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Kurzfassung

In dieser Arbeit wird die Streuung von Licht an pulverförmigen Oberflächen betrachtet
und hat dabei einen Fokus auf der kohärenten Doppelstreuung, die eine negative Polarisa-
tion und einen Intensitätsanstieg bei der Rückstreuung erzeugt. Die beiden Effekte werden
Oppositionsphänomene genannt. Das für eine theoretische Analyse zu lösende elektrody-
namische Problem wird numerisch mithilfe des diskontinuierlichen Galerkin-Verfahrens im
Zeitbereich auf Hochleistungsrechnern gelöst. Simuliert wird dabei die Streuung von un-
polarisiertem Licht an den Strukturen, die aus eng angeordneten Teilchen bestehen. Dazu
gehören binäre Kugeln, Würfel, unregelmäßige Teilchen und dicht gepackte Schichten aus
bis zu zehn unregelmäßigen Teilchen. Diese bestehen aus absorbierendem Material und
sind dabei viel größer als die Wellenlänge des einfallenden Lichts. Simulationen zeigen,
dass die Strukturen einiger weniger unregelmäßiger Teilchen in der Lage sind, den neg-
ativen Polarisationseffekt zu klären, der bei natürlichen, pulverartigen Oberflächen und
Laborproben beobachtet wird. Simulationen für regelmäßige Formen mit kontrollierten
Geometrien wie Würfel, facettierte Kugeln und Ellipsoide liefern aufschlussreiche Erk-
lärungen, welche Rolle die Geometrie und Packungsdichte des Streusystems für die Op-
positionsphänomene spielen. Sie zeigen, dass der Interferenz-Mechanismus empfindlich
auf die Geometrie der Streuer reagiert und nicht nur zu einer negativen Polarisation,
sondern auch zu einer Verstärkung der positiven Polarisation oder sogar zu keiner Polar-
isation bei der Rückstreuung führen kann. Selbst zwei zufällig orientierte unregelmäßige
Teilchen zeigen eine schwache negative Polarisation. Im Gegensatz dazu erzeugen einzelne
absorbierende Teilchen keine Polarisation, was den zuvor vorgeschlagenen Mechanismus
der Doppelstreuung bestätigt. Wenn man der Struktur mehr Teilchen hinzufügt, erhöht
sich der relative Beitrag der Doppelstreuung, was die negative Polarisation bei der Rück-
streuung verstärkt. Numerische Berechnungen zeigen keine direkte Korrelation zwischen
negativer Polarisation und Intensitätsanstieg. Eine Abflachung der Teilchengeometrien
in Lichteinfallsrichtung in einer Schicht kann die negative Polarisation verringern oder
sogar aufheben. Gleichzeitig erhöht sich die Intensität bei der Rückstreuung aufgrund
des höheren Beitrags der Streuung von einem einzelnen Teilchen.
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Abstract

In this work, the scattering of light from powder-like surfaces is considered with focus on
coherent double scattering mechanism, which produces negative polarization and an in-
tensity surge at backscattering. Both effects are called opposition phenomena. To analyze
them theoretically, a full-wave electrodynamic problem is solved numerically using the
discontinuous Galerkin time domain method (DGTD) and high performance computing.
Unpolarized light scattering from structures consisting of closely positioned particles is
simulated. These include binary spheres, cubes, random irregular particles and densely
packed layers of up to ten irregular particles. The particles consist of absorbing mate-
rial and have sizes much larger than the wavelength of incident light. Simulations show
that the structures of a few irregular particles are able to the reproduce negative polar-
ization effect, that is observed for natural powder-like surfaces and laboratory samples.
Simulations for regular shapes with controlled geometries such as cubes, faceted spheres
and ellipsoids provided insightful explanation of the role played by geometry and packing
density of the scattering system on the opposition phenomena. They indicate that the
interference mechanism is sensitive to the geometry of the scatterers and can result not
only in negative polarization, but also, in enhancement of the positive polarization or even
no polarization at backscattering. Even two randomly oriented irregular particles show
a weak negative polarization. In contrast, single absorbing particles do not produce it,
which confirms double scattering mechanism suggested previously. Adding more particles
to the structure increases the relative contribution of double-scattering, which enhances
negative polarization near backscattering. Numerical computations did not confirm a di-
rect correlation between negative polarization and intensity surge. Flattening of particle
geometries in the direction of incident light in a layer can reduce or even eliminate the
negative polarization. At the same time, this increases the intensity at backscattering due
to dominance of single scattering.
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Introduction
1

Light scattered by the objects in nature is first of all this, what we perceive with our eyes
to recognize our surroundings, characterize and explore the environment around us. Very
simply, without it we can not see.

This work focuses on light scattered from discrete objects or particles and powder-
like surfaces. In general, light scattering in discrete random media has been studied and
analyzed in different scientific areas like optics and photonics [1–3], biology and medicine
[4–8] and astronomy for planetary regoliths and Solar System bodies [9–14], cosmic dust
[15,16] and optical remote sensing of Earth [17,18]. The goal of this thesis is solving the
light scattering problem for optical remote sensing applications with a numerical method.
Planetary regoliths are composed of randomly oriented, densely packed and irregularly
shaped particles. Optical measurements are used here to get Stokes parameters of light
scattered from different objects to study their scattering properties. Polarimetric and
photometric observations of light scattered by these particles deliver information about
the physical properties and geometric topologies of the scattering system [9,12,13,19–21].
This information can be derived from intensity and polarization characteristics. The
intensity and polarization can be represented as functions of the scattering angles. At
this point it is worthy to define the scattering angle θ (see figures 1.2 and 1.3) as the angle
constructed between the direction of the incoming electromagnetic wave to the direction
of observation. In some literature the phase angle α is used instead of the scattering
one. There is only one difference between them that the phase angle takes the opposite
direction of the incoming wave into account instead of the forward one (α = π − θ). An
example of a real photopolarimetric observation from the Moon is shown in figure 1.1.
The curves are plotted with the phase angle α. The plots in figure 1.1 show negative
polarization and intensity surge obtained near and at the backscattering direction.
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Figure 1.1: Phase angle curves of (a) normalized intensity and (b) linear polarization of
the Moon. The plots are taken from Fig. 3. in the reference [22].
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Figure 1.2: Light scattered from single uniquely shaped particle. The scattering angle θ
is between the positive z-direction and the scattering one (θ ∈ [0◦, 180◦]).
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Figure 1.3: Light scattered from monolayer of ten uniquely shaped particles. The scat-
tering angle θ is between the positive z-direction and the scattering one (θ ∈ [0◦, 180◦]).

The linear polarization is described by P = (I⊥ − I‖)/(I⊥ + I‖), where I‖ and I⊥ are
intensities measured in different perpendicular planes. Both effects are common in remote
sensing observations and laboratory measurements [23]. They are called opposition or
backscattering phenomena and demonstrated in figures 1.4 and 1.5, respectively. Negative
polarization and intensity surge can correlate with each other under some conditions and
sometimes they do not show remarkable relationship between them [9].

The intensity and polarization of any scattering system can be retrieved from its
scattering matrix (if it is known), which in general, describes the system answer to elec-
tromagnetic waves illumination. This scattering matrix is gained from the Stokes param-
eters [24, 25] regarding to the incident and scattered light, which in turn, is calculated
by solving Maxwell equations [24]. Particles sizes [26–28], particles size distribution and
packing density [29], real and complex refractive index [30] and surface roughness [31–33]
can affect the light scattering behavior of the studied system for all directions or some
of them in different ways. As example, some affected characteristics here at backscatter-
ing are the amplitude of negative polarization, the existence and grade of the intensity
surge, as well as the correlation between intensity surge and negative polarization and
the inversion angle where the polarization turn over from the positive side to the negative
one [9].
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Chapter 1. Introduction

In order to consider the problem of light scattering from a system, a model that
can be studied theoretically is needed. Analytical solutions are restricted to simple or
well known geometries. An analytical solution for agglomerates of randomly distributed
irregular particles does not exist. This is due to the diverse packing density, large scale
complex geometry and material composition of the scattering objects. What adds more
complexity to the scattering problem is the near field interaction between the closely
neighbored particles, which involve further decisive contribution to the scattered field.
Therefore, in order to analyze the observational photopolarimetric data and for solving
the inverse problem, a clear understanding of the mechanisms that are responsible for
the formation of negative polarization and the intensity surge is essential. This work
contributes to explaining the origin of the negative polarization, gives clarification of the
existence of both intensity surge and negative polarization and systematically examines
the correlation between them.

Considering the powders regarding to their refractive index, and correspondingly,
their material, gives two categorizations of high and low absorbing particles and low and
high albedo, respectively. Figure 1.6 displays an example of a regolith sample returned
by a space mission from the asteroid Ryugy that has low albedo (0.044 to 0.050) [34,35].

Figure 1.6: low albedo regolith sample returned from the asteroid Ryugu by the space
mission Hayabusa2. The picture is adopted from reference [34].

For low or non-absorbing constituents the negative polarization obviously arises from
single scattering by particles lying on the surface [29], where increasing the packing density
enhances the negative polarization because of reducing the multiple scattering contribu-
tion. However, having high absorbing materials, which is the focus of this work, also
reduces the multiple scattering in such way that just the first few orders of scattering
are involved and can influence the opposition effects. The negative polarization and the
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intensity surge are observed in laboratory measurements for absorbing powders (e.g. [26]).
The negative polarization here seems to be produced by the double and not the single
scattering. This is demonstrated by approximate double scattering models that take into
consideration point scatterers with different single scattering features, for example Fres-
nel scatterers [36, 37], random distribution of electric dipoles [38] or small particles with
Rayleigh polarization phase functions [39].

A theoretical modeling of light scattering from powder-like structures, that mimic
the behavior of real powders, can provide reasonable answers and explanations for the
opposition phenomena. Controlling parameters of the model (like density, geometry, sur-
face roughness, orientation and refractive index of the particles) can deliver analyzable
results that support solving this complex problem. As currently there is no available
analytical solution for this, it can be only treated with numerical modeling. In many
scientific and industrial applications the numerical simulations become increasingly im-
portant and help to understand the underlying mechanisms of physical systems, predict
system behavior, engineer interesting geometries [40–42], design processes and optimize
systems without dealing with fabrication procedures and finally solve inverse problems.
Furthermore, when studying the dynamics of a physical system, its partial differential
equations (PDEs), which describe its behavior mathematically, need to be solved in space
and time.

Generally, there are two categorizations for numerical methods: Approximate and
numerically exact ones. For instance, Geometrical Optics approximation (GO) that be-
longs to the first classification [43–47] is simple and fast. It does not consider wave effects
that can not be ignored for investigating the origin of the negative polarization, espe-
cially, when the particles have the same scale of the wavelength of incident light. It is
used for studying light scattering by large particles. However, it has been improved for
single scattering by ice crystals in order to get approximated solutions close to the ones
obtained by exact numerical methods [48].

Solving the problem with full-wave exact numerical methods without approximations
gives more trustworthy results and in-depth conceptual clarification of the light backscat-
tering phenomena. A widely used one for electrodynamic computations in general is the
finite difference time domain method (FDTD) [49–51]. Here, the simulation domain gets
tessellated to get a structured grid. Such grids are not spatially flexible, especially, for
irregular or curvilinear geometries like the shapes considered in this work. A popular nu-
merical approach in the light scattering community is the Discrete Dipole Approximation
method (DDA) [52–54]. It has been developed to study light scattered from irregular
particles. Its principle bases on discretizing the illuminated object into small cubical
or non-cubical volumes (small dipoles). Then the electric field volume integral equation
in these scatterers is numerically solved [52]. There are available parallelized codes as
open source for DDA [55]. Nevertheless, the relative accuracy and computational perfor-
mance of DDA decrease for larger refractive indices of materials. As well, with increasing
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Chapter 1. Introduction

scatterer size, the computing time steeply grows. [53, 56]. The DDA method is also sen-
sitive to the resolution of the discretized small scatterers and their chosen shape. Thus,
discretization and shape errors can appear [52].

Also, the T-matrix method is widely used for light scattering computations [57].
Originally, it is suitable for dense clusters of spherical particles or sparse agglomerates
of irregular ones. Results gained by T-matrix approach for complex structured particles
have agreement with laboratory measurements [58]. However, this is not always the case
due to uncertainty in its numerical approach and the approximations of such realistic
models, as it is explained in the same paper. There are T-matrix method codes that
deal with electromagnetic scattering from nonspherical randomly oriented particles that
are rotationally symmetric and homogeneous [59]. There are also other parallel open
source public codes that can be run on high performance computing (HPC) platforms
(e.g. [60, 61]). In spite of that, this method becomes complicated if a scatterer has no
rotational symmetry and has random shape. Additionally, for some scattering objects with
large sizes, edges or surface roughness, T-matrix method becomes numerically unstable
[62]. Large packing density for irregular particles is also hardly possible. However, it has
been extended to simulate pairs of ellipsoids that lie in close neighborhood [63].

In this work, light scattering problems for different structures of particles of different
shapes with absorbing material are solved numerically to study the mechanisms respon-
sible for opposition phenomena. The Discontinuous Galerkin method in time domain
(DGTD) is applied [64–67]. This is a full-wave numerical approach allowing spatial flex-
ibility as it is a variant of finite element method (FEM) [68, 69]. Importantly, it can be
parallelized to run on high performance computers due to its compact numerical scheme
and local mathematical operations for each mesh element of the discretized simulation
domain. When dealing with large scale problems for powder structures having complex
geometry as a real model an efficient parallel code, that runs on HPC platforms is needed.
The used software is an in-house code based on the numerical scheme of Hesthaven and
Warburton [65] with further additional implementations by Grynko and Foerstner [66].

Studying the scattering from a single particle can help for understanding the scatter-
ing by a constitution of particles. However, the goal of this thesis is studying the optical
opposition phenomena of systems consisting of absorbing, closely packed, irregular par-
ticles that have sizes larger than the wavelength of the incident light, which is the case
for a lot of natural powders [24]. Additionally, simulations for regular shapes such as
cubes, faceted spheres and ellipsoids are done to investigate the influence of geometry on
opposition phenomena.
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Theoretical basis of light
scattering

2

Light scattering simulation is an electrodynamic problem, in which Maxwell’s equations
are solved. These are partial differential equations (PDEs) that describe the behavior
of the electromagnetic waves in space (r

[
m
]
is the space vector) over time t

[
s
]
. They

couple the electric E
[
V
m

]
and the magnetic H

[
A
m

]
fields with the magnetic and the electric

inductions B
[
V s
m2

]
, D

[
C
m2

]
, respectively [24,70,71]. The macroscopic Maxwell’s equations

are given as follows:

rot E(r, t) = −Ḃ(r, t)
rot H(r, t) = Ḋ(r, t) + J(r, t)
div D(r, t) = ρ(r, t)
div B(r, t) = 0

(2.1)

The vectors and matrices in this work are denoted with bold mathematical symbols. The
point over Ḃ(r, t) and Ḋ(r, t) denotes the time derivation, ρ

[
C
m3

]
is the volume electric

charge density, J
[
A
m2

]
is the vector of electric current density.

Because of the high complexity of the problem of light scattering by arbitrary shaped
and sized particles that build together powder-like structures with various distributions
and densities, this research is restricted to a material classification which is linear, time-
invariant and isotropic regarding the applied wavelengths of the incident electromagnetic
waves. The relative permittivity is spatial dependent εr(r) and it possesses a real value
for transparent particles and a complex value for the absorbing ones. The relative per-
meability µr = 1 characterizes non-magnetizable substances. The material properties are
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then described by the following equations:

D(r, t) = ε0εr(r)E(r, t)
B(r, t) = µ0µrH(r, t)
J (r, t) = κ(r)E(r, t)

(2.2)

ε0
[
As
V m

]
and µ0

[
V s
Am

]
denote the permittivity and permeability of vacuum, respectively.

κ(r) is the electrical conductivity
Before solving Maxwell equations additional assumptions have been taken into account
that there are no electric currents and no free electric charges in the investigated struc-
tures, i. e., J(r) = 0, ρ = 0. Considering these assumptions and using 2.2 in 2.1 yield the
following simplified form of Maxwell equations:

rot E(r, t) = −µ0Ḣ(r, t)
rot H(r, t) = ε0εr(r)Ė(r, t)

(2.3)

The illumination of the studied system is performed by a monochromatic electromagnetic
plane wave that propagates in z direction ( see figure 2.1). This means, all electric and
magnetic fields oscillate harmonically with the angular frequency ω = kc = 2πc/λ. With
the wave number k

[
m−1

]
, the speed of light c

[
m
s

]
and the wavelength λ

[
m
]
. Here, it is

worthy to define the near and far fields as they will be used in the following formulations
for calculating the scattering matrix. The near field is the field close to the surface of
the scatterer (|r| / λ) and the far field is the one, which is at least a few wavelengths far
away from the considered body (|r| � λ).

