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Abstract The present thesis contains contributions to output reference tracking
of nonlinear multibody systems via feedback control. We focus on three aspects
of this topic. First, we perform a structural analysis and develop a structurally
novel ansatz to decouple and represent the internal dynamics of an input-output
control system. It allows to derive the internal dynamics’ equations completely al-
gorithmically without the need to compute the Byrnes-Isidori form. Moreover, since
the internal dynamics are given in terms of the internal variable and the system’s
output, we may derive criteria on the system parameters to validate stability of
the internal dynamics in advance, i.e., whether a system is minimum phase can be
evaluated without decoupling the internal dynamics. The next aspect under con-
sideration concerns a certain feasibility assumption in feedback control. Namely,
for systems with relative degree larger than one, it is commonly assumed that the
higher output derivatives are available. However, this cannot be guaranteed for gen-
eral applications. Therefore, we elaborate on the so-called funnel pre-compensator,
first proposed in [32]. The funnel pre-compensator is a dynamical system, which
approximates a given signal arbitrarily good, and the pre-compensator’s output and
its derivative are explicitly known. We show that the conjunction of a funnel pre-
compensator with a minimum phase system with arbitrary relative degree results in
an overall system, which is minimum phase as well. As a consequence, we show that,
utilizing the funnel pre-compensator, output reference tracking via funnel control
is possible with output feedback only, i.e., the derivatives of the system’s output
need not to be available. The third main contribution consists of two novel feedback
control laws, each of which achieves a specific control objective. In the first case, we
consider the situation when the system’s output is subject to possible measurement
losses. We derive a control scheme with an intrinsic availability function, such that
in the case of measurement losses, output tracking with predefined accuracy can be
achieved, if some conditions on the maximal duration of signal absence and minimal
time of signal availability are satisfied. Both conditions are given explicitly. The
second control objective under consideration is exact tracking in finite time. We de-
velop a funnel control law, which achieves tracking of a given reference signal such
that the error evolves within prescribed bounds, and for a predefined final time, the
system’s output and its relevant derivatives match the reference exactly.
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Zusammenfassung Die vorliegende Dissertation enthält Beiträge zum Thema
der Ausgangs-Referenz-Verfolgung von nichtlinearen Mehrkörpersystemen mittels
Rückführungs-Regelung (engl. feedback control). Dabei stehen drei Aspekte
dieses Themenkomplexes im Mittelpunkt. Zunächst wird eine Strukturanalyse
durchgeführt und ein strukturell neuer Ansatz zur Entkopplung und Darstellung
der internen Dynamik eines Eingangs-Ausgangs-Systems entwickelt. Dieser erlaubt
es, die Gleichungen der internen Dynamik vollständig algorithmisch herzuleiten,
insbesondere wird die Berechnung der Byrnes-Isidori-Form vermieden. Da die in-
terne Dynamik durch Ausdrücke des internen Zustands und der Systemausgänge
dargestellt wird, können Kriterien an die Systemparameter formuliert werden, aus
denen die Minimalphasigkeit eines Systems bestimmt werden kann, ohne die interne
Dynamik zu entkoppeln und auf Stabilität zu untersuchen. Der nächste untersuchte
Aspekt betrifft eine Annahme, welche häufig in der Feedback-Regelung von Syste-
men mit höherem Relativgrad getroffen wird. Es wird üblicherweise angenommen,
dass die höheren Ableitungen des Systemausgangs dem Kontrollschema zugänglich
sind. Dies kann jedoch für allgemeine Anwendungen nicht garantiert werden. Aus
diesem Grund wird der, in der Arbeit [32] entworfene, funnel pre-compensator
genauer untersucht. Der funnel pre-compensator ist ein dynamisches System,
welches ein eingehendes Signal beliebig genau annähert und diese Annäherung aus-
gibt. Darüber hinaus ist die Ableitung des ausgegebenen Signals explizit bekannt.
Es wird gezeigt, dass die Verknüpfung eines minimalphasigen Systems beliebigen
Relativgrads mit einem funnel pre-compensator wieder ein minimalphasiges System
ergibt. Damit lässt sich zeigen, dass unter Zuhilfenahme des funnel pre-compensators
Ausgangs-Referenz-Verfolgung mittels funnel control möglich ist, ohne dass die
höheren Ableitungen des Systemausgangs bekannt sein müssen. Der dritte Haupt-
beitrag besteht aus zwei neuen Feedback-Regelgesetzen, wobei jedes ein bestimmtes
Kontrollziel erreicht. Im ersten Fall werden Systeme betrachtet, deren Ausgänge
möglichen Messausfällen unterworfen sind. Es wird ein Regelgesetz entworfen,
welches auch in diesem Fall Ausgangs-Referenz-Verfolgung mit vorbestimmtem
Fehlerverhalten garantiert, falls bestimmte Bedingungen erfüllt sind. Diese Bedin-
gungen betreffen die maximale Dauer des Signalausfalls und die minimal benötigte
Zeit des gesicherten Vorhandenseins des Signals. Beide Bedingungen werden explizit
angegeben. Das zweite Kontrollziel ist Ausgangs-Referenz-Verfolgung mit exaktem
Wert zu einer vorgegebenen endlichen Zeit. Es wird ein Kontrollgesetz entworfen,
welches Ausgangs-Referenz-Verfolgung mit vorgegebenem Fehlerverhalten erreicht,
wobei der Systemausgang und seine relevanten Ableitungen für eine vorgegebene
Zeit genau mit der Referenz übereinstimmen.
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1 Introduction

Feedback mechanisms are ubiquitous in every person’s everyday life. Being upright,
walking, riding a bike, eating, using tools, and even communication is based on pro-
cessing of impressions. A brief look at the world of plants testifies to the fact that
in nature itself feedback mechanisms are developed and utilized, e.g., the turning
of the blossom of a sunflower towards the sun; or the flight of a bird between trees.
In all these illustrative processes, the actual effects achieved are perceived and com-
pared with the intended effects. Thereupon, the causes of these effects are adjusted
according to the registered errors. This defines a feedback structure. However, feed-
back systems not necessarily consist of living matter. In particular, when it comes
to control, the systems are considered as consisting of inanimate matter. One level
of abstraction higher, as regards the mathematical description and the development
of control schemes, the objects under consideration are, e.g., functions, operators
and trajectories.

To get an impression of the successful history of feedback control, we outline some
milestones in its development; for detailed surveys on control see, e.g., [169, 186].
The Greek mathematician and inventor Ktesibios (285 - 222 before our calendar)
incorporated a feedback mechanism into a water clock to regulate the flow and so
improved its accuracy, cf. [133, 116]. About 1900 years later, the Dutch mathemati-
cian, physicist and inventor Christiaan Huygens (1629 - 1695) invented, besides his
numerous seminal contributions to science, a centrifugal governor, which regulates
the pressure and distance between millstones in windmills, cf. [149]. This control
idea was then used by the Scottish inventor and engineer James Watt (1736 - 1819)
who developed, in addition to groundbreaking technical achievements, a successor of
the centrifugal governor which regulates the admission of steam into the cylinder of
his famous steam engine, cf. [141, 183]. Since Watt’s centrifugal governor, patented
in 1788, combines sensing, actuation and control, it is widely considered as the
birth of modern control technology. The theoretical investigation of such regulating
systems was started by Maxwell in 1868 [140], where he studied linearized models
and performed a stability analysis; moreover, he derived stability conditions of third
order closed-loop systems in terms of the roots of algebraic equations. The general
case was then treated by Routh [172]. Independently, Vyshnegradskii developed
a stability criterion for third order steam engine regulators in 1876 [193]. This
article strongly influenced the further developments in various engineering contexts,
cf. [4]. In the subsequent years, driven by the Industrial Revolution, different control
techniques and feedback strategies were invented in the fields of electricity [184],
industrial process control [205], ship steering [144, 177] and flight control [142].
While the invention and development of control systems in the former cases were
driven by engineering insights and intuition, in the latter case a solid theoretical

1



basis was extremely important for safety reasons. Unfortunately, as so often in the
history of technology and invention, control theory was primarily driven by war. So,
since prior to, and during, the Second World War it was realized that science may
play an important role in the war, many control systems were developed for military
purposes in the first half of the twentieth century, cf. [12]. Linked to this was the
further development of methods in control theory, such as the frequency response
method [156, 39] and the theory of servomechanisms [79], where in the latter case
the transfer function of a system could be determined experimentally and then,
involving Nyquist plots, it could be used to design control structures. At that time,
the first successes were achieved in replacing mechanical and pneumatic computers
with electronic computers, cf. [136, 167]. Now it was possible to simulate large sys-
tems and use mathematical models to study the behaviour of diverse systems under
different operating conditions. However, since servomechanism theory did not work
well for systems with many input and outputs, the construction of models based
on the method of frequency response was quite time consuming. In general, perfor-
mances had to be optimized and new tools and mathematical descriptions had to
be developed. At this stage of the new discipline “control theory”, Kalman laid the
foundations of state-space theory and published a series of seminal works, cf. [102,
34, 103] to name but a few. In order to specify the questions he considered, the
fundamental terms of reachability and observability were introduced, and to study
questions of stability, the earlier results on stability of differential equations found
by Lyapunov [138] were utilized. The new state-space theory strongly influenced the
following decades of research and was widely applied in engineering. To give just one
example, the so-called “Kalman filter” [101] was of crucial importance in NASA’s
Apollo program. As mentioned above, feedback techniques were intended to be used
in flight control. However, since the dynamic properties of flight vehicles change
drastically with flight altitude and speed, ballistic missiles and supersonic flight
caused new challenges in control. The existing control systems with constant gain
could not be used for the entire flight envelope. For this reason, the research turned
towards adaptive control, in particular, model reference adaptive control was under
consideration, cf. the works [198, 162, 145, 115, 147, 114]. In the subsequent years,
more and more techniques and control structures were developed, which achieved
tracking of an external (given) trajectory, see, e.g., the articles [96, 109, 86]. This
particular control objective, namely tracking of a given reference trajectory is the
guiding topic of the present thesis and is introduced in the subsequent Section 1.1.

Before we introduce the concepts of output reference tracking in detail, we briefly
outline the structure of the present thesis, which contains contributions to this
particular topic. There are three main aspects under consideration. As the first
aspect, in Chapter 2 we elaborate on the so-called internal dynamics of input-output
control systems of the form

ẋ(t) = f(d(t), x(t)) + g(x(t))u(t), x(0) = x0 ∈ Rn,

y(t) = h(x(t)),

where f ∈ C(Rp×Rn;Rn), g ∈ C(Rn;Rn×m), h ∈ C1(Rn;Rm); further, y : R≥0 → Rm

is the output and u : R≥0 → Rm is the input. To have a picture in mind, the internal
dynamics are the dynamics within the system, which are not visible at the output
explicitly. The internal dynamics play a crucial role in control theory, since almost
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Chapter 1. Introduction

all controllers (feedback as well as feedforward) require the internal dynamics to be
stable. Hence, in order to verify applicability of a control scheme to a given system,
a stability analysis of the internal dynamics has to be performed. To this end, the
internal dynamics have to be decoupled. A typical and well-known technique to
decouple the internal dynamics is to transform the system into the Byrnes-Isidori
normal form, cf. [98]. However, finding the respective transformations requires a lot
of computational effort, such as solving partial differential equations with feasibil-
ity constraints. To avoid this, in Sections 2.1.1 & 2.1.2 we present a structurally
new ansatz to decouple the internal dynamics and present a representation of these,
which only involves system parameters. The internal dynamics’ equations are then
given in terms of the system’s output and its derivatives and can be derived com-
pletely algorithmically. In Section 2.2 we use the novel representation to derive a
stability result for the internal dynamics. This allows, for a certain class of systems,
to conclude stability of the internal dynamics in advance directly from the system
parameters, without the need to decouple the internal dynamics and perform a sta-
bility analysis.
The second aspect under consideration concerns a certain availability assumption in
feedback control of systems with relative degree larger than one. Roughly speaking,
the relative degree of a system is the number the system’s output has to be differen-
tiated such that the input appears explicitly. Typically, feedback laws for systems
with relative degree r ∈ N involve the first r− 1 derivatives of the system’s output.
However, in general, the derivatives are not known. In this case, the derivatives can
be calculated via numerical differentiation, or approximated by high-gain observers,
for instance. Both of these techniques have their advantages, however, also particu-
lar disadvantages, cf. [190, 76]. To circumvent these, in Chapter 3 we elaborate on
the funnel pre-compensator first proposed in [32]. This is a dynamical system which
takes a signal, e.g., the output of a system, and gives an arbitrary good approxi-
mation of the signal as an output. Moreover, the derivative of the compensator’s
output is known explicitly. To utilize this property for feedback control, we show in
Section 3.2 that a minimum phase system

y(r)(t) = f(d(t),T(y, . . . , y(r−1))(t)) + Γu(t),

with arbitrary relative degree r ∈ N, f ∈ C(Rp × Rq;Rm), a causal, bounded-
input bounded-output and locally Lipschitz operator T introduced in Definition 1.4,
and symmetric Γ > 0, in conjunction with a funnel pre-compensator, results in a
minimum phase system with the same relative degree. This overall system is then
amenable to funnel control, and output reference tracking can be performed with
output feedback only, i.e., without involving the output’s derivatives.
The third main contribution of the present work in Chapter 4 is the introduction of
two novel funnel control laws, each of which achieves a certain control objective. In
Section 4.1 we consider output reference tracking in the case that the output signal
is possibly subject to measurement losses. For linear minimum phase systems

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn,

y(t) = Cx(t),

with matrices A ∈ Rn×n, C⊤, B ∈ Rn×m and arbitrary relative degree r ∈ N,
we derive a funnel feedback law, which guarantees that the tracking error evolves
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1.1. Output reference tracking and funnel control

within prescribed bounds, even if the output signal is lost in some intervals. Here,
the maximal duration of signal losses and minimal time of signal availability have
to satisfy certain conditions, which depend on the system parameters (in particular,
these conditions strongly depend on the internal dynamics) and are given explicitly.
In Section 4.2 we focus on the long-standing open problem of exact tracking in finite
time via feedback control. For nonlinear systemsy

(r1)
1 (t)

...

y
(rm)
m (t)

 =

f1(d(t),T(y1, . . . , y
(rm−1)
m )(t), u(t))

...

fm(d(t),T(y1, . . . , y
(rm−1)
m )(t), u(t))


with vector relative degree (r1, . . . , rm) ∈ N1×m, f ∈ C(Rp×Rq×Rm;Rm) satisfying
the high-gain property in Definition 1.10, and operator T as above, we present a
funnel feedback law, which guarantees that the system’s output y and its derivatives
have predefined values at a predefined time T , i.e., y

(j)
i (T ) = y

(j)
i,ref(T ), i = 1, . . . ,m,

j = 0, . . . , ri − 1; and moreover, the tracking error y− yref evolves within prescribed
bounds.

Although the main content of the present work does not directly concern the
invention and design of feedback control laws, it is directly related to, in the sense
that techniques and tools are provided, which improve and extend the applicability
of existing feedback control schemes. More precise, the present work mainly consists
of contributions to output reference tracking via feedback control, which can be seen
as the overarching topic. Therefore, we provide a brief introduction to this topic in
the next section.

1.1 Output reference tracking and funnel control

Since almost all results in the present work are derived in the context of output
reference tracking, we give a brief introduction to this topic. Moreover, since we
make extensive use of the idea of funnel control, we provide a brief introduction to
this topic too.

To begin with, we introduce the problem of output reference tracking. To this end,
we consider an input-output control system

ẋ(t) = f(t, x(t), u(t)), x(0) = x0,

y(t) = h(x(t)),
(1.1)

where f : R≥0 × Rn × Rm → Rn and h : Rn → Rp are to be specified later in the
light of the respective contexts. In system (1.1), the function u : R≥0 → Rm is called
input and y : R≥0 → Rp is called output. Now, the goal of output reference tracking
is to find an input signal u such that the output signal y follows a given reference
signal yref . Here “follows” encodes the respective control objective, which in general
describes the desired tracking quality in terms of the error e := y−yref . The control
objectives emerged as those that received the most intensive treatment are
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Chapter 1. Introduction

(CO.1) asymptotic tracking, that is, for long times
the tracking error approaches zero, i.e.,
limt→∞ ∥e(t)∥ = 0,

Time

∥e∥

(CO.2) approximate tracking, also known as λ-
tracking, where the tracking error becomes
smaller than any predefined λ > 0, i.e.,
lim supt→∞ ∥e(t)∥ ≤ λ, Time

∥e∥
λ

(CO.3) prescribed transient behaviour, where the
tracking error is guaranteed to evolve within
prescribed bounds.

Time

∥e∥

To perform output reference tracking, in general, two main control strategies can
be distinguished: feedforward control (“open-loop”) and feedback control (“closed-
loop”), cf. [164, Sec. 9]. The two control strategies are schematically depicted in
Figure 1.1.

Feedforward
Controller

System

yref

Parameter

u y

(a) Feedforward control system.

System

Feedback
Controller

−

u y

yrefe = y − yref

(b) Feedback control system.

Figure 1.1: Schematic structure of the two control strategies: feedforward control
and feedback control.

Performing output reference tracking via feedforward control means to calculate
an input control u(t) based on the system’s equations and parameters, the initial
data and the reference signal yref , such that the system’s output evolves along the
reference trajectory. Therefore, the control signal is based on an inversion of the
underlying model - in some sense, not to be specified here. If, however, the system
parameters are not known exactly, the application of a feedforward control signal
leads to a tracking error, i.e., y − yref ̸= 0. Generally, this tracking error cannot be
compensated by the feedforward controller, since it does not incorporate information
about the actual output y(t) at time t, see, for instance [183, Sec. 1.4]. Moreover,
if the system is subject to unknown disturbances, the tracking may fail. For this
reason, often two degrees of freedom feedforward controllers are used [83], that is,
a feedforward controller combined with a feedback loop, where the feedforward
controller is responsible for the tracking of the reference signal and a feedback loop
stabilizes the system and rejects disturbances, cf. [70, 58]. Since the present work
focuses on feedback control, we will not go into detail about feedforward control
strategies here, but we refer to the works [55, 70, 37, 71, 199, 97, 158], the sur-
vey [129] and the recent work [58] and the references therein, respectively.

5



1.1. Output reference tracking and funnel control

In contrast to feedforward control, a feedback controller compares the output y(t)
at time t with the desired output yref(t) and feeds the error e(t) = y(t)−yref(t) back
to the system, see Figure 1.1b. As in the present thesis we concentrate on output
feedback control, we exclude the introductory discussion of feedback strategies such
as full state feedback, which is the underlying principle in, e.g., pole placement,
cf. [164, Sec. 9]. Involving the output tracking error e(t) at time t, a feedback con-
troller calculates a control signal u(t, e) (the dependence of the tracking error is
indicated), which affects the system in a regulating manner to achieve that the out-
put follows the reference. Since there are almost countless different feedback control
strategies, in this introductory section we outline only two of the most popular and
widely used. To begin with, we briefly look at a feedback controller, which inherently
relies on a model of the system being controlled, one of the most successful feedback
control strategies, so-called model predictive control ; for a detailed introduction see,
e.g., [49, 73]. Such control schemes involve an underlying model, based on which
an input control is calculated, which forces the output to follow the given reference
and moreover, ensures that the control satisfies certain optimality conditions. One
advantage of this strategy is that it makes use of knowledge about the system to
reduce the control effort, however, to the prize of high computational costs of solving
an optimal control problem. For detailed considerations and applications see, e.g.,
[146, 170, 49, 73, 2], the survey [122] and the references therein, respectively. In the
present work, however, feedback control schemes are of particular interest, which
do not involve any identification of the system being controlled, but only take the
system’s output as information. So, in contrast to feedforward control and model
predictive control, in what follows we will concentrate on model free control strate-
gies which do not involve an underlying model to compute the input control signal.
At this point we skip the introduction and discussion of several different methods
of designing feedback laws such as for instance sliding mode, cf. [189, 125, 59], H∞
techniques, cf. [65, 176, 200] or backstepping, cf. [111, 112, 66]. As a prototype of
feedback control, we consider a very successful and simple representative of model
free feedback controller, the so-called PID controller; for an introductory overview
see, e.g., [13, 40]. This controller consists of three parts, namely a proportional part
of the current error e(t) = y(t)−yref(t), an integrated part, and a differentiated part.
The control law then reads

u(t) = Kp e(t) +Ki

∫ t

0

e(s) ds+Kd ė(t),

where the constants Kp, Ki, Kd ∈ R are called gains, which can be tuned to improve
the controller’s performance, cf. [161]. Due to its simplicity and success in applica-
tions, this controller became the probably most popular and widely used model free
feedback control law. For detailed introduction, discussions and applications we
refer to [53, 182, 161, 202], the works [126, 5] and the references therein, respectively.

Leading from the general introduction on feedback control to the method of
particular interest and to the specific consideration of the control objectives (CO.1) –
(CO.3), we exemplary investigate the problem of output stabilization of a linear,
single-input single-output system

ẋ(t) = ax(t) + bu(t), x(0) = x0,

y(t) = cx(t),
(1.2)
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Chapter 1. Introduction

where a, b, c > 0. Applying the output feedback law

u(t) = −ky(t), k > 0,

yields the closed-loop system

ẋ(t) = (a− kcb)x(t).

If the control gain k is chosen large enough, i.e., if the control input has a high gain
such that kcb−a > 0, then the system stabilizes. More precisely, for k large enough
the solution x decays exponentially, and so does the output y. Hence, the goal of
output stabilization is achieved, and the control objective (CO.1) is satisfied with
reference yref(t) = 0. We emphasize that for any parameters a, b, c > 0 this simple
output feedback control law stabilizes the system for k > 0 large enough. Now, what
if the system parameters a, b, c are unknown? Then it cannot be guaranteed, that
the gain k > 0 is chosen large enough to stabilize the system, no matter how large k
is chosen. In this case, remedy is given by adaption of the gain k. The idea is to
increase k monotonically, such that after some time it is large enough to stabilize
the system. This results in the adaptive high-gain feedback law

u(t) = −k(t)y(t), k̇(t) = y(t)2, k(0) = 0. (1.3)

It was shown in [148, 48, 139] that this adaptive high-gain feedback control law
achieves stabilization of any system (1.2). Precisely, it was shown that the feedback
law (1.3) applied to a system (1.2) with arbitrary parameters a, b, c ∈ R, satisfying
the relation cb > 0, yields a closed-loop initial value problem, which has a unique
solution (x, k) : R≥0 → R× R and satisfies limt→∞ x(t) = 0. Moreover, the high-
gain is finite, i.e., limt→∞ k(t) = k∞ < ∞. Thereby, control objective (CO.1)
is achieved with constant reference yref(t) = 0. A closer investigation of the simple
adaptive scheme (1.3) reveals some disadvantages. First, although the monotonically
increasing gain k converges to a finite value, it may increase unnecessary strong if
perturbations are considered. Moreover, as long as the output y is unequal to zero,
the gain grows. Second, this control law is essentially restricted to linear systems.
And finally, to achieve tracking of an arbitrary reference and not only stabilization,
requires a modification of the adaption scheme, which includes an internal model
and thus, the adaption scheme is no longer model free and forfeits its simplicity,
cf. [80]. These drawbacks were partially circumvented by the following modification
of the adaption scheme and a respective new control law, the so-called λ-tracker

u(t) = −k(t)e(t), k̇(t) = max {|e(t)| − λ, 0} , k(0) = k0, λ > 0, (1.4)

where e = y− yref is the tracking error. First of all, the feedback law (1.4) is able to
perform tracking of a given reference signal, not only stabilization. Second, due to
the adaption scheme, the gain k only grows if the tracking error is larger than a pre-
defined λ > 0 and constant otherwise. And finally, the application of this controller
is not restricted to linear systems. Feasibility of the feedback law (1.4) for tracking
problems was shown in, e.g., [89, 1]. In particular, this controller achieves the con-
trol objective (CO.2), i.e., it can be guaranteed that the tracking error converges to
a compact interval [−λ, λ], where λ > 0 is at the designer’s choice. However, similar
to (1.3), the adaption scheme (1.4) may lead to unnecessary large gain values k if

7



1.1. Output reference tracking and funnel control

the system is subject to perturbations. Since the function k is non-decreasing, large
values of k remain large and hence perturbations may be amplified with large values.
Whilst the adaptive λ-tracker (1.4) improves the adaptive high-gain stabilizer (1.3)
in view of tracking, and the latter itself improves the constant high-gain stabilizer,
none of the above feedback laws (1.3) and (1.4) may influence how the tracking error
(or the stabilization process) evolves over time. In other words, the control objec-
tive (CO.3), which concerns the evolution of the tracking error over time, has not
been taken into account yet. In [143] a control objective was studied, which in some
sense is between (CO.2) and (CO.3). The posed control problem is “of forcing this
error [the tracking error between the output and the reference signal] to be less than
an (arbitrarily small) prespecified constant after an (arbitrarily short) prespecified
period of time, with an (arbitrarily small) prespecified upper bound on the amount
of overshoot.” [143] The controller proposed there achieves this task for a class of
linear time-invariant systems.

In the year 2002, Ilchmann, Ryan and Sangwin introduced in their seminal work
“Tracking with prescribed transient behaviour” [91] a control scheme, the so-called
funnel control feedback law, which in one fell swoop solved many long-standing open
problems in feedback control, more precise, in output reference tracking via feedback
control. The systems under consideration are of the form

ẏ(t) = f(d(t),T(y)(t), u(t)),

y|[−σ,0] = y0 ∈ C([−σ, 0];Rm),
(1.5)

where f ∈ C(Rp×Rq×Rm;Rm) satisfies the so-called high-gain property introduced
in Definition 1.10, the operator T belongs to a certain operator class T m,q

σ introduced
in Definition 1.4, and d ∈ L∞(R≥0;Rp) is a bounded disturbance. The breakthrough
result in [91] is that the proposed controller achieves output tracking of a given refer-
ence, with prescribed transient behaviour of the tracking error. The main ingredient
in the new control law is the so-called funnel function φ ∈ W1,∞(R≥0,R≥0), with
φ(s) > 0 for all s > 0 and lim infs→∞ φ(s) > 0. It was shown in [91, Thm. 7] that,
if the tracking error satisfies the initial constraint φ(0)∥y(0)− yref(0)∥ < 1 for some
given yref ∈ W1,∞(R≥0;Rm), the feedback control law

u(t) = −k(t) ·
(
y(t) − yref(t)

)
, k(t) :=

1

1 − φ(t)∥y(t) − yref(t)∥
, (1.6)

achieves output tracking of a given reference signal yref with prescribed transient
behaviour, so it satisfies the control objective (CO.3). The controller (1.6), with
this particular gain function k, is a special instance of the control structure proposed
in [91] and is particularly well suited to illustrate the fundamental idea of funnel
control. By rewriting the gain function k in (1.6) as

k(t) =
1

φ(t)

1

ψ(t) − ∥y(t) − yref(t)∥
, ψ(t) := 1/φ(t),

the intuition behind the funnel controller becomes obvious.

Intuition: Whenever the tracking error is close to zero, the gain is close to one
and the resulting input u is close to zero. Whenever the norm of the tracking error
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Chapter 1. Introduction

e = y − yref is close to the funnel boundary ψ, the gain function k becomes large
and the input u = −k · e strongly pushes the output towards the reference, i.e., the
error is pushed away from the funnel boundary. In one word, the funnel boundary
is repulsive.

Consequence: If the error is initially within the funnel boundaries, it will remain
within the funnel boundaries.

We illustrate this by the following simple example. Consider

ẏ(t) = y(t) + u(t), y(0) = 0,

with reference signal yref : R≥0 → R, t 7→ sin(t). As funnel function we choose
φ : R≥0 → R≥0, t 7→ (e−t + 0.1)−1, so the funnel boundary ψ = 1/φ is exponentially
decaying.

0 5 10
0

0.5

1

1

2

3

(a) Tracking error e, funnel boundary ψ
and corresponding gain function k.

0 5 10
-2

0

2

(b) Control input.

Figure 1.2: Exemplary application of the funnel control scheme (1.6).

In Figure 1.2a the absolute value of the tracking error e = y − yref and the funnel
boundary ψ = 1/φ, together with the corresponding gain function k are depicted.
It can be seen that, if the tracking error is small, the gain function has small values
close to one. However, if the tracking error approaches the funnel boundary, the gain
function rapidly grows. Note that in particular, the tracking error evolves within
the predefined funnel boundary, whereby control objective (CO.3) is satisfied. In
Figure 1.2b the control input u as defined in (1.6) is depicted. Here, the behaviour
of the tracking error causes the respective input signal, which forces the output y
towards the reference signal yref .

We emphasize some properties of the funnel control strategy.

(i) It is clear from system (1.5) and the control law (1.6), that the funnel con-
troller does not rely on system parameters; only structural assumptions such
as the high-gain property of the right-hand side f and the conditions on the
operator T have to be satisfied. So, the funnel controller is model free and
hence robust with respect to model uncertainties.
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1.1. Output reference tracking and funnel control

(ii) One funnel control scheme is applicable to the entire class of systems, which
satisfies the structural assumptions.

(iii) The controller is able to compensate any bounded disturbance within the
system, so it is robust with respect to noise.

(iv) The controller has a very simple structure, comparable to the PID controller.

(v) The gain function, although time varying, is not a dynamical system, as it is
the case for the high-gain stabilizer (1.3) and the λ-tracker (1.4). In particu-
lar, the gain function is not monotonically increasing and therefore does not
converge to a large value, but becomes large only when needed.

(vi) The funnel controller guarantees that the tracking error evolves within the
prescribed error bound 1/φ. Note that the funnel function φ is not neces-
sarily monotonically increasing, i.e., the funnel boundary is not necessarily
monotonically decreasing.

Beside the advantages listed above, the control law (1.6) is restricted to sys-
tems (1.5), i.e., multi-input multi-output systems with relative degree one. In 2007
a funnel controller for systems with arbitrary relative degree r ∈ N was proposed
in [93]. However, this controller involves a backstepping procedure, which compli-
cates the controller severely. Since its inception in 2002 it took about eleven years
to extend the funnel control scheme in its simple structure to systems of relative
degree two, this extension was done in [78]. The new controller does not only
involve the tracking error e = y− yref but its derivative ė as well. It was then shown
in [78, Thm. 3.1] that the proposed controller achieves the control objective (CO.3)
of output reference tracking with prescribed transient behaviour of the tracking
error. Another five years of research finally brought the generalization of funnel
control schemes to systems of arbitrary high relative degree r ∈ N in [24] in the
year 2018. The proposed control scheme consists of recursively defined auxiliary
error signals involving the tracking error’s derivatives up to order r − 1, which
follows the insights found in [91] and [78]. Up to this stage of the development of
funnel control schemes, only the control objective (CO.3) (and hence also (CO.2))
could be achieved. The task of asymptotic tracking (CO.1) remained an open
problem and was solved in 2019 for relative degree one systems in [123], where a
reformulation of the error variables led to the result [123, Thm. 6] of asymptotic
tracking with prescribed transient behaviour. The insights from [123] were used
in the recent work [21] to achieve asymptotic tracking for nonlinear systems with
arbitrary relative degree r ∈ N. This controller does not involve the auxiliary error
variables as in [24] but straightforwardly uses the derivatives of the tracking error
e, ė, . . . , e(r−1). The ability to achieve control objectives (CO.1) – (CO.3) was shown
in [21, Thm. 1.9].

As it is feasible to achieve control objectives (CO.1) – (CO.3) as well as due to its
strikingly simple structure and implementability, the funnel controller proved to be
an appropriate tool for tracking problems in various applications such as control of
industrial servo-systems [76] and underactuated multibody systems [18, 26], control
of electrical circuits [33, 180], control of peak inspiratory pressure [166], adaptive
cruise control [28, 29], control of infinite-dimensional systems such as a boundary
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controlled heat equation [171], a moving water tank [27] and defibrillation processes
of the human heart [17], temperature control of chemical reactor models [94], speed
control of wind turbine systems [75, 77], DC-link power flow control [180], voltage
and current control of electrical circuits [33], and oxygenation control during artifi-
cial ventilation therapy [165].

An alternative approach to achieve the control objective (CO.3) is the so-called
prescribed performance controller first introduced in [11]. Although they follow a
similar motivation, funnel control and prescribed performance control are funda-
mentally different. The latter transforms the system into a new form with new
states, where the transformation incorporates a performance function (similar to
the funnel function). The control law is then constructed using the new states. This
new formulation yields, that boundedness of the new states, which is achieved by
the proposed controller, implies the evolution of the tracking error within the pre-
scribed error bounds. The controller proposed in [11] is of rather high complexity,
since the unknown nonlinearities from the system are approximated via a neural
network. This issue of complexity was addressed in subsequent research and led to
the control schemes presented in [10, 8, 56]. The prescribed performance controller
was successfully applied in various contexts such as hypersonic flight vehicles [44, 43,
42], spacecraft control [99, 204], control of robotic manipulators [131, 181], trans-
portation systems, e.g., high-speed trains [137] or tractor-trailers [60] and numerous
more. For a detailed and comprehensive discussion of applications of the prescribed
performance controller see the survey [41]. While both controllers, funnel control
and prescribed performance controller, can claim great success in applications, both
partly suffer from their feasibility assumptions. For the prescribed performance con-
troller the entire state is required to be available; this was solved in [56], however,
via the incorporation of a high-gain observer, which has to be initialized properly,
cf. Chapter 3. The funnel controller, on the other hand, involves higher derivatives
of the system’s output. This issue is addressed in the present work in Section 3.3.

1.2 Preliminary definitions, concepts and results

In this section we provide definitions and introduce concepts which are used through-
out the present work. We briefly recall some basic concepts such as relative degree,
the representation of a system in Byrnes-Isidori form and the resulting equations for
the internal dynamics, which are particularly used in Chapter 2. For R ⊆ Rn open
and F : R → Rn we consider a dynamical input-output system

ẋ(t) = F (x(t)) +G(x(t))u(t), x(0) = x0 ∈ R ⊆ Rn,

y(t) = h(x(t)),
(1.7)

where the function h : R → Rm is the output measurement, y : R≥0 → Rm is the
output, G : R → Rn×m is the input distribution and u : R≥0 → Rm is an input
affecting the system in an affine form. Note that the input and the output have
common dimension m ∈ N.

Assumption. If not stated otherwise, throughout the present work we assume that
the input and the output of an input-output system have the same dimension.
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1.2. Preliminary definitions, concepts and results

If m = 1, a system (1.7) is called single-input, single-output (SISO), if m > 1,
it is called multi-input, multi-output (MIMO). In order to introduce the concept of
relative degree, we recall the following.

Definition 1.1. Let h : Rn → Rm be a function which is differentiable on an open
set U ⊆ Rn, and let F : Rn → Rn be a vector field. Then, the Lie derivative of h
along F is defined by

(LFh)(z) := h′(z) · F (z) ∈ Rm, z ∈ U,

where h′ : Rn → Rm×n is the Jacobian of h. For z ∈ U , k ∈ N and h ∈ Ck(U ;Rm),
we successively may define (Lk

Fh)(z) := (LF (Lk−1
F h))(z) with (L0

Fh)(z) = h(z).

For a system (1.7) we denote the columns of G(z) by gi(z), i = 1, ...,m, z ∈ R,
and may further define the Lie derivative of each component of the output along the
input distribution as

(LGhi)(z) := [(Lg1hi)(z), ..., (Lgmhi)(z)] ∈ R1×m, z ∈ R.

With the aid of Lie derivatives, in accordance with [98, Sec. 5.1] we recall the concept
of vector relative degree for (SISO and MIMO) systems (1.7).

Definition 1.2. A system (1.7) has vector relative degree (r1, . . . , rm) ∈ N1×m at a
point x0 ∈ R ⊆ Rn, if there exists an open neighbourhood U ⊆ R of x0, such that
for all z ∈ U ,

i) for all j ∈ {1, . . . ,m} and all k ∈ {0, ..., rj − 2} we have (LGL
k
Fhj)(z) = 0,

ii) and

Γ(z) :=

Γ1(z)
...

Γm(z)

 =

 (LGL
r1−1
F h1)(z)

...
(LGL

rm−1
F hm)(z)

 ∈ Glm(R),

where Γ : U → Glm(R) is called high-gain matrix. If r1 = · · · = rm =: r ∈ N, then
we say system (1.7) has strict relative degree r.

To have a picture, the strict relative degree is, roughly speaking, the number
the output of a system has to be differentiated such that the input occurs explicitly.
Consequently, vector relative degree is the collection of numbers of derivatives needed
such that the input occurs in the respective output channel. We emphasize that,
due to Newton’s second law, namely that the rate of change of a body’s momentum
equals the applied force1, many physical systems have relative degree two, i.e., the
input (the applied force) occurs in the second derivative, i.e., the acceleration, of
the measured output (position).

Remark 1.3. Since the class of linear systems ẋ(t) = Ax(t) + Bu(t) with out-
put y(t) = Cx(t), A ∈ Rn×n, input distribution B = [B1, . . . , Bm] ∈ Rn×m and
output measurement mapping C = [C⊤

1 , . . . , C
⊤
m]⊤ ∈ Rm×n, is an important sub-

class of systems (1.7), we record that, in virtue of Definition 1.2, a linear system
has

1“Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rec-
tam qua vis illa imprimitur” [151], translation “The alteration of motion is ever proportional to
the motive force impressed; and is made in the direction of the right line in which that force is
impressed.” [152]
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(i) strict relative degree r ∈ N, if

i) for all k ∈ {0, ..., r − 2} we have = CAkB = 0,

ii) and the high-gain matrix

Γ := CAr−1B ∈ Rm×m

is non-singular,

(ii) vector relative degree r = (r1, . . . , rm), if

i) for all i, j∈{1, . . . ,m} and all k∈{0, ..., rj − 2} we have CiA
kBj = 0,

ii) and the high-gain matrix

Γ :=

Γ1
...

Γm

 =

 C1A
r1−1B1 · · · C1A

r1−1Bm
...

. . .
...

CmA
rm−1B1 · · · CmA

rm−1Bm

 ∈ Rm×m,

is non-singular.

Next, we introduce a class of operators that play a significant role in the definition
of classes of dynamical systems under consideration in Chapters 3 & 4.

Definition 1.4. For σ ≥ 0 and n, q ∈ N we define the operator class

T n,q
σ := {T : C([−σ,∞);Rn) → L∞

loc(R≥0;Rq) |T satisfies (T.1) − (T.3)} ,

where

(T.1) T maps bounded trajectories to bounded trajectories, i.e., for all c1 > 0 there
exists c2 > 0 such that for all ξ ∈ C([−σ,∞);Rn),

sup
t∈[−σ,∞)

∥ξ(t)∥ ≤ c1 ⇒ sup
t∈[0,∞)

∥T(ξ)(t)∥ ≤ c2,

(T.2) T is causal, i.e., for all t ≥ 0 and all ζ, ξ ∈ C([−σ,∞);Rn),

ζ|[−σ,t) = ξ|[−σ,t) ⇒ T(ζ)|[0,t)
a.a.
= T(ξ)|[0,t),

(T.3) T is locally Lipschitz continuous in the following sense: for all t ≥ 0 and all
functions ξ ∈ C([−σ, t];Rn) there exist numbers ∆, δ, c > 0 such that for all
ζ1, ζ2 ∈ C([−σ,∞);Rn) with ζ1|[−σ,t] = ξ, ζ2|[−σ,t] = ξ and ∥ζ1(s) − ξ(t)∥ < δ,
∥ζ2(s) − ξ(t)∥ < δ for all s ∈ [t, t+ ∆], we have

ess sups∈[t,t+∆] ∥T(ζ1)(s) −T(ζ2)(s)∥ ≤ c sups∈[t,t+∆]∥ζ1(s) − ζ2(s)∥.

Since the definition of the operator class T n,q
σ is rather technical, a commentary

seems appropriate. Property (T.1) encodes a stability condition on the internal
dynamics of a given system, (T.2) is a causality assumption, which typically arises
in physically motivated contexts and is quite naturally satisfied there; this property
is important when establishing well-posedness of solutions of respective dynamical
systems. The technical property (T.3) comes into play establishing the existence of
a solution of closed-loop initial value problems under feedback control.
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1.2. Preliminary definitions, concepts and results

Remark 1.5. In the context of physically motivated dynamical systems encom-
passed by the systems under consideration later in Chapters 3 & 4, it is worthwhile
to have a closer look on what the operators belonging to T n,q

σ may embrace. We
collect a selection of important physical phenomena, which can be modelled by
operators belonging to T n,q

σ .

(i) Hysteresis occurs, if the state of a system depends on the system’s history.
For relay hysteresis, exemplary consider a magnet in a given magnetic field.
Then, the magnetic moment of the magnet depends on how the applied field
changed in the past. In physical and chemical systems, relay hysteresis effects
are often related and associated with irreversible thermodynamic changes and
deformations. Moreover, such hysteresis occurs in many artificial systems,
such as in Schmitt triggers, which are used in signal processes, for instance to
convert analogous signals to digital signals; or heating devices which include
thermostats. Formally, let r1 < r2, and let α1 : [−r1,∞), α2 : (−∞, r2]
with α1(r1) = α2(r1) and α1(r2) = α2(r2) be globally Lipschitz continuous.
Feeding in the continuous input v : R≥0 → R to the hysteresis element, the
output w : R≥0 → R is such that (v(t), w(t)) ∈ graph(α1) ∪ graph(α2) for
all t ∈ R≥0; either w(t) = α1(v(t)) or w(t) = α2(v(t)), depending on the the
history of v, namely if the threshold r1 or r2 was last attained by v. This
situation is schematically depicted in Figure 1.3.

|
r1

|
r2

Input v(t)

Output w(t) = (Tv)(t)

Figure 1.3: Schematic input-output relation of a relay hysteresis
element.

A proper initialization then yields that for every input v ∈ C(R≥0;R) the
hysteresis element has a unique output w = Tv ∈ C(R≥0;R), where the oper-
ator T belongs to the class T 1,1

0 .
A frequently occurring phenomenon in mechanical systems is backlash hys-
teresis, which describes the play between two parts of a solid link. Consider a
link consisting of two solid parts P1 and P2. For some b ≥ 0, the displacement
of each part at a time instant t ∈ R≥0 is given by v(t) and w(t), respectively,
where |v(t)−w(t)| ≤ b for all t ∈ R≥0 and w(0) := v(0)+p for some p ∈ [−b, b].
The situation is depicted in Figure 1.4.
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P1

v

2bP2

w

|
−b

|
b

v(t)

w(t) = (Tpv)(t)

Figure 1.4: Structure of a mechanical backlash hysteresis element
and schematic input-output relation.

Now, the position w of part P2 is constant as long as the displacement v of
part P1 is within the inner part of P2. Then, for a continuous v : R≥0 → R
we have for P2 that ẇ(t) = 0 whenever |v(t) − w(t)| < b. With this, we may
introduce a family of backlash hysteresis operators Tp depending on the pa-
rameter p, such that w = Tpv for a given v ∈ C(R≥0;R), thus Tp ∈ T 1,1

0 .
Further hysteresis effects, which can be modelled by operators belonging
to T n,q

σ are generalized backlash as introduced in [113], elastic plastic hysteresis
and general hysteresis effects modelled by so-called Preisach operators. For
detailed overviews discussing the mathematical properties of the operators
briefly discussed above, see, e.g., [113, 134, 90].

(ii) Delay is an effect which, due to the finite propagation of information, occurs
actually in any real system; see Figure 1.5.

Time

Space

v(t)

w(t) = (Tv)(t) = v(t− τ)

| |
τ

v(t)

Figure 1.5: Schematic structure of information delay.

In virtue of [173, 90, 21] consider for k = 0, . . . , K possibly nonlinear func-
tions ∆k : R × Rm → Rq such that ∆k(·, z) is measurable for each z ∈ Rm,
and for every compact C ⊂ Rm there exists c > 0 such that

for a.a. t ∈ R ∀ z1, z2 ∈ C : ∥∆k(t, z1) − ∆k(t, z2)∥ ≤ c∥z1 − z2∥.

For k = 0, . . . , K let τk > 0 and define τ := maxk∈{0,...,K} τk. Then, for
v ∈ C([−τ,∞),Rm) we may define the following operator,

(Tv)(t) :=

∫ 0

−τ0

∆0(s, v(t+ s)) ds+
K∑
k=1

∆k(t, v(t− τk)), t ≥ 0,

which models point and distributed delays and belongs to the class T m,q
τ .
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(iii) In some contexts, in particular when dealing with partial differential equations,
the respective spaces are not finite dimensional any more. For instance in
the articles [17, 27] situations are under consideration, where the operator T
represents infinite dimensional internal dynamics.

Next, we introduce a class of functions which form the basis to define a concept
of a solution of ordinary differential equations. The definition follows [88, App. B].

Definition 1.6. For n ∈ N let D ⊆ R≥0 × Rn be a non-empty, connected and
relatively open set, i.e., D is a domain. For q ∈ N a function f : D × Rq → Rn

is called Carathéodory function, if for every [t0, t1] × K ⊂ D, where K ⊂ Rn is a
compact set, and every compact set Q ⊂ Rn

(C.1) f(t, ·, ·) : K ×Q→ Rn is continuous for almost all t ∈ [t0, t1],

(C.2) f(·, x,q) : [t0, t1] → Rn is measurable for each fixed (x,q) ∈ K ×Q,

(C.3) there exists an integrable function α : [t0, t1] → R≥0 such that for almost
all t ∈ R≥0 and all (x,q) ∈ K ×Q the estimation ∥f(t, x,q)∥ ≤ α(t) is valid.

Next, we introduce the concept of a solution to an initial value problem.
For n, q ∈ N, σ > 0 and t0 ∈ R≥0 let D ⊆ R≥0 ×Rn be a domain, F : D×Rq → Rn

be a Carathéodory function as in Definition 1.6, and T ∈ T n,q
σ be an operator as in

Definition 1.4. We consider the initial value problem

ẋ(t) = F
(
t, x(t),T(x)(t)

)
, (1.8)

x|[−σ,t0] = x0 ∈ C([−σ, t0];Rn), (t0, x
0(t0)) ∈ D.

Then, in virtue of [91, Sec. 5], we have the following definition.

Definition 1.7. A solution of (1.8) is a function x ∈ C(I;Rn) on an interval of
the form I = [−σ, ω̄], for t0 < ω̄ < ∞, or I = [−σ, ω), for ω ≤ ∞, such that, for
J := I\[−σ, t0], we have x|[−σ,t0] = x0, x|J is absolutely continuous with (t, x(t)) ∈ D
for all t ∈ J , and

∀ t ∈ J : x(t) = x(t0) +

∫ t

t0

F
(
s, x(s),T(x)(s)

)
ds. (1.9)

A solution is maximal if it has no proper right extension that is also a solution.

Remark 1.8. As pointed out in [84, p. 234] the interpretation of the “local Lipschitz
property” (T.3) in Definition 1.4 and so the interpretation of a solution x ∈ C(I;Rn)
of (1.8), where I = [−σ, ω̃] or I = [−σ, ω) for finite ω, requires special attention
since the operator T has C([−σ,∞);Rn) as its domain. Let J := I \ [−σ, 0) and
x ∈ C(I;Rn). For each τ ∈ J define the function xτ ∈ C([−σ,∞);Rn) by

xτ (t) =

{
x(t), t ∈ [−σ, τ ],

x(τ), t > τ.

Now, we associate with the operator T ∈ T n,q
σ its “localisation”, namely the operator

T̃ : C(I;Rn) → L∞
loc(J ;Rn) defined as

∀ τ ∈ J : T̃(x)|[0,τ ] = T(xτ )|[0,τ ].
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Chapter 1. Introduction

Note, that by Definition 1.4 (T.2) the operator T̃ is well defined. Together, a re-
placement of T by T̃ in (1.9) yields the correct interpretation of a solution; however,
throughout the present work we will notationally not distinguish between T ∈ T n,q

σ

and T̃.

Since we extensively use the result [91, Thm. 5] concerning the existence of
solutions of ordinary differential equations, for reasons of more pleasant readability
of the present thesis, we repeat it here.

Proposition 1.9. [91, Theorem 5] Consider the initial value problem (1.8)
with (t0, x

0(t0)) ∈ D. Then,

(i) the initial value problem (1.8) has a solution x : [−σ, ω) → Rn, which satisfies
graph(x|[t0,ω)) := { (t, x(t)) | t ∈ [t0, ω)} ⊂ D,

(ii) every solution can be extended to a maximal solution,

(iii) if F is locally essentially bounded and x ∈ C([−σ, ω);Rn) is a maximal solu-
tion, then the closure of graph(x|[t0,ω)) is not a compact subset of D.

We omit the proof here but refer to [91, p. 11].

In order to characterize the class of admissible nonlinearities f appearing in
the systems under consideration later, we recall the definition of the “high-gain
property” from [21, Sec. 1.2].

Definition 1.10. For k, q, n ∈ N a function f ∈ C(Rk × Rq × Rn;Rn) satisfies the
high-gain property, if there exists v∗ ∈ (0, 1) such that, for every compact set K ⊂ Rk

and compact set Q ⊂ Rq the continuous function

χ : R → R,
s 7→ min { ⟨v, f(δ, z,−sv)⟩ | (δ, z) ∈ K ×Q, v ∈ Rn, v∗ ≤ ∥v∥ ≤ 1}

is such that sups∈R χ(s) = ∞.

For a detailed discussion and equivalent conditions of the high-gain property we
refer to [21, Rem. 1.3 & 1.4]; we only record the equivalence of f having the high-
gain property and the existence of v∗ ∈ (0, 1) such that for every compact K ⊂ Rk,
Q ⊂ Rq at least one of the following two statements is true

sup
s>0

χ(s) = ∞ or sup
s<0

χ(s) = ∞.

Later, in Sections 3.2.1 & 4.2.1 we will recall the findings from [21, Sec. 2.1.3]
to integrate the high-gain property into the respective context. We complete this
introductory section stating the following result about invariant sets of dynamical
systems, which will be used frequently throughout the present thesis as it plays a
significant role in proving the main results of the present work.

Lemma 1.11. If for x ∈ C1([τ, T );Rm) with τ < T ∈ R, m ∈ N, there exists
M ≥ ∥x(τ)∥ ≥ 0 such that

∀ t ∈ [τ, T ) :
(
∥x(t)∥ ≥M ⇒ d

dt
∥x(t)∥2 ≤ 0

)
, (1.10)

then
∀ t ∈ [τ, T ) : ∥x(t)∥ ≤M. (1.11)
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1.2. Preliminary definitions, concepts and results

Proof. Seeking a contradiction we assume that there exists t1 ∈ (τ, T ) such that
∥x(t1)∥ > M . Then, by continuity, there exists t0 := max { t ∈ [τ, t1) | ∥x(t)∥ = M },
and hence we have ∥x(t)∥ ≥M for all t ∈ [t0, t1]. Then, using (1.10) we obtain

∥x(t1)∥2 − ∥x(t0)∥2 =

∫ t1

t0

(
d
dt

1
2
∥x(t)∥2

)
dt ≤ 0,

and we find the contradiction

M2 < ∥x(t1)∥2 ≤ ∥x(t0)∥2 = M2.

Therefore, (1.11) holds for all t ∈ [τ, T ).

18



Chapter 1. Introduction

1.3 Previously published results

As summarized in the following table, parts of the present thesis have been submitted
for publication or already have been published. The author of the present thesis
made significant contributions to the respective articles.

