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Zusammenfassung

Kaliumpoly(heptazinimid) (K-PHI) ist ein vielversprechender Photokatalysator
fiir verschiedene chemische Reaktionen. Die Ladungstrennung zwischen den Katio-
nen innerhalb der Nanoporen eines anionischen zweidimensionalen Kohlenstoffni-
tridgeriists fiihrt zu einer spannenden Adsorptionsumgebung fiir verschiedene Ad-
sorbate. In dieser Arbeit werden Berechnungen auf der Grundlage der Dichtefunk-
tionaltheorie durchgefiihrt, um die Struktur und die Adsorptionseigenschaften von
K-PHI und seinen kationenausgetauschten Analoga, X-PHI, zu untersuchen. Diese
Materialien sind mogliche Kandidaten fiir die Heliumspeicherung, da sich die Heliu-
madsorption in allen untersuchten Systemen als thermodynamisch gilinstig erweist
(bis zu AE,qs=-5,5 kJ/mol in Cs-PHI). AuBlerdem wurde eine bemerkenswerte
Adsorptionsenergie von AE,4,=-95 kJ/mol fiir ein einzelnes Wassermolekiil in K-
PHI gefunden und AE,4s=-83 kJ/mol pro H,O bei maximaler Wasseraufnahme
(14 wt%). Diese Wechselwirkungen gehen tiber die typische Physisorption hin-
aus und haben ihren Ursprung in der Tatsache, dass Wasser an Kaliumionen
koordiniert ist und gleichzeitig Wasserstoftbriickenbindungen mit den negativen
PHI-Schichten in den begrenzten Nanoporen von K-PHI bildet. Die Wichtigkeit
der Ladungstrennung in den Nanoporen der Materialien wird fiir beide Adsor-
bate durch die berechneten atomaren Nettoladungen und die Energiezerlegungs-
analyse bestatigt. Neben der dominierenden Coulomb-Wechselwirkung tragt auch
der Ladungstransfer erheblich zu diesen Wechselwirkungen bei. Da zu erwarten
ist, dass Wasser bereits bei niedrigen Partialdriicken adsorbiert, wird der Einfluss
von Wasseranwesenheit auf die Heliumadsorption untersucht. Interessanterweise
ist die Heliumadsorptionsaffinitdt durch Wassermolekiile auf bestimmten Adsorp-
tionsplétzen leicht erhoht, jedoch verschwindet die Verbesserung bei hoheren Auf-
nahmen schnell aufgrund der Konkurrenz um die Adsorptionsplétze auf dem be-
grenzten Raum. Daher weisen PHI-Materialien interessante Eigenschaften und ein
grofles Potenzial fiir verschiedene Anwendungen auf, bei denen extreme Wechsel-
wirkungen zwischen Adsorbat und Adsorptionsmittel erwiinscht sind, wie z. B.
bei der Adsorbataktivierung in der Katalyse.



Abstract

Potassium poly(heptazine imide) (K-PHI) is a promising photocatalyst for various
chemical reactions. The charge separation between cations within the nanopores of
an anionic two-dimensional carbon nitride framework yields an exciting adsorption
environment for various adsorbates. In this work, density functional theory-based
calculations are employed to study the structure and adsorption properties of the
K-PHI and their cation exchanged analogues, X-PHI. These materials are possi-
ble candidates for helium storage as helium adsorption is found to be thermody-
namically favorable in all studied systems (up to AE,qs=-5.5 kJ/mol in Cs-PHI).
Furthermore, a remarkable adsorption energy of AE,qs=-95 kJ/mol was found for
a single water molecule in K-PHI and AE,43,=-83 kJ/mol per HoO at maximum
water uptake (14 wt%). This interactions are beyond typical physisorption and
originate from water being coordinated to potassium ions and at the same time
forming hydrogen bonds with the negative PHI layers in the confined nanopores of
K-PHI. The importance of charge separation inside the nanopores of the materials
are confirmed for both adsorbates by calculated net atomic charges and energy
decomposition analysis. Beside dominating Coulomb interaction, charge transfer
also contributes significantly to these interactions. As water is expected to be ad-
sorbed already at low partial pressures, the impact of water presence on the helium
adsorption is investigated. Interestingly, water molecules on specific adsorption
sites slightly increase the helium adsorption affinity, however, the enhancement
quickly vanishes at higher uptakes due to competition for the adsorption sites in
the confined space. Hence, PHI materials exhibit interesting properties and a huge
potential for various applications where extreme interactions between adsorbate

and adsorbent are desired, such as for adsorbate activation in catalysis.
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1 Introduction

Carbon nitride (CN) materials with different stoichiometric compositions have
been known for a long time [1], however, they attracted emerging attention in
the scientific community in the recent years. Because of their versatile properties
combined with cost efficiency, they are suitable candidates for a wide range of
applications in catalysis [2-6], gas storage [7] and battery research [8-H10]. Two-
dimensional carbon nitrides exhibit outstanding photocatalytic properties |11H13].
For example, graphitic carbon nitrides (g-C3N,) are shown to be efficient photocat-
alysts. Due to their bandgap of 2.7 eV corresponding to a wavelength absorption
threshold of 460 nm and a suitable conduction band potential, they are especially
able to perform water reduction [3}, |14} [L5], but also other photocatalytic reactions
[16-18]. Moreover, CN materials can store electrons in a long-lived photoreduced
state |[19-21], which allows a temporal separation of light adsorption and the cat-
alytic conversion under dark conditions (”dark photocatalysis” [19]) and also make
them a candidate for solar batteries [22].

Recently, a novel type of porous two-dimensional CN materials, poly(heptazine
imides) (PHI), was synthesized. Due to their metastability, improved conductivity
and high crystallinity, the hydrogen evolution reaction (HER) rates reach up to
four times higher than those of the mesoporous g-C3N4 [23] 24]. Furthermore, it is
not only interesting for HER, but due to a higher valence band potential than other
carbon nitrides, it is also capable of photocatalytic water oxidation in the absence
of any-metal based co-catalyst under visible light [25]. These PHI materials can be
synthesized ionothermally with either starting from the melon polymer [12, 26] or
by condensation of well-organized molecular precursors [23| 24]. In all cases, the
usage of salt melts seems to be crucial and yields different products as obtained
by high-temperature solid-state synthesis |12}, 23, |24, 26]. The structure of the
potassium containing PHI salt, K-PHI, has been studied by various experimental
techniques [23]. K-PHI contains an extended planar network out of tri-s-triazine
(heptazine) units connected via imide bridges and intercalated potassium ions.

10
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The chemical structure of a defect-free K-PHI layer is shown in Fig. [1.1} The
PHI layers exhibit a tight packing in these materials with an interlayer distance
of 0.32 nm [23]. The potassium ions in K-PHI are located in channels that are
different from the PHI layers, which means that the cations are organized inside
the pores by means of ionic self assembly [27]. This charge separation between the
negative organic framework and the positive ions inside these materials is one of

their exciting features.
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Figure 1.1: Idealized structure of the two-dimensional K-PHI, where the potassium ions are in
the pores of the CN framework

K-PHI was the first synthesized PHI salt which was directed by choice of the
eutectic salt melt (LiCl/KCl) as reaction medium. However, Savateev et al. [23]
demonstrated that the potassium ions inside K-PHI can be exchanged with other
cations while essentially preserving the crystal structure of the materials, which al-
lows to tune their properties post-synthetically. This exchange with other cations
(X*/2%) is schematically shown in Fig. [1.2, where the CN framework remains un-
changed. The authors obtained a wide range of different PHI salts containing
alkali (Li, Na, Cs), alkaline earth (Mg, Ca) and transition metals (Ni, Co, Ag,
Zn) and further studied their catalytic reactivity and conductivity. The highest
photocatalytic activity for the visible-light-driven hydrogen evolution reaction was
found in the case of the Mg-PHI salt. The fact that the cations can be easily
exchanged in these materials is not trivial. Insertion and exchange of ions in
solid-state porous crystalline frameworks are usually possible rather in inorganic
frameworks. Examples are the redox intercalation of Li-ions into CoO4 as happen-
ing at the cathode of a lithium battery [28, 29] and the exchange of ions within a
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charged zeolite framework changing its catalytic activity and size selectivity [24].
In organic frameworks, ion insertion or exchange are rare and primarily based
on extended polymer frameworks [30]. Therein, the solubility of the materials in
salt melts as well as the strength of interaction with the salt ions play a crucial
role. Hence, the salt melt acts as a high-temperature solvent and as a structure-
directing agent [31-33]. The choice of the ion define the structure, crystallinity
and hence the properties of the resulting materials [24]. In the case of a similar
material, poly(triazine imide) (PTI), divalent metal ions like Sn stay inside the
final polymer because they exhibit strong nitrogen-metal donor acceptor bonds
(34, 135].

Figure 1.2: Schematic exchange of the potassium (K*; pink) cations of K-PHI with other cations
(X+/2%: red) while maintaining the organic framework along the lines of Ref. [23].

The focus of this work is the theoretical investigation of the interaction of adsor-
bates inside the nanopores of the poly(heptazine imide) salts. As these materials
exhibit structures which offer an interesting adsorption evironment, they are po-
tentially relevant for gas storage, separation, catalysis and many more. It has
already been demonstrated that hydrogen gas (Hs) adsorbs on metal-free CN ma-
terials [7]. Since Hy is non-polar and quickly boiling, it usually has to be activated,
e. g. in terms of frustrated Lewis pairs in pure organic systems [36-39]. There-
fore, K-PHI could be a suitable candidate for non-polar gas adsorption. The most
non-polar gas is helium, which has an extremely low boiling point (~4 K), and
liquefying He gas is technologically demanding. Adsorption materials offer an al-
ternative for storage and transportation of He gas. Hence, helium adsorption in
K-PHI is investigated in this work. Present adsorption materials usually exhibit
only little He adsorption because of its inertness and low solubility [40-45]. High
helium uptake was found in magnetron sputtering generated nanoporous silicon
[46] and similar obtained titanium alloy films [47] with storage of up to 21 at%.

Beside the extreme non-polar helium, the water adsorption in the highly reac-
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tive nanopores of K-PHI is addressed in this work. Interactions between water
molecules and surfaces are among the most fundamental and relevant phenom-
ena 48] 49]. Water is omnipresent and essential for example for living organisms
[50] and modern energy- and environmental applications, such as gas adsorption,
catalysis or adsorptive purification. [51-53] In these applications, the structure
and activation of water at the interfaces play a crucial role. Strong interface in-
teractions or confined conditions in the pore can realign the water structure and
hence completely change its nature and properties [54]. K-PHI exhibits a definite
pore size, high availability of partial charges and hydrophilic sites. Therefore, it
is interesting to investigate the structure and thermodynamics of water at these
interfaces.

The remainder of this work is organized as follows. In Chapter 2], the theoretical
framework is given by briefly explaining the fundamentals of density functional
theory as well as the applied energy decomposition analysis based on absolutely
localized orbitals. Next, the structure of K-PHI and the cation exchange of K-
PHI to other PHI salts and their structures are investigated in Chapter [3} In
Chapter 4] the helium adsorption in these materials is studied with a focus on
the interactions between adsorbate and PHI material as well as the role of the
cation. The interactions of single and multiple adsorbed water in the nanopores
of K-PHI is similarly investigated in Chapter [5] This is followed by a discussion
about the interplay between water and helium in K-PHI in Chapter [6] After that,
the development of an alternative approach for calculating transport coefficients
is described and applied to disordered silicon in Chapter [7] which was done as
a collaboration with Prof. Emil V. Prodan and Prof. Thomas D. Kiihne and
published in Ref. [55]. There, E. V. P. and T. D. K. developed the theoretical
framework in Section , and as well as the implementation (Section .
My contribution to this work is the application (Section of the theory to ab-
initio molecular dynamics simulations of silicon containing different numbers of
atoms (216 and 1000) at different temperatures (300, 600, 900, 1200, 1500, 1800,
2100, 2400, 2700, 3000K). More precisely, I generated workflows for these different
systems to calculate the overlap matrices S and the Kohn Sham matrices Hkxg and
calculate the chemical potential as well as the conductivity from these. At the
end, Chapter [§| deals with the conclusions of the previous chapters followed by the
references and the appendix.



2 Description of a Quantum Mechanical
System

This chapter deals with the fundamentals of density functional theory (DFT) start-
ing from the Schrédinger equation (SE). The explanation and the equations are
mostly based on Ref. [56] and Ref. |57, however, there are plenty of additional
well-written summaries in the literature [58-61]. After that, the energy decom-
position analysis (EDA) based on absolutely localized orbitals (ALMO) is briefly
introduced, which is used in this work to decompose the DFT interaction energies
of adsorbates to gain further chemical insights.

2.1 Schrodinger Equation and Born-Oppenheimer

Approximation

To describe a physical system quantum mechanically, most approaches are based
on the time-independent, non-relativistic Schrédinger equation [62, 63]

H\Ifi(Tl, ...,TN,Rl, ,RM) = Ei\I’i(Tl, ...,TN,Rl, ...,RM), (211)

where H is the Hamilton operator for a physical system consisting of M nuclei and
N electrons. The wavefunction of the system ¥ completely describes the quantum
mechanical system and contains all information which can be known. Subindex
i denotes the state of the system and FE; are the corresponding energies. In the

absence of magnetic or electric fields, the Hamiltonian

H = Tnuc + Telec + Vnuc—nuc + Vnuc—elec + Uelec—elec (212)

represents the total energy by the sum of the kinetic energies of electrons 7. and
nuclei T plus the pair potential potentials Vnuc_nuc,vnuc_elec and Uelec_elec.

The Born-Oppenheimer approximation [64] separates the Schrédinger equation

14



2.1 Schrédinger Equation and Born-Oppenheimer Approximation 15

into nuclear and electronic contributions, which simplifies the problem enormously.
Pictorially, the electrons are assumed to move in a field of fixed nuclei. This is
a reasonably good approximation due to the significant mass differences between
nuclei and electrons. For the lightest atom of all, hydrogen, the nucleus, which is
a single proton, is about 1800 times heavier than its electron and their movements
are hence happening on different time scales. For all other atoms, the difference is
even multiple times higher. In the electronic SE, the kinetic energy of the nuclei
is neglected and as a consequence the total kinetic energy is only determined by
the kinetic energy of the electrons T,,... The nuclear repulsion is only a constant
and not part of the electronic Hamiltonian. The electronic Hamiltonian then only

consists of

]:—’elec = Telec + Vnuc—elec + Uelec—eleo (213)

Using DF'T, one is usually interested in the electronic structure of atoms, molecules
and solids. Its goal is to address the many-body electronic Schrodinger equation

~

Helec\pelec(rla - TN Rb ) RM) = Eelec\pelec(rla < TN Rl, ey RM)) (214)

where the electronic wavefunction V... now only depends on the N electronic
coordinates r; while the M nuclear coodinates Ry enter only parametrically. The

nuclear repulsion

QrQ
B Z|R oy (2.1.5)
k<l 11k !

where (), and @); are the charges of nuclei k and 1, respectively, is only a constant
and can simply be added to the electronic energy FE.;.. to obtain the total energy

of the system

Etot = Eelec + Enuc- (216)

From now on, only the electronic part of the SE is considered and the subindices

are dropped, so that the electronic SE is given as

~ ~ A~

[T+ \%4 + U]\P(Tl, NS Rl, ceny RM) = E\I’(’Fl, ...,’I“N;Rl, ceny RM), (217)
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where the electronic Hamiltonian consists of three parts: First, the electronic

kinetic energy T, which is for any non-relativistic system defined as

T=——"N"V? (2.1.8)

where A, m and V are the reduced planck constant, the mass of the electron and
the nabla operator, respectively, and secondly U which describes the Coulomb

interactions of electrons by

2
~ q
U= ZU(?"i,Tj) = Z m, (219)
i J

i<j i<j
where ¢ is the charge of an electron. As can be seen, the operators T and U do

not depend on the system and are hence called universal operators. Contrary, the
only system dependent (non-universal) operator is

V=3 =3 (2:1.10)

which describes the attractive potential exerted on electrons due to the nuclei and
its expectation value v(r) is often termed as external potential. The SE for a single
electron moving in this potential v(r)

[_ B2V

2m

+ U(r)} U(r)=eW¥(r) (2.1.11)

and the many-body SE

\I}(Tl,...,TN> :E\I/<T1,...,T'N) (2]_]_2)

li (‘h;Z’Z C)EDICES

i 1<J

for a system containing multiple electrons can be formulated. The approach is to
first specify the system by choosing the potential v(r), constructing the Hamil-
tonian H and obtain the electronic wavefunction ¥ by solving that linear partial
differential equation. Knowing the wavefunction, any physical observable O can
be calculated as an expectation value (O) with the corresponding operator O via
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(U|0|T) = /d37“1/d3.../d3rN\Il*(r1,T2,...,TN)OQI(rl,TQ,...,TN) (2.1.13)

The schematic procedure can be summed up as

o(r) = B 2 g ) 228 0, (2.1.14)

The wave function itself is not an observable. A physical interpretation is only
possible of the electron density, which is related to the square modulus of the
wavefunction and is defined as the integral over all but one spatial variables of the
electrons. The result is formally the probability of finding a particular electron
within a volume element dr; - while all other electrons might be anywhere in
space. However, because electrons are indistinguishable, it is also the probability
of finding any other electron within dr;. In practice, wave functions are often
normalized so that the probability of finding the N electrons anywhere in space is
equal to 1. Hence, you get the total probability

p(r) :N/d3r2/d3.../d3rN‘I/*(7’,r2,...,TN)\II(T,TQ,...,TN) (2.1.15)

of finding any electron by multiplication with the total number of electrons N.

