
Non- and Semiparametric Methods for
Surface Estimation of Functional Time

Series on a Lattice
Der Fakultät für Wirtschaftswissenschaften der Universität Paderborn zur Erlangung des

akademischen Grades Doktor der Wirtschaftswissenschaften - Doctor rerum politicarum -

vorgelegte Dissertation von

Bastian Schäfer M.Sc.

geboren am 8. Januar 1990 in Datteln

November 2021

Abstract

We consider nonparametric and semiparametric estimation of the mean or expectation

surface of a functional time series on a lattice.

For (univariate) local regression, we propose a boundary modification procedure that al-

lows smooth continuation of the estimates from the interior to the boundary. The proposed

method for boundary modification is suitable for generating boundary kernel functions.

Both the boundary modification and the kernel functions generated from it are important

to the considered estimation of the expectation surface.

The nonparametric estimation of the expectation surface of a functional time series

implies long computation times under the classical bivariate regression methods such as

kernel regression or local regression. The double conditional smoothing (DCS) transforms

a bivariate regression into two univariate regressions, and shortens the running time of the

algorithm, especially for large data sets. We present a functional DCS for both kernel and

local regression, under the assumption of both independent and dependent error terms.

It is shown that, under certain assumptions, the DCS estimator is equivalent to bivariate

regression. Integral formulas for the asymptotic expectation and the asymptotic variance

of the DCS estimator are derived. This yields the asymptotically optimal bandwidths for

estimating the regression surface or partial derivatives of it. These bandwidths are selected

in a data-driven procedure by an iterative plug-in algorithm, which quickly converges to

the optimal bandwidths. The developed algorithms and functions are implemented in the

R package DCSmooth.

II

Zusammenfassung

Wir betrachten die nicht- und semiparametrische Schätzung der Erwartungsfläche einer

funktionalen Zeitreihe.

Für die (univariate) lokale Regression wird ein Verfahren zur Randmodifikation

vorgestellt, welches eine glatte Fortsetzung des Schätzers zu den Rändern hin ermöglicht.

Die vorgeschlagene Methode zur Randmodifikation ist geeignet, um Randkernfunktionen

zu erzeugen. Sowohl die Randmodifikation als auch die daraus erzeugten Kernfunktionen

spielen in der Schätzung der Erwartungsfläche eine wichtige Rolle.

Die nichtparametrische Schätzung der Erwartungsfläche einer funktionalen Zeitreihe

impliziert lange Rechenzeiten unter den klassischen bivariaten Regressionsmethoden wie

der Kernregression oder der Lokalen Regression. Die doppelt bedingte Glättung (Double

Conditional Smoothing, DCS) überführt eine bivariate Regression in zwei univariate Re-

gressionen, und verkürzt die Laufzeit des Algorithmus insbesondere für große Datensätze.

Wir stellen ein funktionales DCS für Kern- und lokale Regression vor, sowohl unter der

Annahme von unabhängigen als auch von abhängigen Störtermen. Es wird gezeigt, dass,

unter bestimmten Annahmen, der DCS-Schätzer äquivalent zur bivariaten Regression ist.

Integralformeln für den asymptotischen Erwartungswert und die asymptotische Varianz

des DCS-Schätzers werden hergeleitet. Daraus ergeben sich die asymptotisch optimalen

Bandbreiten zur Schätzung der Regressionsfläche oder partieller Ableitungen dieser. Die

datengestützte Wahl dieser Bandbreiten erfolgt mit einem iterativer Plug-In Algorithmus,

welcher schnell die gegen die optimalen Bandbreiten konvergiert. Die entwickelten Algo-

rithmen und Funktionen sind im R-Paket DCSmooth implementiert.

III

Preface

The thesis at hand was written during my time as research assistant to Prof. Dr. Yuan-

hua Feng at the professorship of Econometrics and Quantitative Methods of Empirical

Economic Research, Paderborn University. This thesis considers the representation of func-

tional time series on a lattice, the nonparametric regression of the mean surface of such

a time series, and the related selection of optimal bandwidths. The explicit consideration

of such lattice time series is not very common and suitable methods for estimating large

data sets were rarely available in this or a comparable framework. This thesis aims at

closing this gap further by providing suitable theoretical and practical methods for non- or

semiparametric estimation of lattice data. The main application in this thesis is the lattice

representation of financial time series. However, the proposed methods are not limited

to this type of data, but can also be used for a range of other time series or in spatial

smoothing applications.

In the course of the work on the topics of this thesis, the R-package DCSmooth was

developed and is published on CRAN. This package implements the proposed methods

and tools for application in R and provides a convenient way for nonparametric estimation

of the mean surface of spatial time series on a lattice.

My sincere gratitude goes first to Prof. Dr. Yuanhua Feng for supervising my thesis and

for all his extensive guidance and suggestions I have received over the years. In particular,

I am thankful for the productive discussions and helpful comments on the joint work with

him resulting in two cooperative papers which are part of this thesis. In addition to this

professional aspect I always appreciated the cordial environment at the chair.

Furthermore, I would like to express my thanks to Prof. Dr. Yuanhua Feng, Prof. Dr.

Hendrik Schmitz, Prof. Dr. Oliver Müller and Dr. Christian Peitz for agreeing to be

members of my doctoral committee.

IV

Contents

List of Figures VIII

List of Tables IX

List of Abbreviations and Acronyms X

1 Introduction 1

1.1 Spatial Time Series and Nonparametric Regression 1

1.2 Contribution of this Thesis . 4

1.3 Summary of the Contents . 8

2 Boundary Modification in Local Regression 10

2.1 Introduction . 10

2.2 Modified Local Polynomial Regression 12

2.3 Equivalency of the Proposed Weighting Methods 14

2.4 Boundary Behavior of Local Regression 20

2.5 Areas of Application . 24

2.6 Final Remarks . 25

2.7 Appendix . 26

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 33

3.1 Introduction . 33

3.2 The Model and the Basic DCS Procedure 35

3.2.1 A Semiparametric Functional Time Series Model 35

3.2.2 The Double Conditional Smoothing 36

3.3 The Improved Double Conditional Smoothing 40

3.3.1 Boundary Correction Under the DCS 40

3.3.2 A Functional Smoothing Scheme 41

3.3.3 Estimation of Derivatives . 42

3.3.4 Asymptotic Behavior of the Estimator 43

3.4 Bandwidth Selection . 44

3.4.1 Asymptotic Optimal Bandwidths 44

3.4.2 The IPI Algorithm . 45

3.5 Finite Sample Simulations . 48

3.6 Application to Financial Data . 51

3.7 Final Remarks . 54

3.8 Appendix . 55

3.8.1 Proof of Theorem 3.1 . 55

V

Contents VI

3.8.2 Expectation and Variance of the DCS Estimator 56

3.8.3 Asymptotic Normality of the DCS Estimator 59

3.8.4 Derivation of the Optimal Bandwidths 59

4 Local Polynomial DCS under Dependent Errors 62

4.1 Introduction . 62

4.2 The FDCS for Local Polynomial Estimators 65

4.2.1 Model and Assumptions . 65

4.2.2 Extension to Local Polynomial Smoothers 66

4.2.3 Boundary Modification in the LP-DCS 69

4.2.4 Equivalent Kernels . 70

4.3 Bandwidth Selection for the LP-DCS . 71

4.3.1 Asymptotic Bias and Variance . 71

4.3.2 Asymptotic Optimal Bandwidths 73

4.3.3 Bandwidth Selection by the IPI 74

4.4 Spatial Error Structure . 76

4.4.1 Definition of the Spatial ARMA 76

4.4.2 Estimation of the SARMA . 77

4.5 Simulation Study . 79

4.6 Applications . 81

4.7 Final Remarks . 85

4.8 Appendix . 89

4.8.1 Proof of Theorem 4.1 . 89

4.8.2 Proof of Theorem 4.2 . 89

4.8.3 Expectation and Variance . 91

4.8.4 Optimal Bandwidths . 94

5 Further Research Topics 97

6 Conclusion 103

A Appendix: DCSmooth Vignette 106

A.1 Introduction . 106

A.2 Details of Functions, Methods and Data 108

A.2.1 Functions . 108

A.2.2 Methods . 116

A.2.3 Data . 116

A.3 Application . 117

A.3.1 Defining the Options . 117

A.3.2 Application of the DCS with iid. Errors 119

A.3.3 Application of the DCS with SARMA Errors 121

A.3.4 Modeling Errors with Long Memory 125

Contents VII

A.3.5 Estimation of Derivatives . 126

A.4 Mathematical Background . 127

A.4.1 Double Conditional Smoothing 127

A.4.2 Bandwidth Selection . 128

A.4.3 Boundary Modification . 128

A.4.4 Spatial ARMA Processes . 129

A.4.5 Estimation of SARMA Processes 130

Bibliography XI

List of Figures

1.1 Boundary Region in Spatial Regression. 5

1.2 Real-Time Monitoring of Wind Speed at Fairbanks, AK. 6

1.3 Run-Times for Bivariate and DCS Regression 7

2.1 Boundary Weighting Functions . 14

2.2 Boundary Kernels . 23

3.1 Kernel Regression DCS: Bandwidths of Simulation Study. 49

3.2 Kernel Regression DCS: Surfaces of Simulated Functions. 50

3.3 Kernel Regression DCS: Surfaces of SIE and BMW Data. 53

4.1 Local Polynomial DCS: Bandwidths of Simulation Study. 82

4.2 Local Polynomial DCS: Variance Coefficients of Simulation Study. 83

4.3 Local Polynomial DCS: Surfaces of Simulated Functions. 84

4.4 Local Polynomial DCS: Surfaces of ALV Data. 86

4.5 Local Polynomial DCS: Surfaces of SIE Data. 87

5.1 Surfaces of Temperature and Wind Speed in Yuma, AZ. 98

5.2 Spectral Densities for an SARMA process. 102

VIII

List of Tables

2.1 µ-smooth Boundary Kernels . 32

2.2 (µ, µ′)-smooth Boundary Kernels . 32

3.1 Kernel Regression DCS: Bandwidth Statistics of Simulation Study 50

3.2 Kernel Regression DCS: Bandwidths for SIE and BMW 52

4.1 Local Polynomial DCS: Bandwidth Statistics of Simulation Study. 81

4.2 Local Polynomial DCS: Variance Coefficients of Simulation Study. 81

4.3 Bandwidth Selection for ALV and SIE under dependent errors 88

4.4 Estimated SARMA models for ALV. 95

4.5 Estimated SARMA models for SIE. 96

5.1 Estimated SARMA models for temperature and wind speed in Yuma. . . 101

5.2 Bandwidths Under a Nonparametric Error Assumption. 101

5.3 Bandwidths Under a Long-Memory Error Assumption. 102

IX

List of Abbreviations and Acronyms

ALV Allianz SE.

AMISE Asymptiotic Mean Integrated Squared Error.

AMSE Asymptotic Mean Squared Error.

ARCH Autoregressive Conditional Heteroscedasticity.

ARMA Autoregressive Moving Average (process).

BIC Bayes Information Criterion.

BMW Bayerische Motorenwerke AG.

BR Boundary Region.

CRAN The Comprehensive R Archive Network.

CTS Calendar Time Sampling.

CV Cross-Validation.

DCS Double Conditional Smoothing.

EIM Exponential Inflation Method.

FDCS Functional Double Conditional Smoothing.

FPC Functional Principal Component (regression).

GARCH Generalized ARCH.

GM Gasser-Müller (estimator).

HFF High-Frequency Financial (data).

iid. Independently and identically distributed.

IPI Iterative Plug-In (algorithm).

IR Interior Region.

LP-DCS Local Polynomial DCS.

MDCS Matrix Double Conditional Smoothing.

MIM Multiplicative Inflation Method.

MISE Mean Integrated Squared Error.

ML Maximum Likelihood (estimation).

MSE Mean Squared Error.

NOAA National Oceanic and Atmospheric Administration.

NW Nadaraya-Watson (estimator).

SAR Spatial Autoregressive (process).

SARMA Spatial Autoregressive Moving Average (process).

SD Standard Deviation.

SFARIMA Spatial Fractional Autoregressive Integrated Moving

Average (process).

SIE Siemens AG.

X

1 Introduction

1.1 Spatial Time Series and Nonparametric Regression

Univariate time series are a long- and well-established topic in statistics and econometrics.

They serve as a main building block in many econometric analysis of time-related phe-

nomena and have been extended to multivariate or multivariable models in parametric

and nonparametric frameworks. Functional time series are a relatively new development

whose incorporation into application in econometric models started not until computa-

tional power was sufficient for handling larger data sets. Functional data is, in the most

general way, characterized as a set of functions observed in different states (Ferraty and

Vieu, 2006). As Li et al. (2019a) point out, functional time series can in general be clas-

sified into two types: ”On the one hand, they can arise by separating an almost continuous
time record into natural consecutive intervals. [...] On the other hand, functional time series
can also arise when observations in a time period are considered as finite realizations of a
continuous function.”

Examples for functional time series of the second type are, e.g., spectrometric curves

from chemical analysis (Ferraty and Vieu, 2006), biometric observations of children’s mo-

tions (Ramsay and Silverman, 2005), protein levels in the blood of patients over several

years (Yao et al., 2005), AIDS incidences for age at diagnosis and year of diagnosis (Facer

and Müller, 2003), and age-specific mortality and fertility rates as studied by Hyndman

and Ullah (2007); Gao and Shang (2017); Shang and Hyndman (2017) where the age-

specific death rate functions were obtained over several years. In general, this type of

framework is characterized as set of functions that are observed in different states, repre-

senting different time points, locations or test persons in an experiment.

Estimation strategies for functional data of this type usually follow the same pattern;

each individual function is estimated and then the dependency between the functions is

modeled. The functions can be estimated e.g. by spline regression (Ramsay and Silver-

man, 2005; Hyndman and Ullah, 2007; Reiss and Ogden, 2007; Horváth and Kokoszka,

2012; Shang and Hyndman, 2017; Beyaztas and Shang, 2019) or functional partial least

squares regression (Reiss and Ogden, 2007; Hyndman and Shang, 2009). Although the

structure between the states might be modeled using a parametric approach (Horváth and

Kokoszka (2012) use an autoregressive dependency between the function states based on

the model by Bosq (2000) for example), the mainly used method is functional principal

component analysis (FPC). The FPC is used e.g. by Hyndman and Ullah (2007); Hynd-

man and Shang (2009); Gao and Shang (2017); Shang and Hyndman (2017) to estimate

and forecast the time series functions for mortality data. Among others, FPC is studied by

Ramsay and Dalzell (1991); Rice and Silverman (1991); Hall et al. (2006) and Yao et al.

1

1 Introduction 2

(2005) for sparse and irregular data, Li et al. (2019a) extend the functional time series

concept to long memory data.

However, this thesis will only cover functional time series of the second type. For this

type the functional time series under consideration is usually a univariate (discrete) time

series or a (continuous) stochastic process which can be split up in naturally defined in-

tervals. These intervals correspond to the states in the first definition of functional time

series and might, e.g., be different days in which the time series can be split. Spatio-

temporal time series can also be included in this class where time series are observed at

the same time but different locations (or over other different entities). Some examples

of functional data of this type are given by Horváth and Kokoszka (2012) from various

scientific disciplines. They include environmental and geophysical data sets such as daily

rainfall measurements in Australia (Delaigle and Hall, 2010) or pollution curves (Kaiser

et al., 2002) for which the states are different places where observations are made. Spe-

cific examples of environmental functional time series are the intraday temperature and

wind speed curves measured over a year in Figure 5.1 where the functional values are

observed over the day and the days are the states in which the function occurs.

In financial econometrics, Andersen and Bollerslev (1997, 1998); Andersen et al. (2000)

introduce a framework for return volatilities which can be represented by a functional time

series. To study intraday volatility dynamics and interday volatility persistence simultane-

ously, Andersen and Bollerslev (1998) use a data set of five-minute return observations of

the Deutsche Mark-Dollar spot exchange rate, spanning a full year from 1992 to 1993 with

an intraday and interday index. This is essentially a functional time series on an equidis-

tant lattice, with the intraday return volatility as the (possibly continuous) function and

the interday indices as the (discrete) states of the functions. They identify and discuss

three important effects in this functional time series of returns: daily ARCH effects, calen-

dar effects, and macroeconomic announcement effects. A parametric multiplicative model

designed for simultaneous estimation of the daily effects and the intraday calendar effects

is used to isolate the purely stochastic volatility effects from calendar and announcement

effects. Their findings suggest, that intraday volatility contains valuable information for

interday volatility and hence, volatility measures only at the daily level lack information.

Similar results are found by Andersen et al. (2000) for the Japanese Stock Market using

data of the Nikkei index. Feng and McNeil (2008) used the decomposition into intraday

and interday components to examine the long-term deterministic behavior under slowly

changing volatility. Another approach was used by Engle and Sokalska (2012), who used

a multiplicative component GARCH to forecast asset volatility by using daily, diurnal, and

stochastic intraday components in their model. The explicit representation of the volatility

surface is due to Feng (2013) and Peitz and Feng (2015), where the returns are assumed

to follow a multiplicative respective additive model of a mean function and a volatility

function.

If the observations of functional time series are cardinal variables and hence not only

observations in the function direction, but also in the state direction follow a measurable

1 Introduction 3

order, the term time series under a spatial representation is used. If the observations of such

a time series occur at equidistant points in all dimensions, we refer to this process as time
series on a lattice or lattice process. For high-frequency financial data (HFF-data) observed

at regular time intervals (e.g. 1-minute or 5-minute observations), the framework by

Andersen and Bollerslev (1998); Peitz and Feng (2015) forms a spatial time series on a

(regular) lattice.

Nonparametric estimation of the mean or expectation surface of a functional time series

can simply be carried out by bivariate regression methods, which are well studied in the

literature. Müller (1988, pp. 77-90) extends the Gasser-Müller (GM) kernel regression es-

timator (Gasser and Müller, 1979) to multivariate data, discusses the boundary problem

and proposes a two-step estimation procedure using product kernels under a rectangular

design. The GM-estimator is also applied by Müller and Prewitt (1993) for estimation of

the regression function or a (partial) derivative of the functional time series. The authors

give detailed asymptotic results for bias and variance and propose an adaptive bandwidth

selection procedure based on minimization of the asymptotic mean squared error (AMSE).

Optimal selection of global bandwidths for bivariate kernel regression is further studied

by Herrmann et al. (1995). Based on minimization of the asymptotic mean integrated

squared error (AMISE), formulas for the optimal bandwidths are derived and an iterative

plug-in (IPI) algorithm for estimation of these bandwidths from a sample is presented.

The authors assess their proposed bandwidth selection procedure at the example of some

simulated Gaussian functions with a few hundred observations. Facer and Müller (2003)

give detailed theoretical results for multivariate kernel regression under a fixed design

assumption. Their spatial model is explicitly designed for finding local maxima of a sur-

face, which represents a response function to a multivariate input under their framework.

They used a cross-validation (CV) approach for bandwidth selection, however, this topic

was not extensively discussed. Robinson (2011) applied the Nadaraya-Watson (NW) esti-

mator in a spatial setting while allowing for conditional heteroscedasticity in the model.

The consistency and asymptotic normality of this estimator under a spatial framework was

shown, bandwidth selection for this model was not addressed. Spatial kernel regression of

long-memory random fields was studied more recently by Wang and Cai (2010). Spatial

kernel regression under random design was considered by Ghosh (2015).

Compared to kernel regression, local polynomial regression methods are advantageous

in some ways. They solve the boundary problem (Fan and Gijbels, 1996) and allow for

straightforward estimation of derivatives. An overview of local polynomial regression for

multivariate local polynomial regression can be found in Scott (2015). Ruppert and Wand

(1994) give profound theoretical results for local least squares regression. They study lo-

cal linear and local quadratic regression under a random design assumption and possible

heteroscedasticity in the errors. They extend their findings to higher-order polynomials

and estimation of derivatives. A plug-in bandwidth selector for local linear regression is

introduced by Yang and Tschernig (1999). Optimal bandwidths are obtained by mini-

mization of the AMISE and the necessary second derivatives of the regression function are

1 Introduction 4

estimated using partial local cubic regression. However, their plug-in rule only consists of

a single step, requiring an additional estimation of initial bandwidths. Hallin et al. (2004)

also investigate the local linear estimation of a multidimensional mixing random field on

a rectangular domain. They provide a comprehensive mathematical foundation for the

asymptotic properties of this estimator but no bandwidth selection is considered. Wang

and Wang (2009) used local linear regression for estimation of spatio-temporal models

under local stationarity. An overview of nonparametric estimation of regression surfaces

may be found in Ghosh (2018).

1.2 Contribution of this Thesis

A major issue in kernel regression is the boundary problem: at a boundary point, fewer

observations are available than the bandwidth would require. This induces a bias in the

estimates and leads to unreliable results in this region. A solution approach using special-

ized boundary kernels is discussed by Gasser and Müller (1979), some explicit formulas

for these kernels for boundary correction, the so-called boundary kernels are given by

Gasser et al. (1985); Müller (1988). However, the most useful and easy-to-construct ker-

nel functions were proposed not until the µ-smooth boundary kernels by Müller (1991)

and the (µ, µ′)-smooth kernels by Müller and Wang (1994). These kernels allow for a

smooth continuation of the interior estimates to the boundaries and ensure that the bias

at the boundaries is of the same order of magnitude as in the interior. This type of bound-

ary problem is automatically solved by local regression methods (Fan and Gijbels, 1992;

Masry, 1996), hence these estimators are usually applied without concern to the bound-

aries. However, the naive use of simple truncated interior kernels at the boundaries leads

to discontinuities in the regression at these boundaries. These discontinuities might be-

come a severe issue if estimation at the boundaries dominates the complete estimation.

For example, in real-time monitoring applications, each new observation is treated as a

boundary point and hence, the complete estimation is carried out at the boundaries.

In multivariable regression, the role of the boundary region becomes more important,

e.g. under the framework of spatial regression. In comparison with univariate time se-

ries, the proportion of the boundary region is increased in the two-dimensional setting

of spatial time series. The ratio between boundary region (BR) and inner region (IR)

for spatial surfaces is visualized in Figure 1.1. For h1 = h2, BR covers 4(h − h2) of the

total surface, while in the univariate case, it only covers 1 − 2h. If h = 0.1, 36% of the

spatial observations are in the boundary region compared to 20% for the univariate case,

for h = 0.2, these numbers increase to 64%, respective 40%. Hence, in spatial regression,

the boundary region should not be treated the same as the interior region, if continuity of

the resulting estimates is required.

The findings in Chapter 2 now adapt the results of Müller (1991) and Müller and

Wang (1994) to define boundary weighting functions for (univariate) local regression.

As boundary effects in local regression do not affect the bias, the terminology boundary

1 Introduction 5

IR

BR

h2 h2

h1

h1

0 1
X2

0

1

X1

Figure 1.1: Proportion of boundary region to the total regression surface in spatial regression.

modification is used rather than boundary correction, which remains reserved for kernel

regression. The proposed boundary modification in local regression leads to equivalent

estimates as the common use of truncated weights in the interior but includes a smooth

continuation to the boundaries. This can be demonstrated at an example of real-time

monitoring; in Figure 1.2, the wind speed at Fairbanks, AK on 2021-02-01 is smoothed

from left to right, where for each point only observations to the left were incorporated in

the smoothing procedure. This effectively leads to boundary smoothing only as now each

point is treated as an endpoint. While the smoothing results for the boundary modified

local regression ("µ-smooth" and "(µ, µ′)-smooth", see Chapter 2) exhibit a smooth con-

tinuous curve, the "Truncated" type without boundary modification exhibits much more

discontinuity. The contribution of the boundary modification is abundantly clear in this

example, where each point is treated as a boundary point. However, while restricted to

only a few observations and thus probably less obvious, these effects remain for local re-

gression of full data sets. In conclusion, accounting for boundary modification leads to

smoother results compared to the naive use of truncated boundary kernels.

The proposed methods for boundary modification open a convenient way to generate

boundary kernels of desired orders simply from the weighting functions. These boundary

kernels prove useful for kernel regression of spatial time series in Chapter 3, while the

boundary-modified local regression is utilized in Chapter 4.

The main contribution of Chapters 3 and 4 is the extension of the double conditional

smoothing (DCS) originally proposed by Feng (2013) and its integration into R for prac-

tical use of the findings. Under the spatial time series scheme, estimation of surfaces

is usually carried out using a bivariate kernel or local regression smoother as stated in

1 Introduction 6

0

2

4

0 4 8 12 16 20 24
Time [h]

W
in

ds
pe

ed
 [m

/s
]

Boundary Modification Type µ − smooth (µ,µ')−smooth Truncated

Figure 1.2: Real-time monitoring of the wind speed at Fairbanks, AK on 2021-02-01 with three dif-
ferent boundary modification regimes. The employed estimation bandwidth is selected by
the tsmooth function from the smoots-package to h = 0.122 using the full sample. Data
source: NOAA/Diamond et al. (2013).

section 1.1. The downside to this approach is, that these bivariate regressors are slow,

which will be especially an issue if the size of the data sets increases. The DCS now

divides the two-dimensional regression of the classical bivariate smoothers into two one-

dimensional smoothers, effectively reducing a problem of O(n2) to O(n). The run-times

of a bivariate regression are compared to those of a DCS regression in Figure 1.3. The

simulation employs different sample sizes using observations generated from the model

yi,j = m(x1,i, x2,j) + εi,j , where m(x1, x2) = x21 · √x2 and εi,j are iid. errors from the

standard normal distribution. The values were simulated on a square grid with n = n1 ·n2
observations and n1 = n2. For each regression method and sample size, 25 simulations

were measured. The graph indicates the much faster speed of the DCS and a better linear

behavior compared to that of the bivariate regression.

The contributions of Chapter 3 for kernel regression and Chapter 4 for the newly de-

veloped local polynomial regression DCS can be described in two ways: in terms of con-
tent or objectives. The main content of Chapters 3 and 4 can be broken down into two

parts: one regarding the DCS estimation and one regarding the selection of the associ-

ated bandwidths. Estimation procedures for kernel regression DCS were already used by

Feng (2013) and Peitz and Feng (2015) but without data-driven bandwidth selection; the

used bandwidths in these papers were set manually. In this thesis, the asymptotic optimal

bandwidths are selected by minimization of the estimators’ mean integrated squared error

1 Introduction 7

linear logarithmic

0e+00 1e+05 2e+05 3e+05 0e+00 1e+05 2e+05 3e+05

−2

0

2

4

6

0

100

200

Sample Size

T
im

e
[s

]

Type Bivariate DCS

Figure 1.3: Run-times for classical bivariate and DCS kernel regression for a simulation example with
11 different sample sizes and 25 iterations per sample size. The implementation of both
algorithms in R only differs in the algorithm itself. Beside vectorization, no other measures
for improving the efficiency were used. Run-times were measured using the microbench-
mark package.

(MISE), these optimal bandwidths are selected by a data-driven IPI algorithm. The IPI

algorithm iteratively selects the bandwidths converging to the optimal values with cer-

tain properties. Thus, it does not depend on initial values or too many parameters. In

addition, the number of steps required is much smaller than for other bandwidth selec-

tion methods such as CV. The choice of the used inflation method, exponential inflation

instead of the more common multiplicative inflation method, further increases the speed

of convergence of the IPI algorithm. The DCS estimation algorithm itself is refined by the

introduction of the functional DCS (FDCS), which provides an efficient way for smoothing

spatial time series on a lattice, by utilizing certain properties of the equidistant lattice un-

der consideration. The FDCS is shown to have the same asymptotic properties as the DCS,

for kernel regression as well as for local polynomial regression. The two main objectives of

the extension of the DCS are to establish a theoretical foundation for the DCS estimators

and to develop algorithms for implementation into computer-aided methods, e.g. in R.

The theoretical foundation of the kernel regression DCS estimator was incomplete so far,

important results such as asymptotic expectation and variance, and, from this, the MISE

and the derived asymptotic optimal bandwidths were remaining to be found. This gap is

closed by the presented findings. The known asymptotic theory for bivariate and multi-

variable nonparametric regression is shown to extend to the DCS estimators in general.

Algorithms suitable for direct use in R are found with the FDCS for estimation of the mean

or regression surface or its derivatives and the IPI bandwidth selection. These algorithms

are available for practical use in the DCSmooth package for R (see Appendix A).

1 Introduction 8

1.3 Summary of the Contents

In Chapter 2, the boundary modification methods in local regression are introduced. Al-

though important results on their own, the findings of this chapter also serve as prepara-

tory work for Chapters 3 and 4, as the methods for boundary modification in local regres-

sion and kernel generation are used later. The local regression is defined using µ-smooth

and (µ, µ′)-smooth boundary weights, similarly to the ideas of Müller (1991); Müller and

Wang (1994) originally used for kernel regression. These boundary weights now allow

for a smooth continuation of the estimates in the interior region to the boundary in local

regression. The estimates in the interior using the proposed boundary modification are

shown to be equivalent to the common method using common truncated methods. The

results turn out to lead to a convenient way for generating boundary kernels of desired

orders. This method is employed to obtain kernel functions which are used in Chapter 3.

The DCS for kernel regression under iid. errors is studied in Chapter 3. The general

nonparametric functional or spatial model is introduced in Section 3.2 along with a sum-

mary of the basic ideas of the DCS procedure by Feng (2013); Peitz and Feng (2015). The

main assumptions needed for derivation of asymptotic results and optimal bandwidths

are set forth and explained. In Section 3.3, a matrix DCS (MDCS) and the FDCS are

introduced to improve the computational efficiency of the original DCS algorithm. The

FDCS utilizes the assumed equidistant lattice structure to avoid redundant computation

of weights and is designed to use the faster vectorization algorithms of R. Section 3.4

treats the selection of optimal bandwidths. Asymptotic results of the expectation and the

variance of the proposed estimator are obtained in Section 3.4.1 under the previously de-

fined regularity assumptions. These results lead to the asymptotic optimal bandwidths for

the regression by minimization of the MISE. For estimation of these optimal bandwidths,

an IPI-algorithm (Gasser et al., 1991) is proposed in Section 3.4.2, which calculates the

optimal bandwidths iteratively. This algorithm depends on some partial derivatives of the

regression surface. Kernels generated from the method found in Chapter 2 are applied

for estimation of these derivatives from the observed spatial time series. The methods de-

veloped in Chapter 3 are assessed in the simulation study of Section 3.5 by assessing the

bandwidth selection algorithm using well-defined spatial functions with known optimal

bandwidths. Examples of application to real HFF-data are shown in Section 3.6, where

the algorithm is employed for regression of the expectation surface of the volatility time

series of German companies BMW AG and Siemens AG and the corresponding volume

surfaces during the financial crisis around 2009. Proofs and derivations of some results of

Chapter 3 are moved to the appendix Section 3.8.

The previously defined DCS is extended to local polynomial regression under dependent

errors in Chapter 4. Definitions for extension of the DCS to local polynomial smoothers

and necessary assumptions to derive asymptotic results are in Section 4.2. The DCS (and

FDCS) schemes are shown to work equivalently under local regression and can therefore

be used to improve computational efficiency. The boundary modification for local regres-

1 Introduction 9

sion proposed in Chapter 2 is applied to the spatial smoother in Section 4.2.3, equivalent

kernel estimators are discussed in the following. These equivalent kernels are necessary

for proving the equivalency between local regression and kernel regression under the DCS

framework. Section 4.3 covers the derivation of the asymptotic bias and variance as well

as the optimal bandwidths and, similar to Chapter 3, an IPI bandwidth selection algorithm

under dependent errors with short memory. This error structure is explicitly modeled by a

spatial ARMA (SARMA) structure (Section 4.4). Some estimation methods for parametric

estimation of special classes of the SARMA model are proposed in Section 4.4.2. A simu-

lation study employing simulations of spatial surfaces with SARMA errors is used to assess

the proposed algorithms in Section 4.5, Section 4.6 includes an application to financial

stock data. Our findings indicate that the bandwidths are usually increased when ac-

counting for dependency structures in the errors and hence negation of dependent errors

would lead to an undersmoothing.

It should be emphasized, that this thesis is a collection of the three articles in Chapters

Chapter 2 - Chapter 4. Although these three articles form a somehow consecutive series,

each one has a more or less different approach to the subject matter and should be able to

be read as an independent contribution. Due to this approach, the notation might differ in

some places between the chapters in order to meet the different requirements and ensure

the internal consistency of each chapter.

Outside of the development of the algorithms for non- and semiparametric estimation

of spatial surfaces for financial applications in Chapters 2 - 4, some alternative fields of ap-

plication are presented in Chapter 5. Examples of environmental data illustrate the broad

scope of the presented approach. Some extensions to the model include the introduction

of long memory errors into the model or the nonparametric estimation of the variance co-

efficient used in bandwidth selection using spectral density estimation. Without claiming

completeness, these topics are demonstrated at some examples in this chapter. Chapter

6 closes this thesis with some concluding remarks. The documentation of the DCSmooth
package is given in the appendix, including application examples and descriptions of the

methods and tools in the package.

All analyses and calculations provided in this thesis are carried out in R (R Core Team,

2021) using version 1.1.2 (2021-10-21) of the DCSmooth-package (Schäfer, 2021), specif-

ically developed for smoothing functional time series on a lattice using the DCS procedure.

Charts and diagrams shown are produced by the ggplot2-package (Wickham, 2016), the

surface plots are created with the plotly-package (Sievert, 2020). Further, the packages

smoots (Feng et al., 2021b) and microbenchmark (Mersmann, 2019) are used in creation

of the examples in Figure 1.2 respective Figure 1.3.

2 Boundary Modification in Local
Regression

This chapter is based on joint work with Yuanhua Feng and published with
slight differences in the CIE Working Papers (144), Paderborn University, under
the title ”Boundary Modification in Local Polynomial Regression”.

2.1 Introduction

An important aspect in nonparametric regression concerns estimation at the margins of the

support and the associated boundary modification. Boundary modification is particularly

well studied in kernel regression and kernel density estimation. If boundary modifica-

tion is not considered in this context, the so-called boundary problem will affect both, the

order of magnitude of the bias and the rate of convergence at a boundary point. The

typical boundary modification method is to use some sort of boundary kernels. Different

boundary kernels are proposed by Gasser and Müller (1979); Gasser et al. (1985); Gra-

novsky and Müller (1991); Müller (1991); Müller (1993a,b); Müller and Wang (1994)

and Kyung-Joon and Schucany (1998) among others. Also, the boundary correction pro-

posed by Rice (1984) can be interpreted as an indirect use of certain boundary kernels,

which is further studied by Cheng (2006). Recent developments and a summary of fur-

ther boundary correction ideas in kernel density estimation may be found in Karunamuni

and Alberts (2005) and Karunamuni and Zhang (2008). More recently, the application of

boundary kernels in distribution function estimation is also addressed by Tenreiro (2013).

In contrast to this, there seems to be a lack of research on boundary modification in

local polynomial regression. The important role of local polynomial regression in non-

parametric estimation is well known, as there is extensive literature on this subject, e.g.,

in papers by Stone (1977); Cleveland (1979); Ruppert and Wand (1994) and Fan and Gij-

bels (1996). This approach exhibits several attractive features, that is, it is design adaptive

(Fan and Gijbels, 1992), is an automatic kernel generator (Hastie and Loader, 1993) and

also has automatic boundary correction. The last property implies that, under suitable

regularity conditions, the magnitude order of the bias and the rate of convergence of a

local polynomial estimator at a boundary point are the same as those at an interior point.

It is hence commonly accepted that - as Masry (1996) points out - "no boundary modi-
fication is required" for local polynomial regression. Note, that the truncated part of the

weight function used in the interior is usually employed at a boundary point. This will

result in discontinuous estimates in the boundary region. If the continuity of the resulting

estimates is required, some suitable method to achieve this property is demanded.

10

2 Boundary Modification in Local Regression 11

In this chapter, we will propose two new boundary modification methods for local poly-

nomial regression by adapting the ideas of Müller (1991) for generating the so-called

µ-smooth boundary kernels and those of Müller and Wang (1994) for generating the

(µ, µ′)-smooth boundary kernels. The parameter µ ≥ 0 is an integer, which quantifies

the endpoint smoothness of a polynomial kernel function. In the first case, the resulting

estimates in the boundary region are of the same order of smoothness. In the second case,

the order of smoothness of the estimate at a boundary point is µ− 1, if that of an estimate

in the interior is µ. Consider the use of a common second-order (polynomial) kernel func-

tion as the weight function. In the interior, the weight function defined by the first idea

is the same as the original weight function. The second method defines two additional

(asymmetric) weight functions (if µ > 0), whose standardized forms can be thought of as

(a pair of) two first order kernel functions. It is shown that, under regularity conditions, the

three quite different weighting methods in the interior are equivalent. The counterparts

of the Epanechnikov kernel defined under the second method are two (half-formed) trian-

gular kernels, whose form is unchanged from the interior to the corresponding endpoint.

This shows that the best weight function at the endpoints is a natural extension of one

of the best weight functions in the interior following the second boundary modification

method. Moreover, consider a p-th order local polynomial estimator of the ν-th derivative

of the regression function. The second kind of new weight functions is shown to generate

kernel functions in the interior of order k such that k−ν is odd. The boundary behavior of

local polynomial regression is also discussed in detail. The proposals are particularly use-

ful when one-sided smoothing or detection of change points in nonparametric regression

are considered.

The findings of this chapter are useful for the further development of the kernel regres-

sion DCS in Chapter 3 and the new development of the local polynomial DCS (LP-DCS) in

Chapter 4. Hence, this chapter can be viewed as preparatory work, although the findings

presented here are important on their own. Chapter 2 is organized as follows: the pro-

posed new boundary modification methods are introduced and discussed in Section 2.2.

The main results on the equivalency of the (µ, µ′)-smooth estimators to the commonly

used estimators at an interior point are stated in Section 2.3. The proofs for the special

cases of local linear, local quadratic and local cubic regression are given. Section 2.4 in-

vestigates the boundary behavior of local polynomial regression. We discuss some areas,

in which the proposed methods might improve certain results in Section 2.5 and conclude

the chapter with some final remarks in Section 2.6. Proofs of auxiliary results and the

equivalency of the proposed estimators for p > 3 are moved to the chapters appendix in

Section 2.7 along with some formulas for equivalent regression kernels.

