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Abstract

We consider nonparametric and semiparametric estimation of the mean or expectation
surface of a functional time series on a lattice.

For (univariate) local regression, we propose a boundary modification procedure that al-
lows smooth continuation of the estimates from the interior to the boundary. The proposed
method for boundary modification is suitable for generating boundary kernel functions.
Both the boundary modification and the kernel functions generated from it are important
to the considered estimation of the expectation surface.

The nonparametric estimation of the expectation surface of a functional time series
implies long computation times under the classical bivariate regression methods such as
kernel regression or local regression. The double conditional smoothing (DCS) transforms
a bivariate regression into two univariate regressions, and shortens the running time of the
algorithm, especially for large data sets. We present a functional DCS for both kernel and
local regression, under the assumption of both independent and dependent error terms.
It is shown that, under certain assumptions, the DCS estimator is equivalent to bivariate
regression. Integral formulas for the asymptotic expectation and the asymptotic variance
of the DCS estimator are derived. This yields the asymptotically optimal bandwidths for
estimating the regression surface or partial derivatives of it. These bandwidths are selected
in a data-driven procedure by an iterative plug-in algorithm, which quickly converges to
the optimal bandwidths. The developed algorithms and functions are implemented in the
R package DCSmooth.
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Zusammenfassung

Wir betrachten die nicht- und semiparametrische Schiatzung der Erwartungsflache einer
funktionalen Zeitreihe.

Fiir die (univariate) lokale Regression wird ein Verfahren zur Randmodifikation
vorgestellt, welches eine glatte Fortsetzung des Schétzers zu den Randern hin ermoglicht.
Die vorgeschlagene Methode zur Randmodifikation ist geeignet, um Randkernfunktionen
zu erzeugen. Sowohl die Randmodifikation als auch die daraus erzeugten Kernfunktionen
spielen in der Schéitzung der Erwartungsflache eine wichtige Rolle.

Die nichtparametrische Schitzung der Erwartungsfliche einer funktionalen Zeitreihe
impliziert lange Rechenzeiten unter den klassischen bivariaten Regressionsmethoden wie
der Kernregression oder der Lokalen Regression. Die doppelt bedingte Glattung (Double
Conditional Smoothing, DCS) tiiberfiihrt eine bivariate Regression in zwei univariate Re-
gressionen, und verkiirzt die Laufzeit des Algorithmus insbesondere fiir gro8e Datenséitze.
Wir stellen ein funktionales DCS fiir Kern- und lokale Regression vor, sowohl unter der
Annahme von unabhéngigen als auch von abhingigen Stortermen. Es wird gezeigt, dass,
unter bestimmten Annahmen, der DCS-Schétzer dquivalent zur bivariaten Regression ist.
Integralformeln fiir den asymptotischen Erwartungswert und die asymptotische Varianz
des DCS-Schatzers werden hergeleitet. Daraus ergeben sich die asymptotisch optimalen
Bandbreiten zur Schétzung der Regressionsflache oder partieller Ableitungen dieser. Die
datengestiitzte Wahl dieser Bandbreiten erfolgt mit einem iterativer Plug-In Algorithmus,
welcher schnell die gegen die optimalen Bandbreiten konvergiert. Die entwickelten Algo-
rithmen und Funktionen sind im R-Paket DCSmooth implementiert.
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1 Introduction

1.1 Spatial Time Series and Nonparametric Regression

Univariate time series are a long- and well-established topic in statistics and econometrics.
They serve as a main building block in many econometric analysis of time-related phe-
nomena and have been extended to multivariate or multivariable models in parametric
and nonparametric frameworks. Functional time series are a relatively new development
whose incorporation into application in econometric models started not until computa-
tional power was sufficient for handling larger data sets. Functional data is, in the most
general way, characterized as a set of functions observed in different states (Ferraty and
Vieu, [2006). As [Li et al.| (2019a) point out, functional time series can in general be clas-
sified into two types: “On the one hand, they can arise by separating an almost continuous
time record into natural consecutive intervals. [...] On the other hand, functional time series
can also arise when observations in a time period are considered as finite realizations of a
continuous function.”

Examples for functional time series of the second type are, e.g., spectrometric curves
from chemical analysis (Ferraty and Vieu, |2006), biometric observations of children’s mo-
tions (Ramsay and Silverman, |2005)), protein levels in the blood of patients over several
years (Yao et al.,|2005), AIDS incidences for age at diagnosis and year of diagnosis (Facer
and Miuller, 2003)), and age-specific mortality and fertility rates as studied by Hyndman
and Ullah| (2007); \Gao and Shang (2017); Shang and Hyndman| (2017)) where the age-
specific death rate functions were obtained over several years. In general, this type of
framework is characterized as set of functions that are observed in different states, repre-
senting different time points, locations or test persons in an experiment.

Estimation strategies for functional data of this type usually follow the same pattern;
each individual function is estimated and then the dependency between the functions is
modeled. The functions can be estimated e.g. by spline regression (Ramsay and Silver-
man), 2005; Hyndman and Ullah, 2007 Reiss and Ogden, |2007; [Horvath and Kokoszka,
2012; |[Shang and Hyndman, 2017} Beyaztas and Shang, [2019) or functional partial least
squares regression (Reiss and Ogden, |2007; Hyndman and Shang, [2009). Although the
structure between the states might be modeled using a parametric approach (Horvath and
Kokoszkal (2012) use an autoregressive dependency between the function states based on
the model by Bosq| (2000) for example), the mainly used method is functional principal
component analysis (FPC). The FPC is used e.g. by Hyndman and Ullah| (2007); Hynd-
man and Shang| (2009); Gao and Shang (2017); Shang and Hyndman| (2017) to estimate
and forecast the time series functions for mortality data. Among others, FPC is studied by
Ramsay and Dalzell| (1991); Rice and Silverman| (1991); Hall et al. (2006)) and Yao et al.
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(2005) for sparse and irregular data, Li et al. (2019a)) extend the functional time series
concept to long memory data.

However, this thesis will only cover functional time series of the second type. For this
type the functional time series under consideration is usually a univariate (discrete) time
series or a (continuous) stochastic process which can be split up in naturally defined in-
tervals. These intervals correspond to the states in the first definition of functional time
series and might, e.g., be different days in which the time series can be split. Spatio-
temporal time series can also be included in this class where time series are observed at
the same time but different locations (or over other different entities). Some examples
of functional data of this type are given by Horvath and Kokoszka (2012) from various
scientific disciplines. They include environmental and geophysical data sets such as daily
rainfall measurements in Australia (Delaigle and Hall, [2010) or pollution curves (Kaiser
et al., |2002) for which the states are different places where observations are made. Spe-
cific examples of environmental functional time series are the intraday temperature and
wind speed curves measured over a year in Figure where the functional values are
observed over the day and the days are the states in which the function occurs.

In financial econometrics, Andersen and Bollerslev| (1997,,/1998) ; /Andersen et al. (2000)
introduce a framework for return volatilities which can be represented by a functional time
series. To study intraday volatility dynamics and interday volatility persistence simultane-
ously, /Andersen and Bollerslev (1998) use a data set of five-minute return observations of
the Deutsche Mark-Dollar spot exchange rate, spanning a full year from 1992 to 1993 with
an intraday and interday index. This is essentially a functional time series on an equidis-
tant lattice, with the intraday return volatility as the (possibly continuous) function and
the interday indices as the (discrete) states of the functions. They identify and discuss
three important effects in this functional time series of returns: daily ARCH effects, calen-
dar effects, and macroeconomic announcement effects. A parametric multiplicative model
designed for simultaneous estimation of the daily effects and the intraday calendar effects
is used to isolate the purely stochastic volatility effects from calendar and announcement
effects. Their findings suggest, that intraday volatility contains valuable information for
interday volatility and hence, volatility measures only at the daily level lack information.
Similar results are found by Andersen et al.| (2000) for the Japanese Stock Market using
data of the Nikkei index. Feng and McNeil (2008) used the decomposition into intraday
and interday components to examine the long-term deterministic behavior under slowly
changing volatility. Another approach was used by Engle and Sokalskal (2012]), who used
a multiplicative component GARCH to forecast asset volatility by using daily, diurnal, and
stochastic intraday components in their model. The explicit representation of the volatility
surface is due to Feng (2013) and |Peitz and Feng (2015), where the returns are assumed
to follow a multiplicative respective additive model of a mean function and a volatility
function.

If the observations of functional time series are cardinal variables and hence not only
observations in the function direction, but also in the state direction follow a measurable
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order, the term time series under a spatial representation is used. If the observations of such
a time series occur at equidistant points in all dimensions, we refer to this process as time
series on a lattice or lattice process. For high-frequency financial data (HFF-data) observed
at regular time intervals (e.g. 1-minute or 5-minute observations), the framework by
Andersen and Bollerslev| (1998); [Peitz and Feng| (2015) forms a spatial time series on a
(regular) lattice.

Nonparametric estimation of the mean or expectation surface of a functional time series
can simply be carried out by bivariate regression methods, which are well studied in the
literature. Miiller (1988, pp. 77-90) extends the Gasser-Miiller (GM) kernel regression es-
timator (Gasser and Miiller, [1979) to multivariate data, discusses the boundary problem
and proposes a two-step estimation procedure using product kernels under a rectangular
design. The GM-estimator is also applied by Miiller and Prewitt (1993) for estimation of
the regression function or a (partial) derivative of the functional time series. The authors
give detailed asymptotic results for bias and variance and propose an adaptive bandwidth
selection procedure based on minimization of the asymptotic mean squared error (AMSE).
Optimal selection of global bandwidths for bivariate kernel regression is further studied
by Herrmann et al.| (1995). Based on minimization of the asymptotic mean integrated
squared error (AMISE), formulas for the optimal bandwidths are derived and an iterative
plug-in (IPI) algorithm for estimation of these bandwidths from a sample is presented.
The authors assess their proposed bandwidth selection procedure at the example of some
simulated Gaussian functions with a few hundred observations. [Facer and Muller| (2003)
give detailed theoretical results for multivariate kernel regression under a fixed design
assumption. Their spatial model is explicitly designed for finding local maxima of a sur-
face, which represents a response function to a multivariate input under their framework.
They used a cross-validation (CV) approach for bandwidth selection, however, this topic
was not extensively discussed. Robinson| (2011) applied the Nadaraya-Watson (NW) esti-
mator in a spatial setting while allowing for conditional heteroscedasticity in the model.
The consistency and asymptotic normality of this estimator under a spatial framework was
shown, bandwidth selection for this model was not addressed. Spatial kernel regression of
long-memory random fields was studied more recently by Wang and Cai (2010). Spatial
kernel regression under random design was considered by (Ghosh| (2015)).

Compared to kernel regression, local polynomial regression methods are advantageous
in some ways. They solve the boundary problem (Fan and Gijbels, |1996) and allow for
straightforward estimation of derivatives. An overview of local polynomial regression for
multivariate local polynomial regression can be found in Scott (2015). Ruppert and Wand
(1994) give profound theoretical results for local least squares regression. They study lo-
cal linear and local quadratic regression under a random design assumption and possible
heteroscedasticity in the errors. They extend their findings to higher-order polynomials
and estimation of derivatives. A plug-in bandwidth selector for local linear regression is
introduced by Yang and Tschernig (1999). Optimal bandwidths are obtained by mini-
mization of the AMISE and the necessary second derivatives of the regression function are
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estimated using partial local cubic regression. However, their plug-in rule only consists of
a single step, requiring an additional estimation of initial bandwidths. Hallin et al. (2004)
also investigate the local linear estimation of a multidimensional mixing random field on
a rectangular domain. They provide a comprehensive mathematical foundation for the
asymptotic properties of this estimator but no bandwidth selection is considered. Wang
and Wang| (2009) used local linear regression for estimation of spatio-temporal models
under local stationarity. An overview of nonparametric estimation of regression surfaces
may be found in |Ghosh| (2018).

1.2 Contribution of this Thesis

A major issue in kernel regression is the boundary problem: at a boundary point, fewer
observations are available than the bandwidth would require. This induces a bias in the
estimates and leads to unreliable results in this region. A solution approach using special-
ized boundary kernels is discussed by (Gasser and Miiller| (1979), some explicit formulas
for these kernels for boundary correction, the so-called boundary kernels are given by
Gasser et al. (1985); Miiller (1988). However, the most useful and easy-to-construct ker-
nel functions were proposed not until the y-smooth boundary kernels by Miiller| (1991
and the (u, u')-smooth kernels by Miiller and Wang (1994). These kernels allow for a
smooth continuation of the interior estimates to the boundaries and ensure that the bias
at the boundaries is of the same order of magnitude as in the interior. This type of bound-
ary problem is automatically solved by local regression methods (Fan and Gijbels, [1992;
Masry, [1996), hence these estimators are usually applied without concern to the bound-
aries. However, the naive use of simple truncated interior kernels at the boundaries leads
to discontinuities in the regression at these boundaries. These discontinuities might be-
come a severe issue if estimation at the boundaries dominates the complete estimation.
For example, in real-time monitoring applications, each new observation is treated as a
boundary point and hence, the complete estimation is carried out at the boundaries.

In multivariable regression, the role of the boundary region becomes more important,
e.g. under the framework of spatial regression. In comparison with univariate time se-
ries, the proportion of the boundary region is increased in the two-dimensional setting
of spatial time series. The ratio between boundary region (BR) and inner region (/R)
for spatial surfaces is visualized in Figure For hy = hs, BR covers 4(h — h?) of the
total surface, while in the univariate case, it only covers 1 — 2h. If h = 0.1, 36% of the
spatial observations are in the boundary region compared to 20% for the univariate case,
for h = 0.2, these numbers increase to 64%, respective 40%. Hence, in spatial regression,
the boundary region should not be treated the same as the interior region, if continuity of
the resulting estimates is required.

The findings in Chapter 2| now adapt the results of Miiller] (1991) and [Miller and
Wang (1994) to define boundary weighting functions for (univariate) local regression.
As boundary effects in local regression do not affect the bias, the terminology boundary
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Figure 1.1: Proportion of boundary region to the total regression surface in spatial regression.

modification is used rather than boundary correction, which remains reserved for kernel
regression. The proposed boundary modification in local regression leads to equivalent
estimates as the common use of truncated weights in the interior but includes a smooth
continuation to the boundaries. This can be demonstrated at an example of real-time
monitoring; in Figure the wind speed at Fairbanks, AK on 2021-02-01 is smoothed
from left to right, where for each point only observations to the left were incorporated in
the smoothing procedure. This effectively leads to boundary smoothing only as now each
point is treated as an endpoint. While the smoothing results for the boundary modified
local regression ("u-smooth" and "(u, p’)-smooth", see Chapter [2)) exhibit a smooth con-
tinuous curve, the "Truncated" type without boundary modification exhibits much more
discontinuity. The contribution of the boundary modification is abundantly clear in this
example, where each point is treated as a boundary point. However, while restricted to
only a few observations and thus probably less obvious, these effects remain for local re-
gression of full data sets. In conclusion, accounting for boundary modification leads to
smoother results compared to the naive use of truncated boundary kernels.

The proposed methods for boundary modification open a convenient way to generate
boundary kernels of desired orders simply from the weighting functions. These boundary
kernels prove useful for kernel regression of spatial time series in Chapter 3] while the
boundary-modified local regression is utilized in Chapter

The main contribution of Chapters |3| and |4] is the extension of the double conditional
smoothing (DCS) originally proposed by Feng (2013) and its integration into R for prac-
tical use of the findings. Under the spatial time series scheme, estimation of surfaces
is usually carried out using a bivariate kernel or local regression smoother as stated in
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Figure 1.2: Real-time monitoring of the wind speed at Fairbanks, AK on 2021-02-01 with three dif-
ferent boundary modification regimes. The employed estimation bandwidth is selected by
the tsmooth function from the smoots-package to h = 0.122 using the full sample. Data
source: NOAA/Diamond et al.| (2013).

section The downside to this approach is, that these bivariate regressors are slow,
which will be especially an issue if the size of the data sets increases. The DCS now
divides the two-dimensional regression of the classical bivariate smoothers into two one-
dimensional smoothers, effectively reducing a problem of O(n?) to O(n). The run-times
of a bivariate regression are compared to those of a DCS regression in Figure The
simulation employs different sample sizes using observations generated from the model
yi; = m(x14,22;) + €ij, where m(zq1,22) = 2% - \/73 and ¢;; are iid. errors from the
standard normal distribution. The values were simulated on a square grid with n = ny -no
observations and n; = no. For each regression method and sample size, 25 simulations
were measured. The graph indicates the much faster speed of the DCS and a better linear
behavior compared to that of the bivariate regression.

The contributions of Chapter [3| for kernel regression and Chapter [4| for the newly de-
veloped local polynomial regression DCS can be described in two ways: in terms of con-
tent or objectives. The main content of Chapters 3| and |4 can be broken down into two
parts: one regarding the DCS estimation and one regarding the selection of the associ-
ated bandwidths. Estimation procedures for kernel regression DCS were already used by
Feng (2013) and [Peitz and Feng| (2015) but without data-driven bandwidth selection; the
used bandwidths in these papers were set manually. In this thesis, the asymptotic optimal
bandwidths are selected by minimization of the estimators’ mean integrated squared error
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Figure 1.3: Run-times for classical bivariate and DCS kernel regression for a simulation example with
11 different sample sizes and 25 iterations per sample size. The implementation of both
algorithms in R only differs in the algorithm itself. Beside vectorization, no other measures
for improving the efficiency were used. Run-times were measured using the microbench-
mark package.

(MISE), these optimal bandwidths are selected by a data-driven IPI algorithm. The IPI
algorithm iteratively selects the bandwidths converging to the optimal values with cer-
tain properties. Thus, it does not depend on initial values or too many parameters. In
addition, the number of steps required is much smaller than for other bandwidth selec-
tion methods such as CV. The choice of the used inflation method, exponential inflation
instead of the more common multiplicative inflation method, further increases the speed
of convergence of the IPI algorithm. The DCS estimation algorithm itself is refined by the
introduction of the functional DCS (FDCS), which provides an efficient way for smoothing
spatial time series on a lattice, by utilizing certain properties of the equidistant lattice un-
der consideration. The FDCS is shown to have the same asymptotic properties as the DCS,
for kernel regression as well as for local polynomial regression. The two main objectives of
the extension of the DCS are to establish a theoretical foundation for the DCS estimators
and to develop algorithms for implementation into computer-aided methods, e.g. in R.
The theoretical foundation of the kernel regression DCS estimator was incomplete so far,
important results such as asymptotic expectation and variance, and, from this, the MISE
and the derived asymptotic optimal bandwidths were remaining to be found. This gap is
closed by the presented findings. The known asymptotic theory for bivariate and multi-
variable nonparametric regression is shown to extend to the DCS estimators in general.
Algorithms suitable for direct use in R are found with the FDCS for estimation of the mean
or regression surface or its derivatives and the IPI bandwidth selection. These algorithms
are available for practical use in the DCSmooth package for R (see Appendix [A].
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1.3 Summary of the Contents

In Chapter [2, the boundary modification methods in local regression are introduced. Al-
though important results on their own, the findings of this chapter also serve as prepara-
tory work for Chapters(3|and |4, as the methods for boundary modification in local regres-
sion and kernel generation are used later. The local regression is defined using p-smooth
and (u, p')-smooth boundary weights, similarly to the ideas of Miiller| (1991); Miiller and
Wang| (1994) originally used for kernel regression. These boundary weights now allow
for a smooth continuation of the estimates in the interior region to the boundary in local
regression. The estimates in the interior using the proposed boundary modification are
shown to be equivalent to the common method using common truncated methods. The
results turn out to lead to a convenient way for generating boundary kernels of desired
orders. This method is employed to obtain kernel functions which are used in Chapter 3]

The DCS for kernel regression under iid. errors is studied in Chapter (3| The general
nonparametric functional or spatial model is introduced in Section along with a sum-
mary of the basic ideas of the DCS procedure by [Feng| (2013); Peitz and Feng| (2015). The
main assumptions needed for derivation of asymptotic results and optimal bandwidths
are set forth and explained. In Section [3.3) a matrix DCS (MDCS) and the FDCS are
introduced to improve the computational efficiency of the original DCS algorithm. The
FDCS utilizes the assumed equidistant lattice structure to avoid redundant computation
of weights and is designed to use the faster vectorization algorithms of R. Section (3.4
treats the selection of optimal bandwidths. Asymptotic results of the expectation and the
variance of the proposed estimator are obtained in Section under the previously de-
fined regularity assumptions. These results lead to the asymptotic optimal bandwidths for
the regression by minimization of the MISE. For estimation of these optimal bandwidths,
an IPI-algorithm (Gasser et al., [1991) is proposed in Section which calculates the
optimal bandwidths iteratively. This algorithm depends on some partial derivatives of the
regression surface. Kernels generated from the method found in Chapter |2| are applied
for estimation of these derivatives from the observed spatial time series. The methods de-
veloped in Chapter (3| are assessed in the simulation study of Section by assessing the
bandwidth selection algorithm using well-defined spatial functions with known optimal
bandwidths. Examples of application to real HFF-data are shown in Section (3.6, where
the algorithm is employed for regression of the expectation surface of the volatility time
series of German companies BMW AG and Siemens AG and the corresponding volume
surfaces during the financial crisis around 2009. Proofs and derivations of some results of
Chapter (3| are moved to the appendix Section (3.8

The previously defined DCS is extended to local polynomial regression under dependent
errors in Chapter |4, Definitions for extension of the DCS to local polynomial smoothers
and necessary assumptions to derive asymptotic results are in Section The DCS (and
FDCS) schemes are shown to work equivalently under local regression and can therefore
be used to improve computational efficiency. The boundary modification for local regres-



1 Introduction 9

sion proposed in Chapter [2]is applied to the spatial smoother in Section [4.2.3] equivalent
kernel estimators are discussed in the following. These equivalent kernels are necessary
for proving the equivalency between local regression and kernel regression under the DCS
framework. Section covers the derivation of the asymptotic bias and variance as well
as the optimal bandwidths and, similar to Chapter[3] an IPI bandwidth selection algorithm
under dependent errors with short memory. This error structure is explicitly modeled by a
spatial ARMA (SARMA) structure (Section [4.4). Some estimation methods for parametric
estimation of special classes of the SARMA model are proposed in Section A simu-
lation study employing simulations of spatial surfaces with SARMA errors is used to assess
the proposed algorithms in Section Section [4.6| includes an application to financial
stock data. Our findings indicate that the bandwidths are usually increased when ac-
counting for dependency structures in the errors and hence negation of dependent errors
would lead to an undersmoothing.

It should be emphasized, that this thesis is a collection of the three articles in Chapters
Chapter [2] - Chapter [4 Although these three articles form a somehow consecutive series,
each one has a more or less different approach to the subject matter and should be able to
be read as an independent contribution. Due to this approach, the notation might differ in
some places between the chapters in order to meet the different requirements and ensure
the internal consistency of each chapter.

Outside of the development of the algorithms for non- and semiparametric estimation
of spatial surfaces for financial applications in Chapters|2|- |4, some alternative fields of ap-
plication are presented in Chapter 5] Examples of environmental data illustrate the broad
scope of the presented approach. Some extensions to the model include the introduction
of long memory errors into the model or the nonparametric estimation of the variance co-
efficient used in bandwidth selection using spectral density estimation. Without claiming
completeness, these topics are demonstrated at some examples in this chapter. Chapter
[6] closes this thesis with some concluding remarks. The documentation of the DCSmooth
package is given in the appendix, including application examples and descriptions of the
methods and tools in the package.

All analyses and calculations provided in this thesis are carried out in R (R Core Team,
2021) using version 1.1.2 (2021-10-21) of the DCSmooth-package (Schafer,|2021), specif-
ically developed for smoothing functional time series on a lattice using the DCS procedure.
Charts and diagrams shown are produced by the ggplot2-package (Wickham), |2016), the
surface plots are created with the plotly-package (Sievert, 2020). Further, the packages
smoots (Feng et al., |2021b) and microbenchmark (Mersmann, [2019) are used in creation
of the examples in Figure [1.2] respective Figure



2 Boundary Modification in Local
Regression

This chapter is based on joint work with Yuanhua Feng and published with
slight differences in the CIE Working Papers (144), Paderborn University, under
the title "Boundary Modification in Local Polynomial Regression”.

2.1 Introduction

An important aspect in nonparametric regression concerns estimation at the margins of the
support and the associated boundary modification. Boundary modification is particularly
well studied in kernel regression and kernel density estimation. If boundary modifica-
tion is not considered in this context, the so-called boundary problem will affect both, the
order of magnitude of the bias and the rate of convergence at a boundary point. The
typical boundary modification method is to use some sort of boundary kernels. Different
boundary kernels are proposed by Gasser and Mtller (1979); |Gasser et al.| (1985); Gra-
novsky and Miiller| (1991); Miller| (1991); Miiller| (1993a,b)); [Muller and Wang| (1994)
and Kyung-Joon and Schucany| (1998) among others. Also, the boundary correction pro-
posed by Rice| (1984) can be interpreted as an indirect use of certain boundary kernels,
which is further studied by |Cheng| (2006). Recent developments and a summary of fur-
ther boundary correction ideas in kernel density estimation may be found in Karunamuni
and Alberts| (2005) and [Karunamuni and Zhang (2008)). More recently, the application of
boundary kernels in distribution function estimation is also addressed by Tenreiro| (2013).
In contrast to this, there seems to be a lack of research on boundary modification in
local polynomial regression. The important role of local polynomial regression in non-
parametric estimation is well known, as there is extensive literature on this subject, e.g.,
in papers by Stone| (1977); Cleveland| (1979); Ruppert and Wand| (1994) and Fan and Gij-
bels (1996). This approach exhibits several attractive features, that is, it is design adaptive
(Fan and Gijbels, 1992), is an automatic kernel generator (Hastie and Loader, 1993) and
also has automatic boundary correction. The last property implies that, under suitable
regularity conditions, the magnitude order of the bias and the rate of convergence of a
local polynomial estimator at a boundary point are the same as those at an interior point.
It is hence commonly accepted that - as Masry| (1996) points out - "no boundary modi-
fication is required" for local polynomial regression. Note, that the truncated part of the
weight function used in the interior is usually employed at a boundary point. This will
result in discontinuous estimates in the boundary region. If the continuity of the resulting
estimates is required, some suitable method to achieve this property is demanded.

10
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In this chapter, we will propose two new boundary modification methods for local poly-
nomial regression by adapting the ideas of Miiller] (1991) for generating the so-called
pu-smooth boundary kernels and those of Miiller and Wang| (1994) for generating the
(i, 1')-smooth boundary kernels. The parameter p > 0 is an integer, which quantifies
the endpoint smoothness of a polynomial kernel function. In the first case, the resulting
estimates in the boundary region are of the same order of smoothness. In the second case,
the order of smoothness of the estimate at a boundary point is . — 1, if that of an estimate
in the interior is . Consider the use of a common second-order (polynomial) kernel func-
tion as the weight function. In the interior, the weight function defined by the first idea
is the same as the original weight function. The second method defines two additional
(asymmetric) weight functions (if ;1 > 0), whose standardized forms can be thought of as
(a pair of) two first order kernel functions. It is shown that, under regularity conditions, the
three quite different weighting methods in the interior are equivalent. The counterparts
of the Epanechnikov kernel defined under the second method are two (half-formed) trian-
gular kernels, whose form is unchanged from the interior to the corresponding endpoint.
This shows that the best weight function at the endpoints is a natural extension of one
of the best weight functions in the interior following the second boundary modification
method. Moreover, consider a p-th order local polynomial estimator of the v-th derivative
of the regression function. The second kind of new weight functions is shown to generate
kernel functions in the interior of order k such that k — v is odd. The boundary behavior of
local polynomial regression is also discussed in detail. The proposals are particularly use-
ful when one-sided smoothing or detection of change points in nonparametric regression
are considered.

The findings of this chapter are useful for the further development of the kernel regres-
sion DCS in Chapter [3|and the new development of the local polynomial DCS (LP-DCS) in
Chapter |4} Hence, this chapter can be viewed as preparatory work, although the findings
presented here are important on their own. Chapter [2|is organized as follows: the pro-
posed new boundary modification methods are introduced and discussed in Section
The main results on the equivalency of the (u,u’)-smooth estimators to the commonly
used estimators at an interior point are stated in Section The proofs for the special
cases of local linear, local quadratic and local cubic regression are given. Section |[2.4{in-
vestigates the boundary behavior of local polynomial regression. We discuss some areas,
in which the proposed methods might improve certain results in Section [2.5/and conclude
the chapter with some final remarks in Section Proofs of auxiliary results and the
equivalency of the proposed estimators for p > 3 are moved to the chapters appendix in
Section [2.7] along with some formulas for equivalent regression kernels.
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2.2 Modified Local Polynomial Regression

For simplicity, we consider the smoothing of the time series {Y;},# = 1,...,n under an
equidistant design. We employ the widely used simple nonparametric regression model:

Y = g(x¢) + €4, (2.2.1)

where z; = t/n € [0, 1], g is a smooth regression function on [0, 1] and ¢; is a sequence of
iid. random variables with zero mean and finite variance var(e;) = o2 > 0. Assume that g
is at least (p + 1)-times differentiable at a point xy. We have

g(x) = g(xo) + ¢'(x0)(x — x0) + - - - + g (o) (x — 20)P /P! + R, (2.2.2)

for x in a neighborhood of z(, where R, is a remainder term. Given observations y;, ...,
Yn, the local polynomial estimator of ¢(*)(z), i.e. the v-th derivative of ¢ at a point z, is
obtained by solving the locally weighted least squares problem

2

n p
. : Tt — &
argmin Q. Q=3 |ye =3 By(ar — o’ W(th )
t=1 7=0

where h is the bandwidth and W is the weight function. Let B = (EO, Bl, cee Bp)T. From
we can see that v!33, is an estimator of g*) (x),v=0,1,...,p.

Usually, the weight function W is a symmetric density W (u) on [—1,1]. For a right
boundary point # = 1 — ¢h, define the truncated weight function W (u) = W (u)1[_y 4 (u)
for 0 < ¢ < 1, where the discussion at a left boundary point for weights W, 1 (u) is
analogously. The weight function is assumed to be non-negative throughout this chapter,
but it is not required for the weight function to be normalized to one. For ¢ = 1, Wg
coincides with . The truncated boundary weight function W) (u) is the naive bound-
ary modification method in local regression, which is often used in the literature without
any explanation. A clear drawback of this method is that the weight function used at a
boundary point is discontinuous at the endpoint so that the corresponding asymptotically
equivalent kernel at a boundary point is also discontinuous. This property will be taken
over by the resulting estimators and §(*) obtained in this manner is always discontinuous.
This deficiency is more clear if change point detection based on local polynomial regres-
sion is considered (see e.g. Loader, 1996) because now each point is treated as an end-
point. To overcome this problem, the estimation at boundaries in local regression should
be improved, with various ways to define a reasonable boundary modification method. In
the following we will consider two of them, corresponding to two well-known classes of
boundary kernels.

