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Abstract

Multiobjective optimization is concerned with the simultaneous optimization of mul-
tiple scalar-valued functions. In this case, a point is optimal if there is no other point
that is at least as good in all objectives and better in at least one objective. A nec-
essary condition for optimality can be derived based on first-order information of
the objectives. The set of points that satisfy this necessary condition is called the
Pareto critical set. This thesis presents new results about Pareto critical sets for
smooth and nonsmooth multiobjective optimization problems, both in terms of their
efficient computation and structural properties.

We begin by deriving new continuation methods for smooth objective functions
based on coverings with hypercubes. For the case where the (exact) gradients of
the objectives are available, we propose a method that computes a covering of the
Pareto critical set based on its smoothness properties and then extend it to the case
of constrained problems. For the case where only inexact gradients are available
together with upper bounds for the error, we derive a tight superset of the Pareto
critical set and then show how the superset can be approximated numerically. Af-
terwards, we consider the solution of multiobjective optimization problems where
the objectives are merely locally Lipschitz continuous, i.e., potentially nonsmooth.
Here, we propose a new descent method and show its convergence to Pareto critical
points. A comparison to the proximal bundle method, which is currently regarded
as the most efficient solution method for nonsmooth problems, suggests that the
performance of our method is competitive.

After discussing the computation of Pareto critical sets, we shift our view to
their analytical structure. For a certain class of well-behaved objective functions, it
is well-known that the Pareto critical set is diffeomorphic to the standard simplex.
In this case, the boundary of the Pareto critical set consists of points which are
also Pareto critical for subproblems in which only a subset of the set of objectives
is considered. We show that this result about the boundary can be generalized to a
more general class of objective functions. Furthermore, we present first results about
the extension to the case of constrained problems and nonsmooth problems. Finally,
we use the structural results about Pareto critical sets to solve inverse multiobjective
optimization problems, where a data set is given and a set of objective functions is
sought for which the data points are Pareto critical.
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Zusammenfassung

Mehrzieloptimierung behandelt Probleme, bei denen mehrere skalare Zielfunktionen
simultan optimiert werden sollen. Ein Punkt ist in diesem Fall optimal, wenn es
keinen anderen Punkt gibt, der mindestens genauso gut ist in allen Zielfunktionen
und besser in mindestens einer Zielfunktion. Ein notwendiges Optimalitätskriterium
lässt sich über Ableitungsinformationen erster Ordnung der Zielfunktionen her-
leiten. Die Menge der Punkte, die dieses notwendige Kriterium erfüllen, wird als
Pareto-kritische Menge bezeichnet. Diese Arbeit enthält neue Resultate über Pareto-
kritische Mengen für glatte und nicht-glatte Mehrzieloptimierungsprobleme, sowohl
was deren Berechnung betrifft als auch deren Struktur.

Es werden zunächst neue Fortsetzungsverfahren hergeleitet für glatte Zielfunktio-
nen, die auf Überdeckungen durch Hyperwürfel basieren. Für den Fall, dass (exakte)
Gradienten verfügbar sind, wird eine Methode vorgestellt, die eine Überdeckung
der Pareto-kritischen Menge basierend auf deren Glattheitseigenschaften berechnet.
Danach wird diese Methode auf beschränkte Probleme erweitert. Für den Fall,
dass nur inexakte Gradienten verfügbar sind, zusammen mit oberen Schranken für
den Fehler, wird zunächst eine Obermenge der Pareto-kritischen Menge hergeleitet.
Anschließend wird gezeigt, wie sich diese Menge numerisch berechnen lässt. Nach
dem glatten Fall werden Mehrzieloptimierungsprobleme betrachtet, bei denen die
Zielfunktionen lediglich lokale Lipschitz-stetig sind, also potenziell nicht-glatt. Für
deren Lösung wird ein neues Abstiegsverfahren vorgestellt, für das Konvergenz
gegen Pareto-kritische Punkte gezeigt wird. Ein Vergleich mit der Proximal Bundle
Method, die momentan als effizienteste Lösungsmethode für nicht-glatte Probleme
gilt, zeigt, dass unsere Methode konkurrenzfähig ist bezüglich ihrer Effizienz.

Nach der Berechnung Pareto-kritischer Mengen wird deren analytische Struktur
behandelt. Für eine bestimmte Klasse gutartiger Zielfunktionen ist bekannt, dass
die Pareto-kritische Menge diffeomorph zum Standardsimplex ist. In diesem Fall
besteht der Rand der Pareto-kritischen Menge aus Punkten, die auch Pareto-kritisch
sind für Subprobleme, bei denen nur ein Teil der Zielfunktionen betrachtet wird. In
dieser Arbeit wird gezeigt, dass sich dieses Resultat über die Struktur des Randes auf
eine allgemeinere Klasse von Zielfunktionen erweitern lässt. Darüber hinaus werden
erste Resultate zur Erweiterung auf den beschränkten Fall und den nicht-glatten Fall
präsentiert. Schlussendlich werden die Resultate zur Struktur von Pareto-kritischen
Mengen dazu genutzt, inverse Mehrzieloptimierungsprobleme zu lösen. Hier geht es
darum Zielfunktionen zu finden, für die alle Punkte einer gegebenen Datenmenge
Pareto-kritisch sind.
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1 Introduction

Humans have an inherent drive for doing things in the optimal way. In a race, the
person with the lowest time from start to finish wins and on the market, the company
that can produce at the lowest cost can offer the lowest price. If the quantity to be
optimized, i.e., the time or the price in the previous examples, can be modeled via a
scalar function f : X → R on some set X, then an optimal solution is a point x∗ in
X such that there is no other point in X with a smaller function value than f(x∗).
While many real-world problems fit into this framework, there are also problems
where a single scalar function is not sufficient to model all relevant quantities. For
instance, in the economic example from above, the price might not be the only factor
that determines whether a product sells or not. An additional factor could be the
quality of the product. Since the cheapest version of the product will (in most cases)
not be of the highest quality, these two objectives contradict each other and cannot
be modeled with a single scalar objective.

Instead, multiple objectives fi : X → R, i ∈ {1, . . . , k}, have to optimized at
the same time or, in other words, an objective vector f = (fi)i∈{1,...,k} : X → Rk

has to be optimized. As in the scalar case, a point x∗ in X is said to be optimal
if there is no other point with a smaller function value than f(x∗). In this case,
this means that there is no point in X that is at least as good as x∗ in all objective
functions, but strictly better than x∗ in at least one objective function. One of the
first to introduce this concept of optimality was Vilfredo Pareto in [Par06] (1906),
which is why in the presence of multiple objectives, optimal points are called Pareto
optimal. Unlike optimality in the scalar case, Pareto optimality of x∗ does not imply
that f(x∗) is less or equal to all other function values of f , as there can be points
that are superior in one objective function but inferior in another. Thus, there are
generally multiple Pareto optimal points and the set of all these points is called the
Pareto set. Its image under f is the so-called Pareto front, which corresponds to
the optimal value in the scalar case. The task of finding the Pareto set is called a
multiobjective optimization problem (MOP), simply denoted by

min
x∈X

f(x).

There is a wide range of different real-world applications for multiobjective opti-
mization across many different areas. In [Oba+00], it is used for the optimization of
the aerodynamic design of a wing for supersonic transport. Here, the objectives are
the drag during supersonic cruise, the drag during transonic cruise and the bending
moment at the wing root during supersonic cruise, which should all be minimized.
In [LSB03], it is used for the planning of radiotherapy treatment for cancer patients.
The goals here are to apply a sufficient amount of radiation to kill as many cancer-
ous cells as possible, while minimizing the impact non-cancerous cells. In [Naj+14],
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it is used for optimizing the design parameters of a gas turbine, where the goals
are the maximization of the efficiency and the minimization of the costs. Finally,
in [Del+09; Sch+09], it is used for finding optimal trajectories for orbital and in-
terplanetary transfers. The objectives are to minimize both fuel consumption and
flight time.

When it comes to the practical solution of multiobjective optimization problems,
there are different philosophies that lead to different solution approaches:

• Scalarization methods: The solution of scalar optimization problems is
well understood and there are many different solvers for different classes of
objective functions. Thus, if the multiobjective problem is transformed into
a scalar problem, then existing methods can be used for its solution. The
most popular method in this class is the weighting method [Mie98], where
each objective function is assigned a non-negative weight and the sum of the
weighted objectives is minimized. By varying the weights, different Pareto
optimal points can be computed.

• Generalizations of methods from scalar optimization: Since scalar op-
timization is a special case of multiobjective optimization, some methods from
the scalar case can be generalized to the multiobjective case. For example,
descent methods can be generalized by assuring descent for all objectives at
the same time, as was done in [FS00] for the steepest descent method and in
[FDS09] for Newton’s method.

• Set-based methods: Since the solution of an MOP is a set, set-based meth-
ods were introduced that aim at computing the entire Pareto set instead of
just single optimal points. Examples here are the subdivision method [DSH05]
and the branch-and-bound method [NE19], which compute a covering of the
Pareto set via boxes, and continuation methods [Hil01; SDD05; MS17], which
produce an even pointwise discretization of the Pareto set.

• Evolutionary methods: As evolutionary computation is generally based on
maintaining a set (or “population”) of candidate solutions, it can be applied to
multiobjective problems by interpreting the population as an approximation of
the Pareto set. The approximation is iteratively improved by using stochastic
operators that modify and then select points from the population. A popular
method from this class is NSGA-II [Deb+02].

• Interactive methods: Although the solution of a multiobjective problem is
a set, there are practical applications where ultimately only a single Pareto
optimal point is needed. While it would be possible to first compute the whole
Pareto set and then let a human decision maker select one point from it, it
can be more efficient to only compute Pareto points that are desirable for
the decision maker. To this end, methods were proposed that can be steered
interactively during the solution process based on preference. For example,
in [Sch+19], continuation-like procedures were proposed that can explore the
Pareto set based on a direction specified by the user. For a general survey of
interactive methods, see [Bra+08].
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Chapter 1. Introduction

Due to these different approaches for solving multiobjective optimization problems,
there is a vast amount of different solution methods in addition to the ones mentioned
above. (Furthermore, the classes above are not mutually exclusive.)

In practice, the definition of Pareto optimality cannot directly be used to verify
whether a given point is Pareto optimal, as it relies on global information of the
objective functions. Fortunately, it is possible to derive a necessary optimality con-
dition that is easier to work with. In the scalar case, a necessary condition for a
point x ∈ X to be optimal is the nonexistence of a direction in which f descends.
In the multiobjective case, this condition naturally generalizes to the nonexistence
of a direction in which all objectives fi descend simultaneously. If X = Rn and
all objectives are differentiable, then a basic result from convex analysis shows that
this condition is equivalent to the existence of a convex combination of the gradients
∇fi(x), i ∈ {1, . . . , k}, which is zero. (In the scalar case, this reduces to the classical
condition of ∇f(x) being zero.) Points that satisfy this condition are called Pareto
critical and the set of all those points is the Pareto critical set. By construction, the
Pareto critical set is a superset of the actual Pareto set that only relies on first-order
information of the objective functions. If all objective functions are convex, then
it coincides with the Pareto set. This optimality condition was originally published
by Kuhn and Tucker in [KT51] and is also referred to as the Karush-Kuhn-Tucker
(KKT) condition. (See [Kuh82] for a discussion of the history of necessary optimality
conditions.) The Pareto critical set was first defined by Smale in [Sma73].

Since the solution of a multiobjective optimization problem is a set, theoretical
results about topological and geometrical properties of the Pareto set are crucial
for its efficient approximation. The Pareto set itself is difficult to analyze, as its
definition is purely based on the order relation on the image space. In contrast, the
Pareto critical set only relies on local information and can thus be analyzed easier.
The first result about its structure was already given by Smale in [Sma73], where he
proposed (without proof) that under certain assumptions, the Pareto critical set is
a stratification. Roughly speaking, this means that it is a manifold with boundaries
and corners. Furthermore, he proposed that under stronger assumptions, the Pareto
critical set is homeomorphic to a closed (k−1)-simplex. In this case, each facet of the
simplex corresponds to the Pareto critical set of a subset of the objective functions.
Smales work relies on transversality and stratification theory. An arguably simpler
result was given by Hillermeier in [Hil01], where he showed that under a regularity
assumption concerning the Hessians of the objectives, part of the Pareto critical set
is the projection of a (k− 1)-dimensional manifold from a higher dimensional space
onto the variable space Rn. So although the Pareto critical set is not a smooth
manifold, it still has certain smoothness properties.

The characterization of the Pareto critical set given above via the existence of
vanishing convex combinations of gradients requires differentiability of the objective
functions. However, there are various practical applications where nondifferentiable
(or nonsmooth) objective functions occur. For example, in the area of image pro-
cessing, the total variation is a nonsmooth expression that is used as a regularization
term for image denoising [Cha04], resulting in a nonsmooth objective function. From
a mathematical point of view, many of the nonsmooth objective functions that occur
in practice fall into the class of locally Lipschitz continuous functions. For example,
all piecewise differentiable functions are locally Lipschitz [Sch12]. Since gradients
cannot be used to describe the local behavior of these functions, solution methods
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for smooth problems generally fail to work in the nonsmooth case [Lem89].

For multiobjective optimization problems with locally Lipschitz functions, Pareto
criticality can be generalized via the Clarke subdifferentials ∂fi(x), i ∈ {1, . . . , k}, of
the objective functions [Cla90]. These are sets that act as generalizations of gradients
to the nonsmooth case. A necessary condition for x ∈ Rn to be Pareto optimal is
that zero is contained in the convex hull of the union of the Clarke subdifferentials of
the objective functions in x [MEK14]. Since the Clarke subdifferentials reduce to the
classical gradients if the objectives are continuously differentiable, this condition is
a generalization of Pareto criticality to the locally Lipschitz case. In general, Clarke
subdifferentials are more difficult to compute than gradients, so computing Pareto
critical sets for nonsmooth problems is generally more complicated than for smooth
problems. On top of that, the nonsmoothness of the objective functions causes the
Pareto critical set to have a nonsmooth structure, such that “kinks” may occur. In
particular, the structural results for the smooth case discussed earlier do not apply.

As the above considerations demonstrate, working with Pareto critical sets is
a diverse task, as it combines optimization, differential geometry, convex analysis
and, in the nonsmooth case, nonsmooth analysis. To contribute to this aspect of
multiobjective optimization, the goal of this thesis is the study of the Pareto critical
set in the smooth and nonsmooth case, both in terms of its efficient computation
and the analysis of its structure. We will begin by proposing novel methods for com-
puting Pareto critical sets of smooth and nonsmooth problems. Afterwards, we will
analyze the structure of the Pareto critical set, where we focus on the relationship
between the Pareto critical set of the original problem and the Pareto critical sets
of subproblems where only subsets of the objectives are considered. Finally, these
structural results will allow us to consider the inverse problem of multiobjective op-
timization, where a data set is given and the goal is to find an objective vector for
which the data points are Pareto critical. The structure of this thesis is as follows.

Chapter 2 introduces the basics of multiobjective optimization. We first dis-
cuss the concept of optimality in the presence of multiple objectives before deriving
the optimality conditions for both smooth and nonsmooth problems. In the nons-
mooth case, this also requires basic definitions from the area of nonsmooth analysis.
Afterwards, we discuss existing solution methods for multiobjective optimization
problems, with an emphasis on methods that are relevant for the results in this
thesis.

In Chapter 3, we propose continuation methods for smooth problems that com-
pute a covering of the Pareto critical set via hypercubes (or boxes). We first consider
the case where exact gradients are available in Section 3.1, where we derive a method
that is related to the continuation method from [SDD05]. Based on a partition of
the variable space Rn into (small) boxes, the goal is to find all boxes that have a
nonempty intersection with the Pareto critical set. Due to the smoothness proper-
ties of the Pareto critical set discussed earlier, it is possible to compute its tangent
vectors. Given a box B that contains Pareto critical points, this allows us to find all
neighboring boxes of B that (potentially) contain Pareto critical points by checking
if their intersection with the span of the tangent vectors is empty. We first consider
the unconstrained case and then propose an extension that is able to handle equality
and inequality constrained multiobjective optimization problems. In Section 3.2, we
assume that the objective functions are smooth but we only have inexact approxi-
mations of their gradients. This setting occurs in practice when the objectives are
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Chapter 1. Introduction

computationally expensive to evaluate and are therefore replaced by cheaper surro-
gate models. Based on upper bounds for the inexactness, we derive a tight superset
of the Pareto critical set that only requires evaluation of the inexact gradients. Since
this superset is not a null set, we propose a continuation method for its boundary
to efficiently compute it.

Chapter 4 is concerned with the solution of multiobjective optimization prob-
lems with locally Lipschitz objective functions. For smooth objectives, Fliege and
Svaiter proposed a descent method in [FS00] that produces a sequence with Pareto
critical accumulation points. The goal of this chapter is to generalize this method to
the nonsmooth case. To this end, we require a way to compute descent directions.
In [AGG15], it was shown that a descent direction can be obtained as the element
with the smallest norm in the negative convex hull of the Clarke subdifferentials of
the objective functions. Unfortunately, there are two reasons why this result cannot
directly be used in practice. The first reason is that the descent direction relies on
knowing the full Clarke subdifferentials, which are generally not available in prac-
tice. The second reason is the fact that the Clarke subdifferentials only contain
information about the nonsmoothness of the objective functions if we are exactly
in a nonsmooth point. Due to Rademacher’s theorem [EG15], the set of nonsmooth
points is a null set, so in practice we cannot assure that we actually encounter points
from it. To solve these issues, we replace the Clarke subdifferential by the so-called
(Goldstein) ε-subdifferential [Gol77], which makes it easier to detect and handle
nonsmoothness. Afterwards, we discuss how ε-subdifferentials can be approximated
efficiently by the convex hull of a finite number of subgradients. Combining the re-
sulting descent direction with an Armijo-like step length results in a descent method
that produces sequences with Pareto critical accumulation points. To evaluate the
performance of the descent method, we compare it to the multiobjective proximal
bundle method [MKW14] using a set of test problems. The results suggest that
our method is superior in terms of subgradient evaluations, but inferior in terms of
function evaluations. Finally, we combine the descent method with the subdivision
algorithm (as in [DSH05]) to compute entire Pareto (critical) sets of locally Lipschitz
problems.

For Chapter 5, we shift our view from the computation to the analysis of the
structure of Pareto critical sets. In [Sma73; LP14; Pei17], it was shown that if k ≤ n,
the objectives f1, . . . , fk are convex and a certain rank assumption holds, then the
Pareto critical set is diffeomorphic to a (k−1)-simplex. In this case, each facet of the
Pareto critical set corresponds to the Pareto critical set of a subset of the objectives
of size k− 1. The goal of this chapter is to generalize this result about the structure
of the boundary of the Pareto critical set to nonconvex problems with an arbitrary
number of objectives. In Section 5.1, we analyze the topological and geometrical
properties of the Pareto critical set. We begin by classifying Pareto critical points
with respect to zero entries in their KKT vectors, which are the coefficient vectors of
the vanishing convex combinations of the gradients in the KKT condition. Since the
natural topology on Rn cannot be used to describe the boundary, we then consider
a definition of the boundary of the Pareto critical set based on tangent cones. The
main result in this section is that under a regularity assumption concerning the
weighted Hessians of the objective functions, the boundary consists of points that
are also Pareto critical for a (proper) subset of the objectives. In Section 5.2, we
derive the smallest size of subproblems required to still obtain a covering of the
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boundary via Pareto critical sets of subproblems, which turns out to be related
to the rank of the Jacobian of the objective vector. After applying our results
to some examples in Section 5.3, we consider further generalizations. In Section
5.4, we consider equality and inequality constrained problems and argue how our
results can be generalized by interpreting the constraints as additional objective
functions. Finally, Section 5.5 is concerned with the structure of Pareto critical sets
in the nonsmooth (i.e., locally Lipschitz) case. Although many of the tools from the
smooth case cannot be applied here, it is still possible to show some basic results
using tools from convex analysis.

The results from Chapter 5 and the existing results about the structure of Pareto
critical sets create an intuition for whether a given subset of Rn can be expressed as
the Pareto critical set of some (smooth) objective vector. This leads to the problem
of inverse multiobjective optimization in Chapter 6, where the goal is to find an
objective vector for which a given data set is Pareto critical. We begin this chapter by
discussing which data is required to obtain an inverse problem with useful solutions.
It turns out that we have to assume that not only the Pareto critical points in Rn,
but also the corresponding KKT vectors are given. In Section 6.1, we show that by
using the span of a finite number of basis functions as the search space, the inverse
problem can be formulated as a system of equations that is linear in the coefficients
of the basis functions. This allows us to efficiently solve the inverse problem with
a simple algorithm that is based on a singular value decomposition. In particular,
the smallest singular value of the matrix of the system is a measure for how well the
data set can be expressed as a Pareto critical set of objective functions in the span
of the basis functions. In Section 6.2, we present three applications of our results.
These are the generation of test problems, the estimation of objective vectors in
stochastic multiobjective optimization and the generation of surrogate models for
(potentially expensive) objective vectors. Finally, we discuss open problems of this
inverse approach in Section 6.3.

The main contributions of this thesis can be summarized as follows:

• New results about the hierarchical structure of Pareto critical sets are obtained
for the general nonconvex case, which generalize some of the results from
[Sma73; LP14; Pei17]. In particular, the constrained case and the nonsmooth
case are considered, which, to the best of the authors’ knowledge, have not
been addressed before.

• A new descent method is proposed for nonsmooth multiobjective optimization
problems. To the best of the authors’ knowledge, this is the first (determinis-
tic) method that generalizes the descent method from [FS00] to the nonsmooth
case. Our test results suggest that its performance is competitive to the bundle
method from [MKW14], which currently seems to be the most efficient solu-
tion method for nonsmooth problems. (In addition, our method is arguably
easier to implement in practice.)

• A new framework is proposed for the solution of inverse multiobjective opti-
mization problems. The only similar work so far is [DZ18], where only the
convex case is considered with a different, heuristic solution methodology.

• A new continuation method for smooth problems is developed which has cer-
tain advantages over the methods in [Hil01; SDD05]. In particular, it can be
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Chapter 1. Introduction

generalized to problems with equality and inequality constraints.

• For the case of inexact gradients, a superset of the Pareto critical set is derived
which is tighter than the superset suggested in [PD17]. Furthermore, the
computation of its boundary via a continuation method is a new approach
which is tailored to the theoretical properties of the superset.

Finally, in the following, the content of this thesis is discussed in relation to
previous publications of its author.

• In Chapter 3, Section 3.2 is based on Section 2 in [Ban+19], to which the
author was the main contributor. While the algorithm in Section 3.1 was also
briefly described in [Ban+19], this thesis contains a more detailed discussion.
Furthermore, the extension to the constrained case in Section 3.1.4 has not
been published before.

• Chapter 4 is based on [GP21a], to which the author was the main contributor.
Compared to [GP21a], this thesis additionally contains a modified descent
method (Algorithm 4.4) for which stronger convergence results can be shown
(Lemma 4.4.4 and Corollary 4.4.5).

• In Chapter 5, the Sections 5.1, 5.2 and 5.3 are based on [GPD19], to which
the author was the main contributor. The extensions to the constrained and
nonsmooth case in Section 5.4 and Section 5.5, respectively, have not been
published previously.

• Chapter 6 is based on [GP21b], to which the author was the main contributor.
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2 Basics of multiobjective
optimization

In this thesis the task of minimizing a vector-valued function is considered. Formally,
let n, k ∈ N, ∅ 6= X ⊆ Rn and f = (f1, . . . , fk)⊤ : X → Rk. The problem of
minimizing f is denoted by

min
x∈X

f(x). (MOP)

This problem is called a multiobjective optimization problem (MOP) with objective
vector f , objective functions fi, i ∈ {1, . . . , k}, variable space Rn, image space Rk

and feasible set X. Throughout most of this thesis we will consider the case where
X = Rn, i.e., where (MOP) is unconstrained.

This chapter introduces the basics of multiobjective optimization which are used
in the remainder of this thesis. More detailed introductions can be found in [Mie98;
Ehr05]. In Section 2.1, the solution concept of (MOP) is introduced and a simple
example is given. In Section 2.2, necessary optimality conditions are derived. This
part is split up into the smooth case, where f is differentiable, and the nonsmooth
case, where f is merely locally Lipschitz continuous. Additionally, in the smooth
case, a first result about the structure of the set of points satisfying the optimality
condition is established. Finally, Section 2.3 gives an overview over existing solution
methods for MOPs.

2.1 Pareto optimality

For k = 1, i.e., for the case where (MOP) is a single-objective or scalar problem, the
concept of optimality is clear: x ∈ X is called optimal if f(x) ≤ f(y) for all y ∈ X.
In other words, x ∈ X is optimal if f(x) is a minimal element in the totally ordered
set (im(f),≤), where im(f) denotes the image f(X) of f . (For an introduction
to ordered sets, see, e.g., [Sch16].) To generalize this concept for k > 1, we have
to define an order relation on im(f) ⊆ Rk that reflects our goal of minimizing all
objective functions simultaneously. To this end, for v, w ∈ Rk, we define

v ≤ w :⇔ vi ≤ wi ∀i ∈ {1, . . . , k}. (2.1)

It is easy to see that (Rk,≤) is a partially ordered set. But in contrast to (R,≤)
it is not totally ordered, since there can be v, w ∈ Rk such that neither v ≤ w nor
w ≤ v. This is visualized in the following example.

Example 2.1.1. For k = 2 let v1 = (2.5, 3)⊤, v2 = (0.5, 2)⊤, v3 = (2, 0.5)⊤ and
v4 = (3, 0.5)⊤, as shown in Figure 2.1. Then v2 ≤ v1, v3 ≤ v1 and v3 ≤ v4, but
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2.1. Pareto optimality

Figure 2.1: Example for the order relation on Rk for k = 2 from Example 2.1.1.

neither v2 ≤ v3 nor v3 ≤ v2. In particular, v2 and v3 are the minimal elements of
({v1, v2, v3, v4},≤).

A result of (Rk,≤) not being totally ordered for k > 1 is the fact that usually,
there will be multiple minimal elements in (im(f),≤) that have different objective
function values. This is something that cannot happen in single-objective opti-
mization and is one of the the fundamental differences between single-objective and
multiobjective optimization.

Using the order relation from (2.1) we can now formally define what optimality
means in the multiobjective context.

Definition 2.1.2. A point x ∈ X is called Pareto optimal if f(x) is a minimal
element in (im(f),≤), i.e., if there is no y ∈ X with f(y) ≤ f(x) and f(y) 6= f(x).
In other words, x is Pareto optimal if there is no y ∈ X with

fi(y) ≤ fi(x) ∀i ∈ {1, . . . , k},
fj(y) < fj(x) for some j ∈ {1, . . . , k}.

The set P of all Pareto optimal points is called the Pareto set, its image under f is
called the Pareto front.

Remark 2.1.3. a) In the literature, Pareto optimal points are also sometimes
referred to as Edgeworth-Pareto optimal points, (Pareto) efficient points or
nondominated points. See Table 2.4 in [Ehr05] for a more detailed overview
of the common terminology.

b) Let C = (R≥0)k = {v ∈ Rk : vi ≥ 0 ∀i ∈ {1, . . . , k}}. Then C is a convex,
pointed cone (also called the natural ordering cone) and v1 ≤ v2 for v1, v2 ∈ Rk

can be rewritten as v2 ∈ v1 +C. Due to this, the order relation ≤ is said to be
induced by C. In particular, x ∈ X being Pareto optimal can be rewritten as
(f(x)−C)∩ im(f) = f(x). For different cones C these reformulations lead to
a more general solution concept for optimizing vector-valued functions, which
is discussed in the area of vector optimization [Jah11].

In addition to the notion of Pareto optimality, we will also make use of the
following weaker concepts.

10



Chapter 2. Basics of multiobjective optimization

Definition 2.1.4. Let x ∈ X (and let X be equipped with the subspace topology of
the natural topology of Rn).

a) The point x is called locally Pareto optimal, if there is some open set U ⊆ X
with x ∈ U such that f(x) is a minimal element of (f(U),≤).

b) The point x is called weakly Pareto optimal, if there is no y ∈ X with

fi(y) < fi(x) ∀i ∈ {1, . . . , k}. (2.2)

c) The point x is called locally weakly Pareto optimal, if there is some open set
U ⊆ X with x ∈ U such that there is no y ∈ U that satisfies (2.2).

By definition, Pareto optimal points are also locally, weakly and locally weakly
Pareto optimal, and local Pareto optimal points are also locally weakly Pareto op-
timal. Furthermore, all (local) minimal points of the individual objective functions
are (locally) weakly Pareto optimal, and all unique minimal points are Pareto op-
timal. The following example visualizes the differences of the different notions of
optimality introduced so far.

Example 2.1.5. For k = 2 let im(f) be given as in Figure 2.2. The red, blue,
green and magenta lines show the image of the set of Pareto optimal, weakly Pareto
optimal, local Pareto optimal and locally weakly Pareto optimal points, respectively.
The colored dots indicate whether the end points of the lines are included or excluded.

Figure 2.2: Visualization of the different notions of optimality in Example 2.1.5.
(Note that the preimage of the point (3, 0.5)⊤ is also weakly Pareto optimal.)

Note that since the definitions of local Pareto optimality and local weak Pareto
optimality depend on the local behavior of f , the set im(f) alone cannot be used
to identify all those points. Thus, depending on f , there may be more green and
magenta lines in the interior of im(f) in Figure 2.2.

This section will conclude with a simple example where the concept of Pareto op-
timality produces a solution that matches the “intuitive” solution one would expect.
To this end, let ‖ · ‖ be the Euclidean norm on Rn.
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2.1. Pareto optimality

Example 2.1.6. For k ∈ N let c1, . . . , ck ∈ Rn and consider the problem

min
x∈Rn

f(x) with f(x) =







‖x− c1‖2
...

‖x− ck‖2






. (2.3)

This problem can be interpreted as follows: We are given k points c1, . . . , ck ∈ Rn and
we want to find points x ∈ Rn that minimize the (squared) distance to all c1, . . . , ck

at the same time. It can be regarded as the multiobjective version of a simple facility
location problem [Meg83; BW02].

We consider the case where k = 2, n = 2, c1 = (0, 0)⊤ and c2 = (1, 1)⊤. Let
x ∈ R2. Clearly, for all i ∈ {1, . . . , k}, all points that have a smaller squared distance
to ci than x form an open ball Bi with radius ‖x− ci‖ centered at ci, and all points
with an equal distance are given by its boundary ∂Bi. Thus, for x to be weakly Pareto
optimal, B1∩B2 has to be empty. It is easy to see that this is precisely the case when
x is on the line connecting c1 and c2, i.e., when x ∈ {c1+λ(c2−c1) : λ ∈ (0, 1)} =: P ′.
In particular, for x ∈ P ′ it also holds B1 ∩ ∂B2 = ∅ and ∂B1 ∩B2 = ∅, so all points
in P ′ are actually Pareto optimal. On top of that, ci is the unique global minimizer
of minx∈R2 fi(x), so c1 and c2 are Pareto optimal as well. To summarize, the Pareto
set of (2.3) is given by

P = {c1 + λ(c2 − c1) : λ ∈ [0, 1]},

as shown in Figure 2.3.

(a) (b)

Figure 2.3: Pareto set (a) and Pareto front (b) for the multiobjective location prob-
lem in Example 2.1.6.

Analogously to the above discussion, it is easy to see that for the general problem
(2.3), the Pareto set is given by the convex hull of {c1, . . . , ck}, i.e.,

P = conv({c1, . . . , ck}) :=

{

k
∑

i=1

λic
i : λ ∈ (R≥0)k,

k
∑

i=1

λi = 1

}

. (2.4)
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Chapter 2. Basics of multiobjective optimization

Remark 2.1.7. There are multiple equivalent ways to define the convex hull of
A ⊆ Rn. In this thesis we mainly use the following two (cf. [Roc70], Section 2):

• conv(A) is the set of all convex combinations of elements of A, i.e.,

conv(A) :=
{

m
∑

i=1

λic
i : m ∈ N, λ ∈ (R≥0)m,

m
∑

i=1

λi = 1, ci ∈ A, i ∈ {1, . . . ,m}
}

.

• conv(A) is the smallest convex set containing A.

Clearly, the MOP in Example 2.1.6 was only solvable by hand due to its sim-
plicity. For example, merely changing the norms in (2.3) would already make the
solution much more involved. Thus, a more sophisticated methodology is needed,
which is the goal of the following section.

2.2 Necessary optimality conditions and the

Pareto critical set

In Example 2.1.6, the Pareto set was derived by considering the intersection of the
sublevel sets

L<
i (x) := {y ∈ Rn : fi(y) < fi(x)}

over all i ∈ {1, . . . , k}. Clearly, x is locally weakly Pareto optimal if and only if

U ∩





⋂

i∈{1,...,k}
L<
i (x)



 = ∅ (2.5)

for some open set U ⊆ Rn with x ∈ U . Since U can be chosen arbitrarily small, (2.5)
only depends on the local behavior of f . If f is differentiable, then the gradients
∇fi(x) are orthogonal to the boundary ∂L<

i (x) (i.e., to the level set of fi). If f is
merely locally Lipschitz, a similar connection can be made using nonsmooth analysis.
The goal of this section is to show that in both cases, (2.5) can be reformulated using
first-order information of f , resulting in first-order necessary optimality conditions.

The theoretical foundation of this section is the following basic result from convex
analysis [CG59]. For a set W ⊆ Rn, let −W := {−ξ : ξ ∈ W}.

Lemma 2.2.1. Let W ⊆ Rn be convex and compact and

v̄ := arg min
ξ∈−W

‖ξ‖2. (2.6)

Then either v̄ 6= 0 and

〈v̄, ξ〉 ≤ −‖v̄‖2 < 0 ∀ξ ∈ W, (2.7)

or v̄ = 0 and there is no v ∈ Rn with 〈v, ξ〉 < 0 for all ξ ∈ W .
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Proof. v̄ is well-defined since ‖ · ‖2 is strictly convex and W is convex.
We first assume v̄ 6= 0. Let ξ ∈ W and λ ∈ (0, 1). Since λv̄+ (1− λ)(−ξ) ∈ −W we
have

‖v̄‖2 ≤ ‖λv̄ + (1 − λ)(−ξ)‖2 = ‖λv̄ − (1 − λ)ξ‖2
= λ2‖v̄‖2 − 2λ(1 − λ)〈v̄, ξ〉 + (1 − λ)2‖ξ‖2.

Subtracting ‖v̄‖2 on both sides and dividing by 1 − λ > 0 yields

0 ≤ −(λ+ 1)‖v̄‖2 − 2λ〈v̄, ξ〉 + (1 − λ)‖ξ‖2.

Due to continuity, this inequality must also hold for λ = 1, so

0 ≤ −2‖v̄‖2 − 2〈v̄, ξ〉
⇔ 〈v̄, ξ〉 ≤ −‖v̄‖2 < 0.

Finally, if v̄ = 0 then 0 ∈ W , so in this case there can clearly be no v ∈ Rn with
〈v, ξ〉 < 0 for all ξ ∈ W .

2.2.1 Smooth case

We will begin with the case where fi is differentiable for all i ∈ {1, . . . , k}. In this
case, the level sets of fi can locally be described as the orthogonal complement of
∇fi(x). In particular, −∇fi(x) points into the half-space of directions in which fi
descends. Thus, (2.5) can be reformulated to

∄v ∈ Rn : 〈∇fi(x), v〉 < 0 ∀i ∈ {1, . . . , k}.

More formally, the following lemma (from [FS00]) holds.

Lemma 2.2.2. Let c ∈ (0, 1), x ∈ Rn and v ∈ Rn such that 〈∇fi(x), v〉 < 0 for all
i ∈ {1, . . . , k}. Then there is some T > 0 such that

fi(x+ tv) < fi(x) + ct〈∇fi(x), v〉 ∀t ∈ (0, T ], i ∈ {1, . . . , k}.

In particular, x is not (locally weakly) Pareto optimal.

Proof. Since fi is differentiable for all i ∈ {1, . . . , k}, we have

0 > c〈∇fi(x), v〉 > 〈∇fi(x), v〉 = lim
t→0

fi(x+ tv) − fi(x)

t
∀i ∈ {1, . . . , k}.

Thus, for each i ∈ {1, . . . , k}, there is some Ti > 0 such that

c〈∇fi(x), v〉 > fi(x+ tv) − fi(x)

t
∀t ∈ (0, Ti]

⇔ fi(x+ tv) < fi(x) + ct〈∇fi(x), v〉 ∀t ∈ (0, Ti].

Defining T := mini∈{1,...,k} Ti completes the proof.

Remark 2.2.3. The inequality in Lemma 2.2.1 is also called the Armijo condi-
tion [NW06] and will later reappear in the computation of step lengths for descent
methods.
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Using Lemma 2.2.1 and Lemma 2.2.2, it is now easy to derive the first-order
necessary optimality condition for (locally weak) Pareto optimality, known as the
KKT (Karush-Kuhn-Tucker) condition [KT51; Mie98]. To this end, we define the
(k − 1)-standard simplex

∆k :=

{

α ∈ Rk : αi ≥ 0 ∀i ∈ {1, . . . , k},
k
∑

i=1

αi = 1

}

. (2.8)

Theorem 2.2.4. Let x be (locally weakly) Pareto optimal. Then

∃α ∈ ∆k such that
k
∑

i=1

αi∇fi(x) = 0. (KKT)

Proof. Assume that this does not hold, i.e., 0 /∈ conv({∇f1(x), . . . ,∇fk(x)}) =: W .
Clearly, W is convex and compact, so by Lemma 2.2.1 we must have some v̄ ∈ −W
with 〈∇fi(x), v̄〉 < 0 for all i ∈ {1, . . . , k}. By Lemma 2.2.2, this means that x is
not locally weakly Pareto optimal, which is a contradiction.

Since (KKT) is only a necessary condition, we make the following definition.

Definition 2.2.5. A point x ∈ Rn is called Pareto critical if it satisfies (KKT). A
corresponding α ∈ ∆k is called a KKT vector of x and contains KKT multipliers
αi, i ∈ {1, . . . , k}. The set Pc of all Pareto critical points is the Pareto critical set.

Remark 2.2.6. a) For k = 1, (KKT) reduces to the classical optimality condi-
tion ∇f(x) = 0 (with KKT vector α = 1) from single-objective optimization.

b) The condition (KKT) can also be formulated as

∃α ∈ ∆k such that Df(x)⊤α = 0,

where Df is the Jacobian of f . This will later be used to derive relationships
between the rank and kernel of Df⊤ and the Pareto critical set.

c) Pareto critical points are also sometimes referred to as substationary points
[Mie98].

d) The Pareto critical set was first defined by Smale in [Sma73] via nonexistence
of a common descent direction of the objectives. By Lemma 2.2.1, both defini-
tions are equivalent.

e) If fi is convex for all i ∈ {1, . . . , k}, then (KKT) is also sufficient. In general,
sufficient conditions can be derived using second-order derivatives (cf. [Mie98],
Theorem 3.2.17).

f) In Section 3.1.4, a generalization of Theorem 2.2.4 to constrained MOPs will
be given (see Theorem 3.1.9).

The KKT vector α ∈ ∆k, i.e., the weighting of the gradients of the objectives in
the KKT condition, is a quantity that is exclusive to the multiobjective case. It can
be geometrically interpreted via the following lemma. Roughly speaking, it implies
that if x ∈ Rn is Pareto optimal, then corresponding KKT vectors are orthogonal
to the Pareto front in f(x) (pointing into the interior of im(f)). (See Section 4.3 in
[Hil01] for more details on this.)
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Lemma 2.2.7. Assume that

x : (−1, 1) → Rn, t 7→ x(t),

α : (−1, 1) → (R>0)k, t 7→ α(t)

are differentiable such that for all t ∈ (−1, 1), x(t) is Pareto critical with KKT
vector α(t). Then

α(t)⊤D(f ◦ x)(t) = 0 ∀t ∈ (−1, 1).

In other words, α(t) is orthogonal to the tangent of the curve f ◦ x in t.

Proof. By assumption we have Df(x(t))⊤α(t) = 0 for all t ∈ (−1, 1). Thus,

α(t)⊤D(f ◦ x)(t) = α(t)⊤Df(x(t))Dx(t)

= (Df(x(t))⊤α(t))⊤Dx(t) = 0 ∀t ∈ (−1, 1).

The following example, which is similar to Example 2.1.6, shows a simple appli-
cation of the KKT condition.

Example 2.2.8. For c ∈ Rn and a symmetric, positive definite matrix Q ∈ Rn×n

consider the problem

min
x∈Rn

f(x) with f(x) =

(

‖x‖2Q
‖x− c‖2

)

, (2.9)

where ‖x‖Q :=
√

x⊤Qx denotes the norm based on the inner product induced by Q.
This problem can be seen as the location problem from Example 2.1.6 with a more
general norm. We will now derive its Pareto critical set.

First of all, we have

∇f1(x) = 2Qx, ∇f2(x) = 2(x− c),

so (KKT) is equivalent to

0 = α1∇f1(x) + α2∇f2(x) = 2α1Qx+ 2α2(x− c)

= 2(α1Q+ α2I)x− 2α2c (2.10)

for α ∈ ∆2, where I is the identity matrix in Rn×n. The matrix α1Q+α2I is positive
definite (and thus invertible) as the sum of two positive definite matrices, and since
α1 + α2 = 1, we have α1 = 1 − α2. So (2.10) is equivalent to

x = α2((1 − α2)Q+ α2I)−1c

for some α2 ∈ [0, 1], and the Pareto critical set is given by

Pc = {α2((1 − α2)Q+ α2I)−1c : α2 ∈ [0, 1]}.
(Since both objectives are convex, all Pareto critical points are actually Pareto opti-
mal.) Figure 2.4 shows the Pareto critical set for n = 2,

c =

(

1
1

)

and Q =

(

5 2
2 1

)

.
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Figure 2.4: Pareto critical set for the generalized location problem in Example 2.2.8.

Since the solution of an MOP is a set, the structure of that set is important to
better understand the problem and to be able to efficiently solve it. As the KKT
condition is a necessary optimality condition, the Pareto critical set is a superset of
the actual Pareto set. Thus, to an extent, results about the structure of the Pareto
critical set also apply to the Pareto set. Additionally, those results can motivate
new algorithms and strategies to solve MOPs, which will be demonstrated in this
thesis.

Note that the Pareto critical set is implicitly defined via the existence of some
α ∈ ∆k such that a certain system of equations is satisfied. Thus, by considering
Pareto critical points x and their corresponding KKT vectors α simultaneously as
points (x, α) ∈ Rn × ∆k, the Pareto critical set can be expressed as the projection
of a zero level set in a higher dimensional space. This opens up the possibility to
use tools from differential geometry to study its structure. In the following, this
approach will be formalized and a first result will be given. To this end, let

F : Rn × (R≥0)k → Rn+1, (x, α) 7→
(∑k

i=1 αi∇fi(x)

1 −∑k
i=1 αi

)

. (2.11)

Then

x ∈ Pc ⇔ ∃α ∈ (R≥0)k : F (x, α) = 0,

so

Pc = prx(F
−1(0)), (2.12)

where prx : Rn+k → Rn, (x, α) 7→ x, is the projection onto the variable space. The
following result from differential geometry, known as the level set theorem [Lee12],
can be used to analyze the structure of the zero level set F−1(0) of F .

Theorem 2.2.9 (Level set theorem). Let n1, n2 ∈ N, U ⊆ Rn1 be open and
h : U → Rn2 be differentiable. If rk(Dh(x)) = n2 for all x ∈ h−1(0), then h−1(0) is
a (n1 − n2)-dimensional embedded submanifold of Rn1 with tangent space

Tx(h−1(0)) = ker(Dh(x)).

Proof. Corollary 5.14 and Proposition 5.38 in [Lee12].
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The level set theorem implies the following result from [Hil01].

Theorem 2.2.10. Let f be twice continuously differentiable and let

M := (F |Rn×(R>0)k)−1(0).

a) If rk(DF (x, α)) = n+ 1 for all (x, α) ∈ M, then M is a (k − 1)-dimensional
embedded submanifold of Rn+k with tangent space

T(x,α)M = ker(DF (x, α)).

b) If (x, α) ∈ M with rk(DF (x, α)) = n+ 1, then there is an open set U ⊆ Rn+k

with (x, α) ∈ U such that M∩ U is a manifold as in a).

Proof. a) Application of Theorem 2.2.9 to the differentiable function F |Rn×(R>0)k .

b) Since the subset of matrices in R(n+1)×(n+k) with full rank is open, and since
DF : Rn × (R>0)k → R(n+1)×(n+k) is continuous by assumption, the set

U := {(x, α) ∈ Rn × (R>0)k : rk(DF (x, α)) = n+ 1}
is open. Applying Theorem 2.2.9 to F |U completes the proof.

Remark 2.2.11. The proof of Theorem 2.2.10 given here shows in particular that

{(x, α) ∈ M : rk(DF (x, α)) = n+ 1}
is open in M (w.r.t. the subspace topology) and a manifold with the properties from
Theorem 2.2.10 a).

For x ∈ Rn and α ∈ ∆k we have

DF (x, α) =

(
∑k

i=1 αi∇2fi(x) Df(x)⊤

0 1

)

∈ R(n+1)×(n+k). (2.13)

We will sometimes refer to the matrix
∑k

i=1 αi∇2fi(x) as the weighted Hessian matrix
of f . The following lemma (which is similar to Theorem 5.3 in [Hil01]) gives sufficient
conditions for the rank of DF to be full, i.e., for the requirements of Theorem 2.2.10
to be satisfied. In particular, it shows that if all objective functions are strongly
convex (cf. [BV04]), then the requirement of Theorem 2.2.10 a) is satisfied.

Lemma 2.2.12. Let x ∈ Rn.

a) If α ∈ ∆k such that
∑k

i=1 αi∇2fi(x) is regular, then rk(DF (x, α)) = n+ 1.

b) If ∇2fi(x) is positive definite for all i ∈ {1, . . . , k}, then rk(DF (x, α)) = n+ 1
for all α ∈ ∆k.

Proof. a) Assume that n + 1 > rk(DF (x, α)) = rk(DF (x, α)⊤). Then there must
be some 0 6= v = (v1, v2)⊤ ∈ Rn × R such that

0 = DF (x, α)⊤v =

(
∑k

i=1 αi∇2fi(x)v1

Df(x)v1 + (v2, . . . , v2)⊤

)

. (2.14)

Since
∑k

i=1 αi∇2fi(x) is regular, it follows that v1 = 0, which also implies v2 = 0.
This is a contradiction.
b) The matrix

∑k
i=1 αi∇2fi(x) is positive definite (and in particular regular) for

all α ∈ ∆k, since all ∇2fi(x) are positive definite and αj > 0 for at least one
j ∈ {1, . . . , k}. Thus, the proofs follows from a).
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Chapter 2. Basics of multiobjective optimization

As an example, Theorem 2.2.10 can be used to show that M is a manifold for
the (strongly convex) MOP in Example 2.2.8. In the following, in order to show
what kind of “singularities” may occur in the general case, we will consider a simple
problem where M is not a manifold.

Example 2.2.13. Consider the problem

min
x∈R2

f(x) with f(x) =

(

−1
2
x21 − 1

2
x22

x1 + x2 − x1x2

)

.

It is straight-forward to show that the Pareto critical set for this problem is given by

Pc = {x ∈ [0, 1]2 : x1 = x2} ∪ {x ∈ Rn : x1 + x2 = 1},
as shown in Figure 2.5(a). The KKT vector corresponding to x ∈ Pc is given by

(a) Pc (b) M
Figure 2.5: Pareto critical set and M in Example 2.2.13.

α =

{

(1 − x1, x1)
⊤, if x1 = x2,

(1
2
, 1
2
)⊤, if x1 + x2 = 1.

A projection of the resulting set M onto x1, x2 and α1 is shown in Figure 2.5(b).
We see that M cannot be a manifold with dimension k − 1 = 1 in this case, since
the intersection at ((1

2
, 1
2
)⊤, (1

2
, 1
2
)⊤) ∈ M is not diffeomorphic to a one-dimensional

line. The matrix DF (cf. (2.13)) for this problem is given by

DF (x, α) =





−α1 −α2 −x1 1 − x2
−α2 −α1 −x2 1 − x1

0 0 1 1



 .

It is easy to see that rk(DF (x, α)) = 2 6= 3 = n + 1 in the intersection point from
above.

If Theorem 2.2.10 can be applied, then the Pareto critical set Pc is the projection
of a smooth manifold in Rn+k onto Rn, except for the points where at least one KKT
multiplier is zero. So although Pc set itself is not a manifold, there is still a smooth
structure on M that we can project onto Pc. This will later be used to derive the
box-continuation method (Chapter 3) and to analyze the hierarchical structure of
Pc (Chapter 5).
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2.2. Necessary optimality conditions and the Pareto critical set

2.2.2 Nonsmooth case

We will now derive an optimality condition for the case where f is not necessarily
differentiable. First, it has to be specified how much “nonsmoothness” is allowed.
Since we want to work with local information about f , local change of x should
only cause local change of f(x). In other words, f should still be continuous. Un-
fortunately, the class of continuous functions includes pathological functions like
the Weierstrass function (cf. [Har16]), whose graph is a fractal curve that does not
yield any useful local information. So in addition to continuity, the evaluation of
f should be somehow numerically “stable”, i.e., the local change of f should be
bounded. More precisely, we assume f to be locally Lipschitz (continuous), i.e., for
each i ∈ {1, . . . , k} and x ∈ Rn, there is some Li > 0 and ε > 0 with

|fi(y) − fi(z)| ≤ Li‖y − z‖ ∀y, z ∈ Bε(x), (2.15)

where Bε(x) := {y ∈ Rn : ‖x − y‖ < ε}. As it turns out, the class of locally
Lipschitz objective functions is broad enough to cover many relevant problems from
nonsmooth optimization (cf. [BKM14], Part II).

An important result about locally Lipschitz functions is the following theorem,
known as Rademacher’s theorem [EG15]. Let Ωi ⊆ Rn be the set of points where fi
is not differentiable.

Theorem 2.2.14 (Rademacher’s theorem). The set Ωi is a (Lebesgue) null set
for all i ∈ {1, . . . , k}.

Due to Rademacher’s theorem, even if fi is merely locally Lipschitz, we can still
work with the classical gradient almost everywhere. In particular, Rn \ Ωi is dense
in Rn, so for each x ∈ Ωi, there is a sequence of differentiable points that converges
to x. This can be used to generalize the concept of differentiability to the locally
Lipschitz case [Cla90]:

Definition 2.2.15. Let x ∈ Rn and i ∈ {1, . . . , k}. The set

∂fi(x) = conv({ξ ∈ Rn : ∃(xj)j ∈ Rn \ Ωi with lim
j→∞

xj = x and lim
j→∞

∇fi(xj) = ξ})

is the (Clarke) subdifferential of fi in x. An element ξ ∈ ∂fi(x) is a (Clarke)
subgradient.

Clearly, if fi is continuously differentiable in x, then ∂fi(x) = {∇fi(x)}. In this
sense, the Clarke subdifferential reduces to the classical gradient in the continuously
differentiable case. The following example shows how the Clarke subdifferential can
be used to obtain derivatives of the ℓ1-norm, which is notoriously nonsmooth.

Example 2.2.16. Let

f : Rn → R, x 7→ ‖x‖1 := |x1| + . . .+ |xn|.

It is easy to see that the set of nondifferentiable points is

Ω = {x ∈ Rn : xi = 0 for some i ∈ {1, . . . , k}}
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and that f is continuously differentiable outside of Ω. For x /∈ Ω we have

∇f(x) =







sgn(x1)
...

sgn(xn)






.

