Situation-specific
Development of Business Models
within Software Ecosystems

'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Sebastian Gottschalk

Faculty of Computer Science, Electrical Engineering and Mathematics

Paderborn University

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

December 2022

Startups don’t fail because they lack
a product; they fail because they
lack customers and a profitable
business model.
- Steve Blank -

Acknowledgements

Although this thesis represents an independent work, its creation would be unthinkable
without the support of numerous people. Therefore, at this point, I would like to thank all the
people who, with their experience, time, or patience, have had a direct or indirect influence
on the creation of this work.

First of all, I would like to thank Gregor Engels for being my doctoral supervisor. Gregor,
thank you for providing me the freedom in following my research interest while guiding
me throughout the whole journey. With that, you provided me with support in which I was
able to grow not just professionally, but also personally. For that, I also want to thank my
second examiner Dennis Kundisch. Dennis, thank you for the exciting interdisciplinary
collaboration and for the valuable discussions over the last years. Furthermore, I would like
to thank Roman Dumitrescu, Friedhelm Meyer auf der Heide, and Christoph Weskamp for
being members of my examination committee.

However, research would remain impossible without the right environment. Here, [
was glad to join the Software Innovation Campus Paderborn (SICP) during the start of my
PhD. Therefore, I would like to thank especially Stefan Sauer, who showed me the PhD
opportunity and brought me to the SICP when my previous startup journey failed. Moreover,
I like to thank the organizing teams of the Collaborative Research Center (CRC) 901 of
On-The-Fly Computing and the Software Campus (SC) initiative for their excellent programs
in supporting PhD students following their research interests.

But the most important thing about the environment are the colleagues. Here, I would
like to thank all my current and past colleagues from the SICP, CRC, SC, and our Database
and Information Systems research group for the familiar atmosphere during the whole time.
It was a pleasure to work as well as spend my free time with you. The same holds for the
student assistants who support me in my research and the students whose theses I have
supervised during that time. With your discussions and co-authorships, you all have also a
share in this entire work.

Last but not least, I want to thank my family and friends. Here, my parents Dorle and
Dieter together with my brother Fabian offered me lifelong support throughout the whole

PhD way. Moreover, my friends supported me with the necessary breaks from research.

Abstract

The development of new business models is essential for startups to become successful,
as well as for established companies to explore new business opportunities. However,
developing such business models is a challenging activity. On the one hand, various tasks
(e.g., conducting customer interviews) of business model development methods (BMDMs)
need to be performed. On the other hand, different decisions (e.g., advertisements as a
revenue stream) for the business models (BMs) need to be made. Both have to fit the
changeable situation of the organization (e.g., availability of financial resources, mobile
apps as application domain) in which the business model is developed to reduce the risk of
developing ineffective business models with low market penetration. Therefore, the BMDMs
and the BMs must be developed situation-specific. This situation-specific adaptation has
already proven its value in Situational Method Engineering (SME), in which situation-specific
software development methods are constructed from fragments of a method repository.

In this thesis, we conduct a design science research study to transfer the concept of SME
to business model development. Our solution is a novel approach for the situation-specific
development of business models with three stages. In the first stage, we create a method
repository with method fragments for the BMDMs and a canvas model repository with
modeling fragments for the BMs. Both repositories are filled by the knowledge of domain
experts. Out of these repositories, in the second stage, situation-specific BMDMs for devel-
oping situation-specific BMs are composed by a method engineer based on the changeable
situation of the organization and enacted by a business developer. The business developer
collaborates with other stakeholders (e.g., software developer) during the enaction to create
artifacts. Moreover, in the third stage, he receives IT support (e.g., design suggestions for the
business model), provided by development support engineers, in different development steps.
In particular, we support the crowd-based validation of prototypes for business models. In
contrast to existing approaches, we point out the importance of the method engineer who
composes a development method that fits the business developer’s actual needs. We develop
the whole approach as a modular concept and implement it as an extensible open-source tool.
We apply it to the application area of software ecosystems, particularly mobile ecosystems.

For these ecosystems, we provide an evaluation through a case study and a user study.

Zusammenfassung

Die Entwicklung neuer Geschiftsmodelle ist sowohl fiir den Aufbau erfolgreicher Startups
als auch zur ErschlieBung neuer Geschiftsmoglichkeiten fiir bereits etablierte Unternehmen
von entscheidender Bedeutung. Die Entwicklung solcher Geschiftsmodelle ist jedoch eine
anspruchsvolle Aufgabe. Einerseits miissen verschiedene Aufgaben (z. B. Durchfiithrung
von Kundeninterviews) von Geschiftsmodellentwicklungsmethoden (GMEMn) durchgefiihrt
werden. Andererseits miissen verschiedene Entscheidungen (z. B. Werbung als Einnahme-
quelle) fiir die Geschiftsmodelle (GMe) getroffen werden. Beide miissen an die verdanderliche
Situation der Organisation (z. B. Verfiigbarkeit finanzieller Ressourcen, mobile Apps als
Anwendungsbereich) angepasst werden, in der das Geschiftsmodell entwickelt wird, um das
Risiko der Entwicklung ineffektiver Geschiftsmodelle mit geringer Marktdurchdringung zu
verringern. Daher miissen die GMEMn und die GMe situationsspezifisch entwickelt werden.
Diese situationsspezifische Anpassung hat sich bereits im Situational Method Engineering
(SME) bewihrt, bei dem aus Fragmenten eines Methodenrepositories situationsspezifische
Softwareentwicklungsmethoden konstruiert werden.

In dieser Arbeit nutzen wir Design Science Research, um das Konzept von SME auf die
Geschiftsmodellentwicklung zu iibertragen. Unsere Losung ist ein neuartiger Ansatz fiir
die situationsspezifische Entwicklung von Geschiftsmodellen mit drei Stufen. In der ersten
Stufe erstellen wir ein Methodenrepository mit Methodenfragmenten fiir die GMEMn und
ein Canvas-Modellrepository mit Modellierungsfragmenten fiir die GMe. Beide Repositories
werden mit Wissen von Doménenexperten gefiillt. Aus diesen Repositories werden in der
zweiten Phase situationsspezifische GMEMn fiir die Entwicklung situationsspezifischer
GMe auf der Grundlage der verédnderlichen Situation der Organisation von einem Meth-
oden Engineer konstruiert und von einem Business Developer ausgefiihrt. Der Business
Developer arbeitet bei der Ausfithrung mit anderen Stakeholdern (z. B. Softwareentwick-
ler) zusammen, um Artefakte zu erstellen. Dariiber hinaus erhilt er in der dritten Stufe
IT-Unterstiitzung (z. B. Designvorschlige fiir das Geschiftsmodell), die von Entwicklung-
sunterstiitzern fiir verschiedene Entwicklungsschritte bereitgestellt werden. Wir unterstiitzen
insbesondere die crowd-basierte Validierung von Prototypen fiir Geschiftsmodelle. Im

Gegensatz zu bestehenden Ansétzen betonen wir die Bedeutung des Methoden Engineers, der

eine Entwicklungsmethode zusammenstellt, die den tatsdchlichen Bediirfnissen des Business
Developers entspricht. Wir entwickeln den gesamten Ansatz als modulares Konzept und
implementieren ihn als erweiterbares Open-Source-Tool. Wir wenden diesen auf den Bereich
der Softwaredkosysteme und speziell der mobilen Okosysteme an. Fiir diese Okosysteme
liefern wir eine Evaluation auf Basis einer Fall- und einer Nutzerstudie.

Table of Contents

List of Figures

List of Tables

I Introduction, Foundations and Related Work

1 Introduction
1.1 Motivation and Problem Statement
1.2 Research Question and Research Approach
1.3 High-level Requirements and Solution Overview
1.4 Publication Overview
1.5 Thesis Structure

2 Foundations

2.1 Model Engineering
2.1.1 Metamodeling
2.1.2 Domain-specific Languages
2.1.3 Computer-Aided Modeling Tools
2.2 Situational Method Engineering
2.2.1 Concept of Method Engineering
2.2.2 Types of Situational Method Engineering Approaches
2.2.3 Computer-Aided Method Engineering Tools
2.3 Business Model Development
2.3.1 Business Model Modeling Languages
2.3.2 Business Model Development Methods
2.3.3 Business Model Development Tools
24 Summary . .o e e e e e e

XV

Xix

14
19
23

xii Table of Contents
3 Related Work 43
3.1 Business Aspects in Situational Method Enginnering 43
3.1.1 Related Approaches 43

3.1.2 Requirement Comparison 46

3.2 Situational Aspects in Business Model Development 49
3.2.1 Related Approaches 49

3.2.2 Requirement Comparison 52

3.3 Tools for Business Model Development 54
3.3.1 Related Approaches, 54

3.3.2 Requirement Comparison 57

34 Summary e e 59

II Solution Concept 61
4 Conceptual Overview 63
4.1 Overview of the Solution 63
4.1.1 Overview of Requirements 63

4.1.2 Overviewof Stages 67

413 OverviewofRoles 71

4.2 Application to Software Ecosystems 73
4.2.1 Introduction of Software Ecosystems 73

4272 UsageofSolution. 75

43 Summary e e e e 78

S Knowledge Provision of Methods and Models 79
5.1 Requirements and Overview, 79

5.2 Provision of Method Repository 81
5.2.1 Modeling of Method Elements 83

5.2.2 Modeling of Method Building Blocks 85

5.2.3 Modeling of Method Patterns 87

5.3 Provision of Canvas Model Repository 89
5.3.1 Modeling of Canvas Elements 90

5.3.2 Modeling of Canvas Building Blocks 91

5.3.3 Modeling of Canvas Models 93

54 Summary e e e e 95

Table of Contents xiii
6 Composition and Enactment of Development Methods 97
6.1 Requirements and Overview 97
6.2 Composition of Development Methods 100
6.2.1 Definitionof Context 101

6.2.2 Situation-specific Composition of Methods 102

6.2.3 Domain-specific Composition of Models 105

6.3 Enactment of Development Methods 108
6.3.1 Execution of Development Process 109

6.3.2 Stakeholder Involvement in Artifact Development. 111

6.3.3 Changeof Context, 112

6.4 Summary e e 114

7 Support of Development Steps 117
7.1 Requirements and Overview 117
7.2 Modularization of Development Support 119
7.2.1 Provision of Development Support 121

7.2.2 Composition of Development Support 126

7.2.3 Enactment of Development Support 130

7.3 Typesof Support Modules 133
7.3.1 Integrated CanvasModule 134

7.3.2 Internal Hypothesis Modeling and Mapping Module 138

7.3.3 External Crowd-based Prototype Validation Platform 142

74 Summary e e e e e e e 148
III Implementation, Evaluation, Conclusion 149
8 Implementation 151
8.1 Modularized Architectureo 151
8.1.1 Designed Architecture 151

8.1.2 Applied Technologies 154

8.2 Software Tool 163
8.2.1 Implemented Tool 163

8.2.2 Developed Modules 166

8.3 Summary e e e 170

xiv

Table of Contents

9

10 Conclusion and Future Work

Evaluation

9.1 Case Study on OWL Live
9.1.1 Experimental Design
9.1.2 Execution
9.1.3 Analysis
9.1.4 Interpretation

9.2 User Study in Student Courses
9.2.1 Experimental Design
9.2.2 Execution
9.2.3 Analysis
9.2.4 Interpretation

93 Summary

10.1 Contribution Summary

10.2 High-level Requirements Revisited

10.3 Future Work

References

Abbreviations

Appendix A SLR on Business Model Decision Support Systems

171

203

............................ 203
...................... 205
.................... 208

211

229

233

Appendix B Installation of the Situational Business Model Developer 241

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

2.1
2.2
23
24
2.5
2.6
2.7

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

Interplay of BMDMSs, BMs, and BMDTs (based on [SL20]). 4
Classification of Business Model Development Methods (based on [HBO94]) 5
Classification of Business Model Development Tools 6
Development of a New Service for a Software Ecosystem 8
Three Cycles of Design Science Research (based on [HevO7]) 10
Positioning of Research Contributions (based on [GH13]) 12
Design Science Research Process (cycle from [KVO8]) 12
Solution Sketch of the Approach proposed in the Thesis 18
Overview of the Underlying Publications of the Thesis 20
Structure of the Thesis L oL 23
Overview of the Meta-Object Facility (based on [BCWI17]) 27
Concept of Method Engineering (based on [MCF95]) 32
Different Types of SME Approaches (based on [FB16]) 33
Stages of Assembly-based SME (based [HSRARI4]) 34
Overview of the Business Model Canvas (structure from [OP10]) 37
Overview of the Business Model Ontology (based on [Ost04]) 38
Overview of a Development Method and a Tool (images from [GSE17,

GFECI4]) . . . o e 39
Mapping of High-Level Requirements to Solution Requirements 64
Overview of the Approach with Roles and Stages 69
Exemplary Execution of the Development Process 70
Overview of the Mobile Ecosystem with the Mobile ToDo Application . . . 75
Exemplary Stages for the Mobile App Developer 76
Overview of the Knowledge Provision of Methods and Models 82
Abstracted Phase of Providing the Method Repository 83
Metamodel of the Method Elements 84

xXvi

List of Figures

54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

8.1
8.2
8.3

Metamodel of the Method Building Blocks 86
Metamodel of the Method Patterns 87
Exemplary Visualisation of the Method Patterns 89
Abstracted Phase of Providing the Canvas Model Repository 90
Metamodel of the Canvas Elements 90
Metamodel of the Canvas Building Blocks 92
Exemplary Visualisation of the Canvas Building Block 93
Metamodel of the Canvas Models 94
Exemplary Model of the Business Model Canvas 95
Overview of the Composition and Enactment of Development Methods . . 99
Abstracted Phase of Composition of Development Methods 100
Exemplary Definition of the Context 102
Exemplary Pattern-based Construction of Methods 104
Exemplary Consolidation of Models 107
Abstracted Phase of Enactment of Development Methods 108
Exemplary Transition from a Method Building Block to a Development Step 110
Exemplary Visualisation of Canvas Artifact 111
Exemplary Change of Context for a Pattern-based Constructed Method . . . 114
Overview of the Support of Development Steps 119
Abstracted Phase of Modularization of Development Support 120
Overview of the Support Modules 122
Extension of the Method Elements for the Modularization. 123
Exemplary Method Elements for the Development Support 124
Extension of the Method Building Blocks for the Modularization 127
Exemplary Method Building Block for the Modularization 129
Extension of the Process Engine for the Modularization 131
Exemplary Usage of the Execution Manager for the Modularization 132
Exemplary Modules for Development Support 133
Exemplary Visual Notation for the Canvas Artifact 136
Exemplary Visual Notation for the HypoMoMap Artifact 140
DSR Process for the CPBV Platform 143
Solution Design for the CPBV Platform 147
Overview of the Modularized Architecture 152
Component Diagram of the Modularized Architecture 153
Main Parts of an Angular Application 155

List of Figures Xvii

8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

9.1
9.2
9.3
94

9.5
9.6
9.7
9.8

A.l

B.1

Screenshots for Provision of Method Repository 164
Screenshots for Provision of Canvas Model Repository 165
Screenshots for Composition of Development Methods 165
Screenshots for Enactment of Development Methods 166
Screenshots for Modularization of Development Support 167
Screenshots of the Canvas Module 168
Screenshots of the Hypotheses Modelling and Mapping Module 169
Screenshots of the Crowd-based Prototype Validation Platform 170

Knowledge Provision: Examples of the Method Repository based on the GLR176
Method Composition: BMDM for OWL Live based on the identified Context 178

Method Enactment: Example of the BMC for OWL Live 181
Knowledge Provision: Examples of the Canvas Model Repository based on

the TD o e 190
Method Composition: Parts of the BMDMs for the Mobile Apps 192
Method Enactment: Parts of the BMC for the Mobile Apps 194
Development Support: Self-evaluation of the Platform 195
Evaluation of the Design Principles (DPs) on the CBPV platform 197
Extracted Number of Publications per Stage of the SLR 235

Tool Overview for the Method Engineer 241

List of Tables

3.1

3.2

3.3

Comparison of the Situational Approaches (SA) against the High-level Re-

quirements (HR) 47
Comparison of the Business Approaches (BA) against the High-level Re-
quirements (HR) 53

Comparison of the Business Tools (BT) against the High-level Requirements
(HR) . . 58

Part 1

Introduction, Foundations and Related
Work

Chapter 1
Introduction

In this thesis, we show our approach for situation-specific business model development
within software ecosystems. At the beginning of the thesis, we motivate our thesis topic and
explain the underlying problem statement (1.1). For that, we present our research approach
based on our stated research question (1.2). Next, we give an overview of the solution based
on identified high-level requirements (1.3) and provide an overview of the publications on
which our thesis is based (1.4). Finally, we present the structure of the thesis (1.5).

1.1 Motivation and Problem Statement

The development of effective business models, defined by Osterwalder et al. as “the rationale
of how the organization creates, delivers, and captures value” [OP10], is an essential task
for an organization to remain competitive and sustainably successful. Here, a study by
CB Insights [CBI19] in 2019 analyzed 101 bankrupt startups and concluded that 42% of
them failed due to a missing market need. But also for established companies, the GE
Innovation Barometer [Gen18] in 2018 stated that 64% of the over 2000 business executives
have the problem of developing effective business models for new ideas. By comparing the
results with a previous study in 2015, the challenge is getting even more prominent (59%
of over 3000 executives). An important reason for this is that customers want solutions
for perceived needs rather than just products [TeelO]. This corresponds to the potential
effect that the business model can often be more important than the latest technology of
the product [Chel0]. Here, especially Software Ecosystems (SEs), that can be defined as
"a software platform, a set of internal and external developers and a community of domain
experts in service to a community of users that compose relevant solution elements to
satisfy their needs" [BBS10] tend to standardize more and more technological parts within

Software Development Kits (SDKs) on their software platforms and make them available

4 Introduction

for all developers. Therefore, external developers are highly dependent on developing
and modifying their business models to stay competitive with their services against other
developers. In particular, for mobile ecosystems as a subset of SEs, the AppAnnie’s State
in Mobile 2021 study [App21] highlighted that these ecosystems provided 218 billion app
downloads that led to 142 billion dollar revenue just in 2020. Nevertheless, app developers
compete with their apps against millions of other apps over the users’ usage time.

The development of business models is a complex and creative activity that consists
of different phases (e.g., discover, develop) where multiple tasks (e.g., conduct customer
interviews, analyze competitors) of Business Model Development Methods (BMDMs) need
to be conducted [GSE17]. Inside those tasks, communication and collaboration between
different stakeholders (e.g., business developer, customer) is crucial or even required [EHB11,
EBL16], different alternative decisions for the Business Models (BMs) have to be developed
(e.g., subscription or advertisement as a revenue stream) [SEP119, ADv13], and underlying
hypotheses need to be validated (e.g., sales channel, product price) [McG10, BO20]. As
shown in Figure 1.1, for Business Model Development (BMD), the BMDMs and the BMs are
both essential and highly interrelated. Moreover, they can be assisted using software-based
Business Model Development Tools (BMDTs).

Business Model Development (BMD)

Business Model Development Methods Business Models
(BMDMs) (BMs)
[—P>] I .
I

el ad

Business Model Development Tools (BMDTs)

Fig. 1.1 Interplay of BMDMs, BMs, and BMDTs (based on [SL20])

To support the BMD, organizations often rely on light visualization tools like Kanban
boards [GMO3] for structuring the development steps of the BMDT or modeling artifacts like
canvas models [OP10] for structuring the information of the BM. Due to the complexity of
the BMD, there are several options for each development step. Consequently, a development
method with inappropriate steps can lower the quality of the business model. Here, the
guidance of domain experts supports the development by providing all stakeholders with the
needed understanding of the development steps in the development method and presented
information in the modeling artifacts [SL20]. In literature, different domain experts propose

various methods to develop such business models in the form of development methods (e.g.,

1.1 Motivation and Problem Statement 5

[McG10, SEP"19]) and method repositories (e.g., [BO20, SP09]). Moreover, these experts
provide knowledge in the form of taxonomies with decisions of possible (e.g., [HZFN16,
AIBO7]) and patterns of successful (e.g., [RHTK17, GFC14]) business models. However, the
BMDMs should match the organization’s current situation (e.g., financial resources, target
market size), and the information within the BMs needs to match the application domain (e.g.,
mobile app, social network) of the product/service of the organization [STRV10, FWCG13].
This, in turn, raises the chance of developing an effective business model for the organization.
For that, organizations (e.g., external developers of services) are supported with BMDMs
and corresponding BMDTs to develop effective BMs.

Fixed Selection of a Configuration Tailoring Modular Composition
Method Fixed Method of a Method of a Method of a Method

——
ﬁ Compose
I

[| | >
Usage of Controlled Flexibility

Fig. 1.2 Classification of Business Model Development Methods (based on [HBO94])

Although various BMDMS for developing BMs have been proposed, they do not cover
the composition and modification of the method and the modeling artifacts to the existing
and changeable context based on refactored expert knowledge. As shown in Figure 1.2, those
approaches can be classified through their Usage of Controlled Flexibility [HBO94]. Thereby,
controlled flexibility is defined as the combination of the free arrangement of the development
steps (i.e., flexibility) and the restricted arrangement of the development method (i.e., control).
Here, most approaches (e.g., [McG10]) provide Fixed Methods that do not focus on the
organization’s context and apply the same tasks to every situation. Out of the approaches,
also a Selection of Fixed Methods (e.g., [McG10] or [Riel4]) can be made. Some approaches
try to cover this lack of controlled flexibility by providing different Configurations of a
Method (e.g., [SEP T 19]) or basic Tailoring of a Method (e.g., [BO20]). Nevertheless, these
one-size-fits-all methods cannot fit every existing and newly detected context in advance (e.g.,
availability of a low or high number of competitors). This context, in turn, can be considered
with the Modular Composition of a Method out of refactored expert knowledge and changed
during the development. Therefore, we consider the context-specific composition of the
development method and the modeling artifacts based on the knowledge of domain experts
by refining the concept of Situational Method Engineering (SME) [HSRAR14] for BMDMs.

Introduction

Originally, SME is used for the situation-specific composition and enactment of software

development methods to structure the development of software projects.

o 2 A Method Integrated m .:A Customizable Customizable
S -_%’ Development Development Tg -_g’ Visualization Development
= Knowledge Knowledge = Support Support
g 5
% 0 Combined £ Predefined
as Development 2 Development
e % Knowledge a Support
= c
. o - -
b No Artifact = Fixed Fixed
= Development Development s Visualization Development
= = Knowledge Knowledge & z Support Support
¥ 5 < o
= —- = s
low . . high low high
Knowledge of Modeling Artifacts Development Support of Tools

a) Usage of Integrated Development Knowledge b) Usage of Customizable Development Support

Fig. 1.3 Classification of Business Model Development Tools

To assist the development, BMDTs are developed in research and practice and provide
different types of support like guidance in the development of the actual model or collab-
oration among the stakeholders [VCB™14]. While the tools in practice are often focused
on the pure visualization of the business models [SSJ*19], tools in research are able to use
existing knowledge and provide design and decision support for specific tasks [BARHF20].
As shown in Figure 1.3, we classify selected approaches through their usage of integrated
development knowledge and customizable development support.

As in Figure 1.3 a) Usage of Integrated Development Knowledge, we refer to the uti-
lization of existing knowledge for the development method (e.g., knowledge about different
development steps within a development method) and the modeling artifacts (e.g., knowl-
edge about different decisions of the business model) to support the BMD. Here, most
tools focus on the pure visualization of business models with No Development Knowledge
about the methods and within the modeling artifacts (e.g., [FP10] with the visual structure
of a business model). Some tools use Method Development Knowledge to structure the
different phases and development steps with predefined knowledge (e.g., [BO20] with a
fixed repository of different experiments for the validation phase). Other tools use Artifact
Development Knowledge to guide the possible decisions within the modeling artifact with
prefined knowledge (e.g., [LFBBM19] with a repository of different patterns for possible
business models). Moreover, a few tools use the Combined Development Knowledge of
fixed methods and model artifacts to support both the structuring of the development method
and the modeling of the artifacts (e.g., [BM17] with the fixed phases for the development

1.1 Motivation and Problem Statement 7

method and domain-specific knowledge for the models). However, none of the identified
tools uses the Integrated Development Knowledge of various freely-definable methods and
models from different domain experts that are utilized in a reusable manner. Based on those
reusable knowledge sources, the development can be tailored to the organization’s situation
and the application domain of the product/service with low additional effort in contrast to
one-size-fits-all methods. For that, both the Method Development Knowledge and Artifact
Development Knowledge need to be utilized to use them during the BMD. Therefore, we
use the concept of Model Engineering (ME) [Béz06] within BMDTs. Here, ME is used to
abstract specific information from the real world into models, making them reusable.

As in Figure 1.3 b) Usage of Customizable Development Support, we refer to the usage of
software (e.g., specific software for visualizing the business model) to provide flexible support
for different development steps (e.g., design support for developing the business model based
on recommendations) during the development. Here, most tools have a Fixed Visualization
Support that does not offer real development support but focuses on the visualization of
those business models (e.g., [FP10] with the visual structure of a business model). Some
tools provide Customizable Visualization Support for the business model (e.g., [FAM18]
with different visual representations of the organization’s data). Other tools use Fixed
Development Support on specific development steps (e.g., [DLEL19] with the validation of
the business model with the crowd). Moreover, a few tools provide Predefined Development
Support to support a fixed set of development steps (e.g., [BM17] with predefined support
for the configuration and the analysis of business models). However, none of the identified
approaches uses Customizable Development Support for supporting different development
steps with adjustable software parts. With this, the development can be supported flexibly on
those needed steps. Therefore, we apply the concept of Modularization [Par72] to BMDTs.
Here, Modularization is used to bundle different functionalities for a specific use case within
a single dedicated piece of software.

Based on those challenges of current BMDMs and BMDTs, we provide a modular
concept for the situation-specific BMD. This approach uses the knowledge of methods and
modeling artifacts to compose a development method for a defined context. This development
method is enacted, and development support in the form of adjustable software parts is used
for specific development steps. During the enactment, the development method can be
modified according to the changed context. We show the application of our approach based
on developing business models for service providers in SEs. Our applied approach can be
seen in Figure 1.4. Here, we have a Software Platform that a Platform Provider provides.
Moreover, we have Service Providers who have developed some Services that the End Users

execute. If a New Service Provider develops a New Service for the ecosystem, he also needs

8 Introduction

provr e % prov\ ide provides platform i
know*ledge knowledge £ Platform

Domain -
Experts * Software Platform Provider
Store
Method
Knowledge Model Knowledge . . .
(e.g., customer (e.g., subscription) Service Service Service execute
interviews) -t -
\) services
En
New . .
e P Service Service Service Users
develops and modifies a business model using 7y
a situation-specific development method
% !
develops and updates .
_— new service B —— develop services— \
New Service Service
Provider Providers

Fig. 1.4 Development of a New Service for a Software Ecosystem

to find a suitable business model. For that, in turn, he can use the existing Method Knowledge
(e.g., customer interviews as a development step) for the development method and the Model
Knowledge (e.g., subscription as a revenue stream) within the modeling artifacts from the
Domain Experts. Out of that knowledge, the New Service Provider develops and modifies a
business model using the development method. In particular, we focus on mobile ecosystems
as one of the most established but also competitive markets within SEs.

Inside this thesis, we are using the running example of a mobile app developer who
develops a mobile to-do app. Here, the app could provide various features like managing
to-dos in general, advanced collaboration features, and the integration of machine learning
techniques. The developed business model is based on the context in terms of the situation
of the mobile app developer (e.g., availability of low or high financial resources) or the
application domain (e.g., an app for productivity or collaboration). Out of this context, a
development method is composed and enacted. During the composition, different tasks are
assigned as development steps (e.g., choose problem analysis and target market analysis as
development steps), and in the enactment, those tasks are conducted to develop a business
model (e.g., choose subscription or advertisement as a revenue stream). Moreover, during
the enaction, the development method might be modified due to a changing context which
could lead to a change in the business model. Last, the conduction of specific development
steps is supported by different software pieces (e.g., calculation of business outcome). Based
on those identified challenges, we state the research question of our thesis to provide a
situation-specific BMD.

1.2 Research Question and Research Approach 9

1.2 Research Question and Research Approach

By analyzing the existing BMDMs and BMDTs, we identified three challenges to support
the situation-specific development of BMs. These were the Usage of Integrated Development
Knowledge with the lack of Integrated Development Knowledge, the Usage of Controlled
Flexibility with the lack of Modular Composition of a Method, and the Usage of Customizable
Development Support with the lack of Customizable Development Support. Out of those
challenges, we derive our overall research question (RQ) for the situation-specific BMD as

presented in this thesis:

* Overall RQ: How to enable the situation-specific development of business models for

service providers within software ecosystems?

Based on the three challenges, we also divide our overall research question into three
subquestions (RQ1, RQ2, RQ3) that will be answered within the thesis. The first one goes
along with the Usage of Integrated Development Knowledge. Here, we want to use the
knowledge from development methods and canvas modeling artifacts to guide the BMD. For
that, we need to formalize and store the knowledge of different domain experts in a uniform

and structured way. Therefore, the first question is:

* RQ 1: How to utilize the knowledge about development methods and canvas modeling

artifacts to support the business model development?

The second one is related to the Usage of Controlled Flexibility. Here, we want to use the
provided knowledge of the development methods and the modeling artifacts to allow the
situation-specific composition of a BMDM. This composition, in turn, goes hand in hand
with their enaction to support the stepwise development of a BM. Therefore, the second

question is:

* RQ 2: How to handle the situation-specific composition and enactment of business
model development methods by using utilized knowledge for the development methods
and the canvas modeling artifacts?

The third focuses on the Usage of Modular Development Support. Here, the enacted BMDM
contains various development steps. Those development steps can be conducted with the
assistance of different software support. In order to provide those support at the right time,

the support needs to be flexibly adjusted to those steps. Therefore, the third question is:

* RQ 3: How to support the development of artifacts within the business model develop-

ment steps using flexibly customizable software support?

10 Introduction

To answer those three questions and the overall RQ, we conducted a design science research
(DSR) study [HMPRO4] to create a situation-specific development approach for business
models. We used DSR as it aims to solve a class of problems by developing a solution to a
specific problem and then generalize that gained knowledge [GH13]. This, in turn, is based
on developing and evaluating a corresponding IT artifact [HMPRO4]. Here, we solved the
problem of situation-specific development in the mobile app application area and ensured

that the knowledge is generalizable to other application areas.

Environment Design Science Research Knowledge Base

Application Domain | Foundations

* People Studies, Literature Build Design Theories, Literature |Scientific Theories &
« Organizational Review, Tool Analysis /| Artifacts & Review, Tool Analysis |Methods

Systems Processes ¥ Experience &
* Technical Systems Expertise

Rigor Cycle
« Grounding
¢ Additions to the

Knowledge
Base

* Problems &
Opportunities

¢ Meta-Artifacts (Design
Products & Design
Processes)

Relevance Cycle
¢ Requirements
* Field Testing

Evaluate

Case Study, User
Study

Demonstrations,
Publications

)

N
Legend: O Three Existing Cycles O Own Usage of Cycles

Fig. 1.5 Three Cycles of Design Science Research (based on [Hev07])

Typically Design Science Research, as shown in Figure 1.5, is originated between
the Environment where it will be applied and the Knowledge Base where it is founded
[Hev07]. Here, the Environment consists of the organization in terms of involved people,
used (technical) systems, and corresponding problems and opportunities. Those real-world
problems are usually brought as Requirements into DSR using the Relevance Cycle and need
to be constantly evaluated with Field Testing. Moreover, the Knowledge Base consists of
existing scientific theories and methods, formalized experience and expertise, and already
designed meta-artifacts. Those foundations are used as Grounding of the DSR using the
Rigor Cycle, and the obtained results need to be pushed back in Addition to the Knowledge
Base. Both cycles are combined using the Design Cycle in Design Science Research, where
artifacts are constantly designed and evaluated [HMPRO4].

For this thesis, we initiated the Relevance Cycle with recent studies about the problems
of BMD in companies using the GE Innovation Barometer 2018 [Gen18] and startups using
the CB Insights 2019 report [CBI19]. We addressed the application domain of mobile apps
because of their attractiveness but also competitiveness [App21]. Moreover, we initiated the
Rigor Cycle based on the kernel theories of opportunity creation [ABA13] and boundary

1.2 Research Question and Research Approach 11

objects [SG89]. The opportunity creation theory states that businesses are co-created under
high uncertainty. Here, the development is an entrepreneurial process where companies
create a business model based on their assumptions that need to be validated with the
customers [Vog17]. Therefore, the process needs both parts of exploitation and exploration.
The bounded object theory states that development is a complex activity where different
understandings can occur. Here, the development is a heterogeneous task that requires
the collaboration of different stakeholders with different knowledge [SL20]. Therefore, a
common understanding between all stakeholders needs to be achieved. Moreover, we based
both the Requirements of the Relevance Cycle and the Grounding of the Rigor Cycle on
an exhaustive review of literature on BMD and a tool analysis of existing Business Model
Decision Support Systems (BMDSSs). To connect the Design Science Research with the
Environment and the Knowledge Base, we made use of the Field Testing of the Relevance
Cycle and the Additions to the Knowledge Base for the Knowledge Base. For the Field
Testing, we conducted a case study and a user study on developing business models for
mobile apps. For the Additions to the Knowledge Base, we demonstrated our developed
artifacts and published parts of our research. In the Design Cycle of Design Science Research,
we conducted three cycles based on the cycle of Kuechler and Vaishnavi [KVO08]. The
cycle, see Figure 1.7, consists of the following five iteratively conducted steps. First, the (/)
Awareness of [The] Problem is identified based on a real-world problem and a (2) Suggestion
of a possible solution is provided. Next, the (3) Development of the artifact is done and an
(4) Evaluation is conducted. Based on the evaluation results, a further iteration is conducted
or the research contribution as a (5) Conclusion is provided.

An important aspect of DSR is the positioning of the research contributions. According
to Gregor and Hevner [GH13], the positioning can be divided into different Contribution
Types and be situated to the Knowledge Contribution Framework as shown in Figure 1.6.
The Contribution Types are divided into their Knowledge attractiveness and completeness
to reuse the gained knowledge in other application domains. Here, Level I provides a
situated implementation of the artifact (e.g., software tool), Level 2 provides the knowledge
as operational principles (e.g., method), and Level 3 provides a well-developed design theory
(e.g., mid-range theory). Moreover, the Knowledge Contribution Framework divides between
a high or low Solution Maturity and a high or low Application Domain Maturity. Here, the
DSR can be defined as Invention, where a new solution is developed for a new problem,
Improvement, where a new solution solves a known problem better, Exaptation, where a
known solution is extended to a new problem, and Routine Design, where a known solution

is used for a known problem.

12 Introduction

SA Level 3: Well-developed design z A f
) ' .
,3 theory about embedded Q = Improvement ' Invention
2 phenomena Ei
L '
5 s |- A —
3 S !
E % Routine Design | !
X 9 D < !
E . .] 2
2 Level 1: Situated implementation < >
2 Y of artifact high low
Application Domain Maturity

a) Contribution Types b) Knowledge Contribution Framework

Fig. 1.6 Positioning of Research Contributions (based on [GH13])

In this thesis, we will develop different Contribution Types. Here, we will contribute our
evaluated modularized concept (Level 2) and our implemented open-source software tool
(Level 1). Moreover, we will create an Exaptation according to the Knowledge Contribution
Framework. Here, we will refine parts of the concepts of Software Product Lines (SPLs)
[ABKS13], SME [HSRAR14], and modularization [Par72] to the application domain of
BMD. Based on our overall RQ, the three cycles of DSR, and the positioning of the research
contribution, we conducted three design cycles, as shown in Figure 1.7. In this thesis, we
will present the results of the five steps of our third cycle.

DSR Cycle

First Cycle

Second Cycle

Third Cycle

Literature Review of
Business Model
Development, Tool
Analysis

Lessons Learned from
First Cycle

Lessons Learned from
Second Cycle

Conceptional Parts for
Situation-specific
Development of Business

Integrated Concept of
Situation-specific
Development of Business

Modularized Concept of
Situation-specific
Development of Business

Models Models Models
Software Eragments Architecture Modularized Architecture
9 Software Tool Revisited Software Tool

Feasibility Study

Case Study Research

User Study

Evaluated Concept,
Software Tool

Fig. 1.7 Design Science Research Process (cycle from [KVO08])

1.2 Research Question and Research Approach 13

In the First Cycle, we got Aware of [the] Problem based on the studies on BMD
[Genl8, CBI19] and the theories on opportunity creation [ABA13] and boundary objects
[SG89]. That information was used for an exhaustive literature review on BMD and a tool
analysis on BMDSSs. The tools are collected by a Systematic Literature Review (SLR)
[Kit04]. Based on those, we derived high-level requirements (HRs) of our solution with a
grounding in literature. In Suggestion, we provided conceptual parts for the situation-specific
development of business models. Here, we focused on RQ 1 of formalizing and storing
knowledge by applying the concept of SPLs [ABKS13] to business models. We modeled all
possible business models as a feature model [CNO9] based on the canvas model structure
of the Business Model Canvas (BMC) [OP10]. Moreover, we developed a method to fill
the feature model initially and change the selected features based on the conduction of
experiments of a method repository. For the Development, we designed web-based tooling
and implemented the conceptual parts as software fragments. As Evaluation, we conducted a
feasibility study to show the applicability of an illustrative scenario. Here, we developed a
potential business model for a mobile to-do app.

In the Second Cycle, we updated our Awareness of [the] Problem by taking the lessons
learned from the last cycle. During the evaluation of the first cycle, we saw especially
limitations in the method by considering an initial development of all possible business
models and their following validation through experiments. Moreover, we saw the limitation
of using just the BMC for structuring the knowledge. Based on those findings, we updated
our HRs for the solution. In Suggestion, we provided an integrated concept for the situation-
specific development of business models. Here, we focused on solving RQ 2 of composing
and enacting methods and improved RQ 1 by applying the concept of SME [HSRAR14]. We
stored knowledge about possible method parts in a method repository and possible model
parts in a model repository. Out of those, we provided a situation-specific composition of the
method. Moreover, different stakeholders might collaborate to develop the business model
during the enactment. For the Development, we designed an architecture and implemented the
whole concept as a software tool. As Evalaution, we conducted a case study on developing
potential business models for a local event platform.

In the Third Cycle, which results will be presented in this thesis, we updated our
Awareness of [the] Problem by taking the lessons learned from the last cycle. During the
evaluation of the second cycle, we saw limitations in the proposed tools of the method
repository that can not directly interact with the models in the model repository. Moreover,
current BMDSSs are not based on each other but are built from scratch. Based on those
findings, we updated our HRs for the solution. In Suggestion, we provided the modularized

concept of the situation-specific development of business models. Here, we focused on

14 Introduction

solving RQ 3 of flexible development support and improved RQ 1 & 2 by applying the
concept of modularization [Par72]. Here, we bundle that development support in the form of
parts in software modules. For that, we provide different exemplary modules. In particular, we
develop development support for crowd-based validation of prototypes for business models.
For that, we used an additional DSR study that will be presented in the corresponding Section
7.3.3. For the Development, we designed a modularized architecture to allow the usage of
such modules and revisited our software tool. As Evaluation, we conducted a user study in
student courses on mobile and augmented reality (AR) / virtual reality (VR) applications.
Finally, we draw a Conclusion with the evaluated concept and the software tool. With this
conclusion, we provide the Contribution Type of operational principles of the concept (Level
2) and the situated implementation of the software tool (Level). Moreover, we provide
the adaptation of existing concepts to the BMD according to the Knowledge Contribution
Framework (Exaptation). In the following, we present the HRs out of that third cycle.

1.3 High-level Requirements and Solution Overview

To get aware of the problem during our DSR study, we reviewed BMD literature and analyzed
BMDSSs. The SLR that built the foundation of our tool analysis is provided in Appendix
A. Out of that, we derived the high-level requirements (HRs) behind our solution to answer
our overall RQ, including the subquestions of RQ 1, RQ 2, and RQ3. Here, we based the
choices of our requirements on the theories of opportunity creation [ABA13] and boundary
objects [SG89]. Those HRs were updated through the design cycles, and in the following
paragraphs, we provide the requirements of the third design cycle.

The development of business models is a complex and challenging task. This task can be
supported with knowledge about tasks to be accomplished (i.e., methods) and decisions to
be made (i.e., models) [SL20], where the development process can be as important as the
model itself [JKS17]. In order to utilize that knowledge, well-defined syntax and semantics
for the development methods and modeling artifacts are needed [VCB™14] that can also
represent different levels of abstractions and content [MTA17]. Existing tools provide that
knowledge based on metamodels and, partly, shared vocabulary [BM17]. Based on those
metamodels, relevant data can be gathered from different repositories and consolidated for
the development [Sch14]. Those tools use the knowledge for the visualization [FAM18] or
transformation [AFM18] of business models. Therefore, an utilization of the knowledge for
the development methods and modeling artifacts is needed.

* HR 1: Knowledge Utilization: The solution should allow the utilization of knowledge

about business model development methods and canvas models.

1.3 High-level Requirements and Solution Overview 15

The first part of BMD contains the tasks for the BMDM that need to be performed. Here,
BMD is a complex and creative activity consisting of different phases where multiple tasks
must be accomplished [GSE17]. Some development methods stay on a high-level description
of the process consisting of iterations of exploration and exploitation [McG10]. Other
methods provide deeper insights into the distinguishment of different phases [FWCG13] or
the conduction of different experiments [BO20]. Existing tools are developed for different
phases of BMD [BdRHF20]. Here, some approaches provide overall guidance through
the phases [IRAH™ 16], deeper integration of specific phases like configuration or analysis
[Sch14], or overall phase management on the analysis, design, implementation and integration
[EBL16]. Therefore, comprehensive methods that can support all phases of the BMD with

tasks to be made are needed.

* HR 2: Method Comprehensiveness: The solution should allow the comprehensive
development of business model development methods for all phases.

The second part of BMD contains the decisions for the BM to be made. To reduce the complex
phenomena of a business, conceptual models can be used [MTA17]. Those conceptual
models are often based on visualizations where different representations for the business
model itself [JKS17] and corresponding tasks during the development process [TA17] exist.
However, the BMC is the most used visualization technique [OP10]. The BMC is also
well-applied by software tools in practice [SSJ*19]. Existing tools provide a visualization of
the changes in the business model [FP10], heatmaps based on influencing factors [BHH™ 18],
or customization of the canvas components [BM17]. Therefore, visual representations of the

business model with decisions to be made are needed.

* HR 3: Model Visualisation: The solution should allow visual representations of the
business model.

Before beginning the BMD, it is essential to know the context in which the development
takes place [STRV10]. Here, the context can consist of internal and external factors of the
business [McG10]. Moreover, approaches can take prior experience in business modeling and
industrial characteristics of the business into account [SSJ*19]. However, just a few studies
investigate BMD concerning the specific context of the business [BSRP16]. Exiting tools use
the maturity of the user to support the development [FP16], provide different business model
patterns based on the type of business [LFBBM19], or support ideation based on the context
of the idea [Joh16]. Therefore, awareness of the context is essential during the development

of the business model.

16 Introduction

* HR 4: Context Awareness: The solution should be aware of the context in which the

business model is developed.

After getting aware of the actual context, the business developer needs to find the best
BMDM for the BM. For that, the business developer can select from a variety of different
models and methods [SL20]. For example, this could be different experiments from a large
repository [BO20] of experiments or patterns for a large database of patterns [RHTK17].
Existing tools solve those with different levels of guidance for different levels of maturity
of the users [FP16]. Here, the method is guided by a wizard for the different phases
[VOPN13], and the modeling is supported by a previous questionnaire [RRE*19]. Moreover,
recommendations for different visualizations based on the development goal are provided
[dRAH16]. Therefore, an assistant for selecting the development method and canvas models

for a specific context is important.

* HR 5: Selection Assistance: The solution should assist the development of business

models with the selection of business model development methods and canvas models.

Based on the selected methods and models, the business developer starts to develop
the business model. Here, such a development is a continuous activity [Teel0], where the
business needs to react to changes in the business environment [OPT05]. This is because busi-
ness models are developed under high uncertainty, where not everything can be anticipated
in advance [McG10]. Therefore, experiments need to be continuously conducted [Chel0].
Possible changes can be inside the target market, the value proposition, the value capture, or
the value delivery [SLF17]. Existing tools provide continuity with a loop of experimentation
[KB10] and the iterative validation of business model ideas [DLEL19]. Moreover, they
provide iterative adjustments based on changing market conditions [RHRH ™ 19]. Therefore,
continuity in the changes of the BMDM and the BM during the development is needed.

* HR 6: Development Continuity: The solution should allow continuous changes in
the business model and the business model development method during the whole

development.

During the continuous development of the business model, different stakeholders are
involved. Here, parts of the development consist of creative tasks where those different
stakeholders need to collaborate [SL20]. For that, the stakeholders can interact during the
different phases [AdR20], like in the phase of generating new ideas for a business model
[EHB11]. In general, there is a division between the internal and external stakeholders of
a company [SL20] and the synchronous and asynchronous collaboration [SSJT19]. Exist-

ing tools provide basic functionalities for sharing business model ideas among different

1.3 High-level Requirements and Solution Overview 17

stakeholders [VOPN13]. Moreover, they provide functionalities to discuss and rate busi-
ness models, including their components [SBK18a]. Therefore, a collaboration of different

stakeholders during the development is needed.

e HR 7: Stakeholder Collaboration: The solution should allow the collaboration of

different stakeholders during the business model development.

During the development of the business model, different artifacts are created. Here,
developing business models is a complex activity, where traceability of the artifacts can
ensure the understanding of the reasons behind all changes over time [OPTO05]. With that, it
is possible to see the evolution of a business model [OPT05], analyze the reasons for failed
experiments [McG10], and develop a change plan [BSRP16]. Existing tools visualize the
evaluation of business models [FP14b], provide a tracing between current and target business
models [AFM18], track the reasons for changes [SBK18a], and provide advanced reasoning
to managers [HKB18]. Therefore, management, including the traceability and reasoning, of

all (canvas) artifacts is needed.

* HR 8: Artifact Management: The solution should provide management of all (canvas)
artifacts that are created during the business model development.

To support the BMD, including artifact management, different BMDTSs have been intro-
duced in research [BARHF20] and practice [SSJT19]. However, to efficiently support the
development, those tools need to evolve into BMDSSs [OP13a]. Currently, there are different
tools for different phases, different stakeholders, different units of analysis, and different
values [BARHF20]. Here, an ongoing question in research is the level of automation that
can be used within the BMD [BdARHF20]. Existing tools provide different types of decision
support like generation of ideas [Joh16], analysis of robustness [HBJdR17], simulation of
alternatives [GFCL], and validation of ideas [DLEL19]. Our SLR of those tools can be seen
in Appendix A. Therefore, support for decision-making during the development is needed.

* HR 9: Decision Support: The solution should provide support for decision-making

during business model development.

Like for decision support, software tools can be used to reduce the complexity at all
phases of BMD. Those BMDTs can be used to support both methods and models during the
development [SL20]. In practice, various BMDTs have been introduced that mostly focus on
filling out the BMC [SSJ19]. Common tool functionalities are comparing different business
models [OPTO05] and sharing ideas between different stakeholders [BARHF20]. Therefore,

support in the form of a software tool is needed.

18 Introduction

* HR 10: Tool Support: The solution should provide a software tool to support the

development of business models.

Out of the derived HRs, we propose a sketch of our solution for situation-specific BMD,
shown in Figure 1.8. It consists of three stages, where each stage provides a solution for
one of the research questions (RQ1 - RQ3). The stages are the (/) Knowledge Provision of
Methods and Models (to answer RQ 1), (2) Composition and Enactment of Development
Methods (to answer RQ 2), and (3) Support of Development Steps (to answer RQ 3) together
with the seven roles of the Meta-Method Engineer, the Domain Expert, the Method Engineer,
the Business Developer, Other Stakeholders, the Development Support Engineer, and the
Meta-Development Support Engineer. Here, the second stage is mainly used for the BMD by
using the knowledge from the first stage and the development support from the third stage.

A X

Business Other Development
Develgper Stakeholder ~ Support Engineer

Meta-Method
Engineer

Domain Method
Expert Engineer

Meta-Development
Support Engineer

(2.1) (2.2) Com- (2.3) Enact- (2.4) Con- (3.2) Pro-
(1.2) Pro- - . S
. Character- position of ment of duction of vision of
Knowledge isation of Development Development Development Development
Context Method Method Step Support

Lchange needed——

(3.1) Provision

(2.1) Provision

of Knowledge of Develop-
ment Support
Structures . development
®<' ini Structures
finished
N J \ J \ J
Y Y v

(1) Knowledge Provision

of Methods and Models

(3) Support of
Development Steps

(2) Composition and Enactment of

Development Methods

Fig. 1.8 Solution Sketch of the Approach proposed in the Thesis

To provide the knowledge for our approach, the (1) Knowledge Provision of Methods
and Models utilizes the information about methods and models (i.e., HR 1: Knowledge
Utilization). For that, the Meta-Method Engineer needs to develop the structures that can
utilize the knowledge of the methods and the models (/.7). Next, the different Domain
Experts need to utilize their method and modeling knowledge from various sources (e.g.,
literature reviews, expert interviews, business observations) with the support of the Method
Engineer (1.2) so that it can be accessed and used in a structured way. Here, the knowledge

should be able to represent all phases of the development method (i.e., HR 2: Method

1.4 Publication Overview 19

Comprehensiveness) and adequately visualize the used canvas models (i.e., HR 3: Model
Visualisation).

Based on that utilized knowledge, the (2) Composition and Enactment of Development
Methods composes and enacts a situation-specific development method. For that, the
Business Developer informs the Method Engineer about the business context who uses
that information to formalize the context (i.e., HR 4: Context Awareness / 2.1). Based on
that formalized context and additional information, the Method Engineer composes the
development method (i.e., HR 5: Selection Assistance) / 2.2). This development method,
in turn, is then enacted (2.3) by the Business Developer. During the enaction, the Business
Developer conducts different development steps together with Other Stakeholders to create
artifacts (2.4). Specific steps are assisted with provided development support. Moreover,
depending on changes in the context, a modification of the development method might be
needed (i.e., HR 6: Development Continuity) / change needed), or the development could be
finished (i.e., development finished).

To provide development support, the (3) Support of Development Steps assists the
conduction of different development steps. For that, the Meta-Development Support Engineer
needs to develop the structures for the development support in the software tool (3.7).
Next, those structures are used by the Development Support Engineer to create different
development support for specific development steps (3.2). During the conduction, different
stakeholders should collaborate (i.e., HR 7: Stakeholder Collaboration) and the created
artifacts should be managed (i.e., HR 8: Artifact Management). Moreover, the conduction
might be assisted by decision support (i.e., HR 9: Decision Support). Finally, all stages are
supported with a software tool (i.e., HR 10: Tool Support). Those stages are also proposed
by different published publications.

1.4 Publication Overview

During the work on the thesis, we already published parts of our research, as shown in
Figure 1.9. We divide those publications into the six categories of domain overview, solution
overview, solution concept (first cycle), solution concept (second cycle), solution concept
and modules (third cycle), associated publications, and follow-up works.

Inside the Domain Overview, we provide insights into the application domain in which
the thesis takes place. Here, we analyze the Business Models of Software Ecosystems
[GRE19a] by mapping the business model decisions of different store-oriented software
ecosystems to the BMC. Out of these decisions, we create a variability model for the decisions

of the store provider, the service providers, and the end-users. Moreover, we provide an

20

Introduction

Business Models of Software
Ecosystems [GRE19a]

Overview of Decision Support
for Business Model
Development [GY21]

Situation-specific Business
Model Development for Service
Providers [Got21b]

Decision-support Systems for
Business Model Development
[Got21a]

Intertwined Development of
Business Models and Product
Functions [GRE19b]

Business Model Development
based on Product Line
Engineering [GRE20]

Situation-specific Business
Model Development Methods
[GYNE21b]

Domain-specific Business
Knowledge Modeling [GKE21]

Composition and Enactment of
Business Model Development
Methods [GYNE21a]

Tool-support of Situational
Business Model Developer
[GYNE22c]

Continuous Situation-specific Business Model Development
[GYNE22a]

Modularized Architecture for Business Model Development Tools
[GYNE22b]

Hypothesis Valiation for
Business Model and Product
Features [GYE20]

Crowd-based Prototype
Validation Platform for Services
[GAYE21, GPYE22]

Model-based AR Product
Configuration [GYSE20a,
GYSE20b]

Detecting Process
Incompatibilities Process-
based DSS [KGE22]

Visualizing and Simulating
Platform Ecosystems [VG21]

Business Model Ideation for
Business Ecosystems
[VGK+22, RBLL+22]

Model-driven Continuous
Experimentation [GYE22,
GBW+22]

Situation-specific Design
Thinking Processes [GYNE22d]

Fig. 1.9 Overview of the Underlying Publications of the Thesis

Overview of Decision Support for Business Model Development [GY21]. Here, we discuss
the division between data-based and data-driven BMD and show how data-driven approaches
use data, information, and knowledge from internal and external company sources during
development.

Inside the Solution Overview, we show a high-level overview of our solution and the
underlying research approach. Here, we attend a doctoral consortium on the topic of Situation-
specific Development for Service Providers [Got21b]. This paper shows our DSR approach

1.4 Publication Overview 21

and sketches a preliminary solution after the third cycle. Moreover, we attended a researcher
career workshop with the research statement of Decision Support Systems for Business Model
Development [Got21a]. This statement shows how we connect our two different DSR studies
of the situation-specific BMD and the crowd-based prototype validation that are presented in
Section 1.2 and Section 7.3.3.

In the Solution Concept (First Cycle), we apply the concept of SPLs to BMD during
the first design cycle. With the Intertwined Development of Business Models and Product
Functions [GRE19b], we use so-called features models to structure the knowledge of business
models and related product functions in a common structure. Out of those feature models,
we extract both using an iterative and incremental selection approach. By using Business
Model Development based on Product Line Engineering [GRE20], we provide a method to
insert the features in the feature model based on an analysis of the business and select them
based on an analysis of the customer. Moreover, the method adapts those selected features
based on the conduction of experiments.

In the Solution Concept (Second Cycle), we apply the concept of SME to BMD during
the second design cycle. With the Situation-specific Business Model Development Methods
[GYNE21b], we show how the method repository of SME can be translated to BMD. For
this, we create a method repository for composing BMDMs for mobile app developers. With
Domain-specific Business Knowledge Modeling [GKE21], we show how a canvas model
repository for BMD based on feature models can be used. For this, we provide a method to
consolidate the knowledge of different domain experts to support the design of BMs. Inside
the Composition and Enactment of Business Model Development Methods [GYNE21a], we
show the definition of a context in terms of situational factors and applications domain to
compose a development method out of both repositories. Moreover, we use lightweight
structuring techniques of Kanban boards and canvas models during enaction. The Tool-
Support of Situational Business Developer [GYNE22c] is a presentation of a prototype
of our corresponding software tool. For that, we present an architectural overview and
the functionalities of knowledge provision, method composition, and method enactment.
In Continuous Situation-specific Business Model Development [GYNE22a], we provide a
journal article of our second design cycle consisting of the knowledge provision, the method
composition, and the method enactment.

In the Solution Concept and Modules (Third Cycle), the modularized architecture
and development support modules of the third design cycle are shown. In Modularized
Architecture for Business Model development Tools [GYNE22b], we present our modularized
architecture to support different development steps of BMDTSs on a software business and a

free software conference to represent its extensible. The used support modules contain

22 Introduction

different tools with atomic steps to conduct and meta artifacts with artifacts to create.
Moreover, we worked on different development support modules in separate publications.
Here, Hypothesis Validation for Business Model and Product Functions [GYE20] supports
the iterative validation step for the hypotheses about the business models and the product
functions. For that, we have developed a modeling language and a development approach
that we translate into a support module of our approach. With the Crowd-based Prototype
Validation Platform for Services [GAYE21, GPYE22], we have developed a platform to
support the validation step using the feedback of crowd-workers. Here, we conducted three
design cycles of DSR to derive the operational principles and situated implementation of
such a platform. For that, we connect the platform to our approach as an external support.

The Associated Publications present work related to our approach but not directly
integrated. In Model-based AR Product Configuration [GYSE20a, GYSE20b], we use the
created and implemented concept of feature models to model AR products. Those AR
products can be freely adjusted within the real environment using a mobile phone and might
be used to show prototypes of physical products. In Detecting Process Incompatibilities
Process-based DSS [KGE22], we provide an approach to detect incompatibilities during
the composition and the enactment of the process. That approach provides a fine-granular
definition of incompatibilities and might be used to detect incompatibility between different
steps of our development support.

Last, the Follow-Up Works present work that is currently in an early development
stage but can be included in our approach as presented in the future work in Section 10.3.
Here, with Visualizing and Simulating Platform Ecosystems [VG21], we present the idea of
modeling platform ecosystems based on intra- and inter-related dependencies of the platform
actors. That work might be used in the future to simulate parts of the ecosystem’s behavior.
In Business Model Ideation for Business Ecosystems [VGK 22, RBLL122], we present a
procedure for supporting the ideation of possible business ecosystems based on canvas models.
That work might be used in the future to consider the BMD of the whole software ecosystem
instead of a single service provider. In Model-driven Continuous Experimentation [GYE22,
GBW122], we present a model-driven approach to support software experimentation by
connecting those models to component-based software architectures. That work might
be used in the future to integrate the knowledge of the product into our approach. In
Situation-specific Design Thinking Processes [GYNE22d], we investigate the extension of
our situation-specific approach toward design thinking workshops. That work might be used
in the future to use our approach in workshop settings for developing business models.

1.5 Thesis Structure 23

1.5 Thesis Structure

This thesis presents the third design cycle of our situation-specific BMD approach. The thesis
1s structured into ten chapters around three parts, as shown in Figure 1.10. The parts are part
1 of the introduction, foundations, and related work, part 2 of the solution concept, and part 3

of the implementation, evaluation, and conclusion.

(1) Introduction (2) Foundations (3) Related Work

(4) Conceptual Overview

Overview of Solution Application to Software Ecosystems

(5) Knowledge Provision of Methods and Models

Provision of Method Repository Provision of Canvas Model Repository

(6) Composition and Enactment of Development Methods

Composition of Development Methods Enactment of Development Methods

(7) Support of Development Steps

Modularization of Development Support Types of Support Modules
(8) Implementation (9) Evaluation (10) Conclusion

Fig. 1.10 Structure of the Thesis

In Part 1: Introduction, Foundations, Related Work, we start the thesis with a
general overview. In (1) Introduction, we motivate our thesis topic, state our research
question, and point out our research contributions. In (2) Foundations, we elaborate on
the fundamental topics of model engineering, situational method engineering, and business

model development on which the thesis is based. In (3) Related Work, we introduce related

24 Introduction

approaches that use business aspects in situational method engineering and situational factors
for business model development, together with tools for business model development.

In Part 2: Solution Concept, we present our concept for situation-specific business
model development. In (4) Conceptual Overview, we show how the overall approach is
working. For that, we give an Overview of [the] Solution of all stages and show the Ap-
plication to Software Ecosystems as our application area. In (5) Knowledge Provision of
Methods and Models, we show how corresponding repositories for methods and models can
be derived. For that, we show the Provision of [a] Method Repository based on different
method fragments. Moreover, present the Provision of [a] Model Repository based on dif-
ferent model fragments. In (6) Composition and Enactment of the Development Methods,
we show the composition and enactment based on those repositories. For that, the Compo-
sition of Development Methods includes the definition of the context, the situation-specific
composition of methods, and the domain-specific composition of models. Moreover, the
Enactment of Development Methods consists of the execution of the development process,
the stakeholder involvement inside those steps, and changes in the context. In (7) Support of
Development Steps, we show how software tools support different development steps. For
that, the Modularization of Development Support presents the provision of support modules
together with their composition and enactment. Moreover, the Types of Support Modules
show exemplary module types, including the crowd-validation of prototypes.