  

r

| r | ≫ λ≈ | r |    λ< 
Incident light

Scattered light

Scatterer

y zx
Figure 2.1: Geometry of light scattering from an object.
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Chapter 2. Theoretical basis of light scattering

After solving Maxwell equations, applying Fourier transformation to the calculated
near electric and magnetic fields in the time domain delivers them in the frequency do-
main (E(r, ω) and H(r, ω)). These near fields then get transformed to the far ones in the
next step. The reason of this is having the simulation domain as small as possible for
saving computational effort, as the far fields can be calculated from the near ones directly
without need to simulate for such big distances. Of course, it is possible to get the far
field directly without this transformation. However, the computational domain in this
case must be very large, which is redundant and not practical at all. Next, integrating
the obtained far fields over the volume of the scattering object or over an arbitrary regular
surface surrounding it yields the scattering properties of the scattering system.

In particular, when studying the light scattering for any system in the nature, the
measurable quantities in the observations or experiments are the field intensities, i.e.,
the squares of the distinct electric field components with their additions and differences
regarding to the planes that are parallel and perpendicular to the incident one. At this
point Stokes vector is defined as I(r, ω) = (I(r, ω),Q(r, ω),U(r, ω),V(r, ω))T [24, 25] to
describe the polarization state of monochromatic electromagnetic wave. Here I(r, ω) is
the total intensity, Q(r, ω) , U(r, ω) and V(r, ω) describe the axis, diagonal and circular
degree of polarization, respectively. Each parameter of the Stokes vector is proportional to
the sum or subtraction of the intensities of the electric field E (see the following equation
2.4). For the incident and scattered light, Stokes vector is given by [24,25]:

I(r, ω) = < E‖(r, ω)E∗‖(r, ω) + E⊥(r, ω)E∗⊥(r, ω) >
Q(r, ω) = < E‖(r, ω)E∗‖(r, ω)− E⊥(r, ω)E∗⊥(r, ω) >
U(r, ω) = < E‖(r, ω)E∗⊥(r, ω) + E⊥(r, ω)E∗‖(r, ω) >
V(r, ω) = j < E‖(r, ω)E∗⊥(r, ω)− E⊥(r, ω)E∗‖(r, ω) >

(2.4)

Where E‖ describes the electric field component that is parallel to the incidence plane
and E⊥ denotes the perpendicular one. The incident plane here is constructed by the
vector of light incidence and the normal vector of the scatterer’s surface. The spatially
dependent scattered fields (E‖sc, E⊥sc) involved in calculating Stokes vector are directly
coupled with the incident ones (E‖in, E⊥in) by the 2 × 2 amplitude scattering (Jones)
matrix S(r, ω). The following equation describes this relationship for a monochromatic
incident wave that propagates in z direction [24]:[

E‖sc(r, ω)
E⊥sc(r, ω)

]
= ejk(r−z)

−jkr

[
Sa(r, ω) Sb(r, ω)
Sc(r, ω) Sd(r, ω)

] [
E‖in(r, ω)
E⊥in(r, ω)

]
. (2.5)

This equation shows how to obtain the amplitude scattering matrix that describes the op-
tical properties of the system. The incident field is known and the scattered far field needs
to be calculated. As mentioned above, this can be attained by internal field integration
over the entire particle volume or by integrating the near field over an arbitrary virtual
surface around the particle. However, the surface integral delivers accurate results when
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increasing the refractive index of the structure [72], which is not the case for the volume
based one. This surface integration method is applied making use of the electromagnetic
equivalent theorem [73] for the purpose of transforming the near field amplitudes to the
far field ones. The scattered far electric field Esc(r, ω) belonging to the surface integral
in this case is given as:

Esc(r, ω) = ejkr k2

−jkr 4π n̂sc ×
‹
∂V

[n̂× E(ŕ, ω)− n̂sc × (n̂×H(ŕ, ω))]e(−jkn̂·r̂́ )d2ŕ. (2.6)

Here n̂sc is the unit vector showing in the direction of the scattered light, ∂V is the
arbitrary chosen integration surface around the particle, n̂ is the unit vector normal which
points outwardly to the surface. The entries of the matrix ψ(r, ω), which represents a
form of the amplitude scattering matrix S(r, ω), can be calculated from the electric and
magnetic fields E(r, ω), H(r, ω) by surface integration as follows:
[
ψα̂,x(r, ω)
ψβ̂,x(r, ω)

]
= k2

4π

‹
∂V

[
α̂ · n̂sc × [n̂× E(ŕ, ω)− n̂sc × (n̂×H(ŕ, ω))]
β̂ · n̂sc × [n̂× E(ŕ, ω)− n̂sc × (n̂×H(ŕ, ω))]

]
e(−jk n̂sc·ŕ )d2ŕ|Ein,x=1,Ein,y=0,

(2.7)

[
ψα̂,y(r, ω)
ψβ̂,y(r, ω)

]
= k2

4π

‹
∂V

[
α̂ · n̂sc × [n̂× E(ŕ, ω)− n̂sc × (n̂×H(ŕ, ω))]
β̂ · n̂sc × [n̂× E(ŕ, ω)− n̂sc × (n̂×H(ŕ, ω))]

]
e(−jk n̂sc·ŕ )d2ŕ|Ein,x=0,Ein,y=1,

(2.8)
where α̂ is the parallel unit vector to the scattering plane, as well β̂ is the perpendicular
one to the scattering plane (see figure 2 in [51] ). Both α̂ and β̂ fulfill the condition:

n̂sc = β̂ × α̂ (2.9)

we can obtain the amplitude scattering matrix S(r, ω) from ψ(r, ω) matrix as derived
in [51,72]:

[
Sa(r, ω) Sb(r, ω)
Sc(r, ω) Sd(r, ω)

]
=
[
ψα̂,y(r, ω) ψα̂,x(r, ω)
ψβ̂,y(r, ω) ψβ̂,x(r, ω)

] [
sin(ϕ) − cos(ϕ)
cos(ϕ) sin(ϕ)

]
. (2.10)

The spherical coordinates r = (r, θ, ϕ) are taken into account here in order to describe the
scattering in all directions. The elements of the amplitude scattering matrix get averaged
over the azimuth angle ϕ, thus, only the spatial dependency of θ remains for this matrix
S(θ, ω).
Consequently, the final field amplitudes represented in S(θ, ω) are transformed to the
intensity quantities for getting the 4 × 4 Mueller matrix (the scattering matrix) [24,
25]. The underlying reason for this transformation is studying the intensity and linear
polarization, that are attained from the scattering matrix and are the quantities obtained
by photopolarimetric observations and laboratory measurements. The scattering matrix

12



Chapter 2. Theoretical basis of light scattering

connects the incidence and scattering Stokes parameters as follows [24,25]
Isc(r, ω)
Qsc(r, ω)
Usc(r, ω)
Vsc(r, ω)

 = 1
k2r2


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44



Iin(r, ω)
Qin(r, ω)
Uin(r, ω)
Vin(r, ω)

 , (2.11)

where the entries of the scattering matrix (from S11 to S44) depend only on θ and ω.
The intensity is represented by the first element in the scattering matrix (S11) and the
polarization degree by (−S21/S11). Both intensity and polarization are plotted with the
scattering angles to evaluate the results of this work (see figures 1.5 and 1.4). As the
theoretical background of light scattering has been discussed in this chapter, the next
chapter explains how to solve the scattering problem numerically in an efficient way on a
high performance computational platform.

13



14



The Discontinuous Galerkin
Method in Time Domain
(DGTD)

3

The Discontinuous Galerkin method that is employed in this work is a very popular
mathematical approach. It is widely used in a plenty of industrial and scientific areas
like electrical and mechanical engineering, physics, chemistry, medicine and more (e.g.
[65–67,74–91]). In comparison to frequency domain methods, time domain methods allow
simulating short pulses with broad spectra in a single simulation. They have the advantage
of visualizing the behavior of the physical system and viewing the associated effects of it.
Hence, it is easier to understand or interpret its basic dynamics. This supports making
further decisions about system design, configuration, and mathematical formulation.

Choosing the DGTD method for performing the computations in this work is due
to the efficient parallelizability and scalability of the algorithm on HPC clusters. This is
because of the locality of the mathematical operations on the grid elements, i.e., Maxwell’s
equations are solved in each cell separately. Apart from this, the grid of the simulation
domain in this method is unstructured. As a consequence, this allows meshing densely
packed irregular shapes in an accurate way efficiently in comparison to the structured
meshes. This chapter describes the DGTD method briefly according to the references
[64–67].

3.1 Theoretical background and general formulation

The three-dimensional Maxwell’s equations in time domain (equations 2.3) can be ex-
pressed in a form of the conservation law:

Q(r)ξ̇(r, t) +∇ · F(ξ(r, t)) = 0 (3.1)
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3.2 Space discretization of the computational domain

Where r = xex+yey +zez is the local vector in space and Q(r) is the spatially dependent
matrix of material constants:

Q(r) =
[
ε(r) 0

0 µ(r)

]
,

where ε(r) = ε0εr(r) is the permittivity, µ(r) = µ0µr(r) is the permeability and ξ(r, t)
is a single six component vector of unknowns, namely, the electric and magnetic fields
E(r, t), H(r, t), respectively:

ξ(r, t) =
[
E(r, t)
H(r, t)

]
.

F(ξ) is the flux:

F(ξ) =


fx(ξ(r, t))
fy(ξ(r, t))
fz(ξ(r, t))

 ,

where fj(ξ(r, t)) is defined as:

fj(ξ(r, t)) =
[
−êj ×H(r, t)
+êj × E(r, t)

]
,

where êj representing the Cartesian unit vectors with j ∈ {x, y, z}. In the purpose of
solving Maxwell’s equations for a specific structure numerically, they need to be discretized
in space and time.

3.2 Space discretization of the computational domain

Generally, the simulation domain consists of the structure of interest and free space around
it, which can be vacuum, air or any material depending on the investigated physical
system. This is demonstrated in figure 3.1a, which represents a simple example of a mesh
with two close spheres in a cylindrical domain surrounded by vacuum. In addition, the
boundaries also belong to the simulation domain and can be just a condition for the fields
at its external boundary elements like Dirichlet and Neumann boundary conditions [92–
95], as well the periodical ones [96,97] or they can be defined on an additional surrounding
region like in the case of perfectly matched layer (PML) [98–100] as shown in figure 3.1b.
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Chapter 3. The Discontinuous Galerkin Method in Time Domain (DGTD)

(a)
(b)

Figure 3.1: Examples of two spatially discretized cylindrical simulation domains of two
very close faceted spheres in vacuum (a) and one irregular particle in vacuum surrounded
by absorbing perfectly matched layer (b).

Depending on the dimensionality of the studied system, the simulation domain Ω is
divided into K non-overlapped cells Ωk. These cells can be lines for 1D, faces for 2D or
volumes for 3D systems. The mesh can be structured, i.e., its cells or elements have the
same shape and size like in the FDTD method [50]. The advantage here is the simple
implementation of the mesh generation algorithm associated with simple accessibility to
the mesh elements directly through their indices in a simple way. Despite this, when
having complex geometries with non-aligned axis topologies or even with curved forms,
the structured grids are not flexible enough for representing these geometries and a stair-
case effect can come out. Highly increasing the spatial resolution can help here, but it
is still not the optimal case for treating such structures. Unstructured discretization is
an efficient way to deal with such complex shapes. It allows flexible space representation
of cubes, faceted spherical and ellipsoidal shapes as well as random irregular particles
that is the target geometries in this work. The tetrahedral mesh generator used here
is based on the TetGen library [101]. Other examples of the available mesh generation
tools are Gmsh [102], NETGEN [103] and libMesh [104]. The TetGen mesh generator
discretizes the computational domain into K non-overlapping arbitrary shaped and sized
tetrahedral cells Ωk (see figure 3.1). What this figure also shows is the mesh refinement
related to different zones separately. This can be achieved by increasing the number of
the tetrahedra when decreasing their volumes for special regions (h-refinement). Thus,
allowing higher accuracy in the region of interest and saving calculation time in regions
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3.2 Space discretization of the computational domain

where high accuracy is not definitely needed. The two spheres in 3.1a and the irregular
particle in 3.1b possess higher resolution than the surrounding medium, which is assumed
as vacuum. The reason of this refinement is that the wavelength of the electromagnetic
wave propagating in the material of the structure is smaller than it is in vacuum. Thus,
smaller cell volumes are required here to stay at the same accuracy for all regions de-
pending on the wavelength and the corresponding refractive index of the material of each
cell. In contrast, there is no need for high resolution for the PML region in 3.1b. The
reason behind this is that the role of this layer is not to study the electric and magnetic
fields there, it is rather to absorb them as possible without getting undesirable reflections.
Hence, relatively large cells are able to do this mission successfully, which in turn require
less computational effort and save simulation time as well. h-refinement is not the only
way for controlling accuracy. In DGTD the local solution in each element is expanded in
local polynomial basis. Increasing this order p of the polynomial representation ensures
higher degree of freedom (larger number of grid points). Thus, a more precise numerical
solution is achieved. This is called (p-refinement). For each tetrahedral element, an ap-
proximated a local polynomial solution ξ̃k(r, t) including the electric and magnetic fields,
is represented on its nodes as a result of solving Maxwell’s equations. The polynomial
expression of the numerical solution in each cell is given as a sum over all of its nodes
Nnodes that are positioned at ri as:

ξ̃
k(r, t) =

Nnodes∑
n=1

ξ̃
k

n(t)ηn(r) =
Nnodes∑
i=1

ξ̃
k(ri, t)Li(r). (3.2)

Here, ξ̃kn are the expansion coefficients, ηn(r) is a local polynomial basis, Li(r) are La-
grange polynomials.

The total number of nodes (Nnodes) for each cell is related to the dimension 1D, 2D or
3D and the order p of Lagrange polynomials Li that are utilized to represent the numerical
solution. At each node Lagrange polynomial has a non-zero value for it, whereas for all
other nodes of the tetrahedron, it has a zero one. The following expressions represent the
number of nodes that are needed for each dimension depending on the polynomial order:

1D Nnodes = p+ 1
2D Nnodes = (p+ 1)(p+ 2)/2
3D Nnodes = (p+ 1)(p+ 2)(p+ 3)/6

As example, for a three dimensional computational domain, if the order the expansion
terms is one (p = 1), the unknown fields will be only computed on the four vertices of
each tetrahedron. In this work, the used polynomial order is p = 3. This can provide
accuracy if sufficient mesh resolution is chosen. Hence, Nnodes = 20 nodes are involved in
each tetrahedron to represent the solution as figure 3.2 illustrates.
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Figure 3.2: Representation of the electric E and magnetic H field components on all
element nodes for the polynomial order p = 3 of the expansion.