For x ∈ Ω with xi = 0, sequences in Definition 2.2.15 can converge from the negative
(xi < 0) or the positive (xi > 0) half-space, so the subgradients are either 1 or −1
in the i-th component. Thus, the Clarke subdifferential is given by

∂f(x) =

{

ξ ∈ Rn : ξi

{

= sgn(xi) if xi 6= 0

∈ [−1, 1] if xi = 0
, i ∈ {1, . . . , n}

}

.

The following lemma summarizes some of the well-known properties of the Clarke
subdifferential [Cla90].

Lemma 2.2.17. Let x ∈ Rn and i ∈ {1, . . . , k}.
a) ∂fi(x) is nonempty, convex and compact in Rn.

b) Let Li > 0 be a Lipschitz constant of fi at x. Then

∂fi(x) ⊆ BLi
(0),

i.e., ‖ξ‖ ≤ Li for all ξ ∈ ∂fi(x).

c) As a set-valued map, ∂fi is upper semicontinuous: For all open sets V ⊆ Rn

with ∂fi(x) ⊆ V there is some open set U ⊆ Rn with x ∈ U such that

∂fi(y) ⊆ V ∀y ∈ U.

Furthermore, the mean value theorem can be extended to the nonsmooth case
[BKM14; Cla90].

Theorem 2.2.18 (Mean value theorem). Let x, y ∈ Rn with x 6= y and let
h : Rn → R be locally Lipschitz. Then there is some u ∈ conv({x, y}) \ {x, y} and
ξ ∈ ∂h(u) such that

h(y) − h(x) = 〈ξ, y − x〉.

Remark 2.2.19. In [Cla90], the mean value theorem is stated for Banach spaces, in
which case “global” Lipschitz continuity of h on an open set containing conv({x, y})
is required. In our finite-dimensional case, this immediately follows from the local
Lipschitz continuity of h, as every locally Lipschitz function is “globally” Lipschitz
continuous on compact sets. For a proof, see, e.g., Proposition 3.3.2 in [SC16].

Using the generalized concept of derivatives, Lemma 2.2.2 can now be extended
from the smooth to the nonsmooth case.

Lemma 2.2.20. Let c ∈ (0, 1), x ∈ Rn and v ∈ Rn such that 〈ξ, v〉 < 0 for all
ξ ∈ ∂fi(x) and all i ∈ {1, . . . , k}. Then there is some T > 0 such that

fi(x+ tv) < fi(x) + tc max
ξ∈∂fi(x)

〈ξ, v〉 ∀t ∈ (0, T ], i ∈ {1, . . . , k}.

In particular, x is not (locally weakly) Pareto optimal.
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2.2. Necessary optimality conditions and the Pareto critical set

Proof. Let i ∈ {1, . . . , k}. Since ∂fi(x) is compact we have

max
ξ∈∂fi(x)

〈ξ, v〉 < 0.

Thus, using continuity of 〈·, v〉, there has to be an open set Vi ⊆ Rn with ∂fi(x) ⊆ Vi
such that

〈ξ′, v〉 < c max
ξ∈∂fi(x)

〈ξ, v〉 < 0 ∀ξ′ ∈ Vi.

Due to upper semicontinuity of ∂fi, there is some open set Ui ⊆ Rn with x ∈ Ui

such that

∂fi(y) ⊆ Vi ∀y ∈ Ui.

Let U := U1 ∩ . . . ∩ Uk. Then for each i ∈ {1, . . . , k} we have

〈ξ′, v〉 < c max
ξ∈∂fi(x)

〈ξ, v〉 < 0 ∀ξ′ ∈ ∂fi(y), y ∈ U.

Since U is open and x ∈ U , there is some T > 0 such that x + tv ∈ U for all
t ∈ (0, T ].
Now let t ∈ (0, T ] and i ∈ {1, . . . , k}. Applying the mean value theorem to x and
x+ tv yields the existence of some u ∈ conv({x, x+ tv}) and ξ ∈ ∂fi(u) such that

fi(x+ tv) − fi(x) = t〈ξ, v〉.

By construction, u ∈ U , so 〈ξ, v〉 < cmaxξ∈∂fi(x)〈ξ, v〉 and thus

fi(x+ tv) < fi(x) + tc max
ξ∈∂fi(x)

〈ξ, v〉.

Remark 2.2.21. In general, maxξ∈∂fi(x)〈ξ, v〉 =: ∂◦fi(x, v) is known as the gener-
alized directional derivative of fi at x in the direction v [Cla90].

By combining Lemma 2.2.20 with Lemma 2.2.1, we obtain a first-order optimality
condition for the nonsmooth case [MEK14]. To this end, let

∂∪f(x) := conv

(

k
⋃

i=1

∂fi(x)

)

. (2.16)

Theorem 2.2.22. Let x be (locally weakly) Pareto optimal. Then

0 ∈ ∂∪f(x). (2.17)

Proof. Analogously to the proof of Theorem 2.2.4 with W = ∂∪f(x). (W is compact
as the convex hull of a compact set. See, e.g., Exercise 2.4.11 in [BV10].)

It is easy to see that (2.17) reduces to the smooth KKT condition if f is con-
tinuously differentiable. Thus, the following definition extends Pareto criticality to
the nonsmooth case.
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Chapter 2. Basics of multiobjective optimization

Definition 2.2.23. A point x ∈ Rn is called Pareto critical if 0 ∈ ∂∪f(x). The set
Pc of all Pareto critical points is the Pareto critical set.

Remark 2.2.24. a) In the smooth case, the KKT vectors are defined via the
coefficients of the vanishing convex combinations of the gradients. In the non-
smooth case, these coefficients also depend on which elements from the in-
dividual ∂fi(x) are chosen. A possible generalization of KKT vectors in the
nonsmooth case will be considered in Section 5.5 (see Definition 5.5.3).

b) If fi is convex for all i ∈ {1, . . . , k}, then (2.17) is sufficient for weak Pareto
optimality (cf. [MEK14], Theorem 14).

In the following, a simple example for a Pareto critical set in the nonsmooth case
is considered. (It is inspired by [BGP21].)

Example 2.2.25. For a continuously differentiable g : Rn → R, consider the prob-
lem

min
x∈Rn

f(x) with f(x) =

(

g(x)
‖x‖1

)

.

Since the ℓ1-norm enforces sparsity (cf. [Tib96], Section 2.3), this problem can be
interpreted as finding minimal points of g that are as sparse as possible.

Let n = 2 and g(x) := ‖x− (2, 1)⊤‖2, i.e., ∇g(x) = 2(x− (2, 1)⊤). Let Ω2 be the
set of nondifferentiable points of ‖ · ‖1. By Example 2.2.16, x /∈ Ω2 is Pareto critical
if and only if

0 = 2α1

(

x−
(

2
1

))

+ α2

(

sgn(x1)
sgn(x2)

)

⇔ x =

(

2
1

)

− α2

2α1

(

sgn(x1)
sgn(x2)

)

for some α ∈ ∆2 with α1 > 0. This condition holds precisely when x lies on the
line connecting (2, 1)⊤ and (1, 0)⊤ (excluding (1, 0)⊤ itself). For x ∈ R2 \ {0} with
x2 = 0, x is Pareto critical if and only if

0 ∈ conv

({

2

((

x1
0

)

−
(

2
1

))}

∪ ({sgn(x1)} × [−1, 1])

)

= conv

({(

2x1 − 4
−2

)

,

(

sgn(x1)
−1

)

,

(

sgn(x1)
1

)})

.

It is possible to show that this is equivalent to x lying on the line connecting (1, 0)⊤

and (0, 0)⊤ (excluding (0, 0)⊤ itself). For x ∈ R2\{0} with x1 = 0, no Pareto critical
points can be found. Finally, (0, 0)⊤ is Pareto critical as the unique minimizer of
‖x‖1.

The complete Pareto critical set is shown in Figure 2.6. Since all the objectives
are convex, it coincides with the Pareto set.

Note that since the optimality condition (2.17) is based on sets, it is not directly
possible to write the Pareto critical set as the projection of the level set of some
smooth function. In other words, (2.12) cannot be generalized to the nonsmooth
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Figure 2.6: Pareto (critical) set for the nonsmooth problem from Example 2.2.25.

case and we lose the “projected smoothness” of Pc. For instance, in Example 2.2.25,
there is a kink in Pc when going from the smooth to the nonsmooth part of the
variable space.

Another important disparity to the smooth case is the fact that subdifferentials,
in contrast to gradients, cannot be easily computed in a practical setting. For
example, while finite differences can be used in the smooth case to obtain a good
approximation of the gradient, they fail to produce a good approximation of the
full subdifferential in the nonsmooth case (cf. [Lem89], Section 3.3). Thus, any
method for nonsmooth MOPs that explicitly relies on subdifferentials has to contain
a procedure to efficiently and properly approximate them. Examples for this will be
given in Section 2.3.2 and Chapter 4.

Finally, we will briefly discuss an approach to obtain a stronger first-order nec-
essary optimality condition than (2.17) in the following remark.

Remark 2.2.26. In addition to the generalization of gradients of fi via the Clarke
subdifferential (cf. Definition 2.2.15), it is possible to generalize the Jacobian of f
as

∂f(x) := conv({ξ ∈ Rk×n :∃(xj)j ∈ Rn \ Ω with lim
j→∞

xj = x and

lim
j→∞

Df(xj) = ξ}),

where Ω is the set of points in which f is nondifferentiable. The set ∂f(x) ⊆ Rk×n

is called the generalized Jacobian of f at x [Cla90].

In the smooth case, the Jacobian of f can be used to obtain the equivalent for-
mulation

Df(x)⊤α = 0, α ∈ ∆k,

for the optimality condition (KKT). In other words, in the smooth case, it does not
matter if we express the derivative of f as the set of gradients ∇fi, i ∈ {1, . . . , k},
or the Jacobian Df . In the general nonsmooth case, this equivalence is lost (cf.
[Cla90], Remark 6.1.2, and [Gut+16], p. 4): Although the i-th row of all matrices
in the generalized Jacobian is a subgradient ξi ∈ ∂fi(x), not all combinations of
subgradients of fi, i ∈ {1, . . . , k} produce elements in ∂f(x). Only those ξi ∈ ∂fi(x)
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that arise by using the same sequence (xj)j in Definition 2.2.15 can be combined
into an element (ξ1, . . . , ξk)⊤ ∈ Rk×n of the generalized Jacobian. More formally,

∂f(x) ( {(ξ1, . . . , ξk)⊤ ∈ Rk×n : ξi ∈ ∂fi(x), i ∈ {1, . . . , k}}.

An optimality condition based on the generalized Jacobian can be found in [Gut+16],
Definition 3. As this condition is slightly more complicated than the optimality
condition (2.17), we will leave its utilization in our context for future research.

2.3 Existing solution methods

In this section, several popular solution methods for MOPs will be presented. They
are roughly separated into four classes: The first class contains scalarization meth-
ods, which are based on turning MOPs into parameter-dependent scalar problems
and then applying methods from single-objective optimization. The second class
contains methods that arise by directly generalizing methods from single-objective
optimization (without scalarizing the MOP beforehand). The methods in the first
two classes only compute a single Pareto optimal point at a time. In contrast to this,
the third class contains methods that compute the entire Pareto set at once instead
of just single optimal points. Finally, the fourth class contains methods which are
motivated by evolutionary computation.

This section acts as a short overview. For a more detailed discussion, see [Mie98;
Ehr05; Deb01].

2.3.1 Scalarization methods

The idea of scalarization methods is to convert MOPs into (parameter-dependent)
scalar problems, for which there is a large quantity of solvers available. Since the
actual optimization is carried out in the single-objective setting, these methods tend
to be easy to implement. On top of that, in many cases, the reformulation of the
MOP is intuitive and easy to interpret, requiring almost no understanding of general
multiobjective optimization. Both reasons led to scalarization methods being among
the most popular methods for solving MOPs. The methods considered here are the
weighting method and the ε-constraint method.

Weighting method

Instinctively, when getting tasked to minimize multiple objectives at the same time,
the first idea one might come up with is to minimize the sum of all objectives,
as this does embody a sense of simultaneous minimization. Since this approach is
clearly highly dependent on the scaling of the objective function values, one might
additionally add a weighting coefficient in front of each objective. Formally, for
coefficients α ∈ ∆k, the resulting scalar problem is

min
x∈Rn

k
∑

i=1

αifi(x), (WS)

called the weighted sum. Solving this problem is referred to as the weighting method.
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It is possible to show that for all α ∈ ∆k, solutions of (WS) are indeed at least
weakly Pareto optimal. (In particular, if f is differentiable, it is easy to see that α
is a corresponding KKT vector.) But only if all objective functions are convex, it
is possible to show the opposite implication, i.e., that for all Pareto optimal points
x ∈ P , there is some weighting α ∈ ∆k such that x is a solution of (WS). The
required convexity is one of the main drawbacks of the weighting method.

ε-constraint method

A different intuition for minimizing multiple objectives at the same time is to min-
imize only one of the objectives, with the constraint that the values of the other
objectives are at least below certain levels. Formally, let j ∈ {1, . . . , k}, εi ∈ R for
i ∈ {1, . . . , k} \ {j} and consider the problem

min
x∈Rn

fj(x), (EC)

s.t. fi(x) ≤ ǫi ∀i ∈ {1, . . . , k} \ {j}.

Solving (EC) is referred to as the ε-constraint method.
It is again possible to show that solutions of (EC) are at least weakly Pareto

optimal. Additionally, x ∈ Rn is Pareto optimal if and only if x is a solution of (EC)
for all j ∈ {1, . . . , k} and εi = fi(x), i ∈ {1, . . . , k} \ {j}. So in this case, convexity
of f is not required, but (EC) has to be solved k-times to ensure Pareto optimality.

2.3.2 Generalizations of methods from scalar optimization

Since multiobjective optimization is a generalization of single-objective optimiza-
tion, certain methods for the single-objective case can be generalized. An advantage
of this approach is that the original methods are well understood and in many cases,
theoretical results only need minor adjustments to be transferred to the multiobjec-
tive case. Here, we will only consider the steepest descent method [FS00] (for smooth
MOPs) and the multiobjective proximal bundle method [MKW14] (for nonsmooth
MOPs), but other methods can be derived in a similar way.

Steepest descent method

The idea of descent methods is to iteratively generate a sequence (xj)j ∈ Rn, starting
in some x1 ∈ Rn, where each element is “more optimal” than the previous element.
In the single-objective case, this means f(xj+1) < f(xj) for all j ≥ 1. If f is
continuously differentiable, this can be realized by setting

xj+1 = xj + tv,

where v = −∇f(xj) and t > 0 is some step length assuring descent. Since −∇f(x)
is the direction that locally promises the steepest (first-order) descent of f in x, this
method is called the steepest descent method (or gradient descent method) [NW06].

In the multiobjective setting, by Lemma 2.2.2, the descent of f in a direction
v ∈ Rn can be measured by

max
i∈{1,...,k}

〈∇fi(x), v〉. (2.18)
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We say that v is a descent direction of f in x if (2.18) is negative. Let v̄ : Rn → Rn,
where v̄(x) is the solution of (2.6) for

W = conv({∇f1(x), . . . ,∇fk(x)}),

i.e.,

v̄(x) := arg min
v∈− conv({∇f1(x),...,∇fk(x)})

‖v‖2. (2.19)

By Lemma 2.2.1, if x is not Pareto critical, then v̄(x) is a descent direction for f in
x. In fact, v̄(x) is the steepest descent direction of f in x in the following sense:

Lemma 2.3.1. Let x ∈ Rn. If v̄(x) 6= 0 then

v̄(x)

‖v̄(x)‖ = arg min
v∈B1(0)

max
i∈{1,...,k}

〈∇fi(x), v〉. (2.20)

Proof. By inequality (2.7) we have

max
i∈{1,...,k}

〈

∇fi(x),
v̄(x)

‖v̄(x)‖

〉

=
1

‖v̄(x)‖ max
i∈{1,...,k}

〈∇fi(x), v̄(x)〉 ≤ −‖v̄(x)‖.

Assume that (2.20) does not hold, i.e., that there is some w ∈ B1(0) such that

max
i∈{1,...,k}

〈∇fi(x), w〉 < max
i∈{1,...,k}

〈

∇fi(x),
v̄(x)

‖v̄(x)‖

〉

≤ −‖v̄(x)‖.

Since v̄(x) ∈ − conv({∇f1(x), . . . ,∇fk(x)}), there is some coefficient vector α ∈ ∆k

such that v̄(x) = −∑k
i=1 αi∇fi(x). In particular,

− 〈v̄(x), w〉 =
k
∑

i=1

αi〈∇fi(x), w〉 ≤
k
∑

i=1

αi max
j∈{1,...,k}

〈∇fj(x), w〉 < −‖v̄(x)‖

⇔ − 〈v̄(x), ‖v̄(x)‖w〉 < −‖v̄(x)‖2 = −〈v̄(x), v̄(x)〉
⇔ 〈v̄(x), ‖v̄(x)‖w − v̄(x)〉 > 0.

As a result,

‖v̄(x)‖2 ≥ ‖v̄(x)‖2‖w‖2 = ‖‖v̄(x)‖w‖2 = ‖v̄(x) + (‖v̄(x)‖w − v̄(x))‖2
= ‖v̄(x)‖2 + 2〈v̄(x), ‖v̄(x)‖w − v̄(x)〉 + ‖‖v̄(x)‖w − v̄(x)‖2
> ‖v̄(x)‖2,

which is a contradiction.

Remark 2.3.2. a) In practice, v̄ can be computed via v̄(x) = −∑k
i=1 ᾱi∇fi(x),

where ᾱ is the solution of

min
α∈Rk

∥

∥

∥

∥

∥

k
∑

i=1

αi∇fi(x)

∥

∥

∥

∥

∥

2

,

s.t.
k
∑

i=1

αi = 1, (2.21)

αi ≥ 0 ∀i ∈ {1, . . . , k}.
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b) Instead of requiring v ∈ B1(0), the boundedness of the optimization problem
on the right-hand side of (2.20) could also be ensured by adding 1

2
‖v‖2 to the

objective, i.e., by considering the problem

min
v∈Rn

(

max
i∈{1,...,k}

〈∇fi(x), v〉 +
1

2
‖v‖2

)

. (2.22)

To get rid of the nondifferentiability caused by the max function, this problem
can be equivalently written as

min
(v,β)∈Rn+1

β +
1

2
‖v‖2,

s.t. ∇fi(x)⊤v ≤ β ∀i ∈ {1, . . . , k}.

This is the dual problem of (2.21) (cf. [FS00]) and an alternative way of
computing v̄.

c) Problem (2.22) can also be written as

min
(v,β)∈Rn+1

β,

s.t. ∇fi(x)⊤v +
1

2
‖v‖2 ≤ β ∀i ∈ {1, . . . , k}.

If f is twice continuously differentiable and the Hessians ∇2fi(x) are positive
definite for all i ∈ {1, . . . , k}, then the Euclidean norm in the inequality con-
straints of this problem can be replaced by the norms induced by the respective
hessian, i.e.,

min
(v,β)∈Rn+1

β,

s.t. ∇fi(x)⊤v +
1

2
v⊤∇2fi(x)v ≤ β ∀i ∈ {1, . . . , k}.

The direction obtained from solving this problem is known as the Newton di-
rection [FDS09].

As in the single-objective case, it can be shown that the steepest descent direction
v̄(x) is continuously depending on x (cf. [FS00], Lemma 1).

Lemma 2.3.3. The function x 7→ v̄(x) is continuous.

Proof. Let (xj)j ∈ Rn with limj→∞ xj = x̄ ∈ Rn. Since ∇fi is continuous for
every i ∈ {1, . . . , k}, (v̄(xj))j must be bounded. In particular, (v̄(xj))j has an

accumulation point w ∈ Rn with w = −∑k
i=1 α

′
i∇fi(x̄) for some α′ ∈ ∆k. By

construction it holds

‖v̄(x̄)‖2 ≤ ‖w‖2. (2.23)

If we have equality in (2.23), then v̄(x̄) = w, since the solution of (2.19) is unique.
Assume that ‖v̄(x̄)‖2 < ‖w‖2. Let ᾱ ∈ ∆k such that v̄(x̄) = −∑k

i=1 ᾱi∇fi(x̄) and
define

ϕ(x) :=

∥

∥

∥

∥

∥

k
∑

i=1

ᾱi∇fi(x)

∥

∥

∥

∥

∥

2

.
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Chapter 2. Basics of multiobjective optimization

Then ϕ is continuous, ϕ(x) ≥ ‖v̄(x)‖2 for all x ∈ Rn and ϕ(x̄) = ‖v̄(x̄)‖2. Since
ϕ(x̄) = ‖v̄(x̄)‖2 < ‖w‖2, there must be some open U ⊆ Rn with x̄ ∈ U such that

‖v̄(x)‖2 ≤ ϕ(x) < ‖v̄(x̄)‖2 +
1

2
(‖w‖2 − ‖v̄(x̄)‖2) < ‖w‖2 ∀x ∈ U.

This is a contradiction to w being an accumulation point of (v̄(xj))j. Thus we must
have w = v̄(x̄). Since this holds for any accumulation point w of the bounded
sequence (v̄(xj))j, we must have limj→∞ v̄(xj) = v̄(x̄).

To obtain a descent method for MOPs, the steepest descent direction has to be
combined with a step length. To this end, for c ∈ (0, 1), consider

t̄(x) := max({2−j : j ∈ N, fi(x+ 2−j v̄) < fi(x) + 2−jc〈∇fi(x), v̄〉 ∀i ∈ {1, . . . , k}}).
(2.24)

By Lemma 2.2.2, t̄ is well-defined. The inequality in (2.24) is called the Armijo
condition [NW06]. The resulting descent method is

xj+1 = xj + t̄(xj)v̄(xj), j ∈ N (2.25)

for some initial point x1 ∈ Rn, v̄ as in (2.19) and t̄ as in (2.24). In terms of
convergence, the following theorem holds (cf. [FS00], Theorem 1):

Theorem 2.3.4. All accumulation points of the sequence (xj)j generated by (2.25)
are Pareto critical.

Multiobjective proximal bundle method

The steepest descent method previously presented heavily relies on f being contin-
uously differentiable. In the following, we will present a method that can be applied
to MOPs where the objectives fi are merely locally Lipschitz continuous.

In the single-objective case, bundle methods are regarded as the most efficient
solution methods for nonsmooth problems [Kiw90; SZ92; BKM14]. As mentioned
in Section 2.2.2, one of the challenges of nonsmooth optimization is the difficulty
of approximating the subdifferential. Bundle methods are iterative methods where
the idea is to only compute a single subgradient in each iteration while reusing sub-
gradients computed in previous iterations. In this way, a bundle of subgradients is
created which is used to approximate the subdifferential and compute descent direc-
tions. Similar to classical descent methods, these (approximated) descent directions
are then combined with a line search method to generate a sequence of points along
which f decreases. In [MKW14], this approach was generalized to the multiobjec-
tive setting, resulting in the multiobjective proximal bundle method (MPB). In the
following, this method will be derived. In terms of evaluating the subdifferentials,
we assume that at each point x ∈ Rn, we can compute an (arbitrary) element from
each ∂fi(x), i ∈ {1, . . . , k}.

Let

H : Rn × Rn → R, (x, y) 7→ max
i∈{1,...,k}

fi(x) − fi(y).

H is called the improvement function and has the following properties:
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2.3. Existing solution methods

• If H(x, y) < 0, then fi(x) < fi(y) for all i ∈ {1, . . . , k}, i.e., x is an improve-
ment over y.

• H(x, y) ≥ 0 for all x ∈ Rn if and only if y is weakly Pareto optimal. In
particular, in this case, y ∈ arg minx∈Rn H(x, y).

Thus, if x is not weakly Pareto optimal, then the solution of the problem

min
v∈Rn

H(x+ v, x) = min
v∈Rn

max
i∈{1,...,k}

fi(x+ v) − fi(x), (2.26)

is a direction v in which all objective functions fi decrease. To solve this problem, f
will be approximated by a linearization based on subgradients. We will only consider
the convex case here and refer to [MKW14] for the nonconvex case.

Assume that all fi, i ∈ {1, . . . , k}, are convex. Then the function

v 7→ max
i∈{1,...,k}

fi(x+ v) − fi(x)

is convex as the maximum of convex functions. In particular, (2.26) is a convex prob-
lem. Note that (2.26) has two sources of nonsmoothness: the nonsmooth objectives
fi and the maximum function. To deal with the nonsmoothness of the fi, we will
use the bundle idea. To this end, assume that there are points yj, j ∈ {1, . . . , N},
in which we already computed some subgradients ξji ∈ ∂fi(y

j), i ∈ {1, . . . , k}. Then
the objectives can be linearized at these points via

f̄i,j(x) := fi(y
j) + 〈ξji , x− yj〉 ∀i ∈ {1, .., k}, j ∈ {1, . . . , N}.

Due to convexity of the objectives, each fi can be approximated from below by the
so-called cutting-plane model

fi(x) ≈ f̂i(x) = max
j∈{1,...,N}

f̄i,j(x).

Replacing the term fi(x+ v) in the objective of (2.26) with the cutting-plane model
yields

fi(x+ v) − fi(x) ≈ f̂i(x+ v) − fi(x) = max
j∈{1,...,N}

f̄i,j(x+ v) − fi(x)

= max
j∈{1,...,N}

fi(y
j) + 〈ξji , x+ v − yj〉 − fi(x)

= max
j∈{1,...,N}

f̄i,j(x) + 〈ξji , v〉 − fi(x)

= max
j∈{1,...,N}

αi,j(x) + 〈ξji , v〉,

where αi,j(x) := f̄i,j(x)−fi(x) is the so-called linearization error. Since the cutting-
plane model is piecewise linear, a regularization term has to be added to (2.26) to
make sure that the problem is bounded. The resulting problem is

min
v∈Rn

(

max
i∈{1,...,k},j∈{1,...,N}

αi,j(x) + 〈ξji , v〉
)

+
1

2
‖v‖2.
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Chapter 2. Basics of multiobjective optimization

To get rid of the nonsmoothness in the objective function of this problem caused by
the maximum function, we can rewrite it as a constrained smooth problem:

min
(v,β)∈Rn+1

β +
1

2
‖v‖2, (2.27)

s.t. αi,j(x) + 〈ξji , v〉 ≤ β ∀i ∈ {1, . . . , k}, j ∈ {1, . . . , N}.
Since (2.27) is a quadratic problem (with linear inequality constraints), it can be
solved efficiently.

It is important to note that since the problem (2.27) is only an approximation
of the original problem (2.26), it cannot be guaranteed that the solution v of (2.27)
actually yields a descent for f . If it does not, then the approximation of the current
subdifferential is insufficient, and new subgradients close to the current point have
to be computed, i.e., the current bundle has to be enriched. This can be handled
in a line search method that either performs serious steps, if a descent of f can
be achieved, or null steps, if the current direction v is not a descent direction. For
details on the line search method and and the enrichment of the bundle, we refer to
[MKW14]. In general, it can be shown that under some mild regularity assumption
on f , all accumulation points of the sequence generated by the MPB are Pareto
critical.

2.3.3 Set-based methods

All methods introduced up to this point are able to compute single Pareto optimal
points, depending on an input parameter from some parameter space. That is, the
result of the weighting method depends on the weighting vector α ∈ ∆k, the result of
the ε-constraint method depends on the ε ∈ Rk−1 and the results of both the steep-
est descent method and the MPB depend on the initial points x1 ∈ Rn. In all these
methods it is clear that different input parameters will (mostly) produce different
solutions. But as emphasized in Section 2.1, the actual solution of an MOP is the
Pareto set, i.e., the set of all Pareto optimal points. A naive approach to compute
an approximation of the Pareto set would be to apply one of the above methods
for many different input parameters. But since the relationship between the input
parameter and the resulting solution is unknown, there is no way of knowing a pri-
ori how the parameter space should be discretized to obtain a good approximation.
Thus, a more sophisticated approach is needed. To this end, this section will intro-
duce the subdivision method [DSH05; DH97] and the continuation method [Hil01],
which are set-based methods that are able to approximate the entire Pareto set.

Subdivision method

The steepest descent method (2.25) can be written as

xj+1 = g(xj), j ∈ N, (2.28)

for some initial point x1 ∈ Rn and

g : Rn → Rn, x 7→ x+ t̄(x)v̄(x).

For a general g : Rn → Rn, (2.28) is known as a (discrete, autonomous) dynami-
cal system. In the following, some basic definitions for dynamical systems will be
introduced.
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2.3. Existing solution methods

Definition 2.3.5. a) Let x ∈ Rn. If g(x) = x, then x is called a fixed point of
(2.28). For a set Q ⊆ Rn let FQ be the set of fixed points of g in Q.

b) Let Q ⊆ Rn be compact and let gj denote the j-times composition of g. Then

AQ := Q ∩
⋂

j∈N
gj(Q)

is called the global attractor of (2.28) relative to Q.

Due to the construction of the steepest descent method, the Pareto critical set
is the set of fixed points of (2.28). Clearly, all fixed points in a compact set Q are
contained in the global attractor AQ, i.e., FQ ⊆ AQ. Thus, if the Pareto critical set
Pc is bounded and Q is chosen such that Pc ⊆ Q, then Pc = FQ ⊆ AQ.

To compute AQ, the subdivision method can be used, which was originally intro-
duced in [DH97] for general discrete dynamical systems. The idea is to iteratively
divide Q into compact subsets of decreasing diameter (subdivision step) while re-
moving subsets that have an empty intersection with AQ (selection step). If g is a
homeomorphism, then AQ ⊆ g(AQ) (see [DH97]). In this case, to decide whether a
set B ⊆ Rn has an empty intersection with AQ, we can use the fact that if Q′ ⊆ Rn

is any superset of AQ, then

B ∩ AQ ⊆ B ∩ g(AQ) ⊆ B ∩ g(Q′),

so

B ∩ AQ 6= ∅ ⇒ B ∩ g(Q′) 6= ∅. (2.29)

In particular, the right-hand side of (2.29) can be used as a necessary condition for
B ∩AQ 6= ∅, and the condition gets more strict the smaller Q′ \AQ. Since we start
the subdivision method with the set Q and only remove subsets of Q \ AQ from
Q, the current approximation of AQ will always be a superset of AQ and can thus
be used for Q′ in (2.29). For ease of implementation, it makes sense to choose Q
as a hypercube (which will be referred to as a box ) and to divide Q evenly into 2n

smaller boxes during the subdivision. (In theory, more general compact sets Q and
subdivision schemes can be used, cf. [DH97].) Formally, the subdivision method can
be denoted as in Algorithm 2.1.

For Qi, i ∈ N, as in Algorithm 2.1, let

Q∞ :=
⋂

i∈N
Qi.

By construction we have Qi+1 ⊆ Qi for all i ∈ N, so in particular Q∞ ⊆ Qi for
all i ∈ N. In other words, Q∞ can be interpreted as the “limit” of the sequence
(Qi)i∈N. Regarding the convergence of Algorithm 2.1, the following result can be
shown [DH97].

Theorem 2.3.6. a) FQ ⊆ Q∞.

b) If g is a homeomorphism, then AQ = Q∞.
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Chapter 2. Basics of multiobjective optimization

Algorithm 2.1 Subdivision method

Given: Function g : Rn → Rn, box Q ⊆ Rn.
1: Initialize B1 = {Q}.
2: for i ∈ N do
3: Subdivision step: Divide each box in Bi evenly into 2n smaller boxes (by

halving along each dimension). Let B′
i+1 be the resulting collection of boxes.

4: Selection step: Remove all boxes from B′
i+1 that do not contain part of AQ

via (2.29), i.e., set

Bi+1 = {B ∈ B′
i+1 : B ∩ g(Qi) 6= ∅},

where Qi =
⋃

B∈Bi
B.

5: end for

By Theorem 2.3.6 a), if g is the dynamical system induced by the steepest descent
method (2.25), then Q∞ is a superset of the Pareto critical set Pc. Unfortunately,
part b) of this theorem cannot be applied as in general, g is not a homeomorphism:
although the descent direction v̄ is continuous (cf. Lemma 2.3.3), g must neither be
injective nor surjective. Thus, although Pc is contained in all Qi, we can generally
not expect that Pc = Q∞.

In practice, the image g(Qi) in the selection step cannot be computed exactly.
Instead, g(Qi) is approximated by replacing Qi with a finite set of test points in
Qi, e.g., by discretizing each box in Bi. The resulting behavior of the practical
implementation of the subdivision method for the solution of MOPs is discussed in
the following remark.

Remark 2.3.7. Intuitively, one might expect that replacing g(Qi) with the image
of a finite number of test points would lower the quality of the result of Algorithm
2.1. On the one hand this is true, since it can happen that B ∩ g(Qi) 6= ∅ without
there being a test point in g−1(B)∩Qi. In other words, it can happen that boxes get
falsely removed. On the other hand, note that we only have Pc ⊆ Q∞ and in general,
there will be points in Q∞ that are not Pareto critical. In the language of dynamical
systems, these are, for example, points on the unstable manifolds (cf. [DH97]) of
fixed points. In the language of optimization, these points arise due to the existence
of Pareto critical points that are not locally weakly Pareto optimal. If x∗ is such
a point and if U is any open neighborhood of x∗, then part of U will always get
mapped away from x∗, potentially into boxes that do not contain part of Pc. Thus,
if the image of Qi is merely approximated, then there is a chance that this behavior
is prevented. Furthermore, with the same reasoning, it can happen that parts of
Pc get removed which are not attractive in terms of the dynamics of the descent
method, i.e., which are not Pareto optimal. Thus, even though the approximation of
Qi via test points lowers the quality of the approximation of Q∞, it can improve the
approximation of the actual Pareto set.

The subdivision method can be seen as an approximation of the Pareto critical
set “from the outside”, since we start with a large box Q ⊇ Pc and iteratively remove
parts of Q that are not Pareto critical. In the following part, we will consider the
opposite approach, i.e., an approximation “from the inside”.
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Continuation method

In the following, the continuation method (also known as the homotopy method)
from [Hil01] will be introduced. The goal of this method is to approximate the
manifold M from Theorem 2.2.10, i.e., the set

M = {(x, α) ∈ Rn × ∆k : Df(x)⊤α = 0, αi > 0 ∀i ∈ {1, . . . , k}}.

If the rank assumption in Theorem 2.2.10 is satisfied and (x0, α0) ∈ M, then M
being a manifold means that there is a smooth local parametrization of M around
(x0, α0) via Rk−1, i.e., there is some open set U ⊆ Rn+k with (x0, α0) ∈ U , an open
set V ⊆ Rk−1 and a C1-diffeomorphism ϕ : V → M ∩ U (cf. [Lee12], Proposition
5.23). The idea of the continuation method is to construct a local parametrization
that can be numerically evaluated. This allows for the computation of new points
on M close to (x0, α0). By repeating this process in the newly found points, M can
be further and further explored.

The basis of this method is the following theorem (cf. [Hil01], Theorem 5.7).

Theorem 2.3.8. Let (x0, α0) ∈ M with rk(DF (x0, α0)) = n+1. Let {q1, . . . , qn+k}
be an orthonormal basis of Rn+k such that span({q1, . . . , qk−1}) = T(x0,α0)M. Let
Q ∈ R(n+k)×(n+k) be the orthogonal matrix with columns q1, . . . , qn+k. Then there is

• an open set V ⊆ Rk−1 with 0 ∈ V ,

• an open set U ⊆ Rk+n with (x0, α0) ∈ U ,

• an open set W ⊆ Rn+1 with 0 ∈ W and

• a continuously differentiable function η : V → W with η(0) = 0 and Dη(0) = 0

such that

ϕ : V → M∩ U, ξ 7→ (x0, α0)
⊤ +Q

(

ξ
η(ξ)

)

is a smooth local parametrization of M at (x0, α0).

In the following, we will discuss how ϕ in the previous theorem can be evaluated
in practice. By Theorem 2.2.10, we have T(x0,α0)M = ker(DF (x0, α0)). Thus, an
orthonormal basis {q1, . . . , qn+k} can be obtained by reordering the right-singular
vectors of DF (x0, α0) (or via a QR-factorization of DF (x0, α0)

⊤ as in [Hil01]). (In
particular, this can be used to check if the rank condition from Theorem 2.2.10 is
satisfied.) Note that

ϕ(ξ) = (x0, α0)
⊤ +Q

(

ξ
η(ξ)

)

= (x0, α0)
⊤ +

k−1
∑

i=1

ξiqi +
n+k
∑

i=k

ηi(ξ)qi

with

k−1
∑

i=1

ξiqi ∈ T(x0,α0)M and
n+k
∑

i=k

ηi(ξ)qi ∈ (T(x0,α0)M)⊥.
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Chapter 2. Basics of multiobjective optimization

So ϕ can be evaluated by first moving from (x0, α0) in the tangent direction induced
by ξ, and then moving in the direction orthogonal to the tangent space induced by
η(ξ). Since Theorem 2.3.8 does not give an explicit expression for η, η(ξ) has to be
approximated. This can be done by recalling that ϕ(ξ) has to satisfy

F (ϕ(ξ)) = 0

with F as in (2.11), so η(ξ) is a root of the function

Rn+1 → Rn+1, η 7→ F

(

(x0, α0)
⊤ +

k−1
∑

i=1

ξiqi +
n+k
∑

i=k

ηiqi

)

. (2.30)

In [Hil01], η(ξ) was approximated by applying Newton’s method to solve this root-
finding problem.

By choosing multiple different ξ, the above procedure to evaluate ϕ can be used to
generate new points in M. Since {q1, . . . , qk−1} was constructed as an orthonormal
basis of T(x0,α0)M, the unit vectors ξj = ej ∈ Rk−1, j ∈ {1, . . . , k − 1}, can be
chosen, such that

k−1
∑

i=1

ξji qi =
k−1
∑

i=1

(ej)iqi = qj, j ∈ {1, . . . , k − 1},

yields orthonormal directions in T(x0,α0)M. Furthermore, in [Hil01] it was shown that
the unit vectors can be adaptively scaled in a way that ensures that the individual
distance of the images of the resulting Pareto critical points to the point f(x0) is
constant, i.e., such that an even discretization of the Pareto front can be achieved.

In [SDD05], a version of the continuation method based on boxes was introduced,
which will be discussed in Section 3.1.

2.3.4 Evolutionary methods

In theory, all methods introduced so far are able to compute points which are exactly
Pareto optimal, and in practice, they are able to generate points which are arbitrar-
ily close to Pareto optimal points. While convergence to Pareto optimal points is the
key property of solutions methods from a theoretical point of view, there are applica-
tions where exact solutions are not needed and good approximations are sufficient.
Furthermore, there are cases where the generation of exact solutions is infeasible
due to the complexity of the problem. This creates the need for methods that are
able to generate good approximations efficiently, even if they might not converge to
exact solutions. Historically, the most popular methods in this area are evolutionary
algorithms (EAs) [ZLB04; Deb01], which are based on stochastic optimization.

The idea of EAs is to consider a finite set of points in the variable space and
iteratively modify it until its image forms a close and well-spread approximation of
the Pareto front. Since EAs are inspired by natural evolution, each point is referred
to as an individual, and the set of individuals is called the population. In each
iteration, which is referred to as a generation, the population is modified through
a recombination and a mutation operator. The recombination operator creates a
number of new individuals (children) by combining features of a number of existing
individuals (parents). The mutation operator takes a single individual and applies
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2.3. Existing solution methods

a small change to it. To decide which individuals are used for recombination and
mutation, selection operators are used. They are based on a fitness function, which
assigns to each individual a scalar value based on their quality. For example, the
fitness value of an individual could be the number of other individuals that have
smaller objective function values for all objectives [FF93]. Based on these ideas, a
general EA consists of the following steps:

1. Randomly initialize the population.

2. Compute the fitness function value of each individual.

3. Create new individuals through recombination and mutation.

4. Choose a subset of new and old individuals to create a new population.

5. Go to step 2.

Clearly, the above procedure is merely an abstract algorithm, and the specific
choices of fitness function and evolution operators produce different EAs. Among
the most popular EAs are NSGA-II (Non-dominated Sorting Genetic Algorithm II)
[Deb+02] and SPEA-2 (Strength Pareto Evolutionary Algorithm 2) [ZLT01], but
there is a vast amount of additional algorithms in the literature (see [Zho+11] for a
survey).
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3 Box-continuation methods for
smooth problems

If the premise of Theorem 2.2.10 holds, then the set M is a manifold with a tangent
space that is easy to compute. Since the projection of M onto its first n components
is the set of Pareto critical points (with positive KKT vectors), this smoothness
can be exploited for the solution of MOPs. As already seen in Section 2.3.3, if a
single Pareto critical point is given, then new Pareto critical points in its vicinity
can be computed by moving in tangent directions of M. This is the basic idea of
continuation methods [Hil01; SDD05; MS17; BCS20].

This chapter introduces new continuation methods which are inspired by the
methods from [Hil01] (Section 2.3.3) and [SDD05]. We begin by deriving a method
for the case where exact gradients are available (Section 3.1), which is similar to
the method from [SDD05]. Afterwards, we consider the case where only inexact
gradients are at hand together with an upper bound for the error, and construct an
algorithm that is able to compute a tight superset of the Pareto critical set in this
setting (Section 3.2).

Parts of Section 3.2 have been previously published in Section 2 of [Ban+19], to
which the author of this thesis was the main contributor.

3.1 Exact gradients

Throughout this section, we assume that f satisfies the requirements of Theorem
2.2.10 a), such that M is a manifold. While from a local point of view, the continu-
ation method from [Hil01] is able to produce well spread points on the set M, there
are certain difficulties that arise when trying to compute the complete set:

• By construction, the method is only able to compute the connected component
of M that contains the starting point (x0, α0). Thus, if M consists of multiple
connected components, then the method has to be applied multiple times
with one starting point from each component. This either requires a priori
information about the structure of M, or a way to check if a new starting point
lies in a component that was already computed. Since the approximation of M
is based on a set of points, the latter approach requires a way of determining
if a point lies within a smooth object (of known dimension) discretized by a
finite set of points, which is a non-trivial task.

• Even if M is connected, it can happen that the method reaches the same area
twice. Thus, as a stopping criterion, a mechanism is needed that recognizes
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3.1. Exact gradients

if an area of M has already been explored. Since the approximation of M is
point based, this causes the same difficulties as mentioned above.

• In [Hil01], the system (2.30) is solved via Newton’s method. This means that
the resulting approximation (x∗, α∗) of ϕ(ξ) can have negative multipliers α∗

i ,
i ∈ {1, . . . , k}. (This can, for example, be seen in Figure 7.2 in [Hil01].) As
a result, the method can produce points which are not actually contained in
M.

In this section, a continuation method will be derived that resolves these diffi-
culties by approximating the Pareto critical set using a collection of hypercubes (or
boxes) instead of a set of points. The resulting box-continuation method will look
similar to the method from [SDD05], but will have a key difference that we will
discuss later (cf. Remark 3.1.4). We begin by deriving the idea of our method in
Section 3.1.1 before presenting the resulting algorithm in Section 3.1.2. Afterwards,
we apply our method to some numerical examples in Section 3.1.3. Finally, we dis-
cuss extensions to constrained MOPs (Section 3.1.4) and the computation of the
actual Pareto set (Section 3.1.5)

3.1.1 Covering via boxes

In the following, we will introduce the division of the variable space Rn into boxes
that forms the basis of the box-continuation method. To this end, for a radius r > 0
and an anchor point a ∈ Rn let

B := {[−r, r]n + (2i1r, . . . , 2inr)
⊤ + a : (i1, . . . , in) ∈ Zn}.

Clearly,
⋃

B∈B B = Rn and two different boxes from B can only intersect in their
lower dimensional faces. For B1, B2 ∈ B, we say that B1 is a neighboring box of B2,
if B1 6= B2 and B1 ∩ B2 6= ∅.

The goal of the box-continuation method is to compute the collection of boxes
in B with a nonempty intersection with the Pareto critical set Pc, i.e., to compute

Bc := {B ∈ B : B ∩ Pc 6= ∅}.

To check if a box B ∈ B has a nonempty intersection with Pc, we can use the
problem

θ(B) := min
x∈B,α∈∆k

‖Df(x)⊤α‖2 (3.1)

= min
(x,α)∈Rn+k

α⊤Df(x)Df(x)⊤α,

s.t.

k
∑

i=1

αi = 1,

αi ≥ 0 ∀i ∈ {1, . . . , k},
x ∈ B.

Then

B ∈ Bc ⇔ θ(B) = 0. (3.2)
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Figure 3.1: A sketch of the idea of the box-continuation method. The red line is the
projection of the tangent space of M (attached to x0) and the dashed line shows
the Pareto critical set.

Given some initial box B ∈ Bc, the idea of the box-continuation method is to
compute all neighboring boxes of B in Bc and to then repeat this process with the
new found boxes. Depending on the number of variables n and objectives k, we
distinguish between the following two cases:

• k ≥ n+ 1: In this case, the dimension of M is k− 1 ≥ n. Thus, as a superset
of prx(M) (with prx as in (2.12)), the Pareto critical set is typically a set with
positive measure in Rn. Here, we just solve (3.1) for all neighboring boxes of
B.

• k < n+1: In this case, the dimension of M is k−1 < n, so prx(M) and Pc are
typically null sets in Rn. In particular, solving (3.1) for all neighboring boxes
is generally inefficient, since only few boxes will actually be contained in Bc.
Instead, we will first use the tangent space of the manifold M to obtain good
candidates for neighboring boxes in Bc, and then solve (3.1) only for those
candidates.

The realization of the first case is straight-forward. (Note that for this case, M
does not even have to be a manifold.) For the second case, we have to discuss the
relationship between the tangent space of M and the “projected smooth structure”
of Pc ⊇ prx(M).

Let (x0, α0) ∈ M. Since we are only interested in the Pareto critical set Pc (and
not the augmented set M), the plan is to only use the projection prx(T(x0,α0)M)
of the tangent space onto the first n components to practically obtain the “tangent
space” of Pc at x0. A sketch of this idea is shown in Figure 3.1. This poses two
theoretical problems:

(i) In general, the KKT vector α0 of x0 is not unique. This means that if we choose
a different KKT vector α′ of x0, then we might have T(x0,α0)M 6= T(x0,α′)M.
In other words, the tangent information we project onto the variable space Rn

might depend on the chosen KKT vector.

(ii) When projecting from Rn × Rk onto Rn, we lose tangent information that is
orthogonal to Rn, i.e., tangent vectors of the form (0, β)⊤ ∈ T(x0,α0)M will get
mapped to 0 ∈ Rn.
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Both of these problems are addressed in the following lemma.

Lemma 3.1.1. Let x0 ∈ Pc and α0 ∈ ∆k be a KKT vector of x0. If

a) α0 is not unique or

b) (α0)i > 0 for all i ∈ {1, . . . , k} and there is v ∈ T(x0,α0)M with prx(v) = 0,

then

rk(Df(x0)) < k − 1.

Proof. a) Let α′ ∈ ∆k be another KKT vector of x0 and define β = α0 − α′ 6= 0.
Then

Df(x0)
⊤β = Df(x0)

⊤α0 −Df(x0)
⊤α′ = 0,

so β ∈ ker(Df(x0)
⊤). Furthermore, β and α0 are linearly independent, since for

λ ∈ R we have

β = λα0 ⇒ 0 =
k
∑

i=1

(α0)i −
k
∑

i=1

(α′)i =
k
∑

i=1

βi = λ

k
∑

i=1

(α0)i = λ,

which is a contradiction. So we must have dim(ker(Df(x)⊤)) > 1. By the rank-
nullity theorem, this implies

k = dim(ker(Df(x0)
⊤)) + rk(Df(x0)

⊤) > 1 + rk(Df(x0)
⊤),

so rk(Df(x0)) = rk(Df(x0)
⊤) < k − 1.

b) Let v ∈ T(x0,α0)M with prx(v) = 0, i.e., v = (0, β)⊤ for some β ∈ Rk \ {0}. By
Theorem 2.2.10 we have T(x0,α0)M = ker(DF (x0, α0)), so

0 = DF (x0, α0)v =

(
∑k

i=1(α0)i∇2fi(x0) Df(x0)
⊤

0 1

)(

0
β

)

=

(

Df(x0)
⊤β

∑k
i=1 βi

)

.

Thus, the proof follows as in a).

By the definition of the Pareto critical set Pc, we have

Pc ⊆ {x ∈ Rn : rk(Df(x)) ≤ k − 1}.

Before we discuss the implications of Lemma 3.1.1, we recall the following definition
from [Sma73].

Definition 3.1.2. A point x ∈ Rn is said to satisfy the rank assumption if
rk(Df(x)) = k−1. If the rank assumption is satisfied for all x ∈ Pc, then f satisfies
the rank assumption.

According to Lemma 3.1.1, if f satisfies the rank assumption, then the problems
(i) and (ii) from above cannot occur. In [Sma73] it was argued that in a certain
natural topology on the space of continuously differentiable functions, almost all
points x ∈ Pc satisfy the rank assumption for almost all f . If n+4

2
> k, then we

have the stronger result that almost all f actually satisfy the rank assumption. (For
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example, if k = 2 with arbitrary n ∈ N, then the rank assumption can only be
violated in some x ∈ Rn if rk(Df(x)) = 0, i.e., if the gradients of both objectives
are zero in x.) Thus, we expect that the potential problems (i) and (ii) can be
neglected in practice.

Note that the proof of Lemma 3.1.1 shows in particular that in both cases a)
and b), there exists an element (0, β)⊤ ∈ T(x0,α0)M with β 6= 0. In practice, this can
be detected while computing the tangent space. So even if the algorithm reaches a
point which violates the rank assumption, the potential problems could be prevented
by just solving (3.1) for all neighboring boxes in that point.

In Section 5.1.2, we will further investigate the relationship between the tangent
information of M and Pc by considering tangent vectors of Pc.

3.1.2 The algorithm

In the following, we will discuss the algorithm for our box-continuation method and
its practical implementation. First, we need some additional notations. For x ∈ Rn

let

B(x) := {B ∈ B : x ∈ B},
N(x) := {B ∈ B \B(x) : ∃B′ ∈ B(x) with B′ ∩ B 6= ∅}.

Then B(x) is the collection of boxes containing x and N(x) is the collection of
neighboring boxes of boxes containing x. Clearly, for a generic x ∈ Rn, B(x) contains
only a single box and N(x) contains 3n − 1 boxes.

The pseudo code for the box-continuation method is shown in Algorithm 3.1. The
resulting collection of boxes C is an approximation of Bc, and the set XC contains
one Pareto critical point from each box in C. The following remark discusses the
practical implementation of the algorithm.

Algorithm 3.1 Box-continuation method

Given: (x0, α0) ∈ M.
1: Initialize C = {B(x0)}, XC = {(x0, α0)}, Cout = ∅ and a queue Q = {(x0, α0)}.
2: while Q 6= ∅ do
3: Remove the first element (x̄, ᾱ) from Q.
4: If k ≥ n+1 then set TB := N(x̄). Otherwise, compute the neighboring boxes

with a nonempty intersection with the projected tangent space, i.e.,

TB := {B ∈ N(x̄) : B ∩ (x̄+ prx(T(x̄,ᾱ)M)) 6= ∅}.