Section Contained in New in the present thesis
Section 2.1 Lanza [118, 120] for the spe-

cial case r = 2
the general case for r ∈ N,
Lemma 2.3,
Lemma 2.4,
Remark 2.16,

Section 2.1.2 Berger, Drücker, Lanza, Reis
and Seifried [18]

Remark 2.23,

Section 2.2 Lanza [118, 120] Remark 2.31,
Sections 3.2 & 3.3 Lanza [119] Remark 3.1,

Lemma 3.10,
Step four in the proof of The-
orem 3.9 is new as regards
properties (T.2) and (T.3),
Remark 3.15,

Section 4.1 Berger and Lanza [22] incorporation of bounded
disturbances,
Remark 4.2,
Corollary 4.12

Section 4.2 Lanza [117] for strict relative
degree

the consideration of systems
with vector relative degree,
Remark 4.16 (ii) & (iv),
Remark 4.17,
Remark 4.23
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2 Internal dynamics

In this chapter we perform a structural analysis of multibody systems; we elaborate
on the representation of the so-called internal dynamics. Roughly speaking, the
internal dynamics of a dynamical system are dynamics within the system, which
are not visible at the output explicitly. In particular, for a fixed output possibly
there remains motion within the system. Although the internal dynamics do not
explicitly affect the output, the system’s state is affected by the internal dynamics.
This fact is illustrated in Example 2.19. To have a picture in mind, for a linear
system ẋ = Ax + Bu with linear output y = Cx, the internal dynamics are the
state’s motions within the kernel of C.

In feedforward control as well as in feedback control the internal dynamics
play an important role and in particular its stability properties are of high rele-
vance, where stability refers to a bounded-input bounded-output, respectively to a
bounded-input bounded-state property in most cases. Although there is progress
in designing control schemes for systems with unstable internal dynamics, see for
instance [16, 23, 18, 178], most control strategies rely on the stability of the internal
dynamics, by way of example see [48, 46, 108, 143, 91, 179, 25, 30, 26] and also the
survey [87]. Therefore, stability analysis of the internal dynamics of a given system
is an important step before applying a certain control scheme to the system. To
do so, the internal dynamics have to be decoupled such that a stability analysis
can be performed. In [98] a coordinate transformation is introduced such that the
system’s equations can be represented in terms of external and internal variables.
This idea of representation leads to a normal form for general input-output systems,
the so-called Byrnes-Isidori form. However, the derivation and explicit computation
of this normal form in general requires a lot of effort since typically a set of partial
differential equations has to be solved, where additional constraints have to be
satisfied; this is illustrated in Example 2.2.

In the present chapter we develop a structurally new ansatz to decouple the
internal dynamics and present a set of variables for the internal state. Further,
we derive a (local) coordinate transformation, the computation of which, compared
to the Byrnes-Isidori normal form, is much less involved and requires less compu-
tational effort. In this context, a local coordinate transformation defines a local
diffeomorphism between regions of the state space and the space of external and
internal states. We will derive a set of feasible coordinates for the internal state in
terms of the system’s output and the internal variable. This novel representation
yields two main results. First, the coordinate transforming diffeomorphism is given
explicitly, and moreover, its inverse is given explicitly as well. This allows to re-
construct the system’s entire state from the system’s output and the internal state.
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Second, the internal dynamics are completely decoupled and thus, for instance, are
amenable to stability analysis. The new set of variables for the internal state allows
to compute the internal dynamics completely algorithmically, and in particular,
without the need to compute the Byrnes-Isidori form explicitly.

Although we aim to find a representation of the internal dynamics, which avoids
the explicit computation of the Byrnes-Isidori form, we will exploit its structure.
To this end, we recall [98, Prop. 5.1.2] which states that for a system (1.7) with
well defined (vector) relative degree there exists a state space transformation which
diffeomorphically transforms the system into a normal form.

Proposition 2.1. If a system (1.7) has vector relative degree (r1, . . . , rm) ∈ N1×m

at a point x0 ∈ Rn, then, for an open neighbourhood U ⊆ Rn of x0, there exists a
local diffeomorphism Φ : U → W ⊆ Rn, W open, such that(

ξ(t)
η(t)

)
= Φ(x(t)), (2.1)

with ξ(t) = (ξj,i(t))j=1,...,m;i=1,...,rj ∈ Rr̂, η(t) ∈ Rn−r̂, where r̂ =
∑m

j=1 rj, transforms
system (1.7) (nonlinearly) into Byrnes-Isidori normal form

yj(t) = ξj,1(t),

ξ̇j,1(t) = ξj,2(t),

...

ξ̇j,rj−1(t) = ξj,rj(t),

ξ̇j,rj(t) = (L
rj
F hj)

(
Φ−1(ξ(t), η(t))

)
+ Γi

(
Φ−1(ξ(t), η(t))

)
u(t), j = 1, . . . ,m,

η̇(t) = q(ξ(t), η(t)) + p(ξ(t), η(t))u(t).

(2.2)

We refer to ξ as the external state and to η as the internal state. Consequently,
the last equation in (2.2) represents the internal dynamics of system (1.7), which
may involve the system’s input u exerting force to the internal dynamics.

As a special instance, we consider linear systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn,

y(t) = Cx(t),
(2.3)

with A ∈ Rn×n and C⊤, B ∈ Rn×m. We assume that this system has strict relative
degree r ∈ N. Note that in this particular case, the relative degree is global, i.e., for
all k < r − 1 we have CAkB = 0 and CAr−1B ∈ Glm(R) for all x ∈ Rn. Following
the investigations in [95], if system (2.3) has strict relative degree r ∈ N, then, with

B :=
[
B AB . . . Ar−1B

]
∈ Rn×rm,

C :=
[
C⊤ (CA)⊤ . . . (CAr−1)⊤

]⊤ ∈ Rrm×n,

V ∈ Rn×(n−rm) s.t. imV = ker C,
N := V †(In − B(CB)−1C) ∈ R(n−rm)×n,

U :=

[
C
N

]
∈ Gln(R),

(2.4)
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Chapter 2. Internal dynamics

the change of coordinates 
ξ1
ξ2
...
ξr
η

 = Ux =


y
ẏ
...

y(r−1)

η


transforms system (2.3) into Byrnes-Isidori form

ξ̇i(t) = ξi+1(t), ξi(0) = ξ0i ∈ Rm,

ξ̇r(t) =
r∑

j=1

Rjξj(t) + Sη(t) + Γu(t), ξr(0) = ξ0r ∈ Rm,

η̇(t) = Qη(t) + Pξ1(t), η(0) = η0 ∈ Rn−rm,

with output
y(t) = ξ1(t),

where[
R1 . . . Rr S

]
:= CArU−1 ∈ Rm×(rm+(n−rm)),

P := NArBΓ−1 ∈ R(n−rm)×m, Q := NAV ∈ R(n−rm)×(n−rm).
(2.5)

If rm < n, system (2.3) has nontrivial internal dynamics. Moreover, we emphasize,
that this particular transformation prevents the occurrence of the input variable u
in the internal dynamics, i.e., the internal dynamics are not directly excited by the
input signal.

We return to general nonlinear systems (1.7). With the aid of Lie derivatives intro-
duced in Definition 1.1, the diffeomorphism Φ in (2.1) can be represented as

(
ξ
η

)
= Φ(x) =



h1(x)
(LFh1)(x)

...
(Lr1−1

F h1)(x)
h2(x)

...
(Lrm−1

F hm)(x)

ϕ̃1(x)
...

ϕ̃n−r̂(x)


, x ∈ U ⊆ Rn, (2.6)

where ϕ̃i : U → R, i = 1, ..., n − r̂, r̂ =
∑m

j=1 ri, are such that Φ′(x) is invertible
for all x ∈ U . As in the transformation of linear systems above, we seek for a
transformation such that the internal dynamics are not excited by the system’s
input u. In view of (1.7) and (2.6) this means to find functions ϕ̃i such that for
all x ∈ U

∀ i = 1, . . . , n− r̂ :
(
LG ϕ̃i

)
(x) =

(
∇ϕ̃i(x)

)
·G(x) = 0 and Φ′(x) ∈ Gln(R), (2.7)
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which in fact requires to solve a set of n− r̂ nonlinear partial differential equations
such that the constraint Φ′(x) ∈ Gln(R), x ∈ U , is satisfied. While the result [98,
Prop. 5.1.2] yields conditions on the input distribution G such that such functions
exist, no strategy is given, how these functions can be constructed. In the present
chapter we will focus on the latter aspect.

Example 2.2. We illustrate the aforesaid. Consider a robotic manipulator system
as introduced in [179, Sec. 4.2]. The rotational manipulator arm consists of two
links with homogeneous mass distribution and mass m with length l. A passive
joint consisting of a linear spring-damper combination couples the two links to each
other. Passive in this context means, that there is no input force at this point.
We stress, that the linearity of the passive joint does not result in linear equations
of motion, as we will see in (2.8). As an output, the position of point S on the
second link is measured. Using a body fixed coordinate system, the point S on the
passive link is described by 0 ≤ s ≤ l. The situation is depicted in Figure 2.1. We

Figure 2.1: Rotational manipulator arm consisting of two links and a passive joint.
The figure is taken from from [179].

present the manipulator’s equations of motion. As we will see below, it is reasonable
to consider the dynamics of the manipulator for β ∈ B :=

{
β ∈ R cos(β) ̸= 2l

3s

}
.

Note, that for s < 2
3
l we have B = R. Henceforth, we assume β ∈ B and perform

the computations. We define Uβ := R× B × R2, set x := (x1, . . . , x4)
⊤ and

M : B → R2×2, x2 7→ l2m

[
5
3

+ cos(x2)
1
3

+ 1
2

cos(x2)
1
3

+ 1
2

cos(x2)
1
3

]
,

f1 : Uβ → R, x 7→ 1
2
l2mx4(2x3 + x4) sin(x2),

f2 : Uβ → R, x 7→ −cx2 − dx4 −
1

2
l2mx23 sin(x2),

where M : B → R2×2 is the mass matrix and (f1, f2) encode the internal forces
acting on the manipulator arm. With this we obtain the equations of motion

M(β(t))

(
α̈(t)

β̈(t)

)
=

(
f1(α(t), β(t), α̇(t), β̇(t))

f2(α(t), β(t), α̇(t), β̇(t))

)
+

[
1
0

]
u(t). (2.8)

For later use, we compute the inverse of the mass matrix

M(β)−1 =
36(l2m)−2

16 − 9 cos(β)2

[
1
3

−1
3
− 1

2
cos(β)

−1
3
− 1

2
cos(β) 5

3
+ cos(β)

]
.
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Chapter 2. Internal dynamics

Following the considerations in [179], we take the auxiliary angle

y(t) = h(α(t), β(t)) = α(t) +
s

s+ l
β(t)

as output, which approximates the position S on the passive link for small angles α
and β. In order to represent the system (2.8) in the form of (1.7) we define for
x = (x1, . . . , x4)

⊤ the functions

F : Uβ → R4, x 7→ diag(I2,M(x2)
−1)
[
x3 x4 f1(x) f2(x)

]⊤
,

G : Uβ → R4×1, x 7→ diag(I2,M(x2)
−1)
[
0 0 1 0

]⊤
,

h̃ : Uβ → R, x 7→
[
1 s

s+l
0 0

]
x,

and obtain
ẋ(t) = F (x(t)) +G(x(t))u(t),

y(t) = h̃(x(t)).

Via a short calculation we obtain

Γ : R× B → R

x 7→ (LGLF h̃)(x) =
[
1 s

s+l

]
M(x2)

−1

[
1
0

]
=

36(l2m)−2

16 − 9 cos(x2)2

(
1

3
− s

s+ l

(
1

3
+

1

2
cos(x2)

))
,

which is invertible on Uβ. Since Γ ̸= 0 for x ∈ Uβ, according to Definition 1.2,
system (2.8) has strict relative degree r = 2 on Uβ. For β ∈

{
β ∈ R cos(β) = 2l

3s

}
we have Γ = 0, from which it is clear why to consider the dynamics for β ∈ B only.
With G introduced above the equations (2.7) for ϕ̃1, ϕ̃2 read

36(l2m)−1

16 − 9 cos(x2)

(
1

3

∂

∂x3
ϕ̃1(x) −

(
1

3
+

1

2
cos(x2)

)
∂

∂x4
ϕ̃1(x)

)
= 0,

36(l2m)−1

16 − 9 cos(x2)

(
1

3

∂

∂x3
ϕ̃2(x) −

(
1

3
+

1

2
cos(x2)

)
∂

∂x4
ϕ̃2(x)

)
= 0,

(2.9a)

where ϕ̃1, ϕ̃2 have to be such that
1 s

s+l
0 0

0 0 1 s
s+l

∂
∂x1
ϕ̃1(x) ∂

∂x2
ϕ̃1(x) ∂

∂x3
ϕ̃1(x) ∂

∂x4
ϕ̃1(x)

∂
∂x1
ϕ̃2(x) ∂

∂x2
ϕ̃2(x) ∂

∂x3
ϕ̃2(x) ∂

∂x4
ϕ̃2(x)

 ∈ Gl4(R), x ∈ Uβ. (2.9b)

Although (2.9a) is equivalent to

∂

∂x3
ϕ̃1(x) =

(
1 +

3

2
cos(x2)

)
∂

∂x4
ϕ̃1(x),

∂

∂x3
ϕ̃2(x) =

(
1 +

3

2
cos(x2)

)
∂

∂x4
ϕ̃2(x),

it is far from trivial to find a solution of (2.9a) such that (2.9b) is satisfied. ⋄
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2.1. Representation of internal dynamics

2.1 Representation of internal dynamics

In this section we introduce a structurally new ansatz to decouple the internal dy-
namics and present a set of feasible coordinates to represent the internal dynamics
of kth-order ODE systems in Section 2.1.1, and multibody systems with kinematic
loops and holonomic as well as non-holonomic constraints in Section 2.1.2. More-
over, for a subclass of the system class under consideration, we derive sufficient
conditions on the system parameters which allow to verify the stability of the in-
ternal dynamics without decoupling these. We show the existence and feasibility of
functions forming the novel representation of the internal dynamics, and provide a
particular choice simplifying the internal dynamic’s structure. We obtain an explicit
representation of the coordinate transforming (local) diffeomorphism and its inverse
on the one hand, and on the other hand, the internal dynamics can be represented
in terms of the system’s output and the internal variable without the need to com-
pute the Byrnes-Isidori form explicitly. The representation is such that the internal
dynamics are given in the form

η̇(t) = Ψ(η(t), y(t), ẏ(t), . . . , y(k−1)(t)),

which means that the internal dynamics are completely decoupled and have the sys-
tem’s output and its derivatives as inputs, but no further knowledge of the system’s
overall (full) state is required. At the end of Section 2.1.1 we revisit Example 2.2
and use the result obtained to present the system’s internal dynamics completely
determined by the system’s parameters, in particular, without the need to solve
a set of partial differential equations with constraints. In Section 2.2 we present
a stability result which allows to verify the stability of the internal dynamics in
advance without the need to decouple the internal dynamics.

Before we start deriving the novel representation of the internal dynamics, we
state the following lemma for later use.

Lemma 2.3. For m,n, p ∈ N and an open set U ⊆ Rn let w : U → Rm×n, v : U →
Rp×n and s : U → Rn×(m+p) be matrix valued functions, where m+ p ≤ n. If

∀x ∈ U : rkw(x) = m, rk v(x) = p, rk s(x) = m+ p and rk

[
v(x)
w(x)

]
s(x) = m+ p,

then, for any x0 ∈ U there exist an open neighbourhood U0 ⊆ U of x0 and functions
α ∈ C1(U0;Rn−m) and β ∈ C(U0;R(n−m−p)×n), such that

[
w(x)
α′(x)

]
∈ Gln(R),

v(x)
w(x)
β(x)

 ∈ Gln(R), β(x)s(x) = 0,

for all x ∈ U0 ⊆ U .

Proof. We fix x0 ∈ U and make use of [183, Lem. 4.1.5] which states the following.
Consider W ∈ C(U ;Rω×n) with rkW (x) = ω for all x ∈ U . Then there exist an
open neighbourhood V ⊆ U of x0 and T ∈ C(V ;Gln(R)) such that

∀x ∈ V : W (x)T (x) =
[
Iω 0

]
.
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Chapter 2. Internal dynamics

We use this to show the existence of α ∈ C1(U0;Rn−m). Since by assumption we
have rkw(x) = m for all x ∈ U , there exist an open neighbourhood V ⊆ U of x0

and T = [T1, T2] ∈ C(V ;Gln(R)) such that

∀x ∈ V : w(x)
[
T1(x) T2(x)

]
=
[
Im 0

]
,

that is, imT2(x) = kerw(x) and rkT2(x) = n − m for all x ∈ V . Let E =
[e⊤i1 , ..., e

⊤
in−m

]⊤ ∈ R(n−m)×n with eij ∈ R1×n a unit row-vector for ij ∈ {1, ..., n},
j = 1, . . . , n−m. Then,[

w(x)
E

] [
T1(x) T2(x)

]
=

[
Im 0
∗ ET2(x)

]
.

Since rkT2(x
0) = n−m it is possible to choose i1, . . . , in−m such that for x0 ∈ V we

have ET2(x
0) ∈ Gln−m(R). As T2 ∈ C(V ;Rn×(n−m)), the mapping x 7→ det(ET2(x))

is continuous on V . Hence, there exists an open neighbourhood V̄ ⊆ V of x0 such
that det(ET2(x̄)) ̸= 0 for all x̄ ∈ V̄ . Thus,

∀x ∈ V̄ : rk

[
w(x)
E

]
= n.

Therefore, with

α : V̄ → Rn−m, x 7→ Ex

we have α ∈ C1(V̄ ;Rn−m) and [w(x)⊤, α′(x)⊤] ∈ Gln(R) on V̄ , via α′(x) = E.
Next, we show the existence of a function β ∈ C(U0;R(n−m−p)×n) such that
[v(x)⊤, w(x)⊤, β(x)⊤] ∈ Gln(R) and β(x)s(x) = 0 for all x ∈ U0. We observe that
by assumption rk s(x) = m+ p for all x ∈ U . Therefore, again by [183, Lem. 4.1.5],
there exist an open neighbourhood Ṽ ⊆ U of x0 and T = [T1, T2] ∈ C(Ṽ ;Gln(R))
such that

∀x ∈ Ṽ : s(x)⊤
[
T1(x) T2(x)

]
=
[
Im+p 0

]
,

i.e., imT2(x) = ker s(x)⊤ and T2 ∈ C(Ṽ ;Rn×(n−m−p)). We observe for β(x) = T2(x)⊤v(x)
w(x)
β(x)

 [s(x) β(x)⊤
]

=

[[
v(x)
w(x)

]
s(x) ∗

0 T2(x)⊤T2(x)

]
∈ Rn×n, x ∈ Ṽ ,

which is invertible on Ṽ since by assumption [v(x)⊤, w(x)⊤]⊤s(x) is invertible on U ,
and rkT2(x) = n−m− p for all x ∈ Ṽ . Therefore, [v(x)⊤, w(x)⊤, β(x)⊤] ∈ Gln(R)
on Ṽ . Moreover, by construction of β we have β(x)s(x) = 0 for all x ∈ Ṽ . We set
U0 := V̄ ∩ Ṽ which completes the proof.
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2.1. Representation of internal dynamics

2.1.1 Systems of ordinary differential equations

We consider systems of ordinary differential equations of order k,

ζ(k)(t) = f(ζ(t), . . . , ζ(k−1)(t)) +B(ζ(t))u(t),

y(t) = h(ζ(t)),
(2.10)

with initial values ζ(i)(0) = ζ0i ∈ Rn, i = 0, . . . , k − 1. In physical contexts, the
function f ∈ C(Rn × · · · × Rn;Rn) encodes internal and external forces. Further,
B ∈ C(Rn;Rn×m) denotes the distribution of the input, and h ∈ Ck−1(Rn;Rm) is
the (physical meaningful) measurement. The signal y is called output, the signal u
is called input of system (2.10), respectively. Note that the dimension of the input
and output coincide, however, we do not assume colocation, i.e., we allow explicitly
for h′(ζ) ̸= B⊤(ζ).

We aim to rewrite system (2.10) in the form of (1.7). To this end, we set the
variables x1 := ζ, x2 := ζ̇ , . . . , xk := ζ(k−1) and obtain an equivalent representation
of (2.10)

ẋ1(t) = x2(t), x1(0) = x01 ∈ Rn,

...
...

ẋk−1(t) = xk(t), xk−1(0) = x0k−1 ∈ Rn,

ẋk(t) = f(x1(t), . . . , xk(t)) +B(x1)u(t), xk(0) = x0k ∈ Rn.

(2.11)

For N = nk we define

F : Rn × . . .× Rn → RN ,

(x1, . . . , xk) 7→
(
x⊤2 , . . . , x

⊤
k , f(x1, . . . , xk−1)

⊤)⊤ ,
G : Rn → RN×m,

x1 7→
[
0, . . . , 0, B(x1)

⊤]⊤ ,
and obtain with x := (x⊤1 , . . . , x

⊤
k )⊤ ∈ RN a system which is equivalent to (2.10)

ẋ(t) =


x2(t)

...
xk(t)

f(x1(t), . . . , xk(t))

+


0
...
0

B(x1)

u(t), x(0) =


x01
...

x0k−1

x0k

 ∈ RN ,

= F (x(t)) +G(x1(t))u(t),

y(t) = h̃(x(t)),

(2.12)

where h̃ : RN → Rm with h̃(x) = h(x1). Formally, for L : Rn → Rm×n we define
recursively for i ∈ N the functions a0 = 0 and

ai(x1, . . . , xi, L) :=
i−1∑
j=1

(
∂

∂xj

(
ai−1(x1, . . . , xi−1) + L(x1)xi

))
· xj+1. (2.13)

With this we obtain the following.
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Chapter 2. Internal dynamics

Lemma 2.4. For a system (2.12) with h̃(x) = h(x1), where h ∈ Ck−1(Rn;Rm) and
h′(x1) =: H(x1), the ith Lie derivative of the output h̃ along the vector field F is,
for i = 1, . . . , k − 1, given by(

Li
F h̃
)

(x) = ai(x1, . . . , xi, H) +H(x1)xi+1, x ∈ RN , xi ∈ Rn, (2.14)

where the functions ai are defined in (2.13).

Proof. We proof (2.14) by induction over i. For i = 1 and x1 ∈ Rn we have
a1(x1, H) = 0 and thus, for x ∈ RN with h̃(x) = h(x1) and h′(x1) = H(x1)(

LF h̃
)

(x) =
[
H(x1) 0 · · · 0

]
F (x) = H(x1)x2 = a1(x1, H) +H(x1)x2,

where x1, x2 ∈ Rn and x ∈ RN . Let (2.14) be true for an i ∈ {1, . . . , k − 2}. Then,
for x ∈ RN and xj ∈ Rn, j = 1, . . . , i+ 1, we have(

Li+1
F h̃

)
(x) =

(
LFL

i
F h̃
)

(x)

=
(
LF

(
ai(x1, . . . , xi, H) +H(x1)xi+1

))
(x)

=



(
∂

∂x1
(ai(x1, . . . , xi, H) +H(x1)xi+1)

)⊤
...(

∂
∂xi−1

ai(x1, . . . , xi, H) + 0
)⊤(

∂
∂xi
ai(x1, . . . , xi, H) + 0

)⊤
H(x1)

⊤

0
...
0



⊤

F (x)

=
i∑

j=1

∂

∂xj

(
ai(x1, . . . , xi, H) +H(x1)xi+1

)
xj+1 +H(x1)xi+1

= ai+1(x1, . . . , xi+1, H) +H(x1)xi+1,

which is the assertion.

In order to derive a representation of the internal dynamics we make the following
assumption.

Assumption 2.5. For H : Rn → Rm×n and B : Rn → Rn×m there exists some open
set U1 ⊆ Rn such that

∀x1 ∈ U1 : Γ(x1) := H(x1)B(x1) ∈ Glm(R).

Note that Assumption 2.5 implies rkH(x1) = rkB(x1) = m for all x1 ∈ U1.

Lemma 2.6. Consider system (2.12) where h̃(x) = h(x1) for x ∈ RN , x1 ∈ Rn,
and let Assumption 2.5 be satisfied for B(z) and H(z) = h′(z), z ∈ U1 ⊆ Rn,
U1 open as in Assumption 2.5. Then, system (2.12) has relative degree r = k on
U := U1 × R(k−1)n.
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2.1. Representation of internal dynamics

Proof. Using the findings of Lemma 2.4 we may compute for x1 ∈ U1, xi ∈ Rn

i = 2, . . . , k − 2, and x ∈ U1 × R(k−1)n

(LGL
i
F h̃)(x) =

[︸ ︷︷ ︸
i− times

∗ · · · ∗ H(x1) ︸ ︷︷ ︸
k − i− 1

0 · · · 0
]


0
...
0

B(x1)


= 0m×m, i = 1, . . . , k − 2,

(LGL
k−1
F h̃)(x) =

[︸ ︷︷ ︸
k − 1

∗ · · · ∗ H(x1)
]


0
...
0

B(x1)


= H(x1)B(x1) =: Γ(x1),

where Γ(x1) = H(x1)B(x1) is invertible for x1 ∈ U1 by Assumption 2.5. Therefore,
according to Definition 1.2, system (2.12) has relative degree r = k on U1 ×R(k−1)n.

If the system (2.11) has further structure, namely if the input and the output
are colocated, we obtain the following.

Corollary 2.7. Consider a system (2.12) and assume colocation of input and out-
put, i.e., h′(x1) = B(x1)

⊤, x1 ∈ Rn. Then, system (2.12) has relative degree r = k
on U := U1 × R(k−1)n, where U1 := {x ∈ Rn | rkh′(x) = m}.

Proof. Let h′(x1) = B(x1)
⊤. Then, Assumption 2.5 is satisfied for all x1 ∈ U1 =

{x ∈ Rn | rkh′(x) = m}. Therefore, Lemma 2.6 yields r = k on U .

Now, we turn towards the representation of the internal dynamics of a sys-
tem (2.12). In the following we assume that Assumption 2.5 is satisfied on an open
set U1, so system (2.12) has relative degree r = k on U = U1 × R(r−1)n. Using (2.6)
and the functions ai defined in (2.13) we obtain with h′(x1) = H(x1), x1 ∈ Rn, the
following candidate for the (local) diffeomorphism Φ

(
ξ
η

)
= Φ(x) =



h(x1)
H(x1)x2

a2(x1, x2) +H(x1)x3
...

ar−1(x1, . . . , xr−1) +H(x1)xr
ϕ̃1(x)

...

ϕ̃n−rm(x)


, x =

x1...
xr

 ∈ U ⊆ RN , (2.15)

where N := rn, and the functions ϕ̃i : U → R, i = 1, ..., N − rm are such that
Φ′(x) ∈ GlN(R) for an open set U1 ⊆ Rn and U = U1 × R(r−1)n. For the internal
state η we make the structural ansatz

η =


η1
η2
...
ηr

 =


ϕ1(x1)
ϕ2(x1)x2

...
ϕr(x1)xr

 ∈ Rr(n−m), (2.16)
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Chapter 2. Internal dynamics

where ϕ1 ∈ C1(U1;Rn−m) and ϕi ∈ C(U1;R(n−m)×n), i = 2, . . . , r, where we recall
N = rn. We observe, that the external state ξ

ξ =


ξ1
ξ2
ξ3
...
ξr

 =


h(x1)

H(x1)x2
a2(x1, x2) +H(x1)x3

...
ar−1(x1, . . . , xr−1) +H(x1)xr

 (2.17)

and the internal state η in (2.16) have similar structure. Since Φ in (2.6) is required
to be a diffeomorphism from U to Φ(U), its Jacobian has to be invertible on U .
Plugging in the ansatz from (2.16) we obtain

Φ′(x) =



H(x1) 0 · · · · · · 0

∗ H(x1)
. . .

...

∗ ∗ H(x1)
. . .

...

∗ ∗ ∗ . . . 0
∗ ∗ ∗ ∗ H(x1)

ϕ′
1(x1) 0 · · · · · · 0

b2(x1, x2) ϕ2(x1)
. . .

...

b3(x1, x3) 0 ϕ3(x1)
. . .

...
...

...
. . . . . . 0

br(x1, xr) 0 · · · 0 ϕr(x1)



, (2.18)

where ∗ is of the form ∂
∂xj
ai(x1, . . . , xi), i, j = 1, . . . , r appropriate, respectively, and

bi(x1, xi) := ∂
∂x1

(ϕi(x1) · xi). Upon an invertible permutation we observe that Φ′(x)

given in (2.18) being invertible on U ⊆ RN is equivalent to

∀ i = 2, . . . , r ∀x1 ∈ U1 :

[
H(x1)
ϕ′
1(x1)

]
∈ Gln(R) and

[
H(x1)
ϕi(x1)

]
∈ Gln(R). (2.19)

We aim to investigate the internal dynamics of (2.12) without explicit appearance of
the input u. To this end, we seek for functions ϕ̃1(x), ..., ϕ̃N−rm(x) such that p(·) = 0
in equation (2.2), that is

∀ i = 1, . . . , N − rm ∀x ∈ U :
(
LGϕ̃i

)
(x) = 0.

In view of (2.16) this means to find functions ϕ1, . . . , ϕr such that

∀x ∈ U :


ϕ′
1(x1) 0 · · · 0

∗ ϕ2(x1)
. . .

...

∗ ∗ . . . 0
∗ ∗ ∗ ϕr(x1)




0
...
0

B(x1)

 = 0,

which is equivalent to
∀x1 ∈ U1 : ϕr(x1)B(x1) = 0. (2.20)

We show the existence of functions satisfying (2.19) and (2.20) in the following
result.
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2.1. Representation of internal dynamics

Corollary 2.8. Consider a system (2.12) and let Assumption 2.5 be satisfied. Then,
for any x01 ∈ U1, U1 ⊆ Rn open, there exist an open neighbourhood U0

1 ⊆ U1 of x01 and
functions ϕ1 ∈ C1(U0

1 ;Rn−m), ϕi ∈ C(U0
1 ;R(n−m)×n), i = 2, . . . , r, such that (2.19)

and (2.20) hold for all x1 ∈ U0
1 .

Proof. The assertion is a direct consequence of Lemma 2.3.

We highlight that Corollary 2.8 justifies the structural ansatz for the internal
state η proposed in (2.16).

Assumption. For the remainder of this chapter, let U1 = U0
1 ⊆ Rn with U0

1 as in
Corollary 2.8.

We proceed determining the functions constituting the internal dynamics.
While ϕ1 can basically be chosen freely up to (2.19), we show that the func-
tions ϕi, i = 2, . . . , r, are determined by the system parameters up to an invertible
left transformation. To find all possible representations, let Pi : U1 → Rn×m and
Vi : U1 → Rn×(n−m) be such that

∀x1 ∈ U1 : [Pi(x1), Vi(x1)]

[
H(x1)
ϕi(x1)

]
= In, i = 2, . . . , r, (2.21)

which exist by (2.19). Then Pi, Vi have pointwise full column rank, by which the
pseudoinverse of Vi is given by Vi(x1)

† = (Vi(x1)
⊤Vi(x1))

−1Vi(x1)
⊤, x1 ∈ U1. We

obtain the following result.

Lemma 2.9. Use the notation and assumptions from Corollary 2.8. Then, the
functions ϕi : U1 → R(n−m)×n, i = 2, . . . , r − 1, are determined by (2.19) up to an
invertible left transformation. All possible functions are given by

ϕi(x1) := Vi(x1)
† (In − Pi(x1)H(x1)) , x1 ∈ U1, (2.22)

for feasible choices of Pi, Vi satisfying (2.21).

Proof. By assumption there exist functions ϕi, i = 2, . . . , r − 1, such that (2.19)
for x1 ∈ U1. Then, we have (2.21) for some corresponding Pi and Vi. We multi-
ply (2.21) from the left by Vi(x1)

† and subtract Vi(x1)
†Pi(x1)H(x1) from both sides.

This yields
ϕi(x1) = Vi(x1)

† (In − Pi(x1)H(x1)) , x1 ∈ U1.

On the other hand, [
H(x1)
ϕi(x1)

] [
Pi(x1) Vi(x1)

]
=

[
Im 0
0 In−m

]
.

From this we deduce ϕi(x1)Vi(x1) = In−m, H(x1)Pi(x1) = Im and imVi(x1) =
kerH(x1). Since the letter expressions are independent of i we set P (x1) := Pi(x1)
and V (x1) := Vi(x1) for all i = 2, . . . , r− 1. We observe P (x1)H(x1)P (x1) = P (x1).
Therefore, for all i = 2, . . . , r − 1 we have

ϕi(x1)P (x1) = V (x1)
† (In − P (x1)H(x1))P (x1)

= V (x1)
† (P (x1) − P (x1)H(x1)P (x1)) = 0.

Let Ṽ (x1) := V (x1)R(x1), x1 ∈ U1, for some R : U1 → Gln−m and consider ϕ̃i(x1) =
Ṽ (x1)

†. A short calculation shows ϕ̃i(x1) = R(x1)
−1ϕi(x1) for all x1 ∈ U1 and all

i = 2, . . . , r − 1. So the functions ϕi(x), i = 2, . . . , r − 1, are determined by (2.22)
up to an invertible left transformation.
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Chapter 2. Internal dynamics

Remark 2.10. A feasible choice for P in (2.22) is P (x1) = H(x1)
⊤(H(x1)H(x1)

⊤)−1.
Then, ϕi simplifies to ϕi(x1) = V (x1)

†, for all i = 2, . . . , r − 1, where imV (x1) =
kerH(x1), and ϕi is, up to an invertible left transformation, uniquely determined
by the system measurement function h.

While Lemma 2.9 leaves some freedom to choose the functions ϕi, i = 2, . . . , r−1, the
remaining function ϕr is uniquely determined up to an invertible left transformation.
Let P : U1 → Rn×m and V : U1 → Rn×(n−m) be such that (2.21) is satisfied for i = r.
Similar to (2.22), we define

ϕr(x1) := V (x1)
†
(
In −B(x1)Γ(x1)

−1H(x1)

)
(2.23)

and we find the following result.

Lemma 2.11. We use the notation and assumptions from Corollary 2.8. Then, the
function ϕr : U1 → R(n−m)×n is uniquely determined by (2.19) and (2.20) up to an
invertible left transformation. All possible functions are given by (2.23) for feasible
choices of V satisfying (2.21).

Proof. Assume that (2.19) and (2.20) hold. Then, we have (2.21) for some cor-
responding P and V . We multiply (2.21) from the left by V (x1)

† and subtract
V (x1)

†P (x1)H(x1) from both sides, and obtain

ϕr(x1) = V (x1)
† (In − P (x1)H(x1)) , x1 ∈ U1.

Invoking (2.20), we further obtain from (2.21) that

P (x1) = B(x1) (H(x1)B(x1))
−1 = B(x1)Γ(x1)

−1,

and hence P is uniquely determined by the output measurement h and the input
distribution B. Therefore, ϕr is given by (2.23). Furthermore, it follows from (2.21)
that [

H(x1)
ϕr(x1)

]
[P (x1), V (x1)] =

[
Im 0
0 In−m

]
,

from which we may deduce ϕr(x1)V (x1) = In−m and in addition imV (x1) =
kerH(x1). Hence, the representation of ϕr in (2.23) only depends on the choice
of the basis of kerH(x1). Lastly, let Ṽ (x1) := V (x1)R(x1), x1 ∈ U1, for some
R : U1 → Gln−m and consider

ϕ̃r(x1) = Ṽ (x1)
†(In −B(x1)Γ(x1)

−1H(x1)
)
.

Then, a short calculation shows ϕ̃r(x1) = R(x1)
−1ϕr(x1) for all x1 ∈ U1.

We highlight that imVi(x1) = kerH(x1) for all i = 2, . . . , r and therefore, invok-
ing Remark 2.10, it is possible to have all functions ϕi completely determined by
the output measurement function h, up to the choice of a basis of kerH(x1) and an
invertible left transformation.
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Corollary 2.12. We use the notation and assumptions from Corollary 2.8. Let ϕi

be given by (2.22) for i = 2, . . . , r − 1, and ϕr be given by (2.23). Then,[
H(U1)
ϕi(U1)

]
=: Wi,

[
H(U1)
ϕr(U1)

]
=: W̃ ,

and for Pi : U1 → Rn×m satisfying H(x1)Pi(x1) = Im, and imV (x1) = kerH(x1),
x1 ∈ U1, for all w ∈ Wi, i = 2, . . . , r − 1, respectively, we have[

H(w)
ϕi(w)

]−1

=
[
Pi(w) V (w)

]
,

and for all w̃ ∈ W̃ [
H(w̃)
ϕr(w̃)

]−1

=
[
B(w̃)Γ(w̃)−1 V (w̃)

]
,

where Γ(v) = H(v)B(v), v ∈ U1.

Proof. Clear.

We continue to derive a representation of the internal dynamics in terms of the
system’s output and the internal variable. With (2.16) and (2.17) we define(

ξ1
η1

)
=

(
h(x1)
ϕ1(x1)

)
=: ϑ(x1), (2.24)

which is continuously differentiable for all x1 ∈ U1. Moreover for any x01 ∈ U1 there
exists an open neighbourhood U0

1 of x01 such that the Jacobian ϑ′(x̃1) is invertible
for all x̃1 ∈ U0

1 . Therefore, ϑ defines a local diffeomorphism on each U0
1 , where U0

1

is an open neighbourhood of a x01 ∈ U1, respectively. Hence, any x̃1 ∈ U0
1 can be

expressed in terms of (ξ1, η1) ∈ W 0
1 := ϑ(U0

1 ), namely

x̃1 = ϑ−1(ξ1, η1), (ξ1, η1) ∈ W 0
1 .

In order to have the coordinate transformation on the entire subset U1 ⊆ Rn we
make the following assumption.

Assumption 2.13. For U1 ⊆ Rn as in Corollary 2.8 and for the function ϑ defined
in (2.24), there exist diffeomorphisms ∆1 : ϑ(U1) → Rn, ∆2 : U1 → Rn, and a contin-
uous, non-decreasing function δ : [0,∞) → (0,∞) with the property

∫∞
0

1
δ(t)

dt = ∞,
such that

∀x1 ∈ U1 : ∥∆′
2(x1) · (ϑ′(x1))

−1 ∥ · ∥ (∆′
1(ϑ(x1)))

−1 ∥ ≤ δ(∥∆2(x1)∥).

Then, invoking continuity of the output function h, Lemma 2.3 and equa-
tion (2.19), the result [19, Thm. 2.1] yields that ϑ defines a diffeomorphism on U1

and we can express the system’s state x1 by

x1 = ϑ−1 (ξ1, η1) . (2.25)

For the remainder of this section let Assumption 2.13 be true.

If the output of a system (2.10) is linear, we may obtain the following simple repre-
sentation of ϑ.
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Corollary 2.14. Assume there exists H ∈ Rm×n such that the output of a sys-
tem (2.10) is linear with h(x1) = Hx1, and Assumption 2.5 holds true on some sub-
set U1 ⊆ Rn. Let V ∈ Rn×(n−m) be such that imV = kerH. Then, for ϑ : U1 → Rn

defined as in (2.24) we find that

ϑ(U1) =

[
H
V ⊤

]
U1 =: W1

and for all w1 ∈ W1 we have

ϑ−1(w1) =

[
H
V ⊤

]−1

w1 =
[
H⊤(HH⊤)−1 V (V ⊤V )−1

]
w1.

Proof. Clear.

For later use, we define the following functions as concatenations on W1 := ϑ(U1),
where V ∈ C(U1;Rn−m) such that imV (x1) = kerH(x1) for all x1 ∈ U1, and P (x1)
satisfies (2.21)

ϕ′
1,ϑ(·) :=

(
ϕ′
1 ◦ ϑ−1

)
(·), Bϑ(·) :=

(
B ◦ ϑ−1

)
(·),

ϕi,ϑ(·) :=
(
ϕi ◦ ϑ−1

)
(·), Hϑ(·) :=

(
H ◦ ϑ−1

)
(·),

Vϑ(·) :=
(
V ◦ ϑ−1

)
(·), Γϑ(·) :=

(
Γ ◦ ϑ−1

)
(·),

Pϑ(·) :=
(
P ◦ ϑ−1

)
(·),

where i = 2, . . . , r. In order to represent the internal dynamics in terms of ξ and η,
we aim to express the state variables xi in terms of the external state ξ and the
internal state η. With the aid of Lemma 2.4 and equations (2.16), (2.17) and (2.13)
we have for i = 2, . . . , r(

ξi
ηi

)
=

(
ai−1(x1, . . . , xi−1) +H(x1)xi

ϕi(x1)xi

)
=

(
ai−1(x1, . . . , xi−1)

0

)
+

[
H(x1)
ϕi(x1)

]
xi.

From this we obtain iteratively for i = 2, . . . , r − 1, where the matrix valued func-
tion P satisfies (2.21), via (2.25) and Corollary 2.12

x1 = ϑ−1 (ξ1, η1) ,

xi = Vϑ (ξ1, η1) ηi + Pϑ (ξ1, η1)
(
ξi − ai−1(ϑ

−1 (ξ1, η1) , x2, . . . , xi−1)
)
, (2.26)

xr = Vϑ (ξ1, η1) ηr +Bϑ (ξ1, η1) Γϑ (ξ1, η1)
−1 (ξr − ar−1(ϑ

−1 (ξ1, η1) , x2, . . . , xr−1)
)
.

Note that ai = ai(x1, . . . , xi), and thus the representation of xi in (2.26) depends at
most on x1, . . . , xi−1, which are already known from the previous iterations. There-
fore, we may successively express the state variables xi in terms of ξ and the internal
variable η, by

x1 = ϑ−1(ξ1, η1),

xi = ℓi(ξ1, . . . , ξi, η1, . . . , ηi), i = 2, . . . , r,
(2.27)

for ℓi : Rim × Ri(n−m) → Rn successively given by (2.26). With the derivations so
far, we obtain the following result.
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Theorem 2.15. Given a point x01 ∈ Rn suppose Assumption 2.5 is true on an open
neighbourhood of x01 and for the respective open set U1 ⊆ Rn as in Corollary 2.8 let
Assumption 2.13 be true as well. Then, the map Φ : U = (U1,R(r−1)n) ⊆ RN → RN ,
where N = rn, defined in (2.15) with functions ϑ, ϕi, i = 2, . . . , r given in (2.22),
(2.23) and (2.24), respectively, is a local coordinate transformation, which transforms
the state x of a system (2.12) into new variables (ξ, η) defined in (2.16), (2.17), i.e.,(

ξ
η

)
= Φ(x), and Φ′(x) ∈ GlN(R), x ∈ U ⊆ RN ,

where Φ′ denotes the Jacobian of Φ. Moreover, the inverse Φ−1 is explicitly given
by

x = Φ−1(ξ, η) =


ℓ1(ξ1, η1)

ℓ2(ξ1, ξ2, η1, η2)
...

ℓr(ξ1, . . . , ξr, η1, . . . , ηr)

 ,

where ℓ1 := ϑ−1 from (2.25), and the functions ℓi, i = 2, . . . , r, from (2.27) are
defined via (2.26).

Proof. The theorem is a direct consequence of the derivations so far in this chapter.

With the results established above, we are in the position to derive equations for
the dynamics of the internal state η. To this end, for j = 1, . . . , r we introduce the
notation ξ̄j := (ξ1, . . . , ξj), η̄j := (η1, . . . , ηj), and

ϕx1
j,ϑ(ξ1, η1, ℓj) := ∂

∂x1
(ϕi(x1)xj)|x1=ϑ−1(ξ1,η1),xj=ℓj(ξ̄j ,η̄j).

Then, for i = 2, . . . , r − 1, using (2.12) and (2.27) the internal dynamics of a sys-
tem (2.10) are given by

η̇1(t) = ϕ′
1(x1(t)) · ẋ1(t)

= ϕ′
1,ϑ

(
ξ1(t), η1(t)

)
· ℓ2
(
ξ̄2(t), η̄2(t)

)
,

η̇i(t) =
〈
ϕx1
i,ϑ

(
ξ1(t), η1(t), ℓi(ξ̄i(t), η̄i(t))

)
· ℓ2
(
ξ̄2(t), η̄2(t)

)
, ℓi
(
ξ̄i(t), η̄i(t)

)〉
+ ϕi,ϑ

(
ξ1(t), η1(t)

)
· ℓi+1

(
ξ̄i+1(t), η̄i+1(t)

)
,

η̇r(t) =
〈
ϕx1
r,ϑ

(
ξ1(t), η1(t), ℓr(ξ̄r(t), η̄r(t))

)
· ℓ2
(
ξ̄2(t), η̄2(t)

)
, ℓr
(
ξ̄r(t), η̄r(t)

)〉
+ ϕr,ϑ(ξ1(t), η1(t)) · f

(
ϑ−1(ξ1(t), η1(t)), ℓ2(ξ̄2(t), η̄2(t)), . . . , ℓr(ξ̄r(t), η̄r(t))

)
.

In virtue of Remark 2.10 we may choose P (x1) = H(x1)
†, whereby ϕi(x1) = V (x1)

†,
with imV (x1) = kerH(x1). Then, invoking equations (2.26) we observe

ϕi,ϑ(ξ1, η1) · ℓi+1(ξ̄i+1, η̄i+1) = Vϑ(ξ1, η1)
† (Vϑ(ξ1, η1) ηi+1 + Pϑ(ξ1, η1)

(
ξi+1 − ai

))
= ηi+1.
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With this, the internal dynamics of (2.12) simplify to

η̇1(t) = ϕ′
1(x1(t)) · ẋ1(t)

= ϕ′
1,ϑ

(
ξ1(t), η1(t)

)
· ℓ2
(
ξ̄2(t), η̄2(t)

)
, (2.28)

η̇i(t) =
〈
ϕx1
i,ϑ

(
ξ1(t), η1(t), ℓi(ξ̄i(t), η̄i(t))

)
· ℓ2
(
ξ̄2(t), η̄2(t)

)
, ℓi
(
ξ̄i(t), η̄i(t)

)〉
+ ηi+1(t)

η̇r(t) =
〈
ϕx1
r,ϑ

(
ξ1(t), η1(t), ℓr(ξ̄r(t), η̄r(t))

)
· ℓ2
(
ξ̄2(t), η̄2(t)

)
, ℓr
(
ξ̄r(t), η̄r(t)

)〉
+ ϕr,ϑ(ξ1(t), η1(t)) · f

(
ϑ−1(ξ1(t), η1(t)), ℓ2(ξ̄2(t), η̄2(t)), . . . , ℓr(ξ̄r(t), η̄r(t))

)
.

Then, identifying ξi = y(i−1), the internal dynamics of (2.10) in (2.28) are completely
decoupled and are expressed in terms of the system’s output and its derivatives, so
the internal dynamics are represented in the form

η̇(t) = Ψ(η(t), y(t), . . . , y(r−1)(t)),

and are, for instance, open for stability analysis.

Remark 2.16. If Assumption 2.13 cannot be satisfied (for examples see [19, Sec. 3])
there still exist state space transformations Φ, however, each such transformation
is only local for a neighbourhood U0

1 of any x01 ∈ U1, where Assumption 2.5 is true
on U1; i.e., for any x01 ∈ U1 there exists a neighbourhood U0

1 such that(
ξ
η

)
= Φ(x) and Φ′(x) ∈ GlN(R), x ∈ U0

1 × R(r−1)n ⊆ RN ,

and the internal dynamics are given as in (2.28). This means, since in many appli-
cations the focus lies on a certain operation point of a system, if Assumption 2.5
is satisfied in a neighbourhood of such a point, the internal dynamics are given
by (2.28), regardless of Assumption 2.13 being satisfied.

Remark 2.17. For systems with certain properties, we may obtain further structure
for the internal dynamics (2.28).

(i) We recall the concept of a conservative vector field. A vector field L : U → Rn,
U ⊆ Rn open, is called conservative, if there exists a scalar field l : U → R
such that l′(x) = L(x)⊤ for all x ∈ U . For p, q ∈ N and i = 1, . . . , p we denote
with Ai,: the ith row of a matrix A ∈ Rp×q. If there exist li ∈ C1(U1 → R) such

that (l′i(x1))
⊤ = V (x1)

†
i,: for all x1 ∈ U1, i = 1, . . . , n −m, where imV (x1) =

kerH(x1), then, invoking Remark 2.10 and equations (2.26), it is possible to
choose ϕ1 = (λ1l1, . . . , λn−mln−m)⊤ for some λi ∈ R\{0}, i = 1, . . . , n−m, and
thus ϕ′

1(x1) = ΛV (x1)
† for Λ = diag(λ1, . . . , λn−m). Therefore, the dynamics

of η1 in (2.28) reduce to
η̇1(t) = Λη2(t),

where the entries of Λ can be chosen at will. We will make use of this in
Section 2.2.

(ii) If there exists H ∈ Rm×n such that the output of system (2.10) is linear
with h(x1) = Hx1, then V (x1) = V ∈ R(n−m)×n with imV = kerH and
thus it represents a conservative vector field. Invoking Remark 2.10 we may
choose ϕi(x1) = ϕi = V †, i = 2, . . . , r − 1, by which ∂

∂x1
(ϕi · xi) = 0 for
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2.1. Representation of internal dynamics

all i = 2, . . . , r − r. If further ϕr ∈ R(n−m)×n is constant as well, we have
∂

∂x1
(ϕr · xr) = 0. Therefore, the equations (2.28) of the internal dynamics of a

system (2.10) with linear output simplify to

η̇(t) =


0 Λ 0 · · · 0

0 0 In−m
. . .

...
...

. . . . . . 0
...

. . . In−m

0 · · · · · · · · · 0

 η(t) +


0
...
...
0

ϕr · f

 ,

where we omit the arguments of the system’s function f .

Example 2.18. In order to demonstrate the decoupling of the internal dynam-
ics using the results from Secion 2.1, we revisit Example 2.2. For the structural
ansatz (2.16) we aim to find functions ϕ1, ϕ2 satisfying (2.19) and (2.20). We start
with the computation of ϕ1, ϕ2 satisfying (2.19), (2.20). For the sake of consistent
reading we set x̃1 := (x1, x2)

⊤ and x̃2 := (x3, x4)
⊤. Then we calculate V : R×B → R2

such that imV (x̃1) = kerh′(x̃1) and obtain V = [ −
s

s+l
1 ]

⊤
. According to Lemma 2.3

we may choose ϕ1(x̃1) = Ex̃1 := [0, 1] ( x1
x2 ) , and using Corollary 2.14 we obtain the

expression as in (2.25)

x̃1 = ϑ−1 (ξ1, η1) =

[
1 − s

s+l

0 1

](
ξ1
η1

)
=

(
ξ1 − s

s+l
η1

η1

)
. (2.29)

Next, we algorithmically compute ϕ2 according to Lemma 2.11, namely

ϕ2(x̃1) = Ṽ (x2)
† (I2 −M(x2)

−1BΓ(x)−1h′(x̃1)
)

= Ṽ (x2)
†
(
I2 −M(x2)

−1

[
1
0

]
Γ(x)−1

[
1 s

s+l

])
=
[
1
3

+ 1
2

cos(x2)
1
3

]
,

where we chose Ṽ (x̃1) = V R(x̃1)
−1 with R(x̃1) = 2l−3s cos(x2)

6(s+l)
as a left transformation,

and Ṽ † denotes a pseudoinverse of Ṽ . We stress that R : R × B → R is invertible
on R× B and we use it only for the sake of better legibility. Thence, we obtain an
expression as in (2.26)

x̃2 = M(x̃1)
−1BΓ(x̃1)

−1ξ2 + V R(x̃1)
−1η2. (2.30)

Note that, with the simple calculations above we established the local coordinate
transformation (ξ, η) = Φ(x) and its inverse explicitly. Now, we substitute the
expressions from (2.29), (2.30) into the respective functions and obtain via (2.28)
the internal dynamics of system (2.8). For purposes of legibility we define the
functions

K1(η1, η2, ξ2) =
6 (l + s) η2

2l − 3s cos (η1)
− 36ξ2 (3 cos (η1) + 2) (2l − 3s cos (η1))

l4m2 (l + s)
(
9cos (η1)

2 − 16
)2 ,

K2(η1, η2, ξ2) =
6sη2

2l − 3s cos (η1)
− 72ξ2 (2l − 3s cos (η1))

l4m2 (l + s)
(
9cos (η1)

2 − 16
)2 .
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Chapter 2. Internal dynamics

Then, the internal dynamics of (2.8) are given by

η̇1(t) = K1(η1(t), η2(t), ẏ(t)),

η̇2(t) =
sin(η1(t))

2
K1(η1(t), η2(t), ẏ(t)) ·K2(η1(t), η2(t), ẏ(t))

− d

3
K1(η1(t), η2(t), ẏ(t)) − c

3
η1(t)

− l2m sin(η1(t))

6
K2(η1(t), η2(t), ẏ(t))2

− l2m sin(η1(t))

2

(
2K2(η1(t), η2(t), ẏ(t)) −K1(η1(t), η2(t), ẏ(t))

)
·

·
(

cos(η1(t))

2
+

1

3

)
K1(η1(t), η2(t), ẏ(t)).

