 1.2b, an
Event-B machine is shown that can be considered as well-formed. Its semantically equiva-
lent SysML state machine (Fig. 1.2a), however, involves a dangling outgoing edge from the
START state, which violates the syntax of the SysML language. Therefore, a non-tolerant
transformation engine would reject the input in its current form.

For the user, it might be more helpful to perform a partial transformation instead that
produces the depicted SysML model, and point out that there is still an open issue that
needs to be fixed (i.e., the dangling edge). The fault could be subsequently removed by
the user, letting the dangling edge point to the STOP state. This update could then be
propagated to Event-B code, such that the variable STOP (representing the respective
state) is set to TRUE in the THEN block.

MACHINE Machine
VARIABLES START STOP finish
Machine J INVARIANTS ...
EVENTS
INITIALISATION =
. COMPLETION =
/ finish := TRUE; WHEN
isin START : START = TRUE
THEN
leave START : START := FALSE;
actl : finish := TRUE;
END
(a) SysML model

(b) Event-B code

Figure 1.2: Malformed SysML model and semantically equivalent Event-B code

Infeasible search

Getting results within an acceptable amount of time is an important non-functional re-
quirement that also holds for MDE tools. When working with large models, it might be
infeasible to determine a consistent result with acceptable time effort, even if one exists.
Instead, it could be better to return the best solution found so far after some pre-defined
time, and again refer to the problems that were left open. It is hardly possible to provide a
small comprehensible example for this situation, but let us take a look at Fig. 1.3, in which
the faults of Fig. 1.2 were removed in different ways in the SysML model and Event-B
code. The SysML engineer connected the states START and STOP with a directed edge
(highlighted with green colour in Fig. 1.3a), whereas both the transition and the STOP
state were removed from the Event-B code (crossed out in Fig. 1.3b). Clearly, it is not
possible to find a synchronised solution that takes both changes into account. Instead,
according to Stevens, it is advisable to compute a solution that balances both interests
and point out those changes that could not be considered.

1. Introduction and Motivation 7

MACHINE Machine
VARIABLES START S¥6P finish
Machine J INVARIANTS ...
EVENTS
INITIALISATION =
COMPLETION =
. -) WHEN
/ £inish := TRUE; isin START : START = TRUE
THEN
Vv leave-START ——STFARF —=FALSE;
(} actl : finish := TRUE;
END
(a) SysML model

(b) Event-B code

Figure 1.3: Concurrent changes on both models result in a conflict

Multiple solutions

A transformation or synchronisation step might also end up in several possible solutions.
Let us assume that the experts for SysML and Event-B agreed on the solution of 1.3a,
i.e., there should be a transition between the states START and END. In the Event-B code,
a further guard named incomplete is added that ensures that the transition can only
be executed if the variable finish is still FALSE (cf. Fig. 1.4b). This guard can be
either translated into a trigger (Machinel) or a guard (Machine2) in SysML, as shown in
Fig. 1.4a. Conventional solution approaches would either return one result at random, or
return all possible solutions and let the user pick one, which is not feasible for large solution
sets. Instead, Stevens suggests to return a solution that incorporates all uncontroversial
changes (which are not present in this example due to its minimality) and let the user
include controversial modifications (the new trigger or guard), possibly at a later stage.

Research statement

It is important to note that eventually restoring consistency is still the ultimate goal: In
order to create reliable and trustworthy software systems, all faults, i.e., all intra- and
inter-model inconsistencies, need to be removed from the system models in their final
versions. To make sure that all involved models are free of faults, consistency must be
(re-)established. This is essential for the considered case of safety-critical systems, but also
for software applications in general. Accepting inconsistent solutions in between should,
first and foremost, make the development process more flexible and comprehensible, re-
moving unnecessary barriers for the development team. Consequently, the development
process can be sped up while achieving the same level of software quality. To be able
to check and restore consistency completely, additional information should be provided
to the stakeholders along with the (intermediate) inconsistent solution that help them to
adapt the models in a suitable way, such that consistency can be eventually achieved. As
these arguments can be transferred from this illustrating example to a broader context,
there is a noteworthy need for research on fault-tolerant consistency management.
Inconsistent states in software systems have already been a research topic for several
years. Balzer names tolerating inconsistencies an important challenge [Bal91] and suggests
identifying and flagging inconsistencies for the user, as it is more helpful than forbidding

8 1.1. Motivation and Problem Statement

Machine1 J

MACHINE Machine
VARIABLES START STOP finish

when (finish=FALSE) / INVARIANTS ...
finish := TRUE; EVENTS
INITIALISATION =
COMPLETION =
WHEN

isin START : START = TRUE

incomplete: finish = FALSE
Machine2 J THEN

leave START : START := FALSE;
enter STOP : STOP := TRUE;
. actionl : finish := TRUE;
END

END
[finish=FALSE

finish := TRUE;

(b) Event-B code

(a) SysML model

Figure 1.4: Multiple solutions for a backward synchronisation

them completely. Similar to Stevens, Bertossi et al. point out that inconsistencies can
represent more than an inferior or imperfect state of a system. They can be considered
as a formal representation for misunderstanding, conflicts and problems that occur when
multiple engineers work on the same software system [BHS05]. Fault-tolerance plays an
important role in other fields of computer science as well. Decker intensively studied the
role of fault-tolerance for database repair and integrity checks of databases [DM11,Dec17].
Cheney et al. [CGMS15] state that aiming at a consistent solution in each step tends to
be a too inflexible strategy. Instead, they state that a small change in the source model
should only cause a small change in the target model, possibly at the price of not restoring
perfect consistency immediately, which they denote as the principle of least surprise.

Although ongoing research explores how to deal with inconsistency while still guarantee-
ing formal properties, there is no formal and practical concept that provides full support
for consistency management in MDE in a fault-tolerant manner. That means that it is
unclear how fault-tolerance can be temporarily permitted to enable flexible consistency
and model management, while inconsistencies are detected and tracked at the same time
to eventually restore consistency. This is problematic, as it is not possible yet to build soft-
ware systems that allow concurrent engineering in a flexible and therefore resource-efficient
way while guaranteeing high-quality results by suitable consistency management. In the
scope of this thesis, a solution concept shall be developed that sufficiently addresses this
open issue. To demonstrate its practical applicability, the conceptual solution should be
supported by software tools which are stable and powerful enough to be used for industrial
use cases. This research statement will be elaborated by identifying the respective stake-
holders and requirements (Sect. 1.2). Afterwards, an overview of the solution proposed in
this thesis is presented in Sect. 1.3.

1. Introduction and Motivation 9

1.2

Stakeholders and Requirements

Putting the example use case of Fig. 1.1 into a broader context, several stakeholders can
be identified who differ in their requirements for a fault-tolerant consistency management
system. In the following, the roles of all stakeholders in the overall process will be briefly
discussed, including a set of requirements that are posed to the fault-tolerant consistency
management system by each stakeholder.

The SysML engineer and Event-B specialist are examples for domain experts,
who must be able to model their problem domain with suitable tools. For them, it
is important that the modelling process is flexible and that necessary changes due
to model synchronisation are comprehensible.

The integration expert is a mediator between the different domain experts: He or
she is in charge of transforming models entirely (such as the initial transformation
from SysML to Event-B), propagating changes from one model to another (which
can, e.g., result from a formal verification of the Event-B model) and checking con-
sistency to spot faults which were either undetected or put aside.

The tool developer equips the integration expert with a suitable software tool for
their work. He or she is able to define transformation rules and discuss them with
the integration expert. The roles integration expert and tool developer can be taken
up by the same person.

The meta-tool developer is responsible for developing generic tool support, that
can be adapted to the concrete problem domain by the tool developer. He or she
must implement different consistency management operations on a formal basis, and
offer a User Interface (UI) to specify rules and constraints.

Based on the stakeholders’ expectations, the following requirements for a fault-tolerant
consistency management framework with suitable tool support can be derived:

R1

R2

R3

R4

R5

In several application domains, including safety-critical systems, process certifica-
tion plays an important role (cf. Fig. 1.1). Therefore, the language for expressing
the consistency relation should be formal, such that, e.g., safety properties can be
verified.

To enable the domain experts to continue working when intra- or inter-model con-
sistency is violated, the consistency management framework is required to be fault-
tolerant.

Multiple consistency management operations, such as forward and backward trans-
formation or consistency checks, should be supported by the framework.

The language for specifying the consistency relation (cf. R1) should be expressive
enough to precisely map constructs of the involved modelling languages to each other
while respecting additional constraints of both domains.

In case of concurrent modifications on multiple models, a consistent state needs to
be restored, probably requiring a compromise that balances conflicting changes.

10

1.2. Stakeholders and Requirements

R6

R7

RS

R9

R10

As it is too inefficient and error-prone to develop a consistency management tool
for a particular use case from scratch, generic tool support is required that the tool
developer can adapt and configure for the concrete application scenario.

Based on a specified consistency relation (e.g., in form of transformation rules), con-
sistency management tasks (cf. R3, R5) should be executable in a fully automated
way.

As the completion of these tasks should be as fast as possible, the integration expert
should be equipped with an efficient tool that also scales well for larger model sizes.

Especially when relating new languages to each other, or after the consistency re-
lation was changed (e.g., the underlying rule-base was modified), it is possible that
errors occur in the specification that are hard to detect without further support.
Therefore, besides running the fully automated background mode (R7), an inter-
active mode for consistency management tasks should be offered to explore the
specification and remove faults from it.

The framework and tool support should be independent of the context of use and
applicable to different domains. This should be underpinned by real-world case
studies from industry.

Some requirements are only important for specific stakeholders, whereas other require-
ments concern all persons who are involved in the development process. Table 1.1 shows
the relation between requirements and stakeholders, whereby a x indicates that a require-
ment is relevant for the respective stakeholder.

[
- &5 . &
-
ZE S 5
Req. | Description Chapter(s) Lj sz A
£ 22 3
E 2§
O s
A = = £
- =
R1 | Formal Basis 3-8 X
R2 | Fault-Tolerance 2,5-8 X X
R3 | Multiple operations 5 X X
R4 | Expressiveness 4,6 X X
R5 | Concurrent Synchronisation 7,8 X
R6 | Generic Tool Support 2,9,10 X
R7 | Full Automation 5-8
R8 | Efficiency, Scalability 5-12
R9 | Interaction 10
R10 | Applicability 2,11,12

Table 1.1: Mapping of requirements to stakeholders

The upcoming Sect. 1.3 is devoted to how this thesis contributes to a formal and practical
framework that fulfils the stated requirements.

1. Introduction and Motivation 11

1.3 Solution Overview and Contribution

In order to address the requirements for a fault-tolerant consistency management sys-
tem, both formal concepts and tool support for these concepts are developed through-
out this thesis. It is composed of 13 chapters as depicted in Fig. 1.5. Following the
general introduction and motivation for fault-tolerant consistency management in this
chapter, a systematic literature review presents the state of the art in detail (Chap. 2).
As an underlying formalism to address the identified research gap, Triple Graph Gram-
mars (TGGs) [Sch94] are chosen as a well-known and established approach to rule-based
model transformations in MDE. Together with a brief introduction to the two languages
of the example transformation, the foundations of TGGs are introduced in Chap. 3, fol-
lowed by an overview of the most important language features and their expressive power
(Chap. 4).

Based on the first four chapters, the conceptual solution can be subsequently intro-
duced. A fault-tolerant approach to model transformation and consistency checking based
on TGGs and Integer Linear Programming (ILP) is introduced in Chap. 5, and extended
towards domain constraint handling in Chap. 6. Domain constraints are an important fea-
ture for specifying intra-model consistency, and are therefore necessary to be considered in
practical applications. The fault-tolerant framework is further extended towards concur-
rent model synchronisation in Chap. 7, before ILP is replaced by different meta-heuristics
in Chap. 8 aiming at runtime performance improvements.

The entire conceptual solution is implemented within different components of the eMoflon
tool suite?, which are briefly presented in Chap. 9. To support user interaction for the
different consistency management operations, the MDE debugger “VICToRy” (Visual
Interactive Consistency Management in Tolerant Rule-based Systems) was developed
(Chap. 10) and connected to eMoflon. Equipped with this tool support, it was possible to
apply TGG-based consistency management to industrial case studies (Chap. 11 and 12).
Finally, Chap. 13 sums up the results, and suggests directions for further research.

In the following, the main contributions of all chapters are described more concretely.
Furthermore, the contributions are mapped to the requirements they mainly address (cp.
Sect. 1.2). The requirement R8 (efficiency and scalability) concerns all chapters and is
therefore not explicitly listed.

Systematic Literature Review on Fault-Tolerance in MDE (Chapter 2)

To determine the necessity of creating fault-tolerant frameworks, it is inevitable to study
the state of the art, i.e., existing approaches to fault-tolerant consistency management.
We conducted a systematic literature review following the guidelines presented by Kitchen-
ham [Kit04] to get an overview of the related work. As the concept of uncertainty in MDE
is closely related to fault-tolerance, one goal was to draw a line between these two terms
with help of the literature review. The result of the review process was threefold:

e Classifications for consistency, fault-tolerance and uncertainty, wrapped up in one
feature model each (R2)

e Use cases, tools and application domains for demonstrating fault-tolerance, uncer-
tainty and flexibility (R6, R10)

3https://emoflon.org/

https://emoflon.org/

12

1.3. Solution Overview and Cont

ribution

Introduction

Ch. 1 : Introduction and Motivation

motivates

motivates

Related Work

Ch. 2 : State of the Art: Fault-
Tolerance in MDE

motivates

Y

Ch. 3 : Modelling Software Systems:
Languages and Transformations

Ch. 4 : A Feature-Based Classification
of Triple Graph Grammar Variants

- /

enables
\ 4

ﬂ:onceptual Solution

and Consistency Checking

Ch. 5 : Fault-Tolerant Model Transformation

/ Fundamentals \

~

basis

basis for

Y

Ch. 6 : Integrating Domain Constraints
into the Fault-Tolerant Framework

for «|Ch. 7 : A Fault-Tolerant Approach to
” Concurrent Model Synchronisation

refined by

\ 4

Ch. 8 : Concurrent Model Synchronisation
with Multiple Objectives

implemented in

\ 4

/I’ool Support \

Ch. 9 : The eMoflon Tool Suite

enhanced by

A 4

summed

/

up by

ﬁ:ase Studies

~

Ch. 11 : Automating Model Transformations
for Railway Systems Engineering

\ 4

Ch. 10 : The VICToRy Debugger

N _/

summed up by

used
for Ch. 12 : Automating Test Schedule Generation

with Domain-Specific Languages

/

summed up by

\ 4

(Conclusion
N

” Ch. 13 : Conclusion and Future Work

Figure 1.5: Thesis structure

1. Introduction and Motivation 13

e Benefits and drawbacks of involving fault-tolerance, uncertainty and flexibility in
MDE concepts (R2)

Background: Introduction to TGGs and their Language Features (Chapter 3 & 4)

As a formal basis for a fault-tolerant consistency management framework, we chose TGGs,
a declarative and rule-based approach to BX. The unique selling proposition of TGGs is
that operational rules for multiple consistency management operations can be derived
from the same declarative specification. The original TGG definition was enhanced with
additional language features in recent years [ALS15] to increase expressiveness. It is
necessary to consider these features for the developed framework in order to enable the
integration expert to handle, e.g., domain constraints appropriately. Chapter 3 provides
background information on the foundations of TGGs, before Chap. 4 introduces language
features that are used in Chap. 6 and 11. The main contributions are as follows:

e An introduction to TGGs as a BX language (R1)
e A common definition of expressiveness for TGGs (R4)

e Formal definitions and examples for basic TGG rules, multi-amalgamation, attribute
conditions and application conditions (R1)

e A comparison of TGG language features with respect to expressiveness (R4)

Formal Framework for Fault-Tolerant Consistency Management (Chapter 5)

Tolerating inconsistencies during the consistency management process makes it necessary
to consider consistency as a continuous measure instead of a binary decision: Instead of
simply reporting errors to the user in case of inconsistent inputs, it is desirable to return a
solution which is as consistent as possible. We convert operations such as (unidirectional)
model transformations and consistency checks into optimisation problems to explore the
search space of possible solutions first and then choose a solution that is consistent to
the largest possible extent by means of ILP solving. The approach is an extension of the
consistency checking algorithm proposed by Leblebici et al. [LAS17,Leb18|, whereby the
following new contributions are added:

o Generalised definitions for input models, output models, and operational rules for
forward and backward transformation, and for two forms of consistency checks (R1,
R3)

e A generalised construction approach for the objective function and the linear con-
straints for the previously mentioned operations (R7)

e A brief discussion of the optimisation result in case of faulty inputs, the maximal
consistent subtriple (R2)

Fault-Tolerant Handling of Domain Constraints (Chapter 6)

In Chap. 4, we have shown that application conditions - as an indirect method to ensure
that domain constraints are respected - increase expressiveness and should therefore be
integrated into the formal framework. The ILP-based approach gives us, however, the
opportunity to specify domain constraints directly in form of graph constraints that must
hold for the output models by leveraging the ILP with further linear constraints. In
particular, this chapter contributes to the formal framework as follows:

14 1.3. Solution Overview and Contribution

e A uniform way of encoding matches for graph constraints as additional ILP con-
straints for the fault-tolerant framework (R2, R4, R7)

e A formal proof of correctness and completeness for all consistency management op-
erations in the presence of negative and implication constraints as an extension of
the proof for consistency checking without graph constraints [Leb18] (R1)

Synchronisation of Concurrent Model Updates (Chapters 7 & 8)

In recent years, concurrent model synchronisation, i.e., the propagation of concurrent
updates to the respective other model, gained special interest [OPN20]. The operation
is especially challenging to formalise and implement, as updates can be conflicting, such
that it is not possible to consider all of them to form a synchronised solution. Therefore,
the result is not unique but depends on the conflict resolution strategy at hand. Further
aiming at fault-tolerance makes the problem even harder, but gives us the opportunity
to build upon the formal framework of Chap. 5 and 6. Opposed to the previously con-
sidered “stateless” operations (also denoted as batch transformations), concurrent model
synchronisation requires information about changes made since the last synchronisation
point, denoted as delta structures, besides the input models. Elements can be created,
deleted, or remain unchanged, which makes it necessary to balance multiple optimisation
goals. Furthermore, rule variants are specified to reasonably cope with user edits of dif-
ferent shape. As it seems promising to sacrifice optimality for performance improvements,
single- and multi-objective meta-heuristics are integrated into the formal framework as an
alternative to the exact ILP method. The main contributions of these chapters are:

e A definition of delta structures as a distinguished subset of the input models (R1)

e A specification of rule variants that allow us to reasonably handle arbitrary user
edits (R1, R2)

e A parametrised objective function that makes it possible to balance multiple opti-
misation goals according to user preferences (R5, R7)

e The integration of the meta-heuristics Simulated Annealing (SA), Genetic Algo-
rithm (GA) for single-objective optimisation and Non-Dominated Sorting Genetic
Algorithm IT (NSGA-II) for multi-objective optimisation into the formal framework
(R5)

Tool Support: eMoflon Tool Suite and VICToRy Debugger (Chapters 9 & 10)

In order to transfer formal concepts into practice, stable and mature tool support is
inevitable. Therefore, the entire approach is implemented as part of eMoflon, an Eclipse-
based tool suite for MDE that builds upon algebraic graph transformations and TGGs. It
consists of the main components IBeX (Sect. 9.3 & 9.4) and Neo (Sect. 9.5), whereby the
former is based on the Eclipse Modeling Framework (EMF) and stores models in form of
Ecore-compliant XML Metadata Interchange (XMI) files, whereas the latter uses the graph
database Neo4j for this purpose. To further support user involvement in the consistency
management process, the VICToRy debugger (Chap. 10) allows us to step-wise execute
rule applications to both understand the background process and detect errors in either
the TGG specification or the input models. The main contributions are as follows:

e An overview of the front-end of the eMoflon tool suite components (R6) and the
VICToRy debugger (R9)

1. Introduction and Motivation 15

e UML component and activity diagrams that describe the software architecture and
overall work-flow of IBeX, Neo and VICToRy (R6, R9)

Use Cases for Fault-Tolerant Consistency Management (Chapters 11 & 12)

Finally, the applicability of the developed concepts in practice is demonstrated with help of
two industrial case studies. The first case study at DB Netz AG deals with a BX between
defined subsets of the semi-formal language SysML and the formal language Event-B,
which was already used to introduce and motivate the topic of this thesis. eMoflon was used
to perform TGG-based forward transformations and backward synchronisations, while the
other operations seem to be adequate for future use as well. At dSPACE GmbH, a software
and hardware developer for mechatronic control systems, the manual process of allocating
software testers to work packages was automated by creating (meta-)models for human
resources on the one hand and for testing tasks on the other hand, and establishing a
consistency relation between these two models. For the scope of a product release test of
6-8 weeks, an optimal allocation of software testers and testing tasks was computed using
eMoflon. Although only a few features of the fault-tolerant framework are necessary to
solve the particular use cases, they serve as a general motivation to use BX concepts and
tools for real-world applications. The following contributions are presented:

e Different examples for using consistency management operations in the context of
resource allocation and verification and validation of safety-critical systems (R10)

e Realistic examples for modelling consistency relations with TGGs (R10), making use
of several TGG language features (cf. Chap. 4)

e Exemplary ways of integrating eMoflon with existing tools at partner companies
(R10)

1.4 Publication Overview

This thesis contributes novel concepts, tools and case studies of fault-tolerant consistency
management in MDE. Research results on different sub-topics have already been published
in form of conference, workshop and journal articles before. Table 1.2 provides an overview
of all publications which this thesis is based on, their publication venue, and to which
chapter they mainly contribute. An overview of further co-authored publications, which
are related to consistency management in MDE but are not explicitly discussed in the
scope of this thesis, is given in Tab. 1.3.

Furthermore, several Bachelor and Master theses contributed additional content, espe-
cially in the areas of tool support and case studies. In the thesis of Kannan [Kan20], a
first version of the systematic literature review was presented, Verma [Ver20] took part in
the integration of graph constraints into the formal framework. Regarding tool support,
Robrecht [Rob18] described major parts of eMoflon::IBeX-GT in his thesis, Jose [Jos21]
and Srivastava [Sri21] extended the VICToRy debugger towards breakpoints and a pro-
totype for concurrent synchronisation, respectively. The case studies for test schedule
generation and the transformation between SysML and Event-B are based on the theses
of Salunkhe [Sal20] and Oppermann [Opp18]. Finally, numerous Bachelor and Master the-
ses at Paderborn University have contributed to the development of eMoflon::IBeX and
eMoflon::Neo between 2016 and 2020.

16 1.4. Publication Overview
Publication Venue Topic Ch.
[Weil8] MODELS 2018 | Motivation for fault-tolerance in MDE 1
[WKA21] CoRR 2021 Systematic literature review 2
[WOR19] SLE 2019 Language features of triple graph grammars 4
[WALS19] SLE 2019 Model transformation and consistency checking 5
[WA20] FASE 2020 Domain constraints for consistency checks 6
[WA21Db] FAoC 2021 Domain constraints for model transformations 6
[WFA20| SLE 2020 Concurrent synchronisation with exact methods 7
[WE21] GECCO 2021 | Concurrent synchronisation with meta-heuristics 8
[WARV19] ICGT 2019 Graph transformations with eMoflon::IBeX-GT 9
[WAF*19] BX 2019 Model transformations with eMoflon::IBeX-TGG 9
[WA21a] BX 2021 Model transformations with eMoflon::Neo 9
[WAC20] GCM 2020 Debugging model transformations with VICToRy | 10
[WSA*21] JOT 2021 Case study: Railway systems engineering 11
[AWO™'20] | MODELS 2020 | Case study: Test schedule generation 12
Table 1.2: Overview of underlying publications
Publication Venue Topic
[WASK19] ICGT 2019 Foundations of pattern invocation networks
[TWY+20] ICSMM 2020 | Model-driven test case migration
[WS20] WSRE 2020 | BX applications in industrial contexts
[BYWE21] HCSE 2021 User interface adaptations with TGGs
[YGWE21] | MODELS 2021 | Collaborative software modelling

Table 1.3: Overview of other related publications

2 State of the Art: Fault-Tolerance in MDE

Although the challenge of tolerating inconsistencies has been discussed from different view-
points within and outside the modelling community, there exists no structured overview
of existing and current work in this regard. We provide such an overview to detect the
unsolved problems of tolerating inconsistencies in MDE and thereby motivating the TGG-
based approach which is proposed in the remainder of this thesis. We follow the standard
process of a Systematic Literature Review (SLR) to point out what fault-tolerance means,
how it relates to uncertainty, which use cases for fault-tolerant software systems have al-
ready been discussed, and which benefits and drawbacks tolerating inconsistencies entails.
The scope of this SLR is twofold: First, existing approaches to implementing fault-
tolerance in MDE contexts should be identified and compared to the requirements listed
in Sect. 1.2. Second, the motivation for studying the topic of fault-tolerant consistency
management in MDE shall be put on a broader basis by gathering exemplary use cases
and collecting arguments for and against fault-tolerant concepts. While several sources
that were found in the course of the SLR address the second point, we did not find a
holistic approach for adding fault-tolerance to multiple consistency management tasks. A
substantial amount of related work has indeed been presented for single aspects of the
required framework, which will be discussed in the respective sections of Chap. 5 — 10.
This chapter is structured as follows: The conducted SLR is motivated in Sect. 2.1,
including a list of research questions that are answered in the course of this chapter,
before Sect. 2.2 provides an overview of similar studies that apply the SLR procedure on
MDE topics. Section 2.3 describes the survey procedure and briefly sketches how the SLR
was supported by MDE tooling. In order to address the research questions, classifications
for the key terms consistency, fault-tolerance, and uncertainty are provided in Sect. 2.4.
A collection of exemplary use cases that are used to demonstrate these concepts is briefly
presented in Sect. 2.5, before a summary of benefits and drawbacks is presented in Sect. 2.6.
While the results are described verbally and with help of feature diagrams at this point,
a detailed tabular overview is available online'. Meta-data of the collected papers are
analysed and interpreted in Sect. 2.7, before the proposed solution approach of this thesis
is introduced in Sect. 2.8. Finally, the results are summarised and discussed in Sect. 2.9
to motivate further research on fault-tolerance in MDE based on the findings of the SLR.

2.1 Motivation

Up until now, research on consistency management in MDE has primarily focussed on
preserving or restoring perfect consistency between the involved models. As stated in
Sect. 1.1, there is an apparent need for temporarily admitting inconsistencies in the soft-
ware development process, even though it is uncontroversial that consistency shall be
fully restored at the end of the process. The existence of a partial consistency relation,
the non-trivial choice between multiple consistent solutions and the time effort to find a
perfectly consistent solution were named by Stevens [Stel4] as situations in which MDE
tools could reasonably return inconsistent results. Closely related to fault-tolerance, but

"https://drive.google.com/file/d/1uSuOn3hX5BHpLhw3jaH2Zp Vg TxHOov

https://drive.google.com/file/d/1uSuOn3hX5BHpLhw3jaH2ZpVffgTxHOov

18 2.1. Motivation

yet significantly different, is the concept of modelling with uncertainty [FSC12a]. It ad-
dresses a common problem in using modelling techniques in practice: At early stages of
the development process, requirements are often too vague to model the system precisely,
which is why a range of possible solutions is encoded into a single uncertain model to
postpone the final design decisions. Modelling uncertainty is also a suitable technique to
model information that will likely change during the development process. As approaches
proposing support for fault-tolerance and uncertainty tackle similar problems, i.e., aim at
increasing the practicability of MDE techniques, it is difficult to draw the line between
such approaches, which shall be addressed in the scope of this SLR.

Although a substantial amount of work with respect to fault-tolerance has already been
done in software engineering research and related domains [Bal91, Egy06, Stel4, GdL18],
there does not yet exist a structured overview of existing approaches. Such an overview
facilitates further research - both in the scope of this thesis and in subsequent work - for
several reasons: First of all, it helps to collect and aggregate achieved results, such as
common definitions for fault-tolerance, or benefits and drawbacks which several authors
already agreed on. Second, the SLR could help to discover examples from other subfields
of computer science that can be easily transferred to MDE. In this way, different commu-
nities could learn from each other, and cross-discipline collaboration could be strengthened
addressing the same problem area. In the database community, for example, there has
been long-term research on maintaining and restoring consistency, and performing oper-
ations in the presence of errors [DM11, Decl7]. Consequently, to avoid reinventing the
wheel, the SLR will consider research from related fields, as long as key terms have the
same meaning and transferring results to MDE is possible.

To achieve these goals, first, an overview of existing definitions and classifications of the
terms consistency, fault-tolerance and uncertainty shall be provided. Second, to underpin
the applicability of these concepts, formal and practical frameworks should be identified
that support handling of fault-tolerance, uncertainty, or flexibility (which subsumes the
first two terms) in software modelling. A range of realistic use cases and examples is
essential, which can be used in future approaches to facilitate comparison to existing
work. Third, a critical discussion of taking fault-tolerance, uncertainty, or flexibility into
account when modelling software systems should also be included to identify opportunities
and risks that are inherent to fault-tolerant approaches. In particular, we aim at answering
the following research questions:

RQ1 Scope and Classification: How is (in)consistency defined? How do fault-tolerance
and uncertainty differ?” What makes an approach or tool fault-tolerant? Which
different dimensions of fault-tolerance are there and how can they be classified?

RQ2 Use Cases and Application Domains: In which application domains are fault-
tolerance, uncertainty and flexibility discussed? Which use cases and tools are there
to demonstrate ideas and results?

RQ3 Benefits and Challenges: What are the benefits of fault-tolerance, uncertainty
and flexibility? What are open questions and challenges?

As a second contribution, we propose a framework that supported us while conducting
this SLR and which can be reused for creating future literature reviews in computer
science. In consensus with previous findings [G6t18], we noticed that SLRs in general
are conducted with little or no tool support (or at least lack a respective description),
although they involve numerous steps that could be automated, leading to unnecessary
manual effort. Likewise, it also requires a substantial amount of work to reproduce the

2. State of the Art: Fault-Tolerance in MDE 19

results of an SLR, leading to opacity of findings due to time restrictions. The gathering
and reproduction of results should thus be eased to better utilise human resources for
tasks that require advanced knowledge of the problem domain. We propose a tool chain
for partly automating the review process, which involves an adapter for querying the
DBLP research database?, a transformation of the results to the eMoflon Specification
Language (eMSL). eMSL is the uniform specification language of the model management
tool eMoflon::Neo, which will be described in more detail in Sect. 9.5. The collected data
is exported to the graph database Neo4j?, which can be queried to analyse the results.

2.2 Related Literature Reviews and Mapping Studies

Studies that provide a structured overview of existing work on a particular topic are often
conducted as SLRs [Kit04] or as mapping studies [PFMMO08]. SLRs are a secondary study
that identifies, analyses and interprets all available information related to one or more
research questions. SLRs follow a predefined review protocol, such that the process of
retrieving results is transparent and the introduced bias is minimised. Mapping studies
categorise existing work, often leading to a visual mapping of categories that supports the
understanding of what is already addressed in a specific domain.

Several studies of either type have been conducted in the MDE domain and related fields.
Modelling languages were investigated with a focus on the SysML language [WMC™20], the
Query/View/Transformation-Operational (QVT-0O) standard [GSS14,GSS16], and the ap-
plication of modelling in Industry 4.0 [WBCW20, WCB17]. Further MDE-related work in-
vestigates literature on models at runtime [SZ16], software testing process models [VDT18],
articles that appeared in the Journal of Software and Systems Modelling [GR16], and qual-
ity in MDE [GAM16]. In the requirements engineering domain, studies on software tooling
for requirement elicitation [IKJ19] and software testing in the context of agile software de-
velopment [CdM19] have been presented. For software product lines, existing work on
the automated analysis of feature models [GBT'19], variability management [GWT™14],
and tool support [BGR"17] has been already investigated. Context modelling [KHJS14]
and environment modelling [ST15] are further topics of existing SLRs. In contrast to this
chapter’s SLR, these studies focus on special modelling languages or particular application
domains.

The notion of consistency in modelling languages has also been a topic of multiple
SLRs and mapping studies. Awadid and Nurcan [AN19, AN16] composed an overview
of consistency requirements of business process models by proposing a framework for the
categorization of approaches and a road-map for future research on consistency require-
ments elicitation and management. The work of Muram et al. [MTZ17] takes consistency
checking of software behavioural models into account. Seven main categories for con-
sistency checking in this domain were identified, and suggestions for future research in
this direction were proposed. Hoisl and Sobernig [HS15] conducted a literature review
on consistency rules for UML-based language models, discussing frequently-named defects
of such models and demanding more tool support for enforcing consistency rules in this
setting. All of these studies focus on a sub-domain of MDE and do not take fault-tolerance
or uncertainty into account.

Only two studies on existing work relating fault-tolerance to software engineering prob-
lems could be found. Nascimento et al. [NRB114] analysed literature on the design of
a fault-tolerant Service-Oriented Architectures (SOAs) using design diversity, deriving

https://dblp.uni-trier.de/
3https://neodj.com/

https://dblp.uni-trier.de/
https://neo4j.com/

20 2.3. Survey Procedure

guidelines for a fault-tolerant SOA design and proposing a taxonomy for useful techniques
in this respect. A mapping study for fault-tolerant Internet of Things (IoT) applica-
tions [MM19] identifies key factors for fault-tolerant systems, including the use of micro-
services and the distribution of IoT components. Both studies are neither directly related
to MDE nor address the problem of maintaining consistency.

In a study combining an SLR, semi-structured interviews, and an empirical evaluation,
Marinho et al. [MSdM18,MdddM15] propose and evaluate techniques to distinguish risks
and uncertainties to reduce the latter in software projects. Salih et al. [SOY17] provide
an overview of existing work on uncertainty involved in requirements engineering via a
categorisation of relevant sources, while several questions are left open. Measurement
uncertainty was studied by da Silva Hack et al. [dtC12], resulting in a classification of ap-
proaches and a list of methods for calculating uncertainty. However, these treatments focus
solely on uncertainty, whereas fault-tolerance and software modelling are not considered.

As previously mentioned, SLRs in computer science often lack adequate tool support;
this issue has been identified and discussed by existing work. Go6tz proposes a tool for pro-
cessing the findings of SLRs [G6t18], which enables the user to assign the relevant papers
to formed categories, such that diagrams can be generated that visualize the characteristic
values for one or two categories. The tool supports SLRs in a later phase, though, as the
list of relevant sources is required as input data. The SLR-Tool by Fernandez-Saez et
al. [FSBR10] supports the process of conducting SLRs in different phases. Relevant meta-
data can be stored for each source, a classification scheme can be created, and diagrams
for result visualisation can be exported. In contrast to our tool chain, the sources have to
be imported manually first, and tool-support for the snowballing step is not provided.

In total, to the best of our knowledge, there does not exist a survey that provides
an overview of existing work on fault-tolerant consistency management in MDE. Also,
existing tool-support for SLRs eases the maintenance of relevant sources, but does not
aim at reducing the manual effort in initial phases of conducting SLRs.

2.3 Survey Procedure

This section briefly presents the methodology we followed to conduct the SLR. As all
results should be reproducible and easily accessible for researchers of the modelling com-
munity, we therefore followed the guidelines proposed by Kitchenham et al. [KBB*09] for
literature reviews in the software engineering domain. The review was conducted from
October 2019 to September 2020 and considers sources published until June 2020. We
used DBLP as a research database due to its large amount of listed publications, its fo-
cus on computer science, and its well-described API for automated queries.* Following
the proposed guidelines, an initial and a final set of sources was determined by applying
search phrases, and criteria for inclusion, exclusion, and quality of the gathered sources,
described in the following.

To form an initial set of sources, we defined six search strings inspired by the research
questions and the domain MDE, of which at least two must appear in a title. Each of
these strings has a wildcard (*) as suffix to take nouns, verbs and adjectives into account.
We therefore decided to query the database with all pairs formed from the search strings
model*, consisten*, inconsisten=*, uncertain*, tolerax and flexib*. As
a combined inclusion and quality criterion, we further require the respective sources to
be published at a conference listed by the CORE ranking® and assigned to the research

“https://dblp.uni-trier.de/faq /13501473 html
Shttp://portal.core.edu.au/conf-ranks/

https://dblp.uni-trier.de/faq/13501473.html
http://portal.core.edu.au/conf-ranks/

2. State of the Art: Fault-Tolerance in MDE 21

field 0803 (Software Engineering). Due to this requirement, the search is focussed on the
software engineering domain and peer-reviewed publications, while journal and workshop
papers are initially excluded. Due to the publishing behaviour in the computer science
domain, we expect late-breaking research results to be published at conferences, whereas
journal articles usually extend previously published results of conference papers in more
depth. Furthermore, the list of journals at CORE® was outdated when the review was
conducted, making it difficult to apply equal criteria to journal and conference papers in
the initial search step. Workshop papers often present work in progress and initial ideas
to be published at conferences afterwards. To detect relevant papers which do not fulfil all
criteria of the initial search, we applied snowballing at a subsequent step. In this manner,
we retrieved 268 sources, which we denote in the following as core papers.

To compile a final set of sources, we distributed the core papers between three re-
searchers and assessed their relevance based on the abstract. In case it remained unclear
if the respective paper should be considered, introduction and conclusion were read as
well. As suitable examples demonstrating the use of fault-tolerant system behaviour are
essential to answer RQ2, the remaining parts of the papers were skimmed for such ex-
amples. The assessment was based on inclusion, exclusion, and quality criteria. A paper
was included in the further review process if it (1) presents an MDE or Programming
Languages (PL) approach related to (in)consistency management, or (2) if it contains an
example or application related to fault-tolerance or uncertainty. We excluded a paper if
any of the search terms has a different meaning than the one implied by the research ques-
tions, e.g. if model refers to the physical behaviour of a Cyber-Physical System (CPS).
Papers written in other languages than English were also excluded, while this criterion
never had to be applied, probably due to the choice of search strings. To ensure a high
quality of the selected sources, prefaces and extended abstracts were excluded. In total,
114 relevant core papers were identified and added to the final set of sources.

In a second iteration, we applied snowballing to consider papers that were not detected
in our first iteration but might be nonetheless relevant to answer the research questions.
The corpus of this SLR was extended by all sources which are cited by at least one of
the core papers, resulting in 3201 additional papers. To keep the number of paper for
the second assessment phase manageable, we added a further inclusion criterion for these
additional papers: a minimum citation count by relevant core papers, as papers cited more
frequently are more likely to be relevant. As newer sources naturally have a lower citation
count, the number of required citations was set in relation to the publication year. As
papers published at Software Engineering (SE) venues should be preferred, the minimum
citation count per year was set to 0.2 for SE papers and to 0.3 for all other papers. As a
result, 53 papers from SE venues and 41 papers from other venues were evaluated according
to the same inclusion, exclusion, and quality criteria as the core papers. After the second
assessment phase, 23 papers from SE venues and 20 other sources were added, increasing
the final set of sources to 157 papers. An overview of our assessment and selection process
is depicted in Tab. 2.1. For each property, a check (v') means that it is fulfilled by the
respective category of papers, whereas a cross (X) means the opposite. If the property
is irrelevant, this is indicated by a hyphen (-). The rightmost two columns contain the
number of papers per category identified as (not) relevant.

Although the survey procedure is well-defined and takes multiple objective measures
into account in order to make results transparent and reproducible, several threats to
validity have to be mentioned as well. The naming conventions for conferences in the
DBLP database and in the CORE ranking differ slightly. To overcome this problem,

Shttp://portal.core.edu.au/jnl-ranks/

http://portal.core.edu.au/jnl-ranks/

22 2.3. Survey Procedure

> 2 keywords | published at min. annual initially || rele- | not re-
in title? an SE venue? | citation count read? vant | levant
v v - v 114 154
X v >0.2 v 23 30
X v <0.2 X 0 1093
- X >0.3 v 20 21
- X <0.3 X 0 2014

Table 2.1: Categorization of papers for the review

we matched the respective conferences if their acronym is the same, or if one name is
a substring of the other. This method works well for venues listed in the latest version
of the CORE ranking but, as conferences are renamed over time, older venues might
not be identified as SE venues. While prefaces and extended abstracts were excluded,
no distinction was made between different paper categories, such as full, short or tool
paper. Even though late-breaking results are usually published as conference papers in the
computer science domain, we might have missed results only published in journal papers,
as those were not considered in the first assessment phase. Besides DBLP, the use of other
research databases - such as Google scholar - could have helped to gather more sources for
the SLR and to therefore minimise the risk of missing important work. Finally, although
inclusion, exclusion and quality criteria were discussed between the involved researchers
in detail before the review was conducted, only one researcher per paper evaluated its
relevance, which might lead to biased results as the assessment of relevance depends on a
single person.

In Fig. 2.1, the metamodel for the repre-

sentation of results is depicted. A Paper 0.*
is written by Authors and appears at a Paper cites
Venue. For each Paper, the title and the name : EString
year of publication are extracted. Boolean core : EBoolean
values indicate whether the paper is a core relevance : EBoolean
paper, and whether it was identified as rel- year : Elnt
evant for the SLR in the initial reading
phase. A cites relation defines which authors venue
Paper references which other Papers. For 0.7 1
the Author, only the name is stored, where-

Author Venue

as the Venue is additionally flagged as be-
ing an SE conference listed at DBLP or firstName : EString name : EString
not. In Fig. 2.2, the architecture for trans- lastName : EString SE : EBoolean
ferring the bibliography data records to a

graph database is depicted. The DBLP Figure 2.1: SLR metamodel

research database provides an interface to

query records that match a specified search string containing logical connectors and wild
cards. Additionally, we exported the list of venues assigned to the research field 0803 (SE)
as a Comma-Separated Values (CSV) file. For each possible pair of the six keywords, the
database was queried and its venue was compared to the list of SE venues. In this way, the
core papers for this SLR are identified and saved as models typed over the metamodel of
Fig. 2.1. After examining each of the core papers regarding its relevance for the research
questions, the respective attribute was manually added in the bibliography model. In the
last step, the files were exported from eMoflon::Neo to Neo4dj (cf. Sect. 2.1), such that
queries on the bibliography model can be used to analyse the collected data.

2. State of the Art: Fault-Tolerance in MDE 23

2] Em 2 |
| | dd
H EE
H N
O H |
CORE Ranking

DBLP H?\ eMoflon

2]
‘ Model 2]

T Q)
A O Builder | ©

2]

7

T (
*h SJ Neodj

ArnetMiner

Figure 2.2: Component diagram: Tool chain

An important argument for the use of a database representation for the SLR was
the snowballing step, which is — depending on the number of relevant papers — a time-
consuming and error-prone task. To integrate citation information into the database,
all papers referenced by the core papers were added via the database snapshot DBLP-
Citation-network V127 which was created with the tool ArnetMiner [TZY*08]. Having
extended the bibliography model with all papers cited from the initial set of sources, it is
possible to collect all papers that fulfil the condition for being added within the snowballing
step with a single database query.

2.4 Scope and Classification

In order to answer the first research question, definitions for the key terms of this SLR
were gathered and aggregated while analysing the relevant sources. Besides a brief textual
summary, feature models for consistency (Fig. 2.3), fault-tolerance (Fig. 2.4) and uncer-
tainty (Fig. 2.5) provide an overview of the different dimensions involved. In accordance
with the textual description, they represent and classify the existing literature related to
the three aforementioned terms.

Consistency

In general, consistency can be understood as a relation over sets of models, which can
be specified in different ways [Stel4, SNEC08, HEC™'14, Stel8b, Stel7, Stel8a, CRET10].
Most frequently, consistency is specified by a provided set of constraints [KKE18, VGH 112,
RE12a,5704,SNL*07,LTZ12,Dec11,MSD06,BMMMO08,EDG*11,Egy07a,KKD 17, ELF08,
Red11,LAS17, KGV05,DMV*™17,GdL18,JKT16,SZ06,LTZ13,Bal91,REDE14,Egy11,NEF03,
ZCM™16, Egy06, NERO1, XHZ 109, NCEF01, BZJ19, BSV20, KKE19, GHHS15, HHR " 11,
RE13], which can be formulated in different ways. Often, the Object Constraint Lan-
guage (OCL) is chosen for defining consistency, but also graph constraints and logical
constraints are commonly used, such as formulae of propositional or first-order logic, or
Satisfiability Modulo Theories (SMT). Independent of the language in use, a model (or a
proposed solution) is typically viewed as being consistent if it satisfies all constraints.
Consistency can also be defined constructively via a given model transformation 7',
such that two models A and B are consistent if and only if A = T'(B) [WGP09, MC13].

"https://www.aminer.org/citation

https://www.aminer.org/citation

24 2.4. Scope and Classification

Furthermore, multiple model transformations (e.g., syntactic changes) are often consid-
ered to be consistent if they implement the same underlying transformation (e.g., se-
mantic change) [KEK'15]. This is especially relevant in the context of co-evolution,
where multiple interrelated transformations are concurrently conducted. There are also
constructive definitions which define methodological consistency over the sequence of op-
erations required to construct a model. As long as certain steps are followed in the
construction or “design” process, the consistency of the resulting model(s) can be guar-
anteed [BMMMO08, RE12b]. For example, a name must be assigned immediately after an
element is created.

Besides these general consistency specifications, some definitions are also tailored to a
specific application area. When modelling CPSs, a model is said to be consistent with the
real world — or any other system for which this can be checked — if the model makes state-
ments or reaches conclusions that are actually true [KCTT15]. For goal-oriented modelling,
“plan consistency” means that the achievement of sub-goals implies the achievement of
their parent goal [Fril8]. In the application domain of software product line engineering,
a feature model is consistent if at least one valid configuration exists [BM14]. Many other
application domains are conceivable as well.

The scope of consistency involves both the intra- and inter-model case. For inter-
model consistency, multiple models are consistent if they are not in conflict regarding
their overlapping parts, i.e., the same information contained in multiple models [CST12,
EEEP08, NGTS10, FGdL12]. Another important definition deals with the relationship
between a model and its metamodel [PBBT09, RKPP09, MKKJ10,TBSA11,KR07,GdL18,
HTJ92, HS17, Hil16, SKE™ 14, DKEM16, SB16, SMSJ03, BZJ19, BSV20, KKE19, GHHS15,
CK13,RE13,HHR " 11]. This notion can be handled on two levels: (i) structural consistency
includes multiplicities, composition constraints, as well as the types of model elements, and
(ii) static semantics expressed, e.g., via OCL constraints. Finally, a set of constraints is
often denoted as consistent if there exists at least one solution (e. g., a variable assignment)
that satisfies all constraints [WXH*10, WC09, GKH09, HTJ92, SMSJ03].

Consistency in MDE
N
Application
Scenario

O O O o, O O
Constraint- Transfor- Intra- Inter- Model- Constraints
Based mational Model Model Metamodel
O O Goal-Oriented

O Propositional (O Design

(O CPS Modelling

OFeature Modelling Typing

(O First-Order

& conpontion]
e

O SMT QO Static Semantics
[Legend @ Mandatory Feature (O Optional Feature [Abstract Feature] [Concrete Feature] W@ ORrR 7 XOR J

Figure 2.3: Consistency in MDE

Fault-Tolerance

Based on the collected definitions of consistency, the term fault-tolerance can be speci-
fied more concretely. Building on the constraint-based definition of consistency, tolerance
can be implemented by weakening the requirement of constraint satisfaction [WXHT10,
PBBT09, BM14,PST"97, RE12b, LAS17, DMV 17, VPM90]. Solutions that satisfy more

2. State of the Art: Fault-Tolerance in MDE 25

important constraints are then “better”, i.e., more consistent than other solutions that
might satisfy more but less important constraints. Fault-tolerance here is, therefore, ba-
sically a ranking or weighting of constraints and a score for solutions based on how many
weighted constraints are satisfied. This prioritisation and sorting process is often referred
to as “relaxation”; the constraints are sometimes denoted as “soft constraints” as their
violation no longer directly implies exclusion of the respective solution. By defining differ-
ent classes of inconsistencies and measuring consistency as vectors over these dimensions,
one can obtain a more fine-grained view of the extent to which consistency is achieved or
improved with respect to each class [YV00,KPP08a]. A similar approach divides the con-
straints or requirements into primary and non-primary, whereby non-primary constraints
can be ignored in a fault-tolerant scenario [HDH10,Red11]. The idea is to filter inconsis-
tencies that are “irrelevant”, e.g., concerning white space or time stamps, layout, etc.

Another important group of strategies for implementing fault-tolerance involve temporal
aspects. Most approaches assume that inconsistencies can be tolerated up to some point
in time when consistency is restored, such that fixes are delayed up to this point [HDH10,
YV00]. For distributed systems, a variable threshold for inconsistencies is defined by a
temporal window such that more inconsistencies are accepted at the beginning and fewer
towards the end. These approaches aim at letting a system “stabilise” before demanding
a high level of consistency.

In contrast to temporal strategies, a further group takes a spatial approach to imple-
menting fault-tolerance, i.e., guarantees that consistency improves with a limited extent:
Case-based restoration guarantees that every part of the model that was consistent be-
fore is still consistent afterwards [Stel4, DMO08,Decl1,Stel7, Egy06,Bal91]. For efficiency
reasons, only a subset of “relevant” cases can be determined, i.e., a scope of influence
is computed for changes, and then checked as for case-based restorers. Measure-based
restorers guarantee that a chosen measure of consistency is not reduced by the restoration
process.

A frequently named property of fault-tolerant systems is that strategies are implemented
to detect and fix inconsistencies either automatically or by involving the user [HMO5,
ELF08,GdL18,BG07,EC07,Egy07b,NCEF01,Egy11, VPM90]. Even if a system is brought
into an inconsistent state, it can transition back to a consistent state by applying fix strate-
gies. Consequently, an inconsistent state is temporarily acceptable, making it unnecessary
to check if edits are consistency-preserving, or to propagate changes to other models im-
mediately. However, it is often important to keep track of inconsistent model parts as this
can speed up the consistency restoration later. In case of user involvement, this can also
help to avoid overwhelming users with too many design decisions.

Overall, fault-tolerant concepts can serve different purposes: They can help easing the
work-flow for modelling tasks by not enforcing an immediate resolution of inconsisten-
cies. Additionally, they can function as a mechanism to detect unresolved conflicts in the
real world, or to rethink prematurely made design decisions [NERO1]. Finally, tolerating
and highlighting inconsistencies can be used to indicate misunderstandings or a potential
disagreement of the involved developers [XHZ"09].

Uncertainty

To help make a distinction between fault-tolerance and uncertainty, we provide an overview
of the most common notions of uncertainty in the following.

Modelling with uncertainty often involves encoding a range of possible values or al-
ternatives into a single attribute value or part of a model [GHYZ11, BEP*17,BCC™16,
FBDD™"15, EPR15, FS13, BG07, FSC12a, PK19, HT99, MVDO08|. Additionally, the set of

26 2.4. Scope and Classification

Fault-Tolerant MDE

O
Constraint- X User
Spatial Purpose
Related VS OLE] P Involvement
_/

(ORethink Premature Decisions

O Weighting
O Measure-

O User-Centric

O Relaxation] O Delayed Fixes] Case-Based] O Automated Ease the Workflow]
O Ranking Inconsistency Relevance- S Semi- (O Detect Real-World Conflicts]
Threshold Based Automated]

O Indicate Misunderstandings

[Legend @ Mandatory Feature O Optional Feature (__Abstract Feature] (_Concrete Feature] @ or O/ XOR }

Figure 2.4: Fault-tolerant MDE

valid combinations of these parts must also be defined, which can possibly increase or
reduce the range of valid alternatives. As a result, the designer is provided with a com-
pact but expressive representation of all solution candidates. Furthermore, modelling with
uncertainty can mean a probabilistic extension of a normal model made by adding prob-
abilities to every assumed value, which are mostly attribute values [KCT*15, VMO16,
CSBW09, MWV 16, TM14]. These probabilities are often referred to as confidence values.

Uncertainty can be used in different phases of the modelling process, and there are
multiple strategies to eventually resolve uncertainty [FS10,FS13,CBGS18,HT99, BLC18,
FSSC13,Gar10,CGSB17,IFEDO09]. The lack of information about the content of models is
denoted as design-time uncertainty, which makes it impossible to select among alternative
design decisions. This uncertainty can be captured in partial models consisting of a “base
model” enriched with annotations that express the set of alternatives [SCH12, SFC12,
FSC12b]. By refining the partial model, uncertainties can be resolved during the design
phase [SCG12]. The residual uncertainty is denoted as run-time uncertainty and is resolved
by the user via a selection out of all remaining alternatives.

Different sources of uncertainty can be distinguished with respect to multiple dimen-
sions [CGSB17, GC08, GPST13, RCBS12,SPV20, EM10, ZAY 19, ZAYN17]. The source
of uncertainty can either be the system itself or its execution environment. System un-
certainty includes uncertainty about input parameters, structural and algorithmic uncer-
tainty due to approximations, or experimental uncertainty caused by variable measured
values. Environmental uncertainty can originate from incomplete information about the
behaviour of external components, which are provided by third-party organisations, or
input data provided by sensors or wireless networks. Furthermore, the root cause of un-
certainty can either be the lack of knowledge about one of the aforementioned factors or
some non-determinism within the system. In general, as uncertainty forces the developer
to make decisions based on assumptions, one is not able to guarantee the optimality of
those decisions, involving various trade-offs.

In summary, modelling with uncertainty denotes a way of efficiently encoding multiple
alternatives into a single representation, from which at least one valid, i. e., consistent con-
figuration should be derivable. Fault-tolerance, in contrast, means being able to perform
operations on models in the presence of inconsistencies, while the ultimate goal is still to
eventually reach a consistent state. Both concepts aim at facilitating the work-flow of sys-
tem designers and developers by aligning the principles of MDE to practical requirements.
Likewise, both fault-tolerance and uncertainty involve a combination of automated and
user-centric resolution strategies to finally obtain an unambiguous and consistent model.

2. State of the Art: Fault-Tolerance in MDE 27

S Source of
Uncertainty

O
Execution
Environment

[Modelling with Uncertainty
Resolution
Strategy

Partial Model
O)
Refinement
e Candid.ate
Selection

O

O Alternatives
O Probabilities

O
System
Uncertainty
(O Parameter J

QO Structural
O Algorithmic
O Experimental

[Legend @ Mandatory Feature O Optional Feature (__Abstract Feature] (_Concrete Feature) @ or (O Xor }

)
Inherent Non-
Determinism

Incomplete Information J

O Design-Time

Run-time

Uncertain Input Data J

Figure 2.5: Modelling with uncertainty

2.5 Use Cases and Application Domains

The key terms consistency, fault-tolerance and uncertainty were classified in the previous
section, addressing research question RQ1, and preparing a foundation for further anal-
yses. This section gives an overview of existing use cases related to fault-tolerance and
uncertainty in different application fields. The notion of consistency is essential for un-
derstanding the proposed approaches, but dedicated use cases and a discussion of (dis-)
advantages of consistency management is out of scope for this thesis. Instead, the study of
existing literature has shown that flexibility is frequently used as a general term subsum-
ing fault-tolerance and uncertainty, such that we devote the third subsection to flexibility
concepts in MDE.

Research Domain # Research Domain #
Aspect-oriented modelling 3 Process Modelling 4
(Meta-)model Co-Evolution | 4 Product Line Engineering 7

Cyber-Physical Systems 7 Requirements Engineering 9
Databases 5 Service-Oriented Computing 3
Distributed Systems 4 Smart & Adaptive Systems 10
Language Engineering 4 Software Architecture 4
Mobile & Cloud Computing | 3 | Software Engineering (Other) 5
Model-Based Testing 7 Software Verification
Model-Driven Engineering 74 TOTAL 157

Table 2.2: Number of relevant papers per research domain

In Tab. 2.2, the number of relevant sources per research domain is depicted. Most of the
sources are related to MDE and similar fields, such as co-evolution, model-based testing,
process modelling, and aspect-oriented modelling. Especially uncertainty appears to play
an important role for requirements engineering and adaptive systems. The relatively large
number of papers concerning other sub-domains of software engineering such as language
engineering, product line engineering, software architecture and service-oriented comput-
ing underpins the importance of fault-tolerance and uncertainty for the entire field of
research. Cyber-physical and distributed systems, as well as mobile computing, can be
identified as relevant application domains due to the substantial impact of environmental
conditions involved. Several papers concern multiple research domains, such that a pri-
oritisation was necessary in these cases: When MDE concepts were applied to a concrete

28 2.5. Use Cases and Application Domains

use case, the paper was allocated to the application domain. For papers which can be
matched to different software engineering domains, the main focus was taken as decisive
factor.

From the set of relevant sources, 36 exemplary use cases could be extracted, which can
be used to illustrate approaches to fault-tolerance, uncertainty, flexibility, or consistency
management in general. 23 use cases focus on a conceptual approach, 6 are used for tool
demonstrations, and 7 cover both purposes equally. In the following, use cases for fault-
tolerance, uncertainty, and flexibility are briefly sketched; a complete list including use
cases for consistency management and further classifications can be found online®.

Fault-Tolerance

A frequently used example for fault-tolerance is a simplified video-on-demand system
modelled with UML diagrams [EDG11,Egy07a, KKD*17, ELF08, RE12b, Egy07b, Egy11,
Egy06, XHZ 09, KKE19]. The system consists of a streamer retrieving and decoding the
content, and a display showing the video and receiving user input. Each component is
modelled with a state chart diagram, in addition to a common class and sequence diagram
for both components. Design rules describe the semantic interrelations between state
charts, class diagram, and sequence diagram, e.g., that a class method name be equal
to the corresponding message name in the sequence diagram, or that a message sequence
match the behaviour in the state chart. As a software tool cannot decide on its own
whether the effects of automated fixes lead to a satisfactory solution, a fault-tolerant
treatment is suggested, such that the decision about controversial changes is left for the
user.

Tolerating inconsistencies has been a long-term research topic for databases, which is
illustrated by an example dealing with a project management tool storing information
about the utilisation of employees for projects, as well as how many hours per week they
should work [Bal91]. Constraints ensure that the sum of hours an employee works in
all projects is equal to their regular working hours. The time an employee is needed
for a project is maintained by project managers, whereas the regular working hours can
only be changed by the business office. Reducing the amount of working hours for an
employee makes it necessary to also reduce their time budget for one or more projects. It
is, therefore, not possible to independently change project plans or working hours without
temporarily introducing inconsistencies.

In the requirements engineering domain, requirements can be described with model
fragments that conform to a core requirements metamodel [PBBT09]. The complete spec-
ification for a library management system, in which books must be registered such that
customers can borrow them, can be created by fusing all fragments into one model. As
this procedure can possibly lead to inconsistencies and the loss of metamodel compliance,
it is necessary to temporarily relax the metamodel regarding abstract classes, multiplic-
ities, and containment relations. Metamodel conformance is later restored by fixing the
remaining inconsistencies.

The DOPLER tool suite [VGH"12] is used in software product line engineering for sales
support systems for product configuration. Based on Eclipse, the tool is able to manage
consistency between a variability model, a calculation model, and document templates. All
models can be edited in parallel via suitable editor windows. Inconsistencies are tolerated
in a way that their immediate resolution is not enforced, but occurring problems are listed
in the Eclipse error viewer. For this specific use case, the tool suite can be regarded as an
example for a fault-tolerant software modelling tool.

Shttps://drive.google.com/file/d/1uSuOn3hX5BHpLhw3jaH2Zp Vg TxHOo0v

https://drive.google.com/file/d/1uSuOn3hX5BHpLhw3jaH2ZpVffgTxHOov

2. State of the Art: Fault-Tolerance in MDE 29

Adaptive systems have to cope with the impact of environmental conditions; this is also
reflected in their software models. For flood warning systems, it is important to predict
floods as early as possible to reduce damage [GC08]. In a distributed system of sensors,
water depth is calculated with pressure sensors, while flow speed is determined with camera
sensors. The sensor nodes transmit the information to a gateway node, which forwards
the predictions to an off-site server. The system needs to be fault-tolerant because signals
can get lost, nodes can get disconnected, etc. Uncertainty is also involved regarding
the execution environment and an appropriate trade-off between functional behaviour
(e.g., prediction accuracy) and non-functional characteristics (e. g., energy efficiency) for
changing environmental conditions.

While some exemplary use cases for fault-tolerance in MDE and a tool suite for fault-
tolerant software product line engineering have been proposed in existing work, the exam-
ples and the tool support are specific for a particular application domain. Holistic concepts
for handling fault-tolerance in software modelling could not be found in the course of the
SLR.

Uncertainty

Another use case for systems that dynamically adapt to uncertain environmental condi-
tions is a smart phone app for shop reviews, which provides users with information about
lower prices for a product [GPST13]. The product’s bar code is scanned with the camera to
identify the product, and the user’s position is determined to make suggestions for nearby
shops, while an online search in web shops is performed simultaneously. However, the
quality of the photo, the positioning system and the availability of mobile data represent
sources of uncertainty that have to be taken into account when modelling the system.

Uncertainty in model-based testing is demonstrated by testing UML specifications for
a video conference system [JLCT18]. The models store information about the number of
connected participants and the video quality. Changing environmental conditions, such
as packet loss in the network, or joining and leaving participants, are the primary sources
of uncertainty.

The use of type systems can be substantially influenced by the uncertainty of measured
values. In an illustrative case study, a toy car drives along a straight track, which is
partitioned into multiple sections. Within this set-up, the car’s velocity and acceleration
on each of the sections [MWV16] should be computed. The system model involves uncer-
tainty regarding the length of the sections (at design-time) and the time measurements
(at run-time). Besides these absolute values, also relative values, such as the velocity and
acceleration of the car, are uncertain.

Several small-scale but useful examples for modelling with uncertainty originate from
MDE research itself. In an e-commerce application for selling books, data about books,
authors, comments on the books, and details on books and authors is shown to the
user [BEPT17]. A user interaction model specifies how a user can navigate between the
respective views with help of the Interaction Flow Modeling Language (IFML). Due to
a combinatorial explosion, it is challenging to evaluate all possible alternative flows with
usability tests. Integrating uncertainty in IFML models, however, can help to specify a
compact encoding of all these alternatives.

Code refactorings can be expressed in software models in terms of transformation rules.
This becomes especially challenging for models incorporating uncertainty [FSC12b]. To
explain transformation semantics on uncertain models, it is assumed that a modeller might
not be sure whether an attribute should be added to the subclass or the superclass of an
inheritance hierarchy. Furthermore, the model is to be refactored by adding get- and

30 2.5. Use Cases and Application Domains

set-methods to both classes, which leads to an exponential growth of possible results,
demonstrating the need for a compact encoding of uncertain values.

In a fictional automotive design project, modelling with uncertainty is motivated for
UML class diagrams. The three involved classes represent controllers for engine, body, and
security of the car [SCG12]. Similarly, a perception system for autonomous driving is used
to demonstrate uncertainty occurring during object detection and position determination
in a scene [SPV20]. In a partial model (involving design uncertainty), each controller’s
attributes are modelled as attribute sets, which can be refined to discrete attributes by
partial model refinement. Besides attributes, this refinement step can affect the existence
of an inheritance relation (e.g., between the classes car and vehicle) or the knowledge if
car and vehicle are actually the same class [SFC12].

Smart home systems provide solutions for intrusion detection with sensors, which are
however exposed to uncertainty on several levels. Both imprecise measurements on sen-
sors, the network infrastructure which connects the sensors and the interactions between
physical units can be sources of uncertainty, leading to false positives and negatives when
triggering alarm signals [CR20,ZAY"19).

The design of an automatic reasoning engine for logical expressions is taken as a use
case for design uncertainty [FSSC13]. When the reasoning engine reaches an error state,
a solver exception should be thrown, whose concrete implementation has some points
of uncertainty. The exception may be an inner class of the solver, or an attribute could
possibly provide more information about the error type. A similar use case for uncertainty
resulting from incomplete requirements is presented via an UML state chart for a bank
ATM. Depending on the required level of strictness, the ATM can either be restarted or
set to be out of service in case of errors [EPR14].

Finally, a framework for model-based testing under uncertain conditions was presented
in recent work [ZAY19] to cope with the inherent uncertainty of CPS components. Con-
necting it to a test ready model evolution framework [ZAYN17], it is possible to generate
further test cases for CPSs from evolved models.

In summary, various use cases and tool support for modelling with uncertainty can be
identified, which are tailored to a specific application domain, though.

Flexibility

Some of the considered use cases illustrate the use of flexibility in software modelling,
which can be seen as a generalisation of the two concepts fault-tolerance and uncertainty.

Motivating examples for flexibility with respect to metamodel conformance are pro-
posed in co-evolution scenarios. When keeping class diagrams and relational databases
consistent [KEKT15], refactorings on the metamodel make it necessary to adapt the trans-
formation definition and the models, which should comply to this modified metamodel.
As common examples for refactorings, deleting or moving attributes to other classes, in-
troducing inheritance relations, or renaming references are listed.

In a similar setting, a family register is to be kept consistent with a persons regis-
ter [SB16], such that, for example, the first and last name of a family member should
be consistent with the full name of the corresponding person. When the metamodel is
adapted, e.g., by adding a nickname attribute to the family member or by fusing first
and last name, it is useful to relax the conformance relation by (temporarily) deactivating
type or cardinality checks.

Especially when working with EMF, co-evolving metamodels introduce problems and
additional effort for the persons involved, which is illustrated by a small case study mod-
elling the network infrastructure of an office, including all shared gadgets such as scanners,

2. State of the Art: Fault-Tolerance in MDE 31

photocopiers and fax machines [RKPP09]. As the EMF editor always enforces strict meta-
model conformance, it is not possible to work with models conforming to older versions of
the metamodel. A common workaround is the trial-and-error strategy of loading a model
to get an error message from EMF, and then attempting to fix this error directly in the
XMI document, obviously a tedious and error-prone task.

To model flexibility in software processes, the Eclipse Process Framework Composer
(EPFC) was extended to ease the collaboration of the involved persons [MVDO0S8]. The
process engineers propose a flexible work-flow, which can be adapted by other participants
in a second step.

2.6 Benefits and Challenges

To investigate the third research question, arguments were collected that support or ques-
tion the use of fault-tolerance or uncertainty. As benefits and drawbacks differ, the two
concepts were analysed separately. More general arguments, which deal with more flexi-
bility in software engineering, concern both concepts and are discussed afterwards.

Fault-Tolerance

A range of benefits resulting from tolerating inconsistencies to some extent was identified
during the SLR.

In some application scenarios, such as distributed software systems, fault-tolerance is
required to achieve availability and partition-tolerance [HDH10,HMO05,Dec11,Bal91]. Sim-
ilarly, being able to handle inconsistencies is essential due to the modularity of applications
and data sources in modern software systems; faults can easily occur when composing
building blocks in a new way, even if each module is implemented correctly [FYCL09,
DMOS]. A frequently mentioned point is that temporarily tolerating inconsistencies can
ease the work-flow for system designers and testers as a fault-tolerant Integrated Devel-
opment Environment (IDE) does not enforce the restoration of consistency before further
modelling steps can be performed [VGH"12,PK04,PBBT09,GZJ16,GdL18,JKT16,Egyl1,
SKE*14].

Usually, atomic changes such as graph edits can lead to inconsistent states in between,
which should be tolerated at least until the entire edit sequence is completed [KKE18,
Stel4, Decl1, YV00, GZJ16, VGE110, RE12b, VPM90, GAL18, dSOdR ™03, Egy11, NERO1,
KKE19]. From a practical point of view, improving consistency might be more helpful
than enforcing it strictly. Often, the restoration process requires multiple changes that can
each be regarded as an improving step towards consistency, while only the last one is able
to finally restore consistency [Stel4, Decll]. Furthermore, a detected fault often reveals
another problem, which might be the root cause of multiple other defects. Therefore,
information about inconsistencies is often more helpful than an automated fix that achieves
consistency [ELF08, Egy07b, KKE19].

In fault-tolerant systems, the number of automated changes can be decreased, which can
improve the tool’s trustworthiness for the designer [Stel4]. Even if automated changes are
the preferred way of resolving conflicts, their application often relies on a central authority
to define a policy for restoration steps. Especially when more than two models are involved,
it is in general not possible to declare one of the models as the authoritative one, or prefer
a certain type of changes over others due to, e.g., transitive consequences [Fril8, Stel8b].
It follows that, whenever a design decision is ambiguous, only the uncontroversial steps
can be fully automated - leading to a possibly inconsistent state - before the user must
participate in resolving the remaining inconsistencies [Stel4, EDG*11,XHZ"09).

32 2.6. Benefits and Challenges

Another set of arguments refers to weaknesses of fixing-procedures. To maintain an
acceptable level of efficiency, many approaches apply local fixes to restore consistency.
This means that mechanisms do not have a global view on the modelled system, and local
fixes can have side-effects that are not monitored by the tool [EDGT11,Egy07a, HHR"11].
Consequently, these fixes might introduce new inconsistencies, which are often hard to
detect, and which have to be fixed at a later point [Decll, Egy07a, ELF08, KR07, Egy11,
KKE19, HHR"11]. As multiple stakeholders are involved in the modelling of complex
systems, their requirements can be contradictory. Without being able to tolerate these
defects for a while, the modelling process gets stuck at this point and requires an instant
resolution [DC16,Egy06]. Last but not least, the consistency check itself can be erroneous,
such that the respective tool finds false positives. While it is undisputed that the fault has
to be removed, fault-tolerant behaviour could again ease the continuation of the modelling
process [Red11].

Despite this long list of advantages, many authors argue against involving fault-tolerance
in system design. It is questionable how long and to which extent inconsistencies should
be tolerated, because a large number of factors have an influence on the value of fault-
tolerance in a specific use case [HDH10, PBBT09, BMMMO08, Egy07a, KKD*17, ECK06].
Certainly, one should not lose track of the goal of eventually restoring consistency. Assum-
ing that it is always possible to fix inconsistencies at a later point, this might still involve
additional effort and thus a higher cost [Egy07b, Egy06, RE12a, SCH12,HTJ92, KKE19].

On the one hand, when consistency should eventually be restored, the developer might
be confronted with so many faults at once that they are overwhelmed. On the other hand,
faults might be caused by changes that occurred so long ago, that design decisions have
to be completely revisited [Egy06]. As developers are usually willing to fix faults as soon
as they are noticed, they will probably do the same when they detect inconsistencies that
could actually be tolerated by the system. This means that such a tool’s potential for sup-
porting fault-tolerance will probably be ignored by its users [KPP08a]. Also, performing
operations (e. g., model transformations) on inconsistent models likely introduces further
faults [KKE19]. Finally, many tools for model management are based on formal methods,
which are not yet compatible with fault-tolerant concepts [DMOS].

Uncertainty

An important argument for modelling with uncertainty is that it represents real-world sce-
narios more accurately. The input data and the behaviour of CPSs and adaptive systems
is imprecise, e.g., their sensors and actuators provide the system with imprecise data,
and this should be reflected in a model of the system [KCT*15 MWV16, GC08, VMO16,
CBGS18,PK19,BLC18,AY15,CGSB17,EM10]. Similarly, information might not be avail-
able in distributed systems, or not accessible due to security restrictions or authentication
problems [GHYZ11].

In software and requirements engineering processes, uncertainty plays an important role,
especially in early phases. When designing complex and widely heterogeneous systems,
multiple stakeholders are involved, whose understanding of the final result may be incom-
plete [HWF13,FS10,FBDD"15,FS13,CBGS18,FSC12a,RCBS12,JBEM10,HT99,FSSC13,
DC17,Gar10,CR20,EPR14]. Additionally, this incomplete information makes it necessary
to continuously adapt the development process and the requirements [CSBW09, MSDOG,
SCH12, CBGS18, RCBS12, Garl0, FSC12b, SCG12]. Likewise, removing uncertainty too
early can force the designer to commit to premature decisions that can increase cost and
efforts to remove resulting faults later [FSSC13, EPR14], while ignoring uncertainty com-
pletely decreases the overall quality of the software [IFED09, EM10].

2. State of the Art: Fault-Tolerance in MDE 33

An obvious alternative to model uncertainty is to list each alternative value explicitly,
but this can quickly become infeasible. Uncertainty is an elegant way to encode alter-
natives and non-determinism, while still keeping models manageable [BEP*17, BCC™16,
EPR15, RE13]. Indeed, uncertain values are probably easier to maintain than a large
set of alternatives [BCCT16, GPST13]. In case some design choices are more likely to be
applied than others, uncertainty is also useful to express these varying probabilities quan-
titatively [ORS09]. From a practical point of view, uncertainty is often indirectly added
to models via informal annotations in case its direct expression is not supported. There-
fore, enabling the designer to model uncertainty in the given formal notation improves the
verification and validation of such models [SCG12].

Handling uncertainty, however, can also increase development cost as the encoded set of
alternatives - which takes all possible combinations of values into account - can be much
larger than the set of possible options in practice [CSBW09,HT99,IFED09]. Following the
same argument, the model space grows exponentially with the degree of uncertainty, which
can cause performance problems for larger model sizes [ORS09, FSC12a, EM10]. Even
though uncertainty is an appropriate way of expressing probabilities, it can be difficult
to realistically quantify uncertainty measures, as empirical tests for these measures are
often missing or cannot be conducted at all [ORS09,EM10]. Finally, operations on models
are usually designed for single models, whereas uncertain models encode a whole set,
restricting the applicability of standard tooling [FSC12a].

Flexibility

It is possible that multiple consistent solutions exist, which deviate in their quality. As it
is hard to specify which solution should be taken, the system should provide the flexibility
to let the user make this final decision [WXH'10]. To keep the complexity of a system
manageable, software is usually developed with an idealised environment in mind. How-
ever, the system is also expected to react robustly to environment changes and unforeseen
circumstances at runtime [FHA17, WGP09, HT99, HFS'15]. In application domains such
as product line engineering, “hard constraints” can reduce the potential of the modelling
language and therefore restrict the scope of action for the designer [BM14,Aqu09]. In the
area of model-metamodel co-evolution, some flexibility is necessary for a modelling tool to
be appropriate for practical use. The temporary loss of metamodel conformance should
not lead to a situation where the model cannot be modified or even loaded in the respec-
tive editor [RKPP09, HS17, Hil16, AGF15, HKB16, ZCM*16,SB16]. Finally, the result of
a model transformation is often not unique, requiring a flexible encoding [CK13, EPR14].

A few arguments can also be found that question the benefits of flexibility. As tools
are typically not built by the intended users, the developer might have a different under-
standing of flexibility, such that the user may ignore or even disregard any support for
it [HWF13]. The more flexibility is added to a system, the more complexity is involved
as well, which can end up in a misinterpretation of functionality or a loss of overview
while developing and maintaining the tool [SZ04, FGdL12,FS13] Finally, in case of faults
and other inconsistencies, software developers are currently used to instant feedback from
IDEs for General Purpose Languages (GPLs), and will probably expect similar behaviour
from modelling tools. Transitioning to fault-tolerant tooling will therefore require a cer-
tain retraining of users to ensure acceptance, and it is still unclear how challenging this
will be in practice [Egy06].

In summary, various arguments for adding fault-tolerance, uncertainty or flexibility to
software models have been identified in the scope of this SLR, further motivating the
development of a fault-tolerant consistency management framework.

34 2.7. Result Analysis

2.7 Result Analysis

This section provides an overview of aggregated meta-data of the considered sources, before
directions for future research are sketched, which can be motivated by this SLR.

The distribution of all sources in the database, i.e., all core papers and all sources
cited by them, is depicted in Fig. 2.6, whereby ten sources published before 1975 are not
captured in the diagram. In total, 268 core papers, 1146 other papers at SE venues and
2055 other sources were found in the initial search step. The median (mean) publication
year is 2010.5 (2009.78) for core papers, 2007 (2005.87) for other papers at SE venues and
2006 (2004.35) for the remaining sources. It follows that filtering the additional sources
was necessary to keep the amount of work manageable, and also that being published at a
venue listed as research area 0803 (software engineering) is a useful indicator for increased
relevance; at least one third of the additional sources was published at such a venue. The
differences between core papers and other sources with respect to the average publication
year can be explained by the applied snowballing technique, by which only sources released
prior to the initial source can be found. Furthermore, the set of sources published at non-
SE venues include standard references in form of books and journal articles, which is
probably the reason why the papers from SE venues are slightly newer on average.

200

Other
150 B Software
Engineering
w
g 100 B Core
©
o
* 50
0

1980 1990 2000 2010

Publication Year
Figure 2.6: Number of sources per year

When taking only those sources into account that were later identified as being relevant
for answering the research questions, the majority of sources originates from the set of
core papers (cf. Fig. 2.7). Besides 114 of the core papers, 23 papers published at SE
venues and 20 other sources were classified as relevant. Compared to the full corpus,
the relevant papers are newer on average: The median (mean) publication year is 2011
(2011.05) for core papers, 2012 (2011.08) for publications at SE venues, and 2012 (2011.29)
for the remaining relevant sources. An explanation can be that the search terms are
used in a different meaning more frequently in older sources, according to our experience.
Furthermore, as the research field MDE became popular along with the emergence of the
UML in the late 1990s, sources published before can only be relevant for our purposes if
they describe transferable concepts or examples from other domains.

Table 2.3 gives an overview of the number of relevant papers per venue, listing those
venues with at least four relevant papers. As this SLR deals with a subtopic of MDE,
finding the MODELS conference at the top of the ranking is a result one would expect.
Five papers published at co-located events were relevant for this SLR as well. ICSE and
ASE as two top-ranked SE conferences in the list underpin the topic’s relevance for a

2. State of the Art: Fault-Tolerance in MDE 35

15 Other
B Software

10 Engineering
[%2]
5 @ Core
Q.
g
iy 5

0 \/_

1990 1995 2000 2005 2010 2015

Publication Year

Figure 2.7: Number of relevant sources per year

broader audience. The appearance of important conferences for more specialised research
fields, such as requirements engineering (RE), software language design (SLE) and soft-
ware testing (ICST), shows that fault-tolerance concerns the entire software development
process. The remaining well-known SE venues COMPSAC, SEKE, APSEC and FASE
complete the list of venues with 4 or more relevant papers. Overall, the list of venues
makes us confident that a topic of noticeable importance is successfully targeted by the

conducted SLR.

Rank Acronym Venue #
1 MODELS Model Driven Engineering: Languages and Systems | 20
2 ICSE International Conference on Software Engineering 15
3 COMPSAC | Computer Software and Applications Conference 10
4 ASE Automated Software Engineering 8
5 SEKE Software Engineering and Knowledge Engineering 7
6 FASE Fundamental Approaches to Software Engineering 6
7 APSEC Asia-Pacific Software Engineering Conference 5
7 RE Intern. Conference on Requirements Engineering 5
7 - MODELS Satellite Events 5
10 SLE Software Language Engineering 4
10 ICST International Conference on Software Testing 4

Table 2.3: Top 10 conferences by number of relevant papers

2.8 Solution Approach

Although many thorough definitions, useful examples and convincing arguments for fault-
tolerance in MDE could be extracted as a result of this SLR, a need for further research
became apparent simultaneously. As fault-tolerance was mostly defined intuitively, an
extended formal framework (e. g., for temporarily softening domain constraints) would be
helpful to prove properties of fault-tolerant systems. This includes quantitative measures
for (in)consistency, as well as quality criteria for the intermediate and final solutions to
assess the utility of proposed approaches.

Up to now, it remains also unclear when exactly consistency shall be restored, up to
which point faults can be tolerated, and how to deal with conflicting changes that were

36 2.8. Solution Approach

made in the meantime. Consistency restoration is a non-trivial problem because removing
faults from one model can introduce other faults in different places of the other model.
Further studies could show to which extent user interaction is required to resolve such
conflicts, and which restoration actions can be performed automatically. Several authors
pointed out that some faults are too serious to be tolerated, but still strategies are needed
to assess the severity of errors in a model, though.

While model transformations in presence of uncertainty are already investigated, fault-
tolerant consistency management is still a widely unsolved issue in the context of MDE.
Although fault-tolerance and uncertainty could be differentiated in spite of their common
goal of making model-based software development processes more flexible and applicable,
it would be useful to specify which of the two concepts is more helpful in which particular
scenarios.

Finally, the review has shown that there are indeed realistic use cases for applying fault-
tolerant concepts in MDE. However, we could not identify an example that convincingly
demonstrates how model transformations and other consistency management tasks can be
performed in the presence of faults.

The identified need for further research motivates the development of a fault-tolerant
consistency management framework, which will be presented in detail in the remainder of
this thesis. A brief overview of the solution shall be presented at this point already. Based
on the feature models of Sect. 2.4, the proposed solution is classified in terms of existing
research on fault-tolerant consistency management. The underlying notion of consistency,
which the approach presented in this thesis is based on, is depicted in Fig. 2.8. Features
which are used in the approach are highlighted with a bold border, whereas unused features
are greyed out.

~ Application o ~ o O
X O :
Constraint- Transfor- Scenario Intra- Inter- Model-

Based i

Constraints
mational Model Model Metamodel

O O O O Co-Evolution
OCL Q Construction Q ipliciti

Multiplicities
S Goal-Oriented
O Propositional Modelling

& comportion)
O First-Order O CPS Modelling Q Typing
O SMT OFeature Modelling O Static Semantics

["ege"d @ Mandatory Feature O Optional Feature (_Abstract Feature] (CConcrete Feature] @ or L/ XOR]

Figure 2.8: Features of the proposed solution with respect to consistency

First, the specification of consistency plays an import role. As one can see in the
left branch of Fig. 2.8, our consistency specification consists of multiple building blocks.
Constraints can be specified in form of graph patterns, which consistent models have to
conform to. Furthermore, TGGs as a formalism for defining BX are the transformational
part of the specification. Declarative rules describe how to construct consistent triples,
and thereby forming the consistency relation. Technically, rules, constraints, and their
interdependencies are encoded as a optimisation problem, i.e., an ILP. As the used
variables are all binary, we are able to specify linear constraints for the ILP which are
equivalent to formulae in propositional logic.

2. State of the Art: Fault-Tolerance in MDE 37

Second, the scope of our consistency definition is relatively wide: Both intra- and inter-
model consistency are covered, meaning that the approach can detect faults both in a
single model and in the interplay of multiple models. Additionally, model consistency is
dependent on the relation between models and metamodels. From the range of aspects such
a model-metamodel relation can have, the solution approach will take multiplicities and
typing into account. The consistency definition can be further enriched with constraints
that cannot be directly derived from the metamodel.

The notion of consistency enables us to sketch how fault-tolerance is implemented in our
approach. An overview of which features of fault-tolerant MDE are considered is provided
in Fig. 2.9. A first important aspect is the relaxation of constraints: The requirement of
getting fully consistent input models is dropped, such that the consistency management
engine must be able to compute a solution for inconsistent inputs as well. The idea is to
show the remaining faults to the user, but not to enforce an immediate fix. The user should
be aware of existing faults, but should be enabled to continue working with a tentative
solution and fully restore consistency at a later point. From this perspective, the approach
can be considered as semi-automated: The engine can solve a consistency management
task without further user interaction, but the user can (re-)start the process multiple
times with different model versions, taking the feedback from previous runs into account.
In total, the fault-tolerant system behaviour should ease the work-flow and increase the
acceptance of TGG-based consistency management in practice.

Fault-Tolerant MDE

O Delayed Fixes]

Involvement

O

(O Case-Based

Relevance- }

Based
Measure-
Based

["ege"d @ Mandatory Feature O Optional Feature (_Abstract Feature) (CConcrete Feature] @ or \J XOR]

. .
Constraint-
Related

O Relaxation]

O Automated } Ease the Workflow

O Ranking O Detect Real-World Conflicts

Inconsistency}

Semi-
Threshold Automated

O Weighting

O User-Centric

ORethink Premature Decisions }
O Indicate Misunderstandings }

Figure 2.9: Features of the proposed solution with respect to fault-tolerance

2.9 Summary and Discussion

We presented the results of an SLR on fault-tolerance in MDE, which took 157 relevant
sources into account. The key terms consistency, fault-tolerance, and uncertainty were
defined and represented in feature models, such that salient differences and commonali-
ties between fault-tolerance and uncertainty could be pointed out. Typical use cases for
fault-tolerant and uncertain modelling were sketched, and benefits and challenges of the
respective concepts were discussed. To ease the reproducibility of our results and to sup-
port future SLRs in computer science, we proposed a model-driven tool chain based on
open-source components under active development.

The scope of the SLR can be reasonably extended in future studies: Although many
relevant journal articles and workshop papers were identified by the snowballing step, these
venues could already be included in the initial search step as well. Since the CORE2020

38 2.9. Summary and Discussion

journal ranking” was recently made available, we plan to extend the literature review
towards journal papers following the search strategies presented in this chapter. To the
same end, other research databases could be considered as well.

Motivated by the identified need for further research, a TGG-based framework for
fault-tolerant consistency management is proposed in the remainder of this thesis. To
demonstrate the different concepts, the introductory example of maintaining consistency
between the semi-formal language SysML and the formal language Event-B is continued.
With this example, we were able to demonstrate Stevens’ arguments for tolerating incon-
sistencies [Stel4] in the introduction (cf. Chap. 1). Furthermore, the consistency relation
between these two languages is of practical relevance for systems engineering problems:
In Chap. 11, it will be shown how a TGG-based model transformation tool chain can be
applied for system verification and validation in the railway domain. The next chapter will
introduce the languages of the running example and the TGG formalism to form a basis
for presenting the fault-tolerant consistency management framework in the subsequent
chapters.

http:/ /portal.core.edu.au/jnl-ranks/

http://portal.core.edu.au/jnl-ranks/

3 Modelling Software Systems: Languages
and Transformations

In this chapter, the basic language constructs of SysML and Event-B are introduced, which
have been used to provide a first intuition for the problem area of this thesis in Chap. 1.
The example originates from a real-world case study, in which these two languages are
used to engineer safety-critical systems at DB Netz AG, an infrastructure manager of the
German railway system (cf. Chap. 11). The following chapters will use a BX between
these two languages to demonstrate the proposed concepts for fault-tolerant consistency
management, because from our point of view, the examples presented in Sect. 2.5 are less
suitable in the context of different consistency management operations.

SysML can be considered as a de-facto standard in the systems engineering domain.
Similar to the UML, SysML offers structural and behavioural diagrams, whereby we will
restrict ourselves to a language subset that is sufficient to describe basic SysML state
machines. Event-B, in contrast, is a formal language for verifying and validating safety-
critical properties of a system via invariants and theorems. Also for Event-B, only the
basic language constructs of behavioural state machines are considered.

In order to formally describe the consistency relation between the two languages, TGGs
are chosen to be used in the course of this thesis. TGGs are a well-known rule-based
approach to bidirectional transformations in MDE, and are used in various application do-
mains such as synchronising textual [KKS07] or visual [GdLO06] software languages. TGGs
were also used in industrial projects, e. g., to synchronise AUTOSAR and SysML [GHN10],
or to automatically translate satellite procedures [HGN'13]. To represent the consistency
relation, a third correspondence model is introduced to map semantically related elements
of the two other models to each other. The main advantage of TGGs is that different op-
erations like model transformation, model synchronisation and consistency checking can
be performed using the same underlying specification.

The remainder of this chapter is structured as follows: The two languages of the running
example of this thesis, SysML and Event-B, are introduced in Sect. 3.1 and 3.2, before a
brief overview of the fundamentals of algebraic graph transformation and TGGs is given
in Sect. 3.3. Section 3.4 summarises the main results and motivates the introduction of
further TGG language features in Chap. 4.

3.1 SysML: A Semi-Formal Language

SysML was developed from UML as a general purpose language for MBSE [HP19]. It
can be regarded as both an extension and a restriction of UML including nine diagrams
subdivided into structural (block definition diagram, internal block diagram, package dia-
gram), behavioural (use case, activity, sequence, and state machine diagram), requirement
and parametric diagrams. SysML is a primarily visual modelling language and aims to
be easily understood by system engineers. It has gained popularity in different fields such
as aerospace, defence, and medical industries [HP19]. While the SysML specification pro-
vides nine diagrams in total, we restrict ourselves to the transformation of state machine
diagrams in the scope of this thesis. In the following, we introduce the relevant concepts

40 3.1. SysML: A Semi-Formal Language

of SysML by an extended version of the motivating example for multiple synchronisation
solutions (cf. Sect. 1.1).
The example state machine is shown in Fig. 3.1.

As a basis, the second option depicted in Fig. 1.4a MaChine)
is chosen, which implements the condition that the
variable finish should have the value FALSE be- .
fore leaving the start state as a guard. Furthermore,
a trigger is added to the transition that requires when (exec — TRUE
the variable exec to be TRUE, which might be nec- [finish = FALSE]
essary if the state machine waits for an execution / finish := TRUE;
command from outside the system. In the follow-

ing, the relevant language constructs of SysML will
be presented in brief.

Figure 3.1: SysML state machine

State Machine and Region

In SysML, there are two types of state machines: Behavioural state machines describe
the behaviour of subsystems, whereas protocol state machines define valid interaction
sequences, denoted as protocols. For defining the transformation to Event-B, the focus is
set on behavioural state machines.! The state machine of Fig. 3.1 is an example for a
behavioural state machine, identified by its name on the top left. A state machine can
consist of multiple regions, while only one region is necessary for this example.

State

A state models a situation in the execution of a state machine, during which some invariant
condition holds. States are also considered the fundamental building blocks of the state
machine. In each active region, at most one state can be assumed at the same time. States
can be subdivided into simple, composite, and sub-machine states; only simple states are
relevant for the scope of this thesis. Simple states do not have any sub-states, regions
or internal transitions. Simple states can either be atomic or final states. While atomic
states have no special meaning, final states, when active, indicate the completion of their
parent region, i.e., the admissibility of a given input sequence. Figure 3.1 depicts two
simple states (START and STOP), which are both atomic.

Pseudo-State

The difference between a state and a pseudo-state is that the latter cannot be assumed
by the state machine. Pseudo-states are typically used to connect multiple transitions
into more complex paths. For example, a fork pseudo-state with a single incoming and
multiple outgoing transitions can be regarded as a compound transition that leads to a
set of orthogonal target states. Pseudo-states can be classified as initial states, junctions,
choices, forks and joins, entry and exit points or history states. In the scope of this
example, we restrict ourselves to initial states, whereby an extension towards other pseudo-
state types is possible. In a region, there can be at most one initial state present. The
initial state has only outgoing but no incoming transitions. The outgoing transitions of
the initial state cannot trigger any event and have no guards. An initial state is depicted
as a small solid filled circle (cf. Fig. 3.1).

!To distinguish state machines from the eponymous diagram type of the UML, they are also referred to
as SysML state machines.

