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Abstract

We study a measure-valued process Xα with (1 + β)-branching, which is related to the self-
adjoint extensions of the Laplacian −∆α , α ≥ 0, via a nonlinear partial di�erential equation.
�is can be understood as a super-Brownianmotionwith point source at the origin. Existence
of this process was shown by Fleischmann and Mueller 2004. We show that the process
Xα can be approximated with a family of processes Xα,ε , ε ∈ (0, 1), related to nonlinear
equations involving suitably scaled perturbations of the Laplacian −∆+Vα,ε.�is is done for
dimension d = 3 and 0 ≤ β < 1

3 .�e strategy is mainly analytic, as we prove convergence of
solutions of the nonlinear equations in a weighted Lebesgue space. Norm estimates for the
resolvents of −∆α and −∆ + Vα,ε and the associated semigroups are developed in order to
control these semigroups in the weighted space. Furthermore, we study basic properties of
the approximating processes, such as path regularity.

Zusammenfassung

Wir untersuchen einen maßwertigen Prozess Xα mit (1 + β)-Verzweigung, der mit den
selbstadjungierten Erweiterungen des Laplace-Operators −∆α , α ≥ 0, über eine nichtlineare
partielle Di�erentialgleichung in Beziehung steht. Der Prozess kann als super-Brownsche
Bewegungmit Punktquelle imUrsprung aufgefasst werden. Seine Existenzwurde von Fleisch-
mann und Mueller 2004 bewiesen. Wir zeigen, dass Xα mit einer Familie von Prozessen
Xα,ε , ε ∈ (0, 1) approximiert werden kann, die über nichtlineare Gleichungen mit passend
skalierten Störungen des Laplace-Operators −∆ + Vα,ε in Beziehung steht. Dies wird für Di-
mension d = 3 und 0 ≤ β < 1

3 durchgeführt. Die Vorgehensweise ist hauptsächlich analytisch,
da wir Konvergenz der Lösungen der nichtlinearen Gleichungen in einem gewichteten
Lebesgue-Raum beweisen. Es werden Normabschätzungen für die Resolventen von −∆α

und −∆ + Vα,ε und für die entsprechenden Halbgruppen entwickelt, um die Halbgruppen
im gewichteten Raum kontrollieren zu können. Außerdem untersuchen wir grundlegende
Eigenscha�en der approximierenden Prozesse, wie beispielsweise Pfadregularität.
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1. Introduction

In this work we study a super-Brownian motion with singular mass generation constructed
by Fleischmann and Mueller in 2004. We will show that this process can be approximated
by a family of processes with regular mass generation.
In the introductory chapter we �rst explain the construction of superprocesses and �rst

basic properties.�en we introduce the super-Brownian motion with point source. Finally,
we will discuss the structure of the work and the main results.

1.1. Superprocesses as scaling limits of branching particle systems

Stochastic processes play a central role in modern mathematics. A classical simple example
is the symmetric d-dimensional random walk (Sn)n∈N0 in the lattice Zd given by S0 = x ∈ Zd

and

Sn ∶= S0 +
n

∑
j=1

X j,

where the (X j) j∈N are independent random variables with distribution

P(X j = y∣y ∈ Zd , ∣y∣ = 1) = 1
2d
.

�is can be understood as a particle which moves in one of the 2d directions in every step
with equal probability.�e random walk (Sn)n∈N0 is discrete in time and space. To obtain a
continuous process, we embed the lattice in Rd and de�ne for n ∈ N the rescaled random
walk

W(n)
t = 1√

n
S⌊nt⌋.

By increasing n, we decrease the length of the time intervals.�e factor
√
n−1 compensates

the step length. In 1951, Donsker has shown that for n →∞ the process (W(n)
t )t≥0 converges

in distribution to a standard Brownian motion [13]. �is is a famous example on how
a continuous stochastic process arises from a discrete particle process as a scaling limit.
Note that the Brownian motion has the universal property, that it does not require the
approximating random variables to have a particular distribution, they only need to be i.i.d.
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1. Introduction

Figure 1.1.: Example for the construction of the branching particle system. A Galton-
Watson tree (le� picture) is embedded into the two-dimensional lattice (right picture).
�e black dot represents the original particle at t = 0.�e gray particles were alive at
times t = 1 until t = 5.�e colored particles are the living descendants at present time
t = 6.

Let us consider the discrete model in the two-dimensional lattice. A natural extension
is the introduction of particle branching. Imagine we start with a single particle located
at x ∈ Z2 at time t = 0. A�er one time step, at t = 1, the particle dies and gives birth to a
random number ξ ∈ {0, 1, 2, . . .} of o�springs. Each of these o�springs spawns at a random
lattice point adjacent to x, the points have equal probability 14 . In the next step, the o�springs
of the �rst generation die and give birth to a second generation, independent from each
other, and so on.�e probability distributions of the number of o�springs and the spacial
motion remain the same at all times. Note that multiple particles can be present at the same
lattice point simultaneously.
�ere are two sources of randomness in this model:�e number of o�springs for each

particle and the random spacial motion similar to the simple random walk. We can under-
stand this as follows. In a �rst random experiment, we �x the genealogy of the population at
some time t by choosing a random Galton-Watson tree of depth t. A�er this step, there is no
spacial information yet. In a second random experiment, we embed the Galton-Watson tree
into the lattice by placing the root of the tree at x ∈ Z2 and incrementally choosing random
adjacent lattice points for each new generation as described above. [48, p. 1057-1058] See
Figure 1.1 for an example.
Our goal is to scale up this model appropriately in order to pass to a meaningful limit.

First we make a restriction on the distribution of the number of o�springs ξ. LetM = E(ξ).
�e case M < 1 is subcritical, the population will almost surely die out for time t large
enough. In the supercritical caseM > 1 there is a positive probability of survival at all times.
Kolmogorov proved in 1938, that forM = 1 the probability of survival goes to zero as t →∞,
in fact, this probability is proportional to t−1Var(ξ). [48, p. 1059] In this case we speak of
critical branching.
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1.1. Superprocesses as scaling limits of branching particle systems

From now on, assume the critical case M = 1. We introduce a scaling variable n ∈ N.
As in the situation of the simple random walk, we scale the space by a factor

√
n−1. Let

m ∈ N the number of generations in the discrete model. We de�ne scaled time by t ∶= m
n .

�ere is no need to restrict ourselves to two dimensions, let d ∈ N arbitrary. Now, given
a critical Galton-Watson tree T embedded into the scaled grid

√
n−1Zd , denote by R(m/n)

n

the distribution of particles of the mth generation in the grid. More precisely, R(m/n)
n is the

discrete �nite measure in Rd , that places mass n−1 at each embedded individual of the mth
generation, with multiplicity. Since the Galton-Watson tree and the embedding are random,
R(m/n)
n is a random measure (but no probability measure). [48, p. 1063].
Because of the critical branching property, the probability that R(m/n)

n is not equal to the
zero measure decreases proportional to n−1. To compensate for that, an additional scaling
is necessary: We start with n initial particles in generation 0, which evolve independently.
Now we obtain a meaningful limit of the mass distribution for n → ∞. �e resulting
evolving family of random measures (Xt)t≥0 is a Markov process, taking values in the space
of measuresM(Rd).�e initial particle distribution at t = 0 also is a �nite measure on Rd

in the limit. [48, p. 1065]
We have outlined the construction of themeasure-valued super-Brownianmotion, starting

with a purely discrete model and then passing to the scaling limit with respect to space,
time and mass. Now we will introduce another branching particle model, the branching
Brownian motion, which also gives rise to a super-Brownian motion.�is shows that the
super-Brownian motion, similar to ordinary Brownian motion, is a universal object, where
di�erent particle models lead to the same limit.�e following model is also better suited for
a heuristical understanding of the super-Brownian motion as the limit of a population of
many Brownian particles. We closely follow the exposition in [18, p. 722].
Again, let n ∈ N the scaling variable. Assume we have a number Nn ∈ N of particles

at positions x(n)
1 , . . . , x

(n)
Nn

∈ Rd . �is is the situation at time t = 0. Now, for t > 0, the
particles move in space along Brownian paths, independent from each other. Particles have
an exponentially distributed lifespan with parameter cn, c > 0. When a particle dies, a
random number k ∈ {0, 1, 2, . . .} of o�springs spawn at the same position, which follow
Brownian paths independent from each other and from their parent. A�er i.i.d. exponentially
distributed lifetimes, they have o�springs on their own, and so on. In our model, the
distribution of the number of o�springs may depend on the current position x of the parent.
�e probability that a particle dying at point x has exactly k o�springs, is denoted by p(n)k (x).
Assume that the o�spring distribution has the expectation

en(x) ∶=
∞
∑
k=0

kp(n)k (x) = 1 + γ(x)
n

(1.1)

3



1. Introduction

and for the variance it holds

v2n(x) =
∞
∑
k=0

(k − 1)2p(n)k (x) = m(x) + o(1),

for n → ∞, uniformly in x. Here γ,m ∶ Rd → R are bounded continuous functions with
m > 0.
For the initial distribution of particles at t = 0 we write

µn =
1
n

Nn

∑
i=1

δx(n)i

and assume that the weak limit limn→∞ µn = µ ∈MF(Rd) exists. Let Nn(t) ∈ N the number
of particles present at time t and x(n)

1 (t), . . . , x(n)
Nn(t)(t) their positions. De�ne

X(n)
t = 1

n

Nn(t)

∑
i=1

δx(n)i (t).

�e stochastic process (X(n)
t )t≥0 takes values in the space of all �nite measuresMF(Rd).

Now we scale up n →∞.�e limit

Xt = limn→∞
X(n)

t (1.2)

in the sense of weak convergence of the induced probability measures exists [18, p. 723].
A �rst result of this kind was shown by Watanabe in 1968, but only in the sense of conver-
gence of �nite-dimensional distributions and with constant m > 0 [50, §4].�e resulting
measure-valued process (Xt)t≥0 from (1.2) is related to the solution u of the nonlinear partial
di�erential equation

⎧⎪⎪⎨⎪⎪⎩

∂tu = (∆ + V)u − ηu2 on (0,∞) ×Rd ,
u(0, ⋅) = f on Rd ,

(1.3)

with V = cγ and η = 1
2 cm and a bounded and continuous function f ∶ Rd → [0,∞) via the

Laplace transition functional

E[e−⟨Xt , f ⟩∣X0 = µ] = e−⟨µ,u(t,⋅)⟩ (1.4)

where the measure µ is the weak limit of µn for n →∞. [18,�eorem A2]
Roughly speaking, in this scaling model we increase the number of particles and the

branching rate cn, but decrease the weight of each individual particle by a factor 1n . Replacing
the underlying Brownian motion with a di�erent di�usion process, this concept gives rise

4



1.2. Super-Brownian motion with point source

to a general class of measure-valued processes, the Dawson-Watanabe superprocesses.�e
theory was later further developed by Dawson [12] and Dynkin [15] and many others. For a
more complete list of references we refer to the monographs of Dynkin [14], Etheridge [19],
Li [35] and Perkins [42].

1.2. Super-Brownian motion with point source

As we have seen above, there is a correspondence between superprocesses and certain
nonlinear partial di�erential equations.�e Laplace transition formula (1.4) is the pivot at
which these two theories are connected with each other. One can imagine this connection as
follows: If we want to know the Laplace functional of the superprocess at time t > 0 evaluated
with the function f , the le� side of (1.4), we can take the solution u(t) of (1.3) with initial
condition f and compute the right side of (1.4), so we walk time along the solution u instead
of the process (Xt)t≥0.
In the previous section we have constructed the superprocess as the scaling limit of a

branching particle system and then we have seen the associated partial di�erential equation.
A natural question is, whether we can go in the other direction: If we start on the analytic
side, i.e. with a certain nonlinear PDE, is there a solution of this equation and is there a
superprocess corresponding to that solution via the Laplace transition functional?
�e equation (1.3) can heuristically be understood as the description of a scaling limit of

many particles following Brownian paths, undergoing critical branching everywhere, but
with increased mass creation on the support of V . Suppose that the support of V has a
certain size, say, supp(V) = BR(0) ⊂ Rd for a radius R > 0.�en the operator ∆ +V in (1.3)
is a perturbation of the Laplacian with the property that (∆ + V)g = ∆g for all functions
satisfying supp(g) ⊂ Bc

R(0). In the stochastic interpretation it is intuitive that the Brownian
particles enter the ball at some time with a certain probability pR,d > 0 and the increased
branching rate in this area contributes to the process. But we can also consider the case
where supp(V) becomes very small, which then means that the time a Brownian particle
spends in the ball gets shorter. We can try to compensate this e�ect by increasing the size of
the potential V .
In the extreme case, i.e. in the limit R → 0, there is only a single point inRd with increased

branching rate. To describe this extreme case analytically, we want to replace the perturbed
Laplacian ∆ + V in (1.3) by a self-adjoint operator H with the property

Hg = ∆g for functions g ∈ C∞
0 (Rd) with supp(g) ⊂ Bc

R(0) for all R > 0. (1.5)

In other words: Evaluated with functions supported outside an arbitrarily small neighbor-
hood of the origin, the operators H and ∆ should conincide. In dimensions d ≥ 4, this
already forces the self-adjoint operator H to be equal to ∆ in the Sobolev space H2,2(Rd)
[4, p. 2]. In dimension d = 1 there is a 4-parameter family of operators H with property
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1. Introduction

(1.5). In dimensions d = 2, 3 it turns out that there is a one-parameter family of self-adjoint
operators H satisfying (1.5), indexed by a renormalized coupling constant α ∈ R. [4, p. 2-3]
We write this family as (∆α)α∈R and speak of self-adjoint extensions of ∆.�ese operators are
of special interest in the �eld of mathematical physics, describing nonrelativistic quantum
mechanical particles interacting via a very short range (in fact zero range) potential with a
�xed source [4, p. 1].�e theory goes back to the 1930s, see for example [5].�is model is
called solvable in the sense, that the resolvents of ∆α can be given explicitly in terms of α [4,
p. 1].
From now on, we focus on dimensions d = 2, 3. For every α ∈ R, the operator ∆α can

roughly be understood as

∆α = ∆ + δ0,α ,

where the scaled Dirac functional δ0,α describes the point interaction at the origin. Heuristi-
cally, ∆α is the limit of

∆(ε)
α ∶= ∆ + h(α, ε)1Bε(0),

as ε ↓ 0, with a critical rescaling factor h [20, p. 741]. We will give a precise explanation in
Chapter 2. Using ∆α, we can now modify the nonlinear PDE (1.3) and obtain the equation

⎧⎪⎪⎨⎪⎪⎩

∂tuα = ∆αuα − ηu1+β
α on (0,∞) ×Rd ∖ {0},

uα(0, ⋅) = f ≥ 0 on Rd ∖ {0},
(1.6)

where we replaced the quadratic term with a nonlinearity of order 1 + β for 0 ≤ β ≤ 1.
�e equation (1.6) was investigated by Fleischmann and Mueller 2004 [20]. Existence and
uniqueness of the Cauchy problem where shown in weighted Lp spaces for appropriate initial
data f . Moreover, it was shown that there is a measure-valued process Xα ∶= (Xα

t )t≥0 such
that the solution u = uα of (1.6) is related to Xα via the Laplace transition functional (1.4).
Much more details about these results are given in Chapter 3.�e existence of Xα is proven
indirectly using mainly analytic methods. In a subsequent work of Fleischmann, Mueller
and Vogt, the large-scale behavior of Xα in the three-dimensional case was described [21].
In 2013 Grummt and Kolb extended these results and were also able to prove a version of the
strong law of large numbers for Xα in the case d = 2, using martingale theory [24].
However, there are still many open questions regarding the properties – e.g. path regularity

and long-term behavior – of the superprocess Xα . Moreover, from a stochastic point of view,
it is quite surprising that this process even exists, since Brownian particles in Rd , d ≥ 2,
hit the origin only with probability zero. Consequently, one could intuitively expect that
the point source does not contribute to the process and Xα would degenerate to ordinary
super-Brownian motion without point source, but this is not the case [20, p. 741]. In his
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1.3. Structure of the thesis and main results

review of [21] Mörters writes

“�is construction is based on the analytical work [...] but remains probabilisti-
cally somewhat mysterious [...], as in these dimensions Brownian particles fail
to hit single points.” Peter Mörters

From this perspective, it is desirable to developmethodswhich allow a further investigation
and better understanding of the super-Brownian motion with point source.
In Chapters 3 and 4 we will see that for every α ∈ R the transition semigroup (Sα

t )t≥0
belonging to the process Xα strictly dominates the heat semigroup and it holds

Eµ[⟨Xα
t , f ⟩] = ⟨Sα

t f , µ⟩.

We want to point out that there are other examples of stochastic processes with these proper-
ties, where the behavior at a single point in�uences the transition semigroup of the process,
even though the point is only hit with probability zero. Consider this example from [16,
Chapter 4c]: A particle follows a Brownian path in Rd . A�er a random time, depending
on the path, an o�spring spawns at the origin and ful�ls a Brownian motion on its own.
�e initial particle moves on undisturbed. A�er independent random times, both particles
produce new o�springs at the origin, and so on.�en the generator of the semigroup (Tt)t≥0
induced by this process coincides with the Laplacian on C∞

0 (Rd ∖ {0}), because the new
particles always spawn at the origin and do not in�uence the movement of their parents.
But because of the mass creation, (Tt)t≥0 strictly dominates the heat semigroup induced by
ordinary Brownian motion. [16, p. 180] However, Tt never coincides with Sα

t , so the models
are fundamentally di�erent.

1.3. Structure of the thesis and main results

�e main focus of this work lies on the approximation of the superprocess Xα via a family
of superprocesses Xα,ε ∶= (Xα,ε

t )t≥0, ε > 0, which are in some sense easier to understand. In
order to do so, we start on the analytic side and write the operator ∆α as the limit for ε → 0
of a family of operators Hα,ε , ε > 0, describing short range interactions. It is the subject of
Chapter 2 to construct this family, perform a spectral analysis and prove that the limit – in
the norm resolvent sense – is ∆α , as intended. An important reference in this chapter is the
monograph of Albeverio et al. from 1988 [4, Chapter I.1]. As in most parts of the work, we
will focus on d = 3 here.
In Chapter 3 we give a detailed recapitulation of the Fleischmann-Mueller theory from

[20], leading to the well-posedness of the Cauchy problem (1.6) and the existence of the
process Xα. Furthermore, using the approximating family Hα,ε , ε > 0 and studying the
associated operator semigroups, existence of a family of processes Xα,ε , ε > 0, is shown.
�ese processes correspond to the solutions of a variant of (1.6), but where ∆α is replaced

7



1. Introduction

by Hα,ε. In Chapter 4 we collect properties of the processes, for example explicit moment
formulas.
�e analytic framework for the theory of Fleischmann and Mueller are weighted Lp

spaces. A closer look at these spaces is given in Chapter 5, as well as some important
analytic properties of ∆α and Hα,ε and the associated semigroups (Sα

t )t≥0 and (Sα,ε
t )t≥0 in

this context. We want to point out that most results from the literature about ∆α and Hα,ε

and the associated processes are in the setting of unweighted Lp spaces and a main part of
the work was to transfer these to the weighted context.
Using the methods obtained in the previous Chapters, weighted Lp−Lq estimates for the

resolvents of ∆α and Hα,ε are developed in Chapter 6.�is is done by employing the explicit
representations of the resolvents and calculating the involved integrals step by step. It is
crucial here, that these estimates are uniform in ε. Moreover, the weighted Lp−Lq estimates
can be transferred to the semigroups (Sα

t )t≥0 and (Sα,ε
t )t≥0, using the representation of

analytic semigroups in terms of the resolvents of their generators.
In Chapter 7 we turn our attention to the nonlinear integral equations corresponding to ∆α

and Hα,ε as in (1.3) and the associated solutions uα and uα,ε. Using the uniform semigroup
estimates, we can perform a Picard iteration where the involved Lipschitz constants are
independent of ε.�e Lp−Lq nature of the estimates helps with controlling the nonlinear
terms in the integral equations. Finally, as a main result we can prove that the solutions
converge in the weighted space.

�eorem 1.1. Let α ≥ 0. Under the conditions of Section 7.1, with the weight w(x) = ∣x∣−1 and
p ∈ ( 32 , 2), for every t > 0 and suitable initial data f it holds

∥uα,ε(t) − uα(t)∥Lp(w) → 0, for ε → 0.

Note that the conditions of this theorem contain some restrictions. In particular we need
α ≥ 0 and for the nonlinear term of the equation it must hold β < 1

3 . Refer to�eorem 7.13
for more details.�e author conjectures that the restrictions are mainly of technical nature
and that the result remains true for a wider range of parameters.
Based on this result, the convergence of the Laplace transforms of the corresponding

superprocesses Xα and Xα,ε can directly be obtained. Usingmethods from the general theory
of random measures [29], this gives rise to a mode of convergence of the superprocesses in
the space of measuresM(R3).

�eorem 1.2. Under the conditions of�eorem 1.1 let (Xα,ε
t )t≥0 and (Xα

t )t≥0 the superprocesses
associated to uα,ε and uα with initial distribution Xα,ε

0 = Xα
0 = µ. Assume that the measure µ

has a density satisfying µ(⋅)∣ ⋅ ∣
1
p ∈ Lp′(R3).�en it holds for �xed t ≥ 0

Xα,ε
t

vdÐ→ Xα
t

8



1.3. Structure of the thesis and main results

where vd denotes the convergence in distribution with respect to the vague topology on the
space of measuresM(R3).

More details can be found in Chapter 8.�is is a central result, stating that in the three-
dimensional case, under some restrictions on the parameters α, β, we can indeed approximate
the super-Brownian motion with point source with a family of superprocesses with short-
range interaction.�is approximating family is more accessible for further investigation of
path properties. We show for example, that Xα,ε has càdlàg paths almost surely.
In the last Chapter 9 we give an outlook on open problems and incomplete results. Unfor-

tunately, a convergence result for the 2-dimensional case was outside the scope of this work.
Nevertheless, we develop preliminary analytic methods and resolvent estimates for this case
as well.

9





2. Approximation of the Laplacian with point
source

�e aim of this chapter is to study analytic properties of the self-adjoint extensions−∆α , α ∈ R,
of the Laplacian −∆. In particular, we want to construct a family (−Hα,ε)ε>0 of scaled
Hamiltonians for each �xed α, that converges towards −∆α for ε ↓ 0 in an appropriate sense
in the Hilbert space L2(R3).�e �rst section focuses on a spectral analysis, in the second
section we will obtain the convergence result. A main source is the monograph of Albeverio
et al. from 1988 [4]. We will restrict ourselves to the three-dimensional case.
From now on, for λ ∈ C ∖ [0,∞), we denote the free resolvent of −∆ by

Rλ = (−∆ − λI)−1

with integral kernel

Rλ(x , y) =
e i

√
k∣x−y∣

4π∣x − y∣
.

With a slight abuse of notation we sometimes write Rλ(x − y) for Rλ(x , y).

2.1. Spectral properties

We start with a spectral analysis of the operator −∆ + V , where V is real-valued, bounded
and has compact support. It is well known that the spectrum of the Laplacian −∆ on H2(R3)
is purely absolutely continuous and consists of the nonnegative real axis with no embedded
eigenvalues. However, adding a perturbation V to the operator will change the spectrum in
general.�e particular choice of V plays a central role in the approximation of −∆α in the
next section. For convenience of the reader, we also include some known spectral properties,
which might still be new for readers with a mainly probabilistic background.
In the case of a real-valued potential V with compact support, the operator −∆ + V is

self-adjoint. �is implies that the spectrum is contained on the real axis. More precisely,
σ(−∆ + V) consists of the absolutely continuous part [0,∞) and an at most �nite number
N(V) of eigenvalues λ1, . . . , λN(V) on the negative real axis. [10, p. 2663]
�ere are estimates for the number of negative eigenvalues depending on the volume

11



2. Approximation of the Laplacian with point source

of the potential V . An important example is the following result, which is known as the
Cwikel-Lieb-Rozenblum bound.

Lemma 2.1. [45,�eorem XIII.12]. Let V ∶ R3 → R bounded with compact support and write
V− ∶= min{V , 0}. �ere is a C > 0, independent of V, such that for the number of negative
eigenvalues N(V) of the operator −∆ + V in L2(R3) it holds

N(V) ≤ C ∫
R3

∣V−(x)∣
3
2 dx . (2.1)

Note that V− ≡ 0 if V is nonnegative, so in this case the right-hand side of (2.1) vanishes
and there are no negative eigenvalues.
In nontrivial cases, we need tools which are �ner than the estimate (2.1). �e content

of the next lemma is the so-called Birman-Schwinger principle, a characterization of the
eigenvalues of −∆ + V in L2(R3). Refer to [44] for a more general treatment.

Lemma 2.2. Let V ∶ R3 → R bounded with compact support. �en λ ∈ C ∖ [0,∞) is an
eigenvalue of the operator −∆ + V, if and only if −1 is an eigenvalue of the Birman-Schwinger
operator uRλv on L2(R3), where

v(x) = ∣V(x)∣1/2, u(x) = sgn(V(x))∣V(x)∣1/2, for x ∈ R3.

Proof. Let λ ∈ C ∖ [0,∞). By de�nition, λ is an eigenvalue of −∆ + V , if and only if there is
ψ ∈ H2(R3) with

(−∆ + V)ψ = λψ.

Clearly, this equation is equivalent to

(−∆ − λI)ψ = −Vψ. (2.2)

Since σ(−∆) = [0,∞), the resolvent Rλ = (−∆− λI)−1 exists for λ ∈ C∖ [0,∞). By applying
Rλ to both sides of (2.2), we get

ψ = −RλVψ.

Multiplying both sides with u gives

uψ = −uRλVψ = −uRλv(uψ), (2.3)

where we have used V = uv. Because V is bounded with compact support, uψ ∈ L2(Rd).
Hence, −1 is an eigenvalue of uRλv with eigenfunction uψ.

12



2.1. Spectral properties

Conversely, assume that there is a φ ∈ L2(R3) with

uRλvφ = −φ. (2.4)

De�ne

ψ ∶= Rλvφ, (2.5)

then ψ ∈ H2(R3). We can apply (−∆ − λI) to both sides of (2.5) and obtain

(−∆ − λI)ψ = vφ = −vuψ = −Vψ, (2.6)

where we have used φ = −uψ, which follows from (2.4). Finally, rearranging (2.6) gives

(−∆ + V)ψ = λψ,

so λ is an eigenvalue of (−∆ + V) and the proof is complete.

Remark 2.3. As stated above, if an eigenvalue λ ∈ C ∖ [0,∞) of −∆ + V exists, then it is
located on the negative real axis. Hence, according to Lemma 2.2, the Birman-Schwinger
operator uRλv can only have −1 as a potential eigenvalue if λ ∈ (−∞, 0).

For a more detailed analysis, we need to �x a particular V . From now on assume V is the
�nite spherical square-well potential

V = VR ∶= −1BR(0),

on R3, where R > 0 is the radius of the potential well. As mentioned above, the operator
−∆+V has at most �nitely many discrete eigenvalues on the negative real axis.�e following
lemma describes the properties of the lowest eigenvalue, exploiting the radial symmetry of
V .

Lemma 2.4. Suppose that −∆ + V has an eigenvalue at the bottom of its spectrum

λ = inf σ(−∆ + V).

�en λ is nondegenerate, i.e. hasmultiplicity one. Furthermore, the corresponding eigenfunction
is strictly positive and spherically symmetric.

Proof. �e potential V is bounded with compact support. From the more general statement
[45,�eorem XIII.46] it follows immediately that λ is nondegenerate with strictly positive
eigenfunction ψ. We are le� to show that ψ is spherically symmetric, this is equivalent to
Oψ = ψ for all rotationsO of the spaceR3. Choose one suchO. In particular,O is orthogonal.

13



2. Approximation of the Laplacian with point source

Since −∆ commutes with orthogonal transformations, we have

(−∆ + V)(Oψ) = O((−∆ + V)ψ) = O(λψ) = λOψ, (2.7)

so Oψ is an eigenfunction corresponding to λ. But as shown above, λ is nondegenerate, so
Oψ = aψ, a ∈ C. Since O is orthogonal, ∣a∣ = 1. Furthermore, O is a rotation, so it preserves
positivity, this means aψ(x) = (Oψ)(x) > 0 if ψ(x) > 0. �is implies a = 1, because ψ is
strictly positive. We have shown Oψ = ψ for an arbitrary rotation O, so ψ is spherically
symmetric.

With Lemma 2.4 we can investigate the existence of negative eigenvalues of the operator
−∆ + VR, depending on the potential radius R.

�eorem 2.5. For the operator −∆ + VR in L2(R3) with domain of de�nition D(−∆ + VR) =
H2(R3) it holds

(i) For R < π
2 there are no eigenvalues.

(ii) For R = π
2 there are no negative eigenvalues. However, λ = 0 is a simple resonance:�ere

is a ψ ∈ L2loc(R3) ∖ L2(R3) with (−∆ + VR)ψ = λψ = 0.�e corresponding eigenspace is
one-dimensional.

(iii) For R > π
2 , there are eigenvalues −1 < λ1 < . . . < λNR < 0.�e number of eigenvalues NR

increases with R.

For the proof the following preparatory Lemma is needed.

Lemma 2.6. Let k ∈ R.�e ordinary second-order di�erential equation

∂2ψ
∂x2

+ 2
x
∂ψ
∂x

+ kψ = 0 (2.8)

has a two-dimensional solutions space with basis vectors

ψ1(x) =
sin

√
kx

x
and ψ2(x) =

cos
√
kx

x
.

Proof. Calculating the derivatives

∂ψ1
∂x

=
√
kx cos(

√
kx) − sin(

√
kx)

x2
,

∂ψ2
∂x

= −
√
kx sin(

√
kx) + cos(

√
kx)

x2

(2.9)
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2.1. Spectral properties

and the second-order derivatives

∂2ψ1
∂x2

= 2 sin(
√
kx) − kx2 sin(

√
kx) − 2

√
kx cos(

√
kx)

x3
,

∂2ψ2
∂x2

= 2 cos(
√
kx) − kx2 cos(

√
kx) + 2

√
kx sin(

√
kx)

x3
,

it is easy to verify that the functions ψ1,ψ2 solve the equation (2.8). Since the solution space
of a second-order ordinary di�erential equation is at most two-dimensional and ψ1 and ψ2
are linear independent, they de�ne a basis.

Proof of�eorem 2.5. Let λ ≤ 0. Assume that

(−∆ + VR)ψ = λψ (2.10)

for a spherically symmetric function ψ ∈ H2(R3). We have the following well-known
representation of the Laplacian in spherical coordinates

∆ψ(r, θ , φ) = 1
r2

∂
∂r

(
r2
∂ψ
∂r

)
+ 1
r2 sin θ

∂
∂θ

(
sin θ

∂ψ
∂θ

)
+ 1
r2 sin2 θ

∂2ψ
∂φ2
. (2.11)

By assumption, ψ is spherically symmetric, so it is constant along any angle. Hence, for the
angular derivatives we have

∂ψ
∂θ

= ∂ψ
∂φ

= 0.

In this spherically symmetric situation, the equation (2.11) simpli�es to

∆ψ(r, θ , φ) = 1
r2

∂
∂r

(
r2
∂ψ
∂r

)
= ∂2ψ
∂r2

+ 2
r
∂ψ
∂r
.

With a slight abuse of notation we can consider ψ as a function of the radius r = ∣x∣. Since
VR = −1BR(0) is also a radially symmetric function, the equation (2.10) becomes

−∂
2ψ
∂r2

− 2
r
∂ψ
∂r

+ VRψ = λψ. (2.12)

By de�nition of VR, this can be written as

∂2ψ
∂r2

+ 2
r
∂ψ
∂r

+ (1 + λ)ψ = 0, r ≤ R,

∂2ψ
∂r2

+ 2
r
∂ψ
∂r

+ λψ = 0, r > R.
(2.13)
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2. Approximation of the Laplacian with point source

According to Lemma 2.6, the systemof ordinary di�erential equations (2.13) has the solutions

ψ(r) =
⎧⎪⎪⎨⎪⎪⎩

a1 sin
√
1+λr
r + b1 cos

√
1+λr
r , r ≤ R,

a2 sin
√

λr
r + b2 cos

√
λr

r , r > R.
(2.14)

with complex-valued coe�cients a1, b1, a2, b2.
First consider the case r > R. Since λ ≤ 0, we have

√
λ = i

√
∣λ∣. Using the exponential

representations of sin and cos, it holds

ψ(r) = a2
sin i

√
∣λ∣r

r
+ b2

cos i
√

∣λ∣r
r

= ia2
e
√

∣λ∣r − e−
√

∣λ∣r

2r
+ b2

e
√

∣λ∣r + e−
√

∣λ∣r

2r

= (ia2 + b2)e
√

∣λ∣r + (b2 − ia2)e−
√

∣λ∣r

2r

�e coe�cient before e
√

∣λ∣r must vanish, otherwise ψ would not lie in Lp(R3) for any p.�is
leads to the condition a2 = ib2. Hence, up to linear dependence, the solution for r > R is

ψ(r) = e−
√
−λr

r
(2.15)

with derivative

∂ψ
∂r

= −(
√
−λr + 1)e−

√
−λr

r2
. (2.16)

Returning to the system (2.13), we are now focussing on the regularity of the solution at the
point r = R. For ψ to be in H2(R3), ψ needs to be continuous, so we have the condition

a1 sin(
√
1 + λR) + b1 cos(

√
1 + λR) = e−

√
−λR (2.17)

from (2.14) and (2.15). Furthermore, the �rst derivative needs to be continuous for the
second weak derivative to exist. Using the explicit formulas for the derivatives (2.9) and
(2.16), it follows

a1

√
kx cos(

√
1 + λx) − sin(

√
1 + λx)

x2
− b1

√
1 + λx sin(

√
1 + λx) + cos(

√
kx)

x2

= −(
√
−λr + 1)e−

√
−λr

r2
,
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2.1. Spectral properties

which can be simpli�ed to

a1
√
1 + λ cos(

√
1 + λR) − b1

√
1 + λ sin(

√
1 + λR) = −

√
−λe−

√
−λR . (2.18)

�e equations (2.17) and (2.18) form a system of linear equations in a1, b1, which has
solutions whenever the matrix(

sin(
√
1 + λR) cos(

√
1 + λR)√

1 + λ cos(
√
1 + λR) −

√
1 + λ sin(

√
1 + λR)

)

is invertible.�is is the case for λ ≠ −1.�e solutions are

a1 = − sin(
√
1 + λR)e−

√
−λR +

√
−λ√
1 + λ

cos(
√
1 + λR)e−

√
−λR ,

b1 = − cos(
√
1 + λR)e−

√
−λR −

√
−λ√
1 + λ

sin(
√
1 + λR)e−

√
−λR .