The first method is obtained by adapting the idea of |Miiller; (1991) for constructing u-
optimal smooth boundary kernels. Following this idea, the weight function at a boundary
point is obtained by transforming W (u), the weight function used in the interior, into a
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p-smooth weight function on the support [—1, ¢], which is symmetric around the central
point of the support u, = (¢ — 1)/2. Such a weight function is given by (Miiller, 1993b),
with

y_ a1 wt (1—
i) = (U5 ) snaton = (2 1

2

As pointed out by Miiller (1991), W¢(u) (and also W (u) to be stated in (2.2:6)) is only
defined for a y-optimal second order kernel with W) (—1) = W) (1) = 0 for 0 < r < p.
The weights W are p-th smooth for any 0 < ¢ < 1 and the resulting estimate ") at the
boundary has the same degree of smoothness as in the interior. For any weight function
W, Wg coincides with W, in the interior (¢ = 1), i.e. W = W; = W. The mean squared
error (MSE) of ) at an endpoint using W¢ is however much larger than the MSE of an
estimator using W,,.
This problem can be solved as follows. Consider weight functions of the form

Wu) =(1- u2)“]l[_1,1] = (1 +u)"(1 —u) 1y qy(u), (2.2.3)

for some integer x> 0, which is defined based on some second order kernel function, but
is not necessarily normalized. Now, the boundary weight function W, can be rewritten as

Wo(u) = (14 w)* (1 — )Ly g (u) (2.2.4)
and W can be equivalently defined by
Wi (u) = (1 +uw)H(qg — w)Hli_y g(u). (2.2.5)

For the second boundary modification method, let i/ = max(u—1,0),i.e. &' =0for u =0
and ¢/ = p — 1 for u > 1. Following Miiller and Wang (1994), a (u, i')-smooth boundary
weight function on [—1, ¢ is defined by

WE(u) = (1+u)(q — u)* Ly g (u). (2.2.6)

Wi (u) and Wé’ (u) are the weight functions associated with the p- and (i, 4 — 1)-smooth
boundary kernels given in |Miiller (1991)) and Miiller and Wang| (1994)) respectively, which
can all be automatically generated by means of local polynomials with a proper weight
function.

If the uniform weight function is used, the three boundary modification methods co-
incide with each other. For p = 1, W is smooth at u = ¢, but Wé’ is not. The weight
functions W,, W and W are shown in Figure[2.1|for ¢ = 0,1/3,2/3 and 1 for y = 1 and
p = 2, respectively. Note that for ¢ = 1, W; and W7 coincide with each other.

The larger p is, the larger is the difference between W, and W. On the other hand, the
larger 4 is, the smaller is the difference between W and Wé’. As shown by [Feng| (1999),
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Figure 2.1: Boundary weighting functions W (u), Wé’(u) and W (u) corresponding to the p-smooth,

(u, p')-smooth and truncated type for ¢ = 0,1/3,2/3,1and p =1, 2.

if the Gaussian kernel (with non-compact support) is used, W and Wé’ will reduce to the
same weight function, because the Gaussian kernel corresponds to the limit case of the
weight function defined in (2.2.3) as y — oc.

2.3 Equivalency of the Proposed Weighting Methods

The newly proposed boundary modification methods for local polynomial regression are
defined by the use of the p-smooth weights Wi (u) in and the (u,u')-smooth
weights Wé’ (u) in (2.2.6). The conventional method without boundary modification em-
ploys the truncated kernel W,(u) in (2.2.4). In the interior, for ¢ = 1, it holds that
Wi(u) = Wi (u) = W(u), hence these weights will only lead to different estimates at
boundary points. On the other hand, W, W} and Wlb ; are three quite different weight
functions, if 4 > 0. However, under some regularity conditions, the resulting estimates
in the interior using those different weight functions are exactly the same. That is, as
interior weight functions, they are equivalent to each other and the third boundary mod-
ification method is also logically defined. For simplicity, denote W, (u) = W{(u) and
Wi(u) = Wlb ;(u). Consider at first the estimates obtained with weight functions W (u)
and W, (u), which will be denoted by ) (z) and §*”) (x), respectively. Let h < x < 1—h
be an interior point and define the matrix of observations by
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where u; = (z; — x)/h. Let W and W, be the diagonal matrices with entries W (u;)

respectively W, (u;). Then §*)(x) and §>(k”)(:c) are both linear smoothers with the weights

{(w”(2)}T = vle, , XTWX)'XTW (2.3.1)
and
{(w/(2)}T = vlel, (XTW.X) ' XTW,, (2.3.2)

respectively, where e;, j = 1,...,p+1, denote the j-th (p+1) x 1 unit vector. The following

theorem shows that ) (z) = §£V) () under given conditions:

Theorem 2.1. Consider the equidistant nonparametric regression of model (2.2.1)). Let 0 <
h < 0.5 be a given bandwidth and h < x = z;, < 1—h be an observation point in the interior.
Let ) (z) and 57*”) (x) be the estimates obtained with the weight functions W (u) and W*(u),
respectively. Assume further that p — v > 0 is odd. Then we have §*)(z) = g,E”) (z) for any
observation vector y.

The subsequent proof of Theorem is structured as follows: we state some notation
and the auxiliary results Lemma and Lemma 2.2 below. Then, Theorem gives
sufficient and necessary conditions for Theorem [2.1]to hold and is proved for the important
special cases of local linear, local quadratic and local cubic regression. In the appendix in
Section we propose another necessary and sufficient condition in Theorem and
prove Theorem for p > 3. Proofs of the auxiliary Lemmas as well as that of
Theorem are given in the appendix as well.

For a matrix C with elements c¢;;, we denote the submatrix obtained by erasing the i-th
row and j-th column of C' by C;;. Hence, |Cj;| is the corresponding minor determinant.
We further denote the cofactor of element c;; by ¢;; = (—1)"7|Cj;].

Define ¢; = ) W (u)u! and ;= > W. (u;)u!, which are the weighted sums of

lue| <1 lug| <1
the j-th order powers of u;. Lemma gives some important relationships between these

quantities.
Lemma 2.1. For the quantities c; and cj, it holds that
1) ¢j =0 for j odd,
2) cj - c;_H = cj,
3) ¢t

J

4) ¢

= ¢j 4 for j odd and

. 3 * :
=¢j + ¢ for j even.
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Define the (p+1) x (p-+ 1) matrices C' = (¢;;) = (XTWX) and C, = (¢};) = (XTW.X),
where ¢;; and ¢j; with double indices denote the (i, j )-th elements of C and C. respectively.

We have

and

0 C2
C9 0
0 Cq
|
Cp+1 0
GG
¢
>k K

* *
p—1 Cp+1 Cp+1

* * *
o1 Cpt1 Cpt3

for p odd and

(&) 0

cpr2 0

0 cpto

% %
Cp+2 Cp+2

* * *
Cpr2 Cpr2 Cpia

co
0
c2
c=1.
0
Cp
and
C* -
for p even.

For any observation vector y, the equality §*)

Cp—1 0
0 ¢y
Cp+1 0
CQP_Q 0
0 c2p
* *
Cp—1 Cpt1
* *
Cpr1 Cpt1
* *
Cp+1 Cpt3
k *
Cop—2 Cp
k k
oy oy
0 Cp
Cp 0
0 cpi2
Cop—2 0
0 C2p
* *
p p
* *
p Cpt2
* *
Cpr2 Cpi2
* *
Cop—2 Cop
* *

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

holds if and only if w” = w¥

under the conditions of Theorem Define D = (di;) = C~' and D. = (dj;) = C/,
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i,j=1,2,...,p+1. As C, C, are symmetric matrices, i.e. CT = C,CI = C,, the elements
of D, D, in terms of the cofactors of Cj;, Cy; are

=k

Ci cr.
dij = =, df; = == 2.3.
Sier % @57

Denote the (v + 1)-th rows of D and D, by D¥*! and D¥*! respectively. From (2.3.1)) and
(2.3:2), the condition D**'XTW = D**1XTW, is equivalently to w” = w”. Let X be
the n x n diagonal matrix with elements (1 — w;), t = 1,...,n. Then we have XW, = W

and w” = wY if and only if

DYHXT = p+1IXTX.
Using 4) of Lemma we obtain

D"t = (dy411,0,dy413,0,. .., dyi1p,0)
for p odd and any v < p even and

D" = (0,dy112,0, ... ,dyt1,,0)

for p even and any v < p odd. Theorem |2.1|hence reduces to

Theorem 2.2. Theorem [2.1| holds if, under the same conditions,

DY = (dyy11, —dus11, dys13, —dys13s - - -y it py —dui1p) (2.3.8)
for p odd and any v < p even, and

DY = (0,dy11,2, —dyi1.2, dyi14y —dys14s - -+ s i1 py —dui1p) (2.3.9)

for p even and any v < p odd.

We now give the proofs for the special cases of local linear (p = 1), local quadratic
(p = 2) and local cubic (p = 3) regression. A proof for p > 3 can be found in Section

Local Linear

Proof. Let C = (ci) = (XTWX) and C, = (¢j;) = (X" W..X). For local linear regression

we have
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We have p = 1 and only v = 0 (i.e. for estimating g itself) satisfies the condition p — v

odd. Using (2.3.7) and Lemma [2.1]leads to

. c 1 1 d
171 = = = — = 1,1,
(=) G- o

because ¢, — c5 = ¢y and

& *
1,27~ /% = —d1,1 =—di1.
cs(c )

Local Quadratic

Proof. For local quadratic regression we have

co 0 o
CZOCQO

02064

and

Now, only v = 1 (i.e. for estimating ¢’) satisfies the condition p —  odd. Observing (2.3.7)
and Lemma 2.1} straightforward calculation leads to

|C| = ea(coca — cg) and |C.| = ca(cocy — c263).

It is easy to see that |C ;| = 0 and hence dj ; = 0. Furthermore we have |C 2| = cocs — ¢3
and |C3 5| = ¢o * ¢} — co x ¢5. This leads to

1
d§2 - — = d2,2.
k) 02

Finally, it is clear that |C3 3| = |C3 5|. This results in d3 3 = —d5 5 = —da 2. O
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Local Cubic

Proof. For local cubic regression we have

C()OCQO
062064

C =
C2 0 Cq 0
0 Cy4 0 Ce
and

cy € ¢ ¢y
* * *
cox Cy C; cC
C, = 2 G4 €y

Now, v = 0 and v = 2 satisfy the condition p — v odd. Only the calculation in the case
with v = 2, i.e. for estimating the second derivatives with local cubic regression, will be
given in detail. The results for v = 0 are similar and omitted.

Following and Lemma [2.1] we have

|C| = (cocq — c%)(czc(g — cZ) and |Cy| = (coeq — c%)(CQCZ — c4Cy)-

It is easy to show that d3 ; = — COCZQ — . Straightforward calculation leads to
2
5 5 ¢y 0 c2 ¢
O3l =c5 ¢ ci|=|cc 0 ¢} =—calcach — cacy).
¢y ¢ ¢ ca 0 ¢
Thatis d5, = L 1 Y dsz 1. Furthermore, we have
3,1 |Cy] coca—c3 e ’
g ¢ ¢y c2 ca
C3ol = |c5 i ci|=—|ca 0 cj|=—caleacs — cach) =[C34],
¢y ¢ c ca 0 ¢
and hence d5, = —d5, = —d31. Note that, although the two (1,1)-th elements of 3,
and Cj , are different, they have however both zero cofactors. Similar calculations can be
carried out for C3 5 and C73 ,. O

Theorem gives some exact, finite sample results for equidistant local polynomial
regression. It shows (together with Theorem that some local regression estimators
with quite different weight functions can be identical. For given p, these results hold for
all v < p with p — v odd. For instance, if p = 3, they hold for » = 0 and v = 2, i.e. for the
estimation of g and ¢”.
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Note that the assumption of p — v being odd is often made in local regression so that
the bias in the interior and at the boundary is of the same order. Theorem does not
hold for local polynomial estimates §(*) and §£V) obtained with p — v even. For instance, it
is easy to show that local constant estimates g and g, in the interior are different.

For a nonparametric regression under equidistant design, the assumption that h < x =
xi, < 1 — h is an observation point in the interior, implies that ¢ = 1 and all weights
W (uy) # 0 are symmetric around W (u;,) and the u/ for |u;| < 1 are either symmetric (for
j even) or asymmetric (for j odd) around u;, = 0. These facts are used in the proof of The-
orem At an interior point z, which is not an observation point, or for non-equidistant
design nonparametric regression, results of Theorem only hold approximately.

For estimation at the left boundary, let g..(z) denote the local polynomial estimator
obtained with the weight function W**(u) in the interior, where W**(u) = Wlb . (u) as
above. This leads to

Theorem 2.3. Let g..(z) denote the local polynomial estimator obtained with the weight

function W, (u) at an observation point in the interior. Then, under the assumptions of
Theorem we have 5 (z) = 3\ (2).

The proof of Theorem is analogously to the proof of Theorem and is omit-
ted. The third alternative boundary modification method using is shown to be
also well-defined and reasonable by Theorems and The results presented in this
section show in particular that some local regression estimators obtained using different
weight functions are equivalent to each other under certain assumptions. Other reason-
able boundary modification methods in local regression might exist as well.

2.4 Boundary Behavior of Local Regression

In the following, we will discuss the asymptotic boundary behavior of a local polyno-
mial estimator. It is well known that local polynomial regression has automatic boundary
correction property without explicit use of boundary kernels the boundary kernels will
be generated automatically. Local regression with the two boundary modification meth-
ods introduced above will be utilized for straightforward generation of the two classes of
boundary kernels discussed by |Miiller| (1991) and Miiller and Wang| (1994)

Let ¢*) be estimated by a p-th order local regression estimator with p — v odd. At first,
the naive boundary modification method with W;(u) is used. Then, a local regression
estimator is asymptotically equivalent to some kernel estimator of order k¥ = p + 1, not
only in the interior but also at a boundary point. Following Mtller (1987), we have

14

S 1‘ — 0, defining % =1, (2.4.1)

Wi

lim sup
n—o0 1<t<n

where {w}} denotes the weighting system obtained by a local regression and {wy, } those
obtained by some kernel method. Related results may also be found e.g. in [Lejeune
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(1985); Lejeune and Sardal (1992) and Ruppert and Wand (1994). Let K, denote the
corresponding (equivalent) boundary kernel, which does not belong to the classes of -
smooth or (u, u’)-smooth boundary kernels described by Miiller| (1991) and [Miiller and
Wang| (1994). These boundary kernels may be called optimal (u,0) smooth boundary
kernels, since they are non-smooth at the endpoint u = ¢ for ¢ < 1. If locally unweighted
regression (with the Uniform kernel as the weight function) is used, then the generated
boundary kernels are the so-called minimum variance kernels introduced by Gasser and
Miiller (1979). If the Epanechnikov kernel is used as the weight function in the interior,
the resulting kernels K, are the so-called optimal boundary kernels proposed by Gasser
et al.| (1985).

In the following, we will extend the above results to a general boundary modification
method. Let W, denote any reasonable weight function at the boundary with support
[—1, g], which can, for instance, be one of Wg, Wi or Wé), q € [0,1] defined above. For
convenience, assume that W,(u) is standardized with integral one. By extending the

results in (2.4.1), we obtain

Theorem 2.4. Let §*) be a p-th order local regression estimator of g*) with p — v odd. Let
k = p + 1. Assume that the bandwidth h satisfies h — 0, nh**~' — oo as n — co. Then §*)

is asymptotically equivalent to a kernel estimator with the boundary kernel
Ky (u) = (ag + aru + - + ax_1u" )W, (u), (2.4.2)
where aq, a1, ..., ap_1 are the unique solutions of the system of k linear equations

N,,a = vle, 41,

where
Bo  H1 oo Hp
N — ,u.1 M.2 Mp'+1 ’
Hp  Hp+1 -0 H2p
where pi; = [, W/ W, (u)du is the j-th moment of Wy, a = (ag,ay,...,a,)T and e 41 is as
defined before.

The proof of Theorem can be obtained by adapting known results in the literature
and is hence omitted. It is clear that the solutions of this linear system are unique.

The boundary kernels K, (u) generated by local polynomial regression depend strongly
on the form of the boundary weight function, through Wy’ on the rh.s. of and the
change in the solutions of ay, ..., ap. If WC? is used as weight function, then the boundary
kernels generated by local polynomial regression are discontinuous at the point = = ¢ for
g # 1 due to the discontinuity of qu itself, no matter how smooth W () in the interior is.
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This drawback is overcome by using the two smooth boundary modification methods in-
troduced in Section[2.2] Now, due to the uniqueness of the solutions, the boundary kernels
proposed by Miiller| (1991) and Miiller and Wang| (1994) will be generated respectivelyﬂ
Another advantage by using the ideas in |Mtller| (1991); Miiller and Wang| (1994) is that,
in this case, the solution may be represented more easily by means of orthonormal
polynomials associated with the weight function W or Wé’ (see Miiller (1991) for a gen-
eral explicit solution). Such a representation would be arduous if the boundary weight
function Wg is used, because, for general p, the solutions of the orthonormal polynomials
associated with W, are highly complex.

We provide a special solution to a (2,0, 0)-kernel. Some further p-smooth and (u, it')-
smooth boundary kernels generated via Theorem from W (u) and Wé’(u) are given in
Table and Table and plotted in Figure for ¢ = 0,0.5,1. Consider the simple
case for estimation of g with local linear regression (p = 1, k& = 2), the asymptotically
equivalent boundary kernel using a boundary weight function ¥, is given by

Ky(u) = (ap + a1u)Wy(u),
B2 and a4y = —FL (2.4.3)

with o« = 3
H2 — Hy M2 — p7

For the Uniform kernel (v = 0), the solutions for all of the three boundary modification
methods are the same with W, (u) = 1;_; 4(u),

-1 2 _ 1
L _ 97 ond @:%.

Ho 2 Ho 3
Inserting these into (2.4.3), we obtain

(1—q)° 1—¢

ap +3(1+q)2 and a; 6(1+q>2

This leads to

1
Kq(u) = m

1—gq 2 1—gq
1 1
+3(1+q) +6(1+q)2u [,17q](u)

= (q _: 1)3 [(4612 —4q + 4) + (—66_[ + 6)u] 1[_17q](u).

IThe arguments of the kernel functions used in kernel estimators and local polynomial estimators are often
different. The K,(u) generated from Theorem is indeed a right boundary kernel, if u; follows the
definition of the kernel properties by |Miiller| (1991); Mtller| (1993b); Miiller and Wang| (1994).
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Figure 2.2: Kernels of order (k, u, v) generated by the equivalent kernel method of Theorem Values
are displayed for ¢ = 0,0.5, 1 and all three boundary modification methods.
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2.5 Areas of Application

Although local polynomial regression solves the boundary problem, which affects the bias
and convergence rate of kernel regression, some boundary effects are still present. In this
chapter, we focused on the degree of smoothness at the boundaries and were interested in
a smooth continuation to the boundary regions of the weighted regression in the interior. A
boundary modification in this sense might lead to improved results compared to the naive
local polynomial regression, notably in cases, in which the boundary region dominates the
interior region.

In real-time or online monitoring applications, data points are evaluated as they occur,
and every new value is a boundary point. If the continuous estimation of a smooth trend
is required, boundary modification as proposed in this chapter is necessary. If truncated
kernels are used, the estimated trend function would be discontinuous at every point as
a sequence of endpoints cannot be estimated smoothly. Examples for such applications
might be temperature or pollution monitoring, the tracking of financial measures such as
stock or commodity prices, or technical measurements in industrial facilities.

A similar argument can be made for nonparametric change point detection, which was
investigated, for instance, by Miiller| (1992) and [Loader (1996). For a given set of obser-
vations, one-sided regression is applied from both sides, where every observation in the
interior is considered as the endpoint of the observations left to it and as the endpoint of
the observations right to it.

The ratio of the boundary regression increases with the dimensionality of the data.
Hence, for the same bandwidth, the boundary effects are more severe. Consider for exam-
ple a bandwidth ~ = 0.2 and a boundary region BR; = {0 < x; < h; Ul — h; < z; < 1},
where i is the dimension index (e.g. i = 1 in the univariate case). For univariate re-
gression, the boundary ratio is 0.4, while in a bivariate regression model, the boundary
ratio BRy U BRy becomes 0.64 if hy = hy = 0.2. Thus, for a bandwidth of h = 0.2, the
boundary region covers more than half of all observations. If estimation of derivatives of
the regression surface is considered, the bandwidth increases in general, leading to much
larger boundary ratios. These derivatives frequently appear in plug-in bandwidth selec-
tion rules, as proposed e.g. by|Gasser et al. (1991); Herrmann et al.|(1992)) and Herrmann
et al.| (1995). If these plug-in or iterative plug-in algorithms are applied to local polyno-
mial regression, smooth extension to the boundaries improves the stability of the results.
We use this application of the proposed boundary modification methods in the subsequent
chapters.



2 Boundary Modification in Local Regression 25

2.6 Final Remarks

In this chapter, we propose two new methods for boundary modification in local regres-
sion, which correspond to the boundary kernels of Miiller| (1991) and Miller and Wang
(1994)). This type of boundary modification allows for a smooth continuation of estimates
at the boundary region. The newly found estimation methods are shown to be equivalent
to the conventional use of truncated kernels in the interior. The proposed methods es-
tablish a convenient way for obtaining boundary correction kernels in the sense of Miiller
(1991) and Miiller and Wang| (1994) simply from their regression weights, which is espe-
cially useful for computing higher-order kernels.

Our focus is on the continuous extension of the smoother to boundary points, optimal
kernels are not in the scope of this chapter. However, Miiller and Wang| (1994) showed
that the (optimal) MSE using the (u, i —1)-th smooth boundary kernel is generally smaller
than that using the u-th smooth boundary kernels. It is expected that the MSE obtained
using the naive boundary modification method would still be smaller. A more interesting
question is which weight function is optimal. |Cheng et al.| (1997) obtained related results
for estimation at the endpoints. Their results indicate that, e.g., for a local linear estimator
of g, none of the three methods is optimal. A general answer to this question at an arbitrary
boundary point with ¢ € (0, 1) is still unknown.
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2.7 Appendix

Proof of Theorem[2.1] Note that C in (2:3.3) or (2:3.5) is a special matrix, whose (i,5)-
th entries with i + j odd are all zero. For all p, it holds that C = CT and C, = CT. The
following lemma provides some useful properties of such a matrix.

Lemma 2.2. Let {E};; = (e;5) be an m x m matrix with e;; = 0 for all elements where i + j
is odd. Then

1) |E| = |A| - |B|, where A is the matrix obtained from E on erasing the even rows and

even lines and B is that on erasing the odd rows and odd lines.

2) Foriand j bothodd, let r = (i+1)/2, s = (j+1)/2 and A, denote the (r, s)-th minor
of the matrix A defined in 1). Then the cofactor of e;; is either |A,s||B| or —|A,4||B].

3) For i and j both even, let r = i/2, s = j/2 and B, denote the (r, s)-th minor of the
matrix B defined in 1). Then the cofactor of e;; is either |A||B,s| or —|A||Bys|.

4) For i+ j odd, the cofactor of the element e;; (i.e. of a zero element) is zero. Then E;;

corresponding to a nonzgero element is zero.
Using the notation of cofactors from (2.3.7), Theorem can be reduced further.

Theorem 2.5. The results given in (2.3.8)) and (2.3.9) are respectively equivalent to
Case 1:

IC ] |Cyi1,4]
@) e =i

b) [Cr il =1C0 1, i=1,3,....p,

for p odd and v even with 0 < v < p.
Case 2:

a ‘Cﬁ+1,1‘ =0

1€l |Cyt1,i .
b) |C*| - \C| C) ’C:+17i+1| = ‘C:+1,i|: 1= 2747 e ,p;

for p even and v odd with 1 < v < p.

The proof of Theorem is straightforward and is omitted. Note that [C},, ;| =
|C;.1 ;| means that these two cofactors have the same absolute value but with different
sign. We are now in position to prove Theorem [2.1]

Proof of Theorem From the considerations above, Theorem[2.5] is a sufficient (an nec-
essary) condition for Theorem to hold.

Note that the matrix C' is a special case of those considered in Lemma Hence we
have |C| = |A| - | B|, where A is the matrix obtained from C' on erasing the even rows and
lines and B is that on erasing the odd rows and lines. We assume p > 3, so that both of A
and B are at least of size 2 x 2.
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Case 1: v is even and hence v + 1 is odd. Note that C, only consists of ¢; for j even.
From the relationship ¢ = ¢; + ¢}, for j even and by subtracting the (j + 1) th column
from the j-th column of C, forall j = 1,2,...,p, we obtain

¥
Co 0 C2 ot Cpm1 Cppg
*
0 Co 0 0 Cpi1
3
7. _ Co 0 €4t Cppl Cpyg
. =
cp—1 0 cpy1 oo cp2 Gy
0 cpy1 0 0 c§p
and
|Cs| = [Cl.

Following 4) of Lemma the cofactor of the (j,p+1)-th element in the (p+1)-th column
of C, is zero, if j is odd and these elements can be replaced by zero without affecting the
determinant of C,. Doing this and carrying out similar interchanges as for C, we get

|Cs| =1C|
Co 0 Co ot Cp—1 0
0 e 0 -+ 0 ¢y
(&) 0 Cq4 e Cp+1 0
Cp—1 0 Cp+1 - C2p-2 0

0 ¢ O -+ 0 5y

14 o

o B.

= A - [B.],

where A is the same as that for C' and B, is obtained from B by replacing the last column

with (¢}, 1, ¢35, ., ¢5,)T. This leads to
] _ |B]
= . (2.7.1)
il |By]

To show that the ratio between the cofactors ¢,+1,; and ¢, ; for 7 odd is that in (2.7.1),
let ¢ be odd and define r = (v + 2)/2 and s = (i + 1)/2. From 2) of Lemma either
Cu1i = |Aps||B| or €115 = —|Ays||B|, where A, is the same as in 2) of Lemma 2.2 for
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the matrix C. To calculate ¢}, ;, we transform the submatrix C}, , ; by subtracting and
interchanging rows and columns to

- A.s B
Copr; = ( 0o B > (2.7.2)

where A, and B, are as defined above. Following (2.7.6) the cofactor of ¢, 41,18 either
[Coi1l = [Ans||B| or |Cy iy, = —|Ars]|BI.

Furthermore, the required number of interchanges is the same for calculation of the co-
factors of ;41 and ¢} ;, i.e. the sign is either both changed or both unchanged. We
obtain the ratio between these two cofactors

El*/—i-l,i _ |A7«5HB*\ — ’B*‘ — ’C*‘
¢ |AnlIBl (Bl |C]

This proves the results in a) of Case 1.
Furthermore, the two submatrices C},,, and C;,, ; , differ from each other only in

one column. Analogously, C*

» 4141 can be transformed by subtracting and interchanging

rows and columns to yield

sk AT‘S -é*
Cu+1,i+1 - (ﬁ B ) )

where A, and B, are the same as in (2.7.2)), all elements of B, are zero except for those
in the last column and all elements of ATS are zero except for those in the s-th column,
i.e. /Vlm has at least one column with all zero, which ensures that the any element of ]§*
has zero cofactor and, for calculating the determinant of C, 1t B, can be replaced by
a zero block. This leads to either

|C;+1,i+1| = |As||B| or |C;+1,i+1| = —|A;s||Bl.

Again, the required numbers of interchanges by the transformations to calculate the co-
factors ¢}, ;, €41 ,41 are the same, implying |C} ;4| = |C, ;|- Results of Case 1
hold.

Case 2: a) Now, p is even and 1 < v < p is odd. We carry out a similar transformation
from C, to C, as in Case 1. Because ¢}, is in the first column of C,, C;,, can be
transformed similarly. The transformed matrix is now equal the corresponding minor of
C., denoted by C* +1.1- Note that, generally, this does not hold for the cofactor of an
element in other column. Hence we have |C},, | = j:]é’;ﬁHJ\ = 0. Thatis dj,,, = 0.

The proof of results in b) and c¢) of Case 2 is analogous to that for Case 1. We will only
give a sketched proof in this case. Let i be even. We can obtain |C,| = |A,| - |B|, where
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B is the same as that for C' and A, is obtained from A by replacing the last column with

(Cps Cps e -+ c§p)T. Similar to the analysis given above, we obtain

Covral _ AdBusral _ A _ |G
Coval = [AllBusrd — 4]~ [C]

And further, it can also be shown that |C} ;1| = [C}, 4 ;|. Hence, Theoremis proved.
O

The proof of Theorem [2.3|is obtained in the same manner.

Additional Proofs

Proof of Lemma[2.1} The result in 1) holds, since, for j odd, u] ' for |u¢| < 1 are asymmetric
around wu;, and k; for k; # 0 are symmetric around k;,.
2) For the difference between c and ¢t T we have

j+1
¢ =G = E ki uf —uf )

lug| <1

_ * J

= E ki (1 — ug)uy
lug| <1

_ J _

= E kiuy = cj,
lug| <1

since ky = ky (1 — wy).
3) For j odd we have ¢j — ¢}, =¢; =0, i.e. ¢f = cj ;.
4) For j even, we have j + 1 is odd and ¢}, = ¢} ,. Results in 4) follows further from

that in 2). With this Lemma|[2.1]is proved. O

Proof of Lemma 1) Let m’ denote the integer part of (m + 1)/2 and define the permu-
tation matrix P,, with elements p;; by

1 forj=2i—1,1<i<m/,j=2(0—m'),m <i<m
Dij = . (2.7.3)
0 otherwise

We obtain the matrix E' = P,, EPL with

, (A0
E = (0 B), (2.7.4)

where 0 a block of zeros with corresponding rows and columnsE] Now, A consists purely
of elements with odd indices and B of elements with even indices. Hence, A is actually

2A similar matrix is obtained, if we interchange the i-th row with the (2i — 1)-th row for 2 < i < n; and
then interchange the j-th column with the (25 — 1)-th column.



2 Boundary Modification in Local Regression 30

the matrix obtained from E on erasing the even rows and even lines and B is that on
erasing the odd rows and odd lines. Since |P,,|? = 1 is even, we yield

A0
|E| = |E'| =

= |A|-|B]. (2.7.5)
o g =418

2) By (2.7.3), after the transformation of 1), the r-th row of E consists of the same
elements as the i-th row of E, the same is true for columns s of A and j of E. Hence,
E,s is the same as E;;, the same is true for the cofactors é,, = ¢;;. Using (2.7.5), the
submatrix F,; has the diagonal form of with blocks A, and B. The number of
total interchanges required for the the transformation of the minor must not necessarily
be even and hence, ¢, is either | A, ;|| B| or —|A4,||B|.