(2.31)

We highlight that the computation of the internal dynamics is completely determined
by system parameters and the application of Lemmata 2.3 & 2.11 and Corollary 2.14,
and equations (2.22), (2.25) and (2.26). Once chosen ϕ1, e.g. ϕ1(x1) = Ex1 as in
the proof of Lemma 2.3, the decoupling of the internal dynamics can be performed
by an algorithm. We highlight that contrary to equations (2.9a), (2.9b), no partial
differential equation has to be solved but - up to the expressions ϕ′

2(x1) and ϕx1
2 , for

which it is possible to use symbolic differentiation schemes - the internal dynamics
are given algebraically. ⋄

Example 2.19. In order to illustrate the remaining dynamic of the robotic ma-
nipulator for fixed output y we consider equations (2.31) with a given signal y ∈
C1(R≥0;R) such that after a time τ > 0 we have y(t) ≡ 0 for all t ≥ τ whereby
ẏ(t) ≡ 0 for all t ≥ τ . For illustration purposes we choose

y(t) =

{
sin(π t

10
) − 1, t ∈ [0, 5)

0, t ≥ 5,

by which y(t) = ẏ(t) ≡ 0 for t ≥ 5. Note, that y ∈ C1(R≥0;R). For the simulation we
choose η1(0) = η2(0) = 0, and the parameters c = 1, d = 0.5, l = 1 and mass m = 1.

0 5 10
-1

0

(a) Signal y and its deriva-
tive ẏ.

0 5 10
-0.3

0

0.3

(b) Motion of the internal
state η = (η1, η2).

0 5 10
-1

0

(c) Motion of the recon-
structed state x1 = (α, β).

Figure 2.2: Remaining dynamics of the internal state η = (η1, η2) and the system’s
state x1 = (α, β).

Figure 2.2 shows the motion of the internal state for a given “output signal” y
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(as y is the output of the system), and the remaining motion of the system’s state
after the output is zero. The state has been reconstructed via the formula from the
previous Example 2.18. Note that, although the output is zero after t = 5, there is
still motion within the system, but this motion cannot be observed. The simulation
has been performed in Matlab (solver: ode45). ⋄

2.1.2 Multibody systems with constraints

In this section we derive a representation of the internal dynamics of multibody
systems, which arise in physical contexts and possibly contain kinematic loops and
potentially are subject to holonomic and non-holonomic constraints. Kinematic
loops arise in multibody systems if the beginning and the end of a kinematic chain
are located on the same body, where a kinematic chain is “a set of serially connected
rigid bodies.” [160] Holonomic constraints are relations between position variables,
which do not contain velocities; non-holonomic constraints are relations including
velocities and hence also may incorporate changes of the physical units. In what
follows, we interpret the constraints as auxiliary inputs and outputs by which the
systems under consideration have a vector relative degree. Due to this, the ansatz
to decouple the internal dynamics presented in the previous Section 2.1.1 is feasible
but needs to be adjusted at some instances.

Since we consider physically meaningful systems, we refer to the dynamics of
these systems as equations of motion. We investigate multibody systems, the equa-
tions of motion of which are of the following form

q̇(t) = v(t),

M(q(t))v̇(t) = f(q(t), v(t)) + J(q(t))⊤µ(t) +G(q(t))⊤λ(t) +B(q(t))u(t),

0 = J(q(t))v(t) + j(q(t)),

0 = g(q(t)),

y(t) = h(q(t)),

(2.32)

where q, v : I → Rn are the generalized coordinates (in the case of no con-
straints), I ⊆ R≥0 an interval; M : Rn → Rn×n is the generalized mass matrix;
f : Rn×Rn → Rn are the generalized forces, typically including Coriolis, gyroscopic
or centrifugal, or applied forces; B : Rn → Rn×m is the distribution of the inputs u,
which influence the system in affine form; and h : Rn → Rm are (physical meaning-
ful) output measurements. The holonomic constraints are encoded by g : Rn → Rℓ

and G : Rn → Rℓ×n with g′(w) = G(w), w ∈ Rn, the non-holonomic constraints are
encoded by j : Rn → Rp and J : Rn → Rp×n, which possibly incorporate a change
of the physical units. Accordingly, the functions µ : R≥0 → Rp and λ : R≥0 → Rℓ

are the Lagrange multipliers corresponding to the holonomic and non-holonomic
constraints.

In order to decouple the internal dynamics of system (2.32) we interpret the
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constraints as auxiliary inputs and outputs. We define

uaux(t) =
(
µ(t)⊤, λ(t)⊤, u(t)⊤

)⊤
,

yaux(t) =

J(q(t))v(t) + j(q(t))
g(q(t))
h(q(t))

 =:

Y1(q(t), v(t))
Y2(q(t))
Y3(q(t))

 ,

and set Y := (Y ⊤
1 , Y

⊤
2 , Y

⊤
3 )⊤ ∈ Rp+ℓ+m. For x1 = q ∈ Rn, x2 = v ∈ Rn and

x := (x⊤1 , x
⊤
2 )⊤ ∈ R2n we define

F : R2n → R2n, x 7→
(

x2
M(x1)

−1f(x)

)
,

K : R2n → R2n×(p+ℓ+m, x 7→ diag
(
In,M(x1)

−1
) [ 0 0 0
J(x1)

⊤ G(x1)
⊤ B(x1)

]
.

Then, with the expressions above we may rewrite (2.32) equivalently as

ẋ(t) = F (x(t)) +K(x1(t))uaux(t),

yaux(t) = Y (x(t)),

which is of the form (1.7). Following Lemma 2.6 we obtain the following

Corollary 2.20. As before, we denote with (LAZ)(z) the Lie derivative of Z along
the vector field A at z. If there exists U = (U1, U2) ⊆ R2n open such that (LKY1)(x),
(LKLFY2)(x) and (LKLFY3)(x) exist for all x ∈ U , and if

Γ(x1) :=

J(x1)
G(x1)
h′(x1)

M(x1)
−1
[
J(x1)

⊤ G(x1)
⊤ B(x1)

]
∈ Glp+ℓ+m, (2.33)

then system (2.32) has vector relative degree r = (r1, r2, r3) ∈ N1×(p+ℓ+m) on U with
r1 = (1, . . . , 1) ∈ N1×p, r2 = (2, . . . , 2) ∈ N1×ℓ, r3 = (2, . . . , 2) ∈ N1×m.

Proof. We calculate for x ∈ U

(LKY1)(x) = J(x1)M(x1)
−1
[
J(x1)

⊤ G(x1)
⊤ B(x1)

]
,

(LKY2)(x) =
[
G(x1) 0

]
K(x) = 0,

(LKY3)(x) =
[
h′(x1) 0

]
K(x) = 0,

(LFY2)(x) = G(x1)x2,

(LFY3)(x) = h′(x1)x2,

(LKLFY2)(x) =
[

∂
∂x1

(G(x1)x2) G(x1)
]
K(x)

= G(x1)M(x1)
−1
[
J(x1)

⊤ G(x1)
⊤ B(x1)

]
,

(LKLFY3)(x) =
[

∂
∂x1

(h′(x1)x2) h′(x1)
]
K(x)

= h′(x1)M(x1)
−1
[
J(x1)

⊤ G(x1)
⊤ B(x1)

]
.

(2.34)

SinceΓ1(x1)
Γ2(x1)
Γ3(x1)

 :=

 (LKY1)(x)
(LKLFY2)(x)
(LKLFY3(x)

 =

J(x1)
G(x1)
h′(x1)

M(x1)
−1
[
J(x1)

⊤ G(x1)
⊤ B(x1)

]
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is invertible for x1 ∈ U1 by assumption, according to Definition 1.2 system (2.32) has
vector relative degree r = (r1, r2, r3) ∈ N1×(p+ℓ+m) on U , with r1 = (1, . . . , 1) ∈ N1×p,
r2 = (2, . . . , 2) ∈ N1×ℓ and r3 = (2, . . . , 2) ∈ N1×m.

The third component of the vector relative degree r3 = (2, . . . , 2) ∈ N1×m reflects
the typical situation in mechanical systems that, following Newton’s law, measuring
a position, the applied forces appear on acceleration level.

Following the findings in Section 2.1.1 we make the following ansatz for the
internal state (

η1
η2

)
=

(
ϕ1(x1)
ϕ2(x1)x2

)
,

for some ϕ1 : U1 → Rn−ℓ−m and ϕ2 : U1 → R(n−ℓ−m−p)×n, where U1 ⊆ Rn open, and
invoking (2.34), with the aid of (2.2) we have for x ∈ R2n

(
ξ
η

)
= Φ(x) =



J(x1)x2 + j(x1)
g(x1)
G(x1)x2
h(x1)
h′(x1)x2
ϕ1(x1)
ϕ2(x1)x2


, Φ′(x) =



∂
∂x1

(J(x1)x2) + j′(x1) J(x1)

G(x1) 0
∂

∂x1
(G(x1)x2) G(x1)

h′(x1) 0
∂

∂x1
(h′(x1)x2) h′(x1)

ϕ′
1(x1) 0

∂
∂x1

(ϕ2(x1)x2) ϕ2(x1)


where we used g′(w) = G(w), w ∈ Rn. Therefore, analogously to the derivations
made in the previous section, we have that the Jacobian Φ′(x) ∈ R2n×2n is invertible
for x = (x1, x2) ∈ U = (U1, U2) ⊆ R2n, U1, U2 ⊆ Rn, if, and only if,

∀x1 ∈ U1 :

G(x1)
h′(x1)
ϕ′
1(x1)

 ∈ Gln and


J(x1)
G(x1)
h′(x1)
ϕ2(x1)

 ∈ Gln . (2.35)

Via Lemma 2.3 there exist an open set U0
1 ⊆ U1, a function ϕ1 ∈ C1(U0

1 ;Rn−ℓ−m) and
a matrix valued function ϕ2 ∈ C(U0

1 ;R(n−ℓ−m−p)×n) such that (2.35) is true on U0
1

and moreover,

∀x1 ∈ U0
1 : (LKϕ2)(x) = ϕ2(x1)M(x1)

−1
[
J(x1)

⊤ G(x1)
⊤ B(x1)

]
= 0. (2.36)

Assumption. With some abuse of notation for the remainder of this section, for U0
1

just mentioned above we set U1 := U0
1 .

Then, following the derivations made in Section 2.1.1 we have the following
result.

Corollary 2.21. Use the notation and assumptions from Corollary 2.20, in particu-
lar let (2.33) be true on U1 defined just above. Then, for V : U1 → R(ℓ+m+p)×n with
imV (x1) = ker[J(x1)

⊤, G(x1)
⊤, h′(x1)

⊤]⊤ the function ϕ2 ∈ C(U1;R(n−ℓ−m−p)×n) sat-
isfying (2.35) and (2.36) is, up to an invertible left transformation, uniquely given
by

ϕ2(x1) = V (x1)
†
(
In−M(x1)

−1[J(x1)
⊤, G(x1)

⊤, B(x1)]Γ(x1)
−1

[
J(x1)
G(x1)
h′(x1)

])
, x1 ∈ U1.
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Furthermore, for all w1 ∈ W1 := [J(U1)
⊤, G(U1)

⊤, h′(U1)
⊤, ϕ2(U1)

⊤]⊤ we have
J(w1)
G(w1)
h′(w1)
ϕ2(w1)


−1

=

M(w1)
−1

 J(w1)
G(w1)
B(w1)

⊤

⊤

Γ(w1)
−1 V (w1)

 .
Proof. Clear.

We observe that Y2Y3
η1

 =

 g(x1)
h(x1)
ϕ1(x1)

 =: ϑ(x1) (2.37)

is continuously differentiable on U1 and its Jacobian is invertible on U1 by (2.35).
In order to have the coordinate transformation ϑ well defined on the entire subset
U1 ⊆ Rn we make the following assumption.

Assumption 2.22. For U1 ⊆ Rn open as in Corollary 2.21 and ϑ defined in (2.37),
let Assumption 2.13 be true.

Then, invoking continuity of g, h, Lemma 2.3 and equation (2.35), [19, Thm. 2.1]
yields that ϑ defines a diffeomorphism on U1, and the state x1 conversely can be
represented in terms of the auxiliary output and the internal variable η1 by

x1 = ϑ−1(Y2, Y3, η1). (2.38)

Accordingly, we seek to find a representation of x2 in respective terms. To this end,
we define

Ȳ :=

[
G(x1)
h′(x1)

]
x2

and obtain Y1Ȳ
η2

 =


J(x1)
G(x1)
h′(x1)
ϕ2(x1)

x2 +


j(x1)

0
0
0

 .

Therefore, with the aid of Corollary 2.21 we may express the state x2 in terms of
the auxiliary output and the internal variable η2 by

x2 = M(x1)
−1

 J(x1)
G(x1)
B(x1)

⊤

⊤

Γ(x1)
−1

(
Y1 − j(x1)

Ȳ

)
+ V (x1) η2. (2.39)

Next, we define the following functions as concatenations on W1 := ϑ(U1), where
V ∈ C(U1;R(n−ℓ−m−p)×n) be as in Corollary 2.21:

ϕ′
1,ϑ(·) :=

(
ϕ′
1 ◦ ϑ−1

)
(·), ϕ2,ϑ(·) :=

(
ϕi ◦ ϑ−1

)
(·), Bϑ(·) :=

(
B ◦ ϑ−1

)
(·),

Hϑ(·) :=
(
h′ ◦ ϑ−1

)
(·), Gϑ(·) :=

(
G ◦ ϑ−1

)
(·), Jϑ(·) :=

(
J ◦ ϑ−1

)
(·),

jϑ(·) :=
(
j ◦ ϑ−1

)
(·), Vϑ(·) :=

(
V ◦ ϑ−1

)
(·), Γϑ(·) :=

(
Γ ◦ ϑ−1

)
(·).
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2.1. Representation of internal dynamics

With this, invoking (2.6) we may write x2 = κ(η, ξ) for an appropriate function κ :
R2n−2m−2ℓ−p × R2m+2ℓ+p → Rn. Then, using the notation

ϕx1
2,ϑ(ζ1, κ(ζ2)) := ∂

∂x1
(ϕ2(x1)x2)|x1=ϑ−1(ζ1),x2=κ(ζ2)

as in the previous section, and invoking the original constraints, namely Y1(t) = 0,
Y2(t) = 0, and Ȳ (t) = (Ẏ2(x1(t))

⊤, Ẏ3(x1(t))
⊤)⊤ = (0, ẏ(t)⊤)⊤, for t ≥ 0, the internal

dynamics of a multibody system (2.32) are given by

η̇1(t) = ϕ′1,ϑ
(
0, y(t), η1(t)

)
·

(
η2(t)

+Mϑ

(
0, y(t), η1(t)

)−1

 Jϑ

(
0,y(t),η1(t)

)
Gϑ

(
0,y(t),η1(t)

)
Bϑ

(
0,y(t),η1(t)

)⊤

⊤

Γϑ

(
0, y(t), η1(t)

)−1

(
−jφ
(
0,y(t),η1(t)

)
0

ẏ(t)

))

η̇2(t) = ϕx1
2,ϑ

(
(0, y(t), η1(t)), κ(η(t), ξ(t))

)
· κ(η(t), ξ(t))

+ ϕ2,φ
(
0, y(t), η1(t)

)
M
(
0, y(t), η1(t)

)−1
f
(
ϑ−1

(
0, y(t), η1(t)

)
, κ(η(t), ξ(t)

)
.

(2.40)

As before in Section 2.1.1, the internal dynamics in (2.40) are completely decoupled
and given in terms of the system’s parameters, its output and the internal variable,
where the decoupling process follows step by step an explicit scheme.

Examples. Decoupling the internal dynamics using the ansatz and procedure pre-
sented in Sections 2.1.1 & 2.1.2 was successfully applied in the following works.
In [23, Sec. 4.2] we performed decoupling of the internal dynamics for the robotic
manipulator arm as in Example 2.18; then, we chose the system parameters such
that this system was non-minimum phase and, after linearizing the internal dynam-
ics, we performed output reference tracking using the controller from [16]. In [18]
we investigated multi-input multi-output systems containing a kinematic loop and
being subject to holonomic and non-holonomic constraints. There, the techniques
to decouple the internal dynamics were applied in [18, Sec. 3]. The obtained rep-
resentation was then utilized to design a combined feedforward-feedback controller
to perform output reference tracking, where the controller involved the feedforward
control schemes from [158, 159] and the feedback controller from [16]. The latter
explicitly involves the internal dynamics, which we decoupled using the technique
from Section 2.1.2 and linearized it around the operation point. As a real world
application we simulated in [18, Sec. 6] output reference tracking of a non-minimum
phase robotic manipulator arm, which contained a kinematic loop and was subject
to holonomic constraints. ⋄

Remark 2.23. The set of variables presented in Sections 2.1.1 & 2.1.2 to decouple
the internal dynamics (2.28) of (2.10) and (2.40) of (2.32), respectively, offers an
alternative to the Byrnes-Isidori form as in (2.2), whose computation often requires
a lot of effort, cf. Example 2.2.

(i) The advantage of the representation of the internal dynamics in (2.28), (2.40),
respectively, is, that it involves system parameters only. Lemma 2.11 (Corol-
lary 2.21) shows, that a suitable choice of V is given by imV = kerh′

(imV = ker(J⊤, G⊤, h′)), and solving (2.25) (or (2.38)) for x1 only involves h
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(or h and g), where the choice ϕ1(x1) = Ex1 as in the proof of Lemma 2.3
may simplify the computation further. We stress that, once ϕ1 is chosen, e.g.
ϕ1(x1) = Ex1, the computation of the internal dynamics of a system (2.10)
or (2.32), respectively, can be carried out completely algorithmically without
the need to choose further functions.

(ii) Equations (2.26) and (2.38), (2.39) provide an explicit representation of the
diffeomorphism’s inverse, i.e., x = Φ−1(ξ, η), which can be computed algorith-
mically as well. Since the internal dynamics are given in terms of the system’s
output, the complete state x can be reconstructed from the output and the
solution of the internal dynamics. The situation is depicted in Figure 2.3.

ẋ(t) = F (d(t), x(t)) +G(x(t))u(t)
y(t) = h(x1(t))

η̇(t) = Ψ
(
t, η(t), y(t), ẏ(t), . . . , y(r−1)(t)

)

x = Φ−1(ξ, η)

u y, ẏ, . . . , y(r−1)

y, ẏ, . . . , y(r−1) η

η

Figure 2.3: Representation of the system’s state in terms of the internal vari-
able and the system’s output.

2.2 Stability analysis

In this section we utilize the representation of the internal dynamics from Section 2.1
to perform a stability analysis of the internal dynamics of a certain class of multibody
systems. We derive sufficient conditions on the system parameters such that the in-
ternal dynamics are bounded-input bounded-state stable. These conditions can be
verified in advance and hence explicit decoupling and stability analysis of the inter-
nal dynamics are not necessary. In particular, it is not necessary to derive (2.28).
We consider nonlinear multibody systems without kinematic loops, constant mass
matrix M ∈ Rn×n, constant input distribution B ∈ Rn×m, and motivated from vari-
ous applications we assume the output measurement to be linear. The system class
under consideration is modelled via generalized coordinates q, v and the equations
of motion are of the form

q̇(t) = v(t), q(0) = q0 ∈ Rn,

Mv̇(t) = f(q(t), v(t)) +Bu(t), v(0) = v0 ∈ Rn,

y(t) = Hq(t),

(2.41)

where H ∈ Rm×n is the linear measurement function and we assume the following
structure of f

f(x1, x2) = −K(x1) −D(x2) − C(x1, x2)x2, (2.42)

where K ∈ C(Rn;Rn) may be considered as a nonlinear restoring force, the function
D ∈ C(Rn;Rn) for example mimics a nonlinear damping or friction and the term
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2.2. Stability analysis

C ∈ C(Rn × Rn;Rn×n) may take the role of a nonlinear distribution for a position
dependent damping or mimic a Coriolis force. As before, the input and output
dimensions coincide but we do not assume colocation, i.e., we allow for H ̸= B⊤.
For the sake of notational consistency we introduce the state variables x1 := q,
x2 := v, set x := (x⊤1 , x

⊤
2 )⊤ ∈ R2n, and define the functions

F (x) :=

(
x2

M−1f(x1, x2)

)
, G :=

(
0

M−1B

)
.

With this we obtain the following equivalent representation of system (2.41)

ẋ(t) = F (x(t)) +Gu(t),

y(t) = H̃x(t),

where H̃ ∈ Rm×2n with H̃ = [H, 0]. We assume the high-gain matrix

Γ := HM−1B ∈ Glm(R)

to be regular, whereby Assumption (2.5) is satisfied on U1 = Rn substituting B with
M−1B. Therefore, via Lemma 2.6, system (2.41) has relative degree r = 2 on R2n.
Since H,M,B are constant matrices we obtain with the aid of Lemma 2.11

ϕ2 = V †(In −M−1BΓ−1H
)
∈ R(n−m)×n, (2.43)

where V ∈ Rn×(n−m) is such that imV = kerH. Hence, ϕ2 defines a conservative
vector field and thus, according to Remark 2.17, we may choose

ϕ1(x1) = λϕ2 · x1, (2.44)

for x1 ∈ Rn and some λ ∈ R \ {0}. Then, via (2.26) we obtain

x1 =

[
H
λϕ2

]−1(
ξ1
η1

)
= M−1BΓ−1ξ1 + λ−1V η1, (2.45)

x2 =

[
H
ϕ2

]−1(
ξ2
η2

)
= M−1BΓ−1ξ2 + V η2. (2.46)

Defining M := M−1BΓ−1 ∈ Rn×m and Θ := ϕ2M
−1 ∈ R(n−m)×n, via equation (2.28)

we obtain the internal dynamics of system (2.41)

η̇1(t) = λη2(t),

η̇2(t) = Θf
(
My(t) + λ−1V η1(t),Mẏ(t) + V η2(t)

)
,

(2.47)

where we identified ξ1 = y, ξ2 = ẏ, and the arguments of f(x1, x2) with structure
as in (2.42) have been substituted via (2.45) and (2.46), respectively. We define the
vector field

Ψ : R2(n−m) × R2m → R2(n−m), (z1, z2, v1, v2) 7→(
λz2

Θ
(
−K(Mv1 + λ−1V z1)−D(Mv2 + V z2)− C(Mv1 + λ−1V z1,Mv2 + V z2)(Mv2 + V z2)

)) (2.48)

with which the internal dynamics of system (2.41) are given by

η̇(t) = Ψ
(
η1(t), η2(t), y(t), ẏ(t)

)
.

Henceforth let V in (2.43) have orthonormal columns. In order to formulate condi-
tions on f in (2.41) such that the internal dynamics are bounded-input bounded-
output stable, we recall the following definition.
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Definition 2.24. A function α : Rn → R is called radially unbounded, if α(x) → ∞
for ∥x∥ → ∞.

Next, we define the following set of functions

ΣK,D,C :=
{

(K,D,C) ∈ C(Rn;Rn)×C(Rn;Rn)×C(Rn;Rn×n)
∣∣ (2.49) are satisfied

}
,

where for i = 1, 2 we assume, that there exist a positive constant z+i > 0 such that
for all zi ∈ Zi := {z ∈ Rn−m ∥z∥ > z+i } and all v, w ∈ Rn the functions K, D
and C satisfy the following, where VK ∈ C1(Z1;R) is a radially unbounded function

V ′
K(z1) = (ΘK(V z1))

⊤ , (2.49a)

∥K(V z1) −K(V z1 + w)∥ ≤ g1(w), (2.49b)

z⊤1 ΘK(V z1) ≥ κ∥z1∥2, (2.49c)

∥D(V z2) −D(V z2 + w)∥ ≤ g2(w), (2.49d)

z⊤2 ΘD(V z2) ≥ δ∥z2∥2, (2.49e)

∥D(V z2)∥ ≤ d∥z2∥, (2.49f)

∥(C(V z1, w) − C(V z1 + v, w))w∥ ≤ g3(v)a3(w), (2.49g)

z⊤1 ΘC(V z1, w)w ≥ ∥z1∥2b3(w), (2.49h)

∥(C(v, V z2) − C(v, V z2 + w))(V z2 + w)∥ ≤ g4(w)a4(v)∥z2∥, (2.49i)

z⊤2 ΘC(v, V z2)V z2 ≥ b4(v)∥z2∥∥V z2∥2, (2.49j)

∥C(v, V z2)w∥ ≤ a4(v)∥z2∥∥w∥, (2.49k)

for suitable functions aj, bj, gi ∈ C(Rn → R≥0), i = 1, . . . , 4, j = 3, 4, with
ai(x) ≤ bi(x) for all x ∈ Rn, and κ, δ, d > 0. A closer inspection yields that con-
ditions (2.49a) – (2.49k) mean that the acting forces are assumed to be basically
linear in a certain region, (far) away from the origin. Hence these are merely weak
assumptions.

In order to formulate the next result, we set τ := ∥Θ∥ and for some ρ1, ρ2 ≥ 0,
q > 0 we define the following constants

K̃ := max
z∈Bρ1 (0)

g1(Mz), D̃ := max
z∈Bρ2 (0)

g2(Mz),

C̃3 := max
z∈Bρ1 (0)

g3(Mz), C̃4 := max
z∈Bρ2 (0)

g4(Mz),

ε1 := q(κ
λ
− τ2

2
), ε2 := δ − q(d

2

2
+ λ),

E1 := qτ(K̃ + d∥M∥ρ2), E2 := τ(K̃ + D̃),

(2.50)

which are all nonnegative by the feasible choices 0 < λ < 2κ/τ 2 and 0 < q <
2δ/(d2 + 2λ). Further, we define

γ1 := λτC̃3 ≥ 0, γ2 := τ(C̃4 + µρ2) ≥ 0,

Z̃i :=

{
z ∈ Rn−m

∣∣∣∣ ∥z∥ > max

{
Ei

εi
, γi

}}
, i = 1, 2.

We present an explicit Lyapunov function for the internal dynamics (2.47) of a
system (2.41) in the following result.
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Lemma 2.25. Consider a system (2.41) where f is structured as in (2.42) with
(K,D,C) ∈ ΣK,D,C . Fix some ρ1, ρ2 ≥ 0 and for λ > 0 in (2.44) fix 0 < λ < 2κ/τ 2

and 0 < q < 2δ/(d2 + 2λ). Then, for L : Rn−m × Rn−m → R defined by

L(η1, η2) =
1

2
∥η2∥2 + qη⊤1 η2 + VK(λ−1η1), (2.51)

the Lie derivative along the vector field Ψ in (2.48) is nonincreasing for all y1 ∈
Bρ1(0), y2 ∈ Bρ2(0) and all ηi ∈ Zi ∩ Z̃i, i = 1, 2, i.e.,

L′(η1, η2) · Ψ(η1, η2, y1, y2) ≤ 0. (2.52)

Proof. Recall Θ = ϕ2M
−1 ∈ R(n−m)×n, and for τ := ∥Θ∥ let 0 < λ < 2κ/τ 2 and

0 < q < 2δ/(d2 + 2λ). For i = 1, 2 let ηi ∈ Zi and yi ∈ Bρi(0). For the sake of better
legibility we set λ̄ := λ−1. Then, we calculate the Lie derivative of L from (2.51)
along the vector field Ψ from (2.48).

L′(η1, η2) · Ψ(η1, η2, y1, y2) = K(λ̄V η1)
⊤Θ⊤η2 + qλη⊤2 η2

+ η⊤2 Θ
(
−K(My1 + λ̄V η1) −D(My2 + V η2)

)
− η⊤2 ΘC(My1 + λ̄V η1,My2 + V η2)(My2 + V η2)

+ qη⊤1 Θ
(
−K(My1 + λ̄V η1) −D(My2 + V η2)

)
− qη⊤1 ΘC(My1 + λ̄V η1,My2 + V η2)(My2 + V η2)

= η⊤2 Θ
(
K(λ̄V η1) −K(My1 + λ̄V η1)

)
+ qλ∥η2∥2 − η⊤2 ΘD(My2 + V η2)

− η⊤2 ΘC(My1 + λ̄V η1,My2 + V η2)(My2 + V η2)

− qη⊤1 ΘK(My1 + λ̄V η1) − qη⊤1 ΘD(My2 + V η2)

− qη⊤1 ΘC(My1 + λ̄V η1,My2 + V η2)(My2 + V η2).
(2.53)

For purpose of better legibility we set µ := ∥M∥. Note, that since V in (2.43) has
orthonormal columns we have ∥V z∥ = ∥z∥ for z ∈ Rn−m. We estimate the addends
in (2.53) separately for ηi ∈ Zi, respectively.

Step one. We estimate η⊤2 Θ
(
K(λ̄V η1) −K(My1 + λ̄V η1)

)
η⊤2 Θ

(
K(λ̄V η1) −K(My1 + λ̄V η1)

)
≤ τ∥η2∥∥K(λ̄V η1) −K(My1 + λ̄V η1)∥
(2.49b)

≤ τ∥η2∥g1(My1) ≤ τK̃∥η2∥.

Step two. We estimate −η⊤2 ΘD(My2 + V η2)

−η⊤2 ΘD(My2 + V η2) = η⊤2 Θ
(
D(V η2) −D(My2 + V η2) −D(V η2)

)
≤ τ∥η2∥∥D(V η2) −D(My2 + V η2)∥ − η⊤2 ΘD(V η2)

(2.49d)

≤ τ∥η2∥g2(My2) − η⊤2 ΘD(V η2)
(2.49e)

≤ τD̃∥η2∥ − δ∥η2∥2.
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Step three. We estimate −qη⊤1 ΘK(My1 + λ̄V η1)

−qη⊤1 ΘK(My1 + λ̄V η1) ≤ qτ∥η1∥∥K(λ̄V η1) −K(My1 + λ̄V η1)∥
− qη⊤1 ΘK(λ̄V η1)

(2.49b)

≤ qτ∥η1∥g1(My1) − qη⊤1 ΘK(λ̄V η1)

(2.49c)

≤ qτK̃∥η1∥ − qκλ̄∥η1∥2.

Step four. We estimate −qη⊤1 ΘD(My2 + V η2)

−qη⊤1 ΘD(My2 + V η2) ≤ qτ∥η1∥∥D(My2 + V η2)∥
(2.49f)

≤ q∥η1∥d∥My2 + V η2∥
≤ qτdµρ2∥η1∥ + qτd∥η1∥∥η2∥

≤ qτdµρ2∥η1∥ + q
τ 2

2
∥η1∥2 + q

d2

2
∥η2∥2,

where we used 2ab ≤ a2 + b2 for all a, b ∈ R in the last line.
Step five. We estimate −qη⊤1 ΘC(My1 + λ̄V η1,My2 + V η2)(My2 + V η2)

−qη⊤1 ΘC(My1 + λ̄V η1,My2 + V η2)(My2 + V η2)

= qη⊤1 Θ
(
C(λ̄V η1,My2 + V η2) − C(My1 + λ̄V η1,My2 + V η2)

)
(My2 + V η2)

− qη⊤1 ΘC(λ̄V η1,My2 + V η2)(My2 + V η2)

≤ qτ∥η1∥∥
(
C(λ̄V η1,My2 + V η2) − C(My1 + λ̄V η1,My2 + V η2)

)
(My2 + V η2)∥

− qη⊤1 ΘC(λ̄V η1,My2 + V η2)(My2 + V η2)

(2.49g)

≤ qτ∥η1∥g3(My1)a3(My2 + V η2) − qη⊤1 ΘC(λ̄V η1,My2 + V η2)(My2 + V η2)

(2.49h)

≤ qτC̃3∥η1∥a3(My2 + V η2) −
q

λ
∥η1∥2 b3(My2 + V η2)

≤ qτC̃3∥η1∥a3(My2 + V η2) −
q

λ
∥η1∥2 a3(My2 + V η2)

=
q

λ

(
λτC̃3 − ∥η1∥

)
∥η1∥a3(My2 + V η2).
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Step six. We estimate −η⊤2 ΘC(My1 + λ̄V η1,My2 + V η2)(My2 + V η2)

−η⊤2 ΘC(My1 + λ̄V η1,My2 + V η2)(My2 + V η2)

= η⊤2 Θ
(
C(My1 + λ̄V η1, V η2) − C(My1 + λ̄V η1,My2 + V η2)

)
(My2 + V η2)

− η⊤2 ΘC(My1 + λ̄V η1, V η2)(My2 + V η2)

≤ τ∥η2∥∥
[
C(My1 + λ̄V η1, V η2) − C(My1 + λ̄V η1,My2 + V η2)

]
(My2 + V η2)∥

− η⊤2 ΘC(My1 + λ̄V η1, V η2)(My2 + V η2)

(2.49i)

≤ τ∥η2∥ g4(My2) a4(My1+λ̄V η1) ∥η2∥η⊤2 ΘC(My1+λ̄V η1, V η2)(My2+V η2)

(2.49j)

≤ τ∥η2∥2 g4(My2) a4(My1 + λ̄V η1) − b4(My1 + λ̄V η1)∥η2∥∥V η2∥2

− η⊤2 ΘC(My1 + λ̄V η1, V η2)My2
(2.49k)

≤ τC̃4 a4(My1 + λ̄V η1)∥η2∥2 + τµρ2 a4(My1 + λ̄V η1) ∥η2∥2

− b4(My1 + λ̄V η1) ∥η2∥3

≤
(
τ(C̃4 + µρ2) − ∥η2∥

)
∥η2∥2 a4(My1 + λ̄V η1),

where we used ∥V z∥ = ∥z∥ for all z ∈ Rn−m in the second last estimation. We
summarize the calculations above to estimate L′(η1, η2) · Ψ(η1, η2, y1, y2) for ηi ∈ Zi

and yi ∈ Bρi(0), i = 1, 2

L′(η1, η2) · Ψ(η1, η2, y1, y2) ≤ qλ∥η2∥2 + τK̃∥η2∥ + τD̃∥η2∥ − δ∥η2∥2 + qτK̃∥η1∥

− q
κ

λ
∥η1∥2 + qτdµρ2∥η1∥ + q

τ 2

2
∥η1∥2 + q

d2

2
∥η2∥2

+
q

λ

(
λτC̃3 − ∥η1∥

)
∥η1∥a3(My2 + V η2)

+
(
τ(C̃4 + µρ2) − ∥η2∥

)
∥η2∥2 a4(My1 + λ̄V η1).

Sorting these expressions and inserting the constants from (2.50) yields

L′(η1, η2) · Ψ(η1, η2, y1, y2) ≤− ε1∥η1∥2 + E1∥η1∥ − ε2∥η2∥2 + E2∥η2∥

− q

λ
(∥η1∥ − γ1)∥η1∥a3(My2 + V η2)

− (∥η2∥ − γ2) ∥η2∥2 a4(My1 + λ̄V η1),

(2.54)

where ε1, ε2 > 0 and E1, E2 ≥ 0 via the choice of q and λ, and γ1, γ2 ≥ 0. We
consider the function

W : R2(n−m) → R (2.55)

(w1, w2) 7→ −ε1∥w1∥2 + E1∥w1∥ − ε2∥w2∥2 + E2∥w2∥,

with εi > 0, Ei ≥ 0 for i = 1, 2 as above. A short calculation yields that for wi ∈ Z̃i

we have W (w1, w2) ≤ 0, and −(∥w1∥ − γ1) < 0 and −(∥w2∥ − γ2) < 0. Compar-
ing (2.54) and (2.55) yields assertion (2.52) via

L′(η1, η2) · Ψ(η1, η2, y1, y2) ≤ W (η1, η2) ≤ 0,

for all ηi ∈ Zi ∩ Z̃i, i = 1, 2, and y1 ∈ Bρ1(0), y2 ∈ Bρ2(0). This completes the
proof.
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Chapter 2. Internal dynamics

Seeking a formulation to verify stability of the internal dynamics of a sys-
tem (2.41) in advance, we formulate an abstract stability result in the spirit of [121,
Thm. 4]. Before we do so, we introduce the concept of bounded-input bounded-state
stability following the notion in [3].

Definition 2.26. A control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, (2.56)

where f ∈ C(Rn × Rm;Rn), is called bounded-input bounded-state stable, if for all
ū ≥ 0 and all x̄0 ≥ 0 there exists x̄ ≥ 0 (depending on ū, x̄0), such that for all initial
conditions x0 ∈ Rn with ∥x0∥ ≤ x̄0 and all inputs u ∈ L∞(R≥0;Rm) with ∥u∥∞ ≤ ū
all solutions x : I ⊆ R≥0 → Rn of (2.56), I an interval with 0 ∈ I, satisfy

∀ t ∈ I : ∥x(t)∥ ≤ x̄.

Lemma 2.27. Consider a control system (2.56), and assume there exist ū, c ≥ 0
and a radially unbounded function L ∈ C1(Rn;R≥0) such that for all u ∈ Bū(0) and
for all ζ ∈ { z ∈ Rn | ∥z∥ > c} we have

L′(ζ) · f(ζ, u) ≤ 0. (2.57)

Then, for all u ∈ L∞(R≥0;Rm) with ∥u∥∞ ≤ ū and all solutions ζ : I ⊆ R≥0 → Rn

of (2.56) with ζ(0) = ζ0 ∈ Rn, I an interval with 0 ∈ I, there exists ε > 0 such that

∀ t ∈ I : ∥ζ(t)∥ ≤ max{∥ζ0∥, c} + ε,

this means, the system is bounded-input bounded-state stable.

Proof. The following proof is inspired by the proof given in [121, Thm. 4], and some
ideas are adopted from the proof in [183, Lem. 5.7.8]. Let c̃ := max{∥ζ0∥, c} and
λ := max{L(ζ) ∥ζ∥ = c̃}. Since L is radially unbounded there exists ε > 0
such that L(ζ) > λ for all ζ ∈ { z ∈ Rn | ∥z∥ ≥ c̃+ ε}. Seeking a contradic-
tion, we suppose the existence of t1 ∈ I such that ∥ζ(t1)∥ > c̃ + ε. Let t0 :=
max { t ∈ [0, t1) | ∥ζ(t)∥ = c̃+ ε}. Then, we have L(ζ(t)) > λ for all t ∈ (t0, t1].
Since by (2.57) L is nonincreasing along solution trajectories of (2.56) for all u ∈
L∞(R≥0;Rm) with ∥u∥∞ ≤ ū and ∥ζ∥ > c, we have λ < L(ζ(t1)) ≤ L(ζ(t0)) ≤ λ. A
contradiction. Therefore, we conclude ∥ζ(t)∥ ≤ c̃+ ε for all t ∈ I.

Now, we are in the position to formulate a result concerning the stability of the
internal dynamics (2.47) of a system (2.41) with f structured as in (2.42).

Theorem 2.28. The internal dynamics (2.47) of a system (2.41), where f is struc-
tured as in (2.42) are bounded-input bounded-state stable, if (K,D,C) ∈ ΣK,D,C .

Proof. The statement is a direct consequence of Lemmata 2.25 & 2.27.

Remark 2.29. We emphasize, that conditions (2.49) on f can be verified in advance.
Hence, it is not necessary to decouple the internal dynamics, i.e., it is not necessary
to derive equations (2.28), or (2.47), respectively.
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2.2. Stability analysis

Example 2.30. We illustrate Theorem 2.28, i.e., we conclude stability of the in-
ternal dynamics of a given system (2.41) by verifying that the involved generalized
forces f are such that (K,D,C) ∈ ΣK,D,C . We consider the mass on a car sys-
tem presented in [158, Sec. 4.2], which is an extension of the classical mass on a
car system under consideration in [179, Sec. 4.1]. The system consists of two cars
with mass m1 (in kg) and m2 (in kg), respectively. The two cars are coupled via a
spring-damper combination with characteristics K2 (in N/m) and D2 (in Ns/m), re-
spectively. On the second car a ramp with constant angle 0 < α < π/2 is mounted,
on which a third mass m3 (in kg) is lying and is coupled to the second car via
a spring with characteristic K3 (in N/m), and a damping with characteristic D3

(in Ns/m). To the first car a force u1 can be applied, and to the second car individ-
ually a force u2 can be applied. We measure the horizontal position of the first car
and the horizontal position of the mass m3 on the ramp. The situation is depicted
in Figure 2.4. For convenience we assume the constant force on m3 due to gravity,

u1

s1 s2

s3

α
m1 m2

m3

D2
u2

K2

D3

K3

y2
y1

Figure 2.4: Extended mass on a car system. The original figure is taken from [158]
and edited for the purpose of the present work.

namely m3g sin(α), where g is the gravitational constant, to be compensated via a
linear coordinate transformation, such that K3(0) = 0. Then, according to [158,
Sec. 4.2] with s := (s1, s2, s3)

⊤ ∈ R3 the equations of motion for that system are
given bym1 +m2 +m3 m2 +m3 m3 cos(α)

m2 +m3 m2 +m3 m3 cos(α)
m3 cos(α) m3 cos(α) m3


︸ ︷︷ ︸

=:M

s̈1(t)s̈2(t)
s̈3(t)



=

 0
−K2(s(t)) −D2(ṡ(t))
−K3(s(t)) −D3(ṡ(t))

+

1 0
0 1
0 0


︸ ︷︷ ︸

=:B

(
u1(t)
u2(t)

)
,

y(t) =

(
y1(t)
y2(t)

)
=

(
s1(t)

s1(t) + s2(t) + cos(α)s3(t)

)
=

[
1 0 0
1 1 cos(α)

]
︸ ︷︷ ︸

=:H

s1(t)s2(t)
s3(t)

 .

(2.58)
In this particular example we have n = 3 and m = 2, hence we are in the situation
of multi-input, multi-output. Note that the input and the output are not colocated,
i.e., H ̸= B⊤. According to the equations given in [158] we assume K2(s) = k ·s and
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Chapter 2. Internal dynamics

D2(s) = d · s, where k, d > 0. In order to include nonlinear terms, we assume that
K3 and D3 have the following characteristics, where σ(·) denotes the sign function

K3 : R3 → R, q 7→

{
σ(q3)

√
|q3|, |q3| ≤ 1,

1
2
q3 + 1

2
σ(q3), |q3| > 1,

and

D3 : R3 → R, v 7→

{
σ(v3)v

2
3, |v3| ≤ 1,

2v3 − σ(v3) |v3| > 1.

Note that K3, D3 ∈ C(R3;R). The schematic shapes of K3 and D3 are depicted in
Figure 2.5.

−2 −1 0 1 2
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1
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−1

−2

q3

K
3
(q

3
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−2 −1 0 1 2
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1

0

−1

−2

v3

D
3
(v

3
)

Figure 2.5: Schematic shape of K3 and D3, respectively. Solid lines on Zi, dashed
lines on R \ Zi, i = 1, 2.

We set x1 := (s1, s2, s3)
⊤, x2 := ẋ1, K := (0, K2, K3)

⊤, and D := (0, D2, D3)
⊤,

whereby K,D ∈ C(R3;R3), respectively. Further, we define H̃ := [H, 0] and set
M̃ := diag(I3,M). Then, system (2.58) reads

ẋ(t) = M̃−1

(
x2(t)

−K(x1(t)) −D(x2(t))

)
+ M̃−1

[
0
B

](
u1(t)
u2(t)

)
,

y(t) = H̃x(t),

(2.59)

and (2.59) is of the form (2.41). We set µ := m2 +m3 sin(α)2 and calculate

M−1 =


1
m1

− 1
m1

0

− 1
m1

m1+µ
m1µ

− cos(α)
µ

0 − cos(α)
µ

m2+m3

µm3

 ,
and

Γ = HM−1B =

[
1
m1

− 1
m1

0 sin(α)2

µ

]
∈ Gl2(R), Γ−1 =

[
m1

µ
sin(α)2

0 µ
sin(α)2

]
.

Therefore, assumption 2.5 is satisfied on R3 (B substituted by M−1B) and thus,
using Lemma 2.6, system (2.59) has relative degree r = 2 on R6. We calculate
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V = (0,− cos(α), 1)⊤ by which imV = kerH. Then, according to (2.23), ϕ2 is given
by

ϕ2 =
(
0 0 1

)
(I3 −M−1BΓ−1H) = 1

sin(α)2

[
cos(α) cos(α) 1

]
,

and thus

Θ := ϕ2M
−1 = 1

m3 sin(α)2

[
0 0 1

]
.

For the sets introduced in the definition of ΣK,D,C we have Zi = {z ∈ R |z| > 1},
i = 1, 2. Now, we validate conditions (2.49a)–(2.49f) step by step. First, consider
VK : Z1 → R defined by

VK : Z1 → R, z1 7→
1

m3 sin(α)2
(z21 − |z1|),

which is radially unbounded. Note that Z1 = R \ [−1, 1] and hence VK ∈ C1(Z1;R).
Then, for z1 ∈ Z1 the derivative of VK is given by

V ′
K(z1) =

1

m3 sin(α)2
(2z1 − σ(z1))

=
(
0 − cos(α) kz1 2z1 − σ(z1)

) 0
0
1

m3 sin(α)2

 = K(V z1)
⊤Θ⊤, z1 ∈ Z1,

thus (2.49a) is satisfied. Furthermore,

∥K(V z1) −K(V z1 + w)∥ =

∥∥∥∥∥∥
 0
− cos(α) kz1
2z1 − σ(z1)

−

 w1

− cos(α) kz1 + w2

2z1 − σ(z1) + w3

∥∥∥∥∥∥ = ∥w∥,

which proves (2.49b), and

z1ΘK(V z1) = z1
1

m3 sin(α)2
(2z1 − σ(z1))

=
1

m3 sin(α)2
(2z21 − |z1|) ≥

1

m3 sin(α)2
z21 , z1 ∈ Z1,

which shows (2.49c). Conditions (2.49d)–(2.49e) for D follow analogously for z2 ∈
Z2 = Z1. For (2.49f) consider

∥D(V z2)∥ =

∥∥∥∥∥∥
 0
− cos(α) dz2
2z2 − σ(z2)

∥∥∥∥∥∥
≤ d|z2| + |2z2 − σ(z2)| ≤ (d+ 2)|z2| + 1 ≤ (d+ 3)|z2|,

for z2 ∈ Z2, which shows (2.49f). Therefore, via Theorem 2.28 we may deduce sta-
bility of the internal dynamics of the extended mass on a car system with equations
of motion given in (2.58). Note that we conclude stability of the internal dynam-
ics without having decoupled these explicitly, but just algorithmically calculate the
respective functions, in particular, the function ϕ2, which is given in (2.23). ⋄
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Remark 2.31. The function f in (2.41) with structure as in (2.42) covers a lot
of physical meaningful mechanical systems, however, many other structures and
configurations are possible. In particular, when systems of higher order (2.10) are
under consideration. Although it is not reasonable to search for conditions similar
to (2.49) for arbitrary functions of systems (2.10), Lemma 2.25 in combination with
Remark 2.17 gives a good starting point, how potential Lyapunov functions may
look like.
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3 Output feedback control

In this chapter we focus on the long standing problem that most feedback control
laws require derivatives of the output to be available. To this end, we elaborate
on the so-called funnel pre-compensator, first proposed in [32], which turns out to
be an appropriate tool to produce a signal which approximates the original signal
and the derivatives of the pre-compensator’s signal are available. We show that a
conjunction of a minimum phase system of arbitrary relative degree with the funnel
pre-compensator results in a minimum phase system of the same relative degree,
whereby this overall conjunction is contained in the system class under considera-
tion in [21] and hence, amenable to funnel control. As a consequence, the usage of
the funnel pre-compensator enables output reference tracking without requiring to
know derivatives of the system’s output, that is, to perform output feedback control.

The funnel pre-compensator is a simple adaptive dynamical system of high-gain
type which receives signals from a certain class of signals specified later, and has
an output which approximates the input signal in the sense that the error between
the input signal and the pre-compensator’s output evolves within a prescribed per-
formance funnel. Moreover, the derivatives of the pre-compensator’s output are
known explicitly. Comparing the preprint [31] to the work [32], it is clear that
the funnel pre-compensator was inspired by the concept of high-gain observers,
mainly inspired by the adaptive high-gain observer proposed in [45]. For detailed
literature on high-gain observers we refer to [61, 108, 175, 187] and the survey [107]
as well as the references therein, respectively. Nevertheless, we explicitly highlight
two important properties of high-gain observers. First, high-gain observers can
be used to estimate the system’s state without the exact knowledge of the system
parameters but only some structural assumptions, as for instance the relative degree
of the system, are required. Second, high-gain observers are robust. However, in
most cases the value of the high-gain parameter has to be evaluated via offline
simulations. If it is chosen unnecessary large, the high-gain observer is very sensi-
tive to high-frequent measurement noise. To overcome this drawback, in [45] the
constant high-gain parameter has been replaced by a dynamical parameter function,
which is determined by a differential equation involving the observation error. This
adaption scheme produces a monotonically increasing parameter function as long
as the error is larger than a predefined value; once reached this value the function
stops increasing. However, the nondecreasing parameter function leads to high
sensitivity with respect to strongly increasing signals or perturbations. Although
convergence to a prescribed error is guaranteed the transient behaviour of the error
cannot be prescribed. In contrast, the funnel pre-compensator introduced in [32]
has an inherent different structure of the output, compared to high-gain observers;
namely, it does not approximate the derivatives of the input signal but produces
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a “synthetic output”, the derivatives of which are known exactly and this output
evolves within a prescribed performance funnel around the input signal, that is,
transient behaviour of the error can be prescribed. Although it is quite different,
the funnel pre-compensator resembles a high-gain observer and adopts some of its
benefits. Namely, the estimation of the signal requires only structural assumptions,
such as knowledge of the relative degree of the underlying system. Furthermore, it
is robust with respect to signal noise, cf. [32, Rem. 1]. An immensely important
aspect of the funnel pre-compensator’s simple adaption scheme, compared to, e.g.,
backstepping schemes, is the fact that no high powers of the gain function are
involved. Therefore, issues in numerical implementation are circumvented without
any estimations of the underlying model. For detailed discussion of this aspect in
the context of high-gain observers see, e.g., the works [6, 105].

