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Zusammenfassung

Kaliumpoly(heptazinimid) (K-PHI) ist ein vielversprechender Photokatalysator

für verschiedene chemische Reaktionen. Die Ladungstrennung zwischen den Katio-

nen innerhalb der Nanoporen eines anionischen zweidimensionalen Kohlenstoffni-

tridgerüsts führt zu einer spannenden Adsorptionsumgebung für verschiedene Ad-

sorbate. In dieser Arbeit werden Berechnungen auf der Grundlage der Dichtefunk-

tionaltheorie durchgeführt, um die Struktur und die Adsorptionseigenschaften von

K-PHI und seinen kationenausgetauschten Analoga, X-PHI, zu untersuchen. Diese

Materialien sind mögliche Kandidaten für die Heliumspeicherung, da sich die Heliu-

madsorption in allen untersuchten Systemen als thermodynamisch günstig erweist

(bis zu ∆Eads=-5,5 kJ/mol in Cs-PHI). Außerdem wurde eine bemerkenswerte

Adsorptionsenergie von ∆Eads=-95 kJ/mol für ein einzelnes Wassermolekül in K-

PHI gefunden und ∆Eads=-83 kJ/mol pro H2O bei maximaler Wasseraufnahme

(14 wt%). Diese Wechselwirkungen gehen über die typische Physisorption hin-

aus und haben ihren Ursprung in der Tatsache, dass Wasser an Kaliumionen

koordiniert ist und gleichzeitig Wasserstoffbrückenbindungen mit den negativen

PHI-Schichten in den begrenzten Nanoporen von K-PHI bildet. Die Wichtigkeit

der Ladungstrennung in den Nanoporen der Materialien wird für beide Adsor-

bate durch die berechneten atomaren Nettoladungen und die Energiezerlegungs-

analyse bestätigt. Neben der dominierenden Coulomb-Wechselwirkung trägt auch

der Ladungstransfer erheblich zu diesen Wechselwirkungen bei. Da zu erwarten

ist, dass Wasser bereits bei niedrigen Partialdrücken adsorbiert, wird der Einfluss

von Wasseranwesenheit auf die Heliumadsorption untersucht. Interessanterweise

ist die Heliumadsorptionsaffinität durch Wassermoleküle auf bestimmten Adsorp-

tionsplätzen leicht erhöht, jedoch verschwindet die Verbesserung bei höheren Auf-

nahmen schnell aufgrund der Konkurrenz um die Adsorptionsplätze auf dem be-

grenzten Raum. Daher weisen PHI-Materialien interessante Eigenschaften und ein

großes Potenzial für verschiedene Anwendungen auf, bei denen extreme Wechsel-

wirkungen zwischen Adsorbat und Adsorptionsmittel erwünscht sind, wie z. B.

bei der Adsorbataktivierung in der Katalyse.
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Abstract

Potassium poly(heptazine imide) (K-PHI) is a promising photocatalyst for various

chemical reactions. The charge separation between cations within the nanopores of

an anionic two-dimensional carbon nitride framework yields an exciting adsorption

environment for various adsorbates. In this work, density functional theory-based

calculations are employed to study the structure and adsorption properties of the

K-PHI and their cation exchanged analogues, X-PHI. These materials are possi-

ble candidates for helium storage as helium adsorption is found to be thermody-

namically favorable in all studied systems (up to ∆Eads=-5.5 kJ/mol in Cs-PHI).

Furthermore, a remarkable adsorption energy of ∆Eads=-95 kJ/mol was found for

a single water molecule in K-PHI and ∆Eads=-83 kJ/mol per H2O at maximum

water uptake (14 wt%). This interactions are beyond typical physisorption and

originate from water being coordinated to potassium ions and at the same time

forming hydrogen bonds with the negative PHI layers in the confined nanopores of

K-PHI. The importance of charge separation inside the nanopores of the materials

are confirmed for both adsorbates by calculated net atomic charges and energy

decomposition analysis. Beside dominating Coulomb interaction, charge transfer

also contributes significantly to these interactions. As water is expected to be ad-

sorbed already at low partial pressures, the impact of water presence on the helium

adsorption is investigated. Interestingly, water molecules on specific adsorption

sites slightly increase the helium adsorption affinity, however, the enhancement

quickly vanishes at higher uptakes due to competition for the adsorption sites in

the confined space. Hence, PHI materials exhibit interesting properties and a huge

potential for various applications where extreme interactions between adsorbate

and adsorbent are desired, such as for adsorbate activation in catalysis.
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1 Introduction

Carbon nitride (CN) materials with different stoichiometric compositions have

been known for a long time [1], however, they attracted emerging attention in

the scientific community in the recent years. Because of their versatile properties

combined with cost efficiency, they are suitable candidates for a wide range of

applications in catalysis [2–6], gas storage [7] and battery research [8–10]. Two-

dimensional carbon nitrides exhibit outstanding photocatalytic properties [11–13].

For example, graphitic carbon nitrides (g-C3N4) are shown to be efficient photocat-

alysts. Due to their bandgap of 2.7 eV corresponding to a wavelength absorption

threshold of 460 nm and a suitable conduction band potential, they are especially

able to perform water reduction [3, 14, 15], but also other photocatalytic reactions

[16–18]. Moreover, CN materials can store electrons in a long-lived photoreduced

state [19–21], which allows a temporal separation of light adsorption and the cat-

alytic conversion under dark conditions (”dark photocatalysis” [19]) and also make

them a candidate for solar batteries [22].

Recently, a novel type of porous two-dimensional CN materials, poly(heptazine

imides) (PHI), was synthesized. Due to their metastability, improved conductivity

and high crystallinity, the hydrogen evolution reaction (HER) rates reach up to

four times higher than those of the mesoporous g-C3N4 [23, 24]. Furthermore, it is

not only interesting for HER, but due to a higher valence band potential than other

carbon nitrides, it is also capable of photocatalytic water oxidation in the absence

of any-metal based co-catalyst under visible light [25]. These PHI materials can be

synthesized ionothermally with either starting from the melon polymer [12, 26] or

by condensation of well-organized molecular precursors [23, 24]. In all cases, the

usage of salt melts seems to be crucial and yields different products as obtained

by high-temperature solid-state synthesis [12, 23, 24, 26]. The structure of the

potassium containing PHI salt, K-PHI, has been studied by various experimental

techniques [23]. K-PHI contains an extended planar network out of tri-s-triazine

(heptazine) units connected via imide bridges and intercalated potassium ions.

10



11

The chemical structure of a defect-free K-PHI layer is shown in Fig. 1.1. The

PHI layers exhibit a tight packing in these materials with an interlayer distance

of 0.32 nm [23]. The potassium ions in K-PHI are located in channels that are

different from the PHI layers, which means that the cations are organized inside

the pores by means of ionic self assembly [27]. This charge separation between the

negative organic framework and the positive ions inside these materials is one of

their exciting features.

Figure 1.1: Idealized structure of the two-dimensional K-PHI, where the potassium ions are in

the pores of the CN framework

K-PHI was the first synthesized PHI salt which was directed by choice of the

eutectic salt melt (LiCl/KCl) as reaction medium. However, Savateev et al. [23]

demonstrated that the potassium ions inside K-PHI can be exchanged with other

cations while essentially preserving the crystal structure of the materials, which al-

lows to tune their properties post-synthetically. This exchange with other cations

(X+/2+) is schematically shown in Fig. 1.2, where the CN framework remains un-

changed. The authors obtained a wide range of different PHI salts containing

alkali (Li, Na, Cs), alkaline earth (Mg, Ca) and transition metals (Ni, Co, Ag,

Zn) and further studied their catalytic reactivity and conductivity. The highest

photocatalytic activity for the visible-light-driven hydrogen evolution reaction was

found in the case of the Mg-PHI salt. The fact that the cations can be easily

exchanged in these materials is not trivial. Insertion and exchange of ions in

solid-state porous crystalline frameworks are usually possible rather in inorganic

frameworks. Examples are the redox intercalation of Li-ions into CoO2 as happen-

ing at the cathode of a lithium battery [28, 29] and the exchange of ions within a
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charged zeolite framework changing its catalytic activity and size selectivity [24].

In organic frameworks, ion insertion or exchange are rare and primarily based

on extended polymer frameworks [30]. Therein, the solubility of the materials in

salt melts as well as the strength of interaction with the salt ions play a crucial

role. Hence, the salt melt acts as a high-temperature solvent and as a structure-

directing agent [31–33]. The choice of the ion define the structure, crystallinity

and hence the properties of the resulting materials [24]. In the case of a similar

material, poly(triazine imide) (PTI), divalent metal ions like Sn stay inside the

final polymer because they exhibit strong nitrogen-metal donor acceptor bonds

[34, 35].

Figure 1.2: Schematic exchange of the potassium (K+; pink) cations of K-PHI with other cations

(X+/2+; red) while maintaining the organic framework along the lines of Ref. [23].

The focus of this work is the theoretical investigation of the interaction of adsor-

bates inside the nanopores of the poly(heptazine imide) salts. As these materials

exhibit structures which offer an interesting adsorption evironment, they are po-

tentially relevant for gas storage, separation, catalysis and many more. It has

already been demonstrated that hydrogen gas (H2) adsorbs on metal-free CN ma-

terials [7]. Since H2 is non-polar and quickly boiling, it usually has to be activated,

e. g. in terms of frustrated Lewis pairs in pure organic systems [36–39]. There-

fore, K–PHI could be a suitable candidate for non-polar gas adsorption. The most

non-polar gas is helium, which has an extremely low boiling point (∼4 K), and

liquefying He gas is technologically demanding. Adsorption materials offer an al-

ternative for storage and transportation of He gas. Hence, helium adsorption in

K-PHI is investigated in this work. Present adsorption materials usually exhibit

only little He adsorption because of its inertness and low solubility [40–45]. High

helium uptake was found in magnetron sputtering generated nanoporous silicon

[46] and similar obtained titanium alloy films [47] with storage of up to 21 at%.

Beside the extreme non-polar helium, the water adsorption in the highly reac-
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tive nanopores of K-PHI is addressed in this work. Interactions between water

molecules and surfaces are among the most fundamental and relevant phenom-

ena [48, 49]. Water is omnipresent and essential for example for living organisms

[50] and modern energy- and environmental applications, such as gas adsorption,

catalysis or adsorptive purification. [51–53] In these applications, the structure

and activation of water at the interfaces play a crucial role. Strong interface in-

teractions or confined conditions in the pore can realign the water structure and

hence completely change its nature and properties [54]. K-PHI exhibits a definite

pore size, high availability of partial charges and hydrophilic sites. Therefore, it

is interesting to investigate the structure and thermodynamics of water at these

interfaces.

The remainder of this work is organized as follows. In Chapter 2, the theoretical

framework is given by briefly explaining the fundamentals of density functional

theory as well as the applied energy decomposition analysis based on absolutely

localized orbitals. Next, the structure of K-PHI and the cation exchange of K-

PHI to other PHI salts and their structures are investigated in Chapter 3. In

Chapter 4, the helium adsorption in these materials is studied with a focus on

the interactions between adsorbate and PHI material as well as the role of the

cation. The interactions of single and multiple adsorbed water in the nanopores

of K-PHI is similarly investigated in Chapter 5. This is followed by a discussion

about the interplay between water and helium in K-PHI in Chapter 6. After that,

the development of an alternative approach for calculating transport coefficients

is described and applied to disordered silicon in Chapter 7, which was done as

a collaboration with Prof. Emil V. Prodan and Prof. Thomas D. Kühne and

published in Ref. [55]. There, E. V. P. and T. D. K. developed the theoretical

framework in Section 7.1, 7.2 and 7.3 as well as the implementation (Section 7.4).

My contribution to this work is the application (Section 7.5) of the theory to ab-

initio molecular dynamics simulations of silicon containing different numbers of

atoms (216 and 1000) at different temperatures (300, 600, 900, 1200, 1500, 1800,

2100, 2400, 2700, 3000K). More precisely, I generated workflows for these different

systems to calculate the overlap matrices S and the Kohn Sham matrices HKS and

calculate the chemical potential as well as the conductivity from these. At the

end, Chapter 8 deals with the conclusions of the previous chapters followed by the

references and the appendix.



2 Description of a Quantum Mechanical

System

This chapter deals with the fundamentals of density functional theory (DFT) start-

ing from the Schrödinger equation (SE). The explanation and the equations are

mostly based on Ref. [56] and Ref. [57], however, there are plenty of additional

well-written summaries in the literature [58–61]. After that, the energy decom-

position analysis (EDA) based on absolutely localized orbitals (ALMO) is briefly

introduced, which is used in this work to decompose the DFT interaction energies

of adsorbates to gain further chemical insights.

2.1 Schrödinger Equation and Born-Oppenheimer

Approximation

To describe a physical system quantum mechanically, most approaches are based

on the time-independent, non-relativistic Schrödinger equation [62, 63]

ĤΨi(r1, ..., rN , R1, ..., RM) = EiΨi(r1, ..., rN , R1, ..., RM), (2.1.1)

where Ĥ is the Hamilton operator for a physical system consisting of M nuclei and

N electrons. The wavefunction of the system Ψ completely describes the quantum

mechanical system and contains all information which can be known. Subindex

i denotes the state of the system and Ei are the corresponding energies. In the

absence of magnetic or electric fields, the Hamiltonian

Ĥ = T̂nuc + T̂elec + V̂nuc−nuc + V̂nuc−elec + Ûelec−elec (2.1.2)

represents the total energy by the sum of the kinetic energies of electrons Telec and

nuclei Telec plus the pair potential potentials V̂nuc−nuc,V̂nuc−elec and Ûelec−elec.

The Born-Oppenheimer approximation [64] separates the Schrödinger equation

14



2.1 Schrödinger Equation and Born-Oppenheimer Approximation 15

into nuclear and electronic contributions, which simplifies the problem enormously.

Pictorially, the electrons are assumed to move in a field of fixed nuclei. This is

a reasonably good approximation due to the significant mass differences between

nuclei and electrons. For the lightest atom of all, hydrogen, the nucleus, which is

a single proton, is about 1800 times heavier than its electron and their movements

are hence happening on different time scales. For all other atoms, the difference is

even multiple times higher. In the electronic SE, the kinetic energy of the nuclei

is neglected and as a consequence the total kinetic energy is only determined by

the kinetic energy of the electrons Telec. The nuclear repulsion is only a constant

and not part of the electronic Hamiltonian. The electronic Hamiltonian then only

consists of

Ĥelec = T̂elec + V̂nuc−elec + Ûelec−elec. (2.1.3)

Using DFT, one is usually interested in the electronic structure of atoms, molecules

and solids. Its goal is to address the many-body electronic Schrödinger equation

ĤelecΨelec(r1, ..., rN ;R1, ..., RM) = EelecΨelec(r1, ..., rN ;R1, ..., RM), (2.1.4)

where the electronic wavefunction Ψelec now only depends on the N electronic

coordinates ri while the M nuclear coodinates Rk enter only parametrically. The

nuclear repulsion

Enuc =
∑
k<l

QkQl

|Rk −Rl|
, (2.1.5)

where Qk and Ql are the charges of nuclei k and l, respectively, is only a constant

and can simply be added to the electronic energy Eelec to obtain the total energy

of the system

Etot = Eelec + Enuc. (2.1.6)

From now on, only the electronic part of the SE is considered and the subindices

are dropped, so that the electronic SE is given as

[T̂ + V̂ + Û ]Ψ(r1, ..., rN ;R1, ..., RM) = EΨ(r1, ..., rN ;R1, ..., RM), (2.1.7)
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where the electronic Hamiltonian consists of three parts: First, the electronic

kinetic energy T̂ , which is for any non-relativistic system defined as

T̂ = − ~2

2m

N∑
i

∇2
i , (2.1.8)

where ~, m and ∇ are the reduced planck constant, the mass of the electron and

the nabla operator, respectively, and secondly Û which describes the Coulomb

interactions of electrons by

Û =
∑
i<j

U(ri, rj) =
∑
i<j

q2

|ri − rj|
, (2.1.9)

where q is the charge of an electron. As can be seen, the operators T̂ and Û do

not depend on the system and are hence called universal operators. Contrary, the

only system dependent (non-universal) operator is

V̂ =
∑
i

v(ri) =
∑
ik

Qkq

|ri −Rk|
(2.1.10)

which describes the attractive potential exerted on electrons due to the nuclei and

its expectation value v(r) is often termed as external potential. The SE for a single

electron moving in this potential v(r)

[
−~2∇2

2m
+ v(r)

]
Ψ(r) = εΨ(r) (2.1.11)

and the many-body SE

[
N∑
i

(
−~2∇2

i

2m
+ v(r)

)
+
∑
i<j

U(ri, rj)

]
Ψ(r1, ..., rN) = EΨ(r1, ..., rN) (2.1.12)

for a system containing multiple electrons can be formulated. The approach is to

first specify the system by choosing the potential v(r), constructing the Hamil-

tonian Ĥ and obtain the electronic wavefunction Ψ by solving that linear partial

differential equation. Knowing the wavefunction, any physical observable O can

be calculated as an expectation value 〈O〉 with the corresponding operator Ô via
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〈Ψ|Ô|Ψ〉 =

∫
d3r1

∫
d3...

∫
d3rNΨ∗(r1, r2, ..., rN)ÔΨ(r1, r2, ..., rN) (2.1.13)

The schematic procedure can be summed up as

v(r) =⇒ Ĥ
HΨ=EΨ
=====⇒ Ψ(r1, ..., rN)

〈Ψ|Ô|Ψ〉
====⇒ 〈O〉. (2.1.14)

The wave function itself is not an observable. A physical interpretation is only

possible of the electron density, which is related to the square modulus of the

wavefunction and is defined as the integral over all but one spatial variables of the

electrons. The result is formally the probability of finding a particular electron

within a volume element dr1 - while all other electrons might be anywhere in

space. However, because electrons are indistinguishable, it is also the probability

of finding any other electron within dr1. In practice, wave functions are often

normalized so that the probability of finding the N electrons anywhere in space is

equal to 1. Hence, you get the total probability

ρ(r) = N

∫
d3r2

∫
d3...

∫
d3rNΨ∗(r, r2, ..., rN)Ψ(r, r2, ..., rN) (2.1.15)

of finding any electron by multiplication with the total number of electrons N.