2 Boundary Modification in Local Regression 12

2.2 Modified Local Polynomial Regression

For simplicity, we consider the smoothing of the time series {Yt}, t = 1, . . . , n under an

equidistant design. We employ the widely used simple nonparametric regression model:

Yt = g(xt) + εt, (2.2.1)

where xt = t/n ∈ [0, 1], g is a smooth regression function on [0, 1] and εt is a sequence of

iid. random variables with zero mean and finite variance var(εt) = σ2ε > 0. Assume that g

is at least (p+ 1)-times differentiable at a point x0. We have

g(x) = g(x0) + g′(x0)(x− x0) + · · ·+ g(p)(x0)(x− x0)
p/p! +Rp (2.2.2)

for x in a neighborhood of x0, where Rp is a remainder term. Given observations y1, . . . ,

yn, the local polynomial estimator of g(ν)(x), i.e. the ν-th derivative of g at a point x, is

obtained by solving the locally weighted least squares problem

argmin
β

Q, Q =
n∑

t=1

yt − p∑
j=0

βj(xt − x)j

2

W

(
xt − x

h

)
,

where h is the bandwidth and W is the weight function. Let β̂ = (β̂0, β̂1, . . . , β̂p)
T. From

(2.2.2) we can see that ν!β̂ν is an estimator of g(ν)(x), ν = 0, 1, . . . , p.

Usually, the weight function W is a symmetric density W (u) on [−1, 1]. For a right

boundary point x = 1− qh, define the truncated weight function W 0
q (u) =W (u)1[−1,q](u)

for 0 ≤ q ≤ 1, where the discussion at a left boundary point for weights Wq,L(u) is

analogously. The weight function is assumed to be non-negative throughout this chapter,

but it is not required for the weight function to be normalized to one. For q = 1, W 0
q

coincides with W . The truncated boundary weight function W 0
q (u) is the naive bound-

ary modification method in local regression, which is often used in the literature without

any explanation. A clear drawback of this method is that the weight function used at a

boundary point is discontinuous at the endpoint so that the corresponding asymptotically

equivalent kernel at a boundary point is also discontinuous. This property will be taken

over by the resulting estimators and ĝ(ν) obtained in this manner is always discontinuous.

This deficiency is more clear if change point detection based on local polynomial regres-

sion is considered (see e.g. Loader, 1996) because now each point is treated as an end-

point. To overcome this problem, the estimation at boundaries in local regression should

be improved, with various ways to define a reasonable boundary modification method. In

the following we will consider two of them, corresponding to two well-known classes of

boundary kernels.

The first method is obtained by adapting the idea of Müller (1991) for constructing µ-

optimal smooth boundary kernels. Following this idea, the weight function at a boundary

point is obtained by transforming W (u), the weight function used in the interior, into a

2 Boundary Modification in Local Regression 13

µ-smooth weight function on the support [−1, q], which is symmetric around the central

point of the support uq = (q − 1)/2. Such a weight function is given by (Müller, 1993b),

with

W a
q (u) =W

(
u− q−1

2
q+1
2

)
1[−1,q](u) =W

(
2u+ (1− q)

1 + q

)
1[−1,q](u).

As pointed out by Müller (1991), W a
q (u) (and also W b

q (u) to be stated in (2.2.6)) is only

defined for a µ-optimal second order kernel with W (r)(−1) = W (r)(1) = 0 for 0 ≤ r < µ.

The weights W a
q are µ-th smooth for any 0 ≤ q ≤ 1 and the resulting estimate ĝ(ν) at the

boundary has the same degree of smoothness as in the interior. For any weight function

W , W a
q coincides with Wq in the interior (q = 1), i.e. W a

1 ≡ W1 ≡ W . The mean squared

error (MSE) of ĝ(ν) at an endpoint using W a
q is however much larger than the MSE of an

estimator using Wq.

This problem can be solved as follows. Consider weight functions of the form

W (u) = (1− u2)µ1[−1,1] = (1 + u)µ(1− u)µ1[−1,1](u), (2.2.3)

for some integer µ ≥ 0, which is defined based on some second order kernel function, but

is not necessarily normalized. Now, the boundary weight function Wq can be rewritten as

Wq(u) = (1 + u)µ(1− u)µ1[−1,q](u) (2.2.4)

and W a
q can be equivalently defined by

W a
q (u) = (1 + u)µ(q − u)µ1[−1,q](u). (2.2.5)

For the second boundary modification method, let µ′ = max(µ−1, 0), i.e. µ′ = 0 for µ = 0

and µ′ = µ− 1 for µ ≥ 1. Following Müller and Wang (1994), a (µ, µ′)-smooth boundary

weight function on [−1, q] is defined by

W b
q (u) = (1 + u)µ(q − u)µ

′
1[−1,q](u). (2.2.6)

W a
q (u) and W b

q (u) are the weight functions associated with the µ- and (µ, µ − 1)-smooth

boundary kernels given in Müller (1991) and Müller and Wang (1994) respectively, which

can all be automatically generated by means of local polynomials with a proper weight

function.

If the uniform weight function is used, the three boundary modification methods co-

incide with each other. For µ = 1, W a
q is smooth at u = q, but W b

q is not. The weight

functions Wq, W a
q and W b

q are shown in Figure 2.1 for q = 0, 1/3, 2/3 and 1 for µ = 1 and

µ = 2, respectively. Note that for q = 1, W1 and W a
1 coincide with each other.

The larger µ is, the larger is the difference between Wq and W a
q . On the other hand, the

larger µ is, the smaller is the difference between W a
q and W b

q . As shown by Feng (1999),

2 Boundary Modification in Local Regression 14

q = 0 q = 1/3 q = 2/3 q = 1
µ = 1

µ = 2

−1.0 −0.5 0.0 −1.0 −0.5 0.0 −1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 1.0

Weighting Type Wq
a (u) Wq

b (u) Wq (u)

Figure 2.1: Boundary weighting functions W a
q (u),W

b
q (u) and W 0

q (u) corresponding to the µ-smooth,
(µ, µ′)-smooth and truncated type for q = 0, 1/3, 2/3, 1 and µ = 1, 2.

if the Gaussian kernel (with non-compact support) is used, W a
q and W b

q will reduce to the

same weight function, because the Gaussian kernel corresponds to the limit case of the

weight function defined in (2.2.3) as µ→ ∞.

2.3 Equivalency of the Proposed Weighting Methods

The newly proposed boundary modification methods for local polynomial regression are

defined by the use of the µ-smooth weights W a
q (u) in (2.2.5) and the (µ, µ′)-smooth

weights W b
q (u) in (2.2.6). The conventional method without boundary modification em-

ploys the truncated kernel Wq(u) in (2.2.4). In the interior, for q = 1, it holds that

W1(u) = W a
1 (u) = W (u), hence these weights will only lead to different estimates at

boundary points. On the other hand, W , W b
1 and W b

1,L are three quite different weight

functions, if µ > 0. However, under some regularity conditions, the resulting estimates

in the interior using those different weight functions are exactly the same. That is, as

interior weight functions, they are equivalent to each other and the third boundary mod-

ification method is also logically defined. For simplicity, denote W∗(u) ≡ W b
1 (u) and

W∗∗(u) ≡ W b
1,L(u). Consider at first the estimates obtained with weight functions W (u)

and W∗(u), which will be denoted by ĝ(ν)(x) and ĝ(ν)∗ (x), respectively. Let h < x < 1 − h

be an interior point and define the matrix of observations by

X =


1 u1 · · · up1
...

...
. . .

...

1 un · · · upn

 ,

2 Boundary Modification in Local Regression 15

where ut = (xt − x)/h. Let W and W∗ be the diagonal matrices with entries W (ut)

respectively W∗(ut). Then ĝ(ν)(x) and ĝ(ν)∗ (x) are both linear smoothers with the weights

{wν(x)}T = ν!eTν+1(X
TWX)−1XTW (2.3.1)

and

{wν
∗(x)}T = ν!eTν+1(X

TW∗X)−1XTW∗, (2.3.2)

respectively, where ej , j = 1, . . . , p+1, denote the j-th (p+1)×1 unit vector. The following

theorem shows that ĝ(ν)(x) = ĝ
(ν)
∗ (x) under given conditions:

Theorem 2.1. Consider the equidistant nonparametric regression of model (2.2.1). Let 0 <
h < 0.5 be a given bandwidth and h < x = xi0 < 1−h be an observation point in the interior.
Let ĝ(ν)(x) and ĝ(ν)∗ (x) be the estimates obtained with the weight functions W (u) and W ∗(u),
respectively. Assume further that p − ν > 0 is odd. Then we have ĝ(ν)(x) = ĝ

(ν)
∗ (x) for any

observation vector y.

The subsequent proof of Theorem 2.1 is structured as follows: we state some notation

and the auxiliary results Lemma 2.1 and Lemma 2.2 below. Then, Theorem 2.2 gives

sufficient and necessary conditions for Theorem 2.1 to hold and is proved for the important

special cases of local linear, local quadratic and local cubic regression. In the appendix in

Section 2.7, we propose another necessary and sufficient condition in Theorem 2.5 and

prove Theorem 2.1 for p > 3. Proofs of the auxiliary Lemmas 2.1, 2.2 as well as that of

Theorem 2.2 are given in the appendix as well.

For a matrix C with elements cij , we denote the submatrix obtained by erasing the i-th

row and j-th column of C by Cij . Hence, |Cij | is the corresponding minor determinant.

We further denote the cofactor of element cij by c̃ij = (−1)i+j |Cij |.
Define cj =

∑
|ut|≤1

W (ut)u
j
t and c∗j =

∑
|ut|≤1

W∗(ut)u
j
t , which are the weighted sums of

the j-th order powers of ut. Lemma 2.1 gives some important relationships between these

quantities.

Lemma 2.1. For the quantities cj and c∗j , it holds that

1) cj = 0 for j odd,

2) c∗j − c∗j+1 = cj ,

3) c∗j = c∗j+1 for j odd and

4) c∗j = cj + c∗j+2 for j even.

2 Boundary Modification in Local Regression 16

Define the (p+1)× (p+1) matrices C = (cij) = (XTWX) and C∗ = (c∗ij) = (XTW∗X),

where cij and c∗ij with double indices denote the (i, j)-th elements of C and C∗ respectively.

We have

C =



c0 0 c2 · · · cp−1 0

0 c2 0 · · · 0 cp+1

c2 0 c4 · · · cp+1 0
...

...
...

. . .
...

...

cp−1 0 cp+1 · · · c2p−2 0

0 cp+1 0 · · · 0 c2p


(2.3.3)

and

C∗ =



c∗0 c∗2 c∗2 · · · c∗p−1 c∗p+1

c∗2 c∗2 c∗4 · · · c∗p+1 c∗p+1

c∗2 c∗4 c∗4 · · · c∗p+1 c∗p+3
...

...
...

. . .
...

...

c∗p−1 c∗p+1 c∗p+1 · · · c∗2p−2 c∗2p
c∗p+1 c∗p+1 c∗p+3 · · · c∗2p c∗2p


(2.3.4)

for p odd and

C =



c0 0 c2 · · · 0 cp

0 c2 0 · · · cp 0

c2 0 c4 · · · 0 cp+2

...
...

...
. . .

...
...

0 cp+2 0 · · · c2p−2 0

cp 0 cp+2 · · · 0 c2p


(2.3.5)

and

C∗ =



c∗0 c∗2 c∗2 · · · c∗p c∗p

c∗2 c∗2 c∗4 · · · c∗p c∗p+2

c∗2 c∗4 c∗4 · · · c∗p+2 c∗p+2
...

...
...

. . .
...

...

c∗p c∗p+2 c∗p+2 · · · c∗2p−2 c∗2p
c∗p+2 c∗p+2 c∗p+4 · · · c∗2p c∗2p


(2.3.6)

for p even.

For any observation vector y, the equality ĝ(ν) = ĝ
(ν)
∗ holds if and only if wν = wν

∗

under the conditions of Theorem 2.1. Define D = (dij) = C−1 and D∗ = (d∗ij) = C−1
∗ ,

2 Boundary Modification in Local Regression 17

i, j = 1, 2, . . . , p+1. As C,C∗ are symmetric matrices, i.e. CT = C,CT
∗ = C∗, the elements

of D,D∗ in terms of the cofactors of Cij , C
∗
ij are

dij =
c̃ij
|C|

, d∗ij =
c̃∗ij
|C∗|

. (2.3.7)

Denote the (ν+1)-th rows of D and D∗ by Dν+1 and Dν+1
∗ respectively. From (2.3.1) and

(2.3.2), the condition Dν+1XTW = Dν+1
∗ XTW∗ is equivalently to wν = wν

∗ . Let X̃ be

the n× n diagonal matrix with elements (1− ut), t = 1, . . . , n. Then we have X̃W∗ = W

and wν = wν
∗ if and only if

Dν+1
∗ XT = Dν+1XTX̃.

Using 4) of Lemma 2.2, we obtain

Dν+1 = (dν+1,1, 0, dν+1,3, 0, . . . , dν+1,p, 0)

for p odd and any ν < p even and

Dν+1 = (0, dν+1,2, 0, . . . , dν+1,p, 0)

for p even and any ν < p odd. Theorem 2.1 hence reduces to

Theorem 2.2. Theorem 2.1 holds if, under the same conditions,

Dν+1
∗ = (dν+1,1,−dν+1,1, dν+1,3,−dν+1,3, . . . , dν+1,p,−dν+1,p) (2.3.8)

for p odd and any ν < p even, and

Dν+1
∗ = (0, dν+1,2,−dν+1,2, dν+1,4,−dν+1,4, . . . , dν+1,p,−dν+1,p) (2.3.9)

for p even and any ν < p odd.

We now give the proofs for the special cases of local linear (p = 1), local quadratic

(p = 2) and local cubic (p = 3) regression. A proof for p > 3 can be found in Section 2.7.

Local Linear

Proof. Let C = (cij) = (XTWX) and C∗ = (c∗ij) = (XTW∗X). For local linear regression

we have

C =

(
c0 0

0 c2

)
and C∗ =

(
c∗0 c∗2
c∗2 c∗2

)
.

2 Boundary Modification in Local Regression 18

We have p = 1 and only ν = 0 (i.e. for estimating g itself) satisfies the condition p − ν

odd. Using (2.3.7) and Lemma 2.1 leads to

d∗1,1 =
c∗2

c∗2(c
∗
0 − c∗2)

=
1

c∗0 − c∗2
=

1

c2
= d1,1,

because c∗0 − c∗2 = c2 and

d∗1,2 =
−c∗2

c∗2(c
∗
0 − c∗2)

= −d∗1,1 = −d1,1.

Local Quadratic

Proof. For local quadratic regression we have

C =

c0 0 c2

0 c2 0

c2 0 c4


and

C∗ =

c
∗
0 c∗2 c∗2
c∗2 c∗2 c∗4
c∗2 c∗4 c∗4

 .

Now, only ν = 1 (i.e. for estimating g′) satisfies the condition p−ν odd. Observing (2.3.7)

and Lemma 2.1, straightforward calculation leads to

|C| = c2(c0c4 − c22) and |C∗| = c2(c0c
∗
4 − c2c

∗
2).

It is easy to see that |C∗
2,1| = 0 and hence d∗2,1 = 0. Furthermore we have |C2,2| = c0c4 − c22

and |C∗
2,2| = c0 ∗ c∗4 − c2 ∗ c∗2. This leads to

d∗2,2 =
1

c2
= d2,2.

Finally, it is clear that |C∗
2,3| = |C∗

2,2|. This results in d∗2,3 = −d∗2,2 = −d2,2.

2 Boundary Modification in Local Regression 19

Local Cubic

Proof. For local cubic regression we have

C =


c0 0 c2 0

0 c2 0 c4

c2 0 c4 0

0 c4 0 c6


and

C∗ =


c∗0 c∗2 c∗2 c∗4
c2∗ c∗2 c∗4 c∗4
c∗2 c∗4 c∗4 c∗6
c∗4 c∗4 c∗6 c∗6

 .

Now, ν = 0 and ν = 2 satisfy the condition p − ν odd. Only the calculation in the case

with ν = 2, i.e. for estimating the second derivatives with local cubic regression, will be

given in detail. The results for ν = 0 are similar and omitted.

Following (2.3.7) and Lemma 2.1, we have

|C| = (c0c4 − c22)(c2c6 − c24) and |C∗| = (c0c4 − c22)(c2c
∗
6 − c4c

∗
4).

It is easy to show that d3,1 = − c2
c0c4−c22

. Straightforward calculation leads to

|C∗
3,1| =

∣∣∣∣∣∣∣
c∗2 c∗2 c∗4
c∗2 c∗4 c∗4
c∗4 c∗6 c∗6

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
0 c2 c∗4
c2 0 c∗4
c4 0 c∗6

∣∣∣∣∣∣∣ = −c2(c2c∗6 − c4c
∗
4).

That is d∗3,1 =
|C∗

3,1|
|C∗| = − c2

c0c4−c22
= d3,1. Furthermore, we have

|C∗
3,2| =

∣∣∣∣∣∣∣
c∗0 c∗2 c∗4
c∗2 c∗4 c∗4
c∗4 c∗6 c∗6

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
c2 c2 c∗4
c2 0 c∗4
c4 0 c∗6

∣∣∣∣∣∣∣ = −c2(c2c∗6 − c4c
∗
4) = |C∗

3,1|,

and hence d∗3,2 = −d∗3,1 = −d3,1. Note that, although the two (1,1)-th elements of C∗
3,1

and C∗
3,2 are different, they have however both zero cofactors. Similar calculations can be

carried out for C∗
3,3 and C∗

3,4.

Theorem 2.1 gives some exact, finite sample results for equidistant local polynomial

regression. It shows (together with Theorem 2.3) that some local regression estimators

with quite different weight functions can be identical. For given p, these results hold for

all ν < p with p− ν odd. For instance, if p = 3, they hold for ν = 0 and ν = 2, i.e. for the

estimation of g and g′′.

2 Boundary Modification in Local Regression 20

Note that the assumption of p − ν being odd is often made in local regression so that

the bias in the interior and at the boundary is of the same order. Theorem 2.1 does not

hold for local polynomial estimates ĝ(ν) and ĝ(ν)∗ obtained with p− ν even. For instance, it

is easy to show that local constant estimates ĝ and ĝ∗ in the interior are different.

For a nonparametric regression under equidistant design, the assumption that h < x =

xi0 < 1 − h is an observation point in the interior, implies that q = 1 and all weights

W (ut) ̸= 0 are symmetric around W (ui0) and the ujt for |ut| ≤ 1 are either symmetric (for

j even) or asymmetric (for j odd) around ui0 = 0. These facts are used in the proof of The-

orem 2.1. At an interior point x, which is not an observation point, or for non-equidistant

design nonparametric regression, results of Theorem 2.1 only hold approximately.

For estimation at the left boundary, let ĝ∗∗(x) denote the local polynomial estimator

obtained with the weight function W ∗∗(u) in the interior, where W ∗∗(u) ≡ W b
1,L(u) as

above. This leads to

Theorem 2.3. Let ĝ∗∗(x) denote the local polynomial estimator obtained with the weight
function W∗∗(u) at an observation point in the interior. Then, under the assumptions of
Theorem 2.1, we have ĝ(ν)(x) = ĝ

(ν)
∗∗ (x).

The proof of Theorem 2.3 is analogously to the proof of Theorem 2.1 and is omit-

ted. The third alternative boundary modification method using (2.2.6) is shown to be

also well-defined and reasonable by Theorems 2.1 and 2.3. The results presented in this

section show in particular that some local regression estimators obtained using different

weight functions are equivalent to each other under certain assumptions. Other reason-

able boundary modification methods in local regression might exist as well.

2.4 Boundary Behavior of Local Regression

In the following, we will discuss the asymptotic boundary behavior of a local polyno-

mial estimator. It is well known that local polynomial regression has automatic boundary

correction property without explicit use of boundary kernels the boundary kernels will

be generated automatically. Local regression with the two boundary modification meth-

ods introduced above will be utilized for straightforward generation of the two classes of

boundary kernels discussed by Müller (1991) and Müller and Wang (1994)

Let g(ν) be estimated by a p-th order local regression estimator with p− ν odd. At first,

the naive boundary modification method with Wq(u) is used. Then, a local regression

estimator is asymptotically equivalent to some kernel estimator of order k = p + 1, not

only in the interior but also at a boundary point. Following Müller (1987), we have

lim
n→∞

sup
1≤t≤n

∣∣∣∣ wν
t

wν
tk

− 1

∣∣∣∣ = 0, defining
0

0
≡ 1, (2.4.1)

where {wν
t } denotes the weighting system obtained by a local regression and {wν

tk} those

obtained by some kernel method. Related results may also be found e.g. in Lejeune

2 Boundary Modification in Local Regression 21

(1985); Lejeune and Sarda (1992) and Ruppert and Wand (1994). Let Kq denote the

corresponding (equivalent) boundary kernel, which does not belong to the classes of µ-

smooth or (µ, µ′)-smooth boundary kernels described by Müller (1991) and Müller and

Wang (1994). These boundary kernels may be called optimal (µ, 0) smooth boundary

kernels, since they are non-smooth at the endpoint u = q for q < 1. If locally unweighted

regression (with the Uniform kernel as the weight function) is used, then the generated

boundary kernels are the so-called minimum variance kernels introduced by Gasser and

Müller (1979). If the Epanechnikov kernel is used as the weight function in the interior,

the resulting kernels Kq are the so-called optimal boundary kernels proposed by Gasser

et al. (1985).

In the following, we will extend the above results to a general boundary modification

method. Let Wq denote any reasonable weight function at the boundary with support

[−1, q], which can, for instance, be one of W 0
q , W a

q or W b
q , q ∈ [0, 1] defined above. For

convenience, assume that Wq(u) is standardized with integral one. By extending the

results in (2.4.1), we obtain

Theorem 2.4. Let ĝ(ν) be a p-th order local regression estimator of g(ν) with p − ν odd. Let
k = p+ 1. Assume that the bandwidth h satisfies h→ 0, nh2ν−1 → ∞ as n→ ∞. Then ĝ(ν)

is asymptotically equivalent to a kernel estimator with the boundary kernel

Kq(u) = (a0 + a1u+ · · ·+ ak−1u
k−1)Wq(u), (2.4.2)

where a0, a1, . . . , ak−1 are the unique solutions of the system of k linear equations

Npqa = ν!eν+1,

where

N =


µ0 µ1 · · · µp

µ1 µ2 · · · µp+1

...
...

. . .
...

µp µp+1 · · · µ2p

 ,

where µj =
∫ q
−1 u

jWq(u)du is the j-th moment of Wq, a = (a0, a1, . . . , ap)
T and eν+1 is as

defined before.

The proof of Theorem 2.4 can be obtained by adapting known results in the literature

and is hence omitted. It is clear that the solutions of this linear system are unique.

The boundary kernels Kq(u) generated by local polynomial regression depend strongly

on the form of the boundary weight function, through W o
q on the r.h.s. of (2.4.2) and the

change in the solutions of a0, . . . , ap. If W 0
q is used as weight function, then the boundary

kernels generated by local polynomial regression are discontinuous at the point x = q for

q ̸= 1 due to the discontinuity of W 0
q itself, no matter how smooth W (u) in the interior is.

2 Boundary Modification in Local Regression 22

This drawback is overcome by using the two smooth boundary modification methods in-

troduced in Section 2.2. Now, due to the uniqueness of the solutions, the boundary kernels

proposed by Müller (1991) and Müller and Wang (1994) will be generated respectively1.

Another advantage by using the ideas in Müller (1991); Müller and Wang (1994) is that,

in this case, the solution (2.4.2) may be represented more easily by means of orthonormal

polynomials associated with the weight function W a
q or W b

q (see Müller (1991) for a gen-

eral explicit solution). Such a representation would be arduous if the boundary weight

function W 0
q is used, because, for general µ, the solutions of the orthonormal polynomials

associated with Wq are highly complex.

We provide a special solution to a (2, 0, 0)-kernel. Some further µ-smooth and (µ, µ′)-

smooth boundary kernels generated via Theorem 2.4 from W a
q (u) and W b

q (u) are given in

Table 2.1 and Table 2.2 and plotted in Figure 2.2 for q = 0, 0.5, 1. Consider the simple

case for estimation of g with local linear regression (p = 1, k = 2), the asymptotically

equivalent boundary kernel using a boundary weight function Wq is given by

Kq(u) = (a0 + a1u)Wq(u),

with α0 =
µ2

µ2 − µ21
and a1 =

−µ1
µ2 − µ21

. (2.4.3)

For the Uniform kernel (ν = 0), the solutions for all of the three boundary modification

methods are the same with Wq(u) = 1[−1,q](u),

µ1
µ0

=
q − 1

2
and

µ2
µ0

=
q2 − q + 1

3
.

Inserting these into (2.4.3), we obtain

a0 = 1 + 3
(1− q)2

(1 + q)2
and a1 = 6

1− q

(1 + q)2
.

This leads to

Kq(u) =
1

1 + q

[
1 + 3

(
1− q

1 + q

)2

+ 6
1− q

(1 + q)2
u

]
1[−1,q](u)

=
1

(q + 1)3
[
(4q2 − 4q + 4) + (−6q + 6)u

]
1[−1,q](u).

1The arguments of the kernel functions used in kernel estimators and local polynomial estimators are often
different. The Kq(u) generated from Theorem 2.4 is indeed a right boundary kernel, if µj follows the
definition of the kernel properties by Müller (1991); Müller (1993b); Müller and Wang (1994).

2 Boundary Modification in Local Regression 23

q = 0 q = 0.5 q = 1

(2, 0, 0)
(2, 2, 0)

(3, 2, 1)
(4, 2, 0)

(4, 2, 2)

−1.00 −0.75 −0.50 −0.25 0.00−1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 1.0

Weighting Type Wq
a (u) Wq

b (u) Wq (u)

Figure 2.2: Kernels of order (k, µ, ν) generated by the equivalent kernel method of Theorem 2.4. Values
are displayed for q = 0, 0.5, 1 and all three boundary modification methods.

2 Boundary Modification in Local Regression 24

2.5 Areas of Application

Although local polynomial regression solves the boundary problem, which affects the bias

and convergence rate of kernel regression, some boundary effects are still present. In this

chapter, we focused on the degree of smoothness at the boundaries and were interested in

a smooth continuation to the boundary regions of the weighted regression in the interior. A

boundary modification in this sense might lead to improved results compared to the naive

local polynomial regression, notably in cases, in which the boundary region dominates the

interior region.

In real-time or online monitoring applications, data points are evaluated as they occur,

and every new value is a boundary point. If the continuous estimation of a smooth trend

is required, boundary modification as proposed in this chapter is necessary. If truncated

kernels are used, the estimated trend function would be discontinuous at every point as

a sequence of endpoints cannot be estimated smoothly. Examples for such applications

might be temperature or pollution monitoring, the tracking of financial measures such as

stock or commodity prices, or technical measurements in industrial facilities.

A similar argument can be made for nonparametric change point detection, which was

investigated, for instance, by Müller (1992) and Loader (1996). For a given set of obser-

vations, one-sided regression is applied from both sides, where every observation in the

interior is considered as the endpoint of the observations left to it and as the endpoint of

the observations right to it.

The ratio of the boundary regression increases with the dimensionality of the data.

Hence, for the same bandwidth, the boundary effects are more severe. Consider for exam-

ple a bandwidth h = 0.2 and a boundary region BRi = {0 ≤ xi ≤ hi ∪ 1 − hi ≤ xi ≤ 1},

where i is the dimension index (e.g. i = 1 in the univariate case). For univariate re-

gression, the boundary ratio is 0.4, while in a bivariate regression model, the boundary

ratio BR1 ∪ BR2 becomes 0.64 if h1 = h2 = 0.2. Thus, for a bandwidth of h = 0.2, the

boundary region covers more than half of all observations. If estimation of derivatives of

the regression surface is considered, the bandwidth increases in general, leading to much

larger boundary ratios. These derivatives frequently appear in plug-in bandwidth selec-

tion rules, as proposed e.g. by Gasser et al. (1991); Herrmann et al. (1992) and Herrmann

et al. (1995). If these plug-in or iterative plug-in algorithms are applied to local polyno-

mial regression, smooth extension to the boundaries improves the stability of the results.

We use this application of the proposed boundary modification methods in the subsequent

chapters.

2 Boundary Modification in Local Regression 25

2.6 Final Remarks

In this chapter, we propose two new methods for boundary modification in local regres-

sion, which correspond to the boundary kernels of Müller (1991) and Müller and Wang

(1994). This type of boundary modification allows for a smooth continuation of estimates

at the boundary region. The newly found estimation methods are shown to be equivalent

to the conventional use of truncated kernels in the interior. The proposed methods es-

tablish a convenient way for obtaining boundary correction kernels in the sense of Müller

(1991) and Müller and Wang (1994) simply from their regression weights, which is espe-

cially useful for computing higher-order kernels.

Our focus is on the continuous extension of the smoother to boundary points, optimal

kernels are not in the scope of this chapter. However, Müller and Wang (1994) showed

that the (optimal) MSE using the (µ, µ−1)-th smooth boundary kernel is generally smaller

than that using the µ-th smooth boundary kernels. It is expected that the MSE obtained

using the naive boundary modification method would still be smaller. A more interesting

question is which weight function is optimal. Cheng et al. (1997) obtained related results

for estimation at the endpoints. Their results indicate that, e.g., for a local linear estimator

of g, none of the three methods is optimal. A general answer to this question at an arbitrary

boundary point with q ∈ (0, 1) is still unknown.

2 Boundary Modification in Local Regression 26

2.7 Appendix

Proof of Theorem 2.1 Note that C in (2.3.3) or (2.3.5) is a special matrix, whose (i,j)-

th entries with i + j odd are all zero. For all p, it holds that C = CT and C∗ = CT
∗ . The

following lemma provides some useful properties of such a matrix.

Lemma 2.2. Let {E}ij = (eij) be an m×m matrix with eij = 0 for all elements where i+ j

is odd. Then

1) |E| = |A| · |B|, where A is the matrix obtained from E on erasing the even rows and
even lines and B is that on erasing the odd rows and odd lines.

2) For i and j both odd, let r = (i+1)/2, s = (j+1)/2 and Ars denote the (r, s)-th minor
of the matrix A defined in 1). Then the cofactor of eij is either |Ars||B| or −|Ars||B|.

3) For i and j both even, let r = i/2, s = j/2 and Brs denote the (r, s)-th minor of the
matrix B defined in 1). Then the cofactor of eij is either |A||Brs| or −|A||Brs|.

4) For i + j odd, the cofactor of the element eij (i.e. of a zero element) is zero. Then Eij

corresponding to a nonzero element is zero.

Using the notation of cofactors from (2.3.7), Theorem 2.2 can be reduced further.

Theorem 2.5. The results given in (2.3.8) and (2.3.9) are respectively equivalent to
Case 1:

a)
|C∗

ν+1,i|
|C∗| =

|Cν+1,i|
|C|

b) |C∗
ν+1,i+1| = |C∗

ν+1,i|, i = 1, 3, . . . , p,

for p odd and ν even with 0 ≤ ν < p.
Case 2:

a) |C∗
ν+1,1| = 0

b)
|C∗

ν+1,i|
|C∗| =

|Cν+1,i|
|C| c) |C∗

ν+1,i+1| = |C∗
ν+1,i|, i = 2, 4, . . . , p,

for p even and ν odd with 1 ≤ ν < p.

The proof of Theorem 2.5 is straightforward and is omitted. Note that |C∗
ν+1,i+1| =

|C∗
ν+1,i| means that these two cofactors have the same absolute value but with different

sign. We are now in position to prove Theorem 2.1:

Proof of Theorem 2.1. From the considerations above, Theorem 2.5, is a sufficient (an nec-

essary) condition for Theorem 2.1 to hold.

Note that the matrix C is a special case of those considered in Lemma 2.2. Hence we

have |C| = |A| · |B|, where A is the matrix obtained from C on erasing the even rows and

lines and B is that on erasing the odd rows and lines. We assume p ≥ 3, so that both of A

and B are at least of size 2× 2.

2 Boundary Modification in Local Regression 27

Case 1: ν is even and hence ν + 1 is odd. Note that C∗ only consists of cj for j even.

From the relationship c∗j = cj + c∗j+2 for j even and by subtracting the (j + 1) th column

from the j-th column of C∗ for all j = 1, 2, . . . , p, we obtain

C∗ =



c0 0 c2 · · · cp−1 c∗p+1

0 c2 0 · · · 0 c∗p+1

c2 0 c4 · · · cp+1 c∗p+3
...

...
...

. . .
...

...

cp−1 0 cp+1 · · · c2p−2 c∗2p
0 cp+1 0 · · · 0 c∗2p


and

|C∗| = |C∗|.

Following 4) of Lemma 2.2, the cofactor of the (j,p+1)-th element in the (p+1)-th column

of C∗ is zero, if j is odd and these elements can be replaced by zero without affecting the

determinant of C∗. Doing this and carrying out similar interchanges as for C, we get

|C∗| = |C∗|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 0 c2 · · · cp−1 0

0 c2 0 · · · 0 c∗p+1

c2 0 c4 · · · cp+1 0
...

...
...

. . .
...

...

cp−1 0 cp+1 · · · c2p−2 0

0 cp+1 0 · · · 0 c∗2p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣A 0

0 B∗

∣∣∣∣∣
= |A| · |B∗|,

where A is the same as that for C and B∗ is obtained from B by replacing the last column

with (c∗p+1, c
∗
p+3, . . . , c

∗
2p)

T. This leads to

|C|
|C∗|

=
|B|
|B∗|

. (2.7.1)

To show that the ratio between the cofactors c̃ν+1,i and c̃∗ν+1,i for i odd is that in (2.7.1),

let i be odd and define r = (ν + 2)/2 and s = (i + 1)/2. From 2) of Lemma 2.2, either

c̃ν+1,i = |Ars||B| or c̃ν+1,i = −|Ars||B|, where Ars is the same as in 2) of Lemma 2.2 for

2 Boundary Modification in Local Regression 28

the matrix C. To calculate c̃∗ν+1,i, we transform the submatrix C∗
ν+1,i by subtracting and

interchanging rows and columns to

C
∗
ν+1,i =

(
Ars B̃∗

0 B∗

)
(2.7.2)

where Ars and B∗ are as defined above. Following (2.7.6) the cofactor of c∗ν+1,i is either

|C∗
ν+1,i| = |Ars||B| or |C∗

ν+1,i| = −|Ars||B|.

Furthermore, the required number of interchanges is the same for calculation of the co-

factors of cν+1,i and c∗ν+1,i, i.e. the sign is either both changed or both unchanged. We

obtain the ratio between these two cofactors

c̃∗ν+1,i

c̃ν+1,i
=

|Ars||B∗|
|Ars||B|

=
|B∗|
|B|

=
|C∗|
|C|

.

This proves the results in a) of Case 1.

Furthermore, the two submatrices C∗
ν+1,i and C∗

ν+1,i+1 differ from each other only in

one column. Analogously, C∗
ν+1,i+1 can be transformed by subtracting and interchanging

rows and columns to yield

C̃∗
ν+1,i+1 =

(
Ars

qB∗
qArs B∗

)
,

where Ars and B∗ are the same as in (2.7.2), all elements of qB∗ are zero except for those

in the last column and all elements of qArs are zero except for those in the s-th column,

i.e. qArs has at least one column with all zero, which ensures that the any element of qB∗

has zero cofactor and, for calculating the determinant of C∗
ν+1,i+1, qB∗ can be replaced by

a zero block. This leads to either

|C̃∗
ν+1,i+1| = |Ars||B| or |C̃∗

ν+1,i+1| = −|Ars||B|.

Again, the required numbers of interchanges by the transformations to calculate the co-

factors c̃∗ν+1,i, c̃
∗
ν+1,i+1 are the same, implying |C∗

ν+1,i+1| = |C∗
ν+1,i|. Results of Case 1

hold.

Case 2: a) Now, p is even and 1 ≤ ν < p is odd. We carry out a similar transformation

from C∗ to C∗ as in Case 1. Because c∗ν+1,1 is in the first column of C∗, C∗
ν+1,1 can be

transformed similarly. The transformed matrix is now equal the corresponding minor of

C̃∗, denoted by C̃∗
ν+1,1. Note that, generally, this does not hold for the cofactor of an

element in other column. Hence we have |C∗
ν+1,1| = ±|C̃∗

ν+1,1| = 0. That is d∗ν+1,1 = 0.

The proof of results in b) and c) of Case 2 is analogous to that for Case 1. We will only

give a sketched proof in this case. Let i be even. We can obtain |C∗| = |A∗| · |B|, where

2 Boundary Modification in Local Regression 29

B is the same as that for C and A∗ is obtained from A by replacing the last column with

(c∗p, c
∗
p+2, . . . , c

∗
2p)

T. Similar to the analysis given above, we obtain

|C∗
ν+1,i|

|Cν+1,i|
=

|A∗||Bν+1,i|
|A||Bν+1,i|

=
|A∗|
|A|

=
|C∗|
|C|

.

And further, it can also be shown that |C∗
ν+1,i+1| = |C∗

ν+1,i|. Hence, Theorem 2.1 is proved.

The proof of Theorem 2.3 is obtained in the same manner.

Additional Proofs

Proof of Lemma 2.1. The result in 1) holds, since, for j odd, ujt for |ut| ≤ 1 are asymmetric

around ui0 and kt for kt ̸= 0 are symmetric around ki0 .

2) For the difference between c∗j and c∗j+1 we have

c∗j − c∗j+1 =
∑

|ut|≤1

k∗t [u
j
t − uj+1

t]

=
∑

|ut|≤1

k∗t (1− ut)u
j
t

=
∑

|ut|≤1

ktu
j
t = cj ,

since kt = k∗t (1− ut).

3) For j odd we have c∗j − c∗j+1 = cj = 0, i.e. c∗j = c∗j+1.

4) For j even, we have j + 1 is odd and c∗j+1 = c∗j+2. Results in 4) follows further from

that in 2). With this Lemma 2.1 is proved.

Proof of Lemma 2.2. 1) Let m′ denote the integer part of (m+1)/2 and define the permu-

tation matrix Pm with elements pij by

pij =

1 for j = 2i− 1, 1 ≤ i ≤ m′, j = 2(i−m′),m′ < i ≤ m

0 otherwise
. (2.7.3)

We obtain the matrix E′ = PmEP
T
m with

E′ =

(
A 0

0 B

)
, (2.7.4)

where 0 a block of zeros with corresponding rows and columns.2 Now, A consists purely

of elements with odd indices and B of elements with even indices. Hence, A is actually

2A similar matrix is obtained, if we interchange the i-th row with the (2i − 1)-th row for 2 ≤ i ≤ n1 and
then interchange the j-th column with the (2j − 1)-th column.