In Part 3: Implementation, Evaluation, Conclusion, we exploit the thesis by applying
our approach. In (8) Implementation, we show our modularized architecture and our software
tool. In (9) Evaluation, we evaluate our approach based on a case study on OWL Live and a
user study in student courses. In (10) Conclusion, we summarize our contributions, revisit

the high-level requirements and point out future work.

Chapter 2
Foundations

In the previous chapter, we motivated our approach and presented an overview of our solution.
Based on that, this chapter shows the relevant foundations for this thesis. First, we explain
model engineering to utilize the knowledge of development methods and canvas models
within our approach (2.1). Next, we describe situational method engineering, which concept
of composing and enacting development methods we refine in our approach (2.2). Last,
we introduce business model development as our application domain (2.3). Finally, we

summarize the used parts of the foundations (2.4).

2.1 Model Engineering

Model Engineering (ME) is a discipline of designing, developing, and using models as an
abstraction of specific objects or systems within the real world [Béz05]. Models can be
defined as “a complex structure that represents a design artifact, such as a relational schema,
object-oriented interface, UML model, XML DTD, website schema, semantic network,
complex document, or software configuration” [BHP0O]. With this, models aim to express
and communicate the essential aspects of the real world while avoiding irrelevant details.

In this section, we first give an overview of the metamodeling of models to abstract the
essential information (2.1.1). Based on that overview, we show domain-specific languages
for developing such models for a specific domain (2.1.2). To support the applicability of
those domain-specific languages also for larger models, we present different categories of
computer-aided modeling tools (2.1.3).

26 Foundations

2.1.1 Metamodeling

Metamodeling is an activity that is often used with model-based and model-driven software
development [Béz05]. The focus here is on developing a so-called metamodel from which a
set of models can be derived. With this, certain real-world aspects can be abstracted through
the models and interpreted according to the metamodels [BCW17]. For this purpose, a
metamodel consists of constructs and rules from which the models can be created. In this
context, a model created based on a metamodel is also referred to as an instance of this
metamodel.

To develop metamodels, bottom-up or top-down approaches can be used. In bottom-up
approaches, examples of the real world are observed, and out of the gained knowledge,
constructs and rules are derived. This can be done directly out of the real world or by
abstracting the real world into exemplary models and deriving the constructs from them.
This has advantages if the initial requirements for the metamodels are not fixed. In top-down
approaches, the already existing knowledge (and specific requirements of the use case) is
used to derive the metamodel, which is then instantiated with models. This has advantages if
the initial requirements are fixed and no exemplary models for all use cases exist [BCW17].

To support the metamodeling activity, the Object Management Group (OMG) has defined
the Meta-Object Facility (MOF) [Obj16] standard. This standard, in turn, is used for the
unified modeling of metamodels and meta-data repositories. For that, MOF defines a self-
conforming M3 layer, as shown in Figure 2.1, from which an infinite amount of layers can
be instantiated, while at least two are needed. With this, MOF provides high flexibility in
defining metamodels. One prominent example of the usage of MOF is the Unified Modeling
Language (UML) [Obj17], which is used for the specification and documentation of software
parts or whole systems. The illustration of MOF with the four layers of MO, M1, M2, and
M3, based on [BCW17], and the example of a mobile to-do app is depicted in Figure 2.1.

The layer M0O: Real World Objects consists of the objects of the real world that need
to be abstracted. For the mobile to-do app, that could be the technical perspective, like the
source code or a running system of the app, but also the existing market or the running
organization from a business perspective.

The layer M1: Model consists of models of the objects in the real world. Here, those
models abstract the essential aspects of those objects for a specific use case. For the mobile
to-do app, that could be, from a technical perspective, a UML class diagram to represent the
structure of the source code with specific instances for those diagrams. Moreover, from a
business perspective, it could be the representation of the BMC with filled-out information

about the organization as a specific instance of the canvas.

2.1 Model Engineering

27

!'----E instanceOf
M3: Meta- Class !
Metamodel <
- 1 S~
instanceOf instanceOf instanceOf
M2: ==) - ;
Metamodel Attribute Class <—clf;155|fler— Instance
N T _ 7 A
instanceOf instanceOf instanceOf instanceOf
D) PP Pd K
M1: MobileApp - snap%hof :mobileToDoApp
Model +name: String +name: "ToDo App"
A\
instanceOf
MO: Real
World Objects

Fig. 2.1 Overview of the Meta-Object Facility (based on [BCW17])

The layer M2: Metamodel consists of the metamodels that built the specific models’ foun-
dations. Moreover, those layer provides the possibilities of specifying new Domain-specific
Languages (DSLs) [BCW17], as explained in Section 2.1.2, and extension mechanisms
of existing modeling languages. From the technical perspective of the mobile to-do app,
that could be the UML [Obj17] that specifies the UML class diagram. From the business
perspective of the mobile to-do app, that could be the Business Model Ontology (BMO)
[Ost04], as explained for BMD in Section 2.3.1, which specifies the BMC.

The layer M3: Meta-Metamodel consists of MOF as the foundation for the specification
of metamodels. Here, MOF is a self-describing language that can define its own language
constructs. Both the UML and the BMO can be specified through MOF. With this, the MOF
is a DSL that can be used to define metamodels.

2.1.2 Domain-specific Languages

Domain-specific Languages (DSLs) are modeling languages that are designed to fulfill the
needs of a specific application domain. For this purpose, a reduced language vocabulary that
is already established in the domain is often used [BCW17]. This, in turn, has the advantage
of increasing the effectiveness with optimization for the domain and increasing the efficiency
by reducing the language constructs. Moreover, DSLs often come with a simplified visual
notation to support the understandability and usage by non-experts of the domain [Fral3]. In

contrast, General Purpose Languages (GPL), like UML [Obj16], provide support for a larger

28 Foundations

and more complex set of domains [V6113]. The development of a DSL can be supported by
a clear definition of the modeling language and a development method.

For the Definition of a Modeling Language, particularly a DSL, the definition of
syntax, semantics, and notation, together with mechanics (or pragmatics) for later usage,
is needed [KKO02]. Syntax describes the structure of the different elements of the language
and how those elements can be combined. Those combinations are often specified by using
metamodels. Semantics describes a modeling language’s meaning consisting of a semantic
domain and a semantic mapping. Here, the semantic domain describes the concrete meaning
using concepts like ontologies or taxonomies, while the semantic mapping connects those
meanings to the actual syntax. Notation describes the visualization of the language. This can
be done by using graphical symbols for the different elements of the syntax. Last, Mechanics
(or pragmatics) describes how the modeling language is used. Here, the mechanics can be
defined for a specific modeling language or inherited from a meta-language that also provides
syntax, semantics, and notation for different related languages [KKO02].

For the Development of a Modeling L.anguage, particularly a DSL, the development
method of Frank [Fral3] provides seven-step guidance in structured development. In the
beginning, the (1) Clarification of the Scope and Purpose is used to justify the rationale of
the language and its motivation. Here, it is important to determine the scope, elaborate on
the expected benefits and economic outcomes, and look at the long-term perspective and
feasibility. Next, the (2) Analysis of Generic Requirements analyzes the existing generic
requirements for the modeling language. For that, catalogs of existing requirements should
be analyzed to determine if they can be used or need to be modified and prioritized. During
the (3) Analysis of Specific Requirements, the domain-specific details of the language need
to be clarified. For that, scenarios can be developed and refined over time from which the
requirements are derived and prioritized. For the (4) Language Specification, the semantics
and syntax of the DSL need to be defined. For that, a glossary of the terms for the DSL should
be developed over time as a foundation to develop a new or extend an existing metamodel.
Based on that, the (5) Design of Graphical Notation develops the notation for the defined
syntax to ensure simple usage. For that, existing guidelines and guiding questions can be
used. Additionally, the optional (6) Development of Modeling Tool supports the usage of
the language with a software tool. For that, a new tool can be created, or an existing tool
can be extended. Last, the (7) Evaluation and Refinement should continuously optimize the
DSL. For that, the DSL should be checked against different test cases and current practices.
Overall, using existing development methods increases the quality of the DSL.

Based on the language definition and the development method, different DSLs can be

defined. DSLs can be used to model a design artifact’s structure (i.e., product) or behavior

2.1 Model Engineering 29

(i.e., process). One example of modeling the structure is so-called feature models (FMs)
that are used for modeling different software variants within SPL with a common graphical
representation [ABKS13]. With this, FMs allow a lightweight visualization of the different
possible configurations. One example to model the behavior is the Business Process Model
and Notation (BPMN), which is used to model the activity flows of business processes
by providing a graphical representation [Obj10]. With this, BPMN allows a lightweight
visualization of the process flow. Both modelings might be interrelated, like the BMDMs and
the BMs in BMD, as presented in Section 1.1. Moreover, different computer-aided modeling
tools, like the BMDTs in BMD, can be used to support the modeling process.

2.1.3 Computer-Aided Modeling Tools

To support ME, various computer-aided modeling tools, in short modeling tools, have been
developed over the years. Those modeling tools are provided with an extensive and varying
set of features that can support different phases of ME. Moreover, those tools can differ
in various aspects, like the license (e.g., open-source vs. closed-source), the scope (e.g.,
entire framework for all phases vs. individual development steps), or the platform [BCW17].
We categorize those modeling tools into the overlapping categories of visualization tools,
general-purpose modeling tools, and domain-specific modeling tools.

The so-called Visual Modeling Tools are often used as lightweight modeling tools
for different modeling languages and other visual graphics. Those tools provide basic
functionalities like the creation, reading, update, or deletion of models, the versioning or
recovery of models, and the collaboration on or sharing of models with other stakeholders.
However, those tools often focus on the free arrangement of symbols for the notation while
not considering the syntax and semantics of the underlying languages. This means that
graphical symbols of different modeling languages can be freely combined in a single
visualization without restricting constraints. Examples of those visual modeling tools are the
desktop application Microsoft Visio! or the cloud solution of LucidChart?.

The so-called General-Purpose Modeling Tools are often used as middleweight model-
ing tools for different languages. Besides the basic functionalities of the Visual Modeling
Tools, they focus on integrating metamodels to support the modeling process. However, those
tools often focus on the syntax and notation of the models while working less on the onto-

logical semantics of the underlying modeling language. This means that out of a modeling

'Website of Microsoft Visio: https://www.microsoft.com/en-us/microsoft-365/visio/
2Website of LucidChart: https://www.lucidchart.com/

https://www.microsoft.com/en-us/microsoft-365/visio/
https://www.lucidchart.com/

30 Foundations

language, various visual notations according to the syntax can be created. Examples are the
non-extended versions of Enterprise Architect® and Eclipse®.

The so-called Domain-specific Modeling Tools are often used as heavyweight modeling
tools for a single DSL. Besides the basic functionalities of the Visual Modeling Tools and the
metamodel integration of the General-purpose Modeling Tools, they focus on integrating
the domain-specific aspects according to the semantic domain. With this, they can take the
syntax, the ontological semantics, and the notation of the modeling language into account.
This means that the ontological semantics can restrict the overall syntax and the arrangement
of symbols for visual notations by, for example, using a predefined vocabulary. The domain-
specific modeling tools can be delivered as standalone solutions or extensions for existing
modeling tools. Examples for BPMN are the cloud solution of Camunda® or the extension of
the BPMN2 Modeler® for Eclipse.

2.2 Situational Method Engineering

Situational Method Engineering (SME), which originates in software development, is a
discipline for creating development methods that fit the specific project’s situation where they
are applied [HSRAR14]. A method can be defined as "an approach to perform a systems
development project, based on a specific way of thinking, consisting of directions and rules,
structured in a systematic way in development activities with corresponding development
products" [Bri96]. With this, methods aim to represent and communicate a structured
development towards a predefined purpose.

In this section, we first give an overview of the concept behind method engineering
(2.2.1). Based on that, we show different types of SME approaches to design methods,
including the method composition and enactment (2.2.2). To support the applicability, we,
lastly, present different software tools to support the process of (S)ME (2.2.3).

2.2.1 Concept of Method Engineering

Method engineering is the research field of designing, constructing, and adapting develop-
ment methods to create information systems [Bri96]. For this purpose, a new method is
designed out of parts of existing methods. This, in turn, has the advantage of increasing
the effectiveness with optimization for the specific information system and increasing the

3Website of Enterprise Architect: https://www.sparxsystems.de/

“Website of Eclipse: https://www.eclipse.org/eclipseide/

SWebsite of Camunda: https://camunda.com/

®Website of the BPMN2 Modeler: https://www.eclipse.org/bpmn2-modeler/

https://www.sparxsystems.de/
https://www.eclipse.org/eclipseide/
https://camunda.com/
https://www.eclipse.org/bpmn2-modeler/

2.2 Situational Method Engineering 31

efficiency by conducting just the necessary development steps. For that, method engineering
often uses an existing and continuously updated method base from which different methods
can be constructed [HSGP10]. The process of method engineering can be supported by a
clear definition of the method and a development approach.

For the Definition of a Method, the method can be decomposed into different parts. That
decomposition can be done into method fragments, method chunks, and method components
[HSR/OXR14], together with method patterns [FB16]. A Method Fragment is a reusable
atomic part of a method that can have a process- (called work unit), product- (called work
product), or producer-focus. According to the triangle of producer, work unit, and work
product [HSGP10], the producer performs the work unit to produce a work product. The
work product, in turn, is created, evaluated, or iterated by the work unit. This triangle is also
used in Software & Systems Process Engineering (SPEM) [Obj08], a software engineering
DSL, which can be used to model the method modeling activities. The focus of fragments
can be further refined based on the application of the method. A Method Chunk is the direct
combination of a producer- and product-fragment into a method part. While this reduces
the complexity of the method construction due to decreased amount of parts, it also reduces
the flexibility of the constructed methods. A Method Component, in turn, consists of input
and output work products together with a work unit to transform the inputs into the outputs.
With this, single fragments can be combined into larger development steps [HSRAR14]. A
Method Pattern denotes a structured sequence of method components. By using patterns, the
method components can be combined with the constructed development method [FB16]. To
identify the different method parts, Ralyte [Ral04] presents the two principles of existing
method re-engineering and ad-hoc construction. Existing Method Re-engineering splits
existing (non-modular) methods into their different atomic parts based on decomposition
and exploration. Here, the decomposition takes the whole method and transforms it into
method parts by identifying product and process models. Moreover, the exploration identifies
additional method parts by analyzing different use cases of the given method. This has
advantages if multiple methods already exist for the application area. Ad-hoc Construction
creates the method parts from scratch by analyzing new application areas where existing
methods have not been applied or insufficiently solve the given use cases. This has the
advantage of not getting biased by existing methods. Moreover, the development of a method
can be supported with an underlying meta-method. Here, Sauer [Saull] proposes MetaME,
which uses a product and a process dimension. For the Product Dimension, different artifacts
are derived from software engineering concepts. For the Process Dimension, those artifacts

are modified due to different software development tasks.

32 Foundations

)
Adopt Exis-
> ting Method

N———

) mmm——— Design Test Iteratively
Document Sgiirsct?nfor <x Tailor Exis- Method Candidate Refine
Motivation 9 > » ting Method Application Design Method
Method(s)
N— Techniques Elements Desngn

)
Develop

New Method
~—

Fig. 2.2 Concept of Method Engineering (based on [MCF195])

For the Development of a Method, the approach of Mayer et al. [MCF"95], as depicted
in Figure 2.2, consists of six steps. In the beginning, it is important to (/) Document [the]
Motivation behind the method development. This can be done by, for example, isolating
the basic intuitions for the method, identifying potential stakeholders, and analyzing the
shortcomings of existing methods. After that, a (2) Search for Existing Method(s) needs
to be conducted. Here, the goal is to find methods that already fulfill parts of the previous
motivation for a new method. Based on the results, it is possible to adopt an existing method,
tailor it, or develop a new one. During the (3.1) Adopt[ion] [of an] Existing Method, an
existing method can be reused because it fulfills all requirements of the motivation. During
the (3.2) Tailor[ing] [of an] Existing Method, an existing method is modified so that it fulfills
the requirements behind the motivation. During the (3.3) Develop[ment] [of a] New Method,
the method is created from scratch out of the requirements behind the motivation. After
that, the (4) Design [of] Method Application Techniques is needed to define under which
different circumstances the method should be used. Here, it is crucial in which scenarios
and under which conditions the proposed development method should be applied. This
application technique should then be validated by (5) Test [the] Candidate Design Elements.
Here, the proposed method is applied to test its applicability. The results of those tests are
used to (6) Iteratively Refine [the] Method Design. The usage of structured development
methods increases the quality developed method. Different types of SME approaches have
been proposed to develop individual methods for specific projects.

2.2.2 Types of Situational Method Engineering Approaches

SME develops a method directly for a specific project based on its situational context. The
goal is to manage a set of projects with specific methods that are created from the same set
of method parts. This creation, in turn, is often done by the role of a method engineer, while

the role of a project manager does the management. To apply SME, various approaches

2.2 Situational Method Engineering 33

have been developed over time. By analyzing the Trade-Off of Effort vs. Flexibility and
the Flexibility of Tailoring, Fazal-Baqaie [FB16] classifies those approaches into the three
categories of Configuration-based, Assembly-based, and Creation-based approaches. As
shown in Figure 2.3, those categories are originated between the usage of a complete Fixed
defined method and a totally Free definable method.

(_% A Effort: Effort:
2 high
- = Effort:
O % medium
52
s L Situational Method Engineering
2¢
=
i Effort: Effort:
= B
g very low very high
Fixed Configuration-based Assembly-based Creation-based Free
Flexibility of Tailoring

Fig. 2.3 Different Types of SME Approaches (based on [FB16])

The Configuration-based Approaches are based on a set of configuration points where
the method engineer can configure the situation of his project. Out of that configuration,
an automated process creates a tailored method for the project manager without requiring
additional changes. With this approach, the tailoring of a situation-specific method needs little
effort. Those approaches have the advantage that direct tailoring ensures a high quality of the
method by restricting the possible configurations. However, due to the fixed configuration
points, the methods cannot be customized by the method engineer, and the methods can not
be directly applied to unknown situations.

The Assembly-based Approaches are based on a repository of different method parts
from existing methods that can be continuously updated. The method engineer assembles a
new method from this repository that the project manager uses. During the usage, the project
manager informs the method engineer about the occurring quality problems of the method
that the method engineer needs to be changed. With this, the tailoring can be done with a
medium effort. Those approaches have the advantage that the method engineer can customize
the methods, and method parts for unknown situations can be added directly to the repository.
However, they have higher upfront costs for providing the repository and ensuring a high
quality of the tailored method.

A high-level overview of the steps for assembly-based SME is shown in Figure 2.4
(adapted from [HSRAR14]). Here, we have the roles of the Method Engineer and the Project

34 Foundations

Stage 1: Situational Method Base Metamodel B

Method Composition —

instance of
— et o
Co_ranSItlon classes in
‘ Guidelines
,

s
uses |Situationa| Factors°|
U ——’ ey
' ,‘i dates™" conforms to >
uses _ Updates o=

-~ PPtige Composed Method

Method : COMpPOSES == ====~ '
Mewda e»l:»{ I T
"'

Stage 2: Situational

Method Enactment __uses"' *
Pt Enacted Method
-------- enacts:---——---= o
Project (- I > >

Manager

Fig. 2.4 Stages of Assembly-based SME (based [HSRAR14))

Manager, together with the stages of situational method composition and situational method
enactment. In Stage 1: Situational Method Composition, the Method Engineer needs a
Method Base consisting of different method parts that can be created by the engineer or
gathered from an external source. Here, the Method Engineer uses the Situational Factors
of the project and additional Composition Guidelines to construct a Composed Method that
conforms to the underlying Metamodel. In Stage 2: Situational Method Enactment, the
Project Manager uses the method as Enacted Method to develop the software within the
project. Here, he can also report quality problems with the method.

The Creation-based Approaches are based on a metamodel with general composition
constraints but no explicit repository with predefined method parts. With the support of that
metamodel, the method engineer needs to formalize the needed method from scratch for each
project of the project manager. For that, the method engineer can use his experience from
past projects. With this, the method creation can be done with high effort. Those approaches
have the advantage of providing high flexibility in the construction of the method and their
adoption in unknown situations. However, they have high runtime costs by developing the
method from scratch and issues providing a high quality of the created method.

To assist the development of (situation-specific) methods using the configuration-based,
assembly-based, and creation-based SME approaches, computer-aided method engineering

tools can be used.

2.2 Situational Method Engineering 35

2.2.3 Computer-Aided Method Engineering Tools

To support SME, different computer-aided method engineering tools, in short method tools,
have been developed over the last years. Those tools can have various functions like
representing different methods, administrating the method parts, selecting the method parts,
and assembling the methods [BH95]. We categorize those method tools into the overlapping
categories of method visualization tools, method modeling tools, and method engineering
tools. Those tools can also be seen as a subset of the modeling tools in Section 2.1.3.

The so-called Method Visualization Tools, which can be seen as a subset of the Model
Visualisation Tools, are used to define a fully customizable method freely. For that, those
tools provide a graphical interface to visualize the tailored method and modify it. However,
those tools do not provide quality assurance of the developed method by using an underlying
syntax. This means that the method engineer is fully responsible for constructing the tailored
method out of a repository of graphical symbols. Examples are BPMN symbol repositories
within the already mentioned tools of Microsoft Visio and Lucidchart.

The so-called Method Modeling Tools, which can be represented within the General-
Purpose Modeling Tools, are used to define a method from scratch using an underlying syntax.
Those tools often provide modeling support based on the metamodels of existing method
modeling languages to allow a conformance checking of the developed method. However,
those tools provide just a limited form of quality assurance due to the lack of a semantic
understanding of the usage of the method. This means that the method engineer is fully
responsible for tailoring the method according to the correct semantics. Examples are the
MetaEdit+ Domain-Specific Modeling Environment’ [ALBT09] and the BPMN2 Modeler
for Eclipse 8

The so-called Method Engineering Tools, which can be represented within the Domain-
Specific Modeling Tools, are used to define a method from an existing repository of method
parts. For that, those tools often support managing such a repository, which also represents
parts of the semantic domain. With this, the methods can be tailored directly according to the
syntax, the semantic domain, and the visual notation. This means that the method engineer
has a good guidance tailoring method with high quality. Examples are the generic ADOxx
Metamodeling Platform” [FK15] and the specific Method Engineering with Method Services
and Method Patterns [FB16].

"Website of the MetaEdit+ Domain-Specific Modeling Environment: https://www.metacase.com/
$Website of the BPMN2 Modeler: https://www.eclipse.org/bpmn2-modeler/
9Website of the ADOxx Metamodeling Platform: https://www.adoxx.org/

https://www.metacase.com/
https://www.eclipse.org/bpmn2-modeler/
https://www.adoxx.org/

36 Foundations

2.3 Business Model Development

Business Model Development (BMD) is a discipline for creating new or innovating existing
business models under high uncertainty [ADv13]. A business model can be defined as “the
rationale of how the organization creates, delivers, and captures value” [OP10]. With this,
business models aim to provide a detailed representation of the desired business strategy
of the organization and an abstraction of the value creation mechanism of the underlying
business processes of the organization [ADEHAOS].

In this section, we first give an overview of the modeling languages for the visualization
of business models (2.3.1). Based on that, we show development methods to develop such
business models (2.3.2). To support the applicability of business model development, we

show different software tools to support the development (2.3.3).

2.3.1 Business Model Modeling Languages

Business Model Modeling Languages (BMMLs), which could be created using model
engineering as explained in Section 2.1.2, are DSLs that are used to support a common
understanding and the communication of business models [OPTO0S5]. For that, those BMMLs
can range from the pure visualization of the business model using a graphical notation
to modeling support using syntax and semantics. For the visualization, Taeuscher and
Abdelkafi [TA17] analyzed various visual business model representations from their cognitive
perspective and grouped them into three categories of element view, transactional view,
and casual view. Based on this categorization, they derived a recommendation of which
graphical visualizations can be used for which phase of BMD. This has the advantage of
reducing the user’s cognitive load of the representation. For modeling support, John et al.
analyzed different BMMLs regarding their syntax, semantics, and pragmatics [JKS17]. From
the visualization, they divide those BMMLs into connection-based and geometric-based
languages together with their hybrid combination.

The Connection-based Languages use freely-definable structures based on graphical
symbols and their connections. With this, those languages can be used to model relationships
within and between the business models of different organizations (e.g., multiple service
providers and their relationships within a software ecosystem). For that, there exists purely
visualization languages (e.g., ValueMap [AlI00], Value Stream Map [PHS08]) where those
symbols can be arranged without any guidance and modeling languages (e.g., e3-Value
[GAO1], Strategic Business Model Ontology [SYTO09]) where a syntax in the form of a
metamodel and ontological semantics of the business model domain is used. The most

prominent example of the connection-based approach is the e3-Value language [GAOI,

2.3 Business Model Development 37

AGO3], which can be used to model and analyze different actors within a value network.
For that, the approach allows the modeling of the different actors and market segments.
Those actors and market segments have interfaces with different ports (e.g., subscriptions)
to exchange certain objects (e.g., money). Moreover, those initiated models can be used to

calculate the business outcome of different predefined scenarios.

Key Partners Key Activities Value Propositions |Customer Relation. |Customer Segment.
Hosting Provider Develop App Save Privacy Self Service Private User
Social Networks Plan Marketing Free For all Phone Support Professional User

Collaborate
With Others
Key Resources Channels
Algorithms Facebook Ads
Infrastructure LinkedIn Ads
Cost Structures Revenue Streams
Development Marketing In-App License
Costs Costs Advertisements Subscription
Legend: Canvas Building Block Element

Fig. 2.5 Overview of the Business Model Canvas (structure from [OP10])

The Geometric-based Languages use fixed structures based on solid geometric boxes
where different information can be defined. With that, those languages can be used to structure
the information for the business model of a single organization (e.g., service provider in a
software ecosystem). While the representation of the boxes is the graphical notation, the
arrangement can be interpreted as syntax and their labeling as ontological semantics. The
most prominent example and de-facto standard in business modeling is the Business Model
Canvas (BMC) [OP10] as shown in Figure 2.5. The BMC as a Canvas divides the business
model up into the nine Building Blocks of the Value Propositions, the Customer Segments,
the Customer Relationships, the Channels, the Key Partners, the Key Activities, the Key
Resources, the Revenue Streams, and the Cost Structures. Those building blocks are filled
out with Elements about the business. In Figure 2.5, an example for filling out the BMC for a
mobile todo app is given. Here, the Private User is an element of the Customer Segments,
the Save Privacy is an element of the Value Propositions, and the In-App Advertisements is

an element of the Revenue Streams. Additionally, the ontological semantics is improved by

38 Foundations

Osterwalder by providing guiding questions (e.g., For whom are we creating value? Who are
our most important customers? for Customer Segments) and example elements (e.g., Mass
Market, Niche Market, Segmented, Diversified, Multi-sided Platform for Customer Segments)
[OP10]. Moreover, the relationship between the different elements can be displayed by using
different colors [FP10]. Due to the success of the BMC, other canvas models like the Value
Proposition Canvas (VPC) [OPB™14] for developing a value proposition of the customer and
the Platform Canvas [SSSV19] for developing platform business models have been proposed.

Partnership Actor Relationship
/ Agreement Channel \
Capability L-— Value Configuration —J Value Proposition L— Channel Customer
Resource Activity Offering Link Criterion
Cost Profit Revenue
Account Pricing
Legend:
BMO BMO — BMO
Building Block Sub Building Block (Sub-)Relationship

Fig. 2.6 Overview of the Business Model Ontology (based on [Ost04])

While the BMC uses fixed boxes to reduce the cognitive load, the underlying thesis of
Osterwalder [Ost04] proposed an enhanced connection-based Business Model Ontology
(BMO). As shown in the overview in Figure 2.6, the BMO consists of additional BMO
Building Blocks (e.g., Actor), decomposed BMO Sub Building Blocks (e.g., Offering), and
BMO (Sub-)Relationships (e.g., Activity to Offering) around the four categories of the Product,
the Customer Interface, the Infrastructure Management, and the Financial Aspects. With this
enhanced ontological semantic, it is also possible to provide enhanced development support
for the BMD. For example, based on the BMO, system dynamics can be integrated to support

dynamic business modeling [CN18] for the calculation of possible business outcomes, or

2.3 Business Model Development 39

the business model can be mapped to an enterprise architecture [MIN™ 12] for aligning the
business with the IT. This has the advantage of deeper integrating the business modeling to

related application areas and supporting information exchange.

2.3.2 Business Model Development Methods

Business Model Development Methods (BMDMs), which could be created using method
engineering as explained in Section 2.2.1, are used to guide the development of new or
innovation of existing business models. Here, BMD is a complex and creative activity
that consists of different phases where multiple tasks need to be conducted. Inside those
tasks, communication and collaboration between different stakeholders are needed [EHB11],
different alternative business models have to be developed [SEP™19], and uncertainties need
to be reduced [McG10].

a) Cambridge Business Model Innovation Cycle as b) Business Model Pattern Cards as
Development Method Tool

Fig. 2.7 Overview of a Development Method and a Tool (images from [GSE17, GFC14])

The Development Method structures the whole activity of BMD. For that, there exist
methods that stay on a higher description level with a loop of continuous experimentation
(e.g., Discovery-driven Planning [McG10], Try-And-Error Learning [STRV10]) and methods
that provide detailed descriptions of different phases and corresponding tasks (e.g., Cam-
bridge Business Model Innovation Process [GSE17], Customer Development [Bla20]). One
exemplary method is the Cambridge Business Model Innovation Process, as depicted in
Figure 2.7 (a), by Geissdoerfer et al. [GSE17]. The authors developed a business model
innovation (BMI) process for the transformation of a single organization. For that, they
divide that process into three phases with eight steps. In the beginning, the (1) Ideation has
the tasks of formulating a vision of the business, defining needed stakeholders, ideating on

the value, analyzing the sustainability, and selecting and evaluating ideas. Based on that, the

40 Foundations

(2) Concept Design integrates those ideas, discusses current trends, and defines the value
creation, capture, and delivery. Based on those results, the (3) Virtual Prototyping has the
steps of benchmarking the ideas with industry and generic business models, building the
prototype, and evaluating and selecting the prototype. To evaluate the prototype, the (4)
Experimenting identifies the key variables of success, designing the experiments, running the
experiments, and analyzing the learned lessons. After that, the (5) Detail Design provides a
refinement by defining all business elements in detail, summarizing a specific overview, and
providing all information in a transformation tool. To take action, the (6) Piloting plans and
implements parts of the transformation, analyzes the implementation, adjusts according to the
results, documents the transformation, and identifies possible failures. After piloting parts of
the transformation, the (7) Launch realizes and implements the whole planning and scaling
everything up. In the end, the (8) Reflection monitors the transformed business, reflects those
changes, adjusts and scales needed changes, and starts a new innovation process. As shown
in Figure 2.7 (a), the whole method consists of a non-linear process with the possibility of
choosing the next step according to the results of the last step.

The development can be supported with different Additional Tools. Within this thesis, we
focus on the usage of patterns and taxonomies together with software-based tools. Patterns
describe reusable combinations of business model elements for a certain outcome. For that,
those patterns abstract knowledge that repeatedly occurs in multiple organizations. With
this knowledge, the pattern can be recombined to support the generation of new business
models. As an example, Gassmann et al. [GFC14] introduced a set of business model
pattern cards, as shown in Figure 2.7 (b), which they derived from the analysis of existing
companies. Here, each card consists of a name (e.g., Add-on), a visual marker (e.g., airline
seating), a short description (e.g., the core of offering...), and exemplary companies (e.g.,
SAP, Ryanair). Moreover, they published more details about each pattern inside a handbook
[GFC14]. Taxonomies describe a schema to classify different business model elements. For
that, those taxonomies abstract knowledge that exists in at least one organization. With
this knowledge, it is possible to compare different organizations or discover new elements
to support the idea generation of possible business models. As an example, Hartmann et
al. [HZFN16] developed a taxonomy for data-driven business models from a diverse set
of sources. Here, their taxonomy uses the dimensions of the data source, the key activity,
the offering, the target customer, and the revenue model, which dimensions are further
refined like the revenue model into an asset sale, lending/renting/leasing, licensing, usage fee,
subscription fee, and advertisement. Moreover, those dimensions are clustered into different
types like a free data collector and aggregator or analytics-as-a-service. For Software-based

Tools, BMDTs exist that partially provide support for patterns and taxonomies.

2.3 Business Model Development 41

2.3.3 Business Model Development Tools

To support the BMD, different Business Model Development Tools (BMDTs) have been
developed in research and practice over the last years. Here, those tools in practice focus
on the visualization of and collaboration on business models using different aspects like
modeling (e.g., customization, development, commenting and linking, assessment, navigation,
and filter), collaboration (e.g., communication, synchronization, user and role management,
repository and conflict management), and technical implementation (e.g., architecture, data
exchange) [SSJT19]. Moreover, those tools in research develop solutions for supporting
the development in terms of design and decision-making using aspects like user and task
characteristics (e.g., different maturity of users), the generation of business models (e.g.,
pattern matching), or the validation of business models (e.g., crowd-validation) [BARHF20].
However, there is a trend for adding more and more decision support to those tools [OP13b].
A list of existing BMDSSs derived using an SLR can be seen in Appendix A. Based on our
findings, we categorize those BMDTs into the overlapping categories of visualization support
tools, design support tools, and decision support tools.

The so-called Visualization Support Tools, which are often developed and used in
practice, mainly build upon the structure of the BMC or similar Geometric-based Languages.
For that, those tools visualize the business model, show modification, provide versioning,
and enable collaborative development. However, while the focus is on simple collaboration
based on a graphical notation, those tools often lack a clear syntax and semantics behind the
developed business models. This means that the developed business models of an ideation
process can not be completely interpreted and further processed by the software. Examples
are the online versions of Strategyzer'® and Canvanizer!!.

The so-called Design Support Tools, which are often developed in research, but to some
degree, also used in practice, often use the simple structure of the BMC together with an
invisible structure (e.g., metamodel) with additional constraints to support the design. For
that, those tools support the design phase of the business model with additional guidance like
recommending business model elements or checking existing business model configurations.
However, those tools often focus on using the existing syntax and ontological semantics
only during the design of the business model. This means that those tools do not include
other phases of the BMD, like the validation with experiments or the calculation of business
outcomes. Examples are the Smart Business Model Developer [LFCJ™ 18], with the usage of
patterns in the design, or the Question-based Business Model Configurator [RRET19], with

the usage of taxonomies in the design.

10Website of the Strategyzer App: https://www.strategyzer.com/app
'Website of Canvanizer: https://canvanizer.com/

https://www.strategyzer.com/app
https://canvanizer.com/

42 Foundations

The so-called Decision Support Tools, which are currently often developed just in
research, provide additional decision support to the BMD. Depending on the use case, those
tools support different phases of the BMD, like the initiation of the business model from
existing data sources, the innovation of business models through transformations, or the
validation of business models with the crowd’s support. For that, those tools need a well-
defined syntax and ontological semantics, for example, on ontologies with connections
between business model elements. Examples are the Business Model Analyzer [AFM 18]
with the support for transforming the business model and the Hybrid Intelligence Decision
Support System [DLEL19] with the support to validate business models with the crowd.

2.4 Summary

Within this chapter, we have provided the foundations behind our situation-specific BMD
approach. For that, we have given an overview of the topics of model engineering, situational
method engineering, and business model development.

For Model Engineering, we have shown the creation of metamodels, the development of
DSLs, and the existing software tools for model engineering. In our approach, we want to
apply those foundations by providing a DSL and metamodels to formalize the knowledge of
the development methods and the business models. For that DSL, we need to specify syntax,
ontological semantics, and a visual notation.

For Situational Method Engineering, we have introduced the concept of method en-
gineering, shown different types of SME, and explained existing software tools for SME.
In our approach, we want to use Assembly-based SME to provide repositories for the de-
velopment methods and business models together with the composition and enactment of
the method. For that, we need to provide metamodels for both repositories together with a
situation-specific construction process that can be changed during the enactment.

For Business Model Development, we have presented different modeling languages and
development methods together with supporting software tools. In our approach, we want to
formalize the knowledge of different BMDMs as development methods and the knowledge
of Geometric-based BMMLs as business models. For that, we need to consider specialties of
the semantic domain of BMD during the formalization process.

Based on those foundations, the next chapter shows the related work of our approach
concerning our derived HRs. Here, we will analyze the business aspects of SME approaches,

the situational aspects of BMD approaches, and the existing BMDTs.

Chapter 3

Related Work

In the previous chapter, we provided the different disciplines of our thesis foundations. Based
on that, we give an overview of approaches in those disciplines that are related to our research
question and the derived high-level requirements. For that, we first show how business
aspects are currently integrated into approaches for situational method engineering (3.1).
After that, we analyze how situational aspects are supported in approaches for business model
development (3.2). Next, we investigate how current tools for business model development
solve those challenges of situation-specific development (3.3). Last, we summarize our

gained results on the related work (3.4).

3.1 Business Aspects in Situational Method Enginnering

Various approaches for SME have been introduced in the literature, where some of them
cover different business aspects during their development. In the following, we describe
related approaches (3.1.1) and compare them against our HRs (3.1.2).

3.1.1 Related Approaches

During the last years, different approaches using SME have been developed that also cover
business aspects within their methods. Here, those approaches have a wide range from
general frameworks to support the (method) modeling over approaches with a customizable
method repository for software engineering to approaches with fixed repositories that contain
business-related situational factors, tasks, and artifacts. In the following, we describe selected

situational approaches (SA) related to our research.

44 Related Work

The SA 1: ADOxx Meta Modelling Platform' [FK15] is a platform that supports the
design of domain-specific modeling methods. For that, ADOxx introduces the ADOxx
metamodel from which user-specific metamodels for different modeling methods could be
derived. Those modeling methods are specified by a modeling technique that consists of a
modeling language (i.e., notation, syntax, semantic) and a modeling procedure (i.e., steps,
results), and by mechanisms & algorithms that are refined to generic, specific, and hybrid
once. Out of those developed metamodels, specific models could be instantiated. For that,
ADOxx provides an architecture with the layers of a repository to cover a database and the
core modeling techniques, components to allow different functionalities like the analysis,
transformation, or import/export of models, and the user interface to provide interactions
with the user. Moreover, based on the platform, different (method) modeling languages like
UML or BPMN have been realized.

The SA 2: MetaEdit+ Domain-Specific Modeling Environment? [TK09] is a tool suite
that supports collaborative (method) modeling based on DSLs. It consists of the MetaEdit+
Workbench to design a modeling language and the MetaEdit+ modeler to use a modeling
language. The MetaEdit+ Workbench allows the definition of the general concept, the
inclusion of different rules as modeling constraints, the association of language concepts to
visual notations as symbols, and the creation of source code with the definition of generators.
The MetaEdit+ Modeler uses the defined modeling language and allows the collaborative
graphical development of models. The tool can be fully integrated into existing toolchains
and supports modifying the (method) modeling language due to changing requirements.

The SA 3: Method Engineering with Method Services and Method Patterns [FB16] is
an approach to support the project-specific composition, enactment, and quality assurance of
software engineering methods. For that, the approach consists of different roles and stages of
the method content definition, method tailoring, and method enactment. The method content
definition is conducted by the senior method engineer, who defines method elements, method
building blocks, and method patterns. The method tailoring is conducted by the project
method engineer who characterizes the project, composes the project-specific method, and
assures the quality of that method. The method enactment is conducted by the project team,
who enacts the method and reflects the quality of it. Moreover, the stage of method content
definition and method tailoring are implemented using the Ecplise Modeling Framework,
while the enactment is based on the WSO2 Business Process Server. The approach has
been already transferred to software modernization in [Gril6]. Here, the author presents an
SME framework to guide the development of situation-specific transformation methods. For

'Website of ADOxx Meta Modelling Platform: https://www.adoxx.org/
2Website of MetaEdit+: https://www.metacase.com/

https://www.adoxx.org/
https://www.metacase.com/

3.1 Business Aspects in Situational Method Enginnering 45

that, the method repository is based on the domain of model-driven engineering, while the
composition focuses on the identification of concepts within the existing legacy system.

The SA 4: Method Engineering for Blockchain Use Cases [FLR " 18] is an approach
that uses action design research and SME to construct a development method for blockchain
uses cases. Based on existing literature, including general method requirements, they
designed the development method and evaluated it in various workshops with different
organizations. The development method consists of the six phases of understanding the
technology, getting creative-unbiased, glancing in the market, getting creative-informed,
structuring ideas, and prototyping. For every phase, they identified the involved roles (e.g.,
moderator and participants in structure ideas), the possible techniques (e.g., cluster ideas,
discuss common features of each cluster), the used tools (e.g., mind map, business model
canvas), and the output (e.g., structured and prioritized blockchain use case clusters, number
of MVPs suitable for the prototyping activity).

The SA 5: Method for Engineering Gamified Software [MHWH18] is an approach
that provides a comprehensive method for developing gamified software. Using DSR, they
conducted a literature review and expert interviews to develop a knowledge base, including
design principles for such a method. Out of the knowledge base, they created a method base
from which they iteratively select method fragments, assemble them into a development
method, and evaluate that method in expert interviews and a case study. The development
method consists of the seven phases of project preparation, analysis of context and users,
ideation, design, design implementation, evaluation, and monitoring. During the method,
they consider the context of the project and the user together with business-related tasks (e.g.,
create personas in analysis) and artifacts (e.g., prototype in design).

The SA 6: Situation-specific Construction of Internet-of-Things Development Meth-
ods [GT18] is an approach that provides situation-specific development methods for [oT
cases. The authors analyzed different [oT development methods in the literature to develop a
corresponding method based on method fragments. Here, the developed method base also
contains business-related situational factors (e.g., business regulations), tasks (e.g., producing
an [oT Canvas), and artifacts (e.g., [oT Canvas). Out of that method base, they allow the
construction of development methods for IoT cases by selecting the method fragments,
assembling them into a method, and validating the method.

The SA 7: Domain-specific Modeling Method for Supporting the Generation of
Business Plans [WF20] is a concept to generate textual business plans out of the BMC.
They developed a metamodel of the modeling language and a modeling process. For the
metamodel, they extended the nine building blocks of the BMC (e.g., revenue streams) with

additional relationships (e.g., pays) between them. For the modeling process, they defined the

46 Related Work

steps of creating ideas within a simplified transaction model, creating a snapshot of the ideas
as a BMC, filling out additional information and preferences for the business plan document
models together with generating, editing, and exporting the business plan. To support the
usage, they implemented the whole concept on top of ADOxXx.

The SA 8: Situational Approach to Data-driven Service Innovation [vvR19] proposes
an approach to assembly data-driven service development methods based on the context for
which the service is created. For that, the authors focused on the development of a metamodel
for the method fragments based on existing literature. Here, each method fragment contains
a descriptor of the reuse context and the reuse intention, an interface of the situation and the
intention, and a body with multiple activities, results, techniques, and roles. Moreover, they
outlined an assembly process with the steps of ideation of a method, selection of method
fragments, the realization of the method, and use of the service.

The SA 9: Multi-concern Method for Identifying Business Services [ATO"20] pro-
poses an approach to develop methods for identifying and defining business services within
organizations. For that, the authors conducted a literature review to identify and match such
methods against a predefined set of requirements. They extracted method chunks from those
methods and used an assembly-based technique to combine them into a new development
method. As input and output of those method chunks, they used business-related modeling
techniques like business process and feature models.

The SA 10: Design Thinking Process Model based on Method Engineering [TM11]
proposes a formal model to guide design thinking processes. Based on observations in an
educational context, the authors used method engineering to extract a process model for
design thinking. The process model consists of six phases named to understand, observe,
point of view, ideation, prototyping, and test. Within the phases, they suggested conducting
business-related tasks (e.g., clustering ideas in ideation) and creating business-related artifacts

(e.g., user journey in point of view).

3.1.2 Requirement Comparison

To analyze the existing SA, we compare those approaches against our HRs, as shown in
Table 3.1. Here, we must mention that those approaches are not designed primarily for
developing business models, and therefore not all high requirements are fully comparable.
Moreover, ADOxx and MetaCase provide just general frameworks where possible BMD
techniques would need to be implemented on top. Nevertheless, those approaches show that
business aspects are already covered by different of them. For the analysis, we divide that
comparison into our three stages of knowledge provision of method and models, composition
and enactment of development methods, and support of development steps.

3.1 Business Aspects in Situational Method Enginnering 47

Tool HR:1 HR:2 HR:3 HR:4 HR:5 HR:6 HR:7 HR:8 HR:9 HR:10

sai @ O O O O O 0 O O O
sa2 @O O O O O O 0 O O O
sas @O O O O O O & O O O
saa @O O O O O O O O O O
sas @ O O O O O & O O O
sae @O O O O O O O O O O
sa7 @ @O O O O O O O O O
sas @ @O O O O O O O O O
sao @ © O O O O O O O O
saio @ © O O O O O O O O

Legend No Fulfillment (O) Partial Fulfillment (D) Complete Fulfillment (©)

Table 3.1 Comparison of the Situational Approaches (SA) against the High-level Require-
ments (HR)

The aim of (1) Knowledge Provision of Methods and Models is to utilize the existing
knowledge to make it (re)useable within the BMD. Here, we have the three requirements of
knowledge utilization, method comprehensiveness, and model visualization, together with
the cross-cutting requirement of tool support. For HR 1: Knowledge Utilization, we want
those approaches to provide knowledge of BMDMs and BMs based on unified interpretable
structures. Here, some approaches provide tables to group knowledge into categories (e.g.,
SA 5), simplified metamodels to compose developed methods out of a method repository (e.g.,
SA 8), and general frameworks that could handle the knowledge utilization by defining DSLs
for it (i.e., SA 1, SA 2). For the HR 2: Method Comprehensiveness, we want those approaches
to cover all phases of different BMDMs. Here, some approaches cover the development
of a single development method (e.g., SA 4), some approaches cover the situation-specific
construction of such methods for a specific case (e.g., SA 9), and a few approaches provide
general approaches to the creation situation-specific method bases for different cases (e.g., SA
3). For HR 3: Model Visualisation, we want those approaches to cover different visualizations
for the BMs. Here, a few approaches use no visualization for their modeling artifacts (e.g.,

SA 4), some approaches refer to external models that could be used within the development

48 Related Work

method (e.g., SA 9), and some use explicit defined (canvas) models (e.g., SA 7). For HR
10: Tool Support, we want those approaches to provide an open-source implementation
of their solution that can be extended. Here, a lot of approaches provide just conceptual
models without concrete software (e.g., SA 5), some approaches show tools but do not make
them accessible (e.g., SA 3), and the frameworks make their software accessible (i.e., SA
1, SA 2). However, based on that analysis, no approach formalizes the methods consisting
of development steps and modeling artifacts consisting of different canvas visualizations
together with an accessible tool whose source can be downloaded and modified. Here, the
two overall frameworks would cover most requirements based on DSLs that need to be
developed.

The aim of (2) Composition and Enactment of Development Methods is to compose
development methods out of the knowledge and enact those methods as processes. Here,
we have the three requirements of context awareness, selection assistance, and development
continuity. For HR 4: Context Awareness, we want those approaches to provide a flexible
definition and usage of different contextual factors. Here, some approaches provide just
methods without context (e.g., SA 4), some approaches use the implicit definition of the
context (e.g., SA 7), and some approaches provide an explicit definition in the form of
situational factors (e.g., SA 6). For HR 5: Selection Assistance, we want those approaches
to provide selection support for the BMDMs and the BMs from existing knowledge. Here,
some approaches provide no knowledge or no assistance in selecting the knowledge (e.g.,
SA 4), some approaches provide a simple selection of methods fragments (e.g., SA 8), some
approaches provide a configuration of the models (e.g., SA 3), and some approaches provide
a modular composition of the method (e.g., SA 3). For HR 6: Development Continuity, we
want those approaches to provide a runtime modification of the BMDM and the BM. Here,
some approaches provide just a single executable development method (e.g., SA 6), some
approaches provide a continuous reflection of the output of the method (e.g., SA 9), and the
frameworks could provide a flexible definition of continuity within their toolkits (i.e., SA 1,
SA 2). However, based on that analysis, no approaches provide a flexible configuration of
methods and models based on existing knowledge that can be easily modified during runtime.

The aim of (3) Support of Development Steps is to support certain development steps.
Here, we have the three requirements of stakeholder collaboration, artifact management,
and decision support. For HR 7: Stakeholder Collaboration, we want those approaches to
support the collaborative development of the BM by different stakeholders. Here, some
approaches are designed for single stakeholders (e.g., SA 4), some approaches cover the
explicit definition of the involved stakeholders (e.g., SA 5), and some approaches allow the

direct interaction of multiple stakeholders (e.g., SA 2). For HR 8: Artifact Management, we

3.2 Situational Aspects in Business Model Development 49

want those approaches to provide management of the created artifact, including the tracing
and reasoning of changes. Here, two approaches provide manual management of artifacts
(e.g., SA 4), some approaches some basic management by definitions of the artifacts (e.g.,
SA 3), and some provide full management of changes in those artifacts (e.g., SA 7). For
HR 9: Decision Support, we want those approaches to provide flexible decision support for
different development steps. Here, the analyzed approaches focus not on providing decision
support (e.g., SA 10), while it could be implemented on top of the frameworks (i.e., SA 1,
SA 2). However, based on that analysis, no approach provides collaborative development of

different artifacts with modularized decision-support that can be flexibly applied to all steps.

3.2 Situational Aspects in Business Model Development

Various approaches for BMD have been introduced in the literature, where some of them
cover different situational aspects during the development. In the following, we describe

related approaches (3.2.1) and compare them against our HRs (3.2.2).

3.2.1 Related Approaches

Over the years, different approaches have been developed to support the whole process of
BMD or single phases like the design or the validation. Here, those approaches have a wide
range from handbooks that explain the BMD in different situations, repositories of method
parts and patterns that can be applied to different situations, and the outcome calculation
of different business model configurations. In the following, we describe selected business
approaches (BA) related to our research.

The BA 1: Business Model Generation [OP10] is a handbook from the creators of
the BMC and offers practical guidance for developing business models. For that, they use
the visualization of the BMC, together with detailed explanations of the building blocks,
including knowledge of examples (e.g., Mass Market, Niche Market for Customer Segments),
guiding questions (e.g., How do we raise awareness about our company’s products and
services? in Channels), and patterns (e.g., Multi-Sided Market). For the method, they use a
process of the five phases of mobilizing the business model design project, understanding
the different elements for the design, designing the different options and selecting the best,
implementing a prototype of the business model in the field, and managing the adaption
of the business model due to market reactions, each with different tools and techniques.
Moreover, they offer decision support for validating the business model by asking control

questions for a SWOT analysis of the building blocks.

50 Related Work

The BA 2: Business Model Innovation through Trial-and-Error Learning [STRV10]
is a framework for BMD based on a case study. For that, the authors work on a dynamic
view of the business model over time that needs to be continuously updated due to internal
organizational and external market changes (e.g., innovations, competitors, regulations).
Here, the innovation of a business model is divided into the two phases of exploitation,
based on organizational search, and experimentation, based on try-and-error experimentation.
Out of these two phases, they designed a process with the stages of creating an initial
business design with testing using the exploitation, developing the business model through
experimentation, scaling the refined business model based on exploitation, and growing
the business model in the organization sustainable using a combination of exploitation and
exploration.

The BA 3: Business Model: A Discovery Driven Approach [McG10] is an approach
that uses continuous experimentation to deal with highly uncertain, complex, and fast-moving
environments. For that, the authors divide the business model into the unit of a business and
the key metrics. The unit of a business is the thing (e.g., product, service) for which the
customer pays directly (e.g., charging the product) or indirectly (e.g., advertisements). The
key metrics are dedicated to selling those units and contain the most critical constraints or
rating-limiting steps of the value chain. Here, experimentation for the whole business model
can support the validation of the articulated underlying assumptions. For that, a sequence of
experiments (e.g., market study, feasibility study) is used to test the main assumptions of the
business.

The BA 4: Startup Owner’s Manual [Bla20] is a book that provides a step-by-step
introduction to the development of a business model and a new product for an organization.
For that, they provide the two phases of customer discovery and customer validation that are
needed within customer development to search for new business opportunities. For customer
discovery, they point out the activities of identifying hypotheses, testing the problem, testing
the solution, and verifying the results. For customer validation, they specify the activities of
preparing sales, selling the product, developing the positioning, and verifying the metrics.
Their approach uses the visual structure of the BMC that is continuously changed. Moreover,
to support the development, the authors provide various checklists regarding the development
steps and the business model itself.

The BA 5: Cambridge Business Model Innovation Process [GBH16] is a framework
to guide the BMI of an organization by focusing on the gap between the design of the
business model and its actual implementation. For that, the authors conducted a literature
review and expert interviews to develop a non-linear process of the three phases of concept

design, detail design, and implementation together with the eight stages of ideation, concept

3.2 Situational Aspects in Business Model Development 51

design, virtual prototyping, experimenting, detail design, piloting, launch, and adjustments &
diversification (see Section 2.3.2 for details). For each stage, they provide necessary activities
(e.g., stakeholder definition in ideation) and potential challenges (e.g., communication failures
in concept design).

The BA 6: Testing Business Ideas [BO20] is a book that provides a repository that
can be used to validate existing business ideas. For that, they propose an iterative process
to design a prototype of the business and test it with experiments. Here, every experiment
consists of a name, a description, tasks to accomplish, needed capabilities of the organization,
and an estimation of cost, evidence strength, setup time, and runtime. Moreover, they provide
different experiment sequences (e.g., customer interview before paper prototype) that can be
used for different contexts (e.g., b2b hardware business, highly regulated field). During the
process, they use various canvas models to describe and sort the different business ideas.

The BA 7: Business Model Navigator [GFC14] is a book together with a set of pattern
cards that support the ideation of new business models. For that, the authors argue that most
of the new business models are based on the recombination of existing business models.
For that, they analyzed various organizations to extract patterns of them. As a process, they
choose the four phases of initiation, ideation, integration, and implementation. Here, those
patterns could be used in the ideation based on the definition of the existing business models,
the actors, and the contextual factors in the initiation (see Section 2.3.2 for more about
the business model patterns). They use a geometric-based language called the BMI Magic
Triangle for the visualization of the business model.

The BA 8: Business Model Patterns Database [RHTK17] is a tool to support the design
of business models based on recombination. For that, different approaches in the past have
developed slightly different concepts for those patterns together with an overlapping set of
patterns among those approaches. Here, the authors conducted a literature review on existing
patterns for BMD and a taxonomy development to create a comprehensive business model
pattern base. That pattern base is grouped into the five categories of overachieving, value
proposition, value delivery, value creation, and value capture with the twelve dimensions of
hierarchical impact, degree of digitization, product type, the strategy of differentiation, target
customers, value-delivery process, sourcing, third parties involved, value-creation process,
revenue model, pricing strategy, and direct profit effect. Each dimension provides different
patterns with its name, description, selected examples, and sources. Moreover, they provide
a simplified process to use those patterns inside the phases of initiation, ideation, integration,
and implementation.

The BA 9: Simulating Business Models using System Dynamics [RVS15] is an

approach to simulate the dynamic behavior of business models by combining the BMC and

52 Related Work

system dynamics. For that, the authors enrich the metamodel of the canvas with flows and
converters. For the flows, they use means to define necessary assets, the value that is proposed
for the services & products, and the cash that is generated. For the converter, they allow the
transformation of flows between different means, different values, and means and values.
The enriched model, in turn, is transformed into a system dynamics diagram. Moreover, they
propose a process with the phase of configuring the lab, designing experiments, and assessing
results together with getting a business idea, designing a canvas model, defining scenarios,
configuring parameters, simulating, observing results, and evaluating & redesigning. To
allow the simulation, they use an external software tool called iThink.

The BA 10: Dynamic Business Modelling Framework [CN18] is an approach that
provides a dynamic view of the business model by combining a canvas visualization with
system dynamics. This, in turn, allows a business model simulation with which the or-
ganization can experiment how the business model reacts to strategic and organizational
changes. For the canvas visualization, they use the seven building blocks of key partners,
strategic resources, value proposition & key performance indicators, key processes, customer
segments, cost structure, and revenue streams. They use strategic resources, flow variables,
and strategic levers from system dynamics for simulation. Those dynamic concepts, in
turn, can be combined into causal loops and initiated with concrete parameters to calculate
different business model outcomes over time. This calculation, in turn, can be done with

traditional software tools for system dynamics.

3.2.2 Requirement Comparison

To analyze the existing BA, we compare those tools against our HRs, as shown in Table
3.2. Here, we need to mention that most of those approaches are not designed primarily for
using the support of an IT artifact. Nevertheless, the knowledge of those approaches can
mostly be integrated into our approach. For the analysis, we divide that comparison into our
three stages of knowledge provision of method and models, composition and enactment of
development methods, and support of development steps.

The (1) Knowledge Provision of Methods and Models is related to the requirements of
knowledge utilization, method comprehensiveness, model visualization, and tool support.
For HR 1: Knowledge Utilization, some approaches propose conceptual models without
knowledge (e.g., BA 2), while other approaches provide knowledge about the development
methods (e.g., BA 6) as well as knowledge for the modeling artifacts (e.g., BA 8). For the
HR 2: Method Comprehensiveness, some approaches support a dedicated type of modeling
(e.g., BA 9), some approaches support specific phases of the development (e.g., BA 7), and
some approaches provide support for all phases of BMD (e.g., BA 4). For HR 3: Model

3.2 Situational Aspects in Business Model Development 53

Tool HR:1 HR:2 HR:3 HR:4 HR:5 HR:6 HR:7 HR:8 HR:9 HR:10

a1 @O O O O O O O O O O
g2 O @ O O O O 06 O O O
a3 O @ O O O O & O O O
e O O O O O O O O & O
as O O O O O O O O O O
e O O O O O O O O & O
a7 O @ O O O O & O O O
s O @O O O O O O O O O
o O O O O O O O 0 O O
a0 O O O O O O O O O O

Legend No Fulfillment (O) Partial Fulfillment (D) Complete Fulfillment (©)

Table 3.2 Comparison of the Business Approaches (BA) against the High-level Requirements
(HR)

Visualisation, a few approaches use no visualization for their modeling artifacts (e.g., BA 2),
some approaches use single visualizations of parts of the business model (e.g., BA 7), and
some use different (canvas) models (e.g., BA 4). For HR 10: Tool Support, most approaches
provide just conceptual models without concrete software (e.g., BA 2), while some approaches
are based on already existing software (e.g., BA 9). However, based on that analysis, no
approach formalizes both the methods consisting of development steps and models consisting
of different canvas visualizations together with an accessible tool that can be downloaded
and modified.