2.2 Density Functional Theory

As described in the previous section, obsevables can be calculated using the wave-

function Ψ. Unlike other methods, density functional theory (DFT) defines a way

to calculate observables by only using the electron density ρ(r) as key quantity

without needing the wavefunction explicitly. This reduces the effort significantly

and is the reason for the emergence of DFT. It means that in a closed shell system,

the information of Ψ0(r1, ..., rN) depending on N vectorial variables, i. e. 3N coor-

dinates, is contained in the ground state density ρ0(r), which only depends on one

vector r with 3 spatial dimensions. Its legitimacy was shown by Hohenberg and

Kohn in 1961 [65]. Nowadays, their evidences are known as the Hohenberg-Kohn

theorems.
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Hohenberg-Kohn Theorem 1

The first Hohenberg-Kohn theorem proves that the external potential v(r) is (to

within a constant) a unique functional of ρ(r). Hence, the ground-state electron

density ρ0(r) indeed uniquely determines the complete Hamilton operator and it

is in principle possible to calculate the ground state wavefunction

Ψ0(r1, ..., rN) = Ψ0[ρ0(r)] (2.2.1)

as a functional of ρ0(r). As a consequence, all properties of the system can also

be calculated and are given by the expectation value of its operator Ô:

O0 = O[ρ0] = 〈Ψ[ρ0]|Ô|Ψ[ρ0]〉. (2.2.2)

Noteworthy, although density functional theory is a ground state theory, by having

the complete Hamilton operator, all states including the excited states of the

system are formally determined by the ground state density ρ0(r).

Hohenberg-Kohn Theorem 2

The second Hohenberg-Kohn theorem shows that the most important observable,

the ground state density

Ev,0 = Ev[ρ0] = 〈Ψ[ρ0]|Ĥ|Ψ[ρ0]〉 (2.2.3)

can be obtained by applying the variational principle. Every energy E[ρ′] is higher

or equal to the energy of the ground state density. The lowest energy is obtained

if the density is the true ground state density.

Ev[ρ0] ≤ Ev[ρ
′] (2.2.4)

For calculating the ground state energy, the universal energy functional T [ρ] and

U [ρ] can be used, which are the expectation values of T̂ and Û . Hence, a non-

relativistic Coulomb system only differs by their potential v(r), which is the ex-

pectation value of

V [ρ] =

∫
d3rρ(r)v(r) (2.2.5)
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If the system is defined and v(r) is known, the energy in this potential is

Ev[ρ] = T [ρ] + U [ρ] + V [ρ] = T [ρ] + U [ρ] +

∫
d3rρ(r)v(r). (2.2.6)

The theorems form the theoretical foundation of DFT, however, T [ρ] and U [ρ]

are still unknown and the theorems do not provide any practical information on

how these functionals actually look like.

2.3 Thomas-Fermi Model

Even before the Hohenberg-Kohn theorems, the first energy functional was given

based on a description of Thomas [66] and Fermi [67] for the kinetic energy T [ρ].

Therein,

T [ρ] ≈ TLDAs [ρ] =

∫
d3rthoms (ρ(r)), (2.3.1)

is described based on a fictitious uniform electron gas with kinetic energy thom,

which is a simple model of constant electron density. Additionally, it is assumed

that the kinetic energy of the many-body system can be obtained by summing non-

interacting one electron densities, which is also called single-particle approximation

(subindex s). Furthermore, U [ρ] is described by classical Coulomb interactions of

the electron density. This term is also known as the Hartree energy

U [ρ] ≈ UH [ρ] =
q2

2

∫
d3r

∫
d3r′

ρ(r)ρ(r′)

|r − r′|
. (2.3.2)

In these approximations, the resulting total energy

E[ρ] ≈ ETF [ρ] = TLDAs [ρ] + UH [ρ] + V [ρ] (2.3.3)

can be calculated only in terms of the electron density without needing the wave-

function. However, molecules in the bound state are not stable and dissociate

into their individual atoms having lower energy which makes it practically unus-

able for any chemist. This is originated from the fact that electron exchange and

correlation are completely neglected in this energy functional.
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2.4 Kohn-Sham Equations

To make DFT practically usable, more accurate descriptions of T [ρ] and U [ρ]

are necessary. Kohn and Sham [68] realized that orbital-based approaches are

much more accurate for describing the electronic kinetic energy. Therefore, they

introduced a reference system out of non-interacting single electron functions Φi(r),

whose density ρ(r) equals exactly the density of the interacting system. Ts[ρ] is

expressed in terms of single-particle orbitals Φi(r) of a non-interacting system with

density ρ as

Ts[{φi[ρ]}] =
~

2m

N∑
i

∫
d3rφ∗i (r)∇2φi(r), (2.4.1)

where Ts[{φi[ρ]}] is now an explicit orbital functional, but implicit density func-

tional. This means Ts[{φi[ρ]}] now depends on the full set of occupied orbitals,

each which is a functional of ρ. Furthermore, U [ρ] is still calculated as the hartree

energy UH [ρ] and the differences of these approximations to the exact values for

T [ρ] and U [ρ] are added as

EXC [ρ] = (T [ρ]− Ts[ρ]) + (U [ρ]− UH [ρ]) (2.4.2)

to obtain a formally exact equation for the total energy

E[ρ] = T [ρ] + U [ρ] + V [ρ] = Ts[φi[ρ]] + UH [ρ] + EXC [ρ] + V [ρ]. (2.4.3)

The introduced term EXC [ρ] is called exchange-correlation functional and contains

the difference T [ρ]−Ts[ρ] due to electron correlation and U [ρ]−UH [ρ] due to non-

classical effects of self-interaction, exchange and correlation of the electron-electron

interaction. It is often decomposed into exchange (EX , also Fermi correlation) due

to the antisymmetry principle, which leads to the Pauli exclusion principle, and

reduces the density around other electrons with the same spin; and the correlation

due to Coulomb correlation (EC) which acts on any two electrons. Now, most of

the total energy can be computed exactly and everything which is unknown and

relatively small, is contained in the exchange-correlation functional, which is also

a functional of ρ as guaranteed by the Hohenberg-Kohn theorems. However, it

remains unknown and has to be approximated in DFT. Some approximations are
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given later in Section 2.5.

The kinetic energy Ts[{φi[ρ]}] is an improved approximation for the exact T [ρ],

however, because it is now an orbital functional, it cannot be directly minimized

with respect to the density. Instead, an indirect minimization scheme is employed

0 =
δE[ρ]

δρ(r)
=
δTs[ρ]

δρ(r)
+
δV [ρ]

δρ(r)
+
δUH [ρ]

δρ(r)
+
δEXC [ρ]

δρ(r)
(2.4.4)

As can be seen in Eq. (2.2.5), the δV [ρ]
δρ(r)

yields the external potential. vH is the

Hartree potential and vXC is the potential of a chosen EXC approximation.

0 =
δE[ρ]

δρ(r)
=
δTs[ρ]

δρ(r)
+ v(r) + vH(r) + vXC(r) (2.4.5)

The key step is now to consider a system of non-interacting particles moving in

a not yet defined potential vs. In the absence of interactions, the minimization

condition becomes

0 =
δEs[ρ]

δρ(r)
=
δTs[ρ]

δρ(r)
+ vs(r). (2.4.6)

Solving this equation, the electron density ρs(r) can be obtained. If the potential

vs is chosen to be

vs(r) = v(r) + vH(r) + vXC(r) (2.4.7)

both minimizations have the same solution, which is ρs(r) = ρ(r). As a con-

sequence, the density of the interacting many-body system in potential v(r) de-

scribed by a many-body SE can be calculated by solving the equations of non-

interacting single-body system in potential vs(r). By solving the single-particle

SEs of the non-interacting auxillary system in the effective potential vs(r)[
−~2∇2

2m
+ vs(r)

]
φi(r) = εiφi(r) (2.4.8)

the orbitals are obtained that reproduce the density

ρ(r) ≡ ρs(r) =
N∑
i

fi|φi(r)|2 (2.4.9)

of the many-body system and this allows to determine the non interacting kinetic
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energy Ts[{φi[ρ]}]. fi is the occupation of the ith orbital. The last three equations

are known as the Kohn-Sham equations, which can be used to obtain the total

energy E[ρ] as well as the density ρ[r] of a many-body system can be obtained

by solving single-particle equations. Therefore, the effective potential vs of the

one-electron Hamiltonian has to be choosen, so that ρ(r) = ρ0(r). However, both

cH and vXC depend on ρ, which in return depends on the set of orbitals {φ},
which again depend on vs. So, an initial guess for the density is made, e. g. out

of the sum of atomic densities, and the problem is solved iteratively in a so-called

self-consistent field cycle.

The ground state energy E0 can be calculated from the converged ground state

density ρ0(r) considering Eq. (2.4.3) and (2.4.7) as

E0 =
N∑
i

εi −
q2

2

∫
d3r

∫
d3r′

ρ0(r)ρ0(r′)

|r − r′|
−
∫
d3rvxc(r)ρ0(r) + EXC [ρ0] (2.4.10)

As can be seen, E0 is not simply the sum of the eigenvalues εi of the artificial

single-electron orbitals (eigenfunctions), which are only introduced to reproduce

the correct density. Hence, the electron density is the only thing, which has a strict

physical meaning in the Kohn-Sham equations. If the eigenvalues of the orbitals

εi are used as an approximation for the band structure, the artificial auxillary

single-body equation is applied to the many-body SE, which is formally a mean

field approch with mean field vs.

2.5 Approximations of the Exchange and Correlation

Functional

Because the contribution of the exchange and correlation to the total energy is

relatively small compared to the known parts Ts[ρ], UH [ρ] and V [ρ], simple ap-

proximation already provide useful results. There are several different approaches

to approximate the exchange-correlation functional EXC [ρ]. First, the simplest is

the local density approximation (LDA),

ELDA
XC [ρ] =

∫
d3rehomXC (ρ(r)), (2.5.1)

which is based on the already mentioned homogenous electron gas, for which the
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exchange is known exactly and the correlation is parameterized regarding highly

precise calculations. It has been surprisingly successful, even if the system is far

away from an homogenous electron gas. This is due to the fact that LDA typically

underestimates the correlation energy Ec and overestimates the exchange energy

Ex leading to error cancellation to some extent.

Secondly, the class of semi-local functionals, which accounts for gradient correc-

tions. The generalized gradient approximation, GGA, uses general functions and

has the form

EGGA
XC [ρ] =

∫
d3rf(ρ(r),∇ρ(r)). (2.5.2)

Famous examples are the PBE functional [69], especially in the physics community

and the BLYP functional [70, 71] in chemistry. If this formalism is further extended

by considering also the Kohn-Sham kinetic energy density

τ(r) =
~

2m

∑
i

|∇Ψi(r)|2, (2.5.3)

the functionals of type

Emeta−GGA
XC [ρ] =

∫
d3rf(ρ(r),∇ρ(r), τ(r)) (2.5.4)

belong to the class of meta-GGA functionals. In general, the accuracy increase, but

simultanously the computational effort. An even more accurate description of the

EXC can be made by using hybrid functionals, which are based on GGA functionals,

but additionally include part of the exact exchange obtained by the Hartree-Fock

formalism, but leads to a further significant increase of the computational cost.

2.6 Energy Decomposition based on Absolutely Localized MOs

To investigate the nature of intermolecular interactions, the energy decomposition

analysis (EDA) based on absolutely localized molecular orbitals (ALMO) [72–76]

can be applied. In ALMO-EDA, the total interaction energy

∆Etot = ∆EFRZ + ∆EPOL + ∆ECT (2.6.1)

is decomposed into chemically meaningful components, such as the frozen in-
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teraction term ∆EFRZ, which is defined as the energy required to bring isolated

molecules into the system without any relaxation of their molecular orbitals (apart

from modifications associated with satisfying the Pauli exclusion principle), and

the energy lowering due to orbital relaxation. The later quantity is then further

decomposed into a polarization term ∆EPOL and the charge-transfer contribution

∆ECT. The polarization energy ∆EPOL is defined as the energy lowering due to

the relaxation of each molecule’s ALMOs in the electrostatic fields of all other

molecules. The charge-transfer energy ∆ECT is calculated as the difference in the

energy of the relaxed ALMO state and the state of fully delocalized optimized

orbitals. A distinctive feature of the ALMO-EDA is that the charge-transfer con-

tribution can be separated into terms associated with forward- and back-donation

for each pair of molecules, as well as a many-body higher-order (induction) con-

tribution ∆EHO, which is very small for typical intermolecular interactions. Both,

the amount of electron density transferred between a pair of molecules ∆QCT as

well as the corresponding energy lowering ∆ECT can be computed via

∆ECT =
∑
x,y>y

{∆Ex→y + ∆Ey→x}+ ∆EHO (2.6.2)

and

∆QCT =
∑
x,y>y

{∆Qx→y + ∆Qy→x}+ ∆QHO. (2.6.3)



3 Structures of Poly(heptazine imide) Salts

Experimentalists have already studied the structure of K-PHI, which was the first

synthesized PHI salt, using different techniques. High-resolution transmission elec-

tron microscopy (HRTEM) and powder x-ray diffraction (PXRD) have proven its

hexagonal crystalline nature and identified its lattice parameters, which were used

for the model. K-PHI contains stacked heptazine units with potassium ions in

different continuous channels [23], however, it is hard to experimentally determine

the exact location of the ions due to disorder and stacking defects in the mate-

rial. Therefore, computational calculations are a good way to further address the

structure of K-PHI and the related X-PHI materials.

3.1 Computational Details

All calculations in Chapters 3, 4, 5 and 6 were performed using the here mentioned

computational details. The structures of K-PHI as well as their cation exchanged

analogues, X-PHI, are modeled using an idealized periodic 2D structure, which is

shown on the left hand side of Fig. 3.1. The results of the carried out calculations

are visualized using the VMD software [77] as on the right side of Fig 3.1. The

parameters of the supercell are chosen to be a=b=12.5, c=12.8, α=β=90.0 and

γ=120.0 Å according to the experimental findings.[23, 25]. The supercell contains

four optimized and fixed AA-stacked PHI layers.

The energies of all structures were obtained by carrying out periodic density

functional theory calculations using the hybrid Gaussian and plane wave approach

(GPW), [78] as implemented in the CP2K/Quickstep code.[79] The Kohn-Sham

orbitals were described by an accurate molecularly optimized double-zeta basis

set with one additional set of polarization function, while the charge density was

represented by plane waves with a density cutoff of 500 Ry [80]. Separable norm-

conserving pseudopotentials were used to mimic the interactions between the va-

lence electrons and the ionic cores [81, 82]. The B97-3c exchange and correlation

25
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Figure 3.1: Top view of the chemical (left) idealized 2D structure of K-PHI as well as the in

this work used representation (right). Atomic colors: C=black; N=blue; K=pink.

functional, which is based on Becke’s power-series ansatz, plus a damped atom-

pairwise dispersion correction to account for long-range van der Waals interactions

was employed [83]. Optimized structures were obtained by minimizing the poten-

tial energy by performing geometry optimizations using the Broyden-Fletscher-

Goldfarb-Shanno (BFGS) algorithm [84]. To assure obtaining the lowest energy

structures, a variety of initial positions and orientations are chosen to cover a wide

range of the configurational space for cations and adsorbates.

To investigate the helium and water adsorption inside these materials thermo-

dynamically, the total adsorption energies

∆Etot
ads = E[nAD@X-PHI]− E[X-PHI]− n · E[AD] (3.1.1)

and the incremental adsorption energies

∆Einc
ads = E[nAD@X-PHI]− E[(n− 1)AD@X-PHI]− E[AD] (3.1.2)

are calculated, where E [nAD@X-PHI] is the potential energy of the optimized

system when n adsorbates (AD) are adsorbed in X-PHI, whereas E[X-PHI] and

E[AD] are the potential energies of isolated X–PHI and an individual AD, respec-

tively. A negative value for the adsorption energy indicates that the adsorption is

thermodynamically favorable. In the case of helium adsorption on wet K-PHI, the

adsorbent K-PHI already contains adsorbed water molecules and the adsorption

energies are calculated for the helium adsorbates. Furthermore, the adsorption
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energy per molecule

∆Emol
ads = ∆Etot

ads/n (3.1.3)

can be calculated by dividing the total adsorption energy by the total number

of adsorbates n. To decompose the interaction energies of the adsorbates with

the pore walls and further allocate charge transfer contributions, the ALMO-EDA

is applied as described in Section 2.6. To obtain further chemical insights, net

atomic charges (NAC) are estimated using the Mulliken population analysis [85]

and the density derived electrostatic and chemical method (DDEC6) [86, 87],

which gives chemically meaningful results. Another useful method to visualize

the electron distribution inside the materials is to calculate and plot the isosurface

of the electron densities ρ, as well as the electron density difference upon adsorption

∆ρ = ρ[AD@X− PHI]− ρ[X− PHI]− ρ[AD], (3.1.4)

where ρ[AD@X-PHI] is the total electron density of AD@X–PHI, while ρ[X-PHI]

and ρ[AD] are the total electron densities of X–PHI and the individual adsorbate,

i. e., helium atoms or water molecules.

3.2 Structure of K-PHI

The carried out calculations on the energetically optimized and idealized model of

K-PHI suggest that the AA stacking is energetically the most favorable one. Per

formally negative charged bridging nitrogen atom, one potassium is intercalated

inside the PHI framework, leading to an overall neutral structure. The potassium

ions are located between the PHI layers in the pores of K-PHI, where they are

vertically directly stacked on top of each other. The Coulomb repulsion between

the cations of different layers is hence outdone by the stabilization in the specific

locations. Their position in plane is rather in the corner of the triangular-shaped

pores and not in direct coordination to the bridging atoms as can be seen in

Fig. 3.2. This structural charge separation inside the material can be described as

frustrated Coulomb pairs as an analogue to frustrated Lewis pairs known mostly

from organic chemistry[38, 39]. This structural environment may be interesting

for various adsorptives, such as inert helium and more reactive water molecules,

which are studied in this work.
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Figure 3.2: Lowest energy structure of K-PHI. Left: top view, right: side view. Atomic colors:

C=black; N=blue; H=white; K=pink.

3.3 Exchange of the Cation in K-PHI

The structure of K-PHI containing intercalated potassium ions is a unique feature

and may play an important role in explaining their properties. Hence, it is of

huge importance to further elucidate these effects. To investigate the importance

of cations, the potassiums are exchanged with other cations as well as protons

and the corresponding structures are optimized in a similar fashion as done for

K-PHI. It has already been shown experimentally that the cations can be ex-

changed relatively easily whereby the crystalline structure is basically preserved

[23]. Therefore, the AA stacking is also assumed for the other cations to investigate

the role of the cation in a comparable way. In this work, several alkali (Li+, Na+,

K+, Rb+), alkaline earth (Ca2+, Sr2+, Ba2+) and transition metals (Au+, Ag+)

salts are studied as well as the proton exchanged H-PHI system. These systems

are called X-PHI from now on, where X is the corresponding cation (or hydrogen).

The goal is to gain a deeper understanding of the structure and their properties,

i. e. the helium adsorption, examine the role of the cation choice and in the case

of helium adsorption identify the best candidate.