3. Modelling Software Systems: Languages and Transformations 41

Transition, Event, Effect, Trigger, and Guard

A transition in a state machine is a directed association between a source state and a
target state, and can be expressed in the following form:

transition ::= [trigger] [guard]['/'effect]

In Fig. 3.1, two transitions are depicted as arrows between the three states. An optional
trigger can be used to specify an event that induces a state transition. An event is a
notable occurrence at a point in time that causes a reaction of the state machine. These
reactions lead to an execution step of the modelled behaviour. For example, a signal event
may trigger a transition of a state machine. In Fig. 3.1, for instance, exec triggers the
transition from START to STOP. An optional guard specifies additional constraints as a
boolean expression. The transition from START to STOP in Fig. 3.1 can only be fired if
the variable finish has the value FALSE. An optional effect is an action to be executed
when its transition fires. While effects are sufficient for our current considerations, further
action types such as entry, exit, and do actions can be added as an extension of the
transformation. Considering the running example of Fig. 3.1, the variable finish is set
to TRUE as an effect of the transition from START to STOP.

Port

Ports are interfaces via which external entities can connect to and interact with the spec-
ified system. In the running example, the state machine receives the instruction whether
to execute the transition from START to STOP via the port exec. The port £inish, in
contrast, is rather used as an output signal to indicated whether the STOP state is already
reached. Ports are often used to trigger events. In state machine diagrams, they lack a
distinguished visual symbol and are simply represented as textual variables in triggers,
guards or actions.

3.2 Event-B: A Formal Language

Even though SysML is appropriate to describe the behaviour of the state machine, it
is not possible to verify safety-related properties, due to its lack of a formal semantics.
In the context of the industrial case study, this is important to verify and validate the
constructed system models, which motivates us to establish a BX between SysML and the
formal language Event-B. An overview of the relevant syntactic constructs of the Event-B
language is provided in the following.

Event-B is a formal method for system level modelling and analysis.? Its key features
are the use of set theory as a modelling notation, defining a system at different levels of
abstraction via refinements, and the verification of formal properties via theorems and
invariants [AHO7]. In the following, the language constructs which are relevant for the
transformation of SysML state machines are briefly presented.

Machine, Variables, Events

In Event-B, a machine defines the behavioural properties of the model. Each machine
is composed of variables (v), invariants (I(v)), and a collection of transitions denoted
as events (cf. the schematic example® depicted in Fig. 3.2). There are further optional

2http://www.event-b.org/
3 Adapted from http://deploy-eprints.ecs.soton.ac.uk/11/3/notation-1.5.pdf

http://www.event-b.org/
http://deploy-eprints.ecs.soton.ac.uk/11/3/notation-1.5.pdf

42 3.2. Event-B: A Formal Language

building blocks annotated with a * in Fig. 3.2: A machine can refine another machine and
be embedded into one or more contexts. Refined machines have an additional variant block
containing an expression that is unique for the machine. Theorems R(v) are additional
properties that must be derivable from the set of invariants I(v). For each theorem, a
proof obligation is generated to prove that the theorem is derivable from the invariants,
i.e., I(v) - R(v) [Hoal3]. As the mandatory components are sufficient for describing the
running example, we will now describe them in the remainder of this section.

MACHINE EVENTS
<machine_identifier> <label> =
REFINES =« STATUS
<machine_identifier> <status>
SEES « WHEN
<context_identifier> <label> : <guard>
VARIABLES THEN
<variable_identifier> <label> : <action>
INVARIANTS END
<label> : <predicate> S
e VARIANT =«
THEOREMS <variant>
<label> : <predicate> END

Figure 3.2: Event-B: Schema for machines

The set of variables v defines the current state of an Event-B machine, and is used in
several other language constructs. For the running example, four boolean variables are
required (cf. Fig. 3.3): For the current state of the state machine (START, STOP) and for
the signals to communicate with the system’s environment (exec, £inish), one boolean
variable per signal is required. The variables for the states indicate whether the machine
currently assumes the respective state or not.

MACHINE
Machine
VARIABLES
START
STOP
exec
finish
END

Figure 3.3: Event-B: Machine with variables

Invariants

Invariants I (v) define constraints which have to hold at any time, i. e., in each possible state
of the machine. They can involve one or more variables forming an expression in first order
logic. Each invariant has a label, followed by a colon and an expression. In Fig. 3.4, the
invariants typeof_START, typeof_STOP, typeof_exec, and typeof_finish define
the data types of the respective variables, which is BOOL in this case. In contrast to
SysML, it is possible to type variables, which makes it possible to restrict the set of legal

3. Modelling Software Systems: Languages and Transformations 43

values that these variables can assume. This is important to, e. g., ensure that each state
machine assumes exactly one state at a specific point of time.

INVARIANTS

TYPEOF_START :

TYPEOF_STOP :
TYPEOF _exec :

TYPEOF _finish :

START € BOOL
STOP € BOOL
exec € BOOL
finish &€ BOOL

Figure 3.4: Event-B: Invariants

Events, Guards, Actions

As a machine specifies the dynamic behaviour of an Event-B model, events are essential
to trigger changes from one machine state to another. Events involve a set of variables v
and parameters z for these variables. An event e occurs in some state, if there exists some
value for its parameter x such that the guard G(x,v) holds in that state. In Fig. 3.5, there
is one event that describes that if the machine passes from the state START to STOP, the
variable finish is set to TRUE. To fire this transition, the machine must be in the state
START (1sin_START) and the variable £inish must be FALSE (guardl). Furthermore,
an execution command must be given from outside to pass to the other state (triggerl).
These three conditions represent Event-B guards of the event. Actions describe how state
variable values change when an event occurs. Similar to a guard, an action Q(z, v) involves
parameters x and variables v. As soon as the event occurs, the specified values are assigned
to the respective variables. Each assignment is identified by a label (cf. Fig. 3.5). In case
of the COMPLETION event, the variable finish is set to TRUE, and the variables START
and STOP flip their values. All guards are contained in a block following the keyword
WHEN, the actions are surrounded by the keywords THEN and END.

EVENTS

COMPLETION =

STATUS
ordinary

WHEN
isin START : START = TRUE
triggerl : exec = TRUE
guardl : finish = FALSE

THEN
leave START : START := FALSE;
enter STOP : STOP := TRUE;
actl : finish := TRUE;

END

Figure 3.5: Event-B: Completion event

There are also events that do not have a guard, i.e., only consist of an action block.
In our example, the initialisation event brings the state machine into the state START in
the beginning, as depicted in Fig. 3.6. Syntactically, the WHEN block is omitted, and the
keyword THEN is replaced by BEGIN. As the name already suggests, this event initialises all
involved variables with their start values. Only the variable for the current state (START)
is set to TRUE, all other variables receive FALSE as initial value.

44 3.3. Bidirectional Model Transformations with TGGs

EVENTS

INITIALISATION =

STATUS
ordinary

BEGIN
init START : START := TRUE;
init STOP : STOP := FALSE;
init exec : exec := FALSE;
init finish : finish := FALSE;

END

Figure 3.6: Event-B: Initialisation event

In total, it is possible to define global constraints in Event-B that must hold at any
point of time using invariants or theorems (which have not been presented as they are not
part of the transformation). For verifying the system behaviour, appropriate constraints
can be specified and checked in Event-B, which is not possible for SysML state machines.
In the next section, we will see how a BX between these two languages can be established
with help of TGGs.

3.3 Bidirectional Model Transformations with TGGs

In the scope of this thesis, we define inter-model consistency by means of TGGs. TGGs
are a declarative rule-based approach to bidirectional model transformations, which is
frequently applied in MDE contexts [CFH109]. A source and a target model (in which
these are interchangeable) are represented as typed attributed graphs. The consistency
relation is expressed as a correspondence graph, which links elements of the source graph
to the target graph.

Based on the original specification by Schiirr [Sch94], the formalism was continuously
enhanced with further language features (cf. Chap. 4) to meet the requirements of be-
ing applied to practical use cases [ALS15]. After identifying semantically interrelated
constructs in both languages, the TGG formalism can be used to maintain consistency
between SysML and Event-B models in a semantics-preserving manner.

In this section, the fundamentals of TGGs are formally defined and illustrated with
concrete examples in the context of the previously introduced running example. The
TGG formalism builds upon graph transformation, a means of specifying the behaviour
of systems based on graph structures. While applications in other research fields exist
(cf. [HO19] for a recent example in the biology domain), graph transformations are used
in computer science to define the dynamic semantics of software systems. In the scope of
this thesis, the algebraic approach to graph transformation is used, which uses category
theory to define graphs and specify operations on them. Basic definitions are taken from
Ehrig et al. [EEPTO06] in an adapted version, which we also refer to for further background
information about the category of graphs.

To begin with, graphs as the central data structure of the TGG formalism are defined
in Def. 3.1. Graphs are used to formally represent models of the software system. In our
formal framework, they can be connected by graph morphisms, i.e., structure-preserving
maps of one graph to another. These mappings can, e. g., be used to describe transitions
between system states.

3. Modelling Software Systems: Languages and Transformations 45

Definition 3.1 (Graph (Morphism)).

A graph G = (V,E, src,trg) consists of a set V' of nodes (vertices), a set E of edges,
and two functions src,trg : E — V that assign each edge a source and target node,
respectively. Given graphs G = (V, E, sre,trg), G' = (V',E' srd ,trg’), a graph mor-
phism [: G — G consists of two functions fy : V. — V' and fg : E — E' such that
src; fv = fgisrd and trg; fv = fg;trg’. The ; operator denotes the composition of

functions: (f ;g)(x) := g(f(x)).

Definition 3.1 can be lifted in a straightforward manner to triple graphs and triple
morphisms. A triple graph connects a source graph and a target graph via a correspondence
graph. The correspondence graph indicates which elements of source and target graph are
semantically interrelated, expressed by a correspondence link in between. Source and
target graph are interchangeable, such that we choose the SysML model to be the source
graph and the Event-B model to be the target graph for the remainder of this thesis, while
the opposite choice would be possible just as well.

Definition 3.2 (Triple Graph (Morphism)).
A triple graph G = Gg L Ge 8 Gr consists of graphs Gg, Go, Gt and graph morphisms
vs : Go — Gg and yr : Go — Gr. elem(G) denotes the union elem(Gg) U elem(G¢) U

elem(Gy). A triple morphism [: G — G with G' = Gl & G, 5 Gy, is a triple f =
(fs, fo, fr) of graph morphisms where fx : Gx — G'y, X € {S,C,T},vs; fs = fo ;75
and vt ; fr = fo ;vp-

A first example for a triple graph is shown in Fig. 3.7. It covers only a small subset of
the introductory example of Sect. 3.1 and 3.2, but is sufficient to demonstrate the building
blocks of triple graphs according to Def. 3.2. The source, correspondence and target graph
are depicted in this order from left to right. The source graph consists of three nodes,
i.e., a state machine sm, a region r and a port p, as well as two edges that connect sm to
the other two nodes of the source graph. The target graph also consists of three nodes,
namely a machine m, a variable v and an invariant i, and two edges connecting m and the
other two nodes. In between the two graphs, the nodes of the correspondence graph are
depicted as hexagons, which are connected to the nodes of the source and target graph
that shall correspond to each other?. There is, however, no 1:1 mapping between source
and target nodes: The port p corresponds to both the variable v and the invariant i,
whereas the region r does not have any corresponding target node.

Up to here, we defined (triple) graphs based on the involved sets of nodes and edges, but
treated each of the two sets as a uniform collection of elements. However, it was necessary
to use additional information for describing the triple graph of Fig. 3.7 in a reasonable way:
A type was assigned to each node and edge to state that, e. g., smis a Statemachine and
p is a Port and not the other way round. Formally, typing information can be introduced
by demanding a type (triple) morphism to a chosen type (triple) graph. In the following,
all (triple) graphs and (triple) morphisms are assumed to be typed unless explicitly stated
otherwise.

Definition 3.3 (Typed Triple Graph (Morphism)).

A typed triple graph (G,type) is a triple graph G together with a triple morphism
type : G — TG to a distinguished type triple graph TG. A typed triple morphism
f + G — G'is a triple morphism f : G — G with type = f;type’, where G =
(G, type),G' = (G, type’).

4By definition, the nodes of the correspondence graph can also be connected via edges. As this option is
not used within this thesis, we restrict ourselves to correspondence graphs that only consist of nodes.

46 3.3. Bidirectional Model Transformations with TGGs

| | 4
N Ge | — Gy N\
Ys Yr
sm : Statemachine m : Machine
: Sm2M N\
name : "Machine" name : "Machine"
ports variables
Y Y
p : Port v : Variable
: P2V
name : "finish" \ name : "finish" invariants
regions \ \ 4
N i : Invariant
(_,| " Region \<= P2l name : "TYPEOF _finish"
T redicate : "finish e BOOL"
\ name : "main / \p
J

Figure 3.7: Triple graph instance

As already mentioned, (typed) graphs are a form of representing models of a software
system. In this regard, type graphs assume the role of metamodels: A model G is an
instance of a metamodel TG, if there exists a mapping type : G — T'G that assigns each
element of G a type of the type graph T'G. Figure 3.8 depicts the relevant excerpt of the
SysML metamodel for state machines to the left, the Event-B metamodel to the right, and
the mapping in form of correspondences, forming the triple metamodel for the running
example that is used, e.g., to type the triple graph instance of Fig. 3.7. To improve
readability, only multiplicities different from 1 for the source and 0. .« for the target of
an association are depicted.

The Statemachine class defines the primary behaviour of the modelled system and
consists of Regions and Ports. The Event-B Machine, which consists of Variables,
Invariants and Events, has the same purpose, so these classes correspond to each
other. In the SysML metamodel, a Region consists of States and Transitions but
has no direct correspondence in the Event-B metamodel. The States of a SysML state
machine correspond to Variables in the Event-B model. As they can also be involved
in the definition of Invariants, correspondence links to this language construct are also
required. The same holds for Ports in SysML models, which are used for communica-
tion with external components. Invariants in Event-B specify the properties that a
Variable must satisfy before and after each Event. For example, the data type and
value ranges of variables that correspond to SysML States are specified by Invariants.

A Transition in SysML is annotated with Triggers, Guards and Effects, and
it represents the directed relation between a source and a target State. Activating a
Transition is similar to the occurrence of an Event in Event-B, thus these elements are
connected via a correspondence. An Event incorporates Guards to restrict its occurrences
and Actions that take place during the Event. Guards and Actions in Event-B thus
correspond to Triggers, Guards, and Effects in SysML as depicted in Fig. 3.8. In
Sect. 3.1, we made a distinction between States and Pseudostates, with the latter

3. Modelling Software Systems: Languages and Transformations

47

Statemachine

: Sm2M
name : EString
regions ports
: P2v
Region Port
-
name : EString name : EString 1 P2|
subvertex
1 S2v
State
name : EString
transitions : 821
1
Pseudostate
kind : EString
source target : T2E
| Transition
name : EString
guards
Guard triggers
name : EString & : G2G
body : EString
Trigger

effects

name : EString

body : EString

Effect

name : EString

body : EString

: E2A

Machine

invariants

name : EString

S

variables

Y

Variable

name : EString

Invariant

name : EString

predicate : EString

~

A

events

Event

name : EString

guards

Y

Guard

name : EString

predicate : EString

actions

Action

name : EString

action : EString

Figure 3.8: Triple metamodel: SysML to Event-B

48 3.3. Bidirectional Model Transformations with TGGs

being a subclass® of the former in the SysML metamodel. Pseudostates do not have
a direct correspondence in Event-B and do not need to be translated. Their adjacent
Transitions, however, correspond to Events (cf. Fig. 3.6), such that the semantics of
Pseudostates has an indirect influence on the Event-B model. Such details cannot be
expressed solely using the triple metamodel, however, as it is only used for typing model
elements and defining mappings between nodes of particular types. Instead, TGG rules
are used to fully specify the desired consistency relation between the languages, which is
presented next.

A (triple) graph morphism can be interpreted as a monotonic (triple) rule, used to
describe how to add structure to one (triple) graph to produce a new (triple) graph in a
single transformation step.

Definition 3.4 (Triple Rule).
A triple rule r : L — R is a monomorphic (injective) triple morphism.

The rule PortToVariable is depicted in Figs. 3.9 and 3.10 in two different notations. In
Fig. 3.9, the graphs L and R and the morphism r are directly visible. L and R represent
the left- and right-hand side of the rule, respectively, and r is a monomorphic arrow that
maps all elements in L to elements in R in a structure-preserving manner. Elements that
only appear in R are added when applying the rule, whereas elements that appear both
in L and R (also denoted as context elements) are expected to exist already before rule
application. The context elements in L and R are connected with dashed lines in this
visualisation. A statemachine sm and a corresponding machine m are required to exist
already in the host graph, such that a port p can be added on the SysML side, and linked
to a variable v and an invariant i of the Event-B machine.

4 sm: Statemachine ‘<Sm2|% m : Machine J

—

"\ sm : Statemachine m : Machine ——

é“

ports variables

Y \ 4

p : Port @ v : Variable

invariants

o i : Invariant €«—'
- /

Figure 3.9: Rule: PortToVariable

SInheritance for type graphs according to Def. 3.3 is not supported, but can be simulated by duplicat-

ing the respective nodes of the metamodel. We stick to a type graph with inheritance relations for
presentation purposes.

3. Modelling Software Systems: Languages and Transformations 49

The more compact visual notation for the rule PortToVariable is shown in Fig. 3.10.
The triple graphs L and R are merged into a single diagram, whereby created elements
and context elements can be distinguished by their colours and mark-ups: Green colour
together with a ++ mark-up indicates that the respective nodes and edges are created by
the rule application, while context elements are coloured black and do not have a mark-up.

PortToVariable

sm : Statemachine m : Machine —
ports ++ ++ | variables ++
++ ++ ++

p : Port @ v : Variable

++ ++

@ i : Invariant </

Figure 3.10: Rule: PortToVariable (compact notation)

invariants

Figure 3.11 shows another example for a TGG rule which creates a statemachine sm
in the SysML model, and connects it to an Event-B machine m via a correspondence
node. Furthermore, the rule adds a region r to the source model, which does not have a
corresponding language construct in the target model as we have seen in Figs. 3.7 and 3.8
already. In contrast to PortToVariable, the rule StatemachineToMachine does not involve
any context elements. Such rules are also denoted as axioms.

StateMachineToMachine

++ ++ ++

sm : Statemachine m : Machine
regions |++
++

r : Region

Figure 3.11: Rule: StatemachineToMachine

To actually apply a rule r on a triple graph G, a match m for the left-hand side L is
required. m is a triple morphism, which again maps all elements of L to equally typed
elements of G. The left-hand side L solely consists of context elements, which means that
these are expected to already exist in order to apply the rule r on a match m on the triple
graph. (Triple) rules are applied by constructing a pushout, which can be viewed as a
generalised union of (triple) graphs R and G over a common sub-(triple) graph L:

50 3.3. Bidirectional Model Transformations with TGGs

Definition 3.5 (Triple Rule Application).

A direct derivation G =2 G' via a triple rule r, is constructed L r R
as depicted to the right by building a pushout over r and a triple

monomorphism m : L — G called a match. A derivation D : lm PO lm'
G=G,=G Tlggl G1 T&;Q “&g” G, 1s a sequence of direct 1

r
derivations. We denote by D = {di,...,d,} the underlying set of G4> G,
direct derivations included in D.

By means of pushout construction, a new triple graph G’ is formed that shows the triple
graph instance after rule application. In Fig. 3.12, the pushout construction is illustrated
with a second application of PortToVariable on the instance of Fig. 3.7. Attributes and
typing information are omitted to improve readability. The specification of pushouts
ensures that G’ contains only one statemachine sm, i.e., the nodes of G and R are mapped
to the same node in G’, whereas this does not hold for the ports p1 of G and p of R, such
that two distinct ports exist in G’. For further details, the interested reader is referred to
Ehrig et al. [EEPTO06].

Figure 3.12: Second application of PortToVariable on the instance of Fig. 3.7

Each TGG consists of a finite set of rules, which operate on all three graphs at the same
time and extend them by creating new nodes and edges in case their required context
— i.e., the left-hand side of the respective rule — already exists. Each triple graph that
can be generated by finitely many non-deterministic rule applications on an empty triple
graph is contained in the language of the TGG. While these TGG rules are of declarative
nature, they can be operationalised to perform consistency management tasks like forward
and backward transformation, model synchronisation or consistency checking, which will
be discussed in Chap. 5 in detail.

Definition 3.6 (Triple Graph Grammar).
A triple graph grammar TGG = (TG, R) consists of a type triple graph TG, and a
finite set R of triple rules.

3. Modelling Software Systems: Languages and Transformations 51

The triple metamodel of Fig. 3.8 together with the rules PortTo Variable (Fig. 3.10) and
StatemachineToMachine (Fig. 3.11) form a small TGG, which will be extended through-
out this thesis, and then used to demonstrate the fault-tolerant approach to consistency
management. To formally define a consistency relation, a TGG describes a language of
triple graphs in a rule-based manner. The language of triples generated by the rules of
a TGG is defined in terms of derivations, i.e., sequences of triple rule applications (cf.
Def. 3.5) starting from an empty triple graph Gy which contains neither nodes nor edges.

Definition 3.7 (Language of a Triple Graph Grammar).

Let TGG = (TG, R) be a triple graph grammar. The triple graph language of TGG
is defined as L(TGG) = {Gy} U{G | 3 D : Gy = G}, where Gy is the empty triple
graph.

To check whether a triple graph such as the instance of Fig. 3.7 is contained in the
language of the example TGG in its current state, one has to find an application sequence
that generates the instance using the rules PortTo Variable and Statemachine ToMachine.
The starting point is the empty triple graph Gy, such that the rule PortTo Variable is not
applicable because the required context elements do not exist yet. The rule Statemachine-
ToMachine, in contrast, can be used in the first place as this rule solely consists of green
elements, i.e., no context elements are required. In a second step, PortToVariable can
be applied because the first rule application created the required statemachine sm, the
machine m, and the correspondence node. The sequential application of the two rules in
the correct order results in the triple graph instance shown in Fig. 3.7, which means that
it is contained in the language of the TGG.

3.4 Summary and Discussion

In this chapter, we have seen how basic behavioural modelling is accomplished using the
SysML, a de-facto standard in the area of systems engineering. As a second language,
Event-B is introduced, providing a formal semantics that makes it possible to guarantee
that global constraints are always satisfied. These constraints are usually specified in
form of invariants or theorems, which do not exist in SysML. Only small subsets of
both languages have been introduced to keep the example as small and comprehensible as
possible.

Furthermore, TGGs as a declarative, rule-based approach to bidirectional model trans-
formations were introduced. With help of TGGs, it is possible to specify a consistency
relation between two languages, such as SysML and Event-B in the running example of this
thesis. A TGG consists of a typed triple graph — which represents the (triple) metamodel
—and a set of rules. All triples that can be generated via finitely many rule applications
form a language that ultimately defines the consistency relation.

Without additional language features, the formalism is insufficient to reasonably de-
scribe fault-tolerant consistency management, though, which is one of the ten requirements
listed in Sect. 1.2. For instance, the previously presented rules are not expressive enough
to specify constraints, neither for attribute values, nor for particular patterns that must
(not) occur in the model instances. Therefore, the TGG formalism is extended by fur-
ther language features in Chap. 4: With help of attribute and application conditions, the
applicability of rules can be restricted, whereas multi-amalgamation enables us to define
for-each-like structures for TGG rule applications. It is further shown that these features
indeed increase the expressive power of the formalism and therefore raise the potential of
applying the subsequently presented consistency management framework in practice.

4 A Feature-Based Classification of Triple
Graph Grammar Variants

As motivated in Sect. 3.4, the basic form of TGGs is not expressive enough to solve
consistency management problems in practice. Based on the original specification, vari-
ous TGG variants were developed that support additional language features, such as at-
tribute conditions [AVS12,LHGO12], (negative) application conditions [GEH11], or multi-
amalgamation [LAST17]. These language features pose further conditions on the applica-
bility of rules aiming at increasing the expressiveness of the formalism. Some extensions
of the basic approach just make the specification of rules easier and more user-friendly,
while others increase the expressiveness of TGGs allowing the specification of consistency
relations that are not possible without this feature. Therefore, it is important to know
about the expressive power of language features to, e.g., choose a tool that is expressive
enough for the application scenario at hand (cf. Sect. 1.1).

In this chapter, we provide an overview of the most common language features of TGGs.
Based on this, we discuss different TGG variants formally and develop a classification of
TGG language features with respect to their expressiveness. We evaluate whether certain
language features increase the expressiveness of TGGs or just improve the usability and
simplify the specification. While the expressiveness of language features was partially
investigated in previous work already, we will systematically analyse selected features,
and aggregate the findings to a feature model. More specifically, this chapter shall address
the following questions:

e How can expressiveness be defined for different TGG variants?

e Which language features are there, and how can they be used to classify TGG
approaches and tools?

e Why do the respective language features (not) increase the expressiveness, compared
to the original specification of TGGs?

The remainder of this chapter is organized as follows: Section 4.1 demonstrates that
existing work concentrates on single TGG language features and their expressiveness in
isolation, before they are used to create an overview in form of a a feature model in
Sect. 4.2. Subsequently, selected language features are presented and compared with
respect to their expressiveness: Besides basic rules (Sect. 4.3), which comply with the TGG
definition of Sect. 3.3, attribute conditions (Sect. 4.4), application conditions (Sect. 4.5),
and multi-amalgamation (Sect. 4.6) are introduced. Section 4.7 completes the rule set for
the example transformation from SysML to Event-B, before Sect. 4.8 sums up the main
findings and connects them to the superordinate topic of fault-tolerance.

4.1 Existing Work on TGG Language Features

There exist various survey papers which provide an overview of foundational results on
TGGs. Schiirr and Klar name consistency, completeness, efficiency and expressiveness as

54 4.1. Existing Work on TGG Language Features

desirable properties in their roadmap for future research on TGGs [SK08]. In subsequent
work [ALK™15], concurrency and fault-tolerance were added as further dimensions, un-
derpinning that these aspects are topics of interest in recent MDE research. Regarding
expressiveness in particular, an overview of TGG language features is given by Kindler and
Wagner [KWO07], while features are only described on an intuitive level. A precise definition
of expressiveness is lacking as well as an analysis of features increasing the expressiveness.
Additionally, selected TGG tools are compared with respect to several criteria of interest.
The TGG tools MoTE [GHL14|, TGG Interpreter [GPR11] and eMoflon::TiE [LAS14a]
are compared with respect to usability, expressiveness and other formal properties in the
context of forward and backward transformations [HLG13]. This survey was extended
towards comparing the tools with respect to incremental updates [LAST14b]. However,
only three selected tools are considered, and the supported language features are not
discussed with respect to expressiveness.

For being able to compare TGG tools and other approaches to BX, there have been
continuous efforts to establish benchmark examples. Fundamental concepts and a list of
requirements for benchmark examples in the context of BX were presented by Czarnecki
et al. [CFHT09]. Based on these requirements, a repository for BX examples was created
and continuously extended!, such that it was possible to compare BX tools independent of
the underlying formalisms [ACG*14, ADJ*17, ABW*20]. Although being an important
step towards comparing the power of TGG approaches, the rather tool-driven concepts do
not contain a formal underpinning of expressiveness.

The particular language features were intensively studied for algebraic graph transfor-
mation and transferred to the TGG context in most cases as well. Negative application
conditions for triple rules were initially defined by Ehrig et al. [EHS09], providing proofs of
correctness and completeness alongside. Requirements for propagating constraints from
source to target is discussed in subsequent work [EET11], while an exemplary integra-
tion of those into the TGG tool MoTE is presented by Hildebrandt et al. [HLBG12]. A
formal specification for nested application conditions for TGG and a proof for increased
expressiveness is proposed by Golas et al. [GEH11]. Attribute conditions for TGGs were
introduced by Lambers et al. [LHGO12], while challenges and solutions for operational
attributed TGG rules were presented as well. An extension towards complex attribute
manipulation compatible with existing TGG formalizations was made in subsequent work
by Anjorin et al. [AVS12]. While amalgamation of two rules was already studied for
decades [BFH87], multi-amalgamation was recently introduced by Golas et al. [GEH10]
and combined with application conditions in subsequent work [GHE14]. The concepts
were transferred to TGGs later on by Leblebici et al. [LAST15] and enriched by a practi-
cal implementation within the TGG tool eMoflon::TiE [LAS15]. In an extended version,
it was shown that this language feature increases the expressive power of TGGs [LAST17].
All these papers rather focus on a detailed description of a single language feature instead
of comparing the expressiveness of different features. Furthermore, some language features
introduced in this chapter (basic rules affecting only one model, attribute conditions that
are restricted to checking for equality, application conditions generated from constraints)
are not dealt with in related work.

A TGG language feature which is not considered in this thesis is rule refinement [ASLS14],
specifying an inheritance relation between rules that share a common part. This common
part is expressed using abstract rules, which cannot be applied themselves but form the
basis for concrete rules, that also incorporate the differences. The main advantage of rule
refinement is to avoid redundancies in the rule base, keeping it concise and understandable.

"http://bx-community.wikidot.com/examples:home

http://bx-community.wikidot.com/examples:home

4. A Feature-Based Classification of Triple Graph Grammar Variants 55

This concept is not only applicable to TGGs but constitutes an important issue context
of MDE. An overview of tool support for inheritance among rules is provided by Wimmer
et al. [WKK*11, WKK'12].

While BX is restricted to maintaining consistency for two models, the concepts are gen-
eralised for arbitrarily many models in multi-directional transformations. A considerable
amount of conceptual work was recently proposed by Trollmann et al. [TA16,TA17], Klare
et al. [KG19,Kla21] and Stiinkel et al. [SKLR20,SKLR21] in this regard, but in the scope
of this thesis, we will restrict ourselves to the binary case. Consistency relations between
more than two models will be split up into binary relations for each model pair.

4.2 Feature Model and Expressiveness

In Sect. 3.3, only the basic form of TGGs is described, whereas there exist multiple exten-
sions to this formalism. In this chapter, different TGG variants are described by extracting
a minimum set of possible rules as “basic rules” and identifying extensions to those ba-
sic rules. The language features are taken from the most recent research roadmap for
TGGs [ALS15], in which expressiveness is listed as one of five research dimensions and
related to the language features a TGG-based approach or tool supports.

Figure 4.1 shows a feature model containing the language features discussed in this
chapter. Some subfeatures (e.g., application conditions generated from constraints) are
left out for clarity in the feature model, but will be dealt with in the respective sections.
Each language feature is presented with a description and an example, followed by a
formal definition of the feature and a discussion whether the language feature increases
the expressiveness of the respective TGG variant.

TGG
Basic Rules Advanced Features
Fully Source / Fully Idle Attribute Application Multi-
Progressive Target Idle y Conditions Conditions Amalgamation
Equality Other Relations Negative Positive
Concrete Feature @ Mandatory Feature ‘ OR
Abstract Feature O Optional Feature > XOR

Figure 4.1: Classification of TGG variants as a feature model

In order to compare different language features, it is of major importance to define
the meaning of expressiveness for a TGG variant, i.e., a set of TGGs that use a certain
language feature. We denote the TGG variant using such a feature as more expressive than

56 4.3. Basic Rules

the basic form of TGGs, if it enables us to form languages that cannot be specified only
with basic rules. More formally, the expressiveness of sets of TGGs (i.e., TGG variants)
can be defined as follows:

Definition 4.1 (Expressiveness of sets of Triple Graph Grammars).
Let TGG1 and TGGo be sets of TGGs.

e TGGy is at least as expressive as TGGy (TGG2 > TGG1) iff ¥V TGG) € TGG,
I TGGs € TGG : L(TGGY) = L(TGGS).

e 7GG1 and TGGy are equally expressive (TGG1 =g TGG2) iff TGG1 > TGGo and
TGG2 >k TGG1.

e TGGs is more expressive than TGGy (TGGa >r TGG1) iff TGG2 > TGG1 and not
TGG1 =g TGG,.

e In all other cases, TGG1 and TGGa are incomparable (TGG1 #r TGG2).

Intuitively, a TGG variant 7GGs is at least as expressive as TGGy, if it is possible
for each TGG, € TGG: to find a TGGy € TGGs that generates the same language.
Based on this notion, we will investigate whether a language feature is able to increase
the expressiveness and, therefore, enriches the possibilities of meta-tool developers when
including this language feature into a TGG-based consistency management tool.

4.3 Basic Rules

To examine if certain language features increase the expressiveness, the set of TGGs that
only use basic rules is introduced as a reference point. The previously introduced rules
StatemachineToMachine and PortToVariable (cf. Fig. 3.11 and 3.10) are examples for
basic rules. The two rules add elements to both models, which is not enforced by the
definition of a triple rule (Def. 3.4), though. It is, therefore, worthwhile to investigate
whether it makes a difference with respect to expressiveness if basic rules can be restricted
to always affect both source and target models. As an example for a rule which only affects
a single model, we consider the rule AddRegion (Fig. 4.2). It creates a new region r in the
SysML model, while nothing changes in the Event-B model, as there is no corresponding
language construct in the target language.

AddRegion

sm : Statemachine

regions [++
++ v
r : Region

Figure 4.2: Rule: AddRegion

4. A Feature-Based Classification of Triple Graph Grammar Variants 57

Formal Definition

Let TGGRasic denote the set of all TGGs that only use basic rules. This set may be further
divided with respect to the effect that the rule has on source and target graph.

Definition 4.2 (Basic Rules).
Letr: L —- R, L =1Lg & Lo REN Lr,R=Rg E Rc X Ry be a triple rule. Define:

Fully progressive rules: R~ :={r | Lg # Rs N L1 # Rrp}

Source-idle rules: R® := {r | Ls = Rs A Lt # R}
Target-idle rules: RT := {r | Ls # Rs A Lt = Rr}

Fully idle: R? := {r | Ls = Rs A Lt = Ry}

Based on Def. 4.2, the TGG variant for basic rules can be defined:

Definition 4.3 (TGG Variant: Basic Rules).
Let TGG = (TG, R) be a triple graph grammar. The following TGG variants are defined:

o 7GG~ :={TGG | R C R~}
e TGGY := {TGG | R C R=URS}
o TGGT .= {TGG | RCR=UR"}
e 7GG* :={TGG | RCR-URSURT}
TGG* is also referred to as TGG Basic.

As TGG® and TGGT are symmetric, only 7GG= and TGG* need to be compared with
respect to expressiveness to determine whether using rules from R or R” increases the
expressiveness compared to using only rules from R~.

According to Def. 4.3, the rules StatemachineToMachine and PortTo Variable are con-
tained in R=, as they add elements to both the SysML and the Event-B model. Therefore,
a TGG consisting of these two rules is an example for a TGG in TGG™. The rule Add-
Region, in contrast, is contained in R, since the rule application only adds elements to
the SysML model, while the Event-B model remains unchanged. Adding this rule would
create a TGG in TGG* \ TGG~.

Expressiveness

First of all, one can examine these two sets of TGGs with respect to the size of graphs
they can generate.

Definition 4.4 (Size of a Graph).
Let G = (V, E, src,trg) be a graph. The size of G is defined as the sum of vertices and
edges contained in G: |G| = |V| + |E|.

Lemma 4.1. Let TGG = (TG, R) € TGG™ and let Gg E Ge B Gp be a triple graph. Let
Gg & Ge Gr be generated by a sequence Gy 4 ... 8Gg & Ge REN Gp,ri...1p € R
of direct derivations from the initial triple graph Gy. The ratio of the sizes of the source

graph Gg and the target graph G is bounded by a constants c,d € QT after at least one

G
rule application: ¢ < @ <d.
[€X]

58 4.3. Basic Rules

Proof. For each rule r; € R, let s; be the number of elements added to G'g and ¢; be the

ming<; t;
number of elements added to G when applying r;. Set ¢ := M and d :=
maz1<j<n{s;}
maigisailil oo o5 0 and £ > 0 by definition of TGG=, ¢ and d are well-defined.
mini<j<n{s;}
_ mimgisol{tid _ Yinti _ |Gr| _ mazicica{ti} _
mazi<j<nf{s;} T Yjo1s; |Gs| T minigi<n{s;}

O

In Fig. 3.7, the triple graph resulting from rule applications of Statemachine ToMachine
and PortToVariable is depicted. The left hand side shows the SysML model (Gg), the
right hand side the Event-B model (Gr). Gg has a size of 5, as well as Gp. Further
applications of PortToVariable would increase the size Gg by 2 and Gp by 4, whereas

1
applying Statemachine ToMachine would increase Gg by 3 and G by 1. Therefore, 3 <

G _

’|GT\ < 2 will always hold. In general, TGGs in TGG™ can produce graphs of unequal
S

sizes, but it is always possible to find a lower and an upper bound for the ratio of the two

graph sizes.

Lemma 4.2. Let TGG = (Gy,R) € TGG" and let Gg L Ge B Gr be a triple graph. Let
Gg E Go RES G be generated by a sequence Gy 4 2B Gy Ll Geo REN Gr,ri...my ER
of direct derivations from the empty triple graph Gy. The ratio of the sizes of the source
graph Gg and the target graph Gt is unbounded.

Proof. Let r € R be an applicable rule that adds elements only to Gp. The repeated

G
application of 7 on Gg & G¢ — Gr increases the ratio ” GT\ in each step, because |G|
S
gets arbitrarily large while |G g| remains constant. Due to symmetry of 7GG* and TGG7,
the same holds vice versa. O

Let us consider a TGG that also contains the rule AddRegion. As an application of this
rule only affects the SysML model, it can grow arbitrarily large when applying AddRegion
often enough, while the Event-B model stays the same for all rule applications. Demanding
rules to add elements to both source and target graphs decreases the expressive power of
a set of TGGs, as shown in Thm. 4.1.

Theorem 4.1 (Expressiveness of TGG*). TGG* > TGG™

Proof. TGG* >g TGG™ holds trivially, because TGG= C TGG*. It remains to show:
TGG* #1 TGG=. Let TGG, = (TG, R) € TGG™ and let Gg & Go B Gr be a triple
graph. Let Gg E Goe 8 Gr be generated by a sequence Gy 4 .86 LGB
Gr,ri...rn € R of direct derivations from the initial triple graph Gy. According to
Lemma 4.1, the ratio of the sizes of the source graph Gg and the target graph Gr is
bounded by constants ¢ and d.

Gr

Let G% & G& = G} be a triple graph with e =k >d G5 i G& = G cannot
S

be generated by TGG1. Let TGG2 = (Gy, R Ur*) € TGG*, whereby r* is a rule that

adds elements only to the target graph Gr. Gy & Go REN G’ can be generated by TGGo,

G| -

G5l

|GT|

though, because every application of r* strictly increases the ratio

4. A Feature-Based Classification of Triple Graph Grammar Variants 59

4.4 Attribute Conditions

Attribute conditions specify the consistency relation between attributes in source and
target model (cf. [AVS12, GLO09, LHGO12]). In the running example, it seems to be
reasonable to keep the names of corresponding language constructs equal, such that, e. g.,
the SysML statemachine’s name attribute (sm.name) and the respective attribute of the
Event-B machine (m.name) have the same value, which is “Machine” in example instance
of Fig. 3.7). To include this requirement into the TGG rule base, the rule Statemachine To-
Machine (Fig. 3.11) is enhanced with an attribute condition that uses the equals operator:

Sm.name = m.name

Often, however, checking for equality is not sufficient for expressing the consistency
relation between attributes precisely. When considering the attribute values of the SysML
port p and the corresponding variable v and invariant i in Event-B, one can see that the
p’s name is used to form the two attribute values of i by string concatenation. More
concretely, the following three attribute conditions must be added to the rule PortTo-
Variable (Fig. 3.10):

p.name = v.name
‘TYPEOF_. "+ p.name = 1i.name
p.name + ‘€ BOOL ’'= i.predicate

Attribute conditions are usually placed beneath the TGG rule they refer to in a textual
form. The rule StateToVariable (cf. Fig. 4.3) adds a state s to the SysML model and
links it to a new variable v and a new invariant i of the Event-B code. Furthermore, three
attribute conditions specify how the attribute values are formed. Apart from the typing
of the source model, the rules StateTo Variable and PortToVariable are identical.

Formal Definition

Attribute conditions are formally defined by Ehrig et al. [EEPT06] for algebraic graph
transformations and Anjorin et al. [AVS12] for TGGs, which we refer to for further details.
To deal with attribute values, an extension of graphs (cf. Def. 3.1) to data graphs is needed,
which introduce additional sets for data vertices and vertex attribute edges:

Definition 4.5 (Data Graph).
A data graph G = (Vg, Eg, srca,trga, Vp, Ep, srcp,trgp) consists of the sets

(1) Vo and Vp, called the graph vertices and data vertices,

(2) Eg and Ep, called the graph edges and vertex attribute edges, and the source and
target functions

(8) srcg : Eq — Vg, trge : Eq — Vg for graph edges, and
(4) srcp : Ep — Vg, trgg : Ep — Vp for vertex attribute edges.

Based on the notion of data graphs and the previously introduced attribute condition
types, respective TGG variants can be introduced:

60 4.4. Attribute Conditions

StateToVariable

invariants
sm : Statemachine m : Machine —

regions ++)
variables
Y

++

- i ++

r : Region ++
@ v : Variable
subvertex | ++

++ ++

\ 4 ++

s : State @ i:Invariant |€——/

S.name = v.name

"TYPEOF_" + s.name = i.name

s.name + "€ BOOL" = i.predicate

Figure 4.3: Rule: StateToVariable
Definition 4.6 (TGG Variant: Rules with Attribute Conditions).

o Let TGGaurc= be the TGG variant supporting basic rules and attribute conditions
using only the equals operator.

e Let TGGaurc+ be the TGG variant supporting basic rules and arbitrary attribute
conditions.

o Let TGGawrc =TGGatrc= U TGG artrer -

Expressiveness

Suppose that TGGs supporting attribute conditions are not more expressive compared to
T GGBasic, then there must be a way to express attributes and their consistency relation in
T GGBasic- Attributes can be represented as an association to objects of their type (e.g.,
EString) — this adjusts the representation of attributes in the metamodels? as shown in
Fig. 4.4.

To improve readability, the correspondences are omitted in this visualisation. The mul-
tiplicities for all new associations are 0..1 (optional attributes) or 1 (required attributes).
In the adjusted metamodels, the SysML and the Event-B model have common classes for
all data types, which is only EString in this example. Each EString can be referenced
as often as required.

Figure 4.5 shows an attribute value change for the instance depicted in Fig. 3.7 in
the data graph representation. The added data vertices and vertex attribute edges (new
attribute values) are depicted in green with a ++ mark-up, while the deleted data vertices

20nly parts of the metamodels which are necessary to describe the example instance of Fig. 3.7 are
depicted, the conversion of the remaining attributes works similarly.

4. A Feature-Based Classification of Triple Graph Grammar Variants 61

name name invariants
Statemachine Machine ——
ports
regions name
Port i
ﬁ variables
Y
name
Region » EString [« Variable
name
name l name
L—» State Invariant f€«———
subvertex)
predicate

Figure 4.4: Partial metamodel with data vertices and vertex attribute edges

and vertex attribute edges (old attribute values) are coloured red and marked up with
——. The name attribute of the SysML statemachine sm and the Event-B machine m were
changed from “Machine” to “Statemachine”. In this case, the consistency relation can
be expressed with basic rules (i.e., the required TGG would still be in TGGpasic) as the
attribute change is equal to deleting and creating nodes and edges of a graph. The vertex
attribute edges simply point to the same EString object, as shown in Fig. 4.5.

- name -- : -- name - invariants
sm : Statemachine » "Machine" [« m : Machine ——
ports name +2 3 "Statemachine” . name
++ variables
A 4 name name A 4
p : Port > "finish" < v : Variable
"TYPEOF_finish"
‘: name
"finish € BOOL" | _ i : Invariant l€«—
predicate

Figure 4.5: Changed attribute values (equals operator)

In Fig. 4.6, the situation is slightly different. The names of the port p in the SysML
model and the corresponding variable v of the Event-B model were changed from “finish”
to “end”. This, however, makes it necessary to adjust the name and predicate of the
corresponding invariant i as well, assigning the new values “TYPEOF _end” and “end
€ BOOL”, respectively. With the chosen encoding of attributes as data vertices, this
consistency relation cannot be modelled using only basic rules, as there is no way to define
the relation between the EString data vertices. In contrast to the first example, one
would need a way to create new EString data vertices for i’s attributes (or find existing
data vertices with this value) and create an association to these data vertices.

Alternatively, all symbols of the alphabet could be encoded as separate data vertices,
such that attribute values are represented by a linked list of these vertices. In this case,
string concatenation can be simulated by connecting the respective linked lists with an
additional edge. It is not possible to express arbitrary arithmetic operations with basic
TGG rules, though, as stated in Thm. 4.2.

62

4.4. Attribute Conditions

name name invariants
sm : Statemachine » "Machine" [« m : Machine ——
++
pOrtS +4 "end" ++
name name variables
Y - Y
p: Port » "finish" < v : Variable
-- name -- name

"TYPEOF_finish"

- t name

"finish € BOOL" |« i : Invariant [€——
predicate

++ ++| name .
predicate h 4

"end e BOOL" <+ oy "TYPEOF_end"

Figure 4.6: Changed attribute values (concat operator)

Theorem 4.2 (Expressiveness of Attribute Conditions).

1. TGG asrc= =E TGGBasic
2. ’ngAiEiErC”k >g ngBasic
3. TGG asrc =E TGG atrc

Proof.

1. To show TGGattrc= = TG0Basic, one must find a way to specify the equality of

attributes using just basic rules. As shown in Fig. 4.5, this can be done by referencing
the same data vertex in both models. If the attribute changes, the reference changes
accordingly.

. To show TGGatirc* >E T GGBasic, several existing graph-theoretical results have to

be combined. Courcelle and Engelfriet have shown that the expressive power of
graph grammars (GG), which are more expressive than basic TGGs as they allow
to delete elements, is equivalent to monadic second-order logic (MSQO) [Cou90,
CE12]. For graphs with bounded tree depth, first-order logic (FO) and MSQO are
equivalent according to Elberfeld et al. [EGT16]. Together with Schweikardt’s results
on FO [Sch05], i.e., that using arithmetic operators increases the expressive power
(FO(+, x)), the following statement about the expressiveness of arbitrary attribute
conditions can be made:

ngAttrC* ZE]:O(—I-,X) >EF FO = MSO - gg >E ngBasic

It is important to note that the tree depth of graphs is only bounded for TGGs
with acyclic type graphs; thus, in general, the precondition for using the result of
Elberfeld et al. [EGT16] is not fulfilled. For TGGs with cyclic type graphs, the proof
whether attribute conditions increase the expressive power is left to future work.

. TGGatrc =E TGGawrc follows directly from Def. 4.6: TGGairc = TGGAtirc= U

ngAttrC*
]

4. A Feature-Based Classification of Triple Graph Grammar Variants 63

4.5 Application Conditions

Application conditions pose additional restrictions on rules, which have to be fulfilled in
order to apply them. Such application conditions can be explicitly defined by the tool
developer and integration expert, or automatically generated from constraints, such as
multiplicity constraints of the metamodels, to ensure that these constraints hold after
applying the rule. Negative Application Conditions (NACs) forbid rule applications if
certain patterns exist already, while Positive Application Conditions (PACs) enforce that
certain patterns exist before rule application.

Figure 4.7 shows an example for a PAC. The rule TransitionToFvent adds a transition
t to the SysML model to connect two states later on, and links it to a corresponding event
e in the Event-B model with the same name. The application condition ensures that all
other transitions (t2) of the respective region r must already have a source and a target
state (s1 and s2). The blue elements with ! mark-up stand for the premise of the PAC,
while the violet elements marked up with ! ! represent the conclusion. A rule with a PAC
is applicable if there is a match for the premise and for at least one of (possibly multiple)
conclusions, or if the premise cannot be matched. It has the form of an implication: A
match for the premise implies at least one match for a conclusion. Applied to the concrete
example, the PAC would express the following condition:

“If the region already has one (or more) transition(s), the transition(s) must have
outgoing source and target edges that connect the transition(s) to the respective state.”

TransitionToEvent

sm: Statemachine m : Machine
"

s1 : State)
regions
A
++
source |!!
| transi- v events
tions
t2 : Transition [€— r : Region
transitions
target (! ++
v ! \ “’ v

s2: State t1 : Transition e : Event

t1.name = e.name

Figure 4.7: Rule: TransitionToEvent with a PAC

While PACs allow the application of a rule for certain graphs, NACs specify when a
rule application is forbidden. The PAC in Fig. 4.7 could be transformed into a NAC by
leaving out the conclusion (i.e., the violet nodes and edges). The resulting NAC would
state that a transition t can only be added to a region r if the r does not have another
transition t2 before, which would restrict the number of transitions to 0 or 1. As this
restriction is not reasonable in this context, two different rules are equipped with NACs
in the following.

64 4.5. Application Conditions

Up to here, there are no rules in the example TGG that can create the necessary source
and target links that connect states and transitions. Therefore, a rule SourceState ToEn-
terAction (Fig. 4.8) is added to the TGG. In the SysML model, the rule links a transition
t to a state s1 of the same region r (both are required as context elements), and adds an
action a and a guard g to the Event-B code. The attribute conditions give an indication
about the purpose of the added Event-B language constructs: a expresses that the source
state s1 is left via t, setting the corresponding variable to FALSE, which we can assume
to exist due to the structure of the rule StateToVariable (Fig. 4.3). The guard g ensures
that this variable had the value TRUE before, i.e., that the statemachine assumed the
state s1 before. To restrict the rule’s applicability, a NAC ensures that t does not have
another source state s2. Without this condition, it would be possible to add arbitrarily
many source states to a transition, which would lead to malformed SysML state machines.

SourceStateToLeaveAction

sm: Statemachine m : Machine

regions

Y events

~—— r: Region
Y

transitions e : Event
subvertex

Y
t : Transition

actions guards
source source
++
++ |
\ 2 ++
s1: State s2 : State a : Action g : Guard

"leave_" + s1.name = a.name
s1.name + " := FALSE" = a.action

"isin_" + s1.name = g.name

s1.name + " = TRUE" = g.predicate

Figure 4.8: Rule: SourceStateToLeaveAction with a NAC

Likewise, the rule TargetStateToEnterAction connects a transition t to its respective
target state s1 (Fig. 4.9). Again, a NAC makes sure that there does not exist another
target state s2 before. Another action a is added to the event e in the Event-B code that
sets the variable that corresponds to s1 to TRUE. It is not necessary to specify another
guard, because the condition for firing the transition t is sufficiently specified by the rule
SourceState ToEnterAction.

Formal Definition

Application conditions are made up of two parts: the rule to be applied on the triple graph
on the one hand and the condition that must hold for the graph on the other hand.

4. A Feature-Based Classification of Triple Graph Grammar Variants 65

TargetStateToEnterAction

sm: Statemachine m : Machine

regions

v events

~—— r: Region

transitions e : Event
subvertex

Y
t : Transition

actions
++
++ !
target target
\ 2 v
s1 : State s2 : State a : Action

"enter_" + s1.name = a.name

s1.name + " ;= TRUE" = a.action

Figure 4.9: Rule: TargetStateToEnterAction with a NAC

Definition 4.7 (Graph Condition).

A graph condition over a graph L is a pair gc = (p: L — P, {c; : P — C; | i € I}),
for some index set I. L is referred to as the context, P the premise, and {C; | i € I} the
conclusions of the graph condition gc.

A graph condition is either satisfied trivially, if there does not exist a match for the
premise P, or if there exists at least one match for a conclusion Cj.

Definition 4.8 (Satisfaction of Graph Conditions).

Let gc be a graph condition over L for some index set I, i.e., gc = (p : L — P,{¢; :
P — Cy|iel}). An arrow m : L — G satisfies ge, denoted by m = gc, iff Vm,, -
P — G, [(m =p;my) = (Fi € I3me, : C; = G, [my, = ¢;;mye,])], where my, (me,)icr are
monomorphisms.

Given a rule r, creating a graph condition for the left-hand side of the rule forms an
application condition. For every match that can be found for the left-hand side in a
concrete host graph, it can be determined if the rule is applicable.

Definition 4.9 (Application Condition).

Given a monotonic rule v : L — R, an application condition ac for v is a graph condition
rQm

(p: L — P{c,: P— C; |iel}) over L. A direct derivation d = G = G’ with r at
match m satisfies ac, denoted by d |= ac, iff m = ac according to Def. 4.8.

A NAC is a special case of an application condition, where the set of conclusions is
empty. As a result, the rule is applicable iff the premise does not hold.

Definition 4.10 (Negative Application Condition).

Given a monotonic rule r : L — R, a NAC n for r is an application condition for r of
the form (n: L — N,{}).

66 4.5. Application Conditions

Based on Def. 4.9 and 4.10, a new TGG variant for TGGs with rules that have appli-
cation conditions can be defined.

Definition 4.11 (TGG Variant: Rules with Application Conditions).

e Let TGGpac be the TGG variant supporting basic rules and rules with a finite set of
PACs.

e Let TGGnac be the TGG wvariant supporting basic rules and rules with a finite set
of NACs.

o Let TGGAc=TGGpacUTGGNAC:

In the following, a subtype of application conditions that can be generated from con-
straints is introduced and analysed with respect to expressiveness. Constraints are a
special type of graph conditions. They do not require any context, which means that
everywhere the premise can be matched, one of the conclusions must hold.

Definition 4.12 (Graph Constraint).
A graph constraint is a graph condition of the form (py : Gy — P,{c; : P — C; | i € I}).

Similar to NACs, there are also negative constraints that can be demanded for a host
graph. This means that there must not be a match for the premise to the host graph, the
constraint is violated otherwise.

Definition 4.13 (Negative Constraint).
A negative constraint is a graph condition of the form (ny: Gy — N, I = {}).

In the example shown in Fig. 4.10, the condition for the rule application has the form of
a negative constraint, as the rule does not require any context elements. It creates a triple
of a statemachine sm1 and a machine m1 corresponding to each other, unless at least one
node of these types already exists, which is expressed by the blue SysML statemachine sm2
and the blue Event-B machine m2 outside the rule, representing the negative constraint.
As a result, the existence of two statemachines in the SysML model or two machines in
the Event-B model is forbidden.

StateMachineToMachine

sm2 : Statemachine m2 : Machine

++ ++ ++

sm1 : Statemachine m1 : Machine
regions |++
++

r : Region

sm1.name = m1.name

Figure 4.10: Rule: StatemachineToMachine with a negative constraint

As we have seen, it is possible to equip TGG rules with application conditions in such
a way, that an application of this rule does not lead to a constraint violation. Due to

4. A Feature-Based Classification of Triple Graph Grammar Variants 67

the minimality of this example, it was possible to formulate the application condition
intuitively, which can get tedious and error-prone for more complex rules and constraints.
The question that arises at this point is whether it is possible to generate such application
conditions from constraints in a systematic way. It means that there must be a construction
that transforms a constraint into an application condition, i. e., some algorithm that gets a
constraint and a TGG rule as an input and outputs an equivalent application condition for
that rule. More formally and in a broader context, Ehrig et al. state that the generation
of application conditions from constraints is always possible as such [EEPTO06, p. 157

Theorem 4.3 (Construction of Application Conditions from Graph Constraints).
There is a construction Acc such that for every graph constraint ¢ [...] and every graph
R, Acc(c) is an application condition over R with the property that, for all morphisms n:

R— H,nl Acc(c) & H = c.

Proof. The theorem was proven by Ehrig et al. [EEPTO06, p. 157-159]. Due to its com-
plexity, the proof is not repeated here.]

n = Acc(c) means that the match for the right-hand side R of the rule to the graph H
resulting from the rule application satisfies the generated application condition, while H =
c means that the resulting graph satisfies the graph constraint. Note that Thm. 4.3 assumes
that application conditions are evaluated for the right-hand side of a rule. However, Ehrig
et al. also describe and prove a bidirectional transformation algorithm for left and right
application conditions [EEPT06, pp. 160-162], while left application conditions are those
which are dealt with in the scope of this thesis.

While Ehrig et al. have proven the existence of an algorithm for generating application
conditions from constraints, Anjorin et al. describe and prove a construction for NACs
from negative constraints [AST12], which is sketched by the diagram depicted in Fig. 4.11.

R+NC

L
T
t s O] R
A

n PO n' e INC

Figure 4.11: Construction algorithm for generating a NAC from a negative constraint

By this construction, the NAC for the example rule StatemachineToMachine (Fig. 4.10)
can be generated from a negative constraint, forbidding two SysML statemachines (sml,
sm2) and Event-B machines (m1, m2), respectively (NC'), as this subgraph represents an
illegal state after rule application. L and R as left-hand and right-hand side of the rule
are given, as well as the negative constraint NC' and the corresponding arrows r and nc'.
The goal is to find N and n that form the application condition together with the given
rule.

68 4.5. Application Conditions

First, the disjoint union R + NC of R and NC is constructed. Second, R and N’
form the graph condition for the target graph G’, whereby e is an epimorphic arrow from
R+ NC into N'. In the concrete example, the statemachines sml and sml’, and the
machines m1 and m1’, respectively, can be mapped to the same nodes in N’. Finally, N
is constructed by pushout decomposition, such that r : L — R and n : L — N form the
new rule StatemachineToMachine with a NAC. The algorithm yields an existing SysML
statemachine sm2 and an Event-B machine m2 as application condition (N), which is
exactly the case of Fig. 4.10. If N can be matched on the host graph G, i. e., if there exists
a morphism p : N — G, the rule is not applicable.

Expressiveness

It is proven that the use of NACs in addition to basic rules increases the expressive power
of TGGs.

Theorem 4.4 (Expressiveness of NACs).
ngNAC >g TGGBasic

Proof.

e TGGnAC 2> E TG0Basic: This holds trivially because for every triple graph grammar
TGG € TGGRasic, it also holds that TGG € TGGnac because all basic rules are
allowed in TGGnac. It follows that TGGrasic € TGONAC.

e TGGNnAc #E TG0Rasic: To show that the two sets of TGGs are not equal, con-
sider a triple graph grammar TGGyac = (T'G,Rnac), whereby TG is a type
graph as shown in Fig. 3.8 and Ryac only contains the rule depicted in Fig. 4.10.
L(TGGn ac) contains only the empty triple graph and a triple graph consisting of
exactly one SysML statemachine with a region, one Event-B machine, and a cor-
respondence link. The graph condition forbids further rule applications if either of
these nodes already exist. L(TGGnac) cannot be generated using only basic rules:

— Let us assume that there exists TGGpusic = (T'G, Rpasic) € TGGBasic With
L(TGGpasic) = L(TGGNac)

A triple containing one SysML statemachine and a corresponding Event-B ma-
chine is contained in L(TGGRgsic), S0 there must be a rule r € Rpyqc to create
the triple.

— r cannot require any context because it must be applicable on Gy.

Since r does not require any context, it is always applicable. This means that
arbitrarily many statemachines and machines can be generated, which contra-
dicts the assumption L(T'GGRgsic) = L(TGGN).

O]

Finally, it is proven that adding PACs to basic rules yields a higher expressiveness than
adding NACs, i.e., that TGGpac is more expressive than TGGnaC.

Theorem 4.5 (Expressiveness of PACs).

TGGNac <e TGGpac

4. A Feature-Based Classification of Triple Graph Grammar Variants 69

Proof.

e TGGnac <g TGGpac: This proposition follows directly from the fact that every
NAC n for a rule r is an application condition for r of the form (n : L — N,{})
according to Def. 4.10.

e TGOnac #E TGGpac: For this direction of the proof, the reader is referred to
Wagner [Wag95]. The main argument used in this proof is that the number of
elements that are added within one rule application is finite, while the number of
possible matches for the premise that have to be considered can be arbitrarily large,
which makes it impossible to cover all possible constellations with NACs only. A
concrete example is very complicated and out of the scope at this point.

O

4.6 Multi-Amalgamation

Multi-amalgamation (first presented by Boehm et al. [BFH85] for graph transformations
and Leblebici et al. [LAST17] for TGGs) leverages TGGs by partitioning a rule into a
“kernel rule” to be applied once and a set of “multi-rules” that extend the kernel and can
be applied multiple times.

To illustrate the concept of multi-amalgamation, we consider the last language con-
structs which are not yet covered by our set of TGG rules. In the example SysML in-
stance (Fig. 3.1), there is a third state s0 which represents the initial state of the state
machine. As it is left immediately via a transition to the start state s1, its concrete type is
Pseudostate. In the SysML model, the transition does not have any guards or actions,
whereas the corresponding Event-B event is used to initialise all variables to their default
values (cf. Fig. 3.6). The desired graph is depicted in Fig. 4.12. To improve readability,
only nodes and edges that are directly relevant for this example are depicted (i.e., all
variables, invariants and the second transition and its corresponding event are omitted).

We now want to create a rule to express that when adding a pseudostate p and an
initialisation transition t to an existing region r, for all states sm1 of r and all ports pm2,
actions aml and am2 are added to the Event-B model that initialise the corresponding
variables with their default values. The variable corresponding to the target state sk of
the initialisation transition t is set to TRUE, all other variables are set to FALSE. All
actions are added to the initialisation event e that corresponds to t. Creating such a
rule is not possible using only basic rules, as for adding p and t to the SysML model,
n actions have to be added in the Event-B model, depending on the number of existing
ports and states. For a concrete example with a fixed number of ports and states, a rule
could be created that adds the respective actions when the pseudostate p is created. But
as there can be arbitrary many ports and states, infinitely many rules would be required,
contradicting the definition of a TGG.

To overcome this problem, the foreach-like notion of multi-amalgamated rules can be
used. A multi-amalgamated rule is an interaction scheme consisting of one kernel-rule and
arbitrary many multi-rules [GEH10]. The multi-rules have to contain the kernel rule, but
can extend it by further nodes and edges that can be both context elements or created
elements. To apply a multi-amalgamated rule, one has to find a match for the kernel
rule. Then the multi-rules are applied everywhere the multi-rule can be matched. Rule
application is restricted to maximal and unique matches, meaning all multi-rule matches
that are available over the same kernel are joined and a multi-rule application over the
same match is never joined twice [LAST17].

70 4.6. Multi-Amalgamation

sm : Statemachine m : Machine
: Sm2M
name : "Machine" name : "Machine"
regions ports events
Y
e : Event actions
r : Region p : Port ~
() . name : "INITIALISATION"
name : "main" name : "finish"
subvertex transitions a1 : Action
Y
t : Transition name : "init_START" D S—
: T2E H . n Py "
name : "INITIALISATION" action : "START := TRUE
source a2 : Action
target name : "init_STOP" «—
s0 : Pseudostate
N> action : "STOP := FALSE"
kind : INITIAL
s1 : State
N > a3 : Action
name : "START"
L s2 : State name : "init_finish" <«
name : "STOP" action : "finish := TRUE"

Figure 4.12: Desired target graph after adding the initial state

The rule in Fig. 4.13 can be matched on the example instance of Fig. 4.12 as shown in
Tab. 4.1. The matched nodes are referred to by their name attribute values to avoid naming
conflicts. The kernel rule K creates a pseudostate and an initialisation transition within
the main region. Furthermore, the multi-rule M; is joined over this match, meaning that
for each existing state of the same region, an action with the respective value assignment
is created in the Event-B model. Similarly, the multi-rule Ms creates a respective action
for all ports of the statemachine. Due to the demand of maximality, this ensures that all
variables are initialised. After applying the multi-amalgamated rule, the graph looks as
shown in Fig. 4.12.

Formal Definition

The definitions 4.14 — 4.17 are taken from seminal work by Leblebici et al. [LAST17] in
an adapted version and are subsequently used to assess the expressive power of multi-
amalgamation according to Def. 4.1. We distinguish between kernel rules and multi-rules,
which are grouped into interactions schemes.

Definition 4.14 (Kernel Rule, Multi-Rule, Interaction Scheme).

Given triple rules v, and r1, a kernel morphism ki : rg — r1 consists of two triple
graph morphisms ki;, : Lo — L1 and kyr : Ro — Ri such that the square of
Fig.4.14 [LAST17] is a pullback, i.e., 11 must demand and create at least the same ele-
ments as ro but can demand and create additional elements. In this case, ro is called the
kernel rule and ri the multi-rule. A kernel rule o and a set of multi-rules {r1,...,rn}

4. A Feature-Based Classification of Triple Graph Grammar Variants

71

PseudostateToActions

K
ports
1 sm : Statemachine : Sm2M m : Machine
regions
++ | events
Y
subvertex
e aa r : Region
++
++ ¢ t
ransitions .
-+ e : Event
++
t : Transition name = "INITIALISATION"
: T2E
name = "INITIALISATION" [
++ | source action action
M 4 target
\—{p : Pseudostate ak : Action
++ "init_" + sk.name = ak.name ++
—»| sk:State [« sk.name + ":= TRUE" = ak.action ,
action
N [s+ :
| My
; 1: Acti -
' “—| sm1: State am ction '
"init_" + sm1.name = am1.name
sm1.name + ":= FALSE" = am1.action H
++ ¢ M2

"init_" + pm2.name = am2.name

pm2.name + ":= FALSE" = am2.action

Figure 4.13: Rule: PseudostateToActions using multi-amalgamation

Rule | Match (SysML) Match (Event-B)

K sm — Machine m — Machine
r — main e — INITIALISATION
t — INITIALISATION ak — init_START
p — finish
sk — START

M, sml — STOP aml — init_STOP

My pm2 — finish am2 — init_finish

Table 4.1: Match of PseudostateToActions (Fig. 4.13) in the example instance (Fig. 4.12)

72 4.6. Multi-Amalgamation

with respective kernel morphisms {ki,...,kn} form an interaction scheme. For n =0,
the interaction scheme consists of the kernel rule only.

Loi’ R,

“ul @ [

Li——R,

Figure 4.14: Construction of a multi-amalgamated rule

Definition 4.15 (Maximally Amalgamable).
Given an interaction scheme s with kernel rule ro and triple graph G, letdy : G LoQmo Gy

r;Qm;

be a direct derivation via ro and D : {G === G, }i=1,..+ a bundle of direct derivations,

where {r1,...,r} are multi-rules of s with kernel morphisms {ki,...,k:}. D is amalgam-
able for dy if Vp,q € {1,...,t} all multi-rule matches are unique (i. e.p # q = my # Mmy)
and agree on the kernel match mo (i.e.mp ok, = mg ok, = mg). D is mazximally

amalgamable for dy if Ad, : G LEL N G, such that (DU{d,}) is amalgamable for dy.

Definition 4.16 (Multi-Amalgamated Rule).

Given an interaction scheme s with kernel rule rg, a direct derivation dy : G ro@mo
Go and a bundle D : {G LiGmi, Giti=1,.+ of direct derivations that is mazimally

amalgamable for dy. Let K {ki = ro = riti=1,..+ be the bundle of respective kernel
morphisms for D. The multi-amalgamated rule 7 : L — R is constructed by gluing
multi-rules over the kernel rule via iterated pushouts with the kernel morphisms in K
as depicted in Fig. 4.15 [LAST17], where the grey region marks the results after each
iteration.

The construction starts with 7o = rq, i. e.the kernel rule, and ends with 7 = 7. After
each iteration i € {1,...,t}, the pushouts (i) and (i)g construct L; and R; respectively.
The rule morphism 7; L; = R; is induced via the universal property of the pushout
(t)r, i.ef0ou, =uirori—1 and 7;0e;, = e;gori—1. We call G TOh & o meulti-
amalgamated direct derivation where the multi-amalgamated match m : L — G
1s determined uniquely by the kernel rule match mqg as well as the multi-rule matches in
D, i.emoesr, =my and mo (ut,Lo_._ouqH’L) oeqr =mgq, Vg€ {0,....,t —1}.

In the following, the definition of TGGs is extended by interaction schemes for multi-
amalgamated rules.

Definition 4.17 (Multi-Amalgamated Triple Graph Grammar).
A triple graph grammar TGG = (TG, S) consists of a type triple graph TG and a finite
set S of interaction schemes. The generated language L(TGG) C L(TG) is defined as

follows: L(TGG) = {Gg} U{G|3d : Gy 222 G, 2902, a8, oo where Gy
is the empty triple graph, each 7; with i € {1,...,n} is a multi-amalgamated rule derived
from an interaction scheme s; € S. If S is empty, we get L(TGG) := {Gy}. We refer to

TGG as a plain TGG if each interaction scheme in S contains only a kernel rule and
no multi-rule. Otherwise, we refer to TGG as a multi-amalgamated TGG.

4. A Feature-Based Classification of Triple Graph Grammar Variants 73

(I)R lRl
R, ”"“R
Tﬁ) [FT 2l Tﬁ1

~

z() ~/ Ly L
a, &7 (Z)L

-1

Tel L () CuL

Figure 4.15: Construction of a multi-amalgamated rule (details)

Definition 4.18 (TGG Variant: Multi-Amalgamation).
Let TGGpa be the TGG variant supporting basic rules and multi-amalgamated rules.

Expressiveness

The following explanations are an adapted version of prior work by Leblebici et al. [LAST17]
and embedded into our classification framework.

Theorem 4.6. ¥V T'GGpa € TGGya 3 TGGpasic € TGGBasic for which LITGGpra) C
E(TGGBasz’c)

Proof. Direct derivations with multi-amalgamated rules can be obtained by applying
multi-rules in combinations after a kernel rule. As multi-rules are triple rules, one can
create a TGGBusic € TGGRasic by taking all kernel rules and multi-rules from TGG 4 €
TGGama. Therefore, all graphs that can be created by T'GGpra can be created by
TGGpesic as well. Note that this strategy is only applicable in settings without appli-
cation conditions (cf. Sect. 4.5), because otherwise, the application of a kernel rule could
restrict the applicability of the respective multi-rules. O

Hence multi-amalgamated TGGs do not enlarge the language of basic TGGs but restrict
it for more precise consistency specifications. Now we reason why this preciseness cannot
be achieved by basic rules by taking a look at the model size relations of the created source
and target models. The distinction between basic TGGs that contain rules only adding
elements to either source or target graph (TQQS, ’TQQT) and TGGs that do not contain
such rules (7GG7) is already done in Sect. 4.3.

In 7GGma, there exist TGGs for which the maximal proportion is neither restricted to
a constant nor infinite, but is a function in size of the source graph. This characteristic
exists if the multi-amalgamated TGG’s kernel rule is not in 7GG° or TGG7 but some
multi-rules are. In this case, finitely many applications of the kernel rule are needed to
create a source graph (g, because elements are created in both graphs. The number
of possible multi-rule applications is also finite, because the application is controlled by

74 4.7. Completed Running Example

the semantics of multi-amalgamation. TGGs supporting multi-amalgamation are more
expressive than basic TGGs:

Theorem 4.7 (Expressiveness of Multi-Amalgamation).
ITGGpa € TGGua such that ATGGRasic € TGGBasic with LITGG pya) = LI(TGG pasic)-

Proof.
We want to show that the maximal proportion of

source and target graphs are not always restricted K
to a constant or infinite in contrast to basic TGGs. + + +
Let TG Gy consist only of the interaction scheme s1:S %: SZT>— t1:T
depicted to the right. For this example, every tar-
get graph Gp of every triple graph G € L(TGG\a) ++
consist of |G'g| vertices and |Gg|>— |G| edges, lead- r------=-r=mmmmmmammomenapa ;
ing to a maximal proportion of

Gr| _ |Gsl +GsP ~ |Gs| _

= G
[eX] IG5 Cs|

Therefore, the maximal proportion is a linear function in size of the source graph, a
characteristic that cannot be found for basic TGGs. Hence multi-amalgamated TGGs are
more expressive than basic TGGs. O

4.7 Completed Running Example

In Sect. 4.3, 4.4, 4.5 and 4.6, all relevant TGG language features for this thesis could
be presented with example rules for a consistency management scenario involving the
languages SysML and Event-B. These rules, however, are not yet sufficient, as events,
guards and triggers of transitions have not been considered yet. Therefore, some further
rules are added to the example TGG in the following, which get along with the previously
introduced language features. The rule EffectToAction (cf. Fig. 4.16) adds an effect ef
(e.g., a variable assignment) to a transition t and links it to an action a in the Event-B
code. Attribute conditions ensure that the names and the bodies of ef and a are equal.

EffectToAction
t : Transition e : Event
effects | ++ ++ | actions

++ -+ ++

ef : Effect a: Action

ef.name = a.name

ef.body = a.action

Figure 4.16: Rule: EffectToAction

4. A Feature-Based Classification of Triple Graph Grammar Variants 75

Let us have a short recap of the introduced rules that form the example TGG at this
point. Considering the SysML state machine of Fig. 3.1, we are able to transform the
example instance to Event-B, except for the trigger and the guard which pose further
restrictions on when the transition can be executed. Figure 4.17 shows the parts of the
state machine which can be transformed already, together with the produced Event-B
model and the respective correspondence nodes. In order to check that the triple is
consistent, a derivation sequence, i.e., a sequence of rule applications, must be found
that generates the triple graph. In total, ten rule applications are necessary: The rule
StateTo Variable (Fig. 4.3) is applied twice, whereas all other rules (StatemachineToMa-
chine (Fig. 3.11), PortToVariable (Fig. 3.10), AddRegion (Fig. 4.2), TransitionToFEvent
(Fig. 4.7), SourceState ToLeaveAction (Fig. 4.8), TargetState ToEnterAction (Fig. 4.9), Ef-
fectToAction (Fig. 4.16), PseudostateToActions (Fig. 4.13)) are applied once. As the
source model has two regular states (s1, s2) and one port p, the kernel rule of Pseu-
dostateToActions is applied once, and the multi rule is applied twice.

The last two rules which are required to fully transform the SysML example state
machine transform SysML triggers tg (Fig. 4.18) and guards g1 (Fig. 4.19) into Event-B
guards (g, g2), respectively. These rules are structurally similar to the EffectToAction
rule. They both involve two attribute conditions each, which check for equality of names
and bodies. An interesting point to consider is the non-determinism induced by the two
rules for the backward direction: Translating an Event-B guard into either a trigger or a
guard is equally possible with the example TGG, but one can assume that the choice is
not completely arbitrary as the two SysML language constructs have different semantics.
This leads us back to the introductory example for multiple transformation solutions as
shown in Fig. 1.4, which was used to motivate fault-tolerant system behaviour.

The goal of this chapter was to present a complete overview of TGG language features
and compare them with respect to their expressive power. The fault-tolerant approach is
able to support these features to a large extent, but some restrictions have to be made to
further proceed with the example TGG:

e Source- and target-idle rules as well as ignore rules will only be supported for a subset
of all possible consistency management operations. The concrete conditions will be
explained in detail in Chap. 5, 6 and 7, such that the source-idle rule AddRegion (cf.
Fig. 4.2) will remain in the rule set of the example TGG.

e Application conditions are a means of restricting the applicability of TGG rules,
and thereby indirectly guaranteeing that the produced models fulfil the intended
constraints. Theorem 4.3 shows that it is always possible to generate an application
condition from a constraint. The fault-tolerant approach will provide direct support
for constraints, but can, in turn, not handle application conditions. Therefore, we
will remove all application conditions from the example rules StatemachineToMa-
chine (Fig. 4.10), TransitionToFEvent (Fig. 4.7), SourceStateToLeaveAction (Fig. 4.8)
and TargetStateToEnterAction (Fig. 4.9), and add respective graph constraints to
the TGG that serve the same purpose in Chap. 6.

e The fault-tolerant approach — in its current form — cannot handle multi-amalgamation.
The only situation in which this language feature is required is, however, when de-
fault values are assigned to all variables in the Event-B model, i.e., when the ini-
tialisation transition fires. In the following, we will assume that all variables are
initialised with FALSE per default, such that the multi-rules can be removed from
PseudostateToActions (Fig. 4.13).

4.7. Completed Running Example

76

sm : Statemachine

m : Machine

: Sm2M N -
name : "Machine" name : "Machine" invariants
variables events i3 : Invariant
regions, ports
: P2v name : "TYPEOF_finish"
transitions r : Region predicate : "finish € BOOL"
- p : Port v3 : Variable
name : "main” - P2V <«
name : "finish" name : "finish" - -
mcc<m:mx\f \ > i1 : Invariant
ﬁ) : 821 name : "TYPEOF_START"
Y
. predicate : "START € BOOL"
s0 : Pseudostate s1: State v1 : Variable P)
1 S2v <
kind : INITIAL name : "START" name : "START" i2 : Invariant
~— .
1 821 name : "TYPEOF_STOP"
Y predicate : "STOP € BOOL"
s2 : State v2 : Variable
182V <«
name : "STOP" name : "STOP"
source target
a1.1: Action a1.2: Action
t1 : Transition e1: Event name : "init_START" name : "init_STOP"
> 1 T2E < i .
name : "INITIALISATION" name : "INITIALISATION" action : "START := TRUE" action : "STOP := FALSE"
source target actions ﬁ 9 9
t2 : Transition e2: Event g : Guard a1.3 : Action
> 1 T2E < —
name : "To_STOP" name : "To_STOP" » name : "isin_START" name : "init_finish"
guards) .
actions predicate : "START = TRUE" action : "finish := FALSE"
effects L
Y Y
e : Effect a2.3 : Action a2.1: Action a2.2 : Action
name : "action2.3" : E2A name : "action2.3" name : "leave_START" name : "enter_STOP"

body : "finish := TRUE"

action : "finish := TRUE" action : "START := FALSE" action : "STOP := TRUE"

Figure 4.17: Sample

instance without guards and triggers

4. A Feature-Based Classification of Triple Graph Grammar Variants 7

TriggerToGuard
t : Transition %; T2E>— e : Event
++ ++
triggers guards

++ ++ ++
tg : Trigger % ng(3>— g : Guard

tg.name = g.name

tg.body = g.predicate

Figure 4.18: Rule: TriggerToGuard

GuardToGuard
t : Transition %; T2E>— e : Event
++ ++
guards guards

++ ++
g1 : Guard —< GZG>— g2 : Guard

g1.name = g2.name

g1.body = g2.predicate

Figure 4.19: Rule: GuardToGuard

4.8 Summary and Discussion

In this chapter, different language features of TGGs have been introduced, providing a
basis for the conceptual work on fault-tolerant consistency management in the remainder
of this thesis. We identified and described language features of TGGs, summed up in a
feature model that can be used to classify TGG variants (cf. Fig. 4.1).

In addition, we evaluated the expressiveness of TGG variants depending on the sup-
ported language features and provided examples illustrating where particular language
features can be useful. We have proven that having rules which affect only one model
increases the expressiveness (Thm. 4.1). While attribute conditions that only check the
equality of values can be simulated with data vertices, we have shown that for TGGs with
acyclic type graphs, arithmetic expression cannot be specified using only basic rules (Thm.
4.2). With a minimum example, we have shown that application conditions increase the
expressiveness compared to using only basic rules (Thm. 4.4). For the difference between
NACs and PACs (Thm. 4.5) and multi-amalgamation (Thm. 4.7), we referred to existing
proofs that demonstrate the increased expressive power of such language features.

78 4.8. Summary and Discussion

All results regarding the expressiveness of different TGG variants are summarized in
Fig. 4.20: Each node represents one of the previously presented TGG variants. An arrow
between two nodes A and B illustrates that the TGG variant A is more expressive than B.
As an outlook on Chap. 5 and 6, TGG variants supported by the fault-tolerant framework
are coloured blue, whereas unsupported TGG variants are coloured grey. With the ex-
ception of multi-amalgamation, all presented TGG variants are supported, as application
conditions can be constructed from graph constraints according to Ehrig et al. [EEPTO06, p.

157-159].
TGG~
[ngBasic =F ngAttrC:

[TGGattrc =E TGGAttrc] [TGGnAC] [TGGmA }

[ngAC =E ngPAC]

L
cgend Supported

[Not Supported j

TGGA > TGGB

Figure 4.20: Summary: Expressiveness of TGG variants

The question whether TGG variants which combine multiple language features increase
the expressive power even more is still left open, though. While we are convinced that
attribute conditions are a powerful feature for TGGs in practical use, the question whether
they generally increase the expressiveness is undecided. Furthermore, it needs to be inves-
tigated if general application conditions are more expressive than application conditions
generated from constraints, or if these two TGG sets are equally expressive. It would
be also worthwhile to investigate whether the expressive power of nested conditions as
specified by Habel and Pennemann [HP09] can be leveraged for TGGs. Formal properties
for graph transformations with nested conditions, such as correctness and completeness,
have been proven by Poskitt and Plump in prior work [PP14].

Our feature model could be extended with further language features, such as rule re-
finement or rules that can delete elements. To be able to find an appropriate tool for
one’s needs, the support of the different language features in current TGG tools must be
analysed, e.g., by a classification according to the feature model given in Fig. 4.1. An
overview of tool support would assist people specifying the consistency between two model
spaces using TGGs with finding a tool supporting all features needed by them.

After the first four chapters have laid the foundations for fault-tolerant consistency man-
agement in MDE, the conceptual solution of this thesis can be presented in the following
Chap. 5 - 8.

Part Il

Conceptual Solution

5 Fault-Tolerant Model Transformation and
Consistency Checking

To address the requirement of performing model transformations in the presence of faults,
a hybrid framework is proposed that synergetically combines TGGs as a rule-based BX
approach, and ILP, an exact algorithm for solving combinatorial optimisation problems.
With these two techniques, tolerance towards faults in the input models is achieved by
computing a triple that maximises the number of translated elements, denoted as the
“largest consistent sub-triple” in the following, in case of inconsistent input models. The
framework is able to perform two sorts of consistency checks, as well as forward and
backward transformations using a common problem definition and solution strategy. An
experimental performance evaluation indicates that a reasonable trade-off between flexi-
bility and scalability could be made.

This chapter is structured as follows: The idea of combining algorithmic and search-
based approaches to consistency management is motivated in Sect. 5.1. Section 5.2 dis-
cusses related work, before Sect. 5.3 presents the overall work-flow of constructing the ILP
based on the input models for different consistency management tasks. Sections 5.4, 5.5,
5.6, and 5.7 present each main step in more detail. The results of a runtime performance
evaluation comparing the four operations for different model sizes is presented in Sect. 5.8.
Finally, the results are summarised in Sect. 5.9.

5.1 Motivation

While a substantial amount of conceptual work on fault-tolerance was identified in Chap. 2,
it became apparent that there is indeed a lack of research on model transformations in the
presence of faults. Based on the review of existing work, one can state that there is no
framework for efficiently solving multiple consistency management tasks in a fault-tolerant
manner. Existing (fault-intolerant) approaches to consistency management can be divided
into algorithmic and search-based approaches:

Algorithmic approaches typically enable full control over consistency management and
exploit knowledge about the involved data structures and consistency management oper-
ations. While this allows for scalability with respect to model size, the price is a relatively
fixed and inflexible strategy, as well as numerous assumptions regarding supported changes
and input models. Furthermore, algorithmic approaches are highly optimised for one spe-
cific consistency management operation, such that the strategies for different operations
are substantially heterogeneous. Both of these factors mean that it is hard to adapt
algorithmic approaches to fault-tolerant scenarios. Examples of algorithmic approaches
(formal foundations and tool support) include work on lenses [KZH16, KH06, BFPT08],
and on TGGs [ALS15, GH09, EHGB12].

Search-based approaches, in contrast, view consistency management as a search prob-
lem and often leverage generic, flexible constraint solvers to determine an optimal solu-
tion [MC13, CRE"10]. Instead of an exact solver, some search-based approaches use evo-
lutionary strategies [FTW16, KSB08, DJVV14]. Almost no assumptions on input models
and changes are made, such that search-based approaches seem to be a promising solution

82 5.2. Related Work

strategy for fault-tolerant consistency management. The primary drawback, however, is
that they cannot cope with large models due to rapid search space explosion [MC13].
Purely constraint-based approaches often suffer from severe scalability problems as they
operate on the level of model elements and, therefore, involve numerous constraints that
guarantee basic graph properties.

For a fault-tolerant approach to consistency management, we propose to synergeti-
cally combine algorithmic and search-based approaches to yield a hybrid solution that is
both reasonably scalable and at the same time more flexible than existing algorithmic
approaches. Our proof-of-concept is a concrete combination of TGGs as an algorithmic
approach and ILP as an exact search-based approach. The idea originates from Leblebici
et al. [Leb16,LAS17,Leb18], who used this hybrid strategy to specify a TGG-based con-
sistency checker - as they argue that this task is hardly solvable in a purely algorithmic
manner. A search space of potential rule application candidates is constructed, whereby
matches are determined via graph pattern matching and associated with variables of an
ILP. In this way, it is possible to keep the search space relatively small (compared to
purely search-based approaches), while still benefiting from a high degree of flexibility.

Our contribution is to substantially extend and generalise the work of Leblebici et
al. towards a powerful framework for fault-tolerant consistency management. While the
original approach focused solely on consistency checking for a given pair of models (i.e.,
without correspondence links), our extension uniformly covers consistency checking for a
given triple of models (i. e., with correspondence links), as well as (unidirectional) forward
and backward transformation. Further extensions towards graph constraint handling and
the synchronisation of concurrent changes on the two models follow in Chap. 6, 7, and
8. A key advantage of having a generic problem definition is that all operations share a
common work-flow. As a result, the implementation of these operations can make use of
a common code base, which is easier to maintain than separate implementations.

The work of Leblebici et al. focussed on proving formal properties for consistent inputs,
i.e., that the approach is correct (if a solution is returned, it is consistent) and complete (if
a consistent solution exists, it will be returned). From the perspective of fault-tolerance,
however, the approach also yields a useful “by-product” for inconsistent inputs: In case
no strictly consistent solution exists, the largest consistent sub-triple is returned, i. e., the
part of the given models maximising the number of elements that can be consistently
translated, determined via an optimisation process for a configurable objective function.
In this way, the consistency management engine returns either a consistent solution (if the
input models were consistent) or a solution which is as consistent as possible by forming
a union of the largest consistent sub-triple and the remaining input elements.

5.2 Related Work

There exists a considerable amount of work on encoding the structure of models, meta-
models, and transformation definitions into constraints that can be directly passed on to
a constraint solver.

The Python-based tool CoReS [KN18] encodes graph structures into both Boolean Sat-
isfiability Problem (SAT) and SMT formulas and hands them over to a corresponding
solver. Similar to ILP, SMT models a constraint satisfaction problem by inequalities,
which are indeed not restricted to integers or real numbers. In the area of consistency
management, the Janus Transformation Language (JTL) framework [CRE*10] supports
unidirectional transformation and model synchronisation derived from a common specifi-
cation by deriving constraints that are handed over to a DLV solver in a second step.

5. Fault-Tolerant Model Transformation and Consistency Checking 83

Similarly, Macedo et al. [MC13] developed Echo, a transformation engine that supports
metamodels enriched with OCL constraints and that is able to perform different consis-
tency management operations derived from a common constraint-based specification. In
the case of Echo, Alloy is used as an underlying solver. FunnyQT [Horl7] (used in our
evaluation) is another constraint-based approach that uses the core.logic' of Clojure for
constraint solving. While all these approaches can (at least potentially) easily return a
model which is “closest” to a consistent solution in case of inconsistent inputs, scalabil-
ity remains a crucial challenge as the underlying solvers cannot fully exploit the graph
structure of (meta)models.

If the hard guarantee of providing an exact solution (if it exists) can be sacrificed,
then such approaches as proposed by Fleck et al. [FTW16], can be used to combine OCL
constraints and graph pattern matching with techniques of local and global search. The
corresponding tool MOMOoT is also able to exploit evolutionary algorithms both with sin-
gle and multiple objectives. Denil et al. [DJVV14] use the multi-objective optimisation
technique Design Space Exploration (DSE) in combination with the T-core transformation
framework [SVL15]. In their tool MOTOFE [KSB0§|, Kessentini et al. extract transfor-
mation blocks from examples and use particle swarm optimisation as a search technique.
Basic evaluations on transforming UML diagrams into relational database schemas - sim-
ilar to our running example - have shown that only about half of the transformation runs
find a correct solution, though.

In general, while this group of search-based approaches can potentially scale much better
than exact search-based approaches, they do this at the price of giving up hard guarantees
for finding either a perfectly consistent solution if it exists, or finding a globally optimal
solution in case of inconsistent inputs. Especially for consistency checks, exactness is
crucial to gain the users’ trust in the software system, such that we decided not to use
heuristics to build up the consistency management framework.?

At the other end of the spectrum (efficient, exact, but rather inflexible), numerous algo-
rithmic approaches exist often based on either lenses [BFPT08], or TGGs [ALS15]. BiGUL
(used in our evaluation) is a putback-based bidirectional transformation language, which
means that having implemented the backward “put” transformation, the forward “get”
direction is derived for free [KZH16] with well-behavedness guarantees from the lenses
framework. Other comparable lens-based approaches include the biXid programming lan-
guage [KHO6] for XML data, and Boomerang [BFPT08, FPP08] for string data.

MOTE [GH09,LHGO12] supports incremental model synchronisation based on the TGG
formalism. HenshinTGG [EHGBI12] is an extension of the Graph Transformation (GT)
tool Henshin® and also implements support for TGGs. eMoflon::TiE [LAS14a] - the pre-
decessor of eMoflon::IBeX and eMoflon::Neo - is a TGG tool capable of transforming and
synchronising models, as well as checking for consistency. While all these algorithmic ap-
proaches and tools are both exact and (highly) efficient, they pose numerous restrictions:
BiGUL’s derived functions are partial and simply reject invalid input (producing noth-
ing), MOTE, eMoflon::TiE, and Henshin-TGG all assume certain conditions regarding
the structure of the underlying TGG and input models (confluence, local completeness,
conflict-freeness, etc).

There have also been proposals for hybrid solutions similar to our approach: Callow and
Kalawski [CK13] introduce a combination of model transformation by pattern matching
and mixed integer linear programming with a high priority of target model compliance in

"https://github.com/clojure/core.logic

The concurrent synchronisation operation can be seen as an exception, where an alternative solution
strategy based on different heuristics was developed (cp. Chap. 8).

3https://www.eclipse.org/henshin/

https://github.com/clojure/core.logic
https://www.eclipse.org/henshin/

84 5.3. Solution Overview

contrast to maximizing the number of matches. This approach, however, only considers
forward and backward transformations and does not support consistency checking.

Our ILP-based operations build upon and extend the seminal work by Leblebici et
al. [LAS17,Lebl18], which focused on consistency checking without correspondence links.
This chapter shows that the basic idea can be extended and generalised — both formally
and implementation-wise — to a wider range of consistency management operations.

5.3 Solution Overview

We begin with a high-level overview of the work-flow of fault-tolerant consistency manage-
ment, which is equal for all operations. The proposed process for consistency management
is depicted in Fig. 5.1 in form of a UML activity diagram with object flows. It can be
divided up into five main steps: Based on the declarative TGG specification, operational
rules are generated for the different consistency management tasks, such as consistency
checks or forward and backward transformation (A). For these operational rules, rule ap-
plication candidates are collected via graph pattern matching on the input models (B).
The pattern matching step itself is an iterative process: Multiple iterations are necessary
to find all rule application candidates, as operational rules create new elements that can
provide context for dependent rule applications.

