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Abstract

Development and application of semi-empirical
interatomic potentials to study interface faceting and
fracture

Interfaces have a strong impact on the properties of materials. These include
optoelectronic and mechanical properties. Multi- (mc-) and poly-crystalline
Silicon is a prototype system that demonstrates the importance of interfaces,
such as grain boundaries (GBs), on the material’s electronic properties as well
their technological implications. GBs as well as their interaction with impu-
rities are one of the major limiting factors of the efficiency of mc-Si based
solar cell devices. As the interface over volume ratio increases, such as in
nano-crystalline materials, interfaces and interface faceting and reconstruc-
tion get an even more central role in the stage of materials’ properties. In
this case, these properties are governed by a complex interplay between mi-
crostructure, facet and impurity segregation energies, and long-range strain
interactions.

In structural materials, surfaces and interfaces control materials’ strength
and fracture. For example, the energy release rate by the formation of an ex-
tra free surface upon crack propagation is a decisive parameter that controls
brittle fracture. Likewise the electronic properties, impurities have a strong
impact on the mechanical properties as well. The rhenium effect can be con-
sidered as a characteristic example that highlights the aforementioned: Creep
and fatigue properties of Ni-based superalloys are considerably improved by
the addition of a few wt% Re. However, a deep understanding of this effect
is still under debate.

With the rapid increase in computational power, atomistic simulations
have become an indispensable tool to investigate and understand the prop-
erties of materials. These calculations can provide insight and an on-atomic-
scale understanding of the mechanisms underlying the materials’ proper-
ties and information that is not straightforwardly accessible by experiment.
However, a common characteristic of the mechanisms underlying, grain bound-
ary reconstructions, nano-faceting, and fracture is that they span a wide range



iv

of length scales: From bond bending, stretching, and breaking at the nm scale
to dislocation nucleation and strain field interaction in the sub-µm scale.

First principle calculations can accurately describe the aforementioned
phenomena at all relevant length scales. However, they are restricted by
the available computational power, to systems consisting of a few thousand
atoms. Nevertheless, to describe faceting at the experimentally relevant length
scale or fracture through crack propagation supercells consisting of ten or
hundred thousand atoms are required. Semi-empirical interatomic poten-
tials on the other hand can be regularly employed in large-scale atomistic
simulations. However, a challenge and a prerequisite to employing semi-
empirical interatomic potentials is their transferability, i.e., their ability to
quantitatively or qualitatively describe the interatomic interactions in a wide
range of different environments.

In the present thesis, second nearest-neighbor modified embedded atom
method (2NN-MEAM) potentials have been developed to describe (i) GBs
and GB faceting in Si, (ii) topology and strain effects in impurities segrega-
tion at facet junctions in Si, and (iii) fracture in low Re content Ni1−xRex

alloys. In order to parametrize and evaluate these potentials, a software tool
called "Potitr" has been developed, and first principle calculations within the
density functional theory (DFT) have been employed.

Employing these newly developed potentials the energetics, structure,
and strain of flat and faceted Σ3 tilt GBs in Si with the ⟨110⟩ rotation axis have
been investigated. These GBs constitute up to 80% of GBs in Si and hence
they are a system of GBs with special fundamental and technological inter-
est. Based on these, a phase diagram has been constructed which indicates
the energetically most favorable facet and line junction reconstructions as a
function of the facet length and inclination angle. This diagram reveals that
faceting is intrinsic to these GBs’ family and the properties of the faceted GBs
are controlled by the interplay between GB energies and long-range strain
interactions. Moreover, it demonstrates that higher energy GBs can be stabi-
lized by thermodynamics rather than kinetics when these constitute facets at
line junctions. Therefore, it highlights the crucial role of microstructure such
as the grain size on the GB properties.

Next, we focus on the interaction of faceted Σ3 GBs in Si with C. C is
homovalent to Si, i.e., its interactions with the planar and line defects are
predominantly induced by strain. Hence, strain and electronic effects under-
lying these interactions can be decoupled. In agreement with recent exper-
imental evidence, we find strong asymmetric line segregation of C at only
one of the two junctions at Σ3 faceted GBs in Si. Inspection of the strain
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field around the line junctions revealed the presence of partial edge type dis-
locations of opposite Burgers vectors at the two line junctions. Hence, the
facet junctions are accompanied by regions of tensile and compressive strain.
These insights demonstrate that the origin of the aforementioned novel seg-
regation behavior is the local differences in the atomic geometry at the cores
of the line junctions and the presence of tensile and compressive regions
around the latter. Furthermore, they highlight the role of interface and line
junction topology on the segregation mechanisms.

In the last part of the thesis, mode I fracture in Ni and low Re content
Ni1−xRex alloys has been investigated. The investigations involved both lin-
ear elastic fracture mechanics as well as large scale atomistic fracture calcula-
tions of crack propagation in the ⟨112⟩/{111} fcc slip system. These calcula-
tions revealed that the [11̄2]/(11̄1̄) crack system has the lowest critical stress
intensity factor. Moreover, they demonstrated a ductile fracture, i.e., crack
propagation through the nucleation and emission of dislocations. The frac-
ture remained ductile after the addition of Re with contents that did exceed
a few at.%. However, in agreement with the aforementioned rhenium effect,
it was found that Re increases the critical stress intensity factor.

In summary, 2NN-MEAM potentials for Si, C, SiC, Ni, Re, and NiRe have
been developed. Employing these potentials, interfaces, and C segregation
at line junctions in Si and fracture in Ni and Ni1−xRex alloys have been in-
vestigated. These works successfully address hitherto open questions and
provide new insights on the mechanisms governing GB faceting and segre-
gation.

This thesis has been done in the Computational Materials Design Depart-
ment of the Max-Planck-Institut für Eisenforschung GmbH and part of the
work has been motivated by and conducted in collaboration with experi-
mental groups from the same Institute.
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Zusammenfassung
Grenzflächen haben einen starken Einfluss auf die Eigenschaften von Ma-
terialien. Dazu gehören optoelektronische und mechanische Eigenschaften.
Multi- (mc-) und polykristallines Silizium ist ein Prototypsystem, das die
Bedeutung von Grenzflächen wie Korngrenzen (GBs) für die elektronischen
Eigenschaften des Materials sowie deren technologische Implikationen demon-
striert. GBs sowie ihre Wechselwirkung mit Verunreinigungen sind einer der
Hauptbegrenzungsfaktoren der Effizienz von Solarzellenvorrichtungen auf
mc-Si-Basis.

Wenn das Verhältnis von Grenzfläche zu Volumen zunimmt, wie z. B. in
nanokristallinen Materialien, erhalten Grenzflächen und Grenzflächenfacettierung
und -rekonstruktion eine noch zentralere Rolle im Zustand der Materialeigen-
schaften. In diesem Fall werden diese Eigenschaften durch ein komplexes
Zusammenspiel zwischen Mikrostruktur, Facetten- und Verunreinigungsseg-
regationsenergien und langreichweitigen Dehnungswechselwirkungen bes-
timmt.

Bei Strukturmaterialien steuern Oberflächen und Grenzflächen die Fes-
tigkeit und den Bruch der Materialien. Beispielsweise ist die Geschwindigkeit
der Energiefreisetzung aufgrund der Bildung einer zusätzlichen freien Ober-
fläche während der Rissausbreitung ein entscheidender Parameter, der den
Sprödbruch steuert. Ebenso wie die elektronischen Eigenschaften haben auch
Verunreinigungen einen starken Einfluss auf die mechanischen Eigenschaften.
Der Rhenium-Effekt kann als ein charakteristisches Beispiel betrachtet wer-
den, das das zuvor Genannte betont: Kriechen und Die Ermüdungseigen-
schaften von Superlegierungen auf Ni-Basis werden durch die Zugabe von
einigen Gew.-% Re deutlich verbessert. Ein gründliches Verständnis dieses
Effekts wird jedoch noch diskutiert.

Mit dem schnellen Anstieg der Rechenleistung sind atomistische Simula-
tionen von Materialien zu einem unverzichtbaren Werkzeug geworden, um
die Eigenschaften von Materialien zu untersuchen und zu verstehen. Diese
Berechnungen können Einblicke und ein Verständnis auf atomarer Ebene
liefern der Mechanismen, die den Materialeigenschaften zugrunde liegen,
und sie können Informationen liefern, die experimentell nicht ohne weit-
eres zugänglich sind. Ein gemeinsames Merkmal der Mechanismen, die Ko-
rngrenzenrekonstruktionen, Nanofacettierung und Bruch zugrunde liegen,
ist jedoch, dass sie einen weiten Bereich von Längenskalen abdecken: von
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Bindungsbiegung, -dehnung und -bruch auf der nm-Skala bis hin zu Ver-
setzungskeimbildung und Spannungsfeldwechselwirkung in der Sub-µm-
Skala.

First-Principle-Rechnungen können die oben genannten Phänomene auf
allen relevanten Längenskalen genau beschreiben. Allerdings sind sie durch
die verfügbare Rechenleistung auf Systeme beschränkt, die aus einigen tausend
Atomen bestehen. Um dennoch Facettierung auf der experimentell relevan-
ten Längenskala oder Bruch durch Rissausbreitung zu beschreiben, bestehen
Superzellen aus zehn- oder hunderttausend Atomen. Semi-empirische in-
teratomare Potentiale hingegen können regelmäßig in atomistischen Simula-
tionen im großen Maßstab verwendet werden. Eine Herausforderung und
Voraussetzung für den Einsatz halbempirischer interatomarer Potentiale ist
jedoch ihre Übertragbarkeit, d. h. ihre Fähigkeit, die interatomaren Wechsel-
wirkungen in einer Vielzahl unterschiedlicher Umgebungen quantitativ oder
qualitativ genau zu beschreiben.

In der vorliegenden Dissertation wurden Potenziale der Second-Next-
Neighbour-Modified-Embedded-Atom-Methode (2NN-MEAM) entwickelt,
um (i) GBs und GB-Facettierung in Si, (ii) Topologie und Spannungseffekte
bei der Segregation von Verunreinigungen an Facettenübergängen in Si und
zu beschreiben (iii) Bruch in Ni1−xRex-Legierungen mit niedrigem Re-Gehalt.
Um diese Potentiale zu parametrisieren und auszuwerten, wurde ein Soft-
waretool namens "Potitr" entwickelt und erste prinzipielle Berechnungen in-
nerhalb der Dichtefunktionaltheorie (DFT) durchgeführt.

Unter Verwendung dieser neu entwickelten Potentiale wurden die En-
ergetik, Struktur und Dehnung von flachen und facettierten GBs mit Σ3-
Neigung in Si mit der Rotationsachse ⟨110⟩ untersucht. Diese GBs machen
bis zu 80daher sind sie ein System von GBs mit besonderem fundamentalem
und technologischem Interesse. Darauf aufbauend wurde ein Phasendia-
gramm konstruiert, das die energetisch günstigste Facetten- und Linienüber-
gangsrekonstruktionen in Abhängigkeit von Facettenlänge und Neigungswinkel.
Dieses Diagramm zeigt, dass die Facettierung der Familie dieser GBs eigen
ist und Die Eigenschaften der facettierten GBs werden durch das Zusam-
menspiel zwischen GB-Energien und langreichweitigen Dehnungswechsel-
wirkungen gesteuert. Darüber hinaus zeigt es diese höhere Energie GBs kön-
nen eher durch Thermodynamik als durch Kinetik stabilisiert werden, wenn
diese Facetten an Linienübergängen bilden. Daher wird die entscheidende
Rolle der Mikrostruktur wie der Korngröße für die GB-Eigenschaften her-
vorgehoben.

Als nächstes konzentrieren wir uns auf die Wechselwirkung von facettierten
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Σ3 GBs in Si mit dem Kohlenstoff. Kohlenstoff ist zu Si homovalent, d. h.
seine Wechselwirkungen mit den Planar- und Liniendefekten werden über-
wiegend durch Dehnung induziert. Daher können Dehnungs- und elek-
tronische Effekte, die diesen Wechselwirkungen zugrunde liegen, entkop-
pelt werden. In Übereinstimmung mit neueren experimentellen Befunden
finden wir eine starke asymmetrische Linienseigerung von C nur an einem
der beiden Übergänge bei Σ3 facettierten GBs in Si. Die Untersuchung des
Dehnungsfeldes um die Linienübergänge herum zeigte das Vorhandensein
von partiellen Kantenversetzungen von entgegengesetzten Burgers-Vektoren
an den beiden Linienübergängen. Daher werden die Facettenverbindun-
gen von Zug- und Zugbereichen begleitet Druckbelastung. Diese Erkennt-
nisse zeigen, dass der Ursprung des zuvor erwähnten neuartigen Segrega-
tionsverhaltens die lokalen Unterschiede in der atomaren Geometrie an den
Kernen der Linienübergänge und das Vorhandensein von Zug- und Druck-
regionen um letztere herum sind. Darüber hinaus heben sie die Rolle der
Schnittstellen- und Leitungsübergangstopologie für die Segregationsmecha-
nismen hervor.

Im letzten Teil der Arbeit wurde der Modus-I-Bruch in Ni- und Ni1−xRex-
Legierungen mit niedrigem Re-Gehalt untersucht. Die Untersuchungen um-
fassten sowohl lineare elastische Bruchmechanik als auch großmaßstäbliche
atomare Bruchberechnungen der Rissausbreitung im ⟨112⟩/{111} fcc-Gleitsystem.
Diese Berechnungen ergaben, dass das Risssystem [11̄2]/(11̄1̄) den niedrig-
sten kritischen Spannungsintensitätsfaktor aufweist . Darüber hinaus zeigten
sie einen duktilen Bruch, d. h. eine Rissausbreitung durch Keimbildung und
Emission von Versetzungen. Der Bruch blieb duktil nach der Zugabe von
Re mit Gehalten, die einige at.% überstiegen. In Übereinstimmung mit dem
oben erwähnten Rheniumeffekt wurde jedoch gefunden, dass Re den kritis-
chen Spannungsintensitätsfaktor erhöht.

Zusammenfassend wurden 2NN-MEAM-Potentiale für Si, C, SiC, Ni, Re
und NiRe entwickelt. Unter Verwendung dieser Potentiale wurden Gren-
zflächen und C-Seigerung an Linienübergängen in Si und Bruch in Ni- und
Ni1−xRex-Legierungen untersucht. Diese Arbeiten adressieren erfolgreich
bisher offene Fragen und liefern neue Einblicke in die Mechanismen, die GB-
Facettierung und -Segregation steuern. Diese arbeit wurde in der Abteilung
Computational Materials Design des Max-Planck-Instituts für Eisenforschung
GmbH durchgeführt und ein Teil der Arbeit wurde von experimentellen Grup-
pen desselben Instituts motiviert und in Zusammenarbeit mit ihnen durchge-
führt.
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Chapter 1

Introduction

Interfaces, such as grain boundaries (GBs), constitute a family of extended

defects with a dominant role in the properties of materials. In optoelectronic

materials, GBs may contain broken and/or highly bent or stretched bonds.

These introduce swallow or deep states in the fundamental band gap which

act as recombination centers and reduce the device’s efficiency. The efficiency

of the devices is also strongly affected by the segregation of impurities at GBs.

Nevertheless, segregation of impurities at GBs is not only of immediate tech-

nological importance due to e.g., the deep intergap states the former may

introduce or their effect on GB mobility and cohesion. Segregation of impu-

rities is also strongly connected with the thermodynamics of the interfacial

states, often called complexions, a field of materials research that has been

rapidly developed in recent years [1].

The situation of impurity-containing interfaces phases becomes puzzling

when faceting and line junctions are considered. Line junctions can be con-

sidered as 1D extended defects, per se. Indeed as it will be demonstrated in

Chapter 4, line junctions at Σ3 GBs in Si pose a character of partial edge type

dislocations. These dislocations have a core region and a long-range strain

field and both have a strong impact on impurities segregation. Neverthe-

less, the density of the line junctions is related to the microstructure in terms

of grain size: Fine grains reduce the faceting length and hence increase the

density of these 1D interfacial defects.

In structural materials, GBs and the grain size play an important role in
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strength via the Hall–Petch relation [2–4]: The materials yield strength is in-

verse proportional to the square root of the average grain diameter. However,

for diameters smaller than a few tens of nm, due to the onset of GB sliding

the material gets softer with the decreasing grain size (inverse Hall-Petch ef-

fect) [4]. The mechanical properties of materials are also strongly affected by

the impurities segregation and precipitation at interfaces. Segregated impu-

rities may weaken cohesion at GBs and result in the so-called solute induced

embrittlement [5, 6].

Apart from interfaces, surfaces and dislocations and their interaction with

impurities have a strong impact on the mechanical properties as well: In frac-

ture through crack propagation the critical stress intensity factor, which de-

scribes the material’s strength, depends on (i) the nucleation and emission

of dislocations which is related to the stacking fault energies and (ii) the sur-

face energy release rate caused by the crack propagation. These control the

nature of the fracture, i.e., ductile vs brittle, as well. Therefore, surface and

generalized stacking fault energies are also key material parameters.

1.1 The need for interatomic potentials

A common characteristic of the aforementioned phenomena, i.e., interface

reconstructions, GB faceting, impurity segregation, and fracture, is that the

underlying mechanisms span a wide range of length scales. e.g., bond break-

ing is taking place at the nm scale, while elastic strain interactions are at the

µm scale. Atomistic calculations which are based on the interactions between

the smallest structural units in condensed matter, i.e., the atoms, can provide

insights into the mechanisms underlying the materials’ properties and infor-

mation that is not straightforwardly accessible by experiment.

First principles calculations nowadays constitute the working horse in

computational solid-state research and are well established for describing

many-body systems at the quantum mechanical level. Although they have

been successfully and extensively used to study a vast variety of systems and

properties, they are still suffering from the available computational power.
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Systematic and regular investigations by employing ab-initio calculations are

limited to systems consisting of a few thousand atoms. However, this is at

least an order of magnitude smaller than the system sizes necessary to cap-

ture and investigate the aforementioned phenomena.

Semi-empirical interatomic potentials have been developed and have been

regularly employed in large-scale atomistic simulations. Therefore, they emerge

as an alternative route that can address the small system size challenge. To

get an understanding of these models, let us first focus on one of the oldest

and simplest interatomic potentials, the Lennard–Jones (LJ) potential. The LJ

potential includes pair interactions and the energy of a system is written as:

VLJ
(
rij
)
= 4ϵ

( σ

rij

)12

−
(

σ

rij

)6
 (1.1)

here, ϵ is a constant equal to the binding energy at the equilibrium distance

σ. rij is the distance between the atoms i and j. As it is apparent from the sim-

ple form of Eq. (1.1), the LJ potential is an approximation based on a crude

assumption: The atoms are considered as balls and their interactions depend

on the interatomic distances alone, while the crucial role of electrons is not

explicitly considered. Nevertheless, this assumption is not completely ar-

bitrary. The Born-Oppenheimer approximation, i.e., the motions of nuclei

and electrons can be decoupled, offers some sort of justification. Moreover,

the functional form in Eq. (1.1) is structured on physical arguments: At short

distances the positive and hence repulsive (1/r)12 term dominates. This term

is related to the Pauli principle. At large interatomic distances, the negative

and hence attractive (1/r)6 dominates. This term is related to the attractive

van-der-Waals interactions. Nevertheless, using Eq. (1.1), the forces on each

atom i can be evaluated using the gradient: Fi = −∇iVLJ .

However, in most cases, more complex than the pair interactions of Eq. (1.1)

have to be considered. For example and as has already been mentioned,

the LJ potential does not account for the role of electrons in bond forma-

tion and bond directionality. Moreover, the pair interactions are affected by



4 Chapter 1. Introduction

the presence of other neighboring atoms. Therefore, simple models, such

as the LJ potential, may show critical shortcomings in the description of the

more complex chemical or structural environments such as e.g., in the core

of extended defects and/or in the presence of impurities. To address these,

more complex and sophisticated interatomic models have been developed,

where many-body interactions are explicitly considered. These models con-

sist of a large number of fitting parameters, which are obtained by fitting

to experimental and/or ab-initio calculated properties. In the present thesis,

we have developed methodologies to accurately parametrize second nearest-

neighbor modified embedded atom method (2NN-MEAM) interatomic po-

tentials. These potentials are by now well established and widely applied

to study a wide range of materials and material properties and phenomena.

Furthermore, their formalism considers that the atoms are embedded in an

electron gas that consists of both spherical and angular symmetric electron

densities and hence angular forces are explicitly included. They also include

many-body screening. These enhance the transferability of the potential.

1.2 Aim and Structure of this work

The newly developed 2NN-MEAM potentials were applied to study inter-

face reconstructions, GB faceting, and C segregation at line junctions in Si as

well as fracture properties in Ni and low Re content Ni1−xRex alloys.

Silicon is the most technologically important and widely studied semi-

conducting material. This indirect bandgap (1.1 eV) [7] semiconductor is ex-

tensively used in the electronics, optoelectronics, and chemical industry, as

well as in several casting and steel industries [8–10]. Thanks to its abundance

in the earth’s crust [11], it is a cost-effective material.

Since the first report on the Si solar module in 1941 [12], Si solar cell has

seen a surge in efficiency from ≈1% to ≈25% [12]. Due to these high effi-

ciencies and low production costs, today’s photovoltaic market is dominated

by the presence of Si solar modules [13]. Nevertheless, there is still sig-

nificant interest in lowering the production cost and increasing efficiency.
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FIGURE 1.1: Right: Asymmetric line segregation of C (red dots),
FeN (blue dots), and Si (yellow dots) at a faceted Σ 3 Si tilt GB
as observed in 3D atom probe tomography. Left: Schematic
representation of the faceted GB. The red line segments indicate
the facet junctions where impurities predominantly segregate.

Adopted from Ref. [16].

Single-crystal Si solar cells have the highest efficiency in comparison to Si

heterostructure and multi-crystalline Si (mc-Si) modules [13, 14]. Although

less efficient than single crystal Si, mc-Si solar cells have the advantage of

lower production cost [15].

Mc-Si solar cells are manufactured by directional solidification [17]. These

modules are characterized by the presence of dislocations, GBs, point defects,

stacking faults, etc. [18]. The presence of these defects strongly affects the

properties of mc-Si. Moreover, impurities such as C, N, Cu, Fe, P, or O are

being attracted by the 1D and 2D extended defects and may significantly re-

duce the minority carrier lifetime [19, 20]. The source of these impurities is

from the natural sources with the ore and others added during the solidifi-

cation process. Nevertheless, these impurities may introduce deep intragap

states which trap carriers and lower the efficiency of the solar modules [21].

Recently a unique segregation mechanism at Si GBs, that goes beyond



6 Chapter 1. Introduction

classical McClean theory, has been reported [16]. More specifically, 1D seg-

regation of C and Fe impurities has been observed at the junction of faceted

GBs instead of 2D segregation at planar interfaces (see Fig. 1.1). Moreover,

this segregation has a strong anisotropy character: Impurities preferentially

segregate at one of the two facet junctions. However, the origin of this anisotropy

could not be resolved from the experiment nor could be identified if the

anisotropic segregation is the route cause of faceting or vice versa. There-

fore, understanding interfaces and their interaction with impurities has both

fundamental and technological interest.

Ni and Ni-based superalloys are an indispensable materials system for jet

engine turbine blades. They are chosen due to their excellent high-temperature

ductility, improved creep, and fatigue resistance. The addition of a few at.%

Re into Ni significantly improves the creep resistance and fatigue proper-

ties, a phenomenon often called the "rhenium effect". Although these alloys

were/are under intensive investigations, the origin of the rhenium effect is still

under debate (see Ref. [22] and refs therein).

The main aim of this thesis is to parametrize 2NN-MEAM interatomic

potentials and apply them to investigate (i) GBs and GB faceting in Si, (ii)

topology and strain effects in impurities segregation at GBs and line junctions

in Si, and (iii) mode I fracture in low Re content Ni1xRex alloys. The structure

of the thesis is as follows:

• In Chapter 2 a short introduction to the methods employed is given.

• The 2NN-MEAM potentials’ formalism and the methodology devel-

oped and applied to parametrize these potentials, are presented in Chap-

ter 3.

• In Chapter 4, faceting of Σ3 GBs in Si is investigated. Based on DFT

and large-scale 2NN-MEAM potential calculations a phase diagram of

the facets and line junctions is derived. This diagram provides the en-

ergetically most favorable facet and line junction reconstructions as a

function of the faceting geometric properties, i.e., the inclination angle

and facet period. A key finding that emerges from this diagram is that
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higher energy GBs can be stabilized by thermodynamics rather than

kinetics when these constitute facets at line junctions.

• In Chapter 5, C segregation at the faceted GBs investigated in Chapter 4

is studied. Interatomic potential for C and SiC were developed and em-

ployed to perform atomistic calculations at the experimentally relevant

length scale. Based on these calculations the C content distribution is

calculated and the origin of the asymmetric impurities’ segregation at

one of the two line junctions is revealed.

• In the last Chapter (Chapter 6), a new interatomic potential for Ni, Re,

and Ni-Re binary is developed. The new potential overcomes the cur-

rent limitations and artifacts in describing generalized stacking fault

energies and traction vs separation profiles. Based on these poten-

tials, the critical stress intensity factor of Ni and low content NiRe al-

loys is evaluated by employing both linear elastic fracture mechan-

ics and large-scale atomistic calculations of crack propagation in the

⟨112⟩/{111} Ni fcc slip system. These calculations reveal that fracture

in this slip system is ductile. Moreover, in agreement with the "rhenium

effect", the addition of a small amount of Re increases the critical stress

intensity factor, though the fracture mode remains ductile.





9

Chapter 2

Methods

First principles and 2NN-MEAM potential calculations are employed in the

present thesis to investigate interfaces, interface faceting, and mechanical

properties of materials. Density functional theory calculations constitute nowa-

days the working horse in the field of atomistic calculations in solid-state.

Nevertheless, these calculations are restricted by the available computational

power to systems consisting of a few thousand atoms. Semi-empirical ap-

proaches, such as the 2NN-MEAM potentials, allow for calculating systems

that extend to considerably larger and longer length and time scales, respec-

tively. However, this comes at a price of limited transferability. In the follow-

ing, a short introduction to DFT is given and popular empirical potentials

that have been used in the present thesis are briefly presented.

First-principles calculations on a many-body system consist of solving the

many-body Schrödinger equation:

Ĥψj ({ri}, {RI}) = ε jψi ({ri} , {RI}) . (2.1)

Here, {ri} denotes the positions of the electrons and {RI} are the positions of

the nuclei. ψj(ri, RI) is the eigenfunction of eigenstate j. ε j is the eigenvalue.
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The Hamiltonian Ĥ of a system containing Ne electrons and NI ions can

be expressed through the following equation:

Ĥ =
Ne

∑
i

[
−1

2
∇2

i

]
+

NI

∑
I

[
− 1

2MI
∇2

I

]
+

1
2

NI

∑
I

NI

∑
I′

[
ZIZI′

|RI − RI′ |

]

−
Ne

∑
i

NI

∑
I

[
ZI

|ri − RI |

]
+

1
2

Ne

∑
i

Ne

∑
i′

[
1

|ri − ri′ |

] (2.2)

The first two terms on the right-hand side of the above equation are the ki-

netic energy of the electrons and the ions respectively. MI is the mass of I-th

nuclei with respect to the mass of the electron. In the above equation atomic

units are used, i.e., h̄ = 1, me = 1, and e2

4πϵ0
= 1, where me and e are the

electronic mass and charge, respectively, ϵ0 is the vacuum dielectric constant,

and h̄ is the Planck’s constant divided by 2π. ri and RI are the positions of

i-th electron and I-th nucleus, respectively. ZI is the atomic number of the

nucleus I. The third, fourth, and fifth terms represent the nucleus-nucleus,

nucleus-electron, and electron-electron interactions, respectively. The final

term is the electrostatic Coulomb repulsion between electrons.