In the lowest energy structure of H-PHI, the hydrogen atoms are covalently

bonded to the bridging nitrogens, which leads to overall neutrally charged planar

PHI layers. In this material, there is apparently less charge separation than present

in K-PHI and it is therefore a good metal-free reference material out of almost

pure carbon nitride with a similar pore size. The structures of the PHI materials

containing cations of the first main group (Li+, Na+, K+, Rb+, Cs+) are similar

to each other. The lowest energy location of the cations of all the materials are in

the pores between the layers as already described for K-PHI. This is due to the

fact that these elements share the same charge, exhibit similar chemical behavior
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H-PHI {Li,Na,K,Rb,Cs,Ag}-PHI

Au-PHI {Ca,Sr,Ba}-PHI

Figure 3.3: Lowest energy structures of the X-PHI materials are divided into four subgroups:
covalent H-PHI, X(+1)-PHI having ions between the layers, i. e. Cs-PHI, Au-PHI
with gold atoms in the same layer as PHI and Ba-PHI representing X(+2)-PHI. Left:
top view, right: side view. Atomic colors: C=black; N=blue; H=white; Cs=cyan;
Au=yellow; Ba=orange.

and majorly differ only by their size and reactivity. Although all cations are

located between the layers, the final distance between the cation and the PHI

layer increases as the cation increases. The distances between the cation and

the nearest nitrogen atom vary in the range of 2.27 Å (Li-PHI) to 3.09 Å (Cs-

PHI) (Table 3.1). Hence, the biggest distance, and probably the highest Coulomb

frustration is expected to be in Cs-PHI containing the biggest cation of the first

main group.

In the case of exchange with alkaline earth cations (Ca2+, Sr2+, Ba2+), the

total number of cations inside these frameworks is lower due to their increased

charge. While there are three cations per pore per layer in the case of alkali

metals, the analog for alkaline earth metals would contain on average 1.5 ions per

layer. However, to maintain a more homogenous distribution of positive charge

through the pores, only one cation per layer per pore is introduced. Therefore, one

extra covalent hydrogen atom per layer is added to keep the charge of the structure

neutral. They are covalently bonded to one of three bridging nitrogen atoms of

the PHI layers as they are present in H-PHI. All studied cations from the second

main group of the periodic table have a similar location between the layers in the
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pores. They are alternatively occupying adsorption sites still in the edges of the

pores trying to maximize the occupied space inside these pores. Because of their

higher charges, their surrounding electrostatic field is stronger, leading to higher

repulsive forces between the cations. The distances of the alkaline earth metals to

the PHI layers in the range from 2.57 Å (Ca-PHI) to 2.91 Å (Ba-PHI) follow the

same trend as the first main group (3.1) and hence Ba-PHI exhibits the highest

separation.

The investigated PHI systems containing transition metals in oxidation state

+1 are similar to the alkali metals, which carry the same formal charge. Silver

is similarly located in the pores between the layers. With a distance of 2.50 Å,

the location of the ions is between the ones found for Li+ and Na+. In contrast

to all other investigated systems, gold cations are found to be energetically rather

located inside the same layer as the PHI than between them. All investigated

systems are shown in Fig. 3.3 as four subgroups: H-PHI with covalent hydrogen

atoms, X(+1)-PHI and X(+2)-PHI having cations between the layers, as well as

Au(+1)-PHI, where the gold ions are in the same layer as the PHI planes. The

structures inside a subgroup only differ by their exact horizontal position, because

bigger cations are slightly shifted towards the middle of the pore increasing their

distance d to the PHI layers.

Noteworthy, in these calculations only the lowest energy state of the materials

is considered. The possibility of cation exchange in these materials [23] suggests

that the cations are able to move throughout the pore channels.

Table 3.1: Vertical lowest energy position of the cations in X-PHI (Pos. X), average DDEC6
charges qi, distance d between X and nearest nitrogen of PHI, as well as the product
µ = qx · dXN.

X-PHI Pos. X qX [e] qC [e] qN [e] dXN [Å] µ [eÅ]

H-PHI cov. 0.34 0.53 -0.43 1.00 0.34

Li-PHI between 0.87 0.55 -0.54 2.27 1.97
Na-PHI between 0.88 0.56 -0.55 2.79 2.46
K-PHI between 0.82 0.55 -0.54 2.84 2.34

Rb-PHI between 0.80 0.56 -0.53 2.99 2.39
Cs-PHI between 0.77 0.56 -0.53 3.09 2.37

Ca-PHI between 1.42 0.53 -0.48 2.57 3.64
Sr-PHI between 1.46 0.53 -0.48 2.73 3.99
Ba-PHI between 1.44 0.53 -0.48 2.91 4.19

Ag-PHI between 0.55 0.53 -0.47 2.50 1.37
Au-PHI in-plane 0.30 0.52 -0.42 2.55 0.78
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3.4 Net Atomic Charges and Electron Density

The charge distributions inside the X-PHI materials are assumed to be an im-

portant factor in explaining their properties. Therefore, net atomic charges are

estimated using the density derived electrostatic method (DDEC6). The average

charges for each atomic kind are given in Table 3.1. First of all, these calculations

reflect the expected behavior that the cations are positively charged in the range

of 0.30 to 1.46. The fact that the partial charge of the cations is lower than the

formal oxidation state means that the cation-framework interaction is not solely

Coulomb type as it is typical for any chemical system. However, in most cases,

the interaction is dominated by Coulomb interactions. Since the total system is

neutral, the PHI layers carry the exact amount of negative charges, which are

rather located at the more electronegative nitrogen atoms (qN ≈ -0.5) than at

the on average partial positive carbon atoms (qC ≈ +0.5). There are one-third

more nitrogen than carbon atoms inside these materials, reflecting the overall neg-

ative charge in the PHI layers. Furthermore, the product of the charge of the

cation times the nearest distance of it to the PHI layers is calculated to obtain a

dipole-like quantity µ in order to have a very simple way to quantify the charge

separation in these materials. In H-PHI, only a relatively low charge separation is

present due to the absence of cations and only covalently bonded hydrogen atoms

(qH=0.34 e, dHN=1.0 Å, µ=0.34 eÅ). The alkali cations carry positive net atomic

charges in the PHI systems between 0.77 (Cs+) and 0.88 (Na+). The distance

between the cation and the PHI layers naturally depends on the size of the cations

and thereby Cs+ has the highest distance. While the calculated charges and dis-

tances for the cations Na+, K+, Rb+ and Cs+ are close to each other, leading to

similar µ (2.34-2.46 eÅ), Lithium is found to be closer to the PHI layers and hence

has the smallest µ=1.97 eÅ. The obtained net atomic charges of the alkaline earth

metals are logically higher from 1.42 (Ca2+) to 1.46 (Sr2+). Again, the size of the

cation is determining, leading to Ba-PHI having the highest Coulomb frustration

(µ=4.19 eÅ). The transition metals carry the least positive charged metals inside

the materials. Silver has a partial charge of 0.55 while gold has the lowest charge of

all (0.30), which is even below the partial charge of the hydrogen atoms in H-PHI.

This underlines the typical behavior of gold, which exhibits a significant covalent

bonding character assigned to relativistic effects on 5d and 6s orbitals [88]. This

also explains the different positions in the PHI plane compared to other cations.
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After determining the optimized structures of the X-PHI materials and analyzing

their net charges, helium adsorption inside their pores is addressed in this chapter.

Helium is known to be the most inert element of all in the periodical table and

hardly undergoes interactions of any kind. Therefore, it is interesting to investi-

gate the interactions of helium inside the highly polarizing environment of these

materials and to study the role of cation choice.

4.1 Structure and Energy of Helium Adsorption

A single helium atom is placed inside the nanopores of the X-PHI materials, whose

structures were determined in the previous chapter, and the lowest energy adsorp-

tion state as well as the corresponding adsorption energy are calculated. Inter-

estingly, helium adsorption is thermodynamically favorable in all studied systems.

Even in the metal-free H-PHI system, helium can be adsorbed, releasing an ad-

sorption energy of -2.4 kJ/mol. This is the lowest adsorption energy of all studied

systems, however, the fact that helium adsorption is energetically favorable in H-

PHI, shows the high adsorption potential of metal-free porous carbon nitrides. The

adsorption energy is significantly enhanced in the cation containing X-PHI systems

and is in the range of -3.1 kJ/mol to -5.5 kJ/mol. This underlines the importance

of charged surroundings for a unique adsorption environment and a thermodynam-

ically increased interaction of helium inside these nanopores. Overall, the highest

adsorption energy of -5.5 kJ/mol occurs in the Cs-PHI system, which exhibits a

high Coulomb frustration due to the size of the cation. In general, the adsorption

energy for alkali metal cation containing PHIs is higher than for the PHIs with

alkaline earth metal cations. This might be counter-intuitive due to the fact that

alkaline earth metals carry an even higher charge, however, this also lowers the

total number of cations in the pores. Additionally, while there are three cations

present per pore per layer in the case of +1-charged cations, they are replaced

32
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by one +2-charged cation plus one hydrogen atom in the carried out simulations,

which leads to a lower total charge per volume. Within both main groups, the

trend can be observed, that bigger cations (higher period) lead to higher adsorp-

tion energies. They exhibit a higher spatial charge separation and thus, Ba-PHI

entails the highest heat of adsorption (-3.4 kJ/mol) for helium in the studied PHI

systems containing second main group ions. In PHI containing transition metals,

helium adsorption is also energetically favorable, but silver (-3.1 kJ/mol) and gold

(-3.6 kJ/mol) do not lead to a energetical increase of the helium interaction inside

the PHI materials.

He in H-PHI He in Cs-PHI

He in Au-PHI He in Ba-PHI

Figure 4.1: Structures of the lowest energy adsorption state of helium in H-PHI, Cs-PHI, Au-
PHI and Ba-PHI. Atomic colors: C=black; N=blue; He=green; H=white; Cs=cyan;
Au=yellow; Ba=orange

The lowest energy adsorption sites for the adsorbed helium atoms are in all

structures inside the existing pores of the materials. The horizontal position is

always near the middle of the pore and hence in the presence of +1 cations in-

between the three cations, which are oriented in a triangular shape as determined

by the pore geometry. Interestingly, the He atoms can occupy sites, either in

the same plane as the PHI layers or between them with only minor changes in

the corresponding energy. Hence, at finite temperatures, the helium atoms are

expected to diffuse through the pore channels of the materials. Whether the

lowest energy adsorption site of the helium atom is in the same layer as the PHI
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plane or in-between is dependent on the system. The vertical positions of He in all

studied systems are given in Table 4.1. Exemplary, the lowest energy structures

upon single helium adsorption are shown in Fig. 4.1 for H-PHI, Cs-PHI, Au-PHI,

Ba-PHI.

Table 4.1: Vertical lowest energy position of a single helium atom adsorbed in X-PHI (Pos. He),
the corresponding adsorption energy Eads as well as the DDEC6 charge of helium qHe

in the adsorbed state.

X-PHI Pos. He Eads [kJ/mol] qHe [e]

H-PHI between -2.40 0.010

Li-PHI between -3.79 0.009
Na-PHI between -3.59 0.002
K-PHI in-plane -4.30 0.006

Rb-PHI between -4.82 0.007
Cs-PHI in-plane -5.45 0.012

Ca-PHI between -2.96 0.006
Sr-PHI in-plane -3.10 0.006
Ba-PHI in-plane -3.39 0.008

Ag-PHI in-plane -3.10 0.006
Au-PHI in-plane -3.55 0.002

4.2 Net Atomic Charges and Electron Density

The DDEC6 analysis is also applied to the optimized structures after helium ad-

sorption to determine the charges of the helium atoms in the adsorbed state qHe

(Table 4.1). Excitingly, the net atomic charges are slightly positive up to 0.012 e

(Cs-PHI), which demonstrates that a charge of around 1% of an electron is trans-

ferred from the otherwise inert helium to the electron-poor PHI materials. This

means that part of the interaction with helium originates from partial charge trans-

fer. The charges of other atoms in the X-PHI systems practically do not change,

since the small counter charges of the helium atoms are distributed through the

system. Assuming that charge transfer effects due to the charge separation inside

these structures are essential for the adsorption environment of helium, this offers

an explanation for why the adsorption energies are higher in the systems contain-

ing big frustrated cations. Helium carries the highest charge in Cs-PHI, which is

the system with also the highest adsorption energy. However, in the calculated

charges, there is no evidence for an overall correlation between the exact partial
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charge of the adsorbed helium and the corresponding heat of adsorption. The role

of the charge transfer and its contributions are later studied in more detail using

the energy decomposition analysis based on absolutely localized molecular orbitals

(ALMO-EDA). For better visualization, the electron density as well as the electron

density differences upon helium adsorption are calculated and shown in terms of

3D isosurfaces in Fig. 4.2 for Cs-PHI, which is the thermodynamically best adsorp-

tion material. The electron density distribution of pristine Cs-PHI visualizes the

results of the DDEC6 analysis and pictures the high electron probabilities (red) at

the more electronegative nitrogen atoms of the negative PHI layers. In the case of

helium adsorption at Cs-PHI, the isosurfaces of the electron density difference are

plotted showing regions of accumulation (green) and depletion (red) of electrons

in the presence of adsorbed helium. The helium is located in the middle of the

pore where there is a red dot indicating a decreased density as compared to an iso-

lated gas phase helium atom at the same position. Although there are only small

amounts of charges involved in the adsorption process, it can be seen that the

positive charge of the helium results from interaction with the Cs cations, whose

electron distribution is influenced due to charge transfer of the adsorbed helium.

Figure 4.2: Electron density isosurfaces of Cs-PHI (left, isovalues = 0.05/0.1/0.2/0.3/0.4 from
blue to red) and the electron density differences upon helium adsorption in Cs-PHI
(isovalues = ± 0.001 red(+)/green). Atomic colors: C=black; N=blue; Cs=cyan;
He=green.

The adsorption of only a single helium atom is studied in the X-PHI materials.

However, it has to be noted that adsorption of multiple helium atoms is not only

able to influence the vertical lowest energy position, but also the overall adsorption

energy due to competition and limited space and adsorption sites inside the pores.
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4.3 Energy Decomposition Analysis

The origin of the adsorption energies of helium in the X-PHI materials is fur-

ther studied by applying the ALMO-EDA. It allows to decompose the interaction

between the helium atoms and the adsorbent into a frozen energy term EFRZ, a

polarization term EPOL and charge transfer contributions. The amount of charge

transfer and the corresponding stabilization energy can be assigned to individual

charge donor and acceptor pairs. The summed energy of the ALMO-EDA is the

interaction energy of helium and the X-PHI material. It does not exactly equal

the adsorption energy discussed before due to possible displacement i. e. of the

cations during helium adsorption, which is not included in the ALMO-EDA cal-

culations. However, in this case, this geometric distortion term only has a small

contribution and can be neglected (<0.5 kJ/mol). The analysis results for the

helium interaction with all studied X-PHI systems are shown in Table 4.2. The

energy percentages to the total interaction energy are given in parentheses after

each energy. The results are also plotted as a stacked bar chart in Fig. 4.3.

Table 4.2: Results of the decomposition of the interaction energy of adsorbed helium inside the
pores of the X-PHI materials to a frozen energy term EFRZ, a polarization term EPOL

and the charge transfer contributions from PHI to He EPHI→He and from He to the
corresponding cations EHe→X as well as their respective transferred charges qPHI→He

and qHe→X. The percentages (%) of the energies to the total interaction are given in
parentheses.

X-PHI ∆EFRZ ∆EPOL ∆EPHI→He qPHI→He ∆EHe→X qHe→X

[kJ/mol] [kJ/mol] [kJ/mol] [me] [kJ/mol] [me]

H-PHI -2.06 (74) -0.03 (1) -0.12 (4) 0.03 -0.58 (21) 0.31

Li-PHI -1.95 (48) -0.28 (7) -0.39 (10) 0.09 -1.42 (35) 0.87
Na-PHI -2.22 (65) -0.16 (1) -0.25 (7) 0.06 -0.80 (23) 0.49
K-PHI -3.22 (76) -0.05 (1) -0.13 (3) 0.04 -0.82 (19) 0.51

Rb-PHI -4.03 (77) -0.05 (1) -0.32 (6) 0.09 -0.83 (16) 0.51
Cs-PHI -4.76 (81) -0.06 (1) -0.27 (5) 0.07 -0.79 (13) 0.48

Ca-PHI -2.24 (72) -0.06 (2) -0.15 (5) 0.05 -0.67 (22) 0.38
Sr-PHI -2.34 (71) -0.07 (2) -0.10 (3) 0.03 -0.77 (24) 0.46
Ba-PHI -2.47 (68) -0.10 (3) -0.13 (3) 0.04 -0.94 (26) 0.57

Ag-PHI -2.36 (70) -0.04 (1) -0.15 (4) 0.04 -0.82 (24) 0.54
Au-PHI -2.81 (74) -0.06 (2) -0.08 (2) 0.02 -0.82 (22) 0.53

For all investigated systems, the ALMO-EDA shows that ∆EFRZ > ∆ECT >

∆EPOL. Hence, the frozen term is the dominating energy contribution to the

interaction between helium and all studied adsorbing materials. The frozen term
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Figure 4.3: Schematic representation of the results of the energy decomposition analysis of he-

lium adsorption in X-PHI shown in Table 4.2

physically mainly represents pure electrostatic interactions, which indicates the

importance of present cations and charge separation inside these materials. The

highest percentage of the frozen energy term (81%, -4.8 kJ/mol) to the total energy,

is found in Cs-PHI, which also has the highest adsorption energy. Notably, the

interactions inside materials with lower charge separation and lower adsorption

energies, like the covalent H-PHI system and the comparable Au-PHI, are also

dominated by Coulomb interactions (both 74%).

Additionally, the calculations suggest that the second-highest term, the charge

transfer, also substantially contributes to the total interaction energy in all sys-

tems. To investigate the interaction between helium and X-PHI due to charge

transfer, the transfer contribution from the X-PHI framework to the He atoms is

studied and vice versa. The charge transfer interaction of helium in the metal con-

taining systems can be assigned to two contributions: a charge transfer qPHI→He

from the negative PHI layers to He and from He to the corresponding cation X

qHe→X. There is practically no back donation from X to He or from He to PHI,

respectively (qHe→PHI ≈ qX→He ≈ 0). In H-PHI, there is no metal ion and hence

the neutral PHI layers can also accept a significant charge from the helium (0.31

me, -0.58 kJ/mol). The calculations reflect that the helium atoms are better elec-
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tron donors than acceptors (qHe→X > qPHI→He), which was already indicated by

the calculated positive net atomic charges on the helium atoms after adsorption.