There is plenty of properly working high-gain based feedback controllers guaran-
teing prescribed error performance. For funnel control schemes see, e.g., [91, 25], the
recent work [21] or the construction of a bang-bang funnel controller cf. [127]. For
prescribed performance controller see [9, 8]. However, all suffer from the problem
that the output signal’s derivatives (funnel control) or the full state (prescribed
performance controller) have to be available to the control scheme. For funnel
control, this means that if the output’s derivatives are not available from mea-
surement, the output measurement has to be differentiated, which is an ill-posed
problem as pointed out in [74, Sec. 1.4.4]. A widespread idea in the literature
to handle this topic is the so-called backstepping procedure, see for instance [114,
106]. This technique was studied in conjunction with an input filter, e.g., in the
works [92, 93]. However, the backstepping procedure typically involves high pow-
ers of a “large-valued” gain function, which causes numerical issues and leads to
impractical performances, see [74, Sec. 4.4.3]. Another approach to solve an arbi-
trary good transient and steady-state response problem for linear minimum phase
systems with arbitrary relative degree is presented in [143]. The proposed controller
involves an internal compensator scheme of LTI type, which allows to achieve an
arbitrarily small error within an arbitrarily short time, while only receiving the
system’s output and the reference signal. Although this control scheme has a num-
ber of advantageous features, such as noise tolerance and applicability to systems
with unknown relative degree to name but two (see also the survey [85]), it is an
adaptive scheme with a monotonically non-decreasing gain-function and involves a
(piecewise constant) switching function, where the switching times are determined
in a two phase scheme of rather high complexity. In the works [50, 56] approaches
to realize output tracking with prescribed error behaviour via output feedback only
are presented. In [50] single-input single-output systems of known arbitrary rela-
tive degree with bounded input bounded state stable internal dynamics are under
consideration. The control scheme involves higher derivatives of the output which
are approximated by a high-gain observer. With this, tracking via output feedback
can be realized. However, in this setting knowledge of the control coefficient is
required and hence the particular control scheme is, in contrast to standard funnel
control schemes, not model free. In [56] an extension of the prescribed performance
controller [8] is used to achieve output tracking with prescribed error performance
of unknown nonlinear multi-input multi-output systems with known vector relative
degree. A high-gain observer scheme is used to make the required derivatives avail-
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able. Since the control schemes in [50, 56] involve high-gain observers, both suffer
from the problem of proper initializing, i.e., the high-gain parameters are to be
predetermined appropriately. However, it is not clear how to choose these param-
eters appropriately in advance. In [130] an output feedback funnel control scheme
is developed, which achieves output tracking with prescribed transient behaviour
for a class of nonlinear single-input single-output systems, where the nonlinearity
is a function of time and the output variable only. In particular, the problem of
choosing parameters appropriately in advance is circumvented.

As mentioned above the derivatives of the pre-compensator’s output are known
explicitly, and hence the aforesaid gives rise to the idea that the funnel pre-
compensator scheme proposed in [32] can help resolving the long-standing problem
of adaptive feedback control with prescribed error performance of nonlinear sys-
tems with relative degree higher than one with unknown output derivatives. In
order to resolve this problem, we show that the application of a cascade of funnel
pre-compensators to a minimum phase system of arbitrary relative degree yields a
system of the same relative degree, which is minimum phase as well. In particular,
the derivatives of the pre-compensator’s output are known explicitly. Therefore,
output reference tracking with prescribed transient behaviour using well known
funnel control schemes for systems of arbitrary (possibly high) relative degree, as
for instance from [25] or the recent work [21], is possible without knowledge of the
system’s output derivatives. In particular, the tracking error between the original
system’s output and the desired reference trajectory evolves within a prescribed
performance funnel. For systems of relative degree two this was shown in [32] and
this result was used for funnel control in [30], but for arbitrary relative degree r ∈ N
this remained an open problem which we solve in the present chapter.

3.1 The funnel pre-compensator

The funnel pre-compensator, first introduced in [32], is a dynamical input-output sys-
tem of high-gain type in the spirit of funnel control. For details concerning the idea
of funnel control we refer to Section 1.1, and the classical works [91, 87], the recent
works [25, 21], and the references therein, respectively. The funnel pre-compensator
receives signals u and w belonging to a certain set of signals Pr introduced be-
low, and gives a signal z as an output, the derivative of which is explicitly given
by the pre-compensator’s equations; and z tracks the signal w with prescribed error.

Before we recall and investigate the funnel pre-compensator introduced in [32]
we highlight that, contrary to most approaches, the funnel pre-compensator does
not necessarily receive signals u and w which are input and output of a dynamical
system or a corresponding plant, but we consider signals u and w belonging to the
large set

Pr :=

(u,w)∈L∞
loc(R≥0;Rm)×Wr,∞

loc (R≥0;Rm)
∃Γ ∈ C1(R≥0;Rm×m) :
Γw(r−1) ∈ L∞(R≥0;Rm),
d
dt

(
Γw(r−1)

)
−u ∈L∞(R≥0;Rm)

 .

We emphasize that it is not assumed to know the matrix valued function Γ. Only
knowledge of the signals u and w and the number r ∈ N is assumed. It is self
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3.1. The funnel pre-compensator

evident that the signals u and w can be the input and output of a corresponding
plant. For example, for a suitable continuous function f , a bounded disturbance d
and an input distribution matrix B ∈ Glm(R), let u ∈ L∞(R≥0;Rm) be the input
and y ∈ Cr(R≥0;Rm) the output of a system

y(r)(t) = f
(
d(t), y(t), . . . , y(r−1)(t)

)
+Bu(t).

Then, if y, ẏ, . . . , y(r−1) are bounded we have (u, y) ∈ Pr. The signal set Pr, however,
allows for a much larger class of dynamical systems, cf. [25] and the works [20, 91].

As mentioned above, the output z of the funnel pre-compensator approximates
the input signal w with prescribed accuracy. To precise this property, we denote the
error between the signals w and z with e := w− z. Then the error evolves within a
performance funnel

Fφ := { (t, e) ∈ R≥0 × Rm |φ(t)∥e∥ < 1} ,

the shape of which is prescribed by a funnel function φ, which, for r ∈ N, belongs
to the set

Φr :=

{
φ ∈ Cr(R≥0;R)

φ, φ̇, . . . , φ(r) are bounded,
φ(s) > 0 for all s > 0, lim infs→∞ φ(s) > 0

}
.

The boundary of a performance funnel is given by the reciprocal of the associated
funnel function, i.e., the boundary is given by 1/φ, see Figure 3.1b. The schematic
structure of the funnel pre-compensator is depicted in Figure 3.1a. We highlight

(u,w) ∈ Pr

Funnel
Pre-

Compensator

z(t), ż(t)

w(t)

u(t)

(a) Schematic funnel pre-compensator. (b) Approximation error e = w− z
and funnel boundary 1/φ.

Figure 3.1: Schematic structure of an application of the funnel pre-compensator (3.1)
to signals (u,w) ∈ Pr, and its error. The figures are based on the respective figures
in [32].

two important properties of funnel functions φ ∈ Φr, cf. [32, Sec. 2].

(i) Functions with φ(0) = 0 are explicitly allowed. This means that the bound-
ary 1/φ has a pole at t = 0. This property is important in the context of funnel
based feedback control, where initial conditions of the form φ(0)∥e(0)∥ < 1
occur, which are satisfied trivially for φ(0) = 0.

(ii) It is not required that the funnel functions increase monotonically, see Fig-
ure 3.1b. Although in most situations a monotonically decreasing funnel
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Chapter 3. Output feedback control

boundary is desirable, there may be situations where widening the funnel
boundary over some time interval is beneficial, e.g., if the signal w is changing
strongly or in the presence of (periodic) disturbances.

Now, after we established the pre-compensator’s general shape and functional-
ity, we recall its mathematical formulation as proposed in [32]. The funnel pre-
compensator

FP (a, p, Γ̃, φ) : (u,w) 7→ (u, z1)

is in general defined for signals (u,w) ∈ Pr and φ ∈ Φr via the following system of
ordinary differential equations

ż1(t) =
(
a1 + p1h(t)

)(
w(t) − z1(t)

)
+ z2(t), z1(0) = z01 ∈ Rm,

ż2(t) =
(
a2 + p2h(t)

)(
w(t) − z1(t)

)
+ z3(t), z2(0) = z02 ∈ Rm,

...
...

żr−1(t) =
(
ar−1 + pr−1h(t)

)(
w(t) − z1(t)

)
+ zr(t), zr−1(0) = z0r−1 ∈ Rm,

żr(t) =
(
ar + pr h(t)

)(
w(t) − z1(t)

)
+ Γ̃u(t), zr(0) = z0r ∈ Rm,

h(t) :=
1

1 − φ(t)2∥w(t) − z1(t)∥2
,

(3.1)

where Γ̃ ∈ Rm×m is the so-called high-gain matrix, which satisfies certain proper-
ties, see Definition 3.2. Further, the constants a := (a1, . . . , ar), p := (p1, . . . , pr)
and the function φ are design parameters to be introduced and determined later in
Definition 3.2. The pre-compensator being of funnel type shows up in the last line
in (3.1), where the gain function h is introduced. If the error between the signals w
and z1 is small, the gain is close or equal to one; if the error is near the funnel
boundary, i.e., if φ∥w − z1∥ is close to one, the gain growths rapidly and forces z1
into the direction of w. The situation is illustrated in Figure 3.2.

(a) Signal w and pre-
compensator state z1.

(b) Error w− z1 and funnel
boundary 1/φ.

(c) Gain funtion h.

Figure 3.2: Exemplary application of the funnel pre-compensator to a signal w, the
error w− z1 and the shape of the gain function h determined by φ ∈ Φr and w− z1.

The first result in [32] concerns feasibility of the funnel pre-compensator applied
to given signals, namely [32, Prop. 1] guarantees prescribed performance of the er-
ror between the signal w and the pre-compensator’s output z := z1 as shown in
Figure 3.2b. Moreover, the derivative ż is known explicitly. However, although z
approximates the input signal w arbitrarily good (as good as prescribed by the
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3.1. The funnel pre-compensator

chosen funnel function), the higher derivatives ẇ, . . . , w(r−1), are not approximated.
Neither in the sense that the higher derivatives ż, . . . , z(r−1) approximate the higher
derivatives of w, nor that the states zi, i = 1, . . . , r, approximate the higher deriva-
tives of w in the sense of prescribed performance of the respective errors. Having
in mind that we are searching for a signal, the higher derivatives of which are
known, the previous observation motivates a successive application of the funnel
pre-compensator, resulting in a cascade of funnel pre-compensators as introduced
in [32, Sec. 2]. This means, to apply funnel pre-compensators in a row to the pre-
ceding system, which is already a funnel pre-compensator, i.e., for i, n ∈ N we have
FP : Pn → Pn, (u, zi−1,1) 7→ (u, zi,1). Note that applying pre-compensators in a
row requires an adaptation of notation. We introduce double indices to indicate
the states, i.e., zi,j denotes the jth state of the ith pre-compensator, and the gain
function hi := 1/(1 − φ2∥zi−1,1 − zi,1∥2) is indexed respectively. Applying r − 1
pre-compensators in a row we obtain for φ1, φ ∈ Φr the following structure

FP (a, p, Γ̃, φ) ◦ · · · ◦ FP (a, p, Γ̃, φ) ◦ FP (a, p, Γ̃, φ1) : Pr → Pr,

(u,w) 7→ (u, z),
(3.2)

where, except of the first, all pre-compensators in the cascade have the same funnel
function φ ∈ Φr and the same high-gain matrix Γ̃. Further, as in the case of only
one pre-compensator, the parameters a, p > 0 (componentwise) are introduced and
discussed in Definition 3.2. The situation is depicted in Figure 3.3. For such a

(u,w) ∈ Pr FP FP −−− FP

−−−
u(t) u(t) u(t) u(t)

w(t) z1,1(t) z2,1(t) zr−2,1(t) z(t)

a, p, Γ̃, φ1 a, p, Γ̃, φ a, p, Γ̃, φ

Figure 3.3: Cascade of r−1 funnel pre-compensators given in (3.2) applied to signals
(u,w) ∈ Pr. The figure is based on the respective figure in [32].

cascade of funnel pre-compensators (3.2) the result [32, Thm. 1] states that applied
to signals (u,w) ∈ Pr, the cascade yields a system with output z := zr−1,1 such
that the error e = w− z evolves within a prescribed performance funnel, and more-
over, all derivatives ż, . . . , z(r−1) are known and given explicitly via the intermediate
states zi,j, i = 1, . . . , r − 1, j = 1, . . . , r.

Remark 3.1. Consider a cascade of r − 1 funnel pre-compensators (3.2). We dis-
cuss and present an explicit representation of higher derivatives of the funnel pre-
compensator’s output z = zr−1,1. For i ≥ 2 we perform the following calculation
involving equations (3.1)

żi,1(t) = zi,2(t) + (a1 + p1hi(t))(zi−1,1(t) − zi,1(t)),

z̈i,1(t) = zi,3(t) + (a2 + p2hi(t))(zi−1,1(t) − zi,1(t))

+ p1ḣi(t)(zi−1,1(t) − zi,1(t)) + (a1 + p1hi(t))(żi−1,1(t) − żi,1(t)),
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Chapter 3. Output feedback control

with the gain functions hi given in (3.1), the derivative of which are given by

d
dt
hi(t) = 2hi(t)

2
(
φ(t)φ̇(t)∥zi−1,1(t) − zi,1(t)∥2

+ φ(t)2⟨zi−1,1(t) − zi,1(t), żi−1,1(t) − żi,1(t)⟩
)
.

This motivates to introduce, in reference to [32, Rem. 3], the following functions.
Let hk, φi ∈ R and ξi ∈ Rm. Then, for k, l ∈ {1, . . . , r − 1} and i ≥ 2, we define
recursively

L̃k,l
0 (hk, φ0, ξ0) := (al + plhk)ξ0,

L̃k,l
i+1(hk, φ0, . . . , φi+1, ξ0, . . . , ξi+1) :=

∂L̃k,l
i

∂hk
·
(
φ0φ1∥ξ0∥2 + φ2

0⟨ξ0, ξ1⟩
)

+
i∑

j=0

∂L̃k,l
i

∂φj

· φj+1 +
i∑

j=0

∂L̃k,l
i

∂ξj
· ξj+1.

With this, defining vi := zi−1,1−zi,1 and invoking equations (3.1), we obtain for i ≥ 2
and j < min{k, i}(

d
dt

)j (
(ak−j + pk−jhi(t))vi(t)

)
= L̃i,k−j

j

(
hi(t), φ(t), . . . , φ(j)(t), vi(t), . . . , v

(j)
i (t)

)
.

For (u,w) ∈ Pr and i = 2, . . . , r − 1, j = 0, . . . , r − 1 we define

L1
j(t) :=

j−1∑
s=0

L̃1,j−1
s

(
h1(t), φ1(t), . . . , φ

(s)
1 (t), w(t) − z1,1(t), . . . , w

(s)(t) − z
(s)
1,1(t)

)
,

Li
j(t) :=

j−1∑
s=0

L̃i,j−1
s

(
hi(t), φ(t), . . . , φ(s)(t), vi(t), . . . , v

(s)
i (t)

)
.

Then, invoking equations (3.1), (3.2) we have

z
(j)
1,1(t) = z1,j+1 + L1

j(t),

z
(j)
i,1 (t) = zi,j+1 + Li

j(t).
(3.3)

In particular, for the funnel pre-compensator’s output z := zr−1,1 we make the
following observation. The function Lr−1

j depends on the first j − 1 deriva-
tives of z and on the same number of derivatives of zr−2,1. Whilst the de-
pendence on the derivatives of z successively leads to a dependency of z(j) on

zr−1,1, . . . , zr−1,j+1, the recursive reapplication of (3.3) to zr−2,1, . . . , z
(j−1)
r−2,1 leads

to an explicit dependence of z(j) on the intermediate pre-compensator states
zr−1,1, . . . , zr−1,j+1, . . . , zr−j,1, zr−j,2, zr−j−1,1. Figure 3.4 gives a clarifying picture
of the aforesaid. Observing that for j = r − 1 the derivative z(r−1) depends on
zr−j−1,1 = z0,1 = w it is clear that the “length” r − 1 of the cascade corresponds to
the number of required derivatives of z = zr−1,1. We exemplify formula (3.3) for z(j)

for the case r = 3 and j = 2. We set v0 := w − z1,1 and v1 := z1,1 − z2,1 = z1,1 − z.
Then for (u,w) ∈ P3 we obtain

z̈(t) = z2,3(t) + (a2 + p2h2(t))v1(t)

+ (a1 + p1h2(t))
(
z1,2(t) + (a1 + p1h1(t))v0(t)−

(
z2,2(t) + (a1 + p1h2(t))v1(t)

))
+ 2p1h2(t)

2φ(t)φ̇(t)∥v1(t)∥2

+ 2p1h2(t)
2φ(t)2

〈
v1(t), z1,2(t) + (a1 + p1h1(t))v0(t)−

(
z2,2(t) + (a1 + p1h2(t))v1(t)

)〉
.
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z(j)

zr−1,1 zr−2,1

zr−1,2 żr−2,1
...

...

zr−1,j+1 z
(j−1)
r−2,1

zr−2,1 zr−3,1

zr−2,2 żr−3,1
...

...

zr−2,j z
(j−2)
r−3,1

· · ·
zr−j+1,1 zr−j,1

zr−j+1,2 żr−j,1

zr−j+1,3

zr−j,1 zr−j−1,1

zr−j,2

Figure 3.4: Schematic dependence of the derivatives z(j) on the intermediate pre-
compensator states zi,j. The figure is based on the respective figure in [32].

At the first glance, the expression for z̈ looks lengthy and awkward to handle. How-
ever, we stress that with the aid of formula (3.3) the computation of the derivatives
of z can be performed completely algorithmically, involving symbolic differentiation
and matrix vector multiplication.

Next, we introduce the set of feasible design parameters for the funnel pre-
compensator.

Definition 3.2. We define the set

Σ:=
{
(a, p, φ, φ1, ρ,Θ, Γ̃)∈Rr×Rr×Φr×Φr×R×Rm×m × Rm×m

∣∣∣(A.1)–(A.4) hold
}
,

where (A.1) – (A.4) denote the following properties.

(A.1) The numbers ai are such that ai > 0 for all i = 1, . . . , r, and

A :=


−a1 1

...
. . .

−ar−1 1
−ar 0

 ∈ Rr×r

is Hurwitz, i.e., σ(A) ⊆ C−. Furthermore, let P =
[

P1 P2

P⊤
2 P4

]
> 0, with P1 ∈ R,

P2 ∈ R1×(r−1), P4 ∈ R(r−1)×(r−1) be the solution of

A⊤P + PA+Q = 0

for some symmetric Q ∈ Rr×r with Q > 0; then p is defined asp1...
pr

 := P−1


P1 − P2P

−1
4 P⊤

2

0
...
0

 =

(
1

−P−1
4 P⊤

2

)
.

(A.2) The funnel functions φ1, φ ∈ Φr from (3.2) satisfy

∃ ρ > 1 ∀ t ≥ 0 : φ(t) = ρφ1(t).

(A.3) The matrix Γ̃ from (3.2) is symmetric and definite (w.l.o.g. we may as-
sume Γ̃ > 0) and moreover, for a given symmetric 0 < Θ ∈ Rm×m we
have

ΘΓ̃−1 =
(

ΘΓ̃−1
)⊤

> 0.
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(A.4) For the matrix Θ ∈ Rm×m from (A.3), Γ̃ from (3.2) and ρ from (A.2) the
matrix G := Im − ΘΓ̃−1 satisfies

∥G∥ < min

{
ρ− 1

r − 2
,

ρ

4ρ2(ρ+ 1)r−2 − 1

}
.

If conditions (A.1) – (A.4) hold we write (a, p, φ, φ1, ρ,Θ, Γ̃) ∈ Σ.

Remark 3.3. We comment on the conditions (A.1) - (A.4).

(i) At the first glance, there are r parameters to be chosen appropriately satis-
fying (A.1). However, considering the polynomial (s + s0)

r, which has all its
roots in C− for s0 > 0, it is clear, with

(s+ s0)
r = sr +

r∑
i=1

ais
r−i,

that

A :=


−a1 1

...
. . .

−ar−1 1
−ar 0

 ∈ Rr×r, σ(A) ⊆ C−,

that is, the matrix A is Hurwitz. Moreover, the simple choice Q = Im is
always feasible; and the matrix P is completely determined by the choice of A
and Q. With this, since p1, . . . , pr are given by the Lyapunov matrix P , all
parameters required to satisfy (A.1) can be determined by choosing one real
number s0 > 0.

(ii) Condition (A.2) means that the first funnel, which limits the error w − z1,1,
is somewhat wider than the others. As we will see later in Section 3.3 this is
relevant in the case of output tracking.

(iii) Property (A.3) in particular asks for regularity of the matrix product ΘΓ̃−1,
and (A.4) ensures that the matrix Γ̃ is “not too different” from matrix Θ.
We highlight that, although the matrix Θ is not assumed to be known,
(A.3) & (A.4) are feasible. In the special case if Θ is known, (A.3) & (A.4)
can be trivially satisfied via the choice Γ̃ = Θ.

(iv) If the funnel pre-compensator is applied to signals (u,w) ∈ Pr, then condi-
tions (A.3) & (A.4) are asked to be satisfied for Θ = Γ.

Example 3.4. We illustrate an application of a cascade of funnel pre-compensators
to given signals (u,w) ∈ Pr. Moreover, we qualitatively compare how the parameters
influence its performance. We choose the signals

w(t) = e−(t−5)2 − 0.5, u(t) = sin(t),

and, since (u,w) ∈ C∞(R≥0;R)×C∞(R≥0;R), we choose to simulate the application
of a cascade consisting of two funnel pre-compensators (3.2), i.e., we consider the
case r = 3. Initially we choose a Hurwitz polynomial, i.e., a polynomial whose roots
have strict negative real part, to determine the matrix A ∈ R3×3 from (A.1) via the
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polynomial’s coefficients, cf. Remark 3.3. During various simulations with different
parameters it turned out that the parameters ai influence the pre-compensator’s
performance the most. So we compare three sets of these parameters. To this end,
we choose the Hurwitz polynomials

(α + 1)3 = α3 + 3α2 + 3α + 1,

(β + 3)3 = β3 + 9β2 + 27β + 27,

(γ + 5)3 = γ3 + 15γ2 + 75γ + 125,

which determine corresponding matrices

A =

−3 1 0
−3 0 1
−1 0 0

 , B =

 −9 1 0
−27 0 1
−27 0 0

 , C =

 −15 1 0
−75 0 1
−125 0 0

 ,
so a1 = 3, a2 = 3, a3 = 1, b1 = 9, b2 = 27, b3 = 27, and c1 = 15, c2 = 75, c3 = 125.
Choosing Q := I3 the respective Lyapunov matrix Pi, i ∈ {A,B,C}, is given as

PA =

 1 −1
2

−1
−1

2
1 −1

2

−1 −1
2

4

 , PB =

 4 −1
2

−22
27

−1
2

22
27

−1
2

−22
27

−1
2

61
81

 , PC =

 58
5

−1
2

−136
125

−1
2

136
125

−1
2

−136
125

−1
2

1333
3125

 ,
and so

pa =

1
2
3
1
3

 , pb =

 1
1037
481
1787
711

 , pc =

 1
1383
391
2230
333

 .

Next, we choose the funnel function φ(t) = (e−t + 0.05)−1, and φ1(t) = φ(t)/ρ
for ρ = 1.1. As initial values we set zi,j(0) = 0 for i = 1, 2, j = 1, 2, 3 satisfying
the conditions in [32, Thm. 1]. We run the simulation over the time interval 0 − 10
seconds. The outcome is depicted in Figure 3.5. In Figure 3.5a the signal w and the

0 5 10
-1

0

1

(a) Signal w and the pre-compensator’s
output for different choices of parameters,
respectively.

0 5 10
0

1

(b) Errors between the signal w and
the pre-compensator’s output for different
choices of parameters, respectively.

Figure 3.5: Illustration of functionality of the funnel pre-compensator applied to
given signals (u,w) ∈ P3.
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pre-compensator’s respective output zi, i ∈ {A,B,C}, is shown. We observe that
the “approximation quality” strongly depends on the parameters ai satisfying (A.1).
While in the first case the signals w and zA differ quite much, the second case shows
a much better approximation; and in the third case the signal w and the output zC
are almost identical. In Figure 3.5b the respective error between the signal w and
the pre-compensator’s output z is depicted. Here the difference of approximation
quality mentioned before crystallises from the viewpoint of errors, which are quite
different. Although the signals zA, zB, zC approximate the signal w quite differently,
we emphasize that in all three cases the error evolves within the prescribed funnel
boundaries. This means all approximations are at least as good as a “predetermined
quality”. The simulations have been performed in Matlab (solver: ode23tb, default
tolerances). ⋄

3.2 Preservation of minimum phase

As discussed in Chapter 2, most high-gain feedback control schemes require the
internal dynamics to be stable, i.e., the application of such control laws is restricted
to minimum phase systems. Therefore, in order to utilize the funnel pre-compensator
to enable high-gain feedback control with unknown output derivatives, it is decisive
that the conjunction of a minimum phase system with a funnel pre-compensator
results in a minimum phase system. For this reason, in Section 3.2.2 we focus on
the question formulated in [32, Rem. 4], namely if the interconnection of a minimum
phase system with a cascade of funnel pre-compensators yields a minimum phase
system for relative degree larger than three. In fact, we aim to answer this question
for the case of relative degree larger than two, since a careful inspection reveals that
the proof of [32, Thm. 2], where this question seems to be answered for relative degree
two and three, is incomplete as regards the boundedness of the gain functions h1, h2
in the case r = 3 on the one hand and on the other hand, the property (T.3)
of the involved operator T̃. In this section we show that for arbitrary r ∈ N the
interconnection of a cascade of r−1 funnel pre-compensators with a minimum phase
system with relative degree r yields a system of the same relative degree which is
minimum phase as well.

3.2.1 System class

We introduce the system class under consideration in this chapter. Recalling the
operator class T n,q

σ from Definition 1.4, we introduce a system class Lm,r, which is
the same class of systems under consideration in [32], i.e., multi-input multi-output
minimum phase systems, where the input and the output have common dimension.

Definition 3.5. If for m, p, q ∈ N we have f ∈ C(Rp×Rq;Rm), d ∈ L∞(R≥0;Rp), for
some τ > 0 the operator T belongs to the class T rm,q

τ , and the matrix Γ ∈ Rm×m is
symmetric and definite (w.l.o.g. we assume Γ > 0), then for Ri ∈ Rm×m, i = 1, . . . , r,
we say a system

y(r)(t) =
r∑

i=1

Riy
(i−1)(t) + f

(
d(t),T

(
y, ẏ, . . . , y(r−1)

)
(t)
)

+ Γu(t), (3.4)
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with given initial trajectory y|[−τ,0] = y0 ∈ Wr−1,∞([−τ, 0];Rm), belongs to the
class Lm,r; with the auxiliary tupel R := (R1, . . . , Rr) ∈ Rm×m × · · · × Rm×m we
write

(d, f,T,Γ, R) ∈ Lm,r.

In Definition 3.5 of the system class Lm,r the number r ∈ N is the relative degree
and τ > 0 is the memory of the system. The function u : R≥0 → Rm is called input,
the function y : R≥0 → Rm output of system (3.4), respectively. From the viewpoint
of applications, the function f in (3.4) encodes internal and external forces such
as restoring forces, friction and Coriolis forces, to name but a few. Moreover, the
operator T allows to model systems with hysteresis effects, nonlinear delay elements
or systems with infinite dimensional linear internal dynamics, cf. Remark 1.5, for
detailed applications see, e.g., [28, 18, 17, 27]. In the context of systems (3.4),
condition (T.1) in Definition 1.4 resembles a minimum phase property or, more pre-
cisely, an input to state stability of the internal dynamics, where from the viewpoint
of the internal dynamics the system’s output and its derivatives act as inputs, cf.
Section 2.1.

In what follows, we investigate the conjunction of a minimum phase system with
a cascade of funnel pre-compensators. We aim to show that this conjunction results
in a minimum phase system. The assumption that the only information available
from the system is its output y motivates the following definition of a subclass
of T n,q

σ , which then allows to introduce a subclass of the system class Lm,r.

Definition 3.6. For r,m ∈ N, n = rm and 1 ≤ k ≤ r we define the operator
class T n,q

σ,k :=
{
T ∈ T n,q

σ

∣∣T satisfies (Tk.1)
}
⊆ T n,q

σ (equality if k = r), where

(Tk.1) for all c1 > 0 there exists c2 > 0 such that for all ξ1, . . . , ξr ∈ C([−σ,∞);Rm)

sup
t∈[−τ,∞)

∥∥∥(ξ1(t)⊤, . . . , ξk(t)⊤
)⊤∥∥∥ ≤ c1 ⇒ sup

t∈[0,∞)

∥T(ξ1, . . . , ξr)(t)∥ ≤ c2.

Condition (Tk.1) means boundedness of T(ξ1, . . . , ξr) whenever its first k ≤ r in-
put arguments are bounded, which is, for k < r, a stronger version of condition (T.1)
in Definition 1.4. With this, we may introduce a subclass of Lm,r, namely systems
of the form (3.4), where the operator satisfies (Tk.1), i.e., T ∈ T n,q

σ,k . We set

Lm,r
k :=

{
(d, f,T,Γ, R) ∈ Lm,r

∣∣T ∈ T n,q
σ,k

}
⊆ Lm,r (equality if k = r).

Remark 3.7. The somewhat arcane condition T ∈ T rm,q
σ,1 reflects the intuition that

in order to have the conjunction of the system with the funnel pre-compensator
being a minimum phase system, we must be able to conclude from the available
information (only the output y) that the internal dynamics stay bounded. Note
that this, however, does not mean that the operator T does not act on the output’s
derivatives, see Example 3.17.

Remark 3.8. We highlight an important subclass of (3.4), namely linear systems
of the form

ẋ(t) = Ax(t) +Bu(t) + d(t), x(0) = x0 ∈ Rn,

y(t) = Cx(t),
(3.5)
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where A ∈ Rn×n is the system matrix , B ∈ Rn×m is the input distribution matrix,
and C : Rn → Rm the linear output measurement, i.e., C ∈ Rm×n for m ≤ n.
Furthermore, rkC = rkB = m, whereby it is clear that the dimensions of the input
and the output coincide. We define the set of functions

D(R≥0;Rn) :=

{
d ∈ L∞(R≥0;Rn)

∣∣∣∣ ∀ j = 0, . . . , r − 1 :
CAjd ∈ Wr−1−j,∞(R≥0;Rn)

}
.

We stress that Wr−1,∞(R≥0;Rn) ⊂ D(R≥0;Rn). If

∀ k ∈ {0, . . . , r − 2} : CAkB = 0, Γ := CAr−1B ∈ Glm(R), and d ∈ D(R≥0;Rn),
(3.6)

then, following the derivations and calculations in [95, Thm. 3] and involving the
transformation U given by (2.4) in Section 2.1, with the operator

L : D(R≥0;Rn) → L∞(R≥0;Rn),

d(·) 7→

t 7→

l1(t)

...
lr(t)

0n−rm


 , li(t) =

i−2∑
j=0

CAjd(i−2−j)(t), i = 1, . . . , r,

the change of coordinates
ξ1
...
ξr
η

 = Ux+ L(d) =


y
...

y(r−1)

η


transforms system (3.5) into Byrnes-Isidori form

ξ̇i(t) = ξi+1(t), ξi(0) = ξ0i ∈ Rm,

ξ̇r(t) =
r∑

j=1

Rjξj(t) + Sη(t) + Γu(t) + dr(t), ξr(0) = ξ0r ∈ Rm,

η̇(t) = Qη(t) + Pξ1(t) + dη(t), η(0) = η0 ∈ Rn−rm,

(3.7a)

where i = 1, . . . , r − 1, with output

y(t) = ξ1(t). (3.7b)

The matrices R1, . . . , Rr, S, P,Q are given in (2.5), and

dr(t) :=
r−1∑
j=0

(
CAjd(r−1−j)(t) −Rj+1lj+1(t)

)
∈ L∞(R≥0 → Rm),

dη(t) := N
(
d(t) − AU−1L(d)(t)

)
∈ L∞(R≥0 → Rn−rm),

(3.8)

and the high-gain matrix Γ is given in (3.6). As we have already seen in Chapter 2,
the last differential equation in (3.7a) describes the internal dynamics of system (3.5).
Associating the linear integral operator

J : y(·) 7→
(
t 7→

∫ t

0

eQ(t−s)Py(s) ds

)
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with the internal dynamics given in (3.7a) we obtain for H(t) := eQt[0, In−rm]Ux0

and D(t) := eQt
(
dη(0) +

∫ t

0
e−Qsdη(s) ds

)
the internal state

η(t) = D(t) +H(t) + J(y)(t).

Then, invoking (3.7) we find that the linear system (3.5) is equivalent to the func-
tional differential equation

y(r)(t) =
r∑

i=1

Riy
(i−1)(t) + f

(
S(D(t) +H(t)), SJ(y)(t)

)
+ Γu(t) + dr(t),

where f(v, w) = v +w for v, w ∈ Rm, and the operator J introduced above satisfies
conditions (T.2) and (T.3) in Definition 1.4 specifying the operator class. The
minimum phase property (condition (T.1)) for linear systems has various equivalent
conditions, which have been studied extensively, see for instance [48, 15, 188]. In the
present work, we restrict ourself mentioning the equivalence between system (3.5)
being minimum phase, i.e., σ(Q) ⊆ C−, and having asymptotically stable zero
dynamics, cf. [95], where referring exemplarily to [93, 98] the latter means

∀λ ∈ C− : rk

[
A− λI B
C 0

]
= n+m. (3.9)

We highlight that for σ(Q) ⊆ C− we have D ∈ L∞(R≥0;Rm). Therefore, if sys-
tem (3.5) has relative degree r ∈ N as in (3.6) and satisfies (3.9), the class of linear
minimum phase systems is contained in the system class Lm,r

1 . If the disturbance
does not affect the integrator chain but enters the system on the same level as the
input does, i.e.,

∀ k = 0, . . . , r − 2 : CAkd(·) = 0,

which is an often used assumption, cf. [16, 14], then D(R≥0;Rn) = L∞(R≥0;Rn).
In this case the coordinate transformation simplifies to (ξ⊤, η⊤)⊤ = Ux and for the
disturbance (d⊤r , d

⊤
η )⊤ = [(CAr−1)⊤, N⊤]⊤d.

Moreover, Lm,r
1 encompasses systems of the following form

y(t) = ξ1(t),

ξ̇i(t) = ξi+1(t), i = 1, . . . , r − 1,

ξ̇r(t) = f(t, ξ(t), η(t)) + Γu(t),

η̇(t) = g(η(t), ξ1(t)),

(3.10)

where for rm ≤ n ∈ N the function f : R≥0 × Rrm × Rn−rm → Rm is locally
Lipschitz in (ξ, η) ∈ Rrm × Rn−rm, and piecewise continuous and bounded in t;
g : Rn−rm × Rm;Rn−rm is such that for ξ1 ∈ L∞(R≥0;Rm) the corresponding differ-
ential equation has a bounded solution; and Γ ∈ Glm(R) is symmetric and definite.
Therefore, with constant input parameters, a subclass of the system class under con-
sideration in [50] is contained in L1,r

1 ⊂ Lm,r
1 . Moreover, the class Lm,r

1 encompasses
the system class under consideration in [93]. In [47, Cor. 5.7] explicit criteria on
the parameters a, b of nonlinear systems of the form ẋ(t) = a(x(t)) + b(x(t))u(t) are
given such that it can be transformed into a system (3.10).
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We conclude the introduction of the system class under consideration with the pre-
ceding remark and turn towards the conjunction of a minimum phase system with
a cascade of funnel pre-compensators and its preservation of minimum phase.

3.2.2 A cascade of funnel pre-compensators in conjunction
with a minimum phase system

In this section we present and prove the extension of [32, Thm. 2] for arbitrary
relative degree r ∈ N, that is, the conjunction of a minimum phase system belonging
to the class Lm,r

1 with a cascade of r−1 funnel pre-compensators results in a system
of the same relative degree which is minimum phase as well.

Theorem 3.9. Consider a system (3.4) with (d, f,T,Γ, R) ∈ Lm,r
1 and given initial

data y0 ∈ Wr−1,∞([−τ, 0];Rm) (we emphasize T ∈ T rm,q
τ,1 , q ∈ N). Further, consider

the cascade of funnel pre-compensators defined by (3.2) with (a, p, φ, φ1, ρ,Γ, Γ̃) ∈ Σ
as in Definition 3.2 (note that (A.3) & (A.4) are asked to hold for Θ = Γ). Assume
the initial conditions

φ1(0)∥y(0) − z01,1∥ < 1, φ(0)∥z0i−1,1 − z0i,1∥ < 1, i = 2, . . . , r − 1, (3.11)

are satisfied. Then, for q̄ = rm(r − 1) + r, there exist d̃ ∈ L∞(R≥0;Rr), a function
F̃ ∈ C(Rr × Rq̄;Rm) and an operator T̃ : C(R≥0;Rrm) → L∞

loc(R≥0;Rq̄) with

(d̃, F̃ , T̃, Γ̃, 0rm×m) ∈ Lm,r,

such that the conjunction of (3.2) and (3.4) with input u and output z := zr−1,1 can
be equivalently written as

z(r)(t) = F̃
(
d̃(t), T̃(z, ż, . . . , z(r−1))(t)

)
+ Γ̃u(t), (3.12)

with respective initial conditions.

Sketch of proof. Before we prove Theorem 3.9 rigorously, we present a sketch of
the proof, such that the reader has a guidance leading through the partly technical
and quite long proof; the proof itself follows hereafter and is subdivided in four
main steps. In the Step one we recall the transformations given in [32, pp. 4759-
4760] which allow to analyse the error dynamics of two successive pre-compensators.
Step two is the main part of the proof consisting of preparatory work to show that
there exists an operator T̃ ∈ T rm,q̄

0 such that the conjunction of a minimum phase
system (3.4) with a cascade of funnel pre-compensators (3.2) can be written as
in (3.12); the functions d̃ and F̃ are then given naturally. We define an operator T̃
mapping the pre-compensator’s output z and its derivatives to the state of an overall
auxiliary error system (3.14) and the respective gain functions. In order to show
that T̃ satisfies condition (T.1) in Definition 1.4 we establish boundedness of the
solution of the auxiliary system (3.14) and the respective gain functions. Here, Step
two splits into two parts. First, using that T(y, . . . , y(r−1)) is bounded whenever y is
bounded (by T ∈ T rm,q

τ,1 ), we may define an overall system of errors of two successive
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3.2. Preservation of minimum phase

pre-compensators, namely sytem (3.18) for i = 3, . . . , r − 1,

ẇ1(t) = Âw1(t) − h1(t)P̄ΓΓ̃−1w̄(t) +B1(t),

ẇ2(t) = Âw2(t) − h2(t)P̄w2,1(t) + h1(t)P̄ w̄(t) +B2(t),

ẇi(t) = Âwi(t) − hi(t)P̄wi,1(t) + hi−1(t)P̄wi−1,1(t) +Bi(t),

where the error-states wi,j stem from the transformations in Step one, and the
compactly written states wi, w̄ are defined at the beginning of Step two; B1, B2, Bi

are bounded functions. For this overall error system (3.18) we find a Lyapunov
function, which in combination with Grönwall’s lemma allows us to deduce bound-
edness of the error states wij for all i = 1, . . . , r − 1 and j = 1, . . . , r. In the
second part of Step two, which is the most technical part of the proof, we show
that the gain functions hi are bounded. This demands particular accuracy since
each of the functions hi may introduce a singularity. Due to the shape of the gain
functions, namely h(t) = (1 − φ(t)2∥x(t)∥2)−1

, boundedness is equivalent to the
existence of ν > 0 such that ∥x(t)∥ ≤ φ(t)−1 − ν, which is commonly utilized in
standard funnel control proofs, cf. [25, pp. 350-351]. However, unlike the standard
funnel case, the auxiliary error dynamics involve the respective previous gain func-
tion, and the first equation involves the last gain function. To see this, we anticipate
the set of equations (3.26), which is for i = 2, . . . , r − 1 given by

d
dt

1
2
∥x1(t)∥2 = −h1(t)∥x1(t)∥2 + ⟨x1(t), hr−1(t)Gxr−1(t) + b1(t)⟩,

d
dt

1
2
∥xi(t)∥2 = −hi(t)∥xi(t)∥2 + ⟨xi(t), hi−1(t)xi−1(t) + bi(t)⟩,

where xi are auxiliary states defined in Step two; b1, bi are bounded functions. It
turns out that this loop structure demands some technical derivations and requires
accurate estimations of the involved expressions. Exploiting properties (A.1) – (A.4)
of the design parameters we can show by contradiction that there exist κi > 0 such
that ∥xi(t)∥ ≤ φ(t)−1 − κi for all i = 2, . . . , r − 1, and ∥x(t)1∥ ≤ φ1(t)

−1 − κ1,
respectively, which then implies boundedness of all gain functions hi. In Step three
we summarize the previously established results to deduce that the solution of the
auxiliary error system (3.14) is globally defined. In Step four we show that the
operator T̃ belongs to the operator class T rm,q̄

0 . T̃ satisfying conditions (T.1) & (T.2)
in Definition 1.4 is immediate from the previous steps; so it remains to show that T̃
satisfies the technical condition (T.3). We do so by interpreting the arguments of
the operator as inputs for the error system (3.14) and show that the right-hand
side of (3.14) satisfies a Lipschitz estimation. Then, with the aid of Grönwall’s
lemma we deduce T̃ ∈ T rm,q̄

0 . Finally, the functions d̃ and F̃ arise naturally in
equation (3.60). Together, we may conclude that a minimum phase system (3.4) with
(d, f,T,Γ, R) ∈ Lm,r

1 , in conjunction with a cascade of funnel pre-compensators (3.2)
with (a, p, φ, φ1, ρ, Γ̃) ∈ Σ as in Definition 3.2, can be equivalently written as a
minimum phase system (3.12) belonging to Lm,r.

Before we present the proof of Theorem 3.9, we establish the following statement
about the Kronecker product of two matrices, which will be used within the proof.
For two matrices L ∈ Rl×m and K = (kij)i=1,...,k;j=1,...,n ∈ Rk×n the Kronecker
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product is defined by

K ⊗ L :=

k11L · · · k1nL
...

. . .
...

kk1L · · · kknL

 ∈ Rkl×mn.

With this we state the following result from linear algebra.

Lemma 3.10. Let A ∈ Rn×n. Then,

(i) for the spectrum we have σ(A⊗ In) = σ(A),

(ii) if P = P⊤ ∈ Rn×n solves A⊤P + PA+Q = 0 for some Q = Q⊤ ∈ Rn×n, then

(A⊗ In)⊤(P ⊗ In) + (P ⊗ In)⊤(A⊗ In) + (Q⊗ In) = 0.

Proof. Assertion (i) is a direct consequence of [82, Thm. 4.2.12]. Invoking the rules
of calculation for the Kronecker product, specifically (A⊗ In) (P ⊗ In) = AP ⊗ In,
assertion (ii) is immediate.

With the sketch above and Lemma 3.10 at hand, we may now present the proof
of Theorem 3.9.

Proof of Theorem 3.9. In the following we assume r ≥ 3, since the case r = 2 was
already proven in [32, Thm. 2]. The proof is subdivided in four main steps.
Step one. We present the transformations performed in [32, p. 4758-4760] to study
the error dynamics of two successive funnel pre-compensators. We define the error
e1,j := y(j−1) − z1,j for j = 1, . . . , r − 1, and e1,r := y(r−1) − ΓΓ̃−1z1,r. Then, we
obtain

ė1,1(t) = e1,2(t) − (a1 + p1h1(t))e1,1(t),

...

ė1,r−2(t) = e1,r−1(t) − (ar−2 + pr−2h1(t))e1,1(t),

ė1,r−1(t) = e1,r(t) − (ar−1 + pr−1h1(t))e1,1(t) + (ΓΓ̃−1 − Im)z1,r(t),

ė1,r(t) = −ΓΓ̃−1(ar + prh1(t))e1,1(t)

+
r∑

i=1

Riy
(i−1)(t) + f

(
d(t),T(y, ẏ, . . . , y(r−1))(t)

)
.

We set v1,1 := e1,1 and ṽ :=
∑r−1

i=1 vi,1, and for j = 2, . . . , r we define the auxiliary

error v1,j := e1,j −
∑j−1

k=1Rr−j+k+1ṽ
(k−1). With this we obtain

v̇1,1(t) = v1,2(t) − (a1 + p1h1(t))v1,1(t) +Rrṽ(t),

...

v̇1,r−2(t) = v1,r−1(t) − (ar−2 + pr−2h1(t))v1,1(t) +R3ṽ(t),

v̇1,r−1(t) = v1,r(t) − (ar−1 + pr−1h1(t))v1,1(t) +R2ṽ(t) + (ΓΓ̃−1 − Im)z1,r(t),

v̇1,r(t) = −ΓΓ̃−1(ar + prh1(t))v1,1(t) +R1ṽ(t)

+
r∑

i=1

Ri

(
y(i−1)(t) − ṽ(i−1)(t)

)
+ f
(
d(t),T(y, ẏ, . . . , y(r−1))(t)

)
.
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Next, for i = 2, . . . , r − 1 and j = 1, . . . , r we set vi,j := zi−1,j − zi,j. Then,

v̇i,1(t) = vi,2(t) − (a1 + p1hi(t))vi,1(t) + (a1 + p1hi−1(t))vi−1,1(t),

...

v̇i,r−1(t) = vi,r(t) − (ar−1 + pr−1hi(t))vi,1(t) + (ar−1 + pr−1hi−1(t))vi−1,1(t),

v̇i,r(t) = −(ar + prhi(t))vi,1(t) + (ar + prhi−1(t))vi−1,1(t).

We record the following observations. For z := zr−1,1 we have

y(t) − ṽ(t) = y(t) −
r−1∑
i=1

vi,1(t)

= y(t) − (y(t) − z2,1(t)) − . . .− (zr−2,1(t) − zr−1,1(t))

= zr−1,1(t) = z(t),

(3.13a)

the following relation for z1,r

z1,r(t) = z
(r−1)
1,1 (t) −

r−2∑
k=0

(
d

dt

)k (
(ar−k−1 + pr−k−1h1(t))v1,1(t)

)
, (3.13b)

and for z1,1

z1,1(t) = y(t) − v1,1(t) = z(t) + ṽ(t) − v1,1(t) = z(t) +
r−1∑
i=2

vi,1(t). (3.13c)

Then with (3.13) we have

z1,r(t) = z(r−1)(t) +
r−1∑
i=2

v
(r−1)
i,1 (t) −

r−2∑
k=0

(
d

dt

)k (
(ar−k−1 + pr−k−1h1(t))v1,1(t)

)
.

We complete Step one by introducing a further transformation and consider the
dynamics of the resulting error variables. For j = 1, . . . , r and i = 2, . . . , r − 1 we
define wi,j := vi,j. Further, for j = 1, . . . , r − 1 we define with G := I − ΓΓ̃−1

w1,r−j(t) := v1,r−j(t) +G

r−1∑
k=2

v
(r−1−j)
k,1 (t)

−G

r−2∑
k=j

(
d

dt

)k−j (
(ar−k−1 + pr−k−1h1(t))v1,1(t)

)
,

and w1,r := v1,r. With these definitions we investigate the dynamics of the auxiliary
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error variable wi,j. We set w̃ :=
∑r−1

i=2 wi,1 and obtain for i = 1

ẇ1,1(t) = w1,2(t) − ΓΓ̃−1(a1 + p1h1(t))(w1,1(t) −Gw̃(t))

+Rr(w1,1(t) + ΓΓ̃−1w̃(t)),

ẇ1,2(t) = w1,3(t) − ΓΓ̃−1(a2 + p2h1(t))(w1,1(t) −Gw̃(t))

+Rr−1(w1,1(t) + ΓΓ̃−1w̃(t)),

...

ẇ1,r−2(t) = w1,r−1(t) − ΓΓ̃−1(ar−2 + pr−2h1(t))(w1,1(t) −Gw̃(t))

+R3(w1,1(t) + ΓΓ̃−1w̃(t)),

ẇ1,r−1(t) = w1,r(t) − ΓΓ̃−1(ar−1 + pr−1h1(t))(w1,1(t) −Gw̃(t))

+R2(w1,1(t) + ΓΓ̃−1w̃(t)) −Gz(r−1)(t),

ẇ1,r(t) = −ΓΓ̃−1(ar + prh1(t))(w1,1(t) −Gw̃(t)) +R1(w1,1(t) + ΓΓ̃−1w̃(t))

+
r∑

i=1

Riz
(i−1)(t) + f

(
d(t),T(y, ẏ, . . . , y(r−1))(t)

)
,

h1(t) =
1

1 − φ1(t)2∥w1,1(t) −Gw̃(t)∥2
(3.14a)

for i = 2

ẇ2,1(t) = −(a1 + p1h2(t))w2,1(t) + (a1 + p1h1(t))(w1,1(t) −Gw̃(t)) + w2,2(t),

...

ẇ2,r−1(t) = −(ar−1+pr−1h2(t))w2,1(t)+(ar−1+pr−1h1(t))(w1,1(t) −Gw̃(t)) + w2,r(t),

ẇ2,r(t) = −(ar + prh2(t))w2,1(t) + (ar + prh1(t))(w1,1(t) −Gw̃(t)),

h2(t) =
1

1 − φ(t)2∥w2,1(t)∥2
,

(3.14b)
and for i = 3, . . . , r − 1 we find

ẇi,1(t) = −(a1 + p1hi(t))wi,1(t) + (a1 + p1hi−1(t))wi−1,1(t) + wi,2(t),

...

ẇi,r−1(t) = −(ar−1 + pr−1hi(t))wi,1(t) + (ar−1 + pr−1hi−1(t))wi−1,1(t) + wi,r(t),

ẇi,r(t) = −(ar + pr hi(t))wi,1(t) + (ar + pr hi−1(t))wi−1,1(t),

hi(t) =
1

1 − φ(t)2∥wi,1(t)∥2
.

(3.14c)
Step two. We aim to show the existence of T̃ ∈ T rm,q̄

0 as claimed in (3.12). First,
we define an operator and prove that it satisfies condition (T.1) in Definition 1.4.
This step consists of two parts. In the first part we show wi,j ∈ L∞([0, ω);Rm),
i = 1, . . . , r − 1 and j = 1, . . . , r; in the second part we show hi ∈ L∞(R≥0,R),
i = 1, . . . , r − 1. For q̄ = rm(r − 1) + r let T̃ : C([0,∞);Rrm) → L∞

loc(R≥0;Rq̄) be
the solution operator of (3.14) in the following sense: for ξ1, . . . , ξr ∈ C([0,∞);Rm)
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let wi,j : [0, ω) → Rm, ω ∈ (0,∞], be the unique maximal solution of (3.14), which
exists thanks to Proposition 1.9; with z = ξ1, ż = ξ2, . . . , z

(r−1) = ξr, and with
suitable initial values wi,j(0) according to the transformations. Then, we define for
t ∈ [0, ω)

T̃(ξ1, . . . , ξr)(t) :=
(
w1,1(t), . . . , w1,r(t), w2,1(t), . . . , wr−1,r(t), h1(t), . . . , hr−1(t)

)⊤
.

Note, that in (3.14a) the expressions y, ẏ, . . . , y(r−1) can be expressed in terms of wi,j

and z, ż, . . . , z(r−1) using y(i) = z(i) +w
(i)
1,1 + ΓΓ̃−1w̃(i) and equations (3.14). Defining

the set

D :=

{
(t, ζ1,1, . . . , ζr−1,r) ∈ R≥0 × Rrm(r−1)

∣∣∣∣ φ1(t)∥ζ1,1(t) −Gζ̃(t)∥ < 1,
φ(t)∥ζi,1(t)∥ < 1, i = 2, . . . , r − 1

}
,

where ζ̃ :=
∑r−1

i=2 ζi,1, we have (t, w1,1(t), . . . , wr−1,r(t)) ∈ D for all t ∈ [0, ω).
Furthermore, by Proposition 1.9 (iii) the closure of the graph of the solution
(w1,1, . . . , wr−1,r) of (3.14) is not a compact subset of D.

