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Zusammenfassung

In dieser Arbeit werden theoretische Modelle für die Beschreibung der Wechselwirkung
zwischen Halbleiternanostrukturen und Quantenlicht in Mikrokavitäten formuliert und
analysiert. Das Ziel dieser Arbeit ist das Ergründen und Verstehen von Eigenschaften
die exklusiv für eine quantenoptische Behandlung sind und ein hohes Anwendungspo-
tential für Quanten-Anwendungen bieten, um solche zu entwerfen oder zu verbessern.
Zunächst werden Systeme behandelt, deren Materie sich anfangs im elektronischen Grund-
zustand befindet und durch ein quantenoptisches Lichtfeld angeregt wird. Für Λ-Typ
Drei-Niveau-Systeme lässt sich zeigen dass Verluste im quantenoptischen Regime vorteil-
haft genutzt werden können, etwa beim Präperieren von speziellen stationären Zuständen.
Darüberhinaus wird gezeigt dass elektromagnetisch-induzierte Transparenz durch eine
nichtklassische Anregung verstärkt wird. Für Zwei-Band-Modelle wird die Besetzungsdy-
namik mit analytischen und numerischen Methoden untersucht und spezielle stationäre
Zustände werden demonstriert. Nachfolgend werden Messdaten von Vier-Wellen-Mischen-
Experimenten an Ensemblen von Halbleiter-Quantenpunkten mit einem semiklassischen
Modell analysiert. Hier wird die zeitliche Kontrolle von Photonen-Echos simuliert und die
Hauptdämpfungsprozesse werden diskutiert. Anschließend wird ein Ausblick auf die Be-
schreibung von Vier-Wellen-Mischen-Prozessen mit quantenoptischer Anregung gegeben
und genäherte Ergebnisse präsentiert. Die Arbeit endet mit einer Zusammenfassung und
einem Ausblick für zukünftige Forschungsprojekte.
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Summary

In this thesis, we formulate and analyze theoretical models to describe the interaction
between semiconductor nanostructures and quantum light in microcavities. The aim is to
explore and understand properties that are exclusive for a quantum-optical treatment and
have a high potential in application to create new or to improve existing quantum devices.
We begin with systems whose material system is initially in its electronic ground state and is
excited by a quantum-optical light field. ForΛ-type three-level systems, we show that losses
can be used as an advantage in order to create special steady states. Furthermore, we show
that electromagnetically induced transparency can be enhanced by using non-classical
light. For two-band models, we investigate the population dynamics with analytical and
numerical methods and demonstrate the formation of special steady states. Hereinafter,
we analyze data obtained from four-wave-mixing experiments performed on ensembles of
semiconductor quantum dots, where the theoretical description is based on a semiclassical
model. In particular, the temporal control of photon echoes is simulated and the main
damping mechanisms are discussed. Subsequent, we provide an outlook towards four-wave-
mixing processes with quantum-optical excitations and present a number of approximate
results. We close with a summary and an outlook of possible future research projects.
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Introduction 1
Semiconductor quantum optics is a multi-faceted field that combines the electronic prop-
erties of semiconductor structures with quantum-optical excitations with the overarching
goals to obtain novel fundamental insight and to create new quantum devices using
quantum-optical functionalities [1]. From the viewpoint of semiconductor optics, the re-
placement of classical light with quantum light has obvious benefits, since the former is
fully described by its amplitude and its phase, while the latter has more degrees of freedom,
such as its photon statistics and quantum correlations, e.g, photon-number correlations
[2–4]. So far, the field of quantum optics usually considers quite simple material models,
such as few-level systems that suitably describe atoms [5], but often are not sufficient
for solid state systems. Here, the steps to move from atomic systems to semiconductor
systems allow for a richer dynamics in the more complex electronic system and, in turn,
for more possibilities and advanced functionalities in quantum technologies, quantum
simulations, and quantum communication. In contrast to Ref. [1], we do not consider
many-body Coulomb interaction in this thesis, since we want to focus on the quantum
light as the main complexity. A powerful method in the context of semiconductor quantum
optics is quantum light spectroscopy [6–16], which is an extension of conventional optical
spectroscopy methods that were successfully applied to study various types of systems
[17–26]. A method of central importance is four-wave-mixing spectroscopy [27, 28], which
is a nonlinear optical process [29–31] and has been widely applied to study fundamental
properties of semiconductor nanostructures [32–50]. Extending conventional four-wave-
mixing spectroscopy to a quantum description of light, resulting in quantum wave-mixing
spectroscopy, is a highly promising candidate for the development of quantum memories
on the basis of ensembles of semiconductor quantum dots, which can be used for the
development of quantum devices.

In this thesis, we divide the complex problem of quantum wave mixing into two separate
components, which is studying the systems’ dynamics after exciting with a single quantum-
optical pulse and studying four-wave mixing by a semiclassical model, which is finally
combined to describe four-wave mixing with quantum pulses. We start by pointing out
the fundamentals on quantum states of light and their interaction with material systems
in Chapter 2. Afterwards, we move towards Λ-type three-level systems that are excited by
a quantum field in optical microcavities in Chapter 3, where dark-state and loss-induced
phenomena are studied. We demonstrate that electromagnetically induced transparency
can be enhanced by using non-classical states of light and provide an alternate approach
for the analysis of light-matter interaction based on the quantum polarization. We also
show that lossy cavities may lead to the formation of special steady states, which has
several benefits compared to other methods. Afterwards, we focus on two-band models
in Chapter 4, where the population dynamics after an initial excitation with quantum
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1 Introduction

light is investigated by analytical and numerical methods. The analytical investigation
is based on the eigenvalue problem of the Hamiltonian and provides novel insights and
explicit expressions for the steady-state value of the ground-state probability are given.
The numerical treatment demonstrates the formation of special steady states inside the
band under non-resonant excitation conditions. Subsequent, we analyze data obtained
from four-wave-mixing experiments in Chapter 5, where we simulate the temporal control
of photon echoes with a semiclassical model. We identify the main damping mechanism as
spatial averaging on the detector and demonstrate that it can be bypassed by shaping the
incident pulses. The remaining main damping mechanism is the coupling to longitudinal
acoustic phonons, as confirmed by an agreement between measured and simulated data.
Finally, we give an outlook to quantum wave mixing in Chapter 6, where we present
simulated four-wave-mixing signals for both, homogeneous and inhomogeneous systems,
that are based on several approximations. This thesis ends in Chapter 7 by summarizing
the results and giving an outlook towards further research.
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Fundamentals 2
In this chapter, we give an overview about the fundamentals of this thesis. We start with the
quantization of a classical multi-mode electromagnetic field in a given quantization volume,
which leads to a Hamiltonian that describes quantized light fields. Subsequently, we will
identify the eigenstates of this Hamiltonian as Fock states and discuss their properties.
Then, we introduce coherent states and squeezed states and demonstrate and discuss
their general properties including their photon statistics and Wigner functions. Lastly,
we describe the light-matter interaction between material models with several discrete
energy levels and a multi-mode quantum field. We start with the formulation of the
Hamiltonian and present the equations of motion. This is followed by an analysis of the
Jaynes-Cummings model, which allows us to point out central differences between a
quantum theory and a semiclassical theory. The content in this chapter mainly follows
standard procedures which can be found in textbooks [1, 5].

2.1 Quantization of the Electromagnetic Field

The quantization of the electromagnetic field is a problem that was firstly addressed a
century ago [51, 52] and is nowadays a topic that is covered by a number of standard
textbooks [1, 5, 53–56]. Here, we consider the quantization of the electromagnetic field that
is free from any sources. The propagation and time-evolution of a classical electromagnetic
field approach is fully described by Maxwell’s equations which in absence of free charges
and free currents read:

∇ × 𝑬 = − 𝜕𝑩
𝜕𝑡
, (2.1a)

∇ · 𝑫 = 0, (2.1b)

∇ × 𝑯 =
𝜕𝑫

𝜕𝑡
, (2.1c)

∇ · 𝑩 = 0. (2.1d)

Maxwell’s equations state relations between the electric vector 𝑬 and the inductive vector
𝑩 as well as between the magnetic field vector 𝑯 and displacement vector 𝑫 , where the
constitutive relations apply:

𝑩 = 𝜇0𝑯 , (2.2)
𝑫 = 𝜖0𝑬 , (2.3)

3



2 Fundamentals

where 𝜖0 is the vacuum permittivity and 𝜇0 is the vacuum permeability, which fulfill the
relation 1√

𝜖0𝜇0
= 𝑐 , where 𝑐 denotes the speed of light in vacuum.

With Eq. (2.1a), Eq. (2.1c), Eq. (2.2), and Eq. (2.3) one can show that the electric field vector
𝑬 must satisfy the wave equation:

∇2𝑬 − 1
𝑐2

0

𝜕2𝑬

𝜕𝑡2 = 0. (2.4)

Henceforth, we will consider the light being confined inside a one-dimensional cavity
along the 𝑧-axis with length 𝐿, allowing for the formation of discretized modes of the
electric field that are polarized along the 𝑥-direction. At the boundaries 𝑧 = 0 and 𝑧 = 𝐿,
the 𝑥-component of the electric field must be zero, as shown in the schematical drawing
Figure 2.1.

𝑥

𝑦

𝑧

Figure 2.1: Schematical drawing of an electric field confined in a one-dimensional cavity. (After
[5])

Therefore, an ansatz for the solution of Eq. (2.4) is a superpositon of standing waves, while
a solution of the magnetic field can be referred from Eq. (2.1c):

𝐸𝑥 (𝑧, 𝑡) =
∑︁
𝑗

𝐴 𝑗𝑞 𝑗 (𝑡) sin
(
𝑘 𝑗𝑧

)
, (2.5)

𝐻𝑦 (𝑧, 𝑡) =
∑︁
𝑗

𝜀0

𝑘 𝑗
𝐴 𝑗

.
𝑞 𝑗 (𝑡) cos

(
𝑘 𝑗𝑧

)
, (2.6)

where 𝑞 𝑗 denotes the time-dependent amplitude of the cavity mode, and 𝑘 𝑗 = 𝑗𝜋

𝐿
are the

allowed wave-vectors for standing waves, where 𝑗 must be a non-negative integer greater
than 0. The constant 𝐴 𝑗 is given by

𝐴 𝑗 =

√︄
2𝜈2
𝑗
𝑚 𝑗

𝑉𝜖0
, (2.7)

where 𝑉 = 𝐿𝐴 is the quantization volume with 𝐴 being the lateral surface area of the
cavity mirrors, 𝜈 𝑗 = 𝑐𝑘 𝑗 is the eigenfrequency of the cavity mode, and𝑚 𝑗 is a constant.
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2 Fundamentals

We continue by considering the classical field Hamiltonian and evaluate it with the above
expressions:

𝐻 =
1
2

∫
d𝑉 (𝜖0𝐸

2
𝑥 + 𝜇0𝐻

2
𝑦) =

∑︁
𝑗

(
𝑚 𝑗𝜈

2
𝑗𝑞

2
𝑗

2
+
𝑝2
𝑗

2𝑚 𝑗

)
, (2.8)

where 𝑝 𝑗 = 𝑚 𝑗
.
𝑞 𝑗 . The total energy of each mode is equivalent to a harmonic oscillator,

after identifying 𝑞 𝑗 as a Cartesian coordinate,𝑚 𝑗 as a mass, and 𝑝 𝑗 as canonical momentum.
The quantization is now performed by identifying the Cartesian coordinate 𝑞 𝑗 and the
canonical momentum 𝑝 𝑗 as operators that obey the canonical commutation relations:

[𝑞 𝑗 , 𝑝 𝑗 ′]− = 𝑖ℏ𝛿 𝑗, 𝑗 ′, (2.9)
[𝑞 𝑗 , 𝑞 𝑗 ′]− = [𝑝 𝑗 , 𝑝 𝑗 ′]− = 0, (2.10)

where [𝐴, 𝐵]− = 𝐴𝐵 − 𝐵𝐴 is the commutator, ℏ is the reduced Planck constant, and 𝛿𝑖, 𝑗 is
the Kronecker delta. Next, we define the dimensionless variables 𝑄 𝑗 and 𝑃 𝑗 as, which are
called quadrature operators:

𝑄 𝑗 =

√︂
𝑚 𝑗𝜈 𝑗

2ℏ
𝑞 𝑗 , (2.11)

𝑃 𝑗 =
1√︁

2𝑚 𝑗𝜈 𝑗ℏ
𝑝 𝑗 , (2.12)

which we use to define another set of operators:

𝑏 𝑗 = 𝑄 𝑗 + 𝑖𝑃 𝑗 , (2.13)

𝑏
†
𝑗
= 𝑄 𝑗 − 𝑖𝑃 𝑗 , (2.14)

which consequently obey the following commutation relations:

[𝑏 𝑗 , 𝑏†𝑗 ′]− = 𝛿 𝑗, 𝑗 ′, (2.15)

[𝑏 𝑗 , 𝑏 𝑗 ′]− = [𝑏†
𝑗
, 𝑏

†
𝑗 ′]− = 0, (2.16)

and allow us to rewrite the Hamiltonian from Eq. (2.8) as follow:

𝐻 =
∑︁
𝑗

ℏ𝜈 𝑗

(
𝑏
†
𝑗
𝑏 𝑗 +

1
2

)
. (2.17)

𝑏 𝑗 is the photon annihilation operator and 𝑏†
𝑗

the photon creation operator for a photon
from the 𝑗-th mode. This designation becomes more clear when studying the eigenstates
of the Hamiltonian, which is done in the next section.
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2 Fundamentals

2.2 Fock-State Representation

For simplicity, we continue the description for a single-mode field. Considering the eigen-
value problem of the Hamiltonian provides:

𝐻 |𝑛⟩ = ℏ𝜈

(
𝑏†𝑏 + 1

2

)
|𝑛⟩ = 𝐸𝑛 |𝑛⟩ , (2.18)

with eigenenergies 𝐸𝑛 and eigenstates |𝑛⟩. The eigenenergies can be calculated as:

𝐸𝑛 = ℏ𝜈

(
𝑛 + 1

2

)
, 𝑛 = 0, 1, 2, ... (2.19)

Here, it was used that

𝑏†𝑏 |𝑛⟩ = 𝑛 |𝑛⟩ . (2.20)

Thus, 𝑏†𝑏 can be identified as photon number operator. The eigenstate |𝑛⟩ is called Fock
state and contains exactly 𝑛 photons. With algebraic manipulations (see, e.g., Ref. [5] for
more details), one can show that:

𝑏 |𝑛⟩ =
√
𝑛 |𝑛 − 1⟩ , (2.21)

𝑏† |𝑛⟩ =
√
𝑛 + 1 |𝑛 + 1⟩ , (2.22)

which means that the photon annihilation operator 𝑏 removes a photon from the Fock
state and the photon creation operator adds a photon to the Fock state. These equations
allow to find a closed expressions for a Fock state |𝑛⟩:

|𝑛⟩ = (𝑏†)𝑛
√
𝑛!

|0⟩ , (2.23)

where the Fock state |0⟩ is considered as vacuum state. Fig. 2.2 serves as an illustration
by depicting wave functions Ψ𝑛 (𝑞) = ⟨𝑞 |𝑛⟩ of the quantum harmonic oscillator, which
are the real space representation of Fock states. The action of the photon creation and
annihilation operators 𝑏† and 𝑏 is schematically shown with arrows that indicate a change
in the photon number.
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Figure 2.2: Wave functions Ψ𝑛 of the quantum harmonic oscillator in real space for the energetically
lowest five states. The 𝑥-axis for the respective wave function has an offset, which
represents the energy that corresponds to the state, which is depicted on the 𝑦-axis.

Fock states furthermore are a complete set and thus can be used to represent an arbitrary
quantum mode |Ψ⟩ as:

|Ψ⟩ =
∞∑︁
𝑘=0

𝑐𝑘 |𝑘⟩ , (2.24)

where 𝑐𝑘 = ⟨𝑘 |Ψ⟩ are complex expansion coefficients that can be physically interpreted as
probability amplitudes, since |𝑐𝑘 |2 is the probability for measuring 𝑘 photons in the mode,
also called photon statistics. Working in the Fock state basis is convenient for theoretical
investigations, as it allows a consistent treatment of arbitrary quantum states.

2.3 SpecialQuantum States of Light

In the following subsections, we will introduce quantum states that are relevant throughout
this thesis, by considering their definition, photon statistics, and phase-space representa-
tions.
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2.3.1 Coherent States

The coherent state |𝛼⟩ is defined as the eigenstate of the photon annhilation operator 𝑏
[57]:

𝑏 |𝛼⟩ = 𝛼 |𝛼⟩ (2.25)

where the eigenvalue 𝛼 is its complex-valued amplitude. From this definition one can show
that its Fock state representation reads:

|𝛼⟩ =
∞∑︁
𝑘=0

𝑐𝑘 |𝑘⟩ =
∞∑︁
𝑘=0

𝑒
−|𝛼 |2

2
𝛼𝑘
√
𝑘!

|𝑘⟩ , (2.26)

and subsequently the mean photon number 𝑁 is:

𝑁 = ⟨𝛼 | 𝑏†𝑏 |𝛼⟩ = |𝛼 |2. (2.27)

The photon statistics |𝑐𝑘 |2 of a coherent state |𝛼⟩ with a mean photon number of 𝑁 = 10 is
shown in Fig. 2.3.
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Figure 2.3: Photon statistics |𝑐𝑘 |2 for a coherent state with a mean photon number of 𝑁 = 10.

Coherent states are the states that show the most classical behavior. This can e.g. be
demonstrated by considering normally-ordered expectation values:〈

(𝑏†) 𝐽𝑏𝐾
〉
= ⟨𝛼 | (𝑏†) 𝐽𝑏𝐾 |𝛼⟩ = (𝛼∗) 𝐽 𝛼𝐾 , (2.28)

where we see that the photon operators are just replaced by the complex-valued amplitude

8
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𝛼 , which is equivalent to a factorization in a classical treatment where 𝛼 would correspond
to a classcial field amplitude [1]. Another approach to represent quantum states is defining
an operator that creates the state when applied to the vacuum state |0⟩, as we already did
for the Fock state in Eq. (2.23). There coherent state can written as:

|𝛼⟩ = exp
(
𝛼𝑏† − 𝛼∗𝑏

)
|0⟩ = 𝐷 (𝛼) |0⟩ , (2.29)

where 𝐷 (𝛼) is the displacement operator. The word “displacement” becomes clearer when
the phase-space representation is considered.

Phase-space functions are a helpful tool when studying quantum light. These functions
are quasi-probability distributions that represent a quantum state in the quadrature space,
i.e. in terms of 𝑄 and 𝑃 . For this matter, we will consider the Wigner function, that was
originally defined as [58]

𝑊 (𝑞, 𝑝) = 1
2𝜋ℏ

∫ ∞

−∞
d𝑥

〈
𝑞 + 1

2
𝑥

���� 𝜌 ����𝑞 − 1
2
𝑥

〉
exp(𝑖𝑝𝑥/ℏ), (2.30)

where 𝜌 is the density matrix of the quantum state, which is given by 𝜌 = |Ψ⟩ ⟨Ψ| for a
pure state |Ψ⟩. Nowadays, there are more modern, but equivalent expressions, that are
based on coherent states [5]

𝑊 (𝛼) = 1
𝜋2

∫
Tr

[
𝜌 exp

(
−𝛽𝑏† + 𝛽∗𝑏

)]
exp(𝛽𝛼∗ − 𝛽∗𝛼)d2𝛽. (2.31)

With Eq. (2.31), the Wigner function of a coherent state 𝜌 = |𝛼⟩ ⟨𝛼 | reads

𝑊coherent(𝛼) =
2
𝜋

exp
(
−2|𝛼 − 𝛼 |2

)
. (2.32)

Comparing this expression with the Wigner function of a vacuum state 𝜌 = |0⟩ ⟨0|:

𝑊vacuum(𝛼) = 2
𝜋

exp
(
−2|𝛼 |2

)
, (2.33)

reveals that the coherent state is a vacuum state that got displaced by its complex ampli-
tude 𝛼 , where the displacement is described by the displacement operator 𝐷 (𝛼). Fig. 2.4
shows the Wigner functions from Eq. (2.33) and Eq. (2.32) for 𝛼 = 2 + 2𝑖 to visualize the
displacement. We see that the phase-space functions are distributions, rather than single
points, which is an expression of the Heisenberg uncertainty relation.
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Figure 2.4: Wigner function𝑊 (𝛼) for (a) a vacuum state |0⟩ (b) a coherent state |𝛼⟩ with 𝛼 = 2+2𝑖 ,
corresponding to a mean photon number of 𝑁 = 8.

2.3.2 Squeezed States

To present the idea of squeezed states, it is more instructive to start from the Heisenberg
uncertainty relation. It states that the product of the uncertainties of two Hermitian
operators 𝐴 and 𝐵 has a lower bound that is finite if these operators do not commute:

(Δ𝐴) (Δ𝐵) ≥ 1
2
| ⟨[𝐴, 𝐵]−⟩ |. (2.34)

Since this inequality only applies to the product of uncertaincies, one can prepare states in
which

(Δ𝐴)2 <
1
2
| ⟨[𝐴, 𝐵]−⟩ | or (Δ𝐵)2 <

1
2
| ⟨[𝐴, 𝐵]−⟩ |, (2.35)

which are called squeezed states. In our case, the operators 𝐴 and 𝐵 correspond to the
quadratures 𝑄 and 𝑃 defined in Eq. (2.11) and Eq. (2.12), which we now rename as 𝑋1 and
𝑋2 as commonly done in literature. In this case, the inequality reads:

(Δ𝑋1) (Δ𝑋2) ≥
1
4
, (2.36)

10
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and a squeezed state must fulfill

(Δ𝑋1)2 <
1
4

or (Δ𝑋2)2 <
1
4
. (2.37)

To introduce a state that matches the condition Eq. (2.37) we start with the mathematical
description and will later mention physical processes for the generation. A single-mode
squeezed vacuum state |𝜉⟩ is described by

|𝜉⟩ = exp
(

1
2

(
𝜉∗𝑏2 − 𝜉𝑏†2

))
|0⟩ = 𝑆 (𝜉) |0⟩ , (2.38)

where 𝑆 (𝜉) is the squeezing operator and 𝜉 is called squeezing and is often decomposed
into 𝜉 = 𝑟𝑒𝑖𝜗 , where 𝑟 = |𝜉 | is the squeezing parameter. The squeezing operator only
allows for the creation or annihilation of 2 photons, expressed by 𝑏†2 and 𝑏2, respectively.
This reflects in the Fock state representation of a squeezed vacuum state, which can be
calculated as:

|𝜉⟩ =
∞∑︁
𝑘=0

𝑐𝑘 |𝑘⟩ =
∞∑︁
𝑚=0

(−1)𝑚
√︁
(2𝑚)!

2𝑚𝑚!
(𝑒𝑖𝜗 tanh(𝑟 ))𝑚√︁

cosh(𝑟 )
|2𝑚⟩ with 𝑘 = 2𝑚. (2.39)

Here, 𝑐𝑘 can only be non-zero if 𝑘 is even and can be written as 𝑘 = 2𝑚, where𝑚 is an
integer. Even though the squeezed vacuum is a vacuum state, it can have an arbitrarily
large mean photon number that is given by:

𝑁 = ⟨𝜉 | 𝑏†𝑏 |𝜉⟩ = sinh2(𝑟 ) . (2.40)

The photon statistics |𝑐𝑘 |2 for a squeezed vacuum state with a mean photon number of
𝑁 = 10 is depicted in Fig. 2.5. One can see that the probability decreases with increasing
Fock state number and only even photon numbers result in a finite probability.
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Figure 2.5: Photon statistics |𝑐𝑘 |2 for a squeezed vacuum state with a mean photon number of
𝑁 = 10.

To demonstrate that this state is a squeezed state according to Eq. (2.37), we now consider
the uncertainties of the quadratures 𝑋1 and 𝑋2, which are given by:

Δ2𝑋1 =
〈
𝑋 2

1
〉
− ⟨𝑋1⟩2 =

1
4
(− sinh(2𝑟 ) cos(𝜗) + cosh(2𝑟 )) 𝜗=0

=
1
4

exp(−2𝑟 ), (2.41)

Δ2𝑋2 =
〈
𝑋 2

1
〉
− ⟨𝑋1⟩2 =

1
4
(sinh(2𝑟 ) cos(𝜗) + cosh(2𝑟 )) 𝜗=0

=
1
4

exp(2𝑟 ). (2.42)

This demonstrates that a finite squeezing parameter 𝑟 leads to quadrature squeezing. In
the special case 𝜗 = 0, the smallest uncertainty is obtained for 𝑋1, while, in general, it is
not necessarily found for either 𝑋1 or 𝑋2, but for a superposition of these.

