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Abstract

We study the classical and the soft-killing variant of the inverse first-
passage time problem for Brownian motion. Given a distribution on
the positive real line, the (soft-killing) inverse first-passage time problem
consists of asking for an unknown function, such that the (soft-killing)
first-passage time of this function has the given distribution. By the
use of stochastic order relations we provide new probabilistic and more
elementary approaches to these problems, which were hitherto mostly
tackled in the context of partial differential equations.

In the classical problem, at the one hand we obtain the known unique-
ness result for solutions, but on the other hand establish new results, such
as a comparison principle and sufficient conditions for monotonicity and
Lipschitz continuity. Using these results we study the special case of the
exponential distribution and other examples. Further, given a distribu-
tion, we study an interacting particle system, whose hydrodynamic limit
finds the solution of the inverse first-passage time problem.

In the soft-killing problem we show a stronger version of the known
existence and uniqueness result for continuous solutions, assuming only
the necessary condition for existence, and extend the result to a more
general class of Markov processes.

Zusammenfassung

Wir untersuchen die klassische und die sogenannte soft-killing Vari-
ante des inversen first-passage time Problems für die Brownsche Bewe-
gung. Zu einer gegebenen Verteilung auf den positiven reellen Zahlen,
besteht das inverse (soft-killing) first-passage time Problem in der Su-
che nach einer unbekannten Funktion, deren (soft-killing) first-passage
time die zuvor gegebene Verteilung hat. Durch die Verwendung von sto-
chastischen Ordnungsrelationen erhalten wir neue probabilistische und
elementarere Ansätze für diese Probleme, die bisher meist im Zusam-
menhang mit partiellen Differentialgleichungen behandelt wurden.

Bei dem klassischen Problem erhalten wir einerseits das bekann-
te Eindeutigkeitsresultat für Lösungen, erzielen aber andererseits auch
neue Resultate, wie zum Beispiel ein Vergleichsprinzip und hinreichende
Bedingungen für Monotonie und Lipschitzstetigkeit. Unter Anwendung
dieser Resultate untersuchen wir den Spezialfall der Exponentialvertei-
lung und andere Beispiele. Außerdem untersuchen wir ein interagierendes
Teilchensystem, dessen hydrodynamischer Grenzwert bei gegebener Ver-
teilung die Lösung des inversen first-passage time Problems findet.

Für das soft-killing Problem zeigen wir eine stärkere Version des be-
kannten Existenz- und Eindeutigkeitsresultates für stetige Lösungen, in-
dem wir nur die notwendige Bedingung für die Existenz annehmen und
das Ergebnis auf eine allgemeinere Klasse von Markov-Prozessen erwei-
tern.
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Chapter 1

Introduction

The search for distribution constrained stopping times for Brownian motion
presumably began with a question of Shiryaev during a Banach center meet-
ing in 1976. According to [Pes02a], the question was posed, whether there
exists a continuous function whose first-passage time of a Brownian motion
is exponentially distributed. Later, this question was often formulated more
generally, namely, whether there is an exponentially distributed stopping time
with respect to Brownian motion. Subsequently, the even more general prob-
lem of finding stopping times with a given arbitrary distribution was studied.
In [DG77] the authors characterize the existence of stopping times with given
distributions for general stochastic processes by an equivalent condition, which
applies for Brownian motion. From this point of view one could ask, within
which classes of explicit realizations of stopping times the solutions can be
found. In this work we will be concerned with the particular cases of realizing
the solutions as first-passage times and soft-killed first-passage times.

1.1 Problems and motivation

The inverse first-passage time problem consists of the following problem.
Let (Xt)t≥0 be a Brownian motion. Given a distribution on (0,∞), or equiv-
alently a random variable ξ > 0, find a function b : (0,∞) → [−∞,∞], such
that

τb := inf{t > 0 : |Xt| ≥ b(t)} (1.1)

has the given distribution of ξ, this means P (τb > t) = P (ξ > t) =: g(t) for
all t ≥ 0. Here the problem is stated with given distributions on the positive
numbers, since for standard Brownian motion the probability of τb = 0 is trivial
by Blumenthal’s law. The terminology comes from the classical first-passage
time problem, where one wants to find the distribution of τb, when b is a given
function. The direct problem is a classical problem in probability and only a
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2 CHAPTER 1. INTRODUCTION

few explicit examples are known. The inverse problem has another structure
and induces, for example, the following questions:

• Do solutions always exist? If not, to what extend do they exist?

• If a solution exists, is it unique in some sense?

• If a solution exists, which properties does the solution have? More pre-
cisely, what can we say about regularity, shape or asymptotics?

The inverse first-passage time problem has a long history, which apparently
started with the question of Shiryaev. In 1980 Anulova [Anu80] gave a positive
answer to this question by in fact showing the existence of lower semicontin-
uous solutions to the general inverse first-passage time problem for reflected
Brownian motion. Some time passed until the problem found new attention
in [HW01] and [AZ01] as a possibility to model the default time of a firm in
the context of credit risk modeling. This revived the research on the question
of uniqueness, which was partially established in [Che+06] and [Che+11] in
terms of a free boundary problem and finally answered in [EJ16] by a general
uniqueness result concerning the lower semicontinuous solutions of Anulova in
connection with an optimal stopping problem. Furthermore, as by-product a
uniqueness result dropped from the much more general consideration of opti-
mal stopping problems in [Bei+18].

Conditions for continuity were given in [Che+11] and [EJ16] and as impli-
cation of the study of existence of continuous solutions in [Pot21]. Asymptotics
at zero have been studied in [Che+06]. Higher order regularity has been tack-
led in [CCS21].

Parallely, strongly related research has been accomplished, which project
into the inverse first-passage time problem from several directions. To begin
with, integral equations relating to the inverse and/or the direct problem have
been found in [Pes02b], [Che+06], [EJ16] and [JKV09a]. Methods to solve
the problem numerically have been presented in [ZS09], [Abu06], [SZ11] and
[GP21]. A modification of the problem seeing the inverse unkown in the ran-
dom starting position has been studied in [JKZ09], [JKV09b], [Abu13b] and
[JKV14]. The branch of research of [De +19a], [BBP19], [Bec19], [Lee20],
[Ber+20] and [Ber+21], studying certain branching particle systems with se-
lection and corresponding free boundary problems, is related to the particular
case of the inverse first-passage time problem where ξ has exponential distri-
bution. A more detailed overview over the existent literature mentioned above
is given further below.

What strikes the eye is, that the inverse first-passage time problem has not
been directly tackled by staying in or extending its own probabilistic scope,
except for [EJ16] at most. The author of [Anu80] constructed solutions di-
rectly by a compactness argument in a probabilistic setting, but the work of
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[Che+06], [Che+11] and [CCS21] relies on the connection to a free boundary
problem and is based on purely analytical methods. The work of [EJ16] may
be based on the setting of [Anu80] in combination with an optimal stopping
representation but does not develop further tools to analyze solutions or its
approximants from [Anu80]. Instead, the analysis of properties of solutions,
such as in [EJ16], [Che+06] and [Che+11], mainly rely on directly deriving
necessities for the survival function g. The branch concerning only the special
case g(t) = exp(−t) is situated in the setting of a free boundary problem and
mainly uses methods from partial differential equations, but in addition draws
from a therein commonly method, which gives rise to the usual stochastic order
and encourages the following approach pursued in this thesis.

In this thesis we aim to add a new method to the tools in the inverse first-
passage time problem, which in regard to [Anu80] only uses stochastic orders
and probability metrics as elementary supplements and can be shortly moti-
vated by the following. In the setting of (1.1) with a distribution constriction
on τb it is intuitive that the mass distribution of the conditioned time marginal

P (Xt ∈ · |τb > t) (1.2)

at time t > 0 in turn affects the further behavior of the solution b after that
time. Regarding this perception, in the study of the measure in (1.2) and cer-
tain approximants of it, the notion of stochastic order relations comes into play,
yielding a tool by which we can control the appearing measures and thereby
the boundaries to a suitable extend. We will use stochastic order relations
in order to compare solutions to its approximants, compare solutions corre-
sponding to different survival functions and compare solutions corresponding
to different initial distributions. We will see that this approach enables us to
deduce the known uniqueness result as well as new qualitative results, such as
a comparison principle and sufficient conditions for monotonicity or continuity.
The results are applied for some examples such as the exponential distribution.

The inverse first-passage time problem with soft-killing is in some
sense a generalization of the inverse first-passage time problem for Brownian
motion. Let (Xt)t≥0 be a Brownian motion with X0 ∼ µ independent from the
increments and U an independent exponentially distributed random variable
with mean 1. Moreover, for a killing rate λ > 0 and a measurable function
b : (0,∞)→ [−∞,∞] let

τ sk
b := inf

{
t ≥ 0 : λ

∫ t

0
1(−∞,b(s))(Xs) ds > U

}
. (1.3)

The stopping time τ sk
b can be seen as the soft-killing variant of τb, where one

does not stop at the first-passage time directly, but after the process has spent
a random memoryless time below the boundary.
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For a given survival distribution g, the inverse first-passage time with soft-
killing is then to find a function b such that P

(
τ sk
b > t

)
= g(t). Regarding

this, by substitution and Brownian scaling one can assume without loss of
generality that λ = 1. Apparently this modification of the original inverse
first-passage time problem was considered the first time in [EEH14], where the
authors showed that there exists a solution b under the condition, that g is
twice continuously differentiable and satisfies

0 < −g′(t) < g(t) ∀t ≥ 0 (1.4)

and µ has a bounded, twice continuously differentiable density, which is posi-
tive everywhere and has bounded derivatives up to order 2.
The question of uniqueness has been tackled in the subsequent work [EHW20],
where the authors show that there is a unique continuous solution, if g is con-
tinuously differentiable, fulfills (1.4) and µ admits a density, which is contained
in the Sobolev space H2 and is positive everywhere.

The works [EEH14] and [EHW20] use the connection to a partial differ-
ential equation and a free boundary problem, respectively, and apply analyt-
ical methods from partial differential equations to approach the inverse first-
passage time problem with soft-killing.

In this thesis we aim to approach the inverse first-passage time prob-
lem with soft-killing in a probabilistic and more elementary way and prove
a stronger existence and uniqueness result for continuous solutions. On the
one hand, we are able to impose weaker conditions on the initial distribution
and to remove the condition of (1.4) at zero. On the other hand, our result
is in fact true for a more general class of Markov processes, which was con-
jectured for diffusions in [EHW20]. On top of that, we obtain an additional
comparison principle for the soft-killing problem. Similar to the hard-killing
case, the key idea of our approach is to study the marginal measure

Pµ
(
Xt ∈ · , τ sk

b > t
)

(1.5)

and a certain approximation with respect to the usual stochastic order and
probability distances.

1.2 Main results and structure of the thesis

In this section we aim to give an overview of the results achieved in this work,
where it is important to keep in mind that they emerge from the uniform
approach discussed above. We will first introduce some notation and state our
main results. Subsequently, we give a description of the structure of this work
with regard to the main results. We begin with a throughout relevant and
simplifying definition.
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Definition 1.2.1. We call a function g : [0,∞)→ [0, 1] survival distribution,
if g(t) = P (ξ > t) for a real random variable ξ > 0. Additionally, we call a
function b : [0,∞]→ [0,∞] boundary function, if b is lower semicontinuous.

Let P denote the space of probability measures on (R,B(R)). Given µ ∈ P
and a standard Brownian motion (Wt)t≥0 independent from X0, denote with
Pµ a measure under which

Xt := Wt +X0

is a Brownian motion with initial state X0 ∼ µ.

The inverse first-passage time problem

For µ ∈ P and a survival distribution g we denote the set of all boundary
functions which solve the inverse first-passage time problem for the survival
distribution g and a Brownian motion with initial condition µ with

ifpt(g, µ) := {b boundary function : Pµ (τb > t) = g(t) ∀t ≥ 0},

where τb is the first-passage time from (1.1). We denote the extinction time
of g with tg := sup{t ≥ 0 : g(t) > 0}. The following uniqueness result is to be
found in the thesis as Theorem 2.3.33, and states essentially the same as the
uniqueness result from [EJ16] but with arbitrary initial distribution.

Theorem 1.2.2 (Uniqueness). For every survival distribution g and initial
measure µ ∈ P, the solution in ifpt(g, µ) is unique in the sense that all b ∈
ifpt(g, µ) coincide on (0, tg).