Hence, helium has a slightly basic character and interacts more with the acidic

sites, i. e., the cations in these materials via charge transfer. In the best He ad-

sorber Cs-PHI, the amount of charge transferred qHe→X from the helium to the Cs

cation is 0.48 me resulting in stabilization energy ∆EHe→X of -0.8 kJ/mol. How-

ever, the values of transferred charge (0.38-0.57 me) as well as the energies (-0.7

to -0.9 kJ/mol) are rather similar in all investigated systems. This also applies to

the comparison of alkali with alkaline earth metals, even though the cations carry

a different charge. Exceptions from these ranges are the covalent H-PHI due to

the absence of cations and Li-PHI, which exhibits the significantly highest CT to

the cation (0.87 me, -1.4 kJ/mol). The other charge transfer from the PHI layers

to the adsorbed helium qHe→ X is the smaller contribution in all systems (<0.1 me,

<0.4 kJ/mol). The lowest values are found in H-PHI and Au-PHI, which is be-

cause they carry the lowest negative charges on the PHI layers compared to the

other systems.

On top of the Coulomb and charge transfer interactions, polarization effects,

i. e. the formation of dipoles, quadrupoles, etc., also contribute to the total

interaction energy as can be seen in the energies EPOL, however, only to a small

extent (≤ 7%). The least polarization energies are found in the covalent H-PHI

(-0.03 kJ/mol) and the comparable Au-PHI (-0.04 kJ/mol), which is a consequence

of the low charge separation inside these materials. In the other X-PHI materials,

the polarization energy is higher, which indicates that the presence of cations in

an anionic organic framework is essential and that their electric fields are able to

induce a dipole moment in the otherwise non-polarizable He atom. However, the

absolute energies are relatively low (-0.05 kJ/mol to -0.28 kJ/mol). In Cs-PHI, the

polarization energy is -0.06 kJ/mol and contributes only 1% to the total interaction

energy. The highest polarization interaction is found in Li-PHI (-0.28 kJ/mol,

7%). Hence, Li-PHI can also be regarded as a special case. It significantly differs

from the other systems and has the lowest EFRZ, but the highest EPOL and ECT,

possibly because of its high electronegativity and tendency to form bonds with

higher covalent character compared to the other studied alkali and alkaline earth

metals.
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In this chapter, a single water adsorption in the nanopores of K-PHI is investigated

in terms of structure, thermodynamics and interactions. After that, the properties

of multiple water molecules inside K-PHI are discussed.

5.1 Structure and Energy of Single Water Adsorption

According to the carried out calculations, water adsorption is energetically fa-

vorable in K-PHI. The adsorption of a single water molecule entails adsorption

energy of ∆Eads = -94.5 kJ/mol. This adsorption energy of water in K-PHI is sur-

prisingly high and more than twice as much as the heat of vaporization of water

(∆Hvap=40.7 kJ/mol [89]). This means that the interactions of water with the

pore walls of K-PHI are twice as strong as the water-water interactions in bulk.

Due to the high bond strength, it is not a typical physisorption. Instead it appears

that water becomes an integral part of the material’s structure after adsorption.

The lowest energy adsorption site of the first adsorbed water molecule is located

in the pores between the PHI layers as can be seen in Fig. 5.1a. In that case,

water is located between the positive potassium cations and forms hydrogen bonds

with nitrogens of both surrounding negative PHI layers. The oxygen of the water

is forming coordinate bonds to the potassium centers while at the same time, the

lone pairs of the surface nitrogens act as basic sites for the hydrogen atoms of wa-

ter. This highly polarized adsorption environment of the water molecule explains

the high calculated adsorption energy. The distances between the hydrogen atoms

of the water and the involved nitrogen atoms are 2.20 and 2.07 Å, respectively.

5.2 Net Atomic Charges and Electron Densities

To investigate the electronic environment of the adsorbed water, net atomic charges

were calculated using the Mulliken population analysis and the density derived

39
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a) b) c)

Figure 5.1: Adsorption state of a single water molecule in K-PHI (a), electron density iso-
surfaces of K-PHI (b, isovalues = 0.05/0.1/0.2/0.3/0.4 from blue to red) and the
electron density differences upon water adsorption in K-PHI (c, isovalues = ±
0.002 red(+)/green). Top: top view, bottom: side view. Atomic colors: C=black;
N=blue; K=pink; O=red; H=white.

Table 5.1: Averaged net charges calculated by Mulliken as well as DDEC6 method of a single

water molecule adsorbed in K-PHI.

Mulliken DDEC6

K 0.61 0.83
C 0.10 0.55
N -0.17 -0.54
O -0.34 -0.84
H 0.13 0.36
PHI -1.81 -2.45
H2O -0.07 -0.12

electrostatical and chemical method DDEC6. The averaged values for each atomic

type as well as the summed values for H2O and the PHI layers per unit cell are

shown in Table 5.1. The analysis confirms the positive charges of the potassium

ions (Mulliken 0.61; DDEC6 0.83), which are interacting with the partially neg-

ative oxygen atoms (-0.34; -0.84) of the adsorbed water molecules. The negative
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charge of the PHI system (-1.81; -2.45; formally -3) is distributed throughout the

layers but mostly located at the more electronegative nitrogen atoms (-0.17; -0.54),

whereas the carbon atoms on average carry a positive charge (0.10; 0.55). This

behavior is visualized in the top view of the electron density distribution of pris-

tine K-PHI in Fig. 5.1b, where the highest electron densities (red) are located

around all the nitrogen atoms. This bond polarization inside the CN framework

further active the surface nitrogens as basic sites, which are important for the wa-

ter adsorption. With these partially negatively charged nitrogen atoms, the water

molecules – more precisely, the hydrogen atoms of the water (0.13; 0.36) – form

the hydrogen bonds that stabilize the water adsorption. Water carries a slight neg-

ative charge in the adsorbed state due to charge transfer from the PHI system to

the water. This is also illustrated in the electron density difference representations

in Fig. 5.1c, where the charge is increased around the surface nitrogen atoms. A

more precise description of the interaction of water inside K-PHI is discussed in

the following energy decomposition analysis.

5.3 Energy Decomposition Analysis

To study the origin of the high adsorption energy, the ALMO-EDA is applied to

single water adsorption in K-PHI. It allows to decompose the interaction of water

with its surroundings into physically meaningful components, i. e. the frozen

energy ∆EFRZ, the polarization energy ∆EPOL and charge transfer contributions

∆ECT. The results of the ALMO-EDA are given in Table 5.2.

Table 5.2: ALMO-based energy decomposition of the interaction between water and K-PHI.

∆EFRZ ∆EPOL ∆ECT

H2O @ K-PHI -57.4 kJ/mol -18.8 kJ/mol -42.8 kJ/mol

The main part of the interaction is due to Coulomb interactions of the water

molecule and K-PHI, which is represented by the frozen energy term (-57.4 kJ/-

mol). This high electrostatic interaction is due to the capability of water to interact

with both the positively charged potassium as well as with the anionic PHI frame-

work. This charge separation inside the material also leads to a high polarization

energy of -18.8 kJ/mol. Excitingly, a remarkable part (-42.8 kJ/mol) of the in-

teraction between the water molecule and the adsorbent is due to charge transfer

contributions. The difference between the adsorption energy (-94.5 kJ/mol) and
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Figure 5.2: Horizontal (top) and vertical (middle) charge transfers (black) occurring between

water, the positive K+ and the negative PHI layers as well as the resulting stabi-
lization energy (red) upon single water adsorption in K-PHI as computed by the
ALMO-EDA. Atomic colors: C=black; N=blue; K=pink; O=red; H=white.

the sum of the ALMO interactions (-119.0 kJ/mol) is due to slight distortion of

the structure and repositioning of the potassium cations upon water adsorption

which is not included in the single point ALMO calculation. This energy differ-

ence is sometimes referred to as geometric distortion ∆EGD [90]. The amount of

charge transfer and the corresponding stabilization energy can be further assigned

to individual charge donor and acceptor pairs. All charge transfers (black) and

resulting stabilization energies (red) are shown in Fig. 5.2. The most significant

contributions of the charge transfer is the charge transfer from the two neighboring

negative PHI layers to H2O (in total: 20.9 me, -32.9 kJ/mol), which occurs in the
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context of the hydrogen bonds of water the PHI layers. And secondly, a substan-

tial charge transfer is also occurring from H2O to the nearest K+ ions (10.6 me,

-10.2 kJ/mol). Both interactions contribute to the high amount of charge transfer

stabilization energy of water inside this highly polarizing adsorption environment

of K-PHI. An additional back donation from the PHI layers to the water also

takes place (1.3 me, -2.3 kJ/mol) Beside the water interactions, the ALMO–EDA

calculations reveils a significant charge transfer between the PHI layers of 3.1 me

(-6.7 kJ/mol). The PHI layers further transfer a substantial amount of 16.3 me to

the potassium ions resulting in a high stabilization of -15.4 kJ/mol per cation per

layer plus a small back donation (0.1 me; -0.4 kJ/mol).

5.4 Structures and Energies of Multiple Water Adsorption

As K-PHI reveals a high availability of adsorption sites on the pore walls, this

section deals with the adsorption of multiple water molecules in the pores to see

how they influence each other as well as to determine the maximum water uptake

inside the material. K-PHI can uptake multiple water molecules being thermody-

namically favorable. The total adsorption energy ∆Etot
ads increases rather linearly

as can be seen in Fig. 5.3. Hence, the incremental adsorption energy is relatively

constant, which means that the additional water molecules undergo a very similar

strong interaction with K-PHI as the first one. The corresponding energy val-

ues are also given in Table 5.3. It suggests that the adsorption of multiple water

molecules neither enhances (e. g., by hydrogen bonds with each other) nor dimin-

ishes (e. g., repulsion due to limited space) the water adsorption thermodynamics

significantly. It is also possible that these effects compensate each other to some

extent. The incremental adsorption analysis reveals that K-PHI can adsorb water

until a final uptake of 14.0 wt% (corresponding to N=18 H2O molecules in the

simulation) and a maximum ∆Etot
ads = -1501 kJ/mol is reached. After that, the

adsorption finally is thermodynamically unfavorable because the space and espe-

cially the adsorption sites in the pores are exploited. The final adsorption energy

per molecule upon complete filling is ∆Emol
ads = -83.4 kJ/mol per H2O.

The lowest energy structure of the adsorption state of the water molecules is

dependent on the amount of water inside the material. The water molecules are

preferentially placed in the pores and like to interact with the pore walls. However,

only at low water uptake, the structure is very well organized at specific adsorption
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Figure 5.3: Total adsorption energy ∆Etot
ads as well as the adsorption energy per molecule ∆Emol

ads

of water in K-PHI as a function of water loading (in wt%)

Table 5.3: Underlying data for Fig. 5.3.

N ∆Etot
ads ∆Einc

ads ∆Emol
ads wtH2O N ∆Etot

ads ∆Einc
ads ∆Emol

ads wtH2O

[kJ/mol] [kJ/mol] [kJ/mol] [%] [kJ/mol] [kJ/mol] [kJ/mol] [%]

1 -94.5 -94.5 -94.5 0.9 11 -1073.8 -102.5 -97.6 9.0
2 -207.7 -113.2 -103.8 1.8 12 -1174.6 -100.8 -97.9 9.8
3 -316.7 -109.0 -105.6 2.6 13 -1290.1 -115.5 -99.2 10.5
4 -427.3 -110.6 -106.8 3.5 14 -1327.4 -37.3 -94.8 11.2
5 -502.1 -74.8 -100.4 4.3 15 -1369.2 -41.8 -91.3 11.9
6 -584.4 -82.3 -97.4 5.1 16 -1414.7 -45.5 -88.4 12.6
7 -678.7 -94.3 -97.0 5.9 17 -1435.5 -20.8 -84.4 13.3
8 -730.0 -51.3 -91.2 6.7 18 -1501.4 -65.9 -83.4 14.0
9 -855.2 -125.2 -95.0 7.5 19 -1478.5 23.0 -77.8 14.6
10 -971.3 -116.1 -97.1 8.3 20 -1371.0 107.5 -68.5 15.3
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sites in a similar fashion as the individual adsorbed water molecule. This is possible

until one water molecule per pore and per layer is adsorbed (Fig. 4; 3.5 wt%;

N=4). On additional adsorption, the water molecules are still adsorbing at similar

adsorption sites with high hydrogen bond affinity towards the PHI layers as can be

seen in the adsorption state at 6.7 wt% (N=8). However, the adsorption state of

the water molecules tends to be more disordered. On one hand, they are forming

attractive hydrogen bonds with each other. On the other hand, repulsive Coulomb

forces also play a role upon further water filling because of the limited space in the

nanopores of K-PHI. In the case of complete filling (14 wt%; N=18), these effects

increase. Hence, some water molecules are located also more in the middle of the

pore, which do not interact with the PHI layers directly anymore. However, they

are still interacting with the potassium cations and other water molecules. These

effects explain very well why the average energy released upon adsorption (∆Emol
ads =

-83.4 kJ/mol) is slightly decreased compared to the single adsorbed water molecule

(∆Eads = -94.5 kJ/mol). However, this is still a remarkable interaction of water

with K-PHI at high water uptake.
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3.5 wt%, N=4 6.7 wt%, N=8 14 wt%, N=18

Figure 5.4: Adsorption states of water in K-PHI at different H2O loadings. N corresponds to
the number of water molecules inside the supercell. Top: top view, bottom: side
view. Atomic colors: C=black; N=blue; K=pink; O=red; H=white.



6 Impact of Water on the Helium

Adsorption in K-PHI

As described in the previous chapters, K-PHI reveals great affinities for the inert

helium (-4.3 kJ/mol, Chapter 4) as well as for water (-94.5 kJ/mol, Chapter 5).

Due to its high adsorption energy, K-PHI probably tightly binds water even at low

partial pressures. The water is expected to be hardly removable and hence can be

described as part of the material after adsorption. Therefore, the question remains

whether helium can still adsorb in the presence of water, e. g. due to exposure

of the material to humidity. For this purpose, the adsorption energy of n helium

atoms on wet K-PHI filled with N water molecules is investigated and compared

with the corresponding adsorption energy of helium in dry K-PHI (N=0).

6.1 Structure and Energies of Helium Adsorption

The lowest energy adsorption sites of one adsorbed helium atom and a single

present water molecule adsorbed in K-PHI are very similar to their individual ad-

sorption sites. Interestingly, the adsorption of both adsorbates occurs in the pores

in the same vacancy between two layers of K-PHI (Fig. 6.1), which indicates an

attractive interaction between them. This is confirmed by the calculated adsorp-

tion energy of a single helium, where the absolute value is significantly higher in

the presence of a water molecule (∆Eads= -5.3 kJ/mol) than without (∆Eads=

-4.3 kJ/mol). This means that the helium adsorption on wet K-PHI is still ther-

modynamically favourable and the adsorption affinity can even be increased by

adsorbed water molecules. This can be explained by the fact that water acts as a

dielectric in the electric field of the cations and PHI layers as it is located directly

at the core of the charge separation. In the previous chapter, it was shown that

the polarizing environment plays a crucial role in the adsorption process and part

of the interaction between water and K-PHI originates from polarization effects.

Water is known to have a high relative permittivity (in bulk εH2O = 87.8 [91])
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and thus the charge separation might be increased in the presence of water. The

DDEC6 analysis of the potassium cations supports this argumentation by a slight

increase of the partial charge in the presence of water (+0.83) compared with dry

K-PHI (+0.82).

Figure 6.1: Adsorption state of one helium atoms (n=1) and one water molecule (N=1), which
both occur in the same layer of K-PHI. Left: top view, right: side view. Atomic
colors: C=black; N=blue; K=pink; O=red; H=white; He=green.

6.2 Energy Decomposition Analysis

The ALMO-EDA is also applied to the helium adsorption in K-PHI in the presence

of water and compared to adsorption in dry K-PHI. The charge transfers as well

as the corresponding energy contributions are shown schematically in Fig. 6.2. As

already discussed in Chapter 5, water strongly interacts with the PHI layers and

the potassium ions. Regarding the helium adsorption, the calculations suggest

that helium is not directly interacting via charge transfer with the water molecule

(<0.1 me). Instead, the charge transfer from the helium to the nearest potassium

ions is enhanced from 0.30 me (-0.49 kJ/mol) to 0.42 me (-0.68 kJ/mol), which is

the main contribution to the stabilization due to charge transfer. It has to be noted

that at the same time the charge transfer to the second nearest K+ decreases from

0.22 me (-0.35 kJ/mol) to 0.11 me (-0.18 kJ/mol). Both charge transfer changes in

the presence of H2O almost cancel out each other and lead to a marginal increase of

the charge transfer interaction between helium and the K-PHI material of 0.01 me

and stabilization of -0.02 kJ/mol. Hence, according to the calculations, charge

transfer does not play a big role for the enhancement. Instead, the frozen and

polarization terms are expected to be crucial.
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Figure 6.2: Charge transfers (black) and corresponding stabilization energies (red) between the
different fragments of adsorbed helium in K-PHI in the absence (left) and presence
(right) of water. Atomic colors: C=black; N=blue; K=pink; He=green; O=red;
H=white.

6.3 Structures and Energies of Multiple Adsorption of Helium

and Water

The helium adsorption is also thermodynamically favorable in the presence of more

than one water molecule. The enhancement is quantified by calculating the differ-

ence between wet and dry K-PHI ∆EN
ads −∆EN=0

ads and is shown for single helium

adsorption (n=1) in Fig. 6.3a. As can be seen, the enhancement in the range of -0.5

to -1.0 kJ/mol is only found when low amount of water is adsorbed. In this state,

one water molecule adsorbs per layer, leading to a total number of water molecules

inside the pores of N=4. At these low uptakes, water is adsorbing only on specific

sites with a defined structure as discussed in the previous chapter. Hence, the spe-

cific adsorption sites of water may play a crucial role in the enhancement process.

However, the maximum helium uptake (Fig. 6.3b) as calculated by an incremental

adsorption analysis decreases in the presence of water. The highest amount of

helium can be adsorbed in K-PHI in the absence of water, where three helium

atoms occupy the adsorption sites per pore per layer, leading to the maximum

number of adsorbed helium of nmax=12. When four water molecules are adsorbed,

the maximum number of adsorbed helium atoms is already decreased by one-third
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Figure 6.3: The enhancement energy ∆EN
ads −∆EN=0

ads of single helium adsorption (a) as well
as the maximum helium uptake (b) in K-PHI is given with different amount of
adsorbed water molecules (N) inside the pores. Furthermore the total adsorption
(c) and the enhancement energy (d) are shown for the helium adsorption with respect
to different n and N.

to nmax=8. This indicates ongoing competition about the adsorption sites in the

limited space of the nanopores of K-PHI. The competition increases upon addi-

tional water adsorption (5 ≤ N ≤ 8). At these uptakes, helium adsorption is still

energetically favorable, however, the enhancement vanishes and the adsorption en-

ergy is decreased compared to the dry K-PHI. Due to the same reason, the helium

adsorption is no longer energetically favorable at all upon further water adsorption

(N ≥ 9). Furthermore, the total adsorption energies ∆Eads of single and multiple

helium adsorption are shown in Fig. 6.3c. The adsorption energies of helium at dry

K-PHI ∆EN=0
ads is shown as a black line and used as a reference for the adsorption

energies. The adsorption energies of the wet cases are shown in different colors.