5: for B ∈ TB \ (C ∪ Cout) do
6: Compute the optimal value θ(B) and the solution (xB, αB) of (3.1).
7: If θ(B) = 0, then set Q = Q ∪ {(xB, αB)}, C = C ∪ {B} and

XC = XC ∪ {(xB, αB)}. Otherwise, set Cout = Cout ∪ {B}.
8: end for
9: end while

Remark 3.1.3. a) In Algorithm 3.1, the method is initialized with only a single
starting point (x0, α0) ∈ M. Similar to what was discussed at beginning of this
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chapter, this means we can only approximate the connected component of Pc

that contains x0. To approximate all connected components of Pc, we merely
have to add multiple points to Q during the initialization, such that Q contains
at least one point from each component. A heuristic way of obtaining these
points is to solve (3.1) for all boxes in a coarse box covering of (some bounded
subset of) Rn with large radius r.

b) Multiple starting points are also needed if M is only locally a manifold (in the
sense of Theorem 2.2.10 b)), as there might be kinks in Pc that the method
cannot move through smoothly.

c) By Theorem 2.2.10 we have T(x̄,ᾱ)M = ker(DF (x̄, ᾱ)). In practice, the ker-
nel can be computed via a singular value decomposition of DF (x̄, ᾱ). More
precisely, the kernel is spanned by the right-singular vectors corresponding to
the singular values which are zero. (In particular, if the number of nonzero
singular values is smaller than n+ 1, then M might not be a manifold around
(x̄, ᾱ).)

d) Since T(x̄,ᾱ)M is a (k−1)-dimensional vector space, the set TB can be obtained
by computing the intersection of boxes in N(x̄) with a pointwise discretization
of prx(ker(DF (x̄, ᾱ))) if k is small. For larger k this becomes inefficient, and
it might be better to consider a geometrical approach. For example, a (k − 1)-
dimensional subspace of Rn intersects a box if and only if it intersects one of
its (n − k + 1)-dimensional faces. Based on this, one could characterize the
intersection for each neighboring box by a set of linear equations.

e) For the relation (3.2) to hold, it is important that we find global minimal points
of (3.1). If the box radius r is sufficiently small, then standard local methods
for constrained nonlinear problems are typically satisfactory. In general, if
(3.1) possesses local solutions, ideas from global optimization should addition-
ally be applied (cf. [TŽ89]).

f) In practice, the condition θ(B) = 0 has to be replaced by checking if θ(B)
lies below a certain threshold, depending on the accuracy of the solver that
is used for (3.1). As accurate solutions of (3.1) are crucial for making sure
that Algorithm 3.1 does not stop prematurely, it can be beneficial to apply
multiple solvers in a staggered way: If for the first solver, θ(B) is larger than
the chosen threshold, then a second solver is applied. Only if the second solver
also returns a value larger than the threshold, the box B is discarded. On top of
that, note that the existence of a vanishing convex combination of the gradients
is independent of the scaling of the gradients. In some cases, rescaling can lead
to better solutions, for example by normalizing the (nonzero) gradients.

The box-continuation method avoids the problems of the classical continuation
method from [Hil01] that were discussed at the beginning of Section 3.1: By using
a covering with n-dimensional boxes instead of a set of points to approximate the
Pareto critical set, we can easily check if we already explored a specific area of Pc.
By using (2.12) instead of the corrector step from [Hil01], we can also assure that
all boxes in the covering C actually contain part of Pc.

The convergence of Algorithm 3.1, i.e., its ability to compute Bc, only depends on
the ability of solving (3.1) and the assumption that TB in step 4 actually contains all
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neighboring boxes in Bc, i.e., that TB = {B ∈ N(x̄) : B ∩ Pc 6= ∅}. The former was
already discussed Remark 3.1.3. The latter depends on how well Pc is approximated
by x̄+ prx(T(x̄,ᾱ)M) for different (x̄, ᾱ) ∈ M with x̄ ∈ B. Since we assume M to be
a manifold, this approximation becomes better the smaller the box radius r. Thus,
if r is small enough and we are able to compute (global) solutions of (3.1), then the
convergence of Algorithm 3.1 is guaranteed.

Finally, the following remark discusses the difference of Algorithm 3.1 to the
continuation method from [SDD05].

Remark 3.1.4. The main difference between Algorithm 3.1 and Algorithm CONT-
Recover from [SDD05] is the way new boxes are added to the collection. In Algorithm
3.1, this is done by checking if θ(B) is (close to) zero for B ∈ TB. In [SDD05], it
is done by using points in the tangent direction as starting points for a local method
for minimizing F (cf. (2.11)) via least-squares, namely the Gauss-Newton algorithm
(see, e.g., [NW06]). For this approach to work, one has to rely on the assumption
that this local method naturally finds a point in Pc that is close to the starting point
in a part of Pc that is not yet covered by the box covering. While this holds for well-
behaved examples, it is not assured that it works in the general case. Furthermore,
non-negativity of the KKT vector α at the result is not guaranteed.

In [Sch04], where the method from [SDD05] was first suggested, the steepest
descent method (cf. Section 2.3.2) was used instead. Clearly, this only allows for
the computation of Pareto critical points which are at least locally Pareto optimal.
But even then, this approach suffers from the same problems as the Gauss-Newton
algorithm, as descent directions are not necessarily orthogonal to Pc, even in points
that are close to Pc. This can be seen by considering the problem (2.10) from Example
2.2.8 for

c =

(

1
1

)

and Q =

(

4.1 2
2 1

)

.

Figure 3.2 shows the normalized descent direction resulting from (2.19) for this prob-
lem for 25 points in [−0.1, 0] × [0.1, 0.2]. It can be seen that the descent directions

Figure 3.2: Normalized descent directions close to the Pareto critical set Pc for the
problem in Remark 3.1.4.
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in points to the right of Pc are not orthogonal to Pc, even in points which are almost
Pareto critical.

3.1.3 Examples

In this section, Algorithm 3.1 will be applied to some examples. For solving the
problem (3.1) to decide if a box contains part of the Pareto critical set, the imple-
mentation of the SQP method (cf. [NW06]) in the MATLAB function fmincon is
used. A box B is considered to contain part of Pc if θ(B) < 10−5. The initialization
was done as described in Remark 3.1.3 a). In this section, the examples will be
restricted to the case where k ≤ n, since this is the more interesting case for our
method (and the more realistic case in practice).

The first problem we consider is the simple MOP from Example 2.2.8.

Example 3.1.5. Consider the problem

min
x∈R2

f(x) with f(x) =

(

‖x‖2Q
‖x− c‖2

)

=

(

5x21 + 4x1x2 + x22
(x1 − 1)2 + (x2 − 1)2

)

from Example 2.2.8. Figure 3.3 shows the result of Algorithm 3.1 for different box
radii. Figure 3.3(a) additionally shows the exact solution and the set XC, which
contains one Pareto critical point in each box in C. As expected, C is a tight covering
of the Pareto critical set.

(a) r = 0.05 (b) r = 0.3125 · 10−2

Figure 3.3: Result of Algorithm 3.1 for Example 3.1.5 for different box radii r. For
comparison, (a) additionally shows the exact solution Pc and the set of points XC
resulting from Algorithm 3.1.

Next we consider Example 1.3 from [PŽŽ17], which was purposefully constructed
to have a disconnected Pareto set. It consists of two so-called Shekel functions.

Example 3.1.6. Consider the problem

min
x∈R2

f(x) with f(x) =

(

− 0.1
0.1+(x1−0.1)2+2(x2−0.1)2

− 0.1
0.14+20((x1−0.45)2+(x2−0.55)2)

− 0.1
0.1+(x1−0.3)2+2(x2−0.95)2

− 0.1
0.15+40((x1−0.55)2+(x2−0.45)2)

)

.

44



Chapter 3. Box-continuation methods for smooth problems

Figure 3.4 shows the result of Algorithm 3.1 with box radius r = 2−9 ≈ 0.1953 ·10−2.
To obtain an approximation of the image of the Pareto critical set, we computed the
image of XC under f . In this case, Pc consists of three connected components, which

(a) Variable space (b) Image space

Figure 3.4: (a) The result of Algorithm 3.1 for Example 3.1.6. (b) The image of
the set XC under f and a pointwise discretization of the image of f .

are all tightly approximated by the covering C. (This result coincides with the result
from [PŽŽ17].)

The following problem is Example 4 from [Lov11], where the Pareto critical set
again possesses interesting topological properties.

Example 3.1.7. Consider the problem minx∈R2 f(x) with

f(x) = −
(

−x21 − x22 − 4(exp(−(x1 + 2)2 − x22) + exp(−(x1 − 2)2 − x22))
−(x1 − 6)2 − (x2 + 0.5)2

)

.

Figure 3.5 shows the result of Algorithm 3.1 with box radius r = 2−7 ≈ 0.7812 ·10−2.
Here, Pc consists of two connected components, one being a loop and one being a
line. In the image space, we see that the loop gets mapped to a loop with two “cusps”.

Finally, for a higher-dimensional example, we consider an unconstrained version
of the problem L&H3×3 from [HL14].

Example 3.1.8. Let ρ(ω, θ) ∈ R3×3 be the matrix corresponding to a rotation around
the vector ω ∈ R3 by an angle θ ∈ [0, 2π). Let

b(x) := 0.075g(x, (0, 0.15, 0)⊤, 0.3) + g(x, (0,−1.1, 0)⊤, 3),

g(x, p0, σ) :=

√

2π

σ
exp

(

−|x− p0|2
σ2

)

.

Consider the problem

min
x∈R3

f(x) with f(x) = −ρ





(

−
√

2

2
,

√
2

2
, 0

)⊤

, arctan(
√

2)



 (x1, x3, b(x))⊤.
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(a) Variable space (b) Image space

Figure 3.5: (a) The result of Algorithm 3.1 for Example 3.1.7. (b) The image of
the set XC under f and a pointwise discretization of the image of f .

Figure 3.6: The result of Algorithm 3.1 for Example 3.1.8.

For details on the construction of this problem, see [HL14]. Figure 3.6 shows the
result of Algorithm 3.1 with the box radius r = 2−7. The Pareto critical set consists
of two connected components, one being a two-dimensional surface and the other
one being spherical with three holes.

3.1.4 Extension to constrained MOPs

In this section, we will discuss how Algorithm 3.1 can be generalized to MOPs with
equality and inequality constraints. As we are more focused on the unconstrained
case in this work, we will only discuss the basic ideas here. In particular, while the
method will be able to compute Pareto critical sets of constrained MOPs, it will not
necessarily be numerically efficient and should be seen as a starting point to develop
more efficient methods.

For f : Rn → Rk, h : Rn → Rkh and g : Rn → Rkg , all twice continuously
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differentiable, we now consider the MOP

min
x∈Rn

f(x),

s.t. h(x) = 0, (3.3)

g(x) ≤ 0.

For x ∈ Rn let

Ag(x) := {i ∈ {1, . . . , kg} : gi(x) = 0} (3.4)

be the active set. If i ∈ Ag(x), then we say the constraint gi is active in x. We
assume that for all feasible x, all elements in

{∇hi(x) : i ∈ {1, . . . , kh}} ∪ {∇gi(x) : i ∈ Ag(x)}
are linearly independent. This condition is known as the linear independence con-
straint qualification (LICQ).

Since our continuation method is based on the KKT condition, we first have
to generalize this condition to the constrained case. This is done in the following
theorem (cf. [Hil01], Theorem 4.1).

Theorem 3.1.9. Let x be a Pareto optimal point of (3.3). Then there are α ∈ ∆k,
λ ∈ Rkh and µ ∈ (R≥0)kg such that

k
∑

i=1

αi∇fi(x) +

kh
∑

i=1

λi∇hi(x) +
∑

i∈Ag(x)

µi∇gi(x) = 0, (3.5)

µi = 0 ∀i /∈ Ag(x).

Based on the previous theorem, we can define the Pareto critical set for con-
strained MOPs.

Definition 3.1.10. A feasible point x ∈ Rn is called Pareto critical if (3.5) holds in
x. A corresponding α ∈ ∆k is called a KKT vector of x, containing KKT multipliers
αi, i ∈ {1, . . . , k}. The set Pc of all Pareto critical points is the Pareto critical set.

In the unconstrained case, the continuation method was based on the manifold
structure of the set M of Pareto critical points augmented by their corresponding
KKT vectors (Theorem 2.2.10). If only equality constraints are present, then this
result can be generalized in a straight-forward way. In the case of inequality con-
straints, the smoothness of the Pareto critical set is generally lost. The reason for
this is the fact that a change in the active set causes a “discontinuous” change in
the KKT condition. Visually speaking, this results in kinks in the Pareto critical set
when the active set changes, i.e., when the solution hits the boundary of the feasible
set. Nonetheless, we will show that it is possible to handle this nonsmoothness by
transforming inequality into equality constraints in a certain way.

For the case where only equality constraints are present, consider the function

F : Rn × (R≥0)k × Rkh → Rn+kh+1, (x, α, λ) 7→





Df(x)⊤α +Dh(x)⊤λ

1 −∑k
i=1 αi

h(x)





as a generalization of (2.11). The following result from [Hil01] generalizes Theorem
2.2.10.
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Theorem 3.1.11. Let

M := (F |Rn×(R>0)k×Rkh )−1(0). (3.6)

If rk(DF (x, α, λ)) = n+kh+1 for all (x, α, λ) ∈ M, then M is a (k−1)-dimensional
embedded submanifold of Rn+k+kh with tangent space

T(x,α,λ)M = ker(DF (x, α, λ)).

Proof. Analogously to the proof of Theorem 2.2.10 a).

Note that for all feasible points x with the same active set, the roles of the
equality and inequality constraints in the KKT condition (3.5) are identical, except
that the multipliers µi corresponding to the active indices must be non-negative.
More formally, for A ⊆ {1, . . . , kg} let gA := (gi)i∈A and

PA
c := {x ∈ Pc : Ag(x) = A}.

Then the following lemma holds:

Lemma 3.1.12. Let A ⊆ {1, . . . , kg}. Then PA
c is a subset of the Pareto critical

set of the MOP

min
x∈Rn

f(x),

s.t. h(x) = 0, (3.7)

gA(x) = 0.

Proof. Let x ∈ PA
c . Then h(x) = 0 and gA(x) = 0, i.e., x is a feasible point of (3.7).

Furthermore, there are α ∈ ∆k, λ ∈ Rkh and µ ∈ (R≥0)kg such that

k
∑

i=1

αi∇fi(x) +

kh
∑

i=1

λi∇hi(x) +
∑

i∈A
µi∇gi(x) = 0.

In particular, x is Pareto critical for the problem (3.7) with the multipliers α̃ = α
and λ̃ = (λ, (µi)i∈A).

Clearly,

Pc =
⋃

A⊆{1,...,kg}
PA
c .

The idea is now to construct a box-continuation method like Algorithm 3.1 based on
Theorem 3.1.11 and Lemma 3.1.12 which is able to approximate PA

c and then start
that method for all possible A ⊆ {1, . . . , kh}. (The potential practical inefficiency
of this approach will be discussed later.) To this end, we need a way to compute
the tangent directions of PA

c (step 4 in Algorithm 3.1) and a way to check if a box
B contains part of PA

c (step 6 in Algorithm 3.1).
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For A ⊆ {1, . . . , kg} let MA be the manifold from Theorem 3.1.11 for the MOP
(3.7) in Lemma 3.1.12. For the tangent directions, we consider the projection of the
tangent space of MA, i.e., for

FA : Rn × (R≥0)k × Rkh × R|A| → Rn+kh+1,

(x, α, λ, µ) 7→









Df(x)⊤α +Dh(x)⊤λ+DgA(x)⊤µ

1 −∑k
i=1 αi

h(x)
gA(x)









,

we consider prx(ker(DFA(x, α, λ, µ))). In this way, step 4 of Algorithm 3.1 can be
generalized. In order to decide whether a box B has a nonempty intersection with
PA
c in step 6, we use the problem

θ(B) := min
x∈B,α∈∆k,λ∈Rkh ,µ∈(R≥0)|A|

‖Df(x)⊤α +Dh(x)⊤λ+DgA(x)⊤µ‖2,

s.t. h(x) = 0, (3.8)

gA(x) = 0,

gi(x) ≤ 0 ∀i /∈ A.

Then B ∩PA
c 6= ∅ if and only if both θ(B) = 0 and the inequality constraint in (3.8)

is strict. (If θ(B) = 0 and the inequality is not strict, then we still have at least
B ∩ Pc 6= ∅.) The resulting method is summarized in Algorithm 3.2.

Algorithm 3.2 Constrained box-continuation method

1: Initialize C = ∅, XC = ∅.
2: for all subsets A ⊆ {1, . . . , kg} do
3: For (x0, α0, λ0, µ0) ∈ MA, initialize CA = {B(x0)}, XCA = {(x0, α0, λ0, µ0)},

CA
out = ∅ and a queue Q = {(x0, α0, λ0, µ0)}.

4: while Q 6= ∅ do
5: Remove the first element (x̄, ᾱ, λ̄, µ̄) from Q.
6: If k ≥ n+ 1 then set TB := N(x̄). Otherwise, compute the neighboring

boxes with a nonempty intersection with the projected tangent space,
i.e.,

TB := {B ∈ N(x̄) : B ∩ (x̄+ prx(ker(DFA(x̄, ᾱ, λ̄, µ̄)))) 6= ∅}.

7: for B ∈ TB \ (CA ∪ CA
out) do

8: Compute the optimal value θ(B) and the solution (xB, αB, λB, µB)
of (3.8).

9: If θ(B) = 0, then set Q = Q∪{(xB, αB, λB, µB)}, CA = CA∪{B} and
XCA = XCA ∪ {(xB, αB, λB, µB)}. Otherwise, set CA

out = CA
out ∪ {B}.

10: end for
11: end while
12: Set C = C ∪ CA and XC = XC ∪XCA .
13: end for

In the following remark, some of the properties of Algorithm 3.2 will be discussed.
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Remark 3.1.13. a) For the initialization of each iteration of the outer loop in
step 3 of Algorithm 3.2, a starting point (x0, α0, λ0, µ0) ∈ MA is required.
Since this has to be done for all 2kg possible choices of A ⊆ {1, . . . , kg}, this
part can be highly time consuming for MOPs with a large number of inequality
constraints. In particular, there can be many A for which this step is unnec-
essary, since {x ∈ Rn : Ag(x) = A} may be empty. (For example, due to the
LICQ, this is the case when |A| > n−kh.) To increase the efficiency, it would
make sense to implement some mechanism that filters out all irrelevant active
sets before the outer loop is started.

b) In the unconstrained case, the condition k ≥ n + 1 in step 6 was added for
when the projected tangent space is equal to the entire Rn. In the constrained
case, this condition could be sharpened by exploiting the fact that by the LICQ,
the feasible set of the MOP (3.7) is a (n− kh− |A|)-dimensional manifold (cf.
Theorem 2.2.9). This implies that for k > n− kh − |A|, the projected tangent
space is equal to the tangent space of the feasible set of (3.7).

To conclude this section, we apply Algorithm 3.2 to an inequality constrained
version of Example S4 from [Sch04]. The practical implementation of the algorithm
is analogous to the implementation of Algorithm 3.1 in Section 3.1.3, except that
we additionally use the interior-point method (cf. [Wal+05]) of fmincon as a second
solver (as discussed in Remark 3.1.3 f)).

Example 3.1.14. For

f(x) :=





(x1 − 1)4 + (x2 − 1)2 + (x3 − 1)2

(x1 + 1)2 + (x2 + 1)4 + (x3 + 1)2

(x1 − 1)2 + (x2 + 1)2 + (x3 − 1)4





consider the problem

min
x∈R3

f(x),

s.t. (x21 + x22 + x23 − (R2 + r2))2 − 4R2(r2 − x23) = 0,

x21 + x22 − 0.52 ≤ 0,

for r = 0.3 and R = 0.5. The set of points satisfying the equality constraint forms
a torus with major radius R and minor radius r. The set of points satisfying the
inequality constraint is the interior (and boundary) of a cylinder with radius 0.5
around the x3-axis. The resulting feasible set is shown in Figure 3.7(a). The result
of Algorithm 3.2 with a box radius r = 1.2 · 2−8 = 0.46875 · 10−2 is shown in Figure
3.7(b). Since kh = 1, the only choices for A in step 2 of Algorithm 3.2 are ∅ and
{1}. The corresponding coverings C∅ and C{1} are highlighted by different colors.

3.1.5 Obtaining the Pareto set

In this work, we are mainly interested in computing the Pareto critical set of MOPs.
But in the general context of multiobjective optimization, the actual Pareto set is of
more interest. Thus, in this section, we will briefly discuss a simple way of obtaining
the Pareto set from the Pareto critical set. For more advanced techniques, see
[Gup+97; Sch03].
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(a) (b)

Figure 3.7: (a) Feasible set of the MOP in Example 3.1.14. (b) Result of Algorithm
3.2, colored according to the different active sets.

In the generic single-objective case, if a global minimal point exists and all critical
points (with ∇f(x) = 0) are known, then all global minimal points can be easily
obtained by filtering out the critical points with the smallest function values. In the
multiobjective case, it works in a similar way by replacing the notion of “minimal”
in R with the vector valued version from (2.1). The basis is the following lemma.

Lemma 3.1.15. Let X ⊆ Rn be compact, f : X → Rk be continuous and P be the
Pareto set of minx∈X f(x). Let C ⊆ X with P ⊆ C. Let

Cnd := {x ∈ C : ∄x′ ∈ C with f(x′) ≤ f(x), f(x′) 6= f(x)}.

Then P = Cnd.

Proof. The relation P ⊆ Cnd is easy to see. For the relation Cnd ⊆ P , assume that
there is some x ∈ Cnd with x /∈ P . Then there must be some x′ ∈ X \ C with
f(x′) ≤ f(x) and f(x′) 6= f(x). Let Z = f−1({y ∈ Rk : y ≤ f(x′)}). Since f is
continuous, Z is closed. Additionally, Z is compact as a closed subset of X. By
[Ehr05], Theorem 2.19, this means that the Pareto set of minz∈Z f(z) is nonempty.
By the definition of Z, this implies that ∅ 6= Z ∩ P ⊆ Z ∩ C. Let x̄ ∈ Z ∩ C.
Then f(x̄) ≤ f(x′) ≤ f(x) and f(x̄) ≤ f(x′) 6= f(x), which is a contradiction to
x ∈ Cnd.

Since we mostly consider the unconstrained case (where X = Rn is not compact),
we also need the following result.

Lemma 3.1.16. Let f : Rn → Rk be continuous and P be the Pareto set of
minx∈Rn f(x). Let C ⊆ Rn with P ⊆ C. If the sublevel sets {z ∈ Rn : f(z) ≤ f(x)}
are bounded for all x ∈ C, then P = Cnd.

Proof. The proof is analogously to the proof of Lemma 3.1.15, except that the
compactness of Z follows from

Z = {z ∈ Rn : f(z) ≤ f(x′)} ⊆ {z ∈ Rn : f(z) ≤ f(x)}

and from the latter set being bounded by assumption.
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For x ∈ Rn, the sublevel set in the previous lemma can be written as

{z ∈ Rn : f(z) ≤ f(x)} =
k
⋂

i=1

{z ∈ Rn : fi(z) ≤ fi(x)},

which means that it is bounded if one of the sublevel sets of the fi, i ∈ {1, . . . , k},
is bounded. By Lemma 3.1.15 and 3.1.16, if we have some (bounded) superset C of
the Pareto set, then the values of f in C are sufficient to decide which points in C
are Pareto optimal.

In practice, this means that if we have a finite set C ⊆ Rn including a pointwise
discretization of P , then Cnd ≈ P . A straight-forward way of computing Cnd is
shown in Algorithm 3.3. In our case, the obvious choice for the input C of Algorithm
3.3 would be the output XC from Algorithm 3.1 (or 3.2), containing a Pareto critical
point from each box in C.

Algorithm 3.3 Nondominance algorithm

Given: Finite set C = {x1, . . . , xN} ⊆ Rn.
1: Compute the image yi = f(xi) for all i ∈ {1, . . . , N}.
2: Initialize Idom = ∅.
3: for i ∈ {1, . . . , N} do
4: if i /∈ Idom then
5: for j ∈ {1, . . . , N} \ Idom do
6: If yi ≤ yj and yi 6= yj, then Idom = Idom ∪ {j}.
7: end for
8: end if
9: end for
10: Set Cnd = {xi ∈ C : i /∈ Idom}.

Remark 3.1.17. Lemma 3.1.15, Lemma 3.1.16 and Algorithm 3.3 hold for (almost)
arbitrary supersets of the Pareto set and are not restricted to Pareto critical points.
Thus, it would also be possible to use a pointwise discretization of the box covering C,
by choosing multiple points in each box in C. This may result in a finer approximation
of the Pareto set, at the cost of (potentially) having non Pareto critical points in the
approximation.

To conclude this section, we apply Algorithm 3.3 to the MOP in Example 3.1.6.

Example 3.1.18. Consider the MOP from Example 3.1.6. For the input of Algo-
rithm 3.3, we choose the output XC from Algorithm 3.1. Figure 3.8 shows the result
of Algorithm 3.3 in variable and image space. Compared to Figure 3.4, we see that
the algorithm correctly discarded Pareto critical points which are not Pareto optimal.
(In particular, this result coincides with the result in [PŽŽ17].)

3.2 Inexact gradients

In this section, we will investigate the influence of inexactness (or errors) in the
gradients of the objective functions fi, i ∈ {1, . . . , k}, on the Pareto critical set.
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(a) Variable space (b) Image space

Figure 3.8: The result of Algorithm 3.3 applied to the result of Algorithm 3.1 for
Example 3.1.6.

More formally, we assume that we have an inexact objective vector f r : Rn → Rk,
which is continuously differentiable, and upper bounds ε ∈ (R≥0)k such that

sup
x∈Rn

‖∇fi(x) −∇f r
i (x)‖ ≤ εi ∀i ∈ {1, . . . , k}. (3.9)

Our goal is to approximate the Pareto critical set Pc of the original function f using
only the inexact function f r and the error bounds ε.

This scenario typically occurs when working with objective functions which are
computationally expensive to evaluate, and are therefore replaced by cheaper surro-
gate models. As an example, in the context of parameter optimization of physical
systems, every evaluation of f (and its gradients) might require the solution of some
partial differential equation (PDE). In this case, reduced-order modeling (ROM) can
be used to obtain a cheaper surrogate model as in (3.9). See [ASG01; Que+05] for
an overview. We will later consider an explicit example from this problem class.

If the error bound ε is small, the naive approach for obtaining an approximation
of Pc would be to just ignore the error bounds and compute the Pareto critical set
P r
c of the inexact function, i.e., the Pareto critical set of the MOP

min
x∈Rn

f r(x),

and hope that P r
c ≈ Pc. But as the following example shows, while P r

c may be close
to Pc in a Hausdorff sense, it might not actually be a good approximation in terms
of its structure.

Example 3.2.1. Consider the MOP

min
x∈R2

f(x) with f(x) =

(

x41 + 9
5
x31 − 2

5
x21 + 1

10
x1 + x22

x21 − 19
10
x1 + (x2 − 1)2 + 1

)

and the inexact objective vector

f r : R2 → R2, x 7→ f(x) − 1

10

(

x1
x1

)

.
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It is easy to see that f and f r satisfy condition (3.9) for ε = ( 1
10
, 1
10

)⊤. Figure
3.9 shows the Pareto critical set Pc of f and P r

c of f r (both computed via XC from
Algorithm 3.1). While the Hausdorff distance between Pc and P

r
c is relatively small

Figure 3.9: The sets Pc and P r
c in Example 3.2.1.

(≈ 7.4 · 10−2), there is an obvious difference in the structure of both sets: Pc is
connected while P r

c is disconnected.

Due to the previous example, a more sophisticated approach that explicitly takes
the error bounds ε into account is needed. To this end, we begin by deriving a
tight superset P r

ε of Pc that only depends on f r and ε (Section 3.2.1). Afterwards,
to be able to efficiently compute it in practice, we analyze the structure of P r

ε

(Section 3.2.2). It will turn out that P r
ε has the same dimension as the variable

space with a boundary that seems to be piecewise smooth. We exploit this structure
by constructing a box-continuation method which approximates the boundary ∂P r

ε

of P r
ε (Section 3.2.3). Finally, we consider some simple examples (Section 3.2.4)

before using our method for the solution a PDE-constrained MOP (Section 3.2.5).

3.2.1 A tight superset of the Pareto critical set and its struc-
ture

In this section, we will derive a set which only depends on f r and ε (as in (3.9))
and is guaranteed to contain Pc. The basis for our approch is the following, simple
result (which is similar to Lemma 3.2 in [PD17]).

Lemma 3.2.2. Let x̄ ∈ Pc with a KKT vector ᾱ ∈ ∆k. Then

‖Df r(x̄)⊤ᾱ‖ ≤ ε⊤ᾱ ≤ ‖ε‖∞.

Proof. By assumption we have Df(x̄)⊤ᾱ = 0. This implies

‖Df r(x̄)⊤ᾱ‖ = ‖Df r(x̄)⊤ᾱ−Df(x̄)⊤ᾱ‖ =

∥

∥

∥

∥

∥

k
∑

i=1

(∇f r
i (x̄) −∇fi(x̄))⊤ᾱi

∥

∥

∥

∥

∥

≤
k
∑

i=1

‖∇f r
i (x̄) −∇fi(x̄)‖ᾱi ≤

k
∑

i=1

εiᾱi = ε⊤ᾱ ≤ ‖ε‖∞.
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By the previous lemma, we are able to obtain a superset of Pc by weakening the
KKT condition of the inexact objective vector using the given error bounds. More
precisely, we define

P r
ε := {x ∈ Rn : min

α∈∆k

(‖Df r(x)⊤α‖2 − (ε⊤α)2) ≤ 0}. (3.10)

(This set is well-defined since ∆k is compact and the objective is continuous, i.e., the
minimum always exists.) It is easy to see that Pc ⊆ P r

ε and P r
c ⊆ P r

ε . Furthermore,
if ε = 0 ∈ Rk, then P r

ε = Pc = P r
c .

Remark 3.2.3. By Lemma 3.2.2, instead of ε⊤α, we could also take ‖ε‖∞ as an
upper bound for norm of the KKT condition of the inexact objective vector to obtain
a coarser superset of Pc, as was done in [PD17]. More formally, if we define

P̃ := {x ∈ Rn : min
α∈∆k

‖Df r(x)⊤α‖2 ≤ ‖ε‖2∞},

then Pc ⊆ P r
ε ⊆ P̃ (and P r

c ⊆ P r
ε ⊆ P̃ ). Note that by (2.21), P̃ can be interpreted

as the set of points in which the length of the steepest descent direction for f r is
less or equal to ‖ε‖∞. This makes it relatively easy to compute P̃ via descent-based
methods. For example, in [PD17], P̃ was approximated via the subdivision method
(cf. Section 2.3). The disadvantage of working with P̃ is the fact that it is a less
tight covering of Pc. In particular, all error bounds except the maximal bound ‖ε‖∞
are ignored.

In the proof of Lemma 3.2.2, we only used the subadditivity of the norm and the
inequality (3.9). As the following lemma shows, these estimations are sufficiently
tight for P r

ε to be a tight superset of Pc.

Lemma 3.2.4. Let x̃ ∈ P r
ε . Then there is a continuously differentiable function

f̃ : Rn → Rk with

sup
x∈Rn

‖∇f̃i(x) −∇f r
i (x)‖ ≤ εi ∀i ∈ {1, . . . , k}

such that x̃ is Pareto critical for f̃ .

Proof. Let

α̃ ∈ arg min
α∈∆k

(‖Df r(x̃)⊤α‖2 − (ε⊤α)2).

If ε⊤α̃ = 0, then we have 0 ≥ ‖Df r(x̃)⊤α̃‖2 − (ε⊤α̃)2 = ‖Df r(x̃)⊤α̃‖2 since x̃ ∈ P r
ε ,

so Df r(x̃)⊤α̃ = 0 and the statement holds for f̃ = f r. If ε⊤α̃ 6= 0, we define

ν := Df r(x̃)⊤α̃ ∈ Rn,

g(x) := −
(

1

ε⊤α̃

n
∑

j=1

νjxj

)

ε ∈ Rk,

f̃(x) := f r(x) + g(x) ∈ Rk.

Since x̃ ∈ P r
ε we have ‖Df r(x̃)⊤α̃‖2 − (ε⊤α̃)2 ≤ 0, so ‖ν‖ ≤ ε⊤α̃. Thus,

‖∇f̃i(x) −∇f r
i (x)‖ = ‖∇gi(x)‖ =

εi
ε⊤α̃

‖ν‖ ≤ εi ∀x ∈ Rn, i ∈ {1, . . . , k}
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and

Df̃(x̃)⊤α̃ = Df r(x̃)⊤α̃ +Dg(x̃)⊤α̃ = ν +
k
∑

i=1

α̃i∇gi(x̃)

= ν −
k
∑

i=1

α̃i
εi
ε⊤α̃

ν = ν − ε⊤α̃

ε⊤α̃
ν = 0,

which completes the proof.

The previous lemma shows that for any element x̃ of our superset P r
ε , there

is some f̃ that satisfies our error bounds (3.9) (for f = f̃), such that x̃ is Pareto
critical for f̃ . In other words, any element of P r

ε can potentially be Pareto critical for
a function satisfying our error bounds. In this sense, using only the inexact function
and the error bounds, P r

ε is the tightest superset of Pc that we can hope for.
Before analyzing the structure of P r

ε , we will consider a simple example (from
[PD17]).

Example 3.2.5. Consider the inexact function

f r : R2 → R2, x 7→
(

(x1 − 1)2 + (x2 − 1)4

(x1 + 1)2 + (x2 + 1)2

)

.

To obtain a rough approximation of P r
ε , we solve the optimization problem in the

definition (3.10) of P r
ε in different points in R2 and then check if the optimal value

is non-positive. Figure 3.10 shows the result for different error bounds ε and the
Pareto critical set P r

c of f r. By our previous considerations, the Pareto critical set
of any objective vector f satisfying the given error bounds as in (3.9) must lie in the
area indicated by the red dots.

(a) ε = (0.2, 0.05)⊤ (b) ε = (0, 0.2)⊤

Figure 3.10: Pointwise approximation of P r
ε for Example 3.2.5 for different error

bounds.

By comparing (a) and (b) in Figure 3.10, it is easy to see the influence of ε on
P r
ε . In this example, the critical (and optimal) points of f r

1 and f r
2 are given by
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(1, 1)⊤ and (−1,−1)⊤, respectively. The corresponding KKT vectors are (1, 0)⊤ and
(0, 1)⊤. Since in (3.10), the error bounds are weighted with the KKT vector, this
means that ε2 has almost no influence close to (1, 1)⊤ and ε1 has almost no influence
close to (−1,−1)⊤. In (a), the error bound ε2 for f

r
2 is smaller than the error bound

ε1 for f r
1 . Thus, P r

ε is thinner close to (−1,−1)⊤ and thicker close to (1, 1)⊤. In
(b) the situation is reversed. In particular, since ε1 = 0 in (b), P r

ε approaches P r
c

close to (1, 1).

In the previous example, P r
ε had the same “dimension” as the variable space,

i.e., it was not a null set. The following lemma shows that if f r is twice continuously
differentiable, then this is what we can expect in the general case.

Lemma 3.2.6. Let f r be twice continuously differentiable.

a) P r
ε is closed.

b) Assume that P r
c 6= ∅ and that there exists some xr ∈ P r

c with a KKT vector
αr such that ε⊤αr > 0. Let

A := {x ∈ Rn : min
α∈∆k

(‖Df r(x)⊤α‖2 − (ε⊤α)2) < 0}.

Then ∅ 6= A ⊆ P r
ε and A is open in Rn.

Proof. a) The case P r
ε = ∅ is trivial, so assume that P r

ε 6= ∅. Let x̄ ∈ P r
ε . Then

there is a sequence (xi)i ∈ P r
ε with limi→∞ xi = x̄. Let (αi)i ∈ ∆k be a sequence

with

αi ∈ arg min
α∈∆k

(‖Df r(xi)⊤α‖2 − (ε⊤α)2).

By compactness of ∆k, we can assume w.l.o.g. that there is some ᾱ ∈ ∆k with
limi→∞ αi = ᾱ. Let

Ψ : Rn × ∆k → R, (x, α) 7→ ‖Df r(x)⊤α‖2 − (ε⊤α)2.

By our assumption, Ψ is continuous and Ψ(xi, αi) < 0 for all i ∈ N. Thus, it holds
Ψ(x̄, ᾱ) ≤ 0, which yields x̄ ∈ P r

ε .
b) The relation A ⊆ P r

ε holds trivially. By assumption, we have

min
α∈∆k

(‖Df r(xr)⊤α‖2 − (ε⊤α)2) ≤ ‖Df r(xr)⊤αr‖2 − (ε⊤αr)2 = −(ε⊤αr)2 < 0,

so xr ∈ A and A 6= ∅. To show that A is open, let x̄ ∈ A and

ᾱ ∈ arg min
α∈∆k

(‖Df r(x̄)⊤α‖2 − (ε⊤α)2).

Let Φ : Rn → R, x 7→ ‖Df r(x)⊤ᾱ‖2 − (ε⊤ᾱ)2. Then Φ is continuous and Φ(x̄) < 0.
Thus, there must be some open set U ⊆ Rn with x̄ ∈ U such that Φ(y) < 0 for all
y ∈ U . Since

min
α∈∆k

(‖Df r(y)⊤α‖2 − (ε⊤α)2) ≤ Φ(y) < 0 ∀y ∈ U

we have U ⊆ A, implying that A is open.

57



3.2. Inexact gradients

The assumptions in b) of the previous lemma are relatively weak. For example,
they are satisfied if P r

c 6= ∅ and

• εi > 0 for all i ∈ {1, . . . , k} or

• ε 6= 0 ∈ Rk and there is some KKT vector αr with αr
i > 0 for all i ∈ {1, . . . , k}.

This leads us to the conclusion that the superset P r
ε , in contrast to the Pareto critical

set P r
c , will generally not be a null set in Rn, as it contains an open subset of Rn.

The implications of this will be discussed in the following section.

3.2.2 Efficient computation

Assume from now on that f r is twice continuously differentiable. As shown in the
previous section, the superset P r

ε has generally the same “dimension” as the variable
space Rn. So in contrast to Pareto critical sets, which are typically lower-dimensional
objects in Rn (for k ≤ n), P r

ε is always relatively large. In particular, for problems
with a large number of variables, the computation of P r

ε suffers from the curse of
dimensionality. But recall that only using the information in (3.9), Lemma 3.2.4
showed that P r

ε is the tightest superset of Pc that we can hope for. So the high
dimension of P r

ε is a natural result from the available information.
In this section, we will derive an approach that makes it possible to compute

P r
ε in a (relatively) efficient manner. The idea is to only compute the topological

boundary ∂P r
ε of P r

ε instead of the entire set. After ∂P r
ε is computed, P r

ε can be
obtained by checking the condition in (3.10) for one point from each connected
component of Rn \ ∂P r

ε , since each of these components lies either completely inside
or outside P r

ε .
We will begin by describing ∂P r

ε as a level set. Let

ϕ : Rn → R, x 7→ min
α∈∆k

(‖Df r(x)⊤α‖2 − (ε⊤α)2).

By Lemma 3.2.6, ϕ−1(R≤0) = P r
ε is closed and ϕ−1(R<0) is a subset of the interior

(P r
ε )◦ of P r

ε , so

∂P r
ε = P r

ε \ (P r
ε )◦ ⊆ ϕ−1(R≤0) \ ϕ−1(R<0) = ϕ−1(0).

In other words, ∂P r
ε is contained in the level set of ϕ corresponding to the value 0. By

the level set theorem (Theorem 2.2.10), if we were able to show that ϕ is differentiable
and Dϕ has full rank (i.e., Dϕ 6= 0 ∈ R1×n), then ϕ−1(0) would be an (n − 1)-
dimensional manifold and we could compute it via continuation. Unfortunately,
this does not hold in general. To see this, consider the optimization problem in the
definition of ϕ:

min
α∈Rk

ω(α),

s.t.
k
∑

i=1

αi = 1, (3.11)

αi ≥ 0 ∀i ∈ {1, . . . , k},
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with

ω(α) := ‖Df r(x)⊤α‖2 − (α⊤ε)2 = α⊤(Df r(x)Df r(x)⊤ − εε⊤)α.

Due to the inequality constraints αi ≥ 0 for all i ∈ {1, . . . , k}, the optimal value
ϕ(x) of (3.11) is generally nonsmooth in points x ∈ Rn where the active set (cf.
(3.4)) changes. This will be visualized in the following example:

Example 3.2.7. Consider the function

f r : R2 → R3, x 7→





−6x21 + x41 + 3x22
(x1 − 1

2
)2 + 2(x2 − 1)2

(x1 − 1)2 + 2(x2 − 1
2
)2





from Example 4.1.5 in [Pei17]. Let ε = (1, 1, 1)⊤. Figure 3.11 shows an approxima-
tion of P r

ε in [0.25, 0.3] × [0.65, 0.7], computed as in Example 3.2.5. It suggests that
there is a kink in the boundary of P r

ε . Figure 3.12 shows the graph of ϕ and the first

Figure 3.11: Pointwise approximation of P r
ε for Example 3.2.7.

component α1 of the solution of problem (3.11) in the same area. We see that ϕ has

(a) (b)

Figure 3.12: (a) Graph of ϕ in Example 3.2.7. (b) Second component α2 of the
solution of problem (3.11).

a “one-dimensional” nonsmoothness which intersects ∂P r
ε in the kink from Figure

3.11. Considering the solution α of problem (3.11), we see that the nonsmoothness
of ϕ lines up with the (discontinuous) activation of α1.
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There are multiple reasons why the analysis of ϕ is challenging:

• The function ϕ is defined as the optimal value of a parameter-dependent op-
timization problem.

• Although the problem (3.11) is quadratic, the points in ϕ−1(0) are points
where the matrix in the objective function ω is (at best) semidefinite.

• The solution α of (3.11) does not continuously depend on x.

Due to these difficulties, we will not present a thorough analysis of ϕ here. Instead,
in the following, we will show some basic results about the properties of ϕ and
afterwards give a rough sketch of how stronger results could be achieved.

Lemma 3.2.8. The function ϕ is continuous.

Proof. Let (xi)i ∈ Rn be a sequence with limi→∞ xi = x̄ for some x̄ ∈ Rn. Note that

ϕ(x) ≥ −
(

k
∑

i=1

εi

)2

∀x ∈ Rn

and

ϕ(x) ≤ ‖Df r(x)⊤α‖2 − (ε⊤α)2 ≤ ‖Df r(x)⊤α‖2

≤
(

k
∑

i=1

αi‖∇f r
i (x)‖

)2

≤
(

k
∑

i=1

‖∇f r
i (x)‖

)2

∀x ∈ Rn, α ∈ ∆k.

Since all ∇f r
i , i ∈ {1, . . . , k}, are continuous, this implies that (ϕ(xi))i is contained

in a compact set and thus possesses an accumulation point. We will show that all
accumulation points of (ϕ(xi))i are equal to ϕ(x̄), which will complete the proof.

Let y ∈ R be an accumulation point of (ϕ(xi))i. Assume w.l.o.g. that
limi→∞ ϕ(xi) = y. Let (αi)i ∈ ∆k such that αi is the solution of (3.11) in xi.
Since ∆k is compact, we can assume w.l.o.g. that limi→∞ αi = ᾱ for some ᾱ ∈ ∆k.
Since Df r is continuous by assumption, we have

y = lim
i→∞

ϕ(xi) = lim
i→∞

‖Df r(xi)⊤αi‖2 − (ε⊤αi)2 = ‖Df r(x̄)⊤ᾱ‖2 − (ε⊤ᾱ)2. (3.12)

Assume that y 6= ϕ(x̄), i.e.,

ᾱ /∈ arg min
α∈∆k

‖Df r(x̄)⊤α‖2 − (ε⊤α)2.

Then there must be some α̃ ∈ ∆k with

‖Df r(x̄)⊤α̃‖2 − (ε⊤α̃)2 < ‖Df r(x̄)⊤ᾱ‖2 − (ε⊤ᾱ)2. (3.13)

Let

Φ : Rn → R, x 7→ ‖Df r(x)⊤α̃‖2 − (ε⊤α̃)2.

Then Φ is continuous due to continuity of Df r. By (3.13), there must be some open
set U ⊆ Rn with x̄ ∈ U and some δ > 0 such that

Φ(x) < ‖Df r(x̄)⊤ᾱ‖2 − (ε⊤ᾱ)2 − δ ∀x ∈ U.
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In particular, since limi→∞ xi = x̄, there must be some N ∈ N such that

‖Df r(xi)⊤αi‖2 − (ε⊤αi)2 ≤ Φ(xi) < ‖Df r(x̄)⊤ᾱ‖2 − (ε⊤ᾱ)2 − δ ∀i > N.

This is a contradiction to (3.12).

Example 3.2.7 suggests that the nonsmoothness of ϕ is related to discontinuous
“jumps” in the solution of (3.11). Since ϕ is still continuous, these jumps correspond
to points x ∈ Rn in which the solution of (3.11) is non-unique. As we are mainly
interested in the boundary ∂P r

ε ⊆ ϕ−1(0), the following lemma investigates the
uniqueness of solutions of (3.11) for x ∈ ϕ−1(0).

Lemma 3.2.9. Let x ∈ ϕ−1(0) and let α1, α2 ∈ ∆k be two solutions of (3.11) with
α1 6= α2. Then

a) ω(α) = 0 ∀α ∈ span({α1, α2}),

b) there is some α̃ ∈ ∆k with ω(α̃) = 0 and α̃j = 0 for some j ∈ {1, . . . , k},

c) there is some ᾱ ∈ span({α1, α2}) with Df(x)⊤ᾱ = 0.

Proof. a) For all c1, c2 ∈ R we have

ω(c1α
1 + c2α

2)

= (c1α
1 + c2α

2)⊤(Df r(x)Df r(x)⊤ − εε⊤)(c1α
1 + c2α

2)

= c21ω(α1) + 2(c1(α
1)⊤Df r(x)Df r(x)⊤α2c2 − c1(α

1)⊤εε⊤α2c2) + c22ω(α2) (3.14)

= 2(c1(α
1)⊤Df r(x)Df r(x)⊤α2c2 − c1(α

1)⊤εε⊤α2c2)

= 2c1c2((Df
r(x)⊤α1)⊤(Df r(x)⊤α2) − (ε⊤α1)(ε⊤α2)).

Note that ω(α1) = ω(α2) = 0 implies ‖Df r(x)⊤αi‖ = ε⊤αi, i ∈ {1, 2}. For c1, c2 ≥ 0
we can apply the Cauchy-Schwarz inequality to obtain

ω(c1α
1 + c2α

2) ≤ 2c1c2(‖Df r(x)⊤α1‖‖Df r(x)⊤α2‖ − (ε⊤α1)(ε⊤α2))

= 2c1c2((ε
⊤α1)(ε⊤α2) − (ε⊤α1)(ε⊤α2))

= 0.

Furthermore we must have ω(c1α
1 + c2α

2) ≥ 0 for all c1, c2 ≥ 0 with c1 + c2 = 1,
since ϕ(x) = 0 and c1α

1 + c2α
2 ∈ ∆k. Via scaling of c1α

1 + c2α
2, this implies

ω(c1α
1 + c2α

2) = 0 ∀c1, c2 ≥ 0. (3.15)

Combined with (3.14) we obtain

(Df r(x)⊤α1)⊤(Df r(x)⊤α2) − (ε⊤α1)(ε⊤α2) = 0, (3.16)

so (3.15) holds for all c1, c2 ∈ R.
b) Consider the map ψ(λ) := λα1 + (1 − λ)α2. Due to a), we have ω(ψ(λ)) = 0 for
all λ ∈ R. Since α1, α2 ∈ ∆k with α1 6= α2 and ∆k is convex and bounded, there
must be some λ̃ such that α̃ := ψ(λ̃) ∈ ∆k and α̃j = 0 for some j ∈ {1, . . . , k}.
c) By (3.16) we have

(ε⊤α1)(ε⊤α2) = (Df r(x)⊤α1)⊤(Df r(x)⊤α2) ≤ ‖Df r(x)⊤α1‖‖Df r(x)⊤α2‖
= (ε⊤α1)(ε⊤α2),
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3.2. Inexact gradients

so the Cauchy-Schwarz inequality holds with equality. This is equivalent to
Df r(x)⊤α1 and Df r(x)⊤α2 being linearly dependent. Thus, there are c1, c2 ∈ R\{0}
such that

Df r(x)⊤ᾱ = 0

for ᾱ = c1α
1 + c2α

2. Since α1 6= α2 by assumption and all elements of ∆k are
pairwise linearly independent, we have ᾱ 6= 0, completing the proof.

By the previous lemma, for x ∈ ϕ−1(0), the solution of (3.11) can only be non-
unique in points where the kernel of Df(x)⊤ has a non-trivial intersection with
span({α1, α2}) for any two solutions α1, α2. If we assume Df(x)⊤ ∈ Rn×k to be
a generic matrix, then we expect dim(ker(Df(x)⊤)) = max({0, k − n}). So in a
generic setting, if (3.11) has a non-unique solution, then we must have

dim(span({α1, α2})) + dim(ker(Df(x)⊤)) > k

⇔ 2 + max({0, k − n}) > k

⇔
{

k < 2, if k ≤ n,

n < 2, if k > n.

Thus, we expect that the set of all x ∈ ϕ−1(0) with (potentially) non-unique so-
lutions of (3.11) is small compared to ϕ−1(0) itself. Combined with our earlier
considerations, this would imply that the set of nonsmooth points of ϕ in ϕ−1(0) is
small as well.

Recall that our goal is to use numerical continuation to compute ϕ−1(0) as a
superset of ∂P r

ε . Since ϕ is nonsmooth, the best we can hope for is that ϕ−1(0) is at
least piecewise smooth, where “kinks” arise if ϕ is nonsmooth or if Dϕ = 0. While
we will not actually prove that this is true, the following remark gives a rough sketch
of how a proof might be possible.

Remark 3.2.10. The first-order necessary optimality conditions of (3.11) are

(Df r(x)Df r(x)⊤ − εε⊤)α +







λ− µ1
...

λ− µk






= 0,

k
∑

i=1

αi − 1 = 0,

αi ≥ 0 ∀i ∈ {1, . . . , k}, (3.17)

µi ≥ 0 ∀i ∈ {1, . . . , k},
µiαi = 0 ∀i ∈ {1, . . . , k},

for λ ∈ Rk and µ ∈ Rk. Let x̄ ∈ ϕ−1(0) with multipliers ᾱ, λ̄ and µ̄ in (3.17).
Assume that there is an open set U ⊆ Rn with x̄ ∈ U such that that the solution
of (3.11) on U is unique. Furthermore, assume that the activity of the inequality
constraints of (3.11) is the same for any solution on U . Note that if αj = 0 for
some j ∈ {1, . . . , k} (i.e., the j-th inequality constraint is active), then f r

j has no
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influence on (3.11) and can be ignored. W.l.o.g. we assume that there are no active
indices, i.e., αi > 0 for all i ∈ {1, . . . , k}. Then on U , (3.17) is equivalent to

(Df r(x)Df r(x)⊤ − εε⊤)α +







λ
...
λ






= 0,

k
∑

i=1

αi − 1 = 0, (3.18)

αi ≥ 0 ∀i ∈ {1, . . . , k}.

If there is some open set V ⊆ Rk+1 with (ᾱ, λ̄) ∈ V such that α and λ in (3.18) are
unique in V , then this system can be rewritten as G(x, (α, λ)) = 0 for

G : U × V → Rk+1, (x, (α, λ)) 7→
(

(Df r(x)Df r(x)⊤ − εε⊤)α + (λ, . . . , λ)⊤
∑k

i=1 αi − 1

)

.

If the Jacobian

D(α,λ)G(x, (α, λ)) =

(

Df r(x̄)Df r(x̄)⊤ − εε⊤ 1
1 0

)

∈ R(k+1)×(k+1)

of G with respect to (α, λ) is invertible in (x̄, (ᾱ, λ̄)), then we could apply the implicit
function theorem to obtain open sets U ′ ⊆ U and V ′ ⊆ Rk+1 with x̄ ∈ U ′ and
(ᾱ, λ̄) ∈ V ′, and a continuously differentiable function φ = (φα, φλ) : U ′ → V ′ with

G(x, (α, λ)) = 0 ⇔ (α, λ) = φ(x) ∀x ∈ U ′, (α, λ) ∈ V ′.