We show wi,j ∈ L∞([0, ω);Rm) for i = 1, . . . , r − 1 and j = 1, . . . , r. We compactly
write wi := (w⊤

i,1, . . . , w
⊤
i,r)

⊤ ∈ Rrm for i = 1, . . . , r − 1, and set w̄ := w1,1 − Gw̃.
For corresponding matrices A,Q, P satisfying (A.1), using the Kronecker matrix
product, we define

Â := A⊗Im ∈ Rrm×rm, P̂ := P ⊗Im ∈ Rrm×rm, Q̂ := Q⊗Im ∈ Rrm×rm. (3.15)

Then, using Lemma 3.10 we have for the spectra of Â, P̂ , Q̂ that σ(Â) = σ(A),
σ(P̂ ) = σ(P ) and σ(Q̂) = σ(Q), and

Â⊤P̂ + P̂ Â+ Q̂ = 0. (3.16)

Furthermore, for p1, . . . , pr from (A.1), setting P̄ := (p1, . . . , pr)
⊤ ⊗ Im we have

P̂ P̄ =
[
p̃Im, 0, . . . , 0

]⊤ ∈ Rrm×m, (3.17)

where p̃ := P1 − P2P
−1
4 P⊤

2 > 0. Aiming to show the bounded input to bounded
output property (T.1), we assume that z, ż, . . . , z(r−1) are bounded on [0, ω). As the
solution evolves in D, w1,1 − Gw̃,w2,1, . . . , wr−1,1 are bounded on [0, ω). Thus, y =
z+w1,1+ΓΓ̃−1w̃ is bounded and hence T

(
y, ẏ, . . . , y(r−1)

)
is bounded via T ∈ T rm,q

τ,1 ,

and therefore f
(
d,T

(
y, ẏ, . . . , y(r−1)

))
is bounded on [0, ω). Hence, invoking (3.15),

we may rewrite (3.14) as

ẇ1(t) = Âw1(t) − h1(t)P̄ΓΓ̃−1w̄(t) +B1(t),

ẇ2(t) = Âw2(t) − h2(t)P̄w2,1(t) + h1(t)P̄ w̄(t) +B2(t),

ẇi(t) = Âwi(t) − hi(t)P̄wi,1(t) + hi−1(t)P̄wi−1,1(t) +Bi(t),

(3.18)

for i = 3, . . . , r − 1 and suitable bounded functions B1, B2, Bi ∈ L∞([0, ω);Rrm).
Seeking a suitable Lyapunov function for the overall system (3.18) we define with P̂
from (3.15) the matrix

P̂1 :=
(
Ir ⊗ (ΓΓ̃−1)−

1
2

)
P̂
(
Ir ⊗ (ΓΓ̃−1)−

1
2

)
,
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which is possible since by (A.3) the matrix product ΓΓ̃−1 is regular. Moreover, P̂1

is symmetric and we observe P̂1 > 0. Thus, with P̂ P̄ = [p̃Im, 0, . . . , 0]⊤ ∈ Rrm×m

via (3.17), we obtain

P̂1P̄ = [p̃(ΓΓ̃−1)−1, 0, . . . , 0]⊤ ∈ Rrm×m. (3.19)

Since for all M ∈ Rm×m we have Â(Ir⊗M) = (Ir⊗M)Â, Â⊤(Ir⊗M) = (Ir⊗M)Â⊤

we obtain

Â⊤P̂1 =
(
Ir ⊗ (ΓΓ̃−1)−

1
2

)
Â⊤P̂

(
Ir ⊗ (ΓΓ̃−1)−

1
2

)
,

P̂1Â =
(
Ir ⊗ (ΓΓ̃−1)−

1
2

)
P̂ Â

(
Ir ⊗ (ΓΓ̃−1)−

1
2

)
.

Therefore,

Â⊤P̂1 + P̂1Â =
(
Ir ⊗ (ΓΓ̃−1)−

1
2

)(
Â⊤P̂ + P̂ Â

)(
Ir ⊗ (ΓΓ̃−1)−

1
2

)
(3.16)
= −

(
Ir ⊗ (ΓΓ̃−1)−

1
2

)
Q̂
(
Ir ⊗ (ΓΓ̃−1)−

1
2

)
=: −Q̂1,

(3.20)

where Q̂1 = Q̂⊤
1 by (A.3), and Q̂1 > 0 via (3.16) and (A.3). We define

0 < P :=


P̂1 0 . . . 0

0 P̂
. . .

...
...

. . . . . . 0

0 . . . 0 P̂

 = P⊤ ∈ Rrm(r−1)×rm(r−1), (3.21)

and set w := (w⊤
1 , . . . , w

⊤
r−1)

⊤ ∈ Rmr(r−1). With the definitions above, we consider
the Lyapunov function candidate

V : Rrm × · · · × Rrm → R,

(w1, . . . , wr−1) 7→ ⟨w,Pw⟩ = ⟨w1, P̂1w1⟩ +
r−1∑
i=2

⟨wi, P̂wi⟩,

and study its evolution along the solution trajectories of the respective differential
equations (3.18). We fix θ ∈ (0, ω) and note that wi ∈ L∞([0, θ);Rrm) for all
i = 1, . . . , r − 1. Using (3.19) and (3.20) we obtain for t ∈ [θ, ω)

d
dt
⟨w(t),Pw(t)⟩ = ⟨w1(t), P̂1Âw1(t)⟩ + ⟨P̂1Âw1(t), w1(t)⟩

+
r−1∑
i=2

⟨wi(t), P̂ Âwi(t)⟩ + ⟨P̂ Âwi(t), wi(t)⟩

+ 2⟨w1(t), P̂1B1(t)⟩ + 2
r−1∑
i=2

⟨wi(t), P̂Bi(t)⟩

+ 2h1(t)⟨w2(t), P̂ P̄ w̄(t)⟩ − 2h1(t)⟨w1(t), P̂1P̄ΓΓ̃−1w̄(t)⟩

+ 2
r−2∑
i=2

hi(t)⟨wi+1(t), P̂ P̄wi,1(t)⟩ − 2
r−1∑
i=2

hi(t)⟨wi(t), P̂ P̄wi,1(t)⟩.

(3.22)
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We estimate the addends separately. With the aid of (3.15) and (3.20) we have

⟨w1(t), P̂1Âw1(t)⟩ + ⟨P̂1Âw1(t), w1(t)⟩

+
r−1∑
i=2

⟨wi(t), P̂ Âwi(t)⟩ + ⟨P̂ Âwi(t), wi(t)⟩

≤ −λmin(Q̂1)∥w1(t)∥2 −
r−1∑
i=2

λmin(Q̂)∥wi(t)∥2,

(3.23a)

where 0 < λmin(Q̂1), λmin(Q̂) denotes the smallest eigenvalue of Q̂1, Q̂, respectively.
Boundedness of the functions Bi, i = 1, . . . , r − 1, introduced in (3.18) gives

⟨w1(t), P̂1B1(t)⟩ +
r−1∑
i=2

⟨wi(t), P̂Bi(t)⟩

≤ ∥P̂1∥∥B1∥∞∥w1(t)∥ + ∥P̂∥
r−1∑
i=2

∥Bi∥∞∥wi(t)∥.
(3.23b)

Invoking (3.17) and the definition of hi we obtain

r−2∑
i=2

hi(t)⟨wi+1(t), P̂ P̄wi,1(t)⟩ −
r−1∑
i=2

hi(t)⟨wi(t), P̂ P̄wi,1(t)⟩

= p̃
r−2∑
i=2

hi(t)⟨wi+1,1(t) − wi,1(t), wi,1(t)⟩ − p̃hr−1(t)∥wr−1,1(t)∥2

≤ p̃
r−2∑
i=2

hi(t)⟨wi+1,1(t) − wi,1(t), wi,1(t)⟩,

(3.23c)

and with the aid of (A.2) we observe for i = 2, . . . , r − 2

hi(t)⟨wi+1,1(t) − wi,1(t), wi,1(t)⟩
= −hi(t)∥wi,1(t)∥2 + hi(t)⟨wi,1(t), wi+1,1(t)⟩
≤ −hi(t)∥wi,1(t)∥2 + hi(t)∥wi,1(t)∥∥wi+1,1(t)∥

< −hi(t)∥wi,1(t)∥2 + hi(t)∥wi,1(t)∥
1

φ(t)

= −hi(t)∥wi,1(t)∥
(
∥wi,1(t)∥ −

1

φ(t)

)
= −∥wi,1(t)∥

1

(1 + φ(t)∥wi,1(t)∥)(1 − φ(t)∥wi,1(t)∥)

(
∥wi,1(t)∥ −

1

φ(t)

)
= −∥wi,1(t)∥

φ(t)∥wi,1(t)∥ − 1

(1 + φ(t)∥wi,1(t)∥)(1 − φ(t)∥wi,1(t)∥)

1

φ(t)

= ∥wi,1(t)∥
1

1 + φ(t)∥wi,1(t)∥
1

φ(t)

≤ ∥wi,1(t)∥
1

φ(t)
≤ ∥wi,1(t)∥ sup

s≥θ

1

φ(s)
≤ ∥wi(t)∥ sup

s≥θ

1

φ(s)
.

(3.23d)
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We recall w̄ = w1,1 −Gw̃ and therefore, for t ∈ [θ, ω) we observe ∥w2,1(t)∥ < φ(t)−1

and ∥w̃(t)∥ <
∑r−1

i=2 φ(t)−1 = (r − 2)φ(t)−1. Hence, we obtain for t ∈ [θ, ω)

−h1(t)⟨w1,1(t), w̄(t)⟩ + h1(t)⟨w2,1(t), w̄(t)⟩
= −h1(t)⟨w̄(t), w̄(t)⟩ − h1(t)⟨Gw̃(t), w̄(t)⟩ + h1(t)⟨w2,1(t), w̄(t)⟩
≤ −h1(t)∥w̄(t)∥2 + h1(t)

(
∥G∥∥w̃(t)∥ + ∥w2,1(t)∥

)
∥w̄(t)∥

≤ −h1(t)∥w̄(t)∥
(
∥w̄(t)∥ − ∥G∥(r − 2) + 1

φ(t)

)
(A.4)
< −h1(t)∥w̄(t)∥

(
∥w̄(t)∥ −

ρ−1
r−2

(r − 2) + 1

φ(t)

)
(A.2)
= −h1(t)∥w̄(t)∥

(
∥w̄(t)∥ − 1

φ1(t)

)
≤ ∥w̄(t)∥ sup

s≥θ

1

φ1(s)

≤ sup
s≥θ

1

φ1(s)

(
∥w1,1(t) −Gw̃(t)∥

)
≤ sup

s≥θ

1

φ1(s)

(
∥w1,1(t)∥ + ∥G∥∥w̃(t)∥

)
≤ sup

s≥θ

1

φ1(s)

(
∥w1(t)∥ + ∥G∥

r−1∑
i=2

∥wi(t)∥

)
.

(3.23e)

For better readability we define the constants

M1 := ∥P̂1∥∥B1∥∞ + p̃ sup
s≥θ

φ1(s)
−1,

Mi := ∥P̂∥∥Bi∥∞ + p̃ sup
s≥θ

φ(s)−1 + p̃∥G∥ sup
s≥θ

φ1(s)
−1, i = 2, . . . , r − 1,

N :=
2M2

1

λmin(Q̂1)
+

r−1∑
i=2

2M2
i

λmin(Q̂)
.

Then, using 2ab ≤ 2a2 + 1
2
b2 for a, b ∈ R, we may estimate (3.22) with the aid

of (3.23) for t ∈ [θ, ω)

d
dt
⟨w(t),Pw(t)⟩ ≤ −λmin(Q̂1)∥w1(t)∥2 − λmin(Q̂)

r−1∑
i=2

∥wi(t)∥2 +
r−1∑
i=1

2Mi∥wi(t)∥

= −λmin(Q̂1)∥w1(t)∥2 − λmin(Q̂)
r−1∑
i=2

∥wi(t)∥2

+
2M1√
λmin(Q̂1)

∥w1(t)∥
√
λmin(Q̂1) +

r−1∑
i=2

2Mi√
λmin(Q̂)

∥wi(t)∥
√
λmin(Q̂)

≤ −λmin(Q̂1)

2
∥w1(t)∥2 −

λmin(Q̂)

2

r−1∑
i=2

∥wi(t)∥2 +N

≤ −µ
2
w(t)⊤Pw(t) +N,
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where we set µ := min{λmin(Q̂),λmin(Q̂1)}
max{λmax(P̂ ),λmax(P̂1)}

> 0. Then, with the aid of Grönwall’s

lemma [72] we obtain

⟨w(t),Pw(t)⟩ ≤ ⟨w(θ),Pw(θ)⟩e−
µ
2
(t−θ) +

2N

µ
,

from which we obtain, since λmax(P), λmin(P) > 0 by (3.21), the following estimation
for t ∈ [θ, ω)

∥w(t)∥2 ≤ λmax(P)

λmin(P)
∥w(θ)∥2e−

µ
2
(t−θ) +

2N

µλmin(P)
. (3.24)

Clearly, inequality (3.24) implies w ∈ L∞ ([θ, ω);Rrm(r−1)
)
. Therefore, recalling

w ∈ L∞ ([0, θ);Rrm(r−1)
)
, we have wi ∈ L∞([0, ω);Rrm) for all i = 1, . . . , r − 1. In

particular, we obtain w̄ ∈ L∞([0, ω);Rm). This completes part one of Step two.

In the second part we show hi ∈ L∞([0, ω);R) for all i = 1, . . . , r − 1. For the sake
of consistency, we introduce the variables x1 := w̄ and xi := wi,1 for i = 2, . . . , r− 1.
Observing −ΓΓ̃−1 −G = −ΓΓ̃−1 − (I − ΓΓ̃−1) = −Im and setting w̃2 :=

∑r−1
i=2 wi,2,

we obtain via (3.14)

ẋ1(t) = ẇ1,1(t) −G d
dt
w̃(t)

= w1,2(t) − ΓΓ̃−1(a1 + p1h1(t)) (w1,1(t) −Gw̃(t))︸ ︷︷ ︸
=x1(t)

+Rr(w1,1(t) + ΓΓ̃−1w̃(t))

−G
(
w̃2(t) − (a1 + p1hr−1(t))wr−1,1(t) + (a1 + p1h1(t))x1(t)

)
= w1,2(t) −Gw̃2(t) +G(a1 + p1hr−1(t))wr−1,1(t) +Rr(w1,1(t) + ΓΓ̃−1w̃(t))

− ΓΓ̃−1(a1 + p1h1(t))x1(t) −G(a1 + p1h1(t))x1(t)

= w1,2(t) −Gw̃2(t) + (−ΓΓ̃−1 −G)︸ ︷︷ ︸
=−Im

(a1 + p1h1(t))x1(t)

+G(a1 + p1hr−1(t))wr−1,1(t) +Rr(w1,1(t) + ΓΓ̃−1w̃(t))

= −(a1 + p1h1(t))x1(t) +G(a1 + p1hr−1(t))wr−1,1(t)

+Rr(w1,1(t) + ΓΓ̃−1w̃(t)) + w1,2(t) −Gw̃2(t).
(3.25)

Since p1 = 1, using (3.14) and (3.25) we have for t ∈ [0, ω) and i = 2, . . . , r − 1

d
dt

1
2
∥x1(t)∥2 = −h1(t)∥x1(t)∥2 + hr−1(t)⟨x1(t), Gxr−1(t)⟩ + ⟨x1(t), b1(t)⟩,

d
dt

1
2
∥xi(t)∥2 = −hi(t)∥xi(t)∥2 + hi−1(t)⟨xi(t), xi−1(t)⟩ + ⟨xi(t), bi(t)⟩,

(3.26)

for suitable functions bi ∈ L∞([0, ω);Rm), i = 1, . . . , r−1. We observe that in (3.26)
for all i = 2, . . . , r− 1 the ith equation depends on the preceding gain function hi−1,
respectively, and the first equation depends on the last gain function hr−1. There-
fore, we cannot apply standard funnel arguments to show boundedness of the gain
functions, cf. [91, p. 484-485], [84, p. 241-242] or [25, p. 350-351]. However, on closer
examination of the respective proofs in the aforementioned references and due to
the shape of the gain functions hi we may retain

h1 ∈ L∞(R≥0;R) ⇐⇒ ∃ ν1 > 0 ∀ t ≥ 0 : φ1(t)
−1 − ∥x1(t)∥ ≥ ν1,

hi ∈ L∞(R≥0;R) ⇐⇒ ∃ νi > 0 ∀ t ≥ 0 : φ(t)−1 − ∥xi(t)∥ ≥ νi, i = 2, . . . , r − 1.
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Moreover, due to the loop structure in (3.26) it suffices to show boundedness of one
gain function, which implies boundedness of all remaining gain functions by means
of Lemma 1.11. In order to properly proceed with the proof, we provide some
preparatory definitions. Let ψ1 := 1/φ1, ψ := 1/φ, set λ1 := infs∈(0,ω) ψ1(s) > 0
and λ := infs∈(0,ω) ψ(s) > 0. We fix β ∈ (0, ω). Since lim infs→∞ φ(s) > 0 and φ̇
is bounded, we have that d

dt
ψ|[β,∞) is bounded, and respective for d

dt
ψ1|[β,∞). Thus,

there exists a Lipschitz bound L > 0 of ψ|[β,∞) and respectively a Lipschitz bound
L1 > 0 of ψ1|[β,∞). For ρ > 1 as in (A.2) we fix δ > 0 as

1

ρ+ 1
< δ <

1

2
, (3.27)

and define

∆1 := ρ− ∥G∥
(
4ρ2(ρ+ 1)r−2 − 1

) (A.4)
> 0, ∆ := 1 − 2δ

(3.27)
> 0. (3.28)

With δ in (3.27) and ∆1,∆ given in (3.28) we choose the number κ > 0 such that

0 < κ < min

{
λ1

1 + ρ
,
λ

2
, inf
s∈(0,β]

(ψ1(s) − ∥x1(s)∥) ,

min
i∈{2,...,r−1}

{
inf

s∈(0,β]
(ψ(s) − ∥xi(s)∥)

}} (3.29)

and small enough such that for ∆1, ∆ > 0 from (3.28)

0 < L1 ≤ min

{
λ21
4κ

ρ− ∥G∥
ρ

− sup
s∈[0,ω)

∥b1(s)∥, (3.30a)

∆1λ
2
1

4ρκ
− 2∥G∥ sup

s∈[β,ω)
ψ1(s)ρ(ρ+ 1)r−2 − sup

s∈[0,ω)
∥b1(s)∥

}
,

0 < L ≤ min

{
ρ2λ2

2κ
− sup

s∈[0,ω)
∥b2(s)∥, (3.30b)

min
i∈{3,...,r−1}

{
2i−1∆

ρ2λ2

κ
− sup

s∈[0,ω)
∥bi(s)∥

}}
.

We emphasize that, since L1, L,∆1, ∆ > 0 and ρ > ∥G∥, the number κ > 0 is well
defined. Further, since ρ > 1 we choose δ̂ > 0 satisfying

1

ρ
< δ̂ ≤ 1. (3.31)

With δ̂ from (3.31), δ > 0 from (3.27) and κ > 0 given in (3.29) we define

κ1 := κ,

κi :=
δi−1

2ρ2
κ, i = 2, . . . , r − 2,

κr−1 :=
δr−2δ̂

2ρ2
κ.

(3.32)
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From this we have κi ordered as κr−1 < κr−2 < · · · < κ2 < κ1. We aim to show

∀ t ∈ [0, ω) : ψ1(t) − ∥x1(t)∥ ≥ κ1 ∧ ψ(t) − ∥xi(t)∥ ≥ κi, i = 2, . . . , r − 1. (3.33)

Note that this is true on (0, β] by definition of κ in (3.29). We conclude the prepara-
tory definitions by setting

t10 := inf { t ∈ (β, ω) |ψ1(t) − ∥x1(t)∥ < κ1} ,
ti0 := inf { t ∈ (β, ω) |ψ(t) − ∥xi(t)∥ < κi} , i = 2, . . . , r − 1,

where the infimum of the empty set is infinity as usual. Seeking a contradiction we
suppose tℓ0 <∞ for some ℓ ∈ {1, . . . , r − 1}. Then either(

∃ ℓ ∈ {2, . . . , r − 1} : tℓ0 < tℓ−1
0

)
∨ t10 < tr−1

0 , (3.34a)

or
t10 = · · · = tr−1

0 . (3.34b)

If (3.34b) is true, we decrease δ̂ from (3.31) by which we decrease κr−1 in (3.32) and
therefore t10 < tr−1

0 ; hence, without loss of generality we may assume that (3.34a)
is true. We set t0 := tℓ0, i.e., t0 denotes the very first moment when ψ(t) − ∥xℓ(t)∥
exceeds the threshold κℓ. As will become clear from the subsequent steps, we must
distinguish three cases, namely either ℓ = 1, or ℓ = 2, or 3 ≤ ℓ ≤ r − 1.

If ℓ = 1 there may occur two possible cases, namely either

ψ1(t0) − ∥x1(t0)∥ ≤ ψ(t0) − ∥xr−1(t0)∥, (3.35a)

or
ψ1(t0) − ∥x1(t0)∥ > ψ(t0) − ∥xr−1(t0)∥. (3.35b)

First, we draw our attention to case (3.35a) and observe

ψ1(t0) − ∥x1(t0)∥ ≤ ψ(t0) − ∥xr−1(t0)∥
⇐⇒ ∥x1(t0)∥ ≥ ψ1(t0) − ψ(t0) + ∥xr−1(t0)∥

=
φ(t0) − φ1(t0)

φ1(t0)φ(t0)
+ ∥xr−1(t0)∥,

and thus, invoking (A.2), we have

∥x1(t0)∥ ≥ φ(t0) − φ1(t0)

φ1(t0)φ(t0)
+ ∥xr−1(t0)∥ =

ρ− 1

φ(t0)
+ ∥xr−1(t0)∥

> (ρ− 1)∥xr−1(t0)∥ + ∥xr−1(t0)∥ = ρ∥xr−1(t0)∥.

Due to the definition of t0, there exists t1 ∈ (t0, ω) such that ψ1(t1)−∥x1(t1)∥ < κ1,
and therefore, we have

∀ t ∈ [t0, t1] : ∥x1(t)∥ > ρ∥xr−1(t)∥. (3.36)

Thus, for t ∈ [t0, t1] we readily deduce the following relations

ψ1(t) − ∥x1(t)∥ ≤ κ1,

∥x1(t)∥ ≥ ψ1(t) − κ1 ≥
λ1
2
,

h1(t) =
1

1 − φ1(t)2∥x1(t)∥2
≥ λ1

2κ1
.

(3.37)

82



Chapter 3. Output feedback control

For t ∈ [t0, t1] we consider the first equation in (3.26)

d
dt

1
2
∥x1(t)∥2 = −h1(t)∥x1(t)∥2 + ⟨x1(t), hr−1(t)Gxr−1(t) + b1(t)⟩

≤ −h1(t)∥x1(t)∥2 + hr−1(t)∥x1(t)∥∥G∥∥xr−1(t)∥ + ∥x1(t)∥∥b1(t)∥
(3.36)
<
(
− h1(t)ρ+ hr−1(t)∥G∥

)∥x1(t)∥2
ρ

+ ∥x1(t)∥∥b1(t)∥.

We estimate the first term. By (A.2) and relation (3.36) we obtain for t ∈ [t0, t1]

h1(t)ρ− hr−1(t)∥G∥ = h1(t)hr−1(t)
(
ρ− ρφ(t)2∥xr−1(t)∥2

− ∥G∥ + ∥G∥φ1(t)
2∥x1(t)∥2

)
(3.36)
> h1(t)hr−1(t)

(
ρ− ρφ(t)2∥xr−1(t)∥2

− ∥G∥ + ∥G∥φ1(t)
2ρ2∥xr−1(t)∥2

)
(A.2)
= h1(t)hr−1(t)(ρ− ∥G∥)

(
1 − φ(t)2∥xr−1(t)∥2

)
= h1(t)(ρ− ∥G∥)

(3.37)

≥ λ1
2κ1

(ρ− ∥G∥).

Hence, using the estimation above and the relations from (3.37) we estimate the
first equation in (3.26) for t ∈ [t0, t1]

d
dt

1
2
∥x1(t)∥2 < − λ1

2κ1
(ρ− ∥G∥)

∥x1(t)∥2

ρ
+ ∥x1(t)∥∥b1(t)∥

≤

(
− λ21

4κ1

ρ− ∥G∥
ρ

+ sup
s∈[0,ω)

∥b1(s)∥

)
∥x1(t)∥

(3.32)
=

(
−λ21

4κ

ρ− ∥G∥
ρ

+ sup
s∈[0,ω)

∥b1(s)∥

)
∥x1(t)∥

(3.30a)

≤ −L1∥x1(t)∥.

From this we calculate

∥x1(t1)∥ − ∥x1(t0)∥ =

∫ t1

t0

(
d
dt

1
2
∥x1(t)∥2

)
∥x1(t)∥

dt

≤
∫ t1

t0

−L1 dt = −L1(t1 − t0) ≤ ψ1(t1) − ψ1(t0)

(3.38a)

and therefore,

κ1 = ψ1(t0) − ∥x1(t0)∥ ≤ ψ1(t1) − ∥x1(t1)∥ < κ1, (3.38b)

a contradiction. Next, we consider the case (3.35b) where by t0 = t10 < tr−1
0 we have

κr−1 ≤ ψ(t0) − ∥xr−1(t0)∥ < ψ1(t0) − ∥x1(t0)∥ = κ1.

This, together with the definition of t0 implies the existence of t1 ∈ (t0, t
r−1
0 ) such

that

∀ t ∈ [t0, t1] : κr−1 ≤ ψ(t) − ∥xr−1(t)∥ < ψ1(t) − ∥x1(t)∥ ≤ κ1, (3.39)
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from which we obtain for t ∈ [t0, t1]

∥xr−1(t)∥ ≤ ψ(t) − κr−1
(A.2)
=

1

ρ

(
1

φ1(t)
− ρκr−1

)
=

1

ρ
(ψ1(t) − κ1 + κ1 − ρκr−1)

≤ ∥x1(t)∥ + κ1 − ρκr−1

ρ

(3.40a)

and therefore,

∀ t ∈ [t0, t1] : ∥x1(t)∥ ≥ ρ∥xr−1(t)∥ − (κ1 − ρκr−1) > 0. (3.40b)

Note that the last inequality holds due to

ρ∥xr−1(t)∥ − (κ1 − ρκr−1)
(A.2), (3.39)

≥ ρ

ρφ1(t)
− ρκ1 − (κ1 − ρκr−1)

≥ λ1 − (ρ+ 1)κ1 + ρκr−1 > ρκr−1,

where we used κ1 <
λ1

ρ+1
in the last step. Furthermore, recalling hr−1 and using the

definition of κ1 and κr−1 we deduce for t ∈ [t0, t1]

1

hr−1(t)
= 1 − φ(t)2∥xr−1(t)∥2

= (1 + φ(t)∥xr−1(t)∥)(1 − φ(t)∥xr−1(t)∥)

= φ(t)(1 + φ(t)∥xr−1(t)∥)(ψ(t) − ∥xr−1(t)∥)

≥ φ(t)(1 + φ(t)∥xr−1(t)∥)κr−1 ≥ φ(t)κr−1 = ρφ1(t)κr−1,

and hence we obtain for t ∈ [t0, t1] the following estimation

hr−1(t) =
1

1 − φ(t)2∥xr−1(t)∥2
≤ 1

φ(t)κr−1

(A.2)
=

1

ρφ1(t)κr−1

. (3.41)

Again, we consider the first equation in (3.26) for t ∈ [t0, t1] and obtain

d
dt

1
2
∥x1(t)∥2 = −h1(t)∥x1(t)∥2 + ⟨x1(t), hr−1(t)Gxr−1(t) + b1(t)⟩

≤ −h1(t)∥x1(t)∥2 + hr−1(t)∥x1(t)∥∥G∥∥xr−1(t)∥ + ∥x1(t)∥∥b1(t)∥
(3.40a)

≤ −h1(t)∥x1(t)∥2 + ∥G∥hr−1(t)∥x1(t)∥
∥x1(t)∥ + (κ1 − ρκr−1)

ρ

+ ∥x1(t)∥∥b1(t)∥

=

(
− ρh1(t) + ∥G∥hr−1(t)

)
∥x1(t)∥2

ρ

+ ∥G∥κ1 − ρκr−1

ρ
hr−1(t)∥x1(t)∥ + ∥x1(t)∥∥b1(t)∥.

Noting that by definition of κ1, κr−1 we have κ1 − ρκr−1 = κ
(

1 − δr−2δ̂
2ρ

)
> 0, we
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Chapter 3. Output feedback control

estimate the first term in the above expression for t ∈ [t0, t1]

ρh1(t)−∥G∥hr−1(t)

= h1(t)hr−1(t)
(
ρ− ρφ(t)2∥xr−1(t)∥2 − ∥G∥+ ∥G∥φ1(t)

2∥x1(t)∥2
)

(3.40b)

≥ h1(t)hr−1(t)

(
ρ− ρφ(t)2∥xr−1(t)∥2

− ∥G∥+ ∥G∥φ1(t)
2
(
ρ∥xr−1(t)∥ − (κ1 − ρκr−1)

)2)
= h1(t)hr−1(t)

(
ρ− ρφ(t)2∥xr−1(t)∥2

− ∥G∥+∥G∥φ1(t)
2
(
ρ2∥xr−1(t)∥2−2ρ∥xr−1(t)∥(κ1−ρκr−1)+(κ1−ρκr−1)

2
))

(A.2)
= h1(t)hr−1(t)(ρ− ∥G∥)

(
1− φ(t)2∥xr−1(t)∥2

)
+ h1(t)hr−1(t)∥G∥φ1(t)

2
(
− 2ρ∥xr−1(t)∥(κ1 − ρκr−1) + (κ1 − ρκr−1)

2
)

> h1(t)hr−1(t)(ρ− ∥G∥)
(
1− φ(t)2∥xr−1(t)∥2

)
+ h1(t)hr−1(t)∥G∥φ1(t)

2

(
−2ρ

1

φ(t)
(κ1 − ρκr−1) + (κ1 − ρκr−1)

2

)
(A.2)
= h1(t)hr−1(t)(ρ− ∥G∥)

(
1− φ(t)2∥xr−1(t)∥2

)
+ h1(t)hr−1(t)∥G∥φ1(t)

2

(
− 2

φ1(t)
(κ1 − ρκr−1) + (κ1 − ρκr−1)

2

)
= h1(t)(ρ− ∥G∥) + h1(t)hr−1(t)∥G∥φ1(t)

(
− 2(κ1 − ρκr−1) + φ1(t)(κ1 − ρκr−1)

2
)

> h1(t)(ρ− ∥G∥)− 2h1(t)hr−1(t)∥G∥φ1(t)(κ1 − ρκr−1)

= h1(t)
(
ρ− ∥G∥ − 2φ1(t)∥G∥hr−1(t)(κ1 − ρκr−1)

)
(3.41)

≥ h1(t)

(
ρ− ∥G∥ − 2φ1(t)∥G∥

1

ρφ1(t)κr−1
(κ1 − ρκr−1)

)
= h1(t)

(
ρ+ ∥G∥ − 2∥G∥

ρ

κ1
κr−1

)
(3.32)
= h1(t)

(
ρ+ ∥G∥ − 4ρ2∥G∥

ρ

κ

δr−2δ̂κ

)
(3.27),(3.31)

> h1(t)
(
ρ+ ∥G∥ − 4∥G∥ρ2(ρ+ 1)r−2

)
(3.28)
= h1(t)∆1.

Condensing the estimations above, we find for t ∈ [t0, t1]

ρh1(t) − ∥G∥hr−1(t) > h1(t)∆1

(3.37)

≥ λ1∆1

2κ
> 0. (3.42)
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To sum up, with (3.37), (3.41) and (3.42), we obtain for t ∈ [t0, t1]

d
dt

1
2
∥x1(t)∥2

(3.42)
< −∆1λ1

2κ

∥x1(t)∥2

ρ
+

(
∥G∥(κ1 − ρκr−1)

ρ
hr−1(t) + ∥b1(t)∥

)
∥x1(t)∥

(3.41)

≤ −∆1λ1
2ρκ

∥x1(t)∥2 +
∥G∥

ρ2φ1(t)

κ1
κr−1

∥x1(t)∥ + ∥x1(t)∥∥b1(t)∥

(3.32)
= −∆1λ1

2ρκ
∥x1(t)∥2 +

2∥G∥
φ1(t)

1

δr−2δ̂
∥x1(t)∥ + ∥x1(t)∥∥b1(t)∥

(3.27)

≤ −∆1λ1
2ρκ

∥x1(t)∥2 +

(
2∥G∥ sup

s∈[β,ω)
ψ1(s)ρ(ρ+ 1)r−2 + ∥b1(t)∥

)
∥x1(t)∥

(3.37)

≤

(
−∆1λ

2
1

4ρκ
+ 2∥G∥ sup

s∈[β,ω)
ψ1(s)ρ(ρ+ 1)r−2 + sup

s∈[0,ω)
∥b1(s)∥

)
∥x1(t)∥.

Then, similar to (3.38) we deduce a contradiction via Lemma 1.11. Therefore, in
both cases (3.35a) and (3.35b) we have for t ∈ [β, ω) that ψ1(t) − ∥x1(t)∥ ≥ κ1.
Moreover, for t ∈ [0, β) we have ψ1(t) − ∥x1(t)∥ ≥ κ1 by definition of κ. Therefore,
h1 ∈ L∞([0, ω);R). Then, successively we obtain hi ∈ L∞([0, ω);R) for all remaining
i ∈ {2, . . . , r − 1}.

If ℓ = 2 we have, because t0 = t20 < t10 by (3.34a),

ψ(t0) − ∥x2(t0)∥ = κ2
(3.32)
=

δκ

2ρ2
<
κ1
ρ

≤ ψ1(t0)

ρ
− ∥x1(t0)∥

ρ
.

Invoking the definition of t0 = t20 there exists t1 ∈ (t0, t
1
0) such that for t ∈ [t0, t1]

ψ(t) − ∥x2(t)∥ ≤ κ2 <
κ1
ρ

≤ ψ(t) − ∥x1(t)∥
ρ

⇐⇒ − ∥x2(t)∥ ≤ κ2 − ψ(t) <
κ1
ρ

− ψ(t) ≤ −∥x1(t)∥
ρ

⇐⇒ 0 ≤ κ2 − ψ(t) + ∥x2(t)∥ <
κ1
ρ

− ψ(t) + ∥x2(t)∥ ≤ ∥x2(t)∥ −
∥x1(t)∥

ρ
.

(3.43)

So we readily conclude for t ∈ [t0, t1] the relations

ψ(t) − ∥x2(t)∥ ≤ κ2,

∥x2(t)∥ ≥ ψ(t) − κ2 ≥
λ

2
,

h2(t) =
1

1 − φ(t)2∥x2(t)∥2
≥ 1

2φ(t)κ2
≥ λ

2κ2
,

(3.44a)

and analogously to (3.41) we find

h1(t) =
1

1 − φ1(t)2∥x1(t)∥2
≤ 1

φ1(t)κ1
. (3.44b)

Furthermore, using (3.43) and estimation (3.44a), we have for t ∈ [t0, t1]

∥x2(t)∥ −
∥x1(t)∥

ρ
≥ ∥x2(t)∥ − ψ(t) +

κ1
ρ

≥ ψ(t) − κ2 − ψ(t) +
κ1
ρ

(3.32)
=

κ

ρ
− δκ

2ρ2
(3.27)
> 0.

(3.45)
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We observe that (3.45) implies ∥x1(t)∥ < ρ∥x2(t)∥ for t ∈ [t0, t1]. Considering
equation (3.26) for i = 2 and t ∈ [t0, t1] we obtain

d
dt

1
2
∥x2(t)∥2 = −h2(t)∥x2(t)∥2 + ⟨x2(t), h1(t)x1(t) + b2(t)⟩

≤ −h2(t)∥x2(t)∥2 + h1(t)∥x2(t)∥∥x1(t)∥ + ∥x2(t)∥∥b2(t)∥
(3.45)
< −h2(t)∥x2(t)∥2 + h1(t)ρ∥x2(t)∥2 + ∥x2(t)∥∥b2(t)∥

=
(
− h2(t) + ρh1(t)

)
∥x2(t)∥2 + ∥x2(t)∥∥b2(t)∥.

(3.46)

Thanks to 0 < δ < 1 in (3.27) and κ > 0 given in (3.32) we have

κ1 − 2ρ2κ2
(3.32)
= κ− 2ρ2

δκ

2ρ2
= κ(1 − δ)

(3.27)
> 0. (3.47)

Hence, using property (A.2) and the relations from (3.44) we obtain for t ∈ [t0, t1]

h2(t) − ρh1(t)
(3.44)

≥ 1

2φ(t)κ2
− ρ

φ1(t)κ1

(A.2)
=

κ1 − 2ρ2κ2
2φ(t)κ1κ2

(3.32),(3.47)
=

2ρ2(1 − δ)κ

2φ(t)δκ2

(3.44a)

≥ 1 − δ

δ

ρ2λ

κ

(3.27)
>

ρ2λ

κ
.

With this, using (3.44a) we estimate (3.46) for t ∈ [t0, t1]

d
dt

1
2
∥x2(t)∥2

(3.44a)
<

(
−ρ

2λ2

2κ
+ sup

s∈[0,ω)
∥b2(s)∥

)
∥x2(t)∥

(3.30b)

≤ −L∥x2(t)∥.

Then, similar to (3.38) a contradiction arises. Therefore, for t ∈ [β, ω) we have
ψ(t)−∥x2(t)∥ ≥ κ2. Moreover, for t ∈ [0, β) we have ψ(t)−∥x2(t)∥ ≥ κ2 by definition
of κ. Hence, h2 ∈ L∞([0, ω);R). Then successively we obtain hi ∈ L∞([0, ω);R) for
all remaining i ∈ {1, . . . , r − 1} \ {2}.

If 3 ≤ ℓ ≤ r − 1 we have, because t0 = tℓ0 < tℓ−1
0 by (3.34a),

ψ(t0) − ∥xℓ(t0)∥ = κℓ < κℓ−1 ≤ ψ(t0) − ∥xℓ−1(t0)∥.

Then, by invoking the definition of t0 = tℓ0 there exists t1 ∈ (t0, t
ℓ−1
0 ) such that

∀ t ∈ [t0, t1] : ψ(t) − ∥xℓ(t)∥ ≤ κℓ < κℓ−1 ≤ ψ(t) − ∥xℓ−1(t)∥. (3.48)

As before, we deduce for t ∈ [t0, t1]

ψ(t) − ∥xℓ(t)∥ ≤ κℓ,

∥xℓ(t)∥ ≥ ψ(t) − κℓ ≥
λ

2
,

hℓ(t) =
1

1 − φ(t)2∥xℓ(t)∥2
≥ 1

2φ(t)κℓ
,

(3.49a)

similar to (3.41) we obtain

hℓ−1(t) =
1

1 − φ(t)2∥xℓ−1(t)∥2
≤ 1

φ(t)κℓ−1

, (3.49b)
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and, using (3.48) and (3.49a), we have for t ∈ [t0, t1]

∥xℓ(t)∥ − ∥xℓ−1(t)∥ ≥ ∥xℓ(t)∥ − ψ(t) + κℓ−1

≥ ψ(t) − κℓ − ψ(t) + κℓ−1
(3.32)
=

δℓ−2

2ρ2
(1 − δ)κ > 0.

(3.50)

We observe that (3.50) implies ∥xℓ(t)∥ > ∥xℓ−1(t)∥ for t ∈ [t0, t1]. Considering
equation (3.26) for i = ℓ and t ∈ [t0, t1] we obtain

d
dt

1
2
∥xℓ(t)∥2 = −hℓ(t)∥xℓ(t)∥2 + ⟨xℓ(t), hℓ−1(t)xℓ−1(t) + bℓ(t)⟩

≤ −hℓ(t)∥xℓ(t)∥2 + hℓ−1(t)∥xℓ(t)∥∥xℓ−1(t)∥ + ∥xℓ(t)∥∥bℓ(t)∥
(3.50)
<
(
− hℓ(t) + hℓ−1(t)

)
∥xℓ(t)∥2 + ∥xℓ(t)∥∥bℓ(t)∥.

(3.51)

Noting that

κℓ−1 − 2κℓ
(3.32)
=

δℓ−2κ

2ρ2
(1 − 2δ)

(3.28)
=

δℓ−2∆

2ρ2
κ > 0, (3.52)

and using (3.49) we estimate

hℓ(t) − hℓ−1(t)
(3.49)

≥ 1

2φ(t)κℓ
− 1

φ(t)κℓ−1

=
κℓ−1 − 2κℓ
2φ(t)κℓ−1κℓ

(3.32),(3.52)
=

1

2φ(t)

δℓ−2∆κ

2ρ2
4ρ4

δℓ−2δℓ−1κ2
(3.27),(3.49a)

> 2ℓ−1∆
ρ2λ

κ
.

With this and using (3.49a) we estimate (3.51) for t ∈ [t0, t1]

d
dt

1
2
∥xℓ(t)∥2 <

(
−2ℓ−1∆

ρ2λ2

κ
+ sup

s∈[0,ω)
∥bℓ(s)∥

)
∥xℓ(t)∥

(3.30b)

≤ −L∥xℓ(t)∥.

As before, a contradiction arises from analogous calculations as in (3.38). Hence,
for t ∈ [β, ω) we have ψ(t) − ∥xℓ(t)∥ ≥ κℓ. Moreover, for t ∈ [0, β) we have
ψ(t) − ∥xℓ(t)∥ ≥ κℓ by definition of κ. Therefore, hℓ ∈ L∞([0, ω);R). Then, succes-
sively we obtain hi ∈ L∞([0, ω);R) for all remaining i ∈ {1, . . . , r − 1} \ {ℓ}. This
completes Step two.

Step three. We show ω = ∞. Seeking a contradiction let ω < ∞. Then, since
hi and wi,j for i = 1, . . . , r− 1 and j = 1, . . . , r are bounded via Step two, it follows
that the graph of the solution of (3.14) is a compact subset of D, which contradicts
the findings in Step one. Thus, ω = ∞.

Step four. We show T̃ ∈ T rm,q̄
0 . First, we observe that by Step three the oper-

ator T̃ is well defined, and satisfies condition (T.1) of Definition 1.4 by Step two.
Moreover, since T̃ is defined via the solution of (3.14), property (T.2) follows from
uniqueness of the maximal solution. It remains to show that the operator T̃ satisfies
property (T.3) in Definition 1.4. To this end, we consider the auxiliary error sys-
tem (3.14) and interpret z, ż, . . . , z(r−1) as inputs for this system. We show that for
all i = 1, . . . , r − 1 the respective right-hand side of (3.14) is Lipschitz continuous
with respect to the state and the variables which are interpreted as inputs. From
this we then conclude that the operator T̃ satisfies (T.3) with “memory” σ = 0 in
the present context. Before we establish the estimations to conclude that T̃ satis-
fies (T.3), we record the following observations concerning the gain functions h. For
a strictly positive γ > 0 and φ ∈ Φr we define the set

Fφ,γ := { (s, η) ∈ R≥0 × Rm | 1 − φ(s)∥η∥ ≥ γ } . (3.53)
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Further, for (s, η) ∈ Fφ,γ we define the function h(s, η) := 1/(1−φ(s)2∥η∥2). Then,
for (s, η) ∈ Fφ,γ we observe

1

h(s, η)
= (1 + φ(s)∥η∥)(1 − φ(s)∥η∥) ≥ γ,

which implies

∀ (s, η) ∈ Fφ,γ : h(s, η) ≤ 1

γ
, (3.54)

so h(s, η) is uniformly bounded for (s, η) ∈ Fφ,γ. Using this, for (s, η), (s, η̂) ∈ Fφ,γ

we obtain

∥ηh(s, η) − η̂h(s, η̂)∥ =

∥∥∥∥ η

1 − φ(s)2∥η∥2
− η̂

1 − φ(s)2∥η̂∥2

∥∥∥∥
≤ h(s, η)h(s, η̂)∥η − η̂∥ + h(s, η)h(s, η̂)φ(s)2

∥∥∥η∥η̂∥2 − η̂∥η∥2
∥∥∥

(3.54)

≤ 1

γ2
∥η − η̂∥ +

φ(s)2

γ2

∥∥∥η∥η̂∥2 − η∥η∥2 + η∥η∥2 − η̂∥η∥2
∥∥∥

≤ 1

γ2
∥η − η̂∥ +

φ(s)2

γ2
∥η∥2∥η − η̂∥ +

φ(s)2

γ2
∥η∥
∣∣∣∥η̂∥2 − ∥η∥2

∣∣∣
<

1

γ2
∥η − η̂∥ +

1

γ2
∥η − η̂∥ +

φ(s)2

γ2
∥η∥ (∥η̂∥ + ∥η∥)

∣∣∣∥η̂∥ − ∥η∥
∣∣∣

<
4

γ2
∥η − η̂∥,

(3.55a)
where we used φ(s)∥η∥ < 1, φ(s)∥η̂∥ < 1, and the reversed triangular inequality in
the last estimation. Further, for (s, η), (s, η̂) ∈ Fφ,γ we obtain

|h(s, η) − h(s, η̂)| =

∣∣∣∣ 1

1 − φ(s)2∥η∥2
− 1

1 − φ(s)2∥η̂∥2

∣∣∣∣
≤ h(s, η)h(s, η̂)φ(s)2

∣∣∣∥η∥2 − ∥η̂∥2
∣∣∣

(3.54)

≤ φ(s)2

γ2
(∥η∥ + ∥η̂∥)

∣∣∣∥η∥ − ∥η̂∥
∣∣∣

<
2

γ2
sup

σ∈R≥0

φ(σ)∥η − η̂∥,

(3.55b)

where we used φ(s)∥η∥ < 1, φ(s)∥η̂∥ < 1, and the reversed triangular inequality
in the last estimation. Respective estimates hold true for (s, η), (s, η̂) ∈ Fφ1,γ.
With this preparatory observations at hand, we return to the task of establishing
estimations, which allow us to conclude that the operator T̃ satisfies (T.3). To this
end, for t ≥ 0, some ∆, δ > 0 (with some abuse of notation ∆, δ are not the same
as in Step two), and ξ ∈ C([0, t];Rrm) we define the set

Z :=

 ζ ∈ C(R≥0;Rrm)

∣∣∣∣∣∣
ζ|[0,t] = ξ,
∀ s ∈ [t, t+ ∆] : ∥ζ(s) − ξ(t)∥ < δ,
∀ s ≥ t+ ∆ : ζ(s) = ζ(t+ ∆)

 .

According to condition (T.3) we seek to show that there exists C0 > 0 such that

ζ, ζ̂ ∈ Z ⇒ ess sups∈[t,t+∆] ∥T̃(ζ)(s)− T̃(ζ̂)(s)∥ ≤ C0 sup
s∈[t,t+∆]

∥ζ(s)− ζ̂(s)∥. (3.56)
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First, we observe that for ζ ∈ Z we have

∀ s ∈ [t, t+ ∆] : ∥ζ(s)∥ = ∥ζ(s) − ξ(t) + ξ(t)∥ < δ + ∥ξ∥∞.

Thus, ζ := (z, . . . , z(r−1)) : R≥0 → Rrm to be considered as input in (3.14) is
uniformly bounded on the interval [t, t + ∆]. Therefore, the results established in
Step two are valid and can be used for the subsequent reasoning. Inspecting the
definition of κ in (3.29) and κi, i = 1, . . . , r−1, in (3.32), we see that these numbers
depend on ζ. We define

ε1 := inf
σ∈R≥0

φ1(σ) inf
ζ∈Z

κ1 > 0,

εj := inf
σ∈R≥0

φ(σ) inf
ζ∈Z

κj > 0, j = 2, . . . , r − 1,

ε := min
i∈{1,...,r−1}

εi > 0.

Clearly, we have ε ≤ κi for all i = 1, . . . , r − 1. Therefore, by (3.33) in Step two we
have for all i = 2, . . . , r − 1

∀ s ∈ [t, t+ ∆] :
(

1 − φ1(s)∥w1,1(s) −Gw̃(s)∥ ≥ ε ∧ 1 − φ(s)∥wi,1(s)∥ ≥ ε
)
,

that is, for Fφ,ε defined in (3.53) we have (s, w1,1(s) − Gw̃(s)) ∈ Fφ1,ε and
(s, wi,1(s)) ∈ Fφ,ε for all i = 2, . . . , r−1 and all s ∈ [t, t+∆]. Next, we consider (3.14)
separately for i = 1, i = 2 and i = 3, . . . , r−1. Recalling P̄ = (p1, . . . , pr)

⊤⊗ Im, we
refine the compactly written dynamics (3.18) with ζ = (ζ1, . . . , ζr) = (z, . . . , z(r−1))
and obtain

ẇ1(t) =


0 1

. . .

1
0 0 . . . 0


︸ ︷︷ ︸

=:M1

w1(t) +


Rr − a1ΓΓ̃−1

...

R2 − ar−1ΓΓ̃−1

R1 − arΓΓ̃−1


︸ ︷︷ ︸

=:M2

w1,1(t)

+


Rr

...
R1

−

Rr − a1ΓΓ̃−1

...

R1 − arΓΓ̃−1

G


︸ ︷︷ ︸
=:M3

w̃(t) − P̄ΓΓ̃−1 w̄(t)

1 − φ1(t)2∥w̄(t)∥2

+


0
...
0

−Gζr(t)∑r
i=1Riζi(t)


︸ ︷︷ ︸

=:M4ζ(t)

+


0
...
0
0

f(d(t),T(y, ẏ, . . . , y(r−1))(t))

 ,

where w̄ = w1,1 − Gw̃. Explicitly indicating the dependence of the “input” ζ, let
W (·, ζ) denote the solution of the overall differential equation (3.14), and wi(·, ζ) de-
notes the respective solution of the subsystems in (3.14a) – (3.14c) for i = 1, . . . , r−1,
respectively. Further, let w̃(·, ζ), w̄(·, ζ) be the corresponding expressions to w̃, w̄.
By the observations above, w̃(·, ζ), w̄(·, ζ) are uniformly bounded on the interval
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Chapter 3. Output feedback control

[t, t + ∆], in particular, (s, w̄(s, ζ)), (s, w̄(s, ζ̂)) ∈ Fφ1,ε for s ∈ [t, t + ∆]. We set
µj := ∥Mj∥ for j = 1, 2, 3 and c0 := ∥M4∥. With this, invoking (3.55a) we may infer

the existence of C1 > 0 such that for s ∈ [t, t+ ∆] and ζ, ζ̂ ∈ Z we have

∥ẇ1(s, ζ) − ẇ1(s, ζ̂)∥ ≤ µ1∥w1(s, ζ) − w1(s, ζ̂)∥ + µ2∥w1,1(s, ζ) − w1,1(s, ζ̂)∥
+ µ3∥w̃(s, ζ) − w̃(s, ζ̂)∥ + c0∥ζ(s) − ζ̂(s)∥

+ ∥P̄ΓΓ̃−1∥

∥∥∥∥∥ w̄(s, ζ)

1 − φ1(s)2∥w̄(s, ζ)∥2
− w̄(s, ζ̂)

1 − φ1(s)2∥w̄(s, ζ̂)∥2

∥∥∥∥∥
(3.55a)

≤ µ1∥w1(s, ζ) − w1(s, ζ̂)∥ + µ2∥w1,1(s, ζ) − w1,1(s, ζ̂)∥
+ µ3∥w̃(s, ζ) − w̃(s, ζ̂)∥ + c0∥ζ(s) − ζ̂(s)∥

+
4∥P̄ΓΓ̃−1∥

ε2
∥w̄(s, ζ) − w̄(s, ζ̂)∥

≤ C1∥W (s, ζ) −W (s, ζ̂)∥ + c0∥ζ(s) − ζ̂(s)∥,

so, compactly written, for s ∈ [t, t+ ∆] we have

∥ẇ1(s, ζ) − ẇ1(s, ζ̂)∥ ≤ C1∥W (s, ζ) −W (s, ζ̂)∥ + c0∥ζ(s) − ζ̂(s)∥, (3.57a)

where in particular, the term f(d(t),T(y, . . . , y(r−1)(t)) does not occur since it is not
affected by different “inputs” ζ, ζ̂. Next, for i = 2 we consider (3.14b), and obtain
in accordance with (3.18)

ẇ2(s) = Âw2(s) − h2(s)P̄w2,1(s) +
(
Ā+ P̄ h1(s)

)
w̄(s)

where Â = A ⊗ Im and Ā := (a1, . . . , ar)
⊤ ⊗ Im. Then, invoking the findings from

above and (3.55a), we may infer the existence of C2 > 0 such that for s ∈ [t, t+ ∆]
we have

∥ẇ2(s, ζ) − ẇ2(s, ζ̂)∥ ≤ ∥Â∥∥w2(s, ζ) − w2(s, ζ̂)∥

+
4∥P̄∥
ε2

∥w2,1(s, ζ) − w2,1(s, ζ̂)∥

+

(
∥Ā∥ +

4

ε2
∥P̄∥

)
∥w̄(s, ζ) − w̄(s, ζ̂)∥

≤ C2∥W (s, ζ) −W (s, ζ̂)∥.