In principle solving Eqs. (2.4) and (2.2) can provide a full description of

the many-body system without any approximation. However, due to its

complexity and restricted available computational resources, it is not pos-

sible to solve these equations directly and approximations have to be imple-

mented. A first approximation is the Born-Oppenheimer approximation [23,

24] which decouples the electronic and the ionic motions. Indeed, the nu-

cleus mass is much higher than the electronic mass, e.g., MI is at least equal

to 1835me. Therefore, the nuclei can be considered to be nearly fixed with re-

spect to electronic motion. This allows to write the wavefunction as a product

of the electronic, ψe, and ionic, ψI wavefunctions:

ψ ({ri}, {RI}) = ψe ({ri}; {RI})ψI ({RI}) . (2.3)

This allows to solve two problems independently: The electronic wavefunc-

tion is calculated by solving the Schrödinger equation for the electronics in a
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static array of nuclei:

Ĥeψe ({ri}; {RI}) = εψe ({ri} ; {RI}) , (2.4)

where Ĥe = T̂e + V̂ext + V̂int and T̂e, V̂ext, andV̂int are the electronic kinetic en-

ergy operator, the external potential operator which accounts for the electrons-

nuclei interactions, and the operator for the electron-electron interactions.

The ionic Hamiltonian is written in a similar form, where the nuclei experi-

ence a smeared out potential from the electrons.

2.1 The Hartree-Fock Approximation

Even with explicitly considering the BO approximation, the solution of the

many body problem still requires some approximations to make it easily

tractable. One of the earliest solution methods is by Hartree-Fock approx-

imation. In Hartree-Fock approximation [25], the wavefunction is written as

a Slater determinant of single particle wavefunctions:

ψHF =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕλ1(r1, s1) ϕλ2(r1, s1) ... ϕλNe
(r1, s1)

ϕλ1(r2, s2) ϕλ2(r2, s2) ... ϕλNe
(r2, s2)

. . .

. . .

. . .

ϕλ1(rNe , sNe) ϕλ2(rNe , sNe) ... ϕλNe
(rNe , sNe)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Here, ϕλi(ri, si) is the single-electron wave function of the λi state, having

spatial coordinates ri and spin direction si. The single electron wavefunc-

tions form an orthonormal set, i.e., ⟨ϕλi |ϕλj⟩ = δij. The sign of the HF wave-

function will change when any two rows or columns are exchanged. This

satisfies the anti-symmetry principle. Moreover, any two rows cannot be the

same so that the determinant doesn’t become zero, which in turn is consis-

tent with Pauli’s exclusion principle. Nevertheless, the electron correlation
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effects are neglected in the Hartree-Fock approximation which may result in

a poor description of the electronic structure

2.2 Density Functional Theory

Density functional theory (DFT) is an alternative, in principle exact, and com-

putationally more efficient to the HF method. In DFT, the many-body prob-

lem is formulated in terms of the electron density n(r) instead of the many-

body wave function. As a consequence, the computational cost is drasti-

cally reduced: The charge density depends only on the 3 spatial coordinates

whereas the wavefunction depends on 3N spatial coordinates (or 4N for spin

configuration), where N is the number of particles. The original DFT is traced

back to the Thomas-Fermi model [26, 27], where the kinetic energy is an ex-

plicit function of the electron density. In the Thomas-Fermi model, the elec-

tron cloud is assumed to be homogeneously distributed and non-interacting.

Although the Thomas-Fermi model was the first building block of modern-

day DFT, it didn’t account for electron correlation in kinetic energy and didn’t

include exchange-correlation energies.

Hohenberg-Kohn theorems

DFT is formulated in terms of the two Hohenberg-Kohn theorems and the

Kohn-Sham equations. Let us consider the following Hamiltonian for the

electronic system:

Ĥe = T̂e + V̂e−e + V̂ext . (2.5)

where T̂e is the kinetic energy term, V̂e−e is the term of the electron-electron

interactions, and V̂ext is the term for the external potential.

The first theorem states that the external potential, V̂ext(r) of the system

of interacting particles can be solely determined, within a trivial additive

constant, from the electron charge density. If Ψ (r) is the wavefunction of the
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Ne electrons then the charge density is written as:

n (r) =

〈
Ψ

∣∣∣∣∣Ne

∑
i

δ (r − ri)

∣∣∣∣∣Ψ

〉
(2.6)

As a consequence, the many-body wave function can be determined by the

charge density. This allows to write an energy functional E [n (r)] in terms of

the elctronc density:

E [n (r)] = T [n (r)] + Ve−e [n (r)] +
∫

Vext (r) n (r) dr (2.7)

The second Hohenberg-Kohn theorem provides the variational principle,

i.e., only the ground state charge density minimizes the energy:

E [ñ0] ≥ E [n] , (2.8)

where n0 and ñ are the ground state and a trial charge density, respectively.

The direct consequence of these theorems is that if the functional form T [n (r)]+

Ve−e [n (r)] is known, it is sufficient to minimize the E [n (r)] functional with

respect to n to obtain the ground state of the system.

The Kohn-Sahm equations

Although, the Hohenbrg-Kohn theorem states that all the physical quantities

can be obtained from the charge density, obtaining the kinetic energy func-

tional in terms of density is challenging due to the many-body interactions.

In the Kohn-Sham approach, the original many-body interacting system is

replaced by an auxiliary non-interacting system [28]. Further, it is assumed

that the ground state charge density of the interacting system is equal to that

of the non-interacting system. If ϕi(r; s) denote the single-particle wavefunc-

tions then the charge density is written as:

n(r) =
Nocc

∑
i
|ϕi(r)|2 , (2.9)
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where the sum runs over all the Nocc occupied states. It is also assumed that

the single particle wavefunctions are orthogonal:

〈
ϕi|ϕj

〉
= δij . (2.10)

Based on the aforementioned the Schrödinger equation can be reformulated

as: [
−∇2

2
+ VKS [n(r)]

]
ϕi(r) = ϵi ϕi(r) . (2.11)

Here, VKS[n(r)] is the single electron Kohn-Sham potential which is a func-

tional of electron density n(r):

VKS [n(r)] = Vext [n(r)] + VH [n(r)] + Vxc [n(r)] (2.12)

Here, Vext is the external potential , VH is the Hartree potential, and Vexc is

the exchange-correlation potential. The exchange-correlation potential is cal-

culated from the functional derivative of the exchange-correlation energy:

Vxc(r) =
δExc

δn(r)
(2.13)

The standard procedure to solve the above equations is to solve them self-

consistently. The corresponding flow chart is shown in Fig. 2.1.

2.2.1 Exchange and Correlation Functional

Several approximations for the exchange-correlation functionals have been

developed [Ref]. In the present thesis, DFT calculations employed the local

density approximation (LDA) and the generalized gradient approximation

(GGA). These are briefly presented in the following.

Local Spin Density Approximation

LDA is the simplest approximation for the exchange-correlation [28]. In

LDA, the exchange-correlation energy per electron at each point, r, is equal

to that of a homogeneous electron gas that has the same density at the same
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FIGURE 2.1: Flow chart for solving Kohn-Sham problem self
consistently

point, ϵhom
xc . The exchange-correlation energy is given by:

ELDA
xc [n] =

∫
d3r n (r) ϵhom

xc (r) . (2.14)

ϵhom
xc can be split into the exchange and the correlation parts:

ϵhom
xc = ϵhom

x + ϵhom
c (2.15)
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For the exchange part the Dirac exchange functional of the homogenous elec-

tron gas is used [29]:

ϵhom
x = −3

4

(
3
π

)1/3

n (r)1/3 . (2.16)

The exact form of the correlation energy is unknown. Nevertheless, the

widely used correlation functional is due to Perdew and Zunger [30]. The re-

sults are obtained from Quantum-Monte Carlo by fitting the analytical form

of ϵc(rs) with rs =
4π n(r)

3
−1/3

being the Weigner Zeitz radius [31]:

ϵhom
c =

γ/(1 + β1
√

rs + β2 rs) rs ≥ 1

B + (A + Crs) ln (rs) + Drs rs ≤ 1 ,
(2.17)

where γ, β1, β2, A, B, C, and D are parameters. Despite its overwhelming

popularity, LDA has some drawbacks. LDA tends to overbind and underes-

timate the lattice constants (≈1-3%).

Generalized Gradient Approximation

Although LDA gives correct properties of materials in many cases, it tends

to fail in the cases where the charge density in space changes rapidly, e.g.,

in the case of molecules. The bonding charge density of atoms changes

rapidly between atoms. Such a problem can be overcome by considering

the exchange-correlation energy not only as a function of charge density but

also considering the gradient of charge density. This approximation is called

the generalized gradient approximation (GGA). In the framework of GGA,

the exchange-correlation energy is written as,

EGGA
xc [n] =

∫
n(r) ϵxc (n (r) ; |∇n (r)|) d3r (2.18)
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The correlation energy is calculated from the local correlation energy with an

additive term Hc [32].

EGGA
c [n] =

∫
n (r)

(
ϵhom

c (rs) + Hc(rs, t
)

d3r , (2.19)

where, rs is the local Seitz radius, t is a dimensionless gradient. A = β
γ

1
exp(−ϵhom

c /γ)−1

and γ = 1−ln2
π2 . β is a constant. The Hc term is written as:

Hc(rs, t) = γln
[

1 +
βt2

γ

(
1 + At2

1 + At2 + A2t4

)]
(2.20)

The exchange part is given by:

EGGA
x [n] =

∫
n (r) ϵhom

x [n]
(

1 + κ − κ

1 + µs2/κ

)
d3r (2.21)

where, κ is chosen to satisfy the Lieb-Oxford bound, µ is chosen to recover

linear response from local approximation and s = |∇rs| /
(

2(2 π/3)(1/3)rs

)
.

GGA tends to perform better than LDA in the case of atomization energies,

energy barriers, and structural energy differences [33–35]. However, in solids

"underbinds" and hence provides higher lattice constants and smaller elastic

constants. Nevertheless, both LDA and GGA underestimate the bandgap of

semiconducting materials.

2.2.2 Plane Wave Approach

Periodic boundary conditions (PBC) are based on the symmetry of the system

and allow to use of a "minimum representation", i.e., a supercell. The trans-

lational symmetry of the supercell is defined by the three linear independent

vectors a1, a2, and a3.

In a system with a translational invariance, the external potential is peri-

odic (V (r) = V (r + R), where R = n1a1 + n2a2 + n3a3 and ni is integer). In

such system the Bloch’s theorem allows to write the one electron wavefunc-

tions, ψk,n(r) as:

ψk,n (r) = eik·ruk,n (r) , (2.22)
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where k is the wave vector which lies in the first Brillouin zone and n is the

band index. The function uk,n (r) has the same periodicity, i.e., uk,n (r) =

uk,n (r + R) and can be written as a Fourier series:

uk,n (r) =
1√
Ω

∑
G

ũk,n (G) eiG·r (2.23)

and

ũk,n (G) =
1√
Ω

∫
cell

uk,n (r) e−iG·rdr (2.24)

where Ω is the unit cell’s volume. G is a reciprocal lattice vector: G = m1b1 +

m2b2 + m3b3. bi denotes the primitive reciprocal lattice vectors.

From Eqs. (2.22) and (2.23) the Kohn-Sham wavefunctions can be expanded

by planewaves (PW):

ψk,n (r) = ∑
G

Ck,nei(k+G)·r . (2.25)

In practice, the planewaves are expanded up to a maximum value of the

kinetic energy 1
2 |k + G| which is referred to as the cut of energy.

2.2.3 Pseudopotentials and the Projector Augmented Wave

Method

A PW basis set allows for easy implementation of the total energy and Hamil-

tonian expressions. Moreover, it allows for efficiently evaluating the H|ψ⟩

action by using a fast Fourier transform (FFT). Nevertheless, near the nu-

cleus, the wavefunctions have rapid oscillations. Hence, the number of PWs

required to represent satisfactory core electrons becomes cumbersome. A

common solution to this is to use pseudopotentials.

The concept underlying the pseudopotential approach is to remove the

core electrons and replace the strong ion-electron interactions with a weak

pseudopotential. The core electrons are stronger bound, i.e., have much

lower energy, and they extend to shorter distances than the valence electrons.

Moreover, the bonding is mainly determined by the valence electrons. These
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allow treating the core electrons as inner (frozen-core approximation). To

achieve this, the electrostatic interactions of the valence electrons with the

cores are described by pseudopotentials. Within the pseudopotentials de-

scription, the depth of the nucleus potential is artificially reduced in order to

reproduce the valence electrons’ eigenvalues and eigenfunctions outside the

core region.

In the present thesis, the Vienna Ab initio Simulation Package (VASP) is

used for all DFT calculations. In VASP, the projector augmented-wave (PAW)

scheme is implemented. PAW scheme combines PWs in the interstitial region

with spherical waves around the core. This allows describing the oscillations

of the valence electron wave functions without the computational demand

for a large basis set. More information regarding the PAW method can be

found in Refs. [36, 37].

2.3 Interatomic potentials

Although very accurate, due to high computational demand DFT calcula-

tions are nowadays limited to simulation cells consisting of a few thousand

atoms. Therefore, to study phenomena that extend to longer length scales,

e.g., GB faceting, fracture [38], and dislocation mobility [39], ab-initio calcula-

tions may not be sufficient. An alternative approach is to employ interatomic

force fields to calculate the total energy and forces. These calculations can

treat systems consisting of millions of atoms and in many cases can address

phenomena at the experimental relevant length scales. However, interatomic

force fields often lack transferability.

Some of the most popular interatomic force field models that have been

used in the present thesis are the Stillinger-Weber potential (SW) [40], the

Tersoff type bond order potential [41], and the modified embedded atom

method potential [42]. We have evaluated these potentials in modeling Si

GBs, C segregation in Si GBs, and low Re content NiRe alloys. In the follow-

ing sections, the formalism of the SW and the analytical bond-order poten-

tials is provided. In the next chapter, a detailed description of the MEAM
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FIGURE 2.2: Schematic representation of (a) bond stretching
and (b) bond bending. (c) Triplet of atoms and geometric pa-
rameters used in the SW 3-body angle term. The Figure has

been adopted from Ref. [43].

potentials and a methodology to systematically parametrize them are given.

2.3.1 Stillinger Weber potentials

One of the most widely used interatomic potentials for tetrahedrally coor-

dinated semiconductors like Si is the Stillinger-Weber potential (SW) [40].

Unlike pair potential, such as the Lennard-Jones potential where stabilizing

diamond structure is challenging, the SW potential consists of 2- and 3-body

terms. The total energy of the system in the SW framework is written as:

E = ∑
i

∑
j≤i

ϕ2
(
rij
)
+ ∑

i
∑
j ̸=i

∑
k≥j

ϕ3
(
rij, rik, θijk

)
. (2.26)

Here the first term is the pair potential and the second term is for the 3-body

interactions. rij is the distance between atoms i and j. The pair potential

describes forces against bond stretching and has the following form:

ϕ2(rij) =

εA
(

Br−p
ij − r−q

ij

)
exp

[(
rij − a

)−1
]

, if rij < a

0, if rij ≥ a
, (2.27)

where the parameters A, a, B, and p take positive values. ε has energy units.

At the cutoff radius, a, the potential convergences smoothly to zero. The cut

off distance defines the range of interactions.
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The 3-body term describes the forces against bond bending and it is writ-

ten as a function of the interatomic distance as well as an angular dependent

term:

ϕ3
(
rij, rik, θjik

)
= ελexp

[
γ
(
rij − a

)−1
+ γ (rik − a)−1

] (
cosθjik +

1
3

)2

.

(2.28)

γ and λ take positive values. θjik is the angle between the vectors rij and rik.

Despite the success of SW potentials in describing bulk ground-state phases,

elastic constants, and liquid phases [40], it still poses challenges in calculat-

ing surface reconstructions, generalized stacking fault energies, etc. (see e.g.,

Table 4.3).

2.3.2 Analytical Bond Order Potentials

In the present thesis, a Tersoff-Brenner type bond order potential developed

by Erhart et al. [41] has been used in the calculations of C segregation in Si

GBs. The total energy in the framework of Tersoff-Brenner potential is writ-

ten as a sum of attractive and repulsive interactions [44] as follows:

E = ∑
i≥i

fc(rij)

[
VR(rij)−

bij + bji

2
VA(rij)

]
, (2.29)

where, VR(r) and VA(r) are the repulsive and attractive terms, respectively,

and are written as Morse-type potentials:

VR (r) =
D0

S − 1
exp

[
−β

√
2S (r − r0)

]
(2.30)

and

VA (r) =
SD0

S − 1
exp

[
−β

√
2/S (r − r0)

]
. (2.31)

Here, D0 is the dimer binding energy, r0 is the equilibrium nearest neighbor

distance in the reference structure, r is the distance between two atoms, β

is related to the ground state dimer frequency, and S is calculated from the



22 Chapter 2. Methods

Pauling plot. fc (r) is the hopping integral and has the following form:

fc (r) =


1 if r ≤ R − D

1
2 −

1
2sin

(
π(r−R)

2D

)
, if |R − r| ≤ D

0 if R + D ≤ r

, (2.32)

where R, and D are the position and width of the hopping integral cutoff

function. The bond order parameter, bij, is written in terms of the angular

dependent term ζij:

bij =
(
1 + ζij

)−1/2 , (2.33)

where,

ζij = ∑
k( ̸=i,j)

fc (rik) exp
[
2µ −

(
rij − rik

)]
g
(
θijk
)

(2.34)

and

g (θ) = γ

(
1 +

c2

d2 − c2

d2 + (h + cosθ)2

)
. (2.35)

Here, the parameters γ, µ, c, d, and h are obtained from the fitting of the

potential.

As can be seen in Tables 4.3, 5.3, and 5.4, the potentials developed by Er-

hart et al. [41] gave an excellent description of the energy differences between

different crystal phases, the elastic constants, and the vacancy formation en-

ergies in Si, C, and 3C-SiC. However, they failed to describe the generalized

stacking fault energies.
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Chapter 3

Modified Embedded Method

Interatomic Potential

3.1 Introduction

MEAM interatomic potentials are nowadays well established and widely ap-

plied to study a wide range of materials and material properties and phe-

nomena such as GBs, phase transformations, dislocations, fracture, thermal

properties, etc. [38, 45–49]. The MEAM potentials are unique in that they

are the first interatomic potentials that with a single formalism can be and

have been applied to successfully describe a wide and diverse range of ele-

ments encompassing various bonding characteristics. These include materi-

als in various crystal structures such as fcc, bcc, hcp, diamond, or even gas

phases [42].

The MEAM potentials [42] constitute an extension of the embedded atom

method (EAM) potentials developed by Daw and Baskes [50, 51]. Compared

to EAM potentials, MEAM interatomic interactions include angular contri-

butions similar to spherical harmonics to the electron density [see Eqs. (3.8)-

(3.11) in the next Section]. The success of MEAM potential over the other

interatomic potentials can be attributed to the following facts: The MEAM

potential formalism considers that the atoms are embedded in an electron gas

that consists of both spherical and angular symmetric electron densities [42].

Furthermore, the formalism of MEAM potential includes many-body screen-

ings. These, i.e., the inclusion of angular forces and many-body screening,
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constitute these potential robust and enhance their transferability in a wide

range of deformation conditions in solid-state.

Nevertheless, MEAM potentials show shortcomings in calculating prop-

erties of bcc metals such as the inadequate description of low index sur-

faces or predicting ground state crystal phases other than bcc for Fe, Cr, or

Mo (see Ref. [52] and refs therein). The MEAM formalism considers only

nearest-neighbor interactions. However, in bcc materials, the second nearest-

neighbor interactions may not be negligible. Indeed, in bcc, the second near-

est neighbor distance is only ≈15% larger than the first nearest neighbor dis-

tance. To address the aforementioned shortcomings, B.-J. Lee and Baskes ex-

tended the MEAM formalism to partially include second nearest interactions

by adjusting the many-body screening (2NN-MEAM) [52].

In this thesis, interatomic potentials are employed to investigate GBs,

lines junctions, and fracture. In both cases, areas of highly strained mate-

rial are present, and/or the coordination of the atoms may differ strongly

from the coordination in the ground state crystal structure. Therefore, in or-

der to provide both good qualitatively and quantitatively descriptions, 2NN-

MEAM potentials have been developed and applied. The formalism of the

2NN-MEAM potential is described in detail in the next Section and in Sec-

tion 3.3, the methodology developed and employed to parametrize the po-

tential is discussed.

3.2 MEAM potential formalism

3.2.1 Unary system

As has already been mentioned, the MEAM potentials constitute an exten-

sion of the EAM potential. In the EAM potentials, the total energy is written

as the sum of the short-range pair energy and the embedding energy. The

latter depends on the electron density which has spherical symmetry. Nev-

ertheless, MEAM potentials further include the angular dependency of the



3.2. MEAM potential formalism 25

electron density. The original formulation considered only the first near-

est neighbor (1NN-MEAM) interactions of atoms. The 1NN formulations

were later extended to include second nearest neighbor (2NN-MEAM) inter-

actions [53]. In 2NN-MEAM potential, the total energy is written as [42]:

E = ∑
i

[
Fi(ρ̄i) +

1
2 ∑

j ̸=i
ϕij(rij)

]
. (3.1)

In the above equation, the first term, i.e., Fi(ρ̄i), is the embedding energy

of atom i. The embedding energy is a function of the background electron

density (ρ̄i) at site i [42, 54]. The pair energy, ϕ(rij) is written as a function

of the interatomic distance, rij between atoms i and j. The energy required to

place an atom at the site i having the background electron density ρ̄i is called

embedding energy. The functional form of the embedding energy is:

Fi(ρ̄i) =

Ai E0
i ρ̄i ln(ρ̄i) if ρ̄i ≥ 0

−Ai E0
i ρ̄i otherwise

, (3.2)

where E0
i is the negative of cohesive energy or the sublimation energy and Ai

is the embedding parameter. The value of Ai depends on the element type.

The background electron density, ρ̄i is written as following,

ρ̄i =
ρ
(0)
i
ρ0

i
G(Γi) (3.3)

where,

Γi =
3

∑
k=1

t(k)i

(ρ
(k)
i

ρ
(0)
i

)2
(3.4)

and

G(Γi) =


√

1 + Γi, if Γi ≥ −1

−
√
|1 + Γi|, if Γi < −1

(3.5)

The density of electron of order, k i.e ρ
(k)
i is described below by the Eqs. (3.8)-

(3.11). In Eq. (3.3), ρ0
i is the reference electron density. The reference electron
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density is given as,

ρ0
i = ρi0 Zi0 G(Γre f

i ) . (3.6)

ρi0 is used to scale the electron density. The first nearest neighbor coor-

dination, Zi0, is calculated from the reference structure. For diamond and

zincblende crystals the nearest neighbor coordination is 4, and for hcp, and

fcc crystals it is 12. The parameter Γre f
i in the reference electron density is

calculated from the following equation

Γre f
i =

1
Z2

i0

3

∑
k

t(k)i s(k)i . (3.7)

The shape factor of atom i, s(k)i , is calculated based on the crystal structure

and can be obtained from the work of Baskes et al. [42].

By superimposing the atomic densities, the electron densities are obtained

as in Eqs. (3.3)-(3.5). Nevertheless, the atomic densities are further screened

by applying the screening function Sij as follows,

ρ
(0)
i = ∑

j ̸=i
ρ

a(0)
j (rij) Sij (3.8)

(ρ
(1)
i )2 = ∑

α

[
∑
j ̸=i

ρ
a(1)
j

rijα

rij
Sij

]2
(3.9)

(ρ
(2)
i )2 = ∑

α,β

[
∑
j ̸=i

ρ
a(2)
j

rijαrijβ

r2
ij

Sij

]2
− 1

3

[
∑
j ̸=i

ρ
a(2)
j (rij)Sij

]2
(3.10)

(ρ
(3)
i )2 = ∑

α,β,γ

[
∑
j ̸=i

ρ
a(3)
j

rijαrijβrijγ

r2
ij

Sij

]2
− 3

5 ∑
α

[
∑
j ̸=i

ρ
a(3)
j (rijα)Sij

]2
(3.11)

The α-th component of the displacement vector is given as rijα where the

value of α ranges between 1-3. The screening function between atoms i and j

is given as Sij and is discussed in the following Section 3.2.3. The background

electron densities including higher-order terms are provided by Eqs. (3.8)-

(3.11).

While EAM potentials are based on linear superposition of spherical av-

erage electron densities [42], in the MEAM formalism higher-order electron
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density terms are included. The background electron densities are constructed

as in the in Eqs. (3.8)-(3.11), and those can be considered as s, p, d, and f elec-

tron densities [42]. The unscreened electron density, ρ
a(k)
i , in the Eqs. (3.8)-

(3.11), is given as an exponential decay function as:

ρ
a(k)
i (rij) = ρi0 exp

[
− βk

i

(rij

r0
i
− 1
)]

(3.12)

Here, the nearest neighbor distance, r0
i , is for the reference structure. β(k) is a

fitting parameter. The weighting factor for the electron density is written as:

t(k)i =
∑j ̸=i tk

0,jρ
a(0)
j Sij

∑j ̸=i(tk
0,j)

2ρ
a(0)
j Sij

(3.13)

The pair interactions are screened using the same screening function formal-

ism as in the electron density. The screening in the pair interactions is intro-

duced as follows:

ϕij(rij) = ϕ̄ij(rij)Sij , (3.14)

where ϕ̄ij(rij) has the following form:

ϕ̄ij(rij) =
1

Zij

[
2Eu

ij − Fi

(Zij

Zi
ρ

a(0)
j (rij)

)
− Fj

(Zij

Zi
ρ

a(0)
j (rij)

)]
. (3.15)

The Eu
ij(rij) energy term in the above equation is considered from the Rose

universal equation of state with an exponential decay function [55]:

Eu
ij(rij) = −Eij(1 + a∗ij(rij) + δa∗3

ij (rij)) e−a∗ij(rij) , (3.16)

where a∗ij is the scaled interatomic distance with respect to the equilibrium

interatomic distance in the reference structure. The parameter a∗ij is obtained

by scaling the interatomic distance, rij as following:

a∗ij = α
(rij

r0
ij
− 1
)

(3.17)
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The dimensionless parameter, α is related to bulk modulus, B, the cohesive

energy, Ec, and the equilibrium lattice volume, Ω [42]:

α =

√
9BΩ

Ec
(3.18)

3.2.2 Binary system

For a system having two species, the interatomic potential is constructed us-

ing the individual element parameters as well as additional parameters to

describe the interactions between the different species. In this case, the total

energy per atom, Eu
ij(R), is written as:

Eu
ij(R) =

1
2

[
Fi(ρ̄i) + Fj(ρ̄j) + Zij

1 ϕij(R)+ (3.19)

1
2

Zij
2 Sii ϕii(aR) + Sjj ϕjj(aR)

]
In the above equation, R is the nearest neighbor interatomic distance in the

binary system. Fi and Fj are the embedding energy terms for species i and

j. The first nearest neighbor coordination is denoted as Zij
1 and the second

nearest neighbor coordination as Zij
2 . a is the ratio of second and first nearest

neighbor distances. The pair energy of two different species is calculated as:

ϕij(R) =
1

Zij
1

[
2Eu

ij(R)− Fi(ρ̄i)− Fj(ρ̄j)− (3.20)

1
2

Zij
2 Sii ϕii(aR) + Sjj ϕjj(aR)

]

3.2.3 Many-Body Screening

A unique characteristic of the 2NN-MEAM formalism with respect to other

valence force field models is the introduction of many-body screening. This

is implemented by modifying the interatomic interactions between a pair of

atoms i and j in presence of a third atom k. Let us first consider Sij to be a

screening function between atoms i and j. Sij is the product of a radial cutoff
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FIGURE 3.1: Schematic representation of screening between
two neighboring atoms i and j by a third atom k [see Eq. (3.26)].
If the atom k lies outside (inside) of the blue (black) ellipse
which corresponds to C > Cmax (C < Cmin), the pair interaction
i - j is unscreened (fully screened), respectively. If atom k lies in
between the blue and black ellipses, e.g. on the red ellipse, then
Cmin < C < Cmax and the interaction is partially screened. The

units in both axes are arbitrary.

function, fc, and a three-body term, S̄ij:

Sij = S̄ij fc

(
rc − rij

∆r

)
. (3.21)

∆r and rc are the smoothing and the cut-off distances, respectively. The

smooth cut off function is defined as:

fc(x) =


1 if x ≥ 1

−[1 − (1 − x)4]2, if 0 ≥ x ≤ 1

0 if x ≤ 0

(3.22)

and the three body term is obtained as following,

S̄ij = ∏
k ̸=i,j

Sijk (3.23)

with

Sijk = fc

( Cijk − Cmin,ijk

Cmax,ijk − Cmin,ijk

)
(3.24)
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The functional form of Cijk is as follows,

Cijk =
2(Xij + Xjk)− (Xij − Xjk)

2 − 1
1 − (Xij − Xjk)2 (3.25)

Where Xij = (rij/rik)
2 and Xkj = (rkj/rij)

2. Cmin and Cmax are the limiting

values of C.