Define Pt as the operator of convolution of measures with the Gaussian
probability kernel, this is

Ptµ(dx) :=

∫
R

1√
2πt

e−
(x−y)2

2t dµ(y) dx (1.6)

for t ≥ 0 and µ ∈ P. Define the quantile-truncation Tα of measures by

Tα(µ) := µ( · | [−qα, qα]) =
µ(· ∩ [−qα, qα])

µ([−qα, qα])
(1.7)

for α ∈ (0, 1] and µ ∈ P, where qα := qα(µ) := inf{c ≥ 0 : µ([−c, c]) ≥ α}.
For a probability measure µ and a survival distribution g we make the

following construction. We fix a timepoint h ∈ (0, tg). For n ∈ N let δ :=
δ(n) := h2−n and for k ∈ N with kδ < tg set

αk := α
(n)
k :=

g(kδ(n))

g((k − 1)δ(n))
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and define

µ+,n
k := µ+

k := Tαk ◦ Pδ ◦ . . . ◦ Tα1 ◦ Pδ(µ) (1.8)

and

µ−,nk := µ−k := Pδ ◦ Tαk ◦ . . . ◦ Pδ ◦ Tα1(µ). (1.9)

An approximation in Wasserstein sense of the marginal measure (1.2) is
given by Theorem 2.3.32.

Theorem 1.2.3 (Approximation in Wasserstein). Let µ be symmetric with
finite first absolute moment and g a survival distribution. Let b ∈ ifpt(g, µ).
Then

µ±,n2n → Pµ (Xh ∈ · |τb > h)

as n→∞ in the 1-Wasserstein distance.

The techniques used are based on the following stochastic order relation.
Recall that P denotes the space of probability measures on R. For any two
measures µ, ν ∈ P on R we say µ is dominated by ν in the two-sided stochastic
order, and write µ � ν, if

µ([−c, c]) ≥ ν([−c, c]) ∀c ≥ 0.

For the unique solutions of the inverse first-passage time problem hold the
following comparison principle to be found as Theorem 2.3.34 in the thesis.

Theorem 1.2.4. Let µ1, µ2 ∈ P, such that µ1 � µ2. Let g1 and g2 be two
survival distributions, such that g2/g1 is non-decreasing on [0, tg

1
). Then the

solutions bi ∈ ifpt(gi, µi) for i ∈ {1, 2} satisfy

b1 ≤ b2

pointwise on (0, tg
1
).

Note that in the special case of g1(t) = g2(t) = e−t a corresponding com-
parison principle has been established in the free boundary problem context
in [BBP19] and [Ber+21].

For a survival distribution g and a number λ > 0 define gλ(t) := g(λt). We
can give the following sufficient condition for Lipschitz continuity by Proposi-
tion 2.3.43 in combination with Theorem 2.3.47.

Theorem 1.2.5. Let g be a survival distribution, which is logarithmically
convex on (0, c) ⊆ (0, tg), and b ∈ ifpt(g, 0). Then b is non-decreasing on
[0, c). Additionally, if for all λ ∈ (0, 1) it holds that gλ/g is non-decreasing on
(0, tg/λ), then

|b(t)− b(s)| ≤ |t− s|b(s)
s

for 0 < s < t < c.
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Finally, partly by applying the criteria above, in Subsection 2.3.5 we ob-
tain the following properties of the boundary function corresponding to the
exponential distribution and a standard Brownian motion.

Proposition 1.2.6. Fix λ > 0 and set g(t) := exp(−λt). Let b ∈ ifpt(g, δ0).
Then

(i) b is non-decreasing and bounded from above by π/(2
√

2λ),

(ii) limt→∞ b(t) = π/(2
√

2λ) and

(iii) b is locally Lipschitz continuous on (0,∞) and continuous on [0,∞) with
b(0) = 0.

For the special case of g(t) = e−t we already mentioned the work of
[Ber+21], which in the free boundary context also comes to the conclusion
of the asymptotic limit in (ii) and that b is continuous on (0,∞).

Versions of the results of Theorem 1.2.2, Theorem 1.2.3, Theorem 1.2.4,
Theorem 1.2.5 and Proposition 1.2.6 are published in the journal article [KK22a].

Now, let us introduce a simple particle system, whose hydrodynamic limit
is of the form (1.2). For this let g be a survival distribution and for a par-
ticle number N ∈ N let B = (B1, . . . , BN ) be an N dimensional Brownian
motion. Further let T1, . . . , TN be independent and identically distributed
random variables with T1 ∼ g and let T(1) ≤ . . . ≤ T(N) be the correspond-
ing order statistics. Let (Xi

t)i∈A(t),t≥0 be the process, which results from the
following scheme. At every timepoint T(i) we remove the particle with the
greatest absolute value from the system and define the index set A(t) of sur-
viving particles up to a time t as the particles, which have not been removed
up to this time. The following follows from the more general Theorem 2.4.4.

Theorem 1.2.7. Let b ∈ ifpt(g, δ0). Then for t ∈ (0, tg) holds

lim
N→∞

1

A(t)

∑
i∈A(t)

δXi
t
([−a, a]) = P0 (Xt ∈ [−a, a] |τb > t) , ∀a ≥ 0,

almost surely, where (Xt)t≥0 denotes the Brownian motion.

The inverse first-passage time problem with soft-killing

Now we turn our attention to the inverse first-passage time problem with soft-
killing for Markov processes, where we state our main result in the Brownian
case. For Brownian motion the result of Theorem 3.0.1 is the following.
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Theorem 1.2.8. Let µ ∈ P be a probability measure. Let g be a survival
distribution continuously differentiable on (0,∞) and fulfilling

0 < −g′(t) < g(t) ∀t > 0. (1.10)

Then there is a unique continuous function b : (0,∞) → R such that for all
t > 0 we have g(t) = Pµ

(
τ sk
b > t

)
, where τ sk

b is the soft-killing time from (1.3).
If additionally{
µ� Lebesgue measure, supp(µ) is connected and
g′(0) := limh↘0

g(h)−g(0)
h exists with g′(0) = g′(0+) and 0 < −g′(0) < 1,

(1.11)

then b(0+) exists and is the unique value such that µ((−∞, b(0+))) = −g′(0).

Note that this result allows more general initial measures and the condition
(1.10) is a relaxation of the condition (1.4) in [EHW20].

The statement of Theorem 1.2.8 but with the condition of (1.11) is under
review in the preprint article [KK22b].

Structure of the thesis

The thesis is organized as follows. As the main part of this work, Chapter 2
is concerned with the classical inverse first-passage time problem for reflected
Brownian motion.

In Section 2.1 we begin with studying the compact metric space of bound-
ary functions and carrying out the proof of existence from [Anu80] in terms
of boundary functions in the slightly more general case of an arbitrary initial
distribution.

In Section 2.2 we prepare the analysis of the approximants of (1.2) and
thereby the analysis of solutions, by studying the operators Pt and Tα, their
relation to the usual stochastic order, the likelihood ratio order and to the
Wasserstein and total variation distance.

In Section 2.3 we finally focus on quantitative and qualitative properties of
solutions. We begin with auxiliary statements concerning general properties
of boundary functions and marginal distributions. Subsequently, we carry
out a study of the sequences µ±,nk from (1.8) and (1.9) and their relation
to the general marginal measure in (1.2), leading to stochastic inequalities
with respect to the usual stochastic order and thereby to the convergence
result Theorem 1.2.3 and the uniqueness result of Theorem 1.2.2. We then
deduce the comparison principle of Theorem 1.2.4. Furthermore, we utilize the
comparison statement in order to achieve qualitative properties of solutions,
including Theorem 1.2.5. Finally, we study the special case of exponential
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distribution and apply the previous results to further examples of survival
distributions.

In Section 2.4 we first discuss the possibility to obtain the marginal mea-
sure (1.2) as a hydrodynamic limit from an interacting particle system, which
a priori only depends on the given survival distribution. Regarding this we
propose a generalization of the system studied in [De +19a], which therein
corresponds to the exponential case of the inverse first-passage time problem,
and conjecture that the hydrodynamic procedure should work for more general
survival distributions. We then analyze the simpler but even more general sys-
tem of Theorem 1.2.7. We conclude with a discussion on how to obtain proper
visualizations of the unknown boundary solution and produce some examples.

Chapter 3 is concerned with the inverse first-passage time problem with
soft-killing for a class of Markov processes, where the focus lies on the existence
and uniqueness of a continuous solution under appropriate conditions.

In Section 3.1 we prepare the analysis of the measure (1.5) by studying the
involved Markov kernel and a reweighting mechanism, which is the counterpart
of Tα in the soft-killing setting, and their relation to the usual stochastic order
and the total variation distance.

In Section 3.2 we focus on the proof of the existence and uniqueness of a
continuous solution. We begin with auxiliary statements about the marginal
measure from (1.5) and its approximation. Subsequently, we study their re-
lation and convergence properties of the approximation, leading to stochas-
tic inequalities with respect to the usual stochastic order and thereby to the
uniqueness result of Theorem 1.2.8.

In Section 3.3 we shortly discuss how to extract a Monte-Carlo method
from the achieved results in order to visualize solutions for the inverse soft-
killing problem and produce some examples.

1.3 Related results for the inverse first-passage
time problem

The inverse first-passage time problem for a stochastic process (Xt)t≥0 with
initial distribution X0 ∼ µ can be posed in a similar way as above. Given a
random variable ξ with values in (0,∞), find a function b : (0,∞)→ [−∞,∞],
such that the (up-crossing) first-passage time

τb := inf{t > 0 : Xt ≥ b(t)} (1.12)

of b by the process (Xt)t≥0 has the same distribution as ξ. We will be mainly
concerned with the case that (Xt)t≥0 is a (reflected) Brownian motion, where
we also refer to the reflected case as two-sided situation. In the following we
give a detailed overview over the related results in the literature.
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Existence and uniqueness

Anulova’s barrier type solution: The work of [Anu80] gave the first affir-
mative answer to the inverse first-passage time problem by showing that for
any random variable ξ with values in (0,∞] one can find a suitable so-called
barrier as a closed set B ⊂ [0,∞]× [−∞,∞] such that the hitting time

τB = inf{t > 0 : (t,Xt) ∈ B} (1.13)

has the given distribution of ξ, where (Xt)t≥0 is a standard Brownian motion.
It turned out in [EJ16] that the barriers B are associated with the epigraphs
of lower semicontinuous functions. The key of this existence result is the
compact Hausdorff topology on the set of barriers, which makes it possible to
extract a converging sequence of discrete boundary functions, whose hitting
times converge simultaneously in distribution to g and to the hitting time of
the limit.

Continuous, piecewise linear approximation: Under certain assump-
tions on g the existence of a continuous limit of an approximation by continu-
ous, piecewise linear functions has been established in [Pot21] for the standard
and the reflected case.

Free boundary problem and viscosity solution: The first contribu-
tion to this topic has been made by the subsequent analytical works [Che+06],
originating from the thesis [Che05], and [Che+11]. The authors essentially
considered the following free boundary problem, where we translated it to
our up-crossing first-passage time and reduced it from diffusion processes to
Brownian motion. Given the survival function g(t) := P (ξ > t) for t ≥ 0 of
a random variable ξ with values in (0,∞) and a random variable X0, find a
function w : R× [0,∞)→ R and a boundary b : [0,∞)→ [−∞,∞] such that

∂tw(x, t) = 1
2∂

2
xw(x, t) : x < b(t), t > 0,

w(x, t) = g(t) : x ≥ b(t), t > 0,

0 ≤ w(x, t) < g(t) : x < b(t), t > 0,

w(x, 0) = P (X0 < x) : x ∈ R,

(1.14)

where in [Che+11] the third constraint is substituted by ∂
∂xw(x, t) = 0 for

x ≥ b(t), t > 0 and in [Che+06] the function w0 is equal to 1(0,∞) throughout.
In order to explain the connection to the inverse first-passage time problem
let (Xt)t≥0 such that (Xt − X0)t≥0 is a standard Brownian motion. Then a
formal candidate for a solution to (1.14) is the function

ŵ(x, t) := P (Xt < x, τb > t) . (1.15)

In [Che+11] it is used that the problem in (1.14) can also be seen from the point
of view of the direct first-passage time problem, this is, given b, one wants to
find a function w and a survival function g such that (1.14) is fulfilled. Instead
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of using the usual generalization of solutions, the authors use the analytical
notion of a so-called viscosity solution of a corresponding variational inequality
for the inverse and the direct problem of (1.14), respectively. In [Che+06] it
is shown that the inverse problem of (1.14) has a unique viscosity solution w,
from which the function

bw(t) := sup{x ∈ R : w(x, t) < g(t)} (1.16)

can be extracted. Subsequently, [Che+11] proves that, if g is continuous, bw

is the unique lower semicontinuous solution to the inverse first-passage time
problem of the Brownian (Xt)t≥0.

Optimal stopping: The next step was done by [EJ16], where the inverse
first-passage time of standard Brownian motion is connected with the following
optimal stopping problem. Given the survival function g(t) := P (ξ > t) for
t ≥ 0 of a random variable ξ with values in (0,∞), define the value function

v(t, x) := inf
γ∈T [0,t]

E
[
g(t− γ)1{γ<t} + 1{γ=t,x+Xt≥0}

]
, t ≥ 0, x ∈ R, (1.17)

where T [0, t] denotes the set of stopping times of the Brownian motion (Xt)t≥0

taking values in [0, t]. Reusing the existence result of Anulova in [Anu80], it is
shown that the function bv : [0,∞)→ [−∞,∞] given by

bv(t) := inf{x ∈ R : v(t, x) = g(t)} (1.18)

is a lower semi-continuous solution. Now the key idea is that for discrete
boundaries a discrete optimal stopping problem can be associated, which only
depends on the discrete survival function. By passing a certain discrete ap-
proximation from [Che+11] to the limit, it turns out that in fact

v(t, x) = P (Xt ≤ x, τb > t)

holds for every solution b. It follows that bv is the unique lower semicontinuous
solution.