3.3 Derivation of the semi-discrete numerical scheme

Maxwell’s equations in conservation form (equation 3.1) are approximately satisfied by
the local numerical solution ξ̃k(r, t) for each cell. This means that the right hand side
will have a residual R̃(r, t) when solving the problem numerically, instead of zero for an
analytical solution. This residual will take place in equation 3.1 as given by the expression:

Q(r) ˙̃ξk(r, t) +∇ · F(ξ) = R̃(r, t). (3.3)

For a good convergence to accurate solution the residual must be minimized by multiplying
with orthogonal test functions that are also Lagrange polynomials Li for each cell node i
to satisfy:

ˆ
Ωk

(
Q(r) ˙̃ξk(r, t) +∇ · F(ξ̃k)

)
Li(r)d3r =

ˆ
Ωk

R̃(r, t)Li(r)d3r −→ 0. (3.4)
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3.3 Derivation of the semi-discrete numerical scheme

Choosing the test functions the same as the interpolation polynomials is called Galerkin
approach. The residual must be orthogonal to the function space spanned by Li(r). Now
this is an equation for local numerical solutions for each element. The global numerical
solution is achieved by collecting the local discontinuous ones together as follows:

ξ̃(r, t) =
K⊕
k=1
ξ̃
k(r, t). (3.5)

The issue that the local solutions are calculated separately does not guarantee that these
solutions are continuous, i.e., they can be not matching or have some shifting to each
other on the element’s boundary. At this point the numerical flux F∗(ξ̃k) is defined.
The purpose of this flux is taking the discontinuity into account and involving the fields
belonging to the neighbor elements on the shared boundary in the local operations. In
order to include F∗(ξ̃k) into the equation 3.4 two steps must be done. Performing partial
integration of 3.4 delivers a volume integral on the left hand side and an integral over all
surfaces of the tetrahedral element on the other side:
ˆ

Ωk

(
Q(r) ˙̃ξk(r, t)Li(r)− F(ξ̃k) · ∇Li(r)

)
d3r = −

˛
∂Ωk

(
n̂ · F(ξ̃k)

)
Li(r)d2r, (3.6)

where n̂ is the normal of the local element face and points outwardly. Subsequently,
applying partial integration again gives the left hand side back in its original expression,
but on the right hand side, a subtraction between the flux F(ξ̃k) and the numerical flux
F∗(ξ̃k) is obtained as the following equation shows:
ˆ

Ωk

(
Q(r) ˙̃ξk(r, t) +∇ · F(ξ̃k)

)
Li(r)d3r =

˛
∂Ωk

n̂ ·
(
F(ξ̃k)− F∗(ξ̃k)

)
Li(r)d2r (3.7)

The additional surface integral here on the right hand side involves the field differences
∆E and ∆H between the element itself and its neighboring element. This has the task of
matching the local solutions between the elements after choosing appropriate numerical
flux as described in [65]. In other words, the numerical flux is used for adjusting of the
discontinuous solutions to match each other on the boundary of each tetrahedron with
the surrounding tetrahedra. This is an important step to get an approximate global con-
tinuous solution from discontinuous local ones. Obviously, it causes extra computational
effort for more operations and memory consumption. However, this is the cost of hav-
ing discontinuous solutions, which is the advantage for parallelization of the numerical
algorithm. According to the derivation described in [65, 66], the semi-discrete Maxwell’s
equations are obtained in the following formulations:

εkĖk = Dk ×Hk + (Mk)−1Fk 1
Z

(
∆E− n̂ · (n̂ ·∆E) + Z+n̂×∆H

)
(3.8)

µkḢk = −Dk × Ek + (Mk)−1Fk 1
Y

(
∆H− n̂ · (n̂ ·∆H)− Y +n̂×∆E

)
(3.9)
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Chapter 3. The Discontinuous Galerkin Method in Time Domain (DGTD)

Here the left hand side represents the time derivative of the electric and magnetic
fields multiplied with the material constants, Dk = (Dkx,Dky ,Dkz ) is the spatial differen-
tiation matrix, where Dklji

= ∂lLi(rj), l ∈ {x, y, z}, Mji =
´

Ωk Lj(r)Li(r)dr is the mass
matrix, Fji =

¸
∂Ωk Lj(r)Li(r)dr is the face matrix, and as mentioned above, ∆E and ∆H

(see figure 3.4) are the field differences at the shared points between each two neighboring
cells [66]. They are calculated as follows:

∆E(r, t) = E+(r, t)− E−(r, t) (3.10)

∆H(r, t) = H+(r, t)−H−(r, t) (3.11)

The impedance is represented by

Z± =
√
µ± /ε± ,

and the conductance

Y ± = (Z±)−1 =
√
ε± /µ± .

Both define material parameters for each mesh element. The current cell, for which
computations are performing, is denoted with ”−”, and ”+” denotes the neighbor one.
The sums of them are:

Z = Z+ + Z−

and

Y = Y + + Y −.

In order to simplify the computations, the differentiation matrix Dk, the mass matrixM
and the face matrix F are computed only once for a reference element in the Cartesian
coordinates system (x̂, ŷ, ẑ). They get linearly transformed from the Cartesian coordi-
nates system (x, y, z) for each tetrahedron in the mesh using Jacobian transformation.
Consequently, this saves memory consumption and computation time [67]. This affine
transformation for mesh elements is represented in figure 3.3 for 1D, 2D and 3D grids.
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Figure 3.3: Affine transformation of the mesh cells into a reference element for one, two
and three dimensional grid using two Cartesian coordinates systems (x, y, z) and (x̂, ŷ, ẑ).

3.4 Explicit time stepping

As discrete scheme for Maxwell’s equations has been derived, the only step left to get
the equation system as a numerical scheme is time integration. There are many time
stepping techniques that can be categorized in implicit and explicit methods. The explicit
low storage Runge-Kutta method (LSRK) [65–67, 105–107] is employed in the numerical
scheme of the DGTD solver used here. It turns out to be an adequate choice because
it is memory efficient. A relatively small time step must be chosen due to the Courant
condition in order to get acceptable accuracy and numerical stability. Larger time step
can lead to growing of the evaluated unknowns exponentially after each iteration in the
solver, which must be definitely avoided. As a criteria for numerical stability, the time
step ∆t in DGTD is chosen regarding to the shortest distance between two grid points in
the mesh [66,67]. It is expressed as follows:

∆tmax 6 s · dmin(p) ·min(r∆
in), (3.12)
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where s is a factor that has the order of 1 and can be chosen according to the problem
of interest and the used numerical scheme, dmin(p) is the shortest distance in the mesh
between two neighbor nodes, r∆

in is the radius of the inscribed sphere in the mesh cell.

After each iteration, the unknown fields are executed by solving Maxwell’s equations.
The LSRK requires only two storage locations for each unknown, namely, ξ̃ and ξ̃res. As
the ordinary differential equations of the semi-discrete scheme take the form:

˙̃ξk(r, t) = g(ξ̃k(r, t), t).

The LSRK-scheme for one unknown or one field component of the numerical solution for
a time step starting from the step m to m+ 1 is given as:

ξ̃(r, t) = ξ̃(r, tm),
ξ̃resn(r, t,∆t) = An ξ̃resn−1 + g(ξ̃n−1 , tm + Cn ∆t)∆t
ξ̃n(r, t) = ξ̃n−1(r, t) +Bn ξ̃resn(r, t,∆t),
ξ̃(r, tm+1) = ξ̃(r, t),

}
n = 1, 2, ..., NRK−stages

where NRK−stages is the number of Runge-Kutta stages, An, Bn and Cn are the Runge-
Kutta constants [67, 105]. The implemented time stepping in the DGTD solver for this
work is the optimized 4th order LSRK method with 14 stages as described in [105]. This
delivers faster results in comparison with the traditional 4th order one with 5 stages
(see [66, 105]).

The last step for solving a real-world problem is implementing a light source function.
Here, field values are incorporated at a specific point or set of points of interest in the sim-
ulation domain as a space and time dependent function. This means that the illumination
will be injected continuously as long as the simulation is performed. In order to simulate
light scattering from an object of interest, a monochromatic electromagnetic plane wave
is injected in the simulation domain. Only the scattered fields are interesting to get the
scattering properties of the investigated system as mentioned in chapter 2. Therefore, the
computational domain is divided into two regions, namely, the total and the scattered
regions that are illustrated in figure 3.4. The incident field must be subtracted from the
total one at each tetrahedron belonging to the scattered field region. This is called the
total field/scattered field technique (TF/SF) [50,67]. The electric and magnetic fields are
given as:

Etot(r, t) = Ein(r, t) + Esc(r, t)
Htot(r, t) = Hin(r, t) + Hsc(r, t),

where Etot(r, t), Htot(r, t) are the total electric and magnetic fields, respectively. The
electric field differences at TF/SF boundary are calculated using equation 3.10 as follows:

∆Etot(r, t) = E+
sc(r, t)− E−tot(r, t) + Ein(r, t)

∆Esc(r, t) = E+
tot(r, t)− E−sc(r, t)− Ein(r, t).
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The same calculation approach is valid for the magnetic field.

Total field 
region 

Scattered 
field region 

Field 
differences

Figure 3.4: Representation of a simulation domain with total field / scattered field regions
and field differences between the interface nodes of two neighboring tetrahedrons.

3.5 Parallelized DGTD code

The DGTD solver employed in this work take advantage of the MPI library [108] and
can be executed on multiple CPU cores. The ParMetis library [109] is used in order to
partition the mesh, where each mesh part gets assigned to a MPI process that perform
the computations for the appropriate partition. When data exchange between partitions
is required for arithmetic operations, the processes communicate with each other using
MPI message passing interface. This occurs at the boundary of spatial neighboring grid
parts, allowing for calculating the flux. This requires preparation of mapping matrices as
it will be described in the next section.

3.5.1 Mapping between the neighboring elements

In general, communication or data exchange between neighboring cell nodes at the in-
terfaces is required. For programming the flux terms in DGTD method the nodes must
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be mapped to each other regarding to their positions and connectivity. Having spatial
flexibility to represent complex geometry is a great benefit of unstructured grids. Yet, in
order to explain the principle of the mapping between various mesh elements, it makes
sense to show this for only one tetrahedron and after that the further steps will be the
same for all mesh cells. On one side, the indices of the mesh cells are global and are saved
sequentially in a matrix. On the other side, there is another matrix to save the global
indices of the neighboring cells appropriately. This is all what is needed for computing
the field differences at the cells interfaces and for gathering the discontinuous local so-
lutions into a global continuous one. In contrast to structured grids, unstructured ones
need more implementation effort for managing all data exchange between the neighbor
elements correctly.

As an example, to clarify the mapping strategy in DGTD, a tetrahedron with order
p = 3 is considered. Each tetrahedron of this order has 20 nodes that get global sequential
indices. The first cell has indices from 0 to 19 as the numbers inside the circles demonstrate
in figure 3.5.
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Figure 3.5: The first element of a tetrahedral mesh with its all global indices represented
in the circles and only 10 local ones, which belong to its first face on the right hand side
and take the numbers from 0 to 9 in the blue rectangles.

25



3.5 Parallelized DGTD code

The second one has indices from 20 to 39 and so forth for all mesh elements. Then,
the first 10 nodes of the first face get new sequential local indices starting from 0 to 9, as
can be also seen in the blue rectangles in figure 3.5. Similarly, the nodes of the second
face of the same element, which is the back side in this example, get the next sequential
set of indices from 10 to 19 as figure 3.6 displays.
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Figure 3.6: The first element of a tetrahedral mesh with its all global indices represented
in the circles and the first 20 local ones, which belong to its first and second faces on the
right hand side and on the back, respectively. The local indices take the numbers from 0
to 19 in the blue and green rectangles appropriately.

Analogously, the nodes of the third and fourth face get the next two sequences of
indices. Figure 3.7 displays a full surface indexing of the first mesh cell in the computa-
tional domain. It is also noticeable in this figure that each node can take from one up
to three distinct indices with respect to the different faces. For instance, the node 0 is
shared with three faces of the same element and gets, therefore, three face indices (0, 10
and 30), while the node 11 has just one face node index (15) because it lies in the center of
the second face. However, in three-dimensional simulations, for polynomial order higher
than three not all nodes will lie on the cell surface. Hence, there will be nodes inside the
volume that do not get this new indexing at all. Again, when considering the second mesh
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Chapter 3. The Discontinuous Galerkin Method in Time Domain (DGTD)

element, it is subject to the same indexing. As a result, although two neighbor cells share
the same face spatially, they do not share the nodes computationally, i.e., on the shared
surface between two mesh elements, each of them has a full set of face nodes that are
neighbored with the ones of the other face. In fact, this consumes more than the double
number of memory registers for surface nodes in comparison to the same mesh treated
with FEM method. Surface nodes on edges can be shared by more than two tetrahedrons.
Nevertheless, this is the cost of the discontinuity in DGTD, which is an essential feature
for suitability of the method for parallelization.
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Figure 3.7: The first element of a tetrahedral mesh with its all 20 global indices represented
in the circles and all local ones, which take the numbers from 0 to 39 in the colored
rectangles regarding to the faces appropriately.

All these mapping data, the global and local indices distributed on the element surface
of figure 3.7, can be included in a matrix. Figure 3.8 displays how to organize this for the
first and second cell of a tetrahedral grid in a simple way. Obviously, the faces indices
(the colored ones) are local and belong only to one mesh element. In contrast, the global
ones are shared with the neighboring elements. At this point it is possible to put all
mapping data of all mesh cells in two connecting matrices, one for the current elements
and the another for the neighbors. That is, computational operations can exchange the
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3.5 Parallelized DGTD code

data using these connection matrices for calculating the field differences and then the flux
on the cells boundaries.

faces [4] [10]   =
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137 104 150 169 18 19
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1st element of the mesh:

2nd element of the mesh:

Figure 3.8: Connection index matrices of the surface nodes that belong to the first two
tetrahedrons of a mesh. The rectangles filled with colors include the 40 sequential matrix
indices that represent the indices of tetrahedron faces. Each line represents one face with
the appropriate color used in figure 3.7. The 20 global indices are represented as values
of the mapping matrix. They don’t necessarily have to be in sequential order here like
the other ones of faces.

The discontinuity is a significant property of DGTD as the mathematical operations
are performed on each single mesh element separately instead of dealing with global
matrices like the case of the FEM method. The issue that each grid element has its
own nodes and relatively small number of local calculations suggests DGTD as a suitable
simulation method for parallelization in order to run on heterogeneous high performance
computing platforms.
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Numerical model
4

4.1 Model description

In this section the model geometries that are used as target objects are discussed. These
are single particles and pairs of particles of different shapes for studying double scattering.
As well monolayers of spheres and irregular particles are investigated to study multiple
scattering. A full wave electromagnetic problem is solved employing DGTD method that
is described in chapter 3. The considered constituent shapes are cubes, faceted spheres
and ellipsoids with diverse aspect ratios, as well as, random irregular particles. For
the last case, Gaussian random field (GRF) shapes [27, 110] have been utilized. Figure
4.1 demonstrates six samples of irregular particles. Additionally, for some cases, the
separation between the particles have been also explored from nearly touching particles
to distances comparable to the scale of one particle size. The particles have sizes much
larger than the wavelength of the incident light. A dimensionless size parameter value is
used to describe the geometrical sizes of the particles. It is expressed as follows:

kR = 2πR
λ

, (4.1)

where k is the wave number and R is the radius of the circumscribing sphere around the
particle.
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4.1 Model description

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Samples of randomly oriented irregular GRF particles (a) to (f)

The constituents have size parameter between 20 and 30 regarding to the considered
case. The material, the particles consist of, is absorbing for the most cases studied in this
work. Transparent particles have been briefly investigated for comparing with absorbing
ones. Absorption is controlled by variation of the imaginary part of refractive index
m between 0.3 for highly absorbing and 0 for transparent constituents. Increasing the
imaginary part of m reduces the contribution of multiple scattering. Furthermore, the
real part of refractive index is also considered for both values 1.3 and 1.8 in addition to
1.5.

Designing a powder model is a quite complex problem. Agglomerates of densely
packed irregular particles are modeled by applying Bullet physics engine [111]. This is
an open source library to simulate three dimensional dynamics and collisions between
various rigid bodies. An advantageous point here is the ability to set the mass and
friction of each particle. Thus, creating arbitrary types of clusters with the desired high
densities. The GRF particles build a cluster together when simulating their free fall into
a cylinder without overlapping with each other. In scope of this work an own code for
building clusters of particles controlling their number, sizes, distribution and the distances
between them have been implemented. This implementation enables random selection of
a big set of individual irregular particles for assembling hundreds of cluster samples, where
each sample is an agglomerate of a few irregular particles with random orientations. The
necessity for a lot of cluster samples, that can reach more than 300 for an individual
case study, is justified by averaging all simulation results. As the measured quantities
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Chapter 4. Numerical model

in laboratory experiments and photopolarimetric observations are obtained from many
groups of particles, one needs to average them over a lot of samples in the theoretical
study of a scattering system. Thus, numerical computations support the understanding
and interpretation of these measurements. The model uses an unpolarized plane wave
light source. Figure 4.2 represents the model by a monolayer of 10 irregular densely
packed GRF particles.