Let us consider an ellipse that passes through atoms i and j with the major

axis along the y direction and the minor axis connecting the two atoms [see

Fig. 3.1]. The equation of this ellipse can be written as:

X2 +
Y2

C
=

1
4

(3.26)

When atom k is outside the ellipse given by C = Cmax then this atom doesn’t

screen the interaction between i and j and Sijk = 1.0. When, however, atom k

is inside the ellipse given by C = Cmin then this atom completely screens the

interaction between i and j and Sijk = 0.0. In all other cases, the interaction

is partially screened and the value of Sijk is between 0 and 1 [see Eq. (3.23)].

The minimum and maximum screening parameters, Cmin and Cmax, strongly

influence various calculated physical properties. It has been shown that low-

ering the value of Cmin improves the thermal expansion coefficient of Ni [56],

yields the correct ordering of surface energies of low index surfaces in bcc

Li [38], and improves the GSFE for bcc [39] and diamond Si [57]. It has been

further demonstrated that the values of Cmin play a significant role in improv-

ing the GSFE, and the GB energies. Large values of Cmin result in oscillatory

behavior of the GSFE profiles. However, lower values of Cmin result in over-

estimation of the GB energies and in over- or under-coordinated structures

in Si during annealing. Hence, as it will be discussed later, the value of Cmin

to be implemented is a compromise between GSFE and GB energies on the

one hand and the structural properties of Si on the other.



3.3. Parametrization of MEAM Potentials 31

3.2.4 MEAM parameters

In summary, for a unary system, the 2NN-MEAM potential consists of 16 pa-

rameters. These are the cohesive energy, Ec, the equilibrium nearest neigh-

bor distance, re, the four parameters for the decay of the electron density,

βi, i = 0 − 3, three parameters for the weighting of the electron density, ti,

i = 1 − 3, α that correlates with Rose’s universal equation of state, A that

scales the embedding energy, the screening parameters, Cmin and Cmax, the

cutoff distance of the interatomic interactions, rc, the smoothing distance, ∆r,

and the parameter δ that is used in Rose’s universal equation of state.

For a binary system consisting of elements A, and B the potential has

32 parameters for the individual elements. Apart from these, the following

parameters are required to describe the binary potentials. These are the co-

hesive energy of the binary, Ec(A, B), the equilibrium nearest neighbor dis-

tance, re(A, B), the bulk modulus related parameter, α(A, B), and the smooth-

ing and cutoff distances, ∆r and rc, respectively. Furthermore, there are eight

screening parameters, four Cmin and four Cmax, for the different combinations

of A and B atoms at the triplet. Furthermore, the ratio of mixing of the elec-

tron density (ρA/ρB) is used to parametrize a binary potential. Nevertheless,

in the present thesis, only the reference electron density of the individual ele-

ment is used to fit the potential, i.e., this parameter is not tuned in the binary

system.

3.3 Parametrization of MEAM Potentials

The parametrization of a MEAM potential is not straightforward. However,

parametric studies that identified the relation between MEAM parameters

and materials’ properties, revealed that in the MEAM framework, some pa-

rameters are confined to a few properties only [38, 39, 42]. Therefore, a

parametric study that provides the relation between the MEAM parame-

ters and the properties constitutes an important ingredient in the strategy

to parametrize MEAM potentials.
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A first step toward the parametrization of a MEAM potential is to perform

a parametric study and construct the correlation table, i.e., a table that maps

and quantifies the influence of each potential parameter on the material’s

properties. This is achieved by calculating the relative change in a property

caused by the relative change in a parameter. As it will be described next,

employing the correlation table, the potential can be parametrized by an it-

erative trial and error approach. This approach can be easily generalized to

parametrize the interatomic potentials irrespective of the ground state crystal

structure.

Applying a parametric study on the 2NN-MEAM potential, the correla-

tion of each parameter to the target properties has been obtained. These are

listed in Table 3.1. Using this Table the 2NN-MEAM potential for Si can

be parametrized following the aforementioned trial and error iterative ap-

proach. The potential was fitted on the GSFE for shear along [11̄0] and [112̄]

in the {111} shuffle plane, the cohesive energy differences between the Si in

the diamond structure and in the β-tin, bcc, and fcc structures, and the elastic

constants (Cij).

The correlation table was obtained by changing each parameter by 10%,

20%, and 30%. If the change in the property was less than 1%, the correlation

is noted as N, i.e., no correlation. If however, the change in the property was

between 1% and 7% then it is noted as M, i.e., mild correlation and if the

change was larger than 7%, then it is termed S, i.e., strong correlation. For

example, in the Table cell that depicts the correlation between parameter α

and the bulk modulus B the values are written as SSS, i.e., the bulk modulus

changes by more than 7% even if parameter α is changed by 1%. In all cells,

the first, second, and third character indicates the correlation for 10%, 20%,

and 30% change in the parameter, respectively.
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TABLE 3.1: Correlation table between the properties of Si and 2NN-MEAM parameters. S indicates strong correlation
(properties change more than 7%), M indicates mild correlation (properties change between 1% - 7% ) and N indicates no
correlation (properties change less than 1%). B is the bulk modulus, E is the surface energy, Cij is the elastic constant. For
example, in column α and row, B the values are written as SSS. Among these three S, the first S means, the 10% change of
the values α shows more than 7% change in the value of bulk modulus, B, i.e, the change yields a strong correlation. The

other two S indicate also strong correlation if the parameter α is changed by 20%, and 30%.

α β0 β1 β2 β3 A t1 t2 t3 rc δr Cmin Cmax
B SSS NNN NNN NNN NNN NNN NNN NNN NNN NNN NNN NNN NNN
E{100} SSS MSS SSS SSS SSS SSS MSS MMS MSS NNN NNN SSS NNN
E{110} NNN NMM NNN MMM NNN MMM MSS MMS MMM NNN NNN NNN NNN
E{111} NNN NNN NNN NNN NNN MMM MSS MMS MMM NNN NNN NNN NNN
tin − dia MSS SSS SSS SSS SSS SSS SSS SSS SSS NNN NNN NNN NNN
f cc − dia SSS SSS SSS SSS SSS SSS SSS SSS SSS NNN NNN NNN NNN
bcc − dia SSS SSS MMM MMM MMM SSS MMM MMM SSS NNN NNN NNN NNN
sc − dia SSS SSS MMM MMM NMS SSS MMM MMM SSS NNN NNN NNN NNN
C11 SSS NNN NNN NNN NNN MMS NNN NMM MMM NNN NNN NNN NNN
C12 SSS NNN NNN NNN NNN MSS NNN MMM MSS NNN NNN NNN NNN
C44 MMM MMS MMS MMM MMM SSS SSS NNN MMM NNN NNN NNN NNN
Ev SSS SSS MMM MMM MMM SSS MSS NNN MMM NNN NNN NNN NNN
Uunstable NNN MSS NMM NNN NNN SSS MSS MMM MSS NNN NNN SSS NNM
GSFE shape NNN MSS NMM NNN NNN SSS MSS MMM MMS NNN NNN SSS NMM
GB energy NNN MSS NNN NNN NNN SSS MSS MMM MSS NNN NNN SSS MSS
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FIGURE 3.2: Two inequivalent {111} cuts
of the basal plane in the diamond crys-
tal. In the shuffle cut (red dashed line) one
bond per atom is broken and in the glide

cut three bonds per atom are broken.

The iterative parametrization pro-

cedure can vary depending on the

target properties. Nevertheless, con-

sidering the correlation Table it can

be easily generalized. In the fol-

lowing, this procedure is described

for the parametrization of the 2NN-

MEAM potential for Si with the aim

of accurately describing GBs and GB

faceting. The parametrization of

the 1NN-MEAM potential for Si by

Baskes is used as the basis for the

present potential [42].

• In the first step, the cohesive energy, Ec, is set to the experimental value.

Moreover, the choice of the pair energy function, see Eq. (3.16), and of

the electron density functional, see Eq. (3.5), is made in this step.

• In the second step, the bulk modulus is fitted by changing the parame-

ter α. This parameter scales proportionally with the square root of the

bulk modulus and depends on the atomic volume, Ω, and the cohe-

sive energy, Ec [see Eq. (3.18)]. Therefore, this parameter can be ini-

tially fixed. However, as the atomic volume, cohesive energy, and bulk

modulus are correlated with other parameters as well (see Table 3.1)

parameter α may have to be adjusted in subsequent iteration step/s. In

this case the bulk modulus can be recovered by setting a new value of

α = αcurrent
√

Btarget/Bcurrent, where αcurrent and Bcurrent are the current

values of the parameter and the calculated bulk modulus [39]. Btarget is

the targeted value of the bulk modulus.

• Next, the GSFE for shear along [11̄0] in the {111} plane is fitted. The

parameter β0 was used to adjust the unstable stacking fault energy and

Cmin was used to remove possible discontinuities in the GSFE profile.

As can be seen in Table 3.1, the GSFE curve is correlated strongly not
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only to β0 and Cmin but to A as well. However, only β0 and Cmin

were used to iterate over GSFE. Furthermore, first-principle calcula-

tions revealed that the ideal shear strength is strongly related to the

valence charge distribution and the directionality of the bonds [58].

Since the GSFE is related to the ideal shear strength, it is more intuitive

to correlate the electron density with the GSFE through parameter β0.

The diamond crystal has two inequivalent cuts of the {111} plane [59].

The shuffle where one bond per interface atom is deformed or broken

and the glide cut where three bonds per atom are deformed or broken

(see in Fig. 3.2). In the present work, we considered the shuffle cut to

parametrize the potential.

• Parameter A was used to adjust the cohesive energy difference between

diamond and fcc crystals.

• Parameter t3 was used to adjust the cohesive energy differences be-

tween diamond and β-tin, sc, and bcc structures.

• The parameters (t2 and β2 were used to adjust the energies of the {100},

{110}, and {111} surfaces, E{100}, E{110}, and E{111}, respectively and the

elastic constants, Cij.

The above procedure was repeated until the properties of the material are no

longer improved. During the change of each parameter, the change in the tar-

get as well as in all other properties is simultaneously monitored. A change

is applied only if the target properties are improved while the other prop-

erties are almost not affected. Otherwise, the change is not applied and the

next step is followed. This is schematically shown in Fig. 3.3. In the first step

parameter, α is fitted. In the second step, the GSFE is improved by chang-

ing parameters β0 and Cmin. However, as is depicted in Table 3.1, these two

parameters strongly influence the {100} surface energy, the vacancy forma-

tion energy, the C44 elastic constant as well as the phase transitions energies.

Therefore, these two parameters are varied in such a way that the GSFE is

improved and the effect on all other aforementioned properties is minor and
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FIGURE 3.3: Schematic diagram highlighting the dependence
of material properties on the parameters Cmin, and β0. These
parameters strongly influence the GSFE energy and the GSFE
profile, the GB energies. However, they have a small impact on
the vacancy formation energy and the elastic constants. These
parameters are iterated in such a way that small changes in Cmin
and β0 improve the GSFE energy but don’t significantly alter
the elastic constant and the vacancy formation energy. If the
latter are significantly changed, the iterations were not applied

and we move to the next step.

they can be recovered in the next step. The six-step procedure depicted in

Fig. 3.3 is repeated until no further improvement of the properties can be

achieved. Similar parametrization strategies of an interatomic potential have

been applied by Groh et al. [38] and Alam et al. [39] in bcc Li.

For a binary system, the same procedure is applied for the potential pa-

rameters. The cohesive energies and the equilibrium nearest neighbor dis-

tances are chosen from the binary reference structure. The bulk modulus

of the reference structure was correlated with parameter α. The screening

parameters are correlated to the GSFE energy and the elastic constants of the

binary system, the substitutional and interstitial energies, the segregation en-

ergies, etc.
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3.3.1 Automation of MEAM potentials parametrization

For the efficient parametrization of the interatomic potentials, ’Potitr’ (https:

//github.com/alammasud/Potitr) software package has been developed. The

tool is written in C and bash scripting. The key component of the package

is the automation of material properties’ calculations of a large number of

material properties. Currently, the code can calculate material properties for

fcc, bcc, diamond, and hcp crystal structures, as well as for many binary

structures such as B1, B2, D1a, i4-mmm. The calculated properties are cohe-

sive energies, elastic constants, surface energies for low index surfaces, point

defect formation energies, GSFEs for different directions of shear and glide

plane, and tensile stress for surface cleavage. All the properties are organized

in subdirectories and the calculations are executed from a bash script. In the

first step, cohesive energies and lattice parameters are calculated. Then and

using these lattice parameters all other properties are evaluated.

3.4 Summary

In the present Chapter, the formalism of the 2NN-MEAM potential has been

introduced. By performing a parametric study, the correlation of each pa-

rameter to the physical properties of the material has been identified and a

correlation Table has been constructed. In this Table, the sensitivity of the ma-

terial properties on the potential parameters has been quantified by varying

each parameter. The parametric study revealed that the GB formation ener-

gies and the GSFEs are strongly correlated with the Cmin. Increasing the value

of Cmin, the GB energy decreases while the GSFE increases. Furthermore, re-

ducing the value of Cmin results in smooth GSFE profiles, i.e., eliminates the

discontinuities. A smaller value of Cmin smoothly screens the many-body

interactions. Parameter α was used to adjust the bulk modulus, B. A com-

bination of the parameters β0 and Cmin was used to adjust the GSFE while

the combination of parameters t2, and β2 was used to adjust the elastic con-

stants, Cij. Parameter A was used to iterate over the transitions energies of
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different crystal phases. Overall, in the present chapter, the parameterization

methodology of a new 2NN-MEAM potential has been described. Based on

this approach, 2NN-MEAM interatomic potentials for Si, C, 3C-SiC, Ni, Re,

and NiRe alloys have been parametrized. These are described in Chapters 4,

5, and 6.
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Chapter 4

Phase diagram of grain boundary

facet and line junctions in Silicon

4.1 Introduction

The presence of point, line, and planar defects has a strong impact on the

structural, mechanical, electronic, and optical properties of materials [43, 60–

64]. For example, point defects play a prominent role in determining phase

transformations, heat and electronic conductivity, as well as the electronic

properties and the strength of materials [20, 65]. Line defects such as dislo-

cation have a profound effect on the intrinsic ductility [62, 66] as well as on

the electronic properties of materials [67–69]. 2D planar defects such as GBs

also play a decisive role in determining the materials’ mechanical, electronic,

and optical properties [2, 64, 70–73]. These interfaces separate two grains of

different orientations.

At the GBs the translational symmetry of the crystal is broken and the

atomic structure at and near the boundary plane differs from the bulk crys-

tal [74]. GBs have a critical role in determining a large variety of material

properties: The presence of low coordinated atoms and/or highly distorted

bonds may introduce deep states into the band gap of semiconductors. Deep

states may also be introduced by the preferential decoration of the GBs by

impurities. These interfaces are often preferred sites for segregation and for-

mation of precipitations [75, 76]. The latter is also known to affect the me-

chanical properties of materials such as the solute induced embrittlement.
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GBs introduce barriers to dislocation propagation. These barriers arise

due to the misorientation and the disorder at and near the interface. Disloca-

tions propagate when they experience a critical value of shear stress (Peierls

stress) [77, 78]. However, when a dislocation reaches a GBs it experiences a

barrier that hinders propagation and a pile up of dislocation is built at the GB.

As the number of dislocations in the pile up increases, the repulsive forces

among the dislocations reduce the barrier and dislocations can diffuse across

the interface. Nevertheless, grains of smaller size induce smaller pile ups.

Hence, larger shear strains are necessary to move the dislocation across the

boundary. The inverse dependence of the yield strength on the grain size is

called the Hall–Petch effect [2, 3] and is described by the following equation:

If the average diameter of the grains is d, the yield strength, σy, is obtained

as:

σy = σ0 +
ky√

d
(4.1)

where σ0 is the friction stress and ky is the strengthening coefficient. Never-

theless, below a critical grain size (grain diameters typical in the order of a

few tens of nm, i.e., nanocrystalline materials) the material gets softer. This

inverse Hall–Petch effect arises from GB sliding which resolves the applied

shear stress [79].

The aforementioned discussion indicates that both GBs and grain sizes

play an essential role in the mechanical properties of the materials. How-

ever, as will be demonstrated in this Chapter, the properties of GBs such as

the GB reconstruction can be strongly connected to and controlled by the

microstructure in terms of grain sizes. In the present Chapter, the interplay

between microstructure and GB properties is highlighted by investigating

faceting in Si GBs.

4.1.1 GBs in Silicon

GBs in Si is of particular technological interest. More than 90% of the annual

sales of solar cells are made of crystalline Si. Among these, more than half of

the solar cells are made of mc-Si due to their low production cost and easier
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FIGURE 4.1: Schematic representation in ball and stick of the
construction of the A-{112} (c) from the S-{112} GB (a). In (a), A
and B represent the 5- and 7- atom rings, respectively. α and β
indicate the atoms that has been removed to create the A-{112}
GB. In (b) the applied shift of the one grain with respect to the
other is shown. In (c) the 5-, 6- and 7- atom rings are presented

by F, E, and D, respectively

fabrication process [80]. This mc-Si solar cell has a conversion efficiency of

12%–16%. Nevertheless, mc-Si has a density of 104 cm−1 GBs [81]. As has

already been discussed, these planar defects as well as their interaction with

impurities may introduce deep states into the fundamental bandgap. Due

to the presence of over- or undercoordinated atoms and/or highly distorted

bonds, GBs are often decorated or act as strong gettering centers for impu-

rities such as O, C, Fe, or P [82]. The above mentioned states would act as

recombination centers and reduce the efficiency of Si based devices [83].

Up to 80% of the GBs in Si are of type Σ3. Experimentally these GBs are

observed as dissociated into {111} and {112} facets [16]. Among these, Σ3

{111} are the twin boundaries. They have very low boundary energies and

are electrically inactive. Σ3 {112} boundaries on the other hand have two
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stable/metastable states. The lower energy boundary is known as the asym-

metric (A-Σ3 {112}) boundary and the higher energy boundary is known as

the symmetric (S-Σ3 {112}) boundary [57, 84]. While the S-Σ3 {112} boundary

is commensurate to the coincident site lattice geometry (see Section 4.2.1),

the A-Σ3 {112} is characterized by the removal of two atoms per interface

unit cell, and a shift of the one grain with respect to other (see Fig. 4.1).

The S-Σ3 {112} [see Fig. 4.1(a)] has a five fold coordinated atom per 1 × 1

interface cell and highly strained bonds. These introduce deep states into

the bandgap [21]. On the other hand, the A-Σ3 {112} [see Fig. 4.1(c)] has no

deep states into the bandgap. Moreover, both boundaries show different site

selectivity for solute segregation [16, 21].

Faceting is in principle described by Herring thermodynamic arguments

and it is the result of the minimization of the interfacial free energy. As has

already been mentioned, Σ3 boundaries in Si facet towards {112} and {111}.

However, it is not clear if faceting is an intrinsic property of these boundaries,

i.e., driven by the anisotropy in the boundary energies or it is solute driven,

i.e., minimization of the interfacial free energy via preferential segregation of

impurities at the S- or A-{112} facets or at their line junctions with the {111}

facets.

Furthermore, at the {111} and A-{112} line junctions partial dislocations

are introduced to accommodate the misfit and strain induced by the afore-

mentioned rigid shift and the removal of atoms from the GB. This is expected

to influence the energetics of faceted Σ3 GBs. Indeed, the interaction energy

per unit length W12/L between two parallel dislocations with Burgers vec-

tors b1 and b2 is [85]

W12

L
= −µ (b1 · ξ) (b2 · ξ)

2π
ln
(

R
Ro

)
− µ

2π (1 − ν)
[(b1 × ξ) · (b2 × ξ)] ln

(
R
Ro

)
− µ

2π (1 − ν) R2 [(b1 × ξ) · R] [(b2 × ξ) · R]

(4.2)

where µ and ν are the shear modulus and Poisson ratio, respectively, R is the
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FIGURE 4.2: Schematic representation of a faceted GB in Si. The
dashed line represents the flat Σ3 GB . {111} and {112} are the
facets with L{111} and L{112} being their lengths, respectively. θ
is the angle between the boundary plane and the {111} facets.
w12 is the force acting on the line junction and b denotes the
Burger’s vector that predominantly accounts for discontinuity
of the displacements along the {111} plane in the case of A-{112}

facets (see text).

vector connecting the two dislocations, Ro is the core radius, and ξ is the dis-

location sense. In order to shed light on how these interactions influence the

interfacial energetics let us consider the line junctions schematically demon-

strated in Fig. 4.2. The dislocations at the junctions are of edge type and

hence the first term on the right hand side of Eq. 4.2 vanishes. The other two

terms comprise positive contributions to the interfacial energy. Furthermore,

their magnitude depends on the geometric characteristics of the faceted GB,

i.e., the lengths of the {111} and A-{112} facets.

The aforementioned discussion reveals that the faceting of Σ3 GBs in Si

is governed by a complex interplay between facet energies, the presence of

impurities as well as long range dislocation interactions. The interaction of

impurities with these GBs is addressed in Chapter 5. In the present Chapter,

we focus on the properties of faceted Σ3 GBs in pristine Si. Specifically, we

derive a phase diagram that describes the facet junction reconstructions as a

function of the geometric properties of faceted GBs, i.e., the inclination angle

and the facet period.

In order to simulate faceted GBs and line junctions, large simulations cells
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are required such that the long-range strain interactions are explicitly in-

cluded in the calculations. Simulations at the experimentally relevant length

scale require simulations cells that consist of at least a few tens of thousands

of atoms. Performing calculations on these large systems is beyond the scope

of DFT due to limited computational resources. Therefore, a new MEAM po-

tential is developed and employed to large scale atomistic calculations of Σ3

GBs in Si. DFT calculations have been conducted to construct a material’s

database to fit the potential. Section 4.2.1 discusses the coincidence site lat-

tice concept and how this can be applied to construct simulation cells for

GB atomistic calculations with periodic boundary conditions. In Sections

4.3 and 4.4 the aforementioned material’s database and the MEAM potential

parametrization are presented. In Section 4.5 insights into the energetics of

GB faceting are discussed and based on that, a phase diagram of GB facet

and line junction is constructed.

4.2 Modelling Grain Boundaries

In general, five macroscopic degrees of freedom are required to define a GB:

Three degrees of freedom are necessary to identify the misorientation of the

two adjacent grains and two degrees of freedom to define the boundary plane

orientation. GBs are categorized into different classes according to their mis-

orientation angle, the rotation axis as well as the symmetry across the bound-

ary plane (see Fig. 4.3). A rotation axis in the boundary plane creates tilt GBs

whereas if it is normal to the plane a twist boundary is formed. In all other

cases, mixed GBs are created. Furthermore, if the two adjacent grains are

mirror symmetric the GB is symmetric and asymmetric otherwise. Regard-

ing the misorientation angle, the GBs are categorized into low and high angle

GBs. Low angle GBs consists of a dislocations array. The largest misorien-

tation angle of a low angle GB is defined by symmetry allowed minimum

separation distance between the dislocations and it is less than ≲ 15° [86].

The large angle GBs can be further categorized as low Σ value Coincidence

Site Lattice (CSL) boundaries and random GBs. The CSL is the superlattice



4.2. Modelling Grain Boundaries 45

FIGURE 4.3: Classification of GB based on misorientation angle,
GB plane orientations and mirror symmetry.

that consists of the interpenetrating lattices of the two adjacent grains when

these coincide.

The concept of the CSL and its implication on GB energies and properties

is described in detail in Section 4.2.1. Nevertheless, let us first provide a short

discussion on the different geometries that can be applied to model a GB in

atomistic simulations. A GB can be formed by bringing two crystals together

across a plane with respect to a certain axis. One approach to model a GB is

to implement a slab [57], or a cluster [87] geometry [see Figs. 4.4(b) and (c)].

In both cases, the supercell contains a single GB which is introduced in the

middle of the cell. In the slab geometry [see Fig. 4.4(b)] periodic boundary

conditions are applied only in the two directions parallel to the boundary

plane. The thickness of the slab is large enough to decouple the GB from the

two free surfaces. Furthermore, a vacuum slab with a thickness large enough

to eliminate interaction between the free surfaces is also introduced if PBC is
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FIGURE 4.4: Schematic constructions of different approaches to
model GBs. (a) Simulation cell with PBC in all directions. (b)
Slab geometry. (c) Spherical cluster geometry. For the sake of
clarity, only a single atomic layer cutting a sphere’s equator is
shown. The dashed lines indicate the GB/s and the rectangles
the supercells. d is the vacuum thickness. Blue and red circles
denote atoms at the opposite grains. In (a) the atomic geometry

is extended beyond the supercell to highlight the PBCs.

inherent to the simulation code and/or the methodology, e.g., in plane wave

based DFT calculations.

The slab and the cluster geometries have the advantage of containing a

single GB in the supercell. Hence, there are no interactions between GBs to

be considered. However, the presence of free surfaces and their interactions

with the GB is a major drawback of these approaches. This can be addressed

by the application of PBC in all directions. Nevertheless, the latter requires

that the simulation cell is translationally symmetric in all directions. In order

to restore translation symmetry, it is necessary to include a pair of compen-

sating extended defects in our supercell. Although this is straightforward

for special cases of high symmetry GBs, such as the Σ3 {111} GBs, the situa-

tion becomes cumbersome for low angle or arbitrary misorientation GBs or

for GBs that are lacking mirror symmetry. Nevertheless, this can be circum-

vented by exploiting the translational symmetry of the CSL.

4.2.1 Coincidence Site Lattice

Fig. 4.5(a) shows the Moiré pattern formed by the interpenetrating lattices of

two grains with the same origin and with one of the grains rotated relative

to the other. For a rotation by an arbitrary angle, no points from both lattices

coincide within a radius of tens of lattice constants from the rotation axis.
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However, for certain special rotation angles, there will be some lattice sites

from both lattices that coincide [see Fig. 4.5(b)]. The newly formed superlat-

tice which consists of both interpenetrating lattices is the CSL. The CSL has

a translational symmetry defined by two primitive vectors. The ratio of the

volume of the unit cell of CSL to the volume of the regular crystal lattice is

the Σ value of the CSL. It can be shown that the Σ values are always odd. The

smallest Σ CSL, i.e., Σ1 corresponds to the perfect crystal.

Once the CSL, i.e, the Σ value is defined, the three macroscopic degrees

of freedom associated with the misorientation of the two grains are uniquely

defined. The remaining two degrees of freedom are associated with the GB

plane. Due to the translational symmetry of the CSL, any two parallel CSL

planes will correspond to two identical GBs. Thus, a supercell with a pair of

equivalent GBs can be constructed [see Fig. 4.5(b)].