2 Boundary Modification in Local Regression 30

the matrix obtained from E on erasing the even rows and even lines and B is that on

erasing the odd rows and odd lines. Since |Pm|2 = 1 is even, we yield

|E| = |E′| =

∣∣∣∣∣A 0

0 B

∣∣∣∣∣ = |A| · |B|. (2.7.5)

2) By (2.7.3), after the transformation of 1), the r-th row of E consists of the same

elements as the i-th row of E, the same is true for columns s of A and j of E. Hence,

Ers is the same as Eij , the same is true for the cofactors ẽ′rs = ẽij . Using (2.7.5), the

submatrix Ers has the diagonal form of (2.7.5) with blocks Ars and B. The number of

total interchanges required for the the transformation of the minor must not necessarily

be even and hence, ẽrs is either |Ars||B| or −|Ars||B|.
3) The proof of 3) is analogous to that of 2).

4) The result in this part is well known for such a special matrix. Let A1 be an n1 × n1

matrix, A2 be an n2 × n2 matrix and A3 an arbitrary matrix with corresponding rows and

columns. Then, note that∣∣∣∣∣A1 A3

0 A2

∣∣∣∣∣ = |A1||A2| and

∣∣∣∣∣A1 0

A3 A2

∣∣∣∣∣ = |A1||A2|. (2.7.6)

With the same rationale as for 2), erasing the i-th row and and j-th column of E corre-

sponds to erasing the r-th row and s-th column of E′. The erased element is now in one

of the 0’s in (2.7.4). Hence, elements of A and B are erased and we obtain one of the two

forms given in (2.7.6) with either |A1| = 0 or |A2| = 0.

Proof of Theorem 2.2. Note that

XTX̃ =



(1− u1) (1− u2) · · · (1− un−1) (1− un)

(1− u1)u1 (1− u2)u2 · · · (1− un−1)un−1 (1− un)un
...

...
. . .

...
...

(1− u1)u
p−1
1 (1− u2)u

p−1
2 · · · (1− un−1)u

p−1
n−1 (1− un)u

p−1
n

(1− u1)u
p
1 (1− u2)u

p
2 · · · (1− un−1)u

p
n−1 (1− un)u

p
n


.

Let p be odd and ν < p be even. Straightforward calculation shows that the t-th element

of Dν+1XTX̃, denoted by st, is given by

st = (1− ut)

(p+1)/2∑
j=1

dν+1,2j−1u
2j−2
t .

2 Boundary Modification in Local Regression 31

Denote the t-th element of Dν+1
∗ XT by s∗t . If (2.3.8) holds, we have

s∗t =

(p+1)/2∑
j=1

(dν+1,2j−1u
2j−2
t − dν+1,2j−1u

2j−1
t)

=

(p+1)/2∑
j=1

dν+1,2j−1u
2(j−1)
t (1− ut)

= st.

Hence, the first part of Theorem 2.2 is proved. The second part can be proved analogously.

2 Boundary Modification in Local Regression 32

Table 2.1: Selected right µ-smooth (Müller, 1991) boundary kernels Kq(u) for u ∈ [−1, q] and q ∈
[0, 1].

Order Formula

(2, 2, 0)
60(1 + u)2(q − u)2

(q + 1)7
[
(4q2 − 6q + 4) + (−7q + 7)u

]
(3, 1, 0)

60(1 + u)(q − u)

(q + 1)7
[
(2q4 − 8q3 + 15q2 − 8q + 2)

+(−8q3 + 27q2 − 27q + 8)u+ (7q2 − 21q + 7)u2
]

(3, 2, 1)

840(1 + u)2(q − u)2

(q + 1)9
[
(−5q3 + 16q2 − 16q + 5) + (22q2 − 40q + 22)u

+(−21q + 21)u2
]

(4, 2, 0)

840(1 + u)2(q − u)2

(q + 1)11
[
(4q6 − 30q5 + 96q4 − 136q3 + 96q2 − 30q + 4)

+ (−27q5 + 171q4 − 396q3 + 396q2 − 171q + 27)u

+ (54q4 − 300q3 + 480q2 − 300q + 54x2)u2

+(−33q3 + 165q2 − 165q + 33)u3
]

(4, 2, 2)

5040(1 + u)2(q − u)2

(q + 1)11
[
(18q4 − 100q3 + 160q2 − 100q + 18)

+ (−139q3 + 455q2 − 455q + 139)u

+(304q2 − 580q + 304)u2 + (−198q + 198)u3
]

Table 2.2: Selected right (µ, µ′)-smooth (Müller and Wang, 1994) boundary kernels Kq(u) for u ∈
[−1, q] and q ∈ [0, 1].

Order Formula

(2, 2, 0)
60(1 + u)2(q − u)

(q + 1)6
[
(1− 2q + 2q2) + (2− 3q)u

]
(3, 1, 0)

12(1 + u)

(q + 1)6
[
(6q4 − 16q3 + 21q2 − 6q + 1) + (−20q3 + 45q2 − 30q + 5)u

+(15q2 − 30q + 5)u2
]

(3, 2, 1)

420(1 + u)2(q − u)

(q + 1)8
[
(−5q3 + 12q2 − 9q + 2) + (19q2 − 26q + 11)u

+(−16q + 12)u2
]

(4, 2, 0)

420(1 + u)2(q − u)

(q + 1)10
[
(5q6 − 30q5 + 77q4 − 84q3 + 45q2 − 10q + 1)

+ (−30q5 + 152q4 − 280q3 + 216q2 − 70q + 8)u

+ (54q4 − 240q3 + 300q2 − 144q + 18)u2

+(−30q3 + 120q2 − 90q + 12)u3
]

(4, 2, 2)

5040(1 + u)2(q − u)

(q + 1)10
[
(9q4 − 40q3 + 50q2 − 24q + 3)

+ (−61q3 + 160q2 − 127q + 30)u

+(119q2 − 182q + 77)u2 + (−70q + 56)u3
]

3 Fast Computation and Bandwidth
Selection Algorithms for the DCS

This chapter is based on joint work with Yuanhua Feng and published with
slight differences in the CIE Working Papers (146), Paderborn University, under
the title ”Fast Computation and Bandwidth Selection Algorithms for Smoothing
Functional Time Series”.

3.1 Introduction

Smoothing, i.e. estimation of the mean surface of curve- or functional time series, is a topic

that arises in many research areas, including environmental science, biology, demography,

and finance (see e.g. Aneiros-Pérez and Vieu, 2008; Chiou and Müller, 2009; Bathia et al.,

2010; Hyndman and Shang, 2010; Shang and Hyndman, 2017; Li et al., 2019a). The

mean surface of a functional time series is estimated under a well-known nonparametric

regression model (see Hyndman and Ullah, 2007; Aneiros-Pérez and Vieu, 2008; Hyn-

dman and Shang, 2010; Gao and Shang, 2017, among others), assuming the data are

observed on a regular lattice. Smoothing of random fields under a fixed design is closely

related (see e.g. Machkouri and Stoica, 2010; Wang and Wang, 2009; Yue and Speckman,

2010; Li et al., 2019b). In this chapter we introduce fast computation procedures and de-

velop a suitable data-driven algorithm for estimating the mean surface of large functional

time series with millions of observations. Our findings can be generalized to smoothing

functional time series or random fields with irregular design in one dimension. Potential

extensions include nonparametric regression with spatial- or spatial-temporal data (Hallin

et al., 2004; Robinson, 2011) or bivariate kernel regression (Müller, 1988; Müller and

Prewitt, 1993; Facer and Müller, 2003) under suitable regularity conditions on the design.

The mean surface of a functional time series can simply be estimated by traditional

bivariate (2D) nonparametric regression approaches (see e.g. Müller, 1988; Ruppert and

Wand, 1994; Härdle and Müller, 2013; Scott, 2015). However, the common 2D-smoothing

techniques run so slowly, up to the point of practical inapplicability, if the number of ob-

servations in both dimensions grow very large. This problem becomes even more severe if

data-driven selection of the bandwidths is taken into account for which iterative smooth-

ing is required. Some fast computation algorithms for multivariate nonparametric re-

gression were suggested in the literature, including approximate binned kernel estimates

(Wand, 1994) or a grid with much fewer estimation points. However, those approaches

can only provide approximate or partial smoothing results with certain information loss.

33

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 34

For functional time series defined on a lattice, Feng (2013) and Peitz and Feng (2015)

proposed a (Nadaraya-Watson-type) double conditional smoothing (DCS) procedure

where univariate kernel estimates are calculated in the first stage, conditioning on obser-

vations in the other dimension. Then, the intermediate results are smoothed in the second

dimension conditioning on observations in the first dimension. An important feature of

the DCS is its equivalency to a 2D-kernel smoother with a product kernel, thus, no loss

of information will occur. The main idea of the DCS is to divide a 2D-smoother into two

sequential univariate smoothing procedures which hence improves the computational

efficiency strongly compared to classical bivariate smoothing. The resulting estimates

do not depend on the order of the two univariate smoothing procedures. Moreover,

the intermediate smoothing results might also provide valuable information about the

trends of the functional time series in one direction which correspond to the smoothing

results for a functional time series as used, e.g., by Shang and Hyndman (2017) and

Gao and Shang (2017). The first stage of the DCS can be carried out in both dimensions

to discover detailed features of the data, examples are given by Feng (2013) and Peitz

and Feng (2015). The DCS can be combined with other ideas to further reduce the

computation time and might also be extended to higher-dimensional cases. We introduce

a new functional DCS (FDCS) scheme to calculate the functional curve at once (per

dimension). Again, this procedure is equivalent to the DCS and the 2D-kernel smoother

but runs faster than the DCS procedure.

Note that the Nadaraya-Watson (NW) kernel regression is subject to the boundary prob-

lem. Spatial observations further worsen the boundary problem, since the ratio of the

boundary region to the number of total observations is in general much higher than in the

univariate case. In this chapter, we use product boundary kernels, i.e. products of two

univariate boundary kernels as proposed by Müller (1991) and Müller and Wang (1994)

to correct the boundary effect. For the iterative plug-in (IPI) bandwidth selection rule by

Gasser et al. (1991) presented in Section 3.4.2, estimation of derivatives of the regression

surface is necessary. Definitions of boundary kernel functions for estimation of these par-

tial derivatives may be found e.g. in Müller (1988) and Facer and Müller (2003). Some

useful closed-form formulas of univariate boundary kernels for estimating the derivatives

are given in Table 2.1 and Table 2.2 of Chapter 2.

Different data-driven algorithms for bandwidth selection in multivariate kernel regres-

sion, including plug-in (Herrmann et al., 1995; Yang and Tschernig, 1999; Kolác̆ek and

Horová, 2017), Cross-Validation (CV, Zhang et al., 2009; Kolác̆ek and Horová, 2017),

bootstrap (Manteiga et al., 2004) and Bayesian (Zhang et al., 2009) approaches, are pro-

posed in the literature. We will adjust the 2D-IPI algorithm of Herrmann et al. (1995) for

selection of the bandwidths. For this purpose, necessary asymptotic results for the FDCS

approach are obtained and investigated under independent and identically distributed

(iid.) errors. In particular, the asymptotically optimal bandwidths for the FDCS are shown

to be the same as given in the literature since the FDCS is equivalent to the 2D-kernel

smoother. An IPI algorithm is developed by plugging suitable estimates of the unknown

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 35

variance and bias factors into the asymptotically optimal bandwidths starting from fixed

initial bandwidths. Bandwidth selection rules based on a search procedure, like CV or

bootstrap, run too slowly and are not suitable for selecting the bandwidths in the current

context of large data sets and are not considered in this thesis.

The proposed methods are applied to functional time series of high frequency financial

(HFF) returns for estimating the spot-volatility surface as well as the surface of trading

volumes. Following Andersen and Bollerslev (1997), Andersen and Bollerslev (1998) and

Andersen et al. (2000), those data can be indicated by an interday (daily) and an intra-

day index. We obtain a functional time series with the trading day as the time dimension

and the intraday trading time as the temporal dimension which is a continuous variable

indeed. With equidistant intraday observations, a functional time series on a regular lat-

tice received. Exemplary 3D-plots of such data can be found e.g. in Feng (2013); Peitz

and Feng (2015), and Li et al. (2019b). The IPI algorithm is applied to one-minute re-

turns of the German companies Siemens AG and BMW AG and the corresponding trading

volumes. All time series include more than one million observations over multiple years

around the 2008/2009 financial crisis. We estimate the spot-volatility surface from the

return data which reflects the joint long-term and intraday volatility dynamics. In partic-

ular, it exhibits a volatility saddle around the financial crisis as a combination of the very

high volatility peak and the daily volatility smiling (see Figure 3.3a); the volume surface

exhibits a similar pattern. The developed methods allow us to estimate and remove a pos-

sible non-stationary volatility component from the HFF-returns. The standardized returns

can be further analyzed using known parametric functional time series models. The real

data examples show that the proposed algorithm works well in practice.

We define nonparametric regression for functional time series and the DCS in Sec-

tion 3.2. The boundary correction, the FDCS and the estimation of the derivatives are

proposed in Section 3.3, asymptotic optimal bandwidths are obtained and applied to the

IPI algorithm in Section 3.4. We present our simulation study in Section 3.5 and an ap-

plication to real data examples in Section 3.6. We close with final remarks in Section 3.7.

Additional proofs are given in the appendix.

3.2 The Model and the Basic DCS Procedure

3.2.1 A Semiparametric Functional Time Series Model

Let yi,j be the observations of a functional time series Yi,j , obtained on a regular lattice

X1 × X2 defined by fixed design points x1,i, i = 1, ..., n1 in the time dimension and x2,j ,

j = 1, ..., n2 in the temporal dimension, according to given design densities. The total

number of observations is n = n1 ·n2. We study the nonparametric regression of a possible

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 36

deterministic mean surface in those data. For this purpose, we assume the data follow the

semiparametric regression model for a functional time series:

Yi,j = m(x1,i, x2,j) + εi,j , i = 1, ..., n1; j = 1, ..., n2, (3.2.1)

where m(•, •) is a smooth nonparametric regression function and {εi,j} is a stationary

(possibly parametric) random field defined on the lattice determined by x1,i and x2,j with

zero-mean and var(εi,j) = σ2. Note that it is only assumed that x1,i or x2,j are fixed design

points and their values are taken independently of each other, it is not required that x1,i
or x2,j are equally spaced. This model can also be applied to fixed design nonparametric

regression with spatial or spatial-temporal data. Throughout this chapter, we assume

both variables X1 and X2 to be discrete and equidistantly distributed, where we use the

rescaled variables x1,i = i/n1 and x2,j = j/n2 on the range [0, 1] × [0, 1]. As specific

example for model (3.2.1), we will consider equidistant HFF time series under a functional

representation, where X1 stands for the trading day and X2 for the intraday trading time.

The suggested fast computation procedures can also be extended to the case where x2
follows an irregular or random design.

As the proposed approaches below do not hinge on the dependency structure of the sta-

tionary part, these smoothing procedures are applicable to nonparametric regression for

functional time series with iid., short- or long-range dependent errors. Further necessary

assumptions on the dependency structure of the lattice process {εi,j} will be introduced

during the discussion on the asymptotic properties of the proposed estimators in Sec-

tion 3.3.3 and the development of the IPI algorithm in Section 3.4.2.

3.2.2 The Double Conditional Smoothing

Bi- and multivariate kernel regression under model (3.2.1) was studied among others by

Ruppert and Wand (1994), Herrmann et al. (1995), Härdle and Müller (2013), and Scott

(2015), where also bandwidth selection is covered. A crucial issue in bivariate kernel re-

gression of HFF data is, that these data regularly include a huge number of observations

and the common kernel regression estimator runs too slowly. To overcome this problem

and for reduction of computation time, the DCS method was proposed by Feng (2013), ap-

plication examples were given by Peitz and Feng (2015). The DCS provides an equivalent

definition to the common bivariate semiparametric regression model:

Yt = m(x̃t) + εt, x̃t = (x1,t, x2,t), (3.2.2)

where m(x̃) is a smooth mean function in x̃ and Yt, t = 1, ..., n is a single time series

depending on a two-dimensional covariate variable x̃t = (x1,t, x2,t). The innovations {εt}
form a sequence of random variables with zero mean and variance σ2 which might depend

on the point x̃t allowing for heteroscedasticity. The mean or expectation function m(x̃) =

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 37

E(Y |x̃) of model (3.2.2) given observations yt can be estimated using a bivariate kernel

regression (see e.g. Müller, 1988; Müller and Prewitt, 1993; Facer and Müller, 2003) with

m̂(x1, x2) =
n∑

t=1

wt yt,

wt = K

(
x1,t − x1

h1
,
x2,t − x2

h2

)[n∑
t=1

K

(
x1,t − x1

h1
,
x2,t − x2

h2

)]−1

. (3.2.3)

In (3.2.3), K(u, v) is a bivariate kernel function and h1, h2 are the bandwidths overX1 and

X2 respectively. Following Facer and Müller (2003), a bivariate kernel function K(u, v)

of order (k, |ν|), for estimation of a partial derivative m(ν)(x̃t) with ν = (ν1, ν2), has the

following properties for r, s ∈ N ∪ 0:

∫ 1

−1

∫ 1

−1
K(u, v)urvs dudv =


0 for 0 ≤ r + s ≤ |ν|, (r, s) ̸= ν

ν! for (r, s) = ν

0 for |ν| < r + s < k.

(3.2.4)

Bivariate kernel functions in the sense of (3.2.4) can be formulated in several ways. An

important special case is a product kernel, where K(u, v) is the product of two univariate

kernels K1, K2 of order (k1, ν1) and (k2, ν2) given in Definition 3.4. These orders are

related to that of (3.2.4) by k = δ+ ν1 + ν2, where δ ≡ k1 − ν1 = k2 − ν2. Throughout this

chapter, we consider the use of such product kernels as stated in Assumption A5.

Consider the estimation in (3.2.1) with observations yi,j of Yi,j , at a point (x1,i0 , x2,j0) ,

x1,i0 = i0/n1 and x2,j0 = j0/n2, where 0 ≤ i0 ≤ n1 and 0 ≤ j0 ≤ n2 are two integers. We

establish the following assumptions for the regression model:

A1. The functional time series under consideration is equidistant with observations yi,j ,

i = 1, ..., n1 and j = 1, ..., n2. Model (3.2.1) is defined as a (two-dimensional)

triangular array in n = n1 · n2 with m(x1, x2) on [0, 1]2. The equidistant design

points (x1,i, x2,j) are given by the rescaled variables x1,i = i/n1 and x2,j = j/n2.

A2. The mean surface m(x1, x2) is a smooth and Lipschitz continuous function which is

at least (k1, k2) times continuously differentiable on [0, 1]2.

A3. In the limit, the bandwidths satisfy the conditions h1, h2 → 0, n1h1, n2h2 → ∞ and

n1h
ν1
1 h

ν2
2 , n2h

ν1
1 h

ν2
2 → ∞, as n1, n2 → ∞ at the same time.

A4. The error terms {εi,j} form an iid. random field with zero mean and common vari-

ance var(εi,j) = σ2.

A5. A bivariate product kernel K(u, v) = K1(u) · K2(v) is used, where K1, K2 are

(boundary) kernels of order (k1, ν1) and (k2, ν2) fulfilling the well-known regular-

ity condition in Definition 3.4. For simplification of the results, we further assume

that k1 − ν1 = k2 − ν2 ≡ δ, with δ odd.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 38

Although the proposed DCS estimator is with boundary correction, its bias is still affected

by the design. Under A1, the formula of the asymptotic bias is simplified. This result

does not hold for non-equidistant design, as the kernel estimator used in this chapter is

not design adaptive. For non-equidistant fixed design, either the Gasser-Müller estimator

(Gasser and Müller, 1979, see (3.2.8)) or local polynomial regression should be adopted.

The second part of A1 is a counterpart of a well-known, somehow artificial model assump-

tion in nonparametric regression for time series which assumes that the mean surface is

not affected by n1 or n2. Without this assumption, we cannot discuss the asymptotic bias

and m(x1, x2) cannot be estimated consistently. A2 and A3 are common assumptions in

bivariate kernel regression. In this chapter, we will only investigate the asymptotic vari-

ance under the iid. Assumption A4, the results can be extended to cases with stationary

dependent errors. The Regularity conditions on the kernel function of A5 are stated in

Definition 3.4 (see e.g. Müller, 1988).

Under the product kernel Assumption A5 and equidistant design ofX1, X2, the bivariate

kernel estimator can be rewritten as

m̂(x1, x2) =

n1∑
i=1

n2∑
j=1

w1,iw2,j yi,j , (3.2.5)

with weights1 defined by

w1,i =
1

n1h1f̂(x1)
K1

(
x1,i − x2

h1

)
and w2,j =

1

n2h2f̂(x2)
K2

(
x2,j − x2

h2

)
,

where f̂(x) =
1

nh

n∑
i=1

K

(
xi − x

h

)
for x1 and x2.

(3.2.6)

The weights in (3.2.7) are of the NW-type. In the equidistant case, we can simplify the

weight function by replacing f̂ by the known design density f = 1. This leads to the

weights proposed by Mack and Müller (1989)

w1,i =
1

n1h1
K1

(
x1,i − x1

h1

)
and w2,j =

1

n2h2
K2

(
x2,j − x2

h2

)
. (3.2.7)

These also allow for straightforward extension to estimation of derivatives as described

in Section 3.3.3. Thus, we use the definition (3.2.7) over the NW-type ones from (3.2.6).

As mentioned above, both estimators are not undconditionally design adaptive, for non-

equidistant or random design densities one should prefer using the weights of Gasser and

Müller (1979), with

w1,i =
1

h1

∫ ri

ri−1

K1

(
u− x1
h1

)
du and w2,j =

1

h2

∫ sj

sj−1

K2

(
v − x2
h2

)
dv, (3.2.8)

1The definition of the argument in K(•) differs among the literature and among different estimation meth-
ods. We use the notation u = (xi − x)/h such that values to the left of x get a negative sign in u. While
this notation is uncommon in classical kernel regression, it is widely used for local regression and we opt
for consistency with respect to local regression.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 39

where r1 = x1,1, ri = (x1,i + x1,i−1)/2 for 2 ≤ i ≤ n1 − 1 and rn1 = x1,n1 , sj is defined

analogously for x2. All three estimators (3.2.6), (3.2.7) and (3.2.8) are asymptotically

equivalent under Assumption A1 by the following Theorem 3.1

Theorem 3.1. (Equivalency of the Kernel Weights) Let wa
i,j = wa

1,iw
a
2,j be the product ker-

nel weights with wa
•,i as defined in (3.2.7), wb

i,j = wb
1,iw

b
2,j be the Nadaraya-Watson product

weights with wb
•,i from (3.2.6) and wc

i,j = wc
1,iw

c
2,j be the Gasser-Müller product weights with

wc
•,i from (3.2.8), all with the same boundary kernel Kq(u). Under equidistant fixed design

of X1, X2 on [0, 1]2, all estimators are equivalent in the sense that the relation holds

lim
n1,n2→∞

sup
1≤i≤n1
1≤j≤n2

∣∣∣∣∣w∗
i,j

w∗∗
i,j

− 1

∣∣∣∣∣ = 0 defining
0

0
≡ 1,

for any w∗
i,j , w

∗∗
i,j = {wa

i,j , w
b
i,j , w

c
i,j}.

A proof is given in the appendix to this chapter.

Equation (3.2.5) allows us to write yi,j under a spatial representation on a n1×n2 lattice

instead of the single vector of (3.2.2). The idea of the double conditional smoothing is, to

not estimate (3.2.5), but to carry out two smoothing procedures over i and j sequentially.

This transforms a bivariate kernel smoother into two univariate approaches.

Definition 3.1. (Double Conditional Smoothing). Let yi,j be the observations of a func-
tional time series Yi,j observed on an equidistant lattice spanned by X1×X2 and w1,i, w2,j be
some appropriate weights. The double conditional smoothing at an observation point (x1, x2)
is defined by:

m̂(x1, x2) =

n1∑
i=1

w1,i m̂(x2|x1,i) or equivalently (3.2.9)

m̂(x1, x2) =

n2∑
j=1

w2,j m̂(x1|x2,j), (3.2.10)

with m̂(x2|x1,i) =
n2∑
j=1

w2,j yi,j and m̂(x1|x2,j) =
n1∑
i=1

w1,i yi,j . (3.2.11)

Both formulas (3.2.9) and (3.2.10) are equivalent, that is, the direction of the double

conditional smoothing will not affect the results. Under model (3.2.1) and Assumption A5,

they are equivalent to the common bivariate kernel regression. In particular, the double

conditional smoothing offers a quick and convenient way to reduce computing effort of

bivariate kernel regression and it might also deliver useful intermediate results. The first-

stage estimate in (3.2.11) is the smoother which conditions on x1,i (respective x2,j) and

therefore contains the smoothed time series over each day (respective the time series over

the days at a specific intraday time).

The DCS can be carried out under model (3.2.1) at any observation point and is suitable

for smoothing a functional time series, provided that the assumptions stated above are

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 40

fulfilled. This procedure runs much faster than the common bivariate kernel estimator.

When the estimation at an interior point is considered, the bivariate regression involves

the calculation of a sum with about 4(n1h1 · n2h2) non-zero weights, while the DCS is a

sum of 2(n1h1 + n2h2) non-zero weights. The larger the bandwidths are, the larger the

difference between the run-times of the two approaches is. However, the DCS is not well-

defined at a non-observation point. The DCS can be extended to the case when e.g. X2

is irregularly spaced or even a random variable, if a design adaptive estimator is used.

In this case, smoothing is done over X2 conditioning on X1 at first, where suitable fixed

estimation points x2,j are chosen independently of x1,i. The second stage can then be

carried out conditioning on these points in X2.

3.3 The Improved Double Conditional Smoothing

3.3.1 Boundary Correction Under the DCS

Nonparametric kernel regression suffers from biased estimates at the margins of the def-

inition space, regardless of its dimensionality, the so-called boundary effects. This prob-

lem arises, because for the outer observations, there are fewer data to one side used for

smoothing than the actual bandwidth would require. This induces a bias in the estimates.

The use of specialized boundary kernels was proposed by Gasser and Müller (1979) and

later refined by Müller (1991) and Müller and Wang (1994) for different types of kernel

estimators. According to their work, we define an interior region and a boundary region

on the lattice spanned by X1 and X2. Thus, the boundary region contains all observations

within an h1 or h2 distance from the margins. Define

B1 = {x1 : 0 ≤ x1 < h1 ∪ 1− h1 < x1 ≤ 1},

B2 = {x2 : 0 ≤ x2 < h2 ∪ 1− h2 < x2 ≤ 1},

where B1 defines the boundary range in the x1-direction and B2 the same for x2. The

boundary region (BR) of the kernel regression under consideration is given by BR =

{B1 ∪ B2} and the interior region is defined as IR = [0, 1]2 \ {B1 ∪ B2}. In the current

context, the ratio BR/IR might be very large. Compared to the boundary region of a

one-dimensional estimator, which is 2h, the boundary region for the spatial model under

consideration has size 4h − 4h2. For an NW-type estimator, the bias of an estimate in the

BR is of a lower order of magnitude in terms of the bandwidths and the mean integrated

squared error (MISE) will be dominated by estimates in the BR. Thus, the correction

of the estimates in the BR is necessary. Following Müller (1988), the product of two

univariate boundary kernels forms a bivariate boundary kernel function and the boundary

correction in the DCS reduces to the use of corresponding univariate boundary kernels

in (3.2.9) - (3.2.11). For q1 ∈ [0, 1] a right boundary kernel Kq1(u) has support [−1, q1],

where q1 is (1 − x1)/h1, provided that x1 ∈ B1. The corresponding kernel to the left

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 41

is Kq1,L(u) = Kq1(−u) on [−q1, 1], q1 = x1/h1 for x1 ∈ B1. For q1 = 1, the boundary

kernels reduce to the interior kernel K(u). Similar definitions hold for x2. Throughout

this chapter, we will use the (µ, µ − 1)-smooth boundary kernels of Müller and Wang

(1994) in the form given in Chapter 2 rather than the µ-optimal kernels by Müller (1991),

as the latter are not centered around the point of estimation and thus have a larger bias.

In the following, all kernels K1, K2 are assumed to be boundary kernels of the correct side

without explicit labels, whenever (x1, x2) ∈ BR.

3.3.2 A Functional Smoothing Scheme

The previously defined double conditional smoothing can still be improved in efficiency

to a faster functional smoothing scheme. This scheme provides a way to avoid redundant

computations and reduces the runtime of an implementation of the algorithm further. We

assume that the weights for smoothing in the x1-dimension do not depend on the given

value of x2, and vice versa. Then, the DCS procedure can be written in matrix form,

where Y explicitly denotes the matrix of observations with components yi,j and W1,W2

are the smoothing matrices containing the (column-) vectors of weights for each column

or row from Y. That is, {W1}i,1≤j≤n2 = w1(i)
T and {W2}1≤i≤n1,j = w2(j), where w1(i0)

is the vector of weights obtained from (3.2.6), (3.2.7) or (3.2.8) for estimation at a point

x1 = x1,i0 with elements w1,i. The vector w2(j) is defined analogously. From Definition

3.1 we can directly derive the matrix DCS (MDCS):

Definition 3.2. (Matrix Double Conditional Smoothing). Let Y be the n1 × n2 matrix of
ordered observations of a time series Yi,j on an equidistant lattice spanned by X1 ×X2 and
W1,W2 be some appropriate weighting matrices. Then, the MDCS is given by the equations

M̂ = W1 · M̂x2|x1
or equivalently

M̂ = M̂x1|x2
·W2,

with M̂x2|x1
= YW2 and M̂x1|x2

= W1Y.

The double conditional smoothing can also be represented in a single step estimator

using matrix notation which is equivalent to (3.2.5):

M̂ = W1YW2.

Although the matrix smoothing scheme provides an elegant definition from a theoretical

point of view, the calculation of the product of two huge matrices can cause computational

problems. We propose to divide the matrix product into corresponding products of vectors

of weights and the data matrix. We obtain a smoothed curve (or function) over all (condi-

tional) x2,j values for given x1,i and vice versa. This idea can easily be implemented into a

computer aided algorithm and will be called a functional DCS smoothing scheme (FDCS):

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 42

Definition 3.3. (Functional Double Conditional Smoothing).Let Y be the n1×n2 matrix
of ordered observations of a time series Yi,j on an equidistant lattice spanned by X1 × X2

and w1(i), w2(j) be some appropriate vectors of weights. Then, the FDCS calculates each row
respective column of the resulting matrices at once by the equations

{
M̂
}
i,1≤j≤n2

= w1(i)
TM̂x2|x1

or equivalently{
M̂
}
1≤i≤n1,j

= M̂x1|x2
w2(j)

with
{
M̂x2|x1

}
1≤i≤n1,j

= Yw2(j) and
{
M̂x1|x2

}
i,1≤j≤n2

= w1(i)
TY.

Both procedures are carried out over all i and j, respectively. Note that the DCS, MDCS

and FDCS are three equivalent computation schemes with different implementation meth-

ods in a program. Hence, the resulting estimates are all exactly the same and indeed the

same as those obtained by the common 2D-kernel regression under the regularity condi-

tions used in this chapter.

3.3.3 Estimation of Derivatives

The formulas for the optimal bandwidths h1 and h2 for the double conditional smooth-

ing of the regression surface in Proposition 3.1 include partial derivatives of the surface

m(x1,i, x2,j). In the IPI algorithm, these derivatives need to be calculated explicitly. In

addition, the estimation of the partial derivatives itself is an important topic in theory and

practice of nonparametric regression and of particular interest itself. Note that the bound-

ary problem is even more severe when estimation of the partial derivatives is considered,

as this usually requires larger bandwidths than those used in the regression surface esti-

mation. Boundary kernels for estimating the derivatives in univariate kernel regression

are well studied in the literature, e.g. by Gasser et al. (1985); Müller (1988); Müller

(1991); Müller and Wang (1994) and Feng (2004). We denote2 such a kernel (with suit-

able extension to the boundary points3) by Kν(u). Then K(ν1,ν2)(u, v) = Kν1(u) ·Kν2(v)

defines a product kernel for estimation of the (ν1, ν2)-th derivative of the expectation sur-

face m(x1, x2). The corresponding kernel estimator of Mack and Müller (1989) is defined

by

m̂(ν1,ν2)(x1, x2) =

n1∑
i=1

n2∑
j=1

wν1,ν2
i,j yi,j , (3.3.1)

2In the remainder of this chapter, all kernel functions are assumed to be of the desired derivative without
explicit indication.

3Note that, if Kν(u) is a right boundary kernel, the corresponding kernel at the left is Kν,L(u) =
(−1)νKν(−u).

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 43

where wν1,ν2
i,j = wν1

1,iw
ν2
2,j with

wν1
1,i =

1

n1h
ν1+1
1

Kν1

(
x1,i − x1

h1

)
and wν2

2,j =
1

n2h
ν2+1
2

Kν2

(
x2,j − x2

h2

)
, (3.3.2)

where h1 and h2 are suitably chosen bandwidths for estimating the partial derivative of

given orders (see Section 3.4.2). The partial derivative surface m̂(ν1,ν2)(x1, x2) can also be

calculated by means of the DCS or FDCS schemes proposed in this chapter. Useful explicit

formulas ofKν(u) are obtained in Chapter 2 based on the results of Feng (2004) which will

be used for the practical implementation of the proposed IPI algorithm in Section 3.4.2.

3.3.4 Asymptotic Behavior of the Estimator

Let the kernels in the weights (3.3.2) for the derivative estimator (3.3.1) be of order

(k1, ν1) for K1 and (k2, ν2) for K2. Then, under Assumptions A1 to A4, the expectation of

the estimator in (3.3.1) (and asymptotically of that in (3.2.5), (3.2.7)) at an interior point

is given by

E
{
m̂(ν1,ν2)(x1, x2)

}
= m(ν1,ν2)(x1, x2) +Bm(x1, x2)[1 + o(1)]

+O

(
1

n2h
ν1
1 h

ν2
2

)
+O

(
1

n1h
ν1
1 h

ν2
2

)
,

(3.3.3)

where, using the kernel constants bi =
∫
Ki(u)u

k du (see Definition 3.4 in Section 3.8),

Bm(x1, x2) =
b1
k1!

hk1−ν1
1 m(k1,ν2)(x1, x2) +

b2
k2!

hk2−ν2
2 m(ν1,k2)(x1, x2). (3.3.4)

The boundary correction ensures, that the order of magnitude of the bias at a boundary

point is the same as that of Bm. The variance is

var
{
m̂(ν1,ν2)(x1, x2)

}
=

σ2

n1n2h
2ν1+1
1 h2ν2+1

2

[R(K1)R(K2) + o(1)] , (3.3.5)

with R(K) =
∫
K2(u) du. Proofs of (3.3.3) and (3.3.5) can be found in Section 3.8.2,

these results are similar to the findings of Müller and Prewitt (1993) and Facer and Müller

(2003) only for different weighting methods. In Section 3.8.3 it is shown that the estima-

tor is asymptotically normal distributed with:√
n1n2h

2ν1+1
1 h2ν2+1

2

(
m̂(ν1,ν2)(x1, x2)−m(ν1,ν2)(x1, x2)

)
d→ N(0, σ2).

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 44

3.4 Bandwidth Selection

3.4.1 Asymptotic Optimal Bandwidths

In nonparametric regression, commonly used measures of the goodness-of-fit are the mean

squared error (MSE) and the MISE. Following Herrmann et al. (1995), we will call the

minimizers of the asymptotic MISE (AMISE) the optimal bandwidths. Under Assumptions

A1-A5, the MISE (and the AMISE) of the regression surface (ν1 = ν2 = 0) at an interior

point (x1, x2) is given by

MISE = AMISE

+ o
(
h2k11 + h2k22 + n−1

1 n−1
2 h−1

1 h−1
2

)
+O

(
n−1
1

)
+O

(
n−1
2

)
For simplification, we setK1(u) = K2(u) ≡ K(u) and assumeK(u) is a kernel of order k =

2, a generalization is in Section 3.8.2. As mentioned above, we assume that corresponding

boundary kernels for K1, K2 are used at a boundary point. Thus, the orders of magnitude

of the bias at a boundary point are ensured to be the same as in the interior. Hence, the

AMISE is

AMISE =
b2

4

[
h41 · I11 + 2h21h

2
2 · I12 + h42 · I22

]
+
R(K)2 · σ2

n1n2h1h2

+ o(h41 + h42) + o
(
(n1n2h1h2)

−1
)
,

(3.4.1)

with the integrals

I11 =

∫ 1

0

∫ 1

0

[
m(2,0)(x1, x2)

]2
dx1 dx2,

I22 =

∫ 1

0

∫ 1

0

[
m(0,2)(x1, x2)

]2
dx1 dx2,

and I12 = I21 =

∫ 1

0

∫ 1

0
m(2,0)(x1, x2)m

(0,2)(x1, x2) dx1 dx2.

(3.4.2)

Note in particular, that the MISE is calculated on the complete support [0, 1]2. The

boundary correction ensures that the effect of the estimates in the boundary region is

asymptotically negligible under A3. This is not true for the NW-type estimator without

boundary correction.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 45

Proposition 3.1. (Asymptotic Optimal Bandwidths). Let K(u) be a kernel of order (k =

2, ν = 0) with boundary correction. Under Assumptions A1 to A5, the asymptotically optimal
bandwidths for estimation of the regression surface, which minimize the AMISE (3.4.1), are
given by

h1,A =

 R(K)2 · σ2

n1n2b2
[(

I11
I22

) 3
4 (√

I11I22 + I12
)]


1
6

and (3.4.3)

h2,A =

 R(K)2 · σ2

n1n2b2
[(

I22
I11

) 3
4 (√

I11I22 + I21
)]


1
6

. (3.4.4)

The two asymptotically optimal bandwidths are related by:

h1,A = h2,A ·
(
I22
I11

) 1
4

and h2,A = h1,A ·
(
I11
I22

) 1
4

.

General optimal bandwidth formulas for estimation of partial derivatives and different

kernel orders can be found in Section 3.8.4.