  

Unpolarized light source

yz
x

Figure 4.2: The model represented in a monolayer of 10 densely packed irregular GRF
particles

This model is valid also for all regular and irregular shapes used in this work. The
unpolarized light source is modeled by two simulation runs with linearly polarized electro-
magnetic waves with orthogonal polarization to each other. Additionally, as a boundary
condition, a perfectly matched layer is used to mimic light scattering in an open infinite
space. Figure 4.3 demonstrates a xy cross section in the simulation domain. The par-
ticles are positioned very closed to each other in such a way that every one lies in the
near field zone of the neighbored one. The agglomerates of particles are surrounded with
vacuum. Total field / scattered field (TF/SF) technique as explained in chapter 3 has
been employed. The TF/SF zone around the vacuum is the region, in which the electro-
magnetic fields are measured and integrated in the purpose of calculating the far field,
and consequently, the scattering matrix of the system.
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Figure 4.3: A cross section in xy plane of the simulation domain for a monolayer of 10
irregular densely packed GRF particles

Figure 4.4 displays a cross-section of a monolayer of ten GRF particles and the
distribution of the electric near field components Ex and Ey in this layer at the steady-
state.
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Figure 4.4: Cross-section of the electric near field components (Ex and Ey) and a mono-
layer of ten irregular particles. The incident field is Ey polarized.
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4.2 Convergence test

Numerical simulations of any physical system must be validated through a convergence
test. It is beneficial to implement a simulation software that models the behavior of the
system for solving a scientific problem. However, the decisive criterion for this software is
delivering correctly approximated results. When preparing a numerical simulation, there
are physical and numerical parameters that have to be set in order to get trustworthy
results. The grid resolution is one highly important parameter to be appropriately modi-
fied. On the one hand, increasing of grid resolution too much is undesirable because this
increases the number of the grid elements causing heavier calculation and longer simu-
lation time. On the other hand, decreasing the spatial resolution saves some simulation
time but could influence the resulting accuracy, when the grid is too rough. Therefore, a
compromise must be taken in order to obtain as accurate results as possible in reasonable
simulation time with the available computational capability. The same applies to time
discretization.
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Figure 4.5: Scattering angle curves of normalized intensity in logarithmic scale (a) and
linear polarization (b) for an irregular particle structure with different spatial resolutions.
The particle is absorbing with refractive indexm = 1.5+i0.3 and size parameter kR = 30.

In figure 4.5 the spatial resolution of the mesh is analyzed for an irregular absorbing
particle with size parameter kR = 30 and refractive index m = 1.5 + i0.3. The number of
tetrahedra per wavelength is varied from 2.5 to 5 cells in a step of 0.5. For the normalized
intensity curve 3 cells seem to be precise enough for further simulations. However, since
polarization at backscattering is more sensible for mesh resolution as can be seen in
figure 4.5b, 3 and 3.5 cells per wavelength can be not accurate enough. Hence, four cells
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4.2 Convergence test

provide good approximation, when compared with higher resolutions. Therefore, 4 cells
per wavelength is accepted for all numerical simulations in this work.

Another aspect that must be studied for the convergence is the light pulse duration.
Since the structure is continuously illuminated by an unpolarized light, the number of the
pumped waves determine the simulation time. The pulse duration depends directly on
the size of the considered system, and correspondingly, the size of the simulation domain.
The steady state of the simulated system must be achieved, so that increasing the pulse
duration does not affect the simulation result any more. For this goal a structure of two
irregular particles has been studied, each has a size parameter kR about 30. The incident
electromagnetic wave must travel over the entire simulation domain. That is, the pulse
duration, or in other words, the number of the wave oscillations must be sufficient to
pass the investigated constituents and scatter in all directions. Thus, starting from less
than 20 oscillations does not deliver reasonable results for the system size parameter,
which is around 60 for a cluster of two close particles. Figure 4.6 displays a scan for the
illumination oscillations starting from 20 to 45 ones with a step of 5 and shows that 20
are sufficient here.
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Figure 4.6: Scattering angle curves of normalized intensity in logarithmic scale (a) and
linear polarization (b) for a sample consisting of two irregular particles that are close to
each other. Each one has a size parameter of kR = 30 and refractive index m = 1.5+ i0.3.
One oscillation means one period of the incident wave.

In order to check this, testing another cluster of two irregular particles with same
conditions is done. Figure 4.7 demonstrates that 25 oscillations of the incident light are
acceptable and deliver converged results that do not get affected when having longer pulse.
Hence, 25 oscillations are used to perform computations for scattering systems of such
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size, as intensity and polarization curves converge. Consequently, choosing higher number
of oscillations for illuminating the cluster here does not give any benefit and associates
with unfavorable increased simulation time. Anyway, in case of studying larger clusters
or less absorbing particles, the number of oscillations of the incident light must be taken
into account, and maybe, increased appropriately.
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Figure 4.7: Scattering angle curves of normalized intensity in logarithmic scale (a) and
linear polarization (b) for another sample of two irregular particles with kR = 30 and
m = 1.5 + i0.3. One oscillation means one period of the incident wave.

Yet, for the purpose of simulating the open boundary conditions, PML must be able
to absorb the electromagnetic wave without reflecting it back into the computational
domain. This absorption power of the PML boundary is also examined. The thicker
PML is, the higher is the absorption of the electromagnetic waves in the boundary. At
the same time, the heavier the calculation become, which results in longer simulation
time. Figure 4.8 shows that the normalized intensity and linear polarization curves for
a PML thickness equivalent to 3 wavelengths converge in comparison with the ones that
possess higher thickness values (6 and 11 wavelengths). Thus, a thickness of 3 wavelengths
is chosen for the PML boundary.

After setting the numerical and physical parameters of the simulation. A comparison
with an analytical solution is targeted. For this purpose the Mie theory is used. Both
figures 4.9 and 4.10 display a high matching between results of DGTD code and Mie
calculator for single spheres with size parameters kR = 28.3 and 56.6, respectively. The
spheres consist of absorbing material with refractive index m = 1.5 + i0.3.
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Figure 4.8: Scattering angle curves of normalized intensity in logarithmic scale (a) and
linear polarization (b) for a sample consisting of two irregular particles that are close
to each other with different PML thicknesses (3λ, 6λ and 11λ). Each one has a size
parameter of kR = 30 and refractive index m = 1.5 + i0.3.
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Figure 4.9: Scattering angle curves of normalized intensity in logarithmic scale (a) and
linear polarization (b) for single sphere with size parameter kR = 28 calculated with
DGTD and a Mie solver.
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Figure 4.10: Scattering angle curves of normalized intensity in logarithmic scale (a) and
linear polarization (b) for single sphere with size parameter kR = 57 calculated with
DGTD and a Mie solver.
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Simulation results
5

The simulations in this work begin with simplified structures of a few particles to check if
the negative polarization appears in such systems. The double scattering is apparently re-
sponsible for negative polarization in these simple clusters. This is confirmed from double
scattering approximate models, which study point scatterers with various single scattering
properties like Fresnel scatterers [36,37], electric dipoles that are randomly distributed [38]
or particles with Rayleigh polarization phase function [39]. Further developed models of
double scattering are also investigated for scattering from a cloud of randomly oriented
facets that reflect according to Fresnel formulas [43] or systems of two spherically curved
surface elements [112]. Additionally, simple structures allow separating the effects of sin-
gle and double scattering so that the analysis becomes easier. Therefore, the scattering
systems studied were further simplified by using just two particles to constitute the ge-
ometry. To consider double scattering, the negative polarization must be studied in detail
for different special cases. The considered structures are simplified systems of irregular
particles, cubes, ellipsoids with different aspect ratios and different numbers of spheres.
The following sections show the types of particles that were used in the simulations.

5.1 Structures of one, two and three GRF particles

Modeling of powder-like systems is a highly complex problem when trying to consider
realistic models because of the time consuming design and computational effort. In nature,
the neighboring powder particles are touching each other. Modeling touching constituents
in numerical simulations is difficult to achieve. This is because the simulation time step
depends on the smallest distance between two nodes of the simulation domain. Hence,
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5.1 Structures of one, two and three GRF particles

too small time step comes out, which strongly affects the simulating time making such
computations unfeasible or even not possible. Therefore, this must be taken into account
for determining the separation between particles. It was possible to find a compromise
that the particles are very close to each other with minimum distance much smaller than
the wavelength of incident light, and at the same time, reasonable time step still has
been achieved. Considering the computational effort, starting from a few GRF particles
makes sense in order to check if small cluster of particles is able to produce the negative
polarization and the intensity surge at backscattering. Therefore, systems of two, three
and ten randomly oriented, irregularly shaped, unique particles are investigated as a
simplified powder model [113]. The size parameter of each one is kR = 30. The material
is absorbing with refractive index of m = 1.5 + i0.3. Figure 5.1 displays samples of these
constituent particles.
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(a) Sample one of two irregular particles
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(b) Sample two of two irregular particles
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(c) Sample one of three irregular particles

  

yz
x

(d) Sample two of three irregular particles

Figure 5.1: Samples of two and three irregular GRF particles separated with minimum
distances much smaller than the wavelength λ of the incident light.

Figure 5.2 shows the normalized intensity and the linear polarization of structures
of two and three irregular particles compared with single-scattering curves, where there
is no appearance of the negative polarization, which is expected to get for this instance.
Two GRF particles separated with minimum distance much smaller than the wavelength
λ show a very small negative polarization at backscattering. Having a separation of
approximately the size of one particle between them keep obtaining the weak negative
polarization as well. Thus, increasing the distance here does not remarkably affect the
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negative polarization. Moreover, a densely packed cluster of three GRF particles is able
to enhance the negative polarization near backscattering (see figure 5.2d).
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Figure 5.2: Scattering angle curves of (a), (c) normalized intensity in logarithmic and
linear scale, respectively, and (b), (d) linear polarization degree. The curves are calculated
for single, two and three irregular particles with minimum distance between them, much
smaller than the wavelength of incident light, and two particles with separation around
one particle size. The constituents consist of absorbing material with refractive index
m = 1.5 + i0.3 and size parameter of kR = 30.

This can be clarified by increasing the double-scattering relative contribution to the
total scattered field. In other words, the number of possible double-scattering trajecto-
ries is tripled, when adding the third particle and quadrupled with additional one. Light
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5.1 Structures of one, two and three GRF particles

scattering by systems composed of uniquely shaped particles is a stochastic process and
the result should be averaged over tens or hundreds of simulations. One or two hundred
computations, and in some cases more, have been done in order to get the averaged in-
tensity and linear polarization curves. Single curves for some random samples include
only information about that individual sample and do not deliver general characteriza-
tion directly. Despite of that, analyzing some single curves is relevant and raises some
interesting questions or maybe offer some considerable explanation [114]. The motivation
for this special consideration are the curves displayed in figure 5.3.
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Figure 5.3: Scattering angle curves of (a), (c) normalized intensity in logarithmic and
linear scale, respectively, and (b), (d) linear polarization degree gained from four distinct
samples of two close irregular particles.
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These four curves belong to four different samples of two GRF particles with minimum
distance between them. They show a possibility of having no polarization, a strong
negative polarization, as well as, positive polarization at backscattering (figures 5.3b and
5.3d). Interestingly, the intensity surge in figures 5.3a and 5.3c does not tend to correlate
with the negative polarization or the positive one. Nevertheless, it seems to be more
corresponded to the case of having nearly no polarization in figure 5.3d. The reason behind
this could be reduced constructive interference of the scattered near fields of second-order
for a particular random orientation of the scattering faces and their slopes. This means
that the particles produce strong and dominating single scattering for this particular
case. At this point irregular particles are not the optimal shapes for investigating the
geometry effect. Therefore, structures of two cubes that lie near each other with controlled
orientations of their reflecting surfaces are considered. This offers a simplified model for
going deep into details to explain the role of geometry on opposition phenomena.

5.2 Structures of two cubes

Here, the double scattering in a symmetric system consisting of two cubic particles is
studied. This system constructs corners γ between the reflecting faces of both scatterers
ranging from 0◦ to 180◦ as figure 5.4 demonstrates.
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Unpolarized light source

Figure 5.4: Symmetric two-cube structure builds an angle γ between reflecting surfaces.
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5.2 Structures of two cubes

Both cubes are separated with a fixed distance much smaller than the wavelength
of the incident light. Simulations for this system with changing the angle γ in 1◦ steps
ranging from γ = 0◦ to 180◦. Analyzing the results of the single curves shows some com-
mon features for different angular ranges of γ regarding to the negative polarization and
intensity surge. One can classify the results into six categories or sequences depending on
γ, each represents the ascending range of angles between 0◦ and 180◦. This categorization
is displayed in figures 5.5 and 5.6 for the normalized intensity and linear polarization,
respectively.

The intensity curves illustrate a strong single reflection from the cube surfaces at
backscattering, they achieve the highest maximum in two ranges (sequence 0◦ − 30◦ and
150◦ − 180◦), since two cubes construct maximum areas of the back-reflecting surfaces in
both cases. The direction of single reflection moves to larger scattering angles and after
that backwards for γ > 90◦, which explains the intensity bump in the curves that moves
between 0◦ and 90◦.

One can expect no negative polarization for the mentioned extreme cases, where single
scattering dominates, since single cubes with the given complex refractive index and size
parameter are definitely not able to bring out negative polarization. However, full wave
simulations clearly point out the appearance of negative polarization for γ between 60◦
and 90◦ with a maximum of 4%. Further incrementing of γ results in strong enhancing
negative polarization with a maximum of 19.5% for the range from 90◦ to 120◦ and 13%
for the next one from 120◦ to 150◦ (see both sequences 4 and 5 of figure 5.6). The inversion
angles of the polarization for these two ranges are 173◦ and 156◦, respectively. Finally, as
seen in the last range from 150◦ to 180◦, sequence 6 in figure 5.6, the negative polarization
vanishes again. Hence, these results demonstrate that coherent double reflection between
the neighbored particles at angles, where single reflection does not dominate, is in a
direct relationship for generating negative polarization. On one hand, configured two
cubic structures that produce negative polarization mostly do not deliver intensity surge,
where on the other hand, the ones with higher intensity surge correspond with very low
or no polarization.
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Figure 5.5: Intensity curves in logarithmic scale for systems of two cubes averaged over
angle γ in six bins from 0◦ to 180◦.
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Figure 5.6: Linear polarization curves for systems of two cubes averaged over angle γ in
six bins from 0◦ to 180◦.
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Chapter 5. Simulation results

After averaging over all the angles γ from the six sequences considered above, the
normalized intensity and the linear polarization are displayed in figures 5.7a, 5.7b, re-
spectively. Undoubtedly, negative polarization does not hold on due to the dominance of
single scattering from cubes having very large and very small γ. This means that negative
polarization can be produced when specific slope distribution of the reflecting faces take
place. Otherwise, it is suppressed by large contribution of single scattering. In order to
switch off the effect of the angle γ between two facets, a geometry with two spheres has
been checked. This structure contains all possible angles γ between the spheres facets.
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Figure 5.7: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization computed for systems of two cubes averaged over angle γ from 0◦
to 180◦.

5.3 Structures of two spheres

In order to study further influencing factors on the negative polarization, this effect of
facets orientation has been suppressed in this section. This can be realized, when having
two scatterers that build all possible orientations of their surface elements. A suitable
structure that meets this condition is two identical faceted spheres as they comprise all
angles γ ranging from 0◦ to 180◦ between their facets that build their approximated ge-
ometry. As in the case of two cubes, γ is constructed between two facing surface elements,
each of them belongs to one sphere. Thus, all angles γ that have been studied for all config-
urations of the cubic structures are combined together in just one structure of two faceted
spheres. Both spheres have the same radius. Figures 5.8a and 5.8b illustrate, respectively,
the considered faceted spheres with minimum distance smaller than the wavelength of the
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5.3 Structures of two spheres

incident light and maximum distance that is equivalent to the diameter of the considered
spheres.

  

yz
x
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yz
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(b)

Figure 5.8: Two spherical particles with minimum separation between them that is much
smaller than the wavelength of the incident light in (a) and a separation of one diameter,
i.e., a size comparable to one sphere as a maximum distance between them in (b).

Thereafter, the influence of slightly changing the separation between the two spheres
is analyzed. Unusually, the outcome of the gradual increasing of the spheres separations
in steps around 11% of the wavelength of incident light is a flip of polarization between
negative polarization and positive one at the backscattering branch as can be seen in
figure 5.9b. The same behavior is also obtained for larger separations of the scale of the
spheres radius and diameter as figures 5.10 and 5.11b display, respectively. However, this
is associated with decreased amplitude of the negative polarization and positive one. In
order to focus on this effect, figures 5.12, 5.13 and 5.14 plot intensity and polarization near
the backscattering range of these three studied cases for the separations: minimum, one
radius and one diameter distance, respectively. The scale of the axes is uniform to allow
direct comparison. Correspondingly, the peaks of negative polarization and positive one
also move to backscattering range while the separation gets larger. This can be explained
by the reduced contribution of the double scattering as a result of increasing the distance
between both spheres. The number of oscillations at backscattering is also growing with
larger separations (see figures 5.12b, 5.13b and 5.14b) because of the interference of double
scattering. The minima of the normalized intensity near backscattering in figures 5.12a,
5.13a and 5.14a correlate with the minima and maxima of the polarization flip and shift
as well to the right hand side with increased number of oscillations as a consequence of
growing separation.
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Figure 5.9: Scattering angle curves of (a) normalized intensity in logarithmic scale and (b)
linear polarization calculated for two faceted spheres that have size parameter kR = 30
with gradually growing distances between them starting from one much smaller that
the wavelength of incident light. The distances from 1 to 7 represent slightly increased
separation with steps around 11% of this wavelength for the corresponding separation.