Apart from constructing supercells, the CSL is a valuable tool that allows

drawing some general guidelines regarding the GB energies based on sym-

metry arguments. Nevertheless, symmetry alone is not adequate to describe

GB energetics. In principle, a larger density of CSL points at the boundary

plane, i.e., lattice points of the bicrystal that belong to both grains, increase

the coherency at the interface. As has already been mentioned the Σ value

is the relative size of the CSL unit cell with respect to that of the crystal lat-

tice. Hence, small Σ values and CSL planes that maximize the density of CSL

points at the GB are expected to result in lower boundary energies. Indeed, as

has already been discussed, the tilt Σ3 {111} GB has smaller energy than the

S-{112} as well as any other high index Σ3 GB. Fig. 4.6 shows the boundary

energy against the misorientation angle of tilt Si GBs with the [110] rotation

axis [88]. As can be seen the GB energy as a function of misorientation angle

shows cusps. These cusps correspond to CSL GBs with a low Σ value.

4.3 Material database

The aim of the present study is to establish the phase diagram of the Σ3 GB

line and facet junctions in Si. As has already been mentioned in Section 4.1.1
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and revealed by Eq. (4.2) a prerequisite to investigate faceting in these planar

defects is to correctly describe both the long range strain interactions between

the line junctions and the highly strained core of the latter. DFT calculations

can accurately describe both the long range interactions as well as the local-

ized region of the cores. Nevertheless, DFT calculations are still restricted by

their computational cost to systems consisting of ≈ 103 atoms. However, in

order to model GBs at the experimentally relevant length scale and/or cor-

rectly describe long range strain interactions, simulation cells consisting of

≈ 105 atoms are required.

Semi-empirical interaction models allow treating systems consisting of a

few million atoms. Furthermore, they can accurately describe the long range

strain interactions [67, 89]. However, in order to perform large scale atom-

istic calculations of GBs using empirical potentials, the transferability of the

interatomic potentials has to be evaluated in the first step. There is a large

number of valence force fields (VFF) for Si. These include the Tersoff [90] and

Stillinger-Weber (SW) [40] potentials, the bond-order potentials [41], and the

MEAM potentials [42], to mention a few of the most widely applied VFF

models. Nevertheless, common artifacts with VFF models for fcc, bcc, hcp,

and diamond materials are that they yield incorrect ordering of surface ener-

gies and erroneous oscillations in the GSFE profiles [38, 39, 57].

In order to evaluate these potentials, a thorough investigation was con-

ducted with a special focus on those properties that are expected to influence

and/or control the properties of GBs. Specifically, the cohesive energies of

the ground state diamond structure and the higher energy fcc, bcc, and β-

tin crystal phases, the elastic constants, the charge neutral vacancy formation

energies, the surface energies, and GSFE and GB energies have been con-

sidered. This investigation revealed critical shortcomings: Specifically, the

above mentioned potentials fail to provide a quantitative and qualitative de-

scription of GSFE curves with respect to DFT. The GSFE is a material prop-

erty that relates to dislocation cores and hence it constitutes a benchmark for

the potential in describing the GB line junctions. Moreover, the smooth GSFE

curve is a benchmark of the interatomic screening under shear conditions.
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To address the aforementioned shortcomings, in the present work, a 2NN-

MEAM potential to study GB faceting in Si was parametrized. MEAM poten-

tials have been widely applied to study GB energetics and structural prop-

erties [57, 91–93]. A 1NN-MEAM potential for Si has been parametrized by

Baskes (hereinafter referred as B-MEAM potential) [42]. This parametriza-

tion is used as the basis to parametrize the present potential. Furthermore, it

was shown that it can correctly predict the thermal properties, i.e., thermal

expansion coefficient, and melting temperature of Si [94].

4.3.1 Computational Details

Ab-initio calculations

As has already been described, the construction of the MEAM potential in-

volves the fitting of the potential parameters. In order to achieve this a ma-

terial’s database was constructed and split into two groups. The first group

includes properties that were used to fit and the second group properties to

evaluate the potential. This database includes the following properties: Co-

hesive energies in the diamond, bcc, fcc, and β-tin, elastic constants, charge

neutral vacancy formation energies, surface energies, GB energies of S-{112},

A-{112}, and the Σ3 {111} GBs, and GSFEs for different shear directions. The

cohesive energies of diamond and β-tin, the elastic constants of Si, the {110}

and {110} surface energies, and the GSFEs were used to fit the potential pa-

rameters. The other properties were used to benchmark the interatomic po-

tential.

To build the database, DFT calculations have been employed. All ab-initio

calculations were performed with the Vienna ab-initio Simulation Package

(VASP) [95]. A plane wave cutoff of 450 eV was used and an equivalent

6 × 6 × 6 Monkhorst-Pack k-point mesh for the bulk unit cell was used to

sample the Brillouin zone. For the exchange and correlation, both the local

density approximation (LDA) [96] and the generalized gradient approxima-

tion (GGA) [97] were used. The atomic positions were relaxed until the ab-

solute value of the maximum force on all atoms was less than 0.01 eV/Å.
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VFF calculations

All interatomic potential calculations were performed using the Large-Scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) [98]. All the

GBs were annealed using the Isothermal - Isobaric ensemble (NPT). The tem-

perature of the systems was first raised to 700 K and cooled to 0.1 K within

a time period of 750 ns. It was explicitly checked that an order of magnitude

slower cooling rate does not affect the relaxed geometries and the GB ener-

getics. The annealing was followed by a conjugate gradient relaxation until

the energy change was smaller than 10−6 eV/atom or all atomic forces less

than 10−6 eV/Å. During the atomic relaxations, the pressure was relaxed

along the normal to the GB direction.

GB Vibrational Free energy

In order to evaluate the effect of the vibrational contributions to the free

energy, the dynamical matrix for the S- and A-{112} GBs has been calcu-

lated. For a system with an extended defect large supercell sizes are re-

quired. However, (i) only the relative stability of the S-{112} with the respect

to the A-{112} is of interest, and (ii) contributions to the force constant arising

from deeper layers are the same for both interfaces and correspond to those

of a bulk system [99]. To calculate the force constant matrix contributions

from atoms within a slab of ≈5 nm from the interfaces have been consid-

ered. The dynamical matrix has been calculated with the small displacement

method [100] using the present 2NN-MEAM potential and the vibrational

free energy contributions have been calculated within the harmonic approx-

imation [101, 102].

4.4 MEAM potential parametrization

For a unary system, the 2NN-MEAM potential consists of 16 parameters [53]

(see Table 4.1). The correlation of the parameters to physical properties is

intricate. Nevertheless, as has already been described in Section 3.3 some
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TABLE 4.1: 2NN-MEAM potential parameters set for Si. The
cohesive energy, Ec is in eV/atom and the equilibrium nearest
neighbors distance, re, cutoff distance, rc, smoothing distance,
∆r, and the parameter, δ are in Å. The reference structure for
Si is diamond. The parameters in bold are fitted in the present

study and the others were adopted from NIST [106].

Ec re β0 β1 β2 β3 α A t1 t2 t3 Cmin Cmax rc ∆r δ
4.63 2.35 4.5 4.8 5.5 4.8 4.87 0.80 3.3 3.60 -2.3 1.60 2.8 4.0 0.1 0.0

parameters play a more dominant role in certain physical properties and a

parametric study to systematically fit the parameters has been applied. The

parametrization of the 1NN-MEAM potential for Si by Baskes is used as the

basis for the present potential [42]. The cohesive energy, Ec, and the nearest

neighbor distance, re were taken from experiment [103, 104]. The parameters

α and δ which enter the Rose’s universal equation of state were correlated

to the bulk modulus, B, and the pressure derivative of the bulk modulus,

Bp [105] [see Eqs. (3.16)-(3.18)]. In the present study, the value of δ is set to 0.0

as the pressure derivative of the bulk modulus is already in good agreement

with DFT (4.15 vs 4.20) even with neglecting the δa∗3 term [see Eqs. (3.16)-

(3.18)].

The remaining parameters are the embedding energy scaling factor, A,

the background electron density scaling parameters, ti, the decay lengths of

the atomic partial electron densities, βi, the radial cutoff and smoothing pa-

rameters, rc and ∆r and the screening parameters, Cmin and Cmax. The Cmin

and β0 parameters were used to fit the GSFE for the shuffle cut and the unsta-

ble stacking fault energies. During the parametric study, it was revealed that

lowering the value of Cmin removes the spurious oscillations in GSFE found

in the previous 1NN-MEAM Si potential. Nevertheless, this increases the en-

ergies of Σ3 {112} GBs with respect to the DFT calculated values. However,

this doesn’t impact the qualitative description of the GBs’ properties. More-

over, it does not affect the description of the long range interactions of the

line junctions. Parameters A and t3 were used to fit the cohesive energies of

diamond, fcc, bcc, and β-tin structures and parameter t2 was fit to the elastic

constants.
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FIGURE 4.5: (a) Moiré pattern formed by two interpenetrating
lattices denoted by open and filled balls, respectively. The plus
sign indicates the position of the ⟨110⟩ rotation axis. The rota-
tion of one lattice with respect to other produces no coincidence
within a radius of tens of lattice constants from the rotation axis.
(b) Moiré pattern of the Σ3 CSL. The gray shaded area denotes
the CSL unit cell. The yellow shaded areas indicate supercells
containing a pair of low ({111} and {112}) and higher index GBs.
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FIGURE 4.6: GB energy as a function of the misorientation angle
in Si. The figure is adapted from Guziewski et al. [88].



4.4.1 Structural and elastic properties
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TABLE 4.3: Properties of Si calculated using the present 2NN-MEAM potential (P-MEAM), 1NN-MEAM (B-MEAM) [42],
bond order (E-Bond order) [41], and SW [40] potentials compared to DFT and experimental data. Edia is the cohesive
energy of diamond Si and ∆E denotes the cohesive energy differences between the diamond and the fcc, bcc, and β-tin Si
structures in meV/atom. The lattice parameters a are in Å and the bulk modulus and elastic constants in GPa. The energies
of the 1 × 1 (110), (110), and (111) surfaces are denoted as E(100), E(110), and E(111), respectively. The energies of the {111}

and S- and A-{112} GBs are denoted as EΣ3{111}, ES−Σ3{112}, and EA−Σ3{112}, respectively and are in meV/Å
2
. The vacancy

formation energy Ev is in eV.

P-MEAM B-MEAM E-Bond order SW DFT Experimental

diamond Edia -4.63 -4.63 -4.628 -4.336 -4.75 6, -4.65 4 -4.62 9

a 5.431 5.427 5.429 5.431 5.403 1, 5.43 4 5.431 5

fcc-dia ∆E 771.21 468.89 652.24 396.28 4491, 537.482, 566 4

a 4.282 4.20 3.85 4.14 3.817 1, 3.866 2, 3.885 4

bcc-dia ∆E 754.85 419.85 505.97 281.04 432 1, 519.69 2, 525 4

a 3.312 3.198 3.044 3.24 3.044 1, 3.087 2, 3.088 4

β tin -dia ∆E 613.75 320.86 423.14 199.68 2121, 295.46 4

a 5.079 4.95 4.87 4.97 4.911, 4.97 4

c/a 0.553 0.545 0.527 0.56 0.55 1, 0.55 4

Bulk modulus B 96.53 96.89 98.38 101.18 96.191 99 8

Bp 4.20 4.22 4.4 2.92 4.151 4.2 8

Elastic constant
C11 162.40 162.44 169.33 151.42 160 3 166 5

C12 65.58 65.44 65.18 76.73 63 3 64 5

C44 77.74 73.25 60.41 56.44 82 3 80 5

Ev 3.45 2.94 3.13 4.33 3.641

E{100} 124.08 102.25 121.86 147. 02 147.93 3 132.95 6

E{110} 94.17 118.10 76.47 103.96 104.86 3 94.25 6

E{111} 78.69 102.56 62.35 84.88 107.36 3 76.77 6

ES−Σ3{112} 69.89 66.50 59.75 59.38 42.241, 41.8 7

EA−Σ3{112} 55.3 50.52 51.01 43.16 24.861, 29.3 7

EΣ3{111} 0.40 0.0 0.0 0.0 0.421, 0.6 7

1 and 2denote DFT calculated properties employing LDA and GGA, respectively. In 3Ref. [107],4Ref. [108] LDA was employed and
in 7Ref. [21] GGA was used.

3Ref. [107], 4Ref. [108], 5Ref. [109], 6Ref. [110], 7Ref. [21], 8Ref. [104], 9Ref. [111].
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TABLE 4.4: Strain modes applied to calculate the three elastic
constants, Cij, of the diamond structure. The strain modes are
depicted in the form {ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6} where ϵi is the strain
in the Voigt notation. ∆E/V is the strain energy density and δ

is the strain variable.

Strain configuration ∆E/V
1
{

δ, δ, (1 + δ)−2 − 1, 0, 0, 0
}

3(C11-C12)δ2

2 {δ, δ, δ, 0, 0, 0} 3
2 (C11+2C12)δ2

3
{

0, 0, δ2(4 − δ2)−1, 0, 0, δ
} 1

2 C44 δ2

The cohesive energies and lattice constants of Si in the diamond, fcc, bcc,

and β-tin crystal structures have been considered. For the calculations of

the elastic tensor of the Si in the diamond structure, three different strain

configurations have been applied (see Table 4.4). The elastic constants are

determined by fitting the calculated energy densities ∆E/V for each of the

strain configurations and small values of the strain parameter δ between -

0.5% and +0.5%. The bulk modulus, B, and the pressure derivative of the

bulk modulus, Bp, have been derived by fitting the calculated total energies,

E, versus volume, V, data to the Murnaghan equation of state:

E (V) = E0 +
BV

Bp(Bp − 1)

[
Bp

(
1 − V0

V

)
+

(
V0

V

)Bp

− 1

]
, (4.3)

where V0 and E0 are the equilibrium volume and the total energy at this vol-

ume.

The results of the energetics, lattice and elastic constants are listed in Ta-

ble 4.3. All the potentials considered, i.e., P-MEAM, B-MEAM, E-bond order,

and SW, calculate the cohesive energy and lattice constant of the ground state

diamond crystal phase in excellent agreement with the DFT calculations. The

P-MEAM, B-MEAM, and E-bond order potentials provide an excellent de-

scription of the elastic constants as well. The SW potential provides an excel-

lent qualitative description of the elastic constants, though the quantitative

description is somewhat more inferior.

The P-MEAM systematically underestimates the cohesive energies with

respect to the DFT calculated values of the higher energy crystal structures.
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Nevertheless, it correctly predicts the sequence of the energetically most fa-

vorable structures. A good qualitative description of the cohesive energies of

the higher energy crystal phases is provided by the B-MEAM, E-bond order,

and SW potentials as well. The elastic constants of these crystal structures

are generally overestimated by the P-MEAM and B-MEAM potentials.

Apart from the aforementioned structural and elastic properties, the charge

neutral vacancy formation has also been considered. This has been calculated

by removing an atom from a 3 × 3 × 3 bulk supercell. The structure was re-

laxed and the formation energies, Ev is calculated as

Ev = Etot − (n − 1)µSi (4.4)

where Ev is the vacancy formation energy. Etot is the total energy of the sys-

tem with the vacancy containing (n − 1) Si atoms and µSi is the chemical

potential of bulk Si. The P-MEAM potential calculated formation energy is

in excellent agreement with the DFT value (3.45 vs 3.64 eV, respectively). The

B-MEAM and SW potentials severely under- and overestimate the Ev, respec-

tively. The E-bond order potential also underestimates Ev by ≈0.5 eV.

4.4.2 Surface energies

The energies of the {100}, {110}, and {111} surfaces have been included in

the materials’ database. In order to model the surfaces, slab geometries con-

sisting of 10 unit cells along the normal to the surface direction with a vac-

uum of 10 and 1 × 1 surface unit cell were considered. The surface energy,

Esurf, is calculated as

Esurf =
1

2A
(Eslab − nEbulk) , (4.5)

where Eslab is the total energy of the slab geometry containing n atoms, and

Ebulk is the total energy per atom of bulk Si. A is the surface area and the fac-

tor 2 in the denominator accounts for the two symmetry equivalent surfaces

in the slab geometry.
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FIGURE 4.7: Schematic representation of supercell imple-
mented to calculate the GSFE. (a) The supercell prior shearing.
The dashed line indicates the sliding plane. (b) The upper half

part of the cell is rigidly sheared along ⟨112⟩.

As seen in Table 4.3, all potentials underestimate the surface energies.

Nevertheless, B-MEAM, E-bond order, and SW potentials predict that the

{100} surface has the highest energy, in agreement with DFT calculations and

experiments.

4.4.3 Generalized Stacking Fault Energy

The GSFE presents a challenging testbed for the interatomic potentials: The

GSFE depends on the screening of the many-body interactions under shear-

ing conditions. Inefficient screening at large shearing distances has been re-

ported to result in oscillatory energy profiles [38, 39, 57]. Furthermore, ac-

cording to the Peierls-Nabarro model, the GSFE profiles and the unstable

stacking fault energies (USFE) are related to the width of the dislocation core

[62, 77, 78, 112, 113]. The width of the dislocation core is inversely propor-

tional to the USFE of GSFE. Hence, the GSFE profile constitutes a testbed for

the accurate calculation of the relaxations of the atoms around a dislocation

core. As has already been mentioned, faceting of the Σ3 GBs in Si involves

the presence of partial edge type dislocations.

The slip system of the diamond crystal is similar to that of the fcc crys-

tal. The GSFE was calculated for shear along ⟨110⟩ and ⟨112⟩ in the {111}

plane [114–116]. To calculate the GSFE orthogonal parallelepiped supercells
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with their axis oriented along ⟨110⟩, ⟨111⟩, and ⟨112⟩ are formed. The su-

percells consisted of a 1 × 1 {111} cell and 10 unit cells and a vacuum region

of 10 Å thickness along the ⟨111⟩ direction. The bottom half of the slab was

kept fixed while the upper half was rigidly shifted along the sliding direction

(see Fig. 4.7). The excess energies per unit area with respect to no shear was

used to calculate the GSFE, γi as following

γxi =
1
A
(Exi − E0). (4.6)

Here, Exi is the total energy at displacement xi, E0 is the total energy without

applied displacement and A is the area of the interface.

Fig. 4.8(a) shows the calculated GSFE for shear along ⟨110⟩. The E-bond

order and Tersoff potentials show an abrupt increase at ≈0.45 and ≈0.55 dis-

placement (in b−1 units, where b is the norm of the Burgers vector) and a

plateau in-between these. This physically meaningless plateau is due to in-

efficient screening of interatomic interactions under shear conditions. The

B-MEAM potential shows spurious local minima in the region of the unsta-

ble stacking fault. Although the SW potential provides a continuous GSFE

profile with a single maximum at 0.5 displacement, it largely underestimates

the USFE with respect to the DFT calculated value (56.63 vs 92.3 meV/Å
2
, re-

spectively). Following the Peierls-Nabarro model, this underestimation will

result in the overestimation of the dislocation core width [62, 77, 78, 112, 113].

Nevertheless, the P-MEAM potential provides an excellent qualitative and

quantitative description of the GSFE profile. It only slightly overestimates

the USFE with respect to the DFT calculated value (99.95 vs 92.3 meV/Å
2
,

respectively).

Unlike the above discussed GSFE profile, the GSFE at the {112} glide

plane is characterized by a single hump at ≈ 0.5 of normalized displacement.

This hump is a characteristic feature of the formation of a stable stacking fault

and it is consistent with the formation of stable stacking faults in fcc and dia-

mond materials. As with shear along ⟨110⟩, Tersoff and E-bond order poten-

tials show abrupt increases and plateaus in the GSFE curves for shear along
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FIGURE 4.8: Generalized stacking fault energy as a function of
the displacement along (a) ⟨110⟩ and (b) ⟨112⟩ in the {111} shuf-
fle plane obtained from DFT, P-MEAM, B-MEAM [42], SW [40],

E-bond order [41], and Tersoff potentials [90]

⟨112⟩ [see Fig. 4.8(b)]. Moreover, both B-MEAM and SW potentials fail to

provide a qualitative agreement with the DFT calculations. Their calculated

GSFE profiles show spurious oscillations. On the other hand, the P-MEAM

potential provides an excellent qualitative and quantitative agreement to the

DFT calculations. The P-MEAM calculated stable and unstable stacking fault

energies are 95 and 107 meV/Å
2
, respectively. The corresponding DFT cal-

culated values are 92 and 99 meV/Å
2
, respectively.
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4.4.4 Low index Σ3 grain boundaries.

Let us now discuss the performance of the empirical potentials in describ-

ing the properties of low index Σ3 GBs in Si, i.e., the twin {111} and the S-

and A-{112} tilt boundaries. To model these boundaries, supercells consist-

ing of two mutually compensated GBs with a 2 × 2 interface unit cell were

employed. The separation distance between the two interfaces was larger

than 30 Å. Convergence checks indicted that this separation distance is suffi-

cient to decouple the interactions between the two GBs. The energies of these

boundaries are listed in Table 4.3. The GB energies, EGB, were calculated as

EGB =
Etot − nµSi

2A
, (4.7)

where, Etot is the total energy of the bicrystal, µSi is the chemical potentials

of bulk Si, A is the interfacial area, and n denotes the number of Si atoms in

the bicrystal. The factor 2 in the denominator accounts for the two GBs in the

supercell.

FIGURE 4.9: Ball and stick model of the Σ3
{111} GB in Si. Blue balls represent atoms
in the diamond crystal and orange balls
represent atoms in a hexagonal configura-

tion.

A schematic representation of

the twin boundary is shown in

Fig. 4.9. This boundary is coher-

ent and constitutes a hexagonal in-

clusion into the cubic lattice. The

DFT calculated boundary energy of

the Σ3 {111} is 0.42 meV/Å
2
, i.e.,

it has negligible boundary energy.

The atomic geometry of the twin dif-

fers from the bulk atomic geometry

only at the second nearest neighbor

distances. Therefore, valence force

fields that do not include second nearest neighbor interactions and beyond

calculate zero boundary energy. Indeed B-MEAM, SW, and E-bond order
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potentials calculate 0.0 boundary energy for the twin. Nevertheless, the P-

MEAM potential includes second nearest neighbor interactions and calcu-

lates 0.40 meV/Å
2

boundary energy in excellent agreement with the DFT

calculated value.

The S-{112} GB is shown in Fig. 4.1(a). This interface is commensurate

to the Σ3 CSL and it consists of 5- and 7-atoms rings denoted as B and

C in Fig. 4.1(a). Furthermore, it contains a five-fold coordinated atom per

1 × 1 interface cell denoted as γ in Fig. 4.1(a). This as well as the highly

strained bonds at the interface introduce deep states into the fundamen-

tal bandgap [21]. The DFT calculated boundary energy of the S-{112} is

42.24 meV/Å
2
. All considered valence force fields overestimate the GB en-

ergy. The P-MEAM calculated boundary energy is 69.89 meV/Å
2
.

The A-{112} GB is formed from its symmetric counterpart by removing

two atoms per 1 × 1 interface cell [denoted as α and β in Fig. 4.1(a)] and ap-

plying an upward shift along ⟨111⟩ and a leftward shift along ⟨112⟩ of the

right grain [see Fig. 4.1(b)] [117]. The reconstructed A-{112} GB has a pattern

of 5-, 6- and 7-atoms rings, denoted as F, E, and D in Fig. 4.1(c), respectively.

Nevertheless, the interface consists of fully coordinated atoms only and has

no deep states into the fundamental bandgap [21]. The DFT calculated en-

ergy of the A-{112} is by 14.6 meV/Å
2

lower than the S-{112}. Similar to the

S-{112} all considered empirical potentials overestimate the energy of the A-

{112}. Specifically, the boundary energy calculated by the P-MEAM potential

is 55.3 meV/Å
2
. Nevertheless, the GB energy difference between A- and S-

{112} is in excellent agreement with the DFT results (17.38 meV/Å
2
).
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4.5 Results and Discussion

FIGURE 4.10: (a) Schematic representation of the Σ3 CSL of Si.
The lattice points of two interpenetrating grains are denoted by
filled and open circles. Large and small circles indicate atoms
in the two different (110) planes. The CSL unit cell is indicated
with the rectangle. (b) Supercell with two compensating Σ3
{111} GBs. (c) Σ3 {112} symmetric GB. The dashed areas high-
light the 5- and 7- atoms ring pattern. (d) Σ3 GB at inclination
angle of 35.26° prior annealing and relaxation. The arrows in-
dicate the relaxation of the atoms from their initial positions at
the CSL. (e) The relaxed GB shown in (d). The shaded highlight

the {111} and S-{112} GBs formed upon relaxation.

As has already been discussed, five macroscopic degrees of freedom are re-

quired to define a GB, i.e., three degrees of freedom to identify the misorien-

tation of the two adjacent grains and two degrees of freedom to define the

boundary plane orientation. However, these degrees of freedom are not ade-

quate to uniquely identify the lowest energy structures or reconstructions of
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the GBs. In addition to these, to achieve a complete macroscopic and micro-

scopic description of a GB one has to consider the rigid translations of one

grain with respect to the other as well as the density and position of atoms

at the interfaces. Indeed, as it was demonstrated in Section 4.1.1 the ground

state structure of the Σ3 {112} GB is formed by removing atoms from the

boundary plane and rigidly shifting the one grain with respect to the other.

The aim of the present study is to investigate the energetics of Σ3 tilt GBs

having the ⟨110⟩ rotational axis. Therefore, the three degrees of freedom that

describe the misorientation of the one grain with respect to the other are fixed

by the choice of the CSL, i.e., the Σ3. Moreover, one of the two degrees of

freedom that define the boundary plane is fixed by the rotational axis. The

remaining macroscopic degree of freedom is the inclination of the GB plane.

The above mentioned discussion implies that in order to achieve an adequate

description of the energetics and explore the high dimensional phase space

of these GBs that consists of the boundary inclination, the rigid translations

of the one grain with respect to the other, and the density and positions of

the atoms at the boundary, the following have to be explicitly considered:

i Rigid translations of the one grain with respect to the other.

ii A grandcanonical ensemble for the thermodynamic description of the

GBs, i.e., the GBs should be free to exchange energy and particles with

a reservoir.

iii Apply a relaxation procedure for the atomic positions that it is able to

overcome possible kinetic barriers.

Two different strategies were employed to calculate the GB energetics. At

first, we created boundaries using the Σ3 CSL with the ⟨110⟩ rotation axis,

i.e., all GBs are commensurate to the CSL. Four different inclination angles

with respect to the {111} plane have been considered, (35.26°, 43.31°, 54.74°,

and 70.53° ). The inclination angles of 0° and 90° correspond to the twin and
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FIGURE 4.11: (a) GB formation energies of Σ3 tilt GBs inclined
by 35.26° with respect to {111} as a function of the shift of one
grain with respect to the other. For each shift up to 10 atoms
were deleted randomly and the color coding represents the
number of atoms deleted. (b) Blue line represent the energy
using the equation Eq. (4.9). The black dots represent the ener-
gies obtained in the above process for four different inclination

angles.

the S-{112} GBs, respectively. Taking advantage of the translational symme-

try of the CSL, periodic boundary conditions were applied in all three direc-

tions and the simulation cell consists of two mutually compensating planar

defects. The interface size was 1 × 1 in all cases.

The first strategy has the advantage that thanks to the translational sym-

metry there is no need to introduce free surfaces in the supercells. However,

for high index boundary planes, i.e., for boundary planes with an inclination
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angle different than 0° or 90°, rigid translations of the one grain with re-

spect to the other result in two symmetry inequivalent GBs in the supercell.