3) The proof of 3) is analogous to that of 2).

4) The result in this part is well known for such a special matrix. Let A; be an n; x n;
matrix, As be an ny X no matrix and As an arbitrary matrix with corresponding rows and

columns. Then, note that

A, A
0 A,

A O

3 2

With the same rationale as for 2), erasing the i-th row and and j-th column of E corre-
sponds to erasing the r-th row and s-th column of E’. The erased element is now in one
of the 0’s in (2.7.4). Hence, elements of A and B are erased and we obtain one of the two
forms given in with either |A;| = 0 or |Ag| = 0. O

Proof of Theorem Note that

G—w)  (-w) o (—wy)  (1—u)
(1 —wup)ug (I —wug)ug -+ (1—=up—1)un—1 (1 —up)uy

(1— ul)u]f_l (1-— ug)ug_l (1-— un_l)uﬁ_ll (1-— un)up_1

(1 —up)uf (1—wug)ub - (I—up_)ul | (1= up)ub |

Let p be odd and v < p be even. Straightforward calculation shows that the ¢-th element
of D"*'XTX, denoted by s,, is given by

(p+1)/2

2j—2
se=(L—w) > dyyrg-1u .
e
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Denote the t-th element of DYT!XT by s. If (2.3.8) holds, we have

+

2j—1

g dys12j1u 2 = dyyr9jqu )

1)/
2(j—-1)

E dyi1,2j—1Uy (1 —uy)

= S¢.

Hence, the first part of Theorem[2.2)is proved. The second part can be proved analogously.
O
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Table 2.1: Selected right p-smooth (Miillery |1991) boundary kernels K4(u) for w € [—1,q] and q €

[0, 1].
Order Formula
60(1 + u)?(q — u)?
220 X (ql 1(>7 S (462 = 6q -+ 4) + (~7g + T)u]
60(1 4+ u)(g—u
(3,1,0) ( @ +)1()7 ) [(2¢" — 8¢® + 15¢*> — 8¢ +2)
+(—8¢% +27¢% — 27q + 8)u + (T¢* — 21 + 7)u?]
840(1 +u 2 q—u 2
(3,2,1) ( (q +)1()9 ! [(—5¢° +16” — 16¢ + 5) + (22¢” — 40q + 22)u
+(—21q + 21)u?]
840(1 + u)2(q — u)?
( (Zi)l)(?l 2 [(4¢° — 30¢° + 96¢* — 136¢° + 964> — 30q + 4)
(4,2,0) + (=27¢° + 171¢* — 396¢> + 396¢* — 171q + 27)u
+ (54¢* — 300¢° + 480¢% — 300g + 5422)u>
+(—33¢® + 165¢% — 165¢ + 33)u’]
5040(1 + u)%(q — u)?
( (+f)1)(£ “) [(18¢" — 100¢® + 160¢* — 100q + 18)
(4,2,2) !

+ (—139¢> + 455¢% — 455q + 139)u
+(304¢? — 580q + 304)u® + (—198¢ + 198)u?]

Table 2.2: Selected right (yu, y1')-smooth (Miiller and Wang, 1994) boundary kernels K,(u) for u €
[_17(1] and qc [Oa 1]

Order Formula
60(1 +u)2(q — u) ,
27 27 0 1-2 2 2—-3
(2,2,0) NG [(1—2q +2¢%) + (2~ 3q)u]
12(14u) ;. 4 , , \ )
———¢ [(6¢" —16¢° + 21¢" — 6¢ + 1) + (—20q" + 459" — 30g + 5)u
(3.1,0) (qr1p (04 ~ 160 +21q" = 6q-+ 1)+ (=204 + 45¢" — 30¢ +5)
+(15¢% — 30g + 5)u?]
420(1 + u)2(q — ) , \ ,
—5¢° +12¢% — 9 + 2) + (19¢* — 26¢ + 11
(3.2.1) G (50" +126° = 9q+2) + (19" — 260 + 11)u
+(—16q + 12)u?]
420(1 + u)*(q — )
oo (60" = 30¢ 4 77g" — 84g° + 45¢° ~ 10g + 1)
(4,2,0) + (—30¢° 4 152¢* — 280> + 216¢> — 70q + 8)u
+ (54¢* — 240¢° + 300¢% — 144q + 18)u?
+(—30¢® + 120¢* — 90q + 12)u”]
5040(1 + u)2(q —
(( ++U1))1(0q 2 [(9¢* — 40¢® + 50¢* — 24q + 3)
(4,2,2) !

+ (—61¢> + 160¢> — 127¢ + 30)u
+(119¢? — 182¢ + T7)u? + (—70q + 56)u®]




3 Fast Computation and Bandwidth
Selection Algorithms for the DCS

This chapter is based on joint work with Yuanhua Feng and published with
slight differences in the CIE Working Papers (146), Paderborn University, under
the title "Fast Computation and Bandwidth Selection Algorithms for Smoothing

Functional Time Series”.

3.1 Introduction

Smoothing, i.e. estimation of the mean surface of curve- or functional time series, is a topic
that arises in many research areas, including environmental science, biology, demography,
and finance (see e.g.|/Aneiros-Pérez and Vieu, |2008; Chiou and Miiller, 2009} Bathia et al.,
2010; Hyndman and Shang, 2010; Shang and Hyndman, 2017; Li et al., [2019a). The
mean surface of a functional time series is estimated under a well-known nonparametric
regression model (see Hyndman and Ullah, 2007; Aneiros-Pérez and Vieu, 2008; Hyn-
dman and Shang|, 2010; |Gao and Shang, 2017, among others), assuming the data are
observed on a regular lattice. Smoothing of random fields under a fixed design is closely
related (see e.g. Machkouri and Stoica, 2010; Wang and Wang, |2009}; Yue and Speckman,
2010; Li et al.,2019b)). In this chapter we introduce fast computation procedures and de-
velop a suitable data-driven algorithm for estimating the mean surface of large functional
time series with millions of observations. Our findings can be generalized to smoothing
functional time series or random fields with irregular design in one dimension. Potential
extensions include nonparametric regression with spatial- or spatial-temporal data (Hallin
et al., 2004; Robinson, [2011) or bivariate kernel regression (Miiller, [1988; |Miiller and
Prewitt, 1993; Facer and Miiller, 2003) under suitable regularity conditions on the design.

The mean surface of a functional time series can simply be estimated by traditional
bivariate (2D) nonparametric regression approaches (see e.g. [Miller, [1988; Ruppert and
Wand, 1994; Hardle and Miller, 2013; Scott, |2015]). However, the common 2D-smoothing
techniques run so slowly, up to the point of practical inapplicability, if the number of ob-
servations in both dimensions grow very large. This problem becomes even more severe if
data-driven selection of the bandwidths is taken into account for which iterative smooth-
ing is required. Some fast computation algorithms for multivariate nonparametric re-
gression were suggested in the literature, including approximate binned kernel estimates
(Wand, 1994) or a grid with much fewer estimation points. However, those approaches

can only provide approximate or partial smoothing results with certain information loss.

33
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For functional time series defined on a lattice, [Feng (2013) and Peitz and Feng (2015)
proposed a (Nadaraya-Watson-type) double conditional smoothing (DCS) procedure
where univariate kernel estimates are calculated in the first stage, conditioning on obser-
vations in the other dimension. Then, the intermediate results are smoothed in the second
dimension conditioning on observations in the first dimension. An important feature of
the DCS is its equivalency to a 2D-kernel smoother with a product kernel, thus, no loss
of information will occur. The main idea of the DCS is to divide a 2D-smoother into two
sequential univariate smoothing procedures which hence improves the computational
efficiency strongly compared to classical bivariate smoothing. The resulting estimates
do not depend on the order of the two univariate smoothing procedures. Moreover,
the intermediate smoothing results might also provide valuable information about the
trends of the functional time series in one direction which correspond to the smoothing
results for a functional time series as used, e.g., by Shang and Hyndman| (2017) and
Gao and Shang| (2017). The first stage of the DCS can be carried out in both dimensions
to discover detailed features of the data, examples are given by [Feng (2013)) and Peitz
and Feng (2015). The DCS can be combined with other ideas to further reduce the
computation time and might also be extended to higher-dimensional cases. We introduce
a new functional DCS (FDCS) scheme to calculate the functional curve at once (per
dimension). Again, this procedure is equivalent to the DCS and the 2D-kernel smoother
but runs faster than the DCS procedure.

Note that the Nadaraya-Watson (NW) kernel regression is subject to the boundary prob-
lem. Spatial observations further worsen the boundary problem, since the ratio of the
boundary region to the number of total observations is in general much higher than in the
univariate case. In this chapter, we use product boundary kernels, i.e. products of two
univariate boundary kernels as proposed by Miiller (1991) and Miiller and Wang| (1994)
to correct the boundary effect. For the iterative plug-in (IPI) bandwidth selection rule by
Gasser et al.| (1991) presented in Section|3.4.2] estimation of derivatives of the regression
surface is necessary. Definitions of boundary kernel functions for estimation of these par-
tial derivatives may be found e.g. in |Miller| (1988) and Facer and Miiller (2003). Some
useful closed-form formulas of univariate boundary kernels for estimating the derivatives
are given in Table [2.1] and Table 2.2 of Chapter

Different data-driven algorithms for bandwidth selection in multivariate kernel regres-
sion, including plug-in (Herrmann et al., 1995} Yang and Tschernig, | 1999; Kolacek and
Horoval, 2017), Cross-Validation (CV, Zhang et al., |2009; Kolacek and Horova, |2017)),
bootstrap (Manteiga et al., 2004)) and Bayesian (Zhang et al., 2009) approaches, are pro-
posed in the literature. We will adjust the 2D-IPI algorithm of [Herrmann et al.| (1995) for
selection of the bandwidths. For this purpose, necessary asymptotic results for the FDCS
approach are obtained and investigated under independent and identically distributed
(iid.) errors. In particular, the asymptotically optimal bandwidths for the FDCS are shown
to be the same as given in the literature since the FDCS is equivalent to the 2D-kernel
smoother. An IPI algorithm is developed by plugging suitable estimates of the unknown
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variance and bias factors into the asymptotically optimal bandwidths starting from fixed
initial bandwidths. Bandwidth selection rules based on a search procedure, like CV or
bootstrap, run too slowly and are not suitable for selecting the bandwidths in the current
context of large data sets and are not considered in this thesis.

The proposed methods are applied to functional time series of high frequency financial
(HFF) returns for estimating the spot-volatility surface as well as the surface of trading
volumes. Following|Andersen and Bollerslev (1997)), Andersen and Bollerslev| (1998) and
Andersen et al.| (2000), those data can be indicated by an interday (daily) and an intra-
day index. We obtain a functional time series with the trading day as the time dimension
and the intraday trading time as the temporal dimension which is a continuous variable
indeed. With equidistant intraday observations, a functional time series on a regular lat-
tice received. Exemplary 3D-plots of such data can be found e.g. in Feng| (2013); Peitz
and Feng| (2015), and [Li et al. (2019b). The IPI algorithm is applied to one-minute re-
turns of the German companies Siemens AG and BMW AG and the corresponding trading
volumes. All time series include more than one million observations over multiple years
around the 2008/2009 financial crisis. We estimate the spot-volatility surface from the
return data which reflects the joint long-term and intraday volatility dynamics. In partic-
ular, it exhibits a volatility saddle around the financial crisis as a combination of the very
high volatility peak and the daily volatility smiling (see Figure [3.3a); the volume surface
exhibits a similar pattern. The developed methods allow us to estimate and remove a pos-
sible non-stationary volatility component from the HFF-returns. The standardized returns
can be further analyzed using known parametric functional time series models. The real
data examples show that the proposed algorithm works well in practice.

We define nonparametric regression for functional time series and the DCS in Sec-
tion The boundary correction, the FDCS and the estimation of the derivatives are
proposed in Section [3.3] asymptotic optimal bandwidths are obtained and applied to the
IPI algorithm in Section We present our simulation study in Section and an ap-
plication to real data examples in Section We close with final remarks in Section
Additional proofs are given in the appendix.

3.2 The Model and the Basic DCS Procedure

3.2.1 A Semiparametric Functional Time Series Model

Let y; ; be the observations of a functional time series Y; ;, obtained on a regular lattice
X1 x X, defined by fixed design points x;;, ¢ = 1,...,n; in the time dimension and x j,
j = 1,...,n9 in the temporal dimension, according to given design densities. The total
number of observations is n = nj -ny,. We study the nonparametric regression of a possible
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deterministic mean surface in those data. For this purpose, we assume the data follow the
semiparametric regression model for a functional time series:

Yl‘,j = m(l‘l’i,mzj) —‘re’fi,j, 7 = 1, ey M1 ] = 1, ey MY, (3.2.1)

where m(-,+) is a smooth nonparametric regression function and {¢;;} is a stationary
(possibly parametric) random field defined on the lattice determined by z; ; and x5 ; with
zero-mean and var(g; j) = 0. Note that it is only assumed that z; ; or x5 ; are fixed design
points and their values are taken independently of each other, it is not required that z; ;
or zo ; are equally spaced. This model can also be applied to fixed design nonparametric
regression with spatial or spatial-temporal data. Throughout this chapter, we assume
both variables X; and X to be discrete and equidistantly distributed, where we use the
rescaled variables z;; = i/n; and z2; = j/n2 on the range [0, 1] x [0,1]. As specific
example for model (3.2.1)), we will consider equidistant HFF time series under a functional
representation, where X stands for the trading day and X for the intraday trading time.
The suggested fast computation procedures can also be extended to the case where x5
follows an irregular or random design.

As the proposed approaches below do not hinge on the dependency structure of the sta-
tionary part, these smoothing procedures are applicable to nonparametric regression for
functional time series with iid., short- or long-range dependent errors. Further necessary
assumptions on the dependency structure of the lattice process {¢; ;} will be introduced
during the discussion on the asymptotic properties of the proposed estimators in Sec-
tion (3.3.3|and the development of the IPI algorithm in Section |3.4.2

3.2.2 The Double Conditional Smoothing

Bi- and multivariate kernel regression under model was studied among others by
Ruppert and Wand| (1994), Herrmann et al.| (1995), Hardle and Miiller| (2013), and |Scott
(2015), where also bandwidth selection is covered. A crucial issue in bivariate kernel re-
gression of HFF data is, that these data regularly include a huge number of observations
and the common kernel regression estimator runs too slowly. To overcome this problem
and for reduction of computation time, the DCS method was proposed by Feng| (2013)), ap-
plication examples were given by Peitz and Feng (2015). The DCS provides an equivalent
definition to the common bivariate semiparametric regression model:

Y, =m(Zy) + e, Ty = (@1, T24), (3.2.2)

where m(z) is a smooth mean function in z and Y;,¢ = 1,...,n is a single time series
depending on a two-dimensional covariate variable z; = (1, z2,). The innovations {;}
form a sequence of random variables with zero mean and variance o> which might depend
on the point 7, allowing for heteroscedasticity. The mean or expectation function m(z) =
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E(Y|Z) of model (3.2.2) given observations y; can be estimated using a bivariate kernel
regression (see e.g. Miiller, [1988; Miller and Prewitt, [1993}; Facer and Miiller, 2003)) with

n
’ﬁl(iﬁl, 962) = Z Wt Yt,
t=1

n -1
Tit — X1 T2t — T2 Tt — L1 T2t — T2
=K : : E K : : . 3.2.3
Wt ( hl ) h2 ) [ < hl ) hQ >] ( )

t=1

In (3.2.3), K (u,v) is a bivariate kernel function and h;, hs are the bandwidths over X; and
X respectively. Following [Facer and Miller| (2003), a bivariate kernel function K (u,v)
of order (k, |v|), for estimation of a partial derivative m*)(%;) with v = (v1,1), has the
following properties for r, s € NU 0:

. 0 for0<r+s<|v|(rs) #v
/ / K(u,v)u"v*dudv = ¢ v!  for (r,s) =v (3.2.4)
—1J-1

0 forjy|<r+s<k.

Bivariate kernel functions in the sense of can be formulated in several ways. An
important special case is a product kernel, where K (u,v) is the product of two univariate
kernels Ky, Ko of order (ki,v1) and (k3,v2) given in Definition These orders are
related to that of by k = § + v1 + 1o, where § = k; — v = kg — vo. Throughout this
chapter, we consider the use of such product kernels as stated in Assumption A5.
Consider the estimation in with observations y; ; of Y; ;, at a point (z14,, Z2,j,)
x1,, = i9/n1 and xa j, = jo/n2, where 0 < iy < n; and 0 < jo < ny are two integers. We

establish the following assumptions for the regression model:

Al. The functional time series under consideration is equidistant with observations y; ;,
it =1,..,n1 and j = 1,...,no. Model (3.2.1) is defined as a (two-dimensional)
triangular array in n = nj - ny with m(x1,22) on [0,1]2. The equidistant design

points (x; ;,x2 ;) are given by the rescaled variables x; ; = i/n; and z2 ; = j/no.

A2. The mean surface m(x,x2) is a smooth and Lipschitz continuous function which is
at least (k1, ko) times continuously differentiable on [0, 1]2.

A3. In the limit, the bandwidths satisfy the conditions hy, ho — 0, n1hq1,nshe — oo and
nihi*ha?, nah*hs? — 0o, as ny, ng — oo at the same time.

A4. The error terms {¢; ;} form an iid. random field with zero mean and common vari-

ance var(e; ;) = o2

A5. A bivariate product kernel K(u,v) = Kj(u) - Ko(v) is used, where K;, K, are
(boundary) kernels of order (k1,v1) and (ko,v2) fulfilling the well-known regular-
ity condition in Definition For simplification of the results, we further assume
that k1 — 11 = ky — 19 = 6, with 6 odd.
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Although the proposed DCS estimator is with boundary correction, its bias is still affected
by the design. Under Al, the formula of the asymptotic bias is simplified. This result
does not hold for non-equidistant design, as the kernel estimator used in this chapter is
not design adaptive. For non-equidistant fixed design, either the Gasser-Miiller estimator
(Gasser and Miiller} 1979, see (3.2.8)) or local polynomial regression should be adopted.
The second part of Al is a counterpart of a well-known, somehow artificial model assump-
tion in nonparametric regression for time series which assumes that the mean surface is
not affected by n; or ny. Without this assumption, we cannot discuss the asymptotic bias
and m(z1,x2) cannot be estimated consistently. A2 and A3 are common assumptions in
bivariate kernel regression. In this chapter, we will only investigate the asymptotic vari-
ance under the iid. Assumption A4, the results can be extended to cases with stationary
dependent errors. The Regularity conditions on the kernel function of A5 are stated in
Definition [3.4] (see e.g. Miiller, [1988).

Under the product kernel Assumption A5 and equidistant design of X, X», the bivariate
kernel estimator can be rewritten as

ni no
ey, xe) = Y Y wiiwa Vi, (3.2.5)
=1 j=1
with weightd| defined by

Wi, = = K <x17h x2> and wp; = — K> <x2’Jh :CQ) ,
nihi f(x1) 1 naha f(22) 2

(3.2.6)
where f nhz (

The weights in are of the NW-type. In the equidistant case, we can simplify the
weight function by replacmg f by the known design density f = 1. This leads to the
weights proposed by [Mack and Miiller| (1989)

1 T1i— T1 1 X245 — T2
i = K | ———= d ;= K ! : 3.2.
w1, n1h1 ! < hl ) an w2’] ’nghg 2 ( h2 > ( 7)

> for z; and x».

These also allow for straightforward extension to estimation of derivatives as described

in Section [3.3.3] Thus, we use the definition ( over the NW-type ones from (3.2.6).
As mentioned above, both estimators are not undcondltlonally design adaptive, for non-

equidistant or random design densities one should prefer using the weights of Gasser and
Miuller (1979), with

1 [™ u— I 1 [% v — T9
i= — K d d = — K dv, 3.2.8
Y / 1( I > ¢ e h2/5~1 2( o ) v @28

J

!The definition of the argument in K (+) differs among the literature and among different estimation meth-
ods. We use the notation u = (z; — z)/h such that values to the left of = get a negative sign in u. While
this notation is uncommon in classical kernel regression, it is widely used for local regression and we opt
for consistency with respect to local regression.
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where r; = T1,1,T; = (xl,i + 33‘171',1)/2 for2 <i<n;—1and Tni = Tlngs S5 is defined
analogously for z5. All three estimators (3.2.6), (3.2.7) and (3.2.8) are asymptotically
equivalent under Assumption Al by the following Theorem

Theorem 3.1. (Equivalency of the Kernel Weights) Let w{; = w{ ,w ; be the product ker-
nel weights with w; as defined in (3.2.7), w? = w’f,iwgd be the Nadaraya-Watson product

17]
weights with wb- from (8.2.6) and w§ ; = w{ ;w§ ; be the Gasser-Miiller product weights with

w?; from (3.2.8), all Wlth the same boundary kernel K,(u). Under equidistant fixed design
of X 1, X on [0, 1] , all estimators are equivalent in the sense that the relation holds

*

Yij 4
kok

w:"

27.7

.. 0
lim  sup =0 defining - =1,
n1,n2—00 1<i<ni 0

1<j<n2

w?

C
for any w} w; 5, wi .

i Wiy = (Wi

A proof is given in the appendix to this chapter.

Equation allows us to write y; ; under a spatial representation on a n; x ny lattice
instead of the single vector of (3.2.2]). The idea of the double conditional smoothing is, to
not estimate (3.2.5]), but to carry out two smoothing procedures over i and j sequentially.
This transforms a bivariate kernel smoother into two univariate approaches.

Definition 3.1. (Double Conditional Smoothing). Let y; ; be the observations of a func-
tional time series Y; ; observed on an equidistant lattice spanned by X x X, and w1 ;, w2 ; be
some appropriate weights. The double conditional smoothing at an observation point (x1, x2)
is defined by:

m(x1,x2) Z wi ; m(xe|z1 ;) or equivalently (3.2.9)

$1,$2 Z'LUQJ $1|x273) (3.2.10)

with  m(za|x1;) ng j¥i; and m(xi|za;) Z W1 Yij- (3.2.11)
J=1

Both formulas and are equivalent, that is, the direction of the double
conditional smoothing will not affect the results. Under model and Assumption A5,
they are equivalent to the common bivariate kernel regression. In particular, the double
conditional smoothing offers a quick and convenient way to reduce computing effort of
bivariate kernel regression and it might also deliver useful intermediate results. The first-
stage estimate in is the smoother which conditions on z;; (respective x5 ;) and
therefore contains the smoothed time series over each day (respective the time series over
the days at a specific intraday time).

The DCS can be carried out under model at any observation point and is suitable
for smoothing a functional time series, provided that the assumptions stated above are
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fulfilled. This procedure runs much faster than the common bivariate kernel estimator.
When the estimation at an interior point is considered, the bivariate regression involves
the calculation of a sum with about 4(n1h; - nohs) non-zero weights, while the DCS is a
sum of 2(n1hy + n2ho) non-zero weights. The larger the bandwidths are, the larger the
difference between the run-times of the two approaches is. However, the DCS is not well-
defined at a non-observation point. The DCS can be extended to the case when e.g. X,
is irregularly spaced or even a random variable, if a design adaptive estimator is used.
In this case, smoothing is done over X, conditioning on X; at first, where suitable fixed
estimation points xz,; are chosen independently of x;;. The second stage can then be
carried out conditioning on these points in X5.

3.3 The Improved Double Conditional Smoothing

3.3.1 Boundary Correction Under the DCS

Nonparametric kernel regression suffers from biased estimates at the margins of the def-
inition space, regardless of its dimensionality, the so-called boundary effects. This prob-
lem arises, because for the outer observations, there are fewer data to one side used for
smoothing than the actual bandwidth would require. This induces a bias in the estimates.
The use of specialized boundary kernels was proposed by (Gasser and Miiller; (1979) and
later refined by Miiller (1991) and Miiller and Wang| (1994) for different types of kernel
estimators. According to their work, we define an interior region and a boundary region
on the lattice spanned by X; and X». Thus, the boundary region contains all observations
within an h; or hy distance from the margins. Define

B1:{$1:0§$1<h1Ul—h1<$1§1},

Bgz{x2:0§x2<hgu1—h2<x2§1},

where B; defines the boundary range in the x;-direction and B, the same for 5. The
boundary region (BR) of the kernel regression under consideration is given by BR =
{B; U By} and the interior region is defined as TR = [0,1]% \ {B; U Bs}. In the current
context, the ratio BR/IR might be very large. Compared to the boundary region of a
one-dimensional estimator, which is 2h, the boundary region for the spatial model under
consideration has size 4h — 4h?. For an NW-type estimator, the bias of an estimate in the
BR is of a lower order of magnitude in terms of the bandwidths and the mean integrated
squared error (MISE) will be dominated by estimates in the BR. Thus, the correction
of the estimates in the BR is necessary. Following Miiller| (1988), the product of two
univariate boundary kernels forms a bivariate boundary kernel function and the boundary
correction in the DCS reduces to the use of corresponding univariate boundary kernels
in (3.2.9) - (3.2.11). For ¢; € [0,1] a right boundary kernel K, (v) has support [—1, ¢1],
where ¢; is (1 — x1)/h1, provided that 2y € B;. The corresponding kernel to the left
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is Ky, r(u) = Kg (—u) on [—qi1,1], ¢ = x1/hy for 1 € By. For ¢; = 1, the boundary
kernels reduce to the interior kernel K (u). Similar definitions hold for zo. Throughout
this chapter, we will use the (i, — 1)-smooth boundary kernels of Miiller and Wang
(1994) in the form given in Chapter [2|rather than the y-optimal kernels by Miller| (1991),
as the latter are not centered around the point of estimation and thus have a larger bias.
In the following, all kernels K, K5 are assumed to be boundary kernels of the correct side

without explicit labels, whenever (z1, z2) € BR.

3.3.2 A Functional Smoothing Scheme

The previously defined double conditional smoothing can still be improved in efficiency
to a faster functional smoothing scheme. This scheme provides a way to avoid redundant
computations and reduces the runtime of an implementation of the algorithm further. We
assume that the weights for smoothing in the z;-dimension do not depend on the given
value of zo, and vice versa. Then, the DCS procedure can be written in matrix form,
where Y explicitly denotes the matrix of observations with components y; ; and W, Wy
are the smoothing matrices containing the (column-) vectors of weights for each column
or row from Y. That is, {W1};1<j<n, = w1(i)? and {Wa}1<i<pn, ; = wa(j), where wy (i)
is the vector of weights obtained from (3.2.6), (3.2.7) or (3.2.8)) for estimation at a point
xr1 = x1,4, with elements w; ;. The vector wy(j) is defined analogously. From Definition
we can directly derive the matrix DCS (MDCS):

Definition 3.2. (Matrix Double Conditional Smoothing). Let Y be the ni x ns matrix of
ordered observations of a time series Y; ; on an equidistant lattice spanned by X, x X, and

‘W1, W, be some appropriate weighting matrices. Then, the MDCS is given by the equations

M=W, - ﬁmm or equivalently

o~

M =M,,,, - Wo,

with ﬁxzm =YW, and ﬁxﬂm =W;Y.

The double conditional smoothing can also be represented in a single step estimator
using matrix notation which is equivalent to (3.2.5):

M=W,;YW,.

Although the matrix smoothing scheme provides an elegant definition from a theoretical
point of view, the calculation of the product of two huge matrices can cause computational
problems. We propose to divide the matrix product into corresponding products of vectors
of weights and the data matrix. We obtain a smoothed curve (or function) over all (condi-
tional) x, ; values for given z; ; and vice versa. This idea can easily be implemented into a
computer aided algorithm and will be called a functional DCS smoothing scheme (FDCS):
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Definition 3.3. (Functional Double Conditional Smoothing).Let Y be the ni X ny matrix
of ordered observations of a time series Y; ; on an equidistant lattice spanned by X; x X»
and w1 (i), w2(j) be some appropriate vectors of weights. Then, the FDCS calculates each row
respective column of the resulting matrices at once by the equations

{ﬁ} - wl(i)Tﬁmm or equivalently
4,1<j<n2

M} =M '

{ L<i<ni.j m1|22w2(j)

with {ﬁmm}

—~

— Yuws(j) and {M — i ()TY.

XT1|T
1<i<ny,j 1l Q}i,lsa‘SnQ

Both procedures are carried out over all ¢ and j, respectively. Note that the DCS, MDCS
and FDCS are three equivalent computation schemes with different implementation meth-
ods in a program. Hence, the resulting estimates are all exactly the same and indeed the
same as those obtained by the common 2D-kernel regression under the regularity condi-

tions used in this chapter.

3.3.3 Estimation of Derivatives

The formulas for the optimal bandwidths h; and hs for the double conditional smooth-
ing of the regression surface in Proposition include partial derivatives of the surface
m(x1,4,x2,;). In the IPI algorithm, these derivatives need to be calculated explicitly. In
addition, the estimation of the partial derivatives itself is an important topic in theory and
practice of nonparametric regression and of particular interest itself. Note that the bound-
ary problem is even more severe when estimation of the partial derivatives is considered,
as this usually requires larger bandwidths than those used in the regression surface esti-
mation. Boundary kernels for estimating the derivatives in univariate kernel regression
are well studied in the literature, e.g. by |Gasser et al.| (1985); Miiller| (1988)); Miiller
(1991)); Miiller and Wang| (1994) and [Feng (2004). We denoteﬂ such a kernel (with suit-
able extension to the boundary pointsﬂ) by K, (u). Then K, ,,)(u,v) = Ky, (u) - Ky, (v)
defines a product kernel for estimation of the (v, v2)-th derivative of the expectation sur-
face m(x1,x2). The corresponding kernel estimator of Mack and Miller| (1989)) is defined

by

ny n2

m(”l"’?)(a:h T2) = Z Z wZ}’VQyi,j, 3.3.1)

i=1 j=1

%In the remainder of this chapter, all kernel functions are assumed to be of the desired derivative without
explicit indication.