Based on these candidates and their interdependencies, an ILP is generated (C). It
consists of an objective function that maximises the number of “translated” elements, and
of constraints that guarantee language membership. The optimisation step determines the
optimum solution for the ILP (D). Finally, the rule applications are filtered according to
the determined solution of the ILP to form a consistent output triple in case of consistent
inputs, and the largest consistent sub-triple otherwise (E). In the latter case, the framework
informs the user which elements remain untranslated, such that faults can be removed to
eventually restore consistency.

Rule 1

Rule 1 Rule 1 Rule 1 Rule 1
(e]e] CcC FWD_OPT BWD_OPT

(A) Operatio-
nalisation

* i
‘ ok B) Rule Patternw Input
Rule Application (.

Candidate J Matching Mod‘els

Output

) Models

c (€)ILP Chosen Rule J (E) Filter ‘
onstruction icati

Application Remaining
Elements

Integer Linear s
\\ Program (D) Optimisation

Figure 5.1: Process for fault-tolerant consistency management

In the following subsections, each step is described in detail, including formal definitions
and an illustrative forward transformation in the context of our running example.

5. Fault-Tolerant Model Transformation and Consistency Checking 85

5.4 Operationalisation

TGGs according to Def. 3.7 generate triples by creating elements in each domain (source,
correspondence, and target). In this way, a language of (consistent) triples is defined. A
TGG as specified by an end user can be automatically operationalised to support different
consistency management tasks. In this chapter, we focus on the following four operations
—two of them check for consistency, whereas the other two perform a unidirectional model
transformation in both directions:

e The operation CO (Check Only) is a read-only operation that accepts a complete
triple as input and checks if it is consistent or not.

e Provided with a source and a target model, the operation CC (Correspondence
Creation) attempts to create a correspondence model that completes the given pair
of models to a consistent triple.

e The FWD_OPT (OPT for optimisation) operation takes a source model as input
and attempts to perform a forward transformation, i.e., complete the input to a
consistent triple.

e Analogously, BWD_OPT takes a target model as input and attempts to complete
it to a consistent triple via a backward transformation.

To determine if a concrete triple graph G is a member of the language of a TGG, one
searches for a derivation sequence starting with the initial triple graph (cf. Def. 3.7) and
producing G. The language is composed of all graphs that can be generated by applying
triple rules, creating elements in each domain (source, correspondence, and target) simul-
taneously. However, this definition is not sufficient to specify, e. g., forward and backward
transformations, because parts of the triple are already given. These parts differ for all op-
erations and can be combinations of the source, target and correspondence graphs, which
we denote as the starting triple graph.

Definition 5.1 (Starting Triple Graph).
For each operation op € {CC, CO, FWD_OPT, BWD_OPT}, a starting triple graph Gy
for a triple graph G is defined as:

Operation | Starting Triple Graph (G;)
cc Gs«+ 00— Gr
co Gs+ Goe—-Gr=G
FWD_OPT Gg«0—0
BWD_OPT 00— Gr

The starting triple graph of an operation is a consistent input for an operation, if it can
be extended to a consistent solution, i.e., a triple graph that is contained in the language
of the TGG, by applying the rules of the operation.

Definition 5.2 (Consistent Input and Consistent Solution).
Given a triple graph grammar TGG = (TG, R), a starting triple graph Go = Gg + G¢o —
Gr is said to be consistent input iff 3 G' = Gq «+ G, - G} € L(TGG), such that:

86

5.4. Operationalisation

Operation Conditions
cc Gs =Gy, Gr =G/,
co Gs = G4,Go = G, Gr =G,
FWD_OPT Gs =Gy
BWD_OPT Gr =G/,

G’ is referred to as a consistent solution for Gy in each case.

Figure 5.2 depicts an example for a consistent triple, which can be generated by applying
the rules StatemachineToMachine and PortToVariable in this order. The source model is
depicted to the left with a blue background, the target model to the right with green, and
the correspondence model in the middle with yellow. Above the models, the operations
that require the respective model as input are listed: The correspondence model is only
needed for CO, while all operations except BWD_OPT (FWD_OPT) require the source
(target) model as input.

FWD_OPT, CC, CO CcO BWD_OPT, CC, CO
sm : Statemachine m : Machine
s : Sm2M ~
name : "Machine" name : "Machine" invariants
ports variables
Y Y
p : Port v : Variable
: P2V
name : "finish" name : "finish"
regions
i : Invariant
r : Region . € J
> 9! : P2l name : "TYPEOF _finish"
name : "main" predicate : "finish e BOOL"

Figure 5.2: Consistent triple indicating which models are required as input per operation

The elements of the given graphs are denoted as markable elements, and the elements
to be created by the operation as created elements.

Definition 5.3 (Markable Elements and Created Elements).
The sets mrkElem(G) and crtElem(G) are defined for a triple graph G = Gg <+ Go — Gr

as follows:

Operation mrkElem(G) crtElem(G)
cc elem(Gg) U elem(Gr) elem(G¢)
co elem(G) 0
FWD_OPT elem(Gg) elem(Ge) U elem(Gr)
BWD_OPT elem(Gr) elem(Gg) U elem(Gc)

Consequently, elem(G) = mrkElem(G) U crtElem(G).

5. Fault-Tolerant Model Transformation and Consistency Checking 87

In addition to varying input and output, the rules of the TGG have to be suitably ma-
nipulated for each operation. To express that these rules partly mark and create elements,
we denote them as operational rules derived from the original, declarative rules (Def. 5.4).
The basic idea for operational rules is to extend the context of the original TGG rule to
cover all additional input elements. The green (created) elements of the declarative TGG
rule are either marked (in the given input) or created (in the remainder of the triple). An
operational rule, derived from a respective declarative rule, requires the markable elements
(as specified in Def. 5.3) for the respective operation as additional context, marks them,
and adds all created elements on application.

Definition 5.4 (Operational Rule and Marking Elements).

Given a triple rule r : L — R, let Ly and Ry be the starting triple graphs for L and R.
The operational rule or : OL — OR for r is constructed as depicted in Fig. 5.3. OL
s formed via pushout construction of L and Rg over Lg. It holds that OR = R, and
r : OL — OR is induced via the universal property of the pushout. An element e €
mrkElem(OL) is a marking element of or iff e’ € mrkElem(L) with rs(e’) = e or
ro(e) =e orrp(e) =e.

Depending on the operation, the left-hand side of the operational rule (OL) can be
formed out of the left-hand side of the declarative rule (L), and the starting triple graph
for the right-hand side (Ry) via a pushout construction (cf. Fig. 5.3). The right-hand
side of the operational rule (OR) is equal to the right-hand side of the original rule. The
elements that are added by the morphism ol : L — OL are denoted as marking elements
of the operational rule or.

PO id = G (id,@,id) PO (id@,id)
oL OR=R

LO R LO I, @, r- RO
Lol [+ [ReR—R;Y CO [L—@—1 FE22U R—@—R, \ cC
) (id,@.id)
id =
L oL OR
Le— L by f——{ ReRe Ry f—f Re—Re Ry) Le— L~ LT 7 R L Ref{ Re—Re Ry

r r -

(id,2,2) PO (id,2.2) (42.0) (2,9,id) PO (id.@.id)

R=R

[LS'—(Z)—*Q)L\O(%-G@[RS‘—Q)—'Q)RO FWD_OPT [@—0—L " oou)[G0~ R \ BWD_OPT
(2,9,id)
= LW[RS LJ——-[R R~ RTJ) (L~ TJW{LS L~ RJ—{RS R RTJ "R
¥/ /

Figure 5.3: Operational rules for CO, CC, FWD_OPT and BWD_OPT

In Fig. 5.4, the construction of the FWD_OPT rule for TriggerToGuard is depicted. To
improve readability, edge labels are omitted, and the types T (transition), E (event), Tg
(trigger) and G (guard) are given in their abbreviated form. Based on the graphs L, Lg
and Ry, which can be directly taken from the declarative rule, OL can be determined via
pushout construction. The operational rule or : OL — OR can be derived be requiring
that the triangles involving L, OL and OR on the one hand and Ry, OL and OR on
the other hand both commute. It becomes apparent that the operational rule for the
FWD_OPT operation creates the same elements as the declarative rule in the target and
correspondence model, whereas the elements of the source model (Tg with its incoming
edge) become the marking elements of the operational rule.

88 5.4. Operationalisation

Lo Ro
(rs0,0) |

(id,0,0) PO (id,0,0) = “d 2)
L OR

-—.—-I___D—.—-

(rs,9.9) v v v
: Tg :Tg @ : G

9

Figure 5.4: Construction of the FWD_OPT rule for TriggerToGuard

Figure 5.5 depicts the operational rules derived from TriggerToGuard for each of the four
operations in the previously used short-hand notation: Original context elements remain
unchanged, whereas green elements are partly replaced by black elements depending on
the operation. For CC, only the correspondence link :T2G is created, for CO nothing
is created, and for FWD_OPT (BWD_OPT) the correspondence link and the guard g
(trigger tg) are created with their incident edges. Elements which are annotated with
[0 — K are marked by the operational rule, whereas the ¥ annotation indicates that
they must be marked already in order to apply the rule. As for declarative rules, created
elements have a ++ mark-up and are coloured green, and context elements outside the
input are black and do not have any mark-up.

Considering the elements of the host graph that are involved in an operational rule
application d, a partition into four sets is possible, as stated in Def. 5.5: Elements can be
created (crt(d)) or marked (mrk(d)) by a rule application, depending on whether they are
contained in the starting triple graph. Some elements are required as context in both the
operational and the original TGG rule. If such a context element is also part of the starting
triple graph, it is required to be marked already (reqMrk(d)), simulating the behaviour of
the generative TGG specification. Otherwise, it is required to be created by a previous
rule application (reqCrt(d)). To track dependencies between derivations and eventually
formulate constraints to characterise correct derivations, we introduce the following sets
of marked, created, and required elements of a direct derivation:

Definition 5.5 (Marked, Created and Required Elements).

ar@om G

For a direct derivation d : G " via an operational rule or : OL — OR, the following

sets are defined:

e crt(d) = crtElem(G’) \ crtElem(G)

o mrk(d) ={e € elem(G) | 3e € elem(OL), om(e’') = e where €' is a marking element
of or}

e reqMrk(d) = {e € mrkElem(G) | 3¢’ € elem(OL), om(e') = e where € is not a
marking element of or}

e 1eqCri(d) = {e € crtElem(G) | 3¢’ € elem(OL), om(e') = e}

5. Fault-Tolerant Model Transformation and Consistency Checking 89

TriggerToGuard (CO) TriggerToGuard (CC)
& & & & &4
t : Transition —<; T2E>— e : Event t : Transition %; T2E>— e : Event
O—> O O O—>
triggers guards triggers guards
vy 0= O->x O vy vy 0= ++ O vy
tg : Trigger % nge>— g : Guard tg : Trigger —< nge>— g : Guard
tg.name = g.name tg.name = g.name
tg.body = g.predicate tg.body = g.predicate
TriggerToGuard (FWD_OPT) TriggerToGuard (BWD_OPT)
& &4
t : Transition %; T2E>— e : Event t : Transition —<; T2E>— e : Event
M ++ ++ D_>E/l
triggers guards triggers guards
vy O0—=>& ++ ++ 2 2 ++ ++ 0>t 7
tg : Trigger —< ngg>— g : Guard tg : Trigger % ngc>— g : Guard
g.name := tg.name tg.name := g.name
g.predicate := tg.body tg.body := g.predicate

Figure 5.5: Operational rules for TriggerToGuard

5.5 Rule Pattern Matching

The goal of the next step in the process is to (i) determine matches for all operational rules
of a chosen operation, (ii) to choose certain matches for rule application, and (iii) to repeat
(i) and (ii) until some termination criterion is reached. Typical TGG-based tools apply a
greedy strategy by marking the elements in each operational rule, which would be created
by the original TGG rule, and by storing these markers separately. Such an additional
marker data structure helps to increase the probability of generating a consistent result
by ensuring that context dependencies are respected.

There is, however, no hard guarantee that greedy strategies cannot fail even for simple
examples: We temporarily extend the SysML metamodel, such that Regions can be
nested (cf. Fig. 5.6). In order to integrate this inheritance relation between Regions
into the TGG, a new rule AddSubRegion (Fig. 5.7) is (temporarily) added to the TGG.
Similar to AddRegion, this rule only affects the source model.

To show that a greedy choice of forward transformation rules can be problematic, a
region r2 is added to the source model of Fig. 5.2 as a subregion of r1. The resulting
source model is depicted in Fig. 5.8. Suppose that this source model should be completed
to a consistent triple with a greedy forward transformation, i.e., a transformation that
applies rules immediately after finding a respective match. Instead of applying AddSub-
Region to create r2 as a subregion of r1, the rule AddRegion could be applied instead,
such that the edge that connects r2 and r1 remains untranslated. This is a dead end, as
the subregions arrow (highlighted in red) cannot be translated by any forward trans-
formation rule.

In principle, greedy strategies could correct such wrong decisions by applying backtrack-
ing, all TGG tools we are aware of avoid this as it rapidly leads to exponential runtime.

90 5.6. ILP Construction

AddSubRegion

Statemachine >

name : EString sm : Statemachine

subregions
ports regions regions
regions

. r1: Region
Region Port 9 .
name : EString name : EString subregions&'F

++
l l r2 : Region

Figure 5.6: Modified source metamodel

Figure 5.7: Rule: AddSubRegion

sm : Statemachine >
name : "Machine"
N
regions£ regions ports 1
Y
r2 : Region r1 : Region p : Port
name : "sub" name : "main" name : "finish"

t subregions J

Figure 5.8: Greedy choice of rule applications can lead to dead ends

The alternative solution taken by TGG tools is twofold: (i) numerous (often technical and
complex) restrictions are imposed concerning the allowed structure of a TGG and expected
input, and (ii) the derived operational rules are enriched with automatically generated ap-
plication conditions (cf. Def. 4.9) that serve as a check to suitably filter out invalid matches
(see, e.g., Fritsche et al. [FLAS17] for a recent and detailed discussion). Unfortunately,
there is no guarantee for the derived operations to always return a consistent solution if
one exists, as the derived “filter” application conditions might be insufficient to detect
whether the transformation can run into dead ends. Our proposed strategy is instead to
collect and apply all matches for the operational rules as depicted in Fig. 5.5. Obviously
this can only yield rule application candidates representing a super set of all possible rule
applications to be filtered in subsequent steps.

5.6 ILP Construction

In general, there are more rule application candidates that can be found by matching
the operational rules than are necessary to form a derivation sequence from the starting
triple graph to a consistent solution. The subset of necessary rule applications is therefore
determined by transforming the consistency management problem into a search problem
to be solved by, e.g., an ILP solver, in which each rule application candidate is associated

5. Fault-Tolerant Model Transformation and Consistency Checking 91

to a binary variable. Its value in the retrieved solution (0 or 1) indicates whether the
candidate is considered for forming the final derivation sequence.

To filter the rule application candidates collected in the previous pattern matching
step, an ILP is generated consisting of constraints guaranteeing that the resulting rule
application sequence is correct, i.e., results in a consistent triple. As depicted in Fig. 5.9
for the FWD_OPT operation, seven rule application candidates d; ... d7 can be collected.
dy and dy are associated to an application of StatemachineToMachine (Fig. 3.11), ds and
d4 to applications of PortTo Variable (Fig. 3.10), ds and d7 to AddRegion (Fig. 4.2) and dy
to an application of AddSubRegion (Fig. 5.7). The marked and created elements of each
rule application are annotated with the associated variable. Marked elements are coloured
black, whereas (potentially) created elements are coloured grey. The reason why there
are multiple rule application candidates for translating, e. g., the statemachine sm, is the
shape of the rule StatemachineToMachine: The regions r1 and r2 can both be combined
with the statemachine sm, resulting in two distinct matches for the rule. As we collect
all possible rule application candidates, the choice between these candidates for the final
solution is made in the optimisation step (Sect. 5.7).

d1, d2 d1
dy
sm : Statemachine m1 : Machine
e : Sm2M N
name : "Machine" name : "Machine" invariants
d
d ds 2
dq, ds m2 : Machine
ds, dg : Sm2M) ~
. variables name : "Machine"
regions d
Y 3
ports ds dy
v1 : Variable
dn d : P2V .
v d3dg name : "finish" variables
p : Port v dy
dg
Lng g v2 : Variable
name : "finish . pav
dy, ds d name : "finish
L r1 : Region ds A 4
g d3 i1 : Invariant dg
name : "main"
1 P2l name : "TYPEOF_finish" invariants
dy, dg, d7 d7 predicate : "finish e BOOL"
subregions
dy
regions
v 92, de d7 dq i2 : Invariant
r2 : Region .
N 9 : P2l name : "TYPEOF finish" [€
name : "sub" predicate : "finish e BOOL"

Figure 5.9: Rule application candidates collected for the FWD_OPT operation

In order to translate the consistency management problem into an optimisation problem,
multiple constraint types are specified that ensure that a solution to the ILP represents
a correct choice of rule applications. All application candidates for operational rules are
collected and transformed into constraints that an ILP solver uses to determine a correct
and optimal subset. Every rule application is related to a binary variable that is set to 1

92 5.6. ILP Construction

if and only if the rule application is chosen as part of the final solution. In the concrete
example, the rule applications d; ... d7 are associated to the binary variables d; ... d7.

Definition 5.6 (Constraints for Derivations).

Given a starting triple graph Gy, let D : Gy = G, be a derivation via operational rules
with the underlying set D of direct derivations. For each direct derivation dy,...,d, € D,
respective binary variables 61,...,0, € {0,1} are defined. A linear constraint LC for D
is a conjunction of linear inequalities which involve b1,...,0,. A set D' C D fulfils LC,
denoted as D' = LC, iff LC is satisfied for variable assignments 6; = 1 if d; € D' and
i =014ifd; ¢ D,1<i<n.

In the following, rule applications and binary variables can be co-located via their in-
dices, i. e., a variable § belongs to a rule application d, and a variable §; to a rule application
d;, respectively. The remainder of this section introduces the three necessary constraint
types and the objective function in more detail, which ultimately form the ILP.

Exclusion Constraints

To ensure correctness, i. e., that the final solution triple is a member of the TGG’s language,
every operational rule application must correspond to a (declarative) rule application of
the underlying TGG. As markings in operational rules correspond to the creation of
elements in the original rules, it must be prohibited that elements are marked multiple
times, because this would mean that an element is created more than once. For each
node and edge, a predicate mrkSum of type integer is defined that reflects the number of
markings per element by counting the rule applications that mark this element.

Definition 5.7 (Sum of Alternative Markings for an Element).

Given a starting triple graph Go, let D : Gy = G, be a derivation via operational
rules with the underlying set D of direct derivations. For each element e € elem(Gy), let
Ee) ={d e D |eec mrk(d)}. The integer mrkSum(e) denotes the sum of the associated
variable assignments for each d € E:

mrkSum(e) = > 0
di€&(e)

Rule applications that overlap in their marked elements must exclude each other as at
least one element would be marked twice if more than one of such rules is chosen. Double
markings are incorrect as the resulting triple could never be created by the rules of the
TGG. To avoid this, the predicate mrkSum is used in linear constraints for each element
of the starting triple graph to ensure that elements are marked at most once.

Definition 5.8 (Constraint 1: Mark Elements at Most Once).
Given a starting triple graph Gy, let D : Gy = G, be a derivation via operational rules:

markedAtMostOnce(Gy) = N [mrkSum(e) < 1]
ecelem(Go)

Note that the mrkSum predicate is not required to be equal to 1: The constraint is
also fulfilled if there are elements that are not marked at all, resulting in a mrkSum of 0.
Consequently, there are valid solutions that cannot mark the input entirely. The reason
for the sum of marked elements not being strictly equal to 1 is the desired treatment of
inconsistent input: In this case, the ILP solver can still perform the optimisation, and
strive to maximise the number of marked elements.

5. Fault-Tolerant Model Transformation and Consistency Checking 93

In Fig. 5.9, the port p and the ports edge are both marked elements of ds and d4 (rule
PortToVariable), which means that only one of the two rule applications can be chosen.
For each element, we restrict the sum of the variables associated to rule applications that
mark this element to 1, which results in a non-trivial linear constraint:

03 +04 <1

The region r2 and its incoming edge can be even marked by three different rule appli-
cations. It can either be part of the axiom rule application of StatemachineToMachine
(d2), or be added with an application of AddRegion (dg) or AddSubRegion (d7). As only
one rule application candidate can be chosen, the following constraint is added to the ILP:

do+66+07 <1
For all remaining elements, exclusion constraints are constructed in a similar fashion:

01 +02<1,01+05<1,

Implication Constraints

Another constraint type must ensure that an operational rule is applicable if and only if the
respective declarative rule would be applicable in a setting in which the same derivation
sequence is followed. For each rule that contains context elements, a requirement for its
application is that these context elements are created by some previous rule application(s).
This means that context elements of the starting triple graph must be marked, and context
elements of the remaining part of the triple must be created already. The dependent rule
application thus implies all rule applications providing at least one context element. The
following constraint type ensures that the required context elements for an operational
rule application are provided in the final solution, such that the original TGG rule is
guaranteed to be applicable in this situation.

Definition 5.9 (Constraint 2: Guarantee Context for Derivations).

Given a starting triple graph Gy, let D : Gy = G, be a derivation via operational rules
with the underlying set D of direct derivations. For each direct derivation d € D, the
following constraints are defined:

context(d) = N [0 < mrkSum(e)] A A [0 < 65]
ecreq(d) d; €D, [reqCri(d)Nert(d;)#0)

context(D) =)\ context(d)
deD

For an intuitive understanding of these constraints, it is best to assume that the con-
straint marked AtMostOnce (Def. 5.8) already holds, i. e., elements are marked by at most
one derivation. For created elements, note that the transformation process guarantees
inherently that every created element is created by only one derivation (see Def. 3.4).
context(d) ensures that all marked elements required by d are indeed present (first part),
if d is selected, and that all created elements required by d are created in the final result
(second part). In the example instance of Fig. 5.9, ds ... ds are dependent on d; or da, as
the statemachine sm and the machine m are required by each of the other rules. These
requirements can be expressed as inequalities to be added as constraints to the generated
ILP:

94 5.6. ILP Construction

03 < 01, 04 < 02, 05 < d2, 06 < 01,07 < 01

Additionally, d; requires the region r1 to be marked by either d; or ds, leading to the
following constraint:

07 <1+ 65

As 07 ...d7 are binary variables, the constraints forbid a variable to be set to 1 (i.e., to
choose the associated rule application) if none of the rule applications that could provide
the required context elements is chosen. The additional constraint for d7 could be removed
from the ILP in practical implementations, because this constraint is covered by the stricter
constraint 47 < d7.

Cyclic Markings

Furthermore, there are constellations in which rule application candidates mutually pro-
vide context for each other by marking or creating elements that are necessary to apply
the respective other rule. In this manner, a dependency cycle is formed, such that none of
the involved rules can ever be applied first due to missing context elements. To express a
cyclic dependency, a relation > among rule applications is introduced in Def. 5.10. Each
subset {di,...,d,} of rule applications that does not contain a cycle can be sequenced
over this relation in a proper order.

Definition 5.10 (Dependency Cycles).

Let D : Gy = G,, be a derivation via operational rules with the underlying set D of direct
derivations. Relations >,>M , >C¢C D x D between d;, d; € D are defined as follows:

d; >M d; iff regMrk(d;) 0 mrk(d;) # 0
d; ¢ d; iff reqCrt(d;) N ert(d;) # 0
d; > dj iff (dl >M dj) Vv (dz >C¢ d])

A set cy C D with cy = {dy,...,dn} of direct derivations is a dependency cycle iff
dy>--->dy > dy.

The first relation (>*) holds if d; requires an element to be marked and d; marks it.
Likewise, the second relation (>¢) holds if d; requires an element to be created and d;
creates it.

The following constraint forbids setting all variables that form a dependency cycle to 1
in the final solution. As not all rule applications involved in a dependency cycle can be
chosen for the final solution, it is always possible to arrange the remaining rule applications
properly.

Definition 5.11 (Constraint 3: Forbid Dependency Cycles).

Given a starting triple graph Gy, let D : Gy = G, be a derivation via operational rules
with the underlying set D of direct derivations, and let CY be the set of all dependency
cycles cy € D. A linear constraint acyclic(D) is defined as follows:

n
acyclic(D) = A S 6<n
cyeCY,cy={du,....dn } i=1

5. Fault-Tolerant Model Transformation and Consistency Checking 95

dy, dy, dg

sm : Statemachine

name : "Machine"

ds, dg, d14 do, dg, d1g dy, d7 dg, ds, dg

regions regions regions ports
v 93, dg, d dp. dg. d1o dq, d7 v 9d4.d5.dg

i d
r3 : Region [€ subregions _d11 r2 : Region r1 : Region p: Port
name : "sub2" » name : "sub1" name : "main" name : "finish"
dqg subregions

Figure 5.10: Inconsistent source model due to cyclic dependencies

To illustrate this with an example, a third region r3 with a cyclic inheritance relation
to the region r2 is temporarily added to the example instance as depicted in Fig. 5.10.

This makes the input source model for the FWD_OPT operation inconsistent, as mu-
tual inheritance between two regions is excluded by design: The rule AddSubRegion always
creates a new region when subregions edges are created, such that only tree-like struc-
tures can be constructed. When collecting all possible rule application candidates, the two
regions can, however, be marked by both AddRegion (ds,dy) and AddSubRegion (d1g,d11),
whereby djp and di; mutually provide context for each other (and therefore form a depen-
dency cycle). As the two rule applications do not mark any common element, no constraint
prevents us from choosing both rule applications, which indeed leads to a solution that
contains both dig and di;. Consequently, an additional constraint is necessary to forbid
such cycles:

010 + 011 < 2

As a result, it is not possible to simultaneously choose dig and d11, such that one of the
subregions edges remains unmarked. In the following, however, we will continue with
the instance of Fig. 5.9 to keep the example as simple as possible.

5.7 Optimisation and Filter

In the optimisation step, the generated ILP is solved as a maximisation problem. The
default function is a weighted sum of all binary variables, with coefficients reflecting the
number of elements marked by the associated rule applications. The reason for this default
choice is that a consistent result can only be obtained if all input elements can be marked,
maximising the objective function. By combining all our correctness constraints, we can
now express our optimisation goal: The number of marked elements of the starting triple
graph shall be maximised, while ensuring that no correctness constraints are violated.

Definition 5.12 (Optimisation Problem).
Given a starting triple graph Gq, let D : G = G,, be a derivation via operational rules.
The ILP to be optimised is constructed as follows:

max. Y, |mrk(d)|-0 s.t.

deD
markedAtMostOnce(Ggy) N context(D) A acyclic(D)

96 5.8. Evaluation

For executing the FWD_OPT operation on the source model of Fig. 5.9, the objective
function is determined by counting the number of marked elements per rule application:

max. 301 + 302 + 203 + 204 + 205 + 206 + 307

Setting d1,d3 and 07 to 1 and all other variables to 0, an objective function value of 8
is reached, which is equal to the number of elements in the source model. A consistent
forward transformation can thus be performed by choosing these three rule applications.

In a final step, the solution of the ILP is used to choose the set of rule applications
to form the transformation result (d;,ds and d7 for the running example). All elements
created by all other rule applications are deleted to produce the final triple, whereas the
unmarked elements of the input models are returned separately. If the objective function
value of the optimal solution is not equal to the number of input model elements, i.e., if
elements remain unmarked, both input and solution are considered as inconsistent. The
chosen rule application sequence represents a best possible solution and we claim that this
(together with an inconsistency report that lists the remaining elements) is substantially
more useful than simply terminating with an error and rejecting the input as being invalid.

While this section formally defined the hybrid, fault-tolerant consistency management
approach based on TGGs and ILP solving, a proof for correctness, completeness and
termination is left open. These properties will be investigated in Sect. 6.5, after extending
the approach by graph constraint handling.

5.8 Evaluation

The motivation for synergetically combining algorithmic and search-based concepts is
achieving flexibility and scalability at the same time. While flexibility is provided by
encoding the graph problem into a generic optimisation problem, this section investigates
the scalability of the hybrid approach. We evaluate our implementation by investigating
the following research questions:

RQ1 How scalable (with respect to the model size) are TGG+ILP-based operations com-
pared to greedy, TGG-based operations?

RQ2 Which TGG+ILP-based operation scales best (worst)?

RQ3 How does the scalability of our hybrid approach compare to other algorithmic and
search-based approaches?

Setup: Our hybrid approach has been integrated into the components eMoflon::IBeX
(Sect. 9.4) and eMoflon::Neo (Sect. 9.5). This evaluation is based on the implementation
in IBeX in order to avoid biased results for RQ3 due to the underlying technology, as
IBeX is more similar to three tools that were chosen for the comparison with respect to
its software architecture than Neo (cf. Chap. 9).

Besides the four ILP-based operations CC, CO, FWD_OPT and BWD_OPT, the stan-
dard greedy operations FWD and BWD were included in the analysis to investigate RQ1.
Five TGGs that differ considerably with respect to metamodel size, number of rules, and
average rule size were chosen for the evaluation. All TGGs are standard examples to
demonstrate BX approaches?. As examples for small TGGs, CompanyToIT [Laul3] and
ClassDiagramToDatabaseSchema [BRST05] consist of four rules with about 10 elements

“http://bx-community.wikidot.com /examples:home

http://bx-community.wikidot.com/examples:home

5. Fault-Tolerant Model Transformation and Consistency Checking 97

(nodes and edges) each, and metamodels with only about 12 elements (classes, references,
and attributes) each. CompanyTolT is designed to be challenging in the forward direction:
one of the rules yields a lot of matches, of which only one is required and chosen. ClassDi-
agramToDatabaseSchema requires choosing between multiple alternatives for translating
classes of an inheritance hierarchy in the forward direction, similar to the choice between
the rules AddRegion (Fig. 4.2) and AddSubRegion (Fig. 5.7) in the running example.

Larger metamodels and more complex rules are used in the remaining three TGGs:
BlockCodeAdapter® has a weakly typed source metamodel (27 elements) and a smaller,
strongly typed target metamodel (11 elements), meaning that many rules depend on at-
tribute conditions as opposed to typing information. JavaToUML [Leb16] has rather large,
realistic metamodels with 339 and 837 elements, respectively, and an average rule size of 24
elements. Finally, to investigate RQ3, we chose the FamiliesToPersons example [ABW17],
a standard benchmark for BX languages. For this benchmark, various solutions have been
implemented already [ABW™20], which can be used to represent purely search-based and
algorithmic approaches.

All measurements were conducted for model sizes from 500 to 100,000 elements. For
the first four examples, models were generated randomly using a model generator (cf.
Sect. 9.4), while the benchmark example has a fixed generation procedure. For each
operation and model size, the median of 10 non-consecutive repetitions was taken to
minimize the effect of outliers. Using a time-out of 20 minutes, all performance tests were
executed on a desktop computer with an Intel Core i5 (3.20 GHz), 16GB RAM, and OS
X 64-bit as operating system. An installation of Eclipse Modelling Tools, version Oxygen
4.7.2 with Java Runtime Environment (JRE) version 1.8.0_101 was used. The Java Virtual
Machine (JVM) running the tests was allocated a maximum of 12GB memory. For all
ILP-based operations, the time required for ILP solving is negligible compared to the total
time and is thus not measured separately (cf. Leblebici et al. [LAS17] for similar results
in this regard).

Results: We briefly present the evaluation’s outcome using one diagram per TGG show-
ing the execution times of the different operations depending on the model size. Figure 5.11
depicts the measurement results for the four example TGGs. The exact numbers for each
test run are available online® and have already been presented in prior work [WALS19].

As expected, the forward direction is more challenging for CompanyTolT than backward
for both greedy and ILP-based operations. FWD_OPT is about 10 times slower than FWD
for 500 elements, but this factor decreases to about 3 for 20k elements. BWD_OPT and
BWD scale comparably well, with a small and constant factor. CC explodes already for 5k
elements, while CO scales better than forward but worse than backward transformations.
For ClassDiagramToDatabaseSchema, CC is again by far the most time-consuming task.
Ignoring the anomaly for FWD caused by a larger spread in the measured runtime values,
resulting in a rather misleading median, both greedy and ILP-based strategies perform
comparably well, with greedy strategies being a bit faster.

For BlockCodeAdapter, the forward direction is more challenging as this involves parsing
the weakly typed source model. Interestingly, FWD_OPT actually outperforms FWD for
some model sizes, probably because the heuristics and checks used for greedy strategies
are designed for strongly typed, well-connected models. In the backward direction, BWD
is clearly faster than BWD_OPT. For JavaToUML, all operations (even including CC and
CO) scale comparably well taking only between 5s and 10s for 100,000 elements. While
the greedy strategies are still the fastest, the difference is not really substantial.

Shttps://github.com/eMoflon/emoflon-ibex-tests/tree/master/BlockCodeAdapter
Shttps://docs.google.com/spreadsheets/d /THAHP4trkg9d1 LHvrKX2eVupcO02S0sjnh957gRaC_mds

https://github.com/eMoflon/emoflon-ibex-tests/tree/master/BlockCodeAdapter
https://docs.google.com/spreadsheets/d/1HAHP4trkg91LHvrKX2eVupcO02SOsjnh957gRaG_mds

98 5.8. Evaluation

1000 1000

100 100

[s]
[s]

[#nodes + #edges] [#nodes + #edges]
W FWD m FWD_OPT BWD m BWD OPT m CC m CO m FWD ®m FWD_OPT BWD m BWD OPT m CC m CO
(a) CompanyToIT (c) BlockCodeAdapter

0 1 A Dl
k) o v
S =
O N L O O O N O N O L O
S L N O S O) O N N O N
LSRN & s \QQQ LR & § S \QQQ
[#nodes + #edges] [#nodes + #edges]
W FWD ® FWD_OPT = BAD M BWDOPT M CC ® CO M FWD M FWD_OPT & BWD M BADOPT M CC m CO
(b) ClassDiagramToDatabaseSchema (d) JavaToUML

Figure 5.11: Comparison of greedy and ILP-based operations

To investigate RQ3, we chose BXtend [Bucl8] as a pragmatic, manually optimised,
algorithmic solution (EMF, Xtend), BiGUL [KZH16] as a lens-based algorithmic solu-
tion (Haskell), and FunnyQT [Horl7] as a search-based solution for the FamiliesToPer-
sons benchmark [ABW17]. As the backward direction of the benchmark is highly non-
deterministic and requires an integration of user preferences, we were only able to compare
our FWD_OPT operation with these algorithmic and search-based approaches (Fig. 5.12).
As can be expected for pure algorithmic approaches, BIGUL and especially BXtend scale
excellently up to 100,000 elements. While our FWD_OPT operation is actually slower
than FunnyQT for small models, the search-based FunnyQT is already a factor 10 slower
for 10,000 elements, and times out for 100,000 elements elements.

1000 R T — =

M

[s]

[s]

[#nodes + #edges] [#nodes + #edges]
W FWD = FWD_OPT BWD ™ BWD_OPT m CC m CO H BiGUL MW BXtend M FunnyQT M eMoflon:IBeX
(a) Different ILP-based operations (b) Comparison with other tools

Figure 5.12: The FamiliesToPersons benchmark example

5. Fault-Tolerant Model Transformation and Consistency Checking 99

Summary: Coming back to our research questions:

(RQ1) While it is clear that greedy strategies scale far better than our hybrid operations,
it is surprising that FWD_OPT and BWD_OPT can actually compete with their greedy
counterparts for larger models and realistic metamodels. In many cases, the factor between
greedy and ILP-based forward / backward transformations is acceptable and does not
appear to explode with model size. Our explanation is that while the set of collected
solution candidates can theoretically explode, realistic metamodels and patterns ensure
that the pattern matcher can already filter relatively well so the superset of all solutions
remains manageable. According to our observations, the use of a pattern matcher reduces
the complexity of the optimisation problem by far.

(RQ2) Amongst our ILP-based operations, CC is clearly the most time-consuming op-
eration. This is to be expected, as the solution candidates are “all possible pairs” of source
and target matches, resulting in a large solution space. CO appears to be much easier,
sometimes even faster than forward or backward depending on the particular TGG. This is
also to be expected as patterns for CO cover entire triples and thus avoid the combinatorial
explosion experienced by CC.

(RQ3) While the price of our hybrid approach is substantial — algorithmic approaches,
especially manually programmed solutions can be considerably faster and scale better —
our evaluation still indicates that our approach scales (potentially much) better than pure
search-based approaches as we perform most of the work using a graph pattern matcher.

Threats to Validity: The chosen examples — except for JavaToUML — do not involve
metamodels of realistic size and require only few TGG rules. Generalising our results
(RQ1, RQ2) to real-world scenarios thus requires a more extensive and systematic eval-
uation. Our comparison to other model transformation tools is also restricted to only
three other tools, and only one benchmark example in the forward direction. Generalising
our results for RQ3, therefore, also requires further tests with other tools and benchmark
examples to confirm our indications.

5.9 Summary and Discussion

We presented a hybrid solution to consistency management combining TGGs as an algo-
rithmic and ILP as an exact search-based approach. The consistency checking approach
by Leblebici et al. [LAS17] has been extended towards further variants with given corre-
spondence links, as well as towards forward and backward transformation with the same
uniform process and formalism. A simple example could demonstrate that there are cases
in which greedy strategies can fail to transform consistent input models, whereas our ap-
proach is able to complete the input to a consistent model triple. With a performance
evaluation, we show that the hybrid approach scales reasonably well for small and medium-
sized models. Correspondence creation turns out to be the most challenging operation,
while for forward and backward transformations, our hybrid approach is slower than algo-
rithmic but faster than search-based approaches, providing a good compromise between
flexibility and scalability.

As the choice of the final rule application sequence is transformed into an optimisation
problem that is solved to yield the optimum solution with respect to the number of trans-
lated elements, our approach returns a correct solution if it exists. When terminating
with an inconsistent result, a solution that covers a maximally consistent sub-graph of the
input is determined along with a delta of nodes and edges for which no operational rule
applications could be determined. Thereby, a high degree of fault-tolerance is achieved
because an optimum solution (with respect to the number of translated input elements) is

100 5.9. Summary and Discussion

computed regardless of the input models’ consistency. Although the default configuration
for the objective function simply maximizes the number of marked elements in the input
models, it can be flexibly configured to pursue different optimisation goals (e. g., by giving
more important node types a higher weight).

The initial design of the fault-tolerant consistency management approach opens up
several possibilities for extensions, which will be partly dealt with in the remainder of
this thesis. First, motivated by the analysis of TGG language features in Chap. 4, the
ILP-based approach is extended towards support for graph constraints in the upcoming
Chap. 6. At this point, we will show that the formal proof for correctness and completeness
of the correspondence creation operation [Leb18] can be transferred to the three new oper-
ations with the additional requirement of schema compliance. Second, it seems promising
to alter the construction of the objective function in situations where marking the entire
input is not the ultimate goal: This holds — as already mentioned — for concurrent syn-
chronisation scenarios, where keeping deleted elements has even a negative influence on
the solution quality. The task of synchronising concurrent updates will be investigated in
detail in Chap. 7 and 8. Also, it makes sense in some application scenarios to introduce
weightings depending on, e. g., the node type, as we will investigate in a practical use case
in Chap. 12. With respect to the tool implementation, further scalability tests will com-
pare the runtime consumptions for all four operations in eMoflon::IBeX and eMoflon::Neo
(Chap. 9) to demonstrate which technology tends to be more suitable for which task.

6 Integrating Domain Constraint into the
Fault-Tolerant Framework

With the first version of the conceptual framework of Chap. 5, model transformations in
the presence of faults are possible. In Sect. 4.5, we have seen that application conditions
increase the expressive power of TGGs, and help domain and integration experts to ensure
that domain constraints are respected by the transformation engine. In this chapter, sup-
port for graph constraints is added to the hybrid framework, such that domain constraints
can be expressed separately from the TGG in use. While this is considered to be more
intuitive for users, Sect. 4.5 has shown that graph constraints and application conditions
can be converted into one another. Scalability tests show that negative constraints can be
handled efficiently by our implementation, whereas there is room for improvement with
respect to implication constraints.

The rest of the chapter is structured as follows: After a brief motivation for this exten-
sion in Sect. 6.1, our contribution is compared with related work in Sect. 6.2. Section 6.3
gives an overview of the solution approach, before the formal framework is extended to-
wards support for graph constraints and applied on an example for consistency checking in
Sect. 6.4. Correctness and completeness for all four operations are shown in Sect. 6.5. The
results of an experimental runtime evaluation are presented in Sect. 6.6. Finally, Sect. 6.7
summarises the contributions and discusses them with regard to fault-tolerant consistency
management.

6.1 Motivation

To be suitable for real-world use cases, a transformation language has to be sufficiently
expressive; increasing expressiveness while still guaranteeing all formal properties is an
open challenge for ongoing research on MDE in general and TGGs in particular [ALK"15].
In Chap. 4, it became apparent that the use of graph constraints increases the expressive
power of TGGs. In this chapter, we demonstrate how the fulfilment of domain constraints
by TGG-based consistency management operations can be guaranteed. We denote this
property in the rest of this thesis as schema compliance.

A TGG tool is schema compliant if it can take domain constraints into account when
performing consistency management tasks. Domain constraints can be formalised as graph
constraints (cf. Def. 4.12) and include negative constraints (forbidding certain situations),
positive constraints (demanding certain patterns), and constraints enforcing implications
between graph patterns. Besides these three types which will be integrated into the fault-
tolerant framework, there are also more complex constraint types that allow the nesting
of conditions, and thereby reach the expressive power of first-order logic [HP09).

A well-known example for domain constraints are multiplicity constraints, which are
specified in the metamodels of the respective domains. Suppose that for an association, a
multiplicity of m. . n shall be respected. The upper bound can be guaranteed by forbidding
n+1 occurrences of the respective element. In turn, the lower bound of n can be demanded
with an implication constraint (as soon as such an association exists, there must be a match
for n elements).

102 6.2. Related Work

Most TGG tools only allow the user to introduce constraints indirectly, by attaching
Application Conditions (ACs) to rules to restrict their applicability. In Sect. 4.5, we
have seen that graph constraints and application conditions can be transformed into one
another and therefore serve the same purpose in rule-based consistency management. This
strategy is, however, problematic for at least two reasons: First, ensuring compliance to
a sufficiently expressive schema for all previously mentioned derived operations is still an
open challenge; to the best of our knowledge, all existing TGG tools only support a very
restricted subset of application conditions. Second, it is conceptually demanding for the
user to indirectly specify domain constraints as application conditions, especially because
this has to be completely revisited every time the TGG or domain constraint is changed.
Although there is prototypical tool support for generating these application conditions
automatically from a given set of constraints, the use of application conditions involves
noticeable cognitive efforts. Therefore, it is advisable to provide direct support for schema
compliance, which is not achieved by any approach that we are aware of, though.

To address these limitations, we extend the hybrid approach of Chap. 5 towards schema
compliance, i.e., the support for graph constraints, for all four previously introduced
consistency management operations. We can guarantee under very weak assumptions
that a consistent solution is found by our approach if and only if one exists. We thereby
show that correctness and completeness can be proven for all four consistency management
operations even when schema compliance is to be additionally guaranteed. The proof for
consistency checks without additional constraints [Leb18] can be adapted to the described
setting, substantially benefiting from the uniform definition of the four operations.

Due to the flexibility of the search-based approach, we take a further step towards fault-
tolerant consistency management as all supported operations terminate with a maximal
partial solution that is contained in the language of the underlying TGG and respects
all posed domain constraints. Conventional TGG-based approaches, in contrast, often
separate checking domain constraints from the transformation, such that the user is forced
to fix all constraint violations before the actual transformation task can be started. An
implementation and experimental evaluation supports our claim of practical applicability.

6.2 Related Work

Numerous approaches to model transformation that take additional constraints into ac-
count have been presented already, partly addressing the issue of constraints for multiple
domains. Cuadrado et al. translate constraints of the target model to the source model,
such that the result of a forward transformation is guaranteed to satisfy all posed con-
straints [CGdL"17]. The approach was implemented in the anATLyser tool and applied to
real-world model instances. OCL is used to define constraints, while the transformation is
specified using the Atlas Transformation Language (ATL). Compared to our approach, the
supported constraints are more expressive, whereas the transformation is unidirectional.
The focus is rather set on forward and backward transformations than on supporting a
wide range of operations with the same consistency definition.

Cabot et al. generate OCL invariants from TGG rules and Query/View/Transformation-
Relations (QVT-R) specifications to verify and validate model transformations [CCGdL10].
Both the metamodel and the derived invariants can be used to check whether models are
well-formed, which resembles the notion of consistency used in this thesis. However, the
transformation is decoupled from checking the invariants, whereas our approach integrates
both tasks into a uniform algorithm.

6. Integrating Domain Constraint into the Fault-Tolerant Framework 103

To the best of our knowledge, all existing TGG-based approaches ensure schema com-
pliance indirectly by equipping TGG rules with semantically equivalent ACs. Ehrig et
al. introduced NACs to TGGs and proved correctness and completeness for unidirec-
tional model transformation [EHS09]. The formal framework was extended by Golas et
al. [GEH11] towards general ACs for TGGs. The approach is restricted to the declarative
specification of TGGs, though, enabling the rule-based generation of models that adhere
to ACs, whereas an operationalisation is left to future work. In neither of the approaches,
the formalisation is at this point backed up by an implementation that could show whether
the concepts are applicable in practice.

This open challenge was subsequently addressed by Klar et al. [KLKS10], while re-
stricting the class of supported NACs to those which are only used to guarantee schema
compliance. A translation algorithm with polynomial runtime was presented that proves
this class of NACs to be efficiently supported in practice, whereby correctness and com-
pleteness of this strategy can still be guaranteed. The semantic equivalence to negative
constraints together with a TGG was shown by Anjorin et al. [AST12] by proposing a
constructive algorithm for generating such NACs from negative constraints. While the
formalisation and implementation was initially restricted to (unidirectional) model trans-
formation, Leblebici et al. [LAF117] showed evidence that these concepts can be efficiently
transferred to (incremental) model synchronisation.

Hildebrandt et al. propose a static analysis technique for integrating OCL constraints
with TGGs [HLBG12]. The approach is implemented as an extension to the TGG-based
model transformation tool MoTE. Transformation and constraint checks are decoupled,
and only a subset of the OCL is covered, such that the expressiveness of the supported
constraints is equal to those in our approach.

Overall, these approaches either support only a subset of ACs or are restricted to a
single operation. General ACs, for instance, are only specified for declarative TGG rules,
and consistency checks remain totally unaddressed in this regard. Furthermore, all NACs
are required to be “domain separable”; i.e., restrict the applicability of a rule either for the
source or the target model. In contrast, our approach can handle general graph constraints
that are also allowed to range over multiple domains including the correspondence model
(cf. Fig. 6.2).

There are also purely constraint-based approaches that encode both model structure
and consistency relation into constraints and can easily handle schema compliance. The
JTL framework supports several consistency management operations by deriving con-
straints from the input models and computing a valid solution via answer set program-
ming [EPT18].

In recent work on integrating constraints into algebraic graph transformation [KSTZ20],
Kosiol et al. propose to consider consistency as a continuous measure rather than a binary
decision. While our approach uses the number of elements in the maximal consistent sub-
triple to measure consistency, the authors consider the ratio between all occurrences of a
constraint pattern in the model and the number of violations of this constraint. It is shown
that graph transformation rules can be classified as consistency sustaining or improving,
which means that their application has a non-negative or positive effect on the model
consistency.

Semerath and Varré developed a strategy for checking constraints for partial models,
i.e., models that involve uncertainty. An early detection of potential or guaranteed vi-
olations of well-formedness constraints is implemented via graph pattern matching on
the partial model [SV17]. Similarly, different solvers were used to generate consistent
models, for which it can be guaranteed that structural and attribute constraints are re-
spected [SBLT20,BSV20, MSBV20].

104 6.3. Solution Overview

Both approaches are restricted to intra-model consistency, and the results are not di-
rectly transferable to a bidirectional scenario, though. The high degree of flexibility of
constraint-based approaches, and their potential to support more expressive constraints,
such as nested graph constraints, however, comes at the price of scalability, leading to
insufficient runtime performance for models of realistic sizes [ABW*20]. Our hybrid ap-
proach uses the flexibility of constraint solvers while scaling comparably well, as constraints
are formed on the level of rule applications, keeping the size of the optimisation problem
manageable.

6.3 Solution Overview

For handling graph constraints, the work-flow of the hybrid framework must be extended
by additional steps. The basic work-flow for ILP-based consistency management with con-
straints is depicted in Fig. 6.1 as an extension of the process without constraints (Fig. 5.1).
New objects and activities are highlighted in green. Besides the declarative rules and the
input models, the set of graph constraints must be handed over to the operation, such
that (potential) matches for these constraint patterns can be collected (B2). This step
must succeed the pattern matching step for rule applications, because constraint pattern
matches cannot only involve elements of the input models, but also elements that are
created while collecting rule application candidates. As a result, a superset of matches for
constraint patterns is created, whereby the validity of each match clearly depends on the
choice of rule applications. The constraint pattern matching step is not iterative, because
no new elements are created here. Based on the collected rule application and constraint
match candidates, the ILP can be constructed (C).

Rule 1 Rule 1 Rule 1 Rule 1
co cc FWD_OPT BWD_OPT

(A) Operatio-

nalisation

[|
| Negative ; -
Constraint |J i (B2) Constraint Rule Application (B1)MRutIehl.:’atteml '\Iﬂnp(‘jutl
§ r.——‘— ; Pattern Matching Candidate atching ode’s
| Implication ||| |
Constraint ||/} Output

: Models

Constraint Match *)@”-P. Chosen Rule (E) Filter ‘
Candidate Construction Application Remaining
Elements
Integer Linear (D) Optimisation
Program P

Figure 6.1: Work-flow for fault-tolerant consistency management with constraints

To make these adaptions more concrete, the new concepts will be described formally
and illustrated with examples in the next section.

6.4 Integrating Graph Constraints

In this section, the formal framework of Chap. 5 is extended towards graph constraints
to increase the expressive power of the class of supported TGGs. Instead of attaching
application conditions (cf. Sect. 4.5) directly to TGG rules, global graph constraints are

6. Integrating Domain Constraint into the Fault-Tolerant Framework 105

used, which have to be satisfied by the output models. This procedure is advantageous
for the user, because graph constraints are usually easier to grasp than application condi-
tions. A frequently mentioned use case for which additional constraints are needed is the
specification of upper and lower bounds for multiplicities in UML class diagrams.

In the following, the formal framework is enriched with definitions to make it applicable
in a setting with graph constraints. In particular, (i) the definition of consistent input and
solution is extended to graph constraints, (ii) we define how created and marked elements
provide context for premise and conclusion patterns, and, based on this redefinition, (iii)
the ILP constraints for guaranteeing context are extended. In particular, we create an
ILP that maximises the number of marked elements via a suitable objective function, with
linear constraints guaranteeing language membership and graph constraint satisfaction.

Besides conformance to the metamodels depicted in Fig. 3.8, we restrict the set of
consistent triples for our running example by requiring five additional graph constraints
to be satisfied (Fig. 6.2). Two constraints each ensure that the upper and lower bounds
of the source and target associations between Transition and State are respected,
whereas the fifth constraint ranges over all three models, and ensures that default values
are assigned to variables.

e We forbid that a transition t has two (or more) source or target states (s1, s2) with
the constraints NoTwoSourceStates and NoTwoTargetStates, respectively. These
constraints are denoted as megative constraints.

o Likewise, we enforce that each transition t has at least one source and target state s
via the constraints TransitionHasSourceState and TransitionHasTargetState. Here,
the form of an implication constraint is visible: The premise for both constraints is
t, while the state s extends the patterns to form the conclusions in both cases.

e The aforementioned constraints ensure that the produced models fulfil the multi-
plicity constraints for the source and target edges in the SysML metamodel. Graph
constraints can also have a more complex structure, as shown by the implication
constraint AllState VariablesHaveDefault Values. This constraint states that as soon
as an initialisation transition t exists, for each state of the respective region r, the
initialisation event e must have an action a that initialises the respective variables
with either TRUE or FALSE. Compared to the multi-amalgamated rule Pseudostate-
ToActions (cf. Fig. 4.13), this constraint serves the same purpose, i.e., that each
variable is assigned an initial value.

With the help of graph constraints, schema compliance can be defined as a second part
of our consistency requirement. A schema consists of a type triple graph T'G and a set
GC of graph constraints. In the running example, the triple of metamodels in Fig. 3.8
together with the constraints in Fig. 6.2 form such a schema. A (triple) graph complies
to a schema if it is typed over T'G and fulfils all graph constraints in GC.

Definition 6.1 (Schema Compliance).

A schema is a pair (T'G,GC) of a type triple graph TG and a set GC of graph constraints.
For a graph constraint gc € GC, G = gc means that G satisfies gc according to Def. 4.8.
Let L(TG,GC) = {G € L(TG) | Vgce GC, G = gc} denote the set of all schema
compliant triple graphs.

From here on, schema compliance - along with TGG language membership - defines
which input and output models can be considered consistent. Definition 6.2 refines Def. 5.2
by stating that a consistent solution must be member of the respective TGG language and
comply to a given schema:

106 6.4. Integrating Graph Constraints

NoTwoSourceStates NoTwoTargetStates TransitionHasSourceState
Forbid Forbid]
t : Transition t : Transition Premise
, t : Transition
source source target target
s1 : State s2 : State s1 : State s2 : State
source

AllStateVariablesHaveDefaultValues

Conclusion 1
Premise
~— r:Region “—»| s:State
subvertex ltransitions
TransitionHasTargetState
t : Transition / \ e : Event
\ - T2E / Premise
name = "INITIALISATION" name = "INITIALISATION'
, t : Transition
“—p| s:State action

/ / target
/ Conclusion 1 ¢ Conclusion 2

al: Action a2 : Action
Conclusion 1
"init_" + s.name = al.name "init_" + s.name = a2.name
| .
s.name + ":= FALSE" = a1.action s.name + ":= TRUE" = a2.action > s:State

Figure 6.2: Graph constraints for the TGG SysMLToEventB

Definition 6.2 (Consistent Input and Consistent Solution (Refined)).

Given a triple graph grammar TGG = (TG, R) and a schema (TG,GC), a starting triple

graph Go = Gs < Gc — G is said to be consistent input iff 3 G' = Gq < G —
€ L(TGG) N L(TG,GC) according to Def. 5.2. G’ is referred to as a consistent

solution for Gy in each case.

Based on Def. 6.2, the refined notion of consistency can be integrated into the hybrid
framework, such that schema compliance can be guaranteed. First, we start with a short
recap of the three constraint types and the objective function as presented in Chap. 5,
which are necessary in a setting with graph constraints as well:

¢ Exclusions for rules (Def. 5.8): It must be prohibited that an element is marked
more than once, because it would not be possible to create a single element multiple
times with declarative rules. For each element that can be marked by multiple rule
applications d;, ..., d;, an exclusion constraint d; 4+ --- 4+ d; < 1 is created.

e Context for rules (Def. 5.9): There must also be ILP constraints that ensure that
the application of a rule depends on the application of all rules that provide context
for it. Implication constraints of the form &; < (05, + - +6;,) A0 < --- AN <

6. Integrating Domain Constraint into the Fault-Tolerant Framework 107

(0, + -+ + Ok,) are thus created for all rule applications d; with required context
elements j,...,k, and rule applications (d;,,...,dj,,,...,dk,...dy,) that possibly
mark these elements.

¢ No dependency cycles (Def. 5.11): Cyclic dependencies between rule application
candidates must be prohibited by excluding at least one candidate from the cycle.
n
For a cycle dy,...,d, of length n, a constraint > d§; < n guarantees this property.
i=1
e Objective function (Def. 5.12:) As previously mentioned, the search for a con-
sistent solution is driven by maximising the number of marked elements. If it is
possible to mark the input models entirely, they can be completed to a triple that
is contained in the TGG’s language (and fulfils all graph constraints, which will be
shown in the remainder of this section). To form the objective function, a coefficient
is computed for each binary variable §; that reflects the number of elements that
are potentially marked by the rule application d;. The sum of binary variables J;
weighted with these coefficients is the goal function to be maximised.

Before encoding the additional constraints of Fig. 6.2 into the optimisation problem, the
existing concepts are applied on an example instance for a consistency check with given
correspondences (CO) as depicted in Fig. 6.3. In the SysML model, there is a simple
statemachine sm with one port p and one region r, which involves two states s1 and s2
connected with a transition t. According to the model, both states are targets, which
should intuitively result in a failed consistency check. In the following, we will see how
the hybrid approach can confirm this expectation formally.

To begin with, matches for rule applications are collected for the example instance. In
all three models, the nodes and edges are annotated in violet with the rule applications
d; that potentially mark the respective element. In more detail, d; represents a rule
application candidate for the rule StatemachineToMachine (Fig. 3.11), and ds a candidate
for PortToVariable (Fig. 3.10). ds and d4, in contrast, are application candidates of
StateToVariable (Fig 4.3). The only transition of the SysML model is associated with
an event e of the Event-B model via ds, an application candidate of TransitionToFEvent
(Fig. 4.7). Finally, dg and dy are rule application candidates for TargetState ToEnterAction
(Fig. 4.9).

When considering the set of potential rule applications, the importance of further con-
straints becomes apparent: Although the triple is member of the TGG language (applying
01...07 in ascending order of indices is a valid derivation sequence), the models should
be considered incorrect, because one of the states s1 and s2 should be the source of t
instead of the second target. The triple indeed violates the constraints NoTwo TargetStates
and TransitionHasSourceState (cf. Fig. 6.2): The former is violated as the forbid pattern
can be matched (i. e., the premise of the negative constraint holds), whereas for the latter,
there exists a match for the premise, but not for the conclusion.

To encode the graph constraints into the optimisation problem, all possible matches for
premises and conclusions are annotated to the involved elements. Negative constraints
are hereby represented as graph constraints with a premise but no conclusions, as this is
semantics-preserving: As soon as the premise can be matched, the constraint is violated
(cf. Def. 4.12).

This leads us to the representation of matches for premise and conclusion patterns in
the hybrid approach: Similar to rule applications, matches for graph constraints are also
associated to binary variables to ensure that the retrieved solution is schema compliant,
i.e., respects all specified constraints. Thereby, matches for premises and conclusions are

108

6.4. Integrating Graph Constraints

d d
1 dq 1
sm : Statemachine m : Machine
- : Sm2M
name : "Machine" name : "Machine"
ports variables
regions invariants
d2 d2
Y dy dy
p : Port v3 : Variable
P2V <«
name : "finish" name : "finish" do
q g da - i3 : Invariant
1 1
: P2 -
\ > . ; name : "TYPEOF_finish"
r : Region d3 predicate : "finish e BOOL"
~—— name : "main" ds
v1 : Variable d
bvert : S2V < °
subvertex :
d3 Pg C11 name : "START" ds
| d3 s1: State ds Ny i1 : Invariant
name : "START" : 821 name : "TYPEOF_START"
A d4 predicate : "START € BOOL"
dg
de P C11 v2 : Variable d
target S2v <« !
transitions 9 name : "STOP" ds dy4
* dy4 events > i2 : Invariant
95 t: Transition : S21 name : "TYPEOF_STOP"
name : "To STOP" ds v predicate : "STOP ¢ BOOL"
:"To_ ds
e : Event
d7 pg C12 : T2E
subvertex target name : "To_STOP"
de l d7
v d4PgCi2 . .
actions actions
\d4 s2 : State de d7
d . . .
name : "STOP" a1 : Action a2 : Action

* ds pg Pg P1oC11 C12

Context for rules:
o 0y <4y
® 03 <01
e 0, <41
o 05 <4y
e 06 <d3Nd <5
o 57 <04 N7 < 65

name : "enter START"

action : "START := TRUE"

name : "enter_STOP"

action : "STOP := TRUE"

Context for premises:

® 03+ 04+05+0+0r—b<mg—1

® 05 <y

o 05 < g

Context for conclusions:

o v11 <33 Ay <65 A v < dg

o vi2 <04 AN Y12 <85 A 12 < 07

Implications:
e 13 <0
® Tg S O

e 0 <71+

Objective function: max. 551 + 852 + 853 + 854 + 855 + 366 + 367

Figure 6.3: Inconsistent example instance with annotations for rule applications and con-

straint matches

Y12

6. Integrating Domain Constraint into the Fault-Tolerant Framework 109

separately encoded into constraints as they depend on different sets of rule applications.
The matches m,, and m,, for premises and conclusions are associated with binary variables
m and 7 (cf. Def. 6.3).

Definition 6.3 (Constraints for Graph Constraints).
Let GC = {(P,{¢; : P — C; | i € I})} be a set of graph constraints. For each graph
constraint gc € GC, let Pge = {m;, : P — G} be a set of premises. For each graph constraint
gc € GC and each premise my € Py, let Cyem, = {me, : C; = G,i € I,my = ¢; ;me;} a
set of conclusions.

Let P= |J PgeandC= |J U Cyem, be the unions of the respective sets.

gcegl gceGC mpEPye
For each premise match my,,...,mp, € P, respective binary variables my,..., Ty, and
for each conclusion match me,,...,me, € C, respective binary variables vi,...,v, are

defined. A linear constraint LC for GC is a conjunction of linear inequalities which involve
TlyeeoyTm and Y1,...,vn. A triple graph G fulfils LC, denoted as G = LC, iff LC is
satisfied for any variable assignment {7y ...7n} — {0,1}, {7 ...} — {0,1}.

In the concrete example instance (Fig. 6.3), matches for premises (p;) and conclusions
(¢;) — with non-overlapping index intervals for better readability — are annotated in blue
and red, respectively, to the elements which they involve. The five elements annotated
with pg represent a match for NoTwoTargetStates. pg refers to the premise of the Transi-
tionHasSource constraint, for which no conclusion match can be found. For the premise
of TransitionHasTarget (p1p), in contrast, there are two matches for the conclusions, i.e.,
c11 and c12. In contrast to the binary variables for rule applications (¢;), the variables m;
for premises and ~y; for conclusions cannot be freely chosen and do not have any influence
on the objective function.

Instead, graph constraints pose additional restrictions to the set of valid solutions, which
means that they are translated into additional ILP constraints. They encode interdepen-
dencies between rule applications and graph constraints, and are formulated in a way that
any variable assignment that does not violate them leads to a schema compliant solu-
tion. More concretely, these new concepts need to be added to the formal framework for
incorporating graph constraints:

e Context for premises: Matches for premises depend on rule applications which
mark or create the elements that are involved in the graph constraint. In this sense,
the premise is fulfilled as soon as all context elements are marked (in the given part
of the model) or created (in the remainder of the triple). However, as soon as the
context is provided completely, the premise is fulfilled. The implication constraint is
thus in the opposite direction: Choosing a subset of rule applications d;, ..., d; that
is sufficient to create the context for a premise match p; implies that py is fulfilled.

e Context for conclusions: Similar to premise constraints, it must also be reflected
in the ILP under which conditions a conclusion of a graph constraint holds. In order
to conclude a match for ¢, all involved nodes and edges must be marked or created
by at least one rule application each. This subset d;,...,d; of rule applications is
implied by cg.

e Implications for graph constraints: The semantics of premise and conclusion(s)
(cf. Def. 4.8) is reflected in the implications for graph constraints, which define that
the presence of a premise match implies the existence of a corresponding conclusion
match. Negative constraints are thereby treated as implication constraints with an
empty set of conclusions: A solution for the ILP that fulfils this constraint cannot
be valid, as the premise holds, but none of the conclusions.

110 6.4. Integrating Graph Constraints

As graph constraints do not mark or create elements, only sets for the elements that
are required to be marked or created already are defined, in order to form premise and
conclusion, respectively.

Definition 6.4 (Required Elements for Graph Constraints).
For a graph constraint gc = (P,{¢; : P — C; | i € I}) and morphisms my, : P —
G, (me,)ier : C; = G with my = ¢;;me,, we define:

o regMrk(my) = {e € mrkElem(G) | 3¢’ € elem(P), m,(€') = e}
e 1eqCrt(my) = {e € crtElem(G) | 3’ € elem(P), my(e’) = e}
o reqMrk(me,) = {e € mrkElem(G) | 3¢’ € elem(C;), mc,(¢') = e}

o 1eqCrt(me,) = {e € crtElem(G) | e’ € elem(C;), mc, (') = e}

Based on the required elements for premise and conclusion patterns, a fourth constraint
type can be added that guarantees that the rules that mark and create the elements of
the pattern are chosen to be applied, such that the pattern match is valid. While rules
can provide context for other rules in this way, they also provide context for premise and
conclusion patterns, as specified in Def. 6.5.

Definition 6.5 (Constraint 4: Guarantee Context for Graph Constraints).

Given a starting triple graph Go, a TGG (TG, R) and a schema (T'G,GC), let D : Gy =
Gy be a derivation via operational rules with the underlying set D of direct derivations.
For each premise match m, € P associated to m and each conclusion match m., € C
associated to -y, the following constraints are defined:

e context(m,) = > [mrkSum(e) — 1] + > b-1<n-1
e€reqgMrk(mp) deD,[regCri(mp)Nert(d)#0)

e context(m.;) = A [v < mrkSum(e)] A A [y < 4]
ecreqMrk(me;) deD,[reqCrt(me,)Nert(d)#0)]

e context(G) = N context(mp) N)\ context(m,,)
mp€EP me, €C

context(my) is an implication of the form “m, matches” = 7. The two summands
in the left part of the inequality are both 0 exactly when all required marked and created
elements for m, are present and are both negative otherwise. Demanding their sum
to be < m — 1 forces the solver to set 7 to 1 whenever m, matches. context(m,,) is
analogous to context(d) (cf. Def. 5.9), i.e., the solver is not allowed to set any v to 1
unless m., matches. The reason for the structural differences between the formulae for
context(my) and context(m,,) is the optimisation goal of marking as many elements as
possible: Together with the encoding for satisfying graph constraints (cf. Def. 6.6), it can
be guaranteed that a feasible solution of the ILP results in a triple that satisfies all given
constraints. context(G), finally, just ranges over all matches for premises and conclusions.

For the running example, the context constraints for premise and conclusion patterns
are listed in the middle column on the bottom of Fig. 6.3 (“context for premises”, “context
for conclusions”). In order to have a match for the negative constraint NoTwo TargetStates
(ps), each of the rule applications ds,...,d7; must be chosen to have a complete match.
For the implication constraints TransitionHasSource (pg) and TransitionHasTarget (p1o),
the choice of d5 (rule TransitionToEvent) is sufficient for one premise match each. For

6. Integrating Domain Constraint into the Fault-Tolerant Framework 111

the latter, two matches for the conclusion (cjg,c11) can be found as soon as the rules
StateTo Variable (ds,ds) and TargetState ToEnterAction (ds,dy) are applied.

The interdependencies between premises and conclusions are expressed by further type
of linear constraints. This last constraint type encodes the semantics of premise and
conclusions of graph constraints (cf. Def. 4.12), such that schema compliance can be
guaranteed for the transformation result. According to constraint 4 (Def. 6.5) the solver
has no reason to set any v to 1; this will only be enforced with constraint 5 (Def. 6.6)
that covers the relation between mps and me,s. As the binary variables 7w (premise) and
~ (conclusion) are set to 1 if the respective context is created or marked entirely, the
potential matches can be considered as actual matches. The constraint can be formulated
independent of the concrete rule applications, as their values influence the value assignment
to all variables 7 and ~.

With the last constraint type, the additional variables for constraint pattern matches
can be connected, such that the propositional logic of graph constraints is reflected in the
set of ILP constraints (Def. 6.6). Linear constraints of this type are violated as soon as
the variable associated to the premise match () is set to 1, but no match for a conclusion
is found, for which the respective binary variable can be set to 1 as well, or the required
context is not entirely created by the chosen rule applications (cf. Def. 6.5). For negative
constraints, there are no conclusions, such that the respective linear constraint (7 < 0)
is immediately violated if 7 is set to 1. To satisfy sat(G) as a whole, the previously
described conditions must be met for all matches for premises that can be found for each
graph constraint of the schema.

Definition 6.6 (Constraint 5: Satisfy Graph Constraints).

Let (TG,GC = {(P,{c; : P = C; | i € I})}) be a schema. Let m, € P denote a premise
match associated to m, and let m., € C denote a conclusion match associated to y. A
linear constraint sat(G) expressing that G fulfils all graph constraints of GC is defined as
follows:

sat(G) = A A\ [r< >

gc€GC mp€EPyc me,; €Cge,mp €T

The advantage of searching for potential matches for premise and conclusion patterns
is that the decision whether rules are applicable or not, i. e., lead to constraint violations,
is not made during the pattern matching step, but as part of the optimisation step. In
cases where different rule applications can cause a constraint violation, it is possible to
leave out the least important one from a global point of view, instead of blocking the one
that is found last during pattern matching.

For the running example, the respective constraints are shown on the bottom right of
Fig. 6.3 (“implications for graph constraints”). pg as a match for the negative constraint
NoTwoTargetStates does not have a conclusion, such that the constraint is violated as soon
as 7g is set to 1. The same holds for pg: Although this is a match for the premise of the
implication constraint TransitionHasSourceState, it is immediately violated when mg is set
to 1 because no match for a conclusion can be found, as no source state exists. To satisfy
the third linear constraint corresponding to TransitionHasTargetState, it is sufficient to
either set mo to 0, or set either 11 or vi2 to 1.

Finally, we refine the definition of the optimisation problem (Def. 5.12), such that the
new constraint types are part of the ILP as well. The optimisation goal is still the same: A
solution that entirely marks the input (and can therefore be completed to a schema compli-
ant triple contained in the TGG’s language) is preferred over a solution with less markings.
As the solution must fulfil all ILP constraints, language membership and schema compli-

112 6.5. Correctness and Completeness

ance according to Def. 6.1 can be guaranteed in case of both consistent and inconsistent
input models.

Definition 6.7 (Optimisation Problem (Refined)).
Given a starting triple graph Go, a TGG (TG, R) and a schema (TG,GC), let D : Gy =
Gy, be a derivation via operational rules. The ILP to be optimised is constructed as follows:

maz. Y |mrk(d)| -0 s.t.
deD
markedAtMostOnce(Go) N context(D) N context(Gy) A acyclic(D) N sat(Gr)

The objective function to maximize the number of markings is depicted on the bottom
line of Fig. 6.3)) All input model elements in the example instance could be marked setting
d1,...,07 to 1, leading to an objective function value of 43 equal to the total number
of elements in the triple graph. This marking would however violate the constraints
NoTwoTargetStates and TransitionHasSourceState in the source model. We will now
analyse how this graph constraint violation becomes apparent in the ILP: As ds was
chosen, it creates the transition t, on which the premises pg and pig of the constraints
TransitionHasSourceState and TransitionHasSourceState can be matched, and as a result,
79 and 719 must be set to 1 as well. While this is possible for 71 (11 and 12 can be set
to 1 in accordance with the context constraints for conclusions), the constraint mg < 0 is
immediately violated. Similarly, the first context constraint for premises enforces that g
(NoTwoTargetStates) is set to 1, which leads to a further constraint violation for mg < 0.
The optimal solution, representing the maximal consistent sub-triple, is achieved by setting
05, 0¢ and 07 to 0, such that g, mg and m1¢ can be set to 0 as well, resulting in an objective
function value of 29. This means that leaving out t, the corresponding event e with its
two actions al and a2 and all dependent arrows would lead to a consistent triple.

6.5 Correctness and Completeness

Based on the formal framework presented up to Sect. 6.4, we ar now able to show cor-
rectness and completeness properties for the hybrid approach, i. e., that the four previously
introduced consistency management operations terminate with a consistent result if and
only if it exists. We show that the ILP-based solution strategy - posing some assumptions
on the TGG in use - always terminates, and yields a consistent solution with respect to
Def. 6.2 iff such a solution exists. The formal proof follows the structures of Leblebici’s
proof for correctness and completeness of the correspondence creation operation (CC) in a
setting without graph constraints [Leb18]. The main challenge here is to show that (i) the
arguments from [Leb18] are transferable from CC to all other three operations and that (ii)
schema compliance can still be guaranteed when further elements are continuously added
during match collection. In the following, let TGG = (Gp, R) and a schema (T'G,GC) be
given for all definitions, lemmas and theorems.

As previously stated, the goal of the optimisation step is to determine a subset of
rule applications that forms a derivation sequence from the starting triple graph to a
transformation result. The input for the optimisation step is a “super model” G, which
was constructed by applying all direct derivations of a set D. We define a proper subset D’
of operational rule applications that can be arranged, such that a (possibly incomplete)
derivation sequence D’ is formed. The values assigned to the associated binary variables
d for each d € D (1 for all d € D', 0 for all d € D\ D’) form a feasible solution for the ILP,
i.e., satisfy all defined constraints (Def. 5.8, 5.9, 5.11, 6.5 and 6.6).

6. Integrating Domain Constraint into the Fault-Tolerant Framework 113

Definition 6.8 (Proper Subset of Rule Applications).

Given a starting triple graph Gy, let D : Gy = G, be a deriation via operational
rules with underlying set of direct derivations D, and let D' C D be a subset of direct
derivations, such that D' : Gy = G'. We refer to D' as a proper subset of D iff D' =
markedAtMostOnce(Gyo) A context(D') A acyclic(D") A context(G") A sat(G").

The first lemma (Lem. 6.1) states that such a proper subset exists if and only if there is
a triple graph G’ that is contained in the TGG’s language, fulfils all constraints and does
not have more elements than the starting triple graph in the given parts of the triple.

Lemma 6.1 (Consistent Portions of a Triple Graph).

Given a starting triple graph Go, let D : Go = Gy, be a derivation via operational rules
with underlying set of direct derivations D. 3 proper subset D' C D with D' : Gy —
G <— 3G € L(TGG)N L(TG,GC) such that:

1. mrkElem(G") C mrkElem(G)

2. mrkElem(G') = | mrk(d),
d'eD’

3. crtElem(G') = | crt(d).
d'eD’
Proof (Sketch). First, it is shown that D’ is a proper subset iff G’ € L(TGG)NL(TG,GC)
holds. Our argumentation is based on the five constraint types that are fulfilled by G’ and
the derivation sequence D’ according to Def. 6.8; With the first three constraint types,
language membership can be ensured, whereas the last two constraint types guarantee
schema compliance.

e markedAtMostOnce(Gg) ensures that elements of the input models are never marked
twice, which would contradict the intention of simulating declarative rule applica-
tions with the hybrid approach. With declarative rules, each element can only be
created once, which must be reflected by the marking strategy as well.

e context(D’) guarantees that for the created part of the triple, all required context
elements already exist, and for the marked part of the triple, the respective elements
have been marked already. Hereby, we ensure that an operational rule is applicable
iff the respective declarative rule is applicable in a comparable setting.

e With the constraint acyclic(D’), cyclic dependencies of rule applications can be ex-
cluded, such that the subset D’ can be sequenced over the > relation.

e context(G’) ensures that matches for premises and conclusions of graph constraints
are found iff all elements which are part of the match are either created or marked
by a chosen rule application.

e Finally, sat(G’) represents the logic of the supported graph constraints, i.e., for-
malises the interrelations between premises and conclusions. With this constraint,
it is guaranteed that G’ fulfils all specified constraints.

Based on this equivalence, it remains to show that the three properties hold for a proper
subset D’ and a resulting triple graph G’:

1. As no new elements are added to the marked part of the input triple during the
construction of D, and only those elements can be marked in G’ which are already
present in Gy, mrkElem(G’) C mrkElem(Gy) holds.

114 6.5. Correctness and Completeness

2. The markings in G’ result from the application of all operational rules d’ € D’, such
that this condition is fulfilled as well.

3. Likewise, the created part of G’ is built up by applying all operational rules d’ € D’.

O]

The sequential application of rules of a proper subset leads to a transformation result,
whose marked and created elements form a triple that is member of the TGG’s language
and that is schema compliant. In general, however, elements of the input can remain
unmarked, which means that they were not (yet) consistently transformed. This does not
necessarily mean that the input models are inconsistent, as adding further rule applications
could form a proper subset that entirely marks the input models. Therefore, we denote
proper subsets which involve a maximal number of markings as mazimal proper subsets.
As a proper subset fulfils all ILP constraints by definition, and maximising the number of
marked elements is the optimisation goal, a maximal proper subset will be returned as a
solution for the ILP.

Definition 6.9 (Maximal Proper Subset of Rule Applications).

Given a starting triple graph Go, let D : Go = Gy, be a derivation via operational rules
with underlying set of direct derivations D. A proper subset D' of D is maximal if there
does not exist any other proper subset D" of D with a greater objective function value (cf.

Def. 6.7).

Accordingly, we denote the triple graph that results from sequentially applying rules of
the maximal proper subset on the starting triple graph as mazimally marked.

Definition 6.10 (Maximally Marked Triple Graph).

Given a starting triple graph Go, let D : Go = Gy, be a derivation via operational rules
with underlying set of direct derivations D. Let D' be a maximal, proper subset of D.
The triple graph G' identified with D' according to Lemma 6.1 is denoted as a mazimally
marked triple graph with respect to D.

In Thm. 6.1, the correctness of the ILP-based transformation can be shown using the
notion of a maximally marked triple graph, i.e., if it is possible to mark each element of
the starting triple graph Gg exactly once, the resulting maximally marked triple graph is
a consistent solution according to Def. 6.2. Otherwise, the largest consistent sub-triple
— according to the number of marked elements — is determined in the optimisation step,
because the goal function maximises this number while respecting the previously described
constraint types.

Theorem 6.1 (Correctness).

Given a starting triple graph Go and a derivation D : Gy == G, with an underlying set
D of direct derivations, let D' C D be a mazimal proper subset, such that D' : Gy = G'.
It holds for a mazximally marked triple graph G’ with respect to D:

U mrk(d) = mrkElem(G') = mrkElem(Gy) = G’ is a consistent solution.
d'eD’!

Proof (Sketch). For G’ being a consistent solution, (1) G’ € L(TGG) und (2) G' €
L(TG,GC) are required. The premise of the theorem, i.e., the marked part of G’ and
the non-empty part of Gg are identical, states that it is possible to entirely mark Gg by

6. Integrating Domain Constraint into the Fault-Tolerant Framework 115

sequentially applying all direct derivations d’ € D', whereby D’ is a maximal, proper sub-
set. By applying Lemma 6.1 with a maximal, proper subset, a triple graph G’ can be
produced that fulfils both conditions. Together with the decomposition and composition
theorem for TGGs and operational rules [EEE107], G’ is a consistent solution according
to Def. 6.2, while Gy is a consistent input. O

For showing completeness, it remains to show the opposite direction, i.e., that the pro-
posed strategy finds a consistent solution if one exists. The main challenge is to guarantee
that the set D of rule application candidates is finite, such that the process always ter-
minates, because ILP solving is known to be correct and complete as well. Therefore, we
have to demand that the underlying TGG be progressive, which means that each opera-
tional rule has to mark at least one element. It is possible that some TGGs are progressive
for only a few operations. In the running example, progressiveness is not fulfilled for the
backward transformation operation, as the rule AddRegion only operates on the source
model (cf. Fig. 4.2). For practical implementations, the problem can be overcome by
applying heuristics, such as fixing an upper bound for applications of such rules.

Definition 6.11 (Progressive TGGs).
A TGG is progressive for an operation op € {CC, CO, FWD_OPT, BWD_OPT} if each
of its operational rules for op has at least one marking element.

Although progressiveness of a TGG ensures that the number of markings strictly in-
creases when following a derivation sequence, it is still possible that new rule applications
create new context elements which themselves enable further rule applications, such that
termination cannot be immediately guaranteed as elements of the starting triple graph
can be marked infinitely often (although only one of these markings can be finally cho-
sen). However, as soon as rule applications overlap in their markings and one of them
depends on the created context of another, the dependent rule application is superfluous
as it implies and excludes the application of another rule at the same time. Therefore, only
essential rule applications (cf. Def. 6.12) should be considered for forming a derivation
sequence, meaning that (1) identical rule applications and (2) rule applications that are in
conflict with their create dependencies as described above must be discarded. Note that
in contrast to dependencies via marked context (™), create dependencies via > are
actual and not potential dependencies, as the rule application that creates an element is
unique.

Definition 6.12 (Essential and Superfluous Rule Applications).
Given a starting triple graph Go and a derivation D : Gy = G, with underlying set
of direct derivations D. Let >CC D x D be the transitive closure of the >C relation in

Def. 5.10. A rule application dpy1 : Gy,
essential for D if:

crp+1Qcmp 41 . . .
= Grni1 with operational rule orpy1 is
iQom;
1. 3d; e D, d; : Giey =2 Gy such that orpt1 = or; and omuy41 = om; and

2. mrk(dy+1) N U mrk(d') = (.

dIED,dn+1>9d’
Otherwise, dp+1 s superfluous for D.

Introducing some terminology for derivation sequences that purely consist of essential
rule applications, such derivations are denoted as final according to Def. 6.13.

116 6.5. Correctness and Completeness

Definition 6.13 (Final Derivations with Operational Rules).
Given a starting triple graph Gy, let D : Gy = G, be a derivation via operational rules
with underlying set of direct derivations D.

D is final if Bdpi1 : dpyt i Gp

crpnae1Qemgy, 11 . .
=" Ghg such that dygy is essential for D.

In Lemma 6.2, we show that for every operation op € {CC, CO, FWD_OPT, BWD_OPT}
and every starting triple graph Gy, there exists a final derivation, assuming that the un-
derlying TGG is progressive, such that the process of gathering rule application candidates
terminates.

Lemma 6.2 (Existence of a Final Derivation).
Given a progressive TGG for an operation op € {CC, CO, FWD_OPT, BWD_OPT} and
a starting triple graph Gy, a final derivation D : Gy = Gy, with operational rules for op
exists for every starting triple graph Gqo for op.

Proof (Sketch). We show the set of essential rule applications according to Def. 6.12 is
finite using two arguments: First, the number of possible derivation sequences of some
fixed length [is finite for each | € N. Second, the length of a single derivation sequence
consisting only of essential rule applications is also finite.

The first statement can be proven via induction over the length [of the derivation
sequence. As all rule applications are essential, they can be sequenced over the > relation
by using Condition (2) in Def. 6.12, forming a derivation d; >¢ --- > d;. For the
induction step, let d; >¢ - ¢ d; be a derivation sequence of length | and let dj, be
the next derivation to be added. di can only require context elements that are created
by any rule application in d;...d;. According to the induction hypothesis, the number
of such possible sequences is finite, so is the number of created context elements, as each
rule application can create only a finite number of elements. As only distinct matches are
considered (Condition (1) in Def. 6.12), the number of possible sequences d; > --- ¢
d; > dj; of length [+ 1 must be finite.

To show that the second statement holds, we derive a contradiction from the assumption
that derivation sequence of infinite length consisting solely of essential rule applications
can be constructed for a (finite) starting triple graph. The set of essential rule applications
can be partitioned into those with and without create dependencies; we will show that
both sets are finite. For the former, it can be stated that both the starting triple graph Gy
and the set R of TGG rules are finite. Along with Condition (1) of Def. 6.12 (uniqueness
of rule applications), it follows that the set of essential rule applications without create
dependencies is finite as well. The TGG is required to be progressive (Def. 6.11), therefore
each rule application must mark at least one element. Marking elements is only possible in
the non-empty parts of G, to which no new elements can be added by applying operational
rules. Each element of the starting triple graph G can be marked infinitely often in theory,
but Condition (2) in Def. 6.12 prevents an essential rule application d from marking
elements that are also marked by a rule application d’ if a context dependency d >¢ d’
exists, stepwise and strictly reducing the set of elements that can be marked by d. As the
total number of markable elements in the starting triple graph Gy is finite, the constructed
derivation sequence of essential rule applications must be of finite length.

Combining the arguments for the finiteness of the length of the derivation sequence on
the one hand and of the number of sequences of a fixed length on the other hand, the
number of essential rule applications must be finite as well, contradicting the assumption
and proving the second statement. O

6. Integrating Domain Constraint into the Fault-Tolerant Framework 117

Lemma 6.2 can now be used to show completeness, i.e., that the existence of a consistent
solution also implies that there is a final derivation of operational rules from the starting
triple graph to this solution.

Theorem 6.2 (Completeness).

Given a progressive TGG for an operation op € {CC, CO, FWD_OPT, BWD_OPT}, and
a starting triple graph Gy, a final derivation D : Gy = G, for op, a mazimal proper
subset D' C D and a mazimally marked triple graph G' with respect to D exist such that:

G’ is a consistent solution < |J mrk(d') = elem(Gy)
d'eD’
Proof (Sketch). The implication in backward direction of the equivalence follows from
Thm. 6.1, such that only the implication in forward direction is to be shown.

To derive a contradiction, we assume that G’ is a consistent solution for the given
input triple Go, but G’ contains unmarked elements. As G’ is consistent, G' € L(TGG)
and G’ € L(TG,GC) hold. From G’ € L(TGG) and the decomposition and composition
theorem for TGGs and operational rules [EEET07, Leb18], it follows that there exists a
derivation sequence D’ : Gy = G’ via operational rules that entirely marks Go. From
Lemma 6.2, it follows that a final derivation D" exists. As D’ and D" are not equal, and
D" is the final derivation for which the number of markings is maximised according to the
optimisation objective (Def. 6.7), there must be at least one superfluous rule application in
D’. This contradicts the assumption G’ € L(TGG) because superfluous rule applications
lead to multiple markings on at least one element, i.e., G’ cannot be produced using the
respective set of declarative rule applications corresponding to D’. O

In summary, it can be stated that correctness and completeness of the hybrid approach
can be guaranteed under a few assumptions: The TGG at hand must be progressive —
a property that also depends on the concrete consistency management operation — and
it must be ensured that only essential rule applications are collected during the pattern
matching process. Especially for FWD_OPT and BWD_OPT, this is a practically relevant
problem, because rules that do not mark any elements cannot be simply left out, as they
possibly create context required by other rule applications. In order to still guarantee
termination for practical implementations, a sufficiently large upper limit can be set for
the number of rule applications. Better solution strategies might be possible, but are left
to future work at this point. All main arguments from the formal proof for consistency
checks [Lebl8| could be generalised for the other operations by referring to the marked
and created parts of the graph instead of the source, target and correspondence models.
As no new elements are generated during the search for pattern matches for graph con-
straints, their integration into the formal framework does not require further restrictions
or assumptions regarding the TGG at hand.

6.6 Evaluation

In an experimental evaluation, we analyse the impact of graph constraints on runtime
performance using two example TGGs. The JavatoDoc TGG, compared to its original
version [FKM™120, WFA20], was enriched with graph constraints. Furthermore, the BX
benchmark example FamiliesToPersons was used, extended by additional negative and
implication constraints. An overview of the metamodels, the TGG rules and constraints
can be found in the appendix (Chap. A).

We investigate the scalability of the respective operations for growing model sizes with
and without taking graph constraints into account with the following research questions:

118 6.6. Evaluation

RQ1 By which factor does the number of variables increase for the different operations
when introducing graph constraints to the ILP?

RQ2 How does the runtime performance relate to the model size (number of nodes and
edges) for consistency management operations with and without graph constraints?

RQ3 How is the runtime distributed between the different steps, i.e., pattern matching,
rule application, ILP construction, and ILP solving?

RQ4 Do the operations show different scalability characteristics with and without graph
constraints?

Setup: As inputs for the considered operations, synthetic test models were created with
the model generation operation of eMoflon::Neo, which applies a given number of rules
randomly, starting with an empty triple. The generated triples had overall model sizes
from 720 to 36000 elements, i.e., nodes and edges. To create models of realistic shape,
rule applications were composed with a fixed ratio as shown in Tab. 6.1 and 6.2. To keep
the ratio equal for all model sizes, the number of rule applications was increased with a
scaling factor. A factor of 10, for instance, was needed for triples with 720 elements, and
a factor of 500 for 36000 elements.

JavaToDoc g % :’i § g % FamiliesToPersons g % j: § g %J

F* 3 2 < F* 3 2 <

5 % ST [§ ST
ClazzToDoc 3 1 3 FamiliesToPersons 3 1 3
SubClazzToDoc 5 1 5 MotherToFemale 7 1 7
MethodToEntry 5 4 20 - w/o new Family 5 2 10
AddParameter 3 4 12 FatherToMale 7 1 7
FieldToEntry 5 4 20 - w/o new Family 5 2 10
AddGlossary 1 0 0 DaughterToFemale 7 1 7
LinkGlossaryEntry 1 4 4 - w/o new Family 5 2 10
AddGlossaryEntry 2 4 8 SonToMale 7 1 7
- w/o new Family 5 2 10

Table 6.1: Quota for generating JavaToDoc Table 6.2: Quota for generating Fami-
instances liesToPersons instances

As a result, the models are guaranteed to be contained in the TGG, but likely violate
each of the posed constraints several times. This is desirable, as the impact of taking graph
constraints into account on the runtime performance is to be analysed, also for instances
with many constraint violations at different points.

Each operation was run on these models (1) without graph constraints, (2) only with
negative constraints, and (3) both with negative and implication constraints. Due to the
nature of the operations, the entire triple was only given as input to the CO operation;
the other operations received the respective parts of the triple. The JavaToDoc TGG
is not progressive (cf. Def. 6.11) for FWD_OPT, such that the rules AddGlossary, Ad-
dGlossaryEntry and LinkGlossaryFEntry were omitted for this operation. Similarly, the
rule AddParameter was omitted for BWD_OPT. For the FamiliesToPersons TGG, no
adaptions were necessary.

To reduce the effect of outliers, each configuration was repeated 5 times, and the median
was taken as runtime result. Furthermore, the number of binary variables in the ILP

6. Integrating Domain Constraint into the Fault-Tolerant Framework 119

was tracked to get an indication for the problem size. The executions took place on a
standard notebook with an Intel Core i7 (1.80 GHz), 16GB RAM, and Windows 10 64-bit
as operating system. As a prerequisite for eMoflon::Neo, an installation of Eclipse IDE
for Java and DSL Developers, version 2021-03 (4.19.0) with Java Development Kit (JDK)
version 13 was used. 4GB RAM were allocated to the JVM running the tests, while 8GB
were allocated to the graph database Neod4j (version 3.5.8). Gurobi 8.1.1 was used to solve
the TLP.

Results: In the following, an overview of the runtime measurements is provided. While
the results have already been summarised in previous work [WA21b], the complete dataset
is available online!.