The squeezing is also reflected in the Wigner function, see Fig. 2.4(a), where the Wigner
function for a squeezed vacuum state |𝜉⟩ is shown for 𝑟 = 0.658479 (corresponding to a
mean photon number of ≈ 0.5) and 𝜗 = 𝜋/2. The Wigner function resembles a vacuum
state, which, however, is squeezed along the direction rotated by 𝜗/2 from the Re(𝛼)-axis,
while being stretched along the direction rotated by 𝜗/2 from the Im(𝛼)-axis. This has
the interesting consequence that a squeezed vacuum state leads to less noise (quadrature
uncertainty) than having no light at all, which makes it very useful for quantum metrology
applications [59].

Beside squeezed vacuum states, one can also generate states that share properties of both,
coherent and squeezed states. One example are displaced squeezed vacuum states |𝛼, 𝜉⟩,
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which are obtained by applying both operators:

|𝛼, 𝜉⟩ = 𝐷 (𝛼)𝑆 (𝜉) |0⟩ , (2.43)

where the mean photon number is given by the sum of the mean photon numbers of the
coherent and squeezed components:

𝑁 = ⟨𝛼, 𝜉 | 𝑏†𝑏 |𝛼, 𝜉⟩ = |𝛼 |2 + sinh2(𝑟 ) (2.44)

Fig. 2.6(b) shows the corresponding Wigner function for the same squeezing as before
and a displacement of 𝛼 = 2 + 2𝑖 , as used for the coherent state in Fig. 2.4(b). The result
is analog to the case for coherent states, as we find a squeezed vacuum state |𝜉⟩ that is
displaced by 𝛼 .

4 2 0 2 4
Re( )

4

2

0

2

4

Im
(

)

(a)
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Figure 2.6: Wigner function𝑊 (𝛼) for (a) a squeezed vacuum state |𝜉⟩ with 𝜉 = 0.658479 exp(𝑖𝜋/2),
corresponding to a mean photon number of 𝑁 = 0.5 (b) a displaced squeezed vacuum
state |𝛼, 𝜉⟩ with 𝛼 = 2 + 2𝑖 and 𝜉 = 0.658479 exp(𝑖𝜋/2), corresponding to a mean
photon number of 𝑁 = 8.5.

Practical realizations of squeezed states typically rely on nonlinear optical processes,
like spontaneous parametric down-conversion [60–63], four-wave mixing [64] or second-
harmonic conversion in optical cavities [65].

In contrast to coherent states, squeezed states are considered to be non-classical light, since
there is no equivalent in a classical theory. There are several indicators for the presence of
non-classicality, such as inequalities of phase-space functions [66, 67].
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2.4 Light-Matter Interaction

In this section, we describe the fully quantized light-matter interaction. We start with the
derivation of the Hamiltonian for a fully quantized description of light-matter interaction,
allowing for the description of a material system with several discrete energy levels that
is excited by multiple quantum light modes inside of an optical cavity. Afterwards, we
introduce the equations of motion for such systems and will then move towards a simple
example, allowing us to demonstrate general properties of such systems.

2.4.1 Hamiltonian

The total Hamiltonian 𝐻 can be written as a sum of Hamiltonians describing the matter
𝐻Matter, the light field 𝐻Light, and the interaction between these 𝐻Interaction:

𝐻 = 𝐻Matter + 𝐻Light + 𝐻Interaction. (2.45)

We now continue with finding expressions for these Hamiltonians. In Section 2.1 we
already concluded that the Hamiltonian of the light field 𝐻Light is given by Eq. (2.17).
The material is modeled as an arbitrary arrangement of discrete energy levels given by a
complete set {|𝑖⟩} with 𝑖 = 1, 2, 3, ..., where we define the transition operator 𝜎𝑖 𝑗 = |𝑖⟩ ⟨ 𝑗 |,
that describes the transition from the state | 𝑗⟩ to the state |𝑖⟩. The Hamiltonian 𝐻Matter is
now required to fulfill the eigenvalue equation:

𝐻Matter |𝑖⟩ = 𝐸𝑖 |𝑖⟩ , (2.46)

where 𝐸𝑖 is the eigenenergy of the matter state |𝑖⟩. Thus, the Hamiltonian can be written
as:

𝐻Matter =
∑︁
𝑖

𝐸𝑖 |𝑖⟩ ⟨𝑖 | =
∑︁
𝑖

𝐸𝑖𝜎𝑖𝑖 . (2.47)

The interaction between light and matter is treated in the dipole approximation, so that:

𝐻Interaction = −𝑒0𝒓 · 𝑬 , (2.48)

where 𝑒0 is the charge of an electron and 𝒓 is its position vector. From the completeness of
the set {|𝑖⟩} we can rewrite the term 𝑒0𝒓 :

𝑒0𝒓 =
∑︁
𝑖, 𝑗

𝑒0 |𝑖⟩ ⟨𝑖 | 𝒓 | 𝑗⟩ ⟨ 𝑗 | =
∑︁
𝑖, 𝑗

𝒅𝑖 𝑗𝜎𝑖 𝑗 , (2.49)

where 𝒅𝑖 𝑗 = 𝑒0 ⟨𝑖 | 𝒓 | 𝑗⟩ is the dipole transition matrix element and the intraband dipole
moments 𝒅𝑖𝑖 are assumed to be zero. Based on the equations given in Section 2.1, one can
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rewrite total electric field 𝑬 as

𝑬 =
∑︁
𝑘

𝝐𝑘E𝑘 (𝑏𝑘 + 𝑏†𝑘 ), (2.50)

with the vacuum field amplitude E𝑘 =

√︃
ℏ𝜈𝑘

2𝜖0𝑉
and 𝜖𝑘 being the polarization unit vector.

Altogether, the total Hamiltonian from Eq. (2.45) can be written as:

𝐻 =
∑︁
𝑖

𝐸𝑖𝜎𝑖𝑖 +
∑︁
𝑘

ℏ𝜈𝑘

(
𝑏
†
𝑘
𝑏𝑘 +

1
2

)
+ ℏ

∑︁
𝑖, 𝑗

∑︁
𝑘

𝑔
𝑖 𝑗

𝑘
𝜎𝑖 𝑗 (𝑏𝑘 + 𝑏†𝑘 ), (2.51)

where we introduced the light-matter coupling

𝑔
𝑖 𝑗

𝑘
= −

𝑑𝑖 𝑗 · 𝜖𝑘E𝑘
ℏ

. (2.52)

2.4.2 Equations of Motion

The Hamiltonian 𝐻 can be used to compute the system’s dynamics. Our current analysis
is done in the Schrödinger picture, where state vectors are time-dependent, but operators
are not. In this case, the time evolution of a state vector is determined by the Schrödinger
equation:

𝑖ℏ
𝜕

𝜕𝑡
|Ψ⟩ = 𝐻 |Ψ⟩ , (2.53)

which allows to compute the time evolution of the expectation values of an observable 𝑂
with

⟨𝑂⟩ = ⟨Ψ|𝑂 |Ψ⟩ . (2.54)

A description with state vectors, however, is limited to pure states. The density matrix
(DM) is a generalization of a state-vector and can in general be written as:

𝜌 =
∑︁
𝑗

𝑝 𝑗
��Ψ𝑗 〉 〈

Ψ𝑗
�� . (2.55)

Its time evolution is determined by the von Neumann equation:

𝜕

𝜕𝑡
𝜌 =

1
𝑖ℏ

[𝐻, 𝜌]− . (2.56)
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An advantage of the DM formalism is the straightforward inclusion of loss mechanisms
with Lindblad terms [68]:

𝜕𝑡𝜌 =
1
𝑖ℏ

[𝐻, 𝜌]− +
∑︁
𝐿

L𝐿 (𝜌), (2.57)

where the Lindblad term L𝐿 (𝜌) is given by

L𝐿 (𝜌) = 𝐿𝜌𝐿† −
1
2

(
𝐿†𝐿𝜌 + 𝜌𝐿†𝐿

)
, (2.58)

and describes a loss applied to the operator 𝐿 than can be attributed to physical processes.
The time evolution of observables is then computed by:

⟨𝑂⟩ = Tr(𝜌𝑂) . (2.59)

All numerical simulations that will be shown in this thesis were obtained by integrating
the differential equations with the Runge-Kutta method of fourth-order.

2.4.3 Jaynes-Cummings Model

The first description of a fully quantized light-matter coupling was performed using the
Jaynes-Cummings model (JCM), where the interaction of a two-level absorber and a
quantum state of light was introduced [69–71]. In the following, we will use this model
and consider the eigenvalue problem of the Hamiltonian to demonstrate properties that
are exclusive to quantum-optical treatments. Reducing the Hamiltonian 𝐻 from Eq. (2.51)
to a two-level system (TLS) and a single light mode yields:

𝐻 = ℏ𝜈

(
𝑏†𝑏 + 1

2

)
+ ℏ𝜔𝜎𝑧 + ℏ𝑔(𝜎+ + 𝜎−) (𝑏 + 𝑏†), (2.60)

where 𝜎𝑧 = 1
2 (𝜎22 − 𝜎11) = 1

2 ( |2⟩ ⟨2| − |1⟩ ⟨1|), 𝜎+ = 𝜎21 = |2⟩ ⟨1|, 𝜎− = 𝜎12 = |1⟩ ⟨2|, and
ℏ𝜔 is the energy difference between excited and ground state. Furthermore, we apply
the rotating-wave approximation (RWA) in which the terms 𝜎+𝑏† and 𝜎−𝑏 are omitted,
which describe the promotion from the ground to the excited state under emission of a
photon and the demotion from the excited to the ground state under the absorption of a
photon, respectively and are negligible under resonant excitation conditions. This yields
the Jaynes-Cummings Hamiltonian:

𝐻JC = ℏ𝜈

(
𝑏†𝑏 + 1

2

)
+ ℏ𝜔𝜎𝑧 + ℏ𝑔(𝜎+𝑏 + 𝜎−𝑏†) . (2.61)

The interaction part now only contains the operators 𝜎+𝑏 and 𝜎−𝑏†, which describe the
promotion from the ground to the excited state under absorption of a photon and the
demotion from the excited to the ground state under emission of a photon.
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Eigenvalue Problem

Since the light-matter interaction leads to the formation of new eigenstates, the solution
of the eigenvalue problem allows a transparent insight into this formation. To clearly
separate the material states |1⟩ and |2⟩ from the Fock states |𝑛⟩, we proceed with the
notation |−⟩ ≡ |1⟩ for the ground and |+⟩ ≡ |2⟩ for the excited state. First, we consider the
non-interacting part of the Jaynes-Cummings Hamiltonian

𝐻 0
JC = ℏ𝜈

(
𝑏†𝑏 + 1

2

)
+ ℏ𝜔𝜎𝑧 . (2.62)

We already know the solution of the eigenvalue problems for the separate parts from
Eq. (2.18), Eq. (2.19), and Eq. (2.46):

ℏ𝜈

(
𝑏†𝑏 + 1

2

)
|𝑛⟩ = ℏ𝜈

(
𝑛 + 1

2

)
|𝑛⟩ , (2.63)

ℏ𝜔𝜎𝑧 |±⟩ = ±ℏ𝜔
2

|±⟩ . (2.64)

The eigenstates of 𝐻 0
JC are the product states |±, 𝑛⟩ = |±⟩ ⊗ |𝑛⟩, given by a tensor product

between |±⟩ and |𝑛⟩

𝐻 0
JC |±, 𝑛⟩ = ℏ

(
𝜈

(
𝑛 + 1

2

)
± 𝜔

2

)
|±, 𝑛⟩ = 𝐸0

±,𝑛 |±, 𝑛⟩ . (2.65)

With the introduction of an optical detuning as Δ = 𝜈 −𝜔 , the eigenenergies can be written
as:

𝐸0
−,𝑛 = ℏ

(
𝜈𝑛 + Δ

2

)
, 𝑛 = 0, 1, 2, ... (2.66)

𝐸0
+,𝑛−1 = ℏ

(
𝜈𝑛 − Δ

2

)
, 𝑛 = 1, 2, 3, ... (2.67)

Independently on the Fock state number 𝑛, the states |−, 𝑛⟩ and |+, 𝑛 − 1⟩ have an energy
difference of ℏΔ, while the states |−, 𝑛 + 1⟩ and |−, 𝑛⟩ (or |+, 𝑛⟩ and |−, 𝑛 − 1⟩) show an
energy difference of ℏ𝜈 .

Secondly, we consider the eigenvalue problem of the Jaynes-Cummings Hamiltonian 𝐻JC
including the interaction:

𝐻JC
��Φ±
𝑛

〉
= 𝐸±𝑛

��Φ±
𝑛

〉
. (2.68)

In this case, one can show that the eigenenergies read (see Ref. [1] for more details)

𝐸±𝑛 = ℏ𝜈𝑛 ± ℏ

√︂
1
4
Δ2 + 𝑔2

𝑛 (2.69)
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with 𝑔𝑛 = 𝑔
√
𝑛, and the corresponding eigenstates are given by��Φ+

𝑛

〉
= cos(𝜃𝑛) |+, 𝑛 − 1⟩ + sin(𝜃𝑛) |−, 𝑛⟩ , (2.70)��Φ−

𝑛

〉
= cos(𝜃𝑛) |−, 𝑛⟩ − sin(𝜃𝑛) |+, 𝑛 − 1⟩ . (2.71)

with

cos(2𝜃𝑛) =
Δ√︁

Δ2 + 4𝑔2
𝑛

, sin(2𝜃𝑛) =
2𝑔𝑛√︁

Δ2 + 4𝑔2
𝑛

. (2.72)

The inclusion of the light-matter interaction leads to relevant changes in the eigenvalues,
as their difference now depends on the Fock state number 𝑛, which for Δ = 0 reads:

Δ𝐸±𝑛 = 𝐸±𝑛+1 − 𝐸±𝑛 = ℏ𝜈 ± ℏ𝑔

(√
𝑛 + 1 −

√
𝑛

)
. (2.73)
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Figure 2.7: Schematical demonstration of the eigenvalues and eigenstates of the Jaynes-Cummings
model. The left sides depicts the eigenenergies (horizontal lines) and eigenstates |±, 𝑛⟩
obtained from the non-interacting part of the Jaynes-Cummings Hamiltonian 𝐻 0

JC for
a positive detuning Δ > 0, while the right side depicts the same, but for Δ = 0 and the
full Jaynes-Cummings Hamiltonian 𝐻JC. (After [1])

The energies 𝐸±𝑛 are known as Jaynes-Cummings ladder and constitute a pure quantum
effect. Fig. 2.7 illustrates the solution to the eigenvalue problems for the non-interacting
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and the interacting case, resulting in the Jaynes-Cummings ladder. Remarkably, the energy
levels of the Jaynes-Cummings ladder, also known as rungs, are not equidistant, which
leads to novel dynamics exclusive for a a treatment with a quantum-optical description of
light.

Dynamics of the Population Inversion

After discussing the eigenvalue problem and demonstrating the Jaynes-Cummings ladder,
we want to show that this has a direct consequence for the time dynamics of such systems.
For this, we assume Δ = 0 and treat the system in the interaction picture, where the time
evolution is given by

𝑖ℏ
𝜕

𝜕𝑡
|Ψ⟩ = (𝐻JC − 𝐻 0

JC) |Ψ⟩ . (2.74)

We can expand the state vector in the basis set |±, 𝑛⟩:

|Ψ⟩ =
∑︁
𝑛

(
𝑐+,𝑛 |+, 𝑛⟩ + 𝑐−,𝑛 |−, 𝑛⟩

)
. (2.75)

Assuming that the TLS is initially in its ground state, i.e. 𝑐+,− (0) = 0 and 𝑐−,𝑛+1 = 𝑐𝑛+1, the
probability amplitudes can be computed with Eq. (2.74):

𝑐+,𝑛 = −𝑖𝑐𝑛+1 sin
(
𝑔𝑡
√
𝑛 + 1

)
, (2.76)

𝑐−,𝑛+1 = 𝑐𝑛+1 cos
(
𝑔𝑡
√
𝑛 + 1

)
, (2.77)

where 𝑐𝑛 is the probability amplitude for an arbitrary quantum state of light. Similar to the
physical interpretation of |𝑐𝑛 |2 as the probability of finding 𝑛 photons in the field, |𝑐+,𝑛 |2
expresses the probability of finding 𝑛 photons in the field, while the TLS is in its excited
state |+⟩, while |𝑐−,𝑛 |2 means the same, but for the ground state |−⟩. The probabilities 𝑂+
and 𝑂− of finding the TLS in its excited and ground state, respectively, are now obtained
by calculating the expectation value of the corresponding operators |+⟩ ⟨+| and |−⟩ ⟨−|:

𝑂+ = ⟨Ψ|+⟩ ⟨+|Ψ⟩ =
∞∑︁
𝑛=0

|𝑐+,𝑛 |2, 𝑂− = ⟨Ψ|−⟩ ⟨−|Ψ⟩ =
∞∑︁
𝑛=0

|𝑐−,𝑛 |2, (2.78)

where𝑂+ +𝑂− = 1. We see that these probabilities are obtained by the sum over all photon
numbers. Now, we consider the inversion 𝐼 :

𝐼 = 𝑂+ −𝑂− = 2𝑂+ − 1. (2.79)
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For a coherent state |𝛼⟩ the inversion 𝐼 is given by:

𝐼coherent = −
∞∑︁
𝑛=0

𝑒−|𝛼 |
2 |𝛼 |2𝑛
𝑛!

cos
(
2𝑔𝑡

√
𝑛

)
. (2.80)

Fig. 2.8 shows 𝐼coherent for |𝛼 |2 = 10 (solid line), together with the inversion predicted from
a semiclassical theory (shaded area). The semiclassical theory leads to a Rabi oscillation
with a fixed frequency. In contrast, the inversion obtained with a quantum theory results
in a Rabi ocillation with a more complicated behavior, showing a collapse and revival
behavior, which is a direct consequence of the field quantization [72–74]. This behavior
can be understood qualitatively from Eq. (2.80), which is a superposition of oscillations
with frequencies 2𝑔

√
𝑛 originating from the rungs of the Jaynes-Cummings ladder that

give rise to a destructive interference.
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Figure 2.8: Inversion for a coherent state |𝛼⟩ with a mean photon number of 10 according to
Eq. (2.80). The shaded area depicts the qualitative result that one would expect from a
semiclassical treatment. (After [1])
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Dark-State and Loss-Induced
Phenomena 3

In this chapter, we consider Λ-type three-level systems (3LS). This system consists of
three discrete energy levels |1⟩, |2⟩, and |3⟩, where |3⟩ is the energetically highest level
and optical transitions between |1⟩ and |2⟩ are forbidden, while others are allowed. A
schematical drawing of a Λ-type 3LS is depicted in Fig. 3.1, where the colored arrows mark
the optically allowed transitions.

ۧ|1

ۧ|2

ۧ|3

Figure 3.1: Schematical drawing of a Λ-type 3LS. The arrows depict the optically allowed transi-
tions.

Λ-type 3LS describe a variety of material systems ranging from atomic systems to special
situations in semiconductor nanostructures. Optically excited semiconductor quantum
wells enclosed in a microcavity show a splitting of the 1𝑠-exciton into a lower (|1⟩) and an
upper polariton state (|2⟩). While optical transition between these states are not allowed,
both, however, show an optically allowed transition to the energetically higher 2𝑝-exciton
state (|3⟩) and thus form a Λ-type 3LS [75, 76]. Another example are negatively charged
InAs quantum dots inside of a magnetic field, which show a splitting of the electronic
spin eigenstate, since the Landé g-factor is different for the each spin quantum number.
The excitation from these electronic spin states (|1⟩ and |2⟩) to an energetically higher
located trion state (|3⟩) forms a Λ-type 3LS [77, 78]. Λ-type 3LS are of special interest since
they show unique features that allow for special quantum applications such as optical
quantum memories that are an important tool for quantum-information processing [79–
81], quantum repeaters that contribute to the distribution of quantum states over long
distances which is not possible with amplification due to the no-cloning theorem [82], or as
nonlinear activation function in an all-optical neural network [83]. A central property that
is exploited in these applications is the formation of dark-states in Λ systems, leading to
phenomena such as electromagnetically induced transparency (EIT) [84–88] and coherent
population trapping (CPT) [89, 90].
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We proceed with a demonstration of the equations of motion and will then present results
obtained for this system that are based on references [91–93].