Related but coming from a much more general setting of optimal stopping
is the work of [Bei+18]. As by-product from the consideration of a very gen-
eral optimal stopping problem under a distribution constraint, they obtain in
the case that g has finite first moment the existence and uniqueness of lower
semicontinuous solutions.

Properties of solutions

Since the solutions to the inverse first-passage time problem are innately un-
kown, the further question arises how to derive properties of solutions in or
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without dependence on g(t) = P (τb > t). We will only state the results rele-
vant for this thesis.

Continuity: In [Che+11] it is shown that for a continuous survival func-
tion g the solution b fulfills lim infs↗t b(s) = b(t) for every t > 0. The work of
[EJ16] extends this by showing that the converse is also true and by adding a
further equivalent condition, namely, that Xτb = b(τb) almost surely if τb <∞.
Furthermore, both works establish the following criteria on g for the continuity
of the solution b. If g is continuous, then

inf
`≤s<t≤u

−g(t)− g(s)

t− s
> 0 ⇒ b continuous on (`, u)

for 0 < ` < u and, if the condition holds for ` = 0, setting b(0) = 0 makes b
continuous on [0, u).
Whereas [Che+11] partially draws from their setting for this purpose, the work
of [EJ16] argues by elementary but subtle analysis and in fact only uses the
essential infimum.

Further, the criteria on g for the existence of continuous solutions from
[Pot21] are criteria for the continuity of b.

Other properties: In [Che+06] the limit at zero of bw introduced in
(1.16) is studied, which in light of [Che+11] is the unique solution of the
inverse first-passage time problem if g is continuous. The subsequent analytical
work [CCS21] connects the higher order regularity of g with the higher order
regularity of the solution.

The special case of exponential distribution

Since Shiryaev’s problem originated as question about the exponential dis-
tribution, it is not surprising that the choice of g(t) = exp(−λt) has found
particular attention in the literature or has been used to evaluate the obtained
results of the general case. A first visualization by simulation of the one-
sided case is to be found in [ZS09] and for the two-sided case in [Abu06] and
[Abu15]. We list some known properties of the solution b corresponding to the
exponential distribution and the case that (Xt)t≥0 is a (standard) Brownian
motion.

• The conditions about the limit at zero from [Che+06] yield (stated here
for the up-crossing variant) that

lim
t↘0

b(t)√
2t log(1− exp(−t))

= 1.

• The conditions for continuity of [Che+11] and [EJ16], and the existence
result of [Pot21], yield individually that b is continuous on [0,∞).
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• The work of [CCS21] provides sufficient criteria for smoothness on (0,∞),
which include the exponential distribution.

The condition for continuity of [EJ16] can be transferred to the case of reflected
Brownian motion, and thus yields as well as the existence result of [Pot21],
that b is continuous on [0,∞) in the two-sided situation.

Apart from this, there exists a branch of research in the literature, which is
strongly related to this special case of the inverse first-passage time problem.
This connection has not been pointed out before, which shall be done below
in a formal way. We will begin with the one-sided situation.

A special free boundary problem: The work of [BBP19] studies a free
boundary problem equivalent to the following. Find functions v : R× [0,∞)→
R and b : [0,∞)→ R such that

∂tv(x, t) = 1
2∂

2
xv(x, t) + v(x, t) : x < b(t), t > 0,

v(x, t) = 1 : x ≥ b(t), t > 0,

∂xv(b(t), t) = 0 : t > 0,

v(x, 0) = v0(x) : x ∈ R,

(1.19)

where v0 : R → [0, 1] is a non-decreasing function with limx→∞ v0(x) = 0
and limx→−∞ v0(x) = 1. The original free boundary problem in [BBP19] is
formulated as down-crossing variant and omits the scalar 1

2 in front of the
Laplacian, thus the problems can be equivalently transformed into each other
by a scaling of the spatial variable by factor −

√
2. In the following we will

explain the connection to the more general free boundary problem (1.14) and
therefore a connection to the inverse first-passage time problem. For v0(x) =
P (X0 < x) and if b is the solution to the inverse first-passage time problem
for the standard exponential distribution, i.e. P (τb > t) = exp(−t), a formal
candidate to (1.19) could be the function

v̂(x, t) := P (Xt < x |τb > t)

by noticing that v̂(x, t) = etŵ(x, t) with the notation from (1.15). Thus,
differentiation in time and the product rule yield the connection of the two free
boundary problems, which is, generally speaking, dividing the desired function
w of (1.15) by the normalizing factor g(t). Hence, for given differentiable g,
we obtain the generalized free boundary problem of (1.19) by substituting the
first line of (1.19) by

∂tv =
1

2
∂2
xv + hv, x > b(t), t > 0,

where h(t) := −∂t log(g(t)) = −g′(t)/g(t) is the hazard rate of g.
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In particular, the authors show in [BBP19] that (1.19) has a unique classi-
cal solution (u, b), which includes that b is continuous on [0,∞). Furthermore,
they establish the comparison principle, that, if v(1)

0 ≥ v
(2)
0 as initial condi-

tions, the corresponding solutions stay ordered, i.e. u(1) ≥ u(2) and b(1) ≤ b(2),
which gives rise to the usual stochastic order.

The free boundary problem considered in [De +19a] and [Lee20] is essen-
tially the problem of (1.19) differentiated in the spatial variable. In [Lee20] it
is shown that there exists T > 0 such that a solution with C1([0, T ]) exists.
In [De +19a] uniqueness of solutions is shown. The approach to uniqueness
of [De +19a], [BBP19] and [Ber+21] below uses a method, which gives rise to
the discretization technique of (1.8) and (1.9) used in this thesis.

On the side, further results are to be found in this special situation. Re-
ferring to the analysis in [BBD18] the work of [BBP19] mentions a long time
behavior of b. Corresponding to this, the question for a travelling wave solu-
tion can be answered by the sometimes called randomized first-passage time
problem. For example, from [JKZ09] one can deduce that, if 1 − v0(−x) is
the distribution function of the Gamma(2,

√
2) distribution, then v0(x− b(t))

with b(t) = −
√

2t is the unique solution to (1.19). In view of the comparison
principle this can be used to establish lower bounds for solutions corresponding
to other initial distributions.

The special free boundary problem for the two-sided case: The
authors of [Ber+21] consider a free boundary problem equivalent to finding a
continuous u : Rd× (0,∞)→ [0,∞) and a measurable b : [0,∞)→ [0,∞] such
that 

∂tu(x, t) = 1
2∆u(x, t) + u(x, t) : t > 0, ‖x‖ < b(t),

u(x, t) = 0 : t > 0, ‖x‖ ≥ b(t),∫
Rd u(x, t) dx = 1 : t > 0,

u(·, t)→ µ weakly as t→ 0,

(1.20)

where µ is a probability measure and again the original problem of [Ber+21]
omits the 1

2 . For d = 1 this free boundary problem is the two-sided analogue of
(1.19). A corresponding comparison principle is shown, which is a special case
of Theorem 1.2.4. The result of [Ber+21] is that (1.20) has a unique classical
solution with the following properties. The boundary b is finite on (0,∞) and
continuous on [0,∞). Further, for α < 1

2 there exists a constant Cα <∞ such
that b(t)−b(s) ≤ Cα(t−s)α for all s ≥ 0 and t ∈ (s, s+1]. Finally, it is stated
that b(∞) := limt→∞ b(t) exists with convergence rate in O(t−1). For d = 1
it holds b(∞) = π

2
√

2
. For d ∈ N, the boundary b is therefore the solution to

the inverse first-passage time problem for Bessel processes of natural order or
reflected Brownian motion in the case g(t) = exp(−t).
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Interacting particle representation: The following general model was
proposed in [Ber+20] and covers the particle systems we will discuss below. Let
(X1

t , . . . , X
N
t )t≥0 be an N -particle process, which starts from (X1

0 , . . . , X
N
0 ) in

(Rd)N for d ∈ N, N ∈ N. Every particle moves independently as d-dimensional
Brownian motion and branches independently with rate one. At any branch-
ing time the particle with the lowest fitness is removed from the system, where
fitness is measured by a fitness function F : Rd → R. Hence, the number of
particles is kept constant equal to N .
For d = 1 in [De +19a] it was shown for a strictly increasing fitness function,
e.g. F(x) = x, that the solution of (1.19) appears as so-called hydrodynamic
limit of this particle system, therein called N -BBM. The work of [Bec19] trans-
fers this result to the case F(x) = −|x|. More generally for d ∈ N, the authors
in [Ber+20] establish the hydrodynamic limit for F(x) = −‖x‖.





Chapter 2

The inverse first-passage time
problem

In this chapter we will be concerned with the inverse first-passage time problem
for reflected Brownian motion, but with the slight generalization from the
existing literature, that the Brownian motion can start from a random initial
point. More precisely, let µ be a probability measure on R and (Xt)t≥0 be a
Brownian motion with initial distribution X0 ∼ µ, such that the increments
of the Brownian motion are independent of X0. Recall that we denoted the
first-passage time by the reflected Brownian motion of a function b with

τb := inf{t > 0 : |Xt| ≥ b(t)}.

Now, the inverse first-passage time problem for reflected Brownian motion
with initial distribution µ with respect to a survival distribution g is to find a
function b : (0,∞)→ R such that Pµ (τb > t) = g(t) for all t ≥ 0.

Motivation of the approach: Let us present and motivate our approach
by the following. The work [Anu80] of Anulova proves that there is always a
solution in form of a lower semicontinuous function b. It is intuitive that the
mass distribution of the conditioned time marginal

P (Xt ∈ · |τb > t) (2.1)

in turn affects the further behavior of the solution b after time t, which lets it
seem natural to start an analysis of this conditioned measure. For this purpose,
the setting of [Anu80] motivates the discretization of the time. By interpreting
the conditioning on the survival τb > t as an inhomogeneous operator, for
given timesteps (tnk)mnk=1 with 0 < tn1 < . . . < tnmn , it is natural to discretize the
marginal distribution in (2.1) by a type of Trotter product formula written as

T b(t
n
k ) ◦ Ptnk−tnk−1

◦ . . . ◦ T b(tn1 ) ◦ Ptn1 (µ),

17
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where Pt denotes the Markov kernel of Brownian motion and T c denotes the
conditioning to the interval [−c, c]. From the view of the inverse first-passage
time problem the values b(tnk) are unknown, but the approach of Anulova
provides us with the approximate candidates bn(tnk) chosen successively such
that

P
(
|Xtnk
| < bn(tnk), . . . , |Xtn1

| < bn(tn1 )
)

= g(tnk) (2.2)

with the aim to substitute b(tnk). In order to proceed to the limit we use a
convergence of lower semicontinuous functions, which can be derived from the
Hausdorff topology used in [Anu80]. It is not far to seek for a method to
analyze these quantiles and their behavior and try to pass them to the limit.
In order to study bn(tnk), k = 1, . . . ,mn, and the corresponding

T b
n(tnk ) ◦ Ptnk−tnk−1

◦ . . . ◦ T bn(tn1 ) ◦ Ptn1 (µ) (2.3)

we will use stochastic order relations and probability distances.

2.1 Semicontinuous functions and existence of
solutions

In this section we will revise the setting and approach of Anulova in [Anu80],
which we will lead us to the fact that for a survival function g with g(0) = 1,
there is always a solution in form of a lower semicontinuous function. Moti-
vated by this we recall the following definition.

Definition 2.1.1. We call a function g : [0,∞) → [0, 1] survival distribution
if there exists a real random variable ξ > 0, such that g(t) = P (ξ > t) for all
t ∈ [0,∞). A function b : [0,∞] → [0,∞] is called boundary function if it is
lower semicontinuous.

The set of the solutions of this form was defined by

ifpt(g, µ) := {b boundary function : Pµ (τb > t) = g(t) ∀t ≥ 0}.

In this section we will first develop a useful connection between boundary
functions and the so-called barriers, which were used by Anulova, in order to
work only with boundary functions outside of this section. Afterwards we will
establish the existence of solutions in ifpt(g, µ) by carrying out the approach
of Anulova.

2.1.1 Barriers and boundary functions

In order to construct certain stopping times for a Brownian motion (Xt)t≥0

Anulova introduced a certain metric space of closed subsets of the product of
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time and space H := [0,∞]× [−∞,∞]. The stopping times are then realized
as hitting times of those closed sets by the process (t,Xt)t≥0. It turns out
that in the same time this enables us to equip the set of boundary functions
with a convenient metric, which can be characterized further. Essentially, this
subsection deals with specific properties of this topology. We begin with an
analysis of the specific class of subsets, which is a slightly adapted version of
the class in [Anu80].