3Note that, if K, (u) is a right boundary kernel, the corresponding kernel at the left is K, r(u) =
(-1)"Ku(—u).
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V1,V2
4,

v 1 T15 — L1 1 Toj — T2

where h; and ho are suitably chosen bandwidths for estimating the partial derivative of

where w; = wy* S wy? % with

given orders (see Section. The partial derivative surface m(*1*2)(z, z,) can also be
calculated by means of the DCS or FDCS schemes proposed in this chapter. Useful explicit
formulas of K, (u) are obtained in Chapterbased on the results of Feng| (2004) which will
be used for the practical implementation of the proposed IPI algorithm in Section

3.3.4 Asymptotic Behavior of the Estimator

Let the kernels in the weights (3.3.2) for the derivative estimator (3.3.1) be of order
(k1,v1) for K and (I{IQ, v9) for Ks. Then, under Assumptions Al to A4, the expectation of

the estimator in (3.3.1)) (and asymptotically of that in (3.2.5)), (3.2.7)) at an interior point
is given by

E {m(m,l@)(xl’ $2)} — m(yl’W)(I‘l, $2) + Bm(ajl, .732)[1 + 0(1)] (333)

1 1
o <n2hllh52> o <mh'fh;2> ’

where, using the kernel constants b, = [ K;(u)uF du (see Deﬁnition in Section ,

by

" 'hlcl Vlm(kl”’Q)(xl,:Eg) + b—hk2 VQm(”l’kz)(J:l,:Eg). (3.3.4)

B(z1,29) = o

The boundary correction ensures, that the order of magnitude of the bias at a boundary
point is the same as that of B,,,. The variance is

0,2

nlngh%m"ﬂh%l’ﬁrl

var {m%w)(m,m)} - [R(K1)R(K>) + o(1)] (3.3.5)

with R(K) = [ K%(u)du. Proofs of (3:3:3) and (3.3.5) can be found in Section

these results are s1m1lar to the findings of Miiller and Prewitt| (1993) and [Facer and Muller
(2003) only for different weighting methods. In Section [3.8.3|it is shown that the estima-
tor is asymptotically normal distributed with:

\/n ngh3" 1t pavtt ( W1v2) (21, 19) — m(”l’”2)(:c1,x2)> KN N(0,02).
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3.4 Bandwidth Selection

3.4.1 Asymptotic Optimal Bandwidths

In nonparametric regression, commonly used measures of the goodness-of-fit are the mean
squared error (MSE) and the MISE. Following [Herrmann et al. (1995), we will call the
minimizers of the asymptotic MISE (AMISE) the optimal bandwidths. Under Assumptions
A1-A5, the MISE (and the AMISE) of the regression surface (1; = v» = 0) at an interior
point (z1, z2) is given by

MISE = AMISE
o (R 3+ nr g Ay hg )
+0(n ) +0(ny")
For simplification, we set K1 (u) = Ky(u) = K(u) and assume K (u) is a kernel of order k =
2, a generalization is in Section As mentioned above, we assume that corresponding
boundary kernels for K, K5 are used at a boundary point. Thus, the orders of magnitude

of the bias at a boundary point are ensured to be the same as in the interior. Hence, the
AMISE is

b2
AMISE = —- (A - Iy + 2h303 - Tio + hj - Ino] (3.4.1)

R(K)?- o2
ninghyhso
+ o(hi + h3) + o ((nnahih) ™),

with the integrals
1 1 2
I = / [m@’o) (21, xg)] drq dao,
o Jo
1 1 2
Iy = / [m(w) (x1, wg)] dzq dao, (3.4.2)
o Jo

1 rl
and 112 = 121 = / / m(2’0) (l’l, .’Eg) m(o’z) (1‘1, xg) d.%'l d.%'g.
0 JoO

Note in particular, that the MISE is calculated on the complete support [0,1]2. The
boundary correction ensures that the effect of the estimates in the boundary region is
asymptotically negligible under A3. This is not true for the NW-type estimator without
boundary correction.
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Proposition 3.1. (Asymptotic Optimal Bandwidths). Let K (u) be a kernel of order (k =
2, v = 0) with boundary correction. Under Assumptions Al to A5, the asymptotically optimal
bandwidths for estimation of the regression surface, which minimize the AMISE (3.4.1)), are
given by

o=

2 2
hia = RUE) o and (3.4.3)
ningb? {( I )4 (VI +112)]
G
K 2, 2
hoa = BE) o (3.4.4)

ningb? {(Iﬂ) (m-ﬁ-bl)]

The two asymptotically optimal bandwidths are related by:

1 1
I 1 I 1

hia=hoa- <22> and hg s =hia- <H)
IH I22

General optimal bandwidth formulas for estimation of partial derivatives and different
kernel orders can be found in Section

3.4.2 The IPI Algorithm

The selection of the optimal bandwidths based on (3.4.3) and (3.4.4) involves the devel-
opment of suitable estimates of the integrals and the innovation variance required in those
formulas. We propose to estimate o2 simply from the residuals. The above integrals are
simply estimated by summation from

ni—ngy n-—n§

fll = Z Z {m (2.0) a:lz,azgd)r, (3.4.5)

i=n{+1j=ng+1
R ni—n{ na2—ng 9
Iog = E E [ 331,1'7 $2,j)} ;
1=n{+1 j=ng+1
ni—n§ nz2—ng

f12 = 1\21 — Z Z $17i, 1‘27]‘) T/T\L(O’Q) (1}171', xgyj), (346)

i=n{+1j=ng+1

where m(*1*2) is estimated following using bandwidths hy and hy which, in gen-
eral, differ from the bandwidths hq, ho for estimation of the regression surface. The IPI
algorithm uses a subset of the observations with n{ = [Ain1], n§ = [Ain2], where A1, Ao
are zero or a small positive number and [-] denotes the integer part. For most applications,
A1 = A2 = X\ works well. Although the proposed estimators are with boundary correction,
the estimation of m(”h”?)(:cl, x9) near the endpoints might be unstable (see examples in
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Figure[3.2)). In order to calculate the integrals, the estimates at some boundary points can
be excluded if this improves the stability of the selected bandwidths. Then, only estimated
values of the partial derivatives within [A;, 1 — 1] X [A2, 1 — A2] are used for calculation of
the integrals.

A crucial problem is the choice of the bandwidths 7L2 and ﬁl used in derivative estima-
tion. The IPI algorithm proposed by |Gasser et al.| (1991) computes the auxiliary band-
widths from &, and h, selected in each iteration step, by means of some so-called inflation
method. The purpose is to achieve h; and ho with a certain optimal property at the end
of the procedure. The IPI algorithm has been extended to correlated data by Herrmann
et al. (1992), to long-range dependencies by Ray and Tsay| (1997) and [Beran and Feng
(2002a), and to bivariate data by |[Herrmann et al. (1995).

The inflation method computes the h from the h by specifying a functional relation
between these two. The mainly used method is the multiplicative inflation method (MIM)
which was introduced by |Gasser et al.| (1991) and was also employed by Herrmann et al.
(1995). The MIM links the bandwidths by a multiplicative relation, that is, in the s-th
iteration step Eg”s) = cq) - h1s—1n"L. The bandwidth Eg”s) is suited for estmation of the
v-th derivative over X; and c(,) is a scaling factor allowing for tuning the bandwidths
conditional on the order of the derivative. Another approach is the exponential inflation
method (EIM) used by Beran and Feng| (2002a,b)). In contrast to the MIM, the EIM uses
an exponential relation to compute the auxiliary bandwidths: %g,,s) = c(y)-h{%_,. This may
result in a faster speed of convergence and therefore to less iterations required for the IPI
(see Beran and Feng, |2002b). The scaling parameter used by Beran and Fengl (2002a)
was ¢ = 1, while Herrmann et al.| (1995) set c(5) = 1.5 for the bandwidth in the direction
of the second derivative and ¢ = 0.25 in the other. We found in our simulations that
a choice of c(3) = 2,¢() = 1 fits the best for estimation of the regression surface, but
optimal values might depend on the derivative order (v1,12) under consideration, the
form of regression function itself or the error term variance. Two ways have been widely
used to obtain optimal exponents «;: Minimize MISE (I;;) or minimize MISE (7n(29).
Bandwidths for derivatives in z- direction, i.e. for calculation of /(%2 are obtained in the
same manner. From k; — vy = ko — 15 = ¢ in Assumption A5, it follows that a; = as = a.
As Beran and Feng (2002a) pointed out, « = 1/2 is the most stable choice for « for the
EIM which corresponds to the use of & = 1/12 for the MIM as proposed by Herrmann
et al. (1995). Note that both of 1y 4 and hy 4 are of the order O(n~'/%). The idea is to
inflate the bandwidths for estimation of 11, I3z, and I to those of the order O(n~'/12), so
that the variances of both estimators will achieve the lowest rate of convergence O(n~'/?)
(Herrmann et al., 1995). Thus, we will use this choice of « in the current chapter, as the
stability of the selected bandwidths plays an important role in practice, in particular in
two-dimensional kernel smoothing. The other two choices of a will not be considered in
the current chapter, because they may result in much smaller selected bandwidths. Initial
values (hi, o) of the algorithm can be chosen quite arbitrarily, as the results do not
depend on these starting values.
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Proposition 3.2. (IPI Bandwidth Selection Algorithm). Let (ﬁLS, EQ,S) be the bandwidths
obtained in the s-th iteration step. Then, the IPI algorithm processes as follows:

1. Choose initial values (/f;Lo, ﬁg,o).

2. In the s-th iteration step:
i. Define

ii. Compute m >0 (xy,zy) using bandwidths (7L(2) Egog) and %2 (zy1, 29) using

1,7
bandwidths @502 , Egg) .

iii. Compute the corresponding integrals fn,IAQg,IAlg applying (3.4.5) - (3.4.6) and
the optimal bandwidths (ﬁl,s,ﬁ278> by (3.4.3), (3.4.4).

3. Stop if the distance between (ﬁl,s, /f;g’s) and (ﬁLS_l, ﬁQ,S_l) is smaller than some desired
threshold. Otherwise, return to 2.

The bandwidths yielded in step 3 are then called the asymptotic optimal bandwidths.

Calculation of bandwidths via Proposition requires computation or estimation of
additional values. The kernel constants R(K) and b can be computed straightforward
either by analytic integration of the kernel or by numerical approximation. The estimation
of the variance o2 is carried out in each iteration based on the residuals

ny n2

o3 = n ZZ Yig = Ms(@14,225)]",

i=1 i=1

where mg(z14,22,;) is calculated in each iteration using the bandwidths (ﬁ1,5_1,3275_1)
from the previous iteration step. An alternative estimator of o2 is given by Herrmann
et al. (1995) based on the differences, which provides an initial estimation before the
iteration process, but is presumably more imprecise.

It can be shown that 52

is y/n-consistent. Following the results in Herrmann et al.
(1995), it can be shown that the rates of convergence of the selected bandwidths are of

the order O(n~'/) for MIM and EIM inflation methods.



3 Fast Computation and Bandwidth Selection Algorithms for the DCS 48

3.5 Finite Sample Simulations

The performance and precision of the IPI bandwidth selector derived in Section is
assessed via a simulation study using two Gaussian peaks as exemplary functions for the

mean surface m(zq, z2):

05| [0.05 o0
mi(x1,29) ~ N ,
(21, 22) <[0.5] [0 0.05

05] [o1 o 0.2] [0.05 0
ma(er, @) ~ N <[o.3] ’ [ 0 0.1]) N ([0.8] ’ [ 0 005

N denotes the bivariate normal distribution, 7 is an iid. random field following a standard

) +on, (3.5.1)

) +on. (3.5.2)

normal distribution and o? is a variance. Hence, m; represents a symmetric single peak
and ms is an asymmetric double peak function. We employ 10,000 simulations for each
function and variances o2 = 1,07 = 0.25 on m : [0,1] x [0,1] — R with ny = ny = 101.
The second partial derivatives for both functions can be calculated analytically and thus,
the true optimal (MISE minimizing) bandwidths (A1 ¢rye, h2,true) are known.

For estimation of the regression surface, we use kernels of order (2, 2,0) whenever v; = 0
and a (4,2,2) kernel if the 2nd derivative is considered. All kernels are of the (u,u')-
smooth type by Miller and Wang| (1994). We set the parameters in the IPI algorithm to
c2) = 2,¢0) = 1,a = 0.5, the margins are trimmed by A = 0.05.

Figure displays the distributions of the estimated bandwidths. The overall precision
of the bandwidth selector depends on the functional form of the surface m(z,z3), the
variance of the errors and also on the choice of the inflation parameters for h1, ho discussed
in Section Hence, the slight over- or undersmoothing displayed in the histograms
is due to the functional form chosen for m;i, ms and the choice of parameters but not an
artifact of the bandwidth selection estimator itself. Other choices of test functions might
feature the same or contrary behaviour. The p-values to the null hypothesis Hy : h = hypye
under a normal distribution are given in Table along with the means, true values, and
standard deviations. Despite the use of boundary kernels to reduce the bias, the estimation
at the margins is still unstable to some degree as illustrated in the smoothed examples of
Figure|3.2
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Figure 3.1: Distribution of the bandwidth estimates hy, ho obtained in the simulation study. Simulated
are functions my, ms from (3.5.1)), (3.5.2) under iid. standard normal errors for o2 and

2
0.
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Table 3.1: Bandwidth statistics of the simulation study under iid. errorterms using the kernel regres-
sion DCS. Values are obtained from a sample of 10,000 simulations for functions my, ms

from B.5.1), (3:5.2). The p-value corresponds to Hy : h = hypye-

Function hirue mean(h) sd(h) p-value
f hi 0.1470  0.1548  0.0083 0.2566
o2 — 025 ! hy 0.1470 0.1547 0.0083 0.2578
o f hy 0.1362  0.1338  0.0062 0.3701
2 ho 0.1548 0.1457 0.0085 0.2264
f hi 0.1852  0.1808  0.0147 0.3815
o2 1 ! ho 0.1852  0.1807  0.0146 0.3803
o f hi1 0.1716 0.1634 0.0122  0.3186
2 ho 0.1950  0.1730  0.0150 0.1366
Original 02 =0.25 c?2=1

Single Peak

o v
ey

Figure 3.2: Simulated and estimated surfaces for the functions m, ms from (3.5.1)), under iid.
standard normal errors 1 and o2 = 0.25, 0% = 1. Used bandwidths are: (0.1382,0.1612)
for my and o3, (0.1512,0.1950) for my and o2, (0.1415,0.1521) for ms and o2 and
(0.1654,0.1922) for my and o7. Scale of the vertical axis might differ across the plots.

Double Peak
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3.6 Application to Financial Data

In this section, the previously developed bandwidth selector is applied to HFF time series
data. We compute the stock price volatility surface as well as the trading volume surface
for the stocks of German companies Siemens AG (SIE) and BMW AG (BMW). The data
consist of the 1-minute aggregated stock prices and trading volumes from 2004-01-02 to
2014-09-30 with about 1.39 million observationﬂ The trading volumes are directly ap-
plied to the model (3.2.1). The spot-volatility surface is computed from the demeaned
log-returns R; ; of the functional time series for the price data. Models for simultaneously
analysis of interday effects (e.g. ARCH or GARCH effects) and intraday volatility were
proposed by|Andersen and Bollerslev| (1998); Feng (2013) and Peitz and Feng (2015). We
employ a simplified version of their models, where both, the ARCH effects and intraday
volatility, are captured in the nonparametric volatility surface or(x1,x2). The nonpara-

metric regression model is then

R;; = or(214,%2,i)M 5,

where 7; ; an iid. random field following a standard normal distribution. The volatility

surface is estimated from
—2
In (Ri,j) =In (0%(21?1,2', .:UQ,]')) +€ij- (3.6.1)

Note that ¢, ; is an iid. random field with zero mean since E{ln(nz =0

As expected, the smoothed volatility and volume plots in figures and clearly
show the influence of the 2008 financial crisis as a large peak and the 2012 euro currency
crisis as the minor peak for both surfaces. The intraday time series exhibit the typical
U-shape volatility smile which is the pattern suggested by economic theory (see e.g. Lock-
wood and Linn, [1990; |/Andersen and Bollerslev, |1997; |Goodhart and O’Haral, [1997).

For selecting the optimal bandwidths, we use the same setup as in Section the
numerical results obtained via the IPI bandwidth selection are given in Table By
comparing the resulting bandwidths a clear pattern arises: the interday (x;) and intraday
(z2) bandwidths of both companies are close to each other for the volatility, the same
is true for the volume bandwidths. On the other hand, the results are quite different
between volume and volatility, especially for the intraday bandwidth where the volume
bandwidth is twice as large as the volatility bandwidth for both companies. From this,
one might hypothesize that volatility surfaces from different companies over the same
time span have some more explanatory power over each other, than the volume surface of
the same company and vice versa. This result is somehow supported by the correlations
between the surfaces given below. However, the evidence supporting this hypothesis in

“The data was aggregated by calendar time sampling (CTS). Original Data was obtained from Thomson
Reuters.
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Table 3.2: Selected bandwidths and estimated variance factors ¢y for volatility and volume data of
Siemens (SIE) and BMW under an iid. error term assumption.

Data n h n-h ce
2738 0.06521 179 Days

SIE (Volatility) 510" (07663 39 Minutes 2027
2738 0.06340 174 Days
BMW (Volatlity) 71" ( (7946 41 Minutes °>>2°
2738 0.07371 202 Days
SIE (Volume) 510 0.15990 82 Minutes 00208
BMW (Volumey 2738 O.075LL 206Days o oo

510 0.16448 84 Minutes

this application examples is sparse and no conclusions can be drawn from these findings
here. Further research is necessary.

The volatility and volume surfaces show similar patterns and exhibit a correlation of
0.226 between volatility and volume surface for SIE and 0.209 for BMW. The correlation
between the volatility surfaces of the companies is 0.848, between the volumes 0.869.
Cross-correlations are —(.142 between SIE volatility and BMW volumes and 0.513 for its
counterpart. The relation between volatility and trading volume is a well-known topic in
finance (see e.g. Karpoff, [1987; Brailsford, 1996; |Lee and Rui, [2002). The proposed meth-
ods for smoothing HFE-surfaces provide useful results for further analysis of the intraday
and interday correlations of stock price volatility and trading volume or volatility (re-
spective volume) correlations between different companies. The volatility surfaces seem
to exhibit a slight undersmoothing which might be caused by misspecification of model
for stock returns and trading volumes as the assumption of iid. error terms is likely
not met by financial data. However, for the volume surfaces this problem appears to be
less severe.
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Figure 3.3: Estimated spot volatility and trading volume surfaces of Siemens AG (SIE) and BMW AG
using the bandwidths in Table[3.2] Values of volatility are in 1E—04, of volumes in 1E-+03.
The volatility surface is retransformed from the model (3.6.7)).
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3.7 Final Remarks

We propose a double conditional smoothing scheme to improve the efficiency of nonpara-
metric estimation for functional time series on a regular lattice. The bandwidth selection
by minimization of the AMISE is considered and asymptotic formulas for the bandwidths
are derived. We use an IPI method based on these asymptotic optimal bandwidths and em-
ploy the functional double conditional smoothing for fast computation of the bandwidths
by the plug-in method. This newly developed methods allow for much faster computation
of the mean surfaces or its derivatives than the classical bivariate smoothers and thus, for
a much faster bandwidth selection. The proposed functional scheme will be particularly
helpful for smoothing large data sets and is not limited to time series applications.

The model used throughout this chapter only considers non-dependent errors. An ex-
tension of the model and smoothing scheme to a dependent error structure with short and
long memory is of interest as these effects regularly occur in functional time series. The
boundary problem can be solved through other nonparametric smoothing techniques such

as local polynomial regression or spline regression.
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3.8 Appendix

3.8.1 Proof of Theorem

-~

Proof. Note that f(x) in the NW-weights (3.2.6)) is a kernel density estimator for the design
density of X with expectation

E{f(z)} = ;/01 K, <3_h$) F(s)ds = /_q1 K (u) f(x — uh) du.

In the equidistant case it is f(z) = 1 and, from Definition the kernel function K,(u)
is normalized to 1. A Taylor expansion yields then

q q
:/ K(u)[f(ﬂs)-l—f/(av)hu—l-]du:/ K(u)du=1
—1 -1

and hence, E{f(x)} =1+ o(1). Then, Theorem for wi; and wﬁ?,j follows directly from
comparing w; and wbZ in the limit n — oo.
For the univariate Gasser-Miiller weights (3.2.8]) under equidistant design, define
Ti—1 + x; 21— 1

$; = 5 =3 for 1<i<n,

for i = 0,n similar arguments hold. From the mean value theorem, there exists a z; €
[i — 1,4], such that

1 [% u—x 1 zi/n—x
- K| — | du=— .
h/silq<h>unhq<h>
Using the Lipschitz continuity of K, where L = const. and setting x = ip/n, we arrive at
1 [% U—T 1 1 —1p
— Ki|— |du— —K, | —
h/ "< h ) Y nh q<nh )‘
1 Zi—io 1 i—io
Kk (220 - g (Y
nh q( nh> nh q(nh >‘
L |z—i 1)?
- < | =
nh | = \ nh
1\2
= |wi —wi=0|— .
|wl w’L| (<nh>>

~ nh
For the product weights, it follows

jwf —wf| =

wi j = wi;ws
= [wf, + O ((n1h1)~2)] [ws; + O ((n2h2)~?)]
= wy w3 ;+ O ((n1h1)72) 4 O ((n2h2)~?)

= wfij +0 ((nlhl)_2) +0 ((n2h2)_2)

(3.8.1)
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By observing Assumption A3, nh — oo when n — oo, Theorem [3.1] - 1| follows for wf ; and

w{; from (8.8.1). The equivalency of ww and wf ; results directly from the above consid-
erations. O

3.8.2 Expectation and Variance of the DCS Estimator

Definition 3.4. (Boundary Kernel Function). A function K(u) : [-1,q] — R is called a
right boundary kernel function of order (k,v),k > v for q € [0, 1], if it satisfies the following
properties:

0 forj=0,....k—1;5#v
q ;
/ K(u)uw du = < vl forj=v
-1
bp #0 forj=k.

Without loss of generality, we consider a kernel on the right boundary (¢ € [0, 1]) or
the interior region (¢ = 1). The results also hold for left boundary kernels with K (u) =
(—=1)YK(—u). Let u = (u — x1)/h1 and v = (U — x2)/ho. The integral approximation of
the expectation of the DCS estimator is similar to that given by Gasser and Miiller
(1984) or Muller and Prewitt| (1993); [Facer and Miller| (2003))

E {m@w) (xl,@)}

1 q1 q2
= h1”1h2”2/_1 g Ki(u)Ko(v)m(z1 4+ uhy, zo + vhe) dudv (3.8.2)

1 1
O ——— O ———— 1.
" (mh?h;?)* <mh?h;2)

Gasser and Miiller (1984) also showed, that the integral approximation for expectation
and variance remain valid at the boundary in the univariate case.

Proof. Let Assumptions Al to A5 hold. Then

1 bt - v—x

V1 2) - K 1 K 2 de~
‘ |: xl T2 :| h’1/1+1h;2+1 A A 1 ( hl ) 2 ( h2 TTL(’ZL,'U) u av

She L1 — 21 T2 — T2
Ky Ko | =—= | m(xy,, 22,
Zz; n1n2hu1+1hug+1 ( hl ) 2 ( h2 > ( 1, 27])
U — I f’l\}/ — X2 -~ —
hy1+1hu2+1 /T » /S] 1 Ky < ) K, ( I > m(w,v)dudo

n n
N o T1;— T Toj — T2
K, Ky | —=—— | m(z1,3, 22,5)
hq ha

1
K, §1,— ™1 Ky §2.j — T2 m(&1,i,€2,5)
hy ha

=1 j=1
where &; € [ri—1,7i], &2, € [sj—1, s;] are suitable mean values. Let r;, s; be suitable
1

partitions on [0, 1], such that, under equidistant design, r; —r;—; = nl_1 and s;—s;_1 = n,
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for 1 < i < ny, 1 < j < ng. Denote the set of all integers i, j leading to non-zero weights
in K1(+), K2(+) by Q7, Q3 where

Qi ={i:—nihy <i<qnihi,i €L},

Q5 ={Jj : —n2ha < j < qanoha,j € Z} .

The number of elements in Qf,Q% is |Q5| = O(nihi) and |Q3| = O(n2he). Using the
Lipschitz continuitiy of K1, K2, m and summation over non-zero values, we arrive at

L
noht 1T pL2 Z Z (o1 = &ral + |22 — &24l)
1€QT JEQS
e X ()
2 i€Q jeQ;
1 1
0O —— Ol — . ]
<n2h';1h;2> " <n1h?h;2>

where L is a suitable constant.
A Taylor expansion of m(x; + hju, zo + hov) in (3.8.2) around a point (z1, z2) yields,
after applying Definition [3.4}

E {ﬁl(”l’”Q)(xl, acg)} = m"2) (21, 29) + By + R
mW2) (21, 29) + B[l + o(1)],

where B, (z1, x2) is defined by (3:3.4). Using /i;(K) = [?, K(u)u’//j!du and observing
that (—1)7f1;(K) > 0, we can assess the order of magmtude of Rm(xl, x2):

| Ry (21, 22)| = |y (K1) figey (o)W W52~ 2mF1k2) (2 o)

Y ABDRE)R R m ) (0, 3)
r>v1,8>U9
max(r—ki,s—k2)>0

< ik (K1) iy (K2) (h’fl‘yl + h§2—V2)

k1k
mFLk2) (1) 20) + g m ™) (1, xy)
T>U1,82V2
max(r—ki,s—k2)>0

-0 (h’fl"’l) +O (h§2_”2> — O (Bu(1,12)).
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Regarding the variance, note that from model (3.2.1) and Assumption A4 of iid. error
terms, var(y; ;) = E(e7;) = 0% and cov(e; j,&rs) = 0 for (i,7) # (r,s). The variance can
hence be approximated in the following way

var { V1v2) (g, :CQ)}

1 U T145 — X .’L'Qj—a,’g
= (n1n2h11/1+1h52+1)2E ZZK1 < ) K <h2 > €ij

=1 j=1

0_2

= R(K1)R(K2) 4+ o(1
nanh%Vl-i-lhgl/z—Q—l [ ( 1) ( 2) ( )]

0_2

1
= R(K;)R(K2)+ O
h21/1+1h§V2+1 ( 1) ( 2) <n1n2h%V1+1th2+1>

nin2iy

1
— V4O .
m (n1n2h%y1+lhgy2+1>

Proof.
var {m(yl’VQ)(xl 362)} - o R(K1)R(K>)
’ nlngh%erlh%erl
5 o () (52)
n n2h21/1+2h2u2+2 pu et 1 2 h2

o (&1, — 11 9 (&2, — 2
K1< ha )K2< ho >”

for suitable mean values & ;,& ;. Using Lipschitz continuity of the kernel functions K,
Q7, Q5 as defined above and noting that x; — & < 1/n., we assess the order of magnitude
of the variance to

2 ny n2
o L1y Z1 T2 j €2
< LS () K3 ()
n n%h2l/1+2h21/2+2 pt J i h]. h2

§1i— 21 §2,j — 11
-t (B ) g (B

2
2h2V1+2h2V2+2 Z Z |$1 i~ &1 Z| + ’xQ’J 62’J|)
7,€Q ]EQQ

- o? < 1 N 1)
_nanh%m-i-lhguz-&-l ny no

2
o 1
< S T, T — O Tl 201 |
n1n2h1 1 h2 2 nlnghl 1 hQ 2
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3.8.3 Asymptotic Normality of the DCS Estimator

The estimator (3.3.1) can be written as triangular array in n = n; - no of elements z; ; ,,

1 ny n2
M) (2, @9) = §:§ :zi,m with
ning < -
=1 j=1

1 $1¢—UC1) <962j—$2>
Ziin = = = K ’ Ky | ————= P .
DI gt et ( hy hy )V

Note that var(z; j,) = O ((h%ulﬂhgw“)_l). With

E (|zijn — E(2ijn)*T7) < 2" E (J2ijnl* + [E(zign) ™)

1
241
vr1+13.v9+1
(i)

< 277E (|2i5n*T) = O

and s; = >72) Y72 var(zi) = ning var(2i ), the Lyapunov condition

. 1 &2 22 ) | ,
i 2 > > E(lzin —E(Zin) ") = lim O () _0

=1 j—1 (n1nahihs)

N3

holds with Assumption A3. Hence we yield by the Lyapunov CLT

\/nlnghlfﬁ'lhgﬁ'1 (fﬁ(”l’l’?)(xl, z9) — mv) (g, x2)> 4 N(0,0?%).

A neccessary condition for the Lyapunov CLT is, that the z;,, are independently distributed.
We can justify this assumption similar to|Gasser and Miiller| (1984): for two disjunct points

(21,4, 72;) and (21, 72,), i # k,j # I, there exists a finite ng such that 7?1%”17”2)(3517,-,1:27]»)
and ﬁmg/l’”)(xl,k,wm) are independent for n > ng. This is a consequence of h — 0 as

n — oo and the compactness of the used kernels.

3.8.4 Derivation of the Optimal Bandwidths

The optimal bandwidths for estimation of the regression surface m(z;,z2) or its partial
derivatives m (12 (21, 29) on (z1,2z2) € [0,1]? are obtained by minimizing the AMISE
(see e.g. Herrmann et al., 1995). For simplification of the results, we assume that
k1 — v = ko — v = 0 and note that i (K) = b/k! given a kernel K (u) of order (k,v)
according to Definition |3.4]

MISE :AMISE +0<h?(k)1—lll)+h§(l€2—u2)+n1—1n2—1h1—(2u1+1)h2—(2V2+1))

+ O (ny'h" hy™?) + O (ny 'hy" hy™?)
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1 1
AMISE —g/‘/ B2 (21, 29) day dzg + Vi,
0 0

= fip, (K0P Iy + fif, (K2)h3’ Ioo + 2(—1)MF2 fuy. (K4 ) fi, (K2)h RS T
R(Kl)R(K2)02
nlngh%l’lﬂhgyzﬂ ’

with kernel constants R(K), f1;(K) as defined above and o being the variance of the iid.
error terms ¢; j. More generally than in (3.4.2), we now define the integrals I, ; by

1 1
Ir,s = / / m(TT) (1‘1, $2) m(TS) ($1, rodry dzy
0 0

(k‘l, I/Q) fori=1
where 7; =

(v1,ke) fori=2.

The first order condition for minimizing the AMISE is then

OAMISE - _ . - _
O = 207, (R + 20, (R i (o) a0 (3.8.3)
R(K1)R(K2)o2
— (2V1 + 1)n1n2h§'j1+2h§m+1 =0.