In order to address this, in the second approach simulation boxes consist of

a single GB bounded by two free surfaces parallel to and far from the GB

plane. Nevertheless, PBC is applied in the GB plane. The thickness of the

two adjacent grains was ≈ 100 − 150 Å. Convergence checks revealed that

this thickness is sufficient to decouple the interactions between the free sur-

faces and the boundary. In order to explore the degrees of freedom associated

with the relative position of the two adjacent grains and the density and posi-

tion of the atoms at the GBs a heuristic approach was implemented. Starting

from the commensurate to the CSL GB structures rigid shifts of one grain

with respect to the other along ⟨111⟩ and ⟨110⟩ were applied. The step width

of these shifts were ax/20 and ay/4, where ax and ay are the CSL primitive

vector lengths along ⟨111⟩ and ⟨110⟩, respectively (See Fig. 4.10(d)). Since we

consider a grandcanonical ensemble, for each shift 0 to 10 atoms per 1× 1 in-

terface cell were randomly removed and the structure was subjected to sim-

ulated annealing (see Section 4.3.1). At the end of the annealing, conjugate

relaxation was performed to calculate the final energy. The annealing effec-

tively overcomes any kinetic barriers that may prevent the system to find its

low energy structure. The aforementioned procedure was repeated ten times.

Fig. 4.11(a) shows the energy of the GBs with an inclination angle of 35.26°

obtained with the above approach. The boundary energy was calculated us-

ing Eq. (4.7) and fixing the chemical potential of Si to the chemical poten-

tial of Si in bulk Si. The calculated interface energies vary from 0.04 eV/Å
2

to 5 eV/Å
2
. For clarity the energy scale is restricted to the 0.00-0.20 eV/Å

2

range. The boundary with the lowest energy has no shift and no deletion of

atoms. Hence, the lowest energetic structure is commensurate to the Σ3 CSL.

Figs. 4.10(d) and (e) provide a schematic representation of the lowest

energy structure before and after annealing and relaxation. Although we

started from a flat boundary, the boundary dissociates into {111} and S-{112}

facets. The final boundary is derived from the initial one by displacing six

atoms per 1× 1 interface unit cell. The displacement of these atoms is smaller
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than the bulk lattice constant [see arrows in Fig. 4.10(d)]. Hence, kinetic bar-

riers that may hinder the transition into the ground state structure can be

overcome by the applied annealing and atomic relaxation procedure. Analy-

sis of the lowest energy structures for the other inclination angles, i.e., 43.31°,

62.06°, and 70.53°, reveals that all these GBs are intrinsically unstable against

faceting toward {111} and S-{112} facets. Furthermore, the facet period is as

small as a single interfacial primitive vector, i.e., they are unstable against

nano-faceting.

Interestingly, although the A-{112} GB has smaller energy than the S-{112},

the former did not emerge as a nano-facet in all aforementioned cases. In

general, faceting of GBs may be associated with dislocations and line forces.

The dislocations arise from the rigid body translations of the two grains and

the line forces from the different interface stress of the two facets at the junc-

tions [64, 118]. As has already been discussed in Section 4.1.1, the A-{112} GB

is constructed by rigidly shifting the one grain with the respect to the other

both parallel and normal to the boundary plane directions. Therefore, at the

{111} and A-{112} line junctions partial dislocations are introduced to accom-

modate the misfit and strain induced by the aforementioned rigid shifts as

well as by the removal of atoms from the GB (see Fig. 4.1). The energy of a

faceted boundary, γ(L), includes contributions from the two facets, the core

energy of the line defects at the junctions, and the long range strain interac-

tions between the line junctions [64, 118]:

γ(L) = γf +
A
L

Ln
(

L
B

)
+

C
L

, (4.8)

where L is the facet period (see Fig. 4.2) and the last two terms on the right

side are the contributions from the long range strain interactions and the core

energies. A, B, and C are constants that depend on the elastic constants, the

geometry of the faceted GB, i.e., faceting length L and inclination angle θ, and

the width of the cores. γ f denotes the energy contribution of the two facets

and is written as

γ f =
γ{111} + γ{112}tan(θ)√

1 + tan2(θ)
, (4.9)
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where γ{111} and γ{112} are the energies of the flat {111} and {112} GBs.

FIGURE 4.12: εxx component of the strain
tensor obtained from a faceted junction

consisting of {111} and S-{112} facets.

Using Eqs. (4.8) and (4.9) and for

γ{112} the energy of the S-{112} and

fixing parameters A and C to zero,

the energies of the faceted GBs are

plotted as function of the inclination

angle in Fig. 4.11(b) . As can be seen,

the calculated lowest energy faceted

GBs coincide with the energy pre-

dicted by Eqs. (4.8) and (4.9). This

indicates that faceting towards {111}

and S-{112} is driven merely by the

anisotropic GB energies and energetic contributions by line defects are neg-

ligible and/or cancel out. The absence of long range strain interactions is

confirmed by the calculated strain distribution at and around a faceted GB

(see Fig. 4.12): As can be seen the strain has finite values near and at the {111}

and S-{112} facets and it is negligible a few lattice constants away from the

planar defects. The tensile strain at the twin boundary is attributed to the

larger interatomic distance in hexagonal Si.

The atomistic calculations plotted in Fig. 4.11 are on supercells containing

rather small size interfaces, i.e., n × m. Therefore, the energies of GBs faceted

towards {111} and A-{112} facets are dominated by the core energies and in-

teractions between the line junctions [see Eq. (4.8)]. In order to evaluate the

effect of these interactions on the faceted GB energies, large supercells con-

sisting of ≈ 105 atoms and a pair of mutually compensated GBs have been

employed. These faceted GBs have been constructed by imposing an inclina-

tion of the {112} boundaries toward {111}. Furthermore, for each inclination

angle, facet periods up to ≈ 350 Å have been considered and the separation

distance between the two planar defects was at least 100 Å. Convergence

checks showed that this distance is more than sufficient to decouple the GBs.
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FIGURE 4.13: Formation energies of GBs as a function of facet
length for S- (green circles) and A-{112} (red circles) facets with
inclination angles (a) 43.31° (b) 62.06°, and (c) 70.53°. The
continuous line represents the values obtained by fitting the
Eq. (4.8) and the blue dashed line represents the energies at the

asymptotic limit. Inset gives the fitting coefficients.

The boundary energies as function of the facet period for inclination an-

gles 43.31°, 62.06°, and 70.53° are plotted in Figs. 4.13(a), (b), and (c), respec-

tively. These inclination angles correspond to {111} over {112} facet lengths

ratios of 1.5, 0.75, and 0.5, respectively. In agreement with the above men-

tioned finding, the energies of boundaries consisting of {111} and S-{112}

facets are independent of the facet period. Nevertheless, in the case of A-

{112} facets, the boundary energies decrease with the facet length. Further-

more, they asymptotically converge to the γ f term [see Eqs. (4.8) and (4.9)].

This is consistent with the presence of extended defects at the line junctions

which induce long range strain interactions. Indeed in Fig. 4.14(a), the εxx
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FIGURE 4.14: (a) εxx component of the strain tensor as obtained
from a faceted junction consisting of {111} and A-{112} facets.
(b) εxx elastic strain field derived by elasticity theory for a pair
of mutually compensated edge type dislocations with Burgers
vectors |bx| = 1.743 Å and

∣∣by
∣∣ = 1.03 Å placed at the two

junctions. The horizontal and vertical axes are distances along
⟨111⟩ and ⟨112⟩ in Å. The value of each contour line differs

from its immediate neighboring lines by ±0.1%.

strain component is plotted at the region of a facet junction consisting of {111}

and A-{112} facets. In contrast to the case of S-{112} facets (see Fig. 4.12) the

strain is long ranged. Furthermore, around the line junctions, two regions of

compressive and tensile strain can be seen. This re-samples the situation of

two edge type dislocation with opposite Burgers vectors sitting on the two

line junctions. In Fig. 4.14(b) the εxx component of the strain field calculated

by elasticity theory for two mutually compensated edge dislocations placed

at the line junctions and with Burgers vector components bx = ±1.743 Å and

by = ∓1.03 Å is plotted, where x is along ⟨111⟩ and y along ⟨112⟩. These

values equal the rigid shifts applied along ⟨111⟩ and ⟨112⟩ to construct the

A-{112}, respectively. There is both quantitative and qualitative agreement

between the strain fields calculated by atomistic calculations and elasticity

theory.
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FIGURE 4.15: Boundary energies of faceted GBs as function the
inclination angle. The black continuous line is the DFT values
for A-{112} facets at asymptotic limit, black dashed line is the
DFT values of S-{112} facets. The area between the red line and
green line indicates the energy range (i.e., from the geometri-
cally minimum facet length to the limit of infinite facet length)

of faceted GBs with A-{112} facets.

4.6 Phase Diagram

An important outcome from Fig. 4.13 is that at short facet periods the faceted

GBs with S-{112} facets are energetically favorable. However, as the facet pe-

riod increases there is a transition from S-{112} to A-{112} facets. In order to

shed light on these transitions in Fig. 4.15 the energies of faceted GBs for a

wide range of facet lengths and all the range of inclination angles are plot-

ted. The light blue shaded area represents the energy range of faceted GBs

consisting of A-{112} facets with the smallest symmetry and geometrically al-

lowed length, i.e., nano-facets, to the asymptotic limit of infinitely long facets.

The red curve denotes the energy of GBs with S-{112} facets. As can be seen,
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for inclination angles larger than ≈ 80° A-{112} is the energetically favorable

facets for all facet lengths. Therefore, in this range of high inclination an-

gles, Σ3 GBs with the ⟨110⟩ rotation axes are favorable to facet towards {111}

and A-{112} facets. Furthermore, under conditions of thermodynamic equi-

librium, the facet length is restricted only by boundary conditions applied by

the microstructure and the grain size. Nevertheless, for lower inclination an-

gles the phase of the {112} facets depends on the facet length as well: Smaller

facet lengths favor S-{112} facets and larger facet lengths their asymmetric

counterparts. Interestingly at the experimentally relevant length scales, the

A-{112} facets are energetically favorable for inclination angles larger than

≈ 55° while for smaller inclination angles the two facet junction reconstruc-

tions are energetically degenerate.

FIGURE 4.16: Energy difference of S-{112} + {111} and A-
{112}+ {111} boundary as a function of inclination angle. The
solid black curve indicates the boundary between GBs having
an A- or S-{112} facet. The dashed area denotes the stability
region of GBs with S-{112} facets. The black curve shows the
boundary line when DFT calculated energies of flat (unfaceted)
{112} GBs are considered. The black shaded area marks the re-
gion of geometrically not accessible facet periods and inclina-

tion angles.
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In Fig. 4.16 the boundary energy difference ∆γ between faceted GBs with

A- and S-{112} facets are plotted against the inclination angle and the facet

length. Vibrational contributions to the free energy have not been included

since they have a marginal impact on the calculated energy differences. Specif-

ically, at T=1000 K the energy difference between A- and S-{112} GBs changes

by ≈ 2 meV/Å
2

with respect to T=0 K. This shifts upward the phase bound-

ary line by ≈2 nm at the inclination angle of 45.

The phase diagram in Fig. 4.16 clearly demonstrates that Si GB faceting is

not merely driven by the anisotropy in the boundary energies. Instead, the

two geometrical characteristics of the facet junctions, i.e., the inclination an-

gle and the facet period, are key parameters, alongside the GBs energies, that

control the facet and line junction reconstructions. These geometrical charac-

teristics depend on and can be controlled by the microstructure. For instance,

large grain sizes that allow for large facet lengths will shift the system in the

upper part of the phase diagram, i.e., will stabilize A-{112} facets. Neverthe-

less, a key outcome is that higher energy metastable GB reconstructions can

be stabilized by thermodynamics instead of kinetics when they constitute the

facets at line junctions.

The transition between the metastable S-{112} and the lower energy A-

{112} phases has important implications on (i) the electronic properties of

the multi- and nano-crystalline Si, (ii) impurities segregation at the facets,

and the line junctions, and (iii) on the GB mobility. As has already been

discussed in Section 4.4.4, S-{112} GBs introduce deep states into the fun-

damental bandgap, while the A-{112} interfaces are free from any intragap

states [21]. Since the deep states are detrimental to the electronic properties

and the efficiency of devices based on mc-Si, material growth and/or pro-

cessing should be applied that shifts the system into the upper part of the

phase diagram.

The strain distribution around the A- and S-{112} shows different peri-

odic patterns that consist of alternating compressive and tensile regions [see

Figs. 4.12 and 4.14(a)]. Specifically, in the S-{112} GB the strain extends deep
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into the bulk like region. Moreover, this indicates that strain induced seg-

regation of impurities at Σ3 facets will depend strongly on the inclination

angle and the facet period. Nevertheless, in the next chapter, the segregation

of homovalent impurities at Σ3 line junctions will be discussed in detail.

Disconnections, i.e., GB line defects that have both step and dislocation

character are key microstructural features that play a key role in the shear

coupled migration [119]. In twin boundaries in Si, the disconnections corre-

spond to {112} steps at the {111} boundaries. Geometrically, this corresponds

to small facet periods or small inclination angles. Therefore, the steps at the

disconnections would consist of S-{112} and hence there will be no GB dislo-

cations at the line junctions. Therefore, the shear coupled migration of twins

in Si, will not be affected by the presence of other extended lattice defects.

4.7 Summary

Σ3 tilt GBs with ⟨110⟩ rotation axis constitute up to 80% of GBs in Si and

hence a system of GBs with special fundamental and technological interest.

These boundaries are commonly observed to facet toward the low index {111}

and {112} boundaries. However, the driving force that causes faceting in this

system is still an open issue. This is the key question that the present chapter

addresses.

Two different metastable reconstructions exist for the {112} GBs, the A-

and the S-{112} reconstructions. Faceted GBs consisting of {111} and the lower

energy A-{112} facets are associated with partial edge type dislocations at the

line junctions. The latter renders the description of faceting by atomistic cal-

culations cumbersome: Both long range strain interactions, as well as the

highly strained but localized region of the cores have to be accurately de-

scribed by the model for the interatomic interactions.

In order to investigate and correctly describe the different length scales as-

sociated with GB faceting, we combined DFT and 2NN-MEAM potential cal-

culations. In the first step, a thorough evaluation of widely applied valance

force fields for Si has been performed. This evaluation revealed that none of
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these potentials can correctly describe the GSFE profiles. The GSFE depends

on the screening of the many-body interactions under shearing conditions

and hence it constitutes a challenging testbed for the interatomic potentials.

Therefore, in the next step, a new 2NN-MEAM potential for Si has been de-

veloped. This potential has been fitted using GSFE profiles, surface and inter-

face energies, elastic constants, and structural transition energies of Si. The

parametrization of the potential was accomplished by employing the itera-

tive method described in Section 3.3.

Employing the newly developed 2NN-MEAM potential, we have studied

the energetics, structure, and strain of flat and faceted Σ3 tilt GBs in Si with

the ⟨110⟩ rotation axis. The present 2NN-MEAM potential provides an ex-

cellent qualitative and a very good quantitative description of the energetics

of Σ3 GBs in Si. These calculations revealed that faceting is intrinsic to these

GBs. Furthermore, a phase diagram has been constructed which indicates the

energetically most favorable facet and line junction reconstructions as a func-

tion of the facet length and inclination angle. This diagram also reveals that

the properties of the faceted GBs are controlled by the interplay between GB

energies and long-range strain interactions. Specifically, it shows that at low

misorientation angles or at small facet periods long-range strain interactions

dominate, and S-{112} facets are favored. However, at large facet periods

and large inclination angles the weaker strain interactions are compensated

by the low energy of the A-{112} facets.

The significance of the GB phase diagram goes beyond mc-Si. Specifi-

cally, it highlights the connection of faceting with materials’ microstructure.

A common perception is that GB faceting is driven merely by the anisotropy

in the GB energies. However, in this chapter, it is demonstrated that the

higher-energy GBs can be stabilized by thermodynamics rather than kinet-

ics when these constitute facets at line junctions. This further highlights the

crucial role of microstructure on the GB properties: Microstructural param-

eters such as the grain size, control the geometric properties of faceted GBs

and hence the reconstruction of the facet and line junctions. The latter has

important implications on the electronic properties, mobility as well as on
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impurity segregation and/or gettering potential of the GBs. The interplay

between strain and impurity segregation at facet and line junctions in Si will

be addressed in the next Chapter.
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Chapter 5

Strain-Induced Asymmetric Line

Segregation

5.1 Introduction

In the previous Chapter, the properties and mechanisms of faceting of Σ3 Si

GBs have been investigated. It has been demonstrated that the faceting of

GBs in pristine, i.e., without impurities, Si is the result of a complex interplay

between facet energies and long range strain field interactions. However,

there is a strong interaction between impurities and GBs which is governed

by the driving force to achieve an equilibrium distribution of impurities be-

tween the GB and bulk which minimizes the free energy of the system [120].

This strongly impacts the mechanical and electronic properties of materi-

als [73, 120–123]. For example, decoration of GBs by solute atoms may lead

to strengthening or weakening of the material [72, 124–126]. Impurity segre-

gation at Si GBs is of particular interest due to its technological importance.

C, P, As, Fe, Cu, and O impurities are commonly present in mc-Si [127–

131]. These impurities may result in diode breakdown, thermal degrada-

tion [132], or create a low resistance path for electrical conductivity (shunt)

[80]. Furthermore, they may introduce deep defect states in the fundamental

band gap [21]. For example, it has been shown that interstitial Fe introduces

deep defect states in the electronic structure of Si GBs [21]. These states act as

recombination centers and reduce the minority carrier lifetime and the solar

cell efficiency [20, 82].
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Moreover, it has been shown that O impurities form oxide precipitates

in mc-Si, which alone is responsible for ≈5% reduction of solar cell effi-

ciency [133] caused by the reduction of the minority carrier lifetime [129,

133]. Cu and Ni impurities also play a detrimental role in Si electronic de-

vices [127] while decoration by P has been proposed to have a positive effect

by increasing the lifetime of the minority carriers [128]. First principles calcu-

lations highlighted the correlation between the electronic structure of pristine

GBs with the impurities’ segregation energies at these interfaces: GBs that

introduce deep states into the bandgap due to under- or over-coordinated

atoms were found to attract P and As impurities [134]. Nevertheless, the

segregation of impurities and their impact on the electronic properties of Si

depend strongly on the orientation and the character of the GBs. For exam-

ple, it has been demonstrated by employing 3D atom probe tomography, that

the segregation and recombination activity of Fe, Cu, C, and O impurities at

Si GBs predominantly take place at high angle GBs and not at the Σ 3 {111}

twin boundaries [18].

The above described interactions between GBs and solutes have been ex-

tensively investigated and described in terms of the Langmuir-McLean the-

ory where the segregation of a monolayer or submonolayer coverage is tak-

ing place without any structural changes and atomic interactions of the so-

lute atoms. Nevertheless, recently it has been demonstrated that GBs can also

transform between different states, termed complexions or interphase phases

(see Ref. [1] and refs therein). Recently a unique segregation mechanism at

Si GBs, that goes beyond classical McClean theory, has been reported [16].

More specifically, it has been observed that solute segregation occurs at the

linear junction of faceted GBs rather than at the averaged planar structure of

the GB or the GB facets as shown in Fig. 1.1. Moreover, solutes such as C,

and Fe, preferentially segregate at one of the two facet junctions leading to

an asymmetric segregation pattern of solute segregation.

In the present chapter, the mechanisms underlying the aforementioned
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asymmetric segregation of C impurities at faceted Σ3 GBs in Si are inves-

tigated. In particular, atomistic simulations have been conducted to investi-

gate the interplay between GB facets, line junction core structures, long range

strain interactions, and solute segregation. To study the C segregation mech-

anism, we have developed an interatomic potential for C and 3C-SiC. For Si,

we have used the potential that has been developed in the previous Chap-

ter. The newly developed potentials were evaluated for their transferabil-

ity against non-fitted properties such as segregation energies, solute binding

energies, GB energies, and generalized stacking fault energies. Using these

potentials, the asymmetric C segregation was investigated in supercells con-

taining faceted GBs at the experimentally relevant length scale and inclina-

tion angles.

The present chapter is organized as follows. In Section 5.2 we describe

the methodology and the MEAM potential parametrization. Section 5.3 deals

with the segregation energies of C solute at both S-{112} and A-{112} GBs.

In Section 5.4.1 the atomistic mechanisms of the asymmetric line segregation

are discussed. The summary is given in Section 5.5.

5.2 Methodology

The first principles calculations have been performed using the Vienna ab-

initio simulation package, VASP [135]. A kinetic energy cutoff of 450 eV was

used for the expansion of the plane wave basis set along with an equiva-

lent 6 × 6 × 6 Monkhorst-Pack k-point mesh for the bulk unit cell to sample

the Brillouin zone. For the exchange-correlation the Local Density Approx-

imation [96] was employed. All the atomic positions were relaxed until the

absolute value of force on each atom was lower than 0.01 eV/Å.

The GSFE for the shuffle cut was calculated using the method described

in the earlier chapter. The unit cell for the GSFE calculations consists of a

1 × 1 interface with 11 unit cells along the normal direction to the surface.

A vacuum of 10 Å was used to decouple the two free surfaces. The substi-

tutional and interstitial formation energies of C in bulk Si and the vacancy
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formation energy in bulk C were calculated using a 3 × 3 × 3 supercell. For

the calculations of GBs and point defects in GBs, a supercell with a 2 × 2

interface was implemented.

All interatomic potential calculations were performed using the Large-

Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [98]. The

energy minimization has been performed using the conjugate gradient min-

imization method. The atomic positions were relaxed using conjugate gradi-

ent relaxation until the energy change was smaller than 106 eV/atom or all

atomic forces were less than 10−6 eV/Å.

5.2.1 MEAM potential parametrization

To study C segregation in Si GBs, we have employed 2NN-MEAM potential

calculations. The formalism of the 2NN-MEAM interatomic potentials has

been discussed in detail in Chapter 3. For a binary system, such as the Si-C,

three interatomic interactions, i.e., Si-Si, C-C, and Si-C, have to be consid-

ered. This implies that three interatomic potentials, i.e., for Si, C, and SiC, are

required (see Section 3.2.2).

For the Si-Si interatomic interactions, the 2NN-MEAL potential devel-

oped and applied in Chapter 3 is used. This potential provides an excellent

description of the elastic constants (C11, C12, C44), the cohesive energy differ-

ences between the ground state fcc, and higher energy crystal structures, and

the GSFE for shear along ⟨110⟩ and ⟨112⟩ in the basal plane. Furthermore,

this potential describes in excellent agreement with DFT calculations the GB

energies as a function of the inclination angle.

For the C-C interactions, the 2NN-MEAM potential by Daw and Baskes [136]

has been applied with only one modification. As can be seen in Figs. 5.1

and 5.2, the 2NN-MEAM potential by Daw and Baskes (B-MEAM) [136]

yields an artificial oscillatory behavior in GSFE profile for shear along ⟨110⟩

and ⟨112⟩ in the {111} plane. Moreover, the bond order potential (E-bond)

shows discontinuities in the GSFE profiles for both slip systems. To address

this behavior, the screening parameter Cmin has been adjusted. By lowering



TABLE 5.1: 2NN-MEAM potential parameter sets for Si and C. Parameters in bold are fitted in the present study. For Si
the nearest neighbor distance, re is 2.35 Å, and the cohesive energy Ec is 4.63 eV. For C the nearest neighbor distance re
was set to 1.54 Å, and cohesive energy Ec is 7.37 eV. The C potential is taken from Baskes et al. [42] and only the screening

parameter Cmin has been modified. The Si potential parameter set is taken from the previous Chapter.

β0 β1 β2 β3 α A Cmin t1 t2 t3 Cmax rc ∆r δ
Si 4.5 4.8 5.5 4.8 4.87 0.80 1.60 3.3 3.60 -2.3 2.8 4.0 0.1 0.0
C 4.10 4.20 5.0 3.0 4.38 1.0 1.2 5.0 8.04 -1.0 2.85 4.0 0.1 0.0

TABLE 5.2: 2NN-MEAM potential parameters set for C-Si interaction. All the parameters have been developed in the
present thesis. the 3C-SiC has been used as the reference structure. The unit of the cohesive energy Ec is eV. The equilibrium

nearest neighbors distance, re, cutoff distance, rc, and smoothing distance, are in Å.

Parameter Value Parameter Value
Ec(Si, C) (Ec(Si) + Ec(C))/2 + 0.4325 Cmin(Si, Si, Si) 1.6
re(Si, C) 1.8878 Cmin(Si, Si, C) 3.46
α(Si, C) 4.37 Cmin(Si, C, Si) 0.8
ρSi : ρC 1:1 Cmin(Si, C, C) 1.2
∆r 0.1 Cmin(C, C, Si) 1.2
rc 4.8 Cmin(C, C, C) 1.2
Cmax(Si, C, Si) 1.85 Cmax(Si, C, C) 2.85
Cmax(C, C, Si) 2.85 Cmax(Si, Si, C) 6.80
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the value of Cmin, smooth GSFE curves are obtained for shearing along ⟨110⟩

and ⟨112⟩ directions in the {111} plane. However, this did not affect other

physical properties such as the elastic constants, bulk modulus, phase tran-

sition energies, etc.

The parameters of the 2NN-MEAM potential for C are listed in Table 5.1.

The calculated properties of C are given in Table 5.3 and compared with

those calculated by DFT and E-bond order potential. The 2NN-MEAM po-

tential provides, apart from the excellent qualitative, a very good quanti-

tative description of the GSFE. As can be seen in Figs. 5.2(a), and (b), the

present potential provides an excellent description of GSFE when compared

with DFT calculations for shear along both ⟨110⟩ and ⟨112⟩ directions in the

basal plane. Nevertheless, B-MEAM and E-bond order potentials fail to pro-

vide a quantitative description of the GSFE curves: The B-MEAM potential

yields artificial oscillations in the GSFE curves and the E-bond order poten-

tial discontinuities. The unstable stacking fault energy of the {111}⟨110⟩ and

{111}⟨112⟩ shear configuration is ≈518 meV/Å
2

and ≈ 520 meV/Å
2

calcu-

lated with the present MEAM potential. The unstable stacking fault energy

for the same slip configuration calculated with DFT are ≈ 600 meV/Å
2

and

≈ 560 meV/Å
2
, respectively.

The present potential can qualitatively describe the cohesive energy dif-

ferences between the ground state diamond structure and higher energy phases

with respect to DFT: Both DFT and P-MEAM potential predict the same or-

dering, i.e., diamond<β-tin<sc<bcc<fcc, where the left-sided structures are

energetically more favorable than the right-sided. The charge neutral va-

cancy formation energy is in excellent agreement with DFT calculations (6.37 eV

vs 6.88 eV, respectively). However, the E-bond order potential largely under-

estimates the vacancy formation energy (2.59 eV). The bulk modulus and the

C11, C12, and C44 elastic constants are also in excellent agreement, within

±8%, with the DFT calculated values. However, the present 2NN-MEAM

potential overestimates the energies of the {100}, {110}, and {111} surfaces

with respect to the DFT calculated values. Nevertheless, this discrepancy is

not critical for the calculations presented here, which is the description of C
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segregation at Si GBs and line junctions.

TABLE 5.3: Properties of C calculated using the present 2NN-
MEAM potential (P-MEAM) and the E-Bond order potential
compared to DFT data. ∆E denotes the cohesive energy dif-
ferences between the diamond and the fcc, bcc, sc, and β-
tin phases with respect to the diamond carbon structure in
meV/atom. The lattice parameters, a, are in Å, the surface en-
ergies in meV/Å

2
, the Bulk modulus and the elastic constants

in GPa, the cohesive energy, Ec, in eV, and the vacancy forma-
tion energy, Ev in eV. U110 and U112 are the unstable stacking
fault energies for shear along ⟨110⟩ and ⟨112⟩, respectively, in
the {111} plane. Values marked with an asterisk (*) are from

DFT-LDA calculations performed in the present work.