The (2) Composition and Enactment of Development Methods is related to the re-
quirements of context awareness, selection assistance, and development continuity. For HR
4: Context Awareness, all approaches provide some implicit definition of the context for
the development methods (e.g., BA 6) or the modeling artifacts (e.g., BA 7). For HR 5:
Selection Assistance, some approaches provide no knowledge or no assistance in selecting
the knowledge (e.g., BA 2), while others provide that selection for the development methods
(e.g., BA 6) or the modeling artifacts (e.g., BA 8). For HR 6: Development Continuity,

some approaches provide just single steps of the development (e.g., BA 8), some approaches

54 Related Work

provide the continuous development of the business model (e.g., BA 9), and some approaches
provide the implicit change of the development method (e.g., BA 1). However, based on that
analysis, no approaches provide a flexible configuration of methods and models based on
existing knowledge that can be easily modified during runtime.

The (3) Support of Development Steps is related to the requirements of stakeholder col-
laboration, artifact management, and decision support. For HR 7: Stakeholder Collaboration,
some approaches are designed just for single stakeholders (e.g., BA 9), some approaches
cover the needed collaboration of involved stakeholders (e.g., BA 7), and some approaches
focus on the direct interaction of multiple stakeholders (e.g., BA 1). For HR 8: Artifact
Management, half of the approaches provide no explicit artifacts (e.g., BA 2), while the other
use manual management of the defined artifacts (e.g., BA 3). For HR 9: Decision Support,
half of the approaches focus not on providing decision support (e.g., BA 2), while other
approaches provide checklists (e.g., BA 2) or simple calculations (e.g., BA 9). However,
based on that analysis, no approach provides collaborative development of different artifacts

with modularized decision-support that can be flexibly applied to all steps.

3.3 Tools for Business Model Development

The development can be supported by various BMDTs that are developed in research and
practice. In the following, we describe related tools (3.3.1) and compare our HRs against
their functionalities (3.3.2).

3.3.1 Related Approaches

The BMD can be supported with different BMDTs. Here, those tools cover different aspects
like the web-based visualization of business models developed by companies in practice,
conceptual frameworks to develop software for business model management, or design
support that can be used in the web browser developed by universities in research. In the
following, we describe business tools (BT) related to our research selected from our SLR in
Appendix A.

The BT 1: Strategyzer Innovation Software’ is a software tool for the collaborative
development of business models. The tool consists of different canvas models (e.g., VPC,
BMC), where the building blocks are enriched with additional explanations. On those canvas
models, the stakeholders can collaborate by using sticky notes. Those sticky notes, in turn,

can be directly connected to the hypothesis that needs to be validated, experiments that need

30nline Version of the Strategyzer Innovation Software: https://platform.strategyzer.com/

https://platform.strategyzer.com/

3.3 Tools for Business Model Development 5§

to be conducted, evidence that is gained, or insights that are given. Moreover, out of the
sticky notes and guided parametrization, the profit of the business model can be estimated.
Out of the business model, a process for testing can be derived. For that, a Kanban board is
used to structure the current state of the experiments that must be conducted.

The BT 2: Canvanizer” is a visualization tool for collaborative ideation on business
models. For that, the tool consists of various defined canvas models (e.g., BMC) but
other visual geometric-based models (e.g., empty 3x3-matrix) where the stakeholders can
collaborate by placing sticky notes on the canvas. Inside the tool, features support the general
working on the canvas (e.g., filter functions) and creativity mechanism (e.g., timer). Moreover,
the tool has a focus mode where single building blocks are highlighted and explained. After
the ideation of the business models, the tool allows various export functionalities, including
a PDF export of the canvas or a read-only view for sharing the canvas over the internet.

BT 3: OctoProz [VOPN13, VPO"13] is a creativity support system for the process-
oriented development of business models. For that, it can be used within the two contexts
of developing a new business model or analyzing and refining an existing one. Here, the
tool provides an initial configuration of the business model, which can be further refined
due to the collaboration of different stakeholders. As a business model structure, they use a
visual model around the two components of the process (connected to finance, resources, and
values) and the central functions (connected to fixed costs and resources). For the evaluation
of the business models, the tool provides decision support by a syntax check on the created
model, comments and ratings by the stakeholders, and simple financial assessments.

The BT 4: Business Model Decision Support System [DHOB13] is sheet-based tool
support for the development of software-as-a-service business models. For that, the tool’s
focus is the modularity of the different system components with the overall goal to estimate
the consequences of different business model decisions. Here, each sheet corresponds to
a single component which can be grouped into a configuration module, a market analysis
module, a business model design module, and a decision analysis module. Inside those
components, it is possible to define different evaluation criteria like design issues or success
factors, which are used to run different analyses like conjoint analysis in the market analysis
and multi-criteria analysis in the decision analysis.

The BT 5: Business Model Developer [BM14, BM17] is a software tool focusing
on developing domain-specific business models. The tool uses a customizable BMC as a
metamodel. Based on that metamodel, domain-specific knowledge can be defined as a shared
vocabulary consisting of elements and their connections. During the BMD, the tool provides

a configurator to develop a business model out of that knowledge and checks the syntax and

“Online Version of Canvanizer: https://canvanizer.com/

https://canvanizer.com/

56 Related Work

semantics of the model against the metamodel and the vocabulary. Based on the structures, it
also allows the comparison of different business models. Moreover, based on the structured
model, the tool allows the conduction of various analyses like cluster analysis or financial
calculations.

BT 6: Virtual Business Model Innovation [EBL16] is a framework to support the
development of software tools that manage and design business models. For that, they
identified the four phases of environment analysis, business model design, business model
implementation, and business model management, which are connected to knowledge in the
form of shared material (e.g., guidelines to develop business models) and stakeholders within
a community (e.g., project team). For the environmental analysis, they suggested using
an existing repository of industry benchmarks and market analysis as knowledge together
with characterizing the context of the industry, the market, and the customer needs. For
the business model design, they suggested using visual models for collaboration. For the
business model implementation, they suggested using the feedback of external users and
domain experts. For the business model management, the continuity is gathered by the
continuous feedback of users and refinement of domain experts.

The BT 7: Framework for Analysis of Business Model Management [TSLE17] is a
generic process to cover all phases of business model management. For that, they divide the
management into the four phases of analysis, design, implementation, and control, which
all should be supported by software tools based on a conceptualization, and, therefore,
visualization of the business model. For the analysis, they mentioned collecting relevant
information for the environment, the customer, and the competitor in a structured way for its
use in the design phase. For the design, they suggest an iterative design of the business model
centered around the customer, together with the continuous validation of assumptions. For the
implementation, they pointed out to find the proper organizational structure according to the
stakeholders that are needed for the implementation. For the control, they suggest continuity
in the improvement of the business model. For the software support, they gathered the results
that the tools should be situation-specific and iterative using pre-structured processes.

The BT 8: Green Business Model Editor [SBK18a, SBK18b, KBS19] is a software
prototype for enabling the reflection of sustainability during BMD. For that, the tool uses
a customizable version of the BMC that is extended with building blocks to sustainability
aspects. On the canvas, it allows the collaboration of different stakeholders together with
their communication. Here, it is possible to collaborate on different views of the business
model and share own developed business models. Moreover, the elements of the business

model could be pre-selected from an existing library. During the whole development, the tool

3.3 Tools for Business Model Development 57

supports the documentation and reasoning of changes. Moreover, to support the decision-
making, the software tool allows the conduction of trade-off analyses.

The BT 9: Envision Platform [dRAH ™ 16], which was migrated to BusinessMakeOver”,
is a platform that collects various (non-software) tools that support small and mid-size
enterprises in the development of new and innovation of existing business models. For that,
the platform contains a guided process structured by the defined goals (e.g., implement
a new business idea), from which a guided process containing different process steps is
derived. Each step is linked to a tooling page (e.g., Business Model Canvas), where the tool
is described in detail, together with a link to download the tool or online resources. With the
support of those tools, different artifacts of the process can be created mostly manually.

The BT 10: Smart Business Model Developer [LFCJ*18], which was migrated to
Venturely®, is an online tool to support the development of business models using business
patterns. For that, the tool uses the BMC and a large repository of different so-called pattern
packs (e.g., circular economy pack) for different application domains (e.g., recycling) that
can be used as design support. Based on that, the tool provides basic decision support for
financial calculations, the detection and comparison against business models of existing
similar companies, and the testing of hypotheses. Moreover, it has the functionality of a
guided process from the ideation of a business to its actual implementation. However, in the
different steps, they provide just simple PDF files with empty visual models and additional
explanations (e.g., trend matrix) that can be uploaded manually as artifacts to the process
steps.

3.3.2 Requirement Comparison

To analyze the existing BT, we compare those tools against our HRs, as shown in Table
3.3. For that, we divide that comparison into our three stages of knowledge provision of
method and models, composition and enactment of development methods, and support of
development steps.

The (1) Knowledge Provision of Methods and Models is related to the requirements of
knowledge utilization, method comprehensiveness, model visualization, and tool support.
For HR 1: Knowledge Utilization, some tools provide just a simple representation of the
business model without existing knowledge (e.g., BT 2), some tools use semi-formal method
knowledge about different method steps (e.g., BT 9), some tools use formal model knowledge
about elements and patterns (e.g., BT 5), and some tools combine a pre-structured method

with existing modeling knowledge (e.g., BT 2). For the HR 2: Method Comprehensiveness,

3Online Version of BusinessMakeOver: https://businessmakeover.eu/
®Online Version of Venturely: https://app.venturely.io/

https://businessmakeover.eu/
https://app.venturely.io/

58 Related Work

Tool HR:1 HR:2 HR:3 HR:4 HR:5 HR:6 HR:7 HR:8 HR:9 HR:10

st O @ O O O @& 0 O O O
;e O O O O O O 06 O O O
stz O @ O O O O O O O O
;e O @O O O O O O O O O
st;s @O @ O O O O O O O O
;e @O O O O O O O O O O
sty @O O O O O O O O & O
;s @O O O O O O ©0 O O O
;o @ © O O O @& O O O O
s;o © @ O O O O O O O O

Legend No Fulfillment (O) Partial Fulfillment (D) Complete Fulfillment (©)
Table 3.3 Comparison of the Business Tools (BT) against the High-level Requirements (HR)

some tools cover just the single design step (e.g., BT 2), some tools cover multiple steps
of development (e.g., BT 5), and some tools reflect all steps of the BMD (e.g., BT 9). For
HR 3: Model Visualisation, a single tool uses no visualization (e.g., BT 4), some tools use
fixed single visualization models (e.g., BT 3), and the majority of tools uses multiple or
customizable canvas models (e.g., BT 5). For HR 10: Tool Support, some tools provide just a
framework without concrete software (e.g., BT 6), some tools show tools but do not make
them accessible (e.g., BT 8), and some tools make them also accessible (e.g., BT 2). However,
based on that analysis, no tool formalizes the methods consisting of development steps and
models consisting of different canvas visualizations together with an accessible tool from
which the source code can be downloaded and modified.

The (2) Composition and Enactment of Development Methods is related to the re-
quirements of context awareness, selection assistance, and development continuity. For HR
4: Context Awareness, some tools provide no flexible awareness according to the context
(e.g., BT 2), some tools use general factors that need to be considered (e.g., BT 6), some
tools cover choosing parts of the method knowledge based on goals as factors (e.g., BT 9),

and some tools cover the choice of parts of the model knowledge based on an application

3.4 Summary 59

domain (e.g., BT 10). For HR 5: Selection Assistance, some tools provide no knowledge
or no assistance in selecting the knowledge (e.g., BT 2), some tools provide a selection of
the methods (e.g., BT 9), some tools provide a configuration on the models (e.g., BT 3), and
some tools combine a fixed method with the configuration of the business model (e.g., BT
10). For HR 6: Development Continuity, some tools provide an one-time process (e.g., BT 4),
some tools provide continuous changes in the business model (e.g., BT 2), and some tools
provide a continuous evolvement of the business model (e.g., BT 1). However, based on that
analysis, no tools provide a flexible configuration of methods and models based on existing
knowledge that can be easily modified during runtime.

The (3) Support of Development Steps is related to the requirements of stakeholder
collaboration, artifact management, and decision support. For HR 7: Stakeholder Collabo-
ration, some tools are designed just for single stakeholders (e.g., BT 4), while other tools
focus on the collaboration mechanisms between different stakeholders (e.g., BT I). For HR
8: Artifact Management, two tools provide just manual management of artifacts (e.g., BT 4),
while the other tools provide full management of changes of those artifacts (e.g., BT 9). For
HR 9: Decision Support, one tool provides no decision support (e.g., BT 2), most tools have
decision support for single steps (e.g., BT 8), and a few tools have a certain focus on decision
support of different steps (e.g., BT 5). However, based on that analysis, no tool provides
collaborative development of different artifacts with modularized decision-support that can

be applied to all steps.

3.4 Summary

In this chapter, we have provided an overview of different approaches related to our research
question. For that, we have categorized those approaches into business aspects in situational
method engineering, situational aspects in business model development, and tools for business
model development.

For the Business Aspects of Situational Method Engineering, we saw that most
approaches just partly cover the business model. Here, two approaches (i.e., SA 1, SA 2)
provide general frameworks that could be applied to our approach by defining DSLs. One
approach (i.e., SA 3) provides a holistic approach but just covers the method repository
and doesn’t provide a modular solution for all stages. However, those approaches have
certain constraints that reduce the simplification and applicability of our approach. Moreover,
other approaches provide just conceptual models with predefined knowledge for the method
repository (i.e., SA 4, SA 5, SA 6, SA 8, SA 9, SA 10) or focus just on the single aspect

of generating business plans (i.e., SA 7). However, no approach could be directly used to

60 Related Work

support the composition and enactment of development methods from predefined knowledge
of development methods and modeling artifacts.

For the Situational Aspects of Business Model Development, we saw that most ap-
proaches have no IT artifact as support. Here, comprehensive books (i.e., BA 1, BA 4) provide
a lot of textual information about the development method and the modeling artifacts. Other
conceptual models focus on the high-level conduction of experiments (i.e., BA 2, BA 3) or
the provision of a non-linear process with different phases (i.e., BA 5). Moreover, reposito-
ries provide textual information for the different experiments of the development method
(i.e., BA 6) or patterns for the modeling artifacts (i.e., BA 7, BA 8). Last, two approaches
simulate different parts of the business model based on standard techniques (i.e., BA 9, BA
10). However, no approach supports the composition and enactment of development methods
from predefined knowledge of development methods and modeling artifacts.

For the Tools for Business Model Development, we saw that most approaches focus
on visualizing parts of the business model or fixed development phases. Here, practical
tools focus on the pure visualization of the business model (i.e., BT 2) together with their
evaluation based on experiments (i.e., BT I). Other tools focus on the different phases (i.e.,
BT 4) of the development and visualize parts as modeling artifacts (i.e., BT 3, BT 5). Some
tools provide high-level descriptions of frameworks to innovate the business model (i.e.,
BT 6, BT 7), combine the BMC with pattern support (i.e., BT 8, BT 10), or provide guided
processes for certain business goals (i.e., BT 9). However, no tool supports the composition
and enactment of development methods from predefined knowledge of development methods
and modeling artifacts.

Based on those related works, the next chapter proposes our solution for fulfilling all
HRs. For that, we map those generic HRs to specific solution requirements together with
showing an overview of the provided stages and involved stakeholders. Moreover, we present
the application of our approach to SEs.

Part 11

Solution Concept

Chapter 4
Conceptual Overview

In the previous chapter, we analyzed related approaches to our RQ that don’t cover all of
our required HRs. Based on that, in this chapter, we introduce the conceptual overview of
our solution to fulfill those HRs. For that, we first give an overview of our proposed solution
(4.1). After that, we present our application area on SEs (4.2). Finally, we summarize our
concept and the application area (4.3).

4.1 Overview of the Solution

Within this thesis, we propose the approach of situation-specific BMD within the application
area of SEs. The underlying requirements of our solution are derived from the HRs based
on a literature review and tool analysis on BMD. Out of those requirements, we design
our solution by refining the concept of SME for BMD under the usage of formalization
mechanisms from ME.

In this section, we first define the solution requirements that are the basis of our approach
(4.1.1) by analyzing the derived HRs. Based on that, we show an overview of our solution
with the corresponding stages based on those requirements (4.1.2). Last, we explain the

involved roles in our approach (4.1.3).

4.1.1 Overview of Requirements

To design our approach for situation-specific BMD, we conduct a literature review of BMD
and a tool analysis of BMDSSs, as described in Section 1.3, to derive the HRs for such a
solution. Out of them, we create the nine solution requirements (SRs) as explained in the

following paragraphs. A mapping of the HRs to our SRs is shown in Figure 4.1.

64 Conceptual Overview

HR 1: Knowledge SR 1: Development
Utilization Knowledge Formalization
HR 2: Method SR 2: Method Knowledge
Comprehensiveness Storage
HR 3: Model SR 3: Canvas Model
Visualisation Knowledge Storage

SR 4: Context
Consideration

HR 4: Context
Awareness

HR 5: Selection
Assistance

SR 5: Development Method
Construction

SR 6: Development Method
Execution

HR 6: Development
Continuity

SR 7: Development Support
Formalization

HR 7: Stakeholder
Collaboration

HR 8: Artifact SR 8: Development Support

Management Construction
HR 9: Decision SR 9: Development Support
Support Execution

ez

HR 10: Tool Support

Fig. 4.1 Mapping of High-Level Requirements to Solution Requirements

The development of business models is a complex activity that can be supported with
knowledge about tasks to be accomplished inside different proposed methods and decisions
to be made inside different proposed models. However, that knowledge in terms of methods
and models needs to be utilized to make it accessible to the business developer (i.e., HR
1: Knowledge Provision). Those methods that are proposed by different domain experts
can support different phases of the BMD (i.e., HR 2: Method Comprehensiveness). Here,
those methods can be split into atomic parts to reuse them in different existing methods or
combine them into new ones. Those models that are proposed by different domain experts
can support the visualization of decisions during the BMD (i.e., HR 3: Model Visualization).
Here, those models can be split into atomic parts to reuse them in different models. Therefore,

4.1 Overview of the Solution 65

our solution should provide a formalization mechanism for the knowledge of methods and

models.

* SR 1: Development Knowledge Formalization: The solution should provide a
formalization mechanism for the atomic parts of the methods and the models from

different sources.

The methods, which provide the tasks that the business developer should conduct, are
mostly developed by different domain experts for general purposes or specific types of
organizations. Here, the method knowledge should be provided in an accessible form (i.e.,
HR 1: Knowledge Utilization) for the business developer and support all phases of the
BMD (i.e., HR 2: Method Comprehensiveness). After formalizing the atomic parts of those
methods, the solution should store those parts in an accessible form to structure the BMD.
Parts can be related to situation-specific aspects of the organization for which the business
model is developed (i.e., HR 4: Context Awareness).

* SR 2: Method Knowledge Storage: The solution should provide a storage mechanism
for the situation-specific atomic parts for all phases of business model development

methods.

The canvas models, which provide the possible decisions of the organization that the
business developer should consider, are mostly developed by different domain experts for
general purposes or specific types of services. Here, the model knowledge should be provided
in an accessible form (i.e., HR 1: Knowledge Utilization) for the business developer and
visualized by canvas models that are often used (i.e., HR 2: Model Visualization). After
formalizing the atomic parts of those models, the solution should store them in an accessible
form to support the BMD. Parts can be related to domain-specific aspects of the service for

which the business model is developed (i.e., HR 4: Context Awareness).

* SR 3: Canvas Model Knowledge Storage: The solution should provide a storage
mechanism for the domain-specific atomic parts of the developed modeling artifacts
based on canvas models.

The development of the business model takes place in a highly uncertain environment
where different assumptions have to be validated over time. That uncertainty also includes
the context in terms of the organization’s situation and the service’s application domain,
which can change over time (i.e., HR 4: Context Awareness). Therefore, the solution should
provide a mechanism to continuously update the context in which the business model is
developed. That context can be gathered from the utilized knowledge of the domain experts
(i.e., HR 1: Knowledge Utilization).

66 Conceptual Overview

* SR 4: Context Consideration: The solution should provide an adaptation mechanism
for the consideration of the changeable situation of the organization and the application

domain of the service.

Instead of using a fixed development method of a single domain expert, it is also possible
to construct a customized development method. Here, the development method can be
constructed from the atomic parts of the methods, and specific development steps can be
supported by the atomic parts of the canvas models (i.e., HR I: Knowledge Ultilization).
Due to the high amount of possible development knowledge, the solution should provide
assistance in constructing a development method (i.e., HR 5: Selection Assistance) that
covers all phases of the BMD (i.e., HR 2: Method Comprehensiveness). That assistance, in
turn, can be based on the situation of the organization to select the suitable method parts and
the application domain of the service to select the suitable canvas model parts (i.e., HR 4:

Context Awareness).

* SR 5: Development Method Construction: The solution should provide an assembly
mechanism for the context-specific construction of the development method based on

the selection of method parts and canvas model parts.

To support the usage of such a fixed or constructed development method, it should
be executable within a software tool. Here, our solution should provide execution of the
steps of the development method guided by the existing knowledge (i.e., HR 1: Knowledge
Utilization). During the execution, the business developer and other involved stakeholders
might collaborate (i.e., HR 7: Stakeholder Collaboration) to create different (canvas) artifacts
(i.e., HR 8: Artifact Management). Those artifacts might partly be based on the visual
representations of the models (i.e., HR 3: Model Visualization). Moreover, the BMD is
a continuous activity (i.e., HR 5: Development Continuity) which includes that tasks and

decisions need to be adapted due to a changing context (i.e., HR 4: Context Awareness).

* SR 6: Development Method Execution: The solution should provide an execution
mechanism for the continuous usage of the development method to collaboratively

develop (canvas) artifacts during the development steps.

Various software tools have been developed in the past to assist the different phases or
steps of the development method. That support has a wide range from the visualization of the
business model, over the design of parts of the business model, to decision-making during
the development steps (i.e., HR 9: Decision Support) that different domain experts developed

with the support of software developers. Here, the knowledge about that support can be

4.1 Overview of the Solution 67

split up into atomic parts to provide flexible usage during the execution of the development
method (i.e., HR 1: Knowledge Utilization). Therefore, our solution should provide a
formalization mechanism for the knowledge of development support for the supported
development steps (i.e., HR 2: Method Comprehensiveness) and visualized models (i.e., HR
3: Model Visualization).

* SR 7: Development Support Formalization: The solution should provide a formal-
ization mechanism for the atomic parts of the development support from different

sources.

The development support, which assists the business developer and the other stakeholders
during the BMD, can be gathered for different phases or steps of development (i.e., HR 9:
Decision Support). Here, that knowledge about the different types of support can be utilized
to have a common understanding between the business developer and all other stakeholders
(i.e., HR 1: Knowledge Utilization). After formalizing the atomic parts of that development,
the solution should provide an assistant to construct the development support for specific

development steps (i.e., HR 5: Selection Assistance).

* SR 8: Development Support Construction: The solution should provide a con-
struction mechanism for the atomic parts of the development support for specific
development steps.

The development support needs to be applied to the different phases or development
steps of the BMD. Here, those different support possibilities of visualization, design, and
decision (i.e., HR 9: Decision Support) can be guided by the existing knowledge (i.e., HR I:
Knowledge Utilization). Here, our solution should provide an application of the development
support in the development steps so that the business developer and the stakeholders might
collaborate (i.e., HR 7: Stakeholder Collaboration) to create different artifacts (i.e., HR 8:
Artifact Management). Those artifacts can partly be based on the visual representations of
the models (i.e., HR 3: Model Visualization).

* SR 9: Development Support Execution: The solution should provide an execu-
tion mechanism for applying the development support to develop (canvas) artifacts

collaboratively during the development steps.

4.1.2 Overview of Stages

Based on our derived SRs, we present an overview of our situation-specific BMD approach,
as shown in Figure 4.2. For that, we refine the concept of Assembly-based SME (cf. Section

68 Conceptual Overview

2.2.2), which contains the composition and enactment of the development method. Here,
we separate the creation of the method base from the composition of the method to allow
the flexible usage of different knowledge sources. Moreover, we enhance the enactment by
providing flexible development support for the development steps. This, in turn, leads to
the three stages of (1) Knowledge Provision of Methods and Models, (2) Composition and
Enactment of Development Methods, and (3) Support of Development Steps.

Inside those stages, we have various people with different roles that work together. Here,
we have the already introduced domain experts that provide the knowledge of methods
and models, the business developer of the organization who wants to develop a business
model for his service, and other stakeholders (e.g., software developer, early adopter) who
are involved in different development steps. Moreover, from SME, we use the method
engineer who formalizes the knowledge and composes the development methods and the
meta-method engineer (i.e., us in this thesis) who provides the metamodels for the knowledge.
For providing the assistants in the development steps, we identify the development support
engineer who provides the specific development support. Last, a meta-development support
engineer is needed (i.e., us in this thesis) who enables the development support within the
software tool. Therefore, we need to consider the seven roles of the Meta-Method Engineer,
the Domain Expert, the Method Engineer, the Business Developer, other Stakeholders,
the Meta-Development Support Engineer, and the Development Support Engineer. In the
following, we present our overview of those three stages based on the used foundations.

The (1) Knowledge Provision of Methods and Models is used to utilize the development
knowledge about methods to use and models to rely on within the BMD. Here, the Meta-
Method Engineer (i.e., us in this thesis) creates meta models for the methods and canvas
models (1.7). For that, we develop DSLs with syntax, semantics, and visual notation to
structure the Method Repository and the Canvas Model Repository (cf. Section 2.1.2 /i.e., SR
1: Development Knowledge Formalization). On the one hand, the Method Repository stores
method parts for all phases of BMD, including situation-specific aspects (cf. Section 2.3.2 /
i.e., SR 2: Method Knowledge Storage). On the other hand, the Canvas Model Repository
stores model parts for visualizing free-definable canvas models with their elements, including
domain-specific aspects (cf. Section 2.3.1/1i.e., SR 2: Canvas Model Knowledge Storage).
Next, different Domain Experts explain their domain knowledge in terms of existing BMDMs
and possible BMs (cf. Section 2.3) to the Method-Engineer (1.2). The Method Engineer, in
turn, formalizes the development knowledge of method and model fragments according to
the meta-models to make them usable within the repositories (1.3).

The (2) Composition and Enactment of Development Methods constructs the Devel-

opment Method and executes it as Development Process. Here, we apply the two steps of

4.1 Overview of the Solution 69

(1) Knowledge Provision of Methods and Models
——(1.1) develops metamodels——p»|

Mert‘a- Method 5
Met. od Metamodel
Engineer Domain i
Expert j
/. S —
(1.2) describes
methods and models Methpd
f (1.3) formalizes methods— " Repository
and models %r_/
Method (2.2) formalizes context and i
Engineer composes development method (2) Composition and Enactment of
\ Development Methods

(2.1) describes

situation Context Factors
(2.3) enacts

idevelopment methodp| | Development Method f-----=>

Business as process i
Developer
(2.4) collaborates in process—p»
Other (3.3) uses
Stake- '
holder development support ‘ Development Process t------>
(3.4) uses
development support : i
—~ (3) Support of Development Steps
Development ~(3.2) integrates :
Support development support E 5
Engineer i N) 0
Meta- feezezae Z/ (Canvas) Modules
Development (3.1) enables
Support development support
Engineer
Legend

............................ > »
% @ @ Model [Proqess/] /Module/ Instance of Reference Role
Role | Model Artifact Relationship Relationship ~ Action

Fig. 4.2 Overview of the Approach with Roles and Stages

Assembly-based SME, where the development method is composed by the Method Engineer,
but the enactment is done by the Business Developer instead of the project manager (cf.
Section 2.2.2). In the beginning, the Business Developer explains the current context in which
the business model should be developed to the Method Engineer (2.1). The Method Engineer
formalizes these Context Factors as the situation of the Development Method and application
domain of the Canvas Models (i.e., SR 4: Context Consideration) together with composing
the Development Method (2.1). For that, the Method Engineer constructs the Development
Method out of the Method Repository and connects specific development steps with canvas

70 Conceptual Overview

artifacts to the Canvas Models in the Canvas Model Repository (i.e., SR 5: Development
Method Construction). Based on that, the Business Developer executes the constructed
Development Method as a Development Process and uses the connected Canvas Models as
Canvas Artifacts (2.3) (ct. Section 2.3.2 / i.e., SR 6: Development Method Execution). Here,
the Business Developer conducts the single development steps and modifies the Artifacts,
including Canvas Artifacts (cf. Section 2.3.1). Moreover, other Stakeholders might contribute
to different development steps and modify (Canvas) Artifacts during the execution of the
steps (2.4). An exemplary development process is shown in Figure 4.3. Here, the Business
Developer interacts with the other Stakeholders (i.e., Customer, Software Developer) to
develop a business model. For that, he enacts the development process and conducts several
development steps. For example, the development step of the Interview Customer is used
to create a Customer Information artifact and the Create Business Model is used to create a

Business Model Canvas artifact.

Stake-
holder Customer Business Developer Software Developer
Interview 4 Create N 4 Create Calculate Create
Develop- Customer Value Business Business Prototype
AT Proposition _ Model Model _
Process o o
[Module] Canvas Canvas Calculation Prototype
Module Module Module Module
Artifact Customer Product N
[Information] Enformation] @ | [Prototype]
Legend
) - >
iInDptleJ:/eIopment f&t?)l:t [(Canvas) Artlfact] /Module/ Art_ifact_ Stakeholder Sequence
Stakeholder Relationship Relationship Relationship

Fig. 4.3 Exemplary Execution of the Development Process

The (3) Support of Development Steps is used to provide assistance for the development
steps with the flexible usage of (Canvas) Tools. Here, we support the visualization, the
design, and the decision during the steps (cf. Section 2.3.3), in which underlying knowledge

needs to be formalized for a common understanding (i.e., SR 7: Development Support

4.1 Overview of the Solution 71

Formalization). The Meta-Development Support Engineer (i.e., us in this thesis) enables
the development support by providing interfaces and hooks in the software tool for specific
support modules for such assistants (3./). Based on that, the Development Support Engineers
add their development support to specific development steps in the Method Repository (3.2).
During the execution of the composed development method, the Business Developer uses
those (Canvas) Modules to create and modify the (Canvas) Artifacts (3.3). During that,
he might collaborate with the Other Stakeholders (3.4). Exemplary software support for
different development steps is shown in Figure 4.3. Here, the Canvas Module is used to
create the Value Proposition Canvas artifact and the Business Model Canvas artifact, the
Calculation Module is used to create a calculation of the business outcome, and the Prototype

Module is used to create a prototype of the mobile app.

4.1.3 Overview of Roles

For our situation-specific BMD approach, we have identified seven different roles. Those are
the meta-method engineer, the domain expert, the method engineer, the business developer,
other stakeholders, the meta-development support engineer, and the development support
engineer.

The Meta-Method Engineer is responsible for identifying important knowledge parts in
existing resources for BMD, abstracting their syntax, semantic mapping, and visual notation,
and formalizing them through metamodels with graphical support where the knowledge
can be represented through. That knowledge, in turn, might come from various sources
like existing development processes (e.g., [STRV10]), method repositories (e.g., [BO20]),
modeling languages (e.g., [Ost04]), or pattern repositories (e.g., [GFC14]). In this thesis,
we take the responsibility of the meta-method engineer by analyzing different sources
of development methods and canvas models to develop the metamodels for the method
repository and the canvas model repository.

The Domain Expert is responsible for providing the knowledge to support the develop-
ment of the business model in terms of development methods and canvas models. Here, those
knowledge is used to make the ontological semantics of the method repository and the canvas
model repository accessible. By referring to Lethbridge et al. [LSSO05] that knowledge can
be divided into first, second, and third degrees. In the first degree, the domain expert stands
in direct contact with the method engineer to share the knowledge. In the second degree, the
domain expert shares the knowledge directly within the tool. In the third degree, the domain
expert refers to already shared knowledge in the past. In this thesis, we are using knowledge
of third degree by conducting a Grey Literature Review (GLR) [GFM19] to fill the method

72 Conceptual Overview

repository (see knowledge provision of Section 9.1) and a Taxonomy Development (TD)
[NVM13] to fill the canvas model repository (see knowledge provision of Section 9.2).

The Method Engineer is responsible for storing the knowledge of methods and models
within the repositories and composing the development method based on constantly change-
able, described context. To access the knowledge from the domain experts, the method
engineer can interview them (first degree), provide the tool for adding them (second degree),
or analyze existing sources of them (third degree) [LSS05]. To compose the development
method for the business developer, the method engineer can analyze the described context
for the situational factors, the application domains, and additional construction guidelines
[HSRAR14]. Moreover, we add development support to specific development steps. Out
of that, he composes the development method out of both repositories and adapts it due to
context changes. In the optimal case, the method engineer and the business developer roles
are filled with the same person to eliminate communication between both roles and reduce
the overhead of adapting the development method for changing situations.

The Business Developer is responsible for enacting the composed development methods
and developing the business models. Here, the business developer needs a deep understanding
of the running organization and its different available resources [OP10]. For enacting the
development method, the business developer explains the context of the existing organization
and the planned service to the method engineer. The business developer executes the develop-
ment method as a process and conducts the development steps to develop the business model.
During the development steps, the business developer collaborates with other stakeholders to
creatively create different artifacts [EHB11]. In contrast to the project manager who enacts
the method for software development, we have the additional responsibility of the business
developer to conduct the development steps.

The other Stakeholders are responsible for supporting the conduction of the different
business model development steps. Here, stakeholders with different skills can interact
during the phases, like working on new ideas, developing prototypes, or running marketing
campaigns [AdR20]. Those stakeholders, in turn, can be divided into internal stakeholders
of the organization (e.g., software developer, marketing manager) and external stakeholders
outside the organization (e.g., investor, early adopter) [SL20]. Within our approach, those
stakeholders can be flexibly defined in the method repository.

The Meta-Development Support Engineer is responsible for identifying needed in-
terfaces for integrating existing development support into the solution of the software tool
as support modules. He analyses different BMDTs and BMDSSs to abstract the needed
interfaces and hooks together with implements and documents them. Those tools can be

gathered from different literature reviews of software tools in research (see Appendix A for

4.2 Application to Software Ecosystems 73

BMDSSs) and practice (see [SSIT19] for BMDTSs). In this thesis, we take the responsibility
of the meta-development support engineer by analyzing different decision support systems
and developing a metamodel to integrate the development support.

The Development Support Engineer is responsible for developing the development
support as support modules and integrating them into the software tool. For that, he uses
the provided interface and hooks of the meta-development support engineer to create new
development support from scratch or to integrate existing development support. Those
support might have various goals like visualization, design or decision support [SSJ*19,
BdRHF20]. In this thesis, we take the responsibility of the development support engineer by
providing the first support modules for the development support in the phases of design and

validation support.

4.2 Application to Software Ecosystems

This thesis uses SEs as the application area of our approach. Here, we, in particular, focus
on mobile ecosystems as one of the most competitive but also interesting ecosystems for
third-party developers. This focus, in turn, ensures a direct transfer of our thesis results to a
high number of potential users.

In this section, we first introduce the application area of SEs and reason our decision for
mobile ecosystems (4.2.1). Based on that, we show an exemplary execution of the stages of
our solution for the scenario of a mobile todo app developer (4.2.2).

4.2.1 Introduction of Software Ecosystems

We choose SEs, particularly mobile ecosystems, as our application area in our thesis. As
already stated, we use the definition of Bosch et al., who define SEs as "a software platform,
a set of internal and external developers and a community of domain experts in service to a
community of users that compose relevant solution elements to satisfy their needs" [BBS10].
Here, the ecosystem providers of the software platforms provide SDKs to allow external
developers to extend their own platforms. With this, those providers are participating in the
value-creating transactions between the external developers (i.e., service providers) and the
users. Here, one special group of SEs are store-oriented SEs, where the developers place their
extensions within a store. Here, the providers often take transaction fees for all transactions
made with their stores.

Based on that opportunity, more and more organizations build ecosystems around their

existing (software) products to participate in the value-creating transactions. These are, for

74 Conceptual Overview

example, Sony with their PlayStation Store!, Adobe with their App Marketplace?, or SAP
with their SAP Store?. Based on an analysis of existing SEs, a recent study by Jazayeri et
al. developed the three architectural patterns of resale software ecosystems, partner-based
ecosystems, and OSS-based ecosystems [JZE™ 18]. Here, resale ecosystems provide a large
number of extensions by different independent external developers. After their creation,
the extensions were sold to many users within the SE. Next, partner-based ecosystems are
used for complex SE in new sectors, where the external developers and ecosystem providers
build new extensions based on partnership agreements. Here, different openness policies
support providers in protecting the intellectual property within their SE. Last, in OSS-based
ecosystems, the software platform is released under open source by the ecosystem provider.
Here, the external developers are mostly not financially motivated to develop extensions but
aim to gain reputations or extend the ecosystem for their own purposes. Based on those
patterns, resale software ecosystems are our solution’s most interesting type of ecosystem.
This is reasoned by the fact that those external developers in the SEs are self-responsible for
selling their extensions against many competitive extensions. Moreover, due to the size of
those ecosystems, a lot of knowledge about successful business models is available, which
can be utilized by our approach. Here, mobile ecosystems are a subset of those SEs.

Mobile ecosystems that are provided by Apple around i0S* and Google around Android?,
are one of the most evolved ecosystems. While Apple bundled its operating system with its
hardware, Google licensed its system to various hardware manufacturers. Here, those two
ecosystems provide external developers with access to billions of users [App21]. However,
those developers also compete with their applications against millions of other applications
of hundreds of thousands of other developers. Moreover, both mobile ecosystems have an
ongoing growth trend, and the ecosystems also extend to different other application areas
like the television or car segment with Apple CarPlay® or Google TV”. In contrast, those
ecosystems provide simple store concepts with limited visibility boost for new applications.
Here, developers are self-responsible for making their applications successful. Therefore,
those developers need an effective business model for their applications.

Here, as shown in Figure 4.4, both Mobile Ecosystem Providers provide an Application
Store (i.e., AppStore, PlayStore) within their Mobile Operating Systems. Within those stores,

they provide features like a Search or Rating/Review for the different existing Applications.

'Website of the Sony’s PlayStation Store: https://store.playstation.com/
2Website of Adobe’s App Marketplace: https://exchange.adobe.com/
3Website of SAP Store: https://store.sap.com/

“Website of Apples iOS: https://www.apple.com/ios

SWebsite of Googles Android: https://www.android.com/

®Website of Apple CarPlay: https://www.apple.com/ios/carplay/
"Website of Google TV: https://tv.google/

https://store.playstation.com/
https://exchange.adobe.com/
https://store.sap.com/
https://www.apple.com/ios
https://www.android.com/
https://www.apple.com/ios/carplay/
https://tv.google/

4.2 Application to Software Ecosystems 75

Mobile Operating System
f Application Store)
. provides
i Catalog Search Top Lists < system — %
Mobile ToDo App Mobile Ecosystem
Developer ; ; Provider
develops View Rate/Review
mobile
to-do app f Applications
I) ToDo External Internal
Application Application Application
develop develop
— external — Ext_ernal Ext_erngl Intt_arngl | internal -
applications l Application Application Application I applications
External Mobile Internal Mobile
App Developer * App Developer

execute applications

En
Users

Fig. 4.4 Overview of the Mobile Ecosystem with the Mobile ToDo Application

Those applications are developed by different Internal Mobile App Developers and External
Mobile App Developers. Moreover, they can be executed by the already existing End-Users
of the ecosystem. Here, for example, a new Mobile ToDo App Developer publishes a new
ToDo Application in the store. With this, he directly needs to provide advantages against
similar External Applications of other External Mobile App Developers. In the following,
we show how such a developer can use our approach to develop a business model for his
application.

4.2.2 Usage of Solution

Our scenario for showing the usage of our solution is based on the feasibility study of our
first design cycle presented in Section 1.2. In our scenario, the Mobile ToDo App Developer
wants to develop a new ToDo Application and place it within the Application Store. By doing
that, he has different options: First, he can try to target a large group of the End-Users by
developing a generic todo app. With this, he might have the largest target group by also the
competition of Internal Applications (e.g., Apple Reminders, Google Tasks) and External
Applications (e.g., Microsoft Todo, Todoist). Second, he targets a smaller group by providing
special features (e.g., time management, todo splits) and a corresponding value proposition

to the End-Users. With this, he might have a smaller overall market but also less competition

76 Conceptual Overview

against other External Applications. However, for both options, he needs to develop also a
proper business model for his organization to create, deliver, and capture the possible value
for the target group. Here, he uses our situation-specific BMD approach to develop the
potential business model. The development method’s focus should be the business model.

For that, as presented in Figure 4.5, he conducts all three stages of our approach.

(1) Knowledge Provision of Methods and Models

Method Repository (Canvas) Model Repository

Lean Development
Product Line Engineering

Mobile App Information
Experiment Information

(2) Composition and Enactment of Development Methods

Situational Factor: / Application Domain:
-customerValidity: low / Mobile Apps

Customer l Customer
Segmentation - >—| Funnel ?
Discovery Analysis T
Business l Validation Business
Model Experiment —»(O—» Model O
Design Development T Validation

\ .

; (3) Support of Development\&eps,/
v L
Canvas Module HypoMoMap Module

Fig. 4.5 Exemplary Stages for the Mobile App Developer

In the (1) Knowledge Provision of Methods and Models, the mobile app developer
needs to gather the knowledge for the development. Here, the business model development
is supported by the knowledge of development methods and modeling artifacts from dif-
ferent Domain Experts. In this scenario, we are used third-degree knowledge by utilizing
already existing information. For the Method Repository, we analyzed the handbooks of
Product Line Engineering [ABKS13] and LEAN Development [Riel4] to transfer those

4.2 Application to Software Ecosystems 77

development methods to BMD. Here, we extract different method fragments (e.g., the task to
segment the customer groups and the stakeholders of customers) together with information
on how to structure those fragments (e.g., customer segmentation before business model
design). For the (Canvas) Model Repository, we analyzed existing mobile applications in
the mobile ecosystems [GRE19b] and the handbook for different experiments for business
model validation [BO20] to use that information for the modeling artifacts. Here, we extract
different (canvas) model fragments (e.g., subscription as revenue streams) together with
information on how to structure those fragments (e.g., refine subscription to monthly and
yearly subscriptions). After this knowledge has been gathered, it can be reused for composing
different BMDMs to develop BMs.

In the (2) Composition and Enactment of Development Methods, the mobile app
developer has to construct and execute a development method. Here, at first, he needs to
clarify the purpose and scope of his development. For that, he chooses different context
factors (e.g., customerValidity:low, Mobile Apps) for the repositories together with additional
constraints for the development method (e.g., focus on business model validation). Out
of the method fragment and structure information, he constructs the iterative development
method with stage gates of conducting a Customer Segment Discovery to identify different
target groups, followed by a Customer Funnel Analysis to analyze the channels where those
customers will come from. Next, he makes the Business Model Design by using the BMC.
Out of that, he uses a Validation Experiment Development to identify experiments for testing
the BM, which is used within the Business Model Validation by conducting those experiments.
After that, he enacts the development method to conduct the different steps to create certain
artifacts. For example, for the customer segments, he might identify the fitness improver,
who will get special features for meal and gym times, life improver, who we will propose
to save a work-life balance, or business improver, who will use the proposition to optimize
workflows to get more done at the same time. Out of that, he derives the funnel that a broader
range of customer segments can be reached with Facebook advertisements, while dedicated
customer segments can be found in specialized online communities. After that, he uses the
information to design different business models with elements like online communities for
customer acquisition and calorie trackers as value offerings for fitness improvers, social
media ads for customer acquisition and optimized schedules as value offerings for life
improvers, and customer support as relationship and workflow tracking as value offerings for
business improvers. In the end, he needs to evaluate those business models by using different
experiments like Facebook advertisements to test different conversing rates of landing pages

or smoke tests for different features.

78 Conceptual Overview

In the (3) Support of Development Steps, the mobile app developer can gather rec-
ommendations for single development steps. Here, that development support needs to be
connected to the fragments in the Method Repository before the composition of the devel-
opment method. For the Business Model Design, he uses the Canvas Module to receive
recommendations (e.g., possible revenue streams) for the design of the business model. Here
those recommendations are visualized based on the BMC. This is done based on the Mobile
App Information in the (Canvas) Model Repository and is explained in detail in Section 7.3.1.
For the Validation Experiment Development and the Business Model Validation, he uses
the Hypothesis Modeling and Mapping (HypoMoMap) Module to gather recommendations
on which experiment he should conduct. Here, those recommendations give the developer
suggestions on how to validate different assumptions about the business model with a sin-
gle experiment. This is done based on the Experiment Information in the (Canvas) Model
Repository and is explained in detail in Section 7.3.2. By using those modules, he receives

additional support in developing an effective business model.

4.3 Summary

In this chapter, we have provided the conceptual solution for our situation-specific BMD
approach. For that, we have given an overview of our solution with the different roles and
stages together with software ecosystems as the application area.

For the Solution Overview, we have analyzed the extracted HRs and mapped them to the
requirements of our solution. Based on that, we have developed an overview with seven roles
and three stages. Successive, we describe the roles of the meta-method engineer, the domain
expert, the method engineer, other stakeholders, the meta-development support engineer,
and the development support engineer, together with the stages of knowledge provision of
methods and models, composition and enactment of development methods, and support of
development steps.

For the Application Area, we have chosen SEs and, in particular, mobile ecosystems.
Here, we have introduced the application area together with our reasoning for mobile
ecosystems based on their ongoing growth trend. For developers in those ecosystems, we
showed the use of our approach’s three stages to develop possible business models.

Based on that conceptual overview, in the following chapters, we will provide detailed
explanations for each stage. Those stages are the knowledge provision of methods and
models to fill the method and canvas model repository, the composition and enactment of
development methods to construct and execute context-specific development processes, and

the support of development steps to assist the development in specific steps.

Chapter 5

Knowledge Provision of Methods and
Models

In the previous chapter, we gave a conceptual overview of our overall solution. Based on
that, this chapter shows the first stage of knowledge provision of methods and models of our
solution concept. For that, we first refine our SRs and give an overview of the stage (5.1).
Based on that, we describe the provision of the method repository (5.2) and the canvas model

repository (5.3). Finally, we summarize our procedure within the stage (5.4).

5.1 Requirements and Overview

The knowledge provision of methods and models is the first stage of our approach, which
aims to store the formalized knowledge that is later reused within the BMD. For that, we
refine the SRs, which were derived in Section 4.1.1, of SR 1: Development Knowledge
Formalization, SR 2: Method Knowledge Storage, and SR 3: Canvas Model Knowledge
Storage into detailed Knowledge Provision Requirements (KPR) together with providing an
overview of both knowledge repositories.

The Method Repository is used to store the knowledge from various existing BMDM:s in
a unified way to make them accessible within the composition of a new method. Here, the
repository needs to formalize the necessary method knowledge on the stakeholders, phases,
tasks, artifacts, and tools, including the organization’s situation, together with information on
how to construct the method out of the repository. To increase the acceptance by the users,
the knowledge should be expressed by a visualization together with an understandable and
extensible method repository. Therefore, our KPRs are:

80 Knowledge Provision of Methods and Models

* KPR 1: Situation-specific Provision of Method Knowledge: The solution should
provide the storing of situation-specific method knowledge, including the possible
situational factors, the supported phases, the involved stakeholders, the accomplished
tasks, the developed artifacts, and the used tools.

* KPR 2: Structuring of Method Knowledge: The solution should provide a struc-
turing of the method knowledge to allow the flexible composition of comprehensive

methods.

* KPR 3: Visual Representation of Method Knowledge: The solution should provide
a visual representation of the method knowledge to support the business developer’s

acceptance.

* KPR 4: Understandability of Method Repository: The solution should provide
appropriate explanations to allow a unified understanding of the method knowledge

among the business developer and the other stakeholders.

* KPR 5: Extensibility of Method Repository: The solution should provide the exten-
sibility of the method repository for new knowledge on business model development

methods, including changing situations.

The Canvas Model Repository is used to store knowledge from existing taxonomies
and patterns in a unified way to make them accessible within the development of new
canvas model artifacts. Here, the repository needs to formalize the necessary canvas model
knowledge on the items to place on the canvas models, their relationships, and exemplary
instances of patterns and organizations, including the application domain of the service with
structures to compose the canvas models of the repository. To increase the acceptance by
the users, the model knowledge should be expressed by the widely used visualizations of
canvas models together with an understandable and extensible model repository. Therefore,

our KPRs are:

* KPR 6: Domain-specific Provision of Canvas Model Knowledge: The solution
should provide the storing of domain-specific canvas model knowledge, including the
applied application domains, the used items, their possible relationships, and exemplary

instances.

* KPR 7: Hierarchical Structuring of Canvas Model Knowledge: The solution
should provide a hierarchical structuring of canvas model knowledge to provide a
refinement of the knowledge within the canvas models.

5.2 Provision of Method Repository 81

* KPR 8: Visual Representation of Canvas Model Knowledge: The solution should
provide visual representations in the form of canvas models to support the acceptance

of the business developer and the involved stakeholders.

* KPR 9: Understandability of Canvas Model Repository The solution should pro-
vide appropriate explanations to allow a unified understanding of the canvas model
knowledge among the business developer and the other stakeholders.

* KPR 10: Extensibility of Canvas Model Repository: The solution should provide
the extensibility of the canvas model repository for new knowledge on taxonomies and

patterns, including new canvas representations.

Out of the KPRs of the Method Repository and the Canvas Model Repository, we develop
an overview of the first stage, as shown in Figure 5.1. The provision of the Method Repository
is explained in Section 5.2. Here, the repository consists of the method fragments of different
atomic Method Elements (e.g., Developer for Stakeholder) that combined Method Building
Blocks (e.g., Customer Interview) and arranged through the optional Method Patterns (e.g.,
Init Development). The provision of the Canvas Model Repository is explained in Section 5.3.
Here, the repository consists of the model fragments of different atomic Canvas Elements
(e.g., Save Privacy for Item) that are structured through Canvas Building Blocks (e.g.,
Business Model) and visually represented through Canvas Models (e.g., Business Model

Canvas). In the following, we present the provision of both repositories.

5.2 Provision of Method Repository

The Method Repository contains the reusable knowledge needed to compose the development
method for the BMD. For that, the repository allows the utilization and storage of knowl-
edge that could be gathered from single development methods (e.g., [McG10, SEPT19]) or
repositories of methods (e.g., [BO20, SP09]). The abstracted phase for providing the Method
Repository can be seen in Figure 5.2. Here, in the beginning, the Meta-Method Engineer
needs to specify the Method Metamodel once for the repository. Based on that, different
Domain Experts explain their Method Knowledge to the Method Engineer. The Method
Engineer, in turn, models the Method Repository with the different method fragments of the
Method Elements, the Method Building Blocks, and the optional Method Patterns. The output
of this step is the Filled Method Repository with expert knowledge.

In this section, we show the utilization of the method fragments together with our created

metamodels. For that, we first explain the atomic parts of the method in the form of Method

82 Knowledge Provision of Methods and Models

Method Meta Model

Method Repository

Fig. 5.1 Overview of the Knowledge Provision of Methods and Models

Elements (5.2.1). Based on that, we show the combination of different elements to Method
Building Blocks (5.2.2). Last, we present the optional arrangement of those building blocks
by using Method Patterns (5.2.3).

5.2 Provision of Method Repository 83

Roles Steps Outputs
. > Specification of Method Metamodel ~ f------4 Specified Method 7
d i Metamodel
- .. < Unformalized
- Derivation of Method Knowledge A—
Meta Method g Method Knowledge
Engineer R
l’ /
’ U
,/’ /! Modeling of Method Repository Dl
e !
o, II
II
Domain K Modeling of Modeling of
Expert /! Method Method :
/ Elements Building Blocks |______]| Filled Method
/ d Repository
’ e
’l:*" Sect. +
323 Modeling of Method P
Method odeling of Method Patterns
Engineer @
-~ v

Fig. 5.2 Abstracted Phase of Providing the Method Repository

5.2.1 Modeling of Method Elements

The Method Elements, which metamodel is shown in Figure 5.3, are atomic parts of the
development methods that have a name and a description. Moreover, those elements are
divided into tasks, phases, types, stakeholders, artifacts, tools, and situational factors.

The Tasks are the main activities that need to be performed during the BMD. Here, various
tasks on different granularity levels (e.g., Interview Customers, Create Business Model) can
be defined. Moreover, those tasks are refined through an ordered list of TaskSteps (e.g.,
Create Questionnaire, Organize Interviews) that provides guidance during the conduction of
the tasks.

The Phases are used to provide a phase-based composition of the development method.
For that, those phases should be comprehensive to support the whole process of BMD (e.g.,
Design or Validate the business model). Moreover, those phases are ordered to structure the
different development steps of the BMD (e.g., Design before Development). Section 6.2.2
explains the phase-based composition of the development methods.

The Types are used to create a pattern-based composition of the development method.
For that, they are used as guidance in the optional method patterns, see Section 5.2.3, to
connect them to building blocks or other patterns (e.g., discover, develop). Moreover, some
Types provide logic to those patterns in the composition stage. Here, patterns with the
InitialisationType (e.g., initialisation) serve as a starting point during the composition, and

building blocks and patterns with the GenericType (e.g., generic) can be used in every pattern

84 Knowledge Provision of Methods and Models

Method
Element

+name: String
+desc: String

4

. Situational
* * * 1 *l
Task 1. Type 1..*{Stakeholder| 1..* Artifact 1. Tool Factor
T A
next— J 4 ?
0..1 0.* I
0.1, TaskStep Initisalisa- Canvas Canvas OrderedFactor Unordered
““1+name: 1 tionType Artifact Tool +ascending Factor
String . Order:Boolean
order— H order—0..1
| 0.1 |_ ! | 2.*% 1.*
0.1 phase Generic ze(lja::r?\(/iz;s (! L Ordered Unordered
Type Model - Value Value
v
gel 4] Type 1 Stakeholder 1 Artifact 1 Tool Factorvalue
+name: - List — List —1 List List +name:
String String

Fig. 5.3 Metamodel of the Method Elements

regardless of the required type. Moreover, types are grouped within a TypeList (e.g., Design
with featureDesign and businessDesign). Section 6.2.2 explains the type-based composition
of the development methods.

The Stakeholders are producer (cf. Section 2.2.1) who are involved in the different
activities of the BMD. For that, it is possible to define external and internal stakeholders (e.g.,
Business Developer, Development Agency). Moreover, those stakeholders are grouped within
a StakeholderList (e.g., Company with Business Developer and Software Developer).

The Artifacts are work products that are created and modified during the BMD. For that,
it is possible to define internal or link external artifacts (e.g., Customer Information, Product
Prototype). Moreover, it is possible to create special CanvasArtifacts (e.g., Value Proposition
Canvas, Business Model Canvas) that are connected to the Canvas Models of the Canvas
Model Repository. The representation of the canvas models is shown in Section 5.3.3. Last,
all artifacts are grouped into an ArtifactList (e.g., Medium with Website and Landing Page).

The Tools are work units to support the performing of activities during the BMD. For
that, different external tools (e.g., AppAnnie, Figma) are used during different phases to

develop and modify artifacts. Moreover, a CanvasTool is used to directly create and modify

5.2 Provision of Method Repository 85

the canvas artifacts. The creation and modification of canvas artifacts is explained in Section
6.3.2. Last, all tools are grouped into ToolLists (e.g., Prototyping Tools with Adobe XD and
Figma).

The SituationalFactors are used to classify in which situation a building block or a
pattern should be applied. Here, those factors are divided into ones with ordinal scales and
ones with nominal values. OrderedFactors use ordinal scales with ascending or descending
to OrderedValues (e.g., low < medium < high for developmentSkills). UnorderedFactors use
nominal values as UnorderedValues for division (e.g., mass or niche for marketSize).

Out of those atomic Method Elements, we combine Method Building Blocks as compact

representations of development steps for the development method.

5.2.2 Modeling of Method Building Blocks

The Method Building Blocks, which metamodel is shown in Figure 5.4, are the development
steps for the development methods that have a name and a description. Each building block
corresponding to an author contains a single task, multiple lists of types or types, multiple
phases, multiple groups of stakeholders, artifacts and tools, and multiple factor pairs.

For the single Task, each building block is connected to the activity that should be
accomplished. Here, those tasks (e.g., Interview Customer) are refined into the manual task
steps (e.g., Create Questionnaire) or the canvas steps (e.g., Create Canvas). Moreover, each
building block is connected to an Author with information about a name, an organization, an
email, and a website.

For the multiple Phases, each building block is connected to the phases where the
development steps can be used (e.g., Design). With this, we support the selection of building
blocks during the phase-based composition of the development method.

For the multiple Types and TypeLists, each building block is connected to the types used
for the selection of building blocks during the development method’s type-based composition.
For that, the connection can be used with a single type (e.g., businessDesign) or a list of
types (e.g., design).

For the multiple StakeholderGroups, ArtifactGroups, and ToolGroups, each building
block is connected to the involved stakeholders, the developed artifacts, and used tools. Here,
the ArtifactGroup is refined into the InputArtifacts and the OutputArtifacts. Moreover, a
single group from each is selected as the default group (i.e., default) that can be changed
during the composition. Each group consists of multiple items (i.e., StakeholderGroupltem,
ArtifactGroupltem, ToolGroupltem), which can be mandatory or optional (i.e., required) for
the group. Moreover, those items are connected to a concrete element (i.e., Stakeholder,
Artifact, Tool) or an abstract element list (i.e., StakeholderList, ArtifactList, ToolList). While

86 Knowledge Provision of Methods and Models

L1 0..*4 Method 0 1. Autor
Task - "
0..x] BuildingBlock +name: String
? ———0..*4 +tname: String +organization: String
o —hext 0..*{ +desc: String 0. e +email: String
- 0.1 | T 1 T3 +website: String
TaskStep 0.1
0.* 1. 0.* 0| *
L] . o
Phase Stakeholder ¢ Artifact Tool FactorPair
Group Group Group
+default: +default: +default: ?
boolean boolean boolean
0.* i 0.*
InputArtifact] [OutputArtifac Ordered Unordered
Group Group Pair Pair
1 1 0.%0.* 0.%0.*
Stakeholder 1.+ Artifact Tool
Groupltem Groupltem Groupltem
0. * +required: 0 * +required: 0% +required:
" 1boolean " Tboolean " boolean
0.* 0.* 0.*
“XOR""I BN e = 1 XOR" |
0.% 0.1 XOR™5.1 1 1
Type Stakeholder Artifact Tool Ordered Unordered
List List List List Value Value
1 1
. Ordered Unordered
*
0.4 Type 0..13Stakeholder| L0..11 Artifact 0..1 Tool Factor Factor

Fig. 5.4 Metamodel of the Method Building Blocks

the concrete elements are fixed during the knowledge provision (e.g., Early Adopter as
Stakeholder), the abstract lists (e.g., list of Early Adopter, Potential Customer, Angel Investor)
allow the selection of a concrete element (e.g., Angel Investor as Stakeholder) during the
composition of the development method. This, in turn, allows us to reduce the manual
modeling effort in the method repository while keeping the method space flexible in a
targeted manner.

For the multiple FactorPairs, each building block is connected to multiple situational
factors and selected values. Those pairs can be an OrderedPair with an OrderedFactor and an
OrderedValue (e.g., developmentSkills:medium) or an UnorderedPair with an UnorderedValue
and an UnorderedFactor (e.g., marketSize:mass). Those factors, in turn, support guidance in

selecting the proper development steps during the composition.

5.2 Provision of Method Repository 87

To structure those Method Building Blocks, we support arranging them using the optional

combination of different Method Patterns for the pattern-based composition.