Finally, on U ′, ϕ could be written as ϕ(x) = ω(φα(x)), which would imply differen-
tiability of ϕ. (In particular, Dϕ could be computed via the chain rule and implicit
differentiation.)

In the following section, we will construct a box-continuation method which
is able to approximate ϕ−1(0) similarly to the exact box-continuation method in
Section 3.1. Due to the discussion in this section, we will assume that ϕ−1(0) is
piecewise smooth. Since we did not actually prove this, we will also discuss how the
method can be modified to be able to deal with problems where ϕ−1(0) does not
have this structure.

3.2.3 The algorithm

The ideas of the box-continuation algorithm (Algorithm 3.1) can generally be used
to compute any smooth manifold M ⊆ Rn. The only ingredients needed are

• a way to compute the tangent space TxM of M for any x ∈M and

• a way to check if B ∩M 6= ∅ for any box B ∈ B.

If M can be written as a (zero) level set M = h−1(0) as in Theorem 2.2.9, then the
tangent space can be computed via TxM = ker(Dh(x)). To check if B ∩M 6= ∅, we
can minimize the sum of squares of the components of h in B, i.e., minx∈B ‖h(x)‖2.
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3.2. Inexact gradients

Thus, in case of the boundary ∂P r
ε ⊆ ϕ−1(0) of P r

ε , we use ker(Dϕ(x)) to compute
the tangent space. Since we might have Dϕ(x) = 0, in which case ϕ−1(0) might not
be a manifold around x, we consider Rn as the tangent space if the norm of Dϕ(x)
is small. To check if a box B contains part of ϕ−1(0), we solve the problem

θ(B) := min
x∈B

ϕ(x)2. (3.19)

(Note that compared to (3.1) and (3.8), this problem is more difficult to solve since
the problem (3.11) has to be solved for every evaluation of ϕ.) The resulting al-
gorithm is Algorithm 3.4. In the following remark, we will discuss some of its
properties.

Algorithm 3.4 Box-continuation method for inexact gradients

Given: x0 ∈ ϕ−1(0).
1: Initialize C = {B(x0)}, XC = {x0}, Cout = ∅ and a queue Q = {x0}.
2: while Q 6= ∅ do
3: Remove the first element x̄ from Q.
4: Compute Dϕ(x̄).
5: If ‖Dϕ(x̄)‖ is small then set TB := N(x̄). Otherwise, compute the

neighboring boxes with a nonempty intersection with the tangent space, i.e.,

TB := {B ∈ N(x̄) : B ∩ (x̄+ ker(Dϕ(x̄))) 6= ∅}.

6: for B ∈ TB \ (C ∪ Cout) do
7: Compute the optimal value θ(B) and the solution xB of (3.19).
8: If θ(B) = 0, then set Q = Q ∪ {xB}, C = C ∪ {B} and

XC = XC ∪ {xB}. Otherwise, set Cout = Cout ∪ {B}.
9: end for
10: end while

Remark 3.2.11. a) As discussed earlier, we can only expect ϕ−1(0) to be piece-
wise smooth. Since we cannot expect the method to overcome “kinks” in
ϕ−1(0), Algorithm 3.4 potentially has to be started multiples times to obtain
the complete set, even if it is connected. This can be done as discussed in
Remark 3.1.3 a).

b) If ϕ is nonsmooth in B ∈ B, then a nonsmooth solver is required to reliably
solve (3.19). Otherwise, the algorithm may stop prematurely if a box is falsely
identified to not contain part of ϕ−1(0).

c) By construction, only boxes with θ(B) = 0 (or, in practice, with θ(B) being
small) are added to the covering C. Thus, if our assumption on the piecewise
smooth structure of ∂P r

ε does not hold, then the effect is that our method might
stop prematurely. In theory, this problem could be solved by always choosing
TB = N(x̄) in step 5 (and therefore not relying on any smoothness of ϕ−1(0)),
but this would clearly significantly decrease the efficiency of the algorithm.
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3.2.4 Examples

In this section, we will apply Algorithm 3.4 to some examples. For the evaluation
of ϕ via the solution of (3.11), we use the SQP method of the MATLAB function
fmincon. (The MATLAB function quadprog for quadratic problems requires pos-
itive definiteness of the matrix in the objective, which is not satisfied in our case.)
The derivative Dϕ is approximated via finite differences. For the solution of (3.19)
we also use the SQP method. To decide whether B ∩ ϕ−1(0) 6= ∅ in step 8, we use
the threshold θ(B) < 10−10.

We will begin by revisiting Example 3.2.5 to compare the result C of Algorithm
3.4 with the simple, pointwise approximation of P r

ε that we computed earlier.

Example 3.2.12. Let f r be defined as in Example 3.2.5. Figure 3.13 shows the
result of Algorithm 3.4 for the box radius r = 3 · 2−9 ≈ 0.5859 · 10−3 and two
different error bounds ε. For both error bounds, our method correctly computed the

(a) ε = (0.2, 0.05)⊤ (b) ε = (0, 0.2)⊤

Figure 3.13: Result C of Algorithm 3.4 compared to a pointwise approximation of
P r
ε for Example 3.2.12 for different error bounds.

boundary of P r
ε .

Next, we will revisit Example 3.2.1, where it was highlighted why the Pareto
critical set P r

c of the inexact objective vector might not be a good approximation of
Pc.

Example 3.2.13. Let f and f r be defined as in Example 3.2.1. Then (3.9) is
satisfied for ε = ( 1

10
, 1
10

)⊤. Figure 3.14 shows the result of Algorithm 3.4 for the box
radius r = 3 · 2−9 ≈ 0.5859 · 10−3. In this example, the Pareto critical set P r

c of the
inexact objective function is disconnected, while both the actual Pareto critical set
Pc and the superset P r

ε (as given by its boundary) are connected. This shows that
P r
ε may be better suited for making predictions about the (topological) properties of
Pc than P

r
c .

So far, we only considered problems with n = 2 variables since they are easier to
illustrate. As a higher-dimensional example, we will now consider a problem with
k = 3 objective functions in n = 3 variables.
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Figure 3.14: The sets Pc and P r
c and the result of Algorithm 3.4 in Example 3.2.13.

Example 3.2.14. Consider the MOP minx∈R3 f(x) with

f(x) =





x21 + x22 + x23
x21 + (x2 − 1)2 + (x3 − 1)2

(x1 − 1)2 + (x2 − 1)2 + (x3 − 1
2
)2 + δ

c
√
2

sin(c(x1 + x3))



 (3.20)

for c, δ > 0 and the inexact objective vector

f r : R3 → R3, x 7→





x21 + x22 + x23
x21 + (x2 − 1)2 + (x3 − 1)2

(x1 − 1)2 + (x2 − 1)2 + (x3 − 1
2
)2



 .

Then ‖∇f1(x) −∇f r
1 (x)‖ = ‖∇f2(x) −∇f r

2 (x)‖ = 0 for all x ∈ Rn and

‖∇f3(x) −∇f r
3 (x)‖ =

∥

∥

∥

∥

∥

(

δ√
2

cos(c(x1 + x3)), 0,
δ√
2

cos(c(x1 + x3))

)⊤
∥

∥

∥

∥

∥

= δ| cos(c(x1 + x3))| ≤ δ ∀x ∈ Rn,

so (3.9) is satisfied for the error bounds ε = (0, 0, δ)⊤. For our numerical experiment,
we choose c = 20 and δ = 1

5
. Due to the simple structure of f r, it is easy to see

that its Pareto critical set P r
c is the convex hull of the points (0, 0, 0)⊤, (0, 1, 1)⊤ and

(1, 1, 1
2
)⊤ (cf. (2.4)). Figure 3.15 shows the approximation C of ∂P r

ε from Algorithm
3.4 and the Pareto critical set Pc of (3.20) (computed via Algorithm 3.1). Figure
3.16 shows two x2-x3-slices of both sets, showing that Pc lies within ∂P

r
ε as expected.

3.2.5 Application to PDE-constrained MOPs

A typical situation in practice where only inexact objective functions are available
is the situation where the original objective functions are too computationally ex-
pensive to evaluate and are therefore replaced by cheaper surrogate models. For
example, this is done in the area of PDE-constrained multiobjective optimization
(also sometimes referred to as multiobjective optimal control), which we will con-
sider in this section. Only a short introduction to this topic will be given here. For
the details, see [Trö10; IUV17; Pei17].
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(a) C (b) Pc

Figure 3.15: Superset P r
ε (via C) and the Pareto critical set Pc of the MOP (3.20)

in Example 3.2.14.

(a) x1 = 53 · 2−7 ≈ 0.4141 (b) x1 = 105 · 2−7 ≈ 0.8203

Figure 3.16: Comparison of C (gray) and Pc (blue) via x2-x3-slices for two different
x1 in Example 3.2.13.

We consider MOPs of the (abstract) form

min
x∈U,y∈Y

J(x, y), (MOCP)

s.t. e(x, y) = 0,

where

• U is the control space, containing the controls x ∈ U ,

• Y is the state space, containing the states y ∈ Y ,

• J : U × Y → Rk is the vector of (state-dependent) objectives,

• e is a PDE called the state equation.
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Many physical systems can be modeled in this form. For example, if a room is to be
heated, then the control x is the dial on the heating device, e is the heat equation
and y is the resulting temperature distribution in the room. The objective functions
could be the distance to some target temperature distribution (known as tracking
type functions) and the energy cost of the heating process.

If the state is uniquely determined by the control and the state equation, i.e., if
there is a solution operator S : U → Y with

e(x, y) = 0 ⇔ y = S(x)

for all x ∈ U , then (MOCP) can be written as

min
x∈U

f(x) for f(x) := J(x,S(x)). (3.21)

In theory, the solution of (MOCP) could be obtained by simply solving (3.21) with
a standard MOP solver. But every evaluation of f involves the computation of the
state of the system via the solution operator S. In practice, S can be evaluated nu-
merically via the finite element method (FEM), but it is computationally expensive
to do so. So instead of solving (3.21) directly using the exact solution operator S,
an approximated operator Sr is used. This approximated operator can be obtained
via reduced-order modeling techniques like proper orthogonal decomposition (POD)
[KV01; KV02; BBV17] or the reduced basis method (RB) [QMN16]. Using Sr, the
objective vector of (3.21) can then be replaced by the cheaper, but inexact objective
vector

f r : U → Rk, x 7→ J(x,Sr(x)).

Furthermore, it is possible to derive error estimators to obtain error bounds ε for f r

as in (3.9).
As an explicit example, we consider the problem (4.2) in [Ban+19], where the

state equation is an elliptic advection-diffusion-reaction equation and the two di-
mensional control consists of the diffusivity in the domain and the strength and
orientation of the advection field. There are four objective functions, of which the
first three are of tracking type and the last one is the energy cost. For reference,
the exact solution of this problem (computed via Algorithm 3.1 with the box radius
r = 2.5 · 2−9 ≈ 0.4883 · 10−2 and FEM for the evaluation of the solution operator)
is the blue set shown in Figure 3.17. For the generation of the surrogate model,
the RB method from Section 3.2 in [Ban+19] is used. The corresponding error
estimation is done in Section 3.3. For our inexact approach, a surrogate model is
generated such that the resulting inexact objective function f r satisfies the error
bounds ε = (0.03, 0.03, 0.01, 0.01)⊤. The result of Algorithm 3.4 for this f r is shown
in red in Figure 3.17. Table 3.1 shows the performance of both the exact solution
via Algorithm 3.1 and the inexact solution via Algorithm 3.4. More specifically, it
shows the number of boxes in the box covering, the number of times the subproblems
(3.1) and (3.19) had to be solved, and the total runtime of the algorithms. When
comparing the runtime, we see that Algorithm 3.4 only needs about 1.6% of the
runtime of Algorithm 3.1. (While this is a relatively large increase in efficiency, we
have to note that it is strongly influenced by the lower dimension of ∂P r

ε compared
to Pc, which is only the case when k > n. Due to this, far less boxes are needed to
cover ∂P r

ε .)
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Chapter 3. Box-continuation methods for smooth problems

Figure 3.17: Exact solution via FEM and the boundary of the superset P r
ε for the

error bounds ε = (0.03, 0.03, 0.01, 0.01)⊤.

Table 3.1: Comparison of the performance of the exact solution via Algorithm 3.1
and the inexact solution via Algorithm 3.4 from Figure 3.17. The number of sub-
problems is split up into subproblems for the continuation and initialization (cf.
Remark 3.1.3 a)).

Algorithm # Boxes # Subproblems Runtime (in seconds)
Algo. 3.1 15916 18721 + 25 17501s
Algo. 3.4 899 1027 + 225 276s

When we consider the accuracy of the approximation of Pc by ∂P r
ε in Figure

3.17, we see that it is relatively high everywhere except on the right-hand side of the
lower connected component of Pc. To improve the quality, a more accurate surrogate
model is computed, this time such that the error bounds ε = (0.03, 0.01, 0.01, 0.01)⊤

are satisfied. The corresponding result (with a box radius 2.5 · 2−10 ≈ 0.2441 · 10−2)
is shown in Figure 3.18, where the size of the gap on the right-hand side of the lower
connected component significantly decreased.
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3.2. Inexact gradients

Figure 3.18: Exact solution via FEM and the boundary of the superset P r
ε for the

error bounds ε = (0.03, 0.01, 0.01, 0.01)⊤.
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4 An efficient descent method for
nonsmooth problems

There are many single-objective optimization problems that are naturally nons-
mooth. Popular examples are obstacle problems in optimal shape design, clustering
problems with nonsmooth similarity measures and problems involving exact penalty
functions in constrained optimization. See [BKM14] for an overview. Furthermore,
there are cases where these problems are equipped with multiple objectives. For ex-
ample, in [MM93], the authors consider an obstacle problem where an elastic string
is pushed against a rigid obstacle by some vertical force. The objectives are to
maximize the contact area between the obstacle and the string while using minimal
force. This creates the need for solution methods for nonsmooth MOPs. As already
discussed at the beginning of Section 2.2.2, the class of locally Lipschitz continuous
functions is a suitable class of “nonsmooth” objective functions.

This chapter will introduce a descent method for computing Pareto critical points
of locally Lipschitz MOPs. In the smooth case in Section 2.3.2, the descent method
was based on a direction v̄, along which all objectives fi decrease, and a step length
t̄, which assures a sufficient amount of improvement for all fi. This will be gener-
alized to the nonsmooth case via the concepts and tools from nonsmooth analysis
introduced in Section 2.2.2. By Lemma 2.2.20, if we have a direction v that has
a negative scalar product with all subgradients of all objective functions, then we
have a guaranteed descent along v. As shown in [AGG15], such a direction can be
computed as the element with the smallest norm in the negative convex hull of all
subdifferentials. In the following, we begin by formally introducing and discussing
the resulting descent direction in Section 4.1. As Clarke subdifferentials are difficult
to compute in practice, we then introduce the so-called Goldstein ε-subdifferential
[Gol77] in Section 4.2, and discuss its efficient approximation (which is based on
the ideas in [MAY12]) in Section 4.3. Combined with an Armijo-like step length,
we obtain a descent method for which we prove convergence to points that sat-
isfy a necessary condition for Pareto criticality in Section 4.4. Additionally, for a
small extension of our method, we show convergence to actual Pareto critical points.
In Section 4.5, our method is applied to numerical examples. Using a set of test
problems, a comparison to the multiobjective proximal bundle method from Section
2.3.2 indicates that the performance of our method is competitive. Furthermore,
we investigate the practical behavior of our method via examples and discuss an
extension to approximate entire Pareto sets.

Throughout this chapter, we consider the unconstrained minimization of an ob-
jective vector f : Rn → Rk which is locally Lipschitz continuous (cf. (2.15)). Al-
though we will prove convergence of our method to Pareto critical points, it is much
more likely that our method finds points that are at least locally Pareto optimal,
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4.1. Theoretical descent direction

since we enforce a decrease of the objectives in each iteration. Thus, in contrast to
the previous chapter, the method in this chapter is better suited for computing the
actual Pareto set and only theoretically able to compute the Pareto critical set of
nonsmooth MOPs.

Parts of this chapter have been previously published in [GP21a], to which the
author of this thesis was the main contributor.

4.1 Theoretical descent direction

By Lemma 2.2.20, if we have a direction v ∈ Rn with

max
ξ∈∂∪f(x)

〈ξ, v〉 = max
ξ∈∂fi(x),i∈{1,...,k}

〈ξ, v〉 < 0,

where ∂∪f(x) is defined as in (2.16), then we have guaranteed descent along v. In
this case, we say that v is a descent direction of f in x. By choosing W = ∂∪f(x)
in Lemma 2.2.1, a descent direction can be obtained via

v(x) := arg min
ξ∈−∂∪f(x)

‖ξ‖2, (4.1)

as suggested in [AGG15]. In particular, if x is not Pareto critical, it holds

〈v(x), ξ〉 ≤ −‖v(x)‖2 < 0 ∀ξ ∈ ∂∪f(x). (4.2)

The following examples visualizes this descent direction.

Example 4.1.1. Consider the simple MOP from Example 2.2.25. Figure 4.1 shows
the (uniformly scaled) direction resulting from (4.1) in a grid of points. It coin-

Figure 4.1: The descent direction resulting from (4.1) for Example 4.1.1.

cides with the descent direction (2.19) from the smooth case everywhere except on
the nondifferentiable set Ω = (R × {0}) ∪ ({0} × R) of f . We see that Ω causes
discontinuous transitions in v, which cannot occur in the smooth case (cf. Lemma
2.3.3). For example, when considering the local behavior around (0, 0)⊤, we see that
v does not vanish close to the Pareto critical set.
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Chapter 4. An efficient descent method for nonsmooth problems

While solving (4.1) is a theoretically sound way of computing descent directions
and a natural generalization of the smooth case, there are mainly two reasons why
it is problematic from a practical point of view:

(i) The first reason is the difficulty of obtaining the information required to solve
(4.1). As ∂∪f(x) is the union of all subdifferentials of the objectives in x,
all these subdifferentials have to be computed. As discussed in Section 2.2.2,
there is generally no easy way to do so. Furthermore, even if ∂∪f(x) is known,
it might not be possible to represent it in a simple way, e.g., as the convex hull
of a finite number of points, making the solution of (4.1) even more involved.

(ii) The second reason is the fact that ∂∪f(x) only captures the nonsmooth be-
havior of f if any of the components of f are nondifferentiable in x. By
Rademacher’s theorem (Theorem 2.2.14), the set of nondifferentiable points Ω
of f is a null set in Rn. Thus, in practice, we can generally not expect to actu-
ally encounter an x ∈ Ω. In other words, any method that relies on ∂∪f(x) to
capture the nonsmoothness of f would behave like a smooth method applied
to a nonsmooth problem, which generally fails to work (cf. [AO19]).

In the single-objective case, the result of (4.1) reduces to the direction from
Proposition 6.2.4 in [Cla90], suffering from the same issues as mentioned above.
To solve these issues in the single-objective case, different methods have been sug-
gested. In subgradient methods [Sho85], a single subgradient ξ ∈ ∂f(x) is used to
approximate ∂f(x). This implies that the solution of (4.1) is trivially given by −ξ,
which makes it easy to implement in practice. The clear downside is that a single
subgradient is not always sufficient for a good approximation of the local behavior
of a nonsmooth function, so it cannot be guaranteed that −ξ is actually a direction
that yields (sufficient) descent. In gradient sampling methods [BLO05; Bur+20],
∂f(x) is approximated by the convex hull of a finite number of gradients of f in
randomly sampled, differentiable points around x. Due to the randomness, it can
again not be guaranteed that the resulting direction actually yields sufficient de-
scent. Furthermore, a check for differentiability of the objective functions in the
randomly sampled points is needed, which is non-trivial in practice (cf. [HSS16]).

In the multiobjective case, the only methods that directly deal with (4.1) are gen-
eralizations of the subgradient method proposed in [Cru13; Net+13], but they were
reported to be unsuitable for real life applications. In the multiobjective proximal
bundle method from Section 2.3.2, (4.1) only occurs implicitly in (2.26). The prob-
lem (2.26) is solved via a linearization based on subgradients which were computed
in earlier iterations, resulting in problem (2.27). This approach is comparable to the
solution of (4.1) via approximation of ∂∪f(x) with a finite number of subgradients
(which are computed in a specific way).

In the following, we will describe a way to efficiently compute descent directions
of locally Lipschitz MOPs by systematically computing an approximation of ∂∪f(x)
that is sufficient to obtain “good” descent directions via (4.1). As for the multiob-
jective proximal bundle method, we assume that for each x ∈ Rn, we can compute a
single subgradient for each objective fi, i ∈ {1, . . . , k}. (This is sometimes referred
to as oracle information [OS14].)
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4.2. The Goldstein ε-subdifferential

4.2 The Goldstein ε-subdifferential

By definition, ∂fi(x) is the convex hull of all (existing) limits limj→∞ ∇fi(xj) for all
sequences (xj)j ∈ Rn converging to x. Thus, if we evaluate ∇fi in points which are
close to x (where f is differentiable) and then take the convex hull of the results,
we expect to have some kind of approximation of ∂fi(x). To formalize this idea, we
introduce the so-called Goldstein ε-subdifferential [Kiw10; Gol77]. To this end, for
ε ≥ 0 and x ∈ Rn let Bε(x) := {y ∈ Rn : ‖x− y‖ ≤ ε}.

Definition 4.2.1. Let ε ≥ 0 and x ∈ Rn. Then

∂εfi(x) := conv





⋃

y∈Bε(x)

∂fi(y)





is the (Goldstein) ε-subdifferential of fi in x. An element ξ ∈ ∂εfi(x) is an ε-
subgradient.

Clearly, ∂0fi(x) = ∂fi(x) and ∂fi(x) ⊆ ∂εfi(x). The ε-subdifferential can be
interpreted as a “stabilized” version of the Clarke subdifferential, since it not only
contains the differential information of fi in x, but from a (local) neighborhood of x.
This deals with the problem (ii) from above, since the ε-subdifferential in x captures
the nonsmoothness of fi as soon as the distance of x to Ωi is less or equal ε.

At first glance, the ε-subdifferential may seem even more difficult to compute
than the Clarke subdifferential, since it is defined as the convex hull of the union of
infinitely many Clarke subdifferentials. But note that since we assumed that we are
able to compute a single Clarke subgradient at each point in Rn, we are actually
able to compute multiple ε-subgradients in x by simply computing multiple Clarke
subgradients in Bε(x). By systematically “sampling” ε-subgradients in this way,
we will later be able to compute an approximation of the ε-subdifferential that is
sufficient to compute descent directions. This will deal with problem (i) from the
above discussion.

In the following, we will show some technical results about the ε-subdifferential.
Analogously to (2.16), let

∂∪ε f(x) := conv

(

k
⋃

i=1

∂εfi(x)

)

.

The following lemma shows that the ε-subdifferential has the same basic properties
as the Clarke subdifferential. (As there are different ways to define ε-subdifferentials,
we will give the full proof here for the sake of completeness.)

Lemma 4.2.2. Let x ∈ Rn and ε ≥ 0. The set ∂εfi(x) is nonempty, convex and
compact. In particular, the same holds for ∂∪ε f(x).

Proof. Non-emptiness and convexity of ∂εfi(x) and ∂∪ε f(x) are trivial. As the convex
hull of a compact set is compact (cf. [BV10], Exercise 2.4.11) and the union of finitely
many compact sets is compact, we only have to show compactness of

K :=
⋃

y∈Bε(x)

∂fi(y).
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Chapter 4. An efficient descent method for nonsmooth problems

To this end, let (Vj)j∈J be an open covering of K, i.e., Vj is open for all j ∈ J and

K ⊆
⋃

j∈J
Vj.

Let y ∈ Bε(x). Since ∂fi(y) is compact and a subset of K, there is some finite subset
J(y) of the index set J with

∂fi(y) ⊆
⋃

j∈J(y)
Vj =: V (y). (4.3)

Since V (y) is open and ∂fi is upper semicontinuous, there is an open set U(y) ⊆ Rn

with y ∈ U(y) such that

∂fi(z) ⊆ V (y) ∀z ∈ U(y). (4.4)

Since Bε(x) is compact and (U(y))y∈Bε(x)
is an open covering of Bε(x), there is a

finite set of points {y1, . . . , yN} such that

Bε(x) ⊆
N
⋃

l=1

U(yl). (4.5)

Now let J ′ :=
⋃N

l=1 J(yl) and V ′ :=
⋃

j∈J ′ Vj. By construction, |J ′| is finite. We will
show that K ⊆ V ′, implying that K is compact. Let ξ ∈ K. By definition, there
is some y′ ∈ Bε(x) with ξ ∈ ∂fi(y

′). By (4.5), there is some l ∈ {1, . . . , N} with
y′ ∈ U(yl). By (4.3) and (4.4),

ξ ∈ ∂fi(y
′) ⊆ V (yl) =

⋃

j∈J(yl)
Vj ⊆

⋃

j∈J ′

Vj = V ′,

completing the proof.

Combination of the previous lemma with Theorem 2.2.22 and Lemma 2.2.1 yields
the following corollary.

Corollary 4.2.3. Let x ∈ Rn and ε ≥ 0.

a) If x is Pareto optimal, then

0 ∈ ∂∪ε f(x). (4.6)

b) Let

v̄(x) := arg min
ξ∈−∂∪

ε f(x)

‖ξ‖2. (4.7)

Then either v̄(x) 6= 0 and

〈v̄(x), ξ〉 ≤ −‖v̄(x)‖2 < 0 ∀ξ ∈ ∂∪ε f(x), (4.8)

or v̄(x) = 0 and there is no v ∈ Rn with 〈v, ξ〉 < 0 for all ξ ∈ ∂∪ε f(x).

75



4.2. The Goldstein ε-subdifferential

The previous corollary states that if we work with the ε-subdifferential instead of
the Clarke subdifferential, we still have a necessary optimality condition and a way
to compute descent directions. The difference is that since ∂∪f(x) ⊆ ∂∪ε f(x), the
optimality condition (4.6) is weaker than the original condition (2.17). Furthermore,
by (4.2) and (4.8), −‖v(x)‖2 and −‖v̄(x)‖2 are upper bounds for the generalized di-
rectional derivatives ∂◦fi(x, v(x)) and ∂◦fi(x, v̄(x)), respectively (cf. Remark 2.2.21).
Since −‖v(x)‖2 ≤ −‖v̄(x)‖2, this means that v(x) potentially yields a steeper de-
scent than v̄(x). We compare both descent directions in the following example.

Example 4.2.4. Consider the locally Lipschitz problem

min
x∈R2

f(x) with f(x) =

(

(x1 − 1)2 + (x2 − 1)2

x21 + |x2|

)

.

The set of nondifferentiable points of f is Ω = R× {0}. Let ε ≥ 0. For any x ∈ R2

we have

∂f1(x) = {∇f1(x)} =

{(

2x1 − 2
2x2 − 2

)}

and ∂εf1(x) = 2Bε(x) −
(

2
2

)

.

For x ∈ Ω we have

∂f2(x) = {2x1} × [−1, 1] and ∂εf2(x) = (2x1 + [−2ε, 2ε]) × [−1, 1].

Figure 4.2 shows the Clarke subdifferentials (a) and the ε-subdifferentials (b) for
ε = 0.2 and x∗ = (1.5, 0)⊤. Additionally, the resulting descent directions are shown.
In this case, the predicted descent is −‖v‖2 ≈ −3.7692 in (a) and −‖v̄‖2 ≈ −2.4433
in (b).

(a) (b)

Figure 4.2: Clarke subdifferentials (a), ε-subdifferentials (b) and the corresponding
descent directions for ε = 0.2 and x∗ = (1.5, 0)⊤ in Example 4.2.4.

Figure 4.3 shows the same scenario for x∗ = (0.5, 0)⊤. Here, the Clarke subd-
ifferential still yields a descent, while the descent direction for the ε-subdifferential
is zero. In other words, the weaker optimality condition (4.6) is satisfied, while the
original KKT condition (2.17) is not satisfied.
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(a) (b)

Figure 4.3: Clarke subdifferentials (a), ε-subdifferentials (b) and the corresponding
(potentially vanishing) descent directions for ε = 0.2 and x∗ = (0.5, 0)⊤ in Example
4.2.4.

By Lemma 2.2.20 and inequality (4.8) we know that if v̄(x) 6= 0, then there is
some T > 0 such that there is a guaranteed descent along v̄(x) for all step lengths
t ∈ (0, T ]. Due to the definition of v̄(x), it turns out that it is even possible to derive
a lower bound for the largest possible choice for T in this case.

Lemma 4.2.5. Let x ∈ Rn and ε ≥ 0. If v̄(x) 6= 0, then

fi(x+ tv̄(x)) ≤ fi(x) − t‖v̄(x)‖2 ∀t ∈
(

0,
ε

‖v̄(x)‖

]

, i ∈ {1, . . . , k}.

In particular,

fi

(

x+
ε

‖v̄(x)‖ v̄(x)

)

≤ fi(x) − ε‖v̄(x)‖ ∀i ∈ {1, . . . , k}.

Proof. For the sake of brevity we write v̄ = v̄(x). Let t ∈ (0, ε
‖v̄‖ ] and i ∈ {1, . . . , k}.

By applying the mean value theorem (Theorem 2.2.18) to x and x+ tv̄, we obtain

fi(x+ tv̄) − fi(x) = 〈ξ, tv̄〉 = t〈ξ, v̄〉

for some ξ ∈ ∂fi(x+ rv̄) with r ∈ (0, t). Since ‖x− (x+ rv̄)‖ = r‖v̄‖ < t‖v̄‖ ≤ ε, it
follows that ξ ∈ ∂εfi(x). By (4.8), this implies 〈ξ, v̄〉 ≤ −‖v̄‖2, so

fi(x+ tv̄) − fi(x) ≤ −t‖v̄‖2
⇔ fi(x+ tv̄) ≤ fi(x) − t‖v̄‖2.

4.3 Efficient computation of descent directions

In this section, we will derive a way to efficiently compute approximations of the
descent direction from (4.7) in practice, i.e., when only a single Clarke subgradient
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4.3. Efficient computation of descent directions

can be computed in each point. Similar to the gradient sampling method, the idea of
our method is to approximate ∂∪ε f(x) by the convex hull of a finite number m ∈ N of
ε-subgradients ξ1, . . . , ξm ∈ ∂∪ε f(x). Since it is impossible to know a priori how many
and which ε-subgradients are required to obtain a good descent direction, we solve
(4.7) multiple times while enriching our approximation with new ε-subgradients,
until an acceptable descent direction is found. To be able to do this, we have to
derive a way to improve our approximation conv({ξ1, . . . , ξm}) of ∂∪ε f(x) by adding
new ε-subgradients and we have to characterize acceptable descent directions.

To this end, let W = {ξ1, . . . , ξm} ⊆ ∂∪ε f(x) and define

ṽ := arg min
ξ∈− conv(W )

‖ξ‖2. (4.9)

Let c ∈ (0, 1). Motivated by Lemma 4.2.5, we say that ṽ is an acceptable descent
direction if

fi

(

x+
ε

‖ṽ‖ ṽ
)

≤ fi(x) − cε‖ṽ‖ ∀i ∈ {1, . . . , k}. (4.10)

The parameter c is similar to an Armijo parameter (cf. (2.24)). If ṽ is not an
acceptable direction, i.e., if the index set I ⊆ {1, . . . , k} for which (4.10) is violated
is nonempty, then we want to compute a new ε-subgradient ξ′ ∈ ∂∪ε f(x) such that
W∪{ξ′} yields a steeper descent direction. Intuitively, (4.10) being violated for some
i ∈ {1, . . . , k} means that the local behavior of fi in the direction ṽ is not sufficiently
captured in W . Thus, for each i ∈ I, we expect there to be some t′ ∈ (0, ε

‖ṽ‖ ] and

ξ′ ∈ ∂fi(x + t′ṽ) such that W ∪ {ξ′} is a better approximation of ∂∪ε f(x) than W .
This is proven in the following lemma.

Lemma 4.3.1. Let c ∈ (0, 1), W = {ξ1, . . . , ξm} ⊆ ∂∪ε f(x) and ṽ be the solution
of (4.9). If ṽ is not an acceptable direction, i.e., if (4.10) is violated for some
i ∈ {1, . . . , k}, then there is some t′ ∈ (0, ε

‖ṽ‖ ] and ξ′ ∈ ∂fi(x+ t′ṽ) such that

〈ṽ, ξ′〉 > −c‖ṽ‖2. (4.11)

Furthermore,

ξ′ ∈ ∂∪ε f(x) \ conv(W ).

Proof. Assume that there is some i ∈ {1, ..., k} such that (4.10) is violated and the
statement does not hold, i.e., for all t′ ∈ (0, ε

‖ṽ‖ ] and all ξ′ ∈ ∂fi(x+ t′ṽ) we have

〈ṽ, ξ′〉 ≤ −c‖ṽ‖2. (4.12)

By applying the mean value theorem to x and x + ε
‖ṽ‖ ṽ as in the proof of Lemma

4.2.5, we obtain some r ∈ (0, ε
‖ṽ‖) and ξ̄ ∈ ∂fi(x+ rṽ) such that

fi

(

x+
ε

‖ṽ‖ ṽ
)

− fi(x) =
ε

‖ṽ‖〈ξ̄, ṽ〉.

With (4.12) it follows that

fi

(

x+
ε

‖ṽ‖ ṽ
)

= fi(x) +
ε

‖ṽ‖〈ξ̄, ṽ〉 ≤ fi(x) − cε‖ṽ‖,
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which is a contradiction to (4.10) being violated.
So there must be some t′ ∈ (0, ε

‖ṽ‖ ] and ξ′ ∈ ∂fi(x + t′ṽ) ⊆ ∂∪ε f(x) such that

〈ṽ, ξ′〉 > −c‖ṽ‖2 > −‖ṽ‖2. Recall that by Lemma 2.2.1 and by the definition of ṽ,
we have

〈ṽ, ξ〉 ≤ −‖ṽ‖2 < 0 ∀ξ ∈ conv(W ),

so ξ′ /∈ conv(W ), completing the proof.

The following example visualizes the previous lemma.

Example 4.3.2. We revisit the MOP from Example 4.2.4 and consider ε = 0.2 and
x∗ = (0.75, 0)⊤. The dashed lines in Figure 4.4 show the ε-subdifferentials, ∂∪ε f(x∗)
and the direction v̄ (cf. Figure 4.2 and 4.3).

(a) conv({ξ1, ξ2}) (b) conv({ξ1, ξ2, ξ′})

Figure 4.4: Approximations of ∂∪ε f(x∗) for ε = 0.2 and x∗ = (0.75, 0)⊤ in Example
4.3.2.

Let y = (0.94,−0.02)⊤. Then ‖x∗ − y‖ ≈ 0.191 ≤ ε, so y ∈ Bε(x
∗) and

∂εf1(x
∗) ⊇ ∂f1(y) =

{(

−0.12
−2.04

)}

=: {ξ1},

∂εf2(x
∗) ⊇ ∂f2(y) =

{(

1.88
−1

)}

=: {ξ2}.

Let W := {ξ1, ξ2} and conv(W ) be the current approximation of ∂∪ε f(x∗), shown
as the solid line in Figure 4.4(a). We choose c = 0.25 and consider the direction
ṽ resulting from (4.9), also shown in Figure 4.4(a). Checking if ṽ is an acceptable
direction, we see that

f2

(

x∗ +
ε

‖ṽ‖ ṽ
)

≈ 0.6101 > 0.4748 ≈ f2(x
∗) − cε‖ṽ‖.

By Lemma 4.3.1, this means that there have to be t′ ∈ (0, ε
‖ṽ‖ ] and ξ′ ∈ ∂f2(x

∗ + t′ṽ)

such that 〈ṽ, ξ′〉 > −c‖ṽ‖2. For example, in this case, we can choose t′ = 1
2

ε
‖ṽ‖ ,
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resulting in

∂f2(x
∗ + t′ṽ) ≈

{(

1.4077
1

)}

=: {ξ′},

〈ṽ, ξ′〉 ≈ 0.4172 > −0.7696 ≈ −c‖ṽ‖2.

Figure 4.4(b) shows the enriched approximation W ∪ {ξ′} and the new direction
ṽ. By checking (4.10), we see that ṽ is acceptable. (Note that in general, multiple
improvement steps are needed to obtain an acceptable direction.)

While Lemma 4.3.1 shows the existence of a new ε-subgradient ξ′ that improves
the approximation of ∂∪ε f(x), its proof is non-constructive. In the following, we will
discuss how such a ξ′ can be computed (almost reliably) in practice. To this end,
assume that ṽ from (4.9) is not an acceptable direction and let i ∈ {1, . . . , k} be
an index such that (4.10) is violated. Our goal is to find an ε-subgradient ξ′ as in
(4.11). Consider the function

hi : R → R, t 7→ fi(x+ tṽ) − fi(x) + ct‖ṽ‖2.

Then hi(0) = 0 and, since ṽ is not acceptable, hi(
ε

‖ṽ‖) > 0. If fi would be continu-
ously differentiable, then

h′i(t) := ∇hi(t) = 〈∇fi(x+ tṽ), ṽ〉 + c‖ṽ‖2,

and (4.11) would be equivalent to h′i(t
′) > 0, i.e., h′i being monotonically increasing

in t′. In the nonsmooth case, the idea is to borrow this result by searching for a
t′ ∈ (0, ε

‖ṽ‖ ] such that hi is increasing around t′. This can be done via Algorithm

4.1, which performs bisections while simultaneously checking (4.11) until a new ε-
subgradient is found.

Algorithm 4.1 Computing new ε-subgradients

Given: Current point x ∈ Rn, direction ṽ ∈ Rn, index i ∈ {1, . . . , k} violating
(4.10), tolerance ε > 0, Armijo parameter c ∈ (0, 1).

1: Initialize a = 0, b = ε
‖ṽ‖ and t = a+b

2
.

2: Compute ξ′ ∈ ∂fi(x+ tṽ).
3: If 〈ṽ, ξ′〉 > −c‖ṽ‖2 then stop.
4: If hi(b) > hi(t) then set a = t. Otherwise set b = t.
5: Set t = a+b

2
and go to step 2.

In terms of its convergence, we have the following result.

Lemma 4.3.3. Let (tj)j be the sequence generated by Algorithm 4.1.

a) If (tj)j is finite, then some ξ′ was found satisfying (4.11).

b) If (tj)j is infinite, then it converges to some t̄ ∈ (0, ε
‖ṽ‖ ] with hi(t̄) ≥ hi(

ε
‖ṽ‖)

such that

(i) there is some ξ′ ∈ ∂fi(x+ t̄ṽ) satisfying (4.11) or

(ii) 0 ∈ ∂hi(t̄), i.e., t̄ is a critical point of hi.
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Proof. The case where (tj)j is finite is trivial. So assume that (tj)j is infinite. By
construction, (tj)j is a Cauchy sequence in the compact set [0, ε

‖ṽ‖ ], so it has to

converge to some t̄ ∈ [0, ε
‖ṽ‖ ]. Since we assumed that (4.10) is violated for the index

i, we have

hi(0) = 0 and hi

(

ε

‖ṽ‖

)

> 0.

Let (aj)j and (bj)j be the sequences corresponding to a and b in Algorithm 4.1 (at
the start of each iteration in step 2, i.e., a1 = 0 and b1 = ε

‖ṽ‖).

Note that limj→∞ bj = t̄ and (hi(bj))j is non-decreasing (due to step 4), so the
continuity of hi implies

hi(t̄) = lim
j→∞

hi(bj) ≥ hi(b1) = hi

(

ε

‖ṽ‖

)

.

In particular we must have t̄ > 0, since hi(0) = 0 and hi(
ε

‖ṽ‖) > 0. By construction,

hi(aj) < hi(bj) ∀j ∈ N.

Thus, by the mean value theorem (Theorem 2.2.18), there has to be some rj ∈ (aj, bj)
such that (in set notation)

0 < hi(bj) − hi(aj) ∈ 〈∂hi(rj), bj − aj〉 = ∂hi(rj)(bj − aj).

In particular, limj→∞ rj = t̄ and since aj < bj, it follows ∂hi(rj) ∩ R>0 6= ∅ for all
j ∈ N. Due to the upper semicontinuity of ∂hi, this implies

∂hi(t̄) ∩ R≥0 6= ∅. (4.13)

By the chain rule for locally Lipschitz functions (cf. Theorem 3.19 in [BKM14]), we
have

∂hi(t) ⊆ conv
({

ξ⊤ṽ + c‖ṽ‖2 : ξ ∈ ∂fi(x+ tṽ)
})

= 〈ṽ, ∂fi(x+ tṽ)〉 + c‖ṽ‖2 (4.14)

for all t ∈ R. By (4.13), this means there is some ξ ∈ ∂fi(x+ t̄ṽ) such that

〈ṽ, ξ〉 ≥ −c‖ṽ‖2.

If there exists ξ′ ∈ ∂fi(x + t̄ṽ) with 〈ṽ, ξ′〉 > −c‖ṽ‖2 then we are in case b)(i).
Otherwise, by (4.14), 〈ṽ, ξ〉 ≤ −c‖ṽ‖2 for all ξ ∈ ∂fi(x + t̄ṽ) implies ∂hi(t̄) ⊆ R≤0.
By (4.13) and by convexity of ∂hi(t̄), this implies 0 ∈ ∂hi(t̄), i.e., case b)(ii).

The following example shows that there are indeed functions for which Algorithm
4.1 does not stop.

Example 4.3.4. We will construct a function h for which Algorithm 4.1 does not
stop. To this end, for t ∈ (0, 1), let

j(t) := ⌊1 − log2(1 − t)⌋,
q(t) := 1 − 2−(j(t)−1),

g(t) := −2−(j(t)+1)(cos(2j(t)π(t− q(t))) − 1) + q(t),
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where ⌊·⌋ is the floor function, i.e., ⌊t⌋ is the smallest integer less or equal t. Define

h : R → R, t 7→











0, t ≤ 0,

g(t), t ∈ (0, 1),

1, t ≥ 1.

The graph of h is shown in Figure 4.5(a). The local Lipschitz continuity of h outside
of 1 is obvious. For t ∈ (0, 1), we have

|1 − h(t)| = 1 + 2−(j(t)+1)(cos(2iπ(t− q(t))) − 1) − q(t)

≤ 1 − q(t) = 2−(j(t)−1) = 2−⌊1−log2(1−t)⌋+1

= 2−(⌊1−log2(1−t)⌋−(1−log2(1−t))) · 2−((1−log2(1−t))−1)

= 2(1−log2(1−t))−⌊1−log2(1−t)⌋(1 − t)

≤ 2(1 − t) = 2|1 − t|,

implying that h is locally Lipschitz in 1 as well. The graph of the derivative of h
(where defined) is shown in Figure 4.5(b). It is possible to show that ∂h(0) = {0}

(a) (b)

Figure 4.5: (a) Graph of h (black) and the sequence (tj)j (blue) resulting from
Algorithm 4.1 in Example 4.3.4. (b) Graph of h′ (where defined).

and ∂h(1) = [0, π
2
]. Assuming ε

‖ṽ‖ = 1, application of Algorithm 4.1 produces the
infinite sequence

tj = 1 − 2−j

converging to t̄ = 1. In particular, h′(tj) = 0 for all t ∈ N and 0 ∈ ∂h(t̄), so we are
in case b)(ii) in Lemma 4.3.3.

The previous example is clearly non-generic. The implication of Lemma 4.3.3 for
the practical application of Algorithm 4.1 will be discussed in the following remark.

Remark 4.3.5. a) Assume that (tj)j is infinite with limit t̄ ∈ (0, ε
‖ṽ‖ ]. In the

proof of Lemma 4.3.3, we showed that there is a sequence (rj)j ∈ (0, ε
‖ṽ‖) with

limj→∞ rj = t̄ such that ∂hi(rj) ∩ R>0 6= ∅ for all j ∈ N. By the definition of
the Clarke subdifferential, this implies that there is a sequence (sj)j ∈ (0, ε

‖ṽ‖)
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with limj→∞ sj = t̄ such that hi is differentiable in sj and h′i(sj) > 0 for all
j ∈ N. Due to the upper semicontinuity of the Clarke subdifferential, each sj
has an open neighborhood Uj with

∂hi(s) ⊆ R>0 ∀s ∈ Uj, j ∈ N. (4.15)

Thus, roughly speaking, even if we are in case b)(ii) in Lemma 4.3.3, there
are open sets arbitrary close to t̄ on which we can potentially find new ε-
subgradients (as in case b)(i)).

b) Note that if hi is nonsmooth in some t ∈ R, then fi has to be nonsmooth in
x + tṽ. In other words, the set of nonsmooth points of hi, embedded into Rn

via t 7→ x + tṽ, is a subset of Ωi ∩ (x + Rṽ). Since Ωi is a null set in Rn (cf.
Theorem 2.2.14) and x+Rṽ is a one-dimensional affine linear subspace of Rn,
we expect that in the generic case, Ωi ∩ (x + Rṽ) only contains finitely many
points. In this case, there has to be some N ∈ N such that x + [aj, bj]ṽ (from
the proof of Lemma 4.3.3) contains at most a single nonsmooth point of fi for
all j > N . If the algorithm does not stop, then this point has to be the limit t̄
of (tj)j. In particular, for j > N and t ∈ [aj, bj] \ {t̄}, (4.14) turns into

h′i(t) = 〈ṽ,∇fi(x+ tṽ)〉 + c‖ṽ‖2.

Combined with (4.15), this means that there are open sets arbitrarily close to
t̄ in which we are guaranteed to find new ε-subgradients.

c) If fi is differentiable on x+ (0, ε
‖ṽ‖ ]ṽ, then (4.14) turns into

h′i(t) = 〈ṽ,∇fi(x+ tṽ)〉 + c‖ṽ‖2 ∀t ∈
(

0,
ε

‖ṽ‖

]

.

If case b)(i) of Lemma 4.3.3 would hold, then we would have h′i(t̄) > 0. Due to
upper semicontinuity of h′i, this would imply that there is an open set U ⊆ R>0

with t̄ ∈ U such that h′i(t) > 0 for all t ∈ U . In particular, there would be
some N ∈ N such that h′i(tj) > 0 for all j > N . This is a contradiction to the
algorithm not stopping. Thus, case b)(ii) must hold, i.e., h′i(t̄) = 0.

d) In practice, if Algorithm 4.1 appears to produce an infinite sequence (tj)j con-
verging to t̄, then we can restart the algorithm with some b ∈ (0, t̄). If the
number of critical points of hi in [0, ε

‖ṽ‖ ] and the number of nonsmooth points

of fi in x + [0, ε
‖ṽ‖ ]ṽ is finite, then after a finite number of restarts, the al-

gorithm will be restarted on an interval [0, b] such that (0, b] does not contain
any nonsmooth or critical points. By c) of this remark, this means that the
algorithm stops and a new ε-subgradient is found.

Motivated by the previous remark, we will from now on assume that Algorithm
4.1 stops after finitely many iterations and successfully finds a new ε-subgradient.
Based on this, we can compute (acceptable) descent directions for nonsmooth MOPs
by iteratively improving the approximation of the ε-subdifferentials, as shown in
Algorithm 4.2.

The following theorem shows that Algorithm 4.2 stops after a finite number of
iterations and finds a direction ṽ that is an acceptable descent direction (or meets
the stopping criterion ‖ṽ‖ ≤ δ, suggesting that x is “almost” Pareto critical).
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4.3. Efficient computation of descent directions

Algorithm 4.2 Compute descent directions

Given: Current point x ∈ Rn, tolerances ε > 0, δ > 0, Armijo parameter c ∈ (0, 1).
1: Compute ξi1 ∈ ∂εfi(x) for all i ∈ {1, . . . , k}. Set W1 = {ξ11 , . . . , ξk1} and l = 1.
2: Compute vl = arg minv∈− conv(Wl)

‖v‖2.
3: If ‖vl‖ ≤ δ then stop.
4: Find all objective functions for which there is insufficient descent, i.e., for which

(4.10) is violated:

Il =

{

j ∈ {1, . . . , k} : fj

(

x+
ε

‖vl‖
vl

)

> fj(x) − cε‖vl‖
}

.

If Il = ∅ then stop.
5: For each j ∈ Il, compute t ∈ (0, ε

‖vl‖ ] and ξjl ∈ ∂fj(x+ tvl) such that

〈vl, ξjl 〉 > −c‖vl‖2

via Algorithm 4.1.
6: Set Wl+1 = Wl ∪ {ξjl : j ∈ Il}, l = l + 1 and go to step 2.

Theorem 4.3.6. Algorithm 4.2 stops after a finite number of iterations. In partic-
ular, if ṽ is the final element of (vl)l, then ‖ṽ‖ ≤ δ or ṽ is an acceptable descent
direction, i.e.,

fi

(

x+
ε

‖ṽ‖ ṽ
)

≤ fi(x) − cε‖ṽ‖ ∀i ∈ {1, . . . , k}.

Proof. Assume that Algorithm 4.2 does not stop, i.e., (vl)l is an infinite sequence.
Let l > 1 and j ∈ Il−1. Since ξjl−1 ∈ Wl, −vl−1 ∈ conv(Wl−1) ⊆ conv(Wl) and vl is
the minimal point in step 2, we have

‖vl‖2 ≤ ‖ − vl−1 + s(ξjl−1 + vl−1)‖2

= ‖vl−1‖2 − 2s〈vl−1, ξ
j
l−1 + vl−1〉 + s2‖ξjl−1 + vl−1‖2 (4.16)

= ‖vl−1‖2 − 2s〈vl−1, ξ
j
l−1〉 − 2s‖vl−1‖2 + s2‖ξjl−1 + vl−1‖2

for all s ∈ [0, 1]. Since j ∈ Il−1 we must have

〈vl−1, ξ
j
l−1〉 > −c‖vl−1‖2 (4.17)

by step 5. By Remark 2.2.19, there has to be a common Lipschitz constant L of all
fi on Bε(x). By Lemma 2.2.17 and the definition of the ε-subdifferential, we must
have ‖ξ‖ ≤ L for all ξ ∈ ∂∪ε f(x). So in particular,

‖ξjl−1 + vl−1‖ ≤ 2L. (4.18)

Combining (4.16) with (4.17) and (4.18) yields

‖vl‖2 < ‖vl−1‖2 + 2sc‖vl−1‖2 − 2s‖vl−1‖2 + 4s2L2

= ‖vl−1‖2 − 2s(1 − c)‖vl−1‖2 + 4s2L2.
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Choose s := 1−c
4L2 ‖vl−1‖2. Since 1− c ∈ (0, 1) and ‖vl−1‖ ≤ L, we have s ∈ (0, 1). We

obtain

‖vl‖2 < ‖vl−1‖2 − 2
(1 − c)2

4L2
‖vl−1‖4 +

(1 − c)2

4L2
‖vl−1‖4

=

(

1 − (1 − c)2

4L2
‖vl−1‖2

)

‖vl−1‖2.

Since the algorithm did not stop, it holds ‖vl−1‖ > δ. It follows that

‖vl‖2 <
(

1 −
(

1 − c

2L
δ

)2
)

‖vl−1‖2.

Let r = 1 − (1−c
2L
δ)2. Recall that we have δ < ‖vl‖ ≤ L for all j ∈ N, so r ∈ (0, 1).

Additionally, r does not depend on l, so we have

‖vl‖2 < r‖vl−1‖2 < r2‖vl−2‖2 < . . . < rl−1‖v1‖2 ≤ rl−1L2. (4.19)

In particular, there is some l such that ‖vl‖ ≤ δ, which is a contradiction.