Now note that the function

r ↦ cos(
√
1 + λr)
r

is singular at the origin because of cos 0 = 1. Since the eigenfunction needs to be regular,
more precisely ψ ∈ H2(R3), there cannot be a contribution of the singular function for r ≤ R,
because this range includes the origin.�is yields the additional condition b1 = 0, which is
equivalent to

bR(λ) ∶= cos(
√
1 + λR) +

√
−λ√
1 + λ

sin(
√
1 + λR) = 0. (2.19)

�e equation (2.19) cannot have solutions for λ < −1, where
√
1 + λ becomes imaginary and

the trigonometric functions turn into hyperblic cosine and hyperbolic sine.�e point λ = −1
has been excluded above. So all potential negative eigenvalues with radial eigenfunctions
lie in the range (−1, 0). According to Lemma 2.4, the lowest eigenvalue must have a radial
eigenfunction, so all negative eigenvalues lie in this range.
Now assume λ ∈ (−1, 0) and R < π

2 . In this case
√
1 + λR ∈ (0, π

2 ). In this range sine and
cosine are strictly positive and the factor

√
−λ√
1+λ
is positive as well.�is implies b1 ≠ 0, so there

cannot exist any negative eigenvalues with radial eigenfunctions. Moreover, using Lemma
2.4 again, there are no negative eigenvalues whatsoever.�is completes the proof of (i).
Let’s turn to the case R = π

2 . �is case is critical in the sense, that for λ = 0 we have
bR(λ) = 0 in equation (2.19) and consequently b1 = 0. So for r < R the regular solution of
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2. Approximation of the Laplacian with point source

(2.14) becomes, up to a constant factor,

ψ(r) = sin(
√
1 + λr)
r

= sin(r)
r
,

where we have used λ = 0. However, in the range r > R, according to (2.15) the solution
becomes

ψ(r) = e−
√
−λr

r
= 1
r
. (2.20)

�e exponential term degenerates to 1, which implies that ψ is not square-integrable, more
precisely ψ ∈ L2loc(R3) ∖ L2(R3). So ψ is not a proper eigenfunction and λ = 0 is not an
eigenvalue. We call λ = 0 a resonance and the function

ψ(r) =
⎧⎪⎪⎨⎪⎪⎩

sin(r)
r , r ≤ π

2 ,
1
r , r > π

2 ,
(2.21)

the corresponding resonance function.�e function ψ is illustrated in Figure 2.1.�ere is
no other linear independent resonance function, because according to [4, p. 19-20], every
resonance function is radial if the potential V is radial, which is the case here.�is proves
(ii).
Finally, for R > π

2 , the function bR(λ) in (2.19) has a growing number of roots λ j ∈ (−1, 0)
with proper square-integrable eigenfunctions.�is is illustrated in Figure 2.2.�e eigenvalues
can be found numerically.�is completes the proof.

Remark 2.7. If R > π
2 with NR ≥ 2, then only the lowest eigenvalue needs to be nondegenerate

with spherically symmetric eigenfunction. �e eigenvalues λ2, . . . , λNR can have higher
multiplicity and eigenfunctions with angular momentun l ≥ 1, i.e. functions which are not
spherically symmetric. To �nd these functions, one needs to solve not only the radial, but
also the angular part of the partial di�erential equation (2.10). Solutions of the angular part
are related to spherical harmonics, the eigenfunctions of the Laplace-Beltrami operator −∆S2

on the sphere.

We have seen the Birman-Schwinger principle for eigenvalues of −∆ +V in Lemma 2.2.
Now we want to review it in the context of the critical case, where λ = 0 is a resonance of the
operator −∆ + V . Note that the endpoint λ = 0 was excluded in Lemma 2.2.

Lemma 2.8. For V = −1B π
2
(0) decompose V = uv as in Lemma 2.2. �en −1 is a simple

eigenvalue of the Birman-Schwinger operator uR0v with eigenfunction φ ∈ L2(R3) satisfying

uR0vφ = −φ,
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Figure 2.1.:�e function r ↦ 1
r (blue) and the function r ↦ sin r

r (green).�e red line
is the resonance function ψ for R = π

2 and λ = 0.
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Figure 2.2.: �e function bR(λ) from (2.19) for the subcritical value R = 1 (blue),
the critical value R = π

2 (red), and the supercritical values R = 3 (yellow), R = 6
(purple), R = 10 (green).�e function graphs are scaled such that bR(−1) = 1. In the
supercritical cases, the roots are negative eigenvalues of −∆ + VR.
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2. Approximation of the Laplacian with point source

but

R0vφ ∈ L2loc(R3) ∖ L2(R3).

Proof. According to�eorem 2.5, the point 0 is a resonance of −∆ + V whith resonance
function ψ ∈ L2loc(R3) ∖ L2(R3).�is resonance function is unique up to linear dependence.
Following the calculations in the �rst part of the proof of Lemma 2.2, but with λ = 0 here,
the function φ = −uψ ∈ L2(R3) is an eigenfunction of uR0v to the eigenvalue −1. Because of
the uniqueness of ψ, the point −1 is a simple eigenvalue. It holds

R0vφ = −R0vuψ = −R0Vψ = ψ,

where we have used equation (2.3) in the last step. Since ψ ∈ L2loc(R3) ∖ L2(R3), the proof is
complete.

We now study the scaled potential

Vε(x) = ε−2V(x/ε).

for ε > 0. Note that this scaling is not mass preserving, in fact ∥Vε∥L1(R3) = o(ε). However, it
will turn out that it is the correct scaling to approximate the point source.�e next theorem
describes the spectral properties of −∆ + Vε.

�eorem 2.9. For ε > 0 de�ne

Vε(x) = ε−2V(x/ε).

Let λ ∈ R.�en λ is an eigenvalue of (−∆ + V) with eigenfunction ψ, if and only if ε−2λ is an
eigenvalue of (−∆ + Vε) with eigenfunction ψε = ψ(⋅/ε). In particular, if (−∆ + V) does not
have negative eigenvalues, then (−∆ + Vε) does not have negative eigenvalues either.

Proof. First we prove that for x ∈ R3 and f ∈ H2(R3) the identity

(−∆ f (⋅/ε))(x) = ε−2(−∆ f )(x/ε) (2.22)

holds: For j ∈ {1, 2, 3} consider the partial derivative ∂ j. By chain rule of di�erentiation it
holds

∂ j f (x/ε) = ε−1(∂ j f )(x/ε)

and

∂2j f (⋅/ε) = ∂ j(ε−1(∂ j f )(x/ε)) = ε−2(∂2j f )(x/ε).
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2.2. Convergence of resolvents

With

∆ f =
3
∑
j=1
∂2j f

identity (2.22) follows.
Now assume

(−∆ + V)ψ = λψ (2.23)

for some ψ ∈ H2(R3). We can compute

(−∆ + Vε)ψε(x) = (−∆ψ(⋅/ε))(x) + Vε(x)ψ(x/ε)
= −ε−2(∆ψ)(x/ε) + ε−2V(x/ε)ψ(x/ε)
= ε−2(−∆ + V)ψ(x/ε)
= ε−2λψε(x),

where we have used (2.22) in the second step and the eigenvalue property (2.23) in the fourth
step.
Conversely, performing an analogous calculation with ε′ ∶= ε−1, the other implication

follows. Since λ < 0 if and only if ε−2λ < 0, the claim about negative eigenvalues follows
immediately.

2.2. Convergence of resolvents

Consider the self-adjoint extensions (−∆α)α∈R of the Laplacian in L2(R3) [4, p. 2-3]. As
explained in the introduction, these extensions can be understood as Laplacian with point-
interaction. In this section we give a summary of the convergence result of an approximating
family of operators towards −∆α from [4, p. 19–23]. In order to do so, we introduce the spec-
trum of the operator −∆α , which consists of an absolutely continuous part – the nonnegative
real axis – and at most one negative real eigenvalue, depending on the parameter α.

�eorem 2.10. [4,�eorem 1.1.4]. Let −∞ < α ≤∞. �en the essential spectrum of −∆α in
L2(R3) is purely absolutely continuous with

σess(−∆α) = [0,∞).

If α < 0, the operator −∆α has precisely one negative simple eigenvalue

λ1 = −(4πα)2
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2. Approximation of the Laplacian with point source

with the strictly positive eigenfunction

ψ1(x) =
√
−α

e−4πα∣x∣

∣x∣
.

If α ≥ 0, there are no eigenvalues, i.e.

σ(−∆α) = σess(−∆α) = [0,∞).

For the further analysis we will also need the resolvent of −∆α.

Lemma 2.11. [4,�eorem 1.1.4]. Let α ≥ 0. �en for λ ∈ ρ(−∆α) the integral kernel of the
resolvent Rα

λ = (−∆α − λI)−1 is given by

Rα
λ(x , y) = Rλ(x , y) + R

α
λ(x , y) (2.24)

with

R
α
λ(x , y) =

1
α − i

√
λ

4π

e i
√

λ(∣x∣+∣y∣)

(4π)2∣x∣∣y∣
.

For the construction of the approximating family of operators, �x the critical radius R = π
2

of the potential from�eorem 2.5.

De�nition 2.12. Let V = −1B π
2
(0). For ε > 0 de�ne

−Hα,ε ∶= −∆ + Vα,ε = −∆ + Pα(ε)ε−2V
(x

ε

)
(2.25)

with a polynomial Pα such that Pα(0) = 1 and α = −P′α(0)∣(V , φ)∣−2.

Remark 2.13. For example, the polynomial

Pα(z) ∶= −∣(V , φ)∣2α ⋅ z + 1, α ∈ R, (2.26)

satis�es the condition of De�nition 2.12.
Now we introduce the resolvents of the family −Hα,ε.

Lemma 2.14. [4,�eorem 1.1.4]. Let ε > 0 and α ∈ R. �en for λ ∈ ρ(−Hα,ε) the resolvent
Rα,ε

λ = (−Hα,ε − λI)−1 is given by

Rα,ε
λ =Rλ + R

α,ε
λ

∶=Rλ + Pα(ε)Aε
λε[1 + Bε

λ]−1Cε
λ

(2.27)

with operators given by integral kernels

Aε
λ(x , y) = V(y)Rλ(x − εy),
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2.2. Convergence of resolvents

Bε
λ(x , y) = −V(x)Pα(ε)Rλε2(x − y)V(y),

Cε
λ(x , y) = V(x)Rλ(εx − y),

and a real-analytic function Pα(⋅) with Pα(0) = 1.

We are now prepared to prove the convergence of the resolvents in L2 by applying theory
from [4, Chapter 1].

�eorem 2.15. Let V = −1B π
2
(0).�en with −Hα,ε de�ned as in (2.25), if λ ∈ ρ(−∆α), we have

λ ∈ ρ(−Hα,ε) for ε > 0 small enough, and −Hα,ε → −∆α in norm resolvent sense for ε → 0.
�is means

∥Rα,ε
λ − Rα

λ∥L2→L2 → 0 as ε ↓ 0,

with the parameter

α = −P′(0)α ∣(V , φ)∣−2, (2.28)

where φ is the normalized resonance function.

Proof. We want to apply [4,�eorem 1.2.5], so we need to show that all conditions are
ful�lled. Estimating with the Hardy-Littlewood-Sobolev inequality shows that V satis�es

∫
R3
∫
R3

∣V(x)V(y)∣
∣x − y∣2

dx dy ≤ C∥V∥2
L
3
2 (R3)

. (2.29)

and the right side is �nite because V is bounded with compact support and lies in any
Lp space. �e �niteness of the le� side is known as the Rollnik condition. Under this
condition, the integral operator uG0v with kernel u(x)G0(x , y)v(y), where u, v are de�ned
as in Lemma 2.2, is a Hilbert-Schmidt operator on L2(R3) [4, p. 17f]. Clearly it also holds
(1 + ∣ ⋅ ∣)V ∈ L1(R3).
According to �eorem 2.5, radius R = π

2 is the critical case where there is a simple
resonance at λ = 0 with resonance function ψ. As shown in Lemma 2.8, this resonance is
related to a simple eigenvalue −1 of uR0v, more precisely it holds

uR0vφ = −φ, φ ∈ L2(R3),
ψ ∶= R0vφ ∈ L2loc(R3) ∖ L2(R3).

(2.30)

Hence, the conditions of [4,�eorem 1.2.5] are ful�lled. Case II in [4, Formula (1.2.53)] and
[4, p. 20] holds true, so the claim follows.
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3. Existence theory for the super-Brownian
motion with (approximate) point source

In the year 2004 Fleischmann andMueller showed the existence of a super-Brownian motion
Xt related to the partial di�erential equation (1.6) in [20].�e existence of this process with
point source contradicts intuition, because in three dimensions Brownian motion does not
hit a given point with positive probability.�e Fleischmann-Mueller theory from [20] is
fundamental for our further proceding, and we want to recapitulate it in detail within this
chapter. Furthermore, we modify the methods slightly to also analyze the equation

⎧⎪⎪⎨⎪⎪⎩

∂tuα,ε = Hα,εuα,ε − ηu1+β
α,ε on (0,∞) ×R3 ∖ {0},

uα,ε(0, ⋅) = f ≥ 0 on R3 ∖ {0},
(3.1)

which is the analogue of (1.6) when replacing the point-source operator −∆α by the approxi-
mating short-range operators −Hα,ε. One method used in this context is the Feynman-Kac
formula. Due to the singularities in the integral kernels of the semigroup generated by −∆α ,
the classical solution theory for equations of type (3.1) does not work.
�e resolvents and semigroups corresponding to the operators −∆α and −Hα,ε are positiv-

ity preserving, i.e.

f ≥ 0⇒ Sα
t f ≥ 0,

so it makes sense to study them in a probabilistic context. Indeed, they can be associated
with a family of measure-valued processes (Xα,ε

t )t≥0, ε > 0. It is important to know that
throughout this chapter we consider −Hα,ε for �xed ε ∈ (0, 1) and that the involved constants
generally depend heavily on ε. In later chapters we will develop di�erent methods to acquire
results uniformly in ε.

3.1. Preliminaries

In this section we introduce the analytic situation, especially the function spaces, and some
important tools.�is is adopted from [20, p. 743 f]. However, note that we use a di�erent
notation for some important objects compared to the source.
�roughout this whole work we will o�en deal with inequalities involving some positive
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3. Existence theory for the super-Brownian motion with (approximate) point source

constants, which depend on generic parameters such as the dimension of the underlying
space or an integrability index. In many cases it is not important to determine the exact
value of the constant, because the pure existence of such a constant is su�cient. To avoid
keeping track of these constants and for better readability we will o�en rely on the notation

f ≲ g for f ≤ Cg ,C > 0.

�e particular value of C may change between the di�erent occurrences of the symbol “≲”.
We introduce the weight function

w(x) ∶= ∣x∣−1, x ∈ R3.

Now, for every p ≥ 1, the weighted Lebesgue space Lp(w) is de�ned as the space of equiva-
lence classes f of measurable functions on R3, such that

∥ f ∥Lp(w) ∶=
(
∫
R3

∣ f (x)∣pw(x)dx
)1/p

<∞.

De�nition 3.1. For �xed p ≥ 1, we de�ne Φ = Φp as the set of continuous functions
f ∶ R3 ∖ {0}→ R such that f ∈ Lp(w) and

0 ≤ f ≲ w , (3.2)

with the topology induced by the ∥⋅∥Lp(w) norm.

Note that the space Φp is not a Banach space, because the constant in (3.2) is not uniform.
For the parameters of the partial di�erential equation (1.6), we will need the restrictions

α ∈ R, η ≥ 0, 0 < β < 1

and for the exponent p we demand

1
1 − β

2

< p < 2. (3.3)

As in De�nition 2.12, let

−Hα,ε ∶= −∆ + Vα,ε = −∆ + Pα(ε)ε−2V
(x

ε

)
the family of approximating operators with short-range interaction.

Remark 3.2. From De�nition 2.12 we know that

P′α(0) = −α∣(V , φ)∣2 (3.4)
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3.2. �e heat semigroup with short-range interaction

Now with the rescaled resonance function φ(x) = 1
π
sin ∣x∣
∣x∣ on the ball B π

2
(0) from�eorem

2.15 we have in polar coordinates

∣(V , φ)∣2 =
(
4π∫

π
2

0

1
π
sin r ⋅ r dr

)2
= 16

So we can calculate

Vα,ε = Pα(ε)ε−2V
(x

ε

)
= [−16αε + 1]ε−2V

(x
ε

)
= [16αε−1 − ε−2]1B επ

2
(0)

Rede�ning ε ↦ 2
π ε normalizes the radius of the ball and gives

Vα,ε = [16α π
2

ε−1 − π2

4
ε−2]1Bε(0) = [8παε−1 − π2

4
ε−2]1Bε(0)

which corresponds precisely to the expression in [4, Formula (H.49)] with the parameters
γ = β = 0 there.

We introduce the Feynman-Kac formula, which is an important connection between
partial di�erential equations and stochastic processes.

�eorem 3.3. [33, Proposition 1]. Let V ∶ R3 → R a bounded piecewise contiunous potential
and f ∶ R3∖{0}→ R continuous and of subexponential growth, i.e. lim∣x∣→∞(ln f (x))∣x∣−1 = 0.
�en the unique solution of the cauchy problem

⎧⎪⎪⎨⎪⎪⎩

∂tu = ∆u − Vu on (0,∞) ×R3,
u(0, ⋅) = f ,

is given by

u(t, x) = E
[
e− ∫

t
0 V(Ws)ds f (Wt) ∣ W0 = x

]
(3.5)

where Wt is a Brownian motion in R3.

3.2. �e heat semigroup with short-range interaction

In this section we give an overview over some properties of the heat �ow on the weighted
space Lp(w).�is is a summary of results from [20, Sections 2.2-2.3]. In addition, we derive
results on the action of the semgroup (Sα,ε

t )t≥0 de�ned below in the weighted setting.
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3. Existence theory for the super-Brownian motion with (approximate) point source

Remember the fundamental solution

pt(x , y) =
1

(4πt)3/2
e−∣x−y∣

2/4t , t > 0, x , y ∈ R3

of the classical heat equation

⎧⎪⎪⎨⎪⎪⎩

∂tu = ∆u on (0,∞) ×R3,
u(0, ⋅) = f .

(3.6)

As an integral kernel, pt gives rise to the heat semigroup (St)t≥0,

St f (x) = ∫
R3

pt(x , y) f (y)dy.

It is well known that the generator of the semigroup (St)t≥0 is −∆ and that u(t, x) = St f (x)
is a solution of the Cauchy problem (3.6). According to�eorem 3.3 with V = 0 we also have

St f (x) = E[ f (Wt)∣W0 = x]. (3.7)

Now we collect some properties of the heat semigroup.�e following lemmas with proofs
are from [20, Sec. 2.2], note that we change notation to �t in our setting. We start with a heat
�ow estimate for the weight w.

Lemma 3.4. [20, Lemma 2.1] For the weight function w(x) = ∣x∣−1 there is some C > 0 such
that

Stw ≤ Cw , t ≥ 0

Proof. �e claim is trivial for t = 0, so we can assume t > 0. Let x ≠ 0. We have to show that

1
w(x)

Stw(x)

is bounded in t > 0 and x ≠ 0. With the transformation y ↦ t−
1
2 (y − x) and z ∶= −t− 12 x we

calculate

1
w(x)

Stw(x) = 1
w(x) ∫R3

1
(4πt)3/2

e−∣x−y∣
2/4tw(x)dy

≈ ∫
R3
w
(
y − z
∣z∣

)
e−
∣y∣2

4 dy. (3.8)

Now it su�ces to show that the remaining integral is bounded in z ≠ 0. First consider the
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3.2. �e heat semigroup with short-range interaction

case ∣y∣ ≤ ∣z∣
2 .�is implies ∣y − z∣ ≥ ∣z∣

2 and consequently

w
(
y − z
∣z∣

)
≤ 2.

So for the integral in (3.8) restricted to ∣y∣ ≤ ∣z∣
2 we have the bound

2∫
{y∶∣y∣≤∣z∣/2}

e−
∣y∣2

4 dy

which is of course bounded because of the exponential decay. On the other hand, if we
restrict the integral to the subset where ∣y∣ ≥ ∣z∣

2 , the exponential expression can be estimated
from above by e−

∣z∣2

32 e−
∣y∣2

8 . And since ∣z∣e−
∣z∣2

32 is bounded in R3, there is a C > 0 such that we
have the following bound for the integral in (3.8) restricted to ∣y∣ ≥ ∣z∣

2

C ∫
{y∶∣y∣>∣z∣/2}

w(y − z)e−
∣y∣2

8 dy.

�is integral converges because of the exponential decay and the fact that the function w is
locally integrable in R3.�is completes the proof.

Next we cite a maximization result for the heat �ow of w.

Lemma 3.5. [20, Lemma 2.2]. Let κ > 0.�en

Stwκ(x) ≤ Stwκ(0) (3.9)

for t > 0 and x ∈ R3.

�e maximization property (3.9) allows us to obtain the following estimate of the semi-
group (St)t≥0 in case of an additional singularity.

Lemma 3.6. [20, Lemma 2.3]. Let 0 ≤ β ≤ 1 and p satisfying the condition (3.3).�en it holds
for all f ∈ Lp(w)

∥St( f wβ)∥Lp(w) ≲ t−
β
2 ∥ f ∥Lp(w).

Proof. For t > 0 and x ∈ R3 we de�ne the measure µt,x given by the density

µt,x(y) ∶= tκpt(x , y)w2κ(y)

with κ = 1
2

βp
p−1 . Because of the maximum at the center property (3.9), it holds for the total

mass of the measure µt,x

∥µt,x∥ ≤ ∥µt,0∥ = ∫
R3

pt(0, y)dy =∶ C
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3. Existence theory for the super-Brownian motion with (approximate) point source

where we used Brownian scaling in the last step. As a consequence, the measures µt,x are
�nite measures with a total mass of at most C, independent of t and x. For every �nite
measure µ on R3 and measurable functions f , it holds by Hölder’s inequality(

∫
R3

∣ f (y)∣dµ(y)
)p

≤ ∥µ∥p−1∫
R3

∣ f (y)∣ρ dy.

We apply this to the measures µt,x and obtain

∣St( f wβ)(x)∣p = ∣∫
R3

f (y)wβ(y)pt(x , y)dy∣

= t−κp ∣∫
R3

f (y)wβ−2κ(y)dµt,x(y)∣

≤ t−κp∥µt,x∥p−1∫
R3

∣ f (y)∣pwp(β−2κ)(y)dµt,x(y)

≤ t−κp+κCp−1∫
R3

∣ f (y)∣pwp(β−2κ)+2κ(y)pt(x , y)dy

= t−κ(p−1)Cp−1∫
R3

∣ f (y)∣ppt(x , y)dy

= t−κ(p−1)Cp−1St(∣ f ∣)p(x)

where we have used p(β − 2κ) + 2κ = 0. By Lemma 3.4 and Fubini’s theorem we have

∫
R3
St(∣ f ∣)p(x)w(x)dx = ∫

R3
∣ f (y)∣pStw(y)dy

≤ ∫
R3

∣ f (y)∣pCw(y)dy

= C∥ f ∥pLp(w)

for a constant C > 0. Hence,

∥St( f wβ)∥pLp(w) ≤ t−κ(p−1)Cp−1C∥ f ∥pLp(w)

and the claim follows because of κ(p − 1) = βp
2 .

Finally we obtain strong continuity of the heat �ow.

Lemma 3.7. [20, Lemma 3.4].�e semigroup (St)t≥0 acting on Lp(w) is strongly contiuous.

Outline of proof. �e proof uses Lemma 3.6. In a �rst step we show the claim for bounded
functions on compact sets and then later remove this restriction in a second step. Refer to
the proof of [20, Lemma 2.4] for full details.

Now we introduce the semigroup (Sα,ε
t )t≥0 corresponding to the operatorHα,ε = −∆+Vα,ε.
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3.2. �e heat semigroup with short-range interaction

Let ε ∈ (0, 1) and α ∈ R. For f ≥ 0 continuous on R3 ∖ 0, x ∈ R3 and t ≥ 0 de�ne

Sα,ε
t f (x) = E

[
e− ∫

t
0 Vα ,ε(Ws)ds f (Wt) ∣ W0 = x

]
, (3.10)

whereW is a Brownianmotion inR3. According to the Feynman-Kac formula from�eorem
3.3, u ∶= Sα,ε

t f is the unique solution of the cauchy problem

⎧⎪⎪⎨⎪⎪⎩

∂tu = Hα,ε on (0,∞) ×R3,
u(0, ⋅) = f .

(3.11)

�e de�nition (3.10) allows us to easily obtain pointwise estimates of Sα,ε
t f in terms of

the heat semigroup, as seen in the next lemma.

Lemma 3.8. Let ε ∈ (0, 1), α ∈ R and T > 0 �xed. Let f ≥ 0 satisfying the conditions of
theorem 3.3.�ere are constants cT ,α,ε ,CT ,α,ε > 0 such that for every t ∈ [0, T] and x ∈ R3

cT ,α,εSt f (x) ≤ Sα,ε
t f (x) ≤ CT ,α,εSt f (x). (3.12)

In particular, the statement is true for all f ∈ Φp.

Proof. We want to estimate the exponential term in (3.10). It holds

−T∥Vα,ε∥∞ ≤ −t∥Vα,ε∥∞ ≤ ∫
t

0
Vα,ε(Ws)ds ≤ t∥Vα,ε∥∞ ≤ T∥Vα,ε∥∞. (3.13)

Consequently

e−T∥Vα ,ε∥∞ ≤ e− ∫
t
0 Vα ,ε(Ws)ds ≤ eT∥Vα ,ε∥∞ .

Applied to the semigroup, this gives

Sα,ε
t f (x) = E

[
e− ∫

t
0 Vα ,ε(Ws)ds f (Wt) ∣ W0 = x

]
≥ E

[
e−T∥Vα ,ε∥∞ f (Wt) ∣ W0 = x

]
= e−T∥Vα ,ε∥∞E

[
f (Wt) ∣ W0 = x

]
=∶ cT ,α,εE

[
f (Wt) ∣ W0 = x

]
and similarly

Sα,ε
t f (x) ≤ eT∥Vα ,ε∥∞E

[
f (Wt) ∣ W0 = x

]
=∶ CT ,α,εE

[
f (Wt) ∣ W0 = x

]
.

With (3.7) we �nd that

E
[
f (Wt) ∣ W0 = x

]
= St f (x)
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3. Existence theory for the super-Brownian motion with (approximate) point source

and the proof is complete.

Remark 3.9. We want to emphasize here that the constants in Lemma 3.8 depend heavily on
α and ε. In particular

CT ,α,ε = eT∥Vα ,ε∥∞ = eT ∣Pα(ε)∣ε−2 = eT(∣(V ,φ)∣
2αε−1+ε−2)

by De�nition 2.12, and this term clearly tends to in�nity for ε ↓ 0. In this chapter, estimates
for �xed ε are su�cient. In later chapters we will develop other tools to obtain estimates that
hold uniformly in ε.

Lemma 3.10. �e semigroup (Sα,ε
t )t≥0 is strongly continuous on Lp(w) for p > 1

1−β/3 , this
means

∥Sα,ε
t f − f ∥Lp(w) → 0 for t → 0

Proof. Without loss of generality assume f ≥ 0, otherwise decompose f = f+ − f− and use
linearity. Let t > 0. We expand

Sα,ε
t f = St f + (Sα,ε

t − St) f ,

so we have

∥Sα,ε
t f − f ∥Lp(w) ≤ ∥St f − f ∥Lp(w) + ∥(Sα,ε

t − St) f ∥Lp(w). (3.14)

�e �rst term tends to zero for t → 0 because of the strong continuity of the heat semigroup
in the weighted space, Lemma 3.7. For the expression inside the second norm in (3.14) we
have, using (3.10) and (3.7),

(Sα,ε
t − St) f = E

[(
e− ∫

t
0 Vα ,ε(Ws)ds − 1

)
f (Wt) ∣ W0 = x

]
. (3.15)

As in (3.13), it holds

−t∥Vα,ε∥∞ ≤ ∫
t

0
Vα,ε(Ws)ds ≤ t∥Vα,ε∥∞

which leads to the bound

∣e− ∫
t
0 Vα ,ε(Ws)ds − 1∣ ≤ e t∥Vα ,ε∥∞ − 1.

Applying the norm to (3.15), we obtain

∥(Sα,ε
t − St) f ∥Lp(w) = ∥E

[(
e− ∫

t
0 Vα ,ε(Ws)ds − 1

)
f (Wt) ∣ W0

]
∥
Lp(w)
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3.2. �e heat semigroup with short-range interaction

≤ (e t∥Vα ,ε∥∞ − 1)∥E
[
f (Wt) ∣ W0

]
∥
Lp(w)

= (e t∥Vα ,ε∥∞ − 1)∥St f ∥Lp(w)

But because of ∥St f ∥Lp(w) ≲ ∥ f ∥Lp(w), which is Lemma 3.6 with β = 0, and

lim
t→0

(e t∥Vα ,ε∥∞ − 1) = 0

we have

∥(Sα,ε
t − St) f ∥Lp(w) → 0

for t → 0 and, returning to (3.14), we have shown strong continuity.

Corollary 3.11. �e in�nitesimal generator of the semigroup (Sα,ε
t )t≥0 is given by the operator

−Hα,ε. Furthermore, for f ∈ Φp, the map (t, x)↦ Sα,ε
t f (x) is continuous on [0, T] ×R3.

Proof. Because (Sα,ε
t )t≥0 is strongly continuous and is the unique solution of the abstract

Cauchy problem (3.11), the operator −Hα,ε is the in�nitesimal generator of (Sα,ε
t )t≥0, see for

example [17, Section II.6].�e continuity also follows from the fact that (Sα,ε
t )t≥0 solves the

Cauchy problem.

With Lemma 3.8 we immediately obtain the following two estimates.

Corollary 3.12. Under the conditions of Lemma 3.8 there is a constant C > 0 such that

Sα,ε
t w(x) ≤ Cw(x).

Proof. Because of

Sα,ε
t w(x) ≤ CT ,α,εStw(x)

the claim follows from Lemma 3.4.

Corollary 3.13. For f ∈ Φp and with β, p satisfying (3.3), it holds

∥Sα,ε
t ( f wβ)∥ ≲ t−

β
2 ∥ f ∥Lp(w).

Proof. If f ∈ Φp, then f wβ satis�es the conditions of Lemma 3.8.�is leads to

Sα,ε
t ( f wβ) ≤ CT ,α,εSt( f wβ),

and the claim follows from Lemma 3.6 by applying the norm.

Corollary 3.14. Under the conditions of Lemma 3.8 and with β, p satisfying (3.3), (Sα,ε
t )t≥0 is

a strongly continuous semigroup acting on Φp.
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3. Existence theory for the super-Brownian motion with (approximate) point source

Proof. As shown in Lemma 3.10, the semigroup (Sα,ε
t )t≥0 is strongly continuous on Lp(w)

and Φp ⊂ Lp(w) is a subspace. Hence, it remains to show that for f ∈ Φp the function
x ↦ Sα,ε

t f (x) is in Φp as well.�e continuity of this function follows from Corollary 3.11.
Furthermore

Sα,ε
t f ≤ CT ,α,εSt f ≲ Stw ≲ w , (3.16)

where we have used Lemma 3.8 and Lemma 3.4.�is completes the proof.

3.3. �e heat semigroup with point source

In this section we will take a closer look at the solutions of the linear partial di�erential
equation with point interaction, that is

∂tu = ∆αu on (0,∞) ×R3. (3.17)

�is is a summary of the results of sections 2.4 – 2.7 from [20] and we will omit some details
and proofs. First we introduce the fundamental solution of (3.17). Fix α ∈ R. De�ne

pα,t(x , y) ∶= pt(x , y) +
2t

∣x∣∣y∣
pt(∣x∣ + ∣y∣) − 8παt

∣x∣∣y∣ ∫
∞

0
pt(z + ∣x∣ + ∣y∣)e−4παz dz (3.18)

where t > 0, x , y ≠ 0.�e kernel pα,t is the fundamental solution of (3.17) computed in [2,
Formula (3.4)].

Remark 3.15. [20, p. 747].�e last term in (3.18) involving the integral is always �nite and
disappears for α = 0. In the case α ≠ 0, pα,t(x , y) is continuous and decreasing in α with
pα,t ↓ pt pointwise as α ↑∞ and pα,t ↑∞ pointwise as α ↓ −∞.

Since −∆α is a self-adjoint extension of the Laplacian −∆ onR3 ∖{0} [20, p. 747], we have
the following consequence.

Corollary 3.16. [20, Corollary 2.5]. Let α ∈ R.�en pα solves the heat equation. More precisely

∂tpα,t(x , y) = ∆pα,t(x , y)on (0,∞) ×R3 ∖ {0}, (3.19)

where the Laplacian acts on x (or y, respectively). In particular, (t, x , y)↦ pα,t(x , y) is jointly
continuous on (0,∞) ×R3 ×R3.

With (Sα
t )t≥0 we denote the semigroup corresponding to the kernel pα, that is

Sα
t f (x) ∶= ∫

R3
pα,t(x , y) f (y)dy, (3.20)
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3.3. �e heat semigroup with point source

for all f such that the right-hand side makes sense.

Lemma 3.17. [20, Lemma 2.6]. Let α ∈ R and T > 0. De�ne

pt(x , y) ∶= t−
1
2w(x)w(y)e−

∣x ∣2

4t e−
∣y∣2

4t . (3.21)

�en there is a constant C(α, T) such that

pt(x , y) ≤ pα,t(x , y) ≤ pt(x , y) + C(α, T)pt(x , y) (3.22)

for all t ∈ (0, T] and x , y ≠ 0.

Outline of proof. According to (3.18) we have to show that

2t
∣x∣∣y∣

pt(∣x∣ + ∣y∣) − 8παt
∣x∣∣y∣ ∫

∞

0
pt(z + ∣x∣ + ∣y∣)e−4παz dz ≤ C(α, T)pt(x , y). (3.23)

Let α ≥ 0.�en the right-hand side is bounded by

2t
∣x∣∣y∣

pt(∣x∣ + ∣y∣) = 2t
∣x∣∣y∣

(4πt)− 32 e−(∣x∣+∣y∣)2/4t

≤ 1
4π 3

2
t−
1
2 ∣x∣−1∣y∣−1e−

∣x ∣2

4t e−
∣y∣2

4t

= 1
4π 3

2
pt(x , y)

where we have used −(∣x∣ + ∣y∣)2 ≤ −∣x∣2 − ∣y∣2 in the second step.�is shows (3.23) in this
case.
For α < 0 the proof of (3.23) is more di�cult. We have to �nd a constant C(α, T) such

that

8παt
∣x∣∣y∣ ∫

∞

0
pt(z + ∣x∣ + ∣y∣)e−4παz dz ≤ C(α, T)pt(∣x∣ + ∣y∣).

�is is done in [20, p. 748�], please refer to this source for full details. For the constant it
holds C(α, T) ≈ ∣α∣T exp(8π2∣α∣2T) [20, Expression (2.45)]. Note that this growth of the
constant matches with the fact that pα ↑∞ pointwise as α ↓ −∞.

Using the kernel p, we de�ne for t > 0 and x ≠ 0

S t f (x) ∶= ∫
R3

pt(x , y) f (y)dy, (3.24)

as long as the right-hand expression makes sense [20, p. 750]. Using estimate (3.22), it
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3. Existence theory for the super-Brownian motion with (approximate) point source

follows for f ∈ Lp(w)

∥St f ∥Lp(w) ≤ ∥Sα
t f ∥Lp(w) ≤ ∥St f ∥Lp(w) + C(α, T)∥S t f ∥Lp(w). (3.25)

�is allows us to transfer some of our estimates of the heat semigroup to the semigroup
(Sα

t )t≥0. We cite these from [20, Subsections 2.6–2.7] without proofs. Refer to the source
for detailed proofs.�e main strategy is to use the decomposition given by the right-hand
side of (3.25), exploit the properties of the heat semigroup and control the residue term S t f
appropriately.