2.2 Density Functional Theory

As described in the previous section, obsevables can be calculated using the wave-
function ¥. Unlike other methods, density functional theory (DFT) defines a way
to calculate observables by only using the electron density p(r) as key quantity
without needing the wavefunction explicitly. This reduces the effort significantly
and is the reason for the emergence of DFT. It means that in a closed shell system,
the information of W (ry,...,7y) depending on N vectorial variables, i. e. 3N coor-
dinates, is contained in the ground state density pg(r), which only depends on one
vector r with 3 spatial dimensions. Its legitimacy was shown by Hohenberg and
Kohn in 1961 [65]. Nowadays, their evidences are known as the Hohenberg-Kohn
theorems.
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Hohenberg-Kohn Theorem 1

The first Hohenberg-Kohn theorem proves that the external potential v(r) is (to
within a constant) a unique functional of p(r). Hence, the ground-state electron
density po(r) indeed uniquely determines the complete Hamilton operator and it
is in principle possible to calculate the ground state wavefunction

\IIO(Tl,...,TN) = \Ifg[po(r)] (221)

as a functional of py(r). As a consequence, all properties of the system can also
be calculated and are given by the expectation value of its operator O:

Oy = Olpo] = (¥[po]|O]¥[py)]). (2:2.2)

Noteworthy, although density functional theory is a ground state theory, by having
the complete Hamilton operator, all states including the excited states of the
system are formally determined by the ground state density po(r).

Hohenberg-Kohn Theorem 2

The second Hohenberg-Kohn theorem shows that the most important observable,

the ground state density

E,o = Ey[po] = (¥[po][H|¥[po]) (2.2.3)

can be obtained by applying the variational principle. Every energy E[p'] is higher
or equal to the energy of the ground state density. The lowest energy is obtained
if the density is the true ground state density.

Eylpo) < Eulp'] (2.2.4)

For calculating the ground state energy, the universal energy functional T'[p| and
Ulp] can be used, which are the expectation values of T and U. Hence, a non-
relativistic Coulomb system only differs by their potential v(r), which is the ex-
pectation value of

Vip] = /d37‘p(r)v(r) (2.2.5)
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If the system is defined and v(r) is known, the energy in this potential is
Bulp) = Tl + Ul + VId = Tl + Ul + [ @roloyet). (226)

The theorems form the theoretical foundation of DFT, however, T'[p] and U|p]
are still unknown and the theorems do not provide any practical information on

how these functionals actually look like.

2.3 Thomas-Fermi Model

Even before the Hohenberg-Kohn theorems, the first energy functional was given
based on a description of Thomas [66] and Fermi [67] for the kinetic energy T'[p].

Therein,

Tlp) % TH4g) = [ @rtem (p(r)) (23.1)

is described based on a fictitious uniform electron gas with kinetic energy ¢"™,
which is a simple model of constant electron density. Additionally, it is assumed
that the kinetic energy of the many-body system can be obtained by summing non-
interacting one electron densities, which is also called single-particle approximation
(subindex s). Furthermore, U|[p] is described by classical Coulomb interactions of

the electron density. This term is also known as the Hartree energy

Ulp] ~ Unlp] = q; / r / d%’%. (2.3.2)

In these approximations, the resulting total energy

Elp] = E™"[p] = T/"*[p] + Unlp] + V1] (2.3.3)

can be calculated only in terms of the electron density without needing the wave-
function. However, molecules in the bound state are not stable and dissociate
into their individual atoms having lower energy which makes it practically unus-
able for any chemist. This is originated from the fact that electron exchange and
correlation are completely neglected in this energy functional.
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2.4 Kohn-Sham Equations

To make DFT practically usable, more accurate descriptions of T'[p] and U|p]
are necessary. Kohn and Sham [68] realized that orbital-based approaches are
much more accurate for describing the electronic kinetic energy. Therefore, they
introduced a reference system out of non-interacting single electron functions ®;(r),
whose density p(r) equals exactly the density of the interacting system. Ti[p] is
expressed in terms of single-particle orbitals ®;(r) of a non-interacting system with

density p as

Lol = 5 3 [ Proi()V0i0), 241

where Ti[{¢;[p]}] is now an explicit orbital functional, but implicit density func-
tional. This means Ts[{¢;[p]}] now depends on the full set of occupied orbitals,
each which is a functional of p. Furthermore, Ulp] is still calculated as the hartree
energy Uplp] and the differences of these approximations to the exact values for
T[p] and Ulp] are added as

Exclp] = (Tlp] — Ts[p]) + (Ulp] — Unlpl) (2.4.2)

to obtain a formally exact equation for the total energy

Elp] = T[p] + Ulp] + Vp] = Ts[bs[pl] + Unlp] + Exclp] + Vp]. (2.4.3)

The introduced term Ex¢|p] is called exchange-correlation functional and contains
the difference T'[p] — Ts[p] due to electron correlation and U[p] — Uy [p] due to non-
classical effects of self-interaction, exchange and correlation of the electron-electron
interaction. It is often decomposed into exchange (F, also Fermi correlation) due
to the antisymmetry principle, which leads to the Pauli exclusion principle, and
reduces the density around other electrons with the same spin; and the correlation
due to Coulomb correlation (E¢) which acts on any two electrons. Now, most of
the total energy can be computed exactly and everything which is unknown and
relatively small, is contained in the exchange-correlation functional, which is also
a functional of p as guaranteed by the Hohenberg-Kohn theorems. However, it
remains unknown and has to be approximated in DFT. Some approximations are
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given later in Section [2.5]
The kinetic energy Ts[{¢;[p]}] is an improved approximation for the exact T'[p],
however, because it is now an orbital functional, it cannot be directly minimized

with respect to the density. Instead, an indirect minimization scheme is employed

_0Elp] _ 0Tslp] | VIp] | 0Unlpl | 0Exclp]
op(r) — op(r) — op(r) — op(r) — dp(r)

As can be seen in Eq. (2.2.5)), the ‘;‘;—([f)] yields the external potential. vy is the

Hartree potential and vx¢ is the potential of a chosen Ex¢ approximation.

(2.4.4)

0E[p] _ Ti[p]
op(r) — dp(r)

The key step is now to consider a system of non-interacting particles moving in

0= +o(r) + vy (r) + vxe(r) (2.4.5)

a not yet defined potential vs. In the absence of interactions, the minimization

condition becomes

O E;(p] 5T[ |
So(r) ~ plr)

Solving this equation, the electron density ps(r) can be obtained. If the potential

0=

vs(r). (2.4.6)

v, is chosen to be

vs(r) = v(r) +vu(r) + vxe(r) (2.4.7)

both minimizations have the same solution, which is ps(r) = p(r). As a con-
sequence, the density of the interacting many-body system in potential v(r) de-
scribed by a many-body SE can be calculated by solving the equations of non-
interacting single-body system in potential vs(r). By solving the single-particle

SEs of the non-interacting auxillary system in the effective potential vy(r)

[_ A

2m

" vsm} 61(r) = £:64(r) (2.48)

the orbitals are obtained that reproduce the density

p(r) = ps(r) = Z fildi(r)]® (2.4.9)

of the many-body system and this allows to determine the non interacting kinetic
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energy Ts[{i[p|}]. fi is the occupation of the ith orbital. The last three equations
are known as the Kohn-Sham equations, which can be used to obtain the total
energy E[p] as well as the density p[r] of a many-body system can be obtained
by solving single-particle equations. Therefore, the effective potential v, of the
one-electron Hamiltonian has to be choosen, so that p(r) = po(r). However, both
cy and vye depend on p, which in return depends on the set of orbitals {¢},
which again depend on v,. So, an initial guess for the density is made, e. g. out
of the sum of atomic densities, and the problem is solved iteratively in a so-called
self-consistent field cycle.

The ground state energy E, can be calculated from the converged ground state

density po(r) considering Eq. (2.4.3) and (2.4.7)) as

. Y q° 3 5 +Po(r)po(r’) 3
Ey = zl:si — E/d r/d T P /d rvze(r)po(r) + Exclpo] (2.4.10)

r—r

As can be seen, Fj is not simply the sum of the eigenvalues ¢; of the artificial
single-electron orbitals (eigenfunctions), which are only introduced to reproduce
the correct density. Hence, the electron density is the only thing, which has a strict
physical meaning in the Kohn-Sham equations. If the eigenvalues of the orbitals
g; are used as an approximation for the band structure, the artificial auxillary
single-body equation is applied to the many-body SE, which is formally a mean
field approch with mean field vj.

2.5 Approximations of the Exchange and Correlation

Functional

Because the contribution of the exchange and correlation to the total energy is
relatively small compared to the known parts Ti[p], Un[p] and V[p], simple ap-
proximation already provide useful results. There are several different approaches
to approximate the exchange-correlation functional Exc[p]. First, the simplest is
the local density approximation (LDA),

ELDA)] = / dPrelem(p(r), (2.5.1)

which is based on the already mentioned homogenous electron gas, for which the
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exchange is known exactly and the correlation is parameterized regarding highly
precise calculations. It has been surprisingly successful, even if the system is far
away from an homogenous electron gas. This is due to the fact that LDA typically
underestimates the correlation energy FE. and overestimates the exchange energy
E, leading to error cancellation to some extent.

Secondly, the class of semi-local functionals, which accounts for gradient correc-
tions. The generalized gradient approximation, GGA, uses general functions and
has the form

Eﬁ%ﬁmzi/d%fww»vpv». (25.2)

Famous examples are the PBE functional [69], especially in the physics community
and the BLYP functional 70, 71] in chemistry. If this formalism is further extended
by considering also the Kohn-Sham kinetic energy density

T(r) = % Z [V;i(r) ], (2.5.3)

the functionals of type

@?”“mszwmmvwwm» (2.5.4)

belong to the class of meta-GGA functionals. In general, the accuracy increase, but
simultanously the computational effort. An even more accurate description of the
Exc can be made by using hybrid functionals, which are based on GGA functionals,
but additionally include part of the exact exchange obtained by the Hartree-Fock
formalism, but leads to a further significant increase of the computational cost.

2.6 Energy Decomposition based on Absolutely Localized MQOs

To investigate the nature of intermolecular interactions, the energy decomposition
analysis (EDA) based on absolutely localized molecular orbitals (ALMO) [72-76]

can be applied. In ALMO-EDA, the total interaction energy

AEtot = AEFRZ + AEPOL + AECT (261)

is decomposed into chemically meaningful components, such as the frozen in-
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teraction term AFEpgrz, which is defined as the energy required to bring isolated
molecules into the system without any relaxation of their molecular orbitals (apart
from modifications associated with satisfying the Pauli exclusion principle), and
the energy lowering due to orbital relaxation. The later quantity is then further
decomposed into a polarization term AEpg, and the charge-transfer contribution
AEcr. The polarization energy AEpqy, is defined as the energy lowering due to
the relaxation of each molecule’s ALMOs in the electrostatic fields of all other
molecules. The charge-transfer energy AEcr is calculated as the difference in the
energy of the relaxed ALMO state and the state of fully delocalized optimized
orbitals. A distinctive feature of the ALMO-EDA is that the charge-transfer con-
tribution can be separated into terms associated with forward- and back-donation
for each pair of molecules, as well as a many-body higher-order (induction) con-
tribution AEgo, which is very small for typical intermolecular interactions. Both,
the amount of electron density transferred between a pair of molecules AQcr as

well as the corresponding energy lowering AEct can be computed via

AEcr = Y {AE,y+AE, .} + AEno (2.6.2)
T,Yy>y
and
AQer = Y {AQusy + AQyoss} + AQno. (2.6.3)

z,Yy>yY



3 Structures of Poly(heptazine imide) Salts

Experimentalists have already studied the structure of K-PHI, which was the first
synthesized PHI salt, using different techniques. High-resolution transmission elec-
tron microscopy (HRTEM) and powder x-ray diffraction (PXRD) have proven its
hexagonal crystalline nature and identified its lattice parameters, which were used
for the model. K-PHI contains stacked heptazine units with potassium ions in
different continuous channels [23], however, it is hard to experimentally determine
the exact location of the ions due to disorder and stacking defects in the mate-
rial. Therefore, computational calculations are a good way to further address the
structure of K-PHI and the related X-PHI materials.

3.1 Computational Details

All calculations in Chapters [3] [ [o] and [6] were performed using the here mentioned
computational details. The structures of K-PHI as well as their cation exchanged
analogues, X-PHI, are modeled using an idealized periodic 2D structure, which is
shown on the left hand side of Fig. The results of the carried out calculations
are visualized using the VMD software [77] as on the right side of Fig The
parameters of the supercell are chosen to be a=b=12.5, ¢c=12.8, a=£=90.0 and
7=120.0 A according to the experimental findings.[23, 25]. The supercell contains
four optimized and fixed AA-stacked PHI layers.

The energies of all structures were obtained by carrying out periodic density
functional theory calculations using the hybrid Gaussian and plane wave approach
(GPW), [78] as implemented in the CP2K/Quickstep code.|79] The Kohn-Sham
orbitals were described by an accurate molecularly optimized double-zeta basis
set with one additional set of polarization function, while the charge density was
represented by plane waves with a density cutoff of 500 Ry [80]. Separable norm-
conserving pseudopotentials were used to mimic the interactions between the va-

lence electrons and the ionic cores [81} 82]. The B97-3c exchange and correlation
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Figure 3.1: Top view of the chemical (left) idealized 2D structure of K-PHI as well as the in
this work used representation (right). Atomic colors: C=black; N=Dblue; K=pink.

functional, which is based on Becke’s power-series ansatz, plus a damped atom-
pairwise dispersion correction to account for long-range van der Waals interactions
was employed [83]. Optimized structures were obtained by minimizing the poten-
tial energy by performing geometry optimizations using the Broyden-Fletscher-
Goldfarb-Shanno (BFGS) algorithm [84]. To assure obtaining the lowest energy
structures, a variety of initial positions and orientations are chosen to cover a wide

range of the configurational space for cations and adsorbates.

To investigate the helium and water adsorption inside these materials thermo-
dynamically, the total adsorption energies

AE" = E[nAD@QX-PHI| — E[X-PHI| — n - E[AD] (3.1.1)
and the incremental adsorption energies

AE" = E[nAD@QX-PHI| — E[(n — 1)AD@X-PHI] — E[AD] (3.1.2)

ads

are calculated, where E [nAD@X-PHI] is the potential energy of the optimized
system when n adsorbates (AD) are adsorbed in X-PHI, whereas E[X-PHI| and
E[AD)] are the potential energies of isolated X-PHI and an individual AD, respec-
tively. A negative value for the adsorption energy indicates that the adsorption is
thermodynamically favorable. In the case of helium adsorption on wet K-PHI, the
adsorbent K-PHI already contains adsorbed water molecules and the adsorption
energies are calculated for the helium adsorbates. Furthermore, the adsorption
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energy per molecule
AE™' = AE" /n (3.1.3)

ads ads

can be calculated by dividing the total adsorption energy by the total number
of adsorbates n. To decompose the interaction energies of the adsorbates with
the pore walls and further allocate charge transfer contributions, the ALMO-EDA
is applied as described in Section 2.6, To obtain further chemical insights, net
atomic charges (NAC) are estimated using the Mulliken population analysis [85]
and the density derived electrostatic and chemical method (DDEC6) [86, [87],
which gives chemically meaningful results. Another useful method to visualize
the electron distribution inside the materials is to calculate and plot the isosurface
of the electron densities p, as well as the electron density difference upon adsorption

Ap = p|[AD@X — PHI| — p[X — PHI] — p[AD], (3.1.4)

where p][ADQ@QX-PHI] is the total electron density of AD@QX-PHI, while p[X-PHI]
and p[AD] are the total electron densities of X-PHI and the individual adsorbate,

i. e., helium atoms or water molecules.

3.2 Structure of K-PHI

The carried out calculations on the energetically optimized and idealized model of
K-PHI suggest that the AA stacking is energetically the most favorable one. Per
formally negative charged bridging nitrogen atom, one potassium is intercalated
inside the PHI framework, leading to an overall neutral structure. The potassium
ions are located between the PHI layers in the pores of K-PHI, where they are
vertically directly stacked on top of each other. The Coulomb repulsion between
the cations of different layers is hence outdone by the stabilization in the specific
locations. Their position in plane is rather in the corner of the triangular-shaped
pores and not in direct coordination to the bridging atoms as can be seen in
Fig.[3.2] This structural charge separation inside the material can be described as
frustrated Coulomb pairs as an analogue to frustrated Lewis pairs known mostly
from organic chemistry|[38, 139]. This structural environment may be interesting
for various adsorptives, such as inert helium and more reactive water molecules,

which are studied in this work.
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Figure 3.2: Lowest energy structure of K-PHI. Left: top view, right: side view. Atomic colors:
C=black; N=blue; H=white; K=pink.