3.4.2 The IPI Algorithm

The selection of the optimal bandwidths based on (3.4.3) and (3.4.4) involves the devel-

opment of suitable estimates of the integrals and the innovation variance required in those

formulas. We propose to estimate σ2 simply from the residuals. The above integrals are

simply estimated by summation from

Î11 =
1

n01n
0
2

n1−no
1∑

i=no
1+1

n−no
2∑

j=no
2+1

[
m̂(2,0)(x1,i, x2,j)

]2
, (3.4.5)

Î22 =
1

n01n
0
2

n1−no
1∑

i=no
1+1

n2−no
2∑

j=no
2+1

[
m̂(0,2)(x1,i, x2,j)

]2
,

Î12 = Î21 =
1

n01n
0
2

n1−no
1∑

i=no
1+1

n2−no
2∑

j=no
2+1

m̂(2,0)(x1,i, x2,j) m̂
(0,2)(x1,i, x2,j), (3.4.6)

where m̂(ν1,ν2) is estimated following (3.3.1) using bandwidths h̃1 and h̃2 which, in gen-

eral, differ from the bandwidths h1, h2 for estimation of the regression surface. The IPI

algorithm uses a subset of the observations with no1 = [λ1n1], no2 = [λ1n2], where λ1, λ2
are zero or a small positive number and [•] denotes the integer part. For most applications,

λ1 = λ2 ≡ λ works well. Although the proposed estimators are with boundary correction,

the estimation of m̂(ν1,ν2)(x1, x2) near the endpoints might be unstable (see examples in

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 46

Figure 3.2). In order to calculate the integrals, the estimates at some boundary points can

be excluded if this improves the stability of the selected bandwidths. Then, only estimated

values of the partial derivatives within [λ1, 1− λ1]× [λ2, 1− λ2] are used for calculation of

the integrals.

A crucial problem is the choice of the bandwidths h̃2 and h̃1 used in derivative estima-

tion. The IPI algorithm proposed by Gasser et al. (1991) computes the auxiliary band-

widths from h1 and h2 selected in each iteration step, by means of some so-called inflation
method. The purpose is to achieve h1 and h2 with a certain optimal property at the end

of the procedure. The IPI algorithm has been extended to correlated data by Herrmann

et al. (1992), to long-range dependencies by Ray and Tsay (1997) and Beran and Feng

(2002a), and to bivariate data by Herrmann et al. (1995).

The inflation method computes the h̃ from the h by specifying a functional relation

between these two. The mainly used method is the multiplicative inflation method (MIM)

which was introduced by Gasser et al. (1991) and was also employed by Herrmann et al.

(1995). The MIM links the bandwidths by a multiplicative relation, that is, in the s-th

iteration step h̃
(ν)
1,s = c(ν) · h1,s−1n

α1 . The bandwidth h̃
(ν)
1,s is suited for estmation of the

ν-th derivative over X1 and c(ν) is a scaling factor allowing for tuning the bandwidths

conditional on the order of the derivative. Another approach is the exponential inflation

method (EIM) used by Beran and Feng (2002a,b). In contrast to the MIM, the EIM uses

an exponential relation to compute the auxiliary bandwidths: h̃(ν)1,s = c(ν) ·hα1
1,s−1. This may

result in a faster speed of convergence and therefore to less iterations required for the IPI

(see Beran and Feng, 2002b). The scaling parameter used by Beran and Feng (2002a)

was c = 1, while Herrmann et al. (1995) set c(2) = 1.5 for the bandwidth in the direction

of the second derivative and c(0) = 0.25 in the other. We found in our simulations that

a choice of c(2) = 2, c(0) = 1 fits the best for estimation of the regression surface, but

optimal values might depend on the derivative order (ν1, ν2) under consideration, the

form of regression function itself or the error term variance. Two ways have been widely

used to obtain optimal exponents α1: Minimize MISE (Î11) or minimize MISE (m̂(2,0)).

Bandwidths for derivatives in x2 direction, i.e. for calculation of m̂(0,2) are obtained in the

same manner. From k1 − ν1 = k2 − ν2 = δ in Assumption A5, it follows that α1 = α2 ≡ α.

As Beran and Feng (2002a) pointed out, α = 1/2 is the most stable choice for α for the

EIM which corresponds to the use of α = 1/12 for the MIM as proposed by Herrmann

et al. (1995). Note that both of h1,A and h2,A are of the order O(n−1/6). The idea is to

inflate the bandwidths for estimation of Î11, Î22, and Î12 to those of the orderO(n−1/12), so

that the variances of both estimators will achieve the lowest rate of convergence O(n−1/2)

(Herrmann et al., 1995). Thus, we will use this choice of α in the current chapter, as the

stability of the selected bandwidths plays an important role in practice, in particular in

two-dimensional kernel smoothing. The other two choices of α will not be considered in

the current chapter, because they may result in much smaller selected bandwidths. Initial

values (h1,0, h2,0) of the algorithm can be chosen quite arbitrarily, as the results do not

depend on these starting values.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 47

Proposition 3.2. (IPI Bandwidth Selection Algorithm). Let (ĥ1,s, ĥ2,s) be the bandwidths
obtained in the s-th iteration step. Then, the IPI algorithm processes as follows:

1. Choose initial values (ĥ1,0, ĥ2,0).

2. In the s-th iteration step:

i. Define

h̃
(2)
1,s = c(2)(ĥ1,s−1)

α, h̃
(0)
1,s = c(0)(ĥ1,s−1)

α,

h̃
(2)
2,s = c(0)(ĥ2,s−1)

α, h̃
(0)
2,s = c(2)(ĥ2,s−1)

α.

ii. Compute m̂(2,0)(x1, x2) using bandwidths
(
h̃
(2)
1,s, h̃

(0)
2,s

)
and m̂(0,2)(x1, x2) using

bandwidths
(
h̃
(0)
1,s, h̃

(2)
2,s

)
.

iii. Compute the corresponding integrals Î11, Î22, Î12 applying (3.4.5) - (3.4.6) and
the optimal bandwidths

(
ĥ1,s, ĥ2,s

)
by (3.4.3), (3.4.4).

3. Stop if the distance between (ĥ1,s, ĥ2,s) and (ĥ1,s−1, ĥ2,s−1) is smaller than some desired
threshold. Otherwise, return to 2.

The bandwidths yielded in step 3 are then called the asymptotic optimal bandwidths.

Calculation of bandwidths via Proposition 3.1 requires computation or estimation of

additional values. The kernel constants R(K) and b can be computed straightforward

either by analytic integration of the kernel or by numerical approximation. The estimation

of the variance σ2 is carried out in each iteration based on the residuals

σ̂2s =
1

n

n1∑
i=1

n2∑
i=1

[Yi,j − m̂s(x1,i, x2,j)]
2 ,

where m̂s(x1,i, x2,j) is calculated in each iteration using the bandwidths (ĥ1,s−1, ĥ2,s−1)

from the previous iteration step. An alternative estimator of σ2 is given by Herrmann

et al. (1995) based on the differences, which provides an initial estimation before the

iteration process, but is presumably more imprecise.

It can be shown that σ̂2 is
√
n-consistent. Following the results in Herrmann et al.

(1995), it can be shown that the rates of convergence of the selected bandwidths are of

the order O(n−1/6) for MIM and EIM inflation methods.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 48

3.5 Finite Sample Simulations

The performance and precision of the IPI bandwidth selector derived in Section 3.4.2 is

assessed via a simulation study using two Gaussian peaks as exemplary functions for the

mean surface m(x1, x2):

m1(x1, x2) ∼ N

([
0.5

0.5

]
,

[
0.05 0

0 0.05

])
+ σ η, (3.5.1)

m2(x1, x2) ∼ N

([
0.5

0.3

]
,

[
0.1 0

0 0.1

])
+N

([
0.2

0.8

]
,

[
0.05 0

0 0.05

])
+ σ η. (3.5.2)

N denotes the bivariate normal distribution, η is an iid. random field following a standard

normal distribution and σ2 is a variance. Hence, m1 represents a symmetric single peak

and m2 is an asymmetric double peak function. We employ 10,000 simulations for each

function and variances σ2a = 1, σ2b = 0.25 on m : [0, 1] × [0, 1] → R with n1 = n2 = 101.

The second partial derivatives for both functions can be calculated analytically and thus,

the true optimal (MISE minimizing) bandwidths (h1,true, h2,true) are known.

For estimation of the regression surface, we use kernels of order (2, 2, 0) whenever νi = 0

and a (4, 2, 2) kernel if the 2nd derivative is considered. All kernels are of the (µ, µ′)-

smooth type by Müller and Wang (1994). We set the parameters in the IPI algorithm to

c(2) = 2, c(0) = 1, α = 0.5, the margins are trimmed by λ = 0.05.

Figure 3.1 displays the distributions of the estimated bandwidths. The overall precision

of the bandwidth selector depends on the functional form of the surface m(x1, x2), the

variance of the errors and also on the choice of the inflation parameters for h1, h2 discussed

in Section 3.4.2. Hence, the slight over- or undersmoothing displayed in the histograms

is due to the functional form chosen for m1, m2 and the choice of parameters but not an

artifact of the bandwidth selection estimator itself. Other choices of test functions might

feature the same or contrary behaviour. The p-values to the null hypothesis H0 : h = htrue

under a normal distribution are given in Table 3.1, along with the means, true values, and

standard deviations. Despite the use of boundary kernels to reduce the bias, the estimation

at the margins is still unstable to some degree as illustrated in the smoothed examples of

Figure 3.2.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 49

var : 1, Double Gaussian Peak, h1 var : 1, Double Gaussian Peak, h2

var : 1, Single Gaussian Peak, h1 var : 1, Single Gaussian Peak, h2

var : 0.25, Double Gaussian Peak, h1 var : 0.25, Double Gaussian Peak, h2

var : 0.25, Single Gaussian Peak, h1 var : 0.25, Single Gaussian Peak, h2

0.125 0.150 0.175 0.200 0.125 0.150 0.175 0.200 0.225

0.14 0.16 0.18 0.20 0.22 0.24 0.15 0.18 0.21

0.12 0.13 0.14 0.15 0.16 0.12 0.14 0.16 0.18

0.13 0.14 0.15 0.16 0.17 0.18 0.14 0.16 0.18

0

10

20

30

40

0

10

20

30

40

0

10

20

0

10

20

0

10

20

30

40

50

0

20

40

60

0

10

20

0

10

20

30

Bandwidth

D
en

si
ty

Variance true σ2 = 0.25 σ2 = 1

Figure 3.1: Distribution of the bandwidth estimates h1, h2 obtained in the simulation study. Simulated
are functions m1, m2 from (3.5.1), (3.5.2) under iid. standard normal errors for σ2

a and
σ2
b .

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 50

Table 3.1: Bandwidth statistics of the simulation study under iid. errorterms using the kernel regres-
sion DCS. Values are obtained from a sample of 10,000 simulations for functions m1, m2

from (3.5.1), (3.5.2). The p-value corresponds to H0 : h = htrue.

Function htrue mean(h) sd(h) p-value

σ2 = 0.25
f1

h1 0.1470 0.1548 0.0083 0.2566
h2 0.1470 0.1547 0.0083 0.2578

f2
h1 0.1362 0.1338 0.0062 0.3701
h2 0.1548 0.1457 0.0085 0.2264

σ2 = 1
f1

h1 0.1852 0.1808 0.0147 0.3815
h2 0.1852 0.1807 0.0146 0.3803

f2
h1 0.1716 0.1634 0.0122 0.3186
h2 0.1950 0.1730 0.0150 0.1366

Original σ2 = 0.25 σ2 = 1

Si
n

gl
e

Pe
ak

D
ou

bl
e

Pe
ak

Figure 3.2: Simulated and estimated surfaces for the functionsm1,m2 from (3.5.1), (3.5.2) under iid.
standard normal errors η and σ2 = 0.25, σ2 = 1. Used bandwidths are: (0.1382, 0.1612)
for m1 and σ2

1 , (0.1512, 0.1950) for m1 and σ2
b , (0.1415, 0.1521) for m2 and σ2

a and
(0.1654, 0.1922) for m2 and σ2

b . Scale of the vertical axis might differ across the plots.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 51

3.6 Application to Financial Data

In this section, the previously developed bandwidth selector is applied to HFF time series

data. We compute the stock price volatility surface as well as the trading volume surface

for the stocks of German companies Siemens AG (SIE) and BMW AG (BMW). The data

consist of the 1-minute aggregated stock prices and trading volumes from 2004-01-02 to

2014-09-30 with about 1.39 million observations4. The trading volumes are directly ap-

plied to the model (3.2.1). The spot-volatility surface is computed from the demeaned

log-returns Ri,j of the functional time series for the price data. Models for simultaneously

analysis of interday effects (e.g. ARCH or GARCH effects) and intraday volatility were

proposed by Andersen and Bollerslev (1998); Feng (2013) and Peitz and Feng (2015). We

employ a simplified version of their models, where both, the ARCH effects and intraday

volatility, are captured in the nonparametric volatility surface σR(x1, x2). The nonpara-

metric regression model is then

Ri,j = σR(x1,i, x2,i)ηi,j ,

where ηi,j an iid. random field following a standard normal distribution. The volatility

surface is estimated from

ln
(
R

2
i,j

)
= ln

(
σ2R(x1,i, x2,j)

)
+ εi,j . (3.6.1)

Note that εi,j is an iid. random field with zero mean since E{ln(η2i,j)} = 0.

As expected, the smoothed volatility and volume plots in figures 3.3a and 3.3b clearly

show the influence of the 2008 financial crisis as a large peak and the 2012 euro currency

crisis as the minor peak for both surfaces. The intraday time series exhibit the typical

U-shape volatility smile which is the pattern suggested by economic theory (see e.g. Lock-

wood and Linn, 1990; Andersen and Bollerslev, 1997; Goodhart and O’Hara, 1997).

For selecting the optimal bandwidths, we use the same setup as in Section 3.5, the

numerical results obtained via the IPI bandwidth selection are given in Table 3.2. By

comparing the resulting bandwidths a clear pattern arises: the interday (x1) and intraday

(x2) bandwidths of both companies are close to each other for the volatility, the same

is true for the volume bandwidths. On the other hand, the results are quite different

between volume and volatility, especially for the intraday bandwidth where the volume

bandwidth is twice as large as the volatility bandwidth for both companies. From this,

one might hypothesize that volatility surfaces from different companies over the same

time span have some more explanatory power over each other, than the volume surface of

the same company and vice versa. This result is somehow supported by the correlations

between the surfaces given below. However, the evidence supporting this hypothesis in

4The data was aggregated by calendar time sampling (CTS). Original Data was obtained from Thomson
Reuters.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 52

Table 3.2: Selected bandwidths and estimated variance factors cf for volatility and volume data of
Siemens (SIE) and BMW under an iid. error term assumption.

Data n h n · h cf

SIE (Volatility)
2738 0.06521 179 Days

28.597
510 0.07663 39 Minutes

BMW (Volatility)
2738 0.06340 174 Days

38.329
510 0.07946 41 Minutes

SIE (Volume)
2738 0.07371 202 Days

6.332E+08
510 0.15990 82 Minutes

BMW (Volume)
2738 0.07511 206 Days

1.165E+08
510 0.16448 84 Minutes

this application examples is sparse and no conclusions can be drawn from these findings

here. Further research is necessary.

The volatility and volume surfaces show similar patterns and exhibit a correlation of

0.226 between volatility and volume surface for SIE and 0.209 for BMW. The correlation

between the volatility surfaces of the companies is 0.848, between the volumes 0.869.

Cross-correlations are −0.142 between SIE volatility and BMW volumes and 0.513 for its

counterpart. The relation between volatility and trading volume is a well-known topic in

finance (see e.g. Karpoff, 1987; Brailsford, 1996; Lee and Rui, 2002). The proposed meth-

ods for smoothing HFF-surfaces provide useful results for further analysis of the intraday

and interday correlations of stock price volatility and trading volume or volatility (re-

spective volume) correlations between different companies. The volatility surfaces seem

to exhibit a slight undersmoothing which might be caused by misspecification of model

(3.2.1) for stock returns and trading volumes as the assumption of iid. error terms is likely

not met by financial data. However, for the volume surfaces this problem appears to be

less severe.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 53

YearTime

Volatility

(a) Spot volatility of SIE

YearTime

Volatility

(b) Spot volatility of BMW

YearTime

Volum
e

(c) Trading volume surface of SIE

YearTime

Volum
e

(d) Trading volume surface of BMW

Figure 3.3: Estimated spot volatility and trading volume surfaces of Siemens AG (SIE) and BMW AG
using the bandwidths in Table 3.2. Values of volatility are in 1E−04, of volumes in 1E+03.
The volatility surface is retransformed from the model (3.6.1).

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 54

3.7 Final Remarks

We propose a double conditional smoothing scheme to improve the efficiency of nonpara-

metric estimation for functional time series on a regular lattice. The bandwidth selection

by minimization of the AMISE is considered and asymptotic formulas for the bandwidths

are derived. We use an IPI method based on these asymptotic optimal bandwidths and em-

ploy the functional double conditional smoothing for fast computation of the bandwidths

by the plug-in method. This newly developed methods allow for much faster computation

of the mean surfaces or its derivatives than the classical bivariate smoothers and thus, for

a much faster bandwidth selection. The proposed functional scheme will be particularly

helpful for smoothing large data sets and is not limited to time series applications.

The model used throughout this chapter only considers non-dependent errors. An ex-

tension of the model and smoothing scheme to a dependent error structure with short and

long memory is of interest as these effects regularly occur in functional time series. The

boundary problem can be solved through other nonparametric smoothing techniques such

as local polynomial regression or spline regression.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 55

3.8 Appendix

3.8.1 Proof of Theorem 3.1

Proof. Note that f̂(x) in the NW-weights (3.2.6) is a kernel density estimator for the design

density of X with expectation

E{f̂(x)} =
1

h

∫ 1

0
Kq

(
s− x

h

)
f(s) ds =

∫ q

−1
Kq(u)f(x− uh) du.

In the equidistant case it is f(x) = 1 and, from Definition 3.4, the kernel function Kq(u)

is normalized to 1. A Taylor expansion yields then

=

∫ q

−1
K(u)[f(x) + f ′(x)hu+ . . .] du =

∫ q

−1
K(u) du = 1

and hence, E{f̂(x)} = 1 + o(1). Then, Theorem 3.1 for wa
i,j and wb

i,j follows directly from

comparing wa
•,i and wb

•,i in the limit n→ ∞.

For the univariate Gasser-Müller weights (3.2.8) under equidistant design, define

si =
xi−1 + xi

2
=

2i− 1

2n
for 1 < i < n,

for i = 0, n similar arguments hold. From the mean value theorem, there exists a zi ∈
[i− 1, i], such that

1

h

∫ si

si−1

Kq

(
u− x

h

)
du =

1

nh
Kq

(
zi/n− x

h

)
.

Using the Lipschitz continuity of Kq where L = const. and setting x = i0/n, we arrive at

|wc
i − wa

i | =

∣∣∣∣∣1h
∫ si

si−1

Kq

(
u− x

h

)
du− 1

nh
Kq

(
i− i0
nh

)∣∣∣∣∣
=

∣∣∣∣ 1nhKq

(
zi − i0
nh

)
− 1

nh
Kq

(
i− i0
nh

)∣∣∣∣
≤ L

nh

∣∣∣∣zi − i

nh

∣∣∣∣ ≤ (1

nh

)2

⇒ |wc
i − wa

i | = O

((
1

nh

)2
)
.

For the product weights, it follows

wc
i,j = wc

1,iw
c
2,j

=
[
wa
1,i +O

(
(n1h1)

−2
)] [

wa
2,j +O

(
(n2h2)

−2
)]

= wa
1,iw

a
2,j +O

(
(n1h1)

−2
)
+O

(
(n2h2)

−2
)

= wa
i,j +O

(
(n1h1)

−2
)
+O

(
(n2h2)

−2
)

(3.8.1)

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 56

By observing Assumption A3, nh → ∞ when n → ∞, Theorem 3.1 follows for wc
i,j and

wa
i,j from (3.8.1). The equivalency of wb

i,j and wc
i,j results directly from the above consid-

erations.

3.8.2 Expectation and Variance of the DCS Estimator

Definition 3.4. (Boundary Kernel Function). A function K(u) : [−1, q] → R is called a
right boundary kernel function of order (k, ν), k > ν for q ∈ [0, 1], if it satisfies the following
properties:

∫ q

−1
K(u)uj du =


0 for j = 0, . . . , k − 1; j ̸= ν

ν! for j = ν

bk ̸= 0 for j = k.

Without loss of generality, we consider a kernel on the right boundary (q ∈ [0, 1]) or

the interior region (q = 1). The results also hold for left boundary kernels with KL(u) =

(−1)νK(−u). Let u = (ũ − x1)/h1 and v = (ṽ − x2)/h2. The integral approximation of

the expectation of the DCS estimator (3.3.1) is similar to that given by Gasser and Müller

(1984) or Müller and Prewitt (1993); Facer and Müller (2003)

E
{
m̂(ν1,ν2) (x1, x2)

}
=

1

hν11 h
ν2
2

∫ q1

−1

∫ q2

−1
K1(u)K2(v)m(x1 + uh1, x2 + vh2) dudv

+O

(
1

n2h
ν1
1 h

ν2
2

)
+O

(
1

n1h
ν1
1 h

ν2
2

)
.

(3.8.2)

Gasser and Müller (1984) also showed, that the integral approximation for expectation

and variance remain valid at the boundary in the univariate case.

Proof. Let Assumptions A1 to A5 hold. Then∣∣∣∣E [m̂(ν1,ν2)(x1, x2)
]
− 1

hν1+1
1 hν2+1

2

∫ 1

0

∫ 1

0

K1

(
ũ− x1
h1

)
K2

(
ṽ − x2
h2

)
m(u, v) dũdṽ

∣∣∣∣
≤

n1∑
i=1

n2∑
j=1

∣∣∣∣ 1

n1n2h
ν1+1
1 hν2+1

2

K1

(
x1,i − x1

h1

)
K2

(
x2,j − x2

h2

)
m(x1,i, x2,j)

− 1

hν1+1
1 hν2+1

2

∫ ri

ri−1

∫ sj

sj−1

K1

(
ũ− x1
h1

)
K2

(
ṽ − x2
h2

)
m(ũ, ṽ) dũdṽ

∣∣∣∣∣
=

1

n1n2h
ν1+1
1 hν2+1

2

n1∑
i=1

n2∑
j=1

∣∣∣∣K1

(
x1,i − x1

h1

)
K2

(
x2,j − x2

h2

)
m(x1,i, x2,j)

−K1

(
ξ1,i − x1

h1

)
K2

(
ξ2,j − x2

h2

)
m(ξ1,i, ξ2,j)

∣∣∣∣ ,
where ξ1,i ∈ [ri−1, ri], ξ2,j ∈ [sj−1, sj] are suitable mean values. Let ri, sj be suitable

partitions on [0, 1], such that, under equidistant design, ri−ri−1 = n−1
1 and sj−sj−1 = n−1

2

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 57

for 1 < i < n1, 1 < j < n2. Denote the set of all integers i, j leading to non-zero weights

in K1(•),K2(•) by Q∗
1, Q

∗
2 where

Q∗
1 = {i : −n1h1 ≤ i ≤ q1n1h1, i ∈ Z} ,

Q∗
2 = {j : −n2h2 ≤ j ≤ q2n2h2, j ∈ Z} .

The number of elements in Q∗
1, Q

∗
2 is |Q∗

1| = O(n1h1) and |Q∗
2| = O(n2h2). Using the

Lipschitz continuitiy of K1,K2,m and summation over non-zero values, we arrive at

≤ L

n1n2h
ν1+1
1 hν2+1

2

∑
i∈Q∗

1

∑
j∈Q∗

2

(|x1,i − ξ1,i|+ |x2,j − ξ2,j |)

≤ L

n1n2h
ν1+1
1 hν2+1

2

∑
i∈Q∗

1

∑
j∈Q∗

2

(
1

n1
+

1

n2

)

= O

(
1

n2h
ν1
1 h

ν2
2

)
+O

(
1

n1h
ν1
1 h

ν2
2

)
.

where L is a suitable constant.

A Taylor expansion of m(x1 + h1u, x2 + h2v) in (3.8.2) around a point (x1, x2) yields,

after applying Definition 3.4,

E
{
m̂(ν1,ν2)(x1, x2)

}
= m(ν1,ν2)(x1, x2) +Bm +Rm

= m(ν1,ν2)(x1, x2) +Bm[1 + o(1)],

where Bm(x1, x2) is defined by (3.3.4). Using µ̃j(K) =
∫ q
−1K(u)uj/j! du and observing

that (−1)jµ̃j(K) ≥ 0, we can assess the order of magnitude of Rm(x1, x2):

|Rm(x1, x2)| =

∣∣∣∣∣∣∣∣µ̃k1(K1)µ̃k2(K2)h
k1−ν1
1 hk2−ν2

2 m(k1,k2)(x1, x2)

+
∑

r≥ν1,s≥ν2
max(r−k1,s−k2)>0

µ̃r(K1)µ̃s(K2)h
r−ν1
1 hs−ν2

2 m(r,s)(x1, x2)

∣∣∣∣∣∣∣∣
≤ µ̃k1(K1)µ̃k2(K2)

(
hk1−ν1
1 + hk2−ν2

2

)

·

∣∣∣∣∣∣∣∣m
(k1,k2)(x1, x2) +

∑
r≥ν1,s≥ν2

max(r−k1,s−k2)>0

m(r,s)(x1, x2)

∣∣∣∣∣∣∣∣
= O

(
hk1−ν1
1

)
+O

(
hk2−ν2
2

)
= O (Bm(x1, x2)) .

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 58

Regarding the variance, note that from model (3.2.1) and Assumption A4 of iid. error

terms, var(yi,j) = E(ε2i,j) = σ2 and cov(εi,j , εr,s) = 0 for (i, j) ̸= (r, s). The variance can

hence be approximated in the following way

var
{
m̂(ν1,ν2)(x1, x2)

}
=

1

(n1n2h
ν1+1
1 hν2+1

2)2
E


 n1∑

i=1

n2∑
j=1

K1

(
x1,i − x1

h1

)
K2

(
x2,j − x2

h2

)
εij

2
=

σ2

n1n2h
2ν1+1
1 h2ν2+1

2

[R(K1)R(K2) + o(1)]

=
σ2

n1n2h
2ν1+1
1 h2ν2+1

2

R(K1)R(K2) +O

(
1

n1n2h
2ν1+1
1 h2ν2+1

2

)

= Vm +O

(
1

n1n2h
2ν1+1
1 h2ν2+1

2

)
.

Proof. ∣∣∣∣∣var{m(ν1,ν2)(x1, x2)
}
− σ2

n1n2h
2ν1+1
1 h2ν2+1

2

R(K1)R(K2)

∣∣∣∣∣
=

σ2

n21n
2
2h

2ν1+2
1 h2ν2+2

2

∣∣∣∣∣∣
n1∑
i=1

n2∑
j=1

[
K2

1

(
x1,i − x1

h1

)
K2

2

(
x2,j − x2

h2

)

−K2
1

(
ξ1,i − x1
h1

)
K2

2

(
ξ2,j − x2

h2

)]∣∣∣∣
for suitable mean values ξ1,i, ξ2,j . Using Lipschitz continuity of the kernel functions K,

Q∗
1, Q

∗
2 as defined above and noting that xi − ξi ≤ 1/n•, we assess the order of magnitude

of the variance to

≤ σ2

n21n
2
2h

2ν1+2
1 h2ν2+2

2

n1∑
i=1

n2∑
j=1

∣∣∣∣K2
1

(
x1,i − x1

h1

)
K2

2

(
x2,j − x2

h2

)

−K2
1

(
ξ1,i − x1
h1

)
K2

2

(
ξ2,j − x1

h1

)∣∣∣∣
≤ σ2

n21n
2
2h

2ν1+2
1 h2ν2+2

2

∑
i∈Q∗

1

∑
j∈Q∗

2

(|x1,i − ξ1,i|+ |x2,j − ξ2,j |)

≤ σ2

n1n2h
2ν1+1
1 h2ν2+1

2

(
1

n1
+

1

n2

)
≤ σ2

n1n2h
2ν1+1
1 h2ν2+1

2

= O

(
1

n1n2h
2ν1+1
1 h2ν2+1

2

)
.

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 59

3.8.3 Asymptotic Normality of the DCS Estimator

The estimator (3.3.1) can be written as triangular array in n = n1 · n2 of elements zi,j,n

m̂(ν1,ν2)
n (x1, x2) =

1

n1n2

n1∑
i=1

n2∑
j=1

zi,j,n with

zi,j,n =
1

h̃ν1+1
1 h̃ν2+1

2

K1

(
x1,i − x1

h1

)
K2

(
x2,j − x2

h2

)
yi,j .

Note that var(zi,j,n) = O
(
(h2ν1+1

1 h2ν2+1
2)−1

)
. With

E
(
|zi,j,n − E(zi,j,n)|2+r

)
≤ 21+r E

(
|zi,j,n|2+r + |E(zi,j,n)|2+r

)
≤ 22+r E

(
|zi,j,n|2+r

)
= O

 1(
hν1+1
1 hν2+1

2

)2+r


and s2n =

∑n2
i=1

∑n2
j=1 var(zin) = n1n2 var(zi,j,n), the Lyapunov condition

lim
n→∞

1

s2n

n2∑
i=1

n2∑
j=1

E
(
|zin − E(Zin)|2+r

)
= lim

n→∞
O

(
1

(n1n2h1h2)
r
2

)
= 0

holds with Assumption A3. Hence we yield by the Lyapunov CLT√
n1n2h

ν1+1
1 hν2+1

2

(
m̂(ν1,ν2)(x1, x2)−m(ν1,ν2)(x1, x2)

)
d→ N (0, σ2).

A neccessary condition for the Lyapunov CLT is, that the zin are independently distributed.

We can justify this assumption similar to Gasser and Müller (1984): for two disjunct points

(x1,i, x2,j) and (x1,k, x2,l), i ̸= k, j ̸= l, there exists a finite n0 such that m̂(ν1,ν2)
n (x1,i, x2,j)

and m̂
(ν1,ν2)
n (x1,k, x2,l) are independent for n > n0. This is a consequence of h → 0 as

n→ ∞ and the compactness of the used kernels.

3.8.4 Derivation of the Optimal Bandwidths

The optimal bandwidths for estimation of the regression surface m(x1, x2) or its partial

derivatives m(ν1,ν2)(x1, x2) on (x1, x2) ∈ [0, 1]2 are obtained by minimizing the AMISE

(3.3.3) (see e.g. Herrmann et al., 1995). For simplification of the results, we assume that

k1 − ν2 = k2 − ν2 ≡ δ and note that µ̃k(K) = b/k! given a kernel K(u) of order (k, ν)

according to Definition 3.4.

MISE = AMISE + o
(
h
2(k1−ν1)
1 + h

2(k2−ν2)
2 + n−1

1 n−1
2 h

−(2ν1+1)
1 h

−(2ν2+1)
2

)
+O

(
n−1
1 h−ν1

1 h−ν2
2

)
+O

(
n−1
2 h−ν1

1 h−ν2
2

)
,

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 60

AMISE =

∫ 1

0

∫ 1

0
B2

m(x1, x2) dx1 dx2 + Vm

= µ̃2k1(K1)h
2δ
1 I11 + µ̃2k2(K2)h

2δ
2 I22 + 2(−1)k1+k2 µ̃k1(K1)µ̃k2(K2)h

δ
1h

δ
2I12

+
R(K1)R(K2)σ

2

n1n2h
2ν1+1
1 h2ν2+1

2

,

with kernel constants R(K), µ̃j(K) as defined above and σ being the variance of the iid.

error terms εi,j . More generally than in (3.4.2), we now define the integrals Ir,s by

Ir,s =

∫ 1

0

∫ 1

0
m(τr)(x1, x2)m

(τs)(x1, x2 dx1 dx2

where τi =

(k1, ν2) for i = 1

(ν1, k2) for i = 2.

The first order condition for minimizing the AMISE is then

∂AMISE

∂h1
= 2δµ̃2k1(K1)I11h

2δ−1
1 + 2δµ̃k1(K1)µ̃k2(K2)I12h

δ−1
1 hδ2

− (2ν1 + 1)
R(K1)R(K2)σ

2

n1n2h
2ν1+2
1 h2ν2+1

2

= 0.

(3.8.3)

Multiplying (3.8.3) by h1/(2ν1 + 1) and equalizing the equation with its counterpart

∂AMISE /∂h2 = 0 results in

µ̃2k1(K1)

2ν1 + 1
I11h

2δ
1 −

µ̃2k2(K2)

2ν2 + 1
I22h

2δ
2 + (ν2 − ν1)

µ̃k1(K1)µ̃k2(K2)

(2ν1 + 1)(2ν2 + 1)
I12h

δ
1h

δ
2 = 0,

which is a quadratic equation in hδ1, h
δ
2, with solution

hδ1 = Aδhδ2,

Aδ =
µ̃k2(K2)

µ̃k1(K1)

(
ν1 − ν2
2ν2 + 1

I12
I11

±
[
(ν1 − ν2)

2

(2ν2 + 1)2
I212
I211

+
2ν1 + 1

2ν2 + 1

I22
I11

] 1
2

)
,

such that Aδ ≥ 0, A ≥ 0. The relation between h1 and h2 along with the first order

condition yields the formulas for the optimal bandwidths

h1,A =

[
2ν1 + 1

2δ

R(K1)R(K2)σ
2

n1n2A−(2ν2+1)C1

] 1
2(δ+ν1+ν2+1)

, (3.8.4)

with C1 = µ̃2k1(K1)I11 + µ̃k1(K1)µ̃k2(K2)I12A
−δ

h2,A =

[
2ν2 + 1

2δ

R(K1)R(K2)σ
2

n1n2A(2ν1+1)C2

] 1
2(δ+ν1+ν2+1)

(3.8.5)

with C2 = µ̃2k2(K2)I22 + µ̃k1(K1)µ̃k2(K2)I12A
δ,

3 Fast Computation and Bandwidth Selection Algorithms for the DCS 61

where (3.8.5) follows from symmetry. The second derivatives ∂2AMISE /∂h2i can be

shown to be positive for δ ≥ 1 by strainghtforward calculation, hence the optimal band-

widths (3.8.4), (3.8.5) constitute a minimum indeed. If the regression surface is consid-

ered (ν1 = ν2 = 0) and k1 = k2 = 2, the equations (3.4.3) and (3.4.4) of Proposition 3.1

follow directly.

4 Local Polynomial Double Conditional
Smoothing under Dependent Errors

This chapter is published with slight differences in the CIE Working Papers
(143), Paderborn University, under the title ”Bandwidth selection for the Local
Polynomial Double Conditional Smoothing under Spatial ARMA Errors”.

4.1 Introduction

Functional data arise in many research areas such as physics, geography, biology, and also

in economics and finance. This data appear in various forms, from spatial land survey

data to functional time series with a time- and a temporal dimension. Examples for such

time series are the intraday observations of temperatures or pollution over several days

in a specific spot and other series, where a quantitiy of interest can be measured in in-

traday time intervals over several days (see e.g. Ramsay and Silverman, 2005; Chiou and

Müller, 2009; Hyndman and Shang, 2010; Horváth and Kokoszka, 2012; Li et al., 2019a).

For financial applications, functional or spatial representation of volatility surfaces was

proposed by Feng (2013) and Peitz and Feng (2015) based on results from Andersen

and Bollerslev (1997, 1998) and Andersen et al. (2000). Nonparametric regression for a

spatial representation on a lattice was investigated, among others, by Hyndman and Ul-

lah (2007); Aneiros-Pérez and Vieu (2008); Horváth and Kokoszka (2012) and Gao and

Shang (2017).

We consider nonparametric estimation of the expectation surface under a functional

time series on a regular lattice. The idea of the double conditional smoothing (DCS) pro-

posed by Feng (2013) and investigated under kernel regression and iid. errors in Chapter

3 will be extended to local polynomial estimation. This type of smoother provides addi-

tional accuracy and straightforward estimation of derivatives of functions and surfaces.

The advantages of adopting local polynomial regression for the DCS come at the cost

of increased computation time compared to the kernel regression methods proposed in

Chapter 3. Local polynomial regression for multivariate data was investigated, for in-

stance, by Yang and Tschernig (1999); Hallin et al. (2004) and Wang and Wang (2009).

Ruppert and Wand (1994) considered the asymptotic behavior of these estimators and

derived formulas for the optimal bandwidth selection based on minimization of the mean

integrated squared error (MISE). An overview on spatial local regression can be found in

Scott (2015) or Ghosh (2018). We motivate the use of local polynomial regression by a

higher degree of precision and direct estimation of the derivatives of the surface under

consideration which is directly useful for the bandwidth selection procedure as higher or-

62

4 Local Polynomial DCS under Dependent Errors 63

der derivatives are required in the formulas. Further, it solves the boundary problem of

kernel regression. This is especially helpful when dealing with two-dimensional data as

now the ratio of the boundary region to the interior is usually larger than in the univariate

case. Kernel regression, as discussed in Chapter 3 and in the literature, e.g., by Müller

and Prewitt (1993); Herrmann et al. (1995) and Facer and Müller (2003), is subject to

the boundary problem, where the order of the bias at the boundary differs from the bias

in the interior. This flaw has to be corrected by using elaborate boundary kernels, pro-

posed by Gasser and Müller (1979) and, for instance, given by Müller (1991) or Müller

and Wang (1994). Even with boundary correction kernels, estimation at the boundary is

unstable, especially for the estimation of derivatives. This problem can be overcome, or

at least mitigated, by using local polynomial regression instead of kernel regression which

has an automatic boundary correction (see e.g. Fan and Gijbels, 1992, 1996).

We address the bandwidth selection for the local regression DCS by employing a data-

driven iterative plug-in (IPI) procedure (see Section 3.4.2 and Gasser et al., 1991; Ruppert

et al., 1995). The asymptotic optimal bandwidths are found from minimization of the

asymptotic MISE (AMISE) of the estimator. The formulas for the optimal bandwidths in-

clude partial derivatives of the regression surface under consideration which are estimated

via local polynomial DCS (LP-DCS) itself and hence, auxiliary bandwidths are required.

Under the IPI these bandwidths are obtained from the optimal bandwidths of the regres-

sion surface and the estimates of the partial derivatives are iteratively plugged into the

formulas for the optimal bandwidth in each step.

In many applications the innovations of a time series are subject to some kind of de-

pendency structure. This is especially true in financial econometrics where dependency

structures are utilized to estimate volatility (see Andersen and Bollerslev, 1998; Andersen

et al., 2003, 2004) or the risk for stock prices, but dependency arises in other fields too,

e.g., when studying weather or climate dynamics (see Chapter 5). One-dimensional kernel

regression under correlated errors is a well-researched topic, considered among others by

Altman (1990, 1993); Hart (1991) and also by Feng (2013) for the DCS. Local polynomial

estimators under correlated errors are a more recent field of research, e.g., conducted by

Francisco-Fernández and Vilar-Fernández (2001), Opsomer et al. (2001) and Brabanter

et al. (2018). Local regression under long-memory dependencies was considered by Feng

et al. (2021a) for a spatial FARIMA model; other recent work in this area was done by

Robinson (2020) and Li et al. (2019a).

