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Abstract
In this thesis, we use an algebro-geometric approach to study solutions to a generalized
version of the classical Yang-Baxter equation (CYBE) for central simple Lie algebras over
arbitrary fields of characteristic 0. We assign to these solutions certain geometric data
including a cohomology-free sheaf of Lie algebras on a projective curve. The application
of geometric methods leads to a new proof of the Belavin-Drinfeld trichotomy, which
states that non-degenerate solutions of the CYBE for complex simple Lie algebras are
either elliptic, trigonometric, or rational. We give more explicit descriptions of the
geometric data as well as the structure theory for solutions from each of these three
classes. We also derive a purely geometric version of the Belavin-Drinfeld trichotomy
which works over any field of characteristic 0. Moreover, we prove that every non-skew-
symmetric solution of the generalized CYBE for central simple Lie algebras over an
arbitrary field of characteristic 0 corresponds to a projective curve normalized by P1

and extends to a rational function by passing to an étale P1-scheme.

Deutsche Version

In dieser Arbeit verwenden wir einen algebro-geometrischen Zugang zum Studium von
Lösungen einer Verallgemeinerung der klassischen Yang-Baxter Gleichung (KYBG) für
zentraleinfache Lie Algebren über beliebigen Körpern der Charakteristik 0. Wir ordnen
diesen Lösungen bestimmte geometrische Daten zu, unter anderem eine Kohomologie-
freie Garbe von Lie Algebren auf einer projektiven Kurve. Unter Verwendung ge-
ometrischer Methoden führt dies zu einem neuen Beweis der Belavin-Drinfeld Tri-
chotomie, welche besagt das nicht-entartete Lösungen der KYBG entweder ellip-
tisch, trigonometrisch oder rational sind. Wir geben explizite Beschreibungen der
geometrischen Daten und der Strukturtheorie von Lösungen aus jeder einzelnen dieser
drei Klassen an. Wir leiten auch eine rein geometrische Version der Belavin-Drinfeld
Trichotomie her, die über beliebigen Körpern der Charakteristik 0 gilt. Des weiteren
beweisen wir, dass jede nicht schiefsymmetrische Lösung der verallgemeinerten KYBG
zu einer von P1 normalisierten projektiven Kurve gehört und durch den Übergang zu
einem étalen P1-Schema zu einer rationalen Funktion erweitert werden kann.
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Introduction
Let g be a finite-dimensional, simple, complex Lie algebra. The generalized classical
Yang-Baxter equation (GCYBE) is the functional equation

[r12(x1, x2), r13(x1, x3)] + [r12(x1, x2), r23(x2, x3)] + [r32(x3, x2), r13(x1, x3)] = 0, (0.1)

where r : U×U → g⊗g is a meromorphic function for some connected open U ⊆ C. The
brackets on the left-hand side of the GCYBE (0.1) are defined in the triple tensor product
of the universal enveloping algebra U(g) of g, where e.g. r13(x1, x3) = (r(x1, x3))13 and
(a⊗ b)13 = a⊗ 1⊗ b ∈ U(g)⊗3 for all a, b ∈ g. Solutions of the GCYBE (0.1) are called
generalized r-matrices and are important in the theory of integrable systems; see e.g.
[Mai86; BBT03; Skr06]. For instance, non-degenerate generalized r-matrices can be
used to construct Lie algebra splittings, which define particularly well-behaved linear
Poisson structures in the Adler-Kostant-Symes scheme; see [Skr13]. More precisely, a
non-degenerate solution r of the GCYBE (0.1) defines a Lie subalgebra g(r) ⊆ g((z)),
such that g((z)) = g[[z]]⊕ g(r) holds.

In this work, we study non-degenerate generalized r-matrices from an algebro-
geometric perspective. To this end, we combine the main result from Ostapenko
[Ost92] with well-known projectification schemes (see e.g. [Mum78; Mul90]) to assign
a pair (X,A ) to any non-degenerate solution r of the GCYBE (0.1), consisting of a
coherent sheaf of Lie algebras A on an irreducible projective curve X; see Subsection
3.1. More precisely:
• X is the completion of Spec(O) by a smooth point p “at infinity”, where

O ⊆ Mult(g(r)) := {λ ∈ C((z)) | λg(r) ⊆ g(r)} (0.2)

is any unital subalgebra of finite codimension.
• A is the formal gluing of g(r) on Spec(O) = X \ {p} with g[[z]] on the formal

neighbourhood of p.
Note that we can always choose O = Mult(g(r)), however in some situations other
choices of O are more convenient.

In [Che83b], Cherednik showed that the Szegö kernel of a locally free sheaf of Lie
algebras with vanishing cohomology on a smooth algebraic curve solves a geometric
version of the GCYBE. This construction of geometric r-matrices was extended by
Burban and Galinat in [BG18] to include torsion free sheaves of Lie algebras on singular
projective curves. It turns out that the geometric datum (X,A ) associated to a
non-degenerate solution r of the GCYBE (0.1) satisfies the axioms from [BG18], i.e.
H0(A ) = 0 = H1(A ) and A |q ∼= g for all points q in an open neighbourhood of
p; see Remark 3.3.1. Hence, it is possible to construct a geometric r-matrix ρ from
(X,A ). Moreover, r can be recovered by appropriately trivializing ρ; see Theorem 3.3.3.
This reveals that r is of geometric nature, which is surprising given its local analytic
definition. More precisely, there exists a Riemann surface Y such that r is, up to a
natural equivalence transformation, the restriction of a rational map Y × Y → g⊗ g;
see Corollary 3.3.6.

If a solution r of the GCYBE is skew-symmetric (i.e. r12(x, y) = −r21(y, x)), Equation
(0.1) reduces to the more commonly known classical Yang-Baxter equation (CYBE)

[r12(x1, x2), r13(x1, x3)] + [r12(x1, x2), r23(x2, x3)] + [r13(x1, x3), r23(x2, x3)] = 0. (0.3)

Solutions of the CYBE (0.3) are called r-matrices. Additional to the aforementioned
linear Poisson structure, an r-matrix defines a quadratic Poisson structure on an
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appropriate group, which is compatible with the group’s multiplication; see [Dri83;
FT07; CP95]. For instance, a constant solution r ∈ g ⊗ g of the CYBE (0.3) with a
g-invariant symmetric part endows the connected, simply-connected Lie group G of
g with a Poisson bracket such that the multiplication G × G → G is a morphism of
Poisson manifolds: G is a so-called Poisson-Lie group. The infinitesimal counterpart
of such a Poisson bracket on G is a Lie bialgebra structure on g. Recall that a Lie
bialgebra a is a Lie algebra equipped with a 1-cocycle δ : a→ a⊗ a, called Lie bialgebra
cobracket, which induces a Lie bracket on a∗. Lie bialgebra structures can be studied
using Manin triples, i.e. triples (m,m+,m−) of Lie algebras such that m = m+ ⊕ m−
holds and m± are Lagrangian with respect to a non-degenerate, invariant, symmetric
bilinear form on m. We say that a Lie bialgebra cobracket δ on m+ is determined by
a Manin triple (m,m+,m−) if δ is dual to the Lie bracket of m− under the bilinear
form on m. The fundamental example of a Manin triple is the classical double of a
Lie bialgebra a: D(a) := a⊕ a∗, equipped with its canonical bilinear form, possesses
a unique Lie algebra structure such that (D(a), a, a∗) is a Manin triple determining
the Lie bialgebra cobracket on a. Non-degenerate r-matrices can be used to construct
infinite-dimensional examples of these structures. In fact, for every non-degenerate
solution r of the CYBE (0.3), the assignment

δ(a)(x, y) = [a(x)⊗ 1 + 1⊗ a(y), r(x, y)], (0.4)

defines a Lie bialgebra cobracket on g(r) and (g((z)), g(r), g[[z]]) is a Manin triple
isomorphic to the classical double of g(r) for an appropriate bilinear form on g((z)); see
[ES02, Proposition 6.2].

In [BD83a], Belavin and Drinfeld derived the most important results in the structure
theory of non-degenerate solutions r of the CYBE (0.3), under the assumption that r
depends on the differences of its variables, i.e. r(x, y) = ρ(x− y) for some meromorphic
function ρ : U → g⊗ g. They proved that:
• ρ extends uniquely to a skew-symmetric meromorphic function ρ : C→ g⊗ g with

only simple poles.
• The pole set Λ of ρ is a lattice in C and they call ρ elliptic (resp. trigonometric, resp.

rational) if rk(Λ) = 2 (resp. rk(Λ) = 1, resp. rk(Λ) = 0).
• Elliptic r-matrices are elliptic functions and trigonometric (resp. rational) r-matrices

can be transformed into rational functions of exponentials (resp. rational functions)
by means of a pole set preserving equivalence transformation.

We refer to this splitting of non-degenerate r-matrices into three classes as Belavin-
Drinfeld trichotomy in the following. In [BD83b], Belavin and Drinfeld showed that the
assumption r(x, y) = ρ(x− y) can actually be achieved by certain natural equivalence
transformations, however, it is unclear whether these transformations respect the classes
of the Belavin-Drinfeld trichotomy. Nevertheless, this proves that non-degenerate r-
matrices are automatically skew-symmetric. In particular, non-degenerate r-matrices
are exactly non-degenerate generalized r-matrices, hence the name.

Recall that there are only three types of connected complex algebraic groups of
dimension 1: elliptic curves, the multiplicative group C×, and the additive group C.
In all three cases the universal covering is C. The Belavin-Drinfeld trichotomy can be
reinterpreted as follows: every non-degenerate r-matrix, depending on the difference
of variables, is equivalent to the pull-back of a rational function on a one-dimensional,
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connected, complex algebraic group to the universal covering. This observation gives
the Belavin-Drinfeld trichotomy a clear algebro-geometric flavor and is relevant in its
proof (where e.g. Chevalley’s structure theorem on algebraic groups is used), but a
direct interpretation of the trichotomy in algebro-geometric terms remained obscure.

One of the main results of this work is a novel completely algebro-geometric proof
of the Belavin-Drinfeld trichotomy, clarifying the geometry behind this splitting. Let
r be a non-degenerate solution of the CYBE (0.3). We prove that a particular unital
subalgebra O ⊆ Mult(g(r)) exists such that X is of arithmetic genus one, where (X,A )
is the geometric datum associated to r; see Theorem 3.2.5. In this case, we call
(X,A ) the geometric CYBE datum of r. Recall that an irreducible projective curve
of arithmetic genus one is a plane cubic curve, i.e. it is determined by an equation
y2 = x3 + ax+ b for some a, b ∈ C. Furthermore, X is elliptic if 4a3 ̸= −27b2 and has a
unique singularity s otherwise. In the latter case, s is either nodal (if 4a3 = −27b2 ̸= 0)
or cuspidal (if a = 0 = b) and

X \ {s} ∼=

C× if s is nodal,
C if s is cuspidal.

(0.5)

We prove that r is, up to an equivalence transformation preserving X,
• an elliptic function in both variables if and only if X is an elliptic curve,
• a rational function of exponentials if and only if X is a nodal plane cubic curve, and
• a rational function if and only if X is a cuspidal plane cubic curve;
see Theorem 6.2.1. The ambiguity in the categorization of r-matrices that do not
depend on the difference of variables is absent in this approach. We point out that
the classical double of g(r) can be interpreted geometrically. For all q ∈ X we have an
exact sequence

0 −→ H0(A ) −→ Γ(X \ {q},A )⊕ Âq −→ Q(Âq) −→ H1(A ) −→ 0 (0.6)

(see [Par01, Proposition 3] or [Gal15, Chapter 3]), so H0(A ) = 0 = H1(A ) implies
Q(Âq) = Γ(X \ {q},A )⊕ Âq and (Q(Âq),Γ(X \ {q},A ), Âq) becomes a Manin triple,
if Q(Âq) is equipped with a canonical geometric bilinear form. If q = p is the smooth
point at infinity, this Manin triple is isomorphic to the classical double (g((z)), g(r), g[[z]])
of g(r).

In [BD83a], Belavin and Drinfeld proved that elliptic r-matrices exist only for
g = sln(C) and that all of these were already found by Belavin in [Bel81]. The Lie
subalgebras of g((z)) associated to elliptic r-matrices are precisely the Lie algebras of
quasi-periodic functions studied e.g. in [Gol84; RSTS89; Skr12]. Consequently, the
geometric CYBE data of elliptic r-matrices have an explicit description. In [BH15],
Burban and Heinrich showed that the sheaf of Lie algebras associated to an elliptic
r-matrix can be realized as the sheaf of traceless endomorphisms of a simple vector
bundle on the underlying elliptic curve.

The classification of rational r-matrices is a representation wild problem, so one
cannot expect to obtain a complete list of solutions for arbitrary g. Nevertheless, Stolin
provides reductions of this classification problem to more approachable Lie theoretic
problems in [Sto91b; Sto91c] and uses these to calculate all rational r-matrices for
certain low-dimensional g. His methods build on the observation that rational r-matrices
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r are in bijection with Lagrangian orders W ⊆ g((z−1)) such that g((z−1)) = g[z]⊕W.
This is related to the fact that a rational r-matrix defines a Lie bialgebra cobracket
on g[z] by Formula (0.4). From this perspective, (g((z−1)), g[z],W) is isomorphic to
the associated classical double. Let r be a rational r-matrix. In [BG18], Burban and
Galinat used Stolin’s theory to show that C[z−2, z−3]g(r) = g(r) holds. This results in a
more straightforward construction of the geometric datum (X,A ) of r. If s denotes the
unique cuspidal singularity of X, their construction shows that the geometric Manin
triple (Q(Âs),Γ(X \ {s},A ), Âs) is isomorphic to (g((z−1)), g[z],W).

Trigonometric r-matrices were also classified in [BD83a]. These are parametrized
by so-called Belavin-Drinfeld quadruples Q = ((Π+,Π−, ϕ), h). More precisely, every
trigonometric r-matrix is equivalent to a trigonometric r-matrix rQ determined by
an appropriate Belavin-Drinfeld quadruple Q. Recently, Polishchuck showed that
C[ez/(ez − 1)2, ez/(ez − 1)3]g(rQ) = g(rQ) and uses this fact to construct the geometric
datum of rQ; see [Pol21].

In this work, we give a different geometrization scheme for trigonometric r-matrices,
which yields a more concrete description of the geometric datum to rQ; see Section 8.1.
It is based on the observation that Stolin’s theory of rational r-matrices uses Manin
triples of the form (g((z−1)), g[z],W) instead of (g((z)),W, g[[z]]), which suggests that
there is a more appropriate theory of Manin triples for trigonometric r-matrices as well.

Let γ ∈ g⊗g be the Casimir element. Fix a triangular decomposition g = n+⊕h⊕n−
and note that γ = γ+ + γh + γ− for some γh ∈ h⊗ h and γ± ∈ n± ⊗ n∓. The simplest
trigonometric r-matrix is given by ϱ◦(exp(x), exp(y)), where

ϱ◦(u, v) = vγ

u− v
+ γ− + γh/2. (0.7)

Recall that the affine Lie algebra ĝ = g[u, u−1]⊕Cc possesses the so-called standard Lie
bialgebra structure, which was introduced in [Dri85]; see also [CP95, Example 1.3.8]. It
turns out that the Lie bialgebra cobracket on g[u, u−1] ∼= ĝ/Cc induced by the standard
structure of ĝ is determined by ϱ◦ via Formula (0.4); see [CP95, Example 2.1.10].

We will show that such a connection holds for any affine Kac-Moody algebra K and
that this yields the desired theory of Manin triples for trigonometric r-matrices; see
Subsection 5.4.4. It is well-known (see [Kac90]) that a σ ∈ AutC-alg(g) of order m ∈ N
exists such that [K,K]/c is isomorphic to the twisted loop algebra

L := L(g, σ) :=
⊕
k∈Z

gkz
k, where gk := {a ∈ g | σ(a) = exp(2πik/m)a} (0.8)

and c is the center of K. The Lie bialgebra cobracket on L induced by the standard Lie
bialgebra structure of K is determined by a σ-twisted version ϱ◦ of ϱ◦ via Formula (0.4).
In fact, any r-matrix ϱt := ϱ◦ + t for some t ∈ L⊗L defines a Lie bialgebra structure on
L in this way; see Proposition 5.4.8. Furthermore, for every Belavin-Drinfeld quadruple
Q, rQ is of the form ϱt(exp(x/m), exp(y/m)) for an appropriate t = tQ ∈ ∧2L and
σ ∈ AutC-alg(g); see Lemma 8.2.12. We call the r-matrices of the form ϱt, for some
t ∈ L ⊗ L, σ-trigonometric r-matrices and argue that these are the appropriate two-
parameter versions of trigonometric r-matrices. The standard bialgebra structure of
a Kac-Moody algebra is well-known to be determined by a Manin triple; see [CP95,
Example 1.3.8]. We will use this fact to deduce a bijection between σ-trigonometric
r-matrices and certain subalgebras W ⊆ L × L such that (L × L,L,W) is a Manin
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triple; see Theorem 5.4.9. Here, L× L is equipped with a canonical bilinear form and
L is identified with its diagonal embedding.

The Belavin-Drinfeld classification of trigonometric r-matrices [BD83a, Theorem
6.1] cannot be transported directly to a classification of the Lie bialgebra structures
associated to σ-trigonometric r-matrices. This stems from the fact that holomorphic
equivalence transformations are needed to achieve the difference-dependent form and
these transformations do not define endomorphisms of twisted loop algebras. We
adjust the proof of [BD83a, Theorem 6.1] to deduce that σ-trigonometric r-matrices are
determined by Belavin-Drinfeld quadruples, up to equivalence transformations which
respect the associated Lie bialgebra structures; see Theorem 8.2.1. Furthermore, we give
a concrete description of the Lie algebra WQ associated to rQ for a Belavin-Drinfeld
quadruple Q; see Remark 8.2.7. In our joint work with Maximov [AM21], we use the
algebro-geometric theory of the CYBE presented here to derive a direct reduction of
Theorem 8.2.1 to [BD83a, Theorem 6.1].

Using results from [KW92], we prove that the Lie algebra W ⊆ L×L associated to a
σ-trigonometric r-matrix ϱ has a natural C[u+, u−]/(u+u−)-module structure. Therefore,
the completed module Ŵ lives on the formal neighbourhood Spec(C[[u+, u−]]/(u+u−))
of the singular point s of a nodal plane cubic curve X. We show that the sheaf A
associated to ϱ(exp(x/m), exp(y/m)) is given by formally gluing L on X \ {s} ∼= C×

with Ŵ on the formal neighbourhood of s; see Lemma 8.1.2 and Theorem 8.1.3. Since
the Lie algebra W has a concrete description if ϱ = ϱQ for some Belavin-Drinfeld
quadruple Q, we obtain a tangible description of A in this case as well. Furthermore,
this geometric approach reveals the classical double of the Lie bialgebra structure on
L defined by ϱ: it is isomorphic to the Manin triple (Q(Âs),Γ(X \ {s},A ), Âs); see
Proposition 8.1.4. In particular, we will see that D(L) ∼= Q(Âs) ∼= L̂+ × L̂−, where
L̂+ (resp. L̂−) is the completion of L in positive (resp. negative) powers of z, i.e.
L̂± = ∏

±j⩾0 gjz
j ⊕⊕±j<0 gjz

j.
To conclude the introduction, let us note that the notion of non-degenerate generalized

r-matrices can be generalized to arbitrary fields k of characteristic 0 by considering
formal power series instead of meromorphic functions. These series will be called
formal generalized r-matrices and are especially interesting for k = R from the point
of view of integrable systems (see e.g. [BBT03]) and for k = C((ℏ)) from the point
of view of quantum groups (see e.g. [KPS20]). For k = C the formal and analytic
setting lead to the same theory by virtue of Proposition 3.4.5. This work will be
formulated in the language of formal generalized r-matrices. We will see that many of
the results for generalized r-matrices mentioned above stay valid for formal generalized
r-matrices over arbitrary fields of characteristic 0. In particular, we will see that the
presented geometrization scheme still works and provides a geometric trichotomy of
skew-symmetric formal generalized r-matrices by the three different types of plane cubic
curves; see Theorem 3.2.5 and Remark 3.2.6.

Content and structure

In this section, we give a more detailed exposition of the content of this work following
precisely the structure of the main body. In the process, we give the precise formulations
of our main results. This work is split into two parts.
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Part I consists of a detailed look at the universal geometrization procedure for formal
generalized r-matrices over a field k of characteristic 0 as well as the consequent
properties of said objects; it is based on our work in [Abe21]. Chapter 1 is thereby
dedicated to the derivation of some necessary results in the theory of sheaves of (not
necessarily associative) algebras. In particular, we prove that the results in [Kir78;
Kir83], about local triviality of Lie algebra bundles, hold in an algebro-geometric context
if the classical topology notion is replaced by the étale topology; see Section 1.2. In
Section 1.3 we introduce a special set of subalgebras of A((z)), called A-lattices, for
any (not necessarily associative) finite-dimensional k-algebra A. If A is central (see
Subsection 1.3.1) and simple, any pair (O,W ), consisting of an A-lattice W ⊆ A((z))
and a unital subalgebra

O ⊆ Mult(W ) := {λ ∈ k((z)) | λW ⊆ W} (0.9)

of finite codimension, determines a geometric datum ((X,A ), (p, c, ζ)) := G(O,W ).
This datum consists of a coherent torsion-free sheaf of algebras A on an integral
projective curve X and a formal trivialization (c, ζ) of (X,A ) at a k-rational smooth
point p ∈ X; see Subsection 1.3.5. After introducing appropriate categories of pairs
(O,W ) and geometric data ((X,A ), (p, c, ζ)), G becomes an equivalence of categories;
see Theorem 1.3.6. Let us point out that any finite-dimensional simple algebra over an
algebraically closed field is automatically central.

Let g be a semi-simple finite-dimensional Lie algebra over k. In Chapter 2, we
introduce formal generalized r-matrices with values in g. These are certain elements
of (g ⊗ g)((x))[[y]], which solve a formal version of (0.1). We define an appropriate
notion of equivalence among them, called formal equivalence. Moreover, we will discuss
skew-symmetric formal generalized r-matrices, which are simply called formal r-matrices.
We show that a formal generalized r-matrix r determines a Lie algebra g(r) ⊆ g((z))
complementary to g[[z]]. A central observation in this setting is: if a formal generalized
r-matrix is normalized appropriately, the subalgebra g(r) ⊆ g((z)) is Lagrangian if and
only if r is skew-symmetric; see Subsection 2.3.2.

In Chapter 3, we use the fact that g(r) is a g-lattice for any formal generalized
r-matrix r in the geometrization scheme from Chapter 1 to assign a geometric datum
to r and examine the properties of this datum. The main results obtained in Section
3.1 and Section 3.2 can be summarized as follows.

Theorem A.
Let g be a finite-dimensional, central, simple Lie algebra over k, r ∈ (g⊗g)((x))[[y]]
be a formal generalized r-matrix, O ⊆ Mult(g(r)) be any unital subalgebra of
finite codimension, and G(O, g(r)) = ((X,A ), (p, c, ζ)).
(1) The geometric genus of X is at most one, H0(A ) = 0 = H1(A ), and A is

étale g-locally free at p.
(2) If the geometric genus of X is one and O = Mult(g(r)), then X is elliptic

and r is skew-symmetric up to scaling by an element of k[[y]]×.
(3) If r is skew-symmetric and normalized, there is a canonical choice for O such

that h1(OX) = 1, A is étale g-locally free at the smooth locus C of X, and
the Killing form of A |C extends to a perfect pairing A ×A → OX .

Theorem A.(1) & (2) imply that the normalization of X is P1
k if r is not equivalent to
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a formal r-matrix, i.e. the projective curves associated to non-skew-symmetric formal
generalized r-matrices are essentially all rational. As for k = C, an integral projective
curve over k of arithmetic genus one with a k-rational smooth point is either an elliptic
curve, a nodal plane cubic curve or a cuspidal plane cubic curve; see Remark 3.2.6.
Therefore, Theorem A.(3) can be seen as a splitting of normalized formal r-matrices
into three categories by the underlying curves. The three classes of this geometric
trichotomy are preserved by arbitrary formal equivalences; see Remark 3.2.7.

In Section 3.3, we derive a scheme that translates properties of a geometric datum
((X,A ), (p, c, ζ)) associated to a formal generalized r-matrix r into properties of r. To
this end, note that Theorem A.(1) ensures the existence of a smooth open neighbourhood
C of p such that A |C is étale g-locally free. We point out that, if k = C, this is equivalent
to A |q ∼= g for all q ∈ C closed; see Theorem 1.2.3. We call a quadruple ((X,A ), (C, η)),
where η is any non-vanishing 1-form on C, a geometric GCYBE model of r. If r is
skew-symmetric and normalized, there is a distinguished choice of GCYBE model
called the geometric CYBE model of r (see Subsection 3.3.1), where e.g. O is chosen
according to Theorem A.(3). Following [BG18], we construct the geometric r-matrix
ρ ∈ Γ(C×C \∆,A ⊠A ) (here ∆ is the diagonal of C) corresponding to ((X,A ), (C, η))
in Subsection 3.3.2. The section ρ can be seen as a global extension of r and, after étale
trivializing A at p, we obtain a rational extension of r. More precisely, the following
results hold; see Theorem 3.3.3 and Theorem 3.3.5.

Theorem B.
Let g be a finite-dimensional, central, simple Lie algebra over k, r ∈ (g⊗g)((x))[[y]]
be a formal generalized r-matrix, ((X,A ), (C, η)) be a geometric GCYBE model
of r, and ρ ∈ Γ(C×C \∆,A ⊠A ) be the geometric r-matrix of ((X,A ), (C, η)).
(1) The geometric Taylor expansion of ρ at C ×{p} (see Subsection 3.3.4) equals

λ(y)r(x, y) for some λ ∈ k[[z]]×.
(2) If r is skew-symmetric and normalized and ((X,A ), (C, η)) is its geometric

CYBE model, we get λ(z) = 1 in (1).
(3) There exists an étale X-scheme Y such that r is equivalent to a Taylor

expansion of some rational section of (g⊗ g)⊗ OY×Y .

Theorem A states that, if r is not equivalent to a formal r-matrix, the normalization
of X coincides with P1

k. Therefore, Y can also be thought of as an étale P1
k-scheme in

this case. Observe that Y is one-dimensional. If k = C, we may assume that Y is a
Riemann surface and obtain the extension result mentioned earlier.

We conclude Part I by interpreting formal generalized r-matrices for k = C (resp.
k = R) as Taylor expansions of non-degenerate solutions of the GCYBE (0.1) (resp. a
similar real analytic notion); see Section 3.4. In particular, Proposition 3.4.5 states that
in this way the theory of non-degenerate solutions of the GCYBE (0.1) (resp. a similar
real analytic notion) coincides with the theory of formal generalized r-matrices over
C (resp. R). Thus, all our established results are applicable to the original analytic
context.

Part II consists of an in depth look at the theory of formal r-matrices with values in
a finite-dimensional simple Lie algebra g over k = C. We begin by collecting some
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important results about twisted loop algebras in Chapter 4. Almost all of them are
fairly well-known and can be found in [Kac90] or [Hel78, Section X.5]. The only notable
exceptions are the results in Subsection 4.1.8 and Subsection 4.2.5 about maximal
subalgebras commensurable with a Borel subalgebra by Kac and Wang [KW92].

In Chapter 5, we give an overview of the theory of Lie bialgebras. Most importantly,
we discuss their relation with Manin triples (see Section 5.2) and present the procedure
of constructing new Lie bialgebras from known ones, called twisting, from [KS02]; see
Section 5.3.1. Following [AM21; AB21], we use the relationship between affine Kac-
Moody algebras and twisted loop algebras, to define the standard Lie bialgebra structure
on L = L(g, σ) (see (0.8)) for any σ ∈ AutC-alg(g) of finite order; see Subsection 5.4.4.
Furthermore, we introduce σ-trigonometric r-matrices and show that they define the
Lie bialgebra structures on L obtained by twisting its standard Lie bialgebra structure.
This results in the bijection of σ-trigonometric r-matrices with certain Manin triples
(L× L,L,W) in Theorem 5.4.9. We conclude Section 5 with a discussion of rational
r-matrices (in the sense of Stolin [Sto91b; Sto91c]) and their relation with Lie bialgebra
structures on the polynomial Lie algebra g[z]; see Subsection 5.4.5.

In Chapter 6, we give the announced new proof of the Belavin-Drinfeld trichotomy,
using the theory established in Part I. More precisely, the geometric trichotomy from
Theorem A.(3) implies that the sheaf of Lie algebras, appearing in a geometric CYBE
model, restricts to an étale g-locally free sheaf of Lie algebras on a one-dimensional,
connected, complex algebraic curve. We classify these sheaves in Subsection 6.1.
Combined with Theorem B, this yields the following version of the Belavin-Drinfeld
trichotomy; see Theorem 6.2.1.

Theorem C.
Let g be a finite-dimensional, simple, complex Lie algebra, r ∈ (g ⊗ g)((x))[[y]]
be a normalized formal r-matrix, and ((X,A ), (C, η)) be the geometric CYBE
model of r. Then r is equivalent to the Taylor series in the second variable at 0
of a non-degenerate r-matrix C× C→ g⊗ g, which is
• elliptic in both variables if and only if X is elliptic,
• of the form ϱ(exp(x/m), exp(y/m)), for some σ ∈ AutC-alg(g) of order m and

some σ-trigonometric r-matrix ϱ, if and only if X has a nodal singularity, and
• a rational r-matrix if and only if X has a cuspidal singularity.

Note that this approach immediately implies that the three classes of the Belavin-
Drinfeld trichotomy are preserved by arbitrary formal equivalences, since this statement
was already observed to hold for the geometric trichotomy; see Remark 6.2.6.

To present a complete picture of the situation, we reproduce the explicit geometric
construction of elliptic r-matrices from [BH15] as well as their classification from [BD83a];
see Chapter 7. In particular, we see that elliptic r-matrices are parametrized by triples
(τ, (n,m)) consisting of a complex number τ with positive imaginary part and a pair
0 < m < n of coprime integers. We refine the classification from [BD83a] by proving
that the elliptic r-matrices corresponding to the triples (τ, (n,m)) and (τ ′, (n′,m′))
are equivalent if and only if C/⟨1, τ⟩Z ∼= C/⟨1, τ ′⟩Z, n = n′ and m′ ∈ {m,n−m}; see
Proposition 7.2.4.

In Chapter 8, we discuss σ-trigonometric r-matrices in detail beginning with the



Contents 9

explicit geometrization procedure from our joint work with Burban [AB21]. More
precisely, we combine the theory of Manin triples for σ-trigonometric r-matrices from
Subsection 5.4.4 with the results from Subsection 4.2.5 on subalgebras of twisted loop
algebras and the construction of torsion-free coherent sheaves on singular curves from
[Bod+06] to derive the following results; see Section 8.1.

Theorem D.
Let g be a finite-dimensional, simple, complex Lie algebra, σ ∈ AutC-alg(g) have
order m ∈ N, and L := L(g, σ) be the associated twisted loop algebra (0.8).
Moreover, let ϱ be a σ-trigonometric r-matrix and (L×L,L,W) be the associated
Manin triple from Theorem 5.4.9.
(1) W is a torsion-free Lie algebra over C[u+, u−]/(u+u−).
(2) W determines a sheaf of Lie algebras A on a plane cubic curve X with nodal

singularity s such that

Γ(X \ {s},A ) ∼= L and Âs
∼= Ŵ := lim←−W/(u+, u−)kW. (0.10)

(3) The geometric CYBE model of the normalized formal r-matrix defined by the
Tylor series of ϱ(exp(x/m), exp(y/m)) in y = 0 is ((X,A ), (X \ {s}, du/u)),
where du/u is understood as a rational 1-form on X.

(4) The geometric r-matrix of ((X,A ), (X \ {s}, du/u)) can be identified with ϱ.

We present a classification of σ-trigonometric r-matrices, respecting the associated
Lie bialgebra structures on L, in Section 8.2. To this end, we adjust the methods
from [BD83a, Section 6] to this more general context. We conclude Chapter 8 by a
discussion of equivalences. In particular, we show that the theory from Part I implies
that formal equivalences between σ-trigonometric r-matrices are actually regular in
nature. This is the key observation used in [AM21] to reduce the aforementioned
classification of σ-trigonometric r-matrices to the Belavin-Drinfeld classification of
trigonometric r-matrices [BD83a, Theorem 6.1].

We conclude this thesis with a discussion of rational r-matrices in Chapter 9. More
precisely, we give an explicit geometrization of rational r-matrices in the vein of [BG18],
using the theory of maximal subalgebras commensurable with a Borel subalgebra; see
Section 9.2. Moreover, we give a brief overview over Stolin’s structure theory of rational
r-matrices from [Sto91b; Sto91c]. Finally, we will see in Proposition 9.2.9 that the
algebro-geometric theory from Part I implies that formal equivalences between rational
r-matrices are actually polynomial in nature.

Conventions in notation and terminology

We denote by N,Z,Q,R and C the sets of natural, integer, rational, real and com-
plex numbers respectively, where by convention N excludes {0} and N0 = N ∪ {0}.
Throughout this document k denotes a field of characteristic 0 with algebraic closure k.

Algebra. All rings are commutative and have a unit and morphisms of rings preserve
said unit. For a ring R and R-modules M and N , the space of R-linear maps M → N
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(resp. M → M) is denoted by HomR(M,N) (resp. EndR(M)), while the tensor
product of M and N is written as M ⊗R N . For R = k the indices are omitted.
The invertible elements of R are denoted by R× and M∗ := HomR(M,R) is the dual
module of M . For any family {mi ∈M | i ∈ I}, where I is some index set, we define
⟨mi | i ∈ I⟩R := ⊕

i∈I Rmi.
If R is a domain, let Q(R) := (R \ {0})−1R denote its quotient field and put

Q(M) := M ⊗R Q(R). Let f : R→ R′ be a morphism of rings and M ′ be an R′-module.
We say that a map g : M →M ′ is f -equivariant if it is a group homomorphism satisfying
g(rm) = f(r)g(m) for all r ∈ R, m ∈ M . If R and R′ are both domains, the maps
Q(R)→ Q(R′) (resp. Q(M)→ Q(M ′)) induced by f (resp. g) is again denoted by f
(resp. g).

For any R-bilinear map B : M×M → R, we write Ba : M →M∗ and B̃ : M⊗RM →
EndR(M) for the morphisms defined by a 7→ B(a,−) and a⊗ b 7→ B(b,−)a respectively.
If R = k, M,N ⊆ L for some vector space L over k, and dim((M +N)/(M ∩N)) <∞,
we say that M and N are commensurable and write M ≍ N .

In this text, an R-algebra A satisfies no additional assumptions, i.e. A = (A, µA)
consists of an R-module A equipped with a multiplication map µA : A⊗R A→ A. In
particular, a Lie algebra over R is an R-algebra. For any family {ai ∈ A | i ∈ I},
where I is some index set, ⟨ai | i ∈ I⟩R-alg denotes the smallest R-subalgebra of A
containing ai for all i ∈ I, i.e. the R-subalgebra of A generated by {ai ∈ A | i ∈ I}.
The group of invertible R-algebra endomorphisms of A, i.e. invertible R-linear maps
f : A → A satisfying fµA = µA(f ⊗ f), will be denoted by AutR-alg(A). For another
R-algebra A′, A ⊕ A′ will denote the direct sum of R-modules, while A × A′ is used
for the direct sum as R-algebras. If A is a Lie algebra, we use expressions of the form
[a⊗ 1, a1 ⊗ a2] := [a, a1]⊗ a2, [1⊗ a, a1 ⊗ a2] := a1 ⊗ [a, a2], etc. for all a, a1, a2 ∈ A.

Algebraic geometry. Let F , G be sheaves of abelian groups on a topological space
X and f : F → G be a morphism of sheaves. For U ⊆ X open and p ∈ X, we denote
by F (U) = Γ(U,F ) and Fp the set of sections of F over U and the germ of F in
p respectively. Similarly, fU = Γ(U, f) : Γ(U,F )→ Γ(U,G ) and fp : Fp → Gp are the
morphisms induced by f on the level of sections and germs, where the indices U and p
will be omitted if there is no ambiguity. We write Hn(F ) for the n-th global cohomology
group, in particular H0(F ) = Γ(X,F ) = F (X). If Hn(F ) is a finite-dimensional
k-vector space, we denote its dimension by hn(F ).

Assume that X = (X,OX) is a ringed space and F ,G are OX-modules. For a
morphism f : X → Y = (Y,OY ) of ringed spaces, we write f ♭ : OY → f∗OX for
the additional structure morphism and let f ♯ : f−1OY → OX be the induced map.
The H0(OX)-module of OX-module homomorphisms F → G (resp. F → F ) is
denoted by HomOX

(F ,G ) (resp. EndOX
(F )), while its sheaf counterpart is denoted

by HomOX
(F ,G ) (resp. EndOX

(F )). The OX-module tensor product of F and G is
written as F ⊗OX

G . If X is locally ringed and p ∈ X, the maximal ideal of the local
ring OX,p is denoted by mp and we put κ(p) := OX,p/mp as well as F |p := Fp/mpFp.
The fiber product of two schemes X, Y over a scheme S is denoted by X ×S Y and the
index S will be omitted if S = Spec(k).
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generalized r-matrices





1
Some facts about sheaves of algebras

1.1 Basic definitions and properties

In this section, we discuss sheaves of algebras with a special focus on sheaves of Lie
algebras. In particular, we define the Killing form of a locally free sheaf of Lie algebras
in Subsection 1.1.2, which will turn out to be an important tool while working with the
geometric data of formal generalized r-matrices in Chapter 3.

1.1.1 Sheaves of algebras. Let X be a ringed space. A sheaf of algebras on X is
an OX-module A equipped with an OX-linear morphism µA : A ⊗OX

A → A called
multiplication map. The left (resp. right) multiplication is the OX-linear morphism
ℓA : A → EndOX

(A ) (resp. rA : A → EndOX
(A )) given by left (resp. right) mul-

tiplication of the Γ(U,OX)-algebra Γ(U,A ) for each U ⊆ X open. A morphism of
OX-algebras f : A → B is an OX-linear map such that µB(f ⊗ f) = fµA .

We call A a sheaf of Lie algebras if for every U ⊆ X open µA defines a Lie bracket
on Γ(U,A ). In this case we write [, ]A = µA and adA = ℓA = −rA . Morphisms of
sheaves of Lie algebras are simply morphisms of sheaves of algebras. Although irrelevant
in the following, we note that other important types of algebras such as associative,
alternative, Jordan, etc. algebras also generalize to the sheaf setting in the same natural
way.

Remark 1.1.1.
Let f : Y → X be a morphism of ringed spaces and A (resp. B) be a sheaf of
algebras on X (resp. Y ). The sheaf of algebras f ∗A (resp. f∗B) is naturally a
sheaf of algebras on Y (resp. X) with the multiplication defined through

f ∗A ⊗OY
f ∗A −→ f ∗(A ⊗OX

A ) f∗µA−→ A(
resp. f∗B ⊗OX

f∗B −→ f∗(B ⊗OY
B) f∗µB−→ B

)
,

where the unlabeled arrow is the canonical one. It is easy to see that f ∗A (resp.
f∗B) is a sheaf of Lie algebras, if A (resp. B) is.
If we assume that X is a locally ringed space and p ∈ X is an arbitrary point with
residue field κ(p), the stalk Ap (resp. the fiber A |p) is naturally an OX,p-algebra
(resp. κ(p)-algebra), which is a Lie algebra if A is a sheaf of Lie algebras. Indeed,
this can be seen as a special case of the inverse image construction by choosing
Y = ({p},OX,p) (resp. Y = ({p}, κ(p))) and considering the inverse image with
respect to the canonical morphism f : Y → X.

1.1.2 Killing form of a locally free sheaf of Lie algebras. Let X be a ringed space
and A be a sheaf of Lie algebras on X. We call an OX-bilinear form B : A ×A → OX
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invariant (resp. symmetric, non-degenerate, perfect), if for all U ⊆ X open, BU defines
an invariant (resp. symmetric, non-degenerate, perfect) bilinear form on Γ(U,A ).
Assume that A is finite locally free. Then the bilinear form A ×A → OX defined by
the composition

A ×A −→ End(A )× End(A ) −→ End(A ) −→ OX , (1.1)

where the first map is adA × adA , the second is given by the sheaf composition and the
third is the sheaf trace, is called Killing form of A .

Lemma 1.1.2.
Let A be a finite locally free sheaf of Lie algebras on a ringed space X.
(1) The Killing form K of A is a symmetric invariant bilinear form.
(2) For any morphism f : Y → X of ringed spaces, the pairing

f ∗K : f ∗A × f ∗A → f ∗OX
∼= OY (1.2)

can be identified with the Killing form of f ∗A .
(3) Kx is the Killing form of Ax as free OX,x-Lie algebra for every x ∈ X and, if

X is a locally ringed space, the fiber K|x is the Killing form of A |x as a Lie
algebra over the residue field κ(x) of x.

Proof. The proof of (1) is clear and (3) follows from (2) and the observation that the
functor (·)p (resp. (·)|p) can be realized by the inverse image via ({p},OX,p)→ X
(resp. ({p}, κ(p))→ X). Therefore, it remains to prove (2).

The canonical map χ : f ∗ EndOX
(A )→ EndOY

(f ∗A ) coincides with the isomor-
phism

EndOX,f(q)(Af(q))⊗OX,f(q) OY,q
∼= EndOY,q

(Af(q) ⊗OX,f(q) OY,q) (1.3)

in the stalk in any point q ∈ Y , where we used that A is finite locally free. This
shows that

f ∗A
f∗adA // f ∗ EndOX

(A ) χ
// EndOY

(f ∗A )

and f ∗ EndOX
(A ) χ

// EndOY
(f ∗A )

Trf∗A
// OY ,

coincide with adf∗A and f ∗TrA respectively and that χ is compatible with the
composition of endomorphisms of sheaves. Therefore, applying f ∗ to (1.1) and
using χ implies that f ∗KA coincides with the Killing form of f ∗A .

1.2 Local triviality of sheaves of algebras

Let A be a sheaf of algebras on a k-scheme X. In general, we will see that for our
applications we cannot expect A to be locally free in a Zarsiki sense: the existence of
an open subset U ⊆ X and a k-algebra A such that Γ(U,A ) ∼= A ⊗ Γ(U,OX) is not
guaranteed. However, we will see that local triviality in the less rigid étale topology is
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ensured in our context. In this section, we explain the formal meaning of étale local
triviality and give some important results concerning sheaves of algebras with this
property.

1.2.1 Types of local triviality of sheaves of Lie algebras. Let A be a sheaf of
algebras on a k-scheme X and A be a k-algebra. There are several different natural
notions of A-local triviality for the sheaf of algebras A :
• A is called weakly A-locally free at x ∈ X if the fiber A |x is isomorphic to A⊗ κ(x)

as a Lie algebra over κ(x), where we recall that κ(x) is the residue field at x.
• A is called formally A-locally free at x ∈ X if the completed stalk Âx is isomorphic

to A⊗ ÔX,x as Lie algebra over ÔX,x.
• A is called étale A-locally free at x ∈ X if there exists a k-scheme Y and an étale

morphism f : Y → X of k-schemes such that x ∈ f(Y ) and f ∗A is isomorphic to
A⊗ OY as sheaf of Lie algebras on Y .

• A is called Zariski A-locally free at x ∈ X if there exists an open neighbourhood U
of x such that A |U is isomorphic to A⊗ OU as sheaf of Lie algebras on U .

• A is called weakly (resp. formally, resp. étale, resp. Zariski) A-locally free if A is
weakly (resp. formally, resp. étale, resp. Zariski) A-locally free at all closed points
x ∈ X.

Remark 1.2.1.
(1) If A is étale A-locally free, then A is locally free as OX-module; see [GR71,

Seconde partie, Théorème 3.1.3].
(2) Let p ∈ X be an arbitrary point. Obviously, A is weakly A-locally free in

p ∈ X if it is formally A-locally free in p. Since open immersions are étale, A
is both formally and étale A-locally free in p if it is Zariski A-locally free in p.
Furthermore, if k is algebraically closed and p is a closed point, A is formally
A-locally free in p if it is étale A-locally free in p.

1.2.2 Étale local triviality of sheaves of algebras. Recall that k denotes the alge-
braic closure of k.

Lemma 1.2.2.
Let A be a sheaf of algebras on a finite-type k-scheme X, A be finite-dimensional
k-algebra, and π : X × Spec(k)→ X be the canonical projection. The sheaf A is
étale A-locally free at a point p ∈ X if and only if π∗A is étale (A⊗ k)-locally
free at all q ∈ π−1(p).

Proof. “ =⇒ ” Follows directly from the fact that the property of being étale is
stable under base change; see [DG67, Proposition 17.3.3.(iii)].

“⇐=” Étale A-local triviality is a local property and A is locally free; see
Remark 1.2.1.(1). Therefore, we can assume that M = Γ(X,A ) is a free R-algebra
for X = Spec(R), where R := k[x1, . . . , xm]/I for some ideal I ⊆ k[x1, . . . , xm].
Then X × Spec(k) ∼= Spec(R) for R := k[x1, . . . , xm]/kI and the natural injective
morphism ι : R → R induces π : X × Spec(k) → X. By definition, p is a prime
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ideal of R. Fix q ∈ π−1(p), i.e. q ⊆ R is a prime ideal such that ι−1(q) = p. The
étale A-local triviality of π∗A in q can now be formulated as: there exists an étale
morphism f : R → S of k-algebras, such that q = f

−1(r) for some prime ideal
r ⊂ S and there exists an isomorphism

ψ : M ⊗R S ∼= (M ⊗R R)⊗R S → (A⊗ k)⊗k S
∼= A⊗ S

of S-algebras. We may assume that S = k[x1, . . . , xn]/(s1, . . . , sk) for some
s1, . . . , sk ∈ k[x1, . . . , xn]. The morphism f is completely determined by the
images fi := f(xi + kI) ∈ S of xi + kI ∈ R for i ∈ {1, . . . ,m}. We can describe ψ
by a matrix [ψ] ∈ Matd×d(S) after choosing a basis of A. Here d = dim(A).

Since k is algebraic over k, we can choose a finite field extension k′ of k such
that s1, . . . , sk ∈ k′[x1, . . . , xn], f1, . . . , fm, det([ψ])−1 ∈ S and [ψ] ∈ Matd×d(S) for

R′ := k′[x1, . . . , xm]/k′I and S := k′[x1, . . . , xn]/(s1, . . . , sk).

Here we used that only finitely many elements of k appeared in these constructions.
The assignment xi + k′I 7→ fi for i ∈ {1, . . . ,m} defines a k-algebra morphism
f : R′ → S making the diagram

R′ f
//

ι′
��

S

ȷ
��

R
f

// S

(1.4)

commutative, where the vertical maps are the canonical ones. In particular, it
holds that f−1(r) = q for q := ι′,−1(q) and r := ȷ−1(r).

Since f can be identified with f ⊗k′ idk, f is étale because f is; see [DG67,
Proposition 17.7.1.(ii)]. Furthermore, R → R′ is étale since k → k′ is finite,
the characteristic of k is 0, and R′ ∼= R ⊗ k′. The composition g : R → S
of the canonical morphism ι′′ : R → R′ with f is étale and satisfies g−1(r) =
ι′′,−1(f−1(r)) = ι−1(f−1(r)) = p, where we used ι = ι′ι′′ and (1.4). The matrix [ψ]
defines a morphism M ⊗R S → A⊗ S of S-algebras, which is bijective because of
det([ψ])−1 ∈ S. It is easy to see now that A is étale A-locally free in the point
p.

The rest of this section is dedicated to the translation of results by Kiranagi [Kir78;
Kir83] about the analytic local triviality of real Lie algebra bundles into the language of
algebraic geometry. We start with the algebro-geometric version of the statement from
[Kir78] that a Lie algebra bundle with isomorphic fibers is automatically analytically
locally free as a Lie algebra bundle.

Theorem 1.2.3.
Let A be a sheaf of algebras on a reduced finite-type k-scheme X, A be finite-
dimensional k-algebra, and π : X × Spec(k) → X be the canonical projection.
The sheaf A is étale A-locally free if and only if π∗A is weakly (A⊗ k)-locally
free.
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Proof. By Lemma 1.2.2 we may assume that k = k and so we have to show that
A is étale A-locally free if and only if A |p ∼= A for all closed points p ∈ X. The
“ =⇒ ” part was already discussed in Remark 1.2.1. It remains to prove the “⇐=”
part. Recall that an algebraic prevariety is a locally ringed space associated to the
closed points of a reduced k-scheme of finite type and that the category of reduced
k-schemes of finite type is equivalent to the category of algebraic prevarieties. As
a consequence, we are permitted to work in the latter category.

Étale local triviality is a local property. Therefore, we can assume that X
is an affine variety, i.e. the ringed space associated to the closed points of an
reduced affine k-scheme of finite type. Let us identify A with a k-algebra of
the form (kd, µA). The Γ(X,OX)-algebra Γ(X,A ) can be identified with the
Γ(X,OX)-module of all regular maps X → kd equipped with a multiplication map
µA : A ⊗OX

A → A . Said multiplication map is determined by a regular map
θ : X → Algd := Hom(kd ⊗ kd,kd) via µA (a ⊗ b)(p) = θ(p)(a(p) ⊗ b(p)) for all
a, b : X → kd regular and p ∈ X. By definition, A |p = (kd, θ(p)) for all p ∈ X.
The group G = GL(d,k) acts on Algd by

(L · ϑ)(v ⊗ w) = L−1ϑ(Lv ⊗ Lw) ∀L ∈ G, ϑ ∈ Algd, v, w ∈ kd. (1.5)

The orbit G · µA coincides with the set of multiplications on kd determining an
algebra structure isomorphic to A. Therefore, θ(X) ⊆ G · µA by assumption. Let
us split the remainder of the poof into three steps.

Step 1. The canonical map o : G → G · µA is a surjective smooth morphism
of algebraic prevarieties. Consider the stabiliser H of µA in G. The canonical
map o : G → G/H ∼= G · µA defined by L 7→ L · µA is a faithfully flat morphism
of algebraic prevarieties and the induced morphism G ×G·µA

G → G × H is an
isomorphism; see e.g. [Mil17]. Note that the pull-back diagram

G×G·µA
G ∼= G×H //

��

G

��

G o
// G · µA

, (1.6)

combined with the fact that H and hence G × H → G is smooth and o is flat,
implies that o is smooth; see [DG67, Proposition 17.7.4].

Step 2. For all p ∈ X there exists an étale morphism f : Y → X and a
morphism s : Y → G such that p ∈ f(Y ) and os = θf . Consider the pull-back
diagram

G×G·µA
X //

g

��

G

o

��

X
θ

// G · µA

, (1.7)

Since the morphism o is surjective and smooth, so is g; see e.g. [GW10, Proposition
6.15.(3)]. Let p ∈ X be an arbitrary point. Using the construction in [DG67,
Corollaire 17.16.3], we see that there exists a locally closed affine subvariety
Y ⊆ G×G·µA

X such that f := g|Y is étale and p ∈ f(Y ). Let s be the restriction
of the canonical projection G×G·µA

X → G to Y . By construction os = θf .
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Step 3. s induces an isomorphism ψ : f ∗A → A ⊗ OY . We can identify
Γ(Y, f ∗A ) with the Γ(Y,OY )-module of all regular maps Y → kd equipped with
the multiplication µf∗A determined by µf∗A (a⊗ b)(q) = θ(f(q))(a(q)⊗ b(q)) for all
a, b : Y → kd regular and q ∈ Y . Evaluating os = θf at an arbitrary point q ∈ Y
results in s(q) · µA = θ(f(q)). Therefore,

s(q)θ(f(q))(a(q)⊗ b(q)) = s(q)(s(q) · µA)(a(q)⊗ b(q)) = µA(s(q)a(q)⊗ s(q)b(q))

holds for all regular a, b : Y → kd and q ∈ Y . This shows that the Γ(Y,OY )-linear
automorphism ψ of {a : Y → kd | a is regular} defined by ψ(a)(q) = s(q)a(q) for
all a : Y → kd regular and q ∈ Y induces an isomorphism ψ : f ∗A → A⊗ OY of
sheaves of algebras.

Remark 1.2.4.
Note that, under the assumptions of Theorem 1.2.3, π∗A |p ∼= A |π(p) ⊗κ(π(p)) k for
all p ∈ X × Spec(k) since

({p},k) //

��

X × Spec(k)
π

��

({π(p)}, κ(π(p))) // X

commutes. Therefore, the statement of Theorem 1.2.3 can be reformulated as: A
is étale A-locally free if and only if Ap ⊗κ(p) k ∼= A⊗ k for all p ∈ X.

The following result is an algebro-geometric version of [Kir83, Lemma 2.1].

Proposition 1.2.5.
Let A be a locally free sheaf of Lie algebras on a reduced finite-type k-scheme
X such that A |p is semi-simple for some closed point p ∈ X. Then A is étale
A |p-locally free at p ∈ X.

Proof. Lemma 1.1.2, Remark 1.2.4 and Cartan’s criterion for semi-simplicity imply
that π∗A |q is semi-simple for all q ∈ π−1(p) if and only if A |p is semi-simple.
Therefore, using Lemma 1.2.2, we may assume that k is algebraically closed. As in
the setting of the proof of Theorem 1.2.3, we can work in the category of algebraic
prevarieties, assume that X is an affine variety and that A is free of rank d. Let
Lied ⊆ Algd = Hom(kd ⊗ kd,kd) be the affine subvariety of all of possible Lie
brackets on kd. Then Γ(X,A ) can be identified with the Γ(X,OX)-module of all
regular maps Y → kd equipped with a Lie bracket µA defined by a regular map
θ : X → Lied via µA (a⊗ b)(q) = θ(q)(a(q)⊗ b(q)) for all a, b : X → kd regular and
q ∈ X.

The action of G = GLn(k) on Algd discussed in the proof of Theorem 1.2.3
restricts to an action on Lied. In particular, the orbit G · θ(p) coincides with
the set of Lie brackets on kd which determine a Lie algebra structure isomorphic
to A |p = (kd, θ(p)). Combining [NR67, Theorem 7.2] with Whitehead’s Lemma
and the fact that A |p is semi-simple, we see that G · θ(p) ⊆ Lied contains an
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open neighbourhood V of θ(p) and as a consequence U := θ−1(V ) is an open
neighbourhood of p. This means that for all q ∈ U , we have A |q ∼= (kd, θ(p)) = A |p.
Theorem 1.2.3 now asserts that A |U is étale A-locally free.

1.2.3 Interlude: the small étale site. The concept of “étale topology” can be for-
malized by passing from usual topologies to Grothendieck topologies. Roughly speaking,
this means that we replace the set of open subsets with a category of morphisms
resembling open immersions in the original context. We will not define Grothendieck
topologies here. However, we sketch in the following how in this context topological
notions such as sheaves and coverings can be understood for the only example relevant
to us: the topology where étale morphisms are treated as open immersions.

Let S be a scheme. The small étale site Sét is the category of étale S-schemes, i.e.
the category of schemes S ′ equipped with an étale structure morphism fS′ : S ′ → S
and morphisms of S-schemes as morphisms. Note that all morphisms in Sét are étale
itself (see [DG67, Proposition 17.3.4]) and open subsets U ⊆ S are understood as
objects in Sét via the open immersion U → S. For two morphisms U, V ∈ Sét the fiber
product U ×S V ∈ Sét takes the role of the intersection of U and V and the natural
étale morphisms U ← U ×S V → V can be thought of as the respective inclusion maps.
An étale neighbourhood of a point p ∈ S is an object U ∈ Sét such that p ∈ fU(U). We
call a family {Ui}i∈I ⊆ Sét étale covering of U ∈ Sét if all {fUi

}i∈I factor over fU and⋃
i∈I fUi

(Ui) = U holds.
A presheaf F on Sét is a contravariant functor F : Sét → set, where set is the

category of sets. In particular, for every S ′ ∈ Sét we have a set Γ(S ′,F ) = F (S ′) of
sections and for every morphism S ′ → S ′′ in Sét there is a restriction map

(·)|S′ : Γ(S ′′,F )→ Γ(S ′,F ). (1.8)

We call F a sheaf if for every U ∈ Sét and every étale covering {Ui}i∈I of U the natural
sequence

Γ(U,F ) //
∏
i∈I Γ(Ui,F ) //

//
∏
i,j∈I Γ(Ui ×U Uj,F ) (1.9)

is an equalizer. In other words, for every family {si ∈ Γ(Ui,F )}i∈I such that the
identities si|Ui×UUj

= sj|Ui×UUj
hold for all i, j ∈ I exists a unique s ∈ Γ(U,F )

satisfying s|Ui
= si for all i ∈ I.

Morphisms of presheaves and sheaves are simply natural transformations as functors.
For any U ∈ Sét, we get a sheaf F |U on Uét via Γ(V,F |U) = Γ(V,F ) for all étale
morphisms V → U , where on the right-hand side the induced morphism V → U → X
is used. Notions such as sheaves of (abelian) groups, sheaves of modules, sheaves of
algebras, etc. can be naturally generalized to produce subcategories of the category of
sheaves on Sét.

The easiest example of a sheaf on Sét is the sheaf hZ represented by some S-scheme
Z, which assigns to each S ′ ∈ Sét the set of morphisms S ′ → Z of S-schemes. Clearly,
hG is a sheaf of groups if G is a group scheme over S. For every OS-module F , the
assignment Sét ∋ U 7→ H0(f ∗

UF ) defines a sheaf Fét on Sét with values in the category
of abelian groups. More accurately, Fét is an OS,ét-module.
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We now want to interpret étale local triviality of sheaves of algebras using the small
étale site. Let A be a sheaf of algebras on a k-scheme X and A be a k-algebra. The
sheaf A is étale A-locally free in p ∈ X if and only if there exists an étale neighbourhood
U ∈ Xét of p such that Aét|U ∼= A⊗ OU,ét as OU,ét-algebras.

1.2.4 Sheaves of algebras and torsors. In this paragraph, we will briefly recall the
notion of (étale) torsors and their relation to sheaves of algebras. These objects are
algebro-geometric versions of principal fiber bundles. We will restrict ourselves to the
definition of torsors using 1-cocycles, which is similar to the definition of principal fiber
bundles using 1-cocycles; for a more general approach see e.g. [Mil80, Paragraph III.4].
Our interest in torsors stems from the fact that they are classified by an analog of
the first Čech cohomology group. This will be useful in some classification problems
concerning sheaves of algebras; see Subsection 6.1.