(3.57b)

Accordingly, for i = 3, . . . , r − 1 in (3.14c) we have

ẇi(s) = Âwi(s) − hi(s)P̄wi,1(s) +
(
Ā+ P̄ hi−1(s)

)
wi−1,1(s).

Then, invoking the previously established inequalities, we infer the existence of
Ci > 0 such that for s ∈ [t, t+ ∆] and i = 3, . . . , r − 1 we have

∥ẇi(s, ζ) − ẇi(s, ζ̂)∥ ≤ Ci∥W (s, ζ) −W (s, ζ̂)∥. (3.57c)

We set C := 2
∑r−1

i=1 Ci + 1. With this, invoking estimations (3.57a) – (3.57c), we
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calculate

d
ds
∥W (s, ζ) −W (s, ζ̂)∥2 ≤ 2∥W (s, ζ) −W (s, ζ̂)∥

r−1∑
i=1

∥ẇi(s, ζ) − ẇi(s, ζ̂)∥

(3.57)

≤ 2
r−1∑
i=1

Ci∥W (s, ζ) −W (s, ζ̂)∥2

+ 2∥W (s, ζ) −W (s, ζ̂)∥c0∥ζ(s) − ζ̂(s)∥

≤ 2
r−1∑
i=1

Ci∥W (s, ζ) −W (s, ζ̂)∥2

+ 2∥W (s, ζ) −W (s, ζ̂)∥c0 sup
σ∈[t,t+∆]

∥ζ(σ) − ζ̂(σ)∥

≤ 2
r−1∑
i=1

Ci∥W (s, ζ) −W (s, ζ̂)∥2

+ ∥W (s, ζ) −W (s, ζ̂)∥2 +
(
c0 sup

σ∈[t,t+∆]

∥ζ(σ) − ζ̂(σ)∥
)2

≤ C∥W (s, ζ) −W (s, ζ̂)∥2 +
(
c0 sup

σ∈[t,t+∆]

∥ζ(σ) − ζ̂(σ)∥
)2
.

We note that for ζ, ζ̂ ∈ Z we have W (0, ζ) = W (0, ζ̂). Thus, for s ∈ [t, t + ∆] we
obtain upon integration

∥W (s, ζ) −W (s, ζ̂)∥2 ≤
∫ s

t

C∥W (σ, ζ) −W (σ, ζ̂)∥2dσ

+
(
c0 sup

σ∈[t,t+∆]

∥ζ(σ) − ζ̂(σ)∥
)2 ∫ t+∆

t

dσ.

We set C0 :=
√

∆ e
1
2
C∆c0. Then for s ∈ [t, t+ ∆] Grönwall’s lemma yields

∥W (s, ζ) −W (s, ζ̂)∥ ≤ C0 sup
σ∈[t,t+∆]

∥ζ(σ) − ζ̂(σ)∥, (3.58)

where the right-hand side is independent of s. Next, we invoke the previous obser-
vation that (s, wi,1(s, ζ)) ∈ Fφ,ε for ζ ∈ Z and s ∈ [t, t + ∆]. We consider the gain
functions hi, where we denote hi(·, ζ) := 1/(1 − φ(·)2∥w1,i(·, ζ)∥2), i = 2, . . . , r − 1.
Then, for s ∈ [t, t+ ∆] and using (3.55b), we have∣∣∣hi(s, ζ) − hi(s, ζ̂)

∣∣∣ ≤ 2

ε2
sup

σ∈R≥0

φ(σ)∥wi,1(s, ζ) − wi(s, ζ̂)∥

≤ 2

ε2
sup

σ∈R≥0

φ(σ)∥W (s, ζ) −W (s, ζ̂)∥

(3.58)

≤ 2

ε2
sup

σ∈R≥0

φ(σ)C0 sup
σ∈[t,t+∆]

∥ζ(σ) − ζ̂(σ)∥.

(3.59a)

Using φ1 = φ/ρ and (s, w̄(s, ζ)) ∈ Fφ1,ε, for h1(·, ζ) := 1/(1 − φ1(·)2∥w̄(·, ζ)∥2) we
have for s ∈ [t, t+ ∆]

|h1(s, ζ) − h1(s, ζ̂)| ≤ 2

ε2
sup

σ∈R≥0

φ(σ)C0 sup
σ∈[t,t+∆]

∥ζ(σ) − ζ̂(σ)∥. (3.59b)
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Note that the right-hand side of (3.59) is independent of s. Together, estima-
tions (3.58) and (3.59) imply (3.56), and so the operator T̃ satisfies (T.3) in
Definition 1.4. Therefore, we may conclude T̃ ∈ T rm,q̄

0 .

Lastly, we observe that the higher derivatives of z can be calculated via successive
application of the cascade’s equations (3.2) and result in

z(j)(t) = zr−1,j+1 +

j−1∑
k=0

(
d
dt

)k (
(ar−k + pr−khr−1(t))wr−1,1(t)

)
,

where wr−1,1 = zr−2,1 − zr−1,1. Then, with zr−1,r+1 := Γ̃u the results above allow us
to write the conjunction of (3.2) and (3.4) with input u and output z = zr−1,1 as

z(r)(t) =
r−1∑
k=0

(
d

dt

)k (
(ar−k + pr−khr−1(t))wr−1,1(t)

)
+ Γ̃u(t)

=: F̃
(
d̃(t), T̃(z, ż, . . . , z(r−1))(t)

)
+ Γ̃u(t),

(3.60)

where F̃ ∈ C(Rr × Rq̄;Rm), d̃(t) := (φ(t), φ̇(t), . . . , φ(r−1)(t))⊤ ∈ L∞(R≥0;Rr) and
T̃ ∈ T rm,q̄

0 . Therefore, (d̃, F̃ , T̃, Γ̃, 0rm×m) ∈ Lm,r, which completes the proof.

As a direct consequence of the pre-compensator’s design, namely to be of funnel
type, we have the following result.

Corollary 3.11. We use the notation and assumptions from Theorem 3.9. Then, for
any u ∈ L∞

loc(R≥0;Rm) and any solution of (3.2), (3.4) with initial conditions (3.11)
we have

∃ ε > 0 ∀ t > 0 : ∥y(t) − z(t)∥ < (ρ+ r − 2)φ(t)−1 − ε. (3.61)

Proof. The prescribed transient behaviour (3.61) follows directly from an iterative
application of [32, Prop. 1].

Remark 3.12. A careful inspection of the proof of Theorem 3.9 reveals that con-
ditions (A.2) – (A.4) on the design parameters are sufficient but we cannot claim
necessity. Condition (A.4) on the norm of the matrix G = Im − ΓΓ̃−1 can be inter-
preted as a “small gain condition” as conjectured in [32, Rem. 4]. Roughly speaking
it means “choose the matrix Γ̃ close enough to the matrix Γ”. Examining the proof
shows that this condition plays a crucial role in the estimations (3.23e) and (3.42),
however, it allows for various reformulations and small changes which still are suf-
ficient to prove the theorem. Especially, the condition ∥G∥ < ρ/(4ρ2(ρ+ 1)r−2 − 1)
has many varieties - we cannot claim having found the weakest. If Γ is known, the
simple choice Γ̃ = Γ is feasible and the proof simplifies significantly. Moreover, in
this case (A.3) & (A.4) are satisfied at once. However, in general the matrix Γ is not
(or only partially) known and hence verification of conditions (A.3) & (A.4) causes
problems. In such general cases methods for parameter identification can be useful.
For linear systems of type (3.5) there is plenty of literature on system identification,
see for instance [168, 36], and the recent work [194] where under the assumptions
of controllability and persistently exciting inputs system identification is performed;
in [203] the estimated parameters result from a least square problem. Note that
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although the system identification in [194, 203] is developed for time-discrete lin-
ear systems the results can be applied to time-continuous linear systems to some
extend, see e.g. [36, Sec. 1]. In [64] parameter identification for nonlinear systems
is studied, where under an identifiability condition and with the aid of a high-gain
observer system parameters are identified. In [63] an extended high-gain observer
is introduced to identify the state and the unknown parameters dynamically; and
in the recent (rather technical) work [104] parameter identification via an adaption
scheme for nonlinear systems is proposed and an error bound between the nominal
and the estimated parameter is given. However, the approaches [64, 63, 104] involve
the system equations and hence the parameter identification is not model free. Nev-
ertheless, if a model is available an extension of [104, Prop. 2.1] to matrix valued
parameters may yield error bounds such that the stronger version of (A.4)

∥Γ̃−1∥∥Γ̃ − Γ∥ < min

{
ρ− 1

r − 2
,

ρ

4ρ2(ρ+ 1)r−2 − 1

}
can ensured to be satisfied.

Remark 3.13. If the first k ≤ r − 1 derivatives of the output signal y are known,
the funnel pre-compensator can be applied to y(k). Then, the condition T ∈ T rm,q

σ,1

in Theorem 3.9 becomes the relaxed condition T ∈ T rm,q
σ,k , with T rm,q

σ,k as in Defini-
tion 3.6. Moreover, the error bound tightens and we have

∀ t ≥ 0 : ∥y(t) − z(t)∥ < (ρ+ r − 2 − k)φ(t)−1 − ε.

Remark 3.14. Although the funnel pre-compensator introduced in [32] may take
signals y and u with different dimensions, the system class Lm,r under consideration
is restricted to systems where the input and output have the same dimension. This
comes into play when applying control schemes to the conjunction of a minimum
phase system with a cascade of funnel pre-compensators, see Section 3.3. However,
a careful inspection of the proof of Theorem 3.9 yields that an extension of Theo-
rem 3.9 to systems with different input (u : R≥0 → Rm) and output (y : R≥0 → Rp)
dimensions is possible, if m > p. In the case m < p (fewer inputs than out-
puts) with rk Γ = rk Γ̃ = m one would require the matrix product ΓΓ̃† ∈ Rp×p

(Γ̃† denotes a pseudoinverse of Γ̃) to be strictly positive definite. However, since
rk(ΓΓ̃†) ≤ min{m, p} < p only positive semi-definiteness can be demanded, which
is not sufficient. If m > p (more inputs than outputs) the proof of Theorem 3.9 can
be adapted such that the statement is still true in the following two cases:

(i) Known m − p entries of the input are set to zero, w.l.o.g. the last m − p.
Therefore, Γu = Γp(u1, . . . , up)

⊤, where Γp = Γ⊤
p ∈ Rp×p and definiteness is

required. Then conditions (A.3) & (A.4) have to be satisfied for Γp and Γ̃p.

(ii) The system itself ignores known m − p entries of the input (w.l.o.g. the
last m − p), i.e., Γ = [Γp, 0], where Γp = Γ⊤

p ∈ Rp×p and definiteness is
required. Then, Γu = Γp(u1, . . . , up)

⊤ and conditions (A.3) & (A.4) have to
be satisfied for Γp and a symmetric 0 < Γ̃p ∈ Rp×p.

In both cases the respective transformations in Step one of the proof are feasible
and the proof of Theorem 3.9 can be done with corresponding matrices Γp and Γ̃p.
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Chapter 3. Output feedback control

3.3 An application of the funnel pre-compensator:

output feedback control

In this section we discuss the combination of the funnel pre-compensator with feed-
back control schemes. Theorem 3.9 yields that the conjunction of a minimum phase
system (3.4) with a cascade of funnel pre-compensators (3.2) is again a minimum
phase system and hence amenable to funnel control; for detailed results on funnel
control for systems with higher relative degree see the works [93, 25] and the recent
work [21]. We show that the combination of the funnel pre-compensator with a fun-
nel control scheme achieves output tracking with prescribed transient behaviour of
the tracking error via output feedback only. This resolves the long-standing problem
that for the application of a funnel controller to a system with higher relative degree
the derivatives of the system’s output are required to be known. In Figure 3.6 the
idea is depicted, how the funnel pre-compensator enters the tracking problem.

Cascade of
funnel

pre-compensators
System

Funnel
Controller

−

yu ζ

Yrefe = ζ − Yref

u

Figure 3.6: Utilizing the funnel pre-compensator for output feedback tracking.
The derivatives required by the controller are given via the pre-compensator’s
output ζ = (z, . . . , z(r−1)). Here, we set Yref := (yref , . . . , y

(r−1)
ref ).

We recall the funnel control scheme from [21]. For e := z − yref ∈ Rm define the
instantaneous available error vector e(t) := (e(0)(t)⊤, . . . , e(r−1)(t)⊤)⊤ ∈ Rrm, that
is, the error vector between the signal z and the reference signal yref and their deriva-
tives, respectively. Next, the control parameters are chosen. The funnel function ϕ
belongs to the set

ΦFC :=

{
ϕ ∈ ACloc(R≥0;R)

∣∣∣∣ ∀ s > 0 : ϕ(s) > 0, lim infs→∞ ϕ(s) > 0,

∃ c > 0 : |ϕ̇(s)| ≤ c (1 + ϕ(s)) for a. a. s ≥ 0

}
.

Let N ∈ C(R≥0;R) be a surjection, α ∈ C1([0, 1); [1,∞)) be a bijection, and for
B := {w ∈ Rm | ∥w∥ < 1} define the map γ : B → Rm, w 7→ α(∥w∥2)w. With this,
the maps ρk : Dk → B are defined recursively for k = 1, . . . , r as follows

D1 := B, ρ1 : D1 → B, η1 7→ η1,

Dk :=

{
(η⊤1 , . . . , η

⊤
k )⊤ ∈ Rkm

∣∣∣∣ (η⊤1 , . . . , η
⊤
k−1)

⊤ ∈ Dk−1,
ηk + γ

(
ρk−1(η

⊤
1 , . . . , η

⊤
k−1)

⊤) ∈ B

}
,

ρk : Dk → B, (η⊤1 , . . . , η
⊤
k )⊤ 7→ ηk + γ

(
ρk−1(η

⊤
1 , . . . , η

⊤
k−1)

⊤) .
Then the funnel control scheme from [21, Sec. 1.4, Eq. (9)] is given by

u(t) = (N ◦ α)(∥w(t)∥2)w(t), w(t) := ρr(φ(t) e(t)). (3.62)
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3.3. An application of the funnel pre-compensator: output feedback control

Remark 3.15. Before we establish the next result, namely the application of the
feedback law (3.62) to the conjunction of a minimum phase system with a cascade of
funnel pre-compensators to achieve output reference tracking, we comment on this
particular application.

(i) We recall the findings from [21] concerning the high-gain property. Namely, a
system

ẋ(t) = F (d(t),T(x)(t)) + Θu(t), (3.63)

where F ∈ C(Rk×Rq;Rn), T ∈ T n,q
τ and Θ ∈ Rn×n, has the high-gain property

from Definition 1.10 if, and only if, the matrix Θ is strictly sign definite, i.e., for
all v ∈ Rm\{0} we have ⟨v,Θv⟩ ≠ 0. Along the lines of [21, Sec. 2.1.3] this can
be seen as follows. For v∗ ∈ (0, 1) define the set V := { v ∈ Rn | v∗ ≤ ∥v∥ ≤ 1}.
First, assume that (3.63) has the high-gain property. Seeking a contradiction,
suppose that there exists v ̸= 0 such that ⟨v,Θv⟩ = 0. Then, there exists
v̄ ∈ V such that ⟨v̄,Θv̄⟩ = 0. Choose the compact sets K = {0} ⊂ Rk and
Q = {0} ⊂ Rq. Then, for all s ∈ R we have

χ(s) = min
v∈V

(⟨−sv,Θv⟩) ≤ −s⟨v̄,Θv̄⟩ = 0.

This, however, contradicts the high-gain property. The remaining impli-
cation can be seen as follows. Assume that the matrix Θ is sign defi-
nite. Then, there exists δ ∈ {−1, 1} such that δΘ is positive definite.
This implies that the smallest eigenvalue λ− of the symmetric matrix
δ
2
(Θ + Θ⊤) is strict positive. So it follows that for all v ∈ V we have

⟨v, (Θ + Θ⊤)v⟩ ≥ λ−v2∗. Choosing compact sets K ⊂ Rk, Q ⊂ Rq we may
define C := min { ⟨v, κ+ q⟩ | (κ,q) ∈ K ×Q, v ∈ V }. With this we calculate

∀ s ∈ R : χ(s) − C ≥ min
v∈V

(⟨−sv,Θv⟩) = min
v∈V

(
−δs

2
⟨v, (Θ + Θ⊤)v⟩

)
.

Then, for a real sequence (sn) with δsn < 0 for all n ∈ N and δsn → −∞
for n→ ∞ it directly follows

∀n ∈ N : χ(sn) ≥ C − δsn
v2∗λ

−

2
,

by which χ(sn) → ∞ as n→ N. Therefore, since without loss of generality we
assumed Γ, Γ̃ > 0, the system class Lm,r under consideration in the present
chapter has the high-gain property. Hence, it is meaningful to apply the
control scheme (3.62) proposed in [21] to the conjunction of a Lm,r

1 system
with a cascade of funnel pre-compensators (3.2).

(ii) Since by assumption we have Γ > 0, and by (A.3) we have Γ̃ > 0, according
to [21, Rem. 1.8.(b)] the surjection N : R≥0 → R in control scheme (3.62) can
be chosen as N(s) = −s. Moreover, similar to the gain functions hi in (3.1)
we may choose α(s) = 1/(1 − s) by which the control scheme (3.62) is given
by

u(t) = − w(t)

1 − ∥w(t)∥2
, w(t) := ρr(φ(t) e(t)). (3.64)
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Now, if the reference trajectory satisfies

yref ∈ Wr,∞(R≥0;Rm),

we have the following result.

Corollary 3.16. Consider a system (3.4) with (d, f,T,Γ, R) ∈ Lm,r
1 and initial

trajectory y0 ∈ Wr−1,∞([−τ, 0];Rm) in conjunction with a cascade of funnel pre-
compensators (3.2) with (a, p, φ, φ1, ρ,Γ, Γ̃) ∈ Σ. Furthermore, assume that the
initial conditions (3.11) in Theorem 3.9 are satisfied. Moreover, let ϕ ∈ ΦFC and
assume that for the pre-compensator’s output z := zr−1,1 the funnel control initial
value constraint

ϕ(0) e(0) ∈ Dr,

is satisfied, where e := z − yref and e := (e, ė, . . . , e(r−1)). Then, for any refer-
ence yref ∈ Wr,∞(R≥0;Rm), the funnel controller (3.62), with z = zr−1,1 from (3.2),
applied to system (3.4) yields an initial value problem, which has a solution, and ev-
ery solution can be extended to a maximal solution (y, ζ) : [−τ, ω) → Rm×Rrm(r−1),
where ω ∈ (0,∞], and ζ = (z⊤1,1, . . . , z

⊤
r−1,r)

⊤ ∈ Rm(r−1)r, and the maximal solution
has the properties

(i) the solution is global, i.e., ω = ∞,

(ii) the input u, the compensator states ζ, the pre-compensator gain func-
tions h1, . . . , hr−1, and the original system’s output and its derivatives
y, ẏ, . . . , y(r−1) are bounded, that is, for all i = 1, . . . , r − 1 we have u ∈
L∞(R≥0;Rm), ζ ∈ L∞(R≥0;Rm(r−1)r), hi ∈ L∞(R≥0;R), y ∈ Wr,∞(R≥0;Rm),

(iii) the errors evolve in their respective performance funnels, that is

∃ ε1 > 0 ∀ t ≥ 0 : ∥y(t) − z1,1(t)∥ < φ1(t)
−1 − ε1,

∀ i = 2, . . . , r − 1 ∃ εi > 0 ∀ t ≥ 0 : ∥zi−1,1(t) − zi,1(t)∥ < φ(t)−1 − εi,

∃ β > 0 ∀ t ≥ 0 : ∥z(t) − yref(t)∥ < ϕ(t)−1 − β.

In particular, with ε :=
∑r−1

i=1 εi, the tracking error y−yref evolves within a prescribed
funnel, i.e.,

∀ t ≥ 0 : ∥y(t) − yref(t)∥ < (ρ+ r − 2)φ(t)−1 + ϕ(t)−1 − (ε+ β).

Proof. Theorem 3.9 yields that a system (3.4) with (d, f,T,Γ, R) ∈ Lm,r
1 in conjunc-

tion with a cascade of funnel pre-compensators (3.2) with (a, p, φ, φ1, ρ,Γ, Γ̃) ∈ Σ
results in a minimum phase system with (d̃, F̃ , T̃, Γ̃, 0rm×m) ∈ Lm,r. Furthermore,
the respective aspects of assertions (ii) & (iii), namely concerning ζ, hi, are true.
Therefore, invoking Remark 3.15, the conjunction belongs to the system class under
consideration in [21]. Then [21, Thm. 1.9] is applicable and yields the remaining
aspects of assertions (i) – (iii). Furthermore, the transient behaviour of the tracking
error y − yref is a direct consequence of (iii).

The remainder of this chapter consists of some numerical simulations to illustrate
the results developed for the funnel pre-compensator.
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3.3. An application of the funnel pre-compensator: output feedback control

Example 3.17. We apply the funnel control scheme (3.64) to the conjunction of
a cascade of funnel pre-compensators (3.2) with a minimum phase system (3.4) to
achieve output tracking with prescribed transient behaviour of the tracking error
via output feedback only, i.e., we illustrate an application of Corollary 3.16. We
emphasize that the funnel pre-compensator receives only the measurement of the
output signal y. Then, the applied controller (3.64) takes the pre-compensator’s
output z and its derivatives which are known explicitly, cf. Figure 3.6. Since the
application of the funnel pre-compensator to the standard illustrative example mass
on a car system from [179] was already discussed in detail in [32, Sec. 5.1], and
the application of the controller (3.62) to this particular example was elaborated
in [21, Sec. 3.1], we consider the following artificial, in particular, nonlinear multi-
input multi-output ODE of relative degree r = 3 with m = 2 and initial conditions
y|[−τ,0] ≡ 0 ∈ R2 for some τ > 0,

y(3)(t) = R1y(t) +R2ẏ(t) +R3ÿ(t) + f (d(t),T(y, ẏ, ÿ)(t)) + Γu(t), (3.65)

where

R1 =

[
−1 0
0 0

]
, R2 =

[
1 −1
0 0

]
, R3 =

[
1 1
0 −1

]
, Γ =

[
2 0.2

0.2 2

]
= Γ⊤ > 0,

and for d = (d1, d2)
⊤, ξi = (ξi,1, ξi,2)

⊤, i = 1, 2, 3

T : C([−τ,∞);R6) → L∞
loc(R≥0;R3),

(ξ1(·), ξ2(·), ξ3(·)) 7→

t 7→
 ξ1,1(t)

2 + eξ1,1(t)−|ξ2,1(t)|

ξ1,2(t)
3 − sin(ξ2,2(t))∫ t

0
e−(t−s)∥ξ1(t)∥2 tanh(∥ξ3(t)∥2) ds

 ,

f : R2 × R3 → R2,

(d1, d2, ζ1, ζ2, η) 7→
(
d1 + ζ1 + η3

d2 + ζ2 − η

)
,

whereby the internal dynamics are bounded-input bounded-state stable and the
associated operator T belongs to the class T 6,3

τ,1 . The disturbance is chosen as
d : R≥0 → R2, t 7→ (0.2 sin(5t) + 0.2 cos(7t), 0.25 sin(9t) + 0.2 cos(3t))⊤ by which
d ∈ L∞(R≥0;R2) and hence (d, f,T,Γ) ∈ L2,3

1 . For the funnel pre-compensator
we choose the Hurwitz polynomial (s + s0)

3 with s0 = 4 and Q = I3 to determine
matrices A and P satisfying (A.1) and obtain the respective parameters a1 = 12,
a2 = 48, a3 = 64 and p1 = 1, p2 = 1563/548, p3 = 1589/365. We choose the
pre-compensator’s funnel function φ(t) = (2 e−2t + 0.2)−1, and for Γ̃ = 2 · I2
with ρ = 1.1 conditions (A.3) & (A.4) are satisfied. We stress that Γ and Γ̃
are quite different; while Γ distributes both input signals (u1, u2) to both out-
put directions (y1, y2), Γ̃ only allocates the input signal ui to output direction yi,
i = 1, 2. Next, we choose the controller’s funnel function ϕFC(t) = (10 e−t + 0.3)−1.
Then, with zi,j(0) = 0, i = 1, 2, j = 1, 2, 3, the assumptions on the initial values
from Corollary 3.16 are satisfied. Further, we choose the reference trajectory as
yref : R≥0 → R2, t 7→ (e−(t−5)2 , sin(t))⊤. We simulate the output tracking over a
time interval 0 − 10 seconds. In order to illustrate the funnel pre-compensator’s
contribution we compare the two cases, first, if the derivatives of the output of
system (3.65) are available to the controller and second, if not. The outcomes of
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the simulations are depicted in Figure 3.7, where the subscript FC (yFC) denotes
the case when the derivatives of the system are available, i.e., the funnel pre-
compensator is not necessary and hence not present; and the subscript FPC (yFPC)
indicates the situation when the system’s output is approximated by the pre-
compensator and the derivatives of the latter are handed over to the controller.

0 5 10
-3

0

3

0 5 10
-3

0

3

(a) Tracking error y − yref . The dashed
line −−− represents the funnel boundary
given by (ρ + r − 2)/φ + 1/ϕFC, the dot-
ted line · · · represents the funnel boundary
given by 1/ϕFC.

0 5 10
-7

0

7

0 5 10
-6

0

6

(b) Input signals u generated by the funnel
control scheme (3.64).

Figure 3.7: Output reference tracking of the nonlinear multi-input multi-output
minimum phase system (3.65) via output feedback.

Figure 3.7a shows the tracking error between the system’s output yi and the ref-
erence trajectory yref,i in both cases, for i = 1, 2. Note that in the case when the
derivatives of the system’s output are available the error evolves within the fun-
nel boundaries defined by 1/ϕFC as it can be expected from the results in [21,
Thm. 1.9]. We emphasize that in the second case (the derivatives of the sys-
tem’s output are not available), although the error leaves the funnel 1/ϕFC, the
tracking error can be guaranteed to evolve within the wider boundaries given by
(ρ+ r− 2)/φ+ 1/ϕFC = (ρ+ 1)/φ+ 1/ϕFC, where r = 3 and ρ = 1.1 in this partic-
ular example. Figure 3.7b shows the control input ui, i = 1, 2, generated by (3.64).
Both signals show oscillations which arise from the influence of the disturbance d,
i.e., the controller compensates the disturbance’s effect to the system. Analogously
to the approximation performance discussed in the previous Example 3.4, the track-
ing performance (and so the input signal u) strongly depends on the choice of the
pre-compensator’s parameters, i.e., on the choice of A (for fixed Q = Im) and can be
improved with larger values of s0. The simulations have been performed in Matlab
(solver: ode15s, rel. tol: 10−6, abs. tol: 10−6). ⋄
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Remark 3.18. Recalling Remark 3.8, we highlight that Corollary 3.16 achieves
output tracking with prescribed transient behaviour of the tracking error via out-
put feedback only for the large class of linear minimum phase systems. Note that
this result applies to single-input, single-output systems as well as to multi-input,
multi-output systems. The controller proposed in [56] achieves output tracking
with prescribed performance of the error via output feedback for minimum phase
multi-input, multi-output systems of arbitrary relative degree as well. In particular,
this controller as well as the control scheme (3.62) is applicable to linear minimum
phase systems. However, as it involves a high-gain observer structure, the controller
from [56] suffers from the problem of proper initializing, i.e., some parameters have
to be chosen large enough in advance, however, it is not clear how large. Contrary,
conditions (A.1) – (A.4) explicitly determine the set Σ of feasible design parameters
of the funnel pre-compensator. This resolves a long-standing problem in the field of
high-gain based output feedback control with prescribed transient behaviour.

Remark 3.19. We comment on three aspects of the application of Corollary 3.16.

(i) According to [21, Sec. 1.4], in particular [21, Rem. 1.7 (c)], tracking of a
given reference is also possible if the number of the available derivatives of the
reference signal is smaller than the relative degree. This means the following.
Let r̂ be the number of derivatives of the reference signal yref available to the
feedback controller. Then the control scheme (3.62) achieves output tracking
with prescribed performance of the tracking error in the case r̂ < r. This
means for instance, target tracking of a given “smooth” trajectory is possible,
where the derivatives of the reference are unknown, as are the derivatives of
the system’s output. This situation is illustrated in Example 3.20.

(ii) In the case r̂ = r exact asymptotic tracking can be achieved, see [21,
Rem. 1.7 (f)]. In the present context this means limt→∞(z(t) − yref(t)) = 0.
However, limt→∞(y(t) − z(t)) = 0 cannot be guaranteed since φ ∈ Φr. More-
over, anticipating the results presented in Section 4.2, exact output reference
tracking in finite time T > 0 is possible as well, however, suffering from the
same limitations, namely, while z(T ) − yref(T ) = 0 can be achieved, the error
between the system’s output y and the reference yref cannot be guaranteed to
be zero.

(iii) An application of the funnel pre-compensator to linear non-minimum phase
system under consideration in [16] allows output feedback tracking for a cer-
tain class of linear non-minimum phase systems with the controller scheme
proposed in [16, Sec. 3]. However, in combination with the funnel pre-
compensator the bound of the tracking error discussed in [16, Sec. 4] is
not valid any more. For deeper insights regarding output tracking of linear
non-minimum phase systems see the article [16].

Example 3.20. We illustrate Remark 3.19 (i). To this end, we revisit Example 3.17
and assume that the reference signal is only available without information of its
derivatives, i.e., we perform output reference tracking, where the derivatives of the
output of the system are as unavailable as the derivatives of the reference signal.
We choose the same parameters as in Example 3.17 and simulate tracking over the
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time interval 0 − 10 seconds.
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(a) Tracking error y − yref . The dashed
line −−− represents the funnel boundary
given by (ρ + r − 2)/φ + 1/ϕFC, the dot-
ted line · · · represents the funnel boundary
given by 1/ϕFC.
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(b) Input signals u generated by the funnel
control scheme (3.64).

Figure 3.8: Output reference tracking of system (3.65) via output feedback, where
the derivatives of the reference signal are unknown.

Figure 3.8a shows the tracking error. The subscript FC refers to the situation
where the system’s output derivatives are available; the subscript FPC refers to
the situation where the system’s output derivatives are not available and the funnel
pre-compensator is applied. Note that the error yFPC−yref crosses the dotted funnel
boundary line; however, as expectable from Corollary 3.16, the error strictly evolves
within the wider funnel boundary (ρ+ 1)/φ+ 1/ϕFC. Figure 3.8b shows the control
input. Compared to the control input in Example 3.17, the control effort here is
much higher. This observation supports the conjecture formulated in [21, Sec. 1.1]
that the more information about the reference signal is available to the controller,
the better is the control performance. The simulations have been performed in
Matlab (solver: ode15s, rel. tol: 10−6, abs. tol: 10−6). ⋄

The observations in the previous example regarding the control input in the
situation where the derivatives of the reference signal are not available lead to the
following reasoning. If only the reference signal yref is available, and its derivatives
are not, an application of the funnel pre-compensator to the reference signal produces
a signal, the derivatives of which are available. This may improve the controller’s
performance. We will illustrate this thought in the next Example 3.21.

Example 3.21. We revisit Example 3.20 and perform output reference tracking in
the case when the derivatives of the reference are unavailable, as are the derivatives
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of the system’s output. Then we apply a cascade of funnel pre-compensators to
the reference signal to obtain a signal, the derivatives of which are available. We
compare this with the situation in Example 3.20 where the derivatives of the ref-
erence are not available and the system’s output is approximated by a cascade of
funnel pre-compensators. For the pre-compensator applied to the system’s output
and for the control, we choose the same parameters as in Example 3.20 and the same
funnel function φFPC,sig = φ. For the pre-compensator applied to the reference sig-
nal, we take the same parameters a, p and choose the funnel function φFPC,ref =
(2 e−t + 0.05)−1. We simulate tracking over the time interval 0 − 10 seconds.
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(a) Tracking error y − yref . The dashed
line −−− represents the funnel boundary
given by (ρ + 1)/φFPC,sig + 1/φFPC,ref +
1/ϕFC, the dotted line · · · represents
the funnel boundary given by (ρ +
1)/φFPC,sig + 1/ϕFC.
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(b) Controls generated by (3.64). In-
puts u1, u2 are the same as in Example 3.20
(red signals in Fig. 3.8b); inputs û1, û2 are
those, where a funnel pre-compensator is
applied to the reference.

Figure 3.9: Output reference tracking of system (3.65) via output feedback, where
the reference signal is approximated by a cascade of funnel pre-compensators.

Figure 3.9 shows the results of the simulation. Expressions with a hat, i.e., terms of
the form ẑ, refer to the situation when the funnel pre-compensator is applied to the
reference signal. Figure 3.9a shows the tracking error, which is comparable in both
situations. In Figure 3.9b the input signal is depicted. It can be seen that using the
approximation of the reference signal and the approximation’s derivatives reduces
the control effort significantly. The simulations have been performed in Matlab
(solver: ode15s, rel. tol: 10−6, abs. tol: 10−6). ⋄

We conclude this section by an illustration of the stability of the conjunction
of a Lm,r

1 system with a cascade of funnel pre-compensators. We consider a simple
integrator system of third order and simulate tracking of a chaotic reference.
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Example 3.22. In order to demonstrate the funnel pre-compensator’s capability, we
simulate tracking of a trajectory generated by the Lorenz equations for parameters
which cause chaotic behaviour, i.e., the reference trajectory yref = (yref,1, yref,2, yref,3)
is given by the solution of

ẏref,1(t) = α(yref,2(t) − yref,1(t)), yref,1(0) = y0ref,1 ∈ R,
ẏref,2(t) = yref,1(t)(β − yref,2(t)) − yref,2(t), yref,2(0) = y0ref,2 ∈ R,
ẏref,3(t) = yref,1(t)yref,2(t) − γyref,3(t), yref,3(0) = y0ref,3 ∈ R,

where α = 10, β = 28, γ = 8/3 as initially introduced in [135]. We consider the third
order integrator system

y(3)(t) = u(t),

with y(i)(0) = y
(i)
ref(0), i = 0, 1, 2, and initialize the funnel pre-compensator likewise.

For the pre-compensator we choose the funnel function φ(t) = (e−2t + 0.01)−1,
so for ρ = 1.1 the function φ1 is given according to (A.2). As in the previous
examples, we choose a polynomial (s + s0)

r to generate the parameters ai, pi
satisfying (A.1). In this case we choose s0 = 15 and Q = I3 and obtain
a1 = 45, a2 = 675, a3 = 3375, and correspondingly p1 = 1, p2 = 9586/927,
p3 = 6053/104. For the funnel controller (3.64) we choose ϕ(t) = (e−2t + 0.1)−1.

(a) Chaotic Lorenz attractor and the sys-
tem’s output chasing the chaos.
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(b) Tracking error.

Figure 3.10: Output reference tracking via output feedback. The reference is gen-
erated by the Lorenz equations.

This example highlights two important aspects. First, the funnel control scheme
proposed in [21] achieves output reference tracking with guaranteed error bounds
for quite challenging references; and second, the funnel pre-compensator’s output ap-
proximates the system’s output sufficiently good such that the tracking of a chaotic
reference is possible without the availability of the system’s output derivatives. The
simulations have been performed in Matlab (solver: ode15s, rel. tol: 10−12, abs.
tol: 10−12). ⋄
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4 Funnel control

The results presented in Chapters 2 & 3 are related to, but not strictly restricted
to funnel control. The findings there are practical tools to address certain aspects
of well known problems in high-gain feedback control, but neither novel tracking
objectives were under consideration nor new control schemes were developed. In
the present chapter, we present two recent results, each addressing new aspects of
funnel control. The first result is related to system properties, namely reliability of
the output measurement. The second result deals with a specific control objective,
namely exact tracking. First, in Section 4.1 we investigate the situation of output
reference tracking when the output measurement is subject to losses, i.e., within
some time intervals no information from the system is available. Second, in Sec-
tion 4.2 we focus on the long standing open problem of exact tracking in finite time
via feedback control. We develop a novel funnel control law, which forces the output
of a system to have exact specified values at a predefined finite time while before
that time the tracking error evolves within prescribed bounds.

4.1 Tracking under output measurement losses

In this section we consider output tracking for linear minimum phase systems with
arbitrary relative degree, which may be subject to possible output measurement
losses. The study of such situations is of high practical importance, since in the
presence of output measurement losses the performance of closed-loop control strate-
gies can deteriorate significantly and even lead to instability. Measurement losses
can occur whenever signals are transmitted analogously over large distances or via
digital communication networks and may hence be prone to signal losses or package
dropouts. In this section we present a control strategy for linear systems, which
guarantees that the tracking error evolves within prescribed error bounds whenever
the output signal is available. Moreover, involving a time-varying error bound, after
output measurement losses the controller is able to recapture the error within this
error bound by appropriately shifting it.

A typical framework to study systems which may be subject to output mea-
surement losses is the concept of networked control systems, see for instance the
works [68, 197, 52, 150]. Within the framework of networked control systems, so-
called event-triggered controllers have been developed to achieve global asymptotic
stability, for linear systems see [124, 38, 128], and for nonlinear systems we refer
to [196, 57]. Further, so-called H∞ control approaches were studied in [67, 185], and
in [163, 132] model predictive control strategies were exploited to deal with output
measurement losses. To the best of the author’s knowledge, output tracking control
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4.1. Tracking under output measurement losses

with prescribed performance of the error, where the output is subject to measure-
ment losses, has not been considered yet. In this section, we present a novel funnel
control law to achieve this. This particular control strategy relies on an intrinsic
“availability function”, which, as a binary value, encodes whether the output mea-
surement is available or not. As a consequence, no a priori information about the
time instants where the measurement is lost or recaptured is necessary. Involving
the availability function, the basic idea for the controller is the following. Whenever
the signal is available, we apply a classical funnel controller [21] such as already
used in Section 3.3; whenever the output signal is lost, we set the input to zero and
restart the controller when the output measurement signal is available again.

4.1.1 System class, control objective, feedback law

We consider linear systems of the form

ẋ(t) = Ax(t) +Bu(t) + d(t), x(0) = x0 ∈ Rn,

y(t) = Cx(t),
(4.1)

with matrices A ∈ Rn×n and B,C⊤ ∈ Rn×m. Note that the dimensions of the input u
and the output y coincide. Further, d ∈ L∞(R≥0;Rn) is a bounded disturbance. In
virtue of Definition 1.2 we assume that system (4.1) has strict relative degree r ∈ N,
and we define Γ := CAr−1B ∈ Glm(R). Then, as pointed out in Remark 3.8, a
straightforward generalization of [95, Thm. 3] yields that there exist Ri ∈ Rm×m,
i = 1, . . . , r, S, P⊤ ∈ Rm×(n−rm) and Q ∈ R(n−rm)×(n−rm) such that system (4.1) is
equivalent to

y(r)(t) =
r∑

i=1

Riy
(i−1)(t) + Sη(t) + Γu(t) + dr(t),

η̇(t) = Qη(t) + Py(t) + dη(t),

(4.2)

with initial conditions

(y(0), . . . , y(r−1)(0)) = (y00, . . . , y
0
r−1) ∈ Rrm, η(0) = η0 ∈ Rn−rm,

where dr and dη are given via the transformation presented in Remark 3.8. With
this, we introduce the system class under consideration in the present section.

Definition 4.1. For m, r ∈ N a system (4.2) belongs to the system class Σm,r, if

(i) the high-gain matrix Γ = CAr−1B ∈ Glm(R) is sign definite, w.l.o.g. we
assume Γ+ Γ⊤ > 0,

(ii) the system is minimum phase, i.e., σ(Q) ⊆ C−,

(iii) the disturbance (dr, dη) : R≥0 → Rm × Rn−rm is bounded.

Then, we write (A,B,C) ∈ Σm,r.

Note that the system class in Definition 4.1 is a subclass of Lm,r defined in
Section 3.2.1 and coincides with the class of linear systems discussed in Remark 3.8.
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Chapter 4. Funnel control

Remark 4.2. We emphasize that the restriction to linear systems is a consequence
of the assumption of no a priori knowledge of the time instances where the measure-
ment is lost. To see this, consider the nonlinear control system ẏ(t) = y(t)2 + u(t)
with y(0) = y0. Now, assume y(t1) > for some t1 > 0 and the signal is lost at t = t1,
and the input is set to zero. Then, the solution for t ≥ t1 is

y(t) =
y(t1)

1 − y(t1)(t− t1)
,

which has a finite escape time, i.e., for t → (1 + t1 y(t1))/y(t1) the solution blows

up. In particular, the interval [t1,
1+t1 y(t1)

y(t1)
) where the solution is bounded depends

on the time instance t1 and on the state y(t1). So no assumption on the maximal
allowable duration of measurement losses is possible in advance. Contrary, a linear
system (4.2) with (A,B,C) ∈ Σm,r does not have a finite escape time, and so
for u ≡ 0 the solution is bounded on any compact interval.

In order to introduce the assumptions on the system parameters and the maximal
allowable duration of signal absence properly, we state the following result, the proof
of which is straightforward, cf. [69].

Lemma 4.3. Let L ∈ Rp×p with σ(L) ⊆ C−. Then there exists 0 < K = K⊤ such
that KL+ L⊤K + Ip = 0 and moreover,

∀ t ≥ 0 : ∥eLt∥ ≤
√

∥K−1∥∥K∥ e−
1

2∥K∥ t.

For the matrix Q from (4.2) we define, in virtue of Lemma 4.3, the following
constants

M :=
√
∥K−1∥∥K∥, µ :=

1

2∥K∥
, (4.3)

where the matrix K is such that KQ + Q⊤K + In−rm = 0. If n − rm = 0, i.e.,
if system (4.2) has trivial internal dynamics, we set M := 0 and µ := 1. Utilizing
Lemma 4.3 we record for later use that, for t ≥ t0 ≥ 0, we have∫ t

t0

∥eQ(s−t0)∥ds ≤ M

µ
(1 − e−µ(t−t0)) ≤ M

µ
, (4.4a)∫ t

t0

∥eQ(s−t0)∥ds ≤M

∫ t

t0

|e−µ(s−t0)|ds ≤M(t− t0). (4.4b)

Further, thanks to the well known variation of constants formula, cf. [195, § 2], we
record that the second equation in (4.2) has the solution

η(t) = eQ(t−t0)η(t0) +

∫ t

t0

eQ(t−s)(Py(s) + dη(s)) ds. (4.5)

Thus, for any signals y ∈ C(R≥0;Rm) and dη ∈ L∞(R≥0;Rn−rm) with ∥dη∥∞ =: d̂η
we may estimate

∥η(t)∥ ≤Me−µ(t−t0)∥η(t0)∥ +M(∥P∥ ∥y|[t0,t]∥∞ + d̂η)

∫ t

t0

e−µ(s−t0) ds. (4.6)

Next, we propose assumptions relating the maximal duration of measurement losses
and minimal time of measurement availability. As mentioned above, we do not
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4.1. Tracking under output measurement losses

assume the measurement losses to happen in previously known intervals, but we
only assume that it is possible to determine, at every time instant t, whether the
measurement of y(t) is available or not. If the availability is uncertain, then it should
be rendered “signal unavailable”. This also encompasses the situation that, after
a disconnection, the availability of the measurement is only determined with some
delay. Based on the aforesaid we define the following “availability function”

a : R≥0 → {0, 1},

t 7→

{
1, measurement of y(t) available,

0, measurement of y(t) not available.

(4.7)

In order to introduce the assumptions on the maximal duration of measurement
losses and the minimal time of measurement availability involving the function (4.7),
we make the following feasibility assumption.

Assumption 1. The availability function (4.7) is left-continuous and has only
finitely many jumps in each compact interval. Then, we define the strictly increasing
sequences (t−k ), (t+k ), with t−k < t+k < t−k+1 < t+k+1 such that

{ t ≥ 0 | a(t) = 1} =
⋃
k∈N

(t+k , t
−
k+1],

{ t ≥ 0 | a(t) = 0} =
⋃
k∈N

(t−k , t
+
k ],

(4.8)

that is, on the interval (t+k , t
−
k+1] the signal is available, and on the interval (t−k , t

+
k ]

the signal is not available.

We note that it is possible that both sequences contain only finitely many points.
In this situation we have either a(t) = 1 for t > t+N , or a(t) = 0 for t > t−N for
some N ∈ N. With the definitions above we are in the position to introduce the
assumptions relating the maximal duration of measurement losses and the minimal
time of measurement availability.

Assumption 2. For S⊤, P ∈ R(n−rm)×m, Q ∈ R(n−rm)×(n−rm) and Ri ∈ Rm×m,
i = 1, . . . , r, from (4.2), let p := ∥P∥, s := ∥S∥ and β := 1 + spM

µ
+
∑r

i=1 ∥Ri∥, with

M,µ given in (4.3). Further, let q, Ar be the constants introduced below in (4.9).
The signal is lost for at most ∆ > 0, i.e., for t±k as in (4.8) we have |t−k − t+k | ≤ ∆
for all k ∈ N, such that for some κ ≥ 2 and some θ > s we have that ∆ satisfies

spM∆2eβ∆ ≤ 1, (∆1)

pM2∆eβ∆ ≤ q

Ar

µ(κ− 1)

2κθ
. (∆2)

Assumption 3. The signal is available for at least δ > 0, i.e., for t±k as in (4.8) we
have |t+k − t−k+1| ≥ δ for all k ∈ N, such that for ∆, β, κ, θ from Assumption 2 and
M,µ from (4.3) we have that δ satisfies

eµδ ≥ 2κM
(
∆peβ∆ + 2(1 + spM∆2eβ∆)

)
, (δ1)

eµδ ≥ κ(3 + 2sM2)

θ
. (δ2)
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Chapter 4. Funnel control

Remark 4.4. For systems with trivial internal dynamics, i.e., if the second equation
in (4.2) is not present, Assumptions 2 & 3 can be formulated much weaker. To be
precise, in the case of trivial internal dynamics we have p = 0, s = 0 and M = 0 with
which the inequalities (∆1), (∆2) and (δ1), (δ2) are always satisfied (for θ = 3κ).
This means, that arbitrary large durations ∆ > 0 of signal losses, and arbitrary
small intervals of length δ > 0 where the signal is available, are possible, so that
|t−k − t+k | ≤ ∆ and |t+k − t−k+1| ≥ δ for all k ∈ N. Here the only implicit assumption
is boundedness of the sequence (|t−k − t+k |)k, k ∈ N.

We develop a control scheme which achieves output tracking of a given reference
trajectory for systems where the output measurement is subject to outages. The
control objective is that the tracking error evolves within prescribed bounds in the
following sense. For a system (4.2) with (A,B,C) ∈ Σm,r and a given reference
signal yref ∈ Wr,∞(R≥0;Rm) the output y tracks the reference in the sense that,
whenever the measurement of y is available to the controller, the error e := y − yref
evolves within a prescribed performance funnel

Fφ := { (t, e) ∈ R≥0 × Rm |φ(t)∥e∥ < 1} ,

where φ belongs to the following set of monotonically increasing functions

Φ :=

{
ϕ ∈ C1(R≥0;R)

∣∣∣∣ ∀ t2 ≥ t1 ≥ 0 : 0 < ϕ(t1) ≤ ϕ(t2),

∃ d > 0 ∀ t ≥ 0 : |ϕ̇(t)| ≤ d(1 + ϕ(t))

}
.

The performance funnel’s boundary is given by the reciprocal of the funnel func-
tion φ, see Figure 4.2. We emphasize that the function φ may be unbounded. In
this case, and if no measurement losses occur for t ≥ T for some T > 0, asymptotic
tracking may be achieved, i.e., limt→∞ e(t) = 0, cf. Remark 3.19. Next, we intro-
duce the controller’s design parameters η∗ ∈ R and φ0 ∈ Φ, the control law itself is
introduced hereinafter in equation (4.13). In Figure 4.1 the five steps towards the
choice of the design parameters are depicted.

Step 1
Choose q ∈ (0, 1) and define Ar := Ar(α(q2)) by (4.9b)

Step 2
Choose η∗ according to (η∗1) − (η∗5)

Step 3
Choose φ0 ∈ Φ satisfying (ϕ1)

Step 4
Calculate ci via (4.11) and define C by (4.12)

Step 5
Refine φ0 ∈ Φ such that φ0 satisfies (ϕ1) and (ϕ2)

Figure 4.1: Flowchart for the choice of the controller’s design parameters.
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4.1. Tracking under output measurement losses

As depicted in the flowchart 4.1, we choose the design parameters η∗ and φ0 via
the following five steps.

Step 1 Choose q ∈ (0, 1) and define the bijection

α : [0, 1) → [1,∞), s 7→ 1

1 − s
. (4.9a)

Further, for k ≥ 0 define the function

Ak : R → R, s 7→
k∑

j=0

sj, (4.9b)

and set Ar := Ar(α(q2)).

Step 2 For the disturbances in (4.2) we set d̂r := ∥dr∥∞ and d̂η := ∥dη∥∞.
For ∆, δ, p, s, β, κ, θ from Assumptions 2 & 3, and for M,µ from (4.3),

setting xref := (yref , ẏref , . . . , y
(r−1)
ref ), we choose

η∗ ∈ { ν ∈ R≥0 | ν satisfies (η∗1) − (η∗5)} ,

where

η∗ ≥ p

µ
∥yref∥∞eµδ, (η∗1)

η∗ ≥ ∥xref∥∞eµδ, (η∗2)

η∗ ≥ ∥xref∥∞(1 + e−β∆)eµδ

∆
, (η∗3)

η∗ ≥
(
d̂r +

sM

µ
d̂η

)
eµδ, (η∗4)

η∗ ≥ 2κ

(
∆pM

(
∥xref∥∞ + ∆d̂r + ∆

sM

µ
d̂η

)
eβ∆ + ∆Md̂η

)
, (η∗5)

and set E := θ∆eβ∆η∗ > 0.

Step 3 Let φ0 ∈ Φ such that

φ0,min :=
2κpM2

µ(κ− 1)η∗
≤ φ0(0) ≤ q

ArE
=: φ0,max, (ϕ1)

which is possible by (∆2).