5.2.3 Modeling of Method Patterns

The optional Method Patterns, which metamodel is shown in Figure 5.5, are used for the
pattern-based arrangements of the development steps of the development methods that have a
name and a description. We based those patterns on the Business Process Model and Notation
(BPMN), which is used to model the behavior of business processes by providing a graphical
representation [Obj10]. To use the concept of BPMN, each pattern that corresponds to an
author contains multiple lists of types or types, a part of a BPMN process, and multiple factor

pairs.
Method
Author |1 0. Pattern 0..* 0...*{ FactorPair
0..*1 +name: String
0..*{ +desc: String |_4_|
1 Ordered Unordered
i Pair Pair
9 BPMNProcess [0.%0.* 0.%0.*
0.* 1 Part — — 1 1 —1 1
1 Ordered Unor(.:iered
. N .
EE 0'| 1. Value Value
0..* Activity
0.* Selection 1 1
+patternAllowed: Ordered Unordered
Type K *
P 0.* 0 Boolean Factor Factor
—— 1
1 1.* 1
Start End Task Exclusive Parallel Sequence
Event Event Activity Gateway Gateway Flow
Event Activity Gateway [0..* 2.* Flow
[\I7 I $
Flow L target 11 connecting
Object 1 source 1 Object
1 T
BPMN Element
+id:String

Fig. 5.5 Metamodel of the Method Patterns

88 Knowledge Provision of Methods and Models

For the multiple Types and TypeLists, each pattern, similar to the building blocks, is
connected to the types used for the method repository’s choices. For that, the connection
can be used with a single type (e.g., customerDiscovery) or a list of types (e.g., discovery).
Moreover, patterns with the InitalisationType (i.e., initialisation) are used as the start pattern
of the pattern-based composition, and patterns with the GenericType can be inserted into
activities of other patterns regardless of the type.

The BPMNProcessParts, see Figure 5.6 for the visual notation of BPMN, consist of the
flow objects, connecting objects, swimlanes, and artifacts. Flow Objects can have the type
of events, activities, and gateways. Events denote the happening by a certain trigger. Here,
the Start Event is triggered at the beginning of the process, and the End Event is triggered
at the ending of a process. Activities denote some work that needs to be accomplished.
Here, Task Activity is an atomic activity that needs to be done. Gateways represent different
options for the path depending on certain conditions. Here, the Exclusive Gateways follow a
single path in the process, while the Parallel Gateway follows all paths in the process. The
Connecting Objects are used to connect the different flow objects with each other. Here, the
Sequence Flow shows an ordering of the connecting objects. While we summarize here the
essential elements used within the thesis, the complete list of elements can be discovered in
[Obj10]. Each pattern contains a subprocess using a subset of the BPMN Elements. Those
elements can be divided into FlowObjects that are connected using ConnectingObjects.
As connections, we use SequenceFlows to guide the process. As flows, we use a single
StartEvent, multiple EndEvents, multiple TaskActivities, multiple ExclusiveGateways, and
multiple ParallelGateways. While most of the flows are directly used in the process part,
the activities are wrapped through an ActivitySelection. Here, the selection is connected
to multiple TypeLists and Types in which corresponding building blocks could be inserted
into the activity. Moreover, the activities could also allow the usage of other patterns (i.e.,
patternAllowed).

An example of pattern visualization is shown in Figure 5.6. Here, we have the Init
Development Pattern with a sequence of Method Building Blocks or Method Patterns with
the Types of discover, develop, and validate. Moreover, we have the Validation Cycle Pattern
with the loop on the Types of develop and validate.

For the multiple FactorPairs, each pattern, similar to the building blocks, is connected to
multiple situational factors and selected values. Those pairs can be an OrderedPair with an
OrderedFactor and an OrderedValue (e.g., businessModelingSkills:low) or an UnorderedPair
with an UnorderedValue and an UnorderedFactor (e.g., marketType:b2c). Those pairs are

used to guide the pattern selection during the type-based composition.

5.3 Provision of Canvas Model Repository 89

O X
Start Start
c . c
I <<discover>> 5
g * s
= o
2 2
%_ <<develop>> O <<validate>> <<develop>>
= c
o S
® ¢ 5 A
o]
= - ©
£ <<validate>> =
O<-J O<—<x><
End End
Legend:
O Start End) Task ® Exclusive Parallel __,, Sequence
Event Event Activity Gateway Gateway Flow

Fig. 5.6 Exemplary Visualisation of the Method Patterns

5.3 Provision of Canvas Model Repository

The Canvas Model Repository contains the knowledge needed to compose the canvas artifacts
to support the BMD. For that, the repository allows the utilization and storage of knowledge
that could be gathered from taxonomies of possible business models (e.g., [HZFN16, AIBO7])
or patterns/examples of successful business models (e.g., [RHTK17, GFC14]). The ab-
stracted phase for providing the Model Repository can be seen in Figure 5.7. Here, in the
beginning, the Meta-Method Engineer needs to specify the Canvas Model Metamodel once
for the repository. Based on that, different Domain Experts explain their Model Knowledge to
the Method Engineer. The Method Engineer, in turn, models the Canvas Model Repository
with the different method fragments of the Canvas Elements, the Canvas Building Blocks,
and the Canvas Models. The output of this step is the Filled Canvas Model Repository with
expert knowledge.

In this section, we show the utilization of the atomic parts of the model fragments with
our created metamodels. For that, we first explain the atomic parts of the models in the form
of Canvas Elements (5.3.1). Based on that, we show the hierarchical ordering of different
elements to Canvas Building Blocks (5.3.2). Last, we represent those building blocks by
using Canvas Models (5.3.3).

90

Knowledge Provision of Methods and Models

Steps

Outputs

Specification of Canvas Model Metamodel

Specified Canvas =
Model Metamodel

Roles
- .- '
Meta-Method
Engineer iy

Derivation of Model Knowledge

Unformalized
Model Knowledge

Modeling of Canvas Model Repository

Modeling of
Canvas
Building Blocks

i /
II
Domain K Modeling of
Expert /! Canvas
/ Elements
II - "
U -
r'l’ - Sect.
5.3.3

Method
Engineer

@<

v

Creation of Canvas Models

v

Filled Canvas
Model Repository

Fig. 5.7 Abstracted Phase of Providing the Canvas Model Repository

5.3.1 Modeling of Canvas Elements

The Canvas Elements, which metamodel is shown in Figure 5.8, are atomic parts of the

canvas artifacts to support the development method with a name and a description. For that,

they are divided into items, relationships, application domains, and instances.

Canvas
Element

+name: String
+desc: String

§

Item Relationship Appllcat_lon Instance
Domain
[| 4 | 1 IA
Requires Excludes Supports Hurts Pattern Organisation
Relationship Relationship Relationship Relationship Instance Instance

Fig. 5.8 Metamodel of the Canvas Elements

The Items are the different business model decisions that are placed as sticky notes on

the canvas models. Here, different decisions (e.g., Advertisements, Subscription) on different

refinement levels (e.g., Monthly Subscription, Yearly Subscription) exist.

5.3 Provision of Canvas Model Repository 91

The ApplicationDomains are part of the context in which the knowledge of the modeling
artifact should be applied. Here, different, partially overlapping, domains (e.g., Mobile App,
ToDo App) can exist.

The Relationships are dependencies that can occur between two different items. Here,
those dependencies show influences of one item to another (e.g., Native App needs Store Li-
cense). Moreover, they are predefined Relationships that support the development. The usage
of relationships in the Canvas Module is shown in Section 7.3.1. Here, the RequiresRelation-
ship shows a strong dependency from one item to another (e.g., a Business User requires
High Privacy), while the ExcludesRelationship shows an opposing dependency between two
items (e.g., High Privacy excludes Advertisements). Moreover, the SupportsRelationship
shows a positive influence on one item to another (e.g., Content Curation supports High
Quality), while the HurtsRelationship shows a negative influence (e.g., Mass-Market hurts
High Quality).

The Instances provide a selection of a subset of the items for a specific annotation.
Here, those selections show a grouping for a particular use case (e.g., Recommendations).
Moreover, they are predefined Instances that support the development. The usage of in-
stances in the Canvas Module is shown in Section 7.3.1. Here, the Patternilnstances refer
to subsets of items that are often used together (e.g., Items of Razer-Blade Pattern), while
the OrganisationInstances map subsets of items to an existing organization (e.g., [fems of
Todoist Organization).

Out of those atomic Canvas Elements, we combine the Canvas Building Blocks as a
compact representation of the underlying information for the Canvas Artifacts. Those special

artifacts are described in Section 5.2.1.

5.3.2 Modeling of Canvas Building Blocks

The Canvas Building Blocks, which metamodel is shown in Figure 5.9, are the hierarchical
ordering of the canvas elements that have a name and a description. We based this building
block on the concept of feature models (FMs), which are used for modeling the structure
of different software variants within Software Product Lines (SPLs) with a common graph-
ical representation [ABKS13]. To transfer the concept of FMs, each building block that
corresponds to an author contains multiple application domains, multiple items as trees, and
multiple selections of relationships and instances.

For the multiple ApplicationDomains, each building block is connected to the domains
in which the knowledge can be used. Here, those application domains (e.g., Mobile App)
might be partially overlapping to each other (e.g., Streaming Apps and Messenger Apps are
part of Mobile App).

92 Knowledge Provision of Methods and Models

Canvas
BuildingBlock
0..% 9 WX 14 Author
+name: String
1+desc: String
0..*
|* N
o 1 0.* refinement o s <<enum>>
L ItemTree 0 1J - ltemType
F i L1—source—1. -
Rglaltlo?_shlp +type: ItemType ..*=0..% ISnsItartl_ce Mandatory
election -1 —target—14 +relationship: election Optional
0 ItemRelationship 0..*
0+ <<enum>>
l * l ItemRelationship
1"*
None
Application . . XOR
Domain Relationship Item Instance o

Fig. 5.9 Metamodel of the Canvas Building Blocks

The ItemTrees, see Figure 5.10 for the visual notation, consists of all possible combi-
nations stored in a single hierarchical FS of features from which valid combinations are
selected. Features can be Mandatory or Optional for a valid selection. Moreover, there can
be Or-relationships, where at least one sub-feature needs to be selected, or Xor-relationships,
where exactly one sub-feature needs to be selected. To refine the valid selections, the
cross-tree relationships of requires or can be used. Each item tree presents the business
decisions on the Canvas Models. Here, every tree item is used as a wrapper for an item of the
Canvas Elements (e.g., Subscription). Those items can be refined (i.e., refinement) using the
hierarchical structuring of the tree (e.g., Subscription into Monthly Subscription and Yearly
Subscription). Moreover, like in FMs, items have a Mandatory (i.e., need to be selected)
or Optional (i.e., can be selected) type. Moreover, the items have None (i.e., just a simple
parent-child relationship), an XOR (i.e., just a single child is selected), or an OR (i.e., at least
one child is selected) relationship to their children.

For the multiple RelationshipSelections and InstanceSelections, each building block is
connected to wrappers that link the item trees to the canvas elements. Here, each relationship
selection has a starting (i.e., source) as well as an ending (i.e., farget) connection and is
linked to a relationship item (e.g., requires). In contrast to FMs, we also add additional
supporting and hurting dependencies to support the guidance with weaker recommendations.
Moreover, each instance selection has connections to a subset of items and is linked to an
instance item (e.g., pattern). Here, both selections are used to support the BMD with the
Canvas Module, as explained in Section 7.3.1.

5.3 Provision of Canvas Model Repository 93

Business Model
Customer Segments Value Propositions %
()/\ m g
=
©
14
Private User Professional User Save Privacy Free for All Collaborate With Others
i I i1 i : '
'-----requires----- ! 1-—-—excludes---1 i
femme- hUMS == mm e e
Legend: .
@— viandatory <& - -fequires- - - - Requiring Dependency
Feature (O— optional < - excludes - = Excluding Dependency
A o <& - SUpPOrts- — - = gypporting Dependency
/A Xor <& - - hurts. - - = Hurting Dependency

Fig. 5.10 Exemplary Visualisation of the Canvas Building Block

An example of the item tree and relationship visualization is shown in Figure 5.10. Here,
we have the Business Model, which is divided to the Customer Segments and the Value
Propositions. Here, both items are refined in the hierarchy (e.g., Customer Segments to
Professional User). Moreover, different relationships (e.g., Professional User requires Save
Privacy) exist.

In order to visualize the Canvas Building Blocks, we use the representations of Canvas

Models as geometric modeling language.

5.3.3 Modeling of Canvas Models

The Canvas Models, which metamodel is shown in Figure 5.11, are based on a geometric-
based BMML. Each canvas is a geometric visual representation of the Canvas Artifacts, as
explained in Section 5.2.1, that has a name and a description. For that, each model that
corresponds to an author contains multiple relationships, a table of multiple columns and
rows, and multiple cells.

For the multiple Relationships, each model is connected to the relationships that can
be used between the inserted items. Here, relationships can be predefined (e.g., requires)
so that they can be used by the Canvas Module as well as custom support modules of the
development support engineers.

For the multiple CanvasRows and CanvasColumns, each model is connected to a grid

consisting of rows and columns. For that, CanvasRows define an ordering of the rows (i.e.,

94 Knowledge Provision of Methods and Models

Canvas

: . Model
Relationship 0. . *————0..* ode -0..* 14 Author

+name: String
+desc: String

1 1

next N . next
[0.1 1.* 1.* 0.1 —|
0.1{ cCanvasRow [1—1..*] CanvasColumn }0..11 —0.*{ Questions

1 +question: String
1
X 0.5
CanvasCell |« SpacerCell Example
+rowspan: . +example: String
Intelger ltemCell [
+colspan:
Integer +name: String 0..*—0..1 ItemTree

Fig. 5.11 Metamodel of the Canvas Models

next) that are used by the canvas. Each of those rows is connected to multiple CanvasColumns
as an ordering of the columns (i.e., next) where cells can be defined.

For the multiple CanvasCells, each column is connected to a cell for representation.
The visual notation for the BMC is shown in Section 2.3.1. Here, each cell can span over
multiple rows (i.e., rowspan) or columns (i.e., colspan). Moreover, every cell is divided
into an ItemCell for inserting the items within the cell and a SpacerCell for supporting the
structuring with an empty cell. Each cell for items has a name (e.g., Customer Segments)
and is connected to multiple Questions (e.g., For whom are we creating value? Who are our
most important customers?) and Examples (e.g., Mass Market, Niche Market, Segmented,
Diversified, Multi-sided Platform). Those examples and questions provide guidance for the
stakeholders to fill out the canvas. Last, every cell might be connected to an ItemTree from a
canvas building block with items that can be inserted into the specific cell.

An example of the model for the Business Model Canvas, as visualized in Figure 5.1,
is shown in Figure 5.12. Here, we have an instance of the CanvasModel that is connected
to the RequiresRelationship, the ExcludesRelationship, the SupportsRelationship, and the
HurtsRelationship. Moreover, we have the three CanvasRows to specify the grid rows of the
canvas. Together with the CanvasColumns, we specify placeholders that are filled with the
nine /temCells for the nine building blocks. Here, for example, the cell for the Key Partners
has a rowspan of 2 to model the double height in contrast to the Key Activities with rowspan
of 1. For simplification, we have not added the different Questions and Examples for each
ItemCell within the model.

5.4 Summary

95

:RequiresRelationship

name= "requires"

desc="..."

:ExcludesRelationship

:CanvasModel

name= "Business Model

:SupportsRelationship

name= "supports"

Canvas"
desc="..."

name= "excludes"
desc="..."

:CanvasRow

desc="..."

:HurtsRelationship

name= "hurts"
desc="..."

:CanvasColumn

:CanvasColumn

:CanvasColumn

:CanvasColumn

:CanvasColumn

ItemCell ItemCell ItemCell ItemCell ItemCell
name = "Key name = "Key name = "Value name = "Custo- name = "Custo-
Partners" Activities" Propositions" mer Relationsh." | |mer Segments"
rowspan= 2 rowspan= 1 rowspan= 2 rowspan= 1 rowspan= 2
colspan= 2 colspan= 2 colspan= 2 colspan= 2 colspan= 2

L :CanvasRow :CanvasRow

:CanvasColumn

:CanvasColumn

ItemCell ItemCell
name = "Key name =
Resources" "Channels"
rowspan= 1 rowspan= 1
colspan= 2 colspan= 2

:CanvasColumn

:CanvasColumn

ItemCell ItemCell
name = "Cost name = "Reven-
Structure" ue Streams"
rowspan= 1 rowspan= 1
colspan=5 colspan=5

Fig. 5.12 Exemplary Model of the Business Model Canvas

5.4

Summary

Within this chapter, we have provided the conceptual solution for our first stage on knowledge

provision of methods and models. For that, we have developed a method repository to

structure the development method and a canvas repository to support the development with

canvas modeling artifacts. For both repositories, we have shown the underlying metamodels

together with exemplary instantiations.

96 Knowledge Provision of Methods and Models

For the Method Repository, we have defined the method elements, the method building
blocks, and the optional method patterns. The method elements are the atomic parts of the
method consisting of the possible situational factors, the defined types, the provided phases,
the involved stakeholders, the accomplished tasks, the developed artifacts, and the used tools.
Those elements are connected into method building blocks that combine a single task with
multiple types, phases, stakeholders, tools, artifacts, and situational factors. Those building
blocks are optionally arranged through method patterns that use multiple situational factors
and types together with a BPMN process part.

For the Canvas Model Repository, we have defined the canvas elements, the canvas
building blocks, and the canvas models. The canvas elements are the atomic parts of the
modeling artifacts consisting of the applied application domains, the used items, their possible
relationships, and exemplary instances. The elements are connected into canvas building
blocks that have multiple application domains and a hierarchical ordering of the items
together with their relationships and subsets of instances. The building blocks are represented
through canvas models that combine multiple relationships together with a grid of the canvas
model.

Based on both repositories, we will show the second stage of composition and enactment
of development methods for our approach in the next chapter. Here, we will show the com-
position of the development method out of the method repository and the canvas artifacts out
of the canvas model repository. Moreover, we will present the enactment of the development
method to modify the canvas artifacts during the conduction of the development steps.

Chapter 6

Composition and Enactment of
Development Methods

In the previous chapter, we showed the first stage of our approach by providing development
knowledge in the form of a method repository and a canvas model repository. Based on
that, this chapter shows the second stage of our solution concept by composing development
methods out of those repositories and enacting them. For that, we first refine our SRs and
give an overview of the stage (6.1). Based on that, we describe the composition (6.2) and the
enactment of the development method (6.3). Finally, we summarize our procedure within the
stage (6.4).

6.1 Requirements and Overview

The composition and enactment of development methods is the second stage of our approach,
which aims to construct and execute a BMDM to develop a business model for a given
context. For that, we refine the SRs, which were derived in Section 4.1.1, of SR 4.: Context
Consideration, SR 5: Development Method Construction and SR 6: Development Method
Execution into detailed Development Method Requirements (DMR) together with providing
an overview of both steps to do.

The Composition of Development Methods is used to compose the methods out of the
method repository based on the situational factors of the organization and connect the canvas
artifacts within the method to canvas models of the canvas model repository based on the
application domains of the service. Here, the approach needs the possibility to characterize
that context together with guidance to construct the method out of the method building blocks.

Moreover, the connection of canvas artifacts to multiple canvas building blocks is needed to

98 Composition and Enactment of Development Methods

support the usage of knowledge from various domain experts. During the whole construction
and connection, the quality of the method needs to be checked. Moreover, to allow the unified
usage of different model knowledge, those knowledge needs to be consolidated, and different
positions between experts need to be detected. Therefore, our DMRs are:

* DMR 1: Characterization of Context: The solution should provide the characteri-
zation of the context in the form of the situational factors of the organization and the

application domains of the service.

* DMR 2: Guidance in Method Construction: The solution should provide guidance

in the construction of the method based on defined situational factors.

* DMR 3: Quality Checking during Method Construction: The solution should

provide a quality checking of the method during the whole method construction.

* DMR 4: Connection of Model Knowledge: The solution should provide connections
between the canvas artifacts of the constructed method and the canvas models based

on the defined application domains.

* DMR 5: Consolidation during Model Construction: The solution should provide
the consolidation of canvas model knowledge with the ability to detect conflicts during
the consolidation process.

The Enactment of Development Methods is used to create executable development pro-
cesses out of the composed development methods and conduct the corresponding develop-
ment steps to develop (canvas) artifacts. Here, the approach needs a lightweight execution
engine that executes the development process to provide management over the whole process.
Moreover, guidance in the development steps based on the knowledge of the method and the
model repository, together with the collaborative development of (canvas-) artifacts, should
be provided. Last, the approach needs to allow changes in the context due to uncertainties in
the BMD. Therefore, our DMRs are:

* DMR 6: Execution of Development Method: The solution should provide a lightweight
execution engine to execute the composed development method as a development pro-

CESS.

* DMR 7: Management of Development Process: The solution should provide man-
agement of the whole development process, including the conducted development
steps and the developed artifacts.

6.1 Requirements and Overview 99

* DMR 8: Guidance in Development Steps: The solution should provide guidance for
the business developer in the development steps based on the knowledge of the method
and the model repository.

* DMR 9: Collaborative Development of Artifacts: The solution should provide the
collaborative development of the artifacts between the business developer and different
stakeholders within the development steps.

* DMR 10: Change of Context: The solution should provide the change of the context
in the form of situational factors of the organization and the application domains of the

service.
Situational Factors: Application Domains:
Sect. customerValidation: low Mobile Apps
6.2
_/ Development Method Canvas Models
o Interview Create Value -
c — P 1
2 Customer Proposition i
‘@ i
o 1
Q. 1
g :
o r -
o ®<_J><_ Validate Create
Business Model Business Model
<Sect. \
o Development Process (Kanban Board) (Canvas) Artifacts
ToDo In Progress Done .
g Customer Business Model Canvas
'a:'; Validate Analyze Interview Information
£ Business Model Target Group Customer
3l
‘u .
S Create Create Value Find Target [|f |
Business Model Proposition Group | || |:---
1 1
| o o o o o === = - He e e e e cccccccccccccccccc e 1
Legend - - -
Predefined Method Flexible Method Flexible Canvas
Building Block Building Block Model Element

Fig. 6.1 Overview of the Composition and Enactment of Development Methods

Out of the DMRs of the Composition of Development Methods and the Enactment of
Development Methods, we develop an overview of the second stage, as shown in Figure 6.1.
The Composition of Development Methods is explained in Section 6.2. Here, the context in

which the business model should be developed is defined (e.g., customerValidation: low), the

100 Composition and Enactment of Development Methods

development method is composed (e.g., Interview Customer before Create Value Proposition),
and the canvas models are connected (e.g., Create Business Model to BMC). The Enactment
of Development Methods is provided in Section 6.3. Here, the steps of the development
method are executed (e.g., Interview Customer), the (canvas-) artifacts are created (e.g.,
Business Model Canvas for Create Business Model), and the context might be changed (e.g.,

customerValidation to medium). In the following, we present the details of both phases.

6.2 Composition of Development Methods

The development method composition is needed to construct a development method out of
the method repository and the canvas model repository based on a predefined context of
the situation of the organization and the application domains of the service. With this, we
ensure to provide a development method that best fits the needs of the business developer.
The abstracted phase for the Composition of the Development Methods is presented in Figure
6.2. Here, in the beginning, the Method Engineer defines the Context Factors and Additional
Construction Constraints by interviewing the Business Developer. Out of that, he composed
the development method by constructing the method based on situational factors and checking
its quality. Last, he connects the composed models by consolidating the models based on the
application domains and checking their quality. The output of this phase is the Composed
Development Method with Connected Models.

Roles Steps Outputs
Definition of Context ~ pe---a-- Context Factors A
Additional Con-
Business struction Contraints
Developer ," 2. L e .
P J 8 2_9 Situation-specific Composition of Methods
. Contruction of Quality Checkof | |___ | Composed Dy
/ ™ the Method the Method Development
Method *z====""" > e
Engineer \\ *
. [Sect.
A G'Z_y Domain-specific Composition of Models
. Composed
A\ Consolidation of Quality Checkof | | ______| Development
S Models Models Method with
@4_ * Connected Models

Fig. 6.2 Abstracted Phase of Composition of Development Methods

6.2 Composition of Development Methods 101

In this section, we first show the definition of the context out of both repositories (6.2.1).
Based on that, we show the situation-specific composition of different method building blocks
and, optionally, method patterns to a method (6.2.2). Last, we show the domain-specific
composition of different canvas building blocks to a model (6.2.3).

6.2.1 Definition of Context

Before the Method Engineer starts with the construction of the method and the connection
of the models, he needs to receive the context for which the business model should be
developed from the Business Developer. For that, the Method Engineer conducts an in-depth
interview with the Business Developer to clarify the purpose and set the potential scope
of the development. Here, the Method Engineer might question already conducted tasks
towards the BMD (e.g., already completed competitor analysis or financial calculations)
and corresponding created artifacts (e.g., existing filled-out canvases or created mockups).
Moreover, he might ask for current and planned tasks (e.g., current tests with customers or
future development of prototypes) and artifacts (e.g., future landing page or prototype). By
considering both the past and the future, he increases the chance of composing a development
method that best fits the Business Developer’s purpose. Out of the interview results, the
Method Engineer derives the explicit context factors and additional construction constraints
(cf. composition of situational development methods in Section 2.2.2).

The Context Factors are split up into the Situational Factors of the organization and the
Application Domains of the service. The Situational Factors are used to identify the most
suitable development method during the construction of the methods. The list of possible
factors is derived from the specific Method Elements in the Method Repository, as explained
in Section 5.2.1. Here, the Method Engineer selects a fitting subset for the organization by
comparing their descriptions from the domain experts with the interview results. After that,
he chooses an appropriate value for each identified factor. The Application Domains are used
to identify the most related modeling artifacts during the construction of the models. The
list of possible domains is derived from the specific Canvas Elements in the Canvas Model
Repository, as explained in Section 5.3.1. Here, the Method Engineer selects a suitable subset
that fits best to the developed service by comparing the existing application domains with
the interview results. For example, as shown in Figure 6.3, the Method Engineer selects
the Situational Factors of customerValidation: low and marketSize:mass together with the
Application Domains of Mobile App and ToDo App based on the described situation of the
Business Developer of the mobile to-do app.

The Additional Construction Constraints contain information about the organization
and the service that can not be directly modeled as factors and domains but influence

102

Composition and Enactment of Development Methods

:Context

:OrderedFactor

:UnorderedFactor

:ApplicationDomain

+name: "customer

+name: "market

+name: "Mobile

:ApplicationDomain

+name: "ToDo App"

+name: "low"

+name: "mass"

Validation" Size" App" +desc: "..."
+desc: "..." +desc: "..." +desc: "..."
+ascending: false

:OrderedValue :UnorderedValue

Fig. 6.3 Exemplary Definition of the Context

the development method. That information is manually collected and used within the
construction of the methods and the models. For the methods, that information can be divided
into already conducted steps in the past, current conductions in the present, and planned steps
in the future, together with their existing or planned information about the created artifacts,
involved stakeholders, or used tools. This information, in turn, might have an impact on the
selected Method Building Blocks or their arrangement. For example, the Business Developer
might have already conducted a competitor analysis in the past or planned to use a certain
prototyping tool in the future. For the models, that information can be divided into business
decisions in the past, the current decision in the present, or planned future decisions. For
example, the Business Developer might have already tried out an advertisement model in the
past or planned to integrate collaboration features into his service. By considering both, the
tailoring of the development method is improved.

Based on the context factors and the additional construction constraints, the Method
Engineer can start with the situation-specific composition of the method.

6.2.2 Situation-specific Composition of Methods

For the situation-specific composition of the methods, the provided Situational Factors with
chosen values and additional construction constraints are used to select the Method Building
Blocks and optional Method Patterns of the Method Repository. The Situational Factors
are used as a recommendation mechanism by automatically ordering the useable building
blocks (and patterns) according to the weighted distance between the required factors of
the organization and provided factors of the building blocks and patterns within the Method
Repository. Here, the weighted distance is calculated by summing up the distance of each

6.2 Composition of Development Methods 103

factor value and dividing them by the number of factors. While nominal values for factors
need a concrete matching (e.g., mass vs. niche for marketType has distance 1), ordinal
values are weighted according to the scale (e.g., provided developmentSkills is medium
and required developmentSkills was high has distance 0.5 if developmentSkills can have
values of low, medium, high). Moreover, matching values in the including direction (e.g.,
provided developmentSkills is medium and needed developmentSkills was low has distance
0) are automatically included to cover Method Building Blocks (and Method Patterns) that
outperform the defined situation. This recommendation mechanism ensures the consideration
of the best fitting building blocks (and patterns) according to the provided knowledge of the
domain experts in the Method Repository. Nevertheless, they have to be cross-checked with
the additional construction constraints to fill also those needs. For that, the Method Engineer
manually needs to control the fulfillment of all additional constraints while selecting patterns
and building blocks. Based on that weighted orderings and additional influencing factors, the
Method Engineer has to construct the method and check the quality.

For the Construction of the Method, we support a pattern-based or phase-based con-
struction. For the Pattern-based Construction of the Method, the Method Engineer starts by
choosing a Method Pattern with an InitialisationType (e.g., Init Development) ordered by
the matched Situational Factors from the Method Repository. Next, he fills each activity
with a Type inside that pattern with a Method Building Block (e.g., Interview Customer for
discover) or a Method Pattern (e.g., Validation Cycle for validate) of the needed Type or the
GenericType. Those patterns and building blocks with the needed Type are again ordered
as a list through their weighted matching between their Situational Factors and the factors
of the organization. With this pattern-based construction, we provide the Method Engineer
flexibility in his choices by ensuring control in their integration. This process is repeated until
all activities in the method are filled out with building blocks or patterns. To allow a continu-
ous expansion of the method, extending the first pattern by another pattern of Initialisation
Type is possible (e.g., Init Validation after Init Development). An exemplary pattern-based
construction of a method can be seen in Figure 6.4. Here, the Init Development is chosen as
the first pattern. Based on that, the activity of discover is filled with the building block of
Interview Customer and the activity of validate is filled with the pattern of Validation Cycle.
For the Phase-based Construction of the Method, the Method Engineer starts by selecting the
preordered Phases he wants to support from the Method Elements of the Method Repository.
After that, he selects the used Method Building Blocks as activities for each phase. Those
building blocks with the needed Phase are ordered as a list through their weighted matching
between their Situational Factors and the factors of the organization. After all building

blocks have been chosen, the Method Engineer provides an execution order of those steps.

104 Composition and Enactment of Development Methods

For that, each building block is assigned a unique ascending number to define the sequences
through the steps of the phases. With this phase-based construction, we provide the Method
Engineer simplicity in the construction of the method. After the whole method has been
constructed using patterns or phases, the abstract information from the building blocks needs
to be initialized (cf. the method building block in Section 5.2.2). For that, single items of the
groups for the stakeholders, tools, and artifacts inside the Method Building Blocks need to
be selected (e.g., choose between the Business Model Canvas or Business Information as
Artifact). Moreover, during the composition, concrete elements from the abstract lists need
to be selected (e.g., selecting specific prototyping software as a Tool). With this, we ensure

the maximal customization of the method for the Business Developer.

Filling an Activity with a Filling an Activity with a
Method Building Block Method Pattern

<<generic>> Validation Cycle

3

<<validate>>

1
<<init>> Init Development :
1

O <<discover>> <<develop>> <<validate>> @

Fig. 6.4 Exemplary Pattern-based Construction of Methods

<<discover>>
Interview Customer

A

For the Quality Check of the Method, the Method Engineer receives support to detect
warnings and errors during the method construction. With this thesis, we detect the following

warning and errors with the partial support of existing algorithms:

* Low Value Warning: The warning states that an ordinal factor of a used building block
or pattern has a lower value than the requested one during the definition of the context.
This should be controlled as the lower building block or pattern could harm the BMD.
We identify those warnings by automatically checking each building block and pattern
against the chosen ordinal factors.

* Invalid Value Warning: The warning states that a nominal factor of a used building
block or pattern has a different value than the requested one during the definition of

the context. This should be controlled as the wrong building block or pattern could

6.2 Composition of Development Methods 105

harm the BMD. We identify those warnings by automatically checking each building

block and pattern against the chosen nominal factors.

* Unreachable Path Warning: This warning states that some parts of the constructed
method are not reachable during the enactment. This should be controlled as it is
very likely that this behavior was created accidentally by nesting different patterns.
We identify those warnings by automatically checking a complete traversal of the
underlying graph with an existing algorithm.

» Missing Activity Error: This error states that an activity within a pattern has not been
filled with a building block. This needs to be resolved as empty activities can not be
processed during the enactment. We identify those errors by automatically checking

each activity of the patterns for missing building blocks.

* Incomplete Activity Error: This error states that within an activity, not all items have
been selected. This needs to be resolved as incomplete activities can not be processed
during the enactment. We identify those errors by automatically checking each building

block for the initialization of the elements.

» Missing Artifact Error: This error states that within an activity, an input artifact is used
that is missing as an output artifact in a previous activity. This needs to be resolved
as an activity without all input artifacts can not be processed during the enactment.
We identify those errors by automatically back-propagating input artifacts towards the
phases or nested patterns to match with output artifacts with an existing algorithm.

In order to ensure the quality of the method, the Method Engineer has to resolve the
errors and control the warnings manually. After the quality has been checked, the Method
Engineer can start the domain-specific composition of the used canvas models for the canvas

artifacts within the constructed method.

6.2.3 Domain-specific Composition of Models

For the domain-specific composition of the models, the selected Application Domains and
additional construction constraints are used to select the specific Canvas Building Blocks
of the Canvas Model Repository. The Application Domains are used as a recommendation
mechanism by automatically selecting corresponding building blocks. Iteratively, the Method
Engineer selects every Method Building Block that is used within an activity of the composed
method with at least one CanvasArtifact as an OutputArtifact (e.g., Create Business Model

with the Business Model Canvas). For each connected Canvas Model (e.g., Business Model

106 Composition and Enactment of Development Methods

Canvas), the Method Engineer selects one or multiple Canvas Building Blocks (e.g., Mobile
App) that can be used to support the filling out of the canvas models during the enactment.
After that, the Method Engineer manually can remove elements of the building blocks
by considering the additional construction constraints. This, in turn, reduces the model
knowledge that Business Developer needs to consider during the enactment. If multiple
Canvas Building Blocks are selected, those knowledge needs to be consolidated and the
quality needs to be checked.

For the Consolidation of Models, we provide a feature-based or taxonomy-based con-
solidation. For the Feature-based Consolidation, our approach creates an empty reference
Canvas Building Block as the starting point and includes all knowledge from the first domain-
specific Canvas Building Block (e.g., Mobile App) that should be consolidated. Instead of
directly adding those Canvas Elements to the reference building block, the approach uses
virtual links between those models. This, in turn, simplifies the reaction to changing models
over time. At this point, the Method Engineer is able to remove not needed elements. Next,
the approach consolidates the other selected building blocks with the reference one. For that,
the approach automatically consolidates all /tems (Customer) with the same name as links.
Moreover, also all Relationships (e.g., excludes) that exist in the building block to consolidate
are linked automatically if the items are added (cf. the canvas building block in Section 5.3.2).
Moreover, due to the different expertise of the experts also, different names and hierarchies
of items can exist. Those are handled manually by removing items and adding links between
the items. An example of the consolidation of models can be seen in Figure 6.5. Here, the
Reference Canvas Building Block already contains knowledge from the first building block to
which the Mobile App Canvas Building Block is consolidated. Here, both items of Customer
Segments are automatically consolidated using links. To consolidate also items lower in the
hierarchy, the items of One-Sided Market and Two-Sided Market are removed. Moreover,
the Private User and Professional User are manually linked to the User and Supplier. For
Taxonomy-based Consolidation, our approach works similarly to feature-based consolidation.
However, each item is modeled as optional, and no relationships between the different items
exist. This, in turn, reduces the guidance level during the enactment but also the modeling
complexity and quality checks during the composition.

For the Quality Check of Models, the Method Engineer needs to receive support to
detect conflicts during the model consolidation. Within this thesis, we detect the following
conflicts by continuously analyzing the consolidation steps of the reference building block
and the building block to consolidate:

 Item Conflict: The conflict occurs if two consolidated items have a different type

or relationship. We automatically detect those conflicts by comparing the type and

6.2 Composition of Development Methods 107

Reference Mobile App
Canvas Building Block Canvas Building Block
Automated (I) é)
Consolidation
Customer Segments —— —— —Pp| Customer Segments
of Knowledge | = I_ | — : |
Private Professional I_ One-Sided _I I_ Two-Sided _I
User User Market Market
T T - M —
Manual . |
Consolidation L ->| Supplier | | User |
of Knowledge .
L o A
Legend: |: - :l Removed Automatic Manual
—_— . €+ — .. =
Element | g oment T+ Link Link

Fig. 6.5 Exemplary Consolidation of Models

relationship of both consolidated items. Here, the engineer needs to choose the existing
type/relationship from the reference building block or selects the new type/relationship

from the consolidated one.

* Cross-Relationship Conflict: The conflict occurs if two consolidated items have wise-
versa relationships with different recommendations. This can be required vs. excludes
or supports vs. hurts. We automatically detect those conflicts by comparing the cross-
tree relationships of both consolidated items. Here, the engineer needs to decide on

one of the recommendations.

* Cross-Hierarchy Conflicts: The conflict occurs if combinations of cross-tree relation-
ships lead to unreachable items within the hierarchy. We automatically detect those
conflicts by creating a minimal spanning tree for each item using an existing algorithm.

Here, the engineer needs to remove conflicting cross-tree relationships or items.

During the consolidation process, the Method Engineer has to decide how he wants to
resolve the conflicts manually. His choices are added as virtual links through the reference
building block. After all canvas building blocks have been consolidated, the Business

Developer can start the enactment of the composed development method.

108 Composition and Enactment of Development Methods

6.3 Enactment of Development Methods

The development method enactment is needed to execute the composed development method
and allow collaboration between different stakeholders during the conduction of development
steps. With this, we ensure to guide the business developer and the other stakeholders. The
abstracted phase for the Enactment of the Development Methods is presented in Figure 6.6. In
the beginning, the Business Developer selects a development method and the corresponding
development steps. Based on that, he executes those steps and creates (canvas-) artifacts in
collaboration with Other Stakeholders. Moreover, during the execution of the development
process, changes in the context might lead to a change in the methods or the models performed
by the Method Engineer. The outputs of this phase are the Created (Canvas-) Artifacts,

including the business model.

Roles Steps Outputs
Sect.
6.?:y i
Execution of Development Process ~ [------] Executed
- - Development
.—> Selection of Selection of -— Process
| aiaiaiaiinle 15| Development [5| Development
Business Method Step
v
Developer Y *
Vo
\‘ \\
\ AN Seth
v\ \6.3.2 .
Voo Development of (Canvas-) Artifacts
\ Ay
\} AY
\ “ Execution of Creationof | |____|]]] Created (Canvas-)
----- -\‘- --%1p| Development [—p» (Canvas-) Artifacts
Other @ & Steps Artifacts
Stakeholder \ *
Change of Context <«—— | Changed Compo-
Change of Changeof | [~=="""1 sed Developm L
......... Method | Models Method with
Method Connected Models
Engineer *

Fig. 6.6 Abstracted Phase of Enactment of Development Methods

In this section, we first show the execution of the development process using our
lightweight execution engine (6.3.1). Based on that, we present the involvement of dif-
ferent stakeholders during the artifact development (6.3.2). Last, we deal with changes in the

context during the execution of the development process (6.3.3).

6.3 Enactment of Development Methods 109

6.3.1 Execution of Development Process

To develop a business model, the Business Developer has to execute a development process
and conduct various development steps. For that, a lightweight process execution engine
can be used. Here, a business process engine is a software tool that supports executing and
monitoring business processes (modeled, for example, using BPMN) and their activities
[Sti14]. On the market, and especially for the de-facto standard of BPMN, different closed-
source process engines like the IBM Process Manager' or open-source process engines like
the Camunda Platform? exist. Instead of using an existing one with a huge feature set that
is not needed in our case, we develop our own lightweight one whose features directly fit
the domain of BMD. Our lightweight process engine is based on a Kanban board where
the development steps are grouped into 7oDo, In Progress, and Done steps. During the
development, the Business Developer selects a subset of development steps in 7oDo and
puts them into In Progress for conduction and in Done after finishing the steps. Here, the
execution engine supports using the already composed development methods and newly
ad-hoc created development methods.

The Composed Development Methods are used to provide the Business Developer
maximum control in developing a business model. For that, he selects a composed devel-
opment method created by the Method Engineer. After that, the process engine interprets
that development method depending on pattern-based or phase-based construction. For
the Pattern-based Construction, the approach instantiates and visualizes the corresponding
BPMN process model. Next, all directly executable development steps that are modeled
as activities in BPMN with connected Method Building Blocks are inserted as ToDos of
the Kanban board. New executable development steps are automatically inserted into the
board based on the execution of those steps by the Business Developer. Moreover, within the
process models, the Business Developer can manually decide on different gateways to pass.
For the Phase-based Construction, the approach instantiates and visualizes the development
method as a sequential process model. Here, each Method Building Block is modeled as a
single activity and the first building block is inserted as 7oDo of the Kanban board. After
executing a single building block, the following building blocks are automatically inserted
into the board. In both cases, the Business Developer can manually execute additional devel-
opment steps to be flexible in the overall development. For that, he selects a corresponding
Method Building Block from the Method Repository where the defined Situational Factors

order the building blocks. If those selected building blocks are connected to Canvas Artifacts,

'Website of IBM Process Manager: https://www.ibm.com/docs/en/bpm/
2Website of the Camunda Platform: https://camunda.com/

https://www.ibm.com/docs/en/bpm/
https://camunda.com/

110 Composition and Enactment of Development Methods

he must also compose those models or select already composed ones. Moreover, a check on
the needed input artifacts has to be done during the selection.

The Ad-hoc Created Development Methods are used to provide the Business Developer
maximum flexibility in developing a business model. After selecting that option, he has
no predefined BPMN or sequences process model to use. Instead of that, he needs to set a
context in terms of the Situational Factors and the Application Domains from the repositories
(cf. the context definition of the Method Engineer in Section 6.2.1). After that, the process
engine creates an empty Kanban board where he manually needs to select all development
steps to conduct as a Method Building Block from the Method Repository. Here, he is also
responsible for composing the models if he needs them for the Canvas Artifacts (cf. the
model composition of the Method Engineer in Section 6.2.3). Moreover, he needs to care
about potential warnings like that all input artifacts of one of his selected development steps
have already been created as output artifacts before.

Representation of a Representation of a
Method Building Block Development Step

Task: Interview Customer

Description: The customer interview is used to gather
information from potential customers of the serivce. The
interviews can be used to discover and analyze the current
problems or validate different steps of the development

process.
<<discover>> - Ialik Ste_ S: o

Inverview Customer - Prepaire Questionaire
2. Conduct Interviews

3. Cluster Information
Stakeholders: Business Developer, Customer
Tools: Microsoft Teams

Input Artifacts: -
Output Artifacts: Customer Information

Fig. 6.7 Exemplary Transition from a Method Building Block to a Development Step

During the conduction of the development steps, the process engine provides guidance to
the Business Developer. For that, each development steps is connected to a Method Building
Block, as exemplary shown in Figure 6.7. Based on this connection, he directly receives
written information about the conduction from the Domain Experts. For example, in Figure
6.7, each step has a Task (e.g., Interview Customer) together with a Description (e.g., The
customer interview...) of what should be done during the task. Moreover, concrete Task
Steps (e.g., 1. Prepare Questionnaire, 2. ...) are provided as a guideline for the Business
Developer and other involved Stakeholders (e.g., Customer). Moreover, those steps can be
supported by the usage of Tools (e.g., Microsoft Teams). Those tools, in turn, can be used to

transfer the required Input Artifacts into Output Artifacts (e.g., Customer Information). With

6.3 Enactment of Development Methods 111

this support, the Business Developer might involve different stakeholders in developing the

needed artifacts collaboratively.

6.3.2 Stakeholder Involvement in Artifact Development

During the conduction of the development steps, the Business Developer has to create various
artifacts that store parts of the development results. This creation, in turn, is, depending on
the team size, done on his own or with the involvement of different internal (e.g., marketing
manager) and external (e.g., investors) stakeholders. Moreover, those stakeholders might
be needed just for specific development steps as modeled in the Method Building Blocks.
To guide the development of artifacts, the process engine has an Artifact Manager. With
this manager, the Business Developer is able to create artifacts independently or as part of a
development step. Moreover, the manager allows the transfer of artifacts between different
development processes by providing exporting and importing functionalities. During the
creation of artifacts, a division between Information Artifacts and Canvas Artifacts is done.

For the Information Artifacts (e.g., Customer Information), the engine provides an
artifact description together with an editor. The editor provides a visualization using a
graphical user interface with "What-You-See-Is-What-You-Get" (WYSIWYG) features.
Within this editor, the Business Developer and different Stakeholders might collaborate to
develop a textual document. For that, the editor is able to import an Information Input Artifact

that should be modified or directly create a new Information Output Artifacts.

Visual Representation of a Modeling of a
Canvas Model Canvas Model
Customer Customer :CanvasRow — :CanvasModel

Relationships Seaments

name = "Business Model
Canvas"

desc = "The Business
Model Canvas ist used ..."

:CanvasColumn

Channels - [

:Question — :ItemCell
question =" For what name = "Revenue
value are our customers Streams"
are really willing to rowspan = 1
pay?" colspan =5

Revenue Streams

Q: For what value are our customers are :Example —
really willing to pay?

E: Asset sale example = "Asset sale"

Fig. 6.8 Exemplary Visualisation of Canvas Artifact

112 Composition and Enactment of Development Methods

For the Canvas Artifacts (e.g., Business Model Canvas), the engine provides a canvas
artifact description together with a canvas board. Here, the board is generated out of the
corresponding Canvas Model of the Canvas Model Repository, as shown exemplary in
Figure 6.8 for a part of the Business Model Canvas. Here, we use the CanvasRows and
CanvasColumns as a grid for the positioning of our IltemCells (e.g., Revenue Streams) on
the board. Each cell is positioned based on a defined span of rows and columns, as used
within the HTML tables. For each cell, the engine provides guidance by Questions (e.g., For
what...) and Examples (e.g., Asset sale). Here, the Business Developer might collaborate
with the different stakeholders on the Canvas Models. For that, the board is able to import
Canvas Input Artifacts or directly create new Canvas Output Artifacts.

During the creation of both types of artifacts, the process engine provides a Collaboration
Manager with a discussion board to allow communication between the Business Developer
and the different Stakeholders. This ensures quick agreements apart from the developed
artifacts without the need for additional communication tools. After the creation of the
artifact is finished, it is stored as a new artifact or merged with an existing one. Here, the
traceability of all artifact changes, together with the discussion, is ensured. For that, the
artifact manager provides versioning of all created and modified artifacts together with the
possibility of analyzing the changes. Moreover, a change in the context and a subsequent

change of the composed development method might be needed during the development.

6.3.3 Change of Context

During the BMD, internal changes in the organization (e.g., changed target market) or
external changes in the environment (e.g., changed competitor) might also lead to a change
in the context in which the business model is developed. This context, in turn, can affect
the Situational Factors (e.g., reduced financial resources) or the Application Domains (e.g.,
changed domain). Here, depending on the type of development method, there are two
different options. If the Business Developer uses an ad-hoc created development method, he
needs to change the Situational Factors and the Application Domains manually. Due to the
missing of a process model, he also needs to manually look if already conducted development
steps need to be reconducted with changed Method Building Blocks or Canvas Artifacts need
to be recomposed using different Canvas Building Blocks. If the Business Developer uses a
composed development method, he informs the Method Engineer about those changes in
the context together with additional information (e.g., a new competitor in the market). The
Method Engineer uses both to modify the composed method and/or the composed models.
For the Composed Method, the Method Engineer gets the requested changes of the

Business Developer for the Situational Factors and the Application Domains. After reviewing

6.3 Enactment of Development Methods 113

them, he accepts those changes or manually modifies them. Based on the initial choice of
a pattern-based or phase-based construction, the composed method needs to be changed.
During the whole change, he needs to consider the new additional information well as the
initial additional construction constraints of the Business Developer. For the Pattern-based
Construction, he receives an overview of the BPMN process model, including the Method
Patterns, Method Building Blocks, and an Execution Step Marker. Similar to the method
composition in Section 6.2.2, he might now change both. By adding Method Building Blocks
where an instance already exists in the existing development method, he can choose to create
a duplicate of those building blocks instead of using a new one. With this, he is flexible
in changing the complete development method without losing the information of already
executed development steps. An exemplary view of a pattern-based composed method based
on Init Development together with the current Execution Step Marker on Develop Value
Proposition can be seen in Figure 6.9. In this example, the building block of Interview
Customer is changed to Survey Experts, and the pattern of Validation Cycle is modified to
the building block of Interview Experts. For the Phase-based Construction, he receives an
overview of the sequential process model, including the Method Building Blocks, and an
Execution Step Marker. Similar to the method composition in Section 6.2.2, he changes the
considered phases or building blocks. Here, he is able to remove existing building blocks or
add new building blocks. Like in type-based construction, he is able to duplicate existing
building blocks instead of creating a new one.

After constructing the development method, the Method Engineer needs to replicate the
current enactment state for both constructions. For that, he conducts a mock execution of the
development steps by adding existing artifacts as output artifacts of those development steps.
Moreover, he sets the Execution Step Marker to a new position where the Business Developer
should continue executing the development process. In our example on Figure 6.9, we set the
Execution Step Marker to the building block of Survey Experts for a type-based construction
of the method. Alternatively, instead of that modification, he might also export the created
artifact from the method, compose a completely new method (see method composition in
Section 6.2.2), and import the artifacts into that method.

For the Composed Models, the Method Engineer already reviews the changed Applica-
tion Domains. Out of that, he receives an overview of all Method Building Blocks that use
affected Canvas Artifacts in the BPMN or sequence process model. Model by model and
for both the feature-based and taxonomy-based consolidation, the Method Engineer revisits
the composed models by consolidating the knowledge of new models creating virtual links,
or separating the knowledge of existing models by removing virtual links. During these

changes in the consolidation, he needs to consider the new additional information well as the

114 Composition and Enactment of Development Methods

Modifying a Modifying a
Method Building Block Method Pattern
. <<discover>> <<validate>>
i Survey Experts Interview Experts
Il - \\ o= \\
Modified Execution
Step Marker Q IV ‘\\ ’
- -

<<init>> Init Development

<<generic>> Validation Cycle

O <<discover>> <<develop>>
Interview Customer Develop Business
Model
v] —0
<<develop>> <<validate>>
Develop Value Develop Business
Proposition Model

J

Existing Execution
Step Marker

Fig. 6.9 Exemplary Change of Context for a Pattern-based Constructed Method

initial additional construction constraints of the Business Developer. Alternatively, instead of
modifying the existing composed models, he might also remove all composed models and
composes completely new models (see Section 6.2.3) for the canvas artifacts. This, in turn,
reduces the overhead if the new models highly differ from the existing models so that the
majority of the virtual links need to be changed.

After the context and the connected method and models have been successfully modified
by the Method Engineer, the Business Developer can continue the development of the

business model.

6.4 Summary

Within this chapter, we have provided the conceptual solution for our second stage on com-
position and enactment of development methods. For that, we have shown the construction
of methods and consolidation of models based on a defined context in terms of situational

factors and application domains, together with an execution of the development process and

6.4 Summary 115

conduction of development steps that can be modified through a change in the context. We
have explained the necessary parts for both parts based on an exemplary instantiation.

For the Development Method Composition, we have defined a modeling for the context
of the situational factors and the application domains. Based on that, we support the pattern-
based and phase-based construction of the method based on the combination of method
building blocks and optionally method patterns, together with checking the quality of the
method against different warnings and errors. Moreover, we support the feature-based and
taxonomy-based consolidation of the canvas building blocks for the canvas artifacts in the
constructed method based on virtual links, together with checking the quality by detecting
possible conflicts.

For the Development Method Enactment, we have explained an execution of the
development process based on the composed or ad-hoc development methods. Here, we
support pattern-based and phase-based constructed methods. Based on that, we support
the collaboration of different stakeholders on the development of artifacts where we focus
especially on canvas artifacts with underlying canvas models. Last, we have provided a
modification of the development method, considering the methods and the models, based on
changes in the context.

Based on the composition and enactment of development methods, we will show the
third stage of support of development steps for our approach in the next chapter. Here, we
will show how to support the different development steps of the method building blocks with
execution steps based on the support modules. Moreover, we will show the execution of
those steps to provide flexible IT support for developing business models. For that, we will
present different exemplary modules that support the BMD in the design and the validation
phase.

Chapter 7
Support of Development Steps

In the previous chapter, we showed the second stage of our approach by composing and
enacting development methods. Based on that, this chapter shows the third stage of our
solution concept by supporting development steps using the assistance of support modules.
For that, we first refine our SRs and give an overview of the stage (7.1). Based on that, we
describe the modularization of development support (7.2) and the application to different

types of modules (7.3). Finally, we summarize our procedure within the stage (7.4).

7.1 Requirements and Overview

The support of development steps is the third stage of our approach, which aims to provide
flexible assistance using different software tools during the BMD. For that, we refine the SRs,
which were derived in Section 4.1.1, of SR 7: Development Support Formalization, SR 8:
Development Support Construction and SR 9: Development Support Execution into detailed
Development Assistance Requirements (DAR) together with providing an overview of the
modularization of the software tools and further application to development steps.

The Modularization of Development Support combines different types of IT assistance
into dedicated support modules, consisting of software tools with steps to conduct and meta
artifacts with artifacts to create that can be used during BMD. Here, the approach needs the
possibility to use internal software tools specially programmed for our solution and external
software tools that already exist and should be used. For the internal software tools, the
approach should atomize those tools into atomic steps to provide a flexible combination of
them. Moreover, meta artifacts should be defined to define a common structure that allows
reusing the created artifacts across the tools of different support modules. To increase the
acceptance by the stakeholders, the modules should be explained understandably together

with the possibility of extending them in the future. Therefore, our DARSs are:

118

Support of Development Steps

DAR 1: Interoperability of Modules: The solution should provide interoperability of

support modules to allow using internal and external software tools.

DAR 2: Atomization of Tools: The solution should provide atomization of internal

software tool functionalities in single steps for maximum flexibility in reusing them.

DAR 3: Usage of Meta Artifacts: The solution should provide structured meta
artifacts so that different software tools can create and modify the same artifacts with
their assistance.

DAR 4: Understandability of Modules: The solution should provide proper explana-
tions of the software tools and meta artifacts to allow a unified understanding of all
support techniques among the business developer and the other stakeholders.

DAR 5: Extensibility of Modules: The solution should provide the creation of new
and extension of existing support modules with software tools and meta artifacts for

novel assistance techniques.

The Application to Development Steps 1s used to apply the support modules to the different

development steps to assist the BMD. Here, during the composition of the development

method, the support steps of the software tools should be added to the development steps

of the development method. Moreover, during the enactment of the development method,

the artifacts based on the meta artifacts are created and modified. Within this, the approach

needs to allow the collaborative development of artifacts. Therefore, our DARs are:

DAR 6: Guidance in Development Support Construction: The solution should
provide guidance in the construction of development support for specific development
steps.

DAR 7: Atomized Interface Steps: The solution should provide an interface between

the single steps during the development support and their implementation in the tools.

DAR 8: Execution of Development Support: The solution should provide the
execution of the development support as single steps based on the internal software
tools.

DAR 9: Guidance in Development Support: The solution should provide guidance
in the steps of the software tools to conduct the development steps.

DAR 10: Collaborative Development Support of Artifacts: The solution should

provide the collaborative development of the artifacts concerning the meta artifacts.

7.2 Modularization of Development Support 119

@ Modularization of Development Support @ Application to Development Steps
2/

7.3
Development Support Meta Artifacts \ Artifacts
17 | e | [1
g A/ :
E Information Canvas __IL__1 Business Model Prototype
< Meta Artifact Meta Artifact Canvas Information
A A A A
T i v v
i Development Suppprt Tools .Development Process :
1 1
1 1
! ! create
1 1 = = Create Validate e
: : Canvas/ ™ Busmess Model Busmess Model
@ T
8 g o il :
: = 0 O
1 1
receive) """ 1 i a _:::::::::: _______ i i
Results b g . .
1 |_ __ 1 1
1 1
L | 1

Legend
Meta Development -$------ <
Interface - p -
Artifact I=| Step / Artifact | nStance of - Reference Sequence

Relationship Relationship Relationship

Fig. 7.1 Overview of the Support of Development Steps

Out of the DARs of the Modularization of Development Support and the Application
to Development Steps, we develop an overview of the third stage, as shown in Figure
7.1. The Modularization of Development Support is explained in Section 7.2. For that,
we present the provision of development support (e.g., Canvas Tool), their composition
within the development steps (e.g., I, 2, 3 in Create Business Model), and their enactment
(e.g., Business Model Canvas) during the conduction of those steps. The Application to
Development Steps for exemplary support modules is shown in Section 7.3. Here, we present
three exemplary support modules (e.g., Canvas Module) together with the software tools
(e.g., Canvas Tool) and meta artifacts (e.g., Canvas Meta Artifact). In the following, we

present details on the modularization concept and the exemplary support modules.

7.2 Modularization of Development Support

The modularization concept is needed to structure the internal development support into
software tools and connect them to meta artifacts. Based on those support modules, the
development support for specific development steps using the software tools is composed
and enacted to develop artifacts based on the meta artifact. With this, we provide additional
development support for certain development steps of the second stage. The abstracted phase

120 Support of Development Steps

for providing the Modularization of Development Support is shown in Figure 7.2. Here, in
the beginning, the Meta-Development Support Engineer needs to provide a Modularized
Architecture and optionally an SDK for the solution, which the Development Support En-
gineer uses to create and integrate the support modules. Based on that, Method Engineer
composed the different development steps and, optionally, the development support artifacts
to return the Composed Development Method with Development Support. That composed
development method, in turn, is executed by the Business Developer with the support of the
Other Stakeholders to create different Development Support Artifacts. The outputs of this
phase are the Integrated Development Support Modules, the Composed Development Method
with Development Support, and the Created Development Support Artifacts.

Roles Steps Outputs
- o e fEmmmm——— 1 B
o— Creation of a Modularized Architecture Modularized
_________ > Architecture
Meta-Develop- (+ SDK)
ment Support ‘;.ezc:.
Developer _/ Provision of Development Support
_ Development
......... > - Modeling of Integration of N Support Modules
Modules Modules
Development
Support
Developer
Composition of Development Support Composed
" " Development
""""" Composition of Composition of I—— Methog with
Method Supporting De- [®{ Development [D
Engineer : evelopment
velopment Steps Support Artifacts Support

Business . 7.2.3
Developer . _/ Enactment of Development Support
—>

O ‘§I Conduction of [~ Creation of 5 Cl‘leated t
""""" Supporting De- Development r------1 _Pevelopmen
Other | velopment Steps [support Artifacts Support Artifacts
Stakeholder

Fig. 7.2 Abstracted Phase of Modularization of Development Support

Based on the modularized architecture, which will be explained in Section 8.1, this
section first shows the provision of the development support by integrating the Development
Support Modules (7.2.1). Based on that, we describe the composition of the Development
Support Steps and the Development Support Artifacts (7.2.2). Last, we present the enactment
of the method and conduction of the Development Steps to create the Development Support
Artifacts (7.2.3).

7.2 Modularization of Development Support 121

7.2.1 Provision of Development Support

Different software tools have supported the BMD in research and practice in recent years.
As divided in Section 2.3.3, that support can cover the visualization of business models
(e.g., predefined canvas models to fill out), their design (e.g., presentation of business model
patterns), or even decision support (e.g., stress testing of different business assumptions).
However, currently, different Development Support Developers start from scratch when
creating their development support. For that, we provide a modularization concept so that
they can focus on the actual supporting features (e.g., analysis of enterprise data) and dismiss
commodity features (e.g., canvas representations). Here, in general, we need to divide

between internal and external development support.