3.1 Equations of Motion

We reduce the Hamiltonian from Eq. (2.51) to a Λ-type 3LS, where each transition is
excited by single quantum light mode and apply the RWA. This leads to the following
Jaynes-Cummings-type Hamiltonian

𝐻 =

3∑︁
𝑛=1

𝐸𝑛𝜎𝑛𝑛 +
2∑︁
𝑗=1

ℏ𝜔 𝑗

(
𝑏
†
𝑗
𝑏 𝑗 +

1
2

)
+ ℏ𝑔

2∑︁
𝑗=1

(𝑏†
𝑗
𝜎 𝑗3 + 𝑏 𝑗𝜎3𝑗 ). (3.1)

Here, we assumed that the light-matter coupling is the same for both transitions, so that
𝑔

1,3
1 = 𝑔

2,3
2 = 𝑔. The DM of this system can in general be written in the following form:

𝜌 =

3∑︁
𝑛=1
𝑛′=1

∞∑︁
𝑘=𝑘 ′=0
𝑚=𝑚′=0

𝜌
𝑛,𝑘,𝑚

𝑛′,𝑘 ′,𝑚′ |𝑛, 𝑘,𝑚⟩ ⟨𝑛′, 𝑘 ′,𝑚′ | , (3.2)

where 𝑛 (𝑛′) denotes the electronic state of the material, while 𝑘 (𝑘 ′) and𝑚 (𝑚′) denote the
Fock state number of the first and second quantum field mode, exciting the |1⟩ − |3⟩ and
|2⟩ − |3⟩ transition, respectively. The dynamics is now determined by the von Neumann
equation from Eq. (2.57), where we apply a loss to the operator 𝐿 =

√
𝜅𝑏:

𝜕𝑡𝜌 =
1
𝑖ℏ

[𝐻, 𝜌]− + L√
𝜅𝑏 (𝜌), (3.3)

where 𝜅 is the cavity loss rate. To simplify the treatment, we will decompose 𝜌𝑛,𝑘,𝑚
𝑛′,𝑘 ′,𝑚′ which

is a DM element in the Schrödinger picture as follows:

𝜌
𝑛,𝑘,𝑚

𝑛′,𝑘 ′,𝑚′ = 𝑝
𝑛,𝑘,𝑚

𝑛′,𝑘 ′,𝑚′ exp
(

1
𝑖ℏ

(𝐸𝑛,𝑘,𝑚 − 𝐸𝑛′,𝑘 ′,𝑚′)𝑡
)
, (3.4)

𝐸𝑛,𝑘,𝑚 = 𝐸𝑛 + ℏ𝜔1

(
𝑘 + 1

2

)
+ ℏ𝜔2

(
𝑚 + 1

2

)
(3.5)

where 𝑝𝑛,𝑘,𝑚
𝑛′,𝑘 ′,𝑚′ is a DM element in the interaction picture. Numerical simulations in the

interaction picture are advantageous, since the fast oscillations that arise due to the non-
interacting part of the Hamiltonian do not need to be computed, allowing for larger time
steps and shorter computation times. Therefore, we simulate 𝑝𝑛,𝑘,𝑚

𝑛′,𝑘 ′,𝑚′ and obtain 𝜌𝑛,𝑘,𝑚
𝑛′,𝑘 ′,𝑚′

from Eq. (3.4). The vector space of the Fock states has infinite dimensions, which reflects
in the summation in Eq. (3.2). One can truncate this summation of 𝑘 (𝑘 ′) and𝑚 (𝑚′) at
𝑘max and𝑚max, respectively, which leads to a converged result if they are chosen large
enough. The required value depends on the considered quantum state of light and its
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mean photon number. The total number of DM elements is 32(𝑘max + 1)2(𝑚max + 1)2. This
leads to a practical problem for quantum states of light with large mean photon numbers:
considering, e.g., two squeezed vacuum states with mean photon numbers of 10 and 100
respectively, a reasonable choice is 𝑘max = 200 and𝑚max = 1200, leading to a total number
of ≈ 5.2 · 1011 DM elements, which is beyond any practical realization. This problem can be
circumvented by only computing DM elements that are relevant for the observables of
interest. For this, we derive an explicit expression for the equations of motion for the DM
elements, by substituting Eq. (3.1) and Eq. (3.2) with Eq. (3.4) into Eq. (3.3) and obtain:

𝜕𝑡𝑝
𝑛,𝑘,𝑚

𝑛′,𝑘 ′,𝑚′ (𝑡) = 𝑖𝑔
(
𝑝
𝑛+2,𝑘−1,𝑚
𝑛′,𝑘 ′,𝑚′ (𝑡)𝑒𝑖Δ𝑃 𝑡

√
𝑘 + 𝑝𝑛−2,𝑘+1,𝑚

𝑛′,𝑘 ′,𝑚′ (𝑡)𝑒−𝑖Δ𝑃 𝑡
√
𝑘 + 1

− 𝑝𝑛,𝑘,𝑚
𝑛′+2,𝑘 ′−1,𝑚′ (𝑡)𝑒−𝑖Δ𝑃 𝑡

√
𝑘 ′ − 𝑝𝑛,𝑘,𝑚

𝑛′−2,𝑘 ′+1,𝑚′ (𝑡)𝑒𝑖Δ𝑃 𝑡
√
𝑘 ′ + 1

)
+𝑖𝑔

(
𝑝
𝑛+1,𝑘,𝑚−1
𝑛′,𝑘 ′,𝑚′ (𝑡)𝑒𝑖Δ𝐶𝑡 (1 − 𝛿𝑛,1)

√
𝑚 + 𝑝𝑛−1,𝑘,𝑚+1

𝑛′,𝑘 ′,𝑚′ (𝑡)𝑒−𝑖Δ𝐶𝑡 (1 − 𝛿𝑛,2)
√
𝑚 + 1

− 𝑝𝑛,𝑘,𝑚
𝑛′+1,𝑘 ′,𝑚′−1(𝑡)𝑒

−𝑖Δ𝐶𝑡 (1 − 𝛿𝑛′,1)
√
𝑚′

− 𝑝𝑛,𝑘,𝑚
𝑛′−1,𝑘 ′,𝑚′+1(𝑡)𝑒

𝑖Δ𝐶𝑡 (1 − 𝛿𝑛′,2)
√
𝑚′ + 1

)
+𝜅

2

[
2𝑝𝑛,𝑘+1,𝑚
𝑛′,𝑘 ′+1,𝑚′ (𝑡)

√
𝑘 + 1

√
𝑘 ′ + 1 + 2𝑝𝑛,𝑘,𝑚+1

𝑛′,𝑘 ′,𝑚′+1(𝑡)
√
𝑚 + 1

√
𝑚′ + 1

− 𝑝𝑛,𝑘,𝑚
𝑛′,𝑘 ′,𝑚′ (𝑡)

(
𝑘 + 𝑘 ′ +𝑚 +𝑚′) ],

(3.6)

with the optical detunings Δ𝑃 = 𝐸3 − 𝐸1 − ℏ𝜔1 and Δ𝐶 = 𝐸3 − 𝐸2 − ℏ𝜔2. Eq. (3.6) can
be numerically solved after specifying the initial condition. Throughout this chapter, we
always consider state |1⟩ to be initially full, while the others are empty, leading to the
following initial conditions:

𝑝
𝑛,𝑘,𝑚

𝑛′,𝑘 ′,𝑚′ (𝑡 = 0) = 𝛿𝑛,1𝛿𝑛′,1𝑐𝑘𝑐𝑚𝑐∗𝑘𝑐
∗
𝑚, (3.7)

where 𝑐𝑘 and 𝑐𝑚 are the probability amplitudes for the first and second quantum state of
light, respectively. The time dynamics of observables is obtained by its expectation value
according to Eq. (2.59), so that the electronic population 𝑂𝑛 of the 𝑛-th level takes the
following form:

𝑂𝑛 (𝑡) = ⟨𝜎𝑛𝑛⟩ = Tr(𝜎𝑛𝑛𝜌) =
∞∑︁
𝑘=0

∞∑︁
𝑚=0

𝜌
𝑛,𝑘,𝑚

𝑛,𝑘,𝑚
=

∞∑︁
𝑘=0

∞∑︁
𝑚=0

𝑝
𝑛,𝑘,𝑚

𝑛,𝑘,𝑚
. (3.8)

Here, we see that only DM elements contribute in which 𝑛 = 𝑛′, 𝑘 = 𝑘 ′, and 𝑚 = 𝑚′,
leading to a total number of 3(𝑘max + 1) (𝑚max + 1) DM elements that contribute to the
dynamics of 𝑂𝑛 , which are less than 106 elements for the previous example. The number
of differential equations that needs to be solved is approximately three times that number,
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taking into account the coherences with 𝑘 = 𝑘 ′ ± 1 and𝑚 =𝑚′ ± 1 that enter the dynamics.
Thus, explicitly calculating the relevant DM elements not only reduces the numerical
complexity, but allows for a treatment of quantum states of light with large mean photon
numbers in the first place.

In order to get a first impression of the dynamics of such a system, we start with showing
simulations of 𝑂𝑛 for different initial photon statistics, see Fig. 3.2.
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Figure 3.2: Numerical simulation of 𝑂𝑛 for 𝑛 = 1,2,3 and different initial photon statistics with
mean photon numbers of 10 in each case. The initial photon statistics of the first and
second field is chosen as (a) coherent and coherent state, (b) squeezed vacuum and
coherent state, (c) coherent and squeezed vacuum state, (d) squeezed vacuum and
squeezed vacuum state, respectively.

The time dynamics for coherent states in Fig. 3.2(a) shows collapses and revivals, which is
similar to the behavior discussed in Section 2.4.3. In combination with a squeezed vacuum
state as first or second field, shown in Fig. 3.2(b) and Fig. 3.2(c), respectively, the clear
collapse and revival features change. In the case of two squeezed vacuum states as shown
in Fig. 3.2(d) the dynamics seems rather chaotic and does not follow an obvious pattern.
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3.2 Electromagnetically Induced Transparency

As a first application to the Λ-type 3LS, we consider EIT performed with quantum states of
light. EIT is a situation in which the |2⟩−|3⟩ transition is excited with a strong coupling field
|𝐶⟩, while the |1⟩ − |3⟩ transition, which is otherwise accompanied by a strong absorption,
becomes transparent when excited with a weak probe field |𝑃⟩. This effect is well known
from semiclassical treatments and originates from quantum interference between the
excitation pathways [86]. EIT is most pronounced for resonant probe fields and decreases
for increasing absolute values of the detuning. Therefore, the linear absorption has a
minimum at zero detuning and increases for increasing absolute values of the detuning up
to a point where the detuning is too large to properly excite the optical transition, so that
the absorption decreases. Thus, a typical EIT absorption spectrum has a minimum at zero
detuning, surrounded by two peaks.

In a quantum-optical description, however, there is no straightforward definition for a linear
absorption, which is why proceed with a consideration of the electronic population. Since
the first electronic level is initially occupied, the amount of population that is transferred
from the first to the third level is proportional to the absorption of this transition. A measure
for the transferred population is the time-averaged population of the third electronic level.
This leads to the following definition for the considered measure for absorption:

𝛼QO ≡ 𝑂3 =
1
𝑇

∫ 𝑇

0
𝑂3(𝑡 ′)d𝑡 ′. (3.9)

A schematical drawing of the considered system at 𝑡 = 0 is shown in Fig. 3.3.

ۧ|1

ۧ|2

ۧ|3

Probe field ۧ|𝑃 Coupling field ۧ|𝐶

𝑂1 𝑡 = 0 = 1

𝑂2 𝑡 = 0 = 0

𝑂3 𝑡 = 0 = 0

Figure 3.3: Schematical drawing of the system considered for the simulation of EIT spectra

Fig. 3.4 shows numerical simulations of 𝛼QO in dependence on the optical detuning of the
probe pulse Δ𝑃 for different states of light as described in the legend, where no losses are
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applied, i.e. 𝜅 = 0. Here, the mean photon number of the probe pulse is chosen as 𝑁𝑃 = 10,
while the mean photon number of the coupling pulse is chosen as 𝑁𝐶 = 100 in Fig. 3.4(a),
as 𝑁𝐶 = 50 in Fig. 3.4(b), and as 𝑁𝐶 = 0 in Fig. 3.4(c), which means that Fig. 3.4(a) and
Fig. 3.4(b) show EIT spectra, while Fig. 3.4(c) demonstrates the absorption without any
influence of the coupling field.
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Figure 3.4: Numerical simulations of 𝛼𝑄𝑂 from Eq. (3.9) in dependence on the detuning Δ𝑃 for
different photon statistics depicted in the legend. The probe field has a mean photon
number of 𝑁𝑃 = 10, while the coupling field has a mean photon number of (a) 𝑁𝐶 = 100,
(b) 𝑁𝐶 = 50, and (c) 𝑁𝐶 = 0. The detuning is given in units of Ω1 =

√
2𝑔 and therefore

is proportional to the light-matter coupling 𝑔. Taken from [91].

We see that the EIT spectra show the expected result, i.e., a minimum at zero detuning
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surrounded by two peaks. A special feature is found in the case of squeezed vacuum states
as probe field, i.e. |𝑃⟩ = |𝜉⟩, as it leads to less absorption than a coherent state, despite
having the same mean photon number, which is equivalent to a more efficient EIT. This
behavior can be understood from the photon statistics of squeezed vacuum states, as they
show a large contribution in the vacuum component, which cannot promote electrons.
This is also demonstrated in Fig. 3.4(c), where a squeezed state |𝜉⟩ with a mean photon
number of 10 leads to less absorption than coherent state |𝛼⟩ with the same mean photon
number.

The application of a squeezed vacuum state as coupling field leads to a different lineshape
of the EIT spectra, which can be understood by considering the effective splitting given
by the dressed states that form during the light-matter interaction. The position of the
maxima Ω𝑔 can be estimated with

Ω𝑔 ≈ ±𝑔
∞∑︁
𝑚=0

|𝑐𝐶𝑚 |2
√
𝑚 = ±Ω1√

2

∞∑︁
𝑚=0

|𝑐𝐶𝑚 |2
√
𝑚. (3.10)

The values for Ω𝑔 obtained from the simulation shown in Fig. 3.4 and from Eq. (3.10) are
listed in Table 3.1. We see that the values are in a good agreement for coherent states |𝛼⟩

coupling field Ω𝑔 (simulated) Ω𝑔 (Eq. (3.10))

|𝐶⟩ = |𝛼⟩, 𝑁𝐶 = 100 ±7.2Ω1 ±7.06Ω1
|𝐶⟩ = |𝛼⟩, 𝑁𝐶 = 50 ±5.2Ω1 ±4.99Ω1
|𝐶⟩ = |𝜉⟩, 𝑁𝐶 = 100 ±3.6Ω1 ±5.58Ω1
|𝐶⟩ = |𝜉⟩, 𝑁𝐶 = 50 ±2.5Ω1 ±3.91Ω1

Table 3.1: The maxima Ω𝑔 of the EIT spectra for different coupling fields are listed obtained from
both, the numerical simulation shown in Fig. 3.4 and from the estimation Eq. (3.10)

and that Eq. (3.10) predicts the general trend of Ω𝑔 found in the simulation. The value is
slightly underestimated, since the probe field is not taken into account. The agreement for
squeezed vacuum states |𝜉⟩, however, is worse, since the peaks show a significant overlap
as can be seen in Fig. 3.4(a) and Fig. 3.4(b). This overlap between the two peaks leads a
significant decrease in the positon of their maxima, which is why Eq. (3.10) provides a
strong overestimation. Regardless, Eq. (3.10) provides a qualitative understanding of the
peak position and predicts the location of the maxima at smaller detunings for squeezed
vacuum states.

Summarizing, we simulate EIT spectra with quantum states of light. Here, we demonstrate
that the non-classical squeezed vacuum state enhances the EIT when used as a probe field.
In addition, we show that the choice of the coupling field significantly alters the form of
the EIT spectra, which can be understood with the dressed state picture.
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3.3 Classical andQuantum Polarization

Until now we only considered the electronic population. Another relevant quantity in the
context of light-matter interaction, however, is the polarization that leads to the occupation
of the electronic states in the first place. A polarization can be assigned to each optical
transition, where we will focus on the |1⟩ − |3⟩ transition. From a semiclassical perspective,
the polarization is defined as expectation value of the dipole moment from Eq. (2.49), where
we only consider the operator 𝜎13:

𝑃𝐶31 = ⟨𝜎13⟩ = Tr(𝜎13𝜌) =
∞∑︁
𝑘=0

∞∑︁
𝑚=0

𝜌
3,𝑘,𝑚
1,𝑘,𝑚 = exp

(
− 𝑖
ℏ
(𝐸3 − 𝐸1)𝑡

) ∞∑︁
𝑘=0

∞∑︁
𝑚=0

𝑝
3,𝑘,𝑚
1,𝑘,𝑚 . (3.11)

In this definition, however, the field information is not incorporated. This has striking
drawbacks, as we will demonstrate in the following. From the equations of motion Eq. (3.6)
one can conclude that 𝜌3,𝑘,𝑚

1,𝑘,𝑚 is coupled to 𝜌1,𝑘,𝑚
1,𝑘+1,𝑚 . Since we assume the first level to be

initially populated, a finite 𝜌3,𝑘,𝑚
1,𝑘,𝑚 can only be obtained if 𝜌1,𝑘,𝑚

1,𝑘+1,𝑚 is finite initially. According
to the initial condition in Eq. (3.7)

𝜌
1,𝑘+1,𝑚
1,𝑘,𝑚 (𝑡 = 0) ∝ 𝑐𝑘+1𝑐

∗
𝑘
. (3.12)

The product 𝑐𝑘+1𝑐
∗
𝑘

expresses a correlation between photon numbers 𝑘 + 1 and 𝑘 and is
required to be non-zero to obtain a finite 𝑃𝐶31. However, one can show that 𝑐𝑘+1𝑐

∗
𝑘

is zero for
a lot of relevant quantum states of light including squeezed vacuum states |𝜉⟩, Fock states
|𝑛⟩, even and odd cat states |cat𝑒⟩ ∝ |𝛼⟩ + |−𝛼⟩ and |cat𝑜⟩ ∝ |𝛼⟩ − |−𝛼⟩, and thermal states.
Thus, the aforementioned quantum states of light do not excite a classical polarization but
still lead to electronic population. A similar conclusion for thermal states in the context
of the generation of exciton population was done in Ref. [8]. In contrast, the coherent
state |𝛼⟩ which is the most classical analog does lead to a classical polarization 𝑃𝐶31. Fig. 3.5
shows numerical simulations of the classical polarization 𝑃𝐶31 for different combinations
of initial photon statistics. The gap frequency 𝜔31 = (𝐸3 − 𝐸1)/ℏ was set to 100Ω1 for this
purpose and only the imaginary part is shown, since the real part is qualitatively the same
due to the fast oscillation. One can see that 𝑃𝐶31 is only finite when the |3⟩ − |1⟩ transition
is excited with a coherent state, which results from the aforementioned property.

We conclude that a proper definition for the polarization in a quantum-optical treatment
must include field operators. In general, one can formulate a polarization operator that
carries the complete information of the exciting field:

𝑃31 =

∞∑︁
𝑚=0

𝜌
3,𝑘,𝑚
1,𝑘 ′,𝑚 |𝑘 ′⟩ ⟨𝑘 | . (3.13)

In our case, however, the consideration of an absorption and an emission of a single photon
is sufficient, which is why we only consider 𝑘 ′ = 𝑘 + 1, leading to our definition of the
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Figure 3.5: Time dynamics of the classical polarization 𝑃𝐶31 for different initial photon statistics
with a mean photon number 10 each. The initial photon statistics of the first and second
field is chosen as (a) coherent and coherent state, (b) squeezed vacuum and coherent
state, (c) coherent and squeezed vacuum state, (d) squeezed vacuum and squeezed
vacuum state, respectively. Taken from [91].

quantum polarization that is suitable for the analysis of the current problem

𝑃
𝑄

31 =

∞∑︁
𝑘=0

∞∑︁
𝑚=0

𝜌
3,𝑘,𝑚
1,𝑘+1,𝑚 = exp

(
− 𝑖
ℏ
Δ𝑃𝑡

) ∞∑︁
𝑘=0

∞∑︁
𝑚=0

𝑝
3,𝑘,𝑚
1,𝑘+1,𝑚 . (3.14)

In contrast to the previous case, the quantum polarization is finite for all quantum states
of light that lead to an optical excitation. Fig. 3.6 demonstrates the same as in Fig. 3.5, but
for the quantum polarization 𝑃𝑄31 instead. In contrast to the previous case, we see finite
magnitudes in all cases. Furthermore, the dynamics of the quantum polarization behaves
similar to the population dynamics, i.e., it shows the collapse and revival behavior for
coherent states and a rather chaotic behavior for squeezed vacuum states, as demonstrated
in Fig. 3.2. We conclude that the quantum polarization 𝑃𝑄31 seems to be a more promising
measure when studying polarizations in the context of quantum-optical excitations.

In the following, we demonstrate the applicability of the quantum polarization by using
it to simulate the dispersion and absorption of a quantum-optical excitation. For this,
we consider the time averaged real and imaginary part in dependence on the detuning,
obtained in a similar way as in Eq. (3.9). The real part corresponds to the dispersion and
the imaginary part to the absorption.
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Figure 3.6: Time dynamics of the quantum polarization 𝑃𝑄31 for different initial photon statistics
with a mean photon number 10 each. The initial photon statistics of the first and second
field is chosen as (a) coherent and coherent state, (b) squeezed vacuum and coherent
state, (c) coherent and squeezed vacuum state, (d) squeezed vacuum and squeezed
vacuum state, respectively. Taken from [91].

Besides the numerical treatment, we also consider an approximate analytical solution that
can be derived in the perturbative limit for weak probe fields:

𝑃
𝑄

31,𝐴 (Δ𝑃 ) =
∞∑︁
𝑘=0

∞∑︁
𝑚=0

Ω1Δ𝑃

√︃
𝑘+1

2 |𝑐𝑘+1 |2 |𝑐𝑚 |2

Ω2
1 (
𝑚+1

2 ) − Δ2
𝑃
− 𝑖Δ𝑃𝑟1,3

, (3.15)

where 𝑟1,3 was introduced within this derivation to describe a decay of the nondiagonal
matrix elements. This allows for a direct comparison between the numerically computed
𝑃
𝑄

31,𝑁 (Δ𝑃 ) and the analytically obtained 𝑃𝑄31,𝐴 (Δ𝑃 ). We start with the consideration of two
coherent states with mean photon numbers of 𝑁𝑃 = 10 and 𝑁𝐶 = 100. For the numerical
treatment, we perform the time averaging until 𝑡Ω1 = 20 which is after the first collapse
of the dynamics. Fig. 3.7(a) shows the real and imaginary parts for both, the numerically
computed 𝑃𝑄31,𝑁 and the analytical solution 𝑃𝑄31,𝐴 from Eq. (3.15). We see that both treatments
are in a good agreement and yield the expected result from a semiclassical treatment, as e.g.
shown in [5]. In our case, however, the approach can be extended towards non-classical
light. We demonstrate this by repeating the same calculation for two squeezed vacuum
states, see Fig. 3.7(b). In this case, we see a worse agreement between the numerical and the
analytical curves, which, however, are still in a qualitative agreement, while the peaks at
Δ𝑃 = 0 are more pronounced for the analytical solution. While the real parts behave similar,
Im[PQ

31,N] shows an oscillatory behavior that arises from the fact that the time-averaged
imaginary part approaches zero for increasing time intervals and a finite value obtained
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from a finite time interval therefore cannot be converged and depends on the time interval.
In contrast, the analytical solution Im[PQ

31,A] does not show this oscillations and therefore
seems to lead to a more reasonable result. A way to verify the suitability of this method is
to compare the obtained absorption spectra Im[𝑃𝑄31,𝐴] with the EIT spectra obtained in the
previous section show in Fig. 3.4, as they are in a qualitative agreement.
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Figure 3.7: Time-avergaed real and imaginary part of the quantum polarization obtained from
both, a numerical treatment (𝑃𝑄31,𝑁 ) and the analytical solution Eq. (3.15) (𝑃𝑄31,𝐴). For the
analytical solution, 𝑟1,3 = 5Ω1 is chosen. The probe and coupling field are chosen as (a)
two coherent states and (b) two squeezed vacuum states with mean photon numbers
of 𝑁𝑃 = 10 and 𝑁𝐶 = 100. Taken from [91].

In conclusion, we defined a new measure for the description of the polarization for quantum-
optical excitations, the quantum polarization 𝑃

𝑄

31 , which can successfully describe the
excitation with non-classical light.
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3.4 Control of Steady States with Cavity Losses

In the previous sections we considered the lossless population and polarization dynamics,
corresponding to the case of high-quality cavities in which loss mechanisms are negligible
on short time scales. In this section, however, we consider the bad cavity limit in which
the cavity loss ratio 𝜅 is dominant while other mechanisms are negligible and demonstrate
that cavity losses can be used as an advantage by controlling steady states with them.
Such a situation is a realistic assumption for quantum dots, as they show large dephasing
times, leading to cavity losses being dominant for lossy cavities [77]. There are also atomic
systems in which this condition applies [94, 95]. The bad cavity limit has been widely
studied over recent centuries. Besides of theoretical studies on TLS [96], the bad cavity limit
was used to demonstrate laser cooling [97]. The bad cavity limit is of special interest for
applications in quantum information, such as in the realization of an optical storage [98]
and for the processing of quantum information [99–101]. Further applications include the
entangling of atoms [102], the formation of new types of eigenmodes [103], quantum Zeno-
type effects [104], and the formation of dark states [105]. Moreover, cavities with a larger
𝑄-factor allow to efficiently support inhomogeneous broadened samples [106, 107].

For the present treatment, we restrict our analysis to resonant excitations, i.e., Δ𝑃 = Δ𝐶 = 0.
In addition, we consider the second light state to be a vacuum state |0⟩, while the first one
is an arbitrary quantum state of light |Ψ1⟩. A schematical illustration of the considered
system is depicted in Fig. 3.8.

ۧ|1

ۧ|2

ۧ|3

ۧ|Ψ1 ۧ|0

𝑂1 𝑡 = 0 = 1

𝑂2 𝑡 = 0 = 0

𝑂3 𝑡 = 0 = 0

𝜅 𝜅

Figure 3.8: Schematical illustration of the system considered for the simulations performed in this
section

In this section, we work with the following rescalings:

𝜅̃ =
𝜅

𝑔
, 𝑡 = 𝑡𝑔, (3.16)
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so that dependencies will always be shown in terms of the dimensionless quantities 𝜅̃
and 𝑡 . Fig. 3.9 shows the time dynamics of the electronic populations for |Ψ1⟩ = |𝛼⟩ with
a mean photon number of 𝑁 = 10 with cavity losses (𝜅̃ = 0.3) and without cavity losses
(𝜅̃ = 0).
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Figure 3.9: Population dynamics 𝑂𝑛 for a coherent state |𝛼⟩ with a mean photon number of 10 as
first field and the vacuum state as second field. The solid lines show the lossless case
(𝜅̃ = 0) and the dashed lines show the case with cavity losses (𝜅̃ = 0.3). Taken from
[92].

The time dynamics without cavity losses shows collapses and revivals, which is similar to
the behavior shown in Fig. 3.2 and discussed for a TLS in Section 2.4.3. Since the second
field is chosen as the vacuum state, it is to be expected that population of the second level
remains comparably small over time. This, however, is different when cavity losses are
applied. In this case, a steady state forms in which the value of 𝑂2 surpasses both, the
values of 𝑂1 and 𝑂3. This indicates a mechanism that allows to control the steady state
population by using cavity losses, which will be discussed in this section.