We call B ⊆ H a (two-sided) barrier, if

(i) B is closed,

(ii) [0,∞]× {−∞} ∪ [0,∞]× {∞} ⊆ B,

(iii) (t, x) ∈ B implies (t,−x) ∈ B and

(iv) x ≥ 0 and (t, x) ∈ B imply (t, y) ∈ B for all y > x.

We denote the set of all barriers with B. We see that a barrier is spatially
symmetric. Basically, it is described by its boundary, which can be seen as
a function of time. In order to link both concepts we show that barriers
and boundary functions are in fact the same, which was already pointed out
without proof in [EJ16].

Lemma 2.1.2. The mapping B 7→ (t 7→ b(t) := inf{x ≥ 0 : (t, x) ∈ B}),
is a bijection between B and the set of boundary functions. Its inverse is
b 7→ B := {(t, x) ∈ H : |x| ≥ b(t)}.

Proof. First we check if those b are lower semi-continuous. Since B is closed we
have (t, b(t)) ∈ B for all t ∈ [0,∞]. Let t0 ∈ [0,∞] and (tn)n∈N be a sequence
with limit t0 such that b(tn) → lim inft→t0 b(t) =: y. Then (tn, b(tn)) ∈ B
for all n ∈ N and (tn, b(tn)) is convergent with limit point (t0, y). Due to the
closure of B this limit point lies in B. By the definition of b we see that

b(t0) = inf{x ≥ 0 : (t0, x) ∈ B} ≤ y = lim inf
t→t0

b(t).

Therefore b is lower semi-continuous.
Conversely, let b be a boundary function. In order to prove that the set
B := {(t, x) ∈ H : |x| ≥ b(t)} is indeed a barrier, by the definition of a
boundary function, the only property left to show is the closure of B. Let
(tn, xn) a convergent sequence in B. We denote its limit point with (t0, x).
Without loss of generality we assume that x ≥ 0. The definition of B implies
that xn ≥ b(tn) for all n ∈ N. Thus

x = lim inf
n→∞

xn ≥ lim inf
n→∞

b(tn) ≥ lim inf
t→t0

b(t) ≥ b(t0).
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Consequently, (t0, x) ∈ B.
Now let B be a barrier. We want to show that

B = {(t, x) ∈ H : |x| ≥ b(t)},

where b is the boundary function we obtain by B. Let (t, x) ∈ B then (t, |x|) ∈
B. This yields |x| ≥ b(t) by the definition of b. Thus (t, x) is contained in
the right-hand side above. Conversely, let (t, x) be contained in the right-
hand side. Then |x| ≥ b(t). The fact (t, b(t)) ∈ B immediately implies that
(t, |x|) ∈ B, which means that (t, x) ∈ B.

Anulova equipped B in [Anu80] with the so-called Hausdorff topology in-
duced by the Hausdorff-distance rH on the compact subsets of H from (B.3),
whose characterization has been further developed in later years, but was ap-
parently not applied to the subject matter of barriers since then. A crucial
property of this topology is the compactness of the set of barriers, which we will
show by the Kuratowski-convergence from Definition B.2.6, which is equivalent
to the convergence in the Hausdorff-distance.

Proposition 2.1.3. B is compact with respect to the Hausdorff topology.

Proof. Let K(H) denote the set of compact subsets of H equipped with the
Hausdorff topology. By Theorem 3.2.4 from [Bee93] the space K(H) is com-
pact. We claim that B ⊂ K(H) is closed, hence compact. For this, let Bn → B
be a converging sequence with respect to the Hausdorff-distance such that
Bn ∈ B for all n. Since B has to be closed it remains to show properties (ii)-(iv)
of the definition of a barrier. Due to Theorem B.2.7 we have B = Lin→∞Bn
in the sense of the Kuratowski-convergence.

Let t ∈ [0,∞]. Then {(t,−∞), (t,∞)} ⊂ Bn for all n. By the definition of
the Kuratowski limit inferior we see that {(t,−∞), (t,∞)} ⊂ Lin→∞Bn = B.
This shows (ii).

Further, let (t, x) ∈ B and let U be a neighborhood of (t,−x) in H. Con-
sider the map (−) : H → H, (t, x) 7→ (t,−x). Then W := (−)(U) is a
neighborhood of (t, x). Thus, there exists N ∈ N such that for all n ≥ N the
intersection Bn ∩W is non-empty. Since Bn is a barrier, for those n we have
that (−)(Bn∩W ) = Bn∩U is non-empty. Therefore, (t,−x) ∈ Lin→∞Bn = B.
This shows (iii).

At last, let (t, x) ∈ B and without loss of generality assume x ∈ [0,∞).
Let y ∈ [x,∞) and let U be a neighborhood of (t, y). Then V := U − (0, y−x)
is a neighborhood of (t, x). Thus, there exists N ∈ N such that for all n ≥ N
we have V ∩Bn 6= ∅. For such n take (tn, xn) ∈ V ∩Bn. Since Bn is a barrier
it holds that (tn, xn + y − x) ∈ U ∩ Bn. Therefore (t, y) ∈ B. This yields
(iv).

By Lemma 2.1.2 we see that we can identify barriers with boundary func-
tions. By this we transfer the topology on B to the set of boundary functions.



2.1. BOUNDARY FUNCTIONS AND EXISTENCE OF SOLUTIONS 21

As soon as we want to work with boundary functions it becomes important to
understand the transferred topology or convergence. The following statement
is a corollary of Theorem 4.16 in [Dal93] and Theorem B.2.7 and identifies the
convergence in Hausdorff sense as the so-called Γ-convergence. The notion of
Γ-convergence is well-studied, for example see [Dal93].

Theorem 2.1.4. Let b and bn be boundary functions for n ∈ N. Then bn → b
in the Hausdorff topology if and only if for every t ∈ [0,∞]

(i) there exists a sequence (tn)n∈N converging to t such that

b(t) = lim
n→∞

bn(tn)

(ii) and for every sequence (tn)n∈N converging to t holds

b(t) ≤ lim inf
n→∞

bn(tn).

Proof. By Theorem B.2.7 the convergence bn → b in the Hausdorff distance
is equivalent to the Kuratowski convergence of the corresponding barriers.
But due to the symmetry of the barriers and the fact that the topology of
[0,∞]× [0,∞) is the same as the induced topology of H, this convergence of
barriers in the Kuratowski sense in H is equivalent to the convergence of the
epigraphs

epi(bn)→ epi(b) := {(t, x) ∈ [0,∞]× [0,∞) : x ≥ b(t)}

in the Kuratowski sense in [0,∞] × [0,∞). But this is in turn equivalent
to the convergence given by the two conditions of the statement, known as
Γ-convergence, by Theorem 4.16 in [Dal93].

We want to mention that it is possible to avoid the notions of barriers and
Hausdorff convergence, and to work directly with boundary functions and the
Γ-convergence instead. From now on we are doing so, but can interpret the
subject always in the light of the original work of [Anu80] in the sense that
the previous consideration of barriers represents the historical origin of the
approach.

Since the Γ-convergence is used throughout the thesis we use a separate
notation.

Definition 2.1.5. We say that a sequence of boundary functions bn converges
in the sense of Γ-convergence (or equivalently in Hausdorff distance) to a
boundary function b, write bn

Γ→ b, if (i) and (ii) of Theorem 2.1.4 are fulfilled.

This characterization of the Hausdorff-convergence is extremely useful when
working with sequences of boundary functions, which we will see in the fol-
lowing. We begin with an alternative proof for a statement from [Anu80]. For
s ≥ 0 and a boundary function b let

bs :=∞ · 1[0,s) + b · 1[s,∞].
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Lemma 2.1.6. Let bn
Γ→ b and s > 0. Then bsn

Γ→ bs.

Proof. By Theorem 2.1.4 we have to check conditions (i) and (ii) for every
time point. Let t ∈ [0, s). Since for large n the remaining elements of any
sequence (tn)n∈N converging to t are smaller than s we get

lim inf
n→∞

bsn(tn) =∞ = bs(t).

Let t ≥ s. Condition (i) is obviously fulfilled. Further

bs(t) = b(t) ≤ lim inf
n→∞

bn(tn) ≤ lim inf
n→∞

bsn(tn)

for every sequence (tn)n∈N converging to t.

Now we will collect some direct deductions concerning the Γ-convergence
of boundary functions, which can partly also be found or deduced in a more
general setting in [Dal93].

Lemma 2.1.7. Let (b`n)n∈N and (bun)n∈N be sequences of boundary functions
with b`n

Γ→ b` and bun
Γ→ bu, respectivly. Assume that b`n ≤ bun for all n. Then

b` ≤ bu.

Proof. For t ∈ [0,∞] let tn → t be a converging sequence such that bun(tn) →
bu(t). Then it holds

b`(t) ≤ lim inf
n→∞

b`n(tn) ≤ lim inf
n→∞

bun(tn) = bu(t).

Therefore it holds b` ≤ bu.

We will use the following relationship to pointwise convergence, which also
can be found in Remark 5.5 of [Dal93].

Lemma 2.1.8. Let bn, n ∈ N, be a sequence of boundary functions, such that
bn ≤ bn+1 pointwise. Then bn

Γ→ b, where b(t) := limn→∞ bn(t) for t ∈ [0,∞].
In particular, b is lower-semicontinuous.

Proof. Let b1 and b2 be accumulation points of (bn)n∈N with limiting subse-
quences bnk → b1 and bn` → b2. Then for any t ∈ [0,∞] there exists a sequence
(tk)k∈N converging to t such that bnk(tk)→ b1(t). Thus

b1(t) = lim inf
k→∞

bnk(tk) ≥ lim inf
k→∞

bn`(tk) ≥ lim inf
s→t

bn`(s) ≥ bn`(t).

Since bn` converges in the Hausdorff distance to b2 this ordering implies by
Lemma 2.1.7 that b1 ≥ b2. Analogously, one can establish that b1 ≤ b2. We
end up with b1 = b2, and thus every accumulation point coincides. Due to the
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compactness we get bn
Γ→ b1. It is left to show that b1 = b. Let t ∈ [0,∞] and

tn → t such that bn(tn)→ b1(t). Then for m ∈ N we have

b1(t) = lim inf
n→∞

bn(tn) ≥ lim inf
n→∞

bm(tn) ≥ bm(t).

By letting m → ∞ it follows that b1(t) ≥ b(t). By the definition of the
Γ-convergence we have b1(t) ≤ lim infn→∞ bn(t) = b(t). Hence b1 = b.

By Theorem B.2.2 for every boundary function such a sequence, consisting
of continuous functions, exists. Thus this means in the Hausdorff topology
every boundary function can be approximated by continuous functions from
below.

We can also pass shape properties through the limit.

Lemma 2.1.9. Let U ⊆ [0,∞] be open. If bn
Γ→ b and every bn is non-

decreasing on U ∩ {t ∈ [0,∞] : bn(t) < ∞}, then b is non-decreasing on
U ∩ {t ∈ [0,∞] : b(t) <∞}.

Proof. Define Fb := {t ∈ [0,∞] : b(t) < ∞}. Let s, t ∈ Fb ∩ U with s < t.
Then Theorem 2.1.4 implies that there exist sequences (sn)n∈N and (tn)n∈N
with sn → s plus bn(sn)→ b(s) and tn → t plus bn(tn)→ b(t). Since s < t we
can assume without loss of generality that sn < tn. Furthermore, since s, t ∈ Fb
and U is open it follows that for all n large enough we have sn, tn ∈ Fbn ∩ U .
Consequently,

b(s) = lim
n→∞

bn(sn) ≤ lim
n→∞

bn(tn) = b(t)

which completes the proof.

Lemma 2.1.10. Assume bn
Γ→ b and that every bn is concave (convex). Then

b is concave (convex).

Proof. Let s, t ∈ [0,∞] with s < t and α ∈ (0, 1). Define r := (1− α)s+ αt.
As first case, let bn be concave for all n. By Theorem 2.1.4 there exists a
sequence (rn)n∈N such that rn → r and bn(rn) → b(r). Without loss of
generality we assume that rn ∈ (s, t) for all n. Further, set αn := rn−s

t−s . By
the concavity of bn it holds

b((1− α)s+ αt) = lim
n→∞

bn((1− αn)s+ αnt)

≥ lim inf
n→∞

(1− αn)bn(s) + αnbn(t)

≥ (1− α) lim inf
n→∞

bn(s) + α lim inf
n→∞

bn(t)

≥ (1− α)b(s) + αb(t)

which means that b is concave. Now, assume the case that bn is convex for
all n. Then there exist sequences (tn)n∈N and (sn)n∈N such that tn → t and
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sn → s with bn(tn) → b(t) and bn(sn) → b(s). With this at hand follows in
view of Theorem 2.1.4 that

b((1− α)s+ αt) ≤ lim inf
n→∞

bn((1− α)sn + αtn)

≤ lim inf
n→∞

(1− α)bn(sn) + αbn(tn) = (1− α)b(s) + αb(t)

which implies that b is convex.