* Internal Development Support: Internal support describes the development support that
is specially developed for our solution. Here, the development support is developed on
provided constraints and interfaces of our solution so that it can be integrated into the
overall concept and the other support techniques. Examples of that could be the design

or calculation of business models.

» External Development Support: External support describes development support that is
developed independently of our solution in terms of software tools. Here, the software
tools can be used alone and the created artifacts are added to our solution, or interfaces
between our solution and the software tools are developed. Examples of that could be

the design or validation of prototyping using existing prototyping tools.

Modularization, in turn, splits up different software functionalities of internal develop-
ment support into separate parts so that they can be used and modified with fewer dependen-
cies on each other [Par72]. With this, the Development Support Developer is able to split his
development support into atomic parts so that they can be recombined flexibly to support
different development steps. To provide maximum reusability, the Development Support
Developer has to split the overall Development Support Module into different Development
Support Tools and Development Support Meta Artifacts, as shown in Figure 7.3. The support
tools ensure the actual functionalities for the development support by providing different
Development Support Steps that are composed together for specific development steps. The
meta artifacts specify the different Support Artifacts that are created and modified within the
steps. By splitting the modules into tools and meta artifacts, we ensure the easy usage of
artifacts by different tools together with their exchange. Moreover, the Development Support
Engineer can freely decide whether he wants to add more internal business logic into the
tools or the meta artifacts as long as the interfaces defined by the Meta-Development Support

122 Support of Development Steps

Engineer are correctly used. For using those interfaces, those modules need to be modeled

and integrated in a standardized way.

Development Support Module

Development Support Steps Development Support Artifacts

O [

i ;

Development Support Tools <«—>»| Development Support Meta Artifacts

Fig. 7.3 Overview of the Support Modules

The Modeling of Modules is done by extending the Method Elements of the Method
Repository. Here, like for the elements, the Method Engineer can manually add those
elements to the repository or import a configuration that is provided by the Development
Support Engineer within the Development Support Module. Here, the extended part of the
metamodel for the method elements is shown in Figure 7.4 on the top (cf. to the metamodel
for method elements in Figure 5.3). For adding the development support, we have to change
the two existing elements of the 7ool and the Artifact. For the Tool, we add the Modularized
Tool (e.g., Canvas Tool) to define the support tools. For the Artifact, we add a Meta Artifact
to support the underlying structure of different artifacts. Moreover, we add the Information
Meta Artifact as a meta artifact to cover the existing textual information. Based on that, we
create the Information Artifacts (e.g., Customer Information) that are already used as artifacts
in the second stage and Modularized Artifacts (e.g., Business Model Canvas) as two types.
Here, the Modularized Artifacts also include the canvas artifacts of the last stage. Based on
this preparation, we provide the modeling of the Development Support Module.

The Development Support Module, as shown in Figure 7.4 on the bottom, contains a
name, a description, a version, and its relationship to the Development Support Developer
as Autor. Moreover, the module can contain different Development Support Meta Artifacts
and Development Support Tools. The Development Support Meta Artifacts are concrete Meta
Artifacts with a name, a description, a version, and a link to the source code for integrating
the specific meta artifact into the modularized architecture. Moreover, each meta artifact can
have various Development Support Artifacts. The support artifacts can be statically provided
by the meta artifact in advance or dynamically created during the knowledge provision. Those

artifacts have a name, a description, and a unique identifier for using the artifacts within the

7.2 Modularization of Development Support 123

Method
Element

+name: String
+desc: String

A
0.* ¢
. i r—
Artifact Mé?;?ﬁ#ggt L | MetaArtifact Tool
>——
i T
Modularized Information Modularized
Artifact Artifact Tool
0.1 0.1
DevelopmentSupport
‘ MetaArtifact
+name: String 0.* 0.*
+desc: String !
+version: String Steplnput StepOutput
+sourceLink:String MetaArtifact MetaArtifact
0.* 0.* 0.*

3 23

DevelopmentSupport
Step

1.*

S ¢
DevelopmentSupport DevelopmentSupport
Artifact Module

—0..*

+name: String
+desc: String
+identifier:String

+name: String
+desc: String
+version: String

+name: String
+desc: String
+identifier:String

1.*
0..*

Author -] — DevelopmentSupport

Tool ‘

+name: String
+desc: String

+version: String

+sourceLink:String &

Fig. 7.4 Extension of the Method Elements for the Modularization

support tools. This is done by connecting those artifacts with a Modularized Artifact. The
Development Support Tool has a name, a description, a version, and a link to the source code
for integrating the specific tool into the architecture. This is done by connecting the tools to
a Modularized Tool. Moreover, each tool has certain Development Support Steps for proving
the atomic functionalities of the tool. The support steps are provided statically by the tool

124 Support of Development Steps

in advance. Those steps are defined through a name, a description, and a unique identifier
for providing an identification during the composition. Moreover, each step has connected
Step Input Meta Artifacts and Step Output Meta Artifacts to set the scope of artifacts they can
handle.

An example of the Canvas Module can be seen in Figure 7.5. Here, the module is
connected to the Canvas Meta Artifact and the Canvas Tool. The meta artifact holds infor-
mation about the customizable canvas models as introduced in Section 5.3.3. One example
is the Business Model Canvas which is connected to the specific Modularized Artifact (i.e.,
BMC) of the Method Repository. The tool provides the support steps to collaborate with the
meta artifact. Examples are the CreateCanvas and RefineCanvas, which are connected to
the needed Step Input Artifacts and Step Output Artifact. Also, the tool is connected to a
Modularized Tool (i.e., CT) of the Method Repository.

CanvasMetaAtrtifact: CanvasModule: CanvasTool:
DevelopmentSupportMetaArtifact DevelopmentSupportModule DevelopmentSupportTool
name = MetaCanva§ Artifact) name = "Canvas Module" name =" Canvas Tool)
desc = "The meta artifact of desc = "The canvas tool can...
version = "1.0" USRI 2 version = "1.0"

oo . desc = "The integrated ..." L
sourceLink = "canvas/artifact" Integ sourceLink = "canvas/tool"
CreateCanvas:
DevelopmentSupportStep
name = "Create Canvas"
BusinessModelCanvas: :StepOutput desc = "The step is used ..."
DevelopmentSupportArtifact MetaArtifact identifier = "createcanvas"
name = "Business Model Can..."
desc="The BMC can be used ..." :Steplnput RefineCanvas:
identifier="businessmodelcanvas" MetaArtifact DevelopmentSupportStep
name = "Refine Canvas"
:StepOutput desc = "The step is used ..."
MetaArtifact identifier = "refinecanvas"
BMC:ModularizedArtifact CT:ModularizedTool -

name = "Business Model Can..."
desc= "The artifact can be..."

name = "Canvas Tool"
desc="The tool can be..."

Fig. 7.5 Exemplary Method Elements for the Development Support

The Integration of Modules is done by extending the solution’s functionalities by
directly exchanging information between both. Those standardized information exchange

needs to be implemented for the meta artifacts as well as the support tools. We develop that

7.2 Modularization of Development Support 125

exchange based on the two concepts of application programming interfaces and software
hooks. Application programming interfaces provide direct communication of at least two
programs based on a standardized specification. In our solution, we use interfaces to gather
information from the meta artifacts and support tools for our solution. Hooks, in turn, directly
integrate external program functionalities into an internal program. In our solution, we use
hooks to directly use functional parts of the meta artifacts and the support tools in the solution.
For providing both, our solution uses an SDK that is able to automatically generate code
stubs for a support module with the required interfaces and hooks. Those code stubs, in turn,
can be used as a starting point by the Development Support Engineer to create its customized
development support. Those interfaces and hooks are integrated into the different parts of
our solution:

* Knowledge Provision Hooks/Interfaces: The hooks and interfaces for the knowledge
provision are used to provide information for the usable support tool and conductible
support steps, together with creating the dynamic support artifacts from the defined
support meta artifacts.

» Composition Hooks Hooks/Interfaces: The hooks and interfaces for the development
method composition are used to configure and combine the support steps to the

development steps together with composing different support artifacts.

* Enactment Hooks/Interfaces: The hooks and interfaces for the development method
enactment are used to provide information and functionalities for conducting the
support steps, together with functionalities for creating and modifying support artifacts

within and apart from those support steps.

In the following sections, we explain the integration of the specific interfaces and hooks
during the different stages. The overall module design that the Development Support De-
veloper needs to implement is explained in Section 8.1. Inside the knowledge provision of
development support, which is explained in this section, the meta artifacts need an interface
to provide all modeled information, as shown in Figure 7.4, to allow an automated extension
of the Method Repository. This includes especially the support artifacts of the meta artifacts,
which can be dynamically created within the module and need to be accessed for a connection
to the Modularized Artifacts. Moreover, also the support tools need an interface to provide
all information to extend the Method Repository. This includes the connection of the support
tools to the Modularized Tools. Here, the support tools might also use an additional hook to
show specific functionalities or configuration possibilities during the knowledge provision of
the solution. With this, the supporting tool is able to provide functionalities for the Method

126 Support of Development Steps

Engineer to utilize knowledge, for example, about different meta artifacts, apart from the
composition and enactment. In our solution, we allow the integration of hooks for the
provided knowledge in the navigation bar of our software tool.

One example is the already mentioned Canvas Module, which is explained in Figure 7.5.
Here, the Canvas Meta Artifact and the Canvas Support Tool provide interfaces to access
their information (e.g., name, description) for the Method Repository. Moreover, the Canvas
Meta Artifact is able to provide dynamically created canvas models (e.g., Value Proposition
Canvas, Business Model Canvas) for their connection with the Modularized Artifacts. Those
canvases, in turn, are created by the Method Engineer with a software hook in the navigation
bar for the Canvas Support Tool to allow the creation of canvas elements, canvas building
blocks, and canvas models from different Domain Experts.

Based on modeling the modules and their integration into the solution, the Method
Engineer can start composing development support for specific development steps for the

Business Developer.

7.2.2 Composition of Development Support

During the creation of Method Building Blocks, which is explained in Section 5.2.2, the
Method Engineer is also able to freely construct the development support out of the Devel-
opment Support Modules for the Business Developer. For that, the combined Development
Support Steps of the Development Support Tools are used to create and modify the Develop-
ment Support Artifacts based on the Development Support Meta Artifacts. Here, we need to
consider the composition of the development support steps and the artifacts.

The Composition of the Development Support Steps is done during the knowledge
provision of the Method Repository, as explained in Section 5.2. Here, we extend the Method
Building Blocks as shown in Figure 7.6 so that they provide those support. For that, the
Method Engineer selects the used Modularized Tools and Artifacts for inputs and outputs
(consisting of Information Artifacts and Modularized Artifacts). Based on that, he combines
different Execution Steps to transform those Input Artifacts into Output Artifacts. Every
Execution Step 1s connected to a single Development Support Step of the used Development
Support Tool. With this, the approach knows what action should be performed by the tool and
which Artifacts of which Meta Artifact are expected as Step Input Meta Artifact and Steps
Output Meta Artifact. With this information, the Method Engineer selects the Execution
Step Input Artifacts and Execution Step Output Artifact for each Execution Step. Here every
Execution Step Input Artifact is connected to an initial Input Artifact or an Execution Step
Output Artifact, while every Execution Step Output Artifact is connected to another Execution
Step Input Artifact or a final Output Artifact. With this, the approach provides a pipeline

7.2 Modularization of Development Support 127

Task 1 0.*] _ Method
BuildingBlock
+name: String
0..* 0..1—n9iXt +desc: String
Task 0.1
Step
*
o.+] ExeuctionStep l"| 0.~ 0.* 0.
[| InputArtifact 0..l—— linputArtifact InputArtifact Tool
....... (- r r r
Execution O-I-l XOR Group Group Group
Step 0.1 “XOR
0. 0. *| ExeuctionStep [0..1—- 1. 1.x 1.*
OutputArtifact |‘__ 0.*] Artifact 'O..* Artifact Tool
Groupltem Groupltem Groupltem
+required= +required= +required=
true true true
0..* 0..* 0.
0 Steplnput |
- MetaArtifact % 0.1
1

Development ; Modularized
Artif
SupportStep rfact Tool

1> o« StepOutput 0.* 0.1
‘ "1 MetaArtifact |0, *—o

Development Meta
SupportTool Artifact

t

Fig. 7.6 Extension of the Method Building Blocks for the Modularization

process for transforming the artifacts. During the whole construction of the development
support, the quality needs to be checked against warnings and errors. In our approach, we

provide automated detection of the following warnings and errors:

» Missing Default Tool Warning: This warning states that one of the development support
tools is not set as default for the building block. This should be resolved as it reduces
the chances of dismissing the selection during the composition of the development
method. We identify those warnings by checking the selected development support
steps against the selected tools.

* Missing Default Artifact Warning: This warning states that one of the development
support artifacts is not set as default for the building block. This should be resolved as

it reduces the chances of dismissing the selection during the composition of the devel-

128 Support of Development Steps

opment method. We identify those warnings by checking the selected development

support artifacts for their default setting.

* Missing Input Step Artifact Error: This error states an execution step input artifact is
not connected to an input artifact or an execution step output artifact. This needs to be
resolved as otherwise, the execution step can not be executed. We identify those errors
by checking the inputs of all execution steps for their connections.

* Missing Output Artifact Error: This error states that a modularized output artifact is not
connected to an existing output step artifact. This needs to be resolved as otherwise, the
output artifact can not be created during the conduction of the development step. We

identify those errors by checking all modularized output artifacts for their connections.

Moreover, interfaces and hooks are used during the composition of the development
support steps. Here, the support tools provide interfaces to gather information about the
development steps to conduct, including the steps’ descriptions, input artifacts, and output
artifacts. Moreover, each step might provide a hook with a form to configure the step during
the composition of the development support. Here, those forms can be freely combined out
of text and selection lists together with buttons. Moreover, the forms might be dynamically
filled during the composition of the development support steps.

One example of such development support for the Business Model Development can be
seen in Figure 7.5. Here, we use the CanvasTool and the CanvasMetaArtifact. The support
is provided by the three Execution Steps (i.e., Stepl, Step2, Step3), which are related to the
Development Support Steps of CreateCanvas, EditCanvas, and RefineCanvas. Between those
steps, the Artifact is transferred until it is used as an OutputArtifactGroupltem. Moreover, we
also provide a hook for the CreateCanvas step to allow the selection of a specific canvas model
where we specify the Business Model Canvas during the construction of the development
support steps. With this, we avoid setting the specific canvas by the Business Developer
during the conduction of the development step.

The Composition of the Development Support Artifacts is done during the domain-
specific composition of the modeling artifacts, as explained for the canvas artifacts in Section
6.4. Here, the Method Engineer constructs the development out of Method Building Blocks
and, optionally, Method Patterns, including building blocks with development support. Here,
he chooses different selections for the stakeholders, artifacts, and tools. Moreover, he
discovers the different execution steps. To provide flexibility during the composition, we
created a hook for a customized form similar to the provision of development support for
artifacts. That hook might be, for example, used to configure the composition of different

related artifacts or select created artifacts from the provided knowledge. However, for this,

7.2 Modularization of Development Support 129

Businessmodeldevelopment: Task

Stepl:Execution Step2:Execution Step3:Execution
next next
Step Step Step
:ExecutionStep :ExecutionStep | [ExeuctionStep :ExecutionStep| | |ExeuctionStep
OutputArtifact InputArtifact OutputArtifact InputArtifact OutputArtifact
:StepOutput :Steplnput :StepOutput :Steplnput :StepOutput
MetaArtifact [| [| MetaArtifact MetaArtifact [| [| MetaArtifact MetaArtifact |[]
CreateCanvas: EditCanvas: RefineCanvas:
Development Development Development
SupportStep SupportStep SupportStep
CanvasTool: Development
SupportTool outputArtifact:
OutputAtrtifact
Groupltem
| | |
- 1 I |
CT: CanvasMetaArtifact: BMC:
Tool MetaArtifact Artifact

Fig. 7.7 Exemplary Method Building Block for the Modularization

we leave the whole flexibility to the Development Support Developer of the Development
Support Module and the corresponding Development Support Meta Artifact. During the
selection of the building block’s tools and artifacts, the modeling artifact’s quality needs to
be controlled. Here, within our approach, we ensure that the default values for the input and
output artifacts and that the connected tools are not deactivated, which would result in errors
by enacting the development method.

One example here is the Canvas Module, which is explained in Figure 7.5. Here, the
composition of the model is shown in Section 6.5. To connect the composition of the method
to the composition of the models, we created a form as a hook for the CreateCanvas step
where the Method Engineer can choose an existing composed model from a selection list or

click on a button to compose a new one. By clicking this button, he is forwarded to a specific

130 Support of Development Steps

part of the tool for the composition within the Canvas Support Tool and backward after he

composed the models. After that, he can choose the composed model in the selection list.
After the Method Engineer has added the development support to the building blocks and

composed the development method with the corresponding artifacts, the Business Developer

can use the development support during the enactment.

7.2.3 Enactment of Development Support

After the Development Support Steps have been composed during the creation of the Method
Building Blocks in the knowledge provision of methods and models, and additionally, for the
Development Support Artifacts, in the composition of the development method, the Business
Developer enacts those support in the enactment of the development method. To support
the enactment, we have extended our Process Engine, as shown in Figure 7.8. Here, the
Execution Manager is responsible for executing the different Development Support Steps
of the Development Support Tools. Here, when the Business Developer starts to conduct
a development step, the engine checks if the connected Method Building Block contains
composed Execution Steps. If this is the case, the engine pipelines the Business Developer
through the different Execution Steps. During this pipelining of the steps, it exchanges the
current state of the Development Support Artifacts based on their Development Support Meta
Artifacts with the Artifact Manager. Here, the created and/or modified Development Support
Artifacts are stored temporarily during the execution of the steps and permanently after the
whole development step. Moreover, the Collaboration Manager allows the communication
of different Stakeholders during each step. Here, each step is connected to a discussion board
to allow collaboration of the stakeholders and reason the information within the artifacts.
Based on that extended engine, the Business Developer can conduct development steps and/or
create (modularized) artifacts independently.

The Conduction of Development Steps can be done by selecting a predefined develop-
ment step from the Kanban board or a flexible development step from the Method Repository.
While the predefined development step is already configured, the flexible one needs to be
configured by the Business Developer to use the corresponding Development Support Tool. It
the development step contains execution steps, those are enacted by the Execution Manager.
The manager then executed the steps after each other by receiving the hooks for execution
from the Development Support Tool. Each hook contains a dedicated software component
that should be integrated into the step management. Here, the software component can
be freely designed by the Development Support Developer with the hook and interface
constraints made by the Meta-Development Support Developer. This is done with the support
of the source link to the tool and the identifier of the Development Support Step. Based on

7.2 Modularization of Development Support 131

Process Engine

Development| —p» — " "
Support Development Support Tool D'SBC(E‘;SO'IO”
(Meta) -+ -
Artifacts
Artifact Manager Execution Manager Collaboration Manager

Fig. 7.8 Extension of the Process Engine for the Modularization

these constraints, the manager established the pipelining of artifacts between the different
components. Here, every component might exchange data with the corresponding Devel-
opment Support Meta Artifact, which is also designed as a separate component. Here, the
identification is made with the source link to the meta artifact and the identifier of the artifact.
Moreover, each meta artifact is self-responsible for its own storage management within the
database, which increases the overall flexibility of the solution. Here, the components for the
Development Support Steps and the components for the Development Support Meta Artifacts
are completely free in their implementation as long as they provide the functionalities (i.e.,
interfaces, hooks) that are needed by the extended process execution engine (see also the
modularization in Section 8.1 for all needed functionalities). Because the whole storage
management of the Development Support Meta Artifacts is implemented internally, we need
to provide some interfaces to get the name of an artifact, copy it, and remove it. During each
execution step, a collaboration of different stakeholders is possible with the Collaboration
Manager, and at the end, the created or modified artifacts are stored as references within the
Artifact Manager.

One example here is the Canvas Module which communication of the Development
Support Tool and the Development Support Meta Artifact can be seen in Figure 7.9. Here, we
assume that we already created a Business Model Canvas as Development Support Artifact
during the provision of development support. Based on that, the Business Model Development
consists of the three execution steps of CreateCanvas, EditEdit, and RefineCanvas. Here,
the Canvas Tool has a source link (i.e., canvas/tool) where a specific interface can be
triggered with an identifier (e.g., createcanvas) to receive the specific component (e.g.,
CreateCanvasStepComponent) that can be used as a hook for the execution steps. During

each step, the component communicates with the Canvas Artifact Meta Component, which

132

Support of Development Steps

Development Support CreateCanvas EditCanvas RefineCanvas
Tool StepComponent StepComponent StepComponent
(dentfier= [°M®| (dentfier= [P ®| (dentfier= [OT®
name= createcanvas) editcanvas) refinecanvas)
"Canvas Tool" — T T
sourceLink = "uSIness T | ! f :f | ! f | f
"canvas/tool" model . Lo P
canvas” :bmc bmce b : :bmc bmc: Lo :bmc
LI T B | [| LI |
Development Support * | i v Ly | ¢ v 1oy |
Meta Artifact CanvasMeta CanvasMeta CanvasMeta
name = Artifact Artifact Artifact
"Canvas Meta Artifact" Component Component Component
sourceLink =
"canvas/artifacts"

Fig. 7.9 Exemplary Usage of the Execution Manager for the Modularization

is identified by the link to the source (i.e., canvas/artifacts). While during the first step, the
Business Model Canvas is selected as the default artifact (i.e., business model canvas) and
the canvas is directly created (i.e., bmc), the other steps provide continuous communication
between both components until each step is finished. As a result, the Business Model Canvas
(i.e., bmc) is created as a Modularized Output tArtifact.

The Creation of (Modularized) Artifacts should also be done by the Business Developer,
independently from the development steps, to allow flexibility in the BMD. For that, the
solution provides the Artifact Manager, where existing artifacts can be viewed, updated,
and deleted, and new artifacts can be created. Here, the Business Developer chooses the
(Modularized) Artifact to create from the Method Repository in the Artifacts Manager.
Depending on the type of artifact, the manager internally starts the Information Artifact
creation process or the Modularized Artifact creation process from the Development Support
Meta Artifact. Here, the source link and the identifier establish the connection between the
artifact and the meta artifact. For that, each meta artifact needs to provide hooks for viewing,
editing, and deleting created Modularized Artifacts together with an interface to delete them.
Here, again, the Development Support Developer can decide if he wants to implement those
functionalities within the Development Support Meta Artifacts or connects the functionalities
from the Development Support Tool. Inside those hooks, communication between different
stakeholders using the collaboration manager is also possible to support the development
process.

One example here is our Canvas Module, where different canvas models should be
creatable without the usage of a Method Building Block. Here, we provide the Canvas Meta
Artifact with the hooks for creating, viewing, and updating specific Canvas Artifacts together

with an interface to delete them. With this, the Artifact Manager can handle the independent

7.3 Types of Support Modules 133

management. As we want to keep the meta artifact as small as possible, those hooks were
implemented in the Canvas Tool and connected in the Canvas Meta Artifact. Moreover, while
developing the Canvas Module, we take care to design a Canvas Meta Artifact that can be
easily used by other modules, as canvas models are the de-facto standard in BMD.

Within the conduction of development steps and the creation of artifacts, the Business De-
veloper can use different types of support modules that can be developed by the Development

Support Developers.

7.3 Types of Support Modules

The development can be supported by different support modules for the different support
forms (e.g., visualization, design, development) and various phases (e.g., discover, design,
validate) of BMD. Here, we already classified different BMDSSs into modeling & configura-
tion, analysis & simulation, and evolution & validation within our tool analysis conducted in
Appendix A. In the thesis, as shown in Figure 7.10, we present different exemplary modules
to show the overall applicability of our concept. Those are an integrated visualization- and
design-support module (i.e., Canvas Module) that meta artifact is made for reusability in
other modules, an internal decision-support module (i.e., HypoMoMap Module) that presents
a specific solution for the model-based validation, and an external decision-support platform
(i.e., CPBV Platform) that work independently of the solution. With those predefined mod-
ules, we ensure the out-of-the-box usage of development support within our solution for the
Method Engineer and the Business Developer.

Software Environment

.
.,

develops Software Tool
Deéilsgg:te ™ module Sect. Sect.
Developer \\ 731/ |ntegrated Canvas Module 7-3y

—>] External
Sect. Crowd-based
uses > 7.3.2 . . Validation (CBPV)
Internal Hypothesis Modeling ¢ Platform
/module and Mapping (HypoMoMap) Module
Business
Developer

Fig. 7.10 Exemplary Modules for Development Support

In this section, we first show our integrated Canvas Module to design the business
model based on the canvas model repository (7.3.1). Next, we present the internal Hypothesis

Modeling and Mapping Module that supports validating business models and product features

134 Support of Development Steps

(7.3.2). Last, also for the validation of business models and connected prototypes, we show
the external Crowd-based Prototype Validation Platform (7.3.3).

7.3.1 Integrated Canvas Module

The integrated Canvas Module [GKE21, GYNE22a] is a development support for the design
phase. Here, the idea is to provide guidance on different elements for different canvas models
based on predefined knowledge in the existing Canvas Model Repository. For that, we based
our approach on the hierarchical modeling of requirements engineering [DFH16], where
different relationships between the requirements (e.g., one requirement supports or hurts
another one) are modeled. We combine that with feature models [ABKS13], where also
relationships between the features exist, and selections of those features are made. Based on
that, we model the canvas elements of the canvas models by providing a structured derivation
of the elements to fill out the canvas models from those hierarchies. Moreover, we provide
additional functionalities, like the detection of patterns that are modeled as a subset of
elements.

The support module can be directly used within our solution. For that, the Method Engi-
neer creates different building blocks like Business Model Development or Value Proposition
Development with the Canvas Tool as Modularized Tool and the corresponding Modularized
Output Artifacts like Business Model Canvas or Value Proposition Canvas. Moreover, he
defines the different Support Steps, like Create Canvas, Edit Canvas, Refine Canvas in those
building blocks. In the following, we give an overview of the module, the provided meta
artifact, and the provided tool. The implementation (see Section 8.2.2) and evaluation (see
Sections 4.2, 9.1, 9.2) are shown in separate chapters.

Module Overview The Canvas Module consists of a development process, which is based
on the creation of canvas artifacts in Section 6.3.2, and a visual notation, which is based on
the creation of the canvas models in Section 5.3.3. Here, the development process is split up
into the two partly interchanging phases of creation and refinement.

In the Creation Phase, the Business Developer fills out a Canvas Artifacts (e.g., Value
Proposition Canvas, Business Model Canvas) for the first time. He can select the corre-
sponding Canvas Elements from the Canvas Building Blocks or create new elements for the
model. Here, he might use the existing guiding questions and examples as support for his
ideation. Moreover, he can also use existing literature about possible business models like
the Business Model Generation book [OP10] or about potential business model patterns like
the Business Model Navigator pattern cards [GFC14] as input. For the best results during
the refinement phase, he needs to look up an existing similar element in the repository with a

7.3 Types of Support Modules 135

search functionality before creating a new one from scratch. The modeling of the repository
is described in Section 5.3.3.

In the Refinement Phase, the Business Developer improves the filled-out Canvas Ar-
tifacts with the knowledge of the Canvas Model Repository. Based on that knowledge, he
receives hints for possible strengths and weaknesses of his models, the search and identifi-
cation of patterns, and the comparison against existing organizations. Moreover, he has the
possibility to add competitors that models should be compared with his own designed one.
For that, we provide the following guidance mechanisms:

* Discovering Business Elements: First, during the design of new business models,
the knowledge is used as a library to discover possible business model elements that
the Business Developer might use. By providing descriptions for all elements, the
library ensures a common understanding between the Business Developer and other
Stakeholders. Moreover, the module provides the functionality to check the designed
business model against the defined constraints (modeled as requires relationship and
excludes relationships), which supports the Business Developer in building effective
business models.

» Suggesting Business Patterns: Next, the existing knowledge is also used to suggest
possible business model improvements to the Business Developer. For this, the module
provides functionalities to suggest possible business model patterns if parts of the
patterns are already used in the business model. Moreover, it supports the analysis
of strengths (modeled as support relationships) and weaknesses (modeled as hurt
relationships). This supports the Business Developer in focusing on the most critical

parts of the business model.

* Comparing Business Models: Finally, the Business Developer compares their designed
business models with examples of the knowledge. Here, it is possible to directly
choose competitors’ business models to analyze competitive advantages by differences
in the selected elements. Moreover, it is possible to search for similar existing business
models in the whole library by matching the own selected elements and the elements
of the organizations. These organizations, in turn, can be analyzed by the Business

Developer to gather more insights into his own business.

Based on the results of the guidance, the Business Developer has the option to choose
to improve the design of his canvas artifact or finish the design and start with the next

development step.

136 Support of Development Steps

Provided Meta Artifact The module is based on the Canvas Meta Artifact, where multiple
Canvas Artifacts (e.g., BMC, VPC) are created dynamically by the Method Engineer during
the knowledge provision. Here, he uses the existing Canvas Model Repository to create
canvas models with their structure and possible relationships, as explained in Section 5.3.3.
One exemplary canvas model where we provide design support is the Business Model Canvas,

as shown in Figure 7.11.

Key Partners Key Activities Value Propositions Customer Customer
Relationships Segments
Infrastructure . :
Provider Marketing Low Price Strategy
] H H
requires supports hurts
: : 5
1
0 Key Resolirces ! Channels
1 1 1
: : : r—— - 1
1 1 1
' : i | Influencer I
L N e —
i i I ™ Marketing GZ=IE G |
1
i ! Save Privacy | |
' I L _ __ __ _ Zalando__ 1
1 b ‘
Cost Styucture \/ i Revenue Streams
) excludes|
Infrastructure Marketing ' e
Costs Costs - --1-p-Advertisemen
Elements Relationships
r LI —— requires-- - _Relationship ===SUpPOIts - - - > _Relationship
Element | Instance |
L _ _ _ 1 ==--excludes--# Rejationship === hurts----- ¥ _Relationship

Fig. 7.11 Exemplary Visual Notation for the Canvas Artifact

The Business Model Canvas consists of the nine building blocks where Elements (e.g.,
Infrastructure Provider) are used to fill them. The Method Engineer provides additional
information during the knowledge provision, see Section 5.3.3, that the Business Developer
uses. Here, Instances group a set of elements to a pattern or organization (e.g., Zalando
with Mass Market and Influencer Marketing). Moreover, hard constraints of Requiring (e.g.,
Infrastructure Provider requires Infrastructure Costs) and Excluding (e.g., Save Privacy
excludes Advertisement) relationships might be defined. Last soft constraints of Supporting
(e.g., Marketing supports Marketing Costs) and Hurting (e.g., Low Price Strategy hurts
Influencer Marketing) relationships might be modeled.

7.3 Types of Support Modules 137

Provided Tool To use the corresponding meta artifact, we provide the Canvas Tool. Here,
the tool is able to create new and modify existing canvas models, providing guidance in the
creation process and a comparison against other canvas models. To support the development,
we provide a hook in the knowledge provision to add different canvas models as supporting
artifacts together with creating canvas elements and canvas building blocks. While a hook
creates the selection of the exact canvas model during the creation of method building blocks
for the Create Canvas Model support step, the composition is supported by a hook for the
model composition during the composition of the development method for the same step.
Each support step, in turn, is supported by a single component as a hook during the enactment.
To compose the Method Building Blocks, the Method Engineer chooses from the following
Development Support Steps. Here, all support steps, excluding the initial creation, have a
Canvas Meta Artifact as Input Step Artifact and Output Step Artifact:

* Create Canvas: The step creates an empty Canvas Artifact of the configured canvas
model that should be filled with elements in the next support steps.

 Edit Canvas: The step is used to edit an existing Canvas Artifact by adding, modifying,

and removing specific elements.

* View Canvas: The step is used to view an existing Canvas Artifact with its elements

based on the configured canvas model.

* Refine Canvas: The step is used to refine an existing Canvas Artifact by using the hints

and patterns from the composed model.

* Create Competitors: The step is used to create competitors on the existing Canvas

Artifact that are used for a competitor analysis in the next support steps.

» Edit Competitors: The step is used to edit the existing Canvas Artifact by modifying

or removing the created competitors.

* Compare Competitors: The step is used to compare the existing Canvas Artifact with

the created competitors within a competitor analysis.

Apart from the integrated Canvas Module, the Method Engineer might also use the
internal hypothesis modeling and mapping module to support the validation phase of the

Business Developer.

138 Support of Development Steps

7.3.2 Internal Hypothesis Modeling and Mapping Module

The internal Hypothesis Modeling and Mapping (HypoMoMap) Module [GYE20] is a devel-
opment support for the validation phase. Here, the idea is to provide a validation of customer
needs, including business models and product features, that are interpreted as hypotheses,
which need to be validated or disapproved by conducting experiments with the customer
[MWA19]. For that, we based our approach on goal-oriented requirements engineering that
is used to structure requirements as interrelated goals [vanO1] that needs to be proofed over
time. We transfer that concept to hypothesis engineering by modeling the hypothesis and
experiments as hierarchies with a mapping between them to mark which hypothesis can be
validated by which experiments. Moreover, we provide an approach to iteratively select the
optimal experiments that should be conducted to validate the customer needs.

The module can be directly used within our solution. For that, the Method Engineer
creates a Hypothesis-based Validation building block with the HypoMoMap Tool as Modu-
larized Tool and the HypoMoMap as Modularized Output Artifact. Moreover, he defines the
different Support Steps, like Create HypoMoMap, Edit HypoMoMap, Execute Experiments
in those building blocks. In the following, we give an overview of the module, the provided
meta artifact, and the provided tool. The implementation (see Section 8.2.2) and evaluation

(see Section 4.2) are shown in separate chapters.

Module Overview The HypoMoMap Module consists of a development process, which
is split up into the development support steps, and a visual notation, which is provided as a
meta artifact that contains a single static artifact. Here, the development process is divided
into the two partly interchanging phases of creation and validation.

In the Creation Phase, the Business Developer has to define hypotheses and experiments
at the beginning. While the hypotheses of the business model and the product features can
be derived from the business strategy and its product goals [OB14], the experiments can be
chosen from existing libraries [BO20]. Based on this, he needs to create a visual notation of
the Hypotheses Lake for modeling the hypothesis to validate and Experimentation Island for
modeling the experiment to conduct, as exemplarily shown for the meta artifact in Figure
7.12. For this, the hypotheses and experiments are structured in interrelated hierarchies. Here,
each hypothesis has to be decomposed into separately validatable units, which are connected
with AND/OR relationships. With the term validatable units, we mean to split the hypotheses
into small assumptions, which can be validated with strong evidence within an experiment.
Moreover, the validation of these small assumptions can support the validation/disapproval
of different hypotheses. While in the beginning, all hypotheses are labeled with the type

untested with no estimated evidence, the Business Developer has to estimate the evidence and

7.3 Types of Support Modules 139

costs of the experiments or use the predefined values of the Method Engineer. Those prefined
values can be deposited during the knowledge provision. To support this process, he can
use the experimentation catalog, which has been proposed in [BO20]. Moreover, he has to
prioritize the essential hypothesis to consider at the beginning. After that, he needs to create
the mapping of hypotheses to experiments where all hypotheses are mapped to experiments
that can be used for validation. Here it is crucial to choose alternative experiments for
each hypothesis so that different hypotheses can be validated/disapproved with the same
experiment.

In the Validation Phase, the Business Developer has to choose and conduct experiments
iteratively. Because this choice is a critical part, we provide three different techniques, which

have different outcomes and are, therefore, used for different settings:

* Highest Priority: With this setting, a hypothesis with the highest priority is chosen.
This setting is also used by other models [OB14, FSMM17] and ensures that the most

important assumptions are validated first.

* Best Estimated Ratio: With this setting, an experiment with the maximum of hypothe-
ses evidence gain, which can be validated in a single execution of the experiment in
comparison to the costs of the experiment, is chosen. The hypotheses evidence gain is
defined by the accumulated evidence scores between the current evidence score and the
estimated evidence score with the experiment of all selected hypotheses. This setting

is used to maximize the validated learning by also considering the costs.

* Best Discounted Ratio: Within this setting, the hypotheses evidence gained from single
hypotheses in the best-estimated ratio is discounted with their priority. With this, a

focus the validated learning on the most critical assumptions is established.

After conducting the selected experiment, the Hypotheses Lake and Experimentation Island
have to be updated. For this, each tested hypothesis is typed as validated or disapproved with
the evidence score of the experiment. Additionally, the evidence scores are propagated to
the higher levels of the hierarchy. While with an OR-relationship, the higher hypothesis is
set to the evidence score of the lower hypothesis, the AND-relationship assumes the lowest
evidence score of all lower hypotheses. Moreover, new hypotheses that are derived from the
experiment can be added to the model. In the end, the mapping of hypotheses to experiments
needs to be updated. For this, all mappings between hypotheses and experiments which
do not provide further evidence gain are removed. Moreover, the mappings between new
hypotheses and experiments might be needed. The validation phase is repeated until there is
no further experiment on the Experimentation Island that provides additional evidence for

the hypotheses of the Hypotheses Lake.

140 Support of Development Steps

Provided Meta Artifact The module is based on the HypoMoMap Meta Artifact, where, in
contrast to the Canvas Meta Artifact, just a single HypoMoMap Artifact is statically created.
Here, that artifact, which exemplary visual notation is shown in Figure 7.12, consists of a
Hypotheses Lake and an Experimentation Island.

Hypotheses Lake Experimentation Island
okt Yokl —
Revenue Customer Landing Page USES Landing Page
OR K v K 1
it ORI OR COMPOSE ~ COMPOSE
Subscription | , (Advertisemen Kids 0 Adults Information Page Preselling Page
4060 || T OO0 SOO00 | 1\ 99O 080
1
: | 1-Optin Rate- |- - -! ! :
0 I_ Registration Rate = =g = == = = = = = = = | [P ! X
L ccooad ConversionRate = €= = = = = = = = - = oo ooooocooocooooo oo !
AND AND
] AN
; Sokoktok Jok'oo't Yololoiok
Rating Func. | Gender Age Customer Analy. JUSESps| Customer
i 4 (el 0 ool 08800 Data
1
! P\ A
1 1 __ _
/OR : OR : OIR OR\ 1| COMIIDOSE COMPOSE
; 1~ ool | Yoot Yookt 11 7 Skl Joksolole
Like 1 Stars 1 Male Female ' Data Analysis Customer Sur.
1IN0 L 4 (%0 : 008000 008°0
1
1 : : A A
1 L - — - - Gender Distribution- - - 3 — = - - — 1
1
1 I_ _ - _Customer Feedback - - |
lccooococooood Customer Feedback= = = = H= = = = = = = = = = = = 0 == = F
Elements

, . ——
Validated Disapproved Untested £ . ¢ _
Hypotheses Hypotheses Hypotheses xpenmen Artifact

Links and Attributes

—AND— AND-Relationship ——USES— USES-Relationship FHAOKOX Evidence Score
—OR— OR-Relationship ~COMPOSE—> compoSE-Relationship @@OOO Exp. Costs
<t - {metric} - £ Mapping from Hypotheses to Experiments @06 -~ Priority

Fig. 7.12 Exemplary Visual Notation for the HypoMoMap Artifact

In the Hypotheses Lake, different elements of hypotheses (i.e., Validated Hypotheses,
Disapproved Hypotheses, Untested Hypotheses) are modeled with corresponding estimated
evidence (e.g., Kids with a score of 2) and a priority (e.g., Kids with a priority of 2). The

hypotheses can interrelate in a hierarchical order similar to the Canvas Building Blocks

7.3 Types of Support Modules 141

in Section 5.3.2 (e.g., Customer is decomposed into Kids). The hierarchy can be made
with AND/OR relationships. While with an OR-relationship, each hypothesis in a higher
hierarchy level can be validated with a single lower interrelated hypothesis (e.g., Customer or
Kids), the AND-relationship provides only validation to a higher hypothesis by validating all
lower interrelated hypotheses (e.g., Kids into Age and Gender). Moreover, each hypothesis
is mapped to the experiments, which are used to validate or disprove the hypothesis (e.g.,
validate Gender with Data Analysis). For the mapping, we explicitly model the metric used
to validate the hypothesis so that during the conduction of the experiments, different metrics
might need to be measured (e.g., Gender Distribution for Gender).

On the Experimentation Island, different elements of experiments (e.g., Data Analysis)
and corresponding artifacts (e.g., Customer Data) are chosen. Each experiment has estimated
evidence and costs (e.g., Data Analysis with a score of 3 and costs of 3) and can use different
provided artifacts. Moreover, the experiments can be decomposed into more accurate
experiments of the same type (e.g., Customer Analysis to Data Analysis and Customer

Survey).

Provided Tool To use the corresponding meta artifact, we provide the HypoMapMap Tool.
Here, the tool is able to model and map the hypotheses and experiments as well as choose
and conduct the experiments. To reduce the configuration time, we provide a hook in the
knowledge provision to add experiments and artifacts in a structured form by the Method
Engineer so that they can be used for different validation steps by the Business Developer. To
compose the Method Building Blocks, the Method Engineer can choose from the following
Development Support Steps. Here, all support steps, excluding the initial creation, have a
HypoMoMap Meta Artifact as Input Step Artifact and Output Step Artifact:

* Create HypoMoMap: The step creates an empty HypoMoMap Artifact that should be
filled with hypotheses and experiments during the next support steps.

Edit HypoMoMap: The step is used to edit an existing HypoMoMap Artifact by adding,

modifying, and removing specific hypotheses and experiments.

* View HypoMoMap: The step is used to view an existing HypoMoMap Artifact with its
executed experiments and the validation state of the hypotheses.

Add Hypotheses: The step is used to add new hypotheses to an existing HypoMoMap
Artifact that should be validated within the experiments.

* Add Experiments: The step is used to add new experiments to an existing HypoMoMap

Artifact and create a mapping to the existing hypotheses.

142 Support of Development Steps

» Execute Experiments: The step is used to conduct certain experiments from an existing

HypoMoMap Artifact by providing different selection options for the experiments.

Instead of the internal HypoMoMap Module, the Method Engineer might also use the
external crowd-based prototype validation platform to support the validation phase of the

Business Developer.

7.3.3 [External Crowd-based Prototype Validation Platform

The external Crowd-based Prototype Validation (CBPV) Platform [GAYE21, GPYE22] is the
largest development support for the validation phase that we have created within our thesis.
Here, the idea is to use aggregated user feedback that can be provided iteratively on software
prototypes, including product features and the business model, before the development to
judge the idea behind the product and save development resources [LM16]. For that, we
based our solution on crowdsourcing techniques [Leil2] that can be used to collect feedback
from many potential users. Here, the collaborative intelligence of many potential users is able
to reduce the bias of the single business developer [BS07] and therefore support the product
validation. The platform is an external software artifact that is not directly integrated as an
Development Support Module. However, the Method Engineer can create a Crowd-based
Validation building block with the CBPV Platform as Tool, and Prototype Information as
possible Output Information Artifact.

To design the platform, we conducted a separate DSR study with three design cycles to
develop a platform for software developers to support the prototype validation process using
the crowd. We evaluated the third cycle of the thesis and the second cycle of the platform
in the same user study as presented in Section 9.2. Within the platform study, we provided
abstracted design knowledge in the form of design principles and an overall solution concept,
together with a situated implementation of design features and a software artifact. While in
the following, we present our underlying research approach, the derived design principles
and the conceptual solution design, the situated implementation (see Section 8.2.2), and

evaluation (see Section 9.2) are shown in separate chapters.

Research Approach As a research approach, we use DSR to gain abstracted design
knowledge about the crowd-validation of software prototypes that different software designers
can implement into their new and existing software tools. With this study, we aim to answer
the RQ of how to design platforms that integrate crowdsourcing techniques in the iterative
validation of prototypes. For DSR, we use the cycle of Kuechler and Vaishnavi [KV08] that

is also used within the overall research approach of our thesis as presented in Section 1.2.

7.3 Types of Support Modules 143

Within this study, we aim to solve the problem of crowd-validation of mobile application
prototypes but also ensure that they can be generalized to related application areas. For
this, we use design principles (DP) to codify the knowledge in a transferable way [GKS20].
Moreover, we base our DSR on the opportunity creation theory (OCT) [ABA13], as also used
in our overall research approach, as kernel theory to stick in line with similar approaches like
business model validation [DLE17] or venture ideation [Vog17] from digital entrepreneurship
[Nam17]. The cycle, as shown in Figure 7.13, consists of the following five iteratively
conducted steps. First, we identify the (/) Awareness of [the] Problem based on a real-world
problem and provide a (2) Suggestion of a possible solution. Next, we work on the (3)
Development of the software artifact and conduct an (4) Evaluation of it. Based on the
evaluation results, another iteration is conducted, and/or our research contributions as (5)
Conclusion are provided. The contribution of our study, compared to the contribution types
in Figure 1.6, are the nascent design theory of our design principles (Level 2) together with

the situation implementation of our software platform (Level 1).

DSR Cycle First Cycle Second Cycle Third Cycle

I?eriving Design Revisiting DRs from _
Requirements (DRs) from Lessans Leaimes ame Revisiting DRs from

Literature Review and Tool additional Literature Lessons Learned
Analysis

Conceptualizing of Design

Principles (DPs) based on Revisiting of DPs and Revisiting of DPs and
Theoretical and Empirical Concept Concept
Findings

Formation of Design
Principles to Design
Features (DFs) and

Revisiting of DFs and

Reinstantiation as RS CI LB

Improvement of Prototype

Instantiation as Prototype Rl g
Evaluation with Expert Evaluation with User Evaluation with User
Workshop (n=6) and Study (n=14) and Study (n=26) and
Questionnaire Questionnaire Questionnaire

Communication of Design
Knowledge and Prototype

Fig. 7.13 DSR Process for the CPBV Platform

In the First Cycle, we got aware of the problem by conducting a literature review and tool
analysis in the application areas of lean development, UI prototyping, and crowdsourcing to

derive initial design requirements (DRs) for our approach. Based on mapping the theoretical

144 Support of Development Steps

and empirical DRs, we suggested our first design principles (DPs) together with a preliminary
concept. Out of that DPs we developed the first design features (DFs) and instantiated them
in a software prototype. Last, we evaluated them in an online expert workshop (n=6), where
we explained the overall concept, showed the software platform, and asked for feedback.
Subsequently, we gave the experts access to the platform. We sent out a questionnaire to rate
the importance of the DPs and provide feedback on the overall idea, the proposed solution,
the current drawbacks of the platform, and additional feedback.

In the Second Cycle, we took the lessons learned from the expert workshop together
with additional literature to revisit the underlying DRs. Based on that, we also revisited our
DPs and the suggested concept. This lead also to a redevelopment of the DFs and a complete
new instantiation of the software prototype. We evaluated the DPs and the prototype in a
student seminar on the lean development of mobile applications. Here, the students (n=14)
were divided into different groups (g=6) to develop an idea for an app within the seminar
iteratively. Here, one student per group needed to upload their prototype with questions
to the platform. Next, every student gave feedback on two predetermined prototypes by
answering the questions that could be used to improve the prototypes. Last, the students
evaluated the prototype of the platform on the platform itself by rating the importance of the
DPs together with feedback on the overall idea, the proposed solution, the current drawbacks
of the platform, and additional feedback.

In the Third Cycle, which results are also shown within this thesis, we took the lessons
learned from the user study to revisit our DRs. Out of that, we improved the DPs and the
overall solution concept. Moreover, we improved the DFs and the existing software platform
based on those changes. We evaluated the DPs and the prototype similar to the second
cycle in a student lecture for the systematic development of AR/VR applications. Within the
lecture, the students (n=26) had a mini project where they needed to develop such an AR/VR
application in a group (g=8). Again, one student needed to upload the prototype, each student
needed to evaluate two predefined prototypes, and all students needed to evaluate the DPs

together with the platform.

Derived Design Principles We codify our abstracted design knowledge during the design
science study within the DPs. Here, each DP shows a certain aspect of the platform and is
based on the revisited DRs during the three cycles. Here, those DRs were derived from a
literature review and tool analysis on the topics of lean development, UI prototyping, and
crowdsourcing. In the following, we show the nine DPs together with references to literature
and tools that build the foundation for the mapped DRs.

7.3 Types of Support Modules 145

DP 1: User Variety states that the solution should provide functions for integrating
different internal and external users (e.g., platform user, crowd worker) to allow developers
to participate with a heterogeneous group of users within the validation process. In liter-
ature, this is reasoned by the fact that developers in early product development have high
uncertainties that can be validated by testing the underlying assumptions [Blal3]. By using
the knowledge of a crowd, the assumptions can be proven [MNJR16], and the biases of
the developers can be reduced [BSO7]. Here, the users can come from internal sources like
employees or external sources like Amazon Mechanical Turk!.

DP 2: Task Iteration states that the solution should provide functions for conducting
tasks iteratively to allow developers an incremental improvement of the prototypes over time.
In literature, this is reasoned by the fact that user feedback could support the adjustment
of product features [Riel4] and the business model [McG10] to the market. For that, that
feedback can be provided by a crowd of users like with ClickWorker? where the rapidness of
the given feedback is a critical factor of success [Blal3].

DP 3: Prototype Diversity states that the solution should provide functions for inte-
grating different types of prototyping (e.g., mockups, click dummies) to allow developers a
flexible choice for their current validation developments. In literature, this is reasoned by
the fact that depending on the stage of the product development, also different prototypes
like textual descriptions, images, or click dummies can be used [LCK ™ 11]. Here, different
prototypes can ensure the refinement of the product features or business model over time
[OB15]. For the visualizations, also external tools like Figma3 can be used.

DP 4: Feedback Diversity states that the solution should provide functions for integrating
different types of feedback (e.g., free texts, ratings) to allow developers a flexible choice for
their current validation challenges. In literature, this is reasoned by the fact that depending
on the type of the development stage also, different types of feedback are necessary [BO20].
Depending on the type of test, that feedback can consist of qualitative or quantitative
information [OB15]. Different types of feedback are also integrated within the prototyping
tool of UIGiants*.

DP 5: Filter Mechanisms states that the solution should provide functions for the
filtering between users and tasks to allow developers and users to shortlist evaluations based
on specific criteria (e.g., skill set, interests). In literature, this is reasoned by the fact that to
ensure the quality of the feedback, the tasks must be just conducted by users of a relevant

target group of the developer [MYW ™ 15]. Conversely, users should see only tasks in which

'Website of Amazon Mechanical Turk: https://www.mturk.com
2Website of ClickWorker: https://clickworker.com

3Website of Figma: https://www.figma.com

“Website of UlGiants: https://www.uigiants.com

https://www.mturk.com
https://clickworker.com
https://www.figma.com
https://www.uigiants.com

146 Support of Development Steps

they are interested [KCS08]. Amazon Mechanical Turk also uses two-sided filtering between
the task provider and the crowd worker.

DP 6: Aggregation Mechanisms states that the solution should provide functions for
aggregating and visualizing the feedback to allow developers to provide understandable
and traceable improvements to the prototypes. In literature, this is reasoned by the fact that
depending on the number of individual user feedback, it could be a time-consuming and
challenging activity to process them. Here, the feedback should be provided to the developer
in an aggregated form for fast processing [GSS™11]. Moreover, appropriate visualizations
should support the developers in interpreting the feedback [XHB14]. ClickWorker also
aggregates the results of conducted tasks from different crowd workers.

DP 7: Incentive Mechanisms states that the solution should provide functions for
supporting extrinsic and intrinsic incentives (e.g., rank lists, money) to allow developers
to motivate users in the validation process. In literature, this is reasoned by the fact that
giving valuable feedback is time-consuming and should ideally be done regularly [Riel4].
Therefore, users should be offered extrinsic incentives like money or intrinsic incentives like
fame [HH12]. While money is used as an extrinsic incentive by Amazon Mechanical Turk,
intrinsic incentives like ratings and views are used by social media platforms like YouTube".

DP 8: Non-Disclosure Mechanisms states that the solution should provide functions for
integrating non-disclosure agreements to allow developers to protect their prototypes from
user thefts. In literature, this is reasoned by the fact that developing new ideas is a creative
and challenging activity that often needs the collaboration of various stakeholders [EBL16].
Depending on the trust between the developers and the users, non-disclosure agreements can
be necessary for a more intensive idea exchange [FCP12]. Those agreements are also often
requested by clients on projects with a larger volume on the micro job platform Fiverr .

DP 9: Governance Mechanisms states that the solution should provide functions for
integrating governance into the process to allow the platform owner to take necessary actions
against developers and users that misusage the validation process. In literature, this is
reasoned by the fact that providing valuable interactions between the developers and the users
is the key task for the platform to stay successful. Good governance of those interactions
will let the users stick much longer on the platform [ES16]. Here, governance in terms of
policies, regulations, and accountability should be provided by the platform [PvC16]. This,
in turn, must be implemented in nearly every platform like Innocentive 7, which aims to

solve problems.

SWebsite of YouTube: https://www.youtube.com/
%Website of Fiverr: https://www.fiverr.com
"Website of Innocentive: https://www.innocentive.com

https://www.youtube.com/
https://www.fiverr.com
https://www.innocentive.com

7.3 Types of Support Modules 147

Conceptualized Solution Design Out of the codified DPs for the abstracted design knowl-
edge, we conceptualize an overall solution design of the CBPV platform as visualized in
Figure 7.14. It consists of the three roles of the Developer, the User, and the Platform Owner
and the five components of the Task Creation, the Task Conduction, the Task Evaluation, the
Task Incentivisation, and the Task Approval.

DP2
create Crowd-based Prototype Validation Platform =
or (1) Task Creation (2) Task Conduction
iterate DP3 DP5 DP3 conduct
task task

|
Sers

Dev: e?opers
receive ﬁ

T _ <_J incentives requLst

ot o Task Bvauation i aggegaion) |

o R R s 4

incentives! Incentivisation Platform
governsO\]Nner

approve DP8

Lommore] o[Taskapproval R G) [+ [0 o

~ A

Legend :
Stake- o Design

—> Platform | |Component 9
holder Aetivities ‘ ’ ‘ P ’ - Principle

Fig. 7.14 Solution Design for the CPBV Platform

In the beginning, different Developers and Users (i.e., DP 1) register to the platform,
each with a specific profile of their skills. After that, the Developer creates a new or iterates
an existing task (i.e., DP 2) in the Task Creation by creating different types of prototypes
(i.e., DP 3), preparing different types of questions (i.e., DP 4), and selecting specific criteria
for users (i.e., DP 5). Next, the User selects different tasks (i.e., DP 5) in the Task Evaluation,
depending on the approval process, executes the prototype (i.e., DP 3), and provides feedback
(i.e., DP 4). This feedback is aggregated and visualized (i.e., DP 6) in the Task Evaluation
and displayed to the Developer. Based on that, the Developer can provide intrinsic and
extrinsic incentives (i.e., DP 7) to the Users in the Task Incentivisation. Moreover, the
Developer can decide on an automatic selection of access to the prototypes with or without
the usage of a non-disclosure agreement (i.e., DP 8) in the Task Approval. Here, a manual

selection is possible where the users ask for approval and get access to the prototype. Last,

148 Support of Development Steps

the Platform Owner governs the whole platform against misuse (i.e., DP 9) by moderating

developers/users and tasks.

7.4 Summary

Within this chapter, we have provided the conceptual solution for our third stage in support
of the development steps. For that, we have shown the modeling and integration of support
modules together with their construction and execution for concrete development steps.
Moreover, we have provided three exemplary modules that can be used to support the
development of business models.

For the Development Support Modularization, we have defined an extension for the
method elements to allow the atomic modeling of support tools and meta artifacts. Based on
that, we have extended the method building blocks to allow the composition of development
support steps for a single building block. Last, we have shown the enactment of that
development support based on the execution of those support steps in those building blocks.

For the Module Types, we have provided the integrated canvas module to allow support
in the design of canvas models based on the canvas model repository. Moreover, we have
presented the internal HypoMoMap module that allows the continuous validation of assump-
tions about the business model and the product features. Last, the external CBPV platform
allows the continuous validation of different prototypes with feedback from the crowd.

Based on the support of development steps and the other two previous stages, we will
show the situated implementation of our solution within the next chapter. Here, we will show
our underlying modularized architecture with a general overview and a focus on the usage of
the support modules. Moreover, we will show our implemented software tool together with

the developed support modules.

Part 111

Implementation, Evaluation, Conclusion

Chapter 8
Implementation

In the previous chapters, we showed a conceptual overview together with detailed instructions
about all three stages of our approach. Based on that, this chapter presents the modularized
architecture for our solution together with an implemented software tool. For that, we first
introduce our modularized architecture on which the software tool relies, together with
the technologies used (8.1). Based on that, we present our software tool together with the

implemented support modules (8.2). Last, we summarize the results of both (8.3).

8.1 Modularized Architecture

In this thesis, we have proposed a situation-specific BMD approach in the application domain
of software ecosystems. For that, we have presented a solution with the three stages of
knowledge provision of methods and models, composition and enactment of development
methods, and support of development steps. Based on that, we designed a modularized
architecture for a software tool that covers all those stages. Inside that architecture, we focus
on the extensibility by using different development support modules.

In this section, we first introduce our designed architecture with the integration of the
development support modules (8.1.1). Based on that, we present the applied technologies to
the architecture to develop the software tool (8.1.2).

8.1.1 Designed Architecture

The designed architecture is used to structure the development of the software tool. An
overview of that Modularized Architecture 1s presented in Figure 8.1. Here, we have the
main components of the Knowledge Provision Manager, which is responsible for managing
the knowledge of the methods and the different meta artifacts, the Development Method

152 Implementation

Composer, which is responsible for composing the development method based on the
method and the connected meta artifacts, and the Development Method Enactor, which is
responsible for enacting the development methods and conducting of development steps to
create artifacts. All main components are connected to the Development Support Modules,
which are responsible for providing development support for certain development steps. The
component diagram of our modularized architecture, which is explained in more detail in the

next paragraphs, can be seen in Figure 8.2.

Modularized Architecture

Knowledge Development Development
Provision Manager Method Composer Method Enactor

EjCD—::@—
()

[
> 7~
Q Q

[Development Support Module @]

Fig. 8.1 Overview of the Modularized Architecture

In the Knowledge Provision Manager, we have the Method Provider, which is responsi-
ble for creating the method repository, as shown in Section 5.2. Within the method provider,
the method elements, method building blocks, and method patterns are created. Moreover,
the provider composes the development support steps by using the Support Step Information
Interface and additional Support Step Configuration Hooks from the Development Support
Tools as presented in Section 7.2.2. With those steps, the provider interacts with instances of
the Development Support Meta Artifact that are provided by the Meta Artifact Information
Interface, as explained in Section 7.2.1. To use those support tools and meta artifacts of the
Modules, the Module Provider contains a Module Registry to integrate different Development
Support Modules in the software tool. The meta artifacts are also able to provide an Artifact
Provision Hook, which is enabled by the Meta Artifact Provider. One example of such an
artifact provider would be the creation of the canvas model repository, as shown in Section
5.3. Here, within that specific artifact provider, the canvas elements, canvas building blocks,
and canvas models are created.

