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Abstract

We study a measure-valued process X* with (1 + 8)-branching, which is related to the self-
adjoint extensions of the Laplacian —A,, « > 0, via a nonlinear partial differential equation.
This can be understood as a super-Brownian motion with point source at the origin. Existence
of this process was shown by Fleischmann and Mueller 2004. We show that the process
X* can be approximated with a family of processes X%¢, ¢ € (0, 1), related to nonlinear
equations involving suitably scaled perturbations of the Laplacian —A + V,, .. This is done for
dimension d = 3 and 0 < f8 < 3. The strategy is mainly analytic, as we prove convergence of
solutions of the nonlinear equations in a weighted Lebesgue space. Norm estimates for the
resolvents of —-A, and —A + V,, . and the associated semigroups are developed in order to
control these semigroups in the weighted space. Furthermore, we study basic properties of
the approximating processes, such as path regularity.

Zusammenfassung

Wir untersuchen einen maflwertigen Prozess X* mit (1 + §)-Verzweigung, der mit den
selbstadjungierten Erweiterungen des Laplace-Operators —A,, & > 0, iiber eine nichtlineare
partielle Differentialgleichung in Beziehung steht. Der Prozess kann als super-Brownsche
Bewegung mit Punktquelle im Ursprung aufgefasst werden. Seine Existenz wurde von Fleisch-
mann und Mueller 2004 bewiesen. Wir zeigen, dass X mit einer Familie von Prozessen
X*¢, ¢ € (0,1) approximiert werden kann, die iiber nichtlineare Gleichungen mit passend
skalierten Storungen des Laplace-Operators —A + V, . in Beziehung steht. Dies wird fiir Di-
mension d = 3und 0 < 8 < ; durchgefithrt. Die Vorgehensweise ist hauptsichlich analytisch,
da wir Konvergenz der Losungen der nichtlinearen Gleichungen in einem gewichteten
Lebesgue-Raum beweisen. Es werden Normabschitzungen fiir die Resolventen von —A,
und —-A + V,, . und fiir die entsprechenden Halbgruppen entwickelt, um die Halbgruppen
im gewichteten Raum kontrollieren zu konnen. Auflerdem untersuchen wir grundlegende
Eigenschaften der approximierenden Prozesse, wie beispielsweise Pfadregularitit.
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1. Introduction

In this work we study a super-Brownian motion with singular mass generation constructed
by Fleischmann and Mueller in 2004. We will show that this process can be approximated
by a family of processes with regular mass generation.

In the introductory chapter we first explain the construction of superprocesses and first
basic properties. Then we introduce the super-Brownian motion with point source. Finally,
we will discuss the structure of the work and the main results.

1.1. Superprocesses as scaling limits of branching particle systems

Stochastic processes play a central role in modern mathematics. A classical simple example
is the symmetric d-dimensional random walk (S, ), in the lattice Z¢ given by S, = x € Z¢
and

where the (X;) ey are independent random variables with distribution

1
P(X;=ylyeZ]y|=1) = o

This can be understood as a particle which moves in one of the 2d directions in every step
with equal probability. The random walk (S,,) seny, is discrete in time and space. To obtain a
continuous process, we embed the lattice in R¢ and define for n € N the rescaled random
walk

‘/V't(”) = ﬁsl_n”'

By increasing n, we decrease the length of the time intervals. The factor Jn compensates
the step length. In 1951, Donsker has shown that for n — oo the process (Wt("))tzo converges
in distribution to a standard Brownian motion [13]. This is a famous example on how
a continuous stochastic process arises from a discrete particle process as a scaling limit.
Note that the Brownian motion has the universal property, that it does not require the
approximating random variables to have a particular distribution, they only need to be i.i.d.
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Figure 1.1.: Example for the construction of the branching particle system. A Galton-
Watson tree (left picture) is embedded into the two-dimensional lattice (right picture).
The black dot represents the original particle at t = 0. The gray particles were alive at
times t = 1 until t = 5. The colored particles are the living descendants at present time
t=6.

Let us consider the discrete model in the two-dimensional lattice. A natural extension
is the introduction of particle branching. Imagine we start with a single particle located
at x € Z? at time t = 0. After one time step, at t = 1, the particle dies and gives birth to a
random number & € {0, 1,2, ...} of offsprings. Each of these offsprings spawns at a random
lattice point adjacent to x, the points have equal probability ;. In the next step, the offsprings
of the first generation die and give birth to a second generation, independent from each
other, and so on. The probability distributions of the number of offsprings and the spacial
motion remain the same at all times. Note that multiple particles can be present at the same
lattice point simultaneously.

There are two sources of randomness in this model: The number of offsprings for each
particle and the random spacial motion similar to the simple random walk. We can under-
stand this as follows. In a first random experiment, we fix the genealogy of the population at
some time ¢ by choosing a random Galton-Watson tree of depth ¢. After this step, there is no
spacial information yet. In a second random experiment, we embed the Galton-Watson tree
into the lattice by placing the root of the tree at x € Z? and incrementally choosing random
adjacent lattice points for each new generation as described above. [48, p. 1057-1058] See
Figure 1.1 for an example.

Our goal is to scale up this model appropriately in order to pass to a meaningful limit.
First we make a restriction on the distribution of the number of offsprings &. Let M = E(¢).
The case M < 1 is subcritical, the population will almost surely die out for time ¢ large
enough. In the supercritical case M > 1 there is a positive probability of survival at all times.
Kolmogorov proved in 1938, that for M = 1 the probability of survival goes to zero as t — oo,
in fact, this probability is proportional to t~1Var(§). [48, p. 1059] In this case we speak of
critical branching.
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From now on, assume the critical case M = 1. We introduce a scaling variable n ¢ N.
As in the situation of the simple random walk, we scale the space by a factor \/ﬁ_l. Let

m

m € N the number of generations in the discrete model. We define scaled time by ¢ := ~

There is no need to restrict ourselves to two dimensions, let d € N arbitrary. Now, given
a critical Galton-Watson tree T embedded into the scaled grid \/ﬁ_lZd , denote by R{m™
the distribution of particles of the mth generation in the grid. More precisely, RUM™ s the
discrete finite measure in R¢, that places mass n~! at each embedded individual of the mth
generation, with multiplicity. Since the Galton-Watson tree and the embedding are random,
R™™ is a random measure (but no probability measure). [48, p. 1063].

Because of the critical branching property, the probability that R{m/™

is not equal to the
zero measure decreases proportional to n~1. To compensate for that, an additional scaling
is necessary: We start with 7 initial particles in generation 0, which evolve independently.
Now we obtain a meaningful limit of the mass distribution for n — oco. The resulting
evolving family of random measures (X );so is a Markov process, taking values in the space
of measures M (R?). The initial particle distribution at ¢ = 0 also is a finite measure on R¢
in the limit. [48, p. 1065]

We have outlined the construction of the measure-valued super-Brownian motion, starting
with a purely discrete model and then passing to the scaling limit with respect to space,
time and mass. Now we will introduce another branching particle model, the branching
Brownian motion, which also gives rise to a super-Brownian motion. This shows that the
super-Brownian motion, similar to ordinary Brownian motion, is a universal object, where
different particle models lead to the same limit. The following model is also better suited for
a heuristical understanding of the super-Brownian motion as the limit of a population of
many Brownian particles. We closely follow the exposition in [18, p. 722].

Again, let n € N the scaling variable. Assume we have a number N, € N of particles
at positions x\", ... ,xl(\;:) € R4. This is the situation at time ¢ = 0. Now, for ¢ > 0, the
particles move in space along Brownian paths, independent from each other. Particles have
an exponentially distributed lifespan with parameter c¢n,c¢ > 0. When a particle dies, a
random number k € {0,1,2,...} of offsprings spawn at the same position, which follow
Brownian paths independent from each other and from their parent. Afteri.i.d. exponentially
distributed lifetimes, they have offsprings on their own, and so on. In our model, the
distribution of the number of offsprings may depend on the current position x of the parent.
The probability that a particle dying at point x has exactly k offsprings, is denoted by p,((") (x).
Assume that the offspring distribution has the expectation

en(x) = ikp,ﬁ”)(x) EPC)) (1.1)
k=0 h
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and for the variance it holds
v2(x) = > (k= 1)p (x) = m(x) + o(1),
k=0

for n - oo, uniformly in x. Here y, m : R4 - R are bounded continuous functions with
m > 0.
For the initial distribution of particles at t = 0 we write

and assume that the weak limit lim,,_, o, ¢, = g € Mp(R?) exists. Let N, (t) € N the number

of particles present at time ¢ and xl(")(t), s xz(\;; )( N (t) their positions. Define

Na (1)
m _ 1
Xt = » ; (Sxi(n)(t).

The stochastic process (X™),so takes values in the space of all finite measures Mp(R¢).
Now we scale up n — oo. The limit
X, = lim X (1.2)
n—oo
in the sense of weak convergence of the induced probability measures exists [18, p. 723].
A first result of this kind was shown by Watanabe in 1968, but only in the sense of conver-
gence of finite-dimensional distributions and with constant m > 0 [50, §4]. The resulting

measure-valued process (X;);so from (1.2) is related to the solution u of the nonlinear partial
differential equation

{atu:(A+V)u—;1u2 on (0,00) x R4, (13)

u(0,-) = f onR,

with V = ¢y and # = 3¢m and a bounded and continuous function f : R4 - [0, c0) via the
Laplace transition functional

E[e—<Xt,f>|X0 — l/l] — e‘(["ru(t"» (1.4)

where the measure y is the weak limit of y,, for n — oo. [18, Theorem A2]

Roughly speaking, in this scaling model we increase the number of particles and the
branching rate cn, but decrease the weight of each individual particle by a factor 1. Replacing
the underlying Brownian motion with a different diffusion process, this concept gives rise
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to a general class of measure-valued processes, the Dawson-Watanabe superprocesses. The
theory was later further developed by Dawson [12] and Dynkin [15] and many others. For a
more complete list of references we refer to the monographs of Dynkin [14], Etheridge [19],
Li [35] and Perkins [42].

1.2. Super-Brownian motion with point source

As we have seen above, there is a correspondence between superprocesses and certain
nonlinear partial differential equations. The Laplace transition formula (1.4) is the pivot at
which these two theories are connected with each other. One can imagine this connection as
follows: If we want to know the Laplace functional of the superprocess at time ¢ > 0 evaluated
with the function f, the left side of (1.4), we can take the solution u(t) of (1.3) with initial
condition f and compute the right side of (1.4), so we walk time along the solution u instead
of the process (X;);so-

In the previous section we have constructed the superprocess as the scaling limit of a
branching particle system and then we have seen the associated partial differential equation.
A natural question is, whether we can go in the other direction: If we start on the analytic
side, i.e. with a certain nonlinear PDE, is there a solution of this equation and is there a
superprocess corresponding to that solution via the Laplace transition functional?

The equation (1.3) can heuristically be understood as the description of a scaling limit of
many particles following Brownian paths, undergoing critical branching everywhere, but
with increased mass creation on the support of V. Suppose that the support of V has a
certain size, say, supp(V') = Bg(0) c R for a radius R > 0. Then the operator A + V in (1.3)
is a perturbation of the Laplacian with the property that (A + V')g = Ag for all functions
satisfying supp(g) c B%(0). In the stochastic interpretation it is intuitive that the Brownian
particles enter the ball at some time with a certain probability pr 4 > 0 and the increased
branching rate in this area contributes to the process. But we can also consider the case
where supp(V') becomes very small, which then means that the time a Brownian particle
spends in the ball gets shorter. We can try to compensate this effect by increasing the size of
the potential V.

In the extreme case, i.e. in the limit R — 0, there is only a single point in R? with increased
branching rate. To describe this extreme case analytically, we want to replace the perturbed
Laplacian A + V in (1.3) by a self-adjoint operator H with the property

Hg = Ag for functions g € C3°(R?) with supp(g) c B(0) for all R > 0. (1.5)

In other words: Evaluated with functions supported outside an arbitrarily small neighbor-
hood of the origin, the operators H and A should conincide. In dimensions d > 4, this
already forces the self-adjoint operator H to be equal to A in the Sobolev space H>2(RR%)
[4, p. 2]. In dimension d = 1 there is a 4-parameter family of operators H with property
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(1.5). In dimensions d = 2, 3 it turns out that there is a one-parameter family of self-adjoint
operators H satistying (1.5), indexed by a renormalized coupling constant « € R. [4, p. 2-3]
We write this family as (A, ) 4cr and speak of self-adjoint extensions of A. These operators are
of special interest in the field of mathematical physics, describing nonrelativistic quantum
mechanical particles interacting via a very short range (in fact zero range) potential with a
fixed source [4, p. 1]. The theory goes back to the 1930s, see for example [5]. This model is
called solvable in the sense, that the resolvents of A, can be given explicitly in terms of « [4,
p. 1].

From now on, we focus on dimensions d = 2, 3. For every « € R, the operator A, can
roughly be understood as

Aa =A+ 80,0(,

where the scaled Dirac functional d, , describes the point interaction at the origin. Heuristi-
cally, A, is the limit of

AP = A+ h(e, €)1, (0),

as € | 0, with a critical rescaling factor h [20, p. 741]. We will give a precise explanation in
Chapter 2. Using A,, we can now modify the nonlinear PDE (1.3) and obtain the equation
Oty = Aty — quifﬂ on (0,00) x R~ {0}, (L6)

ue(0,-) = f >0 onRR4\ {0}, '

where we replaced the quadratic term with a nonlinearity of order 1 + S for 0 < 3 < 1.
The equation (1.6) was investigated by Fleischmann and Mueller 2004 [20]. Existence and
uniqueness of the Cauchy problem where shown in weighted L? spaces for appropriate initial
data f. Moreover, it was shown that there is a measure-valued process X% := (X¢) o such
that the solution u = u, of (1.6) is related to X* via the Laplace transition functional (1.4).
Much more details about these results are given in Chapter 3. The existence of X* is proven
indirectly using mainly analytic methods. In a subsequent work of Fleischmann, Mueller
and Vogt, the large-scale behavior of X* in the three-dimensional case was described [21].
In 2013 Grummt and Kolb extended these results and were also able to prove a version of the
strong law of large numbers for X in the case d = 2, using martingale theory [24].
However, there are still many open questions regarding the properties - e.g. path regularity
and long-term behavior - of the superprocess X*. Moreover, from a stochastic point of view,
it is quite surprising that this process even exists, since Brownian particles in R4, d > 2,
hit the origin only with probability zero. Consequently, one could intuitively expect that
the point source does not contribute to the process and X* would degenerate to ordinary
super-Brownian motion without point source, but this is not the case [20, p. 741]. In his
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review of [21] Morters writes

“This construction is based on the analytical work [...] but remains probabilisti-
cally somewhat mysterious [...], as in these dimensions Brownian particles fail
to hit single points.” Peter Morters

From this perspective, it is desirable to develop methods which allow a further investigation
and better understanding of the super-Brownian motion with point source.

In Chapters 3 and 4 we will see that for every a € R the transition semigroup (S¢);so
belonging to the process X* strictly dominates the heat semigroup and it holds

Eu[(XE )] = (S 1> m)-

We want to point out that there are other examples of stochastic processes with these proper-
ties, where the behavior at a single point influences the transition semigroup of the process,
even though the point is only hit with probability zero. Consider this example from [16,
Chapter 4c]: A particle follows a Brownian path in R“. After a random time, depending
on the path, an offspring spawns at the origin and fulfils a Brownian motion on its own.
The initial particle moves on undisturbed. After independent random times, both particles
produce new offsprings at the origin, and so on. Then the generator of the semigroup (T;) o
induced by this process coincides with the Laplacian on C;° (R4 \ {0}), because the new
particles always spawn at the origin and do not influence the movement of their parents.
But because of the mass creation, (T})so strictly dominates the heat semigroup induced by
ordinary Brownian motion. [16, p. 180] However, T; never coincides with Sf, so the models
are fundamentally different.

1.3. Structure of the thesis and main results

The main focus of this work lies on the approximation of the superprocess X* via a family
of superprocesses X*¢ := (X;"%) 5, € > 0, which are in some sense easier to understand. In
order to do so, we start on the analytic side and write the operator A, as the limit for e = 0
of a family of operators H, , ¢ > 0, describing short range interactions. It is the subject of
Chapter 2 to construct this family, perform a spectral analysis and prove that the limit — in
the norm resolvent sense - is A,, as intended. An important reference in this chapter is the
monograph of Albeverio et al. from 1988 [4, Chapter L.1]. As in most parts of the work, we
will focus on d = 3 here.

In Chapter 3 we give a detailed recapitulation of the Fleischmann-Mueller theory from
[20], leading to the well-posedness of the Cauchy problem (1.6) and the existence of the
process X*. Furthermore, using the approximating family H,,,e > 0 and studying the
associated operator semigroups, existence of a family of processes X*¢,& > 0, is shown.
These processes correspond to the solutions of a variant of (1.6), but where A, is replaced
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by H, .. In Chapter 4 we collect properties of the processes, for example explicit moment
formulas.

The analytic framework for the theory of Fleischmann and Mueller are weighted L?
spaces. A closer look at these spaces is given in Chapter 5, as well as some important
analytic properties of A, and H, . and the associated semigroups (S¢):so and (S7°°) 50 in
this context. We want to point out that most results from the literature about A, and H, .
and the associated processes are in the setting of unweighted L? spaces and a main part of
the work was to transfer these to the weighted context.

Using the methods obtained in the previous Chapters, weighted L?—L4 estimates for the
resolvents of A, and H, . are developed in Chapter 6. This is done by employing the explicit
representations of the resolvents and calculating the involved integrals step by step. It is
crucial here, that these estimates are uniform in e. Moreover, the weighted L?—L4 estimates
can be transferred to the semigroups (8%)0 and (S;°°)s0, using the representation of
analytic semigroups in terms of the resolvents of their generators.

In Chapter 7 we turn our attention to the nonlinear integral equations corresponding to A,
and H, . as in (1.3) and the associated solutions u, and u, .. Using the uniform semigroup
estimates, we can perform a Picard iteration where the involved Lipschitz constants are
independent of €. The L?-L4 nature of the estimates helps with controlling the nonlinear
terms in the integral equations. Finally, as a main result we can prove that the solutions
converge in the weighted space.

Theorem 1.1. Let a > 0. Under the conditions of Section 7.1, with the weight w(x) = |x|! and
p e (3,2), for every t > 0 and suitable initial data f it holds

Hua,s(t) - utx(t)”Lp(W) g O; fOI’€ - 0.

Note that the conditions of this theorem contain some restrictions. In particular we need
a > 0 and for the nonlinear term of the equation it must hold 8 < 1. Refer to Theorem 7.13
for more details. The author conjectures that the restrictions are mainly of technical nature
and that the result remains true for a wider range of parameters.

Based on this result, the convergence of the Laplace transforms of the corresponding
superprocesses X* and X*¢ can directly be obtained. Using methods from the general theory
of random measures [29], this gives rise to a mode of convergence of the superprocesses in
the space of measures M (RR3?).

Theorem 1.2. Under the conditions of Theorem 1.1 let (X;"%) >0 and (X&) s the superprocesses
associated to u, . and u, with initial distribution X>* = X§ = u. Assume that the measure p
has a density satisfying u(-)|- |» € L¥'(R?). Then it holds for fixed t > 0

d
Xpe 2 X
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where vd denotes the convergence in distribution with respect to the vague topology on the
space of measures M(R3).

More details can be found in Chapter 8. This is a central result, stating that in the three-
dimensional case, under some restrictions on the parameters «, 3, we can indeed approximate
the super-Brownian motion with point source with a family of superprocesses with short-
range interaction. This approximating family is more accessible for further investigation of
path properties. We show for example, that X*¢ has cadlag paths almost surely.

In the last Chapter 9 we give an outlook on open problems and incomplete results. Unfor-
tunately, a convergence result for the 2-dimensional case was outside the scope of this work.
Nevertheless, we develop preliminary analytic methods and resolvent estimates for this case
as well.






2. Approximation of the Laplacian with point
source

The aim of this chapter is to study analytic properties of the self-adjoint extensions —A,, « € R,
of the Laplacian —A. In particular, we want to construct a family (—H,,)eso of scaled
Hamiltonians for each fixed «, that converges towards —A, for € | 0 in an appropriate sense
in the Hilbert space L?(R?). The first section focuses on a spectral analysis, in the second
section we will obtain the convergence result. A main source is the monograph of Albeverio
et al. from 1988 [4]. We will restrict ourselves to the three-dimensional case.

From now on, for A € C \ [0, o), we denote the free resolvent of —A by

Ry=(-A-AD"!
with integral kernel
R ei\/ﬂx—y|
T

With a slight abuse of notation we sometimes write R, (x — y) for R, (x, y).

2.1. Spectral properties

We start with a spectral analysis of the operator —A + V, where V is real-valued, bounded
and has compact support. It is well known that the spectrum of the Laplacian —A on H?(RR?)
is purely absolutely continuous and consists of the nonnegative real axis with no embedded
eigenvalues. However, adding a perturbation V to the operator will change the spectrum in
general. The particular choice of V' plays a central role in the approximation of —A, in the
next section. For convenience of the reader, we also include some known spectral properties,
which might still be new for readers with a mainly probabilistic background.

In the case of a real-valued potential V' with compact support, the operator —A + V' is
self-adjoint. This implies that the spectrum is contained on the real axis. More precisely,
o(—-A + V) consists of the absolutely continuous part [0, oo) and an at most finite number
N(V) of eigenvalues A, ..., Ay(v) on the negative real axis. [10, p. 2663]

There are estimates for the number of negative eigenvalues depending on the volume

11



2. Approximation of the Laplacian with point source

of the potential V. An important example is the following result, which is known as the
Cwikel-Lieb-Rozenblum bound.

Lemma 2.1. [45, Theorem XIIL.12]. Let V : R3 — R bounded with compact support and write
V_ := min{V,0}. There is a C > 0, independent of V, such that for the number of negative
eigenvalues N(V) of the operator —A + V in L2(R3) it holds

N(V) sC[Ra|V_(x)|%dx. 2.1)

Note that V_ = 0 if V is nonnegative, so in this case the right-hand side of (2.1) vanishes
and there are no negative eigenvalues.

In nontrivial cases, we need tools which are finer than the estimate (2.1). The content
of the next lemma is the so-called Birman-Schwinger principle, a characterization of the
eigenvalues of —A + V in L?(R?). Refer to [44] for a more general treatment.

Lemma 2.2. Let V : R3 » R bounded with compact support. Then A € C \ [0, 00) is an
eigenvalue of the operator —A + V, if and only if —1 is an eigenvalue of the Birman-Schwinger
operator uRyv on L2(R?), where

v(x) = [V(x)['2,  u(x) =sgn(V(x))|V(x)|"?, forxeR>.

Proof. Let A € C\ [0, 00). By definition, A is an eigenvalue of —A + V, if and only if there is
v € H2(IR3) with

(-A+V)y=Ay.
Clearly, this equation is equivalent to
(A= Ay =-Vy. (2.2)

Since 0(—A) = [0, o), the resolvent R) = (—A — AI)~! exists for A € C \ [0, o0). By applying
R, to both sides of (2.2), we get

y=-RVy.
Multiplying both sides with u gives
uy = —uR,Vy = —uRyv(uy), (2.3)

where we have used V = uv. Because V is bounded with compact support, uy € L2(R4).
Hence, -1 is an eigenvalue of uR,v with eigenfunction uy.

12
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Conversely, assume that there is a ¢ € L2(R?) with
uRyve = —¢. (2.4)
Define
v :=Ryvo, (2.5)
then y € H2(R?). We can apply (-A — AI) to both sides of (2.5) and obtain
(~FA-A)y=vp=-vuy =-Vy, (2.6)
where we have used ¢ = —uy, which follows from (2.4). Finally, rearranging (2.6) gives
(-A+V)y =1y,

so A is an eigenvalue of (—A + V') and the proof is complete. ]

Remark 2.3. As stated above, if an eigenvalue 1 € C \ [0, 00) of —A + V exists, then it is
located on the negative real axis. Hence, according to Lemma 2.2, the Birman-Schwinger
operator uR,v can only have —1 as a potential eigenvalue if A € (-0, 0).

For a more detailed analysis, we need to fix a particular V. From now on assume V is the
finite spherical square-well potential

V= VR = _IBR(O))

on R3, where R > 0 is the radius of the potential well. As mentioned above, the operator
—A+V has at most finitely many discrete eigenvalues on the negative real axis. The following
lemma describes the properties of the lowest eigenvalue, exploiting the radial symmetry of
V.

Lemma 2.4. Suppose that —A + V has an eigenvalue at the bottom of its spectrum
A=info(-A+ V).

Then ) is nondegenerate, i.e. has multiplicity one. Furthermore, the corresponding eigenfunction
is strictly positive and spherically symmetric.

Proof. The potential V is bounded with compact support. From the more general statement
[45, Theorem XIII.46] it follows immediately that A is nondegenerate with strictly positive
eigenfunction y. We are left to show that v is spherically symmetric, this is equivalent to
Ov = y for all rotations O of the space R®. Choose one such O. In particular, O is orthogonal.

13



2. Approximation of the Laplacian with point source

Since —A commutes with orthogonal transformations, we have
(-A+V)(Oy) =0((-A+ V)y) = 0(Ay) = A0y, (2.7)

so Oy is an eigenfunction corresponding to A. But as shown above, A is nondegenerate, so
Ovy = ay, a € C. Since O is orthogonal, |a| = 1. Furthermore, O is a rotation, so it preserves
positivity, this means ay(x) = (Oy)(x) > 0if y(x) > 0. This implies a = 1, because v is
strictly positive. We have shown Oy = y for an arbitrary rotation O, so v is spherically
symmetric. O]

With Lemma 2.4 we can investigate the existence of negative eigenvalues of the operator
—A + Vg, depending on the potential radius R.

Theorem 2.5. For the operator —A + Vg in L2(R3) with domain of definition D(-A + V§) =
H?(IR3) it holds

(i) For R < 7 there are no eigenvalues.

(ii) For R = 7 there are no negative eigenvalues. However, A = 0 is a simple resonance: There
isayeLy (R3) N L2(R®) with (-A+ Vi)y = Ay = 0. The corresponding eigenspace is
one-dimensional.

(iii) For R > 7, there are eigenvalues =1 < A < ... < Ay, < 0. The number of eigenvalues N
increases with R.

For the proof the following preparatory Lemma is needed.