The maximum uptake corresponds to the calculations, which have the highest ab-

solute values of the adsorption energy ∆Eads. The enhancement energy gives a

better visualization of the comparison to dry K-PHI and is shown in Fig. 6.3d.

As can be seen, the enhancement effect is not only limited to a small number of
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water molecules, the helium uptake also has to be small. The enhancement only

occurs for up to 4 adsorbed helium atoms. If more than four helium atoms are

present, the adsorption might still be thermodynamically favorable in total, how-

ever, the adsorption energy is lower than in the dry reference case for all n and N

and further decreases when more helium atoms are adsorbed. The derivation from

the reference line increases for higher helium uptakes as well as for higher water

uptakes due to the space competition. Only a low amount of adsorbed water can

compete with the dry K-PHI in the case of more than four adsorbed helium atoms,

e. g. N=1 (red).

Hence, the helium affinity is only enhanced when the water molecules are ad-

sorbed in a well-organized fashion at low loadings for a limited number of helium

atoms. The enhanced adsorption state, which contains the most adsorbates, in-

cludes one water and one helium atom per pore per layer as can be seen in Fig. 6.4

(N=4, n=4). In this case, the adsorption affinity is increased indicated by an

adsorption energy decrease of -0.2 kJ/mol. Upon further adsorption the effect

vanishes. Due to the competition for the adsorption sites in the narrow pores of

the K-PHI material, the adsorption states of the water molecules are less ordered as

can be seen for N=8 and n=4. However, the modelled system is idealized and the

pore size and hence the available space of the real material are bigger. Therefore,

the enhancement effect may also be found at higher uptakes.
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N=4, n=4 N=8, n=4

Figure 6.4: Adsorption states of different numbers of helium atoms (n) in the presence of N
adsorbed water molecules. Top: top view, bottom: side view. Atomic colors:
C=black; N=blue; K=pink; O=red; H=white; He=green.



7 Transport Coefficients of Disordered

Crystals

As the scale of the fabrication processes of electronic components is continuously

reduced, the quantum mechanical aspects of the charge transport become more

important and ab-initio quantum simulations will be required for an accurate and

predictive characterization. Since most electronic components operate at room

and higher temperatures, these ab-initio simulations have to take into account the

thermal motion of the atoms. Since the dynamics of the electrons is orders of mag-

nitude faster than that of the ionic cores, the quantum dynamics of the electrons

takes place in a highly disordered environment. This can result in qualitatively

different dynamical behaviors, notably the absence of quantum diffusion or An-

derson localization [92], that can not be captured by empirical models or idealistic

zero temperature simulations. This and other effects will be investigated from

first-principles in this work. To the best of our knowledge, the work reported here

is the first attempt to simulate quantum charge transport at finite-temperature

from first-principles.

Most of us think of crystals as condensed phases of matter, where the atoms are

periodically arranged in space. However, the crystalline phase persists all the way

to the melting point so clearly that oversimplifying picture is highly misleading.

In fact, defining the crystalline phase is a deep and highly non-trivial problem

in condensed matter physics. On the formalism side, the works of Bellissard on

the homogeneous phases of matter represent a milestone [93, 94]. They taught us

that, in crystals, the space group symmetry G manifested at zero temperature is

replaced at finite temperatures by an ergodic G-action w.r.t. the Gibbs measure

on the space Ω of thermally disordered atomic configurations. Furthermore, the

invariance w.r.t. G of the electronic Hamiltonians manifested at zero temperature

is replaced at finite temperatures by the covariance w.r.t. the G-action. Ergodicity

and covariance w.r.t. the G-action explain why the measurements of the macro-

53
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scopic physical observables, including the transport coefficients, do not fluctuate

from one configuration to another and why the symmetry w.r.t. the full space

group is restored at the macroscopic level. For example, the latter is manifested

in the G-symmetric X-ray diffraction patterns observed all the way to the melt-

ing point [95]. Another manifestation is the stability of the topological phases of

matter stabilized by point symmetries in conditions where thermal disorder breaks

these symmetries [96].

In our previous work [97], we took the task of quantifying the ergodic dynamical

system (Ω,G, τ, dP) that defines a crystalline phase. Using crystal silicon (Si)

as a working example, we devised an algorithm that extracts this data from the

output of conventional ab-initio molecular dynamics (AIMD) simulations [98, 99].

In particular, we were able to quantify and parametrize the Gibbs measure for

crystalline Si at various temperatures. In this work, our focus is mostly on the

electronic degrees of freedom, which are simulated with hybrid Gaussian-plane

wave based density functional theory (DFT) electronic structure codes [100]. In

the first part of our work, we demonstrate how to generate effective lattice models

that encode the entire output of the electronic structure codes and where the

covariance w.r.t. (Ω,G, τ, dP) is explicitly manifested. Particular attention will be

dedicated to the tight-binding expressions of the Kohn-Sham (KS) Hamiltonian,

position and charge current operators.

For the charge transport, we adopt the non-commutative Kubo-formula derived

by Schulz-Baldes and Bellissard [101–103]. One extremely important aspect of

their formalism is that it includes dissipation. More precisely, given a dissipa-

tion mechanism encoded in a scattering operator, the formalism produces a dis-

sipation super-operator that is organically incorporated in the Kubo-formula (see

Section 7.3.2). Various dissipation mechanisms and their corresponding super-

operators have been analyzed in [104] and they certainly can be evaluated from

first principles. One should be aware that dissipation has an important role in

shaping the I-V characteristics of both metals and semiconductors and this is why

a Kubo-formula that incorporates dissipation is so valuable.

The Kubo-formula derived by Schulz-Baldes and Bellissard has been numerically

implemented in the past for disordered tight-binding model Hamiltonians [105–110]

and other types of aperiodic Hamiltonians [111–113]. One of the main findings of

these works is the rapid convergence of the results with system size. For example,
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in systems with known quantized transport coefficients, such as 2-dimensional

Hall systems, the non-commutative Kubo-formula reproduced the quantization

with two digits of precision even on small 10× 10 highly disordered tight-binding

lattices. This is a convincing fact that this approach is highly suited for the

applications we seek in this work, given that the super-cells that can be handled

by first-principles simulations are inherently small.

The simulations we report here for crystalline Si at different temperatures are

preliminary and certainly not converged w.r.t. either the system’s size, or the

atomic orbital basis, but they are certainly converged w.r.t. the thermal disorder

sampling. Also, the dissipation super-operator is treated in the relaxation time

approximation where it becomes proportional to the identity map. The simulations

produced expected outputs for the available electronic structures and enabled us

to test several important qualitative aspects of the charge transport. One aspect is

the formation of a dynamical band gap where the quantum diffusion is absent and

this dynamical gap was found to be much larger than the spectral gap. The former

defines the reference for the activated behavior of the conductivity, while the latter

for the charge carriers. Since these are two different reference energy levels, the

Anderson localization phenomenon can lead to substantial quantitative effects that

were overlooked so far. We also found that the conductivity tensor is extremely

sensitive to the dissipation relaxation time. Given this sensitivity, we believe

that the prevalent dissipation mechanism in crystalline Si at room temperature

can be identified with high precision by future simulations which incorporate first

principles dissipation super-operators.

Based on previous tight-binding model simulations, we initially estimated that

at least 1000 disordered atomic configurations will be necessary and, as such, we

performed large time scale AIMD simulations to acquire that amount of data.

However, our calculations revealed that the average over the atomic configura-

tions of the conductivity tensor can be achieved with a relatively small number

of configurations, which can be as low as 50. In fact, with reasonable level of

dissipation, the thermal fluctuations are almost entirely suppressed for the largest

crystal we simulated, which is a direct manifestation of the self-averaging prop-

erty of the Kubo-formula. This finding assures us that, in the future simulations,

we can reduce the time scale of AIMD simulations, hence, enabling us to further

increase the crystal size and to better optimize the orbital basis.
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7.1 Thermal Disorder from First Principles

In order to fix our notations and provide the context for the present calculations, we

briefly recall our main results reported in [97]. Therein, we describe the ergodic dy-

namical system (Ω,G, τ, dP), which completely characterizes the crystalline phase

of Si at finite-temperature, where Ω is the atomic configuration space, G is the

space group, dP is the Gibbs measure and τ is an ergodic action of G on Ω.

7.1.1 The ideal lattice and its symmetries

The crystal structure of Si is summarized in Fig. 7.1. Its space group is G = Fd3̄m

[114, 115], whose structure is summarized by the following exact sequence of groups

1→ B→ G→ P→ 1, (7.1.1)

capturing the extension of the point group P ⊂ O(3) by the group of discrete

translations B. The latter can be pictured as the Bravais lattice of the crystal

(hence our notation B), i.e. the discrete sub-group of R3 defined by the centers of

the primitive cells

B =
{
n1a1 + n2a2 + n3a3, n = (n1, n2, n3) ∈ Z3

}
, (7.1.2)

with the generators ai supplied in Fig. 7.1. The point group P of crystalline Si is

O7
h, the full symmetry group of the cube.

Let us recall that a space group is called symmorphic if the exact sequence (7.1.1)

is split. Silicon’s cubic-diamond lattice is an example of a non-symmorphic space

group. Nevertheless, every element g of G can be presented in the form g = (p|a),

with p ∈ P and a ∈ R3. Note that for a symmorphic space group, a can be always

drawn from B, but this is not the case here. Such space group elements act on the

points of the Euclidean space as

(p|a)x = px+ a, x ∈ R3. (7.1.3)

They also act on any subset L of the Euclidean space, such as a lattice, via

gL = {gx, x ∈ L}. (7.1.4)
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b

a1 a2

a3

Figure 7.1: Si crystallizes in a diamond cubic lattice (Fd-3m), whose conventional unit cell is
shown in this diagram. This cubic unit cell is symmetric to the full point group
and contains eight Si atoms. The diamond cubic lattice results from the inter-
penetration of two face-centered cubic (fcc) lattices. The fcc lattice can be generated
by translating a primitive cell that contains just one atom. Hence, silicon’s diamond
cubic lattice can be generated by translating the same primitive cell, but with one
additional Si atom inside it. This primitive cell is shown in red, together with its two
atoms (blue disks) and the generating primitive vectors a1 = b

2 (ẑ+ ŷ), a2 = b
2 (x̂+ ẑ)

and a3 = b
2 (ŷ + x̂), with b = 5.431 Å. The magnitude of the primitive vectors is

a = b/
√

2.

The multiplication of the elements takes the form

(p|a)(p′|a′) = (pp′|pa′ + a) (7.1.5)

and the inverse of an element is

(p|a)−1 = (p−1| − p−1a). (7.1.6)

The ideal or zero temperature Si lattice will be denoted by L0. This lattice

is left invariant by the space group G. In fact, the asymmetric unit cell of the

diamond cubic structure contains a single atom [114, 115], which means that the

entire lattice can be reconstructed from one single point by acting with the full

space group: L0 =
{
g · x0, g ∈ G

}
. While x0 can be any point of the Euclidean

space, we will fix x0 at the origin.
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7.1.2 Thermally disordered configurations

When the temperature is finite, the Si atoms undergo a thermal motion and the

instantaneous snapshots of the Si lattice can be labeled by a configuration space

Ω. In [97], Ω was found to be well represented by a product of identical balls

Ω =
∏
g∈G

Bg, Bg = B0, (7.1.7)

where a point ω = {ωg}g∈G of Ω encodes the displacements of the atoms from

their equilibrium positions. Thermal motion defines an ergodic dynamical system

ω(t) (t = time) over Ω and an instantaneous snapshot of crystalline Si supplies a

thermally disordered lattice

Lω =
{
gx0 + ωg, g ∈ G

}
⊂ R3. (7.1.8)

For these disordered lattices, the invariance of L0 under the space group is replaced

by the covariance relation

gLω = Lτgω, ∀ ω ∈ Ω, g ∈ G. (7.1.9)

The action τ of the space group on Ω, appearing above, can be computed as

follows. If g = (p|a) ∈ G, then

gLω = {g(g′x0 + ωg′), g
′ ∈ G} (7.1.10)

= {p(g′x0) + pωg′ + a, g′ ∈ G}.

After regrouping,

p(g′x0) + pωg′ + a = gg′x0 + pωg′ , (7.1.11)

and, after the change of variable g′ → g−1g′, we have

gLω = {g′x0 + pωg−1g′ , g
′ ∈ G} = Lτgω. (7.1.12)

We now can identify the action as

τgω = τg{ωg′}g′∈G = {ω′g′}g′∈G, ω′g′ = pωg−1g′ . (7.1.13)



7.2 Tight-Binding Form of the Physical Observables 59

One can verify that τg1τg2 = τg1g2 , as it should be for a group action.

The Gibbs measure over the configuration space Ω can be computed from the

atomic orbits in an AIMD simulation, more precisely, from the histograms encoding

the number of times an orbit intersects the elementary volumes of Ω. In [97], the

Gibbs measure of the Si crystal was found to be extremely well characterized by

a multivariate normal distribution of zero mean

dP(ω) = ρ(ω)dω, ρ(ω) = 1√
Det(2πΣ̂)

e−
1
2
ωT Σ̂−1ω, (7.1.14)

where ω is seen here as a 1-column matrix and the variance matrix Σ̂ was quan-

tified in [97] as a function of temperature. The Gibbs measure is invariant and

ergodic w.r.t. the τ -action. In fact, the Gibbs measure found in [97] is ergodic

relative to the subgroup B of translations, which is in fact a generic property of ho-

mogeneous systems at thermodynamic equilibrium [116, Chap. 6]. The crystalline

phase of Si at finite-temperature is entirely defined by the ergodic dynamical sys-

tem (Ω,G, τ, dP).

The observations of the last paragraph will play an important role for the self-

averaging properties of the transport coefficients. Let us stress again that, due to

the well separated scales in the dynamics of the atomic and electronic degrees of

freedom, the quantum state of the electrons evolves in a static atomic potential.1

This is a thermally disordered potential and, as we shall see, the physical observ-

ables, such as the Hamiltonians or charge currents, become indexed by points of

the configuration space Ω. In this new context, the notion of a symmetric observ-

able is replaced by that of a covariant observable. The macroscopic measurements

of these observables, however, are independent of the thermally disordered config-

uration. This remarkable property is a consequence of the covariance and of the

ergodic character of the Gibbs measure.

7.2 Tight-Binding Form of the Physical Observables

Our goal for this section is to formulate discrete representations of the Hamiltoni-

ans and other physical observables in the context of Gaussian-based implementa-

tions of the KS program. Special attention will be given to the transformation of

1The electron-phonon and electron-electron scattering processes are rare and sudden dynamical events,
which are included via Poisson processes as explained later.
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the physical observables under the space group G of the crystal.

7.2.1 The continuum theory

The formally exact KS theory for condensed matter systems, at its most funda-

mental level, is formulated over the Hilbert space L2(R3) of square integrable wave

functions [117]. For the Si crystal in a thermally disordered configuration ω, the

KS-Hamiltonian takes the form

Hω
KS = − ~2

2m
∇2

r −
∑
x∈Lω

Ze2

|r − x|
+ Vxc[nω](r), (7.2.1)

where Vxc is a local potential encoding the exchange and correlation (XC) effects.

The latter has a functional dependence on the electron density nω(r), which is

to be determined self-consistently. As the notation suggests, the electron density

has a dependence on the atomic configuration ω. In fact, this becomes even more

apparent if we reformulate (7.2.1) as a fixed point problem

nω(r) = 〈r|ΦFD

(
Hω

KS;T, µ
)
|r〉, (7.2.2)

where ΦFD is the Fermi-Dirac distribution at temperature T and chemical potential

µ [118]. In the following, we assume that this equation has a unique solution for

almost all thermally disordered configuration (see [119] and [120]).

The starting point of our study is the covariant property of the KS-Hamiltonian

under the space group transformations. To understand the origin of this property,

we need to go all the way to the Euclidean group E of transformations and recall

that the XC potential enjoys the following property

Vxc[n ◦ e](e−1r) = Vxc[n](r), e ∈ E, (7.2.3)

for any density function n and point r ∈ R3, which can be inferred from the uni-

versality and uniqueness assumptions on Vxc [121]. Certainly, this can be verified

directly for the local density approximation (LDA) to Vxc [122]. The action of E
on R3 lifts to a unitary action on the Hilbert space L2(R2) via(

Teψ
)
(r) = ψ(e−1r), e ∈ E, ψ ∈ L2(R3). (7.2.4)



7.2 Tight-Binding Form of the Physical Observables 61

Now, recall that G is just a subgroup of the Euclidean group, hence (7.2.4)

describes the action of G as well. Then, under such unitary actions, the KS-

Hamiltonian behaves as

TgH
ω
KST

†
g = − ~2

2m
∇2

g−1r −
∑
x∈Lω

Ze2

|g−1r − x|
+ Vxc[nω](g−1r) (7.2.5)

= − ~2

2m
∇2

r −
∑

x∈Lgω

Ze2

|r − x|
+ Vxc[nω ◦ g−1](r). (7.2.6)

We learn from here that, if nω is the solution of (7.2.2) for configuration ω, then

nω ◦ g−1 is the solution of (7.2.2) for configuration gω. In other words, the self-

consistent solutions of the KS equations enjoy the covariant property

ngω = nω ◦ g−1. (7.2.7)

In turn, this assures us that the converged KS-Hamiltonian satisfies the covariant

relation

TgH
ω
KST

†
g = H

τgω
KS , ∀ g ∈ G. (7.2.8)

It will be extremely important to preserve this characteristics in our tight-binding

approximation. As we already mentioned, (7.2.8) together with the ergodicity of

the space group action ensure the self-averaging of the transport coefficients.

7.2.2 The effective Hilbert space

In Gaussian-based approaches, the atom located at position x ∈ Lω carries a

finite-dimensional local Hilbert space

Hx = Span
{
φn(r − x), n = 1, . . . N

}
, (7.2.9)

where φn : R3 → C are optimized atomic orbitals (see Section 7.4.2 for details). It

is important to realize that the same set of functions φn are used for all x ∈ Lω.

The total Hilbert space for the Gaussian-based computations is the linear subspace

Hω = Span
{
Hx, x ∈ Lω

}
⊂ L2(R3). (7.2.10)
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As the notation suggests, this subspace depends on the configuration ω ∈ Ω of the

atoms. As we shall see, it is isomorphic to the tight-binding Hilbert space

CN ⊗ `2(Lω) = Span
{
ξ ⊗ |x〉, ξ ∈ CN , x ∈ Lω

}
(7.2.11)

of square summable linear combinations of ξ⊗|x〉 basis vectors. The scalar product

for this space is defined by the orthonormality condition

〈x|x′〉 = δx,x′ , ∀ x,x′ ∈ Lω. (7.2.12)

All our physical observables will be mapped over this tight-binding Hilbert space

and all the calculations will be ultimately performed on CN ⊗ `2(Lω).