Remark 4.3.7. a) The proof of Theorem 4.3.6 shows that Algorithm 4.2 would
still work if we only considered a single j ∈ Il in step 5. Similarly, a single
element from ∂εfi(x) for any i ∈ {1, . . . , k} would be sufficient for the initial-
ization of W1 in step 1. A modification of either step can potentially reduce
the executions of Algorithm 4.1 in step 5 if the ε-subdifferentials of multiple
objective functions are similar. But both modifications would introduce a bias
towards certain objectives into the algorithm, which we want to avoid for this
work.

b) Inequality (4.19) in the proof of Theorem 4.3.6 shows that we have (at least)
linear convergence of the sequence (‖vl‖2)l to zero with a rate of

r = 1 −
(

1 − c

2L
δ

)2

∈ (0, 1).

Thus, the smaller r, the faster the decrease of (‖vl‖)l. We can influence r
by our choice of c ∈ (0, 1) and δ > 0. More precisely, r becomes smaller
the smaller c and the larger δ. In terms of c this is to be expected, since the
condition (4.10) for acceptable descent directions becomes stricter the larger
c. In turn, smaller c results in less descent. In terms of δ this is obvious as
well, since larger δ means that the stopping criterion in step 3 becomes easier
to satisfy. In particular, this means that points in which the algorithm stops
via step 3 are potentially “less critical” for larger δ. Thus, for both c and δ, a
balance has to be found.

To highlight the strengths of Algorithm 4.2, we consider an example where clas-
sical gradient sampling approaches may struggle to obtain a useful descent direction.

Example 4.3.8. For a, b ∈ R \ {0} consider the locally Lipschitz problem

min
x∈R2

f(x) with f(x) =

(

(x1 − 1)2 + (x2 − 1)2

|x2 − a|x1|| + bx2

)

.
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(a) (b)

Figure 4.6: (a) The nonsmooth set Ω of f (solid), the closed ball Bε(x) (dashed)
for the ε-subdifferential and the points in which subgradients where evaluated in
Algorithm 4.2 in Example 4.3.8. (b) The ε-subdifferential ∂∪ε f(x) (dashed) and its
approximation (solid) in Algorithm 4.2.

The set of nondifferentiable points is

Ω = ({0} × R) ∪ {(λ, a|λ|)⊤ : λ ∈ R},

seperating R2 into four “smooth areas” (cf. Figure 4.6(a)). For large a > 0, the two
areas above the graph of λ 7→ a|λ| become small. Thus, due to the random sampling
in gradient sampling methods, it is unlikely that these methods sample gradients in
these areas. But as we will see in the following, the behavior of f in these areas is
crucial for approximating the ε-subdifferential in this example.

Let a = 10, b = 0.5, ε = 10−3 and x = (10−4, 10−4)⊤. Then (0, 0)⊤ is the
(unique) minimal point of f2 and

∂εf2(x) = conv

({(

−a
b− 1

)

,

(

a
b+ 1

)

,

(

a
b− 1

)

,

(

−a
b+ 1

)})

= conv

({(

−10
−0.5

)

,

(

10
1.5

)

,

(

10
−0.5

)

,

(

−10
1.5

)})

.

In particular, 0 ∈ ∂εf2(x), so the descent direction from (4.7) based on the exact
ε-subdifferentials is zero. When applying Algorithm 4.2 at x with δ = 10−3, the
method stops in the second iteration as

ṽ = v2 ≈ (0.118, 1.185)⊤ · 10−9,

i.e., ‖ṽ‖ ≈ 1.191 · 10−11 < δ. Thus, x is correctly identified as “almost” Pareto
critical. The final approximation W2 of ∂∪ε f(x) is

W2 = {ξ11 , ξ21 , ξ22} =

{(

−1.9998
−1.9998

)(

10
−0.5

)

,

(

−10
1.5

)}

,

as shown in Figure 4.6(b). The first two elements ξ11 and ξ21 are the gradients of f1
and f2 in x from the initialization of Algorithm 4.2, and the final element ξ22 is the
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gradient of f2 in x′ = x + tv = (0.038, 0.596)⊤ · 10−3 ∈ Bε(x) (computed during the
first iteration). Figure 4.6(a) shows that ξ22 may be difficult to obtain via gradient
sampling approaches, but Figure 4.6(b) shows that it is crucial for the approximation
of the ε-subdifferential.

4.4 The algorithm

In the previous section, we derived a method (Algorithm 4.2) that is able to compute
acceptable descent directions (cf. (4.10)) in arbitrary points x ∈ Rn. Based on
this method, it is now straight-forward to construct the descent method for locally
Lipschitz MOPs shown in Algorithm 4.3. For the step length, we use a slightly

Algorithm 4.3 Descent method for locally Lipschitz MOPs

Given: Initial point x1 ∈ Rn, tolerances ε > 0, δ > 0, Armijo parameter c ∈ (0, 1),
initial step length t0 > 0.

1: Initialize j = 1.
2: Compute a descent direction vj via Algorithm 4.2.
3: If ‖vj‖ ≤ δ then stop.
4: Compute

s̄ =

inf({s ∈ N ∪ {0} : fi(x
j + 2−st0v

j) ≤ fi(x
j) − 2−st0c‖vj‖2 ∀i ∈ {1, . . . , k}})

and set t̄ = max({2−s̄t0,
ε

‖vj‖}).

5: Set xj+1 = xj + t̄vj, j = j + 1 and go to step 2.

modified Armijo step length, which is similar to the one used in the smooth case in
(2.24).

By construction, Algorithm 4.3 stops if ‖vj‖ ≤ δ in step 3, i.e., if there is some
v ∈ −∂∪ε f(x) with ‖v‖ ≤ δ. Thus, in terms of optimality, we can only expect the
result of the algorithm to be “almost” Pareto critical in the following sense.

Definition 4.4.1. Let x ∈ Rn, ε > 0 and δ > 0. Then x is called (ε, δ)-critical if

min
v∈∂∪

ε f(x)
‖v‖ ≤ δ.

Clearly, (ε, δ)-criticality is a necessary condition for Pareto criticality (cf. Def-
inition 2.2.23) and equivalent to Pareto criticality for ε = δ = 0. The following
theorem shows that Algorithm 4.3 always stops in an (ε, δ)-critical point.

Theorem 4.4.2. Let (xj)j be the sequence generated by Algorithm 4.3. Then either
(fi(x

j))j is unbounded below for all i ∈ {1, . . . , k}, or (xj)j is finite with the last
element being (ε, δ)-critical.

Proof. Assume that (xj)j is infinite. Then ‖vj‖ > δ for all j ∈ N. Let j ∈ N. If
t̄ = 2−s̄t0 ≥ ε

‖vj‖ in step 4 of Algorithm 4.3, then

fi(x
j + t̄vj) − fi(x

j) = fi(x
j + 2−s̄t0v

j) − fi(x
j)

≤ −2−s̄t0c‖vj‖2 ≤ −cε‖vj‖ < −cεδ < 0 (4.20)
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for all i ∈ {1, . . . , k}. If instead t̄ = ε
‖vj‖ in step 4, then the same inequality holds

due to Theorem 4.3.6. This implies that in each iteration, the value of each objective
function is decreased by at least cεδ, which is constant with respect to the iteration
j. Thus, (fi(x

j))j must be unbounded below for each i ∈ {1, . . . , k}.
Now assume that (xj)j is finite, with x̄ and v̄ being the final elements of (xj)j and
(vj)j, respectively. Since the algorithm stopped, we must have ‖v̄‖ ≤ δ. From the
application of Algorithm 4.2 in step 2, we know that there must be someW ⊆ ∂∪ε f(x̄)
such that v̄ = arg minv∈− conv(W ) ‖v‖2. This implies

min
v∈−∂∪

ε f(x̄)
‖v‖ ≤ min

v∈− conv(W )
‖v‖ = ‖v̄‖ ≤ δ.

Remark 4.4.3. a) If we compare the proof of Theorem 4.4.2 to the proof of con-
vergence of the steepest descent method in the smooth case from [FS00], Theo-
rem 1, we see that the proof here is a lot shorter. The reason for this is the fact
that usage of the ε-subdifferential gives us the lower bound cεδ for the decrease
in each objective function in each step (cf. (4.20)). The disadvantage is that
the assertion of our convergence result is weaker, since (even in the smooth
case) a point is already guaranteed to be (ε, δ)-critical when its distance to the
Pareto critical set is less or equal ε.

b) In theory, we can only expect the result x̄ of Algorithm 4.3 to be Pareto critical
at best. But note that our line search in step 4 enforces a descent in the
sequence (f(xj))j. Thus, Pareto critical points which are not actually Pareto
optimal are “less attractive” for our algorithm.

To obtain a stronger convergence result than Theorem 4.4.2, we consider the
following lemma.

Lemma 4.4.4. Let (x̄j)j ∈ Rn be a sequence with limj→∞ x̄j = x̄ ∈ Rn. Let
(εj)j ∈ R>0 and (δj)j ∈ R>0 with limj→∞ εj = 0 and limj→∞ δj = 0. If x̄j is
(εj, δj)-critical for all j ∈ N, then x̄ is Pareto critical.

Proof. Assume that x̄ is not Pareto critical, i.e., 0 /∈ ∂∪f(x̄). Let

v := arg min
ξ∈−∂∪f(x̄)

‖ξ‖2 6= 0.

Then by Lemma 2.2.1, 〈v, ξ〉 ≤ −‖v‖2 for all ξ ∈ ∂∪f(x̄), so

∂fi(x̄) ⊆ ∂∪f(x̄) ⊆
{

ξ ∈ Rn : 〈v, ξ〉 < −‖v‖2
2

}

=: V ∀i ∈ {1, . . . , k}.

Note that V is open, convex and minξ∈V ‖ξ‖ = ‖v‖
2

. By upper semicontinuity of ∂fi,
i ∈ {1, . . . , k}, there has to be some open set U ⊆ Rn with x̄ ∈ U such that

∂fi(y) ⊆ V ∀y ∈ U, i ∈ {1, . . . , k}.

In particular, by convexity of V , we have

∂∪f(y) ⊆ V ∀y ∈ U. (4.21)
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Now let N ∈ N such that Bεj(x̄
j) ⊆ U and δj <

‖v‖
2

for all j > N . Then by (4.21)

we have ∂∪εjf(x̄j) ⊆ V ⊆ V for all j > N , so

min
v∈∂∪

εj
f(x̄j)

‖v‖ ≥ min
ξ∈V

‖ξ‖ =
‖v‖
2

> δj ∀j > N,

which is a contradiction to x̄j being (εj, δj)-critical.

By the previous lemma, if we iteratively decrease ε and δ to zero for Algorithm
4.3, we obtain a point which is actually Pareto critical. This is done in Algorithm
4.4, for which we assume that Algorithm 4.3 always stops after a finite number of
iterations (cf. Theorem 4.4.2).

Algorithm 4.4 ε-δ-decreasing nonsmooth descent method

Given: Initial point x1 ∈ Rn, tolerance sequences (εj)j ∈ R>0, (δj)j ∈ R>0 converg-
ing to 0, Armijo parameter c ∈ (0, 1), initial step length t0 > 0.

1: Initialize x̄0 = x1.
2: for j = 0, 1, . . . ,∞ do
3: Apply Algorithm 4.3 with initial point x̄j and tolerances ε = εj+1, δ = δj+1.

Let x̄j+1 be the final element in the generated sequence.
4: end for

From Lemma 4.4.4, we immediately get the following corollary.

Corollary 4.4.5. Let (x̄j)j be a sequence generated by Algorithm 4.4. Then all
accumulation points of (x̄j)j are Pareto critical.

To additionally obtain existence of accumulation points in the previous corollary,
we could employ standard assumptions like boundedness (and thus compactness) of
the sublevel set {x ∈ Rn : f(x) ≤ f(x̄1)}. Finally, in practice, we will use finite
sequences (εj)j∈{1,...,N} and (δj)j∈{1,...,N} for the input of Algorithm 4.4 and only
loop over j ∈ {0, 1, . . . , N} in step 2. This will cause the final point x̄N+1 to be
(εN , δN)-critical.

4.5 Numerical experiments

In this section, we will investigate the practical behavior of our nonsmooth descent
method (Algorithm 4.3) and its extension (Algorithm 4.4). We will begin by visu-
alizing and discussing its typical behavior before comparing its performance to the
multiobjective proximal bundle method (MPB) from Section 2.3.2. Finally, we will
combine our method with the subdivision method (as in Section 2.3.3) to approxi-
mate entire Pareto sets of nonsmooth MOPs.

4.5.1 Typical behavior

In areas where all objective functions are differentiable the behavior of our method
is almost identical to the behavior of the steepest descent method from Section 2.3.2.
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They are not completely identical since ε-subdifferentials, unlike Clarke subdifferen-
tials, do not reduce to the classical gradients when the objectives are differentiable.
More precisely, we have ∂εfi(x) = ∇fi(Bε(x)) ∋ ∇fi(x), so if

max
y∈Bε(x)

‖∇fi(x) −∇fi(y)‖

is large for some i ∈ {1, . . . , k}, then the methods may behave differently. But since
ε is typically chosen to be small, we will ignore this difference here and focus on the
behavior with respect to the nondifferentiable set.

To visualize the typical behavior of Algorithm 4.3, we consider the problem
minx∈R2 f(x) for the locally Lipschitz function

f(x) :=

(

max{x21 + (x2 − 1)2 + x2 − 1,−x21 − (x2 − 1)2 + x2 + 1}
−x1 + 2(x21 + x22 − 1) + 1.75|x21 + x22 − 1|

)

(4.22)

from [MKW14] (combining Crescent from [Kiw85] and Mifflin 2 from [MN92]). It
is easy to see that the sets of nondifferentiable points of f1 and f2 are S1 + (0, 1)⊤

and S1, respectively. Thus, f is nondifferentiable in Ω = S1 ∪ (S1 + (0, 1)⊤). We
consider the initial points

x1 = (0,−0.3)⊤, x2 = (0.6, 1)⊤, x3 = (−1,−0.2)⊤,

with the fixed parameters ε = 10−3, δ = 10−3, c = 0.25 and t0 = 1. Figure 4.7(a)
shows the sequences generated by Algorithm 4.3, the nondifferentiable set Ω and
the Pareto critical set of the MOP (which can be derived by hand). We will briefly

(a) (b)

Figure 4.7: The results of Algorithm 4.3 (a) and Algorithm 4.4 (b) for three different
initial points, the Pareto set of (4.22) and the set of nondifferentiable points Ω.

discuss the behavior for each initial point:

• For x1, the sequence moves through the smooth area like the steepest descent
method until a point is reached with a distance to Ω that is less or equal ε. In
that point, the method computes an approximation of the ε-subdifferentials
using multiple ε-subgradients. Since this part of Ω is Pareto critical, no (ac-
ceptable) descent direction is found and the algorithm stops with the final
point being (ε, δ)-critical.
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Table 4.1: Test problems (using objectives from [MKW14])

Nr. fi Area Nr. fi Area

1. CB3, DEM [−3, 3]2 10. QL, LQ [−3, 3]2

2. CB3, QL [−3, 3]2 11. QL, Mifflin 1 [−3, 3]2

3. CB3, LQ [0.5, 1.5]2 12. QL, Wolfe [−3, 3]2

4. CB3, Mifflin 1 [−3, 3]2 13. LQ, Mifflin 1 [0.5, 1.5]× [−0.5, 1]
5. CB3, Wolfe [−3, 3]2 14. LQ, Wolfe [−3, 3]2

6. DEM, QL [−3, 3]2 15. Mifflin 1, Wolfe [−3, 3]2

7. DEM, LQ [−3, 3]2 16. Crescent, Mifflin 2 [−0.5, 1.5]2

8. DEM, Mifflin 1 [−3, 3]2 17. Mifflin 2, WF [−3, 3]2

9. DEM, Wolfe [−3, 3]2 18. Mifflin 2, SPIRAL [−3, 3]2

• For x2, the sequence starts zig-zagging around the non-critical part of Ω. The
reason for this behavior is the fact that in this area, the information from both
“sides” of the nondifferentiable set is required to obtain a significant reduction
of the objective functions. Only when the distance of the sequence to Ω is less
or equal ε, the algorithm actually notices the nonsmoothness and computes a
descent direction which breaks the zig-zagging motion.

• For x3, the sequence performs a similar zig-zagging motion to the previous
case. The difference is that this time, this motion does not get broken when
the sequence gets close to Ω. Thus, it moves along Ω until an (ε, δ)-critical
point is found.

In the case of x2, the zig-zagging motion is broken as soon as the distance of
the descent sequence to Ω is less or equal ε. Thus, choosing larger ε would stop
the zig-zagging earlier. This is another reason for using Algorithm 4.3 with dy-
namically decreasing ε instead of a fixed one, i.e., another reason for using Al-
gorithm 4.4. For example, Figure 4.7(b) shows the result of Algorithm 4.4 for
(εj)j = (ε1, ε2) = (10−1, 10−3) and constant δ = 10−3. (More precisely, it shows all
the descent sequences produced by calls of Algorithm 4.3 during Algorithm 4.4.) In
this case, we see that the zig-zagging for x2 is completely avoided.

4.5.2 Comparison to the MPB

We will now compare the performance of Algorithms 4.3 and 4.4 to the multiobjec-
tive proximal bundle method by Mäkelä, Karmitsa and Wilppu from [MKW14] (see
also [Mäk03]), which was discussed in Section 2.3.2. The MPB currently seems to be
the most efficient (deterministic) solver for locally Lipschitz MOPs. (Bundle meth-
ods are also regarded as the most effective and reliable method for the nonsmooth,
single-objective case, cf. [BKM14].) As test problems, we consider the 18 MOPs in
Table 4.1. They were created via combination of classical test problems from non-
smooth, single-objective optimization (cf. [MKW14], Appendix A, and [MKM18]).
Problems 1 to 15 are convex and problems 16 to 18 are nonconvex. Due to their
piecewise smooth structure, it is possible to differentiate each objective vector by
hand to obtain exact subgradients. For each test problem, we choose 100 starting
points on a 10 × 10 grid in the corresponding area given in Table 4.1.

For the MPB, we use the Fortran implementation from [Mäk03]. For the stopping
criterion, the second component β of the solution (v, β) of the direction finding
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problem (2.27) is used. The method stops when β > −2εs for some εs > 0. By our
discussion of duality in Remark 2.3.2 b), problem (2.27) is related to problem (4.9) in
our algorithms. In particular, β is related to maxξ∈− conv(W )〈ξ, ṽ〉, which is bounded
by −‖ṽ‖2. To obtain similar stopping conditions for all methods, this motivates us
to choose δ =

√
εs in our algorithms. More precisely, we choose εs = 10−6 for the

MPB (and keep the default values for the other parameters) and δ = 10−3 for our
algorithms. (We will verify below in Figure 4.8 that this indeed leads to results of
similar approximation quality.)

For the implementation of our methods we use MATLAB. The optimization prob-
lem in step 2 of Algorithm 4.3 is solved via the function quadprog. As parameters for
Algorithm 4.3, we choose ε = 10−3, δ = 10−3, c = 0.25 and t0 = max({‖vj‖−1, 1})
(i.e., the initial step size t0 is chosen depending on the norm of the descent direc-
tion vj in the current interation). For Algorithm 4.4, we replace the fixed ε by
(εj)j = (ε1, ε2, ε3) = (10−1, 10−2, 10−3) and keep δ constant. By this choice of pa-
rameters, all three methods produce results of equal approximation quality. For
example, Figure 4.8 shows the result of Algorithm 4.3, Algorithm 4.4 and the MPB
for problem 16 from Table 4.1 (which we also previously considered in (4.22)).

(a) (b)

Figure 4.8: (a) Results of Algorithm 4.3, Algorithm 4.4 and the MPB for problem
16 from Table 4.1. (b) Same as (a) but zoomed in closer.

To compare the performance of the methods, we count the number of evaluations
of objectives fi, the number of evaluations of subgradients ξ ∈ ∂fi and the number
of iterations (i.e., descent steps) needed. (For example, by this method of counting,
one evaluation of the objective vector f accounts for k evaluations of objectives.)
By construction, the MPB always evaluates all objectives and subgradients for all
objectives in a point, so the value for the objectives and the subgradients are equal
for this method. In case of the number of iterations of Algorithm 4.4, we sum up
all iterations of each application of Algorithm 4.3 in step 3. The results are shown
in Table 4.2 and are discussed in the following.

• Function evaluations: In our methods, function evaluations are used to
compute the descent directions via Algorithm 4.2 and to compute the step
length in step 4 of Algorithm 4.3. When comparing the MPB to our methods,
we see that the MPB needs far less evaluations. One possible reason for this
discrepancy is the simplicity of the line search that we use, which is basically
the default Armijo line search. Since there are more advanced line search
methods in the smooth case (cf. [NW06], Chapter 3), it is likely that the
efficiency of this part of our methods can be improved by generalizing some
of the concepts from the smooth case. When comparing our methods to each
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Table 4.2: Performance of MPB, Algorithm 4.3 and Algorithm 4.4 for the test
problems in Table 4.1 for 100 starting points. The last two rows contain the rounded
average over the respective column and the percentage compared to the MPB result

#fi #∂fi # Iter
Nr. MPB Algo. 4.3 Algo. 4.4 MPB Algo. 4.3 Algo. 4.4 MPB Algo. 4.3 Algo. 4.4
1. 1846 6924 7801 1846 1102 1751 794 492 695
2. 2652 14688 12263 2652 1906 2351 1214 842 914
3. 888 5625 6447 888 921 1534 344 448 662
4. 6832 103826 17664 6832 11774 3415 2385 4644 1242

5. 3292 30457 16877 3292 3479 3037 1545 1616 1161

6. 7634 8357 8684 7634 1209 1802 1089 552 736
7. 1806 8736 8483 1806 1307 1832 775 595 739
8. 8410 8283 8620 8410 1318 1914 1481 582 759
9. 1894 8201 8794 1894 1194 1805 826 536 732
10. 11686 6799 7201 11686 1101 1722 1275 543 733
11. 30436 52096 17594 30436 6311 3189 2385 2442 1206

12. 30496 15146 12446 30496 1992 2401 2015 967 1010
13. 3090 36570 9513 3090 4958 2247 1423 1692 787

14. 5086 95303 12227 5086 9524 2571 2113 4379 921

15. 4104 85936 15669 4104 9329 3124 1647 3963 1125

16. 2628 20372 11094 2628 2596 2400 1063 1194 947

17. 3208 6168 5262 3208 1064 1459 1170 520 652
18. 15506 166707 31528 15506 16676 6902 3595 8291 2412

Avg. 7860.8 37788.6 12120.4 7860.8 4320.1 2525.3 1507.7 1905.4 968.5

100% 480.7% 154.2% 100% 55.0% 32.1% 100% 126.4% 64.2%

other, we see that Algorithm 4.4 is much more efficient than Algorithm 4.3
when the overall number of evaluations is high (e.g., problem 14), and slightly
less efficient when the number of evaluations is low (e.g., problem 9). The
reason for this is the fact that for easier problems (i.e., where the number of
evaluations is low), some of the iterations of Algorithm 4.4 will be redundant,
because the (εi−1, δ)-critical point of the previous iterations is already (εi, δ)-
critical. When summing up the evaluations for all 18 problems, we see that
Algorithm 4.4 is superior to Algorithm 4.3.

• Subgradient evaluations: When comparing the number of subgradient eval-
uations, we see that the MPB is superior on problem 3, but inferior to our
methods in all other cases. When comparing our methods to each other, we see
the same pattern as for the function evaluations: Algorithm 4.4 is a lot more
efficient for complex problems, and slightly less efficient for easier problems.

• Iterations: For the number of iterations, we see the same pattern as for
the subgradient evaluations, with Algorithm 4.4 again being the most efficient
on average. It is important to note that for the MPB, this number includes
so-called null steps, which are iterations where the bundle (i.e., the set of
subgradients computed during all previous iterations) is enriched, but the
current point in the descent sequence does not get updated.

For the set of test problems we considered here, this leads us to the conclusion
that the MPB is superior to our methods in terms of function evaluations, but infe-
rior in terms of subgradient evaluations and number of iterations. When comparing
our methods with each other, Algorithm 4.3 is slightly more efficient than Algorithm
4.4 for simple problems, but a lot less efficient for more complex problems.

Finally, it is noteworthy that one might find Algorithm 4.3 and Algorithm 4.4
easier to implement than the MPB, due to their simplicity and similarities to clas-
sical descent methods from smooth optimization. In particular, each iteration of
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Algorithm 4.3 is independent from any other iteration, whereas each iteration of the
MPB relies on information computed in previous iterations.

4.5.3 Combination with the subdivision algorithm

So far we have constructed two algorithms (Algorithm 4.3 and Algorithm 4.4) that
take an initial point x1 ∈ Rn and compute one (almost) Pareto critical point of our
nonsmooth MOP. To actually solve the MOP, i.e., to compute the entire Pareto
(critical) set, the easiest approach would be to just apply our methods to many dif-
ferent initial points and hope that the resulting set of points is a good approximation
of the Pareto set. As an example, Figure 4.8 shows the results of our two algorithms
(and the MPB) applied the MOP (4.22) for 100 initial points on a quadratic 10×10
grid. While it is possible to get an idea of the Pareto set by looking at the individual
results of the algorithms, we did not obtain satisfying approximations in a set-wise
sense, as the distribution of the points is uneven. The reason for this is the fact that
some parts of the Pareto set are more attractive to our methods than others. The
problem is that there is no way of knowing a priori which initial points we have to
choose to obtain an even discretization of the Pareto set.

For the steepest descent method in the smooth case (cf. Section 2.3.2), this
problem can be solved via combination with the subdivision algorithm (Algorithm
2.1), as presented in Section 2.3.3. To be able to do the same in the nonsmooth
case, we have to write our methods as discrete dynamical systems

xj+1 = g(xj), j ∈ N,

for a map g : Rn → Rn and some initial point x1 ∈ Rn. For Algorithm 4.4 (and
the MPB) this is not directly possible, since each iteration depends on information
from previous iterations (i.e., the dynamical system would not be autonomous). For
Algorithm 4.3, it can be done by defining

g(x) := x+ t̄(x)ṽ(x), (4.23)

where ṽ is the result of Algorithm 4.2 and t̄ is the step length from step 4 of Algorithm
4.3 in x. If we apply Algorithm 2.1 to the dynamical system induced by (4.23), we
know that by Theorem 2.3.6 a), the Pareto critical set Pc is contained in the result
Q∞ of the subdivision method.

Since Algorithm 4.3 behaves like the steepest descent method in the smooth
case (for small ε > 0), we generally cannot expect to have a better convergence
behavior of the subdivision method in the nonsmooth case. In particular, with the
same reasoning as in the smooth case, we cannot expect to have Pc = Q∞, since
g is not a homeomorphism. In the nonsmooth case, g is even more irregular, since
the descent direction ṽ : Rn → Rn is inherently discontinuous close to the set of
nondifferentiable points of f . The problems caused by this are highlighted in the
following example.

Example 4.5.1. Consider the problem

min
x∈R2

f(x) with f(x) =

(

λx21 + |x2|
(x1 − 1)2 + (x2 − 1)2

)

(4.24)
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for λ > 0. It is easy to see that f is locally Lipschitz continuous. It is differentiable
everywhere except on the x1-axis R×{0} = Ω. For this example we choose λ = 0.5.
The Pareto critical set Pc of (4.24) can be computed by hand and is shown in Figure
4.9(b). Since f is convex, it coincides with the (weak) Pareto set (cf. Remark 2.2.24).

Let ε = 10−3, δ = 10−3, c = 0.25 and t0 = 1 be the parameters for the nonsmooth
descent method. Figure 4.9(a) shows the result B8 of applying 8 iterations of the sub-
division algorithm to the function g from (4.23) for the initial box Q = [−0.25, 1.25]2

and 4 sample points per box (on an even 2 × 2 grid). The resulting radius of boxes
is r = 1.5 · 2−9 ≈ 0.2930 · 10−2. As expected, B8 is a covering of Pc. But unfor-

(a) (b)

Figure 4.9: (a) Result after 8 iterations of Algorithm 2.1 in Example 4.5.1. (b)
Visualization of the dynamical system g from (4.23). (The length of each vector is
halved for better visibility.)

tunately, it contains significantly more than just Pc: A large part of the x1-axis is
unnecessarily covered and there are two unnecessary “branches” of boxes emerging
from (0.5, 0)⊤. This can be explained by considering the visualization of g in Figure
4.9(b). All points x ∈ Q with x2 < −ε < 0 are strongly attracted by the x1-axis and
only slightly attracted by the actual Pareto critical part on the x1-axis. Thus, in the
first iterations of the subdivision algorithm, if we have a box B that has a nonempty
intersection with the x1-axis and the lower half-space, then many points in B will
get mapped again into B such that B does not get removed in the selection step.
The additional boxes on the x1-axis then induce the two unecessary branches above
it: The lower branch is the set of boxes that contain the image of the boxes to the
right of Pc, and the upper branch is the set of boxes that contain the image of the
boxes from the lower branch.

Roughly speaking, the reason for the convergence issues in the previous example
is the fact that the behavior of the dynamical system on the set of nondifferentiable
points Ω is required for the descent method to reach the Pareto critical set. Since
we discretize boxes with a set of test points to approximate their image under the
dynamical system (cf. Remark 2.3.7), this behavior can only be captured if one of
these test points has a distance of ε or less from Ω. Since Ω is a null set (cf. Theorem
2.2.14) and we typically only want to use a few test points per box, this practically
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only happens when the box radius r is of the same magnitude as ε (or smaller than
ε). In theory, one could apply iterations of the subdivision algorithm until this is the
case. But since we can only approximate the actual Pareto critical with an accuracy
of ε (cf. Theorem 4.4.2), it would be highly inefficient to cover it using boxes with
such a small radius.

Fortunately, there is a more efficient way of solving this issue. To this end, we
can artificially increase the area in which the subdivision algorithm incorporates the
behavior of g on Ω by applying multiple descent steps (i.e., multiple iterations of
Algorithm 4.3) at once in the dynamical system g. More formally, if we define

gN : Rn → Rn (4.25)

to be the function which applies N ∈ N iterations of Algorithm 4.3 starting at
x ∈ Rn, then it is sufficient for any of the N iterates x, g(x), g2(x), . . . , gN−1(x)
to have a distance less or equal ε to Ω for the dynamical system to notice the
nonsmoothness. Furthermore, since the Pareto critical set is still contained in the
global attractor of gN , we obtain the same theoretical convergence result if we replace
the original g from (4.23) by gN . The behavior of the resulting subdivision algorithm
is shown in the following example.

Example 4.5.2. Consider again problem (4.24). Figure 4.10(a) shows the result
of applying the subdivision algorithm as in Example 4.5.1, except that we replace
g by gN for N = 5, i.e., 5 descent steps are applied in each evaluation of the
dynamical system. If we compare the result with the actual Pareto critical set Pc

(a) (b)

Figure 4.10: Same as Figure 4.9, except that g from (4.23) is replaced by gN from
(4.25) for N = 5.

from Figure 4.10(b), we see that this did not only improve the convergence behavior
with respect to the nonsmoothness, but also the behavior in the smooth areas above
the x1-axis, due to the sped up dynamic of the system. The reason for this improved
convergence behavior can be seen by considering the visualization of gN in Figure
4.10(b). Compared to Figure 4.9(b), points are more attracted by Pc, especially
points which lie below the x1-axis.
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To conclude this section, we apply the subdivision algorithm (with the dynamical
system (4.25)) to some of the problems from Table 4.1. For the descent method, we
use the same parameters as in Example 4.5.1, and for the initial boxes Q, we use
the areas given in Table 4.1. The results are shown in Figure 4.11, 4.12 and 4.13.
For the approximation of the image f(Pc) of Pc, we evaluated f in the image points
of g that were computed in the final selection step (cf. Algorithm 2.1) and also lie in
the final collection of boxes B8. For all three examples, we obtain a tight covering
of the Pareto critical set.

(a) (b)

Figure 4.11: (a) Result of the subdivision algorithm for problem 6 from Table 4.1
with N = 5 in (4.25). (b) Image of the center points of all boxes in (a) (red) and
an approximation of the image of f (black).

(a) (b)

Figure 4.12: (a) Result of the subdivision algorithm for problem 12 from Table 4.1
with N = 5 in (4.25). (b) Image of the center points of all boxes in (a) (red) and
an approximation of the image of f (black).
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(a) (b)

Figure 4.13: (a) Result of the subdivision algorithm for problem 12 from Table 4.1
with N = 10 in (4.25). (b) Image of the center points of all boxes in (a) (red) and
an approximation of the image of f (black).
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5 Hierarchical structure of Pareto
critical sets

Arguably, the main difference between scalar and multiobjective optimization is the
fact that the solution of an MOP is (typically) a set instead of a single point. Thus,
to better understand a multiobjective problem and to be able to efficiently solve it,
it is vital to have a good understanding of the structure of the solution set, i.e., of
the Pareto set. Unfortunately, the structure of the Pareto set itself (as defined in
Definition 2.1.2 via the order relation on the image space Rk) is difficult to analyze.
The reason for this is the fact that it is not possible to decide whether a point
x ∈ Rn is Pareto optimal using only local information of f around x, like gradients
or higher-order derivatives. Fortunately, with the Pareto critical set Pc, we have
a superset of the Pareto set that only depends on local information and is much
easier to work with. Furthermore, in many cases (cf. Remark 2.2.6 e)), Pc is a tight
enough superset to allow for the derivation of relevant structural properties of the
actual Pareto set from it. Thus, in this chapter, we will investigate the structure of
the Pareto critical set.

Despite its importance, there are relatively few existing results in this area.
The first definition of the Pareto critical set was given by Smale in [Sma73] (for
the more general case of objective vectors which are defined on smooth manifolds).
There, it was proposed (without proof) that if a C∞ function f : M → Rk on an n-
dimensional C∞ manifold M with k ≤ n satisfies the rank assumption (cf. Definition
3.1.2) and certain assumptions on the transversality with respect to M , then Pc

is a stratification [Mat12]. Stratifications can be thought of as “manifolds with
boundaries and corners” [LP14]. Similarly, in [Mel76], de Melo showed that there
is an open and dense subset of all C∞ functions defined on compact C∞ manifolds
for which Pc is a stratification. If M = Rn, k ≤ n and f is C∞, satisfies the rank
assumption and is convex, then Pc is diffeomorphic to a (k − 1)-simplex [Sma73;
LP14]. In this case, each (j − 1)-dimensional facet of Pc is the Pareto (critical)
set of a subset of the objective functions {f1, . . . , fk} of size j. More recently, in
[Hil01], Hillermeier showed that under a certain regularity assumption involving
the Hessians of the objectives, part of the Pareto critical set is the projection of a
(k−1)-dimensional, differentiable manifold from Rn+k onto Rn (cf. Theorem 2.2.10).
In [LP14], Lovison and Pecci showed that there is a dense subset of the set of
differentiable functions for which the local Pareto set is a Whitney stratification
[Mat12]. In [Pei17], the structure of the boundary of Pc was investigated in a
more practical setting and a first solution method that exploits this structure was
proposed. All results mentioned so far require some degree of differentiability of
f . Without requiring differentiability, Lowe et al. showed in [Low+84] that convex
MOPs are Pareto reducible, which means that the set of weak Pareto optimal points
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is the union of Pareto optimal points of subsets of objectives. This result was later
extended by Malivert and Boissard [MB94] and Popovici [Pop05]. Finally, since
much of the research in multiobjective optimization is focused on the image space,
it is of equal interest to investigate the structure of the Pareto front. This has been
done by Mueller-Gritschneider, Graeb and Schlichtmann in [MGGS09], where it was
shown that for certain well-behaved objective vectors, the “boundary” of the Pareto
front is given by Pareto fronts of subsets of objectives.

In this chapter, the focus will lie on the structure of Pc with respect to Pareto
critical sets of so-called subproblems, which are MOPs where only a subset of all
objective functions is considered. As mentioned above, if k ≤ n and f is smooth,
convex and satisfies the rank assumption, then Pc is diffeomorphic to a (k − 1)-
simplex such that the Pareto critical sets of the subproblems describe the facets of
Pc. In particular, considering subproblems of different sizes induces a hierarchy of
boundaries of Pc. Here, we will generalize this result by dropping both the convexity
assumption and the restriction on the number of variables n and objectives k. From
a theoretical point of view, we will do this by investigating the relationship between
Pareto critical points and their corresponding KKT vectors, while exploiting the
fact that the set M (as defined in Theorem 2.2.10) is a manifold.

In Section 5.1, we begin by considering smooth, unconstrained MOPs and show
that the boundary of Pc can be covered by the Pareto critical sets of all subproblems
where one objective is ignored. Since it can happen that this covering is not very
tight (especially for k > n + 1), we then investigate how many objective functions
are actually required to still obtain a covering of the boundary in Section 5.2. It
will turn out that the number of required objectives is given by the maximal rank of
the Jacobian of the objective vector f on Pc. Afterwards, we visualize these results
in examples (Section 5.3) before considering extensions to the constrained (Section
5.4) and nonsmooth case (Section 5.5).

We conclude the introduction to this chapter with a simple example that high-
lights the structure we want to investigate. Consider the problem

min
x∈R2

f(x) with f(x) =





f1(x)
f2(x)
f3(x)



 =





(x1 − 1)2 + (x2 + 1)2

x21 + (x2 − 1)2

(x1 + 1)2 + (x2 + 1)2



 . (5.1)

As already discussed in Example 2.1.6, the Pareto critical set of this problem is given
by the convex hull of (1,−1)⊤, (0, 1)⊤ and (−1,−1)⊤, as shown in Figure 5.1(a).
Figure 5.1(b) shows the Pareto critical sets of all subproblems. For example, if we
ignore the third objective function f3 and only consider f1 and f2, the resulting
Pareto critical set is given by the red line connecting (1,−1)⊤ and (0, 1)⊤, which is
part of the boundary of Pc. If we additionally ignore f2 and only consider f1, the
Pareto critical set of the resulting single-objective problem is the lower-right corner
(1,−1)⊤ of the original Pareto critical set. As we see, in this case, the boundary of
Pc is given by all subproblems with two objective functions. The simplicity of the
structure of Pc in this example comes down to two reasons:

• The relationship between Pareto critical points and their corresponding KKT
vectors is simple.

• The topological boundary of Pc as a subset of Rn can be used to describe the
“boundary” of Pc.
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Chapter 5. Hierarchical structure of Pareto critical sets

(a) (b)

Figure 5.1: (a) Pareto critical set of (5.1). (b) Pareto critical sets of all subproblems.

In the more general setting we will consider in the following, both of these proper-
ties are lost. For example, when Pc consists of multiple connected components, the
relationship between Pc and the KKT vectors is generally more complicated. Fur-
thermore, for k < n, Pc is typically a null set (or “lower-dimensional” set) in Rn, in
which case the topology of Rn does not yield a useful definition for the “boundary”
of Pc.

For the computation of the Pareto critical sets in the examples in this chapter,
we will use the methods presented in Chapter 3 and 4. (To better visualize the
structure of the sets, we will use the approximately Pareto critical points generated
in the algorithms instead of the box coverings.)

Parts of the Sections 5.1, 5.2 and 5.3 have been previously published in [GPD19],
to which the author of this thesis was the main contributor.

5.1 Topological and geometrical properties of the

Pareto critical set

In this section, we will investigate the structure of the Pareto critical set with respect
to the corresponding KKT vectors. Clearly, x ∈ Pc having a KKT vector α ∈ ∆k

with αi = 0 for some i ∈ {1, . . . , k} is equivalent to x being Pareto critical for the
subproblem where fi is ignored. Thus, we will begin by classifying Pareto critical
points with respect to zero entries in the corresponding KKT vectors, resulting in
the sets P0 and Pint. We will discuss some of their properties and relate them to
the manifold structure of the set M from Theorem 2.2.10. As mentioned in the
introduction, it is not yet clear what we mean by the “boundary” of Pc in the
general case. To be able to define it, we will consider tangent cones with respect to
Pc and investigate their properties.
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5.1. Topological and geometrical properties of the Pareto critical set

5.1.1 Classifying Pareto critical points via KKT multipliers

Let the objective vector f : Rn → Rk be twice continuously differentiable and k > 1.
Recall from Section 2.2 that x ∈ Rn being Pareto critical with KKT vector α ∈ ∆k

is equivalent to F (x, α) = 0 for

F : Rn × (R≥0)k → Rn+1, (x, α) 7→
(∑k

i=1 αi∇fi(x)

1 −∑k
i=1 αi

)

.

For ease of notation, we define

A(x) := {α ∈ ∆k : F (x, α) = 0} (5.2)

as the set of KKT vectors of x ∈ Rn. Clearly, x ∈ Pc is equivalent to A(x) 6= ∅. We
classify Pareto critical points in the following way.

Definition 5.1.1. Define

Pint := {x ∈ Pc : ∃α ∈ A(x) with αi > 0 ∀i ∈ {1, . . . , k}},
P0 := Pc \ Pint = {x ∈ Pc : ∀α ∈ A(x)∃j ∈ {1, . . . , k} with αj = 0}.

In words, Pint is the set of Pareto critical points that have a KKT vector that is
strictly positive and P0 is the set of Pareto critical points where every KKT vector
has a zero component. The following example derives both sets for the simple MOP
(5.1).

Example 5.1.2. Let f be as in (5.1) and x ∈ Pc. Then α ∈ A(x) implies

0 = Df(x)⊤α = 2

(

x1 − 1 x1 x1 + 1
x2 + 1 x2 − 1 x2 + 1

)

α

= 2

(

(α1 + α2 + α3)x1 − α1 + α3

(α1 + α2 + α3)x2 + α1 − α2 + α3

)

= 2

(

x1 − α1 + α3

x2 + α1 − α2 + α3

)

,

i.e.,

x1 = α1 − α3,

x2 = −α1 + α2 − α3,

which is equivalent to

α1 =
1

4
(2x1 − x2 + 1),

α2 =
1

2
(x2 + 1),

α3 =
1

4
(−2x1 − x2 + 1).

It is easy to see that Pint is the interior of the triangle in Figure 5.1 and P0 is its
boundary, i.e., Pint = P ◦

c and P0 = ∂Pc.
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Chapter 5. Hierarchical structure of Pareto critical sets

In the following, we will investigate some of the topological and differential ge-
ometrical properties of Pint and P0. A useful strategy for doing so is the local
parametrization of Pc via the KKT vectors, as was done in the previous example. In
the general case, this can be done by applying the implicit function theorem to the
equation F (x, α) = 0. Note that due to the dimensions of the domain and the image
of F , we cannot apply it directly. Instead, we first have to modify F by incorporat-
ing the fact that if α ∈ ∆k, then any component of α is uniquely determined by the
other k − 1 components. More precisely, we have the following, technical result.

Lemma 5.1.3. Let f be m-times continuously differentiable for m ≥ 2. Let x0 ∈ Pc

and α0 = (α0
1, . . . , α

0
k)⊤ ∈ A(x0) such that

∑k
i=1 α

0
i∇2fi(x

0) is regular. Then there
is an open set Ũ ⊆ Rk−1 with (α0

1, . . . , α
0
k−1) ∈ Ũ , an open set V ⊆ Rn with

x0 ∈ V and an (m − 1)-times continuously differentiable function φ : Ũ → V
with φ((α0

1, . . . , α
0
k−1)) = x0 and

F (x, α) = 0 ⇔ x = φ((α1, . . . , αk−1))

for all x ∈ V and α ∈ Rk with
∑k

i=1 αi = 1 and (α1, . . . , αk−1) ∈ Ũ . Furthermore,

Dφ(α̃) = −D1(x, α̃)−1D2(x) ∈ Rn×(k−1) ∀α̃ ∈ Ũ ,

where

D1(x, α̃) :=

(

k−1
∑

i=1

α̃i∇2fi(x)

)

+

(

1 −
k−1
∑

i=1

α̃i

)

∇2fk(x) ∈ Rn×n,

D2(x) := (∇f1(x) −∇fk(x), . . . ,∇fk−1(x) −∇fk(x)) ∈ Rn×(k−1).

Proof. Let F̃ : Rn × Rk−1 → Rn,

F̃ (x, α̃) :=

(

k−1
∑

i=1

α̃i∇fi(x)

)

+

(

1 −
k−1
∑

i=1

α̃i

)

∇fk(x)

=

(

k−1
∑

i=1

α̃i(∇fi(x) −∇fk(x))

)

+ ∇fk(x),

and

∆̃k−1 :=

{

α̃ ∈ Rk−1 : α̃i ≥ 0 ∀i ∈ {1, . . . , k − 1},
k−1
∑

i=1

α̃i ≤ 1

}

.

Then by construction,

x ∈ Pc ⇔ ∃α ∈ ∆k : F (x, α) = 0

⇔ ∃α̃ ∈ ∆̃k−1 : F̃ (x, α̃) = 0.

Furthermore, the Jacobian of F̃ consists of the matrices DxF̃ (x, α̃) = D1(x, α̃)
and Dα̃F̃ (x, α̃) = D2(x) as defined above. Now let α̃0 := (α0

1, . . . , α
0
k−1). From

our assumptions it follows that F̃ is (m − 1)-times continuously differentiable and
DxF̃ (x0, α̃0) is regular. Thus, we can apply the implicit function theorem (see, e.g.,
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5.1. Topological and geometrical properties of the Pareto critical set

[KP13], Theorem 3.3.1) to F̃ to obtain an open set Ũ ⊆ Rk−1 with α̃0 ∈ Ũ , an open
set V ⊆ Rn with x0 ∈ V and a Cm−1 function φ : Ũ → V with φ(α̃0) = x0 and

F̃ (x, α̃) = 0 ⇔ x = φ(α̃)

for each x ∈ V and α̃ ∈ Ũ . In particular, implicit differentiation of F̃ (φ(α̃), α̃) = 0
shows that

Dφ(α̃) = −DxF̃ (x, α̃)−1Dα̃F̃ (x, α̃) = −D1(x, α̃)−1D2(x),

completing the proof.

The previous lemma has some similarities to Theorem 2.2.10, which gave a con-
dition for when the set

M = {(x, α) ∈ Rn × Rk : α ∈ ∆k ∩ (R>0)k, F (x, α) = 0}
is a (k − 1)-dimensional manifold. M being a manifold means that it is locally
diffeomorphic to an open subset of Rk−1. In particular, by ignoring the α compo-
nent of M, this allows us to locally express the set of Pareto critical points (with
positive KKT vectors) as the image of a differentiable function in k − 1 variables.
By Lemma 2.2.12, the requirements for Lemma 5.1.3 are stronger than the require-
ments for Theorem 2.2.10 b). So in the setting of Lemma 5.1.3, M is also a manifold
around (x0, α0) (for α0 ∈ (R>0)k), but we have the even stronger result that we can
parametrize Pc specifically as the graph of a function φ which depends on (the first
k − 1 components of the) KKT vectors. The difference is shown in the following
example.

Example 5.1.4. Consider the problem

min
x∈R2

f(x) with f(x) =

(

x31 − x21 − x1x2 + 1
2
x22

23
3
x31 − x21x2 − 21

2
x21 + 6x1 + 1

3
x32

)

.

The Pareto critical set is the line connecting (0, 0)⊤ and (1, 1)⊤, as shown in Figure
5.2(a). Figure 5.2(b) shows the relationship between α1 and x1 for Pareto critical
points x = (x1, x2)

⊤ with KKT vector α = (α1, α2)
⊤. (Note that x2 = x1 for x ∈ Pc

and α2 = 1 − α1.) We see that no Pareto critical point with α1 ∈ [0, 1
2
) exists, the

point (1
2
, 1
2
)⊤ is Pareto critical with KKT vector (1

2
, 1
2
)⊤ and for α1 ∈ (1

2
, 1], there are

two Pareto critical points for each KKT vector. In particular, around x0 = (1
2
, 1
2
)⊤,

the Pareto critical set cannot be expressed as the graph of a function in α.
If we consider the derivatives of f , we obtain

∇f1(x) =

(

3x21 − 2x1 − x2
x2 − x1

)

, ∇f2(x) =

(

23x21 − 2x1x2 − 21x1 + 6
x22 − x21

)

,

∇2f1(x) =

(

6x1 − 2 −1
−1 1

)

, ∇2f2(x) =

(

46x1 − 2x2 − 21 −2x1
−2x1 2x2

)

.

Thus, for x0 = (1
2
, 1
2
)⊤ (with KKT vector α0 = (1

2
, 1
2
)⊤) we have

2
∑

i=1

α0
i∇2fi(x

0) =

(

1 −1
−1 1

)

,

DF (x0, α0) =

(
∑2

i=1 α
0
i∇2fi(x

0) Df(x0)⊤

0 1

)

=





1 −1 −3
4

3
4

−1 1 0 0
0 0 1 1



 .
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(a) (b)

Figure 5.2: (a) Pareto critical set in Example 5.1.4. (b) Relationship between x1
and the first entry of the KKT vector α1.

Since the weighted Hessian
∑2

i=1 α
0
i∇2fi(x

0) is not regular, Lemma 5.1.3 cannot be
applied in x0, as expected. But since the rank of DF (x0, α0) is full nonetheless, M
is still a manifold around (x0, α0) ∈ M.

In [Wit12], Pareto critical points with an irregular weighted Hessian like in the
previous example were called dent border points, and their relationship to the cur-
vature of the Pareto front was investigated.

Lemma 5.1.3 allows us to show a topological result about Pint and P0.

Lemma 5.1.5. a) Pc is closed.

b) If for all x0 ∈ P0 there is some α0 ∈ A(x0) such that
∑k

i=1 α
0
i∇2fi(x

0) is
regular, then

Pint = Pc,

where Pint is the closure of Pint in Rn.

Proof. a) Let (xj)j ∈ Pc be a sequence with limj→∞ xj = x̄ ∈ Rn. Let (αj)j ∈ ∆k

be a sequence with αj ∈ A(xj) for all j ∈ N, i.e.,

F (xj, αj) = 0 ∀j ∈ N. (5.3)

Since ∆k is compact, we can assume w.l.o.g. that limj→∞ αj = ᾱ ∈ ∆k. Since f
is twice continuously differentiable by assumption, F is continuous. Thus, (5.3)
implies F (x̄, ᾱ) = 0, i.e., x̄ ∈ Pc (with KKT vector ᾱ).
b) By a) we have Pint ⊆ Pc = Pc, so it remains to show that Pc ⊆ Pint. Trivially,
Pint ⊆ Pint, so let x0 ∈ Pc \ Pint = P0 and α0 ∈ A(x0) such that the weighted
Hessian is regular. Then we can apply Lemma 5.1.3 in (x0, α0) to obtain a function
φ : Ũ → V with the stated properties. Since α0 ∈ ∆k and by the structure of ∆k,
we can write α0 as the limit of a sequence αj ∈ ∆k ∩ (R>0)k. Let α̃j ∈ Rk−1 be
the projection of αj onto the first k − 1 components. We can assume w.l.o.g. that
α̃j ∈ Ũ . Let xj := φ(α̃j). Then by construction, xj ∈ Pint for all j ∈ N. Continuity
of φ implies limj→∞ xj = x0, i.e., x0 ∈ Pint.
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The following examples shows how Pint and P0 may look when the premise of
Lemma 5.1.5 b) is false.

Example 5.1.6. Consider the problem

min
x∈R2

f(x) with f(x) =

(

x22
x21 + (x2 − 1)2

)

.

Then for x ∈ R2 and α ∈ ∆2 we have

0 = Df(x)⊤α =

(

2α2x1
2α1x2 + 2α2(x2 − 1)

)

=

(

2α2x1
2x2 − 2α2

)

⇔ x ∈
{

R× {0}, if α = (1, 0)⊤,

{0} × (0, 1], otherwise.

In particular, P0 = {(0, 1)⊤}∪ (R×{0}) and Pint = {0}× (0, 1). The Pareto critical
set is shown in Figure 5.3 with colors highlighting Pint and P0.

Figure 5.3: Pint and P0 for Example 5.1.6.

Clearly,

Pint = {0} × [0, 1] 6= ({0} × [0, 1]) ∪ (R× {0}) = Pc.