Let S be a scheme, G be a group sheaf on Sét and U = {Ui}i∈I be an étale covering of
S. In the following, we use the notation Ui1...ik = Ui1 ×S · · · ×S Uik for all i1, . . . , ik ∈ I.
A set {gij ∈ Γ(Uij,G )}i,j∈I is called étale 1-cocycle trivialized at U if(

gij|Uijk

) (
gjk|Uijk

)
= gik|Uijk

(1.10)

holds for all i, j, k ∈ I. It is called cohomologous to another étale 1-cocycle {g′
ij}i,j∈I

if there exists a family {hi ∈ Γ(Ui,G )}i∈I such that g′
ij

(
hj|Uij

)
=
(
hi|Uij

)
gij for all

i, j ∈ I. The set of cohomology classes of étale 1-cocycles trivialized at U will be
denoted by Ȟ1(U,G ). Note that for another étale covering U′ := {U ′

i}i∈I′ of S we have
an étale covering U×S U′ := {Ui ×S U ′

j}i∈I,j∈I′ and natural maps

Ȟ1(U,G ) −→ Ȟ1(U×S U′,G )←− Ȟ1(U′,G )

making the set of étale covers to a directed set and the étale 1-cocycles to a directed
system over this set. An étale G -torsor is an element of

Ȟ1(Sét,G ) := lim−→
U

Ȟ1(U, G). (1.11)

Note that Ȟ1(Sét,G ) is a pointed set, i.e. it has an distinguished element defined by
the neutral element of Γ(S,G ) interpreted as a 1-cocycle trivialized on the trivial étale
covering S → S. If G is represented by some group scheme G over S, i.e. G = hG, we
also write Ȟ1(Sét, G) := Ȟ1(Sét,G ).

Lemma 1.2.6.
Let X be a quasi-compact k-scheme and A be a k-algebra.
(1) Let G be the group sheaf on Xét defined by: Γ(U,G ) are the sheaf of algebras

automorphisms of A⊗ OU for all U ∈ Sét. The isomorphism classes of étale
A-locally free sheaves of Lie algebras on X are in bijection with Ȟ1(Xét,G ).

(2) Assume that X is reduced, A is finite-dimensional, k is algebraically closed,
and Autk-alg(A)X := X × Autsch

k-alg(A), where Autsch
k-alg(A) is the affine scheme

with k-rational points Autk-alg(A). The isomorphism classes of étale A-locally
free sheaves of Lie algebras on X are in bijection with Ȟ1(Xét,Autk-alg(A)X).
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Proof of (1). Let A be an étale A-locally free sheaf of algebras on X. Then there
exists an étale covering {Ui}i∈I of X and isomorphisms ϕi : f ∗

Ui
A → A ⊗ OUi

of
sheaves of algebras. Let gij ∈ Γ(Uij,G ) be defined as the composition

A⊗ OUij

π∗
1(ϕi)

// π∗
1f

∗
Ui

A
∼= // π∗

2f
∗
Uj

A
π∗

2(ϕj)−1
// A⊗ OUij

(1.12)

for all i, j ∈ I, where π1 : Uij = Ui ×S Uj → Ui and π2 : Uij → Uj are the canonical
projections. It is easy to see that g = {gij}i,j∈I is a 1-cocycle and a sheaf of algebras
isomorphic to A defines a 1-cocycle cohomologous to g. Thus, we have defined a
mapping from the set of isomorphism classes E of étale A-locally free sheaves of
algebras to Ȟ1(Xét,G ).

We will now construct the inverse of the map E → Ȟ1(Xét,G ). Let g = {gij}i,j∈I
be an étale 1-cocycle trivialized at the étale covering U = {Ui}i∈I of X. Since
X is quasi-compact, we may assume that I is finite. Then U := ∐

i∈I Ui ∈ Xét
and the structure morphism fU : U → X is faithfully flat since it is étale and
surjective. Let ϕ ∈ Γ(U ×X U,G ) be the automorphism of A ⊗ OU defined by
{gij}i,j∈I . The cocycle condition (1.10) now takes the form π∗

31(ϕ) = π∗
32(ϕ)π∗

21(ϕ),
where πij : U ×X U ×X U → U ×X U is the projection (x1, x2, x3) 7→ (xi, xj) for
ij ∈ {21, 31, 32}. Faithfully flat descent (see e.g. [Mil80, Proposition 2.22]) provides
a coherent sheaf A on X equipped with a sheaf of algebra structure such that
f ∗
UA ∼= A ⊗ OU , i.e. A is an étale A-locally free sheaf of algebras. Indeed, this

claim can be reduced to the case that X and U are affine. Then A coincides with

fU,∗ (Ker(ϕπ∗
1 − π∗

2 : A⊗ OU → A⊗ OU×U)) . (1.13)

In particular, A is a subsheaf of algebras of fU,∗(A⊗OU ), since ϕ is an automorphism
of sheaves of algebras. Here, π1, π2 : U ×X U → U are the canonical projections.
Furthermore, we can also deduce that an étale 1-cocycle cohomologous to g results
in a sheaf of algebras isomorphic to A . Thus, we obtain a map Ȟ1(Xét,G )→ E
and it is not hard to see that this map is inverse to the map E → Ȟ1(Xét,G )
constructed above.

Proof of (2). It suffices to prove that G is naturally equivalent to the group
sheaf on Xét represented by Autk-alg(A)X as contravariant functor on Xét with
values in the category of groups. For this, note that every automorphism of
A ⊗ OU as sheaves of algebras on a X-scheme U is uniquely determined by a
regular map U(k) → Autk-alg(A), where U(k) are the k-rational points of U ,
which coincide with the closed points of U since k is algebraically closed. This
regular map is uniquely determined by a morphism U → Autsch

k-alg(A), which again
defines a morphism U → Autk-alg(A)X of X-schemes. We obtain an isomorphism
Γ(U,G ) ∼= hAutk-alg(A)X

(U). It is straight forward to see that these isomorphisms
define the desired natural equivalence.
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1.3 Lattices in current algebras and sheaves of
algebras on projective curves

Let A be a finite-dimensional vector space over k and W be a subset of the space
of A-valued Laurent series A((z)) (for an introduction on formal power and Laurent
series, see Subsection 2.1.1 below). In the following, we write Wk := W ∩ z−kA((z))
and note that . . . ⊆ Wk ⊆ Wk+1 ⊆ . . . holds. Moreover, we say that an element
F (z) = z−ka+ . . . ∈ Wk \Wk−1 is of order k and has main part z−ka.

Let A be a finite-dimensional k-algebra. A subspace W ⊆ A((z)) is called A-lattice of
index (h0, h1) if W is a subalgebra and both

h0 := dim(A[[z]] ∩W ) and h1 := dim(A((z))/(A[[z]] +W )) (1.14)

are finite. In other words, dim(W0) <∞ and ℓ ∈ N0 exists such that for all a ∈ A and
k ⩾ ℓ an element ã ∈ W with main part az−k exists.

Remark 1.3.1.
Note that a unital k-lattice O automatically satisfies O0 = O ∩ k[[z]] = k. Indeed,
if there exists f ∈ O0 \ k, O0 would contain the infinite linearly independent set
{(f − f(0))k | k ∈ N}, which contradicts the fact that O is a k-lattice.

In this section, we establish a connection between A-lattices, which are modules
over k-lattices, and sheaves of algebras on a projective curve, which are formally A-
locally free at a distinguished k-rational smooth point. More precisely, we introduce
appropriate categories of such lattices and geometric data in subsections 1.3.2 and
1.3.3 and construct an equivalence between these categories in the remainder of this
section. These constructions are based on the methods used in [Mum78; Mul90]. The
existence of a k-lattice stabilizing an A-lattice, which is necessary for this geometrization
procedure, can be settled if A is central simple by a result of Ostapenko; see [Ost92] or
Theorem 1.3.3. Let us begin this section by recalling the definition and basic properties
of central simple algebras.

1.3.1 Prelude: central simple algebras. Let A be a finite-dimensional k-algebra
with multiplication µA(a, b) = ab for all a, b ∈ A. The centroid of A is the k-subalgebra
C of End(A) consisting of k-linear maps ψ : A→ A such that

ψ(ab) = aψ(b) = ψ(a)b for all a, b ∈ A. (1.15)

In other words, C is the centralizer of the subalgebra ⟨ra, ℓa | a ∈ A⟩k-alg of End(A)
generated by {ra, ℓa | a ∈ A}, where rb(a) := ℓa(b) := ab for all a, b ∈ A. Obviously,
kidA ⊆ C and A is called central if C = kidA. Recall that A is called simple if AA ̸= {0}
and there is no k-subspace I ⊆ A such that IA+AI ⊆ I holds except {0} and A. The
following theorem summarizes the basic properties of central simple k-algebras, which
can be found in e.g. [Jac79, Section X.1].
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Theorem 1.3.2.
Let A be a finite-dimensional simple k-algebra with centroid C. The following
results are true.
(1) C is a field. In particular, k→ C is a finite field extension.
(2) If A is central and k′ is any field extension of k, A⊗k′ is again central simple

as a k′-algebra.
(3) If A is central, the identity End(A) = ⟨ra, ℓa | a ∈ A⟩k-alg holds.

1.3.2 The category LatA of ringed A-lattices. Let A be a finite-dimensional k-
algebra. A ringed A-lattice is a pair (O,W ), where O is a unital k-lattice and W is an
A-lattice such that OW ⊆ W . A morphism of ringed A-lattices

(w, ϕ) : (O1,W1)→ (O2,W2) (1.16)

consists of a series w ∈ zk[[z]]× and a map ϕ ∈ Endk[[z]]-alg(A[[z]]) ⊆ End(A)[[z]] such that
f(z) 7→ f(w(z)) maps O1 to O2 and a(z) 7→ ϕ(z)a(w(z)) maps W1 to W2. The class
of ringed A-lattices with this notion of morphisms defines the category LatA of ringed
A-lattices. We have the following important result from Ostapenko [Ost92].

Theorem 1.3.3.
Let A be a finite-dimensional, central, simple k-algebra and W be some A-
lattice. The unital k-algebra Mult(W ) := {f ∈ k((z)) | fW ⊆ W} is a k-
lattice. In particular, (O,W ) ∈ LatA for all A-lattices W and unital subalgebras
O ⊆ Mult(W ) of finite codimension.

Proof. First note that Mult(W ) ∩ k[[z]] = k, since otherwise we would get a
contradiction with dim(W0) <∞ in a similar way as in Remark 1.3.1. Thus, we
have to show that ℓ ∈ N exists such that for all j ⩾ ℓ there exists λ ∈ Mult(W ) with
main part z−j . Let us denote by ra (resp. ℓa) the right (resp. left) multiplication by
an element a ∈ A((z)) considered as an element in Endk((z))(A((z))) ∼= End(A)((z)),
i.e. ℓa(b) = ab = rb(a) for all a, b ∈ A((z)). Note that ra, ℓa ∈ End(A) for a ∈ A.
Let J := ⟨ra, ℓa | a ∈ W ⟩k-alg ⊆ End(A)((z)).

The fact that A is central combined with [Jac79, Chapter X, Theorem 4.] implies
that End(A) = ⟨ra, ℓa | a ∈ A⟩k-alg. In particular, for every L ∈ End(A) exists
a non-commutative polynomial f = f(x1, . . . , xq) and a1, . . . , aq ∈ A such that
f(m1, . . . ,mq) = L, where mi ∈ {rai

, ℓai
} for all i ∈ {1, . . . , q}. Let {fi}qi=1 be the

unique polynomials defined by the following inductive process: fq is the sum of
all monomials of f depending on xq and, if fi+1, . . . , fq are given, fi is the sum
of all monomials of f − fi+1 − · · · − fq which depend on xi. By construction, fi
depends only on x1, . . . , xi and every monomial of fi contains a factor xi. Let fij
denote the homogeneous component of fi of degree j and gij(x1, . . . , xi; yi) be the
polynomial where the leftmost xi appearing in every monomial of fij is changed
to yi. Since W is an A-lattice, we can chose s ∈ N such that for all i ∈ {1, . . . , q}
and k ∈ N0 there exists bki in W with main part z−s−kai. Let m̃k

i be the left (resp.
right) multiplication by bki if mi is the left (resp. right) multiplication by ai. By
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construction gij
(
m̃0

1, . . . , m̃
0
i ; m̃k

i

)
has main part z−k−sjfij(m1, . . . ,mi). Thus,

q∑
i=1

deg(fi)∑
j=1

gij
(
m̃0

1, . . . , m̃
0
i ; m̃

k+s(deg(f)−j)
i

)
(1.17)

has main part z−k−sdeg(f)L. Putting r(L) := s deg(f), we see that for all k ∈ N0
exists an element of J with main part z−k−r(L)L. Let {Li}ni=1 be a basis of End(A)
and set r := max{r(Li) | i ∈ {1, . . . , q}}. We have:

for all L ∈ End(A), k ∈ N0 exists L̃k ∈ J with main part z−k−rL. (1.18)

In [Ami76] the author constructs a non-commutative, non-vanishing homogeneous
polynomial P = P (x1, . . . , xq) in q := 2dim(A)2-variables which takes values in kidA
when evaluated on End(A)q. In particular, we may choose L1, . . . , Lq ∈ End(A)
such that P (L1, . . . , Lq) = idA. Using (1.18) results in

P
(
L̃0

1, . . . , L̃
0
q−1, L̃

j−rq
q

)
= λℓidA (1.19)

for all j ⩾ rq, where λj ∈ k((z)) has main part z−j. Since the left-hand side of
(1.19) is an element of J , we can see that λj ∈ Mult(W ).

1.3.3 The category GeomLatA geometric A-lattice models. Let A be a finite-
dimensional k-algebra. A geometric A-lattice model is a quintuple ((X,A ), (p, c, ζ)),
where
• X is an integral projective curve over k, p ∈ X is a smooth k-rational point equipped

with a k-algebra isomorphism c : ÔX,p → k[[z]] and
• A is a torsion-free coherent OX-algebra equipped with a c-equivariant algebra

isomorphism ζ : Âp → A[[z]].
In particular, A is by definition formally A-locally free in p. Note that c induces
an isomorphism Q(ÔX,p)→ k((z)) and ζ induces a c-equivariant algebra isomorphism
Q(Âp)→ A((z)) which will again be denoted by c and ζ respectively. Since A is torsion-
free, Γ(U,A ) ⊆ Q(Âp) holds for all U ⊆ X open, and ζ is an algebra isomorphism, it
can be seen that A is a sheaf of Lie algebras if A is a Lie algebra. A morphism of
geometric A-lattice models

(f, ϕ) : ((X1,A1), (p1, c1, ζ1))→ ((X2,A2), (p2, c2, ζ2)) (1.20)

consists of
• a birational morphism f : X2 → X1 such that f(p2) = p1 and

ÔX1,p1

f̂♯
p2 //

c1
##

ÔX2,p2

c2
{{

k[[z]]

commutes while
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• ϕ : A1 → f∗A2 is a morphism of OX1-algebras such that, under consideration of
(f∗A )p1

∼= Ap2 , the following diagram commutes

Â1,p1

ϕ̂p1 //

ζ1 ""

Â2,p2

ζ2||

A[[z]]

.

1.3.4 The trivialization functor T : GeomLatA → LatA. In order to relate the
categories GeomLatA to LatA, for some finite-dimensional k-algebra A, we note the
following general result.

Theorem 1.3.4.
Let X be an integral projective curve over k and p ∈ X be either a smooth closed
point or, if X is additionally Gorenstein, an arbitrary closed point. Then we
have a canonical exact sequence

0 −→ H0(F ) −→ Γ(X \ {p},F )⊕ F̂p −→ Q(F̂p) −→ H1(F ) −→ 0

for every coherent sheaf F on X.

The statement concerning a smooth point on an arbitrary integral projective curve
can be found in [Par01, Proposition 3], while the Gorenstein singular case is discussed
in [Gal15, Chapter 3]. Let ((X,A ), (p, c, ζ)) ∈ GeomLatA for an finite-dimensional
k-algebra A. Then Theorem 1.3.4 implies that

(c(Γ(X \ {p},OX)), ζ(Γ(X \ {p},A )))) ∈ LatA . (1.21)

This assignment is easily seen to define a functor T : GeomLatA → LatA, called
trivialization functor.

1.3.5 The quasi-inverse G : LatA → GeomLatA of T. Let us split the construction
of the quasi-inverse of T into two steps, starting with the observation that any unital
k-lattice defines an integral projective curve over k.

Proposition 1.3.5.
Let O be a unital k-lattice of index (h0, h1).
(1) gr(O) := ⊕

k∈N0 t
kOk ⊆ O[t] is a unital graded k-algebra and h0 = 1. Further-

more, X := Proj(gr(O)) is an integral projective curve over k of arithmetic
genus h1.

(2) There is a distinguished k-rational smooth point p ∈ X equipped with a
natural k-algebra isomorphism c : ÔX,p → k[[z]] such that the induced map
c : Q(ÔX,p)→ k((z)) satisfies c(Γ(X \ {p},OX)) = O. In particular, c induces
an isomorphism Spec(O)→ X \ {p}.



26 Chapter 1 Some facts about sheaves of algebras

Proof. That gr(O) is a graded k-subalgebra of O[t] follows directly from OkOℓ ⊆
Ok+ℓ for all k, ℓ ∈ Z, while h0 = 1 was already shown in Remark 1.3.1. We proceed
in five steps.

Step 1. O has Krull dimension one. The condition dim(k((z))/(k[[z]]+O)) <∞
implies that for a sufficiently large r ∈ N there exist elements f and g of O
with main parts z−r and z−r−1 respectively. The fact O0 = k implies that the
canonical projection O → k[z−1] is injective. Consequently, k[f, g] ⊆ O is of finite
codimension, since for every ℓ1 ⩾ r and 0 ⩽ ℓ2 ⩽ r − 1 the element f ℓ1−ℓ2gℓ2 has
main part z−ℓ1r−ℓ2 . Therefore, the Krull dimension of O and the Krull dimension
of k[f, g] coincide. The latter is one, since, if h1, . . . , hk is a basis of k[f, g]r(r+1)−1,
we have

k[f, g]r(r+1)−1 ∋ f r+1 − gr = c1h1 + · · ·+ ckhk (1.22)

for some c1, . . . , ck ∈ k, which is a polynomial relation of f and g.
Step 2. Construction of p and c. By definition of X = Proj(gr(O)), the

homogeneous prime ideal p := (t) = ⊕
k∈N0 t

k+1Ok generated by t ∈ gr(O) is a
point of X. Observe that tkh is an element of the homogeneous elements S of
gr(O) \ (t) if and only if h has order k. This shows

OX,p
∼= (S−1gr(O))0 = {a/h | a, h ∈ O, a/h ∈ k[[z]]} = Q(O) ∩ k[[z]]. (1.23)

Choosing f, g as in Step 2 yields u := f/g ∈ Q(O) ∩ zk[[z]]×. Therefore, k[u] ⊆
Q(O) ∩ k[[z]] ⊆ k[[z]] and k[[u]] = k[[z]] results in an isomorphism c : ÔX,p → k[[z]].
We conclude that p is k-rational and smooth.

Step 3. We have c(Γ(D+(t),OX)) = O, i.e. Spec(O) ∼= D+(t). Since k[[z]](u) =
k((z)) for u from Step 2, we can see from (1.23) that the rational functions on
X can be identified with Q(O) via the isomorphism c : Q(ÔX,p) → k((z)). More
precisely, we can deduce that

c(Γ(D+(tkh),OX)) = gr(O)[(tkh)−1]0 ⊆ Q(O) (1.24)

holds for all tkh ∈ gr(O). More precisely, the formal trivialization c induces the
natural isomorphism Γ(D+(tkh),OX) ∼= gr(O)[(tkh)−1]0. In particular, we see that

c(Γ(D+(t),OX)) = gr(O)[t−1]0 = O. (1.25)

Therefore, c defines an isomorphism Spec(O)→ D+(t).
Step 4. X is an integral projective curve over k. Using the steps 1,2 and

4, it remains to show that X is a k-scheme of finite type, since then dim(X) =
dim(D+(t)) = 1. Thus, we have to show that gr(O) is a finitely-generated k-
algebra; see e.g. [GW10, Lemma 13.9.(2) and Proposition 13.12]. We will prove
that each basis B of the finite dimensional space ⊕r2

k=0 t
kOk, containing t, trf and

tr+1g, generates gr(O), where f, g and r are as in Step 2. Let us write R for the
k-subalgebra of gr(O) generated by B. We prove by induction on k ⩾ r2 that
tkOk ⊆ R, which is obvious for k = r2. By induction assumption tk−1Ok−1 ⊆ R, so
tkOk−1 ⊆ R since t ∈ R. Let h ∈ O have main part az−k and ℓ1 ⩾ r, 0 ⩽ ℓ2 ⩽ r− 1
be such that k = ℓ1r + ℓ2. Then

tkh− a(trf)ℓ1−ℓ2(tr+1g)ℓ2 = tkh− atkf ℓ1−ℓ2gℓ2 ∈ tkOk−1 ⊆ R,
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proving tkh ∈ R and this gives the induction step.
Step 5. D+(t) = X \ {p} and h1(OX) = h1. Since O ∩ k[[z]] = k by Step 1, the

open subscheme D+(t) ∪D+ (tr+1g) = D+(t) ∪ {p} of X, where g is as in Step 2,
is not affine and hence a proper k-scheme by [Har77, Chapter IV, Exercise 1.4].
Therefore, D+(t)∪{p} → X is both open and closed, so X = D+(t)∪{p}, since X
is integral. Setting F = OX in the exact sequence of Theorem 1.3.4 and applying
c results in the desired: h1(OX) = dim(k((z))/(k[[z]] +O)) = h1.

Theorem 1.3.6.
Let A be a finite-dimensional k-algebra, (O,W ) ∈ LatA be a ringed A-lattice,
(h0, h1) be the index of W , and (X, c, p) be the geometric datum associated to O
in Proposition 1.3.5.
(1) gr(W ) := ⊕

k∈Z t
kWk ⊆ W [t, t−1] is a graded gr(O)-subalgebra and the as-

sociated sheaf of algebras A on X is coherent, torsion-free and satisfies
(h0(A ), h1(A )) = (h0, h1).

(2) There is a natural c-equivariant isomorphism ζ : Âp → A[[z]] such that the
induced map ζ : Q(Âp)→ A((z)) satisfies ζ(Γ(X \ {p},A )) = W .

(3) (O,W ) 7→ ((X,A ), (p, c, ζ)) defines a functor G : LatA → GeomLatA such
that TG = idLatA

and GT ∼= idGeomLatA
.

Proof. The fact that OkWℓ, µA(Wk ⊗Wℓ) ⊆ Wk+ℓ for all k, ℓ ∈ Z immediately
implies that gr(W ) ⊆ W [t, t−1] is a graded gr(O)-subalgebra. Here,

µA : A((z))⊗k((z)) A((z))→ A((z)) (1.26)

denotes the multiplication map of A((z)), which can be identified with the k((z))-
linear extension of the multiplication map of A. It is obvious that A is torsion-free
since gr(W ) is torsion-free. We split the rest of the proof into several steps.

Step 1. A is coherent. Since X is noetherian, it suffices to prove that gr(W ) is
finitely-generated by [Har77, Proposition 5.11.(c)]. Choose r ∈ N such that for all
k ⩾ r and for all v ∈ A there exists an element in W with main part vz−k as well
as an element in O with main part z−k. Since W0 = W ∩A[[z]] is finite-dimensional,
so is Wk for all k ∈ Z and W−k = {0} for k sufficiently large. Let B be any basis
of the finite-dimensional vector space ⊕2r

k=−∞ tkWk ⊆ gr(W ) and M be the gr(O)-
submodule of gr(W ) spanned by B. From k = O0 we see that tkWk ⊆ M for all
k ⩽ 2r. We show gr(W ) = M through proving tkWk ⊆M by induction on k ⩾ 2r.
The base case k = 2r thereby automatically satisfied. By induction assumption
tk−1Wk−1 ⊆M , which immediately implies that tkWk−1 ⊆M since t ∈ gr(O). Let
a ∈ W have main part vz−k. There exists b ∈ W with main part vz−r and h ∈ O
with main part z−r−ℓ for ℓ = k − 2r. Therefore, tka − tr+ℓhtra ∈ tkWk−1 ⊆ M .
The observations trb ∈M and tr+ℓh ∈ gr(O) show that tka ∈M , which concludes
the induction.

Step 2. Construction of ζ and proof of ζ(Γ(X \ {p},A )) = W . The same
reasoning as in Step 3 of Proposition 1.3.5 yields Ap

∼= Q(W ) ∩ A[[z]]. For each
v ∈ A exists k ∈ N such that there is some a ∈ W with main part vz−k and h ∈ O
with main part z−k. Therefore, a/h ∈ Q(W ) ∩ A[[z]] satisfies a(0) = v. This shows
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that k[[z]](Q(W ) ∩ A[[z]]) = A[[z]]. Using c we get ζ as the composition

Âp
∼= Ap ⊗OX,p

ÔX,p
∼= (Q(W ) ∩ A[[z]])⊗Q(O)∩k[[z]] k[[z]] ∼= A[[z]],

where the last isomorphism is given by multiplication. The same arguments as in
Step 4 of the proof of Proposition 1.3.5 imply that ζ(Γ(D+(t),A )) = gr(W )[t−1]0 =
W , so D+(t) = X \ {p} concludes the proof.

Step 3. h0(A ) = h0, h1(A ) = h1. Applying ζ to the exact sequence in
Theorem 1.3.4 for F = A results in h0(A ) = h0 and h1(A ) = h1.

Step 4. Proof of (3). The identity TG = idLatA
and the proof of GT ∼=

idGeomLatA
are straight forward. It remains to prove the functoriality of G. Let

(w, ϕ) : (O1,W1)→ (O2,W2) be a morphism in LatA and write

G(Oi,Wi) = ((Xi,Ai), (pi, ci, ζi)) for i ∈ {1, 2}. (1.27)

Then w defines a unital graded morphism w̃ : gr(O1)→ gr(O2) of k-algebras via
tkh(z) 7→ tkh(w(z)). Clearly, w̃(t) = t and if h1, h2 ∈ O1 satisfy h1/h2 ∈ zk[[z]]×, we
have w̃(h1)/w̃(h2) ∈ zk[[z]]×. This proves that X2 = D+(w̃(t)) ∪D+(w̃(tr+1g)), for
g and r as in Step 1 of the proof of Proposition 1.3.5. Thus, w̃ defines a morphism
f : X2 → X1 by virtue of [GW10, Paragarph 13.2]. Now, w̃−1(t gr(O2)) = t gr(O1)
implies that f(p2) = p1 and it is easy to see that f is a local isomorphism at
p2. The map gr(O1) → gr(O2) defined by tka(w(z)) 7→ tkϕ(a)(w(z)) defines a
graded f -equivariant morphism. Therefore, it induces a morphism ϕ : A1 → f∗A2
of sheaves of algebras.

Remark 1.3.7.
Let A be a finite-dimensional k-algebra, O be an unital k-lattice, (O,W ) ∈ LatA
be a ringed A-lattice, and G(O,W ) = ((X,A ), (p, c, ζ)). By construction, A is
formally A-locally free in p, so A |p ∼= A. Therefore, Theorem 1.2.5 implies that
A is étale A-locally free in p if A is a semi-simple Lie algebra.

1.3.6 Normalization of lattices. In this paragraph, we will see that the integral
closure of lattices corresponds to the normalization of lattice models. We fix a finite-
dimensional k-algebra A.

Lemma 1.3.8.
Let (O,W ) ∈ LatA, Oν be the integral closure of O and W ν := OνW . Then
(Oν ,W ν) ∈ LatA and the natural inclusions O ⊆ Oν ,W ⊆ W ν induce a morphism
(O,W )→ (Oν ,W ν). The assignment (O,W ) 7→ (Oν ,W ν) defines an endofunctor
of LatA.

Proof. The inclusions Oν ⊆ Q(Oν) = Q(O) ⊆ k((z)) identify Oν with a unital
subalgebra of k((z)) containing O. It is well-known that O ⊆ Oν and W ⊆ W ν are
of finite codimension. Consequently, (Oν ,W ν) ∈ LatA. The remaining statements
are straight forward to prove.
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For a lattice (O,W ) ∈ LatA, the ringed lattice (Oν ,W ν) constructed in Lemma 1.3.8 is
called integral closure of (O,W ).

Lemma 1.3.9.
Let (O,W ) ∈ LatA and (Oν ,W ν) ∈ LatA be its integral closure and
(ν, ι) : ((X,A ), (p, c, ζ))→ ((Xν ,A ν), (pν , cν , ζν)) be the image of the canonical
morphism (O,W )→ (Oν ,W ν) under G. Then ν : Xν → X is the normalization
of X and ι : A → ν∗A ν is injective with a torsion cokernel.

Proof. Since the curve Xν \ {pν} ∼= Spec(Oν) is smooth, so is Xν . Therefore,
ν : Xν → X is the normalization, since ν is birational. It is easy to see that ι
defines an isomorphism of A and ν∗A ν at p, so the kernel and cokernel of ι are
torsion sheaves. In particular, the kernel of ι is trivial, since it is a torsion subsheaf
of a torsion-free sheaf.

For a geometric A-lattice model ((X,A ), (p, c, ζ)) with trivialization

T((X,A ), (p, c, ζ)) = (O,W ), (1.28)

we call G(Oν ,W ν) := ((Xν ,A ν), (pν , cν , ζν)) the normalization of ((X,A ), (p, c, ζ)).

1.3.7 Changing the base field. Let A be a finite-dimenional k-algebra, (O,W ) ∈
LatA, k′ be an arbitrary field extension of k, and Ak′ := A⊗k′. The images Ok′ andWk′ of
O⊗k′ and W ⊗k′ under the multiplication maps k((z))⊗k′ → k′((z)) and A((z))⊗k′ →
Ak′((z)) define a ringed Ak′-lattice (Ok′ ,Wk′), where Ak′ is considered as k′-algebra.
Then G(O,W ) = ((X,A ), (p, c, ζ)) and the geometric datum ((Xk′ ,Ak′), (pk′ , ck′ , ζk′))
constructed from (Ok′ ,Wk′) in the same vein satisfies the following compatibilities:
• Ok′ ∼= O ⊗ k′ induces an isomorphism Xk′ ∼= X × Spec(k′) such that the canonical

map O → Ok′ is compatible with the canonical morphism π : Xk′ → X. Furthermore,
π(pk′) = p and the following diagram commutes

ÔX,p
c //

π̂♯
p
��

k[[z]]

��

ÔXk′ ,pk′ ck′
// k′[[z]]

.

• The multiplication map W ⊗k′ ∼= Wk′ induces an isomorphism π∗A ∼= Ak′ of sheaves
of Lie algebras such that the following diagram commutes

Âp
ζ
//

��

A[[z]]

��

Âk′,pk′ ζk′
// Ak′ [[z]]

.

In particular, if k → k′ is Galois with Galois group G, then G acts on Xk′ by auto-
morphisms of X-schemes and on Ak′ by OX-linear automorphisms of sheaves of Lie
algebras in such a way that X and A are the respective fixed objects.



2
Formal generalized r-matrices
In this chapter, we use the following notation: g is a semi-simple Lie algebra of dimension
d ∈ N over a field k of characteristic 0, K is the Killing form of g, {b1, . . . , bd} ⊆ g is
a basis orthonormal with respect to K, and γ := ∑d

i=1 bi ⊗ bi ∈ g ⊗ g is the Casimir
element.

2.1 Basic definitions and properties

In this section, we introduce the main object of interest: formal generalized r-matrices
with values in g. By definition, these are series in (g⊗g)((x))[[y]] with the same properties
as certain Taylor series of non-degenerate solutions of the GCYBE 0.1, but the ground
field is not restricted to be the complex numbers. We begin by recalling some general
facts and definitions relating formal power series.

2.1.1 Prelude: formal power series. Let M be a module over a ring R. Then

M [[z]] :=
∑
k∈N0

mkz
k

∣∣∣∣∣mk ∈M

 (2.1)

is the module of M-valued formal power series. As R-module, it is isomorphic to∏
k∈N0 M , but the representation (2.1) is chosen in order to equip R[[z]] with a ring

structure with unit 1 ∈ R ⊆ R[[z]] and multiplication∑
k∈N0

rkz
k

∑
k∈N0

skz
k

 =
∑
k∈N0

k∑
ℓ=0

rℓsk−ℓz
k,where rk, sk ∈ R for all k ∈ N0,

and M [[z]] with an R[[z]]-module structure via∑
k∈N0

rkz
k

∑
k∈N0

mkz
k

 =
∑
k∈N0

k∑
ℓ=0

rℓmk−ℓz
k,where rk ∈ R,mk ∈M for all k ∈ N0.

Note that we have a canonical map M [[z]]→M given by

m =
∑
k∈N0

mkz
k 7−→ m(0) := m0. (2.2)

It can be easily seen to be equivariant with respect toR[[z]]→ R. TheR((z)) := R[[z]][z−1]-
module M((z)) := M [[z]][z−1] is called module of M-valued formal Laurent series.
Elements p in M((z)) (resp. M((x1)) . . . ((xk))) will sometimes be denoted with the
formal variable (resp. variables) for convenience: p = p(z) (resp. p = p(x1, . . . , xk)).
Moreover, a generic element m ∈M((z)) is written m(z) = ∑

k∈Zmkz
k, where we keep
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in mind that if m ̸= 0 there exists a unique integer |m|, called order of m, such that
m−|m| ̸= 0 and m−k = 0 for all k ⩾ |m|. In particular,

m(z) ∈ m−|m|z
−|m| + z−|m|+1M [[z]] (2.3)

and we call m−|m|z
−|m| the main part of m. Observe that the module structure of M((z))

takes the simple form∑
k∈Z

rkz
k

∑
k∈Z

mkz
k

 =
∑
k,ℓ∈Z

rℓmk−ℓz
k,where rk ∈ R,mk ∈M for all k ∈ Z.

Remark 2.1.1.
If M is an R-algebra, M((z)) is automatically equipped with the structure of an
R((z))-algebra via∑

k∈Z
mkz

k

∑
k∈Z

nkz
k

 =
∑
k,ℓ∈Z

mℓnk−ℓz
k,where mk, nk ∈M for all k ∈ Z.

Clearly, M [[z]] is an R[[z]]-subalgebra of M((z)) and it is easy to see that if M is a
Lie algebra, M [[z]] and M((z)) are too.

For an element m(z) = ∑
k∈Zmkz

k, we call the series m′(z) := ∑
k∈Z kmkz

k−1 its formal
derivative. This defines an R-linear derivation of M((z)) as R((z))-module, since

(rm)′ =
∑
k,ℓ∈Z

krℓmk−ℓz
k−1 =

∑
k,ℓ∈Z

(ℓrℓmk−ℓ + rℓ(k − ℓ)mk−ℓ) zk−1 = r′m+ rm′ (2.4)

for all r = ∑
k∈Z rkz

k ∈ R((z)) and m = ∑
k∈Zmkz

k ∈ M((z)). Henceforth, we write
M [[x1, . . . , xk]] := M [[x1]] . . . [[xk]]. Take caution, since M((x1, . . . , xk)) usually denotes
the quotient module of M [[x1, . . . , xk]] and does not coincide with M((x1)) . . . ((xk)).

Lemma 2.1.2.
Let M be a module over a ring R. The following results are true.
(1) R[[z]]× = {r ∈ R[[z]] | r(0) ∈ R×} and for every u ∈ zR[[z]]× exists a unique

w ∈ zR[[z]]× such that u(w(z)) = w(u(z)) = z. Furthermore, every R-algebra
automorphism of R[[z]] is of the form r(z) 7→ r(u(z)) for some u ∈ zR[[z]]×.

(2) Assume that R has characteristic 0. For any r ∈ R[[z]]× exists a unique
u ∈ zR[[z]]× such that u′(z) = r(u(z)).

(3) Assume that R has characteristic 0. For every ψ ∈ EndR(M)[[z]] and m0 ∈M
exists a unique m ∈M [[z]] such that m′ = ψm and m(0) = 0.

(4) For every f ∈ M [[x, y]] with f(z, z) = 0 in M [[z]] exists g ∈ M [[x, y]] such
that f(x, y) = (x− y)g(x, y). Furthermore, if f(x, y) = h(x)− h(y) for some
h ∈M [[z]], the relation g(z, z) = h′(z) holds.

Proof of (1). It is easy to see that r(0) ∈ R× for all r ∈ R[[z]]×. On the other hand,
if r = ∑

k∈N0 rkz
k ∈ R[[z]] satisfies r(0) = r0 ∈ R×, we can construct s = ∑

k∈N0 skz
k

inductively by s0 = r−1
0 and sk+1 = −r−1

0
∑k
ℓ=0 sℓrk+1−ℓ and verify that rs = sr = 1
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holds. For every r = ∑
k∈N0 rkz

k ∈ R[[z]] and u ∈ ∑
k∈N ukz

k ∈ zR[[z]]× the
composition r(u(z)) = ∑

k∈N0 ckz
k ∈ R[[z]] exists. Indeed, it can be verified that

c0 = r0 and

ck =
k∑
ℓ=0

∑
(j1,...,jℓ)∈Nℓ

j1+···+jℓ=k

rℓuj1 . . . ujℓ , (2.5)

where we emphasize that N excludes 0. If r(0) = r0 = 0, we can again define
inductively r1 = u−1

1 and

rk+1 = −u−k−1
1

k∑
ℓ=0

∑
(j1,...,jℓ)∈Nℓ

j1+···+jℓ=k

rℓuj1 . . . ujℓ (2.6)

to achieve that c1 = 1 and ck = 0 for all k > 0. In particular r(u(z)) = z and,
since the composition is associative and the above argument shows that r has a
left compositional inverse, u(r(z)) = z holds automatically.

Since every R-algebra automorphism of R[[z]] is automatically local, it is contin-
uous in the (z)-adic topology. Therefore, it is completely determined by its image
of z, which is necessarily in zR[[z]]×, concluding the proof.

Proof of (2). From (2.5), we can deduce that for an arbitrary r = ∑
k∈N0 rkz

k ∈
R[[z]]× the series u = ∑

k∈N ukz
k ∈ z−1k[[z]]×, determined inductively by u1 = r0

and

uk+1 = 1
k + 1

k∑
ℓ=0

∑
(j1,...,jℓ)∈Nℓ

j1+···+jℓ=k

rℓuj1 . . . ujℓ , (2.7)

satisfies u′(z) = r(u(z)).
Proof of (3). Write ψ = ∑

k∈N ψkz
k. It is easy to verify that defining

mk ∈ M inductively by mk+1 = 1
k+1

∑k
ℓ=0 ψℓ(mk−ℓ) yields a unique element

m = ∑
k∈N0 mkz

k ∈M [[z]] such that m′ = ψm.
Proof of (4). Let f = ∑

k∈N0 fk be the decomposition of f into homogeneous
components, i.e. fk is the homogeneous component of f with total degree k for
all k ∈ N0. Then f(z, z) = 0 if and only if fk(z, z) = 0 for all k ∈ N0, so we may
assume that f = fk ∈M [x, y] for some k ∈ N0. Since x− y ∈ R[x, y] = R[y][x] is
monic, the polynomial division algorithm provides g ∈M [x, y] and r ∈M [y] such
that

f(x, y) = (x− y)g(x, y) + r(y). (2.8)

Therefore, 0 = f(z, z) = r(z) proves the first part of the statement. The second
part can be deduced from the following observation: for h(z) = hkz

k, we have
g(x, y) = hk

∑k−1
ℓ=0 x

ℓyk−1−ℓ, so g(z, z) = hkkz
k−1.
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2.1.2 Series in standard form. Recall that g is a semi-simple Lie algebra of dimension
d ∈ N over k with Killing form K, while γ ∈ g ⊗ g denotes the Casimir element of
g. In particular, the identity γ = ∑d

i=1 bi ⊗ bi holds, where {b1, . . . , bd} ⊆ g is a basis
orthonormal with respect to g. The most important property of γ is its g-invariance:

[a⊗ 1 + 1⊗ a, γ] = 0 for all a ∈ g. (2.9)

Consider (x− y)−1 as the series ∑∞
k=0 x

−k−1yk ∈ k((x))[[y]]. Then,

rYang(x, y) := γ

x− y
=

∞∑
k=0

d∑
i=1

x−k−1bi ⊗ ykbi (2.10)

is an element of (g⊗ g)((x))[[y]] ∼= (g((x))⊗ g)[[y]] ∼= (g⊗ g)⊗ k((x))[[y]], which we shall
call Yang’s r-matrix, as is usually done for its analytic counterpart.

A series r ∈ (g⊗ g)((x))[[y]] is said to be in standard form if

r(x, y) = λ(y)
x− y

γ + r0(x, y) = λ(y)rYang(x, y) + r0(x, y) (2.11)

for some λ ∈ k[[z]]× and r0 ∈ (g⊗ g)[[x, y]]. In this case
• r is called normalized if λ = 1,
• r(x, y) := λ(x)rYang(x, y)− τ(r0(y, x)) ∈ (g⊗ g)((x))[[y]], where τ is the k[[x, y]]-linear

extension of the linear automorphism of g⊗ g defined by a⊗ b 7→ b⊗ a, and
• r is called skew-symmetric if r = r.

Remark 2.1.3.
(1) For a general r = r(x, y) ∈ (g ⊗ g)((x))[[y]] there is no appropriate r since

switching x and y does not define a map of k((x))[[y]] into itself. Therefore,
a well-defined notion of skew-symmetry for elements of (g⊗ g)((x))[[y]] needs
additional assumptions, e.g. that they are in standard form.

(2) Let r = r(x, y) = f(x, y)rYang(x, y) + r0(x, y) ∈ (g ⊗ g)((x))[[y]] for some
f ∈ k[[x, y]]× and r0 ∈ (g⊗ g)[[x, y]]. Then

r(x, y) = f(y, y)rYang(x, y) + f(x, y)− f(y, y)
x− y

γ + r0(x, y) (2.12)

combined with part (4) of Lemma 2.1.2 shows that r is in standard form. In
particular, r is also in standard form.

2.1.3 Formal generalized r-matrices. Let ij ∈ {12, 13, 23}, U(g) be the universal
enveloping algebra of g and R := k((x1))((x2))[[x3]]. The assignments

t12 := t⊗ 1, t13 := t1 ⊗ 1⊗ t2 and t23 := 1⊗ t for all t = t1 ⊗ t2 ∈ g⊗ g (2.13)

define linear maps (·)ij : g ⊗ g → U(g) ⊗ U(g) ⊗ U(g). Let sij be the image of s ∈
(g⊗ g)((x))[[y]] via the map

(g⊗ g)((x))[[y]] ∼= (g⊗ g)((xi))[[xj]] ⊆ (g⊗ g)⊗R (·)ij⊗idR
// (U(g)⊗ U(g)⊗ U(g))⊗R .
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A series r ∈ (g⊗ g)((x))[[y]] is called a (normalized) formal generalized r-matrix if it is
in (normalized) standard form and solves the formal generalized classical Yang-Baxter
equation (formal GCYBE)

GCYB(r) = 0, where GCYB(r) := [r12, r13] + [r12, r23] + [r13, r23]. (2.14)

Here, the brackets in GCYB(r) are the usual commutators in the associative R-algebra
(U(g)⊗ U(g)⊗ U(g))⊗R.

Example 2.1.4.
rYang is a skew-symmetric formal normalized generalized r-matrix since

(x1 − x2)(x1 − x3)(x2 − x3)GCYB(rYang)(x1, x2, x3)
= ((x2 − x3)− (x1 − x3) + (x1 − x2))[γ12, γ13] = 0.

(2.15)

Here, we used that the fact (2.9) implies that

[γ12, γ13] = −[γ12, γ23] = [γ13, γ23]. (2.16)

It is easy to see that for any λ ∈ k[[z]] and r̃(x, y) := λ(y)rYang(x, y)

GCYB(r̃)(x1, x2, x3) = λ(x2)λ(x3)GCYB(rYang)(x1, x2, x3) = 0. (2.17)

holds, so r̃ is a generalized r-matrix. This series is not skew-symmetric if λ /∈ k×.

We conclude this subsection by summarizing some important observations.

Remark 2.1.5.
(1) Defining r32 := −r23 in (2.14) results in the analog form of the GCYBE used

in the introduction (0.1).
(2) Observe that e.g.

[(s1 ⊗ s2)13, (t1 ⊗ t2)23] = s1 ⊗ t1 ⊗ s2t2 − s1 ⊗ t1 ⊗ t2s2 = s1 ⊗ t1 ⊗ [s2, t2]

is an element of g⊗ g⊗ g for all s1, s2, t1, t2 ∈ g. This and similar calculations
show that GCYB(r) ∈ (g⊗ g⊗ g)((x1))((x2))[[x3]] for every r ∈ (g⊗ g)((x))[[y]]
in standard form. This can be further refined since equation (2.9) implies that
[a⊗ 1 + 1⊗ a, γ] = 0 for all a ∈ g[[z]]. We can use this fact to derive that

[r12
0 , γ

13]− [γ13, τ(r0)23] = [r12
0 + τ(r0)23, γ13] ∈ (g⊗ g⊗ g)[[x1, x2, x3]] (2.18)

vanishes for x1 = x3, where r0 is determined by

r(x, y) = λ(y)rYang(x, y) + r0(x, y) for some λ ∈ k[[z]]×. (2.19)

This and similar identities combined with Lemma 2.1.2.(4) and Example 2.1.4
imply that GCYB(r) ∈ (g ⊗ g ⊗ g)[[x1, x2, x3]] for all r ∈ (g ⊗ g)((x))[[y]] in
standard form.
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(3) Let k′ be an arbitrary field extension of k and r ∈ (g⊗ g)((x))[[y]] be a formal
generalized r-matrix. Then gk′ := g⊗ k′ is a semi-simple Lie algebra over k′

and the image rk′ of r under the canonical map

(g⊗ g)((x))[[y]]→ (gk′ ⊗k′ gk′)((x))[[y]]

is again a formal generalized r-matrix, called extension of r via k→ k′.

2.1.4 Equivalence of formal r-matrices. For φ ∈ Autk[[z]]-alg(g[[z]]) the image of φ
under

Autk[[z]]-alg(g[[z]]) ⊆ Endk[[z]](g[[z]]) ∼= End(g)[[z]] (2.20)

is again denoted by φ = φ(z). Furthermore,

φ⊗ φ ∈ End(g)[[z]]⊗k[[z]] End(g)[[z]] ∼= (End(g)⊗ End(g))[[z]] (2.21)

is also denoted by φ(z)⊗ φ(z) while φ(x)⊗ φ(y) denotes

φ⊗ φ ∈ End(g)[[z]]⊗ End(g)[[z]] ⊆ (End(g)⊗ End(g))[[x, y]]. (2.22)

A series r̃ ∈ (g⊗ g)((x))[[y]] is called equivalent to r ∈ (g⊗ g)((x))[[y]] if

r̃(x, y) = µ(y)(φ(x)⊗ φ(y))r(w(x), w(y)), (2.23)

where the triple (µ,w, φ) is called equivalence and consists of a series µ ∈ k[[z]]×, called
rescaling, an invertible series w ∈ zk[[z]]×, called coordinate transformation, and an
automorphism φ ∈ Autk[[z]]-alg(g[[z]]), called gauge transformation. Furthermore, we say
that r̃ is gauge equivalent (resp. coordinate equivalent) to r if µ = 1 and w = z (resp.
µ = 1 and φ = idg[[z]]). As the name suggests, these transformations define equivalence
relations on (g⊗ g)((x))[[y]].

Lemma 2.1.6.
The following results are true.
(1) Equivalences preserve the property of being a formal generalized r-matrix.
(2) An equivalence preserves skew-symmetry if and only if it has a constant

rescaling part.
(3) Every series in standard form is coordinate equivalent to one in normalized

standard form.
(4) An equivalence (µ,w, φ) of two normalized formal r-matrices automatically

satisfies µ ∈ k× and w(z) = µz.

Proof. Let r(x, y) = λ(y)rYang(x, y) + r0(x, y) for µ ∈ k[[z]]×, r0 ∈ (g⊗ g)[[x, y]] and
r̃ ∈ (g⊗ g)((x))[[y]] be equivalent to r via an equivalence (µ,w, φ). Using of Lemma
2.1.2.(4) and (φ(z)⊗φ(z))γ = γ (see e.g. Remark 2.3.2 below), we can deduce that

(φ(x)⊗ φ(y))rYang(w(x), w(y))− w′(y)−1rYang(x, y) ∈ (g⊗ g)[[x, y]], (2.24)
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hence r̃ is in standard form. In particular, if µ = 1, φ = idg[[z]] and w is the unique
solution of w′(z) = λ(w(z)) (see Lemma 2.1.2.(2)), r̃(x, y) = r(w(x), w(y)) is in nor-
malized standard from, so (3) is proven. It is easy to see that GCYB(r̃)(x1, x2, x3)
equals

µ(x2)µ(x3)(φ(x1)⊗ φ(x2)⊗ φ(x3))GCYB(r)(w(x1), w(x2), w(x3)),

which is zero, since GCYB(r) = 0. This proves (1). It is easy to see that r̃ is
skew-symmetric if r is skew-symmetric and µ ∈ k×. Assume that r and r̃ are
skew-symmetric. Then, multiplying r̃(x, y)− τ(r̃(y, x)) = 0 with x− y and putting
x = y = z results in µ′(z) = 0 because of Lemma 2.1.2.(4). Therefore, λ ∈ k× and
(2) is proven. If we now additionally assume that r and r̃ are normalized, we can
deduce from (2.24) that w(z) = µz.

Remark 2.1.7.
The study of formal generalized r-matrices will be pursued up to equivalence:
equivalent r-matrices will be treated as interchangeable. In light of of Lemma
2.1.6.(2), only equivalences with constant rescaling part will be used if skew-
symmetry is relevant to the context. In particular, Lemma 2.1.6.(3) would
permit us to restrict our attention to normalized formal generalized r-matrices.
Nevertheless, this will be done only if necessary, since non-normalized formal
generalized r-matrices appear naturally in the algebro-geometric context; see e.g.
Theorem 3.3.3 below.

2.2 Lie subalgebras of g((z)) complementary to g[[z]]
In [Che83a], Cherednik assigns a Lie subalgebra of g((z)) complementary to g[[z]] to each
non-degenerated solution of (0.3). This was generalized by Skrypnyk to non-degenerate
solutions of (0.1); see [Skr13]. In this section, we will discuss the formal analog of that
construction.

2.2.1 Lie subalgebras associated to formal generalized r-matrices. For a series

s = s(x, y) =
∞∑
k=0

d∑
i=1

sk,i(x)⊗ biyk ∈ (g⊗ g)((x))[[y]]

it is always possible to define the vector subspace

g(s) := ⟨sk,i(z) | k ∈ N0, i ∈ {1, . . . , d}⟩k (2.25)

of g((z)). It is the smallest subspace of g((z)) satisfying s ∈ (g(s)⊗ g)[[y]] and does not
depend on the choice of basis {bi}di=1. The following observation is fundamental to the
remainder of this work.
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Proposition 2.2.1.
The assignment r 7→ g(r) gives a bijection between normalized formal generalized
r-matrices and Lie subalgebras W ⊆ g((z)) satisfying g((z)) = g[[z]]⊕W.

Proof. Let r(x, y) = ∑∞
k=0

∑d
i=1 rk,i(x)⊗ ykbi be a normalized formal generalized

r-matrix. The identity g((z)) = g[[z]]⊕g(r) is a direct consequence of rk,i−z−k−1bi ∈
g[[z]] for all k ∈ N0, i ∈ {1, . . . , d}. It remains to show that g(r) is a subalgebra of
g((z)). The fact that [zka⊗ 1 + 1⊗ zka, γ] = 0 holds for all a ∈ g, k ∈ N0, forces

[r12 + r13, γ23](x1, x2, x3) =
∞∑
k=0

d∑
i=1

rk,i(x1)⊗ [xk2bi ⊗ 1 + 1⊗ xk3bi, γ], (2.26)

which is an element of (g(r) ⊗ g ⊗ g)[[x2, x3]], to vanish for x2 = x3. Therefore,
Lemma 2.1.2.(4) implies that

[r12, r23] + [r13, r23] ∈ (g(r)⊗ g⊗ g)[[x2, x3]]. (2.27)

This, combined with 0 = GCYB(r) = [r12, r13] + [r12, r23] + [r13, r23], shows that

∞∑
k,ℓ=0

d∑
i,j=1

[rk,i(x1), rℓ,j(x1)]⊗ xk2bi ⊗ xℓ3bj = [r12, r13](x1, x2, x3) (2.28)

is an element of (g(r)⊗ g⊗ g)[[x2, x3]]. We conclude that [rk,i, rℓ,j] ∈ g(r) for all
k, ℓ ∈ N0, i, j ∈ {1, . . . , d}. In particular, g(r) is a subalgebra of g((z)).

Let us consider now a Lie subalgebra W ⊂ g((z)), satisfying g((z)) = g[[z]]⊕W.
For every k ∈ N0, i ∈ {1, . . . , d} there is an unique element rWk,i ∈ W such that
rWk,i − biz−k−1 ∈ g[[z]]. By construction,

rW = rW(x, y) :=
∞∑
k=0

d∑
i=1

rWk,i(x)⊗ biyk ∈ (g⊗ g)((x))[[y]] (2.29)

is in normalized standard form and satisfies g(rW) = W. Furthermore, we can see
that rg(r) = r. Thus, it remains to show that GCYB(rW) = 0. In Remark 2.1.5.(2)
it was noted that GCYB(rW) ∈ (g⊗ g⊗ g)[[x1, x2, x3]]. Since g(rW) = W is closed
under the Lie bracket, (2.27) and (2.28) show that GCYB(rW) ∈ (W⊗g⊗g)[[x2, x3]].
Summarized, we obtain

GCYB(rW) ∈ (W⊗ g⊗ g)[[x2, x3]] ∩ (g⊗ g⊗ g)[[x1, x2, x3]] = {0}, (2.30)

since g[[z]] ∩W = {0}, concluding the proof.

Remark 2.2.2.
If one focuses on a certain class of formal generalized r-matrices, there sometimes
exist more appropriate ways to assign Lie algebras to said series, which should not
be confused with the universal method described here. We will see a examples of
this occurrence in the Subsection 5.4.4 and Subsection 5.4.5.
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2.2.2 Equivalence of formal generalized r-matrices on the level of subalgebras.
It is always possible to give a finite set of generators for the Lie algebra associated to a
formal generalized r-matrix by virtue of the following result.

Lemma 2.2.3.
Let r = ∑∞

k=0
∑d
i=1 rk,i(x)⊗ ykbi be a normalized formal generalized r-matrix. The

identity g(r) = ⟨r0,i | i ∈ {1, . . . , d}⟩k-alg holds.

Proof. Since {r0,i}di=1 is a basis of g(r) ∩ z−1g[[z]], it suffices to show that the Lie
subalgebra W of g(r), generated by g(r) ∩ z−1g[[z]], equals g(r). Assume that for
some m ∈ N we have g(r) ∩ z−mg[[z]] ⊆ W . For every pair a1, a2 ∈ g exist unique
ã1, ã2 ∈ W and s ∈ g(r) such that

ã1(z)− a1z
−1, ã1(z)− a2z

−m, s− [a1, a2]z−m−1 ∈ g[[z]]. (2.31)

Since [ã1, ã2] ∈ W and s − [ã1, ã2] ∈ g(r) ∩ z−mg[[z]] ⊆ W , we see that s ∈ W .
Therefore, [g, g] = g implies that g(r) ∩ z−m−1g[[z]] ⊆ W and W = g(r) is verified
by induction on m.

Lemma 2.2.4.
Let r̃ ∈ (g ⊗ g)((x))[[y]] be equivalent to a formal generalized r-matrix r via
an equivalence (µ,w, φ). Then g(r̃) is the image of g(r) under the map φw ∈
Autk-alg(g((z))) defined by a(z) 7→ φ(z)a(w(z)).

Proof. First note that for any s(x, y) = ∑∞
k=0

∑d
i=1 sk,i(x)⊗ biyk ∈ (g⊗ g)((x))[[y]]

and λ(z) = ∑∞
k=0 λkz

k ∈ k[[z]]× we have

s̃(x, y) := λ(y)s(x, y) =
∞∑
k=0

d∑
i=1

(
k∑
ℓ=0

λℓsk−ℓ,i(x)
)
⊗ biyk

and hence g(s̃) = g(s). Therefore, we may assume that r is normalized and
µ(z) = w′(z). Then r̃ is also a normalized formal generalized r-matrix, as can be
seen in the proof of Lemma 2.1.6.

Since φw : g((z))→ g((z)), defined by a(z) 7→ φ(z)a(w(z)), is a k-linear automor-
phism of Lie algebras and g(r)∩ z−1g[[z]] = {(1⊗ α)r(z, 0) | α ∈ g∗} generates g(r)
by Lemma 2.2.3, φw(g(r)) is generated by φw(g(r) ∩ z−1g[[z]]). We have

φw((1⊗ α)r(z, 0)) = (φ(z)⊗ α)r(w(z), 0) =
(
1⊗

(
µ(0)−1αφ(0)−1

))
r̃(z, 0),

where w(0) = 0, µ(0) ∈ k× and φ(0) ∈ Autk-alg(g) was used. Since α 7→
µ(0)−1αφ(0)−1 defines a linear automorphism of g∗, we see that

φw(g(r) ∩ z−1g[[z]]) = g(r̃) ∩ z−1g[[z]]

and hence φw(g(r)) = g(r̃) by applying Lemma 2.2.3.
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2.3 Formal r-matrices

This section is dedicated to the study of skew-symmetric formal generalized r-matrices.
Similar to the analytic context, we drop the word “generalized“ in this context.

2.3.1 Skew-symmetry and the formal classical Yang-Baxter equation. A series
r ∈ (g ⊗ g)((x))[[y]] is called a (normalized) formal r-matrix if it is in (normalized)
standard form and solves the formal classical Yang-Baxter equation (formal CYBE)

CYB(r) = 0, where CYB(r) := [r12, r13] + [r12, r23] + [r13, r23]. (2.32)

Here, r12, r13, r23 are defined in Subsection 2.1.3 and the brackets are commutators in
(U(g)⊗ U(g)⊗ U(g))⊗ k((x1))((x2))[[x3]].