10-1

100

101

102

103

104

105

0 30 60 90 120 150 180

N
or

m
al

iz
ed

 in
te

ns
ity

Scattering angle, deg

  one radius + distance 1
  one radius + distance 2
  one radius + distance 3
  one radius + distance 4
  one radius + distance 5
  one radius + distance 6

(a)

-20

0

20

40

60

80

100

0 30 60 90 120 150 180

P
ol

ar
iz

at
io

n 
de

gr
ee

 %

Scattering angle, deg

(b)

Figure 5.10: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for two faceted spheres that have size parameter kR = 30
with gradually growing distances between them starting from one equivalent to the sphere
radius. The distances from 1 to 6 represent slightly increased separation between spheres
with steps around 11% of the illumination wavelength for the corresponding separation.
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Figure 5.11: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for two faceted spheres that have size parameter kR = 30
with gradually growing distances between them starting from one equivalent to the sphere
diameter. The distances from 1 to 6 represent slightly increased separation with steps
around 11% of the illumination wavelength for the corresponding separation
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Figure 5.12: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for two faceted spheres that have size parameter kR = 30
with gradually growing distances between them starting from one much smaller that
the wavelength of incident light. The distances from 1 to 7 represent slightly increased
separation with steps around 11% of this wavelength for the corresponding separation.
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Figure 5.13: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for two faceted spheres that have size parameter kR = 30
with gradually growing distances between them starting from one equivalent to the sphere
radius. The distances from 1 to 6 represent slightly increased separation between spheres
with steps around 11% of the illumination wavelength for the corresponding separation.
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Figure 5.14: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for two faceted spheres that have size parameter kR = 30
with gradually growing distances between them starting from one equivalent to the sphere
diameter. The distances from 1 to 6 represent slightly increased separation with steps
around 11% of the illumination wavelength for the corresponding separation.
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5.3 Structures of two spheres

This polarization flip is a typical interference pattern that depends on distance chang-
ing between scatterers, as an interference base. One can see this in the frequency of oscil-
lation in the polarization plots. To check if the same flipping behavior can be detected for
other size parameters of the same structures, two close absorbing spheres (Im{m} = 0.3)
with different size parameters are simulated with equidistantly distance variation. Figures
5.15 and 5.16 display the normalized intensity and the linear polarization of two spherical
structures with size parameters kR = 24 and kR = 12, respectively.
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Figure 5.15: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) computed for two faceted spheres that
have size parameter kR = 24 with slightly growing separations starting from one much
smaller that the wavelength of incident light. The distances from 1 to 8 represent slightly
increased separation between spheres with steps around 11% of the wavelength.
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The distance variation
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Figure 5.16: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for two faceted spheres
that have size parameter kR = 12 with gradually growing distances starting from one
much smaller that the wavelength of incident light. The distances from 1 to 8 represent
slightly increased separation between spheres with steps around 11% of the illumination
wavelength for the corresponding separation

The polarization flip in both selected cases can be clearly observed, whereas the
symmetry of the flipping here (see figures 5.15d and 5.16d) is broken in comparison with
the polarization curve illustrated in figure 5.12b. This symmetry is broken in two distinct

53



5.3 Structures of two spheres

ways because of two different reasons. The first one comes out because the amplitudes
of the negative polarization curves are higher than the positive polarization ones at the
backscattering as can be seen in figure 5.15d. While the second one as figure 5.16d
shows, is due to having more curves of negative polarization than positive one at the
backscattering, in spite of having equidistant steps for the separation between the two
spheres. Accordingly, all these single curves, that have been taken into account, display
the effects of having higher amplitudes for the negative polarization over the positive
polarization and having more curves with negative polarization than positive one. Both
will contribute to the appearance of the negative polarization after averaging. As well,
the amplitude of the polarization flip gets smaller and wider, when the size parameter of
the spherical structures decreased.

Averaging the normalized intensity and the linear polarization over about 120 steps
from minimum distance, i.e., nearly touching spheres to the distance of one sphere diam-
eter delivers negative polarization with a maximum of 1.9% with an inverse angle about
172◦ as figure 5.18 shows. Yet, an additional sphere in the structure, as displayed in figure
5.17, results in raising the negative polarization to a maximum of 3.4% (see figure 5.18).
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Figure 5.17: Three spherical particles with minimum distance in (a) and maximum dis-
tance in (b). The maximum distance here is relatively smaller than it is in the case of
two spheres because of the relatively expensive computational efforts due to the huge size
of the simulation domain that can result from larger separations.

These results comprehend as well with the increased negative polarization when
adding a third particle for a structure consists of two irregular particles as shown in
figure 5.2. Thus, it is established that while double scattering is not sufficiently strong for
producing negative polarization for structures that consist of two cubes after averaging
over all angles between them, it still has an effect on structures with spheres.
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Figure 5.18: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) averaged over all computed separations
for two and three faceted spheres.

Interestingly, the studied structure with three spheres (figure 5.17b) also delivers
polarization flip when the separation is varied. The normalized intensity and linear polar-
ization curves gained from six single simulations of three spheres are presented in figure
5.19. These curves belong to the spherical structures with separations starting from min-
imum distance much smaller than the wavelengths of the incident light (figure 5.17b) to
larger distances with steps around 11% of this wavelength. Figure 5.19d provides a good
understanding of high negative polarization that dominates in the averaged curve in figure
5.18d as all curves of the linear polarization between 170◦ and 180◦ lie mostly down to the
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zero axes of the polarization. This can be interpreted as a shifting of oscillations at the
backscattering angles to the negative side of polarization after adding the third sphere in
comparison to the case of two spheres.
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Figure 5.19: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for three faceted spheres
that lie on one line and have size parameter kR = 30 with gradually growing distances
much smaller than the wavelength of incident light. The distances from 1 to 6 represent
slightly increased separation between spheres with steps around 11% of the illumination
wavelength for the corresponding separation.

Polarization flip here gets less symmetrical and strongly narrower starting from about
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175◦, where it begins near 170◦ for the case of two spheres as figure 5.12b shows. In
addition, that the positive polarization branch from 0◦ to 126◦ do not get much influenced
by having a third sphere. This can be seen in figure 5.18b. The scattering angle curves
of three-sphere structures are averaged over 23 simulations. The reason is the heavy
calculations for larger separations between the spheres of such structures. However, this
average is acceptable, as this work focuses on densely packed particles, which is achieved
by relatively small separations.

Spherical shapes are perfect symmetric geometries and the angles constructed be-
tween two scatterers facets are uniformly distributed. Henceforward, bringing in non-
sphericity considering ellipsoidal constituents that can describe a transient case between
irregular particles and spherical ones. In order to better understand the irregular parti-
cles, some irregularities, or particularly, some non-sphericity have been introduced to the
spheres composing ellipsoids. This helps to interpret the influence of the angle γ as well
as the separation distance between the two particles.

5.4 Structures of two ellipsoids

In this section, the sensibility of negative polarization to the particle shape or the angles γ
constructed between the facets of two scatterers is considered. The basic structure here is
binary spheres that have the same size (figure 5.8). It is used to produce binary ellipsoids
with different aspect ratios. 10% stretching and squeezing of spheres diameter along y
and z axes yield the ellipsoidal structures with the aspect ratios (1 : 0.9 : 1, 1 : 1.1 : 1,
1 : 1 : 0.9 and 1 : 1 : 1.1). The ellipsoids have absorbing material with refractive index
m = 1.5 + i0.3. The results of the simulations are averaged over the distance between
both particles starting from very small distance, much smaller than the wavelength of
incident light, to a maximum distance of approximately one sphere diameter.

Figure 5.20c shows that the normalized intensity in the backscattering range in-
creases for ellipsoidal structures from smaller aspect ratios to larger ones. This is an
expected result because of the increased size parameter of the structure, which delivers
more backscattering. The intensity and polarization curves of the basic two spheres are
also plotted in figure 5.20 to compare the curves of ellipsoidal structures with them. It is
also obtained that the normalized intensity gets differently influenced when increasing the
aspect ration in y and z direction, e.g., for 1.0:1.1:1.0 and 1.0:1.0:1.1, respectively. The
structure with 10% expanded aspect ratio in y direction delivers higher intensity than
the one with 10% expanded aspect ratio in z direction. The reason is that expanding the
structure in y direction increases the interaction surface area with the direct incident light,
which causes higher reflection. Hence, more double scattering is obtained, which explains
getting higher negative polarization, correspondingly, in figure 5.20d. On one hand, the
inversion angle does not change remarkably for aspect ratio variation in y direction, which
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5.4 Structures of two ellipsoids

lies around 172◦. On the other hand, for aspect ratio variation in z direction, the inversion
angle decreases from 175◦ for the ellipsoids with aspect ratio 1 : 1 : 0.9 to 169◦ for the
ones with 1 : 1 : 1.1. This is associated with growing degree of negative polarization from
1.2% to 2% in both cases, respectively. This means that negative polarization is very
sensitive to the structure shape and the orientations of its facets.
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Figure 5.20: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) for two ellipsoids with different aspect
ratios. The curves are averaged over equidistant 120 separations between both scatterers
with range from minimum distance much smaller than the wavelength of incident light
and maximum equivalent to one sphere diameter.
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For getting more details, geometries comprising two ellipsoids that are stretched in
y-direction are studied with varying the aspect ratios along the z-axis with 10% step
variation. Figure 5.21 shows the structures that have aspect ratios from 1 : 1.5 : 0.4 to
1 : 1.5 : 1.1.
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Figure 5.21: Two ellipsoidal particles (a) to (h) with minimum distance much smaller
than the wavelength of incident light with 10% increased aspect ratio in z-axis for each
structure starting from 1 : 1.5 : 0.4 to 1 : 1.5 : 1.1.
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Figure 5.22a and 5.22b show the normalized intensity and polarization, respectively
for different aspect ratio configurations. Each is averaged over around 100 separations
ranging from minimum distance much smaller than the wavelength of the incident light
to the maximum separation. The last corresponds to one same sized ellipsoid with the
same orientation of both scatterers. As seen in Figure 5.22d, which is a zoom in of 5.22b,
the structures show the existence of negative polarization (maximum of 2.3%), positive
polarization (maximum of 1%) as a result of changing the distribution of angles γ between
scatterers faces. This is a further confirmation of the effect of the angle of orientation
between the surfaces of two scatterers in producing negative polarization.
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Figure 5.22: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) averaged over 100 separations for
binary ellipsoids with different aspect ratios from from 1 : 1.5 : 0.4 to 1 : 1.5 : 1.1.
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Unexpectedly, in figure 5.22c, the intensity surge does not seem to correlate with
the negative polarization in figure 5.22d, it is rather as a consequence of the geometry of
the ellipsoids themselves and their aspect ratios. It can be inferred from the normalized
intensities that the intensity surge increases monotonously as the aspect ratio along z-axis
reduces, which points to an increased contribution of single scattering in the backscatter-
ing direction. This implies that the intensity surge seems to be characterized more by the
shape of the particles and not correlating with negative polarization. Moreover, averaging
the normalized intensity and the linear polarization over all aspect ratios from 1 : 1.5 : 0.4
to 1 : 1.5 : 1.1 reveals a clear minimal negative polarization, as figure 5.23 represents.
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Figure 5.23: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) averaged over all binary ellipsoids with
aspect ratios from 1 : 1.5 : 0.4 to 1 : 1.5 : 1.1.
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5.4 Structures of two ellipsoids

The negative polarization here, which is an average over hundreds of computations,
starts at an inversion angle around 173◦ and amounts to a maximum of 0.6%. Accordingly,
this can give an explanation of the weak negative polarization observed for two irregular
particles. As a consequence of this result, for producing the negative polarization by
GRF particles, three factors are involved. The effect of their random irregular shapes,
the orientations of their facets and the separation between them. This suggests that the
negative polarization obtained from just two particles is not always sufficiently strong
to show up the averaged results. However, double scattering shows responsibility for
producing the negative polarization.

Studying the existence of the polarization flip behavior corresponding to the distance
variation between scatterers for ellipsoidal structures can be a forward movement to ex-
amine the generality of this flip for non-spherical structures. At this point figures 5.24,
5.25, 5.26, and 5.27 show the scattering angle dependencies of normalized intensity and
linear polarization computed for the first minimum separations between two ellipsoids
with the aspect ratios: 1 : 1.5 : 0.4, 1 : 1.5 : 0.6, 1 : 1.5 : 0.8, and 1 : 1.5 : 1.1, respectively.
Only simulations of the first few minimum separations are considered because of two rea-
sons. First, powder structures in nature are mostly densely packed, i.e., powder particles
have minimum distances between them or touch each other. Second, as in the case of two
spheres, when the particles are too close, the amplitude of polarization flip acquires its
maximum. Hence, allowing for better comparison of the results. In the purpose of direct
comparison, all these plots have the same scales. As well, their zoomed in polarization
curves (figures 5.24d, 5.25d, 5.26d, and 5.27d) have a scale comparable with figure 5.12b
that belongs to binary spheres.

All the chosen ellipsoidal structures exhibit polarization flip at backscattering range.
The minima and maxima of this flip take place in the four considered cases mostly around
scattering angel 176◦. However, in an asymmetrical way that will be discussed here. The
first two ellipsoids that have the aspect ratio 1 : 1.5 : 0.4 deliver the least amplitude
of polarization flip between −9.7% and 4.8%. The explanation for this is, the smaller
the aspect ration in z-direction is, the smaller interaction between scatterers surfaces is
happening, and consequently, the smaller is the contribution of double scattering that
should be responsible for polarization flipping at backscattering range. In particular,
such a relative smaller aspect ratio in z-direction means less convexity of the ellipsoidal
surface in front of the incident light. Thus, more light get scattered back. This explains
the relatively higher intensity at backscattering in figure 5.24a in comparison with the
intensities of the other considered aspect ratios in figures 5.25a, 5.26a and 5.27a, which
get decreased at backscattering with growing aspect ratio in z-direction. The results
for structures with aspect ratio 1 : 1.5 : 0.6 (see figure 5.25d) have more amplitude of
polarization flip than the previous one. It amounts between a minimum of −13% and a
maximum of 15%.
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Figure 5.24: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for two faceted ellipsoids
with aspect ratio 1 : 1.5 : 0.4 that have size parameter kR = 30 with gradually growing
distances starting from one much smaller than the wavelength of incident light. The
distances from 1 to 6 represent slightly increasing separation between ellipsoids with
steps around 11% of the illumination wavelength.
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Figure 5.25: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for two faceted ellipsoids
with aspect ratio 1 : 1.5 : 0.6 that have size parameter kR = 30 with gradually growing
distances starting from one much smaller than the wavelength of incident light. The
distances from 1 to 6 represent slightly increasing separation between ellipsoids with
steps around 11% of the illumination wavelength.

The geometry with aspect ratio 1 : 1.5 : 0.8 (figure 5.26d) shows further increased
amplitude of polarization flip between −20% and 30%. The positive polarization curves
dominates here, where in contrast, for the aspect ratio 1 : 1.5 : 1.1 as figure 5.27d
displays, the polarization in the curves on the negative side at backscattering has higher
amplitudes than ones on the other side. Its amplitudes amounts to a minimum of −30%
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and a maximum of 27%. That is, both these aspect ratios 1 : 1.5 : 0.8 and 1 : 1.5 : 1.1
establish that the balance between the negative and the positive polarization curves at
backscattering get changed, when varying the particle geometry.
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Figure 5.26: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for two faceted ellipsoids with
aspect ratio 1:1.5:0.8 that have size parameter kR = 30 with gradually growing distances
starting from one much smaller than the wavelength of incident light. The distances from
1 to 6 represent slightly increasing separation between ellipsoids with steps around 11%
of the illumination wavelength.
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Figure 5.27: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for two faceted ellipsoids with
aspect ratio 1:1.5:1.1 that have size parameter kR = 30 with gradually growing distances
starting from one much smaller than the wavelength of incident light. The distances from
1 to 6 represent slightly increasing separation between ellipsoids with steps around 11%
of the illumination wavelength.