Our goal for this section is to explain in details how to transfer the observ-

ables between the Hilbert spaces. We start with the consideration of the overlap

coefficients

Sijxx′(ω) =

∫
R3

d3r φ∗i (r − x)φj(r − x′), (7.2.13)

which can be found among the outputs of standard AIMD simulations. Using

these coefficients, we form the self-adjoint, positive and invertible operator

Sω : CN ⊗ `2(Lω)→ CN ⊗ `2(Lω), (7.2.14)

Sω =
∑

x,x′∈L

Ŝx,x′(ω)⊗ |x〉〈x′|,

where Ŝx,x′(ω) is the overlap matrix with the entries Sijx,x′(ω) defined in (7.2.13).

Then, the isomorphism between Hω and CN ⊗ `2(Lω) is supplied by the unique

linear map Uω that acts on the generators as

φn(r − x) 7→
√
Sω ξn ⊗ |x〉, n = 1, . . . N. (7.2.15)

Above, ξn ∈ CN is a column vector, whose entries are one at position n and zero

for all others, whereas
√
Sω is the square root operator defined via the functional

calculus. Let us verify that the map indeed preserves the scalar product. We have(√
Sω ξi ⊗ |x〉,

√
Sω ξj ⊗ |x′〉

)
=
(
ξi ⊗ |x〉, Sωξj ⊗ |x′〉

)
(7.2.16)

= ξTi Ŝx,x′(ω)ξj = Sijx,x′(ω).
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As a consequence,

(√
Sω ξi ⊗ |x〉,

√
Sω ξj ⊗ |x′〉

)
=

∫
R3

d3r φ∗i (r − x)φj(r − x′), (7.2.17)

for all i, j = 1, . . . , N , as desired.

To preserve the covariance of the physical observables w.r.t. the space group G
and the disordered configurations, it is important to choose the atomic orbitals as

such that they span a linear space, which is closed under representations of the

O(3) group. Thus, all φn are assumed to transform under rotations as

(φ1, . . . , φN) ◦ r−1 = (φ1, . . . , φN)D̂(r), r ∈ O(3) ⊂ E, (7.2.18)

where {D̂(r), r ∈ O(3)} is a family of N ×N matrices supplying a N -dimensional

unitary representation of the rotation group that is not necessarily irreducible (see

Section 7.4.2 for details). Then, if g = (p|a) ∈ G, the overlap matrix satisfies the

relation

D̂(p)†Ŝgx,gx′(τgω)D̂(p) = Ŝx,x′(ω), (7.2.19)

for any x and x′ in Lω. This is an important relation for which we provide the

derivation below. Indeed, both gx and gx′ belong to gLω = Lτgω and

Sijgx,gx′(τgω) =

∫
R3

d3r φ∗i (r − gx)φj(r − gx′) (7.2.20)

=

∫
R3

d3(gr) φ∗i (gr − gx)φj(gr − gx′).

Since gr − gx = p(r − x) and d3(gr) = d3r, we can continue as

Sijgx,gx′(τgω) =

∫
R3

d3r φ∗i
(
p(r − x

)
φj
(
p(r − x′

)
(7.2.21)

=

∫
R3

d3r D(p−1)∗kiφ
∗
k(r − x)φs(r − x′)D(p−1)sj

= D(p)ik

∫
R3

dr φ∗k(r − x)φs(r − x′)D(p)∗js,

and (7.2.19) follows.

For any ω ∈ Ω, we define a Hilbert space isomorphism between CN ⊗`2(Lω) and
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CN ⊗ `2(Lτgω) as

Tg
(
ξ ⊗ |x〉

)
= D̂(p)ξ ⊗ |gx〉, g = (p|a) ∈ G, x ∈ Lω. (7.2.22)

Note that we use here the same notation as in (7.2.4) because these two maps

can be easily differentiated from the context. Now, by examining the rule of

multiplication in (7.1.5) for the space group, it is immediate to see that T respect

this binary operation: TgTg′ = Tgg′ . Furthermore, it follows directly from (7.2.19)

and the definition (7.2.14) that

TgSωT
†
g = Sτgω, g ∈ G. (7.2.23)

Indeed, if g = (p|a), then

TgSωT
†
g =

∑
x,x′∈Lω

D̂(p)Ŝx,x′(ω)D̂(p)† ⊗ |gx〉〈gx′| (7.2.24)

=
∑

x,x′∈Lτgω

D̂(p−1)†Ŝg−1x,g−1x′(ω)D̂(p−1)⊗ |x〉〈x′|.

Furthermore, from (7.2.19),

D̂(p−1)†Ŝg−1x,g−1x′(ω)D̂(p−1) = Ŝx,x′(τgω), (7.2.25)

hence (7.2.23) follows.

We conclude this section with the observation that the map Uω, defined in

(7.2.15), satisfies the covariant relation UτgωTg = TgUω. Indeed, for x ∈ Lω,

φj(g
−1r − x) = φj

(
p−1(r − gx)

)
=

N∑
k=1

φk(r − gx)D(p)kj, (7.2.26)

while

Tg
√
Sω ξj ⊗ |x〉 =

√
Sτgω D̂(p)ξj ⊗ |gx〉 =

N∑
k=1

√
Sτgω ξk ⊗ |gx〉D(p)kj. (7.2.27)

Then, by applying rule (7.2.15) on each terms of the two sums, one can convince
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oneself that we have the following correspondence

φj(g
−1r − x) 7→ Tg

√
Sω ξj ⊗ |x〉, ∀ x ∈ L, (7.2.28)

under the U map.

7.2.3 Canonical tight-binding form of the observables

Let A be an operator defined over L2(R3). Our goal here is to investigate how

to define a canonical approximation as an operator Aω over the effective Hilbert

space CN ⊗ `2(Lω). The natural requirement is the matching of all the available

matrix elements under the Uω map (7.2.15), i.e.

〈φn(· − x)|A|φm(· − x′)〉 = 〈n,x|
√
Sω Aω

√
Sω|m,x′〉, (7.2.29)

for all n,m = 1, N and x,x′ ∈ Lω. For convenience, above and throughout, we

use the notation |n,x〉 for ξn ⊗ |x〉. Henceforth, let Âx,x′(ω) be the matrix with

the entries

An,mx,x′(ω) =

∫
R3

d3r φ∗n(r − x)(Aφm)(r − x′), (7.2.30)

which is just the explicit form of the coefficients appearing in the left side of

(7.2.29). We form first the operator

Ãω =
∑

x,x′∈Lω

Âx,x′(ω)⊗ |x〉〈x′|, (7.2.31)

over CN ⊗ `2(Lω). Then, the solution to (7.2.29) is supplied by

Aω = S
− 1

2
ω Ãω S

− 1
2

ω , (7.2.32)

as it readily follows from a direct calculation. We call (7.2.32) the canonical tight-

binding operator associated to the operator A that is defined in the continuum KS

theory. Note that under this correspondence, the identity operator is sent to the

identity operator.

Now assume that the continuum observable depends on ω in a covariant fashion.
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In such a case, we can repeat the calculations leading to (7.2.19) to prove

D̂(p)†Âgx,gx′(τgω)D̂(p) = Âx,x′(ω). (7.2.33)

This automatically implies that Ãω is a covariant operator under the space group

transformations and, since Aω in (7.2.32) is a product of covariant operators, Aω

is also a covariant operator:

TgAωT
†
g = Aτgω. (7.2.34)

Below, we apply this standard procedure to several observables of interest.

As we learned in section 7.2.1, the continuum KS-Hamiltonian is a covariant

observable. Furthermore, among the standard outputs of AIMD simulations are

the matrix elements

W ij
x,x′(ω) =

∫
R3

d3r φ∗i (r − x)(Hω
KSφj)(r − x′). (7.2.35)

This is precisely the data one needs to define the tight-binding Hamiltonian. Fol-

lowing the above procedure, we define first the operator

H̃ω =
∑

x,x′∈Lω

Ŵx,x′(ω)⊗ |x〉〈x′|, (7.2.36)

which then supplies the tight-binding expression of the KS-Hamiltonian

Hω = S
− 1

2
ω H̃ω S

− 1
2

ω , TgHωT
†
g = Hτgω, g ∈ G. (7.2.37)

We now focus on the position operator X. At the continuum level of the theory,

the matrix elements of the position operator are

Rij
x,x′(ω) =

∫
R3

d3r φ∗i (r − x) r φj(r − x′). (7.2.38)

Note that these matrix elements depend too on the disordered configuration. They,

however, satisfy a different covariant relation

D̂(g)†R̂gx,gx′(τgω)D̂(g) = pR̂x,x′(ω) + a Ŝx,x′(ω), (7.2.39)

for all g = (p|a) ∈ G. The above relation follows from an exercise similar to
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that below (7.2.19). Before going any further, let us explain the notation. Note

that R̂x,x′(ω) is actually a 3-component column vector with matrices as entries.

Then, p in front of it, which is an ordinary 3 × 3 matrix, acts naturally on this

3-component vector. Furthermore, a in the second term is viewed as an ordinary

3-component vector from R3 such that a Ŝx,x′(ω) becomes a 3-component vector

with matrix entries. Now, as before, we define an operator on CN ⊗ `2(Lω)

R̃ω =
∑

x,x′∈L

R̂x,x′(ω)⊗ |x〉〈x′|, (7.2.40)

which satisfies the covariance relation

TgR̃ωT
†
g = p−1R̃τgω + (p−1a)Sτgω, (7.2.41)

as it follows directly from (7.2.39). Then

Xω = S
− 1

2
ω R̃ω S

− 1
2

ω (7.2.42)

maps the position operator from L2(R3) to CN⊗`2(Lω). Furthermore, the mapped

position operator satisfies the covariance relation

TgXωT
†
g = p−1Xτgω + (p−1a) I, g = (p|a) ∈ G, (7.2.43)

where I is the identity operator. The above relation follows directly from (7.2.41).

Note that, although Xω is not entirely a covariant operator, the commutator

[Xω, Aω] is covariant whenever Aω is, i.e.

Tg[Xω, Aω]T †g = p−1[Xτgω, Aτgω], g = (p|a) ∈ G. (7.2.44)

This will become relevant when we will analyze the charge current operator.

7.2.4 The trace per volume

Over the Hilbert space L2(R3), the trace per volume of a bounded operator A with

continuous kernel 〈r|A|r′〉 is defined as

TrV {A} = lim
V→R3

1
V

∫
V

dr 〈r|A|r〉, (7.2.45)
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where, for consistency with the space group, we require that the limit be taken over

finite volumes V that are invariant under the point group action. Our goal here

is to supply its canonical translation over the effective Hilbert space CN ⊗ `2(Lω).

For this, let Aω be the tight-binding operator associated to A. We claim that

TrV {Aω} =
1

V0

lim
V→∞

1

|Lω ∩ V |
∑

x∈L∩V

N∑
n=1

〈n,x|Aω|n,x〉 (7.2.46)

supplies the canonical expression. Above, V0 is the volume per Si atom, which is

just half of that of the primitive cell, and | · | denotes the cardinal of a set.

Indeed, let us note that
∫
V

dr 〈r|A|r〉 coincides with the trace of A, when A is

restricted over L2(V ). This trace can be alternatively computed as
∑

i〈ψi|A|ψi〉,
with {ψi} being an arbitrary orthonormal basis of L2(V ). But, up to errors that

are irrelevant in the thermodynamic limit and when N is large, the finite-volume

trace can be computed using the partial basis {U∗ω|n,x〉}
n=1,N
x∈Lω∩V . As a consequence,

if Na is the total number of atoms in V , then

TrV {A} =
1

V0

lim
Na→∞

1

Na

N∑
n=1

∑
x∈L∩V

〈n,x|UωAU∗ω|n,x〉, (7.2.47)

which coincides with (7.2.46).

The trace per volume, which is defined in (7.2.46), is a genuine trace over the

algebra of operators we encounter in this work. For example, it displays the

standard property TrV {AωBω} = TrV {BωAω}. An extremely important property

of TrV is the self-averaging when evaluated on covariant operators, i.e. those

operators satisfying the relations

TgAωT
†
g = Aτgω. (7.2.48)

Indeed, using the invariance of the trace under conjugations, we have

TrV {Aω} =
1

|H|
∑

g∈H⊂G

TrV {TgAωT †g } =
1

|H|
∑

g∈H⊂G

TrV {Aτgω}, (7.2.49)

where H is a finite subset of G invariant to the point group. Since τ acts ergodically

over Ω, in the limit H → G, Birkhoff’s ergodic theorem assures us that the last



7.3 Transport Coefficients 69

term coincides with the ensemble average [123]. Hence,

TrV {Aω} =

∫
Ω

dP(ω) TrV {Aω}. (7.2.50)

Let us point out that intensive thermodynamic variables as measured in laborato-

ries, such as the transport coefficients, are all computed as traces per volumes of

covariant observables. The aforementioned self-averaging property assures us that

these macroscopic variables do not fluctuate from one disordered configuration to

another, as long as the corresponding physical observables are covariant. This is

the main reason why we pay special attention to the covariant properties of the

physical observables in our theory.

7.3 Transport Coefficients

With the mappings from the previous section, we can formulate the theory of

quantum charge transport directly on the Hilbert space CN ⊗ `2(Lω). The goal

of this section is to supply the key elements of this theory and to formulate the

Kubo-formula for the conductivity tensor.

7.3.1 Kinetic theory of quantum transport

The purpose of this section is to review the theory of charge transport in the

presence of dissipation, as developed by Schulz-Baldes and Bellissard [101–103].

Let us recall that the physical observable corresponding to the 3-component

vector of the electron charge current density is

Jω = − e

ı~
[Xω, Hω], (7.3.1)

where e = 1.6× 10−19 C is the charge of the electron. Based on the last remark in

Section 7.2.3, Jω is a covariant operator, i.e.

TgJωTg = p−1Jτgω. (7.3.2)

Under the action of an externally applied electric field E, the measured current-
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density is

jE = lim
T→∞

1

T

∫ T

0

dt TrV
{
Jωρω(t)

}
, (7.3.3)

where ρω(t) is the time-evolved density matrix. The time evolution is w.r.t. the

time-dependent Hamiltonian

H(t) = Hω + eE ·Xω + Vω(t), (7.3.4)

which incorporates the externally applied electric field E, as well as dissipation

via the scattering potential

Vω(t) =
∑
j∈Z

δ(t− tj)Wω, (7.3.5)

with Wω assumed to be covariant. The collision times η = {tj}j∈Z are generated via

a Poisson process with fixed collision time-scale τc. Such processes are known to be

self-averaging, hence the time and the space averages in (7.3.3) do not depend on

the particular realization of the collision times, nor on the disordered configuration.

In other words, jE defined in (7.3.3) is a genuine macroscopic thermodynamic

coefficient.

For the reason state above, one can use in (7.3.3) an effective quantum time

evolution, which is averaged over the Poisson processes η. A computation of this

average can be found in [105]. It takes the form

Ueff(t)AUeff(t)∗ = e−
t
~ (Γω+LE,ω)[A], (7.3.6)

where Γ is the collision super-operator, acting on the physical observables as

Γω[A] = ~
τc

(A− e
ı
~WωAe−

ı
~Wω), (7.3.7)

and LE,ω is the super-operator

LE,ω [A] = ı[Hω, A]− eE · ı[Xω, A]. (7.3.8)

The electrons are assumed initially at the thermal equilibrium, hence the initial
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density matrix takes the form

ρω(t = 0) = ΦFD(Hω;T, µ), (7.3.9)

where ΦFD(ε;T, µ) is the Fermi-Dirac distribution at temperature T and µ the

chemical potential. The density matrix is evolved via the time propagator (7.3.6),

hence

ρω(t) = U(t) ΦFD(Hω;T, µ)U(t)∗. (7.3.10)

Since, the two parameters T and µ are kept fixed, we will omit writing them

explicitly.

7.3.2 Kubo formula with dissipation

With the inputs supplied in the previous section, (7.3.3) can be evaluated explic-

itly:

JωE =
e2

~
TrV

{[
Xω, Hω

](
Γω + LE,ω

)−1[
E ·Xω,ΦFD(Hω)

]}
. (7.3.11)

In the linear regime, this leads to a Kubo-formula with dissipation for the conduc-

tivity tensor

σαβ(T, µ;ω) = −πG0TrV

{[
Xα
ω , Hω

]
(Γω + Lω)−1

[
Xβ
ω ,ΦFD(Hω)

]}
, (7.3.12)

where α and β indicate space directions, Lω is the limit of LE,ω as E → 0 and

G0 = 2e2

h
= 7.74 × 10−5 S is the conductance quantum. Note that the super-

operator (Γω + Lω)−1 acts on the observable appearing at its right.

7.3.3 Self-averaging of the transport coefficients

We now discuss the self-averaging properties of the conductivity tensor. Using the

covariant properties of the operators appearing in the Kubo formula, one finds

σαβ(T, µ; τgω) =− πG0 pαα′TrV

{
Tg
[
Xα′

ω , Hω

]
(7.3.13)

(Γω + Lω)−1
[
Xβ′

ω ,Φ(Hω)
]
T †g

}
pβ′β,
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for any g = (p|a) ∈ G, where repeated indices are summed over their range.

Using the invariance of the trace under conjugation, we find the simple rule of

transformation

σ̂(T, µ; τgω) = p σ̂(T, µ;ω) p−1. (7.3.14)

As such, the conductivity tensor is invariant under the translations (1|t) ∈ B. Our

observation in section 7.1.2 that this subgroup of G acts ergodically on Ω, become

extremely important because it assures us that σ̂(T, µ) is self-averaging and does

not fluctuate from one disordered configuration to another. Indeed, given that

σ̂(T, µ;ω) = σ(T, µ; τ(1|t)ω) for any (1|t) ∈ B), we can write

σ̂(T, µ;ω) = lim
V→R3

1

|V ∩B|
∑
t∈V

σ̂(T, µ; τ(1|t)ω) (7.3.15)

=

∫
Ω

dP(ω′) σ̂(T, µ;ω′),

where the last equality follows from Birkhoff’s theorem [123]. Now, the only way

to reconcile the above conclusion and (7.3.14), is to admit the invariance of the

conductivity tensor under the point group action

p−1 σ̂(T, µ;ω) p = σ̂(T, µ;ω), ∀ p ∈ P. (7.3.16)

The remarkable conclusion is that the invariance w.r.t. the full space group G
of the non-averaged conductivity tensor is exact even though this symmetry is

broken locally by the thermal motion of atoms. We mention that in our numerical

calculations, we evaluate the isotropic part of the conductivity tensor

σ(T, µ;ω) = 1
3

3∑
α=1

σαα(T, µ;ω), (7.3.17)

which is manifestly invariant under the action of the entire space group.