Step 4 In this step we introduce some constants which are necessary to exploit the
estimations given in [21, Cor. 1.10]. Let α̂†(z) = z/(1 + z) which obviously
yields α̂†(sα(s)) = s, and define α̃(s) = 2sα′(s) + α(s) = (1 + s)/(1 − s)2.
Further, invoking properties of φ0 ∈ Φ, namely that |φ̇0(t)| ≤ d(1+φ0(t)) for

all t ≥ 0, we set µ0 := d(1+φ0(0))
φ0(0)

, and observe ess supt≥0(|φ̇0(t)|/φ0(t)) ≤ µ0.
Note that for slowly increasing funnel functions φ0 ∈ Φ we might have
ess supt≥0(|φ̇0(t)|/φ0(t)) < µ0 and so the constant µ0 is possibly chosen
too large. However, we use this possibly larger µ0 to ensure that it only
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Chapter 4. Funnel control

depends on the initialization φ0(0). Then, in virtue of [21, Eq. (12)], for
k = 1, . . . , r − 1 we recursively define the constants c0 = 0 and

e01 := φ0(0)e(0),

c1 := max{∥e01∥2, α̂†(1 + µ0), q
2}1/2 < 1,

µk := 1 + µ0

(
1 + ck−1α(c2k−1)

)
+ α̃(c2k−1)

(
µk−1 + ck−1α(c2k−1)

)
,

e0k := φ0(0)e(k−1)(0) + α(∥e0k−1∥2)e0k−1,

ck := max{∥e0k∥2, α̂†(µk), q2}1/2 < 1,

(4.11)

where e(i)(0) = y(i)(0) − y
(i)
ref(0) for i = 0, . . . , r − 1, and we set

e0r := φ0(0)e(r−1)(0) + α(∥e0r−1∥2)e0r−1,

C :=
r−1∑
i=1

ci + ci−1α(c2i−1) + (1 + cr−1α(c2r−1)).
(4.12)

Step 5 We refine the function φ0 ∈ Φ satisfying (ϕ1) such that for an intermediate
ρ ∈ (0, δ) the estimation

φ0(ρ) ≥ max

{
Ceµδ

η∗
,
Ceµδ

∆η∗

}
(ϕ2)

is satisfied.

Remark 4.5. We comment on the constants and design parameters introduced in
the five-steps process above.

(i) The purpose of the constant q ∈ (0, 1) chosen in Step 1 is to determine
the minimal initial width of the performance funnel, described by the upper
bound φ0,max given by (ϕ1) in Step 3 . Then, condition (ϕ2) in Step 5 ensures
that the width of the funnel, and so the tracking error, is not too large before
the signal possibly vanishes the next time.

(ii) The parameter η∗ chosen in Step 2 , as we will see later, describes the invariant
set in which the internal dynamics evolve when no measurement is available
and hence no control is applied.

(iii) The purpose of the constants defined in Step 4 is to make use of [21, Cor. 1.10],
which we will recapitulate in Lemma 4.10.

With the constants introduced above at hand, we introduce the feedback law.
The idea for the controller design is to choose a funnel function φ0 ∈ Φ, which is
reset whenever no output measurement is available, i.e., when a(t) = 0. Then, as
soon as the output measurement is available again, i.e., when we have a(t∗) = 1
for some t∗ ≥ 0, the funnel controller is restarted with φ(t) = φ0(t − t∗) so that
φ(t∗) > 0 and the performance funnel is sufficiently large at t∗ to ensure applicability
of the funnel controller result [21, Thm. 1.9]. With this, and recalling the bijection
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4.1. Tracking under output measurement losses

α(s) = 1/(1−s) from (4.9a), we introduce the following control law for systems (4.2)
under possible output measurement losses:

τ(t) =

{
t, a(t) = 0,

τ(t−), a(t) = 1,
φ(t) =

{
φ0(0), a(t) = 0,

φ0(t− τ(t)), a(t) = 1,

e1(t) = φ(t) e(t) = φ(t)
(
y(t) − yref(t)

)
,

ei+1(t) = φ(t) e(i)(t) + α(∥ei(t)∥2) ei(t), i = 1, . . . , r − 1,

u(t) = −a(t)α(∥er(t)∥2) er(t).

(4.13)

Remark 4.6. We comment on some aspects of the presented control law.

(i) In Definition 4.1 of the system class we assumed Γ + Γ⊤ > 0. If Γ + Γ⊤ < 0
the control would read u(t) = a(t)α(∥er(t)∥2)er(t).

(ii) If the output measurement is always available, i.e., a(t) = 1 for all t ≥ 0, then
the controller (4.13) coincides with that proposed in [21] and the existence of
a global solution of the closed-loop system follows from the results presented
there.

(iii) Since it is not known a priori when output measurement losses occur, the fun-
nel function φ cannot be globally defined in advance. Therefore, φ is defined
online as part of the control law (4.13); it is equal to a shifted version of the
funnel function φ0 whenever measurements are available, and constantly φ0(0)
otherwise.

(iv) Contrary to standard funnel control laws, the loss of the system’s output signal
possibly introduces a discontinuity in the control signal.

A typical choice for a funnel function is φ0(t) = (ae−bt + c)−1 with a, b, c > 0,
which is depicted in Figure 4.2.

t−1 t+1 t−2 t+2

φ(0)

t

φ
(t

)

(a) Shape of a funnel function φ for a typ-
ical φ0 ∈ Φ.

t−1 t+1 t−2 t+2

ψ(0)

t

ψ
(t

)

(b) Corresponding funnel boundary func-
tion ψ = 1/φ.

Figure 4.2: Schematic shape of a typical funnel function and corresponding bound-
ary, respectively with shifts.
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Chapter 4. Funnel control

4.1.2 Tracking under output measurement losses via funnel
control

In this section we show that the application of the funnel controller (4.13) to a
system (4.2) under possible output measurement losses leads to a closed-loop initial
value problem which has a global solution in the sense of Definition 1.7.

Theorem 4.7. Consider a system (4.2) with (A,B,C) ∈ Σm,r and initial values
(y00, . . . , y

0
r−1) ∈ Rrm and η0 ∈ Rn−rm. Let yref ∈ Wr,∞(R≥0;Rm), a(·) be the

availability function given in (4.7) satisfying Assumption 1. Choose design the
parameter η∗ satisfying (η∗1) – (η∗5), and let φ0 ∈ Φ such that (ϕ1), (ϕ2) are valid. If
the initial conditions

∀ i = 1, . . . , r : ∥ei(0)∥ < 1, (4.14a)

∥η0∥ ≤ η∗ (4.14b)

are satisfied, then the application of the control scheme (4.13) to a system (4.2)
yields an initial value problem which has a solution, every solution can be extended
to a maximal solution and every maximal solution (y, η) : [0, ω) → Rm ×Rn−rm has
the following properties:

(i) the solution is global, i.e., ω = ∞,

(ii) the tracking error e = y − yref evolves within the funnel boundaries, i.e.,

∀ t ≥ 0 : φ(t)∥e(t)∥ < 1,

(iii) the control signal is globally bounded, i.e., u ∈ L∞(R≥0;Rm), and for the
output signal we have y ∈ Wr,∞(R≥0;Rm).

Sketch of proof. Since the proof of Theorem 4.7 is quite technical in some
respects, we briefly outline the main ideas here; the proof itself follows after es-
tablishing some technical results. The proof consists of four steps. In Step one
we establish the existence of a local solution of the closed-loop initial value prob-
lem (4.2), (4.13), (4.14). In Step two we show that the tracking error evolves within
the prescribed funnel boundary. Since the system’s output strongly depends on the
internal dynamics, it is essential to find an invariant set of the internal dynamics
such that, after the reappearance of the output signal, the funnel controller can
be applied with a shifted funnel, where the funnel has to be sufficiently wide. We
utilize the constraints on the maximal duration of signal losses and minimal time
of signal availability, and the result [21, Cor. 1.10] to derive respective estimations.
In Step three we show global boundedness of the input signal; similar to standard
funnel control proofs, we show this by contradiction. Lastly, in Step four we use
the findings from Step one to conclude that the solution of the closed-loop system
is globally defined.

Before we present the proof of Theorem 4.7, we provide some technical results
to be used. First, we derive an explicit exponential bound for the solution of (4.2)
whenever no measurement is available.
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4.1. Tracking under output measurement losses

Lemma 4.8. Consider a linear system (4.2) with (A,B,C) ∈ Σm,r. Then, for M,µ

from (4.3), β given in Assumption 2, s = ∥S∥ and d̂r := ∥dr∥∞, d̂η := ∥dη∥∞, we
have that for all solutions (y, η) ∈ Cr−1([0, ω);Rm) × C([0, ω);Rn−rm), ω ∈ (0,∞],
of (4.2) with u|(t0,t1) = 0 for 0 ≤ t0 < t1 ≤ ω and with x = (y⊤, ẏ⊤, . . . , (y(r−1))⊤)⊤

that for all t ∈ [t0, t1)

∥x|[t0,t]∥∞ ≤
(
∥x(t0)∥ +

∫ t

t0

(
sM∥η(t0)∥e−µ(τ−t0) + d̂r +

sM

µ
d̂η

)
dτ

)
eβ(t−t0).

Proof. Let x = (x⊤1 , . . . , x
⊤
r )⊤. Then, we have that

ẋ(t) =


x2(t)

...
xr(t)∑r

i=1Rixi(t) + Sη(t) + dr(t)


for almost all t ∈ [t0, t1], and upon integration we obtain

∥x(t)∥ ≤ ∥x(t0)∥ +

∫ t

t0

(
∥x(τ)∥ +

r∑
i=1

∥Ri∥∥xi(τ)∥ + s∥η(τ)∥ + ∥dr(τ)∥

)
dτ.

For t ∈ [t0, ω) we define w(t) := ∥x|[t0,t]∥∞. Then, utilizing (4.4a) and (4.5) we have

w(t) ≤ ∥x(t0)∥ + sup
σ∈[t0,t]

∫ σ

t0

[
w(τ) + s∥eQ(τ−t0)η(t0)∥ + d̂r +

sM

µ
d̂η

+
r∑

i=2

∥Ri∥∥xi|[t0,τ ]∥∞+

(
∥R1∥ +

spM

µ

)
∥x1|[t0,τ ]∥∞

]
dτ

≤ ∥x(t0)∥ +

∫ t

t0

[
1 +

(
r∑

i=1

∥Ri∥ +
spM

µ

)]
︸ ︷︷ ︸

=β

w(τ) dτ

+

∫ t

t0

(
sM∥η(t0)∥e−µ(τ−t0) + d̂r +

sM

µ
d̂η

)
dτ.

Then, an application of Grönwall’s lemma yields the assertion.

The second technical lemma provides an estimate involving the function Ak de-
fined in (4.9b).

Lemma 4.9. For k = 0, . . . , r, r ∈ N, let Ak be given as in (4.9b). Further, let
α : [0, 1) → [1,∞) be a bijection, q ∈ (0, 1) and λ,E ≥ 0 with

λ ≤ q

Ar(α(q2))E
. (4.15)

Let ξ0, . . . , ξr−1 ∈ Rn with

∀ k ∈ {0, . . . , r − 1} : ∥ξk∥ ≤ E, (4.16)

and define ζ0 := 0 and ζk+1 ∈ Rn for k = 0, . . . , r − 1 by

ζk+1 := λξk + α(∥ζk∥2)ζk. (4.17)

Then,
∀ k ∈ {1, . . . , r} : ∥ζk∥ ≤ λEAk−1(α(q2)) ≤ q.
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Proof. First observe that for s ≥ 0 we have

∀ k ∈ N : Ak(s) ≤ Ak(s) + sk+1 = Ak+1(s),

and furthermore, for Ãk := Ak

(
α(q2)

)
we have that

λEÃk ≤ λEAr(α(q2))
(4.15)

≤ q.

We show that
∀ k ∈ {1, . . . , r} : ∥ζk∥ ≤ λEÃk−1 (4.18)

by induction over k. For k = 1 we have

∥ζ1∥
(4.17)

≤ λ∥ξ0∥
(4.16)

≤ λE.

Let (4.18) be true for some k ∈ {1, . . . , r − 1}. Then, using monotonicity of the
bijection α, we obtain

∥ζk+1∥
(4.17)

≤ λ∥ξk∥ + α(∥ζk∥2)∥ζk∥
(4.16),(4.18)

≤ λE + α
(
(λEÃk−1)

2
)
λEÃk−1

≤ λE
(
1 + α(q2)Ãk−1

)
= λE

(
1 + α(q2)Ak−1(α(q2))

)
= λEAk(α(q2)),

where we have used that 1 + sAk−1(s) = Ak(s). This proves (4.18).

As the third statement, to improve readability of the proof of Theorem 4.7, we
recapitulate a special case of [21, Cor. 1.10], adapted to the present context, which
will be given without a proof. For details we refer to [21, p. 166 & pp. 190–191].

Lemma 4.10. [21, Cor. 1.10] Assume all hypotheses of Theorem 4.7 are satisfied.
Then, for every maximal solution (y, η) of (4.2), (4.13) the tracking error e = y−yref
satisfies for the constants ci defined in (4.11)

∀ k = 0, . . . , r − 2∀ t ∈ [0, t−1 ) : φ(t) ∥e(k)(t)∥ ≤ ck+1 + α(c2k)ck,

where t−1 is as in (4.8) and the bijection α is given in (4.9a).

With the sketch and the three lemmata presented above at hand, we give a proof
of Theorem 4.7.

Proof of Theorem 4.7. The proof consists of four steps.
Step one. We establish the existence of a solution of the initial value closed-loop
system (4.2), (4.13). Following Step 1 in the proof of [21, Thm. 1.9], we introduce
the set B = {w ∈ Rm | ∥w∥ < 1} and for α(s) = 1/(1 − s) the map

γ : B → Rm, w 7→ α(∥w∥2)w.

Further, we define the sets Dk and maps σk : Dk → B, k = 1, . . . , r recursively as
follows:

D1 := B, σ1 : D1 → B, ζ1 7→ ζ1,

Dk :=

{
(ζ1, . . . , ζk) ∈ Rkm

∣∣∣∣ Z := (ζ1, . . . , ζk−1) ∈ Dk−1,
ζk + γ(σk−1(Z)) ∈ B

}
,

σk : Dk → B, (ζ1, . . . , ζk) 7→ ζk + γ(σk−1(ζ1, . . . , ζk−1)).
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4.1. Tracking under output measurement losses

With this, and xref := (y⊤ref , ẏ
⊤
ref , . . . , (y

(r−1)
ref )⊤)⊤, we define the set

D := { (t, ξ) ∈ R≥0 × Rrm |φ(t)∥ξ − xref(t)∥ ∈ Dr } ,

and σ : D → B, (t, ξ) 7→ σr
(
φ(t)

(
ξ − xref(t))

)
. Note that since the availability

function a(·) is left-continuous, the set D is relatively open. With the definitions so
far, u in (4.13) can be written as

u(t) = −a(t) · α(∥σ(t, x(t))∥2) · σ(t, x(t)).

To proceed, we formally define the function

F : D × Rn−rm → Rn,

(t, ξ1, . . . , ξr, η) 7→


ξ2
...
ξr∑r

i=1Riξi + Sη − a(t)α(∥σ(t, ξ)∥2)σ(t, ξ) + dr(t)
Qη + Pξ1 + dη(t)

 .

With this we obtain, setting x := (y⊤, ẏ⊤, . . . , (y(r−1))⊤)⊤, an initial value problem(
ẋ(t)
η̇(t)

)
= F (t, x(t), η(t)) ,

x(0) =
(
y00, . . . , y

0
r−1

)
, η(0) = η0,

(4.19)

which is equivalent to (4.2), (4.13). Note that F is continuous in (ξ1, . . . , ξr, η)
and locally essentially bounded and, in particular, measurable in the variable t
regardless of the possible discontinuities introduced by the availability function a(·).
Therefore, since we have (0, x(0)) ∈ D, Proposition 1.9 yields the existence of a
maximal solution (x, η) : [0, ω) → Rn of (4.19), where ω ∈ (0,∞]. Moreover, the
closure of the graph of the solution of (4.19) is not a compact subset of D×Rn−rm.

Step two. In this step we establish (ii) on [0, ω). To this end, let (t−k ), (t+k ) be
sequences as defined in (4.8). It is also possible that both sequences contain only
finitely many points, then either a(t) = 1 for t ≥ t+N , or a(t) = 0 for t ≥ t−N for
some N ∈ N. The following arguments apply, mutatis mutandis, in both cases.
To proceed, let e := x − xref . Since we consider a subclass of the system class
under consideration in [21], and since by (4.14a) we have φ(0)e(0) ∈ Dr, the feasi-
bility result [21, Thm. 1.9] restricted to the interval [0, t−1 ] is applicable and ensures
assertion (ii) for t ∈ [0, t−1 ] ⊆ [0, ω). The inclusion [0, t−1 ] ⊆ [0, ω) since without mea-
surement losses, [21, Thm. 1.9] yields ω = ∞. In order to reapply [21, Thm. 1.9] at
t = t+1 , we establish that the initial conditions (4.14) are satisfied for t = t+1 . First,
we show (4.14a) at t+1 . We define the function ψ := 1/φ0. Then by (4.5) and (4.6),
the initial condition (4.14b) and using (η∗1) we have

∥η(t−1 )∥
(4.4a)

≤ Me−µδη∗ +
M

µ

(
pψ(0) + p∥yref∥∞ + d̂η

)
(η∗1)

≤ 2Me−µδη∗ +
pM

µ
ψ(0).

(4.20)

Invoking the constants defined in (4.11) via the result [21, Cor. 1.10] we have that

∀ i = 0, . . . , r − 2 ∀ t ∈ [0, t−1 ) : ∥e(i)(t)∥ ≤ ψ(t)(ci+1 + ciα(c2i )), (4.21)
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and moreover, since ∥er(t)∥ ≤ 1 for t ∈ [0, t−1 ), we have

∥e(r−1)(t)∥ ≤ ψ(t)(1 + cr−1α(c2r−1)).

Thus, for C defined in (4.12) we have ∥e(t)∥ ≤ Cψ(t), and since ψ is monotonically
decreasing by properties of Φ, for some ρ < δ ≤ t−1 as in (ϕ2) we have in particular

∥e(t−1 )∥ ≤ Cψ(t−1 ) ≤ Cψ(ρ). (4.22)

With this estimation at hand, invoking Lemma 4.8 we obtain

∥x|[t−1 ,t+1 ]∥∞ ≤

(
∥x(t−1 )∥ +

∫ t+1

t−1

(
sM∥η(t−1 )∥e−µ(s−t−1 ) + d̂r +

sM

µ
d̂η

)
ds

)
eβ(t

+
1 −t−1 )

(4.4b)

≤
(
∥e(t−1 )∥ + ∥xref∥∞ +

(
sM∥η(t−1 )∥ + d̂r +

sM

µ
d̂η

)
∆

)
eβ(t

+
1 −t−1 )

(4.22)

≤ Cψ(ρ)eβ∆ + ∥xref∥∞eβ∆ +

(
sM∥η(t−1 )∥ + d̂r +

sM

µ
d̂η

)
∆eβ∆,

(4.23)
and therefore, for the error e(t) at t = t+1 we have

∥e(t+1 )∥ ≤ ∥xref(t+1 )∥ + ∥x(t+1 )∥ ≤ ∥xref∥∞ + ∥x|[t−1 ,t+1 ]∥∞
(4.23)

≤ ∥xref∥∞
(
1 + eβ∆

)
+ Cψ(ρ)eβ∆ +

(
sM∥η(t−1 )∥ + d̂r +

sM

µ
d̂η

)
∆eβ∆

(η∗3),(η
∗
4),(ϕ2)

≤ ∆eβ∆η∗e−µδ + ∆eβ∆η∗e−µδ + ∆eβ∆η∗e−µδ + sM∆eβ∆∥η(t−1 )∥
(4.20)

≤ ∆η∗eβ∆−µδ
(
3 + 2sM2

)
+ ∆eβ∆

spM2

µ
ψ(0)

(ϕ2)

≤ ∆η∗eβ∆−µδ
(
3 + 2sM2

)
+ s∆eβ∆

κ− 1

κ
η∗

(δ2)

≤ ∆eβ∆
θ

κ
η∗ + s∆eβ∆

κ− 1

κ
η∗

s<θ
< θ∆eβ∆η∗ = E.

(4.24)
In particular, estimation (4.24) yields

∀ i = 0, . . . , r − 1 : ∥e(i)(t+1 )∥ < E.

Invoking (ϕ1), an application of Lemma 4.9 (applied with λ = φ(t+1 ) = φ0(0)) yields

∥ei(t+1 )∥ ≤ q ≤ ci < 1, i = 1, . . . , r − 1,

∥er(t+1 )∥ ≤ q,
(4.25)

whereby φ(t+1 ) e(t+1 ) ∈ Dr. Moreover, since by construction we have u|[t−1 ,t+1 ) ≡ 0, as-

sertion (ii) is true for t ∈ [t−1 , t
+
1 ) ⊆ [0, ω) by the previous estimations (4.24) & (4.25).

The inclusion of the interval via standard theory of linear differential equations. Fur-
thermore, invoking equations (4.20) & (4.22) and using Lemma 4.8, we obtain with
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similar estimates as above

∥η(t+1 )∥
(4.6),(4.4b)

≤ M∥η(t−1 )∥ + ∆pM∥y|[t−1 ,t+1 ]∥∞ + ∆Md̂η

(4.23)

≤ M∥η(t−1 )∥ + ∆Md̂η

+ ∆pM (Cψ(ρ) + ∥xref∥∞) eβ∆

+ pM

(
sM∥η(t−1 )∥ + d̂r +

sM

µ
d̂η

)
∆2eβ∆

= ∆pM

(
∥xref∥∞ + ∆d̂r + ∆

sM

µ
d̂η

)
eβ∆ + ∆Md̂η

+M∥η(t−1 )∥
(
1 + spM∆2eβ∆

)
+ ∆pMCeβ∆ψ(ρ)

(η∗5),(ϕ2)

≤ η∗

2κ
+ ∆pMη∗eβ∆−µδ +M∥η(t−1 )∥

(
1 + spM∆2eβ∆

)
(4.20)

≤ η∗

2κ
+ ∆pMη∗eβ∆−µδ

+
(
1 + spM∆2eβ∆

)(
2Me−µδη∗ +

pM

µ
ψ(0)

)
(∆1)

≤ η∗

2κ
+ η∗

(
∆pMeβ∆ + 2M

(
1 + spM∆2eβ∆

) )
e−µδ +

2pM

µ
ψ(0)

(δ1),(ϕ1)

≤ η∗

2κ
+
η∗

2κ
+
κ− 1

κ
η∗ = η∗.

(4.26)

Therefore, the initial conditions (4.14) are satisfied at t = t+1 and [21, Thm. 1.9]
is applicable for t ≥ t+1 . Moreover, invoking (4.25), the estimates (4.20), (4.24)
and (4.26) are valid for t = t−2 and t = t+2 , respectively, since ∥η(t+1 )∥ ≤ η∗ and
[t+1 , t

+
2 ] ⊆ [0, ω) via the same arguments as above. Therefore, we obtain the following

chain of inductive implications

φ(t+k )e(t+k ) ∈ Dr

and ∥η(t+k )∥ ≤ η∗

(4.14)

funnel control applicable
for t ∈ [t+k , t

−
k+1) ⊆ [0, ω)

(η∗1) – (η∗5), (ϕ1), (ϕ2)

∥η(t−k+1)∥ satisfies (4.20)

(4.24)

∥e(t+k+1)∥ ≤ E(4.25)∀ i = 1, . . . , r :
∥ei(t+k+1)∥ ≤ q < 1

(ϕ1)

φ(t+k+1) e(t+k+1) ∈ Dr

(4.26)

∥η(t+k+1)∥ ≤ η∗

k → k + 1

This means, the funnel control can be reapplied at t = t+k for all k ∈ N with
[t+k , t

−
k+1) ⊆ [0, ω). This yields assertion (ii) on [0, ω).

Step three. We show y ∈ Wr,∞([0, ω);Rm) and u ∈ L∞([0, ω);Rm). Invok-
ing (4.21) and (4.23), we obtain y ∈ Wr−1,∞([0, ω);Rm). We aim to obtain a global
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bound for u and y(r). We set Ymax := maxi=0,...,r ∥y(i)ref∥∞ and λ := infs≥0 ψ(s); fur-
ther, let γ > 0 be such that 1

2
⟨v, (Γ+Γ⊤)v⟩ ≥ γ∥v∥2 for all v ∈ Rm, which is possible

by assumption. Additionally, we define the constant

η̄ := max

{
η∗,Mη∗ +

M

µ

(
pψ(0) + pYmax + d̂η

)}
.

With this we observe ∥η(t)∥ ≤ η̄ for all t ∈ [t+k , t
−
k+1] by a similar estimate as in (4.20),

and that ∥η(t)∥ ≤ η∗ ≤ η̄ by a similar estimate as in (4.26) for t ∈ [t−k , t
+
k ]. Finally,

recalling the function α̃(s) = (1 + s)/(1 − s)2 defined in Step 4 of the parameter
selection process with ci from (4.11), we define the constant

C̃ := µ0

(
1 +

cr−1

1 − c2r−1

)
+ α̃(c2r−1)

(
µr−1 +

cr−1

1 − c2r−1

)
+

r−1∑
i=1

∥Ri∥
(
ci +

ci−1

1 − c2i−1

+
Ymax

λ

)
+ 1 +

cr−1

1 − c2r−1

+
2Ymax + sη̄ + d̂r

λ
.

Let ε ∈ (0, 1) be the unique point such that

C̃

γφ0(0)
=

ε

1 − ε2
,

and set

cr := max
{
∥e0r∥2, ε, q2

}1/2
< 1.

We show that ∥er(t)∥ ≤ cr for all t ∈ [0, t−1 ) (or on any interval of existence, respec-
tively). We prove this by contradiction. To this end, suppose there exists t1 ∈ [0, t−1 )
such that cr < ∥er(t1)∥ < 1 and define

t0 := max { t ∈ [0, t1] | ∥er(t)∥ = cr } ,

which is well-defined since ∥er(0)∥ ≤ cr. Now, observe that, by the same calculations
as in the proof of [21, Cor. 1.10], we have for γr−1(t) := α(∥er−1(t)∥2)er−1(t) that

∥γ̇r−1(t)∥ ≤ α̃(c2r−1)
(
µr−1 + α(c2r−1)cr−1

)
,

∥e(r−1)(t)∥ ≤ 1 +
cr−1

1 − cr−1

,

for t ∈ [t0, t1], where µr−1 is given by (4.11). Furthermore, since ∥er(t)∥ ≥ cr for all
t ∈ [t0, t1] we have α(∥er(t)∥2) ≥ 1/(1 − c2r) and hence, invoking Lemma 4.10, we
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may calculate

1
2

d
dt
∥er(t)∥2 = ⟨er(t),

(
φ̇(t)e(r−1)(t) + φ(t)e(r)(t) + γ̇r−1(t)

)
⟩

≤ ∥er(t)∥
(
µ0φ(t)∥e(r−1)(t)∥ + α̃(c2r−1)

(
µr−1 +

cr−1

1 − c2r−1

))
+ φ(t)∥er(t)∥

(
Ymax +

r∑
i=1

∥Ri∥∥y(i−1)(t)∥ + sη̄ + d̂r

)
− 1

2
φ(t)α(∥er(t)∥2)⟨er(t), (Γ + Γ⊤)er(t)⟩

≤ ∥er(t)∥
(
µ0φ(t)∥e(r−1)(t)∥ + α̃(c2r−1)

(
µr−1 +

cr−1

1 − c2r−1

))
+

(
r−1∑
i=1

∥Ri∥
(
ci +

ci−1

1 − c2i−1

+
Ymax

λ

)
+ 1 +

cr−1

1 − c2r−1

)
∥er(t)∥

+
2Ymax + sη̄ + d̂r

λ
∥er(t)∥ −

γφ(0)

1 − c2r
∥er(t)∥2

≤
(
C̃ − γφ(0)

cr
1 − c2r

)
∥er(t)∥ ≤ 0,

by which cr < ∥er(t1)∥ ≤ ∥er(t0)∥ = cr, a contradiction. By (4.25) we have that
∥er(t+k )∥ ≤ q ≤ cr for all k ∈ N with t+k ∈ [0, ω). Therefore, the arguments above
can be reapplied on any interval [t+k , t

−
k+1) ⊆ [0, ω) to obtain ∥er(t)∥ ≤ cr for all

t ∈ [t+k , t
−
k+1). Then, invoking u|[t−k ,t+k ) = 0, it follows from (4.13) that for the input

we have ∥u(t)∥ ≤ cr/(1 − c2r) for all t ∈ [0, ω), whereby u ∈ L∞([0, ω);Rm). As a
consequence, it follows from (4.2) that y(r) ∈ L∞([0, ω);Rm).

Step four. Finally, we show that the solution is global. Suppose the opposite,
i.e., assume ω < ∞. Then, since ∥η(t)∥ ≤ η̄ and for all i = 1, . . . , r we have for
the error variable ∥ei(t)∥ ≤ ci < 1 for t ∈ [t+k , t

−
k+1) by [21, Cor. 1.10] and Step

three, and extending the estimate (4.24) straightforwardly to t ∈ [t−k , t
+
k ) to obtain

∥ei(t)∥ ≤ q ≤ ci for t ∈ [t−k , t
+
k ) by (4.25), it follows that the closure of the graph

of the solution of (4.19) is a compact subset of D × Rn−rm, which contradicts the
findings of Step one. This yields assertion (i) and consequently assertions (ii) & (iii)
follow. This completes the proof.

Remark 4.11. We comment on some aspects of the proof of Theorem 4.7.

(i) The proof is constructive and we provide explicit bounds of the tracking er-
ror e = y − yref , as well as for the control input u. We emphasize that these
bounds only depend on the system parameters, the initial values of the track-
ing error, the funnel function and the design parameters. Therefore, with
these values given, the maximal control effort can be calculated in advance.

(ii) The crucial obstacle in the feasibility proof of the feedback control law in
Theorem 4.7 is to show that the resulting control input in the closed-loop
system is globally bounded. To this end, we require appropriate assumptions
on the maximal duration of measurement losses and the minimal time of
measurement availability. The bounds for these durations essentially depend
on the internal dynamics of the system. If the internal dynamics are absent,
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no restrictions must be made. However, if they are present, a decisive task
is to find an invariant set for the internal dynamics and to choose the initial
width of the performance funnel large enough.

We collect the observations about systems with trivial internal dynamics made
in Remark 4.4 and Remark 4.11 (ii) to formulate the following result.

Corollary 4.12. Consider a system (4.2) with (A,B,C) ∈ Σm,r such that n = rm,
i.e., the system has trivial internal dynamics. Let this system have initial values
(y00, . . . , y

0
r−1) ∈ Rrm. Let yref ∈ Wr,∞(R≥0;Rm), and a(·) be the availability function

given by (4.7) satisfying Assumption 1. Let ∆ > 0 be an arbitrary long duration
of possible signal losses, and δ > 0 be an arbitrary short duration of guaranteed
signal availability. Choose the design parameter η∗ satisfying (η∗1) – (η∗5), where
p = M = s = 0 in Assumptions 2 & 3. Further, let φ0 ∈ Φ such that (ϕ1), (ϕ2) are
valid. If the initial conditions

∀ i = 1, . . . , r : ∥ei(0)∥ < 1,

are satisfied, then the application of the control scheme (4.13) to a system (4.2)
yields an initial value problem which has a solution, every solution can be extended
to a maximal solution and every maximal solution y : [0, ω) → Rm has the following
properties:

(i) the solution is global, i.e., ω = ∞,

(ii) the tracking error e = y − yref evolves within the funnel boundaries, i.e.,

∀ t ≥ 0 : φ(t)∥e(t)∥ < 1,

(iii) the control signal is globally bounded, i.e., u ∈ L∞(R≥0;Rm), and for the
output signal we have y ∈ Wr,∞(R≥0;Rm).

Proof. Clear.

We conclude this section with a numerical example.

Example 4.13. To illustrate Theorem 4.7, we numerically simulate an application
of the funnel control scheme (4.13) to a system (4.2). We consider a smaller version
of Example 2.30, namely the mass-on-car system introduced in [179], where on a
car with mass m1 (in kg) a ramp is mounted on which a mass m2 (in kg), coupled
to the car by a spring-damper-component with spring constant k > 0 (in N/m) and
damping σ > 0 (in Ns/m), passively moves. A control force F = u (in N) can be
applied to the car. The situation is depicted in Figure 4.3.
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F

y

a =const

s

Figure 4.3: Mass-on-car system. The figure is taken from [21], which itself is based
on the figure in [179].

We assume some bounded disturbance d ∈ L∞(R≥0;R) acting along the input di-
rection. Then, the equations of motion for the system read[

m1 +m2 m2 cos(ϑ)
m2 cos(ϑ) m2

](
z̈(t)
s̈(t)

)
+

(
0

ks(t) + σṡ(t)

)
+

(
d(t)

0

)
=

(
u(t)

0

)
, (4.27a)

with the horizontal position of the second mass m2 as output

y(t) = z(t) + cos(ϑ)s(t). (4.27b)

To have this system in the form (4.1), we set

M :=


1 0 0 0
0 1 0 0
0 0 m1 +m2 m2 cos(ϑ)
0 0 m2 cos(ϑ) m2

 ∈ R4×4, A := M−1


0 0 1 0
0 0 0 1
0 −k 0 0
0 0 0 −σ

 ∈ R4×4,

and B := M−1[0, 0, 1, 0]⊤ ∈ R4×1, C := [1, cos(ϑ), 0, 0] ∈ R1×4. So, in this example
we have n = 4 and m = 1. Then, setting x1(t) := (z(t), s(t))⊤, x2(t) := ẋ1(t) and
x(t) := (x1(t)

⊤, x2(t)
⊤)⊤ we obtain

ẋ(t) = Ax(t) +Bu(t) + d̃(t),

y(t) = Cx(t),

where d̃(t) := −d(t)M−1[0, 0, 1, 0]⊤. For the simulation we choose the system pa-
rameters m1 = 4, m2 = 1, k = 2, σ = 1, ϑ = π/4, and the initial values
z(0) = s(0) = ż(0) = ṡ(0) = 0. As a reference signal we choose yref : R≥0 → R,
t 7→ cos(t), by which ∥yref∥∞ = ∥(yref , ẏref)∥∞ = 1. As a disturbance we insert
d : R≥0 → R, t 7→ 0.1 sin(11t). For the above parameters a brief calculation yields
CB = 0 and CAB = 1/9. Hence, system (4.27) has relative degree two with respect
to the output (4.27b), and so we have (A,B,C) ∈ Σ1,2. We define

B :=
[
B AB

]
, C :=

[
C
CA

]
, V ∈ R4×2 such that imV = ker C,

and N := V †(I4 − B(CB)−1C) ∈ R2×4. Thus, following [95], via the transformations
given in (2.4) and (3.8), system (4.27) can equivalently be written in the form (4.2)
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Chapter 4. Funnel control

with

R1 = 0, R2 =
8

9
, S =

−4
√

2

9

[
2 1

]
, Γ =

1

9
, Q =

[
0 1
−4 −2

]
, P = 2

√
2

[
1
0

]
,

and, since Cd̃(t) = 0, the respective components (dr, dη) of the disturbance are given
by the transformation formula (3.8) in Remark 3.8 as

(
dr(t)
dη(t)

)
=

[
CA
N

]
d̃(t) =

d(t)
0
0

 .

Next, we choose the controller’s design parameters. According to Assumptions 2 & 3
with q = 0.95, κ = 15, θ = (1 + 0.01)∥S∥, µ = 0.3305, M = 2.2477 we assume
∆ ≤ 2.4 · 10−3 and δ ≥ 15.7. Conditions (η∗1) – (η∗5) are satisfied with η∗ = 146 527.
We choose the funnel function φ0(t) = (ae−bt + c)−1. According to (ϕ1) the funnel
function has to satisfy

φ0,min = 6.3236 · 10−4 ≤ φ0(0) ≤ 6.3236 · 10−4 = φ0,max,

and we choose c = 0.08, a = 1/φ0,min − c and b = 1. Then, the constant from
(4.12) is given as C = 21.4683, and condition (ϕ2) is satisfied with φ(ρ) = 12, where
ρ = 0.99 δ. We simulate output tracking over the interval 0 − 50 seconds. For
illustration purposes we consider two losses and reappearances of the output signal.
The results of the simulation are shown in Figure 4.4.

(a) Error between the output y and the
reference signal yref , and funnel bound-
ary 1/φ.

(b) Control input u.

Figure 4.4: Tracking error y − yref , funnel boundary 1/φ, and control input u.

Figure 4.4a shows the error e = y − yref between the system’s output and the refer-
ence signal. As expected, the error evolves within the prescribed funnel boundaries
whenever the output signal is available, and remains bounded whenever the signal
is not available. In Figure 4.4b the control input is depicted. It can be seen that
on large time intervals, especially after t−1 and t−2 , the input signal is approximately
zero. Only when the performance funnel gets tighter again a large control action is
necessary, which induces some small peaks in the input when a small tracking error
is enforced. Moreover, the controller compensates the disturbances. The simulation
has been performed in Matlab (solver: ode15s, default tolerances). ⋄
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4.2. Exact tracking in finite time

4.2 Exact tracking in finite time

In this section we focus on the long standing problem of exact tracking in finite time
via feedback control. Since rendezvous of spacecraft has been a hot topic from the
early sixties to the present, a brief motivation from the engineering point of view
seems adequate. The first successful automated docking manoeuvre was carried out
in 1967 between Cosmos 186 and Cosmos 188 in the context of the Soviet space
program. In the subsequent years more and more such docking manoeuvres became
relevant as for bringing crew members to a space station (successful in 1971 for
the first time), supplying a space station as well as for service missions for, e.g.,
the Hubble Space Telescope. In view of the recent space mission to Mars (rover
“Perseverance” and helicopter “Ingenuity”), due to the finite speed of information
travelling through space-time, the farer away from the earth spacecraft are, the more
and more feedback control schemes become relevant in launching, landing and dock-
ing manoeuvres. However, back to earth, in daily life contexts there is use of docking
manoeuvres as well, for instance, in automatic production processes, linking up two
parts of a train or charging of autonomous vehicles to name but a few possible fields
of application. Reviewing the current literature on feedback based output reference
tracking, one gets the impression that exact tracking (see Section 1.1 (CO.1)) is an
old problem which has only recently been addressed, and exact tracking in finite
time represents a chapter that has hardly been written yet. Referring to the results
in [48], in [91] it is shown that the proposed funnel control scheme can achieve global
asymptotic stabilization for a class of linear MIMO systems of relative degree one. A
generalization to a class of nonlinear relative degree one MIMO systems is proposed
in [174]. In [154] an extended sliding mode controller is proposed which achieves
asymptotic tracking of linear SISO systems. This controller is extended to linear
MIMO systems in [153]. In [54] backstepping is combined with feedback lineariza-
tion techniques and higher order sliding modes to design a controller which achieves
exponential accurate tracking. In [157] a high-gain based sliding mode controller is
introduced, where the peaking related to the high-gain observer is obviated intro-
ducing a dwell-time activation scheme. This controller achieves asymptotic tracking
for a class of nonlinear SISO systems of arbitrary relative degree, where the reference
signal is generated by a reference model. At the price of a discontinuous control,
asymptotic tracking for nonlinear MIMO systems is achieved in [191, 192]. In [123]
a funnel control scheme is proposed, which achieves asymptotic tracking for a class
of nonlinear relative degree one MIMO systems. Using the proof techniques and the
idea of rewriting the error variable as in [123], this result was extended in the recent
work [21], where it is shown that the proposed funnel controller achieves asymp-
totic tracking of nonlinear MIMO systems with arbitrary relative degree whereas
the tracking error has prescribed transient behaviour. Now, we turn from asymp-
totic tracking towards exact tracking in finite time. In [7] sliding mode control
concepts and results from [35] are used to establish control schemes which achieve
finite time stabilization for linear (SISO & MIMO) systems. In [62] backstepping
and higher order sliding mode control are combined to construct a control scheme
which achieves exact output tracking in finite time for nonlinear MIMO systems in
nonlinear block controllable form. Similar to the prescribed performance controller
in [56] this controller suffers from the proper initialization problem, where it is not
clear how large to choose the involved parameters. The controller in [62], along

124



Chapter 4. Funnel control

with limiting conditions on the system class, presumes knowledge of the system’s
functions and explicitly involves inverses of some. In [201] a controller is introduced
which achieves exact tracking in finite time for a class of nonlinear SISO systems
satisfying a certain homogeneity assumption. This controller relies on estimating
techniques of the external disturbances, where the problem of proper initialization
is avoided by assuming explicit knowledge of the bounds of the disturbances and the
reference. The control scheme explicitly involves (parts of) the system’s right-hand
side and is of relatively high complexity. As far as we understand, in the control
schemes for exact tracking in finite time discussed above, the final time, this is the
time when the desired reference should be matched, cannot be prescribed; only the
existence of such a finite time is ensured. Contrary, in [100] a control scheme is
introduced which solves a predefined-time exact tracking problem for the class of
fully actuated mechanical (relative degree two) systems. The controller relies on
a backstepping procedure and consists of a predefined-time stabilization function
and involves the system’s equations explicitly. The controller introduced in [123]
achieves asymptotic tracking as well as convergence to zero of the tracking error in
finite time for a class of relative degree one MIMO systems.

Circumventing the drawbacks mentioned above, in the present section we introduce
a new funnel control scheme which achieves exact tracking in predefined finite time.
Since the control scheme is of funnel type, it inherits the advantages of robustness
with respect to noise and being model free. Moreover, the tracking error evolves
within prescribed bounds.

4.2.1 System class, control objective, feedback law

We consider nonlinear systems of the following type

y
(r1)
1 (t)

...

y
(rm)
m (t)

 =


f1

(
d(t),T(y1, ẏ1, . . . , y

(r1−1)
1 , y2, . . . , y

(rm−1)
m )(t), u(t)

)
...

fm

(
d(t),T(y1, ẏ1, . . . , y

(r1−1)
1 , y2, . . . , y

(rm−1)
m )(t), u(t)

)
 ,

yj|[−σ,0] = y0j ∈ Crj−1([−σ, 0];R), j = 1, . . . ,m,

(4.28)

where fj ∈ C(Rp × Rq × Rm;R) for j = 1, . . . ,m, d ∈ L∞(R≥0;Rp) is a bounded
disturbance, u : R≥0 → Rm is an input, the real number σ > 0 is the “memory” of
the system and the parameters rj ∈ N are related to the concept of vector relative
degree. Referring to the system above, we introduce the system class Nm,r̄ under
consideration in this section.

Definition 4.14. For m, p, q, r1, . . . , rm ∈ N and r̄ := (r1, . . . , rm) ∈ N1×m a sys-
tem (4.28) is said to belong to the system class Nm,r̄, if the operator T satisfies
Definition 1.4, i.e., T ∈ T n,q

σ , the function

F (d, η, u) := (f1(d, η, u), . . . , fm(d, η, u))⊤ ∈ C(Rp × Rq × Rm;Rm)

satisfies the high-gain property from Definition 1.10, and the dimension of the in-
put u coincides with the number m of output channels.
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4.2. Exact tracking in finite time

In this section we aim to find a control structure which achieves exact out-
put reference tracking in the following sense. For every system (4.28) belonging
to Nm,r̄ and any suitable reference trajectory yref = (y1,ref , . . . , ym,ref)

⊤ : R≥0 → Rm

with yj,ref ∈ Wrj ,∞([0, T );R), where j = 1, . . . ,m and T > 0, the output approaches
the reference within the interval [0, T ), whereas for a given function φ introduced
next, the componentwise tracking error ej := yj − yj,ref , evolves within the perfor-
mance funnel defined by

Fm
φj

:=

{
(t, e) ∈ [0, T ) × R

∣∣∣∣φj(t)|e| <
1√
m

}
,

and the control achieves exact tracking in finite time. That is, we aim to achieve
the following control objective

∀ j = 1, . . . ,m ∀ t ∈ [0, T ) : (t, ej(t)) ∈ Fm
φj
, (4.29a)

∀ j = 1, . . . ,m ∀ k = 0, . . . , rj − 1 : lim
t→T

∥e(k)j (t)∥ = 0, (4.29b)

where e
(k)
j denotes the kth time derivative of ej.

Remark 4.15. The parametrization of the performance funnel Fm
φj

by the number
of input/output channels m is due to the fact that each error variable ej,k (introduced
below in (4.31)) has to evolve independently within its individual funnel boundary.
Since ∥(e1,r1 , . . . , em,rm)∥ < 1 is required due to the construction of the control law,
the respective components have to be bounded by the root of the number of inputs.
The situation is geometrically illustrated in Figure 4.5.

11√
2

1
1√
2

e1

e 2

(a) |e1| < 1√
2
and |e2| < 1√

2
.

11√
2

1
1√
2

e1

e 2

(b) ∥(e1, e2)∥ < 1.

Figure 4.5: Geometric illustration of the fact that, if |e1| < 1/
√

2 and
|e2| < 1/

√
2, then ∥(e1, e2)∥ < 1; the converse, however is not true.

The parametrization could also be shifted to the control function β, however, this
would require an adaption of the formulation of the high-gain property. Thus, for
the sake of better legibility, we will use the parametrization of the performance
funnel Fm

φj
.

In order to establish the control structure which achieves the control objec-
tive (4.29), we introduce the following funnel control parameters. Choose the final
time T > 0 and for j = 1, . . . ,m choose cj > 0. Then, we define the funnel function

φj(t) =
1

cj

1

T − t
, t ∈ [0, T ), (4.30a)
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Chapter 4. Funnel control

where we highlight limt→T φj(t) = ∞, further choose

N ∈ C(R≥0;R) a surjection, (4.30b)

and for cj > 0 from (4.30a) choose

αj ∈ Crj−1([0, 1/m); [cj(rj + 1),∞)) a bijection, (4.30c)

and
β ∈ C([0, 1); [1,∞)) a bijection. (4.30d)

We will comment on the functions N , αj and β below in Remark 4.17.

Remark 4.16. Compared to the funnel control schemes proposed in the common
literature, see e.g. [91, 84, 25, 123, 21], the explicit choice of φj in (4.30a) seems to
be quite restrictive. For this reason, we give a brief comment on that.

(i) Anticipating the initial condition (4.34) in Theorem 4.20, the choice of the
funnel function φ in (4.30a) reflects the intuition that the shorter the final
time T is chosen, the better the initial guess has to be. Further, the tuning
parameter cj in (4.30a) link the funnel function to the respective gain func-
tion αj in (4.30c). If the final time T is short, large cj can ensure the initial
condition (4.34) to be satisfied. This in turn causes a larger lower bound of
the gain function αj which means that small tracking errors cause high input
values.

(ii) If, however, the initial error is completely unknown, a combination of well
known funnel control schemes and the proposed feedback law achieves the
control objective (4.29) as follows. For some τ ∈ (0, T ) apply for t ∈ [0, τ) a
standard funnel controller, for instance the control scheme from [21], to force
the tracking error to a certain value, such that with a suitable choice of cj
the initial conditions (4.34) are satisfied at t = τ . Then apply the feedback
law (4.32) for t ∈ [τ, T ). Note that this may introduce a discontinuity in the
control at the “switching” time t = τ .

(iii) A careful inspection of the proof of [21, Thm. 1.9] yields that an essential
property of the feasible funnel functions is a growth condition, namely

∃ d > 0 : |φ̇(t)| ≤ d
(
1 + φ(t)

)
for almost all t ≥ 0.

This condition prevents a “blow up” in finite time, i.e., the funnel function φ is
bounded on [0,∞). With this, however, exact tracking in finite time via funnel
control is impossible. Contrary, the funnel functions φj defined in (4.30a)
do not satisfy this growth condition. Therefore, in order to achieve exact
tracking in finite time via funnel control, we propose the modified feedback
law (4.31), (4.32).

(iv) Anticipating Theorem 4.20 and its proof, we note that it is possible to choose
the funnel functions φj from (4.30a) as

φj(t) =
1

cj

1

(T − t)ρj
, ρj > 0, j = 1, . . . , r − 1.
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4.2. Exact tracking in finite time

Different choices of ρ are depicted in Figure 4.6.

0 T

ψ(0)

t

ψ
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)

(a) ρ = 0.5.
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ψ(0)

t

ψ
(t

)

(b) ρ = 1.

0 T

ψ(0)

t

ψ
(t

)

(c) ρ = 2.

Figure 4.6: Shapes of the funnel boundary ψ = 1/φ for different ρ > 0.

However, for the sake of readability of the proof, this additional option is not
taken into account in Theorem 4.20.

We introduce the control law which achieves the previously formulated control objec-
tive (4.29). To this end, for j = 1, . . . ,m, and i = 0, . . . , rj−1 we set e

(i)
j := y

(i)
j −y(i)j,ref

and recursively define for k = 1, . . . , rj with αj from (4.30c) and γj,0 ≡ 0 the func-
tions

ej,k(t) := φj(t)e
(k−1)
j (t) + φj(t)

k−1∑
i=1

γ
(k−1−i)
j,i (t), (4.31a)

αj,k(t) := αj(ej,k(t)2), (4.31b)

γj,k(t) := αj,k(t)ej,k(t). (4.31c)

Then, setting er := (e1,r1 , . . . , em,rm)⊤, with the functions introduced in (4.30), (4.31)
we define the feedback law u : R≥0 → Rm as

u(t) := (N ◦ β)(∥er(t)∥2) er(t). (4.32)

Remark 4.17. Anticipating the results of Theorem 4.20, we discuss purposes and
possible choices of the surjection N introduced in (4.30b), and illustrate this with
an example. Further, we briefly consider possible choices of the functions αj and β
introduced in (4.30c), (4.30d).

(i) As pointed out in [21, Rem. 1.4 & 1.8, Sec. 2.2], the surjection N can be
interpreted as a “testing function”, best illustrated by a linear system. For
a linear system (4.1) the matrix σΓ = CAr−1B is positive definite for a σ ∈
{−1,+1}. Then σ is the “control direction”. If the control direction is known,
the high-gain adaptive stabilizer (1.3) with u(t) = −σk(t)y(t) stabilizes the
system, and the gain k is bounded. If the control direction of a system is
not known, then the control input possibly steers the system into the wrong
direction. Morse conjectured in [148], that there does not exist an adaptive
controller, which smoothly stabilizes every linear SISO system (4.1), where
Γ ̸= 0. Nussbaum proved the falsity of this conjecture in [155], where he
showed that the incorporation of a “sign-testing” function solves the problem.
The incorporation of a continuous surjection in [21] generalizes the idea of
Nussbaum and allows for a larger class of “testing functions”. The idea is, if
the control direction is unknown and the control steers the system into the
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Chapter 4. Funnel control

wrong direction, the input becomes larger and larger as the controller aims to
satisfy the control objective. Then, since N : R≥0 → R defines a continuous
surjection, as the error grows it will change its sign at some point and the
control input is directed into the right direction.

(ii) As elaborated in [21, Rem. 1.4(c)], if a system has a “negative high-gain
property”, i.e., if for χ given in Definition 1.10 we have sups>0 χ(s) = ∞,
then the surjection N : R≥0 → R can be replaced by a continuous surjection
[0,∞) → [0,∞), e.g., the map s 7→ s; in the case sups<0 χ(s) = ∞ it can be
replaced by a continuous surjection [0,∞) → (−∞, 0], e.g., the map s 7→ −s.

(iii) If the control direction is unknown, suitable choices are, e.g., N : R≥0 → R,
s 7→ s cos(s), or s 7→ s sin(s).

(iv) We illustrate the purpose of the surjection N and its “testing” with the simple
example

ẏ(t) = y(t) + σu(t), y(0) = 1,

where σ ∈ {−1,+1} is unknown, and so the control direction is unknown.
According to Remark 3.15 this system has the high-gain property. If, for a
reference yref ∈ W1,∞(R≥0;R), the control from (4.32) with e := y − yref

u(t) = N
(
β
(
(φ(t)e(t))2

))
φ(t)e(t)

is applied, then two cases may occur. Either the control input steers the
system into the right direction, or the control steers the system into the wrong
direction. The latter case means that the tracking error e = y− yref is pushed
towards the funnel boundary. This results in a larger value of β(∥φ(t)e(t)∥2).
In this case, the surjection changes its sign at some point and the control acts
into the right direction. This is illustrated in the following simulation, where
we choose φ(t) = 5/(10 − t) and yref(t) = 0, the bijection β(s) = 1/(1 − s)
and as surjection we choose N : R≥0 → R, s 7→ s cos(0.25s).
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Figure 4.7: Illustration of the influence of the surjection N .