Lemma 3.18. [20, Corollary 2.9]. Let 0 ≤ β ≤ 1, T > 0 and p satisfying (3.3). �ere is a
constant C(T , α, β, p) such that

∥Sα
t ( f wβ)∥ ≤ C(T , α, β, p)t−

β
2 ∥ f ∥Lp(w).

Corollary 3.19. [20, Corollary 2.11]. Let p ∈ (1, 2), T > 0 and f ∈ Lp(w) with 0 ≤ f ≲ w.
�ere is a constant C(T , α, p, f ) > 0 such that

0 ≤ Sα
t f ≤ C(T , α, p, f )(1 + t

1
p−

1
2 )w

for 0 ≤ t ≤ T. In particular, Sα
t f ∈ Φp for all t > 0.

Corollary 3.20. [20, Corollary 2.10, Corollary 2.12]. Let p ∈ (1, 2) and α ∈ R.�e semigroup
(Sα

t )t≥0 is strongly continuous acting on Lp(w) and strongly continuous acting on Φp as well.

3.4. Solution of the nonlinear integral equation

In this section we prove the existence and uniqueness of solutions of the nonlinear integral
equation belonging to the Cauchy problems (1.6) and (3.1) respectively. To avoid redundan-
cies, we introduce the following notation to deal with the semigroups (Sα,ε

t )t≥0 and (Sα
t )t≥0

simultaneously.

Assumption 3.21. Let T > 0, 0 ≤ β < 1 and 1
1− β

2
< p < 2. Assume that (S̃t)t≥0 is a semigroup

on Lp(w ,R3) with the following properties.

(i) (S̃t)t≥0 is a strongly continuous semigroup acting on Φp.

(ii) �ere are constants c(T),C(T),C(T) ≥ 0 such that for every 0 < t ≤ T , x ∈ R3 and
f ∈ Φp it holds

c(T) ≤ S̃t f (x) ≤ C(T)St f (x) + C(T)S t f (x) (3.26)

where (St)t≥0 is the heat semigroup and (S t)t≥0 is given by (3.24).
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3.4. Solution of the nonlinear integral equation

(iii) For f ∈ Φp it holds

∥S̃t( f wβ)∥Lp(w) ≲ t−
β
2 ∥ f ∥Lp(w). (3.27)

(iv) �ere is a constant C̃(T , p, f ) for every f ∈ Φp such that for t ∈ [0, T]

0 ≤ S̃t f ≤ C̃(T , p, f )(1 + t
1
p−

1
2 )w . (3.28)

Corollary 3.22. For every �xed α ∈ R and ε ∈ (0, 1), the semigroups (Sα,ε
t )t≥0 and (Sα

t )t≥0
satisfy Assumption 3.21.

Proof. For the semigroup (Sα,ε
t )t≥0 the property (i) follows from Corollary 3.14, (ii) is given

by Lemma 3.8 with C(T) = 0. Property (iii) was shown in Lemma 3.13 and (iv) follows from
the stronger estimate (3.16).
As for (Sα

t )t≥0, property (i) is stated in Corollary 3.20. Property (ii) follows from Lemma
3.17. Properties (iii) and (iv) are given by Lemma 3.18 and Corollary 3.19 respectively.

From now on, we will imagine that S̃t is either Sα,ε
t or Sα

t . Consider the integral equation

u(t, x) ∶= S̃t f (x) − η∫
t

0
S̃t−s(u1+β(s))(x)ds (3.29)

for η ≥ 0, β, p satisfying (3.3), with 0 ≤ t ≤ T , x ≠ 0 and f ∈ Φp. We want to show uniqueness
and existence of nonnegative solutions for the equation (3.29). Nonnegativity of the nonlinear
term also implies the domination

0 ≤ u(t) ≤ S̃t f , t ≥ 0. (3.30)

�e results in this section are based on [20, Subsection 3.1]. We have already studied the
properties of the linear term S̃t f in (3.29).�e following lemma collects some properties of
the nonlinear term. We work under the Assumption 3.21.

Lemma3.23. [20, Lemma3.4]. Let f ∈ Φp andψ1,ψ2measurable functions on (0, T]×R3∖{0}
such that

0 ≤ ψ1(t, x) ≤ M(1 + t−κ)wβ(x),
0 ≤ ψ2(t, x) ≤ S̃t f (x)

with constants M = M(T ,ψ1) > 0 and

κ = β
(
1
p
− 1
2

)
∈ (0, 1).
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3. Existence theory for the super-Brownian motion with (approximate) point source

�ere is a constant C(M , T , β, p) such that

∥∫
t

0
S̃t−s(ψ1(s)ψ2(s))ds∥

Lp(w)
≤ C(M , T , β, p)∥ f ∥Lp(w)I(t), 0 < t ≤ T , (3.31)

where

∞ > I(t) ∶= ∫
t

0
(1 + s−κ)(t − s)−

β
2 ds ↓ 0 (3.32)

as t ↓ 0. Moreover, if for �xed t ∈ (0, T]

Nt(x) ∶= ∫
t

0
S̃t−s(ψ1(s)ψ2(s))(x)ds, x ∈ R3 ∖ {0},

satis�es

Nt(x) ≤ S̃t f (x), x ∈ R3 ∖ {0},

then Nt ∈ Φp.

Outline of proof. Since ψ1(s, x) ≤ M(1 + s−κ)wβ(x) and ψ2(t, x) ≤ S̃t f (x) we can apply
the additional singularity estimate (3.27) to obtain the bound (3.31). A computation using
0 < κ + β

2 < 1 shows that the integral I(t) converges to zero for t ↓ 0.�e main work is to
show the continuity of the nonlinear term Nt . Here the fact that (S̃t) is a semigroup on Φp

is needed, as well as the estimate (3.28). Refer to [20, p. 754f] for full details.

In order to prepare for the uniqueness proof, we need the following technical lemma,
which is a consequence of the mean value theorem.

Lemma 3.24. [20, Lemma 3.6]. Let β > 0 and a, b ∈ R.�en

∣a(a ∨ 0)β − b(b ∨ 0)β∣ ≤ (1 + β)(∣a∣ + ∣b∣)β∣a − b∣. (3.33)

�eorem 3.25 (Uniqueness). [20, Lemma 3.7]. Impose Assumption 3.21 and (3.30). Fix
f ∈ Φp. Suppose that u, v are Φp-valued solutions of (3.29).�en u = v.

Proof. We proceed as in the proof of [20, Lemma 3.7]. For 0 ≤ t ≤ T and x ∈ R3 ∖ {0} de�ne
the di�erence

D(t, x) ∶= u(t, x) − v(t, x).

Using (3.30) and estimate (3.27) with β = 0, we obtain

∥D(t)∥Lp(w) ≤ ∥u(t)∥Lp(w) + ∥v(t)∥Lp(w) ≤ 2∥S̃t f ∥Lp(w) ≲ 2∥ f ∥Lp(w). (3.34)
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3.4. Solution of the nonlinear integral equation

With the inequality (3.33) and the fact u and v are nonnegative, we get

∣D(t, x)∣ = η ∣∫
t

0
S̃t−s(u1+β(s) − v1+β(s))(x)ds∣

≤ η∫
t

0
S̃t−s ∣u1+β(s) − v1+β(s)∣ (x)ds

≤ (1 + β)η∫
t

0
S̃t−s[(u(s) + v(s))β∣u(s) − v(s)∣](x)ds

≤ 2η∫
t

0
S̃t−s[(uβ(s) + vβ(s))∣D(s)∣](x)ds.

(3.35)

Using estimate (3.28), we have in the remaining integral

(uβ(s) + vβ(s)) ≤ 2S̃s f ≲ (1 + sκ)w

with κ = β( 1p −
1
2) and an implicit constant depending on T and f . Inserting in (3.35) and

applying the norm gives

∥D(t)∥Lp(w) ≲ 4η∫
t

0
(1 + sκ)∥S̃t−s(∣D(s)∣wβ)∥Lp(w) ds

≲ 4η∫
t

0
(1 + sκ)(t − s)−

β
2 ∥D(s)∥Lp(w) ds

≤ 4 sup
0<s≤t

∥D(s)∥Lp(w)η∫
t

0
(1 + sκ)(t − s)−

β
2 ds

= 4η sup
0<s≤t

∥D(s)∥Lp(w)I(t)

(3.36)

where property (3.27) of the semigroup was used in the second step and with the notation
I(t) from (3.32). Applying the supremum to the �rst and last expression in (3.36) we obtain

sup
0<s≤t

∥D(s)∥Lp(w) ≲ sup
0<s≤t

∥D(s)∥Lp(w) sup
0<s≤t

I(s) = sup
0<s≤t

∥D(s)∥Lp(w)I(t), (3.37)

note that I(t) is increasing in t. �e implicit constant depends on T and f . Because the
term sup0<s≤t ∥D(s)∥Lp(w) is �nite due to (3.34) and the integral I(t) tends to zero as shown
in Lemma 3.23, it follows sup0<s≤t ∥D(s)∥Lp(w) = 0 on a subinterval [0, t0] for 0 < t0 < T
su�ciently small.�is is equivalent to u = v on this interval, note that by assumption u and
v are continuous. Since the model is time-homogeneous, we can repeat the argument �nitely
o�en to extend to the whole interval [0, T] [20, p. 757].

�eorem 3.26 (Well-posedness). [20, �eorem 3.3]. Under the conditions of Assumption
3.21, if f ∈ Φp, then the integral equation (3.29) has a unique Φp-valued solution u = u f

satisfying (3.30). Moreover, the semigroup (Ut) given by Ut f (x) = u f (t, x) is a nonlinear
strongly continuous semigroup acting on Φp.
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3. Existence theory for the super-Brownian motion with (approximate) point source

Outline of proof. We collect references for the missing steps. For the proof of existence of
solutions, one can construct a sequence (un)n∈N of functions inductively de�ned by

u0(t, x) ∶= S̃t f (x),

un(t, x) ∶= S̃t f (x) − η∫
t

0
S̃t−s(un−1(s)ψ1(s))(x)ds, n ∈ N,

(3.38)

with ψ1 as in Lemma 3.23 [20, p. 758f] and then pass to the limit n →∞ via a �xed-point
iteration argument. Lemma 3.23 is also the main tool for dealing with the integral term in
the linearized equation (3.38). Details are given in [20, Lemma 3.10 and Lemma 3.11]. For
the proof of the nonnegativity and domination

0 ≤ u(t) ≤ S̃t f , t ≥ 0,

please refer to [20, Lemma 3.8] or Subsection 7.2 below. Uniqueness was shown in�eorem
3.25, and the semigroup property of (Ut) follows from the uniqueness of solutions as well
[20, p. 762].
As for strong continuity of (Ut), note that

∣Ut f − f ∣ ≤ ∣Ut f − S̃ f ∣ + ∣S̃ f − f ∣.

Because the semigroup (S̃t)t≥0 is strongly continuous, it su�ces to consider the �rst term on
the right-hand side. It holds

∣Ut f − S̃t f ∣ = η ∣∫
t

0
S̃t−s(v1+β(s))(x)ds∣

and this remaining integral can be controlled using property (3.28) of the semigroup (S̃t)t≥0
and Lemma 3.23. Also refer to [20, Lemma 3.5].

3.5. Construction of the measure-valued processes

We remain in the situation of the previous section. In particuar, we continue to impose
Assumption 3.21 on the semigroup (S̃t). From now on, let u the solution of the nonlinear
integral equation (3.29) with initial value u(0, ⋅) = f given by�eorem 3.26. In this section,
we describe the construction of the measure-valued process X related to u via the Laplace
transition functional [20, Formula 1.6]

E[e−⟨Xt , f ⟩∣X0 = µ] =∶ Eµe−⟨Xt , f ⟩ = e−⟨µ,u(t)⟩,
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3.5. Construction of the measure-valued processes

where we use the notation for evaluating ameasure µwith a nonnegativemeasurable function
g

⟨µ, g⟩ ∶= ∫
R3

g(x)dµ(x).

�e strategy to construct X will be a Trotter product approach: We introduce an approxi-
mating integral equation with solutions un, by separating critical continuous-state branching
with index 1 + β and mass �ow according to (S̃t)t≥0 on alternate time intervals of length 1n
[20, p. 762]. We start with an inductive construction of the functions un on [0, T]×R3 ∖{0}
following closely [20, Subsection 4.1]. Under Assumption 3.21 �x n ∈ N and f ∈ Φp. De�ne

un(0, x) ∶= S̃ 1
n
f (x). (3.39)

�is means we let evolve the mass �ow until time 1n . Now assume that un( k
n) is de�ned for

some k ∈ N. For the time interval kn ≤ t < k+1
n and x ≠ 0 set

un(t, x) ∶=
un( k

n , x)[
1 + ηβuβ

n( k
n , x)(t −

k
n)
] 1

β
. (3.40)

By computing the derivative

∂tun(t, x) = −
1
β

un( k
n , x)[

1 + ηβuβ
n( k

n , x)(t −
k
n)
]1+ 1β ηβuβ

n( k
n , x)

= −η
u1+β
n ( k

n , x)[
1 + ηβuβ

n( k
n , x)(t −

k
n)
] 1

β (1+β)

= −ηu1+β
n ( k

n , x),

(3.41)

so un(t, x) is the Laplace transition function of a critical continuous-state branching process
with index 1 + β on the time interval ( k

n ,
k+1
n ) [20, p. 762]. Roughly speaking, un solves the

cauchy problem (3.1) on this time interval, but without the linear term. Also note that by
construction for the le�-hand limit we have un( k

n+, x) = un( k
n , x) and the right-hand limit

un( k
n−, x) exists as well. For x ≠ 0 put

un

(
k + 1
n
, x
)
∶= S̃ 1

n
un

(
k + 1
n

−, ⋅
)

(x), (3.42)

which completes the inductive de�nition.�e function un is nonnegative by constructiuon.
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3. Existence theory for the super-Brownian motion with (approximate) point source

Lemma 3.27. [20, Lemma 4.1] For every �xed n ∈ N the function un de�ned above satis�es

un(t, x) = S̃(1+⌊tn⌋)/n f (x) − η∫
t

0
S̃(⌊tn⌋−⌊sn⌋)/n(u1+β

n (s))(x)ds (3.43)

on [0, T] ×R3 ∖ {0}.

Proof. First assume t ≠ k
n , k ∈ N. Di�erentiating the equation (3.43) gives the true statement

(3.41), because

∂t S̃(1+⌊tn⌋)/n f (x) = 0

for t ≠ k
n . As for the case t =

k
n , k ∈ N, the right-hand side of (3.43) becomes

S̃(1+k)/n f (x) − η
k

∑
i=0

[
S̃(k−(i−1))/n

(
∫

i/n

(i−1)/n
u1+β
n (s)ds

)
(x)
]
,

since ⌊sn⌋/n ≡ (i − 1)/n for s ∈ ( i−1
n ,

i
n). Using (3.41) and the fundamental theorem of

calculus, this expression equals un( k
n , x), completing the proof [20, p. 763].

�e following theorem states that the functions un converge towards the solution v of
�eorem 3.26.

�eorem 3.28. [20, Proposition 4.3]. Fix f ∈ Φp. De�ne un as in (3.39)–(3.42). Let v the
unique Φp-valued solution of the integral equation (3.29) given by�eorem 3.26. �en, for
each t ∈ [0, T],

lim
n→∞

∥u(t) − un(t)∥Lp(w) = 0.

Outline of proof. For n ∈ N we obtain by subtracting (3.43) from (3.29) and decomposing
the integral range

∥u(t) − un(t)∥Lp(w) ≤ ∥S̃t f − S̃(1+⌊tn⌋)/n f ∥Lp(w)

+ η∫
⌊tn⌋/n

0
∥S̃t−su1+β(s) − S̃(⌊tn⌋−⌊sn⌋)/nu1+β(s)∥Lp(w) ds

+ η∫
⌊tn⌋/n

0
∥S̃(⌊tn⌋−⌊sn⌋)/n∣u1+β(s) − u1+β

n (s)∣∥Lp(w) ds

+ η∥∫
t

⌊tn⌋/n
S̃t−su1+β(s)ds∥

Lp(w)
+ η∥∫

t

⌊tn⌋/n
S̃(⌊tn⌋−⌊sn⌋)/nu1+β

n (s)ds∥
Lp(w)

.

�ese terms can be estimated separately using the properties of the semigroup (S t) from
Assumption 3.21. Refer to [20, p. 764�] for a detailed proof.
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With the convergence of the approximating solution un,�eorem 3.28, in place, we are
able to make the transition to the setting of measure-valued processes.

�eorem 3.29. [20,�eorem 4.4] Let µ ∈M(R3 ∖ {0}) =∶M. Under Assumption 3.21, there
is a unique in law nondegenerateM-valued time-homogeneous Markov process X = (Xt)t≥0
with Laplace transition functional

Eµe−⟨Xt , f ⟩ = e−⟨µ,u(t)⟩ (3.44)

using test functions f ∈ Φp and where u = U f is the unique Φp-valued solution of (3.29) from
�eorem 3.26.

Proof. First we prove that the process X, if it exists, is nondegenerate, i.e. not equal to its
expectation everywhere. It holds

Eµ[⟨Xt , f ⟩] = ⟨µ, S̃t f ⟩

for every µ ∈M, f ∈ Φp, t ≥ 0, as shown in�eorem 4.1 below. But if f ≠ 0 and t > 0, the
integral term in (3.29) does not vanish and hence u(t) ≠ S̃t f . Applying (3.44), we obtain

Eµe−⟨Xt , f ⟩ = e−⟨µ,u(t)⟩ ≠ e⟨µ,S̃t f ⟩.

�us, ⟨Xt , f ⟩ /≡ ⟨µ, S̃t f ⟩, which means that X is nondegenerate.
Now we turn to the existence proof following closely the proof of [20,�eorem 4.4]. Fix

µ ∈M and n ∈ N. Using the approximating solutions un de�ned in (3.39)–(3.42), we want
to construct a random measure Xn

t ∈M, t ≥ 0 �xed, satisfying

Eµe−⟨X
n
t , f ⟩ = e−⟨µ,un(t)⟩, f ∈ Φp. (3.45)

�en we later let n ↑∞ to obtain a random measure Xt ∈M, t ≥ 0 �xed, satisfying (3.44).
�is will give us a probability kernel Qt. Because of the semigroup property of Ut f , the
family (Qt)t≥0 satis�es the conditions of the Chapman-Kolmogorov theorem. Consequently,
(Qt)t≥0 is then the transition kernel of a time-homogeneous Markov process (Xt)t≥0. [20, p.
769, 771]
Now we begin with the construction of (Xn

t )t≥0 for �xed n ∈ N. �is is done again
by alternating operations of continuous-state branching and mass �ow according to the
semigroup (S̃t)t≥0 on time intervals of length 1n . Because these two alternating operations do
not commute, we must apply them in reversed order on the dual level of measures compared
to the construction of un.
Consider the ordinary di�erential equation

d
dt

g(t) = −ηg1+β(t) on [0,∞) with g(0) = θ , (3.46)
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3. Existence theory for the super-Brownian motion with (approximate) point source

where θ ≥ 0.�e unique solution g of (3.46) yields the Laplace transition functional of a
critical continuous-state branching process (yt)t≥0 with index 1 + β via

E[e−ytθ ∣y0 = a] = ag(t).

�is was shown in [34], see also [20, p. 769]. In the case β = 1,�e process (yt)t≥0 is the
critical Feller branching di�usion.
To add the spacial component, we let the process (yt)t≥0 evolve independently at each

point x ≠ 0 by replacing the starting point θ with the initial data f (x) in (3.46). For each
�xed x, this leads to the ordinary di�erential equation

d
dt

g(t, x) = −ηg1+β(t, x) on [0,∞) with g(0, x) = f (x). (3.47)

�e resultingM-valued Markov process (Yt)t≥0 with càdlàg paths has the Laplace transition
functional

Eµe−⟨Yt , f ⟩ = e−⟨µ,Gt f ⟩ (3.48)

where

Gt f (x) ∶= g(t, x)

for t ≥ 0, f ∈ Φp and µ ∈M. [20, p. 770]. Now we want to apply the mass �ow operation and
inductively de�ne the randommeasures Xn

t satisfying (3.45). We introduce the following
notation of smearing out a measure µ according to the �ow of S̃t :

⟨S̃tµ, f ⟩ ∶= ⟨µ, S̃t f ⟩. (3.49)

For �xed µ ∈M, n ∈ N and t ∈ [0, 1n) de�ne

Xn
t ∶= S̃1/nYt , Y0 ∶= µ.

With (3.48) and (3.49) it follows

Eµe−⟨X
n
t , f ⟩ = Eµe−⟨S̃1/nYt , f ⟩ = Eµe−⟨Yt ,S̃1/n f ⟩ = e−⟨µ,Gt S̃1/n f ⟩.

But because of the uniqueness of solutions to (3.46) and by (3.41) with k = 0, we have
that Gt S̃1/n f = un(t). Consequently, e−⟨µ,Gt S̃1/n f ⟩ = e−⟨µ,un(t)⟩ and we have shown (3.45) for
0 ≤ t < 1

n . [20, p. 770]. To proceed with the induction, assume that for k ∈ N the random
measures Xn

t are de�ned for k
n ≤ t < k+1

n and satisfy (3.45).�en, �x t ∈ [ k+1n ,
k+2
n ) and set

Xn
t ∶= S̃1/nY1/n , Y0 ∶= Xt− 1n

.
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Replacing µ with Xt− 1n
in equation (3.48) implies

Eµe−⟨X
n
t , f ⟩ = E[e−⟨Y1/n ,S̃1/n f ⟩∣Y0 ∶= Xt− 1n

] = e−⟨Xt− 1n
,Gt S̃1/n f ⟩ = e−⟨µ,un(1− 1n )⟩,

using the induction hypothesis in the last step, but with un(0) = S̃1/nG1/n S̃1/n f instead of
S̃1/n f . But since this new un(0) di�ers from the original un(0) by critical branching and
mass �ow of length 1n , we obtain from the construction (3.39)–(3.42) that the new un(t − 1

n)
coincides with the original un(t). �is yields (3.45) on the time interval [ k+1n ,

k+2
n ). By

induction, we have shown (3.45) for all t ≥ 0. [20, p. 770]
Now we pass to the limit n ↑∞. According to�eorem 3.28, un(t)→ u(t) as n ↑∞ for

t ≥ 0 �xed.�is implies

e−⟨µ,un(t)⟩ → e−⟨µ,u(t)⟩, n ↑∞, t ≥ 0.

�erefore, the Laplace transforms at the le�-hand side of (3.45) converge to ⟨µ, u(t)⟩, too.
From the integral representation (3.29) we get ⟨µ, u(t)⟩ ↓ 0 as f ↓ 0. Hence, the limit of the
Laplace transforms in (3.45) is again a Laplace transform of a randommeasure inM [Dynkin
94]. Denote this randommeasure by Xt . Consequently, for t �xed, Xn

t → Xt in distribution as
n ↑∞. Since the map µ ↦ ⟨µ,Ut f ⟩ is measurable, via µ → Xt we get a probability kernel Qt

inM for �xed t. As mentioned at the beginning of the proof, using Chapman-Kolmogorov,
this implies that (Qt)t≥0 is the transition kernel of a time-homogeneous Markov process in
M, which is the desired superprocess (Xt)t≥0 [20, p. 771]. In fact

∫
M

e−⟨λ, f ⟩Qt(µ, dλ) = e−⟨µ,u(t)⟩

for λ, µ ∈M [35, p. 42].�e kernel Qt satis�es the branching property

Qt(µ1 + µ2, ⋅) = Qt(µ1, ⋅) ∗ Qt(µ2, ⋅)

where µ1, µ2 ∈M [35, Formula 2.1].

We summarize the results by returning to the semigroups (Sα
t )t≥0 and (Sα,ε

t )t≥0.

Corollary 3.30. Let µ ∈M, 0 ≤ β < 1 and 1
1−β/2 < p < 2. Fix α ∈ R and ε ∈ (0, 1).�ere are

unique in law nondegenerateM-valued time-homogeneous Markov processes Xα and Xα,ε

with Laplace transition functionals

Eµe−⟨X
α
t , f ⟩ = e−⟨µ,uα(t)⟩ and (3.50)

Eµe−⟨X
α ,ε
t , f ⟩ = e−⟨µ,uα ,ε(t)⟩ (3.51)

respectively, using test functions f ∈ Φp and where uα , uα,ε are the unique Φp-valued solutions
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3. Existence theory for the super-Brownian motion with (approximate) point source

of

uα(t, x) = Sα
t f (x) − η∫

t

0
Sα
t−s(u

1+β
α (s))(x)ds and

uα,ε(t, x) = Sα,ε
t f (x) − η∫

t

0
Sα,ε
t−s(u

1+β
α,ε (s))(x)ds

respectively, with initial data uα(0) = uα,ε(0) = f .

Proof. �e semigroups (Sα
t )t≥0 and (Sα,ε

t )t≥0 satisfy Assumption 3.21 as stated in Corollary
3.22. Hence, the claim follows immediately from the previous�eorem 3.29

Remark 3.31. �e existence of the process Xα is the subject of the work from Fleischmann-
Mueller 2004 [20], which was also our main source. Concerning the process Xα,ε, there are
some previous results for similar processes in special cases, for example the case β = 1 in
[18]. Also, the existence of the process Xα,ε follows from the more general theory of [35],
as discussed in Chapter 4. However, to the knowledge of the author, the approach to this
process that we discussed above, is new.
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4. Basic properties of themeasure-valued
processes

In the previous chapter we have shown the existence of the measure-valued processes Xα

and Xα,ε. Next up we want to study �rst properties of these processes, including moment
formulas and an analysis of the dependence on the parameter η. For the process Xα,ε, a kind
of path regularity is also shown.

4.1. Moment formulas

�e following theorem gives an explicit formula for the expectation of Xα
t .�e main idea in

the computation is to write the �rst moment as a derivative of the Laplace transform of the
process. We continue to impose Assumption 3.21, recall that 0 ≤ β < 1 and 1

1− β
2
< p < 2.

�eorem 4.1. Under Assumption 3.21, let initial data f ∈ Φp and u f the corresponding solution
of the integral equation

u f (t, x) = Sα
t f (x) − η∫

t

0
Sα
t−s(u

1+β
f (s))(x)ds, (4.1)

u f (0, ⋅) = f ,

given by�eorem 3.26. Let α ≥ 0 and (Xα
t )t≥0 the associated superprocess given by Corollary

3.30 and µ a measure with density µ(⋅) ∈ L1(w).�en it holds

Eµ[⟨Xα
t , f ⟩] = ⟨µ, Sα

t f ⟩ <∞. (4.2)

Note that we wrote the solution of (4.1) with index f to emphasize the dependency on
the initial data.�is is because we will need to vary the initial data in the following proof.
We follow the usual strategy, the proofs are included because we have not found reference
covering the situation where a singularity is present.�roughout this section we frequently
use the fact that f ≥ 0 and that cosenquently the expression Sα

t f and the solution u f (t), t ≥ 0,
of (4.1) are nonnegative. See Section 7.2 for more details about this nonnegativity.

47



4. Basic properties of the measure-valued processes

Proof of�eorem 4.1. Let r ≥ 0. We have

Eµ[⟨Xα
t , f ⟩] = −Eµ

[
∂
∂r

∣
r=0
exp(−r⟨Xα

t , f ⟩)
]
. (4.3)

Our aim is to interchange derivative and expectation to compute the right-hand side of (4.3).
In order to do this, consider �rst r > 0. It holds

∣ ∂
∂r
exp(−r⟨Xα

t , f ⟩)∣ = ⟨Xα
t , f ⟩ exp(−r⟨Xα

t , f ⟩) ≤
1
er

for every �xed r > 0, because the function [0,∞) ∋ x ↦ xe−rx takes its maximum 1
er at the

point x0 = 1
r . It follows

Eµ

[
∣ ∂
∂r
exp(−r⟨Xα

t , f ⟩)∣
]
≤ 1
er

<∞.

Hence, the dominated convergence theorem can be applied and yields

Eµ

[
∂
∂r
exp(−r⟨Xα

t , f ⟩)
]
= ∂
∂r

Eµ
[
exp(−r⟨Xα

t , f ⟩)
]

(4.4)

for every r > 0. Furthermore, we have the monotone convergence

− ∂
∂r
exp(−r⟨Xα

t , f ⟩) = ⟨Xα
t , f ⟩ exp(−r⟨Xα

t , f ⟩)

↑ ⟨Xα
t , f ⟩

= − ∂
∂r

∣
r=0
exp(−r⟨Xα

t , f ⟩)

for r ↓ 0.�us, we can apply the monotone convergence theorem to the expectation on the
right-hand side of (4.3) and obtain with (4.4)

Eµ

[
∂
∂r

∣
r=0
exp(−r⟨Xα

t , f ⟩)
]
= Eµ

[
lim
r↓0

∂
∂r
exp(−r⟨Xα

t , f ⟩)
]

= lim
r↓0

Eµ

[
∂
∂r
exp(−r⟨Xα

t , f ⟩)
]

= lim
r↓0

∂
∂r

Eµ
[
exp(−r⟨Xα

t , f ⟩)
]

= ∂
∂r

∣
r=0

Eµ
[
exp(−r⟨Xα

t , f ⟩)
]
.

(4.5)

For r ≥ 0 we write ur f for the solution of the integral equation (4.1) corresponding to
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4.1. Moment formulas

initial data r f . Via the Laplace transition functional

Eµ[exp(−r⟨Xα
t , f ⟩)] = Eµ[exp(−⟨Xα

t , r f ⟩)] = exp(−⟨µ, ur f (t)⟩), (4.6)

refer to (3.50), it follows with the identity (4.5) and the chain rule

Eµ[⟨Xα
t , f ⟩] = −Eµ

[
∂
∂r

∣
r=0
exp(−r⟨Xα

t , f ⟩)
]

= − ∂
∂r

∣
r=0

Eµ[exp(−r⟨Xα
t , f ⟩)]

= − ∂
∂r

∣
r=0
exp(−⟨µ, ur f (t)⟩)

=
[
exp(−⟨µ, ur f (t)⟩)

]
r=0

∂
∂r

∣
r=0

⟨µ, ur f (t)⟩

= ∂
∂r

∣
r=0

⟨µ, ur f (t)⟩.

Now let’s assume for the moment that we can show

∂
∂r

∣
r=0

⟨µ, ur f (t)⟩ = ∫
Rd

∂
∂r

∣
r=0

ur f (t)dµ = ⟨µ, Sα
t f ⟩, (4.7)

then the proof would be �nished.
In order to do this, we calculate ∂

∂rur f using the Picard iteration

u0,r f (t, x) ∶= Sα
t f (x),

un,r f (t, x) ∶= Sα
t f (x) − η∫

t

0
Sα
t−s(u

1+β
n−1,r f (s))(x)ds, n ∈ N,

(4.8)

as in the proof of�eorem 3.26 Note that the Lp(w)-convergence of this iteration towards
ur f is uniform in r for �xed f and r ≤ C <∞.�is follows for example from a calculation in
a later part of the work:�e Lipschitz constant from (7.19) for the function C f also holds
for all functions r f , r ≤ C.�is implies

∂
∂r

ur f (t) = limn→∞

∂
∂r

un,r f (t), (4.9)

where the limit is taken in Lp(w).
Now we are le� to calculate ∂

∂run,r f at r = 0. For n = 0 we have

u0,r f (t) = Sα
t (r f ) = rSα

t ( f ),
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4. Basic properties of the measure-valued processes

and hence

∂
∂r

∣
r=0

u0,r f (t) =
∂
∂r

u0,r f (t) = Sα
t f .

In the next step

∂
∂r

u1,r f (t) =
∂
∂r

Sα
t (r f ) − η

∂
∂r ∫

t

0
Sα
t−s(Sα

s (r f ))1+β ds

= Sα
t f − η

∂
∂r

r1+β ∫
t

0
Sα
t−s(Sα

s f )1+β ds

= Sα
t f − η(1 + β)rβ ∫

t

0
Sα
t−s(Sα

s f )1+β ds.

(4.10)

�is again leads to

∂
∂r

∣
r=0

u1,r f (t) = Sα
t f .

Furthermore, the representation (4.10) and Lemma 3.23 imply ∂
∂ru1,r f ∈ Φp.

Now let’s assume as our induction hypothesis that

∂
∂r

∣
r=0

un−1,r f (t) = Sα
t f

and ∂
∂run−1,r f (t) ∈ Φp for some n ∈ N and all t > 0. �e latter fact yields an integrable

majorant for ∂
∂run−1,r f and allows interchanging derivative and integral in the following

calculation.

∂
∂r

un,r f (t) = Sα
t f − η

∂
∂r ∫

t

0
Sα
t−s(u

1+β
n−1,r f (s))ds

= Sα
t f − η(1 + β)∫

t

0
Sα
t−s

(
uβ
n−1,r f (s)

∂
∂r

un−1,r f (s)
)
ds

= Sα
t f − η(1 + β)∫

t

0
Sα
t−s

(
uβ
n−1,r f (s)S

α
s f
)
ds

It follows again ∂
∂run,r f (t) ∈ Φp. Furthermore

∂
∂r

∣
r=0

un,r f (t) = Sα
t f − η(1 + β)∫

t

0
Sα
t−s

(
uβ
n−1,0(s)Sα

s f
)
ds = Sα

t f ,

because un−1,0 = 0.�is completes the induction. Using (4.9), we infer

∂
∂r

∣
r=0

ur f (t) = Sα
t f
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4.1. Moment formulas

and ∂
∂rur f (t) ∈ Φp.�is allows us to calculate

∂
∂r

∣
r=0

⟨µ, ur f (t)⟩ = ∫
Rd

∂
∂r

∣
r=0

ur f (t)dµ = ∫
Rd

Sα
t f dµ <∞,

because µ(⋅) ∈ L1(w). Hence we have shown (4.7) and the proof is complete.

In complete analogy we obtain the corresponding result for the process Xα,ε by replacing
the semigroup (Sα

t )t≥0 with (Sα,ε
t )t≥0 in the proof of�eorem 4.1.�is result can be deduced

from the usual literature.

Corollary 4.2. Under Assumption 3.21 let initial data f ∈ Φp and u f the corresponding solution
of the integral equation

u f (t, x) = Sα,ε
t f (x) − η∫

t

0
Sα,ε
t−s(u

1+β
f (s))(x)ds,

u f (0, ⋅) = f ,

given by�eorem 3.26. Let α ≥ 0, ε ∈ (0, 1) and (Xα,ε
t )t≥0 the associated superprocess given by

Corollary 3.30 and µ a measure with density µ(⋅) ∈ L1(w).�en it holds

Eµ[⟨Xα,ε
t , f ⟩] = ⟨µ, Sα,ε

t f ⟩ <∞. (4.11)

We have shown that the �rst moment of Xα
t exists and can be explicitly calculated by

formula 4.2. �is raises the natural question, whether higher moments exist. Our main
focus is the three-dimensional case. However, in this case we are restricted to β < 1, refer to
Assumption 3.21. In [20] the two-dimensional case was also investigated and in this situation
β = 1 is admissible.�e following result shows that for β = 1 the second moment exists.