2.1.2 Existence of solutions by discrete approximation

The purpose of this subsection is to extend the result of [Anu80] to the case
where the Brownian motion starts from an arbitrary (random) starting point.
In fact, it is straightforward to apply the techniques used by Anulova. We will
label all statements which appeared directly in [Anu80] for the special case of
standard Brownian motion as taken from [Anu80].

In the following let g be a survival distribution and µ a probability distri-
bution on R. The following main theorem by Anulova states that ifpt(g, µ) is
not empty.

Theorem 2.1.11 ([Anu80]). For a probability distribution µ and every survival
distribution g there exists a boundary function b such that τb is distributed
according to g, i.e. Pµ (τb > t) = g(t) for all t ≥ 0.

In the previous subsection we have already mentioned that Anulova orig-
inally worked with barriers instead of boundary functions. Since we want to
work in the direct setting of the first-passage time, we will carry out the ap-
proach of [Anu80] in terms of boundary functions and use the Γ-convergence
instead of the Hausdorff distance. This has also the advantage that some
technicalities of [Anu80] can be avoided.

In order to prove Theorem 2.1.11 the key step for using the compactness
of the set of boundary functions is the following proposition.

Proposition 2.1.12. Let b be a boundary function and bn
Γ→ b. Suppose one

of the following conditions is fulfilled:

(i) lim infn→∞ τbn > 0 almost surely,

(ii) there is a survival distribution g, such that τbn → g.

Then τbn
P→ τb.

The proof of Proposition 2.1.12 concerning (ii) is a generalization of an
argument of Anulova used in the proof of Theorem 1 of [Anu80] to an arbitrary
starting point, but the argument appeared to be valid also for (i) as condition,
and proved to be very useful in the further analysis of the inverse first-passage
time problem.
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In the following we will prepare the proof of Proposition 2.1.12 by several
individual statements. We define

τ̄b := inf{t ≥ 0 : |Xt| ≥ b(t)}.

The next statement shows that P (τ̄b = 0) = 0 implies condition (i) of Propo-
sition 2.1.12.

Lemma 2.1.13 ([Anu80]). For n ∈ N let bn, b be boundary functions, such
that bn

Γ→ b. Then

τ̄b ≤ lim inf
n→∞

τbn

almost surely.

Proof. Abbreviate sn := τbn = inf{t > 0 : |Xt| ≥ bn(t)}. Since bn is lower
semicontinuous and t 7→ Xt is almost surely continuous, we have that |Xsn | ≥
bn(sn) almost surely. Let (nk)k∈N be a (possibly random) sequence such that
snk → s := lim infn→∞ sn. Then we have by the Γ-convergence that

b(s) ≤ lim inf
n→∞

bn(sn) ≤ lim inf
n→∞

|Xsn | = |Xs| a.s.,

which implies that τ̄b ≤ s.

For ε > 0 and a boundary function b, note that t 7→ b(t) + ε is again a
boundary function.

Lemma 2.1.14 ([Anu80]). Let ε > 0. For n ∈ N let bn, b be boundary func-
tions, such that bn

Γ→ b. Then

τb+ε ≥ lim sup
n→∞

τbn

almost surely.

Proof. Without loss of generality, assume that t := τb+ε < ∞. Due to the
lower semicontinuity we have almost surely that |Xt| ≥ b(t) + ε. By the Γ-
convergence let tn → t be a (possibly random) sequence such that bn(tn) →
b(t). Let N ∈ N be large enough such that for n ≥ N on the one hand
bn(tn) ≤ b(t) + ε

2 and on the other hand |Xtn | ≥ b(t) + ε
2 . It follows

sup
n≥N

τbn ≤ sup
n≥N

tn.

By letting N →∞ we obtain lim supn→∞ τbn ≤ t = τb+ε.

For s > 0 and a boundary function b recall the definition bs(t) = 1[0,s)(t)∞+
1[s,∞](t)b(t).
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Lemma 2.1.15 ([Anu80]). Let b be a boundary function such that there is
s > 0 such that b = bs, this is b(t) =∞ for all t < s. Then

τb = lim
ε↘0

τb+ε

almost surely.

Proof. In the following denote Wt := Xt −X0. For b write

τ+
b := inf{t > 0 : Xt ≥ b(t)},
τ−b := inf{t > 0 : −Xt ≤ b(t)}.

Note that τb = τ+
b ∧ τ

−
b . In view of symmetry in suffices to prove τ+

b =
limε↘0 τ

+
c+ε a.s.. Note that τ+

b+ε is increasing in ε. Thus the limit limε↘0 τ
+
b+ε

exist and τ+
b ≤ limε↘0 τ

+
b+ε. Assume that P

(
τ+
b < limε↘0 τ

+
b+ε

)
> 0. Then,

since τ+
b+ε, τ

+
b ≥ s, there exists u ≥ s with

0 < P
(
τ+
b ≤ u < lim

ε↘0
τ+
b+ε

)
= P

(
lim
ε↘0

τ+
b+ε > u

)
− P

(
τ+
b > u

)
. (2.4)

Hence P
(
τ+
b > u

)
< P

(
limε↘0 τ

+
b+ε > u

)
. Write

P
(
τ+
b+ε > u

)
= P (Xt < b(t) + ε ∀t ≤ u) = P (X0 +Wt < b(t) + ε ∀t ∈ [s, u])

=

∫
R
P (Wt < b(t) + ε− x ∀t ∈ [s, u]) dµ(x).

Defining θr := 1{r≤s}
ε
s we we can verify that the Novikov condition is fulfilled

by

E
[
exp

(
1

2

∫ u

0
θ2
r dr

)]
= E

[
exp

(
ε2

2s

)]
<∞.

Set W̃t = Wt−
∫ t

0 θr dr and let P̃ be the measure on σ(Xs : s ∈ [0, u]) given by

P̃ = exp

(∫ u

0
θr dW̃r +

1

2

∫ u

0
θ2
r dr

)
dP.

We find for any ε > 0 by Girsanov’s theorem that

P (Wt < b(t) + ε− x ∀t ∈ [s, u])

= P
(
Wt −

∫ t

0
θr dr < b(t)− x ∀t ∈ [s, u]

)
= Ẽ

[
1{W̃t<b(t)−x ∀t∈[s,u]} exp

(
−
∫ u

0
θr dW̃r −

1

2

∫ u

0
θ2
r dr

)]
= Ẽ

[
1{W̃t<b(t)−x ∀t∈[s,u]} exp

(
−ε
s
W̃s −

ε2

2s

)]
= E

[
1{Wt<b(t)−x ∀t∈[s,u]} exp

(
−ε
s
Ws −

ε2

2s

)]
.
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But, as ε→ 0 by the dominated convergence theorem, where we use as bound
that the normal distribution has exponential moments, we obtain

E
[
1{Wt<b(t)−x ∀t∈[s,u]} exp

(
−ε
s
Ws −

ε2

2s

)]
→ P (Wt + x < b(t) ∀t ∈ [s, u]) .

In conclusion, by the Fatou lemma

P
(

lim
ε↘0

τ+
b+ε > u

)
≤ P

(
lim inf
ε↘0

{τ+
b+ε > u}

)
≤ lim inf

ε↘0
P
(
τ+
b+ε > u

)
≤ lim sup

ε↘0

∫
R
P (Wt < b(t) + ε− x ∀t ∈ [s, u]) dµ(x)

≤
∫
R

lim sup
ε↘0

P (Wt < b(t) + ε− x ∀t ∈ [s, u]) dµ(x)

=

∫
R
P (Wt + x < b(t) ∀t ∈ [s, u]) dµ(x)

= P (Xt < b(t) ∀t ∈ [s, u]) = P
(
τ+
b > u

)
,

which is a contradiction to (2.4). Eventually, P
(
τ+
b = limε↘0 τ

+
b+ε

)
= 1.

Lemma 2.1.16 ([Anu80]). Let b be a boundary function with the property that
there exists s > 0 such that b = bs. Then, if bn

Γ→ b,

τb = lim
n→∞

τbn

almost surely.

Proof. Let m ∈ N. Then, since τb = τ̄b, we have

τb ≤ lim inf
n→∞

τbn ≤ lim sup
n→∞

τbn ≤ τb+ 1
m

almost surely. By letting m → ∞ we obtain by Lemma 2.1.15 that τb =
limn→∞ τbn almost surely.

Lemma 2.1.17 ([Anu80]). Let b be a boundary function. Then

τb = lim
s↘0

τbs

almost surely.

Proof. For 0 < s1 ≤ s2 we have τb ≤ τbs1 ≤ τbs2 the limit exists and τb ≤
lims↘0 τbs . Further, let m ∈ N. Since in the definition of τb the infimum is
taken within a subset of (0,∞), we have that, almost surely, there exist a
random time T > 0 with T ∈ [τb, τb + 1

m) such that |XT | ≥ b(T ). For any
sT <

T
2 , this implies |XT | > bsT (T ) and consequently τb ≤ lims↘0 τbs ≤ τbsT ≤

τb + 1
m . By m→∞ we obtain lims↘0 τbs = τb almost surely.
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We can now assemble the statements above to prove Proposition 2.1.12.

Proof of Proposition 2.1.12. Let ε > 0 and s > 0. Then

P (|τbn − τb| > ε)

≤ P
(
|τbsn − τbn | >

ε

3

)
+ P

(
|τbsn − τbs | >

ε

3

)
+ P

(
|τbs − τb| >

ε

3

)
≤ P (τbn ≤ s) + P

(
|τbsn − τbs | >

ε

3

)
+ P

(
|τbs − τb| >

ε

3

)
,

where we have used that

P
(
|τbsn − τbn | >

ε

3

)
≤ P

(
τbsn 6= τbn

)
≤ P (τbn ≤ s) .

By using the fact that by Lemma 2.1.6 and Lemma 2.1.16 we have that τbsn →
τbs a.s., we obtain

lim sup
n→∞

P (|τbn − τb| > ε) ≤ lim sup
n→∞

P (τbn ≤ s) + P
(
|τbs − τb| >

ε

3

)
.

By letting s↘ 0 and using Lemma 2.1.17 we obtain

lim sup
n→∞

P (|τbn − τb| > ε) ≤ lim
s↘0

lim sup
n→∞

P (τbn ≤ s) .

Thus it is left to show that lims↘0 lim supn→∞ P (τbn ≤ s) = 0.
Assume condition (i). With the Fatou lemma and in view of Lemma 2.1.13

it holds that

lim sup
n→∞

P (τbn ≤ s) ≤ P
(

lim sup
n→∞

{τbn ≤ s}
)

= P
(

lim inf
n→∞

τbn ≤ s
)
.

Letting s→ 0 yields the desired statement.
Assume condition (ii). Define gn(t) := P (τbn > t). For s > 0 take a

sequence of continuity points t` ↘ s of g. For all ` ∈ N it holds that

lim sup
n→∞

P (τbn ≤ s) = lim sup
n→∞

1− gn(s) ≤ lim sup
n→∞

1− gn(t`) = 1− g(t`).

By letting `→∞ and using the right continuity of g we obtain that the limit
lim supn→∞ P (τbn ≤ s) is bounded from above by 1 − g(s), which tends to 0
as s→ 0. Thus the desired statement follows.

Before we continue with the proof of Theorem 2.1.11, we extract a further
argument of Anulova as general statement in order to use it later in this thesis.

Lemma 2.1.18. Let g be a survival distribution. For n ∈ N let δ(n) > 0, such
that δ(n) → 0 as n → ∞. Let (bn)n∈N be a sequence of boundary functions
such that Pµ

(
τbn > kδ(n)

)
= g(kδ(n)) for all 1 ≤ k ≤ btg/δ(n)c. Then τbn → g

in distribution as n→∞.
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Proof. Let t ∈ (0, tg) be a continuity point of g. Let t−n := bt/δ(n)cδ(n) and
t+n := dt/δ(n)eδ(n). For n ∈ N large enough we have 0 < t−n ≤ t ≤ t+n < tg and
we have t±n → t. Observe that by assumption we have

g(t+n ) = Pµ
(
τbn > t+n

)
≤ Pµ (τbn > t) ≤ Pµ

(
τbn > t−n

)
= g(t−n ).

By t+n → t and t−n → t it follows that

P
(
τbpcn > t

)
→ g(t),

since t was a continuity point. The cases t ∈ {0, tg} are analogous with only
t+n or t−n , respectively.

Now we are ready to prove the generalized version of the theorem of An-
ulova.

Proof of Theorem 2.1.11. For n ∈ N let bn be a boundary function inductively
defined as follows. Set bn(t) := ∞ for t /∈ {k2−n : k ∈ N} and given bn(k2−n)
let bn((k + 1)2−n) be such that

Pµ
(
|X2−n | < bn(2−n), . . . , |X(k+1)2−n | < bn((k + 1)2−n)

)
= g((k + 1)2−n).