The overall runtime needed for performing the operations on generated models of dif-
ferent sizes is depicted in Fig. 6.4, 6.6, 6.8, and 6.10, respectively. Note that both axes
have a logarithmic scale, making it possible to depict the measurements for small and
large model sizes in one diagram. It can be observed that the consumed runtime depends
much more on the particular operation than on whether negative constraints are taken
into consideration. For all operations, a slightly super-linear increase of runtime can be
observed, independent of the consideration of negative constraints.

When executing CO and BWD_OPT for the JavaToDoc example, however, a substantial
difference can be observed when taking implication constraints into account as well. An
explanation could be that the CO operation is quite cheap in general as all relevant rule
application candidates can be collected in parallel in a single step, as no new (context)
elements are generated during the operation.

However, when the operation must handle implication constraints, the constructed ILP
gets more complex, which can be observed when considering the increased share of the
ILP solving step (Fig. B.6). As Entry nodes of the documentation model can be trans-
formed to either Method or Field nodes in the Java model, various possibilities exist for
BWD_OPT to transform the target model. This could result in an exploding number of
premise matches for the SameNameSameGlossaryEntry constraint (cf. Fig. 6.2), leading
to a large runtime consumption of the operation.

The number of binary variables moderately correlates with the runtime consumption for
both TGGs all operations (cf. Fig. 6.5, 6.7, 6.9, and 6.11), reflecting the additional time
effort for pattern matching and ILP solving. Larger differences can only be observed for
the FamiliesToPersons example for the operations CC and FWD_OPT with implication
constraints, where the increase in the number of binary variables does not affect the
runtime consumption to the same extent.

Figures B.1 - B.24, which were moved to the appendix for better readability, depict the
runtime consumptions of the different phases, namely pattern matching, rule application,
ILP construction and ILP solving, for both example TGGs and each of the four consis-
tency management operations. Gurobi’s logger messages indicated that it was possible for
the solver to substantially reduce the optimisation problem at an early stage, such that
pattern matching remained the most costly step for CC (cf. Fig. B.11) and still played an
important role for the overall runtime performance of FWD_OPT (cf. Fig. B.17).

For all operations, ILP solving has a major impact on the runtime performance when
handling implication constraints, whereas pattern matching appears to be the most time-
consuming step otherwise. Applying the rule candidates to the model triple is expensive
for all operations except CO, as for this operation, all parts of the triple are given as
input and elements need not be created. The time needed for ILP construction is almost
negligible, while showing similar scalability characteristics as the solving step.

"https://bit.ly/35RAeaz, https://bit.ly/3u50Xgs

https://bit.ly/35RAeaz
https://bit.ly/3u5oXgs

120 6.6. Evaluation

1000

100000
50000

10000
5000

[#variables]

1000
500

1000 5000 10000 1000 5000 10000

[#nodes + #edges] [#nodes + #edges]

M w/o(F2P) M Negative (F2P) M Neg. + Impl. (F2P)

M w/o (F2P) M Negative (F2P) M Neg. + Impl. (F2P)
B w/o(J2D) M Negative (J2D) M Neg. + Impl. (J2D)

B w/o(J2D) M Negative (J2D) M Neg. + Impl. (J2D)

Figure 6.4: Runtime: CO Figure 6.5: Number of variables: CO

1000 100000

50000
100

10000
5000

[#variables]

1000 =
500 W= - A

1000 5000 10000 1000 5000 10000

[#nodes + #edges] [#nodes + #edges]

B w/o(F2P) ™ Negative (F2P) H Neg. + Impl. (F2P)

M w/o (F2P) M Negative (F2P) M Neg. + Impl. (F2P)
B w/o(J2D) M Negative (J2D) M Neg. + Impl. (J2D)

B w/o(J2D) M Negative (J2D) M Neg. + Impl. (J2D)
Figure 6.6: Runtime: CC Figure 6.7: Number of variables: CC

1000000

100000

[s]

10000

[#variables]

1000 5000 10000

1000 5000 10000

[#nodes + #edges]

M w/o (F2P) M Negative (F2P) M Neg. + Impl. (F2P)
B w/o(J2D) M Negative (J2D) M Neg. + Impl. (J2D)

[#nodes + #edges]

M w/o (F2P) M Negative (F2P) M Neg. + Impl. (F2P)
M w/o(J2D) M Negative (J2D) M Neg. + Impl. (J2D)

Figure 6.8: Runtime: FWD_OPT Figure 6.9: Number of var.. FWD_OPT

[s]

500 S 500000
— 50000
3
Qo
©
5 5000
>
#*
500
1000 5000 10000 1000 5000 10000
[#nodes + #edges] [#nodes + #edges]

M w/o(F2P) M Negative (F2P) H Neg. + Impl. (F2P)

M w/o(F2P) M Negative (F2P) M Neg. + Impl. (F2P)
B w/o(J2D) M Negative (J2D) M Neg. + Impl. (J2D)

B w/o(J2D) M Negative (J2D) M Neg. + Impl. (J2D)

Figure 6.10: Runtime: BWD_OPT Figure 6.11: Number of var.. BWD_OPT

6. Integrating Domain Constraint into the Fault-Tolerant Framework 121

In total, for negative graph constraints, both the number of variables and the runtime
consumption increase by a small factor that remains roughly the same for all model sizes
This can be explained with the additional variables as described in Def. 6.3. For implica-
tion constraints, both measures substantially increase for most operations and both exam-
ples. The root cause is probably the additional complexity which is induced by handling
premise and conclusion patterns separately, adding more complexity to the constructed
ILP problem.

Summary: Revisiting our research questions, the number of additional binary variables
increases moderately for all consistency management operations when adding negative con-
straints, whereas implication constraints can have a large impact on this measure (RQ1).
The time required for each of the steps increases slightly super-linear, whereby a noticeably
larger increase was observable for CO and BWD_OPT for the JavaToDoc example after
adding implication constraints. Depending on the TGG and operation, this can become
problematic for large model sizes (RQ2). The runtime consumption is dominated by the
pattern matching and rule application steps in settings without implication constraints,
whereas ILP solving is of major importance otherwise. Efforts for the ILP construction
step can almost be neglected, though (RQ3). The runtime performance is much more
dependent on the concrete operation than on whether negative constraints are considered,
which might also differ depending on the characteristics of the TGG in use. Implication
constraints, however, add more complexity to the ILP, whereby the extent again differs
between the operations and TGG examples at hand. (RQ4).

Threats to validity: The runtime measurements were conducted only for two TGGs,
with eight and nine comparably small rules. Also the used graph constraints are com-
posed of rather small patterns. The example models were small- or medium-sized and
generated randomly, such that they are not necessarily comparable to realistic use cases.
The observed remarkably different runtime measurements for the two TGGs and the four
operations indicate that the performance depends on the used TGG, making further tests
with other benchmark examples crucial. Our results only hold for Neo4j as graph pat-
tern matcher, and Gurobi as ILP solver. Previous experiments [WA20] have indicated,
however, that these two solvers are very well-suited for their respective tasks.

6.7 Summary and Discussion

In this chapter, the handling of graph constraints was integrated into the hybrid consis-
tency management framework, which enables the user to express domain constraints, such
as upper and lower bounds for multiplicities in UML class diagrams. As there is a bidi-
rectional transformation algorithm between graph constraints and application conditions,
the extension substantially increases the expressive power of the approach, as discussed in
Sect. 4.5. For different consistency management operations, graph constraints are encoded
as additional linear constraints which are added to the ILP in order to guarantee schema
compliance, in addition to consistency with respect to the underlying TGG.

Following the structure of the correctness and completeness proof for consistency checks,
we have shown that for all four operations, the hybrid approach terminates with a con-
sistent solution, if and only if one exists, and returns the largest consistent sub-triple
otherwise. This holds both for settings with and without graph constraints.

Regarding the advanced language features presented in Chap. 4, the approach now cov-
ers attribute conditions, as they remain directly connected to TGG rules, and graph con-
straints as a substitute for application conditions. The integration of multi-amalgamated
rules is left to future work, leaving room for increasing the expressive power even further.

122 6.7. Summary and Discussion

An interesting conceptual feature would be fault-tolerance towards constraint violations
in the output models: For practical use, it might be more helpful to provide the user
with a solution that violates a single constraint than to leave larger parts of the input
models untranslated, besides returning the largest (fully) consistent sub-triple. In this
case, however, the question would arise whether one should also permit inconsistent results
with respect to the TGG, which makes it possible to return a (schema compliant) triple
that is not fully inter-model consistent.

The approach was implemented in the TGG tool eMoflon::Neo for all operations. While
the formal framework is sufficiently mature and general enough for our purposes, the eval-
uation clearly suggests that further research is needed on the practical implementation.
An experimental evaluation indicates that the introduction of negative constraints does
not have a severe impact on the runtime performance, such that small and medium-sized
models can be sufficiently well handled in real-world applications. For implication con-
straints, the scalability results show that further improvements are necessary for practical
use, though.

Although extensive performance tests were conducted using two example TGGs, further
experiments with benchmark examples and other (industrial) use cases can give insights as
to whether the test results are generalisable, and which effect the size of the metamodels,
the number and size of TGG rules and other characteristics have on the runtime perfor-
mance. Finally, we plan to generate graph constraints directly from metamodels, such
that the handling of, e. g., multiplicity constraints can be fully automated in the practical
framework.

While in this chapter, the expressive power of the hybrid approach was increased, the
upcoming Chap. 7 and 8 will add a fifth operation, namely concurrent model synchroni-
sation, to the framework. With this operation, it is not only possible to transform entire
models into another domain, but propagate changes incrementally, such that two domain
experts can work in parallel on semantically interrelated models.

7 A Fault-Tolerant Approach to Concurrent
Model Synchronisation

In collaboration scenarios, multiple (teams of) domain experts work concurrently on se-
mantically interrelated models. As such models describe a software system from different
perspectives, maintaining and restoring consistency between these models is a crucial task.
Concurrent model synchronisation denotes the task of keeping these models consistent by
propagating changes between them. This is challenging as changes can contradict each
other and thus be in conflict. In contrast to tasks such as (unidirectional) transformations
or consistency checks, just a few approaches exist that address this problem even for con-
sistent input models. For the faulty inputs, to the best of our knowledge, no solution has
been proposed yet.

We extend the hybrid approach based on TGGs and ILP to overcome these issues:
Besides the current state of the models (which usually involves all three parts of the triple),
information about recent changes, i.e., modifications since the last synchronisation took
place, are given as input to the operation. This information is used to refine the objective
function in order to balance different optimisation goals. The implementation of the hybrid
approach is extended by this fifth operation and evaluated regarding scalability for growing
model sizes and an increasing number of changes.

The chapter is structured as follows: After a brief introduction (Sect. 7.1), Sect. 7.2
compares the proposed concurrent synchronisation strategy to related approaches. An
overview of the necessary adaptions of the formal framework is given in Sect. 7.3. The
notion of operational rules is generalised and extended towards so-called rule variants in
Sect. 7.4, which are required to reasonably support synchronisation scenarios. The formal
framework for fault-tolerant consistency management is extended by a parametrised and
configurable rating function in Sect. 7.5. The actual ILP construction and the resulting
solution for an example instance is shown in Sect. 7.6. The results of an experimental
evaluation are presented in Sect. 7.7, before Sect. 7.8 summarises the findings and assesses
their contribution to a fault-tolerant consistency management framework.

7.1 Motivation

In a collaborative setting, restoring consistency after concurrent updates involves more
challenges than forward or backward transformation of given models. Consider the small
example in Fig. 7.1, which revives the introductory example of Fig. 1.3: Both the SysML
engineer an the Event-B expert remove the fault which was present in Fig. 1.2, i.e., the
dangling edge going out of the START state. While both experts agree on assigning the
variable finish the value TRUE via this transition, the transition’s target is differs for the
two models: The SysML engineer defines that the STOP state should be the target, whereas
the Event-B expert makes the transition a self-loop on the START state, simultaneously
removing the unreachable STOP state. The latter change produces a conflict: It is not
possible to determine a solution in which both changes can be considered.

Propagating conflicting changes can leave the models in an inconsistent state, which in
general is not a desired result. In the scope of this thesis, the handling of inconsistent

124 7.1. Motivation

MACHINE Machine
VARIABLES START S¥6P finish
Machine J INVARIANTS ...
EVENTS
INITIALISATION =
COMPLETION =
. -) WHEN
/ £inish := TRUE; isin START : START = TRUE
THEN
Vv leave-START ——STFARF —=FALSE;
(} actl : finish := TRUE;
END
(a) SysML model

(b) Event-B code

Figure 7.1: Concurrent changes on both models result in a conflict

inputs should be possible (which is required here because the input models cannot be
completed to a triple of the example TGG’s language). Bringing the models closer to
a consistent state while modifying them to the smallest possible extent is still a goal to
pursue. A trivial solution to this problem would be to drop all conflicting changes. This,
however, is likewise undesirable as it ignores the intentions of all users who made these
changes. Furthermore, this strategy only succeeds on the assumption that the models have
been in a consistent state before, which does not hold in the context of this thesis. Hence,
we have to find a solution that finds a reasonable compromise between changes, while
offering a consistent synchronised solution to the users, together with a set of remaining
elements that were left over when computing a synchronised solution automatically.

A few strategies to restore consistency for concurrent modifications with different limi-
tations were proposed in existing work. Frequently, a substantial amount of user interac-
tion is required to finally reach a consistent state in case of conflicting changes [Egy07a,
KPP08b, TA17], or the retrieved solution might still contain inconsistencies [Tra08], which
should rather be considered as a limitation than a feature of the approach. Other ap-
proaches pose severe restrictions on the modelling language in use [PSG03, GW09], or on
the set of allowed changes and conflicts which can be resolved [XHZ 08, XSHT09,XSHT13,
HLRO8]. These restrictions can be overcome by building up a search space of all possible
solutions from which a range of adequate results can be retrieved [OPN20]. This search
space grows rapidly with model size and number of changes, however, such that scalability
becomes a severe problem. To the best of our knowledge, none of the proposed strategies
supports arbitrary edits on the input models, which means that models are expected to
be at least well-formed, i. e., intra-model consistency must be guaranteed.

In Chap. 5, a hybrid approach based on TGGs and ILP has been successfully applied
to basic consistency management operations, such as forward and backward transforma-
tion and consistency checking, and was extended to the handling of graph constraints in
Chap. 6. Guarantees for correctness and completeness could be provided in case of con-
sistent input models, whereas a consistent sub-graph of maximum size can be determined
for inconsistent inputs.

To address open issues in concurrent model synchronisation, we extend this hybrid,
synergistic approach towards such scenarios: A novel operation constructs a search space of
possibilities for propagating user edits, and computes an optimal solution with respect to a

7. A Fault-Tolerant Approach to Concurrent Model Synchronisation 125

rating function. Configurable parameters allow us to influence the importance of creations
and deletions for the final result. In this manner, the line of fault-tolerant consistency
management operations is continued: The concurrent synchronisation operation can cope
with arbitrary graph edits on an input model, which itself is not required to be well-formed
or consistent with the underlying TGG at any point of time.

7.2 Related Work

In general, concurrent model synchronisation approaches can be divided into constraint-
based, search-based and propagation-based approaches, which come each with their own
advantages and limitations.

Constraint-based approaches often use a relational specification language, which de-
scribes consistency relations over models. Using optimization techniques such as, e.g.,
ILP solving or SAT solving, they encode the search space of all feasible solutions and use
a solver to find an (optimal) solution satisfying all constraints. Macedo et al. [MC13]
find the closest consistent model that is again consistent w.r.t. all constraints and where
user-preferences can be expressed by implementing a custom distance function for model
changes. Yet, controlling the synchronisation process by designing such a distance function
can be very hard and requires extensive domain knowledge. Furthermore, the scalability
of such approaches is problematic as a large amount of constraints is necessary to encode
graph properties, whereas our approach operates on rule-application level.

Search-based approaches explore the space of all solutions in order to find an optimal
solution or present a rich set from which a user can pick the preferred one. As such, they
are highly related to constraint-based approaches that also encode the search space of all
possible solutions, however, without explicitly calculating it. Cicchetti et al. [CRE110]
calculate all closest sub-models that are consistent w.r.t. their consistency specification
but this means that a lot of information may be dropped, e.g., user-changes, if they are
considered to be inconsistent. Since they employ optimisation techniques to find constraint
preserving solutions, their approach can also be considered as constraint-based. Orejas et
al. [OPN20] recently presented a TGG-based approach, where in a first step, the grammar
rules are used to find all possible parsings for the models. In a second step, these parsing
are used to annotate the model w.r.t. whether these elements have been changed or need
to be preserved. Given these annotations, contradicting changes can be detected for which
all possible synchronisation solutions are generated using back-tracking. These solutions
are then presented to the user to choose from. However, exploring all solutions may be
very expensive and relying on the user to choose one might be very overwhelming.

Propagation-based approaches are probably the best investigated technique so far since
it reuses sequential synchronisers to propagate changes round-trip-wise between models
in order to restore consistency for concurrent changes. However, these approaches tend
to suffer from several limitations. Some works [BG16, Egy07a, XHZ*08, KPP08b, PSG03,
Tra08, XHZ 08, XSHT09] do not consider that changes can be in conflict and, thus, may
not guarantee which change is propagated and dropped or assume that changes are a
priori not in conflict. The approach of Buchmann et al. [BG16] employs hand-crafted
transformations and Kolovos et al. [KPP08b] delegate the responsibility of implementing
conflict detection and resolution to the user. Hence, both approaches cannot guarantee
correctness. Other approaches pose restrictions to the structure of the consistency relation,
e.g., that it is bijective [GW09] or that one model has to be an abstraction of the other
and both have to be tree-like hierarchies [PSGO03].

126 7.3. Solution Overview

More advanced works [TA17, GW09, XSHT13, HLR08, HEEO12, GHN*13, KPP08b] in
this area, implement a conflict detection and resolution framework. This is done by
analysing whether the changes made during a propagation step contradict the user ed-
its in the same model. However, Orejas et al. [OBET13] showed that this kind of conflict
detection is not deterministic and that the detection rate can depend on the order in which
the propagation takes place. A recent TGG-based approach by Fritsche et al. [FKM™*20]
separates the phases of conflict detection and resolution, such that the result is deter-
ministically computed. The approach enables the user to configure the conflict resolution
strategy according to their preferences. As part of this chapter’s evaluation, our hybrid
approach will be compared performance-wise to the implementation of Fritsche et al. in
eMoflon::IBeX.

Following similar arguments as for consistency checks and (unidirectional) transforma-
tions (Sect. 5.2), a gap in research can be identified for concurrent synchronisation as
well: Constraint-based and search-based approaches provide enough flexibility to be used
for handling faulty input models, scalability remains a severe issue. Propagation-based
approaches, in contrast, scale well for large models and numerous conflicting changes, but
are not able to handle inconsistent input models. We will therefore continue with the
extension of the hybrid approach to develop a fault-tolerant synchronisation strategy for
concurrent updates.

7.3 Solution Overview

Compared to the operations introduced in Chap. 5, several similarities and differences
can be observed. The concurrent synchronisation operation receives a complete triple
as input, which is similar to the CO operation at the first glance. The input triple is,
however, not homogeneous: Along with the model elements, the information whether the
respective nodes and edges were created, deleted, or remained unchanged since the last
synchronisation took place, is of major importance. The respective sets of elements are
denoted as delta structures in the following. With these additional structures, changes over
time are made known to the operation, opposed to the previously introduced operations,
which can be considered as “stateless”.

The fact that the input models contain both recently created and already existing el-
ements makes it necessary to handle these elements in different ways, leading to a new
notion of operational rules. For tasks such as forward and backward transformation or
consistency checking, the domain (i. e., source, target or correspondence model) prescribes
which elements should be marked and created by an operational rule. For synchronisation
tasks, this is not possible because the operation receives a complete triple and change
information as input. Instead, it makes sense to check the unchanged part of the triple
for consistency and translate the created elements to the respective other domains. This
makes it necessary to search for matches of multiple operational rules for a single declar-
ative rule, which also have interdependencies that guarantee the language membership
of the produced result. As we will see in Sect. 7.4, there is a need for further forms of
operational rules besides those for CO, CC, FWD_OPT and BWD_OPT, leading to a gen-
eralised notion of operational rules. A last difference between concurrent synchronisation
and the other operations is that depending on whether the elements belong to one of the
delta structures, their importance for the final solution is different: While it is very desir-
able to involve all recently created elements in the synchronised solution, recent deletions
should be preserved, if possible. These requirements are reflected in a refined objective
function, which balances these interests via configuration parameters.

7. A Fault-Tolerant Approach to Concurrent Model Synchronisation 127

To address these challenges of the concurrent synchronisation operation, the hybrid
approach is enhanced with:

1. a generalised notion of operational rules (Sect. 7.4)
2. delta-structures, and the derived rating of rule applications (Sect. 7.5)

3. a refined and parametrised objective function (Sect. 7.6)

The work-flow for concurrent synchronisation is depicted in Fig. 7.2 as an adaption
of the work-flow of Fig. 6.1. In a first step (A), operational rules are generated from
the declarative TGG rules. In contrast to the operational rule generation for CO, CC,
FWD_OPT and BWD_OPT, the mapping between declarative rules and operational rules
is not 1:1. For each declarative rule, multiple rule variants are generated which include
rules for consistency checks, forward and backward transformation, but also other forms
of operational rules. The previously mentioned delta structures are an additional input for
the rule pattern matching step (B1). Another difference concerns the optimisation step
(D): While for the other operations, the coefficient for each rule application candidate could
be directly derived from the number of marked elements, for concurrent synchronisation,
a rating is computed for each rule application that serves as coefficient in the objective
function. Configuration parameters are provided as additional input to the operation.
They describe the relative importance of preserving deletions, creations, and unchanged
structure, and thereby influence the rule applications’ rating.

(A) Operatio- { | Rulet Rule 1 Rule 1 § \
Rule 1 l nalisation Variant 1 Variant 2 Variant n §
‘ g Delta
i i () Structures
‘| Negative ||| [
Constraint |} i (B2) Constraint Rule Application (B1)'\/F|{L1tlehf’attern I\;IszUtl
§ r.——‘— : Pattern Matching Candidate atching ode’s
| Implication ||} |
Constraint ||l Output
: - Models
Constraint Match c (Ci ”‘T, Chosen Rule (E) Filter |
Candidate onstruction Application Remaining
Elements
[
Integer Linear - Configuration
(D) Optimisation
Program Parameters

Figure 7.2: Work-flow for fault-tolerant concurrent model synchronisation

7.4 Operational Rules

A key feature of the TGG approach is that various consistency management operations
can be derived from the descriptive rules, as discussed in Chap. 5. For the concurrent
synchronisation operation, we generalise the definition of operational rules (cf. Def. 5.4),
such that the domain is not the only decisive factor for which elements are to be marked or
created any more: All possible subsets of green elements (with the exception of the empty
set) can form the set of marked elements, whereas the remaining elements are created by
applying the operational rule. This generalisation is necessary because there is often no

128 7.4. Operational Rules

1:1-mapping of model changes and TGG rule applications, which will be demonstrated
concretely at the end of this section. To overcome this problem, different strategies are
proposed in existing work. The approach of Fritsche et al. [FKM™20] makes use of so-
called short-cut rules [FKST18], which combine revoking and applying TGG rules in a
single step. This mechanism, however, assumes that elements can be deleted via a short-
cut rule application, which is not compatible with our hybrid approach.

Formally, a subset of the created elements in r is added to the left-hand-side OL of the
operational rule or, receiving a marker after rule application instead of being (re-)created
(cf. Fig. 7.3). Note that the subset must be non-empty, so the operational rule is not
equal to the declarative rule.

Definition 7.1 (Operational Rule and Marking Elements).

Given a triple rule r : L — R, an operational rule or : OL — OR for r is constructed
as depicted in Fig. 7.3. An element e € elem(R) is a marking element of or iff (e’ €
elem(OL) with org(e') = eV orc(e) = eV orp(e) =€) A (Pe’ € elem(L) with rs(e”) =
eVro(e)=eVrp(e) =e).

L o]

L
i)
Lg«—Lc— LT]ﬂ» OLg«—OL— OLTJL’ ORg«—ORc—0ORT
) /

Figure 7.3: Construction of operational rules

The operational rules of Def. 5.4 can be regarded as special cases of generalised opera-
tional rules, as stated in Def. 7.2. The respective operational rules resemble FWD_OPT
(BWD_OPT) rules, if the set of marking elements exclusively contains all elements of the
source (target) side. If, in contrast, all created elements of the declarative rule are taken
into the subset, the operational rule can be denoted as a CO rule.

Definition 7.2 (Special Rules).
For some operational rules, intuitive names can be found, if OL is composed of graphs of
L and R according to the this table:

Operation | OLs | OLc | OLy
ccC Rg Lo Ry
co Rg Re Ry

FWD_OPT | Rg L¢ Lt
BWD_OPT | Lt Lc Ry

With the aforementioned operational rules, it is possible to mark elements that can
be matched to a full TGG rule application (CO), to transform created elements into the
other domain (FWD_OPT, BWD_OPT), and to align elements which are new on both sides
(CC). However, there are cases in which other rule variants in between these operations are
beneficial to reflect the users’ edit operations properly. Provided that further elements can
be matched that fit into the scope of the rule, it is better to reuse these instead of creating
them anew (such rules were proposed in a similar fashion by Orejas et al. [OPN20]).

Figure 7.4 depicts two variants of the StateToVariable rule that do not match any of
the already known rule variants, as they both mark and create elements of the same

7. A Fault-Tolerant Approach to Concurrent Model Synchronisation 129

domain. The left rule variant is useful in case a state s was moved to a new region r in
the SysML model, such that new connections can be drawn in the Event-B model. This
rule variant assumes that the variable v and the invariant i of the Event-B model, as
well as the respective correspondence links, already exist, such that only two new edges
must be created. With the FWD_OPT rule variant, in contrast, these elements would be
re-created, which is unnecessary in this case. Furthermore, the rule variant allows to reuse
existing elements of the Event-B model that are connected to v and i, which would not be
possible otherwise. The right rule variant, in turn, depicts a useful variant for situations
where a variable and an invariant were moved to another Event-B machine, re-locating
the affected SysML state.

StateToVariable StateToVariable
sm : Statemachine —<sz|\>— m : Machine —— sm : Statemachine —<Sm2|v>— m : Machine |—
variables variables
regions ++ regions U
Y "~ Y o
O—>& = 7 O—->~
r : Region O—> My r : Region O—>& My
- S2V v : Variable v : Variable
O—=>
subvertex subvertex | ++
invariants invariants
\ A O O y 0>
s : State @ i : Invariant €/ s : State i : Invariant |€—/
s.name = v.name s.name = v.name
"TYPEOF_" + s.name = i.name "TYPEOF_" + s.name = i.name
s.name + "€ BOOL" = i.predicate s.name + "€ BOOL" = i.predicate

Figure 7.4: Rule variants for StateToVariable

To find a solution for the concurrent synchronisation operation, we determine matches
for different operational rules simultaneously. In this way, it is possible, e. g., to cover the
unchanged parts of the triple with CO matches. We cannot only rely on the CO operation,
though, as it only matches already existing elements. Hence, especially when nodes and
edges of the create delta need to be translated, also matches for other operational rules
need to be collected in order to propagate changes. As the handling of delta structure
elements was only discussed in an intuitive form up to here, a precise specification follows
in the upcoming Sect. 7.5.

7.5 Rating of Rule Applications

This section presents how elements of the input models can be partitioned into different
sets, such that recent changes, i.e., creations and deletions, can be formally represented.
Based on these sets and multiple configuration parameters that describe the importance
of preserving creations and deletions, a rating for each rule application candidate can be
computed that quantifies the potential contribution of the candidate in the synchronised
solution. The ratings will be used to form the refined objective function of the optimisation
problem (cf. Sect. 7.6).

Similar to the basic operations of Chap. 5, the concurrent synchronisation operation
receives a triple as input, which is denoted as starting triple graph (cf. Def. 5.1), and for
which consistency should be restored. Elements of this triple graph are to be marked dur-

130 7.5. Rating of Rule Applications

ing the synchronisation process, whereas the operation can add further elements as well.
To track the dependencies between operational rule applications, we distinguish between
required, marked and created elements for each rule application (cf. Def. 5.3). For indi-
cating those nodes and edges which were created or deleted since the last synchronisation
took place, parts of the triple graph are labelled as such, whereas the remaining elements
are considered as unchanged. The labelled elements form a delete delta and a create delta,
respectively. The third delta structure is denoted induced delta, and consists of all ele-
ments added by the operation. Note that only elements of the starting triple graph can
be marked, as marking an element which was created during the operation would mean
that declarative rules would create it twice, which is impossible.

Definition 7.3 (Delta Structures and Unchanged Elements).

Let Go = Gog < Go, — Go, be a triple graph given as input to the operation, denoted
as starting triple graph. Let G~ = G4 < G, — G and Gg + Gc — Gr be triple
graphs, and let 6~ : G= — G and 6§t : G — Gy be triple graph morphisms, such that 5~
adds elements labelled as deleted to G—, and 61 adds elements labelled as created to G.
The following sets are defined:

e unchanged(Gq) := elem(G™)

e ditDelta(Gy) := elem(G) \ elem(G™)

e crtDelta(Gy) = elem(G™T) \ elem(G)

e indDelta(G) = dLEJD crt(d) = elem(G) \ elem(Gy)

In order to assess the contribution of a rule application candidate to a desirable consis-
tent solution, a coefficient is computed for each rule application; the number of marked
and created elements is considered, as well as if these belong to one of the three deltas.
To model the effect of user edits, we weight elements of create, delete and induced delta,
and therefore determine an individual rating with configurable parameters for each rule
application, which is described in the remainder of this section. Positive values suggest to
use this rule application for the synchronised result, whereas negative values recommend
to avoid it, if possible.

Unchanged elements should usually remain in the final solution because no recent change
indicates something different, and are therefore assigned a normalised weighting factor of
1. The motivating example of Fig. 7.1 contains several unchanged elements, which are
coloured black in the visual notation of a triple graph instance (cf. Fig. 7.5). For existing
structure, CO matches can be determined, as all necessary elements for such a match are
present in the input models. In the concrete example, this holds for matches for Statema-
chineToMachine (dy), PortToVariable (dz2), StateToVariable (d3), PseudostateToActions
(dy), TransitionToEvent (ds, dg), and TargetStateToEnterAction (d7). Note that dy and
ds overlap in their markings: For marking the initialisation transition t, matches for two
different rules can be found. ds, however also requires markings of d4, such that we have
an example for a superfluous rule application according to Def. 6.12 here.

Deleted nodes and edges, which are depicted in red and with a —— mark-up, were recently
removed by a user and therefore should not be part of the final solution. However, they
might still be necessary context for other rule applications which in turn cannot be chosen
otherwise (which is the main argument for not deleting them right away in this approach).
Therefore, marking deleted elements should be penalised by assigning them a negative
factor @« < 0. The CO rule applications for StateToVariable (dg) is shown in Fig. 7.6.

131

7. A Fault-Tolerant Approach to Concurrent Model Synchronisation

«3S7V4 =t 1HV1S, ‘- uonoe

JLHVLS oAe9), : dweu [«

SIUOWID[O POSURYDU() :G"), 9INSTI

uopoy : L'ze

«JNYL = 1YVLS, : 8jeoipaid

P suopoe

Lp

&

.dO1S oL, : sweu

LJLHVLS uisy, : sweu

pieng : B

WJNYL =t LHVLS, - uonoe

A

spienb
NU p

Lp

JuaAg : zo

%

> «NOILVSI

VILINI, : dweu

WLYVLS Hul, : sweu

uonay : |'je

10049 3 1HV1S, : 8jedlpaid

&
<

Yp suonoe

vp

JUSAT : Lo

Sp ‘7p

m_u ;u_u

«1HVLS, - sweu

9|geMEA : LA

€p

WLUVLS H4O3dAL, - dweu

jueleAu] : LI

€p

€

1004 3 usluy, : ajeslpaid

WUSIUY403dAL, : Sweu

Jysiuy, : sweu

a|qeLieA : €A

p

juelieAu] : gl

sjuane

so|qeleA

¢p

— |

Lulyoe, : sweu

sjueLeAUl

auIyse : w

p

ErA RS

9

3zL:
Sp “¥p

AZS:
€p

IZs :

AZd:
p
AZd:
p

News :

p

.dO1S oL, : sweu

uonisuel] : g}

B R
®U mb
90INn0S WNOILVSITVILINI, : Sweu P
<)
uolyisueld] : L} Sp “p
Sp “¥p
106.4e)
92JNn0Ss
p p
WLHVLS, : dweu IVILINI © puiy
ajels : Ls ajejsopnasd : S
3 v
" e)
vp
€p
XaaAqns
Jusiuy, : sweu Julew, : sweu
2
Mod:d uoibay : 1 suonisuel)
SHo P suolibal

.BUlyoe, : sweu

aulyosewW=ale)S : WS

p

132 7.5. Rating of Rule Applications

Besides deleted elements in the target model, also unchanged source and correspondence
elements are concerned, such that a rating of 4 4+ 4« can be computed. It clearly depends
on the rating of the dependent rule applications and on the choice of «, whether these
elements are part of the solution. Setting « to -1 or less results in a negative rating for
dg, which means that dg is only chosen if dependent rule applications receive a positive
rating that can balance this negative value.

d
1 d1 d1
sm : Statemachine m : Machine
: Sm2M
name : "Machine" name : "Machine"
regions dq invariants _
variables
v %
dg
r : Region

i2 : Invariant

name : "main" .
name : "TYPEOF_STOP"

d
dg 8 predicate : "STOP € BOOL"
subvertex 1 821 dg
\ 4 d8 d8
dg
s2 : State == | v2: Variable
1 S2v
name : "STOP" name : "STOP"

Figure 7.6: Delete delta

An example for a rule application that depends on a CO rule application involving
deleted elements is dy (TargetStateToEnterAction) as presented in Fig. 7.7. The transla-
tion of create delta elements is especially important, as ignoring them would lead to an
unnecessary loss of information about recent user edits. In triple graph instances, create
delta elements can be identified via their green colour and their ++ markup!. To increase
the probability for them to be contained in the synchronised result, we weight these ele-
ments with a factor 5 > 1. In the general case, edits in one model must be propagated to
the other model to form a consistent triple, which is not manageable only with matches of
CO rule applications. To properly translate elements of the create delta, FWD_OPT (dy)
and BWD_OPT (dj¢) rule applications are necessary. In this example, both dy and d;o are
applications of TargetStateToFEnterAction, that shall propagate user edits on the source
and the target model to the respective other model. In order to do so, further elements
must be created, which are part of the induced delta and marked up with +?. On an
intuitive level, we have already seen that these two edits are conflicting. In the course of
this chapter, it will be demonstrated how this conflict becomes evident by constructing
the optimisation problem.

Besides the weighting factor for elements of the create delta, the handling of the induced
delta is essential for computing the rating of dg and djg. Nodes and edges of the induced
delta are created as part of the synchronisation process, such that their presence is neither
desired nor unwanted. It seems reasonable, though, to prefer (re-)using existing elements
over creating duplicates, such that induced delta elements are weighted with a negative
factor v < 0. For dg, this results in a rating of 5+2+, and in a rating of 26+ for dyg. As it
is usually necessary to add such elements in order to translate user edits, this “drawback”

!Note that this visual variable has a different meaning for TGG rules

7. A Fault-Tolerant Approach to Concurrent Model Synchronisation 133

d d
1 d1 1
sm : Statemachine : Machine
: Sm2M
name : "Machine" name : "Machine"
d d
regions ! 61 events
\ 4 d dg de) 4
subvertex| T : Region e2: Event
- : T2E ~
name : "main" name : "To_STOP"
dg| transitions ++ actions
de ¥ dqq | Actions
t2 : Transition d1o Y
name : "To STOP" A ++ a2.2t : Action
target name : "enter_START"
ds g dg
ds s1: State + action : "START := TRUE"
N > <«
name : "START" | d10 dg
target +? a2.2s : Action
+?
dg s2 : State - name : "enter_STOP" <«
_ > < J
name : "STOP" dg action : "STOP := TRUE"

Figure 7.7: Create delta

must be compensated by a suitable choice of 3 for the create delta. Independent of the
concrete parameter choice, the rating of dy(is better due to the value range for 5 and =,
suggesting to prefer the target model change over the source model change. The decision
is, however, a result of the global optimisation process.

For the previously introduced operations CO, CC, FWD_OPT and BWD_OPT, the
induced delta (which we simply denoted as created elements in Def. 5.3, i.e., elements
that are created during the consistency management process) does not have any influence
on the objective function: The optimisation goal is to maximise the number of marked
elements, independent from the size of the resulting triple. To argue why the situation
is different for the concurrent synchronisation process, the last user edits on the example
instance shall be considered (cf. Fig. 7.8). Both users express that when the transition
t2 fires, the value of finish shall be TRUE.

To process these edits, one could translate them separately by applying FWD_OPT
(d11) and BWD_OPT (dj2) rules for EffectToAction, which would lead to two identical
effects and actions each. However, it would be also possible to just create a correspondence
between these elements (provided that the attribute condition is fulfilled) with a CC rule
application (dy3). As a result, ratings of 25 + 3~ for both d; and dj2 can be determined,
whereas di3 receives a rating of 48 + . As v is negative, the sum of the two values for
dy1 and dy2, 45 + 67, is less than the coefficient for dy3 (48 +), such that the latter will
be preferred for the final solution.

For the example instance - due to its simplicity - other rule variants than the special rules
(CO, CC, FWD_OPT, BWD_OPT) are not necessary. To demonstrate the application of
other rule variants on an example instance, Fig. 7.9 shall be considered. Here, the SysML
engineer has moved the state s2 from the region r1 of the statemachine sml to the
region r2 of the statemachine sm2. The rule application candidates d,, dp and d. (indices

134 7.6. Constructing the Optimisation Problem

des des
+? de
: t2 : Transition e2 : Event
: T2E
effects name : "To_STOP" name : "To_STOP" —
dqo . ++ +?
actions
dqo, d
+? dip ++ digdig ¢ 2"
e2.3t : Effect effects +? dq2 ++ a2.3t : Action
.] actions
name : "action2.3" : E2A name : "action2.3"
body : "finish := TRUE" dqq, dqz action : "finish := TRUE"
d1q
++ v d1,d13 dyq v
e2.3s : Effect *?| a2.3s:Action
name : "action2.3" : E2A name : "action2.3"
body : "finish := TRUE" action : "finish := TRUE"

Figure 7.8: Induced delta

are letters to emphasize that the running example of this chapter is left) are CO rule
applications, whereas dg is an application candidate for the left rule variant of Fig. 7.4.
The intended change on the SysML model can be incorporated by choosing d,, dp and dg,
such that the deleted edge in the SysML model and the outgoing edges of the machine
ml in the Event-B model remain unmarked. The possibility of reusing an element is
especially beneficial if it (indirectly) provides context for various other rule applications,
such deletions and recreations of the dependent elements can be avoided [FKST18].

Based on the declarative TGG rule, such rule variants can be systematically generated by
enumerating all combinations of creating and marking the green elements of the declarative
rule, as long as it does not violate the dangling edge condition [KLKS10] (i.e., if an edge
is required as context, its source and target nodes must be context as well). This however
means that the number of variants for a descriptive TGG rule grows exponentially with
its number of green (created) elements. To implement the approach efficiently, a subset
of promising rule variants must be chosen, which is described at the end of Sect. 7.6.

In the presented form, the ratings are only a local assessment for single rule application,
while the determination of an optimum synchronisation solution is still an open issue. The
rating of entire solution alternatives is done via transferring the ratings of rule applications
to coefficients in the objective function of an ILP. Based on the outcome of the optimi-
sation process, the final solution can be constructed, which will be explained in detail in
Sect. 7.6.

7.6 Constructing the Optimisation Problem

To find an optimum solution for the concurrent synchronisation problem, an ILP is con-
structed in a similar fashion as presented in Chap. 6. The constraint specification is done
in the same way, whereas the objective function set-up is extended towards individual
ratings. For consistency checking and forward and backward transformation, the number
of marked elements is maximised (Def. 6.7), such that each rule application candidate is
weighted with the respective number of marked elements. For concurrent synchronisation,
in contrast, each rule application candidate is weighted with its rating as discussed in

7. A Fault-Tolerant Approach to Concurrent Model Synchronisation 135

dj g dg
a -
sm1 : Statemachine m1 : Machine
: Sm2M -
name : "Machine" name : "Machine"
d d
b db b dc
sm2 : Statemachine m2 : Machine
: Sm2M invariants|
da name : "Other" name : "Other"
regions -~
variables
regions dp 7 o
variables
v da v % dg
. . de,dg y
r1: Region r2 : Region)]
d. d v2 : Variable invariants
name : "main” name : "main” c Md <«
. name : "STOP"
subvertex : S2v dq d
- ++ c
dd dg, d *?
subvertex \ 9c g o dd 4 v
o d¢, dg i2 : Invariant
s2 : State
: 821 name : "TYPEOF_STOP"
name : "STOP"
predicate : "STOP € BOOL"

Figure 7.9: Rule variant application

Sect. 7.5. In this way, rule applications which contribute to a good synchronisation solu-
tion (i.e., have a positive rating) are more likely to be chosen than rule applications with a
negative rating. At the same time, it must be guaranteed that the result is consistent with
respect to the TGG at hand and complies to the defined schema. Therefore, the decision
whether a particular rule application is chosen is still the result of a global optimisation
process, such that rule applications with a negative rating can be part of the final solution
if they, e. g., provide context for other rule applications with a positive rating.

The utility of each rule application is assessed based on the number of elements it marks
or creates for the different deltas. Marking unchanged elements or elements of the create
delta increases the coefficient for the rule application in the objective function, whereas
marking deleted elements or creating further elements during the operation decreases
it, which is specified by user-defined parameters «, § and ~. The optimum solution,
i.e., the solution which satisfies all constraints and maximises the objective function,
determines the choice of rule applications for the final solution. The objective function of
the optimisation problem (Def. 6.7) is therefore refined to a weighted sum of marked and
created elements.

Definition 7.4 (Optimisation Problem (Refined)).

Let a € (—o0;—1),8 € (1;00),v € [—1;0) be configuration parameters for the operation.
Given a starting triple graph Go, let D : Go = Gy, be a deriation via operational rules.
The ILP to be optimised is constructed as follows:

maz. (Y |mrk(d) Nunchanged(G,)| - 6
9D 4 o |mrk(d) N ditDelta(Gy)| - 6
+ B - |mrk(d) NertDelta(Gy,)| - 6
+ v - |mrk(d) NindDelta(G,)| -0) s.t.
markedAtMostOnce(Gy) N context(D) N context(G,) N acyclic(D) N\ sat(G)

136 7.6. Constructing the Optimisation Problem

When comparing Def. 6.7 and Def. 7.4, it becomes apparent that the concurrent syn-
chronisation operation can be regarded as a generalisation of the other four operations:
Assuming that the create and delete deltas are empty, and setting v := 0, the prob-
lem specification is equal for all five operations. Regardless of the parameter values, the
synchronisation of updates on a single model can be considered as a special case of con-
current synchronisation as well. While a considerable amount of research exists for this
consistency management task already, we propose a fault-tolerant strategy to solve the
synchronisation problem.

The last term of the optimisation problem specification, sat(G), indicates that the con-
current synchronisation operation supports graph constraints as introduced in Chap. 6.
To understand why this feature is necessary to produce a suitable solution of the example
instance, we consider a part of the SysML model as depicted in Fig. 7.10. Each transi-
tion should have exactly one source and target state, which is guaranteed by using the
graph constraints from Fig. 6.2. Matches for premise patterns (p;) are annotated in blue,
whereas matches for conclusion patterns (¢;) are annotated in red. p14 and pig are premise
matches for the constraint TransitionHasSourceState, and c19 and cg1 are matches for the
respective conclusions. Similarly, pi15 and pi7 are premise matches and cyg, coo and co3 are
conclusion matches for the constraint TransitionHasTargetState. pig, finally, is a match for
the negative constraint NoTwoTargetStates. With these constraints, it can be guaranteed
that dy4, d7, and either dg or dig are chosen.

dy
r : Region
(L H 1} \
transitions name : ‘main transitions
subvertex
ds A ds
ds

dg cqg d3 P18 C20 C21 C23y dg P1g C22

s0 : Pseudostate s1 : State s2 : State

kind : INITIAL name : "START" name : "STOP"

d4 d5 ++ d6
d10 P1gC23

source target d7 Co1
t1 : Transition source t2 : Transition
- > - < J
name : "INITIALISATION" name : "To_STOP"
C|4 d5 P14 P15C19 C20 d6 P16 P17 P1g C21 C22

Figure 7.10: Source model constraints

Before all bits and pieces are put together to construct the optimisation problem for the
running example, the fault-tolerance of the presented approach is briefly demonstrated. In
Fig. 7.11, faulty user-edits on the example instance are depicted which violate the source
model’s well-formedness. The state s1 is moved from the region rl to r2, leaving the
former disconnected from the rest of the source model. Furthermore, a subvertex edge
connects the statemachine sm and the state s1 directly, which is not possible with respect
to the metamodel. The fault-tolerant synchronisation operation would accept this input

7. A Fault-Tolerant Approach to Concurrent Model Synchronisation 137

and drop both the isolated region r1 and the misplaced subvertex edge, producing
a consistent result. Although other (potentially better) solutions for error-handling are
possible, the presented concepts can be applied to such input models as well.

sm : Statemachine : Machine —
: Sm2M)
name : "Machine" [name : "Machine"
(__MJ -- variables
++ Y ++
r2 : Region r1: Region i1 : Invariant
name : "new" name : "main" subvertex : 821 name : "TYPEOF_START"
subvertex predicate : "START € BOOL"
subvertex -
Y Y
++))
> s1 : State v1 : Variable invariants)
1 82V <
name : "START" name : "START"

Figure 7.11: Faulty input model

By merging Fig. 7.5, 7.6, 7.7, 7.8, and 7.10, the input triple for the optimisation process
can be formed. A tabular overview of all rule application candidates including their rating
and all possible constraint pattern matches is provided in Tab. 7.1. The “Cand.” column
contains the rule applications and constraint pattern matches, in bold font for chosen
candidates (the associated binary variable d;, m;, or 7; is set to 1) and in parentheses and
normal font for others. The “Coeffic.” column contains the coefficients in the objective
function depending on the parameters «, 8 and =y, such that the objective function is the
sum of d7 ...d13 weighted with the coefficients of this column.

After setting up the objective function and adding all necessary constraints, the ILP can
be solved to find a subset of rule applications which maximises the objective function, and
thereby a solution for the concurrent synchronisation problem which is optimal according
to our metrics. In contrast to the four other operations, marking the whole triple is a rare
exception (or even not desirable in case of deletions) for the concurrent synchronisation
operation. Therefore, the returned sub-triple can be regarded as the optimum solution
according to our metrics, independent of how many elements of the input models are
marked. The result of this process clearly depends on the choice of the parameters:
Smaller values for o will decrease the likelihood of keeping elements that were marked as
deleted, while increasing (8 increases the probability of taking over created elements to the
final solution. An example solution for &« = —5,5 =5 and v = —1 is shown in Fig. 7.12.

Apparently, we were able to avoid choosing rule applications with a negative rating,
which means that all deletions could be propagated. For the new effect e2.3s and the
new action a2.3t, we were able to create a correspondence and correlate them instead
of translating each of them separately. Regarding the decision whether the target of
the transition t2 should be the START state s2 (as suggested by the SysML engineer)
or the STOP state s1 (in accordance with the Event-B expert), the latter solution is
preferred. Only one edge from t2 to s1 must be added by the operation, while all creations
and deletions can be preserved. This in some way reveals a weakness of the approach:
Independent of the choice of the configuration parameters, this solution is preferred due to
the focus on maximising the rewards per element, although the other solution seems to be

7.6. Constructing the Optimisation Problem

138

sm : Statemachine

: Sm2M
name : "Machine"
regions ports
r : Region p : Port
\ H" 1} gt "
transitions name : "main name : "finish - P2V
subvertex
: 821
y
s0 : Pseudostate s1: State - S2V
kind : INITIAL name : "START"
Soure target
target 1 T2E
t1 : Transition
>
name : "INITIALISATION" +?
source
~ » t2: Transition
: T2E
name : "To_STOP"
++
effects
++ L2
Legend
e2.3s : Effect +?

(++) Create Delta
(- -) Delete Delta
(+?) Operational Delta

name : "action2.3"

body : "finish := TRUE"

\? name : "action2.3"

: Machine
name : "Machine" invariants
variables events N > i3 : Invariant
name : "TYPEOF_finish"
predicate : "finish e BOOL"
v3 : Variable
< Y,
name : "finish" . .
\ > i1 : Invariant
name : "TYPEOF_START"
v1 : Variable predicate : "START € BOOL"
> J
name : "START"
al.1: Action
e1: Event » name : "init START"
name : "INITIALISATION" [« action : "START := TRUE"
g : Guard
e2 : Event <’ guards name : "isin_START"
name : "To STOP" ~ U_.QQ_Omﬁm :"START = TRUE"
" — actions
actions
++ v ++ 0 ++ Q
a2.3t : Action a2.2t : Action a2.1: Action

action : "finish := TRUE"

name : "enter_START"

action : "START := TRUE"

name : "leave_START"

action : "START := FALSE"

Figure 7.12: Final solution

7. A Fault-Tolerant Approach to Concurrent Model Synchronisation 139

Cand. Rule / Constraint Type Constraints Coeffic.

di StatemachineToMachine CO 5

ds PortToVariable CO 02 < 01 8

ds StateToVariable CO 03 < & 8

dy PseudostateToActions CcO 04 < 1 04 < 03 04+ 05 <1 11
(ds) TransitionToEvent CcO 05 < 01 05 < 04 5

de TransitionToEvent CO 06 < 01 5

dr SourceStateTolLeaveAction CO o7 < &1 07 < 03 07 < g 5
(ds) StateToVariable CcO 0g < 01 4+ 4o
(do) TargetStateToEnterAction | FWD_OPT | &9 < &, 09 < b6 09 < 08 B+ 2y
dio TargetStateToEnterAction | BWD_OPT | 610 < 61 010 < d6 010 < dg 28+~
(d11) Effect ToAction FWD_OPT | 411 < J¢ 011 +013<1 28 + 3y
(d12) Effect ToAction BWD_OPT | 612 < 66 012 +013 <1 28 + 3y
dis EffectToAction CC 013 < d¢ 48 4+~
P14 TransitionHasSourceState Premise 04 < m14 05 < 14 mia < Y19

P1s TransitionHasTargetState Premise 04 < 15 05 < mis5 m15 < Y20

Pie TransitionHasSourceState Premise 06 < mi6 | T < Y21

P17 TransitionHasTargetState Premise 06 < 17 m17 < Y22 + Y23
(p1s) NoTwoTargetStates Negative mig <0 03 + Jg + 08 + d9 + J10

Constraint < msg+4

C19 TransitionHasSourceState Conclusion | 19 < 4 Y19 < 04 + 05

c20 TransitionHasTargetState Conclusion | 20 < d3 Y20 < O4 Y20 < 04 + 05

Cc21 TransitionHasSourceState Conclusion | 421 < d3 Y21 < 6 Y21 < 07
(c22) TransitionHasTargetState Conclusion | v22 < d6 | Y22 < 08 Y22 < do

Ca3 TransitionHasTargetState Conclusion | 23 < 6 Y23 < s Y23 < 010

Table 7.1: Optimisation problem

at least equally suitable from the user perspective. This aspect motivates to strengthen
the user involvement in concurrent synchronisation processes, which will be studied in
more detail in Chap. 10.

For an efficient implementation, the set of operational rules has to be restricted to keep
the number of matches manageable. On the one hand, we decided to restrict the set
of generated rule variants (cf. Sect. 7.4) to a (according to our experience) practically
relevant subset. In principle, all rule variants can also be matched on elements that are
not contained in any delta. Yet, this increases the search space heavily and is in general
not reasonable as we assume that elements that have not been altered are still consistent,
i.e., the same elements should still correspond to one another. Therefore, we only apply
CO rules on entirely unchanged structure. This restriction was applied already to solve
the running example, otherwise far more rule applications would have to be considered.

Although a treatment of formal properties for the operation is out of scope for this op-
eration, we can argue for them: In a straightforward manner, one can show the correctness
of the operation: Only elements which are marked or created by a rule application that
is chosen by means of ILP will be taken over into the final result. Thereby, constraints
ensure that elements are marked at most once, that a rule is provided with its necessary
context, and that the chosen rule applications can be sequenced, such that the generation
of a consistent model with declarative rules is simulated. As the output triple only consists
of elements which are marked or created by such rule applications, it is contained in the
language of the TGG. Furthermore, the constraints which belong to sat(G) (Def. 7.4)
ensure schema-compliance. The arguments for completeness are not directly transferable

140 7.7. Evaluation

to concurrent synchronisation, though, because it is unclear what exactly this property
means for this operation.

There is still some work to be done for proving the approach’s termination due to the
match collection phase, but as we succeeded in showing that it is possible to identify
superfluous matches and stop the collection process for the other four operations, we are
confident that termination can also be guaranteed for concurrent synchronisation. The
main challenge will be to identify a restricted set of rule variants, for which termination
can be proven. Completeness has to be re-interpreted for concurrent synchronisation, as
conflicting changes make it impossible to propagate all changes to the respective other
model and to reach a consistent state at the same time. As not all rule variants are taken
into consideration, and we do not try to also translate existing elements, completeness
cannot be guaranteed for the implementation. For concurrent synchronisation scenarios,
Orejas et al. [OBE113] defined further desirable properties, such as maximal user edit
preservation. Although the objective function of our approach follows a very similar
goal, it is up to future work to decide which properties are actually fulfilled. In order
to compare our concepts to other approaches to concurrent model synchronisation, a
benchmark should be established that helps to assess how limiting the heuristic choices
made for the implementation are in practice. Our experience up until now indicates that
good results are still obtained.

7.7 Evaluation

To assess the applicability of the approach in real-world scenarios, scalability is an impor-
tant criterion. Both the sizes of the synchronised models and the number of conflicting
changes can influence the runtime performance, whereby splitting up the runtime measure-
ments according to the phases depicted in Fig. 7.2 helps to identify room for improvement.
In particular, the following research questions shall be answered:

RQ1 How does the approach scale for increasing model sizes and an increasing number of
conflicting changes?

RQ2 How are the time requirements for pattern matching, ILP construction and ILP
solving related? Does the relation change for increasing model sizes or an increasing
number of conflicts?

Setup: We implemented the concurrent synchronisation approach in eMoflon::Neo
(Sect. 9.5). As a test example, we took the JavaToDoc TGG (Sect. A.2) with all rules de-
picted in Fig. A.5 and parameter values chosen as in Sect. 7.6, but without the constraints
of Fig. A.6.

To obtain synthetic models, we used the model generator of eMoflon::Neo to produce
random models with linear increasing sizes from 1178 to 13,323 elements, whereby the
ratio of rule applications for ClassToDoc and SubClassToDoc to the remaining rules was
1 : 4. Conflicting changes of the two types presented in the running example were ran-
domly inserted to simulate user edits on the model. Runtime measurements were taken
for increasing model sizes and a fixed number of 100 conflicts (Fig. 7.13), and for an in-
creasing number of conflicts and a fixed model size of 6446 elements (Fig. 7.14). For each
configuration, the time needed for pattern matching, ILP construction, and ILP solving
was measured for 7 repeated runs. As final values, the medians of the 7 test runs were
taken to minimize the bias introduced by outliers. All performance tests were executed
on a standard notebook with an Intel Core i7 (1.80 GHz), 16GB RAM, and Windows 10

7. A Fault-Tolerant Approach to Concurrent Model Synchronisation 141

64-bit as operating system. An installation of Eclipse IDE for Java and DSL Developers,
version 2019-09 with JDK version 13 was used. The JVM running the tests was allocated
a maximum of 4GB memory, and 4GB were allocated to the graph database Neo4;j.

Results: The median runtime measurements, of which an overview was already given
in prior work [WFA20], are plotted in Fig. 7.13 and 7.14, respectively, while a full overview
of the measured data is provided online?. In Fig. 7.13, a slightly disproportionate growth
of the runtime for increasing model sizes is observable (note that a logarithmic scaling is
used to properly illustrate the growths of small and large values in one diagram).

As can be seen, the time consumptions differs noticeably between the three phases:
While the time required for the construction of the ILP is almost negligible, more than 90%
of the time is used for the ILP solving step, whereas the pattern matching step is much less
time consuming. This is at first glance surprising as the previously presented scalability
results for the hybrid approach (Sect. 5.8 and 6.6) indicate that pattern matching involves
more efforts, but can be explained by the complexity of interdependencies between rule
applications in a concurrent synchronisation scenario. For larger models, this problem
appears to be more severe than for smaller instances. According to the results of Sect. 6.6,
scalability could be even more critical when adding implication constraints.

In contrast to that, the number of conflicting changes has only a small effect on the
runtime (cf. Fig. 7.14). The time for the pattern matching and ILP construction step
remains almost constant, and only a slight increase can be noticed for solving the ILP.
This reflects the concept of a global view of the synchronisation problem: The approach is
not based on change propagation, but represents changes as an additional label on graph
structures.

M Pattern Matching M ILP Construction W ILP Solving B Pattern Matching M ILP Constructon M ILP Solving
1000 1000
100 100 ._.___._-.-—I-—l—l—.'_H
10 0 — &
— -
- —
@ . gl o 10
B 1 o O I WOSPPPPE LT) - -~ g —a— & —a— — w —m
| o - |
. 1
011 R
I n
H...., W .. -, W PR " IRIEE | CERP - ™
0,01 0,1
2500 5000 7500 10000 12500 50 100 150 200
[#nodes + #edges] [#conflicting changes]

Figure 7.13: Runtime measurements for in- Figure 7.14: Runtime measurements for in-
creasing model sizes creasing number of conflicts

The experiment shows that the hybrid approach to concurrent model synchronisation
struggles with medium-sized models already. Furthermore, the measured runtime seems
to depend on the model size rather than on the number of conflicting changes. The limited
scalability is to be expected, though, for several reasons: First, as part of a fault-tolerant
consistency management framework, the operation must be able to process inconsistent
input models, as well as inconsistent changes, which enlarges the set of possible solutions
by far. Second, the operation is inherently non-incremental: Also for the unchanged part of
the input models — which should make up the major part of elements for realistic examples
— pattern matches must be collected and interwoven with the global optimisation problem.
For synchronising multiple models, however, incremental mechanisms provide substantial
gains in performance [GW06, LAF*17].

https://docs.google.com/spreadsheets/d /1Bt BSEV2IGLAH3r5jigWikRUQrCwS9wMrxdOCYb3knUA

https://docs.google.com/spreadsheets/d/1BtB8EV2lGLAH3r5jigWjkRUQrCwS9wMrxdOCYb3knUA

142 7.7. Evaluation

With a second experiment, we determine the “price of fault-tolerance” by comparing
the two implementations for concurrent model synchronisation in eMoflon: The approach
of Fritsche et al. [FKM™20] is implemented in eMoflon::IBeX (Sect. 9.4), and can be
regarded as a concurrent synchronisation approach with focus on efficiency instead of
fault-tolerance. With a common example TGG, the runtime characteristics of the two
implementations are investigated. The second experiment shall be guided by the following
two research questions:

RQ3 How scalable is the hybrid approach to concurrent model synchronisation compared
to greedy and fault-intolerant strategies?

RQ4 Should the comparably weak scalability results of the previous experiment be rather
attributed to the handling of inconsistent inputs, or to the inherent complexity of
the consistency management operation?

Setup: For comparing the two operations, an extended version of the JavaToDoc TGG
with a larger metamodel and an extended rule set was used (cf. [Fri21]). Input models were
created with the model generator of eMoflon::IBeX and imported into eMoflon::Neo, such
that both operations work with the same example instances. The experiment was run on a
workstation with an AMD Ryzen 9 3900X processor (4.6 GHz), 64 GB main memory, and
Windows 10 64-bit as operating system. Similar to the first experiment, measurements
were taken for increasing models sizes and an increasing number of conflicting changes,
whereby the respective other measure was kept constant. To minimise the effect of outliers,
the median of 5 repeated test runs was taken for each configuration. Installations of Eclipse
Modelling Tools (for IBeX) and Eclipse IDE for Java and DSL Developers (for Neo) were
used, both in version 2021-09 with JDK version 15.

Results: In the following, a summary of the results reported by Fritsche [Fri21] is pre-
sented, focussing on the concurrent synchronisation operation. A more detailed overview
of the measurements is available online. Figure 7.15 shows the runtime measurements
for increasing model sizes and both operations. It becomes apparent that the runtime
required by the fault-tolerant operation grows super-linear with the model size (in accor-
dance with the results of the first experiment shown in Fig. 7.13), whereas for the greedy
operation, a linear growth can be observed. The steep increase towards the last value can
be explained with an observed main memory shortage. Apparently, the absolute differ-
ences with respect to scalability are enormous and cannot be explained solely with the
underlying technology (cf. Sect. 9.6).

1000 W fault-tolerant (eMoflon::Neo)
W greedy (eMoflon:IBeX)
750

500

[s]

250

: e

5000 10000 50000 100000 500000 1000000

[#nodes + #edges]

Figure 7.15: Tool comparison for increasing model sizes

3https://docs.google.com /spreadsheets/d /1-T1b9B6x5bNInPDokKxem CPMskQbLOTsjbVn_z1JPZk

https://docs.google.com/spreadsheets/d/1-I1b9B6x5bNlnPDokKxemCPMskQbLOIsjbVn_z1JPZk

7. A Fault-Tolerant Approach to Concurrent Model Synchronisation 143

In Fig. 7.16, the runtime measurements for increasing numbers of conflicting changes
are depicted, whereby the model size was kept constant. Similar to the results shown in
Fig. 7.15, large absolute differences can be observed for the two implementations. The
fault-tolerant operation seems to scale better with an increasing density of changes, though:
In accordance with the first experiment (cf. Fig. 7.14), the required runtime is almost
independent of the number of changes, whereas again a linear growth is observed for the
greedy operation.

800 W fault-tolerant (eMoflon::Neo)
W greedy (eMoflon::IBeX)
600

400

[s]

200

= - — = P R S L L

10 50 100 500 1000

[#conflicting changes]

Figure 7.16: Tool comparison for increasing number of conflicts

Summary: In total, the evaluation has shown that the time requirements depend
on the model sizes rather than on the number of conflicting changes [RQ1]. By far,
most time is needed for the ILP solving step, whereas pattern matching and especially
ILP construction have only minor effects on the performance [RQ2]. Compared to an
implementation of a greedy and fault-intolerant synchroniser, large differences with respect
to the measured absolute runtime can be observed. In contrast to the fault-tolerant
approach, a linear growth can be observed both for increasing model sizes and a growing
number of conflicts [RQ3]. From the second experiment, we can conclude that both the
handling of inconsistent inputs and the lack of incrementality have a substantial influence
on the scalability of the hybrid approach to concurrent model synchronisation [RQ4].

To address these issues, the runtime performance can be possibly improved by using
(meta-)heuristics instead of ILP to determine the solution. For the operations presented
in Chap. 5 and 6, it was important to always get an optimal result in order to guarantee
completeness (cf. Sect. 6.5). Due to other necessary restrictions for the implementation,
this requirement has been dropped for the concurrent synchronisation operation already,
such that a speed-up at the expense of minor quality losses seems reasonable. The idea
to speed-up the process by using a different search strategy is pursued in Chap. 8.

Threats to Validity: Although the example TGG arguably bears some resemblance
to a practical application scenario, both models and changes are randomly generated and
therefore not directly comparable to realistic synchronisation problems. As only two TGGs
were considered, which are structurally similar and have a rather small rule set, further
tests with TGGs of realistic sizes are necessary to underpin the results. Only a few selected
modifications were performed on the models, whereas violations of domain constraints or
the loss of metamodel conformance were not taken into account.

Also, only one fixed combination of configuration parameter values for rating rule appli-
cations was used. It is unlikely, though, that the runtime performance is affected by this
choice, as only the objective function is concerned. While the approach is claimed to be
tolerant towards faulty input models, this aspect was not investigated by this evaluation,
as the generated models had been consistent before conflicting changes were introduced.

144 7.8. Summary and Discussion

We observed a high variance for time measurements in the pattern matching step, such
that even more repetitions per test case might be necessary to further reduce the effect
of outliers. In the second experiment addressing RQ3 and RQ4, two implementations in
two separate tools were used for the comparison of fault-tolerant an greedy strategies.
The results could therefore be biased by technological differences, which should not be
the only explanation for the measurement results, as further experiments will show in
the course of this thesis (cf. Sect. 9.6). Finally, the evaluation is restricted to runtime
performance, whereas the quality of the solution plays also an important role in practice.
It is unclear, though, which measure could be used to compare the solution quality of the
two implementations.

7.8 Summary and Discussion

In this chapter, we extended the hybrid approach based on TGGs and ILP to concurrent
model synchronisation. By representing user edits as labelled sub-structure of the input
models, the approach is tolerant towards inconsistencies in both the input models and the
user edits. Users can adapt the synchronisation strategy by assigning case-specific values
to configuration parameters. The synchronisation of updates on a single model, which is
a well-researched consistency management problem already, can further be regarded as
a special case of concurrent synchronisation, for which we offer a fault-tolerant solution
strategy.

Although performance tests have shown that concurrent changes on small and medium-
sized models can be synchronised, the runtime performance clearly leaves room for im-
provement. It seems to be promising to use heuristics to solve the optimisation problem,
as ILP as an exact method turned out to be the performance bottleneck. Using multi-
objective optimisation algorithms would simultaneously circumvent the problem of finding
suitable configuration parameters, as separate optimisation goals can be specified for the
unchanged elements and for the create, delete, and induced delta. When sticking to the
single-objective problem specification, the evaluation of suitable parameter values is also
an open issue. All these points are addressed in the upcoming Chap. 8.

Furthermore, a proper visualisation of delta structures and of rejected changes could
be necessary to increase the tool’s trustworthiness, for which a tool implementation is
presented as part of the VICToRy debugger in Chap. 10.

8 Concurrent Model Synchronisation with
Multiple Objectives

To overcome the scalability problems which are induced by using exact algorithms for
concurrent model synchronisation, we apply meta-heuristics instead of ILP for the op-
timisation step in this chapter. As the requirement of optimality is relatively weak for
this operation, a slight decrease of the solution quality seems to be acceptable to improve
the efficiency of the implementation. Furthermore, for determining suitable configuration
parameter values, two alternatives are proposed: Via an empirical case study, a method
for parameter determining is proposed for a specific use case, which can be transferred to
other application scenarios as well. The problem can also be circumvented by using multi-
objective optimisation strategies, resulting in a wide range of optimal solutions, though.
Runtime performance tests have indeed shown that - due to the small portion of feasible
solutions in the search space - ILP still outperforms all other heuristics in this scenario.

This chapter is structured as follows: The use of heuristics for concurrent model syn-
chronisation is briefly motivated in Sect. 8.1. After providing an overview of related work
(Sect. 8.2), Sect. 8.3 shows how the optimisation step can be performed using heuristic
search algorithms. The adaption of their operators to the problem domain is presented in
Sect. 8.4. The results of applying our approach to a case study is described in Sect. 8.5,
as well as an experimental evaluation that compares its runtime performance and result
quality to the baseline of ILP solving. A summary and ideas for subsequent research are
sketched in Sect. 8.6. Finally, a the hybrid approach to consistency management as a
whole is wrapped up in Sect. 8.7.

8.1 Motivation

In Chap. 7, we have seen that the hybrid approach combining TGGs and ILP is indeed
extensible to concurrent synchronisation scenarios. The scalability analysis, however, has
shown that for concurrent synchronisation - in contrast to the previously introduced op-
erations - the ILP solving step can be performance-critical as well. Another difference
is that optimality is not absolutely necessary for concurrent synchronisation: While for
the other operations, the optimal result is a precondition for deciding whether the input
models are consistent, this aspect is rather unimportant for concurrent synchronisation.

Furthermore, the determination of suitable configuration parameters is still an open
issue, as long as the optimisation is based on a single function. The objective function
according to Def. 7.4 is composed of four parts which balance conflicting goals, such
as preserving deletions and creations, keeping unchanged model parts as they are, and
reducing the amount of automated changes. The four goal functions are weighted with
configuration parameters, such that the optimality of a solution heavily depends on their
choice. The values were arbitrarily chosen for demonstration purposes, such that the
determination of weighting parameters that lead to a satisfactory synchronisation solution
is still an unsolved problem.

It seems reasonable to replace the exact method of ILP solving to improve the scalability
of the approach by using a heuristic that only finds a near-optimal solution but shows a

146 8.2. Related Work

much better runtime performance. As an alternative, we propose a heuristic approach to
concurrent model synchronisation that alters the hybrid strategy of Chap. 7 by using meta-
heuristics that were successfully applied to model merging! already [KWLW13, DRV*16,
BFT*19).

Several algorithms enable the definition of multiple objective functions. This can be
beneficial to model the concurrent synchronisation problem: To balance the previously
mentioned optimisation goals, four objective functions can be defined. The set of pareto-
optimal solutions is presented to the user, from which he or she can pick a single solution
that satisfies their expectations best.

It is to be expected, however, that the set of solutions will be too large even for medium-
sized models to let a user choose the final solution from it. Therefore, suitable weighting
parameters are determined in an empirical case study to form a scalarised single objec-
tive. Alternatively, with a sufficiently large amount of training data, machine learning
techniques could be applied to determine these parameters, which is not the case here,
though. For single-objective optimisation heuristics, the problem is specified just as for
the ILP-based approach, but the solution strategy is fundamentally different.

Finally, these insights are used to recommend a strategy for determining solutions of
satisfying quality within an acceptable amount of time. We compare the runtime per-
formance and the achieved quality to the ILP-based approach using models of different
sizes.

8.2 Related Work

Several heuristics were recently applied to address model management problems. From the
group of evolutionary algorithms, GA [Hol92] and NSGA-II [DAPMO02] are most commonly
used for single- and multi-objective optimisation, respectively. Kessentini et al. [KWLW13|
proposed an approach for merging different model versions based on GA, maximising the
number of edit operations to create the merged model. Similarly, Assuncao et al. [AVLH17|
used GA to merge UML models with the goal of minimising the difference between the
input models and the merged model. Taking the importance of edit operations into account
as a second objective, Mansoor et al. [MKL"15] performed model merging using NSGA-II.
When analysing the results of a model transformation, the applied steps are of particular
interest. Based on a list of possible steps, which can be fine-grained (e.g., graph edits) or
high-level (e.g., refactorings), a search space of application sequences can be constructed,
which is usually too large for performing an exhaustive search. Both GA [bFKLW12],
NSGA-II [SHNS13] and its predecessor NSGA [AVSt14] were used as meta-heuristics for
efficiently exploring this search space.

Local search strategies start with a (random) initial solution and iteratively improve it
until some termination condition is reached. Debreceni et al. [DRV116] use guided local
search for merging different model versions, while conflicts emerge as constraint violations.
Besides this, DSE was used to determine optimal merging results, which was also applied
to other problem domains [HKC"14, DDGV16]. Good runtime performance results were
received on benchmark instances of 50,000 model elements. Dam et al. [DEW 116, DRE14]
propose a local search algorithm for merging uncontroversial changes in different model
versions and detect conflicts, which are subsequently presented to the user. SA [KJV83] is
a local search algorithm that accepts worse intermediate solutions with some probability to

'Model merging denotes the task of synchronising concurrent changes on the same model. Similar to
text-based synchronisers such as GIT, model mergers create a single solution that incorporates as many
edits as possible.

8. Concurrent Model Synchronisation with Multiple Objectives 147

escape local optima. This strategy is used by Kessentini et al. [KSB08, KBSB10, KSBB12]
in combination with particle swarm optimisation for “model transformation by example”,
showing promising results for small model instances.

In summary, both evolutionary algorithms and different local search strategies were suc-
cessfully applied in model merging and model transformation scenarios. In a comparative
study, Bill et al. [BFT*19] applied different meta-heuristics to model transformation, con-
cluding that SA outperforms other local search algorithms for larger models. Compared
to GA, SA shows better results for search spaces with a large infeasible region, whereas
the opposite is the case when most solutions of the search space are valid. As the hybrid
approach of combining TGGs and optimisation techniques provides the potential of ex-
changing the optimisation algorithm without larger efforts, we will continue with this idea
to analyse the potential of GA, NSGA-II and SA for concurrent model synchronisation.

8.3 Solution Overview

In this section, the solution approach, i.e., the modification of the problem definition
and the adaption of meta-heuristics for efficiently retrieving appropriate solutions is dis-
cussed in more detail. First, the foundations of bio-inspired meta-heuristics are briefly
introduced, such that the adaptation of the respective steps in the context of concurrent
synchronisation can be described afterwards. As a result of studying related approaches
in Sect. 8.2, we use GA and SA for single- and NSGA-II for multi-objective optimisation.

e SA is a single-objective optimisation heuristic. It uses local search strategies to iter-
atively approach an optimal solution, but temporarily permits worse solutions, such
that an escape from local optima is possible. The name originates from annealing
processes as part of, e. g., metal component production: Before the crystals solidify
completely, they can rearrange themselves to form a stable state. With progressing
time, the temperature of the crystals decreases, such that the movement is more
and more restricted. Similarly, the SA algorithm uses a decreasing threshold (the
temperature), up to which worse solutions can be accepted.

e GA is also a single-objective optimisation heuristic that is inspired by evolutionary
processes in biology. In multiple iterations, a population of individuals is formed
out of the last generation’s population by means of mutation, recombination and
selection. According to the Darwinian theory of evolution, only the fittest individuals
survive over time, as fitter individuals are more likely used for recombination and
selection.

e An advancement of GA is the multi-objective NSGA-IT algorithm. The basic con-
cept of resembling evolutionary processes is shared between GA and NSGA-II, but
individuals can be rated according to multiple fitness functions. Consequently, the
result of the optimisation process is not only a single “fittest” individual, but a po-
tentially large set of individuals, denoted as pareto front. It consists of all individuals
that are not dominated by another individual, i.e., there is no other individual that
has an equal or higher fitness value for each objective.

All three heuristics share a common generic work-flow, which is depicted in Fig. 8.1 in
form of a UML activity diagram. This work-flow describes the optimisation step (D) of
Fig. 7.2 more concretely, which was previously done by means of ILP solving.

The first step is to find a suitable encoding (1) for solution candidates, i. e., to translate
the phenotype into a genotype. In the concrete application scenario, the sets of selected

148 8.3. Solution Overview

and unselected rule application candidates make up the phenotype. The genotype, in
contrast, is a more compact representation of these two sets, e.g., in form of a bit string.

The optimisation process itself repeats steps (2) — (5) until a termination criterion is
reached. This criterion is the fundamental difference between exact methods, such as ILP,
and meta-heuristics: While exact methods can only stop as soon as the optimum solution
is found, heuristics terminate after a predefined number of iterations or other conditions
that are largely independent of the solution quality. In this main loop, individuals of a
population n+1 are generated out of the population n using different genetic operators.
When the termination criterion is reached, the main loop terminates, and the best solution
found so far is decoded (6) into its phenotype.

(D) Optimisation

Initial Population Optimal Solution
[Genotype] [Termination [Genotype]
— [Termination Condition
Rule Application Condition fulfilled]
Candidate not fulfilled]
[Phenotype] |l
(1) Encoding / (5) Selection / , Chosen Rule
Generation Cooling (2) Crossover (6) Decoding Application
Constraint Match [Phenotype]
Candidate
[Phenotype] ||
| ® ®

Integer Linear ((3) Mutation /

Program 4) Bvaluation Perturbation

Figure 8.1: Generic work-flow of heuristic optimisation

With respect to the number of optimal solutions, there is a difference between single- and
multi-objective optimisation: The optimal solutions of problems with only one objective
function are unique up to tie-breaking decisions, i.e., the solution that maximises the
objective function can be considered as optimal. For problems with multiple objectives,
each solution is considered as pareto-optimal, for which there is no other solution whose
objective function values are at least as good.

In the following, we will present how solution candidates can be encoded, evaluated and
varied throughout the search process for the three chosen meta-heuristics. The encoding of
solution candidates and operators can be kept mostly similar for all algorithms, differences
are pointed out explicitly. To make all explanations more concrete, and for being able to
compare the heuristic and the exact approach, the running example of Sect. 7.6 is reused.
Before that, we start with a short comparison of single- and multi-objective optimisation to
argue that both techniques are appropriate to model the application scenario of concurrent
model synchronisation.

Single- and Multi-Objective Optimisation

While the search-space can be constructed in accordance with the ILP-based approach of
Chap. 7, we adapt both single- and multi-objective optimisation heuristics to the problem
domain to analyse whether there is a reasonable trade-off between solution quality and run-
time performance. The different optimisation objectives become apparent when revisiting
the definition of the parametrised objective function (Def. 7.4): Ideally, all changes applied
by one of the involved domain experts should be preserved, such that the synchronised
solution consists (only) of all elements which were recently added or remained unchanged

8. Concurrent Model Synchronisation with Multiple Objectives 149

since the last synchronisation took place, whereas none of the deleted elements should be
kept in the result. This, however, is hardly achievable when all correctness constraints
have to be respected as well. Based on the partitioning of the model elements into four
sets (cf. Def. 7.3), one can define four optimisation objectives, that maximise (unchanged
elements, create delta) or minimise (delete delta, induced delta) the occurrences of such
elements in the final solution:

e Unchanged elements: Elements that are not affected by any change should be
preserved, if possible.

e Create delta: New elements in one model should be kept with high priority, which
makes it necessary to propagate these changes to the other model as well.

e Delete delta: Elements that are deleted in one model are in the first instance
marked to be deleted. These markings should turn into actual deletions after syn-
chronisation.

e Induced delta: New model elements require the creation of further elements in the
other model, but their number should be as small as possible.

Despite the fact that the problem is inherently multi-dimensional, an aggregation into
a single objective should be considered as an efficient and simple alternative to compute
sufficiently good solutions. It is crucial, however, to use appropriate weights for the scalar-
isation, as large parts of the pareto front are omitted?, depending on the problem size and
the number of objectives. This aspect was priorly circumvented by leaving the determi-
nation of weighting parameters to future work. We therefore propose weightings as part
of our evaluation (cf. Sect. 8.5).

8.4 Adaptation of Meta-Heuristics

In order to apply meta-heuristics to a concrete problem domain such as concurrent model
synchronisation, the single steps of the generic work-flow must be adapted to this domain,
which will be presented in the remainder of this section. For illustration purposes, the
example instance of the previous chapter (cf. Fig. 7.12 / Tab. 7.1) is used.

(1) Encoding

Solution candidates must provide information about which rule applications contribute
to the synchronisation solution. Therefore, it seems suitable to encode them as a binary
string, in which each bit is associated to one rule application candidate. The bit is set
to 1 iff the rule application is selected for the synchronisation solution. The initialisation
of the population for GA and NSGA-II is straightforward as random binary strings are
generated. This would also be possible to initialise SA, which only operates on a single
solution in each step. However, as it is beneficial to start with a fairly good solution, the
SA is initialised with a string of zeros, which represents the empty triple graph because
no rule application is selected. Although the solution is usually far below the optimum,
it is guaranteed not to violate any constraint by definition and is therefore part of the
feasible region. The suggested solution for the example instance would be encoded as
1111011001001.

2¢f. Coello Coello et al. [CLvV07] for an in-depth discussion of scalarising multi-objective optimisation
problems

150 8.4. Adaptation of Meta-Heuristics

(2) Crossover

With the crossover operator, promising genetic features of parent individuals shall be
recombined to generate offspring with an even higher fitness value. For GA and NSGA-II,
we use single-point crossover, which splits the bit strings A and B representing the parent
individuals at a random position into two parts A’/A” and B’/B”. The offspring is then
generated by concatenating A’/B” and B’/A”, respectively. SA, in contrast, does not
have such an operator as only one current solution exists at each point of time. Suppose
that the example solution (Fig. 7.12 / Tab. 7.1) is recombined with another solution that
propagates the change on the SysML model to the Event-B model, i.e., connects the
transition t2 with the STOP state s2 (encoded as 1111011110001). When splitting after
the ninth bit, £2 has two targets in the one individual, and no target at all in the second,
leading to solutions that violate the graph constraints. In this case, the crossover does not
generate fitter offspring, which is likely in case the parent individuals have a high fitness
value already.

(3) Mutation and Perturbation

The mutation operator is a crucial factor for genetic algorithms to add diversity to the
population. A similar concept for SA is perturbation, where neighbouring solutions are
generated in each iteration by modifying the previous solution. As solution candidates
are encoded as binary strings, it is advisable to use bit flips at random positions of the
genotype. For the phenotype, mutation and perturbation add or remove rule applications
from the solution candidate. The probability for each bit to be flipped is set to 1/N,
whereby N denotes the number of bits, such that the expected number of bit flips is 1
per individual. Regarding the example instance, a possible outcome would be to flip the
second bit from 1 to 0. As a result, ds is removed from the solution, such that the port p
and its corresponding variable v3 and invariant i3 are not part of the solution.

(4) Evaluation

The quality of solution candidates is assessed using a fitness function, which also serves
as a basis for selecting individuals for recombination. While NSGA-IT allows arbitrarily
many objective functions, these have to be scalarised to a single function for GA and SA.
For multi-objective optimisation algorithms, such as NSGA-II, we define four objectives
that resemble the optimisation goals listed in Sect. 8.3. The optimisation problem (cf.
Def. 7.4) can be redefined as follows:

Definition 8.1 (Multi-Objective Optimisation Problem).

Given a starting triple graph Gy, let D : Go = G,, be a derivation via operational rules.
The optimisation problem is constructed as follows:

maz. (Y, |mrk(d) Nunchanged(G,)|-d)

min. (§D|mrk‘(d) N ditDelta(Gy)| - 0)

maz. (dg |mrk(d) N ertDelta(Gr)| - 9)

min. (:§|mrk(d) NindDelta(Gy)| - 0) s.t.
€

markedAtMostOnce(Gy) N context(D) N context(G,) N acyclic(D) N sat(G)

8. Concurrent Model Synchronisation with Multiple Objectives 151

For GA and SA, these four functions must be aggregated into a single function with
suitable weightings, choosing negative weighting parameters for the minimisation objec-
tives, such that the resulting weighted sum can be maximised. Following the notation
of the ILP-based approach, we weight the delete delta with a < 0, the create delta with
B > 0 and the induced delta with v < 0, such that the optimisation problem can again
be constructed according to Def. 7.4. The function for the unchanged part of the model
serves as norm with weight 1. Suitable values for «, § and ~ are investigated on in the
second part of the evaluation (Sect. 8.5).

Treatment of the Infeasible Region

The chosen form of encoding solution candidates adds a noticeably large set of invalid
solutions to the search space, i.e., solutions that violate at least one of the correctness
constraints. The lack of a rule application which is implied by others immediately leads
to invalid sequences, which violates at least one constraint (Tab. 7.1, columns 4-6) and
is therefore located in the infeasible region. In turn, a superfluous rule application might
translate elements twice, which is also prohibited by constraints. In the running example,
for instance, each solution candidate ending with 101 or 011 would violate the constraint
that mutually excludes d11 and di3, or dis and dy3, respectively. Instead of rejecting invalid
solutions immediately, a penalty is introduced to the objective function that guarantees
that such solutions cannot have a higher fitness than the empty triple graph, which is
always valid. Similar to using mutation or perturbation, this technique is beneficial for
escaping local optima [KBBT16].

(5) Selection and Cooling

For the genetic algorithms GA and NSGA-II, the computed fitness of individuals is used to
decide which of them are selected to enter the next generation. We use binary tournament
selection, i.e., two individuals are randomly and repeatedly picked from the population
and the one with the better fitness is selected. In SA, in contrast, a “temperature”, which
is continuously decreased, defines the probability for accepting worse solutions during the
iterative search. This leads to a compromise between exploring the search space in the
beginning and exploiting it towards the end. For a concrete software implementation,
several variants of this meta-heuristic are possible. We followed the proposition of Bill et
al. [BFT"19], in which neighbours are generated out of a working solution that is reset to
the best solution found when no improvement could be achieved for a pre-defined number
of iterations.

(6) Decoding

After the termination criterion has been reached, the individual(s) with the best fitness
function value found so far are taken and decoded into their phenotype form, which is
the final result of the optimisation process. The decoding operation is the inverse of the
encoding operation which was presented in step (1).

8.5 Evaluation

To improve the applicability of our approach for realistic use cases, the concurrent syn-
chronisation implementation was extended with an alternative way of constructing and

152 8.5. Evaluation

solving the optimisation problem. Considering the generic work-flow of Fig. 8.1, an im-
plementation based on the three discussed meta-heuristics (GA, NSGA-II and SA) was
added, replacing the ILP solver for concurrent model synchronisation. The comparison of
the two implementations shall show to which extent heuristics are beneficial for search-
based consistency management. In particular, the following three research questions shall
be answered by our evaluation:

RQ1 Is it feasible in practice to present the set of pareto-optimal solutions to users, such
that they can choose one of them to synchronise concurrent updates?

RQ2 How can suitable parameters «, 5 and « be determined to scalarise multiple objec-
tives for a concrete use case?

RQ3 To which extent are heuristic solutions applicable in practice regarding runtime
behaviour and solution quality?

Case Study: The evaluation was conducted with a simplified version of the JavaToDoc
TGG (cf. Sect. A.2) without graph constraints. The triple metamodel is depicted in
Fig. 8.2. On the left-hand side, it is shown that a Java model consists of Classes that
can form an inheritance hierarchy via the recursive subtypes relation. Classes can have
arbitrarily many Fields (i.e., attributes) and Methods. All entities are (non-uniquely)
identified by a name attribute of type String. On the right-hand side, the documentation
metamodel shows that Documents consist of a (possibly empty) list of Entries and can
refer to other Documents (via the href relation). The correspondence nodes connect
Java Classes, to Documents of the documentation model, and both Java Methods and
Fields to Entries.

subtypes
hrefs

Class

: C2D Doc
name : String name : String
methods fields version : int
0.* 0..* | entries
Method N - M2E
O"*
name : String
Field Entry
:F2E
name : String name : String

Figure 8.2: Simplified metamodel for JavaToDoc

A small example instance in concrete syntax is depicted in Fig. 8.3. It consists of
two classes for geometric figures - Rectangle and Parallelogram - and some basic
methods and attributes that characterise their side lengths, areas and extents. When the
last synchronisation took place, both Parallelogram and Rectangle had attributes
sideA and sideB for the length of their respective sides. For the class Rectangle,
a method getArea was provided. The subclass Diamond extended Parallelogram
with a method getExtent. Two conflicting refactorings take place now to improve the
software system. In the Java code, an inheritance relation between Rectangle and
Parallelogram is introduced, such that the duplicate attributes sideA and sideB

8. Concurrent Model Synchronisation with Multiple Objectives 153

can be deleted. For being able to compute the area of the Rectangle, an attribute
height is added to the Parallelogram. In the documentation, in contrast, the de-
veloper decides to delete the class Parallelogram, as it appears to be an unnecessary
generalisation of the Rectangle. The class Diamond, which previously inherited the
side length attributes, is in turn equipped with a new attribute sidea, such that the
method getExtent can be kept.

Apparently, these changes are partly in conflict with each other: On the one hand, the
Parallelogram cannot be deleted and modified at the same time. On the other hand,
assuming that Parallelogram shall be kept, the attribute sidea is present both in
Diamond and Parallelogram, which is not allowed in most programming languages.
In the course of this case study, different refactorings were combined to produce conflicts
in structured way, which is described in more detail when answering RQ1. The goal be-
hind choosing this example case study is two-fold: First, the example instance must be
large enough to produce different conflicts by applying realistic changes to the respective
models. Second, the instance should also be as small as possible to keep the number of
pareto-optimal solutions manageable. The solutions should be easy to oversee, such that
differences can be spotted quickly. Third, the problem domain (code and its documenta-
tion) must be comprehensible for undergraduate students, such that participating in the
empirical study (cf. RQ2) should be possible for them without additional info material on
the problem domain.

Eclipse IDE BE] | s o Paralielog [-[o0x]| | classraratelegram [-=]x]
bz & & B & oo
Field Summary Field Summary
Modifier and Type Field and Description Modifier and Type Field and Description
public class Rectangle
extends Parallelogram { private double sideA protected—double sideA
private—double—sideBs
public double getArea() { ... } Method Summary Method Summary
}
Modifier and Type Method and Description Modifier and Type Method and Descriptio
public double getExtent()
public class Parallelogram {
protected double sideA;

protected double sideB;
protected double height;
}

Legend

Created Element
Existing Element

Figure 8.3: Conflicting changes on Java code and documentation

Setup and Parametrisation: Our approach was implemented as an extension of
the concurrent synchronisation implementation of eMoflon::Neo (Sect. 9.5). GA and
NSGA-II were integrated into the tool via the MOEA Framework?, whereas SA was imple-
mented manually. We followed the SA implementation proposed by Bill et al. [BFT+19]
parametrised with ¢, = 3 and ¢, = 10. For a comparison to the baseline approach, the
Gurobi optimiser (Version 8.1.1) was used for ILP solving. Neo4j (Version 4.2.1) was used
as a graph database for storing (meta-)models. All performance tests were executed on a
standard notebook with an Intel Core i7 (1.80 GHz), 16GB RAM, and Windows 10 64-bit
as operating system. An installation of Eclipse IDE for Java and DSL Developers, version
2019-09 with JDK version 13 was used. 4GB memory each were allocated to the JVM
running the tests and to the graph database Neo4j. For each configuration, only the time
required for the optimisation step was measured, because other tasks such as graph pat-
tern matching are independent of the optimisation algorithm. Each test run was repeated

3http://moeaframework.org/

http://moeaframework.org/

154 8.5. Evaluation

30 times to minimise the bias introduced by outliers, the median was taken as final value.
An overview of the evaluation results was already given in prior work [WE21]. While a
detailed overview of the examples and collected data is available online*, a summary of
the results is presented in the remainder of this section.

RQ1 (Analysis of the pareto front): We set up small case study in the setting of
the JavaToDoc TGG. Independent of the concrete syntax of source and target models,
an overview of the example is provided in Fig. 8.4 in form of a UML class diagram.
For four geometric figures, it shall be possible to compute their area and extent out of
their attributes. The initial model shall therefore be improved using five refactorings,
which are partly in conflict with each other. Elements which are deleted or created via a
refactoring are depicted in red (——) and green (++), respectively, all other elements remain
unchanged. Furthermore, the elements are annotated with the number of the refactoring
which modifies them. Possible refactorings are the introduction of an inheritance relation
between Square and Parallelogram (1), Square and Diamond (2), the enrichment
of Diamond with further attributes (3), a new inheritance relation between Rectangle
and Parallelogram (4) and the deletion of the class Parallelogram (5). In the
example of Fig. 8.3, refactoring (4) was applied on the Java model, and refactoring (5) on
the documentation model.