In the Development Method Composer, we used the Provided Knowledge to compose
the development method. For that, the Context Manager provides the Situational Factors
and the Application Domains, as explained in Section 6.2.1. The factors are used by the
Method Composer to construct the methods as explained in Section 6.2.2. During the method
construction, the different method patterns are nested for the pattern-based construction, or

8.1 Modularized Architecture 153
Modularized Architecture z]
Knowledge Provision Manager]
Modules H\
@) (Module
Method Meta Artifact Module j\ Registry)
Provider il Provider il Provider il Q
! I
()
Provided Knowledge
Development Method Composer £]
Modularized
(5 Artifacts
=74
Method Context @ Artifact $:|
Composer Manager Composer
C 2 Situational Application_CP
Factors Domains
@
Composed Development Methods
1
Development Method Enactor ol
Method _Executlon—©_ Execution Step
Steps -
Enactor Enactor
|
\CPJ (Collaboration Support) Modularized Artifact
Development Steps f’\ /\
PrieT e Q Q
Development Collaboration Artifact
Step Enactor il Manager il Manager il
Collaboration O
Information]’ Y
Information
Artifact
Development Support|Module i
Support Step Support Step Support Step Meta Artifact Artifact Artifact
Information Configuration ~Enactment Information Enactment Composition
Interface Hooks Hooks Interface Hooks Hook
Q (®) Q QO O
Artifact
Development Support Tool Z] FArtifact API—@ DRV ERImET S.UPP RO zl Provision-
Artifact Hooks

Fig. 8.2 Component Diagram of the Modularized Architecture

154 Implementation

the phases are filled for the phase-based construction. To allow development support, as
presented in Section 7.2.2, the Support Step Information Interface provides corresponding
execution information about the steps, and the Support Step Configuration Hooks are used
for additional configurations of steps with parameters. Modularized Artifacts are enhanced
with additional knowledge using the domain and the Artifact Composer with an Artifact
Composition Hook from the meta artifact. One example of such an Artifact Composer would
be the composition of canvas models, as shown in Section 6.2.3. Those canvas models
are constructed using feature-based or taxonomy-based consolidation. Last, the Context
Manager can also be used to change the context and modify the composed methods and
models under the usage of the other composer, as presented in Section 6.3.3.

In the Development Method Enactor, we used the Composed Development Methods
to develop the business models. For that, the Method Enactor executes the development
method as presented in Section 6.3.1. Within the method enactor, the development method is
visualized using the nested method patterns or the different phases. The Development Step
Enactor takes the Development Steps and, based on the development support, creates the
Information Artifacts, as presented in Section 6.3.2, or uses the Support Step Information
Interface to split the atomic Execution Steps, as shown in Section 7.2.3. By creating the
Information Artifacts, it uses the Collaboration Support from the Collaboration Manager
explained in 6.3.2. The Execution Step Enactor takes those Execution Steps and executes
them with the corresponding Support Step Execution Hooks, presented in 7.2.3. One example
of such execution hooks are the creation, editing, and refinement of canvas models, as
explained in Section 7.2.3. Here, also Collaboration Support is used for each step. Last,
those Modularized Artifacts are stored within the Artifact Manager. Here, each meta artifact
provides different Artifact Enactment Hooks to create, read, update and delete those artifacts.
Moreover, the Collaboration Information is stored with each artifact.

To support the creation and modification of artifacts by the Development Support Tool,
each Development Support Meta Artifact provides an Artifact API. If the Meta Artifact
should also be used by other Development Support Developers, that API should be explained
in detail by the developer. Based on that modularized architecture, we applied different
technologies to support and efficient development of the software tool.

8.1.2 Applied Technologies

To implement the software tool based on our designed architecture, we use different web
technologies to increase the quality of our tool and support an easy extension in the future.

Those are the Angular Framework and Bootstrap for the frontend, PouchDB and CouchDB

8.1 Modularized Architecture 155

as databases, and the BPMN.js Library, the Quill Editor and the JSON Schema Vocabulary
as additional libraries.

For the Frontend, we based the whole architectural logic on Angular'. Here, Angular
is a framework for building single-page client applications based on HTML for the visual
representation and TypeScript for the control logic. TypeScript? is a strongly typed program-
ming language based on JavaScript. This allows developers the fast and secure development
of web-based applications. The main parts of an Angular application can be seen in Figure
8.3%. Here, those parts can be divided into modules, components, templates, services, and

directives.
Mocluele lodule
l ice
Module Aoolule Dilrective
alie Fr r
g £ h
Property) Event
—_____,...-—-—1 4 rpL -1 + I y £
_ Property Metadatn Vet
L eEny Binding Blnawmg

xJL,_z.

COoVATOWEINT

— '{_'J‘:?\’J-‘

Fig. 8.3 Main Parts of an Angular Application

The architecture of Angular is split up into different Modules, where each module contains
a subset of functions to achieve a certain goal. Those modules, in turn, can be imported and
exported among different Angular applications. Here, each application has a root module
that is started during the launch of the application and imports other modules to provide
additional functionalities. Inside those modules, Components provide an application logic for
the application with customized functionalities. Overall, the root module needs to provide an
initial root component that can be triggered during the application launch.

The root module of our situated implementation with the imported components is shown

in Listing 8.1. Here, we import the standard modules of Angular (e.g., N¢gModule), modules

"'Website of Angular: https://angular.io/
2Website of TypeScript: https://www.typescriptlang.org/
3 Architecture of Angular: https://angular.io/guide/architecture

https://angular.io/
https://www.typescriptlang.org/
https://angular.io/guide/architecture

10
11
12
13
14
15
16
17
18

156 Implementation

for the additional libraries (e.g., QuillModule), and used components (e.g., ToolExplana-
tionComponent). For the situated implementation of the Development Support Modules, we
used separate Angular modules for the Development Support Tool (e.g., CanvasModule) and
the Development Support Meta Artifact (e.g., CanvasMetaArtifactModule) to allow a more
flexible combination of meta artifacts with different support tools. Moreover, within our
solution, we provide a generation of code stubs for the support tools and the meta artifacts.
After installing our software tool as explained in Appendix B, the command of ng gener-
ate ./module-schematics:tool-module can be run the command line for creating a support
module and the ng generate ./module-schematics:meta-artifact-module for a meta artifact.
Both commands will start a configuration process based on Angular Schematics*. Here,
Angular Schematics is a template-based code generator integrated into the Angular CLI to
improve the coding efficiency for similar reusable code. While inside this section, we show
the basic functionalities of those generated hooks, a technical documentation is provided
together with the source code of our software tool. During the launch of the software tool,
the AppComponent is started as the root component. Here, all modules, including the one
for particular development support, are imported to the root module so the modularized
architecture can access them. Moreover, all modules have access to a separate database
service for the PouchDB to store their data without limiting constraints.
import { NgModule } from ’@angular/core’;
import { QuillModule } from ’ngx-quill’;
import { CanvasMetaArtifactModule } from ’./module/canvas/canvas-meta
-artifact/canvas-meta-artifact.module’;
import { CanvasModule } from ’./module/canvas/canvas/canvas.module’;
import { AppComponent } from ’./app.component’;

import { ToolExplanationComponent } from ’./tool-explanation/tool -

explanation.component’;

//

@NgModule ({

imports: [

NgModule,

QuillModule.forRoot ({
format: ’json’,

b,

CanvasMetaArtifactModule,

CanvasToolModule,

7 o

“Website of Angular Schematics: https://angular.io/guide/schematics

https://angular.io/guide/schematics

19
20
21
22
23
24
25
26
27
28

8.1 Modularized Architecture 157

1,
declarations: [
AppComponent ,
ToolExplanationComponent,
/] ..
1,
providers: [],
bootstrap: [AppComponent],
b
export class AppModule {}

Listing 8.1 Root Module for the Modularized Architecture

Those functionalities are connections by interactions with a template. Here, the Template
is an HTML file with additional Angular markup code, which allows a file modification
before its rendering. Those templates can also be designed using Bootstrap. Bootstrap is an
open-source CSS framework for responsive user interfaces of websites. Components and
templates can be connected in both directions using property binding and event binding. Here,
Listing 8.2 shows a part of our AppComponent, where we include the app.component.html as
a template. Moreover, both are connected through a binding so that a logout command in the
template will trigger the authService to log out the user.

import { Component } from ’Q@angular/core’;
70 oo
@Component ({
selector: ’app-root’,
templateUrl: ’./app.component.html’,
styleUrls: [’./app.component.css’],
b
export class AppComponent {
constructor (
private authService: AuthService,
7 oo o
) L /) ook

logout () : void {

this.authService.logout () .subscribe ();

70 oo

Listing 8.2 Root Component for the Modularized Architecture

SWebsite of Bootstrap: https://getbootstrap.com/

https://getbootstrap.com/

1
2
3
4
5
6
7

O 0o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

158 Implementation

Those rendering is supported dynamically by using directives. Here, Directives access
the document object model as a bridge for the HTML structure by using Create-Read-Update-
Delete (CRUD) operations on the elements. Last, Services enable the integration of additional
functionalities that could be used by multiple components. Those services are injected into
the components that should use the functionalities. Within Angular, we use services to
provide correct execution steps for the development support and use the internal navigation
component to include components such as hooks. An example of the canvas tool is shown
in Listing 8.3. Here, the CanvasService creates and registers a new Module with a name,
used methods, the reference to a CanvasApiService, and items added to the navigation bar
for specific roles. The used methods are defined as a ModuleMethod containing the different
development support steps with inputs and outputs. Moreover, with the CanvasApiService,
which implements a standardized ModuleApiService, each of those support steps is connected
to a dedicated component using the internal routing system. Moreover, the functionalities
for creating, editing, and viewing meta artifacts are registered using the registry of the
CanvasMetaArtifactApiService.

@Injectable ({
providedIn: ’root’,

b

export class CanvasService {
constructor (

private canvasApiService: CanvasApiService,

private canvasMetaArtifactApiService: CanvasMetaArtifactApiService

>

//
) {3

init () : void {
const module = new Module (
’Canvas Tools’,
’Canvas Module’,
this.getMethods (),

this.canvasApiService,

[

name: ’Model Composition’,
route: [’companyModels’],
roles: [InternalRoles.EXPERT],
¥o
//

25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40

41
40
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62

8.1 Modularized Architecture 159

)

this.moduleService.registerModule (module) ;

console.log(’Registered Canvas Module’);

// Similar registrations for edit and view the artifacts

this.canvasMetaArtifactService.registerCreateMethod (this.

createModel) ;

// Similar functions for edit and view the models

async createModel (

router: Router,

reference: Reference,
artifactId: DbId

): Promise<void> {

const queryParams = referenceToApiQueryParams (reference) ;
await router.navigate([’canvas’, artifact’, artifactId, ’create’
1, {
queryParams,
I

private getMethods (): ModuleMethod [] {

const formBuilder = this.fb;

return [

//
{

name: ’editCanvas’,

description: ’Edit a canvas’,

input: [{ name: ’Canvas’, type: CompanyModel.typeName }],

output: [{ name: ’Canvas’, type: CompanyModel.typeName }],

isMethodCorrectlyDefined: this.isMethodCorrectlyDefined.bind (

this),

getHelpTextForMethodCorrectlyDefined:

this.isMethodCorrectlyDefinedHelpText.bind (this),

Listing 8.3 Service for the Canvas Tool

O 0 N N bW

10
11
12

13
14

15
16
17
18
19
20
21

22

23
24
25
26
27
28
29
30

160 Implementation

The CanvasMetaArtifactApiService, which is shown in Listing 8.4, implements the standard-
ized MetaArtifactApi with functionalities for creating, editing, and viewing the artifacts using
the registered canvas tool in the CanvasService. Moreover, additional functionalities for
getting the name of an artifact, copying, removing, and comparing it need to be implemented.

@Injectable ()
export class CanvasMetaArtifactApiService implements MetaArtifactApi
{
createMethod?: MetaArtifactApi[’create’];
editMethod?: MetaArtifactApil[’edit’];
viewMethod?: MetaArtifactApil[’view’];

constructor (
//
) {}

// Edit and view hooks are similar to create

create (router: Router, reference: Reference, artifactId: DbId):

void {
if (this.createMethod == null) {
console.warn(’No module for the creation of canvas models added
F
} else {

this.createMethod (router, reference, artifactId);

// Copy and remove artifacts are similar to create
async getName (model: ArtifactDataReference): Promise<string |
undefined> {
const companyModel = await this.companyModelService.get(model.id)
if (companyModel.instances.length > 0) {
return companyModel.instances [0].name;
}

return undefined;

Listing 8.4 API Service for the Canvas Meta Artifact

1
2

8.1 Modularized Architecture 161

For the Database, we use NoSQL as a storage and retrieval mechanism to allow flexible
usage for the artifact management of the different modules. Here, PouchDB? is a JavaScript
database that directly runs within different web browsers by storing the data locally in the
web storage. It is inspired by the functionalities of CouchDB. CouchDB is a document-
oriented database where the storage mechanism is based on JSON and the query mechanism
on JavaScript. Here, PouchDB is also able to synchronize its own data with a CouchDB and,
therefore, allows their usage across different web browsers. In our situated implementation,
we use PouchDB to allow the usage of our software tool directly in the web browser. To
support the collaboration of different stakeholders and persistent storage, PouchDB can be
connected to a CouchDB together with flexible user management.

For the Additional Libraries, we use different packages to reduce the development time
and increase the quality of our software tool. First, the BPMN.js® library is used to create
models in BPMN 2.0, embed those diagrams in own applications, and support the extension
by different customizations. In our situated implementation, we use BPMN.js in various
parts. Those are the knowledge provision of method patterns, the pattern-based construction
of methods, the execution of composed development methods, and the change of those
methods. Second, Quill® is a What-You-See-Is-What- You-Get (WYSIWYG) editor to create
and update text documents, including media data, in the browser by a communication based
on JSON. We use Quill to collaboratively create information artifacts during the execution
of the development process and their discovery within the artifact manager. Third, JSON

Schema'?

is a vocabulary to annotate and validate JSON documents. For that, JSON Schema
allows the definition of separate schemas for different JSON inputs, where the properties
can be flexibly checked. Here, Listing 8.5 shows a part of the schema for the knowledge of
the canvas knowledge. Here, general information about the location of the schema, the title,
and the description is given. Moreover, for each JSON file, we define general knowledge
about the model (e.g., name), the used canvas (e.g., definition), the items (e.g., feature)
as objects, and instances (e.g., instance) as arrays. Here, features and instances relate to
external definitions that are referenced through the $ref. Moreover, the development support
developers are able to design their own schemas for their artifacts.

{
"$id": "http://github.com/sebastiangtts/situational -business -

model -developer/...",

"title": "Canvas Knowledge Schema Definition",

®Website of PouchDB: https://pouchdb.com/
"Website of CouchDB: https://couchdb.apache.org/
8Website of BPMN js: https://bpmn.io/

9Website of Quill: https://quilljs.com/

10Website of JSON Schema: https://json-schema.org/

https://pouchdb.com/
https://couchdb.apache.org/
https://bpmn.io/
https://quilljs.com/
https://json-schema.org/

O 00 3 O W

10

12
13
14
15
16

17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

162 Implementation
"description": "This schema defines the supported JSON files for
the canvas knowledge",
"type" . "object" s
"properties": {
"$definition": {
"description": "The definition of the canvas structure.",
"$ref": "#/definitions/canvasDefinition"
I
"name": {
"description": "Name of the canvas knowledge.",
"type": "string"
E
"features": {
"description": "The list of features that is used in the
canvas knowledge.",
lltypell: "ObjeCt" ,
"additionalProperties": {
"$ref": "#/definitions/feature"
}
i
"instances": {
"description": "The list of patterns and examples that
are used in the canvas knowledge.",
lltypell: n arrayll ,
"items": {
"$ref": "#/definitions/instance"
T,
"uniqueltems": true
}
7 -
X
}

Listing 8.5 JSON Schema for the Canvas Knowledge

We use JSON Schema for importing and exporting the knowledge of the method and the

canvas model repositories and, therefore, support the transfer of that knowledge between

different method engineers. Moreover, internal modules can also use those libraries to

support the import and export of their created knowledge. Based on those technologies for

the frontend, the database, and additional libraries, we implemented our software tool.

8.2 Software Tool 163

8.2 Software Tool

Our developed BMDT is called Situational Business Model Developer (SBMD). The SBMD
supports all three proposed stages of knowledge provision, composition and enactment of
development methods, and support of development steps. Moreover, the source code of the
tool is released as open-source!!, and the tools can be directly used in the web browser!2. To
allow an easy extension and provision of modules, we based our tool on the highly used web
framework Angular. The installation guidelines of the tool are presented in Appendix B.

In the following, we give an overview of the implemented stages within our software tool

(8.2.1). Based on that, we present the developed versions of our modules (8.2.2).

8.2.1 Implemented Tool

In this thesis, we provide the SBMD as the situated implementation of our solution concept
and the modularized architecture. In the following, we present parts of our implementation
according to the stages of knowledge provision of methods and models, composition and

enactment of development methods, and support of development steps.

Knowledge Provision of Methods and Models In the first stage, we provide CRUD
operations for the knowledge inside the method repository and the canvas model repository.
Inside the method repository, as shown in Figure 8.4, method elements are combined into
method building blocks and, optionally, structured according to method patterns. Here, as
shown in Figure 8.4 (a), we have the modeling of a method building block (see Section
5.2.2). For that, we define the name of the building blocks (A) together with a description
(D). Moreover, we are able to add different types or type lists (B) together with nominal
or ordinal situational factors (C). As shown in Figure 8.4 (b), we have the modeling of the
method patterns (see Section 5.2.3). For that, we define the name of the pattern (E) and the
corresponding situational factors (H). Next to that, we construct a BPMN pattern (F), where
each activity is linked to the supported types (G).

Inside the canvas model repository, as shown in Figure 8.5, canvas elements are structured
through canvas building blocks and visualized through canvas models. Here, as shown in
Figure 8.5 (a), we have the modeling of the canvas building blocks (see Section 5.3.2). For
that, each building block is directly mapped to a canvas model (A) where different items
can be placed (B). Moreover, the application domains for the building block are defined (C).

"Source Code of the Tool: https://github.com/sebastiangtts/situational-business-model-
developer

2Online Version of the Tool: http://sebastiangtts.github.io/situational-business-model-
developer/

https://github.com/sebastiangtts/situational-business-model-developer
https://github.com/sebastiangtts/situational-business-model-developer
http://sebastiangtts.github.io/situational-business-model-developer/
http://sebastiangtts.github.io/situational-business-model-developer/

164 Implementation

SBMD Method Composition Method Repository Model Composition Canvas Model Repository ¥ Templates Experiments Explanation (W Method Engineer v

Method Building Block @ Method Pattern @

Name Persona Creation Name Business Model Initialization Pattern

N Remove

Add Situational Factor

a) Modeling of Method Building Blocks b) Modeling of Method Patterns

Fig. 8.4 Screenshots for Provision of Method Repository

As shown in Figure 8.5 (b), we have the modeling of the canvas models (see Section 5.3.3).
Here, we define the visualization of the model based on the definition of rows and columns
(D). Moreover, we provide a preview of the visualization (E) together with definitions of

different supported relationships (F).

Composition and Enactment of Development Methods In the second stage, we construct
and execute the development method out of the method repository and the canvas model
repository. For the development method composition, as shown in Figure 8.6, we compose
the methods and models based on the defined context. Here, as shown in Figure 8.6 (a), we
define the context (see Section 6.2.1) by selecting application domains (A) and situational
factors (B) from the repositories. Moreover, we show the pattern-based composition of
methods in Figure 8.6 (b) (see Section 6.2.2). Here, the method is constructed from different
nested patterns (C). Moreover, the activities are filled with method building blocks that are
complete (E) or incomplete (D).

For the development method enactment, as shown in Figure 8.7, we enact the composed
development method. Here, as shown in Figure 8.7 (a), we provide an execution of the
development process (see Section 6.3.1). For that, we provide a Kanban board (A), where
the different development steps can be placed on (B). Moreover, in Figure 8.7 (b), we have
the collaboration of the stakeholders in the artifact development. Here, we provide a canvas

board (C), where the different items can be placed on (D).

8.2 Software Tool

165

CanvasModel it

Customer Segments

3.Row

Update

Key Partners Key Activities Value Propositions Customer Relationships Customer Segments
Key Resources Customer Channels
Legend: @ Mandatory Feature O Optional Feature
Relationship Name requires [Remove
ipom =5
a) Modeling of Canvas Building Blocks b) Modeling of Canvas Models
Fig. 8.5 Screenshots for Provision of Canvas Model Repository
Context
@)
- @ ©
Domain Generic Consecutive Patten
Mobile Apps Generic Consecutive Pattern
O -
O_' O_’ O_' D:?;‘,‘g,‘“ cor\ya;iigtor] cavapﬁgmr _O
Proposition Proposition
AES\S Canm\san

businessModelingSkills low v

Add Situational Factor

Remove

®

a) Definition of Context

b) Situation-specific Composition of Methods

Fig. 8.6 Screenshots for Composition of Development Methods

Support of Development Steps

In the third stage, we add flexible IT support to certain

development steps. Here, as shown in Figure 8.8, we have the modularization of development

support (see Section 7.2). In Figure 8.8 (a), we have the composition of modules, where we

add different execution steps to a method building block (A). Those steps are combined so

that they are executed in a row (B) and the outputs of a single step can be used as input in

another one (C). In Figure 8.8 (b), the enactment of the modules is shown, where the steps

are executed after each other (D). Moreover, the output of the execution steps can be stored

in a new artifact or merged with an existing one (E).

Based on that modularization concept for supporting the development steps, we have

implemented different modules to support the different phases of BMD.

Kanban Board @ Business Model of Mobile Todo-Apps
TODO m Doing Done
Key Partners £ Key Activities £ Value Propositions | Customer Customer Segment
Business Value o Store Provider Relationships]
Model Proposition = o Customization &3 o Market Size 3 8
Devell t Devell t
evelopment evelopmen o Movie Provider L] o UserType B3 8
-] » Changeable User
View View Interfaces @ &
Execution Comments
o Price @8
c it Guarantee @3 B
ompetitor
e ij Resources B [, i ;i Customer Channels
Proposition o Developer License
View
Comments
Competitor
Value Cost Structure Revenue Streams
Proposition o Development [& o Advertisement £3 @
Comparison o Marketing @ @ o Sell Merchandise @ &
o Support B3 @
Artifacts
Legend: Modification: Add Business Model Decision B Delete Business Model Decision
Conformance: c nce Error (see below)
Mobile App Value Proposition Canvas - Value Proposition Canvas
on
o Version #1 - Value Proposition Development — 10/17/21, 5:58 PM

a) Execution of Development Process b) Stakeholder Involvement in Artifact Development

Fig. 8.7 Screenshots for Enactment of Development Methods

8.2.2 Developed Modules

Based on the modularization within the third stage of development support, we have im-
plemented three exemplary modules to support the BMD. Those were the canvas module,
the hypothesis modeling and mapping module, and the crowd-based prototype validation
platform.

Canvas Module The integrated module was developed over the three design cycles and
conceptualized in Section 7.3.1. For that, we use table structures to align the building
blocks of the canvas models. Moreover, we have added CRUD operations for the elements,
building blocks, and models together with using a mix of existing and modified algorithms
for knowledge consolidation and conflict detection.

Parts of the implementation can be seen in Figure 8.9, where we provide the design
support for such canvas models. Here, Figure 8.9 (a) shows the refinement step of the canvas
models. For that, the Business Developer can activate different types of design support
like strengths/weaknesses, hints, or patterns (A). Based on that, he receives information to
support the design, like strengths (B), or selects a specific design support item to visualize
(C). Moreover, Figure 8.9 (b) shows the competitor comparison step of different canvas

models. Here, the differences between the canvas models are shown visually together with a

8.2 Software Tool 167

Execution steps @ .
Execution Steps

The modules must first be added in the tools before they can be selected here.

Creates a canvas

Module Method

Canvas Module createCanvas "
2. Canvas Module - editCanvas
Predefined Values

N Edit a canvas
Canvas Model Business Model Canvas v

Output Artifacts

Canvas

3. Canvas Module - refineCanvas

To other step or output Step Artifact Refine canvas through hints and patterns
Step v v #1Canvas v| Remove ‘
I
Output Mappin @
Module Method
Canvas Module editCanvas Business Model Canvas (List Structured Information)
Input Artifacts
Merge New Artifact
Canvas
Input from
u Step #1 Artifact #1 Artifact

Output Artifacts

Canvas
To other step or output Step Artifact

Step voo#3 v #1Canvas v| Remove ‘
a) Composition of Modules b) Enactment of Modules

Fig. 8.8 Screenshots for Modularization of Development Support

comparison score (D). Here, the module supports the Business Developer in the design of
new business models.

Hypothesis Modeling and Mapping (HypoMoMap) Module The internal module was
developed in the first design cycle to support the validation phase. Similar to the canvas
module, we use the underlying structure of a hierarchical tree together with CRUD operations
for the hypotheses, experiments, and their mappings. The selection of the corresponding
experiments is made through small designed algorithms.

Parts of the implementation can be seen in Figure 8.10, where we support the modification
of the HypoMoMap artifacts. Here, Figure 8.10 (a) shows the hypotheses’ modeling for
validation. For that, the Business Developer structures those hypotheses in a tree (A), where
each hypothesis has a starting priority and can be modified (B). Moreover, Figure 8.10 (b)
shows the execution of experiments for validation. Here, based on the algorithm choice of the
Business Developer, corresponding experiments are provided where one needs to be selected
(C), and connected hypotheses need to be proofed/disapproved. Here, the module supports
the Business Developer in the structured validation of the business model and the product
features.

168 Implementation

Hints Business Model of Mobile Apps Business Model
Hide Hints of Business Model L -
Key Partners EJooo0 Key Activities E33333% Value Propositions.
@ show weaknesses @ o Advertisement Partne o Develop Hard- and SO
u: t have a hurt cross-tree relationship to other used features -] Software @ @
@ show strengths o App Developer o Negotiate Licenses @ @ | = Pa
©>s = No SDK ° Custonj\izaﬂcr’\ -
u Jded vith t lead to o t Partner oo
@ Show pattern hints » Personalized
A pattemn is shown as a hint, if at least half of the pattern is included in the current business model Recommendations
Show used patterns or
A pattern is shown as used, f it is completely included in the cur E\"L,'\rcs' -
Errors Weaknesses Hints
o Store Provider is mandatory o Advertisement hurts the feature Price « Including Algorithms would support
o Developer License is mandatory Personalized Recommendations
; Strengths
o Purchase is mandatory X
Pattern Hints
o Delivery is mandatory .
« You could add the pattern Key Resources [a33% | = Low-Price Strategy
Target The Poor by adding the following o Algorithms L]
features: User Type, Private User
P o Brands B B000%
« You could add the pattern
Two-sided Market by adding the
following features: Interaction Type,
Multi-Sided-Market
Show pattern 'I
Patterns of Business Models for Mobile Apps v
Pattern Revenue Sharing v
Description Reve refers to firms’ practice of sh: stakeholders, such as
s or even rivals. Source: https: or.com/pattern?id=41
Show

Fig. 8.9 Screenshots of the Canvas Module

Crowd-based Prototype Validation (CPBV) Platform The platform is the external sup-
port tool that we have conceptualized in Section 7.3.3 in the form of design principles (DPs).
We represent the functionalities of our platform using design features (DFs) as explained in
our research approach in Section 7.3.3. Here each DP is translated to a set of DFs that can be
directly implemented in the platform.

For DP 1: User Variety, we allow the registration of developers and users both by
a registration form (DF [) and a single sign-on service (DF 2). Moreover, we provide
user profiles with specific information like skills (DF 3) and a messaging system between
different users (DF 4). As DP 2: Task Iteration, we provide the creation of tasks with
essential information (DF 5), the provision of feedback with a questionnaire (DF 6), and the
representation of feedback (DF 7). For DP 3: Prototype Diversity, we allow the provision
of prototypes as textual descriptions (DF' 8), uploaded images (DF 9), and integration of
external prototyping tools (DF 10). In addition to that, DP 4: Test Diversity contains the
test of single prototypes (DF 11), the comparison of multiple prototypes (DF 12), and the
usage of split tests (DF 13). Here, the questionnaire also allows multiple questions like stars
rating, thumbs-rating, radio buttons, and free text fields (DF 14).

For DP §: Filter Mechanisms, we support adding required user profile criteria to
the tasks (DF 15) and the shortlisting of tasks by the preferences of the users. As DP

8.2 Software Tool 169

Create the Hypotheses Lake by creating hypotheses.

Execute experiment Information Page

Hypothesis Tree Select evidence gain for every hypothesis and whether the hypothesis is approved or disapproved.

Legend: ? Untested + Validated X Disapproved
@ And AoOr
iy

a) Modelling of Hypotheses b) Execution of Experiments

Fig. 8.10 Screenshots of the Hypotheses Modelling and Mapping Module

6: Aggregation Mechanism, we provide visualization charts of aggregatable answers to
questions (DF 16), investigation of individual feedback of each user (DF 17), additional
feedback for revealing unconsidered questions (DF 18), and the comparison of split-test
results (DF 19). Based on that, DP 7: Incentive Mechanism allows the extrinsic motivation
of sending virtual money (DF 20) and the intrinsic motivation of publicly displaying the
user’s trustworthiness (DF 21). As DP 8: Non-Disclosure Mechanisms, we support the
direct approval of tasks to all users (DF 22), the deposit of a non-disclosure agreement that
the users have to accept (DF 23), and the manual approval of users (DF 24). Finally, for DP
9: Governance Mechanism, we provide an admin control panel (DF 25) together with the
reporting of tasks and users (DF 26).

The situated implementation of the CPBV is shown in Figure 8.11. As a technique, we
have also used Angular to develop the frontend. Nevertheless, we used NestJS!3 for the
backend to provide an API for managing the platform and PostgreSQL'* for the database to
provide structure for the received data in contrast to the initial software tool. Here, Figure
8.11 (a) shows the creation of a new task by the developers. For that, the developer selects a
basic test selection as one possible test type (i.e., A / DF 11), uploads images of prototypes
(i.e., B/ DF 9), and provides questions to answer (i.e., C/ DF 14). Figure 8.11 (b) shows
the conduction of a task by the users. Here, the user executes the prototype by viewing the
image (i.e., D / DF 9) and answering the questions of the questionnaire (i.e., E/ DF 14).

3Website of NestJS: https://nestjs.com/
“Website of PostgreSQL: https://www.postgresql.org/

https://nestjs.com/
https://www.postgresql.org/

170 Implementation

= @& Administrator Admin CBPV ~ AC

Projects | lteration 2 - Prototype Format . Images
Evalate @ Overview 4 Image .

Feedbacks [Feadbacks “The Protatype The

Tosttypo

Users [) visuatization

55555 i Sample Prototypes

Questionnaire .

Please fill out this Questionnaire.

Q1: How important is the following the De:

wOWw W W W

Questionnaire . Q2: How important is the following the Design Principle of Task Iteration for such a platform (5 is highest) &
dda Qu o get feedback on

for conducting tasks iteratively to allow developers an incremental

lteration Provide fun
s over fime.

Usor Varlty fo such a platfor (5 k& highest) 5 improvement of the prototypes

1 users (e, platorm user AR A G« S G 4

s the folowing the

Q3: How important s the following the Design Principle of Protatype Diversity for such a platiom (5 is highest)

a) Creation of Task b) Conduction of Task

Fig. 8.11 Screenshots of the Crowd-based Prototype Validation Platform

8.3 Summary

In this chapter, we have provided the implementation for all three stages of our approach. For
that, we have shown the modularized architecture on which the solution is based. Moreover,
we have provided a technical implementation based on web technologies that can be used
within the web browser.

For the Modularized Architecture, we have shown a component diagram of the most
important aspects that the solution needs to fulfill. Based on that, we presented our used tech-
nologies around the Angular framework for the web-based implementation of the software
tool out of the architecture.

For the Software Tools, we have shown different user interface aspects of the three
implemented stages within the tool. Based on that, we presented interface parts of the three
exemplary modules that were developed within this thesis.

Based on the implemented solution, we will show its evaluation and the associated
improvements for the second and third design cycles in the next chapter. First, we will show a
case study on developing business models for a local event platform. Second, we will present

a user study on developing business models for mobile prototypes within student courses.

Chapter 9
Evaluation

In the previous chapter, we showed the modularized architecture together with the software
tool of our solution. Based on that, this chapter evaluates the applicability of our situation-
specific BMD approach. For that, we show the conduction of a case study on the OWL Live
event platform and a user study in students’ courses at Paderborn University.

9.1 Case Study on OWL Live

To evaluate our approach, we conducted a case study on developing possible business models
for a local event platform called OWL Live. The case study is based on the evaluation
of the second DSR cycle as proposed in Section 1.2, and, therefore, includes just the first
two stages of our solution. The OWL Live platform is developed as part of a research
project at Paderborn University and aims to provide an aggregated view of events in the local
area of East Westphalia-Lippe. We base our case study on the well-accepted guidelines of
Runeson and Host [RH09] to increase the quality of the study results. The study aims to
uncover possible difficulties in the composition and enactment of situation-specific business
model development methods as proposed in RQ 2. Based on the guidelines, we divide the
evaluation into the steps of forming the Experimental Design of the evaluation, followed by

its Execution, the Analysis of the results, and their Interpretation concerning our approach.

9.1.1 Experimental Design

In the beginning, we need to define the experimental design in which the case study takes
place. By referring to the guidelines of Runeson and Host [RHO09], the design can be divided
into the definition of a case, the initiation of a case study protocol, and the clarification of
ethical considerations.

172 Evaluation

Definition of a Case Due to the flexibility of the case study design, preliminary and
adjustable planning is an essential factor before the actual conduction of the study. For our
study, we justify our plan, as explained in the next paragraphs, based on the elementary parts
of the objectives to achieve, the research question to answer, the theories to concern, the case
to study, the methods to rely on, and the selection strategy to use as discovered by Robson
and McCartan [RM16].

The Objective, Research Questions and Theories of the study directly relate to the
superior design science study in the thesis, which aims to develop a situation-specific BMD
approach. The refined Objective of this study is based on the integrated concept of situation-
specific development of business models. Here, our case study aims to develop potential
business models for the local event platform and identify issues with our concept and the
software tool that should be improved within the next design cycle. For that, we follow
an exploratory purpose for seeking new insights and generating new ideas for possible
improvements [RM16]. Based on this refined objective, we also refine our overall Research
Question of how to enable the situation-specific development of business models for service
providers within software ecosystems (see RQ in Section 1.2). This refinement leads to our
new second question of how to handle the situation-specific composition and enactment of
BMDMs by using utilized knowledge for the development methods and within the canvas
modeling artifacts (see RQ 2). Moreover, we want to improve our approach to the existing
first research question on how to utilize the knowledge about development methods and
canvas modeling artifacts to support the BMD (see RQ 1). As Theory, we make use of
the theories of boundary objects [SG89] and opportunity creation [ABA13] that are also
used for our DSR study. Here, the boundary objects theory is applied to provide a common
understanding among all stakeholders for providing the knowledge of methods and models,
while the opportunity creation theory is applied to provide continuity in the composition and
enactment of the development methods.

As Case, we provide a holistic case study, analysis of a unit in one case [Yin09], on de-
veloping possible business models for a local event platform called OWL Live. The platform
is created as part of an ongoing research project and acts as a two-sided platform between
event providers and event visitors. Here, the owner wants to use new data mining techniques
to aggregate events from different event providers together with natural language processing
to provide an enhanced recommendation system to the event visitors. By developing the
business models in an ongoing research project, we also have two specialties that we need to
consider during the development. First, the project is backed up by a consortium of public
institutions (i.e., university, culture office) and a private company (i.e., development agency)

that are involved in the platform. Second, the project partners have already discovered parts

9.1 Case Study on OWL Live 173

of the business models as parts of ongoing discussions, a design thinking workshop, and a
preliminary feasibility study on which the business model should base.

As Methods to collect data and corresponding Selection Strategy, we use a mix of direct
and independent methods as characterized by Lethbridge et al. [LSS05]. As a direct method,
we conduct virtual and physical interviews to gather information about the knowledge
that should be used in methods and models, the project context for the composition of the
development method, and the stakeholder information during the enaction of the development
method. We use those interviews to gather the unfiltered information of the participants.
As an independent method, we use Grey Literature Reviews (GLRs) [GFM19] to identify
the knowledge that is used for the repositories of the methods and the models. GLRs, in
turn, aim to review resources outside academic research, so-called grey literature, to gather
insights on a particular domain. We use a GLR to identify knowledge that practitioners
outside academia created. Moreover, we analyze the existing information generated through
discussions, the design thinking workshop, and the feasibility study in the past. While some
of the information is publicly accessible (e.g., the feasibility study), other information is

confidential (e.g., current monetization calculation).

Initiation of a Case Study Protocol Before starting the conduction of our case study, we
need to initiate our case study protocol. Here, the protocol is a continuously changed docu-
ment that keeps track of the study’s execution, analyzes the results, and draws conclusions
regarding the interpretation. According to Maimbo and Pervan [MP05], we structure our
protocol the following way: First, we justify the purpose of the protocol and information
about the data storage. Second, a brief overview of the case and its research method are
given. Third, the procedure of our case and its execution steps are explained in detail. Fourth,
the research instruments are explained. Fifth, the data analysis is clarified. For our case study,
a text document captures all information outside the stages of our approach. For the stages
themselves, we are using the traceability feature of our software tool.

Clarification of Ethical Considerations Last, before conducting the case study, we need
to consider ethical considerations. This, in turn, increases the trust between the participants
and us. For this, we consider the following things: First, we explain the case study to every
directly involved participant and inform them about the whole procedure. Second, we state
our data collection and storage strategy. Third, we clarify the publication of parts of the study

and omit confidential information.

174 Evaluation

9.1.2 Execution

During the conduction, we structured our procedure according to the two applied stages
of knowledge provision of methods and models and the composition and enactment of

development methods.

Knowledge Provision of Methods and Models For the first stage, we interviewed the
project manager to get a scope in which the possible business models should be developed.
Out of that context, we conduct a GLR to gather knowledge about business models for mobile
apps in general, digital platforms, digital marketplaces, and content aggregators. Here, we
followed the guidelines according to Garousi et al. [GFM19], who structured the GLR in the
three phases of planning the review, conducting the review, and reporting the review.

In (1) Planning the Reviews, the need for a GLR needs to be motivated together with
the explicit formulation of the RQ the study aims to answer. The search string and related
inclusion and exclusion criteria are determined from the RQ. To motivate the need for the
GLR, we have used the checklist of Garousi et al. [GFM19]. Here, we concluded the need
for a GLR based on the subject’s complexity and the lack of practical experience in the
formal literature. Here, we used GLRs to utilize knowledge for the method repository and
the canvas model repository.

For providing the Method Repository, we have defined the following RQ: What are the
main business model development steps that need to be done by a mobile app developer? To
answer this question, we have defined the following search string: app AND (business model
OR idea) AND (test OR validate OR develop). We include articles in English where the URL
is accessible and directly connected to the RQ. We exclude articles that provide no BMDM
or process, do not relate to mobile apps, are posted in forums, or are presented in non-textual
form. With this exclusion, we aim to increase the quality of the knowledge in the method
repository.

Similarly, for providing the Canvas Model Repository, we have defined the following
RQ: What are the main decisions for the business model that need to be made by a mobile
app developer? To answer this question, we have defined the following three search strings:
business model AND digital platform, business model AND digital market place, business
model AND content aggregator. We include articles in English where the URL is accessible
and directly connected to the RQ. We exclude articles that provide no knowledge of the
business models, are just landing pages for marketing of companies, are posted in forums, or
are presented in non-textual form. With this exclusion, we aim to increase the quality of the

knowledge in the canvas model repository.

9.1 Case Study on OWL Live 175

In (2) Conducting the Review, the review needs to be conducted by considering the
search process, the source selection, the quality assessment, the data extraction, and the data
synthesis. Here, we conducted the GLRs for the knowledge of the method repository and the
canvas model repository.

In the search process for the Method Repository, we applied the search string to the
Google search engine on January 19th, 2021, and anonymized our browser data for maximum
objective results. We exported the first 50 search results and manually scanned the inclusion
and exclusion criteria, resulting in 38 articles. For the quality assessment, the essential
criteria were the understandability of the presented business model development method or
processes. Moreover, the Method Repository contains links to the articles to convince mobile
app developers of the quality. In the data extraction, we divided the gained information into
the different Method Elements (e.g., Tasks, Stakeholders). Out of that, in the data synthesis,
we combined them into Method Building Blocks and structured them into Method Patterns.

Similarly, for the Canvas Model Repository, we applied our search string on June 18th,
2021, exported the first 25 results for each search, and, after applying the criteria, obtained
eight results for the digital platform, 20 for the digital marketplace, and 15 for the content
aggregator. In the data extraction, we divided the gained information into the different Canvas
Elements (e.g., Items, Patterns). In the data synthesis, we arranged them in Canvas Building
Blocks and mapped them to different Canvas Models. Those models were the existing Value
Proposition Canvas and Business Model Canvas, together with a newly defined Feature Set
Canvas for the product features.

In (3) Reporting the Review, we documented the review results. Here, a part of the
Method Repository, which consists of examples for the Method Elements, Method Building
Blocks, and Method Patterns, can be seen in Figure 9.1. For the Method Elements , we found
Situational Factors with ordered (e.g., businessModelingSkills can be low, medium, high) and
unordered (e.g., marketSize can be niche or mass) factors, Types for structuring the building
blocks (e.g., customerldentification) as well as nesting the patterns (e.g., customerDeepDis-
covery), and Tasks (e.g., Conduct Interview). Moreover, we found different internal (e.g.,
Business Developer) and external (e.g., Customer) Stakeholders, textual (e.g., Customer
Information) as well as canvas-based (e.g., Value Proposition Canvas) Artifacts, and Tools
(e.g., AppAnnie). Out of those elements, we combine different Method Building Blocks like
Interview Customer or Create Landing Page. For the Interview Customer, we have the output
artifact of Customer Information by integrating the stakeholders of the Business Developer
and the Customer together with low value for the factor of customerValidity. For the Create
Landing Page, we have the output artifact of the Landing Page by integrating the Marketing

Manager and Designer with medium value for the factor of designSkills and medium value

Evaluation

<<customerldentification>>
Interview Customer

Business Developer,
Customer

customerValidity: low

<<contentDevelopment>>
Create Landing Page

Marketing Manager,
Designer

designSkills: medium,
timeResources: medium

Customer Information,
App Information

Landing Page Tool*

(=0 <
< QO

<<discovery*>> <<analysis*>> <<design*>> <<develop*>> <<validate*>>

Fig. 9.1 Knowledge Provision: Examples of the Method Repository based on the GLR

for the factor of timeResources based on the input artifacts of Customer Information and App
Information together with a flexible Landing Page Tool. Those building blocks are structured
through Method Patterns like the Business Model Initialisation Pattern. Here, this pattern
can then be used as a starting point of the development by a low value for the factor of

9.1 Case Study on OWL Live 177

businessModelingSkills and provides a structure for all phases (discovery, analysis, design,

develop, validate) of the BMD, which activities can be filled building blocks and patterns.
Moreover, a preliminary version of the whole method repository is provided inside the

corresponding technical report [GYNE21c]. Furthermore, the results for both repositories

can be accessed in our software tool. The installation of our tool is explained in Appendix B.

Composition and Enactment of Development Methods For the second stage, we needed
to compose and enact a development method to develop potential business models.

For the Composition of the Development Method, we interviewed the project manager
to gather information about the current state of the platform (e.g., target customer), the
situation of the project (e.g., marketSize:mass), and the application domain of the app (e.g.,
content aggregation). Moreover, we gathered additional construction constraints that need
to be included in the development method (e.g., closed beta tests, different target groups).
Out of that context and the additional constraints, we composed the development method
as shown in Figure 9.2. We structure those methods through our extracted Business Model
Initialisation Pattern, see Figure 9.1, according to the five phases of discovery, analysis,
design, development, and validation.

In the (1) Discovery, we suggested providing a Target Audience Identification to derive
the different target groups that might use the platform. Based on that, we suggested a Market
Problem Observation to analyze the pain points of the identified target groups together with a
Store Trend Analysis to broaden the own ideation scope of features that the user might use. In
the end, and with respect to the two-sided market, Customer Interviews support validation of
the smaller target group of event providers, while Social Media Survey Conduction supports
validation of the larger target group of event visitors.

In the (2) Analysis, we suggested running a Market Potential Analysis to estimate the
size of the market that the platform could achieve. This should also support convincing
external stakeholders that the platform has the potential to run successfully. Moreover, a
Store Competitor Analysis inside the stores but also a Competitor Analysis outside the stores
support the identification of requested features by the users or specific aspects of the business
models. Those competitor analyses, in turn, support a focus on the most important features
for distinguishment.

In the (3) Design, we gathered information on the last two steps for designing the
platform. For that, a Feature Set Creation supports to structure of potential features of the
platform. Moreover, the Value Proposition Development supports the identification of the
target group and fosters their pains and gains. Those pains and gains are solved by specific
value propositions inside the Business Model Development. Here, all Canvas Artifacts of

178

Evaluation

Y
0

Target Audience
Identification

Market Problem
Observation

Competitor
Analysis

) €

toreCompetito
Analysis

J

v i

5D

<

Store Trend
Discovery

Customer Inter-
view Conduction

Intermediate
Validation Pattern

Marketing
Development

Social Media
SurveyConduction

'

Feature Set

Creation

}

Value Proposition
Development

[
[

Busmess Model
Development

(Feature

Product
Development
Pattern

Priorisation

J

Competitive Ad-
vantage Analysis

Customer
Survey

Pattern ; :

phases:[Analysis][Design] Type:[Building Block]

Fig. 9.2 Method Composition: BMDM for OWL Live based on the identified Context

Pattern

the steps are linked to the Canvas Models (i.e., Value Proposition Canvas, Business Model
Canvas, Feature Set Canvas) that are developed in the first stage, including the consolidation
of the specific knowledge. The phase is completed by providing a Competitive Advantage
Analysis of the own design against the competitors and using a Feature Prioritisation in order
to derive those competitive advantages from the beginning.

In the (4) Development and with the additional information of the project manager, we
suggested the development of a beta-version in front of the product development, which
should be validated within the Intermediate Validation Pattern. Inside that pattern, the beta
version will be tested with potential early adopters using user tests. Moreover, with the
Marketing Development Pattern, we suggested conducting inbound marketing in parallel to
the actual development of the MVP of the platform. Last, the Product Development Pattern
consists of a selection of the used platforms, cost estimation of internal development, and the

platform’s first release.

9.1 Case Study on OWL Live 179

Last, in the (5) Validation, we suggested the ongoing validation of both customer groups
by using the scaleable approach of Customer Surveys. This can be done using external tools
or directly integrating feedback possibilities within the platform.

For the Enactment of the Development Method, we used the ongoing interviewing of
the project manager together with the already existing information (e.g., feasibility study,
monetization calculation) of the project to develop the potential business models. Here, by
referring to our constructed development method in Figure 9.2, we structure the enactment
according to the discovery, analysis, design, and development phases.

During the (1) Discovery, the Target Audience Identification was used to identify the
first groups of event providers and event visitors. Moreover, both groups were refined into
different subgroups (e.g., culture actors for event providers and early adopters for event
visitors). Moreover, a distinguishment between digitalized and non-digitalized providers as
well as residents and tourists for visitors was made. For that, the results of a previous design
thinking workshop and the information from an interview with the project manager were used.
During the Store Trend Analysis, different trending apps (e.g., social networks like NextDoor,
news aggregations like NewsBreak) were analyzed regarding possible features (e.g., invitation
mechanism, social media connection) and business models (e.g., paid recommendations,
affiliate marketing) of the platform. During the Market Problem Analysis, the main sources
of event findings (e.g., word of mouth, posters) were identified, and occurring problems
were analyzed. Those were divided into problems of the event provider (e.g., the manual
effort for event provision, preselling of tickets) and the event visitor (e.g., the manual effort
to find events, the missing of special events). While the Customer Interview Conduction
for the event provider was already done in the design thinking workshop before, the Social
Media Survey Conduction was done with an analysis of results from an existing social media
website (i.e., Reddit) and the conduction of new polls on a local social media app (i.e., Jodel).
Nevertheless, both development steps were instantiated again to gather more information
over time.

During the (2) Analysis, the Market Potential Analysis was used to strengthen the results
of the existing feasibility study. Here, key factors about the market (e.g., estimation of the
number of events or locations) and the potential market groups (e.g., total numbers of groups
or visited events) were identified. Moreover, the existing competitors in the market were
identified and analyzed. The StoreCompetitor Analysis focused on general apps (e.g., ticket
sellers, social networks with event features) in Apple’s AppStore and Google’s PlayStore.
For example, Eventim already provides selling tickets for special events, Facebook Events
can be used to discover various manual-created events, and Jodel can be used for special

timely events. Moreover, the Competitor Analysis focused on the local providers (e.g., city

180 Evaluation

marketing, newspapers). Here, ErwinEvent provides information about local events and
locations like the Paderborn theater, publish events on their website, and print posters.

During the (3) Design and based on the knowledge of the Canvas Model Repository, the
Value Proposition Canvas, the Business Model Canvas, and the Feature Set Canvas were
developed. The Value Proposition Development was done for the chosen target groups of
event providers (e.g., already digitized providers) and event visitors (e.g., early adopters in
the form of permanent residents). The Business Model Development was done for the three
different ideas of a content aggregator (e.g., personalized advertisements, affiliate links to
existing ticket sellers), an own ticket seller (e.g., personal arranged relationships, commission
fee), and a sponsored platform (e.g., privacy-friendly usage, independent prioritization). Here,
a simplified version of the business model of the content aggregator is shown in Figure 9.3.
Within this business model, we have our two Customer Segments of Permanent Residents
and Digitalized Providers. Moreover, we have defined different elements for the Value
Propositions (e.g., High Amount of Events), the Customer Relationships (e.g., Self Service),
the Channels (e.g., Placements on existing Events), the Revenue Streams (e.g., Personalized
Advertisements), the Key Partners (e.g., Event Platforms), the Key Activities (e.g., Develop
WebApp), the Key Resources (e.g., API Gateways / WebCrawler), and the Cost Structures
(e.g., Marketing / Branding). Additionally, a new development step of SWOT analysis with
its own SWOT Canvas was created to provide such an analysis for the different ideas of
business models. For example, for the content aggregator, we have different strengths (e.g.,
good scalability), weaknesses (e.g., less personal contacts), opportunities (e.g., expansion
in other regions), and threats (e.g., easy to copy) based on a canvas grid. Moreover, a
corresponding Feature Set Creation for the platform was done. Here, we divided between
basic features that are needed (e.g., search, filter, login) and advanced features that provide a
competitive advantage (e.g., web crawler, recommendation algorithm). Out of those Canvas
Models, a Competitive Advantage Analysis was done with the tool. Here, we added the
competitors’ information also in the canvas models and created instances of them. Last, we
used the results to create a Feature Prioritisation, which divides between features that should
be developed within the project and which not.

During the end of the case study, in the (4) Development, the app’s beta version is
developed in the Intermediate Validation Pattern, which should be in the future evaluated with
test users in a user study. Moreover, during the development, the possible business models
are presented to external stakeholders and, based on their feedback, could be further validated
using ongoing Customer Interview Conductions and Social Media Survey Conductions.
Here, we conducted an additional step by interviewing the project manager and the culture

office employee on the relevance of the three business models. Last, inbound marketing

9.1 Case Study on OWL Live

181

Key Partners Key Activities Value Propositions |Customer Relation. |Customer Segment.
Event Platforms Develop WebApp nghEAmount o Self Service Permanent
vents Residents
Affiliate Platforms Plan Branding Reduction of Event Push Digitalized
Campaigns Search Effort Notifications Providers
Local Authorities -
Personalized
-) Key Resources Recommendations | [channels
Hosting Providers
AP| Gateways / Social Interactions Placements on
Store Providers Web Crawler Existing Events
Branding Social Media Ads
Cost Structures Revenue Streams
Marketing / Development / Personlized Event Affiliate
Branding Maintenance Advertisements Links

Fig. 9.3 Method Enactment: Example of the BMC for OWL Live

(e.g., landing page, social media posts) could be used in the future within the Marketing
Development Pattern to ensure high traffic during the upcoming beta. Based on that execution,

we conduct an analysis of our approach against the provided RQs.

9.1.3 Analysis

Our solution aims to develop a situation-specific BMD approach. By conducting a design
science study, the purpose was to answer the overall RQ of how to enable the situation-
specific development of business models. For the second cycle of DSR, we refined our RQ
into the first question of how to utilize and store the knowledge of methods and models (RQ
1) and the second question of how to compose and enact development methods (RQ 2).

To evaluate the Utilization and Storage of Knowledge (RQ 1), we have conducted a GLR
as an indirect method to create a Method Repository and a Canvas Model Repository. For the
Method Repository, the identification of Method Elements and their combination into Method
Building Blocks was straightforward. Here, arranging the Method Patterns was challenging
due to the nested usage of patterns to allow specific orchestration of the development method
during composition. For the Canvas Model Repository, the identification of single Canvas
Elements was straightforward. Here, problematic was just the dimension of finding related
elements for all building blocks of the canvas models and prioritizing which elements should
be taken and which not. Moreover, the majority of digital platform results stayed on a high

level without providing any insights. More challenging was the development of Canvas

182 Evaluation

Building Blocks. Here, it was hard to find the right granularity of the decomposition of the
elements together with the mapping of item sets to instances and connecting items through
relationships. Again, the presentation of building blocks to Canvas Models is simple due to a
fixed matching of the building blocks. However, to allow the usage of the knowledge without
external guidance, the textual descriptions of the Method Elements and the Canvas Elements
need to be improved. Overall, the utilization and storage of knowledge were applicable
concerning RQ 1. Nevertheless, it is advisable that a skilled Method Engineer does the steps
of formalization of the knowledge instead of the Domain Expert.

To evaluate the Composition and Enactment of Development Methods (RQ 2), we
developed the business model for a local event platform. Here, we have the Composition of
the Development Method and the Enactment of the Development Method.

For the Composition of the Development Method, we interviewed the project manager to
gather the context in which the development takes place. While the context factors can be
easily defined (e.g., marketSize:mass), additional information as constraints (e.g., different
customer groups) about the project must be considered to compose the development method.
During the composition of the development method, we investigated that working with the
patterns can be a challenging task. Here, especially working with the different nested patterns
in each other and ensuring an artifact pipeline between input and output artifacts needs some
previous experience. In contrast, the composition of models was quite straightforward with
the limitation that the knowledge inside the models was just provided by us. However, a
subsequent interview with the project manager revealed that the guided composition supports
the identification of additional development steps.

For the Enactment of the Development Method, we executed the development method
in close exchange with the project manager. During the case study, we gathered results for
the first three stages because the platform was at this time developed within the fourth stage,
and the aim of the study was to develop potential business models for the platform. Here,
we followed all development steps of the composed development method but also created
additional development steps during the execution. During the execution, the description of all
development steps supported a common understanding among all stakeholders. Moreover, the
tool provided traceability of the approach while the artifacts supported the collaboration and
later transparency. The main results were the different developed canvas models in the third
stage. Here, a discussion with the project manager and the culture office employee regarding
the different business models revealed their relevance and the possibility of identifying new
decisions (e.g., lock-in mechanism). However, to allow the usage of the composition and
enactment without external guidance, the self-explanation of the software tool needs to be

improved. Overall, the composition and enactment were applicable concerning RQ 2, and

9.1 Case Study on OWL Live 183

the guidance shows potential both during the composition and enactment. Nevertheless, it is
advisable that a skilled Method Engineer does the steps of the composition of methods and
models instead of the Business Developer. Based on that analysis, we interpret those results

for future improvements to the solution.

9.1.4 Interpretation

The reasons for our explorative case study during DSR are the evaluation of the second cycle
and the derivation of suggestions for further improvement for the third cycle. For that, we
analyzed our current threats to validity and derived further implications that we have already
addressed during the third cycle.

In order to critically discuss the Threats To Validity of our evaluation, we use the
framework of Yin et al. [Yin09], who divide the criteria of construct validity, internal validity,
external validity, and reliability.

Construct Validity refers to guaranteeing that the most verifiable case study results are
based on the RQ. To achieve that, we followed an explorative purpose of conducting both
stages of knowledge provision of methods and models as well as composition and enactment
of developments that were introduced during the second cycle of DSR. Moreover, we used
a real-world case study [RH09] to guarantee the relevance of our results. However, the
limitation is that our case study relies on a single unit in one case instead of multiple units in
different contexts. Therefore, within the second cycle, we could not directly compare the
impact of different contexts on the overall applicability.

Internal Validity refers to the establishment of trustworthiness due to casual relationships
during the case conduction. To achieve that, we followed the guidelines of Runeson and
Host [RHO9] to use a well-established procedure. Here, by clarifying the overall research
design at the beginning of our case study and using the case study protocol as well as the
software tool, we ensure transparency of the BMD. However, there is the limitation that we
mainly developed the business model with the support of the project manager instead of the
business model being independently developed by the project team. Therefore, within the
second cycle, we were not able to analyze if the whole concept and the software tool are
self-explaining enough for different kinds of stakeholders.

External Validity refers to the extent to which the results can be applied to other cases. To
achieve that, we followed the DSR procedure of Vaishnavi and Kuechler [KV08], which aims
to abstract the knowledge gained about the concept to solve most cases in the problem class.
While this is done for the concept itself, our software tool is just a situated implementation

based on the findings of our GLR. Moreover, we were limited by the single-unit case.

184 Evaluation

Therefore, the knowledge provision must be improved to provide applicability in other
unrelated cases.

Reliability refers to the reproducibility of repeating the case study. To achieve that, we
used a case study protocol and the traceability feature of our software tool for all stages.
Moreover, we used a mix of direct and independent selection methods to increase the
objectivity of our study. However, the BMD is a creative task, so repeated conduction by
other stakeholders with different knowledge backgrounds can also lead to different results.

Out of the evaluation of the current DSR cycle, we found some Implications that we
already addressed during the third cycle of DSR. We divide those implications into the three
areas of knowledge generalization, complexity reduction, and multiple unit analysis.

For the Knowledge Generalization, we had just a base of knowledge for methods and
models that focuses on mobile applications and, in particular, on event apps. Moreover, those
knowledge repositories had just limited explanations for the elements of the development
methods and the canvas models. This, in turn, limits the approach’s applicability in other
cases. Therefore, in the third cycle, we have extended the knowledge with a particular focus
on models and methods for different types of mobile applications.

For the Complexity Reduction, we focused on the applicability of both stages of our
concept inside the software tool and dismissed a user experience that is easy to understand.
Moreover, all design support features of the model repository were applicable at the same
time, which decreased the understandability of the design support. This, in turn, limited the
usage of the tool by end-users. Therefore, we have increased the usability of the approach
and reduced the complexity of our software tool using the concept of modularization.

For the Multiple Unit Analysis, we have applied the approach to the case of a local event
platform. Here, we also had just a single context to analyze the applicability. This, in turn,
limited the evaluation if the approach can be easily transferred to other scenarios. Therefore,
we have validated the transferability by creating several business models in different contexts

within a user study.

9.2 User Study in Student Courses

To evaluate our approach, we conducted a user study in a lean development seminar and an
AR/VR lecture at Paderborn University. Here, within the seminar, we provided an overview
of the concept of iterative development of mobile applications, including product features
and the business model. During the seminar, we evaluated the third DSR cycle of our
situation-specific BMD approach, as proposed in Section 1.2, and the second DSR cycle of

our crowd-based prototype validation approach, as proposed in Section 7.3.3. Within the

9.2 User Study in Student Courses 185

lecture, we provided an overview of the systematic development of AR/VR applications.
Here, we evaluated the third DSR cycle of our crowd-based prototype validation approach.
We adapted the guidelines of Runeson and Host [RHO9] of case studies for the user study to
increase the quality and reliability of our study. With our user study, we aim to analyze the
application of situation-specific BMD in different contexts and the usage of crowd-sourcing
for prototype validation. We divide the evaluation into the steps of forming the Experimental
Design of the evaluation, followed by its Execution, the Analysis of the results, and their

Interpretation concerning our approach.