By construction we have then Pµ (τbn > k2−n) = g(k2−n) for every k ∈ N
and thus the requirements of Lemma 2.1.18 are fulfilled with δ(n) = 2−n.
Hence τbn → g in distribution. The compactness of B implies that there
exists a subsequence (bnk)k∈N with a limit point with respect to the Hausdorff
topology, which we denote with b. Since τbnk as a subsequence also converges
in distribution to g, condition (ii) of Proposition 2.1.12 is fulfilled, and thus
we obtain that τbnk → τb in probability. From this it is clear that τbnk → τb in
distribution. Therefore, the law of τb must be the law given by g, which yields
b ∈ ifpt(g, µ).
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2.2 Properties of Gaussian convolution and
truncation

In the beginning of this chapter we have motivated that our aim is to discretize
the marginal distribution of the conditioned process given by (2.1) for a pos-
sible solution b of the inverse first-passage time problem. This discretization
was proposed in terms of the truncating function T c, c ∈ [0,∞], given by

T c(µ) := µ( · |[−c, c]) (2.5)

for a probability measure µ with µ([−c, c]) > 0.
A slightly different representation of the proposed discretization in (2.3),

which is more suitable from the view of the inverse problem, can be found
by taking into account the fact that the approximants of the solution b are
constructed as certain quantiles. Denote with P the Borel probability measures
on R. Let us recall that the α-truncating function Tα : P → P, α ∈ (0, 1] from
(1.7) is given by

Tα(µ) := µ( · |[−qα, qα]) = T qα(µ), (2.6)

where qα := qα(µ) := inf{c ≥ 0 : µ([−c, c]) ≥ α}. Furthermore, denote the
convolution operator on P corresponding to a centered normal distribution
with Pt, i.e.

Ptµ := µ ∗ N (0, t) = Pµ (Xt ∈ · ) , (2.7)

where (Xt)t≥0 is a Brownian motion with X0 ∼ µ and N (0, t) denotes the
normal distribution with mean 0 and variance t. Then another representation
of (2.3) is given by

Tαnk ◦ Ptnk−tnk−1
◦ . . . ◦ Tαn1 ◦ Ptn1 (µ), (2.8)

where αnk := g(tnk)/g(tnk−1). In order to analyze the quantity of (2.8), we
will study the individual and joint effects of T c, Tα and Pt on the two-sided
usual stochastic order, on the two-sided likelihood ratio order, on probability
distances and related aspects.

2.2.1 Usual stochastic order: Gaussian convolution,
truncation

Recall that P denotes the set of probability measures on R. We begin with
the definition of the well-known usual stochastic order of probability measures
and a two-sided modification of it. In the context of the inverse first-passage
time problem we will be mainly concerned with the two-sided version. In this
subsection we study the effect of the convolution operator and the α-truncation
on this two-sided stochastic order.
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Definition 2.2.1. Let µ, ν ∈ P.

(i) µ is smaller than ν in the usual stochastic order, we write µ �st ν, if

µ((−∞, c]) ≥ ν((−∞, c]) ∀c ≥ 0.

(ii) We say that ν dominates µ in the two-sided stochastic order, write µ � ν,
if

µ([−c, c]) ≥ ν([−c, c]) ∀c ≥ 0,

and call a mapping F : P → P dominance preserving for µ and ν with
respect to �, if µ � ν implies F (µ) � F (ν).

(iii) Define the modulus law of µ by

µ(A) := µ(−A ∩ (−∞, 0)) + µ(A ∩ {0}) + µ(A ∩ (0,∞)).

(iv) We call a measure µ ∈ P symmetric, if µ(−A) = µ(A) for any measur-
able A ⊆ R.

Note that for c ≥ 0 we have

µ((−∞, c]) = µ([−c, c]) = µ([−c, 0)) + µ({0}) + µ((0, c]) = µ([−c, c]).

It follows that µ � ν if and only if µ � ν if and only if µ �st ν. Further, note
that µ is the law of |X|, if X ∼ µ.

The well-known usual stochastic order admits the intuitive property, that
µ is smaller that ν in the usual stochastic order, if and only if one can find a
coupling X ∼ µ and Y ∼ ν such that X ≤ Y almost surely, see e.g. [Tho00].
The two-sided stochastic order has an analogous property.

Lemma 2.2.2. Let µ and ν be probability measures. Then µ � ν if and only
if there exists a pair of random variables (X,Y ) such that X ∼ µ and Y ∼ ν
with |X| ≤ |Y |.

Proof. First, let X,Y be random variables such that X ∼ µ and Y ∼ ν with
|X| ≤ |Y |. Then for c ≥ 0 we have

µ([−c, c]) = P (X ∈ [−c, c]) = P (|X| ≤ c) ≥ P (|Y | ≤ c) = ν([−c, c]).

Conversely, let µ � ν. Now as first step we assume that both µ and ν have
finite support and write them in the following form

µ =
n∑
i=1

piδxi , ν =
m∑
j=1

qjδyj ,
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where (x, y) ∈ Rn × Rm such that |x1| ≤ . . . ≤ |xn| and |y1| ≤ . . . ≤ |ym| and
p1 + . . . + pn = 1 = q1 + . . . + qm with pi, qj > 0. Define Pk :=

∑k
i=1 pi and

Q` :=
∑`

j=1 qj . Let U ∼ U(0, 1) and define

X :=
n∑
k=1

1(Pk−1,Pk](U) · xk, Y :=
m∑
`=1

1(Q`−1,Q`](U) · y`.

We observe thatX ∼ µ and Y ∼ ν. Furthermore, observe that the distribution
functions of |X| and |Y | are given by

F|X|(c) = P (|X| ≤ c) =

{
µ([−c, c]) : c ≥ 0,

0 : c < 0,

F|Y |(c) = P (|Y | ≤ c) =

{
ν([−c, c]) : c ≥ 0,

0 : c < 0.

Thus F|X| ≥ F|Y |. This implies that

n∑
k=1

1(Pk−1,Pk](t) · |xk| = inf{c ∈ R : F|X|(c) ≥ t}

≤ inf{c ∈ R : F|Y |(c) ≥ t} =
m∑
`=1

1(Q`−1,Q`](t) · |y`|.

Therefore we have that

|X| =
n∑
k=1

1(Pk−1,Pk](U) · |xk| ≤
m∑
`=1

1(Q`−1,Q`](U) · |y`| = Y.

For the next step let µ, ν be arbitrary and X ∼ µ and Y ∼ ν on the same
probability space. Define

[X]n := sgn(X) sup

{
k

n
≤ |X| : k = 1, . . . , n2

}
,

]Y [n := sgn(Y )

(
inf

{
k

n
≥ |Y | : k = 1, . . . , n2

}
∧ n
)
,

where sgn(0) := 0. Let µn := P ([X]n ∈ · ) and νn := P (]Y [n∈ · ). Since
|[X]n| ≤ |X| and |]Y [n| ≥ |Y | we have for c ≥ 0 that

µn([−c, c]) = P (|[X]n| ≤ c) ≥ P (|X| ≤ c) = µ([−c, c])
≥ ν([−c, c]) = P (|Y | ≤ c) = P (|]Y [n| ≤ c) = νn([−c, c]).

Therefore µn � νn. But additionally we have [X]n → X and ]Y [n→ Y almost
surely, hence µn → µ and νn → ν. By the result of the first step there exist
pairs of random variables (Xn, Yn) such that Xn ∼ µn and Yn ∼ νn with
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|Xn| ≤ |Yn|. Define %n := P ((Xn, Yn) ∈ · ). Since µn → µ and νn → ν
we have by Prokhorov’s theorem that the families (µn)n∈N and (νn)n∈N are
tight. Let ε > 0. Choose compact sets K1,K2 ⊆ R such that P (Xn /∈ K1) =
µn(R \K1) < ε

2 and P (Yn /∈ K2) = νn(R \K2) < ε
2 . Then

%n(K1 ×K2) = P (Xn ∈ K1, Yn ∈ K2)

≥ 1− P (Xn /∈ K1)− P (Yn /∈ K2)

> 1− ε

and thus (%n)n∈N is tight. Let (%nk)k∈N be a convergent subsequence with limit
%. Let πi : R2 → R, (x1, x2) 7→ xi. We obtain

µ = lim
k→∞

µnk = lim
k→∞

%nk ◦ π
−1
1 = % ◦ π−1

1

as well as

ν = lim
k→∞

νnk = lim
k→∞

%nk ◦ π
−1
2 = % ◦ π−1

2 .

Furthermore, note that the set A := {(x, y) ∈ R2 : |x| ≤ |y|} is closed. There-
fore by the Portmanteau theorem we get

%(A) ≥ lim sup
k→∞

%nk(A) = lim sup
k→∞

P ((Xn, Yn) ∈ A)

= lim sup
k→∞

P (|Xn| ≤ |Yn|) = 1.

Therefore, on the probability space (R2,B(R2), %) the pair of random variables
(π1, π2) has the desired properties.

We now begin with an analysis of the dominance preservation properties
of the operators, which appear in our approach.

Proposition 2.2.3. For every t > 0 the operator Pt is dominance preserving,
i.e. if µ � ν then

Ptµ � Ptν.

Proof. Let φt(x) := 1√
2πt
e−

x2

2t . We have to show that Ptµ([−c, c]) ≥ Ptν([−c, c]),
which is equivalent to

0 ≤
∫ c

−c

∫
R
φt(x− y) d(µ− ν)(y) dx =

∫
R

∫ c

−c
φt(y − x) dx d(µ− ν)(y)

=

∫
R

∫ y+c

y−c
φt(x) dx d(µ− ν)(y) =

∫
R
ω(y) dµ(y)−

∫
R
ω(y) dν(y)

=

∫
[0,∞)

ω(y) dµ(y)−
∫

[0,∞)
ω(y) dν(y)
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with the symmetric function ω(y) :=
∫ y+c
y−c φt(x) dx. Additionally ω is nonin-

creasing on [0,∞), which can be seen by

ω′(|y|) = φt(|y|+ c)− φt(|y| − c) ≤ 0.

The desired inequality is a consequence of Lemma B.1.3.

The statement of Proposition 2.2.3 could also be shown by a coupling
argument, which in fact enables us to deduce a more general statement.

Lemma 2.2.4. Let µ1 � µ2 and b : [0,∞] → [0,∞] a lower-semicontinuous
function. Then we have

Pµ2 (τb ∈ · ) �st Pµ1 (τb ∈ · ) .

Proof. If µ1 � µ2 then by Lemma 2.2.2 we can assume that there are random
variables X ∼ µ1 and Y ∼ µ2 with |X| ≤ |Y |. Let B −X, B(2) − Y be two
independent standard Brownian motions independent of X, Y . Let

T := inf{t > 0 : |Bt| = |B(2)
t |}.

Then

B
(1)
t :=


Bt : t < T,

B
(2)
t = BT + (B

(2)
t −B

(2)
T ) : t ≥ T, sgn(BT ) = sgn(B

(2)
T ),

−B(2)
t = BT − (B

(2)
t −B

(2)
T ) : t ≥ T, sgn(BT ) 6= sgn(B

(2)
T )

defines a Brownian motion with initial datum B
(1)
0 = X.

t

T

X

Y

B
(2)
t

B
(1)
t

Figure 2.1: The coupling of B(1) and B(2) in the proof of Lemma 2.2.4.

By construction and due to the coupling it follows that |B(1)
t | ≤ |B

(2)
t |

for t ≥ 0. Now, if b : [0,∞] → [0,∞] is a lower-semicontinuous function,
|B(1)

t | ≤ |B
(2)
t | for t ≥ 0 means that

inf{t > 0 : |B(1)
t | ≥ b(t)} ≥ inf{t > 0 : |B(2)

t | ≥ b(t)},

which implies that Pµ2 (τb ∈ · ) �st Pµ1 (τb ∈ · ).
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Remark 2.2.5. The proof of Lemma 2.2.4 showed that |B(1)
t | ≤ |B

(2)
t | for

t ≥ 0. By Lemma 2.2.2 and the fact that B(i)
t ∼ Ptµi this gives a coupling

proof for Proposition 2.2.3.

Now we turn to the order preserving properties of Tα. At first, we prove
that the restriction to non-atomic measures the function Tα is dominance pre-
serving, which is sufficient in our situation, since the output of Pt is always
non-atomic. Note that in general we have µ([−qα(µ), qα(µ)]) ≥ α and for non-
atomic µ we have µ([−qα(µ), qα(µ)]) = α, where qα is defined within (2.6).

Lemma 2.2.6. Let α1, α2 ∈ (0, 1] with α1 ≤ α2. Let µ, ν ∈ P, such that
µ([−qα1(µ), qα1(µ)]) ≤ ν([−qα2(ν), qα2(ν)]) and µ � ν. Then Tα1(µ) � Tα2(ν).