5 -
Parallelogram
5 | sideA [-]
++ --
4 5 | sideB [-] 5
Rectangle 4 | height [++] Diamond
4 | sideA [--] 5 | sideA [++]
4 | sideB [--] 1 . 3 | height [++]
getArea() getExtent()
Square 3 | getArea() [++]
Legend 1,2 | sideA [--] f
created [++] 2 | getExtent() [-] 2 4+
deleted [--]
Refactoring No. getArea()

Figure 8.4: Case study: Conflicting changes for geometric figures

In the case study, each subset of three refactorings was applied on the initial instance
(two on the Java model, one on the documentation model), such that at least one conflict
was induced. The refactorings were distributed such that those two on the Java model
are not conflicting. For the resulting ten variants, the set of pareto-optimal solutions
was computed using NSGA-IT with one million iterations each. Regarding the number of
retrieved solutions, the median for all test runs and variants (i.e. refactoring combinations)
was 13, reaching from 10 to 33 for single variants. The mean was 16.323, reaching from
8.900 to 33.333, and the standard deviation 9.806, reaching from 1.661 to 8.768. The
median runtime for all test runs and variants was 32.047 s, the mean was 32.375 s and the
standard deviation 2.733 s.

“https://drive.google.com/file/d/1elGTTplm6RKm8IQaiNzZyP57V8Rrj_90/view

https://drive.google.com/file/d/1elGTTplm6RKm8IQaiNzZyP57V8Rrj_90/view

8. Concurrent Model Synchronisation with Multiple Objectives 155

The experiment reveals some limitations for working with a multi-objective approach
in practice. Without further support, it is not feasible for a user to choose from the
complete set of pareto-optimal solutions. Although the setting of the case study is not
generalisable to arbitrary synchronisation problems, it is very likely that for realistic model
sizes, the set of pareto-optimal solutions is substantially larger. Furthermore, the number
of evaluations was chosen with the goal of being sufficiently high for retrieving the whole
set of pareto-optimal solutions in each test run, leading to an average runtime of about
half a minute for solving a single synchronisation problem, which is not acceptable for
practical applications. However, there was a high variance in the size and composition of
the retrieved solution sets, indicating that substantially more resources would be necessary
to find the whole set in a single run. As a result, we formed a union of all pareto-optimal
solution sets for each variant and continued with these sets to answer RQ2. After removing
duplicates and solutions which are dominated in the union of all sets for a variant, 451
solutions were determined, i.e. 45.1 per variant (median: 52).

RQ2 (Parameter determination): As the experiment to answer RQ1 shows that
it is not feasible to let the user choose from all pareto-optimal solutions even for small
model sizes, a single objective function must be constructed to make the approach both
efficient and applicable in practice. However, it is hardly possible to determine generally
valid parameter values for aggregating the four involved objectives into a single function,
as their choice depends on the underlying TGG. If, for example, the involved models are
extensively nested, a higher absolute value for « is required as elements on top of such
a hierarchical structure can never be deleted otherwise, in contrast to rather flat model
structures for which an « value closer to 0 might be sufficient. Therefore, we restrict
ourselves to an exemplary determination of parameter values for the example case study
of Fig. 8.4, and simultaneously propose a method to find suitable values for other use cases
as well.

It is furthermore not possible to let users estimate suitable values for those parameters
directly, because their meaning is very abstract and even model transformation experts
lack an intuition for the consequences of particular parameter choices. Therefore, we
follow an indirect approach of empirically assessing the pareto-optimal solutions for the
case study of RQ1. 9 undergraduate students with sound programming skills and basic
knowledge on MDE were asked to rate the quality of different pareto-optimal solutions on
a scale reaching from 0 (no agreement) to 10 (total agreement). The rating shall be based
on to which extent the synchronisation solution reflects the intention behind the applied
refactorings. As the entire solution set is even too large for this study, scalarisations
for different value combinations were computed, and the solution set was restricted to
those candidates which are optimal for at least one scalarisation. The choice was made
in accordance with the value range defined in Sect. 8.3 (a < 0,8 > 0, < 0), and the
following preliminary considerations were taken into account:

e « should be at most -1, such that for each deleted element in one model, it is possible
to delete an element in the other model without decreasing the objective function
value.

e (3 should be at least 1, as it is at least as important to preserve new elements as to
preserve unchanged elements.

e 7 should be € [—1;0), because it should serve as a tie breaker in cases where it is
possible to allocate created elements to each other instead of translating them anew
(cf. Sect. 7.5). For each new element, it should be possible to add an element in the
respective other model without decreasing the objective function value.

156 8.5. Evaluation

We observed that further decreasing o beyond -4 or increasing or v beyond 4 and -0.6,
respectively, in isolation does not influence which of the pareto-optimal solutions is optimal
for the scalarisation. Therefore, the chosen value ranges were o € {—1,—-2,—-3, -4}, g €
{1,2,3,4} and v € {-0.6,—0.8, —1}, resulting in 48 different scalarisations. The mean®
participant rating was allocated to the parameter combination, for which the respective
solution is optimal. The average rating of all 10 variants was taken as rating for the
respective parameter combination.

The results are visually depicted in Fig. 8.5, where a cuboid represents the investigated
parameter value range and its colouring the average rating of the respective parameter
combination. The observed upper and lower bounds correspond to pure blue (9) and pure
red (4), while values in between are represented by a proportional mix of these two colours.
The front faces in the left/right diagram correspond to ratings for v = 0.6/1.0. One can
observe that choosing ~y closer to 0 leads to better ratings, only a combination with a values
close to 1 seem to be problematic. This problem gets more severe when choosing v = 1,
here only combinations with o < —2 and § > 2 lead to good ratings. Interestingly, the
choice of 3 seems to be more important for combinations with ~ close to 1, which indicates
that the ratio between 5 and v has to be “large enough”. This seems reasonable due to
the interplay of propagating user additions and avoiding unnecessary model extensions.
Similarly, propagating deletions (weighted with «) and preserving unchanged elements
(weighted with 1) are especially conflicting, which means that the effect of changing «
should be quite independent of the choice of 8 and . This claim is also supported by our
measurements. Finally, considering the right diagram in which v = 1 holds for the front
face, it seems to be useful to keep the ratio between 5 and v approximately equal to « as
the diagonal from (-1/1/-1) to (-4/4/-1) cuts the front face almost into symmetric halves.

B B
4 4 A
-
: |
>
u
2 i
2 N
i
L
1]
1 NI
TS
N
o]
N <[]
0 N a
7 A
2 -3
Y Y -1

Figure 8.5: Average ratings for parameter combinations

RQ3 (Runtime and quality analysis): To analyse how the runtime performance of
GA and SA compare to ILP, we ran the respective algorithms on synthetic model instances
with linearly increasing sizes from 460 to 2141 elements. For simulating edit operations,
create and delete markers were randomly assigned to 20% of the model elements each,
resulting in a comparably high change density. In accordance with the evaluation of the

5Using the median instead of the mean appears to be inappropriate here as the loss of precision is more
harmful than the effect of statistical outliers on a scale from 0 to 10.

8. Concurrent Model Synchronisation with Multiple Objectives 157

ILP-based approach (Sect. 7.7), we used the JavaToDoc TGG as presented in Sect. A.2
(without graph constraints) to compare the different heuristics. The results are presented
in an aggregated form, details are available online.

For GA, a population size of 100 was used. SA was run with linear cooling from the
start temperature Ty down to 0 and a geometric cooling using a factor of 0.98, with a
re-heating to Ty as soon as T falls below a threshold of 1. The measurements did not show
any statistically significant difference for the cooling schemes regarding runtime or solution
quality, therefore we restrict ourselves to the presentation of the geometric variant. As
a stop criterion, we defined a limit for the number of iterations per test run, which is
equal for all heuristics in order to guarantee comparability. The limit depends linearly on
the length of the bit string, such that a larger number of iterations is granted for larger
models. For SA, also test runs with only 10% of the iterations were conducted (“short
runs”) to analyse the effect of this criterion.

The median runtime values per model instance and algorithm are depicted in Fig. 8.6.
As expected, the runtime grows slightly super-linear with the model size, because the
stop criterion depends linearly on the model size and the generation of new solution
candidates becomes more time-consuming for longer bit strings. For SA and GA, the
observed runtime behaviour did not show any significant differences. Interestingly, the
ILP baseline outperformed these two heuristics, showing better scalability characteristics
for larger models, similar to the short run version of SA.

B ILP m GA ® SA ™ SA (shortrun) W ILP ®W SA MW SA(shortrun) == SA (lower) == SA (upper)
2000

g

g 1500

=

S

g 1000

3

w

2

8 500

2

)

)

0
500 1000 1500 2000 500 1000 1500 2000
[#nodes + #edges] [#nodes + #edges]

Figure 8.6: Runtime analysis Figure 8.7: Quality analysis

To measure the solution quality, the objective function value of the returned solution
was used. In comparison to the solution determined by ILP solving, which is guaranteed
to be optimal, it is possible to assess how close to the optimum heuristic solutions are on
average. The median objective function values are shown in Fig. 8.7. For SA, the 95%
confidence interval is further displayed with dotted lines.

GA found feasible solutions only in 16 test runs for the smallest model size and in no
test run for the largest two model sizes, such that the heuristic is left out in this diagram.
SA, in contrast, could determine solutions with objective function values of 81.6% - 94.1%
of the optimum, taking the minimum and maximum of the 95% confidence intervals of
all model sizes. The short run version of SA was clearly outperformed, though. These
results - especially the weak performance of GA - are unexpected in the first place, which
is why we assume that the search space is infeasible for the very most part. To support
this assumption, we randomly sampled solutions using the same number of iterations as
for GA and SA. In none of the test runs (consisting of approx. 1.5 million iterations for
the smallest and 7.5 million for the largest model), a feasible solution was found. With

Shttps://drive.google.com/file/d/1elGTTplm6RKm8IQaiNzZyP57V8Rrj_90/view

https://drive.google.com/file/d/1elGTTplm6RKm8IQaiNzZyP57V8Rrj_90/view

158 8.6. Summary and Discussion

respect to this observation, it seems to be unrealistic to expect a heuristic algorithm to
reliably return a near-optimal solution.

Summary: Revisiting our research questions, one can state that even for small exam-
ples, the pareto front contains too many solutions to be entirely presented to the user,
such that a scalarisation to a single objective function is necessary [RQ1]. With help of
an empirical user study, a method to determine suitable parameter values for «, 8 and
was presented for the case study of RQ1, which is applicable to other use cases, too [RQ2].
A performance evaluation has shown that GA is not an adequate heuristic in this setting
as it often fails to find even a feasible solution. SA performed much better (conforming
to the observation of Bill et al. [BFT*19] for search spaces with a large infeasible region),
whereas near-optimal solutions could not be determined faster than the optimal solution
via ILP solving. In general, the measured solution quality of 81.6% - 94.1% for SA implies
that a noticeable part of the changes is unnecessarily dropped, which will not be perceived
as an acceptable solution for most users. In summary, we recommend to stick to the
ILP-based approach, while the parameter analysis for answering RQ2 helps to configure
the respective optimisation function.

Threats to wvalidity: Although the approach was tested in depth for one example,
results for RQ2 and RQ3 may differ when applying it on other synchronisation problems.
The number of participants for determining suitable parameters was low, such that the
results might be biased by personal preferences. Furthermore, the chosen use case was
synthetic and only involved small models, such that the design of the user study might
become infeasible for other synchronisation problems and larger models. Although there
was a large performance gap between ILP, SA and GA in our experiments, it is possible
that another operator implementation or parametrisation of the meta-heuristics could lead
to more promising results that outperform the exact solution. As we rely on a standard
framework for GA and NSGA-II and the Gurobi solver for ILP, the efficiency of the
implementation in external components also has an influence on the runtime performance.

8.6 Summary and Discussion

We presented a heuristic approach to concurrent model synchronisation, with which we
aim at reducing the runtime effort compared to the ILP-based version presented in Chap. 7.
Multiple heuristics, which have become an integral part of Search-based Software Engi-
neering (SBSE) research in recent years, were applied to efficiently restore consistency
after concurrent user edits on different models. By adapting (genetic) operators to the
problem domain, an implementation involving three single- and multi-objective optimisa-
tion heuristics is presented and integrated into eMoflon::Neo. Compared to the ILP-based
approach of Chap. 7, the problem definition was extended towards multiple objectives,
while the constraint generation is equal for both alternatives. The use of heuristics did
not yield the desired performance improvements due to the large portion of infeasible so-
lutions, though. Therefore, it is still recommendable to use exact solvers in this setting
to obtain solutions of satisfactory quality. A generalisable methodology was proposed to
configure the objective function for a concrete applications scenario.

To carry this line of research forward, we plan to analyse further use cases involving other
TGGs and larger model instances to see in which scenarios recommendable parameters
differ from the results of this study. In the presented version, the configuration parameters
enable the user to define weights for creations and deletions, whereby the weights do not
differ for source and target models. At the end of Sect. 7.6, we have seen that it is not
possible to choose the parameters in a way that the change in the source model is preferred

8. Concurrent Model Synchronisation with Multiple Objectives 159

due to the shape of the TGG. This problem could be overcome by a more fine-grained
configuration, which in turn makes the determination of suitable parameter values even
harder.

After generating the possible solutions for the empirical case study (Sect. 8.5, RQ2),
we observed that many (technically correct) solutions do not make sense because user
edits were split, although they should be treated as atomic changes. It is problematic,
for example, to keep a superclass but remove all attributes and methods from it. This
could be prevented by adding further atomicity constraints to the optimisation problem.
Furthermore, an implementation of further meta-heuristics, which have proven to be ben-
eficial for solution spaces with a large infeasible region, might be promising to improve
the overall runtime performance. While the presented approach is fully automated, the
user involvement in resolving synchronisation conflicts shall be improved, such that the
search for an optimal solution is at least partially guided by a human user who is able
to make case-specific decisions, which will be touched upon in Chap. 10. Besides a Ul
prototype for concurrent synchronisation, the VICToRy debugger enables the user to in-
teractively guide forward and backward transformations to support the understandability
of TGG-based consistency management.

8.7 Wrap-up of the Hybrid Approach

With the hybrid approach of Chap. 5, 6, 7 and 8, a powerful conceptual framework for fault-
tolerant consistency management has been proposed. A considerable range of consistency
management operations, as well as additional graph constraints are supported. Fault-
tolerance is reached by computing the largest consistent sub-triple in case of inconsistent
input models. The solution strategy, i.e., constructing an optimisation problem from a
superset of rule application candidates, in which each candidate is encoded as a binary
variable, is shared between all operations.

The results should be interpreted differently for the different operations, though: For the
consistency checking operations CO and CC, the information whether the input models are
consistent or not is more important than the transformation result. The largest consistent
sub-triple can be indeed used for fault detection purposes. For forward and backward
transformation (FWD_OPT, BWD_OPT), the fault-tolerant approach provides the user
with a result that is “as consistent as possible” instead of rejecting the input, which eases
the user’s work-flow substantially. The untranslated elements can be regarded as open
to-dos that should be resolved before a new attempt is started. For concurrent model
synchronisation, the optimisation pursues a slightly different goal: Instead of maximising
the number of marked elements, the goals of preserving as many user edits as possible and
changing the rest of the input models to the smallest possible extent must be balanced
for this operation. With the exception of very small or trivial examples, the operation
will never mark the entire input, especially because marking elements of the delete delta
should be avoided.

Most of the results have been presented in prior work already, whereas the integration of
graph constraints into the concurrent synchronisation operation is a novel contribution of
this thesis. An overview of the involved publications is given in Fig. 8.8. The concurrent
synchronisation operation is abbreviated with CS. Concurrent synchronisation with graph
constraints — which did not appear in any publication yet — is marked with a *.

Besides being the conceptual contribution of this thesis, the hybrid approach is com-
pletely implemented as part of the eMoflon tool suite. The four operations of Chap. 5 exist
both in eMoflon::IBeX and eMoflon::Neo, whereas the extensions of Chap. 6, 7 and 8 are

160 8.7. Wrap-up of the Hybrid Approach

FWD_OPT BWD_OPT

With graph WA21b WA20 *
constraints
_ Leb16 WFA20
Neomarams | 417 e
Leb18 Weat

Figure 8.8: Overview of publications related to the conceptual solution

only implemented in eMoflon::Neo. As a meta-result of all four experimental evaluations,
one can state that consistency checks as well as forward and backward transformations
scale reasonably well, also after adding negative constraints. Further improvements are
necessary for TGGs with implication constraints, and for concurrent synchronisation in
general. The idea of replacing the ILP component by heuristic solvers did not lead to
performance improvements due to the small portion of feasible solutions in the search
space.

The influence of the underlying technology of the tool implementation has not been
analysed up to here. In order to investigate strengths and weaknesses of graph databases
and the EMF framework in the concrete application scenario, the two components of
the eMoflon tool suite will be compared in terms of their overlapping parts in Sect. 9.5.
To enable a comparison and evaluation of future fault-tolerant approaches to consistency
management, we also plan to extend the existing benchmark for consistency manage-
ment [ABW17] to cover fault-tolerant application scenarios. Finally, two industrial case
studies will be presented in Chap. 11 and 12 to demonstrate application areas of the
developed approach.

Part 11l

Tools and Applications

O The eMoflon Tool Suite

In the conceptual part of this thesis, i.e., Chap. 5 — 8, an extensive formal framework for
fault-tolerant consistency management was presented. All aspects of the hybrid approach
of combining TGGs and optimisation techniques are implemented as part of the eMoflon
tool suite, which will be briefly described in this chapter. In Chap. 11 and 12, we will
see how the tool suite, and especially the implementation of the hybrid approach, can be
used to solve consistency management problems in practice. This chapter is structured as
follows: Section 9.1 gives a brief overview of the development history of eMoflon and its
predecessor tools, and thereby motivates the conceptual and technological decisions that
characterise the tool suite. A comparison with related MDE tools is drawn in Sect. 9.2.
The architecture of the components IBeX-GT (Sect. 9.3), IBeX-TGG (Sect. 9.4) and Neo
(Sect. 9.5) is introduced subsequently. The tool suite is analysed with respect to scalability
and usability in Sect. 9.6 and 9.7, before Sect. 9.8 summarises the findings.

9.1 Introduction and a Brief History

The eMoflon tool suite! consists of the two main components IBeX and Neo, which provide
us with all necessary functionality to implement the hybrid approach for fault-tolerant
consistency management. In order to be a suitable basis for the implementation, besides
supporting the TGG formalism including its language features attribute conditions (cf.
Sect. 4.4) and application conditions or graph constraints (cf. Sect. 4.5), a tool must meet
several requirements:

e Incrementality: The hybrid approach collects matches for rule applications and
constraint patterns in multiple iterations. Therefore, it is necessary for an efficient
implementation to distinguish between new matches and matches that have been
collected in a previous iteration already.

e Scalability: For practical use cases, models with thousands of elements must be
handled in a time- and resource-efficient manner.

e Flexibility: One of the main steps of the hybrid approach is the collection and
filtering of potential rule applications, which requires to substantially modify the
input models in the course of the consistency management operations. Further-
more, the handling of faulty inputs requires to handle violations of, e. g., metamodel
constraints, such that a high degree of flexibility is necessary in this regard.

e Modularity: The work-flow of the hybrid approach involves tasks such as ILP
solving or pattern matching, which are not specific for consistency management
problems. There exist mature external components which can be used for this pur-
pose, instead of reinventing the wheel with a hand-crafted implementation. As a
result, the tool in use must have a modular architecture and interfaces to attach
these external components.

1
www.emoflon.org

www.emoflon.org

164 9.1. Introduction and a Brief History

We claim that eMoflon fulfils these four requirements and provide evidence in the re-
mainder of this chapter. The tool suite results from a development process of several
decades and ranging over different components, whereby experiences made with predeces-
sor tools were useful for continuously improving the tool support. Therefore, we start with
a brief historical overview that illustrates the most important technological changes. Fig-
ure 9.1 depicts the history of eMoflon, showing both direct predecessors and some related
tools. Nodes represent tools, while edges indicate that one tool (successor) conceptually
or/and technically evolved from another (predecessor). All edges ultimately leading to
IBeX and Neo are labelled, indicating the primary reason for the evolution. Related tools
are greyed out, while tools that are currently part of the eMoflon tool suite are highlighted
with a light-blue background.

Democles
CodeGen

eMoflon::TiE

Enterprise
Architect

Democles
Interpreter

PROGRES

Figure 9.1: History of eMoflon

Starting with PROGRES [Sch89], one of the first tools for programmed graph transfor-
mations, Fujaba [BGNT04] was developed based on the mainstream GPL Java. With the
goal of implementing the full Meta Object Facility (MOF) 2.0 and Java Metadata Interface
(JMI) standard, MOFLON [AKRS06] was developed as a plugin for Fujaba. With the
success of Eclipse as an IDE platform, and EMF /Ecore as a de facto modelling standard,
eMoflon [ALPS11] was developed as a complete re-engineering of MOFLON. In addition,
Enterprise Architect (EA)? was established as a visual front end for GT.

In its back end, eMoflon was still using the pattern matcher of Fujaba, which be-
came increasingly challenging to evolve and maintain, partly because it was bootstrapped
with a different tool chain. Based on Democles as a new pattern matcher [VAS12],
eMoflon:: TiE [LAS14a] was developed as a Democles-based version of eMoflon. In ad-
dition to providing a unified platform for both an interpretative and generative approach
to model transformation, Democles was also designed to simplify exchanging all templates
for code generation. This was exploited to establish cMoflon [KSG*17], a GT tool that
generates embedded C code.

While EA proved to be a scalable and relatively usable front end for eMoflon, it required
a separate tool chain based on C# and Visual Studio. Combined with problems concerning
licensing and cross-platform support, a decision was made to switch to Xtext® as an
editor framework, and use PlantUML?* for generated, read-only visualisations. This led
to eMoflon:: TiE-TGG for TGGs as a pilot project, and some time later, eMoflon::TiE-

2www.sparxsystems.de
Swww.cclipse.org/Xtext /
“http://plantuml.com/en/eclipse

www.sparxsystems.de
www.eclipse.org/Xtext/
http://plantuml.com/en/eclipse

9. The eMoflon Tool Suite 165

GT for GT. For further details on this EA to Xtext migration, we refer to Yigitbas et
al. [YALG18].

Driven by our requirement for incrementality, we developed eMoflon::IBeX based on
the incremental Democles interpreter [VD13]. Due to the respective modular interface,
support for other incremental pattern matchers such as VIATRA [VBH'16] or HiPE®
was subsequently added, as well as a proof of concept for the rule engines Drools® and
nools’. While the requirements regarding incrementality and modularity are met by IBeX,
we still saw room for improvement with respect to scalability and especially flexibility,
caused by the strict metamodel conformance requirements posed by the EMF. As a
result, eMoflon::Neo was developed as an EMF-independent component that uses the
graph database Neo4j® to store models on disk. After a treatment of related tool support
in Sect. 9.2, these two components will be presented in more detail.

0.2 Related MDE Tools

In recent years, several implementations of the TGG formalism have been proposed. We
will briefly discuss the potential of each tool to serve as a basis for implementing the
conceptual framework of this thesis.

MoTE [HLG"11,GHL14] is a TGG-based tool with a strong focus on scalability. While
it supports numerous operations, it also poses strong restrictions on the class of supported
TGGs (only basic language features and attribute conditions are supported). These restric-
tions simplify especially synchronisation and consistency checking tasks, but also severely
limit expressiveness.

EMorF [KW12] interprets TGG rules and claims to support model transformation,
synchronisation, and consistency checking. GT and TGGs are seamlessly integrated, such
that users are able to mix and switch between these two formalisms, and TGG developers
can reuse functionality of the GT layer. As neither the source code nor an installation of
EMorF is publicly available, however, it is difficult to assess under which assumptions the
different operations actually work.

The GT tool Henshin [BET12] is an EMF-based Eclipse plug-in with a wide range
of supported language features. Inspired by the long-term experience in developing the
GT tool, Henshin-TGG [EHGB12] was implemented as a standalone component that
extends Henshin towards TGG concepts. HenshinTGG supposedly supports forward and
backward transformation, synchronisation and consistency checks, but as far as we can
tell from simple experiments, the choice of rules for each operation must be deterministic,
severely restricting the class of supported TGGs.

Fujaba [GW06, BGNT04] provided one of the first implementations of the TGG ap-
proach and — as far as we can assess — already supported both model transformation
and synchronisation. As shown in Fig. 9.1, Fujaba can be considered as a predecessor of
both MoTE and eMoflon. The tool is, however, out of maintenance for several years, and
therefore only of theoretical value.

Similar to EMorF, eMoflon::TiE [LAS14al, the predecessor of IBeX, integrates GT and
TGG concepts into one tool. As a handy feature to reduce code duplication, rule re-
finement [KKSO07] is supported for TGG rules; This modularity feature is generalised in
IBeX to uniformly cover patterns, GT rules, and TGG rules. Both unidirectional model

Shttps://hipe-devops.github.io/HiPE-Updatesite
Shttps://www.drools.org/

"https:/ /www.npmjs.com/package/nools
8https://neodj.com/

https://hipe-devops.github.io/HiPE-Updatesite
https://www.drools.org/
https://www.npmjs.com/package/nools
https://neo4j.com/

166 9.3. Graph Transformation with IBeX-GT

transformation and model synchronisation, as well as consistency checking are supported.
Each operation is, however, essentially a completely separate implementation making it
increasingly costly to maintain and extend the tool.

The TGG Interpreter [GK10] directly interprets TGG rules and supports model trans-
formation and synchronisation. Existing surveys of TGG tools indicate, however, that
the TGG Interpreter does not scale well compared to MoTE and eMoflon:: TiE [HLG"13,
LASt14b).

The UML tool USE was extended to support consistency management based on TGGs
by translating TGG rules into OCL constraints [DGO08]. Specified TGG rules can be
operationalised for model transformation, synchronisation and consistency checking. As
far as we can tell, however, the application of these rules remains a manual task.

While most of the already mentioned tools are based on EMF or purely hand-crafted,
there are also a few MDE tools that leverage the potential of graph databases for soft-
ware modelling. Neo4j has been used as an underlying graph database for the GT tool
GRAPE [Web17]. An embedded Domain-Specific Language (DSL) in Closure is used to
define rules, from which statements in Cypher — the declarative pattern matching and
transformation language for Neodj — are generated to query the database. GRAPE uses a
textual concrete syntax together with a visualisation, and supports GT on untyped graphs.
The TGG formalism is not supported by GRAPE, though.

Algahtani and Heckel use Neo4j for TGG-based model transformations [AH18]. TGG
rules are translated into Gremlin code, which is an alternative query language for Neo4j. In
an experimental performance comparison with eMoflon::IBeX, their approach shows better
scalability results. Their implementation, however, only supports forward and backward
transformations without completeness guarantees. Daniel et al. [DJSC17] use Gremlin for
ATL-based graph transformations in a similar fashion. Besides Neo4j, adapters for other
NoSQL databases exist, such as OrientDB and MongoDB.

NeoEMF [DSB*16,DSB*17] was recently proposed as a seamless EMF-compatible layer
over Neo4j and other NoSQL databases. The advantages of graph databases with respect to
scalability and the well-known EMF resource handling are synergetically combined, which
makes it possible to attach NeoEMF to EMF-based BX tools. Model transformations are
supported, but take place in main memory and have to be replicated in the database.
Furthermore, using this intermediate layer restricts the control over how, e.g., types are
mapped to Neodj, and prevents leveraging all advantages of the particular database, such
as attributed edges for bookkeeping operations.

In summary, an implementation of the hybrid approach would be possible with none of
the existing TGG tools without larger efforts. Either the precondition of supporting TGGs
and advanced language features are not fulfilled, or one or more of the requirements listed
in Sect. 9.1 are not met. Often, the tools are out of maintenance or no longer available.
Studying related approaches has however shown that the underlying technologies of IBeX
and Neo, i.e., EMF and Neo4j, have been frequently used for software modelling already.
In the following, we will present how the hybrid approach was implemented as part of the
eMoflon tool suite.

9.3 Graph Transformation with IBeX-GT

eMoflon::IBeX is implemented as a set of Eclipse plug-ins and supports both unidirectional
and bidirectional model transformations with GT and TGGs, respectively. In this section,
the software architecture of the GT component will be sketched, and extended by the
TGG-specific part in Sect. 9.4. By developing the component, we have realised a novel mix

9. The eMoflon Tool Suite 167

of complementary tool features that have proven to be useful and effective in predecessor
tools. We discuss these features and present insights based on an empirical evaluation of
eMoflon::IBeX in Sect. 9.7.

Figure 9.2 provides an architectural overview of IBeX: The TGG layer makes use of the
GT layer, which consists of a front end and a back end component. The front end consists
of an Xtext-based? editor combined with a read-only visualisation using PlantUML!?.
As input to the front end, users provide .ecore files for all metamodels, and . gt files
containing graph transformation rules in a textual concrete syntax.

eMoflon::IBeX {l

| TGG Layer
uses l
— —‘\
Project {l N GT Layer
rolec Front End
A (Xtext-based Editor Back End {l
and Plant UML =
Visualisation) - GT rules GT Interpreter
S API
Context Interpreter

Metamodel uses GT Project Pattern Delete Interpreter

Project

Generator
Create Interpreter
contains contains
Pattern | | Match |
Pattern Match

Metamodel.ecore Rule.gt Invocation \(% f(?

Network Bvents

Legend Incremental Graph {l

Pattern Matcher
Layer Component {l

Artifact Class Project Zﬁ
| Democles | Viatra | HiPE |

Figure 9.2: Most important components and classes in eMoflon::IBeX

The front end is completely independent of the back end and provides an extension
point!'! via which the metamodels and a set of rules (as EMF (meta-)models) are offered.
As the syntax for GT and TGG rules is very similar and the Ecore format is used for TGG
metamodels as well, we will not go into further details at this point and refer to Sect. 9.4
instead. Note that the metamodels and graph transformations are stored separately, such
that a metamodel can be used in multiple GT projects. The front end produces GT rules
(as EMF models) and passes them to the back end.

Figure 9.2 depicts the most important interfaces and classes in the back end divided into
compile time (to the left) and runtime (to the right). At compile time, the back end uses
a PatternGenerator to generate a set of separate Patterns from a GT rule. These
patterns represent the context to be matched, elements to be deleted, and elements to be
created. A typed Application Programming Interface (API) specially tailored for the set
of GT rules is generated as Java code and produced as output for the user. This API
wraps all calls to the GTInterpreter allowing for type safe access and rich compiler
errors if rules are specified inconsistently.

At runtime, the GTInterpreter delegates the task of pattern matching to a Context -
Interpreter as a separate component. A so-called pattern invocation network (an
acyclic graph with patterns as nodes and invocations as edges) is passed to maximise

https:/ /www.eclipse.org/Xtext/
Ohttp://plantuml.com/
11 the Eclipse framework, components are plug-ins that provide extension points and require extensions.

https://www.eclipse.org/Xtext/
http://plantuml.com/

168 9.4. Bidirectional Model Transformation with IBeX-TGG

reuse of partial matches. The incremental pattern matcher produces match events as out-
put, signalling when new matches appear (create match events), and when old matches
are violated (delete match events), as the models are manipulated. To use eMoflon::IBeX,
an adapter for an incremental pattern matching engine is necessary, whereby adapters for
several pattern matchers are delivered with the tool (cf. Sect. 9.1). The GTInterpreter
collects all Matches and performs rule application by delegating deletion to a Delete—
Interpreter and creation to a CreateInterpreter. While IBeX supplies default
implementations for deletion and creation, these can be extended or replaced for special
cases or optimisations.

Figure 9.3 depicts a communication diagram representing the GT rule application pro-
cess at runtime. (1) The generated API serves as a factory for GT rules, providing
methods for all non-abstract rules. (2) Rules can be used to subscribe for appearing
or disappearing matches reported by the GTInterpreter. Rules wrap the generic in-
terpreter to avoid casting in developer code. (3) The interpreter initialises the Context—
Interpreter for pattern matching, (4) the DeleteInterpreter for deletion, and (5)
the CreatelInterpreter for creation. When the monitored models are manipulated,
(6) the ContextInterpreter produces and reports generic match events. (7) The
GTInterpreter notifies the rule, which then (8) converts the generic matches to typed
matches and provides them to the user via a series of methods such as findAnyMatch
or forEachMatch, designed to work together with the standard Java stream API.

1 API : ContextInterpreter
2 - subscribe 3: initialisef
1: create matches / 6 : report matches
instances \A
>
: Rule : GTInterpreter : Deletelnterpreter
< -»
/ 7 : notify matches 4 : delegate deletion
5 : delegate
8 : convert creation \
matches
: Match : Createlnterpreter

Figure 9.3: Communication between API and GT Interpreter

With the GT component of eMoflon::IBeX, the foundations for rule-based incremental
pattern matching were laid as a basis for implementing the hybrid approach as part of the
TGG component. In the upcoming Sect. 9.4, the TGG layer will be introduced.

9.4 Bidirectional Model Transformation with IBeX-TGG

In this section, we present the TGG layer of eMoflon::IBeX, in which the concepts of
Chap. 5, i. e., fault-tolerant forward and backward transformation and consistency checks,
were implemented first.

Back-end

Figure 9.4 provides a structural overview of the architecture of eMoflon::IBeX as an ex-
tension of Fig. 9.2, whereby details of the GT back-end are omitted for better readability.
New components and artefacts are depicted in green, whereas parts which are shared or
equal for the GT and TGG layer remain black. For the front end, the technologies in

9. The eMoflon Tool Suite 169

use (Xtext, PlantUML) are equal for GT and TGG projects. The TGG is technically
specified in form of .tgg files contained in a TGG project. To simplify configuration and
usage of the system, stubs are generated for every supported consistency management
operation as . java files. These stubs can be executed directly with default settings, and
also configured and adapted as required.

eMoflon::IBeX
— 2 |
.]] 3 TGG Layer
Back End 2 |
model.xmi {l T © Consistency Management Algorithm |
Project D : uses
Front End uses
(Xtext-based Editor ' Operational Strategy
and Plant UML AN
TGG Visualisation)
Project [[een|[sync |[opT |[INTEGRATE |
TGG rules 4
contains Metamodel [co][cc|[Fwp_opT|[BWD_oPT]|
Project
contains l uses
| GT Layer |
| |
5 Optimal & Pattern (!}
App.java Rule.tgg Metamodel.ecore Solution O P Invocation Ig/\l/ae‘r?ths
Network
Legend ILP Solver {l Incremental Graph {l
Pattern Matcher
Layer Component {l

Artifact Class Project ZF ZF ZF
| sasj | [curobi | [Democtes [viatra | HIPE

Figure 9.4: Component diagram: Architecture of eMoflon::I1BeX

The back end takes a triple of metamodels and a set of rules as input, as well as an
input triple (.xmi files) that is expected to be typed over the triple metamodel. It re-
lies primarily on two external components for performing consistency management: (i)
an incremental graph pattern matcher (known from Sect. 9.3 already) to efficiently de-
termine solution candidates, and (ii) an ILP solver to choose the optimal solution from
these candidates. For the ILP solver, IBeX provides the ILP as input, computed from
the set of solution candidates, and an objective function that depends on the specific
consistency management operation, as presented in Chap. 5. The ILP solver chooses an
optimal solution based on the provided candidates by maximising the objective function.
Currently, IBeX is distributed with SAT4J'? as default ILP solver. To test our interfaces,
we have implemented well-tested adapters for alternative ILP solvers including Gurobi,
CBC,™ GLPK,'® and MIPCL.' In structured tests, Gurobi outperformed all other solvers
in prior experiments [Oppl8], which is why this solver was used for all scalability tests of
this thesis. Considering the set of connected graph pattern matchers and ILP solvers, our
achievements indicate that the interfaces are generic enough to enable an integration of
other external components of this kind with acceptable effort.

The uniform consistency management algorithm in the back end comprises two main
tasks that can be configured as required to implement various operations: the first task

2satdj.org

13 www.gurobi.com/products/gurobi-optimizer
M projects.coin-or.org/Chc
Bwww.gnu.org/software/glpk/

S mipcl-cpp.appspot.com/

sat4j.org
www.gurobi.com/products/gurobi-optimizer
projects.coin-or.org/Cbc
www.gnu.org/software/glpk/
mipcl-cpp.appspot.com/

170 9.4. Bidirectional Model Transformation with IBeX-TGG

is to generate a suitable pattern invocation network from a set of TGG rules, while the
second task is to execute the actual operations, which are technically denoted as “oper-
ational strategies”. While the first task is carried out by the pattern generator of the
GT layer, the second task is the key functionality of the TGG layer. Both interfaces are
implemented for the various consistency management operations: Besides the four basic
operations of the hybrid approach (Chap. 5), which technically share a common superclass
“OPT” due to their similarities, there are also operations for generating consistent models
(GEN) and model synchronisation (SYNC), which follow a greedy solution approach. The
INTEGRATE operation is an implementation of the concurrent synchronisation approach
of Fritsche et al. [FKM™20].

Figure 9.5 provides a dynamic view on the uniform algorithm used for all operations —
including GEN, SYNC and INTEGRATE — as an activity diagram.

= Optimal
= o ol — Solution
Rules Generation Optimisation
[condition
[condition reached]

not reached
! | Termination Rule Application
| Check Candidates
Pattern Invocation Match Event J
Network Handling
eMoflon
Pattern Match Events Incremental

Matching (Create, Delete)

Pattern Matcher

| |
Input Models Update Policy

Figure 9.5: Activity diagram: Uniform consistency management algorithm

Compared to the conceptual work-flow of Fig. 5.1, this diagram describes the consistency
management process from a technical perspective. The first action is pattern generation,
which is comparable to the operationalisation step (A) of the work-flow, requiring a triple
metamodel and TGG rules as input. This is followed by pattern matching on the input
triple (step (B) of the work-flow), based on the generated pattern invocation network.
This action generates a stream of match events (create or delete), which are passed on
to the match event handling action. Depending on the concrete operation, match events
can be handled by creating, deleting, or manipulating elements in the input models. In
general, this action is non-deterministic and can be controlled by an update policy that,
for example, can choose which match event to handle from the set of all pending events.

After one or numerous match events have been handled (the handler decides when it
is finished), a termination criterion (depending on the concrete operation) decides if all
relevant information for computing the output models are collected, or if the pattern
matching and match event handling process is to be repeated. This termination criterion
can range from a simple time-out for model generation to a check for an empty set of
new match events for all operations of the hybrid approach (indicating that no new rule
application candidates can be found). The advantage of using an incremental graph
pattern matcher is that the latest match events can be produced relatively efficiently
without any extra effort or explicit “search” for new or removed pattern matches.

When the stop criterion is fulfilled, the current set of rule application candidates is
passed to the final action in the process, ILP optimisation (comprising the steps ILP

9. The eMoflon Tool Suite 171

construction (C) and optimisation (D) of the work-flow). While the construction of the
ILP is done within eMoflon, the optimisation is taken over by the external solver. This
last action is only applicable for operations of the hybrid approach, because for the greedy
operations GEN, SYNC and INTEGRATE, a single candidate is produced and returned
at this stage without any optimisation.

Front-end

After presenting the software architecture of eMoflon::IBeX from a static and dynamic
perspective, the focus is shifted to the front end of the tool in the remainder of this section.
Figures 9.6 and 9.7 depict the metamodels of the example transformation from SysML to
Event-B (cf. Fig. 3.8) in form of . ecore files opened with the Sample Ecore Model Editor
of Eclipse (the specification can also take place in any other editor of choice). These
(eMoflon-independent) metamodels are connected to a triple metamodels in a separate
.tgg file, which is shown in Fig. 9.8. For the correspondence metamodel, IBeX provides a
dedicated textual concrete syntax with which the roles (source or target) of the metamodels
are assigned, and 1-1 correspondence types (e. g., StatemachineToMachine) connecting
a source type with a target type.

= - = Schematgg X -o
#) SysMLecore * 5 & EventB.ecore X 5 scheme99
#import ~
v &l platform:/resource/SysML/SysML.ecore v # platform:/resource/EventB/EventB.ecore #import
~ @ SysML ~ & EventB 4sch SysMLToEvents
schema SysMLToEven
= GenModel ~ & machine i
~ B Ports v B Machine #source {
% name : EString &2 variables : Variable } SysML
v H Statemachine & invariants : Invariant
= UML s events : Event #target {
= StatemachineName : EString = name : EString } Events
&% regions : Region v H Variable
52 ports : Ports = name : EString #correspondence {
. . StatemachineToMachine{
v
& Transition v 8 Invariant . #src->SysML.Statemachine
7 source : State = name : EString #trg->EventB.machine.Machine
5 target : State = predicate : EString } blef
- . . StateTovariable
& effects : Effect g Event #src->SysML. State
§% guards : Guard & guards : Guard #trg->EventB.machine.Variable
&2 triggers : Trigger &2 actions : Action ¥
o . Esti . . StateToInvariant{
T name : EString = name : EString #src->SysML.State
v B Hfect v B Guard #trg->EventB.machine.Invariant
% name : EString = name : EString ¥ .
. X X ° PortsToVariable{
7 body : EString = predicate : EString #src->SysML.Ports
B State v H Action #trg->EventB.machine.Variable
v B Guard = name : EString } .
.) 3 PortsToInvariant{
= body : EString = action : EString #src->SysML.Ports
= name : EString # context #trg->EventB.machine.Invariant
5 Region TransitionToEvent{
§% subvertex : State #src->SysML.Transition
= transitions : Transition #trg->EventB.machine.Event
v i }
& Trigger EffectsToActions{
7 events #src->SysML.Effects
= name : EString #trg->EventB.machine.Action
= - ESti)
? body : EString ° TriggerToGuard{
PseudostateKind #src->SysML.Trigger
v B Pseudostate -> State #trg->EventB.machine.Guard
@ State } '
% kind : PseudostateKind v
< >
Figure 9.6: SysML Figure 9.7: Event-B Figure 9.8: Correspondences

Figure 9.9 depicts the rule StateToVariable (cf. Fig. 4.3), also specified in a textual
concrete syntax. Additional attribute conditions such as eq_string, from an extensible
library of conditions implemented in Java, can be specified in a simple textual syntax.
In this example, the conditions setType and addPredicate were added to express
the two rather complex attribute conditions of the rule. The textual representation is

172 9.5. Consistency and Model Management with Neo

complemented with an automatically generated read-only visualisation, which is shown
in Fig. 9.10. The visualisation is dynamic in the sense that it constantly adapts to the
current selection in the textual editor. The syntax is almost equal to the compact visual
notation used throughout this thesis, and therefore not further explained at this point.

i siaicioVarsbierule f9gkg o 0= Outline |w PlantUML 37 | %, & | rsolfs § = 8
#using SysMLToEventB.*

#using AttrCondDefLibrary.*
#rule StateToVariableRule #with SysMLToEventB

#source {
sm : SysML.Statemachine{
-regions->r

r : Region{

++ -subvertex->s
}
++s : State

}

#target {
m : EventB.machine.Machine{
++ -variables->v
++ -invariants->i
}
++i: Invariant
++Vv : Variable

sm : Statemachine

~
-

N
regions "~ :Statema...
5
-

~
-

m: Machine

subvertex ~:StateTo... invariants . variables

}

#correspondence {
sm2m : StatemachineToMachine{

#src-> sm

#trg->m

++s2v : StateToVariable{
#srco>s s : State
#trg->v

:StateTo
iZInvariant v:VMariable

++s2i : StateToInvariant{
#src->s
#trg->i
}
}

#attributeConditions {
eq_string(s.name, v.name)
setType(s.name, i.name)
addPredicate(s.name,i.predicate)

}

Figure 9.9: Rule: StateToVariable Figure 9.10: PlantUML visualisation

In summary, the implementation of the operations CO, CC, FWD_OPT and BWD_OPT
in IBeX benefits from the modular architecture of the tool, that enables us to shift the pat-
tern matching and ILP solving steps to external components. It became apparent, though,
that the extension towards tolerating domain constraints violations is extremely difficult,
as long as all models and metamodels must comply to the quite restrictive EMF standard.
Furthermore, the mix of different file formats appears to be unnecessarily complicated for
working with it on a daily basis. For these reasons, we decided to implement the entire
hybrid approach as part of eMoflon::Neo, which overcomes the restrictions of the EMF by
using a graph database as model storage. The second component of the eMoflon tool suite
is presented in the upcoming Sect. 9.5, emphasizing the differences to eMoflon::IBeX.

9.5 Consistency and Model Management with Neo

In this section, we present eMoflon::Neo as the latest addition to the eMoflon tool suite,
which uses the graph database Neo4j as a storage for models and metamodels at runtime.
Although the EMF provides a solid basis for developing modelling tools, our experience
from developing eMoflon::IBeX (Sect. 9.3 and 9.4) is that EMF has some drawbacks,
especially for the extension of the hybrid approach towards graph constraints (Chap. 6)

9. The eMoflon Tool Suite 173

and concurrent synchronisation (Chap. 7 and 8). With respect to the four tool-specific
requirements listed in Sect. 9.1, we have identified the following limitations regarding
scalability and flexibility directly related to representing our runtime models as EMF data
structures:

e Scalability: EMF models must fit completely into the main memory for operating
on them, which limits the handling of very large models. While we are not necessarily
interested in extremely large models per se, we

(i) represent traceability links and other bookkeeping information such as various
markers explicitly in models,

(ii) generate multiple candidate structures before using an ILP solver to pick the
best result. Both points mean that we have to handle effective model sizes
factors larger than the actual input model sizes.

e Flexibility: Although the relatively strict conformance relation between EMF mod-
els and their metamodels certainly has its advantages, it is more often a hindrance
that our algorithms have to work around. There are mainly two reasons for this:

(i) being able to enrich model elements with markers and other extra information
often simplifies analyses and bookkeeping operations, and

(ii) when collecting all possible rule application candidates for the final optimisation
step, we need to construct a “super model” that violates metamodel constraints
such as multiplicities and single containment relations.

EMF, however, does not support attributes for edges, and temporarily extending or
relaxing metamodels of loaded models is non-trivial.

Especially the last aspect is a specific challenge for the fault-tolerant hybrid approach:
Greedy operations reject inputs that violate metamodel constraints right away, and do
not need to generate more elements than necessary when solving transformation and syn-
chronisation tasks. While the requirements of the EMF framework do not appear too
restrictive for greedy operations, they can become a serious obstacle for fault-tolerant
implementations. As a reaction to these drawbacks, we have decided to explore graph
databases as an alternative infrastructure for handling our runtime model operations.

NoSQL databases in general, and graph databases in particular, have gained popularity
in recent years and have been successfully leveraged for developing MDE tools [Webl7,
DJSC17]. Using a graph database to represent runtime models can address both aforemen-
tioned issues: First, graph databases promise improved scalability via on-demand caching,
indexing, and a native representation of nodes and edges. Second, models and metamodels
are (typically) both represented as plain graphs with type edges and constraints represent-
ing the conformance relation. This means that the relation can be (temporarily) violated
and later re-established as required with the standard infrastructure.

In order to unify the textual specification of (meta-)models, rules, patterns and con-
straints, a uniform textual modelling language, denoted as eMSL, was developed for
eMoflon::Neo. eMSL can be regarded as a family of modelling languages with a uniform
textual concrete syntax supported by an Xtext-based editor. Likewise, for each eMSL
language construct, there is a corresponding visualisation in PlantUML. We have found
this to be beneficial especially for teaching as students only have to learn how to use one
consistent family of languages. In the following, the back end and front of eMoflon::Neo
will be briefly presented, focussing on differences compared to eMoflon::IBeX.

174 9.5. Consistency and Model Management with Neo

Back-end

The software architecture of eMoflon::Neo is depicted in Fig. 9.11 as a component diagram.
The eMSL language (file extension .ms1) is used to uniformly specify all involved model
management artefacts. For GT and TGG projects, both metamodels and (triple) graph
grammars are specified and stored in this format.

2]

eMoflon::Neo

Back End -O GEN java

2]

| Rule Compiler |

O FWD_OPT.java

~
S

N

Generator

2]

Model.msl|

Front End

—
-O BWD_OPT.
] |Startup Modulel | Cleanup Module |

-0 CO.java

. . Rule Scheduler Termination
Project (Xtext-based Editor i Rules.ms| Condition
d and Plant UML ~ Match -O CC.java
Visualisation) Reprocessor | Update Policy |
QO CS.java

| Cypher Query Translator |

ILP O/ >\ Node IDs,
4(O O' Edge IDs

Optimal Solution

GT Project TGG Project

contains contains

ILP Solver {l

Cypher
Queries

Metamodel.msl TGG.msl

|SAT4J $:|| Gurobi $:||

Figure 9.11: Architecture of eMoflon::Neo

The back end of eMoflon::Neo can be subdivided into several components as depicted
in Fig. 9.11. At compile time, the Rule Compiler uses the TGG specification to gen-
erate operational rules (also in eMSL) for all supported operations. IBeX, in contrast,
generates patterns for each rule and operation that are specific for each pattern matcher.
The Generator, composed itself of several modules, is used to perform all consistency
management operations, which can be configured via the generated operational rules and
Java API code. Finally, a Cypher Query Translator connects the back end to the
Neo4j database, which contains all runtime models. Cypher queries are generated to col-
lect matches for operational rules and apply them on the models. The results are returned
as an array of IDs for nodes and edges, which are either part of the match, or have been
created by rule applications. Querying the database in Neo is therefore comparable to
pattern matching on EMF models in IBeX.

The range of supported consistency management operations differs slightly between Neo
and IBeX. The operations CO, CC, FWD_OPT and BWD_OPT as core part of the hybrid
framework are supported by both components, as well as the GEN operation for randomly
generating consistent triples. While IBeX uses greedy operations for model synchronisation
(SYNC and INTEGRATE), the concurrent synchronisation operation described in Chap. 7
and 8 is implemented in Neo, denoted as CS in the following. As propagating updates on
one model to the unchanged other model is a special case of concurrent synchronisation,
no second operation is implemented for updates on one model. Similar to IBeX, Neo
currently supports SAT4J and Gurobi as ILP solvers; adapters for other solvers can be
added as required.

All consistency management operations follow a common work-flow, which we denote
as the “core cycle”, depicted in Fig. 9.12 as a UML activity diagram. Each activity is
implemented as a module, which can be reused and combined with other modules to
configure an operation.

9. The eMoflon Tool Suite 175

The start-up module performs initialisation steps, such as setting temporary translation
markers to their default value. In a loop, matches for (potential) rule applications and
other patterns (e.g., for constraints) are collected: The rule scheduler selects rules for the
subsequent pattern matching step, for which a maximum number of matches can be set.
This is especially helpful for model generation (GEN), and can also be useful for other
operations on very large models. For pattern matching, the first costly step in the database,
the scheduling request is translated into a cypher query for the database. Based on the
query results, matches are added to a match container. If this container is non-empty,
matches are selected from the match container to be applied according to an update policy.

While it is possible and greatly improves performance to select multiple matches to be
applied in parallel, the update policy must guarantee that these matches are not in conflict
with each other, i.e., make sure that only one of the potentially conflicting matches are
chosen for rule application. The selected rules are then applied in a subsequent step in
the database. Depending on the update policy, it is possible that there are still unused
matches in the match container at this stage. Match reprocessing denotes the strategy
applied to determine which matches can be safely used for the next iteration, and which
have become invalid and must thus be removed. In a final step of the main loop, a
pre-defined termination condition is checked. Such a condition could be, e.g., that no
new matches were found in the last iteration. If this condition does not yet hold, a new
iteration of the main loop begins. Otherwise, the clean-up module prepares the operation’s
termination. Depending on the concrete operation, a clean-up can entail removing all
temporary markers, performing ILP solving to determine the optimal result from a set of
candidates, deleting all elements created by other candidates, etc. In this step, it is also
guaranteed that the produced result fulfils all posed constraints.

Startup__| G "
Module Senerator ‘ Clean-Up
Initialisation
[condition
eMoflon reached]
matches?

[condition
Rule _]| Rule
Scheduler Scheduling

not reached]

Cleanup
Module

Match
Reprocessing

Termination o
Check | Term|n_a_t|on
Condition

Update Policy Match Reprocessor

Figure 9.12: Core cycle for consistency management

Front-end

In the following, an overview of the front-end of eMoflon::Neo is provided, and compared to
the front-end of eMoflon::IBeX. All textual specifications are expressed in eMSL, replacing
the mix of Ecore, XMI and other text file formats. To complement the textual eMSL editor,
PlantUML diagrams are automatically generated for all eMSL entities including (meta)-
models, graph patterns, constraints and rules. The PlantUML visualisation is almost
equal to IBeX, and therefore not repeatedly discussed here.

176 9.5. Consistency and Model Management with Neo

Figure 9.13 depicts the textual specification of the source (SysML) metamodel using
eMSL. For each class of the metamodel, there is a (nested) block containing attribute
definitions and outgoing edges to other classes. The most important UML language fea-
tures for specifying associations, such as multiplicities, aggregation and composition are
supported.

An instance of this metamodel is shown in Fig. 9.14, describing the state machine of
Fig. 1.3a as an eMSL model. At compile-time, metamodel-conformance is checked and
reported by the Xtext-based editor. In eMoflon::Neo, it is possible to export such models
to the graph database and thereby provide them as input to consistency management
operations. While this is very convenient for functional testing purposes, we are working
on exporting XMI files to the database to improve the compatibility to EMF-based tools.

[SysMLmsl ® Machinemsl 2 =8

“metamodel SysML { import "platform:/resource/SysMLToEventB/src/metamodels/SysML.ms1"
Statemachine {
.name : EString “model Machine {
-regions(@..*)-> Region e sm : Statemachine {
-ports(@..*)->Port .name : "Machine"

-regions->main
-ports->finish

Region { }
.name : EString
-subvertex(9..*)->State ° main : Region {
-transitions(@..*)->Transition .name : "main”
} -subvertex->init_state
-subvertex->start
Port { -subvertex->stop
.name : EString -transitions->initialisation
} -transitions->completion
}
State {
.name : EString o finish : Port {
} .name : "finish"
}
Pseudostate : State {
.kind : EString init_state : Pseudostate {
} .name : "INIT_STATE"
.kind : "init"
Transition { }
.name : EString
-s(1..1)->State e start : State {
-t(1..1)->State .name : "START"
-guards(9..*)->Guard
-triggers(0..*)->Trigger
-effects(0..*)->Effect stop : State {
} .name : "STOP"
}
Guard {
.name : EString e initialisation : Transition {
.body : EString .name : "INITIALISATION"
} -s->init_state
-t->start
Trigger { -effects->actl
.name : EString }
.body : EString
} o completion : Transition {
.name : "COMPLETION"
Effect { -s->start
.name : EString -t->stop
.body : EString }
}
} ° actl : Effect {
.name : "actl"
.body : "finish := TRUE"
}
}
Figure 9.13: SysML metamodel Figure 9.14: Example instance

TGGs can be specified in eMSL in a similar way, as shown in Fig. 9.15. Compared
to the TGG specification in IBeX, one can observe several similarities, such as the defi-
nition of source and target metamodels, as well as correspondence types. In contrast to
IBeX, the rule specification is part of the TGG definition, whereby it is possible to spread
the textual specification over multiple files to improve readability. Another difference is
that constraints can be part of the TGG: On the bottom of Fig. 9.15, the constraint
NoTwoSourceStates (cf. Fig. 6.2) is expressed in eMSL notation. While the graph pat-

9. The eMoflon Tool Suite 177

tern TwoSourceStates represents a sub-graph that must not occur in the output model
(denoted as N in Def. 4.13), a negative constraint is formed out of this pattern via the
keyword forbid. In a similar manner, patterns can also be attached to metamodels as
negative, positive, or implication constraints. As presented in Chap. 6, the consistency
management operations ensure that the output models fulfil all constraints of the TGG.

=n

0
o

@ SysMLToEventB.msl 5 ® SysMLToEventB.msl &
}mport "platform:/resource/SysMLToEventB/src/metamodels/SysML.ms1" ~ tripleRule StateToVariable : SysMLToEventB { ~
import "platform:/resource/SysMLToEventB/src/metamodels/EventB.ms1"

source {
. sm : Statemachine {
“tripleGrammar SysMLToEventB { -regions->r
source { }
SysML
} e r : Region {
++-subvertex->s
target { }
EventB
++s @ State {
.name := <stateName>
correspondence { }
Statemachine <- StatemachineToMachine -> Machine }

Port <- PortToVariable -> Variable

Port <- PortToInvariant -> Invariant
State <- StateTovariable -> Variable
State <- StateToInvariant -> Invariant
Transition <- TransitionToEvent -> Event
SysML.Guard <- GuardToGuard -> EventB.Guard }
Trigger <- TriggerToGuard -> EventB.Guard
Effect <- EffectToAction -> Action

target {
m : Machine {
++-invariants-> i
++-variables-> v

++v : Variable {

¥ .name := <stateName>
rules { !
PortTovariable ++1 : Invariant {
StatemachineToMachine .name := <invariantName>
AddRegion . .predicate := <predicate>
StateToVariable 3}
TransitionToEvent }
SourceStateToLeaveAction
TargetStateToEntgrActlon correspondence {
Ps?udostateToActlonS sm <- :StatemachineToMachine -> m
TriggerToGuard ++s <- :StateToVariable -> v
) GuardToGuard ++s <- :StateToInvariant -> i
}

constraints {

o7 attributeConstraints {
TransitionHasSourceState

o concat(
TransitionHasTargetState separator="_"
_
NoTwoSourceStates left="TYPEOF",
NoTwoTargetStates right=<stateName>,
} combined=<invariantName>
)

constraint NoTwoSourceStates = forbid TwoSourceStates concat(

separator="\u2208",

-pattern TwoSourceStates { left=<stateName>
) 5

t : Transition { right="BOOL",
-s-> sl combined=<predicate>
-s-> s2)
} }
sl : State)
s2 : State
} v v
Figure 9.15: TGG: SysMLToEventB Figure 9.16: Rule: StateToVariable

The rule StateToVariable is depicted in Fig. 9.16. For TGG rules, the eMSL syntax is
largely aligned to the textual syntax of IBeX. A main difference is the use of parameter
values (<stateName>, <invariantName> and <predicate>) to ease the definition
of attribute conditions. Simple checks for equality, such as for the name attribute of the
state s and the variable v, can even be expressed without an explicit condition. The other
two attribute conditions, which involve string concatenation, use these parameter values
as well. The PlantUML visualisation is again very similar to IBeX and not repeated at
this point.

While one can convincingly argue for the advantages of Neo compared to IBeX with
respect to flexibility, the intended improvements regarding scalability will be investigated
in Sect. 9.6.

178 9.6. Scalability Analysis

9.6 Scalability Analysis

In Sect. 9.3, 9.4 and 9.5, we presented IBeX and Neo as the two components of the eMoflon
tool suite. As scalability was one main motivation for developing Neo, this section’s eval-
uation shall show under which conditions the use of graph databases instead of the EMF
framework can be beneficial. A fair comparison is only possible for the operations CO,
CC, FWD_OPT and BWD_OPT without graph constraints, because their implementation
is largely equal in both tools. While Sect. 7.7 has shown that the concurrent synchronisa-
tion approach of Fritsche et al. [FKM™20] clearly outperforms the operation of the hybrid
framework, this should rather be attributed to the conceptual background than to the un-
derlying technology. In other words, the differences with respect to runtime performance
can be regarded as “the price of fault-tolerance” for concurrent synchronisation.

To compare the scalability of IBeX and Neo, we measured its runtime performance using
examples FamiliesToPersons, ClassDiagramToDatabaseSchema and CompanyTolT from
the BX example repository!”. We investigate the following research questions:

RQ1 How does the use of graph databases relate to runtime performance? Are differences
for growing (meta-)model sizes or an increasing number of rules observable?

RQ2 Are there differences between the supported operations regarding runtime perfor-
mance? For which operations is the use of graph databases especially beneficial?

Setup: The three examples were tested for model sizes from 1,000 to 100,000 elements
(nodes and edges). We repeated each test run five times with a time-out of 20 minutes
and took the median to reduce the effect of outliers. The execution environment for the
test runs was a standard notebook with an Intel Core i7 (1.80 GHz), 16GB RAM, and
Windows 10 64-bit. eMoflon::Neo was installed based on an Eclipse IDE for Java and DSL
Developers, version 2021-03 (4.19.0) with JDK version 13. 4GB RAM were allocated to
the JVM running the tests, while 8GB were allocated to Neodj (version 3.5.8). Gurobi
8.1.1 was used as an ILP solver.

Results: The runtime measurements for the three examples are depicted in Fig. 9.17a -
9.19b for IBeX and Neo. Note that a logarithmic scale is used on both axes to show results
for small and large models in the same diagram. While an overview of the experiment was
already given in prior work [WA21a], the complete dataset is available online!®.

For FamiliesToPersons (Fig. 9.17), IBeX and Neo perform equally well for FWD_OPT,
whereas Neo shows better scalability for all other operations. For BWD_OPT and CC,
both IBeX (10,000 elements) and Neo (20,000 elements) reached the time-out.

IBeX appears to scale better for ClassDiagramToDatabaseSchema (Fig. 9.18) with the
exception of CC on large models. We assume that the linear, hierarchical metamodel
structures of this example are advantageous for the pattern matcher of IBeX.

For CompanyToIT (Fig. 9.19), the runtime differences are substantial for all operations
except BWD_OPT. For FWD_OPT and CC, IBeX again reaches the time-out earlier than
Neo (50,000 and 5,000 elements). Compared to the other examples, CompanyTolT has
slightly larger rules and metamodels, and generally a more complex pattern structure.

Summary: The results indicate that eMoflon::Neo scales better than eMoflon::IBeX
with increasing rule and metamodel complexity, whereas IBeX might show a better per-
formance for simpler TGGs (RQ1). The gain in performance, however, depends more on
the nature of the concrete example than on the particular operation (RQ2).

"http:/ /bx-community.wikidot.com/examples:home
Bhttps://docs.google.com /spreadsheets/d/1ujxPmeCJY 7n7-tFh9Ks5qPcBeMB_TUnLhl6tcCgGIQY

http://bx-community.wikidot.com/examples:home
https://docs.google.com/spreadsheets/d/1ujxPmeCJY7n7-tFh9Ks5qPcBeMB_TUnLhl6tcCgGJQY

9. The eMoflon Tool Suite 179

W BWD OPT ®m CC ® CO W FWD_OPT W BWD OPT ®m CC ®m CO W FWD_OPT
1000 1000

100

2, 10 @ 10
1
1 t.; - '-.=
1000 5000 10000 50000 1000 5000 10000 50000
[#nodes + #edges] [#nodes + #edges]
(a) eMoflon::IBeX (b) eMoflon::Neo

Figure 9.17: Runtime measurements: FamiliesToPersons

m BWDOPT m CC MW CO M FWD_OPT m BWD OPT m CC MW CO M FWD_OPT

1000 5000 10000 50000 1000 5000 10000 50000
[#nodes + #edges] [#nodes + #edges]
(a) eMoflon::IBeX (b) eMoflon::Neo

Figure 9.18: Runtime measurements: ClassDiagramToDatabaseSchema

W BWD OPT m CC ® CO W FWD_OPT W BWD OPT ®m CC ®m CO W FWD_OPT
1000 - me = T 1000
, P2 “,.l
’ - .
100
o) o 10
1
1000 5000 10000 50000 1000 5000 10000 50000
[#nodes + #edges] [#nodes + #edges]
(a) eMoflon::IBeX (b) eMoflon::Neo

Figure 9.19: Runtime measurements: CompanyTolT

Threats to validity: Both tools are under active development and therefore subject
to continuous improvement, such that direct comparisons are only valid for a specific
point of time. We restricted the comparison to similarly implemented operations, not
involving strategies such as (concurrent) model synchronisation, which is implemented
very differently in both tools (cf. Sect.7.7). As we have shown that the results strongly
depend on the concrete examples, it would be important to test with further realistic
(industrial) examples to gain more insights on scalability.

180 9.7. Teaching MDE with eMoflon

9.7 Teaching MDE with eMoflon

Besides gaining insights about quantitative aspects with respect to runtime performance
(cf. Sect. 9.6), we are also interested in getting feedback on eMoflon from the user perspec-
tive to further improve the tool. We conducted an empirical study with 40 students of an
undergraduate, introductory course'® on model-based software development at Paderborn
University. An online questionnaire?” was designed as a mix of quantitative multiple choice
and qualitative open questions, which refer to the IBeX-GT component. In particular, the
following research questions were investigated:

RQ1 How do users perceive the editing experience provided by a combination of textual
concrete syntax and coupled, read-only, partial visualisation?

RQ2 How do users judge the ease with which rules and patterns can be mixed with Java
code and integrated in Java applications?

RQ3 How do users rate the relative importance of different language features?

RQ4 Do users appreciate our current documentation as a set of handbooks?

An overview of the results was already presented in prior work [WARV19]. For further
details of this empirical experiment, the interested reader is referred to Robrecht [Rob18].
Figure 9.20 depicts an overview of the results from the quantitative part of the survey.
All detailed results of the entire experiment are available online.?! To investigate our four
questions, we formulated 23 multiple choice questions divided up into 5 categories. A scale
of 1 to 5 was used for each question with 1 for “low” and 5 for “high”.

The first category Prior Experience was used to characterise our participants: program-
mers with sufficient experience with a modern object-oriented language, moderate prior
experience with Eclipse, but with little to no prior experience with MDE, GT, or any
visual language at all.

Regarding (RQ1), our results indicate that many users find the textual concrete syntax
acceptable, and even more appreciate the visualisation. While some users criticise the fact
that the visualisation is read-only, our results show that it is probably not worth developing
a visual editor, especially considering that most users are satisfied with the mix of a textual
syntax and a coupled visualisation that adjusts dynamically to and focusses only on the
current selection in the textual editor. By using the Xtext framework, our results show
that it is possible to provide adequate validation errors and other usability features.

Concerning (RQ2), our results indicate that while the expressiveness of the rule and
pattern language is judged to be high enough, most students are uncertain if and how [BeX
can be used in real-world applications. Regarding the integration of Java and GT code,
being able to switch seamlessly between Java and GT files was judged to be acceptable but
in need of improvement. The automatically generated JavaDoc for the API is appreciated
by only a few users; most are neutral and apparently do not see the direct benefit of this.

Regarding (RQ3), most students regard (positive and negative) application conditions
and attribute conditions to be most important, followed by support for modularity (rule
refinement), and complex application conditions (combination of conditions via conjunc-
tion (&&) and disjunction(| |)). For many students, it is hard to appreciate the potential
of incrementality and reactive programming, though.

9https://mde-lab-sessions.github.io /running-example-for-lecture
2Ohttps://docs.google.com /forms/d/1r5pgk TvOCcvTQoqHIUuHcQqULIBASCmbHgpt961 BtHU
2https://docs.google.com /spreadsheets/d /1LAUIFPNmM2a4l- fF892FQPzos3RIMz7-MQQfQ1BipBS

https://mde-lab-sessions.github.io/running-example-for-lecture
https://docs.google.com/forms/d/1r5pgkTv0CcvTQoqHlUuHcQqULl6A8CmbHgpt961BtHU
https://docs.google.com/spreadsheets/d/1L4UlFPNmM2a4l-fF892FQPzos3R9Mz7-MQQfQ1BipB8

9. The eMoflon Tool Suite 181

Prior Experience

MDE

GT

Eclipse

Programming

Visual languages

Usability of tool features
Textual syntax

Visual syntax

Read-only visualization

Mix of textual and visual syntax
Error messages

Usability in general

Usage for Java applications
JavaDoc

Switching: Java / gt files
Applicability
Expressiveness

Importance of language features
Attribute conditions
Refinements

Application conditions
Complex conditions
Incrementality

Quality of the handbook
Enjoyment

Understandability

Appendix

0%

N
3]
°

50% 75%

o
o
°

W 1-Verylow [2-Low 3-Medium 1 4-High [5-Veryhigh

Figure 9.20: Student feedback

Finally, our handbook?? (RQ4) received mostly positive feedback, with many students
preferring the example-driven, tutorial-like explanation to the complete, but reference-like
appendix.

9.8 Summary and Discussion

The fault-tolerant, hybrid approach to consistency management, which was presented in
Chap. 5 — 8 of this thesis, is fully implemented as part of the eMoflon tool suite, of which
an overview was given in this chapter. The tool suite consists of the components IBeX
and Neo, while the back end of IBeX can be further subdivided into a layer for GT,
and a layer for TGGs that builds upon it. IBeX-GT has a special focus on supporting
reactive programming via the incrementality of its underlying and exchangeable graph
pattern matching engine. IBeX-TGG supports numerous consistency management opera-
tions including forward and backward transformation, (concurrent) model synchronisation,
and consistency checking with and without correspondence links. While the transforma-
tion and consistency checking operations follow the hybrid approach of Chap. 5, the two

https://bit.ly/3qfDhCr, https://bit.ly/3223koe

https://bit.ly/3qfDhCr
https://bit.ly/3223koe

182 9.8. Summary and Discussion

synchronisation operations are implemented in a greedy (and therefore fault-intolerant)
manner. Neo as the latest addition to the eMoflon tool suite leverages Neo4j as a graph
database for all runtime models. In this component, all operations are implementations
of the hybrid fault-tolerant framework.

We discussed our most important requirements for fault-tolerant tool support, i.e., in-
crementality, scalability, flexibility and modularity, and could not identify another tool
that sufficiently addresses these requirements already. The hybrid approach was therefore
implemented in eMoflon as a conceptually and technically uniform interpretative algo-
rithm, which leverages and suitably combines an incremental graph pattern matcher and
an ILP solver.

Concerning the usability of the tool, especially for teaching, ambivalent but still pleasant
feedback for IBeX was received in an empirical study with 40 undergraduate students. As
a further advancement of the front-end, a novel specification language eMSL was developed
for Neo that uniformly supports (meta-)modelling, patterns, constraints, rules and TGGs.
A comparison of the front-ends of IBeX and Neo in a further empirical experiment is left
to future work.

Our performance comparison of IBeX and Neo indicates that the use of graph databases
instead of the EMF framework allows for improved scalability, especially for more complex
examples and for growing model sizes. As our evaluation was restricted to a comparison
with respect to runtime performance, we plan to investigate on the benefits regarding
flexibility and potential drawbacks of storing (meta-)models in an external graph database.
Nonetheless, we are working on improving the scalability of both components of the tool
suite. For IBeX, this requires understanding how best to structure the generated pattern
invocation networks passed to the incremental pattern matcher, taking the nature of the
involved metamodels, the size of the models, and the size and connectivity of all patterns
into account. For Neo, room for improvement consists in understanding and leveraging
caching mechanisms of the database, and optimising the Cypher queries by implementing
re-use mechanisms.

With respect to support for fault-tolerance in MDE-tools, it became apparent that
the conceptual framework of this thesis could be entirely implemented in Neo. With the
partial implementation in IBeX, we were able to show that conventional and fault-tolerant
operations can co-exist in the same tool. While the EMF framework places obstacles on
the dynamic adaptation of models and metamodels, the feasibility of implementing fault-
tolerant operations based on EMF could be underpinned. As future work, we plan to
improve the interoperability between Neo and EMF-based tools regarding model and meta-
model exchange. Regarding the implementation in Neo, the flexibility of graph databases
can be further leveraged for co-evolving models and metamodels.

An important aspect that remains unaddressed up to here is user interaction: The
described operations are fully automated, whereas involving the user in controversial de-
cisions was listed as a requirement in Sect. 1.1. To improve the situation, the MDE-
debugging component “VICToRy” was developed, which will be presented in Chap. 10.
Furthermore, two examples of industrial use cases shall be given in Chap. 11 and 12 to
demonstrate the applicability of the eMoflon tool suite in practice.

10 The VICToRy Debugger

The eMoflon tool suite is capable of supporting all operations of the fault-tolerant hybrid
framework, leveraging the power of external graph pattern matchers and ILP solvers. All
operations are carried out completely in the background, though, which contradicts the
requirement of involving the user in controversial decisions. As a step towards improving
this situation, we present VICToRy, a debugger for model generation and transformation
based on TGGs. In addition to a fine-grained, step-by-step, interactive visualisation,
VICToRy enables the user to actively explore and choose between multiple valid rule
applications thus improving control and understanding.

The chapter is structured as follows: After a brief introduction (Sect. 10.1), VICToRy is
compared to existing MDE debuggers in Sect. 10.2. An architectural overview is provided
in Sect. 10.3, before Sect. 10.4 introduces the breakpoint concept. Section 10.5 provides an
overview of the debugger’s front-end. The Ul prototype of a concurrent synchronisation
component is presented is Sect. 10.6. The results of empirical studies with both MDE
experts and novices are summarised in Sect. 10.7, before Sect. 10.8 concludes the chapter.

10.1 Introduction and Motivation

In Chap. 9, an implementation of the hybrid approach as part of the eMoflon tool suite
was demonstrated, including operations for model transformation, consistency checking,
and (concurrent) synchronisation. The supported operations, however, run completely in
the background with only input and output made visible to the user, arguably reducing
both understandability and controllability. One of the requirements for fault-tolerant
consistency management approaches, according to Sect. 1.1, is that the user should be
involved in controversial decisions, i.e., decisions that cannot be made only based on
the consistency relation specification. Even for uncontroversial transformations, we have
observed that novice users are unable to fully understand how TGG tools - viewed as
black-boxes - determine a specific result.

While debugging facilities are a handy feature for transformation and consistency check-
ing tasks, Chap. 7 and 8 have shown that finding satisfactory solutions after concurrent
updates is hardly possible without involving the integration expert. On the one hand, the
hybrid approach is inherently fault-tolerant and offers configuration parameters to incor-
porate user preferences, but does not scale well enough for larger models. Furthermore,
the outcome of the optimisation process is rather opaque without in-depth knowledge of
the underlying technology. On the other hand, the approach of Fritsche et al. [FKM™*20]
exhibits a good runtime behaviour, but relies on consistent input models and expects the
user to predefine a synchronisation strategy for the entire process.

To address these open challenges, the VICToRy debugger' was developed as an add-on
component for consistency management tools, which enables the user to step-wise execute
consistency management tasks. While for most GPL debuggers, a step covers a single
instruction, a TGG rule application is this “smallest executable unit” for the VICToRy

Lgithub.com/eMoflon /emoflon-victory

github.com/eMoflon/emoflon-victory

184 10.2. Related MDE Debuggers

debugger. It presents possible operational rules including their concrete application con-
texts to the user, as well as a history of the involved models as they evolve during the
transformation process. Additionally, the user can inspect and choose a valid rule appli-
cation at each time step, or decide to resume the automated process in the background.
In combination with a sophisticated breakpoint concept, it is possible to efficiently debug
larger model transformations. This is what distinguishes the VICToRy debugger from all
MDE debuggers we are aware of, which focus on making the pattern matching process and
the generation of nodes and edges transparent for the user. In order to support the integra-
tion expert restoring consistency after concurrent updates, a concurrent synchronisation
component was carefully designed and prototypically implemented.

While some TGG tools provide basic debugging functionality for the transformation
process (cf. Sect. 10.2), none of them enable the user to track let alone influence the
choice of rule applications. VICToRy is currently integrated into the eMoflon tool suite,
but can be potentially connected to other Java-based TGG and even general graph trans-
formation tools via the defined interfaces. This means that existing and future tools can
be enriched with debugging facilities to increase user involvement and understanding in
the transformation process.

10.2 Related MDE Debuggers

Several approaches to debugging in MDE have been proposed, including fundamental
concepts, debugging DSL code, and debuggers for non-deterministic approaches.

Mierlo et al. describe a stepping semantics for debugging in MDE with four levels
of different granularity [MTV18]. The proposed approach is, however, conceptual and
does not provide an implementation to the best of our knowledge. A debugger for Petri
nets is based on Modelverse and supports basic functionality including breakpoints known
from GPL debuggers [MV17]. The prototype is planned to be extended to support model
transformations as well.

A wide range of facilities for DSL debugging is presented in previous work. Omniscient
debugging - in contrast to stepwise execution - provides the user with enhanced navi-
gation and exploration features such as reverting execution steps at runtime, impacting
performance and scalability. Therefore, approaches are often tailored to rather small in-
stances [CESG17] or specific use cases, such as xDSMLs (a subset of DSLs) [BCC*15].
Lindeman et al. propose a declaratively defined debugger for DSLs [LKV11]. The ap-
proach was integrated into the Spoofax language workbench and evaluated by case studies
involving the textual DSLs StrategoTL and WebDSL. However, several limitations are
mentioned for debugging modelling languages and model transformations. Laurent et al.
extended the foundational UML (fUML) by debugging facilities [LBG13]. While the ap-
proach is a tool-independent add-on, it considers only the execution of models complying
to the f{UML standard.

For debugging rule-based systems, Tichy et al. sketch how to execute debugging steps for
graph transformations, taking the tool Henshin as an example [TBK17]. In contrast to our
approach, the debugging of rule applications is much more detailed and takes the matching
process into account as well, whereas an implementation is not described. Similarly, Jukss
et al. use graph transformations as an underlying formalism for a debugger integrated
into AToMPM [JVV17]. The approach focusses on a fine-grained inspection of the rule
application process, whereas the user is not enabled to choose between multiple possible
rule applications. For algebraic graph transformation, the tool AGG [RET11] provides a
mode for stepwise execution of graph transformations. Rule and match can be chosen by

10. The VICToRy Debugger 185

the user in each step, while it is neither clear which rules are applicable in the current
state, nor a protocol of previous rule applications is provided.

Furthermore, multiple TGG tools (cf. Sect. 9.2) have been extended by debugging
facilities, which appear to be limited in several respects, though. A concept for debugging
TGGs at different levels was introduced to the TGG Interpreter by Rieke [Riel5]. The
debugging facilities are, however, tightly interwoven with the specific tool and several open
challenges for practical use are mentioned. For MoTE, a monitor is implemented which
allows to stepwise execute model transformations [GHL14]. However, the user cannot
influence the execution order, which is determined by the order of correspondence nodes
in a processing queue and their respective types. A debugging mode is implemented
for EMorF as well, but both a detailed description and the tool itself are currently not
available. For all other TGG-based tools, debugging functionality is missing to the best
of our knowledge.

Besides these rule-based approaches, debugging plays an important role in other MDE-
related fields as well. Proposed concepts include work on dynamic meta modelling [BSE10],
Discrete Event System Specifications (DEVSs) [MTV17], and story diagrams [KHW12],
which are each tailored to a specific tool and use case, though. The tool TETRA Box is
based on PaMoMo and involves white-box testing of transformation languages by symbolic
execution of model transformations [SKW™13], which is independent of the underlying
transformation language but not yet tested with realistic examples. SyVOLT localises
errors in the input based on igraph and the T-Core framework [OLVV18], while the focus
of debugging is set on detecting reasons for contract violations rather than on the trans-
formation process. Ferdjoukh et al. localise faults in metamodel design based on static
analyses and implemented their approach in TIWIZI and GRIMM [FM18], whereas model
transformations are not taken into account.

In total, no MDE debugger we are aware of provides a step-wise visualisation of large-
scale model transformations, in which the user is enabled to decide between multiple
possible rule applications.

10.3 Architecture

VICToRy can be connected to different Java-based TGG tools by implementing an inter-
face for transferring data between the debugger and the respective tool. An overview of
this interface is depicted in Fig. 10.1. Compositions have multiplicities of 1 and 0. . *,
if not stated otherwise. The central component of this interface is the DataPackage
class, which bundles the data that is transferred between VICToRy and the TGG tool. A
DataPackage contains all relevant Rules, Matches, and Rule Applications. Mul-
tiple Mat ches can be determined for the same Rule. Furthermore, a RuleApplication
object is created when a Rule is applied for a concrete Match.

These three classes are represented as Graphs consisting of Nodes and Edges. There
exists a mapping from each Edge to a source and a target Node, reflecting the categorical
approach to graph transformation (cf. Def. 3.1). The Nodes have a set of Attributes,
and a Domain, i.e., a marking that indicates whether they belong to the source or target
model. For Edges, the domain can be determined from their source and target nodes: If
both Nodes are part of the source (target) model, the Edge also belongs to the source
(target) model. If Edges connect Nodes of different domains, VICToRy considers the
Edge as a correspondence link (EdgeType “CORR”). Within a rule or a graph instance,
Edges have the EdgeType “NORMAL”. Mappings between rules and graph instances are

186 10.4. Breakpoint Concept

represented as Edges of type “MATCH”. Finally, each element has an Action, indicating
whether the element is created, translated (marked), or required as context by the rule.

Match DataPackage
name : String Rule
0.* 1
blocked : boolean name : String
t 1 o..*}
1 . .
Graph 1 Py RuleApplication
> N . Qtri
«enumeration» : name : String
Domain «enlfo\n;z(r)antmn» index : String
SRC
1| CONTEXT 1
TRG
CREATE «enumeration»
i . EdgeType
Attribute 0.* | TRANSLATE geTyp
name : String - Node 0.* 1 | NORMAL
1 L
type : String name : String src 0.7 Edge CORR
<—@ . String 10--°
value : Object type : String 1 rg 0" label : String MATCH

Figure 10.1: Data exchange with VICToRy

The component diagram in Fig. 10.2 describes how the debugger has been embedded
into the eMoflon tool suite, and can potentially be connected to other Java-based TGG
tools. Currently, both IBeX (Sect. 9.4) and Neo (Sect. 9.5) implement the interface to the
debugger. The VICToRy adapter is tool-specific and needs to be implemented in order
to connect the debugger to a TGG tool. It is responsible for providing both the debugger
and the TGG tool with the required information, as shown in Fig. 10.1. The debugger
itself consists of a controller that delegates user commands to the adapter, and in turn
receives updated information about new matches and the current state of the models.
All relevant information is made available to the user via the UI, whereas the breakpoint
manager is responsible for checking breakpoint conditions. In the following, an overview
of the breakpoint concept (Sect. 10.4) and the UI (Sect. 10.5) will be provided.

VICToRy E VICToRy Adapter E

Deb TGG Tool
Debugoer & |11 & adapter Contrller & | HH—0) ool]
® o A ®

ul E BreakpointE Data Structure E

Manager Wrapper

eMoflon::Neo E |

Figure 10.2: Integrating VICToRy into the eMoflon tool suite

eMoflon::IBeX E

10.4 Breakpoint Concept

While performing a consistency management task with VICToRy, the tool switches be-
tween the two modi RUN and BREAK, as depicted in Fig. 10.3. In the RUN mode, possible
matches for rules are collected and one of them is chosen to be applied. In case of multiple
options, rule applications are chosen according to a configurable component (e. g., at ran-
dom in the simplest case) without user interaction, which is the usual work-flow for model

10. The VICToRy Debugger 187

transformation tools. This procedure is repeated until no further matches can be found
(leading to the termination of the process) or until a breakpoint is reached. In the latter
case, the tool switches to the BREAK mode, where the VICToRy Ul is visible and each rule
application requires a user interaction: Either the user lets the tool choose the next rule
application, or selects a rule application manually from the list of all options. To return
to the RUN mode, the user resumes the automated choice of rule applications by a corre-
sponding Ul command. This behaviour is similar to debugging concepts in contemporary
IDEs, but without the possibility of stepping into a rule application.

Consistency management process

TGG tool VICToRy User
Stop criterion [BREAK] N
reached?
Do pattern [no—| Evaluate
matching step breakpoints

[yes]

user
command?

Enter BREAK
yes] state >

Select match Enter RUN Run Y
automatically Y state (Run]

Breakpoint
hit?

[Step] [Manual]
J

k Select match
Apply match manually

Figure 10.3: Breakpoint concept of the VICToRy debugger

The implementation of the breakpoint concept follows a slightly more complex work-
flow, as there are multiple evaluation times for breakpoints: A breakpoint can be hit either
after the pattern matching step (as shown in Fig. 10.3), after the match selection, or after
the actual rule application. While the first and third evaluation time mainly differ in their
presentation, the second time enables the user to, e. g., revert an automated rule applica-
tion step and select another option manually instead. As the handling of breakpoints is
equal for all evaluation times, the diagram was simplified to preserve readability.

While the previously described work-flow applies to all breakpoints of the VICToRy
debugger, there are multiple types of breakpoints that serve different purposes. They can
be subdivided into model breakpoints, match breakpoints, and combined breakpoints, which
will be explained in the remainder of this section.

Model Breakpoints

The break conditions of model breakpoints solely depend on the current state of the model
instance at hand. While the model size breakpoint is part of the implementation, there is
only a conceptual idea for the pattern breakpoint.

e Model size breakpoint: This breakpoint type counts the number of nodes in the
triple. As soon as a predefined size is reached, the breakpoint is hit. The intention
behind this type is to pause the transformation process at some point to inspect the
intermediate result.

188 10.5. An Overview of the User Interface

e Pattern breakpoint: Breakpoints of this type are hit as soon as a specified pattern
can be matched on the host graph at least once. Especially for faults related to
domain constraints, this breakpoint type is useful as graph patterns build the basis
for positive, negative and implication constraints in eMoflon (cf. Sect. 9.5).

Match Breakpoints

Match breakpoints refer to the current match to be applied, i.e., the condition rather
depends on the next transformation step than on the entire model instance. All match
breakpoints except the node breakpoint are implemented for the VICToRy debugger.

e Rule name breakpoint: With this breakpoint type, the transformation process
breaks each time a predefined rule (identified by its name) is applied. This type is
handy in cases where the user assumes that a the definition of a particular rule is
faulty.

e Number of matches breakpoint: For a predefined number n, a breakpoint of
this type is hit if at least n matches are collected. The counted matches can be
restricted to one or multiple rules.

¢ Element type breakpoint: Every time an element of a specific type is created,
the breakpoint condition is fulfilled. Element types of all three models can be used.

e Attribute condition breakpoint: Attribute conditions were introduced as a TGG
language feature in Sect. 4.4, but this breakpoint type is not restricted to conditions
that are attached to rules of the TGG at hand. Any boolean expression that can be
defined using the metamodel attributes and Java standard language features can be
expressed, making this breakpoint type especially powerful.

o Node breakpoint: Finally, the breakpoint concept involves a breakpoint type that
pauses the transformation process as soon as a particular node, identified by its ID,
is part of a match. It can be used in situations for which it is probable that a fault
occurs when a specific node is created or translated.

Combined Breakpoints

Combined breakpoints can be formed out of all previously described breakpoint types (also
denoted as “atomic” breakpoints). In a combined breakpoint, both atomic and combined
breakpoints can be connected with AND, OR, and NOT, such that a propositional logic
over breakpoints is defined. Considering a breakpoint as a boolean variable that is true if
and only if the breakpoint condition is fulfilled, the combined breakpoint is hit as soon as
the formed expression is true.

The conceptual introduction to the architecture and the breakpoint concept of the
VICToRy debugger is complemented with a brief presentation of the UI in Sect. 10.5.

10.5 An Overview of the User Interface

This section provides an overview of features of VICToRy from the UI perspective, that
can help novice users explore an unknown TGG. Besides the main window, a menu for
defining breakpoints, and the concurrent synchronisation component are presented.

10. The VICToRy Debugger 189

Configurable Visualisation of Rules and Rule Applications

To understand the effects of a rule application on a concrete model, it is essential to visu-
alise both the rule and the resulting model changes at runtime. VICToRy supports both
features via its visualisation section, that is shown in the right part of Fig. 10.4. It shows
the visualisation of a model triple resulting from applications of the rules Statemachine-
ToMachine and PortToVariable. Following the colour scheme of eMoflon, the background
colour of source model elements is peach, while target model elements have a rose back-
ground. Correspondences are represented as dashed black lines. The visual syntax for
rules is equal in VICToRy and eMoflon, and therefore not repeated at this point. The
visualisation of rules and the resulting triples is based on PlantUML and is generated
automatically on rule and match selection, which will be explained later in the course of
this section. Editing rules is only possible in the underlying TGG tool, meaning that rules
cannot be adapted at runtime.

To cope with a wide range of TGG rule sizes, model sizes, and the varying proficiency
of users, it is crucial to be able to configure the visualisation. Via a pop-up menu that is
depicted in the middle of Fig. 10.4, the user has a range of configuration options (available
via clicking the “User Options” button):

e Choice of displayed elements: For each domain (source, target, correspondence),
the user can hide the respective elements. For rules, it is also possible to display
only context elements and thus focus on the structure required for a match of that
rule on the model instance.

e Abbreviation of labels: For nodes, edges and correspondences, it is possible to
display the labels completely, in an abbreviated form containing the first and last
three letters, or not at all.

e Neighbourhood of matches: As models of realistic size can become too large to
be completely displayed within the debugger, only the match of a selected rule ap-
plication and a configurable neighbourhood of this match is displayed. The distance
of a node to the match is defined as the shortest path from this node to any node
contained in the match; nodes in the match itself are assigned a distance of 0. The
k-neighbourhood of a match contains all nodes with a distance of at most k € [0; 3.

Explorable and Interactive Overview of Applied Rules

Changes in the visualisation can be triggered by selecting rules or potential rule appli-
cations from the rule section (top left of Fig. 10.4) or actual rule applications from the
protocol section (bottom left of Fig. 10.4).

The rules section provides an overview of all rules of the TGG. Our example TGG
SysMLToEventB consists of 14 rules?, which are depicted as a list. For each rule in the list,
the number of available matches in the current model and the number of applied matches
are displayed together with the name of the rule. Rules with a dark grey background are
not applicable in the current state of the model, whereas rules with a white background
have at least one applicable match. This provides a quick overview and is useful for TGGs
with a large number of rules. Furthermore, rules that have never been applicable are
crossed out, providing a quick visual indication of rules that might be problematic.

2Due to technical reasons, the implementeed version of the TGG slightly differs from the running example
of this thesis, which only consists of ten rules.