Multiplying (3.8.3) by h1/(2v1 + 1) and equalizing the equation with its counterpart
OAMISE /0hy = 0 results in

~2 K ~2 K. ~ K K.
fi, ( 1)111h%‘5— Fiy 2)122h§5+(u2—1/1) fuy (1) iy (K)
211 + 1 209 +1 (21/1 -+ 1)(2V2 —+ 1)

which is a quadratic equation in k{, k3, with solution

I1ohShg = 0,

h{ = A°hj,

1
A(;:[Lkz(Kg) 1/1—I/2£j: |:(1/1—y2)2[122 2V1—|—1[22:|2
[Lkl (Kl) 2v9 + 1 111 (21/2 + 1)2 1121 2v9 + 1 111 ’

such that A° > 0,4 > 0. The relation between h; and ho along with the first order
condition yields the formulas for the optimal bandwidths

1
(201 + 1 R(Kl)R(K2)02 2(0+vy+ro+1)
hia= 3.8.
1,A 2 nlngA_(2”2+1)C'1 ) ( 4)
with € = ﬁ%l (K1) + figy (K1) figy (K2)I12A™°
1
[2v5 + 1 R(Kl)R(K2)0'2 2(6+vi+rp+1)
ho 4 = 3.8.5
2.4 | 20 ning An+1)Cy ( )

with  Co = i, (Ka)Iaz + juk, (K1)jik, (K2)T12A°,
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where ([3.8.5) follows from symmetry. The second derivatives 9?AMISE /Oh? can be
shown to be positive for § > 1 by strainghtforward calculation, hence the optimal band-
widths ([3.8.4), (3.8.5) constitute a minimum indeed. If the regression surface is consid-

ered (v1 = v, = 0) and ki = ko = 2, the equations (3.4.3) and (3:4-4) of Proposition 3.1
follow directly.



4 Local Polynomial Double Conditional
Smoothing under Dependent Errors

This chapter is published with slight differences in the CIE Working Papers
(143), Paderborn University, under the title "Bandwidth selection for the Local
Polynomial Double Conditional Smoothing under Spatial ARMA Errors”.

4.1 Introduction

Functional data arise in many research areas such as physics, geography, biology, and also
in economics and finance. This data appear in various forms, from spatial land survey
data to functional time series with a time- and a temporal dimension. Examples for such
time series are the intraday observations of temperatures or pollution over several days
in a specific spot and other series, where a quantitiy of interest can be measured in in-
traday time intervals over several days (see e.g.[Ramsay and Silverman, |2005; |Chiou and
Miiller, 2009; Hyndman and Shang, 2010; Horvath and Kokoszkal, [2012} [Li et al., 2019a)).
For financial applications, functional or spatial representation of volatility surfaces was
proposed by [Feng (2013) and Peitz and Feng (2015) based on results from Andersen
and Bollerslev| (1997, 1998) and |Andersen et al.| (2000). Nonparametric regression for a
spatial representation on a lattice was investigated, among others, by Hyndman and Ul-
lahl (2007); Aneiros-Pérez and Vieu| (2008); [Horvath and Kokoszkal (2012) and |Gao and
Shang (2017).

We consider nonparametric estimation of the expectation surface under a functional
time series on a regular lattice. The idea of the double conditional smoothing (DCS) pro-
posed by Feng (2013) and investigated under kernel regression and iid. errors in Chapter
will be extended to local polynomial estimation. This type of smoother provides addi-
tional accuracy and straightforward estimation of derivatives of functions and surfaces.
The advantages of adopting local polynomial regression for the DCS come at the cost
of increased computation time compared to the kernel regression methods proposed in
Chapter Local polynomial regression for multivariate data was investigated, for in-
stance, by [Yang and Tschernig (1999); Hallin et al.| (2004) and Wang and Wang| (2009)).
Ruppert and Wand| (1994) considered the asymptotic behavior of these estimators and
derived formulas for the optimal bandwidth selection based on minimization of the mean
integrated squared error (MISE). An overview on spatial local regression can be found in
Scott (2015) or |(Ghosh (2018). We motivate the use of local polynomial regression by a
higher degree of precision and direct estimation of the derivatives of the surface under
consideration which is directly useful for the bandwidth selection procedure as higher or-

62
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der derivatives are required in the formulas. Further, it solves the boundary problem of
kernel regression. This is especially helpful when dealing with two-dimensional data as
now the ratio of the boundary region to the interior is usually larger than in the univariate
case. Kernel regression, as discussed in Chapter |3|and in the literature, e.g., by Miiller
and Prewitt (1993); Herrmann et al.| (1995) and Facer and Miiller] (2003), is subject to
the boundary problem, where the order of the bias at the boundary differs from the bias
in the interior. This flaw has to be corrected by using elaborate boundary kernels, pro-
posed by Gasser and Miiller| (1979) and, for instance, given by Miller| (1991) or Miiller
and Wang (1994). Even with boundary correction kernels, estimation at the boundary is
unstable, especially for the estimation of derivatives. This problem can be overcome, or
at least mitigated, by using local polynomial regression instead of kernel regression which
has an automatic boundary correction (see e.g. [Fan and Gijbels, 1992, 1996)).

We address the bandwidth selection for the local regression DCS by employing a data-
driven iterative plug-in (IPI) procedure (see Section and Gasser et al., 1991} Ruppert
et al.l [1995). The asymptotic optimal bandwidths are found from minimization of the
asymptotic MISE (AMISE) of the estimator. The formulas for the optimal bandwidths in-
clude partial derivatives of the regression surface under consideration which are estimated
via local polynomial DCS (LP-DCS) itself and hence, auxiliary bandwidths are required.
Under the IPI these bandwidths are obtained from the optimal bandwidths of the regres-
sion surface and the estimates of the partial derivatives are iteratively plugged into the
formulas for the optimal bandwidth in each step.

In many applications the innovations of a time series are subject to some kind of de-
pendency structure. This is especially true in financial econometrics where dependency
structures are utilized to estimate volatility (see|Andersen and Bollerslev, [1998}; Andersen
et al., 2003, 2004)) or the risk for stock prices, but dependency arises in other fields too,
e.g., when studying weather or climate dynamics (see Chapter[5). One-dimensional kernel
regression under correlated errors is a well-researched topic, considered among others by
Altmanl (1990, |1993); Hart (1991) and also by Feng (2013)) for the DCS. Local polynomial
estimators under correlated errors are a more recent field of research, e.g., conducted by
Francisco-Fernandez and Vilar-Fernandez (2001)), Opsomer et al. (2001) and Brabanter
et al.| (2018)). Local regression under long-memory dependencies was considered by Feng
et al.| (2021a) for a spatial FARIMA model; other recent work in this area was done by
Robinson| (2020) and [Li et al.| (2019a).

We employ a parametric model for modeling the error structure under our functional
framework by using a spatial ARMA (SARMA) process. The SARMA offers a well-
researched parametric way to incorporate dependency structures into nonparametric
surface regression. Random fields on a lattice or spatial stochastic processes proved useful
for various applications and are studied in-depth in the literature. A general review of
statistical techniques for analyzing spatial patterns was done by Bartlett| (1975) for early
developments in this area. Specific spatial processes were investigated, e.g., by |Tjgstheim
(1978) and Martin (1979) where the analysis is primarly focused on spatial patterns in
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fields such as geography, ecology and agriculture (Martin, 1990) and urban economics
(Fisher, [1971). However, these results are also useful in financial applications under a
time-series context.

Estimation of the parameters of SARMA models is closely related to the parameter es-
timation of one-dimensional ARMA processes; most univariate estimation procedures can
be extended to lattice processes or do already exist. Common maximum-likelihood es-
timators might run too slowly when applied to large data sets, notably if estimation is
required multiple times, for either order selection or in the IPI bandwidth selection al-
gorithm. Parameter estimation for SARMA processes was researched, among others, by
Yao and Brockwell (2006) who propose a spatial variant of the innovations algorithm by
Brockwell and Davis| (1991). However, this algorithm runs slowly for large data sets.
Faster approaches might be least squares estimators, e.g., a spatial version of the estima-
tion algorithm by Hannan and Rissanen (1982). A special case of the SARMA process is
the separable SARMA which can be written as the product of two univariate ARMA pro-
cesses in the respective directions. Hence, making an analogy with the DCS, estimation
of the parameters of the two-dimensional process is reduced to estimation of two one-
dimensional processes. We propose a convenient matrix notation for SARMA models and
point out some estimation methods for separable SARMA processes. For pure SAR pro-
cesses, i.e. spatial AR processes, a two-dimensional version of the Yule-Walker estimator is
presented, allowing for fast estimation of dependency models where the MA-part is zero.

The finite sample behavior of the local polynomial regression DCS is assessed by a sim-
ulation study which shows that the proposed estimators work well under some conditions.
Moreover, the introduction of dependent errors does no lead to a distinct decrease in es-
timation efficiency of the optimal bandwidths, although the distribution of the variance
coefficient estimates for the SARMA model employs a higher variance than in the iid. case.
Application of the proposed algorithms to high-frequency financial (HFF) data of the stock
returns of Allianz SE and Siemens AG indicate that accounting for dependency leads to
increased bandwidths for this data sets. Hence, an incorrectly made iid. assumption is
likely to cause an over- or undersmoothing of the expectation surface of the data.

We extend the DCS and functional DCS (FDCS) scheme from Feng (2013) and Chapter 3]
to local polynomial regression in Section[4.2|the asymptotic properties of this new estima-
tor are discussed in Section [4.3.1] Optimal bandwidth selection using an IPI algorithm for
the local polynomial DCS is addressed in Section Section considers the depen-
dency structure of the error terms and defines the SARMA, some estimation procedures
are suggested. In Section the proposed bandwidth selection algorithm is assessed
along with the SARMA estimator, application to financial data is done in Section We
close with some final remarks in Section The appendix Section contains some
additional proofs and derivations.
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4.2 The FDCS for Local Polynomial Estimators

4.2.1 Model and Assumptions

A general bivariate non- or semiparametric spatial regression model requires regression
on two covariates simultaneously. The DCS splits this estimation into two separate esti-
mation procedures, effectively reducing a two-dimensional problem into two sequencial
one-dimensional estimation procedures. This provides a computational advantage over
the classical bivariate smoothers, as only univariate regression is considered. In the works
by [Feng| (2013) and Peitz and Feng| (2015) as well as in Chapter [3] the DCS is proposed
for kernel regression, an extension to local polynomial smoothers will be the scope of this
chapter.

Let Y; ; be functional time series observed on a regular lattice spanned by components
X1 =A{z1:}, 9 =1,...,n1 and Xy = {z9;}, j = 1,...,n2, which are assumed to be
equidistant. Extension to the case where one component is non-equidistant or even has
random design is possible, due to the design adaptivity of local regression. The spatial
nonparametric model is

Yij = m(x14,725) + €i g, (4.2.1)

where m(xz1,z2) is a deterministic mean or expectation surface and {¢; ;} is a stationary
random field with zero mean. We aim at estimation of the mean surface m(x1,x2) or a
(partial) derivative m(”l’”?)(ail, x2). To derive the local polynomial DCS (LP-DCS) estima-
tor and its asymptotic properties, we establish the following assumptions:

Al. The random field Y; ; of model (4.2.1) forms a triangular array on an equidistant
lattice on [0, 1) spanned by sets of design points X; = {z1,}, 71 =1,...,n; and
Xy = {x2,}, j = 1,...,n2. The points z1;,22; are given by rescaled variables

X1, = i/nl and T2 = ]/n2

A2. The expectation surface m(x;,x2) is a smooth and Lipschitz continuous function
defined on [0, 1]2, which is at least (p; + 1, p2 + 1) times continuously differentiable
with respect to (z1, z2).

A3. The bandwidths hy, hy satisfy the conditions hy, hy — 0, nihy* ™ nah’2tt — oo and

nahY S moh¥ hY? — 00, as ny, na — 00,

A4. The error function {e;;} is a stationary random field or functional time series
with zero-mean and covariance cov(e; j,€i—sj—t) = E(€;j€i—s,j—t) = Y(s,t), where

Yos 2 V(s 1) < ool

A5. Bivariate product weights W (u,v) = Wi(u)Ws(v) are used, where the weights
W1, Wy are with boundary modification.
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Assumption Al ensures that the form of the expectation surfaces is not affected by
ny or no. This assumption is required for establishing the consistency and asymptotic
normality of the estimator. Under A2, the integral approximation of bias and variance
are finite and the optimal bandwidth derived from the AMISE exist and are well-defined,
A3 ensures the asymptotic unbiasedness of the estimator and is a variant of a common
assumption in nonparametric regression. In this chapter, dependency in the error terms is
allowed, however, stationarity of the error terms is assumed and the dependency structure
is restricted to short-memory processes by Assumption A4. The crucial assumption for the
DCS to work, is the product kernel Assumption A5.

4.2.2 Extension to Local Polynomial Smoothers

Consider the Taylor expansion of the surface m(z, z2) around a point (x1 ;,, 2 j, ):

e _ .S _ A\t S+t
mesg) = 3 3 =T e = 020) (a m)(xl,m,xg,jo)- (4.2.2)

S t
sl ¢! Ox30xs,

Let y; ; be the observations in a sample of Y; ; for 1 < i < n;, 1 < j < ng and X, Xo
be the (rescaled) covariate vectors from Assumption Al. Then, the (p1, p2)-th order local
polynomial estimator of m(1:¥2) (x1, 25) is given by the coefficient j3,, ,,, from minimization
of the locally weighted least squares problem

argmin Q(x1,x2) with
B

ny n2 p1 P2 (xLZ' _ xl)s(‘rQ’j _ x2)t 2
Qara) =3 |wy = Yo 3o R =
i=1 j=1 5=0 t=0 o
Tl — L1 T2,5 — T2
( hi 7 he )

where hq, ho are the bandwidths corresponding to X; and X5 and W is a bivariate weight-
ing function. Let y be the vector constructed from vectorization of the observations y; ; of
length n = nyny, W be the n x n matrix of suitable weights 1 and define the matrix of
covariates by

1 (xLl — .7}1) (561’1 — .7}1)2 Ce ($1,1 — ZCl)pl (wz’l — xg)p2
C_ 1 (z12—21) (12— r1)? ... (x1,2 — x1)P (222 — 22)P?
1 (an — 561) e (SUl’n — xl)pl (l‘g,n — :Eg)pQ

Further, let e; be the i-th unit vector and B be the vector that solves arg min Q(z1, z9) with
B

B =(cT™wc)'cTwy,.
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Then, the local polynomial estimator for m(“1¥2)(z, z3) is
ffb(m,l/z)(xh T9) = y1!y2!631+y2+13, (4.2.3)

The estimator in (4.2.3) constitutes a single-step bivariate local polynomial regression.
The expansion in (4.2.2) can be rewritten as

m(zy, @ i x1 —x1,0)° 0° i($2—$2,0)tatm($1,07$2,0)
1,22) < sl 0zt t! ol ‘

t=0

From this, we can directly define the DCS for local polynomial regression, if product
weights (Assumption A5) are used.

Definition 4.1. (Local Polynomial DCS, LP-DCS). Let Assumptions AI-A5 hold and
Wi (u), Wa(v) be some suitable weight functions. The LP-DCS estimator of m(*12) (1, z5) is

M) (g1 29) = V1!€£+1BI or equivalently (4.2.4)
Mmv2) (21, 19) = V2!€Z;+1B2, (4.2.5)

where 31, B2 are solutions to

[ p1 r 2
: ~ (v T14i — T T145 — X
argﬁmlnz ml 2)(302\1'1) — Zﬁl,r(lr,l)] Wi <1h11> , (4.2.6)
1 i L r=1 ’
- s 2
argminz m) (@g]x) — Zﬂgs xz’j 72) ] Wy <a:2]h—x2> 4.2.7)
52 ] L ‘ 2

and e; is the i-th unit vector as above. The intermediate results used in (4.2.6), (4.2.7) are
the estimators of m*?)(xy) conditioning on x; respective of m“?)(x;) conditioning on .

They are given by

M) (2|21 ;) = volel, oy and

) (1|29 ;) = vley 1 Bijes

where 35 and (3, are solutions to

x s To i — X
argmmz [ij ZB2|15 2] . ) ]WQ <27]}122>7

52\1 j
(z1, — T1; — 1
i om 5 (2552).
1]2 i !

A more detailed survey of weight functions and boundary modification for the weights
W (u) is given in Section and Chapter 2l The DCS is symmetric in X, X, hence
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the order of estimation is interchangeable. Closed-form solutions to the LP-DCS from
Definition [4.1] can be derived easily:

Definition 4.2. (Local Polynomial Functional DCS). Define Y as the ny X no matrix with
entries {Y }; ; = y; ; and the covariate matrices at a point (z1,, 2 ;) by

X1, = [1 (X1 —215) (X1 — 36‘1,1’)2 e (X - ml’i)pl} and

)

XQJ' = |:1 (XQ — 11327]‘) (X2 — xQ’j)2 - (X2 — xQVj)m} .

The diagonal matrices of the Weightﬂ are W1 ;, Wo ; with elements W1((X1 — z1,)/h1)
respective Wa((Xo — x2,j)/h2). The functional LP-DCS equivalent to (4.2.4), (4.2.5)) is then

_ . . . -
{M} ;o =uvley (XWX ) Xy ;Wi My and
1<j<n2

_ - e —
{M}1 ciam, = V2ol 1 (XT W, X )T XT WM,
;

where estimation is carried out over all rows i and all columns j. The intermediate results
are obtained from

= T T —1~T T
{M2 i = relen, (X Wa i Xo )™ X5 ;Wo ;Y and

1<i<ni

— T T —1~T

{M1} o =viley (XWX ) Xy W Y.
1<j<m

In Definition[4.2] we utilize the equidistancy of the lattice spanned by X, X to estimate
the i-th row or j-th column of Mina single step. This feature is called functional smoother
or FDCS (functional double conditional smoothing) in Chapter |3| Further, we can avoid
redundant computation by noting that the non-zero weights are the same for all rows (or
columns) in the interior region. The elements of M are given by

_ o
{M} =) (2, 0 ),
l’]

and the intermediate results are

{ﬁl}z’j = ﬁ@(”l)(xlvi\xzj) and {ﬁ2}ij = T/fl(w)(xzj‘xlji),

Theorem 4.1. (Equivalency to Bivariate Local Regression). Under the conditions A1-A5,
the DCS-estimators from Definitions 4. I|and 4.2] are equivalent to the classical bivariate local
polynomial estimator in (4.2.3)).

A proof to Theorem [4.1]is given in Section

'In the remainder of the chapter, the dependency of the matrices X ;, X2, ;, W1,;, W2 ; on i or j is always
assumed and hence not explicitly denoted.
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4.2.3 Boundary Modification in the LP-DCS

It is a well-known result that the boundary problem of kernel regression is solved by
local polynomial regression (see e.g. Fan and Gijbels, 1992, 1996). However, boundary
modification in local polynomial regression might be necessary to avoid discontinuities in
the bias between the boundary and interior regions. This type of boundary modification
in local regression is extensively discussed by [Feng (2004) and in Chapter[2]

We define the boundary region (BR) as in Chapter |3| and similar to Miiller and Wang
(1994)). The BR contains all points in X; and X, that have a distance not greater than the
bandwidth from the boundaries at 0 or 1, i.e. all points that are not in the interior region.
That is, the boundary region is defined by

BR:[O,l]Q\{xl:hlga:l§1—h1Ux2:h2§x2§1—h2}.

Due to the increased share of the BR in the total area of support in two-dimensional
models compared to univariate models, the effect of the boundaries cannot be neglected
without careful consideration, although local regression is used. While local polynomial
methods solve the boundary problem indeed, naive truncation of weight functions might
introduce discontinuities in the estimation, as discussed in Chapter [2| In the remainder
of this chapter, we consider local polynomial regression with boundary modification, that
is, we use the boundary modified weighting functions proposed in Chapter 2] which are
based upon the boundary kernels by [Miiller| (1991) and Miiller and Wang (1994). At a
boundary point z.; € BR, for ¢ € [0, 1] and a smoothness parameter 1, these weights are

Wg(u) =1 +uwrl—-uH, wuel-1,4q] (4.2.8)
Wi(u) = (T +u)(g—uw)t, ue[-1,4] (4.2.9)
Wé’(u) = (14+uwHg—uw*, wel-1,4q,4 =min(l,p—1), (4.2.10)

for the right boundary. The corresponding left boundary weighting functions have support
u € [—q,1]. The weights in are the truncated weights commonly used in local
regression. The u-smooth weights and the (u, 1')-smooth weights are the
boundary modification weights proposed in Chapter |2l The findings of Chapter |2 show
that, despite the use of different weighting methods, the local regression estimator in the
interior (¢ = 1) is the same for all of these three weighting functions. In the following,
we use the (u, u— 1)-smooth weights Wé’ corresponding to the boundary kernels proposed
by Miiller and Wang (1994). They provide the lowest bias among all three weighting
methods, as they are centered around the estimation point (see Chapter [2)). Note that all
results hold for the other weighting functions as well, provided that the use of boundary
weights is consistent, hence, we will not indicate the use of boundary kernels explicitely.
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4.2.4 Equivalent Kernels

The asymptotic results, as well as the optimal bandwidths, include some quantities, which

need to be calculated from the corresponding kernel functions. We use the method intro-

duced in Chapter 2| to generate these corresponding kernels from the weighting function.
At first, we define the local polynomial weights from Definition |4.2|via

wl; = {nlel  (XTW1Xp) ' XTW,}, (4.2.11)
wg; = {vale), 11 (X3 WoXo) ' X Wo} (4.2.12)

where W is constructed from one of the weighting functions (4.2.8)) - (4.2.10) with bound-
ary modification if necessary. The LP-DCS can be written as weighted sum of the observa-

tions

ny n2

T/fl(yl’VQ)(fE]_, x2) = Z Z wiiwé:,jyi,j‘ (4.2.13)
i=1 j=1

A method for generating equivalent (boundary) kernel weights w® to the w” of
(@.2.11), (4.2.12) is proposed in Chapter |2 the resulting kernels correspond to the
kernels from Miiller] (1991) and Miiller and Wang| (1994). These equivalent kernel
weights of order (k,v) with k = p + 1 are defined by

k—1
1
wiK - nhv+1 Kqu(ui), Kguo(ui) = (E al,vué) Wo(xi) (4.2.14)
=0

for u; = (x; — x)/h. The coefficients ¢, , are obtained from
Ny g0, = Vle,41, (4.2.15)

where N, , is the p xp-matrix of moments of W, (v) and a,, = (agy,a1,,...,ar—1,). Again,
the weighting functions W, (u) can be any of the three boundary modification weights
(4.2.8) - (4.2.10). We establish the equivalency between w” and w’ by

Theorem 4.2. (Equivalency of Local and Kernel Regression). Let wfi, w2L’ ; be the local
polynomial weights defined by (4.2.11)) and (4.2.12) and wfi, wfj the kernel weights defined
by (#2.14). Under Assumptions Al - A4, wi wy; and wi';wi; are equivalent in the sense
that

L, L
WY W5 0
M 17 27 P j—
lim  sup ; KJ — 1| =0 defining — =1.
n1,N2 =001 4i<n, wl,iwlj 0

1<j<ns
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A helpful intermediate result from the proof of Theorem given in |4.8.2[, is the
following approximation for w’:

1 T;— T 1
T T —1~T _ ?
L (XTW X)W = i (M) 40 ()

forX = [1 (z;—a)' ... (xi— ).

4.3 Bandwidth Selection for the LP-DCS

4.3.1 Asymptotic Bias and Variance

Asymptotic expressions for the bias and variance of the proposed local polynomial esti-
mator for functional surfaces on a lattice can be derived by attributing two-dimensional
estimators to one-dimensional estimators, which is a main advantage of the DCS. The
first step of the DCS from Definition forms a functional time series on its own; it is a
sequence of univariate time series. Hence, taking the expectation of (4.2.13)), we yield

ny n2

ni no
L L L L
E Z Z WiW2,5Yi5 ¢ = Z wy ;B Z W3,;jYi,j

=Y wkE @) walen )}
=1

where m(72) (x2|x1 ;) denotes the estimator of the v,-th derivative of m(xz1, z2) for fixed x4,
i.e. for the i-th row of y; ;.

The expectation and variance of local polynomial estimators are standard results in
nonparametric estimation theory and can be found e.g. in Ruppert and Wand| (1994) or
Fan and Gijbels (1996). At in interior point, the expectation of ("2 (xo|x1 ;) is

E{ ) (@s]21) } = B {valel, 1 (XTW2Xo) ' XEWayl. )
= m) (za|z1,7) + Sap; + Rays,

with the Taylor series remainder R and Sy, the leading term of the expansion with

m@ 0 (521 )

(s + 1) (4.3.2)

Sapi = valel, 1 (X3 WoX) 7' X W,

(51727712 - 'rQ)pZ_H

pat1 mP2HD) (wo|wy ;)
(p2 +1)!

)

n2
=D wi(@2; — w2)
j=1
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for the expectation of m(v4)(z1,z2), a similar result holds. From (4.3.1)), the expectation
of the regression surface or any of its derivatives is
E{ ) @y, 20) } = mlel, o (XTWAX0) 7 XTWAE {) (a]) |
= m(l’l’VQ)(xl,x2) + 51+ 5 +R.

Again, R is the Taylor series remainder and S, S, are the the leading term of the expan-

sion conditional on i or j respectively, with

1 (w1 —x)P

o1= et (pl + 1)' m(lerl’lQ)(xlﬂ x2)7 (4.3.3)
=1 '
"2 €To . — T p2+1

S2 =) wi; %m(”’”“) (x1,22). (4.3.4)
Jj=1 '

From Theorem we can attribute the integral approximation of the local polynomial
estimator to that of the kernel estimator using equivalent kernels. Then, the integral
appoximation of the expectation is

g {m(ul’VQ)(UUL x2)} =m0 (21, 29) + figy 1 (K)RY ™ Hm P2 (g, )
+ ﬂpQ_H(K2)h1292—V2+1m(1/1,p2+1) (xl’ xg)

+O () £ o (Rt 4

1 1
O ———— O ————
* <mhqlh;2>+ <n2hrlh;2)

where fi,(K) = [ K, (u)u”/r! du.
Similar to the univariate expectation, the univariate variance is a standard result in local

(4.3.5)

regression theory. The asymptotic variance under dependent errors is given by Altman
(1990) for the univariate case and in the bivariate case by [Feng (2013) for the kernel
regression DCS. Under the more general Assumption A4 of dependent error terms we the
variance is given by

ny ni1 N2 n2

var {ﬁz(”l”’Q)(:El,wg)} = Z Z Z Z wfiwﬂi*wijwij* cov(eij, e j+).  (4.3.6)

i=1i*=1 j=1 j*=1
The following approximation is proved in Section [4.8.3

S % st

var {fﬁ(”l’l’z)(xl, 1'2)} = :;zzoht;;ih%ﬁl [R(K1)R(K2) +o(1)] . (4.3.7)
1 2

The spatial autocovariance function ~ is given by

’)/(S,t) = COV(EZ'J,{:};J,_SJ'_H:), (438)
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and the kernel roughness is R(K f K?(u) du.

4.3.2 Asymptotic Optimal Bandwidths

The optimal bandwidths for the local polynomial regression are found by minimization
of the AMISE. For simplification of the findings, we restrict the polynomial orders by an
addendum to Assumption A5:

A5’ : The orders of the polynomial regression p, p» are chosen such that p; —vy = po—1o =
0, with § odd.

Let ¢y = >, >, (s, t) be the sum of autocovariances of the lattice process ¢; ; in (4.2.1)
and R(K), fi;(K) defined as above. Further, define the integrals over the products of the
regression surfaces or its respective derivatives by

”—/ / m“) (z1,x2)mM m("i ')(:cl,xg)d:cldxg (4.3.9)

with r = {(p1 +1,10), (v1,p2 +1)}.

Using (4.3.5) and (4.3.7)), the (asymptotic) MISE is

. ) _ 2
MISE (m(”l‘”),hl,hg) = [E{m Vi) (g, x9)} — mih ”2)(361,332)}

+ var{m¥ "2 (21, x5)}
= AMISE (m"'*?) hy, hy)

1 1
o(—— V10 ——"
" (vuh?h?)* (nhh)
1
+ O (mngh?”ﬁlh%”frl)
+0 (h1171*1/1+1 + h1272*l/2+1> ,
AMISE (hy, ho) = i2, 41 (KO)B T Ly 4 32,4 (Ko)ha " Iy

+ 2fipy +1(K1)fipy1 (K2) RS RS T (4.3.10)
R(K1)R(K>)

cr.
2v1+17 202+1 Cf
n1n2h1V1+ h2V2+

Optimal bandwidths are the bandwidths 1, ho which are the joint minimizers of (4.3.10).
They are given by:

Proposition 4.1. (Asymptotic Optimal Bandwidths). Let conditions A1-A4 and A5’ hold.
Then, the AMISE minimizing, asymptotic optimal bandwidths hi a,ha 4 for estimation of
m1v2) (11, 29) are given by the equations

I S
2(64+vq+vo+2)

2v1 + 1 R(K1)R(K3) ¢y (4.3.11)

200 +1) mna ATy

Cr = [ﬂ§1+l<K1)1u + ﬂplﬂ(Kl)ﬂpQH(K2)112A(15+1]

hia=
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and

1
2(6+v1+va+2)

29 + 1 R(Kl)R(KQ) cf
200 +1) nyna A3 Cy

Co = (22,1 (F2) Tos + fipy 41 (K1) iy 1 (K2) 112 ASH ]

ho.a =

)

The relation between hy and ho is given by the relation factor A, where

hy = A1ha, hy = Ashy, A; = Ay?

1

_ ((E) [ 12 (1 — ) <I<—> f<2+1>> B
Ay = ([L(Iﬁ) [In (2v9 + 1) + 12 (200 +1)2 + ot (2vs + 1) , (4.3.12)

where the sign in (4.3.12) is chosen such that A; > 0 and hence As > 0.

If vy = 15 (= p1 = po from A5’), the relation factor simplifies to A; = (I11/I)?0+)
and for the special case of local linear estimation of the regression surface (1, = 1o =

0,p1 = po = 1) (4.3.11) reduces to

R2(K) Cf

I I
dning i*(K) (%) ! [—711 + Lo (%) 2}

hy =

which is equal to the bandwidth for the regression surface under kernel regression in
Section 3.4} The formula for h, is analogously.

The optimal bandwidths are of order O (n~1/(20+21+2v2+4)) For 7 (1:22) it holds that
MISE = O (hi(éﬂ)). This leads to an order of convergence of O (n~(0+1)/(0F¥1+r2+2))
and to a global convergence rate of O (n~(0+1/(20+2vi+20244)) " 1n particular, the global

convergence rate of bandwidths for local linear regression of the mean surface is of the
order O (n=1/3).