Proof. We have

{c ≥ 0 : µ([−c, c]) ≥ α1} ⊇ {c ≥ 0 : ν([−c, c]) ≥ α1}
⊇ {c ≥ 0 : ν([−c, c]) ≥ α2}.

Thus

qα1(µ) = inf{c ≥ 0 : µ([−c, c]) ≥ α1}
≤ inf{c ≥ 0 : ν([−c, c]) ≥ α2} = qα2(ν).

Let c ≥ 0. If c ≥ qα1(µ) we have

Tα1(µ)([−c, c]) = 1 ≥ Tα2(ν)([−c, c]).

If c < qα1(µ), then

Tα1(µ)([−c, c]) =
µ([−c, c])

µ([−qα1(µ), qα1(µ)])
≥ µ([−c, c])
ν([−qα2(ν), qα2(ν)])

≥ ν([−c, c])
ν([−qα2(ν), qα2(ν)])

= Tα2(ν)([−c, c]),

which yields that Tα1(µ) � Tα2(ν).

Remark 2.2.7. For any α ∈ (0, 1), the mapping Tα is not dominance preserv-
ing. We present the following artificial counterexample. Let α ∈ (0, 1) and
ε ∈ (0, α). Let

µ := (α− ε)δ0 + (1 + ε− α)δ1,

ν := (α− ε)δ0 + εδ1 + (1− α)δ2.

Then µ � ν, but

Tα(µ) = µ,

Tα(ν) =
α− ε
α

δ0 +
ε

α
δ1.

Therefore, Tα(µ)({0}) = α− ε < α−ε
α = Tα(ν)({0}).



36 CHAPTER 2. THE INVERSE FIRST-PASSAGE TIME PROBLEM

For the most situations the following technically simpler corollaries of
Lemma 2.2.6 are sufficient.

Corollary 2.2.8. Let α ∈ (0, 1] and µ ∈ P, such that c 7→ µ((−∞, c]) is
continuous. Then µ � ν implies Tα(µ) � Tα(ν).

Corollary 2.2.9. Let µ ∈ P and α ∈ (0, 1]. Then Tα(µ) � µ.

Furthermore the truncation functions have some kind of semigroup prop-
erty.

Lemma 2.2.10. Let α, β ∈ (0, 1] and µ ∈ P such that c 7→ µ((−∞, c]) is
continuous. Then we have that Tα ◦ Tβ(µ) = Tαβ(µ).

Proof. Since for every c ≥ qβ(µ) it holds that Tβ(µ)([−c, c]) = 1, we have that
qβα := qα(Tβ(µ)) ≤ qβ(µ) =: qβ . Furthermore, due to the assumption on µ
and since Tβ(µ) is absolutely continuous with respect to µ we have that c 7→
Tβ(µ)((−∞, c]) is continuous and therefore, as in the proof of Lemma 2.2.6, we
have that Tβ(µ)([−qβα, qβα]) = α, µ([−qβ, qβ]) = β and µ([−qαβ(µ), qαβ(µ)]) =
αβ. Let A ⊂ R be measurable. Then

Tα ◦ Tβ(µ)(A) =
1

α
Tβ(µ)(A ∩ [−qβα, qβα]) =

1

αβ
µ(A ∩ [−qβα, qβα] ∩ [−qβ, qβ])

=
1

αβ
µ(A ∩ [−qβα, qβα]).

It follows that qβα = qαβ(µ). And thus the statement is proven.

For arbitrary measures we have the following result.

Proposition 2.2.11. Let α, β ∈ (0, 1] and µ ∈ P. Then we have that
Tαβ(µ) � Tα ◦ Tβ(µ).

Proof. By definition we have

qα(Tβ(µ)) = inf{c ≥ 0 : Tβ(µ)([−c, c]) ≥ α}

and Tβ([−qβ(µ), qβ(µ)]) = 1 ≥ α, which implies that qα(Tβ(µ)) ≤ qβ(µ).
Furthermore, we have for c ≥ 0

Tβ(µ)([−, c, c]) =
µ([−c, c] ∩ [−qβ(µ), qβ(µ)])

µ([−qβ(µ), qβ(µ)])
≤ µ([−c, c])

β
.

Thus, if c ≥ 0, the inequality Tβ(µ)([−c, c]) ≥ α implies µ([−c, c]) ≥ αβ. It
follows that qαβ(Tβ(µ)) ≤ qα(Tβ(µ)) ≤ qβ(µ). By this follows

Tα ◦ Tβ(µ) = Tβ(µ)(· |[−qα(Tβ(µ)), qα(Tβ(µ))])

= µ(· |[−qα(Tβ(µ)), qα(Tβ(µ))]).
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Additionally, for c ≥ 0 with c ≤ qαβ(µ) follows

Tαβ(µ)([−c, c]) =
µ([−c, c])

µ([−qαβ(µ), qαβ(µ)])

≥ µ([−c, c])
µ([−qα(Tβ(µ)), qα(Tβ(µ))])

= µ([−c, c]|[−qαβ(µ), qαβ(µ)]) = Tα ◦ Tβ(µ)([−c, c]).

Since for c ≥ qαβ(µ) we have Tαβ(µ)([−c, c]) = 1 ≥ Tα ◦ Tβ(µ)([−c, c]) the
statement is proved.

Now we begin with a study of the interaction of Tα and Pt.

Lemma 2.2.12. Let α ∈ (0, 1] and µ ∈ P and t > 0. Then it holds that

Tα ◦ Pt(µ) � Pt ◦ Tα(µ).

Proof. As before we have that µ([−qα(µ), qα(µ)]) ≥ α and, since the mapping
c 7→ Ptµ((−∞, c]) is continuous, that Ptµ([−qα(Ptµ), qα(Ptµ)]) = α. Let c ≥
qα(Ptµ). Then

Tα ◦ Pt(µ)([−c, c]) = 1 ≥ Pt ◦ Tα(µ)([−c, c]).

For 0 ≤ c < qα(Ptµ) we have

Tα ◦ Pt(µ)([−c, c]) =
1

α
Ptµ([−c, c]) =

1

α

∫ c

−c

∫ ∞
−∞

pt(x, y) dµ(x) dy

≥ 1

α

∫ c

−c

∫ qα(µ)

−qα(µ)
pt(x, y) dµ(x) dy

≥ 1

µ([−qα(µ), qα(µ)])

∫ c

−c

∫ qα(µ)

−qα(µ)
pt(x, y) dµ(x) dy

=

∫ c

−c

∫ ∞
−∞

pt(x, y) dTα(µ)(x) = Pt ◦ Tα(µ)([−c, c]),

where pt(x, y) := 1√
2πt
e−

(x−y)2
2t denotes the density of the Gaussian kernel.

The statement of Lemma 2.2.12 meets the intuition by having in mind that
paths which end up far-away from the origin are only punished in the left-hand
side of the inequality.

2.2.2 Likelihood ratio order: Gaussian convolution,
truncation

Recall that our general objective consists of studying the discretization of the
marginal distribution from (2.1). The motivation to use the two-sided usual
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stochastic order was based on the viewpoint of the inverse problem to represent
the discretization in terms of the mass truncating operator Tα. However, in
some applications one has to work with given boundary functions. This corre-
sponds to a viewpoint of the direct problem, and in a study of the discretization
of the marginal distribution we have to deal with the level truncation oper-
ator T c from (2.5). In contrary to Tα, the truncation of T c fails to preserve
the two-sided usual stochastic order very generally, as we will discuss in more
detail in Remark 2.2.22.

In order to work with T c we introduce the likelihood ratio order, to which
we conduct a similar study as in the case of the two-sided usual stochastic
order. For sets A,B ⊆ R we write A ≤ B if (x, y) ∈ A×B implies x ≤ y.

A measure µ ∈ P is smaller than ν ∈ P in the usual likelihood ratio order,
write µ �lr ν, if for all measurable A ≤ B, we have

µ(A)ν(B) ≥ µ(B)ν(A).

Definition 2.2.13. Let µ, ν ∈ P. We say ν dominates µ in the two-sided
likelihood ratio order, write µ �|lr| ν, if µ �lr ν.

We will introduce some operations which preserve this ordering. Let Pt
denote the operator defined in (2.7). In order to establish the counterpart of
Proposition 2.2.3 we will investigate some general properties of the likelihood
ratio order and use some results from the theory of total positivity. We begin
with the following important characterization of the likelihood ration order
from Theorem 1.C.20 in [SS07]. Since the proof in [SS07] was only carried out
for absolutely continuous µ, ν, we will give a general proof.

Theorem 2.2.14. Let µ, ν ∈ P and X ∼ µ, Y ∼ ν be independent. Then we
have µ �lr ν if and only if

P (φ(X,Y ) ∈ · ) �st P (φ(Y,X) ∈ · )

for all φ ∈ {ψ : R2 → R measurable : x ≤ y ⇒ ψ(x, y) ≤ ψ(y, x)}.

As preparation we will first characterize the likelihood ratio order by the
following.

Lemma 2.2.15. Let µ, ν ∈ P and X ∼ µ, Y ∼ ν be independent. Then
µ �lr ν if and only if π := P ((X,Y ) ∈ · ) − P ((Y,X) ∈ · ) is a non-negative
measure on ∇ := {(x, y) ∈ R2 : x ≤ y}.

Proof. Suppose π is such a measure. Then, A ≤ B implies A × B ⊆ ∇, and
it follows immediately, that µ �lr ν. Conversely, assume that µ �lr ν. π is
a signed measure on R2 and for any F ⊆ ∆ := {(x, x) : x ∈ R} we have
π(F ) = 0. Further, we have π(A × B) ≥ 0 for A ≤ B. Now, let π+, π−
the Hahn decomposition of π. Since π+, π− are both absolutely continuous
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with respect to |π|, by the Radon-Nikodým-theorem there exist |π|-integrable
functions f+, f− ≥ 0, such that π+ = f+ d|π| and π− = f− d|π|. Corollary 11.4
from [DiB02] yields that |π|-almost all points in R2 are Lebesgue points for
f := f+− f−. At first, we claim that for any Lebesgue point (x, y) ∈ ∇\∆ we
have that π(Br(x, y)) ≥ 0 for r > 0 small enough, where Br(x, y) := {(u, v) ∈
R2 :

√
(u− x)2 + (v − y)2 < r}. If this was true, by the definition of Lebesgue

point it would follow that for (x, y) being a Lebesgue point of ∇ \∆ we have

0 ≤ 1

|π|(Br(x, y)))
π(Br(x, y)) =

1

|π|(Br(x, y)))

∫
Br(x,y)

f d|π| → f(x, y),

as r → 0, which means that f(x, y) ≥ 0. Since π ≡ 0 on ∆, for A ⊂ ∇
measurable would follow that π(A) =

∫
A\∆ f d|π| ≥ 0, which means that π is

a non-negative measure on ∇.
Let us now prove the claim. Let (x, y) ∈ ∇ \∆ such a point and r > 0, such
that Br(x, y) ⊂ ∇\∆. For n ∈ N define Dn := {[k2−n, (k+1)2−n)× [l2−n, (l+
1)2−n) : (k, l) ∈ Z2} and Sn := {S ∈ Dn : S ⊆ Br(x, y)}. By this construction
we obtain that

• Kn :=
⋃
S∈Sn S ⊆ Br(x, y),

• S1, S2 ∈ Sn with S1 6= S2 implies S1 ∩ S2 = ∅,

• Kn ⊂ Kn+1 and
⋃
n∈NKn = Br(x, y),

• Sn ⊆ {A×B : A ≤ B} and |Sn| <∞.

Since π is a finite measure we have by σ-continuity

π(Br(x, y)) = lim
n→∞

π(Kn) = lim
n→∞

∑
S∈Sn

π(S) ≥ 0.

By observing that

π(Br(x, y)) = lim
n→∞

π(Br+ 1
n

(x, y)) ≥ 0

the claim follows.

Proof of Theorem 2.2.14. Suppose µ �lr ν. Let π be defined as in Lemma 2.2.15.
Let φ be a function such that x ≤ y implies φ(x, y) ≤ φ(y, x) and c ∈ R. The
function f(x) := 1(−∞,c] is measurable and non-increasing. Therefore, by
Lemma 2.2.15 we have

P (φ(X,Y ) ≤ c)− P (φ(Y,X) ≤ c) = E [f(φ(X,Y ))− f(φ(Y,X))]

= E
[
f(φ(X,Y ))− f(φ(Y,X))1{X<Y }

]
+ E

[
f(φ(X,Y ))− f(φ(Y,X))1{X>Y }

]
=

∫
∇\∆

(f(φ(x, y))− f(φ(y, x))) dπ(x, y) ≥ 0,
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since for x ≤ y holds f(φ(x, y))− f(φ(y, x)) ≥ 0. This shows that

P (φ(X,Y ) ∈ · ) �st P (φ(Y,X) ∈ · ) .