3.4.1 Analysis of the Equations of Motion

We proceed with an analysis of the involved processes, where we start by quantifying the
steady-state values. The time dynamics of the electronic population is computed according
to Eq. (3.8). For the limit 𝑡 → ∞, however, the cavity losses have led to the destruction of
all photons and only DM elements with Fock state indices 𝑘 = 0 and𝑚 = 0 can contribute.
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Thus, the steady-state populations can be written according to

𝑂1,st = 𝑂1(𝑡 → ∞) = 𝑝1,0,0
1,0,0 (𝑡 → ∞), (3.17)

𝑂2,st = 𝑂2(𝑡 → ∞) = 𝑝2,0,0
2,0,0 (𝑡 → ∞). (3.18)

The corresponding equations of motion have the following form:

𝜕𝑡𝑝
1,0,0
1,0,0 = 𝜅̃

[
𝑝

1,1,0
1,1,0 + 𝑝

1,0,1
1,0,1

]
, (3.19)

𝜕𝑡𝑝
2,0,0
2,0,0 = 𝜅̃

[
𝑝

2,0,1
2,0,1 + 𝑝

2,1,0
2,1,0

]
. (3.20)

For clarity, we continue the discussion for the 𝑛 = 𝑛′ = 1 case (Eq. (3.17)), since it is the
same for the 𝑛 = 𝑛′ = 2 case (Eq. (3.18)). Eq. (3.19) reveals that 𝑝1,0,0

1,0,0 is driven by 𝑝1,1,0
1,1,0 and

𝑝
1,0,1
1,0,1 . The driving terms on the right-hand side have an import difference: 𝑝1,1,0

1,1,0 describes a
state of the system in which the first electronic level is occupied, while the first field is a
single photon Fock state, whichs allows for an optical excitation. Therefore, 𝑝1,1,0

1,1,0 couples
to other DM elements, as can be seen by its equation of motion:

𝜕𝑡𝑝
1,1,0
1,1,0 = 𝑖 (𝑝3,0,0

1,1,0 − 𝑝1,1,0
3,0,0) + 𝜅̃

[
−𝑝1,1,0

1,1,0 + 2𝑝1,2,0
1,2,0 + 𝑝

1,1,1
1,1,1

]
. (3.21)

In contrast, 𝑝1,0,1
1,0,1 does not describe an optical promotion of electrons, since the first field

has no photons. The corresponding equation of motion reads:

𝜕𝑡𝑝
1,0,1
1,0,1 = 𝜅̃

[
𝑝

1,1,1
1,1,1 + 𝑝

1,0,2
1,0,22 − 𝑝1,0,1

1,0,1

]
. (3.22)

Similar to 𝑝1,0,0
1,0,0 from Eq. (3.19), 𝑝1,0,1

1,0,1 from Eq. (3.22) can only change during the time-
evolution if 𝜅̃ > 0.

From this example, we extract a more general distinction between DM elements. We define
non-interacting element (NIE) and interacting elements (IE) as follows: 𝑝𝑛,𝑘,𝑚

𝑛′,𝑘 ′,𝑚′ is a NIE if
𝜕𝑡𝑝

𝑛,𝑘,𝑚

𝑛′,𝑘 ′,𝑚′ = 0|𝜅̃=0 and an IE if 𝜕𝑡𝑝
𝑛,𝑘,𝑚

𝑛′,𝑘 ′,𝑚′ ≠ 0|𝜅̃=0. The NIE that are relevant for the present
dynamics are given by 𝑝1,0,𝑚

1,0,𝑚 or 𝑝2,𝑘,0
2,𝑘,0 that are determined by the following equations of

motion:

𝜕𝑡𝑝
1,0,𝑚
1,0,𝑚 = 𝜅̃

[
𝑝

1,1,𝑚
1,1,𝑚 + 𝑝1,0,𝑚+1

1,0,𝑚+1 (𝑚 + 1) − 𝑝1,0,𝑚
1,0,𝑚𝑚

]
, (3.23)

𝜕𝑡𝑝
2,𝑘,0
2,𝑘,0 = 𝜅̃

[
𝑝

2,𝑘,1
2,𝑘,1 + 𝑝

2,𝑘+1,0
2,𝑘+1,0 (𝑘 + 1) − 𝑝2,𝑘,0

2,𝑘,0𝑘
]
. (3.24)

From the right-hand side, we see that a NIE is always driven by a NIE and an IE, both of
higher Fock state index and has a loss term proportional to its own Fock state index which
is consistent with the identification in Eq. (3.17) and Eq. (3.18). From this we can conclude
that all NIE elements of the form 𝑝

1,0,𝑚
1,0,𝑚 contribute to 𝑂1,st and all NIE of the form 𝑝

2,𝑘,0
2,𝑘,0

contribute to 𝑂2,st. To get an understanding of the simulation shown Fig. 3.9 one must
consider that the number of contributing NIE 𝑝2,𝑘,0

2,𝑘,0 is given by the number of relevant
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Fock state indices 𝑘 of the initial photon statistics of the first field. Qualitatively, a bright
first field leads to many NIE of the form 𝑝

2,𝑘,0
2,𝑘,0 , while a vacuum state as second field only

allows for 𝑝1,0,0
1,0,0 . Thus, the asymmetry in the exciting fields also leads to an asymmetry in

the electronic population, but in such a way that the initially unoccupied second electronic
state that is excited with a vacuum state shows the highest population.

This behavior can be attributed to the physical process that the promotion of an electron
over the |1⟩ − |3⟩ transition can result in a relaxation into the state |2⟩ under the emission
of a photon which is immediately destroyed by cavity losses so that the electron in the
second level cannot be promoted again. The NIE exactly capture this process and represent
the probability of such an event. However, it is clear that this does not work the same for
all loss rates 𝜅̃, which we will investigate in the next subsection.

3.4.2 Simulations for Different Photon Statistics and Loss Rates

We proceed with simulations of 𝑂2,st in dependence on 𝜅̃ for different initial photon
statistics of the first field. Fig. 3.10(a) shows such simulations for a coherent state |𝛼⟩, a
Fock state |𝑛⟩, and a squeezed vacuum state |𝜉⟩ with a mean photon number of 10 each and
Fig. 3.10(b) is a zoom of Fig. 3.10(a) that makes the difference in the curves more visible. It
is clearly visible that the squeezed vacuum leads to a smaller 𝑂2,st for all 𝜅̃ . This originates
in the strong contribution at 𝑘 = 0 in the squeezed vacuum state (e.g. shown in Fig. 2.5),
leading to a strong initial contribution in 𝑝1,0,0

1,0,0 that cannot be reverted. In contrast, the
vacuum component for a coherent state is very small and zero for a Fock state.
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Figure 3.10: Steady-state probability 𝑂2,st in dependence on 𝜅̃ for different initial photon statistics
of the first field, while the second field initially is a vacuum state. The considered initial
photon statistics are (a) a Fock state, a coherent state, and a squeezed vacuum state
with a mean photon number of 10 each (b) same as in (a) but without the squeezed
vacuum state and for a smaller interval for 𝜅̃. Taken from [92].

For a further analysis, the loss rates 𝜅 are divided in different regimes:

• small 𝜅 (𝜅̃ ≪ 1)
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3 Dark-State and Loss-Induced Phenomena

• intermediate 𝜅 (𝜅̃ and the light-matter coupling are in the same order of magnitude)

• high 𝜅 (𝜅̃ ≫ 1)

In the regime of small 𝜅 the time dynamics of the populations shows several Rabi oscilla-
tions, so that the physical process that was described in the previous subsection applies,
while the value of 𝑂2,st mainly depends on the applied photon statistics.

The regime of high 𝜅 shows a clear trend of a decreasing 𝑂2,st. In this case, the system
has not performed a full Rabi cycle and therefore, generally speaking, the photons are
destroyed faster than electrons can be promoted. Thus, for high 𝜅, the system tends to
remain in its initial electronic state. In Fig. 3.10(b) one can see that a coherent state leads
to a faster decrease of 𝑂2,st than for a Fock state. This can be led back to the contribution
of fewer-number Fock states in the coherent state, which the Fock state does not have. We
conclude that in this regime, the value of 𝑂2,st is determined by both, the photon statistics
and the exact value of 𝜅̃. The importance of the photon statistics, however, decreases for
increasing 𝜅̃ since the photon statistics becomes irrelevant if all photons are destroyed
immediately.

The third regime of intermediate 𝜅̃ cannot be categorized as clear as the other two regimes,
since the dynamics is damped within the first few Rabi cycles and thus the exact value
of 𝜅̃ is important, which determines at which phase of the Rabi oscillation the damping
occurs. The behavior can be seen in Fig. 3.10(b) in the range of 𝜅̃ ≈ 1, where no clear trend
can be seen and the curves even show inflection points.

In conclusion, both, the initial photon statistics and the exact value of 𝜅 is relevant for
the obtained steady-state probabilities, which allows for a more precise tailoring when
applying this method.

3.5 Conclusions

In this chapter, we consider a Λ-type 3LS that is pre-excited by two quantum light modes.
We demonstrate that the numerical complexity can be drastically reduced by specifically
choosing the DM elements that are relevant for the observables of interest, which allows
the efficient treatment of large mean photon numbers.

We proceed with the simulation of EIT within the quantum-optical regime and conclude
that the non-classical squeezed vacuum state enhances the efficiency of EIT when used
as probe field. Afterwards, we consider the classical polarization and conclude that it
is not suitable for the description of most quantum-optical excitations. Therefore, we
introduce a new quantity, the quantum polarization, and demonstrate its applicability
by using it to model the absorption and dispersion for the excitation with coherent and
squeezed vacuum states, which is in a qualitative agreement with the EIT spectra from the
population-dynamics approach. We conclude that the quantum polarization is suitable for
a versatile analysis of quantum excitations. Finally, we study the light-matter interaction
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for lossy cavities and demonstrate that one can take advantage of the cavity loss rate 𝜅 to
obtain desired steady states. We obtain an understanding of this mechanism by closely
considering the equations of motion and simulated steady states for different initial photon
statistics and different cavity loss rates 𝜅. This proposed mechanism is suitable to control
steady states since it only depends on the photon statistics of the applied field and the
design of the cavity and does not require an initial preparation of the system.
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Population Dynamics of
Two-Band Models 4

The material system that we modeled so far is a suitable description for special situations in
which excitonic resonances are optically pre-excited or semiconductor nanostructures are
doped and subjected to a magnetic field. In the most practical situations, however, one is
interested in the optical and electric properties of intrinsic semiconductor nanostructures
that are initially in their electronic ground state. To achieve a proper description for such a
situation, one needs to consider the band structure of a semiconductor nanostructure. Here,
we restrict our investigation to two-band models that are initially excited by a single-mode
quantum field inside of an optical microcavity, where we neglect many-body interactions,
such as electron-electron and electron-photon interactions [1], since we want to focus
on the quantum-optical description as the main layer of complexity. We will consider
quasi-1D and quasi-2D semiconductors, corresponding to quantum wires and quantum
wells, respectively. The content in this chapter is partly based on Ref. [108] and mainly on
Ref. [109], which is currently submitted.

4.1 Theoretical Model

In contrast to the previous considerations, the present scenario requires a quantum light
mode to excite many few-level systems. We assign a TLS to each 𝑘-point transition of the
continuous 𝑘-space in which the electronic band structure is described. Fig. 4.1 shows a
schematical drawing of a two-band model, where the approximate description with TLS is
indicated.

Eq. (2.51) does not cover this case, as it describes the interaction between a single material
system with several quantum light modes. The extension, however, is straightforward,
and just requires to increase the dimension of the basis states. The interaction between 𝑁
identical TLS and a single quantum light mode is known as the Tavis-Cummings model
[110]. We, however, consider the interaction between 𝑁 TLS that follow a given band
structure that are excited by a quantum field mode. We start with a derivation of the
equations of motion for arbitrary band structures, which we will later specify for a proper
description of semiconductor nanostructures. Neglecting the Coulomb interaction and the
coupling to phonons, the Hamiltonian takes the following form [1]:
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𝜖

𝑘

Figure 4.1: Schematical drawing of an electronic band structure that connects the energy 𝜖 and
the momentum 𝒌 of an electron, represented by a single valence (blue curve) and a
single conduction band (orange curve). Several TLS transitions are depicted to indicate
the approximate description of such a band structure in the continuous 𝑘-space.

𝐻 =
∑︁
𝒌

[
𝜖𝑣𝒌𝑎

†
𝑣,𝒌
𝑎𝑣,𝒌 + 𝜖𝑐𝒌𝑎

†
𝑐,𝒌
𝑎𝑐,𝒌

]
+ ℏ𝜈

[
𝑏†𝑏 + 1

2

]
−

∑︁
𝒌

𝑀𝒌 (𝑏†𝑎†𝑣,𝒌𝑎𝑐,𝒌 + 𝑏𝑎†
𝑐,𝒌
𝑎𝑣,𝒌) . (4.1)

Here, we no longer work with the notation of transition operators 𝜎𝑖 𝑗 , but introduced
fermionic creation and annihilation operators 𝑎†

𝛾,𝒌
and 𝑎𝛾,𝒌 , respectively, that describe

the creation and annihilation of an electron with momentum 𝒌 in the band 𝛾 . 𝜖𝛾
𝒌

denotes
the energy of the 𝛾-band for a momentum 𝒌 , which specifies the band structure. In the
present analysis, we will restrict ourselves to a single valence and a single conduction band,
which means that 𝛾 can either be 𝑣 for the valence band or 𝑐 for the conduction band. 𝑀𝒌

corresponds to𝑔𝑖 𝑗
𝑘

from Eq. (2.52), but was assigned to a new symbol to distinguish between
the treatment of a single TLS and 𝑁 TLS. We neglect the 𝑘-dependence of the light-matter
coupling: 𝑀𝒌 = 𝑀 . The resulting dynamics must not depend on the discretization of the
band, i.e., on the number of 𝑘-points 𝑁 , as long as 𝑁 is sufficiently large to model the
𝑘-space continuum. To ensure that, the total oscillator strength M must be kept constant.
Since

M ∼
𝑁∑︁
𝑗=1

|𝑀𝑘 𝑗 |2 =

𝑁∑︁
𝑗=1

|𝑀 |2 = 𝑁 |𝑀 |2, M = const. ⇒ 𝑀 = 𝑀0/
√
𝑁, (4.2)

where 𝑘 𝑗 denotes the discretization of 𝒌 in terms of integers 𝑗 . We see that 𝑀 , which
corresponds to the light-matter coupling between the light mode and a single 𝑘-point
transition, depends 𝑁 , which is why 𝑀0 is considered as the relevant quantity instead,
which is directly proportional to M and does not depend on the discretization. In reality,
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however, the coupling strength of a single transition cannot depend on the discretization.
Mathematically, the additional factor of 1/

√
𝑁 is a consequence from preserving the

commutation relation for the creation and annihilation operator for different choices of
discretization of the continuous 𝑘-space [111].

In the following, we want to formulate explicit equations of motion that describe the
dynamics of such a system. Since all combinations of 𝑘-points being excited or not must
be taken into account, it is convenient to introduce the compound index (𝛾) as:

(𝛾) = 𝛾1, 𝛾2, ..., 𝛾𝑁 . (4.3)

Here, 𝛾 𝑗 denotes the state of the electron with momentum 𝑘 𝑗 , which can either be in the
valence band (𝛾 𝑗 = 𝑣) or in the conduction band (𝛾 𝑗 = 𝑐). To denote changes applied to this
compound index, we introduce the following notation:

𝛾1, 𝛾2, ..., 𝛾 𝑗−1, 𝛾 𝑗 ± 1, 𝛾 𝑗+1, ..., 𝛾𝑁 = (𝛾 |𝛾 𝑗 ± 1), (4.4)
𝛾1, 𝛾2, ..., 𝛾 𝑗−1, 𝛾, 𝛾 𝑗+1, ..., 𝛾𝑁 = (𝛾 |𝛾 𝑗 = 𝛾), (4.5)

𝑣, 𝑣, ..., 𝑣, 𝑣 = (𝑣), (4.6)

where 𝛾 𝑗 ± 1 is meant in such a way that “𝑣 + 1 = 𝑐” and “𝑐 − 1 = 𝑣”. Eq. (4.4) denotes the
promotion (+1) or demotion (−1) of an electron in the state 𝛾 𝑗 , while Eq. (4.5) denotes that
𝛾 𝑗 is set to a given state 𝛾 . Eq. (4.6) is a notation for the state in which all electrons the
valence band, which corresponds to the electronic ground state that is initially assumed.

With this notation, the state vector in the Schrödinger picture takes the following form:

|Ψ⟩ =
𝑣,𝑐∑︁
(𝛾 )

∞∑︁
𝑛=0

𝑐
(𝛾 )
𝑛 | (𝛾), 𝑛⟩ =

𝑣,𝑐∑︁
(𝛾 )

∞∑︁
𝑛=0

𝑐
(𝛾 )
𝑛 𝑒

1
𝑖ℏ
𝐸
(𝛾 )
𝑛 𝑡 | (𝛾), 𝑛⟩ , (4.7)

where the sum over (𝛾) is meant in such a way that the summation is performed for all
possible compound indices. 𝐸 (𝛾 )

𝑛 is the energy of the state | (𝛾), 𝑛⟩ that does not need to be
specified, but can be obtained from Eq. (4.1). Substituting Eq. (4.1) and Eq. (4.7) into the
Schrödinger equation Eq. (2.53) leads equations of motion for the probability amplitudes
𝑐
(𝛾 )
𝑛 :

−𝑖ℏ𝜕𝑡𝑐 (𝛾 )𝑛 =

𝑁∑︁
𝑗=1

𝑀𝑐
(𝛾 |𝛾 𝑗+1)
𝑛−1 𝑒

− 𝑖
ℏ
Δ𝑘𝑗

𝑡√
𝑛𝛿𝛾 𝑗 ,𝑣

+
𝑁∑︁
𝑗=1

𝑀𝑐
(𝛾 |𝛾 𝑗−1)
𝑛+1 𝑒

𝑖
ℏ
Δ𝑘𝑗

𝑡
√
𝑛 + 1𝛿𝛾 𝑗 ,𝑐 . (4.8)

The first summand on the right-hand side describes all possible relaxations of an electron
under the respective emission of a photon, whereas the second summand describes all
possible promotions of an electron under the respective absorption of a photon. The optical
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detuning Δ𝒌 reads:

Δ𝒌 = ℏ(𝜔𝒌 − 𝜈), (4.9)
ℏ𝜔𝒌 = 𝜖𝑐𝒌 − 𝜖𝑣𝒌 , (4.10)

where we call the 𝒌-dependent transition frequency𝜔𝒌 the band structure, that determines
that material properties of the considered semiconductor nanostructure. We model the
electronic band structure by use the tight-binding approximation, where the electrons of
the isolated atoms that form the solid are assumed to be strongly localized at the atomic
sites, so that the electron wave functions of two neighbouring sites have a small overlap,
while this overlap is negligible when considering two sites that are not neighbours, e.g.
next-nearest neighbours [23]. Tight-binding models typically lead to band energies 𝜖𝛾

𝒌
that

have a cosine-dependence with respect to the momentum 𝒌 , so that a 1D tight-binding
model leads to the following band structure:

𝜔𝑘 = 𝜔𝑔 +
𝜔𝑏

2

[
1 − cos(𝑘𝑎)

]
, (4.11)

where 𝜔𝑔 is the band gap, 𝜔𝑏 is the band width, and 𝑎 is the lattice constant. 𝜔𝑔 and 𝜔𝑏
are determined by the lattice periodical atomic potential and atomic wave-functions. We,
however, use parameters that allow for a reasonable description of the direct semiconductor
GaAs: 𝜔𝑔 = 1.5 eV, 𝜔𝑏 = 1.8 eV, and 𝑎 = 5.65Å. We restrict our consideration to the first
Brillouin zone, which means that |𝑘 | ≤ 𝜋

𝑎
. The dispersion Eq. (4.10) for the 1D tight-binding

model Eq. (4.11) is shown with respect to the band-gap energy ℏ𝜔𝑔 in Fig. 4.2. Similarly,
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Figure 4.2: Dispersion ℏ𝜔𝒌 from Eq. (4.10) for the 1D tight-binding model Eq. (4.11). Taken from
[109].

the 2D tight-binding model leads to the following band structure:

𝜔𝒌 = 𝜔𝑔 +
𝜔𝑏

4

[
2 − cos(𝑘𝑥𝑎) − cos

(
𝑘𝑦𝑎

) ]
. (4.12)
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Fig. 4.3 shows the dispersion Eq. (4.10) for the 2D tight-binding model Eq. (4.12) with
respect to the band-gap energy ℏ𝜔𝑔. We note that this dispersion does not take into account
the face centered cubic lattice of GaAs in 𝑘-space, but rather models a cubic lattice.
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Figure 4.3: Dispersion ℏ𝜔𝒌 from Eq. (4.10) for the 2D tight-binding model Eq. (4.12). The contour
lines run along a constant energy that is given in units of eV. Taken from [109].

The observables that we focus on are the (electronic) ground-state probability (GSP)
𝑂ground, i.e., the probability of all 𝑘-points being in the ground state and the conduction-
band probability 𝑂𝑘 𝑗𝑐 of a single 𝑘-point 𝑘 𝑗 . These observables can be written in terms of
probability amplitudes 𝑐 (𝛾 )𝑛 :

𝑂ground =

∞∑︁
𝑛=0

|𝑐 (𝑣)𝑛 |2, (4.13)

𝑂
𝑘 𝑗
𝑐 =

∞∑︁
𝑛=0

∑︁
𝛾≠𝛾 𝑗

|𝑐 (𝛾 |𝛾 𝑗=𝑐 )𝑛 |2. (4.14)

In the following, we comment on the numerical complexity of the problem. We note that
a quantum state of light that is truncated at a maximum Fock state number of 𝑛max can
excite 𝑛max 𝑘-points simultaneously at maximum. We define Γ as the number of possible
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compound indices (𝛾), i.e., the number of possible matter excitation states, for a given
𝑛max. Since 𝑁 is assumed to be large, we can always assume 𝑛max < 𝑁 , which allows to
write Γ as:

Γ =

𝑛max∑︁
𝑗=0

(
𝑁

𝑗

)
=

𝑛max∑︁
𝑗=0

𝑁 !
𝑗 !(𝑁 − 𝑗)! = 1︸︷︷︸

𝑛max=0

+𝑁

︸     ︷︷     ︸
𝑛max=1

+ 1
2
(𝑁 − 1)𝑁

︸                       ︷︷                       ︸
𝑛max=2

+ 1
6
(𝑁 − 2) (𝑁 − 1)𝑁

︸                                                    ︷︷                                                    ︸
𝑛max=3

+..., (4.15)

where we find the dependence Γ ∼ 𝑁𝑛max , which means that the number of matter excitation
states increases exponentially with 𝑛max, making the treatment of bright quantum states
of light numerically demanding and in some cases even impossible [112, 113]. Therefore,
we will mainly focus on the excitation with single photon Fock state, which reduces the
basis 𝐵sp to 𝑁 + 1 states:

𝐵sp = { |(𝑣), 1⟩ , | (𝑣 |𝛾1 = 𝑐), 0⟩ , | (𝑣 |𝛾2 = 𝑐), 0⟩ , ..., | (𝑣 |𝛾𝑁 = 𝑐), 0⟩}, (4.16)

and allows to write the equations of motion from Eq. (4.8) in the following form:

𝜕𝑡𝑐
(𝑣)
1 =

𝑖

ℏ

𝑁∑︁
𝑙=1

𝑀𝑐
(𝑣 |𝛾𝑙=𝑐 )
0 𝑒−

𝑖
ℏ
Δ𝑘𝑙

𝑡 , (4.17)

𝜕𝑡𝑐
(𝑣 |𝛾 𝑗=𝑐 )
0 =

𝑖

ℏ
𝑀𝑐

(𝑣)
1 𝑒

𝑖
ℏ
Δ𝑘𝑗

𝑡
. (4.18)

Note that the probability amplitudes in the Schrödinger picture read 𝑐 (𝛾 )𝑛 = 𝑐
(𝛾 )
𝑛 𝑒

1
𝑖ℏ
𝐸
(𝛾 )
𝑛 𝑡 ,

whereas 𝑐 (𝛾 )𝑛 corresponds to the probability amplitude in the interaction picture. While
the interaction picture is advantageous for numerical treatments, the Schrödinger picture
can be more advantageous for analytical treatments. The equations of motion for 𝑐 (𝛾 )𝑛 can
be written as:

𝑖ℏ𝜕𝑡𝑐
(𝑣)
1 =

𝑁∑︁
𝑙=1

−𝑀𝑐 (𝑣 |𝛾𝑙=𝑐 )0 , (4.19)

𝑖ℏ𝜕𝑡𝑐
(𝑣 |𝛾 𝑗=𝑐 )
0 = −𝑀𝑐 (𝑣)1 + Δ𝒌 𝑗

𝑐
(𝑣 |𝛾 𝑗=𝑐 )
0 , (4.20)

where the energies were shifted with respect to the resonance. The matrix that describes
the system of differential equations is the Hamiltonian, as can be identified with the
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Schrödinger equation Eq. (2.53):

𝑖ℏ𝜕𝑡



𝑐
(𝑣)
1

𝑐 (𝑣 |𝛾1=𝑐 )

𝑐 (𝑣 |𝛾2=𝑐 )

...