Proposition 2.3.1.
A series r ∈ (g⊗g)((x))[[y]] is a formal r-matrix if and only if it is a skew-symmetric
formal generalized r-matrix.

Proof. It is obvious that a formal generalized r-matrix r solves the formal CYBE
(2.32) if r = r, so we have to prove the contrary, i.e. that each formal r-matrix
solves the formal GCYBE (2.14) and satisfies r = r. The equations (2.27), where
the r is replaced by r, and (2.28) imply that g(r) ⊆ g((z)) is a Lie subalgebra since
CYB(r) = 0. Therefore, Proposition 2.2.1 states that GCYB(r) = 0. In particular,
we have:

0 = CYB(r)−GCYB(r) = [r13, r23 − r23]. (2.33)

Multiplying (2.33) with x1 − x3, setting x1 = x3 and subsequently multiplying
with an element of k[[x3]]× results in [γ13, r23 − r23] = 0. Application of the map
a1 ⊗ a2 ⊗ a3 7−→ a2 ⊗ [a1, a3] gives the desired r = r. Here we used the following
fact:

γ 7→ idg under µ : g⊗ g→ End(g), defined by a1 ⊗ a2 7→ ad(a1)ad(a2). (2.34)

Indeed, if g = ⊕k
i=1 gi is the decomposition of g into simple ideals, we have

γ = ∑k
i=1 γi, where γi is the Casimir element of gi, so we may assume that g is simple.

Furthermore, an element f ∈ End(g) with the property f ⊗ idk = idg⊗k, where k is
the algebraic closure of k, already satisfies f = idg, so we may assume k = k. The
endomorphism µ(γ) = ∑d

i=1 ad(bi)2 is the quadratic Casimir operator of the adjoint
representation, which is a multiple of the identity because of Schur’s Lemma and
is equal to the identity since Tr(idg) = d = ∑d

i=1 K(bi, bi) = Tr(µ(γ)).

2.3.2 Skew-symmetry on the level of subalgebras. Let us denote the k((z))-bilinear
extension g((z))×g((z))→ k((z)) of the Killing form K of g with the same symbol. Then
g((z)) is equipped with the k-bilinear form K0 defined by

K−1(s, t) := res0K(s, t)dz =
∑

k+ℓ=−1
K(sk, tℓ) (2.35)
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for all s = ∑
k∈Z skz

k, t = ∑
k∈Z tkz

k ∈ g((z)), where res0λdz = λ−1 for any series
λ = ∑

k∈Z λkz
k ∈ k((z)).

Remark 2.3.2.
The k((z))-bilinear extension of K is the Killing form of g((z)) as a Lie algebra
over k((z)). Therefore, γ can also be understood as the Casimir element of g((z)).
In particular, [a⊗ 1 + 1⊗ a, γ] = 0 for all a ∈ k((z)) and (φ(z)⊗φ(z))γ = γ for all

φ ∈ Autk[[z]]-alg(g[[z]]) ⊆ Autk((z))-alg(g((z))). (2.36)

Moreover, K−1 is symmetric, non-degenerate and invariant, i.e. K−1([a, b], c) =
K−1(a, [b, c]) for all a, b, c ∈ g((z)).

Using the bilinear form K−1 admits us to understand the skew-symmetry of normalized
formal generalized r-matrices using the associated Lie subalgebras of g((z)).

Lemma 2.3.3.
Let r be a normalized formal generalized r-matrix. Then g(r)⊥ = g(r) (with
respect to the bilinear form (2.35)) is a g(r)-module satisfying g((z)) = g[[z]]⊕ g(r).
In particular, r is skew-symmetric if and only if g(r)⊥ = g(r).

Proof. Let us write

r(x, y) =
∞∑
k=0

d∑
i=1

rk,i(x)⊗ ykbi and r(x, y) =
∞∑
k=0

d∑
i=1

rk,i(x)⊗ ykbi (2.37)

as well as rk,i(z) = z−k−1bi +∑∞
ℓ=0

∑d
j=1 r

ℓ,j
k,iz

ℓbj. Then we have

r(x, y)− rYang(x, y) =
∞∑

k,ℓ=0

d∑
i,j=1

rℓ,jk,ix
ℓbj ⊗ ykbi (2.38)

and hence rℓ,j(z) = z−ℓ−1bj −
∑∞
k=0

∑d
i=1 r

ℓ,j
k,iz

kbi. Therefore, we can deduce

K−1(rk,i, rℓ,j) = rℓ,jk,i − r
ℓ,j
k,i = 0. (2.39)

This implies that g(r) ⊆ g(r)⊥. Now 0 = g[[z]] ∩ g(r)⊥ = (g[[z]] ⊕ g(r))⊥ and
g((z)) = g[[z]]⊕g(r), since r is in normalized standard form, show that g(r)⊥ = g(r).
The fact that [g(r), g(r)] ⊆ g(r), i.e. g(r) is a g(r)-module, is a direct consequence
of the inavariance of K−1.

We see that r = r implies g(r)⊥ = g(r). On the other hand, since both r and r
are of normalized standard form, g(r) = g(r)⊥ = g(r) forces

r − r ∈ (g(r)⊗ g)[[y]] ∩ (g⊗ g)[[x, y]] = {0}. (2.40)

We can conclude that g(r)⊥ = g(r) if and only if r = r.
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2.3.3 Difference dependence of formal r-matrices. For a normalized formal r-
matrix r(x, y) = ∑∞

k=0
∑d
i=1 rk,i(x) ⊗ biyk ∈ (g ⊗ g)((x))[[y]] the formal CYBE can be

rewritten as
∞∑
k=0

d∑
i=1

[rk,i(x1)⊗ 1 + 1⊗ rk,i(x2), r(x1, x2)]⊗ bixk

=
∞∑

k,ℓ=0

d∑
i,j=1

rk,i(x1)⊗ rℓ,j(x2)⊗ [bi, bj]xk+ℓ
3 .

(2.41)

This implies that we can define a linear map δ : g(r)→ g(r)⊗ g(r) by

δ(a)(x, y) := [a(x)⊗ 1 + 1⊗ a(y), r(x, y)],

for all a ∈ g(r). This fact can be used to show that formal r-matrices depend on the
difference of its formal variables up to equivalence. More precisely we have the following
result, which is a variation of the theorem in [BD83b].

Proposition 2.3.4.
Let r(x, y) be a normalized formal r-matrix. There exists s ∈ z−1(g⊗ g)[[z]] and
φ ∈ Autk[[z]]-alg(g[[z]]) such that s(x − y) = (φ(x) ⊗ φ(y))r(x, y). Furthermore,
g(s) := φ(g(r)) is closed under the formal derivation a(z) 7→ a′(z).

Proof. Let D : g(r)→ g(r) be the composition of δ with the Lie bracket [, ] : g(r)⊗
g(r)→ g(r). Combining the fact (2.34) with [a⊗ 1 + 1⊗ a, γ] = 0 for all a ∈ g[[z]]
and Lemma 2.1.2.(4) results in[

a(x)⊗ 1 + 1⊗ a(y), γ

x− y

]
=
[
a(x)− a(y)

x− y
⊗ 1, γ

]
[,]7−→ a′(z). (2.42)

If we write h(x, y) ∈ g[[x, y]] for the image of r(x, y) − rYang(x, y) ∈ (g ⊗ g)[[x, y]]
under the k[[x, y]]-linear extension of the Lie bracket g⊗ g → g and use the fact
that

[a⊗ 1 + 1⊗ a, c⊗ d] = [a, c]⊗ d+ c⊗ [a, d] [,]7−→ [[a, c], d] + [c, [a, d]] = [a, [c, d]]

holds for all a, b, c ∈ g, we can deduce that D(a)(z) = a′(z)− [h(z, z), a(z)].
Let ψ ∈ End(g)[[z]] be the unique solution of ψ(0) = idg and ψ′(z) = ad(h(z, z))ψ(z)

provided by Lemma 2.1.2.(3). For every a1, a2 ∈ g the series

c1(z) := ψ(z)[a1, a2] and c2(z) := [ψ(z)a1, ψ(z)a2] ∈ g[[z]] (2.43)

satisfy c′
i(z) = [h(z, z), ci(z)] and ci(0) = [a1, a2] for i ∈ {1, 2}. Therefore, Lemma

2.1.2.(3) forces c1 = c2. Thus, ψ defines an element of Autk[[z]]-alg(g[[z]]). Let φ(z) :=
ψ(z)−1 ∈ End(g)[[z]] and note that φ(z) also defines an element of Autk[[z]]-alg(g[[z]]).
Consider the normalized formal r-matrix r̃(x, y) := (φ(x)⊗ φ(y))r(x, y) and note
that g(r̃) = φ(g(r)) by Lemma 2.2.4. Let D̃ := φDψ : g(r̃) → g(r̃) and observe
that

D̃(a)(z) = φ(z)D(ψ(a))(z) = φ(z)(ψ′(z)a(z) + ψ(z)a′(z)− [h(z, z), ψ(z)a(z)])
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= a′(z) + φ(z)([h(z, z), ψ(z)a(z)]− [h(z, z), ψ(z)a(z)]) = a′(z).

In particular, D̃ : g(r̃)→ g(r̃) is the restriction of the formal derivative to g(r̃).
Since g(r̃) is closed under D̃, which is the restriction of the formal derivative to

g(r̃), we have

(1⊗K(bi, ·))
(−1)k
k! r̃(k)(z, 0) ∈ g(r̃) ∩ (biz−k−1 + g[[z]])

for all i ∈ {1, . . . , d}, k ∈ N0, where r̃(k)(z, 0) := D̃kr̃(z, 0). The proof of Proposition
2.2.1 and the expansion of r̃(x− y, 0) as a series imply that

r̃(x, y) =
∞∑
k=0

(−1)k
k! r̃(k)(x, 0)yk = r̃(x− y, 0)

and we can see that putting s(z) := r̃(z, 0) concludes the proof.

Remark 2.3.5.
The linear map δ actually defines a so-called Lie bialgebra structure on g(r). We
will discuss these structures in detail in Section 5.1.2 and return to the setting
above in Subsection 5.4.2.



3
Algebro-geometric properties of

formal generalized r-matrices

Throughout this chapter, g is a finite-dimensional, central, simple Lie algebra over a
field k of characteristic 0 and every formal generalized r-matrix takes values in g if not
stated otherwise.

3.1 Geometrization of formal generalized r-matrices.

Let r ∈ (g⊗g)((x))[[y]] be a formal generalized r-matrix. The algebra g(r) is a g-lattice of
index (0, 0) by Proposition 2.2.1, so Theorem 1.3.3 implies that every unital subalgebra
O ⊆ Mult(g(r)) = {λ ∈ k((z)) | λg(r) ⊆ g(r)} of finite codimension is a k-lattice
satisfying Og(r) ⊆ g(r). Therefore, (O, g(r)) ∈ Latg and Theorem 1.3.6 provides a
geometric g-lattice model G(O, g(r)) = ((X,A ), (p, c, ζ)), where:
• X is an integral projective curve over k of arithmetic genus dim(k((z))/(k[[z]] +O)).
• p ∈ X is a k-rational smooth point.
• c : ÔX,p → k[[z]] is an isomorphism inducing an isomorphism Spec(O)→ X \ {p}.
• A is a coherent sheaf of Lie algebras on X which is étale g-locally free at p (see

Remark 1.3.7) and satisfies h0(A ) = 0 = h1(A ).
• ζ : Âp → g[[z]] is a c-equivariant isomorphism such that ζ(Γ(X \ {p},A )) = g(r).

3.1.1 Geometrization of equivalences. Let r1, r2 ∈ (g ⊗ g)((x))[[y]] be formal gen-
eralized r-matrices, which are equivalent via some equivalence (µ,w, φ), and O1 ⊆
Mult(g(r1)) be a unital subalgebra of finite codimension. It is easy to see that the
image O2 of O1 under the automorphism of k((z)) defined by λ(z) 7→ λ(w(z)) is a k-
subalgebra of Mult(g(r)) of finite codimension. Let ((Xi,Ai), (pi, ci, ζi)) = G(Oi, g(ri))
for i ∈ {1, 2}.

Proposition 3.1.1.
The equivalence (µ,w, φ) defines an isomorphism

((X1,A1), (p1, c1, ζ1)) −→ ((X2,A2), (p2, c2, ζ2)) (3.1)

in the category GeomLatg.

Proof. It is easy to see from Lemma 2.2.4 that the equivalence (µ,w, φ) defines
an isomorphism (O1,W1) → (O2,W2) in LatA. Thus, the statement is a direct
consequence of the functoriality of G.



44 Chapter 3 Algebro-geometric properties of formal generalized r-matrices

3.1.2 Example: homogeneous formal generalized r-matrices. It is easy to see
that g(rYang) = z−1g[z−1]. This subalgebra is stable under multiplication by z−1. In
general, a subalgebra W ⊆ g((z)), satisfying g((z)) = g[[z]]⊕W , is called homogeneous if
z−1W ⊆ W . Such a subalgebra is automatically a deformation of g(rYang) in the sense
that there exists A ∈ End(g)[[z]] such that A(0) = idg and

W = Ag(rYang) = ⟨z−k−1A(z)bi | k ∈ N0, i ∈ {1, . . . , d}⟩k. (3.2)

The series A is thereby uniquely determined by z−1A(z)bi ∈ W for all i ∈ {1, . . . , d}.
Recall that two Lie brackets [, ]1, [, ]2 on a vector space l are called compatible if [, ]1 +[, ]2
defines a Lie bracket. In this case λ[, ]1 + µ[, ]2 is a Lie bracket for all λ, µ ∈ k. The
condition on A in order for W to be a Lie algebra is examined in [GS02], where the
following result is proven.

Theorem 3.1.2.
The vector space W = Ag(rYang) ⊆ g((z)) for A(z) = idg +zR+ · · · ∈ End(g)[[z]]
is a Lie subalgebra if and only if

[A(z)a,A(z)b] = A(z)([a, b] + z[a, b]R) (3.3)

holds for all a, b ∈ g, where

[a, b]R := [Ra, b] + [a,Rb]−R[a, b] (3.4)

is a Lie bracket of g, compatible with the original Lie bracket.

We call a formal generalized r-matrix r homogeneous if r is normalized and the Lie
algebra g(r) = Ag(rYang) is a homogeneous Lie algebra. Since r is in this case also in
normalized standard form, we can see that g((z)) = g[[z]] ⊕ g(r), hence there exists a
unique invertible series A ∈ End(g)[[z]] such that A(0) = idg and g(r) = Ag(rYang).

Lemma 3.1.3.
Let r ∈ (g ⊗ g)((x))[[y]] be a homogeneous generalized r-matrix and A, A ∈
End(g)[[z]] be given by g(r) = Ag(rYang), g(r) = Ag(rYang). If A(x) ⊗ A(y) is
understood as an element of (End(g)⊗ End(g))[[x, y]],

r(x, y) = A(x)⊗ A(y)
x− y

γ (3.5)

holds, where γ ∈ g⊗ g is the Casimir element. In particular, r is skew-symmetric
if and only if A = A.

Proof. It is easy to see that g(r) = g(r)⊥ implies that

res0z
kK(Aa1, Aa2)dz =

K(a1, a2) k = −1
0 k ̸= −1

(3.6)

for all a1, a2 ∈ g. From this we can deduce that K(Aa1, Aa2) = K(a1, a2) for all
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a1, a2 ∈ g((z)) and as a consequence (A(z)⊗ A(z))γ = γ. Therefore,

r̃(x, y) := A(x)⊗ A(y)
x− y

γ ∈ (g⊗ g)((x))[[y]] (3.7)

is in normalized standard form by virtue of Lemma 2.1.2.(4). Furthermore, it is
straight forward to verify that r̃ ∈ (g(r)⊗ g)[[y]] and hence

r − r̃ ∈ (g(r)⊗ g)[[y]] ∩ (g⊗ g)[[x, y]] = {0}, (3.8)

where we used that r and r̃ are both of normalized standard form.

Geometrically, homogeneous r-matrices are exactly those r-matrices whose “maximal”
geometric datum has the underlying curve P1

k. More precisely, we have the following
statement.

Lemma 3.1.4.
Let r be a normalized formal generalized r-matrix, O ⊆ Mult(g(r)) be a unital
subalgebra of finite codimension, and G(O, g(r)) = ((X,A ), (p, c, ζ)).
(1) r is homogeneous and O = Mult(g(r)) =⇒ X = P1

k.
(2) X ∼= P1

k =⇒ O = Mult(g(r)) and r is equivalent to a homogeneous formal
generalized r-matrix.

Proof. The proof of (1) is straightforward, so it remains to proof (2). The identity
O = Mult(g(r)) holds, since O is integrally closed. Furthermore, k((z)) = k[[z]] +O
holds. This and O∩k[[z]] = k can be used to deduce that O = k[u−1] for an arbitrary
u ∈ zk[[z]]× such that u−1 ∈ O. Let w ∈ zk[[z]]× be the compositional inverse
of u: w(u(z)) = z. Then r̃(x, y) := r(w(x), w(y)) satisfies Mult(g(r̃)) = k[z−1].
In other words, g(r̃) is homogeneous. After potentially rescaling r̃, we obtain a
homogeneous formal generalized r-matrix equivalent to r.

3.2 Properties of geometric data associated to formal
generalized r-matrices

Let r be a formal generalized r-matrix, O ⊆ Mult(g(r)) be any unital subalgebra of
finite codimension, and ((X,A ), (p, c, ζ)) := G(O, g(r)). In this section, we discuss
the properties of ((X,A ), (p, c, ζ)). In particular, we will see that there are certain
restrictions on X and these lead to splittings of formal generalized r-matrices into
distinct categories. For instance, we will see in Subsection 3.2.3 that, if r is normalized
and skew-symmetric, X can be chosen to be of arithmetic genus one, resulting in a
geometric trichotomy of normalized formal r-matrices. In this case, A turns out to be
étale g-locally free at the smooth locus of X; see Subsection 3.2.4.

3.2.1 Geometric dichotomy of formal generalized r-matrices. Recall that the
geometric genus of an algebraic curve is the genus of its normalization.
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Proposition 3.2.1.
Let r be a formal generalized r-matrix, O ⊆ Mult(g(r)) be any unital subalgebra
of finite codimension, and ((X,A ), (p, c, ζ)) := G(O, g(r)) (see Theorem 1.3.6).
The geometric genus g̃ of X is at most one, i.e. g̃ ∈ {0, 1}.

Proof. Let (ν, ι) : ((X,A ), (x, c, φ))→ ((Xν ,A ν), (pν , cν , ζν)) be the image of the
integral closure (O, g(r))→ (Oν , g(r)ν) under the geometrization functor G; see
Subsection 1.3.6. The cokernel of the injective morphism ι : A → ν∗A ν is a torsion
sheaf by Lemma 1.3.9, so h1(Cok(ι)) = 0. The long exact sequence in cohomology
of

0 −→ A
ι−→ ν∗A

ν −→ Cok(ι) −→ 0 (3.9)

combined with h1(A ) = 0 = h1(Cok(ι)) implies that h1(A ν) = 0. Let

K : A ν ×A ν → OXν (3.10)

be the Killing form of the finite locally free sheaf A ν of Lie algebras, and Ka : A ν →
A ν,∗ = HomOXν (A ν ,OXν ) be the natural morphism induced by K. The fiber of
K in p coincides with the Killing form of A ν |p ∼= A |p ∼= g by virtue of Lemma
1.1.2 and is non-degenerate as a consequence. Therefore, Ka|p is an isomorphism,
so Ker(Ka) and Cok(Ka) are torsion sheaves. In particular, h1(Cok(Ka)) = 0 and
Ker(Ka) vanishes, since it is a torsion subsheaf of the torsion free sheaf A ν . The
long exact sequence in cohomology of

0 −→ A ν Ka
−→ A ν,∗ −→ Cok(Ka) −→ 0 (3.11)

combined with h1(A ν) = 0 = h1(Cok(ι)) implies that h1(A ν,∗) = 0.
The Riemann-Roch theorem for A ν and A ν,∗ (e.g. in the version of [Liu02,

Chapter 7, Exercise 3.3]) reads

0 ⩽ h0(A ν)− h1(A ν) = deg(det(A ν)) + (1− g̃)rank(A ν)
0 ⩽ h0(A ν,∗)− h1(A ν,∗) = −deg(det(A ν,∗)) + (1− g̃)rank(A ν),

where we used that det(A ν,∗) = det(A ν)∗ implies deg(det(A ν,∗)) = −deg(det(A ν)).
We conclude g̃ ⩽ 1.

Since the geometric genus g̃ of X is an invariant of the equivalence class of r by Propo-
sition 3.1.1, the Proposition 3.2.1 splits the equivalence classes of formal generalized
r-matrices into two types. In order to examine the g̃ = 1 case, we need the following
observation.

Remark 3.2.2.
Let ωX be the dualizing sheaf of X. Since p is smooth, ωX,p can be identified with
the Kähler differentials Ω1

OX,p/k. Therefore, using e.g. [Kun13, Corollary 12.5 and
Example 12.7], we obtain a c-equivariant isomorphism c∗ : ω̂X,p → k[[z]]dz. More
precisely, the differential OX,p → Ω1

OX,p/k
∼= ωX,p induces a continuous differential
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d: ÔX,p → ω̂X,p, whose image generates ω̂X,p and the identity c∗(df) = c(f)′dz
holds. The isomorphism c∗ respects residues by [Tat68, Theorem 2]: respη =
res0c

∗η for all η ∈ Q(ω̂X,p). Here we extended c∗ to a map Q(ω̂X,p)→ k((z))dz.

The following result implies that for g̃ = 1, r is already skew-symmetric up to
equivalence. In particular, if r is not equivalent to a formal r-matrix, Xν ∼= P1

k holds
automatically, i.e. X is rational.

Theorem 3.2.3.
Let r be a formal generalized r-matrix and

(ν, ι) : ((X,A ), (p, c, φ)) −→ ((Xν ,A ν), (pν , cν , ζν)) (3.12)

be the image of the integral closure (Mult(g(r)), g(r)) → (Mult(g(r))ν , g(r)ν)
under the functor G (see Subsection 1.3.6). Assume that the genus of Xν is one.
(1) (ν, ι) is an isomorphism and the Killing form K of A is perfect.
(2) There exist µ ∈ k[[z]]×, w ∈ zk[[z]]× such that r̃(x, y) := µ(y)r(w(x), w(y)) is

normalized and skew-symmetric, i.e. r is equivalent to the normalized formal
r-matrix r̃.

Proof. Let Ω1
Xν be the sheaf of regular 1-forms on Xν . We have H1(Ω1

Xν ) = kη for
some global 1-form η on Xν and this choice defines an isomorphism Ω1

Xν
∼= OXν .

Serre duality (e.g. in the version [Liu02, Chapter 6, Remark 4.20 and Theorem 4.32])
and the proof of Proposition 3.2.1 provide 0 = h1(A ν,∗) = h0(A ν). Combined with
h1(A ) = 0 and the fact that Cok(ι) is torsion (see Lemma 1.3.9), the long exact
sequence of (3.9) in cohomology implies that ι : A → ν∗A ν is an isomorphism. In
particular, g(r)ν = g(r), Mult(g(r))ν = Mult(g(r)), and X = Xν . The first part of
(1) is proven.

Let du(z) = u′(z)dz = c∗(η) (see Remark 3.2.2) and a, b ∈ Γ(X \ {p},A ). If
w ∈ zk[[z]]× is the series uniquely determined by w(u(z)) = z and ã := ζ(a), b̃ :=
ζ(b), we may calculate

K−1
(
ã(w(z)), b̃(w(z))

)
= res0K

(
ã(w(z)), b̃(w(z))

)
dz

= res0K
(
ã(z), b̃(z)

)
du(z) = respK(a, b)η = 0.

Here, the second to last equality uses the commutative diagram (3.14) below and
Remark 3.2.2, while the last equality is due to the residue theorem [Tat68, Corollary
of Theorem 3] under consideration of K(a, b)η ∈ Γ(X \ {p},ΩX). Thus, the image
W of g(r) under a(z) 7→ a(w(z)) satisfies W⊥ = W. Lemma 2.2.4 states that
W = g(r̃) for r̃(x, y) = µ(y)r(w(x), w(y)), where µ ∈ k[[z]] is arbitrary. This shows
that r̃ is a formal r-matrix if we chose µ in such a way that r̃ is normalized; see
Lemma 2.3.3. Thus, (2) is proven.

It remains to prove the second part of (1), i.e. that K is perfect. This follows
from Cok(Ka) = 0, which is a consequence of using h1(A ) = h0(A ∗) = 0 in the
long exact sequence of (3.11) in cohomology. Here, we used the Serre duality
again.
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3.2.2 An inclusion result for orthogonal complements. Proposition 3.2.1 can be
used to derive the following useful lemma.

Lemma 3.2.4.
Let r be a formal generalized r-matrix, O ⊆ Mult(g(r)) be any unital subalge-
bra of finite codimension, and (Oν , gr(r)ν) be the integral closure of (O, g(r)).
Furthermore, let k((z)) be equipped with the bilinear form defined byλ =

∑
k∈Z

λkz
k, µ =

∑
k∈Z

µkz
k

 7−→ res0λµdz =
∑

k+ℓ=−1
λkµℓ. (3.13)

The chain of inclusions Oν,⊥g(r) ⊆ Oν,⊥g(r)ν ⊆ g(r)ν,⊥ ⊆ g(r)⊥ holds.

Proof. Let (ν, ι) : ((X,A ), (x, c, φ))→ ((Xν ,A ν), (pν , cν , ζν)) be the image of the
canonical morphism (O, g(r))→ (Oν , g(r)ν) under G. The diagram

Γ(U,A ν)× Γ(U,A ν) K //

ζν×ζν

��

Γ(U,OXν )
cν

��

g((z))× g((z))
K

// k((z))

(3.14)

commutes for all affine open U ⊆ X such that A ν |U is free. Consequently, (3.14)
commutes for all U ⊆ X open, by a gluing argument. In particular,

K(a, b) ∈ cν(Γ(Xν \ {pν},OXν )) = Oν (3.15)

for all a, b ∈ g(r)ν . Hence, we see that

K−1(λa, b) = res0K(λa, b)dz = res0λK(a, b)dz = 0

for all λ ∈ Oν,⊥. Therefore, λa ∈ g(r)ν,⊥ and we can complete the chain of
inclusions by observing that g(r) ⊆ g(r)ν implies g(r)ν,⊥ ⊆ g(r)⊥.

3.2.3 Geometric trichotomy of formal r-matrices. We can refine Proposition 3.2.1
for normalized formal r-matrices in the following way.

Theorem 3.2.5.
Let r be a normalized formal r-matrix. There is a canonical unital subalgebra
O ⊆ Mult(g(r)) of finite codimension such that X has arithmetic genus one,
where ((X,A ), (p, c, ζ)) := G(O, g(r)) is the associated geometric g-lattice model.

Proof. Let ((Xν ,A ν), (pν , cν , ζν)) := G(Oν , g(r)ν), where (Oν , g(r)ν) is the integral
closure of (O, g(r)). If the genus of Xν is one, the claim is already proven in
Theorem 3.2.3, so we may assume that h1(OXν ) = 0, i.e. k[[z]] + Oν = k((z)).
Since Oν ∩ k[[z]] = k, the canonical projection O → k[z−1] is injective and as a



3.2 Properties of geometric data associated to formal generalized r-matrices 49

consequence Oν = k[u] for an arbitrary u ∈ z−1k[[z]]× ∩ Oν . Lemma 3.2.4 states
that

Oν,⊥g(r) ⊆ g(r)⊥ = g(r), (3.16)

where k((z)) is equipped with the bilinear form (3.13) and the last equality follows
from Proposition 2.3.1 and Lemma 2.3.3. In particular, Oν,⊥ ⊆ Mult(g(r)) ⊆ Oν .
Since for all k ∈ N0

res0u
ku′dz = res0

1
k + 1

(
uk+1

)′
dz = 0 (3.17)

holds, where (·)′ denotes the formal derivative with respect to z, we see that
u′Oν ⊆ Oν,⊥ ⊆ Oν . Thus, (3.16) implies that k+u′Oν ⊆ Mult(g(r)). The fact that
u′ ∈ Oν = k[u] has order two can be used to see that k+u′Oν = k+Oν,⊥ = k[u′, u′u]
is an unital k-subalgebra of Mult(g(r)) such that dim(k((z))/(k[[z]]+k[u′, u′u])) = 1.
Choosing O = k[u′, u′u] = k +Oν,⊥ implies that X has arithmetic genus 1.

Theorem 3.2.5 can be understood as a geometric trichotomy of formal generalized
r-matrices, i.e. a splitting of formal generalized r-matrices into three categories. Indeed,
this follows from the following observation.

Remark 3.2.6.
Every integral projective curve Y over k of arithmetic genus one with a k-rational
smooth point q is a plane cubic curve, i.e. determined by one cubic equation. This
can be seen for example from Theorem 1.3.4: fix an isomorphism t : ÔY,q → k[[z]],
write O := t(Γ(Y \{q},OY ), and note that the codimension of k[[z]] +O in k((z)) is
one. Then O∩k[[z]] = t(Γ(Y,OY )) = k implies that O = k[f, g], where f has order
2 and g has order 3. After properly adjusting f and g, we get g2 = f 3 + af + b
for some a, b ∈ k. This is a minimal polynomial relation between f and g, so
O ∼= k[x, y]/(y2 − x3 − ax− b). In other words, Y is a plane cubic curve.
It is easy to see that X is smooth if and only if 4a3 + 27b2 ̸= 0, in which case it is
elliptic, and has a unique nodal (resp. cuspidal) singularity if 4a3 = −27b2 ̸= 0
(resp. a = b = 0). In the singular cases Y is rational, i.e. Y has the normalization
P1
k → Y .

Another interesting observation is the fact that the three classes are preserved by formal
equivalences.

Remark 3.2.7.
Let r1, r2 ∈ (g⊗g)((x))[[y]] be two normalized formal r-matrices which are equivalent
via the equivalence (µ,w, φ). Furthermore, let Oi ⊆ Mult(g(ri)) be the subalgebra
constructed in Theorem 3.2.5 for ri = r, and ((Xi,Ai), (pi, ci, ζi)) = G(Oi, g(ri)),
where i ∈ {1, 2}. By virtue of Lemma 2.1.6.(4), we have µ ∈ k× and w(z) = µz.
Therefore, it is easy to see from the construction of O in the proof of Theorem
3.2.5 that λ(z) 7→ λ(w(z)) = λ(µz) defines an isomorphism O1 → O2. We can
deduce from Lemma 3.1.1 that X1 ∼= X2. Therefore, X1 is elliptic (resp. nodal,
resp. cuspidal) if and only if X2 is elliptic (resp. nodal, resp. cuspidal).
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3.2.4 Geometric data of normalized formal r-matrices. In this section, we discuss
further properties of the geometric datum associated to formal generalized r-matrices.

Proposition 3.2.8.
Let r be a normalized formal r-matrix, O ⊆ Mult(g(r)) be chosen according to
Theorem 3.2.5, (ν, ι) : ((X,A ), (x, c, φ))→ ((Xν ,A ν), (pν , cν , ζν)) be the image
of the integral closure (O, g(r)) → (Oν , gr(r)ν) under G, and Kν be the Killing
form of A ν. There exists a unique perfect pairing K : A ×A → OX such that

A ×A

ι×ι
��

K // OX

ν♭

��

ν∗A ν × ν∗A ν
ν∗Kν

// ν∗OXν

(3.18)

commutes.

Proof. The statement is already proven in Theorem 3.2.3 for h1(OXν ) = 1, so we
may assume h1(OXν ) = 0, i.e. Oν = k[u] and O = k[u′, u′u]; see the proof of
Theorem 3.2.5. Since X = C ∪ (X \ {p}), where C is the smooth locus of X, we
have to define the paring K on the affine open set X \ {p} and show that it is
compatible with ν∗K. The diagram (3.14) implies that K : g((z))× g((z))→ k((z))
restricts to a mapping g(r)ν × g(r)ν → Oν and it suffices to show that this pairing
restricts further to g(r) × g(r) → O. Observe that g(r)⊥ = g(r) implies that K
restricts to a bilinear map

g(r)× g(r)→ P := {λ ∈ Oν | res0λdz = 0}. (3.19)

We have O = k +Oν,⊥ ⊆ P , since 1 ∈ Oν . The codimension of P in Oν is one, i.e.
Oν/P is spanned by u+ P . The same is true for Oν/O proving P = O.

It remains to show that K is perfect. Similarly to the proof of Proposition 3.2.1,
the morphism Ka : A → A ∗, induced by K, is injective with a torsion cokernel
Cok(Ka). The long exact sequence in cohomology induced by

0 −→ A
Ka
−→ A ∗ −→ Cok(Ka) −→ 0,

combined with h0(A ) = 0 = h1(A ), implies h0(Cok(Ka)) = h0(A ∗) = h1(A ) = 0.
Here, we used the Serre duality (in e.g. the version [Liu02, Chapter 6, Remark 4.20
and Theorem 4.32]). Note that h1(OX) = 1 and the fact that X is locally a complete
intersection (see e.g. Remark 3.2.6) thereby implied that the dualizing sheaf of X
is trivial. We conclude that Cok(Ka) vanishes. Thus, Ka is an isomorphism. This
is equivalent to saying that K is perfect.

Theorem 3.2.9.
Let r be a normalized formal r-matrix, O ⊆ Mult(g(r)) be chosen according to
Theorem 3.2.5, and ((X,A ), (p, c, ζ)) := G(O, g(r)). The sheaf of Lie algebras
A |C is étale g-locally free, where C is the smooth locus of X.
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Proof. Let ((Xk,Ak), (pk, ck, ζk)) be the geometric datum associated to (Ok,Wk)
and π : Xk → X be the canonical morphism, where we recall that k is the algebraic
closure of k and use the notation from Subsection 1.3.7. Observe that rk is a
normalized formal r-matrix, π factors as Xk

∼= X × Spec(k) → X, where the
second map is the canonical projection, and Ak

∼= π∗A . Lemma 1.2.2 states that
A |C is étale g-locally free if Ak|Ck

is étale (g⊗ k)-locally free, where π−1(C) = Ck
is the smooth locus of Xk. Hence, we may assume that k = k.

Using Proposition 3.2.8, Lemma 1.1.2 and Cartan’s criterion for semi-simplicity,
we see that A |q is semi-simple for all closed q ∈ C. Therefore, A is étale A |q-
locally free in any closed point q ∈ C; see Theorem 1.2.5. Consequently, A is
weakly A |q-locally free in all closed points in some open neighbourhood of q, since
étale maps are open; see also Remark 1.2.1. This forces A |q ∼= A |p ∼= g for all
q ∈ C closed, since C is connected. Theorem 1.2.3 states that A |C is étale g-locally
free.

Proposition 3.2.10.
Let r be a normalized formal r-matrix, O ⊆ Mult(g(r)) be chosen according
to Theorem 3.2.5, and ((X,A ), (p, c, ζ)) := G(O, g(r)). There exists a unique
element η = ηr ∈ H0(ωX) such that c∗(η) = dz, where ωX is the dualizing sheaf
of X.

Proof. As in the proof of Theorem 3.2.9, let ((Xk,Ak), (pk, ck, ζk)) be the geometric
datum associated to (Ok,Wk) and π : Xk → X be the canonical morphism, where
the notation from Subsection 1.3.7 is used. Then rk is a normalized formal r-
matrix and π factors as Xk

∼= X × Spec(k) → X, where the second map is the
canonical projection. In particular, π∗ωX ∼= ωXk

is the dualizing sheaf of Xk (see
e.g. [Con00, Theorem 3.6.1]) and the image of c∗(η̂p) under k[[z]]dz → k[[z]]dz
equals to c∗

k

(
π̂∗η

)
pk

, for any η ∈ H1(ωX). Therefore, c∗(η̂p) ∈ kdz if and only if

c∗
k

(
π̂∗η

)
pk
∈ kdz. As a consequence, we may assume that k = k.

Let η be a non-zero global section of the dualizing sheaf ωX of X and c∗(η̂p) =
dw(z) = w′(z)dz for some w(z) ∈ zk[[z]]. The dualizing sheaf can be identified
with the sheaf of Rosenlicht regular 1-forms. More precisely, η is a rational 1-form
on the normalization Xν of X, which is regular on ν−1(C) (where C is the smooth
locus of X) and satisfies∑

q∈ν−1(s)
resqfη = 0 for all s ∈ X singular and closed, f ∈ OX,s; (3.20)

see e.g. [Con00, Theorem 5.2.3]. The residue theorem on Xν implies that respfη = 0
for all f ∈ Γ(X \ {p},OX). Combining this with Remark 3.2.2 and using diagram
(3.14) results in

res0K(ζ(a), ζ(b))w′dz = respK(a, b)η = 0 (3.21)

for all a, b ∈ Γ(X \ {p},A ). This implies that w′g(r) ⊆ g(r)⊥ = g(r). In other
words, we obtain w′ ∈ Mult(g(r)) ∩ k[[z]]× = k×. We can conclude the proof by
replacing η with (w′)−1η ∈ H0(ωX).
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3.3 Global aspects of formal generalized r-matrices

In the last section, we have examined the structure of geometric g-lattice models
associated to formal generalized r-matrices. In this section, we deduce a scheme to
transport properties of said models back to properties of formal generalized r-matrices
by using the notion of geometric r-matrices (see Subsection 3.3.2) as moderator. The
central observation is that formal generalized r-matrices can be recovered as Taylor
expansions of geometric r-matrices; see Theorem 3.3.3. As an application, we will see
that any formal generalized r-matrix is the Taylor expansion of an appropriate rational
map; see Theorem 3.3.5.

3.3.1 Geometric CYBE and GCYBE models. Let r be a formal generalized r-matrix,
O ⊆ Mult(g(r)) be a unital subalgebra of finite codimension, and ((X,A ), (p, c, ζ)) :=
G(O, g(r)) be the associated geometric g-lattice model; see Theorem 1.3.6. The sheaf
A is étale g-locally free in p by Theorem 1.2.5. Since étale morphisms are open, we can
chose a smooth open neighbourhood C of p such that A |C is étale g-locally free. After
properly shrinking C, there exists a non-vanishing 1-form η on C. We have obtained a
geometric datum ((X,A ), (C, η)), where
• X is an integral projective curve over k.
• C ⊆ X is a non-empty smooth open subset.
• η is a non-vanishing 1-form on C.
• A is a coherent sheaf of Lie algebras A on X such that h0(A ) = 0 = h1(A ) and

A |C is étale g-locally free.
Let us call ((X,A ), (C, ω)) a geometric GCYBE model of r. If r is normalized and
skew-symmetric and O is chosen according to Theorem 3.2.5, we can choose C to be
the smooth locus of X (see Theorem 3.2.9) and η = ηr (see Proposition 3.2.10); in this
case ((X,A ), (C, η)) is called the geometric CYBE model of r.

Remark 3.3.1.
(1) A geometric GCYBE model of a formal generalized r-matrix is not unique,

while the geometric CYBE model of a normalized formal generalized r-matrix
is.

(2) For k = k the geometric GCYBE model ((X,A ), (C, η)) satisfies the axioms
used in [BG18] to construct a geometric analog of a generalized r-matrix called
geometric r-matrix. Indeed, in this case Theorem 1.2.3 implies that A |C is
étale g-locally free if and only if it is weakly g-locally free. Therefore, the
above conditions can be seen as an appropriate generalization of the axioms
used in [BG18] if one works over a non-algebraically closed ground field. In
the next subsection, we recall the construction of the geometric r-matrix and
observe that it works in our generalized setting.

(3) Assume r is normalized and skew-symmetric, ((X,A ), (C, η)) is the geometric
CYBE model of r and k = k. Then we can see that ((X,A ), (C, η)) satisfies
the geometric axiomatization of skew-symmetry given in [BG18, Theorem 4.3].
Note that the third condition in said theorem can be seen as a consequence
of the fact that the Killing form of A |C extends to a pairing A ×A → OX

by Proposition 3.2.8; see [Gal15, Theorem 1.2.(2)]. Hence, we again obtain
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a generalization of said axiomatization which works over non-algebraically
closed fields.

3.3.2 The geometric r-matrix. Let r be a formal generalized r-matrix, O ⊆ Mult(g(r))
be any unital subalgebra of finite codimension, and ((X,A ), (C, η)) be a geometric
GCYBE model of r. Let ∆ denote the image of the diagonal embedding δ : C → X ×C.
The choice of non-vanishing η ∈ Γ(C,Ω1

C) induces the so-called diagonal residue sequence

0 −→ OX×C −→ OX×C(∆)
resη

∆−→ δ∗OC −→ 0. (3.22)

The map resη∆ is thereby determined as follows: for a closed point q ∈ C with local
parameter u, defined on an affine open subset U of C, the sheaves Ω1

C and OX×C(−∆)
are locally generated by du and

u− v := u⊗ 1− 1⊗ u ∈ Γ(U,OX)⊗ Γ(U,OX) ∼= Γ(U × U,OX×X)

around q and (q, q) respectively; resη∆ maps (u−v)−1 to µ, where µ is defined by ηq = µdu.
Tensoring (3.22) with A ⊠ A |C := pr∗

1A ⊗OX×C
pr∗

2A |C , where X pr1←− X × C pr2−→ C
are the canonical projections, gives rise to a short exact sequence

0 −→ A ⊠ A |C −→ A ⊠ A |C(∆) −→ δ∗(A |C ⊗OC
A |C) −→ 0. (3.23)

The Künneth formula implies that

H0(A ⊠ A |C) = H0(A )⊗ H0(A |C) = 0 and
H1(A ⊠ A |C) =

(
H1(A )⊗ H0(A |C)

)
⊕
(
H0(A )⊗ H1(A |C)

)
= 0,

(3.24)

where we used h0(A ) = 0 = h1(A ). The long exact sequence in cohomology, induced
by (3.23), yields an isomorphism R : H0(A ⊠ A |C(∆))→ H0(A |C ⊗A |C).

For every q ∈ C exists an étale morphism f : Y → C such that q ∈ f(Y ) and
f ∗A |C ∼= g⊗ OY . Lemma 1.1.2 asserts that the inverse image f ∗K of the Killing form
K of A |C can be identified with the Killing form of g⊗OY . The pairing f ∗K is prefect,
because of the simplicity of g. Thus, we see that K is perfect by varying q. This implies
that the morphism

K̃ : A |C ⊗OC
A |C → EndOC

(A |C), (3.25)

defined by a ⊗ b 7→ KU(b,−)a for all affine open U ⊆ C and a, b ∈ Γ(U,A ), is an
isomorphism. Summarized, we obtain an isomorphism

Φ := K̃R : H0(A ⊠ A |C(∆)) −→ EndOC
(A |C). (3.26)

The section ρ := Φ−1(idA |C ) ∈ H0(A ⊠ A |C(∆)) is called geometric r-matrix of the
geometric GCYBE model ((X,A ), (C, η)) of r.
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3.3.3 Equivalence of geometric r-matrices. Let r1, r2 ∈ (g ⊗ g)((x))[[y]] be formal
generalized r-matrices. which are equivalent via some equivalence (µ,w, φ), let O1 ⊆
Mult(g(r1)) be a unital subalgebra of finite codimension and let O2 be the image of O1
under the automorphism of k((z)) defined by λ(z) 7→ λ(w(z)). Moreover, let

(f, φ) : ((X1,A1), (p1, c1, ζ1)) = G(O1, g(r1)) −→ G(O2, g(r2)) = ((X2,A2), (p2, c2, ζ2))

be the isomorphism of geometric g-lattice models provided by Lemma 3.1.1. In particular,
f : X2 → X1 and φ : A1 → f∗A2 are isomorphisms. Chose geometric GCYBE models
((Xi,Ai), (Ci, ηi)) of ri for i ∈ {1, 2} in such a way that f−1(C2) = C1 and f ∗η2 = η1.
Let ρi ∈ H0(Ai ⊠ Ai|Ci

(∆i)) be the geometric r-matrix of ((Xi,Ai), (Ci, ηi)), where
i ∈ {1, 2} and ∆i ⊆ Xi × Ci is the image of the diagonal embedding δi : Ci → Xi × Ci.

Lemma 3.3.2.
The identity (f ∗φ ⊠ f ∗φ)(f × f)∗ρ1 = ρ2 holds, where f ∗f∗A2 ∼= A2 was used
implicitly.

Proof. Consider the commutative diagram

0 // f ∗A1 ⊠ f ∗A1|C //

f∗(ϕ)⊠f∗(ϕ)
��

f ∗A1 ⊠ f ∗A1|C(∆2) //

f∗(ϕ)⊠f∗(ϕ)
��

δ2,∗ EndOC2
(f ∗A1|C1) //

f∗(ϕ)−f∗(ϕ)−1

��

0

0 // A2 ⊠ A2|C // A2 ⊠ A2|C(∆2) // δ2,∗ EndOC2
(A2|C2) // 0

,

(3.27)

where the upper row is (f × f)∗ of (3.23) for A = A1, the lower row is (3.23)
for A = A2, and the isomorphisms Ai|Ci

⊗Ai|Ci
→ EndOCi

(Ai|Ci
) for i ∈ {1, 2},

constructed analog to (3.25), were used. Here, the commutativity of the right
square follows form the following fact: for any free Lie algebra l of finite rank over
a ring R with Killing form Kl, the adjoint of ψ ∈ AutR-alg(l) with respect to Kl

coincides with ψ−1, so

K̃l(ψ(a)⊗ ψ(b)) = ψK̃l(a⊗ b)ψ−1 (3.28)

holds for K̃l(a⊗ b) := Kl(b, ·)a ∈ EndR(l), where a, b ∈ l.
It is straight forward to show that the inverse image along f × f of the diagonal

residue sequence (3.22) for X = X1 and η = η1 coincides with the diagonal
residue sequence for X = X2 and η = f ∗η1 = η2. This implies that (f × f)∗ρ1 is
mapped to idf∗A1|C1

under H0(f ∗A1 ⊠ f ∗A1|C1(∆2)) → EndOC2
(f ∗A1|C1). Thus,

the commutativity of (3.27) implies that

(f ∗(ϕ) ⊠ f ∗(ϕ))(f × f)∗ρ1 7−→ idA2|C2
(3.29)

under H0(A2 ⊠ A2|C2(∆2)) → EndOC2
(A2|C2), so ρ2 = (f ∗(ϕ) ⊠ f ∗(ϕ))(f × f)∗ρ1

holds.
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3.3.4 Interlude: geometric Taylor series. Let S be a scheme and T ⊆ S be a closed
subscheme, defined by a sheaf of ideals I ⊆ OS. The formal completion of S along T is
the locally ringed space S whose topological space coincides with the topological space
of T and OS = lim←−(OS/I n)|T . Here, we recall that for any inverse system {F}n∈N of
sheaves of abelian groups on S, we have Γ(U, lim←−Fn) = lim←−Γ(U,Fn) for all U ⊆ S open.
There is a canonical morphism ȷ : S→ S, which is simply the canonical inclusion of T
into S on the level of topological spaces and ȷ♭ : OS → ȷ∗OS is the canonical morphism
induced by the completion on the level of local sections. If S is integral and noetherian,
the canonical morphism ȷ∗ : F → ȷ∗ȷ

∗F is injective for any coherent sheaf F on S.
For any open subset U ⊆ T and a ∈ Γ(U,F ), we call the section ȷ∗a ∈ Γ(ȷ−1(U), ȷ∗F )
Taylor expansion of a in T .

In the following, we will use a concrete special case of this construction. Assume that
S = T × T for some one dimensional finite type k-scheme T and let t ∈ T be a smooth
closed point. We can fix an isomorphism ct : ÔT,t → κ(t)[[z]] by virtue of the Cohen
structure theorem; see e.g. [DG64, p. 19.6.4]. Let S be the completion of S along
T × {t}, where the underlying topological space is identified with T and the underlying
sheaf of rings is identified with the sheaf of rings U 7→ ct(Γ(U,OT ))[[y]] ⊆ κ(t)((x))[[y]]
on T . Here, recall that we also use ct to denote the isomorphism Q(ÔT,t)→ κ(t)((z))
induced by ct. Let B be a sheaf of algebras on T which is formally A-locally free at t
for some finite-dimensional k-algebra A. We can identify ȷ∗(B ⊠ B) with the coherent
sheaf

U 7−→ (ζt(Γ(U,B))⊗κ(t) Aκ(t))[[y]] ⊆ (Aκ(t) ⊗κ(t) Aκ(t))((x))[[y]] (3.30)

on S, where Aκ(t) := A ⊗ κ(t) and ζt : B̂t → A ⊗ ÔX,t
∼= Aκ(t)[[z]] is some fixed

isomorphism. In particular, for every V ⊆ T × T open with non-empty intersection
with T × {p}, the Taylor expansion in T × {t} takes the form

Γ(V,B ⊠ B) ȷ∗−→ (ζt(Γ(ȷ−1(V ),B))⊗κ(t) Aκ(t))[[y]] ⊆ (Aκ(t) ⊗κ(t) Aκ(t))((x))[[y]]. (3.31)

3.3.5 Taylor series of the geometric r-matrix. The following statement can be seen
as a generalization of [BG18, Theorem 6.4].

Theorem 3.3.3.
Let r be a formal generalized r-matrix, O ⊆ Mult(g(r)) be any unital subalgebra
of finite codimension, and ((X,A ), (p, c, ζ)) := G(O, g(r)). Furthermore, choose
a geometric GCYBE model ((X,A ), (C, η)) of r and let

ρ ∈ H0(A ⊠ A |C(∆)) ⊆ Γ(X × C \∆,A ⊠ A ) (3.32)

be the geometric r-matrix of ((X,A ), (C, η)).
(1) There exists a λ ∈ k[[z]]× such that ȷ∗(ρ) = λ(y)r(x, y), where

ȷ∗ : Γ(X × C \∆,A ⊠ A ) −→ (g(r)⊗ g)[[y]] ⊆ (g⊗ g)((x))[[y]] (3.33)

is the Taylor expansion in X × {p} given by (3.31) for the datum T = X,
B = A , t = p, A = g, ζt = ζ, ct = c and V = X × C \∆.

(2) If ((X,A ), (C, η)) is the geometric CYBE model of r, ȷ∗(ρ) = r.
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3.3.6 Proof of Theorem 3.3.3 Let u ∈ Γ(V,OX) be any local parameter of p, where
V ⊆ C is an affine open neighbourhood of p. Chose U to be some affine open subset of
the intersection of
• the projection of the open set {(q, q′) ∈ V × V | (u − v)(q, q′) ̸= 0} to the first

component with
• an open neighbourhood of p where du generates Ω1

C .
It is straight forward to show that du generates Γ(U,Ω1

C) and u − v generates the
space Γ(U × U,OX×C(−∆)). By definition resη∆

(
1⊗µ
u−v

)
= 1 if η|U = µ−1du. Let χ be a

preimage of idA |U under

Γ(U × U,A ⊠ A ) −→ Γ(U,A ⊗A ) ∼= EndOU
(A |U). (3.34)

Then both ρ|U×U and 1⊗µ
u−vχ map to idAU

under the canonical map

Γ(U × U,A ⊠ A |C(∆)) −→ EndOU
(A |U). (3.35)

Since (3.23) and K̃ induce a short exact sequence

0 −→ A ⊠ A |C −→ A ⊠ A |C(∆) −→ δ∗ EndOC
(A |C) −→ 0, (3.36)

and U is affine, we obtain ρ0 := ρ|U×U − 1⊗µ
u−vχ ∈ Γ(U × U,A ⊠ A ), i.e.

ρ|U×U = 1⊗ µ
u− v

χ+ ρ0. (3.37)

Write µ̃ := c(µ), ũ := c(u) ∈ k[[z]]. Then

ȷ♭(1⊗ µ) = µ̃(y), ȷ♭(u− v) = ũ(x)− ũ(y) ∈ k[[x, y]]. (3.38)

Similarly, let ρ̃0 := ȷ∗(ρ0), χ̃ := ȷ∗(χ) ∈ (g⊗ g)[[x, y]]. The diagram

Γ(X × C \∆,A ⊠ A ) ȷ∗
//

��

(g(r)⊗ g)[[y]] ⊆
// (g⊗ g)((x))[[y]]

Γ(U × U \∆,A ⊠ A )
ȷ∗
// (ζ(Γ(U \ {p},A ))⊗ g)[[y]]

⊆

44
(3.39)

commutes. Therefore, (3.37) implies that the image of ρ under (3.33) is of the form

r̃(x, y) = µ̃(y)
ũ(x)− ũ(y) χ̃(x, y) + ρ̃0(x, y). (3.40)

Lemma 2.1.2.(4) can be used to see that

(ũ(x)− ũ(y))−1 − (ũ′(y)(x− y))−1 ∈ k[[x, y]] (3.41)

and χ̃(x, y)− γ ∈ (x− y)(g⊗ g)[[x, y]]. Summarized, for λ1 := µ̃/ũ′, we obtain

r̃(x, y) = λ1(y)γ
x− y

+ r̃0(x, y) (3.42)
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for some r̃0 ∈ (g⊗ g)[[x, y]].
Let λ2 ∈ k[[z]] satisfy r(x, y)−λ2(y)γ/(x− y) ∈ (g⊗ g)[[x, y]] and put λ = λ1/λ2. The

image r̃ of ρ under (3.33) is by definition in (g(r)⊗ g)((x))[[y]]. But so is λ(y)r(x, y) ∈
λ1(y)rYang(x, y) + (g⊗ g)[[x, y]] and

r̃(x, y)− λ(y)r(x, y) ∈ (g(r)⊗ g)[[y]] ∩ (g⊗ g)[[x, y]] = {0}

concludes the proof of Theorem 3.3.3.(1).
For (2), observe that if r is skew-symmetric and normalized (i.e. λ2 = 1), and

((X,A ), (C, η)) is the geometric CYBE datum of r, λ1 = 1 by virtue of Proposition
3.2.10. Indeed, the above construction of λ1 implies that λ−1

1 dz = c∗η holds. Hence,
λ = 1 in this case.

3.3.7 The geometric GCYBE. Let r be a formal generalized r-matrix, ((X,A ), (C, η))
be a geometric GCYBE model of r, and ρ be the geometric r-matrix of ((X,A ), (C, η)).
Assume that C is affine and let U be the quasi-coherent sheaf on C associated to the
universal enveloping sheaf of H0(A |C) as H0(OC)-Lie algebra and ι : H0(A |C)→ H0(U )
be the canonical map. It can be shown that ι is injective; see [Gal15, Lemma 1.6]. For
ij ∈ {12, 13, 23}, let πij : C × C × C → C × C denote the natural projections, defined
through (x1, x2, x3) 7→ (xi, xj). Moreover, note that there are natural maps

(·)ij : A |C ⊠ A |C → πij,∗(U ⊠ U ⊠ U ), (3.43)

defined, under consideration of the Künneth formulas

H0(A |C ⊠ A |C) ∼= H0(A |C)⊗ H0(A |C)
H0(U ⊠ U ⊠ U ) ∼= H0(U )⊗ H0(U )⊗ H0(U ),

by t12 = ι(a)⊗ ι(b)⊗ 1, t13 = ι(a)⊗ 1⊗ ι(b) and t23 = 1⊗ ι(a)⊗ ι(b) for t = a⊗ b ∈
H0(A |C)⊗H0(A |C). Furthermore, if σ : C×C → C×C denotes the map (x, y) 7→ (y, x),
let (·) : A |C ⊠ A |C → σ∗(A |C ⊠ A |C) be the morphism defined on global sections by
the σ-equivariant automorphism a⊗ b 7→ −b⊗ a. The following result is a version of
[BG18, Theorem 3.11 & Theorem 4.3] in our setting.

Theorem 3.3.4.
In the notation of this subsection, the geometric r-matrix ρ, treated as an element
of Γ(C × C \∆,A ⊠ A ), solves the geometric GCYBE

[ρ12, ρ13] + [ρ12, ρ23] + [ρ13, ρ23] = 0, (3.44)

where the left-hand side is defined in Γ(C × C × C \ Σ,U ⊠ U ⊠ U ) for
Σ = {(x1, x2, x3) ∈ C × C × C | xi ̸= xj, i ̸= j}. Furthermore, if r is normalized
and skew-symmetric and ((X,A ), (C, η)) is its geometric CYBE model, ρ = ρ.

Proof. Similar calculations as in Remark 2.1.5 show that the left-hand side of the
geometric GCYBE (3.44) is actually contained in Γ(C ×C ×C \ Σ,A ⊠ A ⊠ A ).

Let X2 be the formal completion of X×X×X along X×X×{p} (here p is the
point at infinity of X) and write ȷ2 : X2 → X ×X ×X for the canonical morphism.
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We obtain an injective morphism

ȷ∗2 : Γ(C × C × C \ Σ,A ⊠ A ⊠ A ) −→ (Γ((C \ {p})× (C \ {p}) \∆,A ⊠ A )⊗ g)[[x3]],

where ζ was used. Since ȷ∗ : Γ(C × C \∆,A ⊠ A )→ (g⊗ g)((x))[[y]] from (3.33)
extends to an injective morphism

Γ((C \ {p})× (C \ {p}) \∆,A ⊠ A ) −→ (g⊗ g)((x))((y)), (3.45)

we obtain an injective morphism

Γ(C × C × C \ Σ,A ⊠ A ⊠ A ) −→ (g⊗ g⊗ g)((x1))((x2))[[x3]]. (3.46)

Using Theorem 3.3.3, it can be shown that the map (3.46) sends the left-hand side
of (3.44) to GCYB(r̃), where r̃(x, y) = λ(y)r(x, y). This is 0, since r is a formal
generalized r-matrix. The injectivity of (3.46) implies that ρ solves (3.44).

If r is normalized and skew-symmetric and ((X,A ), (C, η)) is its geometric
CYBE model, ρ is mapped to r via (3.33). This implies that ρ is mapped to r, so
r = r implies ρ = ρ, since ȷ∗ is injective.

3.3.8 Rational extension of a formal generalized r-matrix. Since the sheaf of Lie
algebras associated to a formal generalized r-matrix is étale trivial around the point at
infinity, we can trivialize the associated geometric r-matrix to obtain a proper rational
map. Theorem 3.3.3 then implies that the Taylor expansion of said map is equivalent to
r, up to passing to a finite field extension. More precisely, we have the following result.