�eorem 4.3. Let d = 2 and initial data f ∈ Φp and u f the corresponding solution of the
integral equation (4.1) in the case β = 1. Let (Xα

t )t≥0 the associated superprocess and µ a
measure with density µ(⋅) ∈ L1(w).�en it holds

Eµ[⟨Xα
t , f ⟩2] = ⟨µ, Sα

t f ⟩2 + 2η ⟨µ,∫
t

0
Sα
t−s(Sα

s f )2 ds⟩ <∞.

Proof. First of all, the result of�eorem 4.1 is also valid in the two-dimensional case, since
all calculations in the proof are precisely the same, even for β = 1. We proceed as in that
proof, but use the second derivative instead of the �rst.�is gives us

Eµ[⟨Xα
t , f ⟩2] =

∂2

∂r2
∣
r=0

Eµ[exp(−r⟨Xα
t , f ⟩)].
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4. Basic properties of the measure-valued processes

Again, we use the Laplace transition functional and calculate

∂2

∂r2
∣
r=0

Eµ[exp(−r⟨Xα
t , f ⟩)]

= ∂2

∂r2
∣
r=0
exp(−⟨µ, ur f (t)⟩)

= − ∂
∂r

∣
r=0

[
exp(−⟨µ, ur f (t)⟩)

∂
∂r

⟨µ, ur f (t)⟩
]

=
[
∂
∂r

⟨µ, ur f (t)⟩
]2

∣
r=0

− ∂2

∂r2
∣
r=0

⟨µ, ur f (t)⟩

= ⟨µ, Sα
t f ⟩2 −

∂2

∂r2
∣
r=0

⟨µ, ur f (t)⟩, (4.12)

where we have used (4.7) in the last step. So it su�ces to show that

− ∂2

∂r2
∣
r=0

⟨µ, ur f (t)⟩ = −∫
R2

∂2

∂r2
∣
r=0

ur f (t)dµ = 2η ⟨µ,∫
t

0
Sα
t−s(Sα

s f )2 ds⟩ . (4.13)

To do so, we once again employ the Picard iteration as in (4.8). As seen in [20, Subsections
3.4–3.7] this can be done in the two-dimensional case as well. Inserting β = 1, we obtain

− ∂2

∂r2
u1,r f (t) = −

∂2

∂r2
rSα

t ( f ) + η
∂2

∂r2 ∫
t

0
Sα
t−s(Sα

s (r f ))2 ds

= η
∂2

∂r2
r2∫

t

0
Sα
t−s(Sα

s f )2 ds

= 2η∫
t

0
Sα
t−s(Sα

s f )2 ds.

(4.14)

�e last representation implies − ∂2
∂r2u1,r f (t) = ∣ ∂2∂r2u1,r f (t)∣ ∈ Φp according to Lemma 3.23.

We proceed with induction over n. As the induction hypothesis, assume

− ∂2

∂r2
∣
r=0

un−1,r f (t) = 2η∫
t

0
Sα
t−s(Sα

s f )2 ds

and ∣ ∂2∂r2un−1,r f (t)∣ ∈ Φp for some n ∈ N and all t > 0. �e latter fact gives an integrable
majorant and allows to interchange derivative and integral in the next iteration step. We
compute

− ∂2

∂r2
un,r f (t) = −

∂2

∂r2
rSα

t ( f ) + η
∂2

∂r2 ∫
t

0
Sα
t−s(u2n−1,r f (s))ds

= 2η∫
t

0

∂
∂r

Sα
t−s

(
un−1,r f (s)

∂
∂r

un−1,r f (s)
)
ds
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4.1. Moment formulas

= 2η∫
t

0
Sα
t−s

([
∂
∂r

un−1,r f (s)
]2
+ un−1,r f (s)

∂2

∂r2
un−1,r f (s)

)
ds.

We already know from the calculations in the proof of the previous theorem, that

∂
∂r

un−1,r f (s)∣
r=0

= Sα
t f .

Furthermore, un−1,r f = 0 for r = 0. Inserting these two expressions implies

− ∂2

∂r2
un,r f (t)∣

r=0
= 2η∫

t

0
Sα
t−s(Sα

s f )2 ds

and the identity

∣ ∂
2

∂r2
un,r f (t)∣ = 2η∫

t

0
Sα
t−s

([
∂
∂r

un−1,r f (s)
]2
+ un−1,r f (s) ∣

∂2

∂r2
un−1,r f (s)∣

)
ds

implies ∣ ∂2∂r2un,r f (t)∣ ∈ Φp because of the induction hypothesis and the fact that ∂
∂run−1,r f (s) ∈

Φp.
Taking limits as in (4.9) gives us

− ∂2

∂r2
ur f (t)∣

r=0
= 2η∫

t

0
Sα
t−s(Sα

s f )2 ds

and ∣ ∂2∂r2ur f (t)∣ ∈ Φp. We can infer (4.13), which completes the proof.

Remark 4.4. In the case β < 1 the second moment cannot be computed as in�eorem 4.3.
In fact, calculating as in (4.14), we obtain

− ∂2

∂r2
u1,r f (t) = η

∂2

∂r2
r1+β ∫

t

0
Sα
t−s(Sα

s f )1+β ds

= η(1 + β)βrβ−1∫
t

0
Sα
t−s(Sα

s f )2 ds

and the last term becomes singular for r ↓ 0 because of β − 1 < 0. So it seems likely that the
second moment and higher moments do not exist in this case, which means that the process
has in�nite variance.

Now we show existence of fractional moments, up to but not including the moment of
order 1 + β. We closely follow the strategy in [40, Lemma 2.1], where a corresponding
existence result is given in the context of Dawson-Watanabe superprocesses with (1 + β)-
stable branching mechanisms. More details about general branching mechanisms can be
found in the next section.
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4. Basic properties of the measure-valued processes

�eorem 4.5. Let 0 < ζ < β.�en it holds

Eµ[⟨Xα
t , f ⟩1+ζ] ≤ 1 + c(ζ , β)

[
⟨µ, Sα

t f ⟩1+β + ⟨µ,∫
t

0
Sα
t−s(Sα

s f )1+β ds⟩
]

for a constant c(ζ , β) > 0.

For the proof we will need the following technical Lemma.

Lemma 4.6. [12, Lemma 5.5.2, (c)–(e)]. Let 0 < ζ , β ≤ 1.�ere are constants c1(ζ), c2(β) > 0,
such that for every nonnegative random variable Y it holds

(i) E[Y1+ζ] ≤ 1 + c1(ζ)∫
∞

1
z1+ζ ∫

2/z

0
E
[
e−rY − 1 + rY

]
dr dz,

(ii) Y − 1 ≤ c2(β)Y1+β − e−Y .

Proof of�eorem 4.5. We proceed as in the proof of [40, Lemma 2.1]. Using Lemma 4.6(i) it
holds

Eµ[⟨Xα
t , f ⟩1+ζ] ≤ 1 + c1(ζ)∫

∞

1
z1+ζ ∫

2/z

0
Eµ
[
e−⟨X

α
t ,r f ⟩ − 1 + ⟨Xα

t , r f ⟩
]
dr dz

≤ 1 + c1(ζ)∫
∞

1
z1+ζ ∫

2/z

0
e−⟨µ,ur f (t)⟩ − 1 + ⟨µ, Sα

t (r f )⟩dr dz, (4.15)

where we used the Laplace transition functional (4.6) and the formula (4.2) for the �rst
moment of Xα

t in the second step. Remember here that ur f is the solution of the nonlinear
integral equation (4.1) with initial data r f . Let us turn our attention to the inner integrand
in (4.15). It is bounded by

c2(β)⟨µ, Sα
t (r f )⟩1+β + ∣e−⟨µ,ur f (t)⟩ − e−⟨µ,S

α
t (r f )⟩∣

≤ c2(β)⟨µ, Sα
t (r f )⟩1+β + ∣⟨µ, ur f (t)⟩ − ⟨µ, Sα

t (r f )⟩∣ (4.16)

for c2(β) > 0, where we used Lemma 4.6(ii) to estimate the term ⟨µ, Sα
t (r f )⟩ − 1 and then

applied the mean value theorem to the function [0,∞) ∋ y ↦ e−y. �e function ur f (t)
solves the integral equation

ur f (t) − Sα
t (r f ) = ∫

t

0
Sα
t−s(ur f (s))1+β ds,

which yields the bound

c2(β)⟨µ, Sα
t (r f )⟩1+β + ⟨µ,∫

t

0
Sα
t−s(ur f (s))1+β ds⟩

≤(1 + c2(β))r1+β
[
⟨µ, Sα

t ( f )⟩1+β + ⟨µ,∫
t

0
Sα
t−s(Sα

s ( f ))1+β ds⟩
]
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4.2. Pathwise properties of the superprocess with approximate point source

for (4.16). We have used the domination ur f (s) ≤ Sα
s (r f ) from (3.30) here. Returning to

(4.15) results in

Eµ[⟨Xα
t , f ⟩1+ζ] ≤ 1 + c1(ζ)(1 + c2(β))∫

∞

1
z1+ζ ∫

2/z

0
r1+β dr dz

⋅
[
⟨µ, Sα

t ( f )⟩1+β + ⟨µ,∫
t

0
Sα
t−s(Sα

s ( f ))1+β ds⟩
]
.

It remains to show that the constant

c(ζ , β) ∶= c1(ζ)(1 + c2(β))∫
∞

1
z1+ζ ∫

2/z

0
r1+β dr dz

is �nite. A direct computation shows that

∫
∞

1
z1+ζ ∫

2/z

0
r1+β dr dz = 22+β

(2 + β)(ζ − β) ∫
∞

1
zζ−β−1 dz = 22+β

(2 + β)(β − ζ)
<∞,

using ζ − β < 0.�is completes the proof.

Again, we can repeat the previous proof step by step for the process Xα,ε and the associated
semigroup and obtain

Corollary 4.7. Let 0 < ζ < β and ε ∈ (0, 1).�en it holds

Eµ[⟨Xα,ε
t , f ⟩1+ζ] ≤ 1 + c(ζ , β)

[
⟨µ, Sα,ε

t f ⟩1+β + ⟨µ,∫
t

0
Sα,ε
t−s(Sα,ε

s f )1+β ds⟩
]

for a constant c(ζ , β) > 0.

4.2. Pathwise properties of the superprocess with approximate point source

In Chapter 3 we have adopted the methods from Fleischmann-Mueller [20], to prove the
existence of the measure-valued process Xα,ε related to the partial di�erential equation

u(t, x) ∶= Sα,ε
t f (x) − η∫

t

0
Sα,ε
t−s(u1+β(s))(x)ds, u(0, ⋅) = f ,

where the semigroup (Sα,ε
t )t≥0 is given by the Feynman-Kac formula

Sα,ε
t f (x) = E

[
e− ∫

t
0 Vα ,ε(Ws)ds f (Wt) ∣ W0 = x

]
.

It turns out that this situation is a special case of a more general theory of measure-valued
branching processes. Given a bounded function V on R3, the expression ∫

t
0 V(Ws)ds is an
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4. Basic properties of the measure-valued processes

additive functional of a brownian motion.�is gives a transition semigroup (PV
t ) via

PV
t f (x) = E

[
e− ∫

t
0 V(Ws)ds f (Wt) ∣ W0 = x

]
. (4.17)

�is leads to the question, whether a superprocess X exists, satisfying the transition formula

E[e−Xt f ∣ξ0 = µ] =∶ = e−⟨µ,u(t)⟩,

where u is the unique solution of the integral equation

u(t, x) ∶= PV
t f (x) + ∫

t

0
PV
t−sψ(x , u(s))(x)ds, u(0, ⋅) = f .

�e function ψ is called the branching mechanism. In our special case the branching mecha-
nism is given by ψη,β(x , z) ∶= −ηz1+β. In [35] the existence of superprocesses is shown for
branching mechanisms ψ of the form

ψ(x , z) ∶= −a(x)z − b(x)z2 + ∫
∞

0
(1 − e−zv − zv)k(x , dv) (4.18)

such that (v ∧ v2)k(x , dv) is a bounded positive integral kernel and a, b are bounded
functions with b ≥ 0. In fact, this is a special case of the abstract setting [35, Formula 2.26],
described in [35, Example 2.4] and [6].
To apply this theory, we need to show that the function ψη,β is of the shape (4.18): Choose

a = b ≡ 0 and the kernel k(x , dv) ∶= η β(β+1)
Γ(1−β)v−2−β dv where Γ denotes the Gamma function

Γ(y) = ∫
∞
0 s1−ye−s ds, y ≥ 0. With partial integration we calculate

zβ = β
Γ(1 − β) ∫

∞

0

1 − e−zv

v1+β dv (4.19)

and obtain the identity

−z1+β = β(β + 1)
Γ(1 − β) ∫

∞

0

1 − e−zv − zv
v2+β dv , (4.20)

since di�erentiating both sides of (4.20) with respect to z gives the true statement (4.19).
Also refer to [6, Subsection 3.2].
Comparing (4.20) and (4.18) shows that the process Xα,ε , α ∈ R, ε ∈ (0, 1), with branching

mechanism ψη,β satis�es the conditions in [35, Subsection 2.3] with a = b = 0. Note that
the function Vα,ε de�ned in (2.25) is bounded for every �xed α, ε. Hence, Xα,ε is a Dawson-
Watanabe superprocess with spatially constant branching mechanism, i.e. ψ(x , z) in (4.18)
does not depend on x [35, p.42].
�is allows us to deduce some properties of the superprocess Xα,ε. Applying [35,�eorem
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4.2. Pathwise properties of the superprocess with approximate point source

2.22], the paths of Xα,ε are right-continuous in probability, that is

lim
t→r+

P[ρ(Xα,ε
t , Xα,ε

r ) > ε] = 0

for every r > 0, using the metric ρ onM(R3) de�ned in [35, Formula (1.3)].�e following
�eorem gives a stronger càdlàg property of the paths.

�eorem 4.8. �ere is a unique measure Qµ, satisfying Qµ[Xα,ε
0 = µ] = 1 and Xα,ε is aMarkov

process onM relative to Qµ with transition semigroup (Qt)t≥0.�en, Xα,ε has Qµ-a.s. càdlàg
paths inM .

Proof. �e existence of the unique probability measure Qµ is shown in [35,�eorem 5.1].
According to [35,�eorem 5.7], the paths of the process Xα,ε are Qµ-a.s. right-continuous.
Now note that the underlying spacial motion of Xα,ε in the sense of [35, p. 42] is the
Brownian motion (Wt)t≥0.�e Brownian motion has continuous paths. In particular,W is
a Hunt process, i.e. it is right-continuous, has the strong Markov property and is quasi-le�
continuous (refer to the de�nition in [9, p. 74]). Using [35,�eorem 5.11], we have that Xα,ε is
a Hunt process inM(R3) as well. According to [9,�eorem 3.1.1] this implies that the paths
of Xα,ε have le� limits almost surely. Together with the aforementioned right-continuity we
have the desired càdlàg property.

Another useful property is the following martingale representation from [35,�eorem
7.26]:�ere is a martingale measureMt , t ≥ 0, such that

⟨Xα,ε
t , f ⟩ = ⟨Xα,ε

0 , u(t)⟩ + ∫
t

0
∫
R3
u(t − s, x)M(ds, dx)

and u is the unique solution of the integral equation

u(t, x) ∶= Sα,ε
t f (x) − η∫

t

0
Sα,ε
t−s(u(s))(x)ds,

where f is bounded.

Remark 4.9. We want to emphasize that the results in this section do not transfer directly
to the measure-valued process with point interaction Xα.�e transition semigroup of this
process cannot be described via perturbation of the heat semigroup (St)t≥0 with a bounded
potential V as in (4.17), hence, the theory of [35, Chapter 2] is not applicable. However, we
will show the convergence Xα,ε

t → Xα
t , ε ↓ 0, in an appropriate sense in a later chapter. So

it seems likely that some kind of regularity of the paths of Xα can be proven by using the
properties of Xα,ε and passing to the limit.
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4. Basic properties of the measure-valued processes

4.3. Dependence on the parameter of the nonlinear term

In the nonlinear term of the partial di�erential equation (1.6) we have a multiplicative
parameter η > 0. Intuitively, one would expect that there is a kind of monotonic dependence
of the solution on η.�e following theorem shows that this is indeed the case. We will also
analyze how this in�uences the corresponding superprocesses.

Lemma 4.10. Under Assumption 3.21, let initial data f ∈ Φp and α ∈ R. Let 0 < η1 ≤ η2. For
the solutions u1, u2 of

∂tu1 = ∆αu1 − η1u
1+β
1 on (0,∞) ×Rd ∖ {0},

∂tu2 = ∆αu2 − η2u
1+β
2 on (0,∞) ×Rd ∖ {0},

u1(0, ⋅) = u2(0, ⋅) = f on Rd ∖ {0},
(4.21)

it holds u1(t, x) ≥ u2(t, x) for �xed t ≥ 0 and x ∈ R3.

Proof. As in�eorem 3.26, we have the following iteration converging to the solutions u1
and u2 respectively

u1,0 ∶= u2,0 ∶= Sα
t f ,

u j,m(t, x) = Sα
t f (x) − η j ∫

t

0
Sα
t−s(u

1+β
j,m−1(s))(x)ds

for m ∈ N and j = 1, 2. Our goal is to show the assertion u1,m(t, x) ≥ u2,m(t, x) for all m.
For m = 0 we have equality by construction. For m ≥ 1 it holds

u1,m − u2,m = η2∫
t

0
Sα
t−s(u

1+β
2,m−1)ds − η1∫

t

0
Sα
t−s(u

1+β
1,m−1)ds. (4.22)

In the case m = 1 the right-hand side simpli�es to

(η2 − η1)∫
t

0
Sα
t−s((Sα

s f )1+β)ds,

so the claim is true here because of η2 ≥ η1 and the nonnegativity of solutions, Lemma 7.5.
We proceed by induction over m ≥ 2. Assume the assertion holds for m − 1 and m − 2. We
expand the right-hand side of (4.22) and obtain

u1,m − u2,m = (η2 − η1)∫
t

0
Sα
t−s(u

1+β
1,m−1)ds − η2∫

t

0
Sα
t−s(u

1+β
1,m−1 − u1+β

2,m−1)ds.

For this expression to be nonnegative, it is su�cient to show that

(η2 − η1)u1+β
1,m−1 ≥ η2(u1+β

1,m−1 − u1+β
2,m−1) (4.23)
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4.3. Dependence on the parameter of the nonlinear term

holds pointwise in t, x. Because of the induction assumption u1,m−1 ≥ u2,m−1 and the elemen-
tary estimate (7.6) we have

η2(u1+β
1,m−1 − u1+β

2,m−1) ≤ η2(1 + β)uβ
1,m−1(u1,m−1 − u2,m−1).

Hence, the statement

(η2 − η1)u1,m−1 ≥ η2(1 + β)(u1,m−1 − u2,m−1)

is su�cient for (4.23). Note that we divided both sides by uβ
1,m−1 here. We rewrite the last

inequality

u1,m−1 −
η2(1 + β)
(η2 − η1)

(u1,m−1 − u2,m−1) ≥ 0.

�is is equivalent to

Sα
t f −

(
η1 −

η1η2(1 + β)
η2 − η1

)
∫

t

0
Sα
t−s(u

1+β
1,m−2)ds −

η22(1 + β)
η2 − η1 ∫

t

0
Sα
t−s(u

1+β
2,m−2)ds ≥ 0.

Using u1,m−2 ≥ u2,m−2, we obtain the following lower bound for the le�-hand side

Sα
t f −

(
η1 −

η1η2(1 + β)
η2 − η1

+ η22(1 + β)
η2 − η1

)
∫

t

0
Sα
t−s(u

1+β
1,m−2)ds

≥ Sα
t f − (η2(1 + β) + η1)∫

t

0
Sα
t−s(u

1+β
1,m−2)ds

≥ Sα
t f − (η2(1 + β) + η1)∫

t

0
Sα
t−s((Sα

s f )1+β)ds.

Because of the nonnegativity of solutions, more precisely case n = 1 in�eorem 7.4, the last
expression is nonnegative.�is completes the proof.

Now we want to use this result to compare the Laplace transforms of the corresponding
processes evaluated with �xed f .�is can be done directly via the Laplace transition func-
tional (1.4). In order to do this in an appropriate sense, the following de�nition from the
theory of stochastic orders in [46, p. 233] is needed.

De�nition 4.11. Let Y , Z two real-valued nonnegative random variables such that

E[exp(−sY)] ≥ E[exp(−sY)] for all s > 0.

�en Y is said to be smaller than Z in Laplace transform order, denoted by Y ≤Lt Z.

�ere are alternative characterizations of the Laplace transform order. For instance, Y ≤Lt
Z if and only if E[φ(Y)] ≥ E[φ(Z)] for all completely monotone functions φ ∶ [0,∞)→ R
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4. Basic properties of the measure-valued processes

[46,�eorem 5.A.3]. A function φ is said to be completely monotone, if all derivatives
φ(n), n ∈ N exist and (−1)nφ(n) ≥ 0.�is characterization gives rise to several results about
Laplace transform ordered random variables, see [46, Chapter 5.A]. Now we will show that
the result for the solutions from Lemma 4.12 translates to the superprocesses in terms of
Laplace transform order.

Lemma 4.12. Under the conditions of Lemma 4.10, let Xα,1 and Xα,2 the superprocessses
corresponding to the solutions u1 and u2 of (4.21) with 0 < η1 ≤ η2, satisfying Xα,1

0 = Xα,2
0 = µ.

�en it holds for �xed t ≥ 0

⟨Xα,2
t , f ⟩ ≤Lt ⟨Xα,1

t , f ⟩.

Proof. Let s > 0. Let us f ,1 and us f ,2 the solutions of (4.21), but with initial data s f instead of
f .�is notation was also used in Section 4.1. We have from Lemma 4.10 the pointwise order

us f ,1(t, x) ≥ us f ,2(t, x).

With the monotonicity of the exponential function and Xα,1
0 = Xα,2

0 we obtain

exp(−⟨Xα,1
0 , us f ,1(t)⟩) ≤ exp(−⟨Xα,2

0 , us f ,2(t)⟩). (4.24)

Using the Laplace transition functional (1.4), it holds for j = 1, 2

exp(−⟨Xα, j
0 , us f , j(t)⟩) = Eµ[exp(−⟨Xα, j

t , s f ⟩)] = Eµ[exp(−s⟨Xα, j
t , f ⟩)]. (4.25)

Combining (4.24) and (4.25) yields

Eµ[exp(−s⟨Xα,1
t , f ⟩)] ≤ Eµ[exp(−s⟨Xα,2

t , f ⟩)]

and the proof is complete by De�nition 4.11. Note that ⟨Xα, j
t , f ⟩, j = 1, 2, are nonnegative

random variables for every �xed t, f .

In complete analogy, the results of this section can be transferred to the approximating
superprocess Xα,ε.

Corollary 4.13. Under Assumption 3.21 let initial data f ∈ Φp, α ∈ R and ε > 0. Let 0 < η1 ≤ η2.
For the solutions uα,ε,1, uα,ε,2 of

∂tuα,ε,1 = Hα,εuα,ε,1 − η1u
1+β
α,ε,1 on (0,∞) ×Rd ∖ {0},

∂tuα,ε,2 = Hα,εuα,ε,2 − η2u
1+β
α,ε,2 on (0,∞) ×Rd ∖ {0},

uα,ε,1(0, ⋅) = uα,ε,2(0, ⋅) = f on Rd ∖ {0},
(4.26)
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4.3. Dependence on the parameter of the nonlinear term

it holds uα,ε,1(t, x) ≥ uα,ε,2(t, x) for �xed t ≥ 0 and x ∈ R3. Furthermore, for the associated
superprocesses satisfying Xα,ε,1

0 = Xα,ε,2
0 = µ we have

⟨Xα,ε,2
t , f ⟩ ≤Lt ⟨Xα,ε,1

t , f ⟩. (4.27)

Proof. We can repeat the proof of Lemma 4.10 step by step, replacing Sα
t with Sα,ε

t everywhere
and obtain (4.26).�en, (4.27) follows from (4.26) as described in Lemma 4.12.

As a conclusion of this chapter, we summarize that there are multiple similarities between
the super-Brownian motion with point source and the approximating processes. Concerning
the path regularity properties of Xα,ε from Section 4.2, it seems likely that a similar property
holds for Xα as well.
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5. Sectoriality of Laplacians with
(approximate) point source

In Chapter 3, we have investigated solutions of the partial di�erential equations in the context
of Lebesgue spaces with an additional weight function ∣x∣−1, following closely the work of
Fleischmann and Mueller from [20]. Weighted spaces will play a central role further on. In
this chapter we want to take a closer look at these spaces, introduce them from amore general
perspective and collect some helpful properties. In the second part of the chapter we establish
the class of sectorial operators in these weighted spaces.�is allows us to obtain existence
of the semigroups (Sα

t )t≥0 and (Sα,ε
t )t≥0 in the weighted space and useful representations of

these semigroups via the resolvents of the generators.

5.1. Weighted Lebesgue-Spaces

We now want to study the behavior of the resolvents of −∆, −∆α and −Hα,ε in weighted
spaces, i.e. Lebesgue spaces with an additional weight function w ∶ Rd → [0,∞). For these
spaces we use the notation Lp(w) ∶= Lp(w ,Rd).�ey belong to the larger class of weighted
Muckenhoupt spaces.

De�nition 5.1. [49, p. 194]. A weight function w is an Ap weight or Muckenhoupt weight, if
there is a C > 0 such that for all balls B ∈ Rd

1
∣B∣ ∫B

w(x)dx ⋅
(
1
∣B∣ ∫B

w(x)−
p′

p dx
) p

p′

≤ C <∞.

We will focus again on the case d = 3 now. In particular, let us consider the weight
w(x) ∶= ∣x∣−1 in this context.
Lemma 5.2. �e weight function w ∶ R3 → [0,∞), x ↦ ∣x∣−1, is in Ap for every p ≥ 1.
Proof. We have this characterization of Ap weights of type w(x) = ∣x∣a , a ∈ R from [49,
Paragraph V.6.4, p. 218]:�e function x ↦ ∣x∣a is in Ap if and only if

−d < a < d(p − 1).

Clearly for a = −1 it holds −d = −3 < −1 = a and a = −1 < 0 ≤ d(p − 1) for every p ≥ 1, so
the claim follows immediately.
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5. Sectoriality of Laplacians with (approximate) point source

A nontrivial property of Ap weights is the following: w is in Ap, if and only if the Hardy-
Littlewood operator de�ned by

(M f )(x) = sup
r>0

cd
rd ∫∣y∣≤r

∣ f (x − y)∣dy

is bounded in Lp(w), this means

∫
Rd

(M f (x))pw(x)dx ≲ ∫
Rd

∣ f (x)∣pw(x)dx .

�is characterization is given in [49, p. 193f]. As a consequence, Ap weights have very good
properties regarding singular integral operators.�is allows us to develop weighted integral
inequalities for the resolvents in later chapters.
�e following theorem gives a criterion for a convolution operator to be bounded in

Lp(w).

�eorem 5.3. [49, Section V.4.2,�eorem 2 and Remark 4.5.2]. Let T ∶ L2(R3)→ L2(R3) a
convolution operator given by T f = f ∗ K. Assume
(i) the operator T is bounded on L2(R3)

∥T f ∥L2 ≲ A∥ f ∥L2 ,

(ii) for the derivatives of the kernel K it holds for x ≠ 0 and multi-indices α with ∣α∣ ≤ 1

∣∂α
xK(x)∣ ≲ ∣x∣−3−∣α∣.

Furthermore, for 1 < p <∞ let w ∈ Ap.�en we have for f ∈ Lp(w)

∫
R3

∣T f (x)∣pw(x)dx ≲ ∫
R3

∣ f (x)∣pw(x)dx ,

thus T is a bounded linear operator on Lp(w)

In the unweighted Lp spaces, it is well known that the resolvent Rλ of the Laplacian is
bounded. We now apply the previous theorem to show that for λ ∈ ρ(−∆) the resolvent Rλ

is bounded in the weighted space as well.

Lemma 5.4. Let λ ∈ C∖[0,∞) and Rλ = (−∆−λI)−1 the resolvent to λ. Let w ∈ Ap. For every
p > 1, Rλ is a bounded linear operator from Lp(w) to Lp(w). In particular, σ(−∆) ⊆ [0,∞)
in Lp(w).

Proof. �e convolution kernel of Rλ is

Rλ(x) =
e i

√
λ∣x∣

4π∣x∣
.
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To apply�eorem 5.3 we state �rst that Rλ is bounded as an operator in L2(R3). Now we
have to show that Rλ(x) decays like ∣x∣−3, this is the case α = 0. Write

√
λ = a + ib.�en

∣e i
√

λ∣x∣∣ = ∣e ia∣x∣∣ ∣e−b∣x∣∣ = ∣e−b∣x∣∣ .

By assumption λ ∉ [0,∞), thus b = Im
√

λ > 0. Now consider two cases.
Case 1: ∣x∣ ≤ 1. In this case we immediately get

4π∣Rλ(x)∣ =
e−b∣x∣

∣x∣
≤ 1

∣x∣3
.

Case 2: ∣x∣ > 1. Since e−b∣x∣ decays faster than any polynomial in ∣x∣, there is a constant
Cb > 0, such that e−b∣x∣ ≤ Cb∣x∣−2 for every ∣x∣ ≥ 1.�is implies

e−b∣x∣

∣x∣
≲ 1

∣x∣3

in this case, but note that the constant depends on ∣
√

λ∣.
Now we study the �rst order derivatives of Rλ(x), so α = 1. We have for j ∈ {1, 2, 3}

4π ∣∂x iRλ(x)∣ = ∣ e
i
√

λ∣x∣xi
∣x∣2

(i
√

λ − ∣x∣−1)∣

≤ ∣ e
−b∣x∣

∣x∣
(i
√

λ − ∣x∣−1)∣

≤ ∣
√

λ∣e−b∣x∣
∣x∣

+ e−b∣x∣

∣x∣2
.

�e second term decays like ∣x∣−4 by directly applying the �rst part of the proof. For the �rst
term we follow the same argumentation as above, but with the higher exponent 4:

Case 1: ∣x∣ ≤ 1. In this case we get

∣
√

λ∣e−b∣x∣
∣x∣

≲ 1
∣x∣4

with the implicit constant ∣
√

λ∣.
Case 2: ∣x∣ > 1. Since e−b∣x∣ decays faster than any polynomial in ∣x∣, there is a constant

C′
b > 0, such that e−b∣x∣ ≤ C′

b∣x∣−3 for every ∣x∣ ≥ 1.�is implies

e−b∣x∣

∣x∣
≲ 1

∣x∣4

in this case, with a constant depending on ∣
√

λ∣.
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5. Sectoriality of Laplacians with (approximate) point source

Now let’s turn our attention to the resolvents of the Laplacian with point interaction
−∆α, where α ≥ 0. We do not only prove Lp(w) → Lp(w) boundedness of Rα

λ , but a more
general Lp(w)→ Lq(w) result. Due to the simple structure of Rα

λ , this can be shown with
elementary calculations. Similar regularizing e�ects are known for the heat semigroup in
the unweighted Lebesgue spaces, refer for example to [11, Chapter 3]. Weighted estimates of
this kind will play an important role in the semigroup estimates of the following chapters.

Lemma 5.5. Let α ≥ 0, λ ∈ C∖ [0,∞) and Rα
λ = (−∆α − λI)−1 the resolvent to λ. Let w = ∣x∣−1.

For every p > 1 and 1 < q < 2, the residue term R
α
λ as de�ned in (2.24) is a bounded linear

operator from Lp(w) to Lq(w).

Proof. Let f ∈ Lp(w). We have

R
α
λ f = ∫

R3
R

α
λ(x , y) f (y)dy =

1
α − i

√
λ

4π

e i
√

λ∣x∣

∣x∣ ∫
R3

e i
√

λ∣y∣

∣y∣
f dy.

From this it follows

∥Rα
λ f ∥Lq(w) =

XXXXXXXXXXXX

1
α − i

√
λ

4π

e i
√

λ∣ ⋅ ∣

∣ ⋅ ∣ ∫
R3

e i
√

λ∣y∣

∣y∣
f (y)dy

XXXXXXXXXXXXLq(w)

=
RRRRRRRRRRRR

1
α − i

√
λ

4π
∫
R3

e i
√

λ∣y∣

∣y∣
f (y)dy

RRRRRRRRRRRR
⋅ ∥ e

i
√

λ∣ ⋅ ∣

∣ ⋅ ∣
∥
Lq(w)

. (5.1)

First of all, it holds ∣α − i
√

λ
4π ∣ > 0 because of α ≥ 0 and Im

√
λ > 0. Next we show that

the function g(x) = e i
√

λ∣x ∣

∣x∣ is in Lq(w) and hence the last factor in (5.1) is �nite. With
b = Im

√
λ > 0 we write

∥g∥qLq(w) = ∫R3
∣ e

i
√

λ∣x∣

∣x∣
∣
q

w(x)dx

= ∫
R3

∣e i
√

λ∣x∣∣q∣x∣−q−1 dx

= ∫
R3

e−bq∣x∣∣x∣−q−1 dx

≈ ∫
∞

0
e−bqrr1−q dr.

Now decompose the integration range [0,∞) = [0, 1)∪ [1,∞). For the second integral with
r ≥ 1 we have

∫
∞

1
e−bqrr1−q dr ≤ ∫

∞

1
e−bqr dr <∞,
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5.1. Weighted Lebesgue-Spaces

since the exponential function e−t is integrable. In the range of the �rst integral we have

∫
1

0
e−bqrr1−q dr < ∫

1

0
r1−q dr <∞,

because with 1 − q > −1 for q < 2 the singularity of the one-dimensional integral is mild
enough. Now it remains to estimate the �rst integral in (5.1). We have with Hölder’s
inequality

∣∫
R3

e i
√

λ∣y∣

∣y∣
f (y)dy∣ = ∣∫

R3
e i

√
λ∣y∣ f (y)w(y)dy∣

≤ ∫
R3

∣e−b∣y∣∣w(y)1/p′ ∣ f (y)∣w(y)1/p dy

≤
(
∫
R3

∣e−b∣y∣∣p′w(y)dy
)1/p′

∥ f ∥Lp(w),

with 1p +
1
p′ = 1 and again b = Im

√
λ.�e remaining y integral converges since

∫
R3

∣e−b∣y∣∣p′w(y)dy ≈ ∫
∞

0
e−bp

′rr dr = − 1
bp′

[e−bp′r]∞0 = 1
bp′
.

By recollecting the terms in (5.1) we get the desired boundedness of Rα
λ .

Now one easily obtains Lp(w) boundedness of Rα
λ .

Corollary 5.6. Let α ≥ 0, λ ∈ C ∖ [0,∞) and Rα
λ = (−∆α − λI)−1 the resolvent to λ. Let

w = ∣x∣−1. For every 1 < p < 2, Rα
λ is a bounded linear operator from Lp(w) to Lp(w). In

particular, σ(−∆α) ⊆ [0,∞) in Lp(w), and equation (2.24) is valid in the Lp(w) sense, i.e. as
equality of bounded linear operators in Lp(w).

Proof. �is follows immediately by applying Lemma 5.4 and Lemma 5.5 to the right-hand
side of (2.24) with q = p respectively.