It is clear now, that when having scatterers with the same size parameter and mate-
rial, that the intensity and polarization at backscattering depend strongly on the scatterers
shapes and the separation between them. Subsequently, the packing density of particles
should play a big role as well. It was concluded in this section that the lower intensity
near backscattering correlates with higher amplitude of polarization flip, and vice versa.
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5.5 Polarization flip obtained by irregular particles

Double scattering has a significant influence on the negative polarization for cubes, spheres
and ellipsoids. It is interesting to explore if the polarization flip at backscattering branch
obtained by structures of regular shapes for separation variation can also be produced
by irregular shapes. To answer this question, arbitrary chosen structures of two irregu-
lar particles that are randomly oriented with distance variation between them have been
studied. The scale of separation here is much smaller than the wavelength of the incident
light and it grows to distances equivalent to the size of one particle in 120 steps. Cal-
culations have been performed for two different sets of these structures, i.e., two random
cases for double particles. Figures 5.28 and 5.29 show both considered structures with
minimum and maximum distance between scatterers.
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Figure 5.28: Set 1 of arbitrary chosen two irregular GRF particles that posses a size
parameter kR = 30 with minimum distance between them much smaller than the wave-
length of the incident light in (a) and maximum separation comparable to the size of one
particle in (b)

  

yz
x

(a)

  

yz
x

(b)

Figure 5.29: Set 2 of arbitrary chosen two irregular GRF particles that posses a size
parameter kR = 30 with minimum distance between them much smaller than the wave-
length of the incident light in (a) and maximum separation comparable to the size of one
particle in (b)

67



5.5 Polarization flip obtained by irregular particles

The linear polarization curves of both instances demonstrated in the following plots
confirm that the polarization flip is still observed in both sets of two irregular particles,
especially, for very small separations as can be seen in figures 5.30b, 5.36b and their
zoomed in plots 5.33b and 5.39b, respectively. This proves that the negative polarization is
sensitive to particles separation, and consequently, to the density of particles agglomerates
for powder-like surfaces. However, the symmetry of the negative polarization is broken in
comparison to regular shapes, which is an expected result because of the random irregular
shapes. Additionally, all polarization curves for separations of half size parameter of
first set (see figures 5.31b, 5.34b) and second set (figures 5.37b and 5.40b) reveal that
increasing the separation between particles results in decreasing the amplitude of negative
and positive polarization flip at backscattering because light interaction between particles
get reduced. Therefore, the contribution of double scattering, which is responsible for the
negative polarization here, becomes smaller. The same is also valid for one size parameter
separation as figures 5.32b, 5.35b of the first set and 5.38b 5.41b of the second one show.

Interestingly, figures 5.31b and 5.34b show that the polarization flip does not oc-
cur only at the last oscillation near backscattering, as it was obtained for spheres. It
appears rather for both previous oscillations between scattering angles 165◦ and 175◦
with increased amplitudes for decreased angles. This depends on the geometries of the
investigated random irregular particles, their separation and orientation.

The intensity curves of the first binary particle set in figures 5.30a, 5.31a and 5.32a
and their zoomed in plots ( figures 5.33a, 5.34a and 5.35a) show the result of increased
number of oscillations with growing separation. The same is also obtained in the second
set (figures 5.36a, 5.37a and 5.38a and their zoomed in plots ( figures 5.39a, 5.40a and
5.41a). This is the same observation like in the case of regular shapes because of increased
interference due to increased distances between scatterers. Furthermore, the maxima of
the last oscillation of intensity curves correlate with the minima and maxima of the po-
larization flip at backscattering. This is in agreement with the results of regular shapes as
well. Remarkably, the normalized intensity in figure 5.34a for half size parameter distance
is higher than both intensities of minimum distance and one size parameter distance as
can be seen in figures 5.33a and 5.35a, respectively. The reason is the shadowing effect
when the particles are close to each other. In addition, the contribution of electromag-
netic waves that are double scattered in the backscattering range for half size parameter
distance is higher in comparison with cases that have larger separations. However, for
further growing of separation between particles, the light interaction between both parti-
cles decreases, which explains the lower intensity for the maximum considered separation
between particles in figure 5.35a.It is essential to mention here, that the geometry of the
considered shapes play a decisive role in the intensity of the entire system.
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Figure 5.30: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for the first set of two GRF particles that have size
parameter kR = 30 with gradually growing distances starting from one much smaller than
the wavelength of incident light. The distances from 1 to 4 represent slightly increased
separation between both particles with steps around 11% of the wavelength.
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Figure 5.31: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for the first set of two GRF particles that have size
parameter kR = 30 with gradually growing distances starting from one comparable to
half size of one particle. The distances from 1 to 7 represent slightly increased separation
between both particles with steps around 11% of the wavelength of incident light.
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Figure 5.32: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for the first set of two GRF particles that have size
parameter kR = 30 with gradually growing distances starting from one comparable to
the size of one particle. The distances from 1 to 7 represent slightly increased separation
between both particles with steps around 11% of the wavelength of incident light.
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Figure 5.33: Scattering angle curves of (a) normalized intensity and (b) linear polarization
near backscattering branch calculated for the first set of two GRF particles that have size
parameter kR = 30 with gradually growing distances starting from one much smaller than
the wavelength of incident light. The distances from 1 to 4 represent slightly increased
separation between both particles with steps around 11% of the wavelength.

70



Chapter 5. Simulation results

0

0.2

0.4

0.6

0.8

1

150 155 160 165 170 175 180

N
or

m
al

iz
ed

 in
te

ns
ity

Scattering angle, deg

(a)

-30

-20

-10

0

10

20

30

150 155 160 165 170 175 180

P
ol

ar
iz

at
io

n 
de

gr
ee

 %

Scattering angle, deg

        particle half size + distance 1
        particle half size + distance 2
        particle half size + distance 3
        particle half size + distance 4
        particle half size + distance 5
        particle half size + distance 6
        particle half size + distance 7

(b)

Figure 5.34: Scattering angle curves of (a) normalized intensity and (b) linear polarization
near backscattering branch calculated for the first set of two GRF particles that have size
parameter kR = 30 with gradually growing distances starting from one comparable to
half size of one particle. The distances from 1 to 7 represent slightly increased separation
between both particles with steps around 11% of the wavelength of incident light.
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Figure 5.35: Scattering angle curves of (a) normalized intensity and (b) linear polarization
near backscattering branch calculated for the first set of two GRF particles that have size
parameter kR = 30 with gradually growing distances starting from one comparable to
the size of one particle. The distances from 1 to 7 represent slightly increased separation
between both particles with steps around 11% of the wavelength of incident light.
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Figure 5.36: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for the second set of two GRF particles that have size
parameter kR = 30 with gradually growing distances comparable to the size of one par-
ticle. The distances from 1 to 6 represent slightly increased separation between both
particles with steps around 11% of the wavelength of incident light.
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Figure 5.37: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for the second set of two GRF particles that have size
parameter kR = 30 with gradually growing distances comparable with half size parameter.
The distances from 1 to 7 represent slightly increased separation between both particles
with steps around 11% of the wavelength of incident light.
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Figure 5.38: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization calculated for the second set of two GRF particles that have size
parameter kR = 30 with gradually growing distances comparable to the size of one par-
ticle. The distances from 1 to 6 represent slightly increased separation between both
particles with steps around 11% of the wavelength of incident light.
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Figure 5.39: Scattering angle curves of (a) normalized intensity and (b) linear polarization
near backscattering branch calculated for the second set of two GRF particles that have
size parameter kR = 30 with gradually growing distances comparable to the size of one
particle. The distances from 1 to 6 represent slightly increased separation between both
particles with steps around 11% of the wavelength of incident light.
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Figure 5.40: Scattering angle curves of (a) normalized intensity and (b) linear polarization
near backscattering branch calculated for the second set of two GRF particles that have
size parameter kR = 30 with gradually growing distances comparable with half size
parameter. The distances from 1 to 7 represent slightly increased separation between
both particles with steps around 11% of the wavelength of incident light.
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Figure 5.41: Scattering angle curves of (a) normalized intensity and (b) linear polarization
near backscattering branch calculated for the second set of two GRF particles that have
size parameter kR = 30 with gradually growing distances comparable to the size of one
particle. The distances from 1 to 6 represent slightly increased separation between both
particles with steps around 11% of the wavelength of incident light.
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5.6 Confirmation of the effect of double scattering on
polarization at backscattering

Initially, for the considered high absorption (Im{m} = 0.3), the negative polarization can
not be produced by scattering from single particles. It appears for structures consisting of
double particles at least. In this section, the reflecting area of the structures is increased,
but mostly preserve the distribution of angles γ. This has been done in two procedures.
The first one is direct comparison between two binary structures, namely, binary spheres
and binary ellipsoids. The ellipsoids are gained by stretching the spheres in y-direction
1.5 times. Hence, they have the aspect ratio 1 : 1.5 : 1 and size parameter kR = 45. The
second one is increasing the size of entire system making the number of spheres larger.
Here, monolayers of five and seven spheres are studied.

Figure 5.42 illustrates the first case of binary structures of spheres and ellipsoids. The
opposite surfaces of ellipsoids are larger than the ones of spheres. Thus, higher double
scattering contribution according to rising the faces area, where light interacts between
both scatterers, is achieved.

  

yz
x

(a)

  

yz
x

(b)

Figure 5.42: Structures of two faceted spheres and ellipsoids in (a) and (b), respectively,
with minimum separation between them.

The ellipsoids are formed by of extending the same studied spheres only in y-direction,
which is the perpendicular direction to the incident light. Figure 5.43 and its zoom at
backscattering angles figure 5.44 display the scattering angle curves of the normalized
intensity and the linear polarization of the considered spherical and ellipsoidal shapes.
These plots have the same scale in order to compare the curves with each other. The
intensity at the backscattering branch for ellipsoids (figures 5.43c and 5.44c) shows en-
hancement in comparison to the one of spheres (figures 5.43a and 5.44a). This occurs
because the ellipsoids have larger surface areas that lie in front of the incident wave and
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scatter more light back.
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Figure 5.43: Scattering angle curves of normalized intensity in logarithmic scale of (a)
two faceted spheres and (c) two faceted ellipsoids that have aspect ratio 1 : 1.5 : 1 and
(b), (d) linear polarization near backscattering branch calculated for the same order with
gradually increasing distances starting from one much smaller than the wavelength of the
incident light. The distances from 1 to 7 represent slightly increased separation between
both regular particles with steps around 11% of the wavelength.
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Figure 5.44: Zoomed in scattering angle curves of (a), (c) normalized intensity of two
faceted spheres and two faceted ellipsoids (aspect ratio 1 : 1.5 : 1), respectively, and (b),
(d) linear polarization near backscattering branch calculated for the same both struc-
tures with the same order with gradually increasing distances starting from one much
smaller than the wavelength of the incident light. The distances from 1 to 7 represent
slightly increased separation between both regular particles with steps around 11% of the
wavelength.

Now, the polarization curves are considered in figures 5.43b and 5.43d, especially
at the backscattering range, which is zoomed in 5.44b and 5.44d. Importantly, for the
case of two spheres, the maximum amplitude of the polarization flip amounts to 29% for
the negative and 28% for the positive one, where for ellipsoids, this amplitude is clearly
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5.6 Confirmation of the effect of double scattering on polarization at backscattering

higher. It gets a value around 31% for negative and 37% for positive polarization. Hence,
increasing the double scattering that is achieved throw extending the spheres to ellipsoids
in the horizontal direction, which is responsible for rising the degree of polarization for
the corresponding separation.

The second procedure, which is increasing the number of scatterers, is discussed
here. It was shown in chapter 5.1 that increasing the number of particles demonstrated
growing of the degree of negative polarization at backscattering. The same happens when
adding a third sphere to the structures of double spheres. Thus, systems with larger
numbers of particles have been studied. A good choice here is cluster of spherical shapes,
as irregular constituents have complex topologies and deliver hardly interpretable single
(not-averaged) curves. Structures of five and seven spheres, as figure 5.45 displays, are
investigated. The size parameter of each sphere is 30 and their material is absorbing with
refractive index m = 1.5 + i0.3. The polarization flip obtained through slightly increasing
of separations from minimum distances much smaller than the wavelength of incident
light with equidistant steps of 11% of wavelength.
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Figure 5.45: A cluster of (a) five and (b) seven faceted spherical particles in with minimum
separations between them.

Although dealing with spheres looks from the first sight not enough for theoretical
modeling of natural powder, the following plots (figures 5.46 and 5.47) give a concrete
argument that increasing the number of scatterers, increases in turn the degree of the
positive and negative polarization at backscattering. The reason for that is the increasing
of double scattering contribution. Polarization flipping behavior (see figures 5.46d and
5.47d) is still observed at backscattering with minimum of −52% at 177◦ and maximum
of 56% at 177.5◦ for five spheres. The degree of polarization flip for the seven scatterers
amounts to a minimum of −62% at 176.8◦ and maximum of 79% at 177◦. Nevertheless,
for 5 spheres case, it seems more symmetric than 7 spheres case. One can say, this is
the result of accumulating all interactions between spheres, i.e., superposition of double
scattering between each two particles.
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The intensity at backscattering gets lower for structures of 5 spheres in comparison
with 7 ones as figures 5.46c and 5.47c, which have the same scale, display. This is because
of the coherent backscattering enhancement associated with increasing the number of
scatterers.
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Figure 5.46: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for five faceted spheres that
have size parameter kR = 30 with gradually growing distances starting from one much
smaller than the wavelength of incident light. The distances from 1 to 7 represent slightly
increased separation between both ellipsoids with steps around 11% of the wavelength.
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Figure 5.47: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for seven faceted spheres that
have size parameter kR = 30 with gradually growing distances starting from one much
smaller than the wavelength of incident light. The distances from 1 to 5 represent slightly
increased separation between both ellipsoids with steps around 11% of the wavelength.

5.7 The role of refractive index m

For studying the influence of the real part of refractive index m on polarization, two-
sphere structures are first investigated with the same absorbing material Im{m} = 0.3
and different Re{m}. Again, the polarization flip obtained from variation of separation
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between both spheres starting from minimum distance is considered. Figure 5.48 displays
the normalized intensity and negative polarization at backscattering for two values of
the real part of refractive index Re{m} = 1.5 and Re{m} = 1.8. The polarization
plots (see figures 5.48b and 5.48d) show an influence on the polarization amplitudes at
backscattering.
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Figure 5.48: Zoomed in scattering angle curves of (a), (c) normalized intensity cal-
culated for of two spherical structures with two distinct real part of refractive index,
namely, Re{m} = 1.5 and Re{m} = 1.8, respectively and (b), (d) linear polarization
near backscattering branch calculated for the same both refractive indices, respectively.
The distances from 1 to 7 represent slightly increased separation between both scatterers
starting from one much smaller than the wavelength of incident light with steps around
11% of the wavelength for the corresponding separation.
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5.7 The role of refractive index m

The intensity gets higher with increasing Re{m} from 1.5 to 1.8 due to Fresnel
reflection. This can be seen in both figures 5.48a and 5.48c, when comparing the curves
with each other as they have the same scale. For m = 1.5+i0.3 the minimum polarization
degree is −29% and the maximum one is 28%, where both increase with increasing the
real part of m to 1.8. Here, the polarization degree amounts to a minimum of −30% and
a maximum of 30%.

It is interesting to study now, if the real part of refractive index can impact the
negative polarization for clusters of irregular particles. Sufficient structure for this target
is a monolayer of ten irregular particles. An example of this structure is displayed in figure
4.2 in the model description section 4.1. Clusters consisting of more particles like 50 or
100 do not produce much changes in the negative polarization at backscattering [115].
Thus, heavy computational effort is saved using monolayers consisting of ten irregular
particles instead of simulating multiple layers with tens or hundreds of particles. One
hundred simulations with these structures with variation of the real part of refractive
index have been done.

The refractive index of the monolayer of irregular particles has the same imaginary
part but different real parts (m = 1.3 + i0.3, m = 1.5 + i0.3 and m = 1.8 + i0.3). The
intensity curves (see figures 5.49a and 5.49c) show similar profiles at backscattering range
with increased amplitudes as a result of rising the real part of refractive index, which is
expected. The curves display increased negative polarization at backscattering up to 0.1%
for each increase of Re{m} as figure 5.49d illustrates. The degree of negative polarization
for m = 1.3 + i0.3 is 1.9%, where the next one for m = 1.5 + i0.3 amounts to 2% and the
last for m = 1.8 + i0.3 makes 2.1%. Another effect here is that the positive polarization
at intermediate angles shifts to the left hand side with increased Re{m}. Figure 5.49b
shows this. As well, the maximum of positive polarization increases for growing the real
part of refractive index. It amounts to 85.8% for Re{m} = 1.3. For Re{m} = 1.5 it grows
to 86.7% and it gets its maximum for Re{m} = 1.8 at 87.2%. This can also be seen in
figure 5.49b. Changing Re{m} of the scattering object influences Brewster’s angle of its
single scattering, which impacts the scattered light. One can say that Brewster’s angle
has an effect on the negative polarization.