𝑐 (𝑣 |𝛾𝑁 =𝑐 )


=



0 −𝑀 −𝑀 · · · −𝑀
−𝑀 Δ1 0 · · · 0

−𝑀 0 Δ2
. . . 0

...
...

. . .
. . .

...

−𝑀 0 0 · · · Δ𝑁

︸                                ︷︷                                ︸
=𝐻



𝑐
(𝑣)
1

𝑐 (𝑣 |𝛾1=𝑐 )

𝑐 (𝑣 |𝛾2=𝑐 )

...

𝑐 (𝑣 |𝛾𝑁 =𝑐 )


, (4.21)

where Δ 𝑗 = Δ𝑘 𝑗 was introduced for a more convenient notation.

The observables Eqs. (4.13) and (4.14) simplify in the single-photon case as follows:

𝑂ground = |𝑐 (𝑣)1 |2, (4.22)

𝑂
𝑘 𝑗
𝑐 = |𝑐 (𝑣 |𝛾 𝑗=𝑐 )0 |2. (4.23)

The same simplification can be done for the case of a two-photon Fock state, which leads
to a basis set 𝐵tp containing 1

2𝑁 (𝑁 − 1) + 𝑁 + 1 states:

𝐵tp = { |(𝑣), 2⟩ , | (𝑣 |𝛾1 = 𝑐), 1⟩ , | (𝑣 |𝛾2 = 𝑐), 1⟩ , ..., | (𝑣 |𝛾𝑁 = 𝑐), 1⟩ ,
| (𝑣 |𝛾1 = 𝛾2 = 𝑐), 0⟩ , | (𝑣 |𝛾1 = 𝛾3 = 𝑐), 0⟩ , ..., | (𝑣 |𝛾𝑁−1 = 𝛾𝑁 = 𝑐), 0⟩}. (4.24)

Applying this basis set to Eq. (4.8) leads to the equations of motion for the two-photon
Fock-state:

𝜕𝑡𝑐
(𝑣)
2 =

𝑖

ℏ

𝑁∑︁
𝑙=1

𝑀𝑐
(𝑣 |𝛾𝑙=𝑐 )
1 𝑒−

𝑖
ℏ
Δ𝑘𝑙

𝑡
√

2, (4.25)

𝜕𝑡𝑐
(𝑣 |𝛾 𝑗=𝑐 )
1 =

𝑖

ℏ
𝑀𝑐

(𝑣)
0 𝑒

𝑖
ℏ
Δ𝑘𝑗

𝑡
√

2 + 𝑖

ℏ

𝑁∑︁
𝑙=1,𝑙≠𝑗

𝑀𝑐
(𝑣 |𝛾 𝑗=𝛾𝑙=𝑐 )
0 𝑒−

𝑖
ℏ
Δ𝑘𝑙

𝑡 , (4.26)

𝜕𝑡𝑐
(𝑣 |𝛾 𝑗=𝛾𝑙=𝑐 )
0 =

𝑖

ℏ
𝑀𝑐

(𝑣 |𝛾𝑙=𝑐 )
1 𝑒

𝑖
ℏ
Δ𝑘𝑗

𝑡 + 𝑖

ℏ
𝑀𝑐

(𝑣 |𝛾 𝑗=𝑐 )
1 𝑒

𝑖
ℏ
Δ𝑘𝑙

𝑡 . (4.27)

and to a simpler expression for the observables Eqs. (4.13) and (4.14):

𝑂ground = |𝑐 (𝑣)2 |2, (4.28)

𝑂
𝑘 𝑗
𝑐 = |𝑐 (𝑣 |𝛾 𝑗=𝑐 )1 |2 +

𝑁∑︁
𝑙=1,𝑙≠𝑗

|𝑐 (𝑣 |𝛾 𝑗=𝛾𝑙=𝑐 )0 |2. (4.29)
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4.2 Analytical Treatment

Since the system has a large number of dynamical quantities, it is evident that an analytical
treatment of the system is challenging. Therefore, the analytical treatment is restricted to
the single photon case.

We start with a general consideration of the system and will then subdivide the treatment
into a 1D and 2D case. The analytical treatment is based on the solution of the eigenvalue
of the Hamiltonian:

𝐻 |𝜓 ⟩ = 𝜆 |𝜓 ⟩ , (4.30)
⇒ det(𝐻 − 𝜆1) = 0. (4.31)

where 1 is the identity matrix. The Hamiltonian can be referred from Eq. (4.21), so that the
matrix 𝐻 − 𝜆1 takes the following form:

𝐻 − 𝜆1 ≡ 𝐴𝑁 =



−𝜆 −𝑀 −𝑀 · · · −𝑀
−𝑀 Δ1 − 𝜆 0 · · · 0

−𝑀 0 Δ2 − 𝜆
. . . 0

...
...

. . .
. . .

...

−𝑀 0 0 · · · Δ𝑁 − 𝜆


∈ R𝑁+1×𝑁+1. (4.32)

The determinant of 𝐴𝑁 is given by:

det(𝐴𝑁 ) = −𝜆
𝑁∏
𝑘=1

(Δ𝑘 − 𝜆) −𝑀2
𝑁∑︁
𝑖=1

𝑁∏
𝑗=1
𝑗≠𝑖

(Δ 𝑗 − 𝜆). (4.33)

We proof Eq. (4.33) with induction. We see that Eq. (4.33) is true for N=2:

det(𝐴2) = −𝜆(Δ1 − 𝜆) (Δ2 − 𝜆) −𝑀2 [(Δ1 − 𝜆) + (Δ2 − 𝜆)]

= −𝜆
2∑︁
𝑘=1

(Δ𝑘 − 𝜆) −𝑀2
2∑︁
𝑖=1

2∏
𝑗=1
𝑗≠𝑖

(Δ 𝑗 − 𝜆) (4.34)

The induction step is computed with help of the Laplace expansion, where the expansion
is done with respect to the last column of the matrix and the determinant of the first
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submatrix is solved with an expansion with respect to the last row:

det(𝐴𝑁+1) =(−1)𝑁+3(−𝑀) (−1)𝑁+2(−𝑀)
𝑁∏
𝑖=1

(Δ𝑖 − 𝜆) + (−1)2𝑁+2(Δ𝑁+1 − 𝜆) det(𝐴𝑁 )

=(Δ𝑁+1 − 𝜆) det(𝐴𝑁 ) −𝑀2
𝑁∏
𝑖=1

(Δ𝑖 − 𝜆)

Eq. (4.33)
= (Δ𝑁+1 − 𝜆)

©­­­«−𝜆
𝑁∏
𝑘=1

(Δ𝑘 − 𝜆) −𝑀2
𝑁∑︁
𝑖=1

𝑁∏
𝑗=1
𝑗≠𝑖

(Δ 𝑗 − 𝜆)
ª®®®¬ −𝑀

2
𝑁+1∏
𝑖=1

𝑖≠𝑁+1

(Δ𝑖 − 𝜆)

= − 𝜆
𝑁+1∏
𝑘=1

(Δ𝑘 − 𝜆) −𝑀2
𝑁∑︁
𝑖=1

𝑁+1∏
𝑗=1
𝑗≠𝑖

(Δ 𝑗 − 𝜆) −𝑀2
𝑁+1∏
𝑖=1

𝑖≠𝑁+1

(Δ𝑖 − 𝜆)

= − 𝜆
𝑁+1∏
𝑘=1

(Δ𝑘 − 𝜆) −𝑀2
𝑁+1∑︁
𝑖=1

𝑁+1∏
𝑗=1
𝑗≠𝑖

(Δ 𝑗 − 𝜆). □

Substituting Eq. (4.33) into Eq. (4.31) leads to:

−𝜆 = 𝑀2
𝑁∑︁
𝑖=1

1
Δ𝑖 − 𝜆

≡ 𝐺 (𝜆), (4.35)

where the right-hand side is defined as 𝐺 (𝜆) to allow for more convenient notations.

In the following, we will analyze the eigenvalue spectrum, where we proof that the eigen-
value spectrum is composed of a single negative eigenvalue 𝜆0 and 𝑁 positive eigenvalues
𝜆𝑖 , 𝑖 = 1, 2, …, 𝑁 . According to Eq. (4.35), 𝜆 is a solution when the functions 𝑓 (𝜆) = −𝜆 and
𝐺 (𝜆) intersect. While the domain of 𝑓 is unrestricted, i.e., 𝑓 : R → R, whereas 𝐺 shows
singularities at 𝜆 = Δ𝑖 . Since Δ𝑖 ≥ 0, we can restrict our consideration to the interval
𝐷𝐺0 = (∞, 0[, such that 𝐺 : 𝐷𝐺0 → 𝐵𝐺0 , where 𝐵𝐺0 is the resulting range of 𝐺 . We continue
with a consideration of the monotonous behavior. 𝑓 is a strictly monotonous decreasing
function, while 𝐺 is a strictly monotonous increasing function, as can be seen from the
first derivatives:

𝑓 ′(𝜆) = −1 < 0, (4.36)

𝐺 ′(𝜆) = 𝑀2
𝑁∑︁
𝑖=1

1
(Δ𝑖 − 𝜆)2 > 0. (4.37)

When considering 𝐷𝐺0 as domain, we find 𝑓 : 𝐷𝐺0 →]0,∞) and since 𝐺 (𝜆) > 0 for 𝜆 < 0,
it follows that 𝐵𝐺0 ⊆]0,∞). This together with the monotonous behavior results in the
existence of exactly one negative eigenvalue 𝜆0. Since a (𝑁 + 1) × (𝑁 + 1) matrix has
𝑁 + 1 eigenvalues when counted according to their algebraic multiplicity, the remaining 𝑁
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eigenvalues must be positive. □

The existence of the positive eigenvalues can be qualitatively understood by limiting the
domain to intervals between the adjacent singularities ]Δ𝑖 ,Δ 𝑗 [, where each of these lead
to a positive solution. Thus, for 𝑁 → ∞, the continuous eigenvalue spectrum is expected
to behave like the band structure. Physically, the negative eigenvalue is an analog to the
electronic ground state, where all 𝑘-point transitions are not excited, whereas the positive
eigenvalues are an analog to the 𝑁 possible excitations, which means that this continuum
of positive eigenvalues can be interepreted as the collective excitation to a broadband
second level. Note that this is only an analog, since the eigenstates |𝜓𝑚⟩ are a superposition
of the product states |𝛾, 𝑛⟩ and vice versa the product states |𝛾, 𝑛⟩ are a superposition of
eigenstates |𝜓𝑚⟩.

We continue with the normalized eigenvectors that are obtained by solving the following
linear system of equations

𝐴𝑁 |𝜓 ⟩ = 0, (4.38)

which leads to the following solution

|𝜓𝑚⟩ =
1√︁

1 +𝐺 ′(𝜆𝑚)

[
| (𝑣), 1⟩ +

𝑁∑︁
𝑗=1

𝑀

Δ 𝑗 − 𝜆𝑚
��(𝑣 |𝛾 𝑗 = 𝑐), 0〉 ]

. (4.39)

The state vector from Eq. (4.7) for the single-photon base from Eq. (4.16) can now be
expressed in terms of eigenvectors:

|Ψ(𝑡)⟩ =
𝑁∑︁
𝑚=0

𝑧𝑚𝑒
− 𝑖

ℏ
𝜆𝑚𝑡 |𝜓𝑚⟩ , (4.40)

with 𝑧𝑚 = ⟨𝜓𝑚 |Ψ(𝑡 = 0)⟩. Since we assume the semicondcutor to initially be in the ground
state, i.e., |Ψ(𝑡 = 0)⟩ = | (𝑣), 1⟩, 𝑐𝑚 can be calculated as:

𝑧𝑚 = ⟨𝜓𝑚 |Ψ(𝑡 = 0)⟩ = ⟨𝜓𝑚 | (𝑣), 1⟩ =
1√︁

1 +𝐺 ′(𝜆𝑚)
. (4.41)

Eq. (4.40) can now be used to find an expression for the probability amplitudes 𝑐𝛾𝑛 , where
we are interested in the GSP that is determined by 𝑐𝑣1 :

𝑐
(𝑣)
1 = ⟨(𝑣), 1|Ψ⟩ =

𝑁∑︁
𝑚=0

⟨𝜓𝑚 | (𝑣), 1⟩ 𝑒−
𝑖
ℏ
𝜆𝑚𝑡 ⟨(𝑣), 1|𝜓𝑚⟩ (4.42)

=

𝑁∑︁
𝑚=0

| ⟨𝜓𝑚 | (𝑣), 1⟩ |2𝑒−
𝑖
ℏ
𝜆𝑚𝑡 =

𝑁∑︁
𝑚=0

𝑤𝑚𝑒
− 𝑖

ℏ
𝜆𝑚𝑡 , (4.43)

48



4 Population Dynamics of Two-Band Models

where the abbreviation𝑤𝑚 was introduced, which expresses the weight of an eigenvalue:

𝑤𝑚 =

[
1 +𝐺 ′(𝜆𝑚)

]−1
(4.44)

Eq. (4.43) expresses 𝑐 (𝑣)1 in terms of the eigenvalues, which we, however, do not know yet
explicitly. What we do know, however, is that the eigenvalue spectrum is composed of a
single negative eigenvalue while all others are positive, so that Eq. (4.43) can be written
as:

𝑐
(𝑣)
1 = 𝑤0𝑒

𝑖
ℏ
|𝜆0 |𝑡︸    ︷︷    ︸

single state

+
𝑁∑︁
𝑚=1

𝑤𝑚𝑒
− 𝑖

ℏ
|𝜆𝑚 |𝑡

︸               ︷︷               ︸
continuum

, (4.45)

We continue with a proof that the continuum vanishes for 𝑡 → ∞. For 𝑁 → ∞ we obtain a
continuous spectrum of eigenvalues 𝜆(𝑧) and a continuous function for the weights𝑤 (𝑧),
where 𝜆(𝑧) behaves like the band structure and therefore is an integrable function. Since,
however, the weight of a single value in a continuous space must be zero, it needs to be
considered in a small region d𝑧, so that the sum can be approximated as an integral:

𝑁∑︁
𝑚=1

𝑤𝑚𝑒
− 𝑖

ℏ
|𝜆𝑚 |𝑡 𝑁→∞−−−−−→∼

∫ 𝑧max

𝑧min

𝑤 (𝑧)𝑒− 𝑖
ℏ
|𝜆 (𝑧 ) |𝑡d𝑧 =

∫ 𝜆 (𝑧max )

𝜆 (𝑧min )

𝑤 (𝜆−1(𝑢))
𝜆′(𝜆−1(𝑢))︸       ︷︷       ︸

≡Λ(𝑢 )

𝑒−
𝑖
ℏ
|𝑢 |𝑡d𝑢 = F (Λ) (𝑡),

(4.46)

where 𝜆−1(𝑧) is the inverse of 𝜆(𝑧) and F (𝑓 ) denotes the Fourier transform of 𝑓 .

Since we consider only finite contributions of Λ(𝑢) within the interval [𝜆(𝑧min), 𝜆(𝑧max)],
Λ(𝑢) is an integrable function, which means that the Riemann Lebsegue lemma [114]
applies for the Fourier transform: F (Λ) (𝑡) 𝑡→∞−−−−→ 0. □

This leads to the following conclusion:

lim
𝑡→∞

|𝑐 (𝑣)1 |2 = lim
𝑡→∞

|𝑐 (𝑣)1 |2 = |𝑤0 |2. (4.47)

The steady-state value of the GSP only depends on the weight of the negative eigenvalue
𝑤0, which only depends on the negative eigenvalue 𝜆0 for a given band structure. For
the previous arguments, it was not required to specify the dimension of the system. In
the following subsections, we will derive analytical solutions for 𝜆0 that allow to study
steady-state values of the GSP.
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4.2.1 One-Dimensional Band Structure

We start with the calculation of 𝐺 (𝜆) from Eq. (4.35) for the 1D tight-binding model
Eq. (4.11), where we convert the sum to an integral for 𝑁 → ∞, which symbolically
reads:

lim
𝑁→∞

𝑀2
𝑁∑︁
𝑗=1

→ lim
𝑁→∞

𝑀2𝑁 − 1
2𝜋
𝑎

∫
1. BZ

d𝑘 = 𝑀2
0
𝑎

2𝜋

∫
1. BZ

d𝑘 (4.48)

Using Eq. (4.48), we can rewrite Eq. (4.35) with Eq. (4.11) as follows:

𝐺 (𝜆) = 𝑀2
𝑁∑︁
𝑗=1

1
Δ 𝑗 − 𝜆

= 𝑀2
0
𝑎

2𝜋

∫ 𝜋/𝑎

−𝜋/𝑎

1
𝜔𝑏

2 [1 − cos(𝑘𝑎)] − 𝜆
d𝑘

= −𝑀2
0

1

𝜆

√︃
1 − 𝜔𝑏

𝜆

, 𝜆 < 0. (4.49)

The integral has only solutions for negative eigenvalues, which is what we are interested
in. Note that aside from the approximations that are included in the model itself, no
approximations were done to obtain Eq. (4.49). Assuming that 𝜔𝑏 ≫ 𝜆0 (which is valid for
small 𝑀0), we find a compact expression for the negative eigenvalue:

𝜆0 ≈ −
(
𝑀4

0
𝜔𝑏

) 1/3

for 1 − 𝜔𝑏

𝜆0
≈ −𝜔𝑏

𝜆0
. (4.50)

The derivative of 𝐺 (𝜆) can be calculated to:

𝐺 ′(𝜆) = −𝑀2
0

𝜔𝑏 − 2𝜆

2𝜆2(𝜆 − 𝜔𝑏)
√︃

1 − 𝜔𝑏

𝜆

. (4.51)

Eq. (4.51) can be used to efficiently compute Eq. (4.44). This calculation demonstrates the
existence of the single negative eigenvalue for the 1D tight-binding model Eq. (4.11), which
was already proofed to exist the general case. In addition, Eq. (4.50) provides an explicit
expression, which together with Eq. (4.51) reveals that the steady-state probability can only
depend on 𝑀0 and 𝜔𝑏 , where the latter is a material constant, while the former depends
on the material, the light, and especially on the optical microcavity.

To get a better idea of the full eigenvalue spectrum, we proceed with showing a numerical
simulation of the diagonalization, see Fig. 4.4. Fig. 4.4(a) and Fig. 4.4(b) show the weight
𝑤𝑚 in dependence on the respective eigenvalue 𝜆𝑚 . This reflects the behavior that we
concluded from Eq. (4.35), i.e., the eigenvalue spectrum is composed of a single negative
eigenvalue and a continuum of positive eigenvalues. Fig. 4.4(c) shows the eigenvalue
𝜆𝑚 in dependence on the discretization index 𝑚, which demonstrates that the positive
eigenvalues follow the form of the band structure, as already concluded from Eq. (4.35).
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Figure 4.4: Numerical solution of the eigenvalue problem. (a) and (b) show the weights 𝑤𝑚 at
their corresponding eigenvalue 𝜆𝑚 (c) shows the eigenvalues 𝜆𝑚 in dependence on the
discretization index𝑚, where 𝑀0 = 20 meV and 𝑁 = 200. (d) shows the steady-state
probability |𝑤0 |2 in dependence on 𝑀0. Taken from [109].

Next, we take advantage of Eq. (4.47) to calculate steady-state values for different 𝑀0 by
evaluating |𝑤0 |2, see Fig. 4.4(d). For 𝑀0 < 1 meV, the analytical solution from Eq. (4.50)
can be used, while it is computed numerically from Eq. (4.49) otherwise. We conclude
that the steady-state value |𝑤0 |2 is ≈ 4/9 and does not significantly depend on 𝑀0. This is
a special feature found for 1D band structures, as e.g. also demonstrated for a parabolic
dispersion in the vicinity of the Γ-point, where also a value of 4/9 was found [108]. Note
that the depicted values for 𝑀0 can be realized with suitable cavities, since the coupling
strength is inversely proportional to

√
𝑉 . A variety of optical cavities that would allow for

this parameter range are presented in Ref. [115]

4.2.2 Two-Dimensional Band Structure

We proceed with the 2D tight-binding model Eq. (4.12) and follow the same order as in the
previous subsection. We start with evaluating 𝐺 (𝜆), where we used a similar conversion
from the sum to the integral as in Eq. (4.48):

𝐺 (𝜆) = 𝑀2
0
𝑎2

(2𝜋)2

∫ 𝜋/𝑎

−𝜋/𝑎

∫ 𝜋/𝑎

−𝜋/𝑎

d𝑘𝑥d𝑘𝑦
𝜔𝑏

4 [2 − cos(𝑘𝑥𝑎) − cos
(
𝑘𝑦𝑎

)
] − 𝜆

(4.52)

=
𝑀2

0
𝜋

√︂
4

𝜆(𝜆 − 𝜔𝑏)
𝐾

(
−

𝜔2
𝑏

4𝜆(𝜆 − 𝜔𝑏)

)
, 𝜆 < 0, (4.53)
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where the complete elliptic integral of the first kind 𝐾 (𝑥) [116], given by

𝐾 (𝑥) =
∫ 𝜋/2

0

1√︁
1 − 𝑥 sin2(𝜃 )

d𝜃 =

∫ 1

0

1√︁
(1 − 𝑡2) (1 − 𝑥𝑡2)

d𝑡, (4.54)

was identified to simplify the appearing expression. For 𝜔𝑏 ≫ 𝜆0, the negative eigenvalue
can approximately be obtained as:

𝜆0 ≈ −
2𝑀2

0
𝜋𝜔𝑏

𝑊

(
2𝜋𝜔2

𝑏

𝑀2
0

)
for 1 − 𝜔𝑏

𝜆0
≈ −𝜔𝑏

𝜆0
. (4.55)

where𝑊 (𝑧) is the Lambert𝑊 function [117] that is given by the inverse function of 𝑧 (𝑊 )
with

𝑧 (𝑊 ) =𝑊𝑒𝑊 . (4.56)

The derivative of 𝐺 (𝜆) can be explicitly computed to

𝐺 ′(𝜆) = 1
𝜋 (𝜔𝑏 − 2𝜆) 4𝑀2

0

√︂
1

𝜆(𝜆 − 𝜔𝑏)
E

(
−

𝜔2
𝑏

4𝜆(𝜆 − 𝜔𝑏)

)
, (4.57)

where 𝐸 (𝑥) is the complete elliptic integral of the second kind [116], given by

𝐸 (𝑥) =
∫ 𝜋/2

0

√︃
1 − 𝑥 sin2(𝜃 )d𝜃 =

∫ 1

0

√
1 − 𝑥𝑡2
√

1 − 𝑡2
d𝑡 . (4.58)

We note that the analytical treatment of the 2D tight-binding model Eq. (4.12) is more
involved when compared with the 1D tight-binding model Eq. (4.11), but, however, still
possible when introducing special mathematical functions. As in the previous case, the
existence of a single negative eigenvalue and its analytical expression is demonstrated for
the 2D tight-binding structure and the steady-state value can only depend on 𝑀0 and 𝜔𝑏 .
A numerical simulation of the eigenvalue spectrum would qualitatively lead to the same
result as before, i.e., a single negative eigenvalue and a continuum of positive eigenvalues,
which is why we decide to not show it again. Instead, we show the steady-state probability
|𝑤0 |2 in dependence on 𝑀0, where 𝜆0 for values of 𝑀0 < 1 meV was computed with
Eq. (4.55), while Eq. (4.53) was numerically solved otherwise and Eq. (4.57) is used for the
calculation of𝑤𝑚 , see Fig. 4.5. In contrast to the previous case, the |𝑤0 |2 does significantly
depend on 𝑀0. It is also evident that |𝑤0 |2 is larger for the 2D case as compared to the
1D case. This can physically be understood from the increased number of non-resonant
transitions introduced to the system when considering a 2D grid, instead of a 1D grid. This
results in non-resonant transitions (which show a less effective transport) to be effectively
weighted stronger, which reduces the significance of resonant transitions and overall leads
to a higher probability of finding the electronic system in its ground state.
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Figure 4.5: The steady-state probability |𝑤0 |2 in dependence on 𝑀0 is shown for the 2D tight-
binding model Eq. (4.12). Taken from [109].