P-MEAM E-Bond order [41] DFT

diamond Ec 7.37 7.37 8.95 [107]
a 3.567 3.565 3.535 [107]

fcc ∆E 1.157 4.483 4.50-4.65 [137], 4.61*
a 2.936 2.739 3.02-3.07 [137], 3.005*

bcc ∆E 1.115 3.963 4.24-4.35 [137], 4.36*
a 2.294 2.16 3.32-2.37 [137], 2.34*

sc ∆E 1.033 3.295 2.60-2.66 [137], 2.46*
a 1.775 1.782 1.74-1.77 [137], 1.73*

β tin -diac ∆E 0.968 3.728 2.72-2.82 [137]
a 3.44 3.68 3.31 [137]

c/a 0.54 0.435 0.39 [137]

Bulk modulus B 440.58 442.87 460 [137], 461*
B’ 3.90 4.12 3.64-3.67 [137], 3.53*

Elastic constant
C11 1062.92 1088.30 1094 [107]
C12 136.74 134.10 147 [107]
C44 629.42 641.27 584 [107]

Ev 6.37 2.59 6.88*
E{100} 559.58 348.87 338.94 [107]
E{110} 567.34 184.71 368.27 [107]
E{111} 532.67 128.64 397.61 [107]
U{100} 518 - 600
U{112} 520 - 560

For the parametrization of the Si-C interactions, the 3C-SiC has been used

as the reference structure. The 3C-SiC is the most stable and the only possible

cubic structure among the large variety of SiC polytypes [138]. The cohesive

energy Ec(Si, C) was set equal to (Ec(Si) + Ec(C))/2 + 0.4325 where Ec(Si)

and Ec(C) are the cohesive energies of Si and C, respectively (units are in

eV). Using this value the formation enthalpy of 3C-SiC is in agreement with
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the DFT calculated value. The parameter α(Si, C) is strongly correlated to

the bulk modulus B of 3C-SiC [see Eq. (3.18)]. The nearest neighbor dis-

tance re(Si, C) was set to
√

3a/4 where a is the lattice parameter of 3C-SiC

calculated from DFT. The density scaling parameter (ρSi/ρC) has not been

changed and it is calculated by the densities of the individual elements.

To identify the correlation of the binary screening parameters with the

material properties, a parametric study was conducted. Among all the screen-

ing parameters, Cmin(Si, C, Si), Cmin(Si, C, C), and Cmin(Si, Si, C) were found

to be strongly correlated with the GSFE and the GSFE profile. The parame-

ter Cmin(C, C, Si) was found to be strongly correlated with the interstitial and

substitutional C formation energies in bulk Si. The parameters, Cmin(Si, Si, Si)

and Cmin(C, C, C) were not adjusted and the corresponding values from the

unary Si and C potentials are used, respectively. Parameter, rc was set to

4.80 Å, and parameter, ∆r was set to 0.1 Å. Parameters rc and ∆r are cho-

sen such that the second nearest neighbor interactions are included. Larger

values of rc increase the computational cost without improving the poten-

tial’s accuracy. Both parameters do not affect the properties of Si, C, and

3C-SiC included in the material’s database. Once the correlation of the afore-

mentioned screening parameters to the material properties was established

they were employed to adjust the GSFEs energy along ⟨110⟩ and ⟨112⟩ in the

{111} plane and the C substitutional and interstitial formation energies in Si.

The 2NN-MEAM parameters for the Si-C interactions are listed in Table 5.2.
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FIGURE 5.1: Generalized stacking fault energy as a function
of the displacement along (a) ⟨110⟩ and (v) ⟨112⟩ in the {111}
glide plane of C obtained from DFT, P-MEAM, B-MEAM, and

E-Bond order potentials.
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FIGURE 5.2: Generalized stacking fault energy of 3C-SiC for
shear along (a) ⟨112⟩ and (b) ⟨110⟩ in the {111} plane obtained

from DFT, P-MEAM, B-MEAM and E-Bond order potentials.
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TABLE 5.4: Calculated bulk properties of 3C-SiC with the P-MEAM compared with the E-bond and B-MEAM potential
calculations. The cohesive energy Ec and mixing enthalpy ∆H f are in eV. The lattice constant, a, is in Å and the elastic con-
stants are in GPa. Substitutional and interstitial formation energies are in eV. B-MEAM potential does not give a maximum
at u/b=0.5 for shear along ⟨110⟩. Therefore, the U110 is not given. The E-bond order potential yields oscillatory behaviour

for both shearing directions and the USFE values are also not reported.

P-MEAM E-Bond order [41] B-MEAM [42] DFT/Experiment

3C-SiC ∆E 6.43 6.34 6.432 7.37 [107], 6.34
∆H f 0.4325 0.341 0.43
a 4.359 4.359 4.359 4.338 [107]

Bulk modulus B 211 224 211 225
Bp 3.91 4.16 3.91 2.81

Elastic constant
C11 409 383 402 405 [107]
C12 112 145 116 145 [107]
C44 226 239 215 247 [107]

CSi 0.59 0.09 0.69 1.28, 1.95 [107]
Ci 2.85 5.42 1.43 3.38, 3.39 [107]

GSFE U110 200 - - 199
U112 220 - 260 220
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Table 5.4 lists the properties of 3C-SiC calculated with the present 2NN-

MEAM potential alongside the DFT calculated values. As can be seen there is

an excellent agreement between the 2NN-MEAM and DFT calculated elastic

constants. The 2NN-MEAM calculated elastic constants are C11 = 409, C12 =

112, and C44 = 226 GPa whereas the DFT calculated values are C11 = 405,

C12 = 145, and C44 = 247 GPa. Moreover, the present potential provides in a

very good agreement with DFT the substitutional (0.59 vs 1.28-1.95 eV) and

the interstitial (2.85 vs 3.38-3.39 eV) formation energies. For the interstitial

configuration, the C atom is placed in the middle of the hexagon formed

by the Si atoms along the ⟨110⟩ direction. Furthermore, the present 2NN-

MEAM potential describes the GSFE profiles in excellent agreement with the

DFT calculations. On the contrary, the B-MEAN and the E-bond potentials

fail to qualitatively describe shear along ⟨110⟩ and ⟨112⟩ directions in the

basal plane [see Figs. 5.2(a) and (b)]. Quantitatively, the unstable stacking

fault energy for the ⟨110⟩ shear direction and stable stacking fault energy for

the ⟨112⟩ shear direction are in excellent agreement with DFT.

5.3 Carbon segregation at flat GBs.

To further evaluate the transferability of the potential, the segregation en-

ergy of C substitution in symmetry inequivalent sites at the Σ3 S-{112} and

A-{112} GBs in Si have been calculated [see Figs. 5.3(a) and (b)]. The segre-

gation energy is written as:

Eseg = ECSi
GB − ECSi

bulk , (5.1)

where, ECSi
GB and ECSi

bulk are the total energies of the supercell with a GB and a C

substituting for Si at the boundary and in the bulk like region of the supercell,

respectively. To calculate the segregation energies supercells containing a

pair of mutually compensated GBs have been employed. The number of

unit cells were 8 × 4 × 2 along ⟨112⟩, ⟨110⟩, and ⟨111⟩, respectively both for

MEAM and DFT calculations.
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FIGURE 5.3: Segregation energies of C substitutional at (a) S-
{112} and (b) A-{112} GBs. The horizontal axes represent the

atomic positions denoted to the right side of each diagram.

At the S-{112} GB there are six symmetry inequivalent sites denoted as

1-6 in Fig. 5.3(a). Positions 1-4 correspond to atoms in the 7-atoms ring and

positions 4-6 in the 5-atoms ring. At site 6 the atom is five-fold coordinated.

Furthermore, the interatomic distance between a Si atom at this position and

its 5 nearest neighbors is 0.46a and 1.4a Å where a is the lattice parameter of

Si.

Fig. 5.3(a) shows the calculated segregation energies as obtained from

present 2NN-MEAM potential, DFT, B-MEAM, and E-bond potential calcu-

lations. The DFT calculated segregation energies vary from ≈-1 to ≈1 eV.

The five fold coordinate site is the energetically most favorable position for

C substitution at the S-{112} GB. Moreover, the sites at the 5-atoms ring have

negative segregation energies, i.e., it is more favorable for C atoms to substi-

tute Si at these sites than in bulk. The B-MEAM potential fails to both qual-

itatively and quantitatively describe the segregation of C at the S-{112} GB.

Indeed, B-MEAM potential predicts positive segregation energies for all sites

and the five fold coordinated site has the highest segregation energy. The
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E-bond potential shows a better description of segregation, i.e., smaller dif-

ferences with the DFT calculated energies. However, it fails to qualitatively

describe the segregation energetics. It erroneously calculates positive segre-

gation energy at the five fold coordinated atom. The present 2NN-MEAM

potential provides a very good qualitative and quantitative description of

the segregation energies. The P-MEAM predicts site 6 as the energetically

most favorable site for segregation. The only discrepancy with respect to the

DFT calculations is the overestimation of the energy of segregation and site 5.

The failure of B-MEAM and E-bond potentials to predict the most favorable

site for C segregation and hence provide at least a qualitative description of

C segregation at these GBs can be attributed to the absence of screening of

the interatomic interactions. As has already been mentioned the site at the

apex of the 5-atoms ring is over-coordinated. Hence, screening interactions

is important to achieve a consistent description of the energetics.

Eleven symmetry inequivalent positions at the A-{112} GB have been

considered to calculate the segregation energies [see Fig. 5.3(b)]. Likewise

segregation at the S-{112} GB, the DFT calculated segregation energies vary

from ≈-1 to ≈1 eV. The energetically most favorable site for segregation is at

the 5-atoms ring [site 11 in Fig. 5.3(b)]. Both the present 2NN-MEAM poten-

tial and the E-bond potential provide a good qualitative description of the

segregation energies, though they underestimate the energies. Furthermore,

they predict site 11 at the 5-atoms ring to be the energetically most favorable,

in agreement with DFT calculations. On the other hand, the B-MEAM po-

tential erroneously predicts the site at the apex of the 5-atoms ring [site 9 at

Fig. 5.3(b)] as the most favorable site for C segregation.

In the A-{112} GB all atoms are four fold coordinated. Therefore and un-

like segregation at the S-{112} GB, atoms’ coordination plays no role in the

calculated segregation energies. Nevertheless, the energetically most favor-

able C segregation sites are in the 5-atoms ring. These sites are compressively

strained [see Fig. 5.8(a)]. Both Si and C are homovalent atoms. Therefore, the

segregation energies are predominantly controlled by strain. C atoms are

smaller than Si atoms. Hence, the compressively strained sites at the 5-atoms
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ring are preferable.

FIGURE 5.4: Strain energy plotted against
the hydrostatic strain of bulk Si with a C
substitutional. The strain energy of pris-
tine Si is used as a reference [see Eq. (5.2)].

In order to further highlight the

effect of strain on the C segregation

energies, in Fig. 5.4 the energy of

C substitutional in Si bulk is plot-

ted against the applied hydrostatic

strain. The substitutional energy in

strain free bulk Si is used as a refer-

ence, i.e.:

∆E =
[

ECSi (ε)− ESi (ε)
]

−
[

ECSi (0)− ESi (0)
]

,
(5.2)

where, ECSi (ε) and ECSi (0) are the

total energies of the system with a C

substitutional at hydrostatic strain ε

and at strain free Si bulk, respectively. ESi (ε) and ESi (0) are the total energies

of bulk Si at hydrostatic strain ε and at zero strain, respectively. To calculate

the aforementioned energy difference 8 × 4 × 2 supercells of bulk Si have

been employed oriented along ⟨112⟩, ⟨110⟩ and ⟨111⟩ respectively. As can

be seen in Fig. 5.4, compressive hydrostatic strain in the order of 1% reduces

the chemical potential of substitutional C by more than 0.5 eV. On the other

hand, 1% tensile strain increases the chemical potential of C by ≈0.5 eV. Com-

pared to DFT, the present 2NN-MEAM and the B-MEAM potentials over-

and under-estimate these energy differences and the E-bond potential pro-

vides a better quantitative agreement. This is because the MEAM potentials

underestimate the bulk modulus of SiC by ≈6%, while the E-bond potential

by less than ≈0.5% with respect to DFT (see Table 5.2). Nevertheless, com-

pressive and tensile hydrostatic strain reduces and increases the chemical

potential of C substitutional, respectively.
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FIGURE 5.5: Atomic structures of a faceted Σ3 tilt GB in Si de-
rived by high resolution scanning tunneling transmission elec-
tron microscope (HR- STEM). (a) STEM image of a faceted GB
(b) strain sensitivities of the above faceted GB. The brighter spot
sows the higher amount of strain. (c) Core of the faceted junc-
tion as denoted by I and II. The facets are Σ3 {111} and Σ3 {112}.

The Figure has been adapted from Ref. [16].

5.4 Asymmetric C segregation at GB line junctions

The aforementioned strong dependence of segregation energies on strain is

expected to influence the impurities’ segregation at the GBs. More specifi-

cally, it is very reasonable to assume that the segregation of homovalent im-

purities, such as C, at flat S- and A-{112} GBs will follow the periodic alterna-

tion of compressive and tensile regions at these planes [see Figs. 5.8 (a) and

5.9]. Nevertheless, regions of particular interest with respect to segregation,

are the line junctions of A-{112} with the twin boundaries. The superposi-

tion of the strain field arising from the partial dislocations at these junctions

(see Fig. 5.9) with the periodic strain field of the flat A-{112} GB, may locally

enhance or reduce the segregation potential at and around these line defects.
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5.4.1 Experimental evidence

Let us briefly discuss the scanning transmission electron microscopy (HAADF-

STEM) and atom probe tomography (ATP) experiments that provide evi-

dence of asymmetric impurities’ segregation at the line junctions of Σ3 A-

{112} and {111} GBs. Since these experiments are not explicitly part of the

present thesis, only the key messages will be presented. More details on the

experiments can be found in Ref. [16].

FIGURE 5.6: {111} lattice plane offset at
an A-{112} GB determined by (a) HAADF-
STEM and (b) MEAM potential calcula-
tions. The color code in (b) denotes the

volumetric strain [see also Fig. 5.8(a)].

Fig. 5.5(a) shows the high angle

annular dark-field STEM (HAADF-

STEM) image of a faceted Σ3 GB.

This interface consists of shorter

{111} and longer {112} facets. The

low angle annular dark-field (LAADF)

STEM image shown in Fig. 5.5(b)

reveals the strain state at the inter-

face. In agreement with the atom-

istic calculations on the A-{112} GB

[see Fig. 5.8(a)] and in contrast to the calculations on the S-{112}, the strain is

not symmetric at the two line junctions. This constitutes a strong indication

that the {112} facet consists of the asymmetric reconstruction. Indeed, as is

revealed by the slight rotation of the blue colored Si dumbbells in Fig. 5.5(c)

the {112} facet is asymmetric. Moreover, the experimentally determined {111}

lattice plane offset at the {112} segment (≈75 pm) fits excellently with the

MEAM potential calculated offset at an A-{112} facet (≈70 pm), see Fig. 5.6.

The line junction denoted as (I) in Fig. 5.5(c) almost conserves the struc-

tural units present at the {112} facets (only one of the blue colored Si dumb-

bells is replaced by a single atomic column which is denoted with the green

circle). On the other hand, the atomic motif at the junction (II) is substantially

different and the atomic columns are densely packed. The APT experiments

revealed a linear segregation pattern for C, Fe, and N impurities. The dis-

tance between adjacent impurity density peaks was calculated to be equal to
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8 ± 2 nm which is in excellent agreement with the faceting period calculated

in the STEM images (see Fig. 5.5). Moreover, the APT revealed that these

segregation lines coincide with line junctions (II).

5.4.2 Atomistic calculations

FIGURE 5.7: Schematic representations of the supercell em-
ployed to compute the C segregation energies. The supercell
consists of asymmetric {112} and {111} facets. The thickness

of the supercell along ⟨110⟩ is 0.77 nm.

To identify the atomistic mechanisms underlying the above mentioned

asymmetric line segregation, large scale atomistic simulations of C substi-

tution at faceted Σ3 GBs in Si have been employed. The simulation cells

consisting of a pair of mutually compensated faceted GBs have been con-

structed. The length of the {111} facet in the (110) plane was ≈6.6 nm and

of the A-{112} facet ≈18.8 nm. The corresponding unfaceted/flat GB would
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be inclined by ≈ 70.5° with respect to the {111}. The separation distance be-

tween the two GBs was ≈16 nm. Convergence checks showed that this dis-

tance is sufficient to decouple the GBs. Larger separation distances did not

affect the C segregation energies at the GBs. The thickness of the cell along

⟨110⟩ was four atomic layers (≈0.77 nm). A schematic representation of the

supercell indicating the 5-atoms rings and {111} planes is shown in Fig. 5.7.

The simulation cell consists of 64960 atoms.

Before investigating C segregation, the equilibrium structure of the faceted

GB has been calculated. This was accomplished in a two step procedure. In

the first step, the structure was annealed: The temperature was raised to

600 K and reduced to 0 K with a cooling rate of 7.5 K/psec. Convergence

checks indicated that an order of magnitude slower cooling rate does not af-

fect both the atomic positions and the total energy. The annealing procedure

was applied to avoid trapping in metastable states. In the second step, the

atomic positions were relaxed with a conjugate gradient relaxation scheme,

until the maximum force acting on the atoms was less than 10−6 eV/Å.

As can be seen in Fig. 5.7 the two GBs denoted as Grain 1 and Grain 2

are symmetry inequivalent. This is because the {112} facets are asymmet-

ric. Hence, the strain field at the corresponding two facet junctions has an

opposite sign. Nevertheless, only results for the faceted GB that fits the ex-

perimentally observed structure, i.e., structural units and core structure of

the facet junctions, are discussed. However, the calculated strong anisotropy

of C impurities segregation to only one particular facet junction is observed

for both faceted GBs.

Using the relaxed structure of the above mentioned faceted GB, the vol-

umetric strain has been calculated [see Fig. 5.8(a)]. The volumetric strain at

each atomic site was calculated using the volume of the tetrahedra formed by

the four nearest neighbors. In Fig. 5.8(a) the strain is plotted at and around

the Grain 2 shown in Fig. 5.7. The tensile strained regions are colored in

hot/red colors and the compressive regions are in cold/blue colors. The

volumetric strain distribution resamples that of the εxx component shown

in 5.8(a) and arises from the presence of two partial dislocations of opposite
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FIGURE 5.8: (a) Volumetric strain at a faceted Σ3 Gb consisting
of {111} and A-{112} facets. Cold and hot colors represent com-
pressive and tensile strain, respectively. (b) C concentration at
the faceted GB with respect to the C concentration in bulk at

T=300/;K [see Eq. (5.3)].

Burgers’ vectors at the two line junctions. The origin of these dislocations

is the rigid shift of one grain with respect to the other and hence the misfit

of the {111} planes in the A-{112} segment. At the {111} twin boundary this

misfit is accommodated by the tensile, and compressive regions around the

line junctions (see Fig. 5.7).

The strain distribution arising from the partial edge type dislocation at

the line junctions cannot explain the experimentally revealed asymmetric C

segregation. Tensile and compressive regions are present at both line junc-

tions. In Section 5.3 it has been shown that the energetically most favorable

site for C segregation at the A-{112} GB is at the 5-atoms ring. However, the

5-atoms rings are not symmetric with respect to the {112} planes. Further-

more, as is schematically indicated in Fig. 5.7, these rings are oriented into

compressive and tensile regions at the facet junction cores. This is expected

to reduce and increase the C chemical potential in these regions and hence

enhance and reduce the C content, respectively.

To quantify the effect of strain on C segregation at the line junctions, the C

segregation energies at these defects have been explicitly calculated by using

Eq. (5.1). Using these energies, the excess local C content has been calculated
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FIGURE 5.9: MEAM potential calculated atomic geometries and
volumetric strain at junction I (left), junction II (right), and flat
A-{112} GB. The dashed lines indicate the twin and the gray
shaded regions the structural units of the A-{112} GB. Blue/cold
colors represent compressive strain and red/hot colors tensile
strain. The arrows denote the energetically most favorable site

for C substitutionals at the flat A-{112} GB.

using Boltzmann statistics. The relative C concentration at each site with

respect to the bulk content was calculated as:

ci

c0
= exp

(
−

Eseg

kBT

)
, (5.3)

where ci and c0 are the C contents at site i and in bulk, respectively, Eseg is

the segregation energy, kB is the Boltzmann constant and T is the tempera-

ture. For the calculations to be consistent with the ATP measurements (see

Section 5.4.1), the local concentrations were integrated within a cylindrical

region with 0.5 nm full width at half maximum (FWHM). The calculated lo-

cal C contents are color coded in Fig. 5.8(b). The highest C concentration

was found in the vicinity of line junction II and it is ≈1 order of magnitude

higher with respect to the bulk. High C concentration was found at junction

I as well. However, the C content is approximately ×5 lower than that at

junction II.

These findings are in excellent agreement with the experimental observa-

tion of site-specific line segregation. To identify the underlying mechanism

let us focus on the regions of the two line junctions (see Fig. 5.9). As has

already been mentioned, the energetically most favorable site for C substitu-

tion at flat A-{112} GB is at the 5-atoms ring, indicated by the arrow in the
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middle of Fig. 5.9. The driving force for the reduction of the C chemical po-

tential at this site is the compressive strain state of this site. At the junction

I, the 5-atoms ring is in the tensile region of the strain field induced by the

partial dislocation. Hence, the aforementioned compressive strain largely

cancels out by the dislocation’s tensile strain. On the other hand, at junction

II, the 5-atoms ring is oriented toward the compressive region of the disloca-

tion. This enhances the compressive strain of atom at the 5-atoms ring and

results in further reduction of the substitutional C chemical potential. This

explains the enhanced C content calculated and observed at line junction II.

5.5 Conclusions

In this chapter, the development of 2NN-MEAM potentials for C and SiC

has been presented. These potentials have been fitted on and benchmarked

against various physical properties such as GSFE, elastic constants, cohesive

energy differences of several stable and metastable crystal phases, charge

neutral vacancy formation energies, interstitial and substitutional energies,

and surface energies. The 2NN-MEAM potential for C gives an excellent

qualitative description and in general a very good quantitative description

of these properties. Although it provides a rather poor description of the

energies of low index diamond surfaces, this is not crucial to investigating

the segregation of C substitutionals in Si GBs. As a reference structure for

the 2NN-MEAM potential for SiC, the 3C-SiC structure has been used. This

potential provides an excellent description of the GSFE for shear along ⟨112⟩

and ⟨110⟩ in the {111} plane as well as of the elastic constants. Moreover,

it provides a very good description of the C substitutional and interstitial

formation energies in bulk Si. Furthermore, the segregation energies of C im-

purities at both S-{112} and A-{112} Si GBs have been evaluated for several

symmetry non-equivalent positions. The segregation energies are in excel-

lent qualitative and very good quantitative agreement with the DFT calcu-

lated values.
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Following the rigorous benchmark of the interatomic potentials, we have

performed simulations on faceted Σ3 GBs to identify the origin of the exper-

imentally observed asymmetric line segregation at the facet junctions. The

simulations have been performed using supercells that contained {111} and

A- and S-{112} facets at the experimental length scale. Based on these calcu-

lations, the volumetric strain at and around the line junctions of these facets

has been evaluated. This revealed that the facet junctions are accompanied

by regions of tensile and compressive strain. The origin of the strain field is

the presence of partial edge type dislocations of opposite Burgers vectors at

the two line junctions which are introduced to accommodate the misfit of the

{111} planes across the A-{112} boundaries. The C substitutional segregation

energies and concentration at the line junctions have been also calculated.

These calculations revealed that the lack of mirror symmetry across the A-

{112} and the differences in the strain and the core structure of the two line

junctions lead to strong asymmetric segregation of C impurities in one of the

two junctions.
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Chapter 6

2NN-MEAM Potentials for

Atomistic Fracture calculations in

NiRe Alloys

6.1 Introduction

The durability and reliability of structural materials are of great importance.

Applications of these materials such as high-speed train railways [139, 140]

or airplane wings [141] clearly demonstrate the importance of understanding

and controlling materials’ failure. Furthermore, low-cost yet robust against

failure devices/structures allow for more efficient energy usage. The study

and understanding of the mechanisms governing fracture are essential in de-

signing structural materials: It allows to predict materials’ failure and design

structural materials with improved mechanical properties [140].

The fracture process itself is multi-scale in nature. Nevertheless, fracture

at the atomistic and micro-scales initiates by bond breaking across a crack or

by the emission of dislocations at a crack tip [141–143]. A crack can be con-

sidered as a material separation by opening or sliding where the separation

distance is much smaller than the separation extend [144]. The crack front

is formed by two faces which are usually considered to lie on the same sur-

face before deformation. When the cracked body is subjected to an external

load, these crack faces move relative to each other. Depending on the exter-

nal load and the displacement of the cracked surfaces, three fracture modes
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FIGURE 6.1: Schematic representation of crack opening modes:
(a) Mode I or opening mode, (b) Mode II or sliding mode, and
(c) Mode III or tearing mode. The arrows indicate the applied

stress/load.

can be distinguished (see also Fig. 6.1) [140]:

Mode I: It is an opening mode where the application of tensile external load

results in symmetric and normal to the crack surface displacements of

the bounding facets [see Fig. 6.1(a)].

Mode II: It is the sliding mode that results from the application of shear

stress parallel to the crack plane and normal to the crack front. The dis-

placement of the bounding facets is in the crack surface [see Fig. 6.1(b)].

Mode II: The shear stress is acting parallel to the crack plane and the crack

front. The displacements of the bounding facets are parallel to both the

crack plane and the crack front, as well. This results in the tearing mode

[see Fig. 6.1(c)].

Apart from these three modes, the fracture can occur in combinations of

any of these modes. Atomistic calculations have been widely applied to

study the above mentioned fracture modes [145–147] and are now well es-

tablished to provide insights into the atomistic mechanisms governing fail-

ure mechanisms in metals, semiconductors, and metallic alloys [38, 45, 46,

148, 149].

In the present study, the effect of Re in the fracture mechanism at a crack

tip in Ni is investigated. The choice of this material’s system is motivated by
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the fact that Ni-based superalloys are characterized by high ductility, creep

and fatigue resistance, and high melting point. Because of their superior duc-

tility and high melting point they are used in jet engine turbine blades [150,

151]. The addition of a few at.% Re in Ni is known to considerably improve

the creep resistance of Ni-based superalloys. However, the mechanism of

the so-called rhenium effect is still under debate. A possible mechanism that

has been investigated by combining cluster expansion based Monte-Carlo

simulations with experiment is the formation of D1a crystal structure which

retards the dislocation climb [152]. The D1a phase may also hinder the coars-

ening of the γ
′

phase of Ni-based superalloys.
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FIGURE 6.2: Comparison of tensile stress
of Ni {112} as a function of separation
displacement calculated with different in-
teratomic potentials and DFT. Ko-MEAM,
EAM, B-MEAM, and E-MEAM refer to the
potentials [153], [154], [155] and [156] re-

spectively.

Crack tip phenomena during

fracture are controlled by mech-

anisms that span multiple length

scales such as bond breaking and

lattice trapping [148, 157], disloca-

tion emission [158, 159], cleavage

anisotropy [160, 161], long range

elastic strain interactions, and kink

nucleation [162–164]. To accurately

describe all these mechanisms in

atomistic simulations, one needs to

employ simulation cells consisting

of at least 105 atoms [165]. Ab-initio

calculations can accurately describe

the mechanical properties of materi-

als at all relevant scales. However,

these calculations are limited by the

available computational power to

systems consisting of a few thousand atoms. Nevertheless, semi-empirical

interatomic potentials are routinely used nowadays to calculate cells consist-

ing of a few million atoms and hence they provide an alternative route to

model fracture. For example, such interatomic potentials have been widely
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used to study dislocation and fracture related properties both in unary and

binary systems [38, 39, 166]. However, a prerequisite to accurately describing

such complex phenomena using interatomic potentials is the transferability

of these potentials, i.e., their robustness in different conditions and environ-

ments.