3.3 Exchange of the Cation in K-PHI

The structure of K-PHI containing intercalated potassium ions is a unique feature
and may play an important role in explaining their properties. Hence, it is of
huge importance to further elucidate these effects. To investigate the importance
of cations, the potassiums are exchanged with other cations as well as protons
and the corresponding structures are optimized in a similar fashion as done for
K-PHI. It has already been shown experimentally that the cations can be ex-
changed relatively easily whereby the crystalline structure is basically preserved
[23]. Therefore, the AA stacking is also assumed for the other cations to investigate
the role of the cation in a comparable way. In this work, several alkali (Li*, Na™,
KT, Rb™), alkaline earth (Ca®", Sr*", Ba?") and transition metals (Au™, Ag")
salts are studied as well as the proton exchanged H-PHI system. These systems
are called X-PHI from now on, where X is the corresponding cation (or hydrogen).
The goal is to gain a deeper understanding of the structure and their properties,
i. e. the helium adsorption, examine the role of the cation choice and in the case
of helium adsorption identify the best candidate.

In the lowest energy structure of H-PHI, the hydrogen atoms are covalently
bonded to the bridging nitrogens, which leads to overall neutrally charged planar
PHI layers. In this material, there is apparently less charge separation than present
in K-PHI and it is therefore a good metal-free reference material out of almost
pure carbon nitride with a similar pore size. The structures of the PHI materials
containing cations of the first main group (Li*, Nat, K, Rb*, Cs™) are similar
to each other. The lowest energy location of the cations of all the materials are in
the pores between the layers as already described for K-PHI. This is due to the
fact that these elements share the same charge, exhibit similar chemical behavior
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Figure 3.3: Lowest energy structures of the X-PHI materials are divided into four subgroups:
covalent H-PHI, X(+1)-PHI having ions between the layers, i. e. Cs-PHI, Au-PHI
with gold atoms in the same layer as PHI and Ba-PHI representing X (+2)-PHI. Left:
top view, right: side view. Atomic colors: C=black; N=blue; H=white; Cs=cyan;
Au=yellow; Ba=orange.
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and majorly differ only by their size and reactivity. Although all cations are
located between the layers, the final distance between the cation and the PHI
layer increases as the cation increases. The distances between the cation and
the nearest nitrogen atom vary in the range of 2.27 A (Li-PHI) to 3.09 A (Cs-
PHI) (Table . Hence, the biggest distance, and probably the highest Coulomb
frustration is expected to be in Cs-PHI containing the biggest cation of the first
main group.

In the case of exchange with alkaline earth cations (Ca®", Sr**, Ba?"), the
total number of cations inside these frameworks is lower due to their increased
charge. While there are three cations per pore per layer in the case of alkali
metals, the analog for alkaline earth metals would contain on average 1.5 ions per
layer. However, to maintain a more homogenous distribution of positive charge
through the pores, only one cation per layer per pore is introduced. Therefore, one
extra covalent hydrogen atom per layer is added to keep the charge of the structure
neutral. They are covalently bonded to one of three bridging nitrogen atoms of
the PHI layers as they are present in H-PHI. All studied cations from the second
main group of the periodic table have a similar location between the layers in the
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pores. They are alternatively occupying adsorption sites still in the edges of the
pores trying to maximize the occupied space inside these pores. Because of their
higher charges, their surrounding electrostatic field is stronger, leading to higher
repulsive forces between the cations. The distances of the alkaline earth metals to
the PHI layers in the range from 2.57 A (Ca-PHI) to 2.91 A (Ba-PHI) follow the
same trend as the first main group and hence Ba-PHI exhibits the highest
separation.

The investigated PHI systems containing transition metals in oxidation state
+1 are similar to the alkali metals, which carry the same formal charge. Silver
is similarly located in the pores between the layers. With a distance of 2.50 A,
the location of the ions is between the ones found for Lit and Nat. In contrast
to all other investigated systems, gold cations are found to be energetically rather
located inside the same layer as the PHI than between them. All investigated
systems are shown in Fig. as four subgroups: H-PHI with covalent hydrogen
atoms, X(+1)-PHI and X(+2)-PHI having cations between the layers, as well as
Au(+1)-PHI, where the gold ions are in the same layer as the PHI planes. The
structures inside a subgroup only differ by their exact horizontal position, because
bigger cations are slightly shifted towards the middle of the pore increasing their
distance d to the PHI layers.

Noteworthy, in these calculations only the lowest energy state of the materials
is considered. The possibility of cation exchange in these materials [23] suggests
that the cations are able to move throughout the pore channels.

Table 3.1: Vertical lowest energy position of the cations in X-PHI (Pos. X), average DDEC6
charges q;, distance d between X and nearest nitrogen of PHI, as well as the product

M= dx - dxN-
X-PHI Pos. X ax[e] qole] an[e] dxn[A] p[eA]
H-PHI cov. 0.34 0.53 -0.43 1.00 0.34
Li-PHI between 0.87 0.55 -0.54 2.27 1.97
Na-PHI between 0.88 0.56 -0.55 2.79 2.46

K-PHI between 0.82 0.55 -0.54 2.84 2.34
Rb-PHI  between 0.80 0.56 -0.53 2.99 2.39
Cs-PHI  between 0.77 0.56 -0.53 3.09 2.37
Ca-PHI between 1.42 0.53 -0.48 2.57 3.64
Sr-PHI  between 1.46 0.53 -0.48 2.73 3.99
Ba-PHI between 1.44 0.53 -0.48 2.91 4.19
Ag-PHI between 0.55 0.53 -0.47 2.50 1.37

Au-PHI in-plane 0.30 0.52 -0.42 2.55 0.78
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3.4 Net Atomic Charges and Electron Density

The charge distributions inside the X-PHI materials are assumed to be an im-
portant factor in explaining their properties. Therefore, net atomic charges are
estimated using the density derived electrostatic method (DDEC6). The average
charges for each atomic kind are given in Table 3.1} First of all, these calculations
reflect the expected behavior that the cations are positively charged in the range
of 0.30 to 1.46. The fact that the partial charge of the cations is lower than the
formal oxidation state means that the cation-framework interaction is not solely
Coulomb type as it is typical for any chemical system. However, in most cases,
the interaction is dominated by Coulomb interactions. Since the total system is
neutral, the PHI layers carry the exact amount of negative charges, which are
rather located at the more electronegative nitrogen atoms (qn ~ -0.5) than at
the on average partial positive carbon atoms (qc ~ +0.5). There are one-third
more nitrogen than carbon atoms inside these materials, reflecting the overall neg-
ative charge in the PHI layers. Furthermore, the product of the charge of the
cation times the nearest distance of it to the PHI layers is calculated to obtain a
dipole-like quantity p in order to have a very simple way to quantify the charge
separation in these materials. In H-PHI, only a relatively low charge separation is
present due to the absence of cations and only covalently bonded hydrogen atoms
(qu=0.34 e, dgn=1.0 A, 1=0.34 eA). The alkali cations carry positive net atomic
charges in the PHI systems between 0.77 (Cs™) and 0.88 (Na't). The distance
between the cation and the PHI layers naturally depends on the size of the cations
and thereby Cs™ has the highest distance. While the calculated charges and dis-
tances for the cations Nat, KT, Rb* and Cs™ are close to each other, leading to
similar z (2.34-2.46 eA), Lithium is found to be closer to the PHI layers and hence
has the smallest ©=1.97 eA. The obtained net atomic charges of the alkaline earth
metals are logically higher from 1.42 (Ca?") to 1.46 (Sr?"). Again, the size of the
cation is determining, leading to Ba-PHI having the highest Coulomb frustration
(u=4.19 eA). The transition metals carry the least positive charged metals inside
the materials. Silver has a partial charge of 0.55 while gold has the lowest charge of
all (0.30), which is even below the partial charge of the hydrogen atoms in H-PHI.
This underlines the typical behavior of gold, which exhibits a significant covalent
bonding character assigned to relativistic effects on 5d and 6s orbitals [88]. This
also explains the different positions in the PHI plane compared to other cations.
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After determining the optimized structures of the X-PHI materials and analyzing
their net charges, helium adsorption inside their pores is addressed in this chapter.
Helium is known to be the most inert element of all in the periodical table and
hardly undergoes interactions of any kind. Therefore, it is interesting to investi-
gate the interactions of helium inside the highly polarizing environment of these
materials and to study the role of cation choice.

4.1 Structure and Energy of Helium Adsorption

A single helium atom is placed inside the nanopores of the X-PHI materials, whose
structures were determined in the previous chapter, and the lowest energy adsorp-
tion state as well as the corresponding adsorption energy are calculated. Inter-
estingly, helium adsorption is thermodynamically favorable in all studied systems.
Even in the metal-free H-PHI system, helium can be adsorbed, releasing an ad-
sorption energy of -2.4 kJ/mol. This is the lowest adsorption energy of all studied
systems, however, the fact that helium adsorption is energetically favorable in H-
PHI, shows the high adsorption potential of metal-free porous carbon nitrides. The
adsorption energy is significantly enhanced in the cation containing X-PHI systems
and is in the range of -3.1 kJ/mol to -5.5 kJ/mol. This underlines the importance
of charged surroundings for a unique adsorption environment and a thermodynam-
ically increased interaction of helium inside these nanopores. Overall, the highest
adsorption energy of -5.5 kJ/mol occurs in the Cs-PHI system, which exhibits a
high Coulomb frustration due to the size of the cation. In general, the adsorption
energy for alkali metal cation containing PHIs is higher than for the PHIs with
alkaline earth metal cations. This might be counter-intuitive due to the fact that
alkaline earth metals carry an even higher charge, however, this also lowers the
total number of cations in the pores. Additionally, while there are three cations
present per pore per layer in the case of +1-charged cations, they are replaced

32
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by one +2-charged cation plus one hydrogen atom in the carried out simulations,
which leads to a lower total charge per volume. Within both main groups, the
trend can be observed, that bigger cations (higher period) lead to higher adsorp-
tion energies. They exhibit a higher spatial charge separation and thus, Ba-PHI
entails the highest heat of adsorption (-3.4 kJ/mol) for helium in the studied PHI
systems containing second main group ions. In PHI containing transition metals,
helium adsorption is also energetically favorable, but silver (-3.1 kJ/mol) and gold
(-3.6 kJ/mol) do not lead to a energetical increase of the helium interaction inside
the PHI materials.
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Figure 4.1: Structures of the lowest energy adsorption state of helium in H-PHI, Cs-PHI, Au-
PHI and Ba-PHI. Atomic colors: C=black; N=blue; He=green; H=white; Cs=cyan;
Au=yellow; Ba=orange

The lowest energy adsorption sites for the adsorbed helium atoms are in all
structures inside the existing pores of the materials. The horizontal position is
always near the middle of the pore and hence in the presence of +1 cations in-
between the three cations, which are oriented in a triangular shape as determined
by the pore geometry. Interestingly, the He atoms can occupy sites, either in
the same plane as the PHI layers or between them with only minor changes in
the corresponding energy. Hence, at finite temperatures, the helium atoms are
expected to diffuse through the pore channels of the materials. Whether the
lowest energy adsorption site of the helium atom is in the same layer as the PHI
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plane or in-between is dependent on the system. The vertical positions of He in all
studied systems are given in Table [I.I] Exemplary, the lowest energy structures
upon single helium adsorption are shown in Fig. for H-PHI, Cs-PHI, Au-PHI,
Ba-PHI.

Table 4.1: Vertical lowest energy position of a single helium atom adsorbed in X-PHI (Pos. He),
the corresponding adsorption energy E,qs as well as the DDECG6 charge of helium qge
in the adsorbed state.

X-PHI Pos. He E,4 [kJ/mol] que [¢]

H-PHI between -2.40 0.010
Li-PHI between -3.79 0.009
Na-PHI between -3.59 0.002
K-PHI in-plane -4.30 0.006
Rb-PHI between -4.82 0.007
Cs-PHI  in-plane -5.45 0.012
Ca-PHI between -2.96 0.006
Sr-PHI  in-plane -3.10 0.006
Ba-PHI in-plane -3.39 0.008
Ag-PHI in-plane -3.10 0.006
Au-PHI in-plane -3.55 0.002

4.2 Net Atomic Charges and Electron Density

The DDEC6 analysis is also applied to the optimized structures after helium ad-
sorption to determine the charges of the helium atoms in the adsorbed state qye
(Table . Excitingly, the net atomic charges are slightly positive up to 0.012 e
(Cs-PHI), which demonstrates that a charge of around 1% of an electron is trans-
ferred from the otherwise inert helium to the electron-poor PHI materials. This
means that part of the interaction with helium originates from partial charge trans-
fer. The charges of other atoms in the X-PHI systems practically do not change,
since the small counter charges of the helium atoms are distributed through the
system. Assuming that charge transfer effects due to the charge separation inside
these structures are essential for the adsorption environment of helium, this offers
an explanation for why the adsorption energies are higher in the systems contain-
ing big frustrated cations. Helium carries the highest charge in Cs-PHI, which is
the system with also the highest adsorption energy. However, in the calculated
charges, there is no evidence for an overall correlation between the exact partial
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charge of the adsorbed helium and the corresponding heat of adsorption. The role
of the charge transfer and its contributions are later studied in more detail using
the energy decomposition analysis based on absolutely localized molecular orbitals
(ALMO-EDA). For better visualization, the electron density as well as the electron
density differences upon helium adsorption are calculated and shown in terms of
3D isosurfaces in Fig. for Cs-PHI, which is the thermodynamically best adsorp-
tion material. The electron density distribution of pristine Cs-PHI visualizes the
results of the DDEC6 analysis and pictures the high electron probabilities (red) at
the more electronegative nitrogen atoms of the negative PHI layers. In the case of
helium adsorption at Cs-PHI, the isosurfaces of the electron density difference are
plotted showing regions of accumulation (green) and depletion (red) of electrons
in the presence of adsorbed helium. The helium is located in the middle of the
pore where there is a red dot indicating a decreased density as compared to an iso-
lated gas phase helium atom at the same position. Although there are only small
amounts of charges involved in the adsorption process, it can be seen that the
positive charge of the helium results from interaction with the Cs cations, whose

electron distribution is influenced due to charge transfer of the adsorbed helium.

Figure 4.2: Electron density isosurfaces of Cs-PHI (left, isovalues = 0.05/0.1/0.2/0.3/0.4 from
blue to red) and the electron density differences upon helium adsorption in Cs-PHI
(isovalues = + 0.001 red(+)/green). Atomic colors: C=black; N=blue; Cs=cyan;
He=green.

The adsorption of only a single helium atom is studied in the X-PHI materials.
However, it has to be noted that adsorption of multiple helium atoms is not only
able to influence the vertical lowest energy position, but also the overall adsorption
energy due to competition and limited space and adsorption sites inside the pores.
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4.3 Energy Decomposition Analysis

The origin of the adsorption energies of helium in the X-PHI materials is fur-
ther studied by applying the ALMO-EDA. It allows to decompose the interaction
between the helium atoms and the adsorbent into a frozen energy term Eprz, a
polarization term Epgor, and charge transfer contributions. The amount of charge
transfer and the corresponding stabilization energy can be assigned to individual
charge donor and acceptor pairs. The summed energy of the ALMO-EDA is the
interaction energy of helium and the X-PHI material. It does not exactly equal
the adsorption energy discussed before due to possible displacement i. e. of the
cations during helium adsorption, which is not included in the ALMO-EDA cal-
culations. However, in this case, this geometric distortion term only has a small
contribution and can be neglected (<0.5 kJ/mol). The analysis results for the
helium interaction with all studied X-PHI systems are shown in Table The
energy percentages to the total interaction energy are given in parentheses after
each energy. The results are also plotted as a stacked bar chart in Fig. [4.3]

Table 4.2: Results of the decomposition of the interaction energy of adsorbed helium inside the
pores of the X-PHI materials to a frozen energy term Epgrz, a polarization term Epop,
and the charge transfer contributions from PHI to He Epyr_,ye and from He to the
corresponding cations Epe_,x as well as their respective transferred charges qppi—ne
and qge—x. The percentages (%) of the energies to the total interaction are given in

parentheses.

X-PHI AErrz AEpor AEpaisHe 9gpHISHe AEHesX dqHesX

[kJ/mol]  [kJ/mol]  [kJ/mol] [me] [kJ/mol] [me]
HPHI -2.06 (74) -0.03 (1) -0.12 (4)  0.03 _ -0.58 (21)  0.31
LiPHI -1.95 (48) -0.28 (7) -0.39 (10)  0.09  -1.42 (35) 0.87
Na-PHI -2.22 (65) -0.16 (1) -0.25(7)  0.06  -0.80 (23)  0.49
K-PHI -3.22 (76) -0.05(1) -0.13(3) 004  -0.82(19) 051
Rb-PHI -4.03 (77) -0.05(1) -0.32 (6) 0.09  -0.83 (16)  0.51
Cs-PHI -4.76 (81) -0.06 (1) -0.27 (5)  0.07  -0.79 (13)  0.48
CaPHI -2.24 (72) -0.06 (2) -0.15(5) 005  -0.67 (22)  0.38
St-PHI -2.34 (71) -0.07 (2) -0.10 (3)  0.03  -0.77 (24)  0.46
Ba-PHI -2.47 (68) -0.10 (3) -0.13(3)  0.04  -0.94 (26)  0.57
AgPHOI -2.36 (70) -0.04 (1) -0.15(4)  0.04  -0.82 (24) 054
AwPHI -2.81 (74) -0.06 (2) -0.08(2)  0.02  -0.82(22) 0.53

For all investigated systems, the ALMO-EDA shows that AEprz > AEct >
AEpor,. Hence, the frozen term is the dominating energy contribution to the
interaction between helium and all studied adsorbing materials. The frozen term
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Figure 4.3: Schematic representation of the results of the energy decomposition analysis of he-
lium adsorption in X-PHI shown in Table

o = M
= I
5_-

Rb Cs Ca Sr Ba Ag Au

physically mainly represents pure electrostatic interactions, which indicates the
importance of present cations and charge separation inside these materials. The
highest percentage of the frozen energy term (81%, -4.8 kJ /mol) to the total energy,
is found in Cs-PHI, which also has the highest adsorption energy. Notably, the
interactions inside materials with lower charge separation and lower adsorption
energies, like the covalent H-PHI system and the comparable Au-PHI, are also
dominated by Coulomb interactions (both 74%).