Lemma 2.6. Let k € R. The ordinary second-order differential equation

2
y 20y

ot oo tkw=0 (2.8)

has a two-dimensional solutions space with basis vectors

sin \/Ex CcoS \/Ex
and v,(x) = :

X X

yi(x) =

Proof. Calculating the derivatives

oy, _ Vkx cos(vkx) - sin(vVkx)
0x x?
oy, _\/Ex sin(v/kx) + cos(Vkx)

ox x2

b

(2.9)
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2.1. Spectral properties

and the second-order derivatives

oy, _Zsin(\/Ex) kxzsm(\/_x) 2\/_xcos(\/_x)

ox?
oy, 2cos(\/_x) kxzcos(\/_x)+2\/_xsm(\/_x)
ox2 x3

it is easy to verify that the functions v, ¥, solve the equation (2.8). Since the solution space
of a second-order ordinary differential equation is at most two-dimensional and y; and y,
are linear independent, they define a basis. OJ

Proof of Theorem 2.5. Let A < 0. Assume that
(-A+ VR)y = Ay (2.10)

for a spherically symmetric function ¢ € H?(R*). We have the following well-known
representation of the Laplacian in spherical coordinates

L0y 1 9 oy 1 Jy
A _ ks —. 2.11
y(r.0.9)= = ar <r ar) T P sin6 o6 (Smgae) " P sin? 6 992 ke

By assumption, v is spherically symmetric, so it is constant along any angle. Hence, for the

angular derivatives we have

dy oy _
0  dp

In this spherically symmetric situation, the equation (2.11) simplifies to
, 0y 821// 20y
A
y(r.0.9) = 28r <r ar) or? rar

With a slight abuse of notation we can consider y as a function of the radius r = |x|. Since
VR = —1g,(0) is also a radially symmetric function, the equation (2.10) becomes

—————r+VR1//=)hp. (2.12)

By definition of Vg, this can be written as

2
81// 29y +(1+A)1// 0, r<R,
or? rar
(2.13)
_821//+281// Ay =0, r>R.
or: ror v="5
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2. Approximation of the Laplacian with point source

According to Lemma 2.6, the system of ordinary differential equations (2.13) has the solutions

(2.14)

w(r) B a, sin r1+Ar + blcosx/rlJr/lr, r< R,
azsin;/xr + bzcos;/Xr’ r>R.

with complex-valued coefficients ay, by, a,, b,.
First consider the case r > R. Since A < 0, we have /A = iy/||. Using the exponential
representations of sin and cos, it holds

sin iy/|A|r b cosin/|A|r
+ 02
,

r
eV Alr _ e~ Al eV Al + e [A]r
=1d, + bz
2r 2r
(iay + by)eVAr + (b, — iay) e VIAIr

2r

v(r) = a

The coefficient before eV must vanish, otherwise y would not lie in L?(R?) for any p. This
leads to the condition a, = ib,. Hence, up to linear dependence, the solution for > R is

w(r) = (2.15)

with derivative

E)_\p ~ _(\/err l)e‘m’
> .

or r

(2.16)

Returning to the system (2.13), we are now focussing on the regularity of the solution at the
point = R. For ¥ to be in H2(R?), v needs to be continuous, so we have the condition

a;sin(V1+AR) +b;cos(V1+AR) = e~VAR (2.17)

from (2.14) and (2.15). Furthermore, the first derivative needs to be continuous for the
second weak derivative to exist. Using the explicit formulas for the derivatives (2.9) and
(2.16), it follows

. Vkx cos(v/1+ Ax) —sin(v/1 + Ax) b V1 + Axsin(v/1 + Ax) + cos(vVkx)
1 2 R 2
X X
_ (V-Ar+ 1)eV-Ar
2 b

r
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2.1. Spectral properties

which can be simplified to

a1V/1+ Acos(vV1+AR) - b1+ Asin(V/1 + AR) = —/—de VAR, (2.18)

The equations (2.17) and (2.18) form a system of linear equations in a;, b;, which has
solutions whenever the matrix

sin(v/1+ AR) cos(V1+AR)
V1+Acos(v/1+AR) -1+ Asin(V/1+AR)

is invertible. This is the case for A # —1. The solutions are

vV-=-A
a; = —sin(VI+ AR)e VR 4+ Y2 cos(vV1+ AR)e VR,

by =—-cos(V1+ AR)e‘ﬂR - \/__)L/\ sin(V'1+ )LR)e“/jR.

1+

Now note that the function

.. cos(V1+Ar)

r

is singular at the origin because of cos0 = 1. Since the eigenfunction needs to be regular,
more precisely y € H2(R3), there cannot be a contribution of the singular function for r < R,
because this range includes the origin. This yields the additional condition b, = 0, which is
equivalent to

br(A) := cos(V1+ AR) + \/\{% sin(V1+AR) = 0. (2.19)

The equation (2.19) cannot have solutions for A < —1, where /1 + A becomes imaginary and
the trigonometric functions turn into hyperblic cosine and hyperbolic sine. The point A = -1
has been excluded above. So all potential negative eigenvalues with radial eigenfunctions
lie in the range (—1,0). According to Lemma 2.4, the lowest eigenvalue must have a radial
eigenfunction, so all negative eigenvalues lie in this range.

Now assume A € (-1,0) and R < 7. In this case /1 + AR € (0, 7). In this range sine and
cosine are strictly positive and the factor \/% is positive as well. This implies b; # 0, so there
cannot exist any negative eigenvalues with radial eigenfunctions. Moreover, using Lemma
2.4 again, there are no negative eigenvalues whatsoever. This completes the proof of (i).

Let’s turn to the case R = 7. This case is critical in the sense, that for A = 0 we have
br(1) = 0 in equation (2.19) and consequently b; = 0. So for r < R the regular solution of

17



2. Approximation of the Laplacian with point source

(2.14) becomes, up to a constant factor,

w(r)

b

_ sin(v/1+ Ar) _ sin(r)

r

where we have used A = 0. However, in the range r > R, according to (2.15) the solution
becomes

y(r) = = % (2.20)

The exponential term degenerates to 1, which implies that y is not square-integrable, more
precisely y € L} (R®) \ L2(IR®). So y is not a proper eigenfunction and A = 0 is not an
eigenvalue. We call A = 0 a resonance and the function

sin(r) z
W(r)={ A (2.21)

1 b4
pr>g

the corresponding resonance function. The function v is illustrated in Figure 2.1. There is
no other linear independent resonance function, because according to [4, p. 19-20], every
resonance function is radial if the potential V is radial, which is the case here. This proves
(ii).

Finally, for R > 7, the function bg(1) in (2.19) has a growing number of roots A; € (-1, 0)
with proper square-integrable eigenfunctions. This is illustrated in Figure 2.2. The eigenvalues
can be found numerically. This completes the proof. ]

Remark 2.7. If R > 7 with Ny > 2, then only the lowest eigenvalue needs to be nondegenerate
with spherically symmetric eigenfunction. The eigenvalues A,, ..., Ay, can have higher
multiplicity and eigenfunctions with angular momentun / > 1, i.e. functions which are not
spherically symmetric. To find these functions, one needs to solve not only the radial, but
also the angular part of the partial differential equation (2.10). Solutions of the angular part
are related to spherical harmonics, the eigenfunctions of the Laplace-Beltrami operator —Ag:
on the sphere.

We have seen the Birman-Schwinger principle for eigenvalues of —A + V in Lemma 2.2.
Now we want to review it in the context of the critical case, where A = 0 is a resonance of the
operator —A + V. Note that the endpoint A = 0 was excluded in Lemma 2.2.

Lemma 2.8. For V = —13,(0) decompose V = uv as in Lemma 2.2. Then -1 is a simple
2

eigenvalue of the Birman-Schwinger operator uRyv with eigenfunction ¢ € L?(IR3) satisfying

uRyve = -9,

18



2.1. Spectral properties

1

Figure 2.1.: The function r — - (blue) and the function r — S‘—Ir” (green). The red line

r

is the resonance function y for R = 7 and A = 0.

0.8

0.6

= 0.4

0.2

-0.2

TN

-0.8 -0.6 -0.4 -0.2 0

A

Figure 2.2.: The function br(A) from (2.19) for the subcritical value R = 1 (blue),
the critical value R = 7 (red), and the supercritical values R = 3 (yellow), R = 6
(purple), R = 10 (green). The function graphs are scaled such that br(-1) = 1. In the
supercritical cases, the roots are negative eigenvalues of —A + Vx.
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2. Approximation of the Laplacian with point source

but

Rove € L7 (R?) \ L*(R?).

loc

Proof. According to Theorem 2.5, the point 0 is a resonance of —A + V whith resonance
function y € L} (R*) \ L2(R3). This resonance function is unique up to linear dependence.
Following the calculations in the first part of the proof of Lemma 2.2, but with A = 0 here,
the function ¢ = —uy € L2(R?) is an eigenfunction of uRyv to the eigenvalue —1. Because of
the uniqueness of y, the point -1 is a simple eigenvalue. It holds

Rovep = —Rovuy = =Ry Vy = vy,

where we have used equation (2.3) in the last step. Since y € L2 (R3) \ L2(IR?), the proof is

loc

complete. ]
We now study the scaled potential
Ve(x) =2V (x/e).

for & > 0. Note that this scaling is not mass preserving, in fact | Ve[ 1 gs) = 0(e). However, it
will turn out that it is the correct scaling to approximate the point source. The next theorem
describes the spectral properties of —A + V..

Theorem 2.9. For ¢ > 0 define
Ve(x) = €2V (x/e).

Let A € R. Then A is an eigenvalue of (—A + V') with eigenfunction v, if and only if €72 is an
eigenvalue of (—A + V,) with eigenfunction y. = y(-/¢). In particular, if (-A + V') does not
have negative eigenvalues, then (—A + V) does not have negative eigenvalues either.

Proof. First we prove that for x € R? and f € H?(RR?) the identity

(=Af(/e))(x) = e(-Af)(x/¢) (2.22)

holds: For j € {1,2, 3} consider the partial derivative 9;. By chain rule of differentiation it
holds

9;f (x/e) =7 (9;f) (x/e)

and

i f(/e) = 9;(e7(9;f)(x/€)) = € 2(9;f) (x/e).
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2.2. Convergence of resolvents
With
: 2
Af =) 0if
1

identity (2.22) follows.
Now assume

(-A+V)y =Ly (2.23)
for some y € H2(R?). We can compute

(A + Vo)ye(x) = (-Ay(/e))(x) + Ve(x)y(x/e)
= —e2(Ay)(x/e) + eV (x/e)y(x/e)
=e2(-A+ V)y(x/e)
= e Aye(x),

where we have used (2.22) in the second step and the eigenvalue property (2.23) in the fourth
step.

Conversely, performing an analogous calculation with ¢’ := €71, the other implication
follows. Since A < 0 if and only if €721 < 0, the claim about negative eigenvalues follows
immediately. O

2.2. Convergence of resolvents

Consider the self-adjoint extensions (—A,)4r of the Laplacian in L2(IR?) [4, p. 2-3]. As
explained in the introduction, these extensions can be understood as Laplacian with point-
interaction. In this section we give a summary of the convergence result of an approximating
family of operators towards —A, from [4, p. 19-23]. In order to do so, we introduce the spec-
trum of the operator —A,, which consists of an absolutely continuous part - the nonnegative
real axis — and at most one negative real eigenvalue, depending on the parameter a.

Theorem 2.10. [4, Theorem 1.1.4]. Let —oo < & < oo. Then the essential spectrum of —A, in
L2(R?) is purely absolutely continuous with

Gess(_Aa) = [0’ OO)
If « < 0, the operator —A, has precisely one negative simple eigenvalue

A = —(4na)?
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2. Approximation of the Laplacian with point source

with the strictly positive eigenfunction

e—4malx|

¥ (x) =v-a

x|
If « > 0, there are no eigenvalues, i.e.
0(=Ay) = Oess(—Ag) = [0, 00).

For the further analysis we will also need the resolvent of —A,.

Lemma 2.11. [4, Theorem 1.1.4]. Let « > 0. Then for A € p(—A,) the integral kernel of the
resolvent R§ = (=Aq — AI)™! is given by

RS(x,y) = Ry(x, y) + Ry (%, y) (2.24)
with
1 eiVA(xl+h)
o - 4ﬁ (4m)2|x[y|

Ri(x,y) =

For the construction of the approximating family of operators, fix the critical radius R = 7
of the potential from Theorem 2.5.

Definition 2.12. Let V = —13, (p). For &€ > 0 define
2

Hee= —A+ Voo = A+ Po(e)e2V (f> (2.25)
&€

with a polynomial P, such that P,(0) =1 and o = —P,(0)|(V, ¢)|™2.

Remark 2.13. For example, the polynomial
Pu(z):=-|(V,9)Pa-z+1, aeR, (2.26)

satisfies the condition of Definition 2.12.

Now we introduce the resolvents of the family —-H, ..

Lemma 2.14. [4, Theorem 1.1.4]. Let ¢ > 0 and o € R. Then for A € p(—H,,.) the resolvent
R = (=Hq, — AI)7! is given by

—«,&
R =R, + R}

(2.27)
:=R) + P,(e)Aj¢[1+B5]|'C}

with operators given by integral kernels

AS(x,y) = V(y)Ra(x —¢y),
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2.2. Convergence of resolvents

Bi(x,y) = =V (x)Pu(&) Rz (x = )V (),
Ci(xy) = V(x)Ra(ex - y),

and a real-analytic function P,(-) with P,(0) = 1.

We are now prepared to prove the convergence of the resolvents in L? by applying theory
from [4, Chapter 1].

Theorem 2.15. Let V = —1g,, (o). Then with —H,, defined as in (2.25), if A € p(=A,), we have
2

A € p(=Hg,) for € > 0 small enough, and —H, . - —A, in norm resolvent sense for ¢ — 0.

This means

HR}’[’£ - RS)L‘HLZ_%2 -0 as €0,
with the parameter
a=-P'(0).|(V,9)7? (2.28)

where @ is the normalized resonance function.

Proof. We want to apply [4, Theorem 1.2.5], so we need to show that all conditions are
tulfilled. Estimating with the Hardy-Littlewood-Sobolev inequality shows that V satisfies

f VOV 4y dy < cpvi?s (2.29)
R3 JR3 |x—y|2 L2 (R3)

and the right side is finite because V is bounded with compact support and lies in any
L? space. The finiteness of the left side is known as the Rollnik condition. Under this
condition, the integral operator uGyv with kernel u(x)Gy(x, y)v(y), where u, v are defined
as in Lemma 2.2, is a Hilbert-Schmidt operator on L2(IR?) [4, p. 17f]. Clearly it also holds
(1+]-])V e LI(R3).

According to Theorem 2.5, radius R = 7 is the critical case where there is a simple
resonance at A = 0 with resonance function y. As shown in Lemma 2.8, this resonance is
related to a simple eigenvalue —1 of uR,v, more precisely it holds

uRyve = -, ¢ e L*(R?),
v = Rove € L} (R?) N L2(R?).

loc

(2.30)

Hence, the conditions of [4, Theorem 1.2.5] are fulfilled. Case II in [4, Formula (1.2.53)] and
[4, p. 20] holds true, so the claim follows. l
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3. Existence theory for the super-Brownian
motion with (approximate) point source

In the year 2004 Fleischmann and Mueller showed the existence of a super-Brownian motion
X, related to the partial differential equation (1.6) in [20]. The existence of this process with
point source contradicts intuition, because in three dimensions Brownian motion does not
hit a given point with positive probability. The Fleischmann-Mueller theory from [20] is
fundamental for our further proceding, and we want to recapitulate it in detail within this
chapter. Furthermore, we modify the methods slightly to also analyze the equation

(3.1)

atua,s = Hoc,sua,s - ﬂu;cjrsﬁ on (0’ OO) x R? {0}’
Ua,e(0,-) = f >0 onR*\ {0},

which is the analogue of (1.6) when replacing the point-source operator —A,, by the approxi-
mating short-range operators —H, .. One method used in this context is the Feynman-Kac
formula. Due to the singularities in the integral kernels of the semigroup generated by —A,,
the classical solution theory for equations of type (3.1) does not work.

The resolvents and semigroups corresponding to the operators —A, and —H, . are positiv-
ity preserving, i.e.

f>20=S87f>0,

so it makes sense to study them in a probabilistic context. Indeed, they can be associated
with a family of measure-valued processes (X;¢)0,€ > 0. It is important to know that
throughout this chapter we consider —H, . for fixed ¢ € (0, 1) and that the involved constants
generally depend heavily on . In later chapters we will develop different methods to acquire
results uniformly in e.

3.1. Preliminaries

In this section we introduce the analytic situation, especially the function spaces, and some
important tools. This is adopted from [20, p. 743 f]. However, note that we use a different
notation for some important objects compared to the source.

Throughout this whole work we will often deal with inequalities involving some positive
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3. Existence theory for the super-Brownian motion with (approximate) point source

constants, which depend on generic parameters such as the dimension of the underlying
space or an integrability index. In many cases it is not important to determine the exact
value of the constant, because the pure existence of such a constant is sufficient. To avoid
keeping track of these constants and for better readability we will often rely on the notation

f<gtor f<Cg C>0.

The particular value of C may change between the different occurrences of the symbol “S”.
We introduce the weight function

w(x) = x|, xeR’.

Now, for every p > 1, the weighted Lebesgue space L?(w) is defined as the space of equiva-
lence classes f of measurable functions on R3, such that

Hf”LP(W) = <‘/R3 |f(x)[Pw(x) dx> e < 00,

Definition 3.1. For fixed p > 1, we define ® = @7 as the set of continuous functions
f:R3~ {0} > R such that f € L?(w) and

0<fsw, (3.2)

with the topology induced by the ||, norm.

Note that the space @7 is not a Banach space, because the constant in (3.2) is not uniform.
For the parameters of the partial differential equation (1.6), we will need the restrictions

acR,1>0,0<p<1

and for the exponent p we demand
1
—— <p<2 (3.3)
As in Definition 2.12, let
s (X
—Hye:=-A+V,.=-A+P,(e)e*V (—)
€

the family of approximating operators with short-range interaction.

Remark 3.2. From Definition 2.12 we know that

PL(0) = —a|(V, 9)]? (3.4)
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3.2. The heat semigroup with short-range interaction

Now with the rescaled resonance function ¢(x) = %%”x' on the ball Bz (0) from Theorem

2.15 we have in polar coordinates

n 2
21
(V)] = (471/0 —nsinr-rdr) =16

So we can calculate

Vo = Pa(e)e2V (f)
€
= [-16ae+1]e 2V (f>
€
= [1606871 — 872]13%(0)

Redefining ¢ — 2¢ normalizes the radius of the ball and gives

2 2
Voc,g = [160(%871 - %872]138(0) = [87’[0(871 - %872]135(0)

which corresponds precisely to the expression in [4, Formula (H.49)] with the parameters
y = = 0 there.

We introduce the Feynman-Kac formula, which is an important connection between
partial differential equations and stochastic processes.

Theorem 3.3. [33, Proposition 1]. Let V : R? - R a bounded piecewise contiunous potential
and f : R3\{0} — R continuous and of subexponential growth, i.e. limy_. (In f(x))[x|™! = 0.
Then the unique solution of the cauchy problem

{atu =Au—Vu on (0,00) x R3,
u(0,) = f,

is given by
u(t,x)=E [e‘fot VW) ds £OW,) | Wy = x] (3.5)

where W; is a Brownian motion in R3.

3.2. The heat semigroup with short-range interaction

In this section we give an overview over some properties of the heat flow on the weighted
space L?(w). This is a summary of results from [20, Sections 2.2-2.3]. In addition, we derive
results on the action of the semgroup (S;"°)» defined below in the weighted setting.
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3. Existence theory for the super-Brownian motion with (approximate) point source

Remember the fundamental solution

1 e
pi(x,y) = (4ﬂt)3/ze| WA 50, x,yeR?

of the classical heat equation

ou=Au on (0,00) x R3,
(3.6)

u(0,-) = f.

As an integral kernel, p; gives rise to the heat semigroup (S;);so,

Sf(x) = [ ) () dy.

It is well known that the generator of the semigroup (S;)so is —A and that u(t,x) = S, f(x)
is a solution of the Cauchy problem (3.6). According to Theorem 3.3 with V' = 0 we also have

S:f(x) = E[f(W:)[Wo = x]. (3.7)

Now we collect some properties of the heat semigroup. The following lemmas with proofs
are from [20, Sec. 2.2], note that we change notation to fit in our setting. We start with a heat
flow estimate for the weight w.

Lemma 3.4. [20, Lemma 2.1] For the weight function w(x) = |x|™! there is some C > 0 such
that

Ssw<Cw, t>0

Proof. The claim is trivial for ¢ = 0, so we can assume f > 0. Let x # 0. We have to show that

1
WStW(X)

is bounded in ¢ > 0 and x # 0. With the transformation y — ¢"2(y - x) and z := —t 2 x we
calculate

1 1 1
() ) =0 e Gamryr

y—z\ _b?
~ Z T dy. 3.8
fww( E ) y G5

Now it suffices to show that the remaining integral is bounded in z # 0. First consider the

e_lx_y|2/4tw(x) dy
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3.2. The heat semigroup with short-range interaction

case |y| < % This implies |y - z| > % and consequently

So for the integral in (3.8) restricted to |y| < % we have the bound

2
2 [ e“% dy
{rlyl<lzl/2}

which is of course bounded because of the exponential decay. On the other hand, if we

restrict the integral to the subset where |y| > @, the exponential expression can be estimated
=2

. _EE . ——
from above by e 5z e~ 5 . And since |z|e” 5 is bounded in R3, there is a C > 0 such that we

have the following bound for the integral in (3.8) restricted to |y| > %

— Iy
C w(y—-z)e s dy.
{ylyl>l2l/2} (r=2) 4

This integral converges because of the exponential decay and the fact that the function w is
locally integrable in R3. This completes the proof. O]

Next we cite a maximization result for the heat flow of w.

Lemma 3.5. [20, Lemma 2.2]. Let k > 0. Then
StWK(X) < StWK(O) (39)

fort>0and x e R3.

The maximization property (3.9) allows us to obtain the following estimate of the semi-
group (S;) 0 in case of an additional singularity.

Lemma 3.6. [20, Lemma 2.3]. Let 0 < 3 < 1 and p satisfying the condition (3.3). Then it holds
forall f e LP(w)

_E
HSt(fWﬁ)HLp(w) S t2 ”f”LP(w)
Proof. For t > 0 and x € R3 we define the measure y, , given by the density
e (y) = pe (e, Y)W ()

with « = %ffpl. Because of the maximum at the center property (3.9), it holds for the total

mass of the measure p; ,

Jtexl < ol = [ | pi(0.p)dy =€
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3. Existence theory for the super-Brownian motion with (approximate) point source

where we used Brownian scaling in the last step. As a consequence, the measures y, , are
finite measures with a total mass of at most C, independent of ¢ and x. For every finite
measure ¢ on R* and measurable functions f, it holds by Holder’s inequality

(L 1r»lanm) <iar™ [ 1o dy.

We apply this to the measures y, , and obtain

S =] [ O 0pe ) dy

L IO () dps()|
<Pl [ FOIPWPE0 () ()
<ermnert [IF(rwrE () py(x, ) dy

= et [ F()Pp(xy) dy
= DS ()7 ()

= 7%

where we have used p(8 — 2x) + 2k = 0. By Lemma 3.4 and Fubini’s theorem we have

fR3 S:(|f)P(x)w(x)dx = /RS F(»)PSw(y)dy
< [ 1F»FTw(y) dy
=TIy

for a constant C > 0. Hence,

[S: (w20, < EXEVCPCN f IR

and the claim follows because of k(p — 1) = % O
Finally we obtain strong continuity of the heat flow.

Lemma 3.7. [20, Lemma 3.4]. The semigroup (S;)so acting on LP(w) is strongly contiuous.

Outline of proof. The proof uses Lemma 3.6. In a first step we show the claim for bounded
functions on compact sets and then later remove this restriction in a second step. Refer to
the proof of [20, Lemma 2.4] for full details. O

Now we introduce the semigroup (S;)»o corresponding to the operator Hy . = ~A+ V..
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3.2. The heat semigroup with short-range interaction

Lete € (0,1) and a € R. For f > 0 continuous on R3 \ 0, x € R3 and ¢ > 0 define
SPEf(x) =B [e B VW8 £(W) | W = 1], (3.10)

where W is a Brownian motion in R®. According to the Feynman-Kac formula from Theorem
3.3, u := §°° f is the unique solution of the cauchy problem

ou=H,, on (0,00) xR3,
(3.11)

u(0,-) = f.

The definition (3.10) allows us to easily obtain pointwise estimates of S;"° f in terms of
the heat semigroup, as seen in the next lemma.

Lemma 3.8. Let ¢ € (0,1),a € Rand T > 0 fixed. Let f > 0 satisfying the conditions of
theorem 3.3. There are constants ¢t g ¢, Cr,q,c > 0 such that for every t € [0, T] and x € R3

CT»“:SStf(x) < S;x’ef(x) < CT,Ot,SStf(x)' (312)

In particular, the statement is true for all f € ©P.

Proof. We want to estimate the exponential term in (3.10). It holds
T Vaelao S Vel € [ Veel W) ds < tVaelo € ThVaelor (313)
Consequently
o TVl < g Ji Veee(Wo) ds ¢ pT] Vel

Applied to the semigroup, this gives

S f(x) = B [ R0 £ (W) | wh = ]

> E [e7"I Vel f(W,) | Wo = x]
= e TVeclE [£(W,) | Wy = x]
= T, [f(Wt) | Wo = x}

and similarly
S f(x) < eTlVecl<E [f(W,) | Wy = x] = Cra.E [f(W;) | Wo = x].
With (3.7) we find that

E[f(W,) | Wo=x] =S.f(x)
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3. Existence theory for the super-Brownian motion with (approximate) point source

and the proof is complete. [

Remark 3.9. We want to emphasize here that the constants in Lemma 3.8 depend heavily on
a and e. In particular

Crus = eTlVosle = QTIPL@IE? _ (T((Vig)Pae ve)
by Definition 2.12, and this term clearly tends to infinity for € | 0. In this chapter, estimates

for fixed ¢ are sufficient. In later chapters we will develop other tools to obtain estimates that
hold uniformly in e.

Lemma 3.10. The semigroup (S;°%) o is strongly continuous on LP(w) for p > 1_;3/3, this

means

IS2°f = fllioqwy = 0 fort >0

Proof. Without loss of generality assume f > 0, otherwise decompose f = f, — f- and use
linearity. Let t > 0. We expand

Sf=Sif+(SP* =S f,

so we have

IS5 f = ey < ISef = Fllioquy + 1055 = SO f oy (3.14)

The first term tends to zero for ¢t — 0 because of the strong continuity of the heat semigroup
in the weighted space, Lemma 3.7. For the expression inside the second norm in (3.14) we
have, using (3.10) and (3.7),

(8%~ 8,)f =E [(afo‘ Voo (W) ds _ 1) FW) | W =x] . (3.15)
Asin (3.13), it holds
t
Vel € [ Vael W) ds <tV
0

which leads to the bound

|e—fJ Va,e (W) ds _ 1| < eflVaclo 1.