9.2.1 Experimental Design

In the beginning, we need to define the experimental design in which the user study takes
place. By adopting the guidelines of Runeson and Host [RHO9], the design can be divided
into the definition of the study, the initiation of a user study protocol, and the clarification of
ethical considerations.

Definition of the User Study Like in case studies, user studies can be flexibly designed,
which makes preliminary and adjustable planning necessary before the actual conduction of
the study. Similarly to our case study, we justify our plan based on Robson and McCartan
[RM16] who divide it into objectives to achieve, the research question to answer, the theories
to concern, the case to study, the methods to rely on, and the selection strategy to use.

The Objectives, Research Questions and Theories are divided through our approaches
for situation-specific BMD and the crowd-based prototype validation. For the Situation-
specific Business Model Development, our refined Objective is based on the modularized
concept of situation-specific development of business models. Here, our user study aims
to apply our concept and the software tool in multiple situations to identify the last issues
that need to be resolved for the conclusion of our design study. Based on this refined object,
we want to discover our third RQ on how to support the development of artifacts within the
BMD steps using flexible adjusted software support (see RQ 3 in Section 1.2). Moreover, we
want to improve the knowledge utilization for our approach (see RQ 1) and the composition
and enactment of development methods (see RQ 2). Out of those questions, we answer
our overall RQ on how to enable the situation-specific development of business models for
service providers within software ecosystems (see RQ). For that, we again use the theories of
boundary objects [SG89], and opportunity creation [ABA13] of the second cycle. For the
Crowd-based Prototype Validation, our refined Objective is based on our overall solution
design of a platform for crowd-based prototype validation. Here, our user study aims to

use our situated implementation to identify missing DFs and evaluate our DPs for their

186 Evaluation

importance. Based on this refined object, we want to discover a separated RQ on how to
design software to support the iterative validation of prototypes with the crowd (see Section
7.3.3). Here, we use the same opportunity creation theory as for situation-specific BMD.
With both, we have an exploratory purpose of gaining new insights.

Also, the Case in our user study can be divided into the situation-specific BMD and the
crowd-based prototype validation. For the Situation-specific Business Model Development,
we use the analysis of multiple units in one case [Yin09] by developing business models for
different mobile applications within a lean development seminar. Here, the seminar is part of
the Bachelor of Computer Science at Paderborn University in winter term 21/22 and aims
to provide an overview of the concept of iterative development of mobile applications. The
seminar consists of four phases in which groups of two-three students with no experience in
BMD develop the idea of a mobile app. First, a block seminar is used to divide the students
into groups, give them an overview of the different steps of lean development, and explain the
different situations that can lead to different steps for the developed methods (e.g., mockup
vs. wireframe for prototype), and decision for modeling artifacts (e.g., advertisements vs.
subscription as revenue streams). Moreover, each student has to present the first idea of a
possible mobile app. Second, each group selects one of their ideas, elaborates on the app
as a prototype and the business model, and provides an intermediate presentation of their
ongoing results. Third, the groups improve their prototypes and business models based on
feedback and provide a final presentation of their results. Fourth, the groups must present
their conducted process and the developed artifacts in a final report. Here, the groups use
our developed Situational Business Model Developer as the situated implementation of our
situation-specific BMD within the second and third phases.

For the Crowd-based Prototype Validation, we use the situated implementation of our
Crowd-based Prototype Validation Platform with the third phase in our seminar to provide
additional development support for our situation-specific approach. Here, one student per
group needs to upload their prototype with questions to the platform. Next, every student
gives feedback on two predetermined prototypes by answering the questions that could be
used to improve the prototypes. Last, the students evaluate the platform’s prototype on the
platform itself by rating the importance of the DPs together with feedback on the overall
idea, the proposed solution, the current drawbacks of the platform, and additional feedback.
Moreover, during the lecture in summer term 22/23, we conducted a similar user study just
for the platform. Here, within a mini project, three-four students that were grouped needed
to develop AR/VR prototypes, which initial idea we evaluated with the platform. Moreover,

like in the seminar, each student provides a self-evaluation of the platform.

9.2 User Study in Student Courses 187

As Methods to collect data and corresponding Selection Strategy, we use a mix of
indirect and independent methods as characterized by Lethbridge et al. [LSSO05]. As an
indirect method, we analyze the intermediate and final group results. This includes both
given presentations, the submitted final report, and interactions within the software tool.
Moreover, within the situated implementation of the platform, we provided a questionnaire
for rating the DPs and open questions on the overall idea, the proposed solution, current
drawbacks of the platform, and additional feedback. As an independent method, we improve
the results of our GLR for the method repository with additional information. Moreover, we
use Taxonomy Development (TD) [NVM13] to develop a canvas model repository out of a

mix of existing literature and the analysis of existing mobile apps.

Initiation of a User Study Protocol Before starting the conduction of our user study, we
need to initiate our user study protocol. Here, like in the case study, we follow the protocol
structure of Maimbo and Pervan [MPOS5]. In the protocol, we store information about the
block seminar together with the intermediate and final presentations. Moreover, additional
information could be gathered from the traceability features of our software tool, the platform,

and the final reports.

Clarification of Ethical Considerations Last, before conducting the user study, we need
to consider ethical considerations. This, in turn, increases the trust between the users, here the
students, and us. For this, we consider the following things: First, we explain the user study
to every user and inform them about the procedure. Second, we state our data collection and
storage strategy. Third, we clarify the publication of parts of the study and the omitting of

personal information.

9.2.2 Execution

During the conduction, we structure our procedure according to the three applied stages of
knowledge provision of methods and models, the composition and enactment of development

methods, and the support of development steps.

Knowledge Provision of Methods and Models For the first stage, we needed to provide
knowledge about business models for mobile apps for the method repository and the canvas
model repository. For the Method Repository, we improved the results of our GLR within
the case study in Section 9.1 with additional explanations and reference websites to ensure
a common understanding by all students. For the Canvas Model Repository, we wanted to

support the students with knowledge about possible business models and product features.

188 Evaluation

To gather that knowledge, we used a 3-phases extraction method based on the TD method by
Nickerson [NVM13]. The method of Nickerson can be used to classify objects based on their
common characteristics. First, we modeled each item of the canvas element for the business
model and the product features as a characteristic of a mobile application within the taxon-
omy. Second, we combined each item with the extracted application domains, corresponding
relationships, and identified instances. While we used our extraction method first on 11th
February 2019 (see [GRE19c] for technical report), we improved our results on 14th Septem-
ber 2021 before the seminar. To use the method, we needed to define meta-characteristics
and ending conditions together with empirical-to-conceptual and conceptional-to-empirical
iteration steps. The meta-characteristics are the most comprehensive characteristics that can
be used as the basis for the choices in the taxonomy. Based on these meta-characteristics,
we were running combinations of empirical-to-conceptional and conceptual-to-empirical
iterations. After each iteration, the taxonomy is checked against objective and subjective
ending conditions. While objective ending conditions can be assessed, subjective ending
conditions leave space for interpretation. We structured our applied extraction method into
the three phases of planning the development, conducting the development, and summarizing
the development.

During (1) Planning the Development, we needed to define the overall meta-characteris-
tics and the ending conditions. To model the items of the business model, we used the
nine building blocks of the BMC [OP10] as the most-comprehensive characteristics. We
refined these blocks by the categories of the book Business Model Generation [OP10] to
support the information extraction process. To model the items of the product features,
we used a high-level classification of general, user, and interaction features as the most-
comprehensive characteristics. The objective ending conditions were the examination of
all selected applications and papers for the corresponding execution step. As subjective
conditions, we wanted to create an appropriate and cross-application usable canvas model
repository.

During (2) Conducting the Development, we derived the actual information that should
be utilized with our canvas model repository. For that, we defined the three stages of studying
existing material, analyzing existing applications, and extracting existing features.

During the Studying of existing Material, we analyzed the top listed applications of mobile
ecosystems and related apps. Within the conceptual-to-empirical iteration, we analyzed
selected literature [FSDN15, GWB10, HO11, LKH17, MVG™ 14, MKM11, RR16, TTP11]
from an existing SLR of IT service markets [JPEK16]. Here, we discovered all papers
classified as business model relevant and chose the ones that impact mobile developers and

their apps. In the empirical-to-conceptual iteration, we looked at the information of 150 apps

9.2 User Study in Student Courses 189

from the top lists of Apple’s AppStore and Google’s PlayStore by discovering the 25 top free,
top paid, and top grossing applications. After the elimination of duplicates, there were 126
applications left, which information in the store we have discovered. Out of both iterations,
we refined our taxonomies for the business models and the product features.

During the Analysis of existing Applications, we conducted a deeper analysis of the
product features of selected apps and their business models. For that, we grouped our list
of applications into the six categories of messengers, social networks, streaming services,
trading services, information processing, and games which are also selected as our application
domains. Out of each category, we chose three applications with major differences in their
business model that are also selected as our instances. In the conceptual-to-empirical iteration,
we reviewed information (papers, analyses, news articles), which we obtained using Google
Search. Within the empirical-to-conceptual iteration, we executed the selected apps and
analyzed their business models. To support the analysis, we used the patterns of the St.
Gallen Business Model Navigator [GFC14] that are also used as instances. Out of both
iterations, we refined our taxonomies for the business models and the product features.

During the Abstraction of existing Features, we abstracted the characteristics of the
business models and product features to create a taxonomy. For that, we derived generic
value propositions from the existing value propositions of the first stage and the discovered
value propositions of the mobile applications of the second stage. After that, we refined our
taxonomies by providing the same hierarchical level for the lowest characteristics.

During (3) Summarizing the Development, we combined our gathered information and
initiated the Canvas Model Repository with the Canvas Elements, Canvas Building Blocks,
and Canvas Models. For that, we first defined the Canvas Elements. Here, we used the
characteristics of both taxonomies as Ifems, the categories of the apps as Application Domains,
the predefined connections as Relationships, and the analyzed apps and identified patterns as
Instances. Out of that, we defined the Canvas Building Blocks by using the hierarchy of the
Items in the taxonomy combined with existing Relationships and Instances. Last, we mapped
them to Canvas Models for the business model and the feature set. A part of our Canvas
Model Repository can be seen in Figure 9.4. For the Canvas Elements, we had exemplary
Application Domains (e.g., Mobile Apps, Messengers), Items (e.g., Network, Interact with
Everyone), Relationships (e.g., requires ,excludes), and Instances (e.g., Spotify, Multi-Sided
Market). Those were structured to Canvas Building Blocks (e.g., Mobile App Business Model
Knowledge) with multiple Applications Domains (e.g., Mobile Apps). Here, the hierarchy
of Items (e.g., InteractionType was decomposed to Single-Sided Market and Multi-Sided
Market), multiple Relationships (e.g., Interact with Everyone supports Multi-Sided Market),
and multiple Instances (e.g., YouTube uses Interact with Everyone and Multi-Sided Market)

190 Evaluation

were modeled. Moreover, those blocks were mapped to the Canvas Models of the existing
Business Model Canvas and the newly created Feature Set Canvas.

A preliminary version of the whole canvas model repository can be accessed inside the
corresponding technical report [GRE19c]. Moreover, the results for both repositories can be

accessed in our software tool.

Business Model
Value Propositions _ Customer Seg.

InteractionType InteractionType

() () ()
Interact with Every. Single-Sided Market Multi-Sided Market

Al

Fig. 9.4 Knowledge Provision: Examples of the Canvas Model Repository based on the TD

9.2 User Study in Student Courses 191

Composition and Enactment of Development Methods For the second stage, the 14
students of the seminar were divided into six groups. After every student had presented
one idea, each group decided on one of their ideas to work on for the rest of the seminar.
These were (1) a recipe app that combines meals out of already purchased food, (2) a student
planner app that organizes different courses and submissions, (3) a booking app that allows
customers to book appointments at service providers, (4) a social app, that supports the friend
matching based on common memes, (5) a clothing app, the recombines clothes from the
wardrobe, and (6) a gaming support app, that supports the dungeons-and-dragons roleplay
with custom character sheets. The groups used our software tool to compose and enact a
situation-specific BMDM to develop business models for their mobile apps. These results of
that development were presented within the intermediate as well as the final representation.
Moreover, within the final report, they described their conducted development steps and
created artifacts.

To use the Situational Business Model Developer, we have presented the students the
most important tool features during the block seminar together with an exemplary composed
development method. With this information, the student groups could take the part of the
method engineer to compose a development method or could use our support as method
engineer for the composition. For both, we had the constraints that the situational factor of
businessModelingSkills needs to be set to low and our derived Business Model Initialization
Fattern needs to be used as the first pattern during the initialization. Therefore, the composi-
tion and enactment of the development methods could be structured according to the five
phases of discovery, analysis, design, development, and validation.

In the (1) Discovery, the students discovered the actual problem which they wanted to
solve together with the customers they wanted to address. To discover the problem, they
often used the Market Problem Discovery to gather information about a particular market
or the Own Problem Discovery to derive the market from their own problems. Here, for
example, the group of the booking app used the analysis of the market problem of the
time-efficient booking process of regular appointments. Moreover, the group of the recipe
app used the observation of the own problem of leftover food that should be reused in new
dishes. That discovery was enhanced by additional development steps like Persona Creation
or Customer Journal Map Creation. Here, the group of the clothing app used personas to
illustrate potential users of the app, and the group of the booking app used customer journeys
to connect contact points of the end-users and the companies. For the discovery of the
customers, the Target Audience Identification was mostly used as a standard development
step. Here, for example, the group of the gaming support app refined their target group

as dungeon and dragons players. Moreover, that information was verified through the first

192 Evaluation

Customer Interviews or Online Community Observations. Here, for example, the group of
the planner app interviewed other students on their opinions, and the group of the recipe
app looked up their market in existing cooking communities. The discovery phase of two
different development methods can be seen in Figure 9.5. While the group of the planner app
used a single identification of the target audience for the students together with an observation
of its own problems, the group of the booking app used two identifications for both market

sides together with an observation of the market problem.

Target Audience Persona Target Audience

Identification Creation Identification
ovm Prob_lem Target Audience
Observation P
Identification
Customer Market Problem Customer <
Interview Cond. Observation Journey Map
D
N/

(.
Market Pot.entlal]_> <
L Analysis
) Y
Market Potential Competitor Competitor <
Analysis Analysis L Analysis

y
-
Target Group 1 » X
—><’?<— __ Shaping__J
. -4 . -
a) Discovery and Analysis of the Planner App b) Discovery and Analysis of the Booking App

Fig. 9.5 Method Composition: Parts of the BMDMs for the Mobile Apps

In the (2) Analysis, the students analyzed the market with the existing competitors they
wanted to address. Here, all groups used the Market Potential Analysis together with some
sort of Competitor Analysis or StoreCompetitor Analysis. Here, for example, the group of
the recipe app analyzed the potential market based on statistics of cooking together with the
analysis of existing websites and apps for recipes. Moreover, sometimes the Target Group
Sharpening was used to refine the target audience after the analysis. For example, the group
of the booking app revisited their target audience after a detailed analysis of the market and
the competitors. The analysis phase of two different development methods can be seen in
Figure 9.5. While the group of the planner app used the parallel conduction of the market

9.2 User Study in Student Courses 193

potential analysis and the competitor analysis, the group of the booking app used an iterative
sequence of both development steps together with the sharpening of the target audience.

In the (3) Design, the students designed the value proposition, business model, and
feature set our their mobile apps. For that, they used the required development steps of
Value Proposition Development, Business Model Development, and Feature Set Development,
where each step is connected to a canvas model and, therefore, supported by the internal
Canvas Module. While the value proposition was developed without additional knowledge
support, the business model and feature set could be supported with the provided knowledge
of the canvas model repository. Here the knowledge was used to suggest possible items
and patterns, analyze the relationships between those items, and compare the own modeled
canvas against other businesses. Here, the groups used the repository to gather possible
items for the business model and the feature set. Examples of that can be seen in Figure
9.3 (e.g., Personalized Recommendations, Single-sided Market). Moreover, the developed
business models looked like that if the analyzed relationships were used to improve the
possible business models (e.g., solving conformance errors against the knowledge in the
repository). However, it seemed that the students did not use the identification of patterns and
the comparison against other businesses. For example, parts of the value propositions and
customer segments for the cooking app and the gaming support app can be seen in Figure
9.6. Here, both groups used a mix of their own knowledge (e.g., Young Adults in Customer
Segments for cooking app, Sheet Customization in Value Propositions for game support
app) and existing knowledge (e.g., Personalized Recommendations in Value Propositions for
cooking app, Single-sided Market in Customer Segments for game support app). Moreover,
the development steps of Competitive Advantage Analysis, SWOT Analysis, and Feature
Set Prioritisation are used each once. Here, the group of the recipe app used analysis of
competitive advantage due to many other apps in the same field, and the group of the booking
app used feature prioritization due to their large feature set.

In the (4) Development, the students developed an artifact of their mobile app. Here, for
the first iteration and the intermediate presentation, most groups chose Mockup Development
for the first artifact. Here, for example, the group of the booking app used Figma to create
different mockups of their mobile app. Later, some groups decided to switch to the Prototype
Development, and one group used a Wireframe Development. Here, for example, the group
of the gaming support app used the Android SDK to develop the first prototype of their app.

In the (5) Validation, the students should validate the artifact of their mobile app with
potential users. For the first iteration and the intermediate presentation, most groups chose
the Customer Interviews with friends as the first validation. Here, for example, the group

of the planner app asked their student colleagues for initial feedback on their developed

194

Evaluation

Value Propositions

Customer Segments

Value Propositions

Customer Segments

Customization Interaction Type Accessibility Interaction Type

« Personalized « Single-sided « Anonymous « Single-sided
Recommendations Market Access Market

Design / Usability Target Group Customization Market Size

» Execution Step * Interests * Sheet « Niche Market
Reduction > Cooking Customization

 Design Pattern > Eco-conscious « Calculation Target Group
Usage > No waste of Customization * Interests

¢ Easy Usability money

» Content-Consumer Network User Type

Price * Young Adults « Share Content « Private User
* Freemium « Connect with

User Type Others

* Private

a) Value Propositions and Customer Segments of
the Cooking App

b) Value Propositions and Customer Segments of
the Game Support App

Fig. 9.6 Method Enactment: Parts of the BMC for the Mobile Apps

mockups. Later, for the final evaluation, the Crowd-based Prototype Validation Platform was
used in the Crowd Prototype Validation to cross-validate the artifacts around the seminar as
presented in support of the development steps.

Support of Development Steps Within the seminar, the 14 students had less experience
in BMD and lean development. Therefore, we aimed to support the development steps of
the business model and the feature set with our integrated Canvas Module and the validation
of the prototype with the external Crowd-based Prototype Validation Platform. While the
usage of the Canvas Module was already explained in the design phase, here we focus on the
crowd-validation support.

With the Crowd-based Prototype Validation Platform, it is possible to support the valida-
tion of prototypes with the crowd. Here, the business developer could upload screenshots
or link external prototypes together with a questionnaire. This questionnaire, in turn, could
be filled out by potential users of the crowd. Moreover, the results of the questionnaire are
aggregated and made available to the business developer to improve his prototype iteratively.
In our setting, each group selects one business developer who published a prototype of their
mobile app on the platform together with a questionnaire containing the business model
(e.g., price offering of the user) and the product features (e.g., missing functionalities) related
questions. After that, each student evaluated two prototypes of other groups by filling out

their questionnaires. Therefore, each group got feedback from four to six other students that

9.2 User Study in Student Courses

195

Admin CBPV

AC

Projects

Evaluate |
Feedbacks

Users

Issues

Crowd-based Prototype Validation Platiorm

{1) Task Creation

(2) Task Conduction

conduct
[task
receive
[incentives ™

X
.-
(3) Task Evaluation —1
L
— Incentivisation
‘‘‘‘‘‘‘‘ e 7 — T —) K
governs
approve e D‘m"ﬂ"'ﬂma“o’m
e e LT R S v —) —
[l i — =g
r—ywr— DP2: Profutype Divarsity .

Questionnaire

Please fill out this Questionnaire

Q1:

Q2:

How important is the following the Design Principle of User Variety for such a platform (5 is highest) &

DP1: User Variety. Provide functions for integrating different internal and external users (e.g., platform user, crowd
worker) to allow developers to participate with a heterogeneous group of users within the validation process

WOW W W W

How important is the following the Design Principle of Task Iteration for such a platform (5 is highest) &

DP2: Task lteration: Provide functions for conducting tasks iteratively to allow developers an incremental improvement of

the prototypes over time

WOW W W W

Fig. 9.7 Development Support: Self-evaluation of the Platform

they could use within the validation phase. After that, we provided a self-evaluation of the

platform. For that, we have added the platform itself as a prototype, as shown in Figure 9.7.

Here, the prototype consisted of images of the platform where the instantiations of the DPs

on the platform are labeled. Moreover, the questionnaire provided a 5-star rating question

for each DP and four free text questions on the overall idea, the proposed solution, current

drawbacks of the platform, and additional feedback.

Moreover, we repeated the study with updated DPs and improved situated implementation

in a student lecture on the systematic development of AR/VR applications. Here, the 26

196 Evaluation

students were divided into eight groups of three to four, where one of each group published an
idea (e.g., a JengaVR game, a smARt note app, an ARmomix cooking app) for the application
on the platform. After that, all students evaluated two other prototypes and the platform as in

the seminar.

9.2.3 Analysis

The first goal of our work was to develop a situation-specific BMD approach. By conducting
a design science study, the purpose was to answer the overall RQ of how to enable the
situation-specific development of business models (RQ). For the third cycle of DSR, we
focus on our third question of supporting the artifact development with software (RQ 3) and
refine the first question on how to utilize and store the knowledge of method and models
(RQ 1) and the second question on how to compose and enact development methods (RQ 2).
Moreover, the second goal was to design a crowd-based prototype validation. By conducting
a separate DSR study, the purpose was to answer the RQ of how to design software to support
the iterative validation of prototypes with the crowd. We used this software support within
our third stage of situation-specific BMD to support development steps.

For the Utilization and Storage of Knowledge (RQ 1), we have improved the results of
the GLR as an indirect method to create a Method Repository. Here, we have added additional
explanations to the Method Elements, Method Building Blocks, and Method Patterns to allow
a common understanding without external explanations by domain experts. Moreover, we
have added explicit execution steps for the modulized support of designing the canvas models
in supporting the development steps. Here, understanding the forwarding of the artifacts
through the execution steps was tricky. Moreover, for the Canvas Model Repository, we
have used an extraction method based on TD. Here, identifying the Canvas Elements was the
major challenge based on the granularity of the items and the analysis of additional sources
for the business models of the mobile applications. In contrast to that, the Canvas Building
Blocks could be directly adopted by the developed taxonomy and mapped to the Canvas
Models of the existing BMC and the newly developed FSC.

Overall, the utilization and storage of knowledge were applicable concerning RQ 1 and
improved in contrast to the second design cycle. However, again a background knowledge of
the approach is needed to allow the utilization and storage concerning the reusability aspect.
Moreover, by providing the development support for the Method Building Blocks also, RQ 3
was applicable to the approach. However, background knowledge of the approach is needed
to allow the connection of the execution steps.

For the Composition and Enactment of Development Methods (RQ 2), we have
improved the composition of the development method with additional explanations and the

9.2 User Study in Student Courses 197

enactment of the method with additional collaboration features. For the Composition of the
Development Methods, we had the six student groups with their own individual development
method, which were composed by the groups or us under some restrictions. While for us,
the composition was straightforward, the students had some issues regarding the nested
usage of the patterns and the additional choices of groups for the stakeholders, artifacts, and
tools. However, the issue of nested patterns could be directly related to the first usage of the
composition, and the issue of additional choices could be improved with default groups. For
the Enactment of the Development Method, the six student groups executed their individual
methods to develop the business models of their mobile apps. For that, the groups conducted
the corresponding development steps. Here, two groups used the collaboration features to
discuss the different development steps, three groups used just the traceability feature of
the different artifacts, and one group executed the steps but stored the artifact information
externally. During that, we got the feedback that the development steps should get more
guidance, artifacts should be creatable without development steps, and parts of the Canvas
Module are hard to understand. During the execution of the execution steps from the Canvas
Module, the groups used the predefined items and relationships but not the existing instances.

Overall, the composition and enactment of development methods were applicable concern-
ing RQ 2 and improved in contrast to the second design cycle. However, again a background
knowledge of the approach is needed to allow the composition of the development method.
Overall, the support of development steps (i.e., support of canvas design) was applicable
concerning RQ 3. However, the modules’ execution steps need to be explained in more detail

to allow easy usage.

. I Il

R N W A~ O
|_

o |—
l_
|_

l l l l | l

DP 1: DP 2: DP 3: DP 4: DP 5: DP 6: DP 7: DP 8: DP o:
User Task Prototype Feedback Filter Aggregation Incentive Non-disclosure Governance
Variety lteration Diversity Diversity Mechanisms Mechanisms Mechanisms Mechanisms Mechanisms

Fig. 9.8 Evaluation of the Design Principles (DPs) on the CBPV platform

For the Support of Development Steps (RQ 3), we already analyzed the composition of
the development support and their execution for the Canvas Module in the last paragraphs.

Here, we focus on the analysis of the crowd-based prototype validation, which we divide into

198 Evaluation

the final quantitative and qualitative results of our questionnaire (n=20) of the third design
cycle.

For the Quantitative Results, we have answers for the 5-star rating questions for the nine
DPs that mostly relate to the abstracted design knowledge of the crowd-based prototype
validation. An overview of those results as box plots is shown in Figure 9.8. As an overall
impression, we see that nearly every DP is rating as crucial for such a platform. The variety
of users (i.e., DP I) and iteration of tasks (i.e., DP 2) should be provided by every platform.
Also, the diversity of prototypes (i.e., DP 3) and feedback (i.e., DP 4), together with the
aggregation of feedback (i.e., DP 6) that are specific for prototype crowd-validation, are rated
as essential. The same holds for providing overall governance (i.e., DP 9). The function for
filtering (i.e., DP 5) and incentives (i.e., DP 7) are rated lower by the students as they got
predetermined prototypes to validate and no additional incentives for the validations. Last, a
higher discrepancy exists for the non-closure agreements (i.e., DP 8), which some students
could interpret as just additional overhead.

For the Qualitative Results, we have answers for the free text fields of the additional
questions for the concept that are mostly related to the situated implementation of the
platform prototype but can partially also be abstracted to the design knowledge. An overall
impression of that feedback was that most of the students liked the overall idea of the platform.
Just one student was curious if the additional effort would be worth the feedback, and one
student commented that crowd validation should be just done in addition to regular customer
interviews. Most of the feedback was regarding some general issues with the current version
of the platform prototype, like better support for mobile web browsers, Ul issues, simplified
account management, or bug fixes. However, some feedback also suggested improvements to
the most important features of the users, the prototypes, and the feedback. For the users, there
was feedback to create groups for collaborative working on the prototypes and invite links to
share the prototype with colleagues. For the prototypes, there was feedback to add additional
types of non-visual prototypes and directly create clickable mockups on the platform. For
the questionnaire, there was feedback for "if not, why" questions and blocks for Likert scale
questions. Last, there was the wish to integrate the prototypes and the questions deeper.

Based on that analysis, we interpret those results for the situation-specific BMD and the

crowd-based prototype validation for future improvements to the solution.

9.2.4 Interpretation

The reasons for our user study during DSR were the evaluation of the third cycle of our

situation-specific BMD approach in different contexts and the third cycle of our crowd-based

9.2 User Study in Student Courses 199

prototype validation approach. For that, we analyzed our current threats to validity and
derived further implications that we have already addressed within our approaches.

To critically discuss the Threats To Validity of our evaluation, we again use the frame-
work of Yin et al. [Yin09], who divide the criteria of construct validity, internal validity,
external validity, and reliability.

For Construct Validity, we followed an explorative purpose by conducting all three
stages of the approach. Here, we use a user study with mobile apps in different contexts to
discover the applicability of the whole approach and the self-explanation of the composed
development method. However, there is the limitation that for the applicability of the support
of development steps, we were just able to test two different exemplary modules from the side
of the business developers. This means that we can not directly anticipate the applicability of
all possible support modules. Moreover, for the platform, we clarify the goal and purpose
to the students and provide additional explanations of the platform together with an email
address for solving occurring problems. Nevertheless, there can be misunderstandings of the
purpose, especially on the transferability of the DPs to different application areas.

For Internal Validity, we transferred the guidelines of Runeson and Host [RHO9] from
the case study to the user study to support the comparability of both studies. Here, we
clarify the overall research design at the beginning of the study and use the user study
protocol, the presentations, the final reports, and the information within the software tool as
sources to maximize objectivity and transparency. However, one limitation is that we used a
homogeneous group of computer science students with less experience in BMD for the user
study. This means we can not directly anticipate the applicability of all possible user groups.
Moreover, for the platform, a threat here is the non-systematic literature review in the first
cycle. While we cover different areas and use a technique like snowballing to reduce that
threat, we can not completely ensure missing some literature. However, those issues should
be reduced by conducting multiple design cycles.

For External Validity, we followed the design science paradigm of Vaishnavi and Kuechler
[KVO08] to gain abstract knowledge that can be used to solve a class of problems. Here, we
elaborated on the specific problem of developing business models for mobile apps, where
we applied our approach in different contexts within the user study. However, there are
limitations to the similarities within the specific situations of the students and the application
domain of mobile apps. This means that we can not fully anticipate the applicability to all
situations and application domains. Moreover, for the platform, a threat here is the evaluation
within student courses because of the biased view of the students. Nevertheless, this should

less affect the DPs due to the additional interviewing of experts.

200 Evaluation

For Reliability, we maximize the traceability by using a user study protocol, the pre-
sentations, the final reports, and the information within the software tool. Moreover, we
used a mix of direct and independent selection methods to increase the objectivity of our
study. However, there is the limitation that the provision of knowledge repositories and the
development of business models are creative processes that highly depend on the actual
stakeholders. This means that the repetition of the knowledge provision and business model
development will also lead to different results. Moreover, for the platform, we record the
whole expert workshop and export the raw data of all data created in the two user studies.
While this increases the reliability of the study result, it could also harm the experts and
students in providing negative feedback.

Out of the evaluation of the third DSR cycle, we found some Implications that we divide
into the situation-specific BMD and the crowd-based prototype validation.

For the Situation-specific Business Model Development, we directly addressed those im-
plications during the conclusion of our design science study. However, further improvements
are presented in the future work of our thesis, as presented in Section 10.3. We divide those
implications into the three areas of guidance improvements, approach complexity reduction,
and tool complexity reduction.

For the Guidance Improvements, we noted that the students with less business model
experience had issues with the given guidance. This includes the different functionalities
of the execution steps of the canvas module but also the high-level descriptions for the
tasks without separate execution steps. This, in turn, also limits the applicability to similar
stakeholders with less business model experience. Therefore, we improved the canvas
module’s functionalities and extended tasks without modules with additional task steps.

For the Approach Complexity Reduction, we found out that the students had issues with
the predefined composed method during the enactment. This includes the composition itself
and the need for method building blocks to create the artifacts. This, in turn, limits the
flexible usage by the stakeholders. Therefore, we reduced the complexity by allowing the
BMD without a predefined composed development method, phase-based construction, and
the direct creation of artifacts.

For the Tool Complexity Reduction, we investigated whether the students had an overall
usability problem with the software tool. This includes the explanations for the different
stages but also the layout of the tool. This, in turn, limits the acceptance of the stakeholders.
Therefore, we improved the explanations and the layout of the software tool.

For the Crowd-based Prototype Validation, we divide those implications into the ab-

stracted design knowledge of the DPs and the situated implementation of the platform.

9.3 Summary 201

The Abstracted Design Knowledge refers to the developed design principles and the
overall solution design. We currently see no major issues with the current set of principles.
However, some DPs could be slightly improved in the future. For the variety of the users
(i.e., DP 1), the external users, and in the iteration of tasks (i.e., DP 2), the incremental
improvements could be described more precisely. Moreover, the deeper integration of
prototypes (i.e., DP 3) and feedback (i.e., DP 4) could be mentioned. Next, the reasoning
for the incentivization (i.e., DP 7) and the non-disclosure agreements (i.e., DP 8) could be
improved. Last, based on the analysis of the created prototypes, a minor design principle
that could be investigated in the future would be providing guidance in creating a task (e.g.,
choosing the best type of prototype, generating good questions for feedback).

The Situated Implementation refers to the design features and the implemented platform
prototype. Here, we currently see a need to fix the current bugs that were identified by the
students. Moreover, we want to work on specific features that were mentioned during the
evaluation. For that, in addition to single sign-on services (i.e., DF 2), we want to allow the
sending of invitation links for concrete task evaluations. Moreover, we want to allow the
sharing of prototypes with other developers at the task creation (i.e., DF 5). To improve the
diversity of the prototypes, we want to add an internal prototyping tool in addition to the
external one (i.e., DF 10). Furthermore, the diversity of the feedback should be supported by
multi-questions based on Lickert scales (i.e., DF 14). As a larger project, we want to combine
the creation of prototypes and the provision of questions deeper based on the integrated
prototyping tool. Last, we want to implement the guidance in task creation, as mentioned as
a possible DP above.

9.3 Summary

Within this chapter, we have provided the evaluation of our second and third design science
cycle. For that, we have conducted a case study on developing possible business models
for the OWL Live event platform and a user study on developing possible business models
and prototypes within students’ courses. For both studies, we have shown the overall experi-
mental design, the execution of the study, the analysis of the results, and their interpretation.
Moreover, we provided an evaluation of the crowd-based prototype validation that was
integrated into our third design cycle.

For the Case Study on OWL Live, we developed possible business models for a local
event platform. Here, we conducted a GLR to provide the knowledge for the method
repository and the canvas model repository. Out of that knowledge and with the support

of the project manager, we have composed a situation-specific BMDM. By enacting that

202 Evaluation

development method, we have developed the three different business models of a content
aggregator, a ticket seller, and a sponsored platform, together with a swot analysis of each
business model.

For the User Study in Student Courses, we organized a student seminar in which the
groups of students developed business models and mobile app prototypes iteratively. Here,
we improved our GLR to provide the knowledge of the method repository and conducted a
TD to provide the knowledge for the canvas model repository. Out of that knowledge and
with additional support from us, the student groups have composed their situation-specific
BMDMs. By enacting the development methods, the students have developed the business
models and prototypes of a recipe app, a student planner app, a booking app, a social
app, a clothing app, and a gaming support app. Moreover, we showed the evaluation of our
crowd-based prototype validation within a student lecture on developing AR/VR applications.

Based on the evaluation, we conclude our approach in the next chapter. For this, we
summarize the main contributions of our approach, revisit the stated HRs and point out future

work.

Chapter 10
Conclusion and Future Work

In the previous chapter, we evaluated our solution based on a case and a user study. Based
on that, we give a conclusion on our approach for the situation-specific business model
development within software ecosystems and show additional research points which can be
addressed in the future. For that, we first summarize the main contributions of our approach
(10.1). After that, we revisit the extracted high-level requirements behind our solution (10.2).

Last, we point out research work that could be addressed in the future (10.3).

10.1 Contribution Summary

The development of new and innovation of existing business models is a challenging task
for both startups and companies. Here, the steps in the development method, as well as
the information in the modeling artifacts, need to fit the context in which the business
model should be developed. For that, we support both the development method and the
modeling artifacts with the utilized knowledge of different domain experts. Here, the
knowledge is selected situation-specific to the changeable context. To solve that challenge of
context awareness, we have developed an approach for the situation-specific development
of business models. Based on DSR, we conducted three design cycles which we evaluated
with a feasibility study, a case study, and a user study. The outcomes of this research
are the operational principles of the evaluated concept of situation-specific BMD together
with the situated implementation of a software tool called Situational Business Model
Developer. Our concept consists of three stages. In the first stage, we utilize and store
the knowledge of different development methods and supporting modeling artifacts in
two repositories. In the second stage, we compose the development method out of both
repositories based on the context and enact that development method to develop different

artifacts, including the business model. In the third stage, we support single development

204 Conclusion and Future Work

steps within those development methods with customizable development support to assist the
artifact development. In the following, we summarize the main contributions of each stage.
The goal of the Knowledge Provision of Methods and Models is to utilize and store
reusable knowledge about development methods and modeling artifacts from domain experts.
To solve that, we provide a Method Repository for the method fragments of the development
methods and a Canvas Model Repository with canvas modeling fragments for the canvas
modeling artifacts. As method fragments, we have the atomic Method Elements, including
artifacts and tools, that are combined to Method Building Blocks that transform input artifacts
into output artifacts. Moreover, the order of those building blocks is optionally structured
by Method Patterns. As canvas modeling fragments, we have the atomic Canvas Elements,
including items and relationships, that are hierarchically refined as Canvas Building Blocks.
Moreover, those building blocks are visually represented through Canvas Models. Last, both
repositories are connected by canvas artifacts that relate to specific canvas models. That
knowledge is made reusable to compose different development methods in the next stage.
The goal of the Composition and Enactment of Development Methods is to construct
and execute development methods based on freely definable and changeable contexts. For
the construction of the development method, we introduce pattern-based and phase-based
construction. In the pattern-based construction, we nest different Method Patterns into each
other and inserted Method Building Blocks in them. In the phase-based construction, we
divide the development method into different phases and select Method Building Blocks for
them. In both constructions, the Method Building Blocks are recommended by comparing the
given situation of the organization and the defined situation of the building block. Moreover,
we connect each canvas artifact to a Canvas Model. Here, we support the consolidated
usage of different Canvas Building Blocks. For that, we introduce the feature-based and
taxonomy-based consolidation of those building blocks. For the feature-based consolida-
tion, we merge the different building blocks with their items and relationships, detecting
conflicts of relationships between items of different building blocks. For the taxonomy-based
consolidation, we support just items that can be merged without conflicts between different
building blocks. Based on that, we provide an execution engine for the composed devel-
opment methods or new ad-hoc created development methods. Here, the Method Building
Blocks of the development method are interpreted as development steps with guidelines for
their conduction. During this conduction, different stakeholders collaborate to create and
modify different (Canvas) Modeling Artifacts, including the business model. Moreover, each
conduction of a development step might lead to a change of the context and an adaption of
the development method. Last, specific development steps are supported by IT assistance in

the next stage.

10.2 High-level Requirements Revisited 205

The goal of the Support of Development Steps is to provide software assistance for
specific development steps during the BMD. To provide that assistance, we introduce the
usage of Support Modules for providing such flexible development support. In the beginning,
we need to connect each module to the process engine. Here, each module might contain
different Support Tools with atomic Support Steps. Those support steps are used to create
and modify different Support Artifacts that are specified through Support Meta Artifacts.
Those meta artifacts, in turn, are used to ensure the interpretability of the support artifact by
support tools of different support modules. After that, we compose the development support
for specific Method Building Blocks by combining different Support Steps and choosing the
Support Artifacts as input and/or output artifacts of the building block. After that, we enact
the development support by executing the development step that is connected to the Method
Building Blocks. Here, each Support Step is connected to a customized code block in the
Support Module to support the creation and modification of the Support Artifacts. To show
the applicability of our solution, we provide three different support modules. The first one is
the Canvas Module, which provides design support for canvas models based on the Canvas
Model Repository. The second one is the HypoMoMap Module, which provides validation
support for the assumptions of business models and product features. The third one is the
CBPYV Platform, which provides validation support for software prototypes using the crowd
for feedback.

10.2 High-level Requirements Revisited

For developing our situation-specific BMD approach, we have conducted a review of the
literature in BMD and an analysis of tools on BMDSSs in Section 1.3 to derive the underlying
HRs as a foundation of our solution. During this section, we revisit those nine requirements
and their fulfillment within the approach.

The HR 1: Knowledge Ultilization states that the solution should allow the utilization of
knowledge about BMDMs and within the canvas artifacts. Within our approach, we utilize
the knowledge from different domain experts about methods to use and the canvas artifacts
to rely on with the support of a Method Repository and a Canvas Model Repository that both
interrelate to each other. Here, the utilized knowledge can be used to compose a development
method and provide suggestions during the enactment during the conduction of development
steps together with supporting single development steps with design support.

The HR 2: Method Comprehensiveness states that the solution should allow the
comprehensive development of BMDMs for all phases. Within our approach, we support
all phases of BMD by providing a Method Repository and the support for pattern-based and

206 Conclusion and Future Work

phase-based construction of the development method. For the pattern-based construction, the
nesting of Method Patterns ensures comprehensiveness. For the phase-based construction,
the selection of the phases leads to it. Moreover, during the enactment, it is possible to
flexibly execute additional Method Building Blocks as development steps for supporting
those phases.

The HR 3: Model Visualisation states that the solution should allow visual representa-
tions of the business model. With our approach, we visualize the business model by providing
a Canvas Model Repository, where those models can be flexibly represented through Canvas
Models. Those Canvas Models, in turn, can be used during the composition to consolidate
different Canvas Building Blocks and the enactment to visualize the structure behind the
consolidated Canvas Building Blocks. Moreover, during the support of development steps,
the instances of the items might be used to provide additional design support.

The HR 4: Context Awareness states that the solution should be aware of the context
in which the business model is developed. Within our approach, we integrate the context
by defining the Situational Factors in the Method Repository and the Application Domains
in the Canvas Model Repository. During the composition of the development, we use the
Situational Factors to choose the Method Building Blocks and optionally Method Patterns or
Phases together with the Application Domains to choose the Canvas Building Blocks. Here,
fragments of both repositories are connected to support the development methods as well
as the canvas modeling artifacts. Moreover, that context can be flexibly adjusted during the
enactment of the development method to provide an adaptation of methods and models.

The HR 5: Selection Assistance states that the solution should assist the development of
business models with the selection of BMDMs and canvas artifacts. Within our approach, we
assist in selecting knowledge from the Method Repository and the Canvas Model Repository
based on the given context. During the composition, we guide the construction of the devel-
opment method out of the Method Building Blocks and optionally Method Patterns or Phases
and the consolidation of the canvas models from the Canvas Building Blocks. Moreover,
during the enactment, we support the conduction of development steps with knowledge of
the Method Building Blocks and the development of canvas artifacts with knowledge of the
Canvas Building Blocks. Support Modules can further improve the development of (canvas)
artifacts during the support of development steps.

The HR 6: Development Continuity states that the solution should allow changes in the
business model and the business model development method during the whole development.
Within our approach, we provide continuity for the development method and the canvas model
during the whole development. For the development methods, we allow the adaptation of the

development method based on changes in the context after the execution of every development

10.2 High-level Requirements Revisited 207

step. For the canvas models, we allow the creation and modification of new canvas artifacts
during each development step. Moreover, both the execution of new development steps and
the creation of new canvas artifacts is possible during the development.

The HR 7: Stakeholder Collaboration states that the solution should allow the col-
laboration of different stakeholders during the BMD. Within our approach, we support the
collaboration and communication of different stakeholders. Here, we allow the definition
of stakeholders responsible for specific tasks within the Method Building Blocks. During
the conduction of development steps, the information about involved stakeholders might be
directly used to assign them to tasks. Moreover, different stakeholders could communicate
within each development step using a discussion board and collaborate in developing different
(Canvas) Artifacts.

The HR 8: Artifact Management states that the solution should provide management
of all artifacts that are created during the BMD. Within our approach, we provide that
management by tracing the creation and modification of all artifacts. For that, general
Artifacts are defined in the Method Repository, while specific Canvas Artifacts are defined in
the Canvas Model Repository. Moreover, within the Support Modules, additional Support
Meta Artifacts can be defined to manage the instantiated Support Artifacts. During the
conduction of development steps, existing artifacts are used as inputs or outputs of each step.
Moreover, different Support Tools with Support Steps might be used to support the creation
and modification of those artifacts.

The HR 9: Decision Support states that the solution should provide decision support
during BMD. Our approach provides different development support techniques with the
Support Modules. Here, we allow the composition of Support Steps of Support Tools within
the Method Building Blocks that are used during the conduction of development steps within
the enactment of the development method. For that, we provide the initial modules for
designing the canvas with the Canvas Module, validating hypotheses with the HypoMoMap
Module, and validating prototypes with the CBPV Platform.

The HR 10: Tool Support states that the solution should provide a software tool to
support the BMD. Within our approach, we developed a situated implementation of our
approach called Situational Business Model Developer and published it under open-source
for future extensions. Within the tool, we provide support for all three stages consisting of the
knowledge provision of methods and models, the composition and enactment of development
methods, and the support of development steps. Moreover, the tool can be flexibly extended
using additional Support Modules for single development steps.

208 Conclusion and Future Work

10.3 Future Work

Within this thesis, we have presented a situation-specific BMD approach based on DSR.
During the work on the thesis, we identified different points for extensions of the stages of our
approach as well as concrete ideas for follow-up work that could be addressed in future design
cycles. We divide those extensions into the stages of knowledge provision, composition and
enactment, and development support together with their evaluation and follow-up work in
modeling business ecosystems, tailoring business model workshops, simulating business
outcomes, and connecting source code.

For the Knowledge Provision Extensions, we currently base the structuring of our
method repository on BPMN and the canvas model repository on canvas models that were
both initialized with knowledge from domain experts during the evaluations. However, here
both the structuring of the repositories and the initialization of knowledge could be extended
in the future. While additional lightweight modeling languages like Case Management
Model and Notation could be discovered for the structuring of the method repository, model
repositories could provide more complex modeling languages like the e3-Value Model for
modeling also value networks around the business models. Moreover, for the initialization
of knowledge, additional sources for method and modeling artifact knowledge in specific
areas like business ecosystems or digital platforms could be derived and provided within the
tool. That knowledge could be gathered manually by conducting SLRs, GLRs, and expert
interviews, or (semi)automatic by analyzing developed business models or mining existing
business resources.

For the Composition and Enactment Extensions, we currently compose the method
out of patterns and phases together with the modeling artifacts out of feature models and
taxonomies. Both are enacted on a Kanban board and (canvas) modeling artifacts. However,
simplifications of both the methods and modeling artifacts during the composition and
enactment could be discovered in the future. While, for the composition of models, the
usage of configuration-based situational method engineering with configuration points for the
different goals and phases could be discovered, the modeling artifacts could use a simplified
library without hierarchies if the enhanced design support and refinements for the canvas
models are not needed. This, in turn, can also lead to the potential effect that the enactment
might be directly combined with the composition in the most simplified cases, like for our
defined ad-hoc creation of development methods. Integrating both makes it possible to adjust
better the roles of the method engineer and the business developer.

For the Development Support Extensions, we currently provide simplified step-wise
design support together with three exemplary support modules to show its applicability.
However, both the step-wise design support and the number of modules could be extended

10.3 Future Work 209

in the future. For the step-wise design support, the composition could be extended so that
more complex executions sequences of steps and a more fine-granular selection of modeling
artifacts is possible. This, in turn, improves the possible use cases of the approach but also
increases the complexity of integrating new modules into the software tool. Moreover, it
would be possible to add modules to support all different phases of BMD. Ideas for such
modules could be derived from our SLR on BMDSSs. Here, examples would be discovering
business model information from existing ERP systems or validating possible business
models by creating digital twins.

For the Design Evaluation Extensions, we currently evaluate the applicability of our
approach using a feasibility study, a case study, and a user study. However, in the future, the
applicability of using other evaluation techniques and the measuring of improvements could
be discovered in additional design cycles. For applicability, it would be possible to conduct
expert workshops with companies and startups or prototype presentations on online events
and trade fairs to gather industrial feedback on our approach. For measuring improvements,
it would be possible to conduct small and locked controlled experiments of single features
of our approach against other existing approaches like pen-and-paper workshops or simple
visualization tools.

For the Follow-Up Work: Modeling of Business Ecosystems, it could be a future inves-
tigation to model more complex networks of business ecosystems with different stakeholders
through our approach. For that, we first need to develop a (lightweight) modeling language
to design such business ecosystems. This can be done by extending our canvas model
repository to present modeling language models or developing an additional meta artifact
within a support module. After that, both the existing method repository and the extended
canvas model repository can be filled with knowledge on the development methods and
modeling artifacts of business ecosystems. Depending on the developed modeling artifact,
the composition and enactment of the models need also be changed before the usage of the
models is possible. Moreover, developing an additional support tool within a support module
to support the different development phases of business ecosystems with unique collaboration
and communication features among different organizations could make sense. We already
presented the idea behind this follow-up work in [VGK22].

For the Follow-Up Work: Tailoring of Business Model Development Workshops,
it would be worth an investigation to adapt our approach for different online and offline
workshop settings. Here, different stakeholders simultaneously work on developing different
ideas for business models. For that, we need to extend our software tool with a user interface
for large and interactive screens for the offline setting and live synchronization and real-time

communication for the online setting. Moreover, we need to develop an extension for our

210 Conclusion and Future Work

repositories or create a new meta artifact to provide visual representations like template
boards of the single development steps. Those visualizations, in turn, should also be used
during the enactment of the development process. Furthermore, gamification elements within
a support tool of a support module could support single development steps. We already
presented the idea behind this follow-up work in [GYNE22d].

For the Follow-Up Work: Simulation of Business Outcomes, a future investigation
would be to combine our reference modeling using feature models to (semi-) automatically
simulate the outcome of different variants of business models. For that, we need to extend
the feature representation in our canvas model repository or create a new meta artifact to
deal with an advanced calculation language like system dynamics or agent-based modeling.
During the enactment, the space of possible business models could be chosen by selecting
a subset of all features that should be investigated. To calculate different business models
simultaneously, a support tool of a support module for development support needs to be
developed where different parameters for the calculation can be set. We already presented
the idea behind this follow-up work in [VG21].

For the Follow-Up Work: Connection to Source Code, it would be beneficial to
investigate if our model-based approach can be turned into a model-driven approach by
directly connecting our developed models to the source code of a software product. With
that, split tests of the product features and the business model can be directly tested in
possible prototypes by adjusting those to the formal representation. For that, we need to
develop a meta artifact that can be used within a software product. Moreover, we need to
develop an external code connection tool within a support module to achieve split-testing,
receiving results, and further analysis of the results. We already presented the idea behind
this follow-up work in [GYE22].

References

[ABA13]

[ABKS13]

[ADEHAOS]

[AdRI18]

[AdR20]

[ADv13]

[AF17]

[AF18]

[AFD18]

[AFM18]

Sharon A. Alvarez, Jay B. Barney, and Philip Anderson. Forming and Exploit-
ing Opportunities: The Implications of Discovery and Creation Processes for
Entrepreneurial and Organizational Research. Organization Science, 24(1):301-
317, 2013.

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. Feature-Oriented
Software Product Lines. Springer, Heidelberg, 2013.

Mutaz Al-Debei, Ramzi El-Haddadeh, and David Avison. Defining the Busi-
ness Model in the New World of Digital Business. In Proceedings of AMCIS
2008. 2008.

Alexia Athanasopoulou and Mark de Reuver. Designing business model
tooling for business model exploration: An experimental design for evaluation.
In Proceedings of BLED eConference 2018, pages 477-489. University of
Maribor Press, 2018.

Alexia Athanasopoulou and Mark de Reuver. How do business model tools fa-
cilitate business model exploration? Evidence from action research. Electronic
Markets, 30(3):495-508, 2020.

Petra Andries, Koenraad Debackere, and Bart van Looy. Simultaneous Ex-
perimentation as a Learning Strategy: Business Model Development Under
Uncertainty. Strategic Entrepreneurship Journal, 7(4):288-310, 2013.

Dominik Augenstein and Christian Fleig. Exploring Design Principles for a
Business Model Mining Tool. In Proceedings of ICIS 2017. AlS, 2017.

Dominik Augenstein and Christian Fleig. Towards Increased Business Model
Comprehension - Principles for an Advanded Business Model Tool. In Pro-
ceedings of ICIS 2018. AlS, 2018.

Dominik Augenstein, Christian Fleig, and Dominik Dellermann. Towards
Value Proposition Mining - Exploration of Design Principles. In Proceedings
of ICIS 2018. AIS, 2018.

Dominik Augenstein, Christian Fleig, and Alexander Maedche. Development
of a Data-Driven Business Model Transformation Tool. In Designing for a
Digital and Globalized World, volume 10844, pages 205-217. Springer, Cham,
2018.

212

References

[AGO3]

[AHdR18a]

[AHdR18b]

[ATBO7]

[ALB109]

[A1100]

[AM17]

[App21]
[ATOT20]

[BBS10]

[BCW17]

[BARHF20]

[BARST12]

[B€z05]

J. M. Akkermans and Jaap Gordijn. Value-based requirements engineering:
exploring innovative e-commerce ideas. Requirements Engineering, 8(2):114—
134, 2003.

Alexia Athanasopoulou, Timber Haaker, and Mark de Reuver. Designing
digital tooling for business model exploration for the Internet-of-Things. In
Proceedings of DESRIST 2018. 2018.

Alexia Athanasopoulou, Timber Haaker, and Mark de Reuver. Tooling for
Internet-of Things Business Model Exploration: A Design Science Research
Approach. In Proceedings of ECIS 2018. 2018.

Jorn Altmann, Mihaela Ion, and Ashraf Adel Bany Mohammed. Taxonomy
of Grid Business Models. In Grid Economics and Business Models, volume
4685, pages 29—-43. Springer, Cham, 2007.

Shail Arora, Gary Leavens, Bernd Bruegge, Yvonne Coady, and Simon Peyton-
Jones, editors. Proceeding of the 24th ACM SIGPLAN conference companion.
ACM, 20009.

Verna Allee. Reconfiguring the value network. Journal of Business Strategy,
21(4):36-39, 2000.

Dominik Augenstein and Alexander Médche. Exploring Design Principles for
Business Model Transformation Tools. In Proceedings of ICIS 2017. 2017.

App Annie Inc. The State of Mobile 2021. 2021.

O. Ege Adali, Oktay Tiiretken, Baris Ozkan, Rick Gilsing, and Paul Grefen.
A Multi-concern Method for Identifying Business Services: A Situational
Method Engineering Study. In Enterprise, Business-Process and Information
Systems Modeling, volume 387, pages 227-241. Springer, Cham, 2020.

Jan Bosch and Petra Bosch-Sijtsema. From integration to composition: On the
impact of software product lines, global development and ecosystems. Journal
of Systems and Software, 83(1):67-76, 2010.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice: Second Edition. Synthesis Lectures on Software
Engineering, 3(1):1-207, 2017.

Harry Bouwman, Mark de Reuver, Marikka Heikkild, and Erwin Fielt. Busi-
ness model tooling: where research and practice meet. Electronic Markets,
30(3):413-419, 2020.

Harry Bouwman, Mark de Reuver, Sam Solaimani, Dave Daas, and Timber
Haaker. Business Models Tooling and a Research Agenda. In BLED 2012 —
Special Issue. 2012.

Jean Bézivin. On the unification power of models. Software & Systems
Modeling, 4(2):171-188, 2005.

References 213

[Béz06] Jean Bézivin. Model Driven Engineering: An Emerging Technical Space. In
Generative and Transformational Techniques in Software Engineering, volume

4143, pages 36—64. Springer, Heidelberg, 2006.

[BH95] Sjaak Brinkkemper and Frank Harmsen. Design and implementation of a
method base management system for a situational CASE environment. In
Proceedings of the Asia Pacific Software Engineering Conference, pages 430—
438. IEEE Comput. Soc. Press, 1995.

[BHH*18] Harry Bouwman, Jukka Heikkili, Marikka Heikkild, Carlo Leopold, and Tim-
ber Haaker. Achieving agility using business model stress testing. Electronic
Markets, 28(2):149-162, 2018.

[BHPOO] Phillip A. Bernstein, Alon Y. Halevy, and Rachel A. Pottinger. A vision for
management of complex models. ACM SIGMOD Record, 29(4):55-63, 2000.

[Blal3] Steve Blank. Why the lean start-up changes everything. Harvard Business
Review, (91):63-72, 2013.

[Bla20] Steve Blank. The Four Steps to the Epiphany: Successful Strategies for
Products that Win. JohnWiley, Boston, 5th edition edition, 2020.

[BM14] Steve BoBelmann and Tiziana Margaria. Domain-Specific Business Modeling
with the Business Model Developer. In Leveraging Applications of Formal
Methods, Verification and Validation. Specialized Techniques and Applications,
volume 8803, pages 545-560. Springer, Heidelberg, 2014.

[BM17] Steve BoBelmann and Tiziana Margaria. Guided Business Modeling and
Analysis for Business Professionals. In Service Business Model Innovation in
Healthcare and Hospital Management, pages 195-211. Springer, Cham, 2017.

[BO20] David J. Bland and Alexander Osterwalder. Testing business ideas. John Wiley
& Sons, Hoboken, 2020.

[Bri96] Sjaak Brinkkemper. Method engineering: engineering of information sys-
tems development methods and tools. Information and Software Technology,
38(4):275-280, 1996.

[BSO7] Katrin Burmeister and Christian Schade. Are entrepreneurs’ decisions more
biased? An experimental investigation of the susceptibility to status quo bias.
Journal of Business Venturing, 22(3):340-362, 2007.

[BSRP16] Hans Berends, Armand Smits, Isabelle Reymen, and Ksenia Podoynitsyna.
Learning while (re)configuring: Business model innovation processes in estab-
lished firms. Strategic organization, 14(3):181-219, 2016.

[BWRP15] Michael Blaschke, Maurus L. Wuetherich, Uwe V. Riss, and Petros Papakostas.
Business Model Management System Design: Manifesto, Requirements, and

Prototype. In Proceedings of the 3rd International Conference on Enterprise
Systems (ES), pages 153-160. IEEE, 2015.

[CBI19] CBlnsights. CB Insights 2019: Top 20 Reasons Why Startups Fail. 2019.

214 References

[Chel0] Henry Chesbrough. Business Model Innovation: Opportunities and Barriers.
Long Range Planning, 43(2-3):354-363, 2010.

[CNO9] Paul Clements and Linda Northrop. Software product lines: Practices and
patterns. Addison-Wesley, Boston, 7th edition, 2009.

[CN18] Federico Cosenz and Guido Noto. A dynamic business modelling approach to

design and experiment new business venture strategies. Long Range Planning,
51(1):127-140, 2018.

[DEWL13] Christina Di Valentin, Andreas Emrich, Dirk Werth, and Peter Loos. Business
Modeling in the Software Industry: Conceptual Design of an Assistance
System. In Practice-Driven Research on Enterprise Transformation, volume

151, pages 34—45. Springer, 2013.

[DFH16] Fabiano Dalpiaz, Xavier Franch, and Jennifer Horkoff. istar 2.0 language
guide, 2016.

[DHOB13] Dave Daas, Toine Hurkmans, Sietse Overbeek, and Harry Bouwman. Develop-
ing a decision support system for business model design. Electronic Markets,
23(3):251-265, 2013.

[DLE17] Dominik Dellermann, Nikolaus Lipusch, and Philipp Ebel. Developing Design
Principles for a Crowd-Based Business Model Validation System. In Designing
the Digital Transformation, volume 10243, pages 163—178. Springer, 2017.

[DLEL19] Dominik Dellermann, Nikolaus Lipusch, Philipp Ebel, and Jan Marco Leimeis-
ter. Design principles for a hybrid intelligence decision support system for
business model validation. Electronic Markets, 29(3):423-441, 2019.