Additionally, the calculations suggest that the second-highest term, the charge
transfer, also substantially contributes to the total interaction energy in all sys-
tems. To investigate the interaction between helium and X-PHI due to charge
transfer, the transfer contribution from the X-PHI framework to the He atoms is
studied and vice versa. The charge transfer interaction of helium in the metal con-
taining systems can be assigned to two contributions: a charge transfer qpmr_ne
from the negative PHI layers to He and from He to the corresponding cation X
que_sx. There is practically no back donation from X to He or from He to PHI,
respectively (que—sprr & qx—me ~ 0). In H-PHI, there is no metal ion and hence
the neutral PHI layers can also accept a significant charge from the helium (0.31
me, -0.58 kJ/mol). The calculations reflect that the helium atoms are better elec-
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tron donors than acceptors (quex > qpHI-He), Which was already indicated by
the calculated positive net atomic charges on the helium atoms after adsorption.
Hence, helium has a slightly basic character and interacts more with the acidic
sites, i. e., the cations in these materials via charge transfer. In the best He ad-
sorber Cs-PHI, the amount of charge transferred qg._,x from the helium to the Cs
cation is 0.48 me resulting in stabilization energy AEgy, .x of -0.8 kJ/mol. How-
ever, the values of transferred charge (0.38-0.57 me) as well as the energies (-0.7
to -0.9 kJ/mol) are rather similar in all investigated systems. This also applies to
the comparison of alkali with alkaline earth metals, even though the cations carry
a different charge. Exceptions from these ranges are the covalent H-PHI due to
the absence of cations and Li-PHI, which exhibits the significantly highest CT to
the cation (0.87 me, -1.4 kJ/mol). The other charge transfer from the PHI layers
to the adsorbed helium qye_, x is the smaller contribution in all systems (<0.1 me,
<0.4 kJ/mol). The lowest values are found in H-PHI and Au-PHI, which is be-
cause they carry the lowest negative charges on the PHI layers compared to the
other systems.

On top of the Coulomb and charge transfer interactions, polarization effects,
i. e. the formation of dipoles, quadrupoles, etc., also contribute to the total
interaction energy as can be seen in the energies Epop, however, only to a small
extent (< 7%). The least polarization energies are found in the covalent H-PHI
(-0.03 kJ /mol) and the comparable Au-PHI (-0.04 kJ/mol), which is a consequence
of the low charge separation inside these materials. In the other X-PHI materials,
the polarization energy is higher, which indicates that the presence of cations in
an anionic organic framework is essential and that their electric fields are able to
induce a dipole moment in the otherwise non-polarizable He atom. However, the
absolute energies are relatively low (-0.05 kJ/mol to -0.28 kJ/mol). In Cs-PHI, the
polarization energy is -0.06 kJ /mol and contributes only 1% to the total interaction
energy. The highest polarization interaction is found in Li-PHI (-0.28 kJ/mol,
7%). Hence, Li-PHI can also be regarded as a special case. It significantly differs
from the other systems and has the lowest Eprz, but the highest Epor, and Ecr,
possibly because of its high electronegativity and tendency to form bonds with
higher covalent character compared to the other studied alkali and alkaline earth

metals.
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In this chapter, a single water adsorption in the nanopores of K-PHI is investigated
in terms of structure, thermodynamics and interactions. After that, the properties
of multiple water molecules inside K-PHI are discussed.

5.1 Structure and Energy of Single Water Adsorption

According to the carried out calculations, water adsorption is energetically fa-
vorable in K-PHI. The adsorption of a single water molecule entails adsorption
energy of AE,qs = -94.5 kJ/mol. This adsorption energy of water in K-PHI is sur-
prisingly high and more than twice as much as the heat of vaporization of water
(AHyap=40.7 kJ/mol [89]). This means that the interactions of water with the
pore walls of K-PHI are twice as strong as the water-water interactions in bulk.
Due to the high bond strength, it is not a typical physisorption. Instead it appears
that water becomes an integral part of the material’s structure after adsorption.
The lowest energy adsorption site of the first adsorbed water molecule is located
in the pores between the PHI layers as can be seen in Fig. [5.1a. In that case,
water is located between the positive potassium cations and forms hydrogen bonds
with nitrogens of both surrounding negative PHI layers. The oxygen of the water
is forming coordinate bonds to the potassium centers while at the same time, the
lone pairs of the surface nitrogens act as basic sites for the hydrogen atoms of wa-
ter. This highly polarized adsorption environment of the water molecule explains
the high calculated adsorption energy. The distances between the hydrogen atoms
of the water and the involved nitrogen atoms are 2.20 and 2.07 A, respectively.

5.2 Net Atomic Charges and Electron Densities

To investigate the electronic environment of the adsorbed water, net atomic charges
were calculated using the Mulliken population analysis and the density derived
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Figure 5.1: Adsorption state of a single water molecule in K-PHI (a), electron density iso-
surfaces of K-PHI (b, isovalues = 0.05/0.1/0.2/0.3/0.4 from blue to red) and the
electron density differences upon water adsorption in K-PHI (c, isovalues = +
0.002 red(+)/green). Top: top view, bottom: side view. Atomic colors: C=black;
N=blue; K=pink; O=red; H=white.

Table 5.1: Averaged net charges calculated by Mulliken as well as DDEC6 method of a single
water molecule adsorbed in K-PHI.

Mulliken DDEC6

K 0.61 0.83
C 0.10 0.55
N -0.17 -0.54
0) -0.34 -0.84
H 0.13 0.36
PHI -1.81 -2.45
H>0O -0.07 -0.12

electrostatical and chemical method DDEC6. The averaged values for each atomic
type as well as the summed values for H,O and the PHI layers per unit cell are
shown in Table 5.1l The analysis confirms the positive charges of the potassium
ions (Mulliken 0.61; DDEC6 0.83), which are interacting with the partially neg-
ative oxygen atoms (-0.34; -0.84) of the adsorbed water molecules. The negative
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charge of the PHI system (-1.81; -2.45; formally -3) is distributed throughout the
layers but mostly located at the more electronegative nitrogen atoms (-0.17; -0.54),
whereas the carbon atoms on average carry a positive charge (0.10; 0.55). This
behavior is visualized in the top view of the electron density distribution of pris-
tine K-PHI in Fig. [5.1p, where the highest electron densities (red) are located
around all the nitrogen atoms. This bond polarization inside the CN framework
further active the surface nitrogens as basic sites, which are important for the wa-
ter adsorption. With these partially negatively charged nitrogen atoms, the water
molecules — more precisely, the hydrogen atoms of the water (0.13; 0.36) — form
the hydrogen bonds that stabilize the water adsorption. Water carries a slight neg-
ative charge in the adsorbed state due to charge transfer from the PHI system to
the water. This is also illustrated in the electron density difference representations
in Fig. 5.1k, where the charge is increased around the surface nitrogen atoms. A
more precise description of the interaction of water inside K-PHI is discussed in

the following energy decomposition analysis.

5.3 Energy Decomposition Analysis

To study the origin of the high adsorption energy, the ALMO-EDA is applied to
single water adsorption in K-PHI. It allows to decompose the interaction of water
with its surroundings into physically meaningful components, i. e. the frozen

energy AEprz, the polarization energy AEpor, and charge transfer contributions
AEct. The results of the ALMO-EDA are given in Table [5.2]

Table 5.2: ALMO-based energy decomposition of the interaction between water and K-PHI.
AEprz AEpoL AEct
H,O @ K-PHI -57.4 kJ/mol -18.8 kJ/mol -42.8 kJ/mol

The main part of the interaction is due to Coulomb interactions of the water
molecule and K-PHI, which is represented by the frozen energy term (-57.4 kJ/-
mol). This high electrostatic interaction is due to the capability of water to interact
with both the positively charged potassium as well as with the anionic PHI frame-
work. This charge separation inside the material also leads to a high polarization
energy of -18.8 kJ/mol. Excitingly, a remarkable part (-42.8 kJ/mol) of the in-
teraction between the water molecule and the adsorbent is due to charge transfer
contributions. The difference between the adsorption energy (-94.5 kJ/mol) and
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Figure 5.2: Horizontal (top) and vertical (middle) charge transfers (black) occurring between
water, the positive K™ and the negative PHI layers as well as the resulting stabi-

lization energy (red) upon single water adsorption in K-PHI as computed by the
ALMO-EDA. Atomic colors: C=black; N=blue; K=pink; O=red; H=white.

the sum of the ALMO interactions (-119.0 kJ/mol) is due to slight distortion of
the structure and repositioning of the potassium cations upon water adsorption
which is not included in the single point ALMO calculation. This energy differ-
ence is sometimes referred to as geometric distortion AEgp [90]. The amount of
charge transfer and the corresponding stabilization energy can be further assigned
to individual charge donor and acceptor pairs. All charge transfers (black) and
resulting stabilization energies (red) are shown in Fig. [5.2 The most significant
contributions of the charge transfer is the charge transfer from the two neighboring
negative PHI layers to HoO (in total: 20.9 me, -32.9 kJ/mol), which occurs in the
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context of the hydrogen bonds of water the PHI layers. And secondly, a substan-
tial charge transfer is also occurring from H5O to the nearest K ions (10.6 me,
-10.2 kJ/mol). Both interactions contribute to the high amount of charge transfer
stabilization energy of water inside this highly polarizing adsorption environment
of K-PHI. An additional back donation from the PHI layers to the water also
takes place (1.3 me, -2.3 kJ/mol) Beside the water interactions, the ALMO-EDA
calculations reveils a significant charge transfer between the PHI layers of 3.1 me
(-6.7 kJ/mol). The PHI layers further transfer a substantial amount of 16.3 me to
the potassium ions resulting in a high stabilization of -15.4 kJ/mol per cation per
layer plus a small back donation (0.1 me; -0.4 kJ/mol).

5.4 Structures and Energies of Multiple Water Adsorption

As K-PHI reveals a high availability of adsorption sites on the pore walls, this
section deals with the adsorption of multiple water molecules in the pores to see
how they influence each other as well as to determine the maximum water uptake

inside the material. K-PHI can uptake multiple water molecules being thermody-

tot
ads

namically favorable. The total adsorption energy AE™ ' increases rather linearly
as can be seen in Fig. [5.3] Hence, the incremental adsorption energy is relatively
constant, which means that the additional water molecules undergo a very similar
strong interaction with K-PHI as the first one. The corresponding energy val-
ues are also given in Table [5.3] It suggests that the adsorption of multiple water
molecules neither enhances (e. g., by hydrogen bonds with each other) nor dimin-
ishes (e. g., repulsion due to limited space) the water adsorption thermodynamics
significantly. It is also possible that these effects compensate each other to some
extent. The incremental adsorption analysis reveals that K-PHI can adsorb water
until a final uptake of 14.0 wt% (corresponding to N=18 H,O molecules in the
simulation) and a maximum AE!! = -1501 kJ/mol is reached. After that, the
adsorption finally is thermodynamically unfavorable because the space and espe-
cially the adsorption sites in the pores are exploited. The final adsorption energy
per molecule upon complete filling is AE™Y = -83.4 kJ/mol per HyO.

The lowest energy structure of the adsorption state of the water molecules is
dependent on the amount of water inside the material. The water molecules are
preferentially placed in the pores and like to interact with the pore walls. However,

only at low water uptake, the structure is very well organized at specific adsorption
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of water in K-PHI as a function of water loading (in wt%)

Table 5.3: Underlying data for Fig.

< S 3 1
as well as the adsorption energy per molecule AEL.

N A AENS  AEQY wimo |N ABW  AER  AERY  wimo
[kJ/mol] [kJ/mol] [kJ/mol] (%] [kJ/mol] [kJ/mol] [kJ/mol] [%]
1 -94.5 -94.5 -94.5 09 11 -1073.8 -102.5 -97.6 9.0
2 -207.7 -113.2 -103.8 1.8 12 -1174.6 -100.8 -97.9 9.8
3 -316.7 -109.0 -105.6 2.6 13 -1290.1 -115.5 -99.2 10.5
4 -427.3 -110.6 -106.8 3.5 14 -13274 -37.3 -94.8 11.2
) -502.1 -74.8 -100.4 4.3 15 -1369.2 -41.8 -91.3 11.9
6 -584.4 -82.3 974 5.1 16 -1414.7 -45.5 -88.4 12.6
7 -678.7 -94.3 -97.0 5.9 17 -1435.5 -20.8 -84.4 13.3
8 -730.0 -51.3 -91.2 6.7 18 -1501.4 -65.9 -83.4 14.0
9 -855.2 -125.2 -95.0 7.5 19  -1478.5 23.0 -77.8 14.6
10 -971.3 -116.1 -97.1 8.3 20 -1371.0 107.5 -68.5 15.3
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sites in a similar fashion as the individual adsorbed water molecule. This is possible
until one water molecule per pore and per layer is adsorbed (Fig. 4; 3.5 wt%;
N=4). On additional adsorption, the water molecules are still adsorbing at similar
adsorption sites with high hydrogen bond affinity towards the PHI layers as can be
seen in the adsorption state at 6.7 wt% (N=8). However, the adsorption state of
the water molecules tends to be more disordered. On one hand, they are forming
attractive hydrogen bonds with each other. On the other hand, repulsive Coulomb
forces also play a role upon further water filling because of the limited space in the
nanopores of K-PHI. In the case of complete filling (14 wt%; N=18), these effects
increase. Hence, some water molecules are located also more in the middle of the
pore, which do not interact with the PHI layers directly anymore. However, they
are still interacting with the potassium cations and other water molecules. These
effects explain very well why the average energy released upon adsorption (AE™! =
-83.4 kJ /mol) is slightly decreased compared to the single adsorbed water molecule
(AE.qs = -94.5 kJ/mol). However, this is still a remarkable interaction of water
with K-PHI at high water uptake.
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Figure 5.4: Adsorption states of water in K-PHI at different HyO loadings. N corresponds to
the number of water molecules inside the supercell. Top: top view, bottom: side
view. Atomic colors: C=black; N=blue; K=pink; O=red; H=white.



6 Impact of Water on the Helium
Adsorption in K-PHI

As described in the previous chapters, K-PHI reveals great affinities for the inert
helium (-4.3 kJ/mol, Chapter [4]) as well as for water (-94.5 kJ/mol, Chapter [5)).
Due to its high adsorption energy, K-PHI probably tightly binds water even at low
partial pressures. The water is expected to be hardly removable and hence can be
described as part of the material after adsorption. Therefore, the question remains
whether helium can still adsorb in the presence of water, e. g. due to exposure
of the material to humidity. For this purpose, the adsorption energy of n helium
atoms on wet K-PHI filled with N water molecules is investigated and compared
with the corresponding adsorption energy of helium in dry K-PHI (N=0).

6.1 Structure and Energies of Helium Adsorption

The lowest energy adsorption sites of one adsorbed helium atom and a single
present water molecule adsorbed in K-PHI are very similar to their individual ad-
sorption sites. Interestingly, the adsorption of both adsorbates occurs in the pores
in the same vacancy between two layers of K-PHI (Fig. , which indicates an
attractive interaction between them. This is confirmed by the calculated adsorp-
tion energy of a single helium, where the absolute value is significantly higher in
the presence of a water molecule (AE,qs= -5.3 kJ/mol) than without (AE.qs=
-4.3 kJ/mol). This means that the helium adsorption on wet K-PHI is still ther-
modynamically favourable and the adsorption affinity can even be increased by
adsorbed water molecules. This can be explained by the fact that water acts as a
dielectric in the electric field of the cations and PHI layers as it is located directly
at the core of the charge separation. In the previous chapter, it was shown that
the polarizing environment plays a crucial role in the adsorption process and part
of the interaction between water and K-PHI originates from polarization effects.
Water is known to have a high relative permittivity (in bulk eg,0 = 87.8 [91])
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and thus the charge separation might be increased in the presence of water. The
DDECES6 analysis of the potassium cations supports this argumentation by a slight
increase of the partial charge in the presence of water (+0.83) compared with dry
K-PHI (40.82).

Figure 6.1: Adsorption state of one helium atoms (n=1) and one water molecule (N=1), which
both occur in the same layer of K-PHI. Left: top view, right: side view. Atomic
colors: C=black; N=blue; K=pink; O=red; H=white; He=green.