Applying the norm to (3.15), we obtain

(2% = S flineuy = B [ (78 Vo8 — 1) f(wi) | ol

LP(w)
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3.2. The heat semigroup with short-range interaction

< (eVeels —1)[E [f (W) | Wo) |

= (1%l ~ 1) ISl 1oy

LP(w)

But because of [S:f| 5, S [ fl s> which is Lemma 3.6 with 8 = 0, and

lim(e!lVecle — 1) = 0

t—0
we have
1€ =S f oy = 0
for t — 0 and, returning to (3.14), we have shown strong continuity. ]

Corollary 3.11. The infinitesimal generator of the semigroup (S;"°) o is given by the operator
—H,,.. Furthermore, for f € ®P, the map (t,x) — S{°*f(x) is continuous on [0, T] x R3.

Proof. Because (S;"%)» is strongly continuous and is the unique solution of the abstract
Cauchy problem (3.11), the operator —H,  is the infinitesimal generator of (S;**)»0, see for
example [17, Section I1.6]. The continuity also follows from the fact that (S;*¢)o solves the
Cauchy problem. ]

With Lemma 3.8 we immediately obtain the following two estimates.

Corollary 3.12. Under the conditions of Lemma 3.8 there is a constant C > 0 such that
S fw(x) < Cw(x).
Proof. Because of
SPEW(x) < CrgeSiw(x)

the claim follows from Lemma 3.4. O

Corollary 3.13. For f € ®? and with f3, p satisfying (3.3), it holds
o,E —E
Hst (fwﬁ)H St ”fHLP(w)'
Proof. If f € ®P, then fwPF satisfies the conditions of Lemma 3.8. This leads to
SEE(fWP) < CraeSi(fwh),

and the claim follows from Lemma 3.6 by applying the norm. ]

Corollary 3.14. Under the conditions of Lemma 3.8 and with f3, p satisfying (3.3), (S;°%) 0 is
a strongly continuous semigroup acting on ®F.
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3. Existence theory for the super-Brownian motion with (approximate) point source

Proof. As shown in Lemma 3.10, the semigroup (S;°*)»o is strongly continuous on L?(w)
and ®? c LP(w) is a subspace. Hence, it remains to show that for f € ®? the function
x — 8¢ f(x) is in @F as well. The continuity of this function follows from Corollary 3.11.
Furthermore

SO < CraeSif SSwSw, (3.16)

where we have used Lemma 3.8 and Lemma 3.4. This completes the proof. ]

3.3. The heat semigroup with point source

In this section we will take a closer look at the solutions of the linear partial differential
equation with point interaction, that is

o =Ayu on (0,00) x R, (3.17)

This is a summary of the results of sections 2.4 — 2.7 from [20] and we will omit some details
and proofs. First we introduce the fundamental solution of (3.17). Fix a € R. Define

2t nat [
wily) =i y) + g+ ) = o [T pie el e e ds (31s)
Pt ) PRE I Ly PR U Ty o P !

where t > 0, x, y # 0. The kernel p, ; is the fundamental solution of (3.17) computed in [2,
Formula (3.4)].

Remark 3.15. [20, p. 747]. The last term in (3.18) involving the integral is always finite and
disappears for a = 0. In the case a # 0, p,(x, y) is continuous and decreasing in « with
Pa,t 4 Pr pointwise as a 1 oo and p, ; T oo pointwise as « | —oo.

Since —A,, is a self-adjoint extension of the Laplacian —A on R3 \ {0} [20, p. 747], we have
the following consequence.

Corollary 3.16. [20, Corollary 2.5]. Let « € R. Then p,, solves the heat equation. More precisely

0tPa (%, ¥) = Apai(x, y)on (0,00) x R*\ {0}, (3.19)

where the Laplacian acts on x (or y, respectively). In particular, (t,x,y) = pa.(x, y) is jointly
continuous on (0, 00) x R3 x R3.

With (S§):»0 we denote the semigroup corresponding to the kernel p,, that is

ST = [ pacx ) f() d, (320)
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3.3. The heat semigroup with point source

for all f such that the right-hand side makes sense.

Lemma 3.17. [20, Lemma 2.6]. Let & € R and T > 0. Define

p,(x,y) =t 2w (x)w(y)e i e lilx. (3.21)
Then there is a constant C(a, T) such that
Pi(%,y) < pas(x,y) < pi(x,y) + Ca, T)p,(x, y) (3.22)

forallte(0,T]and x,y + 0.
Outline of proof. According to (3.18) we have to show that

8ot

x ||y|pt(| x|+ M)—m petlxl et dz < Cla TP (xy). (323)

Let a > 0. Then the right-hand side is bounded by

2t
2 (%] + 1y]) = o (4t 3 e el
[xlly [ xlly] || |

<ty e e
4m2

1 _
= - x’
47ﬁpt( )

where we have used —(|x| + [y|)? < =|x|?> — |y|? in the second step. This shows (3.23) in this
case.

For a < 0 the proof of (3.23) is more difficult. We have to find a constant C(«, T) such
that

8mat
([ ]

ez +[x[ + [yl e ™ dz < C(a, T)pe(|x] + [)).-

This is done in [20, p. 748ff], please refer to this source for full details. For the constant it
holds C(a, T') =~ |a|T exp(87m2|a|>T) [20, Expression (2.45)]. Note that this growth of the
constant matches with the fact that p, 1 co pointwise as « | —oo. ]

Using the kernel p, we define for t > 0 and x # 0

S = [ B (), (3.24)

as long as the right-hand expression makes sense [20, p. 750]. Using estimate (3.22), it
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3. Existence theory for the super-Brownian motion with (approximate) point source

follows for f € L (w)

1Sef ey S USEFiouy < 1Sef oy + Clas T)HgtfHLP(W)- (3.25)

This allows us to transfer some of our estimates of the heat semigroup to the semigroup
(S%)ss0- We cite these from [20, Subsections 2.6-2.7] without proofs. Refer to the source
for detailed proofs. The main strategy is to use the decomposition given by the right-hand
side of (3.25), exploit the properties of the heat semigroup and control the residue term S, f
appropriately.

Lemma 3.18. [20, Corollary 2.9]. Let 0 < B < 1, T > 0 and p satisfying (3.3). Thereis a
constant C(T, a, 8, p) such that

[se(fwh)| < C(Ts By )% Fll ooy

Corollary 3.19. [20, Corollary 2.11]. Let p € (1,2), T > 0 and f € LP(w) with0 < f < w.
There is a constant C(T, «, p, f) > 0 such that

0<SEf < C(T,a p, f)(1+ 72w

for 0 <t < T. In particular, S§ f € ®P forall t > 0.

Corollary 3.20. [20, Corollary 2.10, Corollary 2.12]. Let p € (1,2) and a € R. The semigroup
(S§)¢s0 is strongly continuous acting on LP(w) and strongly continuous acting on ®F as well.

3.4. Solution of the nonlinear integral equation

In this section we prove the existence and uniqueness of solutions of the nonlinear integral
equation belonging to the Cauchy problems (1.6) and (3.1) respectively. To avoid redundan-
cies, we introduce the following notation to deal with the semigroups (S;°¢) 50 and (S )0
simultaneously.

Assumption 3.21. Let T >0,0< 8 < 1and 7 L. < p < 2. Assume that (S;) s is a semigroup
-3
on L?(w, R?) with the following properties.

(i) (St)tzo is a strongly continuous semigroup acting on ®?.

(ii) There are constants c¢(T), C(T), C(T) > 0 such that for every 0 < ¢t < T, x € R3 and
f € @7 it holds

o(T) < S f(x) <C(T)S:f(x) + C(T)S,f(x) (3.26)

where (S;)s0 is the heat semigroup and (S¢) 0 is given by (3.24).
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3.4. Solution of the nonlinear integral equation

(iii) For f € @7 it holds
o _B
[S:CFwh) Loy S 21 Loy (3.27)

(iv) There is a constant C(T, p, f) for every f € ®? such that for ¢ € [0, T]

0<S,f<C(T,p, f)(1+t2)w. (3.28)
Corollary 3.22. For every fixed a € R and € € (0, 1), the semigroups (S{°*) =0 and (S¢)s0
satisfy Assumption 3.21.

Proof. For the semigroup (S;°°)»o the property (i) follows from Corollary 3.14, (ii) is given
by Lemma 3.8 with C(T) = 0. Property (iii) was shown in Lemma 3.13 and (iv) follows from
the stronger estimate (3.16).

As for (S%)»0, property (i) is stated in Corollary 3.20. Property (ii) follows from Lemma
3.17. Properties (iii) and (iv) are given by Lemma 3.18 and Corollary 3.19 respectively. [

From now on, we will imagine that S, is either $®¢ or S¥. Consider the integral equation

()= Sf(x) = [ Si () (x) ds (3.29)

for 1 > 0, B, p satistying (3.3), with0 < t < T, x # 0 and f € ®?. We want to show uniqueness
and existence of nonnegative solutions for the equation (3.29). Nonnegativity of the nonlinear
term also implies the domination

0<u(t)<S,f, t>0. (3.30)

The results in this section are based on [20, Subsection 3.1]. We have already studied the
properties of the linear term S, f in (3.29). The following lemma collects some properties of
the nonlinear term. We work under the Assumption 3.21.

Lemma3.23. [20, Lemma 3.4]. Let f € ®? and y,, v, measurable functions on (0, T]|xR3~{0}
such that

0<yi(t,x) < M(1+t7)wh(x),
0<y,(t,x) < Sif(x)

with constants M = M(T,y;) > 0 and

Kzﬁ(%—%)emJ)
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3. Existence theory for the super-Brownian motion with (approximate) point source

There is a constant C(M, T, 3, p) such that

H/ot Se-s(y1(s)ya(s)) ds

<CM, T B PN fliouyI(t), 0<t<T, (3.31)

LP(w)

where

0o > I(t) = fot(us-'c)(t—s)-é‘dsio (3.32)

as t | 0. Moreover, if for fixed t € (0, T

N = [ S (v (s)va(s))(x) ds, x € B3~ {0},
satisfies
Ni(x) < S, f(x), xeR*\{0},
then N, € ®P.

Outline of proof. Since y,(s,x) < M(1 + s*)wP(x) and y,(t,x) < S,f(x) we can apply
the additional singularity estimate (3.27) to obtain the bound (3.31). A computation using

0 < k + £ < 1 shows that the integral I(¢) converges to zero for ¢ | 0. The main work is to

2
show the continuity of the nonlinear term N;. Here the fact that (S;) is a semigroup on ®?
is needed, as well as the estimate (3.28). Refer to [20, p. 754f] for full details. l

In order to prepare for the uniqueness proof, we need the following technical lemma,
which is a consequence of the mean value theorem.

Lemma 3.24. [20, Lemma 3.6]. Let 3 > 0 and a, b € R. Then
la(av0)f —b(bv0)P| < (1+p)(|lal+|b])P|a-b| (3.33)

Theorem 3.25 (Uniqueness). [20, Lemma 3.7]. Impose Assumption 3.21 and (3.30). Fix
f € ©P. Suppose that u, v are ®P-valued solutions of (3.29). Then u = v.

Proof. We proceed as in the proof of [20, Lemma 3.7]. For 0 < t < T and x € R3>\ {0} define
the difference

D(t,x) :=u(t,x) - v(t,x).
Using (3.30) and estimate (3.27) with 8 = 0, we obtain

IDO gy < 1O sy + 1O sy <203y S 2y (339)
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3.4. Solution of the nonlinear integral equation

With the inequality (3.33) and the fact u and v are nonnegative, we get

IDGe0) =] [ Sins (B (5) v H(9) (o) s
< [ fu B (s) - ()] () ds
< By [ Sl () + V() luls) vl (x) ds
<2y [ 88 (5) + vH(5)ID(5))(x) .

(3.35)

Using estimate (3.28), we have in the remaining integral
(uP(s) +vP(s)) <28 f S (1 +s%)w

with k = (1—1) — 1) and an implicit constant depending on T and f. Inserting in (3.35) and
applying the norm gives

t ~
ID(O)1sy 41 [ (1) [S (DY WA, s

! B
san [ 1+ (=) HID(5) 1y ds

t g
<450p [D($) gyt [ (1+5)(t=9)F s

O<s<t

=41 sup | D(s) 1o, (1)

O<s<t

(3.36)

where property (3.27) of the semigroup was used in the second step and with the notation
I(t) from (3.32). Applying the supremum to the first and last expression in (3.36) we obtain

5up 1D(5)] 154 % 50 D) 150y 50p 1(5) = s0p [ D)oy (1), (3:37)
O<s<t O<s<t O<s<t O<s<t

note that I(¢) is increasing in t. The implicit constant depends on T and f. Because the
term sup,_.., | D(s)| s () is finite due to (3.34) and the integral I(¢) tends to zero as shown
in Lemma 3.23, it follows sup,_., [ D(s)|1»(,) = 0 on a subinterval [0, fo] for 0 < to < T
sufficiently small. This is equivalent to u = v on this interval, note that by assumption u and
v are continuous. Since the model is time-homogeneous, we can repeat the argument finitely
often to extend to the whole interval [0, T] [20, p. 757]. O

Theorem 3.26 (Well-posedness). [20, Theorem 3.3]. Under the conditions of Assumption
3.2, if f € ®P, then the integral equation (3.29) has a unique ®P-valued solution u = uy
satisfying (3.30). Moreover, the semigroup (U;) given by U f(x) = us(t, x) is a nonlinear
strongly continuous semigroup acting on OP.
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3. Existence theory for the super-Brownian motion with (approximate) point source

Outline of proof. We collect references for the missing steps. For the proof of existence of
solutions, one can construct a sequence (1, ),y of functions inductively defined by

ol(t,x) = S f(x),

. t (3.38)
un(£,%) = S f(x) - fo Si-o(tnr ()1 () (x) ds, neN,

with y, as in Lemma 3.23 [20, p. 758f] and then pass to the limit n — oo via a fixed-point
iteration argument. Lemma 3.23 is also the main tool for dealing with the integral term in
the linearized equation (3.38). Details are given in [20, Lemma 3.10 and Lemma 3.11]. For
the proof of the nonnegativity and domination

0<u(t)<S,f, t>0,

please refer to [20, Lemma 3.8] or Subsection 7.2 below. Uniqueness was shown in Theorem
3.25, and the semigroup property of (i) follows from the uniqueness of solutions as well
20, p. 762].

As for strong continuity of (i;), note that

U f = fI < ]Utf—§f|+\5~f—f|

Because the semigroup (S, ) is strongly continuous, it suffices to consider the first term on
the right-hand side. It holds

Uef = Sufl = [ 8B x) ds

and this remaining integral can be controlled using property (3.28) of the semigroup (S;)so
and Lemma 3.23. Also refer to [20, Lemma 3.5]. O

3.5. Construction of the measure-valued processes

We remain in the situation of the previous section. In particuar, we continue to impose
Assumption 3.21 on the semigroup (S,). From now on, let u the solution of the nonlinear
integral equation (3.29) with initial value u(0,-) = f given by Theorem 3.26. In this section,
we describe the construction of the measure-valued process X related to u via the Laplace
transition functional [20, Formula 1.6]

E[e_<th)|X0 = ‘u] =: E‘ue_<xf’f> = e_<ﬂ’u(t))’
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3.5. Construction of the measure-valued processes

where we use the notation for evaluating a measure ¢ with a nonnegative measurable function
4

(.g) = | g(x)du(x).

The strategy to construct X will be a Trotter product approach: We introduce an approxi-
mating integral equation with solutions u,, by separating critical continuous-state branching
with index 1 + 8 and mass flow according to (S,) o on alternate time intervals of length 1
[20, p. 762]. We start with an inductive construction of the functions u, on [0, T] x R3\ {0}
following closely [20, Subsection 4.1]. Under Assumption 3.21 fix n € N and f € ®?. Define

,(0,x) := %f(x). (3.39)

This means we let evolve the mass flow until time 2. Now assume that #,,(£) is defined for

some k € N. For the time interval % <t< % and x # 0 set

7. (k
U, (t,x) = tn (o %) T (3.40)
1+ (s x) (- )]
By computing the derivative
_ 1 u, (%, x) _
0t (1) = = B (%, x)
e npa (- 5)]
Pk x) (3.41)
=1

[1 + b (&, x)(t - 5)] 1(1+)

= —nu, P (5, x),

s0 U, (t, x) is the Laplace transition function of a critical continuous-state branching process
with index 1 + 8 on the time interval (£, £1) [20, p. 762]. Roughly speaking, #, solves the
cauchy problem (3.1) on this time interval, but without the linear term. Also note that by
construction for the left-hand limit we have #,(£+, x) = %, (£, x) and the right-hand limit

,(£-, x) exists as well. For x # 0 put

ﬁn(k+1,x) =S an(k”—,-) (x), (3.42)

which completes the inductive definition. The function #, is nonnegative by constructiuon.
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3. Existence theory for the super-Brownian motion with (approximate) point source

Lemma 3.27. [20, Lemma 4.1] For every fixed n € N the function u,, defined above satisfies

(%) = Saaimpymf (x) = 1 /0 S(tonltonpyyn (B (5)) (x) ds (3.43)
on [0, T] x R3~\ {0}.

Proof. First assume ¢ # £, k € N. Differentiating the equation (3.43) gives the true statement
(3.41), because

0rS(1stnpy/nf (x) =0

for t + % As for the case t = %, k € N, the right-hand side of (3.43) becomes

B k 1 i/n
S(1+k)/nf(x) - ’72 {S(k—(i—l))/n ([(
i=0 :

i-1)/

) ).

since |sn]/n = (i —1)/n for s € (51, 1), Using (3.41) and the fundamental theorem of
calculus, this expression equals 7, (£

n’

x), completing the proof [20, p. 763]. ]

The following theorem states that the functions u, converge towards the solution v of
Theorem 3.26.

Theorem 3.28. [20, Proposition 4.3]. Fix f € ®P. Define u, as in (3.39)-(3.42). Let v the
unique ®P-valued solution of the integral equation (3.29) given by Theorem 3.26. Then, for
each t € [0, T},

B Ju(6) = (1) ) =0

Outline of proof. For n € N we obtain by subtracting (3.43) from (3.29) and decomposing
the integral range

() = @n(O) oy < ISef = Scistenpyin [ oo
enlfn ]
o fo [ Se-sts™ P () = Squen-tonymte ()] o, A5
el
K fo [Scun-tsnpmlut P (s) =@ P 1y, ds

t t
+ S _Su1+ﬁ s)ds + H[ S alelsn na’l;r[j’ s)ds
”“LHJ/H ‘ ( ) LP(W) ’7 Lth/” (I.t J I. J)/ ( )

LP(w)

These terms can be estimated separately using the properties of the semigroup (S;) from
Assumption 3.21. Refer to [20, p. 764ff] for a detailed proof. O
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3.5. Construction of the measure-valued processes

With the convergence of the approximating solution u,, Theorem 3.28, in place, we are
able to make the transition to the setting of measure-valued processes.

Theorem 3.29. [20, Theorem 4.4] Let u € M(R3 \ {0}) =: M. Under Assumption 3.2, there
is a unique in law nondegenerate M-valued time-homogeneous Markov process X = (X;) o
with Laplace transition functional

E, e ) = g (wu(®) (3.44)

using test functions f € ®P and where u = U f is the unique ®P-valued solution of (3.29) from
Theorem 3.26.

Proof. First we prove that the process X, if it exists, is nondegenerate, i.e. not equal to its
expectation everywhere. It holds

Eu[(Xe /)] = (> Sef)

for every y € M, f € ®F,t > 0, as shown in Theorem 4.1 below. But if f # 0 and ¢ > 0, the
integral term in (3.29) does not vanish and hence u(t) + S, f. Applying (3.44), we obtain

E, e Xof) = g lha) 4 o),

Thus, (X, f) # (4, S; ), which means that X is nondegenerate.

Now we turn to the existence proof following closely the proof of [20, Theorem 4.4]. Fix
p € M and n € N. Using the approximating solutions #, defined in (3.39)-(3.42), we want
to construct a random measure X} € M, t > 0 fixed, satisfying

E,e-(Xi) = o~ win®) ) f e P, (3.45)

Then we later let n 1 co to obtain a random measure X; € M, t > 0 fixed, satisfying (3.44).
This will give us a probability kernel Q,. Because of the semigroup property of U, f, the
family (Qy);so satisfies the conditions of the Chapman-Kolmogorov theorem. Consequently,
(Q¢) 120 is then the transition kernel of a time-homogeneous Markov process (X;)so. [20, p.
769, 771]

Now we begin with the construction of (X}');s, for fixed n € N. This is done again
by alternating operations of continuous-state branching and mass flow according to the
semigroup (S;) o on time intervals of length <. Because these two alternating operations do
not commute, we must apply them in reversed order on the dual level of measures compared
to the construction of ,,.

Consider the ordinary differential equation

T (t) = -ng""#(t) on [0, o) with g(0) = 6, (3.46)
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3. Existence theory for the super-Brownian motion with (approximate) point source

where 6 > 0. The unique solution g of (3.46) yields the Laplace transition functional of a
critical continuous-state branching process ( ;)0 with index 1 + 8 via

E[e™|yo = a] = ag(t).

This was shown in [34], see also [20, p. 769]. In the case § = 1, The process ( ;) is the
critical Feller branching diffusion.

To add the spacial component, we let the process ( ;)0 evolve independently at each
point x # 0 by replacing the starting point 6 with the initial data f(x) in (3.46). For each
fixed x, this leads to the ordinary differential equation

%g(t,x) = -ng'*P(t,x) on [0, 00) with g(0,x) = f(x). (3.47)
The resulting M-valued Markov process (Y;) o with cadlag paths has the Laplace transition
functional
Eye’(Y”f) = ¢~ (1Gif) (3.48)
where

Gif(x) = g(t,x)

fort >0, f € ®? and y € M. [20, p. 770]. Now we want to apply the mass flow operation and
inductively define the random measures X satisfying (3.45). We introduce the following
notation of smearing out a measure y according to the flow of S;:

(Sets f) 3= (1, S f)- (3.49)
For fixed 4 € M,n e Nand t € [0, 1) define
Xi = Sl/nYt, Yo := .
With (3.48) and (3.49) it follows
E,e-X1f) = B, e-SinTef) = B, e-6Sunf) = g-(GeSin).

But because of the uniqueness of solutions to (3.46) and by (3.41) with k = 0, we have
that G;Sy/,f = 1,(t). Consequently, e~ (BGiSuf) = o=(wT (1) and we have shown (3.45) for
0 < t < £.[20, p. 770]. To proceed with the induction, assume that for k € N the random
measures X! are defined for £ < t < L and satisfy (3.45). Then, fix t € [&1, £2) and set

X{ = SynYim Yoi= X, 1.
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3.5. Construction of the measure-valued processes

Replacing p with X,_1 in equation (3.48) implies
E‘uef<Xf)f) — E[ef(yl/n:gl/nf”Yo = Xt,l] - ef(Xt,%)Gtgl/nf) — ef(.u>ﬁn(1*%)))

using the induction hypothesis in the last step, but with u,(0) = S, /nG1 /nS 1/nf instead of
Si/nf- But since this new u,(0) differs from the original %,(0) by critical branching and
mass flow of length %, we obtain from the construction (3.39)-(3.42) that the new u,, (¢ — %)
coincides with the original %,(t). This yields (3.45) on the time interval [£1, £2) By
induction, we have shown (3.45) for all ¢ > 0. [20, p. 770]

Now we pass to the limit # 1 co. According to Theorem 3.28, u,,(t) - u(t) as n 1 oo for
t > 0 fixed. This implies

e~ Wwitn (D) 5 o= {mu(®)) 414 00, t > 0.

Therefore, the Laplace transforms at the left-hand side of (3.45) converge to (u, u(t)), too.
From the integral representation (3.29) we get (u, u(t)) | 0 as f | 0. Hence, the limit of the
Laplace transforms in (3.45) is again a Laplace transform of a random measure in M [Dynkin
94]. Denote this random measure by X;. Consequently, for ¢ fixed, X' - X, in distribution as
n 1 oo. Since the map p — (u,U; f) is measurable, via y — X, we get a probability kernel Q;
in M for fixed t. As mentioned at the beginning of the proof, using Chapman-Kolmogorov,
this implies that (Q; )0 is the transition kernel of a time-homogeneous Markov process in
M, which is the desired superprocess (X, )0 [20, p. 771]. In fact

fM e AN Q, (4, A1) = el

for A, u € M [35, p. 42]. The kernel Q; satisfies the branching property

Qt(#l + #2)') = Qt(#b ) * Qt([/lz,')
where p;, y, € M [35, Formula 2.1]. O
We summarize the results by returning to the semigroups (S¢) 0 and (S;°°) 0.

Corollary 3.30. Let € M,0< < land 5 <p<2. Fixa € Rande € (0,1). There are

unique in law nondegenerate M-valued time-homogeneous Markov processes X* and X%*
with Laplace transition functionals

E#e-(x,“,f) = e wua(D)  gnd (3.50)
E‘ue—(Xf"s,f> — e—<ﬂxua,e(t)) (351)

respectively, using test functions f € ®P and where u,, u, . are the unique ®P-valued solutions
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3. Existence theory for the super-Brownian motion with (approximate) point source

of
122 = S510) - [[1SE () 0)ds and
tae(t%) =2 G0) = [ SE i (9) () s

respectively, with initial data u,(0) = u,.(0) = f.

Proof. The semigroups (S¢)sso and (S°) o satisfy Assumption 3.21 as stated in Corollary
3.22. Hence, the claim follows immediately from the previous Theorem 3.29 O

Remark 3.31. The existence of the process X“ is the subject of the work from Fleischmann-
Mueller 2004 [20], which was also our main source. Concerning the process X*¢, there are
some previous results for similar processes in special cases, for example the case f = 1 in
[18]. Also, the existence of the process X*¢ follows from the more general theory of [35],
as discussed in Chapter 4. However, to the knowledge of the author, the approach to this
process that we discussed above, is new.
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4. Basic properties of the measure-valued
processes

In the previous chapter we have shown the existence of the measure-valued processes X*
and X*¢. Next up we want to study first properties of these processes, including moment
formulas and an analysis of the dependence on the parameter #. For the process X*¢, a kind
of path regularity is also shown.