If we consider the weighted Hessian for x ∈ P0 and α = (1, 0) ∈ A(x), we obtain

2
∑

i=1

αi∇2fi(x) = ∇2f1(x) =

(

0 0
0 2

)

.

As expected, this matrix is not regular.

If the premise of Lemma 5.1.5 b) is true, then P0 can be thought of as “small”
compared to Pint. Recall that our goal is to show that on the “boundary” of Pc,
there is a component of the KKT vector which is zero. As mentioned in the in-
troduction, for well-behaved problems (cf. [Sma73; LP14]), P0 is a suitable (and
intuitive) description of the boundary. Unfortunately, for more complex problems,
the definition of the boundary of Pc is more difficult, since the structure of Pc is
in general unclear. For example, even if M is a manifold (cf. Theorem 2.2.10),
prx(M) = Pint might not be a manifold. This is visualized in the following example.
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Example 5.1.7. Consider the problem

min
x∈R2

f(x) with f(x) =





‖x‖2Q1

‖x− c1‖2
‖x− c2‖2Q2



 ,

where ‖ · ‖Qi
is the norm induced by Qi and

Q1 =

(

5 2
2 1

)

, c1 =

(

1
1

)

, Q2 =

(

1 0
0 1

4

)

, c2 =

(

1
2

1

)

.

It is easy to see that all objective functions are strongly convex, so M is a manifold
by Lemma 2.2.12. The Pareto critical set of this problem can be computed with the
same technique as in Example 2.2.8 and is shown in Figure 5.4(a). Figure 5.4(b)
shows the solution of all subproblems with one or two objective functions. Compared

(a) (b)

Figure 5.4: (a) Pareto critical set in Example 5.1.7. (b) Pareto critical sets of all
subproblems.

to the simple example in Figure 5.1 at the beginning of this chapter, we see that
in this case, the Pareto critical set is “folded” such that the Pareto critical sets of
(f1, f2) and (f1, f3) have two intersections. The first intersection trivially occurs at
the critical point of f1, but a second intersection occurs at

x0 =

(

1

3
,

1

12
(
√

89 − 1)

)⊤
≈ (0.3333, 0.7028)⊤.

Due to the linearity of the KKT condition Df(x)⊤α = 0 in α, all convex combi-
nations of the KKT vectors of the subproblems (lifted into ∆3) are KKT vectors of
x0. In particular, there is a KKT vector where all entries are positive, showing that
x0 ∈ Pint. The remaining part of Pint is the gray area shown in Figure 5.4(a). We
see that Pint cannot be diffeomorphic to an open subset of R2 locally around x0. (For
example, if we remove the point x0 from Pint, then Pint consists of two connected
components. But we cannot remove a single point from an open, connected subset
of R2 such that the remaining set has more than one connected component.) Thus,
Pint is not a manifold.
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5.1.2 Tangent cones and the uniqueness of KKT vectors

As discussed in the introduction of this chapter, a proper definition of the boundary
of the Pareto critical set Pc is non-trivial. Since Pc is typically a null set in Rn

for k ≤ n, we cannot use the topological boundary with respect to the topology of
Rn. As Example 5.1.7 showed, we also cannot expect Pc (or the subset Pint) to be
a manifold (even if f is strongly convex), so we cannot directly apply tools or use
definitions from differential geometry. Instead, we will use a notion of the boundary
which is based on tangent cones of the Pareto critical set, which we will investigate
in the following.

Definition 5.1.8. Let Y ⊆ Rn and x ∈ Rn. Then

Tan(Y, x) :=

{

v ∈ Rn : ∃(vi)i ∈ Rn \ {0} with

lim
i→∞

vi = 0, x+ vi ∈ Y, lim
i→∞

vi

‖vi‖ =
v

‖v‖

}

∪ {0}

is the tangent cone of Y at x.

There are many equivalent ways of defining the tangent cone. For a detailed
overview, see [GG92]. For x ∈ Y , the tangent cone Tan(Y, x) contains all directions
emanating from x that point into or alongside Y . As trivial cases, for x ∈ Y ◦ we
have Tan(Y, x) = Rn, and for x /∈ Y we have Tan(Y, x) = {0}. Note that in contrast
to the tangent space of a manifold, the tangent cone can be defined for any subset
Y ⊆ Rn without requiring any geometrical structure. The downside is that there
are fewer structural results for tangent cones than for tangent spaces.

From now on, we will always consider the tangent cone with respect to sets of
Pareto critical points. We will begin by showing that if the weighted Hessian is
regular on P0, then it does not matter if we take the tangent cone with respect to
Pc or Pint.

Lemma 5.1.9. If for all x0 ∈ P0 there is some α0 ∈ A(x0) such that the weighted
Hessian

∑k
i=1 α

0
i∇2fi(x

0) is regular, then

Tan(Pint, x) = Tan(Pc, x) ∀x ∈ Pc.

Proof. As shown in [GG92], the tangent cone can equivalently be defined as

Tan(Y, x) =

{

v ∈ Rn : lim inf
hց0

dY (x+ hv)

h
= 0

}

∪ {0}

with dY (x) := infy∈Y ‖y − x‖. Clearly, dY (x) = dY (x) for all x ∈ Rn, so we have
Tan(Y, x) = Tan(Y , x). By Lemma 5.1.5 b) it holds Pint = Pc, so

Tan(Pint, x) = Tan(Pint, x) = Tan(Pc, x) ∀x ∈ Pc.

By revisiting Example 5.1.6, we see that the assertion of the previous lemma
may fail to hold if the weighted Hessian is not regular.

Although Pint is in general not a manifold, recall that we can write it as the
projection of the set M ⊆ Rn × Rk onto Rn. If M is a manifold (cf. Theorem
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2.2.10), this will allow us to convey some of the smooth structure of M to Pint.
More precisely, we will investigate the relationship between the tangent cone of Pint,
i.e., Tan(Pint, x) = Tan(prx(M), x), and the projection of the tangent space of M
onto the first n components, i.e., prx(T(x,α)M), for (x, α) ∈ M. Our goal is to show
that under certain assumptions, both sets coincide. We will begin by showing that
any tangent vector in the tangent space of M is projected onto an element of the
tangent cone of Pint.

Lemma 5.1.10. Let (x, α) ∈ M with rk(DF (x, α)) = n+ 1. Then

prx(T(x,α)M) ⊆ Tan(Pint, x).

Proof. By Theorem 2.2.10 b), M is a manifold around (x, α). Let v ∈ T(x,α)M.
Since 0 ∈ Tan(Pint, x) by definition, assume that prx(v) 6= 0. By definition of the
tangent space as the set of equivalence classes of curves (cf. [Lee12], Chapter 3),
there is a C1 function γ : (−1, 1) → M with γ(0) = (x, α) and γ′(0) = v. For i ∈ N
let

vi := prx(γ(i−1) − γ(0)) = prx(γ(i−1)) − x.

W.l.o.g. assume that vi 6= 0 for all i ∈ N. Then

vi

‖vi‖ =
prx(γ(i−1) − γ(0))

‖ prx(γ(i−1) − γ(0))‖ =
prx(γ(i−1) − γ(0))

i−1

i−1

‖ prx(γ(i−1) − γ(0))‖

= prx

(

γ(i−1) − γ(0)

i−1

)∥

∥

∥

∥

prx

(

γ(i−1) − γ(0)

i−1

)∥

∥

∥

∥

−1

,

so

lim
i→∞

vi

‖vi‖ =
prx(v)

‖ prx(v)‖

and prx(v) ∈ Tan(Pint, x).

To show the opposite implication, i.e., Tan(Pint, x) ⊆ prx(T(x,α)M), we first need
some technical results about the uniqueness of KKT vectors.

Lemma 5.1.11. Let x ∈ Pc.

a) If rk(Df(x)) = k − 1 then |A(x)| = 1.

b) If x ∈ Pint and |A(x)| = 1, then rk(Df(x)) = k − 1.

c) If x ∈ Pint and rk(Df(x)) < k−1, then |A(x)| > 1 and there is some α ∈ A(x)
with αj = 0 for some j ∈ {1, . . . , k}.

Proof. a) This follows directly from Lemma 3.1.1.
b) Since x ∈ Pint there is some α ∈ A(x) with αi > 0 for all i ∈ {1, . . . , k}. In par-
ticular, α ∈ ker(Df(x)⊤). Since x ∈ Pc we must have rk(Df(x)) = rk(Df(x)⊤) < k.
Assume that rk(Df(x)) ≤ k − 2. By the rank-nullity theorem it follows that
dim(ker(Df(x)⊤)) ≥ 2. Let β ∈ ker(Df(x)⊤) such that α and β are linearly inde-
pendent. If

∑k
i=1 βi 6= 0 then assume w.l.o.g. that

∑k
i=1 βi = 1 and define ν := α−β.

If
∑k

i=1 βi = 0 define ν := β. In both cases, consider the curve γ(t) := α + tν. By
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construction, Df(x)⊤γ(t) = 0 and
∑k

i=1(γ(t))i = 1 for all t ∈ Rn. Since γ(0) = α
and αi > 0 for all i ∈ {1, . . . , k}, there has to be some t′ > 0 such that γ(t′) ∈ ∆k.
This implies α 6= γ(t′) ∈ A(x), which is a contradiction.
c) Since x ∈ Pint there is some α ∈ A(x) with αi > 0 for all i ∈ {1, . . . , k}. As in
b), there must be some ν ∈ Rk \ {0} such that γ(t) = α + tν satisfies γ(0) = α,
Df(x)⊤γ(t) = 0 and

∑k
i=1(γ(t))i = 1 for all t ∈ Rn. Since ∆k is bounded and αi > 0

for all i ∈ {1, . . . , k}, there must be some t′ > 0 with γ(t′) ∈ A(x) and γ(t′)j = 0 for
some j ∈ {1, . . . , k}, completing the proof.

The previous lemma has the following implications.

Corollary 5.1.12. a) Let x ∈ Pint. Then rk(Df(x)) = k − 1 ⇔ |A(x)| = 1.

b) Let x ∈ Pc. If rk(Df(x)) < k− 1 then there is some α ∈ A(x) with αj = 0 for
some j ∈ {1, . . . , k}.

Although Corollary 5.1.12 b) is a relatively simple result, it has an important
implication for MOPs with more than n+ 1 objectives: If k > n+ 1, then

rk(Df(x)) ≤ min({n, k}) = n < k − 1

for any x ∈ Rn. So by Corollary 5.1.12 b), every Pareto critical point is also Pareto
critical for a subproblem, and we do not only cover the boundary when we compute
the Pareto critical sets of all subproblems. This will be further discussed in Section
5.2.

We now use the result about the uniqueness of KKT vectors to show that if f
satisfies the rank assumption (Definition 3.1.2) and the weighted Hessian is regular,
then every element of the tangent cone of Pint is the projection of a tangent vector
of M.

Lemma 5.1.13. Let x0 ∈ Pint with rk(Df(x0)) = k − 1. Let α0 ∈ A(x0). If
∑k

i=1 α
0
i∇2fi(x

0) is regular, then

Tan(Pint, x
0) ⊆ prx(T(x0,α0)M).

Proof. If Tan(Pint, x
0) is empty then the assertion trivially holds, so assume that

Tan(Pint, x
0) is nonempty. Let v ∈ Tan(Pint, x

0) and (vi)i ∈ Rn \ {0} be a corre-
sponding sequence as in Definition 5.1.8. Since x0 + vi ∈ Pint for all i ∈ N, this
induces a sequence (αi)i ∈ ∆k with αi ∈ A(x0 + vi) for all i ∈ N. Since ∆k is com-
pact, we can assume w.l.o.g. that limi→∞ αi = ᾱ ∈ ∆k. This implies F (x0, ᾱ) = 0
by continuity of F , so ᾱ ∈ A(x0). By Corollary 5.1.12, α0 is the unique KKT vector
of x0, so limi→∞ αi = α0.
Since

∑k
i=1 α

0
i∇2fi(x

0) is regular, we can apply Lemma 5.1.3 in (x0, α0) to obtain a
C1 function φ : Ũ → V with the stated properties. Let (α̃i)i ∈ Rk−1 and α̃0 ∈ Rk−1

be the sequence (αi)i and the vector α0 without the last component, respectively.
By construction, Ũ is open, α̃0 ∈ Ũ and limi→∞ α̃i = α̃0, so we can assume w.l.o.g.
that α̃i ∈ Ũ for all i ∈ N. Furthermore, x0 ∈ V , V is open and limi→∞ x0 + vi = x0,
so we can assume w.l.o.g. that x0 +vi ∈ V for all i ∈ N. Thus, φ(α̃i) = x0 +vi for all
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i ∈ N, and with a first degree Taylor approximation ([Kön04], p. 66) of φ we obtain

v

‖v‖ = lim
i→∞

vi

‖vi‖ = lim
i→∞

φ(α̃i) − φ(α̃0)

‖vi‖ = lim
i→∞

φ(α̃0 + (α̃i − α̃0)) − φ(α̃0)

‖vi‖

= lim
i→∞

φ(α̃0) +Dφ(α̃0)(α̃i − α̃0) + o(‖α̃i − α̃0‖) − φ(α̃0)

‖vi‖

= lim
i→∞

Dφ(α̃0)
α̃i − α̃0

‖vi‖ +
o(‖α̃i − α̃0‖)

‖vi‖

= lim
i→∞

‖α̃i − α̃0‖
‖vi‖

(

Dφ(α̃0)
α̃i − α̃0

‖α̃i − α̃0‖ +
o(‖α̃i − α̃0‖)

‖α̃i − α̃0‖

)

(5.4)

with limi→∞
o(‖α̃i−α̃0‖)
‖α̃i−α̃0‖ = 0. Since ( α̃i−α̃0

‖α̃i−α̃0‖)i is bounded, we can assume w.l.o.g. that

limi→∞
α̃i−α̃0

‖α̃i−α̃0‖ = w̃ ∈ Rk−1.

If (‖α̃
i−α̃0‖
‖vi‖ )i would be unbounded, then we would have

0 = lim
i→∞

Dφ(α̃0)
α̃i − α̃0

‖α̃i − α̃0‖ = Dφ(α̃0)w̃,

since the right-hand side of (5.4) converges. Using the formula for Dφ from Lemma
5.1.3, we would obtain

−
(

k
∑

i=j

α0
j∇2fj(x

0)

)−1

Df(x)⊤w = 0

for w := (w̃1, . . . , w̃k−1,−
∑k−1

j=1 w̃j)
⊤ ∈ Rk, implying Df(x)⊤w = 0. This

is a contradiction, since we assumed that rk(Df(x0)) = k − 1, which means
dim(ker(Df(x0)⊤)) = k − rk(Df(x0)) = 1 and α0 and w must be linearly indepen-
dent (since

∑k
j=1wj = 0 and

∑k
j=1 αj = 1).

Thus, (‖α̃
i−α̃0‖
‖vi‖ )i must be bounded and we can assume w.l.o.g. that there is some

θ ∈ R such that limi→∞
‖α̃i−α̃0‖

‖vi‖ = θ. Combined with (5.4) (and (2.13)) we obtain

v

‖v‖ = θDφ(α0)w̃ = −θ
(

k
∑

i=j

α0
j∇2fj(x

0)

)−1

Df(x)⊤w

⇔
(

k
∑

i=j

α0
j∇2fj(x

0)

)

v + θ‖v‖Df(x)⊤w = 0

⇒ DF (x0, α0)

(

v
θ‖v‖w

)

=

(
∑k

i=j α
0
j∇2fj(x

0) Df(x0)⊤

0 1

)(

v
θ‖v‖w

)

= 0.

So
(

v
θ‖v‖w

)

∈ ker(DF (x0, α0)) = T(x0,α0)M

and, in particular, v ∈ prx(T(x0,α0)M). This completes the proof.
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5.1.3 The boundary of the Pareto critical set

We will now use the results about tangent cones of the Pareto critical set from the
previous part to show the main result of this section, stating that on the boundary
of Pc, there is a KKT multiplier which is zero. As discussed in the introduction of
this chapter, the topological boundary of Pc with respect to the natural topology
on Rn is not a useful concept for the boundary in this case. Instead, we make the
following definition:

Definition 5.1.14. The set

∂TPc := {x ∈ Pc : Tan(Pint, x) 6= −Tan(Pint, x)}

is called the boundary of Pc.

Since this is not a standard definition, we first have to argue why ∂TPc is actually
a reasonable definition for what we mean by the “boundary” of the Pareto critical
set. In words, ∂TPc consists of all points x ∈ Pc that have a tangent vector v (with
respect to Pint) whose negation −v is not a tangent vector. Roughly speaking,
this means that we can reach x from within Pc on a path with direction v, which
cannot be smoothly continued after reaching x. In a visual sense, this path hits the
“boundary” of Pc. A more formal argument is given in the following remark.

Remark 5.1.15. Assume that for all x0 ∈ P0 there is some α0 ∈ A(x0) such that
the weighted Hessian is regular, so that Tan(Pint, x) = Tan(Pc, x) for all x ∈ Pc by
Lemma 5.1.9.

a) If the interior P ◦
c is nonempty and x ∈ P ◦

c , then it is easy to see that

Tan(Pint, x) = Tan(Pc, x) = Rn.

In particular, x /∈ ∂TPc, so ∂TPc ⊆ Pc \ P ◦
c = Pc \ P ◦

c = ∂Pc.

b) If x ∈ Pc and Pc is a manifold around x, then Tan(Pc, x) is related to the
tangent space of Pc at x. For example, by Lyusternik’s Theorem ([Gül10],
Theorem 2.29), if Pc is a level set as in Theorem 2.2.9 (locally around x), then
the tangent cone Tan(Pc, x) is equal to the tangent space of Pc at x. Since the
tangent space has the structure of a vector space, this implies x /∈ ∂TPc.

From now on, the “boundary” of Pc will always refer to ∂TPc, and we will use
the term “topological boundary” to refer to the topological boundary of ∂Pc as a
subset of Rn. By combining Lemma 5.1.10 and 5.1.13, we can now show the main
result of this section.

Theorem 5.1.16. Let x0 ∈ ∂TPc and α0 ∈ A(x0) such that
∑k

i=1 α
0
i∇2fi(x

0) is
regular. Then there is some α ∈ A(x0) such that αj = 0 for some j ∈ {1, . . . , k}.

Proof. Assume that the assertion does not hold, so αi > 0 for all α ∈ A(x0) and
i ∈ {1, . . . , k}. Then x0 ∈ Pint and we can apply Lemma 5.1.11 a) and c) to see
that rk(Df(x)) = k − 1 and that α0 is the unique KKT vector of x0. By applying
Lemma 5.1.10 and 5.1.13, we obtain

Tan(Pint, x
0) = prx(T(x0,α0)M).
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Since prx(T(x0,α0)M) is a linear subspace of Rn, this implies

Tan(Pint, x
0) = prx(T(x0,α0)M) = − prx(T(x0,α0)M) = −Tan(Pint, x

0),

which is a contradiction to x0 ∈ ∂TPc.

By the previous theorem, all points on the boundary ∂TPc of Pc with a regular
weighted Hessian are still Pareto critical if we ignore one of the objectives. In case
f satisfies the rank assumption on Pint, it implies the following, slightly stronger
result.

Corollary 5.1.17. If rk(Df(x)) = k − 1 and
∑k

i=1 αi∇2fi(x) is regular for all
x ∈ Pint and α ∈ A(x), then ∂TPc ⊆ P0.

To show what may occur if the weighted Hessian is not regular, consider the
following example.

Example 5.1.18. Consider the problem minx∈R2 f(x) with

f : R2 → R2, x 7→























(

xp1 + (x2 − 1)p

xp1 + (x2 + 1)p

)

, if x1 ≥ 0,

(

(x2 − 1)p

(x2 + 1)p

)

, if x1 < 0,

for even p ∈ N, p > 2. Then f is (p− 1)-times continuously differentiable and

∇f1(x) =

{

(pxp−1
1 , p(x2 − 1)p−1)⊤, if x1 ≥ 0,

(0, p(x2 − 1)p−1)⊤, if x1 < 0,

∇f2(x) =

{

(pxp−1
1 , p(x2 + 1)p−1)⊤, if x1 ≥ 0,

(0, p(x2 + 1)p−1)⊤, if x1 < 0.

For x1 ≥ 0, x ∈ Pc is equivalent to the existence of α ∈ ∆2 such that

α1∇f1(x) + α2∇f2(x) = 0 ⇔
(

α1px
p−1
1 + α2px

p−1
1

α1p(x2 − 1)p−1 + α2p(x2 + 1)p−1

)

= 0

⇔ x1 = 0 and sgn(x2 + 1) 6= sgn(x2 − 1)

⇔ x ∈ {0} × [−1, 1].

(Here the convention sgn(0) = 0 was used.) Analogously, for x1 < 0, x ∈ Pc is
equivalent to x ∈ R<0 × [−1, 1]. For both cases, the (unique) corresponding KKT
vector α ∈ ∆2 is given by

α =

(

(x2 + 1)p−1

(x2 + 1)p−1 − (x2 − 1)p−1
,− (x2 − 1)p−1

(x2 + 1)p−1 − (x2 − 1)p−1

)⊤
.

Thus, we have

Pc = R≤0 × [−1, 1],

Pint = R≤0 × (−1, 1),

P0 = (R≤0 × {−1}) ∪ (R≤0 × {1}),

∂TPc = (R≤0 × {−1}) ∪ (R≤0 × {1}) ∪ ({0} × [−1, 1]),
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Figure 5.5: The sets Pint, P0 and ∂TPc in Example 5.1.18.

as shown in Figure 5.5. For x ∈ {0} × (−1, 1) ⊆ ∂TPc we have x /∈ P0. Since
rk(Df(x)) = k − 1 for all x ∈ Pc, this means that the assertion of Corollary 5.1.17
(and Theorem 5.1.16) does not hold. The reason for this can be seen by considering
the Hessian matrices of f1 and f2. For x ∈ {0} × (−1, 1), they are given by

∇2f1(x) =

(

0 0
0 p(p− 1)(x2 − 1)p−2

)

, ∇2f2(x) =

(

0 0
0 p(p− 1)(x2 + 1)p−2

)

.

Clearly, the weighted Hessians cannot be regular.

5.2 Decomposing an MOP into lower-dimensional

subproblems

In the previous section, we showed that points on the boundary ∂TPc of the Pareto
critical set (with a regular weighted Hessian) possess a KKT multiplier which is
zero. Thus, if we unite the Pareto critical sets of all subproblems of the original
MOP where one objective function is ignored, then we obtain a covering of ∂TPc.
Unfortunately, this covering is not necessarily tight. For example, if k > n+ 1, then
we have rk(Df(x)) < k − 1 for all x ∈ Pc. By Corollary 5.1.12 b), this implies
that the union of the Pareto critical sets of the subproblems contains every Pareto
critical point of the original MOP instead of just the boundary points. In such a
case, more than one objective function can be neglected for each subproblem to still
obtain a covering of ∂TPc. In this section, we will show that the number of objective
functions that can be neglected is related to the rank of the Jacobian Df of the
objective vector.

We begin by formalizing what is meant by the term “subproblem”. To this
end, denote by P({1, . . . , k}) the power set of {1, . . . , k}, i.e., the set of all possible
subsets of {1, . . . , k} (including {1, . . . , k} itself). For ∅ 6= I ∈ P({1, . . . , k}) with
I = {i1, . . . , i|I|}, i1 < . . . < i|I|, let

f I : Rn → R|I|, x 7→ (fi1(x), . . . , fi|I|(x))⊤.
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Then the subproblem corresponding to I is the MOP

min
x∈Rn

f I(x). (MOPI)

Let P I
c be its Pareto critical set and let P I

int and P I
0 be defined as in Definition 5.1.1

for (MOPI). Let AI(x) ⊆ ∆|I| be the set of KKT vectors of x for (MOPI). Since
we only consider nonempty sets I for (MOPI), we will tacitly assume I 6= ∅ for any
I ∈ P({1, . . . , k}) for ease of notation.

The following lemma shows that every Pareto critical point of a subproblem is
also Pareto critical for the original problem.

Lemma 5.2.1. It holds P I
c ⊆ Pc for all I ∈ P({1, . . . , k}).

Proof. Let I = {i1, . . . , i|I|} and x ∈ P I
c . Then there is some αI ∈ ∆|I| with

αI
1∇fi1(x) + . . .+ αI

|I|∇fi|I|(x) = 0.

Define

αi :=

{

αI
j , if i = ij,

0, otherwise.

Then, by construction, α ∈ ∆k and Df(x)⊤α = 0, so x ∈ Pc.

Remark 5.2.2. a) Analogously to Lemma 5.2.1, it holds

P I1
c ⊆ P I2

c

for I1, I2 ∈ P({1, . . . , k}) with I1 ⊆ I2.

b) Lemma 5.2.1 still holds if we replace Pareto criticality by weak Pareto op-
timality (cf. Definition 2.1.4): Let x be weakly Pareto optimal for (MOPI),
i.e.,

∄y ∈ Rn : fi(y) < fi(x) ∀i ∈ I.

Clearly, this still holds if we replace I by {1, . . . , k}, such that x is weakly
Pareto optimal for the original problem.

c) Lemma 5.2.1 does not hold if we replace Pareto criticality by Pareto optimality.
To see this, consider the problem

min
x∈R

f(x) with f(x) =

(

0
x2

)

.

Then any x ∈ R is Pareto optimal for (MOPI) with I = {1}, but only 0 ∈ R
is Pareto optimal for the original problem.

Throughout Section 5.1, we saw that the rank assumption (cf. Definition 3.1.2)
is an important property of the objective vector when investigating the structure of
the Pareto critical set. If the rank assumption is violated in some x0 ∈ Rn, then
the image of Df(x0)⊤, i.e., the span of the gradients of the k objectives, has a
dimension less than k− 1. This implies that we can remove one of the objectives to
obtain a subproblem (MOPI) with |I| < k and rk(Df I(x0)) = rk(Df(x0)) ≤ k − 1.
The following lemma shows that we can choose I ∈ P({1, . . . , k}) in a way that
additionally ensures x0 ∈ P I

c and that the removal of indices can be repeated until
the rank assumption is satisfied for the subproblem (MOPI).
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Lemma 5.2.3. Let x0 ∈ Pc. Then there is some I ∈ P({1, . . . , k}) such that

(i) x0 satisfies the rank assumption for f I , i.e., rk(Df I(x0)) = |I| − 1,

(ii) rk(Df I(x0)) = rk(Df(x0)),

(iii) x0 ∈ P I
c .

Furthermore, if x0 ∈ P0 then x0 ∈ P I
0 .

Proof. Let x0 ∈ Pc. If rk(Df(x0)) = k − 1 then we can choose I = {1, . . . , k}. So
assume that rk(Df(x0)) < k − 1. Let

J :=
{

j ∈ {1, . . . , k} : rk(Df {1,...,k}\{j}(x0)) < rk(Df(x0))
}

be the set of indices of gradients of objectives which cannot be expressed as a linear
combination of other gradients. Then rk(DfJ(x0)) = |J | and since we assumed
rk(Df(x0)) < k − 1, we must have J ( {1, . . . , k}. Let K := {1, . . . , k} \ J 6= ∅.
Since we must have αj = 0 for all j ∈ J and α ∈ A(x0), it follows that x0 ∈ PK

c .
Furthermore,

k − 1 > rk(Df(x0)) = rk(DfK(x0)) + |J |
⇔ rk(DfK(x0)) < k − |J | − 1 = |K| − 1.

Thus, application of Corollary 5.1.12 to fK in x0 yields the existence of α′ ∈ A(x0)
and l ∈ K with α′

l = 0. Let I := {1, . . . , k} \ {l}. Since l /∈ J we must have
rk(Df I(x0)) = rk(Df(x0)), i.e., (ii) holds. Furthermore, (iii) holds since α′

l = 0. If
|I| − 1 = k − 2 = rk(Df(x0)), then (i) holds as well and we are done. Otherwise,
we make the same construction as above for objective vector f I . Since the size of
the index set I decreases every time we repeat this process, we find an index set
satisfying (i) after a finite number of repetitions.
Now assume that x0 ∈ P0. We will show that after we set I = {1, . . . , k} \ {l} as
above, there is still some l′ ∈ {1, . . . , |I|} with αl′ = 0 for all α ∈ AI(x0), such that
x0 ∈ P I

0 . Note that if there are two different l1, l2 ∈ {1, . . . , k} with αl1 = αl2 = 0
for all α ∈ A(x0) then there is nothing to show, since only one index is removed
from {1, . . . , k}. So assume that there is a unique l′ ∈ {1, . . . , k} with αl′ = 0 for all
α ∈ A(x0). For l′ to be removed from {1, . . . , k} via the above procedure, we would
have to have l′ ∈ K, i.e.,

rk(Df {1,...,k}\{l′}(x0)) = rk(Df(x0)). (5.5)

This implies that there is some β ∈ Rk with βl′ 6= 0 such that Df(x0)⊤β = 0.
W.l.o.g. assume βl′ > 0. From the uniqueness of l′ (and the structure of A(x0)) it
follows that there is some α′ ∈ A(x0) with α′

j > 0 for all j ∈ {1, . . . , k}, j 6= l′. Let

γ(t) :=
α′ + tβ

∑k
i=1 α

′
i + tβi

=
α′ + tβ

1 + t
∑k

i=1 βi
.

Then by construction, there has to be some t′ > 0 such that γ(t′) ∈ A(x0) and
(γ(t′))l′ > 0. This is a contradiction to the assumption that αl′ = 0 for all α ∈ A(x0).
Thus, (5.5) cannot hold, i.e., l′ cannot be removed from {1, . . . , k}.
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Chapter 5. Hierarchical structure of Pareto critical sets

By applying the previous lemma in all x ∈ Pc, we immediately obtain the fol-
lowing corollary.

Corollary 5.2.4. There is some J ⊆ P({1, . . . , k}) with

Pc =
⋃

I∈J
P I
c and P0 ⊆

⋃

I∈J
P I
0

such that for all x ∈ Pc, there is a subproblem corresponding to I ∈ J with x ∈ P I
c

and |I| = rk(Df(x)) + 1 for which x satisfies the rank assumption.

The previous corollary shows that if the rank of the Jacobian of the objective
vector in all x ∈ Pc is small compared to k, then it suffices to solve a number of
subproblems with fewer objective functions to still obtain the entire Pareto critical
set of the original MOP. In particular, as an upper bound for the size of the sub-
problems, we obtain |I| = rk(Df(x)) + 1 ≤ n + 1. Thus, due to Remark 5.2.2 a),
if no knowledge about the rank of the Jacobian is available, we can just solve all
subproblems of size n + 1 to obtain a covering. Clearly, in practical applications,
we would be interested in finding the smallest set of subproblems that have to be
solved. Unfortunately, Corollary 5.2.4 gives no insight into how such a smallest set
of subproblems can be obtained.

Remark 5.2.5. Recall that if all objective functions are paraboloids, i.e., if there
are ci ∈ Rn, i ∈ {1, . . . , k}, with fi(x) = ‖x− ci‖22, then Pc = conv({c1, . . . , ck}) (cf.
Example 2.1.6). In this case, Lemma 5.2.3 implies the well-known Carathéodory’s
theorem from convex geometry [DGK63]: For every x0 ∈ Pc ⊆ Rn, there is some
I ∈ P({1, . . . , k}) with |I| ≤ n+ 1 such that x0 ∈ P I

c = conv({ci : i ∈ I}).

In the following example, Corollary 5.2.4 is applied to two simple problems.

Example 5.2.6. a) Consider the problem

min
x∈R2

f(x) with f(x) =









x21 + x22
(x1 − 1)2 + x22

(x1 − 1)2 + (x2 − 1)2

x21 + (x2 − 1)2









.

As discussed in Example 2.1.6, the Pareto critical set of this problem is given
by

Pc = conv({(0, 0)⊤, (1, 0)⊤, (1, 1)⊤, (0, 1)⊤}),

which is the unit square in R2. In this case, we have

rk(Df(x)) + 1 ≤ min({n, k}) + 1 = 3

for all x ∈ Pc ⊆ R2. Thus, we can write Pc as the union of all P I
c with

|I| = 3. Note that not all such subproblems are needed to cover Pc. For
example, it is sufficient to only consider the subproblems corresponding to sets
in {{1, 2, 3}, {1, 3, 4}} or {{1, 2, 4}, {2, 3, 4}}, respectively. The two coverings
are shown in Figure 5.6.
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Figure 5.6: Covering of Pc for different sets of subproblems in Example 5.2.6 a).

b) Consider the problem minx∈R2 f(x) with fi(x) = ‖x− ci‖2Qi
, i ∈ {1, . . . , 4}, for

Q1 =

(

5 2
2 1

)

, c1 =

(

0
0

)

,

Q2 =

(

1 0
0 1

)

, c2 =

(

1
1

)

,

Q3 =

(

5 0
0 1

)

, c3 =

(

0.4
0.3

)

,

Q4 =

(

2 0
0 3

)

, c4 =

(

0.7
0.7

)

.

The Pareto critical Pc set of this problem can be computed as in Example
2.2.8 and is shown as the gray set in Figure 5.7. As in a), it is sufficient
to consider all subproblems with |I| = 3 objective functions to cover Pc. The
corresponding Pareto critical sets are shown in Figure 5.7. We see that in
contrast to a), there is no covering of Pc with two or less subproblems. Instead,
we have to choose any combination of three out of the four subproblems to
obtain a covering. For example, Figure 5.8 shows a covering of Pc for the
choice {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}.

So far, we have analyzed how the complete Pareto critical set Pc can be covered
by Pareto critical sets of smaller subproblems. Obviously, these subproblems also
cover the boundary ∂TPc of Pc, but not in a tight way. In the following, we will
analyze how a tight covering of the boundary of Pc can be obtained.

Lemma 5.2.7. Let x0 ∈ ∂TPc and let J ⊆ P({1, . . . , k}) be a set of index sets as
in Corollary 5.2.4. Then there is some I ∈ J such that

(a) there is some αI ∈ AI(x0) with αI
i = 0 for some i ∈ {1, . . . , |I|} or

(b) x0 ∈ ∂TP
I
c .

Proof. We distinguish between two cases:
Case 1: Tan(Pint, x

0) 6= Tan(Pc, x
0). Since, by definition, Pc \ Pint = P0, there must
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Chapter 5. Hierarchical structure of Pareto critical sets

Figure 5.7: Pareto critical sets of the original problem and all subproblems with
|I| = 3 in Example 5.2.6 b).

be a sequence (vi)i ∈ Rn \ {0} (as in Definition 5.1.8 of the tangent cone) with
limi→∞ vi = 0 and

x0 + vi ∈ P0 ⊆
⋃

I∈J
P I
0 .

Since |J | is finite, we can assume w.l.o.g. that x0 +vi ∈ P I
0 for a fixed I ∈ J and all

i ∈ N. In particular we have x0 ∈ P I
0 , which implies (a) (due to continuity of Df).

Case 2: Tan(Pint, x
0) = Tan(Pc, x

0). Let v ∈ Tan(Pc, x
0) = Tan

(
⋃

I∈J P
I
c , x

0
)

and
let (vi)i be the corresponding sequence with x0 + vi ∈ ⋃I∈J P

I
c for all i ∈ N. Since

|J | is finite, there must be a fixed I ∈ J with x0 + vi ∈ P I
c infinitely many times,

such that v ∈ Tan(P I
c , x

0). Furthermore, P I
c ⊆ Pc implies Tan(P I

c , x
0) ⊆ Tan(Pc, x

0)
for all I ∈ J . Thus, we have

⋃

I∈J
Tan(P I

c , x
0) = Tan(Pc, x

0) = Tan(Pint, x
0). (5.6)

Since x0 ∈ ∂TPc we have Tan(Pint, x
0) 6= −Tan(Pint, x

0), so (5.6) implies that there
is some I ∈ J with Tan(P I

c , x
0) 6= −Tan(P I

c , x
0). If Tan(P I

c , x
0) = Tan(P I

int, x
0)
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Figure 5.8: A possible covering of Pc in Example 5.2.6 b).

then x0 ∈ ∂TP
I
c , so (b) holds. Otherwise, it follows as in case 1 that x0 ∈ P I

0 ,
implying (a).

The following corollary shows that if the weighted Hessian of the subproblem in
the previous lemma is regular, then (a) must hold.

Corollary 5.2.8. Let x0 ∈ ∂TPc and let I = {i1, . . . , i|I|} ∈ P({1, . . . , k}) be as
in Lemma 5.2.7. If there is some α0 ∈ AI(x0) such that the weighted Hessian
∑|I|

j=1 α
0
j∇2fij(x

0) of the subproblem is regular, then there is some α ∈ AI(x0) with
αj = 0 for some j ∈ {1, . . . , |I|}.
Proof. If rk(Df I(x0)) < |I| − 1, then we can apply Corollary 5.1.12 to obtain the
result. Otherwise we must have rk(Df I(x0)) = |I| − 1, in which case the result
follows from Theorem 5.1.16 (applied to the subproblem corresponding to I).

By applying Corollary 5.2.8 to all x0 ∈ ∂TPc and making a stronger assumption
on the weighted Hessians, we obtain the following result.

Corollary 5.2.9. Let m = maxx∈Pc
rk(Df(x)). If m > 0 and

∑k
i=1 αi∇2fi(x) is

regular for all x ∈ ∂TPc and α ∈ A(x), then

∂TPc ⊆
⋃

I∈P({1,...,k}),|I|=m

P I
c .

Since the rank of the Jacobian is bounded by the number of variables n, we
only have to consider subproblems of size (at most) n to obtain a covering of the
boundary of the Pareto critical set in Corollary 5.2.9. We will demonstrate this via
several examples in the following section.

5.3 Examples

In this section, we will consider some examples to show how the results from the
previous section can be used to analyze the structure of Pareto critical sets. We will
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Chapter 5. Hierarchical structure of Pareto critical sets

begin by revisiting the MOPs in Example 5.2.6. Due to their strict convexity, both
problems satisfy the assumptions of Corollary 5.2.9.

Example 5.3.1. a) Consider the MOP from Example 5.2.6 a). By Corollary
5.2.9 and since rk(Df(x)) ≤ min({n, k}) = 2 for all x ∈ R2, we only have to
consider the subproblems of size |I| = 2 to obtain a covering of the boundary of
Pc, as shown in Figure 5.9(a). As in Example 5.2.6 a), not all subproblems are

(a) (b)

Figure 5.9: (a) All subproblems of size |I| = 2 in Example 5.3.1 a). The black
dots show the critical points of the individual objective functions. (b) The Pareto
critical set (gray) and a possible covering of its boundary.

needed for this. In this case, a (perfect) covering of ∂TPc can be obtained via
the subproblems corresponding to the index sets {{1, 2}, {1, 4}, {2, 3}, {3, 4}},
as shown in Figure 5.9(b).

b) Consider the MOP from Example 5.2.6 b). As in a), we only have to consider
the subproblems of size |I| = 2 to obtain a covering of ∂TPc. The corresponding
Pareto critical sets are shown in Figure 5.10(a). We see that in contrast to a),
all subproblems are needed to cover ∂TPc and the covering is only a superset
of ∂TPc. Figure 5.10(b) shows the boundary of Pc, where each boundary point
is given a color depending on the subproblem for which it is Pareto critical.
We see that kinks in the boundary arise whenever the Pareto critical sets of
two subproblems intersect, i.e., whenever a boundary point is Pareto critical
for more than one subproblem.

While the assumption of the regularity of the weighted Hessian for all KKT
vectors in Corollary 5.2.9 is strong (and hard to verify in practice), the premise of
Corollary 5.2.8 is much weaker. Without giving a proof (or a precise statement), we
expect that for a “generic” objective vector f , regularity of the weighted Hessian
∑k

i=1 αi∇2f(x) for a single KKT vector α ∈ A(x) is a “generic” property in x. In
other words, we expect that points where this assumption is violated can be ignored
in practice.

In Example 5.3.1, both MOPs were strictly convex. In the following, we will con-
sider nonconvex MOPs where the Pareto critical sets have some additional features.
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(a) (b)

Figure 5.10: (a) All subproblems of size |I| = 2 in Example 5.3.1 b). The black
dots show the critical points of the individual objective functions. (b) The Pareto
critical set (gray) with its boundary colored depending on the subproblems.

Example 5.3.2. Consider the problem

min
x∈R2

f(x) with f(x) =





−6x21 + x41 + 3x22
(x1 − 1

2
)2 + 2(x2 − 1)2

(x1 − 1)2 + 2(x2 − 1
2
)2



 ,

which was also considered in [Pei17], Example 4.1.5. The Pareto critical set of this
problem is shown in Figure 5.11(a) and consists of two connected components. The

(a) (b)

Figure 5.11: (a) Pareto critical set of the MOP in Example 5.3.2. (b) The Pareto
critical sets of all subproblems with |I| = 2 objective functions. The black dots show
the critical points of the individual objective functions.

right component is a curved triangle and the left component is a curved digon (i.e.,
a curved polygon with two sides and two corners). Figure 5.11(b) shows the Pareto
critical sets of all subproblems with |I| = 2. We see that the left component only has
two sides and two corners because its boundary consists of the Pareto critical sets of
only two subproblems.
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Example 5.3.3. Consider the problem

min
x∈R2

f(x) with f(x) =









1
2
(x1 − 1)2 + x22

2(x1 + 1
2
)2 + 2(x2 − 1)2

2(x1 + 1)2 + 7
2
(x2 − 1

10
)3

−2x31 + 2(x2 + 1
4
)2









.

The Pareto critical set of this problem is shown in Figure 5.12(a). (Since the Pareto
critical set is unbounded, only the relevant part is depicted.) In contrast to our

(a) (b)

Figure 5.12: (a) Pareto critical set of the MOP in Example 5.3.3. (b) The Pareto
critical sets of all subproblems with |I| = 2 objective functions. The black dots show
the critical points of the individual objective functions.

previous examples, we see that the Pareto critical set possesses a hole (i.e., it is not
simply connected). This structure can be analyzed by considering the Pareto critical
sets of all subproblems with |I| = 2, as shown in Figure 5.12(b). We see that the
hole is given by the area that is enclosed by the subproblems corresponding to {1, 3}
and {3, 4}.

So far, in all examples in this section, we had k > 2 objective functions in n = 2
variables, i.e., k ≥ n + 1. Due to this, the Pareto critical sets were of the same
“dimension” as the variable space itself and ∂TPc coincided with the topological
boundary. Next, we will consider an example where this is not the case.

Example 5.3.4. Consider the problem L&H3×3 from Example 3.1.8, where have
k = n = 3. Since Df(x) cannot have full rank for x ∈ Pc, we must have

rk(Df(x)) < min({k, n}) = 3.

Thus, by Corollary 5.2.8, it is sufficient to consider all problems of size |I| = 2
to cover the boundary ∂TPc of Pc. The corresponding Pareto critical sets and the
original Pareto critical set (computed via the continuation method) are shown in
Figure 5.13. As expected, the Pareto critical sets of the subproblems cover the “edges”
of the holes in the spherical component of Pc. (Note that Figure 5.13(a) only shows
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(a) (b)

Figure 5.13: (a) The Pareto critical sets of all subproblems with |I| = 2 and the
original Pareto critical set for Example 5.3.4. (b) Same as (a), but with a finer box
covering of Pc and zoomed in on the spherical component.

Pc ∩ ([−0.5, 0.5]× [−1.5, 0.5]× [−0.5, 0.5]). The two-dimensional surface in the back
expands further outside of this region, which is why its boundary in Figure 5.13(a)
is not covered by subproblems.)

5.4 Extension to constrained MOPs

In this section, we will discuss the generalization of the results from Sections 5.1
and 5.2 about the boundary of Pareto critical sets to the case of constrained MOPs.
Recall that in the constrained case, the Pareto critical set Pc was defined in Definition
3.1.10 as the set of points satisfying the condition (3.5).

There are two different approaches for generalizing our previous results to the
constrained case: The first, straight-forward approach is to consider all theoretical
results from Sections 5.1 and 5.2 and adapt each result to the constrained version
of the KKT condition. The second approach is to transform the constrained MOP
into an unconstrained MOP by interpreting the constraints as additional objective
functions (cf. [KJ06]), and to then apply our results from the unconstrained case to
the resulting MOP. Here, we will consider the latter of the two approaches, as it gives
an interesting general view on constrained MOPs. We will only develop the basic
ideas behind this approach instead of an exhaustive theory, as the constrained case
will turn out to be more complicated than the unconstrained case. In particular, we
will omit a rigorous definition of the “boundary” of Pc in the constrained case and
simply define

∂TPc := {x ∈ Pc : Tan(Pc, x) 6= −Tan(Pc, x)}. (5.7)

This definition and the definition of the boundary in the unconstrained case (Defini-
tion 5.1.14) are slightly inconsistent because of the usage of Pint in the unconstrained
case. (They are consistent when Lemma 5.1.9 is applicable.) But the simpler defi-
nition (5.7) in the constrained case will be sufficient for our discussion and allows us
to omit the generalization of Pint. We will begin by considering equality constraints
and inequality constraints separately.
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5.4.1 Equality constraints

Consider the MOP

min
x∈Rn

f(x), (5.8)

s.t. h(x) = 0,

where f : Rn → Rk and h : Rn → Rkh are twice continuously differentiable and h
satisfies the LICQ, i.e., the gradients ∇hi(x), i ∈ {1, . . . , kh}, are linearly indepen-
dent for all x ∈ Rn with h(x) = 0. By Definition 3.1.10, a point x̄ ∈ Rn is Pareto
critical for (5.8) if h(x̄) = 0 and there are α ∈ ∆k and λ ∈ Rkh such that

k
∑

i=1

αi∇fi(x̄) +

kh
∑

i=1

λi∇hi(x̄) = 0.

With the convention sgn(0) = 0, this can be written as

k
∑

i=1

αi∇fi(x̄) +

kh
∑

i=1

|λi|∇(sgn(λi)hi)(x̄) = 0. (5.9)

Let

α̃ :=
1

∑k
i=1 αi +

∑kh
i=1 |λi|

(α, |λ|),

where |λ| := (|λ1|, . . . , |λkh |)⊤. Then α̃ ∈ ∆k+kh and (5.9) implies that x̄ is Pareto
critical with KKT vector α̃ for the unconstrained MOP

min
x∈Rn

(

f(x)
sgn(λ) ⊙ h(x)

)

,

where sgn(λ) := (sgn(λ1), . . . , sgn(λkh))⊤ and ⊙ is the Hadamard product, i.e.,
sgn(λ) ⊙ h(x) = (sgn(λi)hi(x))i∈{1,...,kh}. Conversely, it is easy to see that for every
s ∈ {−1, 1}kh , every Pareto critical point of the unconstrained MOP

min
x∈Rn

(

f(x)
s⊙ h(x)

)

(5.10)

that satisfies h(x) = 0 is also Pareto critical for the original MOP (5.8). (Note that
here we need the LICQ to assure that not all multipliers of f in the KKT conditions
of (5.10) are zero.) For s ∈ {−1, 1}kh let P s

c be the Pareto critical set of (5.10).
Then our previous considerations can be summarized as

Pc =





⋃

s∈{−1,1}kh
P s
c



 ∩ h−1(0). (5.11)

This relationship is visualized in the following example.
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Example 5.4.1. Consider the MOP (5.8) for

f : R2 → R2, x 7→
(

‖x‖2Q
‖x− c1‖2

)

,

h : R2 → R, x 7→ ‖x− c2‖2 −
(

3

8

)2

with

Q =

(

5 2
2 1

)

, c1 =

(

1
1

)

, c2 =

(

5
8
1
2

)

.

The objective vector f was already considered in Example 2.2.8. We now constrain
it to h−1(0), which is a circle with center c2 and radius 3

8
. By (5.11), the Pareto

critical set of this MOP is given by the intersection of h−1(0) with the union of the
Pareto critical sets P+1

c and P−1
c of the MOPs

min
x∈R2





‖x‖2Q
‖x− c1‖2

‖x− c2‖2 −
(

3
8

)2



 and min
x∈R2





‖x‖2Q
‖x− c1‖2

−(‖x− c2‖2 −
(

3
8

)2
)



 ,

respectively. Due to the structure of the objective vectors of these MOPs, P+1
c and

P−1
c can be computed with the same technique as in Example 2.2.8. The result is

shown in Figure 5.14.

Figure 5.14: Deriving Pc by interpreting the equality constraint as an additional
objective in Example 5.4.1. The black dots show the critical points of the individual
objectives (as constrained scalar problems).

We will now discuss how the structure of the boundary of Pc can be derived from
equality (5.11). As mentioned at the beginning of this section, we will only sketch
the derivation here for the generic case and leave the details for future work. We
will first consider the boundary of

⋃

s∈{−1,1}kh P
s
c (which can formally be defined as

in (5.7) via tangent cones). To this end, let s ∈ {−1, 1}kh and consider the Pareto
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critical set P s
c of the MOP (5.10). Since this is an unconstrained MOP, we can

apply our results from Section 5.1 (namely Theorem 5.1.16) to see that if x lies on
the boundary of P s

c (and the assumption about the weighted Hessian is satisfied),
then one of the KKT vectors α̃ ∈ ∆k+kh of x must have a zero entry α̃j = 0,
j ∈ {1, . . . , k + kh}. Due to the structure of the objective vector, this entry either
belongs to f (if j ∈ {1, . . . , k}) or to s⊙ h (if j ∈ {k+ 1, . . . , k+ kh}). In the latter
case, it is easy to see that x is also Pareto critical for the MOP (5.10) corresponding
to s′ ∈ ∆k+kh with

s′i =

{

si, if i 6= j,

−si, if i = j,

i.e., we have x ∈ P s′

c . Furthermore, by recalling Theorem 2.2.10 and equation
(2.13) about the projected smooth structure of Pareto critical sets, we see that
Tan(P s

c , x) = Tan(P s′

c , x), which suggests that the union P s
c ∪P s′

c is “smooth” around
x. Thus, we expect that points that have a KKT multiplier which is zero for s⊙ h
lie on the boundary of P s

c , but not on the boundary of the union
⋃

s∈{−1,1}kh P
s
c .

This would imply that the boundary of
⋃

s∈{−1,1}kh P
s
c consists of the points that

have a zero multiplier with respect to f . This can also be seen in Example 5.4.1:
The points in P+1

c and P−1
c where a KKT multiplier with respect to s ⊙ h is zero

are precisely the points in which the red and the green sets touch. Clearly, these
points do not lie on the boundary of P+1

c ∪ P−1
c (unless an additional multiplier of

f is zero).
Based on the previous considerations, we can now derive the structure of the

boundary of Pc from the boundary of
⋃

s∈{−1,1}kh P
s
c . To this end, we again consider

equation (5.11). The LICQ implies that we can apply the level set theorem (Theorem
2.2.9) to see that the feasible set h−1(0) is an (n− kh)-dimensional manifold. Thus,
by (5.11), we expect that in the generic case, the tangent cone Tan(Pc, x) of Pc is the
intersection of the tangent space of h−1(0) and the tangent cone of

⋃

s∈{−1,1}kh P
s
c .

(In the context of the intersection of tangent spaces of manifolds, this relationship
is connected to transversality, cf. Theorem 6.30 in [Lee12].) Now let x ∈ ∂TPc, i.e.,
let there be some v ∈ Tan(Pc, x) with −v /∈ Tan(Pc, x). Since the tangent space of
h−1(0) is a vector space, this implies that −v is not contained in the tangent cone of
⋃

s∈{−1,1}kh P
s
c . Thus, x must lie on the boundary of

⋃

s∈{−1,1}kh P
s
c . By our previous

discussion, this implies that, as a Pareto critical point of (5.8), x possesses a KKT
vector with a zero component. In other words, we expect that also in the equality-
constrained case, the boundary of Pc consists of Pareto critical sets of (constrained)
subproblems.