Let us stress that the above self-averaging property manifests itself only in the

strict thermodynamic limit. For finite samples, there will be fluctuations w.r.t.

the thermally disordered configurations. This is because the group of symmetry

transformations gets reduced when dealing with finite samples and, as a conse-

quence, τgω does not explore2 the whole Ω when g is given all allowed values. For

2Up to subsets of measure zero
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a finite Si crystal of cubic shape, which is built by repeating the unit cell, the rank

of the group of symmetries is equal to the number Na of atoms in the crystal.

Given the invariance of σ(µ, T ;ω) w.r.t. these transformations, when we evaluate

σ(µ, T ;ω) for one disordered configuration, we in fact evaluate the conductivity

for all τgω configurations. In other words, with just one calculation, we sample Na

points of Ω. Hence, if we repeat the calculation of σ(µ, T ;ω) for a number Nc of

different configurations, we effectively sampled Ω at Na × Nc points. Because of

this amplification effect that stems from the invariance of σ(µ, T ;ω) relative to the

space symmetries, we expect that a good disorder average can be achieved even

with a small number of disordered configurations. This is indeed observed in our

simulations.

7.3.4 Optimal finite-volume approximations

There are two fundamental difficulties when attempting to evaluate (7.3.12) on

a computer. The first one stems from the incompatibility between the covariant

relation (7.2.43) for the position operator and the periodic boundary conditions.

The second difficulty comes from inverting the super-operator Γω+Lω. Both these

issues have been resolved in [105] and then further refined in [110, 124]. In the

present context, however, the situation is slightly different because the position

operator depends on the disordered configuration. This complication is being

addressed below.

We start by computing the matrix elements of the commutator of a continuum

observable with the position operator:

[X, A]m,nx,x′(ω) =

∫
R3

d3r φ∗m(r − x)([X, A]φn)(r − x′) (7.3.18)

=

∫
R3

d3r

∫
R3

d3r′ (r − r′)φ∗m(r − x)A(r, r′)φn(r′ − x′)

=(x− x′)
∫
R3

d3r

∫
R3

d3r′ φ∗m(r − x)A(r, r′)φn(r′ − x′)

+

∫
R3

d3r

∫
R3

d3r′ (r − r′)φ∗m(r)A(r, r′)φn(r′).
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We can summarize the above calculation as

[X, A]m,nx,x′(ω) = (x− x′)Am,nx,x′(ω) + [X, A]m,n0,0 (ω). (7.3.19)

While the right hand side makes perfect sense for an infinite samples, when the

simulation proceeds over a finite crystal with periodic boundary conditions, there

is an obvious problem with the first term. In [110, 124], it was found that the

optimal adaptation to the periodic boundary conditions is through the following

substitution:

x− x′ → x− x′ −
[[
x− x′

L/2

]]
L, (7.3.20)

where L is the size of the periodic super-cell of the simulation and [[·]] denotes the

integer part of a real number. The second term in (7.3.19) is a local term and there

is no need for a modification when finite crystals with periodic boundary conditions

are considered. With the proper matrix elements at hand, the finite-volume tight-

binding operators corresponding to the commutators with the position operator are

derived via the procedure detailed in section 7.2.3 without any modifications. To

alert the reader about the substitution (7.3.20), we write the modified commutators

of these tight-binding operators as bXω, Aωc.

We now focus on the super-operator Γω + Lω. We will only consider here the

so called relaxation time approximation where the dissipation super-operator is

proportional with identity: Γω = Γ0 id, with Γ0 a positive number. Now we recall

that Lω acts on operators Aω over CN ⊗ `2(Lω) via Lω[Aω] = ı[Hω, Aω]. Observe

that, if (
εωa , ψ

ω
a

)
a=1,...,N |Lω |

(7.3.21)

is an eigen-system for Hω, then

Lω
[
|ψωa 〉〈ψωb |

]
= ı(εωa − εωb ) |ψωa 〉〈ψωb |. (7.3.22)

In other words, (
εωa − εωb , |ψωa 〉〈ψωb |

)
a,b=1,...,N |Lω |

(7.3.23)

is an eigen-system for Lω. This observation together with the fact that any operator
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can be decomposed as

Aω =
∑
a,b

〈ψωa |Aω|ψωb 〉 |ψωa 〉〈ψωb | (7.3.24)

provide a straightforward way to invert the super-operator:

(Γ0 id + Lω)−1[Aω] =
∑
a,b

〈ψωa |Aω|ψωb 〉
Γ0 + ı(εωa − εωb )

|ψωa 〉〈ψωb |. (7.3.25)

Finally, we can give a direct translation of the Kubo-formula (7.3.12) at finite-

volume:

σαβ =
〈
−πG0

Vol

∑
a,b

〈
ψωa
∣∣bXα

ω , Hωc
∣∣ψωb 〉〈ψωb ∣∣bXβ

ω ,ΦFD(Hω)c
∣∣ψωa 〉

Γ0 + ı(εωa − εωb )

〉
ω
. (7.3.26)

This expression is useful when the matrix elements of the Fermi operator are avail-

able. Since this quantity is not among the standard outputs of AIMD simulations,

we process this expression one step further as in [109]:

σαβ =
〈
−πG0

Vol

∑
a,b

ΦFD(εωa )− ΦFD(εωb )

εωa − εωb
(7.3.27)

×
〈
ψωa
∣∣bXα

ω , Hωc
∣∣ψωb 〉〈ψωb ∣∣bXβ

ω , Hωc
∣∣ψωa 〉

Γ0 + ı(εωa − εωb )

〉
ω
.

This is the expression we coded as a post-processing subroutine to the AIMD

simulations. The inputs for this expression are the matrix elements of the Kohn-

Sham Hamiltonians (7.2.35) and the overlap coefficients (7.2.13), as well as the

xyz-coordinates of the atoms.

7.4 Numerical Implementation

In this section, we first present a novel electronic structure method that is only

scaling quadratically with system size, thus facilitating second-generation Car-

Parrinello AIMD simulations of even longer length and time scales than previously

thought feasible [98, 99]. More importantly, this approach permits to efficiently

compute the exact finite-temperature density matrix ρω of a given Kohn-Sham
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Hamiltonian Hω “on-the-fly” during the AIMD. Thereafter, the computational

details of our simulations are described in detail.

7.4.1 Field-Theory-based Eigenvalue Solver

Following Alavi and coworkers [125, 126], we begin with the (Helmholtz) free

energy functional

F = Ξ + µNe + Vdc, (7.4.1)

where Ne = 2N is the number of electrons and Ξ the grand-canonical potential

(GCP) for noninteracting fermions. The latter reads as

Ξ = − 2
β

ln det
(
1 + eβ(µSω−Hω)

)
= − 2

β
Tr ln

(
1 + eβ(µSω−Hω)

)
, (7.4.2)

with given by β−1 = kT (k = Boltzmann constant). Yet, in the low-temperature

limit

lim
β→∞

Ξ = 2
N∑
a=1

εωa − µNe, (7.4.3)

the so-called band-structure energy, which is given by the sum of the lowest N

doubly occupied eigenvalues εωa of Hω, can be recovered and

lim
β→∞

F = 2
N∑
a=1

εωa + Vdc (7.4.4)

holds. Therein, Vdc accounts for double counting terms, as well as for the nuclear

Coulomb interaction.

In the present case of fully self-consistent KS-DFT calculations

Vdc[nω(r)] = −1
2

∫
dr

∫
dr′

nω(r)nω(r′)

|r − r′|

−
∫

dr nω(r)
δΞXC[nω(r)]

δnω(r)
+ ΞXC[nω(r)] + EII , (7.4.5)

where the first term on the right hand side is the double counting correction of

the Hartree energy, while ΞXC[nω(r)] is the finite-temperature XC grand-canonical

functional and EII the nuclear Coulomb interaction. Except for the latter term,

Eq. (7.4.5) accounts for the difference between Ξ and the GCP for the interacting
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spin-1
2

Fermi gas, i.e.

Ξint[nω(r)] = − 2
β

ln det
(

1 + eβ(µSω−H
ω
KS)
)

− 1
2

∫
dr

∫
dr′

nω(r)nω(r′)

|r − r′|

−
∫

dr nω(r)
δΞXC[nω(r)]

δnω(r)
+ ΞXC[nω(r)]. (7.4.6)

As before, in the low-temperature limit Ξint[nω(r)] + µNe equals to the band-

structure energy, whereas ΞXC[nω(r)] corresponds to the familiar XC energy, so

that in this limit F = Ξ + µNe + Vdc = Ξint[nω(r)] + µNe + EII is equivalent to

the Harris-Foulkes functional [127, 128]. Equally than the latter, F is explicitly

defined for any nω(r) and obeys exactly the same stationary point as the finite-

temperature functional of Mermin [129].

Whereas it is well known how to calculate Vdc with linear-scaling computational

effort, the computation of all occupied orbitals by diagonalization requires O(N3)

operations. Due to the fact that the band-structure term can be equivalently

expressed in terms of ρω, the total energy can be written as

EKS[nω(r)] = 2
N∑
a=1

εωi + Vdc = Tr[ρωH
ω
KS] + Vdc[nω(r)]. (7.4.7)

As a consequence, the cubic-scaling diagonalization of Hω
KS can be bypassed by

directly calculating ρω rather than all εi’s.

In order to make further progress, let us now factorize the operator of Eq. (7.4.2)

into P terms. Given that P is even, which we shall assume in the following,

Krajewski and Parrinello derived the following identity

1 + eβ(µSω−H
ω
KS) =

P∏
l=1

(
1− e

iπ
2P

(2l−1)e
β
2P (µSω−Hω

KS)
)

=

P/2∏
l=1

M∗
l Ml, (7.4.8)

where the matrices Ml, with l = 1, . . . , P , are defined as

Ml := 1− e
iπ
2P

(2l−1)e
β
2P (µSω−Hω

KS), (7.4.9)

while ∗ denotes complex conjugation [130]. Analog to numerical path-integral

calculations [131], it is possible to exploit the fact that if P is large enough, so
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that the effective temperature β/P is small, the exponential operator e
β
2P (µSω−Hω

KS)

can be approximated by a Trotter decomposition or simply by a high-temperature

expansion, i.e.

Ml = 1− e
iπ
2P

(2l−1)
(
1 + β

2P
(µSω −Hω

KS)
)

+ O

(
1

P 2

)
. (7.4.10)

However, as we will see, here no such approximation is required, which is in contrast

to the original approach [130]. In any case, the GCP can be rewritten as

Ξ = − 2
β
ln

P/2∏
l=1

det (M∗
l Ml) = 4

β

P/2∑
l=1

ln (det (M∗
l Ml))

− 1
2 . (7.4.11)

As is customary in lattice gauge theory [132, p. 17], where the minus sign problem

is avoided by sampling a positive definite distribution, the inverse square root of

the determinant can be expressed as an integral over a complex field φl, which has

the same dimension M as the full Hilbert space, i.e.

det (M∗
l Ml)

−1/2 =
1

(2π)
M
2

∫
dφl e

− 1
2
φ∗lM

∗
l Mlφl . (7.4.12)

Inserting Eq. (7.4.12) into Eq. (7.4.11) we end up with the following field-theoretic

expression for the GCP:

Ξ = 4
β

P/2∑
l=1

ln

[
1

(2π)
M
2

∫
dφl e

− 1
2
φ∗lM

∗
l Mlφl

]

= 4
β

P/2∑
l=1

ln

∫
dφl e

− 1
2
φ∗lM

∗
l Mlφl + const., (7.4.13)

where φl are appropriate vectors.

All physical relevant observables can then be determined as functional deriva-

tives of the GCP w.r.t. an appropriately chosen external parameter. For example,

Ne = −∂Ξ/∂µ and limβ→∞ Ξ + µNe = 2
∑N

a=1 ε
ω
i , so that

E = lim
β→∞

F = 2
N∑
a=1

εωa + Vdc =
∂(βΞ)

∂β
− µ∂Ξ

∂µ
+ Vdc. (7.4.14)
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Since the functional derivative of the constant in Eq. (7.4.13) is identical to zero,

all physical interesting quantities can be computed via

∂Ξ

∂λ
= − 2

β

P/2∑
l=1

∫
dφl

d∑
i,j=1

(φl)
∗
i

(
∂(M∗l Ml)

∂λ

)
ij

(φl)j e
− 1

2
φ∗lM

∗
l Mlφl∫

dφl e
− 1

2
φ∗lM

∗
l Mlφl

(7.4.15a)

= − 2
β

P/2∑
l=1

d∑
i,j=1

(
∂(M∗

l Ml)

∂λ

)
ij

(M∗
l Ml)

−1
ij (7.4.15b)

= − 2
β

P/2∑
l=1

Tr

[
(M∗

l Ml)
−1∂(M∗

l Ml)

∂λ

]
= − 2

β

P∑
l=1

Tr

[
M−1

l

∂Ml

∂λ

]
. (7.4.15c)

Thereby, the left-hand side of Eq. (7.4.15c) holds because of Montvay and Münster

[132, p. 18], whereas the right-hand side is due to the fact that beside being positive

definite M∗
l Ml is also symmetric.

Comparing Eq. (7.4.7) with Eq. (7.4.3), it is easy to see that the GCP and

hence all physical significant observables can be written as the trace of a product

consisting of the Fermi matrix ρω. Specifically, Ξ = Tr[ρωH
ω
KS]−µNe, but because

at the same time Ne = Tr[ρωSω] holds, the former can be simplified to

Ξ = Tr[ρω(Hω
KS − µSω)], (7.4.16)

where Sω = −∂Hω
KS/∂µ and ρω = ∂Ξ/∂Hω

KS. As a consequence, the GCP and

all its functional derivatives can be reduced to evaluate ρω based on Eq. (7.4.15c)

with λ = Hij. Using the identity

∂Ml

∂Hij

= − 1
2P
{(Ml − 1)β + β(Ml − 1)} , (7.4.17)

for this particular case, Eq. (7.4.15c) eventually equals to

ρω =
∂Ξ

∂Hω
KS

= 4
P

P/2∑
l=1

(
1−

(
M∗

l Ml

)−1
)

= 2
P

P∑
l=1

(
1−M−1

l

)
. (7.4.18)

In other words, the origin of the method is the notion that the density matrix,

the square of the wavefunction at low temperature and the Maxwell-Boltzmann

distribution at high temperature, can be decomposed into a sum of M−1
l matrices,
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each at higher effective temperature β/P and hence always sparser than ρω. Yet,

contrary to the original approach [130], neither a Trotter decomposition nor a high-

temperature expansion for Eq. (7.4.9) has been used, so far everything is exact for

any P .

In particular, unlike Eq. (7.4.11), the determination of Ω = ∂(βΩ)/∂β does no

longer involve the calculation of the inverse square root of a determinant, but

just the inverse of Ml, which is not only very sparse, since it obeys the same

sparsity pattern as Hω
KS, but is furthermore also always better conditioned as the

latter. Hence, all M−1
l matrices are substantially sparser than ρω and thus can

be efficiently computed [133, 134]. In fact, for quasi one-dimensional systems,

Ml is tridiagonal that permits for an exact linear-scaling calculation of its inverse

using a recursive scheme [135]. For all other dimensions D, Ml can be sought of

being block-tridiagonal, where the dimensionality of each block is d = N1−(1/D),

eventually leading to a computational effort, which scales like Nd2 = N3−2/d. Since

this is only marginally better than the initial O(N3) scaling for a general matrix

inversion (or diagonalization), we compute M−1
l by solving the Ne sets of linear

equations MlΦ
l
j = ψj, where {ψj} is a complete set of basis functions [136]. Using

a preconditioned biconjugate gradient method [137], the inverse can be exactly

computed as M−1
l =

∑Ne
j=1 φ

l
jψ

l
j within O(N2) operations. Furthermore, the formal

analogy of the decomposition to the Trotter factorization immediately suggests the

possibility to apply some of the here presented ideas with benefit to numerical path-

integral calculations [131]. The same applies for a related area where these methods

are extensively used, namely the lattice gauge theory to quantum chromodynamics

[138], whose action is rather similar to the one of Eq. (7.4.12).

7.4.2 Computational Details

We now return to our specific simulations. Our models of crystalline silicon con-

sisted of 216 and 1000 Si atoms in a cubic simulation box with periodic bound-

ary conditions. For each system size, five simulations have been conducted, at

T = 300 K, 600 K, 900 K, 1200 K and 1500 K, respectively. All of our calcula-

tions were performed in the canonical NVT ensemble using the second-generation

Car-Parrinello AIMD method of Kühne and coworkers [98, 99]. Throughout, the

experimental density of crystalline silicon was assumed, which, at ambient con-

ditions, is semiconducting and four-fold coordinated. In each run, we carefully
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Figure 7.2: The orbits of the atoms under the thermal motion at different temperatures. The
simulation is for a crystal containing 216 Si atoms and each orbit is sampled at 1001
points. In these renderings, the crystal is viewed from atop of xy-plane. The units
of the graphs are Angstroms.

equilibrated the system for 250 ps before accumulating statistics during additional

1.25 ns, resulting in a total AIMD simulation time of 15 ns.

All simulations were performed at the DFT level using the mixed Gaussian and

plane wave code CP2K/Quickstep [100]. In this approach, the KS orbitals are

expanded in contracted Gaussians functions, while the electronic charge density is

represented by plane waves [78]. A density cutoff of 100 Ry was employed for the

latter, whereas for the former a dimer-optimized minimal basis set was used [139] of

s- and p-type. As such, N = 4 in (7.2.9) and the linear space spanned by these wave

functions is indeed a representation space for the O(3) group. The unknown exact

XC potential is substituted by the LDA [122], whereas the interactions between the

valence electrons and the ionic cores are described by separable norm-conserving

Goedecker-Teter-Hutter pseudopotentials [140, 141]. For the sake of simplicity,

the first Brillouin zone of the super cell is sampled at the Γ-point only.
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300 k 600 k

900 k 1200 k 1500 k

0 k

Figure 7.3: Same as Fig. 7.2 but for a simulation with 1000 Si atoms.

7.5 Numerical Results

In this section, we first present and analyze the output of our AIMD simulations

and then we report the output of the charge-transport post-processing subroutine

detailed in section 7.3.4.