Theorem 3.3.5.
Let r ∈ (g⊗ g)((x))[[y]] be a formal generalized r-matrix and X,A , p, and ρ be the
same datum assigned to r as in Theorem 3.3.3. Furthermore, let f : Y → X be
an étale morphism such that p ∈ f(Y ) and an isomorphism ψ : f ∗A → g⊗OY

of sheaves of Lie algebras exists. Fix an isomorphism cq : ÔY,p → κ(q)[[z]] for
some q ∈ f−1(p) and let

ȷ∗q : (g⊗ g)⊗ Γ(Y × Y \∆f ,OY×Y ) −→ (gκ(q) ⊗κ(q) gκ(q))((x))[[y]] (3.47)

be the Taylor expansion (3.31) for the datum T = Y , B = g⊗OY , t = q, A = g,
ζt = idg⊗cq, ct = cq and V = Y × Y \∆, where ∆f := (f × f)−1∆. Then

ϱ := (ψ × ψ)(f × f)∗ρ ∈ (g⊗ g)⊗ Γ(Y × Y \∆f ,OY×Y ) (3.48)

satisfies: ȷ∗qϱ is equivalent to the extension rκ(q) of r via k→ κ(q) (see Remark
2.1.5.(3)).

Proof. We proceed using the notation from Theorem 3.3.3 and Remark 2.1.5.(3).
We see that the image of ρ under

Γ(X × C \∆,A ⊠ A ) ȷ∗−→ (g⊗ g)((x))[[y]] −→ (gκ(q) ⊗κ(q) gκ(q))((x))[[y]]
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is equivalent to rκ(q) by a rescaling λ ∈ k[[z]]× ⊆ κ(q)[[z]]×. The image of z under

k[[z]] c−1
−→ ÔX,p

f̂♯
p−→ ÔY,q

cq−→ κ(q)[[z]]

defines a coordinate transform w ∈ zκ(q)[[z]]×. Similarly, the chain of maps

g[[z]] ζ−1
−→ Âp −→ f̂ ∗A q

ψ̂q−→ g⊗ ÔY,q
idg⊗cq−→ gκ(q)[[z]] (3.49)

induces a gauge transformation φ ∈ Autκ(q)-alg(gκ(q)[[z]]). Here, the middle arrow
of (3.49) is the composition of f̂ ∗

p with the completion of the canonical map
(f∗f

∗A )p → f ∗Aq. It is straight forward to show from the construction of ȷ and ȷq
that the diagram

Γ(X × C \∆,A ⊠ A ) ȷ∗
//

(f×f)∗

��

(g⊗ g)((x))[[y]] // (gκ(q) ⊗κ(q) gκ(q))((x))[[y]]

Γ(Y × Y, f ∗A ⊠ f ∗A )
ψ⊠ψ

// (g⊗ g)⊗ Γ(Y × Y \∆f ,OY×Y )
ȷ∗q

33

commutes. Here, the arrow in the upper right is defined by

s(x, y) 7−→ (φ(x)⊗ φ(y))s(w(x), w(y)) (3.50)

for all s ∈ (g⊗g)((x))[[y]]. In particular, this implies that the series ȷ∗qϱ is equivalent
to rκ(q) via the equivalence (λ,w, φ).

The section ϱ from Theorem 3.3.5 is the solution of yet another version of the GCYBE.
For ij ∈ {12, 13, 23}, let πij : Y × Y × Y → Y × Y be the canonical projections
(y1, y2, y3)→ (yi, yj) and ϱij be the image of ϱ under

(g⊗ g)⊗ OY×Y
π∗

ij
// (g⊗ g)⊗ OY×Y×Y

(·)ij⊗idOY ×Y ×Y
// (U(g)⊗ U(g)⊗ U(g))⊗ πij,∗OY×Y×Y ,

where (·)ij : g⊗ g→ U(g)⊗ U(g)⊗ U(g) has the same meaning as in the definition of
the formal GCYBE (2.14). Furthermore, let ϱ = −τσ∗ϱ, where σ : Y × Y → Y × Y is
given by σ(x, y) = (y, x) and τ : (g⊗ g)⊗ OY×Y → (g⊗ g)⊗ OY×Y is the OY×Y -linear
extension of a⊗ b 7→ b⊗ a for a, b ∈ g. Then we have

[ϱ12, ϱ13] + [ϱ12, ϱ23] + [ϱ13, ϱ23] = 0. (3.51)

Moreover, if r is normalized and skew-symmetric and ((X,A ), (C, η)) is its geometric
CYBE datum, the identity ϱ = ϱ holds. Indeed, these statements follow by applying

(ψ ⊠ ψ ⊠ ψ)(f × f × f)∗ (3.52)

to (3.44), using ϱ = (ψ × ψ)(f × f)∗ρ, and Theorem 3.3.4.
Since any smooth projective curve over the complex numbers is a compact Riemann

surface, a consequence of Theorem 3.3.5 in the case of k = C can be formulated as
follows.
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Corollary 3.3.6.
Every formal generalized r-matrix is equivalent to the Taylor series of an element
of a rational map R × R → (g ⊗ g) ⊗ Kg for an appropriate compact Riemann
surface R.

3.4 Analytic generalized r-matrices

In this section, k ∈ {R,C} is equipped with the standard euclidean topology and U(g)
is the universal enveloping algebra of g. Recall that g is central and simple over k.

3.4.1 The (generalized) classical Yang-Baxter equation. For two real vector spaces
W,V of finite dimension and any open subset U ⊆ W , we say that U → V is a (real)
meromorphic map if it is a map defined on a dense open subset of U with values in V
that coincides with the restriction of some meromorphic map Ũ → V ⊗R C, where Ũ is
an open neighbourhood of U in W ⊗R C.

Recall that for ij ∈ {12, 13, 23} the linear maps (·)ij : g⊗ g → U(g)⊗ U(g)⊗ U(g)
are defined by (2.13) and let us write (·)ji := (·)ijτ , where τ ∈ End(g ⊗ g) is defined
by τ(a ⊗ b) = b ⊗ a for all a, b ∈ g. Let U ⊂ k be a connected open subset and
r : U × U → g⊗ g be a meromorphic map. Then r is called a generalized r-matrix if it
solves the generalized classical Yang-Baxter equation (GCYBE)

[r12(x1, x2), r13(x1, x3)] + [r12(x1, x2), r23(x2, x3)] + [r32(x3, x2), r13(x1, x3)] = 0,
(3.53)

and it is called r-matrix if it solves the classical Yang-Baxter equation (CYBE)

[r12(x1, x2), r13(x1, x3)] + [r12(x1, x2), r23(x2, x3)] + [r13(x1, x3), r23(x1, x3)] = 0,
(3.54)

for all x1, x2, x3 ∈ k for which these equations are defined respectively. Here, for example
r12(x1, x2) = r(x1, x2)12 and the brackets on the left-hand side of both equations are
understood as the usual commutators in the associative k-algebra U(g)⊗U(g)⊗U(g). If
we want to emphasize that k = R (resp. k = C) we call r real (resp. complex) and if we
want to distinguish this notion of (generalized) r-matrix from its formal counterpart, we
will refer to it as analytic. Observe that calculations similar to Remark 2.1.5 show that
the left-hand side of (3.53) and (3.54) are meromorphic functions U×U×U → g⊗g⊗g.

3.4.2 Non-degeneracy and skew-symmetry Let r : U×U → g⊗g be a meromorphic
map for some connected open U ⊆ C, K be the Killing form of g, and K̃ : g⊗g→ End(g)
be the isomorphism defined by a⊗ b 7→ K(b,−)a. We call r
• non-degenerate if for some (x, y) in the domain of definition of r, K̃(r(x, y)) is an

isomorphism and
• skew-symmetric if r(x, y) = −τ(r(y, x)) for all (x, y) in the domain of definition of r.
Non-degeneracy is a generic property: if r is non-degenerate, K̃(r(x, y)) is an isomor-
phism for all (x, y) in a dense open subset of the domain of definition of r.
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Let γ ∈ g ⊗ g be the Casimir element of g, i.e. K̃(γ) = idg. There is a particular
class of non-degenerate meromorphic functions which will be important in the following.
We say that r is in standard form, if 0 ∈ U and

r(x, y) = λ(y)
x− y

γ + r0(x, y) (3.55)

for some analytic maps λ : U → k× and r0 : U × U → g⊗ g. Indeed,

(x− y)K̃(r(x, y))|x=y = λ(y) idg (3.56)

implies that det(K̃(r(x, y))) is non-vanishing in an open neighbourhood of the diagonal
{(x, y) ∈ U × U | x = y}. The importance of the standard form is provided by the
following result, which is a generalization of an observation from [BD83b]. We point
out that the proof in the real case relies on the centrality of g.

Proposition 3.4.1.
Every non-degenerate generalized r-matrix r : U ×U → g⊗ g is in standard form
(3.55), after properly shrinking U and relocating the origin.

Proof. It suffices to prove that r has the form (3.55) locally around some (p, p) ∈
U × U , since we can then relocate the origin to put p = 0. We split the proof into
four steps.

Step 1. Translating the CYBE and GCYBE into operator language. We will
apply the coordinate-free methods presented in [KK11]. Consider the isomorphisms
K̃ : g⊗ g→ End(g) and K̃(3) : g⊗ g⊗ g→ Hom(g⊗ g, g) defined by

K̃(a1 ⊗ a2)(b1) = K(a2, b1)a1 and K̃(3)(a1 ⊗ a2 ⊗ a3)(b1 ⊗ b2) = K(b2, a3)K(b1, a2)a1

for all a1, a2, a3, b1, b2 ∈ g. Assume first that r is a generalized r-matrix. Then,
applying K̃(3) to the GCYBE (3.53) and evaluating in t1 ⊗ t2 ∈ g⊗ g yields

[K̃(r(x1, x2))t1, K̃(r(x1, x3))t2] = K̃(r(x1, x2))[t1, K̃(r(x2, x3))t2]
+ K̃(r(x1, x3))[K̃(r(x3, x2))t1, t2],

(3.57)

where it was used that e.g. for any a, b, c, d ∈ g we have:

K̃(3)([(a⊗ b)32, (c⊗ d)13])(t1 ⊗ t2) = K̃(3)(c⊗ b⊗ [a, d])(t1 ⊗ t2) = K([a, d], t2)K(b, t1)c
= K([K(b, t1)a, d], t2)c = −K([K(b, t1)a, t2], d)c = −K̃(c⊗ d)[K̃(a⊗ b)t1, t2].

The other used identities can be derived similarly; see [KK11, Proposition 2.14]. If
r is a solution of the CYBE (3.54), we find

[K̃(r(x1, x2))t1, K̃(r(x1, x3))t2] = K̃(r(x1, x2))[t1, K̃(r(x2, x3))t2]
− K̃(r(x1, x3))[K̃(r(x2, x3))∗t1, t2]

(3.58)

by applying K̃(3). Here, (·)∗ denotes the adjoint with respect to K.
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Step 2. r has poles along the diagonal. Since non-degeneracy is a generic
property, we can choose a point (x0, y0) in the domain of r such that K̃(r(x0, y0))
is an isomorphism and z 7→ Tz := K̃(r(z, y0)) is analytic along the line, connecting
x0 and y0, but excluding y0. We prove by contradiction that r has a pole at (y0, y0).
Assume that r is analytic in (y0, y0), i.e. z 7→ Tz is analytic in y0. The equations
(3.57) and (3.58) reduce to

[Tzt1, Tzt2] = Tz([t1, Ty0t2] + [Ty0t1, t2]) (3.59)
[Tzt1, Tzt2] = Tz([t1, Ty0t2]− [T ∗

y0t1, t2]) (3.60)

respectively, by setting x1 = z and x2, x3 = y0. Applying ψz := Tz ◦ T−1
y0 to (3.59)

and (3.60) evaluated at z = x0 results in

ψz[Tx0t1, Tx0t2] = Tz([t1, Ty0t2] + [Ty0t1, t2]), (3.61)
ψz[Tx0t1, Tx0t2] = Tz([t1, Ty0t2]− [T ∗

y0t1, t2]). (3.62)

Comparing these equations with (3.59) and (3.60), evaluated at z = x0, and using
the fact that Tx0 is bijective, we see that ψz is a Lie algebra homomorphism in
both cases. Therefore, the fact that ψz is orthogonal with respect to K if it is
invertible, implies that det(ψu) ∈ {0,±1}; see e.g. [KK11, Lemma 2.3.] for details.
A continuity argument and ψx0 = idg force ψy0 and consequently Ty0 = ψy0 ◦ Tx0

to be an isomorphism.
Setting z = y0 in equation (3.59), we see that T−1

y0 is an invertible derivation of
g, contradicting the simplicity of g. Setting z = y0 in equation (3.60) leads to the
same contradiction, considering the fact that

det(Ty0) ̸= 0 =⇒ T ∗
y0 = −Ty0 . (3.63)

The proof of (3.63) can be found in [KK11, Lemma 3.2 and Lemma 3.4] for k = C
and uses Schur’s Lemma as well as the fact that every automorphism of g has a
fixed vector. Since g is assumed to be central, Schur’s Lemma applies for k = R
and an automorphism of g without fixed vector defines one on the simple complex
Lie algebra g⊗R C by extension of scalars. Thus, the proof in [KK11, Lemma 3.2
and Lemma 3.4] also applies to the case k = R. Summarized, the assumption that
r is a solution of either the CYBE or GCYBE without a pole along the diagonal
leads to a contradiction. We have shown that r has a pole along the diagonal.

Step 3. After shrinking U , r(x, y) = λ(y)γ
(x−y)k + f(x,y)

(x−y)k−1 . Using Lemma 2.1.2.(4)
for M = g⊗g as well as ⋂∞

k=0(x−y)kM [[x, y]] = {0}, we can find a k ∈ N0 and shrink
U in such a way that s(x, y) = (x−y)kr(x, y) is analytic on U×U and h(z) := s(z, z)
is an analytic function on U which is not identically 0. After properly shrinking U
further, we may assume that h is non-vanishing and s(x, y)− h(y) = (x− y)f(x, y)
for an analytic function f : U × U → g ⊗ g. Multiplying either (3.59) or (3.60)
with (x1 − x2)k and setting x1 = x2 results in

[K̃(h(x2))t1, K̃(r(x2, x3))t2] = K̃(h(x2))[t1, K̃(r(x2, x3))t2] (3.64)

in both cases. Choosing x3 in such a way that K̃(r(x2, x3)) is an isomorphism, we
see that K̃(h(x2)) is an equivariant endomorphism of g with respect to the adjoint
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representation. In other words, K̃(h(x2)) is in the centroid of g (see Subsection
1.3.1). Hence, K̃(h(x2)) = λ(x2)idg since g is central, where λ : U → k× is an
analytic function. This implies that h(x2) = λ(x2)γ. Summarized, we obtain

r(x, y) = λ(y)γ
(x− y)k + f(x, y)

(x− y)k−1 .

Step 4. k = 1. Assume that k > 1. Then

(x1 − x2)k−1[r32(x3, x2), r13(x1, x3)] and (x1 − x2)k−1[r13(x1, x3), r23(x2, x3)]

vanish for x1 = x2. Therefore, multiplying the CYBE or the GCYBE with
(x1 − x2)k−1, using

[γ12, r(x2, y3)23] = −[γ12, r(x2, y3)13],

and taking the limit x1 → x2 results in

0 = [h(x2)12, ∂x2r(x2, x3)13] + [f(x2, x2)12, r(x2, x3)13 + r(x2, x3)23]
= [h(x2)12, (x2 − x3)−k∂x2s(x2, x3)13 − k(x2 − x3)−k−1s(x2, x3)13]

+ [f(x2, x2)12, r(x2, x3)13 + r(x2, x3)23],

where h, s and f are defined in Step 3. and the limit definition of ∂x2 was used.
Multiplying this with (x2−x3)k+1 and taking the limit x1 → x3, under consideration
of h(z) = λ(z)γ, yields −kλ(x3)2[γ12, γ13] = 0. This contradicts the fact that
[γ12, γ13] ̸= 0. Indeed, [γ12, γ13] maps to γ with respect to the linear map defined
by a⊗ b⊗ c 7→ [b, a]⊗ c; see (2.34). Therefore, the assumption k > 1 leads to a
contradiction and we can conclude that k = 1.

As an immediate consequence of this result, we can relate non-degenerate (generalized)
r-matrices to formal (generalized) r-matrices.

Corollary 3.4.2.
Let r : U × U → g ⊗ g be a non-degenerate (generalized) r-matrix. Then, after
properly shrinking U and relocating the origin, the Taylor series of r in y = 0 is a
formal (generalized) r-matrix.

In particular, Proposition 2.3.1 combined with the identity theorem (see e.g. [GR65,
Chapter I.A, Theorem 6]) provides the following result.

Corollary 3.4.3.
A meromorphic function r : U × U → g⊗ g for some connected open U ⊆ k is a
non-degenerate solution of the CYBE (3.54) if and only if r is a non-degenerate
skew-symmetric solution of the GCYBE (3.53).

In the following, we restrict our attention to analytic generalized r-matrices in standard
form.
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3.4.3 Analytic equivalence. Let Ui ⊆ k be a connected open subset and ri : Ui×Ui →
g⊗ g be a meromorphic map in standard form for i ∈ {1, 2}. We call r2 analytically
equivalent to r1 via the analytic equivalence (µ,w, φ) if

r2(x, y) = µ(y)(φ(x)⊗ φ(y))r1(w(x), w(y)), (3.65)

where (µ,w, φ) consists of
• a non-zero analytic µ : W → k×, called rescaling, for some connected open neighbour-

hood W ⊆ U2 of 0,
• an analytic embedding w : W → U1 such that w(0) = 0, called coordinate transfor-

mation, and
• an analytic map φ : W → Autk-alg(g), called gauge transformation.
A similar result to Lemma 2.1.6 holds for analytic equivalences. More precisely, analytic
equivalences define an equivalence transformation on the set of generalized r-matrices
in standard form and analytic equivalences with constant rescaling part preserve skew-
symmetry and thus the property of solving the CYBE (3.54). The proof of these
statements uses a reduction to the complex case and the identity theorem (see e.g.
[GR65, Chapter I.A, Theorem 6]), under consideration that the domain of definition of
a complex meromorphic function on a connected open set is connected.

3.4.4 Comparison of analytic and formal generalized r-matrices. Let us denote
the Taylor series of any meromorphic map r in standard form in y = 0 by Θr, i.e.

Θr(x, y) :=
∞∑
j=0

1
k!
(
∂ky r(x, y)

) ∣∣∣
y=0

yk ∈ (g⊗ g)((x))[[y]]. (3.66)

By virtue of Proposition 3.4.1, any non-degenerate generalized r-matrix r may be
assumed to be in standard form and Θr is a formal generalized r-matrix in standard
form. Furthermore, the identity theorem (see e.g. [GR65, Chapter I.A, Theorem
6]) implies that r is uniquely determined by Θr, so Θ defines an embedding of non-
degenerate generalized r-matrices (up to relocating the origin) into the set of formal
generalized r-matrices. However, there might be formal generalized r-matrices which
do not converge to analytic generalized r-matrices. Nevertheless, we can see that
non-degenerate analytic r-matrices actually provide representatives for any equivalence
class of formal generalized r-matrices.

Proposition 3.4.4.
Every formal generalized r-matrix is equivalent to a series of the form Θr (see
(3.66)) for some analytic generalized r-matrix r in standard form.

Proof. Let r ∈ (g⊗g)((x))[[y]] be a formal generalized r-matrix, ((X,A ), (p, c, ζ)) :=
G(Mult(g(r)), g(r)), chose a geometric GCYBE model ((X,A ), (C, η)) of r and
let ρ be the associated geometric r-matrix.

The analytic manifold Can = (Can,Oan
C ), defined by the k-rational points of C,

is 1-dimensional. In the real case this may be seen through the implicit function
theorem and the fact that p ∈ Can. Let U → Can be an analytic parameterization
around p, where U = (U,Oan

U ) is the locally ringed space associated to an open disc
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(resp. an open interval) if k = C (resp. k = R). We write ι : U → Can → X for the
resulting morphism of locally ringed spaces and we may assume 0 ∈ U and ι(0) = p.
The sheaf of Lie algebras ι∗A can be identified with an analytic fiber bundle on
U with fiber g and structure group Autk-alg(g). Indeed, for k = C this follows
from Theorem 1.2.3 and the observation that étale g-local triviality implies local
triviality in the complex topology, while for k = R this is due to [Kir83, Lemma
2.1]. These fiber bundles are always trivial since U is contractible; see [Gra58, Satz
6] for the complex and [GMT86, Chapter VIII, Propositions 1.10 & 1.19] for the
real case. Thus, there exists an isomorphism ψ : ι∗A → g⊗ Oan

U of sheaves of Lie
algebras and ψ ⊠ ψ defines an isomorphism ι∗A ⊠ ι∗A → (g⊗ g)⊗ Oan

U×U .
Consider the meromorphic map

ϱ := (ψ ⊠ ψ)(ι× ι)∗ρ : U × U → g⊗ g.

The Taylor series of ϱ in the second variable in the preimage of p under ι is
equivalent to r. This can be deduced with an argument similar to the proof of
Theorem 3.3.5.

Proposition 3.4.5.
Two analytic generalized r-matrices in standard form are analytically equivalent
if and only if their Taylor series in y = 0 are formally equivalent. In particular,
Θ from (3.66) defines a bijection between
• the set of analytic equivalence classes of real (resp. complex) analytic generalized
r-matrices in standard form and
• the set of equivalence classes of formal generalized r-matrices over k = R (resp.

k = C).

Proof. Let r1, r2 ∈ (g⊗ g)((x))[[y]] be equivalent formal generalized r-matrices and

((X1,A1), (p1, c1, ζ1)) := G(Mult(g(r1)), g(r1))
(f,φ)−→ G(Mult(g(r2)), g(r2)) =: ((X2,A2), (p2, c2, ζ2))

be the isomorphism of their respective geometric g-lattice models provided by
Lemma 3.1.1. In particular, f : X2 → X1 is an isomorphism such that f(p2) =
p1 and φ : A1 → f∗A2 is an isomorphism of sheaves of Lie algebras. Chose
geometric GCYBE models ((Xi,Ai), (Ci, ηi)) of ri for i ∈ {1, 2} in such a way that
f−1(C2) = C1 and f ∗η2 = η1. For i ∈ {1, 2}, let ρi be the geometric r-matrix
of ((Xi,Ai), (Ci, ηi)), let Can

i be the analytic manifold defined by the k-rational
points of Ci and let ιi : U → Can

i → X be a local parametrization around pi,
where Ui is an open interval (resp. open disc) around the origin if k = R (resp.
k = C). As explained in the proof of Proposition 3.4.4, there exist isomorphisms
ψi : ι∗iAi → g⊗ OUi

such that

ϱi := (ψi ⊠ ψi)(ιi × ιi)∗ρi : Ui × Ui → g⊗ g (3.67)

is a meromorphic map whose Taylor series is equivalent to ri. Thus, it remains to
show that ϱ1 and ϱ2 are analytically equivalent.
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By virtue of Lemma 3.3.2, we have (f ∗φ⊠ f ∗φ)(f × f)∗ρ1 = ρ2. Application of
(ψ ⊠ ψ)(ι2 × ι2)∗ results in(

ψ2
(
(fι2)∗φ

)
⊠ ψ2

(
(fι2)∗φ

))
(fι2 × fι2)∗ρ1 = ϱ2. (3.68)

After properly shrinking U2, there exists an analytic embedding w : U2 → U1 such
that ι1w = fι2 and w(0) = 0, since f is an isomorphism that maps p2 to p1. We can
rewrite (3.68) as (φ(x)⊗φ(y))ϱ1(w(x), w(y)) = ϱ2(x, y), where φ : U2 → Autk-alg(g)
is the analytic map induced by the chain

g⊗ OU2

w∗
(
ψ−1

1

)
// w∗ι∗1A1 = (fι2)∗A1

(fι2)∗ϕ
// ι∗2A2

ψ2
// g⊗ OU2 (3.69)

of isomorphisms of sheaves of Lie algebras.
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Twisted loop algebras

4.1 Kac-Moody algebras

This section provides a survey of the theory of Kac-Moody algebras, with the purpose
of applying said theory to twisted loop algebras in the next section. All statements will
be presented without proof; we refer to [Kac90] for the statements from subsections
4.1.1–4.1.6 and to [KW92] for the results in the remaining subsections 4.1.7 and 4.1.8.
As usual, k denotes an arbitrary field of characteristic 0.

4.1.1 Generalized Cartan matrices. A generalized Cartan matrix A is an element
A = (aij)qi,j=1 ∈ Zq×q such that aii = 2, aij ⩽ 0 and aij = 0 implies aji = 0 for
all i, j ∈ {1, . . . , q}. The matrix A is said to be symmetrizable, if there exists a
diagonal matrix D such that DA is symmetric. Another generalized Cartan matrix
B = (bij)qi,j=1 is called equivalent to A if there exists a permutation σ of {1, . . . , q} such
that bij = aσ(i)σ(j) for all i, j ∈ {1, . . . , q}. Furthermore, A is called decomposable if it
is equivalent to a generalized Cartan matrix in block diagonal form with at least two
blocks and indecomposable otherwise. Finally, an indecomposable generalized Cartan
matrix is said to be of finite type if rk(A) = q, of affine type if rk(A) = q − 1 and of
indefinite type if rk(A) < q − 1.

4.1.2 Realizations of generalized Cartan matrices and Kac-Moody algebras.
A quadruple (K, h,Π,Π∨) is called realization of a generalized Cartan matrix A =
(aij)qi,j=1 if h is a vector space of dimension 2q − rk(A), Π = {α1, . . . , αq} ⊂ h∗,
Π∨ = {α∨

1 , . . . , α
∨
q } ⊂ h are linearly independent subsets satisfying αj(α∨

i ) = aij and
K is the k-Lie algebra generated by h and symbols

{
e+
i , e

−
i

∣∣∣ i ∈ {1, . . . , q}}, called
Chevalley generators of K, with relations

[h, h] = 0; [h, e±
i ] = ±αi(h)e±

i ;
[e+
i , e

−
j ] = δijhi; ad(e±

i )1−aije±
j = 0,

where h ∈ h, i, j ∈ {1, . . . , q} and i ̸= j in the last relation. A Lie algebra is called
Kac-Moody algebra with Cartan matrix A if it is isomorphic to K for some generalized
Cartan matrix A with realization (K, h,Π,Π∨).

Lemma 4.1.1.
Let A be a generalized Cartan matrix. The following results are true.
(1) There exists a realization (K, h,Π,Π∨) of A.
(2) For any realization (K̃, h̃, Π̃, Π̃∨) of a generalized Cartan matrix B equivalent

to A exists an isomorphism h→ h̃ which identifies Π (resp. Π∨) with Π̃ (resp.
Π̃∨) and extends to an isomorphism of Lie algebras K → K̃ by mapping the
respective Chevalley generators onto each other.
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(3) [K,K] is generated by the Chevalley generators of K. Furthermore, the center
of K is contained in h′ := h ∩ [K,K] = ⟨Π∨⟩k.

(4) If A is indecomposable, every ideal of K either contains [K,K] or is contained
in the center of K.

4.1.3 Weyl group and root structure of Kac-Moody algebras. Let us fix a realiza-
tion (

K, h,Π = {α1, . . . , αq} ,Π∨ = {α∨
1 , . . . , α

∨
q }
)

(4.1)

of a generalized Cartan matrix A with Chevalley generators
{
e+
i , e

−
i

∣∣∣ i ∈ {1, . . . , q}} for
the rest of this section. For α ∈ h∗, we write

Kα := {x ∈ K | [h, x] = α(h)x for all h ∈ H} (4.2)

and call α root with root space Kα if α ̸= 0 and Kα ̸= 0. Let us denote the set of
roots by Φ. For any i ∈ {1, . . . , q}, let ri be the k-linear automorphism of h defined by
h 7→ h− αi(h)α∨

i , which is called i-th fundamental reflection. The group W of k-linear
automorphisms generated by {r1, . . . , rq} is called Weyl group. Note that W naturally
acts on h∗ by w · λ = λw for all λ ∈ h∗ and w ∈ W .

Lemma 4.1.2.
The following results are true.
(1) K = h⊕⊕α∈Φ Kα is a direct sum of h-modules.
(2) Φ ⊆ ⟨α1, . . . , αq⟩Z and Φ = Φ+ ⊔ Φ−, where

Φ+ := {α = a1α1 + . . . aqαq | (a0, . . . , aq) ∈ Nq
0 \ {0}, α ∈ Φ} (4.3)

and Φ− := −Φ+.
(3) The action of W on h∗ restricts to an action on Φ, i.e. WΦ = Φ.
(4) For α ∈ WΠ ⊆ Φ it holds that dim(Kα) = 1 and Φ ∩ Zα = {α,−α}.

A root α is called positive (resp. negative), if α ∈ Φ+ (resp. α ∈ Φ−). Furthermore, α
is called real (resp. imaginary) if α ∈ Φre := WΠ (resp. α ∈ Φim := Φ \ Φre).

Lemma 4.1.3.
Assume that A is indecomposable.
(1) If A is of finite type, Φ = Φre is finite and there exist unique k1, . . . , kq ∈ N

such that α0 = ∑q
i=1 kiαi ∈ Φ+ and ∑q

i=1 ki is maximal.
(2) If A is of affine type, there are unique relatively prime k1, . . . , kq ∈ N such that∑q

i=1 kiaij = 0 and in this case Φim = ⟨δ⟩Z for δ = ∑q
i=1 kiαi. In particular,

δ|⟨Π∨⟩k = 0.

4.1.4 Z-grading of Kac-Moody algebras. Recall that for an abelian group A (written
additively with neutral element 0) and a Lie algebra A an A-grading of A is a vector
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space decomposition A = ⊕
a∈AAa such that [Aa,Ab] ⊆ Aa+b. Note that A0 ⊆ A is

automatically a subalgebra and A = ⊕
a∈AAa is a direct sum of A0-modules. For

another A-graded Lie algebra Ã, a Lie algebra morphism φ : A→ Ã is called A-graded
if φ(Aa) ⊆ Ãa for all a ∈ A.

For any α ∈ Φ and s = (s1, . . . , sq) ∈ Nq
0 \ {0}, the s-root height is defined by

hts(α) := ∑q
j=1 ajsj, where a1, . . . , aq ∈ Z are uniquely given by α = ∑q

j=1 ajαj. Let
Ksj be the direct sum of the vector spaces Kα, where α runs over all roots satisfying
hts(α) = j.

Lemma 4.1.4.
K = ⊕

j∈Z K
s
j is a Z-grading as Lie algebra, called grading of type s.

4.1.5 Invariant bilinear forms. The discussion of invariant bilinear forms in the
theory of Kac-Moody algebras is summarized in the following lemma.

Lemma 4.1.5.
There exists a non-degenerate, invariant, symmetric, bilinear map B : K× K→ k
if and only if A is symmetrizable and in this case B has the following properties:
(1) For α, β ∈ h∗ we have B(Kα,Kβ) ̸= 0 if and only if α = −β and in this case

B|Kα×Kβ
is non-degenerate.

(2) For α ∈ h∗, let χα be the preimage of the identity under the isomorphism
Kα ⊗ K−α → End(Kα) defined by a⊗ b 7→ B(b,−)a. Then

[a⊗ 1, χβ] + [1⊗ a, χα+β] = 0 (4.4)

for all α, β ∈ h∗ and a ∈ Kα.
(3) The kernel of B restricted to [K,K] is the center of K.
(4) If A is indecomposable, B is unique up to scaling and the choice of a vector

subspace of h complementary to h ∩ [K,K].

4.1.6 Dynkin diagrams Assume that A is indecomposable. The Dynkin diagram
D(A) of A is the graph consisting of q vertices and the vertices i, j ∈ D(A) are
connected with respect to the following rules:
• If aijaji ⩽ 4 and |aij| ⩾ |aji| there are |aij| lines connecting i and j as well as an

arrow pointing towards i if |aij| > 1.
• If aijaji > 4 the vertices i and j are connected by a bold-faced line equipped with

the orderd pair of integeres |aij|, |aji| as integers.

Theorem 4.1.6.
The following results are true.
(1) A can be uniquely reconstructed from D(A).
(2) If A is of finite type, D(A) is one of the diagrams shown in Figure 4.1. In

particular K is a finite dimensional split simple Lie algebra. All such Lie
algebras arise in such a way from appropriate generalized Cartan matrices of
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finite type.
(3) If A is of affine type, D(A) is one of the diagrams shown in Figure 4.2.

We see that the theory of Kac-Moody algebras for generalized Cartan matrices of finite
type is essentially the theory of finite-dimensional split simple Lie algebras. The next
section is completely dedicated to a detailed discussion of Kac-Moody algebras arising
for generalized Cartan matrices of affine type over an algebraically closed field.

Figure 4.1: If A is of finite type, D(A) is one of the following diagrams. Here, n = q and we can
choose a labeling of the simple roots of K such that the vertex with label i represents the simple root
αi and the grey subscript of said vertex is ki from Lemma 4.1.3.(1).

, ...

, ...

, ...

, ...
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Figure 4.2: If A is of affine type, D(A) is one of the following diagrams. Here, n = q − 1 and we can
choose a labeling of the simple roots of K such that the vertex with label i represents the simple root
αi+1 and the grey subscript of said vertex is ki+1 from Lemma 4.1.3.(2).

, ...

, ...

, ...

, ...

, ...

...,

...,
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4.1.7 Automorphisms of a derived Kac-Moody algebra modulo its center. The
goal of this subsection is to describe the set of automorphisms of K′ := [K,K] modulo
its center c. For brevity let us assume that A is indecomposable, however, note that all
notions introduced in the following can be generalized to the decomposable case. First,
we have the following result.

Lemma 4.1.7.
For every real root α and x ∈ Kα the endomorphism ad(x) of K is locally nilpotent:
for all y ∈ K exists a k ∈ N such that ad(x)ky = 0.

Let Innad(K) (resp. Inn±
ad(K)) ⊆ Autk-alg(K) be the subgroup generated by

{exp(ad(x)) | α ∈ Φre, x ∈ Kα} (resp. {exp(ad(x)) | α ∈ Φre ∩ Φ±, x ∈ Kα}). (4.5)

An automorphism of K is said to be inner of adjoint type if it is contained in Innad(K).

Remark 4.1.8.
The group Innad(K) is actually the image of the so called Kac-Moody group of K′

under its natural action on K. We will skip a detailed introduction of this group,
since we do not need any of its representation theoretical properties besides its
action on K.

Let i ∈ {1, . . . , q}. A straight forward calculation shows that the restriction of
exp(ad(e−

i )) exp(− ad(e+
i )) exp(ad(e−

i )) ∈ Innad(K) to h coincides with the i-th funda-
mental reflection ri ∈ W . Therefore, the Weyl group W can be understood as a subgroup
of Innad(K). Moreover, there exists a natural homomorphism ψi : SL2(k) → Innad(K)
such that

ψi

(
1 0
λ 1

)
= exp(ad(λe+

i )) and ψi

(
1 λ
0 1

)
= exp(ad(λe−

i )) for all λ ∈ k. (4.6)

Let Hi := ψi({diag(λ, λ−1) | λ ∈ k×}) ⊆ Innad(K) and H be the subgroup of Innad(K)
generated by H1, . . . , Hq. The group H is stable under conjugation by elements of W
and the normalizer of H can be identified with W ⋉H.

Proposition 4.1.9.
It holds that Innad(K) = ⊔w∈WB+wB+ = ⊔w∈WB+wB−, for B± := H Inn±

ad(K).

The group H̃ := HomZ(⟨α1, . . . , αq⟩Z,k×) acts on K by

λ · x := λ(α)x for all λ ∈ H̃, x ∈ Kα and α ∈ Φ. (4.7)

The automorphisms in the image Innsc(K) of this action in Autk-alg(K) are called inner
automorphisms of scaling type. Write Aut(A) for all permutations σ of {1, . . . , q}
satisfying aσ(i)σ(j) = aij, where A = (aij)qi,j=1 and let {e+

i , e
−
i } be Chevalley generators

of K.
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Lemma 4.1.10.
The following results are true.
(1) Innad(K) is stable under the conjugation of elements of Innsc(K).
(2) For every σ ∈ Aut(A) the assignment σ̃(e±

i ) := e±
σ(i) determines a unique

σ̃ ∈ Autk-alg(K′).
(3) The assignment ω(e±

i ) = −e∓
i for all i ∈ {1, . . . , q} and ω(h) = −h for all

h ∈ h determines a unique ω ∈ Autk-alg(K) called Chevalley involution.
(4) Innsc(K)∩ Innad(K) ̸= {idK} and ω ∈ Innad(K) if and only if A is of finite type

in which case Innsc(K) ⊆ Innad(K).

Let c be the center of K and recall that c ⊆ K′. Define the group Innad(K′/c)
(resp. Innsc(K′/c)) as the image of Innad(K) (resp. Innsc(K)) under the canonical
map Autk-alg(K)→ Autk-alg(K′/c). We write

Inn(K′/c) =
Innad(K′/c) if A is of finite type

Innsc(K′/c) ⋉ Innad(K′/c) otherwise
(4.8)

for the group of inner automorphisms of K′/c. Similarly, let the subgroup Out(K′/c) ⊆
Autk-alg(K′/c) of outer automorphisms of K′/c consist of all elements of the form ωiσ̃,
where σ ∈ Aut(A) and i = 0 if A is of finite type while i ∈ {0, 1} otherwise.

Theorem 4.1.11.
The identity Autk-alg(K′/c) = Out(K′/c) ⋉ Inn(K′/c) holds. In particular, for
any symmetric, non-degenerate, invariant bilinear form B of K, the induced
non-degenerate invariant bilinearform B on K′/c is stable under Autk-alg(K′/c):

B(φ(a), φ(b)) = B(a, b) for all a, b ∈ K′/c, φ ∈ Autk-alg(K′/c). (4.9)

4.1.8 Subalgebras of Kac-Moody algebras. For any subset S ⊆ {1, . . . , q}, let nS±
denote the subalgebras of K generated by {e±

i | i ∈ S} and omit the superscript if
S = {1, . . . , q}. The algebras b± := h⊕ n± are called standard Borel subalgebras. For
any proper subset S ⊊ {1, . . . , q} the subalgebras pS± := b± ⊕ nS∓ of K are said to be
standard parabolic.

Proposition 4.1.12.
The following statements are true.
(1) For any proper subalgebra p of K containing b± exists S ⊆ {1, . . . , q} such

that p = pS±.
(2) Let S ⊆ {1, . . . , q} and ΦS

± := Φ± ∩ ⟨αi | i ∈ S⟩Z. Then nS± = ⊕
α∈ΦS

±
Kα.

(3) Let a1 ⊆ K be a subalgebra and a2 ⊆ n± be a subalgebra of finite codimension
such that a2 is also an ideal in a1 and a1/a2 is a finite-dimensional solvable
Lie algebra. Then there exists ψ ∈ Innad(K) such that ψ(a1) ⊆ b±.

(4) Let a1 ⊆ K be a subalgebra and a2 ⊆ n± be a subalgebra of finite codimension
such that [a1, a2] ⊆ a1. Then there exists S ⊆ {1, . . . , q} and ψ ∈ Innad(K)
such that [ψ(a1), pS±] ⊆ pS±.



76 Chapter 4 Twisted loop algebras

4.2 Twisted Loop algebras and affine Kac-Moody
algebras

In this section, we will discuss the theory of twisted loop algebras. As we will see, this
is closely related to the theory of Kac-Moody algebras arising from generalized Cartan
matrices of affine type or affine Kac-Moody algebras for short. The main references
for this section are [Kac90, Chapter 6-8] and [Hel78, Chapter X.5]. All statements
presented without proof or explicit reference can be found there. Throughout this
section, the field k, which is as usual of characteristic 0, is additionally assumed to be
algebraically closed.

4.2.1 Definition and generalities. Let g be a simple Lie algebra over k, σ ∈
Autk-alg(g) have order m ∈ N and fix an m-th primitive root of unity ε ∈ k. The loop
algebra of g is the free k[ũ, ũ−1]-Lie algebra L(g) := g[ũ, ũ−1] = g⊗ k[ũ, ũ−1] with Lie
bracket determined by

[aũk, bũℓ] = [a, b]ũk+ℓ for all a, b ∈ g, k, ℓ ∈ Z. (4.10)

It can be identified with the Lie algebra of regular functions k× → g of affine varieties
over k. The twisted loop algebra L(g, σ) of the pair (g, σ) is the fixed point subalgebra
of L(g) with respect to the action a(ũ) 7→ σ(a(ε−1ũ)), where σ is applied coefficientwise.
This means

L(g, σ) := {a ∈ L(g) | a(εũ) = σ(a(ũ))} ⊆ L(g). (4.11)

Observe that L(g, idg) = L(g). Let gσj be the eigenspace of σ to the eigenvalue εj and
write L(g, σ)j := ũjgσj . Clearly, gσj+km = gσj for all k ∈ Z, so L(g, σ) is stable under the
multiplication by k[u, u−1] ⊆ k[ũ, ũ−1], where u = ũm.

Lemma 4.2.1.
The following results are true.
(1) L(g, σ) = ⊕

j∈Z L(g, σ)j is a Z-grading of a Lie algebra.
(2) L(g, σ) is a free k[u, u−1]-submodule of L(g) and

L(g) ∼= L(g, σ)⊗k[u,u−1] k[ũ, ũ−1] (4.12)

as k[ũ, ũ−1]-Lie algebras.
(3) For every ρ ∈ Autk-alg(g) there is a canonical k[ũ, ũ−1]-linear isomorphism

L(g, σ)→ L(g, ρσρ−1) of Z-graded Lie algebras.
(4) Let K be the Killing form of g. Then the map Kk : L(g, σ) × L(g, σ) → k

defined by

Kk(a, b) := res0K(a(ũ), b(ũ))ũ−mk−1dũ for all a, b ∈ L(g, σ) (4.13)

is non-degenerate, invariant, symmetric, and bilinear for every k ∈ Z.

Proof. Observe that L(g, σ) = ⊕
j∈Z L(g, σ)j holds as vector spaces and since σ

is an automorphism of g as a Lie algebra, it is easy to see that [gσj , gσk ] ⊆ gσk+j.
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This implies [L(g, σ)j,L(g, σ)k] ⊆ L(g, σ)k+j, proving (1). For (2), note that
L(g, σ) is torsion free, hence free, as a k[u, u−1]-submodule of L(g). Therefore,
the multiplication map L(g, σ) ⊗k[u,u−1] k[ũ, ũ−1] → L(g), given by a ⊗ λ 7→ λa,
is injective. It is also surjective, since g = ⊕m−1

j=0 gσj . Now ũka 7→ ũkρ(a), where
a ∈ gσk , defines an isomorphism L(g, σ)→ L(g, ρσρ−1) with the properties stated
in (3) and (4) is a simple straight forward verification.

Remark 4.2.2.
(1) The map Spec(k[ũ, ũ−1]) → Spec(k[u, u−1]) is étale induced by k[u, u−1] ⊆

k[ũ, ũ−1]. Therefore, Lemma 4.2.1.(2) implies that the sheaf of Lie algebras
on Spec(k[u, u−1]) defined by L(g, σ) is étale g-locally free in the sense of
Subsection 1.2.1.

(2) Let d ∈ N satisfy gcd(m, d) = 1. There exists σ̃ ∈ Autk-alg(g) of order m such
that σ̃d = σ, so L(g, σ̃) = {a : k× → g regular | a(εdz) = σa(z)}. Indeed,
choose k, ℓ ∈ Z such that kd + ℓm = 1, then σ = σkd+mℓ = σkd and we can
take σ̃ = σk. Since gcd(n, d) = gcd(k,m) = 1, it is easy to see that σk has
order m and a ∈ L(g, σk) if and only if σ(εdz) = σkda(z) = σa(z). We can
conclude that choosing a primitive root of unity different from ε does not lead
to new twisted loop algebras.

4.2.2 Connection to affine Kac-Moody algebras. Henceforth, we write L = L(g, σ)
and L = k[u, u−1]. As already mentioned, twisted loop algebras are closely related to
affine Kac-Moody algebras. In fact, they are derived algebras of affine Kac-Moody
algebras modulo the respective center. To understand this, we recall the construction
from [Kac90, Section 8.2]. There exists a Lie algebra structure on the vector space

L̂ := L⊕ kc⊕ kd (4.14)

with the following properties.
(1) The Lie bracket is uniquely determined by the following rules

• [ũka, ũℓb] = ũk+ℓ[a, b] + kK0(ũka, ũℓb)c for all ũka, ũℓb ∈ L.
• c is the center of L̂ and [d, ũka] = kũka for all ũka ∈ L.

(2) L̂ = ⊕
j∈Z L̂j is a Z-graded Lie algebra, where L̂0 = L0 ∔ kc∔ kd and L̂j = Lj for

all j ∈ Z \ {0}.
(3) K0 extends to a non-degenerate, symmetric, invariant bilinear form K̂0 on L̂ by

putting K̂0(c, d) = 1 and

K̂0(a, c) = K̂0(a, d) = K̂0(c, c) = K̂0(d, d) = 0 for all a ∈ L. (4.15)

In particular, K̂0|H×H = K0|H×H is non-degenerate.
(4) [L̂, L̂]/kc ∼= L as Z-graded Lie algebras.
The connection between affine Kac-Moody algebras and twisted loop algebras is now
summarized in the following theorem.
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Theorem 4.2.3.
The Lie algebra L0 = gσ0 is reductive. Let gσ0 = n+ ⊕ H ⊕ n− be a triangular
decomposition and set Ĥ := H⊕ kc⊕ kd ⊆ L̂0. There exist uniquely determined
Π ⊆ (H⊕kd)∗ ⊆ Ĥ∗ and Π∨ ⊆ H⊕kc ⊆ Ĥ as well as a generalized Cartan matrix
A of affine type such that (L̂, Ĥ,Π,Π∨) is a realization of A with the following
properties.
(1) There exists a tuple s ∈ Ndim(H)+1

0 \ {0} such that the standard Z-grading of
L̂ coincides with the grading of type s as a Kac-Moody algebra.

(2) Let gσ0 = n′
+ ∔H′ ∔n′

− be another triangular decomposition and (L̂, Ĥ′,Π′,Π′∨)
be the associated realization of some generalized Cartan matrix A′ of affine
type. Then A and A′ are equivalent and the automorphism of L̂ identifying
the respective realizations is graded and identifies the respective triangular
decompositions of gσ0 .

Proof. Everything except (2) is explicitly stated in [Kac90, Chapter 8]. For
(2), note that the triangular decomposition gσ0 = n+ ∔ H ∔ n− can be trans-
formed into gσ0 = n′

+ ∔ H′ ∔ n′
− by using an automorphism of gσ0 of the form

φ = exp(ad(a1)) . . . exp(ad(ak)) for a1, . . . , ak ∈ gσ0 . Indeed, this can be seen e.g.
by translating the description of inner automorphisms from Subsection 4.1.7 to
this context and using the well-known fact that Borel subalgebras of reductive Lie
algebras can be transformed into each other by means of inner automorphisms.
The automorphism φ extends to a graded automorphism of L̂ and is seen to satisfy
the desired properties, after recalling the constructions in [Kac90, Chapter 8].

The rest of this section is dedicated to a detailed discussion of the consequences of this
theorem.

4.2.3 Root structure of loop algebras. As in Theorem 4.2.3, let gσ0 = n+ ∔ H∔ n−
be a fixed triangular decomposition and(

L̂, h := Ĥ = H∔ kc∔ kd,Π = {α0, . . . , αn} ,Π∨ = {α∨
0 , . . . , α

∨
n}
)

be the associated realization of A = (aij)ni,j=0, where n := dim(H). Write

Φ = Φ+ ⊔ Φ− = Φre ⊔ Φim (4.16)

for the associated polarized root system,
{
e+
i , e

−
i

∣∣∣ i ∈ {0, . . . , n}} ⊆ L be a set of
Chevalley generators and let s = (s0, . . . , sn) ∈ Nn+1

0 \ {0} be the tuple such that the
natural Z-grading of L̂ coincides with the grading of type s. Then for every α ∈ Φ it
holds that α(d) = hts(α) = deg(a) ∈ Z for any a ∈ L̂α and α(c) = 0. Note that

Lα := L̂α =
{
a ∈ Lα(d)

∣∣∣ [h, a] = α(h)a for all h ∈ H
}
⊆ L (4.17)

In particular, H is called Cartan subalgebra of L and

B± := H⊕N± ⊆ L, where N± := ⟨e±
0 , . . . , e

±
n ⟩k-alg ⊆ L, (4.18)

are its standard Borel subalgebras.
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Lemma 4.2.4.
The following results are true.
(1) α ∈ Φre if and only if α|H ̸= 0.
(2) There are unique relatively prime k0, . . . , kn ∈ N such that

Φim = {α ∈ ⟨α0, . . . , αn⟩Z | α|H = 0} = ⟨δ⟩Z. (4.19)

(3) K0 defines a positive definite bilinear form on HQ := ∑
α∈Φ Qα|H ⊂ H∗, where

we consider Q as a subfield of k.

Proof. Part (1) follows from (2) since Φ is the disjoint union of Φre and Φim. By
virtue of Lemma 4.1.3, there exist unique k0, . . . , kn ∈ N such that Φim = ⟨δ⟩Z for
δ := ∑n

i=0 kiαi. It holds that δ|H = 0, since δ|⟨Π∨⟩k = 0 and H ⊆ ⟨Π∨⟩k. The fact
that α0, . . . , αn ∈ h∗ are linearly independent and satisfy α0(c) = · · · = αn(c) = 0
implies that δ|H = 0 is, up to scalar multiple, the only linear relation between
α0|H, . . . , αn|H. Let α = ∑n

i=0 k
′
iαi satisfy α|H = 0 for some k′

0, . . . , k
′
n ∈ Z. Then

there exists λ ∈ k such that k′
i = λki for all i ∈ {0, . . . , n}. Since k′

0, . . . , k
′
n are

integers and k0, . . . , kn are relatively prime positive integers, we can conclude that
λ is an integer. Therefore, α ∈ ⟨δ⟩Z = Φim proves Part 2. For the third part of the
assertion, we can observe that

K(h, h′) = Tr(ad(h) ad(h′)) =
∑
α∈Φ

α(h)α(h′) holds for all h, h′ ∈ H. (4.20)

Here, the second equality uses the fact that the trace of an operator coincides with
the sum of its eigenvalues. This implies that K0(λ, λ) = ∑

α∈Φ K0(λ, α|H)2 for all
λ ∈ ∑α∈Φ Qα|H, so it remains to argue that K0(α|H, β|H) = K̂0(α, β) ∈ Q, for all
α, β ∈ Φ. This is a consequence of [Kac90, Proposition 5.1].

Remark 4.2.5.
It is common to identify roots of L with pairs H × Z by applying Ĥ → H × Z
defined by α 7→ (α|H, α(d)). This results in a notion of roots that is intrinsic to L:
it can be used to omit the reference to the affine Kac-Moody algebra L̂. However,
we will not do so in order to make the application of the theory established in
Section 4.1 more unambiguous.

4.2.4 Automorphisms of Loop algebras. For all λ ∈ k× the assignment µλ(a)(ũ) =
a(λũ) defines an element µλ ∈ Autk-alg(L), which is not L-linear if λm ̸= 1.

Lemma 4.2.6.
The following results are true.
(1) The assignment φ 7→ φ̃, where φ(a)(ũ) = φ̃(ũ)a(ũ) for all a ∈ L, defines

a bijection between AutL-alg(L) and the set of invertible elements ψ(ũ) ∈
End(g)[ũ, ũ−1] with the properties ψ(εũ) = σψ(ũ)σ−1 and

ψ(ũ)[a(ũ), b(ũ)] = [ψ(ũ)a(ũ), ψ(ũ)b(ũ)] for all a, b ∈ L. (4.21)
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(2) Autk-alg(L) = {µλ, ωµλ | λ ∈ k×}⋉ AutL-alg(L).
(3) A mapping φ ∈ Autk-alg(L) fixing B+ or B− (see (4.18)) induces a unique

ν ∈ Aut(A) such that φ(Lα) = ν̃(Lα) for all α ∈ Φ.

Proof. The proof of (1) is straight forward. Using the statements in Subsection
4.1.7 it can be seen that Inn(L) ⊆ AutL-alg(L). Furthermore, for any ν ∈ Aut(A)
we have ν̃((u−1)L) = (λu−1)L for some λ ∈ k×; see 4.2.8.(3) below. This implies
that µλ−1 ν̃ ∈ AutL-alg(L), proving (2). For (3), we may assume that φ(B+) = B+.
Since N+ = [B+,B+], we see that φ also fixes N+ and H. By [KW92, Lemma 1.29],
there exists a linearly independent set {β0, . . . , βn} ⊆ Φ such that φ(Lαi

) = Lβi

for i ∈ {0, . . . , n} and for all α ∈ Φ+ exist a0, . . . , an ∈ N0 such that α = ∑n
i=0 aiβi

or α = −∑n
i=0 aiβi. The roots β0, . . . , βn are positive, since φ fixes N+. Thus,

{β0, . . . , βn} = Π has to hold and βi = αν(i) for i ∈ {0, . . . , n} defines ν ∈ Aut(A)
with the desired properties.

The following result is more specific to our applications.

Lemma 4.2.7.
Let A± ⊆ L be subspaces such that L = A+ + A− and there exists φ± ∈ Innad(L)
with φ±(A±) ⊆ B±. Then there exists φ ∈ Innad(L) such that φ(A±) ⊆ B±.

Proof. Let φ− = b−wb+ for b± ∈ Innad(L) satisfying b±(B±) = B± and w(H) = H;
see Proposition 4.1.9. Then B+ +φ−1

− (B−) ⊇ A+ +A− implies B+ +w−1(B−) = L.
In particular, there exist {β0, . . . , βn} ⊆ Φ+ such that w(L−αi

) = L−βi
for all i ∈

{0, . . . , n}. By [KW92, Lemma 1.29], {β0, . . . , βn} ⊆ Φ+ are linearly independent
and for all α ∈ Φ+ we have α ∈ ∑n

i=0 N0βi, so Π = {β0, . . . , βn}. This implies that
w(B−) = B−. Therefore, φ := b+φ+ has the desired property φ(A±) ⊆ B±.

4.2.5 Some facts about subalgebras of Loop algebras. For any S ⊆ {0, . . . , n},
the canonical projection PS

± of the standard parabolic pS± ⊆ L̂ to L is called standard
parabolic subalgebra of L with respect to S.

Lemma 4.2.8.
Let A ⊆ L be a subalgebra.
(1) If A contains a subspace f of H satisfying f⊥ ⊆ f, it holds that [H,A] ⊆ A.
(2) If B± ⊆ A, there exists S ⊆ {0, . . . , n} such that A = PS

±.
(3) If A is an ideal, A = fL for some f ∈ C[u]. In particular, all maximal proper

Lie ideals of L are of the form (λu− 1)L for some λ ∈ k×.

Proof of (1). Assume there are distinct α1, α2 ∈ Φ∪{0} such that (α1−α2)|f = 0,
i.e. (α1 − α2)|H is in the kernel of h∗ → f∗, which coincides with the image of f⊥
under the isomorphism H→ H∗ defined by K0. Since f is coisotropic, this results
in K0((α1 − α2)|H, (α1 − α2)|H) = 0. Lemma 4.2.4.(3) implies that α1|H = α2|H, so
we can conclude that

α1|f = α2|f =⇒ α1|H = α2|H for all α1, α2 ∈ Φ ∪ {0}. (4.22)
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For a subspace i ⊆ h = Ĥ and λ ∈ i∗ we write

Lλ := {a ∈ L | [h, a] = λ(h)a for all h ∈ i} =
⊕

α∈Φ∪{0}
α|i=λ

Lα. (4.23)

Using [Kac90, Proposition 1.5] and [f,A] ⊆ A we can write

A =
⊕
λ∈f∗

(Lλ ∩ A). (4.24)

Therefore, (4.22) and (4.23) imply that for every λ ∈ f∗ such that Lλ ≠ {0}
exists α ∈ Φ ∪ {0} such that Lλ = L(α|H), where by definition (4.23) and under
consideration of Lemma 4.2.4

L(α|H) =
⊕

α′∈α+Φim

Lα′ . (4.25)

This and (4.24) implies that [H,A] ⊆ A.
Proof of (2). Without loss of generality assume that A contains B+. The

inclusion H ⊆ A and [Kac90, Proposition 1.5] imply that A = ⊕
α∈Φ∪{0} A ∩ L(α|H),

where we use the notation from (4.25). Take a ∈ A∩L(α|H) ∩N− for some α ∈ Φre

and assume α ∈ Φ was chosen in such a way that the Lα-component of a is
non-zero and α(d) is minimal with this property. Using Lδ ⊆ B+ ⊆ A for δ from
Lemma 4.2.4, dim(Lα′) = 1 for all α′ ∈ Φre and applying [Hel78, Lemma X.5.5’.(iii)]
iteratively we see that

Lα′ ⊆ A ∩ L(α|H) for all α′ ∈ Φ such that α′|H = α|H and α′(d) ⩾ α(d). (4.26)

Following the proof of [KW92, Lemma 1.5] we show that

A = P+
S , where S = {α ∈ Π | L−α ⊆ A}. (4.27)

Assume the contrary. Let γ /∈ ⟨S⟩Z be a negative root of minimal height such
that there exists an element a1 ∈ A(γ|H) ∩ N− with a non-zero Lγ-component
a1. Then there exists αj ∈ Π \ S such that [e+

j , a1] ̸= 0 and γ + αj ∈ ⟨S⟩Z; see
[Hel78, Lemma X.5.5’.(iii)]. Note that equation (4.26) implies γ ̸= αj . We can find
a2 ∈ L−γ−αj

⊆ B+ ⊆ A such that

B([e+
j , a1], a2) ̸= 0. (4.28)

The invariance of the form B then gives 0 ̸= [a1, a2] ∈ L−αj
. Applying (4.26) to

a := [a1, a2] ∈ A results in αj ∈ S contradicting our choice of αj.
Proof of Part (3). This is [Kac90, Lemma 8.6].

Recall that two vector subspaces V1, V2 of a vector space V are said to be commensurable,
in symbols V1 ≍ V2, if dim((V1 + V2)/(V1 ∩ V2)) <∞.