[DLL18] Dominik Dellermann, Nikolaus Lipusch, and Mahei Manhai Li. Combining
Humans and Machine Learning: A Novel Approach for Evaluating Crowd-
sourcing Contributions in Idea Contests. In Proceedings of Multikonferenz
Wirtschaftsinformatik 2018. 2018.

[dRAH"16] Mark de Reuver, Alexia Athanasopoulou, Timber Haaker, Melissa Roelfsema,
and Angelika Riedl. Designing an ICT tooling platform to support SME

business model innovation: Results of a first design cycle. In Proceedings of
BLED eConference 2016. 2016.

[DWL15] Christina Di Valentin, Dirk Werth, and Peter Loos. Analysis of IT-Business
ModelsTowards Theory Development of Business Model Transformation and
Monitoring. In Proceedings of the Fifth International Symposium on Business
Modeling and Software Design (IS-BMSD), pages 171-177. SCITEPRESS,
2015.

[EBL16] Philipp Ebel, Ulrich Bretschneider, and Jan Marco Leimeister. Leveraging
virtual business model innovation: a framework for designing business model
development tools. Information Systems Journal, 26(5):519-550, 2016.

References

215

[EHB11]

[ES16]

[EW17]

[FAM18]

[FB16]

[FCP12]

[FK15]

[FLR* 18]

[FP10]

[FP14a]

[FP14b]

[FP16]

Martin J.. Eppler, Friederieke Hoffmann, and Sabrina Bresciani. New busi-
ness models through collaborative idea generation. International Journal of
Innovation Management, 15(06):1323-1341, 2011.

David S. Evans and Richard Schmalensee. Matchmakers: The new economics
of multisided platforms. Harvard Business Review Press, Boston, 2016.

Nesat Efendioglu and Robert Woitsch. A Modelling Method for Digital Service
Design and Intellectual Property Management Towards Industry 4.0: CAxMan
Case. In Serviceology for Services, volume 10371, pages 153—163. Springer,
Cham, 2017.

Christian Fleig, Dominik Augenstein, and Alexander Maedche. Tell Me
What’s My Business - Development of a Business Model Mining Software.
In Information Systems in the Big Data Era, volume 317, pages 105-113.
Springer, Cham, 2018.

Masud Fazal-Baqaie. Project-specific Software Engineering Methods: Compo-
sition, Enactment, and Quality Assurance. Paderborn University, 2016.

Abiola O. Fanimokun, Gary Castrogiovanni, and Mark F. Peterson. Devel-
oping High-Tech Ventures: Entrepreneurs, Advisors, and the Use of Non-
Disclosure Agreements (NDAs). Journal of Small Business & Entrepreneur-
ship, 25(1):103-119, 2012.

Hans-Georg Fill and Dimitris Karagiannis. On the Conceptualisation of Mod-
elling Methods Using the ADOxx Meta Modelling Platform. Enterprise
Modelling and Information Systems Architectures, (8):4-25, 2015.

Gilbert Fridgen, Jannik Lockl, Sven Radszuwill, Alexander Rieger, Andre
Schweizer, and Nils Urbach. A Solution in Search of a Problem: A Method
for the Development of Blockchain Use. In Proceedings of AMCIS 2018. AlS,
2018.

Boris Fritscher and Yves Pigneur. Supporting Business Model Modelling:
A Compromise between Creativity and Constraints. In Task Models and
Diagrams for User Interface Design, volume 5963, pages 28—43. Springer,
Cham, 2010.

Boris Fritscher and Yves Pigneur. Computer Aided Business Model Design:
Analysis of Key Features Adopted by Users. In Proceedings of HICCS 2014,
pages 3929-3938. IEEE, 2014.

Boris Fritscher and Yves Pigneur. Visualizing Business Model Evolution with
the Business Model Canvas: Concept and Tool. In Proceedings on the 16th
Conference on Business Informatics (CBI), pages 151-158. IEEE, 2014.

Boris Fritscher and Yves Pigneur. Classifying Business Model Canvas Usage
from Novice to Master: A Dynamic Perspective. In Business Modeling and
Software Design, volume 257, pages 134—151. Springer, Cham, 2016.

216 References

[Fral3] Ulrich Frank. Domain-Specific Modeling Languages: Requirements Analysis
and Design Guidelines. In Domain Engineering, pages 133—157. Springer,
Berlin, 2013.

[FSDN15] Awdren de Lima Fontao, Rodrigo Pereira dos Santos, and Arilo Claudio Dias-
Neto. Mobile Software Ecosystem (MSECO): A Systematic Mapping Study.
In Proceedings of the Annual Computer Software and Applications Conference
(COMSAC), pages 653—658. IEEE, 2015.

[FSMM17] Fabian Fagerholm, Alejandro Sanchez Guinea, Hanna Méenpéd, and Jiirgen
Miinch. The RIGHT model for Continuous Experimentation. J. Syst. Softw.,
123:292-305, 2017.

[FWCG13] Karolin Frankenberger, Tobias Weiblen, Michaela Csik, and Oliver Gassmann.
The 4I-framework of business model innovation: a structured view on pro-
cess phases and challenges. International Journal of Product Development,
18(3/4):249, 2013.

[GAO1] Jaap Gordijn and Hans Akkermans. Designing and evaluating e-business
models. IEEE Intelligent Systems, 16(4):11-17, 2001.

[GAYE21] Sebastian Gottschalk, Muhammad Suffyan Aziz, Enes Yigitbas, and Gregor
Engels. Design Principles for a Crowd-Based Prototype Validation Platform.
In Software Business, volume 434, pages 205-220. Springer, Cham, 2021.

[GBH16] Martin Geissdoerfer, Nancy M.P. Bocken, and Erik Jan Hultink. Design
thinking to enhance the sustainable business modelling process — A workshop
based on a value mapping process. Journal of Cleaner Production, 135:1218—
1232, 2016.

[GBW122] Sebastian Gottschalk, Rakshit Bhat, Nils Weidmann, Jonas Kirchhoff, and Gre-
gor Engels. Low-Code Experimentation on Software Products. In Proceedings

of 25th International Conference on Model Driven Engineering Languages
and Systems (MODELS °22 Companion). ACM, 2022.

[Genl18] General Electric Inc. GE Global Innovation Barometer 2018. 2018.

[GFC14] Oliver Gassmann, Karolin Frankenberger, and Michaela Csik. The business
model navigator: 55 models that will revolutionise your business. Pearson,
Harlow, 2014.

[GFCL] Andrea Giessman, Alexander Fritz, Simon Caton, and Christine Legner. A
Method For Simulating Cloud Business Models: A Case Study On Platform
As A Service. In Proceedings of the ECIS 2013.

[GFM19] Vahid Garousi, Michael Felderer, and Mika V. Mintyld. Guidelines for includ-
ing grey literature and conducting multivocal literature reviews in software
engineering. Information and Software Technology, 106:101-121, 2019.

[GH13] Shirley Gregor and Alan R. Hevner. Positioning and Presenting Design Science
Research for Maximum Impact. MIS Quarterly, 37(2):337-355, 2013.

References

217

[GKE21] Sebastian Gottschalk, Jonas Kirchhoff, and Gregor Engels. Extending Business

Model Development Tools with Consolidated Expert Knowledge. In Business
Modeling and Software Design, volume 422, pages 3-21. Springer, Cham,
2021.

[GKS20] Shirley Gregor, Leona Kruse, and Stefan Seidel. Research Perspectives: The

Anatomy of a Design Principle. Journal of the Association for Information
Systems, 21:1622—-1652, 2020.

[GMO3] John Gross and Kenneth Mcinnis. Kanban Made Simple: Demystifying and

applying toyota’s legendary manufacturing process. AMACOM, New York
City, 2003.

[Got21a] Sebastian Gottschalk. Decision Support Systems for Business Model Develop-

[Got21b]

[GPYE22]

[GRE19a]

[GRE19b]

[GRE19c]

[GRE20]

[Gril6]

[GSE17]

ment. In European Computer Science Summit. Informatics Europe, 2021.

Sebastian Gottschalk. Situation-specific Development of Business Models for
Service Providers in Software Ecosystems. In CAISE Doctorial Consortium,
volume 2906, pages 99-108. CEUR-WS, 2021.

Sebastian Gottschalk, Sarmad Parvez, Enes Yigitbas, and Gregor Engels. De-
signing Platforms for Crowd-based Software Prototype Validation: A Design
Science Study. In Product-Focused Software Process Improvement, volume
13709. Springer, Cham, 2022.

Sebastian Gottschalk, Florian Rittmeier, and Gregor Engels. Business Models
of Store-Oriented Software Ecosystems: A Variability Modeling Approach.
In Business Modeling and Software Design, volume 356, pages 153—-169.
Springer, 2019.

Sebastian Gottschalk, Florian Rittmeier, and Gregor Engels. Intertwined Devel-
opment of Business Model and Product Functions for Mobile Applications: A
Twin Peak Feature Modeling Approach. In Software Business, pages 192-207.
Springer, Cham, 2019.

Sebastian Gottschalk, Florian Rittmeier, and Gregor Engels. Intertwined De-
velopment of Business Model and Product Functions for Mobile Applications:
A Twin Peak Feature Modeling Approach: Technical Report. 2019.

Sebastian Gottschalk, Florian Rittmeier, and Gregor Engels. Hypothesis-
driven Adaptation of Business Models based on Product Line Engineering. In

Proceecings of the International Conference on Business Informatics (CBI).
IEEE, 2020.

Marvin Grieger. Model-Driven Software Modernization: Concept-Based
Engineering of Situation-Specific Methods. Paderborn University, 2016.

Martin Geissdoerfer, Paulo Savaget, and Steve Evans. The Cambridge Business
Model Innovation Process. Procedia Manufacturing, 8:262-269, 2017.

218

References

[GSST11]

[GT18]

[GWBI10]

[GY21]

[GYE20]

[GYE22]

[GYNE21a]

[GYNE21b]

[GYNE2Ic]

[GYNE22a]

[GYNE22b]

David Geiger, Stefan Seedorf, Thimo Schulze, Robert C. Nickerson, and
Martin Schader. Managing the Crowd: Towards a Taxonomy of Crowdsourcing
Processes. In Proceedings of AMCIS 2011. AlS, 2011.

Gorkem Giray and Bedir Tekinerdogan. Situational Method Engineering for
Constructing Internet of Things Development Methods. In Business Modeling
and Software Design, volume 319, pages 221-239. Springer, Cham, 2018.

Vania Gongalves, Nils Walravens, and Pieter Ballon. “How about an App
Store?”” Enablers and Constraints in Platform Strategies for Mobile Network
Operators. In Proceedings of the Ninth International Conference on Mobile
Business and Ninth Global Mobility Roundtable (ICMB-GMR), pages 66—73.
IEEE, 2010.

Sebastian Gottschalk and Enes Yigitbas. Von datenbasierter zu
datengetriebener Geschiftsmodellentwicklung: Ein Uberblick iiber Software-
Tools und deren Datennutzung. In WI-MAW-Rundbrief. Gesellschaft fiir Infor-
matik, 2021.

Sebastian Gottschalk, Enes Yigitbas, and Gregor Engels. Model-Based Hy-
pothesis Engineering for Supporting Adaptation to Uncertain Customer Needs.
In Business Modeling and Software Design, volume 391, pages 276-286.
Springer, Cham, 2020.

Sebastian Gottschalk, Enes Yigitbas, and Gregor Engels. Model-driven Con-
tinuous Experimentation on Component-based Software Architectures. In
Proceedings of the 19th International Conference on Software Architectures.
IEEE, 2022.

Sebastian Gottschalk, Enes Yigitbas, Alexander Nowosad, and Gregor En-
gels. Situation- and Domain-Specific Composition and Enactment of Business
Model Development Methods. In Product-Focused Software Process Improve-
ment, volume 13126, pages 103—118. Springer, Cham, 2021.

Sebastian Gottschalk, Enes Yigitbas, Alexander Nowosad, and Gregor Engels.
Situation-specific Business Model Development Methods for Mobile App De-
velopers. In Enterprise, Business-Process and Information Systems Modeling,
volume 421, pages 262-276. Springer, 2021.

Sebastian Gottschalk, Enes Yigitbas, Alexander Nowosad, and Gregor En-
gels. Situation-specific Business Model Development Methods for Mobile App
Developers: Technical Report. 2021.

Sebastian Gottschalk, Enes Yigitbas, Alexander Nowosad, and Gregor Engels.
Continuous Situation-specific Development of Business Models: Knowledge
Provision, Method Composition, Method Enactment. In Journal of Software
and Systems. Springer, 2022.

Sebastian Gottschalk, Enes Yigitbas, Alexander Nowosad, and Gregor Engels.
Don’t Start from Scratch: A Modularized Architecture for Business Model
Development Tools. In Poster Presentation @ International Conference on

References

219

[GYNE22c]

[GYNE22d]

[GYSE20a]

[GYSE20b]

[HBJdR17]

[HBOY4]

[HevO07]

[HHI12]

[HKB18]

[HMPRO4]

[HO11]

[HSGP10]

Software Business and South Tyrol Free Software Conference. CEUR-WS,
2022.

Sebastian Gottschalk, Enes Yigitbas, Alexander Nowosad, and Gregor Engels.
Situational Business Model Developer: A Tool-support for Situation-specific
Business Model Development. In Proceedings of the Wirtschaftsinformatik.
AIS, Nuremberg, 2022.

Sebastian Gottschalk, Enes Yigitbas, Alexander Nowosad, and Gregor Engels.
Towards Software Support for Situation-specific Cross-organizational Design
Thinking Processes. In Proceedings of the 5th International Workshop on
Software-intensive Business. IEEE, 2022.

Sebastian Gottschalk, Enes Yigitbas, Eugen Schmidt, and Gregor Engels.
Model-Based Product Configuration in Augmented Reality Applications.
In Human-Centered Software Engineering, volume 12481, pages 84—104.
Springer, Cham, 2020.

Sebastian Gottschalk, Enes Yigitbas, Eugen Schmidt, and Gregor Engels.
ProConAR: A Tool Support for Model-Based AR Product Configuration.
In Human-Centered Software Engineering, volume 12481, pages 207-215.
Springer, Cham, 2020.

Timber Haaker, Harry Bouwman, Wil Janssen, and Mark de Reuver. Business
model stress testing: A practical approach to test the robustness of a business
model. Futures, 89:14-25, 2017.

Frank Hamsen, Sjaak Brinkkemper, and J. L. Han Oei. Situational method
engineering for informational system project approaches. In Proceedings of
the IFIP WGS.1 Working Conference on Methods and Associated Tools for the
Information Systems Life Cycle, pages 169-194. 1994.

Alan Hevner. A Three Cycle View of Design Science Research. Scandinavian
Journal of Information Systems, 2007.

Larissa Hammon and Hajo Hippner. Crowdsourcing. Business & Information
Systems Engineering, 4(3):163-166, 2012.

Basma Hamrouni, Ahmed Korichi, and Abdelhabib Bourouis. IDSS-BM. In
Proceedings of the 7th International Conference on Software Engineering and
New Technologies, pages 1-5, New York City, 2018. ACM.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
Science in Information Systems Research. MIS Quarterly, (28), 2004.

Adrian Holzer and Jan Ondrus. Mobile application market: A developer’s
perspective. Telematics and Informatics, 28(1):22-31, 2011.

Brian Henderson-Sellers and Cesar Gonzalez-Perez. Granularity in Conceptual
Modelling: Application to Metamodels. In Conceptual Modeling — ER 2010,
volume 6412, pages 219-232. Springer, Berlin, 2010.

220

References

[HSRAR14]

[HZFN16]

[JKS17]

[Joh16]

[JPEK16]

[JZE*18]

[KB10]

[KBS19]

[KBWLI2]

[KCSO08]

[KGE22]

[Kit04]

[KKO02]

Brian Henderson-Sellers, Jolita Ralyté, Par J. Agerfalk, and Matti Rossi. Situ-
ational Method Engineering. Springer, Heidelberg, 2014.

Philipp Max Hartmann, Mohamed Zaki, Niels Feldmann, and Andy Neely.
Capturing value from big data — a taxonomy of data-driven business models

used by start-up firms. International Journal of Operations & Production
Management, 36(10):1382—-1406, 2016.

Thomas John, Dennis Kundisch, and Daniel Szopinski. Visual Languages for
Modeling Business Models: A Critical Review and Future Research Directions.
In Proceedings of ICIS 2017. AlS, 2017.

Thomas John. Supporting Business Model Idea Generation Through Machine-
generated Ideas: A Design Theory. In Proceedings of ICIS 2016. AlS, 2016.

Bahar Jazayeri, Marie C. Platenius, Gregor Engels, and Dennis Kundisch. Fea-
tures of IT Service Markets: A Systematic Literature Review. In Proceddings
of the International Conference on Service-Oriented Computing (ICSOC),
volume 9936, pages 301-316. Springer, 2016.

Bahar Jazayeri, Olaf Zimmermann, Gregor Engels, Jochen Kiister, Dennis
Kundisch, and Daniel Szopinski. Design Options of Store-Oriented Software
Ecosystems: An Investigation of Business Decisions. In Business Modeling
and Software Design, volume 319, pages 390-400. Springer, Cham, 2018.

Bjorn Kijl and Durk Boersma. Developing a business model engineering &
experimentation tool - the quest for scalable ‘lollapalooza confluence patterns’.
In Proceedings of AMCIS 2010. AlS, 2010.

Ralf Knackstedt, Sebastian Briuer, and Thorsten Schoormann. Tool Sup-
port for Designing Innovative Sustainable Business Models. In The Art of
Structuring, pages 87-100. Springer, Cham, 2019.

Julian Krumeich, Thomas Burkhart, Dirk Werth, and Peter Loos. Towards a
Component-based Description of Business Models: A State-of-the-Art Analy-
sis. In Proceedings of the AMCIS 2012. 2012.

Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user studies
with Mechanical Turk. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI), page 453. ACM, 2008.

Jonas Kirchhoff, Sebastian Gottschalk, and Gregor Engels. Detecting Data
Incompatibilities in Process-Driven Decision Support Systems. In Business
Modeling and Software Design. Springer, 2022.

Barbara Kitchenham. Procedures for Performing Systematic Reviews: Techni-
cal Report TR/SE- 0401. 2004.

Dimitris Karagiannis and Harald Kiihn. Metamodelling Platforms. In E-
Commerce and Web Technologies, volume 2455, page 182. Springer, Berlin,
2002.

References 221

[KVO08] Bill Kuechler and Vijay Vaishnavi. On theory development in design science
research: anatomy of a research project. European Journal of Information
Systems, 17(5):489-504, 2008.

[LCK'11] Julie Linsey, Emily Clauss, Tolga Kurtoglu, Jeremy Murphy, Kristin Lee Wood,
and Arthur B. Markman. An Experimental Study of Group Idea Generation
Techniques: Understanding the Roles of Idea Representation and Viewing
Methods. Journal of Mechanical Design, 133(3), 2011.

[Leil2] Jan Marco Leimeister. Crowdsourcing. Controlling & Management, 56(6):388—
392, 2012.

[LFBBM19] Florian Liideke-Freund, René Bohnsack, Henning Breuer, and Lorenzo Massa.
Research on Sustainable Business Model Patterns: Status quo, Methodological

Issues, and a Research Agenda. In Sustainable Business Models, pages 25-60.
Springer, Cham, 2019.

[LFCJ 18] Florian Liideke-Freund, Sarah Carroux, Alexandre Joyce, Lorenzo Massa, and
Henning Breuer. The sustainable business model pattern taxonomy—45 pat-

terns to support sustainability-oriented business model innovation. Sustainable
Production and Consumption, 15:145-162, 2018.

[LKH17] Sang M. Lee, Na Rang Kim, and Soon Goo Hong. Key success factors for
mobile app platform activation. Service Business, 11(1):207-227, 2017.

[LM16] Eveliina Lindgren and Jiirgen Miinch. Raising the odds of success: the current
state of experimentation in product development. Inf. Softw. Technol., 77:80-91,
2016.

[LSSO5] Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. Studying Soft-
ware Engineers: Data Collection Techniques for Software Field Studies. Em-
pirical Software Engineering, 10(3):311-341, 2005.

[MCF"95] Richard J. Mayer, John W. Crump, Ronald Fernandas, Arthur Keen, and
Michael K. Painter. Information Integration for Concurrent Engineering
(IICE): Compedium on Method Reports. 1995.

[McG10] Rita Gunther McGrath. Business Models: A Discovery Driven Approach.
Long Range Planning, (43):247-261, 2010.

[MHWH18] Benedikt Morschheuser, Lobna Hassan, Karl Werder, and Juho Hamari. How to
design gamification? A method for engineering gamified software. Information
and Software Technology, 95:219-237, 2018.

[MIN*12] Lucas Onno Meertens, Maria Eugenia Iacob, Bart Nieuwenhuis, J. M. van
Sinderen, Henk Jonkers, and Dick Quartel. Mapping the Business Model
Canvas to ArchiMate. In Proceedings of the 27th Annual ACM Symposium on
Applied Computing (SAC). ACM, 2012.

222

References

[MKMI11] Roland M. Miiller, Bjorn Kijl, and Josef K. J. Martens. A Comparison of

[MNJR16]

[MPOS5]

[MTA17]

[MVG+14]

[MWAI9]

[MYWT15]

[Nam17]

[NVM13]

[OB14]

[OB15]

[Obj08]

[Obj10]

Inter-Organizational Business Models of Mobile App Stores: There is more

than Open vs. Closed. Journal of theoretical and applied electronic commerce
research, 6(2):13—-14, 2011.

Walid Maalej, Maleknaz Nayebi, Timo Johann, and Guenther Ruhe. Toward
Data-Driven Requirements Engineering. IEEE Software, 33(1):48-54, 2016.

Hilangwa Maimbo and Graham Pervan. Designing a Case Study Protocol for
Application in IS Research. In Proceedings of PACIS 2005. 2005.

Lorenzo Massa, Christopher L. Tucci, and Allan Afuah. A Critical Assessment
of Business Model Research. Academy of Management Annals, 11(1):73-104,
2017.

Andreas Menychtas, Jiirgen Vogel, Andrea Giessmann, Anna Gatzioura, Sergio
Garcia Gomez, Vrettos Moulos, Frederic Junker, Mathias Miiller, Dimosthenis
Kyriazis, Katarina Stanoevska-Slabeva, and Theodora Varvarigou. 4CaaSt
marketplace: An advanced business environment for trading cloud services.
Future Generation Computer Systems, 41:104—-120, 2014.

Jorge Melegati, Xiaofeng Wang, and Pekka Abrahamsson. Hypotheses Engi-
neering: First Essential Steps of Experiment-Driven Software Development.
In RCoSE/DDrEE, pages 16-19. IEEE, 2019.

Ke Mao, Ye Yang, Qing Wang, Yue Jia, and Mark Harman. Developer Recom-
mendation for Crowdsourced Software Development Tasks. In Proceedings of
the IEEE Symposium on Service-Oriented System Engineering, pages 347-356.
IEEE, 2015.

Satish Nambisan. Digital Entrepreneurship: Toward a Digital Technology
Perspective of Entrepreneurship. Entrepreneurship Theory and Practice,
41(6):1029-1055, 2017.

Robert C. Nickerson, Upkar Varshney, and Jan Muntermann. A method for
taxonomy development and its application in information systems. European
Journal of Information Systems, 22(3):336-359, 2013.

Helena Holmstrém Olsson and Jan Bosch. The HYPEX Model: From Opinions
to Data-Driven Software Development. In Continuous Software Engineering,
volume 14, pages 155-164. Springer, 2014.

Helena Holmstrom Olsson and Jan Bosch. Towards Continuous Customer Val-
idation: A Conceptual Model for Combining Qualitative Customer Feedback
with Quantitative Customer Observation. In Software Business, volume 210,
pages 154—166. Springer, 2015.

Object Management Group. Software & Systems Process Engineering Meta-
model (SPEM). 2008.

Object Management Group. Business Process Model And Notation (BPMN).
2010.

References

223

[Obj16] Object Management Group. Meta Object Facility (MOF). 2016.

[Obj17] Object Management Group. Unified Modeling Language (UML). 2017.

[OP10] Alexander Osterwalder and Yves Pigneur. Business Model Generation: A

Handbook for Visionaries, Game Changers, and Challengers. John Wiley &
Sons, Hoboken, 2010.

[OP13a] Alexander Osterwalder and Yves Pigneur. Business model generation: A

handbook for visionaries, game changers, and challengers. Wiley&Sons, New
York, 2013.

[OP13b] Alexander Osterwalder and Yves Pigneur. Designing Business Models and

Similar Strategic Objects: The Contribution of IS. Journal of the Association
for Information Systems, 14(5):237-244, 2013.

[OPB"14] Alexander Osterwalder, Yves Pigneur, Greg Bernarda, Alan Smith, and Patricia

Papadakos. Value proposition design: How to create products and services
customers want. Get started with. Strategyzer series. John Wiley & Sons,
Hoboken, 2014.

[OPTO5] Alexander Osterwalder, Yves Pigneur, and Christopher L. Tucci. Clarifying

[Ost04]

[Par72]

[PF14]

[PHSO8]

[PvC16]

[Ral04]

Business Models: Origins, Present, and Future of the Concept. Communica-
tions of the Association for Information Systems, 16, 2005.

Alexander Osterwalder. The Business Model Ontology - A Proposition in a
Design Science Approach. Lausanne University, 2004.

David Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053-1058, 1972.

Yves Pigneur and Boris Fritscher. Business Model Design: An Evaluation
of Paper-based and Computer-Aided Canvases. In Proceedings of the Fourth
International Symposium on Business Modeling and Software Design (IS-
BMSD), pages 236-244. SCITEPRESS, 2014.

Mikko Pynnonen, Jukka Hallikas, and Petri Savolainen. Mapping business:
value stream-based analysis of business models and resources in Information
and Communications Technology service business. International Journal of
Business and Systems Research, 2(3):305, 2008.

Geoftrey Parker, Marshall van Alstyne, and Sangeet Paul Choudary. Platform
revolution: Platform Revolution: How Networked Markets Are Transforming
the Economy - and How to Make Them Work for You. W.W. Norton & Company,
New York, 2016.

Jolita Ralyté. Towards situational methods for information systems devel-
opment: engineering reusable method chunks. In Proceedings of the 13th
international conference on information systems development. Advances in
theory, practice and education. 2004.

224

References

[RBLL+22]

[RHO9]

[RHNH"18]

[RHRH*19]

[RHTK17]

[Riel4]

[RM16]

[RR16]

[RRE*19]

[RVS15]

[Saull]

[SBK18a]

Susanne Robra-Bissantz, Christoph Lattemann, Ralf Laue, Raphaela Leonhard-
Pfleger, Luisa Wagner, Oliver Gerundt, Ricarda Schlimbach, Sabine Bau-
mann, Christian Vorbohle, Sebastian Gottschalk, Dennis Kundisch, Gregor
Engels, Nancy Wiinderlich, Volker Nissen, Lisa Lohrenz, and Simon Michalke.
Methoden zum Design digitaler Plattformen, Geschéftsmodelle und Service-
Okosysteme. HMD Praxis der Wirtschaftsinformatik, 2022.

Per Runeson and Martin Host. Guidelines for conducting and reporting case

study research in software engineering. Empirical Software Engineering,
14(2):131-164, 2009.

Kira Rambow-Hoeschele, Anna Nagl, David K. Harrison, Bruce M. Wood,
Karlheinz Bozem, Kevin Braun, and Peter Hoch. Creation of a Digital Business
Model Builder. In Proceedings of the IEEE International Conference on
Engineering, Technology and Innovation (ICE/ITMC), pages 1-7. IEEE, 2018.

Kira Rambow-Hoeschele, Nick Giani Rambow, Matthias Michael Hampel,
David Keith Harrison, and Bruce MacLeod Wood. Creating a Digital Twin:
Simulation of a Business Model Design Tool. Advances in Science, Technology
and Engineering Systems Journal, 4(6):53-60, 2019.

Gerrit Remane, Andre Hanelt, Jan Tesch, and Lutz Kolbe. The Business Model
Database - A Tool for Systematic Business Model Innovation. International
Journal of Innovation Management, 21(01), 2017.

Eric Ries. The Lean Startup: How Today’s Entrepreneurs Use Continuous

Innovation to Create Radically Successful Businesses. Crown Business, USA,
2014.

Colin Robson and Kieran McCartan. Real world research: A resource for
users of social research methods in applied settings. Wiley, Chichester, 4th
edition edition, 2016.

Paolo Roma and Daniele Ragaglia. Revenue models, in-app purchase, and
the app performance: Evidence from Apple’s App Store and Google Play.
Electronic Commerce Research and Applications, 17:173-190, 2016.

Sarah Riibel, Adrian Rebmann, Andreas Emrich, Sabine Klein, and Peter Loos.
Improving Business Model Configuration through a Question-based Approach.
In Proceedings of the International Conference on Wirtschaftsinformatik (WI).
AIS, 2019.

Maria Camila Romero, Jorge Villalobos, and Mario Sanchez. Simulating the
business model canvas using system dynamics. In Proceedings of the 10th
Computing Colombian Conference (10CCC), pages 527-534. 1EEE, 2015.

Stefan Sauer. Systematic Development of Model-based Software Engineering
Methods. Paderborn University, 2011.

Thorsten Schoormann, Dennis Behrens, and Ralf Knackstedt. Design Princi-
ples for Leveraging Sustainability in Business Modelling Tools. In Proceedings
of ECIS 2018. AlS, 2018.

References

225

[SBK18b]

[Sch14]

[SELK?20]

[SEP'19]

[SG89]

[SHB20]

[SL20]

[SLF17]

[SP0O9]

[SSIT19]

[SSSV19]

[Sti14]

[STRV10]

Thorsten Schoormann, Dennis Behrens, and Ralf Knackstedt. The Noblest Way
to Learn Wisdom is by Reflection: Designing Software Tools for Reflecting
Sustainability in Business Models. In Proceedings of the ICIS 2018. 2018.

Markus Schief. Software Business Model Tool. In Business Models in the
Software Industry, pages 169—-182. Springer, Wiesbaden, 2014.

Norman Schaffer, Martin Engert, Girts Leontjevs, and Helmut Krcmar. A Tool
to Model and Simulate Dynamic Business Models. In Proceedings of BLED
eConference 2020. 2020.

Benedikt Simmert, Philipp Alexander Ebel, Christoph Peters, Eva Alice Chris-
tiane Bittner, and Jan Marco Leimeister. Conquering the Challenge of Contin-

uous Business Model Improvement. Business & Information Systems Engi-
neering, 61(4):451-468, 2019.

Susan Leigh Star and James R. Griesemer. Institutional Ecology, ‘Translations’
and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of
Vertebrate Zoology, 1907-39. Social Studies of Science, 19(3):387-420, 1989.

Thorsten Schoormann, Simon Hagen, Jonas Brinker, Sebastian Wildau, Oliver
Thomas, and Ralf Knackstedt. Towards Aligning Business Models with
Business Processes: A Tool-based Approach. In Proceedings of Modellierung
2020. 2020.

Johannes S. Schwarz and Christine Legner. Business model tools at the
boundary: exploring communities of practice and knowledge boundaries in
business model innovation. Electronic Markets, 30(3):421-445, 2020.

Tina Saebi, Lasse Lien, and Nicolai J. Foss. What Drives Business Model
Adaptation? The Impact of Opportunities, Threats and Strategic Orientation.
Long Range Planning, 50(5):567-581, 2017.

Juneseuk Shin and Yongtae Park. On the creation and evaluation of e-business
model variants: The case of auction. [Industrial Marketing Management,
38(3):324-337, 2009.

Daniel Szopinski, Thorsten Schoormann, Thomas John, Ralf Knackstedt, and
Dennis Kundisch. Software tools for business model innovation: current state
and future challenges. Electronic Markets, 60(11):2794, 2019.

Krista Sorri, Marko Seppénen, Kaisa Still, and Katri Valkokari. Business
Model Innovation with Platform Canvas. Journal of Business Models, 7(2),
2019.

Volker Stiehl. Process-Driven Applications with BPMN. Springer International
Publishing, Cham, 2014.

Marc Sosna, Rosa Nelly Trevinyo-Rodriguez, and S. Ramakrishna Velamuri.
Business Model Innovation through Trial-and-Error Learning. Long Range
Planning, 43(2-3):383-407, 2010.

226

References

[SWS20]

[SYTO9]

[Szo19a]

[Szo19b]

[TA17]

[TeelO]

[TKO09]

[TM11]

[TSLE17]

[TTP11]

[vanO1]

[VCBT14]

Norman Schaffer, Jorg Weking, and Olivia Stihler. Requirements and Design
Principles for Business Model Tools. In Proceedings of the AMCIS 2020. 2020.

Reza Samavi, Eric Yu, and Thodoros Topaloglou. Strategic reasoning about
business models: a conceptual modeling approach. Inf Syst E-Bus Manage,
7(2):171-198, 2009.

Daniel Szopinski. Can Stimuli Improve Business Model Idea Generation? In
Proceedings of 12th Confernce on Creativity and Cognition, pages 547-555,
New York City, 2019. ACM.

Daniel Szopinski. Jumping, dumping, and pumping: Three mental principles
for idea Jumping, dumping, and pumping: Three mental principles for idea
generation to activate software-based tools in business model generation to
activate software-based tools in business model innovation. In Proceedings of
the BLED eConference 2019. 2019.

Karl Tauscher and Nizar Abdelkafi. Visual tools for business model innovation:
Recommendations from a cognitive perspective. Creativity and Innovation
Management, 26(2):160-174, 2017.

David J. Teece. Business Models, Business Strategy and Innovation. Long
Range Planning, 43(2-3):172-194, 2010.

Juha-Pekka Tolvanen and Steven Kelly. MetaEdit+. In Shail Arora, Gary
Leavens, Bernd Bruegge, Yvonne Coady, and Simon Peyton-Jones, editors,
Proceeding of the 24th ACM SIGPLAN conference companion, page 819.
ACM, 20009.

Katja Thoring and Roland M. Miiller. Understanding Design Thinking: A Pro-
cess Model Based on Method Engineering. In Proceedings of the International
Conference on Engineering and Product Design Education. E&PDE, 2011.

Nicola Terrenghi, Johannes Schwarz, Christine Legner, and Uli Eisert. Busi-
ness Model Management: Current Practices, Required Activities and IT Sup-
port. In Proceedings of the Conference on Wirtschaftsinformatik (WI), pages
972-986. AlS, 2017.

Virpi Kristiina Tuunainen, Tuure Tuunanen, and Jouni Piispanen. Mobile
Service Platforms: Comparing Nokia OVI and Apple App Store with the IISIn
Model. In Proceedings of the International Conference on Mobile Business
(ICMB), pages 74-83. IEEE, 2011.

Alex van Lamsweerde. Goal-oriented requirements engineering: a guided tour.

In International Symposium on Requirements Engineering, pages 249-262.
IEEE, 2001.

Daniel Veit, Eric Clemons, Alexander Benlian, Peter Buxmann, Thomas Hess,
Dennis Kundisch, Jan Marco Leimeister, Peter Loos, and Martin Spann. Busi-
ness Models: An Information Systems Research Agenda. Business & Informa-
tion Systems Engineering, 6(1):45-53, 2014.

References

227

[VG21]

[VGK22]

[Vogl17]

[Vol13]

[VOPN13]

[VPO113]

[vvR19]

[WF20]

[WW11]

[XHB14]

[Yin09]

[ZSDM14]

Christian Vorbohle and Sebastian Gottschalk. Towards Visualizing and Simu-
lating Business Models in Dynamic Platform Ecosystems. In Proceedings of
ECIS 2021. AIS, 2021.

Christian Vorbohle, Sebastian Gottschalk, Dennis Kundisch, Gregor Engels,
and Nancy Wiinderlich. A Procedure Model for Enhancing Ideation in the
Collaborative Development of Business Ecosystems. In Digital Business
Ecosystems Workshop @ Wirtschaftsinformatik 2022. AlS, 2022.

Peter Vogel. From Venture Idea to Venture Opportunity. Entrepreneurship
Theory and Practice, 41(6):943-971, 2017.

Markus Volter. DSL engineering: Designing, implementing and using domain-
specific languages. CreateSpace Independent Publishing Platform, Lexington,
KY, 2013.

Matthias Voigt, Kevin Ortbach, Ralf Plattfaut, and Bjorn Niehaves. Developing
Creative Business Models — The OctoProz Tool. In Design Science at the
Intersection of Physical and Virtual Design, volume 7939, pages 456—462.
Springer, Heidelberg, 2013.

Matthias Voigt, Ralf Plattfaut, Kevin Ortbach, Andrea Malsbender, and Bjorn
Niehaves. Evaluating Business Modeling Tools from a Creativity Support

System Perspective - Results from a Focus Group in the Software Development
Industry. In Proceedings of the PACIS 2013 2013. 2013.

Marlies van Steenbergen, Jeroen van Grondelle, and Lars Rieser. A Situational
Approach to Data-Driven Service Innovation. In Enterprise, Business-Process
and Information Systems Modeling, volume 352, pages 156—168. Springer,
Cham, 2019.

Michael Wieland and Hans-Georg Fill. A Domain-Specific Modeling Method
for Supporting the Generation of Business Plans. In Procedings of Model-
lierung 2020, pages 45-60. GI, 2020.

Nico Weiner and Anette Weisbecker. A Business Model Framework for the
Design and Evaluation of Business Models in the Internet of Services. In
Proceedings of the Annual SRII Global Conference, pages 21-33. IEEE, 2011.

Anbang Xu, Shih-Wen Huang, and Brian Bailey. Voyant: generating structured
feedback on visual designs using a crowd of non-experts. In ACM conference

on Computer supported cooperative work & social computing, pages 1433—
1444. ACM, 2014.

Robert K. Yin. Case study research: Design and methods, volume 5 of Applied
social research methods series. Sage, Los Angeles, 2009.

Marin Zec, Alexander W. Schneider, Peter Diirr, and Florian Matthes. Im-
proving Computer-Support for Collaborative Business Model Design and
Exploration. In Proceedings of the Fourth International Symposium on Busi-
ness Modeling and Software Design (IS-BMSD), pages 29-37. SCITEPRESS,
2014.

Abbreviations

AR

BA

BM

BMC

BM

BMI

BMO

BMDM

BMDSS

BMDT

BMML

BPMN

BT

CBPV

CLI

CRUD

DAR

DB

Augmented Reality

Business Approaches

Business Model

Business Model Canvas

Business Model Development
Business Model Innovation

Business Model Ontology

Business Model Development Method
Business Model Decision Support System
Business Model Development Tool
Business Model Modeling Languages
Business Process Model and Notation
Business Tools

Crowd-based Prototype Validation
Command Line Interface

Create, Read, Update, Delete
Development Assistance Requirement

Data Base

230

References

DF
DP
DR
DMR
DSL
DSR
DSS
DTD
ERP
FM
FSC
GPL
HR
HTML
HypoMoMap
JS
JSON
KPI
KPR
ME
MO
MOF
NPM

OMG

Design Feature

Design Principle

Design Requirement

Development Method Requirement
Domain-specific Language

Design Science Research

Decision Support System
Document Type Definition
Enterprise Resource Planning
Feature Model

Feature Set Canvas

General Purpose Language
High-level Requirement

Hyper Text Markup Language
Hypotheses Modeling and Mapping
JavaScript

JavaScript Object Notation

Key Performance Indicator
Knowledge Provision Requirements
Method Engineering

Model Engineering

Meta Object Facility

Node Package Manager

Object Management Group

References 231
RQ Research Question

SA Situational Approaches

SBMD Situational Business Model Developer
SDK Software Development Kit

SE Software Ecosystem

SLR Systematic Literature Review

SME Situational Method Engineering

SPEM Software and Systems Process Engineering
SPL Software Product Line

SQL Structured Query Language

SR Solution Requirement

TD Taxonomy Development

UML Unified Modeling Language

URL Uniform Resource Locator

VPC Value Proposition Canvas

VR Virtual Reality

WYSIWYG What-You-See-Is-What-You-Get

XML Extensible Markup Language

Appendix A

SLR on Business Model Decision Support
Systems

The development of business models is a complex task that can be supported using decision
support systems (DSSs). These DSSs, which are partly referred to as BMDTs, can support
the different phases of BMD. Inside this appendix, we provide an SLR on those DSSs that
are used to derive our HRs (see Section 1.3), provide parts of our related work (see Section
3.3) and modularize the development support of development steps (see Section 7.2). In the

following, we show our research approach used and the derived results.

Conducted Research Approach

To collect the developed approaches for DSSs for BMD from the literature, we use an SLR
as proposed by Kitchenham [Kit04]. Here, the SLR is a procedure to provide a systematic
overview of a specific theme or topic in research. The results can be used to identify gaps
in the current research to suggest further investigations [Kit04]. The method consists of the
three steps of planning the review, conducting the review, and reporting the review.

In Planning the Reviews, an SLR needs to be motivated together with the explicit
formulation of the RQ the study aims to answer. Out of the RQ, the search string and related
inclusion and exclusion criteria are determined and stated within a research protocol. The
motivation for the SLR is justified by our DSR study, in which we create a situation-specific
BMD approach. Here, we want to use the results to foster the requirements from the relevance
cycle and the grounding from the rigor cycle [Hev07]. Together with a literature review on
BMD, we identify the corresponding research gap and derive our HRs.

To identify the corresponding BMDSSs, we have defined the following research question:

234 SLR on Business Model Decision Support Systems

* RQ: What decision support systems for business model development exist in the

literature and how do they provide decision support?

To answer this question and by testing different search terms with the terminology in

BMD, we have defined the following search string:
* Search String: business model and (decision support system or tool)
Moreover, we provide the following inclusion and exclusion criteria for the publications:

e Inclusion:

— The publication is written in English.

— The publication is a peer-reviewed workshop paper, a conference paper, a journal
article or a book chapter.

— The publication is written between January 2010 and August 2020 because the
interest in business models significantly increased with the publication of the
Business Model Canvas [OP10].

¢ Exclusion:

— The publication provides no decision support for business model development.

— The publication does not relate to the topic of business models (e.g., business

processes).

— The publication just applied existing techniques for decision support to business

models (e.g., system dynamics, agent-based modeling).

In Conducting the Review, the review needs to be conducted by considering the search
process, the source selection, the quality assessment, the data extraction, and the data synthe-
sis. In the search process, we apply the search string to the five libraries of SpringerLink!,
AIS eLibrary 2, ACM Digital Library?, IEEE Xplore*, and ScienceDirect® on September
17th, 2020, and follow the stages A-F from Figure A.1. At the beginning (A), we apply the
search string on all meta-data (i.e., title, abstract, keywords) of the publication to focus only
on papers that either provide a DSS or software tool for business modeling. We analyze

'Website of SpringerLink: https://link.springer.com/
2Website of AIS eLibrary: https://aisel.aisnet.org/

3Website of ACM Digital Library: https://dl.acm.org/
“Website of IEEE Xplore: https://ieeexplore.icee.org/
SWebsite of ScienceDirect: https://www.sciencedirect.com/

https://link.springer.com/
https://aisel.aisnet.org/
https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/

235

the meta-data of these papers (B) and the full texts (C) to identify interesting approaches
by considering the inclusion and exclusion criteria. Then we apply backward search (D)
and forward search (E) using Google Scholar® to cover all iterations of the design cycles of
these publications and discover further publications. In the end, we group the 54 identified

publications into 31 different approaches.

Sources Stages
SpringerLink 371 37 13 13
AIS eLibrary 51 22 13 +13
]
ACMDL |G| 18 (2 4 |2 2 :;% 5 +2
S g =) @ 3 o
IEEE XPlore |) 108 | < 23 c 4 o o = +3
o 8 < ° ° >
A R o © < @ a o
Science Direct S 338 | O 10 I 1 2 = 0] +1
g g E g S c
Snowhalling | X 2 ot @ 12 |~ ~ +12
< = c a m
Citation Check ~ 10 + 10
Groupin 54in 31
ping Aprroaches

Fig. A.1 Extracted Number of Publications per Stage of the SLR

In Reporting the Review, we categorize those approaches around the three categories of
modeling & configuration, analysis & simulation, and evolution & validation. We describe
them shortly and use parts of them to derive our HRs (see Section 1.3), provide our related
work (see Section 3.3), and provide our development support (see Section 7.2).

Derived Results

In this section, we present the derived approaches out of our SLR. We divide them into the
categories of model & configuration, analysis & simulation, and evolution & validation.
The category of Modeling & Configuration refers to tools that provide decision support
on the first creation of a business model. Common examples of decision support in these
tools are the usage of business model patterns, a wizard for the configuration of a business

model, or creativity enhancement through guiding questions.

* [moby:designer]bm: The approach [WW11] focuses on the development of different
business model alternatives together with their evaluation. For that, they use existing

®Website of Google Scholar: https://scholar.google.com/

https://scholar.google.com/

236

SLR on Business Model Decision Support Systems

BMMLs to develop their own BMO to represent different business models together

with a graphical tool to guide the configuration process.

Computer-Aided Business Model Design: Under the term of computer-aided BMD,
the authors propose different concepts [FP10, FP14b, FP14a, FP16, PF14] to support
BMD. Here, they provide the idea of visualizing the evolution of a business model
[FP14b] and provide a list of key features for computer-aided development tools
[FP14a]. Moreover, they compare computer-aided and paper-based business model
design [PF14] and state that different user maturity levels also have an impact on the
BMD process [FP16].

OctoProz: The approach [VOPN13, VPO 13] describes itself as a creativity support
system for creating process-oriented business models. For that, they provide collabora-
tion between different stakeholders, guidance in the business model creation, simple
financial calculations, and ratings [VOPN13]. Moreover, they provide an evaluation
with expert focus groups [VPOT13].

Collaborative Business Model Design and Exploration: The authors provide a
concept [ZSDM 14] for the collaborative business model design. They use a business
model configuration where the business model components are broken into smaller,

ideally mutually exclusive, and collectively exhaustive business model elements.

Business Model Management System: The solution [BWRP15] provides the re-
quirements for an information system that can be used to manage business models
among the whole company. They divide between different short-term and long-term

requirements and use a design study to develop the first prototype.

Business Model Miner: The approach [AF17, AFD18, FAMI18] is the concept of
a tool to automatically derive the own company’s business model from an existing
ERP system and corresponding business models of other companies from crawled web
pages. They have worked on the mining of the value proposition [AFD18] and the
business model [AF17]. Moreover, they have integrated their approach into the ERP
of SAP [FAM18].

Active Business Model Development Tool: The approach [Szo19b, Szo19a] provides
creativity support by adding external stimuli to the BMD. For that, they applied the
psychological model of searching for ideas in associated memory to the business
modeling domain [Szo19b] and used what-if questions to support the ideation process

of new business models [Szo19a].

237

* Business Modeling Infrastructure: The approach [EW17] develops a tool for config-
uring value propositions and business models based on the combination of different

modeling languages and the identification of KPIs for successful business models.

* Question-based Business Model Configurator: The approach [RRE™*19] supports
the comparability of business models by using a questionnaire-based initialization
process of new business models based on a predefined taxonomy of business model

elements.

* BusinessMakeOver: The approach [IRAH'16] is an online platform that provides
small and medium-sized enterprises decision support in finding proper business model
tools for different phases of BMD. These tools were primarily visualizations, together

with an explanation of how to use them.

* Smart Business Modeler: The approach [LFBBM19] is a tool that supports the
development of sustainable business models based on different business model pattern
packs. These different packs can be chosen out of a library during the configuration

process of the business model.

The category of Analysis & Simulation refers to tools that provide different analyses and
simulation techniques on a created business model. Common examples of decision support
in these tools are the comparison of different business models, the financial assessment of

different business model configurations, or the planning of best- and worst-case scenarios.

* e3-Value Modeler: The approach [GAOI, AG0O3] can be used to define a value
network of multiple stakeholders based on the e3-value modeling language. Out of

this modeling, the outcome of different scenarios can be calculated.

* Business Model Engineering and Experimentation Tool: The approach [KB10]
provides a performance analysis of the business models based on different scenarios.
For that, they develop a seven-step process from obtaining key variables to the analysis

of the strengths and weaknesses of a business model.

 Business Model Stress Tester: The approach [BHH' 18, HBJdR17, BdRS " 12] com-
bines the modeling of the business model and uncertainties to analyze the robustness
of the company. For that, they identify the stress factors of the business model and

visualize them with the support of a heat map.

* Software Business Model Tool: The approach [Sch14] combines a step-by-step

configuration of the company’s business model with the analysis of the market, the

238

SLR on Business Model Decision Support Systems

financial situation, and the firm performance. For that, we develop an architecture that
derives those data out of different repositories and uses them for the process steps of

configuration, comparison, and analysis.

Business Model Assistance System: The approach [DEWL13, KBWL12, DWL15]
provides recommendations for business model adaptations based on an existing
database of business models from competitors. Moreover, it introduces a connec-
tion to an ERP system to analyze the current information and material flows of the

company.

Business Model Developer: The approach [BM17, BM14] uses cluster analysis to
compare the own business with other companies in the same market based on the
customization of the underlying business modeling structure together with a guided

configuration process.

Business Model Simulator: The approach [GFCL] provides a process model for the
simulation of business models based on a case study on platforms as a service. The
model consists of the three phases of method setup and data acquisition, business

model design, and business model simulation.

Business Model Decision Support System: The approach [DHOB13] supports the
market analysis of different business model configurations by modeling critical de-
sign issues and success factors. This information can also be used to estimate the

consequences of the different configurations for the company.

Business Model Analyzer: The approach [AFM18, AM17, AF18] focuses on trans-
forming a current business model into a new target one. For this, they model semantic
relationships between the models and quantify the impact of changes to a set of

alternative business models.

Digital Business Model Builder: The approach [RHRH™ 19, RHNH ™ 18] provides a
digital twin of a business model that can be used to simulate the changes of KPIs based
on changing market conditions. For that, they divide the business ideas, the qualitative

description of a business model, and the business case.

The category of Evolution & Validation refers to tools that provide traceability in the

evolution steps of business modeling and validate the different business model decisions with

external stakeholders. Common examples of decision support in these tools are visualization

of the business model evolvement steps, deriving new steps based on the decision history,

and validating business models through crowd worker platforms.

239

Business Model Idea Generators: The approach [Joh16] refers to a new type of
information system where business model ideas are generated through a combination
of existing computer knowledge and new human ideas. For that, new ideas are
iteratively generated by the systems and evaluated by crowd users.

IoT Business Model Change: The approach [AHdR18b, AdR18, AHdR18a] is a
concept for the systematic exploration of different business models. For that, it
develops an iterative approach for creating and testing business models by using

business model patterns.

Virtual Business Model Innovation: The approach [EBL16] provides design patterns
for a unified framework for BMDTs. They focus on the whole process of analyzing,
designing, implementing, and managing business models that can be supported by

shared material about business models and a community of users.

Framework for Analysis of Business Model Management: The approach [TSLE17]
provides a framework for business model management consisting of the phases of
analysis, design, implementation, and control. Here, every phase should be provided

with corresponding IT support.

Intelligent Decision Support System for Business Models: The approach [HKB18]
provides the concept of DSSs that reasoned its decisions to the company’s management,
which provides trust in computer-based systems. With this approach, they represent

the robustness of the business model based on a heat map.

Crowd-Based Business Model Validation System: The approach [DLE17] reduces
uncertainties of the business model by offering a crowd-based validation with potential
customers. Using an iterative process, they submit business model ideas to a crowd

platform and evaluate the corresponding feedback.

Hybrid Intelligence Decision Support System: The approach [DLL18, DLEL19]
combines the knowledge of computers and humans to improve the validation of new
business model ideas. For that, the feedback of the crowd platform is systematically

recombined to generate new ideas.

Green Business Modeling Editor: The approach [SBK18a, SBK18b, KBS19] is a
tool for sustainable business model development by allowing the collaboration of
different users. For that, it extends the BMC with custom building blocks and tracks
the reasons for changes in the business model.

240 SLR on Business Model Decision Support Systems

¢ BM-BPM Alignment Tool: The approach [SHB20] aligns the business models with
the business processes to improve the decision-making process. This alignment can be

done on the whole BMC, single components, or single elements.

» BMDL Feature Modeler’: The approach [GRE19b, GRE20] provides a meta-modeling
structure of business elements based on feature models. Here a set of those features can
be selected and adapted over time by conducting experiments with potential customers.

* Modesk: The approach [SELK20, SWS20] models and simulates dynamic business
models. For that, they add interdependencies between business components and use
system dynamics for simulating the outcome.

"The approach is a preliminary version of our tool after the first design cycle.

Appendix B

Installation of the Situational Business
Model Developer

The Situational Business Model Developer (SBMD), as shown in Figure B.1, is our situated
implementation within our design science study. It supports all three stages of our concept
for situation-specific BMD. For that, the tool can be used online! or the source code can be
downloaded and installed locally?.

on Method ry v Explanation Model Corr on Canvas Mode xperiments Templates BCIEN Method Engineer v

Situational Business Model Developer

Welcome to the Situational Business Model Developer (SBMD). The SBMD allows the development of business models by taking the context of the
company and the product/service into account.

A detailed explanation is given here.

Method Engineer Role

The Method Engineer Role is used to define Business Model Development Methods

The process to do this is separated into multiple steps:
1. Create Method Elements in the Method Repository
2. Assemble Method Building Blocks from these Method Elements
3. Create Method Patterns that will be used to connect different Method Building Blocks
4. Compose Business Model Development Methods by selecting Method Patterns and filling them with Method Building Blocks

Options — SBMD v1.0.3

Fig. B.1 Tool Overview for the Method Engineer

!Online Version of the SBMD: http://sebastiangtts.github.io/situational-business-model-
developer/

2Source Code of the SBMD: https://github.com/sebastiangtts/situational-business-model-
developer

http://sebastiangtts.github.io/situational-business-model-developer/
http://sebastiangtts.github.io/situational-business-model-developer/
https://github.com/sebastiangtts/situational-business-model-developer
https://github.com/sebastiangtts/situational-business-model-developer

242 Installation of the Situational Business Model Developer

The SBMD is based on NodeJS? and the Angular CLI* that need to be downloaded and
installed before the tool itself. Here, NodelS is a runtime environment to execute JS code
that comes with the Node Package Manager (NPM) to include external JS code packages in
the own software. AngularCLI is a command line interface (CLI) to develop and maintain
Angular applications. Moreover, optionally CouchDB? can be installed as persistent database
storage and GitHub Desktop® to clone the repository. Based on those tools, the SBMD can
be used with the following guidelines:

1. Get the current version of the SBMD from Github

(a) Clone the GitHub repository with a GitHub Desktop
(b) Download the repository directly on GitHub

2. Install the needed NPM packages by running npm install in the repository
3. Configure the used database

(a) Internal Database: As default, the application uses the PouchDB within the
web browser. The name of the default database is bmdl-feature-modeler. In the

src/app/pouchdb.service.ts, you can change the variable databaseName.

(b) External Database: Optional, a CouchDB can be used as persistent storage. For
that, the databaseName in the src/app/pouchdb.service.ts needs to be changed to
http://localhost:4200/database. Moreover, the URL to the CouchDB needs to be

added as rarget in the proxy.conf.json.
4. Run the SBMD application

(a) Internal Database: Run the SBMD with ng serve

(b) External Database: Run the SBMD with npm start

5. Use the SBMD to develop your own business models by open http://localhost:4200 in

your web browser

3Website of NodeJS: https://nodejs.org/

“Website of AngularCLI: https://angular.io/cli

SWebsite of CouchDB: https://couchdb.apache.org/
®Website of GitHub Desktop: https://desktop.github.com/

https://nodejs.org/
https://angular.io/cli
https://couchdb.apache.org/
https://desktop.github.com/

	Table of Contents
	List of Figures
	List of Tables
	I Introduction, Foundations and Related Work
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Research Question and Research Approach
	1.3 High-level Requirements and Solution Overview
	1.4 Publication Overview
	1.5 Thesis Structure

	2 Foundations
	2.1 Model Engineering
	2.1.1 Metamodeling
	2.1.2 Domain-specific Languages
	2.1.3 Computer-Aided Modeling Tools

	2.2 Situational Method Engineering
	2.2.1 Concept of Method Engineering
	2.2.2 Types of Situational Method Engineering Approaches
	2.2.3 Computer-Aided Method Engineering Tools

	2.3 Business Model Development
	2.3.1 Business Model Modeling Languages
	2.3.2 Business Model Development Methods
	2.3.3 Business Model Development Tools

	2.4 Summary

	3 Related Work
	3.1 Business Aspects in Situational Method Enginnering
	3.1.1 Related Approaches
	3.1.2 Requirement Comparison

	3.2 Situational Aspects in Business Model Development
	3.2.1 Related Approaches
	3.2.2 Requirement Comparison

	3.3 Tools for Business Model Development
	3.3.1 Related Approaches
	3.3.2 Requirement Comparison

	3.4 Summary

	II Solution Concept
	4 Conceptual Overview
	4.1 Overview of the Solution
	4.1.1 Overview of Requirements
	4.1.2 Overview of Stages
	4.1.3 Overview of Roles

	4.2 Application to Software Ecosystems
	4.2.1 Introduction of Software Ecosystems
	4.2.2 Usage of Solution

	4.3 Summary

	5 Knowledge Provision of Methods and Models
	5.1 Requirements and Overview
	5.2 Provision of Method Repository
	5.2.1 Modeling of Method Elements
	5.2.2 Modeling of Method Building Blocks
	5.2.3 Modeling of Method Patterns

	5.3 Provision of Canvas Model Repository
	5.3.1 Modeling of Canvas Elements
	5.3.2 Modeling of Canvas Building Blocks
	5.3.3 Modeling of Canvas Models

	5.4 Summary

	6 Composition and Enactment of Development Methods
	6.1 Requirements and Overview
	6.2 Composition of Development Methods
	6.2.1 Definition of Context
	6.2.2 Situation-specific Composition of Methods
	6.2.3 Domain-specific Composition of Models

	6.3 Enactment of Development Methods
	6.3.1 Execution of Development Process
	6.3.2 Stakeholder Involvement in Artifact Development
	6.3.3 Change of Context

	6.4 Summary

	7 Support of Development Steps
	7.1 Requirements and Overview
	7.2 Modularization of Development Support
	7.2.1 Provision of Development Support
	7.2.2 Composition of Development Support
	7.2.3 Enactment of Development Support

	7.3 Types of Support Modules
	7.3.1 Integrated Canvas Module
	7.3.2 Internal Hypothesis Modeling and Mapping Module
	7.3.3 External Crowd-based Prototype Validation Platform

	7.4 Summary

	III Implementation, Evaluation, Conclusion
	8 Implementation
	8.1 Modularized Architecture
	8.1.1 Designed Architecture
	8.1.2 Applied Technologies

	8.2 Software Tool
	8.2.1 Implemented Tool
	8.2.2 Developed Modules

	8.3 Summary

	9 Evaluation
	9.1 Case Study on OWL Live
	9.1.1 Experimental Design
	9.1.2 Execution
	9.1.3 Analysis
	9.1.4 Interpretation

	9.2 User Study in Student Courses
	9.2.1 Experimental Design
	9.2.2 Execution
	9.2.3 Analysis
	9.2.4 Interpretation

	9.3 Summary

	10 Conclusion and Future Work
	10.1 Contribution Summary
	10.2 High-level Requirements Revisited
	10.3 Future Work

	References
	Abbreviations
	Appendix A SLR on Business Model Decision Support Systems
	Appendix B Installation of the Situational Business Model Developer