For Ni, there is a large number of semi-empirical interatomic potentials

in literature [153–156]. For example, Lee et al. [155] developed 2NN-MEAM

interatomic potentials for Ni to reproduce the physical properties of Ni. The

MEAM potential developed by Ko et al. [153] was used to describe the marten-

sitic phase transition in Ni-Ti. Interatomic potentials have been developed in

both the EAM and MEAM frameworks for Re [167, 168]. The Re EAM po-

tentials developed by Bonny et al. [167] were trained to predict the properties

of W-Re solid solution whereas MEAM Re potentials [168] were trained to

reproduce the physical properties only.

We tested a large number of Ni and Re interatomic potentials to vali-

date their ability to model fracture. Specifically, these potentials were tested

against the physical properties which are known to correlate with fracture.

These include surface energies, stacking fault energies, elastic constants, as

well as work of separation and traction separation behavior. As shown in

Fig. 6.2, all potentials that were evaluated show either discontinuous trac-

tion separation or unrealistically negative traction separation. These artifacts

are known to qualitatively affect crack tip behavior, e.g., unrealistic crack tip

blunting in atomistic simulations [38, 169].

To study the mechanisms occurring at the crack tip of Ni during fracture,

2NN-MEAM potentials for Ni, Re, and Ni-Re system have been developed.

A database that includes the properties that are known to correlate with frac-

ture properties has been constructed to fit, validate, and evaluate the trans-

ferability of the potentials.

The Chapter is organized as follows. Section 6.2 describes the linear elas-

tic fracture mechanics theory, Section 6.3 provides the methodology, Sections

6.3.1 to 6.3.8 deal with tensile stress, GSFE, and melting temperature calcula-

tions. Finally, the results are discussed in Section 6.4 and the conclusions are
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outlined in Section 6.5.

6.2 Linear Elastic Fracture Mechanics

6.2.1 Solution of stresses

Key parameters in the description of fracture are the stress intensity factor, K,

and the critical stress intensity factor, Kc. The stress intensity factor describes

the stress near the crack tip caused by an external load and the critical inten-

sity factor is the minimum stress intensity required to propagate the crack.

The units of both K and Kc are stress times the square root of length, e.g.,

Pa
√

m in S.I. . The critical intensity factor can be derived from an energy

balance consideration at the crack tip under an external load.

FIGURE 6.3: Schematic representation of
a cracked body. x1 is the crack propaga-
tion direction and the crack plane normal
is along x2. a is the crack length, ni is the
vector normal to the surface element ds.
dx and dy are the length and width of an
element of the cracked body subjected to

a body force, M.

The energy balance considera-

tion at a crack tip can be formu-

lated as follows: During the propa-

gation of a crack, extra free surfaces

are formed which costs energy. Fur-

thermore, other phenomena such as

plastic deformation via dislocation

nucleation and emission or forma-

tion of point defects or defect clus-

tering may take place which also in-

volve energy dissipation. For the

crack to grow, the rate of the energy

dissipation (G) should be balanced

by the rate of the mechanical work

done by the external load:

G = −dE
da

, (6.1)
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where E is the potential energy and da is the crack advanced distance. The

potential energy is defined as follows

E =
1
2

∫
v

σijϵijdV −
∫

s
Tinids . (6.2)

Here, σij is the stress tensor, ϵij is the strain tensor, and dV is the volume.

Therefore, the first term on the right hand side of Eq. (6.2) defines the strain

energy stored in the volume dV. The second term is the energy due to the

applied traction, Ti, on the surface of area ds. ni is the normal vector to the

surface (see Fig. 6.3). Rice [143] and Irwin [170] showed that the energy re-

lease rate G can be correlated to the stress intensity factor. The energy release

rate for mode I fracture in plane strain condition is written as

G =
1 − ν2

Y
K2

I , (6.3)

where ν is the Poisson ratio, Y is the Young’s modulus, and KI is the critical

stress intensity factor. Accordingly, the energy release rate, G is related to the

fracture toughness of mode I fracture as

KIc =

√
Y

1 − ν2 G (6.4)

In mode I brittle fracture G is equal to the energy required to create two

new surfaces, i.e., G = 2γs, where γs is the surface energy. In this case, the

critical stress intensity factor can be written as (Griffith critical stress intensity

factor, KGriffith):

KGriffith =

√
2Yγs

1 − ν2 (6.5)

For mode I ductile fracture, the nucleation of dislocation has to be consid-

ered. If we consider a solid subjected to loading conditions to create the stress

intensity factor of mode I (KRice, Rice critical stress intensity factor) then the

nucleation condition for a dislocation is written as [142]

[ f I(θ)KRice] cosϕ =

√
2µ

1 − ν

[
cos2ϕ + (1 − ν)sin2ϕ

]
γus . (6.6)
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FIGURE 6.4: Schematic representation of the geometry to calcu-
late KRice. θ is the angle between the dislocation Burgers vector
and the crack direction and ϕ is the angle between the crack

front normal and the slip plane.

Here, f I(θ) is a geometric factor. θ and ϕ are the angles between disloca-

tion Burger’s vector and crack direction and between the crack and the slip

planes, respectively (see Fig. 6.4). µ is the shear modulus and γus is the un-

stable stacking fault energy. For an isotropic material, the geometric factor is

written as

f I(θ) = cos2
(

θ

2

)
sin
(

θ

2

)
. (6.7)

The Griffith and Rice criteria relate the critical intensity factor with the

surface and the unstable stacking fault energies, respectively. In addition

to these two theories, the cohesive zone modeling establishes the relation

between the critical stress intensity factor with the work of separation. The

separation energy of two surfaces along the normal direction increases with
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the separation distance and vanishes at a sufficiently long distance. Rose et

al. [171, 172] showed that the interaction between the two surfaces has an

exponential form and Needleman et al. [173] showed that the traction, σ can

be written as a function of the separation distance, δ as following

σ (δ) = −σ0
δ

δ0
exp

(
−δ − δ0

δ0

)
. (6.8)

FIGURE 6.5: Schematic diagram of ten-
sile stress against separation distance.
The maximum stress (σ0) is the cohesive
strength, and the separation distance (δ0)
at which this stress occurs is the critical

crack tip opening displacement.

Here, σ0 is the cohesive strength

of the material, and δ0 is the crack

opening displacement (see Fig. 6.5).

The significance of this relation is

that the area under the σ vs δ curve

is the work of separation w. The

work of separation can be calculated

by atomistic calculations and for a

homogenous isotropic solid is writ-

ten as:

K =

√
Yw

1 − ν2 . (6.9)

Here, Y is the Young’s modulus. w can be calculated by integrating the tensile

stress vs separation distance curve [38, 174]. The calculation of the traction

stress σ and hence the work of separation w are discussed in Subsection 6.3.6.

6.3 Methodology

6.3.1 Ab-initio calculations

As described in the above section, the accurate description of the fracture

properties requires the accurate description of the surface energies, the un-

stable stacking fault energies, and the tensile stress. Therefore, to build the

database to parametrize the interatomic potential, we have calculated the

surface energies, the generalized stacking fault energies, and tensile stress
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by employing DFT calculations. Apart from these, we have calculated the

energy differences of the bcc, sc, diamond, and hcp phases with respect to

the ground state fcc for the unary Ni system. Similar properties were also

calculated for hcp Re. To build the database for the binary system, we have

considered the CsCl-NiRe structure as the reference structure. Therefore, we

have included cohesive energies, elastic constants, and formation enthalpies

of this phase in the database. Furthermore, the Re substitutional and inter-

stitial formation energies in fcc Ni were also considered. In addition to these,

we have evaluated the formation energies and elastic constants of binary Ni-

Re in the D1a, D022, Cu3Au, and NaCl phases. These calculations were then

used to benchmark the transferability of the interatomic potentials.

The spin-polarized DFT calculations were performed using the Vienna Ab-

initio simulation package [135]. A kinetic energy cut-off of 400 eV was used

for the expansion of the plane wave basis set with an equivalent 6 × 6 × 6

Monkhorst-Pack k-point mesh for the bulk unit cell to sample the Brillouin

zone. For the exchange and correlation, the Generalized Gradient approxi-

mation was used. All the atomic positions were relaxed until the force on

each atom is lower than 0.01 eV/Å. For the surface and GSFE calculations,

10 unit cells were considered along the normal direction to the surface and

interface. The visualization of the large scale atomistic simulation has been

performed using Ovito [175].

6.3.2 2NN-MEAM Interatomic Potentials

The formalism and the methodology to parametrize 2NN-MEAM potentials

have been described in detail in Sections 3.2 and 3.3, respectively. In the fol-

lowing, the parametrization of the 2NN-MEAM potentials for the Ni-Re bi-

nary system is briefly described. For the unary Ni, and Re the cohesive ener-

gies, Ec and equilibrium nearest neighbor distances, re are obtained from ex-

isting interatomic potentials [153, 167]. The fcc and hcp crystals were used as

reference structures for Ni and Re, respectively. The parameter α was used to
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fit the bulk modulus of the individual elements. The combinations of the par-

tial electron densities, βi, and the background electron densities, ti, were used

to fit the GSFE, elastic constants, surface energies, and tensile stress curves.

The scaling parameters of the embedding function, A, and the parameter β0

were used to fit the transitions energies of several stable and metastable crys-

tal structures. The screening parameters, Cmin and Cmax, were used to correct

the oscillations in the GSFE curves. The cutoff distance, rc, the smoothing dis-

tance, ∆r, and the parameter δ were used to fit the surface separation energy

profiles.

For the binary system, the CsCl structure was used as reference. The

nearest neighbour distance, re(Ni, Re), and cohesive energy, Ec(Ni, Re), were

fixed to the DFT calculated values. The parameters Cmin(Mi, Mj, Mk) and

Cmax(Mi, Mj, Mk), where Mi,j,k denotes Ni and/or Re, control the screening

of the many body Ni-Re interactions and were used to fit the elastic con-

stants of the CsCl structure as well as the Re substitutional and interstitial

formation energies in fcc Ni.

The 2NN-MEAM potential parameters for Ni and Re and listed in Ta-

ble 6.1 and these for the Ni-Re binary in Table 6.2.



TABLE 6.1: 2NN-MEAM potential parameter sets for Ni and Re. The units of Ec are eV, re, rc, and ∆r are Å. The reference
structures for Ni and Re are fcc and hcp, respectively.

Ec re β0 β1 β2 β3 α A Cmin t1 t2 t3 Cmax rc ∆r δ
Ni 4.45 2.76 3.107 2.4 1.5 4.0 5.308 1.0 0.7 3.1 1.8 1.36 2.85 5.5 2.0 0.05
Re 8.03 2.49 4.5 2.40 7.285 4.0205 6.2402 0.74 0.45 5.60 3.5 -4.02 2.85 10.80 0.4 0.01

TABLE 6.2: 2NN-MEAM potential parameters set for the binary Ni-Re. The units of Ec are eV, re, rc, and ∆r are Å. The CsCl
is used as a reference structure for NiRe.

parameters values parameters values

Ec(Ni, Re) 6.165 Cmin(Ni, Ni, Re) 2.10

re(Ni, Re) 2.555 Cmax(Ni, Re, Re) 2.85

α(Ni, Re) 5.85 Cmin(Ni, Re, Ni) 0.70

∆r 2.0 Cmin(Ni, Re, Re) 1.90

rc 5.5 Cmin(Re, Re, Ni) 1.90

Cmax(Ni, Re, Ni) 3.0 Cmax(Re, Re, Ni) 2.7

Cmax(Ni, Ni, Re) 4.3
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TABLE 6.3: Properties of Ni calculated by P-MEAM potential, DFT, B-MEAM and EAM potentials, and experimental data.
All properties are for Ni in fcc structure, unless otherwise stated. The cohesive energy of Ni in fcc, Ec, is in eV/atom. ∆E
is in meV/atom and denotes the cohesive energy differences between the ground state fcc and higher energy crystalline
phases. a is the lattice constant in Å and c/a is the ratio of lattice constants of the hcp structure. The unit of the bulk
modulus is GPa. The units of the other properties are listed in the Table. Properties with an asterisk [(∗)] have been

included in the materials’ database and employed to fit the potential.

P-MEAM B-MEAM [155] EAM [154] DFT /Experimental

fcc Ni

(∗)Ec -4.45 -4.45 -4.45 -4.842 [153] , -4.801
(∗)a 3.521 3.521 3.52 3.524 [153], 3.52
(∗)B 185 170 181 190.9 [153], 185
B

′
4.84 4.69 5.22 5.05

bcc
(∗) ∆E 160 160 112 97, 93 [153]

a 2.79 2.79 2.79 2.805

sc ∆E 507 660 833 705
a 2.32 2.35 2.35 2.33

hcp
∆E 6.78 21 21 26 [153], 24
a 2.49 2.49 2.48 2.488

c/a 1.63 1.63 1.63 1.645

Elastic constant (GPa)

(∗)C11 290 260 247 266 [153], 272
(∗)C12 161 150 148 155 [153], 155
(∗)C44 101 131 125 129 [153], 132

Vacancy formation energy (eV) Ev 1.18 1.97 1.6 1.41 [153], 1.42

Surface energy (meV/Å
2
)

(∗)γ(100) 130 178 117 151 [176], 135
(∗)γ(110) 129 176 128 148 [176], 147

γ(111) 106 148 101 125 [176] 120
γ(112) 124 171 122 140
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P-MEAM B-MEAM [155] EAM [154] DFT /Experimental

Cohesive strength (GPa)

σ(100) 32 35 28 29
σ(110) 29 32 29 29
σ(111) 29 33 28 29
σ(112) 30 33 28 28

Critical Opening Displacement (Å)

δ(100) 0.56 0.57 0.56 0.5
δ(110) 0.48 0.57 0.56 0.6
δ(111) 0.48 0.48 0.48 0.45
δ(112) 0.48 0.56 0.56 0.55

Work of Separation (meV/Å
2
)

(∗)w(100) 254 346 270 253
w(110) 253 341 286 279
w(111) 210 290 250 230
w(112) 246 335 282 267

Melting Temperature (K) TNi 1550 2013 1635 1455 [177]
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TABLE 6.4: Calculated physical properties of Re using the present 2NN MEAM potential as well as previous EAM potential
compared to experimental and DFT data. All the properties are for hcp Re unless it is otherwise stated. The units are as in

Table 6.3. The later applies also for the asterisk [(∗)].

P-MEAM EAM [167] DFT /Experimental

hcp Re
(∗)Ec -8.03 -8.03 -7.82, -8.03 [178]
(∗)a 2.765 2.761 2.77
c/a 1.623 1.614 1.615
(∗)B 373 382 303
B

′
5.21 3.08 19

fcc
(∗)∆E 27.26 20.0 63
(∗)a 3.91 3.90 2.58

bcc ∆E 200 130 315
a 3.10 3.05 3.11

sc ∆E 1617 1944 1365
a 2.60 2.63 2.58

Elastic constant (GPa)

(∗)C11 609 611 613 [179]
(∗)C12 286 299 270 [179]
(∗)C44 124 159 163 [179]
(∗)C33 705 682 683 [179]
(∗)C13 208 234 206 [179]

Vacancy (eV) Ev 3.22 3.49 3.27

Surface energy (meV/Å
2
)

(∗)γ(0001) 188 140 158
γ(101̄0) 194 151 184
γ(1̄21̄0) 213 183 192
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P-MEAM EAM [167] DFT /Experimental

Cohesive strength (GPa)
σ(0001) 48.17 57.27 38
σ(101̄0) 47.31 59.19 40
σ(1̄121̄0) 45.83 59.36 38

Critical Opening Displacement (Å)
δ(0001) 0.45 0.33 0.55
δ(101̄0) 0.47 0.34 0.5
δ(1̄21̄0) 0.53 0.39 0.6

Work of Separation (meV/Å
2
)

(∗)w(0001) 367 318 333
w(101̄0) 377 344 361
w(1̄21̄0) 407 397 387

Melting Temperature (K) TRe 4350 4836 3186 [177]
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6.3.3 Structural and Elastic properties of Ni and Re

To parameterize and evaluate the interatomic potentials for Ni and Re, the

structural, elastic, and point defect properties of these elements have been in-

cluded in the material’s database. Apart from the fcc and hcp ground states

the crystal structures of bcc, and sc have been also considered. For Ni, the fcc

and bcc phases were used to fit the potential whereas the sc and hcp phases to

evaluate the potential. The Ni P-MEAM potential provides an excellent de-

scription of the lattice parameter, bulk modulus, and pressure derivative of

bulk modulus when compared with DFT (see Table 6.3): The P-MEAM (DFT)

calculated values of fcc lattice parameter, a, and bulk modulus, B, are 3.521

(3.52) Å and 185 (185) GPa, respectively. For hcp Re, the P-MEAM (DFT) cal-

culated values of a, c/a, and B are 2.765 (2.77) Å, 1.623 (1.615), and 373 (303)

GPa respectively. Nevertheless, apart from hcp Ni, the P-MEAM potential

calculated equilibrium volumes are within less than 0.6 3 in agreement with

the DFT calculated values.

The P-MEAM calculated cohesive energy differences between the ground

state and the higher energy crystal structures are in excellent qualitative agree-

ment with the DFT calculated values. The ordering of the Ni cohesive ener-

gies is fcc<hcp <bcc < sc and for Re hcp< fcc < bcc < sc. In both cases, the

left-sided structures are energetically more favorable than the right-sided.

The P- MEAM (DFT) calculated elastic constants of fcc Ni are C11=290

(272), C12=161 (148), and C44=101 (125) GPa, respectively, i.e., there is an

excellent agreement with the DFT calculations. The five independent elas-

tic constants of hcp Re were also evaluated with P-MEAM and DFT. The

P-MEAM calculated elastic constants are within 30% in agreement with the

DFT calculated values (see Table 6.4). There is also an excellent agreement

between P-MEAM and DFT calculated Ni and Re vacancy formation ener-

gies: The P-MEAM values for Ni and Re are 1.18 and 3.22 eV whereas the

DFT values are 1.41and 3.27 eV, respectively. For these calculations, 4× 4× 4

bulk supercells have been employed and the chemical potentials of Ni and

Re were fixed to the chemical potential of bulk fcc Ni and hcp Re.
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6.3.4 Generalized Stacking Fault Energies
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FIGURE 6.6: GSFE for Ni as function of normalized displace-
ment along (a) ⟨1̄10⟩ and (b) ⟨1̄1̄2⟩ shear directions in the
{111} plane obtained from DFT, P-MEAM, EAM [154] and B-

MEAM [155] potential calculations.

A key material parameter that controls the dislocation emission is the un-

stable stacking fault energy (USFE). To calculate the unstable stacking fault

energies for fcc Ni, we have calculated the GSFE for shear along ⟨110⟩ and

⟨112⟩ in the {111} glide plane. The GSFE profiles calculated by P-MEAM and

DFT as well as B-MEAM and EAM for the ⟨110⟩{111} and ⟨112⟩{111} systems

are plotted in Figs. 6.6(a) and (b), respectively. The calculated USFE for the
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FIGURE 6.7: GSFE for Re as function of normalized displace-
ment along (a) the ⟨1̄21̄0⟩ shear directions in the basal plane
and (b) the ⟨1̄21̄0⟩ shear directions in the {101̄0} plane obtained

from P-MEAM, DFT, and EAM [167] potential calculations.
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⟨110⟩{111} slip system is at u/b reduced displacement, where u and b are

the displacement and the norm of Burgers vector, respectively. The P-MEAM

and DFT calculated values are 47.93 meV/Å
2

and 60.2 meV/Å
2
, respectively.

The P-MEAN calculated values of stable and unstable stacking fault ener-

gies for the ⟨112⟩{111} slip system are 2.74 and 24.38 meV/Å
2
, respectively,

whereas the DFT values are 9.3 and 16.8 meV/Å
2
, respectively.

The GSFE profiles for Re calculated by P-MEAM, DFT, and EAM are plot-

ted in Fig. 6.7(a) for shearing along ⟨1̄21̄0⟩ in the basal plane and in Fig. 6.7(b)

for the ⟨1̄21̄0⟩ {101̄0} slip system. The former was included in the mate-

rial’s database to fit the potential and the later to evaluate the transferability

of the potential. The P-MEAM calculated values of USFE and SFE for the

⟨1̄21̄0⟩{0001} slip system are 41.28 and 8.31 meV/Å
2
, respectively, whereas

the DFT calculated values are 42.0 and 15.08 meV/Å
2
, respectively. For the

⟨1̄21̄0⟩ {101̄0} slip system there is no stable stacking fault and the P-MEAM

calculated USFE is 83.62 meV/Å
2

which compares well with the DFT calcu-

lated value of 68.69 meV/Å
2
.

6.3.5 Surface Energies

The brittle fracture of materials is characterized by bond breaking and sur-

face cleavage. Therefore, to perform an atomistic simulation of fracture, a

prerequisite for the interatomic potentials is to correctly calculate surface en-

ergies. For Ni, we have considered the low index (100), (110), (111), and (112)

surfaces and for Re the (0001), (1100), (1120) planes. The surface energy was

calculated using slabs with 1 × 1 surface unit cell and 10 units along the nor-

mal direction to the surfaces. A 10 Å thick vacuum region was considered to

decouple the two bounding surfaces of the slab. The surface energy Esurf is

defined as:

Esurf =
1

2A
(Eslab − nEbulk) , (6.10)

where Eslab is the total energy of the slab containing n atoms and two sym-

metry equivalent surfaces, Ebulk the bulk total energy per atom, and A is the

area of the surface.
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The calculated energies of Ni and Re surfaces are listed in Tables 6.3 and

6.4, respectively. The P-MEAM potential calculations predict, in excellent

agreement with the DFT calculations, the following ordering of the surface

energies for Ni: γ{111} < γ{112} < γ{110} < γ{100}. Moreover, the surface

energy ordering of Re is in the same order as in DFT. For Re, both P-MEAM

and DFT calculations agree qualitatively and the ordering of the surface en-

ergies is: γ{0001} < γ{101̄0} < γ{112̄0}. Nevertheless, the Ni and Re surface

energies are under- and over-estimated by P-MEAM with respect to the DFT

calculated values, respectively.

6.3.6 Work of Separation

The work of separation has been calculated for the (100), (110), (111), and

(112) Ni surfaces and for the (0001), (1100), and (1120) Re surfaces. The work

of separation was calculated by employing the following two steps proce-

dure. At first, a supercell was created consisting of a 1 × 1 unit cell and 10

unit cells along the surface normal. A vacuum of 10 angstrom was added

to the cell. The cell is divided into two parts. The upper half of the crystal

was rigidly shifted incrementally with a step size of 0.08 Å along the surface

normal and the energy (U) was calculated at each step. The tensile stress σ is

calculated as:

σ =
1

V(ε)

dU
dε

. (6.11)

Here, V(ε) is the volume at strain ε. The maximum stress obtained from such

a curve is known as the cohesive strength of the material and the separation

distance at which the maximum stress occurs is the critical crack opening

displacement, δ. The area enclosed under the curve is the work of separation,

w (see Fig. 6.5).

Fig. 6.8 shows the tensile stress for Ni obtained by DFT, P-MEAM, B-

MEAM [154], and EAM [155] potential calculations. As can be seen, the

cohesive strength shows a weak dependence on the cleavage plane. The val-

ues of cohesive strength vary from 29-30 Pa. The P-MEAM predicted critical
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FIGURE 6.8: Traction separation of Ni as a function of separa-
tion distance. The DFT calculated curve for the (100) surface
was used to fit the P-MEAM potential. The profiles of the other
surfaces were used to evaluate the P-MEAM potential. EAM

and B-MEAM are from Refs. [155] and [154] respectively.

opening displacements are in the range of 0.48-0.65 Å whereas the DFT ob-

tained values vary from 0.60 to 0.66 Å. The work of separation is given in

Table ??. The DFT calculated values are in the range of 242-293 meV/Å
2

and

the P-MEAM values in the range of 210-254 meV/Å
2
.

As seen can be seen in Fig. 6.8, the EAM and B-MEAM potentials show

spurious oscillations in the tail region of the tensile stress profiles. On the
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FIGURE 6.9: Traction separation of hcp Re as a function of sep-
aration distance. The DFT calculated curve for the (0001) plane
was used to fit the P-MEAM potential. The profiles of the other
surfaces were used to evaluate the P-MEAM potential. EAM

potential is from Ref. [167].

other hand, DFT and P-MEAM potential calculations show a smooth decay

of tensile stress with increasing separation distance. The above mentioned

oscillations are attributed to the abrupt truncation of B-MEAM and EAM pair

potentials at large separation distances [38, 46]. Ko et al. showed that such
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oscillations act as artificial barriers for the ductile-brittle transitions and are

also responsible for the artificial crack blunting in fracture simulations [169].

Fig. 6.9 shows the tensile stress of Re for (0001), (1100), and (1120) surfaces

obtained by the P-MEAM, EAM [167], and DFT calculations. The work of

separations, cohesive strengths, and critical displacements calculated within

the P-MEAM potential are in good quantitative and excellent qualitative agree-

ment with the DFT values (see also Table 6.4). The P-MEAM calculated ten-

sile stress profiles are in excellent qualitative agreement with the DFT cal-

culations. On the other hand, the EAM potential shows artificial minima at

separation distances larger than ≈2 Å.

6.3.7 Properties Ni-Re binaries

To fit and evaluate the potential selected properties of Ni-Re binary alloys

have been calculated. These include the lattice and elastic constants, the co-

hesive energies, and mixing enthalpies. Moreover, the Re interstitial forma-

tion and binding energies of Re pairs at nearest neighbor distances have been

also calculated. Specifically, the following crystal structures have been con-

sidered:

CsCl structure. This is used as the reference structure for the MEAM po-

tential. The CsCl structure belongs to the Pm3̄m space group and the

primitive cell has two atoms, a Cs (Ni) atom at (0,0,0) and a Cl (Re) atom

at
(

1
2 , 1

2 , 1
2

)
in units of the primitive vectors (α,0,0), (0,α,0), and (0,0,α),

where α is the lattice constant.

D1a structure. This structure belongs to the I4/m space group and has 5

atoms in the primitive cell. In units of the primitive vectors (α,0,0),

(0,α,0), and
(

α
2 , α

2 , c
2

)
, where α and c are the lattice constants, the basis

atoms are at: Re at (0,0,0) and Ni at (+x,+y, 0), (−y,+x, 0), (−x,−y, 0),

and (+y,−x, 0), where x and y are internal lattice parameter. Therefore,

the composition of this structure is Ni4Re. This structure is the ground

state of the binary at 20 at.% Re content [152].
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TABLE 6.5: Strain configurations applied to calculate the elas-
tic constants, Cij of Ni-Re binaries in the tetragonal crys-
tal structures. The strain configurations are in the form
{ε1, ε2, ε3, ε4, ε5, ε6}. ε i is the strain in Voigt notation. ∆E/V is

the strain energy density and δ is the strain variable.

Strain configuration ∆E/V
1 {2δ,−δ,−δ, 0, 0, 0} 1

2 (C11 − 4C12 − 2C13 + C33) δ2

2 {−δ,−δ, 2δ, 0, 0, 0} (C11 + C12 − 4C13 + 2C33) δ2

3 {δ, δ, 2δ, 0, 0, 2δ} (C11 + C12 − 4C13 + 2C33 + 2C66) δ2

4 {δ, 0, 0, 0, 0, 0} 1
2C11δ2

5 {0, 0, δ, 0, 0, 0} 1
2C33δ2

6 {0, 0, 0, δ, 0, 0} 2C44 δ2

D022 structure. This belongs to the tetragonal I4/mmm space group and the

prototype is the Al3Ti. The primitive vectors are the (α,0,0), (0,α,0), and(
α
2 , α

2 , c
2

)
and the four atoms in the primitive cell are at (0, 0, 0) (Re),(

1
2 , 1

2 , 0
)

(Ni),
(

1
4 ,−1

4 , 1
2

)
(Ni), and

(
−1

4 , 1
4 , 1

2

)
(Ni), in reduced coordi-

nates.