We employ a parametric model for modeling the error structure under our functional

framework by using a spatial ARMA (SARMA) process. The SARMA offers a well-

researched parametric way to incorporate dependency structures into nonparametric

surface regression. Random fields on a lattice or spatial stochastic processes proved useful

for various applications and are studied in-depth in the literature. A general review of

statistical techniques for analyzing spatial patterns was done by Bartlett (1975) for early

developments in this area. Specific spatial processes were investigated, e.g., by Tjøstheim

(1978) and Martin (1979) where the analysis is primarly focused on spatial patterns in

4 Local Polynomial DCS under Dependent Errors 64

fields such as geography, ecology and agriculture (Martin, 1990) and urban economics

(Fisher, 1971). However, these results are also useful in financial applications under a

time-series context.

Estimation of the parameters of SARMA models is closely related to the parameter es-

timation of one-dimensional ARMA processes; most univariate estimation procedures can

be extended to lattice processes or do already exist. Common maximum-likelihood es-

timators might run too slowly when applied to large data sets, notably if estimation is

required multiple times, for either order selection or in the IPI bandwidth selection al-

gorithm. Parameter estimation for SARMA processes was researched, among others, by

Yao and Brockwell (2006) who propose a spatial variant of the innovations algorithm by

Brockwell and Davis (1991). However, this algorithm runs slowly for large data sets.

Faster approaches might be least squares estimators, e.g., a spatial version of the estima-

tion algorithm by Hannan and Rissanen (1982). A special case of the SARMA process is

the separable SARMA which can be written as the product of two univariate ARMA pro-

cesses in the respective directions. Hence, making an analogy with the DCS, estimation

of the parameters of the two-dimensional process is reduced to estimation of two one-

dimensional processes. We propose a convenient matrix notation for SARMA models and

point out some estimation methods for separable SARMA processes. For pure SAR pro-

cesses, i.e. spatial AR processes, a two-dimensional version of the Yule-Walker estimator is

presented, allowing for fast estimation of dependency models where the MA-part is zero.

The finite sample behavior of the local polynomial regression DCS is assessed by a sim-

ulation study which shows that the proposed estimators work well under some conditions.

Moreover, the introduction of dependent errors does no lead to a distinct decrease in es-

timation efficiency of the optimal bandwidths, although the distribution of the variance

coefficient estimates for the SARMA model employs a higher variance than in the iid. case.

Application of the proposed algorithms to high-frequency financial (HFF) data of the stock

returns of Allianz SE and Siemens AG indicate that accounting for dependency leads to

increased bandwidths for this data sets. Hence, an incorrectly made iid. assumption is

likely to cause an over- or undersmoothing of the expectation surface of the data.

We extend the DCS and functional DCS (FDCS) scheme from Feng (2013) and Chapter 3

to local polynomial regression in Section 4.2 the asymptotic properties of this new estima-

tor are discussed in Section 4.3.1. Optimal bandwidth selection using an IPI algorithm for

the local polynomial DCS is addressed in Section 4.3.2. Section 4.4 considers the depen-

dency structure of the error terms and defines the SARMA, some estimation procedures

are suggested. In Section 4.5, the proposed bandwidth selection algorithm is assessed

along with the SARMA estimator, application to financial data is done in Section 4.6. We

close with some final remarks in Section 4.7. The appendix Section 4.8 contains some

additional proofs and derivations.

4 Local Polynomial DCS under Dependent Errors 65

4.2 The FDCS for Local Polynomial Estimators

4.2.1 Model and Assumptions

A general bivariate non- or semiparametric spatial regression model requires regression

on two covariates simultaneously. The DCS splits this estimation into two separate esti-

mation procedures, effectively reducing a two-dimensional problem into two sequencial

one-dimensional estimation procedures. This provides a computational advantage over

the classical bivariate smoothers, as only univariate regression is considered. In the works

by Feng (2013) and Peitz and Feng (2015) as well as in Chapter 3, the DCS is proposed

for kernel regression, an extension to local polynomial smoothers will be the scope of this

chapter.

Let Yi,j be functional time series observed on a regular lattice spanned by components

X1 = {x1,i}, i = 1, . . . , n1 and X2 = {x2,j}, j = 1, . . . , n2, which are assumed to be

equidistant. Extension to the case where one component is non-equidistant or even has

random design is possible, due to the design adaptivity of local regression. The spatial

nonparametric model is

Yi,j = m(x1,i, x2,j) + εi,j , (4.2.1)

where m(x1, x2) is a deterministic mean or expectation surface and {εi,j} is a stationary

random field with zero mean. We aim at estimation of the mean surface m(x1, x2) or a

(partial) derivative m(ν1,ν2)(x1, x2). To derive the local polynomial DCS (LP-DCS) estima-

tor and its asymptotic properties, we establish the following assumptions:

A1. The random field Yi,j of model (4.2.1) forms a triangular array on an equidistant

lattice on [0, 1]2 spanned by sets of design points X1 = {x1,i}, i = 1, . . . , n1 and

X2 = {x2,j}, j = 1, . . . , n2. The points x1,i, x2,j are given by rescaled variables

x1,i = i/n1 and x2,j = j/n2.

A2. The expectation surface m(x1, x2) is a smooth and Lipschitz continuous function

defined on [0, 1]2, which is at least (p1 + 1, p2 + 1) times continuously differentiable

with respect to (x1, x2).

A3. The bandwidths h1, h2 satisfy the conditions h1, h2 → 0, n1hν1+1
1 , n2h

ν2+1
2 → ∞ and

n1h
ν1
1 h

ν2
2 , n2h

ν1
1 h

ν2
2 → ∞, as n1, n2 → ∞.

A4. The error function {εi,j} is a stationary random field or functional time series

with zero-mean and covariance cov(εi,j , εi−s,j−t) = E(εi,jεi−s,j−t) = γ(s, t), where∑
s

∑
t γ(s, t) <∞.

A5. Bivariate product weights W (u, v) = W1(u)W2(v) are used, where the weights

W1,W2 are with boundary modification.

4 Local Polynomial DCS under Dependent Errors 66

Assumption A1 ensures that the form of the expectation surfaces is not affected by

n1 or n2. This assumption is required for establishing the consistency and asymptotic

normality of the estimator. Under A2, the integral approximation of bias and variance

are finite and the optimal bandwidth derived from the AMISE exist and are well-defined,

A3 ensures the asymptotic unbiasedness of the estimator and is a variant of a common

assumption in nonparametric regression. In this chapter, dependency in the error terms is

allowed, however, stationarity of the error terms is assumed and the dependency structure

is restricted to short-memory processes by Assumption A4. The crucial assumption for the

DCS to work, is the product kernel Assumption A5.

4.2.2 Extension to Local Polynomial Smoothers

Consider the Taylor expansion of the surface m(x1, x2) around a point (x1,i0 , x2,j0):

m(x1, x2) =
∞∑
s=0

∞∑
t=0

(x1 − x1,i0)
s(x2 − x2,j0)

t

s! t!

(
∂s+tm

∂xs1∂x
t
2

)
(x1,i0 , x2,j0). (4.2.2)

Let yi,j be the observations in a sample of Yi,j for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 and X1, X2

be the (rescaled) covariate vectors from Assumption A1. Then, the (p1, p2)-th order local

polynomial estimator ofm(ν1,ν2)(x1, x2) is given by the coefficient βν1,ν2 from minimization

of the locally weighted least squares problem

argmin
β

Q(x1, x2) with

Q(x1, x2) =

n1∑
i=1

n2∑
j=1

[
yi,j −

p1∑
s=0

p2∑
t=0

(x1,i − x1)
s(x2,j − x2)

t

s! t!
βs,t

]2

·W
(
x1,i − x1

h1
,
x2,j − x2

h2

) ,

where h1, h2 are the bandwidths corresponding to X1 and X2 and W is a bivariate weight-

ing function. Let y be the vector constructed from vectorization of the observations yi,j of

length n = n1n2, W be the n × n matrix of suitable weights W and define the matrix of

covariates by

C =


1 (x1,1 − x1) (x1,1 − x1)

2 . . . (x1,1 − x1)
p1(x2,1 − x2)

p2

1 (x1,2 − x1) (x1,2 − x1)
2 . . . (x1,2 − x1)

p1(x2,2 − x2)
p2

...
. . .

1 (x1,n − x1) . . . (x1,n − x1)
p1(x2,n − x2)

p2

 .

Further, let ei be the i-th unit vector and β̂ be the vector that solves argmin
β

Q(x1, x2) with

β̂ = (CTWC)−1CTWy.

4 Local Polynomial DCS under Dependent Errors 67

Then, the local polynomial estimator for m(ν1,ν2)(x1, x2) is

m̂(ν1,ν2)(x1, x2) = ν1!ν2!e
T
ν1+ν2+1β̂. (4.2.3)

The estimator in (4.2.3) constitutes a single-step bivariate local polynomial regression.

The expansion in (4.2.2) can be rewritten as

m(x1, x2) =
∞∑
s=0

(x1 − x1,0)
s

s!

∂s

∂xs1

(∞∑
t=0

(x2 − x2,0)
t

t!

∂tm(x1,0, x2,0)

∂xt2

)
.

From this, we can directly define the DCS for local polynomial regression, if product

weights (Assumption A5) are used.

Definition 4.1. (Local Polynomial DCS, LP-DCS). Let Assumptions A1-A5 hold and
W1(u),W2(v) be some suitable weight functions. The LP-DCS estimator of m(ν1,ν2)(x1, x2) is

m̂(ν1,ν2)(x1, x2) = ν1!e
T
ν1+1β̂1 or equivalently (4.2.4)

m̂(ν1,ν2)(x1, x2) = ν2!e
T
ν2+1β̂2, (4.2.5)

where β̂1, β̂2 are solutions to

argmin
β1

∑
i

[
m̂(ν2)(x2|x1)−

p1∑
r=1

β1,r
(x1,i − x1)

r

r!

]2
W1

(
x1,i − x1

h1

)
, (4.2.6)

argmin
β2

∑
j

[
m̂(ν1)(x2|x1)−

p2∑
s=1

β2,s
(x2,j − x2)

s

s!

]2
W2

(
x2,j − x2

h2

)
(4.2.7)

and ei is the i-th unit vector as above. The intermediate results used in (4.2.6), (4.2.7) are
the estimators of m(ν2)(x2) conditioning on x1 respective of m(ν2)(x1) conditioning on x2.
They are given by

m̂(ν2)(x2|x1,i) = ν2!e
T
ν2+1β̂2|1 and

m̂(ν1)(x1|x2,j) = ν1!e
T
ν1+1β̂1|2,

where β̂2|1 and β̂1|2 are solutions to

argmin
β2|1

∑
j

[
yi,j −

p2∑
s=0

β2|1,s
(x2,j − x2)

s

s!

]
W2

(
x2,j − x2

h2

)
,

argmin
β1|2

∑
i

[
yi,j −

p1∑
r=0

β1|2,r
(x1,i − x1)

r

r!

]
W1

(
x1,i − x1

h1

)
.

A more detailed survey of weight functions and boundary modification for the weights

W (u) is given in Section 4.2.3 and Chapter 2. The DCS is symmetric in X1, X2, hence

4 Local Polynomial DCS under Dependent Errors 68

the order of estimation is interchangeable. Closed-form solutions to the LP-DCS from

Definition 4.1 can be derived easily:

Definition 4.2. (Local Polynomial Functional DCS). Define Y as the n1 × n2 matrix with
entries {Y}i,j = yi,j and the covariate matrices at a point (x1,i, x2,j) by

X1,i =
[
1 (X1 − x1,i) (X1 − x1,i)

2 . . . (X1 − x1,i)
p1
]

and

X2,j =
[
1 (X2 − x2,j) (X2 − x2,j)

2 . . . (X2 − x2,j)
p2
]
.

The diagonal matrices of the weights1 are W1,i,W2,j with elements W1((X1 − x1,i)/h1)

respective W2((X2 − x2,j)/h2). The functional LP-DCS equivalent to (4.2.4), (4.2.5) is then{
M̂
}

i
1≤j≤n2

= ν1!e
T
ν1+1(X

T
1,iW1,iX1,i)

−1XT
1,iW1,iM̂2 and{

M̂
}
1≤i≤n1

j

= ν2!e
T
ν2+1(X

T
2,iW2,iX2,i)

−1XT
2,iW2,iM̂1,

where estimation is carried out over all rows i and all columns j. The intermediate results
are obtained from{

M̂T
2

}
j

1≤i≤n1

= ν2!e
T
ν2+1(X

T
2,jW2,jX2,j)

−1XT
2,jW2,jY

T and{
M̂1

}
i

1≤j≤n1

= ν1!e
T
ν1+1(X

T
1,iW1,iX1,i)

−1XT
1,iW1,iY.

In Definition 4.2, we utilize the equidistancy of the lattice spanned byX1, X2 to estimate

the i-th row or j-th column of M̂ in a single step. This feature is called functional smoother
or FDCS (functional double conditional smoothing) in Chapter 3. Further, we can avoid

redundant computation by noting that the non-zero weights are the same for all rows (or

columns) in the interior region. The elements of M̂ are given by{
M̂
}
i,j

= m̂(ν1,ν2)(x1,i, x2,j),

and the intermediate results are{
M̂1

}
i,j

= m̂(ν1)(x1,i|x2,j) and
{
M̂2

}
i,j

= m̂(ν2)(x2,j |x1,i),

Theorem 4.1. (Equivalency to Bivariate Local Regression). Under the conditions A1-A5,
the DCS-estimators from Definitions 4.1 and 4.2 are equivalent to the classical bivariate local
polynomial estimator in (4.2.3).

A proof to Theorem 4.1 is given in Section 4.8.1.

1In the remainder of the chapter, the dependency of the matrices X1,i,X2,j ,W1,i,W2,j on i or j is always
assumed and hence not explicitly denoted.

4 Local Polynomial DCS under Dependent Errors 69

4.2.3 Boundary Modification in the LP-DCS

It is a well-known result that the boundary problem of kernel regression is solved by

local polynomial regression (see e.g. Fan and Gijbels, 1992, 1996). However, boundary

modification in local polynomial regression might be necessary to avoid discontinuities in

the bias between the boundary and interior regions. This type of boundary modification

in local regression is extensively discussed by Feng (2004) and in Chapter 2.

We define the boundary region (BR) as in Chapter 3 and similar to Müller and Wang

(1994). The BR contains all points in X1 and X2 that have a distance not greater than the

bandwidth from the boundaries at 0 or 1, i.e. all points that are not in the interior region.

That is, the boundary region is defined by

BR = [0, 1]2 \ {x1 : h1 ≤ x1 ≤ 1− h1 ∪ x2 : h2 ≤ x2 ≤ 1− h2}.

Due to the increased share of the BR in the total area of support in two-dimensional

models compared to univariate models, the effect of the boundaries cannot be neglected

without careful consideration, although local regression is used. While local polynomial

methods solve the boundary problem indeed, naive truncation of weight functions might

introduce discontinuities in the estimation, as discussed in Chapter 2. In the remainder

of this chapter, we consider local polynomial regression with boundary modification, that

is, we use the boundary modified weighting functions proposed in Chapter 2, which are

based upon the boundary kernels by Müller (1991) and Müller and Wang (1994). At a

boundary point x•,i ∈ BR, for q ∈ [0, 1] and a smoothness parameter µ, these weights are

W 0
q (u) = (1 + u)µ(1− u)µ, u ∈ [−1, q] (4.2.8)

W a
q (u) = (1 + u)µ(q − u)µ, u ∈ [−1, q] (4.2.9)

W b
q (u) = (1 + u)µ(q − u)µ

′
, u ∈ [−1, q], µ′ = min(1, µ− 1), (4.2.10)

for the right boundary. The corresponding left boundary weighting functions have support

u ∈ [−q, 1]. The weights in (4.2.8) are the truncated weights commonly used in local

regression. The µ-smooth weights (4.2.9) and the (µ, µ′)-smooth weights (4.2.10) are the

boundary modification weights proposed in Chapter 2. The findings of Chapter 2 show

that, despite the use of different weighting methods, the local regression estimator in the

interior (q = 1) is the same for all of these three weighting functions. In the following,

we use the (µ, µ−1)-smooth weights W b
q corresponding to the boundary kernels proposed

by Müller and Wang (1994). They provide the lowest bias among all three weighting

methods, as they are centered around the estimation point (see Chapter 2). Note that all

results hold for the other weighting functions as well, provided that the use of boundary

weights is consistent, hence, we will not indicate the use of boundary kernels explicitely.

4 Local Polynomial DCS under Dependent Errors 70

4.2.4 Equivalent Kernels

The asymptotic results, as well as the optimal bandwidths, include some quantities, which

need to be calculated from the corresponding kernel functions. We use the method intro-

duced in Chapter 2 to generate these corresponding kernels from the weighting function.

At first, we define the local polynomial weights from Definition 4.2 via

wL
1,i =

{
ν1!e

T
ν1+1(X

T
1 W1X1)

−1XT
1 W1

}
i

(4.2.11)

wL
2,j =

{
ν2!e

T
ν2+1(X

T
2 W2X2)

−1XT
2 W2

}
j
, (4.2.12)

where W is constructed from one of the weighting functions (4.2.8) - (4.2.10) with bound-

ary modification if necessary. The LP-DCS can be written as weighted sum of the observa-

tions

m̂(ν1,ν2)(x1, x2) =

n1∑
i=1

n2∑
j=1

wL
1,iw

L
2,jyi,j . (4.2.13)

A method for generating equivalent (boundary) kernel weights wK to the wL of

(4.2.11), (4.2.12) is proposed in Chapter 2, the resulting kernels correspond to the

kernels from Müller (1991) and Müller and Wang (1994). These equivalent kernel

weights of order (k, ν) with k = p+ 1 are defined by

wK
i =

1

nhν+1
Kq,ν(ui), Kq,ν(ui) =

(
k−1∑
l=0

al,νu
l
i

)
Wq(xi) (4.2.14)

for ui = (xi − x)/h. The coefficients al,ν are obtained from

Np,qaν = ν!eν+1, (4.2.15)

where Np,q is the p×p-matrix of moments ofWq(u) and aν = (a0,ν , a1,ν , . . . , ak−1,ν). Again,

the weighting functions Wq(u) can be any of the three boundary modification weights

(4.2.8) - (4.2.10). We establish the equivalency between wL and wK by

Theorem 4.2. (Equivalency of Local and Kernel Regression). Let wL
1,i, w

L
2,j be the local

polynomial weights defined by (4.2.11) and (4.2.12) and wK
1,i, w

K
2,j the kernel weights defined

by (4.2.14). Under Assumptions A1 - A4, wL
1,iw

L
2,j and wK

1,iw
K
2,j are equivalent in the sense

that

lim
n1,n2→∞

sup
1≤i≤n1
1≤j≤n2

∣∣∣∣∣wL
1,iw

L
2,j

wK
1,iw

K
2,j

− 1

∣∣∣∣∣ = 0 defining
0

0
≡ 1.

4 Local Polynomial DCS under Dependent Errors 71

A helpful intermediate result from the proof of Theorem 4.2 given in 4.8.2 , is the

following approximation for wL:

ν!eTν+1(X
TW,X)−1XTW =

1

nhν1+1
Kq,ν

(
xi − x

h

)
+O

(
1

nhν+1

)
,

for X =
[
1 (xi − x)1 . . . (xi − x)p

]
.

4.3 Bandwidth Selection for the LP-DCS

4.3.1 Asymptotic Bias and Variance

Asymptotic expressions for the bias and variance of the proposed local polynomial esti-

mator for functional surfaces on a lattice can be derived by attributing two-dimensional

estimators to one-dimensional estimators, which is a main advantage of the DCS. The

first step of the DCS from Definition 4.2 forms a functional time series on its own; it is a

sequence of univariate time series. Hence, taking the expectation of (4.2.13), we yield

E


n1∑
i=1

n2∑
j=1

wL
1,iw

L
2,jyi,j

 =

n1∑
i=1

wL
1,iE


n2∑
j=1

wL
2,jyi,j


=

n1∑
i=1

wL
1,iE

{
m̂(ν2)(x2|x1,i)

}
,

(4.3.1)

where m̂(ν2)(x2|x1,i) denotes the estimator of the ν2-th derivative of m(x1, x2) for fixed x1,

i.e. for the i-th row of yi,j .

The expectation and variance of local polynomial estimators are standard results in

nonparametric estimation theory and can be found e.g. in Ruppert and Wand (1994) or

Fan and Gijbels (1996). At in interior point, the expectation of m̂(ν2)(x2|x1,i) is

E
{
m̂(ν2)(x2|x1,i)

}
= E

{
ν2!e

T
ν2+1(X

T
2 W2X2)

−1XT
2 W2y

T
i,•

}
= m(ν2)(x2|x1,i) + S2|i +R2|i,

with the Taylor series remainder R2 and S2|1 the leading term of the expansion with

S2|i = ν2!e
T
ν2+1(X

T
2 W2X)−1XTW2


(x2,1 − x2)

p2+1

...

(x2,n2 − x2)
p2+1

 m(p2+1)(x2|x1,i)
(p2 + 1)!

(4.3.2)

=

n2∑
j=1

wL
2,j(x2,j − x2)

p2+1m
(p2+1)(x2|x1,i)
(p2 + 1)!

,

4 Local Polynomial DCS under Dependent Errors 72

for the expectation of m̂(ν1)(x1, x2), a similar result holds. From (4.3.1), the expectation

of the regression surface or any of its derivatives is

E
{
m̂(ν1,ν2)(x1, x2)

}
= ν1!e

T
ν1+1(X

T
1 W1X1)

−1XT
1 W1E

{
m̂(ν2)(x2|x1)

}
= m(ν1,ν2)(x1, x2) + S1 + S2 +R.

Again, R is the Taylor series remainder and S1, S2 are the the leading term of the expan-

sion conditional on i or j respectively, with

S1 =

n1∑
i=1

wL
1,i

(x1,i − x1)
p1+1

(p1 + 1)!
m(p1+1,ν2)(x1, x2), (4.3.3)

S2 =

n2∑
j=1

wL
2,j

(x2,j − x2)
p2+1

(p2 + 1)!
m(ν1,p2+1)(x1, x2). (4.3.4)

From Theorem 4.2, we can attribute the integral approximation of the local polynomial

estimator to that of the kernel estimator using equivalent kernels. Then, the integral

appoximation of the expectation is

E
{
m̂(ν1,ν2)(x1, x2)

}
= m(ν1,ν2)(x1, x2) + µ̃p1+1(K1)h

p1−ν1+1
1 m(p1+1,ν2)(x1, x2)

+ µ̃p2+1(K2)h
p2−ν2+1
2 m(ν1,p2+1)(x1, x2)

+O
(
hp1−ν1+1
1

)
+O

(
hp1−ν1+1
1

)
+

+O

(
1

n1h
ν1
1 h

ν2
2

)
+O

(
1

n2h
ν1
1 h

ν2
2

) (4.3.5)

where µ̃r(K) =
∫
Kq,ν(u)u

r/r! du.

Similar to the univariate expectation, the univariate variance is a standard result in local

regression theory. The asymptotic variance under dependent errors is given by Altman

(1990) for the univariate case and in the bivariate case by Feng (2013) for the kernel

regression DCS. Under the more general Assumption A4 of dependent error terms we the

variance is given by

var
{
m̂(ν1,ν2)(x1, x2)

}
=

n1∑
i=1

n1∑
i∗=1

n2∑
j=1

n2∑
j∗=1

wL
1,iw

L
1,i∗w

L
2,jw

L
2,j∗ cov(εi,j , εi∗,j∗). (4.3.6)

The following approximation is proved in Section 4.8.3

var
{
m̂(ν1,ν2)(x1, x2)

}
=

∞∑
s=−∞

∞∑
t=−∞

γ(s, t)

n1n2h
2ν1+1
1 h2ν2+1

2

[R(K1)R(K2) + o(1)] . (4.3.7)

The spatial autocovariance function γ is given by

γ(s, t) = cov(εi,j , εi+s,j+t), (4.3.8)

4 Local Polynomial DCS under Dependent Errors 73

and the kernel roughness is R(K) =
∫ 1
−1K

2(u) du.

4.3.2 Asymptotic Optimal Bandwidths

The optimal bandwidths for the local polynomial regression are found by minimization

of the AMISE. For simplification of the findings, we restrict the polynomial orders by an

addendum to Assumption A5:

A5′ : The orders of the polynomial regression p1, p2 are chosen such that p1−ν1 = p2−ν2 =
δ, with δ odd.

Let cf =
∑

s

∑
t γ(s, t) be the sum of autocovariances of the lattice process εi,j in (4.2.1)

and R(K), µ̃j(K) defined as above. Further, define the integrals over the products of the

regression surfaces or its respective derivatives by

Iij =

∫ 1

0

∫ 1

0
m(ri)(x1, x2)m

(rj)(x1, x2) dx1 dx2 (4.3.9)

with r = {(p1 + 1, ν2), (ν1, p2 + 1)}.

Using (4.3.5) and (4.3.7), the (asymptotic) MISE is

MISE (m̂(ν1,ν2), h1, h2) =
[
E{m̂(ν1,ν2)(x1, x2)} − m̂(ν1,ν2)(x1, x2)

]2
+ var{m̂(ν1,ν2)(x1, x2)}

= AMISE (m̂(ν1,ν2), h1, h2)

+O

(
1

n1h
ν1
1 h

ν2
2

)
+O

(
1

n2h
ν1
1 h

ν2
2

)
+O

(
1

n1n2h
2ν1+1
1 h2ν2+1

2

)
+O

(
hp1−ν1+1
1 + hp2−ν2+1

2

)
,

AMISE (h1, h2) = µ̃2
p1+1(K1)h

2(δ+1)
1 I11 + µ̃2

p2+1(K2)h
2(δ+1)
2 I22

+ 2µ̃p1+1(K1)µ̃p2+1(K2)h
δ+1
1 hδ+1

2 I12

+
R(K1)R(K2)

n1n2h
2ν1+1
1 h2ν2+1

2

cf .

(4.3.10)

Optimal bandwidths are the bandwidths h1, h2 which are the joint minimizers of (4.3.10).

They are given by:

Proposition 4.1. (Asymptotic Optimal Bandwidths). Let conditions A1-A4 and A5′ hold.
Then, the AMISE minimizing, asymptotic optimal bandwidths h1,A, h2,A for estimation of
m(ν1,ν2)(x1, x2) are given by the equations

h1,A =

[
2ν1 + 1

2(δ + 1)

R(K1)R(K2) cf

n1n2A
2ν2+1
1 C1

] 1
2(δ+ν1+ν2+2)

, (4.3.11)

C1 =
[
µ̃2p1+1(K1)I11 + µ̃p1+1(K1)µ̃p2+1(K2)I12A

δ+1
1

]

4 Local Polynomial DCS under Dependent Errors 74

and

h2,A =

[
2ν2 + 1

2(δ + 1)

R(K1)R(K2) cf

n1n2A
2ν1+1
2 C2

] 1
2(δ+ν1+ν2+2)

,

C2 =
[
µ̃2p2+1(K2)I22 + µ̃p1+1(K1)µ̃p2+1(K2)I12A

δ+1
2

]
.

The relation between h1 and h2 is given by the relation factor A, where

h1 = A1h2, h2 = A2h1, A1 = A−1
2

A1 =

(
µ̃(K2)

µ̃(K1)

[
I12
I11

(ν1 − ν2)

(2ν2 + 1)
±
(
I212
I211

(ν1 − ν2)
2

(2ν2 + 1)2
+
I22
I11

(2ν1 + 1)

(2ν2 + 1)

) 1
2

]) 1
δ+1

, (4.3.12)

where the sign in (4.3.12) is chosen such that A1 > 0 and hence A2 > 0.

If ν1 = ν2 (⇒ p1 = p2 from A5′), the relation factor simplifies to A1 = (I11/I22)
2(δ+1)

and for the special case of local linear estimation of the regression surface (ν1 = ν2 =

0, p1 = p2 = 1) (4.3.11) reduces to

h1 =

 R2(K) cf

4n1n2 µ̃2(K)
(
I11
I22

) 1
4

[
I11 + I12

(
I11
I22

) 1
2

]


1
6

,

which is equal to the bandwidth for the regression surface under kernel regression in

Section 3.4. The formula for h2 is analogously.

The optimal bandwidths are of order O
(
n−1/(2δ+2ν1+2ν2+4)

)
. For m̂(ν1,ν2), it holds that

MISE = O
(
h
2(δ+1)
A

)
. This leads to an order of convergence of O

(
n−(δ+1)/(δ+ν1+ν2+2)

)
and to a global convergence rate of O

(
n−(δ+1)/(2δ+2ν1+2ν2+4)

)
. In particular, the global

convergence rate of bandwidths for local linear regression of the mean surface is of the

order O
(
n−1/3

)
.

4.3.3 Bandwidth Selection by the IPI

The formulas for the optimal bandwidths of Proposition 4.1 require computation of higher

order derivatives of m(x1, x2). Although these derivatives can simply be estimated by the

LP-DCS, this estimation requires some optimal bandwidths itself, which, in general, differ

from those optimal for the regression surface. These auxiliary bandwidths are iteratvely

obtained by an IPI-algorithm, as proposed by Gasser et al. (1991) and used by Herrmann

et al. (1995) and in Chapter 3 for two-dimensional data. In this algorithm, the band-

widths h̃(p1+1)
1 , h̃

(ν2)
2 and h̃

(ν1)
1 , h̃

(p2+1)
2 required for estimation of m̂(p1+1,ν1)(x1, x2) and

m̂(ν1,p2+1) are computed from the bandwidths h1, h2 for estimation of m̂(x1, x2) via an

inflation method. This inflation method specifies a functional relation between the h and

h̃ values (see also Section 3.4.2). We use the exponential inflation method (EIM) proposed

4 Local Polynomial DCS under Dependent Errors 75

by Beran and Feng (2002a,b), as the EIM is shown to offer a better rate of convergence

than the multiplicative method employed by Herrmann et al. (1995). The EIM sets h̃ ∝ hα

instead of the multiplicative method, where h̃ ∝ nαh. The exponent α can be defined in

several ways. The choice of α = 0.5 leads to the most stable bandwidth estimation (Beran

and Feng, 2002a) and is hence a common used value, e.g., it is used in Chapter 3. How-

ever, if estimation of a derivative of m̂(x1, x2) is considered, and hence at least one ν ̸= 0,

alternative choices might be preferable. We select α to minimize MISE(m̂(p1+1,ν2), h̃1, h̃2)

respective MISE(m̂(ν1,p2+1), h̃1, h̃2). Note that from (4.3.9), the required derivatives are

of order (p1 + 1, ν2) and (ν1, p2 + 1). From Proposition 4.1 and B5′, we get

h1, h2 ∝ (n1n2)
− 1

2(δ+ν1+ν2+2) and h̃1, h̃2 ∝ (n1n2)
− 1

2(p1+p2+2)

⇒ h̃1 ∝ hα1 , h̃2 ∝ hα2 , with α =
δ + ν1 + ν2 + 2

p1 + p2 + 3
. (4.3.13)

For the exponent α, it holds that 0.5 < α < 1. In the special case of local linear regression

of the mean surface (ν1 = ν2 = 0, p1 = p2 = 1, δ = 1), we have α = 0.6.

The IPI algorithm now computes the auxiliary bandwidths h̃1, h̃2, the integrals

Î11, Î22, Î12 and from this, the asymptotic optimal bandwidths conditional on the iteration

step h1,A, h2,A in each step.

Proposition 4.2. (IPI Bandwidth Selection Algorithm). Let (ĥ1,s, ĥ2,s) be the bandwidths
for estimation of m(ν1,ν2)(x1, x2) obtained in the s-th iteration step. Then, the IPI algorithm
processes as follows:

1. Choose initial values (ĥ1,0, ĥ2,0).

2. In the s-th iteration step:

i. Define

h̃
(p1+1)
1,s = c(p1+1)(ĥ1,s−1)

α, h̃
(ν2)
1,s = c(ν2)(ĥ1,s−1)

α,

h̃
(p2+1)
2,s = c(p2+1)(ĥ2,s−1)

α, h̃
(ν1)
2,s = c(ν1)(ĥ2,s−1)

α,

ii. Compute

m̂(p1+1,ν2)(x1, x2) using bandwidths
(
h̃
(p1+1)
1,s , h̃

(ν2)
2,s

)
and

m̂(ν1,p2+1)(x1, x2) using bandwidths
(
h̃
(ν1)
1,s , h̃

(p2+1)
2,s

)
and from this the integrals Î11, Î22, Î12 applying (4.3.9).

iii. Compute m̂(ν1,ν2)(x1, x2) using bandwidths (ĥ1,s−1, ĥ2,s−1) and estimate the vari-
ance factor cf from the residuals ε̂i,j = m̂(x1,i, x2,j) − yi,j using an appropriate
method.

iv. Obtain the optimal bandwidths
(
ĥ1,s, ĥ2,s

)
from Proposition 4.1.

4 Local Polynomial DCS under Dependent Errors 76

3. Stop if the distance between (ĥ1,s, ĥ2,s) and (ĥ1,s−1, ĥ2,s−1) is smaller than some desired
threshold. Otherwise, return to 2.

The bandwidths yielded in step 3 are then called the optimal bandwidths.

If ν1 ̸= 0 or ν2 ̸= 0, the optimal bandwidths for estimation of m̂(x1, x2) are not obtained

in the IPI-process. We suggest to calculate cf in advance by applying the IPI for the regres-

sion surface previously to bandwidth selection of the desired derivative m̂(ν1,ν2)(x1, x2).

4.4 Spatial Error Structure

4.4.1 Definition of the Spatial ARMA

In most application cases, whether financial econometrics or environmental sciences, de-

pendency in the error terms is a more realistic approach than assuming an iid. distribution

of the errors. From Assumption A4, the error terms or innovations εi,j of model (4.2.1)

are assumed to follow a certain dependency structure with short memory. This ensures

the dependency structure of the errors to be finite and influences the asymptotical opti-

mal bandwidths of Proposition 4.1 only through the variance factors cf . For long memory

dependency, more sophisticated bandwidth formulas are used, as now the long-memory

parameters directly influence the bandwidth (see Feng et al., 2021a). In the following, we

study an SARMA process to model the errors εi,j of (4.2.1).

The following definition of a causal SARMA process is commonly used:

Definition 4.3. (SARMA-Process). Let ηi,j be an iid. random field, with zero mean and
variance σ2η and let the polynomials ϕ(z1, z2) and ψ(z1, z2) have all roots outside the unit
circle. The process εi,j is called an SARMA((r1, r2), (q1, q2)) process, if it fulfills the equation

ϕ(B1, B2)εi,j = ψ(B1, B2)ηi,j , (4.4.1)

where the lag operators are defined by B1εi,j = εi−1,j and B2εi,j = εi,j−1 and

ϕ(z1, z2) =

r1∑
s=0

r2∑
t=0

ϕs,tz
s
1z

t
2, ψ(z1, z2) =

q1∑
s=0

q2∑
t=0

ψs,tz
s
1z

t
2,

with ϕ0,0 = 1, ψ0,0 = 1.

The autocovariance generating function gε(z1, z2) and spectral density f(ω1, ω2) of the

general SARMA process in Definition 4.3 given, for instance, by Martin (1996), are

gε(z1, z2) =

∞∑
s=−∞

∞∑
t=−∞

γ(s, t)zs1z
t
2 = σ2η

ψ(z1, z2)ψ(z
−1
1 , z−1

2)

ϕ(z1, z2)ϕ(z
−1
1 , z−1

2)
,

f(ω1, ω2) =

(
1

2π

)2 ∞∑
s=−∞

∞∑
t=−∞

γ(s, t)e−iω1s−iω2t =

(
1

2π

)2

gε
(
e−iω1s, e−iω2t

)

4 Local Polynomial DCS under Dependent Errors 77

where γ(s, t) is the autocovariance function. The covariance factor cf can be computed

easily given the SARMA parameters from the spectral density

cf = 4π2f(0, 0) = 4π2gε(1, 1) = σ2η
ψ2(1, 1)

ϕ2(1, 1)
. (4.4.2)

We propose the following matrix notation for observations of the SARMA process from

Definition 4.3, which allows for a direct visual assignment of the coefficients to the re-

spective lags:

Definition 4.4. (Matrix Notation for SARMA-Processes). Let E be the (n1 × n2)-matrix
containing the observed values of εi,j , Z be the (n1 × n2)-matrix containing the innovations
ξi,j . We define the submatrices E∗(i∗, j∗),Z∗(i∗, j∗) of lagged values at (i, j) by

E∗(i∗, j∗) = {Ei,j} i∗≥i≥i∗−p1
j∗≥j≥j∗−p2

, Z∗(i∗, j∗) = {Zi,j} i∗≥i≥i∗−q1
j∗≥j≥j∗−q2

.

For max(p1, q1) < i ≤ n1 and max(p2, q2) < j ≤ n2, the SARMA-process from (4.4.1) can be
written as

vecT (ϕ) vec (E∗(i, j)) = vecT (ψ) vec (Z∗(i, j))

where the coefficient matrices are

ϕ =


ϕ0,0 . . . ϕ0,p2

...
. . .

ϕp1,0 ϕp1,p2

 , ψ =


ψ0,0 . . . ψ0,q2

...
. . .

ψq1,0 ψq1,q2


with ϕ0,0 = 1, ψ0,0 = 1

4.4.2 Estimation of the SARMA

In general, the various methods for parameter estimation of univariate ARMA models can

be easily extended to estimation of ϕ, ψ, and σ2 of the SARMA in Definition 4.4. Most

widely used procedures are maximum likelihood (ML) estimation or least squares esti-

mation from the residuals. ML estimation for a stationary SARMA is e.g. investigated

by Yao and Brockwell (2006) based on the innovations algorithm proposed by Brockwell

and Davis (1991). Illig and Truong-Van (2006) propose an estimation procedure for the

AR-part as well as a method for selection of the SARMA(r, q) orders r = (r1, r2) and

q = (q1, q2). For none of these methods, closed-form solutions exist and numerical op-

timization is required. In the spatial framework under consideration, where large data

sets are observed, this will lead to an increased computation time. In the worst case,

the efficiency increase by the DCS in the nonparametric estimation of the mean surface

is dominated by the numerical estimation of the error terms. A much faster approach is

a two-dimensional version of the algorithm by Hannan and Rissanen (1982), who use a

4 Local Polynomial DCS under Dependent Errors 78

Yule-Walker estimate of the AR-part of the SARMA for the initial estimation of the inno-

vations and a linear regression for estimation of the SARMA-parameters. However, this

method provided less good fits in our simulations compared to other numerical methods.

In the following, we will propose estimation strategies for two special cases of the SARMA;

a separable process and a spatial AR-process (SAR).