4.1. Moment formulas

The following theorem gives an explicit formula for the expectation of X{. The main idea in
the computation is to write the first moment as a derivative of the Laplace transform of the
process. We continue to impose Assumption 3.21, recall that 0 < 8 < 1 and ﬁ <p<2

2

Theorem 4.1. Under Assumption 3.21, let initial data f € ®P and u the corresponding solution
of the integral equation

up(63) = S =[S () ds, (@)
ug(0,-) = f,

given by Theorem 3.26. Let a > 0 and (X{) o the associated superprocess given by Corollary
3.30 and p a measure with density u(-) € L*(w). Then it holds

E,[(XF, )] = (4 ST f) < o0. (4.2)

Note that we wrote the solution of (4.1) with index f to emphasize the dependency on
the initial data. This is because we will need to vary the initial data in the following proof.
We follow the usual strategy, the proofs are included because we have not found reference
covering the situation where a singularity is present. Throughout this section we frequently
use the fact that f > 0 and that cosenquently the expression S¢ f and the solution u(¢), ¢ > 0,
of (4.1) are nonnegative. See Section 7.2 for more details about this nonnegativity.
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4. Basic properties of the measure-valued processes

Proof of Theorem 4.1. Let r > 0. We have

BN =By | 5| ew(rixe ). ®

r=

Our aim is to interchange derivative and expectation to compute the right-hand side of (4.3).
In order to do this, consider first » > 0. It holds

1
er

2 exp(-r{X )] = (X fexp(-r{XE ) <

for every fixed r > 0, because the function [0, 00) 5 x ~ xe ™ takes its maximum - at the

0
£ |3

S ep(-rixt ] < 2 <o

point x, = 1. It follows

er

Hence, the dominated convergence theorem can be applied and yields

By | g7 exp(r (X )] = 5B, [exp(-r(XE. )] (4.4)

for every r > 0. Furthermore, we have the monotone convergence

_5 exp(—r{X, £)) = (X2, ) exp(—r{XZ, F))
(X7 f)

- S| exp(-rixs. )

r=0

for r | 0. Thus, we can apply the monotone convergence theorem to the expectation on the
right-hand side of (4.3) and obtain with (4.4)

By | 2| e(-rixt ] - B, [ 2 exp(rixe. 1)
-t | 2 exp(rxi. )
; (4.5)
= lg})l g]E,, [exp(=r{X}, f))]
- % . E, [exp(-r(X?, f))] -

For r > 0 we write u,s for the solution of the integral equation (4.1) corresponding to
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4.1. Moment formulas

initial data r f. Via the Laplace transition functional

Eu[exp(=r(X7, )] = Eulexp({XF, 7f))] = exp(=(u, urs (1)), (4.6)

refer to (3.50), it follows with the identity (4.5) and the chain rule

ELXE )] =B, | 5] ex(rxe. )

r=0

=== E,[exp(-r(X{, f))]

r=0

== exp(—(u, urf(t)))

r=0

exp(-it g ()] g 21| Lot (1)
0

=1 w0,

r=0

Now let’s assume for the moment that we can show

RO

or
then the proof would be finished.
In order to do this, we calculate 2u,s using the Picard iteration

X urp(t)dp = (u, ST f), (4.7)

r=

uorf(t,x) := SF f(x),

! + (4.8)
ey (0) = ST(0) =1 [ SE( (9)(x) ds, mel,

as in the proof of Theorem 3.26 Note that the L?(w)-convergence of this iteration towards
U,y is uniform in r for fixed f and r < C < co. This follows for example from a calculation in
a later part of the work: The Lipschitz constant from (7.19) for the function Cf also holds
for all functions rf, r < C. This implies

0 .0
Eu,f(t) = 31_{{)10 gun,,f(t), (4.9)

where the limit is taken in LP(w).
Now we are left to calculate %un,r ratr=0.Forn=0we have

uo,rg(t) = SE(rf) = rSE(f),
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4. Basic properties of the measure-valued processes

and hence
0 0 o
E o uo,,»f(t) = guo,rf(t) = St f
In the next step
0 v
2 tar(0) = 2550 f) - [ LS () B s
:S“f—qa—r“ﬁf S (SEF) 1+ ds (4.10)

=S*f-n(1+p) rﬁ[ S& (S*f)'*F ds.
This again leads to

or

» ul,rf(t) = S;xf
Furthermore, the representation (4.10) and Lemma 3.23 imply %ul,r 7€ DP,
Now let’s assume as our induction hypothesis that

0

ai’ r=0

”n—l,rf(t) =S/ f

and 2u,1,7(t) € ®? for some n € Nand all ¢ > 0. The latter fact yields an integrable
majorant for 2u,_;,; and allows interchanging derivative and integral in the following
calculation.

d I I
St (8) =S =[S, () s
t 0
st (1 B) 58 (40,9 grnas(s) ) s
t
=sef=n(1+p) [ sz, (ul, (9)sf) s

It follows again Zu,,,(t) € ®P. Furthermore

0 t
5] wnes(8) = SEf =01+ B) [ sz (ua(o)szr) ds = spf,

because u,_1,o = 0. This completes the induction. Using (4.9), we infer

S () =sef

r=0
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4.1. Moment formulas

and 2u,¢(t) € ®P. This allows us to calculate

0 0
p IR EOIE I

because y(-) € L'(w). Hence we have shown (4.7) and the proof is complete. O

urs () dp= [ Sifdp< oo,

r=0

In complete analogy we obtain the corresponding result for the process X*¢ by replacing
the semigroup (S¥);so with (S7°%) 50 in the proof of Theorem 4.1. This result can be deduced
from the usual literature.

Corollary 4.2. Under Assumption 3.21 let initial data f € ®P and uy the corresponding solution
of the integral equation

up(63) = 250 = [ S (5)) () d,
ug(0,-) = f,

given by Theorem 3.26. Let a > 0, ¢ € (0,1) and (X[°)»o the associated superprocess given by
Corollary 3.30 and y a measure with density u(-) € L'(w). Then it holds

E (X% f)] = (1, S f) < oo (4.11)

We have shown that the first moment of X{ exists and can be explicitly calculated by
formula 4.2. This raises the natural question, whether higher moments exist. Our main
focus is the three-dimensional case. However, in this case we are restricted to < 1, refer to
Assumption 3.21. In [20] the two-dimensional case was also investigated and in this situation
B = 1is admissible. The following result shows that for 8 = 1 the second moment exists.

Theorem 4.3. Let d = 2 and initial data f € ©? and uy the corresponding solution of the
integral equation (4.1) in the case 8 = 1. Let (X¥)so the associated superprocess and u a
measure with density u(-) € L'(w). Then it holds

B0 S = G SEA 2 4 20 ([ 2,822 ds) < o0

Proof. First of all, the result of Theorem 4.1 is also valid in the two-dimensional case, since
all calculations in the proof are precisely the same, even for 8 = 1. We proceed as in that
proof, but use the second derivative instead of the first. This gives us

2

B0 1] = o

Eu[exp(=r(XF, f)]-

r=0

51



4. Basic properties of the measure-valued processes

Again, we use the Laplace transition functional and calculate

aZ

| Eulexp(-r(xe, )]

r=0

2

or|,-

OeXP(_(H’“rf(t»)

[exp( (y,urf(t))) o (M, rf(t)>:|

or

- [aiw,urf(r))} ] o)
SV - 2] g (0) @12)

where we have used (4.7) in the last step. So it suffices to show that

02 02
35| (wu ()=~ | =

To do so, we once again employ the Picard iteration as in (4.8). As seen in [20, Subsections
3.4-3.7] this can be done in the two-dimensional case as well. Inserting 8 = 1, we obtain

uyr(t)dp =219 <y, ‘/OtSf‘_S(Sf‘f)z ds). (4.13)

aazzunfu)-——rS“(f Ve [ StsE(r)) s

f S (S5f)*ds (4.14)
:2;7f0 S (S5f)*ds.

The last representation implies —%ul,rf(t) = |§—:2u1,r #(t)| € ®F according to Lemma 3.23.
We proceed with induction over n. As the induction hypothesis, assume

aZ

or?

un“f (t) = 2;1fS (S¥f)*ds

and |§—:2u,,,1,rf(t)| e @7 for some n € N and all ¢+ > 0. The latter fact gives an integrable
majorant and allows to interchange derivative and integral in the next iteration step. We
compute

0?2 o
_ﬁunﬂ’f(t) a era(f) na 2 [ S (uftfl,rf(s)) dS

:2’1]0 5,5t (”n lrf(S) - lrf(s)) ds
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4.1. Moment formulas

_2;1f s;xs({ U l,f(s)rmn 1rf(s)aazzun ”f(s)> ds.

We already know from the calculations in the proof of the previous theorem, that

0
gun—l,rf(s)

=St f.

r=0

Furthermore, u,_ ,¢ = 0 for r = 0. Inserting these two expressions implies

t
~2n [ se(sep)?ds
r=0 0

82

and the identity

un,f t)| 2;1[ ({ . l,f(s)rm,, i (9) |5 )ds

implies | 25 Uy ()] € @ because of the induction hypothesis and the fact that Zu,,_,,((s) €
(O3
Taking limits as in (4.9) gives us

aZ

un 1 rf(s)

a o
— i —2;7fs (S%£)? ds
and |§—:2urf(t)| € ®P. We can infer (4.13), which completes the proof. O

Remark 4.4. In the case 8 < 1 the second moment cannot be computed as in Theorem 4.3.
In fact, calculating as in (4.14), we obtain

0 v « £y 1+
S g0 =t [t (s ds

—11(1+[3’)/3r/51/ S*(S¥f)*ds

and the last term becomes singular for r | 0 because of f — 1 < 0. So it seems likely that the
second moment and higher moments do not exist in this case, which means that the process
has infinite variance.

Now we show existence of fractional moments, up to but not including the moment of
order 1 + 3. We closely follow the strategy in [40, Lemma 2.1], where a corresponding
existence result is given in the context of Dawson-Watanabe superprocesses with (1 + f3)-
stable branching mechanisms. More details about general branching mechanisms can be
found in the next section.
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4. Basic properties of the measure-valued processes

Theorem 4.5. Let 0 < { < f. Then it holds

B L(XE )T < 10 | St ([ SEL(S50) )

for a constant c((, ) > 0.
For the proof we will need the following technical Lemma.

Lemma 4.6. [12, Lemma 5.5.2, (c)-(e)]. Let 0 < {, B < 1. There are constants c¢;((), c2(f) > 0,
such that for every nonnegative random variable Y it holds

() E[Y™]<1+¢(0) [mzl+(/02/zE e —1+7Y] drdz,
(i) Y-1<c(B)Y"F e

Proof of Theorem 4.5. We proceed as in the proof of [40, Lemma 2.1]. Using Lemma 4.6(i) it
holds

B0 AT <1 a(@) [T (TR [0 1 (k)] dre
<l+a ()/ 1+(/ s O) 14 (4, S¥(rf))drdz,  (4.15)

where we used the Laplace transition functional (4.6) and the formula (4.2) for the first
moment of X{ in the second step. Remember here that u, ¢ is the solution of the nonlinear
integral equation (4.1) with initial data r f. Let us turn our attention to the inner integrand
in (4.15). It is bounded by

c2(B){, SE(r )1+ 4 |etpurs (D) _ o {wSF ()|
<ca(B)(ps SECON P 4 [pt g (1)) = (s SE ()| (416)

for ¢,(f) > 0, where we used Lemma 4.6(ii) to estimate the term (g, S¥(rf)) — 1 and then
applied the mean value theorem to the function [0,00) 3 y + e™?. The function u,(t)
solves the integral equation

(1) =10 ) = [ ST (g ()P s,

which yields the bound

BN SN+ [ SE(y(5)) 7 d)
S B (ST o [ SE (S5 P
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4.2. Pathwise properties of the superprocess with approximate point source

for (4.16). We have used the domination u,¢(s) < S*(f) from (3.30) here. Returning to
(4.15) results in

E#[(X?>f)l+(] <1+ (O)(1+c(B)) foo Z1+¢ fZ/Z B drdz
sty st [stssrea).
It remains to show that the constant

c((,B) = Cl(o(l+Cz(ﬁ))flooZ”('[OZ/zr“ﬂdrdz

is finite. A direct computation shows that

1+( 1+ﬁ r 22+ﬁ * {-B-1 :—22+ﬁ o0
S e e ) e mmEo

using { — f < 0. This completes the proof. ]

Again, we can repeat the previous proof step by step for the process X*¢ and the associated
semigroup and obtain

Corollary 4.7. Let 0 < { < S and € € (0, 1). Then it holds

B (X F) T 1 a0 B) | (o SES) [ SEE(sEop) R )

for a constant ¢((, ) > 0.

4.2. Pathwise properties of the superprocess with approximate point source

In Chapter 3 we have adopted the methods from Fleischmann-Mueller [20], to prove the
existence of the measure-valued process X*¢ related to the partial differential equation

t
u(t,x) 1= SEL(x) = [ SEE) (x)ds, u(0,) = f,
where the semigroup (S;°) s is given by the Feynman-Kac formula
SPEF(5) = B [e K 0D () | Wo - x].

It turns out that this situation is a special case of a more general theory of measure-valued
branching processes. Given a bounded function V on R?, the expression fot V(W;)dsis an
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4. Basic properties of the measure-valued processes

additive functional of a brownian motion. This gives a transition semigroup (P ) via
PV f(x)=E|eJo VO™ & fOW) | W, = x| . (4.17)
This leads to the question, whether a superprocess X exists, satisfying the transition formula
EfeX|& = 4] =t = - 0u(®),

where u is the unique solution of the integral equation

u(t x) = PY F(x) + fotPt‘fsl//(x,u(s))(x)ds, u(0,) = f.

The function vy is called the branching mechanism. In our special case the branching mecha-
nism is given by v, 3(x, z) := —5z!*F. In [35] the existence of superprocesses is shown for
branching mechanisms y of the form

v(x,2):=—-a(x)z - b(x)z* + [000(1 —e ™ —zv)k(x, dv) (4.18)

such that (v A v?)k(x, dv) is a bounded positive integral kernel and a, b are bounded
functions with b > 0. In fact, this is a special case of the abstract setting [35, Formula 2.26],
described in [35, Example 2.4] and [6].

To apply this theory, we need to show that the function y, g is of the shape (4.18): Choose
a = b = 0 and the kernel k(x, dv) := ;1’3 (B +1gv‘2‘ﬁ dv where I' denotes the Gamma function

r(1-p
I(y) =/, s"7e=ds, y > 0. With partial integration we calculate
oo 1 _ e—ZV
po P f d 4.19
CTTa-p e v (419)

and obtain the identity

b B(B+1) [>1—e —zv v
r(1-p) Jo v2+h ’

(4.20)

since differentiating both sides of (4.20) with respect to z gives the true statement (4.19).
Also refer to [6, Subsection 3.2].

Comparing (4.20) and (4.18) shows that the process X%¢, a € R, ¢ € (0, 1), with branching
mechanism v, g satisfies the conditions in [35, Subsection 2.3] with a = b = 0. Note that
the function V, . defined in (2.25) is bounded for every fixed «, e. Hence, X**¢ is a Dawson-
Watanabe superprocess with spatially constant branching mechanism, i.e. y(x, z) in (4.18)
does not depend on x [35, p.42].

This allows us to deduce some properties of the superprocess X*¢. Applying [35, Theorem
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4.2. Pathwise properties of the superprocess with approximate point source

2.22], the paths of X** are right-continuous in probability, that is

lim P[p(X{", X7>%) > €] = 0
for every r > 0, using the metric p on M (RR?) defined in [35, Formula (1.3)]. The following
Theorem gives a stronger cadlag property of the paths.

Theorem 4.8. Thereisa unique measure Q,, satisfying Q [ X¢* = u] = 1 and X is a Markov
process on M relative to Q,, with transition semigroup (Q¢)ss0- Then, X*¢ has Q .S cadlag

paths in M .

Proof. The existence of the unique probability measure 6# is shown in [35, Theorem 5.1].
According to [35, Theorem 5.7], the paths of the process X** are Q ,-a.s. right-continuous.
Now note that the underlying spacial motion of X®*¢ in the sense of [35, p. 42] is the
Brownian motion (W, ). The Brownian motion has continuous paths. In particular, W is
a Hunt process, i.e. it is right-continuous, has the strong Markov property and is quasi-left
continuous (refer to the definition in [9, p. 74]). Using [35, Theorem 5.11], we have that X*¢ is
a Hunt process in M (IR3) as well. According to [9, Theorem 3.1.1] this implies that the paths
of X*¢ have left limits almost surely. Together with the aforementioned right-continuity we
have the desired cadlag property. O]

Another useful property is the following martingale representation from [35, Theorem
7.26]: There is a martingale measure M;, t > 0, such that

(X5, f) = (X5 u(t)) + [Ot[Ra u(t-s,x)M(ds, dx)

and u is the unique solution of the integral equation

() 3= P () = [ S () () s

where f is bounded.

Remark 4.9. We want to emphasize that the results in this section do not transfer directly
to the measure-valued process with point interaction X*. The transition semigroup of this
process cannot be described via perturbation of the heat semigroup (S;):»o with a bounded
potential V' as in (4.17), hence, the theory of [35, Chapter 2] is not applicable. However, we
will show the convergence X;** — X{, ¢ | 0, in an appropriate sense in a later chapter. So
it seems likely that some kind of regularity of the paths of X* can be proven by using the

properties of X*¢ and passing to the limit.
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4. Basic properties of the measure-valued processes

4.3. Dependence on the parameter of the nonlinear term

In the nonlinear term of the partial differential equation (1.6) we have a multiplicative
parameter 7 > 0. Intuitively, one would expect that there is a kind of monotonic dependence
of the solution on #. The following theorem shows that this is indeed the case. We will also
analyze how this influences the corresponding superprocesses.

Lemma 4.10. Under Assumption 3.21, let initial data f € ®P and a € R. Let 0 < 1, < 1. For
the solutions uy, u, of

oy = Aguiy — mu}”} on (0,00) x R \ {0},
0ty = Aquy — nzu;w on (0,00) x R \ {0}, (4.21)
u1(0,+) = u5(0,-) = f on R4\ {0},

it holds uy(t,x) > uy(t,x) for fixed t > 0 and x € R3.

Proof. As in Theorem 3.26, we have the following iteration converging to the solutions u,
and u, respectively

. . o
Uro = Uz = Stf,

win (1) = SEFC) =y [ Sl (5)) () ds

for m € Nand j = 1,2. Our goal is to show the assertion uy ,(t,x) > uy ,(t, x) for all m.
For m = 0 we have equality by construction. For m > 1 it holds

t t
Um — Uam = 2 '/0 Sf‘_s(u;;ﬁ{l) ds—m '/0 Sf‘_s(u};ﬁ{l) ds. (4.22)
In the case m = 1 the right-hand side simplifies to
t
(r2=m) [ SE((S)")ds,
so the claim is true here because of 77, > #; and the nonnegativity of solutions, Lemma 7.5.

We proceed by induction over m > 2. Assume the assertion holds for m — 1 and m — 2. We
expand the right-hand side of (4.22) and obtain

t t
=t = (=) [ SE ) ds = [ sEL (i —ulif ) ds,

For this expression to be nonnegative, it is sufficient to show that

(2= n)urt > po(uyt?  —ult? (4.23)
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4.3. Dependence on the parameter of the nonlinear term

holds pointwise in ¢, x. Because of the induction assumption u; ,,,_; > ©; ,,—1 and the elemen-
tary estimate (7.6) we have

’12(”?,5 17 ”;5 ) Sma(l+ ﬁ)”ﬁm_l(”l,m—l ~Usm-1)-
Hence, the statement
(M2 = 1) vrm-1 2 2 (1 + B)(Ur,me1 — Uz m-1)

is sufficient for (4.23). Note that we divided both sides by uf)m_l here. We rewrite the last
inequality

This is equivalent to
(1 N 2(1 ¢ +
S¢f- < ’11112 +ﬁ)) f S?s(”}rf »)ds - M[ S?—s(“;,mﬂfz)dszo-
N2 — Y1 0
Using uy,m—2 > Uy,m—2, We obtain the following lower bound for the left-hand side

1 2(1 t
sif - (- MEUEE) BORY) o ) as
M2 =M M2 — M1 0

> St f - Ot B) v [ SELGaih) ds
> tf - O+ B+ m) [ SLASER) ) ds

Because of the nonnegativity of solutions, more precisely case n = 1 in Theorem 7.4, the last
expression is nonnegative. This completes the proof. O

Now we want to use this result to compare the Laplace transforms of the corresponding
processes evaluated with fixed f. This can be done directly via the Laplace transition func-
tional (1.4). In order to do this in an appropriate sense, the following definition from the
theory of stochastic orders in [46, p. 233] is needed.

Definition 4.11. Let Y, Z two real-valued nonnegative random variables such that
E[exp(-sY)] > E[exp(-sY)] foralls > 0.

Then Y is said to be smaller than Z in Laplace transform order, denoted by Y <y Z.

There are alternative characterizations of the Laplace transform order. For instance, Y <y,
Zifand only if E[¢(Y)] > E[¢(Z)] for all completely monotone functions ¢ : [0,c0) - R
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4. Basic properties of the measure-valued processes

[46, Theorem 5.A.3]. A function ¢ is said to be completely monotone, if all derivatives
¢, n e N existand (-1)"¢(") > 0. This characterization gives rise to several results about
Laplace transform ordered random variables, see [46, Chapter 5.A]. Now we will show that
the result for the solutions from Lemma 4.12 translates to the superprocesses in terms of
Laplace transform order.

Lemma 4.12. Under the conditions of Lemma 4.10, let X*! and X*? the superprocessses
corresponding to the solutions u, and u, of (4.21) with 0 < 1, < 1y, satisfying X' = X% = p.
Then it holds for fixed t > 0

(XE% ) <ue (XPL f).

Proof. Lets > 0. Let ugs; and uyy,, the solutions of (4.21), but with initial data s f instead of
f. This notation was also used in Section 4.1. We have from Lemma 4.10 the pointwise order

usr1(t,x) > ugpa(t, x).

With the monotonicity of the exponential function and X' = X$** we obtain

exp(—(Xg, usr1(t))) < exp(—(X3?, uso(1))). (4.24)

Using the Laplace transition functional (1.4), it holds for j = 1,2

exp(—(X5”, usg, (1)) = Eulexp(~(X,s/))] = Eulexp(~s(X;”, f))]. (4.25)

Combining (4.24) and (4.25) yields

Ey[exp(=s(X{"', f)] < Ey[exp(-s(X{, f))]

and the proof is complete by Definition 4.11. Note that (X{*/, f), j = 1,2, are nonnegative
random variables for every fixed t, f. [

In complete analogy, the results of this section can be transferred to the approximating
superprocess X<,

Corollary 4.13. Under Assumption 3.21 let initial data f € ®?,a e Rand e > 0. Let 0 < 1, < 175.
For the solutions Uy ¢ 1, Ug,e Of

atuoc,s,l = Hoc,suoc,s,l - 7’]1”‘1,:51 on (0> OO) X Rd N\ {0};
Otthger = Hyellgen — 17214;{32 on (0,00) x R? \ {0}, (4.26)
Uge1(0,°) = Uge2(0,-) = f on R? \ {0},
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4.3. Dependence on the parameter of the nonlinear term

it holds uge1(t,x) > g r(t, x) for fixed t > 0 and x € R3. Furthermore, for the associated
superprocesses satisfying X3! = X3 = u we have

(X2 f) <u (X300, f). (4.27)

Proof. We can repeat the proof of Lemma 4.10 step by step, replacing S¢ with S;* everywhere
and obtain (4.26). Then, (4.27) follows from (4.26) as described in Lemma 4.12. l

As a conclusion of this chapter, we summarize that there are multiple similarities between
the super-Brownian motion with point source and the approximating processes. Concerning
the path regularity properties of X*¢ from Section 4.2, it seems likely that a similar property
holds for X as well.
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5. Sectoriality of Laplacians with
(approximate) point source

In Chapter 3, we have investigated solutions of the partial differential equations in the context
of Lebesgue spaces with an additional weight function |x|~!, following closely the work of
Fleischmann and Mueller from [20]. Weighted spaces will play a central role further on. In
this chapter we want to take a closer look at these spaces, introduce them from a more general
perspective and collect some helpful properties. In the second part of the chapter we establish
the class of sectorial operators in these weighted spaces. This allows us to obtain existence
of the semigroups (S¥);s0 and (S;"%) o in the weighted space and useful representations of
these semigroups via the resolvents of the generators.

5.1. Weighted Lebesgue-Spaces

We now want to study the behavior of the resolvents of —A, —A, and -H,, in weighted
spaces, i.e. Lebesgue spaces with an additional weight function w : R4 — [0, c0). For these
spaces we use the notation L?(w) := L?(w,R?). They belong to the larger class of weighted
Muckenhoupt spaces.

Definition 5.1. [49, p. 194]. A weight function w is an A, weight or Muckenhoupt weight, if
there is a C > 0 such that for all balls B € R4

1 1 L\
E[Bw(x)dx- Ewa(x) rdx) <C<oo.

We will focus again on the case d = 3 now. In particular, let us consider the weight
w(x) := |x["! in this context.

Lemma 5.2. The weight function w : R®* — [0, 00),x = |x|71, is in A, for every p > 1.

Proof. We have this characterization of A, weights of type w(x) = |x|%,a € R from [49,
Paragraph V.6.4, p. 218]: The function x + |x|? is in A, if and only if

-d<a<d(p-1).

Clearly for a = -1litholds -d =-3<-1=aanda=-1<0<d(p-1)forevery p >1,so
the claim follows immediately. [
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5. Sectoriality of Laplacians with (approximate) point source

A nontrivial property of A, weights is the following: w is in A, if and only if the Hardy-
Littlewood operator defined by

(M)(e) =sup =g [ |f e y)ldy

r>0

is bounded in L?(w), this means

[Rd (Mf(x))Pw(x)dx S fRd L () [Pw(x) dx.

This characterization is given in [49, p. 193f]. As a consequence, A, weights have very good
properties regarding singular integral operators. This allows us to develop weighted integral
inequalities for the resolvents in later chapters.

The following theorem gives a criterion for a convolution operator to be bounded in
Lr(w).

Theorem 5.3. [49, Section V.4.2, Theorem 2 and Remark 4.5.2]. Let T : L*(R3?®) - L*(R3) a
convolution operator given by Tf = f x K. Assume
(i) the operator T is bounded on L*(R?)

ITfl12 S Alfl e

(ii) for the derivatives of the kernel K it holds for x + 0 and multi-indices a with |a| < 1
05K ()] [ 7191,

Furthermore, for 1 < p < oo let w € A,. Then we have for f € LP(w)

fw ITf()Pw(x)dx s [R f(@)Pw(x) dx,

thus T is a bounded linear operator on LP(w)

In the unweighted L? spaces, it is well known that the resolvent R, of the Laplacian is
bounded. We now apply the previous theorem to show that for A € p(—-A) the resolvent R,
is bounded in the weighted space as well.

Lemma5.4. Let A € C\[0,00) and Ry = (-A—AI)~! the resolvent to A. Let w € A,. For every
p > 1, Ry is a bounded linear operator from LP(w) to LP(w). In particular, 6(—A) € [0, c0)
in LP(w).