Remark 5.7. �e Lp(w)-boundedness of the resolvent Rα,ε
λ is di�cult to prove with elemen-

tary calculations because of the less explicit structure of the resolvent (2.27). It will follow
from more abstract results in the next chapter. Lp(w)−Lq(w) estimates will then also be
derived in this context.

In the following lemma we formulate the well-known Hölder’s inequality for the space
Lp(w) in dimension d = 3, as well as a convolution inequality.�ese will be refered to in
later parts of the work.

Lemma 5.8. Let f , g ∶ R3 → Rmeasurable functions.
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5. Sectoriality of Laplacians with (approximate) point source

(i) Let p, p′ > 1 such that 1p +
1
p′ = 1.�en it holds

∥ f g∥Lr(w) ≤ ∥ f ∥Lp(w)∥g∥Lp′(w).

(ii) Let p, q, r ≥ 1 with 1
p +

1
r = 1 +

2
3q .�en it holds

∥ f ∗ g∥Lq(w) ≲ ∥ f ∥Lp(w)∥gw
− 1p ∥

Lr

with a constant depending on p, q, r.

Proof. Hölder’s inequality holds for arbitrarymeasure spaces, so in particular for themeasure
w dx.�e inequality in (ii) is a special case of the weighted convolution inequality from [30,
p. 208].

5.2. Analytic semigroups and sectoriality

�e following de�nition introduces a class of operators with certain spectral properties.�ey
allow us to represent the semigroups (Sα

t )t≥0 and (Sα,ε
t )t≥0 in terms of the resolvents of the

corresponding generator. Semigroups with this property are called analytic in Lp(w).
It is known that the operator −∆α generates an analytic semigroup in L2(R3), just by

the fact that −∆α is self-adjoint and semibounded from below, see [4, Chapter I]. In 1993,
by Caspers and Clément this was also shown in the setting of unweighted Lp spaces for
3
2 < p < 3 using the Sobolev embedding theorem [8]. However, these results do not transfer
trivially to the weighted space Lp(w),w(x) = ∣x∣−1, since this space has a di�erent structure
due to the singular nature of the weight. In particular, for any p > 1 the space Lp(w) is not
contained in Lp and vice versa. To the knowledge of the author, there is no literature yet
about the analycity of the semigroups (Sα

t )t≥0 and (Sα,ε
t )t≥0 in Lp(w).

�e restrictions on p di�er slightly compared to the unweighted case. Most importantly,
the upper bound is 2 instead of 3, because the weight introduces an extra singularity of order
1, see the proof of Lemma 5.17 below.

De�nition 5.9. [41, p. 30]. Let X a Banach space and A ∶ X → X a linear operator on X. A is
called sectorial, if

(i) there is an angle φ ∈ (0, π
2 ), such that

ρ(A) ⊃ Σφ = {λ ∈ C ∶ φ < arg λ < 2π − φ},

(ii) there is a constantM > 0, such that for every λ ∈ Σφ

∥RλA∥X→X ≤ M
∣λ∣
.
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5.2. Analytic semigroups and sectoriality

Remark 5.10. Note that the situation in this de�nition of sectoriality is re�ected at the
imaginary axis in comparison with the literature [41] or [25].�is is due to the fact that we
are interested in operators with spectrum in or around [0,∞).�e transition between these
notations can be performed by using the identity −Rλ(A) = R−λ(−A).
�e following representation of a semigroup via the resolvents of its generator is an

important application of sectoriality.

�eorem 5.11. [41,�eorem 1.7.7]. Let A ∶ X → X be a sectorial operator. �en, A is the in-
�nitesimal generator of a C0 semigroup (Tt)t≥0 satisfying ∥Tt∥X ≤ C for some C ≥ 0. Moreover,

Tt =
1
2πi ∫Γ

e−λtRλ(A)dλ, (5.2)

where Γ is a smooth unbounded curve in Σφ running from∞e−iθ to∞e iθ for φ < θ < π
2 . A

semigroup that satis�es these properties is called a bounded analytic semigroup.

�e curve integral in (5.2) is sometimes referred to as theDunford integral [38].�e curve
Γ can be chosen to be uniformly away from the origin, i.e. for any c > 0 we can choose a
curve Γ satisfying ∣λ∣ > c > 0 for all λ ∈ Γ [38, Section 1.3]. We introduce a class of curves
depending only on a radius (the distance from the origin) and an opening angle in the
following de�nition. See also Figure 5.1 below.

De�nition 5.12. From now on, let Γ = Γ(r, θ) = Γ1(r, θ) ∪ Γ2(r, θ) ∪ Γ3(r, θ) with

Γ1 = Γ1(r, θ) = {se−iθ ∈ C ∶ s ≥ r},
Γ2 = Γ2(r, θ) = {re−iη ∈ C ∶ η ∈ [θ , 2π − θ]},
Γ3 = Γ3(r, θ) = {se iθ ∈ C ∶ s ≥ r},

where r = r(Γ) > 0 describes the radius of the curve and θ = θ(Γ) ∈ (0, π
2 ) the opening

angle.

In the following chapters we will o�en deal with square roots of elements of Γ, because
the resolvent kernels contain a factor of the shape e i

√
λ∣x∣, λ ∈ Γ. �e next lemma will be

particularly useful for di�erent kinds of estimates in these situations. Note that we are always
using the principal branch of the complex square root with

√
z ∶=

√
∣z∣e i

arg z
2 .

Lemma 5.13. Let Γ as in De�ntion 5.12 and de�ne
√
Γ ∶= {√γ ∶ γ ∈ Γ}.

It holds for all√γ ∈
√
Γ

Im√
γ ≥

√
r sin θ

2
> 0.
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5. Sectoriality of Laplacians with (approximate) point source

Re λ

Im λ

θ
2

√
r

θ

r

Γ

√
Γ

Figure 5.1.: Illustration of the path Γ and
√
Γ. �e elements of

√
Γ have positive

imaginary part and
√
Γ is uniformly away from the real axis.

Proof. First let γ ∈ Γ1, so γ = se iθ for some s ≥ r. We calculate

√
γ =

√
se iθ =

√
se i

θ
2 .

Now, using Euler’s identity,

Im√
γ = Im(

√
se i

θ
2 ) =

√
s Im(e i θ

2 )

=
√
s Im(cos θ

2
+ i sin θ

2
) =

√
s sin θ

2
≥
√
r sin θ

2
.

In complete analogy, for γ ∈ Γ3 it holds for some s ≥ r

Im√
γ = Im(

√
se−i

θ
2 ) ≥

√
r sin

(
−θ
2

)
=
√
r sin θ

2
.

It remains to consider γ ∈ Γ2.�is means

√
γ =

√
re−iη
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5.2. Analytic semigroups and sectoriality

for some η ∈ [ θ
2 , π −

θ
2 ].�us,

Im√
γ =

√
r sin η,

but sin η ≥ sin θ
2 for η ∈ [ θ

2 , π −
θ
2 ] and θ < π

2 .

It is important to note that the value of the curve integral in (5.2) does not depend on the
radius of the curve r(Γ), as shown next.

Lemma 5.14. Let Γ, Γ′ two paths as in De�nition 5.12 with θ(Γ) = θ(Γ′) but r(Γ) > r(Γ′). In
the situation of�eorem 5.11 it holds

∫
Γ
e−λtRλ(A)dλ = ∫

Γ′
e−λtRλ(A)dλ.

Proof. Because of θ(Γ) = θ(Γ′) and r(Γ) > r(Γ′), both curves Γ and Γ′ contain the points
r(Γ)e iθ and r(Γ)e−iθ . Furthermore, by De�nition 5.12, Γ and Γ′ coincide on the piece
connecting∞e−iθ and r(Γ)e−iθ and on the piece connecting r(Γ)e iθ and∞e iθ . Hence, it
su�ces to show

∫
Γ
e−λtRλ(A)dλ = ∫

Γ′
e−λtRλ(A)dλ, (5.3)

where Γ = {λ ∈ Γ ∶ ∣λ∣ = r(Γ)} and Γ′ = {λ ∈ Γ′ ∶ ∣λ∣ ≤ r(Γ)} are the two di�erent paths
connecting r(Γ)e−iθ and r(Γ)e iθ .�is is illustrated in Figure 5.2.
We know that

Rλ(A) = (A− λI)−1

exists for λ ∈ ρ(A). According to the Analytic Fredholm�eorem [45,�eorem VI.14], this
implies that the function λ ↦ Rλ(A) is a holomorphic operator-valued function in ρ(A).
Of course, then for every t ≥ 0 the function λ ↦ e−λtRλ(A) is holomorphic as well.
Remember that by De�nition 5.9

ρ(A) ⊃ Σθ = {λ ∈ C ∶ π < arg λ < 2π − θ},

because A is a sectorial operator. Note that the curves Γ and Γ′ are homotopic to each other
in the simply connected region Σθ . Now we are able to employ Cauchy’s integral theorem:
Because Γ and Γ′ are homotopic curves connecting r(Γ)e−iθ and r(Γ)e iθ and the integrand
is holomorphic, we obtain (5.3) and the proof is complete.

Depending on the structure of the generator and the resolvents, it is sometimes quite
di�cult to prove sectoriality directly with De�nition 5.9. In these situations the following
characterization of sectorial operators is useful. In particular, the resolvent structure of −∆α
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5. Sectoriality of Laplacians with (approximate) point source

Re z

Im z

r(Γ)e iθ

r(Γ)e−iθ

r(Γ′)e iθ

r(Γ′)e−iθ

Figure 5.2.: Illustration of the curves Γ (green) and Γ′ (red) in the complex plane. �e
curves form two homotopic paths connecting r(Γ)e−iθ and r(Γ)e iθ .

allows us to show a decay in the imaginary part of the parameter λ. By part (iii) of the next
theorem, this is su�cient for sectoriality in our situation, see Lemma 5.17 for further details.
On the other hand, the resolvents of Rα,ε

λ are di�cult to estimate with direct calculations,
but the generator −Hα,ε is a bounded perturbation of −∆, so we can apply part (iv) of the
next theorem, see Corollary 5.18.

�eorem 5.15. [17]. Let X a Banach space and A ∶ X → X a densely de�ned operator with
generated semigroup (Tt)t≥0.�e following statements are equivalent.

(i) A is sectorial.

(ii) (Tt)t≥0 is a bounded analytic semigroup.

(iii) (Tt)t≥0 is a bounded strongly continuous semigroup and there is C > 0 such that

∥Rλ(A)∥X→X ≤ C
(Im

√
λ)2

for λ ∈ Σφ , φ ∈ (0, π
2 ).

(iv) (Tt)t≥0 is bounded and A = B + P where B is a sectorial operator and P ∶ X → X is
densely de�ned and bounded.
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5.2. Analytic semigroups and sectoriality

Proof. �e equivalence of (i),(ii) and (iii) is the subject of [17,�eorem II.4.6].�e equiv-
alence of (ii) and (iv) follows from the bounded perturbation theorem in [17, Proposition
III.1.12].

We investigate the sectorial property on the weighted spaces Lp(w).

Lemma 5.16. �e positive de�nite Laplacian −∆ is sectorial on Lp(w) for w(x) = ∣x∣−1,
p ∈ (1, 2).

Proof. First of all, −∆ is a linear operator on Lp(w) and σ(−∆) ⊆ [0,∞) as shown in Lemma
5.4. For λ ∈ [0,∞) we have arg λ = 0, hence the condition (i) of De�nition 5.9 is trivially
ful�lled for any angle in (0, π

2 ). With this property in place, the estimate in condition (ii)
follows from the more general result for elliptic di�erential operators [25, Corollary 6.8].

Now we prove sectoriality of the operator −∆α. A similar result was shown by Caspers
and Clément in 1993, but in the context of unweighted spaces Lp(R3), 32 < p < 3 [8,�eorem
4.4].

Lemma 5.17. For α ≥ 0, the operator −∆α is sectorial on Lp(w) for w(x) = ∣x∣−1, p ∈ (1, 2).

Proof. We already know that σ(−∆α) ⊆ [0,∞) for α ≥ 0, cf. Lemma 5.6. For the resolvent
estimate, note that

Rα
λ = Rλ + R

α
λ .

Because of the previous Lemma 5.16, we only have to consider the residue term R
α
λ for

λ ∈ C ∖ [0,∞). Remember

R
α
λ(x , y) =

1
α − i

√
λ

4π

e i
√

λ(∣x∣+∣y∣)

(4π)2∣x∣∣y∣
.

Since α ≥ 0 and b = Im λ > 0, the absolute value of the denominator of the �rst fraction is

∣α − i
√

λ
4π

∣ = ∣α + b − i Re
√

λ
4π

∣ ≥ b
4π

> 0.

So, for �xed α we have the decay

RRRRRRRRRRRR

1
α − i

√
λ

4π

RRRRRRRRRRRR
≤ C(α)

b
,

where C(α) > 0. Proceding as in the proof of Lemma 5.5 around formula (5.1), we have

∥Rα
λ∥Lp(w)→Lp(w) ≤

C(α)
b

∥e−b∣⋅∣∥Lp′(w)∥
e i

√
λ∣⋅∣

∣ ⋅ ∣
∥
Lp(w)

.
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5. Sectoriality of Laplacians with (approximate) point source

For the last factor it follows by transforming r → r
b

∥ e
i
√

λ∣⋅∣

∣ ⋅ ∣
∥
Lp(w)

≲
(
∫

∞

0
e−bprr1−p dr

)1/p
= b1−2/p

(
∫

∞

0
e−prr1−p dr

)1/p
and the remaining integral converges for p < 2. Analogously it follows for the p′ norm

∥e−b∣⋅∣∥Lp′(w) ≲ b−2/p
′

(
∫

∞

0
e−p

′rr dr
)1/p′

.

Since

1 − 2
p
− 2
p′

= −1,

we have in summary a decay of

∥Rα
λ∥Lp(w)→Lp(w) ≤

C(α)
(Im

√
λ)2
. (5.4)

According to Corollary 3.20, (Sα
t )t≥0 is a bounded strongly continuous semigroup on Lp(w).

Together with the estimate for the imaginary part (5.4) and�eorem 5.15, this is su�cient
for sectoriality, so the proof is complete.

Finally we also have

Corollary 5.18. For ε > 0 and α ≥ 0, the operator −Hα,ε is sectorial on Lp(w) for w(x) = ∣x∣−1,
p ∈ (1, 2).

Proof. Clearly the multiplication operator f ↦ Vα,ε f is bounded in Lp(w) for �xed α, ε.
Hence, the operator −Hα,ε = −∆ + Vα,ε is a bounded perturbation of −∆. Since −∆ is
sectorial and the semigroup (Sα,ε

t )t≥0 is bounded, we also have by�eorem 5.15 that −Hα,ε is
sectorial.

�e sectoriality of the operators −∆,−∆α and −Hε allows the following representation of
the corresponding semigroups.

�eorem 5.19. Let α ≥ 0 and ε > 0. Let p ∈ (1, 2) and f ∈ Lp(w). For the semigroups
(St)t≥0, (Sα

t )t≥0 and (Sα,ε
t )t≥0 with generators −∆,−∆α ,−Hα,ε respectively, it holds

(i) St f =
1
2πi ∫Γ

e−λtRλ f dλ,

(ii) Sα
t f =

1
2πi ∫Γ

e−λtRα
λ f dλ,

74



5.2. Analytic semigroups and sectoriality

(iii) Sα,ε
t f = 1

2πi ∫Γ
e−λtRα,ε

λ f dλ,

with Γ as in De�ntion 5.12.

Proof. As shown in Lemma 5.16, Lemma 5.17 and Corollary 5.18, the operators are sectorial
in Lp(w).�us, the claim follows directly from�eorem 5.11.
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6. Semigroup estimates and convergence
properties

In this chapter we develop analytic tools, which are crucial to obtain convergence of solutions
of the nonlinear integral equations later on. In particular, time-dependent resolvent estimates
are proven, which then lead to Lp(w)−Lq(w) semigroup estimates using the representations
from�eorem 5.19. It is of special importance to ensure that the estimates for Rα,ε

λ and
(Sα,ε

t )t≥0 are uniform in ε ∈ (0, 1). Furthermore, we will prove convergence of Sα,ε
t towards

Sα
t for ε → 0 in the weighted space. Results of this type have been derived only in unweighted
Lebesgue spaces so far.
Because this chapter will become quite technical, we want to give a brief heuristic motiva-

tion for the following steps. For full details refer to Chapter 7. Remember that one of our
main goals is to prove convergence for ε → 0 of uα,ε towards uα, which are the solutions of
the nonlinear integral equation (3.29) with semigroups (Sα,ε

t )t≥0 and (Sα
t )t≥0 respectively.

Let’s assume for the moment that for �xed α, ε > 0 we have sequences of functions (un
α)n∈N

and (u(n)
α,ε )n∈N, which are the results of a �xed-point interation of the nonlinear integral

equation, such that for t ∈ [0, T]

u(n)
α (t)→ uα(t), n →∞,

u(n)
α,ε (t)→ uα,ε(t), n →∞,

where the limit is taken in the weighted space Lp(w) for a suitable p. Assume further that
we can write the limits in Lp(w) as telescopic sums

uα = u(0)
α +

∞
∑
n=0

u(n+1)
α − u(n)

α ,

uα,ε = u(0)
α,ε +

∞
∑
n=0

u(n+1)
α,ε − u(n)

α,ε .

Consequently it holds for each N ∈ N

∥uα(t) − uα,ε(t)∥Lp(w) ≤∥u
(N)
α (t) − u(N)

α,ε (t)∥
Lp(w)

+ ∥
∞
∑
n=N

u(n+1)
α (t) − u(n)

α (t)∥
Lp(w)

+ ∥
∞
∑
n=N

u(n+1)
α,ε (t) − u(n)

α,ε (t)∥
Lp(w)
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∶= ∥u(N)
α (t) − u(N)

α,ε (t)∥
Lp(w)

+ δα,ε(N , t) (6.1)

We could now show the convergence

∥uα(t) − uα,ε(t)∥Lp(w) → 0, ε → 0,

if we would have the following two properties in place: On the one hand, for �xed N the
�rst term in (6.1) must tend to zero for ε → 0. On the other hand, the term δα,ε(N , t)must
become arbitrarily small uniformly in ε when choosing N large enough.
In this chapter we develop the tools to prove the mentioned two properties. Resolvent and

semigroup norm estimates are proven which are uniform in ε. Furthermore, convergence
of the resolvents and semigroups, i.e. the solutions of the linear equations, is shown in the
weighted space. In the next chapter this can then be extended to solutions of the nonlinear
equations.

6.1. Resolvent estimates for the approximate point source

In order to further analyze the semigroups (Sα,ε
t )t≥0 and (Sα

t )t≥0 via the representations from
�eorem 5.19, we need to develop some tools to control the involved resolvent terms Rα

λ and
Rα,ε

λ for λ ∈ Γ, where Γ is the complex curve from De�nition 5.12. In this section we focus
on the resolvent Rα,ε

λ corresponding to the approximate point source. Remember that the
resolvents of −Hα,ε are given by

Rα,ε
λ =Rλ + R

α,ε
λ = Rλ + Pα(ε)Aε

λε[1 + Bε
λ]−1Cε

λ

in the L2 sense, see (2.27).
For the analysis of the resolvents Rα,ε

λ we need the following variant of [4, Lemma 1.2.4], a
convergence result in the unweighted L2 space. As in Lemma 2.2 write for V ∶ R3 → R

v(x) = ∣V(x)∣1/2, u(x) = sgn(V(x))∣V(x)∣1/2, for x ∈ R3.

Lemma 6.1. For V = −1B π
2
(0)(x), λ ∈ C ∖ [0,∞) and Bε

λ as in Lemma 2.14 it holds

ε[1 + Bε
λ]−1 Ð→ −

[
i
√

λ∣(v , φ)∣2
4π

+ P′α(0)

]−1
(φ, ⋅)φ

where the limit is taken for ε → 0 in L2 norm and (⋅, ⋅) denotes the scalar product of Hilbert
space L2 and φ is the eigenfunction from Lemma 2.8.�e convergence is uniform in λ if ∣λ∣ ≤ c
for a �xed c > 0.

Proof. We follow the proof of [4, Lemma 1.2.4]. First, without loss of generality, we can
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6.1. Resolvent estimates for the approximate point source

assume that φ is scaled such that (φ, φ) = ∥φ∥2L2 = 1. �en (φ, ⋅)φ =∶ Π is the orthogonal
projection on the eigenspace of B0 = uR0v to the eigenvalue −1 which is seen as follows: For
f ∈ L2 it holds

Π2 f = (φ, (φ, f )φ)φ = (φ, φ)(φ, f )φ = (φ, f )φ = Π f ,

so Π is a projection, and on the other hand

uR0vΠ f = uR0v(φ, f )φ = (φ, f )uR0vφ = −(φ, f )φ = −Π f .

Now de�ne

B1λ ∶= P′α(0)uR0v +
i
√

λ
4π

(v , ⋅)u.

We are going to show that

Bε
λ = B0 + εB1λ + o(ε) (6.2)

with respect to the Hilbert-Schmidt norm. As in formula (1.2.43) in the proof of [4, Lemma
1.2.4], the mean value theorem implies

P(ε)Rε2λ(x , y) = R0(x , y) − εP′α(εθ̃(ε))R0(x , y) +
εi
√

λ
4π

e iεθ(ε)
√

λ∣x−y∣,

for functions 0 ≤ θ(ε), θ̃(ε) ≤ 1.�is again implies

Bε
λ(x , y)
= Pα(ε)u(x)Rε2λ(x , y)v(y)

= u(x)R0(x , y)v(y) − εP′α(εθ̃(ε))u(x)R0(x , y)v(y) +
εi
√

λ
4π

u(x)e iεθ(ε)
√

λ∣x−y∣v(y).

Now compute

∥Bε
λ − B0 − εB1λ∥

2
2 ≤∥B

ε
λ − uR0v − εP′(0)uR0v − ε

i
√

λ
4π

(v , ⋅)u∥
2

2

≤2ε2∣P′α(εθ̃(ε)) − P′α(0)∣∥uR0v∥
2
2

+ 2

(
ε∣
√

λ∣
4π

)2
∥u∣e iεθ(ε)

√
λ∣⋅∣ − 1∣(v , ⋅)∥

2

2
, (6.3)

where ∥⋅∥2 denotes the Hilbert-Schmidt norm. To conclude (6.2), it su�ces to show that the
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last norm is uniformly bounded in ε.�is is the case because

∥u∣e iεθ(ε)
√

λ∣⋅∣ − 1∣(v , ⋅)∥
2

2
≤ ∫

R3
∫
R3

∣u(x)∣2∣v(y)∣2∣e iεθ(ε)
√

λ∣x−y∣ − 1∣2 dy dx

≲
(
∫
R3

∣V(x)∣dx
)2
,

which is clearly �nite since V ∈ L1(R3), and this completes the proof of (6.2). Now, applying
(6.2) yields

ε[1 + Bε
λ]−1 = ε[1 + B0 + εB1λ + o(ε)]−1

= ε
[
1 + ε + B0 + ε(B1 − 1 + o(ε))

]−1
=
[
1 + ε(1 + ε + B0)−1(B1 − 1 + o(ε))

]−1 ε(1 + ε + B0)−1

=
[
1 +Π(B1 − 1) + o(ε)

]−1 [Π + o(ε)
]

in the L2 sense.�e last step needs further explanation: As in [4, formula 1.2.35], we have
the series expansion

(1 + ε + B0)−1 = ε−1Π +
∞
∑
m=0

(−ε)mTm+1,

where

T = lim
ε→0

(1 + ε + B0)−1(1 −Π) = o(1),

so it follows

ε(1 + ε + B0)−1 = Π + o(ε).

From our calculation we conclude the L2 convergence

lim
ε→0

ε[1 + Bε
λ]−1 =

[
1 +Π(B1 − 1)

]−1Π. (6.4)

For the �rst factor it holds[
1 +Π(B1 − 1)

]−1 = 1 − Π(B1 − 1)
(φ, B1φ)

= 1 −
[
1 + P′α(0)

]
Π + iλ

4π(φ, v)(v , ⋅)φ
i
√

λ∣(v,φ)∣2
4π + P′α(0)

.
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6.1. Resolvent estimates for the approximate point source

Now multiply Π from the right side

Π−
[
1 + P′α(0)

]
Π + i

√
λ

4π (φ, v)(v , ⋅)φ
i
√

λ∣(v,φ)∣2
4π + P′α(0)

Π

= − 1
i
√

λ∣(v,φ)∣2
4π + P′α(0)

Π +
i
√

λ
4π (φ, v)(v , φ)(φ, ⋅)φ + P′α(0)Π

i
√

λ∣(v,φ)∣2
4π + P′α(0)

+Π

= − 1
i
√

λ∣(v,φ)∣2
4π + P′α(0)

Π +
i
√

λ
4π ∣(v , φ)∣2Π + P′α(0)Π

i
√

λ∣(v,φ)∣2
4π + P′α(0)

+Π

= − 1
i
√

λ∣(v,φ)∣2
4π + P′α(0)

Π.

Inserting in (6.4), the proof is almost complete: �e additional claim about uniformity
follows from the fact, that the �rst factor in (6.3) decays uniformly in ∣λ∣ for ε → 0 if we have
a bound on λ.

With this convergence result in place, we are able to prove the following time-dependent
estimate for the term

[
1 + Bε

t−1λ

]−1.
Lemma 6.2. Let α ≥ 0, ε ∈ (0, 1) and t ∈ [0, T] for some T > 0. Furthermore, let λ ∈ Γ, where
Γ is the path from De�nition 5.12.�ere is a δ > 0 such that

(i) for ∣ε
√
t−1λ∣ < δ it holds

ε∥
[
1 + Bε

t−1λ

]−1∥
L2→L2

≲
√
t (6.5)

with a constant independent of ε and λ.

(ii) for ∣ε
√
t−1λ∣ ≥ δ it holds

∥
[
1 + Bε

t−1λ

]−1∥
L2→L2

≲ 1 (6.6)

with a constant independent of ε, t, λ.

Proof. In case (i) we make use of Lemma 6.1.�is convergence result implies that for every
γ > 0 there is a δ > 0 such that

∥ ε√
t

[
1 + B

ε
√

t
λ

]−1
∥
L2→L2

≤ (1 + γ)∥Tλ∥L2→L2
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for ε∣
√

λ∣√
t ≤ δ, where

Tλ = −

[
i
√

λ∣(v , φ)∣2
4π

+ P′(0)

]−1
(φ, ⋅)φ.

It follows

∥ε
[
1 + Bε

t−1λ

]−1∥
L2→L2

=
√
t∥ ε√

t

[
1 + B

ε
√

t
λ

]−1
∥
L2→L2

≤
√
tc(λ)∥(φ, ⋅)φ∥L2→L2 ,

with

c(λ) = o((1 +
√

λ)−1).

for some δ small enough. Fix this δ for the whole proof. So we can conclude

∥ε
[
1 + Bε

t−1λ

]−1∥
L2→L2

≲
√
to((1 +

√
λ)−1) (6.7)

in this case. Because of
∣
√

λ∣ >
√
r(Γ) sin θ

2
> 0, (6.8)

the expression (1 +
√

λ)−1 is uniformly bounded for λ ∈ Γ.
To prove (ii), we distinguish two subregions, which are illustrated in Figure 6.1. First,

assume that ∣ε
√
t−1λ∣ >

√
2

sin θ
2
. Write b ∶= Im

√
λ.�en, with Young’s convolution inequality,

we can estimate the operator norm of [1 + Bε
t−1λ]−1 as follows.

(Pα(ε))−1∥Bε
t−1λ∥L2→L2 = sup

∥g∥L2=1
∥V(Rε2 t−1λ(⋅) ∗ Vg)∥L2

≤ sup
∥g∥L2=1

∥Rε2 t−1λ(⋅) ∗ Vg∥L2

≤ sup
∥g∥L2=1

∥Rε2 t−1λ(⋅)∥L1∥g∥L2

≤ ∥Rε2 t−1λ(⋅)∥L1

≤ ∫
R3

e−εb
√
t−1 ∣y∣

4π∣y∣
dy

= t
ε2b2 ∫R3

e−∣y∣

4π∣y∣
dy
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6.1. Resolvent estimates for the approximate point source

Re z

Im z

Z δ

2 sin−2 θ
2

Figure 6.1.: Illustration of the cases in the proof in the complex plane. In case (i) the
point z lies in the area surrounded by the inner arc of radius δ and the diagonals of
angle θ. In the �rst part of case (ii) the point z lies outside the outer arc of radius
2 sin−2 θ

2 . In the last subcase z is contained in the area between inner and outer arc
and the diagonals.�is subset Z ∈ C (gray background) is compact.

and the remaining integral is equal to 1. We have b ≥ ∣
√

λ∣ sin θ
2 . So it follows

t
ε2b2

≤ t
ε2∣

√
λ∣2 sin2 θ

2

≤
sin2 θ

2

2 sin2 θ
2
= 1
2
. (6.9)

Consequently

∥
[
1 + Bε

t−1λ

]−1∥
L2→L2

≤ 1
1 − ∥Bε

t−1λ∥L2→L2
≤ 1
1 − Pα(ε)

2

≤ 2. (6.10)

So we have a uniform bound in this situation.
It remains to investigate the case δ ≤ ∣ε

√
t−1λ∣ ≤

√
2

sin θ
2
. De�ne z ∶= ε2t−1λ and consider the

operator-valued function

C ∋ z ↦ F(z) ∶= [1 + Bz]−1 =
[
1 + Bε2 t−1λ

]−1 = [1 + Bε
t−1λ

]−1 .
We already know that F(z) exists for ∣z∣ >

√
2

sin θ
2
.�en, according to the analytic fredholm

theorem [45,�eorem VI.14], the function F is meromorphic in C ∖ [0,∞), i.e. it has an at
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most discrete set of poles. Assume z0 ∈ C ∖ [0,∞) is one such pole.�en the kernel of the
operator 1 + Bz0 is nonzero, so there is a g ∈ L2(R3) with

Bz0 g = −g .

Hence, −1 is an eigenvalue of Bz0 with eigenfunction g. Now recall the Birman-Schwinger
principle from Lemma 2.2: If −1 is an eigenvalue of the operator Bz0 = Pα(ε)uRz0v, then z0 is
an eigenvalue of −∆+Pα(ε)V . However, the latter operator has no eigenvalues inC∖ [0,∞),
according to�eorem 2.5 and 2.9, because for α ≥ 0 we have Pα(ε) ≤ 1, cf. De�nition
2.12 and (2.26). �us, there is no pole z0 of F(z). �is implies that F is holomorphic on
C ∖ [0,∞).
Because of θ ≤ arg λ ≤ 2π − θ and δ ≤ ∣ε

√
t−1λ∣ ≤

√
2

sin θ
2
, it follows that z lies in the compact

set

Z ∶= {z ∈ C ∶ δ2 ≤ ∣z∣ ≤ 2
sin2 θ

2
, θ ≤ arg z ≤ 2π − θ},

which is uniformly away from the nonnegative real axis.�e holomorphic operator-valued
function F is bounded on this compact set. Hence,

∥[1 + Bz]−1∥L2→L2 ≤ c

for z ∈ Z and some c > 0, which is a uniform bound and implies (ii).

Remark 6.3. In the proof of Lemma 6.2 the condition α ≥ 0 is needed to ensure that the
function z ↦ [1 + Bz]−1 is holomorphic in the set Z ∈ C. For α < 0, we have that Pα(ε) > 0
for small ε according to (2.26).�is again raises the problem that −∆ + Pα(ε)V has at least
one negative eigenvalue, because V was chosen critical in Chapter 2, so multiplying with
a factor larger than one leads into the supercritical case, where negative eigenvalues exist.
Hence, the function z ↦ [1 + Bz]−1 has at least one pole in the set Z. Also refer to Section
9.2 for more details, where we deal with negative eigenvalues in the two-dimensional case.

Now we are prepared to prove Lp(w)−Lq(w) boundedness of the operator

R
α,ε
λ = Pα(ε)Aε

λε[1 + Bε
λ]−1Cε

λ (6.11)

from Lemma 2.14 for suitable exponents p, q. Moreover, in this context we will investigate
the dependency of Rα,ε

t−1λ on time t ∈ [0, T].�is will play a central role in the semigroup
estimates following a�erwards.

�eorem 6.4. Let α ≥ 0 and ε ∈ (0, 1). Let λ ∈ Γ, where Γ is the path from De�nition 5.12. Let
R

α,ε
λ given by (6.11) the residue of the resolvent of −Hα,ε as in Lemma 2.14. Furthermore, let
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6.1. Resolvent estimates for the approximate point source

p > 3
2 and 1 < q < 2 and f ∈ Lp(w) and �x T > 0. We then have for time t ∈ [0, T]

∥Rα,ε
t−1λ f (x)∥Lq(w) ≲max{t

3
2−

3
2p , t

5
4−

3
2p , t

1
q+

1
2−

3
2p }∥ f ∥Lp(w), (6.12)

where the implicit constant depends only on p, q, T.

Proof. Using (2.27), it holds

∥Rα,ε
t−1λ f ∥Lq(w) ≤ ∣Pα(ε)∣∥Aε

t−1λ∥L2→Lq(w)∥ε[1 + Bε
t−1λ]

−1∥
L2→L2

∥Cε
t−1λ∥Lp(w)→L2∥ f ∥Lp(w).

Now the operator norms can be dealt with separately. In the following two steps we develop
estimates of the Cε

t−1λ and the A
ε
t−1λ term.�is is done by explicitly calculating and estimating

the corresponding integrals.�is part is quite technical. In the �nal step of the proof we will
collect the calculated bounds and employ Lemma 6.2 to estimate the norm of ε[1 + Bε

t−1λ]−1.
Step 1. By de�nition of the operator norm it holds

∥Cε
t−1λ∥Lp(w)→L2 = sup

∥g∥Lp(w)=1
∥Cε

t−1λg∥L2 .

Now

∥Cε
t−1λg∥

2
L2 = ∫R3

V(x)

(
∫
R3

e i
√
t−1λ∣εx−y∣

4π∣εx − y∣
g(y)dy

)2
dx

≤ ∥g∥2Lp(w)∫R3
V(x)

(
∫
R3

e−t−
1
2 bp′∣εx−y∣

(4π∣εx − y∣)p′
∣y∣

p′

p dy

) 2
p′

dx

= ∥g∥2Lp(w)∫R3
V(x)

(
∫
R3

e−t−
1
2 bp′∣y∣

(4π∣y∣)p′
∣y + εx∣

p′

p dy

) 2
p′

dx

= t
3
p′ −1∥g∥2Lp(w)∫R3

V(x)
(
∫
R3

e−bp′∣y∣

(4π∣y∣)p′
∣
√
ty + εx∣

p′

p dy
) 2

p′

dx .

Because of
√
t ≤

√
T and ε ≤ 1 it holds

∣
√
ty + εx∣ ≲max{

√
T ∣y∣, ∣x∣}.