In the case of a separable process, the polynomials in Definition 4.3 reduce to

ϕ(z1, z2) = ϕ1(z1)ϕ2(z2) and ψ(z1, z2) = ψ1(z1)ψ2(z2)

ϕ1(z1) = 1−
p1∑
s=1

ϕs,0z
s
1, ϕ2(z2) = 1−

p2∑
t=1

ϕ0,tz
t
1, (4.4.3)

ψ1(z1) = 1 +

q1∑
s=1

ψs,0z
s
1, ψ2(z2) = 1 +

q2∑
t=1

ψ0,tz
t
1. (4.4.4)

In this case, the spatial process is just the product of two univariate ARMA processes and

the formulas for the autocovariance and spectral density reduce to a separable form. The

parameter matrices are the products of the parameter vectors

ϕ =(1, ϕ1,0, ϕ2,0, . . . , ϕp1,0)
T (1, ϕ0,1, ϕ0,2, . . . , ϕ0,p2)

ψ =(1, ψ1,0, ψ2,0, . . . , ψq1,0)
T (1, ψ0,1, ψ0,2, . . . , ψ0,q2).

and the variance factor can be computed by

cf = 4π2σ2η
ψ2
1(1)ψ

2
2(1)

ϕ21(1)ϕ
2
2(1)

.

Under a separable SARMA process, estimation of the parameters can be reduced to es-

timation of two univariate ARMA-processes (Martin, 1979) in the two directions, which

bears a resemblance to the DCS procedure. Given a matrix E of observations of the pro-

cess εi,j , the ARMA coefficients can be estimated in two ways. Either, every row and

column of E can be treated as a random sample of the respective ARMA model and indi-

vidually estimated. This approach was discussed by Beran et al. (2009) for the SARMA-

part of long-memory SFARIMA model. The estimates ϕ̂1, ψ̂1 would then be the averages

over the parameters ϕ̃1(j), ψ̃1(j) estimated from {E}1≤i≤n1,j and ϕ̂2, ψ̂2 the averages over

ϕ̃2(i), ψ̃2(i) estimated from {E}i,1≤j≤n2 . The second approach brings the averaging for-

ward and treats vec(E) as the only random sample of the column-wise time series and

vec(ET) as the only random sample of the row-wise time series. Hence, the parameters

ϕ̂1, ψ̂1 can be directly estimated from vec(E) and ϕ̂2, ψ̂2 from vec(ET). Although both

approaches are suitable for estimation of the parameters of a separable SARMA process,

it depends on the circumstances, which one to prefer. We found the second one more

precise in our simulations, however, the first one might be faster for very large data sets,

depending on the estimation algorithm used.

Basti
Hervorheben

4 Local Polynomial DCS under Dependent Errors 79

For q1 = q2 = 0, the SARMA of Definition 4.3 reduces to an SAR process with order

(r1, r2). Unlike the SARMA, there exist explicit formulas for estimation of the parameters

of an SAR process in form of the (spatial) Yule-Walker equations (see Ha and Newton,

1993; Illig and Truong-Van, 2006). We use the definition of (4.3.8) for the autocovariance

function γ(s, t) of the SAR process. The spatial Yule-Walker equation for the SAR (r1, r2)

is then

Γ vec(ϕ) = 0

where Γ denotes the full autocovariance matrix:

Γ =


γ(0, 0) γ(1, 0) . . . γ(r1, 0) γ(0, 1) . . . γ(r1, r2)

γ(1, 0) γ(0, 0) γ(r1 − 1, r2)
...

. . .
...

γ(r1, r2) γ(r1 − 1, r2) . . . γ(0, 0)



Ha and Newton (1993) proposed the following bias-corrected sample autocovariance

function:

γ̂(s, t) =
n1n2

(n1 − s)(n2 − t)

n1−s∑
i=1

n2−t∑
j=1

εi,jεi+s,j+t

γ̂(s,−t) = n1n2
(n1 − s)(n2 − t)

n1−s∑
i=1

n2∑
j=t+1

εi,jεi+s,j−t,

with the relations γ̂(−s,−t) = γ̂(s, t) and γ̂(−s, t) = γ̂(s,−t).

4.5 Simulation Study

The proposed algorithm is assessed at the example of three gaussian functions. We study

the distribution of the selected bandwidths and of the variance factor cf under dependent

errors following an SARMA model. Let N(µ,Σ) denote the bivariate normal distribution

with mean vector µ and covariance matrix Σ, then the example surface functions are

m1 ∼ N

((
0.5

0.5

)
,

(
0.1 0

0 0.1

))
(4.5.1)

m2 ∼ N

((
0.5

0.3

)
,

(
0.1 0

0 0.1

))
+N

((
0.2

0.8

)
,

(
0.05 0

0 0.05

))
(4.5.2)

m3 ∼ N

((
0.25

0.75

)
,

(
0.01 0

0 −0.1

))
+N

((
0.75

0.5

)
,

(
0.01 0

0 −0.1

))
, (4.5.3)

4 Local Polynomial DCS under Dependent Errors 80

where (4.5.1) constitutes a symmetric single peak, (4.5.2) an asymmetric double peak and

(4.5.3) forms two ridges intended to resemble the volatility surfaces found in Section 4.6.

The error structure is chosen such that εi,j follows a separable SARMA((1, 1), (1, 1)) pro-

cess with coefficients

ϕ =

(
1 −0.50

−0.20 0.10

)
, ψ =

(
1 0.20

0.30 0.06

)
, σ2 = 0.25. (4.5.4)

From (4.4.2), the variance coefficient for the SARMA is then cf = 3.8025. Our study

includes 2,500 simulations for each function where observations are simulated on a [0, 1]2

grid of size n1 = n2 = 101. We use a trim parameter λ1 = λ2 = λ = 0.05 to stabilize

estimation of bandwidths. Estimation of the expectation surface is done under a correctly

specified SARMA model for estimation of the error structure and misspecified model under

an iid. assumption. This allows to assess the effect of not accounting for dependency in

the errors.

We employ a local linear estimator for estimation of the regression surface, with the

(µ, µ′)-smooth boundary modification weights of (4.2.10) and µ = 2. Hence, the required

partial derivatives for the optimal bandwidths of Proposition 4.1 are m(2,0)(x1, x2) and

m(0,2)(x1, x2), which are estimated by local linear and local cubic regression in the dimen-

sion of the second derivative. The parameters in the EIM were chosen to be c(2) = 2,

c(2) = 1 for the exemplary functions m1, m2 and c(2) = c(2) = 1 for m3. We chose to

differ in the latter case, as here the structure is somehow finer than in the other cases and

a too large bandwidth for derivative estimation is susceptible for oversmoothing2. The

exponent was chosen according to (4.3.13) to α = 3/5.

The distributions of the estimated bandwidths are displayed in Figure 4.2. The results

indicate that the goodness-of-fit of bandwidth selection depends on the underlying func-

tion m(x1, x2). Finer structures will lead to a rapid decrease in variance of the estimator

making a bias in the estimation more severe. This becomes obvious from Table 4.1 where

the p-values measure the deviation of the estimates from the true values. For all functions

the true bandwidth is estimated with a certain confidence under the correctly specified

model. Parameter tuning for further optimization of the bandwidth selection algorithm

might aim at adjusting the parameters λ or c0, c1. However, to our knowledge, a data

driven method for selection of the inflation parameters is not available, so these values

can only be selected from a simulation with similar functions.

In any case the selected bandwidths for the correct model are close to the true band-

widths, while the misspecified model clearly underestimates the bandwidths in this case.

This behavior depends on the values of cf and σ2, hence, incorrect specification of the

error model might also lead to oversmoothing for different data. The original surfaces can

2For practical applications, we propose to run a pilot smoothing with manually specified bandwidths to
gain insights on the functional form of the surface under consideration. Parameters of the EIM might be
choosen according to these findings as long as no data-driven method for selecting this parameters exist.

4 Local Polynomial DCS under Dependent Errors 81

Table 4.1: Bandwidth statistics of the simulation study using SARMA errors under local polynomial
regression DCS. Values are obtained from a sample of 2,500 simulations for the functions
given in (4.5.1) - (4.5.3). The p-value corresponds to H0 : h = htrue.

Function Type h1 h2

mean SD p mean SD p

m1

true 0.23142 - - 0.23142 - -
SARMA 0.23299 0.01611 0.92246 0.23345 0.01588 0.89853
iid. 0.16120 0.01759 0.00007 0.16153 0.01768 0.00008

m2

true 0.21443 - - 0.24367 - -
SARMA 0.19555 0.01817 0.29877 0.22742 0.03027 0.59150
iid. 0.14004 0.01375 0.00000 0.15164 0.01831 > 1E−05

m3

true 0.08842 - - 0.11392 - -
SARMA 0.09332 0.00390 0.20989 0.11729 0.00632 0.59469
iid. 0.06745 0.00255 > 1E−05 0.08444 0.00446 > 1E−05

Table 4.2: Summary statistics of the estimated variance coefficients in the simulation study. The true
value is 3.8025 for all models, the p-value corresponds to H0 : cf = cf,true.

Function Errors mean SD p

m1
SARMA 3.42496 0.25953 0.14576
iid. 0.50153 0.01328 > 1E−05

m2
SARMA 3.35608 0.25459 0.07952
iid. 0.49777 0.01321 > 1E−05

m3
SARMA 2.83352 0.21125 > 1E−05
iid 0.45225 0.01210 > 1E−05

be found in the first column of Figure 4.3 along with the smoothed surfaces for the iid.

and SARMA data.

4.6 Applications

We illustrate the proposed algorithm at the example of stock price volatility and the corre-

sponding trading volumes observed from 2004 to 2014 covering the financial crisis around

2008, with data from German companies Allianz SE (ALV) and Siemens AG (SIE). Some

exemplary smoothed surfaces are given in Figure 4.4 for ALV and Figure 4.5 for SIE. The

impact of the financial crisis is clearly visible in the spike in 2008 which exists in all surface

plots. Another insight we can draw from our application is that accounting for dependency

in the errors leads to an increase in bandwidths for our examples (see Table 4.3).

We use stock price returns and volume data from Allianz SE and Siemens AG. All four

data sets are observed from 2004-01-02 to 2014-09-30 and include 2739 days with 510

4 Local Polynomial DCS under Dependent Errors 82

Gaussian Ridges, h1 Gaussian Ridges, h2

Double Gaussian Peak, h1 Double Gaussian Peak, h2

Single Gaussian Peak, h1 Single Gaussian Peak, h2

0.06 0.07 0.08 0.09 0.10 0.11 0.07 0.09 0.11 0.13

0.10 0.15 0.20 0.25 0.1 0.2 0.3

0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30

0

10

20

0

5

10

15

20

0

25

50

75

0

10

20

0

10

20

30

0

50

100

150

200

Bandwidth

D
en

si
ty

Error Type iid SARMA true

Figure 4.1: Distribution of the bandwidth estimates h1, h2 obtained in the simulation study with 2,500
observations. Simulated are functions m1, m2, m3 of (4.5.1) - (4.5.3) under the SARMA
model (4.5.4). Bandwidths are selected under an iid. and an SARMA((1, 1), (1, 1))
assumption.

4 Local Polynomial DCS under Dependent Errors 83

Gaussian Ridges, iid Gaussian Ridges, SARMA

Double Gaussian Peak, iid Double Gaussian Peak, SARMA

Single Gaussian Peak, iid Single Gaussian Peak, SARMA

0.45 0.50 0.55 2.5 3.0 3.5 4.0 4.5

0.45 0.50 0.55 2.5 3.0 3.5 4.0 4.5

0.45 0.50 0.55 2.5 3.0 3.5 4.0 4.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

0

10

20

30

0

10

20

30

0

10

20

30

cf

D
en

si
ty

Error Type iid SARMA true

Figure 4.2: Distribution of the estimated variance coefficients cf in the simulation study with 2,500
observations. Simulated are functions m1, m2, m3 of (4.5.1) - (4.5.3) under the SARMA
model (4.5.4). Variance coefficients cf are obtained under an iid. assumption and an
SARMA((1, 1), (1, 1)) assumption for the error terms.

4 Local Polynomial DCS under Dependent Errors 84

Original SARMA Errors iid. errors

Si
n

gl
e

Pe
ak

D
ou

bl
e

Pe
ak

R
id

ge
s

Figure 4.3: Original and estimated surfaces for the functions (4.5.1) - (4.5.3) under SARMA errors
from model (4.5.4). The following bandwidths are used: m1 : (0.2384, 0.2497),m2 :
(0.2138, 0.2474),m3 : (0.0971, 0.1245) under the SARMA((1, 1), (1, 1)) assumption and
m1 : (0.1750, 0.1496),m2 : (0.1647, 0.1692),m3 : (0.0694, 0.0868) under the iid. assump-
tion (misspecification). The scale of the vertical axis might differ across the plots.

4 Local Polynomial DCS under Dependent Errors 85

per-minute observations leading to a total number of observations just below 1.4 million3.

While no further preprocessing was done for the volume data, we use the squared and

demeaned returns for estimation of the volatility surface. While Peitz and Feng (2015)

proposed to use another nonparametric surface estimation for demeaning the returns,

we found the arithmetic mean to be equally appropriate as the difference between both

approaches is minor in this context. We use a similar model as in Chapter 3 or Feng

(2013); Peitz and Feng (2015). Let Ri,j be the centralized returns, σR(x1, x2) the spot

volatility surface and η̃i,j a random field. We model the returns by

Ri,j = σR(x1,i, x2,j)η̃i,j

with transformation into an additive model given by

ln
(
R

2
i,j

)
= ln

(
σ2R(x1,i, x2,j)

)
+ εi,j , (4.6.1)

where εi,j = ln(η̃2i,j) is assumed to be a stationary random field with short memory. Model

(4.6.1) can be estimated using nonparametric regression, where ln
(
σ2R(x1, x2)

)
is the

mean surface. The volatility surface is obtained via retransformation.

Four different approaches are used for modeling the error terms εi,j of (4.6.1): iid.,

SARMA((1, 1), (1, 1)), SARMA(r, s) (SARMA∗) with selection of the orders r, s by mini-

mization of the BIC (with maximum orders (2, 2) for the AR- and MA-part) and SAR (3, 3).

The resulting optimal bandwidths are displayed in Table 4.3, the estimated variance mod-

els in Table 4.4 (Allianz SE) and Table 4.5 (Siemens AG). For SARMA models with nonzero

MA-part the bandwidths are substantially larger than under the assumption of iid. or SAR-

error terms where the latter only exhibit a small increase to the iid. case. This leads to

much smoother surface estimates in Figure 4.4 and Figure 4.5 when accounting for de-

pendent data.

4.7 Final Remarks

The DCS, as introduced by Feng (2013) and further developed in Chapter 3, is extended

to local polynomial smoothers in this chapter. Local polynomial estimators have some

clear advantages over kernel regression; they solve the boundary problem and allow for

easier estimation of derivatives. These properties are utilized in the bandwidth selection

procedure by an IPI algorithm where estimation of partial derivatives is necessary. We

obtain optimal bandwidths in Proposition 4.1 and propose an IPI algorithms based on

these optimal bandwidths in Proposition 4.2. We introduce a certain dependency struc-

ture in the semiparametric model, which is explicitely addressed by an SARMA model.

Some fast estimation procedures for the SARMA parameters are suggested and a order

3The data was aggregated by calendar time sampling (CTS). Original Data was obtained from Thomson
Reuters.

4 Local Polynomial DCS under Dependent Errors 86

YearTime

Volatility

(a) Volatility, iid. errors

YearTime

Volatility

(b) Volatility, SARMA errors

YearTime

Volum
e

(c) Volumes, iid. errors

YearTime

Volum
e

(d) Volumes, SARMA errors

Figure 4.4: Estimated spot volatility and trading volume surfaces of Allianz SE using the bandwidths
in Table 4.3. Values of volatility are in 1E−04, of volumes in 1E+03.

4 Local Polynomial DCS under Dependent Errors 87

YearTime

Volatility

(a) Volatility, iid. errors

YearTime

Volatility

(b) Volatility, SARMA errors

YearTime

Volum
e

(c) Volumes, iid. errors

YearTime

Volum
e

(d) Volumes, SARMA errors

Figure 4.5: Estimated spot volatility and trading volume surfaces of Siemens AG using the bandwidths
in Table 4.3. Values of volatility are in 1E−04, of volumes in 1E+03.

4 Local Polynomial DCS under Dependent Errors 88

Table 4.3: Bandwidths of the estimated models for spot volatility and trading volumes of Allianz SE
and Siemens AG under assumption of independent and dependent errors and local polyno-
mial regression DCS. Estimated models are iid., SARMA((1, 1), (1, 1)), SARMA∗ with BIC
order selection and SAR (1, 1).

Data Err. Type h1 h2 cf

Allianz SE
Volatility

iid. 0.03848 0.07412 20.74
SARMA 0.09967 0.16900 2469.84
SARMA∗ 0.13684 0.25297 18358.91
SAR 0.04833 0.09017 57.19

Allianz SE
Volumes

iid. 0.05376 0.13552 1.845E+08
SARMA 0.14757 0.30166 9.506E+09
SARMA∗ 0.14930 0.30525 1.022E+10
SAR 0.05926 0.15380 3.161E+08

Siemens AG
Volatility

iid. 0.05033 0.07178 28.53
SARMA 0.13934 0.18254 6376.02
SARMA∗ 0.28156 0.34702 148123.74
SAR 0.06004 0.08519 68.274

Siemens AG
Volumes

iid. 0.06465 0.13751 6.330E+08
SARMA 0.13894 0.29217 2.369E+10
SARMA∗ 0.13992 0.29384 2.467E+10
SAR 0.06936 0.15102 9.417E+08

selection algorithm is presented. The application to financial data indicates that incorpo-

rating dependent errors terms increase the bandwidth substantially for the data sets under

consideration.

It should be emphasized that, though our algorithm is initially developed for financial

applications, it is not limited to those. For any spatial data model or functional time series

on a lattice which meets the assumptions, the semiparametric DCS offers a fast method of

estimating the expectation surface for large data sets.

Further research on the DCS can be conducted in various directions. Crucial to the

bandwidth selection algorithm is the estimation of the derivatives. These estimates are

heavily influenced by the choice of the inflation parameters and inflation exponents. Re-

finement of the local polynomial DCS might employ a data driven choice of these inflation

parameters and thus reducing both, bias and variance of the estimator.

The use of an SARMA process for modeling the error term structure might not be ap-

propriate in all cases. In some applications, this model might be clearly misspecified or

another model might suit the specific framework better. In the presence of long-memory

effects in the data, the SARMA might be replaced with an appropriate model such as a

spatial FARIMA model. An extension to nonparametric estimation of the variance factor

would convert the semiparametric model treated in this chapter into a fully nonparametric

model.

4 Local Polynomial DCS under Dependent Errors 89

4.8 Appendix

4.8.1 Proof of Theorem 4.1

Proof. Let U1 = (XT
1 W1X1)

−1XT
1 W1 and U2 = (XT

2 W2X2)
−1XT

2 W2, then the local

polynomial DCS estimator from Definition 4.2 expressed as a single step is U1(U2Y)T .

This can be written in terms of vectorization and Kronecker multiplication:

U1(U2Y)T = U1Y
TUT

2 = (U2 ⊗U1)vec(Y) (4.8.1)

Let C,S, Y be defined as in Section 4.2 and note that C = X1 ⊗X2, S = W1 ⊗W2 and

Y = vec(Y). For suitable matrices A,B,C,D, the identity AC ⊗ BD = (A ⊗ B)(C ⊗ D)

holds, iterated use of this identity on (4.8.1) leads to:

U1(U2Y)T = (CTSC)−1CTSY

where the rhs. is the classical bivariate local polynomial smoother as in (4.2.3).

4.8.2 Proof of Theorem 4.2

This proof4 is similar to that of Müller (1987), but adapted for spatial regression methods

under the DCS framework. From (4.2.13), the nonparametric estimator for m̂(ν1,ν2)(x1, x2)

can be written as weighted sum, with either the local polynomial weights wL or (equiv-

alent) kernel weights wK . By Assumption A4, product weights are used. We consider

kernels of order (k, µ, ν) as defined by (4.2.14) and (4.2.15) for a weighting function

Wq(u) of (4.2.8) - (4.2.10) as in Chapter 2.

Without loss of generality, we only consider right boundary kernels defined on [−1, q],

for q ∈ [0, 1] or interior kernels (q = 1), the results also hold for left boundary kernels

defined on [−q, 1].
Define X and W as above. Further, define the symmetric matrix

Ñp,q = (XTWqX) =


c0 c1 . . . cp

c1 c2 cp+1

...
. . .

...

cp cp+1 . . . c2p

 ,

where the i, j-th element is indicated by r = i + j − 2. The weights wL
ν can be written as

wL
ν = eν+1Ñ

−1
p,qX

TWq with eν+1 being the (ν + 1)-th unit vector. Further, denote the set

of all integers l leading to non-zero weights in Wq(•) by Q∗ where

Q∗ = {l : −nh ≤ l ≤ qnh, l ∈ Z} .

4Parts of this proof can also be adoped to proof Theorem 2.4 in Chapter 2.

4 Local Polynomial DCS under Dependent Errors 90

For any x ∈ [0, 1− h], where h is a bandwidth, the elements cr are given by

cr =
∑
l∈Q∗

(xl − x)rWq

(
xl − x

h

)
= nhr+1

∫ q

−1
urWq(u) du+O(hr). (4.8.2)

Proof. Define the r-th moment of Wq(u) by µr(u) = urWq(u) and note that µr is Lipschitz

continuous as Wq(u) is Lipschitz continuous. For the integral in (4.8.2) we have

∫ q

−1
µq,r(u) du =

∑
l∈Q∗

∫ l
[hn]

l−1
[hn]

fq,r(u) du.

By the mean value theorem, there exists an ξl ∈
(

l−1
[nh] ,

l
[nh]

)
, such that

∫ q

−1
µr(u) du =

1

[nh]

∑
l∈Q∗

µr(ξl).

Using the equidistancy of the x’s and Lipschitz continuity of fq,r(u), it follows that∣∣∣∣∣∣
∑
l∈Q∗

(xl − x)Wq

(
xl − x

h

)
− nhr+1

∫ q

−1
urWq(u) du

∣∣∣∣∣∣
=

∣∣∣∣∣∣hr
∑
l∈Q∗

µr

(
l

nh

)
− hr

∑
l∈Q∗

µr(ξl)

∣∣∣∣∣∣
≤ hr

∑
l∈Q∗

∣∣∣∣µr (l

nh

)
− µr(ξl)

∣∣∣∣
≤ Lhr

∑
l∈Q∗

∣∣∣∣ lnh − ξl

∣∣∣∣
≤ Lhr

∑
l∈Q∗

∣∣∣∣ 1nh
∣∣∣∣ = O(hr)

as |Q∗| = O(nh).

Hence, Ñp,q = nhH[Np,q + o(1)]H, where H is the diagonal matrix with elements

1, h, h2, . . . , hp−1. Taking the inverse, it follows for the i-th element of wL
ν

wL
ν,i =

1

nh
ν!eTν+1(H

−1[Np,q + o(1)]−1H−1)XTWqei

=
1

nhν+1

p∑
r=0

1

hr
[aν+r + o(1)]xri Wq

(
xi − x

h

)
=

1

nhν+1
Kν,q

(
xi − x

h

)
+O

(
1

nhν+1

)
,

with the equivalent kernel Kν,q(u). The notation o(1) indicates a matrix whose elements

are all of order o(1). The weights are hence linked by wL
ν,i = wK

ν,i[1 + o(1)].

4 Local Polynomial DCS under Dependent Errors 91

With ui = (x1,i − x1)/h1 and vj = (x2,j − x2)/h2 we yield for the product weights with

wL
ν1,iw

L
ν2,j =

(
p1∑

r1=0

p2∑
r2=0

[a1,r1 + o(1)][a2,r2 + o(1)]ur1i v
r2
j

)
W1,iW2,j

n1n2h
ν1+1
1 hν2+1

2

=

(
p1∑

r1=0

p2∑
r2=0

[a1,r1a2,r2 + o(1)]ur1i v
r2
j

)
W1,iW2,j

n1n2h
ν1+1
1 hν2+1

2

(4.8.3)

In the kernel regression case it is clear from (4.2.14) that

wK
ν1,iw

K
ν2,j =

1

n1n2h
ν1+1
1 hν2+1

2

p1∑
r1=0

p2∑
r2=0

a1,ν1+r1a2,ν2+r2u
r1
1,iu

r2
2,jW1,iW2,j (4.8.4)

By setting the kernel order to k = p + 1, Theorem 4.2 follows directly from (4.8.3) and

(4.8.4).

4.8.3 Expectation and Variance

As expectation and variance of a (bivariate) local regression estimator are standard results

in the literature (see, e.g, Ruppert and Wand, 1994; Fan and Gijbels, 1996; Feng, 2013),

we only give sketched proofs for the integral approximations of the expectation and vari-

ance of the DCS estimator. From Theorem 4.2, we can also adopt the results for kernel

regression from Müller and Prewitt (1993); Facer and Müller (2003) or that of Chapter 3.

Univariate Expectation. The univariate asymptotic expectation of the local polynomial

estimator can be calculated strainghtforward by using E{yi,j |x1,i} = m(x2,j |x1,i) to

E
{
m̂(ν2)(x2)|x1,i

}
= E

{
ν2!eν2+1(X

T
2 W2X2)

−1XT
2 W2m(x2,j)|x1,i

}

=ν2!eν2+1(X
T
2 W2X2)

−1XT
2 W2X


m(x2,j |x1,i)
m(1)(x2,j |x1,i)

...

mp2(x2,j |x1,i)

+ S2|1 +R2

= m(ν)(x2,j |x1,i) + S2|1 +R2.

The leading term of the expansion is as defined in (4.3.2), the Taylor series remainder is

R2 =
∞∑

r2=p2+2

n2∑
j=1

wL
2,j(x2,j − x2)

r2
m(r2)(x2|x1,i)

r2!

An analogous argumentation holds for S1|2.

4 Local Polynomial DCS under Dependent Errors 92

Expectation of the DCS Estimator. The leading terms of the Taylor expansion are given

by S1 and S2 of (4.3.3), (4.3.4). Their integral approximation is

S1 = hp1−ν1+1
1 µ̃p+1(K1)m

(p1+1,ν2)(x1, x2) +O

(
1

n1h
ν1
1

)
+O

(
hp1−ν1+1
1

)
and

S2 = hp2−ν2+1
2 µ̃p2+1(K)m(ν1,p2+1)(x1, x2) +O

(
1

n2h
ν1
2

)
+O

(
hp2−ν2
2

)
.

Note that we define the kernel moment function µ̃ by

µ̃j(K) =

∫ q

−1
K(u)uj du, q ∈ [0, 1]

Variance of the DCS Estimator. We adopt the findings by Feng (2013) for the local

polynomial regression to give a sketched proof of the variance approximation (4.3.7).

After a variable transformation s = i − i∗, t = j − j∗ and defining κ1 = [n1h1] and

κ2 = [n2h2], where [•] denotes the integer part, the variance in (4.3.6) may be rewritten

as

var
{
m̂(ν1,ν2)(x1, x2)

}
=

2κ1∑
s=−2κ1

2κ2∑
t=−2κ2

 ∑
i−i∗=s

∑
j−j∗=t

wL
1,iw

L
1,i−sw

L
2,jw

L
2,j−t

 γ(s, t).
Following Theorem 4.2 we use the equivalent kernel weights wK to write

=
1

(n1n2h
ν1+1
1 hν2+1

2)2

2κ1∑
s=−2κ1

2κ2∑
t=−2κ2

[∑
i−i∗=s

K1

(
i

n1h1

)
K1

(
i− s

n1h1

)

·
∑

j−j∗=t

K2

(
j

n2h2

)
K2

(
j − t

n2h2

) γ(s, t). (4.8.5)

Define the autocovariance response function for a kernel K(u)(Feng, 2013) by

GK(u) =



u+1∫
−1

K(v)K(v − u) dv for − 2 ≤ u ≤ 0

1∫
u−1

K(v)K(v − u) dv for 0 ≤ u ≤ 2

0 otherwise.

(4.8.6)

This function quantifies the contribution of the autocovariance to the overall variance of

the estimator m̂(ν1,ν2)(x1, x2). Defining u = s/κ, it holds that

1

n1h1

∑
i−i∗=s

K1

(
i

n1h1

)
K1

(
i− s

n1h1

)
= GK1(u) +O

(
1

n1h1

)

with a similar result for GK2(v)

4 Local Polynomial DCS under Dependent Errors 93

Proof. Let −2κ ≤ s ≤ 0 and define v = ṽ/κ and u as above. Then we have∣∣∣∣∣ 1nh
s+κ∑
−κ

K

(
i

nh

)
K

(
i− s

nh

)
−
∫ u+1

−1
K(v)K(v − u) dv

∣∣∣∣∣
=

∣∣∣∣∣ 1nh
s+κ∑
−κ

K

(
i

nh

)
K

(
i− s

nh

)
− 1

nh

s+κ∑
−κ

∫ ri

ri−1

K

(
ṽ

nh

)
K

(
ṽ − s

nh

)∣∣∣∣∣
≤ 1

nh

s+κ∑
−κ

∣∣∣∣K (i

nh

)
K

(
i− s

nh

)
−K

(
ξi
nh

)
K

(
ξi − s

nh

)∣∣∣∣
where the ri form a suitable partition and ξ are adequate mean values. Then, we can use

the Lipschitz continuity of K(u) and obtain

≤ L

nh

∑
−κ

s+ κ

(∣∣∣∣ i− ξi
nh

∣∣∣∣+ ∣∣∣∣ i− s− ξi + s

nh

∣∣∣∣) = O

(
1

nh

)
.

With the autocovariance response functionGK(u) from (4.8.6), the term for the variance

in (4.8.5) is written as

var
{
m̂(ν1,ν2)(x1, x2)

}
(4.8.7)

=
1

n1n2h
2ν1+1
1 h2ν2+1

2

2κ1∑
s=−2κ1

2κ2∑
t=−2κ2

[
GK1

(
s

n1h1

)
GK2

(
t

n2h2

)
+ o(1)

]
γ(s, t).

In the asymptotic limit by, Assumption A3, it holds that n1h1, n2h2 → ∞ as n1, n2 → ∞.

Applying the same rationale as Feng (2013), we may divide the double sums of (4.8.7)

into two double sums, for all |s| ≤ 1/h1, |t| ≤ 1/h2 and the other for the remaining terms.

Then (4.8.7) becomes

=
∑

|s|≤1/h1

∑
|t|≤1/h2

GK1

(
s

n1h1

)
GK2

(
t

n2h2

)
γ(s, t)

+
∑

|s|>1/h1

∑
|t|>1/h2

GK1

(
s

n1h1

)
GK2

(
t

n2h2

)
γ(s, t).

Now, since h1, h2 → 0 as n1, n2 → ∞, the second term vanishes in the limit. Employing

Assumption A3 again, the arguments in GK approach zero, where it holds that GK(0) =

R(K), with R(K) as defined above. We arrive at the asymptotic approximation in (4.3.6).

4 Local Polynomial DCS under Dependent Errors 94

4.8.4 Optimal Bandwidths

Let Assumptions A1 to A4 as well as A5′ hold. From the AMISE (4.3.10), we get the first

order condition for the optimal bandwidth h1

∂AMISE(h1, h2)

∂h1
= 2(δ + 1)µ̃2p1+1(K1)I11h

2δ+1
1

+ 2(δ + 1)µ̃p1+1(K1)µ̃p2+1(K2)I12h
δ
1h

δ+1
2

− (2ν1 + 1)R(K1)R(K2)

n1n2h
2ν1+2
1 h2ν2+1

2

cf = 0.

(4.8.8)

Note that the first order condition for the derivative with respect to h2 is analogous. Solv-

ing (4.3.10) for the variance term and equalizing both first order conditions yields

µ̃p1+1(K1)I11
2ν1 + 1

h
2(δ+1)
1 − µ̃p2+1(K2)I22

2ν2 + 1
h
2(δ+1)
2

+ µ̃p1+1(K1)µ̃p2+1(K2)I12

(
ν2 − ν1

(2ν1 + 1)(2ν2 + 1)

)
hδ+1
1 hδ+1

2 = 0,

which is a quadratic equation in hδ+1
1 . The positive solution is the linear relation h1 = A1h2

with A given in (4.3.12). Applying this relation to the first order condition (4.8.8) leads

to the optimal bandwidth formula.

4
LocalPolynom

ialD
C

S
under

D
ependent

Errors
95

Table 4.4: Financial application: Estimated SARMA models for volatility and volumes of Allianz SE

Data Err. Type σ ϕ ψ

Allianz SE
Volatility

iid. 4.612 - -

SARMA 4.503

(
1 −0.9876

−0.9872 0.9749

) (
1 −0.9507

−0.965 0.9174

)

SARMA∗ 6.525

 1 −1.1242 0.1279
−1.0045 1.1292 −0.1285
0.0143 −0.016 0.0018

 (
1 −0.9769

−0.9686 0.9463

)

SAR 4.528


1 −0.1639 −0.032 −0.0466

−0.0268 −0.0166 −0.0126 −0.008
−0.0227 −0.0135 −0.0092 −0.0042
−0.0229 −0.0087 −0.0056 −0.0048

 (
1
)

Allianz SE
Volumes

iid. 12790 - -

SARMA 12650

(
1 −0.9984

−0.012 0.012

) (
1 −0.9876

0.0105 −0.0104

)

SARMA∗ 12640

 1 −1.0113 0.0128
−0.0226 0.0228 −3E−04
−0.0161 0.0163 −2E−04

 (
1 −0.988

)

SAR 12770


1 −0.0491 −0.0435 −0.0418

−0.0145 −0.0142 −0.0144 −0.0143
−0.0093 −0.0085 −0.0088 −0.0091
−0.0063 −0.0063 −0.0068 −0.0061

 (
1
)

4
LocalPolynom

ialD
C

S
under

D
ependent

Errors
96

Table 4.5: Financial application: estimated models for volatility and volumes of Siemens AG

Data Err. Type σ2 ϕ ψ

Siemens AG
Volatility

iid. 5.322 - -

SARMA 5.211

(
1 −0.9847

−0.9976 0.9823

) (
1 −0.9486

−0.9876 0.9368

)

SARMA∗ 30.18

 1 −1.1759 0.1805
−1.0086 1.1861 −0.182
0.0125 −0.0147 0.0023

 (
1 −1.0426 0.0659

−0.9813 1.0231 −0.0646

)

SAR 5.246


1 −0.1456 −0.0342 −0.0408

−0.0261 −0.013 −0.0111 −0.0042
−0.0229 −0.0114 −0.0072 −0.0027
−0.0203 −0.0095 −0.0058 −0.0018

 (
1
)

Siemens AG
Volumes

iid. 23940 - -

SARMA 23760

(
1 −0.9983

−0.008 0.008

) (
1 −0.989

0.0074 −0.0073

)

SARMA∗ 23720

 1 −1.0057 0.0074
−0.0154 0.0155 −1E−04
−0.0092 0.0093 −1E−04

 (
1 −0.9892

)

SAR 23910


1 −0.0365 −0.034 −0.0338

−0.0111 −0.0116 −0.011 −0.0107
−0.0059 −0.0059 −0.0058 −0.0059
−0.0044 −0.0043 −0.0042 −0.0044

 (
1
)

5 Further Research Topics

The methods and algorithms presented in this thesis aim at further development of the

DCS technique for estimation of mean surfaces of functional time series. Naturally, there

are plenty of ways in which the proposals can be extended. In general, these extensions

can be divided into two areas; extension of the scope of applications or extension of

the methods themselves. These areas are intertwined, some new applications require

development of new methods as well, to account for special features of the applications of

interest, if the methods available are not suitable for these considerations.

In the previous chapters the methods and applications aimed at financial applications.

However, the findings can be generalized to a broader scope of functional data as described

in Section 1.1. A direct transition of the methods is possible to lattice time series from non-

financial areas of the type considered in this thesis. As electronic and digital monitoring

and measuring becomes cheaper and widely available detailed time series over a long

period become available as well. Under the spatial time series framework many of them

can be divided into an intraday and an interday component if they are recorded over

several days.

Monitoring of environmental data is a topic of increasing importance especially in the

face of the climate crisis. The database of the NOAA (National Oceanic and Atmospheric

Administration) (Diamond et al., 2013) provides plenty of environmental data which can

be represented in our functional time series framework. Exemplary surfaces of the time

series of temperature and wind speed in Yuma, AZ during 2020 are shown in Figure 5.1,

the data is collected in 5-minute intervals. Although the general structure of the data is

visible from the raw data, smoothing uncovers the mean structure very clearly. The use

of an SARMA assumption to model the errors leads to a major increase in the selected

bandwidths as expected, due to a strong autoregressive component in the data. The es-

timated SARMA models for the errors in the temperature and wind speed example are

given in Table 5.1. The estimated coefficients from the SARMA models show substantial

autoregressive components which is expected due to temperatures and also wind speed to

some degree are not subject to a very fast change over the intraday observations. For tem-

peratures, this effect is stronger in the intraday and interday direction, while for the wind

speed, the interday dependency is much weaker. These findings somehow correspond to

the common experience of weather.

The assumption of a parametric SARMA for modeling the dependency structure in the

error terms εi,j might be too restrictive in some applications. More flexibility in the model

assumption for the dependency structure is be allowed by introducing a nonparametric

estimation method for cf , which is the spectral density of the error term process at the

origin. Let εi,j be the observations of the error term process of the model with dependent

97

5 Further Research Topics 98

YearTime

Tem
perature

(a) Temperature, observations

YearTime
W

ind Speed

(b) Wind speed, observations

YearTime
Tem

perature

(c) Temperature, iid. errors

YearTime

W
ind Speed

(d) Wind speed, iid. errors

YearTime

Tem
perature

(e) Temperature, SARMA errors

YearTime

W
ind Speed

(f) Wind speed, SARMA errors

Figure 5.1: Observed and estimated surfaces of temperature [C◦] and wind speed [m/s] in Yuma, AZ
in 2020. Surfaces are smoothed under iid. and SARMA((1, 1), (1, 1)) error assumptions.

5 Further Research Topics 99

errors in (4.2.1). The corresponding spectral density f(ω1, ω2) is estimated by the Fourier

transform of the autocovariance function of the εi,j , e.g. given by Robinson (2007)

f̂(ω1, ω2) =

(
1

2π

)2 n1−1∑
k1=1−n1

n2−1∑
k2=1−n2

w

(
k1
λ1

)
w

(
k1
λ2

)
γ̂(k1, k2)e

−ik1ω1−ik2ω2 (5.0.1)

where ω1, ω2 ∈ [−π, π], w(•) is a suitable lag window weighting function and the autoco-

variances are estimated from

γ̂(k1, k2) =
1

n1n2

n1−|k1|∑
i∗=1

n2−|k2|∑
j∗=1

εi,jεi−i∗,j−j∗ .