4.3.3 Bandwidth Selection by the IPI

The formulas for the optimal bandwidths of Proposition[4.1]require computation of higher
order derivatives of m(x1, z2). Although these derivatives can simply be estimated by the
LP-DCS, this estimation requires some optimal bandwidths itself, which, in general, differ
from those optimal for the regression surface. These auxiliary bandwidths are iteratvely
obtained by an IPI-algorithm, as proposed by |Gasser et al.| (1991) and used by Herrmann
et al| (1995) and in Chapter [3| for two-dimensional data. In this algorithm, the band-
widths 2 72 and 7" 7> TY required for estimation of m®1+1¥1) (2, 2,) and
m®1P2+1) are computed from the bandwidths ki, ho for estimation of m(x1,x2) via an
inflation method. This inflation method specifies a functional relation between the h and
h values (see also Section. We use the exponential inflation method (EIM) proposed
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by Beran and Feng| (2002alb), as the EIM is shown to offer a better rate of convergence
than the multiplicative method employed by Herrmann et al.| (1995). The EIM sets h o h®
instead of the multiplicative method, where h & n®h. The exponent « can be defined in
several ways. The choice of a = 0.5 leads to the most stable bandwidth estimation (Beran
and Feng| 2002a)) and is hence a common used value, e.g., it is used in Chapter [3| How-
ever, if estimation of a derivative of m(x1, z2) is considered, and hence at least one v # 0,
alternative choices might be preferable. We select o to minimize MISE(m®1+172) by hy)
respective MISE (1721 hy hy). Note that from (4.3.9), the required derivatives are
of order (p; + 1,1»2) and (v1,p2 + 1). From Proposition and B5’, we get

1 ~ o~ _ 1
hi, ho (n1n2) 2(6+v1+v2+2) gnd hi, ho x (n1n2) 2(p1+tp2+2)
B O+ +r9+2

.3.13
p1+p2+3 “ )

= hy o h$, hy < BS,  with «

For the exponent «, it holds that 0.5 < « < 1. In the special case of local linear regression
of the mean surface (v; = v = 0,p; = ps = 1,6 = 1), we have o = 0.6.

The IPI algorithm now computes the auxiliary bandwidths ?Ll, EQ, the integrals
fn, .722, flg and from this, the asymptotic optimal bandwidths conditional on the iteration
step hi 4, ho 4 in each step.

Proposition 4.2. (IPI Bandwidth Selection Algorithm). Let @175, Egys) be the bandwidths
for estimation of m(*1#2)(x,, z5) obtained in the s-th iteration step. Then, the IPI algorithm

processes as follows:

1. Choose initial values (ﬁLo, 7@,0).

2. In the s-th iteration step:
i. Define

7 1 T «a 7 (v T a
hgz,);r )= Cpi4+1)(h1,s-1)%, h§,§) = C(yy)(h1,5-1)%,

7 1 T o P 0 o
hg,?r )= Cpat1)(h2,s-1)%, hé,sl) = C(uy)(h2,s-1)%,
ii. Compute

m P12 (1 1) using bandwidths (ﬁgiisl+1),ﬁé’j§)> and

1,5 »

M1 P2+ Y (21, 15 using bandwidths (ﬁ(yl) %gj;“))

and from this the integrals 111, 122, 112 applying @.3.9).
iii. Compute ﬁl(”l”j?)(xl, x9) using bandwidths (/]7\)1,3,1,/};27871) and estimate the vari-
ance factor cy from the residuals €; ; = m(x1,;,2;) — i, using an appropriate

method.

iv. Obtain the optimal bandwidths (/]7\1175,/}%2#) from Proposition
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3. Stop if the distance between (ﬁl,s, lAzg,s) and (3175,1, ﬁgﬁ,l) is smaller than some desired
threshold. Otherwise, return to 2.

The bandwidths yielded in step 3 are then called the optimal bandwidths.

If 11 # 0 or 1» # 0, the optimal bandwidths for estimation of m(x, z2) are not obtained
in the IPI-process. We suggest to calculate c; in advance by applying the IPI for the regres-
sion surface previously to bandwidth selection of the desired derivative mvive) (z1,22).

4.4 Spatial Error Structure

4.4.1 Definition of the Spatial ARMA

In most application cases, whether financial econometrics or environmental sciences, de-
pendency in the error terms is a more realistic approach than assuming an iid. distribution
of the errors. From Assumption A4, the error terms or innovations ¢; ; of model
are assumed to follow a certain dependency structure with short memory. This ensures
the dependency structure of the errors to be finite and influences the asymptotical opti-
mal bandwidths of Proposition only through the variance factors c;. For long memory
dependency, more sophisticated bandwidth formulas are used, as now the long-memory
parameters directly influence the bandwidth (see Feng et al.,|2021a)). In the following, we
study an SARMA process to model the errors ¢; ; of (4.2.1)).
The following definition of a causal SARMA process is commonly used:

Definition 4.3. (SARMA-Process). Let 1;; be an iid. random field, with zero mean and

yariance 0727 and let the polynomials ¢(z1,22) and ¥(z1, z2) have all roots outside the unit

circle. The process ¢; ; is called an SARMA ((r1,72), (g1, g2)) process, if it fulfills the equation

¢(B1, Ba)eij = ¥(By, B2)ni j, (4.4.1)

where the lag operators are defined by Bie; j = ¢;—1,; and Bag; j = €; j—1 and

Ty T2 q1 g2

21722 E E ¢)S t21227 Z17Z2 E § ws tzleJ

s=0 t=0 s=0 t=0
with Cb0,0 =1, 1,[}0’0: 1.

The autocovariance generating function g.(z1, z2) and spectral density f(wq,w2) of the
general SARMA process in Definition given, for instance, by Martin| (1996), are

21722 Z Z t 0‘2¢(21722)¢(’2£_172”z_1)

s=—00t=—00 K ¢(21, 22)¢(21 17 Z9 1) ,

- 1)? . .
f(wl,wg < ) Z Z *1&)18710.)21‘/ — <27T> ge (eflwls, e*let)

§=—00 t=—00
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where 7(s,t) is the autocovariance function. The covariance factor c¢¢ can be computed
easily given the SARMA parameters from the spectral density

sz(lv 1)

cp =472 f(0,0) = 472g.(1,1) = oy, 211

(4.4.2)

We propose the following matrix notation for observations of the SARMA process from
Definition which allows for a direct visual assignment of the coefficients to the re-

spective lags:

Definition 4.4. (Matrix Notation for SARMA-Processes). Let E be the (n; x ngy)-matrix
containing the observed values of €; j, Z be the (n1 x ng)-matrix containing the innovations
&i j. We define the submatrices E*(i*, j*), Z*(i*, j*) of lagged values at (i, j) by

E*(i", ") ={Eij}tisizir—p » L0 5°) ={Zij}irzizir—qr -
J*2j>5%—p2 J*2j>5"—q2
For max(p1,q1) < i < nj and max(pz, q2) < j < ng, the SARMA-process from (4.4.1) can be
written as

vec! (¢) vec (E* (i, j)) = vec () vec (Z*(i, )
where the coefficient matrices are

oo - Pop, Yoo --- Yo
¢p170 ¢p1,p2 ¢Q170 ¢Q1742

with ¢o0 = 1,900 =1

4.4.2 Estimation of the SARMA

In general, the various methods for parameter estimation of univariate ARMA models can
be easily extended to estimation of ¢, v, and o2 of the SARMA in Definition Most
widely used procedures are maximum likelihood (ML) estimation or least squares esti-
mation from the residuals. ML estimation for a stationary SARMA is e.g. investigated
by [Yao and Brockwell| (2006) based on the innovations algorithm proposed by Brockwell
and Davis| (1991). [lllig and Truong-Van| (2006) propose an estimation procedure for the
AR-part as well as a method for selection of the SARMA (r, q) orders r = (ry,r2) and
q = (q1,q2). For none of these methods, closed-form solutions exist and numerical op-
timization is required. In the spatial framework under consideration, where large data
sets are observed, this will lead to an increased computation time. In the worst case,
the efficiency increase by the DCS in the nonparametric estimation of the mean surface
is dominated by the numerical estimation of the error terms. A much faster approach is
a two-dimensional version of the algorithm by Hannan and Rissanen| (1982), who use a
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Yule-Walker estimate of the AR-part of the SARMA for the initial estimation of the inno-
vations and a linear regression for estimation of the SARMA-parameters. However, this
method provided less good fits in our simulations compared to other numerical methods.
In the following, we will propose estimation strategies for two special cases of the SARMA;
a separable process and a spatial AR-process (SAR).

In the case of a separable process, the polynomials in Definition reduce to

P(21,22) = d1(21)p2(22) and (21, 22) = Y1 (21)P2(22)

p1 D2

$1(z1) =1- Z Ps 021, ¢2(22) =1— Z G024, (4.4.3)
s=1 =1
q1 tqQ

Pr(z) =1+ ) e02i, ¥a(z) =1+ o2t (4.4.4)
s=1 t=1

In this case, the spatial process is just the product of two univariate ARMA processes and
the formulas for the autocovariance and spectral density reduce to a separable form. The
parameter matrices are the products of the parameter vectors

d) :(17 (bl,()v ¢2,07 ceey ¢p1,0)T(17 ¢0,17 ¢0,27 ) ¢0,p2)
’lp :(17 ¢1,07 102,07 cee 7¢q1,0)T(11 77/}0,11 77/}0,27 cee 7w0,q2)'

and the variance factor can be computed by

2t (D)Y3(1)

2
AT R

Under a separable SARMA process, estimation of the parameters can be reduced to es-
timation of two univariate ARMA-processes (Martin, 1979) in the two directions, which
bears a resemblance to the DCS procedure. Given a matrix E of observations of the pro-
cess ¢; j, the ARMA coefficients can be estimated in two ways. Either, every row and
column of E can be treated as a random sample of the respective ARMA model and indi-
vidually estimated. This approach was discussed by |Beran et al. (2009) for the SARMA-
part of long-memory SFARIMA model. The estimates 1, ¢1 would then be the averages
over the parameters ¢ (), ¢ (j) estimated from {E},<i<,, ; and 2,1, the averages over
d2(i), 15 (i) estimated from {E}i1<j<n,. The second approach brings the averaging for-
ward and treats vec(E) as the only random sample of the column-wise time series and
vec(ET) as the only random sample of the row-wise time series. Hence, the parameters
q?l, 121 can be directly estimated from vec(E) and &52,’(22 from vec(E”T). Although both
approaches are suitable for estimation of the parameters of a separable SARMA process,
it depends on the circumstances, which one to prefer. We found the second one more
precise in our simulations, however, the first one might be faster for very large data sets,
depending on the estimation algorithm used.


Basti
Hervorheben
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For ¢ = ¢2 = 0, the SARMA of Definition reduces to an SAR process with order
(r1,72). Unlike the SARMA, there exist explicit formulas for estimation of the parameters
of an SAR process in form of the (spatial) Yule-Walker equations (see Ha and Newton,
1993} Illig and Truong-Van, 2006). We use the definition of for the autocovariance
function (s, t) of the SAR process. The spatial Yule-Walker equation for the SAR (ry,72)
is then

I' vec(¢p) =0

where T denotes the full autocovariance matrix:

’7(07 0) 7(17 0) s ’7(7ala 0) ’7(07 1) s V(TIa T2)

’7(170) 7(070) 7(r1 - ]-aTQ)
F = . .

v(r1,r2) (ri—1,7m9) ... ~(0,0)

Ha and Newton| (1993) proposed the following bias-corrected sample autocovariance

function:

ni—sno—t

~ nin2
7(37t) = ( Z Z €i,j€i+s,j+t

n—sn—t
1= 8)(n2 i=1 j=1

ni—s n2

R B ning
¥, =) = (n1 —8)(n2 — t) DL D EigFiraih

i=1 j=t+1

with the relations 7(—s, —t) = (s, t) and Y(—s,t) = 5(s, —t).

4.5 Simulation Study

The proposed algorithm is assessed at the example of three gaussian functions. We study
the distribution of the selected bandwidths and of the variance factor ¢; under dependent
errors following an SARMA model. Let N(u,Y) denote the bivariate normal distribution

with mean vector i and covariance matrix ¥, then the example surface functions are

0.5 0.1 O

m]. ~ N 5 (4.5.1)
0.5 0 0.1
0.5 0.1 O 0.2 0.05 0

ma ~ N + N , (4.5.2)
0.3 0 0.1 0.8 0 0.05
0.25 0.01 0 0.75 0.01 0

ms ~ N : N , , (4.5.3)
0.75 0 -0.1 0.5 0 -0.1
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where constitutes a symmetric single peak, an asymmetric double peak and
forms two ridges intended to resemble the volatility surfaces found in Section 4.6
The error structure is chosen such that ¢; ; follows a separable SARMA ((1,1), (1,1)) pro-
cess with coefficients

1 —0.50 1020\
— L = , 0% =0.25. 4.5.4
¢ (-0.20 0.10) ¥ (0.30 0.06) 59

From (4.4.2)), the variance coefficient for the SARMA is then ¢; = 3.8025. Our study
includes 2,500 simulations for each function where observations are simulated on a [0, 1]?
grid of size ny = ny = 101. We use a trim parameter \; = Ay = A = 0.05 to stabilize
estimation of bandwidths. Estimation of the expectation surface is done under a correctly
specified SARMA model for estimation of the error structure and misspecified model under
an iid. assumption. This allows to assess the effect of not accounting for dependency in
the errors.

We employ a local linear estimator for estimation of the regression surface, with the
(i, 1')-smooth boundary modification weights of and p = 2. Hence, the required
partial derivatives for the optimal bandwidths of Proposition are m39 (z,,z,) and
m(0:2) (z1,x2), which are estimated by local linear and local cubic regression in the dimen-
sion of the second derivative. The parameters in the EIM were chosen to be c(3) = 2,
cp) = 1 for the exemplary functions m1, mg and cp) = cz) = 1 for m3. We chose to
differ in the latter case, as here the structure is somehow finer than in the other cases and
a too large bandwidth for derivative estimation is susceptible for oversmoothinﬂ The
exponent was chosen according to (4.3.13) to a = 3/5.

The distributions of the estimated bandwidths are displayed in Figure The results
indicate that the goodness-of-fit of bandwidth selection depends on the underlying func-
tion m(z1,x2). Finer structures will lead to a rapid decrease in variance of the estimator
making a bias in the estimation more severe. This becomes obvious from Table [4.1| where
the p-values measure the deviation of the estimates from the true values. For all functions
the true bandwidth is estimated with a certain confidence under the correctly specified
model. Parameter tuning for further optimization of the bandwidth selection algorithm
might aim at adjusting the parameters \ or ¢y, c;. However, to our knowledge, a data
driven method for selection of the inflation parameters is not available, so these values
can only be selected from a simulation with similar functions.

In any case the selected bandwidths for the correct model are close to the true band-
widths, while the misspecified model clearly underestimates the bandwidths in this case.
This behavior depends on the values of ¢y and o2, hence, incorrect specification of the
error model might also lead to oversmoothing for different data. The original surfaces can

ZFor practical applications, we propose to run a pilot smoothing with manually specified bandwidths to
gain insights on the functional form of the surface under consideration. Parameters of the EIM might be
choosen according to these findings as long as no data-driven method for selecting this parameters exist.
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Table 4.1: Bandwidth statistics of the simulation study using SARMA errors under local polynomial
regression DCS. Values are obtained from a sample of 2,500 simulations for the functions
given in (4.5.1) - (4.5.3). The p-value corresponds to Hy : h = hypqye.

Function Type h; h-
mean SD P mean SD P
true 0.23142 - - 0.23142 - -

mi SARMA 0.23299 0.01611  0.92246  0.23345 0.01588  0.89853
iid. 0.16120 0.01759  0.00007 0.16153 0.01768  0.00008
true 0.21443 - - 0.24367 - -

mo SARMA 0.19555 0.01817  0.29877  0.22742 0.03027  0.59150
iid. 0.14004 0.01375 0.00000 0.15164 0.01831 > 1E-05
true 0.08842 - - 0.11392 - -

ms SARMA 0.09332 0.00390 0.20989  0.11729 0.00632  0.59469
iid. 0.06745 0.00255 > 1E—05 0.08444 0.00446 > 1E—05

Table 4.2: Summary statistics of the estimated variance coefficients in the simulation study. The true
value is 3.8025 for all models, the p-value corresponds to Hy : ¢f = Cf true-

Function Errors mean SD P
SARMA 3.42496 0.25953  0.14576
m iid. 0.50153 0.01328 > 1E—05
. SARMA 3.35608 0.25459  0.07952
2 iid. 0.49777 0.01321 > 1E—05
SARMA 2.83352 0.21125 > 1E—05
ms iid 0.45225 0.01210 > 1E—05

be found in the first column of Figure [4.3| along with the smoothed surfaces for the iid.
and SARMA data.

4.6 Applications

We illustrate the proposed algorithm at the example of stock price volatility and the corre-
sponding trading volumes observed from 2004 to 2014 covering the financial crisis around
2008, with data from German companies Allianz SE (ALV) and Siemens AG (SIE). Some
exemplary smoothed surfaces are given in Figure for ALV and Figure for SIE. The
impact of the financial crisis is clearly visible in the spike in 2008 which exists in all surface
plots. Another insight we can draw from our application is that accounting for dependency
in the errors leads to an increase in bandwidths for our examples (see Table [4.3).

We use stock price returns and volume data from Allianz SE and Siemens AG. All four
data sets are observed from 2004-01-02 to 2014-09-30 and include 2739 days with 510
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Figure 4.1: Distribution of the bandwidth estimates hy, ho obtained in the simulation study with 2,500
observations. Simulated are functions my, ma, ms of - under the SARMA
model (4.5.4). Bandwidths are selected under an iid. and an SARMA ((1,1),(1,1))
assumption.
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Figure 4.2: Distribution of the estimated variance coefficients c; in the simulation study with 2,500

observations. Simulated are functions my, mo, ms of (4.5.1) - (4.5.3) under the SARMA
model ([4.5.4). Variance coefficients c; are obtained under an iid. assumption and an
SARMA ((1,1),(1,1)) assumption for the error terms.
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Figure 4.3: Original and estimated surfaces for the functions - under SARMA errors
from model (4.5:4). The following bandwidths are used: my : (0.2384,0.2497),m2 :
(0.2138,0.2474), mg : (0.0971,0.1245) under the SARMA ((1,1), (1, 1)) assumption and
my : (0.1750,0.1496), mo : (0.1647,0.1692), m3 : (0.0694, 0.0868) under the iid. assump-
tion (misspecification). The scale of the vertical axis might differ across the plots.
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per-minute observations leading to a total number of observations just below 1.4 milliorﬂ
While no further preprocessing was done for the volume data, we use the squared and
demeaned returns for estimation of the volatility surface. While |Peitz and Feng (2015)
proposed to use another nonparametric surface estimation for demeaning the returns,
we found the arithmetic mean to be equally appropriate as the difference between both
approaches is minor in this context. We use a similar model as in Chapter |3| or Feng
(2013); [Peitz and Feng| (2015). Let R;; be the centralized returns, og(z1,z2) the spot
volatility surface and 7; ; a random field. We model the returns by

Rijj = or(®1,22,5)7i5
with transformation into an additive model given by
=2
In (Ri,j) =In (0'1%2($1,i, CL‘Q’J’)) + €ij, (4.6.1)

where ¢; ; = In(7?,;) is assumed to be a stationary random field with short memory. Model
can be estimated using nonparametric regression, where In (c%(z1,22)) is the
mean surface. The volatility surface is obtained via retransformation.

Four different approaches are used for modeling the error terms ¢; ; of (4.6.1): iid.,
SARMA ((1,1),(1,1)), SARMA (r, s) (SARMA*) with selection of the orders r, s by mini-
mization of the BIC (with maximum orders (2, 2) for the AR- and MA-part) and SAR (3, 3).
The resulting optimal bandwidths are displayed in Table the estimated variance mod-
els in Table (Allianz SE) and Table (Siemens AG). For SARMA models with nonzero
MA-part the bandwidths are substantially larger than under the assumption of iid. or SAR-
error terms where the latter only exhibit a small increase to the iid. case. This leads to
much smoother surface estimates in Figure and Figure when accounting for de-
pendent data.

4.7 Final Remarks

The DCS, as introduced by [Feng| (2013) and further developed in Chapter 3} is extended
to local polynomial smoothers in this chapter. Local polynomial estimators have some
clear advantages over kernel regression; they solve the boundary problem and allow for
easier estimation of derivatives. These properties are utilized in the bandwidth selection
procedure by an IPI algorithm where estimation of partial derivatives is necessary. We
obtain optimal bandwidths in Proposition [4.1] and propose an IPI algorithms based on
these optimal bandwidths in Proposition We introduce a certain dependency struc-
ture in the semiparametric model, which is explicitely addressed by an SARMA model.
Some fast estimation procedures for the SARMA parameters are suggested and a order

3The data was aggregated by calendar time sampling (CTS). Original Data was obtained from Thomson
Reuters.
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Figure 4.4: Estimated spot volatility and trading volume surfaces of Allianz SE using the bandwidths
in Table[4.3] Values of volatility are in 1E—04, of volumes in 1E+-03.



4 Local Polynomial DCS under Dependent Errors 87

7.5 4.0
é 5.0 é 30
= =
= =29
< <

5
2 L0
14 g 14 g
, 2 g4 , 12 )
Time * 20 Time ‘0

© 10 % Year

105, ~0ps 28 Year

0,
Og og 7

(a) Volatility, iid. errors (b) Volatility, SARMA errors

-17
Os <0 :
oy Vs Year

(d) Volumes, SARMA errors

(¢) Volumes, iid. errors

Figure 4.5: Estimated spot volatility and trading volume surfaces of Siemens AG using the bandwidths
in Table[4.3] Values of volatility are in 1E—04, of volumes in 1E+-03.
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Table 4.3: Bandwidths of the estimated models for spot volatility and trading volumes of Allianz SE
and Siemens AG under assumption of independent and dependent errors and local polyno-
mial regression DCS. Estimated models are iid., SARMA ((1,1), (1,1)), SARMA* with BIC
order selection and SAR (1, 1).

Data Err. Type h; hs cr
Allianz SE iid. 0.03848 0.07412 20.74
Volatility SARMA 0.09967 0.16900 2469.84
SARMA* 0.13684 0.25297  18358.91
SAR 0.04833 0.09017 57.19
Allianz SE iid. 0.05376 0.13552 1.845E+08
Volumes SARMA 0.14757 0.30166 9.506E+09
SARMA*  0.14930 0.30525 1.022E+10
SAR 0.05926 0.15380 3.161E+08
Siemens AG  iid. 0.05033 0.07178 28.53
Volatility SARMA 0.13934 0.18254 6376.02
SARMA*  0.28156 0.34702 148123.74
SAR 0.06004 0.08519 68.274
Siemens AG  iid. 0.06465 0.13751 6.330E+08
Volumes SARMA 0.13894 0.29217 2.369E+10
SARMA*  0.13992 0.29384 2.467E+10
SAR 0.06936 0.15102 9.417E+408

selection algorithm is presented. The application to financial data indicates that incorpo-
rating dependent errors terms increase the bandwidth substantially for the data sets under
consideration.

It should be emphasized that, though our algorithm is initially developed for financial
applications, it is not limited to those. For any spatial data model or functional time series
on a lattice which meets the assumptions, the semiparametric DCS offers a fast method of
estimating the expectation surface for large data sets.

Further research on the DCS can be conducted in various directions. Crucial to the
bandwidth selection algorithm is the estimation of the derivatives. These estimates are
heavily influenced by the choice of the inflation parameters and inflation exponents. Re-
finement of the local polynomial DCS might employ a data driven choice of these inflation
parameters and thus reducing both, bias and variance of the estimator.

The use of an SARMA process for modeling the error term structure might not be ap-
propriate in all cases. In some applications, this model might be clearly misspecified or
another model might suit the specific framework better. In the presence of long-memory
effects in the data, the SARMA might be replaced with an appropriate model such as a
spatial FARIMA model. An extension to nonparametric estimation of the variance factor
would convert the semiparametric model treated in this chapter into a fully nonparametric
model.
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4.8 Appendix

4.8.1 Proof of Theorem

Proof. Let U; = (XTW;X;)"'XTW; and Uy = (XIW,X,) 'XITW,, then the local
polynomial DCS estimator from Definition expressed as a single step is U;(UyY)7.
This can be written in terms of vectorization and Kronecker multiplication:

U (U, Y)T = U, YTUL = (U, @ Up)vec(Y) (4.8.1)

Let C,S,Y be defined as in Section [4.2] and note that C = X; ® X2, S = W; ® W3 and
Y = vec(Y). For suitable matrices A, B, C,D, the identity AC ® BD = (A ® B)(C ® D)
holds, iterated use of this identity on (4.8.1) leads to:

U, (U, Y)! = (cTsc)tctfsy

where the rhs. is the classical bivariate local polynomial smoother as in (4.2.3)). O

4.8.2 Proof of Theorem

This prooﬂz_r] is similar to that of Miiller| (1987), but adapted for spatial regression methods
under the DCS framework. From (4.2.13)), the nonparametric estimator for m(1*2) (z,, z)
can be written as weighted sum, with either the local polynomial weights w” or (equiv-
alent) kernel weights w’. By Assumption A4, product weights are used. We consider
kernels of order (k,u,v) as defined by and for a weighting function
Wy(u) of (4.2.8) - (4.2.10) as in Chapter[2]

Without loss of generality, we only consider right boundary kernels defined on [—1, ¢],

for ¢ € [0, 1] or interior kernels (¢ = 1), the results also hold for left boundary kernels
defined on [—g, 1].
Define X and W as above. Further, define the symmetric matrix

Co C1 Cp
C1 (&) Cp+1
— T — P
Np,q - (X WqX) - ’
Cp Cpy1 ... C2p

where the i, j-th element is indicated by r = i + j — 2. The weights w’ can be written as
wh = el,+11(1; sXTW, with e, being the (v + 1)-th unit vector. Further, denote the set
of all integers [ leading to non-zero weights in W, (+) by Q* where

Q" ={l:—nh<Il<gnh/leZ}.

“*Parts of this proof can also be adoped to proof Theorem in Chapter
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For any z € [0,1 — h|, where h is a bandwidth, the elements ¢, are given by

— q
cr = Z (2 — )" W, <xl ; x) = nh”‘l/ u Wy(u)du+ O(R"). (4.8.2)
leQ -1

Proof. Define the r-th moment of W, (u) by p,(u) = v"W,(u) and note that p, is Lipschitz
continuous as W, (u) is Lipschitz continuous. For the integral in (4.8.2) we have

/_Mq, ) du = Z/hn q.r

leQ*

By the mean value theorem, there exists an §; € (ﬁ, ﬁ) , such that

/q du— Zurfz

ZEQ*

Using the equidistancy of the 2’s and Lipschitz continuity of f, ,(u), it follows that

3 (@ - a)W, <‘”;$> — nhr L /_ ql uW,(u) du

leQ*
T l T
| S () -1 X e
leQ* leQ*
!
<h' Z Hor <nh> - /Lr(fl)
leQ*
l
SLAT Y | =&
leQ*
1
<Lh Y |—|=0(h")
et nh
as |Q*| = O(nh). O

Hence, N,, = nhH[N,, + o(1)]H, where H is the diagonal matrix with elements

1,h,h?,... hP~1. Taking the inverse, it follows for the i-th element of w’

1
wh; = EV!€Z+1(H71[NPQ +o(1)]TH )X We,

1 T;— X
Yz Z hr [ay+r + o(1)] 27 Wy <h>

1 Ty — 1
- nhqulKV’q ( h > +0 (nhuH) ’

with the equivalent kernel K, ,(u). The notation o(1) indicates a matrix whose elements
are all of order o(1). The weights are hence linked by w/; = w/[5;[1 + o(1)].
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With u; = (z1; — x1)/h1 and v; = (z2,; — x2)/h2 we yield for the product weights with

e 1iWe s

L L . Wy, Wa
Wy, ,iWyy,j = air +o(1)][az,r, +o(1)]u;v;? | ———2——
1, 2,] <Z Z[ 1,1 ( )][ 2,72 ( )] j > n1n2h1111+1h52+1

r1=07r2=0

b o (4.8.3)
Wi .iWs
— T s 5 »J
B <Z Z [a1,r, a2, + 0(1)]uilvj2> R T pratl
r1=07r2=0 ninzg 1 2
In the kernel regression case it is clear from (4.2.14) that
1 p1 D2
K K _ 1,72 . .
Wy, Wy 5 = PrZEs = E g a171,1+r1ag,,,2+r2u1,iu27jW1,ZW2J (4.8.4)
ninziy 2 r1=0r2=0

By setting the kernel order to k = p + 1, Theorem follows directly from (4.8.3) and
(4.8.4).

4.8.3 Expectation and Variance

As expectation and variance of a (bivariate) local regression estimator are standard results
in the literature (see, e.g, Ruppert and Wand, |1994; |[Fan and Gijbels, 1996} |Feng, |2013)),
we only give sketched proofs for the integral approximations of the expectation and vari-
ance of the DCS estimator. From Theorem [4.2] we can also adopt the results for kernel
regression from [Miiller and Prewitt| (1993)); [Facer and Miiller (2003) or that of Chapter [3]

Univariate Expectation. The univariate asymptotic expectation of the local polynomial
estimator can be calculated strainghtforward by using E{y; j|z1,} = m(z2|z1;) to

E {m(”Q)(mg)]mu} =K {V2!€V2+1(XgWQXQ)_lngQm(Z'QJ)‘xLZ‘}
m(@2,5]w1,)

mM (wg,j|21,)

=wyle,, 1 1(XTWyXs) 1 XITW,oX + Sop1 + Re

mP? (22,5]21,)

=m® (1:2,]-|x1,¢) + SQH + R».

The leading term of the expansion is as defined in (4.3.2), the Taylor series remainder is

00 n2 (r2) ]
m 2|,
R2 = E E w%’j(xzj — .’L'Q)TQ E“ ] ’ 71)
ro=p2+2 j=1 z

An analogous argumentation holds for Sy .
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Expectation of the DCS Estimator. The leading terms of the Taylor expansion are given
by S7 and S5 of (4.3.3), (4.3.4). Their integral approximation is

1
Sy = R iy (B )ym P ) (2 29) + O <V1> +0 (hpl ”l+1> and
n1h1

1% 1 et %
Sy = hb?~ 2+1up2+1(K)m(”l’p2+1)(x1,xg) +0 <n2h”1> +0 (h§2 2) :
2
Note that we define the kernel moment function j by
q )
() = [ Kl du, g€ o
~1

Variance of the DCS Estimator. We adopt the findings by [Feng (2013) for the local
polynomial regression to give a sketched proof of the variance approximation (4.3.7)).

After a variable transformation s = i — i*, t = j — j* and defining x; = [n1h1] and
ko = [n2hg], where [-] denotes the integer part, the variance in (4.3.6) may be rewritten
as

2K1 2K2

~ (v1,v L, L L, L
var {m( 12) (31, o } E E g E wy Wy swy jwy iy | (s, 1)

s=—2K1 t=—2Ko |i—i*=s5j—j*=t

Following Theorem [4.2) we use the equivalent kernel weights w” to write

2K1 2K9 . .
(3 11— S
= E g E K
(n1ns hl’1+1h”2Jrl [ <n1h1> ' <n1h1>

s=—2K1 t=—2k2 Li—i*=s

(4.8.5)
J J—t
Z Kz <n2h2> K2 (n2h2) W(S’t)‘
J—jr=t
Define the autocovariance response function for a kernel K (u)(Feng, 2013) by
u+1
J Kw)K(v—u)dv for —2<u<0
~1
1
Gr(u) = J Kw)K(v—u)dv for0<u<2 (4.8.6)
u—1
otherwise.