5.4.2 Inequality constraints

We will now consider inequality constrained MOPs of the form

min
x∈Rn

f(x), (5.12)

s.t. g(x) ≤ 0,

where f : Rn → Rk and g : Rn → Rkg are twice continuously differentiable and
g satisfies the LICQ, i.e., for all x ∈ g−1(R≤0), the gradients ∇gi(x) of all active
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indices i ∈ Ag(x) = {i ∈ {1, . . . , kg} : gi(x) = 0} are linearly independent. By
Definition 3.1.10, a point x̄ ∈ Rn is Pareto critical for (5.12) if g(x̄) ≤ 0 and there
are α ∈ ∆k and µ ∈ (R≥0)kg such that

k
∑

i=1

αi∇fi(x̄) +
∑

i∈Ag(x̄)

µi∇gi(x̄) = 0,

µi = 0 ∀i /∈ Ag(x̄).

This implies that x̄ is Pareto critical for the unconstrained MOP

min
x∈Rn

(

f(x)
(gi(x))i∈Ag(x̄)

)

. (5.13)

(In contrast to the equality constrained case, we do not have to consider the sign
of the KKT multipliers to obtain the unconstrained MOP, since µ ∈ (R≥0)kg . But
instead, we now have the dependency on the active set Ag(x̄).) Conversely, for every
A ⊆ {1, . . . , kg}, every Pareto critical point of the unconstrained MOP

min
x∈Rn

(

f(x)
(gi(x))i∈A

)

(5.14)

that satisfies g(x) ≤ 0 and Ag(x) = A is Pareto critical for the original MOP (5.12)
(by setting µi = 0 for all i /∈ A). For A ⊆ {1, . . . , kg} let PA

c be the Pareto critical
set of (5.14). Then we can summarize our above considerations as

Pc =
⋃

A⊆{1,...,kg}
PA
c ∩ {x ∈ g−1(R≤0) : Ag(x) = A}. (5.15)

This relationship is visualized in the following example.

Example 5.4.2. Consider the MOP (5.12) for

f : R2 → R2, x 7→
(

‖x‖2Q
‖x− c1‖2

)

,

g : R2 → R, x 7→ ‖x− c2‖2 −
(

3

8

)2

with

Q =

(

5 2
2 1

)

, c1 =

(

1
1

)

, c2 =

(

5
8
1
2

)

.

This is the same objective vector and constraint function as in Example 5.4.1, but
this time we treat the constraint as an inequality. In this way, the feasible set is
now the (closed) sphere centered at c2 with radius 3

8
. By (5.15), the Pareto critical

set of this MOP can be expressed via the Pareto critical sets P ∅
c and P

{1}
c of the

unconstrained MOPs

min
x∈R2

(

‖x‖2Q
‖x− c1‖2

)

and min
x∈R2





‖x‖2Q
‖x− c1‖2

‖x− c2‖2 −
(

3
8

)2



 ,
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Chapter 5. Hierarchical structure of Pareto critical sets

respectively. More precisely, in this case we have

Pc = (P ∅
c ∩ {x ∈ g−1(R≤0) : Ag(x) = ∅}) ∪ (P {1}

c ∩ {x ∈ g−1(R≤0) : Ag(x) = {1}})

= (P ∅
c ∩ g−1(R<0)) ∪ (P {1}

c ∩ g−1(0)).

This equation is visualized in Figure 5.15. (P ∅
c and P

{1}
c can again be computed as

in Example 2.2.8.)

Figure 5.15: Deriving Pc by interpreting the inequality constraint as an additional
objective in Example 5.4.2. The black dots show the critical points of the individ-
ual objectives (as constrained scalar problems). The black circles show the Pareto
critical points where the active set changes.

We will now discuss the structure of the boundary of Pc in the inequality con-
strained case. Since g is continuous, the set {x ∈ g−1(R≤0) : Ag(x) = ∅} = g−1(R<0)
of points where all constraints are inactive is open. This means that for A = ∅ in
(5.15), we can simply apply the (local) results from Section 5.1. Thus, we will focus
on the case where A 6= ∅. In general, (5.15) can also be written as

Pc =
⋃

A⊆{1,...,kg}
PA
c ∩ ((gi)i∈A)−1(0) ∩ ((gi)i/∈A)−1(R<0).

Note that in the expression PA
c ∩ ((gi)i∈A)−1(0), (gi)i∈A acts like an equality con-

straint. Furthermore, ((gi)i/∈A)−1(R<0) is an open set, such that it can be ignored
for the consideration of the boundary of PA

c ∩ ((gi)i∈A)−1(0). Thus, we can argue
as in the equality constrained case to see that the boundary of PA

c ∩ ((gi)i∈A)−1(0)
consists of Pareto critical points of (5.14) where a KKT multiplier corresponding
to either f or (gi)i∈A is zero. But since we do not switch the sign of the constraint
functions in the MOP (5.14) in the inequality constrained case, we cannot argue that
the latter points can be ignored when considering the boundary of Pc. This was to
be expected, as points with a vanishing KKT multiplier with respect to (gi)i∈A are
precisely the points in which the active set may change. Since this causes a “discon-
tinuous change” in the KKT conditions, these points generically cause kinks in Pc.
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5.4. Extension to constrained MOPs

Furthermore, for different sets A ⊆ {1, . . . , kg}, the sets in the union in (5.15) may
have different “dimensions”, which can lead to additional boundary points where
they touch. Thus, in the inequality constrained case, we expect the boundary of Pc

to consist of points where a KKT multiplier of f is zero and points where the active
set changes. This can also be seen in Example 5.4.2.

5.4.3 Examples

We will now visualize the structure of Pareto critical sets for equality and inequality
constrained MOPs using some examples. For the computation of the Pareto critical
sets, we use the continuation method for the constrained case from Section 3.1.4.
The first example is an inequality constrained MOP with n = 3 variables and k = 3
objectives.

Example 5.4.3. Consider the problem (5.12) for

f : R3 → R3, x 7→





2x21 + x22 + x23
(x1 − 1)2 + 2x22 + x23

(x1 − 1)2 + (x2 − 1)2 + 2(x3 − 1)2



 ,

g : R3 → R, x 7→ −
(

(

x1 −
1

2

)2

+

(

x2 −
1

2

)2

+

(

x2 −
1

2

)2

−
(

2

5

)2
)

.

The feasible set g−1(R≤0) is the complement of the open sphere with radius 2
5
and

center (1
2
, 1
2
, 1
2
)⊤. The Pareto critical set of this problem is shown in Figure 5.16(a).

Figure 5.16(b) shows the Pareto critical sets of all (constrained) subproblems with

(a) (b)

Figure 5.16: (a) A covering of the Pareto critical set Pc in Example 5.4.3 via boxes.
(b) A pointwise discretization of Pc (black), the Pareto critical sets of all subprob-
lems with |I| = 2 (red, green and blue) and the points in which the active set changes
(magenta).

|I| = 2. Furthermore, all points where the active set changes are shown. As pre-
dicted, we see that the boundary of Pc consists of these two types of points.
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Chapter 5. Hierarchical structure of Pareto critical sets

Next, we consider an equality constrained MOP which was previously considered
in [Sch04], Example S4.

Example 5.4.4. Consider the problem (5.8) for

f : R3 → R3, x 7→





(x1 − 1)4 + (x2 − 1)2 + (x3 − 1)2

(x1 + 1)2 + (x2 + 1)4 + (x3 + 1)2

(x1 − 1)2 + (x2 + 1)2 + (x3 − 1)4



 ,

h : R3 → R, x 7→ −((x21 + x22 + x23 − (R2 + r2))2 − 4R2(r2 − x23))

with r = 0.3 and R = 0.5. The feasible set h−1(0) is the torus around the x3-axis
with minor radius r and major radius R. (In [Sch04], a different equality constraint
was chosen, but the feasible set is identical.) The Pareto critical set Pc is shown in
Figure 5.17(a) and Figure 5.17(b) shows the Pareto critical sets of all subproblems.
We see that Pc consists of three connected components, all bounded by the Pareto

(a) (b)

Figure 5.17: (a) A covering of the Pareto critical set Pc in Example 5.4.4 via boxes.
(b) A pointwise discretization of Pc (black) and the Pareto critical sets of all sub-
problems with |I| = 2 (red, green and blue).

critical sets of the subproblems.

Finally, we will consider the MOP from Example 3.1.14, which has both equality
and inequality constraints. In our earlier theoretical considerations, we only dis-
cussed the two types of constraints separately. The results here will suggest that
our theoretical results also hold in the case where we have both types of constraints
simultaneously.

Example 5.4.5. Consider the MOP from Example 3.1.14. Figure 5.18(a) shows
the Pareto critical set of this MOP. Figure 5.18(b) shows the Pareto critical set of
all subproblems and the points in which the active set changes. We again see that
the boundary of Pc consists of these two types of points. (In this example, the KKT
vectors of the MOP (5.14) (constrained with h) are not unique in points where the
inequality constraint is active. Thus, all Pareto critical points on the boundary of
the feasible set are Pareto critical for multiple subproblems, such that their colors in
Figure 5.18(b) are not unique.)

5.5 Extension to the nonsmooth case

In this section, we will analyze the structure of the Pareto critical set in the non-
smooth (i.e., locally Lipschitz continuous) case (cf. Section 2.2.2). In the smooth
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(a) (b)

Figure 5.18: (a) A covering of the Pareto critical set Pc in Example 5.4.5 via boxes.
(b) A pointwise discretization of Pc (black), the Pareto critical sets of all subprob-
lems with |I| = 2 (red, green and blue) and the points in which the active set changes
(magenta).

case, we heavily exploited the fact that the set of Pareto critical points with a
positive KKT vector can be written as the projection of the manifold M from The-
orem 2.2.10 onto the variable space Rn. Unfortunately, in the nonsmooth case, this
smoothness property of Pc is lost. This can already be seen in the simple Example
2.2.25, where Pc has a kink (that is not related to the Pareto critical points of the
individual objectives). Furthermore, with a definition of the boundary based on
tangent cones (as in Definition 5.1.14), this kink would be identified as a boundary
point. This shows that our definition of the boundary from the smooth case does
not yield a “useful” characterization of the boundary of Pc in the nonsmooth case.
Nonetheless, in the following, we will show that some basic results about the struc-
ture of Pc can be carried over. As in Section 2.2.2 and Chapter 4, we will assume
for this section that all fi, i ∈ {1, . . . , k}, are locally Lipschitz continuous.

We will begin by showing that the Pareto critical set is still a closed subset of
Rn.

Lemma 5.5.1. Pc is closed.

Proof. We will show that Rn\Pc is open. To this end, let x ∈ Rn\Pc, so 0 /∈ ∂∪f(x).
Since ∂∪f(x) is compact (as the convex hull of a compact set) and convex, there has
to be an open, convex set V ⊆ Rn with ∂∪f(x) ⊆ V and 0 /∈ V . In particular,

∂fi(x) ⊆ ∂∪f(x) ⊆ V ∀i ∈ {1, . . . , k}.

Since ∂fi is upper semicontinuous for all i ∈ {1, . . . , k} (cf. Lemma 2.2.17), there
has to be an open set U ⊆ Rn with x ∈ U such that

∂fi(y) ⊆ V ∀y ∈ U, i ∈ {1, . . . , k}.

Since V is convex, this implies

∂∪f(y) = conv

(

k
⋃

i=1

∂fi(y)

)

⊆ V ∀y ∈ U.
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Chapter 5. Hierarchical structure of Pareto critical sets

In particular, 0 /∈ ∂∪f(y) for all y ∈ U , so U ⊆ Rn \ Pc, showing that Rn \ Pc is
open.

One of the basic concepts in the smooth case was the relationship between Pareto
critical points and their KKT vectors, which are implicitly defined by the KKT
condition. More precisely, KKT vectors contain the coefficients of a vanishing convex
combination of the gradients ∇fi(x), i ∈ {1, . . . , k}, of the objectives. Although in
the nonsmooth case, the KKT condition

0 ∈ ∂∪f(x) = conv

(

k
⋃

i=1

∂fi(x)

)

still involves a vanishing convex combination, the coefficients now also depend on
which elements from the subdifferentials ∂fi(x), i ∈ {1, . . . , k}, are chosen. To
obtain a well-defined characterization of KKT vectors in this case, we consider the
following lemma.

Lemma 5.5.2. Let x ∈ Rn. Then

∂∪f(x) =

{

k
∑

i=1

αiξi : α ∈ ∆k, ξi ∈ ∂fi(x), i ∈ {1, . . . , k}
}

.

Proof. Lemma 5.29 in [AB06].

By this lemma, it is sufficient to only consider a single element from each ∂fi(x),
i ∈ {1, . . . , k}, for the representation of ∂∪f(x). This allows us to make the following
definition.

Definition 5.5.3. Let x ∈ Pc and α ∈ ∆k such that there are elements ξi ∈ ∂fi(x),
i ∈ {1, . . . , k}, with ∑k

i=1 αiξi = 0. Then α is a KKT vector of x. We denote by
A(x) ⊆ ∆k the set of all KKT vectors of x, i.e.,

A(x) :=

{

α ∈ ∆k : ∃ξi ∈ ∂fi(x), i ∈ {1, . . . , k}, with
k
∑

i=1

αiξi = 0

}

.

Recall that if all objectives fi, i ∈ {1, . . . , k}, are actually continuously differ-
entiable, then each subdifferential just reduces to the set that only contains the
respective gradient. In particular, the choice of ξi ∈ ∂fi(x) = {∇fi(x)} is fixed and
the previous definition reduces to the definition of KKT vectors from the smooth
case.

In the smooth case, the KKT vectors can be used to locally parameterize the
Pareto critical set, which was an important tool for our theoretical results (cf. Lemma
5.1.3). The parameterization was based on the application of the implicit function
theorem to the system of equations F (x, α) = 0 from (2.11). In the nonsmooth case
this relationship is lost, since F would also depend on the choice of ξi ∈ ∂fi(x) and
would generally be nonsmooth, as there is no smooth dependancy of ξi ∈ ∂fi(x) on
x. Nonetheless, it is possible to derive some structural properties of Pc from the
KKT vectors by considering the set-valued mapping A which maps x onto A(x). To
this end, we first need a technical result about sequences of subgradients (similar to
[Cla90], Proposition 2.1.5).
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5.5. Extension to the nonsmooth case

Lemma 5.5.4. Let h : Rn → R be locally Lipschitz continuous and (xi)i ∈ Rn with
limi→∞ xi = x̄ ∈ Rn. Let (vi)i ∈ Rn with vi ∈ ∂h(xi) for all i ∈ {1, . . . , k}. Then
(vi)i has an accumulation point and all accumulation points of (vi)i lie in ∂h(x̄).

Proof. Let L be a Lipschitz constant of h at x̄. (By definition, this implies that
there is some open set U ⊆ Rn with x̄ ∈ U such that L is a Lipschitz constant for
all y ∈ U .) By Lemma 2.2.17 and since limi→∞ xi = x̄, we can assume w.l.o.g. that

vi ∈ ∂h(xi) ⊆ BL(0) ∀i ∈ N.

Since BL(0) is compact, (vi)i must have an accumulation point in BL(0). Let v̄ be
any accumulation point of (vi)i and assume that v̄ /∈ ∂h(x̄). Since ∂h(x̄) is compact,
there must be some open set V ⊆ Rn with ∂h(x̄) ⊆ V such that v̄ /∈ V . Since ∂h
is upper semicontinuous, there is an open set W ⊆ Rn with x̄ ∈ W and ∂h(y) ⊆ V
for all y ∈ W . In particular, there is some N ∈ N with xi ∈ W for all i > N such
that ∂h(xi) ⊆ V 6∋ v̄. This is a contradiction to v̄ being an accumulation point of
(vi)i.

The previous lemma can be used to show that A(x) is compact (as a subset of
Rk) and that the set-valued map

A : Rn → P(Rk), x 7→ A(x)

is upper semicontinuous.

Lemma 5.5.5. a) The set A(x) is compact for all x ∈ Rn.

b) The map A is upper semicontinuous, i.e., for all x ∈ Rn and all open sets
V ⊆ Rk with A(x) ⊆ V , there is some open set U ⊆ Rn with x ∈ U such that

A(y) ⊆ V ∀y ∈ U.

Proof. a) A(x) is bounded as a subset of ∆k. To show that it is also closed, let
(αi)i ∈ A(x) with limi→∞ αi = ᾱ ∈ Rk. Since ∆k is compact we have ᾱ ∈ ∆k. By
definition, there is a sequence (ξij)i ∈ ∂fj(x) for each j ∈ {1, .., k} with

∑k
j=1 α

i
jξ

i
j = 0

for all i ∈ N. By Lemma 5.5.4 we can assume w.l.o.g. that for each j ∈ {1, . . . , k},
there is some ξ̄j ∈ ∂fj(x) with limi→∞ ξij = ξ̄j. It follows that

0 = lim
i→∞

k
∑

j=1

αi
jξ

i
j =

k
∑

j=1

ᾱj ξ̄j,

so ᾱ ∈ A(x).
b) Let x̄ ∈ Rn and V ⊆ Rk open with A(x̄) ⊆ V . Assume that for all open sets
U ⊆ Rn with x̄ ∈ U there is some y ∈ U such that A(y) * V . Then there must be a
sequence (xi)i ∈ Rn with limi→∞ xi = x̄ and A(xi) * V for all i ∈ N. In particular,
there must be a sequence (αi)i ∈ ∆k with αi ∈ A(xi) and αi /∈ V for all i ∈ N. By
definition, for each i ∈ N there are ξij ∈ ∂fj(x

i), j ∈ {1, . . . , k}, such that

k
∑

j=1

αi
jξ

i
j = 0.
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Since (αi)i ∈ ∆k and ∆k is compact, we can assume w.l.o.g. that there is some
ᾱ ∈ ∆k with limi→∞ αi = ᾱ. Furthermore, by Lemma 5.5.4 we can assume w.l.o.g.
that for each j ∈ {1, . . . , k}, there is some ξ̄j ∈ ∂fj(x̄) with limi→∞ ξij = ξ̄j. This
implies

0 = lim
i→∞

k
∑

j=1

αi
jξ

i
j =

k
∑

j=1

ᾱj ξ̄j.

This means that ᾱ ∈ A(x̄) ⊆ V , which is a contradiction to limi→∞ αi = ᾱ since V
is open and αi /∈ V for all i ∈ N.

The upper semicontinuity of A can now be used to show a first result about
the relationship between Pc and the Pareto critical sets of subproblems. In the
nonsmooth case, we can define subproblems analogously to the smooth subproblems
(MOPI) for I ∈ P({1, . . . , k}). For ease of notation, let

∆◦
k := {α ∈ ∆k : αi > 0 ∀i ∈ {1, . . . , k}},

∂∆k := {α ∈ ∆k : ∃j ∈ {1, . . . , k} with αj = 0},

i.e., ∆◦
k is the interior and ∂∆k is the boundary of ∆k as a subset of the affine linear

space {α ∈ Rk :
∑k

i=1 αi = 1} endowed with the subspace topology of Rk.

Lemma 5.5.6. Let x̄ ∈ Pc. If A(x̄) ⊆ ∆◦
k then there is some open set U ⊆ Rn with

x̄ ∈ U such that

A(x) ⊆ ∆◦
k ∀x ∈ U.

Proof. Since both A(x̄) and ∂∆k are compact (cf. Lemma 5.5.5) and A(x̄)∩∂∆k = ∅,
there is an open set V ⊆ Rk with A(x̄) ⊆ V and V ∩ ∂∆k = ∅. By Lemma 5.5.5
there has to be an open set U ⊆ Rn with x̄ ∈ U such that A(x) ⊆ V for all x ∈ U .
In particular,

A(x) ∩ ∂∆k ⊆ V ∩ ∂∆k = ∅ ∀x ∈ U,

so A(x) ⊆ ∆◦
k for all x ∈ U .

By the previous lemma, if x ∈ Pc is a Pareto critical point that is not Pareto
critical for any subproblem (with less than k objectives), then there are also no
Pareto critical points of subproblems in an open neighborhood (in Rn) around x.
Thus, the set of Pareto critical points with positive KKT vectors is open as a subset
of Pc with respect to the subspace topology of Pc from Rn.

An important result in the smooth case was the fact that every x ∈ Pc is Pareto
critical for a subproblem with at most rk(Df(x)) + 1 objectives (cf. Lemma 5.2.3).
As there is no obvious concept for the “rank of the Jacobian” in the nonsmooth case,
this result cannot directly be generalized. Nonetheless, a simpler version of the result
can still be shown in the special case where k > n + 1 by applying Carathéodory’s
theorem (cf. Remark 5.2.5). To this end, let P I

c again be the Pareto critical set of the
subproblem (MOPI) (for a locally Lipschitz continuous f) with I ∈ P({1, . . . , k}).

Lemma 5.5.7. Let k > n+ 1. Then for all x ∈ Pc there is some I ∈ P({1, . . . , k})
with |I| ≤ n+ 1 such that x ∈ P I

c .
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Proof. By Lemma 5.5.2 there are subgradients ξi ∈ ∂fi(x), i ∈ {1, . . . , k}, such that
0 ∈ conv({ξ1, . . . , ξk}). By Carathéodory’s theorem [DGK63] and since ξi ∈ Rn,
there is some I ∈ P({1, . . . , k}) with |I| ≤ n+ 1 such that

0 ∈ conv({ξi : i ∈ I}) ⊆
⋃

i∈I
∂fi(x) = ∂∪f I(x).

Thus, x ∈ P I
c .

The following example shows an application of the previous lemma for the case
of k = 4 locally Lipschitz objectives in n = 2 variables.

Example 5.5.8. Consider the problem minx∈R2 f(x) with

f(x) :=









max{x21 + (x2 − 1)2 + x2 − 1,−x21 − (x2 − 1)2 + x2 + 1}
−x1 + 2(x21 + x22 − 1) + 1.75|x21 + x22 − 1|

|x1 − 0.25| + 2|x2 − 0.5|
|x1 − 0.8| + |x2 − 0.8|









.

(The MOP consisting of only the first two objective functions was already considered
in (4.22).) Since all subdifferentials can be computed by hand, it is possible to show
that the Pareto critical set is the gray set in Figure 5.19. (For better visualization,
additional components of the Pareto critical set outside of the shown area are ig-
nored in this example.) Furthermore, the Pareto critical sets of all subproblems with
|I| = n+ 1 = 3 are shown. As proven in Lemma 5.5.7, the original Pareto critical
set can be written as the union of all Pareto critical sets of these subproblems.

By Lemma 5.5.7, a problem with k > n + 1 can be reduced to a number of
subproblems with k = n+1. For these subproblems, we can obtain a result about the
structure of their Pareto critical sets by using the fact that generically, the interior
of the convex hull of n + 1 elements in Rn is open (in Rn) and the coefficients of a
vanishing convex combination of n+ 1 elements are unique.

Theorem 5.5.9. Let k = n + 1 and x̄ ∈ Pc. If there is no I ∈ P({1, . . . , k}) with
|I| < k and x̄ ∈ P I

c (i.e., if αj > 0 for all α ∈ A(x̄), j ∈ {1, . . . , k}), then there is
an open set U ⊆ Rn with x̄ ∈ U and U ⊆ Pc.

Proof. Assume that there is no such U . Then there is a sequence (xi)i ∈ Rn with
xi /∈ Pc and limi→∞ xi = x̄. For each j ∈ {1, . . . , k}, let (ξij)i ∈ Rn be a sequence
with ξij ∈ ∂fj(x

i) for all i ∈ N. Since xi /∈ Pc we have 0 /∈ conv({ξi1, . . . , ξik}) for
all i ∈ N. By Lemma 5.5.4 we can assume w.l.o.g. that there are ξ̄j ∈ ∂fj(x̄) with
limi→∞ ξij = ξ̄j for each j ∈ {1, . . . , k}. We distinguish between two cases:

Case 1: 0 ∈ conv({ξ̄1, . . . , ξ̄k}). Let ᾱ ∈ A(x̄) with
∑k

j=1 ᾱj ξ̄j = 0. By assumption
we have ᾱj > 0 for all j ∈ {1, . . . , k}. Note that we can write

0 =
k
∑

j=1

ᾱj ξ̄j =
k−1
∑

j=1

ᾱj ξ̄j + ᾱkξ̄k =
k−1
∑

j=1

ᾱj ξ̄j +

(

1 −
k−1
∑

j=1

ᾱj

)

ξ̄k

=
k−1
∑

j=1

ᾱj ξ̄j + ξ̄k −
k−1
∑

j=1

ᾱj ξ̄k =
k−1
∑

j=1

ᾱj(ξ̄j − ξ̄k) + ξ̄k

= M(ᾱ1, . . . , ᾱk−1)
⊤ + ξ̄k, (5.16)
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Figure 5.19: Pareto critical sets of the original problem and all subproblems with
|I| = 3 in Example 5.5.8.

where M ∈ Rn×k−1 = Rn×n is the square matrix with columns (ξ̄j − ξ̄k)j ∈ Rn,
j ∈ {1, . . . , k−1}. If M would not be regular, then there would be some β ∈ Rn\{0}
with

0 = Mβ =
k−1
∑

j=1

βj(ξ̄j − ξ̄k) =
k−1
∑

j=1

βj ξ̄j +

(

−
k−1
∑

j=1

βj

)

ξ̄k.

Defining β′ := (β1, . . . , βk−1,−
∑k−1

j=1 βj)
⊤ would lead to

∑k
j=1 β

′
j ξ̄j = 0 and

∑k
j=1 β

′
j = 0. Analogously to the proof of Lemma 5.1.11 c), it would then fol-

low that there is a KKT vector (for this choice of ξ̄j ∈ ∂fj(x̄), j ∈ {1, . . . , k}) with
a zero component, which is a contradiction to our assumption. Thus, M is regular.
This means that ᾱ is uniquely determined by (5.16) via

(ᾱ1, . . . , ᾱk−1)
⊤ = −M−1ξ̄k (5.17)

and ᾱk = 1 −∑k−1
j=1 ᾱj. Since the set of regular matrices is open, there is an open

neighborhood of M in which all matrices are regular. Furthermore, the right-hand
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5.5. Extension to the nonsmooth case

side of (5.17) is continuous in ξ̄1, . . . , ξ̄k. Since ᾱj > 0 for all j ∈ {1, . . . , k} and
limi→∞ ξij = ξ̄j for all j ∈ {1, . . . , k}, this means that there is some N ∈ N such that
A(xi) 6= ∅, i.e., xi ∈ Pc for all i > N , which is a contradiction.
Case 2: 0 /∈ conv({ξ̄1, . . . , ξ̄k}). Since x̄ ∈ Pc, there are α′ ∈ ∆k and ξ′j ∈ ∂fj(x̄),

j ∈ {1, . . . , k}, such that
∑k

j=1 α
′
jξ

′
j = 0 and (by our assumption) α′

j > 0 for all
j ∈ {1, . . . , k}. For each j ∈ {1, . . . , k}, let

ξj : [0, 1] → Rn, t 7→ ξ′j + t(ξ̄j − ξ′j).

Since ∂fj(x̄) is convex, we have ξj(t) ∈ ∂fj(x̄) for all j ∈ {1, . . . , k}, t ∈ [0, 1]. By our
construction, it holds 0 ∈ conv({ξ1(0), . . . , ξk(0)}) and 0 /∈ conv({ξ1(1), . . . , ξk(1)}).
Consider the continuous function

M : [0, 1] → Rn×n, t 7→ (ξ1(t) − ξk(t), . . . , ξk−1(t) − ξk(t)).

With the same argument as in Case 1, we know that M(t) must be regular for all
t ∈ [0, 1] for which there is a positive KKT vector corresponding to ξ1(t), . . . , ξk(t).
Since α′ is positive, M(t) is regular in an open neighborhood around 0. Since the
set {t ∈ [0, 1] : M(t) is irregular} is closed (and therefore compact), it is either
empty or there is a smallest t′ ∈ (0, 1] such that M(t′) is irregular. In the latter
case, sinceM(t′) is irregular, there cannot be a positive KKT vector corresponding to
ξ1(t

′), . . . , ξk(t′). Furthermore, there cannot be a KKT vector with a zero component
by assumption. Thus, we must have 0 /∈ conv({ξ1(t′), . . . , ξk(t′)}). Due to the
continuity of ξ1, . . . , ξk and compactness of conv({ξ1(t′), . . . , ξk(t′)}), this implies
that there is some t0 < t′ with 0 /∈ conv({ξ1(t0), . . . , ξk(t0)}) such that M(t) is
regular for all t ∈ [0, t0). If M(t) is regular, then the KKT vector corresponding to
ξ1(t), . . . , ξk(t) is uniquely determined by

(α1, . . . , αk−1)
⊤ = −M(t)−1ξk(t) (5.18)

and αk = 1 − ∑k−1
j=1 αj. In particular, the right-hand side of (5.18) is well de-

fined and continuous in t for all t ∈ [0, t0). Let α0 = (α0
1, . . . , α

0
k)⊤ ∈ Rk with

(α0
1, . . . , α

0
k−1)

⊤ := −M(t0)
−1ξk(t0) and α0

k := 1 −∑k−1
j=1 α

0
j . Since we know that

0 /∈ conv({ξ1(t0), . . . , ξk(t0)}), α0 cannot be a KKT vector of x̄, so α0 /∈ ∆k. As the
right-hand side of (5.18) is continuous, we can apply the intermediate value theorem
to obtain the existence of some t̄ ∈ [0, t0) with a KKT vector ᾱ ∈ ∂∆k. This implies
that x̄ is Pareto critical for a subproblem with |I| < k, which is a contradiction.

By the previous theorem, for k = n+1 the set of Pareto critical points with only
strictly positive KKT vectors is contained in the interior P ◦

c of Pc (with respect to the
topology of Rn). As Pc is closed (cf. Lemma 5.5.1), we have Pc \P ◦

c = Pc \P ◦
c = ∂Pc.

Thus, the topological boundary ∂Pc of Pc is contained in the set of Pareto critical
points with at least one non-positive KKT vector. More formally, we have the
following corollary.

Corollary 5.5.10. If k = n+ 1, then

∂Pc ⊆
⋃

I∈P({1,...,k}),|I|=n

P I
c .

In the following example, we apply the previous corollary to the subproblem
corresponding to I = {1, 2, 4} of the MOP considered in Example 5.5.8.
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Chapter 5. Hierarchical structure of Pareto critical sets

Example 5.5.11. Consider the problem minx∈R2 f(x) with

f(x) :=





max{x21 + (x2 − 1)2 + x2 − 1,−x21 − (x2 − 1)2 + x2 + 1}
−x1 + 2(x21 + x22 − 1) + 1.75|x21 + x22 − 1|

|x1 − 0.8| + |x2 − 0.8|



 .

The Pareto critical set of this MOP is the green set shown in Figure 5.19. Figure
5.20 shows the Pareto critical sets of all subproblems with |I| = 2. As expected, we

Figure 5.20: Pareto critical sets of the original problem and all subproblems with
|I| = 2 in Example 5.5.11. The bottom right image also shows the critical points of
the individual objectives as black dots.

see that the topological boundary ∂Pc of Pc is covered by the Pareto critical sets of
these subproblems.

Summarizing our results in the nonsmooth case, we see that for k ≥ n + 1, we
have a similar structure of the Pareto critical set with respect to subproblems as in
the smooth case. For k < n+ 1, we basically only have Lemma 5.5.6, showing that
if we have a Pareto critical point where all KKT vectors are strictly positive, then
there is an open neighborhood around that point where all Pareto critical points
have the same property. Clearly, in the smooth case, we had much stronger results.
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5.5. Extension to the nonsmooth case

As mentioned at the beginning of this section, the problem with generalizing these
results is the fact that the nonsmoothness of the objective vector translates into a
nonsmoothness of the Pareto critical set, which we cannot analyze with the tools
we have used so far.
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6 Inferring objective vectors from
Pareto critical data

So far, throughout this thesis, we were always in the situation where the objective
vector f of an MOP was given and we were trying to compute or analyze the
structure of its Pareto (critical) set. While this is the typical setting of multiobjective
optimization, there are cases where it makes sense to instead consider the objective
vector as unknown and the solution as given. For example, for the generation of test
problems for MOP solvers, one might search for an objective vector where the Pareto
set has certain properties. This motivates us to consider the following problem,
which can be regarded as the inverse problem of multiobjective optimization:

Given a set P ⊆ Rn, find an objective vector for which P

is the Pareto set.
(IMOP)

While it is possible to state this problem in this general form, it has many degenerate
and trivial solutions. For example, for any P ⊆ Rn, the indicator function

1Rn\P : Rn → R, x 7→
{

0, if x ∈ P,

1, otherwise,

trivially solves (IMOP). To deal with this ill-posedness, we will instead consider
an inverse problem that is based on the concept of Pareto criticality. Since our
understanding of the Pareto critical set in the smooth case is much better than in
the nonsmooth case, we will also restrict our search to smooth objectives. While
replacing the Pareto set P in (IMOP) by the Pareto critical set Pc and the restriction
on smooth objectives would suffice to rule out the trivial solution given above, the
solution of the inverse problem would still be highly non-unique. In other words,
there can be vastly different objective vectors that correspond to the same Pareto
critical set, as the following example shows.

Example 6.0.1. Consider the problems minx∈R2 f i(x), i ∈ {1, 2, 3}, with the fol-
lowing objective vectors:

f 1 : R2 → R2, x 7→
(

x21 + x22
(x1 − 1)2 + x22

)

,

f 2 : R2 → R2, x 7→
(

x1(x1 − 1) + x22
x21(x1 − 1)2 + x22

)

,

f 3 : R2 → R3, x 7→





x21 + x22
(x1 − 1

2
)2 + x22

(x1 − 1)2 + x22



 .
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One can show that all three MOPs have the same Pareto critical set Pc = [0, 1]×{0},
but vastly different properties: f 1 is convex while f 2 is nonconvex. Furthermore, the
two boundary points of Pc (as defined in Chapter 5) correspond to critical points of
different objectives for f 1, but to critical points of the same objective for f 2. Finally,
f 3 shows that not even the number of objectives is uniquely determined by the Pareto
critical set. The images of the f i, i ∈ {1, 2, 3}, and the corresponding images of the
Pareto critical sets are shown in Figure 6.1.

Figure 6.1: Image of the Pareto critical set under f i and a pointwise discretization
of im(f i) for f 1, f 2 and f 3 from Example 6.0.1. (The image of f 3 lies in a two-
dimensional affine subspace of R3.)

To solve this issue, the idea is to not only prescribe the Pareto critical points, but
also the corresponding KKT vectors. To this end, we make the following definition.

Definition 6.0.2. The set

PM := {(x, α) ∈ Rn × ∆k : x ∈ Pc with KKT vector α}

is the extended Pareto critical set. A point (x, α) ∈ PM is an extended Pareto
critical point.

Note that compared to the manifold M from Theorem 2.2.10, we allow KKT
multipliers to be zero in PM. Using this definition, we can now state a more well-
behaved version of (IMOP):

Given a finite data set D = (Dx,Dα) ⊆ Rn × ∆k, find an objective

vector f ∈ C1(Rn,Rk) whose extended Pareto critical set contains D.
(IMOPc)

Since our goal is to solve the inverse problem numerically, we have additionally
imposed that the data set we prescribe is finite (and that it is only a subset of
PM instead of PM itself). As the space of continuously differentiable functions
C1(Rn,Rk) is infinite-dimensional, we will consider finite-dimensional subspaces of
C1(Rn,R) that are spanned by a set of basis functions B ⊆ C1(Rn,R) to approximate
it. This will turn (IMOPc) into a homogeneous linear system in the coefficients of
the basis functions, which can be solved via singular value decomposition (SVD).
In this way, we obtain an objective vector for which the data is either exactly or
“almost” extended Pareto critical, depending on the properties of that linear system.

While the prescription of the KKT vectors in addition to the Pareto critical
points seems necessary from a theoretical point of view, it makes the generation of
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Chapter 6. Inferring objective vectors from Pareto critical data

the data more demanding in practice. Recall that geometrically, if we attach the
KKT vector of a Pareto optimal point x̄ to f(x̄), then it is orthogonal to the Pareto
front (cf. Lemma 2.2.7). Thus, the assumption that the KKT vectors are given
in the data means that the data contains significantly more information than just
the location of Pareto critical points in the variable space. Nonetheless, there are
applications where this data is available or obtainable. The first application is the
generation of test problems for MOP solvers, where the KKT vectors can be used
to control topological and geometrical properties of the Pareto critical set. Here,
the results from Chapter 5 about the structure of Pareto critical sets can be used.
For example, we can try to force certain points to lie on the boundary of the Pareto
critical set by choosing KKT vectors with a zero component. The second application
lies within the field of stochastic multiobjective optimization [FX11; GP13], where
the objective vector contains a random variable and the task is to optimize its
expected value. Here, the data can be generated by computing extended Pareto
critical points of the stochastic objective vector using a number of samples of the
random variable. Our goal is to infer the expected value of the objective vector from
the data. The third application we will consider is the generation of surrogate models
for expensive MOPs, where the idea is to compute a few Pareto critical points of the
expensive problem and to then use these points as data for our inverse approach. To
obtain the corresponding KKT vectors, most standard methods for solving MOPs
provide them either explicitly or implicitly. For example, in the weighting method
(cf. Section 2.3.1), the KKT vector corresponding to a solution is given by the weight
vector that was used to compute it.

For the single-objective case (where k = 1), problems like (IMOP) are addressed
in the field of inverse optimization. For the linear case, inverse problems of the form
minx c

⊤x (with some linear constraints) were considered in [AO01; HL99], with the
goal of finding the cost vector c such that a given feasible point is optimal. In
[KWB11], convex parameter-dependent problems were considered with the goal of
approximating the objective function based on observations of parameter values and
associated optimal solutions. Similarly to our approach, this is done by considering
linear combinations of a pre-selected set of basis functions and then minimizing
the residuals of the first-order optimality condition in the given observations with
respect to the coefficients. (It is worth mentioning that part of the literature in the
single-objective case is concerned with finding a weighting vector for the objectives
of an MOP such that a given feasible point is optimal for the weighted sum (cf.
[Cha+14; CL18]). This is also referred to as inverse multiobjective optimization,
but clearly differs from our context.) Recently, a first result for the multiobjective
case was published. In [DZ18], a method was proposed for finding the parameters
of a parameter-dependent, convex and constrained MOP such that its Pareto set
contains a given set of noisy data points (modeled via probability distributions).
Their strategy involved a parameter-dependent discretization of the Pareto set by
a finite number of solutions of the weighting method and then minimizing the sum
over the distances of the discretization to the given data points. Formally, this
can be denoted as a mixed-integer linear problem, for which a heuristic solution
method was proposed. If we interpret the coefficients in the linear combinations of
the basis functions in our approch as parameters, then we are in a similar situation
as in [DZ18]. Compared to their approach, we will not require convexity or rely on
heuristics to solve the inverse problem, but require the KKT vectors to be contained

143



6.1. Linearity of the inverse problem and its solution via SVD

in the data.
The remainder of this chapter is organized as follows. In Section 6.1, we will

transform (IMOPc) into a linear problem in the expansion coefficients of the basis
functions and derive a solution method that is based on SVD. In Section 6.2, we
will discuss the applications mentioned above. We will begin by showcasing the
generation of MOPs where the Pareto critical set has certain prescribed properties
(Section 6.2.1), before considering stochastic MOPs (Section 6.2.2) and the genera-
tion of surrogate models (Section 6.2.3). Finally, we will discuss open problems of
our approach in Section 6.3.

Parts of this chapter have been previously published in [GP21b], to which the
author of this thesis was the main contributor.

6.1 Linearity of the inverse problem and its solu-

tion via SVD

In this section, we will transform the inverse problem (IMOPc) into a linear problem
and propose an algorithm to solve it. Our goal is to construct an objective vector
for which the extended Pareto critical set PM contains a finite set of data points
Dx = {x̄1, . . . , x̄N} ⊆ Rn with KKT vectors Dα = {ᾱ1, . . . , ᾱN} ⊆ ∆k, i.e., for which
(x̄j, ᾱj) ∈ PM for all j ∈ {1, . . . , N}. The general idea of our inverse approach is
to plug the data points (x̄j, ᾱj) into the KKT conditions and solve them for the
objective vector f . So instead of the classical task of searching for an x ∈ Rn for
which an α ∈ ∆k exists such that (KKT) holds, we now search for an f ∈ C1(Rn,Rk)
for which (KKT) holds for all x̄j and ᾱj, j ∈ {1, . . . , N}. Since C1(Rn,Rk) is
infinite-dimensional, we will identify it with C1(Rn,R)k and restrict the problem to
a finite-dimensional subspace of C1(Rn,R) that is spanned by a set of basis functions
B = {b1, . . . , bd} ⊆ C1(Rn,R). An example for the choice of basis functions is the set
of monomials in n variables such that span(B) is the set of multivariate polynomials
(up to a certain degree). By replacing C1(Rn,Rk) with span(B)k, we can represent
each element of our search space via its coefficient vector c ∈ Rk·d. This allows us
to turn (IMOPc) into a homogeneous linear problem in c, which we can solve via
SVD. We will show that the smallest singular value can be used as a measure for
how well the given data set can be fitted into the extended Pareto critical set of an
objective vector in span(B)k.

For the remainder of this section, we assume that we are given

• a data set D = {(x̄1, ᾱ1), . . . , (x̄N , ᾱN)} ⊆ Rn×∆k (which implicitly prescribes
the number of objectives k),

• a set of basis functions B = {b1, . . . , bd} ⊆ C1(Rn,R) with linearly independent
derivatives (as elements of C0(Rn,Rn)).

The linear independence of the derivatives of the basis functions implies linear in-
dependence of the basis functions themselves, since

d
∑

j=1

cjfj = 0 ⇒ 0 = ∇
(

d
∑

j=1

cjfj

)

=
d
∑

j=1

cj∇fj ⇔ c = 0.
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Thus, every element of span(B) is uniquely determined by its coefficient vector.
Furthermore, the linear independence assures that the trivial solution of a constant
objective vector (for which every point is Pareto critical for every KKT vector)
corresponds to the coefficient vector 0 ∈ Rk·d.

After replacing C1(Rn,Rk) in (IMOPc) with span(B)k, our goal is to find a
function f : Rn → Rk, f = (fi)i∈{1,...,k}, f 6= 0 with fi ∈ span(B) for all i ∈ {1, . . . , k}
and

k
∑

i=1

ᾱi∇fi(x̄) = 0 ∀(x̄, ᾱ) ∈ D. (6.1)

Since fi ∈ span(B), we can write

fi =
d
∑

j=1

cijbj (6.2)

for some ci ∈ Rd. Thus, for all x ∈ Rn we have

k
∑

i=1

αi∇fi(x) =
k
∑

i=1

αi

d
∑

j=1

cij∇bj(x) =
k
∑

i=1

d
∑

j=1

αicij∇bj(x)

= L(x, α)c (6.3)

where

c := (c11, . . . , c1d, c21, . . . , c2d, . . . , ck1, . . . , ckd)
⊤ ∈ Rk·d (6.4)

and

L(x, α)

:= (α1∇b1(x), . . . , α1∇bd(x), α2∇b1(x), . . . , α2∇bd(x), . . . , αk∇b1(x), . . . , αk∇bd(x))

∈ Rn×(k·d).

Let

L :=







L(x̄1, ᾱ1)
...

L(x̄N , ᾱN)






∈ R(n·N)×(k·d). (6.5)

Then by construction, (6.1) is equivalent to the homogeneous linear system

Lc = 0. (6.6)

In particular, a (non-trivial) function satisfying (6.1) exists if and only if

rk(L) < k · d. (6.7)

We will consider two cases with respect to the size of L:

1. The system (6.6) is underdetermined, i.e., n · N < k · d. In this case, (6.7)
automatically holds, such that (6.6) always has a non-trivial solution. Here,
our approach behaves like an interpolation method. In fact, for n = 1, k = 1
and monomials as basis functions, L is similar to the Vandermonde matrix
[HJ12] from polynomial interpolation (without the constant column).
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2. The system (6.6) is square or overdetermined, i.e., n · N ≥ k · d. This means
that generically, we do not expect (6.6) to have a non-trivial solution, i.e., we
do not expect that D can be covered by an extended Pareto critical set of
a (non-trivial) function from span(B)k. Thus we actually have to check the
condition (6.7) in this case.

The following example shows a case where (6.6) is underdetermined.

Example 6.1.1. Consider the data set D = (Dx,Dα) with

Dx = {(0, 0)⊤, (1, 0)⊤, (1, 1)⊤, (0, 1)⊤},

Dα =

{

(0, 1)⊤,

(

1

3
,
2

3

)⊤
,

(

2

3
,
1

3

)⊤
, (1, 0)⊤

}

,

i.e., we have n = 2 variables, k = 2 objectives and N = 4 data points. For the set
of basis functions, we consider the (non-constant) monomials up to degree 2, i.e.,

B = {x1, x21, x2, x1x2, x22},

such that we have d = 5 basis functions. Then n · N = 8 < 10 = k · d, so (6.6) is
underdetermined. Based on the data set and the basis functions, we can assemble
L ∈ R8×10 via the formula in (6.5) to obtain

L =
1

3

























0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 3 0 0
1 2 0 0 0 2 4 0 0 0
0 0 1 1 0 0 0 2 2 0
2 4 0 2 0 1 2 0 1 0
0 0 2 2 4 0 0 1 1 2
3 0 0 3 0 0 0 0 0 0
0 0 3 0 6 0 0 0 0 0

























.

The solution of (6.6) is then given by the span of the two vectors

c1 = (−4, 0, 0, 4, 0, 0, 1, 0,−2,−3)⊤,

c2 = (0, 2, 12, 0,−6, 0,−1, 0,−6, 3)⊤.

According to (6.2), these vectors correspond to the objective vectors

f 1(x) :=

(

4x1x2 − 4x1
x21 − 2x1x2 − 3x22

)

and f 2(x) :=

(

2x21 − 6x22 + 12x2
−x21 − 6x1x2 + 3x22

)

,

respectively. It is possible to show that the extended Pareto critical set of f 1 is given
by

PM =

{(

( −12α2
2 + 12α2

8(3α2
2 − 3α2 + 1)

,
12α2

2 − 20α2 + 8

8(3α2
2 − 3α2 + 1)

)⊤
, (1 − α2, α2)

⊤

)

: α2 ∈ [0, 1]

}

.

The result is visualized in Figure 6.2. It is easy to verify that D ⊆ PM, as expected.
Furthermore, it is possible to show that the extended Pareto critical sets of f 1 and
f 2 coincide in this example.
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(a) (b)

Figure 6.2: (a) The Pareto critical set Pc of f 1 and the data Dx in Example 6.1.1.
(b) A projection of the extended Pareto critical set PM onto (x1, x2, α1) and the
corresponding projection of the data D.

If the system (6.6) is underdetermined, then the solution of the inverse problem
just boils down to the computation of the kernel of L, as shown in the previous
example. In the following, we will consider the case where the system is square or
overdetermined. Although generically, we cannot expect to have exact solutions for
this case, we will show that we can find approximate solutions of the inverse problem
by finding approximate solutions of the linear system.

For ease of notation, we begin by making the following definition.

Definition 6.1.2. Let

F : Rk·d → C1(Rn,Rk), c 7→ (fi)i∈{1,...,k} =

(

d
∑

j=1

cijbj

)

i∈{1,...,k}

be the function that maps a coefficient vector c onto the corresponding objective
vector f = (fi)i∈{1,...,k} (cf. (6.2) and (6.4)).

Consider the problem

min
‖c‖=1

‖Lc‖, (6.8)

where the coefficient vector c is constrained to the unit sphere S(k·d)−1 in Rk·d to
avoid the trivial solution c∗ = 0. If c∗ is a solution of (6.8) and f = F(c∗) is the
corresponding objective vector, then the definition of L implies that

‖Df(x̄)⊤ᾱ‖ = ‖L(x̄, ᾱ)c∗‖ ≤ ‖Lc∗‖ ∀(x̄, ᾱ) ∈ D. (6.9)

In other words, the optimal value of (6.8) is an upper bound for the left-hand side
of the KKT condition ‖Df(x̄)⊤ᾱ‖ of f in each data point (x̄, ᾱ) ∈ D. The following
lemma is a standard result for SVD and shows that the solution of (6.8) can be
computed via an SVD of L. As a reminder, an SVD of L is a decomposition

L = USV ⊤,

where U ∈ R(n·N)×(n·N), V ∈ R(k·d)×(k·d) are orthogonal matrices and S ∈ R(n·N)×(k·d)

is a diagonal matrix. The diagonal entries of S are the singular values of L and the
columns of V are the right-singular vectors of L.
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Lemma 6.1.3. Let p = min({n · N, k · d}). Let 0 ≤ s1 ≤ . . . ≤ sp be the sorted
singular values and let v1, . . . , vk·d ∈ Rk·d be (corresponding) right-singular vectors
of L.
(a) If n ·N < k · d, then the optimal value of (6.8) is zero and the set of optimal

solutions is given by span({vi : si = 0} ∪ {v(n·N)+1, . . . , vk·d}) ∩ S(k·d)−1.

(b) If n ·N ≥ k · d, then we have

min
‖c‖=1

‖Lc‖ = s1 and arg min
‖c‖=1

‖Lc‖ = span({vi : si = s1}) ∩ S(k·d)−1.

Proof. (a) For n ·N < k · d, the definition of the SVD implies that

ker(L) = span({vi : si = 0} ∪ {v(n·N)+1, . . . , vk·d}).

The assertion then follows by enforcing the constraint ‖c‖ = 1.
(b) This follows from the Courant-Fischer Minimax Theorem for singular values (cf.
Theorem 1 in [Dax13]).

By the previous lemma, the smallest singular value s1 can be seen as a measure
for how well the data set D can be approximated by the extended Pareto critical
set of an MOP where the objectives are linear combinations of basis functions in B.
Furthermore, if there are multiple singular values of the same (small) magnitude,
then the number of those singular values corresponds to the dimension of the space
of approximating objective vectors. The numerical procedure based on Lemma 6.1.3
for the solution of (IMOPc) is summarized in Algorithm 6.1.

Algorithm 6.1 Generate objective vector from data

Given: Data set D ⊆ Rn × ∆k of size N ∈ N, set of basis functions B ⊆ C1(Rn,R)
of size d ∈ N, threshold s̄ ≥ 0.

1: Assemble L as in (6.5). Let p = min({n ·N, k · d}).
2: Calculate an SVD of L with singular values 0 ≤ s1 ≤ . . . ≤ sp and right-singular

vectors v1, . . . , vk·d.
3: Identify the indices I = {1, . . . , i∗} ⊆ {1, . . . , p} such that si ≤ s̄ for all i ∈ I.
4: Choose an element

c∗ ∈ span({vi : i ∈ I} ∪ {vp+1, . . . , vk·d}) ⊆ Rk·d

with ‖c∗‖ = 1.
5: Assemble the objective vector f = F(c∗) as in (6.2).

In terms of the quality of the result of Algorithm 6.1, we have the following
theorem.

Theorem 6.1.4. Let f be the result of Algorithm 6.1 and let si∗ be the largest
singular value of L less or equal to s̄. Then

‖Df(x̄)⊤ᾱ‖ ≤ si∗ ≤ s̄ ∀(x̄, ᾱ) ∈ D.

In particular, if si∗ = 0, then all (x̄, ᾱ) ∈ D are extended Pareto critical for the
MOP with objective vector f .
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Chapter 6. Inferring objective vectors from Pareto critical data

Proof. Let L = USV ⊤ be an SVD of L where the columns of V are given by the
right-singular vectors v1, . . . , vk·d from Algorithm 6.1. Let c∗ be the chosen coefficient
vector in step 4 such that f = F(c∗). Let p = min({n ·N, k ·d}). Then there is some
λ ∈ Rk·d with c∗ = V λ, λi∗+1 = . . . = λp = 0 and 1 = ‖c∗‖ = ‖V λ‖ = ‖λ‖. Thus,

‖Lc∗‖ = ‖LV λ‖ = ‖USλ‖ = ‖Sλ‖ =

√

√

√

√

p
∑

i=1

s2iλ
2
i =

√

√

√

√

i∗
∑

i=1

s2iλ
2
i

≤

√

√

√

√

i∗
∑

i=1

s2i∗λ
2
i = si∗

√

√

√

√

i∗
∑

i=1

λ2i ≤ si∗

√

√

√

√

k·d
∑

i=1

λ2i = si∗‖λ‖ = si∗ .