Proof. The convolution kernel of R) is

64



5.1. Weighted Lebesgue-Spaces

To apply Theorem 5.3 we state first that R, is bounded as an operator in L?(R?). Now we
have to show that R, (x) decays like |x|-3, this is the case a = 0. Write \/A = a + ib. Then

oI VAl| — |eiu|x|‘ |e—b|x|| _ ‘e-bm‘ _

By assumption A ¢ [0, 00), thus b = Im+/A > 0. Now consider two cases.
Case I: |x| < 1. In this case we immediately get
—blx| 1
e
4n|Ry (x)] = —— < —.
el [P
Case 2: |x| > 1. Since e~?l decays faster than any polynomial in |x|, there is a constant
Cp > 0, such that el < Cp|x|2 for every |x| > 1. This implies

e—b|x| 1
<

x|

in this case, but note that the constant depends on [v/A|.
Now we study the first order derivatives of R, (x), so & = 1. We have for j € {1,2,3}

iVA|x] 5.

e Xi, . _
47I|8x,.R,1(x)|= |X|2 (l\/X-lX| 1)
e blxl
< (iVA-|x|™)

]

|\/X|e—b|x| e~ blxl
< +

|| x>

The second term decays like |x|~* by directly applying the first part of the proof. For the first
term we follow the same argumentation as above, but with the higher exponent 4:
Case I: |x| < 1. In this case we get

—b|x|
IV/Ale 1

I N

with the implicit constant [v/A].
Case 2: |x| > 1. Since e~? decays faster than any polynomial in |x|, there is a constant
C; > 0, such that e~**l < C]| x|~ for every |x| > 1. This implies

e bkl 1
<

| e

in this case, with a constant depending on [v/A]. O
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5. Sectoriality of Laplacians with (approximate) point source

Now let’s turn our attention to the resolvents of the Laplacian with point interaction
~ Ay, where a > 0. We do not only prove L?(w) - L?(w) boundedness of R}, but a more
general LP(w) — L4(w) result. Due to the simple structure of R), this can be shown with
elementary calculations. Similar regularizing effects are known for the heat semigroup in
the unweighted Lebesgue spaces, refer for example to [11, Chapter 3]. Weighted estimates of
this kind will play an important role in the semigroup estimates of the following chapters.

Lemma5.5. Let ¢ > 0,1 € C\ [0, 00) and R§ = (—Ay— AI)™! the resolvent to A. Let w = |x|™1.
Forevery p > 1 and 1 < q < 2, the residue term R}, as defined in (2.24) is a bounded linear
operator from LP(w) to L1(w).

Proof. Let f € LP(w). We have

E(X Ea d 1 e"ﬁ"d €iﬁ|y‘ d
Af_[]l@ /l(x’y)f(y) y_a_uﬁ |x| ‘/R3 |y| fy
From this it follows
— 1 ei\/xH ei\/x|)’|
HleHLq = ; / f(y) dy
(w) i
i T o T oo
1 / eiVAlyl eiVal|
= : f(y)dy|- (5.1)
as B4 Jes Ty T

First of all, it holds |& — %ﬂ > 0 because of « > 0 and Im+/A > 0. Next we show that

the function g(x) = % is in L1(w) and hence the last factor in (5.1) is finite. With

b = Im /) > 0 we write

q

ei\/X\x|
w(x)dx

Il = [

||
= /3 |eiﬁlxl|q|x|—q—1 dx
R

=/ e ball| |11 dx
R3
o0
mf e byl dy.
0

Now decompose the integration range [0, 00) = [0,1) U[1, 00). For the second integral with

r > 1 we have
[ee) o0
f e baryl-adr < [ e P dr < oo,
1 1
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5.1. Weighted Lebesgue-Spaces

since the exponential function e~? is integrable. In the range of the first integral we have

1 1
/ e bryl-ady < f r=9dr < oo,
0 0

because with 1 — g > -1 for g < 2 the singularity of the one-dimensional integral is mild
enough. Now it remains to estimate the first integral in (5.1). We have with Holder’s

inequality
ivValyl
e .
IO =] [ e om0 o)
fﬂ@ b R
< [ 1w () P ()lw(r) P dy
R3
1/p’
-b 4
<( 1w dy) " 1l
with % + 1% = 1 and again b = Im/A. The remaining y integral converges since
f eV w(y) dy ~ f°° oty dr = _L[e—bp'r]oo 1
R® 0 bp' by
By recollecting the terms in (5.1) we get the desired boundedness of R. ]

Now one easily obtains L?(w) boundedness of R.

Corollary 5.6. Let & > 0,1 € C\ [0,00) and R§ = (=An — AI)7! the resolvent to A. Let
w = |x|"1. For every 1 < p <2, RY is a bounded linear operator from LP(w) to LP(w). In
particular, 6(-A,) < [0, 00) in LP(w), and equation (2.24) is valid in the LP(w) sense, i.e. as
equality of bounded linear operators in LP (w).

Proof. This follows immediately by applying Lemma 5.4 and Lemma 5.5 to the right-hand
side of (2.24) with g = p respectively. O

Remark 5.7. The L?(w)-boundedness of the resolvent R}>* is difficult to prove with elemen-
tary calculations because of the less explicit structure of the resolvent (2.27). It will follow
from more abstract results in the next chapter. L?(w)—L1(w) estimates will then also be
derived in this context.

In the following lemma we formulate the well-known Hoélder’s inequality for the space
L?(w) in dimension d = 3, as well as a convolution inequality. These will be refered to in
later parts of the work.

Lemma 5.8. Let f, g : R* - R measurable functions.
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5. Sectoriality of Laplacians with (approximate) point source

(i) Let p,p’ > 1such that  + -; = 1. Then it holds

1 £ &l Ly < 1 F o 18] -

(i) Let p,q,r> L with  + 1 =1+ . Then it holds

_1
£ * &liaguy S 1oy w77

LT
with a constant depending on p, q, .

Proof. Holder’s inequality holds for arbitrary measure spaces, so in particular for the measure
w dx. The inequality in (ii) is a special case of the weighted convolution inequality from [30,
p. 208]. 0

5.2. Analytic semigroups and sectoriality

The following definition introduces a class of operators with certain spectral properties. They
allow us to represent the semigroups (S¢) 0 and (S;°¢) o in terms of the resolvents of the
corresponding generator. Semigroups with this property are called analytic in L? (w).

It is known that the operator —A, generates an analytic semigroup in L2(IR?), just by
the fact that —A,, is self-adjoint and semibounded from below, see [4, Chapter I]. In 1993,
by Caspers and Clément this was also shown in the setting of unweighted L? spaces for
2 < p < 3 using the Sobolev embedding theorem [8]. However, these results do not transfer
trivially to the weighted space L?(w), w(x) = |x|~!, since this space has a different structure
due to the singular nature of the weight. In particular, for any p > 1 the space L?(w) is not
contained in L? and vice versa. To the knowledge of the author, there is no literature yet
about the analycity of the semigroups (S%) 0 and (S;°¢) 0 in L (w).

The restrictions on p differ slightly compared to the unweighted case. Most importantly,
the upper bound is 2 instead of 3, because the weight introduces an extra singularity of order
1, see the proof of Lemma 5.17 below.

Definition 5.9. [41, p. 30]. Let X a Banach space and A : X — X a linear operator on X. A is
called sectorial, if

(i) there is an angle ¢ € (0, 5 ), such that

p(A)2Z,={1eC:¢p<argd<2m— g},
(ii) there is a constant M > 0, such that for every A € X,

M
RA < —.
H A ”X%X |/\|
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5.2. Analytic semigroups and sectoriality

Remark 5.10. Note that the situation in this definition of sectoriality is reflected at the
imaginary axis in comparison with the literature [41] or [25]. This is due to the fact that we
are interested in operators with spectrum in or around [0, c0). The transition between these
notations can be performed by using the identity —R,(A) = R_j(-A).

The following representation of a semigroup via the resolvents of its generator is an
important application of sectoriality.

Theorem 5.11. [41, Theorem 1.7.7]. Let A : X — X be a sectorial operator. Then, A is the in-
finitesimal generator of a Cy semigroup (T;) o satisfying | T;||; < C for some C > 0. Moreover,

1
T= o [eMRa(a)an, 5.2

= o e @) 52
where T is a smooth unbounded curve in 3, running from coe=® to coe’® for 9 < 0 < Z. A
semigroup that satisfies these properties is called a bounded analytic semigroup.

The curve integral in (5.2) is sometimes referred to as the Dunford integral [38]. The curve
I' can be chosen to be uniformly away from the origin, i.e. for any ¢ > 0 we can choose a
curve I satisfying |A| > ¢ > 0 for all A € T [38, Section 1.3]. We introduce a class of curves
depending only on a radius (the distance from the origin) and an opening angle in the
following definition. See also Figure 5.1 below.

Definition 5.12. From now on, let ' = T'(r,0) = I (r, 8) uT,(r, 0) u I3(r, 0) with

I, =T (r,0)={se®ecC:s>r},
L,=0,(r,0)={reeC:ne[0,2n-06]},
I;=T5(r,0) = {se® eC:s >},

where r = (') > 0 describes the radius of the curve and 6 = 6(T') € (0, 7) the opening
angle.

In the following chapters we will often deal with square roots of elements of I', because
the resolvent kernels contain a factor of the shape eV, 1 € T. The next lemma will be
particularly useful for different kinds of estimates in these situations. Note that we are always

.argz
at-S

using the principal branch of the complex square root with \/z := \/H e 2.

Lemma 5.13. Let I as in Defintion 5.12 and define
VT := {/y:yeT}.
It holds for all \/y € VT

Imﬂz\/;sing > 0.
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5. Sectoriality of Laplacians with (approximate) point source

ImA r

Re A

Figure 5.1.: Illustration of the path T and \/T. The elements of \/T have positive
imaginary part and /T is uniformly away from the real axis.

Proof. Firstlety € Iy, soy = se'® for some s > r. We calculate
VY = Vsei = \/seis.
Now, using Euler’s identity,

Im./y = Im(\/ge"g) = \/EIm(eig)
0

0 0 0
= \/EIm(cosiJrisinE) = \/Esinz > rsini.

In complete analogy, for y € I it holds for some s > r

Im./y = Im(y/se"'2) > \/rsin (—g) - \/?sing.

It remains to consider y € I;. This means

Vi e
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5.2. Analytic semigroups and sectoriality

for some 77 € [, 7 - 2]. Thus,

Im\/y = \/;sinq,
butsiny >siné forye [, m-%]and 0 < Z. O

It is important to note that the value of the curve integral in (5.2) does not depend on the
radius of the curve r(T), as shown next.

Lemma 5.14. Let T, ' two paths as in Definition 5.12 with (T) = 0(T") but r(T) > r(I’). In
the situation of Theorem 5.11 it holds

f e MR, (A)dA = f e MR, (A) dA.
T I’

Proof. Because of 8(T) = 8(I") and r(T') > r(I"), both curves I and I"” contain the points
r(T)e'® and r(T)e~"% Furthermore, by Definition 5.12, T and I" coincide on the piece
connecting coe~"% and r(T')e~"% and on the piece connecting r(T)e?® and coe’®. Hence, it
suffices to show

ﬁ e MRy (A)dA = f eMRy(A)dA, (5.3)
T T

where T = {1 e T : [A| = 7(T')} and T = {A eI":|A| < r(T)} are the two different paths
connecting r(I')e~"% and r(T')e’?. This is illustrated in Figure 5.2.
We know that

Ry(A)=(A-AD)!

exists for A € p(A). According to the Analytic Fredholm Theorem [45, Theorem VI1.14], this

implies that the function A — R, (A) is a holomorphic operator-valued function in p(A).

Of course, then for every t > 0 the function A — e R, (A) is holomorphic as well.
Remember that by Definition 5.9

p(A)oZp={AleC:m<arg)<2n-0},

because A is a sectorial operator. Note that the curves T and T are homotopic to each other
in the simply connected region Xy. Now we are able to employ Cauchy’s integral theorem:
Because T and T are homotopic curves connecting 7(I')e~*® and r(T')e’® and the integrand
is holomorphic, we obtain (5.3) and the proof is complete. ]

Depending on the structure of the generator and the resolvents, it is sometimes quite
difficult to prove sectoriality directly with Definition 5.9. In these situations the following
characterization of sectorial operators is useful. In particular, the resolvent structure of —A,
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5. Sectoriality of Laplacians with (approximate) point source

Imz

: r(T)e'®
; /,/” \'/r(r,)eie
" II
1 1
1 1
| '\\ Rez
1

‘\\\ ,A\r(r/)e—iﬂ
~<_|-- N .
\\\
\\ .
r(T)e-if

Figure 5.2.: Illustration of the curves T’ (green) and I (red) in the complex plane. The
curves form two homotopic paths connecting r(T)e~% and r(T)e®.

allows us to show a decay in the imaginary part of the parameter A. By part (iii) of the next
theorem, this is sufficient for sectoriality in our situation, see Lemma 5.17 for further details.
On the other hand, the resolvents of R} are difficult to estimate with direct calculations,
but the generator —H,, . is a bounded perturbation of —A, so we can apply part (iv) of the

next theorem, see Corollary 5.18.

Theorem 5.15. [17]. Let X a Banach space and A : X — X a densely defined operator with

generated semigroup (T;);so. The following statements are equivalent.

(i) A is sectorial.

(ii) (T}) 0 is a bounded analytic semigroup.

(iii) (T}) 0 is a bounded strongly continuous semigroup and there is C > 0 such that

fordeX,, ¢ e(0,7).

[RA(A) ] x=x <

C

(Im V)2

(iv) (T;)ss0 is bounded and A = B + P where B is a sectorial operator and P : X — X is
densely defined and bounded.
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5.2. Analytic semigroups and sectoriality

Proof. The equivalence of (i),(ii) and (iii) is the subject of [17, Theorem I1.4.6]. The equiv-
alence of (ii) and (iv) follows from the bounded perturbation theorem in [17, Proposition
1L.112]. 0

We investigate the sectorial property on the weighted spaces L?(w).

Lemma 5.16. The positive definite Laplacian —A is sectorial on LP(w) for w(x) = |x|™,

pe(1,2).

Proof. Firstof all, —A is a linear operator on L?(w) and o (-A) € [0, o0) as shown in Lemma
5.4. For A € [0, 00) we have arg A = 0, hence the condition (i) of Definition 5.9 is trivially
fulfilled for any angle in (0, 7). With this property in place, the estimate in condition (ii)
follows from the more general result for elliptic differential operators [25, Corollary 6.8]. [

Now we prove sectoriality of the operator —A,. A similar result was shown by Caspers
and Clément in 1993, but in the context of unweighted spaces L?(R?), 2 < p < 3 [8, Theorem
4.4].

Lemma 5.17. For a > 0, the operator —A, is sectorial on LP(w) for w(x) = |x|™%, p € (1,2).

Proof. We already know that 6(-A,) < [0, o) for « > 0, cf. Lemma 5.6. For the resolvent
estimate, note that
RS = Ry +Rj.

Because of the previous Lemma 5.16, we only have to consider the residue term R for
A e C\[0,00). Remember

1 eVl
o — B4 (4m)[x[|y|

Ri(x,y) =

Since « > 0 and b = Im A > 0, the absolute value of the denominator of the first fraction is

‘ ivA
a__

4

‘ b—iReﬂ‘ b
=|lao+ ——|>—>0.
47 4

So, for fixed a we have the decay

1

(x—%X
T

< C(OC)’
b

where C(«) > 0. Proceding as in the proof of Lemma 5.5 around formula (5.1), we have
eVl
N

R

HLP(w)—>LP(W) < ¥ (w)

e
b

LP(w)
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5. Sectoriality of Laplacians with (approximate) point source

For the last factor it follows by transforming r —

o0 1/p
< (/ e bprylop dr)
0

LP(w)

= pi-2/p (/w e Prylop dr) v
0

and the remaining integral converges for p < 2. Analogously it follows for the p’ norm

00 /p’
He_bHHLP’(W) se ([o et dr)l "~

eiVAL
-]

Since

we have in summary a decay of

C(a)

HR/\HLP(W)_,LP(W) < m (5.4)

According to Corollary 3.20, (S%)s is a bounded strongly continuous semigroup on L?(w).
Together with the estimate for the imaginary part (5.4) and Theorem 5.15, this is sufficient
for sectoriality, so the proof is complete. O]

Finally we also have

Corollary 5.18. For e > 0 and « > 0, the operator —H, . is sectorial on L?(w) for w(x) = |x|™1,

pe(1,2).

Proof. Clearly the multiplication operator f — V, . f is bounded in L?(w) for fixed «, e.
Hence, the operator -H,, = —-A + V, . is a bounded perturbation of —A. Since —-A is
sectorial and the semigroup (S;"*)»¢ is bounded, we also have by Theorem 5.15 that —H, . is
sectorial. ]

The sectoriality of the operators —A, —A, and —H, allows the following representation of
the corresponding semigroups.

Theorem 5.19. Let a > 0 and € > 0. Let p € (1,2) and f € LP(w). For the semigroups
(S¢) 120> (S¥) 10 and (S7°%) 0 with generators —A, —A,, —H, . respectively, it holds

1

(i) Sif=5- fr e MR, fdA,
1

(i) Sf=5— [F e MREFd),
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5.2. Analytic semigroups and sectoriality

1
S(x,é‘ - f fltRlx,é‘ dA’
(iii) S f el ALt f
with I as in Defintion 5.12.

Proof. As shown in Lemma 5.16, Lemma 5.17 and Corollary 5.18, the operators are sectorial
in L?(w). Thus, the claim follows directly from Theorem 5.11. O
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6. Semigroup estimates and convergence
properties

In this chapter we develop analytic tools, which are crucial to obtain convergence of solutions
of the nonlinear integral equations later on. In particular, time-dependent resolvent estimates
are proven, which then lead to L?(w)—L4(w) semigroup estimates using the representations
from Theorem 5.19. It is of special importance to ensure that the estimates for R}** and
(S7)s»0 are uniform in ¢ € (0, 1). Furthermore, we will prove convergence of S;"¢ towards
S¢ for ¢ — 0 in the weighted space. Results of this type have been derived only in unweighted
Lebesgue spaces so far.

Because this chapter will become quite technical, we want to give a brief heuristic motiva-
tion for the following steps. For full details refer to Chapter 7. Remember that one of our
main goals is to prove convergence for ¢ - 0 of u, , towards u,, which are the solutions of
the nonlinear integral equation (3.29) with semigroups (S;"°) 0 and (S{)o respectively.
Let’s assume for the moment that for fixed «, € > 0 we have sequences of functions (") ey
and (u((x"s) )nen> Which are the results of a fixed-point interation of the nonlinear integral
equation, such that for ¢ € [0, T']

ul (1) > ug(t), n— oo,

ul (1) > g e(t), n - oo,

where the limit is taken in the weighted space L?(w) for a suitable p. Assume further that
we can write the limits in L?(w) as telescopic sums

O Z LD )
O Z umD) _ )
Consequently it holds for each N ¢ N

f”(r) ul (1)

H”a(t) - ”oc,S(t) ”LP(W) ‘ LP(w)

(n+1)(t) u(n)(t) Z u(l’H—l) u((xi”ls)(t)

n=N

LP(w) LP(w)
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6. Semigroup estimates and convergence properties

We could now show the convergence

ul (0) ~ugd (0], + eV ) (6.1)

||u,x(t) - ua,s(t)HLp(W) -0, €¢-0,

if we would have the following two properties in place: On the one hand, for fixed N the
first term in (6.1) must tend to zero for ¢ - 0. On the other hand, the term 8, (N, t) must
become arbitrarily small uniformly in e when choosing N large enough.

In this chapter we develop the tools to prove the mentioned two properties. Resolvent and
semigroup norm estimates are proven which are uniform in ¢. Furthermore, convergence
of the resolvents and semigroups, i.e. the solutions of the linear equations, is shown in the
weighted space. In the next chapter this can then be extended to solutions of the nonlinear
equations.

6.1. Resolvent estimates for the approximate point source

In order to further analyze the semigroups (S;°°)»0 and (S{)»o via the representations from
Theorem 5.19, we need to develop some tools to control the involved resolvent terms R§ and
RY* for A € T, where I is the complex curve from Definition 5.12. In this section we focus
on the resolvent R{** corresponding to the approximate point source. Remember that the
resolvents of —H, , are given by

RS =Ry + Ry = Ry + Py(e) Agel1 + B

in the L? sense, see (2.27).
For the analysis of the resolvents R}** we need the following variant of [4, Lemma 1.2.4], a
convergence result in the unweighted L? space. As in Lemma 2.2 write for V : R?> - R

v(x) = |[V(2)['2,  u(x)=sgn(V(x))|V(x)|"/?, forxeR>

Lemma 6.1. For V = -1z, (0)(x), A € C\ [0, 00) and B as in Lemma 2.14 it holds
2

e[l+B5] ' — -

iVA|(v, )2
T

—az ' P&(O)] (p)9

where the limit is taken for ¢ - 0 in L> norm and (-, -) denotes the scalar product of Hilbert
space L? and ¢ is the eigenfunction from Lemma 2.8. The convergence is uniform in A if |A| < ¢
for a fixed ¢ > 0.

Proof. We follow the proof of [4, Lemma 1.2.4]. First, without loss of generality, we can
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6.1. Resolvent estimates for the approximate point source

assume that ¢ is scaled such that (¢, ¢) = | ¢[7, = 1. Then (¢,-)¢ =: IT is the orthogonal
projection on the eigenspace of By = uRyv to the eigenvalue —1 which is seen as follows: For
f e L?itholds

I*f = (9. (9. N)9)9 = (9. 9) (9. N = (9. N = 11,
so IT is a projection, and on the other hand
uRGILS = uRov(9, )¢ = (9, fuRovy = ~(9, )9 = ~I1f.
Now define
B} := P, (0)uR,v + %X(v, Ju.
We are going to show that
B: = By +¢B} +0(¢) (6.2)

with respect to the Hilbert-Schmidt norm. As in formula (1.2.43) in the proof of [4, Lemma
1.2.4], the mean value theorem implies

P(&)Re (%, y) = Ro(x, ¥) — ePL(£6(e))Ro(x, y) + #eiwu)ﬂu—y,

for functions 0 < 6(¢), 6(¢) < 1. This again implies

Bi(x.y)
= Pu(&)u(x)Rer (%, 7)¥()
= u(x)Ro(x, Y)v(y) ~ P (eB(e))u(x)Ro(x Y)v(y) + g;fwx)e*“”ﬁx-ﬂv(y).

Now compute

2

iV A
|BS - B, - eB/lle <||B§ — uRov — €P'(0)uR,v — s%(v,-)u

2
<26%(P, (¢8(¢)) — Po(0)|uRov 3

2
+2 <8|—\/X|> Huleiee(s)\/ﬂ" _ 1|(V, )
4

2
, (6.3)
2

where ||, denotes the Hilbert-Schmidt norm. To conclude (6.2), it suffices to show that the
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6. Semigroup estimates and convergence properties

last norm is uniformly bounded in ¢. This is the case because
. 2 .
Jule® @A 1w, ) < [ [ )PPVl < 1P dy dx
R} JR

([ Ivela),

which is clearly finite since V' € L!(IR?), and this completes the proof of (6.2). Now, applying
(6.2) yields
e[1+B5] ' =¢[l+By+eB) +o(e)]™
=¢[l+e+Bo+e(B; -1 ﬁto(‘e))}_1
= [1+e(1+e+By) " (Bi—1+0(¢))] " e(1+e+By)™"
= [1+T1(B, - 1) + o(e)] " [T+ o(e)]

in the L? sense. The last step needs further explanation: As in [4, formula 1.2.35], we have
the series expansion

(1+e+By) ' =¢ ' I+ ) (-e)"T™",

m=0

where
T = 13%1(1 +e+By) N (1-TI) = o(1),
so it follows
e(l+e+By) ' =TI+o(e).
From our calculation we conclude the L? convergence
lim e[1+ B§] ™ = [1+ TI(B; - 1)] 1. (6.4)

For the first factor it holds

I1(B,-1)

(¢, B19)

[ RO e

B iV (v,0)2 ’ )
Miﬂ(ﬁ)l +Poc(0)

[1+T1(B,-1)] ' =1-
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6.1. Resolvent estimates for the approximate point source

Now multiply IT from the right side

L L RO T+ 52 (e ) (v )e
iVAl(r.9)2 + p! (0)
4an 4

_ L L B eneee)esron
NV " A (r20) "

A A () NMAVRIE 4 pr(0)
NS B (IR ACI -

iV (v,0)]2 ivVa|(v,0)2

‘iﬂ‘/’” + P&(O) ‘in‘PN + P&(O)
1
iﬁ‘i:‘/’ﬂz + P&(O)

Inserting in (6.4), the proof is almost complete: The additional claim about uniformity

follows from the fact, that the first factor in (6.3) decays uniformly in |A| for € — 0 if we have

abound on A. ]
With this convergence result in place, we are able to prove the following time-dependent

estimate for the term [1+ B¢, | -

Lemma 6.2. Let « > 0,e € (0,1) and t € [0, T] for some T > 0. Furthermore, let A € T, where

I is the path from Definition 5.12. There is a § > 0 such that

(i) for|ev/t71A| < § it holds

e (1+ By )7, sV (6.5)
with a constant independent of € and A.
(i) for|ex/t™1A| 2 8 it holds
H 1+B, ] sl (6.6)

with a constant independent of ¢, t, .

Proof. In case (i) we make use of Lemma 6.1. This convergence result implies that for every
y > 0 there is a § > 0 such that

<A +p) T s

e -1
1+ Bf}
L2->]2

|7
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6. Semigroup estimates and convergence properties
eV
for 7 S J, where

= [w +P'<o>] (9:)9-

It follows
1 £ Al
el 3l = A 1087
L2->12
<Vt [ (@, )l 22
with

c(A) = o((1+V2)™).
for some ¢ small enough. Fix this § for the whole proof. So we can conclude

Hs [1+ B?lk}_l

L, $Vro((1+ V)™ (6.7)

L2

in this case. Because of

VA > /r(T) sing >0, (6.8)

the expression (1 + /1)1 is uniformly bounded for A € T.
To prove (ii), we distinguish two subregions, which are illustrated in Figure 6.1. First,
assume that [ev/t71A| > smizg Write b := Im \/A. Then, with Young’s convolution inequality,
2

we can estimate the operator norm of [1 + B¢, ]! as follows.
(P“(e))_lHB‘tE*AHLz_,Lz = \SHup HV(Rszt‘IA(') * Vg)”L2
g L2:1

< sup ||Raena(c) * Vgl
Igl =1

< sup [Rerna ()] lglle

lgll =1

< [Re2i-1a () 1
e—ebVETy]
[N,
R 47|y

_L‘/‘ e—|)" d
© 2b? Jwe 47yl 4
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6.1. Resolvent estimates for the approximate point source

Imz

|
[\S]
SIS

2 sin

Rez

Figure 6.1.: Illustration of the cases in the proof in the complex plane. In case (i) the
point z lies in the area surrounded by the inner arc of radius § and the diagonals of
angle 0. In the first part of case (ii) the point z lies outside the outer arc of radius
2sin"? 2. In the last subcase z is contained in the area between inner and outer arc
and the diagonals. This subset Z € C (gray background) is compact.

and the remaining integral is equal to 1. We have b > [v/A|sin g So it follows

p d < Sinzg ! (6.9)
b2~ g2|\/A Shet 2sin?? 2’ '
Consequently
_ 1 1
[1+B:,]" < < ~<2. (6.10)
R 5 [ w0

So we have a uniform bound in this situation.
It remains to investigate the case § < [eV/t71A| < sm_zﬂ Define z := €2t~'A and consider the
2

operator-valued function

Cszm F(z):=[1+B.]" = [14Bga] = [1+B,,]"

We already know that F(z) exists for |z| > izg Then, according to the analytic fredholm

sSin
theorem [45, Theorem VI.14], the function F is meromorphic in C \ [0, o), i.e. it has an at
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6. Semigroup estimates and convergence properties

most discrete set of poles. Assume z € C \ [0, 00) is one such pole. Then the kernel of the
operator 1 + B, is nonzero, so there is a ¢ € L2(IR3) with

B,g=-¢

Hence, -1 is an eigenvalue of B,, with eigenfunction g. Now recall the Birman-Schwinger
principle from Lemma 2.2: If -1 is an eigenvalue of the operator B, = P,(&)uR,,v, then z; is
an eigenvalue of —A + P, (¢) V. However, the latter operator has no eigenvalues in C \ [0, c0),
according to Theorem 2.5 and 2.9, because for & > 0 we have P,(¢) < 1, cf. Definition
2.12 and (2.26). Thus, there is no pole z, of F(z). This implies that F is holomorphic on
C~ [0, 00).