4.3 Numerical Simulations

Subsequently to the analytical investigation, we proceed with numerical simulations of
the equations of motion. This serves to demonstrate the time dynamics of the GSP, as
well as of the conduction-band occupation. Furthermore, the numerical treatment allows
us to easily investigate situations in which the band gap is not resonantly excited, but
an energetic offset 𝛿 = ℏ(𝜈 − 𝜔𝑔) is introduced. If not stated otherwise, the considered
quantum light is a single-photon Fock-state.

4.3.1 One-Dimensional Band Structure

We start with the consideration of the 1D tight-binding model Eq. (4.11), where we use a
fixed model parameter of 𝑀0 = 20 meV for all simulations.

Fig. 4.6 shows a simulation of the conduction-band occupation 𝑂𝑘 𝑗𝑐 and the GSP, where
𝛿 = 0 meV. One can see that the GSP is initially 1, which corresponds to an unexcited
semiconductor, and continues with an oscillation whose amplitude gradually decreases
and strives towards a constant steady-state value of approximately 4

9 . This is in agreement
with the results of the analytical treatment in the previous section. The conduction-band
occupation for the individual 𝑘 𝑗 results in an oscillation with a frequency of approximately
the detuning Δ 𝑗/ℏ. Apart from the discussion of the eigenvalue spectrum, this yields
another understanding of the constant value that forms during the dynamics. Due to the
conservation of the trace of the density matrix, we can find the following relation between
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Figure 4.6: Numerical solution of (a) the conduction-band occupation 𝑂𝑘 𝑗𝑐 (b) the GSP for the 1D
tight-binding model Eq. (4.11) with 𝑁 = 20001 and 𝛿 = 0 meV. Taken from [109].

the GSP and the conduction-band occupation

𝑂ground = 1 −
𝑁∑︁
𝑗=1
𝑂
𝑘 𝑗
𝑐 . (4.59)

The oscillations at different frequencies give rise to a destructive interference that prevents
further oscillations of the GSP and eventually leads to the formation of a constant value.

We continue with the consideration of 𝛿 ≠ 0 meV. Here, 𝛿 > 0 meV means that the
frequency of the light 𝜈 is larger than the band gap 𝜔𝑔, leading to an excitation in the
band. In contrast, 𝛿 < 0 meV corresponds to an excitation below the band gap, such
that no electronic transition is addressed resonantly. Fig. 4.7 shows the conduction-band
occupation for different 𝛿 . One can observe that 𝛿 < 0 meV leads to a smaller magnitude,
since all transitions are addresses non-resonantly. In the case of 𝛿 > 0 meV, however, we
can see the formation of stripes, which are approximately located at Δ𝑘 𝑗 = 0. In this case,
certain eigenstates that are energetically located inside the band structure are excited
resonantly.
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Figure 4.7: Numerical solutions of the conduction-band occupation 𝑂𝑘 𝑗𝑐 with (a) 𝛿 = −5 meV (b)
𝛿 = 0 meV (c) 𝛿 = 6 meV (d) 𝛿 = 10 meV and 𝑁 = 20001 for the 1D tight-binding model
Eq. (4.11). Taken from [109].

The presented dynamics has a direct consequence for the GSP, according to Eq. (4.59).
Fig. 4.8 shows the GSP for different 𝛿 , including the ones shown Fig. 4.7. 𝛿 < 0 meV leads
to a high GSP, since the probability of exciting conduction-band occupation is small. In
contrast, 𝛿 > 0 meV leads to a small GSP due to the resonantly excited quasienergy states
inside the conduction band.
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Figure 4.8: Numerical simulations of the GSP for different energetic offsets 𝛿 for the 1D tight-
binding model Eq. (4.11), where 𝑁 = 20001. Taken from [109].

After investigating the dynamics for different energetic offsets, we also want to investigate
the dynamics when exciting with more photons. For this, we consider the GSP when
exciting with a two-photon Fock-state, and compare it to the excitation with a single-
photon Fock-state, see Fig. 4.9. The notable difference is that the GSP for a two-photon
Fock-state is smaller. This is accounted to the possibility of exciting two 𝑘-point transitions
at the same time, leading to more combinations of exciting the electrons into the conduction
band and thus, leading to a smaller GSP. This result allows us to estimate that the GSP
will further decrease for higher photon numbers, since the number of possible excitations
also increases. In the limit of infinite photons, corresponding to a semiclassical theory,
one would expect the GSP to be zero, which makes a finite GSP a feature exclusive to a
quantum-optical description.
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Figure 4.9: Numerical simulations of the GSP where the initial quantum state of light is a single-
photon Fock-state with 𝑁 = 20001 and a two-photon Fock-state with 𝑁 = 5001,
respectively, for the 1D tight-binding model Eq. (4.11). Taken from [109].
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4.3.2 Two-Dimensional Band Structure

We proceed with the consideration of the 2D tight-binding model Eq. (4.12). In contrast
to the 1D case, the steady-state probability for the 2D case was demonstrated to show a
significant dependence on𝑀0. Therefore, we start with simulating the GSP for different𝑀0,
see Fig. 4.10. The predicted steady-state values depicted in Fig. 4.5 are reproduced by the
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Figure 4.10: Numerical simulations of the GSP for different 𝑀0 for the 2D tight-binding model
Eq. (4.12) with 𝑁 = 2000 per dimension and 𝛿 = 0 meV. Taken from [109].

numerical simulation, even though not clearly visible, since not all dynamics have reached
the constant value in the depicted time range. Qualitatively, the dynamics for different 𝑀0
are similar, but scaled on the time-axis. Thus, considering the dynamics for a fixed 𝑀0 is
representative for other choices of 𝑀0, where a larger 𝑀0 is preferred, since the required
simulation time window is smaller. Therefore, we proceed with a fixed model parameter
of 𝑀0 = 50 meV for all following simulations in this section. Fig. 4.11 shows the GSP for
different energetic offsets 𝛿 . Qualitatively, the result is similar to the 1D case and there is
not more insight to gain in this case. More interestingly, however, is the conduction-band
occupation, which is expected to behave differently due to the increased dimension of
the system. For a fixed point in time 𝑡 , the conduction-band occupation is a 2D quantity,
depending on 𝑘𝑥 and 𝑘𝑦 . For the demonstration of the conduction-band occupation, we
present it in dependence on 𝑘𝑥 and 𝑘𝑦 at 𝑡 = 1 ps, and in dependence on 𝑘𝑦 and 𝑡 for 𝑘𝑥 = 0,
as well as for energetic offsets of 𝛿 = 0 meV and 𝛿 = 50 meV, see Fig. 4.12. The cut at 𝑘𝑥 = 0
are comparable to the 1D case, whereas, however, the cut at 𝑡 = 1 ps allows for a different
geometrical interpretation. In the case of 𝛿 = 0 meV, the oscillations at different frequencies
results in circles of increased probability, whose magnitude gradually decreases at higher
energies, see Fig. 4.12(b). From Fig. 4.12(a) one can see that these the radius of these circle
decreases over time. The stripes that can be seen in Fig. 4.12(c) correspond to a circle in
the 2D 𝑘-space, see Fig. 4.12(d). Apart from the geometrical interpretation, the underlying
physics is similar as discussed in the previous section.
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Figure 4.11: Numerical simulations of the GSP for different energetic offsets 𝛿 for the 2D tight-
binding model Eq. (4.12), where 𝑁 = 2000. Taken from [109].
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Figure 4.12: Numerical simulations of the conduction-band occupation for the 2D tight-binding
model Eq. (4.12) with 𝑁 = 2501 per dimension. Since the conduction-band occupation
depends on three variables 𝑡 , 𝑘𝑥 , and 𝑘𝑦 , the conduction-band occupation is shown
for a cut, where one of these variables is fixed. The concudction-band occupation
is shown for (a) 𝑘𝑥 = 0 and 𝛿 = 0 meV, (b) 𝑡 = 1 ps and 𝛿 = 0 meV, (c) 𝑘𝑥 = 0 and
𝛿 = 50 meV, and (d) 𝑡 = 1 ps and 𝛿 = 50 meV. Taken from [109].
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4.4 Conclusions

In this chapter, we investigated the quantum-optical excitation of semiconductor nanos-
tructures, by modeling their electronic band structure by a two-band model and the
tight-binding approximation. We formulate the model and derive the equations of motion,
where we noted that the numerical complexity significantly increases when quantum
states of light with multiple photons are considered, which is why we restrict our analysis
to a single-photon Fock-state and a two-photon Fock-state. We proceed with an analytical
treatment of the single-photon case, where we proof properties that are valid for arbitrary
band structures. We use these properties to find explicit expressions for the steady-state
value of the GSP, i.e., the probability of finding the system in its electronic ground state
during the interaction, which we do for both, the 1D and the 2D tight-binding model.
We proceed with a numerical treatment of the system, where we investigate the time-
dynamics of the system. The numerical simulations are in an agreement with the results
from the analytical investigations and provide alternative physical interpretations of the
demonstrated behavior. The investigation of the dynamics with different energetic offsets
𝛿 = ℏ(𝜈 −𝜔𝑔) results in the formation of a steady state in the conduction-band occupation
for 𝛿 > 0 meV, which can be understood from eigenstates that are energetically located
inside the band structure. The 2D case qualitatively leads to similar results as the 1D case,
where, however, key difference are: the dependence on the light-matter coupling 𝑀0, the
increased GSP due to stronger contributions from non-resonantly excited transitions, and
the different geometry of the conduction-band occupation due to 2D grid. We furthermore
conclude that the excitation with quantum states of light containing more than a single
photon results in a smaller GSP due to the increased number of possibilities to promote
electrons to the conduction band.
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Semiclassical Wave Mixing 5
Up to this point, we investigated quantum properties of semiconductor nanostructures
that are pre-excited by a single quantum field. Now, we want to move on towards the
description of scenarios in which the semiconductor system is excited with multiple pulses.
We are especially interested in the nonlinear optical response obtained by wave-mixing
experiments, where multiple pulses impinge on a sample and the nonlinear response
in a designated direction is considered. Before we present the theoretical description of
wave-mixing experiments for a fully quantized light-matter interaction, however, this
chapter starts with presenting wave-mixing results obtained from a semiclassical theory.
Here, ensembles of semiconductor quantum dots (QDs) are considered, that are useful
emitters [118, 119] whose trion transition is well described by a TLS. We start with an
explanation of wave-mixing experiments, followed by the formulation of a semiclassical
theory for the photoexcited TLS, where we will follow a standard procedure that can be
found in textbooks [120]. We proceed with the demonstration and discussion of results
obtained from wave mixing, which are based on Refs. [121–123], where experimental data
was analyzed. In this thesis, however, the focus is set on the theoretical descriptions, rather
than on the experimental realization.

5.1 Wave-Mixing Experiments

Wave-mixing experiments is a collective term to classify experiments in which several
electric fields impinge on a sample and the nonlinear optical response by the material is
measured.

Figure 5.1: Schematical drawing of a FWM setup with two pulses in reflection geometry, performed
on a QD sample confined in a microcavity. Taken from [121].
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An important example is four-wave mixing (FWM) [28], where two electric fields with
wave vectors 𝒌1 and 𝒌2, delayed by the time 𝜏 , impinge on the sample and the nonlinear
response in the 2𝒌2 − 𝒌1 direction is measured. In experimental realizations, there are
different geometries that can be used to retrieve this signal. Fig. 5.1 schematically depicts a
FWM setup in reflection geometry. The name FWM originates from the number of waves
involved in this process: since the second field counts twice when considering the direction
2𝒌2 − 𝒌1, the number of incoming fields together with the nonlinear response adds up to
four waves.

5.2 Optical Bloch Equations

In a semiclassical theory, one does not consider a quantization of the electromagnetic
field, but rather treats the electric field classically. In this case, the electric field is solely
described by its amplitude and phase, so that the electric field for 𝑛 pulses in free space is
given by:

𝑬 (𝑡) =
𝑛∑︁
𝑙=1

(𝑬𝑙 (𝑡) exp[𝑖𝒌𝑙 · 𝒓 − 𝑖𝜔𝐿𝑡] + 𝑐.𝑐 .), (5.1)

where 𝜔𝐿 is the frequency of the electric field and the wave-vector 𝒌𝑙 determines the
propagation direction. Since the electric field is treated classically, there is no Hamiltonian
for the light. The material system, however, is treated fully quantum mechanically. Thus,
the Hamiltonian from Eq. (2.45) reduces to

𝐻 = 𝐻Matter + 𝐻Interaction. (5.2)

In this chapter, we are only interested in ensembles of TLS. In this case of a single TLS, the
Hamiltonian simplifies to:

𝐻Matter = 𝐸1𝜎11 + 𝐸2𝜎22, (5.3)

𝐻Interaction = −𝑒0𝒓 · 𝑬
Eq. (2.49)

= −𝑬 · (𝒅12𝜎12 + 𝒅21𝜎21)︸              ︷︷              ︸
≡𝑷

= −𝑬 · 𝑷 , (5.4)

where the polarization operator 𝑷 was identified. In the following, we assume the dipole
matrix element 𝒅𝑖 𝑗 and the electric field 𝑬 to be parallel, so that the vector can be replaced
by its absolute value. Since only the material is treated quantum mechanically, the DM for
a TLS is given by a 2 × 2 matrix. If represented in the bare-state (BS) basis {|1⟩ , |2⟩}, the
DM reads:

𝜌BS =

2∑︁
𝑖=1

2∑︁
𝑗=1

𝜌BS
𝑖 𝑗 |𝑖⟩ ⟨ 𝑗 | (5.5)
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where we can make the following identification:

𝑝 ≡ ⟨𝜎21⟩ = Tr(𝜌BS𝜎21) = 𝜌BS
12 , (5.6)

𝑛 ≡ ⟨𝜎22⟩ = Tr(𝜌BS𝜎22) = 𝜌BS
22 , (5.7)

where 𝑝 is the microscopic polarization and 𝑛 is the occupation of the excited state. Note
that using 𝑝 and 𝑛 or 𝜌BS

12 and 𝜌BS
22 is equivalent, where, however, the notation 𝜌BS

𝑖 𝑗 is more
advantageous since we will switch to a different basis later. The resulting equations of
motion for 𝑝 and 𝑛 are the optical Bloch equations (OBE) and have the following form
after the RWA is applied[124]:

𝜕𝑡𝜌
BS
12 = 𝑖Δ𝜌BS

12 + 𝑖Ω𝑅 (1 − 2𝜌BS
22 ), (5.8)

𝜕𝑡𝜌
BS
22 = −2Im

[
(𝜌BS

12 )∗Ω𝑅
]
, (5.9)

where Δ = 𝜔𝐿 − (𝐸2 − 𝐸1)/ℏ is the optical detuning and Ω𝑅 is the Rabi frequency that
depends on the dipole matrix element and the envelope of the electric field E as follows:

Ω𝑅 =
𝑑12

ℏ
E . (5.10)

An instructive way to visualize the dynamics of a TLS geometrically is given by the Bloch
sphere, where one considers the vector

𝒃 =


2Re(𝑝)
2Im(𝑝)
2𝑛 − 1

 . (5.11)

Without any dephasing or losses, the Bloch vector 𝒃 has a length of 1 and therefore spans
a sphere of radius 1, which is the Bloch sphere. Conventionally, the 𝑥 , 𝑦, and 𝑧 components
are called 𝑢, 𝑣 , and𝑤 , which we will use from now on. In the RWA, the free evolution of 𝑝
results in a rotation in the 𝑢-𝑣-plane where the angular velocity is proportional to Δ. The
excitation with an electric field leads to a rotation around the 𝑢-axis, where the angle of
rotation traveled is called pulse area and is given by:

Θ =

∫ ∞

−∞
Ω𝑅 (𝑡)d𝑡, (5.12)

where we call a short electric field with a pulse area of Θ a Θ-pulse. The Bloch sphere will
be used in the subsequent sections to explain the occurring dynamics.

5.3 Control of Photon Echoes

In QD ensembles, one does not usually find 𝑁 identical QDs, but rather, one finds some
variation in their properties such as their size. This gives rise to different transition energies
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of the trions, distributed according to a distribution function 𝐿(𝜔) that informs about the
number of trions with transition frequency 𝜔 . Such ensembles are called inhomogeneously
broadened ensembles and give rise to optical properties that are distinctively different the
ones found for homogeneous ensembles.

5.3.1 Photon Echoes

One feature of inhomogeneously broadened ensembles is the rapid decay of the macro-
scopic polarization, due to a dephasing of the microscopic polarizations 𝑝 . The dephasing
of the ensemble can be visualized on the Bloch sphere by assigning a single Bloch vector to
each TLS, which freely evolve with their respective detuning Δ, visualized for a 𝜋/2-pulse
as first pulse in Fig. 5.2(a).
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Figure 5.2: (a-c) Bloch spheres after the excitation with a 𝜋/2-pulse that display the Bloch vectors
at (a) 𝑡 = 𝑡0 during the dephasing after the excitation with a pulse with a pulse area
of 𝜋 , (b) 𝑡 = 𝑡0 + 𝑡𝑐 after the application of a control pulse during the dephasing with
duration 𝑡𝑐 , where the trajectory of the Bloch vectors that is caused by the control
pulse is marked in gray and the small difference towards a perfect 2𝜋 rotation that is
not achieved due to the finite pulse duration is marked in red, (c) 𝑡 = 𝑡0 + 𝑡𝑐 without the
application of a control pulse. (d-f) Schematical depiction the field amplitudes over time
together with the time evolution of the optical phases of the microscopic polarizations
𝑝 (angle of the Bloch vectors with respect to the 𝑣-axis) of a two-pulse FWM setup,
where (a) no control pulse is applied (b) a control pulse during the dephasing is applied
(c) a control pulse during the rephasing is applied. Taken from [121].

Overlapping Bloch vectors interfere constructively, while separated Bloch vectors inter-
ference destructively, leading to a decay of macroscopic polarization. This macroscopic
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polarization, however, can be retrieved by FWM experiments in the form of a photon echo
(PE) [125, 126]. A second pulse with a pulse area of 𝜋 at 𝑡 = 𝜏 conjugates the microscopic
polarizations and leads to the formation of a PE at 𝑡PE = 2𝜏 . The evolution of the phases
is schematically demonstrated in Fig. 5.2(d). On the Bloch sphere, the conjugation corre-
sponds to a rotation of 𝜋 around the 𝑢-axis without changing the angular velocity of the
Bloch vectors. PEs are of special interest due their applicability for quantum memories
[127–130].

0

2

4

6

√I
1
 (

1
0

-4
√J

/c
m

)

150 160 170
0

1

2

3

4

t (ps)

Θ
1
 (
π)

150 160 170
t
 
(ps)

150 160 170
t (ps)

a

d f

pre-pulse post-pulse

b c

e

no control pulse

0

1

E
x

p
er

im
en

t
S

im
u

la
ti

o
n

Figure 5.3: (a-c) Experimental data for the FWM setups discussed in the text. Each point on the
𝑦-axis corresponds to a different measurement, in which the amplitude of the electric
field was set to the denoted value. (a) shows the pre-pulse setup, (b) shows the no
control pulse setup, and (c) shows the post-pulse setup. (d-f) Numerical simulations of
|𝑃Signal | from Eq. (5.20), where each point on the 𝑦-axis corresponds to a different pulse
area of the first pulse, corresponding to the amplitudes considered in (a-c). (d) shows
the pre-pulse setup, (e) shows the no control pulse setup, and (f) shows the post-pulse
setup. Taken from [121].

5.3.2 Control Scheme

In the following, we present a scheme that allows to optically control the emission time
of the PE, so that 𝑡PE ≠ 2𝜏 . This scheme is based on adding an additional control pulse to
the pulse sequence, that either freezes the dephasing or the rephasing. Fig. 5.2(a) shows
the dephasing of the microscopic polarizations on the Bloch sphere at 𝑡 = 𝑡0. Applying
a 2𝜋 control pulse leads to a 2𝜋 rotation of all Bloch vectors, such that they have not
changed their position at 𝑡 = 𝑡0 + 𝑡𝑐 , see Fig. 5.2(b). Without the application of this control
pulse, the dephasing would continue and the Bloch vectors would be positioned as shown
in Fig. 5.2(c). Thus, the application of a control pulses during the dephasing (pre-pulse)
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leads to a temporal advancement of the PE. The field amplitudes and the optical phases of
such a setup with and without the control pulse are schemed in Fig. 5.2(e). With the same
approach, one can achieve a temporal retardation of the PE, by applying a control pulse
during the rephasing (post-pulse), see Fig. 5.2(f). This effect was observed and verified by
our experimental colleagues, see Figs. 5.3(a)-(c), where all details can be found in Ref. [121].
In this thesis, however, we focus on the theoretical description that analyzes the experiment
and at this especially on the inclusion of damping mechanisms.