6.2 Energy Decomposition Analysis

The ALMO-EDA is also applied to the helium adsorption in K-PHI in the presence
of water and compared to adsorption in dry K-PHI. The charge transfers as well
as the corresponding energy contributions are shown schematically in Fig. [6.2] As
already discussed in Chapter b water strongly interacts with the PHI layers and
the potassium ions. Regarding the helium adsorption, the calculations suggest
that helium is not directly interacting via charge transfer with the water molecule
(<0.1 me). Instead, the charge transfer from the helium to the nearest potassium
ions is enhanced from 0.30 me (-0.49 kJ/mol) to 0.42 me (-0.68 kJ/mol), which is
the main contribution to the stabilization due to charge transfer. It has to be noted
that at the same time the charge transfer to the second nearest K+ decreases from
0.22 me (-0.35 kJ/mol) to 0.11 me (-0.18 kJ/mol). Both charge transfer changes in
the presence of HyO almost cancel out each other and lead to a marginal increase of
the charge transfer interaction between helium and the K-PHI material of 0.01 me
and stabilization of -0.02 kJ/mol. Hence, according to the calculations, charge
transfer does not play a big role for the enhancement. Instead, the frozen and
polarization terms are expected to be crucial.
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Figure 6.2: Charge transfers (black) and corresponding stabilization energies (red) between the
different fragments of adsorbed helium in K-PHI in the absence (left) and presence
(right) of water. Atomic colors: C=black; N=blue; K=pink; He=green; O=red;
H=white.

6.3 Structures and Energies of Multiple Adsorption of Helium
and Water

The helium adsorption is also thermodynamically favorable in the presence of more
than one water molecule. The enhancement is quantified by calculating the differ-
ence between wet and dry K-PHI AEY,. — AENZ? and is shown for single helium
adsorption (n=1) in Fig.[6.3h. As can be seen, the enhancement in the range of -0.5
to -1.0 kJ/mol is only found when low amount of water is adsorbed. In this state,
one water molecule adsorbs per layer, leading to a total number of water molecules
inside the pores of N=4. At these low uptakes, water is adsorbing only on specific
sites with a defined structure as discussed in the previous chapter. Hence, the spe-
cific adsorption sites of water may play a crucial role in the enhancement process.
However, the maximum helium uptake (Fig.|6.3p) as calculated by an incremental
adsorption analysis decreases in the presence of water. The highest amount of
helium can be adsorbed in K-PHI in the absence of water, where three helium
atoms occupy the adsorption sites per pore per layer, leading to the maximum
number of adsorbed helium of n,,,,=12. When four water molecules are adsorbed,
the maximum number of adsorbed helium atoms is already decreased by one-third
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Figure 6.3: The enhancement energy AEN, — AENFO of single helium adsorption (a) as well

as the maximum helium uptake (b) in K-PHI is given with different amount of
adsorbed water molecules (N) inside the pores. Furthermore the total adsorption
(c) and the enhancement energy (d) are shown for the helium adsorption with respect
to different n and N.

to nyuax=8. This indicates ongoing competition about the adsorption sites in the
limited space of the nanopores of K-PHI. The competition increases upon addi-
tional water adsorption (5 < N < 8). At these uptakes, helium adsorption is still
energetically favorable, however, the enhancement vanishes and the adsorption en-
ergy is decreased compared to the dry K-PHI. Due to the same reason, the helium
adsorption is no longer energetically favorable at all upon further water adsorption
(N > 9). Furthermore, the total adsorption energies AE,qs of single and multiple
helium adsorption are shown in Fig. [6.3c. The adsorption energies of helium at dry
K-PHI AE}Z is shown as a black line and used as a reference for the adsorption
energies. The adsorption energies of the wet cases are shown in different colors.
The maximum uptake corresponds to the calculations, which have the highest ab-
solute values of the adsorption energy AE,q. The enhancement energy gives a
better visualization of the comparison to dry K-PHI and is shown in Fig. [6.3d.
As can be seen, the enhancement effect is not only limited to a small number of
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water molecules, the helium uptake also has to be small. The enhancement only
occurs for up to 4 adsorbed helium atoms. If more than four helium atoms are
present, the adsorption might still be thermodynamically favorable in total, how-
ever, the adsorption energy is lower than in the dry reference case for all n and N
and further decreases when more helium atoms are adsorbed. The derivation from
the reference line increases for higher helium uptakes as well as for higher water
uptakes due to the space competition. Only a low amount of adsorbed water can
compete with the dry K-PHI in the case of more than four adsorbed helium atoms,
e. g. N=1 (red).

Hence, the helium affinity is only enhanced when the water molecules are ad-
sorbed in a well-organized fashion at low loadings for a limited number of helium
atoms. The enhanced adsorption state, which contains the most adsorbates, in-
cludes one water and one helium atom per pore per layer as can be seen in Fig.
(N=4, n=4). In this case, the adsorption affinity is increased indicated by an
adsorption energy decrease of -0.2 kJ/mol. Upon further adsorption the effect
vanishes. Due to the competition for the adsorption sites in the narrow pores of
the K-PHI material, the adsorption states of the water molecules are less ordered as
can be seen for N=8 and n=4. However, the modelled system is idealized and the
pore size and hence the available space of the real material are bigger. Therefore,

the enhancement effect may also be found at higher uptakes.
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Figure 6.4: Adsorption states of different numbers of helium atoms (n) in the presence of N
adsorbed water molecules. Top: top view, bottom: side view. Atomic colors:
C=black; N=blue; K=pink; O=red; H=white; He=green.



7 Transport Coefficients of Disordered
Crystals

As the scale of the fabrication processes of electronic components is continuously
reduced, the quantum mechanical aspects of the charge transport become more
important and ab-initio quantum simulations will be required for an accurate and
predictive characterization. Since most electronic components operate at room
and higher temperatures, these ab-initio simulations have to take into account the
thermal motion of the atoms. Since the dynamics of the electrons is orders of mag-
nitude faster than that of the ionic cores, the quantum dynamics of the electrons
takes place in a highly disordered environment. This can result in qualitatively
different dynamical behaviors, notably the absence of quantum diffusion or An-
derson localization [92], that can not be captured by empirical models or idealistic
zero temperature simulations. This and other effects will be investigated from
first-principles in this work. To the best of our knowledge, the work reported here
is the first attempt to simulate quantum charge transport at finite-temperature

from first-principles.

Most of us think of crystals as condensed phases of matter, where the atoms are
periodically arranged in space. However, the crystalline phase persists all the way
to the melting point so clearly that oversimplifying picture is highly misleading.
In fact, defining the crystalline phase is a deep and highly non-trivial problem
in condensed matter physics. On the formalism side, the works of Bellissard on
the homogeneous phases of matter represent a milestone [93, (94]. They taught us
that, in crystals, the space group symmetry G manifested at zero temperature is
replaced at finite temperatures by an ergodic G-action w.r.t. the Gibbs measure
on the space 2 of thermally disordered atomic configurations. Furthermore, the
invariance w.r.t. G of the electronic Hamiltonians manifested at zero temperature
is replaced at finite temperatures by the covariance w.r.t. the G-action. Ergodicity
and covariance w.r.t. the G-action explain why the measurements of the macro-

53
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scopic physical observables, including the transport coefficients, do not fluctuate
from one configuration to another and why the symmetry w.r.t. the full space
group is restored at the macroscopic level. For example, the latter is manifested
in the G-symmetric X-ray diffraction patterns observed all the way to the melt-
ing point [95]. Another manifestation is the stability of the topological phases of
matter stabilized by point symmetries in conditions where thermal disorder breaks

these symmetries [96].

In our previous work [97], we took the task of quantifying the ergodic dynamical
system (€2, G, 7,dP) that defines a crystalline phase. Using crystal silicon (Si)
as a working example, we devised an algorithm that extracts this data from the
output of conventional ab-initio molecular dynamics (AIMD) simulations [98] |99].
In particular, we were able to quantify and parametrize the Gibbs measure for
crystalline Si at various temperatures. In this work, our focus is mostly on the
electronic degrees of freedom, which are simulated with hybrid Gaussian-plane
wave based density functional theory (DFT) electronic structure codes [100]. In
the first part of our work, we demonstrate how to generate effective lattice models
that encode the entire output of the electronic structure codes and where the
covariance w.r.t. (2, G, 7, dP) is explicitly manifested. Particular attention will be
dedicated to the tight-binding expressions of the Kohn-Sham (KS) Hamiltonian,
position and charge current operators.

For the charge transport, we adopt the non-commutative Kubo-formula derived
by Schulz-Baldes and Bellissard [101-103]. One extremely important aspect of
their formalism is that it includes dissipation. More precisely, given a dissipa-
tion mechanism encoded in a scattering operator, the formalism produces a dis-
sipation super-operator that is organically incorporated in the Kubo-formula (see
Section . Various dissipation mechanisms and their corresponding super-
operators have been analyzed in [104] and they certainly can be evaluated from
first principles. One should be aware that dissipation has an important role in
shaping the I-V characteristics of both metals and semiconductors and this is why

a Kubo-formula that incorporates dissipation is so valuable.

The Kubo-formula derived by Schulz-Baldes and Bellissard has been numerically
implemented in the past for disordered tight-binding model Hamiltonians [105-110]
and other types of aperiodic Hamiltonians |[111-113]. One of the main findings of
these works is the rapid convergence of the results with system size. For example,
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in systems with known quantized transport coefficients, such as 2-dimensional
Hall systems, the non-commutative Kubo-formula reproduced the quantization
with two digits of precision even on small 10 x 10 highly disordered tight-binding
lattices. This is a convincing fact that this approach is highly suited for the
applications we seek in this work, given that the super-cells that can be handled

by first-principles simulations are inherently small.

The simulations we report here for crystalline Si at different temperatures are
preliminary and certainly not converged w.r.t. either the system’s size, or the
atomic orbital basis, but they are certainly converged w.r.t. the thermal disorder
sampling. Also, the dissipation super-operator is treated in the relaxation time
approximation where it becomes proportional to the identity map. The simulations
produced expected outputs for the available electronic structures and enabled us
to test several important qualitative aspects of the charge transport. One aspect is
the formation of a dynamical band gap where the quantum diffusion is absent and
this dynamical gap was found to be much larger than the spectral gap. The former
defines the reference for the activated behavior of the conductivity, while the latter
for the charge carriers. Since these are two different reference energy levels, the
Anderson localization phenomenon can lead to substantial quantitative effects that
were overlooked so far. We also found that the conductivity tensor is extremely
sensitive to the dissipation relaxation time. Given this sensitivity, we believe
that the prevalent dissipation mechanism in crystalline Si at room temperature
can be identified with high precision by future simulations which incorporate first

principles dissipation super-operators.

Based on previous tight-binding model simulations, we initially estimated that
at least 1000 disordered atomic configurations will be necessary and, as such, we
performed large time scale AIMD simulations to acquire that amount of data.
However, our calculations revealed that the average over the atomic configura-
tions of the conductivity tensor can be achieved with a relatively small number
of configurations, which can be as low as 50. In fact, with reasonable level of
dissipation, the thermal fluctuations are almost entirely suppressed for the largest
crystal we simulated, which is a direct manifestation of the self-averaging prop-
erty of the Kubo-formula. This finding assures us that, in the future simulations,
we can reduce the time scale of AIMD simulations, hence, enabling us to further
increase the crystal size and to better optimize the orbital basis.



56 7 Transport Coefficients of Disordered Crystals

7.1 Thermal Disorder from First Principles

In order to fix our notations and provide the context for the present calculations, we
briefly recall our main results reported in [97]. Therein, we describe the ergodic dy-
namical system (€2, G, 7,dP), which completely characterizes the crystalline phase
of Si at finite-temperature, where 2 is the atomic configuration space, G is the
space group, dP is the Gibbs measure and 7 is an ergodic action of G on ().

7.1.1 The ideal lattice and its symmetries

The crystal structure of Si is summarized in Fig.[7.1] Its space group is G = Fd3m
[114,|115], whose structure is summarized by the following exact sequence of groups

1-B—-G—=?P—1, (7.1.1)

capturing the extension of the point group P C O(3) by the group of discrete
translations B. The latter can be pictured as the Bravais lattice of the crystal
(hence our notation B), i.e. the discrete sub-group of R? defined by the centers of
the primitive cells

B = {nlal + noa@sg + N3asz, M = (n17n2, 713) < Zg}, (712)
with the generators a; supplied in Fig. [7.1] The point group P of crystalline Si is
O7, the full symmetry group of the cube.

Let us recall that a space group is called symmorphic if the exact sequence
is split. Silicon’s cubic-diamond lattice is an example of a non-symmorphic space
group. Nevertheless, every element g of G can be presented in the form g = (pla),
with p € P and a € R3. Note that for a symmorphic space group, a can be always
drawn from B, but this is not the case here. Such space group elements act on the

points of the Euclidean space as
(pla)z =pr+a, =ecR. (7.1.3)
They also act on any subset £ of the Euclidean space, such as a lattice, via

gl ={gx, x € L}. (7.1.4)
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Figure 7.1: Si crystallizes in a diamond cubic lattice (Fd-3m), whose conventional unit cell is
shown in this diagram. This cubic unit cell is symmetric to the full point group
and contains eight Si atoms. The diamond cubic lattice results from the inter-
penetration of two face-centered cubic (fce) lattices. The fee lattice can be generated
by translating a primitive cell that contains just one atom. Hence, silicon’s diamond
cubic lattice can be generated by translating the same primitive cell, but with one
additional Si atom inside it. This primitive cell is shown in red, together with its two
atoms (blue disks) and the generating primitive vectors a; = 2(2+79), as = 5(&+2)
and ag = %(g} + &), with b = 5.431 A. The magnitude of the primitive vectors is

a:b/\/i.

The multiplication of the elements takes the form

(pla)(p'la’) = (pp'|pa’ + a) (7.1.5)

and the inverse of an element is

(pla)™ = (p~'[ —p~'a). (7.1.6)

The ideal or zero temperature Si lattice will be denoted by Ly. This lattice
is left invariant by the space group G. In fact, the asymmetric unit cell of the
diamond cubic structure contains a single atom [114, |115], which means that the
entire lattice can be reconstructed from one single point by acting with the full
space group: Ly = {g -y, g € G}. While xy can be any point of the Euclidean
space, we will fix xy at the origin.
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7.1.2 Thermally disordered configurations

When the temperature is finite, the Si atoms undergo a thermal motion and the
instantaneous snapshots of the Si lattice can be labeled by a configuration space

Q2. In [97], Q was found to be well represented by a product of identical balls

Q=] Bs By=Bo, (7.1.7)
geG

where a point w = {wg}gec of © encodes the displacements of the atoms from
their equilibrium positions. Thermal motion defines an ergodic dynamical system
w(t) (t = time) over € and an instantaneous snapshot of crystalline Si supplies a

thermally disordered lattice
L, ={gxo+w,, g€G} CR’. (7.1.8)

For these disordered lattices, the invariance of £, under the space group is replaced

by the covariance relation
gl = L7, YVweQ, geG. (7.1.9)

The action 7 of the space group on {2, appearing above, can be computed as
follows. If g = (p|a) € G, then

9L, = {g(g'zo +wy), ¢ € G} (7.1.10)
= {p(g'zo) + pwy +a, g’ € G}.

After regrouping,
p(g'xo) + pwy + a = gg'xo + pwy, (7.1.11)

and, after the change of variable g’ — g~'g’, we have
9L, ={g'xo + pwsry, g € G} =L, . (7.1.12)
We now can identify the action as

Tgw = Tg{wg/}g/eG = {wg/}gleG’ w;/ - pwgflg/. (7.1.13)
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One can verify that 75,75, = 74,4,, as it should be for a group action.

The Gibbs measure over the configuration space €2 can be computed from the
atomic orbits in an AIMD simulation, more precisely, from the histograms encoding
the number of times an orbit intersects the elementary volumes of €2. In [97], the
Gibbs measure of the Si crystal was found to be extremely well characterized by

a multivariate normal distribution of zero mean

N

C1,TH1y,
dP(w) = p(w)dw, p(w) = me e (7.1.14)
where w is seen here as a 1-column matrix and the variance matrix 3 was quan-
tified in [97] as a function of temperature. The Gibbs measure is invariant and
ergodic w.r.t. the 7-action. In fact, the Gibbs measure found in [97] is ergodic
relative to the subgroup B of translations, which is in fact a generic property of ho-
mogeneous systems at thermodynamic equilibrium [116, Chap. 6]. The crystalline

phase of Si at finite-temperature is entirely defined by the ergodic dynamical sys-
tem (Q, G, 7, dP).

The observations of the last paragraph will play an important role for the self-
averaging properties of the transport coefficients. Let us stress again that, due to
the well separated scales in the dynamics of the atomic and electronic degrees of
freedom, the quantum state of the electrons evolves in a static atomic potentiallT]
This is a thermally disordered potential and, as we shall see, the physical observ-
ables, such as the Hamiltonians or charge currents, become indexed by points of
the configuration space 2. In this new context, the notion of a symmetric observ-
able is replaced by that of a covariant observable. The macroscopic measurements
of these observables, however, are independent of the thermally disordered config-
uration. This remarkable property is a consequence of the covariance and of the
ergodic character of the Gibbs measure.

7.2 Tight-Binding Form of the Physical Observables

Our goal for this section is to formulate discrete representations of the Hamiltoni-
ans and other physical observables in the context of Gaussian-based implementa-
tions of the KS program. Special attention will be given to the transformation of

!The electron-phonon and electron-electron scattering processes are rare and sudden dynamical events,
which are included via Poisson processes as explained later.
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the physical observables under the space group G of the crystal.