Because of § < arg A < 27— 6 and 8 < |e/t71A] < Sm%, it follows that z lies in the compact
set

ZQ,GSargZSZH—G},

2

2
Z:={zeC:8%< |7 <
si

which is uniformly away from the nonnegative real axis. The holomorphic operator-valued
function F is bounded on this compact set. Hence,

<c

B el PR

for z € Z and some ¢ > 0, which is a uniform bound and implies (). O

Remark 6.3. In the proof of Lemma 6.2 the condition & > 0 is needed to ensure that the
function z — [1 + B,]™! is holomorphic in the set Z € C. For a < 0, we have that P,(¢) >0
for small ¢ according to (2.26). This again raises the problem that —A + P, (&) V has at least
one negative eigenvalue, because V was chosen critical in Chapter 2, so multiplying with
a factor larger than one leads into the supercritical case, where negative eigenvalues exist.
Hence, the function z ~ [1 + B,]! has at least one pole in the set Z. Also refer to Section
9.2 for more details, where we deal with negative eigenvalues in the two-dimensional case.

Now we are prepared to prove L?(w)—L4(w) boundedness of the operator
Ry = Py(e)A%e[1+B:]'CE (6.11)

from Lemma 2.14 for suitable exponents p, g. Moreover, in this context we will investigate
the dependency of R,-1, on time ¢ € [0, T]. This will play a central role in the semigroup
estimates following afterwards.

Theorem 6.4. Let a > 0 and € € (0,1). Let A € T, where T is the path from Definition 5.12. Let
R, given by (6.11) the residue of the resolvent of —~H, . as in Lemma 2.14. Furthermore, let
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6.1. Resolvent estimates for the approximate point source

p>3and1<q<2and f € LP(w) and fix T > 0. We then have for time t € [0, T]

—a, 3.3 5.3 1,13
[R5y 5 max(e 5, 6175, 655 1 (612
where the implicit constant depends only on p,q, T

Proof. Using (2.27), it holds

H_OC »€

fHLq(w) = |P (€)|HA€ 1AHL2an(W)H 1+B£ IA]_ HLZALZ HC?IAHLP(W)%LZ Hf“LI’(w)'

Now the operator norms can be dealt with separately. In the following two steps we develop

estimates of the C?_, ) and the A%_,, term. This is done by explicitly calculating and estimating

the corresponding integrals. This part is quite technical. In the final step of the proof we will

collect the calculated bounds and employ Lemma 6.2 to estimate the norm of e[1 + Bf_, | ]~
Step 1. By definition of the operator norm it holds

€ — €
[Caliogyor = sup Chug],a
Hg”LP(W)*

Now

e 5 v ez\/t Aex—y| d 2 d
H t—lAgHLz—fR3 (x) /]R3 mg()’) Y X
et ioplexyl 7
< lglzomy fRS V(x) <_/R3 WM" d)’) dx

—tlbply\ ’
=gl [, VE (L, Gl +xl” s

3 _hP/M
ey 2
- gl [R3V(x>( Vil ay)

<o

Because of \/ < /T and ¢ < 1 it holds
Vty +ex| S max{ﬁ|y|, |x|}.

N .
So, for |\/ty + ex| $ \/T|y], using > — ' = —1, one obtains the bound

2
7

£ , IT _bp|y| P d < %_lTl
ol 5877 v ([ 0w
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6. Semigroup estimates and convergence properties

whereas for [\/ty + ex| S |x| we get

B S ST et N
p p _— P
H t*lAHLp(W)%Lz ~ fRS ()] w (47y])? y XS >
note that because of o
bzIm\/X>\/r(F)sinE>0 (6.13)

the exponential decay of e~ does not vanish and the remaining y integral is uniformly

2
bounded in b and consequently also in A. Concerning the outer integral, |x|? is clearly
integrable on a compact set. In summary

3
7

|Cey <BOD VT =B (14 VT, (6.14)

LP(w)—>L2 ~

Step 2. By definition

HAi-IAHLZqu(W): sup HAst-l)LgHLq(w)'
lgll2=1

Using Holder’s inequality we can extract ||g| ;. and obtain, in analogy to Step 1,

—2t_%b|x—£y| 2
A sf -1 T v()dy| 4 6.15
R N == O IS

First we restrict the outer integral to the complement of a centered ball, i.e. we consider the
case where (2¢)~'x € Bz(0)“. This implies |x| > 2¢|y| in the inner integral, so |x — ey| > 3|x|.
We then have, because of € < 1, the bound

et 7 blx| 4 -t 2 blx]

— | V(y)dy=—

iy Je YOV
for the inner integral, which leads to the estimate

. ot 3 4blx] , o~ dbl
AS H S/ —dxztl’i/. ——dx
|45 L2=L1(w) ~ Jpa |x|a+ R [x|ort

and the remaining integral exists because of g + 1 < 3 and is uniformly bounded in A € T
because of (6.13). So we have

|4, | Stie, (6.16)

L2-La(w) ~

We still have to deal with the case where (2¢)'x lies in the ball Bz (0). In this situation
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6.1. Resolvent estimates for the approximate point source

we distinguish again subcases concerning the ratio [ev/t~1A|. Let § as in Lemma 6.2.
Case I: |e\/t71 | < 8. Here we estimate the inner integral in (6.15) as follows

e—2t_%b£|y|
f ———V(e'x+y)dy
R

3 (4mely])?
1
<e? —  V(ex+y)d
w e & Y
< _23—71 ! dy.

2 JB(r) (4nly])?

Note that [¢~'x + y| < Z can only hold for |y| < 2 because ¢~!|x| < 7. Thus, for the outer
integral in (6.15) one obtains the bound

V((2¢)71 V(3
HAS_I Hq < g_q M dx < 82_q ﬁ dx s 1’
=11 R R3

200-1100) * E |x|

using the condition (2¢)~'x € Bx(0) and the fact 2 - g > 0.
Case 2: |ev/t71A| > 8. Here we choose a slightly different approach to estimate the inner
term in (6.15) in order to gain a decay in t. It holds

e—zf%bs\y|v . d
o @meyp & F Y
-2bly|
& Jes (anly))?
Vit

<Y
~ b
&3

where we have used (6.13). Returning to the outer integral of (6.15) with (2¢)~1x ¢ Bz (0)
we obtain

q 3,4 V((2¢)x) b 3,4 V(3) b3
HAi_l/\HLZ—)Lq(W) S & th4 /R?’ —|x| dx <e& zqt4 Aa —|x| dx S & zqt4
and finally
€ < 221
HAt‘lAHLZ_,Lq(W) S e 2ta. (617)

Step 3: Conclusion. Now it remains to collect terms in the different cases.

Case I: [eN/t711] < 4. It holds

HE?’,TAHLP(W)%M(W) < P"‘(g)HAi*IAHLZQLq(W) He[l + Bifl)t]_l HLZALZ HC;:*IAHLP(W)»LZ'

1.1 1 q_3
St atit T
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6. Semigroup estimates and convergence properties

using (6.16), (6.5) and (6.14).
Case 2: |e\/t71A| > 8. We have

H—(x,s

Ry < Pu(e) “Ai—ll“ L+ By, H

HLP(W)QM(W) L2—Li(w) HS[ L2512 Hcf—l/\ HLP(W)—>L2'

1.1 2.3 1. 53
Smax{ti 2,ea 2ti}et 2

11 1. 13
<max{ts 2,ti}t 2,

using (6.16), (6.17), (6.6) and (6.14). Note that % - % > —1 implies 8%_38 <1.
Concluding the proof, by summing up both cases we have

—ae 14l 3 1,13 53
IR () oy < € g T)max{e a2, 1072720, 63730} | 1y

where C(p,q,T) =o(1 + Tﬁ) for fixed p, q. O
From this theorem, we immediately obtain the following consequence by setting t = 1.

Corollary 6.5. Under the conditions of Theorem 6.4, the resolvent residue R is a bounded
operator from LP(w) to L1(w). This holds uniformly in € > 0.

Now we prepare ourselves to transfer the previous results for the resolvents to the cor-
responding semigroup. Under the conditions of Theorem 6.4 we introduce for ¢ > 0 and

feLo(w)

STf = L fr e MRy f dA. (6.18)

271

This is well-defined, because —A and —H,,  are sectorial in L?(w) and hence

+ R !

HEZ,SHLP(W)»LP(W) S ”R"HLP(W)—’L"(W) A’SHLP(W)—JP(W) S m

using (2.27), with an implicit constant depending on « and e. It follows

—a,e 1 _ —a,e
Sf+S" f:ﬁ[re MR, + RY)FdA
1
e A
T

2
= S¥°f.
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6.2. Resolvent estimates for the point source

Theorem 6.6. Let p > 3 and 1 < q <2 and f € LP(w). We then have for time 0 <t < T
|s:

where the implicit constant depends only on p,q, T

<max{t2 TR TR 2P}||fHLp(W), (6.19)

Proof. We immediately have

S f s [R A

27mi

el Je

:271

where we used (6.18). For the path integral it follows by substitution A — ¢~1A

f e MR Fd) = / e MR Fd)
T t~1r
=t-1f SARE Fd),
T

because rescaling of the curve I' doesn’t change the value of the integral, as seen in Lemma

5.14. Hence
‘ Lq(w) 27Tt / 7ReAHEt:1AfHL‘I(W) d/\

By applying Theorem 6.4 one obtains

—,E
t

fe-ReA max{ﬁ‘%, £, ti+%_i}“f“LP(w) da

Li(w) 27'[1‘

and the proof is complete. ]

6.2. Resolvent estimates for the point source

We turn our attention to the resolvents of —A, and the associated semigroup. Similar to
(6.18) we introduce for t > 0 and f € LP(w)

—a 1 MR
= — 2
S f szre Ry fdA (6.20)

89



6. Semigroup estimates and convergence properties

which is well-defined because of the sectoriality of —A and —A, and the decomposition
(2.24). The path I is given by Definition 5.12. Again, for ¢ > 0 it holds

S*=8,+8S,.

In this section, we can proceed more directly, because the resolvent kernel is explicitly given.
We start with a pointwise estimate.

Lemma 6.7. For A € C~ [0, 00) let R, the residue of the resolvent of —A as introduced in
Lemma 2.11, with integral kernel

1 eVl
o 2 (4m Py

Ri(x,y) =

Let f € LP(w), p > 1. We then have

—u e—\/FIm VA x| 31
[Rinf(x)] 5 T 1 e oy (6.21)
for A eT, and
0<S, £ 527 w|f] gy (6.22)

where gff given by (6.20) for t > 0 and the implicit constants depend on p.

Proof. With (6.20) and the nonnegativity of f we obtain

S R (Y1
(O,oo)aStf—zﬂifre RS fdA
fr e MRS fd)t’.

:271

Now, for the path integral it follows

f MR fdL =1 f e R, fd)
T

r t

- p! fr e R, fdA,

because rescaling of the curve I' doesn’t change the value of the integral, which has been
shown in Lemma 5.14. Hence

—a 1 =
Stf < 2_7'[t fre—ReA |Rt*1/\f| dA. (623)
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6.2. Resolvent estimates for the point source

We calculate with b = Im /A
eVt byl
(6.24)

7 1 e~V Tblx| .
-1 < .
[REf () PR o Sayr Ny

@ - 4

The remaining integral is, using Holder’s inequality in the first step and then switching to
1

polar coordinates and transforming r — ¢z,

fw eV £ ()| [w(y)|dy < ([R e VI iy y) dy) "N ler)
© I 6.25
= (471/0 e br rtd7>p 1£1 2o ) (629
S t?”fHLP(w)'

Because of « € [0, 00), which is uniformly away from the curve I', we have

VIV < VR/r(T)

(6.26)

1
ivit1A

’(X T T 4n

Collecting terms from (6.25) and (6.26) in (6.24) completes the proof of (6.21), because
1 3 1

\/tt? = 277, On the other hand, we can up to a constant estimate the right-hand side of

(6.24) from above by
w( )27 fll Lo -

Collecting terms in (6.23) we get
SEF) £ O T gy [e ™ dd

11
2 e w ()| fl Loy

S
because of ; = 1 - 7, which completes the proof of (6.22). O
Corollary 6.8. Under the conditions of Lemma 6.7 it holds for f € ®?(w)
(6.27)

0<SFf S A+ 1flzot #)w.
Proof. Since S* = S, +S,, the claim follows from the previous Lemma and S, f $ S,(w) < w,
[

cf. estimate 3.9
Remark 6.9. The exponent 1 — 117 of t in Corollary 6.8 corresponds precisely to the d = 3 case
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6. Semigroup estimates and convergence properties

of estimate (2.76) in [20] with exponent

1 @)= _ 1 p-1 11
2 4p 2 p 2 p
Also refer to Corollary 3.19 above. The estimate there was obtained with different methods,
estimating the kernel p, ; directly.

Corollary 6.10. Let f € LP(w), 1 < q <2 and p > 1. We then have

—a 1_1
HRt“/\fHLq(w) S £ “fHU’(W)' (6.28)
for A eT, and
—a 11
51 TV oy (629)

Proof. We apply the L(w) norm to formula (6.21)

—a e L EY
_ 2
HRt’IAfHLq(w) ~ 47.[| | Lq(w)t ? HfHLp(w)- (6.30)
Now an easy calculation shows that
e~ Vit ibl 11
— Ste 2
4n-| La(w)

for g < 2, so we have shown (6.28). Consequently, applying the norm to (6.23), following
the steps in the proof of Lemma 6.7, yields (6.29) and the proof is complete. ]

6.3. Summary of semigroup estimates

In the norm estimates of the previous chapter, most importantly (6.12) and (6.29), difterent
potencies of t occured on the right-hand side. In order to unify the estimates and obtain
more practicable semigroup bounds for further calculations in the next chapter about the
nonlinear equations, we introduce the following technical lemma.

Lemma6.11. Let N e N, T >0and t € [0, T]. Let zi, ..., zx € R. It holds

N
max 1% < Y % < NC(T) ™% (6.31)
J

i=1
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6.3. Summary of semigroup estimates

with
C(T) = (1 + Tmi(zi72))),

Proof. The first estimate in (6.31) is trivial. It remains to show the second part. Let i ¢
{1,...,N}. We have

TZi*mianj’ T 2 1’

tzi — tminj zZj tz,»—minj Zj « tminjzj .
1, T<1,

where the last estimate follows from ¢ < T and z; — min; z; > 0. Summing up

N N
Z tZi S tl’l’lll’lJZJ Zmax{l’ TZi*mianj}

i=1 i=1

N

S tmll’l] zj maX{N, Z Tzi_minj ZJ}
i=1

S tmianjN(l + Tmax,-,j(z,-fzj))

completes the proof. O

Note that Lemma 6.11 will only be applied for N < 4, which is the number of different
t-potencies we obtain in the semigroup estimates.

Theorem 6.12. Let p > 2 and 1< q<2and f € LP(w) and 0 < t < T for T > 0. There is an
exponent z(p, q) > —1 and a constant C(p,q, T) € o(1 + T) such that

1S5 flLawy < €2 @ TIEPD| £l Lo (6.32)

and, uniformly in e,

1S5 flacuy < C(2> @ TIELD| 1y (6.33)

Furthermore, for p large enough, we have z(p, q) > 0.

Proof. By definition of the semigroup (S¥)»o we have the decomposition

—a
”S;xf”m(w) < HStf”Lq(w) + Hstf”L‘i(w)- (6.34)

For the second term we have the estimate (6.29)

1 1
P
La(w) ~ ta » Hf”Lp(w)-

|st1

93



6. Semigroup estimates and convergence properties

Now let’s turn to the heat semigroup in the first term. We compute directly, using the heat
kernel p;,

ISefaqwy = 12e# fllLaqw)

1
S HPtW ’

Ml

using the inequality from Lemma 5.8(ii), with | = 1+ 5> — 7. For the remaining L" norm

involving the heat kernel, it follows with a transformation x — /£x

1 1
1 i<, r r 3,131 i<, r r
= 3 [ e |x|pdx | =t 22— / e i |x|rdx
L' Axts R3 4 R3

This exponent of ¢ is

31 3 3 2 1 1 3 1 1
—t———==(l+———= |+ —=—==——-—.
2r 2p 2 2 3g p

_1
o

The remaining integral is a constant depending only on p, g. So it holds

11
[Sef liaguy St 21 1oy (6.35)

Returning with (6.29) and (6.35) to (6.34), we obtain

1_1
ISE A lLagwy St 1 F Loy

Since p, q > 1, clearly the exponent z;(p, q) := é - % is greater than —1 and nonnegative for
P > q. So z1(p, q) satisfies the desired properties.
Similarly, we can decompose

1S5 f Lawy < 1Sef I pawy + IS¢ Flaqwy- (6.36)

With estimate (6.19) and (6.35) this leads to

1_1 13 1.3 1 1 3
1S5 £ () Lagwy S (tq »+max{t2 ¥, t3 %, ta 2 2 }) 17120y (6.37)
with an implicit constant depending on p, g, T. Now define

1 11 31 31 1 3],
p2 204 2pqg 2 2p|°

zZ(p,g)=min{ ———, - - —, — — —, — — — —
2(p,q) {q
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6.4. Convergence of the resolvents in the weighted space

Using the inequality (6.31), this implies

1S5 £ ) zauy S PP fl oy
Because of p,q > 1 and g < 2, all four numbers

1 11 31 31 1 3

are greater than —1 and nonnegative for p large enough. Clearly this means that z,(p, q) sat-
isfies these conditions too. Defining z(p, q) := min{z;(p, q), z2(p, q) } and using inequality
(6.31) again completes the proof. O

6.4. Convergence of the resolvents in the weighted space

With our resolvent estimates in place, we can now show convergence of the resolvents in the
weighted space L1(w, R?). This is a variant of the result from [4, Theorem 1.2.5] in the L?
space. Note that similar convergence results for unweighted L? spaces can be found in the
literature, for example [3, Theorem 3.1] in the case p € (2, 3).

Theorem 6.13. Let 3 < p,q < 2. Then for every A € p(—=A,) it holds
H(Rf\c’s - R/‘f)fHLq(w) ~0as el0

for f € L2(R3) n LP(w,R3).

Proof. For the whole proof fix f € L2(R3) n L?(w,R3) and A € p(—A, ). First we restrict our
attention to the area away from the origin, more precisely B; (0)¢. With Holder’s inequality
we get

H(R;’s B R;’f)f”Lq(W,Bl(o)f) = H(R;‘{s _ Rg)f'wl/q”LQ(Bl(O)c)
SRS =R 25, 0y

w!/1| (6.38)

L' (B1(0)¢)’

1 1
where 713
because

= é. The first factor converges to zero for ¢ - 0 according to Theorem 2.15

H (R;,S - Rg)fHLZ(Bl(O)C) S HfHLZ(]R3) H(RZ’S - Rg)HLZ(Rs)%Lz(Ra)’ (639)

and f € L2(IR*) by assumption. For the second factor of (6.38) we have, independent of ¢
and f,

1/q'

HWI/qHLq’(Bl(O)”) - H| ' |7q//qHL1(Bl(0)C) <o

since the exponent satisfies %/ > 4, which implies integrability in any region away from the
origin.
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6. Semigroup estimates and convergence properties

Inside the unit ball, for § € (0, 1) we further decompose B;(0) = Us U V5, where Us =
Bs(0) and Vi = B;(0) \ Us. Of course, for every ¢ in the range it holds

H(R;,s - Rz)fHLq(w,Bl(o)) < H(R;’s - R;‘)fHLq(W,Us) + H(Rg’e N R;‘)fHLq(w,Va) (6.40)

On the annulus Vs we have L2(V;) ¢ L1( V), so with Holder’s inequality it follows

o, o« a, o 1
H (RA f- RA )fHL‘I(w,VJ) S H(RA f- R/\ )f W /qHLZ(Vs)
> 1
<R = RS oy 197 e
and again it follows convergence to zero of the first factor as in (6.39). We have |w'/2| .y, ) ~
8-1/4 < 0. So for each fixed & the second term in (6.40) converges to zero for £ — 0.

Now we consider the first term in (6.40). First we show that for each # > 0 thereisa Jp > 0
such that

limsup (RS = RSy, 0 < ol ooy (641)
£—

for all § < §, and some ¢, > 0.
We have

H(R;)S - Rg)fHLq(W,U&) < HE/\fHLq(W,UB) + HEZfHLq(W,U(;)'

As in the proof of Lemma 5.5 around formula (5.1),

7 A A
A o * |7 S O
eiValyl eVl
_ f 3 f(y)dy
R |y |- Li(w,Us)

eiVA|
_ ‘/R3 Wf(y) d)/ HR/\(')“L‘I(w,Ua)

IN

, 1/p'
(L1 w3 dy) ™ 1 i IR O s
S Aoy IRAC o >
using Holder’s inequality. Now

e‘b‘ﬂx‘

IR Ol 0, = ., T &

5
= 471[ e b9 yl-a dr
0

5
S4nf ri=4dr
0
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6.4. Convergence of the resolvents in the weighted space

So choose

to obtain

HﬁifHLq(w,Us) < CIWHinp(W) (6.42)

for § < §; and some ¢; > 0.
Concerning the residue term R, ", remember that

Ry = Py(e)A%e[1+ BS]CE.

According to Lemma 6.2 and Theorem 6.4 and the calculations in its proof, we have that
the operator Py(e)A%e[1 + B{]™! is bounded from L? to L4(w), uniformly in e. Hence, it
suffices to show that H Cif H L2(Us) becomes sufficiently small for decreasing §. The arguments
in step 1 of the proof of Theorem 6.4 imply

) ) b 7
1 Ty = U f, v ([ i ) e
$ 1oy 1
= oy 370"
Thus, we choose
8, = 85(n7) = ’7%

to obtain

HEZ’SfHLq(W’U&) < CZYIHinP(w) (643)

for § < §, and some ¢, > 0 up to a generic constant depending only on p. Finally choose

60 = min{@l, 62}, Cp:=C +Cy
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6. Semigroup estimates and convergence properties

which yields (6.41). By nonnegativity of the norm it follows

0< lglgg (R - R)f| hm 'sup |(Ry* = R f

La(w,s) La(wuy) = O

so the proof is complete. ]

6.5. Convergence of semigroups in weighted spaces

With the convergence of resolvents from Theorem 6.13 in place, it is now possible to prove
the convergence of the semigroups for fixed t. This is done using the representation of
semigroups with path integrals.

Theorem 6.14. Let p,q € (2,2) and t € [0, T]. For f € L> 0 LP(w) it holds for ¢ - 0

[(SF = 85) fllzaguy = 0

Proof. By the representation of sectorial semigroups (5.2) we have

*,E 1 - 24 «,E
1085 =) Fluncny = 37| e (RS- RE)f

1

ng “tReA|(R}y - RY )f”mw) (6.44)

Li(w)

with the path T as in Definition 5.12. By Theorem 6.4 with ¢ = 1 it follows uniformly in e on T
Hil’ f(‘x)HLq(w) S HfHLP(w)‘
A similar estimate holds for R): By setting ¢ = 1 in (6.28) we obtain

Hﬁjf(x)HLq w N Ml_l”fHLP(w)‘
(w)

Using the structure of the path I', these estimates imply

e MR =RY) gy S €A+ D) f Loy < €U + D)o,

which is an integrable majorant for the integrand in (6.44) because of the exponential decay,
note that for the opening angle 6 of the curve I it holds cos § > 0, because 0 € (0, Z). Now,
using Lebesgue’s theorem,

. o , —tRel1: A e -
lim (52 = S7)f 1oy § [ 7™M im | (RS =RV, 41

by Theorem 6.13. H

98



7. Convergence of solutions of the nonlinear
equations

In this chapter we will prove the main convergence result for the solutions of the nonlinear
integral equations

tee(3) = S2F(0) - [ "5 (B (5)) (x) ds, e < (0,1), (7.1)
towards
ualt,3) = SEF() =1 [ SEL (7)) () ds. (72)

for ¢ - 0, where t > 0 is fixed and f is a function with sufficiently small norm in the weighted
space, satisfying the conditions of Section 7.1. In order to do so, using the analytic tools from
the previous chapters, we establish a Picard iteration

ul)(t,x) = 8§ (x)

(n) a,e ! a,e (n-1) 1+ (73)
ulfd(tx) 1= SE A ()~ [ Sl (@) () ds, e,
Similarly, we define for the point interaction the iteration
ul® (1, x) = S¥f(x)
(7.4)

) (00) = 26 = SR O) ) ds, e

We start with the technical framework and some important pointwise properties of the
solutions, before we prove the main convergence result in Section 7.3.
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7. Convergence of solutions of the nonlinear equations

7.1. Technical settings

We briefly introduce the analytic framework for the whole chapter. First we choose the
following set of parameters:

0g/3<§, p,qe(%,Z), qa=(1+p)p. (7.5)

Furthermore, let x > 3 large enough such that for the corresponding exponent in Theorem
6.12 it holds z(k, q) > 0.
From now on we assume that f : R* - [0, o) is a function satisfying

fe® nL*nL*(w)

with @7 as in Definition 3.1. For example, every continuous nonnegative bounded function
with bounded support satisfies these requirements.
We will also need the following elementary estimate, introduced in [20, Lemma 3.6].