Proposition 4.2.9.
Let A ⊆ L be a subalgebra commensurable to B±.
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(1) There exists i ∈ {0, . . . , n} and φ ∈ Innad(L) ⊆ AutL-alg(L) such that φ(A) ⊆
P

(i)
± , where P

(i)
± is the standard parabolic subalgebra of L to {0, . . . , n} \ {i}.

(2) If A⊥ ⊆ A it automatically holds that u±1A ⊆ A⊥ ⊆ A. In particular, A is a
free Lie algebra over k[u±1].

(3) If A⊥ ⊆ L is a subalgebra containing A, there exists φ ∈ Innad(L) ⊆
AutL-alg(L) such that φ(A) ⊆ B±. Furthermore, if A ⊆ A⊥ is an ideal
and A⊥/A is solvable, we have φ(A⊥) ⊆ B±.

Proof of (1). We may assume without loss of generality that A is commensurable
with B+. Let k ∈ N be such that ⊕j⩾mk Lj ⊆ A ⊆ ⊕

j⩾−mk Lj and I := u2k+1A.
Obviously, I is an ideal in A and⊕

j=(3k+1)m
Lj ⊆ I ⊆

⊕
j⩾(k+1)m

Lj. (4.29)

The subspace Ã := A ∔ kc of L̂ is a subalgebra. Since I ⊆ ⊕
j⩾(k+1)m Lj and

A ⊆ ⊕
j⩾−km Lj, the construction of the commutator of L̂ in Subsection 4.2.2

implies that [a, b]L = [a, b]
L̂

for all a ∈ I and b ∈ A. Hence, I ⊂ Ã is an ideal
with respect to the Lie bracket of L̂. By (4) of Proposition 4.1.12, there exists
an inner automorphism ψ of L̂ and i ∈ {0, . . . , n} such that [p(i)

+ , ψ(A)] ⊆ p̃
(i)
+ ,

where p
(i)
+ := P

(i)
+ ⊕ kc⊕ kd denotes the positive standard parabolic subalgebra of

L̂ to {0, . . . , n} \ {i}. Since the only non-trivial ideals of L̂ are L⊕ kc and kc (see
Lemma 4.1.1), we can deduce that{

a ∈ L̂
∣∣∣ [a, p(i)

+ ] ⊆ p
(i)
+

}
= p

(i)
+ . (4.30)

It follows that ψ(Ã) ⊆ p
(i)
+ . Consider φ : L → L induced by ψ. The map φ is

L-linear, since it is inner; see Lemma 4.2.6. Applying the canonical projection
L̂→ L to ψ(Ã) ⊆ p

(i)
+ , we end up with an inclusion φ(A) ⊆ P+

i .
Proof of (2) We may assume without loss of generality that A is commensurable

with B+. We know from (1) that there exists an i ∈ {0, . . . , n} and φ ∈ Innad(L)
such that φ(A) ⊆ P

(i)
+ . Let Φi ⊆ Φ be the subset such that P

(i)
+ = ⊕

α∈Φi∪{0} Lα
and note that Φi ∩ Φ− ⊆ Φre by Lemma 4.2.4. Let γ be the imaginary root such
that Lγ = uH, then uP+

i = ⊕
α∈Φi

Lα+γ. We claim that

uP
(i)
+ ⊆ P

(i),⊥
+ , in other words K0

(
uP

(i)
+ ,P

(i)
+

)
= {0}. (4.31)

Since B(Lα,Lβ+γ) ̸= {0} if and only if α = −β − γ, it suffices to show that α ∈ Φi

implies −α− γ /∈ Φi. We have two cases to consider:
• If α ∈ Φi ∩ Φim or α = 0, then −α− γ is imaginary and Φi ∩ Φ+ ⊆ Φre implies

that −α− γ /∈ Φi.
• If α ∈ Φi ∩ Φre and we assume that −α − γ ∈ Φi, then there exist a ∈ Lα, b ∈

L−α−γ such that 0 ̸= [a, b] ∈ L−γ ∩P+
i (see [Hel78, Chapter X, Lemma 5.5’]), so

−γ ∈ Φi. This contradicts Φi∩Φ+ ⊆ Φre and we can conclude that −α− γ /∈ Φi.
Thus, the claim (4.31) is proven. Using φ(A) ⊆ P+

i and the fact that (·)⊥ is
inclusion reversing yields

uA ⊆ uφ−1
(
P

(i)
+

)
⊆ φ−1

(
P

(i),⊥
+

)
⊆ A⊥ ⊆ A. (4.32)
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Here, we used that the L-linearity of φ−1 implies

uφ−1
(
P

(i)
+

)
= φ−1

(
uP

(i)
+

)
⊆ φ−1

(
P

(i),⊥
+

)
, (4.33)

and φ−1 respects K0 (see Theorem 4.1.11), so φ−1
(
P

(i),⊥
+

)
= φ−1

(
P

(i)
+

)⊥
⊆ A⊥.

That A is free is a direct consequence of the fact that it is torsion-free.
Proof of (3) We may assume without loss of generality that A is commensurable

with B+. Therefore, there exists k ∈ N such that ⊕j⩾k Lj ⊆ A ⊆ ⊕
j⩾−k Lj, so⊕

j⩾k+1 Lj ⊆ A⊥ ⊆ ⊕
j⩾−k−1 Lj holds and we see that A⊥ is also commensurable

with B+. Part 1. states that there exists ψ1 ∈ Innad(L) and i ∈ {0, . . . , n} such
that ψ1(A) ⊆ ψ1(A⊥) = φ(A)⊥ ⊆ P

(i)
+ , where we used that ψ1 respects K0 by

virtue of Theorem 4.1.11. Put I := P
(i),⊥
+ ∩ ψ1(A) and observe that

ψ1(A)/I ∼= (ψ1(A) + P
(i),⊥
+ )/P(i),⊥

+ ⊆ ψ1(A)⊥/P
(i),⊥
+ ⊆ si := P

(i)
+ /P

(i),⊥
+ , (4.34)

where si is the finite-dimensional semi-simple Lie algebra with Chevalley generators
{e+

j , e
−
j | j ∈ {0, . . . , r} \ {i}}. It can be seen that the bilinear form on si induced

be K0 coincides with the Killing form of si. Therefore,

K0
(
ψ1(A) + P

(i),⊥
+ , ψ1(A) + P

(i),⊥
+

)
= {0} (4.35)

and Cartan’s criterion for solvability implies that

ψ1(A)/I ∼=
(
ψ1(A) + P

(i),⊥
+

)
/P

(i),⊥
+ is solvable. (4.36)

Note that Ã := ψ1(A)+kc ⊆ L̂ is a subalgebra, Ã∩P(i),⊥
+ = I ⊆ N+ is a subalgebra

of finite codimension and an ideal in Ã and (4.36) implies that Ã/I is solvable.
Since I ⊆ N+ is a subalgebra of finite codimension, [KW92, Lemma 2.4] and
[PV83, Theorem 3] implies that there exists ψ̃2 ∈ Innad(L̂) (in the notation of
Subsection 4.1.7) such that ψ̃2(Ã) ⊆ b+ := B+ ⊕ kc⊕ kd. The automorphism ψ̃2
induces ψ2 ∈ Innad(L) such that ψ2ψ1(A) ⊆ B+. Putting φ := ψ2ψ1 concludes the
first part of the proof.

If A⊥/A is solvable, ψ1(A⊥)/P(i),⊥
+ is too, since (ψ1(A)+P

(i),⊥
+ )/P(i),⊥

+ is solvable
and P

(i),⊥
+ ⊆ ψ1(A⊥). Repeating the argument from (4.36) onward for ψ1(A)

replaced by ψ1(A⊥) concludes the proof.

4.2.6 The case that σ is an outer automorphism. Let the Cartan matrix of g have a
Dynkin diagram of type Xn from Figure 4.1. Henceforth, fix a triangular decomposition
g = ñ−⊕ h̃⊕ ñ+, ν ∈ Aut(Xn) and assume that that σ = ν̃ ∈ Out(g) in the notation of
Subsection 4.1.7.

Proposition 4.2.10.
The fixed point algebra gσ0 of g is simple, gσ0 = n− ⊕ H ⊕ n+ is a triangular
decomposition, where H := h̃ ∩ gσ0 , n± = gσ0 ∩ ñ±, and gσ1 is an irreducible gσ0 -
module isomorphic to gσ−1.

Let
◦
Π=

{ ◦
α1, . . . ,

◦
αn
}

be the set of simple roots of gσ0 with respect to the triangular
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decomposition gσ0 = n−⊕H⊕ n+,
{◦
e+
j ,

◦
e−
j | j ∈ {1, . . . , n}

}
be the associated Chevalley

generators, h = Ĥ = H ⊕ kc ⊕ kd ⊆ L̂ and θ = ∑n
i=1 ℓi

◦
αi be the highest weight of

L1 ∼= gσ1
∼= gσ−1

∼= L−1. Define α0, . . . , αn ∈ h∗ by

α0|H = −θ, αi|H = ◦
αi, α0(c) = 0 = αi(c) and α0(d) = 1, αi(d) = 0 (4.37)

for all i ∈ {1, . . . , n}. Chose ◦
e±
j ∈ L±α0 in such a way that α0

([◦
e+
j ,

◦
e−
j

])
= 2 and write

α∨
i :=

[◦
e+
j ,

◦
e−
j

]
L̂
∈ h.

Proposition 4.2.11.
The quadruple (L̂, h,Π := {α0, . . . , αn},Π∨ := {α∨

0 , . . . , α
∨
n}) is the realization of

the Cartan matrix with Dynkin diagram of type X(m)
n mentioned in Theorem 4.2.3

with Chevalley generators defined by e±
0 = ũ±1 ◦

e±
i and e±

i = ◦
e±
i for i ∈ {1, . . . , n}.

Furthermore, k0 = 1, k1 = ℓ1, . . . , kn = ℓn coincide with the integers given in
Lemma 4.2.4.(2) and s = (1, 0, . . . , 0).

4.2.7 Classification of finite order automorphisms The structure theory of twisted
loop algebras inherited by the theory of Kac-Moody algebras can be used to classify
the finite order automorphisms up to conjugacy; see [Kac90, Section 8.6].

Theorem 4.2.12.
The following results are true.
(1)

{◦
e+

0 , . . . ,
◦
e+
n

}
⊆ g generates g as a Lie algebra.

(2) For all s′ = (s′
0, . . . , s

′
n) ∈ Nn+1

0 there exists a unique σ(s′;m) ∈ Autk-alg(g) of
order m′ = m

∑n
i=0 kis

′
i, called automorphism of type (s′;m), determined by

σ′(e+
i (1)) = εs

′
ie+
i (1). Furthermore, the image of σ(s′;m) under the projection

Autk-alg(g)→ Out(g) is σ.
(3) The mapping s′ 7→ σ(s′;m) defines a bijection between Nn+1

0 \ {0} and the
conjugacy classes of finite order automorphisms of g with representative of
order m in Out(g).

Note that the given definition of an automorphism of type (s′,m) depends only on
ν ∈ Aut(Xn) and the triangular decomposition of g.

4.2.8 Regrading. Let σ′ ∈ Autk-alg(g) have finite order m′ and a representative of
order m in Out(g). Then σ′ is conjugate to σ(s′,m) for some s′ ∈ Nr+1

0 \{0}, so L(g, σ′) is
canonically isomorphic to Ls

′ := L(g, σ(s′,m)) as Z-graded Lie algebras. This Lie algebra
can be related back to L via a process which we call regrading.

Lemma 4.2.13.
The mapping ũ±sie±

i 7→ ũ±s′
ie±
i defines an Lie algebra isomorphism L→ Ls

′.

From Theorem 4.2.3 we now that L̂ (resp. L̂s
′) is the Kac-Moody algebra of the

generalized Cartan matrix of type X(m)
n equipped with the Z-grading of type s (resp
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s′). Thus, the isomorphism from Lemma 4.2.13 can simply be interpreted as equipping
the Kac-Moody algebra of X(m)

n with another Z-grading. This motivates us to call said
isomorphism regrading of type s′.



5
Lie bialgebras
As usual, k is a field of characteristic 0 throughout this chapter.

5.1 Basic definitions and properties

In this chapter, we give a brief overview of the theory of Lie bialgebras, which is
fundamentally linked to the notion of r-matrices and especially their skew-symmetry
property. We begin by introducing Lie coalgebras, i.e. algebraic objects dual to Lie
algebras, in Subsection 5.1.1. A Lie bialgebra consists of a vector space equipped with
compatible Lie algebra and Lie coalgebra structures; see Subsection 5.1.2.

5.1.1 The category of Lie coalgebras. For a vector space V over k the linear maps
τV : V⊗V → V⊗V and AltV : V⊗V⊗V → V⊗V⊗V are defined by τV (v1⊗v2) := v2⊗v1
and

AltV (v1 ⊗ v2 ⊗ v3) := v1 ⊗ v2 ⊗ v3 + v2 ⊗ v3 ⊗ v1 + v3 ⊗ v1 ⊗ v2 (5.1)

for all v1, v2, v3 ∈ V . A vector space c over k equipped with a linear map δc : c→ c⊗ c is
called Lie coalgebra if said map is skew-symmetric, i.e. δc(a) + τcδc(a) = 0 and satisfies
the co-Jacobi identity Altc((δc⊗ idc)δc(a)) = 0 for all a ∈ c. If there is no ambiguity, the
index c in δc is dropped. A Lie coalgebra morphism φ : c→ c′ is a linear map satisfying
(φ⊗ φ)δc = δc′φ. We have defined the category of Lie coalgebras.

Lemma 5.1.1.
The following results are true.
(1) For a Lie coalgebra c the restriction of δ∗

c : (c⊗ c)∗ → c∗ to c∗ ⊗ c∗ ⊆ (c⊗ c)∗

defines a Lie algebra structure on c∗. This procedure defines a contravariant
functor from the category of Lie coalgebras to the category of Lie algebras. This
functor restricts to an equivalence of categories on the respective subcategories
of finite-dimensional objects.

(2) For a Lie algebra a the linear map δa∗ := [, ]∗a : a∗ → (a ⊗ a)∗ defines a Lie
coalgebra on a∗ if and only if this map takes values in a∗ ⊗ a∗ ⊆ (a⊗ a)∗.

Proof of (1). By definition [λ1, λ2]c∗(a) := δ∗
c (λ1 ⊗ λ2)(a) = (λ1 ⊗ λ2)δc(a), for all

λ1, λ2, λ3 ∈ c∗ and a ∈ c. Therefore, we can deduce that

[λ1, λ2]c∗ + [λ2, λ2]c∗ = (λ1 ⊗ λ2)(δc(a) + τcδc(a)) = 0. (5.2)

It holds that

[[λ1, λ2]c∗ , λ3]c∗(a) = [(λ1 ⊗ λ2)δc, λ3]c∗(a) = (λ1 ⊗ λ2 ⊗ λ3)(δc ⊗ idg)δc(a), (5.3)
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so the Jacobi identity in λ1, λ2, λ3 equals (λ1 ⊗ λ2 ⊗ λ3)Altc((δc ⊗ idc)δc(a)) = 0 by
permuting λ1, λ2, λ3 appropriately in each term. The fact that c 7→ c∗ is functorial
is clear, since (·)∗ is an contravariant endofunctor of the category of k-vector spaces.
The assertion about finite dimensional coalgebras follows from Part 2. and the
facts that the restriction of (·)∗ to the category of finite dimensional vector spaces
is its own quasi-inverse and commutes with tensor products.

Proof of (2) The ” =⇒ ” direction is clear from the definition of a Lie
coalgebra, so it remains to prove ” ⇐= ”. Let λ ∈ a∗ and a1, a2, a3 ∈ a. By
definition, δa∗ = [, ]∗a satisfies δa∗(λ)(a1⊗ a2) = λ([a1, a2]a) and the assumption that
δa∗ takes values in a∗ ⊗ a∗ means that δa∗(λ) = ∑k

j=1 λ
(1)
j ⊗ λ

(2)
j for some λ(i)

j ∈ a∗,
where i ∈ {1, 2}, j ∈ {1, . . . , k}, so λ([a1, a2]a) = ∑k

j=1 λ
(1)
j (a1)λ(2)

j (a2). Combined
we see that

(δa∗(λ) + τa∗δa∗(λ))(a1 ⊗ a2) =
k∑
j=1

(λ(1)
j (a1)λ(2)

j (a2) + λ
(1)
j (a2)λ(2)

j (a1))

= λ([a1, a2]a∗ + [a2, a1]a∗) = 0
(5.4)

holds. Furthermore, we can calculate

(δa∗ ⊗ ida∗)δa∗(λ)(a1 ⊗ a2 ⊗ a3) =
k∑
j=1

δa∗(λ(1)
j )(a1 ⊗ a2)λ(2)

j (a3)

=
k∑
j=1

λ
(1)
j ([a1, a2]a)λ(2)

j (a3) = λ([[a1, a2]a, a3]a).

Therefore, we can deduce that

Alta∗((δa∗ ⊗ 1)δa∗(λ))(a1 ⊗ a2 ⊗ a3) = (δa∗ ⊗ 1)δa∗(λ)Alt(a1 ⊗ a2 ⊗ a3)
= λ([[a1, a2], a3] + [[a2, a3], a1] + [[a3, a1], a2]) = 0

(5.5)

holds. This concludes the proof, since λ, a1, a2 and a3 where chosen arbitrarily.

5.1.2 The category of Lie bialgebras. For a Lie algebra a over k the space a⊗n is an
a-module, where the action is defined by

a · (a1 ⊗ · · · ⊗ an) :=
n∑
j=1

a1 ⊗ · · · ⊗ aj−1 ⊗ [a, aj]⊗ aj+1 ⊗ · · · ⊗ an, (5.6)

for all a, a1, . . . , an ∈ a. In particular, we have a linear map ∂ : a⊗n → Hom(a, a⊗n)
defined by ∂t(x) = x · t for all x ∈ a and t ∈ a⊗n. Elements in the image of ∂ are called
1-coboundaries and elements in the kernel of ∂ are called a-invariant. Observe that

[a⊗ 1 + 1⊗ a, t] := a · t = ∂t(a) (5.7)

hold for all a ∈ a, t ∈ a⊗ a.
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Remark 5.1.2.
Let t ∈ a⊗(n+1) be a-invariant and write t = ∑

i1,...,in∈I ti1,...,in ⊗ bi1 ⊗ · · · ⊗ bin
for some basis {bi}i∈I , where I is some (possibly infinite) index set. Note that
the sum is finite. Then i := ⟨ti1,...,in | i1, . . . , in ∈ I⟩k ⊆ a is a finite-dimensional
subspace. The identity bk · t = 0 implies that

[bk, ti1,...,in ] =
n∑
ℓ=1

∑
j∈I

Ciℓ
jkti1,...,iℓ−1,j,iℓ+1,...,in ∈ i, (5.8)

where {Ci
jk}i,j,k∈I ⊆ k is determined by [bj, bk] = ∑

i∈I C
i
jkbi. Observe that all

sums here are finite. This shows that i ⊆ a is a finite-dimensional ideal.

A Lie algebra a is called Lie bialgebra if it is also a Lie coalgebra and the Lie cobracket
δa is a 1-cocycle, i.e. δa([a1, a2]a) = a1 · δa(a2) − a2 · δa(a1) holds for all a1, a2 ∈ a. In
this case, δa is called Lie bialgebra cobracket. A linear map between two Lie bialgebras
is a Lie bialgebra morphism if it is a morphism of both Lie algebra and Lie coalgebra
structures. We have defined the category of Lie bialgebras over k.

Remark 5.1.3.
Under consideration of Lemma 5.1.1, the functor a 7→ a∗ defines a contravariant
autoequivalence of the category of finite-dimensional Lie bialgebras over k.

5.2 Manin triples

In this section, we will discuss how Lie bialgebras can be encoded in terms of Lie
algebras using the notion of Manin triples. Roughly speaking, the Lie algebra and Lie
coalgebra structure of some Lie bialgebra can be described by two separate Lie algebras
and the compatibility between them can be understood using an enveloping Lie algebra
equipped with an invariant, non-degenerate, symmetric bilinear form.

5.2.1 Definition. Recall that a subspace W of a vector space V over k equipped with
a symmetric bilinear form B is called isotropic (resp. coisotropic, resp. Lagrangian) if
W⊥ := {w ∈ W | B(v, w) = 0 for all v ∈ V } satisfies W ⊆ W⊥ (resp. W⊥ ⊆ W , resp.
W⊥ = W ).

A Manin triple ((m, B),m+,m−) consists of a Lie algebra m equipped with an invariant,
non-degenerate, symmetric bilinear form B : m × m → k and isotropic subalgebras
m± ⊆ m such that m = m+ ⊕m−. If the choice of bilinear form on m is clear from the
context, we omit B in the datum of the Manin triple, i.e. we write (m,m+,m−) instead
of ((m, B),m+,m−).

Lemma 5.2.1.
Let ((m, B),m+,m−) be a Manin triple.
(1) Then m± = m⊥

±, i.e. m± are Lagrangian.
(2) The canonical injection Ba : m→ m∗ induced by B restricts to injective maps
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Ba
± : m± → m∗

∓.

Proof. Let a = a+ + a− ∈ m⊥
+ ⊇ m+ be an arbitrary element, where a± ∈ m± are

uniquely determined. By definition, 0 = B(a, b) = B(a−, b) for all b ∈ m+ and
B(a−, b) = 0 for all b ∈ m− ⊆ m⊥

−. We conclude a− = 0, since B is non-degenerate,
so a = a+ ∈ m+. Since m+ and m− play symmetric roles, this proves (1). For (2),
notice that the kernel of the composition Ba with the restriction m∗ → m∗

± is easily
seen to be m⊥

± = m±, hence the isomorphism theorem and m/m± = m∓ conclude
the proof.

5.2.2 The classical double. Historically, Manin triples originated in [Dri83] as a
construction associated with Lie bialgebras: the so-called classical double. To understand
said construction, we first recall the following easy construction from linear algebra.
Let V,W be two vector space over k and B : V ×W → k be bilinear. Then there is an
induced bilinear pairing B⊗k : V ⊗k ×W⊗k → k defined by

B⊗k(v1 ⊗ · · · ⊗ vk, w1 ⊗ · · · ⊗ wk) := B(v1, w1) . . . B(vk, wk), (5.9)

for all v1, . . . , vk ∈ V,w1, . . . wk ∈ W . Assume now that B is non-degenerate, i.e. the
canonical maps V → W ∗ and W → V ∗ induced by B are injective. Then B⊗k is
non-degenerate for all k ∈ N.

Proposition 5.2.2.
Let a be a Lie bialgebra over k. There exists a unique Lie algebra structure on
D(a) := a⊕ a∗ such that both a and a∗ are subalgebras of D(a) and the canonical
pairing

B(a1 + λ1, a2 + λ2) = λ1(a1) + λ2(a2) ∀a1, a2 ∈ a, λ1, λ2 ∈ a∗ (5.10)

is invariant. In this case, D(a) is called the classical double of a and
((D(a), B), a, a∗) is a Manin triple satisfying B⊗2(δa(a), λ1⊗λ2) = B(a, [λ1, λ2]a∗)
for all a ∈ a and λ1, λ2 ∈ a∗.

Proof. Note that for all a ∈ a and λ1, λ2 ∈ a∗

B(δa(a), λ1 ⊗ λ2) = (λ1 ⊗ λ2)δ(a) = [λ1, λ2]a∗(a) = B(a, [λ1, λ2]a∗) (5.11)

holds by definition. Furthermore, a⊥ = a and a∗,⊥ = a∗ is also obvious. Let
[, ] := [, ]D(a) : D(a)×D(a)→ D(a) be the unique skew-symmetric map such that

[, ]|a×a = [, ]a, [, ]|a∗×a∗ = [, ]a∗ and [a, λ] = −λ ad(a) + (λ⊗ ida)δa(a) (5.12)

for all a ∈ a, λ ∈ a∗. It is easy to see that [, ] is the only map satisfying
B([d1, d2], d3) = B(d1, [d2, d3]) for all d1, d2, d3 ∈ D(a).

It remains to prove that [, ] satisfies the Jacobi-identity. In the following δ =
δa, a1, a2 ∈ a and λ1, λ2 ∈ a∗. It suffices to show that the Jacobi identity in
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a1, a2, λ1 (resp. a2, λ1, λ2) is satisfied, which will be denoted by Jac(a1, a2, λ1)
(resp. Jac(a2, λ1, λ2)). We have

B([a1, [a2, λ1]], λ2) = B(−[a1, λ1 ad(a2)], λ2) +B((ida⊗ ad(a1))δ(a2), λ1 ⊗ λ2)
= B(a1,−[λ1 ad(a2), λ2]) +B((ida⊗ ad(a1))δ(a2), λ1 ⊗ λ2)
= −B((ad(a2)⊗ idg)δ(a1), λ1 ⊗ λ2) +B((ida⊗ ad(a1))δ(a2), λ1 ⊗ λ2).

(5.13)

Similarly, one shows that

B([[a1, λ1], a2], λ2) = −B((ida⊗ ad(a2))δ(a1), λ1 ⊗ λ2) +B((ad(a1)⊗ ida)δ(a2), λ1 ⊗ λ2)

and combined this results in

B⊗2(a1 · δ(a2)− a2 · δ(a1), λ1 ⊗ λ2) = B([a1, [a2, λ1]] + [[a1, λ1], a2], λ2). (5.14)

Furthermore, a similar argument shows

B⊗2(a1 · δ(a2)− a2 · δ(a1), λ1 ⊗ λ2) = B(a1, [[a2, λ1], λ2] + [λ1, [a2, λ2]]). (5.15)

Comparing these expressions to

B⊗2(δ([a1, a2]), λ1 ⊗ λ2) = B([a1, a2], [λ1, λ2]) = B([[a1, a2], λ1], λ2) = B(a1, [a2, [λ1, λ2]]),

we can conclude

B⊗2(δ([a1, a2])− a1 · δ(a2) + a2 · δ(a1), λ1 ⊗ λ2)
= B(Jac(a1, a2, λ1), λ2) = B(a1, Jac(a2, λ1, λ2)).

(5.16)

The left-hand side of this equation vanishes since δ is a 1-cocycle and the non-
degeneracy of B concludes the proof.

5.2.3 Manin triples determining Lie bialgebra structures. The duality of Lie co-
bracket and Lie bracket under the bilinear form of a Manin triple can be used to
generalize the notion of classical double and provides the possibility to construct Lie
bialgebra structures from Manin triples. This will be used in Section 5.4.

Proposition 5.2.3.
Let ((m, B),m+,m−) be a Manin triple, S ⊆ m+ generate m+ as Lie algebra and
assume there exists a linear map δ : m+ → m+ ⊗m+ such that

B⊗2(δ(a), w1 ⊗ w2) = B(a, [w1, w2]m) for all a ∈ S,w1, w2 ∈ m−. (5.17)

Then δ is a 1-cocycle if and only if (5.17) holds for all a ∈ m+ and in this case δ
is unique with this property and defines a Lie bialgebra structure on m+.
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Proof. Let π− : m → m− be the canonical projection. Repeating the derivation
of (5.14) in the proof of Proposition 5.2.2, where λ 7→ λ ad(a) is replaced by
w 7→ π−[a, w], results in

B⊗2(a1 · δ(a2)− a2 · δ(a1), w1 ⊗ w2) = B([a1, [a2, w1]] + [[a1, w1], a2], w2)
= B([[a1, a2], w1], w2) = B([a1, a2], [w1, w2])

(5.18)

for all a1, a2 ∈M := {a ∈ m | (5.17) holds for a} and w1, w2 ∈ m+. Note that if

δ is a 1-cocycle ⇐⇒ (5.17) holds for all a ∈ S (5.19)

is true and these equivalent conditions are satisfied, then δ is uniquely determined
by (5.17) since B is non-degenerate. Furthermore, in this case δ defines a Lie
bialgebra structure since the skew-symmetry and co-Jacobi identity can be checked
using (5.17) and the invariance of B. It remains to prove (5.19).

” =⇒ ” If δ is a 1-cocycle, (5.18) takes the form

B⊗2(δ([a1, a2]), w1 ⊗ w2) = B⊗2(a1 · δ(a2)− a2 · δ(a1), w1 ⊗ w2)
= B([a1, a2], [w1, w2]),

(5.20)

for all a1, a2 ∈M . In particular, M is a Lie subalgebra of m+ containing S. Since
S generates m+, we have M = m+.

”⇐= ” If (5.17) is satisfied for all a ∈ m+, we can combine

B⊗2(δ([a1, a2]), w1 ⊗ w2) = B([a1, a2], [w1, w2]) (5.21)

with the equality (5.18) and the Jacobi identity in m to obtain

B⊗2(δ([a1, a2])− a1 · δ(a2) + a2 · δ(a1), w1 ⊗ w2) = 0, (5.22)

for all a1, a2 ∈ m+ and w1, w2 ∈ m−. Therefore, δ is an 1-cocycle since B is
non-degenerate.

We say that a Lie bialgebra cobracket δm+ on m+ is determined by a Manin triple
((m, B),m+,m−) if

B⊗2(δm+(a), w1 ⊗ w2) = B(a, [w1, w2]m−) for all a ∈ m+, w1, w2 ∈ m− (5.23)

holds. The classical double construction shows that any Lie bialgebra is determined by
some Manin triple.

5.2.4 Manin triples and isomorphisms of Lie bialgebras. It is possible to construct
isomorphisms between Lie bialgebra structures by relating Manin triples defining said
structures.

Lemma 5.2.4.
The following statements are true.
(1) Let m+ and m′

+ be two Lie bialgebras determined by Manin triples (m,m+,m−)
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and (m′,m′
+,m

′
−) respectively. If there exists an orthogonal Lie algebra iso-

morphism φ : m → m′ satisfying φ(m±) ⊆ m′
±, then φ|m+ : m+ → m′

+ is an
isomorphism of Lie bialgebras and we say that the Manin triples (m,m+,m−)
and (m′,m′

+,m
′
−) are isomorphic.

(2) Every Manin triple consisting of finite dimensional algebras arises up to
isomorphism as the classical double of a Lie bialgebra.

Proof. The proof of Part (1) is straight forward. For (2), note that for any Manin
triple ((m, B),m+,m−) we have the canonical isomorphism Ba

− : m− → m∗
+. This

identifies [, ]∗m− with a Lie bialgebra cobracket on m+ which is determined by
((m, B),m+,m−). It is now easy to see that φ : m→ D(a) defined by φ|m+ = idm+

and φ|m− = Ba
− results in the desired isomorphism of Manin triples.

5.3 Twisting Lie bialgebra structures

Following [KS02], we examine in Subsection 5.3.1 the condition for which a 1-cocycle
defined by adding a 1-coboundary to a given Lie bialgebra cobracket defines a new
Lie bialgebra structure. In Subsection 5.3.2, we will see that this procedure can be
described using Manin triples if the original Lie bialgebra structure is determined by a
Manin triple.

5.3.1 Classical Twists. For a Lie algebra a we denote by U(a) the universal enveloping
algebra of a and by (·)ij : a⊗ a→ U(a)⊗ U(a)⊗ U(a) for ij ∈ {12, 13, 23} the linear
maps defined by t12 = t⊗ 1, t13 = a1⊗ 1⊗ a2 and t23 = 1⊗ t, where t = a1⊗ a2 ∈ a⊗ a.
We can calculate e.g.

[(a1 ⊗ a2)13, (b1 ⊗ b2)23] = a1 ⊗ b1 ⊗ [a2, b2] ∈ a⊗ a⊗ a, (5.24)

for all a1, a2, b1, b2 ∈ a, where the brackets denote the commutator of the unital
associative k-algebra U(a)⊗ U(a)⊗ U(a). This shows that for all t ∈ a⊗ a

CYB(t) := [t12, t13] + [t12, t23] + [t13, t23] (5.25)

defines a quadratic map CYB: a⊗ a→ a⊗ a⊗ a.

Proposition 5.3.1.
Let a be a Lie bialgebra with Lie bialgebra cobracket δ = δa. Then δt := δ + ∂t
defines a Lie bialgebra structure on a for some t ∈ a ⊗ a if and only if both
t+ τ(t) ∈ a⊗ a and CYB(t)− Alt((δ ⊗ ida)t) ∈ a⊗ a⊗ a are a-invariant.

Proof. Clearly, δt is an 1-cocycle for all t ∈ a ⊗ a and it is skew-symmetric if
and only if a · (t + τ(t)) = 0 for all a ∈ a. Hence, it remains to be show that
Alt ((δt ⊗ ida) ◦ δt) (a) = 0 for all a ∈ a if and only if CYB(t)− Alt((δ ⊗ ida)t) ∈
a ⊗ a ⊗ a is a-invariant. Since a equipped with δ is a Lie bialgebra, we have
Alt ((δ ⊗ 1) ◦ δ) = 0. In the following we write t = ∑k

i=1 ai ⊗ bi, fix an element
a ∈ a and write δ(a) = ∑n

i=1 xi ⊗ yi. We proceed in three steps.
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Step 1. Alt((∂t⊗ ida)∂t(a)) = −a · CYB(t). A direct computation shows that
a · [t12, t13] equals

k∑
i,j=1

([a, [ai, aj]]⊗ bi ⊗ bj + [ai, aj]⊗ [a, bi]⊗ bj + [ai, aj]⊗ bi ⊗ [a, bj])

=
k∑

i,j=1
([[a, ai], aj]⊗ bi ⊗ bj + [ai, [a, aj]]⊗ bi ⊗ bj + [ai, aj]⊗ [a, bi]⊗ bj

+[ai, aj]⊗ bi ⊗ [a, bj]) = [(a · t)12, t13] + [t12, (a · t)13].

Similarly, we can derive the identities

a · [t12, t23] = [(a · t)12, t23] + [t12, (a · t)23] and a · [t13, t23] = [(a · t)13, t23] + [t13, (a · t)23].

By definition

(∂t⊗ ida)∂t(a) =
k∑

i,j=1
([[a, ai], aj]⊗ bj ⊗ bi + aj ⊗ [[a, ai], bj]⊗ bi

+[ai, aj]⊗ bj ⊗ [a, bi] + aj ⊗ [ai, bj]⊗ [a, bi]) = [(a · t)13, t12] + [(a · t)23, t12].

Write (x1⊗x2⊗x3)ijk = xi⊗xj⊗xk for {i, j, k} = {1, 2, 3} and x1, x2, x3 ∈ a. Then
it is easy to see that for skew-symmetric s1, s2 ∈ a⊗a we have [s12

1 , s
13
2 ]231 = [s13

1 , s
23
2 ].

This and similar identities combined with the above equalities shows

Alt((∂t⊗ ida)∂t(a)) = −a · CYB(t). (5.26)

Step 2. Alt((δ⊗ ida)∂t(a)+(∂t⊗ ida)δ(a)) = a ·Alt((δ⊗ ida)t). We can calculate

(δ ⊗ ida)∂t(a) =
k∑
i=1

(
δ([a, ai])⊗ bi + δ(ai)⊗ [a, bi]

)
=

k∑
i=1

(
(a ◦ δ(ai)− ai · δ(a))⊗ bi

+ δ(ai)⊗ [a, bi]
)

= (δ ⊗ ida)∂t(a) = a · (δ ⊗ ida)(t)−
k∑
i=1

(ai · δ(a))⊗ bi.

Then we have the following identities

(∂t⊗ ida)δ(a) =
ℓ∑

j=1

n∑
i=1

(
[xj, ai]⊗ bi ⊗ yj + ai ⊗ [xj, bi]⊗ yj

)
n∑
i=1

(
ai ◦ δ(a)

)
⊗ bi =

m∑
j=1

n∑
i=1

(
[ai, xj]⊗ yj ⊗ bi + xj ⊗ [ai, yj]⊗ bi

)
.

(5.27)

Since t is skew-symmetric, i.e. t = −∑k
i=1 bi ⊗ ai, we have

ℓ∑
j=1

k∑
i=1

[ai, xj]⊗ yj ⊗ bi =
ℓ∑

j=1

k∑
i=1

[xj, bi]⊗ yj ⊗ ai.

and consequently Alt
(∑ℓ

j=1
∑k
i=1 ai⊗[xj, bi]⊗yj−[ai, xj ]⊗yj⊗bi

)
= 0. Similarly, the

skew-symmetry of δ(a) yields Alt
(

m∑
j=1

n∑
i=1

[xj, ai]⊗ bi ⊗ yj − xj ⊗ [ai, yj]⊗ bi
)

= 0.

Summarized, we arrive at Alt((δ ⊗ ida)∂t(a) + (∂t⊗ ida)δ(a)) = a ·Alt((δ ⊗ ida)t).
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Step 3. Conclusion. Combining steps 1 and 2, we see that Alt((δt ⊗ 1)δt(a))
equals

Alt((δ ⊗ ida)δ(a)) + Alt((δ ⊗ ida)∂t(a) + (δt ⊗ ida)δ(a)) + Alt((∂t⊗ ida)∂t(a))
= 0 + a · Alt(δ ⊗ ida(t))− a · CYB(t) = a · (Alt(δ ⊗ ida(t))− CYB(t)).

This concludes the proof.

For a Lie cobracket δ of a Lie bialgebra a, a tensor t ∈ a⊗ a is called classical twist of
δ if it is skew-symmetric, in symbols t+ τ(t) = 0, and Alt(δ ⊗ ida(t)) = CYB(t) holds.
In particular, the Lie bialgebra cobrackets of the form δt = δ + ∂t for a classical twist t
of δ are called twists of δ.

5.3.2 Twisting Manin triples determining Lie bialgebra structures. The proce-
dure of twisting translates nicely to Manin triples. Before stating the formal result,
recall that two subspaces V1, V2 of a vector space V over k are called commensu-
rable, written V1 ≍ V2, if dim((V1 + V2)/(V1 ∩ V2)) <∞. Furthermore, recall that for
any Manin triple ((m, B),m+,m−), the bilinear form B induces injective linear maps
B̃± : m±⊗m± → Hom(m∓,m±) by a⊗ b 7→ B(b,−)a. The following result from [AM21]
is a generalization of the methods from [Sto91b; Sto91c].

Theorem 5.3.2.
Let δ be a Lie bialgebra cobracket on a Lie algebra m+, determined by a Manin
triple ((m, B),m+,m−). Then

t 7−→ mt
− :=

{
B̃+(t)(w)− w

∣∣∣w ∈ m−
}

(5.28)

defines a bijection of classical twists t ∈ m+ ⊗ m+ of δ and subalgebras w ⊆ m
such that w ≍ m− and ((m, B),m+,w) is a Manin triple. Moreover, for any
classical twist t of m+, the Manin triple ((m, B),m+,m

t
−) determines the Lie

bialgebra cobracket δt.

Proof. Let t = ∑k
i=1 ai ⊗ bi ∈ m+ ⊗m+ be an arbitrary tensor, write T := B̃+(t),

and mt
− := {Tw − w | w ∈ m−} ⊆ m. The proof is conducted in five steps.

Step 1. mt
− ≍ m−. The definition of T implies that dim(Im(T )) < ∞, so

dim(m−/Ker(T )) <∞. Combining this with Ker(T ) = m− ∩mt
− and m− + mt

− ⊆
m− + Im(T ) yields dim((w + m−)/(w ∩m−)) <∞.

Step 2. mt
− is isotropic if and only if t + τm(t) = 0. For all w1, w2 ∈ m− we

have

B(Tw1 − w1, Tw2 − w2) = −B(Tw1, w2)−B(w1, Tw2)

= −
(

k∑
i=1

B(bi, w1)B(ai, w2) +B(bi, w2)B(ai, w1)
)
.

(5.29)

Therefore, t = −τm(t) is equivalent to the fact that mt
− is isotropic.

Step 3. mt
− is an isotropic subalgebra if and only if t is a classical twist of δ.
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For every w1, w2, w3 ∈ m− we have

B⊗3(w1 ⊗ w2 ⊗ w3, [t12, t13]) =
k∑

i,j=1
B(w1, [ai, aj])B(w2, bi)B(w3, bj)

=
k∑

i,j=1
B(w1, [B(w2, bi)ai, B(w3, bj)aj]) = B(w1, [Tw2, Tw3]),

(5.30)

and similarly we obtain

B⊗3(w1 ⊗ w2 ⊗ w3, [t12, t23]) = B(w2, [Tw3, Tw1]) and
B⊗3(w1 ⊗ w2 ⊗ w3, [t13, t23]) = B(w3, [Tw1, Tw2]).

(5.31)

Since m+ is determined by (m,m+,m−), we see for i, j, k ∈ {1, 2, 3}

B(wi ⊗ wj ⊗ wk, (δ ⊗ idm+)t) = B(Twk, [wi, wj]). (5.32)

Combined, this shows

B(w1 ⊗ w2 ⊗ w3,Alt((δ ⊗ 1)t)− CYB(t)) = B([Tw1 − w1, Tw2 − w2], Tw3 − w3).

The non-degeneracy of B implies that mt
− is an isotropic subalgebra of m if and

only if t is a classical twist of δ := δm+ .
Step 4. For an isotropic subalgebra w ⊆ m such that w ≍ m− and ((m, B),m+,w)

is a Manin triple, there exists a classical twist t of m+ such that w = mt
−.

For any w ∈ m− we have a unique splitting w+ + v, for some w+ ∈ m+ and
v ∈ w. Let T : m− → m+ be defined by T (w) := w+. Then by construc-
tion w = {Tw − w | w ∈ L−} and dim((w + m−)/(w ∩ m−)) < ∞ implies that
dim(Im(T )) < ∞. Since w is isotropic, we have B(Tw1, w2) = −B(w1, Tw2) for
all w1, w2 ∈ m−. Note that B gives a non-degenerate pairing between the finite-
dimensional spaces m−/Ker(T ) and Im(T ). Let {Twi}ni=1 be a basis for Im(T ) and
{vi + Ker(T )}ni=1 be its dual basis for m−/ ker(T ). Then

n∑
i=1

B(wk,−Tvi)Twi =
n∑
i=1

B(Twk, vi)Twi = Twk, (5.33)

for all k ∈ {1, . . . , n}. Since T is completely determined by its action on {wi}ni=1,
we have the equality T = −∑n

i=1 B(Tvi,−)Twi. Setting t := −∑n
i=1 Twi ⊗ Tvi,

we see from steps 2 and 3 that t is a classical twist of δ such that w = mt
−.

Step 5. The Manin triple (m,m+,m
t
−) determines δt. For all w1, w2 ∈ m− and

a ∈ m+ we have

B⊗2(δt(a), (Tw1 − w1)⊗ (Tw2 − w2)) = B⊗2(δ(a), w1 ⊗ w2) +B⊗2(a · t, w1 ⊗ w2)

= B(a, [w1, w2]) +
k∑
i=1

(B([a, ai], w1)B(bi, w2) +B(ai, w1)B([a, bi], w2]))

= B(a, [w1, w2]) +B([a, Tw2], w1)−B([a, Tw1], w2) = B(a, [Tw1 − w1, Tw2 − w2]),

where we used the fact that m+ is Lagrangian in the first and last equality.
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5.4 Examples of Lie bialgebras

We now look at some examples of Lie bialgebras. First, we discuss the process of defining
Lie bialgebra cobrackets using structure constants, which we call constant r-matrices in
Subsection 5.4.1. Then, in Subsection 5.4.2, we explain how formal r-matrices can be
viewed as an infinite dimensional counterpart to this approach. Finally, in subsections
5.4.3-5.4.5, we present certain infinite-dimensional Lie bialgebras which will be central
to the remainder of this work.

5.4.1 Quasitriangular Lie bialgebras and constant r-matrices. A basic but im-
portant example that reveals the effectiveness of the twisting method is the case of
the trivial Lie bialgebra cobracket, i.e. δ = 0. We have the following special case of
Proposition 5.3.1.

Lemma 5.4.1.
For a Lie algebra a and a tensor t ∈ a⊗ a the linear map δ := ∂t defines a Lie
bialgebra structure on a if and only if both t+ τ(t) and CYB(t) are a-invariant.

Let δ = ∂r be a Lie bialgebra cobracket on a Lie algebra a for some r ∈ a⊗ a. We call
δ quasitriangular if r solves the constant classical Yang-Baxter equation CYB(r) = 0
and triangular if additionally r + τ(r) = 0. In this case, r is called constant r-matrix.
Examples of quasitriangular Lie bialgebras structures can be constructed from finite-
dimensional Manin triples.

Lemma 5.4.2.
Let ((m, B),m+,m−) be a Manin triple such that dim(m) = 2d < ∞ and let
{b±
i }di=1 ⊆ m± be bases such that B(b+

i , b
−
j ) = δij. Then r = ∑d

i=1 b
+
i ⊗ b−

i is a
constant r-matrix and δ = ∂r defines a Lie bialgebra structure on m restricting to
a Lie bialgebra structure on m+ determined by ((m, B),m+,m−).

Proof. Let [b±
i , b

±
j ] = ∑d

k=1 C
±
ijkbk. Then B([b+

i , b
−
j ], b+

k ) = B(b−
j , [b+

k , b
+
i ]) = C+

kij

and B([b+
i , b

−
j ], b−

k ) = B(b+
i , [b−

j , b
−
k ]) = C−

jki implies that

[b+
i , b

−
j ] =

d∑
k=1

(C+
kijb

−
k + C−

jkib
+
k ). (5.34)

Therefore, we see that

CYB(r) =
d∑

i,j,k=1

(
C+
ijkb

+
k ⊗ b−

i ⊗ b−
j − b+

i ⊗ (C+
kjib

−
k + C−

ikjb
+
k )⊗ b−

j + b+
i ⊗ b+

j ⊗ C−
ijkb

−
k

)
.

This expression vanishes since C±
ijk = −C±

jik and relabeling indices yields

d∑
i,j,k=1

b+
i ⊗ C+

kjib
−
k ⊗ b−

j =
d∑

i,j,k=1
C+
ijkb

+
k ⊗ b−

i ⊗ b−
j and

d∑
i,j,k=1

b+
i ⊗ C−

ikjb
+
k ⊗ b−

j =
d∑

i,j,k=1
b+
i ⊗ b+

j ⊗ C−
ijkb

−
k .

(5.35)
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It is easy to see that the isomorphism m ⊗ m → End(m) defined by a1 ⊗ a2 7→
B(a2,−)a1 maps r + τ(r) to idm. This implies that r + τ(r) is m-invariant, so r is
a constant r-matrix and ∂r defines a Lie bialgebra structure on m.

Observe that (5.34) implies

∂r(b+
i ) =

d∑
j,k=1

(
C+
ijkb

+
k ⊗ b−

j + b+
j ⊗ (C+

kijb
−
k + C−

jkib
+
k )
)

=
d∑

j,k=1
C+
ijkb

+
k ⊗ b−

j −
d∑

j,k=1
C+
ikjb

+
j ⊗ b−

k +
d∑

j,k=1
C+
jkib

+
j ⊗ b+

k =
d∑

j,k=1
C−
jkib

+
j ⊗ b+

k ,

so ∂r restricts to a Lie bialgebra cobracket on m+ and

B⊗2(δ(b+
i ), b−

j ⊗ b−
k ) = C−

jki = B(b+
i , [b−

j , b
−
k ]) (5.36)

concludes the proof.

Lemma 5.4.3.
Let g be a simple finite-dimensional Lie algebra over an algebraically closed field k
of characteristic 0 with Casimir element γ ∈ g⊗ g. Every Lie bialgebra cobracket
on g is of the form ∂r for an r ∈ g⊗ g satisfying r+ τ(r) = λγ and CYBg(r) = 0.

Proof. By Whitehead’s Lemma, every 1-cocycle, in particular every Lie bialgebra
cobracket, is of the form ∂r for some r ∈ g⊗g. Lemma 5.4.1 states that r+τ(r) and
CYB(r) are g-invariant. The space of g-invariant elements of g⊗g is spanned by γ,
i.e. r + τ(r) = λγ for some λ ∈ k. It is not hard to see that this implies CYB(r) ∈
g∧ g∧ g. The space of g-invariant elements of g∧ g∧ g is spanned by CYB(γ) (see
[Kos50, Theorem 11.2]), i.e. CYB(r) = µCYB(γ) for some µ ∈ k. Let α ∈ k satisfy
α2 = −µ. Then ∂(r + αγ) = ∂r and CYB(r + αγ) = CYB(r) + α2CYB(γ) = 0 to
conclude the proof.

Constant r-matrices are, as the name suggests, closely related to formal r-matrices.
The following lemma depicts examples of this. The proof is straightforward.

Lemma 5.4.4.
Let g be a semi-simple finite-dimensional Lie algebra over k with Casimir element
γ ∈ g⊗ g. For a t ∈ g⊗ g, the following results are true:
(1) t+ τ(t) = 0 and CYB(t) = 0 if and only if

r(x, y) := γ

x− y
+ t ∈ (g⊗ g)((x))[[y]] (5.37)

is a formal r-matrix.
(2) t+ τ(t) = γ and CYB(t) = 0 if and only if

r(x, y) := γ

exp(x− y)− 1 + t ∈ (g⊗ g)((x))[[y]] (5.38)

is a formal r-matrix.
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5.4.2 The Lie bialgebra structure associated to a formal r-matrix. Let g be a
finite-dimensional semi-simple Lie algebra over k and r ∈ (g⊗g)((x))[[y]] be a normalized
formal r-matrix. In Subsection 2.3.3, it is shown that

δ(a)(x, y) := [a(x)⊗ 1 + 1⊗ a(y), r(x, y)] (5.39)

defines a linear map δ : g(r)→ g(r)⊗ g(r). This map defines a Lie bialgebra structure
on g(r). More precisely, we have the following result.

Proposition 5.4.5.
Let g be a finite-dimensional semi-simple Lie algebra over k and r ∈ (g⊗g)((x))[[y]]
be a normalized formal r-matrix. The linear map δ defined by (5.39) is a Lie
bialgebra cobracket on g(r) and (g((z)), g(r), g[[z]]) is a Manin triple isomorphic to
the classical double of g(r).

Proof. It is easy to see that δ is a 1-cocycle and (g((z)), g(r), g[[z]]) is a Manin triple;
see Proposition 2.2.1 and Lemma 2.3.3. Let r(x, y) = ∑

k∈N0

∑d
i=1 rk,i(x) ⊗ ykbi

for some orthonormal basis {bi}di=1 of g with respect to the Killing form K of g.
Equation (2.41) reads

∑
k∈N0

d∑
i=1

δ(rk,i)⊗ ykbi =
∑

k,ℓ∈N0

d∑
i,j=1

rk,i(x1)⊗ rℓ,j(x2)⊗ [bi, bj]xk+ℓ
3 . (5.40)

Combining K−1(rk,i(z), bjzℓ) = δijδkℓ for all i, j ∈ {1, . . . , d}, k, ℓ ∈ N0 with the
fact that g((z)) = g[[z]]⊕ g(r) shows that a 7→ K−1(a,−) defines an isomorphism
Ka

−1 : g[[z]]→ g(r)∗. Applying K⊗3
−1(−, bixk1 ⊗ bjxℓ2 ⊗ rm,n(x3)) to (5.40) yields

K⊗2
−1(δ(rm,n)(x, y), bixk ⊗ bjyℓ) = K−1(rm,n(z), [bizk, bjzℓ]). (5.41)

This implies that δ defines a Lie bialgebra structure on g(r) and Ka
−1 : g[[z]]→ g(r)∗

is an isomorphism of Lie algebras, so (g((z)), g(r), g[[z]]) is isomorphic to the classical
double of g(r).

It is easy to see that the Lie bialgebras g(r) and g(r̃) are isomorphic if and only if
r̃ ∈ (g ⊗ g)((x))[[y]] is gauge equivalent to r. In this language, Theorem 2.3.4 can be
understood as: the canonical derivation of g(r) is, up to equivalence in r, given by the
restriction of the formal derivative d/dz to g(r).

5.4.3 The standard bialgebra structure on Kac-Moody algebras. Let

R :=
(
K, h,Π := {α1, . . . , αq} ,Π∨ :=

{
α∨

1 , . . . , α
∨
q

})
be the realization of a symmetrizable generalized Cartan matrix A,

{e+
i , e

−
i | i ∈ {1, . . . , q}} (5.42)

be a choice of Chevalley generators, Φ = Φ+⊔Φ− be the associated polarized root system
and B be a fixed non-degenerate invariant bilinear form. We can extend the action K on
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K⊗K to M := ∏
α,β∈Φ∪{0} Kα⊗Kβ to turn this vector space into a K-module. The bilinear

form B induces an isomorphism Kα ⊗K−α → End(Kα) by a⊗ b 7→ B(b,−)a. Let χα be
the preimage of the identity under this map and define r(R,B) := χ0/2 +∑

α∈Φ− χα ∈M .
Then a 7→ a · r(R,B) defines a linear map δ(R,B) : K → M . As the notation suggests,
r(R,B) and δ(R,B) are completely determined by the choice of realization R and bilinear
form B. From now on we write r and δ instead of r(R,B) and δ(R,B).

Lemma 5.4.6.
For δ defined as above, the identities δ(h) = 0 for all h ∈ h and δ(e±

i ) = 1/2α∗
i ∧e±

i

for all i ∈ {1, . . . , q} hold, where α∗
i ∈ h is uniquely determined by B(α∗

i , ·) = αi.
In particular, δ : K→ K⊗ K is a 1-cocycle.

Proof. Part 2. of Lemma 4.1.5 states that [a ⊗ 1, χβ] + [1 ⊗ a, χα+β] = 0 holds
for all α, β ∈ Φ ∪ {0} and a ∈ Kα. For h ∈ K0 = h this immediately implies
δ(h) = h · r = 0 and we can see that

δ(e+
i ) = 1

2e
+
i · χ0 +

∑
α∈Φ−

(
[e+
i ⊗ 1, χα−αi

] + [1⊗ e+
i , χα]

)
= 1

2e
+
i · χ0 + [e+

i ⊗ 1, χ−αi
] +

∑
α∈Φ−

(
[e+
i ⊗ 1, χα−αi

] + [1⊗ e+
i , χα]

)
= 1

2e
+
i · χ0 + [e+

i ⊗ 1, χ−αi
] = 1

2[e+
i ⊗ 1− 1⊗ e+

i , χ0].

(5.43)

Here, we used the fact that for any α ∈ Φ ∪ {0}, [e+
i ⊗ 1, χα] ̸= 0 if and only if

α + αi ∈ Φ ∪ {0}.
Let {hj}nj=1 ⊂ h be a basis orthonormal with respect to B, where n := dim(h).

Then χ0 = ∑n
j=1 hj ⊗ hj and

[e+
i ⊗ 1, χ0] = −

n∑
j=1

αi(hj)e+
i ⊗ hj = −

n∑
j=1

e+
i ⊗ αi(hj)hj = −e+

i ⊗ α∗
i , (5.44)

where ∑n
j=1 αi(hj)hj = ∑n

j=1 B(α∗
i , hj)hj = α∗

i was used. In a similar fashion, we
see [1⊗ e+

i , χ0] = −α∗
i ⊗ e+

i . Combined we conclude δ(e+
i ) = 1/2α∗

i ∧ e+
i . A similar

calculation yields δ(e−
i ) = 1/2α∗

i ∧ e−
i . Since {e+

i , e
−
i } ∪ h generates K, δ takes

values in any submodule of M containing δ(e±
i ), in particular K⊗ K.

Our next goal is to show that δ defines a Lie bialgebra structure determined by a Manin
triple. Therefore, let b± := h⊕ n± be the standard Borel subalgebras of K with respect
to the realization R. Note that

B(2)((a+, a−), (b+, b−)) := B(a+, b+)−B(a−, b−) a±, b± ∈ K

defines a symmetric, non-degenerate, invariant bilinear form on K× K.

Proposition 5.4.7.
Let ι : K → K × K be the morphism defined by a 7→ (a, a), d := Im(ι) and
w := {(a+, a−) ∈ b+ × b− | a+ + a− ∈ n+ + n−}. Then δ defines a Lie bialgebra
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structure on K and (K× K, d,w) is a Manin triple determining the Lie bialgebra
cobracket d→ d⊗ d defined by (a, a) 7→ (ι⊗ ι)δ(a).

Proof. The fact that K × K = d ⊕ w and d ⊆ d⊥ holds can be directly verified.
For any (a+, a−), (b+, b−) ∈ w, let a±,h and b±,h be the h-component of a± and b±
respectively. Then a+,h = −a−,h and b+,h = −b−,h implies

B(2)((a+, a−), (b+, b−)) = B(a+,h, b+,h)−B(a−,h, b−,h) = 0, (5.45)

so (K×K, d,w) is a Manin triple. By virtue of Proposition 5.2.3 and the symmetry
of b+ and b− it remains to prove for all (a+, a−), (b+, b−) ∈ w that

B⊗2(δ(e+
i ), (a+ − a−)⊗ (b+ − b−)) = B(2),⊗2((ι⊗ ι)δ(e+

i ), (a+, a−)⊗ (b+, b−))
= B(2)((e+

i , e
+
i ), [(a+, a−), (b+, b−)]) = B(e+

i , [a+, b+]− [a−, b−])

holds. Both sides of this equation are non-zero if and only if a+ − a−, b+ − b− ∈
h+ ke−

i . Since δ is skew-symmetric, B is bilinear and the map (a+, a−) 7→ a+− a−
defines an linear isomorphism w → K, we may assume that a/2 = a+ = −a− ∈
h, b+ = 0 and b− = e−

i . Then

B(δ(e+
i ), (a+ − a−)⊗ (−e−

i )) = −1
2B(α∗

i , a)B(e+
i , e

−
i )

= −1
2B(e+

i , αi(a)e−
i ) = B(e+

i ,−[a−, e
−
i ]).

concludes the proof.

The Lie bialgebra structure δ is called the standard Lie bialgebra structure of K with
respect to ((K, h,Π,Π∨), B).

5.4.4 The standard bialgebra structure on twisted loop algebras. Let g be a
finite-dimensional simple Lie algebra over k = C and σ ∈ AutC-alg(g) have order m ∈ N.
Furthermore, let L = L(g, σ) ⊆ g[ũ, ũ−1] be the associated loop algebra and K0 be
the bilinear form of L described in Lemma 4.2.1. Fix a triangular decomposition
gσ0 = n− ⊕ H⊕ n+ and let (L̂, Ĥ,Π,Π∨) be the associated realization due to Theorem
4.2.3. Recall that K0 induces a non-degenerate, invariant, symmetric bilinear form K̂0
on L̂.