7.2.1 The continuum theory

The formally exact KS theory for condensed matter systems, at its most funda-
mental level, is formulated over the Hilbert space L?(R?) of square integrable wave
functions [117]. For the Si crystal in a thermally disordered configuration w, the

KS-Hamiltonian takes the form

h? 7 e?
HYy = ——V2 — el (1), 2.1
Ks=—5-V Z oy Veld(r) (7.2.1)

where Vi is a local potential encoding the exchange and correlation (XC) effects.
The latter has a functional dependence on the electron density n,(r), which is
to be determined self-consistently. As the notation suggests, the electron density
has a dependence on the atomic configuration w. In fact, this becomes even more
apparent if we reformulate as a fixed point problem

n(r) = (rl®pp (Hils: T ) 7). (7.2.2)

where ®pp is the Fermi-Dirac distribution at temperature 1" and chemical potential
w1 [118]. In the following, we assume that this equation has a unique solution for

almost all thermally disordered configuration (see [119] and [120]).

The starting point of our study is the covariant property of the KS-Hamiltonian
under the space group transformations. To understand the origin of this property,
we need to go all the way to the Euclidean group E of transformations and recall
that the XC potential enjoys the following property

Vie[noe](e™tr) = Vie[n](r), ¢ €E, (7.2.3)

for any density function n and point r € R?, which can be inferred from the uni-
versality and uniqueness assumptions on Vi, [121]. Certainly, this can be verified
directly for the local density approximation (LDA) to V. [122]. The action of E
on R3 lifts to a unitary action on the Hilbert space L?(R?) via

(Twp)(r) =w(e'r), e€E, o e L*(R®). (7.2.4)
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Now, recall that G is just a subgroup of the Euclidean group, hence ([7.2.4)
describes the action of G as well. Then, under such unitary actions, the KS-

Hamiltonian behaves as

" h? Ze? _
THEST) =~ Virin = D 1oty =gy T Vaelnal@™'7) (7.2.5)
xel
h? Ze?
= = Vie[ne o g7 t(r). 7.2.6
Vi 3 gy +elno0” (726)

We learn from here that, if n,, is the solution of (7.2.2)) for configuration w, then
n, o g~ ! is the solution of (7.2.2)) for configuration gw. In other words, the self-

consistent solutions of the KS equations enjoy the covariant property
Ngw =Nwog ' (7.2.7)

In turn, this assures us that the converged KS-Hamiltonian satisfies the covariant
relation
THET] = H, VgeG. (7.2.8)

It will be extremely important to preserve this characteristics in our tight-binding
approximation. As we already mentioned, ((7.2.8) together with the ergodicity of

the space group action ensure the self-averaging of the transport coefficients.

7.2.2 The effective Hilbert space
In Gaussian-based approaches, the atom located at position x € L, carries a
finite-dimensional local Hilbert space

He, :Span{¢n(r—a)), n= 1,...N}, (7.2.9)

where ¢, : R® — C are optimized atomic orbitals (see Section for details). It
is important to realize that the same set of functions ¢, are used for all x € £,,.
The total Hilbert space for the Gaussian-based computations is the linear subspace

H,, = Span{H,, = € L,} C L*(R?). (7.2.10)
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As the notation suggests, this subspace depends on the configuration w € €2 of the
atoms. As we shall see, it is isomorphic to the tight-binding Hilbert space

CN @ (*(L,,) = Span{{ @ |z), £ € CY, x € L,} (7.2.11)

of square summable linear combinations of £®|x) basis vectors. The scalar product
for this space is defined by the orthonormality condition

(@|X') = g0, Va,x'el,. (7.2.12)

All our physical observables will be mapped over this tight-binding Hilbert space
and all the calculations will be ultimately performed on C¥ ® ¢2(L,,).

Our goal for this section is to explain in details how to transfer the observ-
ables between the Hilbert spaces. We start with the consideration of the overlap

coefficients

55w = [ dr oir —@)oyr - ), (7.2.13)

which can be found among the outputs of standard AIMD simulations. Using

these coefficients, we form the self-adjoint, positive and invertible operator

S, :CN @R (L) = CNei(L,), (7.2.14)
Sy = Z §sc,:c’<w) ® |a:>(a:’|,
x,x' el

where §w7w/ (w) is the overlap matrix with the entries S;f o (w) defined in (7.2.13]).
Then, the isomorphism between 3, and CV ® ¢2(L,,) is supplied by the unique
linear map U, that acts on the generators as

du(r — @) > \/Sy & @|x), n=1,...N. (7.2.15)

Above, &, € CV is a column vector, whose entries are one at position n and zero
for all others, whereas /.S, is the square root operator defined via the functional
calculus. Let us verify that the map indeed preserves the scalar product. We have

(VSu&i ® |2), /S &5 @ |2)) = (& @ |2), Su€; @ |a')) (7.2.16)
= & S (W)€ = S (w).
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As a consequence,

(VS.& @ x), /Su& @) = /3 &Pr ¢i(r — x)d;(r — '), (7.2.17)
R
foralli,j =1,..., N, as desired.

To preserve the covariance of the physical observables w.r.t. the space group G
and the disordered configurations, it is important to choose the atomic orbitals as
such that they span a linear space, which is closed under representations of the
O(3) group. Thus, all ¢,, are assumed to transform under rotations as

(b1,...,dn) ot " = (¢1,...,68)D(x), teO®B) CE, (7.2.18)

where {@(t), vt € O(3)} is a family of N x N matrices supplying a N-dimensional
unitary representation of the rotation group that is not necessarily irreducible (see
Section for details). Then, if g = (p|a) € G, the overlap matrix satisfies the

relation

-~

D(p)! Syegz (aw) D(p) = S (), (7.2.19)

for any @ and ' in £,,. This is an important relation for which we provide the
derivation below. Indeed, both gx and g’ belong to gL, = £, and

St () = [ @7 01— ga)oy(r — g2 (7.220)
= [ ) oiter — gx)oar - g2
Since gr — gx = p(r — x) and d?(gr) = d*r, we can continue as
S (r) = [ @7 01 (ol = @) (plr — ) (7.2.21)
= [ D s~ )oulr — 2D ),
= D(p)a | dr difr —@)o.(r — ) D
and follows.

For any w € ), we define a Hilbert space isomorphism between C¥ @ ¢%(£,,) and
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CN @ (*(L,,.,) as
T (@ |z)) =Dp)E® |ogz), 9= (pla) €C, =€ L, (7.2.22)

Note that we use here the same notation as in because these two maps
can be easily differentiated from the context. Now, by examining the rule of
multiplication in for the space group, it is immediate to see that T' respect
this binary operation: TyTy = T,y. Furthermore, it follows directly from

and the definition ([7.2.14)) that

TyS.T) = Srw, 8€G. (7.2.23)
Indeed, if g = (p|a), then
T,S.T = Y D(p)Sew(w)D(p) @ gz) (o] (7.2.24)
@2/ €Ly,
= Y D) Stagra(@) DY) @ [ @],
T2/ €Ly
Furthermore, from ,
D(p ") Sp10g-100 (W) D(p ™) = Spar(7qw), (7.2.25)

hence ([7.2.23)) follows.

We conclude this section with the observation that the map U,, defined in
(7.2.15)), satisfies the covariant relation U, Ty = TyU,. Indeed, for € L.,

¢i(g7'r —2) = ¢;(p7 (r —gx)) = > ou(r — gz)D(p)s;, (7.2.26)

IM-

while

N
T/5.6 @ |2) = /5o DG @ loz) = 3 /S 6 @ lg@) Dip)sy. (7.227)
k=1

Then, by applying rule (7.2.15)) on each terms of the two sums, one can convince
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oneself that we have the following correspondence

G;(g7 ' — ) = Ty/S, 6 @ x), Yaecl, (7.2.28)

under the U map.

7.2.3 Canonical tight-binding form of the observables

Let A be an operator defined over L?(R?). Our goal here is to investigate how
to define a canonical approximation as an operator A, over the effective Hilbert
space CV @ (2(L£,,). The natural requirement is the matching of all the available

matrix elements under the U, map ([7.2.15)), i.e.

(On(- — )| Aldm (- — &) = (0, ®[\/Sy Au/Sulm, @), (7.2.29)

for all n,m = 1, N and x,x’ € L. For convenience, above and throughout, we
use the notation |n,x) for &, ® |x). Henceforth, let A, . (w) be the matrix with

the entries

AZZ (w) = /112{3 dPr¢f(r — ) (Ady)(r — '), (7.2.30)

which is just the explicit form of the coefficients appearing in the left side of

(7.2.29). We form first the operator

Av= > Apw(w)®|z) (], (7.2.31)

x,x’' €L,

over CV @ (3(L,). Then, the solution to (7.2.29) is supplied by
A, =57 A, S50, (7.2.32)

as it readily follows from a direct calculation. We call the canonical tight-
binding operator associated to the operator A that is defined in the continuum KS
theory. Note that under this correspondence, the identity operator is sent to the
identity operator.

Now assume that the continuum observable depends on w in a covariant fashion.
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In such a case, we can repeat the calculations leading to ([7.2.19) to prove

-~ ~

D(p)! Age g (9w0) D(p) = A (w). (7.2.33)

This automatically implies that ;[w is a covariant operator under the space group
transformations and, since A, in ([7.2.32) is a product of covariant operators, A,

is also a covariant operator:

Ty AT = Arp. (7.2.34)

Below, we apply this standard procedure to several observables of interest.

As we learned in section the continuum KS-Hamiltonian is a covariant
observable. Furthermore, among the standard outputs of AIMD simulations are

the matrix elements
Wopw) = [ 6 - @)l - o) (7239
R3

This is precisely the data one needs to define the tight-binding Hamiltonian. Fol-
lowing the above procedure, we define first the operator

Hy= " Wow(w)®|z)(, (7.2.36)

x,x’' €Ly,

which then supplies the tight-binding expression of the KS-Hamiltonian
1 1
H,=S.*H,S,% THJTI =H, ., g€eG. (7.2.37)

We now focus on the position operator X. At the continuum level of the theory,
the matrix elements of the position operator are

R = [ dr oo o) (7239
R3

Note that these matrix elements depend too on the disordered configuration. They,

however, satisfy a different covariant relation

~ ~ ~

D(9)" Ry ga (7q0)D(g) = pRaar (w) + 0 S o (w), (7.2.39)

for all g = (pla) € G. The above relation follows from an exercise similar to
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that below (7.2.19). Before going any further, let us explain the notation. Note
that ﬁ%wz (w) is actually a 3-component column vector with matrices as entries.
Then, p in front of it, which is an ordinary 3 x 3 matrix, acts naturally on this
3-component vector. Furthermore, a in the second term is viewed as an ordinary
3-component vector from R? such that agmym/ (w) becomes a 3-component vector

with matrix entries. Now, as before, we define an operator on CV @ (2(L,)

R,= ) R.ow) )| (7.2.40)

zx'el

which satisfies the covariance relation
T,R.T =p 'R+ (p'a) Srpes (7.2.41)
as it follows directly from (7.2.39). Then
X,=S,"R,8," (7.2.42)

maps the position operator from L*(R?) to CY ®/¢?(L,,). Furthermore, the mapped
position operator satisfies the covariance relation

T, X, 1) =p ' Xrw+ (p'a) I, g=(pla) €G, (7.2.43)

where [ is the identity operator. The above relation follows directly from (|7.2.41]).

Note that, although X, is not entirely a covariant operator, the commutator

[ X, A,] is covariant whenever A, is, i.e.
Ty [ X, AT} = p7 ' [Xrpw, Arg], 8= (pla) € G. (7.2.44)

This will become relevant when we will analyze the charge current operator.

7.2.4 The trace per volume

Over the Hilbert space L?(IR3), the trace per volume of a bounded operator A with
continuous kernel (r|A|r’) is defined as

Try{A} = ‘}lrﬁs %/Vdr (r|Alr), (7.2.45)
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where, for consistency with the space group, we require that the limit be taken over
finite volumes V' that are invariant under the point group action. Our goal here
is to supply its canonical translation over the effective Hilbert space CV ® (2(L,,).
For this, let A, be the tight-binding operator associated to A. We claim that

1
Try{A,} = 7 Vh_r}r;o . ﬂV] Z Z n, x|A,n, x) (7.2.46)

zelNV n=1

supplies the canonical expression. Above, Vj is the volume per Si atom, which is

just half of that of the primitive cell, and | - | denotes the cardinal of a set.

Indeed, let us note that [, dr (r|Alr) coincides with the trace of A, when A is
restricted over L*(V). This trace can be alternatively computed as Y, (1;] A1),
with {1;} being an arbitrary orthonormal basis of L?(V'). But, up to errors that

are irrelevant in the thermodynamic limit and when N is large, the finite-volume
=T,N
weLLNV"

trace can be computed using the partial basis {UZ|n, )} As a consequence,

if N, is the total number of atoms in V', then

Try{A} = — lim —Z > (n,@|ULAUS|n, ), (7.2.47)

Vb Na=roo N n=1xclnV
which coincides with ((7.2.46)).

The trace per volume, which is defined in (|7.2.46)), is a genuine trace over the
algebra of operators we encounter in this work. For example, it displays the
standard property Try{A,B,} = Try{B,A,}. An extremely important property
of Try is the self-averaging when evaluated on covariant operators, ¢.e. those
operators satisfying the relations

Ty AT = Arp. (7.2.48)

Indeed, using the invariance of the trace under conjugations, we have

TrV{Aw}:i > Tlrv{TgAng}:L > Try{An), (7.2.49)

|H| geHCG ’H| geHCG

where H is a finite subset of G invariant to the point group. Since 7 acts ergodically
over (), in the limit H — G, Birkhoff’s ergodic theorem assures us that the last
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term coincides with the ensemble average [123]. Hence,

Try{A.} = /Qd]P’(w) Try{A.} (7.2.50)

Let us point out that intensive thermodynamic variables as measured in laborato-
ries, such as the transport coefficients, are all computed as traces per volumes of
covariant observables. The aforementioned self-averaging property assures us that
these macroscopic variables do not fluctuate from one disordered configuration to
another, as long as the corresponding physical observables are covariant. This is
the main reason why we pay special attention to the covariant properties of the

physical observables in our theory.

7.3 Transport Coefficients

With the mappings from the previous section, we can formulate the theory of
quantum charge transport directly on the Hilbert space CN ® ¢2(£,,). The goal
of this section is to supply the key elements of this theory and to formulate the
Kubo-formula for the conductivity tensor.

7.3.1 Kinetic theory of quantum transport

The purpose of this section is to review the theory of charge transport in the
presence of dissipation, as developed by Schulz-Baldes and Bellissard [101-103].

Let us recall that the physical observable corresponding to the 3-component
vector of the electron charge current density is

e

Jo
1h

(X, H], (7.3.1)

where e = 1.6 x 107! C is the charge of the electron. Based on the last remark in
Section J, is a covariant operator, i.e.

Tod Ty =p " Jrpo (7.3.2)

Under the action of an externally applied electric field E, the measured current-
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density is

1 /7
jg = lim —/ dt TrV{prw(t)}, (7.3.3)

T—o0 0

where p,(t) is the time-evolved density matrix. The time evolution is w.r.t. the

time-dependent Hamiltonian
H(t)=H,+eE - X,+ V,(t), (7.3.4)

which incorporates the externally applied electric field E, as well as dissipation
via the scattering potential

Vo(t) =D 6t —t;)W,, (7.3.5)

jET

with W, assumed to be covariant. The collision times 1 = {t;};cz are generated via
a Poisson process with fixed collision time-scale 7,.. Such processes are known to be
self-averaging, hence the time and the space averages in do not depend on
the particular realization of the collision times, nor on the disordered configuration.
In other words, jg defined in ([7.3.3) is a genuine macroscopic thermodynamic

coeflicient.

For the reason state above, one can use in (7.3.3) an effective quantum time
evolution, which is averaged over the Poisson processes 1. A computation of this
average can be found in [105]. It takes the form

Uut (1) AU () = e~ #Twtlra)[ 4], (7.3.6)
where I' is the collision super-operator, acting on the physical observables as
T [A] = £(A —ei™eAemie), (7.3.7)
and Lg, is the super-operator

Lg.[A] =1H,, Al — eE - 1| X, A]. (7.3.8)

The electrons are assumed initially at the thermal equilibrium, hence the initial
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density matrix takes the form
pu(t =0) = Ppp(H,; T, 1), (7.3.9)

where ®pp(e; T, 1) is the Fermi-Dirac distribution at temperature 7 and p the
chemical potential. The density matrix is evolved via the time propagator (7.3.6),
hence

pw(t) = U<t) q)FD(Hw; T, :u) U<t)*' (7‘3‘10)

Since, the two parameters 1" and p are kept fixed, we will omit writing them

explicitly.

7.3.2 Kubo formula with dissipation

With the inputs supplied in the previous section, ((7.3.3) can be evaluated explic-
itly:
62 -1
Jp =+ Ty { (X, H,](Ty +Lgy) [E- X, ®pp(H.,)] } : (7.3.11)

In the linear regime, this leads to a Kubo-formula with dissipation for the conduc-
tivity tensor

oB(T, s w) = —WGOTrV{ (X2, H,] (T + L) [XE, ®pp (H,)] } (7.3.12)

where o and 3 indicate space directions, L,, is the limit of Lg, as E — 0 and

Gy = % = 7.74 x 107° S is the conductance quantum. Note that the super-

operator (T, + L,,)~! acts on the observable appearing at its right.