Lemma7.1. Leta,b>0and0< < 1. It holds
lat*P — b1*P| < (1 + B) max{a, b}P|a - b|. (7.6)

Proof. The estimate follows directly from the mean value theorem. O]

7.2. Nonnegativity of solutions

In this section we want to collect some pointwise properties, especially nonnegativity, of the

iterated solutions u§"2 , u&"), n € N, defined in (7.3) and (7.4). The main technique here are

pointwise estimates of the semigroups (S¢)o and (S7"*) 5o for fixed € € (0, 1].
We follow the argumentation in [20, Section 3.2 and 3.4]. Fixatime T > 0 and a measurable
function y : [0, 00) x R4 - R with
0<y(t,x) < M(1+t)wh(x). (7.7)
For a suitable M = M(T) > 0and x = g - W%L(P*l) it holds
(S £(x))F < y(t,x), (7.8)

this follows from [20, Corollary 2.11]. Now define for N e N, N > 2,

vn =y AN,
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7.2. Nonnegativity of solutions

The next lemma is an adaption of [20, Lemma 3.8].

Lemma 7.2. Let f € ®?, T > 0 and vy,,, N,n € N, N > 2, given by
vno(6x) = S f(x),
¢ (7.9)
v (82) = SEF() =11 [ Sy (s)ras () () ds.

Then it holds

0 <vnn(tx)<SEf(x)
for0<t<T.

Proof. We want to fix N and proceed by induction over n. The claim is trivially true for
n = 0. Assume as induction hypothesis, that 0 < vy ,_; < S¥f(x). We have

St (un(s)vnnaa(s)) < SE(INSEf) <y NSPf. (7.10)

For now we restrict our attention to the time interval 0 < ¢ < N-!. Here it holds because of
(7.10)

N71
S‘t"vaN,n(t)sz‘f—Sf‘fnfo n 'Nds=0.

The upper bound follows from the nonnegativity of the integral in (7.9). This bound also
implies vy ,(N71) € ©P.

In the next step we want to use induction over time intervals of length N~!. We have
shown that vy, is nonnegative on [0, N~!] and that vy ,(N~!) € ®?. To proceed with our
induction, assume that vy, is nonnegative on [(k — 1)N~1,kN-!] forsome 0 < k < NT -1
and that vy ,(kN~1) € ®?. We now want to shift time and start the iteration with vy ,,(kN~1)
instead of f. In order to do so, define

vl(\le(t) =vna(t+ kN,
)y (N7Y), (7.11)

>n

y (1) = yn(t+ kN,

To apply our result from the previous step, we need to show that

t
v = SEf —n [ SE P OW L) as (7.12)

holds for for 0 < t < N~1. By applying S¢ to both sides of definition (7.9), it holds for a time
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7. Convergence of solutions of the nonlinear equations

r>0
Stvsa(r) = S f =1 [ St (i (5)vaa(5) s

Fix r = kN~! and 0 < t < N~L. Then, using definition (7.11),

kN~
S*vnn(KN7Y) = S“f(k) SE NS — 11/ SY vt (n($)va o1 (s)) ds. (7.13)

With the change of variables s = s — kN~! it also holds

t
1 [ SR ds = 0[S (s AN a5+ KN)) ds
t+kN~!

=7 SNt S(WN(S)VNn 1(s)) ds. (7.14)

kN-1

Inserting (7.13) and (7.14) into the rigt side of (7.12), it follows

S - [ St (611 (9) ds

t+kN~!
=St S [ S ()i (5)) ds
= vt + kN7 = {0 (1)

by applying definitions (7.9) and (7.11) in the last two steps. So we have verified (7.12). The
first step of the proof implies that 0 < v(k) (1) <S¢ f for 0 < t < N1 But this is equivalent to
0< vy, (t)<S¢ffor kNI <t<(k+ l)N 1. Thus, the claim follows on the whole interval
[0, T and the proof is complete. O

Lemma73. Let f €e @7, T >0 and v,, n € N, given by

vo(t,x) =S¥ f(x),
() = SEFC) =1 [ SEL(p(s)raa(9)) () ds.

Then it holds
0<v,(t,x) <SFf(x) (7.15)

for0<t<T.

Proof. The claim follows with an induction over # from Lemma 7.2 and the fact that

Il\]lglo |VN,n(t)_Vn(t)| =0 (7.16)
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7.2. Nonnegativity of solutions

for each n. For a proof of this convergence and more details refer to [20, Lemma 3.9]. [
Theorem 7.4. Let f € ®?, T > 0 and ul” neN, given by (7.4) Then it holds
0 <ul”(t,x) < S¥f(x) (7.17)

for0<t<T

Proof. We proceed by induction over n. The claim is trivially true for n = 0. Now let n > 1.
Assume as induction hypothesis, that

0 <ul”(t,x) < S¥f(x)

holds. Then the integral in (7.3) is nonnegative and the upper bound in (7.17) follows.
Furthermore

0 [ s sy ds < S ds
<n [ SEwost)ds

Using Lemma 7.3, this implies the nonnegativity

t
ul (02 82f - [ ST (w(6)Sf) ds = (1) 0.
This implies the lower bound in (7.17). l

Lemma 7.5. Under the conditions of Section 7.1 it holds for all n € N and every € > 0

0<ul”(t,x) < S¥f(x),
0 <ul(t,x) < S¥f(x).

Proof. The estimates for u$" where subject of the previous Theorem 7.4. Concerning the

solutions u,(xng) ,n € N, note the following: We can repeat the proof of Theorem 7.4 using

Lemma 7.2 and Lemma 7.3 and substitute S;"° for Sy everywhere. Instead of estimate (7.8)
we have for every fixed ¢

(77 f(x))F < Cle)wh (), (7.18)
(n)

using (3.16). Hence, we can conclude the claimed estimates for u; . O

Corollary 7.6. Foreach t € [0, T] and € > 0 it holds

(7)1, (8P f)"F e Lo (w).
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7. Convergence of solutions of the nonlinear equations

Moreover, for every n € N it holds
u(6) w2 () e L2 (w).
Proof. Using Theorem 6.12 and (7.5), it follows

[24 o 1 z(x, 1
(5278, = ISEFILE, < Clx g T) G0 2
and we have the same estimate for (8" f)'*#| ;- The claim for ul (8, )18, ul") (1, ) 148
follows with Lemma 7.5. H

7.3. Convergence of solutions in the weighted space

No we are able to prove the main convergence result stated at the beginning of the chapter
The strategy will be to prove a cauchy property and then convergence of the functions ul ( t)
to U (t) for n — oo, but uniformly in e. This uniformity can then be exploited to wrlte
for each § > 0 the function u,(t) as a finite sum consisting of N € N terms involving
(ul") (1)) nen plus an o(8) term. Because N, 8 are uniform in ¢, it then suffices to prove
convergence for ¢ — 0 of the first N summands using the convergence of semigroups from
the previous chapter, Theorem 6.14. Also refer to the motivation given at the beginning of
Chapter 6.

Uniform Cauchy property

We need to show that the sequence (u((x"s) )nen is @ cauchy sequence in the weighted space,

uniformly in e. In the following lemma we deal with the first iteration step.

Lemma 7.7. Under the conditions of Section 71, for every T > O there is a constant Cy > 0 such
that for all t € [0, T']

<1
Li(w)

uld(t,) —ull(t,-)

te[0,T]

if [ f 1l ey < Cr-

Proof. We have by definition of (7.3)

ued(1,7) = uigd (1

= S&E(S%E f)B ds
L"(W) WHf f) L9 (w)

<n [0 [ses(seef) 1A, ds
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7.3. Convergence of solutions in the weighted space

Using Corollary 7.6, it follows (S&°f)1*# € LP(w). This allows us to apply Theorem 6.12
again, to obtain the bound

[S24(S2F) ]y, < Cpa T) (1 = )0 (52
- C(pq (- sy sz 1F
< C(p.q. T)C(k g, T) (1 - s (P00 148)

LP(w)

1+
Lr(w)"

By the choice of parameters it holds z(«x, q)(1 + ) > 0. This leads to

a2t -1, <10 T)C(e g, TP 1L, 0 0p) [Tston g

Li(w)

:ﬂc(l%q’ T)C(k,q,T) ﬁHf”l*ﬂ 12(5.9) (1+B)+2(p,q)+1
1+2(p,q)

Because of z(p, q) > —1 the exponent of ¢ is positive and we can apply the supremum

uld(t,) - ul(t,)

C(p,q,T)C(x,q, T)"*F
<’7 (p,q,T)C(x,q,T) Hf”;éfw)TZ(K>q)(1+I3)+Z(P,q)+1

sup ‘

ot La(w) ~ 1+z(p,q)
and choose
”fHLK( ) <ere (ﬂC(p’ 2. )C(x. 4 T)H/j TZ(K)q)(1+ﬁ)+z(P)OI)+1) o >
’ 1+2(p.q)
which completes the proof. ]

With this initial case in place, we can proceed with the induction.

Lemma 7.8. Under the conditions of Lemma 7.7, for every € > 0 the sequence (u‘(x s)),,eN isa

Cauchy sequence with convergence rate uniformly in € with respect to the norm sup, (o 11 ||l La -
More precisely, for every § > 0 there is a Ng € N such that

sup ‘ué"g”)(t) u(")(t)H

te[0,T] Li(w )
for all n > Ny, independent of e.

Proof. Using the conditions on the parameters (7.5) and the norm estimate from Theorem
6.12 we have

(n)( ) i

SeEn((uG) B (s) - (ul V)R (s))

<,7f‘

Li(w )
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7. Convergence of solutions of the nonlinear equations

ds

LP(w)

< [ty PVC(p g, T (W2) () - ()8 (s)
<n(1+B)C(p.q.T)
= 50 max{ud(6), w90 - (2(5) - ()

LP(w )

Here we have used estimate (7.6). Now with Holder’s inequality in the weighted space
(Lemma 5.8(i)) and 117 = g + é and again Theorem 6.12, the remaining time integral is
bounded by

f (t—s)P ‘J)Hmax{ua (s), ul™ 1)( )(s) uls 1)( )

| ds
1# () La(w)
_ \2(pg) || Qe n) (” 1)
< [M-entszepil |42 - o),
B _ N\z(pg) ﬁz(x l,,m (" 1)
<Clea TVl [ (-9) [u26) - )], 4

ugd (s) ~ugee ()

<C(%, 0, )P f 5o sup | [0 (£ - 5)7 P shera) g,
s€[0,t]

Li(w)

Note that we have used 0 < uy,* < 8 f, m € N, from Lemma 7.5 in the second step.
This implies for T > 0 that

e ()~ i (1)

sup ‘

te[0,T] Li(w)

<n(1+pB)C(p,q,T)C(x,q, T)ﬁHfHﬁx(w)

- sup
te[0,T] s€[0,t]

<n(1+B)C(p,q, T)C(x, q, T)F| f
) t _ (Vl—l) t
te[0.7] e (1) =t (1)

< n(1+B)C(p,q, T)C(x,q,T)* HfHﬁ

ul)(s) - ulV(s)

/ (1= 5) ) gB(00) g
Li(w) 0

B Bz(x,q) : (p>2)
z(k,q z(p,q
LK(W)T /(: s ds

Th(eq) =P+l gyp ‘

n) (n-1)
K (w ”zxs t) Ug,e
L+2(p,q) ) te[0.1] ( 2

Li(w)

We have z(x, q) > 0 and z(p, q) > —1, hence the denominator of the constant doesn’t vanish
and the exponent of T is strictly positive.
Now choose | f

1+ (w) Small enough, such that

n(1+B)C(p. g T)C(K. 4 T)P | 15 (g s2(pa)1
P‘I’Iﬁ(f T) - 1+Z(p’q) Hf” K(W)T <l (719)
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7.3. Convergence of solutions in the weighted space

So we have
(n+1) (n) n) (n-1)
sup || Ua, ) —ugs(t T) su u“ t) —Ug,e
te 01:7)" - (1) < (1) La(w) Pq”ﬁ(f )te 01; ‘ (1) - () Li(w)

for all n > 1 and it follows

ul (8) - ul (1)

sup |

te[0,T] Li(w )

for n — oo uniformly in ¢, so we have the desired Cauchy property. O

Corollary 7.9. Under the conditions of Lemma 7.7, for every € > 0 the sequence (ug’? ) neN
converges with e-independent rate with respect to the norm sup (o 7y | 1a(,,)- More precisely,
for every € > 0 there is a function u, ., such that for every § > 0 there exists an Ny € N with

<4

() (4
Uge (1) — Ug () L)

sup ‘

te[0,T]

for all n > Ny, uniformly in €. The function u, . is the unique solution of the integral equation
(7.1).

Proof. With the previous Lemma 7.8 and the completeness of L1(w), for every ¢ > 0 there is
a function u, . € L1(w) such that for every § > 0 there exists an Ny € N with

for all n > Ny, uniformly in € and every fixed t € [0, T]. But the uniform cauchy property
from Lemma 7.8 implies that this ¢ is also uniformly in ¢. With the uniqueness of solutions

(t) Uge(t)

La(w )

from Theorem 3.25 the claim follows. O
With the notation
d&ng) . (n+1) (n)

_uoc,s utXS) I’IEN(),

we have the series representation
=l 3

The following corollary shows that this is well-defined. As an immediate consequence of
Lemma 7.8, the convergence speed of the series is uniform in e.
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7. Convergence of solutions of the nonlinear equations

Corollary 7.10. For every & > 0 there is a N € N such that uniformly in e

d <.

Li(w)

sup ‘

nNtEOT

Proof. Let 8 > 0. By Lemma 7.8 we have for 8 := & (TroL™) ! where L < 1 is the Lipschitz
constant in the proof,

te[0,T] L‘l(w)

for all n greater than some Nz. Now choose Ny = N;. Because of

<L-
t[0,T] La(w) te[0,T] Li(w)
for all n € N we can conclude
<N L =
nZI:\] te 0 T L‘i(w) nZ;)
and the proof is complete. [

Repeating the previous proofs of Lemma 7.7, Lemma 7.8, Corollary 7.9 and Corollary 7.10
step by step, but for the point interaction semigroup (S¢);o, we obtain the analogous result

Corollary 7.11. Under the conditions of Section 7.1, the sequence (u&"))neN converges with
respect to the norm sup, (o 7y [ 1a(,,)- More precisely, there is a function u, such that for every
& > 0 there exists an Ny € N with

<d
Li(w)

ul () - ua(t)

te[0,T]

for all n > Nj. The function u, is the unique solution of the nonlinear integral equation (7.2)
and has the series representation

JEEON Z 4
with

d = (D ) e N
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7.3. Convergence of solutions in the weighted space

The main convergence result

We are now prepared to show the convergence of u, , towards u, for ¢ - 0 in the weighted
space. The following Lemma will be needed in the proof to apply the convergence theorem
for semigroups, Theorem 6.14.

Lemma 7.12. It holds for every fixed t € (0, T]
(S¢ )P e L2n LP(w).

Proof. First we estimate the L? norm

+8|2 o +
szl = [ Isefeof dx
S Ut 1) [ ISEFOI () dx

;-1 142
= (1 + Hf”LP(w)t2 p)”S“f”LLZi(W)
< C(K 1+ 2/5 T)1+2/3(1 + “f”LP(W)tT;)tz(K 1+2/3)(1+2ﬁ)Hf||1+2/3

Here we have used 7 f < (1+| f |l s () £37% )w from Corollary 6.8 in the second and Theorem
6.12 in the fourth step. Since f € L*(w), we have found an L2-bound for every ¢ > 0.
Concerning the L?(w)-bound, it holds, using again Theorem 6.12,

H (S“f)HﬂHLP(W) ||Saf||;(w) < C(K, g, T)1+ﬁtz(x,q)(1+p) Hf“;fw))

this completes the proof. O

It follows the main convergence result for the solutions of the nonlinear integral equations.

Theorem 7.13. Under the conditions of Section 71, for every T > 0 there is a constant Cp > 0
such that for all t € [0, T'| and initial data f € ®P n L*(w) satisfying | f < Cr it holds

L¥(w)

Jua(t) - ”oc,S(t)”Lq(w) — 0.

Proof. Let § > 0. By Corollaries 7.9 and 7.3 there exists an Ny € N such that

< 0.

L‘i(w)

[ee]
2,
=N, t€[0,T]

n=N; te[0,T] Lq(W)

uniformly in ¢, under the condition that for the initial data f it holds | | ., < Cr. Using

this, we estimate

H Ugy ( t) - uoc,s(t) ”M (w)
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7. Convergence of solutions of the nonlinear equations

)(t) Zd(n)(t) u(O) t) Zd(n)

Li(w)

WO (1) + Z i - (-3 ()

n=0

S d(t)

n:N5

Li(w)

S (1)

VlZN&

Li(w)
|| (Na)(t) u(Na) (1)

Li(w)

Lq(w)

So we are left to show that

(1) - uld(t)

|

for ¢ — 0. In order to do this, we are showing via an induction argument that in fact for all
neN

From Theorem 6.14 we know for each fixed ¢ € [0, T']

for e — 0. Now for n € N, as our induction hypothesis we assume that we have shown the

Lq(w)

ul () - uld (1)

-0, €¢-0.
Li(w)

i (1) = i (1)

Liw) [(SF =S ) flLagwy = 0

claim for n — 1, more precisely

n-1 n-1
e (6) = (O

lim |
8—)

for all t € [0, T]. For the transition n — 1 - n we calculate

2 ORI
t t
uP(0) = u() +n [ el () ds =y [ sl (s)F ds e

t
<[l =), < [ sl as= [T sl V) as

L‘l(w).

The first term goes to zero as mentioned above. For the second term we have

t t
i [ srsl V@) as— [ st (ul Vs ds
0 0

Li(w)
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7.3. Convergence of solutions in the weighted space

’7Hf0 (525 (6) s+ [T SE(ET (9) 7 - (WD (9) ) ds

= 1| Iun(t, €) + Iou(t, €) HLq(W)-

Li(w)

It holds

ds.

t
, (n-1) 1+
HIl,n(t,e)HLq(w)sfo H(Sf_i P (g (s) o

Because of Lemma 7.12 and 7.5 we know that (uf,‘"fl) (s))'*B € L2nLP(w). So by Theorem 6.14
and dominated convergence the integral converges to zero if there is an integrable majorant
that holds for all . This is the fact, as follows.

H(Sf‘_’i— )l (s) L (w)
< “S;X_,«Z - S;x—s||LP(W)—>L‘1(w) H (ng)l+ﬁ“Lp(W)

o a )l
= 1825 = S o (wyozam 1S5 F I et
< C(x,q, T)"P| S

o 1 %
= SE oy oy |1 ebyy 20 )

1
<C(k,q, T)*F (”Sfc_i I 2o wyragwy + ISE HLP(W)%L‘I(W)) Hf”;fw e h)

<2C(p,q,T)C(x,q, T)Hﬂ If i:fw) (t- s)Z(PxQ)Sz(k,q)(l+[s)’

where we have used p(1 + f8) = g Lemma 7.5 and Theorem 6.12. Integrability in s is given
because of z(p, q) > -1 and z(k, q) > 0.
One obtains

ds =0.

Li(w)

t
lm [ 1 €) 1oy = [ lim | (522 = S (™) ()

We are left to deal with [ I,,(t, &) 4, In order to do this, we use nonnegativity of
semigroups and estimate (7.6) to obtain the upper bound

ds

(n-1) 1+ _ ¢, (n-1) 1+8
L1580y (56D = @O

<(1+B)f |SE ||Lp(w)—>m(w)
[mex(ulec (9.1 618 (s (9~ @), 4
<(1+p) | Syt a5, Sff}ffHL%(w)|\u&'7;”<s> -~ ul™(s)
<(1+B)C(p.q, T)
[ (=9 max{se s st

Li(w )

ulV (s) = ulV(s)

La(w )
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7. Convergence of solutions of the nonlinear equations

ds.

Li(w)

t
< (14 PC(P . TICE g T [ (8= sy P00 [l () - ul ™ (s)

Here we have used Theorem 6.12 again and Hoélder’s inequality, note that % = é + s. Also

remember that (u{s ™" (s))1*8, (u{"™ (s))1*# € L?(w) according to Corollary 76. As in the
previous investigation of I;, we need to find an integrable majorant. Because of f € L*(w)

due to Lemma 7.5, this majorant is given by

and

uge(s) —ud ™ (s) <S5 fl Loy + 185 f oy

Li(w)

2C(%, @5 T) [ f | 1oy (£ - 5)7(P0) 7 (1a) (145)

which is again integrable because of the fact that z(p, q) > -1 and z(x, q) > 0.
Interchanging limit and integral again, we have shown

lei_r}ol 1T2n(t &) ”Lq(w)

t
<(1+B)C(p,q, T)C(x,q, T)* f (8= ) DD lim uil ) (5) u(s) | ds
0 £ w
=0
because of the induction hypothesis. This completes the proof. ]
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8. Approximation of the measure-valued
process

In Theorem 713 we have shown the convergence of solutions of the nonlinear integral
equations (7.3) and (7.4)

lua(t) - ut’t,s(t)HLP(w) -0

in the weighted space for fixed ¢ € [0, T'] and initial data f € ®? nL*(w) satistying | f|| () <
Cr. Now we are able to prove a convergence result for the associated superprocesses X**
and X*. In a first step, the convergence of the Laplace transforms will be shown. With this in
place, in the second section a result from the theory of random measures will be exploited
to obtain the convergence of the processes in the sense of vague convergence in distribution
for fixed t > 0.

8.1. Convergence of the Laplace transforms

By the Laplace transition functional, the Laplace transforms of the associated stochastic
processes are given by

Eye—(xf‘»ﬁ = e_<."l’u0€(t)>,

B, e X0 = gluac(n) (8.1)

where y = X§ = X{*, refer to (1.4). The notation (y, f) = [ fdu for a measure y and a
function f will be used from now on. Also for a process (X;)so we write E,(-) := E( - |X, =

“)-
Our aim is to show the convergence of the Laplace transforms [, e=Xi"/).

Lemma 8.1. Assume the conditions of Theorem 7.13. Furthermore, let yu a measure with density
() such that u(-)|- |» € L¥'(R?). Then it holds

e‘(,ux”a,s(t)) > e_(.u’ua(t»

for & > 0 and every t € [0, T}, provided || f| .« (, < Cr.
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8. Approximation of the measure-valued process

Proof. We estimate with Holder’s inequality

() = G ()] = | [t (800 () e = [ ot 0)u()
< A} [tae(t,x) — ug(t, x)|p(x) dx

< (f, astts ) -t ax)” ([, o)l )
= ta(t) = tae(8) 1o | )] |7

i

Due to the assumptions, the last expression tends to zero for ¢ — 0. So we have
(e (1)) = (1, ua (1))

and by continuity

e—(ﬂ:”a,e(t)) N e‘(#)”a(t» ,

so the proof is complete. ]

Corollary 8.2. For a > 0 and ¢ € (0, 1) let X* and X*¢ the measure-valued processes from
Corollary 3.30, with X§ = X*° =: u, where u is a measure with density u(-) satisfying
u(-)| - |7 € LP'(R?). Under the conditions of Theorem 7.13 it holds

E”e_<xf’e’f) — ]E‘ue_<X?’f>
fore - 0andeveryte[0,T].

Proof. By assumption, the conditions of Lemma 8.1 are fulfilled. Using the Laplace transition
formula (8.1) we obtain directly

E;<X?"if) = e (mttac(1) _y p~(mwua(t)) _ EM6—<X?J)

for ¢ - 0 and every fixed t. [

This completes the analysis of the Laplace transforms. We will use this result to obtain a
mode of distributional convergence of the measure-valued processes in the next section.

8.2. Convergence of random measures

Our aim is to deduce a meaningful mode of convergence for the measure-valued processes
X* - X¢, e - 0. For fixed t > 0, we can consider X;** and X{ as random measures
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8.2. Convergence of random measures

in the space M := M(R?) of all measures on R3. The existence theory of the measure-
values processes of Chapter 3 was formulated in the underlying space R* \ {0}, but we can
continuously embed this space into R3.

We introduce the vague convergence in distribution on M: For asequence &, &, &5, ... e M
we write

vd

§n — &

if Ef(&,) > Ef (&) for all bounded functions f on M which are continuous with respect
to the vague topology. This topology is generated by the integration maps 7, : p +— (p, g) =
| g du for bounded continuous functions with bounded support g. [29, p. 109] The following
theorem describes the connection between the convergence of Laplace transforms and the
vd-convergence.

Theorem 8.3. [29, Theorem 4.11]. Let &, &1, ¢&,,... € M a sequence of random measures.
Suppose that for all continuous functions f : R3 — [0, 1] with bounded support it holds

Ee=nf) - Ee ), n - co. (8.2)
Then the sequence (&) ey convergences in the sense of vague convergence in distribution, i.e.
£ 25 & oo,

Concerning the measures X;** and X{ for fixed ¢ > 0, remember that we already showed
the convergence of Laplace transforms in Corollary 8.2, so it seems that with Theorem 8.3
we can almost immediately deduce vd-convergence. But some care is needed because of the
norm bound on f in Lemma 8.1, which a priori does not admit the whole class of functions
required in the condition of Theorem 8.3. So we will first prove a localized convergence
result and then later extend it to the whole space. This requires to choose a more abstract
approach before we can return to X;"* and X¢ in Theorem (8.9).

The following definition introduces a class of set systems in the general context of metric
spaces that will be needed to apply the theory of random measures from [29, Chapter 4].

Definition 8.4. Let S a separable and complete metric space.
(i) A semi-ring over S is a class Z of subsets of S that is closed under finite intersections
and such that every proper difference in 7 is a finite disjoint union of Z-sets. [29, p. 16]
(ii) A semi-ring 7 is called dissecting, if every open set U € § is a countable union of sets
in I and every bounded set B € S is covered by finitely many sets in Z. [29, p. 24]

We now introduce a set system in B(IR?), consisting of sets which are small enough in an
appropriate sense. This system will turn out to be a dissecting semiring over R3. It will help
us to deal with the L*(w) norm bound on the initial data f of the nonlinear equations.
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8. Approximation of the measure-valued process

Definition 8.5. Let C > 0.
(i) With Z¢c we denote the class of all I € B(R?), such that there is a continuous cutoff
function x; : R* — [0, 1] satisfying y; = 1 on I, y; = 0 outside a compact set containing
Iand

”XI ) <C. (8-3)

L*(w,R3

(ii) For a cutoff function y; corresponding to a set I € Z¢ define the localized measure

ur (M) = /Rs Ly xrdy.

By Urysohn’s Lemma, Z¢ contains for example all open balls B ¢ R? with radius small
enough. Consequently we have

Corollary 8.6. Let C > 0. The class ¢ defined above is a dissecting semi-ring over R>.

Now we show that under the additional constraint of the norm bound (8.3), the statement
of Theorem 8.3 remains valid, at least for suitable restrictions of the random measures.

Lemma 8.7. Let £, &1, &, ... € M a sequence of random measures. Suppose that

Eef<£n>f) — Eef(g’f»’ n — oo

b

for all continuous functions 0 < f < 1 satisfying the norm bound (8.3) with a constant C > 0.
Then it holds for every I € I with cutoff function xp as in Definition 8.5(i)

& g,
here we used the notation for restricted measures from Definition 8.5(ii).