Let δ be the standard bialgebra structure of L̂ with respect to ((L̂, Ĥ,Π,Π∨), K̂0)
(see Subsection 5.4.3). Since δ([L̂, L̂]) ⊆ [L̂, L̂]⊗ [L̂, L̂] and δ(c) = 0, we can see that δ
induces a bialgebra structure δ◦ on L ∼= [L̂, L̂]/Cc = L by

δ◦(a+ Cc) = δ(a) + (Cc⊗ [L̂, L̂] + [L̂, L̂]⊗ Cc) (5.46)

for all a ∈ [L̂, L̂]. We call the Lie bialgebra cobracket δ◦ the standard Lie bialgebra
structure of L = L(g, σ) with respect to triangular decomposition gσ0 = n+ ⊕ H⊕ n−.

Let us choose Chevalley generators {e+
i , e

−
i | i ∈ {0, . . . , n}} ⊆ L. The definition of δ

immediately implies that

δ◦(e±
i ) = 1/2α∗

i ∧ e±
i (5.47)
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holds for all i ∈ {0, . . . , n}, where α∗
i ∈ H is uniquely determined by K0(α∗

i , ·) = αi|H.
Let B± = H⊕N± ⊆ L be the standard Borel subalgebras and ι : L→ L× L be the

embedding a 7→ (a, a). Then the Lie bialgebra cobracket defined by (a, a) 7→ (ι⊗ ι)δ◦(a)
is determined by the Manin triple (L× L,D,W◦), where D := Im(ι),

W◦ := {(a+, a−) ∈ B+ ×B− | a+ + a− ∈ N+ + N−}, (5.48)

and L× L is equipped with the bilinear form

K
(2)
0 ((a+, a−), (b+, b−)) = K0(a+, b+)−K0(a−, b−) for all a±, b± ∈ L. (5.49)

Indeed, this can be seen using the same argument as in Proposition 5.4.7.
The next goal of this subsection is to see that δ◦ and its twisted versions are closely

related to a certain class of r-matrices. Since (σ⊗σ)γ = γ, we have γ ∈⊕m−1
j=0 (gσj ⊗gσ−j).

Let γj be the gσj ⊗gσ−j-component of γ with respect to this decomposition. Furthermore,
let γ0 = γ+

0 + γH + γ−
0 be the unique decomposition of γ0 such that γH ∈ H ⊗ H and

γ±
0 ∈ n± ⊗ n∓. Consider the rational map ϱ◦ : C× C→ g⊗ g defined by

ϱ◦(ũ, ṽ) := 1
(ũ/ṽ)m − 1

m−1∑
j=0

(
ũ

ṽ

)j
γj + γ−

0 + γH/2 (5.50)

as an element of the L-module (L⊗ L)[((ũ/ṽ)m − 1)−1].

Proposition 5.4.8.
Let g be a finite-dimensional, simple, complex Lie algebra, σ ∈ AutC-alg(g) have
order m ∈ N, and fix a triangular decomposition gσ0 = n+⊕H⊕ n−. Furthermore,
let δ◦ be the standard Lie bialgebra structure on L := L(g, σ) with respect to
gσ0 = n+ ⊕ H⊕ n− and ϱ◦ be given by (5.50).
(1) δt := δ◦ + ∂t defines a Lie bialgebra structure on L for some tensor t ∈ L⊗L

if and only if t is a classical twist of δ◦ if and only if ϱt := ϱ◦ + t solves the
CYBE (3.54).

(2) δt(a)(ũ, ṽ) = [a(ũ)⊗ 1 + 1⊗ a(ṽ), ϱt(ũ, ṽ)] for all t ∈ L⊗ L, a ∈ L.

Proof. Note that the inclusions

(L⊗ L)[((ũ/ṽ)m − 1)−1] ⊆ (g⊗ g)[ũ, ũ−1, ṽ, ṽ−1, ((ũ/ṽ)m − 1)−1] ⊆ (g⊗ g)((ũ))((ṽ))

defined by the Laurent expansion in ṽ = 0 are compatible with the respective
L-module structures. Here,

1
(ũ/ṽ)m − 1

m−1∑
j=0

(
ũ

ṽ

)j
γj =

∞∑
j=1

(
ṽ

ũ

)mj m−1∑
j=0

(
ṽ

ũ

)j−m
γj =

∞∑
j=1

(
ṽ

ũ

)j
γ−j (5.51)

in (g⊗ g)((ũ))((ṽ)), where we wrote γj+km = γj for all k ∈ N, j ∈ {0, . . . ,m− 1}.
Let Φ = Φ+⊔Φ− be the polarized root system of L̂ associated to gσ0 = n+⊕H⊕n−

and let s ∈ Nn+1 \ {0} be chosen such that the natural grading of L̂ coincides with
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the Z-grading of type s as Kac-Moody algebra (see Subsection 4.1.4). For any
j ∈ Z \ {0}

(
ṽ

ũ

)j
γ−j =

∑
α∈Φ

hts(α)=−j

χα, (5.52)

holds. Here, for all α ∈ Φ, χα is the preimage of the identity under the canonical
isomorphism Lα ⊗ L−α → End(Lα) defined by a⊗ b 7→ B(b, ·)a. We obtain

ϱ◦ = γH/2 +
∑
α∈Φ−

χα (5.53)

and the identity δ◦(a)(ũ, ṽ) = [a(ũ)⊗ 1 + 1⊗ a(ṽ), ϱ◦(ũ, ṽ)] for all a ∈ L is now a
direct consequence of the definition of the standard structure of L̂ in Subsection
5.4.3. Since

∂t(a)(ũ, ṽ) = [a(ũ)⊗ 1 + 1⊗ a(ṽ), t(ũ, ṽ)] (5.54)

holds for all a ∈ L ⊆ g[ũ, ṽ] and t ∈ L⊗ L ⊆ (g⊗ g)[ũ, ṽ, ũ−1, ṽ−1], this concludes
the proof of (2).

The map δt := δ◦ + ∂t defines a Lie bialgebra structure on L if and only if
t+ τL(t) and AltL((δ◦ ⊗ 1)t)− CYB(t) are L-invariant elements; see Proposition
5.3.1. But Remark 5.1.2 implies that

L⊗n has no non-zero L-invariant elements (5.55)

since L has no finite-dimensional ideals (see e.g. Lemma 4.2.8.(3)), so t is a classical
twist. Observe that, under consideration of L⊗ L ⊆ (g⊗ g)[ũ, ũ−1, ṽ, ṽ−1],

T ∈ L⊗ L, T (ũ, ũ) = 0 =⇒ T = ((ũ/ṽ)m − 1)T̃ for some T̃ ∈ L⊗ L, (5.56)

holds. This can be used to see that the left-hand side of the CYBE (3.54) in ϱt is
an element CYB(ϱt) of L ⊗ L ⊗ L. A similar calculation as in Proposition 5.3.1
shows that AltL((δt ⊗ idL)δt(a)) = 0 is equivalent to a · CYB(ϱt) = 0 for all a ∈ L.
In particular, AltL((δt ⊗ idL)δt(a)) = 0 is equivalent to CYB(ϱt) = 0 by virtue of
(5.55), which concludes the proof of (1).

Elements of the form ϱt := ϱ◦ + t for some classical twist t ∈ L ⊗ L are called σ-
trigonometric r-matrices and we call ϱ◦ the standard σ-trigonometric r-matrix with
respect to the triangular decomposition gσ0 = n− ⊕ H ⊕ n+. Furthermore, the Lie
bialgebra cobrackets of L of the form δt := δ◦ + ∂t for t ∈ L ⊗ L are called twisted
standard Lie bialgebra structures of L. Combining Theorem 5.4.8 with Theorem 5.3.2
and the fact that δ◦ is determined by the Manin triple (L × L,D,W◦) provides the
following theory of Manin triples for σ-trigonometric r-matrices.

Theorem 5.4.9.
Let g be a finite-dimensional, simple, complex Lie algebra, σ ∈ AutC-alg(g) have
order m ∈ N, and fix a triangular decomposition gσ0 = n+⊕H⊕ n−. Furthermore,
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let δ◦ be the standard Lie bialgebra structure on L := L(g, σ) with respect to
gσ0 = n+ ⊕ H⊕ n− and ϱ◦ (resp. W◦) be given by (5.50) (resp. (5.48)).
(1) ϱt = ϱ◦ + t 7→Wt defines a bijection between σ-trigonometric r-matrices and

subalgebras W ⊆ L×L such that ((L×L, K
(2)
0 ),D,W) is a Manin triple and

W ≍W◦. Here, Wt := W◦,t is defined in Theorem 5.3.2 and K(2)
0 is given by

formula (5.49).
(2) Let t ∈ L⊗L be a classical twist of δ◦. The Manin triple ((L×L, K(2)

0 ),D,Wt)
determines (up to L ∼= D) the Lie bialgebra cobracket δt := δ◦+∂t : L→ L⊗L,
given by the formula

δt(a)(ũ, ṽ) = [a(ũ)⊗ 1 + 1⊗ a(ṽ), ϱt(ũ, ṽ)] for all a ∈ L. (5.57)

The notation was purposefully chosen in such a way that ϱ0 = ϱ◦, δ0 = δ◦ and W0 = W◦.
Let us conclude this subsection with an investigation, under which circumstances two
different twisted standard Lie bialgebra structure of L are isomorphic.

Lemma 5.4.10.
Let φ ∈ AutC[u,u−1]-alg(L), φ̃ ∈ End(g)[ũ, ũ−1] be the associated Laurent polynomial
and t1, t2 be two classical twists of δ. Then

(φ⊗ φ)δt1 = δt2φ ⇐⇒ (φ̃⊗ φ̃)ϱt1 = ϱt2 . (5.58)

Proof. Combining (φ̃(ũ)⊗ φ̃(ũ))γ = γ with (5.56) implies that

(φ̃(ũ)⊗ φ̃(ṽ))ϱt1(ũ, ṽ)− ϱt2(ũ, ṽ) ∈ L⊗ L. (5.59)

For all a ∈ L, (φ⊗ φ)δt1φ−1(a) = δt2 is equivalent to

[a(ũ)⊗ 1 + 1⊗ a(ṽ), (φ̃(ũ)⊗ φ̃(ṽ))ϱt1(ũ, ṽ)− ϱt2(ũ, ṽ)] = 0. (5.60)

In particular, (φ̃(ũ)⊗ φ̃(ṽ))ϱt1(ũ, ṽ)− ϱt2(ũ, ṽ) ∈ L⊗ L is L-invariant. Therefore,
this is equivalent to (φ̃(ũ)⊗ φ̃(ṽ))ϱt1(ũ, ṽ) = ϱt2(ũ, ṽ) by virtue of (5.55).

We say that two classical twists t1 and t2 of δ◦ (resp. two σ-trigonometric r-matrices ϱt1
and ϱt2) are regularly equivalent if there exists φ ∈ AutC[u,u−1]-alg(L) satisfying (5.58).
We will study the structural and geometric theory of σ-trigonometric r-matrices up to
regular equivalence in detail in Chapter 8.

Remark 5.4.11.
The results and definitions in this paragraph can be repeated ad verbatim if C is
replaced by any algebraically closed field k of characteristic 0.

5.4.5 The standard Lie bialgebra structure on polynomial Lie algebras. Let us
consider a finite dimensional semi-simple Lie algebra g over k with Killing form K and
Casimir element γ. If we equip g[z, z−1] with the non-degenerate, symmetric, invariant
bilinear form K−1, defined by

K−1(a, b) = res0K(a(z), b(z))dz for all a, b ∈ g[z, z−1],



104 Chapter 5 Lie bialgebras

then (g[z, z−1], g[z], z−1g[z−1]) becomes a Manin triple. Consider the g[z]-module
M = (g ⊗ g)[x, y, (x − y)−1] and observe that g[z] ⊗ g[z] ∼= (g ⊗ g)[x, y] is a g[z]-
submodule of M and

rYang(x, y) := γ

x− y
∈M. (5.61)

Therefore, a(z) 7→ [a(x)⊗1+1⊗a(y), rYang(x, y)] defines a linear map ∂rYang : g[z]→M .
Since [a⊗ 1 + 1⊗ a, γ] = 0 for all a ∈ g, we can see that δ(a) = 0 and

δ(za) = [(x− y)a⊗ 1, rYang(x, y)] + y[a⊗ 1 + 1⊗ a, rYang(x, y)] = [a⊗ 1, γ].

Therefore, ∂rYang takes values in (g ⊗ g)[x, y], since g[z] is generated by g ⊔ zg. Fur-
thermore, it is not hard to see that

K⊗2
−1(δ(za), z−1w1 ⊗ z−1w2) = K⊗2([a⊗ 1, γ], w1 ⊗ w2)

= K([a, w1], w2) = K(a, [w1, w2]) = K−1(za, z−2[w1, w2])
(5.62)

holds for all w1, w2 ∈ g and consequently for all w1, w2 ∈ g[z−1]. Thus, Proposition 5.2.3
implies that ∂rYang defines a Lie bialgebra cobracket on g[z] determined by the Manin
triple (g[z, z−1], g[z], z−1g[z−1]). We call ∂rYang the standard Lie bialgebra structure
on g[z]. Following Stolin [Sto91b; Sto91c], we call the formal r-matrices of the form
rt := rYang + t for t ∈ (g⊗ g)[x, y] rational r-matrices.

Theorem 5.4.12.
Let g be a finite-dimensional semi-simple Lie algebra g over a field k of character-
istic 0 with Killing form K and Casimir element γ. Let rYang(x, y) := γ/(x− y)
and define ∂rYang : g[z]→ (g⊗ g)[x, y] by a(z) 7→ [a(x)⊗ 1 + 1⊗ a(y), rYang(x, y)].
(1) ∂rt := ∂rYang + ∂t defines a Lie bialgebra structure on g[z] for some tensor

t ∈ (g ⊗ g)[x, y] if and only if t is a classical twist of ∂rYang if and only if
rt = rYang + t is a rational r-matrix.

(2) rt 7→ Wt := (z−1g[z−1])t (see Theorem 5.3.2) defines a bijection between
rational r-matrices and subalgebras W ⊆ g[z, z−1] such that W ≍ z−1g[z−1]
and ((g[z, z−1], K−1), g[z],W) is a Manin triple.

(3) For any rational r-matrix rt, the Lie bialgebra corbacket ∂rt is determined by
((g[z, z−1], K−1), g[z],Wt).

Proof. Note that (2) and (3) follow from (1) and Theorem 5.3.2, so we only need
to prove (1). The map ∂rYang + ∂t defines a Lie bialgebra structure on g[z] if and
only if t+ τg[z](t) and Altg[z]((∂rYang ⊗ 1)t)− CYB(t) are g[z]-invariant elements;
see Proposition 5.3.1. But Remark 5.1.2 implies that

g[z]⊗n has no non-zero g[z]-invariant elements (5.63)

since it has no finite-dimensional ideals. Indeed, any non-zero ideal i ⊆ g[z]
contains the torsion-free k[z]-module [i, g[z]], which is non-zero due to [g, g] = g
and infinite-dimensional as a consequence. Therefore, t is a classical twist of ∂rYang.
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The argument in Example 2.1.4 shows that rYang is a solution of the formal
CYBE (2.32). Therefore, the CYBE for rt = rYang + t is easily seen to coincide
with

CYB(rYang)− Altg[z]((∂rYang ⊗ 1)t) + CYB(t), (5.64)

which is zero if and only if t is a classical twist.

Remark 5.4.13.
The bilinear form K−1 has a natural extension to g((z−1)). It is easy to see that the
Manin triples (g[z, z−1], g[z],W) such that W ≍ z−1g[z−1] and (g((z−1)), g[z], Ŵ)
such that Ŵ ≍ z−1g[[z−1]] are in bijection; see e.g. [Sto95]. Therefore, the theory
of Manin triples for rational r-matrices presented in Theorem 5.4.12 is equivalent
to the one used by Stolin [Sto91b; Sto91c].

Let us conclude this section by discussing the relation of equivalence of r-matrices and
isomorphism of the associated bialgebra structures.

Lemma 5.4.14.
Let φ ∈ Autk[z]-alg(g[z]), φ̃ ∈ End(g)[z] be the associated polynomial and t1, t2 be
two classical twists of δ. Then

(φ⊗ φ)δt1 = δt2φ ⇐⇒ (φ̃⊗ φ̃)rt1 = rt2 . (5.65)

Proof. Combining φ̃(z)⊗ φ̃(z)(γ) = γ with of Lemma 2.1.2.(4) implies that

(φ̃(x)⊗ φ̃(y))rt1(x, y)− rYang(x, y) ∈ (g⊗ g)[x, y]. (5.66)

For all a ∈ g[z], (φ⊗ φ)∂rt1φ−1(a) = ∂rt2 is equivalent to

[a(x)⊗ 1 + 1⊗ a(y), (φ̃(x)⊗ φ̃(y))rt1(x, y)− rt2(x, y)] = 0. (5.67)

In particular, (φ̃(x) ⊗ φ̃(y))rt1(x, y) − rt2(x, y) ∈ (g ⊗ g)[x, y] is g[z]-invariant.
Therefore, this is equivalent to (φ̃(x) ⊗ φ̃(y))rt1(x, y) = rt2(x, y) by virtue of
(5.63).

We say that two classical twists t1 and t2 of ∂rYang (resp. two rational r-matrices rt1
and rt2) are polynomially equivalent if there exists φ ∈ Autk[z]-alg(g[z]) satisfying (5.65).
We will study the structure and geometry of rational r-matrices up to polynomial
equivalence in detail in Section 9.



6
The Belavin-Drinfeld trichotomy

6.1 Sheaves of algebras on algebraic groups of
dimension one

It is well-known that any connected complex algebraic group of dimension one is either
isomorphic to an elliptic curve or affine, in which case it is either the additive group
Spec(C[z]) or the multiplicative group Spec(C[u, u−1]). In this section, we will derive
some classification results for sheaves of algebras on these schemes. The affine case
is considered in Subsection 6.1.1 and is based on the relation of sheaves of algebras
and torsors discussed in Subsection 1.2.4 and the results of Pianzola on the latter
from [Pia05]. The elliptic case will be presented in Subsection 6.1.3 and is based
on the well-known relation between analytic and algebraic geometry (see Subsection
6.1.2, [Ser56]) and the description of vector bundles on elliptic curves using factors of
automorphy; see e.g. [Ien11].

6.1.1 Affine case. The classification of weakly trivial sheaves of algebras over one-
dimensional, connected, affine algebraic groups over an algebraically closed field of
characteristic 0 is provided by the following statement.

Theorem 6.1.1.
Let k be an algebraically closed field of characteristic 0, A be a finite-dimensional
k-algebra, and A be a weakly A-locally free sheaf of algebras on a k-scheme X.
(1) If X = Spec(k[u, u−1]), there exists σ ∈ Autk-alg(A) of order m ∈ N and a

primitive m-th root of unity ε ∈ k such that A is isomorphic to the sheaf of
algebras associated to

L(A, σ) := {a(ũ) ∈ A[ũ, ũ−1] | a(εũ) = σ(f(ũ))}

on X, where the module structure of L(A, σ) is defined by u = ũm.
(2) If X = Spec(k[z]), A is isomorphic to the sheaf of algebras associated to A[z]

on X.

Proof. In both cases, Theorem 1.2.3 states that A is automatically étale A-locally
free on X and for this reason, up to isomorphism, determined by an element of
Ȟ1(Xét,Autk-alg(A)X); see Lemma 1.2.6. The arguments in [Pia05] imply that there
is a canonical injection Ȟ1(Xét,Autk-alg(A)X)→ Ȟ1(Xét,Out(A)X), where Out(A)
is the group of connected components of Autk-alg(A) and Out(A)X := X ×Out(A).
The case of X = Spec(k[u, u−1]) is thereby considered explicitly in [Pia05] while
the case of X = Spec(k[u]) works analogous. Since Out(A) is finite, we have a
bijection of Ȟ1(Xét,Out(A)X) and the non-abelian continuous cohomology group
H1(π1(X, x),Out(A)), where x ∈ X is a closed point, π1(X, x) is the associated
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étale fundamental group and the action of π1(X, x) on Out(A) is trivial.
Proof of (1). If X = Spec(k[u, u−1]), we can choose x = (u− 1) and then it is

explained in [Pia05] that H1(π1(X, x),Out(A)) is in bijection with the conjugacy
classes in Out(A) and the Autk-alg(A)X-torsor of L(A, σ) is mapped to the conjugacy
class of the class of σ−1 in Out(A). In particular, every Autk-alg(A)X-torsor is
represented by some L(A, σ) for an appropriate σ.

Proof of (2). If X = Spec(k[z]) and x = (z), the group π1(X, x) is trivial.
Therefore, Ȟ1(Xét,Autk-alg(A)X) has only one element, consisting of the trivial
Autk-alg(A)X-torsor on X, i.e. the one represented by A[z].

Corollary 6.1.2.
Every weakly locally trivial sheaf of Lie algebras on Spec(k[u, u−1]) is associated to
a twisted loop algebra. Every weakly locally free sheaf of Lie algebras on Spec(k[z])
is trivial, i.e. associated to a polynomial Lie algebra.

6.1.2 Interlude: analytification. A ringed space (X,OX) is called C-space, if OX is
a sheaf of C-algebras. A locally ringed C-space (V,OV ) is called local model space if
there exists an open subset U ⊆ Cn (in the complex analytic topology) and holomorphic
functions f1, . . . , fk on U , such that

V = {z ∈ Cn | f1(z) = · · · = fk(z) = 0} (6.1)

is the vanishing locus of f1, . . . , fk and OV = HU/(f1, . . . , fk) are the holomorphic
functions on V , where HU is the sheaf of holomorphic functions on U . A complex
analytic space is a locally ringed C-space which is locally isomorphic to a local model
space.

For every reduced and separated C-scheme X of finite type, it is clear that the closed
points of X can be equipped with the structure of a complex analytic space, which
will be denoted by (Xan,Oan

X ) and is called analytification of X. There is a natural
morphism ι : Xan → X of locally ringed spaces, which identifies points of Xan as closed
points of X and regular functions of X as holomorphic functions on Xan. The following
results can be found in [Ser56].

Theorem 6.1.3.
Let X be a projective C-scheme.
(1) The assignment F 7→ F an := ι∗F defines an equivalence of the category of

coherent sheaves on X and coherent sheaves on Xan.
(2) For any coherent sheaf F on X and any n ∈ N0 there is a natural isomorphism

Hn(X,F )→ Hn(Xan,F an).
(3) For any coherent sheaf F on X and any q ∈ Xan, the canonical morphism

F̂ι(q) → F̂ an
q is bijective.

6.1.3 Elliptic case. Let X be an elliptic curve over k = C. There exists an biholo-
morphic map ν : Xan → C/Λ for some lattice Λ = ⟨λ1, λ2⟩Z ⊂ C of rank two. Let
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pr : C → C/Λ be the canonical map, A be a locally free sheaf of rank d on X and
E → C/Λ be the vector bundle with sheaf of holomorphic sections ν∗A an. In e.g.
[Ien11] it is explained that, since pr∗E is trivial as a vector bundle, E is determined by
some holomorphic map ϕ : Λ× C→ GL(d,C) satisfying

Φ(λ+ λ′, z) = Φ(λ, z + λ′)Φ(λ′, z) for all λ, λ′ ∈ Λ and z ∈ C, (6.2)

called factor of automorphy, in the sense that

E = C× Cd/ ∼ , where (z, a) ∼ (z + λ,Φ(λ, z)a) for all λ ∈ Λ. (6.3)

Assume that A is an étale g-locally free sheaf of Lie algebras for some finite-dimensional
complex Lie algebra g. Then it is easy to see that E is a holomorphic fiber bundle
with fiber g and structure group AutC-alg(g). Therefore, [Gra58, Satz 6] implies that
π∗E ∼= C × g as holomorphic fiber bundles. This implies that Φ takes values in
AutC-alg(g).

Theorem 6.1.4.
Let g be a simple, finite-dimensional, complex Lie algebra, A be a weakly g-locally
free acyclic (i.e. h1(A ) = 0) sheaf of Lie algebras on an elliptic curve X, and
ν : Xan → C/Λ be a biholomorphic map for some Λ := ⟨λ1, λ2⟩Z ⊆ C of rank
two. There exist commuting ϕ1, ϕ2 ∈ AutC-alg(g) of finite order without common
non-zero fixed vector such that ν∗A an is isomorphic to the sheaf of holomorphic
sections of

C× g/ ∼ (z, a) ∼ (z + λ1, ϕ1(a)) ∼ (z + λ2, ϕ2(a)). (6.4)

Proof. Let π : C→ Xan be the map induced by pr : C→ C/Λ and ν : Xan → C/Λ.
We split the proof into four steps.

Step 1. h0(A ) = 0 = h1(A ). The morphism A → A ∗ induced by the Killing
form of A is an isomorphism, since A |p ∼= g is simple for all p ∈ X closed; see
Lemma 1.1.2. Therefore, the Serre duality implies h0(A ) = h1(A ∗) = h1(A ) = 0.

Step 2. Description of Γ(X \ {p},A ), where p := ιπ(0). Theorem 1.2.3 states
that A is étale g-locally trivial. As argued above, this implies that the holomorphic
vector bundle E → C/Λ with holomorphic sheaf of sections ν∗A an is determined by
a factor of automorphy Φ: C× Λ→ AutC-alg(g). Using the first step and Theorem
1.3.4 results in Γ(X \ {p},A ) ⊕ Âp = Q(Âp). Let W be the algebra of global
meromorphic sections of ν∗A an which are holomorphic except in pr(0) ∈ C/Λ, i.e.

W =
{
a : C→ g meromorphic

∣∣∣∣∣ a is holomorphic on C \ Λ
a(z + λ) = Φ(λ, z)a(z),∀λ ∈ Λ, z ∈ C \ Λ

}
.

The Laurent expansion of local sections of ν∗A an in π(0) with respect to some
holomorphic coordinate z of C in 0 combined with hi(A an) = hi(A ) = 0 for
i ∈ {0, 1} induces the identification W⊕ g[[z]] = g((z)). The canonical isomorphism
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ζ : Âp → Â an
π(0)
∼= g[[z]] induces a commutative diagram

Γ(X \ {p},A )⊕ Âp

∼= //

��

Q(Âp)
∼=
��

W⊕ g[[z]] ∼=
// g((z))

, (6.5)

so ζ(Γ(X \ {p},A )) = W.
Step 3. Φ is locally constant up to isomorphism. Proposition 2.2.1 and

g((z)) = g[[z]] ⊕W implies that there exists a normalized formal generalized r-
matrix r such that g(r) = W = ζ(Γ(X \ {p},A )). We can chose a global 1-form η
on X such that π∗ι∗η = dz as a holomorphic 1-form on C. The residue theorem
forces

res0K(ζ(a), ζ(b))dz = respK(a, b)η = 0 (6.6)

for all a, b ∈ Γ(X \ {p},A ), where K is the Killing form of A . Therefore,
g(r)⊥ = g(r) and Proposition 2.3.1 forces r to be skew-symmetric. Combining
Lemma 3.1.1 and Proposition 2.3.4, we may assume that g(r) is closed under the
derivation with respect to z, after probably replacing A with an isomorphic sheaf
of Lie algebras. In particular, we have

Φ(λ, z)da
dz

(z) = da

dz
(z + λ) = ∂Φ

∂z
(λ, z)a(z) + Φ(λ, z)da

dz
(z). (6.7)

for every a ∈ W. Therefore, ∂Φ
∂z

(λ, z)a(z) = 0 for all z ∈ C \ Λ, a ∈ W. Since
W⊗C((z)) ∼= g((z)), we see that ∂Φ

∂z
(λ, z) = 0, and thus Φλ := Φ(λ, z) ∈ AutC-alg(g)

is independent of z.
Step 4. P := {Φλ}λ∈Λ is a finite abelian group. Equation (6.2) implies that

ΦλΦλ′ = Φλ+λ′ for all λ, λ′ ∈ Λ, so P := {Φλ}λ∈Λ is a commutative subgroup of
AutC-alg(g) generated by ϕ1 := Φλ1 , ϕ2 := Φλ2 . A non-zero element in g which is
fixed by all elements in P would define a global section of A . Hence, such an
element does not exist by Step 1. Assume that P has infinite order and let s be
the Lie algebra of the smallest algebraic subgroup S of AutC-alg(g) containing P .
Since P is infinite, s can be identified with a non-zero subalgebra of g. Since P is
abelian and dense (with respect to the Zariski topology) in S, it can be shown that
S is abelian. Therefore, the action of S on s is trivial and each non-zero element
of s is fixed by all elements in P . This is a contradiction. We can conclude that P
has finite order.

6.2 The trichotomy theorem

The results of Subsection 6.1 and the geometric trichotomy presented in Theorem 3.2.5
and Remark 3.2.6 can now be combined with the notion of geometric r-matrix to derive
a new proof of the Belavin-Drinfeld trichotomy. In particular, in this section we proof
the following result:
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Theorem 6.2.1.
Let g be a finite-dimensional, simple, complex Lie algebra, r ∈ (g ⊗ g)((x))[[y]]
be a normalized formal r-matrix, and ((X,A ), (C, η)) be the geometric CYBE
datum of r. The following results are true.
(1) X is an elliptic curve if and only if r is equivalent to the Taylor series of an

analytic r-matrix r̃ : C×C→ g⊗g in y = 0, such that r̃(x+λ, y+λ′) = r̃(x, y)
for all λ, λ′ in some rank-two lattice in C.

(2) X is a nodal plane cubic curve if and only if there exist some σ ∈ AutC-alg(g)
of order m ∈ N and σ-trigonometric r-matrix ϱ (see Subsection 5.4.4) such
that r is equivalent to the Taylor series of r̃(x, y) = ϱ(exp(x/m), exp(y/m))
in y = 0.

(3) X is a cuspidal plane cubic curve if and only if r is equivalent to the Taylor
series of a rational r-matrix r̃ (see Subsection 5.4.5) in y = 0.

6.2.1 Proof of Theorem 6.2.1. Let O ⊆ Mult(g(r)) be chosen as in Theorem 3.2.5,
((X,A ), (p, c, ζ)) := G(O, g(r)), and ρ be the geometric r-matrix of ((X,A ), (C, η)). Let
Xan = (Xan,Oan

X ) denote the complex analytic space associated to X and ι : Xan → X
be the canonical morphism of locally ringed spaces. Recall that C is the smooth locus
of X and write Can := ι−1(C) ⊆ Xan for the respective smooth locus of Xan.

If X = C is smooth, it is a complex elliptic curve, so there exists a lattice Λ ⊆ C of
rank two as well as a biholomorphic map ν̃ : C/Λ→ Xan such that ν̃(Λ) = p. Otherwise,
X is a plane cubic curve with a unique singular closed point s and normalization
ν : P1

C → X, where one of the following cases occurs:
• s is nodal and we can choose coordinates (u0 : u1) on P1

C such that
ν−1(s) = {(1 : 0), (0 : 1)} and ν(1 : 1) = p. (6.8)

In particular, ν restricts to an isomorphism Spec(C[u, u−1])→ C for u = u1/u0 and
induces a biholomorphic map ν̃ : C× → Can.
• s is cuspidal and we can choose coordinates (z0 : z1) on P1

C such that
ν−1(s) = {(0 : 1)} and ν(1 : 0) = p. (6.9)

In particular, ν restricts to an isomorphism Spec(C[z])→ C for z = z1/z0 and induces
a biholomorphic map ν̃ : C→ Can.

Summarized, we have a holomorphic covering π̃ : C = (C,Oan
C ) → Can satisfying

ιπ̃(0) = p, defined by

π̃(z̃) =


ν̃(z̃ + Λ) if X is elliptic
ν̃ (exp (z̃)) if X is nodal
ν̃(z̃) if X is cuspidal

(6.10)

in some holomorphic coordinates z̃ on C. Let π := ιπ̃ : C → X. The invertible sheaf
Ωan
C = ι∗ΩC can be identified with the sheaf of holomorphic 1-forms on Can, so ι∗η

can be viewed as holomorphic 1-form. We can assume that π∗η = dz̃. Indeed, it is
well-known that there exists a λ ∈ C× such that π∗η = λdz̃ if X is elliptic and

ν∗(η) =
λdu/u if X is nodal
λdz if X is cuspidal

. (6.11)
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Hence, we can achieve that λ = 1 by replacing r with λr(λx, λy).

Lemma 6.2.2.
Let θ : Ôan

C,0 → C[[z̃]] be the isomorphism defined by the Taylor series in 0. Then
the diagram

ÔX,p

π̂♯
0 //

c

��

Ôan
C,0

θ

��

C[[z]]
z 7→z̃

// C[[z̃]]

(6.12)

commutes. Furthermore, for any rational function f on X, c(f) ∈ C((z)) coincides
with the Laurent series of a meromorphic function on C in 0 which is
(1) elliptic if and only if X is an elliptic curve,
(2) a rational function of exponentials if and only if X is a nodal plane cubic

curve, and
(3) rational if and only if X is a cuspidal plane cubic curve.

Proof. As in Remark 3.2.2, the canonical derivations OX,p → ωX,p and Oan
C,0 → Ωan

C,0

induce continuous derivations ÔX,p → ω̂X,p and Ôan
C,0 → Ω̂an

C,0 whose images generate
the respective modules. These derivations will both be denoted by d, since it will
be clear from the context which one is in use. The completion ω̂X,p → Ω̂an

C,0 of

ωX,p
π∗

p−→ (π∗π
∗Ωan

C )p −→ Ωan
C,0 (6.13)

is described by df 7→ dπ̂♯0(f) for all f ∈ ÔX,p. The identity c∗(η̂p) = dz implies
that η̂p = dc−1(z) (see Remark 3.2.2) and π∗η = dz̃ implies that dπ̂♯0(c−1(z)) = dz̃.
This yields π̂♯0(c−1(z)) = z̃, i.e. (6.12) is commutative, since θ(z̃) = z̃.

Let f be a rational function of X. Then π♭(f)(z̃) = f(π(z̃)) is a meromorphic
function on C and its Laurent series in 0 coincides with its image of the extension
of θ to the respective quotient fields. The commutativity of (6.12) implies that
this Laurent series evaluated in z coincides with c(f) ∈ C((z)). Looking at (6.10),
we can see that f(π(z̃)) is elliptic if and only if X is elliptic, a rational function of
exponentials if and only if X is nodal, and a rational function if and only if X is
cuspidal. Here, we used fιν̃ = fνι and the fact that fν is a rational function on
P1
C if X is singular, i.e. simply a quotient of two polynomials.

Lemma 6.2.3.
The “⇐=” directions hold in Theorem 6.2.1.(1)-(3).

Proof. Assume that r̃ is of the form stated in Theorem 6.2.1. By Lemma 2.2.3,
g(r̃) is generated by {(1 ⊗ α)r̃(z, 0) | α ∈ g∗}, so it can be identified with a
subalgebra of meromorphic maps C → g, which are elliptic in case (1), rational
functions of exp(z/m) in case (2), and rational in case (3). Since r and r̃ are
equivalent r-matrices in normalized standard form, Mult(g(r)) coincides with
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Mult(g(r̃)), up to z 7→ λz for some λ ∈ k×; see Lemma 2.1.6.(4). We have seen
in the proof of Theorem 1.3.3 that there exists a subalgebra O ⊆ Mult(g(r̃)) of
finite codimension with the property: for every f ∈ O exists a non-commutative
polynomial P = P (x1, . . . , xn) and elements a1, . . . , an ∈ g(r̃) satisfying

f idg((z)) = P (ad(a1), . . . , ad(an)). (6.14)

In particular, O consists of elliptic functions in case (1), rational functions of
exponentials in case (2), and rational functions in case (3). Thus, the same is true
for the image Õ of O in Mult(g(r)). Since the quotient field of Õ coincides with
the rational functions on X, this observation combined with Lemma 6.2.2 proves
all “⇐=” directions.

Lemma 6.2.4.
There exists an analytic r-matrix r̃ : C× C→ g⊗ g of the form

r̃ = (ψ ⊠ ψ)(π × π)∗ρ|C×C (6.15)

for an isomorphism ψ : π∗A → g⊗ OC such that:
(1) If X is an elliptic curve, r̃(x+ λ, y + λ′) = r̃(x, y) for all λ, λ′ ∈ nΛ, where n

is some natural number.
(2) If X is a nodal plane cubic curve, there exist some σ ∈ AutC-alg(g) of order m

and σ-trigonometric r-matrix ϱ such that r̃(x, y) = ϱ(exp(x/m), exp(y/m)).
(3) If X is a cuspidal plane cubic curve, r̃ is a rational r-matrix.

Proof of (1). Since A is weakly g-locally free on the elliptic curve X, Theorem
6.1.4 provides an isomorphism ψ1 : ν̃∗ι∗A → S , where S is the sheaf on C/Λ of
holomorphic sections of

C× g/ ∼, where (z, a) ∼ (z + λ1, ϕ1(a)) ∼ (z + λ2, ϕ2(a))

for ϕ1, ϕ2 ∈ AutC−alg(g) of finite order. Choose n ∈ N such that ϕn1 = idg = ϕn2 .
Let ψ2 : pr∗S → g⊗ Oan

C denote the canonical isomorphism, where pr : C→ C/Λ
is the canonical projection. Then ψ2pr∗a : C→ g is an nΛ-periodic meromorphic
function for any rational section a of S . Therefore,

r̃ := (ψ ⊠ ψ)(π × π)∗ρ : C× C→ g⊗ g (6.16)

is an analytic r-matrix (see Theorem 3.3.4) satisfying the desired periodicity, where
ψ := ψ2(pr∗ψ1) and π = ιν̃pr was used.

Proof of (2). Recall that ν : Spec(C[u, u−1])→ C is an isomorphism (since X is
nodal) and A |C is weakly g-locally free. Theorem 6.1.1.(1) provides an isomorphism
ψ1 : ν∗A |C → L , where L is the sheaf associated to L(g, σ) ⊆ g[ũ, ũ−1] on
Spec(C[u, u−1]) = ν−1(C), for some σ ∈ AutC-alg(g) of finite order m and u = ũm.
Recall that γ = ∑m−1

j=0 γj for γj ∈ gσj ⊗ gσ−j , since (σ ⊗ σ)γ = γ. Choosing the local
parameter ν♭,−1(u− 1) of p and

χ = (ψ1 ⊠ ψ1)(ν−1 × ν−1)∗χ̃, where χ̃ :=
m−1∑
j=0

(ũ/ṽ)jγj ∈ L(g, σ)⊗ L(g, σ),
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in (3.37) yields

ϱ := (ψ1 ⊠ ψ1)(ν × ν)∗ρ|C×C = vχ̃

u− v
+ ϱ0, (6.17)

for some ϱ0 ∈ L(g, σ) ⊗ L(g, σ). In particular, ϱ is a σ-trigonometric r-matrix
by virtue of Theorem 3.3.4. Here, we used ũm = u, η = du/u, and the fact that
γ = ∑m−1

j=0 γj implies that χ is indeed a preimage of idA |C under (3.34). The
mapping a(ũ) 7→ a(exp(z/m))) induces an isomorphism ψ2 : exp∗ι∗L → g⊗ Oan

C
such that

r̃ := (ψ2 ⊠ ψ2)(ι exp×ι exp)∗ϱ|C×C = (ψ ⊠ ψ)(π × π)∗ρ|C×C : C× C→ g⊗ g

is of the desired form, where ψ := ψ2 (exp∗ ι∗ψ1) and νιexp = ιν̃exp = π was used.
Proof of (3). If X is cuspidal, the construction of r̃ can be carried out similar

to the nodal case: using Theorem 6.1.1.(2), the local parameter ν♭,−1(z) of p, an
appropriate χ that is constructed from γ, and (3.37) gives r̃ in the desired form,
under consideration of η = du.

Lemma 6.2.5.
The formal r-matrix obtained from the Taylor expansion of r̃ in y = 0 is gauge
equivalent to r.

Proof. By construction in Lemma 6.2.4, r̃ = (ψ ⊠ ψ)(π × π)∗ρ|C×C for an isomor-
phism ψ : π∗A → g⊗ OC. Using Lemma 6.2.2, we can see that the composition

g[[z]] ζ−1
−→ Âp −→ π̂∗A 0

ψ̂0−→ g⊗ Ôan
C,0

idg⊗θ−→ g[[z]] (6.18)

defines a C[[z]]-linear Lie algebra automorphism φ of g[[z]]. Here, the second arrow
is the isomorphism obtained by completing Ap → (π∗π

∗A )p → (π∗A )0 and θ is
the map defined by the Taylor expansion in 0. It is straight forward to show that
the diagram

Γ(C × C \∆,A ⊠ A ) ȷ∗
//

(π×π)∗

��

(g⊗ g)((x))[[y]] φ(x)⊗φ(y)
// (g⊗ g)((x))[[y]]

Γ(C× C \∆π, π
∗A ⊠ π∗A )

ψ⊠ψ
// (g⊗ g)⊗ Γ(C× C \∆π,Oan

C×C)

44

commutes, where ∆π := {(x, y) ∈ C × C | π(x) = π(y)}, ȷ∗ is given in (3.33),
and the unlabeled arrow is given by Taylor expansion in y = 0. The upper row
maps ρ|C×C to (φ(x) ⊗ φ(y))r(x, y) by virtue of Theorem 3.3.3. This concludes
the proof.

Remark 6.2.6.
Note that the three classes from Theorem 6.2.1 are preserved by arbitrary formal
equivalences because of Remark 3.2.7. This fact remained unclear in the classical
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approach from [BD83a; BD83b].



7
Elliptic r-matrices

Throughout this chapter, g is a finite-dimensional, simple, complex Lie algebra.

7.1 Acyclic weakly g-locally free sheaves of algebras
on elliptic curves.

In this section, we present a classification of acyclic weakly g-locally free sheaves of
algebras on elliptic curves, refining Theorem 6.1.4 based on the results of [BD83a,
Section 5]. Translating said reference to the algebro-geometric language will result in
the classification of elliptic r-matrices in the next section.

7.1.1 Prelude: pairs of automorphisms of g without common fixed vector. The
classification of pairs of automorphisms of g without a common eigenvector of eigenvalue
1 relies on the following solvability criterion for finite-dimensional Lie algebras from
[BD84, Section 9].

Proposition 7.1.1.
Let l be a finite-dimensional Lie algebra and assume ϕ ∈ AutC-alg(l) exists such
that det(ϕ− idl) ̸= 0. Then l is solvable.

Proof. If ϕ has finite order and l is simple, we can deduce from Theorem 4.2.3 that
lϕ0 := {a ∈ l | ϕ(a) = a} ̸= {0}, so det(ϕ− idl) = 0. If ϕ has infinite order and l is
simple, we can repeat the argument in Step 4. of the proof of Theorem 6.1.4 for
the group P generated by ϕ to see that again a fixed vector of ϕ necessarily exists,
so det(ϕ− idl) = 0.

Assume now that l is semi-simple and let i ⊆ l be a simple ideal. Since l is
a finite direct sum of its simple ideals, there exists n ∈ N such that ϕn(i) = i.
Therefore, as argued above, there exists a ∈ i such that ϕn(a) = a. Choosing n
to be minimal satisfying ϕn(i) = i, we see that a, ϕ(a), . . . , ϕn−1(a) ∈ l are linearly
independent, so 0 ̸= ã := ∑n−1

k=0 ϕ
k(a) satisfies ϕ(ã) = ã. In particular, we conclude

det(ϕ− idl) = 0.
Finally, let l be an arbitrary finite-dimensional Lie algebra and ϕ ∈ AutC-alg(l)

satisfy det(ϕ − idl) ̸= 0. The automorphism ϕ respects the radical rad(l) of l.
Therefore, ϕ induces an automorphism of the semi-simple Lie algebra l/rad(l)
without fixed point. This forces l/rad(l) = {0}, so l = rad(l) is solvable.

The following result can be found in [BD83a, Proposition 5.2]. For sake of completeness,
we will give the proof presented there.
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Theorem 7.1.2.
Let ϕ1, ϕ2 ∈ AutC-alg(g) be of finite order such that ϕ1ϕ2 = ϕ2ϕ1 and

{a ∈ g | ϕ1(a) = a = ϕ2(a)} = {0}. (7.1)

There exist coprime integers 0 < m < n and an isomorphism ψ : g→ sln(C) of
complex Lie algebras such that ψϕ1ψ

−1 = AdTm
1

and ψϕ2ψ
−1 = AdT2 for

T1 :=


1 0 . . . 0
0 ε . . . 0
... ... . . . ...
0 0 . . . εn−1

 , T2 :=


0 1 . . . 0
... ... . . . ...
0 0 . . . 1
1 0 . . . 0

 , where ε := exp
(2πi
n

)
. (7.2)

Proof. We will split the proof into several parts.
Step 1. ϕ2 induces an automorphism ν of the Dynkin diagram of L(g, ϕ1). The

Lie algebra g0 := {a ∈ g | ϕ1(a) = a} is non-zero and reductive; see Theorem
4.2.3. Furthermore, ϕ2 defines an Lie algebra automorphism on g0 without fixed
vector, so g0 is solvable by virtue of Proposition 7.1.1. Combined, we see that
g0 is abelian. In particular, g0 = H is the only triangular decomposition of g0.
Let (L̂(g, ϕ1), Ĥ,Π,Π∨) be the associated realization from Theorem 4.2.3. Since ϕ1
and ϕ2 commute, ϕ2 defines an automorphism of L(g, ϕ1) which fixes the standard
Borel subalgebras induced by the realization (L̂(g, ϕ1), Ĥ,Π,Π∨). Therefore, ϕ2
induces an automorphism of the Dynkin Diagram of L(g, ϕ1); see Lemma 4.2.6.

Step 2. There exists an isomorphism ψ̃ : g → sln(C). We have seen that
ϕ2(α∗

i ) = α∗
ν(i) for some automorphism ν of the Dynkin diagram of L(g, ϕ1), where

Π = {α0, . . . , αℓ} and α∗
i ∈ H is determined by αi|H = K(α∗

i ,−) for the Killing form
K of g and i ∈ {0, . . . , ℓ}. Assume that S ⊆ {0, . . . , ℓ} is stable under ν. Then
0 ̸= a := ∑

i∈S α
∗
i ∈ g0 satisfies ϕ2(a) = a, so a = 0 by assumption. Since Π has

exactly one linear relation among its elements, we can deduce that S = {0, . . . , ℓ},
so {νj | j ∈ N0} operates transitively on Π. This forces the Dynkin diagram of
L(g, ϕ1) to be of type A(1)

ℓ ; see Figure 4.2. Therefore, ϕ1 is inner and there exists
an isomorphism ψ̃ : g→ sln(C) for n = ℓ+ 1.

Step 3. ϕ1, ϕ2 define a homomorphism π : Z2
N → PGLn(C) for some N ∈ N.

Repeating the first two steps for ϕ1 and ϕ2 switched implies that ϕ2 is also
inner. Therefore, there exists A1, A2 ∈ SLn(C) such that ψ̃ϕiψ̃−1 = AdAi

for
i ∈ {1, 2}, where AdA(a) = AaA−1 for all A ∈ SLn(C) and a ∈ sln(C). The facts
ϕN1 = idg = ϕN2 and ϕ1ϕ2 = ϕ2ϕ1 imply

A1A2A
−1
1 A−1

2 , AN1 , A
N
2 ∈ Ker(Ad) = C×idCn . (7.3)

Therefore, π : Z2
N → PGLn(C) := GLn(C)/C×idCn defined by (k, ℓ) 7→ Ak1A

ℓ
2 is a

homomorphism.
Step 4. π is irreducible understood as projective representation. Since π is

a projective representation of a finite group, it is irreducible if and only if it
is indecomposable; see [Kar85, Chapter 3, theorems 2.5 & 2.10]. Assume π is
decomposable: there exists a non-trivial decomposition Cn = V1 ⊕ V2 such that
AiVj = Vj for i, j ∈ {1, 2}. Let pr : Cn → Cn be the canonical projection onto V1.
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It is easy to see that AiprA−1
i = pr for i ∈ {1, 2}. Then a := pr− dim(V1)

n
idCn can be

interpreted as a non-zero element of sln(C) such that ϕi(ψ̃(a)) = ψ̃AiaA
−1
i = ψ̃(a)

for i ∈ {1, 2}. This is a contradiction. We deduce that π is irreducible.
Step 5. Concluding the proof. Consider the generators g1 = (0, 1) and g2 = (1, 1)

of Z2
N and note that Z2

N is the product of the cyclic groups generated by g1 and
g2. By virtue of [Kar85, Chapter 3, Theorem 7.1], we have N = n and π is
projectively equivalent to the projective representation π′ determined by g1 7→ T2
and g2 7→ T2T

m
1 , where T1 and T2 are given in (7.2). Note that T1T2T

−1
1 T−1

2 ∈
C idCn , so π′ : Z2

n 7→ PGLn(C) is given by (k, ℓ) 7→ T km1 T ℓ2 . The fact that π and π′

are projectively equivalent can be formulated as: there exists P ∈ GLn(C) such
that PA1P

−1 = µ1T
m
1 and PA2P

−1 = µ2T2 for some µ1, µ2 ∈ C×. In particular,
AdP AdA1 AdP = AdTm

1
and AdP AdA2 AdP = AdT2 . Therefore, the isomorphism

ψ := AdP ψ̃ : g→ sln(C) satisfies ψϕ1ψ
−1 = AdTm

1
and ψϕ2ψ

−1 = AdT2 .

7.1.2 Refinement of Theorem 6.1.4. Recall that for every complex elliptic curve X
exists an isomorphism Xan ∼= C/⟨1, τ⟩Z, for an appropriate

τ ∈ H := {z ∈ C | z has positive imaginary part}. (7.4)

Combining Theorem 7.1.2 and Theorem 6.1.4 immediately results in the following
refinement of the classification of acyclic weakly g-locally free sheaves of Lie algebras
on an elliptic curve.

Theorem 7.1.3.
Let A be an acyclic weakly g-locally free sheaf of Lie algebras on an elliptic curve
X and ν : Xan → C/⟨1, τ⟩C be a biholomorphic map for an appropriate τ ∈ H.
There exist coprime integers 0 < m < n such that ν∗A an is isomorphic to the
sheaf Q(τ,(n,m)) of holomorphic sections of

C× sln(C)/ ∼ (z, a) ∼ (z + 1, Tm1 aT−m
1 ) ∼ (z + τ, T2aT

−1
2 ) (7.5)

as sheaves of Lie algebras, where T1 and T2 are defined in (7.2).

7.1.3 Description via simple vector bundles. The following theorem from [BH15]
gives an intrinsic algebro-geometric description of the sheaves appearing in Theorem
7.1.3.

Theorem 7.1.4.
Let A be an acyclic weakly g-locally free sheaf of Lie algebras on an elliptic
curve X, ν : Xan → C/⟨1, τ⟩C be a biholomorphic map for an appropriate τ ∈ H,
and 0 < m < n be coprime integers. For any simple locally free sheaf S (i.e.
EndOX

(S ) ∼= OX) of rank n and degree m, the sheaf A defined by the short
exact sequence

0 −→ A −→ EndOX
(S ) TrS−→ OX −→ 0. (7.6)
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satisfies ν∗A an ∼= Q(τ,(n,m)).

Proof. If S and S ′ are simple locally free sheaves of Lie algebras with the
same rank and degree, there is a canonical isomorphism EndOX

(S ) ∼= EndOX
(S ′)

respecting the trace; see [BH15, Proposition 2.14] for details. Therefore, it suffices
to prove the assertion for some simple vector bundle S of rank n and degree m.
We split the proof in three steps.

Step 1. Setup. It is easy to see that A an is the kernel of TrS an . By virtue of
[Ien11, Theorem 5.24], we can chose S in such a way that S an is isomorphic to
the sheaf of sections of C× Cn/ ∼1, where

(z, v) ∼1 (z + 1, v) ∼1 (z + τ,Φ(z)v) for Φ(z) =


0 1 . . . 0
... ... . . . ...
0 0 . . . 1

ϕ(z)n 0 . . . 0

 (7.7)

and ϕ(z) = exp(−πimτ − 2πimz/n). Consider the sheaf S̃ of sections of C ×
Cn/ ∼2, where

(z, v) ∼2 (z + 1, T ′
1v) ∼2 (z + τ, T ′

2v) for T ′
1 = εmTm1 , T

′
2 = cϕ(z)T2. (7.8)

Here, η := exp(−2πimτ/n), c ∈ C× is chosen in such a way that cn = ηn(n−1)/2

and T1, T2, ε are given in (7.2).
Step 2. S an ∼= S̃ . Consider A : Λ× C→ GLn(C) defined inductively by

A(0, z) := idCn , A(kτ + ℓ, z) := A(kτ, z) := Φ(z + (k − 1)τ)A((k − 1)τ, z) (7.9)

for k, ℓ ∈ Z, k > 0 and by A(kτ + ℓ, z) := A(−kτ + ℓ, z − kτ )−1 for k, ℓ ∈ Z, k < 0.
Furthermore, let B(λ, z) := D(z + λ)A(λ, z)D(z)−1 for z ∈ C, λ ∈ Λ, where

D(z) :=


ϕ(z)n−1a1 0 . . . 0

0 ϕ(z)n−2a2 . . . 0
... ... . . . ...
0 0 . . . an

 for some a1, . . . , an ∈ C×. (7.10)

Since ϕ(z + 1) = ϕ(z)ε−m, the identity B(1, z) = D(z + 1)D(z)−1 = εmTm1 = T ′
1

holds for any choice of a1, . . . , an. Therefore, [Ien11, Theorem 2.6] provides the
desired isomorphism S an ∼= S̃ if a1, . . . , an are chosen in such a way that T ′

2 =
B(τ, z) holds. Using ϕ(z + τ) = ϕ(z)η and choosing a1, . . . an ∈ C such that

ana
−1
1 = ηn−kaka

−1
k+1 = c for all 1 ⩽ k ⩽ n− 1 (7.11)

implies B(τ, z) = D(z + τ)Φ(z)D(z) = cϕ(z)T2 = T ′
2. The system of equations

(7.11) has a solution for a1, . . . , an. Indeed, putting an = 1, we can see inductively
that an−k = ckη−1−2−...−k = ckη−k(k−1)/2 has to hold for all k ∈ {1, . . . , n − 1}
and (7.11) is consistent since c = ana

−1
1 = a−1

1 = c−n+1ηn(n−1)/2 holds due to
cn = ηn(n−1)/2. In particular, we have shown S an ∼= S̃ .
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Step 3. A ∼= Q(n,m). It is straight-forward to see that the kernel of the sheaf
trace Tr

S̃
: EndOX

(S̃ )→ OX is given by

C× sln(C)/ ∼3 for (z, A) ∼3 (z + 1,AdT ′
1
(A)) ∼3 (z + τ,AdT ′

2
(A)). (7.12)

Now the identities AdT ′
1

= AdTm
1

and AdT ′
2

= AdT2 conclude the proof.

7.2 Classification of elliptic r-matrices.

In this section, we derive the well-known explicit formulas for elliptic r-matrices from
[Bel81], using Theorem 7.1.3.

7.2.1 Preparation. Let us define Zk,ℓ = T k1 T
−ℓ
2 for k, ℓ ∈ Zn, where T1, T2 were defined

in (7.2). Observe that the labeling is well-defined since T n1 = idCn = T n2 . The following
lemma summarizes the basic properties of these elements.

Lemma 7.2.1.
Let ε = exp(2πi/n). The following results are true.
(1) {Zk1,k2 | (k1, k2) ∈ Z2

n \ {0}} ⊆ sln(C) is a basis.
(2) TiZk1,k2T

−1
i = εkiZk1,k2 for all i ∈ {1, 2}, (k1, k2) ∈ Z2

n \ {0}.
(3) Tr(Zk1,k2Zℓ1,ℓ2) = nεk1k2δk1,−ℓ1δk2,−ℓ2 for all (k1, k2), (ℓ1, ℓ2) ∈ Z2

n \ {0} and

∑
k,ℓ∈Z2

n\{0}

εkℓ

2n2Zk,ℓ ⊗ Z−k,−ℓ ∈ sln(C)⊗ sln(C) (7.13)

is the Casimir element.

Proof. It is easy to see that the identities

T1T
−1
2 = εT−1

2 T1 and T2T
−1
1 = ε−1T−1

1 T2 (7.14)

hold. Therefore, Tr(Zk,ℓ) = εkTr(T−1
2 T k1 T

−ℓ+1
2 ) = εkTr(Zk,ℓ) implies that Tr(Zk,ℓ)

vanishes if k ̸= 0 in Zn. A similar argument shows Tr(Zk,ℓ) = 0 if ℓ ≠ 0 in Zn, so
Zk,ℓ ∈ sln(C) for (k, ℓ) ∈ Z2

n \ {0}. The fact (7.14) also implies

Tr(Zk1,k2Zℓ1,ℓ2) = ε−k2ℓ1Tr(Zk1+ℓ1,k2+ℓ2) =
nεk1k2 (k1, k2) = −(ℓ1, ℓ2) ∈ Zn

0 otherwise
,

where Tr(Z0,0) = Tr(idCn) = n was used. From this we deduce that{
Zk1,k2 | (k1, k2) ∈ Z2

n \ {0}
}
⊆ sln(C) (7.15)

is linearly independent, hence (1) is proven. Part (2) is a direct consequence of
(7.14) while the remaining assertion in (3) follows from the fact that the Killing
form of sln(C) is given by (a, b) 7→ 2nTr(ab).
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7.2.2 The classification theorem. For any (k, ℓ) ∈ Z2
n \ {0} and τ ∈ H, a unique

meromorphic function z 7→ λk,ℓ(z; τ) on C with pole set ⟨1, τ⟩Z exists such that
• limz→0 zλk,ℓ(z; τ) = 1 and
• λk,ℓ(z + 1; τ) = εkλk,ℓ(z; τ) and λk,ℓ(z + τ ; τ) = εℓλk,ℓ(z; τ).
Existence and uniqueness of these functions can be seen by using the Mittag-Lefler
theorem or the following observation; see [Skr12].