The imaginary part of the refractive index Im{m} that describes the absorption
is a critical parameter for light scattering in general. It also influences the opposition
phenomena strongly. It affects the linear negative polarization so that single absorbing
particles do not produce it any more. This is, in fact, the opposite case for non-absorbing
ones that deliver negative polarization at backscattering. In order to study absorption
theoretically, one needs to model the variation of the imaginary part of the refractive
index Im{m} to see how it affects the intensity and the linear polarization. The goal here
is to figure out, after gradual increasing of absorption for single particles starting from
transparent ones, when the negative polarization starts to disappear.
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Figure 5.49: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for a monolayer of ten
random irregular particles with three different real parts of refractive index, namely, 1.3,
1.5 and 1.8. The size parameter of each constituent is kR = 30. The curves are averaged
over 100 samples.

It is interesting to find the value of Im{m} for which the negative polarization of
single particles vanishes to use this value for cluster of particles. This requires choos-
ing different values for Im{m} between 0 and 0.3 which represents high absorption. As
averaging over hundreds of heavy numerical simulations for each value of Im{m} is com-
putationally expensive, it makes sense to probe a few calculations for simple regular shapes
to get some approximation for these values. After that, the results of regular shapes will
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5.7 The role of refractive index m

be used for computations of single irregular particles. For this reason, a set of twelve
ellipsoids that possess different aspect ratios have been investigated. Their aspect ratios
vary from 1 : 1.5 : 0.4 to 1 : 1.5 : 1.5 with variation of 0.1 steps on the z axes and the
size parameter is kR = 30. For calculations performed for this set of ellipsoids arbitrary
values of Im{m} are chosen between 0 and 1 as the plots in figure 5.50 show. It is worthy
to mention here, that averaging over twelve single curves of ellipsoidal structures with
different aspect ratio is not enough for studying single scattering of different absorbing
materials. Even-though it gives a rough estimation about the effect of the imaginary part
of the refractive index on the normalized intensity and linear polarization as one can see
in figure 5.50. Each curve here is the result of averaging over only 12 curves of the single
ellipsoids. The polarization curves in 5.50b illustrate that the influence of absorption is
significant, especially in the interval between Im{m} = 0.01 and Im{m} = 0.1, where the
the polarization curves strongly change their pattern. At this point this range of Im{m}
between 0.01 and 0.1 is interesting to investigate for light scattering from single irregular
particles.
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Figure 5.50: Scattering angle curves of (a) normalized intensity in logarithmic scale and
(b) linear polarization computed for single ellipsoids with growing absorption starting
from transparent particles (Im{m} = 0) to relatively high absorption (Im{m} = 0.1).
Each curve is averaged over 12 different aspect ratios between 1 : 1.5 : 0.4 and 1 : 1.5 : 1.5
with variation of 0.1 step on the z axes. that have size parameter kR = 30 , where the
negative polarization disappears.

Accordingly, single irregular particles with size parameter kR = 30 have been con-
sidered using the obtained Im{m} values as figure 5.51 demonstrates. Each curve is an
average over more than 200 computations of different single particle modifications. In
general, light scattered by non-absorbing single particles delivers negative polarization

84



Chapter 5. Simulation results

and an intensity surge. The polarization for intermediate scattering angles moves in the
positive direction with increased absorption 5.51b, where at backscattering the case is dif-
ferent. Transparent single particles produce negative polarization that amounts to 1.7%
with inversion angle 170◦ as figure 5.51d displays. Interestingly, when increasing absorp-
tion Im{m} to 0.01, the negative polarization gets enhanced and it shows a maximum of
2% at 169◦. After this point consequent increasing of the absorption gradually decreases
the negative polarization till it vanishes for the refractive index m = 1.5 + i0.06, where
the curve of the linear polarization takes its well known character of Fresnel polarization.
This means that the relatively high absorption of the single irregular particles blocks the
single scattering contribution to the negative polarization completely for Im{m} = 0.06.
This shows, when the particles are transparent the main source of negative polarization
in this system is single scattering until they become non-transparent.

In clusters of random irregular particles, there are single and multiple scattering, but
for single particles, one can also define internal scattering. For single particles, single
external reflection and multiple internal scattering can be considered. In fact, as long as
particles are transparent, strong single external reflection and multiple internal scatter-
ing exist in the system. The roles of these single and multiple scattering are different
as single scattering is the source of negative polarization, but in contrast, the internal
multiple scattering is a depolarization factor. Thus, reducing the contribution of positive
and negative polarization. In other words, in the purpose of analyzing the curves in fig-
ure 5.51d, modifying Im{m} changes the balance between external single and internal
multiple scattering. The result is not general but it is still interesting because it clarifies
that the dependency here is not monotonous, as this multiple scattering decreases faster
than the single one when rising Im{m}. This explains having a maximum of negative po-
larization at Im{m} = 0.01. As absorption growing reduces the contribution of internal
multiple scattering, i.e., decreases the depolarization effect, and only a relative contribu-
tion of single scattering is still observed. This single scattering contribution is responsible
for the negative polarization enhancement. Further increasing of the absorption decreases
both external single and internal multiple scattering until negative polarization for single
particles disappears. In addition, the normalized intensity and the linear polarization
curves do not exhibit a relationship between negative polarization and intensity surge
at backscattering. Gradual increasing of the absorption decreases the intensity and the
intensity surge gets weaker until m = 1.5 + i0.1 and it increases again for m = 1.5 + i0.3
as figures 5.51a and 5.51c displays.

As single scattering does not produce negative polarization for single GRF particles
with absorption higher than Im{m} = 0.06, it is interesting to study such high absorption
for monolayers of 10 irregular particles. This allows considering the contribution of double
scattering to the negative polarization without the single scattering one. Therefore, two
different values of Im{m} have been employed, namely, 0.1 and 0.3. As well, for compar-
ison, simulations for the same structures with Im{m} = 0 are done. The size parameter
of each particle in the monolayers is kR = 30. Figure 5.52 shows the normalized intensity
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5.7 The role of refractive index m

and linear polarization curves for these three cases. Each curve is averaged over around
300 samples. The negative polarization appears for all three cases, where in contrast, for
the same considered refractive indices, only the non-absorbing single irregular particles
were able to produce negative polarization at backscattering.
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Figure 5.51: Scattering angle curves of (a), (c) normalized intensity and (b), (d) linear
polarization calculated for single (isolated) GRF particles that have size parameter kR =
30 with growing absorption starting from transparent particles (Im{m} = 0) to relatively
high absorption (Im{m} = 0.1), where the negative polarization disappears. Each curve
is averaged over more than 200 computations.

On one hand, the polarization curves in figure 5.52b show profile very close to the
similar one of single particles for intermediate scattering angles. On the other hand, not
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only the non-absorbing clusters of 10 particles generate negative polarization but also
the absorbing ones. This is opposed to scattering by absorbing single particles, as their
polarization curves starting from Im{m} = 0.06 do not possess negative polarization at
all (see figure 5.51b).
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Figure 5.52: Scattering angle curves of (a), (c) normalized intensity and (b), (d) linear
polarization calculated for a monolayer of ten GRF particles that have size parameter
kR = 30 with three levels of absorption starting from transparent constituents (Im{m} =
0) to relatively high absorption (Im{m} = 0.1 and Im{m} = 0.3), where the negative
polarization appears again in contrast to single irregular particles. Each curve in this plot
is averaged over around 300 samples.

Furthermore, for the case of transparent clusters, the source of negative polariza-
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tion at backscattering is single scattering from the particles lying in the upper layer of
the system [29]. The appearance of negative polarization for absorbing layers can be
explained with interference mechanism of double scattering between the particles, as mul-
tiple scattering decreases exponentially for materials with high absorption or low albedo.
In addition, it is remarkable in figure 5.52d, that non-absorbing clusters have more oscil-
lations than the absorbing ones because of the resonances as an outcome from transparent
particles of the same size. Interestingly, the degree of negative polarization grows with
rising the imaginary part of refractive index as both polarization curves for absorbing
clusters with m = 1.5 + i0.1 and m = 1.5 + i0.3 in figure 5.52d display. This can be in-
terpreted as higher absorption dampens the multiple scattering non-monotonously, which
decrease the depolarization. Also the inversion angle in this plot decreases with increased
absorption.

5.8 Variation of the scatterers’ size parameter

The size parameter of scattering objects influences the negative polarization. This has
been found in photopolarimetric observations [9, 19, 116]. As well, it has been studied
experimentally for transparent and absorbing irregular clusters of particles [12,21]. Gen-
erally, the effect of increasing the particle sizes result in increased negative polarization
amplitude associated with decreasing of the inversion angle. Figure 5.53 confirms this.
It shows the curves of the normalized intensity and the degree of negative polarization
gained from systematic study of monolayer clusters consisting of ten densely packed ir-
regular particles with the size parameters kr = 20 and 30. The polarization in general
gets weaker with decreased sizes as the polarization curve in figure 5.53b displays for both
intermediate and backscattering angles. The degree of the negative polarization makes
1.34% at the scattering angle 172.3◦ for particles with size parameter 30 and 0.78% for the
ones with kr = 20 at 173◦. The reason behind this is that when the particles are large in
comparison to the wavelength of incident light Fresnel-like reflection becomes dominating
in the scattering from a system. In addition, when considering the inversion angle of the
polarization curve, it decreases from 167.1◦ to 165.8◦ due to growing size parameter from
20 to 30 (see figure 5.53d). This also matches with the results achieved from observational
data and laboratory measurements [12, 19, 21, 116]. Chapter 5.3 shows agreement with
this fact, as decreasing the sizes of two spherical structures with small distance variation
delivers wider polarization flip near the backscattering with decreased amplitude (see fig-
ures 5.12b, 5.15d and 5.16d). Taking the intensity curves at the backscattering branch
into account (see figures 5.53a and 5.53c) shows increasing of the intensity surge belonging
to kr = 30 over kr = 20 associated with increased negative polarization. Consequently,
the intensity surge of the structures of irregular particles that have size parameter 30 is
narrower than the one of 20 as can be seen in figure 5.53c. This correlates with narrower
negative polarization feature that can also be seen in both polarization curves as a result
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of increasing the scatterers’ sizes regarding to the wavelength. Generally, one can say that
increasing the size parameter leads to increased negative polarization and intensity surge
at the backscattering range with narrower effects. This is also consistent with experimen-
tal results and approximate models. The question then arises: Does this mean that the
negative polarization and intensity surge correlate with each other? The next chapter will
answer this question and provide a detailed description with purposeful computations.
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Figure 5.53: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for a monolayer of ten
random irregular GRF particles with two different constituents size parameter, namely,
kR = 20 and 30. The curves are averaged over more than 200 samples.
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5.9 Correlation between negative polarization and intensity surge

5.9 Correlation between negative polarization and in-
tensity surge

The following figure 5.54 displays three samples of irregular constituent particles that fall
down into a cylindrical domain to build the model clusters. Although all constituents
are randomly oriented, it is obvious that the surface profiles can be categorized into two
groups regarding to the constructed topology.
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(a) Top view of sample 1
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Figure 5.54: Views from the top (a, c, e) and bottom (b, d, f) of 3 distinct samples
belonging to monolayer of 10 randomly oriented irregular GRF particles.
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The first one is represented by random topography and random distribution of
heights. The second is represented by the same set of samples illuminated from the
bottom side. In this case, the highest points of all particles appear on the same level
as a result of deposition on a plane substrate. The motivation of this categorization is
the different behavior of the same structure, when illuminating it from the top and from
the bottom. At this point taking the angles of face orientations γ, discussed in chap-
ters 5.2 and 5.3, into account again provides prediction of the influence of the clusters
surface geometry on producing negative polarization and intensity surge. It is clear that
the top side of the monolayer (figures 5.54a, 5.54c and 5.54e) allows good condition for
light interaction between the neighboring particles. Consequently, this leads to higher
contribution of double scattering, which is responsible for the negative polarization. In
contrast, for illuminating the monolayer from the bottom side, single scattering domi-
nates. This happens because most of the facets in front of the incident electromagnetic
wave build together kind of plane-like topology perpendicular to the incidence direction
(figures 5.54b, 5.54d and 5.54f). In other words, the plane areas have larger fraction
than voids or corner-like structures. Hence, double scattering between the particles gets
weak, which results in getting weak or even no negative polarization as a consequence. At
the same time, higher light reflections at the backscattering range from these plane-like
topologies are obtained, which in turn results in enhancing the intensity with increased
contribution of specular reflections. This can bee seen in the results of the numerical
simulations from hundreds of such structures consisting of 10 uniquely shaped randomly
oriented particles that are plotted in figure 5.55. Here are the curves of the normalized
intensity and the degree of linear polarization from both cases, namely, illumination from
the top and from the bottom of the monolayer. The negative polarization gained after
illuminating the structures from the top is relatively strong and makes 1.34%. The one of
bottom illumination is absent as can be seen in figure 5.55d. Whereas the intensity (figure
5.55c) shows very strong enhancement for the down side of the cluster in comparison to
the upper side because of the high contribution of the specular reflection.

Typically, in the literature, there have been discussions about correlation between
the negative polarization and the intensity surge. They are often observed together.
However, many exceptions have been found [9]. The computations in this work, which
consider realistic models, do not confirm direct or proportional correlation between both
effects. They come out together when the angles γ between the scatterers facets allow high
contribution of double scattering. In this case, negative polarization gets its maximum
and the intensity surge can still exist. Additionally, when the topology of the cluster
surface is more flat, double scattering conditions are not good enough and single scattering
dominates for back reflections. As a result, the negative polarization gets weaker or even
does not survive. Nevertheless, the intensity achieves its maximum at backscattering (see
figure 5.55c).

As a conclusion, it has been found that the opposition phenomena are very sensitive
to the angles γ built between the scatterers facets or the slops of these faces and their
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5.9 Correlation between negative polarization and intensity surge

orientations to each other. The polarization sensitivity to the scatterers topology and
composition has also been found in polarimetric observations for surfaces of planets [15].
This means generally, it is possible to create clusters or layers of irregular particles with
reduced variation of slopes, which changes the balance between single and double scat-
tering, so that negative polarization can disappear.
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Figure 5.55: Scattering angle curves of normalized intensity in logarithmic (a) and linear
(c) scales and degree of linear polarization (b), (d) calculated for a monolayer of ten
random irregular GRF particles with two different illumination directions, namely, from
top and from bottom. The constituents have the refractive index m = 1.5 + i0.3 and the
size parameter kR = 30. The curves are averaged over more than 200 samples.
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5.10 Comparison with laboratory measurements

The linear polarization curve corresponding to monolayers of ten GRF particles (kR = 30)
with absorbing material m = 1.5 + i0.3 are compared with polarization data of a sample
of boron carbide powder (B4C) taken from the reference [21]. Figure 5.56 displays this
comparison. The constituents size parameter of the experimental study is close to the one
in simulations. Despite having some differences between simulations and measurements
in polarization amplitudes, one can see that the inversion angles are very close to each
other (between 166◦ and 167◦). The slope of polarization between 160◦ to 170◦ and the
amplitude of negative polarization vary because of the different used refractive indices,
though they are absorbing. Importantly, the surface roughness and inhomogeneity of
particles in addition to some distribution of their sizes in real powder can play a significant
role in reducing polarization. Surface roughness depolarizes Fresnel reflection. Whereas
the absorbing GRF particles used in this work have smooth surface. This can explain the
difference of negative polarization between both considered cases in figure 5.56b.
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Figure 5.56: Linear polarization degree in (a) and (b) for simulations of monolayer consist-
ing of ten irregular absorbing particles and experimental data of a slab of boron carbide
powder taken from figure 4b of the reference [21].
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HighPerMeshes Project
6

Due to the increasing necessity for large scale simulations and the drastically growing
availability of high performance computing (HPC) platforms, the domain specific language
(DSL) HighPerMeshes has been developed. Thus, taking advantage of HPC systems. It
is designed for application programmers from science and industry areas to implement
portable parallelized iterative algorithms productively on unstructured meshes. High-
PerMeshes [74–76, 117] is a collaboration project funded by BMBF (German Ministry
of Education and Research) as a C++-embedded framework for heavy or large scale sci-
entific simulations with unstructured meshes, which enables spatial flexibility and high
accuracy in comparison to structured ones. The current supported numerical methods
by the project include the discontinuous Galerkin method and finite element method.
Utilizing parallel techniques and libraries in the software makes it very effective and
performant. However, it is time consuming to learn these techniques. The HighPer-
Meshes framework has the advantage of portability on heterogeneous computational ar-
chitectures and super computing platforms (CPUs, GPUs and FPGAs) with efficient
parallelization and scheduling in the background. Hence, there is no need to deal with
porting or parallelization of the code. This increases the productivity of the develop-
ers, allowing them to concentrate on their own science and correctness of the results.
HighPerMeshes supports all dimensions for 1D, 2D and 3D meshes. It provides differ-
ent data structures and wrappers to fit scalar or vector fields with a lot of purposeful
functionalities for numerics and related mathematical matrix vector operations. Geo-
metrical functions used by most of the simulation methods are included in the DSL,
like: GetCenter() , GetJacobian() and GetNormal() . Also topological information
for the mesh is contained, for example: GetIndex() , GetIndexOfNeighberingCell()
and IsElementOfBoundary() . Consequently, this offers a high abstraction level of the
programming language saving time and effort for implementing, testing and debugging
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a lot of basic mathematical operations. Additionally, the framework possesses time and
space loop types that are embedded efficiently in modern C++ like the following code
example: ForEachEntity(use some data in a tetrahedron){ do calculations } .
By means of these loop types, one can iterate over particular user chosen regions, like
defining a source plane in certain position of the simulation domain for injecting the elec-
tromagnetic wave, or selecting a specific group of cells to collect the executed field values
on its nodes.