Cu3Au structure. The primitive vectors of this structure are the (α, 0, 0), (0, α, 0),

and (0, 0, α), where α is the lattice constant. In the primitive cell, the 3

Ni atoms are at
(

0, 1
2 , 1

2

)
,
(

1
2 , 0, 1

2

)
, and

(
1
2 , 1

2 , 0
)

and the Re atom at

(0, 0, 0) in reduced coordinates.

NaCl structure The rock salt structure belongs to the cubic Fm3̄m space group.

The primitive vectors are the
(
0, α

2 , α
2

)
,
(

α
2 , 0, α

2

)
, and

(
α
2 , α

2 , 0
)
. The two

basis atoms are at (0, 0, 0) and
(

1
2 , 1

2 , 1
2

)
.

To calculate the bulk modulus and its pressure derivative the Murnaghan

equation of state has been used [see Eq. (4.3)]. For the elastic tensors of the

cubic phases, the strain configurations listed in Table 4.4 have been used. For

the tetragonal phases, the strain configurations shown in Table 6.5 have been

applied. Finally, the elastic constants were obtained by solving these linear

systems of equations. The methodology was described in Section 4.4.1.

The Re substitutional, E f
sub and interstitial, E f

inter formation energies are

written as:

E f
sub or inter = Etot(n)− nEbulk

tot − µRe , (6.12)
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Here, Etot(n) is the total energy of the Ni fcc supercell consisting of n atoms

and an interstitial or substitutional Re, and Ebulk
tot is the total energy per atom

of fcc Ni. The chemical potential of Ni is therefore fixed to that of bulk Ni.

µRe is the chemical potential of Re which is fixed to that of bulk Re in the hcp

structure. The Re substitutional binding energy Ebind is calculated as follows:

Ebind = E f
2sub − 2E f

sub , (6.13)

where E f
2sub is the formation energy of the substitutional pair. The mixing

enthalpy is calculated as

∆H = Etot(NixRey)− xEtot(Ni)− yEtot(Re) (6.14)

where Etot(NixRey), Etot(Ni), and Etot(Re) are the total energies per atom

of NixRey, fcc Ni, and hcp Re, respectively. To calculate the Re interstitial,

substitutional, and binding energies 4 × 4 × 4 bulk fcc Ni supercells have

been employed.

TABLE 6.6: Mechanical stability analy-
sis of considered crystal structures as ob-
tained from MEAM and DFT. s and u
denote mechanically stable and unstable

phases, respectively.

MEAM DFT

CsCl u u

Cu3Au s s

NaCl s u

d1a s s

I4-mmm s s

The calculated properties of NixRey

by P-MEAM and DFT are listed in

Table 6.7. As can be seen, the P-

MEAM fitted cohesive energy and

mixing enthalpy as well as the lattice

constant and bulk modulus of NiRe

in the CsCl structure are in excel-

lent agreement with the DFT calcu-

lations. The mixing enthalpy is pos-

itive indicating that the formation

of this phase is unstable at T=0 K.

However, both P-MEAM and DFT

calculate negative mixing enthalpy for the Ni4Re in D1a structure. Neverthe-

less, all the P-MEAM calculated cohesive energies are in excellent agreement

with the DFT values. Furthermore, both Re substitutional and interstitial
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formation energies calculated with P-MEAM are positive and qualitatively

agree with the DFT calculated values. However, while the DFT calculated

binding energy of Re interstitials is negative, the P-MEAM predicted values

are slightly positive. The P-MEAM calculated bulk modulus and its pressure

derivative are within less than 20% in agreement with the DFT values, for all

crystal structures considered.

Using the calculated elastic constants, the mechanical stability of the five

different Ni1−xRex crystal structures can be addressed. A cubic crystal is said

to be mechanically stable if the following conditions are met [180]:

C11 − C12 > 0 (6.15)

C11 > 0, C44 > 0 (6.16)

C11 + 2C12 > 0 (6.17)

Both DFT and P-MEAM calculations predict mechanically stable crystal for

the Cu3Au structure and unstable for the CsCl. However, for NiRe in the

NaCl structure, the DFT predicts C44 < 0, i.e., mechanically unstable, whereas

P-MEAM C44 > 0, i.e., mechanically stable. Nevertheless, the P-MEAM cal-

culated C44 is very low (10 GPa).

The mechanical stability conditions for tetragonal crystals are [180]

C11 − C12 > 0 (6.18)

C11 > 0, C44 > 0, C33 > 0, C66 > 0 (6.19)

C11 + C33 − 2C13 > 0 (6.20)

2C11 + C33 + 2C12 + 4C13 > 0 (6.21)

Both DFT and P-MEAM calculations predict D1a, and D022 structures to be

mechanically stable. The results for the aforementioned crystal structures are

summarized in Table 6.6.



6.3. Methodology 127

TABLE 6.7: Calculated properties of the Ni-Re binary. The mix-
ing enthalpies, ∆H f are in eV/formula unit, the cohesive en-
ergies, Ec are given in eV/atom and the lattice parameters, a
and c, in Å. The elastic constants are in GPa. Substitutional
and interstitial formation energies and nearest neighbor substi-
tutional binding energy are in eV. Properties with an asterisk

[(∗)] are included in the materials’ database.

P-MEAM DFT

CsCl NiRe (1:1)
(∗)Ec -6.165 −6.14
(∗)a 2.95 2.95
(∗)B 291 293

B´ 5.14 4.78
(∗)∆H f 0.15 0.67
(∗)C11 193 186
(∗)C12 342 354
(∗)C44 250 144

D1a NiRe (4:1)

Ec -5.17 −5.73

a 5.53 5.67

c 3.91 3.58

B 243 249

B´ 5.08 6.28

∆H f -0.043 −0.29

C11 409 359

C12 147 165

C44 123 161

C33 457 338

C13 154 201

D022 NiRe (3:1)

Ec -5.31 -5.73

a 3.64 3.56

c 7.30 7.38
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P-MEAM DFT

B 273 285

B´ 5.21 5.13

∆H f 0.14 0.11

C11 363 328

C12 250 248

C44 255 157

C33 401 365

C13 207 192

Cu3Au Ni3Re

Ec -5.30 -5.61

a 3.64 3.63

B 274 227

B´ 4.94 4.35

∆H f 0.17 0.77

C11 395 239

C12 215 196

C44 221 113

NaCl NiRe (1:1)

Ec -5.58 -5.32

a 5.01 4.85

B 201 233

B´ 5.01 4.72

∆H f 1.31 2.33

C11 558 428

C12 22 133

C44 10 -54
(∗)Esub 0.03 0.34
(∗)Einter/oct 7.22 6.93

Ebinding 0.05 -0.26
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6.3.8 Melting Temperatures

FIGURE 6.10: Solid-liquid interface model employed to calcu-
late the melting temperature of Ni. The green atoms represent
Ni in the solid phase whereas the white atoms Ni in the liquid

phase.

Ni-Re superalloys are used in turbine blades of jet engines where they

withstand extremely high temperatures. Therefore, it is of interest to cal-

culate the melting temperature of Ni, Re, and Ni-Re using the present 2NN-

MEAM potentials. To do so the moving interface method has been applied [181]:

In the first step, a solid-liquid interface is created normal to the x direc-

tion of an orthogonal supercell with dimensions 200×70×70 Å, consisting of

≈ 5 × 104 atoms. This was achieved by melting half of the crystal under zero

pressure while keeping the other half of the crystal in its crystalline state (see

Fig. 6.10). Afterward, all the atoms are reassigned velocities equivalent to a

temperature Tguess which is a guess of the actual melting temperature, Tm.

All the atoms in the system are then equilibrated under zero pressure along

the interface normal for a time of 50 ps using the isothermal-isobaric (NPT)
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ensemble. In the next step, the system is allowed to evolve for a further 20 ps

within the canonical (NVT) ensemble. Then, the thermostat is turned off and

the system is allowed to evolve within the micro-canonical (NVE) ensemble

for 20 ps. If at the end of this procedure the current temperature is lower

(higher) than the actual melting temperature, the interface moves towards

the liquid (solid) phase, respectively.
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FIGURE 6.11: Melting point of Ni1−xRex alloy with respect to
the melting temperature of pure Ni as a function of the Re con-

tent.

Using the above mentioned method the calculated melting temperatures

for Ni and Re are 1550±10 K and 4350±20 K, respectively. These values are

in good agreement when compared with the experimental values of 1455,

3186 K, respectively [177]. We further calculated the melting temperature of

Ni-Re alloys. Substitutional Re was added randomly in the host matrix for

different Re contents in the range of ≈2 - 14 at %. The calculated melting

temperature of the Ni-Re with respect to that of Ni is plotted against the Re

content in Fig. 6.11. As can be seen, within the aforementioned Re contents
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range, the melting temperature shows a monotonous increase with the con-

tent. Although an upward bowing can be seen at the low Re content region,

this may be related to noise.

6.4 Results and Discussions

FIGURE 6.12: Schematic representation of the simulation cell
employed to model crack propagation. The crack tip is placed
at the origin. x1 and x2 are the crack propagation direction and
the crack surface normal, respectively. The crack front direction

is along x3.

To perform large scale fracture simulations for the ⟨112⟩{111} slip system,

an atomically sharp crack has been introduced in a simulation cell using the

isotropic displacement field of mode I fracture (see Fig. 6.12). The crack prop-

agation direction, crack plane normal, and crack front are along x1, x2, and

x3 respectively. For an isotropic solid, the displacement field, u = (u1, u2),
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for mode I fracture in plane strain condition is written as:

u1 =
∆KI

µ

√
r

2π
cos

β

2

(
1 − 2ν + sin2 β

2

)
(6.22)

u2 =
∆KI

µ

√
r

2π
sin

β

2

(
2 − 2ν + cos2 β

2

)
(6.23)

where

r =
√

x2
1 + x2

2 (6.24)

β = tan−1
(

x2

x1

)
. (6.25)

µ and ν are the shear modulus and Poisson ratio, respectively. β is the angle

between x1 and x2. ∆KI is the increment in stress intensity factor.

The simulation cells consisted of ≈ 4 × 105 atoms and had the form of

an orthogonal parallelepiped with edge length of ≈ 400 Å along x1 and x2,

and ≈ 10 Å along x3 (see Fig. 6.12). Periodic boundary conditions were ap-

plied along x3. The crack was introduced by mapping the displacement field

{u1, u2} for mode I fracture in plane strain condition [see Eqns. (6.22)-(6.23)]

on the atomic positions. The crack load was performed quasistatically: The

atomic positions within an inner cylinder of radius ≈ 300 Å were relaxed

while the atoms in the outer region were kept fixed. The atomic relaxation

was performed until the change in the total energy was less than 10−8 eV or

the forces on the atoms were lower than 10−12 eV/Å. After atomic relaxation,

the stress intensity factor was increased by 0.005 MPa
√

m and the displace-

ment field was imposed on the relaxed structure. The quasistatic loading

was continued until the stress intensity factor was 50% higher than the criti-

cal stress intensity factor predicted by LEFM.

To identify the angles between the slip and the crack planes and between

the Burgers vector and the crack direction, the Thompson tetrahedron has

been used. The Thompson tetrahedron describes all possible dissociations of

dislocations in fcc crystals. Fig. 6.13 shows the four different {111} planes,

i.e., the (1̄1̄1), (111), (11̄1̄), and (1̄11̄) planes denoted by the ABD, ABC, ADC,
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t

FIGURE 6.13: Schematic diagram of Thompson tetrahedron
which contains all the slip systems of fcc and shows the Burgers
vector of perfect and partial dislocations. Each side represents a
slip plane, and the edge of the side represents the Burgers vec-

tor of a perfect dislocation.

and BCD triangles, respectively. The Shockley partial dislocations are con-

fined in the {111} planes whereas the perfect dislocations are given by the

edges of the tetrahedron. For example, in the (111) plane, AB, BC, and CA

correspond to perfect dislocations with Burgers of type 1
2⟨110⟩. δA, δB, and

δC represent the Shockley partial’s Burgers vectors of type 1
6⟨112⟩. In this slip

plane, the dissociation of a perfect dislocation, AB, can be expressed in terms

of the partial dislocations δA and δB. The dissociation is written as follows:

AB = Aδ + δB (6.26)

In order to calculate the aforementioned angles, let us consider the fol-

lowing dissociation of a perfect dislocation with Burgers vector 1
2⟨011̄⟩ into
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partial dislocations with Burgers vectors of type 1
6⟨112⟩ in the (111) slip plane:

AB = Aδ + δB (6.27)

1
2
⟨011̄⟩ = 1

6
⟨1̄21̄⟩+ 1

6
⟨112̄⟩ (6.28)

All possible dissociations can be calculated similarly to the above reaction

for all slip planes. Each plane contains three possible reactions. For example,

The (111) slip plane can yield the three following reactions:

AB = Aδ + δB (6.29)

AC = Aδ + δC (6.30)

BC = Bδ + δC (6.31)

Following all symmetry allowed dissociations described by Eqs. (6.29) the

angles between the slip and the crack planes and the Burgers vector and the

crack direction can be calculated.
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TABLE 6.8: Critical stress intensity factors KRice, KGriffith, and KCZM obtained from LEFM using DFT and P-MEAM calcu-
lated unstable stacking fault and surface energies and works of separation, and K1c obtained from atomistic simulations
employing the P-MEAM potential for six different crack configurations in the ⟨112⟩{111} slip system. The intensity factors
are in MPa

√
m. For each crack configuration, the angles θ and ϕ between the slip and the crack planes and between the

crack front normal and the Burgers vector as well as the observed behavior, i.e., brittle or ductile, in atomistic simulations
are also listed.

DFT MEAM
Crack direction/

θ ϕ KCZM KGriffith KRice KCZM KGriffith KRice K1c
Observed

plane behaviour
[100]/(010) 54.73 35.26 1.22 1.22 0.97 1.06 1.08 1.06 1.0 Brittle
[11̄0]/(111) 90 19.47 1.14 1.14 0.88 0.96 0.97 0.97 0.90 Brittle
[11̄2]/(11̄1̄) 61.87 19.47 1.14 1.14 0.82 0.96 0.97 0.91 0.91 Ductile
[11̄0]/(1̄1̄2) 90 0 1.23 1.23 0.84 1.04 1.05 0.93 1.0 Ductile
[010]/(101̄) 54.73 30 1.25 1.25 0.92 1.06 1.07 1.01 0.9 Ductile
[11̄0]/(001) 90 144.73 1.22 1.22 0.99 1.06 1.08 1.08 1.0 Brittle
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FIGURE 6.14: Critical stress intensity factors KRice, KGriffith, and
KCZM in MPa

√
m obtained from LEFM and P-MEAM calcu-

lated parameters plotted against those obtained from DFT cal-
culated parameters. The solid black line indicates the ideal cor-

relation between P-MEAM and DFT calculated values.

Table 6.8 lists the six different crack systems considered for the calculation

of the stress intensity factor. In a first step, the stress intensity factors have

been calculated using LEFM, i.e., the Griffith theory (KGri f f ith), Rice theory

(KRice), and cohesive zone modeling (KCZM) (see Section 6.2). The stress in-

tensity factors vary from 0.83 to 1.26 MPa
√

m using DFT calculated values,

and from 0.91 to 1.08 MPa
√

m using P-MEAM calculated values. The dif-

ferences in the value of K predicted by DFT and P-MEAM calculations arise

from the differences in the calculated surface energies and unstable stacking

fault energies.

The LEFM calculated values of the critical stress intensity factors using

the P-MEAM calculated parameters are plotted against the DFT calculated

ones in Fig. 6.14. There is a very good agreement between P-MEAM and DFT

in the KRice. There is also a good agreement in the KGriffith and KCZM values,

though the P-MEAM calculated values are underestimated with respect to
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FIGURE 6.15: Left: σyy stress distribution (in GPa) in
Mode I crack opening of the ⟨112⟩{111} crack system at
KIc=0.91 MPa

√
m. Inset: Zoom into the core of the emitted dis-

location. Hot and cold colors represent tensile and compressive
stress, respectively. Middle and right panels: Zoom into the
crack region before and after and the nucleation and emission
of the dislocation. The magnified atoms are colored according
to their nearest neighbor coordination. Green and black atoms
are in fcc and hcp bulk-like configurations, respectively. White

balls represent surface atoms.

the DFT calculated ones. Nevertheless, both P-MEAM and DFT predict duc-

tile fracture for the [11̄2] / (11̄1̄), [11̄0] / (1̄1̄2), and [010] / (101̄) crack config-

urations, i.e., KGriffith > KRice and brittle for the [100] / (010) configuration,

i.e., KGriffith < KRice. For the [11̄0] / (111) and [11̄0] / (001) configurations

DFT predict brittle fracture, while P-MEAM calculates KGriffith = KRice, i.e.,

a conclusion cannot be made. The atomistic calculations for these two sys-

tems predict brittle fracture, i.e., the crack tip propagates by cleavage instead

of nucleation and emission of dislocations. The latter characterizes ductile

fracture. Nevertheless, all the critical stress intensity factors calculated from

P-MEAM based LEFM and atomistic fracture simulations agree within 10%.

This small difference is attributed to the facts that (i) that the displacement

field from isotropic elasticity theory has been applied and (ii) the tension-

shear coupling and the surface tension have not been included in the calcu-

lations of the USFE.

To get insights into the large scale atomistic calculations let us focus on

two crack systems with different fracture characters. We first discuss the
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FIGURE 6.16: Left: σyy stress distribution (in GPa) around the
[100] / (010) crack tip at K1c=1 MPa

√
m. Middle and right pan-

els: Zoom into the crack region before and after the crack prop-
agation. Hot and cold colors represent tensile and compressive

stress, respectively.

[11̄2] / (11̄1̄) system where the crack propagates via a dislocation nucleation

and emission, i.e., it shows a ductile fracture. Fig. 6.15(left) shows the σyy

stress distribution around the [11̄2] / (11̄1̄) crack tip at KIc=0.91 MPa
√

m. As

can be seen, the crack tip propagation took place via the nucleation and emis-

sion of a Shockley partial with Burgers vector of type b = a/6⟨112⟩. Indeed

the stress field shown in the inset is characteristic of an edge type disloca-

tion. The glide away of the partial from the crack tip leaves behind a stack-

ing fault (see black balls in the right panel of Fig. 6.15. A comparison of the

atomic structure at the crack tip before [see Fig. 6.15(middle)] and after [see

Fig. 6.15(right)] the propagation, demonstrates that the crack opening results

in a blunted crack tip.

For the [100] / (010) crack system, brittle fracture is predicted (see Ta-

ble 6.8). Fig. 6.16(left) demonstrates the σyy stress distribution around that

crack tip at K1c=1 MPa
√

m. Unlike the [11̄2] / (11̄1̄) system, the stress field

does not indicate the presence of an edge type dislocation far from the crack

tip. The propagation of the crack tip is depicted in Figs. 6.16(middle) and

(left). The advancement of the crack is obtained by cleavage of the crack

plane and the absence of any dislocation activity. Furthermore, as can be

seen, the crack tip remains sharp. Therefore, fracture in this crack system is

brittle.
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FIGURE 6.17: Left: Schematic representation of the atomic
structure at the [11̄2] / (11̄1̄) crack system Crack tip in Ni with
0.6 at.% Re substitutionals at K1c=0.87 MPa

√
m. Green and blue

balls denote Ni and Re atoms, respectively. Red and white balls
are atoms in hcp and at the surface, respectively. Middle and
right: Zoom into the crack region before and after the nucle-

ation and emission of the dislocation.

To investigate the effect of Re on the mechanical properties of Ni, Re so-

lute is introduced in Ni. Since the [11̄2] / (11̄1̄) crack system has the lowest

critical stress intensity factor, this system is selected to introduce Re solute.

Re substitutional has been randomly distributed in the Ni host matrix by em-

ploying a random number generator with a uniform distribution. The atomic

radius of Re is larger than that of host Ni. Therefore, the substitution of Re

is expected to be favorable at the highly tensile stressed region around the

crack tip (see stress distributions in Figs. 6.15 and 6.16). The solute content

was varied from 0.5 at. % to 3.5 at. %, and for each concentration two random

configurations have been constructed. The structures were then relaxed and

the critical stress intensity factor was calculated using the same approach as

for Ni.

The [11̄2] / (11̄1̄) crack system in Ni demonstrates ductile fracture (see

Table 6.8). The addition of Re, within the 0.5 at.%-3.5 at.% range, does not

alter the nature of fracture, i.e., fracture remains ductile. Indeed, the crack

opening takes place via nucleation and emission of a Schottky partial [see the
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stacking in Fig. 6.17(left)]. Moreover, the crack opening results in a blunted

crack tip [see Figs. 6.17(middle) and (right))].

FIGURE 6.18: Ratio of critical stress intensity factor of Ni1−xRex
(KNiRe) to that of Ni (KNi) for mode I fracture in the [11̄2] / (11̄1̄)
crack system plotted against the Re content. Filled and open
balls indicate calculated and average values for each Re con-

tent. The dashed line is a linear fit to the average values.

Nevertheless, the addition of Re has a strong quantitative impact on the

crack opening. The ratio of critical stress intensity of NiRe binary to that

of Ni is plotted against Re content in Fig. 6.18. The critical stress intensity

factor monotonously increases with the increase of Re content. For example

at 3.5 at.% Re content, it is ≈35% larger than the critical value of Ni. This is

consistent with the existing theoretical studies [~]breidi2016first and further

validates the suitability of the P-MEAM potential for future studies of NiRe

alloys.

6.5 Conclusions

In the present Chapter the effect of Re on the critical stress intensity factor of

Ni has been investigated. In a first step, a detailed study to find suitable in-

teratomic potentials for the unary Ni, Re, and binary Ni1−xRex systems has

been conducted. The focus was given to the properties that correlate with
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fracture, such as surface energies, generalized stacking fault energies, ten-

sile stress, and elastic constants. All the considered potentials for Ni and Re

showed artificial oscillations or minima in the tensile stress curve at relatively

large separation distances. These artificial oscillations result in artificial crack

blunting in atomistic fracture simulations or overestimation of the critical

strength. To address this, we have developed a new 2NN-MEAM Ni and Re

potentials. Due to the scarcity of interatomic potentials to describe the Ni-Re

interactions, an interatomic potential has also been developed for these inter-

actions. During the parametrization of the potential, special care was taken

to accurately describe properties that play dominant role in fracture such as

surface energies, GSFE, works of separation, and traction separation profiles.

Using the newly developed potentials the critical stress intensity factors

for mode I fracture in Ni has been calculated employing both LEFM and

atomistic calculations. Six different crack configurations in the ⟨112⟩ {111}

slip system have been considered. The lowest calculated value of K us-

ing LEFM was for the [11̄2] / (11̄1̄) configuration. For this crack system the

KRice < KGriffith, i.e., the fracture is ductile. This is also conformed by the

large scale atomistic calculations which revealed that the crack opening pro-

ceeds through nucleation and emission of Shockley partial dislocations. The

effect of Re on the fracture properties of Ni was further investigated. For

Re contents in the range 0.5-3.5 at.%, the large scale atomistic calculations

revealed that the nature of fracture does not change. However, the critical

stress intensity factor increases, in agreement with the rhenium effect. The

aforementioned indicate that the 2NN-MEAM Ni, Re, and Ni-Re potentials

developed are suitable for large scale atomistic simulations of fracture in Ni

and Ni-Re systems.
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Chapter 7

Conclusions

The present thesis aimed to gather an on-atomic-scale understanding of the

mechanisms governing grain boundary and line junctions reconstructions,

segregation of impurities at these defects, and fracture mechanisms. A ma-

jor challenge in these studies is that the underlying phenomena span a wide

range of length scales. To address this, ab-initio calculations have been em-

ployed and 2NN-MEAM potentials for Si, C, Si-C, Ni, Re, and Ni-Re unary

and binary systems have been developed and used in large scale atomistic

calculations.

The work can be divided into three sections. The first part of the work

was devoted to establishing the phase diagram of Σ3 GBs and GB line and

facet junctions in Si. In the next part, the segregation of C at Si faceted GBs

has been investigated. In the third part, linear elastic fracture mechanics and

large scale fracture simulations of crack propagation have been conducted to

study the effect of Re on the fracture toughness of Ni.

In the first step, a thorough investigation has been performed to screen

available interatomic potentials in literature. The interatomic potentials were

evaluated by calculating a wide range of material properties that influence

GB and fracture properties. This evaluation revealed shortcomings in the de-

scription of some material properties such as the physically meaningless os-

cillatory profiles in the GSFE curves or unrealistically negative traction sep-

aration. However, these are key material properties strongly related to GBs

and fracture. To address this, 2NN-MEAM potentials have been developed.

Parametric studies that identify the relation between potential parameters
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and materials’ properties have been applied and a code, "Potitr", to fit the

potentials has been developed.

Using the newly developed 2NN-MEAM potentials, the phase diagram

of Σ3 GBs in Si has been calculated. To calculate this diagram, both flat and

faceted interfaces consisting of the low index and low energy {111} and {112}

tilt facets have been considered. This diagram indicates that faceting is intrin-

sic to Σ3 GBs in Si. Furthermore, it demonstrates that GB faceting and facet

and line junction reconstructions are strongly connected to the facet length

and inclination angle, i.e., to geometric characteristics of the microstructure.

Therefore, it highlights the crucial role of the microstructure on the GB and

materials properties. This has important implications for the electronic prop-

erties mc-Si. Indeed, at small inclination angles with respect to the {111}

plane, a symmetric {112} facet reconstruction that introduces deep states into

the fundamental bandgap is stabilized. Nevertheless, the importance of the

aforementioned phase diagram goes beyond the properties of GBs in Si. Specif-

ically, it demonstrates that higher energy metastable GB reconstructions can

be stabilized by thermodynamics and not kinetics when they constitute the

facets at line junctions.

The emerged pattern from the aforementioned phase diagram of Σ3 GBs

plays a crucial role in the segregation of impurities. Employing large scale

simulations of C segregation at flat and faceted GBs in Si the mechanisms

governing the experimentally observed asymmetric segregation of impuri-

ties at one of the two junctions at faceted GBs have been revealed. Using

the calculated segregation energies, local concentrations of C solute were de-

rived and compared to that of bulk. Our calculations revealed a site specific

linear segregation at one facet junction core. This is a consequence of the

complex topology and the strain field arising from the presence of partial

edge dislocation at the line junctions.

Large scale atomistic calculations and linear elastic fracture mechanics

have also been employed to study fracture in Ni and low Re content Ni1−xRex

alloys. To achieve this, the newly Ni, Re, and Ni-Re developed 2NN-MEAM

potentials have been used. Mode I fracture through crack propagation in
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the ⟨112⟩/{111} fcc slip system has been considered. These calculations re-

vealed that the crack system with the lowest critical intensity factor, i.e., the

[11̄2]/(11̄1̄), is ductile. Furthermore, they revealed that fracture remains duc-

tile after the addition of a few at.% Re. However, in agreement with the rhe-

nium strengthening effect, Re increases the critical intensity factor, i.e., the

strength of the material.

In summary, in the present thesis, a method to systematically parametrize

and evaluate MEAM interatomic potentials has been developed. Using the

newly developed potentials, an on-atomic-scale understanding of phenom-

ena related to interfaces and line defects as well as fractures has been gath-

ered. The application of the potentials to investigate interfaces and fracture

demonstrated the power of atomistic calculations to describe, understand

and explain the underlying physics of complex phenomena.
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