Remark 7.2.2.
For every k, ℓ ∈ Z with image k, ℓ ∈ Zn, the quasi-periodic functions λk,ℓ can be
described using the theta function

ϑ(a1,a2)(z; τ) :=
∑
k∈Z

exp
(
πi(k + a1)2τ + 2πi(k + a1)(z + a2)

)
(7.16)

with characteristic (a1, a2) ∈ C2 via the formula

λk,ℓ(z; τ) =
ϑ′

(1/2,1/2)(0; τ)ϑ(k/n+1/2,−ℓ/n+1/2)(z; τ)
ϑ(1/2,1/2)(z; τ)ϑ(k/n+1/2,−ℓ/n+1/2)(0; τ) . (7.17)

The following theorem settles the classification of elliptic r-matrices.

Theorem 7.2.3.
Let r ∈ (g ⊗ g)((x))[[y]] be a normalized r-matrix, O ⊆ Mult(g(r)) be chosen
according to Theorem 3.2.5, and G(O, g(r)) = ((X,A ), (p, c, ζ)). Assume that
X is elliptic. There exist τ ∈ H and coprime integers 0 < m < n such that r is
gauge equivalent to the Taylor series of r(τ,(n,m)) in y = 0, where

r(τ,(n,m))(x, y) :=
∑

k,ℓ∈Z2
n\{0}

εkℓ

2n2λmk,ℓ(x− y; τ)Zk,ℓ ⊗ Z−k,−ℓ. (7.18)

Proof. Choose (τ, (n,m)) such that there exist isomorphisms ν : Xan → C/⟨1, τ⟩Z
and ψ : µ∗A → Q(τ,(n,m)), where µ := ιν−1 : C/Λ→ X for the canonical morphism
ι : Xan → X. The latter is possible because of Theorem 7.1.3.

Let r̃ ∈ (g⊗g)((x))[[y]] be the Talyor series of r(τ,(n,m))(x, y) at y = 0. Lemma 7.2.1
implies that r̃ is in normalized standard form. The j-th derivative λ(j)

mk,ℓ(z; τ)Zk,ℓ
in z of λmk,ℓ(z; τ)Zk,ℓ is an element of the subspace W of meromorphic sections
in Γ(U,Q(τ,(n,m))), where U := (C/Λ) \ {Λ}. Indeed, this follows from the j-th
derivative in z of the identities

AdTm
1

(λmk,ℓ(z; τ)Zk,ℓ) = εmkλmk,ℓ(z; τ)Zk,ℓ = λmk,ℓ(z + 1; τ)Zk,ℓ and
AdT2(λmk,ℓ(z; τ)Zk,ℓ) = εℓλmk,ℓ(z; τ)Zk,ℓ = λmk,ℓ(z + τ ; τ)Zk,ℓ.

(7.19)

Since global periodic functions are constant due to Lioville’s theorem and AdTm
1
,AdT2

have no common fixed vector, we can see that

L0(W) = g(r̃) = ⟨L0(λ(j)
mk,ℓ(z; τ)Zk,ℓ) | k, ℓ ∈ Z2

n \ {0}, j ∈ N0⟩C, (7.20)
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where L0 is the Laurent expansion in z = 0. Moreover, ζ(Γ(X \ {p},A )) = g(r)
and the chain

Γ(X \ {p},A ) µ∗
−→ Γ(U, µ∗A ) ψ−→ Γ(U,Q(τ,(n,m))) (7.21)

results in an isomorphism Γ(X \ {p},A ) ∼= W. Therefore, φ(g(r)) = g(r̃) holds,
where φ ∈ AutC[[z]]-alg(g[[z]]) is defined by the chain

g[[z]] ζ−1
−→ Âp −→ µ̂∗A Λ

ψ̂Λ−→ Q̂(τ,(n.m)),Λ
L0−→ g[[z]]. (7.22)

Here, the second arrow is the completion of Ap → (µ∗µ
∗A )p → µ∗AΛ and the

C[[z]]-linearity of φ is a consequence of Lemma 6.2.2. Application of Lemma 2.2.4
concludes the proof.

7.2.3 Equivalences of elliptic r-matrices. To complete the classification of elliptic
r-matrices, it remains to investigate which elliptic r-matrices of the form (7.18) are
equivalent.

Proposition 7.2.4.
Let τ, τ ′ ∈ H and 0 < m < n, 0 < m′ < n′ be two pairs of coprime integers. The
elliptic r-matrices r(τ,(n,m)) and r(τ ′,(n′,m′)) are formally equivalent if and only if
C/⟨1, τ⟩Z ∼= C/⟨1, τ ′⟩Z, n = n′ and m′ ∈ {m,n−m}.

Proof. Using the construction in Section 7.2 and Lemma 3.1.1, we can deduce
that r(τ,(n,m)) and r(τ ′,(n′,m′)) are equivalent if and only if there exist isomor-
phisms f : C/⟨1, τ ′⟩Z → C/⟨1, τ⟩Z and ψ : Q(τ,(n,m)) → Q(τ,(n′,m′)), where we used
f∗Q(τ ′,(n′,m′)) ∼= Q(τ,(n′,m′)). Obviously, n = n′ has to hold. The isomorphism ψ is
determined by a holomorphic map C→ AutC-alg(g), which we will also denote by
ψ, satisfying

ψ(z + 1) AdTm
1

= AdTm′
1
ψ(z) and ψ(z + τ) AdT2 = AdT2 ψ(z); (7.23)

see e.g. [Ien11]. We see that ψ is bounded, so constant by virtue of Liouville’s
theorem. There are two possible cases.

Case 1. ψ is inner. Let A ∈ SLn(C) satisfy ψ = AdA. The identities (7.23)
are equivalent to

Tm
′

1 AT−m
1 = εk1A and T−1

2 AT2 = εk2A (7.24)

for some k1, k2 ∈ {0, . . . , n − 1}. Let A = (aij)ni,j=1 and chose i, j ∈ {1, . . . , n}
such that aij ̸= 0. Then T2AT

−1
2 = εk2A implies ai′j′ ̸= 0 for all i′, j′ ∈ {1, . . . , n}

such that i′ − j′ ≡ i − j (mod n) and the identity Tm
′

1 AT−m
1 = εk1A states

ε(i′−1)m′−(j′−1)mai′j′ = εk1ai′j′ . Chose i′ and j′ in such a way that i′ ≡ i+ 1 (mod n)
and j′ ≡ j + 1 (mod n). Then

εim
′−jmai′j′ = εk1ai′j′ and ε(i−1)m′−(j−1)maij = εk1aij (7.25)
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imply that im′ − jm ≡ k1 ≡ (i− 1)m′ − (j − 1)m (mod n). Therefore, m−m′ =
0 (mod n) and 0 < m,m′ < n implies m = m′.

Case 2. ψ is outer. Let A ∈ SLn(C) satisfy ψ = AdA σ, where σ(a) = −aT
for all a ∈ sln(C) represents the only non-trivial outer automorphism of sln(C).
Since T T1 = T1 and T T2 = T−1

2 , we have σAdT1 = AdT−1
1
σ and σAdT2 = AdT2 σ.

Therefore, we can see that (7.23) reads

AdA AdT−m
1

σ = AdTm′
1

AdA σ and AdA AdT2 σ = AdT2 AdA σ. (7.26)

Thus, there exist k1, k2 ∈ {0, . . . , n− 1} such that

Tm
′

1 ATm1 = εk1A and T−1
2 AT2 = εk2A. (7.27)

Using Tm1 = T
−(n−m)
1 and repeating the proof of Case 1. yields m′ = n−m.

7.2.4 Example: elliptic r-matrices over g = sl2(C). Let τ ∈ H, ϑ(a1,a2) be the
theta function of characteristic (a1, a2) ∈ C2 (see (7.16)), and write

α =
ϑ′

(1/2,1/2)(0; τ)ϑ(1,1)(0; τ)
ϑ(1,1/2)(0; τ)ϑ(1/2,1)(0; τ) , and k =

√√√√1−
(
ϑ(1,1/2)(0; τ)
ϑ(1,1)(0; τ)

)2

. (7.28)

Then the quasi-periodic functions λ1,1, λ1,0 and λ0,1 can be expressed using the Jacobi
elliptic functions sn, cn and dn via

λ1,1(z; τ) = α
dn(αz; k)
sn(αz; k) , λ0,1(z; τ) = α

cn(αz; k)
sn(αz; k) and λ1,0(z; τ) = α

sn(αz; k) ;

see [Skr12]. Let us put

P3 := i

2Z1,0 = i

2

(
1 0
0 −1

)
, P2 := i

2Z0,1 = i

2

(
0 1
1 0

)
, P1 := −1

2Z1,1 = 1
2

(
0 −1
1 0

)
,

then [Pi, Pj] = −ϵijkPk holds for all {i, j, k} = {1, 2, 3}, where ϵijk is the Levi-Civita
tensor. Moreover, K(Pi, Pj) = 4Tr(PiPj) = −2δij for all i, j ∈ {1, 2, 3}. Then

r(τ,(2,1))(x, y) = −α2

(
dn(αz; k)
sn(αz; k)P1 ⊗ P1 + cn(αz; k)

sn(αz; k)P2 ⊗ P2 + 1
sn(αz; k)P3 ⊗ P3

)
,

where z = x− y, is essentially the only elliptic r-matrix for g = sl2(C) associated to
τ ∈ H.
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Trigonometric r-matrices

Let g be a finite-dimensional, simple, complex Lie algebra. We have seen in Theorem
6.2.1 that a normalized formal r-matrix whose associated curve is a nodal Weierstraß
cubic is equivalent to a certain Taylor series of a σ-trigonometric r-matrix for an
appropriate σ ∈ AutC-alg(g) of finite order. In this chapter, we investigate these
r-matrices in detail. For this purpose, we use the notation from Subsection 5.4.4:
• σ is a Lie algebra automorphism of g of order m ∈ N, γ is the Casimir element of g

and K is the Killing form of g;
• gσ0 = n−⊕H⊕n+ is a fixed triangular decomposition and γ = ∑m−1

j=0 γj ∈
⊕m−1

j=0 gσj⊗gσ−j
(resp. γ0 = γ+

0 +γh+γ−
0 ∈ (n+⊗n−)⊕(H⊗H)⊕(n−⊗n+)) is the natural decomposition;

• L := L(g, σ) ⊆ g[ũ, ũ−1], L := C[u, u−1] for u = ũm and K0 is the bilinear form of L
defined in Lemma 4.2.1;

• (L̂, h := Ĥ,Π := {α0, . . . , αn},Π∨) is the realization provided by Theorem 4.2.3 to the
given triangular decomposition of gσ0 ,

{
e+
j , e

−
j

∣∣∣ j ∈ {0, . . . , n}} is a set of Chevalley
generators of said realization and Φ = Φ+ ⊔ Φ− = Φre ⊔ Φim is the associated root
system;

• B± = H⊕N± are the standard Borel subalgebras, i.e.

N± := n± ⊕
⊕

±j>0
zjLj = ⟨e±

j | j ∈ {0, . . . , n}⟩C-alg; (8.1)

• δ◦ = ∂ϱ◦ is the standard Lie bialgebra structure of L to gσ0 = n− ⊕ H⊕ n+, where

ϱ◦(ũ, ṽ) = 1
(u/v)− 1

m−1∑
j=0

(
ũ

ṽ

)j
γj + γ−

0 + γh/2 (8.2)

is the standard σ-trigonometric r-matrix and we write ϱt := ϱ◦ + t, δt := δ◦ + ∂t for
all t ∈ L⊗ L. The tensor t is a classical twist of δ◦ if and only if δt is a Lie bialgebra
cobracket if and only if ϱt is a σ-trigonometric r-matrix;

• ((L× L, K
(2)
0 ),D,W◦) is the Manin triple determining δ◦ (up to L ∼= D), where W◦

is given in (5.48), and (L× L,D,Wt) is the consequent Manin triple determining δt
(up to L ∼= D) for any classical twist t of δ◦; see Theorem 5.4.9.

8.1 Explicit geometrization

In this section, we give an explicit description of the geometric data associated to
σ-trigonometric r-matrices. More precisely, we assign a geometric g-lattice model to
any classical twists t of δ◦ in Subsection 8.1.1 and prove that this construction yields
the geometric datum of ϱt in Theorem 8.1.3. The sheaf of Lie algebras in this model is
constructed from Wt following the theory of torsion-free sheaves from [Bod+06]. We
will see in Proposition 8.1.4 that the classical double of δt appears naturally in this
geometric picture.
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8.1.1 Construction of geometric g-lattice models from classical twists of δ◦. Let
t be a classical twist of δ◦ and write W := Wt. Recall that D = Im(ι) for the injective
Lie algebra morphism ι : L→ L× L defined by a 7→ (a, a) and

W◦ := {(a+, a−) ∈ B+ ×B− | a+ + a− ∈ N+ + N−} . (8.3)

Theorem 5.4.9 implies that the Manin triple (L×L,D,W) determines the Lie bialgebra
cobracket D → D ⊗ D given by (a, a) 7→ (ι ⊗ ι)δt(a) and W ≍ W◦ holds. Let
pr± : L×L→ L be the projections defined by pr±(a+, a−) = a±. Then the subalgebras
pr±(W) = W± ⊆ L satisfy

W⊥
+ ×W⊥

− = (W+ ×W−)⊥ ⊆W⊥ = W ⊆W+ ×W−. (8.4)

Summarized, W± ⊆ L are coisotropic subalgebras of L commensurable with B±, i.e.
W⊥

± ⊆W± and W⊥
± ≍ B± in symbols.

Proposition 4.2.9 implies that u±1W± ⊆W⊥
± ⊆W±, so

W± is a free Lie algebra over L± := C[u±1] ⊆ L. (8.5)

Combining this with (8.4) implies that

W is a torsion-free Lie algebra over C[u+, u−]/(u+u−), (8.6)

where the multiplication is defined by u+(a+, a−) = (ua+, 0) and u−(a+, a−) = (0, u−1a−)
for all (a+, a−) ∈W.

Let us write U± := Spec(L±) and U := Spec(L) as well as L , W± for the sheaves of
Lie algebras on U,U± defined by L,W± respectively. We identify P1

C with the gluing of
U+ and U− along U . Since W± ≍ B±, the multiplication map gives rise to isomorphisms
W± ⊗L± L

∼= L. Therefore, we can glue W+ and W− along L to produce a sheaf of Lie
algebras B on P1

C. In particular, we have P1
C = U+ ∪ U−, U = U+ ∩ U− and there are

canonical isomorphisms B|U±
∼= W±, B|U ∼= L .

The Mayer-Vietoris sequence combined with the fact that L × L = D ⊕W gives
W+ + W− = L implies that H0(B) ∼= W− ∩W+ and h1(B) = 0. Note that

B|0 ∼= W+/uW+ =: W+ and B|∞ ∼= W−/u
−1W− =: W−, (8.7)

where 0 := (u) ∈ U+ and ∞ := (u−1) ∈ U−.

Lemma 8.1.1.
The following results are true.
(1) The Lie algebra W := W/(u+, u−)W admits a linear isomorphism

W× (W+ ∩W−) −→W+ ×W−, ((w+, w−), a) 7−→ (w+ − a, w− − a).

(2) W ̸= W+ ×W−.

Proof of (1). The identity L× L = D⊕W yields

W+ ×W− = ι(W+ ∩W−)⊕W. (8.8)



8.1 Explicit geometrization 125

Combining this with (u+, u−)W = uW+ × u−1W− immediately implies the state-
ment.

Proof of (2). Assume W = W+ ×W−. Then (8.4) implies W± = W⊥
± and

(8.8) implies L = W+ ⊕W−. Combining Proposition 4.2.9.(3) with Lemma 4.2.7
provides φ ∈ Innad(L) such that φ(W±) ⊆ B±. Thus,

N± ⊆ φ(W±)⊥ = φ(W⊥
±) = φ(W±) ⊆ B±, (8.9)

so φ(W±) = H± ⊕N± for some H± ⊆ H. The identities φ(W±)⊥ = φ(W±) and
φ(W+)⊕ φ(W−) = L are equivalent to H⊥

± = H± and H+ ⊕ H− = H.
The proof of Lemma 4.2.4.(3) can also be used to deduce that K0 defines a

positive-definite bilinear form on HR := HQ ⊗Q R. Clearly, H = HR ⊕ iHR and
the projection π : H → HR restricted to H± has kernel H± ∩ iHR. The identities
H⊥

± = H± and the fact that K0 is positive-definite on HR imply H± ∩ iHR = {0},
so π|H± are isomorphisms. This implies that H± = {a + iA±a | a ∈ HR} for
some A± ∈ EndR(HR). But this contradicts H+ ⊕ H− = H. We conclude that
W = W+ ×W− is impossible.

Let us define X by the push-out diagram

{0,∞} //

��

{s}

��

P1
C ν

// X

. (8.10)

Then X is a curve of arithmetic genus one with nodal singularity s ∈ X, smooth locus
C := X \ {s}, and normalization ν. Consider the sheaf of Lie algebras A defined by
the pull-back diagram

A ι //

��

ν∗B

��

W ⊆
//W+ ×W−

(8.11)

where W and W+ ×W− are understood as skyscraper sheaves at s. Note that the
canonical projections W→W± are surjective, so they induce a surjective morphism
θ : W→W+×W−. The sheaf A is the torsion-free sheaf on X associated to the triple
(B, θ,W) in [Bod+06, Theorem 16].

Lemma 8.1.2.
We have h0(A ) = 0 = h1(A ), Γ(C,A ) ∼= L, and Âs

∼= Ŵ := lim←−W/(u+, u−)kW.

Proof. By construction Γ(C,A ) = Γ(U,B) = L. The short exact sequence

0 −→ A −→W× ν∗B −→W+ ×W− −→ 0, (8.12)

H0(B) ∼= W+ ∩W−, and h1(B) = 0 induce the exact sequence

0 −→ H0(A ) −→W× (W+ ∩W−) −→W+ ×W− −→ H1(A ) −→ 0 (8.13)
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in cohomology. The middle arrow is the isomorphism from Lemma 8.1.1, so
h0(A ) = 0 = h1(A ). Observe that

W
⊆
//

��

W+ ×W−

��

W ⊆
//W− ×W+

(8.14)

is a pull-back diagram, since (u+, u−)W = uW+ × u−1W−. Similarly, the diagram

Ŵ
⊆
//

��

Ŵ+ × Ŵ−

��

W ⊆
//W− ×W+

(8.15)

is also a pull-back diagram. Here, we wrote Ŵ± := lim←−W±/u
±kW±. Note that

the completion of (ν∗B)s is isomorphic to Ŵ+ × Ŵ− as C[[u+, u−]]/(u+u−)-Lie
algebras. Thus, applying the completion functor (̂·)s to the pull-back diagram
(8.11) yields Âs

∼= Ŵ.

Let p := ν(u − 1) ∈ X and c : ÔX,p → C[[z]] be the isomorphism obtained by the
completing L = C[u, u−1] → C[[z]] defined by h(u) 7→ h(exp(z)). We have an c-
equivariant isomorphism ζ : Âp → g[[z]] of Lie algebras induced by the completion of the
morphism L→ g[[z]] defined by a(u) 7→ a(exp(z/m)). Summarized, we have constructed
a geometric g-lattice model ((X,A ), (p, c, ζ)).

8.1.2 The comparison theorem. The following theorem verifies that the geometric
datum constructed from a classical twist of δ◦ in the Subsection 8.1.1 is indeed the
geometric datum of the formal r-matrix associated to said classical twist. It is a version
of one of the main results from [AB21].

Theorem 8.1.3.
Let r ∈ (g⊗ g)((x))[[y]] be the Taylor series of ϱt(exp(x/m), exp(y/m)) in y = 0
for some classical twist t of δ◦ and ((X,A ), (p, c, ζ)) be the geometric g-lattice
model associated to t in Subsection 8.1.1.
(1) T((X,A ), (p, c, ζ)) = (Mult(g(r)), g(r)).
(2) The geometric CYBE model of r is ((X,A ), (X \ {s}, du/u)), where du/u is

understood as Rosenlicht regular 1-form on X.
(3) The associated geometric r-matrix ρ of ((X,A ), (X \ {s}, du/u)) satisfies

(ν × ν)∗ρ = ϱt ∈ (L⊗ L)[((u/v)− 1)−1].

Proof. First, note that ζ(Γ(X \ {p},A )) = g(r) would be a consequence of the
identity (ν × ν)∗ρ = ϱt and Theorem 3.3.3. Since C[[z]] + c(Γ(X \ {p},OX)) has
codimension one in C((z)), we can see that either Mult(g(r)) = c(Γ(X \ {p},A ))
or C[[z]] + Mult(g(r)) = C((z)). The latter would imply that ι : A → B is an
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isomorphism, so W = W+ ×W−. This does not occur by virtue of Lemma 8.1.1.
Therefore, it remains to proof (ν × ν)∗ρ = ϱt. We split the derivation of this
assertion into several steps.

Step 1. Some preliminary notations. For any k ∈ N let
• P (k) := C[u+, u−]/(u−, u+)k and P̃

(k)
± := C[u±1]/(u±k) as well as

• Y (k) := Spec(P (k))× U , Ỹ (k)
± := Spec(P̃ (k)

± )× U and Ỹ (k) := Ỹ
(k)

+ ⊔ Ỹ (k)
− .

Then we set: Y := lim−→Y (k), Ỹ± := lim−→ Ỹ
(k)

± , Ỹ = Ỹ+ × Ỹ−. Note that Y =
Spec(P ) and Ỹ± = Spec(P̃±), where P := C[v, v−1][[u+, u−]]/(u+u−) and P̃± :=
C[v, v−1][[u±1]]. Finally, let S± := C[v, v−1]((u±1)), Z± := Spec(S±), S := S+ × S−
and Z := Z+ ⊔ Z−. The canonical embedding C[u, u−1, v, v−1] ⊆ S± induce an
embedding ψ : C[u, u−1, v, v−1]→ S. The identities

− (u− v)
∞∑
k=0

v−k−1uk = 1 = (u− v)
∞∑
k=0

vku−k−1 (8.16)

imply that ψ(u− v) is a unit in S. As a consequence, ψ can be extended uniquely
to an algebra homomorphism ψ̃ : C[u, u−1, v, v−1, (u− v)−1]→ S, where

ψ̃
(

v

u− v

)
=
(
−

∞∑
k=0

v−kuk,
∞∑
k=1

vku−k
)
. (8.17)

Thus, considering U = Spec(C[u, u−1]) = ν−1(C), we obtain a morphism

ȷ : Z → Spec(C[u, u−1, v, v−1, (u− v)−1]) = U × U \ ∆̃, (8.18)

where ∆̃ = (ν × ν)−1∆ and ∆ is the diagonal of C × C. Next, we have a family of
morphisms of schemes a (

εk : Y (k) → X × C \∆
)
k∈N

, (8.19)

defined as the product of the morphism Spec(P (k)) → X mapping the unique
closed point to s and ν : U → C. Taking the corresponding direct limit, we
get a morphism ε : Y → X × C \ ∆. In a similar way, we have a family of
morphisms

(
ε̃k : Ỹ (k) → P1

C × U \ ∆̃
)
k∈N

as well as the corresponding direct limit
ε̃ : Ỹ → P1

C × U \ ∆̃. Summing up, we get the following commutative diagram in
the category of schemes:

X × C \∆ P1 × U \ ∆̃ν×ν
oo U × U \ ∆̃? _ıoo

Y (k)

εk

OO

��

Ỹ (k)µkoo

ε̃k

OO

��

Y

ε

CC

Ỹ
µ

oo

ε̃

[[

Z
η

oo

ȷ

OO
(8.20)

where ν̃, ν̃k and η are the morphism induced by the canonical inclusions P (k) ⊆
P̃

(k)
− × P̃ (k)

+ and C[v, v−1][[u±1]] ⊆ S±.
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Step 2. Formal series expression of ρ at s. Since A is torsion free, we get an
injective map

Γ(X × C \∆,A ⊠ A ) ε∗
−→ Ŵ⊗̂L := lim←−

(
W/(u+, u−)kW⊗ L

)
Let Υ := {(k, i) ∈ Z2 | 1 ⩽ i ⩽ dim(gσi )} and {b(k,i)}dim(gi)

i=1 be bases for all
k ∈ Z, which are chosen in such a way that K(b(k,i), b(ℓ,j)) = δk,−ℓδi,j. Then{
a(k,i) := b(k,i)ũ

k
}

(k,i)∈Υ
is a basis of L with the property K0(a(k,i), a(ℓ,j)) = δk,−ℓδi,j .

There exists a uniquely determined family (c(k,i))(k,i)∈Υ of elements of Ŵ such that
for any k ∈ N there exists a finite subset Υk ⊂ Υ satisfying the following properties:

• The class c(k)
(k,i) of c(k,i) in W/(u−, u+)kW is zero for all (k, i) /∈ Υk and

• ε∗
k(ρ) = ∑

l∈Υk

c
(k)
(k,i) ⊗ a(k,i) ∈W/(u+, u−)kW⊗ L.

Recall that ρ ∈ Γ(X × C,A ⊠ A |C(∆)) ⊆ Γ(X × C \∆,A ⊠ A ). In these terms
we may write

ε∗(ρ) =
∑

(k,i)∈Υ
c(k,i) ⊗ a(k,i). (8.21)

Step 3. An expression for ρ on the smooth locus. Choosing the local parameter
ν♭,−1(u− 1) of p and

χ :=
m−1∑
j=0

(ũ/ṽ)jγj ∈ L⊗ L, where γ =
m−1∑
j=0

γj ∈
m−1⊕
j=0

(gσj ⊗ gσ−j).

in (3.37) yields

(ν × ν)∗ρ|C×C = vχ

u− v
+ h, (8.22)

for some h ∈ L⊗ L. We have to show that h = t+ γ0,n− + γ0,h/2 to conclude the
proof.

Step 4. Comparing the expressions for ρ. It follows from (8.17) and (8.22)
that

ȷ̃∗(ν × ν)∗ρ =
∑

(k,i)∈Υ
(w(k,i) + (h(k,i), h(k,i)))⊗ a(k,i) ∈ (Ŵ⊗̂L)⊗P S, (8.23)

where the (h(k,i), h(k,i)) ∈ D ⊂ L̂+ × L̂− are determined by the expression h =∑
(k,i)∈Υ h(k,i) ⊗ a(k,i) (which is a finite sum in L⊗ L) and

L̂+ × L̂− ∋ w(k,i) =

(
0, a(−k,i)) if k ⩾ 1(
−a(−k,i), 0

)
if k ⩽ 0.

(8.24)

Here, L̂± := L⊗ C((u±1)) and we note that

Q(Ŵ) = Ŵ⊗P (C((u+))× C((u−))) = L̂+ × L̂−. (8.25)
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It follows from (8.20) that (ηµ)∗ε∗ρ = ȷ̃∗(ν × ν)∗ι∗ρ. Hence, for any (k, i) ∈ Υ we
have:

Ŵ ∋ c(k,i) = w(k,i) + (h(k,i), h(k,i)) ∈ L̂+ × L̂−. (8.26)

It follows that c(k,i) = w(k,i) for all but finitely many (k, i) ∈ Υ, since all h(k,i) but
finitely many are zero. As D is an isotropic subalgebra of L̂+ × L̂−, we deduce
from (8.24) the following orthogonality relation:

B2
(
c(k′,i′), (a(k′′,i′′), a(k′′,i′′))

)
= B2

(
w(k′,i′), (a(k′′,i′′), a(k′′,i′′))

)
= −δk′k′′δi′i′′ . (8.27)

Note that (8.26) actually completely determines the h(k,i), since L̂+× L̂− = D⊕Ŵ.
Step 5. h = γ0,n− + γ0,h/2 for t = 0. We first assume that t = 0, i.e. Ŵ = Ŵ◦,

and write c(k,i) := c◦
(k,i) for every (k, i) ∈ Υ. Then w(k,i) ∈ Ŵ◦ for all (k, i) ∈ Υ,

k ̸= 0, so c◦
(k,i) = w(k,i) in this case. Furthermore, we have

(pr± ⊗ idg)
dim(g0)∑

i=1
w(0,i) ⊗ a(0,i)

 =
0 if −
−γ0 if +

(8.28)

Consider h = γ−
0 + γh/2. Then

(pr± ⊗ idg)
dim(g0)∑

i=1
c◦

(0,i) ⊗ a(0,i)

 = ∓γ±
0 ∓ γh/2, (8.29)

from which we can deduce ∑dim(g0)
i=1 c◦

(0,i) ⊗ a(0,i) ∈ Ŵ◦ ⊗ L or more specifically
c(0,i) ∈ Ŵ◦.

Step 6. In general h = γ0,n− + γ0,h/2 + t. Recalling the definition of W
via an endomorphism T constructed from t in Theorem 5.3.2, we may see that
c(k,i) = c◦

(k,i) − Tc◦
(k,i) ∈ W ⊆ Ŵ is negatively dual to (a(k,i), a(k,i)). Furthermore,

by definition of T , the identity

(pr± ⊗ idL)
 ∑

(k,i)∈Υ
T (−c◦

(k,i))⊗ a(k,i)

 = t (8.30)

holds. Combined, we can conclude that h = γ0,n− + γ0,h/2 + t.

8.1.3 The classical double of δt. Let t be a classical twist of δ◦ and write W := Wt.
Although δt is determined by the Manin triple (L× L,D,W), this is not the classical
double, since W → (L × L)∗ is injective but not surjective. However, the classical
double emerges naturally from the geometric CYBE datum ((X,A ), (C, η)) in Theorem
8.1.3 in the form of

Q(Âs) ∼= Q(B̂0)×Q(B̂∞) ∼= L̂+ × L̂−, (8.31)



130 Chapter 8 Trigonometric r-matrices

where L̂± := L⊗L C((u±1)) and B was defined in Subsection 8.1.1. The bilinear form
can thereby be given using the pairing K of A (see Proposition 3.2.8) via the formula

K̂
(2)
0 (a, b) :=

∑
q∈ν−1(s)

resqK̂(aq, bq)η̂q = res0K̂(a0, b0)η̂0 + res∞K̂(a∞, b∞)η̂∞

=
∑

j+k=0
(K(a+,j, b+,k)−K(a−,j, b−,k))

for a, b ∈ Q(Âs), where aq, bq are the Q(B̂q)-components of a, b for q ∈ ν−1(s) = {0,∞}
and a± = ∑

j∈Z a±,jũ
j, b± = ∑

j∈Z b±,jũ
j ∈ L̂± ⊆ g((ũ±1)) are the respective images

under (8.31).

Proposition 8.1.4.
Let r ∈ (g⊗g)((x))[[y]] be the Taylor series of ϱt(exp(x/m), exp(y/m)) in y = 0 for
some classical twist t of δ◦, ((X,A ), (C, η)) be the associated geometric CYBE
datum used in Theorem 8.1.3, and W := Wt. Then

(Q(Âs),Γ(C,A ), Âs) ∼= (L̂+ × L̂−,D, Ŵ) (8.32)

is a Manin triple determining δt (up to L ∼= D), identifying L̂+ × L̂− with the
classical double of δt.

Proof. First, recall that Âs = Ŵ; see Lemma 8.1.2. The fact that (L̂+× L̂−,D, Ŵ)
is a Manin triple that determines δt up to the identification L ∼= D can be derived
from the fact that (L× L,D,W) is a Manin triple determining δt up to the same
identification; see Theorem 5.4.9. Therefore, it remains to prove that K̂(2)

0 induces
an linear isomorphism Ŵ→ D∗ ∼= L∗, because of the uniqueness condition of the
Lie algebra structure on the classical double from Proposition 5.2.2.

First, observe that the canonical projection Ŵ ⊆ L̂+ × L̂− = D ⊕ Ŵ◦ → Ŵ◦

defines an linear isomorphism Ŵ ∼= Ŵ◦ compatible with the respective maps
Ŵ◦ → D∗ ← Ŵ induced by K̂(2)

0 . Thus, it remains to prove that K(2)
0 defines an

isomorphism Ŵ0 → D∗. Clearly, K̂(2)
0 induces linear isomorphisms

∏
j∈N

(Lj × {0}) −→
(⊕
j∈N

L−j

)∗

and
∏
j∈N

({0} × L−j) −→
(⊕
j∈N

Lj

)∗

. (8.33)

Furthermore, K̂(2)
0 also induces an linear isomorphism

w := {(w+, w−) ∈ (n+ ⊕ H)× (H⊕ n−) | w+ + w− ∈ n+ + n−} −→ L∗
0. (8.34)

Combined, we deduce that the map

Ŵ◦ =
∏
j∈N

(Lj × {0})⊕w⊕
∏
j∈N

({0} × L−j) −→ D∗ (8.35)

induced by K̂(2)
0 is an isomorphism, concluding the proof.
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8.2 Classification

In this section, we translate the classification of trigonometric solutions of the CYBE with
one spectral parameter from [BD83a] to a classification of σ-trigonometric r-matrices.
The latter is equivalent to the classification of classical twists of δ◦.

8.2.1 The classification theorem. A Belavin-Drinfeld triple (Π+,Π−, ϕ) consists of
two proper (possibly empty) subsets Π± ⊊ Π and a bijection ϕ : Π+ → Π−, satisfying
• K0(ϕ(α)|H, ϕ(β)|H) = K0(α|H, β|H) for all α, β ∈ Π+ and
• for any α ∈ Π+ exists an integer ℓ = ℓ(α) ∈ N such that

ϕ(α), . . . , ϕℓ−1(α) ∈ Π+ but ϕℓ(α) /∈ Π+. (8.36)

A Belavin-Drinfeld quadruple ((Π+,Π−, ϕ), h) consists of a Belavin-Drinfeld triple
(Π+,Π−, ϕ) and a tensor h ∈ H ∧ H such that

(ϕ(α)⊗ 1 + 1⊗ α)(h+ γH/2) = 0 (8.37)

holds for all α ∈ Π+.
Let sS := ⟨e+

i , e
−
i | αi ∈ S⟩C-alg ⊆ L for any S ⊆ Π. Note that if S ̸= Π, sS is a

finite-dimensional semi-simple Lie algebra with Chevalley generators {e+
i , e

−
i | αi ∈ S},

which induce a triangular decomposition sS = NS
+ ⊕ HS ⊕NS

−, where NS
± = ⊕

α∈ΦS
±
Lα

for some subsets ΦS
± ⊆ Φ±.

For a Belavin-Drinfeld triple (Π+,Π−, ϕ), let θϕ : sΠ+ → sΠ− be the unique Lie algebra
isomorphism defined by

θϕ(e±
i ) = e±

ϕ(i) for all αi ∈ Π+, where by abuse of notation ϕ(αi) = αϕ(i). (8.38)

Moreover, let θϕ± : L → L be the unique extension of θϕ|NS
±

by 0 with respect to the
decomposition L = (H⊕⊕α∈Φ\ΦS

±
Lα)⊕NS

±. Note that θϕ± are both nilpotent because
of (8.36).

Consider a Belavin-Drinfeld quadruple Q = ((Π+,Π−, ϕ), h), let us choose root vectors
{bα ∈ Lα | α ∈ ΦΠ+

− ⊔ ΦΠ+
+ } such that B(bα, b−α) = 1 for all α ∈ ΦΠ+

+ and write

tQ := h+
∑

α∈ΦΠ+
+

∞∑
j=1

b−α ∧ θϕ,j+ (bα) ∈ L⊗ L. (8.39)

Recall the notion of regular equivalence between classical twists of δ◦ (resp. σ-
trigonometric r-matrices) introduced in Subsection 5.4.4. The subsections 8.2.2-8.2.6
below are dedicated to the proof of the following theorem.

Theorem 8.2.1.
The tensor tQ defined in (8.39) is a classical twist of δ◦ for any Belavin-Drinfeld
quadruple Q and any classical twist t of δ◦ is regularly equivalent to tQ for an
appropriate Belavin-Drinfeld quadruple Q. In particular, any σ-trigonometric r-
matrix ϱt is regularly equivalent to ϱQ := ϱtQ for an appropriate Belavin-Drinfeld
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quadruple Q.

Theorem 8.2.1 can be seen as a generalization of [BD83a, Theorem 6.1]. It can
in fact be reduced to [BD83a, Theorem 6.1], by using the relation of formal and
regular equivalences discussed in Subsection 8.3.1 below, which relies on the explicit
geometrization of σ-trigonometric r-matrices from Theorem 8.1.3 and the geometry
of equivalences from Lemma 3.3.2; see [AM21]. In this work, we will proof Theorem
8.2.1 by adjusting the proof of [BD83a, Theorem 6.1] using the structure theory of loop
algebras established in Section 4.2.

8.2.2 Interlude: the Cayley transform. Let V be a k-vector space equipped with
a non-degenerate symmetric bilinear form B and A ∈ End(V ) possess an adjoint
A∗ ∈ End(V ) such that A = idV −A∗, or, equivalently,

B(Av,w) +B(v,Aw) = B(v, w) for all v, w ∈ V. (8.40)

Clearly, Im(A−idV )⊥ = Ker((A−idV )∗) = Ker(−A) = Ker(A) and similarly the identity
Im(A)⊥ = Ker(A− idV ) holds. Note that for all v1 ∈ Ker(A) and v2 ∈ Ker(A− idV )

v1 = (A− idV )(−v1) ∈ Im(A− idV ) and v2 = Av2 ∈ Im(A) (8.41)

hold. Combined, we see that

Ker(A) = Im(A− idV )⊥ ⊆ Im(A− idV ) and Ker(A− idV ) = Im(A)⊥ ⊆ Im(A).

Therefore, the bilinear form B induces non-degenerate bilinear forms on the quotient
spaces Im(A − idV )/Ker(A) and Im(A)/Ker(A − idV ) and it is easy to see that the
map θ : Im(A− idV )/Ker(A)→ Im(A)/Ker(A− idV ) given by

(A− idV )v + Ker(A) 7−→ Av + Ker(A− idV ) (8.42)

is a well-defined orthogonal linear isomorphism. The triple

CT(A) := (Im(A− idV ), Im(A), θ) (8.43)

is called Cayley transform of A.

Remark 8.2.2.
Classically, the Cayley transform of a real skew-symmetric k × k-matrix M is
(up to sign convention) the orthogonal matrix (M + idRk)(M − idRk)−1; see e.g.
[GVL96, Problem 2.5.1]. Assume that A and A− idV are invertible and consider
S := 2A − idV . Then V = Im(A − idV ) = Im(A), S∗ = 2(idV −A) − idV = −S
and

θ = A(A− idV )−1 = 2A(2A− 2 idV )−1 = (S + idV )(S − idV )−1 (8.44)

satisfies θ∗ = θ−1. Thus, the notion of Cayley transform defined here is a
generalization of the aforementioned classical notion from linear algebra.
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8.2.3 Proof of Theorem 8.2.1 I: Cayley transform and classical twists of δ◦. Let
t = ∑k

i=1 ai ⊗ bi ∈ L ⊗ L be an arbitrary skew-symmetric tensor and recall that
((L× L, K

(2)
0 ),D,W◦) denotes the Manin triple determining δ◦ from Subsection 5.4.4.

The map µ : W◦ → L defined by µ(a+, a−) = a+ − a− is a linear isomorphism with
inverse

µ−1(a) = ((π+ + πH/2)a,−(π− + πH/2)a) for all a ∈ L, (8.45)

where π±, πH : L→ L are the canonical projections of N± and H respectively. Consider

Rt := pr−(Tµ−1 − µ−1) = π− + πH/2 + K̃0(t) ∈ End(L) (8.46)

where, for a, a± ∈ L and ι(a) = (a, a), T ∈ End(L× L) is defined by

T (a+, a−) =
k∑
i=1

K
(2)
0 ((bi, bi), (a+, a−))(ai, ai) = ιK̃0(t)(a+ − a−) (8.47)

and K̃0 : L⊗ L→ End(L) is given by a⊗ b 7→ K0(b,−)a. Then

Rt − idL = −π+ − πH/2 + K̃0(t) = pr+(Tµ−1 − µ−1) and
Wt := {Tw − w | w ∈W◦} = {((Rt − idL)a,Rta) | a ∈ L}

(8.48)

hold. Moreover, π∗
± = π∓, π∗

H = πH and K̃0(t)∗ = K̃0(τL(t)) = −K̃0(t) implies that
Rt,∗ = idL−Rt.

Lemma 8.2.3.
Let t ∈ ∧2L, R := Rt be given by (8.46), and CT(R) := (W+,W−, θ) be the
Cayley transform of R. Then W := Wt defined in (8.48) satisfies

W = {(w+, w−) ∈W+ ×W− | θ(w+ + W⊥
+) = w− + W⊥

−}. (8.49)

Furthermore, t is a classical twist of δ◦ if and only if
• W± ⊆ L are subalgebras (then W⊥

± ⊆W± are automatically ideals) and
• θ : W+/W

⊥
+ →W−/W

⊥
− is a Lie algebra homomorphism.

In this case, the notation W = Wt is consistent with Theorem 5.4.9.

Proof. The definition of the Cayley transform immediately implies that

W = {((R− idL)a,Ra) | a ∈ L}
⊆ {(w+, w−) ∈W+ ×W− | θ(a+ W⊥

+) = b+ W⊥
−}

= {((R− idL)a,Rb) | R(a− b) ∈ Ker(R− idL), a, b ∈ L}.
(8.50)

For every a, b ∈ L such that (R− idL)a = Rb and R(a− b) ∈ Ker(R− idL), we can
deduce that a = R(a− b) ∈ Ker(R− idL), so 0 = (R− idL)a = Rb implies

{((R− idL)a,Rb) | R(a− b) ∈ Ker(R− idL), a, b ∈ L} ∩D = {0}. (8.51)

Combining this identity with L× L = D⊕W, forces the inclusion in the second
line of (8.50) to be an equality, so the formula from the first part of the assertion
is proven.
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The fact that, if W± ⊆ L is a subalgebra, W⊥
± ⊆ W± is an ideal, is a direct

consequence of the invariance of K0. By virtue of Theorem 5.3.2, t is a classical
twist of δ◦ if and only if W ⊆ L× L is a subalgebra. Using the formula from the
first part of the assertion, it is easy to see that W ⊆ L× L is a subalgebra if and
only if W± ⊆ L are subalgebras and θ is a Lie algebra homomorphism.

Lemma 8.2.4.
Let t ∈ ∧2L and R := Rt be defined as in (8.46). The tensor t is a classical twist
of δ◦ if and only if R satisfies

[Ra,Rb] = R([Ra, b] + [a,Rb]− [a, b]) (8.52)

for all a, b ∈ L.

Proof. Let CT(R) := (W+,W−, θ) be the Cayley transform of R. By virtue of
Lemma 8.2.3, we have to prove that W± ⊆ L are subalgebras and θ is a Lie algebra
homomorphism if and only if (8.52) holds for all a, b ∈ L.

” =⇒ ” Since W+ = Im(R − idL) ⊆ L is a subalgebra, there exists some
c ∈ L such that [(R − idL)a, (R − idL)b] = (R − idL)c. Applying the Lie algebra
morphism θ yields [R−a,R−b] = R−c + d for some d ∈ W⊥

− = Ker(R − idL).
Subtracting [(R − idL)a, (R − idL)b] = (R − idL)c from this equation results in
[Ra, b] + [a,Rb]− [a, b] = c+ d. Finally, applying R− idL leaves us with

(R− idL)([Ra, b] + [a,Rb]− [a, b])
= (R− idL)c = [(R− idL)a, (R− idL)b].

(8.53)

This equation is easily seen to be equivalent to (8.52).
” ⇐= ” The equations (8.52) and (8.53) imply that W± ⊆ L are subalgebras

and θ is a Lie algebra homomorphism.

Let us conclude this subsection by investigating the compatibility of the objects discussed
here with the notion of regular equivalence introduced in Subsection 5.4.4.

Lemma 8.2.5.
Let t1, t2 ∈ L⊗ L be classical twists of δ◦ and φ ∈ AutL-alg(L). Then, φ defines a
regular equivalence of t1 and t2 if and only if (φ × φ)Wt1 = Wt2 if and only if
φRt1φ−1 = Rt2 (see (8.46)).

Proof. Let us write K̃ : g ⊗ g → End(g) for the isomorphism defined by the
assignment a⊗ b 7→ K(b,−)a. Observe that

K̃0(a⊗ b)(c)(ũ) = res0

(
K̃(b(ṽ), c(ṽ))a(ũ)dṽ

ṽ

)
= res0

(
K̃(a(ũ)⊗ b(ṽ))c(ṽ)dṽ

ṽ

)
holds for all a, b, c ∈ L ⊆ g[ũ, ũ−1], where we recall ũm = u, ṽm = v. Equation
(5.53) implies that((

π− + πH
2

)
a
)

(ũ) = res0

(
K̃(ϱ(ũ, ṽ))a(ṽ)dṽ

ṽ

)
(8.54)
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holds for all a ∈ L. Therefore, we can deduce that

Rti(a)(ũ) = res0

(
K̃(ϱti(ũ, ṽ))a(ṽ)dv

v

)
(8.55)

holds for any a ∈ L and i ∈ {1, 2}. From this we can see that

(φ̃(ũ)⊗ φ̃(ṽ))ϱt1(ũ, ṽ) = ϱt2(ũ, ṽ) (8.56)

implies the identity φRt1φ−1 = Rt2 . Here, φ̃ ∈ End(g)[ũ, ũ−1] is defined by
φ(a)(ũ) = φ̃(ũ)a(ũ) for all a ∈ L and we use that the adjoint of φ with respect
to the Killing form L × L → L is φ−1. It is clear that φRt1φ−1 = Rt2 implies
φ(Rt1 − idL)φ−1 = (Rt2 − idL), so (φ × φ)Wt1 = Wt2 . Finally, assume that
(φ × φ)Wt1 = Wt2 holds. Then (φ ⊗ φ)δt1φ−1 and δt2 are both determined by
(L × L,D,Wt2). Therefore, (φ ⊗ φ)δt1φ−1 = δt2 , i.e. t1 and t2 are regularly
equivalent.

8.2.4 Proof of Theorem 8.2.1 II: Equation (8.39) defines a classical twist of δ◦.
Let us begin this paragraph with the following observation.

Lemma 8.2.6.
Let (Π+,Π−, ϕ) be a Belavin-Drinfeld triple, h ∈ H∧H, and CT(H) = (H+,H−, θ

h)
be the Cayley transform of H := K̃0(h) + idH /2 ∈ End(H). Then ((Π+,Π−, ϕ), h)
is a Belavin-Drinfeld quadruple if and only if H± = HΠ± ⊕ (H± ∩ HΠ±,⊥) and
θh|HΠ+ = θϕ|HΠ+ , where H⊥

± ⊆ H± ∩HΠ±,⊥ was used to identify HΠ± as a subspace
of H±/H

⊥
±.

Proof. It is easy to see that (8.37) is equivalent to

(H − idH)ϕ(α)∗ = (K̃0(h)− idH /2)ϕ(α)∗ = (K̃0(h) + idH /2)α∗ = Hα∗ (8.57)

for all α ∈ Γ+. Here, for any α ∈ Φ, α∗ ∈ H denotes the element uniquely
determined by α|H = K0(α∗, ·) ∈ H∗.

” =⇒ ” For every α ∈ Π+, (8.57) implies that

α∗ = Hα∗ − (H − idH)α∗ = (H − idH)(ϕ(α)∗ − α∗) ∈ H+ (8.58)

holds. Furthermore, we can deduce

ϕ(α)∗ = H(ϕ(α)∗ − α∗) ∈ H− (8.59)

in a similar fashion. In particular, HΠ± ⊆ H± holds. Lemma 4.2.4.(4) implies that
H = HΠ± ⊕HΠ±,⊥. Therefore, H± ⊇ HΠ± ⊕ (H± ∩HΠ±,⊥) and H⊥

± ⊆ HΠ±,⊥ implies
H⊥

± ⊆ H± ∩ HΠ±,⊥. Note that H± ∩ HΠ±,⊥ = (HΠ± ⊕ H⊥
±)⊥ implies

dim(H± ∩ HΠ±,⊥) = n− dim(HΠ± ⊕ H⊥
±)

= n− (dim(HΠ±) + (n− dim(H±)) = dim(H±)− dim(HΠ±)
(8.60)
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so H± = HΠ± ⊕ (H± ∩ HΠ±,⊥). The identities (8.58) & (8.59) provide

θh(α∗) = θh((H − idH)(ϕ(α)∗ − α∗) = θh(H(ϕ(α)∗ − α∗)) = ϕ(α)∗ = θϕ(α∗),

concluding the proof.
” ⇐= ” For every α ∈ Π+ exists an a ∈ H such that α∗ = (H − idH)a and

ϕ(α)∗ = Ha. Subtracting the first from the second equation gives a = ϕ(α)∗ − α∗.
Therefore,

(H − idH)(ϕ(α)∗ − α∗) = α∗ = Hα∗ − (H − idH)α∗

implies (8.57), proving the assertion.

Let Q = ((Π+,Π−, ϕ), h) be a Belavin Drinfeld quadruple. It is easy to see from the
defining formula (8.39), that

K̃0(tQ) = θϕ,∗−

π− − θϕ,∗−
+ K̃0(h)− θϕ+

π+ − θϕ+
, (8.61)

where we used θϕ+/(π+ − θϕ+) = ∑∞
j=1 θ

ϕ,j
+ , (θϕ+/(π+ − θϕ+))∗ = θϕ,∗+ /(π− − θϕ,∗+ ) and

K̃0(tQ)|N− = −(K̃0(tQ)|N+)∗. This implies that

R := RtQ = π−

π− − θϕ,∗−
+
(
K̃0(h) + idH

2

)
− θϕ+

π+ − θϕ+
(8.62)

holds. Let (W+,W−, θ) be the Cayley transform of R and (H+,H−, θ
h) be the Cayley

transform of K̃0(h) + idH /2. Then the identities

W± = N
Π±
∓ ⊕ H± ⊕N±. (8.63)

hold. Therefore, Lemma 8.2.6 implies that W± ⊆ L are subalgebras and we have
canonical isomorphisms W±/W

⊥
±
∼= sΠ± ⊕ f±, identifying the center of W±/W

⊥
± with

f± := (H± ∩ HΠ±,⊥)/H⊥
±. Note that θ|HΠ± ⊕f±

= θh holds by definition and θ(f+) = f−,
since θ is orthogonal. To conclude that tQ is a classical twist of δ◦ (or, equivalently, that
ϱQ = ϱ◦ + tQ is a σ-trigonometric r-matrix), it remains to show that θ|sΠ+ : sΠ+ → sΠ−

is a homomorphism of Lie algebras; see Lemma 8.2.3.
Every element b ∈ N

Π+
+ can be written as

b = (R− idL)a = −
(

π+

π+ − θϕ+

)
a (8.64)

for some a ∈ N+. Therefore,

θ(b) = −
(

θϕ+

π+ − θϕ+

)
a = θϕ+(b) =⇒ θ|

N
Π±
±

= θϕ|
N

Π±
±
. (8.65)

This, Lemma 8.2.6, and θ∗ = θ−1 implies that θ|sΠ+ = θϕ. In particular, θ is a
homomorphism of Lie algebras, so tQ is a classical twist of δ.
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Remark 8.2.7.
Let us clarify the explicit form of the Lie algebra WQ := WtQ associated to ϱQ =
ϱ◦ + tQ for the Belavin-Drinfeld quadruple Q = ((Π+,Π−, ϕ), h). Let (H+,H−, θ

h)
be the Cayley transform of K̃0(h) + idH /2. Then WQ = W(Π+,Π−,ϕ) ⊕Wh, where

W(Π+,Π−,ϕ) :=
{
(a, b) ∈ (sΠ+ + N+)× (sΠ− + N−) | θϕ(a|Π+) = b|Π−

}
Wh :=

{
(a, b) ∈

(
H+ ∩ HΠ+,⊥

)
×
(
H− ∩ HΠ−,⊥

) ∣∣∣ θh (a+ H⊥
+

)
= b+ H⊥

−

}
.

Here, θϕ was defined in (8.38) and a|Π± denotes the image of a ∈ sΠ± +N± under
the canonical projection

sΠ± + N± = sΠ± ⊕
⊕

α∈Φ±\ΦΠ±
±

Lα −→ sΠ± . (8.66)

8.2.5 Proof of Theorem 8.2.1 III: Spectral properties of Rt. In order to prove
Theorem 8.2.1, it remains to show that any classical twist of δ◦ is regularly equivalent
to tQ for an appropriate Belavin-Drinfeld quadruple Q. Fix a classical twist t of δ◦ and
put R := Rt; see (8.46). Let Lλ := ⋃∞

j=1 Ker((R−λ idL)j) be the generalized Eigenspace
of R to λ ∈ C. Observe that there exists a vector space splitting L = V− ⊕ V0 ⊕ V+
such that

R(V0) ⊆ V0, R|V− = idV− , R|V+ = 0, and dim(V0) <∞, V± ≍ B± (8.67)

since R = π− + πH/2 + K̃0(t). Therefore, L0 (resp. L1) is commensurable to B+
(resp. B−) and we can immediately deduce the following facts by reduction to the
finite-dimensional case: L = ⊕

λ∈C L
λ holds and for every λ ∈ C exists k = k(λ) ∈ N

such that

Lλ = Ker((R− λ idL)k) and Im((R− λ idL)k) =
⊕

λ′∈C\{λ}
Lλ

′
. (8.68)

Lemma 8.2.8.
For λ1, λ2 ∈ C, the following results are true:
(1) K0(Lλ1 ,Lλ2) ̸= {0} if and only if λ2 = 1− λ1.
(2) If λ1 + λ2 ̸= 1 we have [Lλ1 ,Lλ2 ] ⊆ L

λ1λ2
λ1+λ2−1 .

(3) If λ1 /∈ {0, 1} we have [Lλ1 ,L1−λ1 ] = {0}.

Proof. Part (1) is a direct consequence of (R− λ idL)k,∗ = (−1)k(R− (1− λ) idL)k,
Im((R− λ idL)k)⊥ = Ker((R− λ idL)k,∗) and Im((R− λ idL)k) = ⊕

λ′∈C\{λ} L
λ′ , for

any λ ∈ C and k = k(λ) ∈ N.
Equation (8.52) implies that

[(R− λ1idL)a, (R− λ2idL)b] = (R− λ1 idL)[a, (R− λ2 idL)b]
+ (R− λ2 idL)[(R− λ1 idL)a, b] + ((λ1 + λ2 − 1)R− λ1λ2 idL)[a, b]

(8.69)
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holds for all a, b ∈ L and λ1, λ2 ∈ C. Let λ1, λ2 ∈ C, a0, b0 ∈ L and write
ak := (R− λ1 idL)ka0 and bk = (R− λ2 idL)kb0 (8.70)

for any k ∈ N. We can see by induction on n = k + ℓ that ak = bℓ = 0 implies
((λ1 +λ2−1)R−λ1λ2 idL)n[a0, b0] = 0. Indeed, combining the induction assumption
with (8.69), results in the desired
0 = ((λ1 + λ2 − 1)R− λ1λ2 idL)n−1([a1, b1]− (R− λ1 idL)[a0, b1]− (R− λ2 idL)[a1, b0])

= ((λ1 + λ2 − 1)R− λ1λ2 idL)n[a0, b0].

The identity ((λ1 + λ2 − 1)R − λ1λ2)n[a0, b0] = 0 for n = k + ℓ if ak = bℓ = 0
concludes the proof of (2) and (3).

Lemma 8.2.8 implies that L′ := ⊕
λ∈C\{0,1} L

λ is a finite-dimensional subalgebra of L
and L0 (resp. L1) is a subalgebra of L commensurable with B+ (resp. B−). Moreover,
we see that L0,⊥ = L0 ⊕ L′ (resp. L1,⊥ = L1 ⊕ L′) is a subalgebra of L containing L0

(resp. L1) as an ideal. Note that R′ := R|L′ satisfies det(R′) ̸= 0 ̸= det(R′ − idL) by
construction. Therefore, L′ ⊆ Im(R − idL) ∩ Im(R) combined with (8.52) and (8.53)
implies that R′/(R′ − idL′) defines an automorphism of L′ without fixed vector. In
particular, L′ is solvable by virtue of Proposition 7.1.1.

Proposition 8.2.9.
Replacing t by a regularly equivalent classical twist of δ◦, the normalizer of L0

(resp. L1) is equal to B+ (resp. B−). Furthermore, R(N+) ⊆ N+, R(H) ⊆ H
and R(N−) ⊆ N−.

Proof. Since for i ∈ {0, 1} the subalgebra Li ⊕ L′ ⊆ L contains Li = (Li ⊕ L′)⊥

as ideal and L′ is finite-dimensional and solvable, there exists φ, ψ ∈ AutL-alg(L)
such that φ(L0 ⊕L′) ⊆ B+ and ψ(L1 ⊕L′) ⊆ B−; see Proposition 4.2.9.(3). Since
L0 ⊕ L′ ⊕ L1 = L, we can assume φ = ψ by virtue of Lemma 4.2.7. Replacing R
with φRφ−1 amounts to replacing t with an regularly equivalent classical twist
of δ◦ (see Lemma 8.2.5) and Lλ by φ(Lλ) for all λ ∈ C. Thus, we may assume
L0 ⊕ L′ ⊆ B+ and L1 ⊕ L′ ⊆ B−. Therefore,
N+ = B⊥

+ ⊆ (L0 ⊕ L′)⊥ = L0 ⊆ B+ and N− = B⊥
− ⊆ (L1 ⊕ L′)⊥ = L1 ⊆ B−.

The identity N± = [B±,B±] implies that L̃0 = B+ and L̃1 = B−, where
L̃λ := {a ∈ L | [a,Lλ] ⊆ Lλ} for all λ ∈ C. (8.71)

Therefore, considering B+ ∩B− = H, it remains to prove
R(L̃λ) ⊆ L̃λ for all λ ∈ C. (8.72)

These inclusions are a consequence of: for any λ ∈ C, a ∈ L̃λ and b ∈ L such
that (R − λ idL)kb = 0, [Ra, b] ∈ Lλ holds by induction on k ∈ N. Indeed,
this is equivalent to (R− λ idL)[Ra, b] ∈ Lλ and combining (8.52), the induction
assumption, and Rb ∈ Lλ implies that

(R− λ idL)[Ra, b] = [Ra, (R− λ idL)b]−R[a,Rb] (8.73)
is an element of Lλ.
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8.2.6 Proof of Theorem 8.2.1 IV: Conclusion. Let t be a classical twist of δ◦, R := Rt

be the associated endomorphism from (8.46), and CT(R) := (W+,W−, θ) be the Cayley
transform of R. Proposition 8.2.9 implies that we may assume K̃0(t)(N±) ⊆ N± and
K̃0(t)(H) ⊆ H, which yields

t = t+ + h+ t− (8.74)

for some t± ∈ N± ⊗N∓ and h ∈ H ∧ H. Therefore, if (H+,H−, θ
h) denotes the Cayley

transform of K̃0(h) + idH /2 ∈ End(H), this implies that

W± = N± ⊕ H± ⊕ (W± ∩N∓). (8.75)

Then, W⊥
± ⊆ W± forces H⊥

± ⊆ H±, so [H,W±] ⊆ W± by virtue of Lemma 4.2.8.(1).
Consequently, H + W± is a subalgebra of L containing B± and Lemma 4.2.8.(2) gives
H + W± = P

Π±
± for some proper subsets Π± ⊊ Π. In particular, this shows HΠ± ⊆ H±

and W± ∩N∓ = N
Π±
∓ .