Proof. Let C the set of all continuous functions from R¢ to [0,1] and g € C arbitrary. For
I € Z¢ the function gy; is continuous and [0, 1]-valued. It also holds g y; < y1, so gyr satisfies
the norm bound (8.3). Consequently, f := gy; fulfills the assumption and thus we have

Ee(mexr) 5 Re—(Saxr),
But for every measure y
Re w81 = & [— exp /R3 X d‘u} =E [— exp fRS gdy’“} = Ee (w8,
It follows

Ee (68 5 R (61:8)
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8.2. Convergence of random measures

Since g € C was chosen arbitrarily, this implies
& s g
by Theorem 8.3. u

Due to the dissecting property of Zc, it is possible to extend this convergence to the whole
space.

Lemma 8.8. Under the conditions of Lemma 8.7, it holds
£ 25 En > oo,
Proof. According to the definition of vague convergence in distribution, from
&= go

it follows that Ef (¢}') — Ef (&%) for all bounded and vaguely continuous functions f on
M. In particular, this holds for the projections g : 4 = (y, g), where g: R? - [0,00) isa
bounded continuous function with bounded support. Denote this class of functions by C¢
and fix one g € C?. Since

me(ut') = fR3gdﬂ"f = [R gxrdu =gy, (1)

for every measure y € M, it follows

E7gy, (&n) — E7gy, (£).

Now we make use of the dissecting property of Z¢. Because g has bounded support, we can
find a finite number of cutoff functions i, ..., yn, N € N, satistying the norm bound (8.3),
such that

supp g © U1 Supp x;-
J:

Without loss of generality, we can assume that the y; form a partition of unity on supp g, i.e.
X1+ ...+ x~n = 1onsupp g. Consequently

g£= &Xir

J=1
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8. Approximation of the measure-valued process

We obtain the convergence

Emg(&n) = Z]E”ng(fn) = Y By (§) = Emg(£), n— oo
j=1 j=1

Now we proceed as in [29, Theorem 2.2]. The set F of all functions, such that Ef(§,) —
Ef (&), is a monotone class, this means f,h € F,a € R, implies af + h € F and { f, }nen C
F,fa t f,implies f € F. The latter statement follows from the monotone convergence
theorem.

As we have shown, 7, € F for all g € C{. Using the monotone class theorem [29, Lemma

1.2], we have &, 4 ¢ on the o-field X generated by the projections 7, g € C}. But according
to [29, Theorem 4.7], Z coincides with the Borel o-field corresponding to the vague topology.
So we conclude

£, 2% ¢

and the proof is complete. ]

With the results of Lemma 8.7 and Lemma 8.7 for a general sequence of random measures
in M(IR3) in place, we are now able to apply these tools to our superprocesses X*¢ and X°.
This will yield the desired vd-convergence for fixed ¢.

Theorem 8.9. For T > 0 let Cr > 0 as in Theorem 7.13. Let p, f} satisfying (7.5) and f ¢
7 n L*(w) with « satisfying z(x,q) > 0 and | f|.(,, < Cr. Let ua,, tq the solutions of
the nonlinear problems (7.3) and (7.4) with u,(0,-) = u,(0,-) = f and the corresponding
stochastic processes X", X{* given by Corollary 3.30. Furthermore, let y a measure satisfying
the conditions of Lemma 8.1. Then it holds for every t € [0, T] and ¢ - 0

vd
X 1 xe,

where (&,)nen C (0, 1) is an arbitrary zero sequence.

Proof. According to Corollary 8.2 and Theorem 7.13, choosing a zero sequence (&, ) nen C
(0,1), we have the convergence of Laplace transforms

E,e 6™ L B oK), (8.4)

forall f € ®? n L*(w) with | f] <, < Cr. Remember that the space ®? consists of L?(w)
functions which are continuous on R? \ {0}. So in particular, (8.4) holds for all continuous
functions f : R3 — [0, 1] with supp f € Z¢ for a sufficiently small C depending on T. Thus,
using Lemmas 8.7 and 8.8, the assertion follows. O]
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9. Outlook

We have shown that the super-Brownian motion with point source (X¢);s, related to the
partial differential equation (1.6) can be approximated by a family of processes with short-
range interaction in a certain sense. This is the central result of this work. In this last chapter,
we discuss open problems and perspectives for further research. One important aspect are
possible stronger modes of convergence. We will also take a look at the restrictions we had
to impose on the dimension and the parameters « and  and explain the problems that arise
in other cases.

9.1. Stronger modes of convergence

In Chapter 8, we were able to employ the convergence of solutions of the nonlinear equations
to show convergence of the Laplace transforms of X;"° towards the Laplace transform of X¢.
This again allowed us to deduce vague convergence in distribution

vd
Xt — Xf, €0,

for fixed t € [0, T]. Ideally we would have a kind of uniformity in time ¢, to be able to transfer
properties like the path regularity of X*¢, which was shown in Section 4.2, to the limit X*.
We briefly outline a strategy how this could be achieved. This is smilar to the proceding in
27, p. 314].

Based on our distributional convergence result for a fixed ¢ € [0, T], in a subsequent step
we would need to prove vague convergence of the finite-dimensional distributions, i.e.

a,e ae\ vd a «
(Xto’,...,Xt"’)—>(X o XE), e=0,

to?
for all (fo,...,t,) € [0, T],n € N. Now assume we could show ((X;**)e[o,7])e<(0,1) is rela-
tively compact with respect to the Skorokhod topology. Then this sequence has cluster points
in the Skorokhod space and beacuse of the convergence of finite-dimensional distributions
the cluster point is unique. This is equivalent with convergence in the Skorokhod topology
and would allow us to prove path properties for the limit process X*.
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9. Outlook

9.2. The two-dimensional situation

Until now we have restricted ourselves to the three-dimensional case. However, as stated
in the introduction, the one-parameter family of self-adjoint extensions (—A, ) g exists in
the two-dimensional case as well [4, p. 2-3]. In the work of Fleischmann and Mueller [20],
well-posedness of equation (1.6) is also shown in the space L?(w, R?) note that here we have
the weight

W) = x5 = ol
and p is restricted to (1 — é)‘l < p < 3 in this case. This condition is weaker than in the case
d = 3. This even allows to admit 8 = 1 here, in contrary to the three-dimensional situation,
where $ < 1 is a necessary condition. [20, p. 753] The existence of the corresponding
super-Brownian motion (X%),»o with point source is also shown [20, section 4]. In complete
analogy to our proceding in Chapter 3, for fixed & > 0 we can obtain well-posedness of the

equation 3.1 with
—-Hye=-A+ Vg,

where V. is a suitably scaled indicator function of a centered ball as in (2.25). Then the
existence of the corresponding superprocess (X;**);so can be proven as in Section 3.5.

But when we look at the spectral properties, we encounter an important difference between
the cases. Remember that for d = 3 and « > 0 the spectrum of —A, is purely absolutely
continuous on the nonnegative real axis. In particular, there are no negative eigenvalues.
The same holds for —H, . if the function V,, . is scaled appropriately, as shown in Theorem
2.5. This is fundamentally different in the case d = 2: For every « € R there is precisely one
negative simple eigenvalue of —A, [4, Theorem 5.4]. The operator —H, . also has at least one
negative eigenvalue, which does not vanish even when the scaling of V, . is chosen arbitrarily
small. In fact, for every function V > 0 with compact support and positive L! (R?)-norm,
the two-dimensional operator —A — V has one or more negative eigenvalues [32, Theorem
2.22]. However, as in the three-dimensional case the spectrum is contained on the real axis.

The presence of negative eigenvalues leads to difficulties when dealing with resolvent
estimates. Due to this issue, the proof of two-dimensional L? (w)—L4(w) estimates needed
for the uniform convergence of solutions could not be completed in this work. This also
affects the case d = 3, a < 0, where we have a negative eigenvalue as well. In the appendix
we give first estimates for the resolvents of —H, ., but they are incomplete because the case
where the negative eigenvalue has to be considered is not covered there. These preliminary
estimates may be helpful as a starting point for further research.

Let us discuss how the negative eigenvalue disturbs the analysis of the resolvents. Similar
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9.2. The two-dimensional situation

to the three-dimensional case, in the representation of the resolvent R}** the expression
-1
A5[1+ B3] 'Cs

occurs, see Lemma A.6 in the Appendix. We can prove norm estimates for the operators
A°,, and C, (Lemma A.12). Moreover, L? estimates are given for [1 + Bf_,,]"! in the
case where either |e\/t711| < 8, or |ev/t71A| > 8,, with suitable 0 < 8; < &,, as shown after
Lemma A.13. So it remains to deal with the intermediate case &, < [ev/t7'1| < 8, in (A.9).
However, here we encounter the fundamental difference between the two-dimensional and
three-dimensional situation: The presence of negative eigenvalues of —H,, .. Now the details
follow.

Define z = £v/t1A. Remember that in the three-dimensional situation we dealt with the
case 0; < || < 8, by employing the Birman-Schwinger principle, Lemma 2.2: The operator
B, has —1 as an eigenvalue, if and only if z is an eigenvalue of —A + P,(¢) V. Consequently,
the absence of such eigenvalues away from the nonnegative real axis allowed us to conclude
that the operator-valued function z — [1 + B,]~! is holomorphic on the concerning compact
region in C. This implied the desired boundedness.

In two dimensions, the operator —A + P,(¢)V has at least one negative eigenvalue, as
explained above. Again, by the Birman-Schwinger principle, the function z — [1 + B,] ! has
at least one pole z, on the negative real axis. By choosing §, and J, appropriately, we were
able avoid this singularity in our estimates above for sufficiently small and large z, which
implies -8, < zy < —d;. Consequently, at least one singularity is located in this intermediate
region, and in contrary to the three-dimensional case, [1 + B,]~! is not holomorphic there.
Thus, using this approach, we cannot conclude that the norm of [1 + B,]! is uniformly
bounded.

This raises the problem, that the curve T in (A.7) cannot simply be rescaled by ¢! to
obtain (A.8). This is due to the fact, that Cauchy’s integral theorem is only applicable if the
integrand is holomorphic in the region enclosed by the curve. As we have just seen, this is
not the case here.

It is left for further research to find a solution for this problem. A thorough spectral analysis
of the operator —H,, . seems necessary to determine the number and positions of negative
eigenvalues. Then a method must be found to deal with the poles in the curve integral, using
for example the residue theorem. A similar problem occurs in the case d = 3, a < 0, as stated
in Remark 6.3.
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9. Outlook

9.3. A time-independent equation

The starting point for the construction of the measure-valued process in Chapter 3 was the
nonlinear partial differential equation

~Aqu+nuttP = —0,u (9.1)

for o € R. In the three-dimensional case, it is known that the operator —A, has contiunous
spectrum [0, c0) and has a single negative eigenvalue 1 := —(47a)? if and only if & < 0, refer
to Theorem 2.10. Now we want to compare this equation to a related differential equation,
where the time-derivative is replaced by a linear term Au for A € R.

Consider

—Agu+uP = \u (9.2)

in L?(R*) with 0 < 8 < 5. This equation has been studied by Caspers and Clément [7]. To
connect the theories behind the equations (9.1) and (9.2) with each other, in future research
one could choose the following approach: Define

u(t, x) == eMf(x).
Then it holds for every ¢
oiu(t,x) = AeM f(x) = Au(t, x).

Under this condition, the solution of (9.2) from [7] could be studied in the context of this
work, which may lead to interesting results.
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A. Preliminary resolvent estimates in two
dimensions

As announced in Section 9.2, analytic properties of the resolvents and semigroups as well as
preliminary resolvent estimates for the two-dimensional case are collected in this appendix.
The resolvent estimates are incomplete, but may be a starting point for further research.

A.l. Elemental properties and sectoriality

We want to introduce the resolvents of the operators —A, -A, and —-H, ., > 0 for d = 2. As
in the three-dimensional case, there are explicit representations for the kernels. They have a
different structure here, given in terms of linear combinations of Bessel functions, known as
Hankel functions. We start with the resolvents of the Laplacian.

Lemma A.l. [4, p. 99] Let A € C\ [0, 0) = p(=A). Then the resolvent Ry = (-A - AI)™! as
an operator in L*(R?) has integral kernel

R(x,) = £ (VAlx - ), (A1)

where Hél) is the Hankel function of the first kind and order zero, given by Hél)(ﬂx) =
Jo(\Ax) + i Yo (V/Ax), with the bessel functions

Jo(z) = % foncos(zcos r)dr,

i

4 2
Yo(z) = = / cos(zcos ) In(2zsin® r) dr.
0

[1,9.1.3, 9.1.18, 9.1.19]

For further analysis and estimates we need to understand how the Hankel function behaves
asymptotically for small and large x € R? respectively. Heuristically, there is a logarithmic
singularity at the origin, but exponential decay for |x| - oco. This is the subject of the next
lemma.

Lemma A.2 (Properties of the Hankel function). Let A € C \ [0, 00) and y € R.
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A. Preliminary resolvent estimates in two dimensions

(i) For y — 0 it holds

LiHD (V) » %m(ﬁy).

2 H m
HP (V) = § ‘ e,

Proof. Statement (i) corresponds to [1, 9.1.8] and (ii) is [1, 9.2.3]. l

(ii) For|y| — oo it holds

With these first estimates in place, we can prove L?(w)-boundedness of the kernel R; ().
In particular, this implies that Lemma A.1 also holds in the L?(w)-sense. Remember that
w(x) = |x|"% in the two-dimensional case.

Lemma A.3. For fixed A € C~ [0,00) = p(=A) and p > 1 it holds
Ry(-) € LP(w).
Proof. We have
IRy =47 [ S VAD] 31 .

Because of the asymptotic property around the origin from Lemma A.2(i), there is a radius
p(A, p) = p > 0 such that

1 1 P 1
[ O] e dx s [ in(ARD] e =2 [T (/A [l dr
B,(0) B,(0) 0

which is finite because of |v/A| > 0.

On the complement B, (0)¢ the function x + Hél) (v/Alx|) is bounded, this follows from
the structure of J and Z, given in Lemma A.l. Furthermore, we have exponential decay for
|x| = oo from Lemma A.2(ii) because of Im \/A > 0. This together implies

p
f [HO (Al])| ]2 dx < oo
0
B,(0)¢

and finishes the proof. O

Now we give a precise definition of the operator —H, . in a way that allows convergence
to —A, in the norm resolvent sense. The following definition is a summary of the situation
in [4, p. 103] and [4, Theorem 5.5].
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A.1. Elemental properties and sectoriality

Definition A.4. Let V : R? - R be measurable such that fora § > 0
/Rz(l + XYV (x) dx < oo, fR IV (x)]® dx < oo,
Let
v(x) = |[V(2)['2,  u(x) =sgn(x)|V(x)['/?, forx e R?
and let D a Hilbert-Schmidt operator in L?(R?) with integral kernel
D(x,y) = u(x)Infx = ylv(y), x#y.
For € > 0 and « € R define
“Hpp= A+ Voo =-A+Po((Ing))e2V (g) (A2)

where the polynomial P, (z) = p1z + u»(a)z? is given by the coefficients

N
“T )
_a(2m)* 2n(v,Du)
Haa) = (v,u) (v,u)?

(A.3)

Theorem A.5. Let « € R. For ¢ > 0 let -H, as in in (A.2). If A € p(-A,), we have
A € p(—Hy,) for € > 0 small enough, and —H, — —A,, in norm resolvent sense for ¢ — 0. This
means

HR;’L“ - Rj’fHLZ_)L2 -0 as ¢€]0.

Lemma A.6. [4, Formulas (5.49)-(5.53), p. 103] For A € p(~H,) the resolvent R}* =
(=Hy,e — AI)7!is given by

R¥* =R, +R;"
=Ry — Py((Ing) ") A5[1 + B{]7'C§

with operators given by integral kernels

AS(x,y) = V()R (x - ey),
Bi(x,y) = V(x)V(y)Pu((Ine) ™ )Rye2 (x — ),
Ci(x,y) = V(x)Ry(ex - ),

and the polynomial P, as in Definition A.4.
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A. Preliminary resolvent estimates in two dimensions

Lemma A.7. Let1 < p < co.
(i) The Laplacian —A is a sectorial operator on LP(w).
(ii) For every fixed € > 0, the operator —H, . generates an analytic semigroup in L (w).

Proof. This follows exactly as in the three-dimensional situation in Lemma 5.16 and Corollary
5.18 from the more general results cited there. ]

This implies that the operator semigroups generated by —A and —H,, . can be represented
via a curve integral as in (5.2). Note that the presence of negative eigenvalues of —-H, , makes
it necessary to choose the curve radius r(I') > |1¢|, where A4 < 0 is the smallest eigenvalue.
Since the positions of the eigenvalues depend on & and ¢, the same is true for the restriction
on r(T).

Next, we study the operator —A, in two dimensions and its spectrum and resolvents.

Lemma A.8. [4, Theorem 1.5.2/1.5.4]. Let a € R. Then a(-A,) = [0, 00) U {—4e2(-2ma+¥(1))}
and for A € p(=A,) the integral kernel of the resolvent R§ = (=A, — AI)™! is given by

RY(x,y) = Ri(x, ) + Ry (%, ) (A4)

with
/8
2 — V(1) + In(vV/A/21)

where V(1) € C is a constant.

H (Valx)) H (VAly)

Ry(x,y) =~

Again, —A, has a single negative eigenvalue 1, while the continuous spectrum consists
of the nonnegative real axis. However, if we can verify the resolvent estimate from 5.9 for
A € p(—A,) large enough, it follows that —A, generates an analytic semigroup and thus can
be represented by the Dunford integral (5.2) [17, 4.14(6)]. So we prove

Lemma A.9. For p > 1 and A € p(-A,) with |A| large enough and |arg)| > 6 for some
0 € (0,%) it holds for all f € LP(w)
IR f oy S M 2oy

Proof. Due to the sectoriality of —A and (A.4), we only need to show the estimate for R). So
let f € LP(w).
According to Lemma A.8

R3] = ~Cla )| [ HO (V) f(x) dv (A5)

| B (val- 1)

LP(w)

Clearly the factor
/8

27 — V(1) + In(v/A/21)

C(a,A) =
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A.1. Elemental properties and sectoriality

is uniformly bounded in the range |A| > § for some § large enough. Concerning the second
factor in (A.5) we have with Holder’s inequality and the transformation x — [v/A|~1x

UR HP (V) f(x) dx

o\
< Wl (1B /T 5 0x)

11 B ;0 p
3 e VP ( LS VA ) dx)

> |~

The remaining integral is bounded because of the properties of the Hankel function from
Lemma A.2. Furthermore, there is a bound uniformly in A, because v/A|v/A|! lies in the
compact subset of the unit circle {e?# ¢ C: & < ¢ < 220},

Concerning the last factor in (A.5) we calculate with the same transformation

=

(2 O/l ) =% ( [ 180V e+ )

and again the remaining integral is bounded as described above. Summing up we have

B3 f iy S 7775 oo

and

which concludes the proof. ]

Note that we didn’t need to impose an upper bound on p in Lemma A.9. Technically this
is due to the fact that the logarithmic singularity at the origin remains integrable for any
p < oo.

We can summarize our results about the semigroup representations in analogy to Theorem
5.19.

Theorem A.10. Let « € Rand e > 0. Let 1 < p < oo and f € LP(w). For the semigroups
(S¢), (S¢) and (S;°°) with generators —A, —A,, —H, ¢ respectively, it holds

. _ 1 -t

(i) Stf-—zm_fre Rifd),
. af _ 1 -AMtpa

(ii) stf_—szre REfdA,
oE £ 1 At pa,e
(i) S f——2m,fre REfdA,

with T as in Defintion 5.12, provided r(T) large enough depending on a, e.
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A. Preliminary resolvent estimates in two dimensions

A.2. First weighted norm estimates

We have seen that the semigroups generated by —A, and —H, . are analytic in L?(w, R?). As
a consequence, the next step to obtain convergence results as in the three-dimensional case
would be to establish L?(w)—L4(w) resolvent estimates, which could then be transferred to
the semigroups using the representations from Theorem A.10. The estimates for (S;"¢) are
required to be uniform in e.

First we consider the residue term (S} )0 given by

—x 1 4
S f- — f MR A,
of 2mi o€ v

Lemma A.1l. Let p,g>landte (0,T) for T > 0. It holds for f € LP(w)

with an implicit constant only depending on p, q and «.

—a %(1_1)
Sif Lq(w)st P HfHLP(W)

Proof. Let f € LP(w). By transformation of the path integral we have as in the three-

dimensional case

—a 1 =«
St < 37 Jf e IRy 00

Similar to (A.5) it holds

”E?’I/\ ”Lq(w)

_ Cla ) 1) ‘ [ PG/ f(x) dx

[P @e)

with

/8

Cloud ) = 27a— ¥(1) + In(vVE1A)20)|

Since t! > T-1, the factor C(a, A, t) is uniformly bounded for r(T') chosen large enough as
in the proof of Lemma A.9. So let’s turn to the second factor in (A.6). It holds

1

oo v
Wiy ([, 11O/ 115 )

1,1 1 fop p
<7 % 1o ) ([Rz |H(§ >(\/X|x|)|1> || 27 dx)

1-32
NE ”fHLp(w)-

‘fR H§Y (VAlx]) £(x) dx

The explanation why the remaining integral is bounded can also be found in the proof of
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A.2. First weighted norm estimates

Lemma A.9, note that [A|! < 7(T')~!. Concerning the last factor in (A.6) we calculate

([ IH Rl dx)* = e ([ HP (Al dx )" s o5,
R2 R2

Summarizing all factors, we have

| i ! 4p||fHLP(w)f AdA

and the proof is finished. ]

Sif

Li(w) Zﬂt

We turn our attention to EZ’S and the corresponding residue term

s L f MRS d) (A7)

2mi

for t > 0. If we could prove a LP(w)—L4(w) estimate for R, 1, uniform in ¢, we would obtain

1 _ —oce
‘ Lq(w) S ﬁ / AH fHL‘Z(w) (A8)

This would give rise to a uniform norm estimate for Sy f. Using the resolvent formula from

— O,

S f

Lemma A.6 leads to the estimate

HR fHLq(w) = (lns HA 1/1HL2—>Lq(W)H 1+ B£ A 1HL2_>L2 (A 9)
'HC:—IAHLP(W)_)LZ Hf”LP(w)

Now the operator norms in (A.9) can be dealt with separately. We have the following
estimates for the terms involving the operators A%_,, and C7

Lemma A.12. Let p>land1<g<2andte(0,T) for T >0. It holds uniformly in € > 0

1

JA5 ooy S 2275 (A10)
HCS IAHLP(W)%LZ N tl_%’ (All)

with implicit constants only depending on p, g and T.

Proof. Step I: Let g € L2. We compute

1 q
|4 - ,/Rz V() HP (V1 Ax - ey)g(y) d)" dx

< [t (L vor ES /el - en)|lg)ldy)” dx

IAHM(W) R2 |X|
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A. Preliminary resolvent estimates in two dimensions

1 2 \?
<ttt [l (Vo) B /- o ay) ax

S gl (fRz V(y) fRz |H(()1)(\/t—ll|x—ey|)| |x| 7 dxdy) ,

where we have used the fact £ < 1 in the last step. Now let’s focus on the inner integral. We
have

2 1
LB R = eyl
2 1
= .[RZ ‘H(()l)(\/ t‘1A|x|)| |x + ey| 7 dx
2 1
- t[Rz [HO (VAD)| [Vex + ey 7F d

1 2 q
=175 f \H31>(\/X|x|)| ‘ dx.
RZ

€
X+ —
v
Because of the Hardy-Littlewood rearrangement inequality [37, Theorem 3.4], the remaining
integral in the last line is bounded by

2 _1
[ HO D] Nl

which is, as in previous calculations, finite uniformly in A because of the asymptotic properties
of the Hankel function. We conclude

1
€ 1-L 1 2
45 iy % Dl (#75 [ VI )
< lglat2 .
This implies

1_1
St2 44,

“Ai-lAHLZ_,Lq(W) ~

so we have proven (A.10).
Step 2. In analogy to the first step, for g € L?(w) we have

Cig(x) = V(x) [ Raex-»)f(r)dy.
We calculate

2
dx

[ Renex =g dy

HCffugHiz = Az V(x)
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A.2. First weighted norm estimates

2
dx

[ O Rex = Dyl () dy

« [ V)
R2
W2 \T
<lelzs f, V) ( [P/ Nex =y Iyl dy) dr. (A1)

The inner integral in (A.12) coincides with
/ il / 2
LS APy + ext dy = [ HS (VA Vi + et dy.
Because of

]\/?y + x| S max{2m, \/T|y|},

the properties of the path I and the exponential decay of the Hankel function, the integral
on the right side is bounded uniformly in € < 1, A € T. Clearly the outer integral in (A.12) is
bounded because V has compact support. It follows

[Ceinfl s 17 18l

and because of 1% =1- % we have

Il 5,

LP(w)—L2 ™
which completes the proof of (A.11). O]

To control the right-hand side of (A.9), we still need a uniform bound for the L?(R?)
operator norm of [1+ B, ]"!. Remember that in the three-dimensional case this is done by
distinguishing the three cases

leVE 1A < 6y,
leVt-1] > 65,
0 <|evVitA[ <8,

for suitable 0 < §; < 8, in the proof of Lemma 6.2. Concerning the case where |e\/t711] is
small enough, we have in similarity to Lemma 6.1 the convergence

Lemma A.13. [4, p. 103f, Case (d)] Let the operators B; and D as in Lemma A.6. Let the
polynomial P, as in (A.3) and ¥ (1) as in Lemma A.8. It holds

[1+B:]" = - 2n(Ine) [Zn(v,u)(—‘l’(l) FIn(VA/20)) + pa(@) (v, u)?
+(27(v, Du)/(v, u))] (v, )u+0(1)
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A. Preliminary resolvent estimates in two dimensions

for e - 0in L2(IR?).

This allows to control the operator norm of [1 + B¢_,, ]! in this case, proceding as in the
first part of the proof of Lemma 6.2 on page 81.

In the case |e\/t~11] > 8, we can estimate the operator norm of [1 + B¢ ,,]7", similar to
the calculations leading to estimate (6.10). For 0 < € < 1 it holds

[Balne = sup [V(BLy = VL.

I£12=1

S sup HB?IA * VfHLz
Il 2=1

< sup HBi—l)LHUHf”LZ

‘ |L2:1

= HBf—ll(.)HLl
s P(ne)™) [ [HD (/)| dy

s (%) LS G| .

where we have used the transformation y — s\_\/\/;\ in the last step. The remaining integral is

uniformly bounded in A as explained in the proof of Lemma A.9. We obtain

. Vit )
HBt—lAHLz_,Lz S (m) < 521.

Choosing 9, large enough yields a uniform bound for

H [1+ B?u]_l

L2—>[2

in this case. The remaining case §; < |ev/ 71| < §, can not be covered, as discussed in
Section 9.2.
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