So, for ∣
√
ty + εx∣ ≲

√
T ∣y∣, using p′

p − p′ = −1, one obtains the bound

∥Cε
t−1λ∥

2
Lp(w)→L2 ≲ t

3
p′ −1T

1
p ∫

R3
V(x)

(
∫
R3

e−bp′∣y∣

(4π∣y∣)
dy
) 2

p′

dx ≲ t
3
p′ −1T

1
p ,
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whereas for ∣
√
ty + εx∣ ≲ ∣x∣ we get

∥Cε
t−1λ∥

2
Lp(w)→L2 ≲ t

3
p′ −1∫

R3
V(x)∣x∣

2
p

(
∫
R3

e−bp′∣y∣

(4π∣y∣)p′
dy
) 2

p′

dx ≲ t
3
p′ −1,

note that because of
b = Im

√
λ >

√
r(Γ) sin θ

2
> 0 (6.13)

the exponential decay of e−bp′∣⋅∣ does not vanish and the remaining y integral is uniformly
bounded in b and consequently also in λ. Concerning the outer integral, ∣x∣

2
p is clearly

integrable on a compact set. In summary

∥Cε
t−1λ∥Lp(w)→L2 ≲ t

1
2 (

3
p′ −1)(1 +

√
T
1
p ) = t1−

3
2p (1 +

√
T
1
p ). (6.14)

Step 2. By de�nition

∥Aε
t−1λ∥L2→Lq(w) = sup

∥g∥L2=1
∥Aε

t−1λg∥Lq(w).

Using Hölder’s inequality we can extract ∥g∥L2 and obtain, in analogy to Step 1,

∥Aε
t−1λ∥

q
L2→Lq(w) ≤ ∫R3

∣x∣−1
(
∫
R3

e−2t−
1
2 b∣x−εy∣

(4π∣x − εy∣)2
V(y)dy

) q
2

dx (6.15)

First we restrict the outer integral to the complement of a centered ball, i.e. we consider the
case where (2ε)−1x ∈ B π

2
(0)c .�is implies ∣x∣ ≥ 2ε∣y∣ in the inner integral, so ∣x − εy∣ ≥ 1

2 ∣x∣.
We then have, because of ε ≤ 1, the bound

e−t−
1
2 b∣x∣

(2π∣x∣)2 ∫R3
V(y)dy = π4

6
e−t−

1
2 b∣x∣

∣x∣2

for the inner integral, which leads to the estimate

∥Aε
t−1λ∥

q
L2→Lq(w) ≲ ∫R3

e−t
−
1
2 q
2 b∣x∣

∣x∣q+1
dx = t1−

q
2 ∫

R3

e−
q
2 b∣x∣

∣x∣q+1
dx ,

and the remaining integral exists because of q + 1 < 3 and is uniformly bounded in λ ∈ Γ
because of (6.13). So we have

∥Aε
t−1λ∥L2→Lq(w) ≲ t

1
q−

1
2 . (6.16)

We still have to deal with the case where (2ε)−1x lies in the ball B π
2
(0). In this situation
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6.1. Resolvent estimates for the approximate point source

we distinguish again subcases concerning the ratio ∣ε
√
t−1λ∣. Let δ as in Lemma 6.2.

Case 1: ∣ε
√
t−1λ∣ < δ. Here we estimate the inner integral in (6.15) as follows

∫
R3

e−2t−
1
2 bε∣y∣

(4πε∣y∣)2
V(ε−1x + y)dy

≤ ε−2∫
R3

1
(4π∣y∣)2

V(ε−1x + y)dy

≤ ε−2
3π
2 ∫B( 3π

2 )

1
(4π∣y∣)2

dy.

Note that ∣ε−1x + y∣ ≤ π
2 can only hold for ∣y∣ ≤

3π
2 because ε−1∣x∣ ≤ π. �us, for the outer

integral in (6.15) one obtains the bound

∥Aε
t−1λ∥

q
L2(w)→Lq(w) ≲ ε−q ∫

R3

V((2ε)−1x)
∣x∣

dx ≤ ε2−q ∫
R3

V( x
2)

∣x∣
dx ≲ 1,

using the condition (2ε)−1x ∈ B π
2
(0) and the fact 2 − q > 0.

Case 2: ∣ε
√
t−1λ∣ ≥ δ. Here we choose a slightly di�erent approach to estimate the inner

term in (6.15) in order to gain a decay in t. It holds

∫
R3

e−2t−
1
2 bε∣y∣

(4πε∣y∣)2
V(ε−1x + y)dy

≤
√
t

ε3 ∫R3

e−2b∣y∣

(4π∣y∣)2
dy

≲
√
t

ε3
,

where we have used (6.13). Returning to the outer integral of (6.15) with (2ε)−1x ∈ B π
2
(0)

we obtain

∥Aε
t−1λ∥

q
L2→Lq(w) ≲ ε−

3
2 qt

q
4 ∫

R3

V((2ε)−1x)
∣x∣

dx ≤ ε2−
3
2 qt

q
4 ∫

R3

V( x
2)

∣x∣
dx ≲ ε2−

3
2 qt

q
4

and �nally

∥Aε
t−1λ∥L2→Lq(w) ≲ ε

2
q−

3
2 t

1
4 . (6.17)

Step 3: Conclusion. Now it remains to collect terms in the di�erent cases.
Case 1: ∣ε

√
t−1λ∣ < δ. It holds

∥Rα,ε
t−1λ∥Lp(w)→Lq(w) ≤ Pα(ε)∥Aε

t−1λ∥L2→Lq(w)∥ε[1 + Bε
t−1λ]

−1∥
L2→L2

∥Cε
t−1λ∥Lp(w)→L2 .

≲ t
1
q−

1
2 t

1
2 t1−

3
2p
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= t1+
1
q−

3
2p

using (6.16), (6.5) and (6.14).
Case 2: ∣ε

√
t−1λ∣ ≥ δ. We have

∥Rα,ε
t−1λ∥Lp(w)→Lq(w) ≤ Pα(ε)∥Aε

t−1λ∥L2→Lq(w)∥ε[1 + Bε
t−1λ]

−1∥
L2→L2

∥Cε
t−1λ∥Lp(w)→L2 .

≲max{t
1
q−

1
2 , ε

2
q−

3
2 t

1
4 }εt1−

3
2p

≤max{t
1
q−

1
2 , t 14 }t1−

3
2p ,

using (6.16), (6.17), (6.6) and (6.14). Note that 2q −
3
2 > −1 implies ε

2
q−

3
2 ε ≤ 1.

Concluding the proof, by summing up both cases we have

∥Rα,ε
t−1λ f (x)∥Lq(w) ≤ C(p, q, T)max{t1+

1
q−

3
2p , t

1
q+

1
2−

3
2p , t

5
4−

3
2p }∥ f ∥Lp(w),

where C(p, q, T) = o(1 + T
1
2p ) for �xed p, q.

From this theorem, we immediately obtain the following consequence by setting t ≡ 1.

Corollary 6.5. Under the conditions of�eorem 6.4, the resolvent residue R
α,ε
λ is a bounded

operator from Lp(w) to Lq(w).�is holds uniformly in ε > 0.

Now we prepare ourselves to transfer the previous results for the resolvents to the cor-
responding semigroup. Under the conditions of�eorem 6.4 we introduce for t ≥ 0 and
f ∈ Lp(w)

S
α,ε
t f = 1

2πi ∫Γ
e−λtR

α,ε
λ f dλ. (6.18)

�is is well-de�ned, because −∆ and −Hα,ε are sectorial in Lp(w) and hence

∥Rα,ε
λ ∥

Lp(w)→Lp(w) ≤ ∥Rλ∥Lp(w)→Lp(w) + ∥Rα,ε
λ ∥

Lp(w)→Lp(w) ≲
1
∣λ∣

using (2.27), with an implicit constant depending on α and ε. It follows

St f + S
α,ε
t f = 1

2πi ∫Γ
e−λt(Rλ + R

α,ε
λ ) f dλ

= 1
2πi ∫Γ

e−λtRα,ε
λ f dλ

= Sα,ε
t f .
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�eorem 6.6. Let p > 3
2 and 1 < q < 2 and f ∈ Lp(w). We then have for time 0 < t ≤ T

∥Sα,ε
t f (x)∥

Lq(w)
≲max{t

1
2−

3
2p , t

1
4−

3
2p , t

1
q−

1
2−

3
2p }∥ f ∥Lp(w), (6.19)

where the implicit constant depends only on p, q, T.

Proof. We immediately have

S
α,ε
t f = 1

2πi ∫Γ
e−λtR

α,ε
λ f dλ

= 1
2π

∣∫
Γ
e−λtR

α,ε
λ f dλ∣ ,

where we used (6.18). For the path integral it follows by substitution λ → t−1λ

∫
Γ
e−λtR

α,ε
λ f dλ = ∫

t−1Γ
e−λtR

α,ε
λ f dλ

= t−1∫
Γ
e−λR

α,ε
t−1λ f dλ,

because rescaling of the curve Γ doesn’t change the value of the integral, as seen in Lemma
5.14. Hence

∥Sα,ε
t f (x)∥

Lq(w)
≤ 1
2πt ∫Γ

e−Re λ∥Rα,ε
t−1λ f ∥Lq(w) dλ.

By applying�eorem 6.4 one obtains

∥Sα,ε
t f (x)∥

Lq(w)
≤ 1
2πt ∫Γ

e−Re λmax{t
3
2−

3
2p , t

5
4−

3
2p , t

1
q+

1
2−

3
2p }∥ f ∥Lp(w) dλ

≲max{t
1
2−

3
2p , t

1
4−

3
2p , t

1
q−

1
2−

3
2p }∥ f ∥Lp(w)

and the proof is complete.

6.2. Resolvent estimates for the point source

We turn our attention to the resolvents of −∆α and the associated semigroup. Similar to
(6.18) we introduce for t ≥ 0 and f ∈ Lp(w)

S
α
t f =

1
2πi ∫Γ

e−λtR
α
λ f dλ (6.20)
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which is well-de�ned because of the sectoriality of −∆ and −∆α and the decomposition
(2.24).�e path Γ is given by De�nition 5.12. Again, for t ≥ 0 it holds

Sα
t = St + S

α
t .

In this section, we can proceed more directly, because the resolvent kernel is explicitly given.
We start with a pointwise estimate.

Lemma 6.7. For λ ∈ C ∖ [0,∞) let Rα
λ the residue of the resolvent of −∆α as introduced in

Lemma 2.11, with integral kernel

R
α
λ(x , y) =

1
α − i

√
λ

4π

e i
√

λ(∣x∣+∣y∣)

(4π)2∣x∣∣y∣
.

Let f ∈ Lp(w), p ≥ 1. We then have

∣Rα
t−1λ f (x)∣ ≲

e−
√
t−1 Im

√
λ∣x∣

4π∣x∣
t
3
2−

1
p ∥ f ∥Lp(w) (6.21)

for λ ∈ Γ, and

0 ≤ S
α
t f ≲ t

1
2−

1
pw∥ f ∥Lp(w), (6.22)

where S
α
t f given by (6.20) for t > 0 and the implicit constants depend on p.

Proof. With (6.20) and the nonnegativity of f we obtain

(0,∞) ∋ Sα
t f =

1
2πi ∫Γ

e−λtR
α
λ f dλ

= 1
2π

∣∫
Γ
e−λtR

α
λ f dλ∣ .

Now, for the path integral it follows

∫
Γ
e−λtR

α
λ f dλ = t−1∫

tΓ
e−λR

α
t−1λ f dλ

= t−1∫
Γ
e−λR

α
t−1λ f dλ,

because rescaling of the curve Γ doesn’t change the value of the integral, which has been
shown in Lemma 5.14. Hence

S
α
t f ≤

1
2πt ∫Γ

e−Re λ ∣Rα
t−1λ f ∣ dλ. (6.23)
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6.2. Resolvent estimates for the point source

We calculate with b = Im
√

λ

∣Rα
t−1λ f (x)∣ ≤

1
∣α − i

√
t−1λ
4π ∣

e−
√
t−1b∣x∣

4π∣x∣ ∫
R3

e−
√
t−1b∣y∣

4π∣y∣
∣ f (y)∣ dy. (6.24)

�e remaining integral is, using Hölder’s inequality in the �rst step and then switching to
polar coordinates and transforming r → t−

1
2 r,

∫
R3

e−
√
t−1b∣y∣ ∣ f (y)∣ ∣w(y)∣dy ≤

(
∫
R3

e−
√
t−1bp′∣y∣w(y)dy

) 1
p′ ∥ f ∥Lp(w)

=
(
4π∫

∞

0
e−bp

′rrt dr
) 1

p′ ∥ f ∥Lp(w)

≲ t
1
p′ ∥ f ∥Lp(w).

(6.25)

Because of α ∈ [0,∞), which is uniformly away from the curve Γ, we have

1
∣α − i

√
t−1λ
4π ∣

≲
√
t∣
√

λ∣−1 ≤
√
t
√
r(Γ)

−1
. (6.26)

Collecting terms from (6.25) and (6.26) in (6.24) completes the proof of (6.21), because√
tt

1
p′ = t

3
2−

1
p . On the other hand, we can up to a constant estimate the right-hand side of

(6.24) from above by

w(x)t
3
2−

1
p ∥ f ∥Lp(w).

Collecting terms in (6.23) we get

S
α
t f (x) ≲ t−1t

3
2−

1
p
√
tw(x)∥ f ∥Lp(w)∫Γ

e−Re λ dλ

≲ t
1
2−

1
pw(x)∥ f ∥Lp(w)

because of 1p′ = 1 −
1
p , which completes the proof of (6.22).

Corollary 6.8. Under the conditions of Lemma 6.7 it holds for f ∈ Φp(w)

0 ≤ Sα
t f ≲ (1 + ∥ f ∥Lp(w)t

1
2−

1
p )w . (6.27)

Proof. Since Sα
t = St + S

α
t , the claim follows from the previous Lemma and St f ≲ St(w) ≲ w,

cf. estimate 3.9

Remark 6.9. �e exponent 12 −
1
p of t in Corollary 6.8 corresponds precisely to the d = 3 case
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6. Semigroup estimates and convergence properties

of estimate (2.76) in [20] with exponent

−1
2
+ (d + 1)(p − 1)

4p
= −1
2
+ p − 1

p
= 1
2
− 1
p
.

Also refer to Corollary 3.19 above.�e estimate there was obtained with di�erent methods,
estimating the kernel pα,t directly.

Corollary 6.10. Let f ∈ Lp(w), 1 < q < 2 and p ≥ 1. We then have

∥Rα
t−1λ f ∥Lq(w) ≲ t1+

1
q−

1
p ∥ f ∥Lp(w). (6.28)

for λ ∈ Γ, and

∥Sα
t f ∥Lq(w)

≲ t
1
q−

1
p ∥ f ∥Lp(w). (6.29)

Proof. We apply the Lq(w) norm to formula (6.21)

∥Rα
t−1λ f ∥Lq(w) ≲ ∥ e

−
√
t−1b∣⋅∣

4π∣ ⋅ ∣
∥
Lq(w)

t
3
2−

1
p ∥ f ∥Lp(w). (6.30)

Now an easy calculation shows that

∥ e
−
√
t−1b∣⋅∣

4π∣ ⋅ ∣
∥
Lq(w)

≲ t
1
q−

1
2

for q < 2, so we have shown (6.28). Consequently, applying the norm to (6.23), following
the steps in the proof of Lemma 6.7, yields (6.29) and the proof is complete.

6.3. Summary of semigroup estimates

In the norm estimates of the previous chapter, most importantly (6.12) and (6.29), di�erent
potencies of t occured on the right-hand side. In order to unify the estimates and obtain
more practicable semigroup bounds for further calculations in the next chapter about the
nonlinear equations, we introduce the following technical lemma.

Lemma 6.11. Let N ∈ N, T > 0 and t ∈ [0, T]. Let z1, . . . , zN ∈ R. It holds

max
j

tz j ≤
N

∑
i=1

tz i ≤ NC(T)tmin j z j (6.31)
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6.3. Summary of semigroup estimates

with

C(T) = (1 + Tmaxi , j(z i−z j)).

Proof. �e �rst estimate in (6.31) is trivial. It remains to show the second part. Let i ∈
{1, . . . ,N}. We have

tz i = tmin j z j tz i−min j z j ≤ tmin j z j ⋅
⎧⎪⎪⎨⎪⎪⎩

Tz i−min j z j , T ≥ 1,
1, T ≤ 1,

where the last estimate follows from t ≤ T and zi −min j z j ≥ 0. Summing up

N

∑
i=1

tz i ≤ tmin j z j
N

∑
i=1
max{1, Tz i−min j z j}

≤ tmin j z jmax{N ,
N

∑
i=1

Tz i−min j z j}

≤ tmin j z jN(1 + Tmaxi , j(z i−z j))

completes the proof.

Note that Lemma 6.11 will only be applied for N ≤ 4, which is the number of di�erent
t-potencies we obtain in the semigroup estimates.

�eorem 6.12. Let p > 3
2 and 1 < q < 2 and f ∈ Lp(w) and 0 < t ≤ T for T > 0. �ere is an

exponent z(p, q) > −1 and a constant C(p, q, T) ∈ o(1 + T) such that

∥Sα
t f ∥Lq(w) ≤ C(p, q, T)tz(p,q)∥ f ∥Lp(w), (6.32)

and, uniformly in ε,

∥Sα,ε
t f ∥Lq(w) ≤ C(p, q, T)tz(p,q)∥ f ∥Lp(w). (6.33)

Furthermore, for p large enough, we have z(p, q) ≥ 0.

Proof. By de�nition of the semigroup (Sα
t )t≥0 we have the decomposition

∥Sα
t f ∥Lq(w) ≤ ∥St f ∥Lq(w) + ∥Sα

t f ∥Lq(w). (6.34)

For the second term we have the estimate (6.29)

∥Sα
t f ∥Lq(w)

≲ t
1
q−

1
p ∥ f ∥Lp(w).
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6. Semigroup estimates and convergence properties

Now let’s turn to the heat semigroup in the �rst term. We compute directly, using the heat
kernel pt ,

∥St f ∥Lq(w) = ∥pt ∗ f ∥Lq(w)

≲ ∥ptw− 1p ∥
Lr
∥ f ∥Lp(w),

using the inequality from Lemma 5.8(ii), with 1r = 1 +
2
3q −

1
p . For the remaining Lr norm

involving the heat kernel, it follows with a transformation x ↦
√
tx

∥ptw− 1p ∥
Lr
= 1
4πt 32

(
∫
R3

e−
r∣x ∣2

4t ∣x∣
r
p dx

) 1
r

= t
3
2r+

1
2p−

3
2
1
4π

(
∫
R3

e−
r∣x ∣2

4 ∣x∣
r
p dx

) 1
r

.

�is exponent of t is

3
2r

+ 1
2p

− 3
2
= 3
2

(
1 + 2
3q

− 1
p

)
+ 1
2p

− 3
2
= 1
q
− 1
p
.

�e remaining integral is a constant depending only on p, q. So it holds

∥St f ∥Lq(w) ≲ t
1
q−

1
p ∥ f ∥Lp(w). (6.35)

Returning with (6.29) and (6.35) to (6.34), we obtain

∥Sα
t f ∥Lq(w) ≲ t

1
q−

1
p ∥ f ∥Lp(w).

Since p, q > 1, clearly the exponent z1(p, q) ∶= 1
q −

1
p is greater than −1 and nonnegative for

p ≥ q. So z1(p, q) satis�es the desired properties.
Similarly, we can decompose

∥Sε
t f ∥Lq(w) ≤ ∥St f ∥Lq(w) + ∥Sα,ε

t f ∥Lq(w). (6.36)

With estimate (6.19) and (6.35) this leads to

∥Sα,ε
t f (x)∥Lq(w) ≲

(
t
1
q−

1
p +max{t

1
2−

3
2p , t

1
4−

3
2p , t

1
q−

1
2−

3
2p }
)
∥ f ∥Lp(w), (6.37)

with an implicit constant depending on p, q, T . Now de�ne

z2(p, q) =min{
1
q
− 1
p
, 1
2
− 3
2p
, 1
4
− 3
2p
, 1
q
− 1
2
− 3
2p

} ≥ 0.
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6.4. Convergence of the resolvents in the weighted space

Using the inequality (6.31), this implies

∥Sα,ε
t f (x)∥Lq(w) ≲ tz2(p,q)∥ f ∥Lp(w).

Because of p, q > 1 and q < 2, all four numbers

1
q
− 1
p
, 1
2
− 3
2p
, 1
4
− 3
2p
, 1
q
− 1
2
− 3
2p

are greater than −1 and nonnegative for p large enough. Clearly this means that z2(p, q) sat-
is�es these conditions too. De�ning z(p, q) ∶=min{z1(p, q), z2(p, q)} and using inequality
(6.31) again completes the proof.

6.4. Convergence of the resolvents in the weighted space

With our resolvent estimates in place, we can now show convergence of the resolvents in the
weighted space Lq(w ,R3).�is is a variant of the result from [4,�eorem 1.2.5] in the L2
space. Note that similar convergence results for unweighted Lp spaces can be found in the
literature, for example [3,�eorem 3.1] in the case p ∈ ( 32 , 3).

�eorem 6.13. Let 32 < p, q < 2.�en for every λ ∈ ρ(−∆α) it holds

∥(Rα,ε
λ − Rα

λ) f ∥Lq(w) → 0 as ε ↓ 0

for f ∈ L2(R3) ∩ Lp(w ,R3).

Proof. For the whole proof �x f ∈ L2(R3)∩ Lp(w ,R3) and λ ∈ ρ(−∆α). First we restrict our
attention to the area away from the origin, more precisely B1(0)c . With Hölder’s inequality
we get

∥(Rα,ε
λ − Rα

λ) f ∥Lq(w,B1(0)c)
= ∥(Rα,ε

λ − Rα
λ) f ⋅w1/q∥Lq(B1(0)c)

≲ ∥(Rα,ε
λ − Rα

λ) f ∥L2(B1(0)c)∥w
1/q∥

Lq′(B1(0)c)
, (6.38)

where 1q′ +
1
2 =

1
q . �e �rst factor converges to zero for ε → 0 according to�eorem 2.15

because
∥(Rα,ε

λ − Rα
λ) f ∥L2(B1(0)c) ≲ ∥ f ∥L2(R3)∥(R

α,ε
λ − Rα

λ)∥L2(R3)→L2(R3), (6.39)

and f ∈ L2(R3) by assumption. For the second factor of (6.38) we have, independent of ε
and f ,

∥w1/q∥Lq′(B1(0)c)
= ∥∣ ⋅ ∣−q′/q∥1/q

′

L1(B1(0)c)
<∞,

since the exponent satis�es q′
q > 4, which implies integrability in any region away from the

origin.

95



6. Semigroup estimates and convergence properties

Inside the unit ball, for δ ∈ (0, 1) we further decompose B1(0) = Uδ ∪ Vδ, where Uδ =
Bδ(0) and Vδ = B1(0) ∖Uδ. Of course, for every δ in the range it holds

∥(Rα,ε
λ − Rα

λ) f ∥Lq(w,B1(0))
≤ ∥(Rα,ε

λ − Rα
λ) f ∥Lq(w,Uδ)

+ ∥(Rα,ε
λ − Rα

λ) f ∥Lq(w,Vδ)
(6.40)

On the annulus Vδ we have L2(Vδ) ⊆ Lq(Vδ), so with Hölder’s inequality it follows

∥(Rα,ε
λ − Rα

λ) f ∥Lq(w,Vδ)
≲ ∥(Rα,ε

λ − Rα
λ) f ⋅w1/q∥L2(Vδ)

≤ ∥(Rα,ε
λ − Rα

λ) f ∥L2(Vδ)
∥w1/q∥L∞(Vδ)

,

and again it follows convergence to zero of the �rst factor as in (6.39). We have ∥w1/q∥L∞(Vδ) ≈
δ−1/q <∞. So for each �xed δ the second term in (6.40) converges to zero for ε → 0.
Now we consider the �rst term in (6.40). First we show that for each η > 0 there is a δ0 > 0

such that
lim sup

ε→0
∥(Rα,ε

λ − Rα
λ) f ∥Lq(w,Uδ)

≤ c0η∥ f ∥2Lp(w) (6.41)

for all δ ≤ δ0 and some c0 > 0.
We have

∥(Rα,ε
λ − Rα

λ) f ∥Lq(w,Uδ)
≤ ∥Rα

λ f ∥Lq(w,Uδ)
+ ∥Rε

λ f ∥Lq(w,Uδ)
.

As in the proof of Lemma 5.5 around formula (5.1),

∥Rα
λ f ∥Lq(w,Uδ)

≲ ∥ e
i
√

λ∣ ⋅ ∣

∣ ⋅ ∣ ∫
R3

e i
√

λ∣y∣

∣y∣
f (y)dy∥

Lq(w,Uδ)

= ∣∫
R3

e i
√

λ∣y∣

∣y∣
f (y)dy∣ ∥ e

i
√

λ∣ ⋅ ∣

∣ ⋅ ∣
∥
Lq(w,Uδ)

= ∣∫
R3

e i
√

λ∣y∣

∣y∣
f (y)dy∣ ∥Rλ(⋅)∥Lq(w,Uδ)

≤
(
∫
R3

∣e−b∣y∣∣p′w(y)dy
)1/p′

∥ f ∥Lp(w)∥Rλ(⋅)∥Lq(w,Uδ)

≲ ∥ f ∥Lp(w)∥Rλ(⋅)∥Lq(w,Uδ),

using Hölder’s inequality. Now

∥Rλ(⋅)∥qLq(Uδ ,w) = ∫Uδ

e−bq∣x∣

∣x∣q+1
dx

= 4π∫
δ

0
e−bqrr1−q dr

≤ 4π∫
δ

0
r1−q dr
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= 4π
2 − q

δ2−q

So choose

δ1 = δ1(η) = η
q
2−q

(
2 − q
4π

) 1
2−q

to obtain

∥Rα
λ f ∥Lq(w,Uδ)

≤ c1η∥ f ∥2Lp(w) (6.42)

for δ ≤ δ1 and some c1 > 0.
Concerning the residue term R

α,ε
λ , remember that

R
α,ε
λ = Pα(ε)Aε

λε[1 + Bε
λ]−1Cε

λ .

According to Lemma 6.2 and�eorem 6.4 and the calculations in its proof, we have that
the operator Pα(ε)Aε

λε[1 + Bε
λ]−1 is bounded from L2 to Lq(w), uniformly in ε. Hence, it

su�ces to show that ∥Cε
λ f ∥L2(Uδ)

becomes su�ciently small for decreasing δ.�e arguments
in step 1 of the proof of�eorem 6.4 imply

∥Cε
λ f ∥

2
L2(Uδ)

≲ ∥ f ∥2Lp(w)∫Uδ

V(x)
(
∫
R3

e−bp′∣y∣

(4π∣y∣)p′
dy
) 2

p′

dx

≲ ∥ f ∥2Lp(w)∫Uδ

1dx

= ∥ f ∥2Lp(w)
4
3

πδ3.

�us, we choose

δ2 = δ2(η) = η
3
2

to obtain

∥Rα,ε
λ f ∥Lq(w,Uδ)

≤ c2η∥ f ∥2Lp(w) (6.43)

for δ ≤ δ2 and some c2 > 0 up to a generic constant depending only on p. Finally choose

δ0 ∶=min{δ1, δ2}, c0 ∶= c1 + c2,
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6. Semigroup estimates and convergence properties

which yields (6.41). By nonnegativity of the norm it follows

0 ≤ lim
ε→0

∥(Rα,ε
λ − Rα

λ) f ∥Lq(w,Uδ)
≤ lim sup

ε→0
∥(Rα,ε

λ − Rα
λ) f ∥Lq(w,Uδ)

= 0,

so the proof is complete.

6.5. Convergence of semigroups in weighted spaces

With the convergence of resolvents from�eorem 6.13 in place, it is now possible to prove
the convergence of the semigroups for �xed t. �is is done using the representation of
semigroups with path integrals.

�eorem 6.14. Let p, q ∈ ( 32 , 2) and t ∈ [0, T]. For f ∈ L2 ∩ Lp(w) it holds for ε → 0

∥(Sα
t − Sα,ε

t ) f ∥Lq(w) → 0.

Proof. By the representation of sectorial semigroups (5.2) we have

∥(Sα
t − Sα,ε

t ) f ∥Lq(w) =
1
2π

∥∫
Γ
e−λt(Rα

λ − Rα,ε
λ ) f dλ∥

Lq(w)

≤ 1
2π ∫Γ

e−t Re λ∥(Rα
λ − R

α,ε
λ ) f ∥Lq(w) dλ (6.44)

with the path Γ as in De�nition 5.12. By�eorem 6.4 with t = 1 it follows uniformly in ε on Γ

∥Rα,ε
λ f (x)∥Lq(w) ≲ ∥ f ∥Lp(w).

A similar estimate holds for Rα
λ : By setting t = 1 in (6.28) we obtain

∥Rα
λ f (x)∥Lq(w) ≲ ∣λ∣−1∥ f ∥Lp(w).

Using the structure of the path Γ, these estimates imply

e−t Re λ∥(Rα
λ − R

α,ε
λ ) f ∥Lq(w) ≲ e−t Re λ(∣λ∣−1 + 1)∥ f ∥Lp(w) ≤ e−t∣λ∣ cos θ(∣λ∣−1 + 1)∥ f ∥Lp(w),

which is an integrable majorant for the integrand in (6.44) because of the exponential decay,
note that for the opening angle θ of the curve Γ it holds cos θ > 0, because θ ∈ (0, π

2 ). Now,
using Lebesgue’s theorem,

lim
ε→0

∥(Sα
t − Sα,ε

t ) f ∥Lq(w) ≲ ∫Γ
e−t Re λ lim

ε→0
∥(Rα

λ − R
α,ε
λ ) f ∥Lq(w) dλ = 0

by�eorem 6.13.
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7. Convergence of solutions of the nonlinear
equations

In this chapter we will prove the main convergence result for the solutions of the nonlinear
integral equations

uα,ε(t, x) = Sα,ε
t f (x) − η∫

t

0
Sα,ε
t−s(u

1+β
α,ε (s))(x)ds, ε ∈ (0, 1), (7.1)

towards

uα(t, x) = Sα
t f (x) − η∫

t

0
Sα
t−s(u

1+β
α (s))(x)ds. (7.2)

for ε → 0, where t ≥ 0 is �xed and f is a function with su�ciently small norm in the weighted
space, satisfying the conditions of Section 7.1. In order to do so, using the analytic tools from
the previous chapters, we establish a Picard iteration

u(0)
α,ε(t, x) ∶= Sα,ε

t f (x)

u(n)
α,ε (t, x) ∶= Sα,ε

t f (x) − η∫
t

0
Sα,ε
t−s((u

(n−1)
α,ε )1+β(s))(x)ds, n ∈ N.

(7.3)

Similarly, we de�ne for the point interaction the iteration

u(0)
α (t, x) ∶= Sα

t f (x)

u(n)
α (t, x) ∶= Sα

t f (x) − η∫
t

0
Sα
t−s((u

(n−1)
α )1+β(s))(x)ds, n ∈ N.

(7.4)

We start with the technical framework and some important pointwise properties of the
solutions, before we prove the main convergence result in Section 7.3.
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7.1. Technical settings

We brie�y introduce the analytic framework for the whole chapter. First we choose the
following set of parameters:

0 ≤ β < 1
3
, p, q ∈

(
3
2
, 2
)
, q = (1 + β)p. (7.5)

Furthermore, let κ > 3
2 large enough such that for the corresponding exponent in�eorem

6.12 it holds z(κ, q) ≥ 0.
From now on we assume that f ∶ R3 → [0,∞) is a function satisfying

f ∈ Φp ∩ L2 ∩ Lκ(w)

with Φp as in De�nition 3.1. For example, every continuous nonnegative bounded function
with bounded support satis�es these requirements.
We will also need the following elementary estimate, introduced in [20, Lemma 3.6].

Lemma 7.1. Let a, b ≥ 0 and 0 < β ≤ 1. It holds

∣a1+β − b1+β∣ ≤ (1 + β)max{a, b}β∣a − b∣. (7.6)

Proof. �e estimate follows directly from the mean value theorem.

7.2. Nonnegativity of solutions

In this section we want to collect some pointwise properties, especially nonnegativity, of the
iterated solutions u(n)

α,ε , u(n)
α , n ∈ N, de�ned in (7.3) and (7.4).�e main technique here are

pointwise estimates of the semigroups (Sα
t )t≥0 and (Sα,ε

t )t≥0 for �xed ε ∈ (0, 1].
We follow the argumentation in [20, Section 3.2 and 3.4]. Fix a timeT > 0 and ameasurable

function ψ ∶ [0,∞) ×Rd → R with

0 ≤ ψ(t, x) ≤ M(1 + t−κ)wβ(x). (7.7)

For a suitableM = M(T) > 0 and κ = β
2 −

β(d+1)(p−1)
4p it holds

(Sα
t f (x))β ≤ ψ(t, x), (7.8)

this follows from [20, Corollary 2.11]. Now de�ne for N ∈ N,N ≥ 2,

ψN ∶= ψ ∧ η−1N .
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7.2. Nonnegativity of solutions

�e next lemma is an adaption of [20, Lemma 3.8].

Lemma 7.2. Let f ∈ Φp, T > 0 and vN ,n ,N , n ∈ N,N ≥ 2, given by

vN ,0(t, x) = Sα
t f (x),

vN ,n(t, x) = Sα
t f (x) − η∫

t

0
Sα
t−s(ψN(s)vN ,n−1(s))(x)ds.

(7.9)

�en it holds

0 ≤ vN ,n(t, x) ≤ Sα
t f (x)

for 0 ≤ t ≤ T.

Proof. We want to �x N and proceed by induction over n. �e claim is trivially true for
n = 0. Assume as induction hypothesis, that 0 ≤ vN ,n−1 ≤ Sα

t f (x). We have

Sα
t−s(ψN(s)vN ,n−1(s)) ≤ Sα

t−s(η−1NSα
s f ) ≤ η−1NSα

t f . (7.10)

For now we restrict our attention to the time interval 0 ≤ t ≤ N−1. Here it holds because of
(7.10)

Sα
t f ≥ vN ,n(t) ≥ Sα

t f − Sα
t f η∫

N−1

0
η−1N ds = 0.

�e upper bound follows from the nonnegativity of the integral in (7.9).�is bound also
implies vN ,n(N−1) ∈ Φp.
In the next step we want to use induction over time intervals of length N−1. We have

shown that vN ,n is nonnegative on [0,N−1] and that vN ,n(N−1) ∈ Φp. To proceed with our
induction, assume that vN ,n is nonnegative on [(k − 1)N−1, kN−1] for some 0 ≤ k ≤ NT − 1
and that vN ,n(kN−1) ∈ Φp. We nowwant to shi� time and start the iteration with vN ,n(kN−1)
instead of f . In order to do so, de�ne

v(k)N ,n(t) ∶= vN ,n(t + kN−1),

f (k)N ,n ∶= vN ,n(N−1),

ψ(k)
N (t) ∶= ψN(t + kN−1).