\

This function quantifies the contribution of the autocovariance to the overall variance of
the estimator m(*1*2) (1, z). Defining u = s/, it holds that

1 1 ] 1
K K
nihy Z ! <n1h1> ! (n1h1> Gra(w) +0 (nlhl)

1—i*=s

with a similar result for G, (v)
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Proof. Let —2x < s < 0 and define v = v/x and u as above. Then we have

nhsi ( ) <2_3> / K()K (v —u) dv
3% () <::>—:fzj/;;f«<na>f<<%f>\
S5 () () - () (55)

nhz

where the r; form a suitable partition and ¢ are adequate mean values. Then, we can use
the Lipschitz continuity of K (u) and obtain
1
=0(—).
)=o)

L P — &
< — s+m<‘z Sil
n

1—s—&+s
nh

O

With the autocovariance response functionG i (u) from (4.8.6), the term for the variance

in ( is written as

var{ V1v2) (g4, 1‘2)} (4.8.7)

2K1 2K9

B hQVlthQ”2+1 2 2 [GKl <nsh1> Cre (n;hz) +0(1)] 7o)

ninz s=—2K1 t=—2kK9

In the asymptotic limit by, Assumption A3, it holds that nihy,nsho — oo as ny,ny — oo.
Applying the same rationale as [Feng| (2013), we may divide the double sums of
into two double sums, for all |s| < 1/h4, |t| < 1/ho and the other for the remaining terms.
Then becomes

Z Z Gr, <n18h1> G, <n2th2> (s, t)

‘S‘<1/h1 |t|<1/h2

+ Y% GK1< )GKQ <n;h2>fy(s,t).

|s|>1/h1 |t|>1/h2

Now, since hy,ho — 0 as ny,ne — oo, the second term vanishes in the limit. Employing
Assumption A3 again, the arguments in G approach zero, where it holds that Gk (0) =
R(K), with R(K) as defined above. We arrive at the asymptotic approximation in (4.3.6)).
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4.8.4 Optimal Bandwidths

Let Assumptions Al to A4 as well as A5’ hold. From the AMISE (4.3.10), we get the first
order condition for the optimal bandwidth h,

OAMISE(hy, ho)

= 2(6 + 1)fi2, 41 (K1) 1 A3

Ohy
+ 2(8 + 1)fipy 41 (K1) fipy 1 (K2) Ti2h§ ™ (4.8.8)
(20 + DRIEDR(S)
B ’I’L1’I’L2h%u1+2hgy2+l Cf -

Note that the first order condition for the derivative with respect to hs is analogous. Solv-
ing (4.3.10) for the variance term and equalizing both first order conditions yields

1 (KD) T ooe1) g (Ko) o511y
v +1 1 2wy +1 2

. . vy — v
+ fipy 1 (K1) fipy 11 (K2) 12 <(21/1 D@ 1)> RSt =0,

which is a quadratic equation in h‘ls“. The positive solution is the linear relation h; = A;hs
with A given in (4.3.12). Applying this relation to the first order condition (4.8.8) leads
to the optimal bandwidth formula.



Table 4.4: Financial application: Estimated SARMA models for volatility and volumes of Allianz SE

Data Err. Type o 10) P
Allianz SE iid. 4.612 - -
Volatility
1 —0.9876 1 —0.9507
SARMA — 4.503 (—0.9872 0.9749) (—0.965 o.9174>
1 —1.1242  0.1279
SARMA*  6.525 —1.0045 1.1292  —0.1285 (_0;686 _00594229>
0.0143  —0.016  0.0018 ‘ ‘
1 —0.1639  —0.032  —0.0466
—0.0268 —0.0166 —0.0126 —0.008
SAR 452 | 00207 —0.0135 —0.0092 —0.0042 (1)
—0.0229 —0.0087 —0.0056 —0.0048
Allianz SE iid. 12790 - -
Volumes
1 —0.9984 1 —0.9876
SARMA 12650 (—0.012 0.012> (0.0105 —0.0104>
1 -1.0113  0.0128
SARMA* 12640 —0.0226  0.0228 —3E—04 (1 —0.988)
—0.0161  0.0163 —2E—04
1 —0.0491 —0.0435 —0.0418
—0.0145 —0.0142 —0.0144 —0.0143
SAR 127701 00093 —0.0085 —0.0088 —0.0091 (1)

—0.0063 —0.0063 —0.0068 —0.0061
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Table 4.5: Financial application: estimated models for volatility and volumes of Siemens AG

Data Err. Type  o? o ¥
Siemens AG iid. 5.322 - -
Volatility
1 —0.9847 1 —0.9486
SARMA — 5.211 (—0.9976 O.9823> (—0.9876 O.9368>
1 —1.1759  0.1805
SARMA*  30.18 —1.0086 1.1861 —0.182 <_0£1)813 _11(')%@216 _0(')0(?5’26)
0.0125 —0.0147 0.0023 ' : '
1 —0.1456  —0.0342 —0.0408
—0.0261 —0.013 —0.0111 —0.0042
SAR 5.246 —0.0229 —0.0114 —0.0072 —0.0027 (1)
—0.0203 —0.0095 —0.0058 —0.0018
Siemens AG iid. 23940 - -
Volumes
1 —0.9983 1 —0.989
SARMA 23760 <—0.008 0.008) (0.0074 —0.0073>
1 —1.0057  0.0074
SARMA* 23720 —0.0154 0.0155 —1E—04 (1 —0.9892)
—0.0092 0.0093 —1E—04
1 —0.0365 —0.034 —0.0338
SAR 53910 —0.0111 —0.0116 —0.011 —0.0107 1)

—0.0059 —0.0059 —0.0058 —0.0059
—0.0044 —-0.0043 —0.0042 —0.0044

s1o113 Juapuada( Iapun §H( [BIWOUAJO] [BI0T
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5 Further Research Topics

The methods and algorithms presented in this thesis aim at further development of the
DCS technique for estimation of mean surfaces of functional time series. Naturally, there
are plenty of ways in which the proposals can be extended. In general, these extensions
can be divided into two areas; extension of the scope of applications or extension of
the methods themselves. These areas are intertwined, some new applications require
development of new methods as well, to account for special features of the applications of
interest, if the methods available are not suitable for these considerations.

In the previous chapters the methods and applications aimed at financial applications.
However, the findings can be generalized to a broader scope of functional data as described
in Section[1.1} A direct transition of the methods is possible to lattice time series from non-
financial areas of the type considered in this thesis. As electronic and digital monitoring
and measuring becomes cheaper and widely available detailed time series over a long
period become available as well. Under the spatial time series framework many of them
can be divided into an intraday and an interday component if they are recorded over
several days.

Monitoring of environmental data is a topic of increasing importance especially in the
face of the climate crisis. The database of the NOAA (National Oceanic and Atmospheric
Administration) (Diamond et al., [2013)) provides plenty of environmental data which can
be represented in our functional time series framework. Exemplary surfaces of the time
series of temperature and wind speed in Yuma, AZ during 2020 are shown in Figure
the data is collected in 5-minute intervals. Although the general structure of the data is
visible from the raw data, smoothing uncovers the mean structure very clearly. The use
of an SARMA assumption to model the errors leads to a major increase in the selected
bandwidths as expected, due to a strong autoregressive component in the data. The es-
timated SARMA models for the errors in the temperature and wind speed example are
given in Table The estimated coefficients from the SARMA models show substantial
autoregressive components which is expected due to temperatures and also wind speed to
some degree are not subject to a very fast change over the intraday observations. For tem-
peratures, this effect is stronger in the intraday and interday direction, while for the wind
speed, the interday dependency is much weaker. These findings somehow correspond to
the common experience of weather.

The assumption of a parametric SARMA for modeling the dependency structure in the
error terms ¢; ; might be too restrictive in some applications. More flexibility in the model
assumption for the dependency structure is be allowed by introducing a nonparametric
estimation method for c¢, which is the spectral density of the error term process at the
origin. Let ¢; ; be the observations of the error term process of the model with dependent
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Figure 5.1: Observed and estimated surfaces of temperature [C°] and wind speed [m/s| in Yuma, AZ
in 2020. Surfaces are smoothed under iid. and SARMA ((1,1), (1,1)) error assumptions.
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errors in (4.2.1). The corresponding spectral density f(w,ws2) is estimated by the Fourier
transform of the autocovariance function of the ¢; ;, e.g. given by Robinson| (2007)

ni—1 no—1
J/C\(WMWZ):(;W) Z Z < ) <I;;) ~(k1, ka)e “ihwi—ikez (50.1)

ki=1—n1 ka=1—no

where wy,wy € [—m, 7|, w(+) is a suitable lag window weighting function and the autoco-
variances are estimated from

n1—lki| no—|ka|

1
= E E €i,jEi—i*,j—j*
ning

=1 j*=1

There exist several types of lag window weights w(+), a simple but useful variant is the

Bartlett weighting function

1- ’u‘a |u’ <1
w(u) =

0, otherwise

Biithlmann| (1996)) proposed an IPI bandwidth selection algorithm for the bandwidth of an
univariate estimator which can be extended to the two dimensional case for estimation
of A1, \o. This algorithm differs from those in Propositions and as the optimal
bandwidths are selected locally, depending on wy,ws. In Figure[5.2]the true and estimated
spectral density surfaces of the SARMA process used in Section with coefficient ma-
trices in (4.5.4) are shown. A nonparametric estimator for the variance coefficient of the
error process is then ¢y = f(O, 0). For the example surfaces, we get f(0,0) = 6.129E—04
and f(O, 0) = 6.273E—04. In Table the estimated bandwidths along with c; are tabu-
lated for examples of the volatility and volume surfaces of Allianz SE and BMW AG using
nonparametric estimation of c;. Contrary to the examples in Section data sampled at
the 5-minute level was used, over the time span from 2007-01-02 to 2010-12-307}
Introducing long-memory errors into the semiparametric regression model is
a more challenging topic, as now the asymptotic contribution of the autocovariances on
the variance of the local estimator is not negligible. Hence, a complete separation of the
variance coefficient c; as in Proposition is not possible; the optimal bandwidths are
explicitly a function of the long memory parameters d;, ds. A (separable) SFARIMA model
is given by [Beran et al.| (2009), where the same notation as in and is used

¢1(B1)da(B2)(1 — B1)™ (1 — Ba)®e; j = v1(B1)v2(Ba)mi 5,

with dy, dy € [0,0.5). The formulas for the optimal bandwidths differ from those in Propo-
sitions[3.1]and [4.1} Some exemplary results of bandwidth selection under SFARIMA errors

!The data was aggregated by calendar time sampling (CTS). Original Data was obtained from Thomson
Reuters.
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are given in Table for the larger data sets of 1-minuite observations from 2004-2014
with n; = 2738, ny = 510. The larger bandwidths of the short-memory bandwidth se-
lection might be due to a misspecification in the model, which results from unaccounted

long-memory effects.



Table 5.1: Estimated SARMA ((1, 1), (1, 1)) models for temperature and wind speed in Yuma, AZ.

Model h, ho o2 o "
Temperature iid. 0.0408 0.0604 7.7212 - ]
1 —0.9966 1 —0.0258
SARMA 0.3235 0.3648 0.2056 (_0.8215 D06 ) (_0'0556 .02 )
Wind Speed iid. 0.0767 0.0725 1.7573 1 - oot 1 __0 .
SARMA 0.2334 0.1444 0.2712 <_0.0427 0.0412 > <O.1169 _0.0390>

Table 5.2: Bandwidths for smoothing the Allianz SE and Siemens AG volatility surfaces of 5-minute data from 2007-2010 with n; = 1016, no = 101 observations.
The bandwidths under a short memory assumption for the error terms are obtained using an iid. model, an SARMA (1,1), (1,1)) model and a
nonparametric spectral density estimate for c;.

Volatility of iid. SARMA Nonparametric

hl hQ Cf h1 h2 Cf hl hg Cf

ALV Volatility 0.0739 0.1219 5.44E400 0.1738 0.2803 3.87E+402 0.1620 0.2685 2.94E4-02
BMW Volatility 0.0850 0.1192 5.54E+00 0.1571 0.2127 1.04E+402 0.1737 0.2433 1.83E402
ALV Volumes 0.0433 0.1092 2.16E-01 0.2127 04735 1.74E402 0.1860 0.3908 7.00E4-01
BMW Volumes 0.0534 0.1232 2.47E—01 0.1597 0.4397 6.29E4-01 0.1514 0.4049 4.22E+401

sordoJ, yoIeasay Ioylng g

10T
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Table 5.3: Bandwidths for smoothing the Allianz SE and Siemens AG volatility surfaces of 1-
minute data from 2004-2014 used in Chapter 4| under a long-memory assumption for
the error terms. The bandwidths are selected under an SARMA ((1,1),(1,1)) and an
SFARIMA ((1,1), (1,1)).

Volatility of SARMA SFARIMA

hl h2 Cf hl hQ Cf
ALV Volatility 0.09967 0.16900 2.46984E+-03 0.10771 0.12905 2.44919E—01
BMW Volatility 0.08311 0.11721 4.81752E+02 0.12261 0.12309 5.95235E—01
ALV Volumes 0.14757 0.30166  9.50627E409 0.08568 0.15508 1.54287E+-06
BMW Volumes 0.12555 0.34013  6.26523E+09 0.09792 0.15641 8.17673E+405

(a) true

(b) estimated

Figure 5.2: True and estimated spectral density of the SARMA process (4.5.4).
the nonparametric estimate by applying are selected by the spatial version of the

algorithm by [Bithlmann| (1996)).

The bandwidths for



6 Conclusion

The major topic of this dissertation is the further development of the DCS method to
estimate the mean surface of a functional time series on a lattice.

The proposed representation of time series on a lattice provides a method for detecting
and estimating of certain features in this data. Throughout this thesis, the most promi-
nent example was a lattice time series with an intraday and interday index, as this type
of time series has a wide range of applications. The surface of time series of this type can
hence be used for exploring the behavior over the days and inside the days and especially
the relationship between those two components. Another type of functional lattice time
series can be constructed from univariate time series with a regular seasonal pattern. The
spatial representation and estimation of the corresponding mean surface may be utilized
to filter out the seasonal component. Further lattice time series in which only one com-
ponent actually represents time can be defined under the proposed framework. Examples
are the time series of temperatures measured at different locations in a solid-state body
in a physics experiment or the time series of the number of cars on different sections of a
street monitored over a day. These examples are somehow closer to the second definition
of functional time series by [Li et al| (2019a)) cited in Chapter[l] The necessary assumption
for the presented functional regression framework is that all distances between observa-
tions are well defined on a cardinal scale, be it in time units, spatial units or some other
dimensions.

In Chapter [2| boundary modification methods in local regression are treated. Local re-
gression is known to solve the boundary problem from which kernel regression suffers
and due to this, admittedly very important, characteristic of local regression, the further
discussion of the boundaries is often neglected. This is especially problematic in cases
where boundary regions dominate the total estimation area. The example of real-time
monitoring in Section[1.2] where each point is treated as a boundary point, illustrates this
issue. Adopting the ideas of the boundary kernels by Miiller| (1991) and Miiller and Wang
(1994)) the concept of boundary correction is extended to a boundary modification scheme
for local polynomial regression estimators. Two new classes of boundary-modified local
regression weights are introduced corresponding to the kernel regression weights pro-
posed by Miiller (1991) and Miiller and Wang (1994). It is shown that the use of these
weighting functions leads to estimates in the interior region which are exactly equivalent
to the common use of truncated kernels. However, the new kernels provide a smooth
continuation of estimates in the inner region to estimates in the boundary region. The
findings emphasize the direct correspondence between local polynomial regression and
the generation of kernels for kernel regression (see e.g. Hastie and Loader, 1993). The
proposed methods for boundary modification in local regression can be utilized for gen-

103



6 Conclusion 104

erating the classes of boundary kernels defined by Miiller (1991) and Miiller and Wang
(1994) of desired orders. Explicit formulas of kernels generated by these methods can be
found in Table 2.1l and Table

The DCS for kernel regression is studied and further developed in Chapter|3| A bound-
ary correction scheme is introduced in Section applying the boundary kernels gen-
erated from the methods proposed in Chapter In previous applications of the DCS
by [Feng (2013) or Peitz and Feng (2015) boundary correction was not considered ex-
plicitly. Further improvement in the efficiency of the DCS algorithm is achieved via the
FDCS defined in Section which utilizes the assumed lattice structure to avoid re-
dundant computations. The FDCS has equivalent properties to the DCS (under a regular
lattice structure) and is designed for direct implementation of the algorithm in a pro-
gram such as R. From the asymptotic properties of the DCS/FDCS estimator found in
Section the optimal bandwidths are derived by minimization of the AMISE in Sec-
tion These bandwidths are selected with the IPI-algorithm (Gasser et al., [1991)
described in Section This algorithm is the preferred bandwidth selection method
for this framework, as other bandwidth selection methods like CV are too slow for large
data sets. The IPI iteratively computes certain partial derivatives of the regression func-
tion to obtain intermediate bandwidth estimates which are then used for regression again,
converging towards the true asymptotic optimal bandwidths. To estimate the derivatives
required in each step appropriate kernels for derivative estimation from the kernel gen-
erating method of Chapter [2| are used. The bandwidth selection algorithm is assessed in
Section at two simulated spatial surface functions. The results indicate that the band-
width selector is subject to a certain variance, depending on the function under consider-
ation. However, the true optimal bandwidths are found with 9% confidence on average.
The results also indicate, that the overall precision of the algorithm strongly depends on
the data and function under consideration. The application of the methods to financial
data in Section demonstrates that the proposed algorithms are well-suited for estimat-
ing the mean or expectation surface from noisy data. The spot volatility surfaces clearly
show the influence of the financial crisis 2008 in the expected ways, however, the surface
seems to be undersmoothed by a small amount, as some finer structures are still visible in
the surfaces.

The DCS under local polynomial regression (LP-DCS) is newly developed in Chapter [4
Local polynomial regression has some advantages over kernel regression, e.g., it solves the
boundary problem and provides a clean derivative estimation method, which is useful for
the IPI bandwidth selection. It is shown that the LP-DCS shares some properties with the
kernel regression DCS such that the FDCS is also applicable here. Similar to the boundary
correction in kernel regression, the boundary modification scheme introduced in Chapter
is employed for the estimation of the spatial surfaces under the LP-DCS context. Again,
the optimal bandwidths are obtained by an IPI algorithm. The estimation of derivatives is
simplified under local regression, which is an advantage for the calculation of the partial
derivatives necessary in the IPI algorithm. The assumption of iid. error terms is given up
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in favor of a dependency structure modeled by a spatial ARMA (SARMA) model. Some
estimation procedures are suggested for parametric estimation of the SARMA along with
a convenient matrix notation. In the simulation study of Section it becomes evident
that neglecting dependency in the errors leads to incorrect estimation of the bandwidths.
When accounting for SARMA errors in the volatility surface estimations of Section 4.6}, the
selected bandwidths increase clearly from the bandwidths under an iid. assumption for
the error terms. Hence, an incorrect model assumption for the error terms would lead to
an undersmoothing of the mean surface. This behavior also holds for the environmental
data presented in Chapter [5

In summary, the DCS technique provides an efficient way of estimating the mean surface
of a spatial time series in a nonparametric way. The proposed methods for nonparametric
estimation and bandwidth selection under iid. and short memory dependent errors work
well under the spatial model and are suitable for estimation of mean surfaces of the data.
Although the focus was on the estimation of time series in a financial context, the findings
are applicable to a broader scope of data structures from other areas of research.



A  Appendix: DCSmooth Vignette

The R package DCSmooth gathers the methods and tools developed in this
thesis for practical application. This slightly modified vignette of this package
gives an overview of the package. Note that some changes in notation compared
to the theoretical chapters [2] - H] are made, for easier programming and usage of
the package. This concerns especially the notation of the covariate variables x1,
xo, Which are replaced by z and t in the code. The package is published on CRAN
(Schdfer, 12021).

A.1 Introduction

This vignette describes the use of the DCSmooth-package and its functions. The DCSmooth
package provides some tools for non- and semiparametric estimation of the mean surface
m of an observed sample of some function

y(z,t) = m(z,t) + e(x, t).

The DCSmooth contains the following functions, methods and data sets:

Functions

set.options() Define options for the dcs () -function.

des () Nonparametric estimation of the expectation function
of a matrix Y. Includes automatic iterative plug-in
bandwidth selection.

surface.dcs() 3d-plot for the surfaces of an "dcs"-object.

sarma.sim() Simulate a SARMA-model.

sarma.est () Estimate the parameters of a SARMA-model.

sfarima.sim() Simulate a SFARIMA-model.

sfarima.est() Estimate the parameters of a SFARIMA-model.

kernel.assign() Assign a pointer to a kernel function.

kernel.list() Print list of kernels available in the package.
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Methods/Generics

summary.dcs()
print.dcs()
plot.decs()

residuals.dcs()

print.summary_dcs()

print.set_options()

summary .sarma()

print.summary_sarma()

summary.sfarima()

print.summary_sfarima()

Summary statistics for an object of class "dcs".

Print an object of class "dcs".

Plot method for an "dcs"-object, returns contour plot.
Returns the residuals of the regression from an "dcs"-
object.

Print an object of class "summary_dcs", which inherits
from summary.dcs().

Prints an object of class "dcs_options", which inher-
its from set.options()

Summary statistics for an object of class "sarma"
Prints an object of class "summary_sarma", which in-
herits from summary.sarma()

Summary statistics for an object of class "sfarima"
Prints an object of class "summary_sfarima", which

inherits from summary.sfarima()

Data

y.norml A surface with a single gaussian peak.

y.norm2 A surface with two gaussian peaks.

y.norm3 A surface with two gaussian ridges.

temp.nunn Temperatures in Nunn, CO observed in 2020 in 5
minute intervals. (Source: NOAA)

temp . yuma Temperatures in Yuma, AZ observed in 2020 in 5
minute intervals. (Source: NOAA)

wind.nunn Windspeed in Nunn, CO observed in 2020 in 5 minute

wind.yuma

returns.alv

volumes.alv

intervals. (Source: NOAA)

Windspeed in Yuma, AZ observed in 2020 in 5 minute
intervals. (Source: NOAA)

5 minute returns of Allianz SE from 2007 to 2010

5 minute volumes of Allianz SE from 2007 to 2010




A Appendix: DCSmooth Vignette 108

A.2 Details of Functions, Methods and Data

A.2.1 Functions
set.options()

This auxiliary function is used to set the options for the dcs function. An object of class
dcs_options is created and should be used as dcs_options- argument in the dcs function.
Arguments of set.options() are

* type Specifies the regression type. Supported methods are kernel regression ("KR")
and local polynomial regression ("LP"), which is the default value.

* kerns A character vector of length 2 stating the identifiers for the kernels in each
dimension to use. The first element corresponds to the smoothing conditional on
rows, the second conditional on columns. The identifiers are of the form X kuv,
where X indicates the smoothing method to use, either one of M, MW or T. The value
k is the kernel order, 1 is the smoothness degree and v the derivative estimated by
the kernel, which must match the order of derivative drv. For more information on
the kernels see section 4.3, a list of available kernels is given in A.1. The default
kernels are "MW_220" for both dimensions.

* drv Derivative (v, ;) of m(x,t) to be estimated. Note that £ > v + 2, hence, only
estimation of derivatives corresponding to kernels available is possible.

» var_model Specifies the model assumption and estimation method for the er-
rors/innovations ¢(x, t) in the regression model. The model is selected in the form
"model_method". Currently available are

— "iid" (independently identically distributed errors with variance estimation
from the residuals, set as default).

— "sarma_sep" (separable spatial ARMA (SARMA) process, two univariate pro-
cesses in both directions are estimated via stats: :arima).

— "sarma_HR" (fast estimation of an SARMA process by the Hannan-Rissanen
algorithm).

— "sarma_RSS (estimation of an separable SARMA process by numerical mini-
mization of the RSS).

— "sfarima_RSS" (estimation of a separable spatial FARIMA (SFARIMA) model
by numerical minimization of the RSS).

The models and estimation methods are described in more detail in Section 4.4.

* ... Additional arguments passed to set.options. The default values of these op-
tions typically depend on other options and thus are put in an ellipsis. Accepted
arguments are

- IPI_options Advanced options for tuning the parameters of the iterative plug-in
algorithm of the bandwidth selection. These options include 2-element vectors
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for the inflation parameters (infl_par), the inflation exponents (infl_exp)
and trimming parameters for stabilized estimation of the necessary deriva-
tives (trim). Another option to further stabilize estimation of derivatives at
the boundaries is the use of a constant estimation window at the boundaries
setting the logical flag const_window to TRUE. The default values for the IPI-
options depend partly on the regression type and error model selected and are
given below.

— model_order controls the order of the parametric error term model if an
SARMA or SFARIMA model is used. This can be either a list of the form
list(ar = c(1, 1), ma = c(1, 1)) (the default for SARMA and SFARIMA)
specifying the model order, or any of c("aic", "bic", "gpac") specifying an
order selection criterion. Note that gpac does not work under SFARIMA errors.

- order_max Controls the maximum order if an order selection process is chosen
in model_order. Is a list of the form list(ar = c(1, 1), ma = c(1, 1)) (the
default).

set.options() returns an object of class "dcs_options including the following values

type Inherited from input.

kerns Inherited from input.

drv Inherited from input.

p_order A numeric vector of length 2, computed from drv by pp = v + 1,k = x, ¢t.
var_model Inherited from input.

IPI options Options for the iterative-plug in algorithm for bandwidth selection. If
unchanged, values are set conditional on type (see default values for KR and LP
below).

add_options A list containing the additional options model_order and order_max if
available.

Every argument of the set.options function has a default value. Hence, just using

set.options() will produce a complete set of options for double conditional smoothing

regression in dcs (which is also implemented as default options in dcs, if the argument

dcs_options is omitted).

Default options for kernel regression (type = "KR") are
summary (set.options( "KR"))

#> dcs_options

B> e

#> options for DCS  rows cols

B> e

#> type: kernel regression

#>

kernels used: MW_220 MW_220
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#> derivative: 0 0

#> wvartance model:

B> oo .
#> IPI options:

#> anflattion parameters 2 1

#> anflattion exponents 0.5 0.5

#> trim 0.05 0.05

#> constant window width FALSE

B> oo ___

Default options for local polynomial regression (type = "LP") are

summary (set.options(type = "LP"))

#> dcs_options

B m -
#> options for DCS  rows cols

B m -
#> type: local polynomial Tegression

#> kernel order: MW_220 MW_220

#> derivative: 0 0

#> polynomial order: 1 1

#> wartance model: 11d

B m -
#> IPI options:

#> wnflatton parameters 1 1

#> anflatton exponents auto

#> trim 0.05 0.05

#> constant window width FALSE

B> o ____
des()

The dcs () -function is the main function of the package and includes IPI-bandwidth selec-
tion and non-parametric smoothing of the observations Y using the selected bandwidths.
This function creates an object of class dcs, which includes the results of the DCS proce-
dure.

Arguments of dcs () are

* Y The matrix of observations to be smoothed via the DCS procedure. This matrix
should only contain numeric values and no missing observations. For computational
reasons, Y has to have at least five rows and columns, however, for reliable results
the size should be larger.
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dcs_options The options used for the smoothing and bandwidth selection. This
should be an object of class "dcs_options" created by set.options(). This argu-
ment is optional, if omitted, all options will be set to their default values from the
set.options() function.
h Either a two-value vector of positive numeric bandwidths or "auto" if bandwidth
selection should be employed (the default).
parallel A logical flag if parallelization should be used for computation of the
smoothed surfaces and its derivatives. If the order of the variance model is
automatically selected, parallelization affects also this.

Further arguments to be passed to the function. This includes the equidistant
covariates X and T which should be ordered numerical vectors whose length matches
the number of rows of Y for X and the number of columns of Y for T.

dcs returns an object of class "dcs including the following values

X, T Vectors of covariates inherited from input or calculated to be equidistant on
[0, 1] if these are omitted in the input.

Y Matrix of observations inherited from input.

M Matrix of smoothed values. If the argument h = "auto is used in dcs, the band-
widths are optimized via the IPI-algorithm, if h is set to fixed values, these bandwidth
are used.

R Matrix of residuals computed from R =Y — M.

h Bandwidths used for smoothing of Y. Either obtained by IPI bandwidth selection
or given as argument in dcs.

c_f The estimated variance factor used in the last iteration of the bandwidth selection
algorithm. Is set to N4, if no bandwidth selection is used.

var_est The estimated model obtained for the error terms (residuals) (z, ¢), i.e. the
matrix $R. The output depends on the model specified in dcs_options$var_model.
For var_model = "iid", it contains the estimated standard deviation of the resid-
uals and an indicator for stationarity, which is true by assumption. For dependent
models dcs_options$var_model = c("sarma_sep", "sarma_RSS", "sarma_HR"),
it contains the estimated model in an object of class "sarma" including the coeffi-
cient matrices $ar and $ma, the standard deviation $sigma as well as an stationarity
indicator $stnry. For dcs_options$var_model = "sfarima_RSS", the output is of
class "sfarima", with similar contents as "sarma" and the addition of the estimated
long memory parameter vector $d.

dcs_options An object of class "dcs_options" containing the options used in the
function.

iterations An integer reporting the number of iterations of the IPI algorithm. Is set
to N4, if no bandwidth selection is used.

time_used A number reporting the time (in seconds) used for the IPI algorithm
(total including all iterations). Is set to NA, if no bandwidth selection is used.
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surface.dcs()

This function is a convenient wrapper for the plotly::plot_ly() function of the plotly
package, for easy displaying of the considered surfaces. Direct plotting is available for any
object of class "dcs" or any numeric matrix Y.

Arguments of surface.dcs() are

* Y Either an object of class "dcs", inheriting from a call to dcs() or a numeric matrix,
which is then directly passed to plotly::plot_ly().

* plot_choice Only used, if Y is an object of class "dcs". Specifies the surface to
be plotted, 1 for the original observations, 2 for the smoothed surface and 3 for
the residual surface. If plot_choice is omitted and Y is an "dcs"-object, a choice
dialogue will be prompted to the console, which asks to state one of the available
options.

* trim A two-value vector which gives the percentage (between 0 and 0.5) of bound-
aries to leave out in the plot. Useful, if estimation at boundaries is unstable and has
too high values compared to the inner, e.g. useful when estimation of derivatives is
considered.