There exist several types of lag window weights w(•), a simple but useful variant is the

Bartlett weighting function

w(u) =

1− |u|, |u| ≤ 1

0, otherwise
.

Bühlmann (1996) proposed an IPI bandwidth selection algorithm for the bandwidth of an

univariate estimator which can be extended to the two dimensional case for estimation

of λ1, λ2. This algorithm differs from those in Propositions 3.2 and 4.2 as the optimal

bandwidths are selected locally, depending on ω1, ω2. In Figure 5.2 the true and estimated

spectral density surfaces of the SARMA process used in Section 4.5 with coefficient ma-

trices in (4.5.4) are shown. A nonparametric estimator for the variance coefficient of the

error process is then cf = f̂(0, 0). For the example surfaces, we get f(0, 0) = 6.129E−04

and f̂(0, 0) = 6.273E−04. In Table 5.2, the estimated bandwidths along with cf are tabu-

lated for examples of the volatility and volume surfaces of Allianz SE and BMW AG using

nonparametric estimation of cf . Contrary to the examples in Section 4.6, data sampled at

the 5-minute level was used, over the time span from 2007-01-02 to 2010-12-301.

Introducing long-memory errors into the semiparametric regression model (4.2.1) is

a more challenging topic, as now the asymptotic contribution of the autocovariances on

the variance of the local estimator is not negligible. Hence, a complete separation of the

variance coefficient cf as in Proposition 4.1 is not possible; the optimal bandwidths are

explicitly a function of the long memory parameters d1, d2. A (separable) SFARIMA model

is given by Beran et al. (2009), where the same notation as in (4.4.3) and (4.4.4) is used

ϕ1(B1)ϕ2(B2)(1−B1)
d1(1−B2)

d2εi,j = ψ1(B1)ψ2(B2)ηi,j ,

with d1, d2 ∈ [0, 0.5). The formulas for the optimal bandwidths differ from those in Propo-

sitions 3.1 and 4.1. Some exemplary results of bandwidth selection under SFARIMA errors

1The data was aggregated by calendar time sampling (CTS). Original Data was obtained from Thomson
Reuters.

5 Further Research Topics 100

are given in Table 5.3, for the larger data sets of 1-minuite observations from 2004-2014

with n1 = 2738, n2 = 510. The larger bandwidths of the short-memory bandwidth se-

lection might be due to a misspecification in the model, which results from unaccounted

long-memory effects.

5
Further

R
esearch

Topics
101

Table 5.1: Estimated SARMA((1, 1), (1, 1)) models for temperature and wind speed in Yuma, AZ.

Model h1 h2 σ2 ϕ ψ

Temperature
iid. 0.0408 0.0604 7.7212 - -

SARMA 0.3235 0.3648 0.2056

(
1 −0.9966

−0.8215 0.8187

) (
1 −0.0258

−0.0556 0.0014

)
Wind Speed

iid. 0.0767 0.0725 1.7573 - -

SARMA 0.2334 0.1444 0.2712

(
1 −0.9664

−0.0427 0.0412

) (
1 −0.3333

0.1169 −0.0390

)

Table 5.2: Bandwidths for smoothing the Allianz SE and Siemens AG volatility surfaces of 5-minute data from 2007-2010 with n1 = 1016, n2 = 101 observations.
The bandwidths under a short memory assumption for the error terms are obtained using an iid. model, an SARMA(1, 1), (1, 1)) model and a
nonparametric spectral density estimate for cf .

Volatility of iid. SARMA Nonparametric

h1 h2 cf h1 h2 cf h1 h2 cf

ALV Volatility 0.0739 0.1219 5.44E+00 0.1738 0.2803 3.87E+02 0.1620 0.2685 2.94E+02
BMW Volatility 0.0850 0.1192 5.54E+00 0.1571 0.2127 1.04E+02 0.1737 0.2433 1.83E+02
ALV Volumes 0.0433 0.1092 2.16E−01 0.2127 0.4735 1.74E+02 0.1860 0.3908 7.00E+01
BMW Volumes 0.0534 0.1232 2.47E−01 0.1597 0.4397 6.29E+01 0.1514 0.4049 4.22E+01

5 Further Research Topics 102

Table 5.3: Bandwidths for smoothing the Allianz SE and Siemens AG volatility surfaces of 1-
minute data from 2004-2014 used in Chapter 4 under a long-memory assumption for
the error terms. The bandwidths are selected under an SARMA((1, 1), (1, 1)) and an
SFARIMA((1, 1), (1, 1)).

Volatility of SARMA SFARIMA

h1 h2 cf h1 h2 cf

ALV Volatility 0.09967 0.16900 2.46984E+03 0.10771 0.12905 2.44919E−01
BMW Volatility 0.08311 0.11721 4.81752E+02 0.12261 0.12309 5.95235E−01
ALV Volumes 0.14757 0.30166 9.50627E+09 0.08568 0.15508 1.54287E+06
BMW Volumes 0.12555 0.34013 6.26523E+09 0.09792 0.15641 8.17673E+05

(a) true (b) estimated

Figure 5.2: True and estimated spectral density of the SARMA process (4.5.4). The bandwidths for
the nonparametric estimate by applying (5.0.1) are selected by the spatial version of the
algorithm by Bühlmann (1996).

6 Conclusion

The major topic of this dissertation is the further development of the DCS method to

estimate the mean surface of a functional time series on a lattice.

The proposed representation of time series on a lattice provides a method for detecting

and estimating of certain features in this data. Throughout this thesis, the most promi-

nent example was a lattice time series with an intraday and interday index, as this type

of time series has a wide range of applications. The surface of time series of this type can

hence be used for exploring the behavior over the days and inside the days and especially

the relationship between those two components. Another type of functional lattice time

series can be constructed from univariate time series with a regular seasonal pattern. The

spatial representation and estimation of the corresponding mean surface may be utilized

to filter out the seasonal component. Further lattice time series in which only one com-

ponent actually represents time can be defined under the proposed framework. Examples

are the time series of temperatures measured at different locations in a solid-state body

in a physics experiment or the time series of the number of cars on different sections of a

street monitored over a day. These examples are somehow closer to the second definition

of functional time series by Li et al. (2019a) cited in Chapter 1. The necessary assumption

for the presented functional regression framework is that all distances between observa-

tions are well defined on a cardinal scale, be it in time units, spatial units or some other

dimensions.

In Chapter 2 boundary modification methods in local regression are treated. Local re-

gression is known to solve the boundary problem from which kernel regression suffers

and due to this, admittedly very important, characteristic of local regression, the further

discussion of the boundaries is often neglected. This is especially problematic in cases

where boundary regions dominate the total estimation area. The example of real-time

monitoring in Section 1.2, where each point is treated as a boundary point, illustrates this

issue. Adopting the ideas of the boundary kernels by Müller (1991) and Müller and Wang

(1994) the concept of boundary correction is extended to a boundary modification scheme

for local polynomial regression estimators. Two new classes of boundary-modified local

regression weights are introduced corresponding to the kernel regression weights pro-

posed by Müller (1991) and Müller and Wang (1994). It is shown that the use of these

weighting functions leads to estimates in the interior region which are exactly equivalent

to the common use of truncated kernels. However, the new kernels provide a smooth

continuation of estimates in the inner region to estimates in the boundary region. The

findings emphasize the direct correspondence between local polynomial regression and

the generation of kernels for kernel regression (see e.g. Hastie and Loader, 1993). The

proposed methods for boundary modification in local regression can be utilized for gen-

103

6 Conclusion 104

erating the classes of boundary kernels defined by Müller (1991) and Müller and Wang

(1994) of desired orders. Explicit formulas of kernels generated by these methods can be

found in Table 2.1 and Table 2.2.

The DCS for kernel regression is studied and further developed in Chapter 3. A bound-

ary correction scheme is introduced in Section 3.3.1 applying the boundary kernels gen-

erated from the methods proposed in Chapter 2. In previous applications of the DCS

by Feng (2013) or Peitz and Feng (2015) boundary correction was not considered ex-

plicitly. Further improvement in the efficiency of the DCS algorithm is achieved via the

FDCS defined in Section 3.3.2 which utilizes the assumed lattice structure to avoid re-

dundant computations. The FDCS has equivalent properties to the DCS (under a regular

lattice structure) and is designed for direct implementation of the algorithm in a pro-

gram such as R. From the asymptotic properties of the DCS/FDCS estimator found in

Section 3.3.4, the optimal bandwidths are derived by minimization of the AMISE in Sec-

tion 3.4.1. These bandwidths are selected with the IPI-algorithm (Gasser et al., 1991)

described in Section 3.4.2. This algorithm is the preferred bandwidth selection method

for this framework, as other bandwidth selection methods like CV are too slow for large

data sets. The IPI iteratively computes certain partial derivatives of the regression func-

tion to obtain intermediate bandwidth estimates which are then used for regression again,

converging towards the true asymptotic optimal bandwidths. To estimate the derivatives

required in each step appropriate kernels for derivative estimation from the kernel gen-

erating method of Chapter 2 are used. The bandwidth selection algorithm is assessed in

Section 3.5 at two simulated spatial surface functions. The results indicate that the band-

width selector is subject to a certain variance, depending on the function under consider-

ation. However, the true optimal bandwidths are found with 9% confidence on average.

The results also indicate, that the overall precision of the algorithm strongly depends on

the data and function under consideration. The application of the methods to financial

data in Section 3.6 demonstrates that the proposed algorithms are well-suited for estimat-

ing the mean or expectation surface from noisy data. The spot volatility surfaces clearly

show the influence of the financial crisis 2008 in the expected ways, however, the surface

seems to be undersmoothed by a small amount, as some finer structures are still visible in

the surfaces.

The DCS under local polynomial regression (LP-DCS) is newly developed in Chapter 4.

Local polynomial regression has some advantages over kernel regression, e.g., it solves the

boundary problem and provides a clean derivative estimation method, which is useful for

the IPI bandwidth selection. It is shown that the LP-DCS shares some properties with the

kernel regression DCS such that the FDCS is also applicable here. Similar to the boundary

correction in kernel regression, the boundary modification scheme introduced in Chapter

2 is employed for the estimation of the spatial surfaces under the LP-DCS context. Again,

the optimal bandwidths are obtained by an IPI algorithm. The estimation of derivatives is

simplified under local regression, which is an advantage for the calculation of the partial

derivatives necessary in the IPI algorithm. The assumption of iid. error terms is given up

6 Conclusion 105

in favor of a dependency structure modeled by a spatial ARMA (SARMA) model. Some

estimation procedures are suggested for parametric estimation of the SARMA along with

a convenient matrix notation. In the simulation study of Section 4.5 it becomes evident

that neglecting dependency in the errors leads to incorrect estimation of the bandwidths.

When accounting for SARMA errors in the volatility surface estimations of Section 4.6, the

selected bandwidths increase clearly from the bandwidths under an iid. assumption for

the error terms. Hence, an incorrect model assumption for the error terms would lead to

an undersmoothing of the mean surface. This behavior also holds for the environmental

data presented in Chapter 5.

In summary, the DCS technique provides an efficient way of estimating the mean surface

of a spatial time series in a nonparametric way. The proposed methods for nonparametric

estimation and bandwidth selection under iid. and short memory dependent errors work

well under the spatial model and are suitable for estimation of mean surfaces of the data.

Although the focus was on the estimation of time series in a financial context, the findings

are applicable to a broader scope of data structures from other areas of research.

A Appendix: DCSmooth Vignette

The R package DCSmooth gathers the methods and tools developed in this
thesis for practical application. This slightly modified vignette of this package
gives an overview of the package. Note that some changes in notation compared
to the theoretical chapters 2 - 4 are made, for easier programming and usage of
the package. This concerns especially the notation of the covariate variables x1,
x2, which are replaced by x and t in the code. The package is published on CRAN
(Schäfer, 2021).

A.1 Introduction

This vignette describes the use of the DCSmooth-package and its functions. The DCSmooth
package provides some tools for non- and semiparametric estimation of the mean surface

m of an observed sample of some function

y(x, t) = m(x, t) + ε(x, t).

The DCSmooth contains the following functions, methods and data sets:

Functions

set.options() Define options for the dcs()-function.

dcs() Nonparametric estimation of the expectation function

of a matrix Y. Includes automatic iterative plug-in

bandwidth selection.

surface.dcs() 3d-plot for the surfaces of an "dcs"-object.

sarma.sim() Simulate a SARMA-model.

sarma.est() Estimate the parameters of a SARMA-model.

sfarima.sim() Simulate a SFARIMA-model.

sfarima.est() Estimate the parameters of a SFARIMA-model.

kernel.assign() Assign a pointer to a kernel function.

kernel.list() Print list of kernels available in the package.

106

A Appendix: DCSmooth Vignette 107

Methods/Generics

summary.dcs() Summary statistics for an object of class "dcs".

print.dcs() Print an object of class "dcs".

plot.dcs() Plot method for an "dcs"-object, returns contour plot.

residuals.dcs() Returns the residuals of the regression from an "dcs"-

object.

print.summary_dcs() Print an object of class "summary_dcs", which inherits

from summary.dcs().

print.set_options() Prints an object of class "dcs_options", which inher-

its from set.options()

summary.sarma() Summary statistics for an object of class "sarma"

print.summary_sarma() Prints an object of class "summary_sarma", which in-

herits from summary.sarma()

summary.sfarima() Summary statistics for an object of class "sfarima"

print.summary_sfarima() Prints an object of class "summary_sfarima", which

inherits from summary.sfarima()

Data

y.norm1 A surface with a single gaussian peak.

y.norm2 A surface with two gaussian peaks.

y.norm3 A surface with two gaussian ridges.

temp.nunn Temperatures in Nunn, CO observed in 2020 in 5

minute intervals. (Source: NOAA)

temp.yuma Temperatures in Yuma, AZ observed in 2020 in 5

minute intervals. (Source: NOAA)

wind.nunn Windspeed in Nunn, CO observed in 2020 in 5 minute

intervals. (Source: NOAA)

wind.yuma Windspeed in Yuma, AZ observed in 2020 in 5 minute

intervals. (Source: NOAA)

returns.alv 5 minute returns of Allianz SE from 2007 to 2010

volumes.alv 5 minute volumes of Allianz SE from 2007 to 2010

A Appendix: DCSmooth Vignette 108

A.2 Details of Functions, Methods and Data

A.2.1 Functions

set.options()

This auxiliary function is used to set the options for the dcs function. An object of class

dcs_options is created and should be used as dcs_options- argument in the dcs function.

Arguments of set.options() are

• type Specifies the regression type. Supported methods are kernel regression ("KR")

and local polynomial regression ("LP"), which is the default value.

• kerns A character vector of length 2 stating the identifiers for the kernels in each

dimension to use. The first element corresponds to the smoothing conditional on

rows, the second conditional on columns. The identifiers are of the form X_kµν,

where X indicates the smoothing method to use, either one of M, MW or T. The value

k is the kernel order, µ is the smoothness degree and ν the derivative estimated by

the kernel, which must match the order of derivative drv. For more information on

the kernels see section 4.3, a list of available kernels is given in A.1. The default

kernels are "MW_220" for both dimensions.

• drv Derivative (νx, νt) of m(x, t) to be estimated. Note that k ≥ ν + 2, hence, only

estimation of derivatives corresponding to kernels available is possible.

• var_model Specifies the model assumption and estimation method for the er-

rors/innovations ε(x, t) in the regression model. The model is selected in the form

"model_method". Currently available are

– "iid" (independently identically distributed errors with variance estimation

from the residuals, set as default).

– "sarma_sep" (separable spatial ARMA (SARMA) process, two univariate pro-

cesses in both directions are estimated via stats::arima).

– "sarma_HR" (fast estimation of an SARMA process by the Hannan-Rissanen

algorithm).

– "sarma_RSS (estimation of an separable SARMA process by numerical mini-

mization of the RSS).

– "sfarima_RSS" (estimation of a separable spatial FARIMA (SFARIMA) model

by numerical minimization of the RSS).

The models and estimation methods are described in more detail in Section 4.4.

• . . . Additional arguments passed to set.options. The default values of these op-

tions typically depend on other options and thus are put in an ellipsis. Accepted

arguments are

– IPI_options Advanced options for tuning the parameters of the iterative plug-in

algorithm of the bandwidth selection. These options include 2-element vectors

A Appendix: DCSmooth Vignette 109

for the inflation parameters (infl_par), the inflation exponents (infl_exp)

and trimming parameters for stabilized estimation of the necessary deriva-

tives (trim). Another option to further stabilize estimation of derivatives at

the boundaries is the use of a constant estimation window at the boundaries

setting the logical flag const_window to TRUE. The default values for the IPI-

options depend partly on the regression type and error model selected and are

given below.

– model_order controls the order of the parametric error term model if an

SARMA or SFARIMA model is used. This can be either a list of the form

list(ar = c(1, 1), ma = c(1, 1)) (the default for SARMA and SFARIMA)

specifying the model order, or any of c("aic", "bic", "gpac") specifying an

order selection criterion. Note that gpac does not work under SFARIMA errors.

– order_max Controls the maximum order if an order selection process is chosen

in model_order. Is a list of the form list(ar = c(1, 1), ma = c(1, 1)) (the

default).

set.options() returns an object of class "dcs_options including the following values

• type Inherited from input.

• kerns Inherited from input.

• drv Inherited from input.

• p_order A numeric vector of length 2, computed from drv by pk = νk + 1, k = x, t.

• var_model Inherited from input.

• IPI_options Options for the iterative-plug in algorithm for bandwidth selection. If

unchanged, values are set conditional on type (see default values for KR and LP

below).

• add_options A list containing the additional options model_order and order_max if

available.

Every argument of the set.options function has a default value. Hence, just using

set.options() will produce a complete set of options for double conditional smoothing

regression in dcs (which is also implemented as default options in dcs, if the argument

dcs_options is omitted).

Default options for kernel regression (type = "KR") are

summary(set.options(type = "KR"))

#> dcs_options

#> ---------------------------------------

#> options for DCS rows cols

#> ---------------------------------------

#> type: kernel regression

#> kernels used: MW_220 MW_220

A Appendix: DCSmooth Vignette 110

#> derivative: 0 0

#> variance model:

#> ---------------------------------------

#> IPI options:

#> inflation parameters 2 1

#> inflation exponents 0.5 0.5

#> trim 0.05 0.05

#> constant window width FALSE

#> ---------------------------------------

Default options for local polynomial regression (type = "LP") are

summary(set.options(type = "LP"))

#> dcs_options

#> ---------------------------------------

#> options for DCS rows cols

#> ---------------------------------------

#> type: local polynomial regression

#> kernel order: MW_220 MW_220

#> derivative: 0 0

#> polynomial order: 1 1

#> variance model: iid

#> ---------------------------------------

#> IPI options:

#> inflation parameters 1 1

#> inflation exponents auto

#> trim 0.05 0.05

#> constant window width FALSE

#> ---------------------------------------

dcs()

The dcs()-function is the main function of the package and includes IPI-bandwidth selec-

tion and non-parametric smoothing of the observations Y using the selected bandwidths.

This function creates an object of class dcs, which includes the results of the DCS proce-

dure.

Arguments of dcs() are

• Y The matrix of observations to be smoothed via the DCS procedure. This matrix

should only contain numeric values and no missing observations. For computational

reasons, Y has to have at least five rows and columns, however, for reliable results

the size should be larger.

A Appendix: DCSmooth Vignette 111

• dcs_options The options used for the smoothing and bandwidth selection. This

should be an object of class "dcs_options" created by set.options(). This argu-

ment is optional, if omitted, all options will be set to their default values from the

set.options() function.

• h Either a two-value vector of positive numeric bandwidths or "auto" if bandwidth

selection should be employed (the default).

• parallel A logical flag if parallelization should be used for computation of the

smoothed surfaces and its derivatives. If the order of the variance model is

automatically selected, parallelization affects also this.

• . . . Further arguments to be passed to the function. This includes the equidistant

covariates X and T which should be ordered numerical vectors whose length matches

the number of rows of Y for X and the number of columns of Y for T.

dcs returns an object of class "dcs including the following values

• X, T Vectors of covariates inherited from input or calculated to be equidistant on

[0, 1] if these are omitted in the input.

• Y Matrix of observations inherited from input.

• M Matrix of smoothed values. If the argument h = "auto is used in dcs, the band-

widths are optimized via the IPI-algorithm, if h is set to fixed values, these bandwidth

are used.

• R Matrix of residuals computed from R = Y −M .

• h Bandwidths used for smoothing of Y. Either obtained by IPI bandwidth selection

or given as argument in dcs.

• c_f The estimated variance factor used in the last iteration of the bandwidth selection

algorithm. Is set to NA, if no bandwidth selection is used.

• var_est The estimated model obtained for the error terms (residuals) ε(x, t), i.e. the

matrix $R. The output depends on the model specified in dcs_options$var_model.

For var_model = "iid", it contains the estimated standard deviation of the resid-

uals and an indicator for stationarity, which is true by assumption. For dependent

models dcs_options$var_model = c("sarma_sep", "sarma_RSS", "sarma_HR"),

it contains the estimated model in an object of class "sarma" including the coeffi-

cient matrices $ar and $ma, the standard deviation $sigma as well as an stationarity

indicator $stnry. For dcs_options$var_model = "sfarima_RSS", the output is of

class "sfarima", with similar contents as "sarma" and the addition of the estimated

long memory parameter vector $d.

• dcs_options An object of class "dcs_options" containing the options used in the

function.

• iterations An integer reporting the number of iterations of the IPI algorithm. Is set

to NA, if no bandwidth selection is used.

• time_used A number reporting the time (in seconds) used for the IPI algorithm

(total including all iterations). Is set to NA, if no bandwidth selection is used.

A Appendix: DCSmooth Vignette 112

surface.dcs()

This function is a convenient wrapper for the plotly::plot_ly() function of the plotly
package, for easy displaying of the considered surfaces. Direct plotting is available for any

object of class "dcs" or any numeric matrix Y.

Arguments of surface.dcs() are

• Y Either an object of class "dcs", inheriting from a call to dcs() or a numeric matrix,

which is then directly passed to plotly::plot_ly().

• plot_choice Only used, if Y is an object of class "dcs". Specifies the surface to

be plotted, 1 for the original observations, 2 for the smoothed surface and 3 for

the residual surface. If plot_choice is omitted and Y is an "dcs"-object, a choice

dialogue will be prompted to the console, which asks to state one of the available

options.

• trim A two-value vector which gives the percentage (between 0 and 0.5) of bound-

aries to leave out in the plot. Useful, if estimation at boundaries is unstable and has

too high values compared to the inner, e.g. useful when estimation of derivatives is

considered.

• . . . Further arguments to be passed to the plotly::plot_ly() function.

surface.dcs() returns an object of class "plotly".

sarma.sim()

Simulation of a spatial ARMA process (SARMA). This function returns an object of class

"sarma" with attribute "subclass" = "sim". The simulated innovations are created from

a normal distribution with specified standard deviation σ. This function uses a burn-in

period for more consistent results.

Arguments of sarma.sim() are

• n_x, n_t The dimension of the resulting matrix of observations, where n_x specifies

the number of rows and n_t the number of columns. Initially, a matrix Y' of size

2nx × 2nt is simulated, for which simulation points with i ≤ nx or j ≤ nt are

discarded (burn-in period).

• model A list containing the model parameters to be used in the simulation. The

argument should be a list of the form list(ar, ma, sigma). The values ar and ma

are matrices of size (px + 1) × (pt + 1) respective (qx + 1) × (qt + 1) and contain

the coefficients in ascending lag order, so that the upper left entry is equal to 1 (for

lag 0 in both dimensions). The standard deviation of the iid. innovations with zero

mean is sigma, which should be a single positive number. See the examples in the

application part 3.2 and the notation of SARMA models in Section 4.4.

sarma.sim() returns an object of class "sarma" with attribute "subclass" = "sim"

including the following values:

A Appendix: DCSmooth Vignette 113

• Y The matrix of simulated values with size nx × nt (determined by function argu-

ments n_x, n_t). The matrix Y is the lower left nx × nt submatrix of the actually

simulated matrix Y ′ of size 2nx × 2nt to avoid effects from setting the initial values

(burn-in period).

• innov The nx × nt matrix of iid. normally distributed innovations/errors of the

SARMA model with zero mean and variance σ2 (determined by the function argu-

ment model\$sigma). As with Y, the original matrix has size 2nx × 2nt.

• model The model used for simulation, inherited from input.

• stnry A flag indicating whether the simulated process is stationary.

sarma.est()

Estimate the parameters of an SARMA of given order. It returns an object of class "sarma"

with attribute "subclass" = "est". For estimation, three methods are available.

Arguments of sarma.est() are

• Y A (demeaned) matrix of observations, which contains only numeric values and no

missing observations.

• method A character string specifying the method for estimation. Currently sup-

ported methods are the Hannan-Rissanen algorithm ("HR"), a separable model using

two univariate estimations via stats::arima ("sep") and a separable model which

minimizes the residual sum of squares (RSS) of the model ("RSS").

• model_order A list specifying the order of the SARMA to be estimated. This list

should be of the form list(ar = c(1, 1), ma = c(1, 1)), where all orders should

be non-negative integers. A SARMA((1, 1), (1, 1)) model is estimated by default, if

model_order is omitted.

sarma.est() returns an object of class "sarma" with attribute "subclass" = "est"

including the following values:

• Y The matrix of observations inherited from input.

• innov The matrix of estimated innovations (residuals).

• model A list of estimated model coefficients containing the matrices ar of autore-

gressive coefficients, the matrix ma of moving average coefficients as well as the

standard deviation of residuals sigma.

• stnry A flag indicating whether the estimated process is stationary.

sfarima.sim()

Simulation of a (separable) spatial fractional ARIMA (SFARIMA) process. This function

returns an object of class "sfarima" with attribute "subclass" = "sim". The simulated

innovations are created from a normal distribution with specified standard deviation σ.

This function uses a burn-in period for more consistent results.

A Appendix: DCSmooth Vignette 114

Arguments of sfarima.sim() are

• n_x, n_t The dimension of the resulting matrix of observations, where n_x specifies

the number of rows and n_t the number of columns. Initially, a matrix Y' of size

2nx × 2nt is simulated, for which simulation points with i ≤ nx or j ≤ nt are

discarded (burn-in period).

• model A list containing the model parameters to be used in the simulation of the

form list(ar, ma, d, sigma). The values ar and ma are matrices of size (px+1)×
(pt + 1) respective (qx + 1) × (qt + 1) and containing the coefficients in ascending

lag order, so that the upper left entry is equal to 1 (for lag 0 in both dimensions).

The long-memory parameters dx, dt are stored in d, a numeical vector of length 2,

with 0 < dx, dt < 0.5. The standard deviation of the iid. innovations with zero

mean is sigma, which should be a single positive number. See the examples in the

application part 3.3 and the notation of the short memory SARMA part in Section

4.4.

sfarima.sim() returns an object of class "sfarima" with attribute "subclass" =

"sim" including the following values:

• Y The matrix of simulated values with size nx × nt (determined by function argu-

ments n_x, n_t). The matrix Y is the lower left nx × nt submatrix of the actually

simulated matrix Y ′ of size 2nx × 2nt to avoid effects from setting the initial values

(burn-in period).

• innov The nx × nt matrix of iid. normally distributed innovations/errors of the

SFARIMA model with zero mean and variance σ2 (determined by the function argu-

ment model\$sigma). As with Y, the original matrix has size 2nx × 2nt.

• model The model used for simulation, inherited from input.

• stnry A flag indicating whether the simulated process is stationary.

sfarima.est()

Estimation of an SFARIMA process. This function minimizes the residual sum of squares

(RSS) to estimate the SFARIMA-parameters of a given order. It returns an object of class

"sfarima" with attribute "subclass" = "est".

Arguments of sfarima.est() are

• Y A (demeaned) matrix of observations, which contains only numeric values and no

missing observations.

• model_order A list specifying the order of the SFARIMA to be estimated. This list

should be of the form list(ar = c(1, 1), ma = c(1, 1)). All orders should be

non-negative integers. A SFARIMA((1, 1), (1, 1)) model is estimated by default, if

model_order is omitted.

A Appendix: DCSmooth Vignette 115

sfarima.est() returns an object of class "sfarima" with attribute "subclass" =

"est" including the following values:

• Y The matrix of observations inherited from input.

• innov The matrix of estimated innovations (residuals).

• model A list of estimated model coefficients containing the matrices ar of autore-

gressive coefficients, the matrix ma of moving average coefficients as well as the vec-

tor d holding the long-memory parameters and the standard deviation of residuals

sigma.

• stnry A flag indicating whether the estimated process is stationary.

kernel.assign()

This function sets an external pointer to a specified boundary kernel available in the DC-

Smooth package. These kernels are functions K(u, q), where u is a vector on [q,−1]

and q ∈ [0, 1]. The boundary kernels are as proposed by Müller and Wang (1994); Müller

(1991) and constructed via the method described in Chapter 2. Available types are Müller-

Wang (MW), Müller (M) and truncated kernels (T).

Arguments of kernel.assign() are

• kernel_id The identifier for the kernel to be assigned. It is a character string of the

form "X_abc", where X is specifies the type (MW, M, T), a i the kernel order k, b is

the degree of smootheness µ and c is the order of derivative ν. A list of currently

useable kernel identifiers can be accessed with the function kernel.list().

kernel.assign() returns an object of class "function", which points to a precompiled

kernel function.

kernel.list()

kernel.list() prints the available identifiers for use in kernel.assign().

The argument of kernel.list() is

• print A logical value indicating if the list of available kernels should be printed to

the console.

kernel.list() returns a list including the available kernels as character strings, if the

argument is print = FALSE.

Available kernels are

A Appendix: DCSmooth Vignette 116

k µ ν Truncated Kernels Müller Kernels Müller-Wang Kernels

2 0 0 M_200 MW_200

2 1 0 M_210 MW_210

2 2 0 T_220 M_220 MW_220

3 2 1 T_321 M_321 MW_320

4 2 0 T_420 M_420 MW_420

4 2 1 M_421 MW_421

4 2 2 T_422 M_422 MW_422

A.2.2 Methods

The DCSmooth package contains the following methods

Function Methods/Generics available

dcs_options print, summary

dcs plot, print, print.summary, residuals, summary

sarma print.summary, summary

sfarima print.summary, summary

A.2.3 Data

This package contains three simulated example data sets and six data sets of environmen-

tal spatial time series.

Each of the three simulated example data sets is a matrix of size 101×101 computed on

[0, 1]2 for the following functions, where N(µ,Σ) is the bivariate normal distribution with

mean vector µ and covariance matrix Σ:

• y.norm1

N

((
0.5

0.5

)
,

(
0.05 0

0 0.05

))

• y.norm2

N

((
0.5

0.3

)
,

(
0.1 0

0 0.1

))
+N

((
0.2

0.8

)
,

(
0.05 0

0 0.05

))

• y.norm3

N

((
0.25

0.75

)
,

(
0.01 0

0 −0.1

))
+N

((
0.75

0.5

)
,

(
0.01 0

0 −0.1

))

A Appendix: DCSmooth Vignette 117

The environmental application data sets features the temperature and wind speed asur-

faces of Nunn, CO (temp.nunn, wind.nunn) and Yuma, AZ (temp.yuma, wind.yuma). The

observations are taken in 2020 in 5-minute intervals. The temperatures are given in Celsius
and wind speed in m/s. All data sets consist therefore of 288 columns (the intraday obser-

vations) and 366 rows (the days). The data is taken from the U.S. Climate Reference Net-

work database at www.ncdc.noaa.gov. (see Diamond et. al. (2013), doi:10.1175/BAMS-

D-12-00170.1.

For examples of financial applications, the return and volume data of German insurance

company Allianz SE is available in the package. The data is aggregated to the 5-minute

level over the years 2007-2010, hence, the financial crisis 2008 is covered. The matrices

consist of 1016 rows representing the days and 101 (returns) respective 102 (volumes)

columns for the intraday 5-minute intervals.

A.3 Application

The application of the package is demonstrated at the example of the simulated function

y.norm1, which represents a gaussian peak on [0, 1]2 with nx = nt = 101 evaluation points.

Different models are simulated and estimation using dcs is demonstrated. Whenever

default options are used, they are not explicitly used as function arguments, instead only

when deviating from the defaults, the options are changed.

A.3.1 Defining the Options

In order to set specific options use the set.options() function to create an object of class

"dcs_options".

opt1 = set.options(type = "KR", kerns = c("M_220", "M_422"),

drv = c(0, 2),

var_model = "sarma_RSS",

IPI_options = list(trim = c(0.1, 0.1),

infl_par = c(1, 1),

infl_exp = c(0.7, 0.7),

const_window = TRUE),

model_order = list(ar = c(1, 1), ma = c(0, 0)))

summary(opt1)

#> dcs_options

#> ---------------------------------------

#> options for DCS rows cols

#> ---------------------------------------

#> type: kernel regression

#> kernels used: M_220 M_422

https://www.ncdc.noaa.gov/crn/qcdatasets.html
https://journals.ametsoc.org/view/journals/bams/94/4/bams-d-12-00170.1.xml
https://journals.ametsoc.org/view/journals/bams/94/4/bams-d-12-00170.1.xml

A Appendix: DCSmooth Vignette 118

#> derivative: 0 2

#> variance model: sarma_RSS

#> ---------------------------------------

#> IPI options:

#> inflation parameters 1 1

#> inflation exponents 0.7 0.7

#> trim 0.1 0.1

#> constant window width TRUE

#> ---------------------------------------

class(opt1)

#> [1] "dcs_options"

The contents of the advanced option IPI_options can be set directly as argument in

set.options(). Changing these options might lead to non convergent bandwidths.

opt2 = set.options(type = "KR", kerns = c("M_220", "M_422"),

drv = c(0, 2),

var_model = "sarma_RSS", trim = c(0.1, 0.1),

infl_par = c(1, 1), infl_exp = c(0.7, 0.7),

const_window = TRUE,

model_order = list(ar = c(1, 1), ma = c(0, 0)))

summary(opt2)

#> dcs_options

#> ---------------------------------------

#> options for DCS rows cols

#> ---------------------------------------

#> type: kernel regression

#> kernels used: M_220 M_422

#> derivative: 0 2

#> variance model: sarma_RSS

#> ---------------------------------------

#> IPI options:

#> inflation parameters 1 1

#> inflation exponents 0.7 0.7

#> trim 0.1 0.1

#> constant window width TRUE

#> ---------------------------------------

class(opt2)

#> [1] "dcs_options"

When using a model selection procedure, the additional option order_max is available:

A Appendix: DCSmooth Vignette 119

opt3 = set.options(var_model = "sarma_sep", model_order = "bic",

order_max = list(ar = c(0, 1), ma = c(2, 2)))

summary(opt3)

#> dcs_options

#> ---------------------------------------

#> options for DCS rows cols

#> ---------------------------------------

#> type: local polynomial regression

#> kernel order: MW_220 MW_220

#> derivative: 0 0

#> polynomial order: 1 1

#> variance model: sarma_sep

#> ---------------------------------------

#> IPI options:

#> inflation parameters 1 1

#> inflation exponents auto

#> trim 0.05 0.05

#> constant window width FALSE

#> ---------------------------------------

A.3.2 Application of the DCS with iid. Errors

The example data set is simulated by using iid. errors:

y_iid = y.norm1 + matrix(rnorm(101�2), nrow = 101,

ncol = 101)

Kernel regression with iid. errors. While local linear regression has some clear advan-

tages over kernel regression, kernel regression is the faster method.

opt_iid_KR = set.options(type = "KR")

dcs_iid_KR = dcs(y_iid, opt_iid_KR)

print results

dcs_iid_KR

#> dcs

#> --------------------------------------

#> DCS with automatic bandwidth selection

#> --------------------------------------

#> Selected Bandwidths:

#> h_x: 0.18855

A Appendix: DCSmooth Vignette 120

#> h_t: 0.19259

#> Variance Factor:

#> c_f: 0.99379

#> --------------------------------------

print options used for DCS procedure

dcs_iid_KR$dcs_options

#> dcs_options

#> ---------------------------------------

#> options for DCS rows cols

#> ---------------------------------------

#> type: kernel regression

#> kernels used: MW_220 MW_220

#> derivative: 0 0

#> variance model: iid

#> ---------------------------------------

The summary of the "dcs"-object provides some more detailed information:

summary(dcs_iid_KR)

#> summary_dcs

#> --

#> DCS with automatic bandwidth selection:

#> --

#> Results of kernel regression:

#> Estimated Bandwidths: h_x: 0.1886

#> h_t: 0.1926

#> Variance Factor: c_f: 0.9938

#> Iterations: 4

#> Time used (seconds): 0.0379

#> --

#> Variance Model: iid

#> --

#> sigma: 0.99689

#> stationary: TRUE

#> --

#> See used parameter with "$dcs_options".