(7.11)

To apply our result from the previous step, we need to show that

v(k)N ,n(t) = Sα
t f

(k)
N ,n − η∫

t

0
Sα
t−s(ψ(k)

N (s)v(k)N ,n−1(s))ds (7.12)

holds for for 0 ≤ t ≤ N−1. By applying Sα
t to both sides of de�nition (7.9), it holds for a time
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7. Convergence of solutions of the nonlinear equations

r > 0

Sα
t vN ,n(r) = Sα

t+r f − η∫
r

0
Sα
t+r−s(ψN(s)vN ,n−1(s)ds.

Fix r = kN−1 and 0 ≤ t ≤ N−1.�en, using de�nition (7.11),

Sα
t vN ,n(kN−1) = Sα

t f
(k)
N ,n = Sα

t+kN−1 f − η∫
kN−1

0
Sα
t+kN−1−s(ψN(s)vN ,n−1(s))ds. (7.13)

With the change of variables s ↦ s − kN−1 it also holds

η∫
t

0
Sα
t−s(ψ(k)

N (s)v(k)N ,n−1(s))ds = η∫
t

0
Sα
t−s(ψN(s + kN−1)vN ,n−1(s + kN−1))ds

= η∫
t+kN−1

kN−1
Sα
t+kN−1−s(ψN(s)vN ,n−1(s))ds. (7.14)

Inserting (7.13) and (7.14) into the rigt side of (7.12), it follows

Sα
t f

(k)
N ,n − η∫

t

0
Sα
t−s(ψ(k)

N (s)v(k)N ,n−1(s))ds

= Sα
t+kN−1 f − η∫

t+kN−1

0
Sα
t+kN−1−s(ψN(s)vN ,n−1(s))ds

= vN ,n(t + kN−1) = v(k)N ,n(t)

by applying de�nitions (7.9) and (7.11) in the last two steps. So we have veri�ed (7.12).�e
�rst step of the proof implies that 0 ≤ v(k)N ,n(t) ≤ Sα

t f for 0 ≤ t ≤ N−1. But this is equivalent to
0 ≤ vN ,n(t) ≤ Sα

t f for kN−1 ≤ t ≤ (k + 1)N−1.�us, the claim follows on the whole interval
[0, T] and the proof is complete.

Lemma 7.3. Let f ∈ Φp, T > 0 and vn , n ∈ N, given by

v0(t, x) = Sα
t f (x),

vn(t, x) = Sα
t f (x) − η∫

t

0
Sα
t−s(ψ(s)vn−1(s))(x)ds.

�en it holds

0 ≤ vn(t, x) ≤ Sα
t f (x) (7.15)

for 0 ≤ t ≤ T.

Proof. �e claim follows with an induction over n from Lemma 7.2 and the fact that

lim
N↑∞

∣vN ,n(t) − vn(t)∣ = 0 (7.16)
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for each n. For a proof of this convergence and more details refer to [20, Lemma 3.9].

�eorem 7.4. Let f ∈ Φp, T > 0 and u(n)
α , n ∈ N, given by (7.4)�en it holds

0 ≤ u(n)
α (t, x) ≤ Sα

t f (x) (7.17)

for 0 ≤ t ≤ T

Proof. We proceed by induction over n.�e claim is trivially true for n = 0. Now let n ≥ 1.
Assume as induction hypothesis, that

0 ≤ u(n)
α (t, x) ≤ Sα

t f (x)

holds. �en the integral in (7.3) is nonnegative and the upper bound in (7.17) follows.
Furthermore

η∫
t

0
Sα
t−s(u

(n)
α (s)1+β)ds ≤ η∫

t

0
Sα
t−s((Sα

s f )1+β)ds

≤ η∫
t

0
Sα
t−s(ψ(s)Sα

s f )ds.

Using Lemma 7.3, this implies the nonnegativity

u(n)
α (t) ≥ Sα

t f − η∫
t

0
Sα
t−s(ψ(s)Sα

s f )ds = v1(t) ≥ 0.

�is implies the lower bound in (7.17).

Lemma 7.5. Under the conditions of Section 7.1 it holds for all n ∈ N and every ε > 0

0 ≤ u(n)
α (t, x) ≤ Sα

t f (x),

0 ≤ u(n)
α,ε (t, x) ≤ Sα,ε

t f (x).

Proof. �e estimates for u(n)
α where subject of the previous�eorem 7.4. Concerning the

solutions u(n)
α,ε , n ∈ N, note the following: We can repeat the proof of�eorem 7.4 using

Lemma 7.2 and Lemma 7.3 and substitute Sα,ε
t for Sα

t everywhere. Instead of estimate (7.8)
we have for every �xed ε

(Sα,ε
t f (x))β ≤ C(ε)wβ(x), (7.18)

using (3.16). Hence, we can conclude the claimed estimates for u(n)
α,ε .

Corollary 7.6. For each t ∈ [0, T] and ε > 0 it holds

(Sα
t f )1+β , (Sα,ε

t f )1+β ∈ Lp(w).
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7. Convergence of solutions of the nonlinear equations

Moreover, for every n ∈ N it holds

u(n)
α (t, ⋅)1+β , u(n)

α,ε (t, ⋅)1+β ∈ Lp(w).

Proof. Using�eorem 6.12 and (7.5), it follows

∥(Sα
t f )1+β∥

Lp(w) = ∥Sα
t f ∥

1+β
Lq(w) ≤ C(κ, q, T)1+βtz(κ,q)(1+β)∥ f ∥1+β

Lκ(w),

and we have the same estimate for ∥(Sα,ε
t f )1+β∥Lp(w).�e claim for u

(n)
α (t, ⋅)1+β , u(n)

α,ε (t, ⋅)1+β

follows with Lemma 7.5.

7.3. Convergence of solutions in the weighted space

No we are able to prove the main convergence result stated at the beginning of the chapter.
�e strategy will be to prove a cauchy property and then convergence of the functions u(n)

α,ε (t)
to uα,ε(t) for n → ∞, but uniformly in ε. �is uniformity can then be exploited to write
for each δ > 0 the function uα,ε(t) as a �nite sum consisting of N ∈ N terms involving
(u(n)

α,ε (t))n≤N plus an o(δ) term. Because N , δ are uniform in ε, it then su�ces to prove
convergence for ε → 0 of the �rst N summands using the convergence of semigroups from
the previous chapter,�eorem 6.14. Also refer to the motivation given at the beginning of
Chapter 6.

Uniform Cauchy property

We need to show that the sequence (u(n)
α,ε )n∈N is a cauchy sequence in the weighted space,

uniformly in ε. In the following lemma we deal with the �rst iteration step.

Lemma 7.7. Under the conditions of Section 7.1, for every T > 0 there is a constant CT > 0 such
that for all t ∈ [0, T]

sup
t∈[0,T]

∥u(1)
α,ε(t, ⋅) − u(0)

α,ε(t, ⋅)∥
Lq(w)

≤ 1

if ∥ f ∥Lκ(w) ≤ CT .

Proof. We have by de�nition of (7.3)

∥u(1)
α,ε(t, ⋅) − u(0)

α,ε(t, ⋅)∥
Lq(w)

= η∥∫
t

0
Sα,ε
t−s(Sα,ε

s f )1+β ds∥
Lq(w)

≤ η∫
t

0
∥Sα,ε

t−s(Sα,ε
s f )1+β∥

Lq(w) ds.
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7.3. Convergence of solutions in the weighted space

Using Corollary 7.6, it follows (Sα,ε
s f )1+β ∈ Lp(w). �is allows us to apply�eorem 6.12

again, to obtain the bound

∥Sα,ε
t−s(Sα,ε

s f )1+β∥
Lq(w) ≤ C(p, q, T)(t − s)z(p.q)∥(Sα,ε

s f )1+β∥
Lp(w)

= C(p, q, T)(t − s)z(p,q)∥Sα,ε
s f ∥1+β

Lq(w)

≤ C(p, q, T)C(κ, q, T)1+β(t − s)z(p,q)sz(κ,q)(1+β)∥ f ∥1+β
Lκ(w).

By the choice of parameters it holds z(κ, q)(1 + β) ≥ 0.�is leads to

∥u(1)
α,ε(t, ⋅) − u(0)

α,ε(t, ⋅)∥
Lq(w)

≤ ηC(p, q, T)C(κ, q, T)1+β∥ f ∥1+β
Lκ(w)t

z(κ,q)(1+β)∫
t

0
sz(p,q) ds

= ηC(p, q, T)C(κ, q, T)1+β

1 + z(p, q)
∥ f ∥1+β

Lκ(w)t
z(κ,q)(1+β)+z(p,q)+1.

Because of z(p, q) > −1 the exponent of t is positive and we can apply the supremum

sup
t∈[0,T]

∥u(1)
α,ε(t, ⋅) − u(0)

α,ε(t, ⋅)∥
Lq(w)

≤ ηC(p, q, T)C(κ, q, T)1+β

1 + z(p, q)
∥ f ∥1+β

Lκ(w)T
z(κ,q)(1+β)+z(p,q)+1

and choose

∥ f ∥Lκ(w) ≤ CT ∶=
(

ηC(p, q, T)C(κ, q, T)1+β

1 + z(p, q)
Tz(κ,q)(1+β)+z(p,q)+1

)− 1
1+β

,

which completes the proof.

With this initial case in place, we can proceed with the induction.

Lemma 7.8. Under the conditions of Lemma 7.7, for every ε > 0 the sequence (u(n)
α,ε )n∈N is a

Cauchy sequencewith convergence rate uniformly in εwith respect to the norm supt∈[0,T] ∥⋅∥Lq(w).
More precisely, for every δ > 0 there is a Nδ ∈ N such that

sup
t∈[0,T]

∥u(n+1)
α,ε (t) − u(n)

α,ε (t)∥
Lq(w)

< δ

for all n ≥ Nδ, independent of ε.

Proof. Using the conditions on the parameters (7.5) and the norm estimate from�eorem
6.12 we have

∥u(n+1)
α,ε (t) − u(n)

α,ε (t)∥
Lq(w)

≤ η∫
t

0
∥Sα,ε

t−sn((u
(n)
α,ε )1+β(s) − (u(n−1)

α,ε )1+β(s))∥
Lq(w)

ds
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≤ η∫
t

0
(t − s)z(p,q)C(p, q, T)∥(u(n)

α,ε )1+β(s) − (u(n−1)
α,ε )1+β(s)∥

Lp(w)
ds

≤ η(1 + β)C(p, q, T)

⋅ ∫
t

0
(t − s)z(p,q)∥max{u(n)

α,ε (s), u(n−1)
α,ε (s)}β ⋅ (u(n)

α,ε (s) − u(n−1)
α,ε (s))∥

Lp(w)
ds.

Here we have used estimate (7.6). Now with Hölder’s inequality in the weighted space
(Lemma 5.8(i)) and 1

p = β
q +

1
q and again�eorem 6.12, the remaining time integral is

bounded by

∫
t

0
(t − s)z(p,q)∥max{u(n)

α,ε (s), u(n−1)
α,ε (s)}β∥

L
q
β (w)

∥u(n)
α,ε (s) − u(n−1)

α,ε (s)∥
Lq(w)

ds

≤ ∫
t

0
(t − s)z(p,q)∥Sα,ε

s f ∥β
Lq(w)∥u

(n)
α,ε (s) − u(n−1)

α,ε (s)∥
Lq(w)

ds

≤ C(κ, q, T)β∥ f ∥β
Lκ(w)∫

t

0
(t − s)z(p,q)sβz(κ,q)∥u(n)

α,ε (s) − u(n−1)
α,ε (s)∥

Lq(w)
ds

≤ C(κ, q, T)β∥ f ∥β
Lκ(w) sup

s∈[0,t]
∥u(n)

α,ε (s) − u(n−1)
α,ε (s)∥

Lq(w)∫
t

0
(t − s)z(p,q)sβz(κ,q) ds.

Note that we have used 0 ≤ uα,ε
m ≤ Sα,ε

t f ,m ∈ N, from Lemma 7.5 in the second step.
�is implies for T > 0 that

sup
t∈[0,T]

∥u(n+1)
α,ε (t) − u(n)

α,ε (t)∥
Lq(w)

≤ η(1 + β)C(p, q, T)C(κ, q, T)β∥ f ∥β
Lκ(w)

⋅ sup
t∈[0,T]

[(
sup
s∈[0,t]

∥u(n)
α,ε (s) − u(n−1)

α,ε (s)∥
Lq(w)

)
∫

t

0
(t − s)z(p,q)sβz(κ,q) ds

]

≤ η(1 + β)C(p, q, T)C(κ, q, T)β∥ f ∥β
Lκ(w)T

βz(κ,q)∫
T

0
sz(p,q) ds

⋅ sup
t∈[0,T]

∥u(n)
α,ε (t) − u(n−1)

α,ε (t)∥
Lq(w)

≤ η(1 + β)C(p, q, T)C(κ, q, T)β

1 + z(p, q)
∥ f ∥β

Lκ(w)T
βz(κ,q)+z(p,q)+1 sup

t∈[0,T]
∥u(n)

α,ε (t) − u(n−1)
α,ε (t)∥

Lq(w)
.

We have z(κ, q) ≥ 0 and z(p, q) > −1, hence the denominator of the constant doesn’t vanish
and the exponent of T is strictly positive.
Now choose ∥ f ∥Lκ(w) small enough, such that

Lp,q,η,β( f , T) ∶= η(1 + β)C(p, q, T)C(κ, q, T)β

1 + z(p, q)
∥ f ∥β

Lκ(w)T
βz(κ,q)+z(p,q)+1 < 1. (7.19)
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So we have

sup
t∈[0,T]

∥u(n+1)
α,ε (t) − u(n)

α,ε (t)∥
Lq(w)

≤ Lp,q,η,β( f , T) sup
t∈[0,T]

∥u(n)
α,ε (t) − u(n−1)

α,ε (t)∥
Lq(w)

for all n ≥ 1 and it follows

sup
t∈[0,T]

∥u(n+1)
α,ε (t) − u(n)

α,ε (t)∥
Lq(w)

↓ 0

for n →∞ uniformly in ε, so we have the desired Cauchy property.

Corollary 7.9. Under the conditions of Lemma 7.7, for every ε > 0 the sequence (u(n)
α,ε )n∈N

converges with ε-independent rate with respect to the norm supt∈[0,T] ∥⋅∥Lq(w). More precisely,
for every ε > 0 there is a function uα,ε, such that for every δ > 0 there exists an Nδ ∈ N with

sup
t∈[0,T]

∥u(n)
α,ε (t) − uα,ε(t)∥

Lq(w)
< δ

for all n ≥ Nδ, uniformly in ε.�e function uα,ε is the unique solution of the integral equation
(7.1).

Proof. With the previous Lemma 7.8 and the completeness of Lq(w), for every ε > 0 there is
a function uα,ε ∈ Lq(w) such that for every δ > 0 there exists an Nδ ∈ N with

∥u(n)
α,ε (t) − uα,ε(t)∥

Lq(w)
< δ

for all n ≥ Nδ, uniformly in ε and every �xed t ∈ [0, T]. But the uniform cauchy property
from Lemma 7.8 implies that this δ is also uniformly in t. With the uniqueness of solutions
from�eorem 3.25 the claim follows.

With the notation

d(n)
α,ε ∶= u(n+1)

α,ε − u(n)
α,ε , n ∈ N0,

we have the series representation

uα,ε ∶= u(0)
α,ε +

∞
∑
n=0

d(n)
α,ε .

�e following corollary shows that this is well-de�ned. As an immediate consequence of
Lemma 7.8, the convergence speed of the series is uniform in ε.
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Corollary 7.10. For every δ > 0 there is a Nδ ∈ N such that uniformly in ε

∞
∑
n=Nδ

sup
t∈[0,T]

∥d(n)
α,ε ∥

Lq(w)
< δ.

Proof. Let δ > 0. By Lemma 7.8 we have for δ̃ ∶= δ
(
∑∞

n=0 Ln
)−1, where L < 1 is the Lipschitz

constant in the proof,

sup
t∈[0,T]

∥d(n)
α,ε ∥

Lq(w)
< δ̃

for all n greater than some Nδ̃. Now choose Nδ = Nδ̃. Because of

sup
t∈[0,T]

∥d(n+1)
α,ε ∥

Lq(w)
≤ L ⋅ sup

t∈[0,T]
∥d(n)

α,ε ∥
Lq(w)

for all n ∈ N we can conclude
∞
∑
n=Nδ

sup
t∈[0,T]

∥d(n)
α,ε ∥

Lq(w)
< δ̃

∞
∑
n=0

Ln = δ,

and the proof is complete.

Repeating the previous proofs of Lemma 7.7, Lemma 7.8, Corollary 7.9 and Corollary 7.10
step by step, but for the point interaction semigroup (Sα

t )t≥0, we obtain the analogous result

Corollary 7.11. Under the conditions of Section 7.1, the sequence (u(n)
α )n∈N converges with

respect to the norm supt∈[0,T] ∥⋅∥Lq(w). More precisely, there is a function uα, such that for every
δ > 0 there exists an Nδ ∈ N with

sup
t∈[0,T]

∥u(n)
α (t) − uα(t)∥

Lq(w)
< δ

for all n ≥ Nδ.�e function uα is the unique solution of the nonlinear integral equation (7.2)
and has the series representation

uα = u(0)
α +

∞
∑
n=0

d(n)
α

with

d(n)
α ∶= u(n+1)

α − u(n)
α , n ∈ N0.
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�e main convergence result

We are now prepared to show the convergence of uα,ε towards uα for ε → 0 in the weighted
space.�e following Lemma will be needed in the proof to apply the convergence theorem
for semigroups,�eorem 6.14.

Lemma 7.12. It holds for every �xed t ∈ (0, T]

(Sα
t f )1+β ∈ L2 ∩ Lp(w).

Proof. First we estimate the L2 norm

∥(Sα
t f )1+β∥2

L2 = ∫R3
∣Sα

t f (x)∣2+2β dx

≲ (1 + ∥ f ∥Lp(w)t
1
2−

1
p )∫

R3
∣Sα

t f (x)∣1+2βw(x)dx

= (1 + ∥ f ∥Lp(w)t
1
2−

1
p )∥Sα

t f ∥
1+2β
L1+2β(w)

≤ C(κ, 1 + 2β, T)1+2β(1 + ∥ f ∥Lp(w)t
1
2−

1
p )tz(κ,1+2β)(1+2β)∥ f ∥1+2βLκ(w).

Here we have used Sα
t f ≲ (1+∥ f ∥Lp(w)t

1
2−

1
p )w fromCorollary 6.8 in the second and�eorem

6.12 in the fourth step. Since f ∈ Lκ(w), we have found an L2-bound for every t > 0.
Concerning the Lp(w)-bound, it holds, using again�eorem 6.12,

∥(Sα
t f )1+β∥

Lp(w) = ∥Sα
t f ∥

1+β
Lq(w) ≤ C(κ, q, T)1+βtz(κ,q)(1+β)∥ f ∥1+β

Lκ(w),

this completes the proof.

It follows the main convergence result for the solutions of the nonlinear integral equations.

�eorem 7.13. Under the conditions of Section 7.1, for every T > 0 there is a constant CT > 0
such that for all t ∈ [0, T] and initial data f ∈ Φp ∩ Lκ(w) satisfying ∥ f ∥Lκ(w) ≤ CT it holds

∥uα(t) − uα,ε(t)∥Lq(w) → 0.

Proof. Let δ > 0. By Corollaries 7.9 and 7.3 there exists an Nδ ∈ N such that

∞
∑
n=Nδ

sup
t∈[0,T]

∥d(n)
α ∥

Lq(w)
+

∞
∑
n=Nδ

sup
t∈[0,T]

∥d(n)
α,ε ∥

Lq(w)
< δ.

uniformly in ε, under the condition that for the initial data f it holds ∥ f ∥Lκ(w) ≤ CT . Using
this, we estimate

∥uα(t) − uα,ε(t)∥Lq(w)
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= ∥u(0)
α (t) +

∞
∑
n=0

d(n)
α (t) − u(0)

α,ε(t) −
∞
∑
n=0

d(n)
α,ε (t)∥

Lq(w)

≤ ∥u(0)
α (t) +

Nδ−1

∑
n=0

d(n)
α (t) − u(0)

α,ε(t) −
Nδ−1

∑
n=0

d(n)
α,ε (t)∥

Lq(w)

+
XXXXXXXXXXX

∞
∑
n=Nδ

d(n)
α (t)

XXXXXXXXXXXLq(w)

+
XXXXXXXXXXX

∞
∑
n=Nδ

d(n)
α,ε (t)

XXXXXXXXXXXLq(w)

≤ ∥u(Nδ)
α (t) − u(Nδ)

α,ε (t)∥
Lq(w)

+ δ.

So we are le� to show that

∥u(Nδ)
α (t) − u(Nδ)

α,ε (t)∥
Lq(w)

→ 0

for ε → 0. In order to do this, we are showing via an induction argument that in fact for all
n ∈ N

∥u(n)
α (t) − u(n)

α,ε (t)∥
Lq(w)

→ 0, ε → 0.

From�eorem 6.14 we know for each �xed t ∈ [0, T]

∥u(0)
α (t) − u(0)

α,ε(t)∥
Lq(w)

= ∥(Sα
t − Sα,ε

t ) f ∥Lq(w) → 0

for ε → 0. Now for n ∈ N, as our induction hypothesis we assume that we have shown the
claim for n − 1, more precisely

lim
ε→0

∥u(n−1)
α,ε (t) − u(n−1)

α (t)∥
Lq(w)

= 0

for all t ∈ [0, T]. For the transition n − 1→ n we calculate

∥u(n)
α (t) − u(n)

α,ε (t)∥
Lq(w)

= ∥u(0)
α (t) − u(0)

α,ε(t) + η∫
t

0
Sα,ε
t−s(u

(n−1)
α,ε (s))1+β ds − η∫

t

0
Sα
t−s(u

(n−1)
α (s))1+β ds∥

Lq(w)

≤ ∥u(0)
α (t) − u(0)

α,ε(t)∥
Lq(w)

+ η∥∫
t

0
Sα,ε
t−s(u

(n−1)
α,ε (s))1+β ds − ∫

t

0
Sα
t−s(u

(n−1)
α (s))1+β ds∥

Lq(w)
.

�e �rst term goes to zero as mentioned above. For the second term we have

η∥∫
t

0
Sα,ε
t−s(u

(n−1)
α,ε (s))1+β ds − ∫

t

0
Sα
t−s(u

(n−1)
α (s))1+β ds∥

Lq(w)
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7.3. Convergence of solutions in the weighted space

= η∥∫
t

0
(Sα,ε

t−s − Sα
t−s)(u

(n−1)
α (s))1+β ds + ∫

t

0
Sα,ε
t−s((u

(n−1)
α,ε (s))1+β − (u(n−1)

α (s))1+β)ds∥
Lq(w)

=∶ η∥I1,n(t, ε) + I2,n(t, ε)∥Lq(w).

It holds

∥I1,n(t, ε)∥Lq(w) ≤ ∫
t

0
∥(Sα,ε

t−s − Sα
t−s)(u

(n−1)
α (s))1+β∥

Lq(w)
ds.

Because of Lemma 7.12 and 7.5 we know that (u(n−1)
α (s))1+β ∈ L2∩Lp(w). So by�eorem 6.14

and dominated convergence the integral converges to zero if there is an integrable majorant
that holds for all ε.�is is the fact, as follows.

∥(Sα,ε
t−s − Sα

t−s)(u
(n−1)
α (s))1+β∥

Lq(w)

≤ ∥Sα,ε
t−s − Sα

t−s∥Lp(w)→Lq(w)∥(Sα
s f )1+β∥

Lp(w)

= ∥Sα,ε
t−s − Sα

t−s∥Lp(w)→Lq(w)∥Sα
s f ∥

1+β
Lq(w)

≤ C(κ, q, T)1+β∥Sα,ε
t−s − Sα

t−s∥Lp(w)→Lq(w)∥ f ∥
1+β
Lκ(w)s

z(κ,q)(1+β)

≤ C(κ, q, T)1+β
(
∥Sα,ε

t−s∥Lp(w)→Lq(w) + ∥Sα
t−s∥Lp(w)→Lq(w)

)
∥ f ∥1+β

Lκ(w)s
z(κ,q)(1+β)

≤ 2C(p, q, T)C(κ, q, T)1+β∥ f ∥1+β
Lκ(w)(t − s)z(p,q)sz(κ,q)(1+β),

where we have used p(1 + β) = q Lemma 7.5 and�eorem 6.12. Integrability in s is given
because of z(p, q) > −1 and z(κ, q) ≥ 0.
One obtains

lim
ε→0

∥I1,n(t, ε)∥Lq(w) = ∫
t

0
lim
ε→0

∥(Sα,ε
t−s − Sα

t−s)(u
(n−1)
α (s))1+β∥

Lq(w)
ds = 0.

We are le� to deal with ∥I2,n(t, ε)∥Lq(w). In order to do this, we use nonnegativity of
semigroups and estimate (7.6) to obtain the upper bound

∫
t

0
∥Sα,ε

t−s∥Lp(w)→Lq(w)∥(u
(n−1)
α,ε (s))1+β − (u(n−1)

α (s))1+β∥
Lp(w)

ds

≤ (1 + β)∫
t

0
∥Sα,ε

t−s∥Lp(w)→Lq(w)

⋅ ∥max{u(n−1)
α,ε (s), u(n−1)

α (s)}β
(
u(n−1)

α,ε (s) − u(n−1)
α (s)

)
∥
Lp(w)

ds

≤ (1 + β)∫
t

0
∥Sα,ε

t−s∥Lp(w)→Lq(w)∥max{Sα,ε
s f , Sα

s f }β∥
L

q
β (w)

∥u(n−1)
α,ε (s) − u(n−1)

α (s)∥
Lq(w)

ds

≤ (1 + β)C(p, q, T)

⋅ ∫
t

0
(t − s)z(p,q)∥max{Sα,ε

s f , Sα
s f }∥

β
Lq(w)∥u

(n−1)
α,ε (s) − u(n−1)

α (s)∥
Lq(w)

ds
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7. Convergence of solutions of the nonlinear equations

≤ (1 + β)C(p, q, T)C(κ, q, T)β ∫
t

0
(t − s)z(p,q)sβz(κ,q)∥u(n−1)

α,ε (s) − u(n−1)
α (s)∥

Lq(w)
ds.

Here we have used�eorem 6.12 again and Hölder’s inequality, note that 1p =
1
q +

β
q . Also

remember that (u(n−1)
α,ε (s))1+β , (u(n−1)

α (s))1+β ∈ Lp(w) according to Corollary 7.6. As in the
previous investigation of I1, we need to �nd an integrable majorant. Because of f ∈ Lκ(w)
and

∥u(n−1)
α,ε (s) − u(n−1)

α (s)∥
Lq(w)

≤ ∥Sα,ε
s f ∥Lq(w) + ∥Sα

s f ∥Lq(w)

due to Lemma 7.5, this majorant is given by

2C(κ, q, T)∥ f ∥Lκ(w)(t − s)z(p,q)sz(κ,q)(1+β),

which is again integrable because of the fact that z(p, q) > −1 and z(κ, q) ≥ 0.
Interchanging limit and integral again, we have shown

lim
ε→0

∥I2,n(t, ε)∥Lq(w)

≤ (1 + β)C(p, q, T)C(κ, q, T)β ∫
t

0
(t − s)z(p,q)sβz(κ,q) lim

ε→0
∥u(n−1)

α,ε (s) − u(n−1)
α (s)∥

Lq(w)
ds

= 0

because of the induction hypothesis.�is completes the proof.
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8. Approximation of themeasure-valued
process

In �eorem 7.13 we have shown the convergence of solutions of the nonlinear integral
equations (7.3) and (7.4)

∥uα(t) − uα,ε(t)∥Lp(w) → 0

in the weighted space for �xed t ∈ [0, T] and initial data f ∈ Φp∩Lκ(w) satisfying ∥ f ∥Lκ(w) ≤
CT . Now we are able to prove a convergence result for the associated superprocesses Xα,ε

and Xα . In a �rst step, the convergence of the Laplace transforms will be shown. With this in
place, in the second section a result from the theory of random measures will be exploited
to obtain the convergence of the processes in the sense of vague convergence in distribution
for �xed t ≥ 0.

8.1. Convergence of the Laplace transforms

By the Laplace transition functional, the Laplace transforms of the associated stochastic
processes are given by

Eµe−⟨X
α
t , f ⟩ = e−⟨µ,uα(t)⟩,

Eµe−⟨X
α ,ε
t , f ⟩ = e−⟨µ,uα ,ε(t)⟩,

(8.1)

where µ = Xα
0 = Xα,ε

0 , refer to (1.4). �e notation ⟨µ, f ⟩ = ∫ f dµ for a measure µ and a
function f will be used from now on. Also for a process (Xt)t≥0 we write Eµ(⋅) ∶= E( ⋅ ∣X0 =
µ).
Our aim is to show the convergence of the Laplace transforms Eµe−⟨X

α ,ε
t , f ⟩.

Lemma 8.1. Assume the conditions of�eorem 7.13. Furthermore, let µ a measure with density
µ(⋅) such that µ(⋅)∣ ⋅ ∣

1
p ∈ Lp′(R3).�en it holds

e−⟨µ,uα ,ε(t)⟩ → e−⟨µ,uα(t)⟩

for ε → 0 and every t ∈ [0, T], provided ∥ f ∥Lκ(w) ≤ CT .
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8. Approximation of the measure-valued process

Proof. We estimate with Hölder’s inequality

∣⟨µ, uα,ε(t)⟩ − ⟨µ, uα(t)⟩∣ = ∣∫
R3
uα,ε(t, x)µ(x)dx − ∫

R3
uα(t, x)µ(x)dx∣

≤ ∫
R3

∣uα,ε(t, x) − uα(t, x)∣µ(x)dx

≤
(
∫
R3

∣uα,ε(t, x) − uα(t, x)∣pw(x)dx
) 1

p
(
∫
R3

µ(x)p′ ∣x∣
p′

p dx
) 1

p′

= ∥uα(t) − uα,ε(t)∥Lp(w)∥µ(⋅)∣ ⋅ ∣
1
p ∥

Lp′
.

Due to the assumptions, the last expression tends to zero for ε → 0. So we have

⟨µ, uα,ε(t)⟩→ ⟨µ, uα(t)⟩

and by continuity

e−⟨µ,uα ,ε(t)⟩ → e−⟨µ,uα(t)⟩,

so the proof is complete.

Corollary 8.2. For α ≥ 0 and ε ∈ (0, 1) let Xα and Xα,ε the measure-valued processes from
Corollary 3.30, with Xα

0 = Xα,ε
0 =∶ µ, where µ is a measure with density µ(⋅) satisfying

µ(⋅)∣ ⋅ ∣
1
p ∈ Lp′(R3). Under the conditions of�eorem 7.13 it holds

Eµe−⟨X
α ,ε
t , f ⟩ → Eµe−⟨X

α
t , f ⟩

for ε → 0 and every t ∈ [0, T].

Proof. By assumption, the conditions of Lemma 8.1 are ful�lled. Using the Laplace transition
formula (8.1) we obtain directly

E−⟨Xα ,ε
t , f ⟩

µ = e−⟨µ,uα ,ε(t)⟩ → e−⟨µ,uα(t)⟩ = Eµe−⟨X
α
t , f ⟩

for ε → 0 and every �xed t.

�is completes the analysis of the Laplace transforms. We will use this result to obtain a
mode of distributional convergence of the measure-valued processes in the next section.

8.2. Convergence of randommeasures

Our aim is to deduce a meaningful mode of convergence for the measure-valued processes
Xα,ε

t → Xα
t , ε → 0. For �xed t ≥ 0, we can consider Xα,ε

t and Xα
t as random measures
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8.2. Convergence of random measures

in the spaceM ∶= M(R3) of all measures on R3. �e existence theory of the measure-
values processes of Chapter 3 was formulated in the underlying space R3 ∖ {0}, but we can
continuously embed this space into R3.
We introduce the vague convergence in distribution onM: For a sequence ξ, ξ1, ξ2, . . . ∈M

we write

ξn
vdÐ→ ξ

if E f (ξn)→ E f (ξ) for all bounded functions f onM which are continuous with respect
to the vague topology.�is topology is generated by the integration maps πg ∶ µ ↦ ⟨µ, g⟩ =
∫ g dµ for bounded continuous functions with bounded support g. [29, p. 109]�e following
theorem describes the connection between the convergence of Laplace transforms and the
vd-convergence.

�eorem 8.3. [29, �eorem 4.11]. Let ξ, ξ1, ξ2, . . . ∈ M a sequence of random measures.
Suppose that for all continuous functions f ∶ R3 → [0, 1] with bounded support it holds

Ee−⟨ξn , f ⟩ → Ee−⟨ξ, f ⟩, n →∞. (8.2)

�en the sequence (ξn)n∈N convergences in the sense of vague convergence in distribution, i.e.

ξn
vdÐ→ ξ, n →∞.

Concerning the measures Xα,ε
t and Xα

t for �xed t ≥ 0, remember that we already showed
the convergence of Laplace transforms in Corollary 8.2, so it seems that with�eorem 8.3
we can almost immediately deduce vd-convergence. But some care is needed because of the
norm bound on f in Lemma 8.1, which a priori does not admit the whole class of functions
required in the condition of�eorem 8.3. So we will �rst prove a localized convergence
result and then later extend it to the whole space.�is requires to choose a more abstract
approach before we can return to Xα,ε

t and Xα
t in�eorem (8.9).

�e following de�nition introduces a class of set systems in the general context of metric
spaces that will be needed to apply the theory of random measures from [29, Chapter 4].

De�nition 8.4. Let S a separable and complete metric space.
(i) A semi-ring over S is a class I of subsets of S that is closed under �nite intersections
and such that every proper di�erence in I is a �nite disjoint union of I-sets. [29, p. 16]

(ii) A semi-ring I is called dissecting, if every open set U ∈ S is a countable union of sets
in I and every bounded set B ∈ S is covered by �nitely many sets in I . [29, p. 24]

We now introduce a set system in B(R3), consisting of sets which are small enough in an
appropriate sense.�is system will turn out to be a dissecting semiring over R3. It will help
us to deal with the Lκ(w) norm bound on the initial data f of the nonlinear equations.
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8. Approximation of the measure-valued process

De�nition 8.5. Let C > 0.
(i) With IC we denote the class of all I ∈ B(R3), such that there is a continuous cuto�
function χI ∶ R3 → [0, 1] satisfying χI = 1 on I, χI = 0 outside a compact set containing
I and

∥χI∥Lκ(w,R3) ≤ C . (8.3)

(ii) For a cuto� function χI corresponding to a set I ∈ IC de�ne the localized measure

µχI(M) ∶= ∫
R3
1M χI dµ.

By Urysohn’s Lemma, IC contains for example all open balls B ⊂ R3 with radius small
enough. Consequently we have

Corollary 8.6. Let C > 0.�e class IC de�ned above is a dissecting semi-ring over R3.

Now we show that under the additional constraint of the norm bound (8.3), the statement
of�eorem 8.3 remains valid, at least for suitable restrictions of the random measures.

Lemma 8.7. Let ξ, ξ1, ξ2, . . . ∈M a sequence of random measures. Suppose that

Ee−⟨ξn , f ⟩ → Ee−⟨ξ, f ⟩, n →∞,

for all continuous functions 0 ≤ f ≤ 1 satisfying the norm bound (8.3) with a constant C > 0.
�en it holds for every I ∈ IC with cuto� function χI as in De�nition 8.5(i)

ξχI
n

vdÐ→ ξχI ,

here we used the notation for restricted measures from De�nition 8.5(ii).

Proof. Let Ĉ the set of all continuous functions from Rd to [0, 1] and g ∈ Ĉ arbitrary. For
I ∈ IC the function g χI is continuous and [0, 1]-valued. It also holds g χI ≤ χI , so g χI satis�es
the norm bound (8.3). Consequently, f ∶= g χI ful�lls the assumption and thus we have

Ee−⟨ξn ,g χI⟩ → Ee−⟨ξ,g χI⟩.