* ... Further arguments to be passed to the plotly::plot_ly() function.

surface.dcs() returns an object of class "plotly".

sarma.sim()

Simulation of a spatial ARMA process (SARMA). This function returns an object of class
"sarma" with attribute "subclass" = "sim". The simulated innovations are created from
a normal distribution with specified standard deviation o. This function uses a burn-in
period for more consistent results.

Arguments of sarma.sim() are

* n_x, n_t The dimension of the resulting matrix of observations, where n_x specifies
the number of rows and n_t the number of columns. Initially, a matrix Y' of size
2n, X 2n; is simulated, for which simulation points with ¢ < n, or 5 < n; are
discarded (burn-in period).

* model A list containing the model parameters to be used in the simulation. The
argument should be a list of the form list(ar, ma, sigma). The values ar and ma
are matrices of size (p, + 1) x (p; + 1) respective (¢, + 1) X (¢ + 1) and contain
the coefficients in ascending lag order, so that the upper left entry is equal to 1 (for
lag 0 in both dimensions). The standard deviation of the iid. innovations with zero
mean is sigma, which should be a single positive number. See the examples in the
application part 3.2 and the notation of SARMA models in Section 4.4.

sarma.sim() returns an object of class "sarma" with attribute "subclass" = "sim"
including the following values:
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Y The matrix of simulated values with size n, x n; (determined by function argu-
ments n_x, n_t). The matrix Y is the lower left n, x n; submatrix of the actually
simulated matrix Y’ of size 2n, x 2n, to avoid effects from setting the initial values
(burn-in period).

e innov The n, x n; matrix of iid. normally distributed innovations/errors of the
SARMA model with zero mean and variance ¢ (determined by the function argu-
ment model\$sigma). As with Y, the original matrix has size 2n, x 2n,.

* model The model used for simulation, inherited from input.

 stnry A flag indicating whether the simulated process is stationary.

sarma.est ()

Estimate the parameters of an SARMA of given order. It returns an object of class "sarma"
with attribute "subclass" = "est". For estimation, three methods are available.
Arguments of sarma.est () are

* Y A (demeaned) matrix of observations, which contains only numeric values and no
missing observations.

* method A character string specifying the method for estimation. Currently sup-
ported methods are the Hannan-Rissanen algorithm ("HR"), a separable model using
two univariate estimations via stats: :arima ("sep") and a separable model which
minimizes the residual sum of squares (RSS) of the model ("RSS™").

* model order A list specifying the order of the SARMA to be estimated. This list
should be of the form list(ar = c(1, 1), ma = c(1, 1)), where all orders should
be non-negative integers. A SARMA((1,1),(1,1)) model is estimated by default, if
model_order is omitted.

sarma.est () returns an object of class "sarma" with attribute "subclass" = "est"
including the following values:

* Y The matrix of observations inherited from input.

¢ innov The matrix of estimated innovations (residuals).

* model A list of estimated model coefficients containing the matrices ar of autore-
gressive coefficients, the matrix ma of moving average coefficients as well as the
standard deviation of residuals sigma.

* stnry A flag indicating whether the estimated process is stationary.

sfarima.sim()

Simulation of a (separable) spatial fractional ARIMA (SFARIMA) process. This function
returns an object of class "sfarima" with attribute "subclass" = "sim". The simulated
innovations are created from a normal distribution with specified standard deviation o.

This function uses a burn-in period for more consistent results.
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Arguments of sfarima.sim() are

n_x, n_t The dimension of the resulting matrix of observations, where n_x specifies
the number of rows and n_t the number of columns. Initially, a matrix Y' of size
2n, x 2n; is simulated, for which simulation points with i < n, or j < n; are
discarded (burn-in period).

model A list containing the model parameters to be used in the simulation of the
form list(ar, ma, d, sigma). The values ar and ma are matrices of size (p, +1) X
(pt + 1) respective (¢, + 1) x (¢: + 1) and containing the coefficients in ascending
lag order, so that the upper left entry is equal to 1 (for lag O in both dimensions).
The long-memory parameters d,, d; are stored in d, a numeical vector of length 2,
with 0 < d;,d; < 0.5. The standard deviation of the iid. innovations with zero
mean is sigma, which should be a single positive number. See the examples in the
application part 3.3 and the notation of the short memory SARMA part in Section
4.4.

sfarima.sim() returns an object of class "sfarima" with attribute "subclass" =

"sim" including the following values:

Y The matrix of simulated values with size n, x n; (determined by function argu-
ments n_x, n_t). The matrix Y is the lower left n, x n; submatrix of the actually
simulated matrix Y’ of size 2n, x 2n, to avoid effects from setting the initial values
(burn-in period).

innov The n, x n; matrix of iid. normally distributed innovations/errors of the
SFARIMA model with zero mean and variance o2 (determined by the function argu-
ment model\$sigma). As with Y, the original matrix has size 2n, x 2n,.

model The model used for simulation, inherited from input.

stnry A flag indicating whether the simulated process is stationary.

sfarima.est()

Estimation of an SFARIMA process. This function minimizes the residual sum of squares

(RSS) to estimate the SFARIMA-parameters of a given order. It returns an object of class

"sfarima" with attribute "subclass" = "est".

Arguments of sfarima.est () are

Y A (demeaned) matrix of observations, which contains only numeric values and no
missing observations.

model_order A list specifying the order of the SFARIMA to be estimated. This list
should be of the form list(ar = c(1, 1), ma = c(1, 1)). All orders should be
non-negative integers. A SFARIMA((1,1),(1,1)) model is estimated by default, if
model_order is omitted.
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sfarima.est() returns an object of class "sfarima" with attribute "subclass" =

"est" including the following values:

* Y The matrix of observations inherited from input.

¢ innov The matrix of estimated innovations (residuals).

* model A list of estimated model coefficients containing the matrices ar of autore-
gressive coefficients, the matrix ma of moving average coefficients as well as the vec-
tor d holding the long-memory parameters and the standard deviation of residuals
sigma.

* stnry A flag indicating whether the estimated process is stationary.

kernel.assign()

This function sets an external pointer to a specified boundary kernel available in the DC-
Smooth package. These kernels are functions K (u,q), where u is a vector on [g, —1]
and ¢ € [0,1]. The boundary kernels are as proposed by Miiller and Wang| (1994); Miiller
(1991) and constructed via the method described in Chapter Available types are Miiller-
Wang (Mw), Miiller (M) and truncated kernels (T).

Arguments of kernel.assign() are

* kernel id The identifier for the kernel to be assigned. It is a character string of the
form "X_abc", where X is specifies the type (MW, M, T), a i the kernel order k, b is
the degree of smootheness p and c is the order of derivative v. A list of currently
useable kernel identifiers can be accessed with the function kernel.list ().

kernel.assign() returns an object of class "function", which points to a precompiled
kernel function.

kernel.list()

kernel.list () prints the available identifiers for use in kernel.assign().
The argument of kernel.list() is

* print A logical value indicating if the list of available kernels should be printed to
the console.

kernel.list () returns a list including the available kernels as character strings, if the
argument is print = FALSE.
Available kernels are
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k  u v Truncated Kernels Miiller Kernels Miiller-Wang Kernels
2 0 O M_200 Mw_200
2 1 0 M_210 MW_210
2 2 0 T_220 M_220 Mw_220
3 2 1 T_321 M_321 MW_320
4 2 0 T_420 M_420 MW_420
4 2 1 M_421 Mw_421
4 2 2 T_422 M_422 MW_422

A.2.2 Methods

The DCSmooth package contains the following methods

Function Methods/Generics available
dcs_options print, summary
dcs plot, print, print.summary, residuals, summary
sarma print.summary, summary
sfarima print.summary, summary

A.2.3 Data

This package contains three simulated example data sets and six data sets of environmen-
tal spatial time series.

Each of the three simulated example data sets is a matrix of size 101 x 101 computed on
[0, 1)? for the following functions, where N(u,Y.) is the bivariate normal distribution with
mean vector ; and covariance matrix X:

* y.norml
N 0.5 ’ 0.05 0
0.5 0 0.05
* y.norm2
0.5 01 0 0.2 0.06 0
N , +N ,
0.3 0 0.1 0.8 0 0.05
¢ y.norm3

() (0 ) (G50 )
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The environmental application data sets features the temperature and wind speed asur-
faces of Nunn, CO (temp.nunn, wind.nunn) and Yuma, AZ (temp.yuma, wind.yuma). The
observations are taken in 2020 in 5-minute intervals. The temperatures are given in Celsius
and wind speed in m/s. All data sets consist therefore of 288 columns (the intraday obser-
vations) and 366 rows (the days). The data is taken from the U.S. Climate Reference Net-
work database at www.ncdc.noaa.gov. (see Diamond et. al. (2013),|d0i:10.1175/BAMS-
D-12-00170.1.

For examples of financial applications, the return and volume data of German insurance
company Allianz SE is available in the package. The data is aggregated to the 5-minute
level over the years 2007-2010, hence, the financial crisis 2008 is covered. The matrices
consist of 1016 rows representing the days and 101 (returns) respective 102 (volumes)
columns for the intraday 5-minute intervals.

A.3 Application

The application of the package is demonstrated at the example of the simulated function
y.norm1, which represents a gaussian peak on [0, 1]2 with n, = n; = 101 evaluation points.
Different models are simulated and estimation using dcs is demonstrated. Whenever
default options are used, they are not explicitly used as function arguments, instead only
when deviating from the defaults, the options are changed.

A.3.1 Defining the Options

In order to set specific options use the set.options() function to create an object of class

"dcs_options”.

optl = set.options( "KR", c("M_220", "M_422"),
c(0, 2),
"sarma_RSS",
list( c(0.1, 0.1),
c(1, 1),
c(0.7, 0.7),
TRUE) ,
list( c(1, 1), c(0, 0)))
summary (opt1)
#> dcs_options
B> e
#> options for DCS ToWS cols
B> e

#> type: kernel regression
#> kernels used: M_220 HM_422


https://www.ncdc.noaa.gov/crn/qcdatasets.html
https://journals.ametsoc.org/view/journals/bams/94/4/bams-d-12-00170.1.xml
https://journals.ametsoc.org/view/journals/bams/94/4/bams-d-12-00170.1.xml
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#> derivative: 0 2
#> wvartance model: sarma_RSS
B> oo .

#> IPI options:

#> wnflatton parameters 1 1

#> anflattion exponents 0.7 0.7

#> trim 0.1 0.1

#> constant window width TRUE

class(optl)
#> [1] "dcs_options”

The contents of the advanced option IPI_options can be set directly as argument in

set.options(). Changing these options might lead to non convergent bandwidths.

opt2 = set.options(type = "KR", kerns = c("M_220", "M_422"),

drv = c(0, 2),

var_model = '"sarma_RSS", trim

const_window = TRUE,

model_order = list(ar =

summary (opt2)

#> dcs_options

B> e
#> options for DCS  rows cols

B> e
#> type: kernel regression

#> kernels used: M_220 M_422

#> derivative: 0 2

#> wvartance model: sarma_RSS

B> oo

#> IPI options:

#> anflation parameters 1 1
#> anflatton exponents 0.7 0.7
#> trim 0.1 0.1
#> constant window width TRUE

class(opt2)
#> [1] "dcs_options”

c(0.1, 0.1),
infl_par = c¢(1, 1), infl_exp = ¢(0.7, 0.7),

c(l, 1), ma = ¢(0, 0)))

When using a model selection procedure, the additional option order_max is available:
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opt3 = set.options(var_model "sarma_sep", model_order = "bic",

order_max = list(ar = c(0, 1), ma = c(2, 2)))

summary (opt3)

#> dcs_options

B m -
#> options for DCS  rows cols

B> m o m e e
#> type: local polynomial regression

#> kernel order: MW_220 MNW_220

#> derivative: 0 0

#> polynomzal order: 1 1

#> vartance model: sarma_sep
B> oo _______
#> IPI options:

#> 2nflation parameters 1 1

#> wnflatton exponents auto

#> trim 0.05 0.05

#> constant window width FALSE
e R

A.3.2 Application of the DCS with iid. Errors

The example data set is simulated by using iid. errors:

y_iid = y.norml + matrix(rnorm(101°2), nrow = 101,
ncol = 101)

Kernel regression with iid. errors. While local linear regression has some clear advan-
tages over kernel regression, kernel regression is the faster method.

opt_iid_KR = set.options(type = "KR")
dcs_iid_KR = dcs(y_iid, opt_iid_KR)

# print results

dcs_iid_KR

#> dcs

B> oo ________
#> DCS with automatic bandwidth selection
B> oo __

#> Selected Bandwidths:
#> h_xz: 0.18855
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#>
#>
#>

h_t: 0.19259
Variance Factor:
c_f: 0.99379

# print options used for DCS procedure

dcs_iid_KR$dcs_options

#>
#>
#>
#>
#>
#>
#>
#>

The summary of the "dcs"-object provides some more detailed information:

dcs_options

type: kernel regression

kernels used: My_220 MW_220
dertvative: 0 0
vartance model: 11d

summary (dcs_iid_KR)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Local polynomial regression with iid. errors.

summary_dcs

Results of kernel regression:

Estimated Bandwidths: h_z: 0.1886
h_t: 0.1926

Vartance Factor: c_f: 0.9938

Iterations: 4

Time used (seconds): 0.0379

Vartance MNodel: 11d
sigma: 0.99689
stationary: TRUE

See used parameter with "$dcs_options".

This is the default method, specification

of options is not necessary. Note that local polynomial regression requires the bandwidth

to cover at least the number of observations of the polynomial order plus one. For small
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bandwidths or too few observation points in one dimension, local polynomial regression

might fail (“Bandwidth h must be larger for local polynomial regression.”). It is suggested

to use kernel regression in this case.

dcs_LP_iid = des(y_iid)

dcs_LP_iid

#> dcs

B> oo .
#> DCS with automatic bandwidth selection:
e T
#> Selected Bandwidths:

#> h_x: 0.17265

#> h_t: 0.19012

#> Variance Factor:

#> c_f: 0.99364

B o e -
dcs_LP_iid

#> dcs

B> oo .
#> DCS with automatic bandwidth selection

B> oo .

#> Selected Bandwidths:

#> h_x: 0.17265

#> h_t: 0.19012

#> Vartance Factor:

#> c_f: 0.99364

B> m oo oo e

A.3.3 Application of the DCS with SARMA Errors

A matrix containing innovations following a SARMA((p., pt), (¢z, q:)) process can be ob-
tained by using the sarma.sim() function. We use the following SARMA((1,1),(1,1))-
process as example:

1 0.4 1 —05
AR = ., MA= and o2=0.25
—0.3 —0.12 -0.2 0.1

ar_mat = matrix(c(1, -0.3, 0.4, 0.12), 2, 2)
ma_mat = matrix(c(l, -0.2, -0.5, 0.1), 2, 2)
sigma = sqrt(0.25)
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model_list = list( ar_mat, ma_mat,
101, 101,

model_list)

sim_sarma = sarma.sim(

# SARMA observations

y_sarma = y.norml + sim_sarma$y¥

est_sarma = sarma.est(sim_sarma$y,
llst( C(1, 1)1

summary (est_sarma)

D e
#> Estimation of SARMA((1,1),(1,1))
U
#> sigma: 0.5008

#> stationary: TRUE

#> ar:

#> lag 0 lag 1

#> lag 0 1.0000 0.4042

#> lag 1 -0.3051 0.1291

#>

#> ma:

#> lag 0 lag 1

#> lag 0 1.0000 -0.49690

#> lag 1 -0.1804 0.07785

function (note that the simulated matrix can be accessed via $Y):

HHRII s

sigma)

Estimation of an SARMA process for a given order is implemented via the sarma.est ()

c(1, 1))

Local polynomial regression with specified SARMA order.

The dcs()-command

is used with the default SARMA((1,1),(1,1)) model (correctly specified) and with an

SARMA((1,1

# SARMA((1,

opt_sarma_1 =

1), (1, 1))

set.options(

dcs_sarma_1 = dcs(y_sarma, opt_sarma_1)

summary (dcs_sarma_1$var_est)

B> o m oL

#> Estimation of SARMA((1,1),(1,1))

"sarma_sep")

),(0,0)) (i.e. SAR(1, 1)) model. The chosen estimation procedure is "sep":
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B> oo
#> sigma: 0.5441

#> stationary: TRUE

#> ar:

#> lag 0 lag 1

#> lag 0 1.0000 0.5001

#> lag 1 -0.5246 -0.2623

#>

#> ma:

#> lag 0 lag 1
#> lag 0 1.0000 -0.47060
#> lag 1 -0.1524 0.07174

# SARMA((Z, 1), (0, 0))

opt_sarma_2 = set.options( "sarma_sep",

list( c(1, 1), c(0, 0)))

dcs_sarma_2 = dcs(y_sarma, opt_sarma_2)

summary (dcs_sarma_2$var_est)

e e
#> Estimation of SARMA((1,1),(0,0))

B> oo oo e
#> sigma: 0.5734

#> stationary: TRUE

#> ar:

#> lag 0 lag 1

#> lag 0 1.000 0.7089
#> lag 1 -0.397 -0.2814

#>

#> ma:

#> lag 0
#> lag 0 1

Local polynomial regression with automated order selection. Automated order selec-
tion is used with model_order = c("aic", "bic", "gpac") in set.options(). The first
one minimizes the AIC, the second one the BIC and the third uses a generalized partial
autocorrelation function for order selection (not available for SFARIMA estimation). Or-
der selection for large data sets is slowly in general, however, the "gpac" might be slightly
faster than the other two. If automatic order selection is used, the argument order_max
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sets the maximum orders to be tested in the same way as model_order is usually defined

as a list.
# BIC
opt_sarma_3 = set.options(var_model = "garma_HR",
model_order = "bic",
order_max =

list(ar = c(2, 2), ma = c(2, 2)))

dcs_sarma_3 = dcs(y_sarma, opt_sarma_3)

summary (dcs_sarma_3$var_est)

B> m -
#> Estimation of SARMA((1,1),(1,1))

B> m -
#> sigma: 0.4994

#> stationary: TRUE

#> ar:

#> lag 0 lag 1

#> lag 0 1.0000 0.4027
#> lag 1 -0.3089 0.1267
#>

#> ma:

#> lag 0 lag 1
#> lag 0 1.0000 -0.50360
#> lag 1 -0.1898 0.07345

# gpac

opt_sarma_4 = set.options(var_model = "garma_HR",
model_order = "gpac",
order_max =

list(ar = c(2, 2), ma = c(2, 2)))

dcs_sarma_4 = dcs(y_sarma, opt_sarma_4)

summary (dcs_sarma_4$var_est)

D e e TR
#> Estimation of SARMA((2,2),(2,0))

B> m -
#> sigma: 0.5065

#> stationary: TRUE

#> ar:

#> lag 0 lag 1 lag 2
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#> lag 0 1.00000 0.85080 0.29000

#> lag 1 -0.44690 -0.13470 -0.04776
#> lag 2 0.01464 -0.02736 -0.01037
#>

#> ma:

#> lag 0

#> lag 0 1.00000
#> lag 1 -0.32150
#> lag 2 -0.01187

A.3.4 Modeling Errors with Long Memory

This package includes a bandwidth selection algorithm when the errors ¢(z, ¢) follow an

SFARIMA((py, pt), (g=, qt)) process with long memory. Order selection for SFARIMA models
works exactly as in the SARMA case. We use the same SARMA model as in 3.2 with long-

memory parameters d = (0.3,0.1):

ar_mat = matrix(c(1, -0.3, 0.4, 0.12), 2,
ma_mat = matrix(c(l, -0.2, -0.5, 0.1), 2,
d =c¢(0.3, 0.1)

sigma = sqrt(0.25)

model_list = list( ar_mat, ma_mat,
sigma)
sim_sfarima = sfarima.sim( 101, 101,

model_list)

# SFARINA surface observations

y_sfarima = y.norml + sim_sfarima$Y

opt_sfarima = set.options( "sfarima_RSS")

dcs_sfarima = dcs(y_sfarima, opt_sfarima)
summary (dcs_sfarima$var_est)

B m -
#> Estimation of SFARIMA((1,1),(1,1))

B
#> d: 0.3149 0.1015

#> SD (sigma):  0.4966

#> stationary: TRUE

#> ar:

2)
2)
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#> lag 0 lag 1
#> lag 0 1.00000 0.38640
#> lag 1 -0.09455 -0.03653
#>

#> ma:

#> lag 0 lag 1
#> lag 0 1.0000 -0.521900
#> lag 1 -0.0157 0.008192

A.3.5 Estimation of Derivatives

Local polynomial estimation is suitable for estimation of derivatives of a function or a sur-
face. While estimation of derivatives works as well under dependent errors, the example
uses the iid. model from 3.1. Derivatives can be computed for any derivative vector drv,
if the values are non-negative and an appropriate kernel function is chosen (such that the
derivative order of the kernel matches the derivative order in drv). Note that the order
of the polynomials for the vth derivative is chosen to be p; = v; + 1,7 = z,t. As band-
widths increase with the order of the derivatives, the bandwidth might be large for higher
derivative orders.
The estimator for m(1:0) (z, t) is

opt_drv_1 = set.options( c(1, 0), c("MW_321", "MW_220"))
opt_drv_1$IPI_options$trim = c(0.1, 0.1)
des_drv_1 = dcs(y_iid, opt_drv_1)

dcs_drv_1

#> dcs

B> oo
#> DCS with automatic bandwidth selection:

B> oo
#> Selected Bandwidths:

#> h_z: 0.16354

#> h_t: 0.23423

#> Vartance Factor:

#> c_f: 0.99431

B> oo e

# surface.dcs(des_drv_1, trim = c(0.1, 0.1), plot_choice = 2)

The estimator for m(92)(z, t) is
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opt_drv_2 = set.options( c(0, 27,
c("MW_220", "MW_422"))
opt_drv_2$IPI_options$trim = c(0.1, 0.1)

des_drv_2 = dcs(y_iid, opt_drv_2)

dcs_drv_2

#> dcs

B> oo
#> DCS with automatic bandwidth selection

B> oo
#> Selected Bandwidths:

#> h_xz: 0.21999

#> h_t: 0.12777

#> Vartance Factor:

#> c_f: 0.99431

B> e

A.4 Mathematical Background

A.4.1 Double Conditional Smoothing

The double conditional smoothing (DCS, see Feng (2013)) is a spatial smoothing tech-
nique which effectively reduces the twodimensional estimation to two one-dimensional
estimation procedures. The DCS is defined for kernel regression as well as for local poly-
nomial regression.

Classical bivariate (and multivariate) regression has been considered e.g. by Herrmann
et al. (1995) (kernel regression) and Ruppert and Wand| (1994) (local polynomial regres-
sion). The DCS provides now a faster and, especially for equidistant data, more efficient
smoothing scheme, which leads to reduced computation time. For the DCS procedure im-
plemented in this package, consider a (n, x n;)-matrix Y of non-empty observations u; ;
and equidistant covariates X, T on [0, 1], where X has length n,, and T has length n,. The
model is then

Yij = m(zi,t;) +€ij

where m(z,t) is the mean or trend function, z; € X, t; € T and ¢ is a random error
function with zero mean. The model in matrix form is Y = M; + E at the observation
points.
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The main assumption of the DCS is that of product kernels, i.e. the weights in the
respective methods are constructed by K (u,v) = K;(u)K2(v). Now, a two stage smoother
can be constructed by either the kernel weights directly (kernel regression) or by using
locally weighted regression with kernels K7, K5, in any case, the weights are called W,
and W,. The DCS procedure implemented in DCSmooth smoothes over rows (conditioning
on X) first and then over columns (conditioning on 7°), although switching the smoothing

order is exactly equivalent. Hence, the DCS is given by the following equations:

M[,j] =Y - Wy, j]
Mii,] = W,[i,] - My

A.4.2 Bandwidth Selection

The bandwidth vector h = (h,, h;) is selected via an iterative plug-in (IPI) algorithm
(Gasser et al., 1991). The IPI selects the optimal bandwidths by minimizing the mean
integrated squared error (MISE) of the estimator. As the MISE includes derivatives of the
regression surface m(x,t), auxiliary bandwidths for estimation of these derivatives are
calculated via an inflation method. These inflation method connects the bandwidths of
m(x,t) with that of a derivative m(“=**) (x, t) by

?Lk:Ck-hg, k=uxt

and is called exponential inflation method (EIM). The values of ¢, are chosen on simu-
lations, that of alpha are subject to the derivative of interest. The IPI now starts with
an initial bandwidth h( (chosen to be hy = (0.1,0.1)) and calculates in each step s the
auxiliary bandwidths ﬁk,s from h,;_; and hs from the smoothed derivative surfaces using
hy. . The iteration process finishes until a certain threshold is reached.

A.4.3 Boundary Modification

In kernel regression, the boundary problem exists, which leads to biased estimated at the
boundaries of the regression surface. This problem can (partially) be solved by means of
suitable boundary kernels as introduced by Miiller; (1991) and Miiller and Wang| (1994).
These boundary kernels differ in their degrees of smoothness and hence lead to different
estimation results at the boundaries. However, all kernels are similar to the classical
kernels in the interior region of the regression.

Following Chapter [2| a boundary modification is also defined for local polynomial re-
gression. In the DCSmooth package, the local polynomial regression is always with bound-
ary modification weights. Kernel types available (either for kernel regression or local poly-
nomial regression) are Miiller-type, Miiller-Wang-type and truncated kernels, denoted by
M, MW and T. In most applications, the Miiller-Wang type are the preferred weighting func-
tions.
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For observations X = x;, x;,7 = 1,...,n, and a given bandwidth h, define u, = % €

[—1,¢]. A (left) boundary kernel function K, f](u) of order (k, u,v) is defined on [—1, ¢], for
q € [0,1] and has the following properties

0 for0<j<k,j#v
a
/1qué(U)du= (-1)*v! forj=v

B8#0 forj =k

The corresponding right boundary kernels can be calculated by K (u) = (—=1)vK,(—u).
The boundary kernels assigned by kernel.assign() are left boundary kernels.

A.4.4 Spatial ARMA Processes

The SARMA process ¢; ; is given by the following equations:

&(B1, Ba)eij = (B, B2)ni j,

where the lag operators are Bie; j = €;—1; and Bog; j = €;j-1, § ~ N(0,0?) and
a.

p1 P2 Qo Q2
¢(zla Z2> = Z Z ¢m,nZI”Z3, ¢(Zla 22) = 2 Z@bm,nzlnzg
m=0n=0 m=0n=0

The coefficients v, ,, and ¢y, , are written in matrix form

00 - Pops Yoo - Vo
o= : and ¢ = : )
d)pl:o ¢p1,p2 QIZ)QLO 1/’q1,q2

where @ is the AR-part ($var_model$ar) and V¥ is the MA-part ($var_model$ma). The
example from 3.2,

1 0.4 1 —0.2
= and ¢ = ,
¢ (—0.3 —0.12) ¥ (—0.5 0.1 )
would then reduce to the process

€ij = 0.467;73'_1 — 0.367;_,]' =+ 0.2{:‘2‘_1,]’_1 =+ 0.2&’3’_1 =+ O-in—l,j — 0.5&_1,]‘_1 + fi’j.

Note that this process can be written as product of two univariate processes in the sense
that

¢1(B1)d2(B2) e j = t1(B1)v2(B2)  nij,



A Appendix: DCSmooth Vignette 130

() o) o)

Hence, these process forms a separable SARMA. Estimation of separable SARMA models

with

can be reduced to estimation of univariate ARMA models.

A.4.5 Estimation of SARMA Processes

For estimation of SARMA models, three methods are implemented in DCSmooth:

Estimation of a Separable SARMA by ML-Estimation. This method is only available
under the assumption of a separable model. Define two univariate time series

€1, = {&1}r = {Cijtitni(i—1)> €25 = {€2}s = {€ij}jnan(i=1)

forr,s =1,...,n -ny, 4 = 1,...,ng, j = 1,...,n4. The parameters ¢, of 1, and
¢2, 12 of e2 s can then be estimated by well-known maximum likelihood estimators.

Least Squares Estimation using the RSS. The SARMA model can be rewritten as

ni,j = ¥(B1, B2) " ¢(B1, Ba)ei j,

which allows for an AR (oco)-representation of the SARMA model

00
AR
Nij = § : 97‘,5 Ei—r,s—j

r,s=0

From this, we can define the residual sum of squares (RSS) and get an estimate for the
vector of coefficients 0 = ¢(¢1,0, ¢o,1,---,%1,0,%0,1,... DY

[e.@]
= arg min RSS ~ arg min Z 77i2,j-
i,j=0

Calculation of the AR(co) representation of an SARMA model is difficult for a general
SARMA but for a separable SARMA, the known univariate formulas hold. These procedure
can be directly used for SFARIMA models, if the long memory parameter d is included in
0 (see[Beran et al., 2009).

The Hannan-Rissanen Algorithm. The previously defined estimation methods require
numeric optimization of some quantities and hence take more time for calculation on
a computer. The Hannan-Rissanen algorithm (Hannan and Rissanen, 1982) provides a
much faster estimation procedure. An extension to SARMA models is straightforward:
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The main idea Hannan-Rissanen algorithm is to use a high-order SAR auxiliary model
for initial estimation of the unobservable innovations sequence. Then, a linear regres-
sion model is applied, which yields the SARMA-parameters from the observations and
estimated innovations.

Let {c};; be the the ordered observations of the SARMA((ps,p:t), (qz,q:)) process
e(x,t) withi =1,...,n,,7 = 1,...,n,. The SARMA parameters ¢, are then estimated
by the modified Hannan-Rissanen algorithm: 1. Obtain the auxiliary residuals 7; ; by
fitting a high-order autoregressive model with (p,, p:) > (p=, p:) to the observations:

P1 D2 _ _ _ .
_ >0 D dmnEiemj—n, D1 <i<n1,p2 <j < ng
Nij = § m=0n=0

O) 1§7f§ﬁla]—§]§§2

where qgmn is estimated by the Yule-Walker equations and ¢¢¢ = 1. 2. Obtain ngSmn and
@m,n and the estimated innovations 7; ; by linear regression from

p1

p2 = q1 q2 . _ .
Eij = — Z Z ¢m,n5i—m,j—n + Z Z wm,ngi—m,j—n + §i,j-
=0 =0

m=0 n= m=0 n=
m#n=0 n#m=0 m#n=0 n#m=0

The resulting coefficients ¢, 1 are then the estimates for the parameters.
The autocovariance function of the SARMA-process is (s, t) = E(g; j€i+s,j+t). FOr pz, pr,
the spatial Yule-Walker equation for the SAR(p,, p;) approximation of the SARMA is then

I' vec(¢p) =0

where T denotes the full autocovariance matrix:

7(0,0) 7(1,0) coo Y(r,0) 4(0,1) ..o y(r1,re)
7(17 O) 7(0’0) 7(7“1 -1, 7‘2)

v(r1,re) (ri—1,7m2) ... ~(0,0)
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