A part of this thesis is the contribution to the HighPerMeshes project. The success-
fully accomplished tasks of this contribution are listed in the following items:

• Analyzing the DGTD method by means of the open source midg [65] and an in-house
parallel DGTD code that runs on multiple CPUs [66].

• Providing an overview of DGTD, as described in chapter 3.

• Determination of the framework requirements for DGTD Maxwell solver from the
user side for a compact design, useful language elements and practical operations
on the mesh elements.

• Implementing field manipulation operations for representing the numerical solution
on a structured grid (see figure 6.1b) from the unstructured one (see figure 6.1a).
This is based on the codes described in [65, 66]. Thus, visualization with desirable
user defined resolution is possible.

• Validation of the simulation results of DGTD Maxwell solver for an initial value
problem in free space.

• Contribution to publications with project partners [74–76,117].

6.1 DGTD Maxwell solver implementation in High-
PerMeshes

In this section, the implementation of the DGTD Maxwell solver in HighPerMeshes is
described and code segments are presented [74,117]. As a start point, Maxwell’s equations
in vacuum are implemented without material properties. This means that the numerical
scheme discussed in chapter 3 (see equations 3.8 and 3.9) is simplified as follows:

Ėk = Dk ×Hk + (Mk)−1Fk
(

∆E− n̂ · (n̂ ·∆E) + n̂×∆H
)

(6.1)

Ḣk = −Dk × Ek + (Mk)−1Fk
(

∆H− n̂ · (n̂ ·∆H)− n̂×∆E
)

(6.2)
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The right hand side of both equations is divided into two parts, namely, the volume and
the surface kernel. The first terms are the rotation of the magnetic field Dk×Hk and the
electric field −Dk × Ek. These arithmetic operations are executed for all volume nodes
on the tetrahedra. The following listing 6.1 shows a commented implementation of this
kernel.

Listing 6.1: Volume kernel of DGTD Maxwell solver

// Volume kernel "for" loop over all mesh cells (for each mesh entity )
auto volumeKernelLoop = HPM :: ForEachEntity (

AllCells ,
std :: tuple(
Read(Cell( fieldH )), // electric field E
Read(Cell( fieldE )), // magnetic field H
ReadWrite (Cell(rhsH)), // right hand side of H
ReadWrite (Cell(rhsE))), // right hand side of E
[&]( const auto &element , const auto &, auto &lvs) {

// get Jacobian transformation matrix
const Mat3D &D = element . GetGeometry (). GetInverseJacobian () *2.0;

// derivatives of E and H fields in the current cell for all volume
nodes ( numVolNodes = 20 for third polynomial order)

HPM :: ForEach (DG:: numVolNodes , [&]( const std :: size_t n) {
Mat3D derivative_E , derivative_H ;

// get current local values (lvs) of H and E fields for cell volume
nodes

const auto & fieldH = dof :: GetDofs <dof :: Name ::Cell >( std ::get <0>( lvs));
const auto & fieldE = dof :: GetDofs <dof :: Name ::Cell >( std ::get <1>( lvs));

// compute derivatives of E and H fields for local volume nodes:
HPM :: ForEach (DG:: numVolNodes , [&]( const std :: size_t m) {

derivative_H += DyadicProduct (DG:: derivative [n][m], fieldH [m]);
derivative_E += DyadicProduct (DG:: derivative [n][m], fieldE [m]);

});

// get current local values (lvs) of right hand side (rhs) of H and E
fields :

auto &rhsH = dof :: GetDofs <dof :: Name ::Cell >( std ::get <2>( lvs));
auto &rhsE = dof :: GetDofs <dof :: Name ::Cell >( std ::get <3>( lvs));

// compute rotations of E and H fields for all local nodes (n)
rhsH[n] += -Curl(D, derivative_E );
rhsE[n] += Curl(D, derivative_H );

});
},

// openMP back end for parallel computation
HPM :: internal :: OpenMP_ForEachEntity <3 >{});
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The readability is a criterion of a modern clean code. This is taken into consideration in
the HighPerMeshes project. Obviously, it is possible to understand the implementation
here even without comments, as the variables and functions are given the same mathe-
matical or physical names. Thus, allowing for a high productivity of the programmer.
The second part of the numerical scheme are the second terms of the right hand side of
the equations 6.1 and 6.2, namely, the flux term. Listing 6.2 shows the commented code
of the surface kernel.

Listing 6.2: Surface kernel of DGTD Maxwell solver

// Surface kernel "for" loop over all mesh faces
auto surfaceKernelLoop = HPM :: ForEachIncidence <2>(

AllCells ,
std :: tuple(
Read( ContainingMeshElement ( fieldH )), // H field of current element
Read( ContainingMeshElement ( fieldE )), // E field of current element
Read( NeighboringMeshElementOrSelf ( fieldH )), // H field of neighbor
Read( NeighboringMeshElementOrSelf ( fieldE )), // E field of neighbor
ReadWrite ( ContainingMeshElement (rhsH)), // right hand side of H
ReadWrite ( ContainingMeshElement (rhsE))), // right hand side of E
[&]( const auto &element , const auto &face , const auto &, auto &lvs) {

// get faces local indices and calculate its normals coordinates
const std :: size_t face_index = face. GetTopology (). GetLocalIndex ();
const RealType face_normal_scaling_factor = 2.0 / element . GetGeometry

(). GetAbsJacobianDeterminant ();
const Vec3D & face_normal = face. GetGeometry (). GetNormal () *

face_normal_scaling_factor ;
const RealType Edg = face_normal .Norm () * 0.5;
const Vec3D & face_unit_normal = face. GetGeometry (). GetUnitNormal ();

// get mapping between element faces and neighbor ones
const auto & localMap { DgNodeMap .Get(element , face)};

// get current local values (lvs) of H and E fields for cell surface
nodes ( NumSurfaceNodes = 10 for third polynomial order)

HPM :: ForEach (DG:: NumSurfaceNodes , [&]( const std :: size_t m) {
const auto & fieldH = dof :: GetDofs <dof :: Name ::Cell >( std ::get <0>( lvs));
const auto & fieldE = dof :: GetDofs <dof :: Name ::Cell >( std ::get <1>( lvs));

// get neighbor H and E fields
auto & NeighboringFieldH = dof :: GetDofs <dof :: Name ::Cell >( std ::get <2>(

lvs));
auto & NeighboringFieldE = dof :: GetDofs <dof :: Name ::Cell >( std ::get <3>(

lvs));

// compute differences of magnetic and electric fields dH and dE ,
respectively , on cells interfaces

const Vec3D &dH = Edg * HPM ::DG:: Delta(fieldH , NeighboringFieldH , m,
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localMap );
const Vec3D &dE = Edg * HPM ::DG:: DirectionalDelta (fieldE ,

NeighboringFieldE , face , m, localMap );

// compute the flux (flux_H , flux_E ) for magnetic and electric fields
const Vec3D & flux_H = (dH - (dH * face_unit_normal ) *

face_unit_normal - CrossProduct ( face_unit_normal , dE));
const Vec3D & flux_E = (dE - (dE * face_unit_normal ) *

face_unit_normal + CrossProduct ( face_unit_normal , dH));

// get current local values (lvs) of right hand side (rhs) of H and E
auto &rhsH = dof :: GetDofs <dof :: Name ::Cell >( std ::get <4>( lvs));
auto &rhsE = dof :: GetDofs <dof :: Name ::Cell >( std ::get <5>( lvs));

// Compute surface integration of the flux over all surface nodes
HPM :: ForEach (DG:: numVolNodes , [&]( const std :: size_t n) {

rhsH[n] += DG:: LIFT[ face_index ][m][n] * flux_H ;
rhsE[n] += DG:: LIFT[ face_index ][m][n] * flux_E ;

});
});

},

// openMP back end for parallel computation
HPM :: internal :: OpenMP_ForEachIncidence <3, 2 >{});

The time integration with Low Storage Runge Kutta method as described in chapter
3 is implemented in the HighPerMeshes Framework in a simple way as Listing 6.3 shows.

Listing 6.3: Runge Kutta kernel of DGTD Maxwell solver

// Runge Kutta kernel loop over all mesh cells (for each mesh entity )
auto rungeKuttaLoop = HPM :: ForEachEntity (

AllCells ,
std :: tuple(
ReadWrite (Cell( fieldH )), // electric field E
ReadWrite (Cell( fieldE )), // magnetic field H
ReadWrite (Cell(rhsH)), // right hand side of H
ReadWrite (Cell(rhsE)), // right hand side of E
ReadWrite (Cell(resH)), // resiual of H
ReadWrite (Cell(resE))), // resiual of E

[&]( const auto &, const auto &iter , auto &lvs) {
// Runge Kutta stage (get Runge Kutta coefficients )

const auto & RKstage = RungeKuttaCoeff <RealType >:: rk4[iter % 5];

// get current local values (lvs) of H and E fields for cell volume
nodes

auto & fieldH = dof :: GetDofs <dof :: Name ::Cell >( std ::get <0>( lvs));
auto & fieldE = dof :: GetDofs <dof :: Name ::Cell >( std ::get <1>( lvs));

// get current local values (lvs) of right hand side (rhs) of H and E
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fields :
auto &rhsH = dof :: GetDofs <dof :: Name ::Cell >( std ::get <2>( lvs));
auto &rhsE = dof :: GetDofs <dof :: Name ::Cell >( std ::get <3>( lvs));

// get current local values (lvs) of residual (res) of H and E fields :
auto &resH = dof :: GetDofs <dof :: Name ::Cell >( std ::get <4>( lvs));
auto &resE = dof :: GetDofs <dof :: Name ::Cell >( std ::get <5>( lvs));

// Time step integration for all cell volume nodes
HPM :: ForEach (DG:: numVolNodes , [&]( const std :: size_t n) {

resH[n] = RKstage [0] * resH[n] + timeStep * rhsH[n];
resE[n] = RKstage [0] * resE[n] + timeStep * rhsE[n];
fieldH [n] += RKstage [1] * resH[n];
fieldE [n] += RKstage [1] * resE[n];
rhsH[n] = 0.0;
rhsE[n] = 0.0;

});
},

// openMP back end for parallel computation
HPM :: internal :: OpenMP_ForEachEntity <3 >{})

Writing the output from the parallel processes is possible using the writeLoop
method. This allows writing the field results for each time step or at the end of the com-
putation in the output files, which can be visualized or processed. As an example for this,
a simulation with initial value problem in free space has been done. The computational
domain here is a cube and the boundary condition is perfect electric conductor (PEC).
Figure 6.1a visualizes the numerical solution of electric field component Ey resulted from
DGTD Maxwell solver of HighPerMeshes for unstructured grid.
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Figure 6.1: The component Ey of the electric field in a cubic cavity of (a) the numerical
solution resulted from DGTDMaxwell solver for unstructured grid and (b) post processing
manipulated solution for a structured one that have high resolution (51× 51× 51).
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Performing post processing manipulation for this result delivers a numerical solution
for a structured grid that has a user defined resolution. This is displayed in figure 6.1b.
The resolution here is (51× 51× 51).

The same simulation is distributed on four processes in order to test the parallelization
of HighPerMeshes. Figure 6.2 visualizes the manipulated Ey component for a structured
grid. The results in figure 6.1 and 6.2 are validated quantitatively using another Maxwell
solver.
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Figure 6.2: The result from different partitions of the component Ey of the electric field
in a cubic cavity. (a), (b) and (c) display three partitions of the simulation domain from
different processes, while (d) is the gathered results from all four processes.
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Conclusion and outlook
7

In this work, optical opposition phenomena observed for light scattered from powder-like
surfaces are studied and numerically analyzed. These are the negative polarization and
intensity surge near backscattering. HPC resources are employed for solving this light
scattering problem and implementing parallel code for this goal. The applied numerical
model is based on the DGTD method and the used code is parallelized. As well, working
on development of HighPerMeshes framework is progressing, which is also based on DGTD
method and will be further developed. Simulations of light scattering from structures with
different geometries are performed. These structures include single particles and layers
of up to ten particles. Constituents shapes are cubes, faceted spheres and ellipsoids, and
random irregular particles. The particles have sizes much larger than the wavelength of
incident light.

The double scattering coherent mechanism is confirmed. Single particles with consid-
ered parameters do not produce negative polarization near backscattering. In contrast,
all the considered structures with two and more particles can produce it. It, however,
depends on the geometric conditions of the scatterers.

Total backscattering response from the considered structures is formed by single and
double scattering. The polarization of these components is different. Total polarization is
the sum of both. Whether the negative polarization feature appears in the scattering angle
curve depends on the interplay between these components. Dominating single scattering
results in enhanced intensity scattered backwards and suppressed negative polarization.
So, that the total polarization becomes always positive. This is observed for structures
with ellipsoids, cubes and irregular particles, where constituent form large surface areas
perpendicular to the light incidence direction. For more random topographies that form
optimal angles between surface elements the relative contribution of single scattering is re-
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duced and double scattering becomes significant and negative polarization gets enhanced.
Another reason reducing double scattering and, correspondingly, negative polarization is
large distance between constituents. Thus, dense packing of particles is an enhancing
factor of negative polarization which is in agreement with experimental measurements of
compressed absorbing powder samples.

Numerical analysis of double scattering in two-particle structures with different shapes
of constituents shows that the interference mechanism can result not only in negative po-
larization but also in no polarization or even strongly enhanced positive polarization. The
negative polarization branch survives after averaging over many samples and distances
between constituents.

Simulation results show that backscattering intensity can be enhanced in a broad
range of scattering angles due to single scattering from constituents with favorable ori-
entations. However, no direct correlation has been found between intensity surge and
negative polarization at least for the considered structures.

As a future aspect, it is interesting to study the effect of surface roughness of random
irregular particles of different scales regarding to the wavelength of incident light. As
well, cluster of particles that have various sizes and different absorbing materials are
also interesting for characterizing powder topologies and materials by analyzing the light
scattered by them.
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D Electric induction
B Magnetic induction
P Polarization
J Electric current density
ρ Volume electric charge density
I‖ Intensity measured in parallel plane to the incident one
I⊥ Intensity measured in perpendicular plane to the incident one
m Refractive index
r Space vector
(x, y, z) Cartesian coordinates
t Time
ε0 Permittivity in vacuum
εr Relative permittivity
µ0 Permeability in vacuum
µr Relative permeability
ω Angular frequency
k Wave number
c Speed of light
λ Wavelength of incident light
I Stokes vector
I Intensity of light
Q Axis dominance of polarization
U Digonal dominance of polarization
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Symbol Meaning
V Circular domonance of polarization
S Amplitude scattering (Jones) matrix
ψ A form of amplitude scattering matrix
α̂ Parallel unit vector to the scattering plane
β̂ Perpendicular unit vector to the scattering plane
Q Matrix of material constants
F flux
ξ single six component vector of unknowns
κ(r) Electrical conductivity
ε Permittivity
µ Permeability
êj Cartesian unit vectors with j ∈ {x, y, z}
Ω Simulation domain
K Number of all cells of computational domain
Nnodes Total number of nodes for each cell
p polynomial order
Li Lagrange polynomials
ξ̃
k

n Expansion coefficients
ηn Local polynomial basis
R̃ Residual
Dk Spatial differentiation matrix
M Mass matrix
F Face matrix
Z Impedance
Y Conductance
x̂, ŷ, ẑ Auxiliary Cartesian coordinates
An, Bn, Cn Runge-Kutta coefficients
R Radius of the circumscribing sphere around the particle
kR Size parameter
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