Local polynomial regression with iid. errors. This is the default method, specification

of options is not necessary. Note that local polynomial regression requires the bandwidth

to cover at least the number of observations of the polynomial order plus one. For small

A Appendix: DCSmooth Vignette 121

bandwidths or too few observation points in one dimension, local polynomial regression

might fail (“Bandwidth h must be larger for local polynomial regression.”). It is suggested

to use kernel regression in this case.

dcs_LP_iid = dcs(y_iid)

dcs_LP_iid

#> dcs

#> --

#> DCS with automatic bandwidth selection:

#> --

#> Selected Bandwidths:

#> h_x: 0.17265

#> h_t: 0.19012

#> Variance Factor:

#> c_f: 0.99364

#> --

dcs_LP_iid

#> dcs

#> --

#> DCS with automatic bandwidth selection

#> --------------------------------------

#> Selected Bandwidths:

#> h_x: 0.17265

#> h_t: 0.19012

#> Variance Factor:

#> c_f: 0.99364

#> --

A.3.3 Application of the DCS with SARMA Errors

A matrix containing innovations following a SARMA((px, pt), (qx, qt)) process can be ob-

tained by using the sarma.sim() function. We use the following SARMA((1, 1), (1, 1))-

process as example:

AR =

(
1 0.4

−0.3 −0.12

)
, MA =

(
1 −0.5

−0.2 0.1

)
and σ2 = 0.25

ar_mat = matrix(c(1, -0.3, 0.4, 0.12), nrow = 2, ncol = 2)

ma_mat = matrix(c(1, -0.2, -0.5, 0.1), nrow = 2, ncol = 2)

sigma = sqrt(0.25)

A Appendix: DCSmooth Vignette 122

model_list = list(ar = ar_mat, ma = ma_mat, sigma = sigma)

sim_sarma = sarma.sim(n_x = 101, n_t = 101,

model = model_list)

SARMA observations

y_sarma = y.norm1 + sim_sarma$Y

Estimation of an SARMA process for a given order is implemented via the sarma.est()

function (note that the simulated matrix can be accessed via $Y):

est_sarma = sarma.est(sim_sarma$Y, method = "HR",

model_order =

list(ar = c(1, 1), ma = c(1, 1)))

summary(est_sarma)

#> --

#> Estimation of SARMA((1,1),(1,1))

#> --

#> sigma: 0.5008

#> stationary: TRUE

#> ar:

#> lag 0 lag 1

#> lag 0 1.0000 0.4042

#> lag 1 -0.3051 0.1291

#>

#> ma:

#> lag 0 lag 1

#> lag 0 1.0000 -0.49690

#> lag 1 -0.1804 0.07785

Local polynomial regression with specified SARMA order. The dcs()-command

is used with the default SARMA((1, 1), (1, 1)) model (correctly specified) and with an

SARMA((1, 1), (0, 0)) (i.e. SAR(1, 1)) model. The chosen estimation procedure is "sep":

SARMA((1, 1), (1, 1))

opt_sarma_1 = set.options(var_model = "sarma_sep")

dcs_sarma_1 = dcs(y_sarma, opt_sarma_1)

summary(dcs_sarma_1$var_est)

#> --

#> Estimation of SARMA((1,1),(1,1))

A Appendix: DCSmooth Vignette 123

#> --

#> sigma: 0.5441

#> stationary: TRUE

#> ar:

#> lag 0 lag 1

#> lag 0 1.0000 0.5001

#> lag 1 -0.5246 -0.2623

#>

#> ma:

#> lag 0 lag 1

#> lag 0 1.0000 -0.47060

#> lag 1 -0.1524 0.07174

SARMA((1, 1), (0, 0))

opt_sarma_2 = set.options(var_model = "sarma_sep",

model_order =

list(ar = c(1, 1), ma = c(0, 0)))

dcs_sarma_2 = dcs(y_sarma, opt_sarma_2)

summary(dcs_sarma_2$var_est)

#> --

#> Estimation of SARMA((1,1),(0,0))

#> --

#> sigma: 0.5734

#> stationary: TRUE

#> ar:

#> lag 0 lag 1

#> lag 0 1.000 0.7089

#> lag 1 -0.397 -0.2814

#>

#> ma:

#> lag 0

#> lag 0 1

Local polynomial regression with automated order selection. Automated order selec-

tion is used with model_order = c("aic", "bic", "gpac") in set.options(). The first

one minimizes the AIC, the second one the BIC and the third uses a generalized partial

autocorrelation function for order selection (not available for SFARIMA estimation). Or-

der selection for large data sets is slowly in general, however, the "gpac" might be slightly

faster than the other two. If automatic order selection is used, the argument order_max

A Appendix: DCSmooth Vignette 124

sets the maximum orders to be tested in the same way as model_order is usually defined

as a list.

BIC

opt_sarma_3 = set.options(var_model = "sarma_HR",

model_order = "bic",

order_max =

list(ar = c(2, 2), ma = c(2, 2)))

dcs_sarma_3 = dcs(y_sarma, opt_sarma_3)

summary(dcs_sarma_3$var_est)

#> --

#> Estimation of SARMA((1,1),(1,1))

#> --

#> sigma: 0.4994

#> stationary: TRUE

#> ar:

#> lag 0 lag 1

#> lag 0 1.0000 0.4027

#> lag 1 -0.3089 0.1267

#>

#> ma:

#> lag 0 lag 1

#> lag 0 1.0000 -0.50360

#> lag 1 -0.1898 0.07345

gpac

opt_sarma_4 = set.options(var_model = "sarma_HR",

model_order = "gpac",

order_max =

list(ar = c(2, 2), ma = c(2, 2)))

dcs_sarma_4 = dcs(y_sarma, opt_sarma_4)

summary(dcs_sarma_4$var_est)

#> --

#> Estimation of SARMA((2,2),(2,0))

#> --

#> sigma: 0.5065

#> stationary: TRUE

#> ar:

#> lag 0 lag 1 lag 2

A Appendix: DCSmooth Vignette 125

#> lag 0 1.00000 0.85080 0.29000

#> lag 1 -0.44690 -0.13470 -0.04776

#> lag 2 0.01464 -0.02736 -0.01037

#>

#> ma:

#> lag 0

#> lag 0 1.00000

#> lag 1 -0.32150

#> lag 2 -0.01187

A.3.4 Modeling Errors with Long Memory

This package includes a bandwidth selection algorithm when the errors ε(x, t) follow an

SFARIMA((px, pt), (qx, qt)) process with long memory. Order selection for SFARIMA models

works exactly as in the SARMA case. We use the same SARMA model as in 3.2 with long-

memory parameters d = (0.3, 0.1):

ar_mat = matrix(c(1, -0.3, 0.4, 0.12), nrow = 2, ncol = 2)

ma_mat = matrix(c(1, -0.2, -0.5, 0.1), nrow = 2, ncol = 2)

d = c(0.3, 0.1)

sigma = sqrt(0.25)

model_list = list(ar = ar_mat, ma = ma_mat, d = d,

sigma = sigma)

sim_sfarima = sfarima.sim(n_x = 101, n_t = 101,

model = model_list)

SFARIMA surface observations

y_sfarima = y.norm1 + sim_sfarima$Y

opt_sfarima = set.options(var_model = "sfarima_RSS")

dcs_sfarima = dcs(y_sfarima, opt_sfarima)

summary(dcs_sfarima$var_est)

#> --

#> Estimation of SFARIMA((1,1),(1,1))

#> --

#> d: 0.3149 0.1015

#> SD (sigma): 0.4966

#> stationary: TRUE

#> ar:

A Appendix: DCSmooth Vignette 126

#> lag 0 lag 1

#> lag 0 1.00000 0.38640

#> lag 1 -0.09455 -0.03653

#>

#> ma:

#> lag 0 lag 1

#> lag 0 1.0000 -0.521900

#> lag 1 -0.0157 0.008192

A.3.5 Estimation of Derivatives

Local polynomial estimation is suitable for estimation of derivatives of a function or a sur-

face. While estimation of derivatives works as well under dependent errors, the example

uses the iid. model from 3.1. Derivatives can be computed for any derivative vector drv,

if the values are non-negative and an appropriate kernel function is chosen (such that the

derivative order of the kernel matches the derivative order in drv). Note that the order

of the polynomials for the νth derivative is chosen to be pi = νi + 1, i = x, t. As band-

widths increase with the order of the derivatives, the bandwidth might be large for higher

derivative orders.

The estimator for m(1,0)(x, t) is

opt_drv_1 = set.options(drv = c(1, 0), kerns = c("MW_321", "MW_220"))

opt_drv_1$IPI_options$trim = c(0.1, 0.1)

dcs_drv_1 = dcs(y_iid, opt_drv_1)

dcs_drv_1

#> dcs

#> --

#> DCS with automatic bandwidth selection:

#> --

#> Selected Bandwidths:

#> h_x: 0.16354

#> h_t: 0.23423

#> Variance Factor:

#> c_f: 0.99431

#> --

surface.dcs(dcs_drv_1, trim = c(0.1, 0.1), plot_choice = 2)

The estimator for m(0,2)(x, t) is

A Appendix: DCSmooth Vignette 127

opt_drv_2 = set.options(drv = c(0, 2),

kerns = c("MW_220", "MW_422"))

opt_drv_2$IPI_options$trim = c(0.1, 0.1)

dcs_drv_2 = dcs(y_iid, opt_drv_2)

dcs_drv_2

#> dcs

#> --

#> DCS with automatic bandwidth selection:

#> --

#> Selected Bandwidths:

#> h_x: 0.21999

#> h_t: 0.12777

#> Variance Factor:

#> c_f: 0.99431

#> --

A.4 Mathematical Background

A.4.1 Double Conditional Smoothing

The double conditional smoothing (DCS, see Feng (2013)) is a spatial smoothing tech-

nique which effectively reduces the twodimensional estimation to two one-dimensional

estimation procedures. The DCS is defined for kernel regression as well as for local poly-

nomial regression.

Classical bivariate (and multivariate) regression has been considered e.g. by Herrmann

et al. (1995) (kernel regression) and Ruppert and Wand (1994) (local polynomial regres-

sion). The DCS provides now a faster and, especially for equidistant data, more efficient

smoothing scheme, which leads to reduced computation time. For the DCS procedure im-

plemented in this package, consider a (nx × nt)-matrix Y of non-empty observations ui,j
and equidistant covariates X, T on [0, 1], where X has length nx and T has length nt. The

model is then

yi,j = m(xi, tj) + εi,j

where m(x, t) is the mean or trend function, xi ∈ X, tj ∈ T and ε is a random error

function with zero mean. The model in matrix form is Y = M1 + E at the observation

points.

A Appendix: DCSmooth Vignette 128

The main assumption of the DCS is that of product kernels, i.e. the weights in the

respective methods are constructed by K(u, v) = K1(u)K2(v). Now, a two stage smoother

can be constructed by either the kernel weights directly (kernel regression) or by using

locally weighted regression with kernels K1, K2, in any case, the weights are called Wx

and Wt. The DCS procedure implemented in DCSmooth smoothes over rows (conditioning

on X) first and then over columns (conditioning on T), although switching the smoothing

order is exactly equivalent. Hence, the DCS is given by the following equations:

M̂0[, j] = Y ·Wt[, j]

M̂1[i,] = Wx[i,] · M̂0

A.4.2 Bandwidth Selection

The bandwidth vector h = (hx, ht) is selected via an iterative plug-in (IPI) algorithm

(Gasser et al., 1991). The IPI selects the optimal bandwidths by minimizing the mean

integrated squared error (MISE) of the estimator. As the MISE includes derivatives of the

regression surface m(x, t), auxiliary bandwidths for estimation of these derivatives are

calculated via an inflation method. These inflation method connects the bandwidths of

m(x, t) with that of a derivative m(νx,νt)(x, t) by

h̃k = ck · hαk , k = x, t

and is called exponential inflation method (EIM). The values of ck are chosen on simu-

lations, that of alpha are subject to the derivative of interest. The IPI now starts with

an initial bandwidth h0 (chosen to be h0 = (0.1, 0.1)) and calculates in each step s the

auxiliary bandwidths h̃k,s from hs−1 and hs from the smoothed derivative surfaces using

h̃k,s. The iteration process finishes until a certain threshold is reached.

A.4.3 Boundary Modification

In kernel regression, the boundary problem exists, which leads to biased estimated at the

boundaries of the regression surface. This problem can (partially) be solved by means of

suitable boundary kernels as introduced by Müller (1991) and Müller and Wang (1994).

These boundary kernels differ in their degrees of smoothness and hence lead to different

estimation results at the boundaries. However, all kernels are similar to the classical

kernels in the interior region of the regression.

Following Chapter 2, a boundary modification is also defined for local polynomial re-

gression. In the DCSmooth package, the local polynomial regression is always with bound-

ary modification weights. Kernel types available (either for kernel regression or local poly-

nomial regression) are Müller-type, Müller-Wang-type and truncated kernels, denoted by

M, MW and T. In most applications, the Müller-Wang type are the preferred weighting func-

tions.

A Appendix: DCSmooth Vignette 129

For observations X = xi, xi, i = 1, . . . , nx and a given bandwidth h, define ur = xr−X
h ∈

[−1, q]. A (left) boundary kernel function K l
q(u) of order (k, µ, ν) is defined on [−1, q], for

q ∈ [0, 1] and has the following properties

∫ q

−1
ujK l

q(u)du =


0 for 0 ≤ j < k, j ̸= ν

(−1)νν! for j = ν

β ̸= 0 for j = k

The corresponding right boundary kernels can be calculated by Kr
q (u) = (−1)νKq(−u).

The boundary kernels assigned by kernel.assign() are left boundary kernels.

A.4.4 Spatial ARMA Processes

The SARMA process εi,j is given by the following equations:

ϕ(B1, B2)εi,j = ψ(B1, B2)ηi,j ,

where the lag operators are B1εi,j = εi−1,j and B2εi,j = εi,j−1, ξ ∼
iid.

N (0, σ2) and

ϕ(z1, z2) =

p1∑
m=0

p2∑
n=0

ϕm,nz
m
1 z

n
2 , ψ(z1, z2) =

q1∑
m=0

q2∑
n=0

ψm,nz
m
1 z

n
2 .

The coefficients ψm,n and ϕm,n are written in matrix form

ϕ =


ϕ0,0 . . . ϕ0,p2

...
. . .

ϕp1,0 ϕp1,p2

 and ψ =


ψ0,0 . . . ψ0,q2

...
. . .

ψq1,0 ψq1,q2

 ,

where Φ is the AR-part (var_modelar) and Ψ is the MA-part (var_modelma). The

example from 3.2,

ϕ =

(
1 0.4

−0.3 −0.12

)
and ψ =

(
1 −0.2

−0.5 0.1

)
,

would then reduce to the process

εi,j = 0.4εi,j−1 − 0.3εi−,j + 0.2εi−1,j−1 + 0.2ξi,j−1 + 0.2ξi−1,j − 0.5ξi−1,j−1 + ξi,j .

Note that this process can be written as product of two univariate processes in the sense

that

ϕ1(B1)ϕ2(B2)
T εi,j = ψ1(B1)ψ2(B2)

T ηi,j ,

A Appendix: DCSmooth Vignette 130

with

ϕ1 =

(
1

−0.3

)
, ϕ2 =

(
1

0.4

)
, ψ1 =

(
1

−0.5

)
, ψ2 =

(
1

−0.2

)
.

Hence, these process forms a separable SARMA. Estimation of separable SARMA models

can be reduced to estimation of univariate ARMA models.

A.4.5 Estimation of SARMA Processes

For estimation of SARMA models, three methods are implemented in DCSmooth:

Estimation of a Separable SARMA by ML-Estimation. This method is only available

under the assumption of a separable model. Define two univariate time series

ε1,r = {ε1}r = {εi,j}i+nt(j−1), ε2,s = {ε2}s = {εi,j}j+nx∗(i−1)

for r, s = 1, . . . , nx · nt, i = 1, . . . , nx, j = 1, . . . , nt. The parameters ϕ1, ψ1 of ε1,r and

ϕ2, ψ2 of ε2,s can then be estimated by well-known maximum likelihood estimators.

Least Squares Estimation using the RSS. The SARMA model can be rewritten as

ηi,j = ψ(B1, B2)
−1ϕ(B1, B2)εi,j ,

which allows for an AR(∞)-representation of the SARMA model

ηi,j =
∞∑

r,s=0

θAR
r,s εi−r,s−j

From this, we can define the residual sum of squares (RSS) and get an estimate for the

vector of coefficients θ = c(ϕ1,0, ϕ0,1, . . . , ψ1,0, ψ0,1, . . . by

θ̂ = argminRSS ≈ argmin

∞∑
i,j=0

η2i,j .

Calculation of the AR(∞) representation of an SARMA model is difficult for a general

SARMA but for a separable SARMA, the known univariate formulas hold. These procedure

can be directly used for SFARIMA models, if the long memory parameter d is included in

θ (see Beran et al., 2009).

The Hannan-Rissanen Algorithm. The previously defined estimation methods require

numeric optimization of some quantities and hence take more time for calculation on

a computer. The Hannan-Rissanen algorithm (Hannan and Rissanen, 1982) provides a

much faster estimation procedure. An extension to SARMA models is straightforward:

A Appendix: DCSmooth Vignette 131

The main idea Hannan-Rissanen algorithm is to use a high-order SAR auxiliary model

for initial estimation of the unobservable innovations sequence. Then, a linear regres-

sion model is applied, which yields the SARMA-parameters from the observations and

estimated innovations.

Let {ε}i,j be the the ordered observations of the SARMA((px, pt), (qx, qt)) process

ε(x, t) with i = 1, . . . , nx, j = 1, . . . , nt. The SARMA parameters ϕ, ψ are then estimated

by the modified Hannan-Rissanen algorithm: 1. Obtain the auxiliary residuals η̃i,j by

fitting a high-order autoregressive model with (p̃x, p̃t) ≥ (px, pt) to the observations:

η̃i,j =


p̃1∑

m=0

p̃2∑
n=0

ϕ̃m,nεi−m,j−n, p̃1 < i ≤ n1, p̃2 < j ≤ n2

0, 1 ≤ i ≤ p̃1, 1 ≤ j ≤ p̃2

where ϕ̃m,n is estimated by the Yule-Walker equations and ϕ0,0 = 1. 2. Obtain ϕ̂m,n and

ψ̂m,n and the estimated innovations η̂i,j by linear regression from

εi,j = −
p1∑

m=0
m ̸=n=0

p2∑
n=0

n̸=m=0

ϕ̂m,nεi−m,j−n +

q1∑
m=0

m ̸=n=0

q2∑
n=0

n̸=m=0

ψ̂m,nξ̃i−m,j−n + ξ̂i,j .

The resulting coefficients ϕ̂, ψ̂ are then the estimates for the parameters.

The autocovariance function of the SARMA-process is γ(s, t) = E(εi,jεi+s,j+t). For p̃x, p̃t,

the spatial Yule-Walker equation for the SAR(p̃x, p̃t) approximation of the SARMA is then

Γ vec(ϕ) = 0

where Γ denotes the full autocovariance matrix:

Γ =


γ(0, 0) γ(1, 0) . . . γ(r1, 0) γ(0, 1) . . . γ(r1, r2)

γ(1, 0) γ(0, 0) γ(r1 − 1, r2)
...

. . .
...

γ(r1, r2) γ(r1 − 1, r2) . . . γ(0, 0)



Bibliography

Altman, N. S. (1990). Kernel smoothing of data with correlated errors. Journal of the
American Statistical Association, 85:749–759.

Altman, N. S. (1993). Estimating error correlation in nonparametric regression. Statistics
& Probability Letters, 18:213–218.

Andersen, T. and Bollerslev, T. (1997). Intraday periodicity and volatility persistence in

financial markets. Journal of Empirical Finance, 4(2-3):115–158.

Andersen, T. and Bollerslev, T. (1998). Deutsche mark-dollar volatility: Intraday activity

patterns, macroeconomic announcements, and longer run dependencies. Journal of
Finance, 53:219–265.

Andersen, T., Bollerslev, T., and Cai, J. (2000). Intraday and interday volatility in the

japanese stock market. Journal of International Financial Markets, Institutions and
Money, 10(2):107–130.

Andersen, T., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and forecasting

realized volatility. Econometrica, 71:579–625.

Andersen, T. G., Bollerslev, T., and Meddahi, N. (2004). Analytical evaluation of volatility

forecasts. International Economic Review, 45(4):1079–1110.

Aneiros-Pérez, G. and Vieu, P. (2008). Nonparametric time series prediction: A semi-

functional partial linear modeling. Journal of Multivariate Analysis, 99(5):834 – 857.

Bartlett, M. S. (1975). The Statistical Analysis of Spatial Pattern, volume 15 of Ettore
Majorana International Science Series. Springer Netherlands, 1 edition.

Bathia, N., Yao, Q., and Ziegelmann, F. (2010). Identifying the finite dimensionality of

curve time series. The Annals of Statistics, 38:3352–3386.

Beran, J. and Feng, Y. (2002a). Iterative plug-in algorithms for semifar models – defini-

tion, convergence, and asymptotic properties. Journal of Computational and Graphical
Statistics, 11(3):690–713.

Beran, J. and Feng, Y. (2002b). Local polynomial fitting with long-memory, short memory

and antipersistent errors. Annals of the Institute of Statistical Mathematics, 54(2):291–

311.

Beran, J., Ghosh, S., and Schell, D. (2009). On least squares estimation for long-memory

lattice processes. Journal of Multivariate Analysis, 100(10):2178–2194.

XI

Bibliography XII

Beyaztas, U. and Shang, H. L. (2019). Forecasting functional time series using

weighted likelihood methodology. Journal of Statistical Computation and Simulation,

89(16):3046–3060.

Bühlmann, P. (1996). Locally adaptive lag-window spectral estimation. Journal of Time
Series Analysis, 17(3):247–270.

Bosq, D. (2000). Linear Processes in Function Spaces. Lecture Notes in Statistics. Springer,

New York, 1 edition.

Brabanter, K., Cao, F., Gijbels, I., and Opsomer, J. (2018). Local polynomial regression

with correlated errors in random design and unknown correlation structure. Biometrika,

105:681–690.

Brailsford, T. J. (1996). The empirical relationship between trading volume, returns and

volatility. Accounting & Finance, 36(1):89–111.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer Series

in Statistics. New York, NY : Springer New York, second edition edition.

Cheng, M.-Y. (2006). Choice of the bandwidth ratio in rice’s boundary modification. Jour-
nal of the Chinese Statistical Association, 44:235–251.

Cheng, M.-Y., Fan, J., and Marron, J. S. (1997). On automatic boundary corrections. The
Annals of Statistics, 25(4):1691 – 1708.

Chiou, J.-M. and Müller, H.-G. (2009). Modeling hazard rates as functional data for the

analysis of cohort lifetables and mortality forecasting. Journal of the American Statistical
Association, 104:572–585.

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots.

Journal of the American Statistical Association, 74(368):829–836.

Delaigle, A. and Hall, P. (2010). Defining probability density for a distribution of random

functions. The Annals of Statistics, 38(2):1171 – 1193.

Diamond, H. J., Karl, T. R., Palecki, M. A., Baker, C. B., Bell, J. E., Leeper, R. D., Easterling,

D. R., Lawrimore, J. H., Meyers, T. P., Helfert, M. R., Goodge, G., and Thorne, P. W.

(2013). U.s. climate reference network after one decade of operations: Status and

assessment. Bulletin of the American Meteorological Society, 94:485–498.

Engle, R. F. and Sokalska, M. E. (2012). Forecasting intraday volatility in the us equity

market. multiplicative component garch. Journal of Financial Econometrics, 10(1):54–

83.

Facer, M. R. and Müller, H.-G. (2003). Nonparametric estimation of the location of a

maximum in a response surface. Journal of Multivariate Analysis, 87(1):191–217.

Bibliography XIII

Fan, J. and Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers.

The Annals of Statistics, 20:2008–2036.

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications, volume 66

of Monographs on statistics and applied probability. Chapman & Hall, London, 1 edition.

Feng, Y. (1999). Kernel- and Locally Weighted Regression - with Application to Time. Verlag

für Wissenschaft und Forschung, Berlin, 1 edition.

Feng, Y. (2004). Non- and Semiparametric Regression with Fractional Time Series Errors.
habilitation, University of Konstanz.

Feng, Y. (2013). Double-conditional smoothing of high-frequency volatility surface in a

spatial multiplicative component garch with random effects. Center for International
Economics Working Paper, 415:643–652.

Feng, Y., Beran, J., Gosh, S., Schäfer, B., and Letmathe, S. (2021a). A semiparametric

generalization of spatial fractional arima processes. Preprint, Paderborn University.

Feng, Y., Letmathe, S., and Schulz, D. (2021b). smoots: Nonparametric Estimation of the
Trend and Its Derivatives in TS. R package version 1.1.3.

Feng, Y. and McNeil, A. J. (2008). Modelling of scale change, periodicity and conditional

heteroskedasticity in return volatility. Economic Modelling, 25(5):850–867.

Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis. Springer Series in

Statistics. Springer, New York.

Fisher, W. D. (1971). Econometric estimation with spatial dependence. Regional and Urban
Economics, 1(1):19–40.

Francisco-Fernández, M. and Vilar-Fernández, J. M. (2001). Local polynomial regression

estimation with correlated errors. Communications in Statistics - Theory and Methods,
30(7):1271–1293.

Gao, Y. and Shang, H. L. (2017). Multivariate functional time series forecasting: Applica-

tion to age-specific mortality rates. Risks, 5(2).

Gasser, T., Kneip, A., and Köhler, W. (1991). A flexible and fast method for automatic

smoothing. Journal of the American Statistical Association, 86(415):643–652.

Gasser, T. and Müller, H.-G. (1979). Kernel estimation of regression functions. In Gasser,

T. and Rosenblatt, M., editors, Smoothing Techniques for Curve Estimation, pages 23–68,

Berlin, Heidelberg. Springer.

Gasser, T. and Müller, H.-G. (1984). Estimating regression functions and their derivatives

by the kernel method. Scandinavian Journal of Statistics, 11:171–185.

Bibliography XIV

Gasser, T., Müller, H.-G., and Mammitzsch, V. (1985). Kernels for nonparametric curve

estimation. Journal of the Royal Statistical Society, 47:238–252.

Ghosh, S. (2015). Surface estimation under local stationarity. Journal of Nonparametric
Statistics, 27(2):229–240.

Ghosh, S. (2018). Kernel Smoothing: Principles, Methods and Applications. Wiley, Hoboken,

NJ.

Goodhart, C. A. and O’Hara, M. (1997). High frequency data in financial markets: Issues

and applications. Journal of Empirical Finance, 4(2):73–114. High Frequency Data in

Finance, Part 1.

Granovsky, B. L. and Müller, H.-G. (1991). Optimizing kernel methods: A unifying vari-

ational principle. International Statistical Review / Revue Internationale de Statistique,

59(3):373–388.

Ha, E. and Newton, J. H. (1993). The bias of estimators of causal spatial autoregressive

processes. Biometrika, 80(1):242–245.

Hall, P., Müller, H.-G., and Wang, J.-L. (2006). Properties of principal component methods

for functional and longitudinal data analysis. The Annals of Statistics, 34(3):1493–1517.

Hallin, M., Lu, Z., and Tran, L. T. (2004). Local linear spatial regression. The Annals of
Statistics, 32(6):2469—-2500.

Hannan, E. J. and Rissanen, J. (1982). Recursive estimation of mixed autoregressive-

moving average order. Biometrika, 69(1):81–94.

Hart, J. D. (1991). Kernel regression estimation with time series errors. Journal of the
Royal Statistical Society: Series B (Methodological), 53(1):173..187.

Hastie, T. and Loader, C. (1993). Local Regression: Automatic Kernel Carpentry. Statistical
Science, 8(2):120 – 129.

Herrmann, E., Engel, J., Gasser, T., and Wand, M. P. (1995). A bandwidth selector for

bivariate kernel regression. Journal of the Royal Statistical Society, 57:171–180.

Herrmann, E., Gasser, T., and Kneip, A. (1992). Choice of bandwidth for kernel regression

when residuals are correlated. Biometrika, 79:783–795.

Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications.
Springer Series in Statistics. Springer, New York.

Härdle, W. and Müller, M. (2013). Multivariate and semiparametric kernel regression. In

Schimek, M., editor, Smoothing and Regression: Approaches, Computation, and Applica-
tion, Wiley Series in Probability and Statistics, pages 357–391. Wiley, New York.

Bibliography XV

Hyndman, R. J. and Shang, H. L. (2009). Forecasting functional time series. Journal of
the Korean Statistical Society, 38:199–211.

Hyndman, R. J. and Shang, H. L. (2010). Rainbow plots, bagplots, and boxplots for

functional data. Journal of Computational and Graphical Statistics, 19:29–45.

Hyndman, R. J. and Ullah, M. S. (2007). Robust forecasting of mortality and fertility rates:

A functional data approach. Computational Statistics & Data Analysis, 51:4942–4956.

Illig, A. and Truong-Van, B. (2006). Asymptotic results for spatial arma models. Commu-
nications in Statistics - Theory and Methods, 35:671–688.

Kaiser, M. S., Daniels, M. J., Furakawa, K., and Dixon, P. (2002). Analysis of particulate

matter air pollution using markov random field models of spatial dependence. Environ-
metrics, 13(5-6):615–628.

Karpoff, J. M. (1987). The relation between price changes and trading volume: A survey.

The Journal of Financial and Quantitative Analysis, 22(1):109–126.

Karunamuni, R. J. and Alberts, T. (2005). On boundary correction in kernel density esti-

mation. Statistical Methodology, 2(3):191–212.

Karunamuni, R. J. and Zhang, S. (2008). Some improvements on a boundary corrected

kernel density estimator. Statistics & Probability Letters, 78(5):499–507.

Kolác̆ek, J. and Horová, I. (2017). Bandwidth matrix selectors for kernel regression. Com-
putational Statistics, 32:1027––1046.

Kyung-Joon, C. and Schucany, W. R. (1998). Nonparametric kernel regression estimation

near endpoints. Journal of Statistical Planning and Inference, 66(2):289–304.

Lee, B.-S. and Rui, O. M. (2002). The dynamic relationship between stock returns and

trading volume: Domestic and cross-country evidence. Journal of Banking & Finance,

26(1):51–78.

Lejeune, M. (1985). Estimation non-paramétrique par noyaux: Régression polynômiale

mobile. Revue de Statistiques Appliqées, 33:43–68.

Lejeune, M. and Sarda, P. (1992). Smooth estimators of distribution and density functions.

Computational Statistics & Data Analysis, 14(4):457–471.

Li, D., Robinson, P. M., and Shang, H. L. (2019a). Long-range dependent curve time series.

Journal of the American Statistical Association.

Li, L., Lu, K., and Xiao, Y. (2019b). Wavelet thresholding in fixed design regression for

gaussian random fields. Journal of Fourier Analysis and Applications, 25:3184–3213.

Bibliography XVI

Loader, C. R. (1996). Change point estimation using nonparametric regression. The Annals
of Statistics, 24(4):1667 – 1678.

Lockwood, L. J. and Linn, S. C. (1990). An examination of stock market return volatility

during overnight and intraday periods, 1964-1989. The Journal of Finance, 45(2):591–

601.

Machkouri, M. E. and Stoica, R. (2010). Asymptotic normality of kernel estimates in a

regression model for random fields. Journal of Nonparametric Statistics, 22:955––971.

Mack, Y. P. and Müller, H.-G. (1989). Derivative estimation in nonparametric regression

with random predictor variable. Sankhyā, The Indian Journal of Statistics, Series A,

51:59–72.

Manteiga, W. G., Miranda, M. M., and González, A. P. (2004). The choice of smoothing

parameter in nonparametric regression through wild bootstrap. Computational Statistics
& Data Analysis, 47:487––515.

Martin, R. J. (1979). A subclass of lattice processes applied to a problem in planar sam-

pling. Biometrika, 66(2):209–217.

Martin, R. J. (1990). The use of time-series models and methods in the analysis of agri-

cultural field trials. Communications in Statistics - Theory and Methods, 19(2):55–81.

Martin, R. J. (1996). Some results on unilateral arma lattice processes. Journal of Statis-
tical Planning and Inference, 50(3):395–411.

Masry, E. (1996). Multivariate local polynomial regression for time series: Uniform strong

consistency and rates. Journal of Time Series Analysis, 17(6):571–599.

Mersmann, O. (2019). microbenchmark: Accurate Timing Functions. R package version

1.4-7.

Müller, H.-G. (1987). Weighted local regression and kernel methods for nonparametric

curve fitting. Journal of the American Statistical Association, 82(397):231–238.

Müller, H.-G. (1988). Nonparametric Regression Analysis of Longitudinal Data. Lecture

Notes in Statistics. Springer, Berlin Heidelberg, 1 edition.

Müller, H.-G. (1992). Change-points in nonparametric regression analysis. The Annals of
Statistics, 20(2):737–761.

Müller, H.-G. (1993a). [local regression: Automatic kernel carpentry]: Comment. Statis-
tical Science, 8(2):134–139.

Müller, H.-G. (1993b). On the boundary kernel method for non-parametric curve estima-

tion near endpoints. Scandinavian Journal of Statistics, 20(4):313–328.

Bibliography XVII

Müller, H.-G. and Prewitt, K. A. (1993). Mulitparameter bandwidth processes and adaptive

surface smoothing. Journal of Multivariate Analysis, 47:1–21.

Müller, H.-G. (1991). Smooth optimum kernel estimators near endpoints. Biometrika,

78:521–530.

Müller, H.-G. and Wang, J.-L. (1994). Hazard rate estimation under random censoring

with varying kernels and bandwidths. Biometrics, 50:61–76.

Opsomer, J., Wang, Y., and Yang, Y. (2001). Nonparametric regression with correlated

errors. Statistical Science, 16(2):134–153.

Peitz, C. and Feng, Y. (2015). Double conditional smoothing of high-frequency volatility

surface under a spatial model. In Beran, J., Feng, Y., and Hebbel, H., editors, Empirical
Economic and Financial Research, pages 341–356. Springer, Heidelberg.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria.

Ramsay, J. O. and Dalzell, C. J. (1991). Some tools for functional data analysis. Journal
of the Royal Statistical Society: Series B (Methodological), 53(3):539–572.

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. Springer Series in

Statistics. Springer, New York.

Ray, B. K. and Tsay, R. S. (1997). Bandwidth selection for kernel regression with long-

range dependent errors. Biometrika, 84:791–802.

Reiss, P. T. and Ogden, T. (2007). Functional principal component regression and

functional partial least squares. Journal of the American Statistical Association,

102(479):984–996.

Rice, J. (1984). Bandwidth Choice for Nonparametric Regression. The Annals of Statistics,
12(4):1215 – 1230.

Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure

nonparametrically when the data are curves. Journal of the Royal Statistical Society:
Series B (Methodological), 53(1):233–243.

Robinson, P. M. (2007). Nonparametric spectrum estimation for spatial data. Journal of
Statistical Planning and Inference, 137(3):1024–1034. Special Issue on Nonparametric

Statistics and Related Topics: In honor of M.L. Puri.

Robinson, P. M. (2011). Asymptotic theory for nonparametric regression with spatial data.

Journal of Econometrics, 165:5––19.

Robinson, P. M. (2020). Spatial long memory. Japanese Journal of Statistics and Data
Science, 3:243–256.

Bibliography XVIII

Ruppert, D., Sheather, S. J., and Wand, M. P. (1995). An effective bandwidth selec-

tor for local least squares regression. Journal of the American Statistical Association,

90(432):1257–1270.

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regres-

sion. The Annals of Statistics, 22(3):1346–1370.

Schäfer, B. (2021). DCSmooth: Nonparametric Regression and Bandwidth Selection for
Spatial Models. R package version 1.1.2.

Scott, D. (2015). Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley

Series in Probability and Statistics. Wiley, Hoboken, 2 edition.

Shang, H. L. and Hyndman, R. J. (2017). Grouped functional time series forecasting:

An application to age-specific mortality rates. Journal of Computational and Graphical
Statistics, 26:330–343.

Sievert, C. (2020). Interactive Web-Based Data Visualization with R, plotly, and shiny. Chap-

man and Hall/CRC.

Stone, C. J. (1977). Consistent nonparametric regression. The Annals of Statistics,
5(4):595–620.

Tenreiro, C. (2013). Boundary kernels for distribution function estimation. REVSTAT
Statistical Journal, 11:169–190.

Tjøstheim, D. (1978). Statistical spatial series modelling. Advances in Applied Probability,

10:130–154.

Wand, M. P. (1994). Fast computation of multivariate kernel estimators. Journal of Com-
putational and Graphical Statistics, 3:433–445.

Wang, H. and Wang, J. (2009). Estimation of the trend function for spatio-temporal

models. Journal of Nonparametric Statistics, 21:567—-588.

Wang, L. and Cai, H. (2010). Asymptotic properties of nonparametric regression for long

memory random fields. Journal of Statistical Planning and Inference, 140(3):837–850.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New

York.

Yang, L. and Tschernig, R. (1999). Multivariate bandwidth selection for local linear re-

gression. Journal of the Royal Statistical Society: Series B (Methodological), 61:793–815.

Yao, F., Müller, H.-G., and Wang, J.-L. (2005). Functional linear regression analysis for

longitudinal data. The Annals of Statistics, 33(6):2873–2903.

Bibliography XIX

Yao, Q. and Brockwell, P. J. (2006). Gaussian maximum likelihood estimation for ARMA

models II: Spatial processes. Bernoulli, 12(3):403 – 429.

Yue, Y. and Speckman, P. L. (2010). Nonstationary spatial gaussian markov random fields.

Journal of Computational and Graphical Statistics, 19:96–116.

Zhang, X., Brooks, R. D., and King, M. L. (2009). A bayesian approach to bandwidth

selection for multivariate kernel regression with an application to state-price density

estimation. Journal of Econometrics, 153:21––32.

	Contents
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Introduction
	Spatial Time Series and Nonparametric Regression
	Contribution of this Thesis
	Summary of the Contents

	Boundary Modification in Local Regression
	Introduction
	Modified Local Polynomial Regression
	Equivalency of the Proposed Weighting Methods
	Boundary Behavior of Local Regression
	Areas of Application
	Final Remarks
	Appendix

	Fast Computation and Bandwidth Selection Algorithms for the DCS
	Introduction
	The Model and the Basic DCS Procedure
	A Semiparametric Functional Time Series Model
	The Double Conditional Smoothing

	The Improved Double Conditional Smoothing
	Boundary Correction Under the DCS
	A Functional Smoothing Scheme
	Estimation of Derivatives
	Asymptotic Behavior of the Estimator

	Bandwidth Selection
	Asymptotic Optimal Bandwidths
	The IPI Algorithm

	Finite Sample Simulations
	Application to Financial Data
	Final Remarks
	Appendix
	Proof of Theorem 3.1
	Expectation and Variance of the DCS Estimator
	Asymptotic Normality of the DCS Estimator
	Derivation of the Optimal Bandwidths

	Local Polynomial DCS under Dependent Errors
	Introduction
	The FDCS for Local Polynomial Estimators
	Model and Assumptions
	Extension to Local Polynomial Smoothers
	Boundary Modification in the LP-DCS
	Equivalent Kernels

	Bandwidth Selection for the LP-DCS
	Asymptotic Bias and Variance
	Asymptotic Optimal Bandwidths
	Bandwidth Selection by the IPI

	Spatial Error Structure
	Definition of the Spatial ARMA
	Estimation of the SARMA

	Simulation Study
	Applications
	Final Remarks
	Appendix
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Expectation and Variance
	Optimal Bandwidths

	Further Research Topics
	Conclusion
	Appendix: DCSmooth Vignette
	Introduction
	Details of Functions, Methods and Data
	Functions
	Methods
	Data

	Application
	Defining the Options
	Application of the DCS with iid. Errors
	Application of the DCS with SARMA Errors
	Modeling Errors with Long Memory
	Estimation of Derivatives

	Mathematical Background
	Double Conditional Smoothing
	Bandwidth Selection
	Boundary Modification
	Spatial ARMA Processes
	Estimation of SARMA Processes

	Bibliography