We have seen in the proof of Lemma 8.2.6 that H = HΠ± ⊕HΠ±,⊥ implies the identity
H± = HΠ± ⊕ (H± ∩ HΠ±,⊥). Therefore,

W±/W
⊥
±
∼= sΠ± ⊕ f± for f± := (H± ∩ HΠ±,⊥)/H⊥

±. (8.76)

The orthogonal isomorphism θ of Lie algebras satisfies θ(f+) = f− and θ(sΠ+) = sΠ− .
In particular, θ defines an isomorphism sΠ+ → sΠ− preserving the respective natural
triangular decompositions induced by L = N+ ⊕ H⊕N−. It is a standard routine to
see that there exist {λi ∈ C× | αi ∈ Π+} such that

θ(e±
i ) = λ±1

i e±
ϕ(i) for all αi ∈ Π+, (8.77)

where ϕ : Π+ → Π− is a bijection satisfying K0(ϕ(α)|H, ϕ(β)|H) = K0(α|H, β|H) for all
α, β ∈ Π+.

The restriction R+ := R|N+ is nilpotent, since N+ ⊆ L0. Therefore, the extension
of θ|

N
Π+
+

to an element of End(N+) by zero can be identified with R+/(R+ − idN+).
In particular, said extension is nilpotent too, so ϕ satisfies (8.36). This implies that
(Π+,Π−, ϕ) is a Belavin-Drinfeld triple. Lemma 8.2.6 implies that Q := ((Π+,Π−, ϕ), h)
is a Belavin-Drinfeld quadruple.

Since W, and consequently (W+,W−, θ), determines t uniquely, we can see from
Subsection 8.2.4 that t = tQ if λi = 1 for all αi ∈ Π+, where λi are given in (8.77). In
general, this can be achieved up to regular equivalence: let {λ̃i ∈ C | i ∈ {0, . . . , n}}
be determined by λ̃i = 0 for αi /∈ Π+ and exp(λ̃ϕ(i)) exp(−λ̃i) = λ−1

i for all αi ∈ Π+.
These are seen to exist because ϕ satisfies (8.36). There exists a unique a ∈ HΠ+ such
that αi(a) = λ̃i for all i ∈ {0, . . . , n} and it is easy to see that ψ := exp(ad(a)) defines
a regular equivalence of t to tQ. Summarized, we have seen that t = tQ up to regular
equivalence, which concludes the proof of Theorem 8.2.1.

8.2.7 Existence of Belavin-Drinfeld quadruple. In this section, we prove that for
every Belavin-Drinfeld triple (Π+,Π−, ϕ) exists a solution of equation (8.37). More
precisely, it is easy to see that the space of solutions of (8.37) is affine with underlying
vector space H0 ∧ H0, where H0 = {a ∈ H | (ϕ(α)− α)(a) = 0, α ∈ Π+}. Therefore, we
will prove that this affine space is non-empty and determine that dim(H0) coincides
with the order of the set Π \ Π+ to obtain the following result.
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Lemma 8.2.10.
Let (Π+,Π−, ϕ) be a Belavin-Drinfeld triple and assume that Π\Π+ has k elements.
Then the h ∈ H ∧ H, such that ((Π+,Π−, ϕ), h) is a Belavin-Drinfeld quadruple,
form an affine space of dimension (k − 1)(k − 2)/2.

Proof. The assignment h 7→ ((αi ⊗ αj)h)ni,j=0 defines an injective map

m : H⊗ H −→ Mat(n+1)×(n+1)(C), (8.78)

since {α0|H, . . . , αn|H} spans H∗. The image of m consists of all (aij)ni,j=0 such that
n∑
i=0

kiaij = 0 =
n∑
i=0

kiaji (8.79)

for all j ∈ {0, . . . , n}, where k0, . . . , kn ∈ N are the unique coprime numbers such
that ∑n

i=0 kiαi = 0; see Lemma 4.2.4.
A matrix (aij)ni,j=0 defines a tensor h ∈ H ⊗ H such that ((Π+,Π−, ϕ), h) is a

Belavin-Drinfeld quadruple if and only if aij + aji = 0 for all i, j ∈ {0, . . . , n},∑n
i=0 kiaij = 0 for all j ∈ {0, . . . , n}, and

aϕ(i)j − aij +K((ϕ(αi) + αi)|H, αj|H) = 0 (8.80)

for all j ∈ {0, . . . , n}, αi ∈ Π+. Using (8.80) iteratively combined with (8.36)
implies that (aij)ni,j=0 is completely determined by {aij | αi, αj ∈ Π+}, so the
remaining conditions aij + aji = 0 for all i, j ∈ {0, . . . , n} imply that (aij)ni,j=0 is
completely determined by

{aij | αi, αj ∈ Π \ Π+, i < j}. (8.81)

Therefore, ∑n
i=0 kiaij = 0 defines exactly one linear relation between the elements

in (8.81) for k ⩾ 2, proving the fact that the affine space of solutions to (8.37) has
dimension (k − 1)(k − 2)/2 in this case.

It remains to prove the statement for k = 1, i.e. we have to show that if
Π \ Π+ = {αi} for some i ∈ {0, . . . , n}, there exists exactly one solution of (8.37).
Note that {ϕ(α) − α | α ∈ Π+} is a linearly independent set of n = dim(H)
elements, i.e.

{ϕ(α)− α | α ∈ Π+} is a basis of H∗ if Π \ Π+ = {αi}. (8.82)

Indeed, ∑α∈Π+ λα(ϕ(α) − α) = 0 can be rewritten as ∑n
j=0 λ̃jαj = 0 for some

λ̃0, . . . , λ̃n ∈ C satisfying ∑n
j=0 λ̃j = 0 and Lemma 4.2.4 states that λ̃j = λkj

for j ∈ {0, . . . , n}. This forces λ̃0 = · · · = λ̃n = 0 and so ϕ(S) = S holds for
S := {α ∈ Π+ | λα ̸= 0}. But (8.36) forces S = ∅, proving (8.82). In particular,
dim(H0) = k − 1 = 0.

Let {bα}α∈Π+ ⊆ H be the unique elements such that (ϕ(α) − α)(bβ) = δαβ. It
can be easily verified that h = ∑

α,β∈Π+ hαβbα ⊗ bβ ∈ H⊗ H, where

hαβ = −K((ϕ(α) + α)|H, (ϕ(β)− β)|H)/2 = (K(ϕ(α)|H, β|H)−K(α|H, ϕ(β)|H))/2,

is a skew-symmetric tensor solving (8.37). Here, we used K(ϕ(α)|H, ϕ(β)|H) =
K(α|H, β|H) for α, β ∈ Π+. Summarized, we see that h is the only skew-symmtric
solution of (8.37), conclunding the proof.
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Remark 8.2.11.
In [CP95, Section 3.2.C] the authors present the results of [BD83a] with a slight
flaw: they implicitly state that k(k − 1)/2 is the dimension of the affine space of
solutions of (8.37), in the notation of Lemma 8.2.10.

8.2.8 The classification theorem in the Coxeter twisting. In case the automor-
phism σ is Coxeter, it is possible to describe Belavin-Drinfeld quadruples and the
associated σ-trigonometric r-matrices intrinsically in g. This is the language chosen
in [BD83a]. In this subsection, we explain the relation of this description to the one
presented here.

Let g = ñ+ ⊕ H̃⊕ ñ− be a triangular decomposition of g, ν be an automorphism of
the Dynkin diagram of g of order k and ν̃ be the associated outer automorphism of
g with respect to the chosen triangular decomposition. We say that σ is a Coxeter
automorphism of type k if σ is conjugate to ν̃((1,...,1);k) in the notation of Subsection
4.2.7. Equivalently, σ is an automorphism of g of minimal order with the properties:
the representative of σ in Out(g) is of order k and gσ0 is abelian.

Let gk := gσk for 1 ⩽ k ⩽ m− 1, write

gαk := {a ∈ gk | [h, a] = α(h)a for all h ∈ H} (8.83)

for any α ∈ H∗ as well as

Λk := {α ∈ H∗ | gαk ̸= {0}} and Ξ := {(α, k) ∈ H∗ × {1, . . . ,m− 1} | α ∈ Λk}. (8.84)

Observe that

g = H⊕
m−1⊕
k=1

⊕
α∈Λk

gαk (8.85)

and Λ1 = {α◦ := α|H | α ∈ Π} completely determines Π, since α(d) = 1 for all α ∈ Π.
Therefore, a Belavin-Drinfeld triple is determined by a triple (Γ+,Γ−, τ), where Γ± ⊊ Λ1
and τ : Γ+ → Γ− is a bijection satisfying the following conditions:
• K(τ(α), τ(β)) = K(α, β) for all α, β ∈ Γ+ and
• for any α ∈ Γ+ there exists ℓ = ℓ(α) ∈ N such that

α, . . . , τ ℓ−1(α) ∈ Γ+ and τ ℓ(α) /∈ Γ+. (8.86)

Let gΓ± be the Lie subalgebras of g generated by the vector subspace ⊕α∈Γ± gα1 . Then
gΓ± is isomorphic to the positive part of the semi-simple Lie algebra defined by the
Dynkin diagram associated to Γ± and we have a direct sum decomposition

gΓ± =
⊕

(α,k)∈Ξ±

gαk (8.87)

for appropriate subsets Ξ± ⊆ Ξ. Fixing non-zero elements in gα1 for all α ∈ Λ1, one can
extend the bijection τ to an isomorphism of Lie algebras τ̃ : gΓ+ → gΓ− .

Let ϑ : g→ g be a linear map defined as the composition of the

g
pr−→ gΓ+ τ̃−→ gΓ− ⊆−→ g, (8.88)
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where pr is the canonical projection with respect to the direct sum decompositions
(8.85) and (8.87). Then ϑ is nilpotent and ϑ(gk) ⊆ gk for all k ∈ {1, . . . ,m− 1}. Let
ψ = ϑ

idg −ϑ = ∑∞
j=1 ϑ

j. It follows that ψ(gk) ⊆ gk for all k ∈ {1, . . . ,m− 1} as well.
For the triple (Γ+,Γ−, τ), we can chose a tensor h ∈ H ∧ H

(
τ(α)⊗ idH + idH⊗α

)(
h+ γ0/2

)
= 0 for all α ∈ Γ1 (8.89)

Then ((Γ+,Γ−, τ), h) determines a Belavin-Dinfeld quadruple Q in the obvious way. In
[BD83b, Theorem 6.1], Belavin and Drinfeld consider the trigonometric r-matrix

XQ(ũ, ṽ) := ϱ◦(ũ, ṽ) + h+
m−1∑
j=1

((
ṽ

ũ

)j
(idg⊗ψ)γ−j −

(
ũ

ṽ

)j
(ψ ⊗ idg)γj

)
. (8.90)

Lemma 8.2.12.
Equation (8.90) defines a σ-trigonometric r-matrix which is regularly equivalent
to ϱQ.

Proof. Let Q = ((Π+,Π−, ϕ), h). By construction, there exists {λi ∈ C× | αi ∈ Π+}
such that ϑ(e+

i (1)) = λie
+
i (1) for all αi ∈ Π+. Therefore, the same argument as in

the end of Subsection 8.2.6 shows that we may assume λi = 1 for all αi ∈ Π+ up to
regular equivalence. In particular, θϕ+(e+

i )(1) = ϑ(e+
i (1)). This and the observation

m−1∑
j=0

((
ṽ

ũ

)j
(idg⊗ψ)γ−j −

(
ũ

ṽ

)j
(ψ ⊗ idg)γj

)
=

∑
α∈ΦΠ+

+

∞∑
j=1

b−α ∧ θϕ,j+ (bα) (8.91)

for any {bα ∈ Lα | α ∈ Φ}, satisfying B(bα, b−α) = 1 for all α ∈ ΦΠ+
+ , concludes

the proof. Here, we used that, for d in L̂ = L⊕Cc⊕Cd (see Subsection 4.2.2), we
have:
• α(d) < m = ∑n

i=0 ki for all α ∈ ΦΠ+
+ , where k0, . . . , kn are the unique integers

defined in Lemma 4.2.4,
• ∑α(d)=j bα ⊗ b−α = (ũ/ṽ)j γj for all j ∈ Z \ {0} and
• ψ(bα) = 0 for all α /∈ ΦΠ+

+ .
The first fact is thereby a consequence of ΦΠ+

+ ⊆ Φre.

8.3 Equivalences

In this section, we take a closer look at equivalences between σ-trigonometric r-matrices.
More precisely, we investigate the difference between formal and regular equivalences in
Subsection 8.3.1 and the compatibility of the latter with Belavin-Drinfeld quadruples
in Subsection 8.3.2. Furthermore, we discuss the relationship between the regrading of
loop algebras described in 4.2.8 and the classical twists of the standard structure resp.
σ-trigonometric r-matrices in Subsection 8.3.3.
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8.3.1 Regular and formal equivalence. We can consider σ-trigonometric r-matrices
either up to regular equivalence or up to formal equivalence in the exponential language.
At first glance, the former seems stricter than the latter. However, the geometric theory
implies that this is indeed not the case.

Proposition 8.3.1.
Two σ-trigonometric r-matrices ϱ1 and ϱ2 are regularly equivalent if and only
if the Taylor series of ϱ1(exp(x/m), exp(y/m)) and ϱ2(exp(x/m), exp(y/m)) in
y = 0 are formally equivalent.

Proof. “ =⇒ ” is clear, so we have to prove “⇐=”. Let (λ,w, φ) be a for-
mal equivalence between the Taylor series r1 and r2 of ϱ1(exp(x/m), exp(y/m))
and ϱ1(exp(x/m), exp(y/m)) in y = 0. Since r1 and r2 are normalized and
skew-symmetric, λ = w′ ∈ C× holds; see Lemma (2.1.6). For i ∈ {1, 2}, let
((X,Ai), (p, c, ζ)) be the geometric datum of ri constructed in Section 8.1. Lemma
3.1.1 states that we have an automorphism f of X fixing p and an isomorphism
ψ : A1 → f∗A2. The automorphism f defines an automorphism of P1

C, i.e. a Möbius
transformation, which restricts to an automorphism of Spec(C[u, u−1]) fixing (u−1).
Thus, f is the identity. In particular, this means that λ = 1 and w(z) = z. Let
C be the smooth locus of X. By construction, Γ(C,A1) ∼= L ∼= Γ(C,A2), so ψ
induces a C[u, u−1]-linear automorphism of L. Application of Lemma 3.3.2 and
Theorem 8.1.3.(3) now concludes the proof.

Remark 8.3.2.
Proposition 8.3.1 can be used to reduce the classification of classical twists of δ◦

presented in Section 8.2 directly to the classification of trigonometric r-matrices
in [BD83a]; see [AM21].

8.3.2 Equivalence and Belavin-Drinfeld quadruple. In the context of the classifi-
cation presented in Subsection 8.2, it is natural to ask under which circumstances the
classical twists (and so the σ-trigonometric r-matrices defined by said twists) determined
by Belavin-Drinfeld quadruples are equivalent. This question is settled by the following
statement, which was already remarked after [BD83b, Theorem 6.1] without proof and
was proven in [AM21].

Proposition 8.3.3.
Let Q(i) = ((Π(i)

+ ,Π
(i)
− , ϕ

(i)), h(i)) be a Belavin-Drinfeld quadruple for i ∈ {1, 2}.
Then tQ(1) and tQ(2) are regularly equivalent if and only if there exists ν ∈ Aut(A)
such that ν̃(Π(1)

± ) = Π(2)
± , ν̃ϕ(1)ν̃−1 = ϕ(2), and ν̃(h(1)) = h(2) hold (where ν̃ ∈

Out(L) is defined in Lemma 4.1.10.(2)).

Proof. Let us write t1 := tQ(1) and t2 := tQ(2) .
“ =⇒ ” Lemma 8.2.5 states that φRt1φ−1 = Rt2 for some φ ∈ AutL-alg(L). If L0

1
and L0

2 are the generalized eigenspaces of Rt1 and Rt2 to 0 respectively, φ(L0
1) = L0

2
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holds. We have seen in the proof of Proposition 8.2.9 that the normalizer of L0
i is

B+ for i ∈ {1, 2}. Since an automorphism of Lie algebras respects the process of
normalizing, φ is an automorphism of L fixing the Borel subalgebra B+. Lemma
4.2.8 states that φ induces an automorphism ν of the Dynkin diagram of L. The
identity (φ ⊗ φ)Wt1 = Wt2 , (8.63) combined with Lemma 8.2.3.(4) and Lemma
8.2.5 now imply that ν̃(Π(1)

± ) = Π(2)
± , ν̃ϕ(1)ν̃−1 = ϕ(2), and ν̃(h(1)) = h(2).

“ ⇐= ” Let ν be a Dynkin diagram automorphism, such that ν̃(Π(1)
± ) = Π(2)

± ,
ν̃ϕ(1)ν̃−1 = ϕ(2), and ν̃(h(1)) = h(2) hold. Using Lemma 4.2.6, ν̃ defines a L =
C[u, u−1]-linear automorphism φ of L after probably precomposing an scaling
automorphism. It is easy to see from (8.63) that (φ⊗ φ)Wt1 = Wt2 holds, so φ is
the desired regular equivalence by virtue of Lemma 8.2.5.

Remark 8.3.4.
Combining the propositions 8.3.3 and 8.3.1 we obtain the following statement:
for i ∈ {1, 2} the Taylor series of ϱQ(i)(exp(x/m), exp(y/m)) in y = 0 for Belavin-
Drinfeld quadruples Q(i) = ((Π(i)

+ ,Π
(i)
− , ϕ

(i)), h(i)) are formally equivalent if and
only if ν̃(Π(1)

± ) = Π(2)
± , ν̃ϕ(1)ν̃−1 = ϕ(2), and ν̃(h(1)) = h(2) hold.

8.3.3 Changing the twisting automorphism. Let us fix a triangular decomposition
g = ñ− ⊕ H̃⊕ ñ+ and assume that σ = ν̃ for some automormophism ν of the Dynkin
diagram of g, while H = H̃∩gσ0 , n± = ñ±∩gσ0 . Consider two Lie algebra automomrphisms
σ1 and σ2 of finite order m1 and m2 respectively and assume that L ∼= L(g, σ1) ∼= L(g, σ2)
as Lie algebras over C, i.e. the class of both σ1 and σ2 in Out(g) has order m; see
Subsection 4.2.6. Then, by virtue of Subsection 4.2.7, there exist υ1, υ2 ∈ AutC-alg(g)
and

s1 = (s10, . . . , s1n), s2 = (s20, . . . , s2n) ∈ Nn+1
0 \ {0} (8.92)

such that σ1 = υ1σ(s1;m)υ
−1
1 and σ2 = υ2σ(s2;m)υ

−1
2 . We have a canonical isomorphism

ψ : L(g, σ1)→ L(g, σ2), which factors as

L(g, σ1)
υ−1

1−→ Ls1 regrading−→ Ls2 υ2−→ L(g, σ2), (8.93)

where the middle arrow is defined by Ls1
α ∋ X 7→ X(1)zhts2 (α) ∈ Ls2 for all α ∈ Φ; see

Subsection 4.2.8.
Let i ∈ {1, 2}. Note that g

σ(si,m)
0 = nsi

− ⊕ H⊕ nsi
+ , where

nsi
± = ⟨e±

j (1) | j ∈ {0, . . . , n} such that s(i)
j = 0⟩C-alg =

⊕
α∈Φ

htsi (α)=0

ev1(Lα). (8.94)

Let δ◦
i and ϱ◦

i be the standard Lie bialgebra structure of L(g, σi) with respect to gσi
0 =

υi (nsi
+)⊕υi(H)⊕υi (nsi

−) for i ∈ {1, 2}. It is easy to see that for any classical twist t1 of δ◦
1

the tensor t2 := (ψ⊗ψ)t1 is a classical twist of δ◦
2 and ψ : (L(g, σ1), δt11 )→ (L(g, σ1), δt22 )

is an isomorphism of Lie bialgebra structures. The following result settles the connection
between the respective trigonometric r-matrices ϱt11 = ϱ◦

1 + t1 and ϱt22 = ϱ◦
1 + t2, which

can be seen as a generalization of [BD83b, Lemma 6.22]; see also [AM21, Lemma 3.2].
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Lemma 8.3.5.
Let a0 ∈ H be the unique element such that αj(a0) = s2j/m2 − s1j/m1 for all
j ∈ {0, . . . , n}. Then we have

(υ2 exp(x ad(a0))υ−1
1 ⊗ υ2 exp(y ad(a0))υ−1

1 )ϱt11 (exp (x/m1) , exp (y/m1))
= ϱt22 (exp (x/m2) , exp (y/m2))

Proof. First of all, a0 is well-defined, since mi = m
∑n
j=0 kjsij for i ∈ {1, 2}, so∑n

j=0 kjαj(a0) = 0, where k0, . . . , kn is given in Lemma 4.2.4. We can assume that
υ1 = idg = υ2, since these simply define regular equivalences; see Lemma 5.4.10.
Notice that for i ∈ {1, 2} the Lie algebra L(g, σi) is generated by

{e+
j (1)ũsij , e−

i (1)ũ−sij | j ∈ {0, . . . , n}} (8.95)

and it is easy to see that ψ(e±
j (1)ũ±s1j ) evaluated at exp(z/m2) coincides with

e±
j exp(s2jz/m2) = exp(z ad(a0))e±

j (1) exp(s1jz/m1). This proves that

ψ(a)(exp(z/m2)) = exp(z ad(a))a(exp(z/m1)) for all a ∈ Ls1 . (8.96)

In particular, we may assume that t1 = 0 = t2. Using (5.53) for ϱ = ϱ1 and ϱ = ϱ2
results in

(exp(x ad(a0))⊗ exp(y ad(a0)))ϱ1 (exp (x/m1) , exp (y/m1))
= γH/2 +

∑
α∈Φ−

((ψ ⊗ ψ)χs1
α ) (exp (x/m2) , exp (y/m2))

= γH/2 +
∑
α∈Φ−

χs2
α (exp (x/m2) , exp (y/m2))

= ϱ2 (exp (x/m2) , exp (y/m2)) ,

(8.97)

where χsi
α is the image of χα under Lα⊗Lα ∼= Lsi

α ⊗Lsi
α for i ∈ {1, 2} and α ∈ Φ.

8.3.4 Example: σ-trignometric r-matrices over g = sl2(C). Let us assume that
sl2(C) = n+ ⊕ H ⊕ n− is the standard decomposition into traceless diagonal, uppter
trigangular and lower triangular matrices. Since sl2(C) has no non-trivial automorphism
of the Dynkin diagram, we can assume that σ = idg by virtue of Subsection 8.3.3. Then
L(g, idg) = L(g) = sl2(C[u, u−1]) has two simple roots α0, α1 with

K0(α0|H, α0|H) = K0(α1|H, α1|H), (8.98)

so by Proposition 8.3.3 there are essentially two Belavin-Drinfeld triple (Π+,Π−, ϕ):

Π+ = Π− = ∅ and Π+ = {α1},Π− = {α0}, ϕ(α0) = α1. (8.99)

Since H ∧ H = {0}, these uniquely determine Belavin-Drinfeld quadruple and hence
idsl2-trigonometric r-matrices.

In the first case, we obtain the standard idsl2-trigonometric r-matrix

ϱ◦(u, v) = v

u− v

(
1
4

(
1 0
0 −1

)
⊗
(

1 0
0 −1

)
+ 1

2

(
0 1
0 0

)
⊗
(

0 0
1 0

)
+ 1

2

(
0 0
1 0

)
⊗
(

0 1
0 0

))

+ 1
2

(
0 0
1 0

)
⊗
(

0 1
0 0

)
+ 1

8

(
1 0
0 −1

)
⊗
(

1 0
0 −1

)
.
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In the second case, θϕ+
(

0 1
0 0

)
= u

(
0 0
1 0

)
and θϕ,2+ = 0, so the associated r-matrix is

given by the formula

ϱ◦(u, v) + (v − u)
(

0 0
1 0

)
⊗
(

0 0
1 0

)
. (8.100)

Remark 8.3.6.
In [BD83a], the authors present all Belavin-Drinfeld quadruple and the associated
r-matrices for g ∈ {sl2(C), sl3(C)} in the language of Subsection 8.2.8.

8.4 Restrictions of the standard structure

It is easy to see that δ◦ restricts to a Lie bialgebra cobracket on both the semi-simple
subalgebra sS and the standard parabolic subalgebra PS

± of L for all S ⊆ Π. This
section is dedicated to a study of these Lie bialgebra structures.

8.4.1 Restricted standard structures on parabolic subalgebras. Note that tQ is
an element of PS

+⊗PS
+ for some Belavin-Drinfeld quadruple Q = ((Π+,Π−, ϕ), h) if and

only if Π+ ⊆ S. The following theorem from [AM21] gives a classification of classical
twists of the restricted Lie bialgebra structure δ◦|PS

+
or, equivalently, classical twists of

δ◦ contained in PS
+ ⊗PS

+.

Theorem 8.4.1.
For any S ⊆ Π and classical twist t ∈ PS

+ ⊗PS
+ of δ◦ exists a Belavin-Drinfeld

quadruple Q = ((Π+,Π−, ϕ), h) such that Π+ ⊆ S and t is regularly equivalent to
tQ via a regular equivalence that restricts to an automorphism of PS

+.

Proof. By Theorem 8.2.1, there is a regular equivalence φ1 and a Belavin-Drinfeld
quadruple Q′ = ((Π′

+,Π′
−, ϕ

′), h′) such that (φ1×φ1)Wt = WQ′ . Since t ∈ PS
+⊗PS

+
we have Wt ⊆ PS

+ × L. Let H′
± ⊆ H be the image of K̃0(h′)∓ idH /2. Since h′ is

skew-symmetric, this is easily seen to be a coisotropic subspace of H. Then

WQ
+ = N+ ⊕ H′

+ ⊕N
Π+
− ⊆ φ1(PS

+) (8.101)

and, in particular, we have the inclusion H′
+ ⊆ φ1(PS

+). By the first part of Lemma
4.2.8 we have

[H, φ1(PS
+)] ⊆ φ1(PS

+). (8.102)

Since PS
+ is self-normalizing, φ1(PS

+) is self-normalizing as well. Therefore, we
get H ⊆ φ1(PS

+) and consequently B+ ⊆ φ1(PS
+). Then Lemma 4.2.8 shows that

φ1(PS
+) = PS′

+ for some S ′ ⊊ Π. The inclusion (8.101) implies that Π′
+ ⊆ S ′.

Define B′ := φ−1
1 (B+). The subalgebra B′/PS,⊥

+ , being the preimage of the
Borel subalgebra B+/P

S′,⊥
+ of sS′ +H = PS′

+ /P
S′,⊥
+ under φ1, is a Borel subalgebra
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of sS + H = PS
+/P

S,⊥
+ . Therefore, by the conjugacy theorem for Borel subalgebras,

there exists an inner automorphism φ2 of sS + H mapping B′/PS,⊥
+ to B+/P

S,⊥
+ .

Combining this result with the fact that Inn(sS + H) is generated by

{exp(ad(a)) | a ∈ Lα, α ∈ ΦS} (8.103)

(see e.g. [Bou05, §3.2]), we can view φ2 as a regular equivalence on L that restricts
to an automorphism of PS

+ and maps B′ to B+. The composition φ2φ
−1
1 is then

an automorphism of L mapping PS′
+ to PS

+ and fixing the Borel subalgebra B+.
Lemma 4.2.8 implies that φ2φ

−1
1 induces ν ∈ Out(L) such that ν(S ′) = S. Using

Lemma 4.2.6, ν̃ defines a regular equivalence φ3 such that (φ3 × φ3)WQ′ = WQ,
where Q = ((ν(Π′

+), ν(Π′
−), νϕ′ν−1), ν(h′)). Since ν(Π′

+) ⊆ ν(S ′) = S, φ := φ3φ1
is the desired regular equivalence.

Remark 8.4.2.
Let Q(i) = ((Π(i)

+ ,Π
(i)
− , ϕ

(i)), h(i)) be a Belavin-Drinfeld quadruple such that Π(i)
+ ⊆

S for i ∈ {1, 2}. Then Theorem 8.3.3 immediately implies that tQ(1) and tQ(2)

are regularly equivalent via a regular equivalence fixing PS
+ if and only if there

exists an automorphism ν of the Dynkin diagram of L such that ν fixes the
subdiagram defined by S, ν̃(Π(1)

± ) = Π(2)
± , ν̃ϕ(1)ν̃−1 = ϕ(2), and ν̃(h(1)) = h(2). We

point out that the set of elements of AutC[u,u−1]-alg(L) fixing PS
+ can be identified

with AutC[u]-alg(PS
+) by restricting to PS

+.

8.4.2 Quasi-trigonometric r-matrices. In [Kho+08; PS08] the authors study r-
matrices of the form

vγ

u− v
+ p(u, v) for some p ∈ (g⊗ g)[u, v], (8.104)

which they refer to as quasi-trigonometric r-matrices. In our approach, these are
exactly σ-trigonometric r-matrices ϱt for a classical twists t of δ◦|PS

+
, where σ = idg and

S = {α1, . . . , αn} in the notation of Subsection 4.2.6. In particular, Theorem 8.4.1 and
Remark 8.4.2 give a classification of said r-matrices, up to r(u, v) ∼ (φ̃(u)⊗ φ̃(v))r(u, v),
where φ ∈ AutC[u]-alg(g[u]) and φ̃ ∈ End(g)[u] is defined by φ(a)(u) = φ̃(u)a(u) for all
a ∈ g[u]. This classification was achieved using different methods in [PS08].

We note that e.g. for g = sln(C) it can be shown that all idg-trigonometric r-matrices
are quasi-trigonometric up to regular equivalence, by using Proposition 8.3.3 or using
the theory of maximal orders from [Sto91c]; see [AM21, Subsection 4.3]. However, it is
noted in [AM21, Subsection 4.2] that there are idg-trigonometric r-matrices which are
not regularly equivalent to quasi-trigonometric ones.

8.4.3 Lie bialgebra structures on g and constant r-matrices. Note that tQ is an
element of sS ⊗ sS for some Belavin-Drinfeld quadruple Q = ((Π+,Π−, ϕ), h) if and only
if Π+,Π− ⊆ S. The following theorem gives a classification of classical twists of the
restricted Lie bialgebra structure δ◦|sS or, equivalently, classical twists of δ◦ contained
in sS+ ⊗ sS+.
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Theorem 8.4.3.
For any S ⊆ Π and classical twist t ∈ sS ⊗ sS of δ◦ exists a Belavin-Drinfeld
quadruple Q = ((Π+,Π−, ϕ), h) such that Π+,Π− ⊆ S and t is regularly equivalent
to tQ via a regular equivalence that restricts to an automorphism of sS.

Proof. This follows by applying Theorem 8.4.1 for both δ◦|PS
+

and −δ◦|PS
−

under
consideration of the Cartan involution ω of L.

Remark 8.4.4.
Let Q(i) = ((Π(i)

+ ,Π
(i)
− , ϕ

(i)), h(i)) be a Belavin-Drinfeld quadruple such that
Π(i)

+ ,Π
(i)
− ⊆ S for i ∈ {1, 2}. Then Proposition 8.3.3 immediately implies that tQ(1)

and tQ(2) are regularly equivalent via a regular equivalence fixing sS if and only if
there exists an automorphism ν of the Dynkin diagram of L such that ν̃(S) = S,
ν̃(Π(1)

± ) = Π(2)
± , ν̃ϕ(1)ν̃−1 = ϕ(2), and ν̃(h(1)) = h(2). We point out that all inner

automorphisms of sS are restrictions to sS of elements of AutC[u,u−1]-alg(L) fixing sS,
but, in general, not every outer automorphism of sS is of this form. Nevertheless,
if σ and S are chosen as in Subsection 8.4.4 below, every automorphism of sS
arises as the restriction of an element of AutC[u,u−1]-alg(L) fixing sS.

8.4.4 Constant quasi-triangular r-matrices. Assume that σ = idg and note that in
this case g = sS for S = {α1, . . . , αn} in the notation of Subsection 4.2.6. Lemma 5.4.4
states that r ∈ g⊗ g satisfies r + τg(r) = γ and CYB(r) = 0 if and only if

vγ

u− v
+ r (8.105)

is an idg-trigonometric r-matrix. Indeed, put u = exp(x), v = exp(y) and use the
second part of said Lemma. In other words, r is a quasi-triangular constant r-matrix
satisfying r + τg(r) = γ if and only if t := r − γ+

0 − γH/2 is a classical twist of δ◦|g.
Therefore, they are classified, up to r ∼ (φ⊗ φ)r for φ ∈ AutC-alg(g), by Theorem 8.4.3
and Remark 8.4.4.
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Rational r-matrices

Let g be a finite-dimensional, simple, complex Lie algebra with Killing form K and
Casimir element γ. We have seen in Theorem 6.2.1 that a normalized formal r-matrix,
whose associated curve is a cuspidal Weierstraß cubic, is gauge equivalent to a rational
r-matrix, i.e. an r-matrix of the form

rt := rYang + t for rYang = γ

x− y
and t ∈ (g⊗ g)[x, y]. (9.1)

In Subsection 5.4.5, we have seen that these r-matrices correspond to classical twists
of the standard Lie bialgebra cobracket ∂rYang of g[z] in the sense that rt is a rational
r-matrix if and only if δt := ∂rt defines a Lie bialgebra cobracket on g[z].

This chapter is dedicated to the study of rational r-matrices. For this purpose, we
fix a triangular decomposition g = n+ ⊕H⊕ n+, let (L̂(g, idg), Ĥ,Π = {α0, . . . , αn},Π∨)
be the realization constructed in Subsection 4.2.6 and ((g[z, z−1], K−1), g[z],Wt) be the
Manin triple associated to a classical twist t of δ in Theorem 5.4.12.

9.1 Explicit geometrization

We begin by presenting an explicit construction of the geometric data of a rational
r-matrix. Our approach differs slightly from the one in [BG18], since we use the theory
of maximal subalgebras of L(g, idg) = g[z, z−1] commensurable with a Boral subalgebra
from Subsection 4.2.5 instead of the theory of maximal orders from [Sto91b; Sto91c].

9.1.1 Construction of the geometric data associated to rational r-matrices. Let
r = rt be a rational r-matrix and write W = Wt. The subalgebra W ⊆ g[z, z−1] is
commensurable with W0 = z−1g[z−1], so W is also commensurable with the standard
Borel subalgebra B− := H⊕ n− ⊕ z−1g[z−1] of g[z, z−1]. Therefore, Proposition 4.2.9
implies that φ(W) ⊆ P

(i)
− for some i ∈ {0, . . . , n}, where P

(i)
− ⊆ g[z, z−1] is the standard

parabolic subalgebra to {0, . . . , n} \ {i} and ψ ∈ AutC[z,z−1]-alg(g[z, z−1]). Note that the
orthogonal complement of a linear subspace V ⊆ L with respect to K0 coincides with
zV ⊥, where here and henceforth (·)⊥ denotes the orthogonal complement with respect
to K−1; see Lemma 4.2.1. Using Proposition 4.2.9.(2) yields

z−2C[z−1]W ⊆W⊥ = W. (9.2)

In particular, W is a torsion-free Lie algebra over C[z−2, z−3].
Let X be defined as the gluing of C := Spec(C[z]) and U := Spec(C[z−2, z−3]) along

Spec(C[z, z−1]). Then X is a projective curve of arithmetic genus one with smooth
locus C and cuspidal singular closed point s := (z−2, z−3) ∈ U ⊆ X.

Let W be the sheaf of Lie algebras on U defined by W. Since the multiplication
W ⊗C[z] C[z, z−1] → g[z, z−1] is an isomorphism, we can glue g ⊗ OC and W along
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U∩V− = Spec(C[z, z−1]) to obtain a coherent sheaf of Lie algebras A onX. In particular,
A |C ∼= g⊗ OC and A |U ∼= W . The Mayer-Vietoris sequence and g[z, z−1] = g[z]⊕W
implies that h0(A ) = 0 = h1(A ). Put p := (z) ∈ C and let c : ÔX,p → C[[z]]
and ζ : Âp → g[[z]] be the isomorphisms induced by Γ(C,OX) ∼= C[z] ⊆ C[[z]] and
Γ(C,A ) ∼= g[z] ⊆ g[[z]] respectively. We have constructed a geometric g-lattice model
((X,A ), (p, c, ζ)).

9.1.2 The comparison theorem. The following theorem verifies that the geometric
datum constructed from a rational r-matrix in the last subsection is indeed the geometric
datum of said r-matrix. It is a variation of [BG18, Theorem 5.3].

Theorem 9.1.1.
Let ((X,A ), (p, c, ζ)) be the geometric datum constructed from the rational r-
matrix r = rt in Subsection 9.1.1. Then:
(1) T((X,A ), (p, c, ζ)) = (C[z−2, z−3], g(r)).
(2) ((X,A ), (C, dz)) is the geometric CYBE model of r, where dz is understood

as global Rosentlicht regular 1-form on X.
(3) The geometric r-matrix ρ of ((X,A ), (C, dz)) satisfies ρ|C×C = r.

Proof. It is easy to see that T((X,A ), (p, c, ζ)) = (C[z−2, z−3],W) and the identity
W = g(r) actually holds almost by construction, proving the first part of the claim.
The remainder is now a consequence of Theorem 3.3.3.

9.2 Structure theory

It was already noticed in [BD83a] that the classification of rational r-matrices for
g = sln(C) includes the problem of classifying commuting matrices up to simultaneous
similarity. This problem is known to be representation wild and as such hopeless to
solve in an appropriate sense. However, in this section we present structure theoretical
results about ration r-matrices based on the work of Stolin in [Sto91b; Sto91c; Sto95].

9.2.1 Prelude: maximal bounded subalgebras up to polynomial equivalence.
Let us begin by deriving the theory of maximal bounded subalgebras of g[z, z−1] used
in [Sto95] from the results in Subsection 4.2.5. It is easy to see that a subalgebra
A ⊆ g[z, z−1] is commensurable with

B+ := H⊕ n+ ⊕ zg[z] (resp. B− := H⊕ n− ⊕ z−1g[z−1]) (9.3)

if and only if it is positively (resp. negatively) bounded, that is zkg[z] ⊆ A ⊆ z−kg[z]
(resp. z−kg[z−1] ⊆ A ⊆ zkg[z−1]) for some k ∈ N0. In particular, Theorem 4.2.9
states that for a negatively bounded A ⊆ g[z, z−1] exists φ ∈ Innad(g[z, z−1]) such that
A ⊆ φ(P(i)

− ) for some i ∈ {0, . . . , n}. Using Theorem 4.1.9, we can write φ = b+wb−,
where w is an element of the Weyl group W associated to g[z, z−1] and b+(g[z]) = g[z]
as well as b−(P(i)

− ) = P
(i)
− . In particular, b−1

+ (A) ⊆ w(P(i)
− ) and we obtain the following

result.
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Lemma 9.2.1.
For any negatively bounded subalgebra A ⊆ g[z, z−1] exist φ ∈ AutC[z]-alg(g[z]),
i ∈ {0, . . . , n}, and w ∈ W such that φ(A) ⊆ w(P(i)

− ).

Let Φ be the root system of (L̂(g, idg), Ĥ,Π,Π∨) and

HR := {h ∈ H | α(h) ∈ R for all α ∈ Φ}. (9.4)

For any h ∈ HR ⊕Cc⊕Rd ⊆ Ĥ = H⊕Cc⊕Cd (see Subsection 4.2.2), we can consider
the subalgebra

Ph
− :=

⊕
α∈Φ
α(h)⩽0

g[z, z−1]α ⊆ g[z, z−1]. (9.5)

Then, w(g[z, z−1]α) = g[z, z−1]w(α) for all α ∈ Φ implies w(Pw(h)
− ) = Ph

−. Furthermore,
P

(i)
− = Phi

− holds, where h0, . . . , hn ∈ HR⊕Rd are uniquely determined by the conditions
αj(hk) = δjk/kj for j, k ∈ {0, . . . , n} and k0, . . . , kn are defined in Lemma 4.2.4. In
particular, h0 = d. The set {h0, . . . , hn} consists exactly of the vertices of the simplex

Σ := {h ∈ HR ⊕ Rd | αi(h) ∈ R⩾0, i ∈ {0, . . . , n}} . (9.6)

Lemma 9.2.2 states that for any negatively bounded subalgebra A ⊆ g[z, z−1] exists
φ ∈ AutC[z]-alg(g[z]), i ∈ {0, . . . , n}, and w ∈ W such that φ(A) ⊆ P

w(hi)
− .

Assume that g[z]+A = g[z, z−1]. Then g[z]+P
w(hi)
− = g[z, z−1] forces −α0(w(hi)) ⩽ 0.

There exists an element w′ in the Weyl group of g with respect to the Cartan subalgebra
H ⊆ g such that αi(w′w(hi)) ⩾ 0 for all i ∈ {1, . . . , n}, where we consider w′ as an
element of the Weyl group of g[z, z−1]. Using w(d) − d ∈ H ⊕ kc and α0w

′ = α0, we
see that αi(hj) ⩾ 0 for all i ∈ {0, . . . , n}. In particular, the image of hj under the
canonical projection Ĥ→ H⊕ Cd is a vertex of the simplex Σ. Therefore, w′w(hj) ∈
{h0, . . . , hn} + Cc for all j ∈ {0, . . . , n}. Since Ph+λc

− = Ph
− for all h ∈ HR ⊕ Rd and

λ ∈ C, we obtain the following result.

Lemma 9.2.2.
For all negatively bounded subalgebras A ⊆ g[z, z−1] such that g[z] + A = g[z, z−1]
exist φ ∈ AutC[z]-alg(g[z]) and i ∈ {0, . . . , n} such that φ(A) ⊆ P

(i)
− .

It was observed in [Sto95] that Lemma 9.2.2 admits a geometric counterpart. Let us
identify P1

C as the gluing of U = Spec(C[z]) and V = Spec(C[z−1) along Spec(C[z, z−1])
and Ph

− be the sheaf of Lie algebras on P1
C defined by gluing the free C[z]-Lie algebra

g[z] with the free C[z−1]-Lie algebra Ph
− along g[z, z−1] for any h ∈ HR ⊕ Cc ⊕ Rd.

Moreover, we write P(i)
− := Phi

− for any i ∈ {0, . . . , n}.
Let L be any locally free sheaf of Lie algebras on P1

C, which is weakly g-locally free
on U . Then, Γ(U,L ) = g[z] up to isomorphism of sheaves of Lie algebras by virtue
of Theorem 6.1.1. Hence, h0(L ), h1(L ) < ∞ implies that Γ(V,L ) ⊆ g[z, z−1] is a
negatively bounded subalgebra. Application of Lemma 9.2.1 and Lemma 9.2.2 yields
the following result.



152 Chapter 9 Rational r-matrices

Lemma 9.2.3.
Any locally free sheaf L of Lie algebras on P1

C, which is weakly g-locally free on
U , is isomorphic to a subsheaf of Lie algebras of Ph

− for some h ∈ HR ⊕ Rd.
Furthermore, if h1(L ) = 0, L is isomorphic to a subsheaf of Lie algebras of P(i)

−
for some i ∈ {0, . . . , n}.

9.2.2 Proof of Drinfeld’s conjecture about rational r-matrices. Lemma 9.2.2 states
that for any classical twist t of ∂rYang, up to polynomial equivalence, Wt ⊆ P

(i)
− for

some i ∈ {0, . . . , n}. Therefore, the process of reconstructing the rational r-matrix rt
from Wt (as in the proof of Theorem 5.3.2) combined with Wt ⊆ P

(i)
− ⊆ zg[z−1] implies

that the total degree of t is at most one. This is Stolin’s proof from [Sto91b; Sto91c] of
the following conjecture by Drinfeld.

Theorem 9.2.4.
Let t ∈ (g⊗ g)[x, y] be a classical twist of ∂rYang, i.e. rt is a rational r-matrix.
Then t is polynomially equivalent to a classical twist of ∂rYang of total degree at
most one.

9.2.3 An algebro-geometric reduction. Let ((X,A ), (p, c, ζ)) be the geometric CYBE
datum of a rational r-matrix r = rt from Theorem 9.1.1. The inclusion Γ(X \{p},A ) ∼=
Wt ⊆ P

(i)
− is equivalent to A ⊆ ν∗P

(i)
− , where ν : P1

C → X is the canonical map.
Note that g[z, z−1] = g[z] ⊕Wt and Wt ⊆ P

(i)
− is equivalent to the identity P

(i)
− =

(g[z] ∩P
(i)
− )⊕W. Using H0(P(i)

− ) = g[z] ∩P
(i)
− , we arrive at

Γ(U−,A )⊕ H0(P(i)
− ) = Wt ⊕ H0(P(i)

− ) = P
(i)
− = Γ(U−,P

(i)
− ). (9.7)

This gives a defining algebro-geometric condition for rational r-matrices, which was
originally found in [Sto95].

9.2.4 Reduction to a finite-dimensional problem. Let rt be a rational r-matrix
such that Wt ⊆ P

(i)
− for some i ∈ {0, . . . , n}. This inclusion can be used to reduce the

problem of classifying rational r-matrices to a finite-dimensional problem. The bilinear
form K−1 (see Lemma 4.2.1) induces a non-degenerate invariant bilinear form on the
finite-dimensional reductive Lie algebra p(i) := P

(i)
− /P

(i),⊥
− and (p(i), a(i),wt) is a Manin

triple, where a(i) is the image of g[z] ∩P
(i)
− under the canonical projection P

(i)
− → p(i)

and wt := Wt/P
(i),⊥
− . Here, we used P

(i),⊥
− ⊆Wt,⊥ = Wt ⊆ P

(i)
− and (9.7).

Proposition 9.2.5.
The map rt 7→ wt := Wt/P

(i),⊥
− defines a bijection between rational r-matrices rt

such that Wt ⊆ P
(i)
− and subalgebras w ⊆ p(i) := P

(i)
− /P

(i),⊥
− such that (p(i), a(i),w)

is a Manin triple, where a(i) is the image of g[z] ∩P
(i)
− in p(i).
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Proof. We have already discussed above that the assignment is well-defined, so it
remains to provide an inverse. Let (p(i), a(i),w) be any Manin triple. Since P

(i)
− can

be identified with p(i) ⊕P
(i),⊥
− as a vector space, we can identify A := w⊕P

(i),⊥
−

with a subalgebra of P(i)
− . It is straight forward to show that (g[z, z−1], g[z],A) is

a Manin triple and P
(i),⊥
− ⊆ A immediately implies that A is commensurable with

z−1g[z−1], so A = Wt for some rational r-matrix rt by virtue of Theorem 5.4.12. It
is easy to see that this assignment is inverse to rt 7→ wt, concluding the proof.

9.2.5 Stolin pairs. Let p
(i)
+ ⊆ g be the standard parabolic Lie algebra of g to

{1, . . . , n} \ {i} for any i ∈ {0, . . . , n}. In particular, p(0)
+ = g. A Stolin pair (l, B) of

index i ∈ {0, . . . , n} consists of a Lie subalgebra l ⊆ g, satisfying g = l + p
(i)
+ , equipped

with a skew-symmetric bilinear form B : l× l→ C such that

B([a, b], c) +B([c, a], b) +B([b, c], a) = 0 (9.8)

for all a, b, c ∈ l and B defines a non-degenerated bilinear form on l∩ p(i)
+ . We point out

that, in the language of Lie algebra cohomology, (9.8) means that B is a 2-cocycle on l.
We say that αi ∈ Π is singular if there exists an automorphism ν of the Dynkin

diagram of g[z, z−1] which maps αi to α0. This is equivalent to ki = 1 for k0, . . . , kn
as given in Lemma 4.2.4; see Figure 4.2. For instance, every root in Π is singular for
g = sln(C). For such a simple root, ν̃ induces an isomorphism

p(i) := P
(i)
− /P

(i),⊥
−
∼= g[ϵ]/ϵ2g[ϵ] ∼= g⊕ ϵg. (9.9)

This isomorphism identifies a(i) with p
(j)
+ ⊕ ϵp

(j),⊥
+ , where ν(α0) = αj , and equips g⊕ ϵg

with the non-degenerate invariant bilinear form

Kϵ(a0 + ϵaϵ, b0 + ϵbϵ) := K(a0, bϵ) +K(b0, aϵ) for all a0, aϵ, b0, bϵ ∈ g. (9.10)

Therefore, the assignment t 7→ wt defined in Proposition 9.2.5 yields a bijection between
rational r-matrices rt such that Wt ⊆ P

(i)
− and Manin triples (g⊕ ϵg, p(j)

+ ⊕ ϵp
(j),⊥
+ ,w).

Let (g⊕ϵg, p(j)
+ ⊕ϵp

(j),⊥
+ ,w) be any Manin triple and w0 := pr0(w) for pr0 : g⊕ϵg→ g

defined by a0 + ϵaε 7→ a0. Note that w ⊆ w0⊕ ϵg implies w = w⊥ ⊇ (w0⊕ ϵg)⊥ = ϵw⊥
0 .

Hence, dim(w0)+dim(w⊥
0 ) = dim(g) = dim(w) implies that Ker(pr0|w) = w∩εg = εw⊥

0 ,
so there exists a unique fw : w0 → g/w⊥

0 such that

w/ϵw⊥
0 = {a+ ϵfw(a) | a ∈ w0} ⊆ w0 ⊕ ϵ(g/w⊥

0 ). (9.11)

We write Bw(a, b) := K(fw(a), b) for all a, b ∈ w0. The following result allows the
calculation of all rational r-matrices in low dimensions; see [Sto91b; Sto91c] for details.

Proposition 9.2.6.
Let i ∈ {0, . . . , n}, ν be an automorphism of the Dynkin diagram which maps αi
to α0, and put αj := ν(α0). The assignment rt 7→ (wt

0, Bwt) defines a bijection
between rational r-matrices rt satisfying Wt ⊆ P

(i)
− and Stolin pairs of index j.
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Proof. If suffices to prove that(
g⊕ ϵg, p(j)

+ ⊕ ϵp
(j),⊥
+ ,w

)
7−→ (w0, Bw) (9.12)

defines a bijection of Manin triples
(
g⊕ ϵg, p(j)

+ ⊕ ϵp
(j),⊥
+ ,w

)
and Stolin pairs (l, B)

of index j. We first prove that this assignment is well-defined, i.e. that (w0, Bw) is
indeed a Stolin pair of index j. Since w is Lagrangian, w/ϵw⊥

0 is isotropic, so

0 = Kϵ(a+ ϵfw(a), b+ ϵfw(b)) = B(a, b) +B(b, a) for all a, b ∈ w0. (9.13)

In particular, B is skew-symmetric. The fact that w is a Lie algebra and ϵw⊥
0 ⊆ w

is an ideal implies that

[a, b] + ϵfw([a, b]) = [a+ ϵfw(a), b+ ϵfw(b)] = [a, b] + ϵ([fw(a), b] + [a, fw(b)]),

for all a, b ∈ w0. In particular, fw([a, b]) = [fw(a), b] + [a, fw(b)] holds. Combining
this with the invariance of K shows

Bw([a, b], c) = K(fw([a, b]), c) = K([fw(a), b] + [a, fw(b)], c) = Bw(a, [b, c]) +Bw(b, [c, a]).

To conclude that (w0, Bw) is a Stolin pair of index j, it remains to show that Bw is
non-degenerate if restricted to w0 ∩ p(j)

+ , since w0 + p
(j)
+ = g is immediately implied

by g⊕ ϵg =
(
p

(j)
+ ⊕ ϵp

(j),⊥
+

)
⊕w. Let a ∈ w0 ∩ p

(j)
+ satisfy Bw

(
a,w0 ∩ p

(j)
+

)
= {0}.

This is equivalent to

fw(a) ∈
(
w0 ∩ p

(j)
+

)⊥
/w⊥

0 =
(
w⊥

0 + p
(j),⊥
+

)
/w⊥

0 = p
(j),⊥
+ /

(
w⊥

0 ∩ p
(j),⊥
+

)
= p

(j),⊥
+ ,

where we used w⊥
0 ∩ p

(j),⊥
+ =

(
w0 + p

(j)
+

)⊥
= g⊥ = {0}. Since a+ ϵfw(a) ∈ w/ϵw⊥

0 ,
the identity w ∩

(
p

(i)
+ ⊕ ϵp

(i),⊥
+

)
= {0} implies a = 0.

Now we have to construct the inverse assignment. Let P := (l, B) be a Stolin
pair of index j and fP := l→ g/l⊥ defined by B. Then

wP := {a+ ϵfP (a) | a ∈ l} ⊕ ϵl⊥ ⊆ l⊕ ϵg (9.14)

defines a Lie subalgebra of g ⊕ ϵg. Similar considerations as above show that(
g⊕ ϵg, p(j)

+ ⊕ ϵp
(j),⊥
+ ,wP

)
is a Manin triple and this defines the inverse of (9.12).

Remark 9.2.7.
(1) There are versions of Stolin pairs admitting a reduction in the vein of Proposi-

tion 9.2.6 for non-singular roots in Π; see [Sto91c]. However, we will not go
into this depth here.

(2) In some cases it is possible to assess that rational r-matrices are polynomially
equivalent by studying relations between the finite-dimensional data determin-
ing them in the sense of subsections 9.2.3 or 9.2.6. For instance, in the case
of g = sln(C), two rational r-matrices r1 and r2 determined by Stolin pairs
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(l1, B1) and (l2, B2) of the same class j are polynomial equivalent if there exists
g ∈ SLn(C) such that Adg

(
p

(j)
+

)
= p

(j)
+ , Adg(l1) = l2 and

B2(Adg(a),Adg(b))−B1(a, b) = f([a, b]) for all a, b ∈ l1; (9.15)

see [Sto91b]. The Equation (9.15) can be reformulated as: B2 ◦ (Adg×Adg)
and B1 define the same class in the Lie algebra cohomology group H2(l1,C).

9.2.6 Constant triangular r-matrices. Lemma 5.4.4 states that if rt is a rational
r-matrix for t ∈ g⊗ g, t is a skew-symmetric constant r-matrix, i.e. t+ τg(t) = 0 and
CYB(t) = 0. Furthermore, Wt ⊆ g[z−1] in this case. Thus, Proposition 9.2.6 states
that skew-symmetric constant r-matrices are in bijection with Stolin pairs of index
0. Note that a Stolin pair of index 0 is exactly a quasi-Frobenius Lie subalgebra of g.
In particular, classifying quasi-Frobenius Lie subalgebras of g yields a classification of
skew-symmetric constant r-matrices.

9.2.7 Example: rational r-matrices over g = sl2(C). Let us list all rational r-
matrices for g = sl2(C) up to polynomial equivalence. First of all, we have the trivial
rational r-matrix: Yang’s r-matrix

rYang(x, y) = 1
x− y

(
1
4

(
1 0
0 −1

)
⊗
(

1 0
0 −1

)
+ 1

2

(
0 1
0 0

)
⊗
(

0 0
1 0

)
+ 1

2

(
0 0
1 0

)
⊗
(

0 1
0 0

))
.

Since two-dimensional Lie algebras are automatically solvable, there is only one two-
dimensional subalgebra of sl2(C) up to conjugation, namely the standard Borel sub-
algebra b+ of traceless upper triangular matrices. Quasi-Frobenius Lie algebras are
automatically even dimensional and H2(b+,C) = 0, so there is at most one non-trivial
rational r-matrix of class 0 up to polynomial equivalence; see part Remark 9.2.7.(2). It
is given by the formula

r(x, y) = rYang +
(

0 1
0 0

)
⊗
(

1 0
0 −1

)
−
(

1 0
0 −1

)
⊗
(

0 1
0 0

)
. (9.16)

It can be shown that a Stolin pair (l, B), where l is solvable, determines a solution
polynomially equivalent to a constant one; see the Proposition after [Sto91b, Lemma 4.4].
Therefore, a non-trivial Stolin pair (l, B) of index 1 automatically satisfies l = sl2(C).
Since Whitehead’s lemma implies H2(sl2(C),C) = 0, we again have at most one rational
r-matrix of this class. It is given by the formula

r(x, y) = rYang +
(

0 −1/2
0 0

)
x⊗

(
1 0
0 −1

)
−
(

1 0
0 −1

)
⊗
(

0 −1/2
0 0

)
y. (9.17)

Remark 9.2.8.
A list of all rational r-matrices for g = sl3(C) can be found in [Sto91a; Sto91b].
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9.2.8 Comparison of formal and polynomial equivalence. As for σ-trigonometric
r-matrices, we have introduced two different notions of equivalence for rational r-
matrices: formal and polynomial equivalence. At first glance, polynomial equivalence
looks stronger than the formal one, but the geometric theory implies that this is not
the case.

Proposition 9.2.9.
Two rational r-matrices r1 and r2 are formally equivalent if and only if there
exists λ ∈ C× such that r1(x, y) and λr2(λx, λy) are polynomially equivalent.

Proof. Let (λ,w, φ) be a formal equivalence of r1 and r2. Since both r1 and r2 are
normalized and skew-symmetric, λ = w′ ∈ C×; see Lemma 2.1.6.(4). For i ∈ {1, 2},
let ((X,Ai), (p, c, ζ)) be the geometric datum of ri constructed in Section 9.2.
Lemma 3.1.1 states that w defines an automorphism f of X fixing p and φ defines
an isomorphism ψ : A1 → f∗A2. Let C be the smooth locus of X. By construction,
Γ(C,A1) ∼= g[z] ∼= Γ(C,A2), so ψ induces an C[z]-linear automorphism of g[z].
Application of Lemma 3.3.2 combined with Theorem 9.1.1.(3) now concludes the
proof.
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