Figure 4.7 shows the influence of the surjection N , where the subscript in-
dicates the value of σ ∈ {−1,+1}, i.e., e+ is the tracking error in the case
σ = +1; further, we set β+(t) := β((φ(t)e+(t))2) and N+(t) := N(β+(t)), and
respectively for σ = −1. In Figure 4.7a the tracking errors and the funnel
boundary are depicted. It can be seen, that for σ = +1 in the first seconds
the input causes a larger tracking error, which in turn causes a larger value
of β+(t). Then, the surjection changes its sign and the control directs into
the right direction. For σ = −1 the control points into the right direction.
Figure 4.7b shows the respective control signals u±. In Figures 4.7c & 4.7d
the aforesaid crystallizes from the perspective of the gain functions β± and
the surjections N±.

(v) Regardless of the control direction, suitable choices for the bijections in (4.31b),
(4.30d) are, for instance,

αj(s) =
cj(rj + 1)

(1 − sm)ρj
, β(s) =

1

(1 − sκ)ρ
, ρj, ρ, κ > 0,

see also the funnel functions in Remark 4.16 (iv), and the pre-compensator’s
gain functions in Section 3.1.
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Remark 4.18. We comment on the computation of the expressions recursively given
in (4.31). We define the set

D0 :=
{
ζ ∈ R

∣∣ |ζ| < 1/
√
m
}
,

and, for αj from (4.30c), the function Γj,0 : R≥0 ×D0 → R by

Γj,0(t, ζ) := αj(ζ
2) ζ.

For j = 1, . . . ,m and k = 1, . . . , rj − 1 we recursively define the sets Dk and the
functions Γj,k : [0, T ) ×Dk → R by

Dk := D0 × · · · × D0︸ ︷︷ ︸
k−times

×R,

Γj,k(t, ζ1, . . . , ζk+1) :=
∂Γj,k−1(t, ζ1, . . . , ζk)

∂t

+
k∑

i=1

∂Γj,k−1(t, ζ1, . . . , ζk)

∂ζi

(
φj(t) (cjζi − Γj,0(ζi)) + ζi+1

)
.

(4.33)
Then with ej,k from (4.31a) and γj,k from (4.31c) we obtain

γ
(q)
j,k (t) = Γj,q

(
t, ej,k(t), . . . , ej,k+q(t)

)
, 0 ≤ q ≤ rj − k,

which can be seen via a brief induction over q using equations (4.31).

Remark 4.19. Comparing the control scheme (4.32) with the common literature,
we make the following two observations.

(i) Due to the recursive structure, implementation of the control scheme (4.32)
is not as simple as for the control scheme in [21, Eq. (9)]. However, with
the explicit recursion (4.33) given in Remark 4.18 calculation of the required
expressions can be done completely algorithmically.

(ii) Comparing the control scheme (4.32) with the control scheme in [25, Eq. (5)]
a certain similarity is recognizable. Both control schemes involve recursively
defined signals from which the input is constructed. In view of the findings in
the recent work [21] this similarity gives reason to hope that for the control
objective formulated in (4.29) a non-recursive control scheme can be found in
future research.

4.2.2 Exact tracking in finite time via funnel control

In this section we show that the application of the control scheme (4.32) to a sys-
tem (4.28) belonging to Nm,r̄ yields an initial value problem that has a solution, the
input and output signals are bounded and in particular, we show that the introduced
control scheme achieves exact output tracking in finite time while the tracking error
evolves within prescribed bounds. As highlighted in earlier works, see, e.g., [84, 25,
21], some care is required when showing boundedness of the involved signals since
the bijections αj and β may introduce a singularity. Moreover, in the present con-
text expressions involving the unbounded funnel functions φj demand particularly
high attention.
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Theorem 4.20. For r̄ := (r1, . . . , rm) ∈ N1×m, m ∈ N and j = 1, . . . ,m consider
a system (4.28) belonging to Nm,r̄, with initial data y0j ∈ Crj−1([−σj, 0];R). Let
T > 0 and yj,ref ∈ Wrj ,∞([0, T );R) be a reference trajectory. Assume that for the
control design parameters introduced in (4.30) and ej,k defined in (4.31) the initial
conditions

∀ j = 1 . . . ,m ∀ k = 1, . . . , rj : |ej,k(0)| < 1√
m

(4.34)

are satisfied. Then, the application of the funnel control scheme (4.32) to a sys-
tem (4.28) yields an initial value problem which has a solution and every maximal
solution y : [−σ, ω) → Rm has the following properties

(i) ω = T ,

(ii) u ∈ L∞([0, T );Rm), and for all j = 1, . . . ,m we have yj ∈ Wrj ,∞([−σ, T );R),

(iii) the tracking error e(t) = y(t) − yref(t) evolves within predefined margins;
precisely, for er := (e1,r1 , . . . , em,rm)⊤ we have

∀ t ∈ [0, T ) : ∥er(t)∥ < 1,

and for the componentwise tracking error ej(t) = yj(t) − yj,ref(t) we have

∀ j ∈ { i ∈ {1, . . . ,m} | ri > 1} ∀ t ∈ [0, T ) : |ej,1(t)| = φj(t)|ej(t)| <
1√
m
,

(iv) the tracking of the reference and its derivatives is exact at t = T , that is,

∀ j = 1, . . . ,m ∀ k = 0, . . . , rj − 1 : lim
t→T

|e(k)j (t)| = 0.

Sketch of proof. Since the proof of Theorem 4.20 goes beyond standard fun-
nel control techniques, we briefly outline the main steps. In Step one we es-
tablish the existence of a local solution of the closed-loop initial value prob-
lem (4.28), (4.32), (4.34). In Step two, we show by contradiction boundedness
of the auxiliary variables ej,k introduced in (4.31). The next step is preparatory
work to show boundedness of the higher derivatives of the tracking error. To this
end, we show boundedness of the higher derivatives of the auxiliary error variables
via similar arguments as in Step two and using Lemma 1.11. Both of these steps
require particular attention, since the unbounded funnel functions φj are involved
with higher powers. In Step four we use the previously established estimations to
conclude boundedness of the local solution of the closed-loop system. In Step five
we show boundedness of the input signal u. This is done mainly by invoking the
high-gain property of the system’s right-hand side. From the findings established so
far, we conclude in Step six that the solution is defined on the entire interval [0, T ).
The remaining two steps, namely to establish that the errors evolve within their
respective funnel boundaries and vanish for t→ T , are straightforward.
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Proof of Theorem 4.20. The proof is subdivided in eight steps.
Step one. We show existence of a solution of (4.28), (4.32). To this end, we aim to
reformulate (4.28), (4.32) as an initial value problem of the form

ẋ(t) = F (t, x(t),T(x)(t)) ,

x(0) =
(
y01(0), ẏ01(0), . . . , ( d

dt
)rm−1y0m(0)

)
,

(4.35)

where we set n :=
∑m

j=1 rj, and

x :=
(
y1, ẏ1, . . . , y

(r1−1)
1 , y2, . . . , y

(rm−1)
m

)
.

Setting D0 := { v ∈ R | |v| < 1/
√
m} we choose some interval I ⊆ [0, T ) with 0 ∈ I

such that (e1,1, . . . , e1,r1 , e2,1, . . . , em,rm) : I → Rn satisfy the relations in (4.31) and
such that for all t ∈ I we have e1,1(t), . . . , em,rm−1(t) ∈ D0, which is possible via initial
conditions (4.34). With the aid of (4.33) for all j = 1 . . . ,m and k = 1, . . . , rj − 1
the higher derivatives of γj,k are given by

γ
(q)
j,k (t) = Γj,q

(
t, ej,k(t), . . . , ej,k+q(t)

)
, 0 ≤ q ≤ rj − k, t ∈ I.

Next, for j = 1 . . . ,m we define the functions

ẽj,1 : [0, T ) × R → R,
(t, ξj,0) 7→ φj(t) (ξj,0 − yj,ref(t)) ,

and the set
D̃j,1 := { (t, ξj,0) ∈ [0, T ) × R | ẽj,1(t, ξj,0) ∈ D0} .

With this, again for j = 1 . . . ,m we recursively define for k = 2, . . . , rj the functions

ẽj,k : D̃j,k−1 × R → R,

(t, ξj,0, . . . , ξj,k−1) 7→ φj(t)
(
ξj,k−1 − y

(k−1)
j,ref (t)

)
+ φj(t)

k−1∑
i=1

Γj,k−1−i

(
t, ẽj,i, . . . , ẽj,k−1

)
,

where for the sake of better legibility we omit the arguments of ẽj,q, q = 1, . . . , k−1.
Further, we define the sets

D̃j,k :=
{

(t, ξj,0, . . . , ξj,k−1) ∈ D̃j,k−1 × R
∣∣∣ ẽj,i(t, ξj,0, . . . , ξj,k−1) ∈ D0, i = 1, . . . , k

}
.

Setting ẽr := (ẽ1,r1 , . . . , ẽm,rm)⊤ we observe ∥ẽr(t)∥ < 1 for t ∈ I, and with αj, β,N
given in (4.30) we define for t ∈ I

Nr(t) :=
(
N ◦ β

) (
∥ẽr
(
t, y1(t), ẏ1(t), . . . , y

(r1−1)
1 (t), y2(t), . . . , y

(rm−1)
m (t)

)
∥2
)
.

Then, the control u defined in (4.32) reads

u(t) = Nr(t) · ẽr
(
t, y1(t), . . . , y

(r1−1)
1 (t), y2(t), . . . , y

(rm−1)
m (t)

)
, t ∈ I.

Lastly, setting D̃r−1 := D̃1,1 × · · · × D̃m,rm−1 and for ν ∈ N

f(d, η, u) := (f1(d, η, u), . . . , fm(d, η, u))⊤ ∈ C(Rp × Rν × Rm;Rm), (4.36)
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we define the function

F : D̃r−1 × Rν → Rn

(t, ξ1,0, . . . , ξ1,r1−1, ξ2,0, . . . , ξm,rm−1, η) 7→


ξ1,1

...
ξm,rm−1

f
(
d(t), η,Nr(t) · ẽr

)
 ,

where in ẽr = ẽr(t, ξ1,0, . . . , ξ1,r1−1, ξ2,0, . . . , ξm,rm−1) we omit the arguments for the
sake of better legibility. Together, the initial value problem (4.28), (4.32) is equiva-
lent to (4.35). In particular, we have (0, x(0)) ∈ D̃r−1, the function F is measurable
in the variable t, continuous in (ξ1,0, . . . , ξm,rm−1, η) and locally essentially bounded.
Hence, invoking Remark 1.8, Proposition 1.9 yields the existence of a maximal solu-
tion x : [−σ, ω) → Rn of (4.35), 0 < ω ≤ T . In particular, the graph of the solution
of (4.35) is not a compact subset of D̃r−1.

Step two. For j = 1, . . . ,m we show for the functions ej,k introduced in (4.31a)
that for all k = 1, . . . , rj − 1 there exists εj,k ∈ (0, 1/

√
m) such that |ej,k(t)| ≤ εj,k

for all t ∈ [0, ω). We observe that for t ∈ [0, ω) and k = 1, . . . , rj we have

ej,k(t) − φj(t)
k−1∑
i=1

γ
(k−1−i)
j,i (t) = φj(t)e

(k−1)
j (t).

With this, and using φ̇j(t) = cjφj(t)
2, we calculate for k = 1, . . . , rj − 1

ėj,k(t) = φ̇j(t)e
(k−1)
j (t) + φj(t)e

(k)
j (t) + φ̇j(t)

k−1∑
i=1

γ
(k−1−i)
j,i (t) + φj(t)

k−1∑
i=1

γ
(k−i)
j,i (t)

=
φ̇j(t)

φj(t)

(
ej,k(t) − φj(t)

k−1∑
i=1

γ
(k−1−i)
j,i (t)

)
+
(
ej,k+1(t) − φj(t)

k∑
i=1

γ
(k−i)
j,i (t)

)
+ φ̇j(t)

k−1∑
i=1

γ
(k−1−i)
j,i (t) + φj(t)

k−1∑
i=1

γ
(k−i)
j,i (t)

= (cj − αj,k(t))φj(t)ej,k(t) + ej,k+1(t),

ėj,rj(t) = cjφj(t)ej,rj(t) + φj(t)e
(rj)(t) + φj(t)

r−1∑
i=1

γ
(r−i)
j,i (t).

(4.37)
Further, using the definitions of αj,k and γj,k, we record for later use

γ̇j,k(t) = d
dt

(αj,k(t)ej,k(t))

= 2α′
j(ej,k(t)2) ej,k(t)2 ėj,k(t) + αj,k(t)ėj,k(t).

(4.38)

We observe ej,k = ẽj,k(yj, . . . , y
(k−1)
j ). Therefore, since ẽj,k(t) ∈ D0 for t ∈ [0, ω) due

to the initial conditions (4.34), we have

∀ j = 1, . . . ,m ∀ k = 1, . . . , rj ∀ t ∈ [0, ω) : |ej,k(t)| < 1√
m
.

For j = 1, . . . ,m we set

ε̂j,k := |ej,k(0)|2 < 1

m
and λj := inf

s∈[0,T )
φj(s) > 0.
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Let εj be the unique point in (0, 1
m

) such that αj(εj)εj = (1 + cjλj)/λj and define
εj,k := max{εj, ε̂j,k} < 1

m
. We show that

∀ j = 1, . . . ,m ∀ k = 1, . . . , rj − 1 ∀ t ∈ [0, ω) : ej,k(t)2 ≤ εj,k. (4.39)

Seeking a contradiction, we suppose (4.39) is false for at least one ι̂ ∈ {1, . . . ,m}
and at least one ℓ ∈ {1, . . . , rι̂ − 1}. Then eι̂,ℓ(t1)

2 > ει̂,ℓ for some t1 ∈ (0, ω) and we
define

t0 := max
{
t ∈ [0, t1)

∣∣ eι̂,ℓ(t)2 = ει̂,ℓ
}
.

With this we have
∀ t ∈ [t0, t1] : ει̂ ≤ ει̂,ℓ ≤ eι̂,ℓ(t)

2,

which gives, invoking monotonicity of the bijection αι̂, the following relation

∀ t ∈ [t0, t1] : αι̂(ει̂) ≤ αι̂(eι̂,ℓ(t)
2) = αι̂,ℓ(t).

Hence,

∀ t ∈ [t0, t1] : αι̂,ℓ(t)eι̂,ℓ(t)
2 ≥ αι̂(ει̂)ει̂ =

1 + cι̂λι̂
λι̂

.

Using αι̂,ℓ ≥ cι̂ via (4.30c), and the relations in (4.37), we calculate for t ∈ [t0, t1]

d
dt

1
2
eι̂,ℓ(t)

2 = eι̂,ℓ(t)
(

(cι̂ − αι̂,ℓ(t))φι̂(t)eι̂,ℓ(t) + eι̂,ℓ+1(t)
)

= −φι̂(t)(αι̂,ℓ(t) − cι̂)eι̂,ℓ(t)
2 + eι̂,ℓ(t)eι̂,ℓ+1(t)

< −φι̂(t)(αι̂,ℓ(t) − cι̂)eι̂,ℓ(t)
2 + 1

≤ −λι̂(αι̂,ℓ(t) − cι̂)eι̂,ℓ(t)
2 + 1

< −λι̂αι̂,ℓ(t)eι̂,ℓ(t)
2 + cι̂λι̂ + 1 ≤ 0,

which implies the contradiction

ει̂,ℓ < eι̂,ℓ(t1)
2 < eι̂,ℓ(t0)

2 = ει̂,ℓ.

Therefore, (4.39) is true. This implies boundedness of αj,k (bounded by α(εj,k))
and boundedness of γj,k (bounded by α(εj,k)

√
εj,k) for all j = 1, . . . ,m and all

k = 1, . . . , rj − 1.
Step three. In this step we derive some preparatory estimations to conclude

boundedness of the solution x of (4.35) in the next step. Since the functions ej,k
defined in (4.31a) involve higher derivatives of the functions γj,k we aim to show
boundedness of the latter. In order to do so, recalling the definition of γj,k we
establish boundedness of higher derivatives of αj,k on [0, ω), which in turn involve
higher derivatives of ej,k. For this reason, we show boundedness of higher the deriva-

tives of ej,k on [0, ω); more precisely, we show boundedness of e
(rj−k)
j,k on [0, ω) for

k = 1, . . . , rj−1, where j = 1, . . . ,m as before. Recalling the definition of the funnel

functions φj in (4.30a) we have the relation φ
(q)
j (t) = cqjq!φj(t)

q+1 for q ∈ N. Using
the generalized Leibniz rule, we obtain via (4.37) for j = 1, . . . ,m, k = 1, . . . , rj − 1
and 1 ≤ q ≤ rj − k the formula

e
(q)
j,k(t) =

(
(cj − αj,k(t))φj(t)ej,k(t)

)(q−1)
+ e

(q−1)
j,k+1(t)

=
∑

q1+q2+q3=q−1

(q − 1)!

q1!q2!q3!
(cj − αj,k(t))(q1)φ

(q2)
j (t)e

(q3)
j,k (t) + e

(q−1)
j,k+1(t)

=
∑

q1+q2+q3=q−1

(q − 1)!

q1!q3!
(cj − αj,k(t))(q1)cq2j φj(t)

q2+1e
(q3)
j,k (t) + e

(q−1)
j,k+1(t),

(4.40)
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which gives the derivatives recursively. To have an example, we calculate the ex-
pression above for q = 2 ≤ rj − k, where we use the expressions from (4.37)

ëj,k(t) =
(
− 2α′

j(ej,k(t)2)ej,k(t)ėj,k(t)
)
φj(t)ej,k(t)

+ (cj − αj,k(t))cjφ
2
jej,k(t)

+ (cj − αj,k(t))φj(t)
(

(cj − αj,k(t))φj(t)ej,k(t) + ej,k+1(t)
)

+ (cj − αj,k+1(t))φj(t)ej,k+1(t) + ej,k+2(t).

The recursion (4.40) successively leads to the following observations. Since the
numbers q1, q2, q3 satisfy the relation q1 + q2 + q3 = q − 1 we have

(i) for q1 = 0 the expression φq2+1
j e

(q3)
j,k involves at most the q−1st derivative of ej,k,

and at most the qth power of φj; the other terms involve (at most) derivatives

and powers of the form φq2+1
j e

(q−1−q2)
j,k for q ≤ rj − k,

(ii) e
(q)
j,k involves e

(q−1)
j,k+1 which itself involves e

(q−2)
j,k+2 and so forth; therefore the ex-

pression e
(q)
j,k involves the term ej,k+q,

(iii) the highest derivative of the bijection αj,k appearing in e
(q)
j,k is α

(q−1)
j,k , which

itself involves at most the q − 1st derivative of ej,k.

These observations together with the fact that

∀ q ∈ N : φq
jej,k ∈ L∞([0, ω);R) ⇒ φq−1

j ej,k ∈ L∞([0, ω);R) (4.41)

yield that boundedness of e
(q)
j,k on [0, ω), q ≤ rj − k, can be established by showing

boundedness of φ
rj−k
j ej,k for j = 1, . . . ,m and all k = 1, . . . , rj − 1. In order to show

this, we initially establish the following: for all k = 1, . . . , rj − 1 we have

φ
rj−k−1
j ej,k+1 ∈ L∞([0, ω);R) ⇒ φ

rj−k
j ej,k ∈ L∞([0, ω);R). (4.42)

This can be seen as follows. We assume φ
rj−k−1
j ej,k+1 ∈ L∞([0, ω);R) and define the

non-negative finite constant Mj,k+1 := sups∈[0,ω) |φj(s)
rj−k−1ej,k+1(s)| < ∞. Then,

invoking (4.30a), (4.30c) and (4.37), for t ∈ [0, ω) we calculate

d
dt

1
2

(
φj(t)

rj−kej,k(t)
)2

= φj(t)
rj−kej,k(t)φj(t)

rj−kėj,k(t)

+ φj(t)
rj−kej,k(t)cj(rj − k)φj(t)

rj−k+1ej,k(t)

= φj(t)
rj−kej,k(t)φj(t)

rj−k
((
cj−αj,k(t)

)
φj(t)ej,k(t)+ej,k+1(t)

)
+ φj(t)

rj−kej,k(t)cj(rj − k)φj(t)
rj−k+1ej,k(t)

≤ −φj(t)
(
cj(rj + 1) − cj(rj − k + 1)

)(
φj(t)

rj−kej,k(t)
)2

+ φj(t)Mj,k+1 |φj(t)
rj−kej,k(t)|

= −φj(t)
(
cjk |φj(t)

rj−kej,k(t)| −Mj,k+1

)
|φj(t)

rj−kej,k(t)|
(4.43)
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which is non-positive for |φj(t)
rj−kej,k(t)| ≥ Mj,k

cjk
≥ 0 and hence Lemma 1.11 yields

boundedness of φ
rj−k+1
j ej,k−1 on [0, ω) as claimed in (4.42). Then, invoking (4.39),

a successive application of (4.42) implies

∀ j = 1, . . . ,m ∀ k = 1, . . . , rj − 1 : φ
rj−k
j ej,k ∈ L∞([0, ω);R). (4.44)

In particular, φjej,k ∈ L∞([0, ω);R) for all j = 1, . . . ,m and all k = 1, . . . , rj − 1.
Then, boundedness of ėj,k follows, which in turn implies boundedness of α̇j,k and γ̇j,k
on [0, ω). Now, via (4.40), (4.41) and (4.42) boundedness of e

(q)
j,k successively follows

for all q ≤ rj − k, from which we may deduce boundedness of α
(q)
j,k and γ

(q)
j,k for

q ≤ rj − k. Therefore, for j = 1, . . . ,m, all k = 1, . . . , rj − 1 and q ≤ rj − k there
exists

γ̄qj,k := sup
s∈[0,ω)

γ
(q)
j,k (s) <∞.

Step four. We show boundedness of the solution x of (4.35) on [0, ω). Recalling
the definition of ej,k we see that for j = 1, . . . ,m and all k = 1, . . . , rj we have via
the previous steps

∀ t ∈ [0, ω) : |e(k−1)
j (t)| ≤

∣∣∣∣ej,k(t)

φj(t)

∣∣∣∣+

∣∣∣∣∣
k−1∑
i=1

γ
(k−1−i)
i (t)

∣∣∣∣∣
≤ 1

λj
+

k−1∑
i=1

γ̄k−1−i
j,i <∞.

(4.45)

We recall

x(t)⊤ = (y1(t), ẏ1(t), . . . , y
(r1−1)
1 (t), y2(t), . . . , y

(rm−1
m (t))

=
(
e1(t) + y1,ref(t), ė1(t) + ẏ1,ref(t), . . . , e

(rm−1)
m (t) + ym,ref(t)

)
,

where by assumption yj,ref ∈ Wrj ,∞([0, T );R). Therefore, we have x ∈ L∞([0, ω);Rn).
Step five. We recall er = (e1,r1 , . . . , em,rm)⊤ : [0, ω) → Rm and show boundedness

of βr(t) := β(∥er(t)∥2) for t ∈ [0, ω). Invoking the previous steps, in particular
boundedness of x on [0, ω), and the properties of the operator class T n,q

σ we deduce
the existence of a compact Kq ⊂ Rq such that T(x)(t) ∈ Kq for t ∈ [0, ω). Further-
more, since d ∈ L∞(R≥0;Rp) there exists a compact Kp ⊂ Rp such that d(t) ∈ Kp

for t ∈ [0, ω). Since the function f defined in (4.36) satisfies the high-gain property,
there exists v∗ ∈ (0, 1) such that for the compact set V := { v ∈ Rm | v∗ ≤ ∥v∥ ≤ 1}
the continuous function

χ : R → R,
s 7→ min { ⟨v, f(δ, η,−sv)⟩ | (δ, η, v) ∈ Kp ×Kq × V }

is unbounded from above. We show boundedness of βr by contradiction. Since
N : R≥0 → R is surjective, the set {κ > ρ0 |N(κ) = ρ1} is non-empty for every
ρ0 ∈ R≥0 and every ρ1 ∈ R. Following the proof in [21, pp. 188-190], we choose a
real sequence (si) such that the corresponding sequence (χ(si)) is positive, strictly
increasing and in particular unbounded. We initialize a sequence (κi) by choosing
κ1 > β(v2∗)+βr(0) such thatN(κ1) = s1, and hereinafter define the strictly increasing
sequence (κi) by

κi+1 := inf {κ > κi |N(κ) = si+1} ,
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which obviously yields that limi→∞ χ(N(κi)) = limi→∞ χ(si) = ∞. Now, since we
assumed βr to be unbounded and we have κi+1 > κ1 > βr(0) for all i ∈ N, we may
define the sequence

τi := inf { t ∈ [0, ω) | βr(t) = κi+1} , i ∈ N0,

which lies within (0, ω). Note that (τi) is strictly increasing. Inserting the relations
from above, we have N(βr(τi)) = N(κi+1) = si+1 for each i ∈ N0. We define a
second sequence in (0, ω) by

σi = sup { t ∈ [τi−1, τi] |χ(N(βr(t))) = χ(si)} , i ∈ N.

With this, since the sequence (χ(si)) is strictly increasing, we obtain for all i ∈ N

χ(N(βr(σi))) = χ(si) < χ(si+1) = χ(N(βr(τi))),

and therefore,
∀ i ∈ N : σi < τi, (4.46a)

as well as

∀ i ∈ N ∀ t ∈ (σi, τi] : χ(N(βr(σi))) = χ(si) < χ(N(βr(t))). (4.46b)

As an auxiliary intermediate result, we show by contradiction

∀ i ∈ N ∀ t ∈ [σi, τi] : er(t) ∈ V.

To this end, we first show

∀ i ∈ N ∀ t ∈ [σi, τi] : βr(t) ≥ κi,

by contradiction as well. Suppose that βr(t) < κi for some t ∈ [σi, τi]. Then,
by βr(τi) = κi+1 > κi and by continuity of βr there exists t̃ ∈ (σi, τi) such that
βr(t̃) = κi. Hence, we find χ(N(βr(t̃))) = χ(N(κi)) = χ(si), which contradicts the
definition of σi. Therefore, βr(t) ≥ κi for all t ∈ [σi, τi]. Now, suppose er(t) /∈ V .
Since for all t ∈ [0, ω) we have ∥er(t)∥ < 1, this means to suppose ∥er(t)∥ < v∗ for
some [σi, τi]. This, together with βr(t) ≥ κi, leads to the contradiction

∀ i ∈ N : β(v2∗) < κ1 ≤ κi ≤ βr(t) = β(∥er(t)∥2) < β(v2∗).

Hence, we deduce
∀ i ∈ N ∀ t ∈ [σi, τi] : er(t) ∈ V.

Since d(t) ∈ Kp and T(x)(t) ∈ Kq for t ∈ [0, ω) we obtain, using (4.46), for all i ∈ N
and t ∈ [σi, τi] the following estimation

⟨er(t), f
(
d(t),T(x)(t), u(t)

)
⟩ = −⟨−er(t), f

(
d(t),T(x)(t),−N(βr(t))(−er(t))⟩

≤ −min

{
⟨v, f(δ, z,−N(βr(t))v⟩

∣∣∣∣ (δ, z, v) ∈
Kp ×Kq × V

}
= −χ(N(βr(t)))

≤ −χ(si).
(4.47)
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Since for j = 1, . . . ,m we have yj,ref ∈ Wrj ,∞([0, T );R) we may define the bounded

constant cref := maxj∈{1,...,m} sups≥0 ∥y
(rj)
ref (s)∥ < ∞, and we recall

∑rj−1
i=1 γ̄

rj−i
j,i < ∞

from the previous steps. Furthermore, we observe σ1 > 0 and therefore, by properties
of the funnel functions φj we may define 0 < minj∈{1,...,m} infs∈[σ1,T ) φj(s) =: cφ. We
set Φ(t) = diag(φ1(t), . . . , φm(t)) and thus by (4.30a) we have d

dt
Φ(t) = CΦ(t)2,

where C = diag(c1, . . . , cm). Then, with the aid of (4.37) and (4.47), we obtain for
all i ∈ N and t ∈ [σi, τi]

d
dt

1
2
∥er(t)∥2 = ⟨er(t), CΦ(t)er(t)⟩ +

〈
er(t),Φ(t)

(
f(d(t),T(x)(t), u(t)) − y

(r)
ref (t)

)〉
+

m∑
j=1

(
ej,r(t)φj(t)

rj−1∑
ℓ=1

γ
(rj−ℓ)
j,ℓ (t)

)

< min
j∈{1,...,m}

φj(t)
(

min
j∈{1,...,m}

cj + cref +
m∑
j=1

rj−1∑
i=ℓ

γ̄
rj−i
j,ℓ − χ(si)

)
.

Therefore, still seeking a contradiction, we may choose J ∈ N large enough such
that for t ∈ [σJ , τJ ] we have

min
j∈{1,...,m}

φj(t)
(

min
j∈{1,...,m}

cj + cref +
m∑
j=1

rj−1∑
i=1

γ̄
rj−i
j,i − χ(sJ)

)

≤ −cφ
(
χ(sJ) −

(
min

j∈{1,...,m}
cj + cref +

m∑
j=1

rj−1∑
i=1

γ̄
rj−i
j,i

))
< 0,

which yields ∥er(τJ)∥2 < ∥er(σJ)∥2, which in turn gives for t ∈ [σJ , τJ ]

βr(τJ) = β(∥er(τJ)∥2) < β(∥er(σJ)∥2) = βr(σJ).

This, however, contradicts the definition of τJ , by which we have βr(t) < βr(τJ) for
all t ∈ [0, τJ). Therefore, the assumption of an unbounded βr cannot be true. As a
direct consequence thereof, we may infer the existence of εr ∈ (0, 1) such that

∀ t ∈ [0, ω) : ∥er(t)∥2 ≤ εr.

Step six. We show ω = T . Via the previous steps we have for all j = 1, . . . ,m
and k = 1, . . . , rj

∀ t ∈ [0, ω) : |ej,k(t)| ≤ ε∗ :=
√

max{ε1,1, . . . , εm,rm} <
1√
m
,

and
∀ t ∈ [0, ω) : ∥er(t)∥ ≤ εr,

by which the set

D̂ :=

{
(ζ1,1, . . . , ζm,rm) ∈ Rn

∣∣∣∣ j = 1, . . . ,m, i = 1, . . . , rj − 1,
|ζj,i| ≤ ε∗, ζr := (ζ1,r1 , . . . , ζm,rm), ∥ζr∥ ≤ εr,

}
is a compact subset of D̃r−1. Assume ω < T . Then,

∀ t ∈ [0, ω) : x(t) ∈ D̂ ⊂ D̃r−1.
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4.2. Exact tracking in finite time

So, by compactness of D̂ the closure of the graph of the solution x of (4.35) on [0, ω)
is a compact subset of D̃r−1 which contradicts the findings of Step one. Thus, ω = T .

Step seven. We show assertions (ii) & (iii). Assertion (ii) follows immediately
from Step four and Step six, and assertion (iii) is a direct consequence of Step two
and Step six.

Step eight. We show that the tracking error e = y− yref and its derivatives tend
to zero as t→ T , that is, we show

∀ j = 1, . . . ,m ∀ k = 1, . . . , rj : lim
t→T

|e(k−1)
j (t)| = 0. (4.48)

We note that the estimation in (4.45) is too rough to show (4.48). For j = 1, . . . ,m
recalling the definition (4.31c) of γj,k = αj,kej,k and exemplary its derivative (4.38),

we see that by Step three not only γ
(q)
j,k is bounded on [0, ω) for q ≤ rj − k − 1

but with the aid of (4.44) even the product φj γ
(q)
j,k is bounded on [0, ω), i.e., for all

ℓ = 1 . . . , rj −1 there exists γ̂qj,ℓ := sups∈[0,ω) φj(s)γ
(q)
j,ℓ (s) <∞ for 0 ≤ q ≤ rj − ℓ−1.

Invoking Step two and Step five we may improve estimation (4.45) for j = 1, . . . ,m
and k = 1, . . . , rj for t ∈ [0, ω) as follows

|e(k−1)
j (t)| ≤ |ej,k(t)|

φj(t)
+

1

φj(t)

∣∣∣∣∣
k−1∑
i=1

φj(t)γ
(k−1−i)
j,i (t)

∣∣∣∣∣
≤

√
εj,k +

∑k−1
i=1 γ̂

k−1−i
j,i

φj(t)
.

From this, since ω = T by Step six, and limt→T φj(t) = ∞ we obtain (4.48) for
all k = 1, . . . , rj with j = 1, . . . ,m, which shows assertion (iv) of the theorem and
completes the proof.

Remark 4.21. Assertion (i) in Theorem 4.20, namely [0, T ) being the maximal
solution interval, naturally raises the question of a global solution in time.

(i) If the system’s equations (4.28) are available and yref is defined on R≥0, the ap-
plication of a suitable feedforward control scheme may achieve y(t)−yref(t) ≡ 0
for all t ≥ T .

(ii) If equations (4.28) are available and the reference yref is defined on R≥0, then
y(t) − yref(t) ≡ 0 for all time t ≥ T can be achieved by asking the reference
to satisfy (4.28) for t ≥ T , with no control input, i.e., u ≡ 0, and “initial

conditions” yj,ref(T ) = yj(T ), ẏj,ref(T ) = ẏj(T ), . . . , y
(rj−1)
j,ref (T ) = y

(rj−1)
j (T ), for

j = 1, . . . ,m.

(iii) If the system’s equations are not available, the application of a “standard”
funnel control scheme, for instance as in [21], for t ≥ T achieves that the
error y(t)−yref(t) evolves within an arbitrary small neighbourhood of zero for
all t ≥ T .

Remark 4.22. We highlight the following aspect of Theorem 4.20 which is of inter-
est from a practical point of view. For any given arbitrary small ε > 0 there exists a
time Tε < T such that each of the first rj − 1 derivatives of the error ej = yj − yj,ref
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is smaller than ε for all t ∈ [Tε, T ), i.e., for all k = 0, . . . , rj − 1, j = 1, . . . ,m, we
have

∀ ε > 0 ∃Tε < T ∀t ∈ [Tε, T ) : |e(k)j (t)| ≤ ε.

This property is relevant, for instance, if during a docking manoeuvre the demanded
accuracy at t = T changes. In this situation, a standard funnel control scheme would
not be able to guarantee that the error is within an arbitrary small neighbourhood
of zero at t = T , since the funnel function is chosen in advance, and so the change
of demanded accuracy cannot be taken into account.

Remark 4.23. We record the following interconnection of the results found in this
chapter with results in [123] and [21].

(i) If a system (4.28) has strict relative degree r = r1 = . . . = rm ∈ N, i.e., it is of
the form

y(r)(t) = f
(
d(t),T(y, . . . , y(r−1))(t), u(t)

)
,

y|[−τ,0] = y0 ∈ Cr−1([−τ, 0];Rm),

then the system class is the same as in [21]. In this case, the error variables
ej,k are collected in respective vectors ek, the initial condition simplifies to the
well known condition ∥ek(0)∥ < 1 for all k = 1, . . . , r, and it suffices to choose
one bijection α : [0, 1) → [c(r + 1),∞), which also can replace β.

(ii) In the case of strict relative degree one, the control scheme (4.32) coincides
with the controller proposed in [123].

(iii) Combining the findings in the proof of Theorem 4.20 with the result found
in [21, Thm. 1.9], it is clear that the controller from [21] can be straightfor-
wardly extended to the case of vector relative degree.

Example 4.24. We simulate an application of the control scheme (4.32) to a sys-
tem (4.28) with strict relative degree r = r1 = · · · = rm and (d, f,T) ∈ Nm,r.
As indicated in the preliminary text, docking of spaceship is a red-hot application
of the findings of the present section. Therefore, we look at such a situation as
an example. Consider a passive target space station, e.g., the international space
station ISS, in a circular orbit around the earth and an active spacecraft chasing
the first. For simulation purposes, we assume the passive space station to be on
a constant altitude rs with constant angular velocity ω =

√
µ/(re + rs)3, where

µ ≈ 3.986 · 1014 m3/s2 is the standard gravitational parameter and re = 6378137 m
the radius of the earth. To analyse the motion of the spacecraft, we use Hill’s
local-vertical-local-horizontal coordinate frame introduced in [81], see Figure 4.8.

z

y

xCircular orbit

Satellite

Spacecraft

re + rs

re + r

Earth

Figure 4.8: Hill’s local-vertical-local-horizontal coordinate frame.
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4.2. Exact tracking in finite time

Within this frame we use the commonly used Clohessy-Wiltshire model for satel-
lite rendezvous proposed in [51]. A detailed and comprehensive application of this
model in the context of spaceship rendezvous can be found in [110]. Let r(t) de-
note the altitude of the chasing spacecraft at time t. In virtue of Hill’s coordinate
frame let x := r − rs be the component of relative distance along the radial di-
rection, y be the downtrack component along satellite’s circular orbit, and z be
the distance component along the satellite’s angular momentum. Then, setting
ζ = (ζ1, ζ2, ζ3)

⊤ := (x, y, z)⊤ we obtain the Clohessy-Wiltshire equations

ζ̈1(t) = 3ω2ζ1(t) + 2ωζ̇2(t) + ux(t),

ζ̈2(t) = −2ωζ̇1(t) + uy(t),

ζ̈3(t) = −ω2ζ3(t) + uz(t).

With

f : R3 × R3 → R3, (ξ, ν) 7→

3ω2ξ1 + 2ων2
−2ων1
−ω2ξ3

 ,

and u = (u1, u2, u3)
⊤ := (ux, uy, uz)

⊤, with B = I3 ∈ R3×3 the equations of motion
above with output ζ can compactly be written as

ζ̈(t) = f(ζ(t), ζ̇(t)) +Bu(t), ζ(0) = ζ00 ∈ R3, ζ̇(0) = ζ01 ∈ R3,

which is a system of relative degree two and belongs to the system class N 3,2. For
simulation purposes we choose rs = 415000 m (approximately the altitude of the
ISS), which yields ω ≈ 0.00113 s−1 corresponding to an orbital period of approx-
imately 93 minutes. Since we aim to simulate a docking manoeuvre, we choose
the reference trajectory ζref : t 7→ (0, 0, 0)⊤ in Hill’s coordinate frame, which in
particular yields ζ(T ) = (0, 0, 0)⊤, i.e., docking at t = T . We take the initial
conditions as in [110] x(0) = −y(0) = 1000 m, and additionally z(0) = 250 m;
and ẋ(0) = −0.1 ms−1, ẏ(0) = 1.69 ms−1 and ż(0) = −0.05 ms−1. As docking time
we choose T = 600 s, which is docking within ten minutes. For the funnel param-
eters we choose, N : s 7→ −s cos(10−2 s) and α : s 7→ (r + 1)c/(1 − s), where
with c = 1 the initial conditions (4.34) are satisfied. In accordance with 4.30a we
choose φ(t) = 1/(T − t) as funnel function. Note that, since limt→T φ(t) = ∞ sim-
ulation is possible only for [0, tmax] with tmax = T − eps for a predefined eps > 0.
Since φ(t)∥e(t)∥ < 1 for all t ∈ [0, T ) we choose eps such that a certain upper bound
of the spatial error at final simulation time tmax is guaranteed, i.e.,

∥e(tmax)∥ <
1

φ(tmax)
= c(T − tmax) ≤ eps ⇒ tmax ≥ T − eps/c.

For the simulation we choose eps = 10−10 m which means a spatial accuracy of
Ångström (range of size of atoms). This seems to be a unnecessary high accuracy
since in real applications the required rendezvous distance is about centimetres, then
magnetic docking structures become active; however, if these fail unexpectedly, the
feedback control is still capable to perform a docking manoeuvre. The results of
the simulation are shown in the figures below. Figure 4.9a shows the element-wise
error between the reference and the respective coordinates. It can be seen that the
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docking manoeuvre is successful within the predefined finite time T and the errors
evolve within the prescribed funnel boundary.

0 300 600
-1500

0

1500

(a) Element-wise tracking errors. The
dashed line represents the funnel bound-
ary 1/φ.

0 300 600
-12

0

12

(b) Error of velocities.

Figure 4.9: Tracking error, funnel boundary and errors of the velocities.

Figure 4.9b shows the respective errors of the velocities. Note that for t → T , the
error of velocities are zero, i.e., the passive space station and the active spaceship
have the same velocity at t = T , which is desirable performing a docking manoeuvre.
Figure 4.10 shows the control input during the docking manoeuvre.

0 300 600
-0.4

0

0.4

(a) Control input.

599.999999999 600
-0.12

-0.06

0

0.06

(b) Detailed control input in the very last
moments.

Figure 4.10: Control input.

In Figure 4.10b the control input in the very last moments before docking is depicted.
Note that in the last moments before docking, the funnel boundary is close to
zero. Therefore, even small deviations from the reference and its derivative cause
(relatively) high input values. The simulation has been performed in Matlab
(solver: ode23tb, RelTol = 10−10, AbsTol= 10−10). ⋄

We conclude this section with a second example to illustrate Theorem 4.20. To

143



4.2. Exact tracking in finite time

this end, we consider an academic nonlinear system which has a vector relative de-
gree. Moreover, the distribution of the control input is unlike the previous example,
and we make use of the possibility to choose different funnel boundaries for the
output channels, as discussed in Remark 4.16 (iv).

Example 4.25. We illustrate Theorem 4.20 by a simulation of an academic example.
Consider the nonlinear system

y
(1)
1 (t) = −y1(t) − η(t)2 + u1(t) − 0.5u3(t),

y
(2)
2 (t) = −5 tanh(y2(t)

2) − 0.3u1(t) + u2(t) + 0.1u3(t),

y
(3)
3 (t) = ∥(y1(t), y2(t), y3(t))

⊤∥2 + 0.8u1(t) + u3(t),

η̇(t) = −η(t) + y1(t)
2,

which obviously has vector relative degree r̄ = (1, 2, 3) and belongs to the system
class N 3,r̄. Note that for demonstration purposes, unlike the standard case, the con-
trol distribution is chosen so that the dynamics of each output channel are affected
by more than only one input channel. As reference signal we choose the smooth
trajectory

yref : R≥0 → R3, t 7→

e(
T/2−t

2 )
2

cos(t)
sin(t)

 .

As final time we choose T = 10 s, and with the parameters c1 = 0.1, c2 = 0.5, c3 = 0.3
and ρ1 = 0.5, ρ2 = 1.5, ρ3 = 1 we choose the control functions for j = 1, 2, 3

φj(t) =
1

cj

1

(T − t)ρj
, αj(s) =

cj(rj + 1)

1 − sm
, β(σ) =

1

1 − σ
, N(τ) = −τ cos

(
10−2τ

)
,

where t ∈ [0, T ), s ∈ [0,m), σ ∈ [0, 1) and τ ∈ R≥0.
In virtue of Remark 4.22 we choose eps = 10−9. Determined by the final time

T = 10 s we, simulate tracking on the interval 0 − 10 seconds, where the very last
moments cannot be simulated as already discussed in Example 4.24. The results of
the simulation are shown in Figures 4.11 & 4.12. Figure 4.11 shows the tracking
error (componentwise) and the respective funnel boundary. Note that the funnel
boundaries 1/φi, i = 1, 2, 3, have different shapes due to the variation of ρi as
discussed in Remark 4.16 (iv). Figure 4.12 shows the control inputs generated by
the control scheme 4.32 to achieve exact tracking. As discussed in Example 4.24, in
the very last moments the errors are close to the funnel boundary and hence, even
the smallest dynamic causes a reacting control. The simulation has been performed
in Matlab (solver: ode15s, RelTol= 10−7, AbsTol= 10−9). ⋄
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0 5 10
-0.3

0

0.3

(a) Tracking error y1 − y1,ref .

0 5 10
-15

0

15

(b) Tracking error y2 − y2,ref .

0 5 10
-3

0

3

(c) Tracking error y3 − y3,ref .

Figure 4.11: Tracking errors with fun-
nel boundaries.

0 5 10
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0

2.5

(a) Control input u1.

0 5 10
0

16

32

(b) Control input u2.

0 5 10
-10

-5

0

(c) Control input u3.

Figure 4.12: Control inputs.
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5 Conclusion and outlook

In the present thesis, three main contributions to output reference tracking of non-
linear multibody systems via feedback control are presented. We summarize the
main results and give a brief outlook on related future research topics.

Internal dynamics In Chapter 2 we introduced a structurally novel ansatz for
the representation of the internal dynamics of nonlinear multibody systems in terms
of the output and the internal variable. In the first part of that chapter we used this
ansatz to derive an explicit representation of a coordinate transformation, which
allows to decouple the internal dynamics completely algorithmically without the
need to compute the Byrnes-Isidori form. In particular, in contrast to the Byrnes-
Isidori form, the novel representation does not include solutions of partial differential
equations but only algebraic relations and symbolic differentiation. The decoupled
internal dynamics are then, for instance, open to stability analysis. Moreover, since
the internal dynamics are given in terms of the system’s output and the internal
variable, the system’s state can be represented explicitly via these respective terms,
i.e., beside the explicit representation of the coordinate transformation, its inverse is
given as well. In the second part of Chapter 2 we performed a stability analysis of a
subclass of multibody systems with structured right-hand side. We derived explicit
conditions on the system parameters, which allow to determine the stability of the
internal dynamics in advance without the need to decouple these. Both results, the
decoupling procedure and the stability conditions, were demonstrated via illustra-
tive examples. Future research will be, to extend the presented results to systems
with vector relative degree. Another aim is, to find a structurally similar ansatz of
representing the internal dynamics such that the straightforward algorithmic decou-
pling can be extended to more general systems, e.g., systems which are not affine
linear in the control term.

Funnel pre-compensator In Chapter 3 we showed that the conjunction of the
funnel pre-compensator, introduced in [32], with a minimum phase system of arbi-
trary relative degree results in a minimum phase system of the same relative degree.
This resolves the open question raised in [32] where the aforesaid was proven for
the special case of relative degree two. Using the fact that the derivatives of the
pre-compensator’s output are known explicitly we showed that output reference
tracking with prescribed transient behaviour using funnel based feedback control
schemes is possible with output feedback only. This was illustrated by a numerical
simulation of an academic example. Robustness of the conjunction was illustrated
by a second example, where a chaotic reference was tracked. In particular, output
tracking with unknown output derivatives is possible for the class of linear minimum
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phase systems (3.5); and moreover, for a class of linear non-minimum phase systems
(single-input, single output systems as well as multi-input, multi-output systems).
Since the investigations in the recent works [23] and [18] show applicability of ex-
isting control techniques to nonlinear non-minimum phase systems we are confident
that an integration of the funnel pre-compensator into this particular context will
also be fruitful. Future research will be focused on systems which are not linear
affine in the control term, where we conjecture that a different proof technique is
necessary, as a comparison of [25] and [21] suggests.

Funnel control In Chapter 4 we presented two new results in funnel control.
First, we considered output reference tracking for linear minimum phase systems,
where the output is subject to possible measurement losses. We proposed a feed-
back law, which achieves tracking of a reference signal with prescribed accuracy, i.e.,
whenever the output signal is available, the tracking error evolves within prescribed
bounds. We derived explicit bounds on both intervals, the minimal required avail-
ability of the output signal, and the maximal allowable duration of losses. These
bounds are quite conservative and it will be topic of future research to obtain relaxed
conditions on both intervals. For systems with trivial internal dynamics, there are
no restrictions on the duration of availability and absence of the output measure-
ment, except for finiteness of the interval of absence. An application of the proposed
controller was illustrated by a numerical simulation of the mass on car system first
considered in [179]. Additional research is needed to further develop the presented
idea of shifting the funnel function in the presence of signal losses to obtain more
relaxed conditions for the allowable durations of signal losses. Moreover, the exten-
sion of the presented idea to nonlinear systems is an open problem. Regarding this,
from Remark 4.2 it is clear that some kind of Lipschitz condition will be required
for the system to prevent a blow up during the absence of the output measurement.
In the second part of Chapter 4, we studied the long-standing problem of exact
tracking in finite time via feedback control. We developed a novel funnel control law
for a class of nonlinear systems with arbitrary vector relative degree. We showed
that the proposed controller achieves that the output tracks a given reference signal
and has its exact values at a predefined finite time. Moreover, until this final time,
the tracking error evolves within prescribed bounds. This was illustrated by two
numerical simulations. First, for the case of strict relative degree docking of a space
shuttle to a satellite was simulated. Second, the case of vector relative degree was
simulated for an academic example. Topics for future research in funnel control will
be, e.g., the consideration of time-discrete systems and systems with output delay
(the controller receives delayed signals), to name but two urgent problems.
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Centre National de la Recherche Scientifique (CNRS), 1983, pp. 733–740.

[149] John Muendel and Richard L. Hills. “Power from Wind: A History of Wind-
mill Technology”. In: Technology and Culture 36.3 (July 1995), p. 692.
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List of symbols

N set of non-negative integers

R set of real numbers
R≥0 := [0,∞), set of non-negative real numbers

[a, b], [a, b), (a, b) a closed, half open, and open interval for a, b ∈ R with a < b

C set of complex numbers
C− := { z ∈ C | Re(z) < 0}, set of complex numbers with negative

real part
C+ := { z ∈ C | Re(z) ≥ 0}, set of complex numbers with non-

negative real part

n! := n · (n− 1) · (n− 2) · · · 2 · 1, factorial of the integer n ∈ N

⟨·, ·⟩ inner product in Rn

∥x∥ :=
√

⟨x, x⟩, Euclidean norm of x ∈ Rn

Gln(R) group of invertible matrices A ∈ Rn×n

A > 0 ⇐⇒ ⟨x,Ax⟩ > 0 the matrix A ∈ Gln(R) is positive definite

σ(A) := {λ ∈ C | det(A− λI) = 0}, spectrum of a matrix A ∈ Rn×n

imA := { y ∈ Rm | y = Ax, x ∈ Rn}, image of a matrix A ∈ Rm×n

kerA := {x ∈ Rn |Ax = 0 ∈ Rm}, kernel of a matrix A ∈ Rm×n

rkA := dim(imA), rank of a matrix A ∈ Rm×n

∥A∥ := max∥x∥=1 ∥Ax∥, spectral norm of a matrix A ∈ Rm×n

diag(α1, . . . , αn) diagonal matrix A = (ai,j)i,j=1,...,n with entries ai,j = αi if i = j,
and ai,j = 0 if i ̸= j

A† Moore–Penrose pseudoinverse of the matrix A ∈ Rm×n, defined
by A† := (A⊤A)−1A⊤ if rkA = n, or A† := A⊤(AA⊤)−1 if
rkA = m

Ck(I;Rn) set of k-times continuously differentiable functions f : I → Rn,
C0(I;Rn) = C(I;Rn), I ⊆ R an interval
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List of symbols

ACloc(R≥0;R) set of locally absolute continuous functions f : R≥0 → R

L1
loc(I;Rn) set of locally Lebesgue integrable functions f : I → Rn, i.e.,∫

J
∥f(t)∥ dt <∞ for all compact J ⊆ I, I ⊆ R an interval

L∞
loc(I;Rn) set of locally essentially bounded functions f : I → Rn, I ⊆ R

an interval
L∞(I;Rn) Lebesgue space of measurable and essentially bounded func-

tions f : I → Rn, I ⊆ R an interval

∥f∥∞ := ess sups∈I ∥f(s)∥, norm of f ∈ L∞(I;Rn), I ⊆ R an interval

Wk,∞(I;Rn) Sobolev space of k-times weakly differentiable functions f :
I → Rn, such that ḟ , . . . , f (k) ∈ L∞(I;Rn), I ⊆ R an interval

f |J restriction of the function f : I → Rn to J ⊆ I, I, J ⊆ R
intervals

a.a. almost all
∧ logical conjunction “and” of two statements: a ∧ b is true if,

and only if, a is true and b is true

∨ logical conjunction “or” of two statements: a∨ b is false if, and
only if, both a and b are false
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