5.3.3 Theoretical Description

As demonstrated in Section 5.2, the optical properties of a TLS are described by the
OBE Eqs. (5.8) and (5.9). The OBE, however, describe the polarization that is emitted in
all directions, which is why one is formally required to filter the 2𝒌2 − 𝒌1-direction to
correctly describe the signal. In the case of PEs, however, this is not required, since the
PE is expected to be the dominant signal during the time span around 𝑡 = 2𝜏 . For the
theoretical decription, we need to apply two relevant extensions to the OBE, which are
the inhomogeneous broadening given by 𝐿(𝜔) and the fact that laser light has a spatial
distribution, which means that different points on the spot are excited with a different
Rabi frequency. The former can be included by an additional index 𝑗 , while the latter is
incorpoarated by assigning a spatial dependence to 𝑝 and 𝑛, i.e., 𝑝 = 𝑝 (𝒓 , 𝑡) and 𝑛 = 𝑛(𝒓 , 𝑡).
In this case, the we obtain the following set of extended OBE:

𝜕𝑡𝑝 𝑗 (𝒓 , 𝑡) = 𝑖Δ𝑝 𝑗 (𝒓 , 𝑡) + 𝑖Ω𝑅 (1 − 2𝑛 𝑗 (𝒓 , 𝑡)) − 𝑝 𝑗 (𝒓 , 𝑡)/𝑇2, (5.13)
𝜕𝑡𝑛 𝑗 (𝒓 , 𝑡) = −2Im

[
(𝑝 𝑗 (𝒓 , 𝑡))∗Ω𝑅

]
− 𝑛 𝑗 (𝒓 , 𝑡)/𝑇1, (5.14)

where the coherence time and lifetime 𝑇2 and 𝑇1, respectively, was introduced. The spatial
dependence of the microscopic polarizations is incorporated by considering the spatial
dependence of the electric field, that is to say, the polarization 𝑝 (𝒓 = 𝒓 ′, 𝑡) is obtained by
using the electric field amplitude E(𝒓 = 𝒓 ′, 𝑡) as input, where the electric field amplitude
is modeled as follows:

E(𝒓 , 𝑡) = exp
(
−𝑟 2/𝜎2

𝑅

)
(E1(𝑡) + E2(𝑡) + E𝐶 (𝑡)), (5.15)

which means that the spatial profile follows a Gaussian envelope. The temporal envelope
is modeled with a Gaussian function with a full-width at half-maximum (FWHM) of Δ𝑡
with respect to the intensity, i.e.,

E𝑖 = E0
𝑖 exp

(
−2 ln(2) (𝑡 − 𝑡𝑖)

2

Δ𝑡

)
, (5.16)

where 𝑡𝑖 is the time at which the pulse impinges the sample and E0
𝑖 is the amplitude that

is determined by the pulse area according to Eq. (5.12). According to the experiment, the
first and the second pulse come at 𝑡1 = 0 ps and 𝑡2 = 80 ps, respectively, while the control
pulse impinges at 𝑡𝑐 = 33 ps in the pre-pulse setup and at 𝑡𝑐 = 107 ps, where Δ𝑡 = 2.5 ps.
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The macroscopic polarization at the point 𝒓 is due to the inhomogeneous broadening 𝐹
given by:

𝑃 (𝒓 , 𝑡) = 𝑑12
∑︁
𝑗

𝐹 (Δ 𝑗 )𝑝 𝑗 (𝒓 , 𝑡), (5.17)

where 𝐹 is modeled as a Gaussian function with a FWHM of 7.5 meV. The polarizations
𝑃 (𝒓 , 𝑡) that are created at different points 𝒓 on the spot are assumed to emit an electric
field that impinges on a detector at the same coordinate 𝒓 , such that the total signal that
the detector would measure corresponds to an averaging of 𝑃 (𝒓 , 𝑡) over all 𝒓 . This process
is called spatial averaging and can be expressed by the following integral

𝑃average(𝑡) =
∫

d𝒓 exp
(
−𝑟 2/𝜎2

𝑅

)
𝑃 (𝒓 , 𝑡), (5.18)

where the additional factor of exp
(
−𝑟 2/𝜎2

𝑅

)
arises from the heterodyne detection, where a

convolution with a reference pulse must be considered, which is assumed to have the same
properties as the other pulses. Instead of solving the integral in 2D, we take advantage of
the radial symmetry and switch to the polar coordinate system. Subsequent, we exchange
the integral to a sum by introducing the discretization index 𝑠 , which then yields an
expression for 𝑃average that can be efficiently computed numerically:

𝑃average(𝑡) = 2𝜋
∑︁
𝑠

𝑟𝑠Δ𝑟 exp
(
𝑟 2
𝑠 /𝜎2

𝑅

)
𝑃 (𝑟𝑠 , 𝑡) . (5.19)

Strictly following the order of the events, the spatial averaging must not be performed on
𝑃 (𝑟𝑠 , 𝑡), but on 𝑃 (𝑟𝑠 , 𝑡) which was convoluted with ERef in the time domain. Since, however,
the convolution is a linear operation, the result remains the same if the convolution is
applied afterwards. Thus, the final signal is obtained by computing the convolution between
𝑃average and ERef :

𝑃Signal = (𝑃average ∗ ERef ) (𝑡), (5.20)

where the convolution is defined as

(𝑓 ∗ 𝑔) (𝑡) ≡
∫ ∞

−∞
𝑓 (𝑦)𝑔(𝑥 − 𝑦)d𝑦. (5.21)

Figs. 5.3(d-f) show |𝑃Signal | for the pre-pulse setup, the no control pulse setup, and the
post-pulse setup. For the simulation, 𝑁 = 1500 TLS were considered, where detunings
from −15 meV up to 15 meV with a resulting resolution of 0.02 meV were considered. The
coherence time and the life time are set to 𝑇2 = 710 ps and 𝑇1 = 360 ps, respectively. The
extended OBE Eqs. (5.13) and (5.14) were solved with the Runge-Kutta fourth-order method
with a temporal time-step of 0.01 ps. For the spatial averaging, radii from 𝑟 = 0.05𝜎𝑅 up to
𝑟 = 3.5𝜎𝑅 with a step width of Δ𝑟 = 0.05𝜎𝑅 were considered. Here, it is noteworthy that
the value of 𝜎𝑅 , which corresponds to the spot size, does not influence the results. The
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pulse areas were sampled with ΔΘ1 = 0.05.

We see that the experimental results and the numerical simulations are in a good qualitative
agreement. One can see, however, that the damping with respect to the pulse area Θ1
is weaker for the simulated data. In the theoretical description, a perfect alignment of
the spatial envelopes of the pulses is considered, which might not be fulfilled in the
experimental setup. Therefore, we continue with investigating a displacement of the foci
of the spatial envelopes. For this, we repeat the explained steps, but consider the following
electric field amplitude:

E(𝒓 , 𝑡) = 𝑒−( (𝑥−𝑥0 )2+𝑦2 )/𝜎2
𝑅E1(𝑡) + 𝑒−(𝑥2+𝑦2 )/𝜎2

𝑅 (E2(𝑡) + E3(𝑡)), (5.22)

which describes a displacement of the spatial enevelope of the first electric field by 𝑥0 in
the 𝑥-direction. In this case, we cannot take advantage of symmetries, which is why the
problem needs to be computed in 2D. Therefore, 𝑃average has the following form:

𝑃average(𝑡) =
∑︁
𝑠,𝑠′

Δ𝑥Δ𝑦 exp
(
−(𝑥2

𝑠 + 𝑦2
𝑠′)/𝜎2

𝑅

)
𝑃 ((𝑥𝑠 , 𝑦𝑠′), 𝑡) . (5.23)

Apart from these changes, the procedure to obtain 𝑃Signal remains the same. We set the
displacement to 𝑥0 = 0.5𝜎𝑅 and consider values from 𝑥 = −3.5𝜎𝑅 to 𝑥 = 5𝜎𝑅 for the
𝑥-direction and from 𝑦 = −3.5𝜎𝑅 to 𝑦 = 3.5𝜎𝑅 for the 𝑦-direction. The stepwidths are
chosen as Δ𝑥 = Δ𝑦 = 0.2𝜎𝑅 , 𝑑𝑡 = 0.04 ps, and ΔΘ1 = 0.3, while all other parameters are
the same as before. The simulation for the same scenarios as before, but with displaced
foci is shown in Fig. 5.4.
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Figure 5.4: Numerical simulations of |𝑃Signal |, where different foci of the spots according to Eq. (5.22)
with 𝑥0 = 0.5𝜎𝑅 are assumed. The considered pulse setup is the (a) pre-pulse setup (b)
no control pulse setup (c) post-pulse setup. Taken from [121].

We see that a displacement of the foci of a fraction of standard deviation already leads to a
significantly stronger damping, which is in a very good agreement with the experimental
data. Thus, we conclude that the spatial averaging and especially imperfect alignments of
the electric field amplitudes on the spot are the main damping mechanism in these types
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of experiments.

5.4 Overcoming Damping Induced by Spatial Averaging
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Figure 5.5: Numerical simulation of the FWM response |𝑃signal |, which yields the PE amplitude,
with the parameters from Section 5.3.3, where the pulse area of the second pulse is
scanned on the𝑦-axis, while the first pulse is a 𝜋/2-pulse. The first pulse has a Gaussian
spatial distribution and the second pulse has a (a) flat spatial distribution (b) Gaussian
spatial distribution.

When moving towards the quantum regime, eliminating and overcoming damping mecha-
nism is relevant, since these mechanisms usually destroy quantum properties. Since we
identified the spatial averaging as main damping mechanism, we aim to eliminate this
mechanism. Considering the integral that describes the spatial averaging Eq. (5.18), it
becomes evident that any cancellation by this averaging can be bypassed if the polarization
at each point 𝒓 is the same, i.e. 𝑃 (𝒓 , 𝑡) = 𝑃 (𝑡). This can be achieved by using spatially flat
pulses, which can experimentally realized by pulse shaping, as demonstrated by a numeri-
cal simulation in Fig. 5.5. The emerging challenge, however, is to identify and incorporate
the damping mechanisms that were negligible when compared with the spatial averaging,
but are dominant without the spatial averaging. Comparisons with experimental data
reveal that two new damping mechanisms must be considered when working with flat
pulses, which are randomly distributed dipole moments among the QDs and the interaction
with longitudinal acoustic (LA) phonons. Similar as before, we will explain the details
on the theoretical modeling and will later compare it with experimental results. In this
section, however, we do not consider a scan of the pulse area of the first pulse, but of the
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second pulse instead. This has the advantage that one obtains clear Rabi oscillations along
𝑡 = 2𝜏 (see Fig. 5.5), so that one can consider this section and obtains a more transparent
insight when studying damping mechanisms.

5.4.1 Theoretical Description

In the following, we will explain the required steps to include both, the LA phonons and
the randomly distributed dipole moments.

Inclusion of Longitudinal Acoustic Phonons

In Section 5.2, we treated the dynamics of a photo-excited TLS in the BS basis. When treating
the interaction with LA phonons, however, the dressed-state (DS) basis constitutes a more
suitable choice. We will explain this method based on Ref. [131], where a constant Rabi
frequency Ω𝑅 was considered, and will subsequently, extend the scheme to time-dependent
Rabi frequencies Ω𝑅 (𝑡). Note, however, that both these methods are approximations. More
profound approaches are based on the correlation expansion [132–134], polaron master
equations [135–139], or path-integral calculations [140, 141].

In the presence of an electric field with the Rabi frequency Ω𝑅 , new eigenstates |𝑙⟩ and |𝑢⟩
are formed, which we call dressed states:

|𝑙⟩ = 1
√

2Ω

(√
Ω − Δ |1⟩ +

√
Ω + Δ |2⟩

)
, (5.24)

|𝑢⟩ = 1
√

2Ω

(√
Ω + Δ |1⟩ −

√
Ω − Δ |2⟩

)
, (5.25)

where Ω =

√︃
Ω2
𝑅
+ Δ2. The DM can be formulated with respect to the DS basis:

𝜌DS = 𝜌DS
11 |𝑙⟩ ⟨𝑙 | + 𝜌DS

21 |𝑢⟩ ⟨𝑙 | + 𝜌DS
12 |𝑙⟩ ⟨𝑢 | + 𝜌DS

22 |𝑢⟩ ⟨𝑢 | , (5.26)

such that the transformation between 𝜌BS and 𝜌DS is given by

𝜌DS = 𝑉 −1𝜌BS𝑉 , (5.27)
𝜌BS = 𝑉 𝜌DS𝑉 −1, (5.28)

where the unitary matrix 𝑉 is given by:

𝑉 = 𝑉 (Ω𝑅,Δ) =
1

√
2Ω

[√
Ω − Δ

√
Ω + Δ√

Ω + Δ −
√
Ω − Δ

]
. (5.29)
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Considering the DM elements in the DS basis is advantageous, since LA phonons can be
included as a rate equation:

𝜕

𝜕𝑡
𝜌DS

12 = −𝑖Ω𝜌DS
12 − 𝛾

2
𝜌DS

12 , (5.30)

𝜕

𝜕𝑡
𝜌DS

22 = −𝛾𝜌DS
22 . (5.31)

Here, 𝛾 is the phononic loss rate that is modeled according to Ref. [131]:

𝛾 =
𝜋

2

(
Ω𝑅
Ω

)2
𝐽 (Ω), (5.32)

where 𝐽 (𝜔) is the phonon spectral density, which for a spherical symmetric QD is given
by:

𝐽 (𝜔) = 𝐴𝜔3 exp

(
− 𝜔2

𝜔2
𝑐

)
, (5.33)

where 𝐴 is a constant the corresponds to the coupling strength of the phonons and 𝜔𝑐
is the cut-off frequency, where both these values are determined by material parameters
of the QDs. This approach of incorporating the interaction with phonons is simple when
compared to microscopic simulations, the transformation to the DS basis, however, is only
defined for a fixed Rabi frequency Ω𝑅 , which corresponds to a continuous-wave excitation,
as investigated in Ref. [131].

We, however, are interested in the description of short pulses whose Rabi frequency Ω𝑅 (𝑡)
changes rapidly as a function of time, which is why we are required to extend the presented
approach to allow for arbitrary Rabi frequencies. This can be realized by approximating
the time-dependent Rabi frequency Ω𝑅 (𝑡) as a sequence of rectangles. For this, we define
the grid 𝑡0,𝑡1,…,𝑡𝑀 such that Ω𝑅 (𝑡) is enclosed within 𝑡0 and 𝑡𝑀 . In this grid, we consider
𝑀 rectangles that are delimited by 𝑡𝑘−1 and 𝑡𝑘 , where 𝑡 = 1, 2, ..., 𝑀 , whose Rabi frequency
is given by the mean value of Ω𝑅 (𝑡𝑘−1) and Ω𝑅 (𝑡𝑘 ):

Ω𝑅,𝑘 =
1
2

(
Ω𝑅 (𝑡𝑘 ) + Ω𝑅 (𝑡𝑘−1)

)
. (5.34)

The approximation of Ω𝑅 (𝑡) by rectangles is schematically depicted in Fig. 5.6.

As a next step, we take advantages of this approximation as it allows us to compute the
dynamics within a rectangle in the DS basis, since Ω𝑅,𝑘 is constant in time. At 𝑡 = 𝑡𝑘 , i.e.,
between two rectangle functions, we do the transformation

𝜌𝐷𝑆 = 𝑉 −1(Ω𝑅,𝑘+1,Δ)𝑉 (Ω𝑅,𝑘 ,Δ)𝜌𝐷𝑆𝑉 −1(Ω𝑅,𝑘 ,Δ)𝑉 (Ω𝑅,𝑘+1,Δ), (5.35)

which describes the promotion from the rectangle at Ω𝑅 = Ω𝑅,𝑘 to the rectangle at
Ω𝑅 = Ω𝑅,𝑘+1. If 𝑀 is large enough, this excitation scheme converges and suitably describes
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𝑡

Ω𝑅(𝑡)

Ω𝑅

Figure 5.6: Schematical drawing of the excitation scheme in the DS basis

the interaction with LA phonons for time-dependent excitations. In absence of any electric
field, the free evolution of the system is computed with the OBE:

𝜕

𝜕𝑡
𝜌BS

12 = 𝑖Δ𝜌BS
12 , (5.36)

𝜕

𝜕𝑡
𝜌BS

22 = 0. (5.37)

Inclusion of Randomly Distributed Dipole Moments

After the inclusion of the LA phonons, we continue with including the remaining mech-
anisms, which include the inhomogeneous broadening, the spatial averaging, and the
random distribution of the dipole moments [142]. The former two mechanisms were al-
ready introduced Section 5.3.3, which is why we will concentrate on the latter mechanism.
Note that even though we have the goal to overcome the damping induced by spatial
averaging, we still include it by using the experimentally measured amplitudes, to capture
the imperfections in the setup. Radial slices of the experimentally measured amplitudes
are shown in Fig. 5.7, where the first pulse has a Gaussian spatial profile and the second
pulse has a flat spatial profile.

The incorporation of these three mechanisms is done by including subscripts 𝑗 , 𝑑 , and 𝑠 ,
which correspond to the inhomogeneous broadening, the dipole averaging, and the spatial
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Figure 5.7: Section of the experimentally measured spatial distributions of the spots, which are
used as an input for the numerical simulation. Taken from [123].

averaging, respectively:

𝜕

𝜕𝑡
[𝜌DS

12 ] 𝑗,𝑑,𝑠 = −𝑖Ω 𝑗,𝑑,𝑠 [𝜌DS
12 ] 𝑗,𝑑,𝑠 −

𝛾

2
[𝜌DS

12 ] 𝑗,𝑑,𝑠 , (5.38)

𝜕

𝜕𝑡
[𝜌DS

22 ] 𝑗,𝑑,𝑠 = −𝛾 [𝜌DS
22 ] 𝑗,𝑑,𝑠 , (5.39)

𝜕

𝜕𝑡
[𝜌BS

12 ] 𝑗,𝑑,𝑠 = 𝑖Δ 𝑗 [𝜌BS
12 ] 𝑗,𝑑,𝑠 , (5.40)

𝜕

𝜕𝑡
[𝜌BS

22 ] 𝑗,𝑑,𝑠 = 0, (5.41)

with Ω 𝑗,𝑑,𝑠 =
√︃
[Ω𝑅]2

𝑑,𝑠
+ Δ2

𝑗
, and [Ω𝑅

]
𝑑,𝑠

= (1 − 𝛿𝜇𝑑 )𝐴𝑛𝑠 Ω𝑅 , where 𝛿𝜇𝑑 is the percentual
deviation from the most likely dipole matrix element 𝜇, and 𝐴𝑛𝑠 is the spatial profile of the
laser spot for first (𝑛 = 1) or second (𝑛 = 2) electric field, obtained from the experimental
data shown in Fig. 5.7. The inhomogeneous broadening is incorporated according to
Eq. (5.17), such that:

𝑃𝑑,𝑠 = 𝑑12
∑︁
𝑗

𝐹 (Δ 𝑗 )𝑝 𝑗,𝑑,𝑠 , , (5.42)

where in this case, however, 𝐹 (Δ) is modeled as a Lorentzian distribution with a FWHM of
5.9 meV, as extracted from experimental data. The dipole matrix elements are assumed to be
distributed according to a Gaussian function 𝐺̃ (𝛿𝜇𝑑 ), leading to a macroscopic polarization
that is averaged over randomly distributed dipole moments:

𝑃𝑠 =
∑︁
𝑑

𝐺̃ (𝛿𝜇𝑑 ) (1 − 𝛿𝜇𝑑 )𝑃𝑑,𝑠 . (5.43)

Finally, the spatial averaging is included as in Eq. (5.19), leading to:

𝑃averaged = 2𝜋
∑︁
𝑠

𝑟𝑠Δ𝑟𝐴
ref
𝑠 𝑃𝑠 , (5.44)
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where we assume 𝐴ref
𝑠 = 𝐴1

𝑠 . Since the experimental data is used for the spatial profiles,
they are not radial symmetric anymore. However, we consider a radial slice of the 2D
spatial profiles and assume radial symmetry for the remaining spot, since it is a reason-
able approximation and saves computation time. As before, 𝑃Signal is then obtained from
Eq. (5.20). Note that we did not consider any 𝑇1 or 𝑇2 times in the equations of motion. To
also include the excitation-induced dephasing, which is characterized by a 𝑇2 time that
depends on the impinged pulse area, we multiply a factor of exp (−2𝜏/𝑇2(𝐴2)), where
𝑇2(𝐴2) is obtained from a linear fit of the experimental data. This mechanism, however, is
found to be negligible.

While the spatial distribution and the inhomogeneous broadening are fixed, we consider
both, the distribution of dipole moments and the phonon spectral density as fitting param-
eters to obtain a good agreement with the experimental data. This optimization procedure
leads to 𝐴 = 0.012 ps2, 𝜔𝑐 = 3.6 THz, and a FWHM of 21% for the dipole distribution
𝐺̃ (𝛿𝜇𝑑 ). Eqs. (5.38) to (5.41) are solved with the Runge-Kutta method of fourth-order,
where a timestep of 𝑑𝑡 = 0.02 ps was used. For the excitation scheme, the electric fields
are divided into 𝑀 = 501 rectangles, that are sampled in a duration of 20 ps around the
pulse. We use 𝑁 = 800 TLS and consider detunings from −15 meV to 15 meV.

5.4.2 Simulation Results and Discussion

Fig. 5.8 shows both, results from measurements and from numerical simulations.
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Figure 5.8: PE amplitude in dependence on the pulse area of the second pulse from a two-pulse
FWM setup. Experimental data is shown for the case that the first pulse has a Gaussian
spatial distribution and the second pulse a spatially flat distribution (solid blue line) or
a Gaussian spatial profile (solid black line). Results of numerical simulations are shown
for the case that only the spatial averaging is incorporated (dashed green line) and
for the case that all damping mechanisms are included, i.e., spatial averaging, dipole
averaging, and interaction with LA phonons (solid red line). Taken from [123].
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All curves present the PE amplitude at 𝑡 = 2𝜏 , whose dependence on the pulse area of the
second pulse is shown. The solid blue and solid black lines are experimental results from
our colleagues, obtained by using a Gaussian spatial profile for the first pulse, whereas
the spatial profile of the second pulse is a flat distribution (solid blue) and a Gaussian
distribution (solid black). Here, it is observed that the application of a flat spatial profile
leads to much clearer Rabi oscillations, which verifies the initial idea. The dashed green and
the solid red curves show numerical simulations, where the former does only include the
spatial averaging with the experimental data shown in Fig. 5.7, which results in flawless
Rabi oscillations and therefore demonstrates that the spatial profile obtained from beam
shaping is sufficient. The solid red curve includes all discussed damping mechanisms, i.e.,
the spatial averaging with the data from Fig. 5.7, the dipole averaging, and the interaction
with LA phonons. We see that experimental result and the simulated result are in a very
good agreement, with a slight difference at higher pulse areas, from which we conclude
that we identified all relevant damping mechanisms. We note that the damping by the
dipole averaging is considerably weaker as compared to the damping by the LA phonons,
which is not explicitly shown here. We conclude, the main damping mechanism that we
identify in absence of the spatial averaging is the interaction with LA phonons during the
excitation with a laser pulse.

5.5 Conclusions

We analyzed FWM experiments with a semiclassical theory for the light-matter interac-
tion. We demonstrated that the emitted PE can be precisely controlled, which is promis-
ing for quantum memory protocols, where PEs play an important role. We furthermore
demonstrated that the main damping mechanism, which is the spatial averaging, can be
removed. We conclude that the new main damping mechanism are the interaction with
LA phonons.

Altogether, the presented results demonstrate that FWM spectroscopy is a useful technique,
since PEs that are candidates for quantum memory protocols can be precisely controlled
and losses can be reduced. The connection between wave mixing and quantum light is
a highly promising field, since the combination of both these fields can give rise to new
methods and techniques. Therefore, the next chapter will give an insight into the highly
promising field of quantum wave mixing.
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QuantumWave Mixing 6
This chapter discusses the combination of a fully-quantized description of light-matter
interaction and wave-mixing protocols, resulting in quantum wave mixing. The goal of
this chapter is to give an idea of the current state and open problems as well as presenting
results obtained from approximations. The considered approximations strongly simplify
the involved processes, while more complete models are currently being developed. Here,
we will consider both homogeneously and inhomogeneously broadened systems, where
the former does cover semiconductor quantum wells and the latter does include semicon-
ductor quantum dot systems. The comparison between semiclassical and quantum-optical
approaches for the analysis of quantum emitters is a current topic [143] and there have
been approaches to simplify the dynamics from a Tavis-Cummings model with a frequency
distribution by formulating mean-field equations [144]. There are, however, proposed
approaches for the simulation of quantum wave mixing where the photon statistics is
taken into account [145, 146], which are promising and will be subject of the present
chapter.

6.1 Theoretical Model

The Hamiltonian that describes an inhomogeneously broadened ensemble of QDs is given
by

𝐻 = ℏ𝜈

(
𝑏†𝑏 + 1

2

)
+
𝑁TLS∑︁
𝑗=1

ℏ𝜔 𝑗𝑎
†
𝑗
𝑎 𝑗 +

𝑁TLS∑︁
𝑗=1

𝑔 𝑗 (𝑏†𝑎 𝑗 + 𝑏𝑎†𝑗 ), (6.1)

where 𝜔𝑖 are the transition frequencies of the TLS in the inhomogeneously broadened
ensemble and 𝑁TLS is the number of TLS. Here, 𝑎 𝑗 and 𝑎†

𝑗
correspond to the transition

operator 𝜎− and 𝜎+ from Section 2.4.3 for the 𝑗-th QD. Note that this Hamiltonian is
similar to the Hamiltonian for the two-band model Eq. (4.1), which is why the treatment
is conceptually the same. Here, however, we do not consider a single excitation that
is applied initially, but rather a pulse sequence. In the following, we will explain the
theoretical framework for such a description, which is based on Ref. [146].