10.5. An Overview of the User Interface

190

K| — O
Help
> StatemachineToMachine (matches: 1, applied matches: 1) I
jti 0 i : User Options
> IgnoreRegion (matches: 1, applied matches: 0)
; . ; . Show Graph Elements
has: Created Elements
plied SRC Elements
has: TRG Elements
g Cu e f1n e mliad oo root_0_0: Statemachine : Statemachine
el ke HEREERE e Shasd CORR Elements EString StatemachineName = amet
> TriggerToGuardRule (matches: 1, applied matches: 0) Edge Labels R
EffectsToActionlslandRule ﬁ.-:mﬁn:mm" 1, applied matches: 0) e Eil Al bots+_
- ! N o lrmatchas: O3 . . 0 (O Abbreviated (®) Full hots_0_0_0 - Ports Pors /, SiatemasieTaNach
atemachine lolachine
> TransitionToEventlslandRule (matches: 1, applied matches: 0) Correspondence Edge Labels Estring Portsname = lacus N
» PortsToVariableRule (matches: 1, applied matches: 1) ! "
- app Show CORR Labels /
n Ay
(O Abbreviated ®) Full ! ., —
.”Uonm..o,\m:m_u_m root_1_0: Machine : Machine
MNode Labels \ EString name = amet
Show Node Labels N
Appl S variables
e E | (O Abbreviated (® Full Se
Rule application #1: Ports ToVariableRule Gl e e variables_1_0_0: Variable : Variable
Rule application #0: StatemachineToMachine EStnclname heus
Size: -
T
Show complete model | Configure Breakpoints| Save Models Restart
h I del f k del

User Options

Figure 10.4: Visualising rules and matches

10. The VICToRy Debugger 191

All matches of a rule can be viewed as sub-entries by expanding the corresponding rule
entry in the list. When selecting a rule from this list, it is visualised in the right part of
the UL To apply a rule, the user can either double-click on a particular match, select the
match and press the “Apply” button, or simply double-click the rule to apply a random
match of this rule. The buttons "Run” and ”Step” instruct the debugger to select the
next match automatically (cf. Fig. 10.3). The user command is delegated to the connected
TGG tool, which must handle the actual rule application. As soon as VICToRy receives
a response, the Ul is updated to reflect the new state of the model and available matches.

The VICToRy debugger provides traceability information by keeping track of all pre-
vious rule applications. This sequence of rule applications is referred to as the (transfor-
mation) protocol. For each protocol entry, the name of the rule as well as a unique ID
for the rule application is displayed (cf. bottom left of Fig. 10.4). If a protocol entry is
selected, the state of the model as created by all rule applications up to and including the
selected one is displayed with a configurable neighbourhood. It is also possible to select
multiple entries: the respective rule applications are then combined into a single step and
visualised accordingly.

On the bottom right of Fig. 10.4, several buttons provide the user with additional
functionality. The “Show complete model” button resets the selection in the left part of
the screen and visualises the entire triple instance. The three models in their current state
can be stored as XMI files to continue the debugging process later (“Save models”). It
is also possible to start the transformation process from scratch again (”Restart”) or to
stop the process completely ("Quit”). Finally, breakpoints can be defined on a separate
screen, which is explained in the following.

Breakpoint Menu

The definition of breakpoints (cf. Sect. 10.4) for the debugging process is possible via a
pop-up menu that can be opened by selecting the “Configure Breakpoints” button on the
main window. A list of breakpoints of different types is depicted in Fig. 10.5 and 10.6. The
colour scheme indicates that the model size breakpoint (in grey) is deactivated, whereas
the number of matches breakpoint (in green) is evaluated after the pattern matching step.
The combined breakpoint (in black) is evaluated also after the automatic selection step.
Below the list of breakpoints, further options enable the user to configure the breakpoint.
The options differ depending on the breakpoint type, such that the Ul is dynamically
adapted to the type of the selected breakpoint.

In Fig. 10.5, an element type breakpoint as part of the combined breakpoint is selected.
The element type can be chosen via a drop-down menu, currently the type Trigger is
selected. The evaluation time depends on the configuration of the combined breakpoint,
but it is possible to disable the element type breakpoint at this level.

The configuration of the combined breakpoint is depicted in Fig. 10.6. Besides the
element type breakpoint of Fig. 10.5, it consists of a rule name breakpoint for the rule
TransitionToEvent. By using the combination type AND, we specify that the combined
breakpoint is hit only if the conditions for both sub-breakpoints are fulfilled. Via the radio
buttons on the bottom, the user can choose whether the conditions must be fulfilled by the
same match, or whether it is sufficient if the conditions are fulfilled by different matches.
Combined breakpoints can also be used as part of other combined breakpoints, making it
possible to create complex nested structures.

After providing an overview of the debugger’s main component, the prototypical im-
plementation of the concurrent synchronisation component is sketched in the following
Sect. 10.6.

192 10.6. Concurrent Synchronisation Component

Breakpoint Menu X Breakpoint Menu K
Add Remove Add Remove
NumberOtMatchesBreakpoint (2) [State ToVariableRul NumberOfMatchesBreakpaint (2) [State ToVariableRul
v AND-CombinedBreakpoint v AND-CombinedBreakpoint
CreatedTypeBreakpoint (Trigger) CreatedTypeBreakpoint (Trigger)
RuleNameBreakpoint (TransitionToEvent) RuleNameBreakpoint (TransitionToEvent)
< >

Breakpoint evaluation time
After pattern matcher found matches
After automatic match selection

Combination Type
< >

® AND
Breakpoint evaluation time Oor
Enabled

Evaluation Type

Type of created element (®) Break, if for all breakpoints a match can be found.

Trigger R7 (O Break, if a single match satisfies all breakpoints.

Figure 10.5: Element type breakpoint Figure 10.6: Combined breakpoint

10.6 Concurrent Synchronisation Component

The hybrid approach to concurrent model synchronisation as presented in Chap. 7 and 8
computes a solution in a fully automated manner. While this strategy is time-efficient and
minimises manual efforts, the acceptance of a consistency management tool would benefit
substantially from involving the user, i.e., the integration expert, into the resolution of
controversial decisions. To improve the situation, we designed a concurrent synchronisa-
tion component, enabling the integration expert to influence the synchronisation process.

As this component — to the best of our knowledge — is the first of its kind, the require-
ments for such an interactive synchroniser are largely vague. Clarifying the requirements
and taking design decisions carefully seemed to be very important for the development
process of the concurrent synchronisation component due to the novelty of an interac-
tive model synchroniser. The ARCADIA method [VBNE15], which originates from the
systems engineering domain and recently gained popularity for software development pro-
cesses as well, was used to design the prototype. ARCADIA, which was frequently used
in industrial contexts already, promotes a view-point-driven approach and emphasizes a
clear distinction between need and solution [Roql6]. In an iterative manner, artefacts
of previous phases are re-used in later phases of the development process. Due to time
restrictions, we focussed on the operational analysis and system analysis phases to con-
struct a first Ul prototype. In the scope of this thesis, only a standalone UI prototype
was developed; the actual integration into the VICToRy debugger is left to future work.

The front-end of the developed UI prototype is depicted in Fig. 10.7. In the middle sec-
tion, the current state of the model is visualised, which is a representation of the example
instance of Fig. 1.3a, that was already used to demonstrate the fully automated synchro-
nisation process of Chap. 7: The SysML engineer has connected the states “START” and
“STOP” with a transition, whereas the Event-B expert has deleted the “STOP” state
and introduced a self-loop on the “START” state. This leads to two conflicts: First, the
“STOP” state cannot be deleted and set as target of the transition at the same time,
denoted as create-delete conflict. Second, the transition cannot have two targets, which in

193

10. The VICToRy Debugger

juouoduIOd UOTYESIUOIYOUAS JUSIINOUOD O] JO PU9-ju0L] :/ 0T 2InS1

e3j3a paonpul

apon/abp3 peisieg —

opon/abp3 paieain

souspuodsauod| - - - - -

<<JusWs|F=>
Juawa|g 13bie| IIH &

SHPT [2ISI2A0IUODUN IA0SY

ST TSRS TAEmEm_va_

a|neneA dols weneau:dojsTjoadly UORIY: JUORIE U0l HE)S Jaua U0l HE)S aABa|

pienouelsTuls|

adAL SpoN/a6p3

puaba

e —
piens

uoY
JuaA3
JUELIBAUT
3|qeuen
aulyoew

oo || e

pleng
1abB111
[EETTE]
31e1s0pnasd
21815
uonisueLL
od
uoibay
ENEENESETE
sadAl

sadAl apoN

iRl Rl IR R AR Rl Rl E=] =]

siaquin

=

I - i
+1 sapon 32biel
6 SBPON 824NeS
S1I2qWINN BUEEE]
BUENTEEE]
sansielg

spienb SUDIj2E| SUOIIE SUoIjoE

SiuBLEAUL _m_nm:m.; ysiuy

JUETE) Em:m\au_m\i T:m:m.ﬁ, ;m_:cdumaz_

’

Rau3: ey

s1a8)8

Uopyisue LUl uolysuel‘dojs o)

Hodpod ysiuy

e3sTIRgu 3Ry
1e35 dogs <--3-- dols o3 a3e31

uo|fagueL

(233 318317) UGIPY : HEY BB
e33(312317) HEIsI3WR <--UoKe-- Juana dojs o}
[2Q 33231 ;

wawR3 pabueyaun) wRsg uase dos o

gwangolnsAs

foussisuoy payy g | uonnjosdasay A

T 33e357dogs
uonn|og pajewoiny snduwoy b dowToy
Iy 3sdejoy (= L dosn

Iy puedig sewsd

. 1003183121830 @ A
(=320 219pQ) 3jgeve) : dois
(o330 313[2q) 1eueAu| : dors joady
(e3pQ 212Q) do3s <--53|gRURA-- W

(e32Q 231312Q) doispoadA <--sjueMRAUI-- W

(320 23210) 33835 dlo3s <3~ doys 03

(uswmpg pebueyaun) sy doss
suswEl A

PIBUOIRRERID § A~

Z-spyuoy

53IU3RPI4 135 21835 snawaig _ aneg [F]

dpH 314

uoneauapuAs waLmU03 5

194 10.7. Evaluation

this case is considered as a create-create conflict. For details on the TGG-based detection
and classification of conflicts, the interested reader is referred to Fritsche et al. [FKM™20].

The colour scheme for the backgrounds of source and target model elements is the
same as for the main component, but the semantics of the elements’ frames is different:
It indicates whether the respective element is part of a delta structure, as shown in the
legend on the bottom right.

On the left-hand side, a list of conflicting changes that have not been resolved yet is
presented to the user. For each conflict, all involved elements are listed. Each element
of the list, or the entire conflict, can be highlighted in the visualisation via bold lines by
selecting it in the conflict list. For each conflict, the user can choose whether it shall be
resolved manually or automatically, as shown in the open context menu of Fig. 10.7. For
a manual resolution, the user selects one of the generated descriptions. For the concrete
example, the concurrent synchronisation component offers the user to resolve the create-
create conflict by choosing either of the states as target for the transition. The automatic
resolution chooses an option based on a predefined policy (e. g., the solution with the best
rating according to Sect. 7.5).

On the right-hand side, some statistical numbers are shown that help the user keeping
track of the applied changes. In the tool bar on top of the screen, additional features of the
concurrent synchronisation component are depicted: As for the main component, storing
the current state of the models on disk (“Save” button) and configuring the visualisation
(“Set Preferences”) is possible. In case of undesired effects of the last action, the user
can step back to the previous state. Furthermore, the user is in charge of accepting the
final (conflict-free) solution as outcome of the synchronisation process, and can trigger
consistency checks at any point of time.

As part of the VICToRy debugger, the concurrent synchronisation component is inde-
pendent of the TGG tool in use. The comparison of the component’s conflict resolution
process and the implementation of the hybrid approach of Chap. 7 in eMoflon::Neo re-
veals some fundamental open challenges, though: First, there is no explicit definition of
conflicts in the hybrid approach. Instead, the construction of the optimisation problem
guarantees implicitly that the output triple is consistent, i.e., free of conflicts. Second,
the work-flow of the concurrent synchronisation component requires the sequential reso-
lution of conflicts, whereas the hybrid approach encodes all possible options into a single
problem definition. Third, with the hybrid approach, it is possible to ensure that the
synchronisation result is fully consistent (although the formal proof was left to future
work), whereas there is no guarantee that the sequential resolution of conflicts does not
produce new conflicts. Finally, no special attention was devoted to the handling of faulty
input models while developing the synchronisation component. Further opportunities and
challenges will be discussed in Sect. 10.7 based on the feedback we received from experts
during the development process.

10.7 Evaluation

In order to qualitatively assess the usefulness of VICToRy for involving the integration
expert into consistency management tasks, we conducted an empirical three-part evalua-
tion with potential users with different levels of expertise. This section can only provide a
brief summary of the results, the interested reader is referred to a more extensive discus-
sion in prior work [WAC20, Jos21,Sri21]. Our evaluation aims at answering four research
questions related to motivational aspects for MDE debuggers:

RQ1 Does VICToRy help to explore and understand a TGG of realistic size?

10. The VICToRy Debugger 195

RQ2 Does VICToRy help to identify faults in rules or in input models?

RQ3 How valuable are breakpoints in different debugging scenarios and for different types
of faults compared to debugging without breakpoints?

RQ4 How can a concurrent synchronisation component support the manual resolution of
conflicts? Which features should such a component offer?

Case Study - The Adosate TGG

To answer the first two research questions, we conducted a case study adapted from
Blouin et al. [BPD"14]. The Architecture Analysis and Design Language (AADL) is a
standard language in the aerospace domain, for which a textual editor (OSATE) and a
graphical editor (Adele) exist. Blouin et al. discuss the challenge of implementing a BX to
synchronise models edited using the different editors. For maintaining consistency between
Adele and OSATE models, the Adosate TGG was established. The TGG consists of 60
rules when specified with the model transformation tool MoTE (cf. Sect. 9.2), in which
an extended TGG formalism is used that allows the designer to connect more than one
element per model with a single correspondence.

For the implementation with eMoflon::IBeX, we created multiple correspondences for
each pair of involved source and target nodes. While the TGG is much larger in eMoflon
than in MoTE, eMoflon’s rule refinement feature [ASLS14] was used to keep the size of
the rules manageable. The feature allowed us to define rules involving abstract node types
(abstract rules) that can be refined by concrete types and enriched with additional elements
in so-called concrete rules. These changes resulted in a semantically equivalent TGG (i.e.,
a TGG that generates the same language) with 49 abstract rules and 91 concrete rules,
of which only the concrete rules are considered at runtime. An overview comparing the
(concrete) rules required for the implementations with MoTE and eMoflon is provided in
Table 10.1.

Number of Rules Number of Rules
AADL Construct | MoTE | eMoflon AADL Construct MoTE | eMoflon
Package (axiom) 1 2 Component Type Features 10 19
Subcomponents 11 12 Feature Group Types 4
Component Types 2 13 Feature Group Type Features 10
Connections 20 21 Component Implementation 2 9
Total 60 91

Table 10.1: Size of rule groups: MoTE and eMoflon

Compared to existing BX benchmark examples (cf., e. g., Sect. 5.8), the number of rules
is relatively large, while the average rule size is comparable. The mean of the number
of nodes involved in abstract and concrete rules is 6.51 (2.69 created nodes, 3.81 context
nodes), and the mean number of edges is 3.31 (2.46 created edges, 0.84 context edges) per
rule.

Basic Debugging Features

In an experiment conducted at Paderborn University with 15 computer science graduate
students without substantial prior experience with MDE, we attempted to assess if and
how VICToRy helps novice users understand a provided, non-trivial TGG.

196 10.7. Evaluation

RQ1: The first task was to identify relations between rules and model elements (which
model elements are created/required by which rules?), as well as relations between the
rules themselves (which rules depend on other rules?). The students were provided with
the Adosate TGG and VICToRy, and asked to work independently on developing an
understanding for the TGG. We provided helpful material (tutorials, handbooks, and
relevant papers), supervision (answering any basic questions), and held a feedback meeting
after two weeks to check the students’ understanding for the TGG and ask if VICToRy
was helpful and in what ways it was used.

In general, all students stated that the debugger indeed helped to get an overview
of the entire TGG. It was especially helpful to identify which rules are applicable for
an empty model (axiom rules) without clicking through all of them, and to determine
which rules provide context for other rules (rule dependencies). Most students started
exploring the TGG rules by generating consistent model triples and inspecting the resulting
transformation protocol. In a second step, they then attempted to transform smaller
instances in forward and backward directions. As all models can be saved to disk at
any point of time, it was easily possible to try out different alternatives starting from a
common state of all models.

RQ2: In a second task, the students were provided with the Adosate TGG, and with
a test suite consisting of input models and expected output models for both forward and
backward directions. One of the students was then asked to either make a change to a
TGG rule, or to the supplied input models, resulting in both cases in a mismatch between
TGG and test suite. The other students were then asked to determine and explain this
mismatch. This task was carried out in a slightly more controlled manner, restricting the
allotted time to a few hours, and asking the students not to perform a diff between the
original and changed rules.

The feedback from the students for this task (based again on a feedback meeting and
discussion) was much less positive. The task turned out to be (1) much too difficult for
novice users, and (2) VICToRy proved not to be of much help as it does not provide any
information about why a rule is not applicable in a specific situation (even though the
expectation is that it should be). While the possibility of selecting protocol entries and
inspecting the resulting changes on the models was appreciated, many students stated that
the opposite direction, i.e., selecting model elements in the visualisation and highlight-
ing the “responsible” rule applications, would be indeed helpful as well and is currently
missing.

Furthermore, there was a clear need for the introduction of breakpoints, which did not
exist at the time of the experiment. The transformation should start in the RUN mode
and stop at a certain point defined by the user, e.g., when a specific rule is applicable
for the first time (complying with the rule name breakpoint as described in Sect. 10.4).
This enables users to skip irrelevant parts of the transformation that are already clear
to them and set the focus on debugging problematic steps. Based on this observation,
the breakpoint concept described in Sect. 10.4 was introduced, which is evaluated via the
following to answer RQ3.

Breakpoint Concept

To assess the value that the introduced breakpoint concept adds to the debugger, semi-
structured interviews with five TGG experts were conducted in May and June 2021. The
goal of the interview process was to gather feedback and suggestions for future improve-
ments, both for specific breakpoint types and for the general handling of the debugger.
Each interview started with a short presentation that introduced the problem along with

10. The VICToRy Debugger 197

a running example in the context of the FamiliesToPersons benchmark [ABW17]. Subse-
quently, each implemented breakpoint type was briefly described and demonstrated based
on the tool. After each demonstration, the participants was given the opportunity to com-
ment on typical use cases for such a breakpoint type and the usefulness in the respective
context. In the third part of the interviews, a faulty version of the FamiliesToPersons
TGG, i.e., a version with a few distorted rules, was shown to the experts. The VICToRy
debugger was then used to detect those faults, such that the experts could comment on

the usefulness of the debugger (including the breakpoint concept) in general.

Breakpoint

Assessment

Suggestions

Model size

Suitable for exploring new TGGs.

The PlantUML visualisation should
be exchanged, it might crash even
for medium-sized models. The
scope could be restricted to a spe-
cific element type.

Number of

Also a suitable breakpoint for ex-

used to detect the misbehaviour of
a certain rule, or to skip rather un-
interesting rule applications.

matches ploration purposes. Could be used
to detect faults, if a rule is applied
more often than expected.
Rule name Intuitive and easy to use. It can be | For larger TGGs, the selection of

multiple rules would be a handy fea-
ture, e.g., by using regular expres-
sions.

Element type

Similar to the rule name breakpoint,
it is easy to use and understandable.

The wuser should define whether
the breakpoint holds for created or
translated elements (or both).

Attribute
condition

Can be used when searching for
specific matches or rule applica-
tions. Another typical use cases is
to find faults in attribute conditions
of TGG rules. While it is a pow-
erful feature for experts, it can get
confusing for novices.

A drop-down menu or an auto-
completion feature could support in-
experienced users in defining ad-
vanced conditions.

Combined

Enables the user to define state-
ments of propositional logic for
breakpoints. The visualisation as a
tree structure is appropriate.

Plausibility checks should be added
to avoid faults in the breakpoint def-
inition itself.

Table 10.2: Feedback for specific breakpoints

RQ3: The experts’ feedback concerning single breakpoint types and the debugger in

general is summarised in Tab. 10.2 and 10.3. Regarding the breakpoint types, the combi-
nation of element type breakpoints and attribute condition breakpoints was perceived as
very powerful. All implemented breakpoint types are useful for different purposes. The
two types that were left to future work (pattern and node breakpoints) were regarded as
useful additions, involving a presumably high implementation effort, though.

Also the overall feedback for the debugger was largely positive. Although the breakpoint
concept is powerful and offers several configuration options, the handling of the debugger
is perceived as adequate for the intended user group. In accordance with our observations

198 10.7. Evaluation

during the initial student experiment, the experts stated that the debugger is very helpful
to understand why certain transformation steps take place, but unable to explain why,
e. g., a particular rule is not applied.

breakpoints are helpful, especially
the combination of the breakpoints
for element types and attribute con-
ditions.

Criterion Assessment Suggestions
User Inter- | Clean and well-structured, the visu- | For the hybrid approach, the visual-
face alisation of rules and (partial) mod- | isation of markers would be a helpful
els, and the history of rule applica- | improvement.
tions are useful.
Features Sufficient for practical use. All | Further configuration facilities

could be implemented, a pattern
breakpoint would be wuseful to
examine graph constraints.

User Interac-
tion

The interaction possibilities with
the debugger are well-structured
and understandable.

A handy feature would be to undo
rule applications (as for the concur-
rent synchronisation component).
This must be supported by the TGG
tool as well, though.

and practitioners) to TGG tooling.
Useful for why-debugging, but not
for why-not-debugging.

Usability Positive feedback for the overall us- | More support for the attribute con-
ability. It is valuable that the main | dition breakpoint and another visu-
window, the configuration pop-up | alisation technique (cf. Tab. 10.2).
and the breakpoint menu can be
used in parallel.

General Eases the access of novices (students | A quantitative user study and con-

nections to other TGG tools could
underpin the debugger’s applicabil-

1ty.

Table 10.3: General feedback for the VICToRy debugger

Concurrent Synchronisation Component

To receive early feedback throughout all design phases of the component, we conducted
semi-structured interviews with ten MDE experts between October 2020 and February
2021. Experts from different fields (TGGs, BX, and other sub-branches of MDE) were in-
volved to gather requirements and assess the prototype from different perspectives. Similar
to the evaluation of the breakpoint concept, each interview started with a brief introduc-
tion to the problem based on a running example. As the interviews took place in parallel
to the development process and feedback from earlier interviews was continuously incor-
porated, the structure of the interviews was continuously adapted as well. While the first
five interviews were purely based on diagrams, the last five interviews included a live demo
of the current state of the prototype (cf. Fig. 10.7).

RQ4: In the following, a short summary of the gathered feedback is provided, grouped
by six aspects that played an important role in all interviews.

Goal: The concurrent synchronisation component should be able to list conflicting
changes and provide the user with different options for resolving them. Besides resolving

10. The VICToRy Debugger 199

conflicts manually, it should be possible to start an automated resolution process, e. g., for
incorporating uncontroversial changes.

Actors: All experts agreed on involving both technical and human actors into the syn-
chronisation process. The “background operation”, i.e., the synchronisation operation of
the underlying tool, can be regarded as a technical actor. There were different opinions
about the involved human actors: While some experts stated that one or two domain
experts should use the tool (resolving conflicts collaboratively by negotiations), others
regarded an integration expert as the system’s key user.

Capabilities (main features): First and foremost, the component should provide visual
support for change and conflict detection and resolution on models. A history or list of
changes and resolved conflicts with time stamps should give an overview of the current
state and recent actions. The tool should also be able to provide an “explanation” of the
conflict in some way, and offer consistency checks to validate the results.

Resolution process: Both manual and automated conflict resolutions should be possible,
resembling a “mixed-initiative approach” known from the human computer interaction
domain. During the process, it should be possible to undo and redo operations, and to
have a preview for the effects of possible next steps. The confirmation or acceptance of
the final solution should always be done by the user. Interestingly, the expert disagreed
on whether the conflict resolution should operate on the level of rule applications (as
in [FKM*20]) or user edits (as in Chap. 7). A question that remained open is how to
automatically generate (understandable) descriptions of conflicts.

Additional features: Some of the suggested features were considered as handy, but
not mandatory for the synchronisation process. The tool could offer a comparison of
the current state and the previous state to visualise the effects of the last change. In
accordance with the main debugger, an option to save intermediate model states was
suggested. Furthermore, configuration options such as label abbreviation and hiding, and
displaying the neighbourhood of a sub-graph (cf. Sect. 10.5) are perceived as helpful.
Some features that could not be integrated into the prototype are search functionalities
for, e.g., particular conflicts or elements, and tutorials or wizards to ease the access of
novices to the tool.

Visualisation options: The visualisation of models and highlighting of conflict is per-
ceived as very helpful, but the experts criticised that the reordering of elements after each
edit operation in PlantUML is confusing. The resolved conflicts should be marked as such
to visualise the changes made during the synchronisation process. A legend that explains
the visual syntax in use was considered as necessary. Some persons stated that a visual
concrete syntax would be helpful for domain experts, but is hard to implement.

Overall, helpful feedback could be gathered for multiple aspects, including usability,
conflict resolution strategies, and visual modelling aspects. In most cases, there was
agreement between the experts, encouraging us to integrate the suggested features into
the prototype.

Summary

Revisiting our research questions, our initial exploratory experiment at least indicates that
(RQ1) VICToRy appears to help obtain an overview of a non-trivial TGG the user is not
familiar with, but (RQ2) leaves room for improvement regarding the detection of faults
in either models or rules. The expert interviews indicate that the introduced breakpoint
concept substantially eases detecting these faults as precise conditions for pausing the
transformation process can be defined (RQ3). An extension towards why-not-debugging
facilities [AC19] still seems to be necessary to properly address bug finding tasks. For

200 10.8. Summary and Discussion

the interactive resolution of conflicting changes in concurrent synchronisation scenarios,
requirements and feature requests were gathered in a series of expert interviews that ended
up in a UI prototype (RQ4). The actual development of the concurrent synchronisation
component is left to future work, though.

Threats to Validity

The most striking issue of the evaluation procedure is its purely qualitative nature. Our
experiment with students is at best a pre-study for a more formal, controlled experiment
and quantitative evaluation with multiple use cases, a larger group of test persons, and
objective measures. For assessing the breakpoint concept and designing the concurrent
synchronisation component, only 5 4+ 10 experts were involved in the interview process.
Many of them possess expert knowledge about TGGs and have worked with the eMoflon
tool suite before. The interviews followed a uniform structure, but due to the lack of a
standardised questionnaire and open discussion phases, the results are not fully repeatable.
While we cannot generalise our results, our goal was not to provide hard empirical evidence
for the effectiveness of VICToRy but rather to explore the design space in a realistic setting
and brainstorm together with both novice users and MDE experts for promising features
to guide future extensions of VICToRy.

10.8 Summary and Discussion

We presented the add-on component VICToRy for interactively visualising single steps of
the model generation and transformation process. As user involvement is a key feature of
fault-tolerant systems, the VICToRy debugger enhances our tool support for consistency
management. Besides the inspection of possible rule applications in the current state, the
user can retrace the prior transformation process using a transformation protocol. The
GT- and TGG-based tool is fully integrated into the eMoflon tool suite but can be used
along with other applications via a defined interface.

A concept for switching between different debugging modi via breakpoints is presented.
Breakpoints of different types can be configured in many ways and combined to form
complex breakpoint conditions. The debugger can be run for all consistency management
operations of the eMoflon tool suite. For the operations of the hybrid framework, the
user can step through the process of finding all rule application candidates, whereas the
determination of the final solution via ILP solving remains fully automated. A component
for interactively synchronising conflicting changes after concurrent updates was designed
to address the special challenges of concurrent model synchronisation.

Even though expert interviews were conducted to assess the applicability of this com-
ponent, structured user acceptance tests with respect to the understandability and con-
trollability of the consistency restoration process are left to future work. As an extension
towards supporting why-not debugging, information about reasons for blocked rule appli-
cations should be presented to the user to support detecting logical faults in TGG rules,
or a mismatch with expectations in provided input models and tests.

After having presented a conceptual framework and tool support for fault-tolerant con-
sistency management, the applicability of these concepts and tools in practice shall be
underpinned with two industrial case studies in the remainder of this thesis.

11 Automating Model Transformations for
Railway Systems Engineering

In the previous chapters of this thesis, a hybrid framework that enables fault-tolerant
consistency management was introduced, as well as its implementation as part of the
eMoflon tool suite. Several experimental evaluations have been presented in Chap. 5 — 8,
focussing on the runtime performance of the conceptual framework in different settings.
Furthermore, user studies and expert interviews have been conducted to empirically assess
the tool support in Chap. 9 and 10.

In the remainder of this thesis, the applicability of the hybrid framework shall be under-
pinned with two industrial case studies. This chapter introduces the practical application
of the running example of this thesis, i.e., a BX between SysML and Event-B, in the
context of railway systems engineering. The operations for forward transformation and
(concurrent) model synchronisation are of particular interest, while the other operations
seem promising for future use as well. With respect to tool support, we will show how
eMoflon::IBeX can be coupled to IDEs for different modelling languages.

The remainder of this chapter is organised as follows: After introducing the industrial
context in Sect. 11.1, an overview of related approaches is provided in Sect. 11.2. The
automated transformation is motivated with an example in Sect. 11.3. As the conceptual
part of the use case has already been introduced throughout this thesis, we continue with
a sketch of the implemented tool chain in Sect. 11.4. Section 11.5 presents a qualitative
evaluation of our approach based on three representative test cases provided by DB Netz
AG, our industrial partner for this case study, and semi-structured interviews with three
practitioners. Finally, Sect. 11.6 summarises the results and proposes directions for future
research.

11.1 Industrial Context and Motivation

MBSE, already standard practice in domains such as defense and aerospace engineering, is
also gaining popularity in the railway domain, where MBSE tools are used to create a stan-
dardised system architecture, functions, and interfaces for railway systems [ABC*20]. As
failures of such safety-critical systems can lead to serious damage, a formal verification of
the expected system behaviour is very important. To limit roll-back and re-implementation
costs, the verification and validation of safety requirements should be integrated into the
early stages of development. [Frel2]

At DB Netz AG, a railway infrastructure manager that operates major parts of the
German railway system, an MBSE process is to be introduced for interface standardisation
as part of the EULYNX initiative!. The challenge of enabling both high-level system
modelling and formal system verification is addressed by employing a BX between SysML
and Event-B.

To support high-level systems modelling, the PTC Integrity Modeler? is used for creating
SysML state machines. While simulation-based testing can be used to identify software

"https://www.culynx.cu/
https://www.ptc.com/en/products/windchill/modeler

https://www.eulynx.eu/
https://www.ptc.com/en/products/windchill/modeler

202 11.1. Industrial Context and Motivation

faults in SysML models, a formal proof of correctness with respect to expected system
behaviour is not supported. To overcome this limitation, Event-B [AH07, Hoal3] — a
formal method for system-level modelling and analysis — is used to verify safety properties
via proof obligations for all possible system configurations. As a simulation and verification
environment for Event-B, the RODIN platform [BHO7] is used.

The current development process is depicted in Fig. 11.1. Compared to the process
depicted in Fig. 1.1, the initial transformation from SysML to Event-B in step (ii) is split
into two parts: In step (ii.1), the SysML models are translated manually by experts in
formal methods to semantically equivalent UML-B [SBO06] state machines (U). In step
(ii.2), these UML-B models are transformed automatically into Event-B code (E) using
the UML-B plug-in of RODIN.

O

SysML Engineer

SysML Event-B
To i 1 To

Event-B SysML

al@y®

O Model C] Step __oreaton | update

Figure 11.1: Process overview

Integration Expert

A

Event-B Expert

=]

The current process is tedious and error-prone due to the manual transformation from
SysML to UML-B state machines, as well as the equally manual backward propagation
of corrections in the Event-B code to the original SysML models. This clearly indicates a
need for an increase in the level of automation. The intermediate UML-B representation is
not required for the verification itself, but rather a necessary concession to keep the manual
transformation manageable, as writing Event-B code directly is challenging. It is moreover
impossible to certify these manual steps of the process as there is no transformation
specification that could be reviewed by experts.

We argue that the SysML to Event-B forward transformation and coupled backward
synchronisation are best viewed as a BX, as the SysML models cannot be simply re-
constructed from their Event-B counterparts. Instead, applied changes in the Event-B
model should be propagated back to the SysML model based on the same consistency re-
lation, being a key property of BX languages. Consequently, the practical use case can be
solved using the hybrid framework presented throughout this thesis, using the FWD_OPT
operation for the forward transformation from SysML to Event-B, and an appropriate
synchronisation operation (CS, SYNC or INTEGRATE) for propagating changes on the
Event-B model back again. We use the set of TGG rules that was introduced in Chap. 3
and 4, which originates from the knowledge of practitioners about the concrete application
scenario. Using the hybrid framework to accomplish the automated BX, the generation of

11. Automating Model Transformations for Railway Systems Engineering 203

an intermediate UML-B model can be completely omitted, merging (ii.1) and (ii.2) into a
single transformation step. Traceability information between informal requirements and
the modelled system, specifically for safety properties, can further be maintained. For
implementing the transformation, we establish a tool chain connecting the modelling tools
used at DB Netz AG for SysML and Event-B.

We demonstrate the feasibility of our approach by solving three representative test cases
provided by DB Netz AG. Based on these case studies, we provide a qualitative evaluation
by conducting semi-structured expert interviews with employees of the company to assess
the applicability of the proposed solution in practice. Our contribution is to investigate
and evaluate a practical application scenario of a model-to-model transformation from
SysML and Event-B in the railway systems engineering domain. The identified potential
and limitations of our approach can be used to drive further research towards improving
the practical applicability of model transformation technology in general, and the fault-
tolerant hybrid approach in particular.

11.2 Related Work

Comparable to our contribution and focus in this chapter, there have been several projects
investigating the application of TGGs in an industrial context. Giese et al. present
an approach for transforming SysML models to AUTOSAR? using TGGs [GHN10]. In
contrast to our application, however, SysML block diagrams are transformed and not
state machines. The application domain is also different, i.e., supporting the transition
from system design to software design in the automotive domain as opposed to supporting
a formal analysis for safety requirements in the railway domain. These differences also
lead to a different set of relevant challenges: Giese et al. focus on transforming and
synchronising large models in a scalable manner, while we focus more on comprehensibility
and expressiveness, especially regarding attribute manipulation.

Hermann et al. present an approach to translate satellite procedures from one language
to another also using TGGs [HGN'14]. While Hermann et al. face similar challenges as
we do, in this case comprehensibility and formal correctness of the transformation, the
application domain is of course different (aerospace vs railway). Moreover, the supported
development process is simpler than ours as Hermann et al. only require a forward trans-
formation while we require both a forward transformation and a backward synchronisation.
In general, existing industrial case studies with TGGs tend not to focus on a qualitative
evaluation, investigating instead quantitative aspects such as scalability of the solution,
which might arguably not be the strongest argument for BX in general and TGGs in par-
ticular. Aspects like fault-tolerance during the development process or the use of multiple
consistency management operations are not dealt with in existing work.

Concerning our choice of TGGs as a BX language to solve industrial use cases, Anjorin
et al. [ABW™20] provide a recent overview and benchmark of various BX languages,
and state that TGGs scale well in practice for transformation and synchronisation tasks.
To solve our use case, we could have used any equally mature BX language such as
BiGUL [KZH16]. While we cannot (yet) back the following conjecture with any empirical
evidence, we suspect that TGGs might be more comprehensible than, e.g., BIGUL in the
context of our application scenario as relevant domain experts are familiar with visual
modelling languages and the concept of transformation rules, as opposed to a functional
approach and Haskell-like syntax. The situation is probably completely reversed for other
application domains.

Shttps://www.autosar.org/

https://www.autosar.org/

204 11.3. Motivating Example

The general problem of SysML not being sufficiently formal has been addressed in dif-
ferent ways by numerous authors. Pais et al. present an approach to transform SysML
state machines to Petri Nets (PNs) [PBG14] to be able verify formal properties, generate
code, visualise and execute the resulting PNs. As the authors use ATL for the transfor-
mation it remains unclear how insights gained from the formal analysis are reflected back
to the SysML state machines. Huang et al. present a transformation of SysML activity
diagrams to PNs also for formal verification [HMM20]. According to the authors, the
execution semantics for UML and SysML are not sufficiently precise to be unambiguous
and thus they use the f{UML standard to provide a precise semantic definition of SysML
activity diagrams. Again it is unclear how changes to the resulting PNs are reflected back
to the corresponding activity diagrams.

There are several further examples for transformations from SysML to formal lan-
guages such as Alloy [ABGR10], NuSMV [CLFLW16], Promela [CLS20], or to CSP#
processes [AYK™14]. While it is possible to verify the transformation results with state-
of-the-art model checker in each case, the subsequent incorporation of findings remains a
manual task. In general, we argue that the work-flow of applying a “formalising” trans-
formation, gaining insights from a formal analysis, and reflecting these insights back to
the initial models in a productive manner is a clear application of BX languages.

11.3 Motivating Example

To motivate the need for formal verification and validation in the railway domain, a small
and simple case study provided by DB Netz AG is introduced. The case study originates
from a technical specification and requirements document describing a point machine
interface to an interlocking. In railway signalling, an interlocking is the part of a signal
apparatus that prevents conflicting movements through an arrangement of tracks such as
junctions or crossings.* An interlocking is designed so that it is impossible to display a
signal to proceed unless the route to be used can be proven to be safe.

/

Simple Point Machine) when (move point right = TRUE) /
:= FALSE;

left
right

:= TRUE;

@ (e

when (move point left = TRUE) /
:= TRUE;

left
right

:= FALSE;

5| LEFT |

Figure 11.2: Point machine case study (left) and SysML state machine (right)

Figure 11.2 depicts the configuration of a point machine: Two tracks represent two
possible positions, denoted as left and right. The lamps represent the position of the
tracks after the movement. The main requirement is to move the tracks to the left or
right position depending on the commands from the interlocking. Being a safety-critical
system, properties such as: “When the track is set to right, the lamp should be lit” have
to be proven to hold as soon as the command is given by the interlocking.

“https://projects.au.dk/into-cps/industry /railways-case-study/

https://projects.au.dk/into-cps/industry/railways-case-study/

11. Automating Model Transformations for Railway Systems Engineering 205

The EULYNX initiative® develops the railway interlocking specification and require-
ments, involving various state machine diagrams for individual systems of the interlock-
ing. These include level-crossing systems, interlocking systems, light signalling systems,
and other auxiliary systems. Each of these systems interacts and communicates with each
other through a communication interface, which must guarantee safe communication. To
this end, the relevant behavioural part, i. e., the state machines of the SysML models must
be verified against safety properties necessary to fulfil user requirements. To perform the
verification, the state machines are transformed to Event-B code, so that Event-B can be
used as a formal method.

The implementation of the transformation was prepared in two steps: First, based on
the list of state-machine diagram elements from the SysML 1.6 specification®, we defined a
supported subset of features sufficient to fulfil the requirements of the involved stakeholders
at DB Netz AG, i.e., domain experts both in systems engineering and formal verification.
Second, we identified semantic interrelations between the two languages, which form the
basis for defining the consistency relation between the two language subsets. As a re-
sult of these two steps, the triple metamodel of Fig. 3.8 and the TGG rules which have
been introduced in Chap. 3 and 4 were created. In the following section, we show how
eMoflon::IBeX can be used to seamlessly integrate existing SysML and Event-B tools to
implement the transformation.

11.4 Implementation

This section introduces the tool chain used to implement the transformation, and sketches
the work-flow established for the existing tools at DB Netz AG.

PTC Integrity Modeler

For creating SysML models, the PTC Integrity Modeler’® is used at DB Netz AG. The
PTC Integrity Modeler provides a development environment that allows different systems
engineering teams to work in a collaborative setting, from the conceptual level to the
delivery and maintenance of the system. It helps define an unambiguous single model
definition of the system, including requirements, functions, as well as hardware and soft-
ware components. Besides SysML, several other standards of the Object Management
Group (OMG) are supported. For creating SysML state machines, a visual editor is used.
It is also possible to simulate modelled behaviour to detect errors in early stages of de-
velopment. The tool provides interfaces for synchronisation with other modelling tools
(e.g. Simulink?, Doors!?). Code in different GPLs (e.g., C, C++, Java and Ada) can be
generated from the models [ZRHT20]. For our tool integration solution, the model export
to EMF-compatible XMI is relevant.

RODIN Platform

As an IDE for formal modelling with Event-B, the RODIN tool [ABH"10] is used at DB
Netz AG. It is provided as an open-source Eclipse plug-in that supports the construction

Shttps://www.eulynx.eu/
Shttps://www.omg.org/spec/SysML/1.6/PDF
"https:/ /www.mathworks.com /products/connections/product_detail /ptc-integrity-modeler.html
Shttps://www.ptc.com/en/products/windchill /modeler
“https://www.mathworks.com /products/simulink.html
Phttp://www-03.ibm.com /software/products/en /ratidoor

https://www.eulynx.eu/
https://www.omg.org/spec/SysML/1.6/PDF
https://www.mathworks.com/products/connections/product_detail/ptc-integrity-modeler.html
https://www.ptc.com/en/products/windchill/modeler
https://www.mathworks.com/products/simulink.html
http://www-03.ibm.com/software/products/en/ratidoor

206 11.4. Implementation

and verification of Event-B models. Besides basic support for formal modelling, RODIN
provides feedback for the developer at design-time. Event-B development (modelling and
programming), and formal verification are decoupled into distinct phases to ease, for ex-
ample, tracing the origin of a failed proof obligation. As verification techniques, both
model checking and theorem proving are supported. Model checking can be used as a
pre-filter, before theorem provers are applied to proof obligations [ABH*10]. In addition
to their textual representation, formal models can be visualised and simulated to make the
models more comprehensible for the developer. These features are integrated via a range
of plug-ins for the RODIN platform. Various analysis tools, such as theorem provers'!,
model checkers!?, step-wise simulation'® and translation tools such as for UML-B!* have
been developed as extensions for the RODIN platform. The UML-B plug-in, for instance,
helps to diagrammatically visualise the formal model, and thereby aids construction and
validation. Event-B machines are stored and imported as XMB files, which are syntacti-
cally similar to XMI files. XMB files can be visualised with the Rose Structured Editor
from different viewpoints.

eMoflon::IBeX

To bridge the modelling environments for SysML and Event-B (cf. Fig. 11.3), an addi-
tional tool is required to perform the transformation and synchronisation steps in both
directions. In our approach, eMoflon::IBeX (cf. Sect. 9.4) is used to address this task.
The decision between the components IBeX and Neo was made in favour of the former
due to its file persistence and exchange format: Metamodels for source, target, and cor-
respondence models as well as the respective models are all EMF compatible and can be
persisted in any EMF compatible format including the default XMI. The common use
of EMF as a modelling standard substantially eases the establishment of a tool chain to
connect the PTC Integrity Modeler, eMoflon::IBeX, and RODIN. Although only forward
transformation and backward synchronisation are of primary interest for our application,
the practitioners also appreciate the support of other consistency management operations,
such as consistency checking (cf. Sect. 11.5).

From PTC Integrity Modeler to RODIN and Back

The setup for the established tool integration is depicted in Fig. 11.3. eMoflon::IBeX is
used as a bridge between the PTC Integrity Modeler and RODIN. After specifying the
consistency relation between SysML state machines and Event-B as a triple metamodel
and a TGG, eMoflon::IBeX is used to operationalise the TGG as required for the scenario.

The behaviour modelling of the system is done using SysML with the PTC Integrity
Modeler. The resulting model is exported as an XMI file from which a relevant part
(state machines) is extracted and passed on as the input model for eMoflon::IBeX. The
forward transformation is executed by eMoflon::IBeX, using the derived forward rules and
the respective operational strategy (cf. Fig. 9.4). Besides the correspondence and target
model, IBeX also generates a transformation protocol containing information about which
rules were executed in which order to create which elements. This protocol was already
used to visualise the history of rule applications in the VICToRy debugger (cf. Fig. 10.4).
While only the target model is strictly required for the tool integration, the correspon-
dence model and transformation protocol are useful for debugging and understanding the

"http://www.bdfree.com/index.html
2http:/ /www.stups.uni-duesseldorf.de/ProB/overview.php
Bhttp://www.brama.fr/indexen.html
HMusers.ecs.soton.ac.uk/cfs /umlb.html

http://www.b4free.com/index.html
http://www.stups.uni-duesseldorf.de/ProB/overview.php
http://www.brama.fr/index en.html
users.ecs.soton.ac.uk/cfs/umlb.html

11. Automating Model Transformations for Railway Systems Engineering 207

transformed SysML transformed Event-B
models (XMI) models (XMI)

2o oo
—0—

@ pfc

initial SysML updated Event-B
models (XMI) eMoflon models (XMB)

Figure 11.3: Overview of the tool integration setup

transformation. The next step is to convert!® the generated target model from XMI to
XMB and to import it into RODIN.

RODIN is used to automatically generate Event-B code from the XMB file. The Event-
B code can now be used to perform formal verification and check if all safety requirements
are fulfilled. Gained insights are integrated directly in the Event-B code, resulting in a
new version. To reflect these changes to the Event-B code back to SysML, the backward
synchronisation with eMoflon::IBeX requires (i) the old triple of source, correspondence,
and target models, and (ii) a target delta representing the changes applied to the target
model, which should be backward propagated incrementally to the existing source model.
Currently, this target delta (also a model) must be created manually based on a text diff
between the initial and final Event-B code. This is certainly a step that could be improved
in the future by automatically transforming a diff on Event-B code to a target delta that
eMoflon::IBeX directly understands.

The current state of the implementation should be regarded as a proof-of-concept proto-
type as (i) the level of automation can still be improved, and (ii) only the most important
parts of the two behavioural models are covered. We are convinced, however, that the
scope can be extended to cover the remaining parts of the state machine specification and
even further SysML models without fundamentally changing the overall work-flow. Using
XMI as a uniform data exchange format seems promising as it is supported by all three
tools, but has a number of drawbacks including its missing ability to represent diffs or
delta structures [ZRH™20]. Further tool integration could replace XMI by a more suitable
standard for data exchange.

This would at the same time also ease an additional implementation with eMoflon::Neo,
which offers CS a fault-tolerant operation for backward synchronisation, whereas this task
is solved with greedy operations (SYNC or INTEGRATE) in IBeX. The data exchange
format was the main argument for using IBeX for this practical use case, while we are
convinced that an implementation with Neo as a connector for the two modelling tools
would be equally possible. To assess strengths, weaknesses, and the potential of our
approach, the results of a qualitative evaluation are presented in Sect. 11.5.

11.5 Evaluation

We now provide a qualitative evaluation of our implemented solution based on three small
but representative test cases provided by DB Netz AG. After running the transformation
and synchronisation chain for the three test cases, we then conducted a semi-structured

¢ «

.xmb”.

'5Tn most cases this just involves changing the extension of the file from “xmi” to

208 11.5. Evaluation

interview with three SysML and Event-B modelling experts at DB Netz AG. In particular,
we aimed to investigate the following research questions:

RQ1 Feasibility: Is it possible to transform representative examples of SysML state ma-
chines into Event-B?

RQ2 How is the applicability, extensibility and usability of the solution perceived by
relevant practitioners?

An overview of the qualitative evaluation was already presented in prior work [WSA*21].
The interested reader is referred to Salunkhe [Sal20] for a more detailed treatment of the
three test cases and the subsequent expert interviews.

Representative Test Cases

To validate the transformation results, formal modelling experts at DB Netz compared
them to the expected Event-B models and conducted simulations using the RODIN plat-
form. Although the test cases are rather simple and contain only language elements that
were presented in Sect. 3.1, they differ in the structure of transitions and states, and
combine different triggers and actions with each other. In particular, they can be used to
investigate whether the rule-based transformation produces a correct result that complies
with the modelling experts’ expectations.

Log-In Form State Machine The first test case consists of a state machine designed for a
simple log-in process. It consist of three states: In the IDLE state, the log-in form is ready
to accept requests, while the ACTIVE state indicates that a user has logged into the system.
The SERVICE_ERROR state represents an error state for the system. It is possible to switch
between IDLE and ACTIVE, as well as between IDLE and SERVICE_ERROR, whereas a
direct transition from ACTIVE to SERVICE_ERROR is not possible. The transition from
IDLE to ACTIVE has a trigger (in round brackets) and a guard (in square brackets),
whereas all other transitions have only one trigger. Figure 11.4 depicts the state machine
for the log-in form.

Log-in Form) .

when (Insert Card = FALSE) /
Card Inserted := FALSE;
Finish := TRUE;
e IDLE ACTIVE
when (Check Service = FALSE) /
Service Error := FALSE;
Service Fixed := TRUE;
when (Insert Card = TRUE)
when (Check Service = TRUE) / éFlglih - FAESFE éRUE'
Finish := FALSE; e T Ao
Service Error := TRUE; S?rylﬁeiﬁliiLsé_ !
Service Fixed := FALSE; Finish == 7
~ (SERVICE_ERROR)

Figure 11.4: Test case 1: Log-in form

11. Automating Model Transformations for Railway Systems Engineering 209

Light System This state machine represents a basic light system. Similar to the log-in
form test case, there are three states, of which one is an error state. In this example,
however, there is a transition from the state ON to the state SYSTEM_ERROR, forming a
cycle between all three states. Figure 11.5 depicts the state machine for light system.

Light System) .

when (switch on = TRUE) /
light on := TRUE;
light off := FALSE;
shut system := FALSE;

when (switch on = FALSE) /
light on := FALSE;
light off := TRUE;

when (switch error = TRUE) /
light on := FALSE;
light error := TRUE;
shut system FALSE;

when (switch error = FALSE) /
light error := FALSE;
shut system := TRUE;

\ (SYSTEM_ERROR)

Figure 11.5: Test case 2: Light system

Trip Planner System This test case is slightly more complex than the previous two as
there is a fourth state and a fifth transition to be transformed. The system models a trip
planner, e.g., for a cab ride. As soon as a user requests a trip, they are asked to pay a
certain amount of money. The user can either confirm the payment and choose a driver,
or go back to modify the requested trip. As soon as a driver is assigned, the trip can be
conducted. In a last step, the driver is unassigned and the state machine goes back to
the state TRIP_REQUESTED. Figure 11.6 shows the state machine for the trip planning
system.

Summary Using our implemented solution, it was possible to generate Event-B machines
from the SysML input models. The generated Event-B machines were all syntactically
correct and could be displayed in the RODIN platform. According to domain experts, the
transformation works as expected for the three test cases.

Interviews with Modelling Experts and a Project Manager at DB Netz AG

To investigate RQ2, we conducted three semi-structured interviews presented in the fol-
lowing, which were based on the implemented test cases. We were able to obtain interviews
with (i) a modelling expert from the SysML semi-formal modelling side, and (ii) a mod-
elling expert from the Event-B formal modelling side in order to get technical feedback,
as well as with (iii) a project manager in order to get feedback on the complete approach
and aspects related to strategic plans for future developments. The interviews presented
in this section are a summary of the complete interviews provided online'S.

https://drive.google.com /file/d /1CPJ01Usls_kafLehOKdmCOrdwgCGOukKM

https://drive.google.com/file/d/1CPJ01Usls_kafLeh0KdmCOrdwgG0ukKM

210 11.5. Evaluation

Trip Planning System) .
r >CI'RIP_REQUESTE[D
A
when (payment = TRUE) /
when (payment = FALSE) / payment requested := TRUE;
payment requested := FALSE; payment failed := FALSE;

payment failed := TRUE;

(7 PAYMENT ‘j
when (driver assigned = FALSE) /

driver cancelled := TRUE; when (payment_success = TRUE) /
trip cgmpleted .= FALSE; payment successful := TRUE;

\ 4
@RIVER_ASSIGNE@

when (driver assigned = TRUE) /

driver cancelled := FALSE;
trip completed := TRUE;
payment successful := FALSE;
. /DRIVER_UNASSIGNED
\\ _AND_TRIP_END

Figure 11.6: Test case 3: Trip planning system

Applicability The modelling experts expect the rule-based transformation to save time
and lower the error rate compared to the current manual process. Even for project mem-
bers with only basic knowledge about formal modelling, it should now be possible to
generate and verify the formal model produced from a SysML state machine thanks to
the fully automated procedure. Furthermore, based on expert reviews of the TGG, a
certification of the entire process is now a possibility.

In order to use the approach in practice, the considered subsets of the SysML and Event-
B metamodels must be large enough. For a first proof-of-concept version, the currently
supported subsets are sufficient but must be extended in the future. This extension de-
pends on requirements, however, as it is important to only cover features that are actually
useful for the formal verification process.

An advantage of using a BX language for the transformation is that several other con-
sistency management operations can be derived from the same specification, i.e., from the
developed TGG. While forward transformation and backward synchronisation are cur-
rently most relevant to reflect fixes in the formal model back to the semi-formal model,
also forward synchronisation could be relevant for reflecting changes in the SysML model
at later stages of the engineering process. Other supported operations, such as consistency
checking, are certainly perceived as being potentially useful for future workflows in the
context of the EULYNX project.

Considering the goals of the EULYNX project, the automated approach supports the
synergetic combination of formal and semi-formal methods. A primary goal in EULYNX

11. Automating Model Transformations for Railway Systems Engineering 211

was to establish a well-understandable semi-formal language such as SysML to be used
by all project partners, as well as to offer separate, complementary formal verification
facilities. With the automated approach, this goal can be achieved to enable a uniform
validation and verification process that incorporates safety requirements.

Extensibility As the EULYNX project is constantly evolving, it is important to have a
solution that can easily be adapted and extended. For example, a recent change was the
replacement of flow ports by proxy ports, so the supported SysML language subset would
have to be extended accordingly. As the EULYNX specification also involves intercon-
nected state machines, the current subsets also have to be extended to handle such state
machines as well.

According to the interviewees, the automated approach can be easily extended and
adapted to the expectations of the formal modelling experts for verification. The current
transformation results provide a solid basis for the further development of the tool chain
by providing reliable results. The only thing lacking at the moment is “conformity”, which
means that the translated models are not yet certified. If the complete TGG-based tool
chain could be certified, then the overall validation and verification approach could be
provided to other project members using different target formal modelling languages.

Regarding the future role of the automated transformation in research projects, a
medium-term goal is to convince the project managers of EULYNX and RCA!" of the
importance of an automated transformation approach. A short-term goal is to apply the
approach to EULYNX models, which can form the concrete basis to convince other project
members.

Usability As the complete transformation process still requires some user interaction,
usability aspects of the tool chain cannot be ignored. The most important manual steps
are including safety requirements and safety invariants. An additional manual step is
to add further invariants of two types: State invariants have to hold for a single state,
whereas global invariants apply to the complete model. While state invariants can already
be generated automatically, global invariants must be specified and added manually by
the formal modelling experts. This is because global invariants do not have a correspond-
ing SysML construct and can only be added to the semi-formal model as an informal
annotation.

Despite these manual tasks, the use of an automated transformation still leads to a
substantial reduction of effort. For complex models such as several state machines with
refinements communicating with each other, the automation promises to be especially
beneficial in this regard. Moreover, assuring the correctness of the resulting Event-B ma-
chine for the manual process is still an unresolved issue, as errors can occur when humans
perform the transformation manually. With the automated process, only safety invari-
ants have to be added, and the rest of the Event-B code can be generated automatically,
increasing time efficiency possibly by around 70-80%.

The main obstacle with the automated approach is that an average engineer might have
reservations about processes they do not understand in full detail. To increase acceptance,
it would be very helpful to have a Ul that supports the engineer while conducting the
automated transformation. The UI should support the user to initiate the transformation
process via a single click of a button, and it should present the translated model as well

"The RCA initiative is driven by several EULYNX project members and strives for improving com-
mand, control and signalling systems using MBSE techniques: https://eulynx.eu/index.php/news/
61-rca-gamma-published

https://eulynx.eu/index.php/news/61-rca-gamma-published
https://eulynx.eu/index.php/news/61-rca-gamma-published

212 11.6. Summary and Discussion

as the corresponding verification results. It should also provide a means of visualising and
editing the formal model if necessary, and should ideally be easy to use for inexperienced
users without any expert knowledge on formal modelling. The UI should provide the
domain experts in both semi-formal modelling and formal modelling with a simple work-
flow to run the simulation and verify user requirements without having to fully understand
the underlying details.

Another aspect relevant for future maintenance of the system is the required knowledge
for refining the consistency relation definition, i.e., for adding or modifying TGG rules.
Different levels of expertise are conceivable: To maintain the set of rules and modify the
tool chain, knowledge about both the semi-formal and formal language are required, and
probably also expert knowledge in MDE. All other modelling experts should understand
the overall process, but should not require in-depth knowledge to apply it. To achieve
this, the solution should be well-documented based on the triple metamodel as a central
and formal artefact.

Summary and Threats to Validity

For all three test cases presented in Sect. 11.5, the transformation yields correct results
according to the modelling experts. As the SysML state machines involve all syntac-
tic constructs presented in Sect. 3.1 in different arrangements, the rule-based approach
appears to work as expected for this language subset (RQ1). From the interviews, we
conclude that the implementation forms a solid basis for automating the transformation
from SysML to Event-B, which can be extended in the future. An extension to support
the full expressive power of the formal and semi-formal modelling languages is, however,
necessary for practical usage. Furthermore, the handling of the tool chain still requires ad-
vanced knowledge about all three tools and underlying concepts. Usage should, therefore,
be simplified by offering a suitable UI to support inexperienced users (RQ2).

While the provided test cases incorporate more states, transitions, and actions than
the motivating example (cf. Fig. 11.2), the models are still rather small and simple.
Larger, interconnected state machines would be necessary to determine corner cases for
which further rules might be necessary. Regarding the assessment of the approach, it is
important to note that the interviewees were already strongly in favour of automating the
transformation, such that chances might be overstated and risks underestimated. Finally,
only three people were interviewed, all employed at the same company and working on
the same project at the time of implementation. It is questionable, therefore, if our
results can be directly transferred to other industries or application contexts. Regarding
maintainability, it is important to note that at least one person with advanced knowledge
about TGGs must be involved in the project to add and adapt rules whenever this is
necessary. For certifying the process, i.e., validating the correctness of the transformation
itself, each new rule must be considered. As the TGG-based consistency relation definition
is purely syntactic, the certification process should also involve simulation and different
testing strategies to complement the formal verification.

11.6 Summary and Discussion

This chapter presents an industrial application scenario for the running example of this
thesis, i.e., a BX between the semi-formal language SysML and the formal language
Event-B. With help of consistency management operations of the hybrid framework, a
previously manual transformation process is automated to take a step forward in certifying
the verification and validation process.

11. Automating Model Transformations for Railway Systems Engineering 213

The approach is demonstrated with a prototypical implementation that is able to con-
nect the modelling tools PTC Integrity Modeler for SysML, and the RODIN platform for
Event-B via eMoflon::IBeX. To validate our approach, we provide a qualitative evaluation
based on three representative test cases provided by DB Netz AG and semi-structured
interviews conducted with domain experts. Our interviewees stated that the prototype
is indeed a good basis for substantially reducing manual efforts and for eventually cer-
tifying the transformation process. It became also apparent that other operations (e.g.,
consistency checks) are indeed helpful and can be used in the future without additional
implementation effort.

The scope of the transformation is limited to minimal subsets of both languages cover-
ing most of the relevant language constructs, such that it was possible to use the triple
metamodel depicted in Fig. 3.8 as a basis for typing the consistency relation. Accordingly,
the set of TGG rules presented in Chap. 3 and 4 (with minor adaptions for technical
reasons) suffices to properly specify the consistency relation. While the implementation
should be considered rather as a proof-of-concept than as a fully functional solution, the
practical applicability of the hybrid approach is demonstrated via this case study.

Future steps include extending the transformation of SysML state machines to cover
more language constructs, thereby increasing the practical applicability of the approach.
This extension involves further tests with real-world models from the EULYNX project.
Depending on the results, other project partners can be convinced to use BX techniques
in a similar fashion to establish model transformations between their respective modelling
languages.

Regarding the tool implementation, a workaround had to be found for one rule (cf.
Fig. 4.13) as the hybrid approach does not support multi-amalgamation yet. This moti-
vates the integration of further language features into the framework, in order to make
the tool suite more powerful and even more suitable for real-world use cases.

Although fault-tolerance was not an explicit requirement for this project, we are con-
vinced that the respective mechanisms will ease and accelerate the entire process notice-
ably. While in the manual process, faults in both SysML modelling and the transformation
itself made it necessary to restart the process, the automated solution based on the hybrid
approach provides the domain and integration experts with early feedback on design errors
and enables the Event-B experts to focus on their task of verifying safety properties. The
following Chap. 12 will introduce a further case study, in which fault-tolerant mechanisms
are crucial for obtaining a feasible solution at all.

12 Automating Test Schedule Generation
with Domain-Specific Languages

In the course of this thesis, a hybrid approach to fault-tolerant consistency management
was presented and backed up with appropriate tool support. The applicability of the
developed concepts in practice was demonstrated in the previous chapter, that has shown
how a BX between SysML and Event-B can be used for verification and validation in the
railway domain.

In this chapter, we leave the context of the running example of this thesis and use the
hybrid approach to create an optimal test schedule that allocates human resources, i.e.,
software testers, to testing tasks of a product release cycle. We show that a certain degree
of flexibility is required to solve this task, as “perfect matches” between the available
human resources and the testing tasks to be executed are usually impossible to achieve.

This chapter is structured as follows: After a brief introduction to the industrial context
in Sect. 12.1, different strategies for solving scheduling problems in practice are discussed
in Sect. 12.2, before comparing our approach to related work in Sect. 12.3. Sections 12.4
— 12.8 present our main contribution by covering the process of establishing our model-
driven and fault-tolerant solution. A quantitative and qualitative evaluation is provided
in Sect. 12.9, before Sect. 12.10 summarises the results and concludes with an overview of
future work.

12.1 Industrial Context and Motivation

In this chapter, we investigate an industrial application of the hybrid approach, or more
concretely, the correspondence creation (CC) operation presented in Sect. 5.3. While the
operation is primary intended for being used as a consistency checker, we show that the
created correspondence model can be regarded as an allocation model in the context of
test scheduling. To begin with, the industrial context and the need for an automated test
scheduling solution shall be explained.

At dSPACE GmbH,' a well-known developer of software and hardware for testing
mechatronic control units, automated testing is often complemented by a series of re-
curring manual tests executed in every development and release cycle. As such manual
testing requires human resources (developers and testers), a test schedule allocating hu-
man resources to tests must be created and maintained throughout the testing process.
Creating and maintaining a test schedule must take numerous, potentially conflicting con-
straints into account. This includes the availability of the human resources (holidays, sick
leave, requirements of other more important projects), their suitability for particular tests
(experience with executing this type of test, developers of the component under test), and
the relative importance of the tests. Test scheduling is an optimisation problem as it is
typically impossible to utilise all human resources and cover all manual tests. Instead, the
goal is to cover as many test cases as possible taking metrics such as priorities and risk
into account, while satisfying the given constraints.

lwww.dspace.com

www.dspace.com

216 12.2. Approaches to Test Scheduling

Prior to this work, test scheduling at dASPACE was performed manually by an experi-
enced test manager. Creating an initial schedule took more than one working day, while
maintaining it to take new changes into account required about an hour of work per week.
This was, therefore, not only costly but also tedious, error-prone, and difficult to share
among multiple people. It also posed a risk to the company: the manual scheduling task
cannot be easily delegated to a new or different test manager as it requires experience
from creating and maintaining previous schedules. In close collaboration with dSPACE,
our primary contribution is to investigate how a fully automated test scheduling strategy
can be implemented such that test managers can understand, validate and configure it
without prior knowledge of the solution domain.

The problem definition clearly motivates the use of a flexible, search-based strategy,
such as the hybrid approach presented throughout this thesis. With the CC operation, the
available human resources (source model) and the required testing tasks (target model) can
be provided as input to the operation, and the computed correspondence model represents
an optimal allocation of testers and testing tasks. To further address the requirement of
encoding information such as the suitability of testers for a specific task, or its relative
importance, the objective function is enhanced with further parameters in a similar way as
for the concurrent synchronisation operation (cf. Sect. 7.6). We establish an additional,
very simple DSL for rating these allocation candidates, which is simple enough for the
domain expert to use with confidence. The overall solution is highly configurable: Domain
concepts are captured with metamodels that can be adjusted, TGG rules can be added
and modified, and the rating function can be configured as required. Clearly, it would
also be possible to build a small configuration tool where parameters can be entered and
edited via Ul elements. However, we want to provide a working environment for the test
manager that uniformly integrates all tasks into the eMoflon tool suite, and thus decided
to develop a simple DSL for configuring parameters as well.

While the runtime evaluation results for the CC operation are satisfactory for the used
example TGGs (cf. Sect. 5.8), achieving acceptable scalability turned out to be challeng-
ing in this scenario due to the number and complexity of TGG rules. Therefore, part of
our contribution is also to discuss techniques of achieving scalability in this context with
respect to the size of the search space involved. We evaluate our solution quantitatively by
comparing automatically generated and adapted test schedules with manually maintained
test schedules for the same testing period, and qualitatively by using it productively (com-
pletely replacing manual test scheduling) at ASPACE, and interviewing the test manager
at the end of the testing period. By applying our approach at dSPACE, recurring manual
efforts can be reduced, and the generated test schedules are optimised with respect to
the configured parameters. The results are also transferable to other industrial applica-
tion scenarios, as test scheduling is an essential part of the software development process,
further motivating the use of fault-tolerant MDE concepts in practice.

12.2 Approaches to Test Scheduling

Scheduling problems are relevant for a wide range of application domains including schedul-
ing home care services in the health care domain [Guel6], allocating software components
to electronic control units in the automotive domain [PH19], and mapping a virtual net-
work to physical resources [TLWS18] in the network virtualisation domain.

Standard solution approaches (see Guericke [Guel6] for an overview) focus on solving
different variants of scheduling problems on the assumption that a problem definition
(typically a set of constraints and an objective function) can be fixed. Indeed, the main

12. Automating Test Schedule Generation with Domain-Specific Languages 217

contribution of work in this area is to model and formulate the problem in an adequate
manner. While such a formulation is then evaluated and shown to be suitable for a specific
family of scheduling problems in a certain domain, two challenges are usually completely
out-of-scope and remain unaddressed: (i) that domain experts understand the problem
definition and can validate it, and (ii) that domain experts can substantially configure
and adapt the problem definition with reasonable effort and without deep knowledge
of constraint solving techniques. Keeping these requirements in mind, three standard
approaches to solving test scheduling problems are briefly discussed in the following.

Directly programming a solution in a GPL is problematic for several reasons: First, a
lot of work is involved, because from importing the input data to solving the optimisation
problem, the entire solution must be implemented manually (at best supported by reusable
libraries). Second, as soon as requirements change, the code base must be adapted, making
it necessary to recurringly involve the tool developer into the test planning process. As
this contradicts our project goal of allowing a flexible adaptation of the problem definition,
we decided to exclude such directly programmed solutions.

Another standard approach would be to formulate the problem as a set of constraints and
an objective function, so that established constraint solvers can be applied to determine
an optimal solution. Following this approach, one would develop a Ul that enables the test
manager to hand over the problem definition to an ILP solver, such as Gurobi. Considering
our requirements, however, this solution is not satisfactory as our test manager would not
be able to fully understand the problem definition, let alone validate, adapt and configure
it confidently without help.

A (purely) model-driven approach would be to establish a DSL for our domain expert,
ensuring that the problem definition now expressed in this DSL can be easily understood,
validated, and adapted. The problem definition can then be generated from programs
in the DSL so that established constraint solvers can be leveraged, making additional
specifications such as TGG rules superfluous. The challenge with this solution is that
it requires a considerable effort: The scope and semantics of the DSL have to be chosen
carefully as the domain expert will most probably not be able to make substantial changes
to the DSL itself once it has been established. Such a DSL would make more sense after
enough experience has been collected and the required solution space for the DSL is
clearer. As a result, we decided to address the requirements of the application scenario by
synergetically combining a simple DSL, TGGs, and optimisation techniques.

12.3 Related Work

In this section, we discuss related work in two main groups: (i) approaches that apply
MDE to defining and solving scheduling problems, and (ii) approaches that introduce a
DSL to simplify validation and configuration by domain experts:

Applying MDE to Scheduling Problems

An increasing number of approaches to solve scheduling problems make use of MDE
techniques. Some of these approaches rely on proprietary formalisms such as Ptolemy
IT [BLL*07], which is used for functional modelling, or Metropolis IT [DDG*13], which
is used for architectural modelling. Metronomy [GZNT14] integrates these two through
a mapping interface and enables timing verification as well as design space exploration.
Other approaches are based on industrial standards, e. g., AADL [FGH06], ADL [WRT*13],
or UML\MARTE [HPP*14], which have the advantage of being more accepted in industry
but often lack formal verification mechanisms.

218 12.3. Related Work

There are also works that combine both cases by transferring standard models to a
methodology where formal methods can be applied. Eder et al. use SysML to model
different viewpoints onto a system for which a formally defined DSL exists, and can be used
to express constraints, requirements and objectives for scheduling [EZV'17]. OpenMETA
is a design tool suite for CPSs which is based on the model integration language CyPhyML
for which different adapters exist [SBNT14].

Another MDE approaches leverage model transformations for scheduling problems:
Al-Dakheel et al. [ADAA17] transform their software component models into Coloured
Petri Nets (CPNs), for which allocation solutions already exist such as the Octopus
Toolset [BvBG'10]. Different CPN tools are integrated for stochastic simulation of timed
systems, model checking and schedule optimisation.

Our approach, in contrast, applies the fault-tolerant consistency management framework
to compute an optimal allocation. One domain model each is created for human resources
and testing tasks, such that the computed correspondences can be regarded as an allocation
model.

Simplifying Validation and Configuration

In order to ultimately solve the scheduling problem, various optimisation techniques can
be used such as SMT solvers [TWV'19], ILP solvers [TLWS18,PH19, KPP 15], or genetic
algorithms [HDMO05, AMO01,SCV13|.

While there are frameworks that come with a set of predefined constraints for specific
domains such as Archeopterix [ABGMO09], or the approach of Zverlov et al. [ZKC16], it is
often difficult to extend these approaches with new constraints as domain experts must be
familiar with different optimisation techniques. Various approaches introduce, therefore, a
new DSL to simplify constraints definition, most of which are limited, however, to specific
domains. AAOL [KP14] is designed for the automotive domain, while SAOL [KPP*15]
and DSE-ML [EZV*17] are tailored to embedded systems. The approach of Pohlmann et
al. [PH19], in contrast, provides a framework based on the OCL that is not limited to a
particular domain. DESERT [NSKBO03] is a domain-independent tool chain for defining
and exploring search spaces that also uses OCL to specify constraints.

Similar to the work of Tomaszek et al. [TLWS18] applied to the domain of virtual
network embedding, our approach leverages TGGs and is therefore domain independent.
While OCL is a constraint language, TGGs represent a rule-based approach, specially
designed for expressing the consistency relation between two modelling languages. The
use of TGGs permits a more compact problem definition in the considered application
scenario, compared to an equivalent definition with OCL constraints. While the original
approach focusses on scalability and pruning the search space via pre-solving, a fine-grained
cost function and guarantees for optimality were added in subsequent work [Tom21]. The
cost function is defined in terms of extended OCL constraints, whereas we introduce an
additional configuration DSL to further simplify this task for the domain expert by clearly
separating problem and solution domain.

Finally, there are other approaches that attempt to prune the search space to increase
the runtime performance. Kang et al. [KJS10] use user-defined equivalence functions in
order to specify so-called symmetry breaking predicates. Combining these with SMT
solving, they can ensure that every new solution is non-isomorphic to the previous one.
The approach is neither applied to a scheduling problem nor evaluated in a real-world
setting, though.

12. Automating Test Schedule Generation with Domain-Specific Languages 219

12.4 Test Schedule Optimisation via Correspondence Creation

Our approach to optimal scheduling is implemented as a variant of the CC operation
presented in Sect. 5.3. While input models for human resources (source) and testing tasks
(target) are provided as input, the operation computes an optimal schedule as an allocation
model for software testers and testing tasks. In contrast to the CC operation in its original
form, the objective function is more fine-grained to take aspects like the priority or risk
of each specific task, or the suitability of testers for a particular task area into account.

A conceptual overview of this process is depicted in Fig. 12.1. We identify three distinct
roles, which are well-aligned with the user roles for fault-tolerant software systems in
Sect. 1.2: (i) a test manager (taking the role of the domain expert and integration expert),
(ii) a tool developer, who developed the test schedule generator for the test manager, and
(iii) a meta-tool developer, who provides generic tooling used by the tool developer.

Rating of Candidates
(Configuration DSL)

Problem Domain Solution Domain Problem Domain
2 —
2| | MM Project
8| | (Resource
> L) TGG
S| I/ Project)]
| | MM Project
S (Task)
»n
=
T
=1
E N T
()
E __/
o
()
<
[£)
()

Optimal Allocation Model (Excel)

TGG Tool, e.g.
eMoflon::IBeX

Schedule Data
)

Pair of Resource and
Task Models (Excel)

Figure 12.1: Conceptual overview of the test schedule generation process

Going through Fig. 12.1 from left to right: the test manager (probably in close col-
laboration with the tool developer) provides a triple metamodel and a TGG to define
test schedule validity. These two artefacts are implemented using a suitable front-end as
provided, e. g., by the TGG tool eMoflon (Ch. 9). The test manager then encodes domain
knowledge as ratings, deciding which rules represent better allocations than others, which
can take task- or tester-specific information into account. These ratings are specified us-
ing a DSL that was created for exactly this task (explained in detail in Sect. 12.7). The
ratings are then used to refine the objective function to be maximised, which in this case
represents the quality of a test schedule. As a final artefact, the test manager provides
the schedule data, i. e., a resource model containing all people with their availabilities and
suitabilities, and a task model containing all testing tasks and desired executions.

To simplify the evaluation of (and migration to) the automated solution using existing
resource and task models, the schedule generator accepts these models encoded as Excel
tables. A conversion to the input format expected by eMoflon (XMI or eMSL) was im-

220

12.5. Domain Analysis via Metamodelling

plemented as part of the project. All input artefacts (converted to appropriate formats)
are passed on to the back-end of the TGG tool. In this application scenario, the solution
yielded by the CC operation represents an optimal test schedule, which is converted to an
Excel table in the problem domain as the final result of the process.

In general, it is impossible to cover all desired executions of all testing tasks; the allo-
cation model is a “best possible” schedule with respect to the provided validity rules and
rating functions. This means that tasks of high priority and criticality should be done as
early as possible and by an employee who is most suitable for this task with respect to
their skills, while hard constraints such as availability and a fixed number of recurring test
runs have to be respected. In this regard, the use cases demonstrates how fault-tolerant
software systems can be used to solve optimisation problems in a model-driven way. While
the input models should not be considered faulty (as they reflect the reality in an appro-
priate manner), a “perfect match” between them is nearly impossible, such that a flexible
solution approach is required.

12.5 Domain Analysis via Metamodelling

To provide an overview of the input data provided by dSPACE, as well as the expected
output data (a test schedule), we start by presenting a small but representative example.

lllustrative Example

One of the inputs is a table (as Excel file) encoding the available human resources, their
availability over a series of consecutive weeks, areas they are responsible for, and their
experience in all areas. Table 12.1 depicts such a table consisting of three people: Anton,
Betty, and Carl (first column). The next three columns show their availability in hours
for three weeks (W1, w2, wW3). In this example, Anton is responsible for an area called
Dialogues, Betty for Code Generator, and Carl for Diagrams. A person is respon-
sible for an area if (s)he can be contacted to discuss and approve change requests in the
area. The last three columns, one for each area, show the suitability of the three people
in testing these areas.

Note that some values here are missing as it is sometimes difficult or even impossible to
obtain a reliable estimation (new people or a new area). A person is suitable for testing
an area if it is advantageous (from a test planning perspective) to assign the person to
testing tasks in the area. This does not directly correlate with experience in testing this
area — inexperienced interns, for example, are very suitable for testing a simple area that
requires little prior experience (while experienced developers are not suitable for such an
area).

Person | W1 | W2 | W3 | Responsibility | Diagrams | Dialogues | Code Gen.
Anton | 6h | 14h | 15h Dialogues _ 80% 10%
Betty | 31h | 8h | 31h | Code Generator 80% _ 90%

Carl 8h | 23h | Oh Diagrams 60% 75% _

Table 12.1: Available human resources and their characteristics

The second input is a table (also provided as an Excel file) representing the testing
tasks to be accomplished in the testing phase, together with their characteristics and all
constraints that are to be taken into account. Table 12.2 depicts such a table consisting of

12. Automating Test Schedule Generation with Domain-Specific Languages 221

three testing Tasks, the Area to which each task belongs, how long it approximately takes
to perform the task (Duration), how important the test is (denoted as its Priority),
the minimum suitability requirements of the task (Suit.), and the desired number of
times the task should be repeated in the testing phase (# Exec.).

Task Area Duration | Priority | Suit. | # Exec.
Test Diagrams Diagrams 8h Medium | 40% 2
Test Dialogues Dialogues 5h Low 40% 3
Test Code Generator | Code Generator 10h High 75% 4

Table 12.2: Testing tasks together with their characteristics and all relevant constraints

Given two such tables as input, the test manager has to produce a test schedule assigning
testers to a number of testing tasks in each week. Table 12.3 depicts such a schedule for
our simple example, assigning the three testers to testing tasks in the three weeks. Our
example already demonstrates that it is impossible to fulfil all constraints: the Test Code
Generator task should ideally be repeated four times, but only Betty is suitable enough,
and she does not have enough time in Week2 (8h < 10h). As realistic test schedules range
over 8 — 10 weeks, with about 250 testing tasks, and involving 20 — 30 people, creating
and maintaining “good” testing schedules manually is indeed challenging. This, again,
motivates the use of a flexible approach that does not enforce that all tasks are executed
as as often as planned, but rather aims at determining the best possible schedule.

Weekl | Week2 | Week3
Test Diagrams Carl Betty _

Test Dialogues Anton Carl Anton
Code Generator | Betty - Betty

Table 12.3: A feasible test schedule for our running example

Applying Metamodelling

While a tabular concrete syntax (see Tables 12.1, 12.2, and 12.3) allows for a compact
representation of our input and output data, applying our hybrid, model-driven approach
requires a representation of the relevant concepts and relations in form of models and
metamodels. In the context of test scheduling, we define a source metamodel for mod-
elling the resource availability, and a target metamodel for describing testing tasks. The
correspondence metamodel represents an allocation of software testers and tasks.

Figure 12.2, simplified for presentation purposes, depicts a triple of metamodels, cap-
turing the most important concepts and relations in our problem domain. In accordance
with Fig. 3.8, multiplicities are only shown when they are not 0. . *.

In the source metamodel, a Person can be responsible as well as suitable (have a
Suitability with a certain value) for multiple Areas. People can also be avail-
able (have an Availability in hours) for testing in certain Weeks. Available testing
Environments fix the operating system and the versions of all installed software used
for testing.

In the target metamodel, TaskAreas are used to group testing Tasks, each with
numerous attributes representing characteristics (e. g., duration, priority) and constraints

222 12.6. Defining Test Schedule Validity via a TGG

(e.g., minSuitability) for the task. Every task also specifies the desired number of times
the task should be executed in the testing phase (Executions).

The correspondence metamodel consists of four correspondence types: Related con-
nects the corresponding areas in source and target models, while ExecEnv connects every
execution to the environment used for testing. This execution/environment correspon-
dence is useful, as repeated executions of the same testing task should use different testing
environments if possible. Al1lowed and Allocated identify people who can potentially
be assigned to executions of a task, and the person finally allocated to an execution.

1 Area TaskArea
> Related
area (id : String id : String
Suitabili A
uitability respFor tasks
value : Double A 2
t Person Task
Allowed duration - |
suitabilities | id : String uration : Integer
priority : PRIORITY
availabilities risk : RISK
Y ’
week Availability minSuitability : Double
Allocated

hours : Integer executions

1 next

Y
Week Environment Execution
ExecEnv <
number :Integer name : EString status : STATUS 0.1

Figure 12.2: Source, correspondence, and target metamodels

Besides the triple metamodel depicted in Fig. 12.2, a set of TGG rules needs to be
defined in order to fully specify the “consistency” relation, i.e., valid allocations of human
resources and testing tasks. As the presentation of the entire rule set is out of scope for this
thesis, we restrict ourselves to the two most interesting rules in the following Sect. 12.6.

12.6 Defining Test Schedule Validity via a TGG

We first formalise the validity of test schedules by specifying consistent schedules using
a TGG. Due to the large amount of rules that were necessary to express the relation
between human resources and testing tasks, only the most important rules are presented
(in a simplified version) as examples. All elements in rules are typed according to the
triple metamodel of Fig. 12.2. For the specific use case, we are primary interested in
the CC operation for correspondence creation, which was introduced as one operation of
the hybrid framework in Sect. 5.3. Therefore, the example rules are depicted in their
operationalised form for CC.

Figure 12.3 depicts a TGG rule FirstExec allocating an availability a of a person p, who
is allowed to execute the corresponding task t. According to the rule, this should only
be possible when the availability of the person p is sufficiently long, i.e., when a.hours
> t.duration. The rule also picks out an environment e in which the task is to be
executed.

12. Automating Test Schedule Generation with Domain-Specific Languages 223

FirstExecution (CC)

4] 4]
p : Person —<Allowe>— t: Task

& | availabilities U | oyecutions
& & O—>
week R .
w : Week (T a : Availability ex : Execution
Vi

=

e : Environment

a.hours 2 t.duration

Figure 12.3: Marking a first execution of a task (FirstExec)

An important point to note here is that the granularity of availabilities per week (in
hours) must be chosen carefully to fit to the granularity of execution times for testing tasks
(also in hours). This is because the allocation problem was simplified to enable manual
schedule creation by allowing only one testing task for each availability slot. In the TGG
implementation at dSPACE, we decided to maintain this simplification as existing input
data was already in this form, and as it also fits well to TGG rules, which are inherently
local in nature. To drop this restriction, an additional “global” validity constraint, such
as the negative constraint of Fig. 12.4, would have to be used to ensure that the total
duration of all tasks assigned to the same availability remains less than or equal to the
length of the availability. The depicted constraint can only restrict the duration of two
executions ex1 and ex2, though. Up to some number n, one could define more constraints
of this form, and restrict the number of executions per availability to at most n with a
further negative constraint.

InsufficientAvailability

Forbid

executions

:AIIocate}- ex1 : Execution [@————— t1: Task

a : Availability

executions
: AIIocate>— ex2 : Execution [€——— t2: Task

a.hours = t1.duration + t2.duration

Figure 12.4: Negative constraint for guaranteeing sufficient availability

The second TGG rule FurtherEzec we wish to discuss is depicted in Fig. 12.5. This rule
marks additional executions for a task t. This is accomplished by demanding a previous
execution lex and marking a new execution ex as its next execution. Note that there
can only be at most one next execution according to the target metamodel. As additional
executions for the same task are “costly”, they should be conducted in a way that the
test effect is maximised. This is formalised in the source domain of the rule by (i) making
sure that a different environment e # le is used, (ii) making sure that a different person

224 12.6. Defining Test Schedule Validity via a TGG

p # lp is chosen, and (iii) making sure the test is executed in a different week (w #
1w). Note that this rule can mark multiple executions in different weeks at a varying
distance (w.number > lw.number + c) from the last execution week (1w), whereby
c is a configuration parameter for this distance. Choosing the most advantageous week
for a repetition requires domain knowledge and is therefore not fixed by the TGG, but
determined by the target model at hand.

FurtherExecution (CC)
4]
le : Environment @
4] ™ 4]
week next
Iw : Week (? la : Availability - Allocated lex : Execution f———
. T A
& | availabilities 4] executions
Ip : Person : Allowed
™
4]
t: Task
1P : 4
p : Person : Allowed > O—>&
& | availabilities executions
] & ++ 0> vy
week
w : Week (? a : Availability : Allocated ex : Execution |€—7
~ ++
e : Environment @
a.hours = t.duration
w.number 2 Iw.number + ¢

Figure 12.5: Marking further executions of a task (FurtherExec)

The CC operation in its original form (cf. Sect. 5.3) aims at maximising the number
of marked elements, such that inter-model consistency can be checked by trying to mark
the input models entirely. Applied to the scenario at hand, this strategy would lead
to solutions in which the overall number of executions of all testing task is maximised,
regardless of whether, e. g., an execution belongs to a high-priority task or not. Also, the
task would be assigned to any person whose suitability is sufficiently high to take this task,
independent of whether there are other available testers with a higher suitability value.
While this strategy would indeed generate valid test schedules (as all “hard” constraints
such as availability and minimum suitability of testers are satisfied), further information
about the tasks, such as priority and risk, should be taken into account as well, such that
not only walid but also good schedules are computed. Test schedule quality is yet to be
defined and will be discussed in the following sections.

12. Automating Test Schedule Generation with Domain-Specific Languages 225

12.7 Configuration via a Domain-Specific Language

Lightweight configuration was a primary motivation for our approach; our domain and
integration expert (the test manager) expressed a strong preference for configuring the
process by providing different weights for rule applications (cf. the specification of ratings
of candidates in Fig. 12.1). For the specific use case, the determination of an optimal test
schedule can be formalised as follows:

Definition 12.1 (Optimal Test Scheduling).

Given a starting triple graph Gy, a TGG (TG, R) and a schema (TG,GC), let D : Gy =
Gy, be a deriwation via operational rules for CC. Let rating : D — Q be a rating function
for rule applications. The ILP to be optimised is constructed as follows:

mazx. Y rating(d) - J s.t.
deD
markedAtMostOnce(Ggy) N context(D) A context(G,) N acyclic(D) A sat(Gy,)

Compared to the definition of the generic optimisation problem (Def. 6.7), the number
of marked elements as coefficient for each rule application candidate is replaced by a rating
function that assigns each rule application an individual value. Weighting via the rating
function is essentially a local decision as it can only access the structure referenced by
a rule application, similar to the rating of rule application candidates for the concurrent
synchronisation operation (cf. Sect. 7.6). The scope of this local decision can, however,
be increased by specifying rules such as FurtherFEzec that range over allocations created
by other rule applications; this comes at the price of reduced scalability as it substantially
increases the number of candidate allocations.

To provide an impression for the design of the rating function, we now discuss some
heuristics from our concrete use case for rating the creation of executions, i. e., rating rule
applications of FirstExec and FurtherFExec.

The rating of rule applications of FirstExec should:

e be directly proportional to the priority, risk, and duration of the task (cf. matched
context object t in Fig. 12.3). The rationale here is that such tasks are more
important than others and their scheduling should thus be preferred.

e be indirectly proportional to the number of the week (cf. w in Fig. 12.3). The
rationale is that all tasks should be scheduled as early as possible to remain flexible
in later phases.

e be directly proportional to the suitability of the allocated person. The rationale is
that the most suitable people should be assigned to allowed tasks.

The rating of further executions created by FurtherEzec should

e be directly proportional to a problematic status of the last execution lex (if its
status has been updated during maintenance of the test schedule). The rationale
here is that failed executions indicate problems that should be revisited.

e be indirectly proportional to the divergence from an ideal distance between the
weeks of the executions (formalised as parameter c in the second attribute condition
of Fig. 12.5). This ideal distance depends on the particular testing task and is
specified by the test manager.

19

226 12.8. Applied Techniques to Improve Scalability

e be directly proportional to a change in suitability of the last person 1p and the
allocated person p. The rationale is that a further execution should involve a more
(less) suitable person if a less (more) suitable person was chosen previously.

To simplify the specification of the rating function for the domain expert, a configuration
DSL was developed for exactly this use case. Listing 12.1 depicts an illustrative excerpt of
the rating function for the (simplified) running example. After importing a TGG, rating
functions can be implemented for a choice of TGG rules. The name of every rating function
must be the name of a TGG rule, and there can be at most one rating function for every
TGG rule (supported by auto-completion and validation). A rating function returns a
real number and can access all matched objects (and their properties) of a match of the
corresponding TGG rule. For example, t .priority accesses the task object matched as
context in FirstEzec (cf. Fig. 12.3). This is again supported and enforced by the editor.
The DSL was developed using Xtext? and is based on the expression language library
Xbase,? allowing for Java-like expressions for flexibly calculating the required rating of a
match. As access is restricted to the objects in a corresponding match and their properties,
the locality of the rating function is enforced; it is impossible to navigate to other objects
in the graph. The DSL was developed together with the testing manager and should be
straightforward to use for anyone familiar with a Java-like language. When calculating
the objective function value (cf. Def. 12.1), the rating(d) for every application candidate
d or a rule r is calculated by invoking the rating function for r, passing d as an argument.

import ".../schemaValidity.tgg"

rating FirstExec {
val prioFactor = switch (t.priority) {
case HIGH: 5
case MEDIUM: 2.5
case LOW: 1

default: 1
}
val riskFactor = switch (t.risk) {...}
val durationFactor = if (t.duration > 10){...}

else {...}
val weekFactor =
val suitabilityFactor = ...

return prioFactor*riskFactorxdurationFactorx
suitabilityFactor/weekFactor

}

rating FurtherExec {...}

Listing 12.1: Configuring the rating function with a DSL created for exactly this purpose

12.8 Applied Techniques to Improve Scalability

While there was no absolute maximum duration for the schedule generation process (a
“few” hours would still be acceptable according to the test manager), a clear requirement
was that the process should be executable on a standard desktop PC, implying in this
context about 16GB of memory, 4 cores, and 3,6 GHz.

2https:/ /www.eclipse.org/Xtext
3https:/ /www.eclipse.org/Xtext/documentation /305_xbase.html#xbase-language-ref-introduction

https://www.eclipse.org/Xtext
https://www.eclipse.org/Xtext/documentation/305_xbase.html#xbase-language-ref-introduction

12. Automating Test Schedule Generation with Domain-Specific Languages 227

The average problem size proved to be too complex for our graph pattern matcher and
ILP solver. Compared to the BX benchmark examples that were used for the previous
runtime evaluations (cf. Sect. 5.8, 6.6, 7.7, 8.5 and 9.6), the rules of the TGG at hand
are substantially larger, making it necessary to match larger patterns to determine rule
application candidates. As a result, the pattern matcher did not have enough memory
to determine all candidate allocations. It is important to note that eMoflon::IBeX was
used for the implementation at dSPACE, which means that problems which occurred
and improvements which were subsequently implemented are tailored to graph pattern
matching on EMF models. The use of different technologies, such as graph databases as
part of eMoflon::Neo, could have led to less or different problems and solutions, which is
left to future work at this point.

To address the problem of insufficient main memory, we analysed the TGG rules to
identify a suitable partition of the model, so that the pattern matcher could be restarted
and executed for each partition independently. We also decomposed some rules to avoid
an explosion of combinations. After the first phase of our test schedule generation process
was executed successfully, the next challenge was solving the resulting ILP. To make this
task tractable, we split the problem into sub-problems and solved these successively. In
the following, we discuss these three general techniques in some more detail.

Identification of a Partition

A static analysis of the TGG rules can be used to identify sufficient conditions under which
rules can be applied independently*. This information can be used to speed up the pattern
matching process by running multiple instances of the pattern matcher in parallel. As our
problem, however, was more related to limited memory, we used the dependency analysis
to run the pattern matcher on multiple “parts” of the models, terminating and restarting
the process after each part was completed.