7.5.1 Spectral analysis

In Figs. 7.2 and 7.3 we report the orbits of the atoms at different temperatures, as

simulated with 216 and 1000 Si atoms, respectively. As one can see, the orbits won-

der around the equilibrium positions and the data reveals that crystal Si is quite

disordered even at the room temperature. Let us point out that many electronic

devices operate at 600 K or higher under heavy loads. At these temperatures,

the thermal disorder is quite pronounced. As it is well known, in such conditions,

some of the wave functions can and will become affected by the phenomenon called

Anderson localization [142]. When a wave function becomes Anderson localized,

its contribution to the Kubo-formula is zero. Almost as a rule [143], these local-
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Figure 7.4: Level statistics for a (a) 3 × 3 × 3 unit cells crystal containing 216 atoms and (b) 5 × 5 × 5

unit cells crystal containing 1000 atoms. Both sets of data were generated at T = 900 K. The
background displays the energy spectra for various thermally disordered configurations. The red
curve represents the variance of the level spacings ensembles collected at different energies. The
yellow line indicates the variance of the Gaussian orthogonal ensemble. Both the red and yellow
curves have their y-axis on the right side. Also shown are the spectral and the mobility gaps, as
inferred from the data.

ized states occur close to the edges of the energy spectrum and, for 3-dimensional

crystals, it is predicted there exist mobility edges in the energy spectrum, one in

the conduction and one in valence bands, beyond which the wave functions remain

extended. These mobility edges define the so called mobility gap and the expecta-

tion of the charge current operator is zero when one only populates electron states

with eigen-energy within this gap. It becomes clear that the activated behavior of

the conductivity is determined by the mobility gap and not by the spectral gap.

As such, it is extremely important to detect the mobility edges for our crystals.

For this, we employ a technique called the level statistics analysis, which has been

successfully used in the past for this very purpose [110, 144].

We exemplify the process for the temperature T = 900 K, where the disorder

is quite pronounced and the effects described above are more visible. Before we

start, we need to examine the spectral characteristics of the Hamiltonians. For

this, we have diagonalized the tight-binding KS-Hamiltonian for 1001 selected

thermally disordered configurations. The result is a sequence of 1001 discrete sets

of eigenvalues {εωa}, which we rendered on a horizontal line for each configuration
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m
0

Figure 7.5: (a) Fluctuation (black dots) and average value (red line) of the chemical potential value corre-

sponding to the charge neutrality. (b) Same as (a) for the intrinsic charge carrier density. The
data was extracted from the spectra shown in Fig. 7.4(b) for a crystal containing 1000 Si atoms at
temperature 900 K.

and then we stuck these lines vertically. The resulting collection of spectra then

appears as the fuzzy dots seen in the background of Fig. 7.4. We recall that for

covariant systems of Hamiltonians in the thermodynamic, the spectrum is in fact

non-fluctuating in the sense that, if we pick any energy interval and ask what is

the probability (w.r.t. to ω) for at least one eigenvalue to fall within this interval,

the answer will either 0 or 100 percent. This is a consequence of the fact that

TgHωT
†
g have the same spectrum for all g ∈ G. In the same time, TgHωT

†
g = Hτgω

and the orbit {τgω, g ∈ G} samples Ω entirely. The spectrum of a covariant family

of Hamiltonians is defined as the intersection of all closed subsets of the real axis

that contain all eigenvalues with 100% probability. Rendering the spectra as in

Fig. 7.4 helps one identify this non-fluctuating spectral set.

We now examine the spectra more closely. The first issue we want to address

is the appearance of the spectral gaps inside the valence and conduction bands.

These are artificial features due to relative small size of the system. For a periodic

system simulated with periodic boundary conditions (i.e. at Γ-point) on a finite

super-cell containing many unit cells, these gaps will be explained by the coarse

sampling of the Brillouin zone of the unit cell. As one can see in Fig. 7.4, many of

the gaps disappear when the size of the Si crystal is increased from 3× 3× 3 unit
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cells to 5×5×5 unit cells. One should also note that the fuzziness in the rendered

spectra decreases as the size of the system increases, which is a manifestation of

the non-fluctuating character of the spectrum in the thermodynamic limit.

The second issue is the size of the spectral gap, which in our simulations comes

at 1.7 eV. This is more than twice the value returned by converged KS-DFT

simulations and it indicates that the local orbital basis is too coarse. We have

verified that, indeed, increasing the local orbital basis converges the spectral gap

to the standard KS-DFT value of 0.7 eV. We recall that the experimental value is

1.1700 eV at 4.2K [145] and that the experimental band gap displays a temperature

dependence which has been assessed quite precisely [146, 147]. Our simulations,

however, are performed with the same super-cell regardless of the temperature,

hence we cannot relate them to that experimental fact. Our conclusions based on

the spectral data reported in Fig. 7.4 is that the present simulations are not yet

precise enough for quantitative predictions. As such, we will focus in the following

only at qualitative aspects.

We now turn our focus on the level statics analysis, which was performed in the

following way. We picked an arbitrary energy ε and, for each of the 1000 thermally

disordered configurations considered in Fig. 7.4, we identified the unique eigen-

values εωa and εωa+1 that satisfy the constraint εωa < ε < εωa+1. Then we computed

the level spacings ∆ε=εωa+j+1− εa+jω, letting j take 11 consecutive values between

−5 and 5. After repeating the procedure for all 1000 configurations, we generated

ensembles of 11,0000 level spacings for each energy ε. These level spacings were

subsequently normalized by their average.

As done in [144], one can examine the histograms of these ensembles and de-

termine what kind of distributions they manifest. Since the KS-Hamiltonians are

real, we expect the outcome to be either a Poisson distribution P (s) = e−s or a

Gaussian orthogonal ensemble (GOE), PGOE = π
2
se−

π
4
s2 . These distributions are

expected when the localization length of the wave functions with energy close to ε is

smaller/larger than the size of the super-cell, respectively [148]. If the super-cell is

large enough, one can derive from these distributions the localized or de-localized

character of the wave functions. Overlapped over the spectra in Fig. 7.4 is the

variance 〈s2〉 − 〈s〉2 of the level spacing ensembles collected at different energies,

as well as the variance value of 0.273 computed from PGOE. Since the variance of

the Poisson ensemble is 1, we can easily identify from Fig. 7.4 the character of the
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m – m0

Figure 7.6: Fluctuation (black dots) and average value (red line) of the impurity density as a function of

chemical potential. The inset shows a restricted range of the same data. The numerical values
were extracted from the spectra shown in Fig. 7.4(b) for a crystal containing 1000 Si atoms at
temperature 900 K.

wave functions, in particular, the mobility gap. As one can see, it extends well

beyond the spectral gap.

7.5.2 Charge carrier concentrations

The charge-neutrality point is defined by the precise value of the chemical potential

µ0 where the charge neutrality of the crystal is achieved. Since in our calculations

each ionic core carries 4e charge, the charge neutrality condition reads:

4Na

Vol
=

〈
2

Vol

∑
a

1

1 + exp( ε
ω
a−µ0
kT

)

〉
ω

. (7.5.1)

We want to point out that, for covariant systems, µ0 and the quantity inside the

average brackets in (7.5.1) are self-averaging in the thermodynamic limit. How-

ever, for our finite-size crystals, these quantities will display fluctuations from one

thermally disordered configuration to another and the size of these fluctuations is

a good indicator of how close is the simulation to the thermodynamic limit. A

rendering of the fluctuations as well as the average value of the chemical potential

µ0 at the neutrality point and 900 K temperature are reported in Fig. 7.5(a). The

data reveal an extremely low level of fluctuations, characterized by a standard

deviation of 0.063 % around the average value µ0 = 0.24546 Ha.

Mapping the concentration of the conduction electrons and valance holes is cru-
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Figure 7.7: Conductivity as a function of chemical potential for 216 Si atoms, T = 300 K and different values of

the dissipation coefficient. Shown in blue are the un-processed output for 1000 thermally disordered
configurations. The red curves represent the average values.

cial for understanding the transport characteristics of crystals. The hole concen-

tration is determined by the depletion of the valence states due to the thermal

excitations:

nh(T, µ) =

〈
2

Vol

∑
εωa≤µ0

[
1− 1

1 + exp( ε
ω
a−µ
kT

)

]〉
ω

. (7.5.2)

The concentration of the mobile electrons is determined by the population of the

conduction states due to the thermal excitations:

ne(T, µ) =

〈
2

Vol

∑
εωa≥µ0

1

1 + exp( ε
ω
a−µ
kT

)

〉
ω

. (7.5.3)

Note that at the neutrality point, we have the equality:

nh(T, µ0) = ne(T, µ0). (7.5.4)

The common value of the two densities is called the intrinsic density (ni) of charge
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Figure 7.8: Same as Fig. 7.7 for T = 900 K.

carriers and it is one of the most important characteristics of Si semiconductor.

Its experimental value at 300 K has been determined with great precision [149–

151] to be ni = 9.7 ÷ 10.0 × 109 cm−3. Experimental data on the dependence

of ni with the temperature has been summarized in [152, Fig. 14], from where

we extracted the experimental value of 1.0 × 1017 cm−3 at T = 900 K. For our

simulations, the fluctuations and the average value of ni are reported in Fig. 7.5(b).

As one can see, despite of extremely low fluctuations in µ0, there are substantial

fluctuations in the ni data, which reflect the extreme sensitivity of ni on the energy

spectrum. Quantitatively, the standard deviation in Fig. 7.5(b) is 6 % and the

average value is ni = 1.973×1015. This value is much lower than the experimental

value mentioned above, the main reason being the over-estimation of the band gap

by our simulations.

In our study, we will consider not only neutral but also Si crystals that are away

from neutrality point by letting the chemical potential µ be a variable. Experimen-

tally, the variation of the chemical potential can be achieved via gate potentials

for thin films or via impurity doping for bulk samples. Either way, such variations
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Figure 7.9: Direct conductivity as a function of the chemical potential for 1000 Si atoms, T = 300 K and

Γ0 = 0.01kT (top), Γ0 = 0.1kT (middle) and Γ0 = kT (bottom). Shown in blue are the un-
processed output for 1000 thermally disordered configurations. The red curves represent the average
values.

lead to changes in the electronic structure of the crystal, which should be recom-

puted every time the doping level is changed. Since in our simulations we use the

same electronic structure, specifically the one computed at the neutrality point,

the results we present here are relevant only for lightly doped or weakly gated sam-

ples where the changes in the electronic structure are expected to insignificant. To

make contact with the experiment, one has to rely on the impurity density value

rather than on the chemical potential, because the former is the parameter that

can be controlled in laboratory. The impurity density is evaluated from:

n(µ, T ) = |ne(µ, T )− nh(µ, T )| =

∣∣∣∣∣
〈

2

Vol

∑
a

1

1 + exp( ε
ω
a−µ
kT

)

〉
ω

− 4Na

Vol

∣∣∣∣∣ . (7.5.5)

For completeness, we show in Fig. 7.6 the relation between the impurity density

and chemical potential µ, as derived from the spectra shown in Fig. 7.4 and (7.5.5).

Let us recall that a light to moderate doping corresponds to the experimental values
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Figure 7.10: Same as Fig. 7.9 for T = 900 K. In addition, the bottom panel contains a zoom-in.

nexp < 1016 cm−3, which in terms of the chemical potential means, approximately,

that |µ− µ0| < 0.01 Ha.

Let us end this section by specifying that the extrinsic hole density from Eqs. (7.5.2)

will be used in the next section to generate the hole mobility via the relation

σ = enhµh. The hole mobility µh will be mapped as a function of the acceptor

concentration (7.5.5).

7.5.3 Direct conductivity and mobilities of charge carriers

In this section we present and analyze the numerical results on the direct con-

ductivity (7.3.17). Figs. 7.7 and 7.8 report the data for a 216 Si atoms crystal

at temperatures T = 300 K and T = 900 K, respectively. Similarly, Figs. 7.9

and 7.10 report the data for a 1000 Si atoms crystal at temperatures T = 300 K

and T = 900 K, respectively. The chemical potential has been varied throughout

the entire energy spectral range and the dissipation parameter Γ0 was sampled

at three different values in these simulations. Overall, the results show a good



7.5 Numerical Results 91

correlation between the conductivity plots and the spectrum of the Kohn-Sham

Hamiltonians. There is a significant difference between the outputs for 216 and

1000 atom crystals, indicating that the results are not converged yet w.r.t. the sys-

tem’s size. There is also a significant dependence on the dissipation parameter Γ0.

It is interesting to notice that for its largest values, the fluctuations of the direct

conductivity are drastically suppressed. As explained in [110], the convergence to

thermodynamic limit is faster for larger Γ0, and this explains the suppression of

the fluctuations observed in these figures.

The conductivity results are in very good agreement with the mobility gap pre-

diction, which for T = 900 K can be found in Fig. 7.4. Indeed, the conductivity

is obviously not influenced at all by the first band of spectrum, which was deter-

mined in Fig. 7.4 to be Anderson localized. This is quite obvious in the inset of

Fig. 7.10, which shows a zoom into the region around the spectral gap. Let us

point out again that, on the other hand, the intrinsic and extrinsic charge carriers

are highly influenced by the presence of this Anderson localized band.

In Fig. 7.11(a), we focus on the behavior of direct conductivity inside and around

the insulating gap, especially on the hole side. We chose to investigate only at the

crystal with 1000 Si atoms and T = 900 K because it is the most converged system.

At T = 300 K, the conductivity curves display a pronounced dependence on the

spectral details which are not yet converged, hence the analysis will not be reliable.

As it is customary, the transport coefficient has been plotted as a function of the

acceptor concentration rather than chemical potential. The behavior of σ seen in

Fig. 7.11(a) is as expected. Deep inside the insulating gap, the direct conductivity

saturate at a value proportional to Γ0 and, as the chemical potential moves towards

the valence band, an activated behavior takes over. In Fig. 7.11(b), we report the

hole mobility as a function of the acceptor concentration. The functional shape is in

good agreement with the measured one (see [145, Fig. 21.8]). Let us point out that,

when the chemical potential is inside a spectral gap, the mobility is proportional

with the dissipation Γ0, hence with inverse of the relaxation time. In contrast,

when the chemical potential is inside a spectral band, as is the case of a metal, the

mobility is proportional with relaxation time, hence inverse proportionally with Γ0.

As such, one should not be surprised by the behavior with Γ0 seen in Fig. 7.11(b).



92 7 Transport Coefficients of Disordered Crystals

G = kT

G = 0.1kT

G = 0.01kT

Figure 7.11: Dependence with the acceptor concentration of (a) direct conductivity and (b) hole mobility, as

computed for the 1000-atom Si crystal at T = 900 K. The fine lines represent unprocessed data
coming from individual disordered configurations, hence they are a measure of the fluctuations.
The thicker red lines represent the averages over 50 configurations. The simulations have been
carried for three values of the dissipation parameter, which are specified in each panel.



8 Conclusions

In this work, the structure and adsorption properties of K-PHI and related cation

exchanged poly(heptazine imide) salts are studied by means of density functional

theory calculations of an idealized model derived from experimental findings. The

structure of K-PHI consists of positive potassium cations, which are embedded

in the pores between the layers of a negatively charged well-organized 2D carbon

nitride framework. This charge separation can be described as frustrated Coulomb

pairs analogues to frustrated Lewis pairs which are known to exhibit adsorbate

activation properties. The potassium cations can be exchanged experimentally

with other ions while maintaining the crystal structure. Here, the potassiums

were exchanged with other alkali (Li+, Na+, Rb+), alkaline earth (Ca2+, Sr2+,

Ba2+) and transition metal (Au+, Ag+) cations as well as hydrogen atoms. All

these materials have similar structures with intercalated cations between the layers

except the covalent H-PHI and Au-PHI, which has the gold ions in the same layer

as PHI due to a high degree of covalency as it is typical for gold and confirmed by

charge analysis.

Due to the presence of positive ions as well as negative PHI layers which con-

tain surface nitrogens as basic adsorption sites, K-PHI and their metal exchanged

analogues (X-PHI) offer a unique highly-polarizing adsorption environment, which

can be used for different adsorbates. The carried out calculations suggest that the

adsorption environment inside these materials makes them even possible candi-

dates for helium storage and transportation. The helium adsorption is found to be

energetically favorable inside the nanopores of all studied systems although helium

is known to hardly interact with any species. Even in the metal-free H-PHI system

the adsorption is energetically favored which underlines the potential of metal-free

CN materials. Furthermore, the adsorption energy increases for the cation con-

taining systems and its helium affinity is determined by the cation choice. K-PHI

exhibits an adsorption energy of ∆Eads= -4.3 kJ/mol. The highest adsorption en-

ergies are calculated in the case of the alkali metal containing PHI materials and
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depend on the size of the cation as one factor for the resulting charge separation.

Hence, Cs-PHI was determined as the material with the thermodynamically high-

est adsorption affinity (∆Eads= -5.5 kJ/mol). The origin of the interaction between

helium and the X-PHI materials was determined to be dominated by Coulomb in-

teractions as shown by the ALMO-EDA method. However, also charge transfer is

significantly contributing to the interaction. The strongest charge transfer occurs

from He to the positive cations in the order of 0.5 me resulting in a stabilization of

around -0.8 kJ/mol. A second charge transfer contribution was determined from

the negative PHI framework to He (around 0.05 me and -0.2 kJ/mol).

The highly active adsorption environment is not only interesting for helium ad-

sorption, but also exhibits interesting possibilities for more reactive species. The

water adsorption in K-PHI was investigated and a remarkable adsorption energy

of -94.5 kJ/mol for a single molecule and -83.4 kJ/mol per water molecule upon

complete filling of K-PHI (14 wt%). This high adsorption affinity can be explained

by the fact that water can be adsorbed directly at the core of the charge separation

in K-PHI. The water is closely coordinated to the positive potassium ions while at

the same time forming hydrogen bonds with the surface nitrogens of the negative

PHI layers. The immense adsorption energy reveals that water is not interacting

in terms of regular physisorption and instead, it is becoming part of the archi-

tecture of the material. The interaction of water in K-PHI originates mainly by

Coulomb as well as charge transfer contributions, which is occurring from PHI to

water (20.9 me, -32.9 kJ/mol) and from water to the potassium cations (10.6 me,

-10.2 kJ/mol). Since water interacts strongly with the material, it is expected to

be adsorbed even at low partial pressures and not to be easily removable there-

after. Hence, it was investigated how the presence of H2O influence the helium

adsorption in K-PHI.̧ Interestingly, adsorbed water is able to slightly increase the

helium affinity at low water and helium uptakes (up to -1.0 kJ/mol). However,

this enhancement effect quickly vanishes at higher loadings due to competition for

adsorption sites in the narrow nanopores. Also the maximum helium uptake de-

creases the more water is present in the pores. Therefore, K-PHI should be treated

cautiously in presence of polar molecules which whom it may interact strongly. If

water is not desired to fill the nanopores, these materials should be used in an

anhydrous environment.

This work is a contribution to understand the structure-property relation inside

poly(heptazine imides) and their unique confined adsorption environment with
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strongly interacting nanopores. Their immense potential is indicated for various

applications, where strong interactions are desired, e. g. for molecular activation

for catalytic purposes.

Furthermore, in the last chapter, disordered tight-binding models based on

AIMD outputs has been derived and a Kubo-formalism was formulated that pre-

serves the self-averaging property of the transport coefficients. The Kubo-formalism

was coded as a post-processing subroutine to a standard AIMD code and prelim-

inary results on the transport coefficients of crystals Si were obtained at various

temperatures. According to the study, the thermal disorder can have measurable

effects even at room temperature.
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