6.1.1 Coupling Light into the Cavity

The first step is to consider the process of coupling light into the cavity. While it is possible
to describe the cavity feeding by exciting with a quantum state of light externally, and
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computing the quantum state of light that enters the cavity, this is an extensive task and
is known as input-output theory, which mostly is formulated for special cases [147–150].
Instead, we consider a short classical electric field 𝑬𝑐 that creates cavity photons that
follow a certain quantum statistic. This interaction takes the form [145]

𝑉𝑐 (𝑡) = 𝒅𝑐 · 𝑬𝑐𝑏† + H.c., (6.2)

where 𝒅𝑐 is the effective dipole moment of the cavity mode. Assuming that the electric
fields are shorter than all other timescales, it is feasible to rewrite it as a sequence of delta
pulses:

𝑬𝑐 =
∑︁
𝑗

𝑬 𝑗𝑐𝛿 (𝑡 − 𝑡 𝑗 ) . (6.3)

Defining the pulse area Θ𝑗 of the 𝑗-th pulse as:

Θ𝑗 =
2𝒅𝑐 · 𝑬 𝑗𝑐

ℏ
, (6.4)

allows to rewrite Eq. (6.2) as

𝑉𝑐 =
∑︁
𝑗

ℏ
Θ𝑗

2
𝑏†𝛿 (𝑡 − 𝑡 𝑗 ) + H.c. =

∑︁
𝑗

𝑉𝑗𝛿 (𝑡 − 𝑡 𝑗 ). (6.5)

We can describe the effect of 𝑉𝑗 by considering the DM before the pulse (𝜌before) and after
the pulse (𝜌after) that acts at 𝑡 = 𝑡 𝑗 , which are connected in the following way

𝜌after(𝑡 𝑗 ) = 𝑒−
𝑖
ℏ
𝑉𝑗 𝜌before(𝑡 𝑗 )𝑒

𝑖
ℏ
𝑉𝑗 . (6.6)

With the identification 𝛼 𝑗 = −𝑖Θ𝑗/2, one can rewrite − 𝑖
ℏ
𝑉𝑗 = 𝛼 𝑗𝑏

† −𝛼∗𝑗𝑏, such that Eq. (6.6)
can be written in terms of the displacement operator Eq. (2.29):

𝜌after(𝑡 𝑗 ) = 𝐷 (𝛼 𝑗 )𝜌before(𝑡 𝑗 )𝐷†(𝛼 𝑗 ) . (6.7)

Thus, the excitation with an external classical electric field 𝑬 𝑗𝑐 can be expressed by a matrix
multiplication at 𝑡 = 𝑡 𝑗 , where the pulse area is determined by:

Θ𝑗 = 2|𝛼 𝑗 | = 2
√
𝑁 . (6.8)

E.g., a 2𝜋 pulse is obtained with a mean photon number of 𝑁 ≈ 10. Without explicitly
treating other interactions than Eq. (6.2), we generalize Eqs. (6.7) and (6.8) by exchanging
the displacement operator with other operators, e.g. the squeezing operator Eq. (2.38) or
combinations thereof, while the pulse area of this excitation is still determined by the
mean photon number of the excitation according to Θ𝑗 = 2

√
𝑁 . If one would derive such a

relation from an interaction Hamiltonian, one would be required to include a spontaneous
parametric down-conversion type Hamiltonian, where the exact form of the Hamiltonian
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6 Quantum Wave Mixing

would depend on the setup, i.e., how the cavity and the nonlinear medium are arranged.
Also note that the identification of 2

√
𝑁 as pulse area not necessarily needs to be true, as

this needs to be concluded from the interaction Hamiltonian. Here, however, we proceed
with this approximation to get a general idea of the behavior, whereas a proper treatment
is a subject of further research.

Eq. (6.7) can be rewritten and approximated by the use of the Baker–Campbell–Hausdorff
(BCH) formula [151]:

𝑒𝑋𝑌𝑒−𝑋 =

∞∑︁
𝑚=0

1
𝑚!

[𝑋,𝑌 ]𝑚 with [𝑋,𝑌 ]𝑚 = [𝑋, [𝑋,𝑌 ]𝑚−1] and [𝑋,𝑌 ]0 = 𝑌 .

(6.9)

This allows to rewrite Eq. (6.7) in terms of contributions up to first-order in 𝛼 𝑗 :

𝐷 (𝛼 𝑗 )𝜌𝐷†(𝛼 𝑗 ) ≈ 𝜌 + 𝛼 𝑗 [𝑏†, 𝜌] − 𝛼∗𝑗 [𝑏, 𝜌] . (6.10)

Similarly, this can be done for the squeezing operator Eq. (2.38) for terms up to the first
order of 𝜉 :

𝑆 (𝜉)𝜌𝑆†(𝜉) ≈ 𝜌 + 1
2
𝜉∗ [𝑏2, 𝜌] − 1

2
𝜉 [𝑏†2, 𝜌] . (6.11)

It becomes evident that weak coherent states |𝛼 | ≪ 1 are suitably described by single-
photon excitation processes, given by the commutators [𝑏†, 𝜌] and [𝑏, 𝜌]. In contrast,
squeezed states at least contribute with two-photon processes, as can already be seen from
the squeezing operator. This, however, is a relevant conclusion when moving towards
FWM with quantum states of light, as will become clear throughout this chapter.

6.1.2 Extracting the Four-Wave-Mixing Signal

In semiclassical treatments, FWM signals are often extracted by including the directional
information of the electric fields, where one considers the 2𝒌2 − 𝒌1 direction for the FWM
signal, which can either be obtained by a perturbative treatment for weak electric fields
[152] or by spatial Fourier expansion [153]. Note that this was skipped in the previous
chapter, since the PE is the dominant signal at 𝑡 = 2𝜏 , so that this extraction process
is not required. Another approach is phase cycling, where the electric fields 𝑬1 and 𝑬2
are assumed to have the phases 𝜑1 and 𝜑2, such that the FWM signal must carry the
phase 2𝜑2 − 𝜑1 [154]. Phase cycling is usually applied when a single QD is considered,
since an effective 0D structure does not have an emission direction. It is, however, more
straightforward to use phase cycling rather than including directional information when
considering the excitation with quantum states of light, since the designated phase 𝜑 𝑗
directly translates into the quantum number:

𝑬 𝑗𝑐 → 𝑬 𝑗𝑐 exp
(
−𝑖𝜑 𝑗

)
⇔ 𝛼 𝑗 → 𝛼 𝑗 exp

(
−𝑖𝜑 𝑗

)
or 𝜉 𝑗 → 𝜉 𝑗 exp

(
−𝑖𝜑 𝑗

)
. (6.12)
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Note that in the case of squeezed vacuum, the excitation of lowest possible order is a two-
photon excitation, which is why the FWM phase in this case reads𝜑2−𝜑1. The methodology
is now to assign phases 𝜑1, 𝜑2, and 𝜑3 to the quantum numbers 𝛼1, 𝛼2, and 𝛼3, such that
after each excitation, one can filter elements that carry the respective phase, so that the
considered elements have the phase 𝜑3 + 𝜑2 − 𝜑1 in a three-pulse setup, or 2𝜑2 − 𝜑1 in a
two-pulse setup. This filtering is realized by deleting all elements from the DM that do not
carry the designated phase, resulting in the matrix 𝜌FWM. This, however, means that 𝜌FWM
formally is not a DM anymore, since it does not fulfill the required properties. Therefore,
the application of phase cycling on the one hand allows to extract the FWM signal, but on
the other hand prevents to obtain information that requires the full DM. The FWM signal
is then obtained by computing the expectation value of the photon annihilation operator 𝑏
with the phase-cycled DM 𝜌FWM:

⟨𝑏⟩FWM = Tr[𝑏𝜌FWM] . (6.13)

6.2 Homogeneous Systems

To get a first idea of quantum FWM dynamics, we start with the consideration of homoge-
neous systems, which corresponds to a number of transitions with a uniform frequency
distribution. For simplicity, the homogeneous system that we consider is a single TLS. Note
that the consideration of a single TLS with band-gap frequency 𝜔 or the consideration
of many TLS with band-gap frequencies 𝜔 and averaging over their optical properties
does not make a difference in a semiclassical theory, since the presence of a TLS does not
change the light field. This, however, does not hold true for the quantum-optical regime,
which is why it is required to make this specification.

6.2.1 Analytical Treatment

In the following, we will calculate the FWM signal from a single TLS analytically excited by
coherent states which are approximated using the BCH formula Eq. (6.10). For simplicity,
we do not consider any optical detuning, i.e., 𝜈 = 𝜔 . For better readability, the DM gets
and index that indicates how many pulses already excited. Applying the phase cycling to
Eq. (6.10) with respect to the first pulse only allows for the term proportional to 𝛼∗𝑗 , such
that the transformation reads:

𝜌1(𝑡 = 0) = −𝛼∗1 [𝑏, 𝜌0] . (6.14)

Starting from the ground state initially, i.e. 𝜌0 = |−, 0⟩ ⟨−, 0| leads to

𝜌1(𝑡 = 0) = 𝛼∗1 |−, 0⟩ ⟨−, 1| (6.15)
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The time evolution from 𝑡 = 0 to 𝑡 = 𝜏 leads to

𝜌1(𝑡 = 𝜏) = exp(𝑖𝜈𝜏)𝛼∗1
[

cos(𝑔𝜏) |−, 0⟩ ⟨−, 1| + 𝑖 sin(𝑔𝜏) |−, 0⟩ ⟨+, 0|
]
. (6.16)

Note that the phase factor exp(𝑖𝜈𝜏) arises from the time evolution of the operator |−, 0⟩ ⟨−, 1|
from 𝑡 = 0 to 𝑡 = 𝜏 . The excitation of the second and third pulse with the proper phase
cycling is achieved by:

𝜌3(𝑡 = 𝜏) = [𝛼3𝑏
†, [𝛼2𝑏

†, 𝜌1(𝑡 = 𝜏)]] (6.17)

= exp(𝑖𝜈𝜏)𝛼∗1𝛼2𝛼3

[√
2 cos(𝑔𝜏) |−, 2⟩ ⟨−, 1| − 2 cos(𝑔𝜏) |−, 1⟩ ⟨−, 0|

+
√

2𝑖 sin(𝑔𝜏) |−, 2⟩ ⟨+, 0|
]
. (6.18)

Considering the appearing operators |−, 2⟩ ⟨−, 1|, |−, 1⟩ ⟨−, 0|, and |−, 2⟩ ⟨+, 0|, it is evident
that the time evolution from 𝑡 = 𝜏 to 𝑡 = 𝑡 gives rise to an additional phase factor of
exp(−𝑖𝜈 (𝑡 − 𝜏)), resulting in a global phase factor of exp(−𝑖𝜈 (𝑡 − 2𝜏)). The full solution of
the expectation value of 𝑏, i.e., the FWM signal, then reads

⟨𝑏⟩FWM (𝑡) =Tr[𝑏𝜌3(𝑡)]

=𝑒−𝑖𝜈 (𝑡−2𝜏 )𝛼∗1𝛼2𝛼3

{
2 cos(𝑔𝜏) cos

(√
2𝑔𝑡

)
cos(𝑔𝑡) − 2 sin(𝑔𝜏) cos

(√
2𝑔𝑡

)
sin(𝑔𝑡)

+
√

2 cos(𝑔𝜏) sin
(√

2𝑔𝑡
)

sin(𝑔𝑡) +
√

2 sin(𝑔𝜏) sin
(√

2𝑔𝑡
)

cos(𝑔𝑡)

− 2 cos(𝑔𝜏) cos(𝑔𝑡)
}
. (6.19)

This solution corresponds to an approximation for low excitation, as it only includes the
process at the lowest rung of the JC ladder. It shows similarities with the solution obtained
from a semiclassical theory [155] as e.g. the product of the displacements 𝛼∗1𝛼2𝛼3, which
correspond to the electric field amplitudes 𝐸∗1𝐸2𝐸3 in the semiclassical theory. Furthermore,
the solutions from both theories show a phase factor of the form exp(−𝑖𝜈 (𝑡 − 2𝜏)), which
is responsible for the formation of PEs. Thus, we conclude that a FWM signal obtained
from a fully quantized theory carries the phase factor exp(−𝑖𝜈 (𝑡 − 2𝜏)), which predicts
the formation of a PE obtained from the excitation with quantum states of light.

6.2.2 Numerical Simulations

After the analytical treatment for weak excitations, we move towards a numerical treatment
of the full excitation. For this, we consider a similar pulse setup as in Chapter 5, i.e., we
consider two pulses with phases 𝜑1 and 𝜑2 and a positive delay 𝜏 > 0, such that the first
pulse excites the system before the second pulse. We fix the first pulse as a coherent state
with variable pulse area Θ1 and consider different photon statistics for the second pulse,
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but fix its pulse area to Θ2 = 𝜋 , which translates to its mean photon number according
to Eq. (6.8). We take into account losses in the same way as in Ref. [146] by including
Lindblad terms Eq. (2.58) for the operators 𝐿 =

√
𝜅𝑏 and 𝐿 =

√
𝛾𝑎, with 𝜅 = 50 𝜇eV and

𝛾 = 2 𝜇eV. The coupling constant 𝑔 that determines the time scale of the interaction is set
to 𝑔 = 35 𝜇eV, which is a realistic value for QDs. Fig. 6.1 shows simulations of the FWM
signal ⟨𝑏⟩FWM for different pulse areas Θ1 on the 𝑦-axis, where in Fig. 6.1(a) a coherent
state is used as second pulse, so that the phase cycling is done with respect to the phase
2𝜑2 − 𝜑1, while in (b) the second pulse is a squeezed vacuum state, such that the phase
cycling is done according to 𝜑2 − 𝜑1 to describe the FWM response. It can be seen that
merely changing the photon statistics of the incoming photons has a visible impact on the
FWM dynamics.
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Figure 6.1: The FWM dynamics computed according to Eq. (6.13) is shown for different pulse
setups, where the absolute value is shown. The first pulse is a coherent state and its
pulse area is shown on the 𝑦-axis. The second pulse has an area of Θ2 = 𝜋 and is a (a)
coherent state, (b) squeezed vacuum state. The FWM signal is shown on a logarithmic
scale such that the dynamics at later times is more clearly visible.
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6.3 Inhomogeneous Systems

As pointed out in Section 6.1, the Hamiltonian Eq. (6.1) that describes an inhomogeneously
broadened system of QDs is similar to the Hamiltonian Eq. (4.1) for a two-band model.
Thus, the number of states will increase exponentially with the number of Hilbert space
dimensions according to Eq. (4.15). Here, however, we are especially interested in the
behavior of different photon statistics, which makes the consideration of single-photon or
two-photon excitations not feasible. Therefore, we will not compute the full problem of
𝑁TLS QDs in a cavity interacting with a single quantum state of light, but rather, consider a
single QD in a cavity interacting with a single quantum state of light (𝑁TLS = 1), which we
compute 𝑁 times for different transition frequencies, leading to different optical detunings
Δ. For this, we feed the cavity with two pulses at 𝑡 = 0 ps and 𝑡 = 80 ps according to
Eq. (6.7), which leads to 𝑁 different expectation values ⟨𝑏⟩𝑖 , with 𝑖 = 1, 2, ..., 𝑁 . Here, we
do not perform phase cycling since the PE is assumed to be the dominant signal in this
setup. The FWM signal is then obtained similar as in Eq. (5.17) by the sum of the single
contributions weighted with a weighting function 𝐹 , which is modeled by a Gaussian
function. Here, however, we consider the expectation value of the material operator ⟨𝑎⟩𝑖
to obtain a closer correspondence to the semiclassical case, such that the FWM signal is
modeled as:

⟨𝑎⟩full =

𝑁∑︁
𝑖=1

𝐹 (Δ𝑖) ⟨𝑎⟩𝑖 dΔ, (6.20)

𝐹 (Δ𝑖) =
1

√
2𝜋𝜎2

exp

(
− 1

2

(
Δ

𝜎

)2
)
. (6.21)

This approximation overestimates the strength of the light, since not all photons can
be absorbed. Furthermore, this approximation neglects certain processes, e.g., squeezed
vacuum states can only lead to two-photon processes on a single QD, while they could
lead to two single-photon processes when exciting several QDs. For future studies it is
relevant to find a better approximation that overcomes the abovementioned disadvantages.
Here, however, we use this approximation for a conceptual demonstration of the optical
properties of inhomogeneous systems in the presence of quantum states of light.

Fig. 6.2 shows the PE amplitude simulated according to Eq. (6.20), where the first pulse is a
coherent state whose pulse area is varied on the 𝑦-axis, while the second pulse is chosen
as a coherent state in Fig. 6.2(a) and as a squeezed vacuum state in Fig. 6.2(b), with a pulse
area of 𝜋 in the respective cases. Here, the parameters are chosen the same as before except
for the cavity loss, which is increased to 𝜅 = 200 𝜇eV. The inhomogeneous broadening
is modeled with 𝑁 = 1000 and 𝜎 = 1 meV, where the frequency range from −3 meV to
3 meV is sampled. The PE amplitude shows a Rabi rotation as a function of the pulse area
Θ1, which is well known from a semiclassical treatment, see Chapter 5. Therefore, this is a
direct demonstration that the behavior known from a semiclassical theory is included in a
fully quantized description. It furthermore demonstrates that the application of different
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Figure 6.2: Numerical simulation of absolute value of the PE amplitude obtained from Eq. (6.20),
where the first pulse is a coherent state with a pulse area Θ1 that is depicted on the
𝑦-axis. The second state has a pulse area of Θ2 = 𝜋 and is chosen as (a) coherent state
and (b) squeezed vacuum state.

quantum states of light as second pulse leads to a distinctly different behavior, as the shape
and amplitude changes. We note that the introduced definition of the pulse area, which is
motivated by the interaction picture and an identification of the displacement operator,
does not match to the position of the maxima. Here, however, one needs to note that the
temporal Rabi oscillations take a more complicated form and, e.g., result in a collapse
and revival rather than in clear oscillations, see Fig. 2.8, which makes the comparison
problematic. The mismatch has to be further analyzed to make a clearer conclusion.

6.4 Conclusions

We simulate FWM with quantum states of light and study the behavior of homogeneous
and inhomogeneous systems, as well as the dependence on different quantum states of
light. We demonstrate a distinct behavior when applying squeezed vacuum states for a
FWM pulse sequence when compared to coherent states.

We demonstrate that inhomogeneously broadened systems lead to the formation of a PE,
which can be seen analytically by approximating the expressions with the BCH formula
and also results from a numerical treatment with arbitrary photon statistics. We conclude
that different photon statistics lead to different PE amplitudes.

Altogether, these results are a first step towards a proper description of FWM with quantum
states of light, where non-classical light and inhomogeneously broadened system are taken
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into account. We mentioned a few points that can be improved for future studies, including
a proper description of a single quantum state of light interacting with 𝑁 QDs, where
the complexity can be truncated with the cluster expansion [156], as well as a proper
description of the coupling process of the light into the cavity.
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Summary and Outlook 7
In this thesis, we model and analyze the interaction between semiconductor nanostructures
and quantum light inside of optical microcavities. In the first half of this thesis, we consider
the dynamics of material systems initially in their electronic ground state that are excited
by single quantum field, while we focus on the excitation with multiple pulses in the
second half of this thesis.

The first material system that we consider are Λ-type three-level systems, which are suited
for the approximate description of charged or optically pumped excitonic resonances.
We formulate a theoretical description that allows us to efficiently treat quantum states
of light with high mean photon numbers and demonstrate electromagnetically induced
transparency with quantum light, where we conclude that squeezed light enhances the
effect, when used as probe field. We proceed with the formulation of a quantum polarization,
which is a quantity that is always present in quantum excitations. We show its advantages
over the classical polarization and use it to study the absorptive and dispersive behavior
for coherent and squeezed light. Finally, we consider Λ-type three-level systems in lossy
cavities and demonstrate that these losses can be used an advantage in order to achieve
certain steady states in the electronic population. We explain this effect from the equations
of motion and demonstrate it for different photon statistics.

The second material system that we treat are two-band models, which we describe as a
collection of two-level system that follow a certain frequency distribution. This model is an
established description of intrinsic semiconductor nanostructures such as semiconductor
quantum wells, where the energetically highest valence and the energetically lowest
conduction band are considered. We use the tight-binding approximation to model the
energy dispersion in 𝑘-space and study effectively one-dimensional and two-dimensional
structures, i.e., quantum wires and quantum wells. We use an approach based on the
eigenvalue problem of the Hamiltonian to learn about properties of the system and obtain
explicit expressions for the steady-state values of the ground-state probability. We perform
numerical simulations to study the dynamics of the conduction-band occupation and
consider excitations that are not resonant with respect to the band-gap energy, where
we demonstrate special steady-state configurations. For future studies, the inclusion of
the many-body Coulomb interaction is of high interest, which leads to the formation of
bound electron-hole pair states, which are known as excitons. The study of excitons that
form in response to quantum-optical excitations within a microcsopic description of the
semiconductor nanostructure will give new insights into this topic.

The second half of this thesis concentrates on the description of wave-mixing experiments,
that is to say, on multiple excitations that can be performed at different times. Therefore, this
is an extension of the first half, where we considered a single excitation at the initial moment
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of time. To demonstrate the capability of wave-mixing experiments, we start with analyzing
experimental data obtained from four-wave-mixing experiments by using a semiclassical
theory, where the light is described classically. Four-wave-mixing experiments performed
on semiconductor quantum dots lead to the formation of a photon echo. We show that
one can control this photon echo accurately in time by applying an optical control pulse,
where we obtain an agreement between experimental data and our numerical simulations.
Being able to control photon echoes optically is of a high relevance, as they are important
for quantum memory protocols. We identify the main damping mechanism as the spatial
averaging of the electric field amplitudes due to the detector. We demonstrate that one can
bypass this damping mechanism by using spatial pulse shaping and conclude that the new
main damping mechanism is the interaction with longitudinal acoustic phonons during
the excitation process, where we find an agreement between our numerical simulations
and experimental data.

We proceed with the combination of wave-mixing experiments and quantum-optical
excitations, leading to quantum wave mixing. Here, we explain how such a system can
be theoretically described and show simulations for homogeneous and inhomogeneous
systems, where different quantum states of light lead to different results. This chapter
is rather thought to be a summary of the current state which also explains required
improvements for the theoretical description. One challenge is a proper description for the
process of coupling light into the cavity, as well as a proper description for the coupling
of the four-wave-mixing signal out of the cavity. This is a complicated task since the
quantization of the electromagnetic field works differently in free space as compared to
cavities. The main challenge is to find a suitable approximation method that allows to
describe many quantum dots being coupled to the same cavity mode, since the complexity
of an exact treatment is known to scale exponentially. This step is necessary since the
approximation that we presented, in which we average over 𝑁 quantum dots that all have
their own cavity, neglects processes, for example that the two-photon component of a
squeezed vacuum state can lead to two single-photon excitations in two quantum dots.

Summarizing, this thesis presents theoretical investigations of the interaction between
semiconductor nanostructures and quantum light, where we discuss different systems and
showcase applications. It demonstrates the relevance of four-wave-mixing experiments
and gives a starting point for quantum wave mixing on homogeneous and inhomogeneous
systems.

For future investigations, a number of studies is planned in close cooperation between
theory and experiment with the general objective to study the nonlinear exciton dynamics
in semiconductor nanostructures that are embedded in microcavities by using quantum-
optical spectroscopy methods. Here, the focus lays on both, generating non-classicality
and exciting with non-classical states of light, which builds up on the results shown in
this thesis. The planned studies can be divided in three topics.

The first topic deals with the investigation of excitons from semiconductor quantum
well structures by using transient four-wave mixing and exploring the generated non-
classicality. Here, different multi-level schemes such as diamond schemes for the description
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exciton-biexciton systems [157, 158] or Λ-systems for the description of charged exciton
complexes will be considered. In addition, control pulses can be applied to modify the
response.

The second topic is on photon echoes obtained from inhomogeneous ensembles of semicon-
ductor quantum dots. Due to their negligible radiative decay, they are a promosing candi-
date for quantum-state tomography methods, which will be used to study non-classicality
in the emitted light. Here, we are especially interested in the weak coherent interaction
between the excitons and the coupling between excitons and a microcavity mode. Both
coupling processes are expected to be included in the four-wave-mixing response and
should be distinguishable by using quantum-state tomography.

The third topic deals with the excitation by squeezed light in a wave-mixing protocol as one
of the pulses for the four-wave mixing or as a control pulse. As already demonstrated in
Chapter 6, the application of squeezed states significantly modifies the four-wave-mixing
response. We are interested in the interplay between photonic correlations and matter
correlations. On the one hand, this can be used to resolve excitonic interactions and
on the other hand, this can allow for an information protocol by storing and retrieving
the photonic correlations from the squeezed state of light. This will be combined with
photon-echo protocols to explore new possibilities in quantum memories.

Altogether, we plan to exploit non-classicality generated in four-wave-mixing schemes for
both, homogeneous systems such as semiconductor quantum wells and inhomogeneous
systems such as quantum dot ensembles, as well as to use non-classical states of light such
as squeezed light to move towards the creation of new resources for quantum devices such
as quantum memories.
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der, M. Kamp, S. Höfling, M. Bayer, T. Meier, and I. A. Akimov, Multiple Rabi rotations
of trions in InGaAs quantum dots observed by photon echo spectroscopy with spa-
tially shaped laser pulses, arXiv:2205.07771

[124] L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York,
1975).

[125] P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bim-
berg, Ultralong Dephasing Time in InGaAs Quantum Dots, Phys. Rev. Lett. 87, 157401
(2001).

[126] S. V. Poltavtsev, M. Salewski, Y. V. Kapitonov, I. A. Yugova, I. A. Akimov, C. Schneider,
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Photon-echo quantum memory in solid state systems, Laser Photon. Rev. 4, 244 (2009).

[128] V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. Le Gouët,
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