The partition we identified (based on the structure of the TGG rules in use) and ex-
ploited for this was based on the areas and corresponding task area of the resource and
task models, respectively. It is possible to restrict allocations to a single area and task area
combination, and to compute all possible allocations that result from this correspondence
on the level of areas. When all candidate allocations have been computed, the next area
correspondence can be established and handled. This area-wise collection of candidates
saves memory as the internal state of the pattern matcher can be freed after every area
combination.

Rule Decomposition and Reduction

To reduce the number of candidate allocations that have to be determined by the pattern
matcher, TGG rules can be decomposed to avoid an explosion of combinations. As a con-
crete example, FirstEzec could be separated into two separate rules: one rule creating the
correspondence link between availability and execution, and another rule creating a corre-
spondence link for all possible environments. The pattern matcher thus only determines n
candidates for the first rule, and m for the second, i.e., n + m instead of n - m candidates
for the combined rule FirstEzxec.

While this change has the positive effect of reducing the number of candidates deter-
mined by the pattern matcher (and consequently required memory), it also has a price:
(i) additional ILP constraints have to be formulated to ensure that the separate variables

4For details about sequential and parallel independence, the interested reader is referred to Ehrig et
al. [EEPT06, pp. 47-64]

228 12.9. Evaluation

are handled as a single variable, i.e., either all set to 0 or 1, and (ii) it becomes more
difficult to rate the combined match as the rating function has to be decomposed as well.
Another means of reducing the size of candidates is by removing context elements in rules:
FirstEzec can be reduced in this manner by omitting the week. Consequently, separate
candidates are no longer collected for different weeks (saving memory) but can no longer
be rated differently.

Splitting the Problem into Sub-Problems

As a final technique, now for addressing scalability problems of the ILP solver, we experi-
mented with different ways of “splitting” the problem into sub-problems. Possibilities we
considered included (i) using a maximal time window, i.e., creating a plan for two weeks,
fixing the determined allocations, and then solving the next two weeks, etc., (ii) using an
analogous task window, and (iii) using an analogous people window. While all three win-
dows made the problem tractable for our ILP solver, this is done by sacrificing optimality,
which can no longer be guaranteed for the entire problem. Although the use of heuristic
solvers would be a possible alternative as soon as receiving an optimal solution is no hard
requirement, the experiments of Sect. 8.5 indicate that this would probably not lead to
the desired runtime improvements.

For our concrete use case, experiments showed that the time window was the best solu-
tion, i.e., still produced relatively good schedules compared to task and people windows.
An explanation is that such a split requires a suitable ordering of weeks, tasks, or people.
While weeks are naturally ordered, it is unclear how to order tasks or people in an optimal
manner. Nailve attempts using single attribute values (risk, suitability, priority) yielded
much worse schedules than the natural temporal order for the time window.

12.9 Evaluation

Our approach was successfully implemented as a fully automated test schedule generator,
based on eMoflon::IBeX, which is now in productive use at dSPACE replacing manual test
schedule creation and maintenance. The TGG consists of 10 rules in total, and the models
describing the test schedule conform to an extended version of the metamodel depicted in
Fig. 12.2.

To evaluate our approach, we conducted a semi-structured interview with the test man-
ager at ASPACE, and were granted access to data from using the test schedule generator
during one testing phase. We were also provided with two previous, manually generated
test schedules, which we compared to corresponding schedules automatically generated
using our tool. The three test schedule instances incorporate about 8-10 weeks, 250
testing tasks, and 20 — 30 people. This sections summarises the results of our quali-
tative and quantitative evaluation, which was already presented in more detail in previous
work [AWO™20, Opp18]. We investigate the following research questions:

RQ1 How challenging is the task of validating, configuring, and adapting the test schedule
generator as perceived by the test manager (the domain and integration expert)?

RQ2 Are generated schedules of comparable or even higher quality than manually created
schedules? How much time and effort can be saved via automated test schedule
generation?

RQ3 How time- and memory-consuming is the generation process for test schedules of
realistic size?

12. Automating Test Schedule Generation with Domain-Specific Languages 229

Assessment by the test manager

The following summarises the main findings from our interview with the test manager.
The complete interview is available online®.

Adaptability (RQ1): The test manager can easily configure the ratings for allocation
candidates using the configuration DSL, even without knowledge about technical and
implementation details. The weighting function resembles the formula used for manual
planning, such that most ratings could be directly transferred from past values used in
the manual process. Resource and task models can be provided as Excel sheets, such that
adapting the input artefacts is not required. After a brief introduction to TGGs comprising
the syntax and semantics of rules and model instances, the rules defining the validity of
test schedules can be understood and validated by the test manager. Changing existing
or adding new rules is, however, a non-trivial task for the test manager as understanding
the consequences of such changes requires knowledge of dependencies between rules and
how such changes can affect, e.g., the efficiency of the entire process. An important
requirement is being able to adapt the generated plan during the testing phase, taking
current changes into account. This is well supported as additional, simple constraints can
be added to fix all allocations in past weeks and thus allow a regeneration of the plan for
the remaining weeks.

Quality (RQ2): The schedule generator creates valid test plans, guaranteeing that all
hard constraints are fulfilled. In all experiments, it was always possible to schedule all tasks
that could be scheduled manually (i.e., only tasks which lack suitable resources remain
unplanned). Concerning other quality metrics: the workload was well-balanced among
testers, their capacities were well-utilised with values near to the maximum especially in
the early test weeks (cf. Fig. 12.6a), and the suitability of testers for tasks was remarkably
well-considered. As desired, the schedule generator preferred time-consuming tasks with
a high priority or risk (cf. Fig. 12.6b), and employees with more experience were assigned
more complex tasks. The preferred distance between multiple executions is also well-
considered. Overall, while the generated schedules are not perfect (neither are manually
created schedules), they are of sufficiently good quality for productive use, such that the
software solution will replace the manual process for future release cycles.

Time Consumption (RQ3): The generation of a test schedule with a duration of 9
weeks takes about 30 minutes on average, compared to an estimated workload of eight
hours for manual creation. For both generated and manual schedules, approximately
one hour per week is still required for manual adaptations (e.g., due to testers falling
sick, or when tasks require much longer or shorter than expected). This means that
the overall effort required for manual test schedule generation and maintenance is about
8 4+ 9 = 17h, compared to 0.5 + 9 = 9.5h when using the schedule generator. This is thus
a reduction of about 50%. This is also a conservative estimate, as a human being will
have increasing difficulty to cope with larger schedules, while the automated solution will
remain predictable and consequent, especially during maintenance.

Resource Usage

To obtain quantitative data for RQ2, we considered the utilisation of testers’ capacities
in the course of the testing phase. The goals related to utilisation are threefold: First,
as much of the testers’ capacities as possible should be utilised so that as many tasks as
possible can be completed. Second, efforts should be distributed equally among testers

Shttps://drive.google.com/file/d/1sU6DYwdXQ3x4ennjM1PDW0883XOHZ;jTi

https://drive.google.com/file/d/1sU6DYwdXQ3x4ennjM1PDW0883XOHZjIi

230 12.9. Evaluation

125 1250
1000
750
500

250

[weighted sum of executed tasks]

[utilisation of available capacities in %]

0 - 0

TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8 TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8 TW8
(a) Resource usage: Generated schedule (b) Task priorities: Generated schedule
125 1250

100 srrssnnnnnnannnnne 1000

75 0 750

50 500

25 250

[weighted sum of executed tasks]

0 - 0
TW1 TW2 TW3 TW4 TW5 TW6 TW7 TWS8 TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8 TW9

[utilisation of available capacities in %]

(c) Resource usage: Previous schedule A (d) Task priorities: Previous schedule A

125 1250

100 1000
750
500

250

[weighted sum of executed tasks]

[utilisation of available capacities in %]

SR 0
0
TW1 TW2 TWs Twa Tws TWe Tw7 Tws TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8 TW 9

(e) Resource usage: Previous schedule B (f) Task priorities: Previous schedule B

Figure 12.6: Evaluation Results: Schedule Quality

to ensure the process is as fair as possible. Third, to be able to react to unforeseeable
circumstances, a time buffer should be left at the end of the schedule.

Figure 12.6a depicts the utilisation of testers’ capacities in the initial plan generated by
the tool (green), and the generated plan that includes all adaptations made during the
testing phase (black). The solid lines represent the median value over all testers, whereas
the dashed lines show the first and third quartile. One can observe a high concentration
of tasks in the first six weeks of the generated plan. This is desirable because testers’
capacities are well-utilised, leaving as much buffer as possible towards the end of the
schedule. While the adapted plan shows less utilisation due to illness, unexpected bug
fixing, and other unexpected problems, the workload still decreases towards the end of the
testing phase.

For two previous testing phases, we compared generated schedules to the corresponding,
manually created schedules (cf. Fig. 12.6¢ and 12.6¢e). As we only had access to (i) the final
resource and task models, and (ii) the final state of the manually created and maintained
schedule, our comparison is of course strongly biased towards the generated schedules,

12. Automating Test Schedule Generation with Domain-Specific Languages 231

which are optimal for the given pair of models. This threat to validity is further discussed
towards the end of this section. Even if this is to be expected, one can still observe that
the automated generation outperforms the manual process with respect to quality: The
fact that the generated schedules are better than the manually created schedules is still
a confirmation that the schedule generator produces schedules of high quality: Human
resources are better utilised in the first six weeks in the generated plans, whereas this
value noticeably drops in the last three weeks, leaving a buffer for unexpected effort or
for releasing human resources for other projects. Furthermore, one can observe that the
spread amongst testers (visualised via the dashed lines) is smaller in the generated plans,
which means that a fairer task distribution is achieved.

Task Distribution by Priority and Risk

Another quantitative measure for schedule quality (RQ2) is the degree to which the sched-
ule generator prefers tasks that are risky and/or highly prioritised. The test manager cat-
egorises tasks as high, medium or low for both risk and priority. The corresponding factor
(cf. Sect. 12.7) is set to 5, 2.5 or 1, respectively. Figures 12.6b, 12.6d, and 12.6f depict the
sum of testing tasks per test week weighted with these factors. One can observe that tasks
with high priority and risk are executed in the first week. As there is a repetition typically
after at least three weeks, many highly prioritised and risky tasks are also (re)executed in
week 4 (explaining the second peak in the plots). Depending on how many such tasks are
still left, there can be a further peak at week 6. The generated test plans clearly show a
stronger preference for tasks with high priority and/or risk in the early weeks, with much
higher peaks and a lower curve towards the ending of the test phase, indicating that all
risky and prioritised tasks have already been allocated.

Performance

During test schedule generation, CPU usage and main memory consumption was measured
to determine performance bottlenecks and assess the feasibility of schedule generation on
a common laptop or desktop computer.

Setup: A notebook with an Intel Core i7-2600 CPU and 16 GB of memory of memory
was used to generate a schedule for a test phase. Windows 7 in the 64-bit edition was
used as operating system, with Eclipse Photon and JRE 10.2 as execution environment.
The memory available for the JVM was limited to a maximum of 12GB.

CPU usage: During the pattern matching step, the CPU usage was comparably low
(ca. 16%), with only a small increase visible after a set of determined matches have been
processed and a new incremental pattern matching step starts. In contrast, the CPU is
almost fully utilised when solving the ILP problem due to multi-threading. Using a graph
pattern matcher that can parallelise the pattern matching step would thus speed up the
process.

Memory consumption: During the pattern matching phase, strong fluctuations between
pattern matching (high memory consumption, 1.8 — 2.8 GB) and match processing (low
memory consumption 0.2 — 1.0 GB) can be observed. When the ILP solver is invoked,
the memory consumption remains at a constant level of about 2.5 GB. This indicates that
the assigned memory is sufficient to generate schedules of comparable size, observing a
positive effect of the optimisations described in Sec. 12.8, and is therefore not a bottleneck.

Required time: The time required for test schedule generation was measured separately
for pattern matching and ILP solving and repeated 20 times. As the Gurobi solver was

232 12.9. Evaluation

excluded by dSPACE due to its high amount of recurring cost, the CBC solver® was used in
the concrete implementation. The average time for pattern matching was approximately
16.6 minutes with little spread. In contrast, the time for solving the ILP varied from 10
to 32.5 minutes, with a median of 16.5 minutes.

Summary

Revisiting our first research question (RQ1), we feel confident to claim that the problem
definition with our approach can be fully validated by the test manager without requiring
in depth knowledge of the solution domain. It can also be easily configured to a large
extent by the test manager, even though changing and adding new TGG rules still requires
assistance from the tool developer. As the validity of the allocations is not to be adapted
as often as the rating functions for optimisation, this is not a severely limiting factor.

Concerning the quality of generated schedules and effort saved (RQ2), the quantitative
quality metrics corroborate the qualitative feedback from the test manager, showing that
generated schedules are comparable if not better than manually created schedules. The
automation saves at least 50% of working time for the test manager per test phase; this
value is probably higher as manual maintenance is bound to be more error prone, especially
for larger schedules.

The performance measurements (RQ3) show strongly varying memory consumption
(0.2-2.8 GB) and moderate CPU utilization (15-30 %) during the pattern matching phase.
In the optimisation phase, a memory consumption of 2.5 GB and a CPU utilization of
almost 100 % imply that the bottleneck is currently the CPU during the optimization
phase. Probably, the runtime can be substantially improved by using multiple cores for
the pattern matching step. The generation process takes about 35 minutes on average,
whereby the longest test run took 50 minutes. This is acceptable, as test schedules are
generated once a week on a single machine, and do not require user interaction.

Threats to Validity

We now discuss the most important threats to the validity of our evaluation and results
and how we attempted to mitigate them:

Internal Validity: As the test manager was closely involved in the project, it is fair to
assume a positive bias towards the final solution. Especially the qualitative assessment
of our solution can be (very) different for a domain expert who is unwilling to learn and
use a new DSL, or who feels threatened by the automation. The interview was conducted
in German and translated to English. To avoid any mistakes that could have occurred
during the translation, we asked the test manager to review the final transcript.

As we could only compare manual schedules containing adaptations made over the entire
testing phase with generated schedules based on the final resource and task models, it is
clear that the generated schedules should be superior. Our results have to be thus carefully
interpreted; they only indicate that generated schedules are of comparable quality and
can be productively used as a replacement for manual schedules. While the performance
measurements indicate that real-world examples can be solved within an acceptable time
frame, the effectiveness of the optimisation techniques proposed in Sect. 12.8 are not
experimentally evaluated. Finally, to provide a high-level overview of how schedules take
the risk and priority of tasks into account (cf. Fig. 12.6b, 12.6d, 12.6f), we have treated
risks and priorities as interval and not as ordinal data. While we have clarified this with
the domain expert, it is questionable if this makes sense for actual risks/priorities.

Sprojects.coin-or.org/Chc

projects.coin-or.org/Cbc

12. Automating Test Schedule Generation with Domain-Specific Languages 233

External Validity: As we have interviewed only a single domain expert, and applied our
approach to a single project at a single company, we cannot claim that our positive results
can be directly transferred to a different context. We were also only able to apply the
schedule generator for the creation of three test schedules up until now. Additional tests
would be useful to further validate the results. Finally, while we initially experimented
with various ILP solvers, the performance results depend substantially on the choice of
graph pattern matcher and ILP solver, which were not varied in the experimental setting.

12.10 Summary and Discussion

After having presented an industrial use case that leverages TGG-based forward transfor-
mations and backward synchronisations in Chap. 11, we propose a configurable, model-
driven approach to optimal scheduling that is an application of the correspondence creation
(CC) operation. Going beyond its use for consistency checking, the produced correspon-
dence model has a content-related meaning in this case as well, as it can be regarded
as an allocation model. A TGG that maps human resources to testing tasks is used for
specifying the validity of test schedules in a rule-based, high-level manner.

In order to be able to not only assess the validity but also the quality of the test schedule,
the original form of the correspondence creation operation is extended by a configurable
rating function that assigns each rule application candidate a specific weight in the ILP’s
objective function. For rating these candidates, we established a new, additional DSL with
a very narrow focus. We have shown that our approach not only produces test schedules
of acceptable quality, but that the test manager is able to understand and validate the
entire problem definition, and configure at least the rating functions with confidence. In
this case study, the scalability of the hybrid approach was tested using a TGG of realistic
size. The performance evaluation has shown that the implementation — depending on
the concrete use case — requires further (heuristic) adaptions to scale sufficiently well for
practical use, but also that our generic tool support offers good opportunities to do so.

With respect fault-tolerance, the case study discloses that a certain degree of flexibility
is essential for solving allocation problems of this kind, because it is often not possible
— and towards the end of a testing phase not even desired — to map each availability
to a testing task execution. While it would be misleading to denote input models as
inconsistent because they cannot be completed to a triple of the TGG’s language in the
general case, approaches which enforce strict consistency could not be used here. While
the goal of this case study is to enable the test manager to produce an initial test schedule,
it would be interesting to use the concurrent synchronisation operation (Chap. 7 and 8)
to propagate updates on either of the two models, because the priority of tasks or the
availability of testers likely changes during the testing phase.

Considering the use case at dASPACE, the Adosate TGG (Sect. 10.7) and the BX be-
tween SysML and Event-B (Chap. 11) as three case studies for applying (fault-tolerant)
consistency management in practice, all of them have different characteristics and require
situation-specific adaptations of the hybrid approach. Even this small range of examples
emphasises that the requirements and challenges of potential use cases are very heteroge-
neous, such that there is an apparent need for further real-world examples in this regard.
The last chapter of this thesis summarises the gathered results and sketches promising
directions for further research.

13 Conclusion and Future Work

In this thesis, a hybrid approach to fault-tolerant consistency management in MDE was
presented that synergetically combines Triple Graph Grammars (TGGs) as a declarative
means of defining a consistency relation, and different optimisation techniques — espe-
cially Integer Linear Programming (ILP) — to determine a solution that is consistent to
the largest possible extent. The conceptual framework was implemented as part of the
eMoflon tool suite, and applied to two industrial case studies. This chapter concludes with
a summary of this thesis’ contributions in Sect. 13.1, structured on the basis of the require-
ments for a fault-tolerant consistency management system, which are posed in Sect. 1.2.
Directions for future research are subsequently sketched in Sect. 13.2.

13.1 Requirements Revisited

This section maps the contributions of the thesis to the ten requirements of Sect. 1.2.
In total, one can state that all requirements are adequately addressed, whereby manifold
directions for further research have become apparent, which are discussed in Sect. 13.2 to
conclude the thesis.

R1: Formal Basis

The central contribution of this thesis is the conceptual framework that combines TGGs
and optimisation techniques such as ILP in a hybrid fashion. TGGs, as a declarative and
rule-based BX approach, are based on algebraic graph transformation, inheriting its formal
semantics. By means of graph pattern matching, a set of rule application candidates
is formed, from which an optimisation problem is constructed. All construction steps
are formally defined and guarantee language membership and schema-compliance for the
computed solution. The well-defined combination of TGGs and optimisation techniques
makes it possible to prove formal properties, such as correctness and completeness, for
forward and backward transformations, as well as for consistency checks.

R2: Fault-Tolerance

While forward and backward transformations, model synchronisation and consistency
checks have been specified in prior work already, the aspect of fault-tolerance has been
insufficiently investigated. The requirement can therefore be regarded as the unique selling
proposition of this thesis: By applying the operations of the hybrid framework, tolerance
towards violations of intra- and inter-model consistency is achieved. Simultaneously, there
is a guarantee that the output models are free of faults, i.e., comply to the given schema
and are contained in the language of the underlying TGG. In case of inconsistent inputs,
the largest consistent sub-triple is computed, and the set of remaining elements is returned
separately. We claim that this output is valuable for the user, because model transforma-
tions in the presence of faults are possible, while both a consistent solution and additional
information about open problems are returned.

236 13.1. Requirements Revisited

R3: Multiple Operations

The hybrid framework offers a variety of consistency management operations, including
FWD_OPT and BWD_OPT for forward and backward transformation, CO and CC for
consistency checking with and without correspondence links, and CS for concurrent model
synchronisation (which we drop for the rest of this paragraph, as R5 discusses this opera-
tion in detail). All operations share a common formal basis, including the representation of
rule application candidates as variables, a set of constraint types that guarantee language
membership and schema-compliance, and an objective function that strives to maximise
the number of translated input elements. As a result, both the implementation and the
proof of formal properties follow a common generic structure for all operations. Satisfac-
tory scalability results could be observed for all operations in performance evaluations,
with CO scaling best and CC scaling worst among them.

R4: Expressiveness

By adding further constraints to the definition of the optimisation problem, negative,
positive and implication constraints are fully integrated into the conceptual framework. In
Chap. 4, we have shown that graph constraints increase the expressive power of TGGs. In
accordance with prior approaches, attribute conditions are supported by directly attaching
them to TGG rules. For conducting the industrial case studies (Chap. 11 and 12), attribute
conditions played an essential role to, e. g., encode whether a software tester is suitable for
a specific task when creating test schedules. An experimental evaluation indicates that
negative constraints are efficiently processable, whereas adding implication constraints
leads to substantial increases in runtime.

R5: Concurrent Synchronisation

As one of only a few model-driven approaches, the task of synchronising concurrent updates
on both models is supported by the hybrid framework. To the best of our knowledge, the
additional support for graph constraints is a further novel contribution. The operation
also encloses (one-sided) model synchronisation as a special case in which only one model
is edited by a domain expert. Conflicts are resolved without defining them explicitly:
Created, deleted and unchanged elements are assigned different weights in the objective
function, which can be configured via parameters. This makes it possible to reject user
edits in case other (more important) changes are prevented otherwise.

As optimality is less important and distinguishable for this operation, it seems promising
at the first glance to replace the exact method of ILP solving by meta-heuristics in order
to improve the overall runtime performance without larger efforts. Both single- and multi-
objective optimisation heuristics were investigated, whereby the original problem definition
could remain equal for the single-objective case. Splitting the objective function into
multiple parts, in contrast, makes it even possible to omit the configuration parameters.
Several problems became apparent, though: On the one hand, for the multi-objective case,
the pareto-front consists of too many solutions to present them to the user, such that we
strengthened the focus on single-objective heuristics. On the other hand, both the Genetic
Algorithm (GA) and Simulated Annealing (SA) — as investigated single-objective heuristics
— scale worse than ILP in comparable settings, which can be led back to the tiny portion
of feasible solutions in the search space.

13. Conclusion and Future Work 237

R6: Generic Tool Support

All concepts of the hybrid approach (Chap. 5 - 8) are implemented as part of eMoflon,
which is a Java-based MDE tool suite supporting metamodelling, unidirectional and bidi-
rectional model transformations based on graph transformations and TGGs, respectively.
eMoflon is implemented as a set of Eclipse plug-ins and has a modular architecture, involv-
ing several external components via suitable adapters, of which the (incremental) graph
pattern matcher and the ILP solver are of particular interest for implementing the hybrid
approach. The tool suite itself consists of two main components, i. e., IBeX and Neo. While
IBeX operates on EMF models, Neo uses the graph database Neo4j both as (meta-)model
storage and pattern matching engine. Both components are under active development, all
sources are available on GitHub!. Altogether, tool developers are provided with a generic
tool suite to efficiently create transformation engines for specific use cases.

Motivated by Stevens’ requirement of involving the user in consistency management
processes [Stel4], the VICToRy debugger was developed as an eMoflon-independent add-
on component for Java-based TGG and GT tools. The main capabilities of the debugger
and its value for fault-tolerant consistency management will be discussed in connection
with requirement R9.

R7: Full Automation

For all consistency management operations, including CS, the respective solution is com-
puted in a fully automated manner (cf. Fig. 5.1, 6.1, 7.2 and 8.1). Implementation-wise,
Java code is generated from rules and constraints at compile time, which is executed as
part of the uniform consistency management algorithm at runtime (cf. Fig. 9.5 and 9.12).
The inspection of inputs and outputs differs between IBeX and Neo: While in IBeX, dif-
ferent EMF editors are used to handle the resources, a combination of the textual eMSL
language and the visual Neo4j browser is used in Neo. During the transformation, the
integration expert is informed about the current state and detected faults via console
outputs.

R8: Efficiency and Scalability

A main motivation for combining TGGs and optimisation techniques is to benefit from
both the scalability of algorithmic approaches and the flexibility of search-based ap-
proaches. While a certain degree of flexibility is necessary to process faulty input models,
efficiency and scalability are important to use the proposed framework in practice. In
order to assess the runtime behaviour of the hybrid approach, several experimental evalu-
ations with different settings have been conducted (cf. Sect. 5.8, 6.6, 7.7, 8.5, and 9.6). In
general, most operations show a satisfactory runtime behaviour for growing model sizes.
Especially the CO operation could be efficiently implemented in eMoflon::Neo, as only one
database query per rule is necessary to determine all application candidates. Furthermore,
the other three operations presented in Chap. 5 scale reasonably well, also in combination
with negative constraints, whereas room for improvement is left for implication constraints.

For several reasons, the performance of the CS operation is an open problem: First,
there are multiple rule variants for each declarative TGG rule, whereby the number of
variants grows exponentially with the rule size. Second, in contrast to all other operations,
the optimisation step appears to be even more costly than the pattern matching step,
which indicates that the constructed optimisation problem is inherently complex. As there

"https://github.com/eMoflon

https://github.com/eMoflon

238 13.1. Requirements Revisited

is no separate operation for one-sided model synchronisation (cf. R5), one can assume
that scalability is also problematic for this operation. Compared to existing incremental
implementations [LAFT17], the differences are substantial.

R9: User Interaction

As user involvement is one of the main requirements for fault-tolerant systems, the VIC-
ToRy debugger was developed in order to make consistency management processes trans-
parent and understandable for integration experts. There existed several MDE debuggers
prior to the development of VICToRy, which indeed have a different scope: While these de-
buggers enable the user to understand the pattern matching and rule application process,
they are not intended for large-scale transformations, as they lack a suitable breakpoint
concept. VICToRy, in contrast, treats a rule application as the smallest unit for debug-
ging model transformations. It offers a differentiated breakpoint concept that enables a
target-oriented search for faults, either in the input models or in the specification of rules
and constraints. As determining suitable configuration parameters for concurrent model
synchronisation (R5) turns out to involve enormous efforts, a reasonable implementation
of this operation requires some user interaction in any way. Due to the complexity and
novelty of this operation, we decided to spend some time on developing requirements to-
gether with experts from different subfields of MDE. The resulting Ul prototype and
process specification shall be integrated into VICToRy in the future to equip the integra-
tion expert with tool support for conflict detection and resolution.

R10: Applicability

In Chap. 11 and 12, we presented two comprehensive industrial case studies, in which
real-world problems were solved by using different operations of the hybrid approach. At
DB Netz AG, an infrastructure manager of the German railway system, a BX between the
semi-formal language SysML and the formal language Event-B was automated to reduce
human efforts and remove one potential source of error from the transformation process.
While fault-tolerance was no explicit requirement, the future use of other operations of the
hybrid framework (e.g., consistency checks) appears to be promising in the application
context. The CC operation was used to create optimal test schedules at ASPACE GmbH,
a software and hardware developer for testing mechatronic control units. For this use
case, fault-tolerance (in a technical sense) is essential, because it is hardly possible and
sometimes even undesired to utilise all availabilities of each software tester during the
entire testing phase. The case study also involves a quantitative evaluation, whereas for
the Adosate TGG (Sect. 10.7) and the previously mentioned use case at DB Netz AG, the
conducted experiments are purely qualitative. It became evident that, depending on the
TGG at hand and the case-specific requirements, further performance improvements can
be necessary, while it was at the same time possible to adapt the tool support as required.

The overall feedback given by the practitioners at DB Netz and dSPACE was largely
positive. They appreciate the functionality of the eMoflon tool suite, in particular that
different consistency management tasks can be accomplished in a uniform manner. There-
fore, the main argument for BX approaches, i.e., that different operations can be auto-
matically derived based on a common consistency relation, is confirmed by practitioners
from different domains. Suggestions for improvement are particularly made with respect
to the usability and understandability of the approach. It is possible for inexperienced
users to understand TGG rules that have been specified by experts, and they seem to be
a suitable basis for discussing the intended system behaviour. Without further human or

13. Conclusion and Future Work 239

tool support, it is hard for domain and integration experts to specify rules and constraints,
and thereby control consistency management processes, though.

Summary

After having discussed how the contributions of this thesis address the (technology-indepen-
dent) requirements, let us briefly shift the focus to ongoing research on the TGG formalism.
In their roadmap for future research on TGGs, Anjorin et al. [ALS15] name five dimen-
sions, according to which the contributions of this thesis shall be classified (cf. Fig. 13.1).

Two steps forward have been taken with respect to (fault-)tolerance, as the hybrid
framework is able to handle both inconsistent input models and inconsistent user edits.
An open question might be whether it is even beneficial to allow inconsistent output
models in some cases, which is prevented completely by the developed framework.

By integrating implication constraints, the expressiveness of supported TGGs has been
improved, comparable to the expressive power of positive application conditions. There
are still (complex) constraint types that cannot be expressed yet. Also, it must be noted
that multi-amalgamation (cf. Sect. 4.6), being formalised and implemented for TGGs in
prior work [LAST15,LAS15], is not yet supported by the hybrid framework.

As a further consistency management operation, concurrent model synchronisation (de-
noted as integration in the diagram) was introduced by Orejas et al. [OPN20], Fritsche
et al. [FKM™20], and proposed in a fault-tolerant version in Chap. 7 and 8 of this thesis.
Model transformation across multiple domains as a last step on the concurrency axis is
an active research field, that is elaborated in Sect. 13.2.

Further improvements with respect to scalability or reliability have not taken place yet
and — in addition to the aspects discussed in the following section — indicate a direction
for further research.

Concurrency

4 multi-domain

K
o
K
o

integration
-~
4 ~ M
~
’ ~

synchronisation ™.,
- ~ N

, .t . < .. Expressiveness
batch - s

Scalability . ’

e
i
.,

polynomial in
delta size

complex
conditions
PACs

simultaneous

polynomial in model size multi-amalgamation
1

s . complex attribute conditions
exponential in model size]
0 A\

NACs !
. 1
+ consistent model, '

consistent delta :

transformation correctness
B 1
transformation completeness
. A . -
: consistent model,
domain correctness inconsistent delta
3 i

domain completeness E
: H
£ inconsistent model,

least Change/surp”se Gl e aeeemaaernnsarannsernnsarenneannnsrnnneannneennnssannnernnner e T inconsistent delta

Reliability Tolerance

Figure 13.1: TGG-specific contributions

240 13.2. Future Work

13.2 Future Work

After the previous Sect. 13.1 has given a summary of how the contributions of this thesis
address the requirements for fault-tolerant consistency management systems, the remain-
der of this chapter is dedicated to possible directions for future research in the narrower
and broader sense.

Extending the Hybrid Approach

With the consistency management operations of the hybrid approach, output models —
which consist of a largest consistent sub-triple and the remaining elements of the input
models — can be computed from inconsistent inputs. These sub-triples are indeed helpful
for input models with faults at the end of the rule application sequence, e. g., models with
incorrectly typed or disconnected leave nodes. As the largest consistent sub-triple must
be the result of a correct rule application sequence, it is highly problematic if, in extreme
cases, no matches for axiom rules can be determined. Consequently, the largest consistent
sub-triple would be empty, which amounts to rejecting the input models. Instead, it would
be helpful in such situations if a “smallest consistent super-triple” could be established that
adds as few elements to the input models as possible. Alternatively, fuzzy mechanisms such
as “island grammars” from the field of compiler construction could be used [ABvdB*12,
EHSB13] in order to determine matches even though single context elements are missing.

Similarly, the handling of typing faults leaves room for improvement: In order to find
a rule application candidate, a valid match must exist that maps each context element of
the rule to the host graph. This means that a single typing fault, i.e., an incorrectly typed
node or edge, can prevent the consistency management system from finding a match at
all, resulting in rather useless solutions as described above. Additional mechanisms that
tolerate typing faults could therefore improve the average solution quality of the hybrid
approach.

Furthermore, the effects of the distribution of faults over the input models, i.e., the
differences between an approximately equal distribution and a concentration of faults on
a specific part of the input, are not known yet. This is because the search for an optimal
solution is always global and maximises the total number of translated elements, inde-
pendent of their location within the input models. It would be interesting to investigate
the strengths and weaknesses of the approach, depending on the distribution of faults,
especially from the user perspective.

Increasing Expressiveness

As already suggested in Sect. 13.1, the expressive power of the hybrid approach can be
increased by adding further language features to the framework. For the running ex-
ample, it was necessary to find a workaround for the variable initialisation which could
be expressed by the multi-rule of the multi-amalgamated rule Pseudostate ToActions (cf.
Fig. 4.13). The integration of this language feature seems promising and feasible: The
substructure of one kernel rule and arbitrarily many multi-rules resembles the structure
of a graph constraint with one premise pattern and arbitrarily many conclusion patterns.

This aspect leads over to open issues regarding constraint handling. First, the scalability
experiments indicate that further performance improvements are necessary to efficiently
handle implication constraints. Second, advanced constraint types could be a valuable
extension of the hybrid approach, such as complex graph conditions [GEH11] or OCL
constraints as an important standard of the OMG.

13. Conclusion and Future Work 241

Improving Concurrent Synchronisation

Regarding the integration of the concurrent synchronisation into the hybrid framework,
several points for future improvements can be identified. The most obvious problem is
the concrete parametrisation of the objective function for this operation. In Chap. 8, we
have seen that enormous efforts are required to determine suitable parameters for a small
example. Furthermore, there can be situations in which changes in either source or target
domain are preferred independent of the parameter values (cf. Sect. 7.6), which makes
the need for separate parameters for source and target domain apparent.

According to the quantitative evaluation of Sect. 8.5, ILP outperforms all single-objective
optimisation heuristics for the concrete application scenario due to the tiny portion of fea-
sible solutions in the search space. This can be - at least partly - led back to the uniform
penalty that is assigned to invalid solutions (cf. Sect. 8.4). The severity of constraint
violations could be taken into account, e.g., by imposing a penalty for each violation, in
order to distinguish between nearly correct and completely invalid solutions.

Another important point is the grouping of user edits into atomic units. In its current
version, the concurrent synchronisation operation considers each creation or deletion of an
element as a separate change, regardless of the user’s intention behind it. Let us assume
that a user wants to introduce a superclass S for classes A and B, because A and B share
several attributes and methods. It would be possible for the CS operation, though, to
introduce S but leave all common attributes and methods in A and B, which is worse than
rejecting the change completely. The atomicity of user edits can be integrated by adding
further constraints to the definition of the optimisation problem.

In contrast to the approach of Fritsche et al. [FKM™20], there is no support for explicitly
handling attribute value changes yet. Currently, the operation can simulate these changes
by deleting and adding nodes with the respective values, which can easily lead to rejecting
the change in cases the new value must be propagated to other nodes of the same model.

Enhancing the Tool Support

The two components of the eMoflon tool suite fundamentally differ in their underlying
technology, i.e., the EMF framework and the graph database Neo4j. While the use of
graph databases makes metamodelling more flexible and makes it unnecessary to entirely
load large models into the main memory, the EMF framework is still a de-facto standard for
many modelling tools. The use of Ecore-compliant XMI files facilitated the implementation
of the transformation tool chain at DB Netz by far (cf. Sect. 11.5), which was, besides
the broader support for attribute conditions, the main argument for preferring IBeX over
Neo for this use case. To improve the interoperability with EMF-based tools, import and
export functionality for XMI files is currently added to eMoflon::Neo.

With the development of the VICToRy debugger, a remarkable step towards explain-
able BX was taken. According to the conducted expert interviews, fault detection for
experts and exploration of a TGG for novices are promising use cases for the debugger.
While the overall functionality received positive feedback, the participants stated that the
question why a particular rule is not applicable in a specific situation cannot be answered
with the tool. Likewise, practitioners at DB Netz and dSPACE stated that further tool
support is required to enable integration experts to define TGG rules without assistance.
They suggested to develop a domain-specific Ul that guides inexperienced users through
consistency management processes, which would increase the users’ trust in the software
system.

242 13.2. Future Work

As discussed in the last subsection, the automated conflict resolution via the CS op-
eration leaves room for improvement from several points of view. An alternative and
presumably more promising line of research would be to shift the task of resolving con-
flicts to the integration expert. In this thesis, a Ul prototype and process specification for
an interactive concurrent synchronisation component were developed. The actual imple-
mentation is one of the next steps to make the debugger ready for practical use.

Further Case Studies

The practical applicability of the hybrid framework is demonstrated via two industrial
case studies in Chap. 11 and 12. Fault-tolerance was only an implicit requirement in the
latter case, though, which motivates us to conduct further studies for which fault-tolerant
mechanisms are explicitly required. As eMoflon::IBeX was used in both cases, further
studies based on eMoflon::Neo are especially important. Furthermore, the use of multiple
consistency management operations in the same industrial context would underpin the
unique selling proposition of BX approaches. In both of the existing case studies, the CS
operation could be used to maintain consistency over a longer period of time.

Due to time and capacity constraints, the empirical studies which were conducted in
the course of this thesis are of purely qualitative nature. Structured experiments with
a sufficiently high number of test users are planned for the future. Furthermore, only
different student groups, one key user each at dSPACE and DB Netz, and the eMoflon
development team have hands-on experience with the tool support, whereas the expert
interviews were conducted based on live demonstrations. To strengthen the acceptance of
MDE approaches in industry, more practitioners must be directly involved into compara-
ble experiments. Finally, a direct comparison of fault-tolerant and -intolerant approaches
is necessary to assess how valuable the gained flexibility is perceived by domain and inte-
gration experts.

Follow-up Work: Leaving the Hybrid Approach

The topic of fault-tolerant consistency management in MDE is broadly diversified and has
a larger scope than the proposed approach of this thesis can address. Only a small portion
of the relevant papers that have been identified by the Systematic Literature Review
(SLR) (cf. Chap. 2) can be classified as BX approaches. For instance, fault-tolerance
plays an important role for model-to-text transformations (e. g., code generation) as well.
Opportunities and risks of tolerating inconsistencies in this area need to be investigated
in future work. While the hybrid approach is based on graph pattern matching and graph
transformation rules, other concepts of fault-tolerance might be more suitable for textual
transformation languages such as ATL.

Another problem that is not directly addressed in the scope of this thesis is fault-
tolerance with respect to metamodel-conformance. The SLR has shown that software
developers hesitate to apply MDE approaches because changing the metamodel at later
stages of the development process involves substantial manual efforts as most tools enforce
strict metamodel-conformance (cf. Sect. 2.6).

With help of the SLR, many commonalities and differences between the closely related
concepts of fault-tolerance and uncertainty could be identified. A question that remains
open is, however, which of the two concepts is more recommendable in which application
scenarios, or whether it is even possible to combine them to utilise the strengths of both
concepts. In total, flexible modelling is a practically relevant and complex topic, for which
more research is needed.

13. Conclusion and Future Work 243

Follow-up Work: Multi-directional Transformations

The last step on the concurrency axis of Fig. 13.1, i. e., transformation across multiple do-
mains, is a topic that recently gained noticeable attention among MDE researchers. The
motivation for extending the bidirectional to a multi-directional case is driven by practical
considerations: Usually, more than two (teams of) domain experts work in parallel on
larger software projects, such that the consistency relation is not binary, but n-ary, requir-
ing respective consistency management frameworks. Building upon seminal work [KKS07,
Stel7] and the Dagstuhl seminar on multi-directional transformations [CKSZ18], several
approaches to maintaining consistency in software systems with arbitrarily many models
have been recently proposed.

Trollmann et al. generalise TGGs to graph diagrams [TA16] and define semantics-
preserving transformations for such graph diagrams, consisting of two or more graphs,
which can be pair-wise connected by further correspondence graphs. Stiinkel et al. [SKLR20,
SKLR21] further generalise this idea by introducing comprehensive systems, in which the
set of correspondence graphs is replaced by a single commonality structure that defines
corresponding elements in more than two models, and thereby represents an n-ary con-
sistency relation. It is shown that important formal properties for graph transformations
also hold for comprehensive systems. Conceptual work on model transformation networks
is proposed by Klare et al. [Kla21,SK21, GKB21|, who define correctness properties (e. g.,
compatibility and a suitable orchestration) and quality properties for transformation net-
works.

While TGGs, graph diagrams and comprehensive systems share common ground with
respect to their formalisation, there is still a substantial amount of work left regarding
the operationalisation of rules for the last two concepts. Nonetheless, introducing fault-
tolerance to networks of model transformations is a problem of practical relevance, for
which it makes sense to develop concepts at this point already.

Follow-up Work: Low-Code Development

Another topic of interest that emerged in recent years and that is closely related to MDE is
software development with Low-Code Development Platforms (LCDPs). The idea behind
low-code development is very similar to MDE concepts: With the help of a mix of visual
and textual editors and configuration menus, users shall be enabled to develop simple soft-
ware applications for different platforms, including smart phones, tablets and full desktop
PCs. Besides rapidly growing interest in industry, the establishment of a workshop for
low-code development co-located with the MODELS conference in 2020 [GI20] underpins
the relevance for the MDE community.

First meta-studies come to the conclusion that low-code development is rather a com-
bination of existing lines of research, such as rapid application development, MDE, or
software as a service, than a fundamentally novel software development approach. As an
opportunity for further research, Bock and Frank name the synchronisation of models and
code [BF21], which requires BX mechanisms also for LCDPs. With all platforms we are
aware of, only unidirectional code generation is possible, though. They further see great
potential in introducing domain-specific abstractions to LCDPs, whereas users of current
platforms are obliged to create generic data models for their software application.

Also in this context, fault-tolerance plays an important role for the software development
process. LCDPs are intended to be used by so-called “citizen developers”, who can be
considered as the counterparts to domain experts in MDE: Employees without (advanced)
programming experience but profound domain knowledge shall be enabled to develop

244 13.2. Future Work

simple software applications on their own. As these employees are not familiar with IDEs
and compiler messages, it is particularly important to make the development process
as flexible as possible. Instead of enforcing perfect consistency, LCDPs should present
a partial solution to citizen developers, which can be iteratively completed to a fully
functional low-code application.

Bibliography

[ABCT20]

[ABGMO9]

[ABGRI0]

[ABH*10]

[ABvdB'12]

[ABW17]

[ABW+20]

[AC19]

[ACGT14]

Arturo Amendola, Anna Becchi, Roberto Cavada, Alessandro Cimatti, Al-
berto Griggio, Giuseppe Scaglione, Angelo Susi, Alberto Tacchella, and Mat-
teo Tessi. A Model-Based Approach to the Design, Verification and Deploy-
ment of Railway Interlocking System. In International Symposium on Lever-
aging Applications of Formal Methods (ISoLA) 2020, Proceedings, Part III,
pages 240-254. Springer, 2020. Cited on page 201.

Aldeida Aleti, Stefan Bjornander, Lars Grunske, and Indika Meedeniya.
ArcheOpterix: An extendable tool for architecture optimization of AADL
models. In Workshop on Model-Based Methodologies for Pervasive and Em-
bedded Software (MOMPES) 2009, Proceedings, pages 61-71. IEEE, 20009.
Cited on page 218.

Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On
challenges of model transformation from UML to Alloy. Software and Sys-
tems Modeling, 9(1):69-86, 2010. Cited on page 204.

Jean-Raymond Abrial, Michael J Butler, Stefan Hallerstede, Thai Son
Hoang, Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for mod-
elling and reasoning in Event-B. International Journal on Software Tools
for Technology Transfer, 12(6):447-466, 2010. Cited on pages 205 and 206.

Ali Afroozeh, Jean-Christophe Bach, Mark van den Brand, Adrian John-
stone, Maarten Manders, Pierre-Etienne Moreau, and Elizabeth Scott. Is-
land Grammar-Based Parsing Using GLL and Tom. In Software Language
Engineering (SLE) 2012, Proceedings, pages 224-243. Springer, 2012. Cited
on page 240.

Anthony Anjorin, Thomas Buchmann, and Bernhard Westfechtel. The Fam-
ilies to Persons Case. In Transformation Tool Contest (TTC) 2017, Proceed-
ings, pages 27-34. CEUR-WS.org, 2017. Cited on pages 97, 98, 160, 197,
and 283.

Anthony Anjorin, Thomas Buchmann, Bernhard Westfechtel, Zinovy Diskin,
Hsiang-Shang Ko, Romina Eramo, Georg Hinkel, Leila Samimi-Dehkordi,
and Albert Ziindorf. Benchmarking bidirectional transformations: theory,
implementation, application, and assessment. Software and Systems Model-
ing, 19(3):647-691, sep 2020. Cited on pages 54, 97, 104, and 203.

Anthony Anjorin and James Cheney. Provenance Meets Bidirectional Trans-
formations. In International Workshop on Theory and Practice of Prove-
nance (TaPP) 2019, Proceedings. USENIX Association, 2019. Cited on
page 199.

Anthony Anjorin, Alcino Cunha, Holger Giese, Frank Hermann, Arend
Rensink, and Andy Schiirr. BenchmarX. In International Workshop on

246

Bibliography

[ADAA17]

[ADJ*17]

[AGF15]

[AHO7]

[AH18]

[AKRS06]

[ALK*15]

[ALPS11]

[ALS15]

[AMO1]

Bidirectional Transformations (Bx) 2014, Proceedings, pages 82-86. CEUR-
WS.org, 2014. Cited on page 54.

Lujain Al-Dakheel and Issam Al-Azzoni. Model-to-Model based Approach
for Software Component Allocation in Embedded Systems. In International
Conference on Model-Driven Engineering and Software Development (MOD-
ELSWARD) 2017, Proceedings, pages 320-328. SciTePress, 2017. Cited on
page 218.

Anthony Anjorin, Zinovy Diskin, Frédéric Jouault, Hsiang-Shang Ko, Erhan
Leblebici, and Bernhard Westfechtel. Benchmarx Reloaded: A Practical
Benchmark Framework for Bidirectional Transformations. In International
Workshop on Bidirectional Transformations (Bx) 2017, Proceedings, pages
15-30. CEUR-~-WS.org, 2017. Cited on page 54.

Colin Atkinson, Ralph Gerbig, and Mathias Fritzsche. A multi-level ap-
proach to modeling language extension in the Enterprise Systems Domain.
Information Systems, 54, 2015. Cited on page 33.

Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition,
and Instantiation of Discrete Models: Application to Event-B. Fundamenta
Informaticae, 77(1-2):1-28, 2007. Cited on pages 4, 41, and 202.

Abdullah Algahtani and Reiko Heckel. Model Based Development of Data
Integration in Graph Databases Using Triple Graph Grammars. In Soft-
ware Technologies: Applications and Foundations (STAF) 2018, Workshop
Proceedings, pages 399-414. Springer, 2018. Cited on page 166.

Carsten Amelunxen, Alexander Konigs, Tobias Rotschke, and Andy Schiirr.
MOFLON: A Standard-Compliant Metamodeling Framework with Graph
Transformations. In Furopean Conference on Model Driven Architecture -
Foundations and Applications (ECMDA-FA) 2006, Proceedings, pages 361—
375. Springer, 2006. Cited on page 164.

Anthony Anjorin, Erhan Leblebici, Roland Kluge, Andy Schiirr, and Perdita
Stevens. A Systematic Approach and Guidelines to Developing a Triple
Graph Grammar. In International Workshop on Bidirectional Transforma-
tions (Bx) 2015, Proceedings, pages 81-95. CEUR-WS.org, 2015. Cited on
pages 54 and 101.

Anthony Anjorin, Marius Lauder, Sven Patzina, and Andy Schiirr. eMoflon:
Leveraging EMF and Professional CASE Tools. In Jahrestagung der
Gesellschaft fir Informatik (INFORMATIK) 2011, Abstract Proceedings,
page 281. GI, 2011. Cited on page 164.

Anthony Anjorin, Erhan Leblebici, and Andy Schiirr. 20 Years of Triple
Graph Grammars: A Roadmap for Future Research. FElectronic Commu-

nication of the European Association of Software Science and Technology,
73(1):1-20, 2015. Cited on pages 13, 44, 55, 81, 83, and 239.

Javier Alcaraz and Concepcién Maroto. A Robust Genetic Algorithm for
Resource Allocation in Project Scheduling. Annals of Operations Research,
102(1-4):83-109, 2001. Cited on page 218.

Bibliography

247

[AN16]

[AN19]

[Aqu09]

[ASCG16]

[ASLS14]

[AST12]

[AVLH17]

[AVS12]

[AVST14]

[AWO+20]

[AY15]

Afef Awadid and Selmin Nurcan. A Systematic Literature Review of Con-
sistency Among Business Process Models. In Workshop on Business Process
Modelling, Development, and Support (BPMDS) 2016, Proceedings, volume
248, pages 175-195. Springer, 2016. Cited on page 19.

Afef Awadid and Selmin Nurcan. Consistency requirements in business
process modeling: a thorough overview. Software and Systems Modeling,
18(2):1097-1115, 2019. Cited on page 19.

Nathalie Aquino. Adding flexibility in the model-driven engineering of user
interfaces. In Symposium on Engineering Interactive Computing Systems
(EICS) 2009, Proceedings, pages 329-332. ACM, 2009. Cited on page 33.

Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and
Perdita Stevens. Introduction to Bidirectional Transformations. In Bidirec-
tional Transformations, pages 1-28. Springer, 2016. Cited on page 4.

Anthony Anjorin, Karsten Saller, Malte Lochau, and Andy Schiirr. Mod-
ularizing Triple Graph Grammars Using Rule Refinement. In Fundamental
Approaches to Software Engineering (FASE) 2014, Proceedings, pages 340—
354. Springer, 2014. Cited on pages 54, 195, and 284.

Anthony Anjorin, Andy Schiirr, and Gabriele Taentzer. Construction of In-
tegrity Preserving Triple Graph Grammars. In International Conference on
Graph Transformation (ICGT) 2012, Proceedings, pages 356-370. Springer,
2012. Cited on pages 67 and 103.

Wesley K G Assungao, Silvia R Vergilio, and Roberto E Lopez-Herrejon.
Discovering Software Architectures with Search-Based Merge of UML Model
Variants. In International Conference on Software Reuse (ICSR) 2017, Pro-
ceedings, pages 95—111. Springer, 2017. Cited on page 146.

Anthony Anjorin, Gergely Varrd, and Andy Schiirr. Complex Attribute Ma-
nipulation in TGGs with Constraint-Based Programming Techniques. In
International Workshop on Bidirectional Transformations (Bx) 2012, Pro-
ceedings, pages 1-16. EASST, 2012. Cited on pages 53, 54, and 59.

Hani Abdeen, Déniel Varrd, Houari Sahraoui, Andras Szabolcs Nagy, Csaba
Debreceni, Abel Hegediis, and Akos Horvéth. Multi-Objective Optimization
in Rule-based Design Space Exploration. In International Conference on
Automated Software Engineering (ASE) 2014, Proceedings, pages 289-300.
ACM, 2014. Cited on page 146.

Anthony Anjorin, Nils Weidmann, Robin Oppermann, Lars Fritsche, and
Andy Schiirr. Automating test schedule generation with domain-specific
languages: a configurable, model-driven approach. In International Con-
ference on Model Driven Engineering Languages and Systems (MODELS)
2020, Proceedings, pages 320-331. ACM, 2020. Cited on pages 16 and 228.

Shaukat Ali and Tao Yue. Evolving, Modelling and Testing Realistic Un-
certain Behaviours of Cyber-Physical Systems. In International Conference
on Software Testing, Verification, and Validation (ICST) 2015, Proceedings.
IEEE, 2015. Cited on page 32.

248

Bibliography

[AYK*14]

[AYL*18]

[Bal91]

[BCC15]

[BCC*16]

[BEP*17]

[BET12]

[B6205)

[BF21]

[BFHS5)

[BFHS7]

Takahiro Ando, Hirokazu Yatsu, Weigiang Kong, Kenji Hisazumi, and Akira
Fukuda. Translation rules of SysML state machine diagrams into CSP#
toward formal model checking. International Journal of Web Information
Systems, 10(2):151-169, 2014. Cited on page 204.

Anthony Anjorin, Enes Yigitbas, Erhan Leblebici, Andy Schiirr, Marius
Lauder, and Martin Witte. Description Languages for Consistency Manage-
ment Scenarios Based on Examples from the Industry Automation Domain.
The Art, Science, and Engineering of Programming, 2(3):7, 2018. Cited on
page 4.

Robert Balzer. Tolerating Inconsistency. In International Conference on
Software Engineering (ICSE) 1991, Proceedings, pages 158-165. IEEE, 1991.
Cited on pages 7, 18, 23, 25, 28, and 31.

Erwan Bousse, Jonathan Corley, Benoit Combemale, Jeff Gray, and Benoit
Baudry. Supporting efficient and advanced omniscient debugging for
xDSMLs. In Software Language Engineering (SLE) 2015, Proceedings, pages
137-148. ACM, 2015. Cited on page 184.

Alessio Bucaioni, Antonio Cicchetti, Federico Ciccozzi, Saad Mubeen, Al-
fonso Pierantonio, and Mikael Sjodin:. Handling Uncertainty in Automati-
cally Generated Implementation Models in the Automotive Domain. In FU-
ROMICRO Conference on Software Engineering and Advanced Applications
(SEAA) 2016, Proceedings, pages 173-180. IEEE, 2016. Cited on pages 25
and 33.

Marco Brambilla, Romina Eramo, Alfonso Pierantonio, Gianni Rosa, and
Eric Umuhoza. Enhancing Flexibility in User Interaction Modeling by
Adding Design Uncertainty to IFML. In International Conference on Model
Driven Engineering Languages and Systems (MODELS) 2017, Proceedings,
pages 435-440. IEEE, 2017. Cited on pages 25, 29, and 33.

Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal Founda-
tion of Consistent EMF Model Transformations by Algebraic Graph Trans-
formation. Software and System Modeling, 11(2):227-250, 2012. Cited on
page 165.

Jean Bézivin. On the Unification Power of Models. Software and Systems
Modeling, 4(2):171-188, 2005. Cited on page 3.

Alexander Bock and Ulrich Frank. In Search of the Essence of Low-Code: An
Exploratory Study of Seven Development Platforms. In International Con-
ference on Model Driven Engineering Languages and Systems (MODELS)
2021, Companion Proceedings. IEEE, 2021. Cited on page 243.

Paul Boehm, Harald-Reto Fonio, and Annegret Habel. Amalgamation of
Graph Transformations with Applications to Synchronization. In Theory
and Practice of Software Development (TAPSOFT) 1985, Proceedings, pages
267-283. Springer, 1985. Cited on page 69.

Paul Boehm, Harald-Reto Fonio, and Annegret Habel. Amalgamation of
graph transformations: A synchronization mechanism. Journal of Computer
and System Sciences, 34(2-3):377-408, 1987. Cited on page 54.

Bibliography

249

[bFKLW12]

[BFPT08]

[BFT+19)

[BGO7]

[BG16]

[BGN+04]

[BGR+17]

[BHO7]

[BHS05]

[BLC18]

[BLLT07]

Ameni ben Fadhel, Marouane Kessentini, Philip Langer, and Manuel Wim-
mer. Search-based detection of high-level model changes. In International
Conference on Software Maintenance (ICSM) 2012, Proceedings, pages 212—
221. IEEE, 2012. Cited on page 146.

Aaron Bohannon, John Nathan Foster, Benjamin C Pierce, Alexandre
Pilkiewicz, and Alan Schmitt. Boomerang : Resourceful Lenses for String
Data. In Symposium on Principles of Programming Languages (POPL) 2008,
Proceedings, pages 407-419. ACM, 2008. Cited on pages 81 and 83.

Robert Bill, Martin Fleck, Javier Troya, Tanja Mayerhofer, and Manuel
Wimmer. A local and global tour on MOMoT. Software and Systems Mod-
eling, 18(2):1017-1046, 2019. Cited on pages 146, 147, 151, 153, and 158.

Ebrahim Bagheri and Ali A Ghorbani. On the Collaborative Development of
Para-Consistent Conceptual Models. In International Conference on Quality
Software (QSIC) 2007, Proceedings, pages 336-341. IEEE, 2007. Cited on
page 25.

Thomas Buchmann and Sandra Greiner. Handcrafting a Triple Graph Trans-
formation System to Realize Round-trip Engineering Between UML Class
Models and Java Source Code. In International Joint Conference on Software
Technologies (ICSOFT) 2016, Proceedings (Vol. 2), pages 27-38. SciTePress,
2016. Cited on page 125.

Sven Burmester, Holger Giese, Jorg Niere, Matthias Tichy, Jorg P Wadsack,
Robert Wagner, Lothar Wendehals, and Albert Ziindorf. Tool Integration
at the Meta-model Level: The Fujaba Approach. International Journal
on Software Tools for Technology Transfer, 6(3):203-218, 2004. Cited on
pages 164 and 165.

Rabih Bashroush, Muhammad Garba, Rick Rabiser, Iris Groher, and Goetz
Botterweck. CASE Tool Support for Variability Management in Software
Product Lines. ACM Computing Surveys, 50(1):14:1-14:45, 2017. Cited on
page 19.

Michael J Butler and Stefan Hallerstede. The Rodin formal modelling tool.
In Christmas Workshop: Formal Methods in Industry (FMI) 2007, Proceed-
ings, pages 1-5. eWiC, 2007. Cited on page 202.

Leopoldo Bertossi, Anthony Hunter, and Torsten Schaub. Introduction to
Inconsistency Tolerance. In Inconsistency Tolerance [result from a Dagstuhl
seminar], pages 1-14. Springer, 2005. Cited on page 8.

Oluwaseun Bamgboye, Xiaodong Liu, and Peter Cruickshank. Towards Mod-
elling and Reasoning About Uncertain Data of Sensor Measurements for
Decision Support in Smart Spaces. In International Computer Software
and Applications Conference (COMPSAC) 2018, Proceedings, pages T44—
749. IEEE, 2018. Cited on pages 26 and 32.

Christopher Brooks, Edward A Lee, Xiaojun Liu, Stephen Neuendorffer,
Yang Zhao, and Haiyang Zheng. Heterogeneous Concurrent Modeling and
Design in Java (Volume 3: Ptolemy II Domains). Technical report, Univer-
sity of California, Berkeley, CA, 2007. Cited on page 217.

250

Bibliography

[BM14]

[BMMMO8]

[BPD*14]

[Brol8§]

[BRSTO5]

[BSEL0]

[BSV20]

[Bucl§]

[BvBG+10]

[BYWE21]

Jorge Barreiros and Ana Moreira. Flexible Modeling and Product Derivation
in Software Product Lines. In International Conference on Software Engi-
neering and Knowledge Engineering (SEKE) 2013, Proceedings, pages 67—
70. Knowledge Systems Institute Graduate School, 2014. Cited on pages 24
and 33.

Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. Detecting
model inconsistency through operation-based model construction. In In-
ternational Conference on Software Engineering (ICSE) 2008, Proceedings,
pages 511-520. ACM, 2008. Cited on pages 23, 24, and 32.

Dominique Blouin, Alain Plantec, Pierre Dissaux, Frank Singhoff, and Jean-
Philippe Diguet. Synchronization of Models of Rich Languages with Triple
Graph Grammars: An Experience Report. In International Conference on
Model Transformation (ICMT) 2014, Proceedings, pages 106-121. Springer,
2014. Cited on pages 4 and 195.

Manfred Broy. Yesterday, Today, and Tomorrow: 50 Years of Software En-
gineering. IEEE Software, 35(5):38-43, 2018. Cited on page 3.

Jean Bézivin, Bernhard Rumpe, Andy Schiirr, and Laurence Tratt. Model
Transformations in Practice Workshop. In International Conference on
Model Driven Engineering Languages and Systems (MoDELS) 2005, Work-
shop Proceedings. Springer, 2005. Cited on page 96.

Nils Bandener, Christian Soltenborn, and Gregor Engels. Extending DMM
Behavior Specifications for Visual Execution and Debugging. In Software
Language Engineering (SLE) 2010, Proceedings, pages 357-376. Springer,
2010. Cited on page 185.

Aren A Babikian, Oszkar Semerath, and Déaniel Varré. Automated Genera-
tion of Consistent Graph Models with First-Order Logic Theorem Provers.
In Fundamental Approaches to Software Engineering (FASE) 2020, Proceed-
ings, pages 441-461. Springer, 2020. Cited on pages 23, 24, and 103.

Thomas Buchmann. BXtend - A Framework for (Bidirectional) Incremental
Model Transformations. In International Conference on Model-Driven En-
gineering and Software Development (MODELSWARD) 2018, Proceedings,
pages 336—-345. SciTePress, 2018. Cited on page 98.

Twan Basten, Emiel van Benthum, Marc Geilen, Martijn Hendriks, Fred
Houben, Georgeta Igna, Frans Reckers, Sebastian de Smet, Lou J Somers,
and Egbert Teeselink. Model-Driven Design-Space Exploration for Embed-
ded Systems: The Octopus Toolset. In International Symposium on Leverag-
ing Applications (ISoLA) 2010, Proceedings, Part I, pages 90—105. Springer,
2010. Cited on page 218.

Kai Biermeier, Enes Yigitbas, Nils Weidmann, and Gregor Engels. FEn-
suring User Interface Adaptation Consistency through Triple Graph Gram-
mers. In International Workshop on Human-Centered Software Engineering
for Changing Contexts of Use (HCSE) 2021, Proceedings (to appear), 2021.
Cited on page 16.

Bibliography

251

[BZJ19]

[CBGS18]

[CCGAL10]

[CAM19]

[CE12]

[CESG17]

[CFH*09]

[CGAL*17]

[CGMS15]

[CGSB17]

Alexandru Burdusel, Steffen Zschaler, and Stefan John. Automatic Gener-
ation of Atomic Consistency Preserving Search Operators for Search-Based
Model Engineering. In International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS) 2019, Proceedings, pages 106-116.
IEEE, 2019. Cited on pages 23 and 24.

Matteo Camilli, Carlo Bellettini, Angelo Gargantini, and Patrizia Scandurra.
Online Model-Based Testing under Uncertainty. In International Symposium
on Software Reliability Engineering (ISSRE) 2018, Proceedings, pages 36—46.
IEEE, 2018. Cited on pages 26 and 32.

Jordi Cabot, Robert Clarisé, Esther Guerra, and Juan de Lara. Verifica-
tion and validation of declarative model-to-model transformations through
invariants. Journal of Systems and Software, 83(2):283-302, 2010. Cited on
page 102.

Jarbele C S Coutinho, Wilkerson de L. Andrade, and Patricia D L. Machado.
Requirements Engineering and Software Testing in Agile Methodologies:
a Systematic Mapping. In Brazilian Symposium on Software Engineering
(SBES) 2019, Proceedings, pages 322-331. ACM, 2019. Cited on page 19.

Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-
Order Logic - A Language- Theoretic Approach. Cambridge University Press,
2012. Cited on page 62.

Jonathan Corley, Brian P Eddy, Eugene Syriani, and Jeff Gray. Efficient and
scalable omniscient debugging for model transformations. Software Quality
Journal, 25(1):7-48, 2017. Cited on page 184.

Krzysztof Czarnecki, John Nathan Foster, Zhenjiang Hu, Ralf Lammel,
Andy Schiirr, and James F Terwilliger. Bidirectional Transformations: A
Cross-Discipline Perspective. In International Conference on Model Trans-
formation (ICMT) 2009, Proceedings, pages 260—283. Springer, 2009. Cited
on pages 44 and 54.

Jesus Sanchez Cuadrado, Esther Guerra, Juan de Lara, Robert Clarisé, and
Jordi Cabot. Translating Target to Source Constraints in Model-to-Model
Transformations. In International Conference on Model Driven Engineering
Languages and Systems (MODELS) 2017, Proceedings, pages 12-22. IEEE,
2017. Cited on page 102.

James Cheney, Jeremy Gibbons, James McKinna, and Perdita Stevens. To-
wards a Principle of Least Surprise for Bidirectional Transformations. In
International Workshop on Bidirectional Transformations (Bx) 2015, Pro-
ceedings, pages 66-80. CEUR-WS.org, 2015. Cited on page 8.

Matteo Camilli, Angelo Gargantini, Patrizia Scandurra, and Carlo Bellettini.
Towards Inverse Uncertainty Quantification in Software Development (Short
Paper). In International Conference on Software Engineering and Formal
Methods (SEFM) 2017, Proceedings, pages 375-381. Springer, 2017. Cited
on pages 26 and 32.

252

Bibliography

[CK13]

[CKSZ18]

[CLFLW16]

[CLS20]

[CLvV07]

[Cou90]

[CR20]

[CRE*10]

[CSBW0Y)]

[CST12]

[DAPMO2]

Glenn Callow and Roy Kalawsky. A Satisficing Bi-Directional Model Trans-
formation Engine using Mixed Integer Linear Programming. Journal of Ob-
ject Technology, 12(1):1: 1-43, 2013. Cited on pages 24, 33, and 83.

Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim Zaytsev.
Multidirectional Transformations and Synchronisations (Dagstuhl Seminar
18491). Dagstuhl Reports, 8(12):1-48, 2018. Cited on page 243.

Georgiana Caltais, Florian Leitner-Fischer, Stefan Leue, and Jannis Weiser.
SysML to NuSMV Model Transformation via Object-Orientation. In Inter-
national Workshop on Design, Modeling and Fvaluation of Cyber Physical
Systems (CyPhy) 2016, Proceedings, pages 31-45. Springer, 2016. Cited on
page 204.

Georgiana Caltais, Stefan Leue, and Hargurbir Singh. Correctness of an ATL
Model Transformation from SysML State Machine Diagrams to Promela. In
International Conference on Model-Driven Engineering and Software Devel-
opment (MODELSWARD) 2020, Proceedings, pages 360-372. SciTePress,
2020. Cited on page 204.

Carlos Artemio Coello Coello, Gary B Lamont, and David A van Veldhuizen.
Evolutionary algorithms for solving multi-objective problems, Second Edition.
Springer, 2007. Cited on page 149.

Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recog-
nizable Sets of Finite Graphs. Information and Computation, 85(1):12-75,
1990. Cited on page 62.

Matteo Camilli and Barbara Russo. Model-Based Testing Under Parametric
Variability of Uncertain Beliefs. In International Conference on Software
Engineering and Formal Methods (SEFM) 2020, Proceedings, pages 175—
192. Springer, 2020. Cited on pages 30 and 32.

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, Alfonso Pierantonio,
Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. JTL : A Bidi-
rectional and Change Propagating Transformation Language. In Software
Language Engineering (SLE) 2010, Proceedings, pages 183-202. Springer,
2010. Cited on pages 23, 81, 82, and 125.

Betty H C Cheng, Peter Sawyer, Nelly Bencomo, and Jon Whittle. A Goal-
Based Modeling Approach to Develop Requirements of an Adaptive Sys-
tem with Environmental Uncertainty. In International Conference on Model
Driven Engineering Languages and Systems (MoDELS) 2009, Proceedings,
pages 468-483. Springer, 2009. Cited on pages 26, 32, and 33.

Selim Ciraci, Hasan Sozer, and Bedir Tekinerdogan. An Approach for Detect-
ing Inconsistencies between Behavioral Models of the Software Architecture
and the Code. In International Computer Software and Applications Con-
ference (COMPSAC) 2012, Proceedings, pages 257-266. IEEE, 2012. Cited
on page 24.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IFEE Transactions
on Evolutionary Computation, 6(2):182-197, 2002. Cited on page 146.

Bibliography

253

[DC16]

[DC17]

[DDG*13]

[DDGV16]

[Decl1]

[Decl7]

[DEW*16]

[DGOS]

[Dij72]

[DJSC17]

[DIVV14]

[DKEM16]

Byron DeVries and Betty H C Cheng. Automatic detection of incomplete
requirements via symbolic analysis. In International Conference on Model
Driven Engineering Languages and Systems (MODELS) 2016, Proceedings,
pages 385-395. ACM, 2016. Cited on page 32.

Byron DeVries and Betty H C Cheng. Using Models at Run Time to Detect
Incomplete and Inconsistent Requirements. In International Conference on
Model Driven Engineering Languages and Systems (MODELS) 2017, Work-
shop Proceedings, pages 201-209. CEUR-WS.org, 2017. Cited on page 32.

Abhijit Davare, Douglas Densmore, Liangpeng Guo, Roberto Passerone, Al-
berto L Sangiovanni-Vincentelli, Alena Simalatsar, and Qi Zhu. metroll:
A design environment for cyber-physical systems. ACM Transactions on
Embedded Computing Systems, 12(1s):49:1-49:31, 2013. Cited on page 217.

Istvan David, Joachim Denil, Klaas Gadeyne, and Hans Vangheluwe. Engi-
neering Process Transformation to Manage (In)consistency. In International
Workshop on Collaborative Modelling in MDE (COMMitMDE) 2016, Pro-
ceedings, pages 7-16. CEUR-WS.org, 2016. Cited on page 146.

Hendrik Decker. Data Quality Maintenance by Integrity-Preserving Repairs
that Tolerate Inconsistency. In International Conference on Quality Software
(QSIC) 2011, Proceedings, pages 192-197. IEEE, 2011. Cited on pages 23,
25, 31, and 32.

Hendrik Decker. Inconsistency-Tolerant Database Repairs and Simplified Re-
pair Checking by Measure-Based Integrity Checking. Transactions on Large-
Scale Data- and Knowledge-Centered Systems, 34:153-183, 2017. Cited on
pages 8 and 18.

Hoa Khanh Dam, Alexander Egyed, Michael Winikoff, Alexander Reder, and
Roberto E Lopez-Herrejon. Consistent merging of model versions. Journal
of Systems and Software, 112:137-155, 2016. Cited on page 146.

Duc-Hanh Dang and Martin Gogolla. On Integrating OCL and Triple Graph
Grammars. In Models in Software Engineering (MiSE) 2008, Proceedings,
pages 124-137. Springer, 2008. Cited on page 166.

Edsger W Dijkstra. The Humble Programmer. Communications of the ACM,
15(10):859-866, 1972. Cited on page 3.

Gwendal Daniel, Frédéric Jouault, Gerson Sunyé, and Jordi Cabot. Gremlin-
ATL: a scalable model transformation framework. In International Confer-
ence on Automated Software Engineering (ASE) 2017, Proceedings, pages
462-472. IEEE, 2017. Cited on pages 166 and 173.

Joachim Denil, Maris Jukss, Clark Verbrugge, and Hans Vangheluwe.
Search-Based Model Optimization Using Model Transformations. In Sys-
tem Analysis and Modeling (SAM) 2014, Proceedings, pages 80-95. Springer,
2014. Cited on pages 81 and 83.

Andreas Demuth, Roland Kretschmer, Alexander Egyed, and Davy Maes.
Introducing Traceability and Consistency Checking for Change Impact Anal-
ysis across Engineering Tools in an Automation Solution Company: An Ex-
perience Report. In International Conference on Software Maintenance and

254

Bibliography

[DMOS]

[DM11]

[DMV+17]

[DRE14]

[DRV*16]

[DSB*16]

[DSB+17]

[dSOdR*03]

[dtC12]

[EC07]

Evolution (ICSME) 2016, Proceedings, pages 529-538. IEEE, 2016. Cited
on page 24.

Hendrik Decker and Davide Martinenghi. Classifying integrity checking
methods with regard to inconsistency tolerance. In International Confer-
ence on Principles and Practice of Declarative Programming (PPDP) 2008,
Proceedings, pages 195-204. ACM, 2008. Cited on pages 25, 31, and 32.

Hendrik Decker and Davide Martinenghi. Inconsistency-Tolerant In-
tegrity Checking. IFEFE Transactions on Knowledge and Data Engineering,
23(2):218-234, 2011. Cited on pages 8 and 18.

Istvan David, Bart Meyers, Ken Vanherpen, Yentl Van Tendeloo, Kristof
Berx, and Hans Vangheluwe. Modeling and Enactment Support for Early
Detection of Inconsistencies in Engineering Processes. In International Con-
ference on Model Driven Engineering Languages and Systems (MODELS)
2017, Workshop Proceedings, pages 145-154. CEUR-WS.org, 2017. Cited on
pages 23 and 24.

Hoa Khanh Dam, Alexander Reder, and Alexander Egyed. Inconsistency
Resolution in Merging Versions of Architectural Models. In Working Confer-
ence on Software Architecture, (WICSA) 2014, Proceedings, pages 153-162.
IEEE, 2014. Cited on page 146.

Csaba Debreceni, Istvan Rath, Daniel Varr6, Xabier De Carlos, Xabier Men-
dialdua, and Salvador Trujillo. Automated Model Merge by Design Space
Exploration. In Fundamental Approaches to Software Engineering (FASE)
2016, Proceedings, pages 104—121. Springer, 2016. Cited on page 146.

Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi, Yoann
Vernageau, Abel Goémez, and Jordi Cabot. NeoEMF: A Multi-database
Model Persistence Framework for Very Large Models. In International Con-
ference on Model Driven Engineering Languages and Systems (MODELS)
2016, Companion Proceedings, pages 1-7. CEUR-WS.org, 2016. Cited on
page 166.

Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi, Yoann
Vernageau, Abel Gémez, and Jordi Cabot. NeoEMF: A multi-database
model persistence framework for very large models. Science of Computer
Programming, 149:9-14, 2017. Cited on page 166.

Cleidson R B de Souza, Hamilton L R Oliveira, Cleber R P da Rocha,
Kléder Miranda Gongalves, and David F Redmiles. Using Critiquing Systems
for Inconsistency Detection in Software Engineering Models. In International
Conference on Software Engineering and Knowledge Engineering (SEKFE)
2003, Proceedings, pages 196-203, 2003. Cited on page 31.

Pedro da Silva Hack and Carla Schwengber ten Caten. Measurement Un-
certainty: Literature Review and Research Trends. IEEE Transactions on
Instrumentation and Measurement, 61(8):2116-2124, 2012. Cited on page 20.

Ali Ebnenasir and Betty H C Cheng. Pattern-Based Modeling and Analysis
of Failsafe Fault-Tolerance in UML. In International Symposium on High

Bibliography

255

[ECKO06]

[EDGT11]

[EEE*07]

[EEEPOS]

[EEPTO06]

[EET11]

[EGT16]

[Egy06]

[Egy07a]

[Egy07b]

[Egy11]

Assurance Systems Engineering (HASE) 2007, Proceedings, pages 275-282.
IEEE, 2007. Cited on page 25.

Ali Ebnenasir, Betty H C Cheng, and Sascha Konrad. Use Case-Based Mod-
eling and Analysis of Failsafe Fault-Tolerance. In International Requirements
Engineering Conference (RE) 2006, Proceedings, pages 336-337. IEEE, 2006.
Cited on page 32.

Alexander Egyed, Andreas Demuth, Achraf Ghabi, Roberto E Lopez-
Herrejon, Patrick Méader, Alexander Nohrer, and Alexander Reder. Fine-
Tuning Model Transformation: Change Propagation in Context of Consis-
tency, Completeness, and Human Guidance. In International Conference
on Model Transformation (ICMT) 2011, Proceedings, pages 1-14. Springer,
2011. Cited on pages 23, 28, 31, and 32.

Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and
Gabriele Taentzer. Information Preserving Bidirectional Model Transforma-
tions. In Fundamental Approaches to Software Engineering (FASE) 2007,
Proceedings, pages 72-86. Springer, 2007. Cited on pages 115 and 117.

Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, and Ulrike Prange. Consis-
tent Integration of Models Based on Views of Visual Languages. In Fun-
damental Approaches to Software Engineering (FASE) 2008, Proceedings,
pages 62—76. Springer, 2008. Cited on page 24.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damentals of Algebraic Graph Transformation. Springer, 2006. Cited on
pages 44, 50, 59, 67, 78, and 227.

Hartmut Ehrig, Claudia Ermel, and Gabriele Taentzer. A Formal Resolution
Strategy for Operation-Based Conflicts in Model Versioning Using Graph
Modifications. In Fundamental Approaches to Software Engineering (FASE)
2011, Proceedings, pages 202-216. Springer, 2011. Cited on page 54.

Michael Elberfeld, Martin Grohe, and Till Tantau. Where First-Order and
Monadic Second-Order Logic Coincide. ACM Transactions on Computa-
tional Logic, 17(4):25:1-25:18, 2016. Cited on page 62.

Alexander Egyed. Instant consistency checking for the UML. In International
Conference on Software Engineering (ICSE) 2006, Proceedings, pages 381—
390. ACM, 2006. Cited on pages 18, 23, 25, 28, 32, and 33.

Alexander Egyed. Fixing Inconsistencies in UML Design Models. In In-
ternational Conference on Software Engineering (ICSE) 2007, Proceedings,
pages 292-301. IEEE, 2007. Cited on pages 23, 28, 32, 124, and 125.

Alexander Egyed. UML/Analyzer: A Tool for the Instant Consistency
Checking of UML Models. In International Conference on Software En-
gineering (ICSE) 2007, Proceedings, pages 793-796. IEEE, 2007. Cited on
pages 25, 28, 31, and 32.

Alexander Egyed. Automatically Detecting and Tracking Inconsistencies
in Software Design Models. IEEE Transactions on Software Engineering,
37(2):188-204, 2011. Cited on pages 23, 25, 28, 31, and 32.

256

Bibliography

[EHGB12]

[EHS09]

[EHSB13]

[ELF08]

[EM10]

[EPR14]

[EPR15]

[EPT18]

[EZV*+17)

[FBDD*15]

Claudia Ermel, Frank Hermann, Jirgen Gall, and Daniel Binanzer. Vi-
sual Modeling and Analysis of EMF Model Transformations Based on Triple
Graph Grammars. FElectronic Communication of the European Association
of Software Science and Technology, 54:1-12, 2012. Cited on pages 81, 83,
and 165.

Hartmut Ehrig, Frank Hermann, and Christoph Sartorius. Completeness and
Correctness of Model Transformations Based on Triple Graph Grammars
with Negative Application Conditions. FElectronic Communication of the
European Association of Software Science and Technology, 18, 2009. Cited
on pages 54 and 103.

Hartmut Ehrig, Frank Hermann, Hanna Schoélzel, and Christoph Brandt.
Propagation of constraints along model transformations using triple graph

grammars and borrowed context. Journal of Visual Languages and Comput-
ing, 24(5):365-388, 2013. Cited on page 240.

Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein. Generating
and Evaluating Choices for Fixing Inconsistencies in UML Design Models.
In Automated Software Engineering Conference (ASE) 2008, Proceedings,
pages 99-108. ACM, 2008. Cited on pages 23, 25, 28, 31, and 32.

Naeem Esfahani and Sam Malek. Uncertainty in Self-Adaptive Software
Systems. In Software Engineering for Self-Adaptive Systems II, 2010 Re-
vised Selected and Invited Papers, pages 214-238. Springer, 2010. Cited on
pages 26, 32, and 33.

Romina Eramo, Alfonso Pierantonio, and Gianni Rosa. Uncertainty in bidi-
rectional transformations. In Models in Software Engineering (MiSE) 2014,
Proceedings, pages 37-42. ACM, 2014. Cited on pages 30, 32, and 33.

Romina Eramo, Alfonso Pierantonio, and Gianni Rosa. Managing uncer-
tainty in bidirectional model transformations. In Software Language En-
gineering (SLE) 2015, Proceedings, pages 49-58. ACM, 2015. Cited on
pages 25 and 33.

Romina Eramo, Alfonso Pierantonio, and Michele Tucci. Enhancing the
JTL tool for bidirectional transformations. In International Conference on
Art, Science, and Engineering of Programming (PROGRAMMING) 2018,
Proceedings, pages 36—41. ACM, 2018. Cited on page 103.

Johannes Eder, Sergey Zverlov, Sebastian Voss, Maged Khalil, and Alexan-
dru Ipatiov. Bringing DSE to Life: Exploring the Design Space of an Indus-
trial Automotive Use Case. In International Conference on Model Driven
Engineering Languages and Systems (MODELS) 2017, Proceedings, pages
270-280. IEEE, 2017. Cited on page 218.

Michalis Famelis, Naama Ben-David, Alessio Di Sandro, Rick Salay, and
Marsha Chechik. Mu-Mmint: An IDE for Model Uncertainty. In Interna-
tional Conference on Software Engineering (ICSE) 2015, Proceedings, pages
697-700. IEEE, 2015. Cited on pages 25 and 32.

Bibliography

257

[FGAL12]

[FGHOG6]

[FHA17]

[FKM™*20]

[FKST18]

[FLAS17]

[FM18]

[FPPOS]

[Frel2]

[Fril8]

[Fri21]

Kleinner Farias, Alessandro Garcia, and Carlos José Pereira de Lucena. Eval-
uating the Impact of Aspects on Inconsistency Detection Effort: A Con-
trolled Experiment. In International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS) 2012, Proceedings, pages 219-234.
Springer, 2012. Cited on pages 24 and 33.

Peter Feiler, David Gluch, and John Hudak. The Architecture Analysis
& Design Language (AADL): An Introduction. Technical report, Carnegie
Mellon University, Pittsburgh, PA, 2006. Cited on page 217.

Imen Ben Fraj, Yousra Bendaly Hlaoui, and Leila Jemni Ben Ayed. A
Modeling Approach for Flexible Workflow Applications of Cloud Services. In
International Computer Software and Applications Conference (COMPSAC)
2017, Proceedings, pages 175-180. IEEE, 2017. Cited on page 33.

Lars Fritsche, Jens Kosiol, Adrian Moller, Andy Schiirr, and Gabriele
Taentzer. A precedence-driven approach for concurrent model synchroniza-
tion scenarios using triple graph grammars. In Software Language Engineer-
ing (SLE) 2020, Proceedings, pages 39-55. ACM, 2020. Cited on pages 117,
126, 128, 142, 170, 178, 183, 194, 199, 239, 241, and 286.

Lars Fritsche, Jens Kosiol, Andy Schiirr, and Gabriele Taentzer. Short-Cut
Rules - Sequential Composition of Rules Avoiding Unnecessary Deletions. In
Software Technologies: Applications and Foundations (STAF) 2018, Work-
shop Proceedings, pages 415-430. Springer, 2018. Cited on pages 128 and 134.

Lars Fritsche, Erhan Leblebici, Anthony Anjorin, and Andy Schiirr. A Look-
Ahead Strategy for Rule-Based Model Transformations. In International
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS) 2017, Workshop Proceedings, pages 45-53. CEUR-WS.org, 2017. Cited
on page 90.

Adel Ferdjoukh and Jean-Marie Mottu. Towards an Automated Fault Lo-
calizer while Designing Meta-models. In International Conference on Model
Driven Engineering Languages and Systems (MODELS) 2018, Workshop
Proceedings, pages 547-552. CEUR-WS.org, 2018. Cited on page 185.

John Nathan Foster, Alexandre Pilkiewicz, and Benjamin C Pierce. Quotient
Lenses. In International Conference on Functional programming (ICFP)
2008, pages 383-396. ACM, 2008. Cited on page 83.

Eva Freund. IEEE Standard for System and Software Verification and Vali-
dation (IEEE Std 1012-2012). Software Quality Professional, 15(1):43, 2012.
Cited on page 201.

Jan Friedrich. Declarative project planning and controlling: a formal model
to support the handling of unavoidable inconsistencies. In International
Conference on Software and Systems Process (ICSSP) 2018, pages 61-69.
ACM, 2018. Cited on pages 24 and 31.

Lars Fritsche. Local Consistency Restoration Methods for Triple Graph
Grammars. PhD thesis, Darmstadt University of Technology, Germany,
2021. Cited on page 142.

258

Bibliography

[FS10]

[FS13]

[FSBR10]

[FSC12a]

[FSC12b]

[FSSC13]

[FTW16]

[FYCLOY]

[GAM16]

[Gar10]

[GBT+19]

[GCOS]

Marc Forster and Daniel Schneider. Flexible, Any-Time Fault Tree Analysis
with Component Logic Models. In International Symposium on Software
Reliability Engineering (ISSRE) 2010, pages 51-60. IEEE, 2010. Cited on
pages 26 and 32.

Michalis Famelis and Stephanie Santosa. MAV-Vis: A notation for model
uncertainty. In Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS) 2013, Proceedings, pages 7-12. IEEE, 2013.
Cited on pages 25, 26, 32, and 33.

Ana M Fernandez-Saez, Marcela Genero Bocco, and Francisco P Romero.
SLR-Tool - A Tool for Performing Systematic Literature Reviews. In In-
ternational Conference on Software and Data Technologies (ICSOFT) 2010,
Proceedings, pages 157-166. SciTePress, 2010. Cited on page 20.

Michalis Famelis, Rick Salay, and Marsha Chechik. Partial models: Towards
modeling and reasoning with uncertainty. In International Conference on
Software Engineering (ICSE) 2012, Proceedings, pages 573-583. IEEE, 2012.
Cited on pages 18, 25, 32, and 33.

Michalis Famelis, Rick Salay, and Marsha Chechik. The semantics of partial
model transformations. In Models in Software Engineering (MiSE) 2012,
Proceedings, pages 64—69. IEEE, 2012. Cited on pages 26, 29, and 32.

Michalis Famelis, Rick Salay, Alessio Di Sandro, and Marsha Chechik. Trans-
formation of Models Containing Uncertainty. In International Conference on
Model Driven Engineering Languages and Systems (MODELS) 2013, Pro-
ceedings, pages 673—-689. Springer, 2013. Cited on pages 26, 30, and 32.

Martin Fleck, Javier Troya, and Manuel Wimmer. Search-Based Model
Transformations. Journal of Software: Evolution and Process, 28(12):1081—
1117, 2016. Cited on pages 81 and 83.

Guisheng Fan, Huiqun Yu, Ligiong Chen, and Dongmei Liu. A Method
for Modeling and Analyzing Fault-Tolerant Service Composition. In Asia-
Pacific Software Engineering Conference (APSEC) 2009, Proceedings, pages
507-514. CEUR-WS.org, 2009. Cited on page 31.

Miguel Gouldo, Vasco Amaral, and Marjan Mernik. Quality in model-driven
engineering: a tertiary study. Software Quality Journal, 24(3):601-633, 2016.
Cited on page 19.

David Garlan. Software engineering in an uncertain world. In Workshop on
Future of Software Engineering Research (FoSER) 2010, Proceedings, pages
125-128. ACM, 2010. Cited on pages 26 and 32.

José A Galindo, David Benavides, Pablo Trinidad, Antonio Manuel
Gutiérrez-Fernandez, and Antonio Ruiz-Cortés. Automated analysis of fea-
ture models: Quo vadis? Computing, 101(5):387-433, 2019. Cited on
page 19.

Heather Goldsby and Betty H C Cheng. Automatically Generating Behav-
ioral Models of Adaptive Systems to Address Uncertainty. In International

Bibliography

259

[GALOG]

[GAL18]

[GEH10]

[GEH11]

[GHO9)

[GHE14]

[GHHS15]

[GHL14]

[GHN10]

[GHN*13]

Conference on Model Driven Engineering Languages and Systems (MoD-
ELS) 2008, Proceedings, pages 568-583. Springer, 2008. Cited on pages 26,
29, and 32.

Esther Guerra and Juan de Lara. Model View Management with Triple
Graph Transformation Systems. In International Conference on Graph
Transformation (ICGT) 2006, Proceedings, pages 351-366. Springer, 2006.
Cited on page 39.

Esther Guerra and Juan de Lara. On the Quest for Flexible Modelling.
In International Conference on Model Driven Engineering Languages and
Systems (MODELS) 2018, Proceedings, pages 23-33. ACM, 2018. Cited on
pages 18, 23, 24, 25, and 31.

Ulrike Golas, Hartmut Ehrig, and Annegret Habel. Multi-Amalgamation in
Adhesive Categories. In International Conference on Graph Transformation
(ICGT) 2010, Proceedings, pages 346-361. Springer, 2010. Cited on pages 54
and 69.

Ulrike Golas, Hartmut Ehrig, and Frank Hermann. Formal Specification of
Model Transformations by Triple Graph Grammars with Application Con-
ditions. Electronic Communication of the European Association of Software
Science and Technology, 39, 2011. Cited on pages 53, 54, 103, and 240.

Holger Giese and Stephan Hildebrandt. Efficient Model Synchronization
of Large-Scale Models. Technical report, Hasso-Plattner Institute at the
University of Potsdam, Germany, 2009. Cited on pages 81 and 83.

Ulrike Golas, Annegret Habel, and Hartmut Ehrig. Multi-amalgamation of
rules with application conditions in M-adhesive categories. Mathematical
Structures in Computer Science, 24(04):1-68, jun 2014. Cited on page 54.

Martin Gogolla, Lars Hamann, Frank Hilken, and Matthias Sedlmeier.
Checking UML and OCL Model Consistency: An Experience Report on
a Middle-Sized Case Study. In International Conference of Tests and Proofs
(TAP) 2015, Proceedings, pages 129-136. Springer, 2015. Cited on pages 23
and 24.

Holger Giese, Stephan Hildebrandt, and Leen Lambers. Bridging the Gap
Between Formal Semantics and Implementation of Triple Graph Grammars
- Ensuring Conformance of Relational Model Transformation Specifications
and Implementations. Software and Systems Modeling, 13(1):273-299, 2014.
Cited on pages 54, 165, and 185.

Holger Giese, Stephan Hildebrandt, and Stefan Neumann. Model Syn-
chronization at Work: Keeping SysML and AUTOSAR Models Consistent.
In Graph Transformations and Model-Driven Engineering, pages 555-579.
Springer, 2010. Cited on pages 4, 39, and 203.

Susann Gottmann, Frank Hermann, Nico Nachtigall, Benjamin Braatz,
Claudia Ermel, Hartmut Ehrig, and Thomas Engel. Correctness and Com-
pleteness of Generalised Concurrent Model Synchronisation Based on Triple
Graph Grammars. In Workshop on the Analysis of Model Transformations
(AMT) 2013, Proceedings. CEUR-WS.org, 2013. Cited on page 126.

260

Bibliography

[GHYZ11]

[GI20]

[GK10]

[GKB21]

[GKHO09)

[GLO0Y]

[Got18]

[GPR11]

[GPST13]

[GR16]

[GSS14]

Xin Gao, Wenhui Hu, Wei Ye, and Shikun Zhang. Data Uncertainty Model
for Mashup. In International Conference on Software Engineering and
Knowledge Engineering (SEKE) 2011, Proceedings, pages 503—508. KKnowl-
edge Systems Institute Graduate School, 2011. Cited on pages 25 and 32.

Esther Guerra and Ludovico lovino, editors. International Conference on
Model Driven Engineering Languages and Systems (MODELS) 2020, Com-
panion Proceedings. ACM, 2020. Cited on page 243.

Joel Greenyer and Ekkart Kindler. Comparing Relational Model Transforma-
tion Technologies: Implementing Query/View/Transformation with Triple
Graph Grammars. Software and Systems Modeling, 9(1):21-46, 2010. Cited
on page 166.