7.3.3 Self-averaging of the transport coefficients

We now discuss the self-averaging properties of the conductivity tensor. Using the
covariant properties of the operators appearing in the Kubo formula, one finds

o (T, u; Taw) = — Gy paa/TrV{Tg [Xgl, H,] (7.3.13)

(Fw + Lw>_1 [X£/> (I)(Hw)] TJ}PW,
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for any g = (p|la) € G, where repeated indices are summed over their range.
Using the invariance of the trace under conjugation, we find the simple rule of

transformation

6(T, s Tqw) = p &(T, p;w) pt. (7.3.14)
As such, the conductivity tensor is invariant under the translations (1[t) € B. Our
observation in section that this subgroup of G acts ergodically on (2, become
extremely important because it assures us that ¢ (7', u) is self-averaging and does
not fluctuate from one disordered configuration to another. Indeed, given that
(T, pyw) = o(T, p; Tapyw) for any (1]t) € B), we can write

1

&(T, p;w) = lim OB|26(T,M;T(1|£)M) (7.3.15)
teVv

V—R3 |

- /Q dP(w') 6(T, p; "),

where the last equality follows from Birkhoff’s theorem [123]. Now, the only way
to reconcile the above conclusion and ([7.3.14)), is to admit the invariance of the
conductivity tensor under the point group action

b O(T sw)p = 6(T.w), Vped. (7.3.16)

The remarkable conclusion is that the invariance w.r.t. the full space group G
of the non-averaged conductivity tensor is exact even though this symmetry is
broken locally by the thermal motion of atoms. We mention that in our numerical
calculations, we evaluate the isotropic part of the conductivity tensor

o(T, piw) = 3y 0 (T, pw), (7.3.17)

a=1
which is manifestly invariant under the action of the entire space group.

Let us stress that the above self-averaging property manifests itself only in the
strict thermodynamic limit. For finite samples, there will be fluctuations w.r.t.
the thermally disordered configurations. This is because the group of symmetry
transformations gets reduced when dealing with finite samples and, as a conse-
quence, Tgw does not exploreﬂ the whole €2 when g is given all allowed values. For

2Up to subsets of measure zero
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a finite Si crystal of cubic shape, which is built by repeating the unit cell, the rank
of the group of symmetries is equal to the number N, of atoms in the crystal.
Given the invariance of o(p, T;w) w.r.t. these transformations, when we evaluate
o(p, T;w) for one disordered configuration, we in fact evaluate the conductivity
for all Tyw configurations. In other words, with just one calculation, we sample [V,
points of . Hence, if we repeat the calculation of o(u,T;w) for a number N, of
different configurations, we effectively sampled 2 at N, x N, points. Because of
this amplification effect that stems from the invariance of o (i, T'; w) relative to the
space symmetries, we expect that a good disorder average can be achieved even
with a small number of disordered configurations. This is indeed observed in our

simulations.

7.3.4 Optimal finite-volume approximations

There are two fundamental difficulties when attempting to evaluate on
a computer. The first one stems from the incompatibility between the covariant
relation for the position operator and the periodic boundary conditions.
The second difficulty comes from inverting the super-operator I', + L. Both these
issues have been resolved in [105] and then further refined in [110, 124]. In the
present context, however, the situation is slightly different because the position
operator depends on the disordered configuration. This complication is being
addressed below.

We start by computing the matrix elements of the commutator of a continuum

observable with the position operator:

X AL = [ o (- @)X, o) - ) (7.3.18)

R

—/ d3'r/ &' (r — )k (r — ) A(r, ) (v’ — ')
R3 R3

— _ p! 3 3. % _ / 1

=(x a:)/R?)d'r/Wdrqu(r x)A(r,r")on(r' — x')

N / S / & (r = )65, (1) Al )6, ().
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We can summarize the above calculation as

XL AL () = (@ — )AL @) + [X, Al (). (7.3.19)
While the right hand side makes perfect sense for an infinite samples, when the
simulation proceeds over a finite crystal with periodic boundary conditions, there
is an obvious problem with the first term. In [110} 124], it was found that the
optimal adaptation to the periodic boundary conditions is through the following

substitution:
x—a
where L is the size of the periodic super-cell of the simulation and [[-]] denotes the

integer part of a real number. The second term in ([7.3.19) is a local term and there
is no need for a modification when finite crystals with periodic boundary conditions
are considered. With the proper matrix elements at hand, the finite-volume tight-
binding operators corresponding to the commutators with the position operator are
derived via the procedure detailed in section [7.2.3| without any modifications. To
alert the reader about the substitution ((7.3.20)), we write the modified commutators
of these tight-binding operators as | X, A, |.

We now focus on the super-operator I', + L,,. We will only consider here the
so called relaxation time approximation where the dissipation super-operator is
proportional with identity: I', = I'gid, with 'y a positive number. Now we recall
that L, acts on operators A, over CN ® (%(L,,) via Ly[A,] = 1[H,, A,]. Observe
that, if

(6 ) e (7.321)

is an eigen-system for H,,, then

Lo [0 (Wi 1] = ale — ) [ (5. (7.3.22)

In other words,

(e — e i tuil) (7.3.23)

7b:17"'7N|Lw|

is an eigen-system for L,. This observation together with the fact that any operator
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can be decomposed as

Aw =Y (WSIAIE) [0 (5 (7.3.24)

a,b
provide a straightforward way to invert the super-operator:

(Ve Aulvy)
Lo + (e — )

(Toid + L) '[AL] = ) | W2 (5. (7.3.25)

a,b

Finally, we can give a direct translation of the Kubo-formula ([7.3.12)) at finite-

volume:

7 nen = (0210 HL |08 LXE, e (H) ][0
06:< Z< I AL (H)]| >>w

v Lo+ (e — €f)

(7.3.26)

This expression is useful when the matrix elements of the Fermi operator are avail-
able. Since this quantity is not among the standard outputs of AIMD simulations,

we process this expression one step further as in [109):

_ Opp (e¥) — Ppp(€f)
of _ [ —xco N~ Pen(e7) — Prn (e 7.3.27
o= (e ) 7327

o SOl B L )
FO + Z(E‘; — EL{;) w

This is the expression we coded as a post-processing subroutine to the AIMD
simulations. The inputs for this expression are the matrix elements of the Kohn-

Sham Hamiltonians (7.2.35)) and the overlap coefficients ([7.2.13]), as well as the
xyz-coordinates of the atoms.

7.4 Numerical Implementation

In this section, we first present a novel electronic structure method that is only
scaling quadratically with system size, thus facilitating second-generation Car-
Parrinello AIMD simulations of even longer length and time scales than previously
thought feasible [98, 99]. More importantly, this approach permits to efficiently
compute the exact finite-temperature density matrix p, of a given Kohn-Sham
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Hamiltonian H, “on-the-fly” during the AIMD. Thereafter, the computational

details of our simulations are described in detail.

7.4.1 Field-Theory-based Eigenvalue Solver

Following Alavi and coworkers [125, [126], we begin with the (Helmholtz) free
energy functional
=Z+4+ uN, + Ve, (7.4.1)

where N, = 2N is the number of electrons and = the grand-canonical potential

(GCP) for noninteracting fermions. The latter reads as
== —% In det (1 + eﬁ(“S“’Hw)) = —% Tr In (1 + eﬁ(“SW*H“)) , (7.4.2)

with given by 37! = kT (k = Boltzmann constant). Yet, in the low-temperature

limit
lim =2 e — uN,, (7.4.3)

the so-called band-structure energy, which is given by the sum of the lowest N
doubly occupied eigenvalues € of H,, can be recovered and

N
i = w 4.4
Jim 5 2;ea+vdc (7.4.4)
holds. Therein, V. accounts for double counting terms, as well as for the nuclear

Coulomb interaction.

In the present case of fully self-consistent KS-DFT calculations

Vaelno(r)] = —3 / dr / o () (r)

=7

d
0= »
— / dr nw('r) % + EXC [nw('r)] + E]], (745)
where the first term on the right hand side is the double counting correction of
the Hartree energy, while Zx¢[n,, ()] is the finite-temperature XC grand-canonical

functional and Ej; the nuclear Coulomb interaction. Except for the latter term,
Eq. (7.4.5) accounts for the difference between = and the GCP for the interacting
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spin—% Fermi gas, i.e.

Eint[no(r)] = —2 In det <1 + eﬁ(ﬂsw—Hfés)>

- /dr/d’”“ “, r)
lr — /|

B L. L B T
As before, in the low-temperature limit =;;[n,(r)] + uN. equals to the band-
structure energy, whereas Zxc[n,(r)] corresponds to the familiar XC energy, so
that in this limit F = Z + uN, + Vi = Ejune(r)] + uNe + Ep; is equivalent to
the Harris-Foulkes functional [127, [128]. Equally than the latter, F is explicitly
defined for any n,(r) and obeys exactly the same stationary point as the finite-
temperature functional of Mermin |129].

Whereas it is well known how to calculate V. with linear-scaling computational
effort, the computation of all occupied orbitals by diagonalization requires O(N?)
operations. Due to the fact that the band-structure term can be equivalently
expressed in terms of p,,, the total energy can be written as

Exs[nu(r)] =2 € + Vae = Tr[p, Hils] + Vae[nw (r)]. (7.4.7)

a=1
As a consequence, the cubic-scaling diagonalization of Hyls can be bypassed by
directly calculating p,, rather than all ¢;’s.

In order to make further progress, let us now factorize the operator of Eq. (7.4.2)
into P terms. Given that P is even, which we shall assume in the following,
Krajewski and Parrinello derived the following identity

P P/2
1+¢€° (kS H( 35(21-1) o 35 (1= ) HMle, (7.4.8)

=1

where the matrices M;, with [ = 1,..., P, are defined as
M, =1 — esp@-Dezp (nSo—His) (7.4.9)

while * denotes complex conjugation [130]. Analog to numerical path-integral
calculations [131], it is possible to exploit the fact that if P is large enough, so
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that the effective temperature g/ P is small, the exponential operator e2? 5 (18— Hys)
can be approximated by a Trotter decomposition or simply by a high-temperature

expansion, i.e.

T ]_
M, =1— e (14 B (uS, — H)) + 0 (P2> : (7.4.10)

However, as we will see, here no such approximation is required, which is in contrast

to the original approach [130]. In any case, the GCP can be rewritten as

P/2 P/2
1
E = —2n]]det (M;M) =4 In(det (M;M)) 2. (7.4.11)
=1 =1

As is customary in lattice gauge theory [132, p. 17], where the minus sign problem
is avoided by sampling a positive definite distribution, the inverse square root of
the determinant can be expressed as an integral over a complex field ¢;, which has
the same dimension M as the full Hilbert space, i.e.

1 e
det (M M) ™ = — / dgpy e~ 29T M Mo (7.4.12)

27) 2

Inserting Eq. (7.4.12) into Eq. (7.4.11]) we end up with the following field-theoretic
expression for the GCP:

P/2
P/2

= %Zln /dgzﬁl e 20 MMy const (7.4.13)
=1

(1]

where ¢; are appropriate vectors.

All physical relevant observables can then be determined as functional deriva-
tives of the GCP w.r.t. an appropriately chosen external parameter. For example,
= —0=/0p and limg_,oo =+ pN, = 22 _, €7, so that

N
, . 9(8=) 0=
E:éirgo?:2 E_l €+ Vage = 5 —ug——i-Vdc (7.4.14)
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Since the functional derivative of the constant in Eq. (7.4.13)) is identical to zero,

all physical interesting quantities can be computed via

o= P/2 fdébl ¢Z) ( M)>ij (gbl)j e_%‘ﬁz*Mz*Mld’l
> = h — e (7.4.15)
A = J dy e80T Mg
P/2 d
(M M) L
- _,% Z Z < al)\ l > . (M; M) (7.4.15D)
=1 i,j=1 i
P/2
w1 O(MFM)) L OM,
=~ T {(Mz M) 18—311 =23 " Tr [Ml 18—;} . (7.4.15¢)
=1 =1

Thereby, the left-hand side of Eq. (7.4.15¢)) holds because of Montvay and Miinster
[132, p. 18], whereas the right-hand side is due to the fact that beside being positive
definite M} M, is also symmetric.

Comparing Eq. with Eq. , it is easy to see that the GCP and
hence all physical significant observables can be written as the trace of a product
consisting of the Fermi matrix p,,. Specifically, = = Tr[p, H{s] — uNe, but because
at the same time N, = Tr[p,S,,] holds, the former can be simplified to

E = Trlp,(Hics — pSu)l; (7.4.16)

where S, = —0H}s/0p and p, = 0=/0Hys. As a consequence, the GCP and
all its functional derivatives can be reduced to evaluate p,, based on Eq. (7.4.15c])
with A = H;;. Using the identity

oM,

= —gp {(M = 1)B+5(M, - 1)}, (7.4.17)

for this particular case, Eq. (7.4.15¢)) eventually equals to

o= P/2 P

= -1

Po = 7o —PE (1— M M,) )z%E (7.4.18)
Oy

=1 =1

In other words, the origin of the method is the notion that the density matrix,
the square of the wavefunction at low temperature and the Maxwell-Boltzmann
distribution at high temperature, can be decomposed into a sum of M l_l matrices,
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each at higher effective temperature 5/P and hence always sparser than p,. Yet,
contrary to the original approach [130], neither a Trotter decomposition nor a high-
temperature expansion for Eq. has been used, so far everything is exact for
any P.

In particular, unlike Eq. (7.4.11)), the determination of Q = 9(3Q)/98 does no
longer involve the calculation of the inverse square root of a determinant, but
just the inverse of M;, which is not only very sparse, since it obeys the same
sparsity pattern as Hyg, but is furthermore also always better conditioned as the
latter. Hence, all M[l matrices are substantially sparser than p, and thus can
be efficiently computed [133, 134]. In fact, for quasi one-dimensional systems,
M, is tridiagonal that permits for an exact linear-scaling calculation of its inverse
using a recursive scheme [135]. For all other dimensions D, M, can be sought of
being block-tridiagonal, where the dimensionality of each block is d = N'~(1/P),
eventually leading to a computational effort, which scales like Nd? = N3~%/¢. Since
this is only marginally better than the initial O(N?) scaling for a general matrix
inversion (or diagonalization), we compute ]\41_1 by solving the N, sets of linear
equations Mlq)é = 1p;, where {9;} is a complete set of basis functions [136]. Using
a preconditioned biconjugate gradient method [137], the inverse can be exactly
computed as M; ' = Zj\f:el qﬁézﬂ; within O(N?) operations. Furthermore, the formal
analogy of the decomposition to the Trotter factorization immediately suggests the
possibility to apply some of the here presented ideas with benefit to numerical path-
integral calculations |[131]. The same applies for a related area where these methods
are extensively used, namely the lattice gauge theory to quantum chromodynamics
[138], whose action is rather similar to the one of Eq. ((7.4.12]).

7.4.2 Computational Details

We now return to our specific simulations. Our models of crystalline silicon con-
sisted of 216 and 1000 Si atoms in a cubic simulation box with periodic bound-
ary conditions. For each system size, five simulations have been conducted, at
T = 300 K, 600 K, 900 K, 1200 K and 1500 K, respectively. All of our calcula-
tions were performed in the canonical NVT ensemble using the second-generation
Car-Parrinello AIMD method of Kiihne and coworkers [98, 99]. Throughout, the
experimental density of crystalline silicon was assumed, which, at ambient con-
ditions, is semiconducting and four-fold coordinated. In each run, we carefully
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Figure 7.2: The orbits of the atoms under the thermal motion at different temperatures. The
simulation is for a crystal containing 216 Si atoms and each orbit is sampled at 1001
points. In these renderings, the crystal is viewed from atop of xy-plane. The units
of the graphs are Angstroms.

equilibrated the system for 250 ps before accumulating statistics during additional

1.25 ns, resulting in a total AIMD simulation time of 15 ns.

All simulations were performed at the DFT level using the mixed Gaussian and
plane wave code CP2K/Quickstep . In this approach, the KS orbitals are
expanded in contracted Gaussians functions, while the electronic charge density is
represented by plane waves [78]. A density cutoff of 100 Ry was employed for the
latter, whereas for the former a dimer-optimized minimal basis set was used of
s- and p-type. Assuch, N =4in and the linear space spanned by these wave
functions is indeed a representation space for the O(3) group. The unknown exact
XC potential is substituted by the LDA , whereas the interactions between the
valence electrons and the ionic cores are described by separable norm-conserving
Goedecker-Teter-Hutter pseudopotentials , . For the sake of simplicity,
the first Brillouin zone of the super cell is sampled at the I'-point only.
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Figure 7.3: Same as Fig. ﬂ but for a simulation with 1000 Si atoms.

7.5 Numerical Results

In this section, we first present and analyze the output of our AIMD simulations
and then we report the output of the charge-transport post-processing subroutine
detailed in section [7.3.4l

7.5.1 Spectral analysis

In Figs. and we report the orbits of the atoms at different temperatures, as
simulated with 216 and 1000 Si atoms, respectively. As one can see, the orbits won-
der around the equilibrium positions and the data reveals that crystal Si is quite
disordered even at the room temperature. Let us point out that many electronic
devices operate at 600 K or higher under heavy loads. At these temperatures,
the thermal disorder is quite pronounced. As it is well known, in such conditions,
some of the wave functions can and will become affected by the phenomenon called
Anderson localization . When a wave function becomes Anderson localized,
its contribution to the Kubo-formula is zero. Almost as a rule , these local-
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Figure 7.4: Level statistics for a (a) 3 x 3 x 3 unit cells crystal containing 216 atoms and (b) 5 x 5 x 5
unit cells crystal containing 1000 atoms. Both sets of data were generated at T = 900 K. The
background displays the energy spectra for various thermally disordered configurations. The red
curve represents the variance of the level spacings ensembles collected at different energies. The
yellow line indicates the variance of the Gaussian orthogonal ensemble. Both the red and yellow
curves have their y-axis on the right side. Also shown are the spectral and the mobility gaps, as
inferred from the data.

ized states occur close to the edges of the energy spectrum and, for 3-dimensional
crystals, it is predicted there exist mobility edges in the energy spectrum, one in
the conduction and one in valence bands, beyond which the wave functions remain
extended. These mobility edges define the so called mobility gap and the expecta-
tion of the charge current operator is zero when one only populates electron states
with eigen-energy within this gap. It becomes clear that the activated behavior of
the conductivity is determined by the mobility gap and not by the spectral gap.
As such, it is extremely important to detect the mobility edges for our crystals.
For this, we employ a technique called the level statistics analysis, which has been
successfully used in the past for this very purpose [110, [144].