But for every measure µ

Ee−⟨µ,g χI⟩ = E
[
− exp∫

R3
g χI dµ

]
= E

[
− exp∫

R3
g dµχI

]
= Ee−⟨µ χI ,g⟩.

It follows

Ee−⟨ξχI
n ,g⟩ → Ee−⟨ξχI ,g⟩.
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8.2. Convergence of random measures

Since g ∈ Ĉ was chosen arbitrarily, this implies

ξχI
n

vdÐ→ ξχI

by�eorem 8.3.

Due to the dissecting property of IC , it is possible to extend this convergence to the whole
space.

Lemma 8.8. Under the conditions of Lemma 8.7, it holds

ξn
vdÐ→ ξ, n →∞.

Proof. According to the de�nition of vague convergence in distribution, from

ξχI
n

vdÐ→ ξχI

it follows that E f (ξχI
n )→ E f (ξχI) for all bounded and vaguely continuous functions f on

M. In particular, this holds for the projections πg ∶ µ ↦ ⟨µ, g⟩, where g ∶ R3 → [0,∞) is a
bounded continuous function with bounded support. Denote this class of functions by Cb

0
and �x one g ∈ Cb

0 . Since

πg(µχI) = ∫
R3

g dµχI = ∫
R3

g χI dµ = πg χI(µ)

for every measure µ ∈M, it follows

Eπg χI(ξn)→ Eπg χI(ξ).

Now we make use of the dissecting property of IC . Because g has bounded support, we can
�nd a �nite number of cuto� functions χ1, . . . , χN ,N ∈ N, satisfying the norm bound (8.3),
such that

supp g ⊂
n
⋃
j=1
supp χ j.

Without loss of generality, we can assume that the χ j form a partition of unity on supp g, i.e.
χ1 + . . . + χN ≡ 1 on supp g. Consequently

g =
n

∑
j=1

g χ j.
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8. Approximation of the measure-valued process

We obtain the convergence

Eπg(ξn) =
n

∑
j=1

Eπg χ j(ξn)→
n

∑
j=1

Eπgχ j(ξ) = Eπg(ξ), n →∞.

Now we proceed as in [29,�eorem 2.2].�e set F of all functions, such that E f (ξn) →
E f (ξ), is a monotone class, this means f , h ∈ F , a ∈ R, implies a f + h ∈ F and { fn}n∈N ⊂
F , fn ↑ f , implies f ∈ F . �e latter statement follows from the monotone convergence
theorem.
As we have shown, πg ∈ F for all g ∈ Cb

0 . Using the monotone class theorem [29, Lemma
1.2], we have ξn

dÐ→ ξ on the σ-�eld Σ generated by the projections πg , g ∈ Cb
0 . But according

to [29,�eorem 4.7], Σ coincides with the Borel σ-�eld corresponding to the vague topology.
So we conclude

ξn
vdÐ→ ξ

and the proof is complete.

With the results of Lemma 8.7 and Lemma 8.7 for a general sequence of randommeasures
inM(R3) in place, we are now able to apply these tools to our superprocesses Xα,ε and Xα .
�is will yield the desired vd-convergence for �xed t.

�eorem 8.9. For T > 0 let CT > 0 as in �eorem 7.13. Let p, β satisfying (7.5) and f ∈
Φp ∩ Lκ(w) with κ satisfying z(κ, q) > 0 and ∥ f ∥Lκ(w) ≤ CT . Let uα,ε , uα the solutions of
the nonlinear problems (7.3) and (7.4) with uα,ε(0, ⋅) = uα(0, ⋅) = f and the corresponding
stochastic processes Xα,ε

t , Xα
t given by Corollary 3.30. Furthermore, let µ a measure satisfying

the conditions of Lemma 8.1.�en it holds for every t ∈ [0, T] and ε → 0

Xα,εn
t

vdÐ→ Xα
t ,

where (εn)n∈N ⊂ (0, 1) is an arbitrary zero sequence.

Proof. According to Corollary 8.2 and�eorem 7.13, choosing a zero sequence (εn)n∈N ⊂
(0, 1), we have the convergence of Laplace transforms

Eµe−⟨X
α ,εn
t , f ⟩ → Eµe−⟨X

α
t , f ⟩, (8.4)

for all f ∈ Φp ∩ Lκ(w) with ∥ f ∥Lκ(w) ≤ CT . Remember that the space Φp consists of Lp(w)
functions which are continuous on R3 ∖ {0}. So in particular, (8.4) holds for all continuous
functions f ∶ R3 → [0, 1] with supp f ∈ IC for a su�ciently small C depending on T .�us,
using Lemmas 8.7 and 8.8, the assertion follows.
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9. Outlook

We have shown that the super-Brownian motion with point source (Xα
t )t≥0 related to the

partial di�erential equation (1.6) can be approximated by a family of processes with short-
range interaction in a certain sense.�is is the central result of this work. In this last chapter,
we discuss open problems and perspectives for further research. One important aspect are
possible stronger modes of convergence. We will also take a look at the restrictions we had
to impose on the dimension and the parameters α and β and explain the problems that arise
in other cases.

9.1. Stronger modes of convergence

In Chapter 8, we were able to employ the convergence of solutions of the nonlinear equations
to show convergence of the Laplace transforms of Xα,ε

t towards the Laplace transform of Xα
t .

�is again allowed us to deduce vague convergence in distribution

Xα,ε
t

vdÐ→ Xα
t , ε → 0,

for �xed t ∈ [0, T]. Ideally we would have a kind of uniformity in time t, to be able to transfer
properties like the path regularity of Xα,ε, which was shown in Section 4.2, to the limit Xα.
We brie�y outline a strategy how this could be achieved.�is is smilar to the proceding in
[27, p. 314].
Based on our distributional convergence result for a �xed t ∈ [0, T], in a subsequent step

we would need to prove vague convergence of the �nite-dimensional distributions, i.e.

(Xα,ε
t0 , . . . , X

α,ε
tn ) vdÐ→ (Xα

t0 , . . . , X
α
tn), ε → 0,

for all (t0, . . . , tn) ∈ [0, T], n ∈ N. Now assume we could show ((Xα,ε
t )t∈[0,T])ε∈(0,1) is rela-

tively compact with respect to the Skorokhod topology.�en this sequence has cluster points
in the Skorokhod space and beacuse of the convergence of �nite-dimensional distributions
the cluster point is unique.�is is equivalent with convergence in the Skorokhod topology
and would allow us to prove path properties for the limit process Xα.
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9. Outlook

9.2. �e two-dimensional situation

Until now we have restricted ourselves to the three-dimensional case. However, as stated
in the introduction, the one-parameter family of self-adjoint extensions (−∆α)α∈R exists in
the two-dimensional case as well [4, p. 2-3]. In the work of Fleischmann and Mueller [20],
well-posedness of equation (1.6) is also shown in the space Lp(w ,R2) note that here we have
the weight

w(x) = ∣x∣− d−1
2 = ∣x∣− 12

and p is restricted to (1 − β
3 )−1 < p < 3 in this case.�is condition is weaker than in the case

d = 3.�is even allows to admit β = 1 here, in contrary to the three-dimensional situation,
where β < 1 is a necessary condition. [20, p. 753]�e existence of the corresponding
super-Brownian motion (Xα

t )t≥0 with point source is also shown [20, section 4]. In complete
analogy to our proceding in Chapter 3, for �xed ε > 0 we can obtain well-posedness of the
equation 3.1 with

−Hα,ε = −∆ + Vα,ε

where Vα,ε is a suitably scaled indicator function of a centered ball as in (2.25). �en the
existence of the corresponding superprocess (Xα,ε

t )t≥0 can be proven as in Section 3.5.
But whenwe look at the spectral properties, we encounter an important di�erence between

the cases. Remember that for d = 3 and α ≥ 0 the spectrum of −∆α is purely absolutely
continuous on the nonnegative real axis. In particular, there are no negative eigenvalues.
�e same holds for −Hα,ε if the function Vα,ε is scaled appropriately, as shown in�eorem
2.5.�is is fundamentally di�erent in the case d = 2: For every α ∈ R there is precisely one
negative simple eigenvalue of −∆α [4,�eorem 5.4].�e operator −Hα,ε also has at least one
negative eigenvalue, which does not vanish even when the scaling of Vα,ε is chosen arbitrarily
small. In fact, for every function V ≥ 0 with compact support and positive L1(R2)-norm,
the two-dimensional operator −∆ −V has one or more negative eigenvalues [32,�eorem
2.22]. However, as in the three-dimensional case the spectrum is contained on the real axis.
�e presence of negative eigenvalues leads to di�culties when dealing with resolvent

estimates. Due to this issue, the proof of two-dimensional Lp(w)−Lq(w) estimates needed
for the uniform convergence of solutions could not be completed in this work. �is also
a�ects the case d = 3, α < 0, where we have a negative eigenvalue as well. In the appendix
we give �rst estimates for the resolvents of −Hα,ε, but they are incomplete because the case
where the negative eigenvalue has to be considered is not covered there.�ese preliminary
estimates may be helpful as a starting point for further research.
Let us discuss how the negative eigenvalue disturbs the analysis of the resolvents. Similar
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9.2. �e two-dimensional situation

to the three-dimensional case, in the representation of the resolvent Rα,ε
λ the expression

Aε
λ[1 + Bε

λ]−1Cε
λ

occurs, see Lemma A.6 in the Appendix. We can prove norm estimates for the operators
Aε

t−1λ and C
ε
t−1λ (Lemma A.12). Moreover, L2 estimates are given for [1 + Bε

t−1λ]−1 in the
case where either ∣ε

√
t−1λ∣ < δ1 or ∣ε

√
t−1λ∣ > δ2, with suitable 0 < δ1 < δ2, as shown a�er

Lemma A.13. So it remains to deal with the intermediate case δ1 ≤ ∣ε
√
t−1λ∣ ≤ δ2 in (A.9).

However, here we encounter the fundamental di�erence between the two-dimensional and
three-dimensional situation:�e presence of negative eigenvalues of −Hα,ε. Now the details
follow.
De�ne z = ε

√
t−1λ. Remember that in the three-dimensional situation we dealt with the

case δ1 ≤ ∣z∣ ≤ δ2 by employing the Birman-Schwinger principle, Lemma 2.2:�e operator
Bz has −1 as an eigenvalue, if and only if z is an eigenvalue of −∆ + Pα(ε)V . Consequently,
the absence of such eigenvalues away from the nonnegative real axis allowed us to conclude
that the operator-valued function z ↦ [1+ Bz]−1 is holomorphic on the concerning compact
region in C.�is implied the desired boundedness.
In two dimensions, the operator −∆ + Pα(ε)V has at least one negative eigenvalue, as

explained above. Again, by the Birman-Schwinger principle, the function z ↦ [1+ Bz]−1 has
at least one pole z0 on the negative real axis. By choosing δ1 and δ2 appropriately, we were
able avoid this singularity in our estimates above for su�ciently small and large z, which
implies −δ2 ≤ z0 ≤ −δ1. Consequently, at least one singularity is located in this intermediate
region, and in contrary to the three-dimensional case, [1 + Bz]−1 is not holomorphic there.
�us, using this approach, we cannot conclude that the norm of [1 + Bz]−1 is uniformly
bounded.
�is raises the problem, that the curve Γ in (A.7) cannot simply be rescaled by t−1 to

obtain (A.8).�is is due to the fact, that Cauchy’s integral theorem is only applicable if the
integrand is holomorphic in the region enclosed by the curve. As we have just seen, this is
not the case here.
It is le� for further research to �nd a solution for this problem. A thorough spectral analysis

of the operator −Hα,ε seems necessary to determine the number and positions of negative
eigenvalues.�en a method must be found to deal with the poles in the curve integral, using
for example the residue theorem. A similar problem occurs in the case d = 3, α < 0, as stated
in Remark 6.3.
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9. Outlook

9.3. A time-independent equation

�e starting point for the construction of the measure-valued process in Chapter 3 was the
nonlinear partial di�erential equation

−∆αu + ηu1+β = −∂tu (9.1)

for α ∈ R. In the three-dimensional case, it is known that the operator −∆α has contiunous
spectrum [0,∞) and has a single negative eigenvalue λ0 ∶= −(4πα)2 if and only if α < 0, refer
to�eorem 2.10. Now we want to compare this equation to a related di�erential equation,
where the time-derivative is replaced by a linear term λu for λ ∈ R.
Consider

−∆αu + u1+β = λu (9.2)

in L2(R3) with 0 < β < 1
2 .�is equation has been studied by Caspers and Clément [7]. To

connect the theories behind the equations (9.1) and (9.2) with each other, in future research
one could choose the following approach: De�ne

u(t, x) ∶= eλt f (x).

�en it holds for every t

∂tu(t, x) = λeλt f (x) = λu(t, x).

Under this condition, the solution of (9.2) from [7] could be studied in the context of this
work, which may lead to interesting results.
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A. Preliminary resolvent estimates in two
dimensions

As announced in Section 9.2, analytic properties of the resolvents and semigroups as well as
preliminary resolvent estimates for the two-dimensional case are collected in this appendix.
�e resolvent estimates are incomplete, but may be a starting point for further research.

A.1. Elemental properties and sectoriality

We want to introduce the resolvents of the operators −∆,−∆α and −Hα,ε , ε > 0 for d = 2. As
in the three-dimensional case, there are explicit representations for the kernels.�ey have a
di�erent structure here, given in terms of linear combinations of Bessel functions, known as
Hankel functions. We start with the resolvents of the Laplacian.

Lemma A.1. [4, p. 99] Let λ ∈ C ∖ [0,∞) = ρ(−∆).�en the resolvent Rλ = (−∆ − λI)−1 as
an operator in L2(R2) has integral kernel

Rλ(x , y) =
i
4
H(1)
0 (

√
λ∣x − y∣), (A.1)

where H(1)
0 is the Hankel function of the �rst kind and order zero, given by H(1)

0 (
√

λx) ∶=
J0(

√
λx) + iY0(

√
λx), with the bessel functions

J0(z) =
1
π ∫

π

0
cos(z cos r)dr,

Y0(z) =
4
π2 ∫

π
2

0
cos(z cos r) ln(2z sin2 r)dr.

[1, 9.1.3, 9.1.18, 9.1.19]

For further analysis and estimates we need to understand how theHankel function behaves
asymptotically for small and large x ∈ R2 respectively. Heuristically, there is a logarithmic
singularity at the origin, but exponential decay for ∣x∣→∞.�is is the subject of the next
lemma.

Lemma A.2 (Properties of the Hankel function). Let λ ∈ C ∖ [0,∞) and y ∈ R.
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A. Preliminary resolvent estimates in two dimensions

(i) For y → 0 it holds

−iH(1)
0 (

√
λy) ≈ 2

π
ln(

√
λy).

(ii) For ∣y∣→∞ it holds

H(1)
0 (

√
λy) ≈

¿
ÁÁÀ 2

π
√

λy
e i(

√
λy− π

4 ).

Proof. Statement (i) corresponds to [1, 9.1.8] and (ii) is [1, 9.2.3].

With these �rst estimates in place, we can prove Lp(w)-boundedness of the kernel Rλ(⋅).
In particular, this implies that Lemma A.1 also holds in the Lp(w)-sense. Remember that
w(x) = ∣x∣− 12 in the two-dimensional case.

Lemma A.3. For �xed λ ∈ C ∖ [0,∞) = ρ(−∆) and p ≥ 1 it holds

Rλ(⋅) ∈ Lp(w).

Proof. We have

∥Rλ(⋅)∥pLp(w) = 4
−p ∫

R2
∣H(1)
0 (

√
λ∣x∣)∣

p
∣x∣− 12 dx .

Because of the asymptotic property around the origin from Lemma A.2(i), there is a radius
ρ(λ, p) = ρ > 0 such that

∫
Bρ(0)

∣H(1)
0 (

√
λ∣x∣)∣

p
∣x∣− 12 dx ≈ ∫

Bρ(0)
∣ln(

√
λ∣x∣)∣

p
∣x∣− 12 dx = 2π∫

ρ

0
∣ln(

√
λr)∣

p
∣r∣ 12 dr

which is �nite because of ∣
√

λ∣ > 0.
On the complement Bρ(0)c the function x ↦ H(1)

0 (
√

λ∣x∣) is bounded, this follows from
the structure of J0 and Z0 given in Lemma A.1. Furthermore, we have exponential decay for
∣x∣→∞ from Lemma A.2(ii) because of Im

√
λ > 0.�is together implies

∫
Bρ(0)c

∣H(1)
0 (

√
λ∣x∣)∣

p
∣x∣− 12 dx <∞

and �nishes the proof.

Now we give a precise de�nition of the operator −Hα,ε in a way that allows convergence
to −∆α in the norm resolvent sense.�e following de�nition is a summary of the situation
in [4, p. 103] and [4,�eorem 5.5].
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A.1. Elemental properties and sectoriality

De�nition A.4. Let V ∶ R2 → R be measurable such that for a δ > 0

∫
R2
(1 + ∣x∣2+δ)V(x)dx <∞, ∫

R2
∣V(x)∣1+δ dx <∞.

Let

v(x) = ∣V(x)∣1/2, u(x) = sgn(x)∣V(x)∣1/2, for x ∈ R2

and let D a Hilbert-Schmidt operator in L2(R2) with integral kernel

D(x , y) = u(x) ln ∣x − y∣v(y), x ≠ y.

For ε > 0 and α ∈ R de�ne

−Hα,ε ∶= −∆ + Vα,ε = −∆ + Pα((ln ε)−1)ε−2V
(x

ε

)
(A.2)

where the polynomial Pα(z) = µ1z + µ2(α)z2 is given by the coe�cients

µ1 =
2π

(v , u)

µ2(α) = α(2π)2
(v , u)

− 2π(v ,Du)
(v , u)3

.
(A.3)

�eorem A.5. Let α ∈ R. For ε > 0 let −Hα,ε as in in (A.2). If λ ∈ ρ(−∆α), we have
λ ∈ ρ(−Hα,ε) for ε > 0 small enough, and −Hε → −∆α in norm resolvent sense for ε → 0.�is
means

∥Rα,ε
λ − Rα

λ∥L2→L2 → 0 as ε ↓ 0.

Lemma A.6. [4, Formulas (5.49)–(5.53), p. 103] For λ ∈ ρ(−Hα,ε) the resolvent Rα,ε
λ =

(−Hα,ε − λI)−1 is given by

Rα,ε
λ =Rλ + R

α,ε
λ

∶=Rλ − Pα((ln ε)−1)Aε
λ[1 + Bε

λ]−1Cε
λ

with operators given by integral kernels

Aε
λ(x , y) = V(y)Rλ(x − εy),

Bε
λ(x , y) = V(x)V(y)Pα((ln ε)−1)Rλε2(x − y),

Cε
λ(x , y) = V(x)Rλ(εx − y),

and the polynomial Pα as in De�nition A.4.
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A. Preliminary resolvent estimates in two dimensions

Lemma A.7. Let 1 < p <∞.
(i) �e Laplacian −∆ is a sectorial operator on Lp(w).
(ii) For every �xed ε > 0, the operator −Hα,ε generates an analytic semigroup in Lp(w).

Proof. �is follows exactly as in the three-dimensional situation in Lemma 5.16 andCorollary
5.18 from the more general results cited there.

�is implies that the operator semigroups generated by −∆ and −Hα,ε can be represented
via a curve integral as in (5.2). Note that the presence of negative eigenvalues of −Hα,ε makes
it necessary to choose the curve radius r(Γ) > ∣λ0∣, where λ0 < 0 is the smallest eigenvalue.
Since the positions of the eigenvalues depend on α and ε, the same is true for the restriction
on r(Γ).
Next, we study the operator −∆α in two dimensions and its spectrum and resolvents.

Lemma A.8. [4,�eorem I.5.2/I.5.4]. Let α ∈ R.�en σ(−∆α) = [0,∞) ∪ {−4e2(−2πα+Ψ(1))}
and for λ ∈ ρ(−∆α) the integral kernel of the resolvent Rα

λ = (−∆α − λI)−1 is given by

Rα
λ(x , y) = Rλ(x , y) + R

α
λ(x , y) (A.4)

with
R

α
λ(x , y) = −

π/8
2πα −Ψ(1) + ln(

√
λ/2i)

H(1)
0 (

√
λ∣x∣)H(1)

0 (
√

λ∣y∣)

where Ψ(1) ∈ C is a constant.

Again, −∆α has a single negative eigenvalue λ0, while the continuous spectrum consists
of the nonnegative real axis. However, if we can verify the resolvent estimate from 5.9 for
λ ∈ ρ(−∆α) large enough, it follows that −∆α generates an analytic semigroup and thus can
be represented by the Dunford integral (5.2) [17, 4.14(6)]. So we prove

Lemma A.9. For p > 1 and λ ∈ ρ(−∆α) with ∣λ∣ large enough and ∣argλ∣ > θ for some
θ ∈ (0, π

2 ) it holds for all f ∈ Lp(w)

∥Rα
λ f ∥Lp(w) ≲ ∣λ∣−1∥ f ∥Lp(w).

Proof. Due to the sectoriality of −∆ and (A.4), we only need to show the estimate for Rα
λ . So

let f ∈ Lp(w).
According to Lemma A.8

∥Rα
λ∥Lp(w) = −C(α, λ) ∣∫

R2
H(1)
0 (

√
λ∣x∣) f (x)dx∣ ∥H(1)

0 (
√

λ∣ ⋅ ∣)∥
Lp(w)

(A.5)

Clearly the factor

C(α, λ) = π/8
2πα −Ψ(1) + ln(

√
λ/2i)
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A.1. Elemental properties and sectoriality

is uniformly bounded in the range ∣λ∣ > δ for some δ large enough. Concerning the second
factor in (A.5) we have with Hölder’s inequality and the transformation x ↦ ∣

√
λ∣−1x

∣∫
R2
H(1)
0 (

√
λ∣x∣) f (x)dx∣ ≤ ∥ f ∥Lp(w)

(
∫
R2

∣H(1)
0 (

√
λ∣x∣)∣p′ ∣x∣

p′

2p dx
) 1

p′

≤ ∣λ∣−
1
p′ −

1
4p ∥ f ∥Lp(w)

(
∫
R2

∣H(1)
0 (

√
λ∣
√

λ∣−1∣x∣)∣p′ ∣x∣
p′

2p dx
) 1

p′

�e remaining integral is bounded because of the properties of the Hankel function from
Lemma A.2. Furthermore, there is a bound uniformly in λ, because

√
λ∣
√

λ∣−1 lies in the
compact subset of the unit circle {e iφ ∈ C ∶ θ

2 ≤ φ ≤ 2π−θ
2 }.

Concerning the last factor in (A.5) we calculate with the same transformation(
∫
R2

∣H(1)
0 (

√
λ∣x∣)∣p∣x∣− 12 dx

) 1
p = ∣λ∣−

3
4p

(
∫
R2

∣H(1)
0 (

√
λ∣
√

λ∣−1∣x∣)∣p∣x∣− 12 dx
) 1

p

and again the remaining integral is bounded as described above. Summing up we have

∥Rα
λ f ∥Lp(w) ≲ ∣λ∣−

1
p′ −

1
4p−

3
4p ∥ f ∥Lp(w)

and

− 1
p′
− 1
4p

− 3
4p

= − 1
p′
− 1
p
= −1

which concludes the proof.

Note that we didn’t need to impose an upper bound on p in Lemma A.9. Technically this
is due to the fact that the logarithmic singularity at the origin remains integrable for any
p <∞.
We can summarize our results about the semigroup representations in analogy to�eorem

5.19.

�eorem A.10. Let α ∈ R and ε > 0. Let 1 < p < ∞ and f ∈ Lp(w). For the semigroups
(St), (Sα

t ) and (Sα,ε
t ) with generators −∆,−∆α ,−Hα,ε respectively, it holds

(i) St f =
1
2πi ∫Γ

e−λtRλ f dλ,

(ii) Sα
t f =

1
2πi ∫Γ

e−λtRα
λ f dλ,

(iii) Sα,ε
t f = 1

2πi ∫Γ
e−λtRα,ε

λ f dλ,

with Γ as in De�ntion 5.12, provided r(Γ) large enough depending on α, ε.
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A. Preliminary resolvent estimates in two dimensions

A.2. First weighted norm estimates

We have seen that the semigroups generated by −∆α and −Hα,ε are analytic in Lp(w ,R2). As
a consequence, the next step to obtain convergence results as in the three-dimensional case
would be to establish Lp(w)−Lq(w) resolvent estimates, which could then be transferred to
the semigroups using the representations from�eorem A.10.�e estimates for (Sα,ε

t ) are
required to be uniform in ε.
First we consider the residue term (Sα

t )t≥0 given by

S
α
t f =

1
2πi ∫Γ

e−λtR
α
λ f dλ.

Lemma A.11. Let p, q > 1 and t ∈ (0, T) for T ≥ 0. It holds for f ∈ Lp(w)

∥Sα
t f ∥Lq(w)

≲ t
3
4 (
1
q−

1
p )∥ f ∥Lp(w)

with an implicit constant only depending on p, q and α.

Proof. Let f ∈ Lp(w). By transformation of the path integral we have as in the three-
dimensional case

∥Sα
t f ∥Lq(w)

≤ 1
2πt ∫Γ

e−λ∥Rα
t−1λ f ∥Lq(w) dλ.

Similar to (A.5) it holds

∥Rα
t−1λ∥Lq(w) = C(α, λ, t) ∣∫

R2
H(1)
0 (

√
t−1λ∣x∣) f (x)dx∣ ∥H(1)

0 (
√
t−1λ∣ ⋅ ∣)∥

Lq(w)
(A.6)

with

C(α, λ, t) = π/8
∣2πα −Ψ(1) + ln(

√
t−1λ/2i)∣

.

Since t−1 > T−1, the factor C(α, λ, t) is uniformly bounded for r(Γ) chosen large enough as
in the proof of Lemma A.9. So let’s turn to the second factor in (A.6). It holds

∣∫
R2
H(1)
0 (

√
λ∣x∣) f (x)dx∣ ≤ ∥ f ∥Lp(w)

(
∫
R2

∣H(1)
0 (

√
λ∣x∣)∣p′ ∣x∣

p′

2p dx
) 1

p′

≤ t
1
p′ +

1
4p ∥ f ∥Lp(w)

(
∫
R2

∣H(1)
0 (

√
λ∣x∣)∣p′ ∣x∣

p′

2p dx
) 1

p′

≈ t1−
3
4p ∥ f ∥Lp(w).

�e explanation why the remaining integral is bounded can also be found in the proof of
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A.2. First weighted norm estimates

Lemma A.9, note that ∣λ∣−1 ≤ r(Γ)−1. Concerning the last factor in (A.6) we calculate(
∫
R2

∣H(1)
0 (

√
t−1λ∣x∣)∣q∣x∣− 12 dx

) 1
q = t

3
4q

(
∫
R2

∣H(1)
0 (

√
λ∣x∣)∣q∣x∣− 12 dx

) 1
q ≈ t

3
4q .

Summarizing all factors, we have

∥Sα
t f ∥Lq(w)

≲ 1
2πt

t
3
4q t1−

3
4p ∥ f ∥Lp(w)∫Γ

e−λ dλ

and the proof is �nished.

We turn our attention to Rα,ε
λ and the corresponding residue term

S
α,ε
t f = 1

2πi ∫Γ
e−λtR

α,ε
λ f dλ (A.7)

for t ≥ 0. If we could prove a Lp(w)−Lq(w) estimate for Rα,ε
t−1λ, uniform in ε, we would obtain

∥Sα,ε
t f ∥

Lq(w)
≤ 1
2πt ∫Γ

e−λ∥Rα,ε
t−1λ f ∥Lq(w) dλ. (A.8)

�is would give rise to a uniform norm estimate for Sα,ε
t f . Using the resolvent formula from

Lemma A.6 leads to the estimate

∥Rα,ε
t−1λ f ∥Lq(w) ≤Pα((ln ε)−1)∥Aε

t−1λ∥L2→Lq(w)∥[1 + Bε
t−1λ]

−1∥
L2→L2

⋅∥Cε
t−1λ∥Lp(w)→L2∥ f ∥Lp(w).

(A.9)

Now the operator norms in (A.9) can be dealt with separately. We have the following
estimates for the terms involving the operators Aε

t−1λ and C
ε
t−1λ

Lemma A.12. Let p > 1 and 1 < q ≤ 2 and t ∈ (0, T) for T ≥ 0. It holds uniformly in ε > 0

∥Aε
t−1λ∥L2→Lq(w) ≲ t

1
2−

1
4q , (A.10)

∥Cε
t−1λ∥Lp(w)→L2 ≲ t1−

1
p , (A.11)

with implicit constants only depending on p, q and T.

Proof. Step 1: Let g ∈ L2. We compute

∥Aε
t−1λ∥

q
Lq(w) = ∫R2

∣x∣− 12 ∣∫
R2
V(y)H(1)

0 (
√
t−1λ∣x − εy∣)g(y)dy∣

q
dx

≤ ∫
R2

∣x∣− 12
(
∫
R2
V(y) ∣H(1)

0 (
√
t−1λ∣x − εy∣)∣ ∣g(y)∣dy

)q
dx
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A. Preliminary resolvent estimates in two dimensions

≤ ∥g∥qL2 ∫R2
∣x∣− 12

(
∫
R2
V(y) ∣H(1)

0 (
√
t−1λ∣x − εy∣)∣

2
dy
) q
2

dx

≲ ∥g∥qL2
(
∫
R2
V(y)∫

R2
∣H(1)
0 (

√
t−1λ∣x − εy∣)∣

2
∣x∣−

1
q dx dy

) q
2

,

where we have used the fact q
2 ≤ 1 in the last step. Now let’s focus on the inner integral. We

have

∫
R2

∣H(1)
0 (

√
t−1λ∣x − εy∣)∣

2
∣x∣−

1
q dx

= ∫
R2

∣H(1)
0 (

√
t−1λ∣x∣)∣

2
∣x + εy∣−

1
q dx

= t∫
R2

∣H(1)
0 (

√
λ∣x∣)∣

2
∣
√
tx + εy∣−

1
q dx

= t1−
1
2q ∫

R2
∣H(1)
0 (

√
λ∣x∣)∣

2
∣∣x + ε√

t
y∣
− 1q
dx .

Because of the Hardy-Littlewood rearrangement inequality [37,�eorem 3.4], the remaining
integral in the last line is bounded by

∫
R2

∣H(1)
0 (

√
λ∣x∣)∣

2
∣∣x∣−

1
q dx ,

which is, as in previous calculations, �nite uniformly in λ because of the asymptotic properties
of the Hankel function. We conclude

∥Aε
t−1λ∥Lq(w) ≲ ∥g∥L2

(
t1−

1
2q ∫

R2
V(y)∣y∣ 12 dy

) 1
2

≲ ∥g∥L2 t
1
2−

1
4q .

�is implies

∥Aε
t−1λ∥L2→Lq(w) ≲ t

1
2−

1
4q ,

so we have proven (A.10).
Step 2. In analogy to the �rst step, for g ∈ Lp(w) we have

Cε
λg(x) = V(x)∫

R2
Rλ(εx − y) f (y)dy.

We calculate

∥Cε
t−1λg∥

2
L2 = ∫R2

V(x) ∣∫
R2
Rt−1λ(εx − y)g(y)dy∣

2
dx
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A.2. First weighted norm estimates

≈ ∫
R2
V(x) ∣∫

R2
H(1)
0 (

√
t−1λ∣εx − y∣)∣y∣−

1
2p ∣y∣

1
2p g(y)dy∣

2
dx

≤ ∥g∥2Lp(w)∫R2
V(x)

(
∫
R2

∣H(1)
0 (

√
t−1λ∣εx − y∣)∣p′ ∣y∣

p′

2p dy
) 2

p′

dx . (A.12)

�e inner integral in (A.12) coincides with

∫
R2

∣H(1)
0 (

√
t−1λ∣y∣)∣p′ ∣y + εx∣

p′

2p dy = t∫
R2

∣H(1)
0 (

√
λ∣y∣)∣p′ ∣

√
ty + εx∣

p′

2p dy.

Because of

∣
√
ty + εx∣ ≲max{2π,

√
T ∣y∣},

the properties of the path Γ and the exponential decay of the Hankel function, the integral
on the right side is bounded uniformly in ε ≤ 1, λ ∈ Γ. Clearly the outer integral in (A.12) is
bounded because V has compact support. It follows

∥Cε
t−1λ f ∥

2
L2 ≲ t

2
p′ ∥g∥2Lp(w)

and because of 1p′ = 1 −
1
p we have

∥Cε
t−1λ∥Lp(w)→L2 ≲ t1−

1
p ,

which completes the proof of (A.11).

To control the right-hand side of (A.9), we still need a uniform bound for the L2(R2)
operator norm of [1+ Bε

t−1λ]−1. Remember that in the three-dimensional case this is done by
distinguishing the three cases

∣ε
√
t−1λ∣ ≤ δ1,

∣ε
√
t−1λ∣ ≥ δ2,

δ1 ≤ ∣ε
√
t−1λ∣ ≤ δ2

for suitable 0 < δ1 < δ2 in the proof of Lemma 6.2. Concerning the case where ∣ε
√
t−1λ∣ is

small enough, we have in similarity to Lemma 6.1 the convergence

Lemma A.13. [4, p. 103f, Case (d)] Let the operators Bε
λ and D as in Lemma A.6. Let the

polynomial Pα as in (A.3) and Ψ(1) as in Lemma A.8. It holds

[1 + Bε
λ]−1 = − 2π(ln ε)

[
2π(v , u)(−Ψ(1) + ln(

√
λ/2i)) + µ2(α)(v , u)2

+(2π(v ,Du)/(v , u))
]
(v , ⋅)u + O(1)
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for ε → 0 in L2(R2).

�is allows to control the operator norm of [1 + Bε
t−1λ]−1 in this case, proceding as in the

�rst part of the proof of Lemma 6.2 on page 81.
In the case ∣ε

√
t−1λ∣ > δ2 we can estimate the operator norm of [1 + Bε

t−1λ]−1, similar to
the calculations leading to estimate (6.10). For 0 < ε < 1 it holds

∥Bε
t−1λ∥L2→L2 = sup

∥ f ∥L2=1
∥V(Bε

t−1λ ∗ V f )∥L2

≤ sup
∥ f ∥L2=1

∥Bε
t−1λ ∗ V f ∥L2

≤ sup
∥ f ∥L2=1

∥Bε
t−1λ∥L1∥ f ∥L2

= ∥Bε
t−1λ(⋅)∥L1

≲ Pα((ln ε)−1)∫
R2

∣H(1)
0 (ε

√
t−1λ∣y∣)∣ dy

≈

( √
t

ε∣
√

λ∣

)
∫
R2

∣H(1)
0 (

√
λ∣
√

λ∣−1∣y∣)∣ dy,

where we have used the transformation y ↦
√
t

ε∣
√

λ∣
in the last step.�e remaining integral is

uniformly bounded in λ as explained in the proof of Lemma A.9. We obtain

∥Bε
t−1λ∥L2→L2 ≲

( √
t

ε∣
√

λ∣

)
< δ−12 .

Choosing δ2 large enough yields a uniform bound for

∥
[
1 + Bε

t−1λ

]−1∥
L2→L2

in this case. �e remaining case δ1 ≤ ∣ε
√
t−1λ∣ ≤ δ2 can not be covered, as discussed in

Section 9.2.
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