Joshua Gleitze, Heiko Klare, and Erik Burger. Finding a Universal Execution
Strategy for Model Transformation Networks. In Fundamental Approaches
to Software Engineering (FASE) 2021, Proceedings, pages 87-107. Springer,
2021. Cited on page 243.

Martin Gogolla, Mirco Kuhlmann, and Lars Hamann. Consistency, Indepen-
dence and Consequences in UML and OCL Models. In International Confer-
ence of Tests and Proofs (TAP) 2009, Proceedings, pages 90-104. Springer,
2009. Cited on page 24.

Esther Guerra, Juan De Lara, and Fernando Orejas. Pattern-Based Model-
to-Model Transformation: Handling Attribute Conditions. In International
Conference on Model Transformation (ICMT) 2009, Proceedings, pages 83—
99. Springer, 2009. Cited on page 59.

Sebastian Gotz. Supporting systematic literature reviews in computer sci-
ence: the systematic literature review toolkit. In International Conference on
Model Driven Engineering Languages and Systems (MODELS) 2018, Com-
panion Proceedings, pages 22—26. ACM, 2018. Cited on pages 18 and 20.

Joel Greenyer, Sebastian Pook, and Jan Rieke. Preventing Information
Loss in Incremental Model Synchronization by Reusing Elements. In Fu-
ropean Conference on Modelling Foundations and Applications (ECMFA)
2011, Proceedings, pages 144-159. Springer, 2011. Cited on page 54.

Carlo Ghezzi, Leandro Sales Pinto, Paola Spoletini, and Giordano Tambur-
relli. Managing non-functional uncertainty via model-driven adaptivity. In
International Conference on Software Engineering (ICSE) 2013, Proceed-
ings, pages 33-42. IEEE, 2013. Cited on pages 26, 29, and 33.

Jeff Gray and Bernhard Rumpe. How to write a successful SoSyM sub-
mission. Software and Systems Modeling, 15(4):929-931, 2016. Cited on
page 19.

Christine M Gerpheide, Ramon R H Schiffelers, and Alexander Serebrenik.
A Bottom-Up Quality Model for QVTo. In International Conference on the
Quality of Information and Commaunications Technology (QUATIC) 2014,
Proceedings, pages 85-94. IEEE, 2014. Cited on page 19.

Bibliography

261

[GSS16]

[Guel6]

[GWO6]

[GWO9]

[GWT*14]

[GZJ16]

[GZNT14]

[HDH10]

[HDMO5]

[HEC ' 14]

[HEEO12]

Christine M Gerpheide, Ramon R H Schiffelers, and Alexander Serebrenik.
Assessing and improving quality of QVTo model transformations. Software
Quality Journal, 24(3):797-834, 2016. Cited on page 19.

Daniela Guericke. Routing and Scheduling for Home Care Services : Solu-
tion Approaches for Static and Dynamic Settings. PhD thesis, Paderborn
University, Germany, 2016. Cited on page 216.

Holger Giese and Robert Wagner. Incremental Model Synchronization with
Triple Graph Grammars. In International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS) 2006, Proceedings, volume 4199,
pages 543-557. Springer, 2006. Cited on pages 141 and 165.

Holger Giese and Robert Wagner. From model transformation to incremen-
tal bidirectional model synchronization. Journal of Software and Systems
Modeling, 8(1):21-43, 2009. Cited on pages 124, 125, and 126.

Matthias Galster, Danny Weyns, Dan Tofan, Bartosz Michalik, and Paris
Avgeriou. Variability in Software Systems - A Systematic Literature Review.
IEEE Transactions on Software Engineering, 40(3):282-306, 2014. Cited on
page 19.

Wafa Gabsi, Bechir Zalila, and Mohamed Jmaiel. EMA2AOP: From the
AADL Error Model Annex to aspect language towards fault tolerant sys-
tems. In International Conference on Software Engineering Research and
Applications (SERA) 2016, Proceedings, pages 155-162. IEEE, 2016. Cited
on page 31.

Liangpeng Guo, Qi Zhu, Pierluigi Nuzzo, Roberto Passerone, Alberto L
Sangiovanni-Vincentelli, and Edward A Lee. Metronomy: A function-
architecture co-simulation framework for timing verification of cyber-
physical systems. In International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS) 2014, Proceedings, pages 24:1—
24:10. ACM, 2014. Cited on page 217.

Thorsten Hollrigl, Jochen Dinger, and Hannes Hartenstein. A Consistency
Model for Identity Information in Distributed Systems. In International
Computer Software and Applications Conference (COMPSAC) 2010, Pro-
ceedings, pages 252-261. IEEE, 2010. Cited on pages 25, 31, and 32.

Hong Wang, Dan Lin, and Min-Qiang Li. A competitive genetic algorithm
for resource-constrained project scheduling problem. In International Con-
ference on Machine Learning and Cybernetics (ICMLC) 2005, Proceedings,
volume 5, pages 2945-2949. IEEE, 2005. Cited on page 218.

Mahmoud El Hamlaoui, Sophie Ebersold, Bernard Coulette, Mahmoud Nas-
sar, and Adil Anwar. Heterogeneous models matching for consistency man-
agement. In Research Challenges in Information Science (RCIS) 201/, Pro-
ceedings, pages 1-12. IEEE, 2014. Cited on page 23.

Frank Hermann, Hartmut Ehrig, Claudia Ermel, and Fernando Orejas. Con-
current Model Synchronization with Conflict Resolution Based on Triple
Graph Grammars. In Fundamental Approaches to Software Engineering
(FASE) 2012, Proceedings, pages 178-193. Springer, 2012. Cited on page 126.

262

Bibliography

[HFST15]

[HGN*13]

[HGN+14]

[HHR*+11]

[Hil16]

[HKB16]

[HKC+14]

[HLBG12]

[HLG*+11]

[HLG'13]

Xiao He, Yanmei Fu, Chang-ai Sun, Zhiyi Ma, and Weizhong Shao. Towards
Model-Driven Variability-Based Flexible Service Compositions. In Interna-
tional Computer Software and Applications Conference (COMPSAC) 2015,
Proceedings, pages 298-303. IEEE, 2015. Cited on page 33.

Frank Hermann, Susann Gottmann, Nico Nachtigall, Benjamin Braatz, Gi-
anluigi Morelli, Alain Pierre, and Thomas Engel. On an Automated Transla-
tion of Satellite Procedures Using Triple Graph Grammars. In International
Conference on Model Transformation (ICMT) 2013, Proceedings, volume
7909, pages 50-51. Springer, 2013. Cited on page 39.

Frank Hermann, Susann Gottmann, Nico Nachtigall, Hartmut Ehrig, Ben-
jamin Braatz, Gianluigi Morelli, Alain Pierre, Thomas Engel, and Claudia
Ermel. Triple Graph Grammars in the Large for Translating Satellite Proce-
dures. In International Conference on Model Transformation (ICMT) 2014,
Proceedings, pages 122-137. Springer, 2014. Cited on page 203.

Abel Hegediis, Akos Horvath, Istvan Rath, Moisés Castelo Branco, and
Déniel Varré. Quick fix generation for DSMLs. In Symposium on Visual
Languages and Human-Centric Computing (VL/HCC) 2011, Proceedings,
pages 17-24. TEEE, 2011. Cited on pages 23, 24, and 32.

Nicolas Hili. A Metamodeling Framework for Promoting Flexibility and
Creativity Over Strict Model Conformance. In Workshop on Flexible Model
Driven Engineering (FlexMDE) 2016, Proceedings, pages 2-11. CEUR-
WS.org, 2016. Cited on pages 24 and 33.

Regina Hebig, Djamel Khelladi, and Reda Bendraou. Approaches to Co-
Evolution of Metamodels and Models: A Survey. IEEE Transactions on
Software Engineering, PP:1, 2016. Cited on page 33.

Sebastian J I Herzig, Benjamin Kruse, Federico Ciccozzi, Joachim Denil,
Rick Salay, and Déniel Varré. Towards an Approach for Orchestrating De-
sign Space Exploration Problems to Fix Multi-Paradigm Inconsistencies. In
Workshop on Multi-Paradigm Modeling (MPM) 2014, Proceedings, pages
61-66. CEUR-WS.org, 2014. Cited on page 146.

Stephan Hildebrandt, Leen Lambers, Basil Becker, and Holger Giese. Inte-
gration of Triple Graph Grammars and Constraints. Flectronic Communi-

cation of the European Association of Software Science and Technology, 54,
2012. Cited on pages 54 and 103.

Stephan Hildebrandt, Leen Lambers, Holger Giese, Dominic Petrick, and
Ingo Richter. Automatic Conformance Testing of Optimized Triple Graph
Grammar Implementations. In Applications of Graph Transformations with
Industrial Relevance (AGTIVE) 2011, Proceedings, pages 238-253. Springer,
2011. Cited on page 165.

Stephan Hildebrandt, Leen Lambers, Holger Giese, Jan Rieke, Joel Greenyer,
Wilhelm Schéfer, Marius Lauder, Anthony Anjorin, and Andy Schiirr. A Sur-
vey of Triple Graph Grammar Tools. In International Workshop on Bidirec-
tional Transformations (Bx) 2013 Proceedings, volume 57. ECEASST, 2013.
Cited on pages 54 and 166.

Bibliography

263

[HLROS]

[HMO5]

[HMM?20]

[HO19]

[Hoal3]

[Hol92]

[Hor17]

[HPOY]

[HP19]

[HPP+14]

[HRW11]

[HS15]

Thomas Hettel, Michael Lawley, and Kerry Raymond. Model Synchronisa-
tion: Definitions for Round-Trip Engineering. In International Conference
on Model Transformation (ICMT) 2008, Proceedings, pages 31-45. Springer,
2008. Cited on pages 124 and 126.

Brahim Hamid and Mohamed Mosbah. A Formal Model for Fault-Tolerance
in Distributed Systems. In International Conference on Computer Safety,
Reliability, and Security (SAFECOMP) 2005, Proceedings, pages 108—121.
Springer, 2005. Cited on pages 25 and 31.

Edward Huang, Leon F McGinnis, and Steven W Mitchell. Verifying SysML
activity diagrams using formal transformation to Petri nets. Systems FEngi-
neering, 23(1):118-135, 2020. Cited on page 204.

Russ Harmer and Eugenia Oshurko. Knowledge Representation and Update
in Hierarchies of Graphs. In International Conference on Graph Transfor-
mation (ICGT) 2019, Proceedings, pages 141-158. Springer, 2019. Cited on
page 44.

Thai Son Hoang. An introduction to the Event-B modelling method. In-
dustrial Deployment of System Engineering Methods, pages 211-236, 2013.
Cited on pages 4, 42, and 202.

John H Holland. Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial Intel-
ligence. MIT Press, 1992. Cited on page 146.

Tassilo Horn. Solving the TTC Families to Persons Case with FunnyQT. In
Transformation Tool Contest (TTC) 2017, Proceedings, pages 47-51. CEUR-
WS.org, 2017. Cited on pages 83 and 98.

Annegret Habel and Karl-Heinz Pennemann. Correctness of High-Level
Transformation Systems Relative to Nested Conditions. Mathematical Struc-
tures in Computer Science, 19(2):245-296, 2009. Cited on pages 78 and 101.

Jon Holt and Simon Perry. SysML for Systems Engineering: A model-based
approach. Institution of Engineering and Technology, 2019. Cited on page 39.

Fernando Herrera, Héctor Posadas, Pablo Penil, Eugenio Villar, Francisco
Ferrero, Ratl Valencia, and Gianluca Palermo. The COMPLEX method-
ology for UML/MARTE Modeling and design space exploration of embed-
ded systems. Journal of Systems Architecture, 60(1):55-78, 2014. Cited on
page 217.

John Edward Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven
engineering practices in industry. In International Conference on Software
Engineering (ICSE) 2011, Proceedings, pages 633-642. ACM, 2011. Cited
on page 3.

Bernhard Hoisl and Stefan Sobernig. Consistency Rules for UML-based
Domain-specific Language Models: A Literature Review. In International
Conference on Model Driven Engineering Languages and Systems (MoD-
ELS) 2015, Workshop Proceedings, volume 1508, pages 29-36. CEUR-
WS.org, 2015. Cited on page 19.

264

Bibliography

[HS17]

[HT99]

[HTJ92]

[HWF13]

[IFEDOY]

[IKJ19]

[JBEMI0]

[JKT16]

[JLC+18]

[Jos21]

Nicolas Hili and Jean-Sébastien Sottet. The Conformance Relation Chal-
lenge: Building Flexible Modelling Frameworks. In International Con-
ference on Model Driven Engineering Languages and Systems (MODELS)
2017, Workshop Proceedings, pages 418-423. CEUR-WS.org, 2017. Cited on
pages 24 and 33.

Klaus Marius Hansen and Michael Thomsen. The ”Domain Model Con-
cealer” and ” Application Moderator” Patterns: Addressing Architectural
Uncertainty in Interactive Systems. In International Conference on Technol-
ogy of Object-Oriented Languages and Systems (TOOLS) 1999, Proceedings,
pages 177-190. IEEE, 1999. Cited on pages 25, 26, 32, and 33.

Jin-Kao Hao, F Trousset, and Jean Jacques. Prototyping an Inconsistency
Checking Tool for Software Process Models. In International Conference on
Software Engineering and Knowledge Engineering (SEKE) 1992, Proceed-
ings, pages 227-234. IEEE, 1992. Cited on pages 24 and 32.

Kiyoshi Honda, Hironori Washizaki, and Yoshiaki Fukazawa. A Generalized
Software Reliability Model Considering Uncertainty and Dynamics in De-
velopment. In Product-Focused Software Process Improvement (PROFES)
2018, Proceedings, pages 342—346. Springer, 2013. Cited on pages 32 and 33.

Hamdy Ibrahim, Behrouz Homayoun Far, Armin Eberlein, and Y Daradkeh.
Uncertainty management in software engineering: Past, present, and future.
In Canadian Conference on FElectrical and Computer Engineering (CCECE)
2009, Proceedings, pages 7-12. IEEE, 2009. Cited on pages 26, 32, and 33.

Asif Igbal, Iftikhar Ahmed Khan, and Sadaqat Jan. A Review and Compar-
ison of the Traditional Collaborative and Online Collaborative Techniques
for Software Requirement Elicitation. In International Conference on Ad-
vancements in Computational Sciences (ICACS) 2019, Proceedings, pages
1-8. IEEE, 2019. Cited on page 19.

Ivan Jureta, Alexander Borgida, Neil A Ernst, and John Mylopoulos. Techne:
Towards a New Generation of Requirements Modeling Languages with Goals,
Preferences, and Inconsistency Handling. In International Requirements En-
gineering Conference (RE) 2010, Proceedings, pages 115-124. IEEE, 2010.
Cited on page 32.

Azadeh Jahanbanifar, Ferhat Khendek, and Maria Toeroe. Runtime Adjust-
ment of Configuration Models for Consistency Preservation. In International
Symposium on High Assurance Systems Engineering (HASE) 2016, Proceed-
ings, pages 102-109. IEEE, 2016. Cited on pages 23 and 31.

Ruihua Ji, Zhong Li, Shouyu Chen, Minxue Pan, Tian Zhang, Shaukat Ali,
Tao Yue, and Xuandong Li. Uncovering Unknown System Behaviors in
Uncertain Networks with Model and Search-Based Testing. In International
Conference on Software Testing, Verification, and Validation (ICST) 2018,
Proceedings, pages 204-214. IEEE, 2018. Cited on page 29.

Jane Jose. Large-Scale Model Transformation Debugging with Configurable
Breakpoints. Master thesis, Paderborn University, Germany. 2021. Cited on
pages 15 and 194.

Bibliography

265

[JVV17]

[TWY+20]

[Kan20]

[KBBT09]

[KBB*+16]

[KBSB10]

[KCT+15]

[KEK+15]

[KG19]

[KGV05]

Maris Jukss, Clark Verbrugge, and Hans Vangheluwe. Transformations De-
bugging Transformations. In International Conference on Model Driven En-
gineering Languages and Systems (MODELS) 2017, Workshop Proceedings,
pages 449-454. CEUR-WS.org, 2017. Cited on page 184.

Ivan Jovanovikj, Nils Weidmann, Enes Yigitbas, Anthony Anjorin, Stefan
Sauer, and Gregor Engels. A Model-Driven Mutation Framework for Vali-
dation of Test Case Migration. In International Conference on Systems Mod-
elling and Management (ICSMM) 2020, Proceedings, pages 21-29. Springer,
2020. Cited on page 16.

Suganya Kannan. Systematic Literature Review on Tolerance in Model-
Driven Engineering. Master thesis, Paderborn University, Germany. 2020.
Cited on page 15.

Barbara A Kitchenham, Pearl Brereton, David Budgen, Mark Turner, John
Bailey, and Stephen G Linkman. Systematic literature reviews in software
engineering - A systematic literature review. Information and Software Tech-
nology, 51(1):7-15, 2009. Cited on page 20.

Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim, and
Matthias Steinbrecher. Computational Intelligence - A Methodological In-
troduction, Second Edition. Springer, 2016. Cited on page 151.

Marouane Kessentini, Arbi Bouchoucha, Houari A Sahraoui, and Mounir
Boukadoum. Example-Based Sequence Diagrams to Colored Petri Nets
Transformation Using Heuristic Search. In European Conference on Mod-
elling Foundations and Applications (ECMFA) 2010, Proceedings, pages
156-172. Springer, 2010. Cited on page 147.

Christos Kyrkou, Eftychios Christoforou, Theocharis Theocharides, Christo-
foros Panayiotou, and Marios M Polycarpou. A camera uncertainty model
for collaborative visual sensor network applications. In International Con-
ference on Distributed Smart Cameras (ICDSC) 2015, Proceedings, pages
86-91. ACM, 2015. Cited on pages 24, 26, and 32.

Angelika Kusel, Juergen Etzlstorfer, Elisabeth Kapsammer, Werner Rets-
chitzegger, Wieland Schwinger, and Johannes Schénbock. Consistent co-
evolution of models and transformations. In International Conference on
Model Driven Engineering Languages and Systems (MODELS) 2015, Pro-
ceedings, pages 116-125. IEEE, 2015. Cited on pages 24 and 30.

Heiko Klare and Joshua Gleitze. Commonalities for Preserving Consistency
of Multiple Models. In International Conference on Model Driven Engi-
neering Languages and Systems (MODELS) 2019, Companion Proceedings,
pages 371-378. IEEE, 2019. Cited on page 55.

Aneesh Krishna, Aditya K Ghose, and Sergiy A Vilkomir. Loosely-coupled
Consistency between Agent-oriented Conceptual Models and 7 Specifica-
tions. In International Conference on Software Engineering and Knowl-
edge Engineering (SEKE) 2005, Proceedings, pages 455-460, 2005. Cited on
page 23.

266

Bibliography

[KHO6]

[KHJS14]

[KHW12]

[Kit04]

[KJS10]

[KJV83]

[KKD*17]

[KKE18]

[KKE19]

[KKS07]

[Kla21]

[KLKS10]

Shinya Kawanaka and Haruo Hosoya. biXid: A Bidirectional Transformation
Language for XML. In International Conference on Functional Programming
(ICFP) 2006, Proceedings, pages 201-214. ACM, 2006. Cited on pages 81
and 83.

Hasan Kog, Erik Hennig, Stefan Jastram, and Christoph Starke. State of the
Art in Context Modelling - A Systematic Literature Review. In International
Conference on Advanced Information Systems Engineering (CAiSE) 2014,
Workshop Proceedings, volume 178, pages 53—-64. Springer, 2014. Cited on
page 19.

A Krasnogolowy, S Hildebrandt, and S Wétzoldt. Flexible Debugging of Be-
havior Models. In International Conference on Industrial Technology (ICIT)
2012, Proceedings, pages 331-336. IEEE, 2012. Cited on page 185.

Barbara A Kitchenham. Procedures for Performing Systematic Reviews.
Technical report, Keele University, UK, 2004. Cited on pages 11 and 19.

Eunsuk Kang, Ethan K Jackson, and Wolfram Schulte. An Approach for Ef-
fective Design Space Exploration. In Monterey Workshop 2010, Proceedings,
pages 33-54. Springer, 2010. Cited on page 218.

Scott Kirkpatrick, D Gelatt Jr., and Mario P Vecchi. Optimization by Sim-
mulated Annealing. Science, 220(4598):671-680, 1983. Cited on page 146.

Roland Kretschmer, Djamel Eddine Khelladi, Andreas Demuth, Roberto E
Lopez-Herrejon, and Alexander Egyed. From Abstract to Concrete Repairs
of Model Inconsistencies: An Automated Approach. In Asia-Pacific Software
Engineering Conference (APSEC) 2017, Proceedings, pages 456-465. CEUR-
WS.org, 2017. Cited on pages 23, 28, and 32.

Roland Kretschmer, Djamel Eddine Khelladi, and Alexander Egyed. An
automated and instant discovery of concrete repairs for model inconsisten-
cies. In International Conference on Software Engineering (ICSE) 2018,
Proceedings, pages 298-299. ACM, 2018. Cited on pages 23 and 31.

Djamel Eddine Khelladi, Roland Kretschmer, and Alexander Egyed. De-
tecting and exploring side effects when repairing model inconsistencies. In
Software Language Engineering (SLE) 2019, Proceedings, pages 113-126.
ACM, 2019. Cited on pages 23, 24, 28, 31, and 32.

Felix Klar, Alexander Konigs, and Andy Schiirr. Model Transformation
in the Large. In Furopean Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC-FSE) 2007, Proceedings,
pages 285-294. ACM, 2007. Cited on pages 39, 165, and 243.

Heiko Klare. Building Transformation Networks for Consistent Evolution
of Interrelated Models. PhD thesis, Karlsruhe Institute of Technology, Ger-
many, 2021. Cited on pages 55 and 243.

Felix Klar, Marius Lauder, Alexander Konigs, and Andy Schiirr. Extended
Triple Graph Grammars with Efficient and Compatible Graph Translators.
In Graph Transformations and Model Driven Engineering, pages 141-174.
Springer, 2010. Cited on pages 103 and 134.

Bibliography

267

[KN18]

[KP14]

[KPP08a

[KPPOSb]

[KPP*15]

[KRO7]

[KSBOS]

[KSBB12]

[KSG+17]

[KSTZ20]

[KW07]

Barbara Koénig and Dennis Nolte. CoReS: A Tool for Computing Core
Graphs via SAT/SMT Solvers (Tool Presentation Paper). In International
Conference on Graph Transformation (ICGT) 2018, Proceedings. Springer,
2018. Cited on page 82.

Stefan Kugele and Gheorghe Pucea. Model-based optimization of automotive
E/E-architectures. In International Workshop on Constraints in Software
Testing, Verification, and Analysis (CSTVA) 2014, Proceedings, pages 18—
29. ACM, 2014. Cited on page 218.

Dimitrios S Kolovos, Richard F Paige, and Fiona Polack. Detecting and
Repairing Inconsistencies across Heterogeneous Models. In International
Conference on Software Testing, Verification, and Validation (ICST) 2008,
Proceedings, pages 356-364. IEEE, 2008. Cited on pages 25 and 32.

Dimitrios S Kolovos, Richard F Paige, and Fiona Polack. The Grand Chal-
lenge of Scalability for Model Driven Engineering. In Models in Software
Engineering (MiSE) 2008, Proceedings, pages 48-53. Springer, 2008. Cited
on pages 124, 125, and 126.

Stefan Kugele, Gheorghe Pucea, Ramona Popa, Laurent Dieudonné, and
Horst Eckardt. On the deployment problem of embedded systems. In Inter-
national Conference on Formal Methods and Models for Codesign (MEM-
OCODE) 2015, Proceedings, pages 158-167. IEEE, 2015. Cited on page 218.

Jochen Malte Kiister and Ksenia Ryndina. Improving Inconsistency Resolu-
tion with Side-Effect Evaluation and Costs. In International Conference on
Model Driven Engineering Languages and Systems (MoDELS) 2007, Pro-
ceedings, pages 136-150. Springer, 2007. Cited on pages 24 and 32.

Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. Model
Transformation as an Optimization Problem. In International Conference
on Model Driven Engineering Languages and Systems (MoDELS) 2008, Pro-
ceedings, pages 159-173. Springer, 2008. Cited on pages 81, 83, and 147.

Marouane Kessentini, Houari A Sahraoui, Mounir Boukadoum, and Omar
Benomar. Search-based model transformation by example. Software and
Systems Modeling, 11(2):209-226, 2012. Cited on page 147.

Roland Kluge, Michael Stein, David Giessing, Andy Schiirr, and Max
Miihlh&duser. cMoflon: Model-Driven Generation of Embedded C Code
for Wireless Sensor Networks. In FEuropean Conference on Modelling
Foundations and Applications (ECMFA) 2017, Proceedings, pages 109-125.
Springer, 2017. Cited on page 164.

Jens Kosiol, Daniel Striiber, Gabriele Taentzer, and Steffen Zschaler.
Graph Consistency as a Graduated Property - Consistency-Sustaining and
-Improving Graph Transformations. In International Conference on Graph
Transformation (ICGT) 2020, Proceedings, volume 12150, pages 239-256.
Springer, 2020. Cited on page 103.

Ekkart Kindler and Robert Wagner. Triple Graph Grammars: Concepts,
Extensions, Implementations, and Application Scenarios. Technical report,
Paderborn University, Germany, 2007. Cited on page 54.

268

Bibliography

[KW12]

[KWLW13]

[KZH16]

[LAF+17]

[LAS14a]

[LAS*14b]

[LAS15]

[LAS17]

[LAST15]

[LAST17]

Lilija Klassen and Robert Wagner. EMorF - A Tool for Model Transforma-
tions. FElectronic Communication of the Furopean Association of Software
Science and Technology, 54, 2012. Cited on page 165.

Marouane Kessentini, Wafa Werda, Philip Langer, and Manuel Wimmer.
Search-based model merging. In Genetic and FEvolutionary Computation
Conference (GECCO) 2013, Proceedings, pages 1453-1460. ACM, 2013.
Cited on page 146.

Hsiang-shang Ko, Tao Zan, and Zhenjiang Hu. BiGUL: A Formally Verified
Core Language for Putback-Based Bidirectional Programming. In Workshop
on Partial Evaluation and Program Manipulation (PEPM) 2016, Proceed-
ings, pages 61-72. ACM, 2016. Cited on pages 81, 83, 98, and 203.

Erhan Leblebici, Anthony Anjorin, Lars Fritsche, Gergely Varro, and Andy
Schiirr. Leveraging Incremental Pattern Matching Techniques for Model Syn-
chronisation. In International Conference on Graph Transformation (ICGT)
2017, Proceedings, pages 179-195. Springer, 2017. Cited on pages 103, 141,
and 238.

Erhan Leblebici, Anthony Anjorin, and Andy Schiirr. Developing eMoflon
with eMoflon. In International Conference on Model Transformation
(ICMT) 2014, Proceedings, pages 138-145. Springer, 2014. Cited on
pages 54, 83, 164, and 165.

Erhan Leblebici, Anthony Anjorin, Andy Schiirr, Stephan Hildebrandt, Jan
Rieke, and Joel Greenyer. A Comparison of Incremental Triple Graph Gram-
mar Tools. FElectronic Communication of the European Association of Soft-
ware Science and Technology, 67, 2014. Cited on pages 54 and 166.

Erhan Leblebici, Anthony Anjorin, and Andy Schiirr. Tool Support for
Multi-amalgamated Triple Graph Grammars. In International Confer-
ence on Graph Transformation (ICGT) 2015, Proceedings, pages 257-265.
Springer, 2015. Cited on pages 54 and 239.

Erhan Leblebici, Anthony Anjorin, and Andy Schiirr. Inter-model Con-
sistency Checking using Triple Graph Grammars and Linear Optimization
Techniques. In Fundamental Approaches to Software Engineering (FASE)
2017, Proceedings, pages 191-207. Springer, 2017. Cited on pages 13, 23, 24,
82, 84, 97, and 99.

Erhan Leblebici, Anthony Anjorin, Andy Schiirr, and Gabriele Taentzer.
Multi-amalgamated Triple Graph Grammars. In Francesco Parisi-Presicce
and Bernhard Westfechtel, editors, International Conference on Graph
Transformation (ICGT) 2015, Proceedings, pages 87—-103. Springer, 2015.
Cited on pages 54 and 239.

Erhan Leblebici, Anthony Anjorin, Andy Schiirr, and Gabriele Taentzer.
Multi-amalgamated triple graph grammars: Formal foundation and applica-

tion to visual language translation. Journal of Visual Language and Com-
puting, 42:99-121, 2017. Cited on pages 53, 54, 69, 70, 72, and 73.

Bibliography

269

[Laul3]

[LBG13]

[Leb16]

[Leb18]

[LHGO12]

[LKV11]

[LTZ12]

[LTZ13]

[MC13]

[MCK*20]

Marius Lauder. Incremental Model Synchronization with Precedence-Driven
Triple Graph Grammars. PhD thesis, Darmstadt University of Technology,
Germany, 2013. Cited on page 96.

Yoann Laurent, Reda Bendraou, and Marie-Pierre Gervais. Executing and
debugging UML models: an fUML extension. In Symposium on Applied
Computing (SAC) 2013, Proceedings, pages 1095-1102. ACM, 2013. Cited
on page 184.

Erhan Leblebici. Towards a Graph Grammar-Based Approach to Inter-
Model Consistency Checks with Traceability Support. In International
Workshop on Bidirectional Transformations (Bz) 2016, Proceedings, pages
35-39. CEUR-WS.org, 2016. Cited on pages 82 and 97.

Erhan Leblebici. Inter-Model Consistency Checking and Restoration with
Triple Graph Grammars. PhD thesis, Darmstadt University of Technology,
Germany, 2018. Cited on pages 13, 14, 82, 84, 100, 102, 112, and 117.

Leen Lambers, Stephan Hildebrandt, Holger Giese, and Fernando Orejas.
Attribute Handling for Bidirectional Model Transformations: The Triple
Graph Grammar Case. Electronic Communication of the European Associ-
ation of Software Science and Technology, 49, 2012. Cited on pages 53, 54,
59, and 83.

Ricky T Lindeman, Lennart C L Kats, and Eelco Visser. Declaratively Defin-
ing Domain-Specific Language Debuggers. In International Conference on

Generative Programming and Component Engineering (GPCE) 2011, Pro-
ceedings, pages 127-136. ACM, 2011. Cited on page 184.

Ioanna Lytra, Huy Tran, and Uwe Zdun. Constraint-Based Consistency
Checking between Design Decisions and Component Models for Support-
ing Software Architecture Evolution. In Furopean Conference on Software
Maintenance and Reengineering (CSMR) 2012, Proceedings, pages 287-296.
IEEE, 2012. Cited on page 23.

Toanna Lytra, Huy Tran, and Uwe Zdun. Supporting Consistency between
Architectural Design Decisions and Component Models through Reusable
Architectural Knowledge Transformations. In Furopean Conference on Soft-
ware Architecture (ECSA) 2013, Proceedings, pages 224-239. Springer, 2013.
Cited on page 23.

Nuno Macedo and Alcino Cunha. Implementing QVT-R Bidirectional Model
Transformations using Alloy. In Fundamental Approaches to Software Engi-
neering (FASE) 2013, Proceedings, pages 297-311. Springer, 2013. Cited on
pages 23, 81, 82, 83, and 125.

Gunter Mussbacher, Benoit Combemale, Jorg Kienzle, Silvia Abrahéao, Hy-
acinth Ali, Nelly Bencomo, Marton Bur, Loli Burgueno, Gregor Engels,
Pierre Jeanjean, Jean-Marc Jézéquel, Thomas Kiihn, Sébastien Mosser,
Houari A Sahraoui, Eugene Syriani, Déniel Varrd, and Martin Weyssow.
Opportunities in intelligent modeling assistance. Software and Systems Mod-
eling, 19(5):1045-1053, 2020. Cited on page 3.

270

Bibliography

[MdddM15]

[MKKJ10]

[MKL*+15]

[MM19]

[MSBV20]

[MSDO6]

[MSAM18]

MTV17]

[MTV18]

[MTZ17]

[MV17]

[MVDOS]

Marcelo Luiz Monteiro Marinho, Suzana Candido de Barros Sampaio,
Telma Lucia de Andrade Lima, and Hermano Perrelli de Moura. Uncertainty
Management in Software Projects. Journal of Software, 10(3):288-303, 2015.
Cited on page 20.

Brice Morin, Jacques Klein, Jorg Kienzle, and Jean-Marc Jézéquel. Flexi-
ble Model Element Introduction Policies for Aspect-Oriented Modeling. In
International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS) 2010, Proceedings, pages 63-77. Springer, 2010. Cited on
page 24.

Usman Mansoor, Marouane Kessentini, Philip Langer, Manuel Wimmer,
Slim Bechikh, and Kalyanmoy Deb. MOMM: Multi-Objective Model Merg-
ing. Journal of Systems and Software, 103:423-439, 2015. Cited on page 146.

Mahyar Tourchi Moghaddam and Henry Muccini. Fault-Tolerant IoT - A
Systematic Mapping Study. In Software Engineering for Resilient Systems
(SERENE) 2019, Proceedings, pages 67-84. Springer, 2019. Cited on page 20.

Kristof Marussy, Oszkar Semerath, Aren A Babikian, and Daniel Varré.
A Specification Language for Consistent Model Generation based on Partial
Models. Journal of Object Technology, 19(3):3:1-22, 2020. Cited on page 103.

Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt. Detecting and
Resolving Model Inconsistencies Using Transformation Dependency Analy-
sis. In International Conference on Model Driven Engineering Languages
and Systems (MoDELS) 2006, Proceedings, pages 200-214. Springer, 2006.
Cited on pages 23 and 32.

Marcelo Luiz Monteiro Marinho, Suzana Sampaio, and Hermano Perrelli
de Moura. Managing uncertainty in software projects. Innovations in Sys-
tems and Software Engineering, 14(3):157-181, 2018. Cited on page 20.

Simon Van Mierlo, Yentl Van Tendeloo, and Hans Vangheluwe. Debugging
Parallel DEVS. Simulation, 93(4):285-306, 2017. Cited on page 185.

Simon Van Mierlo, Yentl Van Tendeloo, and Hans Vangheluwe. A Gen-
eralized Stepping Semantics for Model Debugging. In International Con-
ference on Model Driven Engineering Languages and Systems (MODELS)
2018, Workshop Proceedings, pages 541-546. CEUR-WS.org, 2018. Cited on
page 184.

Faiz Ul Muram, Huy Tran, and Uwe Zdun. Systematic Review of Soft-
ware Behavioral Model Consistency Checking. ACM Computing Surveys,
50(2):17:1-17:39, 2017. Cited on page 19.

Simon Van Mierlo and Hans Vangheluwe. Debugging Non-determinism: a
Petrinets Modelling, Analysis, and Debugging Tool. In International Con-
ference on Model Driven Engineering Languages and Systems (MODELS)
2017, Workshop Proceedings, pages 460-462. CEUR-WS.org, 2017. Cited on
page 184.

Ricardo Martinho, Jodo Varajao, and Dulce Domingos. A Two-Step Ap-
proach for Modelling Flexibility in Software Processes. In Automated

Bibliography

271

MWV16]

[NCEFO01]

INEF03]

[NERO1]

[NGTS10]

[NRB*14]

[NSKB03]

[OBE*13]

[OLVV18]

[OPN20]

Software Engineering Conference (ASE) 2008, Proceedings, pages 427-430.
ACM, 2008. Cited on pages 25 and 31.

Tanja Mayerhofer, Manuel Wimmer, and Antonio Vallecillo. Adding uncer-
tainty and units to quantity types in software models. In Software Language
Engineering (SLE) 2015, Proceedings, pages 118-131. ACM, 2016. Cited on
pages 26, 29, and 32.

Christian Nentwich, Licia Capra, Wolfgang Emmerich, and Anthony Finkel-
stein. xlinkit: A Consistency Checking and Smart Link Generation Service.
ACM Transactions on Internet Technology, 2(2):151-185, 2001. Cited on

pages 23 and 25.

Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. Con-
sistency Management with Repair Actions. In International Conference on
Software Engineering (ICSE) 2003, Proceedings, pages 455-464. IEEE, 2003.
Cited on page 23.

Bashar Nuseibeh, Steve M Easterbrook, and Alessandra Russo. Making
inconsistency respectable in software development. Journal of Systems and
Software, 58(2):171-180, 2001. Cited on pages 23, 25, and 31.

Florian Noyrit, Sébastien Gérard, Francois Terrier, and Bran Selic. Consis-
tent Modeling Using Multiple UML Profiles. In International Conference on
Model Driven Engineering Languages and Systems (MODELS) 2010, Pro-
ceedings, pages 392—-406. Springer, 2010. Cited on page 24.

Amanda Savio Nascimento, Cecilia M F Rubira, Rachel Burrows, Fernando
Castor, and Patrick H S Brito. Designing fault-tolerant SOA based on design
diversity. Journal of Software Engineering Research and Development, 2:13,
2014. Cited on page 19.

Sandeep Neema, Janos Sztipanovits, Gabor Karsai, and Ken Butts.
Constraint-Based Design-Space Exploration and Model Synthesis. In Inter-
national Conference on Embedded Software (EMSOFT) 2003, Proceedings,
pages 290-305. Springer, 2003. Cited on page 218.

Fernando Orejas, Artur Boronat, Hartmut Ehrig, Frank Hermann, and
Hanna Scholzel. On Propagation-Based Concurrent Model Synchronization.
Electronic Communication of the European Association of Software Science
and Technology, 57, 2013. Cited on pages 126 and 140.

Bentley James Oakes, Levi Lucio, Clark Verbrugge, and Hans Vangheluwe.
Debugging of Model Transformations and Contracts in SyVOLT. In Inter-
national Conference on Model Driven Engineering Languages and Systems
(MODELS) 2018, Workshop Proceedings, pages 532-537. CEUR-WS.org,
2018. Cited on page 185.

Fernando Orejas, Elvira Pino, and Marisa Navarro. Incremental Concurrent
Model Synchronization using Triple Graph Grammars. In Fundamental Ap-
proaches to Software Engineering (FASE) 2020, Proceedings, pages 273-293.
Springer, 2020. Cited on pages 14, 124, 125, 128, and 239.

272

Bibliography

[Opp18]

[ORS09)

[PBBT09)

[PBG14]

[PFMMOS]

[PH19]

[PK04]

[PK19]

[PP14]

[PSGO03]

[PST+97]

Robin Oppermann. A Configurable, Model-Driven Approach to Optimal
Scheduling using Triple Graph Grammars and Linear Programming. Mas-
ter thesis, Paderborn University, Germany. 2018. Cited on pages 15, 169,
and 228.

Xinming Ou, Siva Raj Rajagopalan, and Sakthiyuvaraja Sakthivelmurugan.
An Empirical Approach to Modeling Uncertainty in Intrusion Analysis. In
Annual Computer Security Applications Conference (ACSAC) 2009, Pro-
ceedings, pages 494-503. IEEE, 2009. Cited on page 33.

Gilles Perrouin, Erwan Brottier, Benoit Baudry, and Yves Le Traon. Com-
posing Models for Detecting Inconsistencies: A Requirements Engineering
Perspective. In Requirements Engineering: Foundation for Software Qual-
ity (REFSQ) 2009, Proceedings, pages 89-103. Springer, 2009. Cited on
pages 24, 28, 31, and 32.

Rui Pais, Joao Paulo Barros, and Luis Gomes. From SysML state machines
to Petri nets using ATL transformations. In Doctoral Conference on Com-
puting, Electrical and Industrial Systems, pages 227-236. Springer, 2014.
Cited on page 204.

Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Sys-
tematic Mapping Studies in Software Engineering. In International Confer-
ence on Evaluation and Assessment in Software Engineering (EASE) 2008,
Proceedings. BCS, 2008. Cited on page 19.

Uwe Pohlmann and Marcus Hiiwe. Model-Driven Allocation Engineering:
Specifying and Solving Constraints based on the Example of Automotive
Systems. Automated Software Engineering, 26(2):315-378, 2019. Cited on
pages 216 and 218.

Amit M Paradkar and Tim Klinger. Automated Consistency and Complete-
ness Checking of Testing Models for Interactive Systems. In International
Computer Software and Applications Conference (COMPSAC) 2004, Pro-
ceedings, pages 342-348. IEEE, 2004. Cited on page 31.

I S W B Prasetya and Rick Klomp. Test Model Coverage Analysis Un-
der Uncertainty. In International Conference on Software Engineering and
Formal Methods (SEFM) 2019, Proceedings, pages 222-239. Springer, 2019.
Cited on pages 25 and 32.

Christopher M Poskitt and Detlef Plump. Verifying Monadic Second-Order
Properties of Graph Programs. In International Conference on Graph Trans-
formation (ICGT) 201/, Proceedings, pages 33—48. Springer, 2014. Cited on
page 78.

Benjamin C Pierce, A Schmitt, and Michael Greenwald. Bringing harmony
to optimism: a synchronization framework for heterogeneous tree-structured
data. Technical Report MS-CIS-03-42, 2003. Cited on pages 124 and 125.

Karin Petersen, Mike Spreitzer, Douglas B Terry, Marvin Theimer, and
Alan J Demers. Flexible Update Propagation for Weakly Consistent Repli-
cation. In Symposium on Operating Systems Principles (SOSP) 1997, Pro-
ceedings, pages 288-301. ACM, 1997. Cited on page 24.

Bibliography

273

[RCBS12

[RE12a]

[RE12D]

[RE13]

[Red11]

[REDE14]

[RET11]

[Riel5]

[RKPP0Y]

[Rob18]

[Roq16]

[Sal20]

Andres J Ramirez, Betty H C Cheng, Nelly Bencomo, and Pete Sawyer. Re-
laxing Claims: Coping with Uncertainty While Evaluating Assumptions at
Run Time. In International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS) 2010, Proceedings, pages 53-69. Springer,
2012. Cited on pages 26 and 32.

Alexander Reder and Alexander Egyed. Computing repair trees for resolving
inconsistencies in design models. In International Conference on Automated
Software Engineering (ASE) 2012, Proceedings, pages 220-229. ACM, 2012.
Cited on pages 23 and 32.

Alexander Reder and Alexander Egyed. Incremental Consistency Check-
ing for Complex Design Rules and Larger Model Changes. In International
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS) 2012, Proceedings, pages 202-218. Springer, 2012. Cited on pages 24,
28, and 31.

Alexander Reder and Alexander Egyed. Determining the Cause of a De-
sign Model Inconsistency. [EFEE Transactions on Software Engineering,
39(11):1531-1548, 2013. Cited on pages 23, 24, and 33.

Alexander Reder. Inconsistency management framework for model-based
development. In International Conference on Software Engineering (ICSE)
2011, Proceedings, pages 1098-1101. ACM, 2011. Cited on pages 23, 25,
and 32.

Markus Riedl-Ehrenleitner, Andreas Demuth, and Alexander Egyed. To-
wards Model-and-Code Consistency Checking. In International Com-
puter Software and Applications Conference (COMPSAC) 2014, Proceed-
ings, pages 85-90. IEEE, 2014. Cited on page 23.

Olga Runge, Claudia Ermel, and Gabriele Taentzer. AGG 2.0 - New Features
for Specifying and Analyzing Algebraic Graph Transformations. In Applica-
tions of Graph Transformations with Industrial Relevance (AGTIVE) 2011,
Proceedings, pages 81-88. Springer, 2011. Cited on page 184.

Jan Rieke. Model Consistency Management for Systems Engineering. PhD
thesis, Paderborn University, Germany, 2015. Cited on page 185.

Louis M Rose, Dimitrios S Kolovos, Richard F Paige, and Fiona A C Polack.
Enhanced Automation for Managing Model and Metamodel Inconsistency.
In Automated Software Engineering Conference (ASE) 2009, Proceedings,
pages 545-549. ACM, 2009. Cited on pages 24, 31, and 33.

Patrick Robrecht. Incremental Unidirectional Model Transformation via
Graph Transformation with eMoflon::IBeX. Master thesis, Paderborn Uni-
versity, Germany. 2018. Cited on pages 15 and 180.

Pascal Roques. MBSE with the ARCADIA Method and the Capella Tool. In
European Congress on Embedded Real Time Software and Systems (ERTS)
2016, Proceedings, 2016. Cited on page 192.

Shubhangi Salunkhe. Automatic Transformation of SysML Model To Event-
B Model. Master thesis, Paderborn University, Germany. 2020. Cited on
pages 15 and 208.

274

Bibliography

[SBOG]

[SB16]

[SBL*20]

[SBN*14]

[SCG12]

[Sch89]

[Sch94]

[Sch05]

[SCH12]

[SCV13]

[SFC12]

Colin F Snook and Michael J Butler. UML-B: Formal modeling and design
aided by UML. ACM Transactions on Software Engineering and Methodol-
ogy, 15(1):92-122, 2006. Cited on page 202.

Jean-Sébastien Sottet and Nicolas Biri. JSMF: a Javascript Flexible Mod-
elling Framework. In Workshop on Flexible Model Driven FEngineering
(FlexMDE) 2016, Proceedings, pages 42-51. CEUR-WS.org, 2016. Cited
on pages 24, 30, and 33.

Oszkar Semerath, Aren A Babikian, Anqi Li, Krist6f Marussy, and Daniel
Varré. Automated generation of consistent models with structural and at-
tribute constraints. In International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS) 2020, Proceedings, pages 187-199.
ACM, 2020. Cited on page 103.

Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry Howard, and Ethan K
Jackson. OpenMETA: A Model- and Component-Based Design Tool Chain
for Cyber-Physical Systems. In From Programs to Systems (FPS) 2014,
Proceedings, pages 235—248. Springer, 2014. Cited on page 218.

Rick Salay, Marsha Chechik, and Jan Gorzny. Towards a Methodology for
Verifying Partial Model Refinements. In International Conference on Soft-
ware Testing, Verification, and Validation (ICST) 2012, Proceedings, pages
938-945. IEEE, 2012. Cited on pages 26, 30, 32, and 33.

Andy Schiirr. Introduction to PROGRESS, an Attribute Graph Gram-
mar Based Specification Language. In International Workshop on Graph-
Theoretic Concepts in Computer Science (WG) 1989, Proceedings, pages
151-165. Springer, 1989. Cited on page 164.

Andy Schiirr. Specification of Graph Translators with Triple Graph Gram-
mars. In International Workshop on Graph-Theoretic Concepts in Computer
Science (WG) 1994, Proceedings, pages 151-163. Springer, 1994. Cited on
pages 11 and 44.

Nicole Schweikardt. Arithmetic, first-order logic, and counting quantifiers.
ACM Transactions on Computational Logic, 6(3):634-671, 2005. Cited on
page 62.

Rick Salay, Marsha Chechik, and Jennifer Horkoff. Managing requirements
uncertainty with partial models. In International Requirements Engineer-
ing Conference (RE) 2012, Proceedings, pages 1-10. IEEE, 2012. Cited on
pages 26 and 32.

Ivan Svogor, Ivica Crnkovic, and Neven Vrcek. An Extended Model for
Multi-Criteria Software Component Allocation on a Heterogeneous Embed-
ded Platform. Journal of Computing and Information Technology, 21(4):211—
222, 2013. Cited on page 218.

Rick Salay, Michalis Famelis, and Marsha Chechik. Language Independent
Refinement Using Partial Modeling. In Fundamental Approaches to Soft-
ware Engineering (FASE) 2012, Proceedings, volume 7212, pages 224-239.
Springer, 2012. Cited on pages 26 and 30.

Bibliography

275

[SHNS13]

[SKOS]

[SK21]

[SKE*14]

[SKLR20]

[SKLR21]

[SKW+13]

[SMSJO03]

[SNECO08]

[SNL*07]

[SOY17]

Hajer Saada, Marianne Huchard, Clémentine Nebut, and Houari A Sahraoui.
Recovering model transformation traces using multi-objective optimization.
In International Conference on Automated Software Engineering (ASE)
2013, Proceedings, pages 688-693. ACM, 2013. Cited on page 146.

Andy Schiirr and Felix Klar. 15 Years of Triple Graph Grammars. In Inter-
national Conference on Graph Transformation (ICGT) 2008, Proceedings,
pages 411-425. Springer, 2008. Cited on page 54.

Timur Saglam and Heiko Klare. Classifying and Avoiding Compatibility
Issues in Networks of Bidirectional Transformations. In International Work-
shop on Bidirectional Transformations (Bxz) 2021, Proceedings, pages 34—53.
CEUR-WS.org, 2021. Cited on page 243.

Johannes Schonbock, Angelika Kusel, Juergen Etzlstorfer, Elisabeth Kap-
sammer, Wieland Schwinger, Manuel Wimmer, and Martin Wischenbart.
CARE - A Constraint-Based Approach for Re-Establishing Conformance-
Relationships. In Asia-Pacific Conference on Conceptual Modelling
(APCCM) 2014, Proceedings, volume 154 of CRPIT, pages 19-28. Australian
Computer Society, 2014. Cited on pages 24 and 31.

Patrick Stiinkel, Harald Konig, Yngve Lamo, and Adrian Rutle. Towards
Multiple Model Synchronization with Comprehensive Systems. In Fun-
damental Approaches to Software Engineering (FASE) 2020, Proceedings,
pages 335-356. Springer, 2020. Cited on pages 55 and 243.

Patrick Stiinkel, Harald Konig, Yngve Lamo, and Adrian Rutle. Compre-
hensive Systems: A formal foundation for Multi-Model Consistency Manage-
ment. Formal Aspects of Computing, jul 2021. Cited on pages 55 and 243.

Johannes Schoénbock, Gerti Kappel, Manuel Wimmer, Angelika Kusel,
Werner Retschitzegger, and Wieland Schwinger. TETRABox - A Generic
White-Box Testing Framework for Model Transformations. In Asia-Pacific
Software Engineering Conference (APSEC) 2013, Proceedings, pages 75-82.
CEUR-WS.org, 2013. Cited on page 185.

Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, and Viviane Jon-
ckers. Using Description Logic to Maintain Consistency between UML Mod-
els. In International Conference on the Unified Modeling Language (UML)
2003, Proceedings, pages 326-340. Springer, 2003. Cited on page 24.

Mehrdad Sabetzadeh, Shiva Nejati, Steve M Easterbrook, and Marsha
Chechik. Global consistency checking of distributed models with TReMer+.
In International Conference on Software Engineering (ICSE) 2008, Proceed-
ings, pages 815-818. ACM, 2008. Cited on page 23.

Mehrdad Sabetzadeh, Shiva Nejati, Sotirios Liaskos, Steve M Easterbrook,
and Marsha Chechik. Consistency Checking of Conceptual Models via Model
Merging. In International Requirements Engineering Conference (RE) 2007,
Proceedings, pages 221-230. IEEE, 2007. Cited on page 23.

Ahmad M Salih, Mazni Omar, and Azman Yasin. Understanding Un-
certainty of Software Requirements Engineering: A Systematic Literature

276

Bibliography

[SPV20]

[Sri21]

[ST15]

[Stel4]

[StelT]

[Stel8al

[Stel8b]

[SV17]

[SVL15]

SZ04]

SZ06]

Review Protocol. In Asia Pacific Requirements Engineering Symposium
(APRES) 2017, Proceedings, volume 809, pages 164-171. Springer, 2017.
Cited on page 20.

Alex Serban, Erik Poll, and Joost Visser. Towards Using Probabilistic Mod-
els to Design Software Systems with Inherent Uncertainty. In Furopean
Conference on Software Architecture (ECSA) 2020, Proceedings, pages 89—
97. Springer, 2020. Cited on pages 26 and 30.

Ankita Srivastava. Visualization of Concurrent Synchronization Processes
based on Triple Graph Grammars. Master thesis, Paderborn University, Ger-
many. 2021. Cited on pages 15 and 194.

Faezeh Siavashi and Dragos Truscan. Environment modeling in model-based
testing: concepts, prospects and research challenges: a systematic literature
review. In International Conference on Fvaluation and Assessment in Soft-
ware Engineering (EASE) 2015, Proceedings, pages 30:1-30:6. ACM, 2015.
Cited on page 19.

Perdita Stevens. Bidirectionally Tolerating Inconsistency: Partial Transfor-
mations. In Fundamental Approaches to Software Engineering (FASE) 2014,
Proceedings, pages 32—46. Springer, 2014. Cited on pages 5, 17, 18, 23, 25,
31, 38, and 237.

Perdita Stevens. Bidirectional Transformations in the Large. In International
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS) 2017, Proceedings, pages 1-11. IEEE, 2017. Cited on pages 4, 23, 25,
and 243.

Perdita Stevens. Is Bidirectionality Important? In Furopean Conference on
Modelling Foundations and Applications (ECMFA) 2018, Proceedings, pages
1-11. Springer, 2018. Cited on page 23.

Perdita Stevens. Towards sound, optimal, and flexible building from meg-
amodels. In International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS) 2018, Proceedings, pages 301-311. ACM,
2018. Cited on pages 23 and 31.

Oszkar Semerath and Déaniel Varré. Graph Constraint Evaluation over Par-
tial Models by Constraint Rewriting. In International Conference on Model
Transformation (ICMT) 2017, Proceedings, volume 10374, pages 138-154.
Springer, 2017. Cited on page 103.

FEugene Syriani, Hans Vangheluwe, and Brian Lashomb. T-Core: A Frame-
work for Custom-built Model Transformation Engines. Software and Systems
Modeling, 14(3):1215-1243, 2015. Cited on page 83.

Lijun Shan and Hong Zhu. Consistency Check in Modelling Multi-Agent
Systems. In International Computer Software and Applications Confer-
ence (COMPSAC) 2004, Proceedings, pages 114-119. IEEE, 2004. Cited
on pages 23 and 33.

Lijun Shan and Hong Zhu. Specifying Consistency Constraints for Mod-
elling Languages. In International Conference on Software Engineering and

Bibliography

277

[SZ16]

[TA16]

[TA17]

[TBK17]

[TBSAL11]

[TLWS18]

[TM14]

[Tom21]

[Tra0g)]

[TWV+19]

Knowledge Engineering (SEKE) 2006, Proceedings, pages 578-583, 2006.
Cited on page 23.

Michael Szvetits and Uwe Zdun. Systematic literature review of the objec-
tives, techniques, kinds, and architectures of models at runtime. Software
and Systems Modeling, 15(1):31-69, 2016. Cited on page 19.

Frank Trollmann and Sahin Albayrak. Extending Model Synchronization
Results from Triple Graph Grammars to Multiple Models. In International
Conference on Model Transformation (ICMT) 2016, Proceedings, pages 91—
106. Springer, 2016. Cited on pages 55 and 243.

Frank Trollmann and Sahin Albayrak. Decision Points for Non-determinism
in Concurrent Model Synchronization with Triple Graph Grammars. In In-
ternational Conference on Model Transformation (ICMT) 2017, Proceedings,
pages 35-50. Springer, 2017. Cited on pages 55, 124, and 126.

Matthias Tichy, Luis Beaucamp, and Stefan Kogel. Towards Debugging the
Matching of Henshin Model Transformations Rules. In International Con-
ference on Model Driven Engineering Languages and Systems (MODELS)
2017, Workshop Proceedings, pages 455-456. CEUR-WS.org, 2017. Cited on
page 184.

Frank Trollmann, Marco Blumendorf, Veit Schwartze, and Sahin Albayrak.
Formalizing model consistency based on the abstract syntax. In Symposium
on Engineering Interactive Computing Systems (EICS) 2011, Proceedings,
pages 79-84. ACM, 2011. Cited on page 24.

Stefan Tomaszek, Erhan Leblebici, Lin Wang, and Andy Schiirr. Virtual
Network Embedding: Reducing the Search Space by Model Transformation
Techniques. In International Conference on Model Transformation (ICMT)
2018, Proceedings, pages 59-75. Springer, 2018. Cited on pages 216 and 218.

Le Minh Sang Tran and Fabio Massacci. An Approach for Decision Support
on the Uncertainty in Feature Model Evolution. In International Require-
ments Engineering Conference (RE) 2014, Proceedings, pages 93-102. IEEE,
2014. Cited on page 26.

Stefan Tomaszek. Modellbasierte Einbettung von virtuellen Netzwerken in
Rechenzentren. PhD thesis, Darmstadt University of Technology, Germany,
2021. Cited on page 218.

Laurence Tratt. A change propagating model transformation Language.
Journal of Object Technolology, 7(3):107-124, 2008. Cited on pages 124
and 125.

Tarik Terzimehic, Monika Wenger, Sebastian Voss, Sten Griiner, and
Haitham Elfaham. SMT-Based Deployment Calculation in Industrial Au-
tomation Domain. In International Conference on Emerging Technologies
and Factory Automation (ETFA) 2019, Proceedings. IEEE, 2019. Cited on

page 218.

278

Bibliography

[TZY*08]

[VAS12]

[VBH*16]

[VBNE15]

[VD13]

[VDT18]

[Ver20]

[VGE*10]

[VGH*12]

[VMO16]

[VPM90]

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Ar-
netMiner: Extraction and Mining of Academic Social Networks. In Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD) 2008,
Proceedings, pages 990-998. ACM, 2008. Cited on page 23.

Gergely Varré, Anthony Anjorin, and Andy Schiirr. Unification of Compiled
and Interpreter-Based Pattern Matching Techniques. In Furopean Confer-
ence on Modelling Foundations and Applications (ECMFA) 2012, Proceed-
ings, pages 368-383. Springer, 2012. Cited on page 164.

Déniel Varré, Gabor Bergmann, Abel Hegediis, Akos Horvath, Istvan Rath,
and Zoltan Ujhelyi. Road to a reactive and incremental model transforma-
tion platform: three generations of the VIATRA framework. Software and
Systems Modeling, 15(3):609-629, 2016. Cited on page 165.

Jean-Luc Voirin, Stéphane Bonnet, Véronique Normand, and Daniel Ex-
ertier. Model-Driven IVV Management with Arcadia and Capella. In Inter-
national Conference on Complex Systems Design € Management (CSDEM)
2015, Proceedings, pages 83-94. Springer, 2015. Cited on page 192.

Gergely Varré and Frederik Deckwerth. A Rete Network Construction Al-
gorithm for Incremental Pattern Matching. In International Conference on
Model Transformation (ICMT) 2013, Proceedings, pages 125-140. Springer,
2013. Cited on page 165.

Vuk Vukovic, Jovica Djurkovic, and Jelica Trninic. A Business Software Test-
ing Process-Based Model Design. International Journal of Software FEngi-
neering and Knowledge Engineering, 28(5):701-750, 2018. Cited on page 19.

Surbhi Verma. Consistency Management based on Triple Graph Grammars
with Graph Constraints. Master thesis, Paderborn University, Germany.
2020. Cited on page 15.

Michael Vierhauser, Paul Griinbacher, Alexander Egyed, Rick Rabiser, and
Wolfgang Heider. Flexible and scalable consistency checking on product line
variability models. In Automated Software Engineering Conference (ASE)
2010, Proceedings, pages 63-72. ACM, 2010. Cited on page 31.

Michael Vierhauser, Paul Griinbacher, Wolfgang Heider, Gerald Holl, and
Daniela Lettner. Applying a Consistency Checking Framework for Hetero-
geneous Models and Artifacts in Industrial Product Lines. In International
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS) 2012, Proceedings, pages 531-545. Springer, 2012. Cited on pages 23,
28, and 31.

Antonio Vallecillo, Carmen Morcillo, and Priscill Orue. Expressing Measure-
ment Uncertainty in Software Models. In International Conference on the
Quality of Information and Communications Technology (QUATIC) 2016,
Proceedings, pages 15-24. IEEE, 2016. Cited on pages 26 and 32.

Mladen A Vouk, Amit M Paradkar, and David F McAllister. Modeling
execution time of multi-stage N-version fault-tolerant software. In Interna-
tional Computer Software and Applications Conference (COMPSAC) 1990,
Proceedings, pages 505-511. IEEE, 1990. Cited on pages 24, 25, and 31.

Bibliography

279

[WA20]

[WA21a]

[WA21b]

[WAC20]

[WAF+19]

[Wag95]

[WALS19]

[WARV19]

[WASK19]

[WBCW20]

[WC09]

Nils Weidmann and Anthony Anjorin. Schema Compliant Consistency Man-
agement via Triple Graph Grammars and Integer Linear Programming. In
Fundamental Approaches to Software Engineering (FASE) 2020, Proceed-
ings, pages 315-334. Springer, 2020. Cited on pages 16 and 121.

Nils Weidmann and Anthony Anjorin. eMoflon::Neo - Consistency and Model
Management with Graph Databases. In International Workshop on Bidirec-
tional Transformations (Bx) 2021, Proceedings, pages 54—64. CEUR-WS.org,
2021. Cited on pages 16 and 178.

Nils Weidmann and Anthony Anjorin. Schema Compliant Consistency Man-
agement via Triple Graph Grammars and Integer Linear Programming. For-
mal Aspects of Computing, aug 2021. Cited on pages 16, 119, 283, and 286.

Nils Weidmann, Anthony Anjorin, and James Cheney. VICToRy: Visual
Interactive Consistency Management in Tolerant Rule-based Systems. In
International Workshop on Graph Computation Models (GCM) 2020, Pro-
ceedings, pages 1-12. EPTCS, 2020. Cited on pages 16 and 194.

Nils Weidmann, Anthony Anjorin, Lars Fritsche, Gergely Varré, Andy
Schiirr, and Erhan Leblebici. Incremental Bidirectional Model Transfor-
mation with eMoflon: : IBeX. In International Workshop on Bidirectional
Transformations (Bx) 2019, Proceedings, pages 45-55. CEUR-WS.org, 2019.
Cited on page 16.

Annika Wagner. On the Expressive Power of Algebraic Graph Grammars
with Application Conditions. In Theory and Practice of Software Develop-
ment (TAPSOFT) 1995, Proceedings, pages 409-423. Springer, 1995. Cited
on page 69.

Nils Weidmann, Anthony Anjorin, Erhan Leblebici, and Andy Schiirr. Con-
sistency management via a combination of triple graph grammars and linear
programming. In Software Language Engineering (SLE) 2019, Proceedings,
pages 29-41. ACM, 2019. Cited on pages 16 and 97.

Nils Weidmann, Anthony Anjorin, Patrick Robrecht, and Gergely Varrd. In-
cremental (Unidirectional) Model Transformation with eMoflon: : IBeX. In
International Conference on Graph Transformation (ICGT) 2019, Proceed-
ings, pages 131-140. Springer, 2019. Cited on pages 16 and 180.

Nils Weidmann, Anthony Anjorin, Florian Stolte, and Florian Kraus. From
Pattern Invocation Networks to Rule Preconditions. In International Con-
ference on Graph Transformation (ICGT) 2019, Proceedings, pages 195-211.
Springer, 2019. Cited on page 16.

Andreas Wortmann, Olivier Barais, Benoit Combemale, and Manuel Wim-
mer. Modeling languages in Industry 4.0: an extended systematic mapping
study. Software and Systems Modeling, 19(1):67-94, 2020. Cited on page 19.

Chen-Wei Wang and Alessandra Cavarra. Checking Model Consistency Us-
ing Data-Flow Testing. In Asia-Pacific Software Engineering Conference
(APSEC) 2009, Proceedings, pages 414-421. CEUR-WS.org, 2009. Cited on
page 24.

280

Bibliography

[WCB17]

[WE21]

[Web17]

[Weil§]

[WFA20]

[WGP09]

[WKA21]

[WKK*11]

[WKK*12]

[WMC+20]

Andreas Wortmann, Benoit Combemale, and Olivier Barais. A Systematic
Mapping Study on Modeling for Industry 4.0. In International Conference on
Model Driven Engineering Languages and Systems (MODELS) 2017, Pro-
ceedings, pages 281-291. IEEE, 2017. Cited on page 19.

Nils Weidmann and Gregor Engels. Concurrent model synchronisation with
multiple objectives. In Genetic and FEvolutionary Computation Confer-
ence (GECCO) 2021, Proceedings, pages 1097-1105. ACM, 2021. Cited on
pages 16 and 154.

Jens H Weber. GRAPE — A Graph Rewriting and Persistence Engine. In
International Conference on Graph Transformation (ICGT) 2017, Proceed-
ings, pages 209-220. Springer, 2017. Cited on pages 166 and 173.

Nils Weidmann. Tolerant Consistency Management in Model-Driven En-
gineering. In International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS) 2018, Companion Proceedings, pages 192—
197. ACM, 2018. Cited on page 16.

Nils Weidmann, Lars Fritsche, and Anthony Anjorin. A search-based and
fault-tolerant approach to concurrent model synchronisation. In Software
Language Engineering (SLE) 2020, Proceedings, pages 56—71. ACM, 2020.
Cited on pages 16, 117, 141, and 286.

Christopher Wolfe, T' C Nicholas Graham, and W Greg Phillips. An In-
cremental Algorithm for High-Performance Runtime Model Consistency. In
International Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS) 2009, Proceedings, pages 357-371. Springer, 2009. Cited on
pages 23 and 33.

Nils Weidmann, Suganya Kannan, and Anthony Anjorin. Tolerance in
Model-Driven Engineering: A Systematic Literature Review with Model-
Driven Tool Support. Computing Research Repository, abs/2106.0, 2021.
Cited on page 16.

Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger,
Johannes Schonbock, Wieland Schwinger, Dimitrios S Kolovos, Richard F
Paige, Marius Lauder, and Andy Schiirr. A Comparison of Rule Inheritance
in Model-to-Model Transformation Languages. In International Conference
on Model Transformation (ICMT) 2011, Proceedings, pages 31-46. Springer,
2011. Cited on page 55.

Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger,
Johannes Schonbock, Wieland Schwinger, Dimitrios S Kolovos, Richard F
Paige, Marius Lauder, Andy Schiirr, and Dennis Wagelaar. Surveying Rule
Inheritance in Model-to-Model Transformation Languages. Journal of Object
Technology, 2012. Cited on page 55.

Sabine Wolny, Alexandra Mazak, Christine Carpella, Verena Geist, and
Manuel Wimmer. Thirteen years of SysML: a systematic mapping study.
Software and Systems Modeling, 19(1):111-169, 2020. Cited on page 19.

Bibliography

281

[WOR19]

[WRT*13]

[WS20]

[WSAT21]

[WXHT10]

[XHZ108]

[XHZ09)

[XSHTOY]

[XSHT13]

[YALG18]

Nils Weidmann, Robin Oppermann, and Patrick Robrecht. A feature-based
classification of triple graph grammar variants. In Software Language Engi-
neering (SLE) 2019, Proceedings, pages 1-14. ACM, 2019. Cited on page 16.

Martin Walker, Mark-Oliver Reiser, Sara Tucci Piergiovanni, Yiannis Pa-
padopoulos, Henrik Lonn, Chokri Mraidha, David Parker, De-Jiu Chen, and
David Servat. Automatic optimisation of system architectures using EAST-
ADL. Journal of Systems and Software, 86(10):2467-2487, 2013. Cited on
page 217.

Nils Weidmann and Stefan Sauer. Applying Bidirectional Transformations
in Industrial Contexts: Challenges and Solutions. In Workshop Software-
Reengineering und -Evolution (WSRE) 2020, Proceedings, 2020. Cited on
page 16.

Nils Weidmann, Shubhangi Salunkhe, Anthony Anjorin, Enes Yigitbas, and
Gregor Engels. Automating Model Transformations for Railway Systems
Engineering. Journal of Object Technology, 20(3):10:1-14, 2021. Cited on
pages 16 and 208.

Bo Wang, Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Wei Zhang, and Hong
Mei. A Dynamic-Priority Based Approach to Fixing Inconsistent Feature
Models. In International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS) 2010, Proceedings, pages 181-195. Springer,
2010. Cited on pages 24 and 33.

Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Song Hui, Hong Mei, Yingfei
Xiong, Haiyan Zhao, Zhenjiang Hu, Masato Takeichi, Song Hui, and Hong
Mei. Beanbag: Operation-based Synchronization with IntraRelations. In
Grace Technical Reports, GRACE-TR-2008-0/. National Institute of Infor-
matics, 2008. Cited on pages 124 and 125.

Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Hui Song, Masato Takeichi, and
Hong Mei. Supporting automatic model inconsistency fixing. In Furopean
Software Engineering Conference and International Symposium on Founda-
tions of Software Engineering (ESEC/FSE) 2009, Proceedings, pages 315
324. ACM, 2009. Cited on pages 23, 25, 28, and 31.

Yingfei Xiong, Hui Song, Zhenjiang Hu, and Masato Takeichi. Supporting
Parallel Updates with Bidirectional Model Transformations. In International
Conference on Model Transformation (ICMT) 2009, Proceedings, pages 213—
228. Springer, 2009. Cited on pages 124 and 125.

Yingfei Xiong, Hui Song, Zhenjiang Hu, and Masato Takeichi. Synchronizing
concurrent model updates based on bidirectional transformation. Software
and System Modeling, 12(1):89-104, 2013. Cited on pages 124 and 126.

Enes Yigitbas, Anthony Anjorin, Erhan Leblebici, and Marvin Grieger. Bidi-
rectional Method Patterns for Language Editor Migration. In Furopean Con-
ference on Modelling Foundations and Applications (ECMFA) 2018, Pro-
ceedings, pages 97-114. Springer, 2018. Cited on page 165.

282

Bibliography

[YGWE21]

[YV00]

[ZAY 119

[ZAYN17]

[ZCM16]

[ZKC16]

[ZRHT20]

Enes Yigitbas, Simon Gorissen, Nils Weidmann, and Gregor Engels. Collab-
orative Software Modeling in Virtual Reality. In International Conference on
Model Driven Engineering Languages and Systems (MODELS) 2021, Pro-
ceedings (to appear). IEEE, 2021. Cited on page 16.

Haifeng Yu and Amin Vahdat. Design and Evaluation of a Continuous Con-
sistency Model for Replicated Services. In Symposium on Operating Sys-
tems Design and Implementation (OSDI) 2000, Proceedings, pages 305-318.
USENIX, 2000. Cited on pages 25 and 31.

Man Zhang, Shaukat Ali, Tao Yue, Roland Norgren, and Oscar Okariz.
Uncertainty-Wise Cyber-Physical System test modeling. Software and Sys-
tems Modeling, 18(2):1379-1418, 2019. Cited on pages 26 and 30.

Man Zhang, Shaukat Ali, Tao Yue, and Roland Norgren. Uncertainty-
wise evolution of test ready models. Information and Software Technology,
87:140-159, 2017. Cited on pages 26 and 30.

Athanasios Zolotas, Robert Clarisd, Nicholas Matragkas, Dimitrios S
Kolovos, and Richard F Paige. Constraint Programming for Type Infer-
ence in Flexible Model-Driven Engineering. Computer Languages, Systems
& Structures, 49, 2016. Cited on pages 23 and 33.

Sergey Zverlov, Maged Khalil, and Mayank Chaudhary. Pareto-efficient de-
ployment synthesis for safety-critical applications in seamless model-based

development. In Furopean Congress on Embedded Real Time Software and
Systems (ERTS) 2016, Proceedings, 2016. Cited on page 218.

Athanasios Zolotas, Horacio Hoyos Rodriguez, Stuart Hutchesson, Beat-
riz Sanchez Pina, Alan Grigg, Mole Li, Dimitrios S Kolovos, and Richard F
Paige. Bridging proprietary modelling and open-source model management
tools: the case of PTC Integrity Modeller and Epsilon. Software and Systems
Modeling, 19(1):17-38, 2020. Cited on pages 205 and 207.

Appendix A
Example TGGs

In this chapter, two further example TGGs are introduced, which were used to evaluate
the hybrid approach. Section A.1 presents the FamiliesToPersons example that was used
for the experimental evaluations of Sect. 5.8 and 6.6. In Sect. A.2, the TGG JavaToDoc
is introduced, which served as an example for the experiments of Sect. 6.6, 7.7, and 8.5.
For both TGGs, metamodels, rules and constraints are presented.

A.1 FamiliesToPersons

In this section, the example TGG FamiliesToPersons is briefly introduced. The used
metamodel and rules follow the FamiliesToPersons benchmark by Allilaire and Jouault?,
extended by minor modifications as in [ABW17]. Graph constraints, which are not part
of the original benchmark, were added to the example in subsequent work [WA21b].

The triple metamodel is depicted in Fig. A.1.2 The Families model represents family
structures with the relations between family members. A FamilyRegister contains a
set of arbitrary many Families, which consists of family members having a role: father,
mother, son or daughter. Families have a family name, and each family member has their
own first name. The Persons model has a PersonRegister containing arbitrary many
Persons which are either Male or Female. Persons have their full name and their
birthday as attributes.

FamilyRegister PersonRegister
FR2PR
families 0.* | persons
0..x v Y
Eamil Person
y name : String
name : String birthday : Date
father
mother | sons| gayughters
0.1 0.5 o.* F2P
0.1 Male Female

FamilyMember

name : String

Figure A.1: FamiliesToPersons: Triple metamodel

thttps://www.eclipse.org/atl/documentation/basicExamples_Patterns/
20f course, these metamodels cannot represent all possible family structures. It was chosen due to its
simplicity while being able to show all relevant concepts and its acceptance as a benchmark example.

https://www.eclipse.org/atl/documentation/basicExamples_Patterns/

284 A.1. FamiliesToPersons

Figure A.2 shows the (abstract) rules of the TGG. The rule FamiliesToPersons creates
a family register fr, a person register pr and links them via a correspondence node. A
new family £ with a first family member fm is added to a family register £r with the rule
FamilyMemberToPerson, while a person p that corresponds to fm is added to the person
register pr. Thereby, p’s name is formed out of the forename of fm and the surname of f.
The rule MemberOfEzistingFamilyToPerson works the same way, but requires an existing
family f as context instead of creating it anew.

FamiliesToPersons
++ ++ ++

fr : FamilyRegister —<FR2PR>— pr : PersonRegister

FamilyMemberToPerson

fr : FamilyRegister —<FR2PR>— pr : PersonRegister

ili ++ ++ | persons
families ¢ -+ -+ i

f : Family p : Person
++

fm : FamilyMember

p.name = concat(f.name, ", ", fm.name)

MemberOfExistingFamilyToPerson

fr : FamilyRegister —<FR2PR>— pr : PersonRegister
families ¢ ++¢persons
++

f : Family p : Person
++

T

fm : FamilyMember p.name = concat(f.name, ", ", fm.name)

Figure A.2: FamiliesToPersons: TGG rules

The FamiliesToPersons example uses the rule refinement feature of TGGs [ASLS14].
Rules with abstract types (e.g., Person in the target model) can be refined with concrete
types to avoid multiple definitions of structurally equivalent rules. The two abstract rules
of Fig. A.2 are refined to concrete rules as stated in Tab. A.1. The rule MotherToFemale,
e. g., refines FamilyMemberToPerson with a mother edge pointing from the family f to
the family member fm, and a corresponding female person p is added to the target model.
Its version without creating a new family f refines the rule MemberOfExistingFamilyTo-
Person, respectively.

To evaluate the effects of integrating graph constraints on the scalability of the hybrid
approach (cf. Chap. B), the example was enriched with two negative constraints and
one implication constraint as shown in Fig. A.3. The negative constraints NoTwoFathers
and NoTwoMothers forbid the existence of two family members with the roles father and
mother, respectively. These constraints guarantee that the upper bounds of the respective
associations in the source metamodel (cf. Fig. A.1) are respected.

A. Example TGGs

285

FamiliesToPersons Family — Person
FamilyMember
MotherToFemale mother Female
MotherOfExistingFamilyToFemale mother Female
FatherToMale father Male
FatherOfExistingFamilyToMale father Male
DaughterToFemale daughters Female
DaughterOfExistingFamily ToFemale daughters Female
SonToMale sons Male
SonOfExistingFamilyToMale sons Male
Table A.1: FamiliesToPersons: Rule refinement
NoTwoFathers NoTwoMothers
Forbid Forbid
fr : FamilyRegister fr : FamilyRegister
lfamilies lfamilies
f : Family f : Family
father father mother mother

f1 : FamilyMember

m1 : FamilyMember

f2 : FamilyMember

m2 : FamilyMember

Premise persons

pr : PersonRegister =<

persons

\

BothMaleAndFemale

Conclusion

f: Female

—>

~—>

m : Male

Figure A.3: FamiliesToPersons: Graph constraints

286 A.2. JavaToDoc

A.2 JavaToDoc

The second TGGs formalises a consistency relation between (simplified) abstract syntax
trees describing Java code (source model) and its documentation (target model). The
metamodels and rules of JavaToDoc originate from prior work by Fritsche et al. [FKM™20]
as well as Weidmann et al. [WFA20], graph constraints were added subsequently [WA21b].

The triple metamodel is depicted in Fig. A.4. As the root of the Java metamodel,
Classes can form an inheritance hierarchy. Each class can have arbitrarily many Methods
and Fields, and each Method can have a set of Parameters. The documentation
metamodel, in contrast, consists of Documents that can reference each other via hyper-
references. A document is structured as a set of Entries. To provide an overview
of important terms, a Glossary is contained in the documentation model. It consists
of GlossaryEntries, which are referred to from documentation entries. The corre-
spondence model is structured as follows: Classes are associated with documents, while
methods, their parameters, and fields are represented as entries in the respective docu-
ment. The glossary and its entries do not have a corresponding structural element in the
source model, therefore they are not linked to a node of the correspondence model.

hrefs
subtypes
Doc
Class
. ¢2D name : String
name : String version : int
m(e):trlods fields 0..* | entries
N \ 4
Method M2E Entry
name : String \ . name : String
. 0.* gEntries
para- Field \ 2
meters F2E
name : String GlossarEntry
S Y)
Parameter 0.*| gEntries
P2E
name : String Glossar

Figure A.4: JavaToDoc: Triple metamodels

The rules ClassToDoc and AddGlossary are the axioms of the JavaToDoc TGG. While
the latter only creates a glossary g in the target model, the former creates a class ¢ and
a document d that correspond to each other. The rule SubClassToDoc adds a subclass
sc to an existing class ¢ and links it to a document sd that is referenced from the
document d corresponding to c. The creation of the rule together with the inheritance
links ensures that no multiple inheritance relations can be created as Java does not support
them. Methods (m) and fields (£) are added to a class ¢ by the rules Method ToEntry and
FieldToEntry, respectively, while corresponding entries (e) are added to the document d
which belongs to c. AddParameter creates a new parameter p for a method m, whereby the
correct entry e in the documentation model is identified by the existing correspondence link
between m and e. Affecting only the documentation model, the rules AddGlossaryEntry

A. Example TGGs 287

and LinkGlossaryEntry add entries (ge) to a glossary g and link them to a document
entry e, respectively.

ClassToDoc AddGlossary
++ ++ ++

c:Class d: Doc

++
c.name = d.name
g : Glossary
SubClassToDoc
c : Class < :C2D) d: Doc
subtypes | *+* ++
ubtyps ¢ . . . ¢ hrefs
LinkGlossaryEnt
sc: Class sd : Doc vERY

sc.name = sd.name

MethodToEntry
e: Ent
c: Class / CZD\ d: Doc v
N/ ,
- gEntries
methods ¢++ ++¢ entries ++
++ ++ ++ \ 4
m : Method —< F2E>— e: Entry ge : GlossaryEntry

m.name = e.name

FieldToEntry
. . cond :
c: Class $ CZD/ d: Doc AddGlossaryEntry
fields ¢++ ++ ¢ entries
++ ++ ++
f: Field —< F2E>— e : Entry

g : Glossary

f.name = e.name

AddParameter QEntrieSl e

m : Method / M2E\ e: Ent
NME ke

ge : GlossaryEntry

parameters¢ ++
++ ++
p : Parameter —<; P2E

Figure A.5: JavaToDoc: TGG rules

Via two negative constraints and two implication constraints (Fig. A.6), we restrict the
set of consistent triples for the JavaToDoc TGG. We forbid that there are two or more
glossaries (g1, g2) in the documentation model with the constraint NoTwoGlossaries.
Creating multiple links from an entry e to a glossary entry ge is forbidden by the constraint
NoDoubleLink.

In the Java model, we enforce every class ¢ to be non-empty. To specify this, we use
an implication constraint expressing that each class ¢ (premise) must be connected to
either a method m (Conclusion 1) or a field £ (Conclusion 2), forming the constraint
NoEmptyClass.

288 A.2. JavaToDoc

Implication constraints can also be more complex and affect multiple models. With a
fourth constraint SameNameSameGlossaryEntry, we ensure that methods m1 and m2 of
the same class ¢ with the same name (overloaded methods), correspond to entries el and
e2 in the documentation model that point to a common glossary entry ge.

NoTwoGlossaries NoDoubleLink

Forbid Forbid

e : Ent
g1 : Glossary v
gEntries/\ gEntries
2:Gl
g ossary ge : GlossaryEntry
NoEmptyClass
Conclusion 1
Premise methods |__—»| m:Method
c:Class =]
\ Conclusion 2
methods > f:Field
SameNameSameGlossaryEntry
Premise
c: Class \/> d: Doc
methods entries
methods entries
m1 : Method \ Q e1: Entry
m2 : Method O \ e2: Entry
gEntries
m1.name = m2.name gEntries
\
\ ¢Conclusion
ge : GlossaryEntry

Figure A.6: JavaToDoc: Graph constraints

Appendix B

Runtime Measurements

As an extension of the evaluation results described in Sect. 6.6, this chapter presents the
detailed runtime measurements for the example TGGs FamiliesToPersons (Sect. A.1) and
JavaToDoc (Sect. A.2) in settings with and without graph constraints. In Fig. B.1 - B.24,
the detailed performance measurements for the different operations, TGGs, and constraint

types are presented.

In contrast to the plots of Sect. 6.6, distinct time measurements for the phases “ILP
Generation”, “Pattern Matching”, “Rule Application”, and “ILP Solving” of the hybrid
consistency management work-flow are shown. In the following, FamiliesToPersons is
abbreviated with F2P, while J2D stands for JavaToDoc.

B ILP Construction M Pattern Matching B Rule Application

M ILP Solving
5 o=
1 - .: ----------- u
0,5 Y Jolae
- o1 W g e i u
= 1 === —_—
0,05 |
e -
0,01
0005 = — o — T
1000 5000 10000

[#nodes + #edges]

Figure B.1: F2P: CO without constraints

B ILP Construction M Pattern Matching B Rule Application

B ILP Solving
5)
-
- - -
1 o -
. W a x.ﬁ. ™1
| SR ’- .;‘ =t

2 0,1 R o

0,05 1

P -~
005 = A
0,005 = . -
1000 5000 10000

[#nodes + #edges]

Figure B.3: F2P: CO with negative con-
straints

W ILP Construction M Pattern Matching B Rule Application

M ILP Solving
r'“
-
et
05 l,-r--’----"'
,-;“;
e
- -
B =]
005 W ET =
= - —
-
—a—
0005 g _
1000 5000 10000

[#nodes + #edges]

Figure B.2: J2D: CO without constraints

W ILP Construction M Pattern Matching B Rule Application

M ILP Solving
Lo
R |
IO
05 ,-~;"I" -
T
e
0.05 I- ‘_":""."J — —
s [=——— - —
- — —u
-
A
0005 _
1000 5000 10000

[#nodes + #edges]

Figure B.4: J2D: CO with negative con-
straints

290

B ILP Construction M Pattern Matching B Rule Application

W ILP Solving
5 _—m
- A -
_omT mee ™
N Y it B
| 3 —-.__..,—..:.T..T._‘,I’. 3
&) =
—
-
0,05 —
— - —
0,005 f
1000 5000 10000

[#nodes + #edges]

Figure B.5: F2P: CO with implications con-

straints
M ILP Construction M Pattern Matching M Rule Application
M ILP Solving
1000 e -
.
100
10wttt L
= 1 =
01 =7
0,01 —a
—_ =T
0,001 —
1000 5000 10000
[#nodes + #edges]

Figure B.7: F2P: CC without constraints

B ILP Construction M Pattern Matching B Rule Application

M ILP Solving
1000 e -
b
100 T
10 gt [3
z 1 =

01 E=75

0,01 _ -
- — —
1000 5000 10000
[#nodes + #edges]

Figure B.9: F2P: CC with negative con-
straints

W ILP Construction M Pattern Matching M Rule Application

B ILP Solving
1000 [
100
—_— et .“
& 10 -m
1 ===
1000 5000 10000
[#nodes + #edges]

Figure B.11: F2P: CC with implications
constraints

B ILP Construction M Pattern Matching B Rule Application

M ILP Solving
1000 ——m
N
100 P
_-
10 _n
_-
— 1 _
= ---" . [TP [T u
0,1 Wervrveeer [| Eide
- Ep——— |
0,01 —a—— —=
- — -
1000 5000 10000
[#nodes + #edges]

Figure B.6: J2D: CO with implications con-
straints

M |LP Construction

W Pattern Matching
M ILP Solving

B Rule Application

5000 10000

[#nodes + #edges]

Figure B.8: J2D: CC without constraints

B ILP Construction M Pattern Matching B Rule Application

M ILP Solving
10
1
2 o1
0,01
——a— —
0,001 =— — = —
1000 5000 10000

[#nodes + #edges]

Figure B.10: J2D: CC with negative con-
straints

M ILP Construction M Pattern Matching

M ILP Solving

M Rule Application

500

———
> 2

5000

1000 10000

[#nodes + #edges]

Figure B.12: J2D: CC with implications
constraints

B. Runtime Measurements

291

M ILP Construction

B Pattern Matching
M ILP Solving

B Rule Application

0,1
z _ "

0,01 —a

_a—— T
_ -
0,001 =— — =
1000 5000 10000

[#nodes + #edges]

Figure B.13: F2P: FWD_OPT without con-
straints

W ILP Construction

B Pattern Matching
B [LP Solving

B Rule Application

0,01 —
"
— -
0,001 =— — =
1000 5000 10000
[#nodes + #edges]

Figure B.15: F2P: FWD_OPT with negative
constraints

M ILP Construction M Pattern Matching

M ILP Solving

W Rule Application

[s]

5000 10000

[#nodes + #edges]

Figure B.17: F2P: FWD_OPT with implica-
tions constraints

B [LP Construction M Pattern Matching

B ILP Solving

B Rule Application

5000 10000

[#nodes + #edges]

Figure B.19: F2P: BWD_OPT without con-
straints

M ILP Construction

W Pattern Matching
M ILP Solving

B Rule Application

5000 10000

[#nodes + #edges]

Figure B.14: J2D: FWD_OPT without con-
straints

B ILP Construction M Pattern Matching

M ILP Solving

B Rule Application

5000 10000

[#nodes + #edges]

Figure B.16: J2D: FWD_OPT with negative
constraints

M ILP Construction M Pattern Matching

B ILP Solving

B Rule Application

5000 10000

[#nodes + #edges]

Figure B.18: J2D: FWD_OPT with implica-

tions constraints

M ILP Construction M Pattern Matching

M ILP Solving

B Rule Application

5000

10000

[#nodes + #edges]

Figure B.20: J2D: BWD_OPT without con-
straints

292

M ILP Construction M Pattern Matching M Rule Application M ILP Construction M Pattern Matching M Rule Application
W ILP Solving B ILP Solving

1000 5000 10000 1000 5000 10000

[#nodes + #edges] [#nodes + #edges]

Figure B.21: F2P: BWD_OPT with nega- Figure B.22: J2D: BWD_OPT with negative

tive constraints constraints
B ILP Construction M Pattern Matching B Rule Application M ILP Construction M Pattern Matching M Rule Application
M ILP Solving M ILP Solving
1000 -
500 Pag m
Jats
100 ,.ﬁ".
50 At

)

1000 5000 10000 1000 5000 10000

[#nodes + #edges] [#nodes + #edges]

Figure B.23: F2P: BWD_OPT with implica- Figure B.24: J2D: BWD_OPT with implica-
tions constraints tions constraints

	Table of Contents
	Foundations and Related Work
	Introduction and Motivation
	Motivation and Problem Statement
	Stakeholders and Requirements
	Solution Overview and Contribution
	Publication Overview

	State of the Art: Fault-Tolerance in MDE
	Motivation
	Related Literature Reviews and Mapping Studies
	Survey Procedure
	Scope and Classification
	Use Cases and Application Domains
	Benefits and Challenges
	Result Analysis
	Solution Approach
	Summary and Discussion

	Modelling Software Systems: Languages and Transformations
	SysML: A Semi-Formal Language
	Event-B: A Formal Language
	Bidirectional Model Transformations with TGGs
	Summary and Discussion

	A Feature-Based Classification of Triple Graph Grammar Variants
	Existing Work on TGG Language Features
	Feature Model and Expressiveness
	Basic Rules
	Attribute Conditions
	Application Conditions
	Multi-Amalgamation
	Completed Running Example
	Summary and Discussion

	Conceptual Solution
	Fault-Tolerant Model Transformation and Consistency Checking
	Motivation
	Related Work
	Solution Overview
	Operationalisation
	Rule Pattern Matching
	ILP Construction
	Optimisation and Filter
	Evaluation
	Summary and Discussion

	Integrating Domain Constraint into the Fault-Tolerant Framework
	Motivation
	Related Work
	Solution Overview
	Integrating Graph Constraints
	Correctness and Completeness
	Evaluation
	Summary and Discussion

	A Fault-Tolerant Approach to Concurrent Model Synchronisation
	Motivation
	Related Work
	Solution Overview
	Operational Rules
	Rating of Rule Applications
	Constructing the Optimisation Problem
	Evaluation
	Summary and Discussion

	Concurrent Model Synchronisation with Multiple Objectives
	Motivation
	Related Work
	Solution Overview
	Adaptation of Meta-Heuristics
	Evaluation
	Summary and Discussion
	Wrap-up of the Hybrid Approach

	Tools and Applications
	The eMoflon Tool Suite
	Introduction and a Brief History
	Related MDE Tools
	Graph Transformation with IBeX-GT
	Bidirectional Model Transformation with IBeX-TGG
	Consistency and Model Management with Neo
	Scalability Analysis
	Teaching MDE with eMoflon
	Summary and Discussion

	The VICToRy Debugger
	Introduction and Motivation
	Related MDE Debuggers
	Architecture
	Breakpoint Concept
	An Overview of the User Interface
	Concurrent Synchronisation Component
	Evaluation
	Summary and Discussion

	Automating Model Transformations for Railway Systems Engineering
	Industrial Context and Motivation
	Related Work
	Motivating Example
	Implementation
	Evaluation
	Summary and Discussion

	Automating Test Schedule Generation with Domain-Specific Languages
	Industrial Context and Motivation
	Approaches to Test Scheduling
	Related Work
	Test Schedule Optimisation via Correspondence Creation
	Domain Analysis via Metamodelling
	Defining Test Schedule Validity via a TGG
	Configuration via a Domain-Specific Language
	Applied Techniques to Improve Scalability
	Evaluation
	Summary and Discussion

	Conclusion and Future Work
	Requirements Revisited
	Future Work

	Bibliography
	Example TGGs
	FamiliesToPersons
	JavaToDoc

	Runtime Measurements