We exemplify the process for the temperature 7" = 900 K, where the disorder
is quite pronounced and the effects described above are more visible. Before we
start, we need to examine the spectral characteristics of the Hamiltonians. For
this, we have diagonalized the tight-binding KS-Hamiltonian for 1001 selected
thermally disordered configurations. The result is a sequence of 1001 discrete sets
of eigenvalues {€}, which we rendered on a horizontal line for each configuration
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Figure 7.5: (a) Fluctuation (black dots) and average value (red line) of the chemical potential value corre-

sponding to the charge neutrality. (b) Same as (a) for the intrinsic charge carrier density. The
data was extracted from the spectra shown in Fig. b) for a crystal containing 1000 Si atoms at
temperature 900 K.

and then we stuck these lines vertically. The resulting collection of spectra then
appears as the fuzzy dots seen in the background of Fig. [7.4, We recall that for
covariant systems of Hamiltonians in the thermodynamic, the spectrum is in fact
non-fluctuating in the sense that, if we pick any energy interval and ask what is
the probability (w.r.t. to w) for at least one eigenvalue to fall within this interval,
the answer will either 0 or 100 percent. This is a consequence of the fact that
TgHoﬂl;T have the same spectrum for all g € G. In the same time, TgHngT = H. .
and the orbit {r,w, g € G} samples Q2 entirely. The spectrum of a covariant family
of Hamiltonians is defined as the intersection of all closed subsets of the real axis
that contain all eigenvalues with 100% probability. Rendering the spectra as in
Fig. helps one identify this non-fluctuating spectral set.

We now examine the spectra more closely. The first issue we want to address
is the appearance of the spectral gaps inside the valence and conduction bands.
These are artificial features due to relative small size of the system. For a periodic
system simulated with periodic boundary conditions (i.e. at I-point) on a finite
super-cell containing many unit cells, these gaps will be explained by the coarse
sampling of the Brillouin zone of the unit cell. As one can see in Fig. [7.4] many of
the gaps disappear when the size of the Si crystal is increased from 3 x 3 X 3 unit
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cells to 5 x 5 x 5 unit cells. One should also note that the fuzziness in the rendered
spectra decreases as the size of the system increases, which is a manifestation of

the non-fluctuating character of the spectrum in the thermodynamic limit.

The second issue is the size of the spectral gap, which in our simulations comes
at 1.7 eV. This is more than twice the value returned by converged KS-DFT
simulations and it indicates that the local orbital basis is too coarse. We have
verified that, indeed, increasing the local orbital basis converges the spectral gap
to the standard KS-DFT value of 0.7 eV. We recall that the experimental value is
1.1700 eV at 4.2K [145] and that the experimental band gap displays a temperature
dependence which has been assessed quite precisely [146, 147]. Our simulations,
however, are performed with the same super-cell regardless of the temperature,
hence we cannot relate them to that experimental fact. Our conclusions based on
the spectral data reported in Fig. [7.4] is that the present simulations are not yet
precise enough for quantitative predictions. As such, we will focus in the following
only at qualitative aspects.

We now turn our focus on the level statics analysis, which was performed in the
following way. We picked an arbitrary energy e and, for each of the 1000 thermally
disordered configurations considered in Fig. 7.4, we identified the unique eigen-

values €7 and €7, ; that satisfy the constraint € < e < €7, ;. Then we computed

w
a+j+1

—5 and 5. After repeating the procedure for all 1000 configurations, we generated

the level spacings Ae=¢ — €q4jw, letting j take 11 consecutive values between
ensembles of 11,0000 level spacings for each energy e. These level spacings were

subsequently normalized by their average.

As done in [144], one can examine the histograms of these ensembles and de-
termine what kind of distributions they manifest. Since the KS-Hamiltonians are
real, we expect the outcome to be either a Poisson distribution P(s) = e™® or a
Gaussian orthogonal ensemble (GOE), Puor = %se‘gsz. These distributions are
expected when the localization length of the wave functions with energy close to € is
smaller/larger than the size of the super-cell, respectively [148]. If the super-cell is
large enough, one can derive from these distributions the localized or de-localized
character of the wave functions. Overlapped over the spectra in Fig. [7.4] is the
variance (s?) — (s)? of the level spacing ensembles collected at different energies,
as well as the variance value of 0.273 computed from P,oy. Since the variance of
the Poisson ensemble is 1, we can easily identify from Fig. [7.4] the character of the
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F igure 7.6: Fluctuation (black dots) and average value (red line) of the impurity density as a function of
chemical potential. The inset shows a restricted range of the same data. The numerical values
were extracted from the spectra shown in Fig. b) for a crystal containing 1000 Si atoms at
temperature 900 K.

wave functions, in particular, the mobility gap. As one can see, it extends well

beyond the spectral gap.

7.5.2 Charge carrier concentrations
The charge-neutrality point is defined by the precise value of the chemical potential

1o where the charge neutrality of the crystal is achieved. Since in our calculations
each ionic core carries 4e charge, the charge neutrality condition reads:

4N, 2 1
@ ( _ . 7.5.1
Vol <VOIZ 1+exp(ﬂ)> ( )

a kT

We want to point out that, for covariant systems, po and the quantity inside the
average brackets in ([7.5.1]) are self-averaging in the thermodynamic limit. How-
ever, for our finite-size crystals, these quantities will display fluctuations from one
thermally disordered configuration to another and the size of these fluctuations is
a good indicator of how close is the simulation to the thermodynamic limit. A
rendering of the fluctuations as well as the average value of the chemical potential
o at the neutrality point and 900 K temperature are reported in Fig.[7.5(a). The
data reveal an extremely low level of fluctuations, characterized by a standard

deviation of 0.063 % around the average value po = 0.24546 Ha.

Mapping the concentration of the conduction electrons and valance holes is cru-
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Figure 7.7 Conductivity as a function of chemical potential for 216 Si atoms, 7" = 300 K and different values of

the dissipation coefficient. Shown in blue are the un-processed output for 1000 thermally disordered
configurations. The red curves represent the average values.

cial for understanding the transport characteristics of crystals. The hole concen-
tration is determined by the depletion of the valence states due to the thermal

excitations:
2 1
nn(Typn) = ( — 1l ) (7.5.2)
Vol 6;0 1+ exp(“=) }
The concentration of the mobile electrons is determined by the population of the
conduction states due to the thermal excitations:

2 1
716 2“7 = €W — . 7.5.3
( l’[’) vol = 1 + eXp( ngM) ( )

Note that at the neutrality point, we have the equality:

nu(T, o) = ne(T, o). (7.5.4)

The common value of the two densities is called the intrinsic density (n;) of charge
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Figure 7.8: Same as Fig. for T =900 K.

carriers and it is one of the most important characteristics of Si semiconductor.
Its experimental value at 300 K has been determined with great precision [149-
151] to be n; = 9.7 =+ 10.0 x 10° cm™3. Experimental data on the dependence
of n; with the temperature has been summarized in [152, Fig. 14|, from where
we extracted the experimental value of 1.0 x 107 em™2 at T = 900 K. For our
simulations, the fluctuations and the average value of n; are reported in Fig. |7.5(b).
As one can see, despite of extremely low fluctuations in pg, there are substantial
fluctuations in the n; data, which reflect the extreme sensitivity of n; on the energy
spectrum. Quantitatively, the standard deviation in Fig. [7.5(b) is 6 % and the
average value is n; = 1.973 x 10'®. This value is much lower than the experimental
value mentioned above, the main reason being the over-estimation of the band gap

by our simulations.

In our study, we will consider not only neutral but also Si crystals that are away
from neutrality point by letting the chemical potential  be a variable. Experimen-
tally, the variation of the chemical potential can be achieved via gate potentials
for thin films or via impurity doping for bulk samples. Either way, such variations
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Figure 7.9: Direct conductivity as a function of the chemical potential for 1000 Si atoms, T' = 300 K and

o = 0.01kT (top), I'o = 0.1kT (middle) and I'g = kT (bottom). Shown in blue are the un-
processed output for 1000 thermally disordered configurations. The red curves represent the average
values.

lead to changes in the electronic structure of the crystal, which should be recom-
puted every time the doping level is changed. Since in our simulations we use the
same electronic structure, specifically the one computed at the neutrality point,
the results we present here are relevant only for lightly doped or weakly gated sam-
ples where the changes in the electronic structure are expected to insignificant. To
make contact with the experiment, one has to rely on the impurity density value
rather than on the chemical potential, because the former is the parameter that
can be controlled in laboratory. The impurity density is evaluated from:

) = e ) =l T = (5 30 4 )~ | (799

For completeness, we show in Fig. the relation between the impurity density
and chemical potential y, as derived from the spectra shown in Fig. and ((7.5.5)).
Let us recall that a light to moderate doping corresponds to the experimental values
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Figure 7.10: Same as Fig. for T =900 K. In addition, the bottom panel contains a zoom-in.

Nexp < 10'® cm™3 which in terms of the chemical potential means, approximately,
that |pu — po| < 0.01 Ha.

Let us end this section by specifying that the extrinsic hole density from Eqs.
will be used in the next section to generate the hole mobility via the relation
o = enppy. The hole mobility u, will be mapped as a function of the acceptor
concentration ([7.5.5)).

7.5.3 Direct conductivity and mobilities of charge carriers

In this section we present and analyze the numerical results on the direct con-
ductivity . Figs. and report the data for a 216 Si atoms crystal
at temperatures T = 300 K and 7" = 900 K, respectively. Similarly, Figs.
and report the data for a 1000 Si atoms crystal at temperatures T' = 300 K
and T' = 900 K, respectively. The chemical potential has been varied throughout
the entire energy spectral range and the dissipation parameter I'y was sampled
at three different values in these simulations. Overall, the results show a good
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correlation between the conductivity plots and the spectrum of the Kohn-Sham
Hamiltonians. There is a significant difference between the outputs for 216 and
1000 atom crystals, indicating that the results are not converged yet w.r.t. the sys-
tem’s size. There is also a significant dependence on the dissipation parameter I'.
It is interesting to notice that for its largest values, the fluctuations of the direct
conductivity are drastically suppressed. As explained in [110], the convergence to
thermodynamic limit is faster for larger I'y, and this explains the suppression of

the fluctuations observed in these figures.

The conductivity results are in very good agreement with the mobility gap pre-
diction, which for 7" = 900 K can be found in Fig. [7.4] Indeed, the conductivity
is obviously not influenced at all by the first band of spectrum, which was deter-
mined in Fig. to be Anderson localized. This is quite obvious in the inset of
Fig. [7.10] which shows a zoom into the region around the spectral gap. Let us
point out again that, on the other hand, the intrinsic and extrinsic charge carriers
are highly influenced by the presence of this Anderson localized band.

In Fig.[7.11j(a), we focus on the behavior of direct conductivity inside and around
the insulating gap, especially on the hole side. We chose to investigate only at the
crystal with 1000 Si atoms and T" = 900 K because it is the most converged system.
At T = 300 K, the conductivity curves display a pronounced dependence on the
spectral details which are not yet converged, hence the analysis will not be reliable.
As it is customary, the transport coefficient has been plotted as a function of the
acceptor concentration rather than chemical potential. The behavior of ¢ seen in
Fig.[7.11)(a) is as expected. Deep inside the insulating gap, the direct conductivity
saturate at a value proportional to I'y and, as the chemical potential moves towards
the valence band, an activated behavior takes over. In Fig. [7.11{(b), we report the
hole mobility as a function of the acceptor concentration. The functional shape is in
good agreement with the measured one (see [145] Fig. 21.8]). Let us point out that,
when the chemical potential is inside a spectral gap, the mobility is proportional
with the dissipation I'g, hence with inverse of the relaxation time. In contrast,
when the chemical potential is inside a spectral band, as is the case of a metal, the
mobility is proportional with relaxation time, hence inverse proportionally with I'y.
As such, one should not be surprised by the behavior with I'y seen in Fig. [7.11[b).
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8 Conclusions

In this work, the structure and adsorption properties of K-PHI and related cation
exchanged poly(heptazine imide) salts are studied by means of density functional
theory calculations of an idealized model derived from experimental findings. The
structure of K-PHI consists of positive potassium cations, which are embedded
in the pores between the layers of a negatively charged well-organized 2D carbon
nitride framework. This charge separation can be described as frustrated Coulomb
pairs analogues to frustrated Lewis pairs which are known to exhibit adsorbate
activation properties. The potassium cations can be exchanged experimentally
with other ions while maintaining the crystal structure. Here, the potassiums
were exchanged with other alkali (Li*, Nat, Rb™), alkaline earth (Ca®", Sr?f,
Ba?") and transition metal (Au™, Ag") cations as well as hydrogen atoms. All
these materials have similar structures with intercalated cations between the layers
except the covalent H-PHI and Au-PHI, which has the gold ions in the same layer
as PHI due to a high degree of covalency as it is typical for gold and confirmed by
charge analysis.

Due to the presence of positive ions as well as negative PHI layers which con-
tain surface nitrogens as basic adsorption sites, K-PHI and their metal exchanged
analogues (X-PHI) offer a unique highly-polarizing adsorption environment, which
can be used for different adsorbates. The carried out calculations suggest that the
adsorption environment inside these materials makes them even possible candi-
dates for helium storage and transportation. The helium adsorption is found to be
energetically favorable inside the nanopores of all studied systems although helium
is known to hardly interact with any species. Even in the metal-free H-PHI system
the adsorption is energetically favored which underlines the potential of metal-free
CN materials. Furthermore, the adsorption energy increases for the cation con-
taining systems and its helium affinity is determined by the cation choice. K-PHI
exhibits an adsorption energy of AFE,qs= -4.3 kJ/mol. The highest adsorption en-
ergies are calculated in the case of the alkali metal containing PHI materials and
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depend on the size of the cation as one factor for the resulting charge separation.
Hence, Cs-PHI was determined as the material with the thermodynamically high-
est adsorption affinity (AE,qs=-5.5 kJ/mol). The origin of the interaction between
helium and the X-PHI materials was determined to be dominated by Coulomb in-
teractions as shown by the ALMO-EDA method. However, also charge transfer is
significantly contributing to the interaction. The strongest charge transfer occurs
from He to the positive cations in the order of 0.5 me resulting in a stabilization of
around -0.8 kJ/mol. A second charge transfer contribution was determined from
the negative PHI framework to He (around 0.05 me and -0.2 kJ/mol).

The highly active adsorption environment is not only interesting for helium ad-
sorption, but also exhibits interesting possibilities for more reactive species. The
water adsorption in K-PHI was investigated and a remarkable adsorption energy
of -94.5 kJ/mol for a single molecule and -83.4 kJ/mol per water molecule upon
complete filling of K-PHI (14 wt%). This high adsorption affinity can be explained
by the fact that water can be adsorbed directly at the core of the charge separation
in K-PHI. The water is closely coordinated to the positive potassium ions while at
the same time forming hydrogen bonds with the surface nitrogens of the negative
PHI layers. The immense adsorption energy reveals that water is not interacting
in terms of regular physisorption and instead, it is becoming part of the archi-
tecture of the material. The interaction of water in K-PHI originates mainly by
Coulomb as well as charge transfer contributions, which is occurring from PHI to
water (20.9 me, -32.9 kJ/mol) and from water to the potassium cations (10.6 me,
-10.2 kJ/mol). Since water interacts strongly with the material, it is expected to
be adsorbed even at low partial pressures and not to be easily removable there-
after. Hence, it was investigated how the presence of HyO influence the helium
adsorption in K-PHI.  Interestingly, adsorbed water is able to slightly increase the
helium affinity at low water and helium uptakes (up to -1.0 kJ/mol). However,
this enhancement effect quickly vanishes at higher loadings due to competition for
adsorption sites in the narrow nanopores. Also the maximum helium uptake de-
creases the more water is present in the pores. Therefore, K-PHI should be treated
cautiously in presence of polar molecules which whom it may interact strongly. If
water is not desired to fill the nanopores, these materials should be used in an

anhydrous environment.

This work is a contribution to understand the structure-property relation inside
poly(heptazine imides) and their unique confined adsorption environment with



95

strongly interacting nanopores. Their immense potential is indicated for various
applications, where strong interactions are desired, e. g. for molecular activation
for catalytic purposes.

Furthermore, in the last chapter, disordered tight-binding models based on
AIMD outputs has been derived and a Kubo-formalism was formulated that pre-
serves the self-averaging property of the transport coefficients. The Kubo-formalism
was coded as a post-processing subroutine to a standard AIMD code and prelim-
inary results on the transport coefficients of crystals Si were obtained at various
temperatures. According to the study, the thermal disorder can have measurable

effects even at room temperature.
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