The proof follows as in (6.9).

Some properties of Algorithm 6.1 are discussed in the following remark.

Remark 6.1.5. (a) In practice, it can make sense to first compute all singular
values of L before choosing the threshold s̄. In this way, gaps in the singular
values can be taken into account.

(b) In general, if i∗ > 1, there is no obvious choice for c∗ in step 4. For the
interpretability of the result, it can make sense to choose a c∗ that is as sparse
as possible. (A similar approach was chosen in [BPK16] for the discovery of
governing equations in the context of dynamical systems.)

(c) Recall that in (IMOPc), the data set is only required to be a subset of the
extended Pareto critical set. Thus, it can happen that the Pareto critical set
of the objective vector f from Algorithm 6.1 possesses additional components
which were not prescribed in the data. Due to this, there are cases where the
smallest singular value is close to zero, but the corresponding MOP is not
desirable. (This will later be observed in practice in Section 6.2.1.)

(d) By Lemma 6.1.3, if si∗ = 0, then we do not have to normalize c∗ in step 4.

We conclude this section with a discussion of the choice of basis functions. From
the theory, the only requirements we have are differentiability and linear indepen-
dence of the derivatives. While these are sufficient for our theoretical results to hold,
there are additional properties that are desirable in practice:

(i) Since the derivatives of the basis functions have to be evaluated in every data
point in Dx for the assembly of L, the evaluation of the derivatives should be
efficient.

(ii) In practice, it is difficult to say a priori how many basis functions are needed.
Thus, it should be possible to generate new basis function (with linear inde-
pendent derivatives) without much effort.

As mentioned earlier, an intuitive choice for the basis functions are the (non-
constant) monomials in n variables up to a degree l ∈ N, i.e.,

B = {xl11 xl22 · · · xlnn : li ∈ N ∪ {0}, i ∈ {1, . . . , n}, 0 < l1 + . . .+ ln ≤ l},
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such that span(B) is the space of (non-constant) polynomials up to degree l. Clearly,
(derivatives of) monomials can be evaluated efficiently. Furthermore, the number
of basis functions can be increased by increasing the maximum degree l. On top of
that, for the space of polynomials, there are well-known results from approximation
theory like the Stone-Weierstrass theorem [Rud91], which are also promising for our
setting. Therefore, for the examples in the following section, we will always choose
the monomials up to a certain degree as basis functions.

6.2 Applications

In this section, we will show how Algorithm 6.1 can be used to solve the inverse
problems that arise in three different applications. We will begin by demonstrating
how certain topological and geometrical properties can be enforced in the Pareto
critical set, which can be useful for the generation of test problems for MOP solvers.
Afterwards, we show how our results can be used to infer objectives of stochastic
MOPs from stochastic data of their extended Pareto critical sets. Finally, we use our
approach to generate surrogate models for (potentially expensive) objective vectors.
The practical implementation of Algorithm 6.1 was carried out in MATLAB.

6.2.1 Generating MOPs with prescribed properties

Due to the many different topological and geometrical features Pareto sets can have,
test problems and generators of test problems are important tools to analyze the
behavior of MOP solvers and to compare them in practice [Deb99; Ker+16; Zha+08].
By Theorem 6.1.4, if the smallest singular value in Algorithm 6.1 is vanishing, then
we found an MOP for which the data we prescribed is extended Pareto critical. In
this way, our method can be used to create test problems with (partly) prescribed
Pareto critical sets.

To control the properties of the Pareto critical set, the results from Section 2.2.1
and Chapter 5 can be used. In this context, they can be roughly summarized in the
following two rules:

• By Theorem 2.2.10, the set of extended Pareto critical points with positive
KKT vectors is a smooth manifold. Here, this means that data points with
similar values in Dx should also have similar values in Dα.

• By our results in Section 5.1.3, points on the boundary of the Pareto critical
set have a KKT vector with a zero component. Thus, we can (try to) force a
point x̄j to lie on the boundary of the Pareto critical set by choosing ᾱj

i = 0
for some i ∈ {1, . . . , k}.

If we want to fully prescribe the Pareto critical set of the MOP resulting from
our algorithm (and not just points from it), then the data in Dx should be a fine
pointwise approximation of the prescribed set. This implies that the number of
data points N is large and the system (6.6) is (typically) overdetermined. Thus,
we can generally not expect that the MOP we are looking for actually exists (with
respect to our choice of basis functions). Nonetheless, it will turn out that there are
non-trivial cases where this approach does work, which we will demonstrate in the
following.
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Chapter 6. Inferring objective vectors from Pareto critical data

In our our first example, we will generate an MOP where the Pareto critical set
is the unit sphere S1 in R2.

Example 6.2.1. For N ∈ N consider the points

x̄j :=

(

cos(2π j
N

)
sin(2π j

N
)

)

, j ∈ {1, . . . , N},

which are distributed equidistantly on S1. For the choice of the corresponding KKT
vectors ᾱj, j ∈ {1, . . . , N}, note that S1 has an empty boundary (as defined in
Definition 5.1.14), such that only the first one of the two rules above apply here. By
construction, x̄j is close to x̄j+1 for j ∈ {1, . . . , N − 1} and x̄N is close to x̄1, so the
same should hold for the ᾱj. One way of assuring this is to define the ᾱj such that
they periodically depend on j. For example, we can choose

ᾱj :=

(

1
2
(cos(4π j

N
) + 1)

1 − 1
2
(cos(4π j

N
) + 1)

)

, j ∈ {1, . . . , N}. (6.10)

This choice is just one possibility and by no means unique. (We chose a different
“frequency” for ᾱj than for x̄j to avoid a linear relationship between ᾱj and x̄j1,
which would be undesirable structure in the data in this example.) The resulting
data set for Algorithm 6.1 is

D := {(x̄j, ᾱj) ∈ R2 × ∆2 : j ∈ {1, . . . , N}}
and we choose N = 100 as the number of data points for our computations. For the
set of basis functions, we choose the monomials up to degree 3, i.e.,

B := {x1, x21, x31, x2, x1x2, x21x2, x22, x1x22, x32}.
The singular values of the resulting matrix L ∈ R200×18 are shown in Figure 6.3.

The two smallest singular values s1 = 1.2 ·10−15 and s2 = 1.66 ·10−15 are practically

Figure 6.3: Singular values of L in Example 6.2.1.

zero as they are close to machine precision (= 2−52 ≈ 2.22 · 10−16). This indicates
that there are objective vectors in the span of our chosen basis functions for which
the data is extended Pareto critical. From the second to the third smallest singular
value s3 = 1.71 there is an obvious gap, which motivates us to use s̄ = s2 as the
threshold for Algorithm 6.1. Thus, in step 4, we have to consider the span of the
right-singular vectors corresponding to s1 and s2, which are

v1 = (−0.8390, 0, 0.2797, 0, 0, 0, 0, 0,−0.1127, 0, 0, 0.2797, 0.3380, 0, 0, 0, 0,−0.1127)⊤,

v2 = (0.3380, 0,−0.1127, 0, 0, 0, 0, 0,−0.2797, 0, 0,−0.1127, 0.8390, 0, 0, 0, 0,−0.2797)⊤,
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respectively. In this example, considering the structure of these two vectors leads to
the observation that

span({v1, v2})

= {(−3σ1, 0, σ1, 0, 0, 0, 0, 0, σ2, 0, 0, σ1,−3σ2, 0, 0, 0, 0, σ2)
⊤ : σ1, σ2 ∈ R}. (6.11)

While all coefficient vectors in this span would lead to objective vectors for which the
data is extended Pareto critical, not all of these vectors are desirable. For example,
choosing σ1 = 0 and σ2 = 1 leads to the coefficient vector

c = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,−3, 0, 0, 0, 0, 1)⊤,

which corresponds to the objective vector

F(c)(x) =

(

x32
x32 − 3x2

)

. (6.12)

It is possible to show that the data set D is contained in the extended Pareto critical
set of this objective vector, as expected. However, the full Pareto critical set of this
vector is given by R× [−1, 1], which clearly contains significantly more than just our
data set. In this case, it is easy to see that this degeneracy is caused by the fact that
the objective vector does not depend on x1. A better choice for a coefficient vector
would be, e.g., σ1 = 1 and σ2 = 1, resulting in

c = (−3, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,−3, 0, 0, 0, 0, 1)⊤

with the corresponding objective vector

f(x) := F(c)(x) =

(

−3x1 + x31 + x32
−3x2 + x31 + x32

)

.

It is easy to show that for this objective vector, the KKT condition is equivalent to

x21 + x22 = 1,

α1 = x21,

α2 = x22,

such that the Pareto critical set is precisely S1. The extended Pareto critical set of
f and the data D are shown in Figure 6.4(a). Figure 6.4(b) shows the image of the
Pareto critical set and a discretization of the image of f (around S1). It indicates
that roughly half of the Pareto critical points of f are at least locally Pareto optimal.

Remark 6.2.2. a) Motivated by the structure of f in Example 6.2.1, it is easy
to show that the Pareto critical set of

f : Rn → Rn, x 7→







−3x1 +
∑n

i=1 x
3
i

...
−3xn +

∑n
i=1 x

3
i







is the (n− 1)-dimensional unit sphere Sn−1 in Rn.
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(a) (b)

Figure 6.4: (a) Projection of the data D (circles) and the extended Pareto critical
set of f (line) in Example 6.2.1 onto (x1, x2, α1). (b) Image of the Pareto critical
set of f and a pointwise approximation of f([−1, 1]2).

b) With the same strategy as in Example 6.2.1, it is possible to show that arbitrary
ellipses can be represented as Pareto critical sets of objective vectors consisting
of polynomials of degree 3. For a, b ∈ R>0, we merely have to replace x̄j in
Example 6.2.1 by

x̄j :=

(

a · cos(2π j
N

)
b · sin(2π j

N
)

)

, j ∈ {1, . . . , N}.

This leads to the same gap in the singular values and analogously to the ex-
pression (6.11), we have

span({v1, v2})

= {(−3a2σ1, 0, σ1, 0, 0, 0, 0, 0, σ2, 0, 0, σ1,−3b2σ2, 0, 0, 0, 0, σ2)
⊤ : σ1, σ2 ∈ R}.

For σ1 = 1 and σ2 = 1, we obtain the objective vector

F(c)(x) =

(

−3a2x1 + x31 + x32
−3b2x1 + x31 + x32

)

.

It is easy to show that the corresponding Pareto critical set is given by

Pc =

{

x ∈ R2 :
x21
a2

+
x22
b2

= 1

}

,

which is the ellipse centered at (0, 0)⊤ with radii (a, b).

In Example 6.2.1 we were able to derive an objective vector with a simple expres-
sion whose Pareto critical set was precisely what we prescribed. Clearly, this comes
down to the simplicity of the data set and will not work in general. To this end, a
more complicated case is presented in the following example, where the prescribed
data set consists of three connected components.
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Example 6.2.3. In this example, we are looking for an MOP where the Pareto
critical set contains three connected components Ci ⊆ R2, i ∈ {1, 2, 3}, given by the
following three (non-intersecting) straight lines:

Ci := pi + [0, 1]
1

4

qi
‖qi‖

with

p1 =

(

0.15
−0.20

)

, q1 =

(

0.47
0.04

)

,

p2 =

(

0.47
−0.32

)

, q2 =

(

0.40
0.14

)

,

p3 =

(

0.37
0.18

)

, q3 =

(

0.38
0.28

)

.

To obtain Dx, we discretize each Ci with 20 points as shown in Figure 6.6(a). The
corresponding points in Dα are chosen linearly from (0, 1)⊤ to (1, 0)⊤. By this choice,
both boundary points of each Ci have a zero multiplier. For the basis functions we
again use monomials. For more complicated data sets like this one, it makes sense
to first analyze what degree of monomials we need for a satisfactory approximation
before actually choosing an objective vector. To this end, we repeat step 2 of Al-
gorithm 6.1 for different degrees and look at the smallest singular value for each
degree. The result is shown in Figure 6.5(a). We see that the monomials up to a

(a) (b)

Figure 6.5: (a) Smallest singular value s1 for different degrees of monomials in
Example 6.2.3. (b) Singular values of L for polynomials of degree 5.

degree of 5 are a promising choice, since the smallest singular value is close to ma-
chine precision and therefore no meaningful further decrease is possible for higher
degrees. All singular values of the matrix L corresponding to monomials of degree 5
are shown in Figure 6.5(b). We see that the first three singular values are identical
with a value of s1 = s2 = s3 = 7.67 · 10−16. Subsequently, there is a small gap from
s3 to s4 = 4.21 · 10−15 and then a large gap from s4 to s5 = 1.95 · 10−9. Since the
first three singular values are small and identical, we choose the threshold s̄ = s3,
such that I = {1, 2, 3} in step 3 of Algorithm 6.1. As this example is more com-
plex, there is no obvious way to obtain an expression like (6.11) in Example 6.2.1.
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Thus, we simply choose c = v1+v2+v3
‖v1+v2+v3‖ as the coefficient vector. The correspond-

ing Pareto critical set and the extended Pareto critical set of the resulting objective
vector f := F(c) can be computed via the continuation method from Chapter 3 and
are shown in Figure 6.6. As expected from the small singular values, the prescribed

(a) (b)

Figure 6.6: (a) Pareto critical set of f and the data Dx in Example 6.2.3. (b)
Projection of the extended Pareto critical set (line) and the data (circles) onto
(x1, x2, α1).

data is (extended) Pareto critical for f . But unfortunately, we observe an additional
connected component that is not contained in the data. As mentioned in Remark
6.1.5(c), since our approach only assures that the data is contained in the extended
Pareto critical set of our computed objective vector, additional Pareto critical points
have to be expected in the general case. Finally, the image of the Pareto critical set
and the image of f (around the data) are shown in Figure 6.7. It suggests that part

Figure 6.7: Image of the Pareto critical set of f and a pointwise approximation of
f([0, 0.8] × [−0.4, 0.4]) in Example 6.2.3.

of the Pareto critical set corresponds to (local) “Pareto maximal” points of f .
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6.2.2 Inferring objectives of stochastic MOPs

In the previous application, we were looking for MOPs for which the prescribed data
is exactly extended Pareto critical. We had the chance to find such MOPs since the
data sets were precise pointwise discretizations of lower-dimensional sets with the
theoretical properties of extended Pareto critical sets. Clearly, having exact data
like that is a very strong assumption which cannot be made in other applications,
where the data is not carefully constructed by hand. Thus, we generally have to
expect that the data contains some amount of noise. To test the robustness of our
method under noise, we will now consider data that comes from stochastic MOPs.
Only a brief introduction to stochastic multiobjective optimization will be given
here. For more details, see [FX11; GP13].

For m ∈ N let ξ ∈ Rm be a random vector and f : Rn × Rm → Rk. Let

F : Rn → Rk, x 7→ E[f(x, ξ)],

where E[f(x, ξ)] is the (component-wise) expected value of f(x, ξ) with respect to
ξ. Then

min
x∈Rn

F (x) (SMOP)

is a stochastic multiobjective optimization problem (SMOP). We assume that the
expected value is unknown, so that we cannot directly evaluate the objective vector
F . To approximate it, we use the average

f̃Ns(x) :=
1

Ns

Ns
∑

j=1

f(x, ξj),

where ξj ∈ Rm, j ∈ {1, . . . , Ns}, is an independently and identically distributed
random sample of Ns realizations of ξ. The corresponding MOP

min
x∈Rn

f̃Ns(x) (SAA)

is the so-called sample average approximation problem (SAA). Since the objective
vector of (SAA) is an approximation of the objective vector of (SMOP), we expect
the solution of (SAA) to be an approximation of the solution of (SMOP). In the
following, we will check if the original objective vector of (SMOP) can (theoretically)
be found with our inverse approach by using extended Pareto critical points of (SAA)
as data. As an example, we consider the Multiobjective Stochastic Location Problem
from [FX11].

Example 6.2.4. Let a = (−1,−1)⊤ and ξ = (ξ1, 0)⊤ be a random vector with ξ1
being uniformly distributed on [0, 2]. Let

f(x, ξ) :=

(

‖x− a‖2
‖x− ξ‖2

)

.

The expected value of f can be computed by hand, resulting in

F (x) = E[f(x, ξ)] =

(

2x1 + x21 + 2x2 + x22 + 2
−2x1 + x21 + x22 + 4

3

)

=

(

‖x− a‖2
‖x− (1, 0)⊤‖2 + 1

3

)

.
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Thus, the Pareto critical (and in this case optimal) set of (SMOP) is given by the
line connecting a and (1, 0)⊤ (cf. Example 2.1.6). For the sample average approx-
imation of F , we use a sample size of Ns = 10. For the solution of (SAA), we
apply the weighting method (cf. Section 2.3.1) with 100 equidistant weights from ∆2

and solve each of the resulting scalar problems 10 times (via the MATLAB function
fminunc and with different realizations of ξ every time). The result is shown in Fig-
ure 6.8(a). Since the first objective is deterministic, the approximation is relatively

(a) (b)

Figure 6.8: (a) Approximation of the solution of (SMOP) via the sample average
approximation and weighted sum in Example 6.2.4. (b) Singular values of L.

accurate close to a = (−1,−1)⊤ and becomes worse when moving towards (1, 0)⊤.
For our inverse approach, we now use the points in Figure 6.8(a) as the data set

Dx. For each x̄ ∈ Dx, the point in Dα corresponding to x̄ is chosen as the weight
in the weighting method that was used to compute x̄. As basis functions we use the
monomials up to degree 2, i.e.,

B := {x1, x22, x2, x1x2, x22}. (6.13)

The singular values of L when applying Algorithm 6.1 are shown in Figure 6.8(b).
While s1 = 5.19 · 10−7 is relatively small, the corresponding right-singular vector is
given by

v1 = (0, 0,−0.8165, 0,−0.4082, 0, 0, 0, 0,−0.4082)⊤,

such that F(v1)(x) = (−0.8165x2 − 0.4082x22,−0.4082x22)
⊤. Clearly, this objective

vector is degenerate due to the missing dependency on x1. Thus, we choose a larger
threshold to try to obtain a more regular function. The next singular values are

s2 = 0.6552,

s3 = 1.6864,

s4 = 2.4426,

s5 = 8.4318.

Due to the slight gap from s4 to s5 we choose s̄ = s4 as the threshold, such that
I = {1, 2, 3, 4} in step 3 of Algorithm 6.1. For better interpretability in step 4, we
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compute a sparse basis {w1, w2, w3, w4} of span({v1, v2, v3, v4}) (by computing linear
independent elements with a small ℓ1-norm), resulting in

w1 = (−0.4762,−0.2393, 0, 0,−0.0102, 0, 0.0048, 0.9626,−0.9282, 1)⊤,

w2 = (0, 0,−1, 0,−0.5, 0, 0, 0, 0,−0.5)⊤,

w3 = (0, 0.2444,−0.4969,−0.4880, 0.0002, 0,−0.0034,−0.4908, 0.4768,−1)⊤,

w4 = (−1,−0.5068, 0,−0.0040,−0.0001, 0.9563,−0.4468,−0.0026, 0, 0)⊤.

For our choice of basis functions, the objective vector F of (SMOP) can be repre-
sented exactly (up to the constants in both components) by the coefficient vector

c̄ = (2, 1, 2, 0, 1,−2, 1, 0, 0, 1)⊤. (6.14)

In other words, F − (2, 4
3
)⊤ = F(c̄). Considering our sparse basis, we see that its

span contains

c∗ := −2w2 − 2w4

= (2, 1.0136, 2, 0.0080, 1.0001,−1.9126, 0.8936, 0.0051, 0, 1)⊤,

which is close to the original c̄. The Pareto critical sets of F and F(c∗) are shown in
Figure 6.9. A numerical approximation of their Hausdorff distance (using a point-

Figure 6.9: Pareto critical sets of F and F(c∗) in Example 6.2.4.

wise discretization) yields a distance of 0.06. In terms of the functions themselves,
a comparison of their values (up to constants) around the Pareto critical set yields

max
x∈[−1.1,1.1]×[−1.1,0.1]

‖(F (x) − (2, 4
3
)⊤) −F(c∗)(x)‖∞ ≈ 0.2308.

In our example, the objectives of (SMOP) were contained in the span of our
chosen basis functions, which is clearly a special case. Furthermore, we were only
able to reconstruct the corresponding coefficient vector via c̄ ≈ −2w2− 2w4 because
we already knew c̄. In the general case, there is no obvious way how F can be recon-
structed without assuming further knowledge about the structure of the problem.
(In Example 6.2.4, this further knowledge could be the observation that the random-
ness only occurs in a certain part of the second objective function.) Thus, we only
showed the potential of our approach here and more work is needed to be able to
actually infer objective vectors of stochastic MOPs in the general case. Nonetheless,
our result demonstrates the ability of our approach to handle noisy data.
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Chapter 6. Inferring objective vectors from Pareto critical data

6.2.3 Generation of surrogate models

By Theorem 6.1.4, if there is no objective vector in the span of our basis functions
for which the data is exactly extended Pareto critical, then we at least find an
objective vector for which the data is “almost” (depending on the singular values)
extended Pareto critical. In particular, if we use data which is extended Pareto
critical for an objective vector f e which cannot be expressed in our basis functions,
then our approach generates an objective vector in our basis which has at least
a similar extended Pareto critical set. In other words, our approach generates a
surrogate model for the original objective vector f e. If our basis functions are cheap
to evaluate, then all objective vectors resulting from our method are cheap as well,
as they are just linear combinations of those basis functions. In this way, our method
can be used to generate cheap surrogate models for (potentially expensive) objective
vectors.

Computationally expensive objectives frequently occur in practical applications.
For example, in the optimization of physical systems, every evaluation of the objec-
tives might involve the solution of a complex PDE [Lot+05; Trö09]. While it may
be possible to compute a few single Pareto critical points of such a problem, the
approximation of the full Pareto critical set with standard methods is often com-
putationally infeasible. For the generation of surrogate models with our method,
the idea is to only compute a few extended Pareto critical points of the expensive
problem and then use those points as data in our inverse approach. It is important
to note that in contrast to traditional surrogate modeling (see [BGW15; SVR08] for
overviews), such a surrogate model is not an approximation of f e in the sense of
function values, but an approximation in the sense of their extended Pareto critical
sets. In particular, the actual Pareto set of the surrogate model will generally differ
from the Pareto set of the original problem.

For our inverse approach, the data must consist of Pareto critical points and
corresponding KKT vectors of the original problem. Although the main goal of
solution methods for MOPs is the computation of Pareto critical (or optimal) points,
many standard methods also implicitly provide the corresponding KKT vectors:

• Weighting method: If x∗ ∈ arg minx∈Rn

∑k
i=1 α

∗
i fi(x) for some weighting vec-

tor α∗ ∈ ∆k, then α∗ is a KKT vector of x∗ (by the first-order optimality
condition).

• ε-constraint method: For j ∈ {1, . . . , k} and εi ∈ R, i ∈ {1, . . . , k} \ {j}, let
x∗ be a solution of

min
x∈Rn

fj(x),

s.t. fi(x) ≤ ǫi ∀i ∈ {1, . . . , k} \ {j}.
By the first-order optimality condition for this problem, there are µ∗

i ≥ 0,
i ∈ {1, . . . , k} \ {j}, such that

∇fj(x∗) +
∑

i 6=j

µ∗
i∇fi(x∗) = 0.

Let

α∗ =
1

α1 + . . .+ αk

α with αi =

{

µ∗
i , if i 6= j,

1, if i = j.
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6.2. Applications

Then α∗ is a KKT vector of x∗.

• Reference point method (cf. Section 4.5 in [Ehr05]): Let z ∈ Rk and x∗ be a
solution of

min
x∈Rn

‖f(x) − z‖2

with zi ≤ fi(x
∗) for all i ∈ {1, . . . , k} and z 6= f(x∗). By the first-order

optimality condition, we have

0 = ∇(x 7→ ‖f(x) − z‖2)(x∗) =
k
∑

i=1

2(fi(x
∗) − zi)∇fi(x∗).

By assumption, fi(x
∗)− zi ≥ 0 for all i ∈ {1, . . . , k} and

∑k
i=1 fi(x

∗)− zi > 0,
so a KKT vector of x∗ is given by

α∗ =
1

∑k
i=1 fi(x

∗) − zi
(f(x∗) − z).

If a solution method does not implicitly provide KKT vectors during its applica-
tion, like evolutionary algorithms, it is also possible to obtain them a posteriori by
considering the image space. Recall that by Lemma 2.2.7, a KKT vector of x∗ ∈ Pc

is given by the (positive) normal vector of f(Pc) at f(x∗). Thus, linear regression
can be used to approximate the KKT vectors. But note that this requires a certain
density of the approximation of the Pareto front, which can be difficult to obtain
for expensive MOPs.

When searching for a surrogate model, it is important to balance out the number
of basis functions and the number of data points to avoid underfitting and overfitting.
These terms are common in statistics and machine learning and apply here in a
similar fashion. In general, underfitting means that the chosen model is not able
to capture all the features that are present in the data set. In our context, this
means that we chose an inappropriate (e.g., too small) set of basis functions. When
using monomials as basis functions, we can try to fix this by using a higher maximal
degree. On the other hand, overfitting means that the model captures features in
the data set that were caused by noise and are highly dependent on the specific data
set that was used. In our context, this happens when the number of basis functions
d is too large. A necessary condition to circumvent overfitting is that the linear
system corresponding to the matrix L ∈ R(n·N)×(k·d) from (6.5) is overdetermined,
i.e., that

d ≤ n ·N
k

. (6.15)

As discussed in Section 6.1, if this condition does not hold, then we always find an
objective vector in the chosen basis for which all data points are extended Pareto
critical. Thus, if (6.15) is violated, then overfitting is unavoidable.

As a first example for the generation of surrogate models, we consider the prob-
lem L&H2×2 from [HL14]. While its objective vector is cheap to evaluate, its Pareto
critical set has interesting topological properties.
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Chapter 6. Inferring objective vectors from Pareto critical data

Example 6.2.5. Consider the problem

min
x∈R2

f e(x), (L&H2×2)

s.t. x ∈ [−0.75, 0.75] × [−2.5, 0.12],

for

f e(x) := −
( √

2
2
x1 +

√
2
2
b(x)

−
√
2
2
x1 +

√
2
2
b(x)

)

with

b(x) := 0.2g(x, (0, 0)⊤, 0.65) + 1.5g(x, (0,−1.5)⊤, 2.8),

g(x, p0, σ) :=

√

2π

σ
exp

(

−‖x− p0‖22
σ2

)

.

The Pareto critical set of this problem (obtained via the continuation method from
Section 3.1) is shown in Figure 6.10(a). Although this problem is constrained, all

(a) (b)

Figure 6.10: (a) Pareto critical set and data set Dx in Example 6.2.5. (b) Singular
values of L.

Pareto critical points on the boundary of the feasible set are also Pareto critical for
the unconstrained problem. Thus, we will ignore the constraints for our purposes.
For the construction of the surrogate model, we use the N = 26 data points in
Figure 6.10(a). The corresponding KKT vectors were explicitly computed in the
continuation method (cf. XC in Algorithm 3.1). For the basis functions, we choose
the monomials up to degree 4. By this choice we have

d = 14 ≤ 26 =
n ·N
k

,

such that the condition (6.15) is satisfied. The singular values of the resulting L in
step 2 of Algorithm 6.1 are shown in Figure 6.10(b). In step 3 and 4, we simply
choose the right-singular vector corresponding to the smallest singular value given by
s1 = 7.84 · 10−4, i.e., c = v1. A comparison of the Pareto critical set of the resulting
objective vector f := F(c) and the original f e is shown in Figure 6.11. First of all,
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Figure 6.11: Pareto critical sets of the surrogate model f = F(c) and the original
objective vector f e in Example 6.2.5.

we see that all Pareto critical points of f e are almost exactly Pareto critical for the
surrogate model. On top of that, the topology of the two connected components of the
original Pareto critical set was captured correctly, such that we obtained an almost
perfect approximation with our surrogate model. Unfortunately, the surrogate model
possesses additional connected components that were not contained in the data. As
already seen in Example 6.2.3, such features can generally not be avoided.

In the next example, we will consider the MOP from [POBD18] that describes
the optimal control of the Navier-Stokes equations. We will only give a short intro-
duction of the problem here and refer to Section 2 in [POBD18] for the details.

Example 6.2.6. In this example, we will consider the flow around a rotating cylin-
der governed by the 2D incompressible Navier-Stokes equation. The goal is to in-
fluence the flow field by controlling the rotation of the cylinder, as shown in Figure
6.12. The PDE that describes the physics behind this is given by

Figure 6.12: Flow around a cylinder and the resulting flow field in Example 6.2.6.

∂y(x, t)

∂t
+ (y(x, t) · ∇)y(x, t) = −∇p(x, t) +

1

Re
∇2y(x, t),

∇ · y(x, t) = 0, (6.16)

(y(x, 0), p(x, 0)) = (y0(x), p0(x)),
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Chapter 6. Inferring objective vectors from Pareto critical data

where y is the flow velocity and p is the pressure. The control input u is introduced via
a time-dependent Dirichlet boundary condition on the surface of the cylinder. If the
cylinder does not rotate, then the so-called von Kármán vortex street occurs, which is
a periodic solution where vortices detach alternatingly from the upper and lower edge
of the cylinder, as shown in Figure 6.12. The classical goal of the control problem
is to stabilize the flow, i.e., to minimize the vertical velocity. This is associated with
minimizing the vertical force on the cylinder, which is referred to as the lift CL. The
second objective is the minimization of the control effort. The resulting MOP is

min
u∈L2([t0,te],R)

(

∫ te
t0
CL(t)2dt

∫ te
t0
u(t)2dt

)

, (6.17)

s.t. (6.16) holds.

By replacing the general control u with a sinusodial control u(t) = x1 sin(2πx2t) and
assuming injectivity of the control-to-state mapping, (6.17) can be written as

min
x∈R2

f e(x) with f e(x) :=

(

∫ te
t0
CL(t)2dt

∫ te
t0

(x1 sin(2πx2t))
2dt

)

, (6.18)

which is now a finite-dimensional MOP. Since each evaluation of f e requires the
solution of the nonlinear PDE (6.16) (e.g., via the finite element method), it is
computationally infeasible to solve (6.18) with a standard solution method.

To generate the data for our inverse approach, we apply the weighting method to
the problem (6.18) with the equidistant weights

αj =
1

25
(j, 25 − j)⊤ ∈ ∆2, j ∈ {0, . . . , 25}.

The resulting scalar problems are solved in MATLAB via the function fminunc.
As discussed at the beginning of this section, the KKT vectors corresponding to
the solutions of the weighting method are given by the αj. Since the solver for the
scalarized problem did not converge for j ∈ {9, . . . , 15}, these weights were excluded
from the data set. The remaining 19 points in Dx and their images under f e are
shown in Figure 6.13. For the basis functions, we choose the monomials up to degree
2 as in (6.13). The singular values of the corresponding L ∈ R38×10 are shown in
Figure 6.14(a). The first two singular values s1 = 2.82 · 10−4 and s2 = 5.94 · 10−4

are of the same small magnitude. Unfortunately, for the corresponding right-singular
vectors v1 and v2, all entries related to basis functions containing x1 are relatively
small, such that the resulting objective vectors are degenerate (similar to (6.12) in
Example 6.2.1). The next singular value is s3 = 5.96 · 10−3, and the objective vector
corresponding to the third right-singular vector v3 is given by

f(x) := F(v3)(x)

=

(

−0.0519x21 − 0.9285x1x2 + 0.1588x1 + 0.1542x22 + 0.1046x2
−0.0136x21 − 0.2704x1x2 + 0.0437x1 + 0.0054x22 − 0.0008x2

)

.

Figure 6.14(b) shows a comparison of the extended Pareto critical set of f and the
data D.

Since the actual Pareto critical set of the original problem (6.18) is not known,
we cannot definitively say if the Pareto critical set of our surrogate model is a good
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(a) (b)

Figure 6.13: (a) Data Dx resulting from the weighting method in Example 6.2.6.
(b) Image of the data points under f e.

(a) (b)

Figure 6.14: (a) Singular values of L in Example 6.2.6. (b) Projection of the
extended Pareto critical set of the surrogate model f (line) and the data from the
original problem (cricles) onto (x1, x2, α1).

approximation. Nonetheless, we can at least try to compute a rough approximation
of the Pareto set of (6.18) using non-deterministic methods (cf. Section 2.3.4) and
compare it to our result. To this end, we choose the NSGA-II algorithm (from MAT-
LAB’s Global Optimization Toolbox) and apply it directly to (6.18). The result of
NSGA-II and the Pareto critical set of our surrogate model are shown in Figure
6.15(a). To compare the results in the image space, we evaluated the original ob-
jective vector f e in the Pareto critical points of our surrogate model f . The result
is shown in Figure 6.15(b). It suggests that the Pareto critical set of our surro-
gate model is indeed a good approximation of the Pareto (critical) set of the original
problem.

6.3 Open problems of our approach

While several examples were presented where our method was able to compute
satisfactory objective vectors from data, there are open problems that have to be
addressed to make it applicable to general, non-academic examples:

• The requirement that the data does not only contain the Pareto critical points
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(a) (b)

Figure 6.15: (a) Result of NSGA-II and the Pareto critical set of our surrogate
model in Example 6.2.6. (b) The result of NSGA-II in the image space and the
image of the Pareto critical set of our surrogate model under f e.

but also the corresponding KKT vectors heavily restricts the range of appli-
cation of our approach. But as seen in Example 6.0.1, this requirement is
necessary to limit the number of different classes of solutions of (IMOPc). In
[DZ18], this problem was avoided by restricting the search to convex objective
vectors, where a pointwise approximation of the Pareto (critical) set can be
obtained via the weighting method (for predetermined, fixed weighting vec-
tors). In a way, their approach implicitly assigns a KKT vector to each of their
data points. A similar idea could be introduced into our approach in (6.3), by
considering α as a variable and not as given. But since this would break the
linearity of (IMOPc) and likely require additional constraints to avoid trivial
solutions, this is left for future work.

• The only result about the approximation quality of Algorithm 6.1 is Theorem
6.1.4, stating that the chosen threshold s̄ is an upper bound for the norm of the
KKT condition in the data points. Note that this bound is influenced by the
scaling of the basis functions and cannot directly be used to obtain an estimate
for the Hausdorff distance of the Pareto critical set to the data. Such an
estimate would be helpful for the generation of surrogate models for expensive
MOPs as a way to check if the Pareto critical set of the surrogate model is
close to the actual (unknown) Pareto critical set. Thus, deeper analysis of the
quality of our inferred objectives is needed.

• As discussed in Remark 6.1.5 (and seen in Examples 6.2.3 and 6.2.5), we can
only expect the Pareto critical set Pc of the objective vector resulting from
Algorithm 6.1 to be a superset of the data set Dx. In particular, there can be
many structures in Pc that were not contained in the data. Since this cannot be
avoided in the general case, it might be helpful for some applications to develop
a method for post-processing that filters out unwanted parts of Pc (e.g., using
techniques from cluster analysis [ES00] to identify connected components of
Pc).

• In step 4 of Algorithm 6.1, one has to choose an element in the span of certain
right-singular vectors of L. Depending on the chosen threshold, this span
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can be large, and different elements can correspond to objective vectors with
differing Pareto critical sets. If no additional information is available, then
there is no favorable element in this span. This motivates the development of
additional criteria in step 4 that may impose certain behavior or properties
upon the resulting objective vector. For example, as already mentioned in
Remark 6.1.5, sparsity may allow for better interpretability.

• By construction, the data points in Dx are (at most) Pareto critical for an
objective vector resulting from our method, but not necessarily Pareto optimal.
Thus, methods that can specifically compute (potentially non-optimal) Pareto
critical sets have to be used when working with our inferred objective vectors.
One example for such a method is our continuation method from Section 3.1.2.
While it works well for the low-dimensional examples we considered here, it
becomes more difficult in higher-dimensional cases. Thus, a way to assure
that the data is actually Pareto optimal for our inferred objective vectors
would make working with them a lot easier. A way to achieve this might
be the consideration of sufficient optimality conditions involving second-order
derivatives of the basis functions (cf. Theorem 3.2.17 in [Mie98]). But as the
resulting conditions will likely cause the inverse problem to be nonlinear, this
is left for future work.
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7 Conclusion and outlook

In this thesis, numerical methods for the computation of Pareto critical sets for
smooth and nonsmooth multiobjective optimization problems were presented. Fur-
thermore, the hierarchical structure of Pareto critical sets was analyzed. Finally, the
results about the structure were used to solve inverse multiobjective optimization
problems. In this section, we will summarize the main results and discuss possible
directions for future work.

Box-continuation methods for smooth problems

Chapter 3 was concerned with continuation methods for smooth problems based
on box coverings of the Pareto critical set. For the case where exact gradients
are available, we modified the continuation method from [SDD05] by introducing
the problem (3.1), which checks whether a box contains Pareto critical points. We
then proposed a novel extension to the case of equality and inequality constrained
problems, which is based on the observation that active inequality constraints can
(in some sense) be treated as additional equality constraints in the constrained
KKT conditions. In the version of the method presented here (Algorithm 3.2), this
required us to iterate over all possible combinations of active inequality constraints.
As discussed in Remark 3.1.13, this is can be highly impractical. For future work,
a method should be developed that filters out the combinations of active indices
that are actually relevant before applying the continuation method. Alternatively,
it may be possible to use the ideas from [BCS20], where the continuation method
from [MS17] was generalized to inequality constrained problems.

For the case where only inexact gradient information is available in the sense
of (3.9), we derived a tight superset P r

ε of the Pareto critical set based on the
inexact gradients and the upper bounds for the error. Since P r

ε always has the
same dimension as the variable space Rn, it is more efficient to only compute a
box covering of the boundary ∂P r

ε of P r
ε instead of P r

ε itself. To this end, we
showed that this boundary is contained in the zero level set of the function ϕ from
Section 3.2.2 and then used a continuation method for its computation. While we
analyzed some of the properties of ϕ to argue why we expect the zero level set to
be piecewise smooth, we did not actually give a proof for this. For future work,
an actual proof is required, which could possibly be achieved as outlined in Remark
3.2.10. Furthermore, the problem (3.19) that is used to check whether a box contains
part of ∂P r

ε can be difficult to solve, as the function x 7→ ϕ(x)2 that is minimized
contains a minimization problem itself. It might be possible to make the solution
more efficient by exploiting some of the structure of the problem, like the fact that
the optimization problem (3.11) that is contained in ϕ is quadratic.
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An efficient descent method for nonsmooth problems

In Chapter 4, we derived a descent method for multiobjective optimization problems
where the objectives are assumed to be only locally Lipschitz continuous, i.e., po-
tentially nonsmooth. Our method was based on [AGG15], where a descent direction
is obtained as the element with the smallest norm in the negative convex hull of all
Clarke subdifferentials of the objective functions. Due to the practical difficulties of
working with the Clarke subdifferential, we modified this direction by instead us-
ing the Goldstein ε-subdifferential. For the approximation of the ε-subdifferential,
we used the approach from [MAY12] and generalized it to the multiobjective case.
Combined with an Armijo-like step length, this results in a descent method (Al-
gorithm 4.3) that finds an (ε, δ)-critical point after a finite number of steps. By
sequentially reducing ε and δ, we then obtained a method (Algorithm 4.4) that gen-
erates a sequence whose accumulation points are Pareto critical. A comparison to
the multiobjective proximal bundle method from [MKW14] showed that the perfor-
mance of our descent method is competitive. A combination with the subdivision
method allowed us to compute the entire Pareto (critical) set. For future work, our
descent method can likely be extended to the case of constrained nonsmooth MOPs
by modifying the direction finding problem (4.7) to assure that the descent sequence
remains feasible. Since our method basically reduces to the gradient descent method
in the smooth and scalar case, we can only expect a linear convergence rate for our
method. It might be possible to achieve a better rate by using variable norms in the
direction finding problem, as was done in [CQ12] for the scalar case. Furthermore, it
would be interesting to see if our method could be improved by using the generalized
Jacobian of f (discussed in Remark 2.2.26) instead of the Clarke subdifferentials of
the individual objectives. Finally, since the Clarke subdifferential can also be de-
fined for locally Lipschitz functions on general Hilbert spaces, it might be possible to
generalize our method to the infinite-dimensional case. This would make it possible
to apply it directly to nonsmooth multiobjective optimal control problems.

Hierarchical structure of Pareto critical sets

In Chapter 5, we analyzed the structure of the Pareto critical set with respect to the
Pareto critical sets of subproblems that only contain subsets of the set of objective
functions. We began by classifying Pareto critical points in terms of the zero entries
of their KKT vectors. Afterwards, we investigated the properties of tangent cones of
the Pareto critical set to be able to define its boundary. This enabled us to show that
the boundary of the Pareto critical set consists of Pareto critical sets of subproblems
where at least one objective function is neglected. In other words, the boundary is
covered by the union of all Pareto critical sets of subproblems of size at most k− 1.
Since this is not necessarily a tight covering, we then analyzed the smallest size of
subproblems required to still obtain a covering of the boundary. It turned out that
under certain regularity assumptions, the minimal required size is the maximal rank
of the Jacobian of the objective vector f in the variable space. In particular, it is
bounded by the number of variables n. For future work, it would be interesting
to combine our results with the more abstract results in [Sma73; LP14] that were
obtained using stratification theory. In particular, this might make it possible to
relate our definition of the boundary (Definition 5.1.14) to a definition based on some
manifold structure. Furthermore, since the Pareto critical set is just a superset of
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the actual Pareto set, our results cannot directly be transferred to the Pareto set.
Structural results about the Pareto set may be achievable by incorporating the
sufficient optimality conditions based on the Hessians of the objective functions into
our results.

After the unconstrained case, we discussed the structure of the boundary of the
Pareto critical set in the presence of equality and inequality constraints. Here, we
only presented the basic ideas without the actual proofs. Due to the structure of
the constrained KKT conditions, our strategy was to interpret the constraints as
additional objective functions and then apply our results from the unconstrained
case. For the case where only equality constraints are present, we obtained the
same result as in the unconstrained case. If we have inequality constraints, then
the boundary may also contain points where the activity of the inequalities changes.
Clearly, future work in the constrained case should start with rigorously proving our
results. Furthermore, it might make sense to rethink the definition of the boundary
via tangent cones in this case, as by this definition, “kinks” in the Pareto critical
set related to the constraints also count as boundary points.

Following the smooth case with and without constraints, we considered the un-
constrained, nonsmooth case. Due to the lack of smoothness, most of the tools we
used before could not be applied here. Nonetheless, some basic results could be
generalized. For the case k > n+ 1, a simple application of Carathéodory’s theorem
showed that the Pareto critical set can be covered by Pareto critical sets of subprob-
lems of size n+1. For the case k = n+1, we showed that the topological boundary of
the Pareto critical set can be covered by Pareto critical sets of subproblems of size n.
Unfortunately, we have basically no results for k < n+ 1. For this case, future work
may require new tools or a new approach. For Lemma 5.5.7, it might be possible to
sharpen the bound |I| ≤ n+1 by using a sharper version of Carathéodory’s theorem
(Theorem 3.1 in [Gal11]) which is based on affine geometry. In particular, the affine
dimension of ∂∪f(x) (cf. (2.16)) might be a natural generalization of the rank of
the Jacobian of f in this context. Besides that, a definition for the boundary of
the Pareto critical set in the nonsmooth case has to be found, since the topological
boundary is not useful when k < n + 1. Finally, it would be interesting to see if
better results can be obtained for the set of points satisfying optimality conditions
based on the generalized Jacobian from Remark 2.2.26.

In addition to the points mentioned so far, a promising direction for future
research is the exploitation of the hierarchical structure in numerical methods. So
far, this has been done in [Pei17] for the ε-constraint method and in [BV19] for the
reference point method. This is especially promising for problems where k ≥ n + 1
since in this case, the Pareto critical set is typically not a null set. Solving all
subproblems of size n creates a partition of the variable space (as in Example 5.3.1)
and to determine the complete Pareto critical set, one merely has to test one point
from each set in the partition for Pareto criticality.

Inferring objective vectors from Pareto critical data

Chapter 6 was concerned with the inverse problem of multiobjective optimization,
where a data set is given and we are searching for a (smooth) objective vector for
which the data is Pareto critical. We began by discussing which data is required for
this and concluded that in addition to Pareto critical points, the data should also
contain the corresponding KKT vectors to obtain a “reasonably posed” inverse prob-
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lem. By replacing the space of continuously differentiable functions with the span
of a finite number of basis functions, we showed that the inverse problem reduces to
a homogeneous linear system in the coefficients of the basis functions. This allowed
us to solve it efficiently via a singular value decomposition, where the smallest sin-
gular value was a measure for how well the given data set can be approximated by
the (extended) Pareto critical set of an objective vector in the span of the chosen
basis functions. After stating the algorithm for solving the inverse problem and
proving a theorem about the quality of the result, we considered three applications.
The first application was the creation of test problem for MOP solvers. Here, by
recalling the structural results about Pareto critical sets from Chapter 5, we were
able to construct data sets by hand such that our inverse approach creates MOPs
with certain prescribed properties. The second application was the identification
of objective vectors for stochastic MOPs, where we showed that the robustness of
our approach with respect to (stochastic) noise in the data can potentially be used
to reconstruct the actual objective vector. Finally, as a third application, we used
our inverse approach to create cheap surrogate models for (potentially expensive)
objective vectors. Here, the idea was to compute just a few Pareto critical points
(with corresponding KKT vectors) for the original problem and then use the result
as data for our inverse approach. For future work, the open problems discussed in
Section 6.3 should be addressed. Furthermore, since we only considered monomials
of varying maximal degree as basis functions here, it would be interesting to consider
different choices for basis functions. For example, it might be possible to incorpo-
rate additional information into the inverse approach by choosing basis functions
with certain properties. Finally, since the inverse approach is based on the KKT
condition for the unconstrained case, this is currently the only case it can handle. A
generalization to constrained problems might be possible by considering the KKT
conditions for the constrained case and additionally requiring the data to contain
information about the constraints.
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List of symbols

R Real numbers
R≥0 Non-negative real numbers (R>0, R≤0 are defined

analogously)
N Natural numbers
n Number of variables in our MOP
k Number of objective functions in our MOP
X Set of feasible points (mostly X = Rn)
f Objective vector f : X → Rk

im Image of a function
‖ · ‖ Euclidean norm
‖ · ‖1 ℓ1-norm
∂A Topological boundary of a set A
A Topological closure of a set A
A◦ Topological interior of a set A
conv(A) Convex hull of a set A
∇fi Gradient of fi
Df Jacobian matrix of f
∇2fi Hessian matrix of fi
〈·, ·〉 Standard inner product in Rn

∆k The standard simplex in Rk, i.e., the set of vectors
in Rk with non-negative entries that sum up to 1

P Pareto set
Pc Pareto critical set
rk(B) Rank of a matrix B
ker(B) Kernel of a matrix B
TzM Tangent space of a manifold M in z ∈M
M Set of Pareto critical points together with their

positive KKT vectors (cf. Theorem 2.2.10)
prx Projection onto the first n components
Bε(x) Open ball {y ∈ Rn : ‖x − y‖ < ε} with radius ε

around x
Bε(x) Closed ball {y ∈ Rn : ‖x − y‖ ≤ ε} with radius ε

around x
Ωi Set of nondifferentiable points of fi
Ω Set of nondifferentiable points of f
∂fi(x) Clarke subdifferential of fi in x
∂f(x) Generalized Jacobian of f in x
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List of symbols

∂∪f(x) Convex hull of the union of all Clarke subdifferen-
tials in x, i.e., conv(

⋃k
i=1 ∂fi(x))

sgn(a) Sign of a ∈ R with sgn(0) = 0
B Collection of boxes covering Rn

Bc Collection of boxes containing Pareto critical
points

Ag Set {i ∈ {1, . . . , kg} : gi(x) = 0} of active indices
f r Inexact objective vector f r : Rn → Rk (cf. (3.9))
P r
c Pareto critical set of f r

P r
ε Tight superset of Pc and P r

c (cf. (3.10))
∂εfi(x) Goldstein ε-subdifferential of fi in x
∂∪ε f(x) Convex hull of the union of all ε-subdifferentials in

x, i.e., conv(
⋃k

i=1 ∂εfi(x))
A(x) Set of KKT vectors of x
Pint Pareto critical points with a strictly positive KKT

vector
P0 Complement of Pint in Pc

Tan(Y, x) Tangent cone of Y at x
∂TPc Boundary of the Pareto critical set defined via tan-

gent cones (Definition 5.1.14)
P I
c Pareto critical set of the subproblem corresponding

to I ⊆ {1, . . . , k}
P(A) Power set of a set A
PM Extended Pareto critical set, i.e., the set of Pareto

critical points paired up with their KKT vectors
D Data set D = (Dx,Dα) ⊆ Rn × ∆k

L Matrix of the linear system in the inverse approach
(cf. (6.5))

F Function that maps a coefficient vector onto
the corresponding objective vector (cf. Definition
6.1.2)
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[Sch16] B. Schröder. Ordered Sets. 2nd ed. Springer International Publishing,
2016. doi: 10.1007/978-3-319-29788-0.

[Sch+19] O. Schütze, O. Cuate, A. Mart́ın, S. Peitz, and M. Dellnitz. “Pareto Ex-
plorer: a global/local exploration tool for many-objective optimization
problems”. In: Engineering Optimization 52.5 (May 2019), pp. 832–855.
doi: 10.1080/0305215x.2019.1617286.

[SDD05] O. Schütze, A. Dell’Aere, and M. Dellnitz. “On Continuation Meth-
ods for the Numerical Treatment of Multi-Objective Optimization
Problems”. In: Practical Approaches to Multi-Objective Optimization.
Dagstuhl Seminar Proceedings 04461. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany,
2005.

[Sho85] N. Z. Shor. Minimization Methods for Non-Differentiable Functions.
Springer Berlin Heidelberg, 1985. doi: 10.1007/978-3-642-82118-9.

[Sma73] S. Smale. “Global Analysis and Economics I: Pareto Optimum and a
Generalization of Morse Theory”. In: Dynamical Systems. Academic
Press, 1973, pp. 531–544.

181

https://doi.org/10.1007/978-3-319-15431-2
https://doi.org/10.1016/j.paerosci.2005.02.001
https://doi.org/10.1016/j.paerosci.2005.02.001
https://doi.org/10.1007/978-1-4939-6389-8
https://doi.org/10.1007/978-1-4939-6389-8
https://doi.org/10.1007/3-540-36970-8_36
https://doi.org/10.1007/3-540-36970-8_36
https://doi.org/10.1080/03052150802391734
https://doi.org/10.1007/978-1-4614-4340-7
https://doi.org/10.1007/978-3-319-29788-0
https://doi.org/10.1080/0305215x.2019.1617286
https://doi.org/10.1007/978-3-642-82118-9


Bibliography

[SVR08] W. H. A. Schilders, H. A. van der Vorst, and J. Rommes, eds. Model
Order Reduction: Theory, Research Aspects and Applications. Springer
Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-78841-6.

[SZ92] H. Schramm and J. Zowe. “A Version of the Bundle Idea for Minimizing
a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Nu-
merical Results”. In: SIAM Journal on Optimization 2.1 (Feb. 1992),
pp. 121–152. doi: 10.1137/0802008.

[Tib96] R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In:
Journal of the Royal Statistical Society: Series B (Methodological) 58.1
(Jan. 1996), pp. 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.
x.
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