Conversely, let A,B ⊆ R be measurable with A ≤ B. As in [SS07] define
φ(x, y) := 1A(y)1B(x). For x < y holds (y, x) /∈ A×B and therefore φ(x, y) =
1A×B(y, x) = 0 ≤ φ(y, x). Of course φ is measurable, hence by assumption
φ(X,Y ) �st φ(Y,X), and thus

µ(A)ν(B) = P (X ∈ A)P (Y ∈ B) = E [φ(Y,X)]

≥ E [φ(X,Y )] = P (X ∈ B)P (Y ∈ A) = µ(B)ν(A).

Altogether it follows that µ �lr ν.

By choosing φ(x, y) := x we obtain the following important relation be-
tween the likelihood ratio order and the usual stochastic order as corollary
from Theorem 2.2.14.

Corollary 2.2.16. Let µ, ν ∈ P. If µ �|lr| ν, then µ � ν.

For absolutely continuous measures we obtain a very convenient charac-
terization of the likelihood ratio order. This characterization was given as
definition of the likelihood ratio order in [SS07], where the equivalence to our
definition was stated without proof.

Lemma 2.2.17. Let µ, ν ∈ P be absolutely continuous with respect to Lebesgue
measure and µ = f dx and ν = g dx. Then µ �lr ν if and only if

f(x)g(y) ≥ f(y)g(x)

for Lebesgue-almost all x ≤ y.

Proof. Assume that µ �lr ν. Let x < y and h1, h2 > 0 small enough such that
A := [x, x + h1] ≤ B := [y, y + h2]. By the definition of the likelihood ratio
order follows that µ(A)ν(B) ≥ µ(B)ν(A). Dividing by h1h2 yields

1

h1

∫ x+h1

x
f(t) dt

1

h2

∫ y+h2

y
g(s) ds ≥ 1

h2

∫ y+h2

y
f(t) dt

1

h1

∫ x+h1

x
g(s) ds.

By letting h1, h2 → 0 we obtain f(x)g(y) ≥ g(x)f(y) for Lebesgue-almost all
x ≤ y.
Conversely, the assumption means that π defined in Lemma 2.2.15 is a positive
measure on ∇ = {(x, y) : x ≤ y}, which implies that µ �lr ν.

The next statement gives a necessary and sufficient condition for the preser-
vation of the two-sided likelihood ratio order under convolution operations. For
absolutely continuous measures the counterpart of this statement concerning
the one-sided likelihood ratio order is Theorem 1.C.9 in [SS07].
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As preparation, for a density function f : R→ R we define the generalized
absolute value density by

f∗(v, u) := f(v + u) + f(v − u) (2.9)

for v, u ≥ 0. Furthermore, we call a function K : R2 → R totally positive of
order 2 (TP2 ) if

K(x1, y1)K(x2, y2)−K(x1, y2)K(x2, y1) ≥ 0 (2.10)

for all x1, x2 ∈ R, y1, y2 ∈ R with x1 < x2, y1 < y2.

Theorem 2.2.18. Let η ∈ P be symmetric. Then the following properties are
equivalent:

(i) µ �|lr| ν implies η ∗ µ �|lr| η ∗ ν for all µ, ν ∈ P.

(ii) P (Z + u1 ∈ ·) �|lr| P (Z + u2 ∈ ·) whenever Z ∼ η and |u1| ≤ |u2|.

If η has a density f with respect to the Lebesgue measure, the following is also
an equivalent condition:

(iii) f∗ is almost everywhere totally positive of order 2 (TP2).

Proof. In the following, for σ ∈ {µ, ν} let Xσ ∼ σ and Z ∼ η be independent.
At first, as preparation, we observe that by symmetry

P (|Xσ + Z| ≤ v)

= P (|Xσ + Z| ≤ v,Xσ > 0) + P (|Xσ + Z| ≤ v,Xσ = 0)

+ P (|Xσ + Z| ≤ v,Xσ < 0)

= P (||Xσ|+ Z| ≤ v,Xσ > 0) + P (||Xσ|+ Z| ≤ v,Xσ = 0)

+ P (||Xσ| − Z| ≤ v,Xσ < 0)

= P (||Xσ|+ Z| ≤ v,Xσ > 0) + P (||Xσ|+ Z| ≤ v,Xσ = 0)

+ P (||Xσ|+ Z| ≤ v,Xσ < 0)

= P (||Xσ|+ Z| ≤ v)

for v ≥ 0, which implies that η ∗ σ = η ∗ σ.
It is clear that (i) implies (ii) by observing that δu1 �|lr| δu2 whenever

|u1| ≤ |u2|.
Conversely, assume (ii) and µ �|lr| ν. Let A,B be measurable sets with

A ≤ B. Define the function φ(x, y) := P (|y + Z| ∈ A)P (|x+ Z| ∈ B). Due to
the assumption x ≤ y implies φ(x, y) ≤ φ(y, x). We have by Theorem 2.2.14
that

η ∗ µ(A)η ∗ ν(B) = η ∗ µ(A)η ∗ ν(B)

= P (||Xµ|+ Z| ∈ A)P (||Xν |+ Z| ∈ B) = E [φ(|Xν |, |Xµ|)]
≥ E [φ(|Xµ|, |Xν |)] = P (||Xµ|+ Z| ∈ B)P (||Xν |+ Z| ∈ A)

= η ∗ µ(B)η ∗ ν(A),
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which implies η ∗ µ �|lr| η ∗ ν.
Now assume η has density f . If condition (ii) is true, for 0 ≤ u1 ≤ u2 by

Lemma 2.2.17 it follows that

f∗(v1, u1)f∗(v2, u2) ≥ f∗(v2, u1)f∗(v1, u2)

for almost all 0 ≤ v1 ≤ v2, which means that f∗ is totally positive of order 2
almost everywhere.

Conversely, if f∗ is totally positive of order 2 almost everywhere, then for
v1 ≤ v2 the function φ(x, y) := f∗(v1, y)f∗(v2, x) is measurable and x ≤ y
implies φ(x, y) ≤ φ(y, x) almost everywhere. Therefore, by Theorem 2.2.14 for
µ �|lr| ν it follows that

hµ(v1)hν(v2) = E [f∗(v1, |Xµ|)f∗(v2, |Xν |)] = E [φ(|Xν |, |Xµ|)]
≥ E [φ(|Xµ|, |Xν |)] = E [f∗(v1, |Xν |)f∗(v2, |Xµ|)] = hµ(v2)hν(v1).

But by Lemma 2.2.17 this means that η ∗ µ �lr η ∗ ν.

In §5 in Chapter 1 of [Kar68] we find that the density of a normal dis-
tribution is a Pólya frequency function of all orders, thus by Theorem 9.1 in
Chapter 7 therein has a generalized absolute value density which is totally
positive of all orders. This yields the useful fact that the Gaussian convolution
operator also preserves the two-sided likelihood ratio order.

Corollary 2.2.19. Let µ �|lr| ν and t ≥ 0. Then Ptµ �|lr| Ptν.

In the situation of the one-sided likelihood ratio order, the counterpart of
Corollary 2.2.19 follows from the proof of Theorem 1.C.9 from [SS07], since
the convolution density of Pt is logconcave.

We will now study the properties of Tα and T c in terms of the two-sided
likelihood ratio order.

Lemma 2.2.20. Let µ, ν absolutely continuous with respect to Lebesgue mea-
sure. Let α ∈ (0, 1] and assume that µ �|lr| ν. Then Tα(µ) �|lr| Tα(ν).

Proof. By Theorem 2.2.14 follows µ � ν. This means that qα(µ) ≤ qα(ν).
Let f and g being the densities of µ and ν, respectively. Note that then the
densities of Tα(µ) and Tα(ν) are given by

f̃ =
1

α
f1[0,qα(µ)], g̃ =

1

α
g1[0,qα(ν)],

respectively. Note that by Lemma 2.2.17 we have that f(s)g(t) ≥ f(t)g(s) for
almost all s ≤ t. Thus for 0 ≤ s ≤ t ≤ qα(µ) we have

f̃(s)g̃(t) =
1

α2
f(s)g(t) ≥ 1

α2
f(t)g(s) = f̃(t)g̃(s).

If t > qα(µ) or s < 0 the inequality is trivially fulfilled. By Lemma 2.2.17
follows that Tα(µ) �|lr| Tα(ν).
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Recall the definition of the operator in (2.5). The next result is a direct
consequence of Theorem 1.C.6 of [SS07], but for completeness we give a proof
here.

Lemma 2.2.21. Let µ, ν ∈ P and 0 ≤ p ≤ q ≤ ∞, such that αµ :=
µ([−p, p]) > 0 and αν := ν([−q, q]) > 0. Assume that µ �|lr| ν. Then
T p(µ) �|lr| T q(ν).

Proof. At first consider the case p = q. Let A ≤ B. Then A ∩ [−q, q] ≤
B ∩ [−q, q]. Note that T q(σ) = T q(σ) for σ ∈ {µ, ν}. Set ασ := σ([−q, q]). It
holds

T q(µ)(A)T q(ν)(B) =
1

αµ

1

αν
µ(A ∩ [−q, q])ν(B ∩ [−q, q])

≥ 1

αµ

1

αν
µ(B ∩ [−q, q])ν(A ∩ [−q, q]) = T q(µ)(B)T q(ν)(A),

which shows the statement in this case.
Now assume that q = ∞ and µ = ν. We have to show that T p(µ) �lr µ. Let
A ≤ B. First of all assume A ⊆ (−∞, p]. Then

T p(µ)(A)µ(B) =
1

αµ
µ(A ∩ [−p, p])µ(B) =

1

αµ
µ(A ∩ (−∞, p])µ(B)

=
1

αµ
µ(A)µ(B) ≥ 1

αµ
µ(B ∩ [−p, p])µ(A) = T p(µ)(B)µ(A).

If A * (−∞, p], there exists a ∈ A, such that a > p. But since for every
b ∈ B we have b ≥ a > p, this means that B∩ (−∞, p] = ∅, which implies that
T p(µ)(B) = 0, which makes the desired inequality trivially fulfilled.
Now consider the general case 0 ≤ p ≤ q ≤ ∞. We obtain

T p(µ) = T p(T q(µ)) �|lr| T q(µ) �|lr| T q(ν),

which yields the statement.

Finally, we want to emphasize that the statement of Lemma 2.2.21 relies
on working with the likelihood ratio order.

Remark 2.2.22. For any c > 0 the function T c does not preserve the two-sided
stochastic order. For specific pairs of measures, the problem can occur that
the dominating measure looses more mass in the truncating mechanism, before
reweighting, which is then distributed too close to the origin by the reweighting.
We give the following general construction as counterexample. Let µ ∈ P with
µ([−c, c]) = 1 such that there exists x ∈ (0, c) with 0 < µ([−x, x]) < 1. Let ν
be given by ν(A) := µ(A∩ [−x, x]) +µ(R \ [−x, x])σ(A), where σ is a measure
with σ(R \ [−c, c]) = 1. Then µ � ν, but T c(µ)([−x, x]) = µ([−x, x]) <
µ([−x, x])/µ(R \ [−x, x]) = T c(ν)([−x, x]). This counterexample shows that
T c fails to be dominance preserving very generally.
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2.2.3 Wasserstein distance: Gaussian convolution, truncation

At several stages in this work we will be concerned with measures of the form of
(2.8) and similar measures where the Gaussian convolution and the truncation
is interchanged. When varying the mesh size of time discretization it becomes
important to gain control over the induced sequences of measures. For this
purpose we will establish some results concerning the effect of Pt and Tα on
the Wasserstein distances.

Denote the set of all probability measures with finite first absolute moment
with

P1 :=

{
µ ∈ P :

∫
R
|x|dµ(x) <∞

}
.

Definition 2.2.23. For two probability measures µ, ν ∈ P1 we define the
Wasserstein distance as

dW (µ, ν) := inf{E [|X − Y |] : X ∼ µ, Y ∼ ν}. (2.11)

This distance has several different representations. On the one hand by
the Kantorovich-Rubenstein theorem we have that

dW (µ, ν) = sup

{∫
R
ϕ(x) d(µ− ν)(x) : ‖ϕ‖Lip ≤ 1, ‖ϕ‖∞ <∞

}
, (2.12)

where ‖ϕ‖Lip := sup{|x− y|−1|ϕ(x)−ϕ(y)| : x 6= y} for a function ϕ : R→ R.
For example see Theorem 1.14 in [Vil03]. On the other hand we have

dW (µ, ν) =

∫
R
|µ((−∞, x])− ν((−∞, x])| dx (2.13)

as it is stated in Remarks 2.19 in [Vil03].
Recall the definitions of the Gaussian convolution operator in (2.7) and

the truncation operator in (2.6). Let µ ∈ P1. Since for t ≥ 0 we can sample
from Ptµ by adding an independent Bt ∼ N (0, t) to X ∼ µ, we see that also
Ptµ ∈ P1. For α ∈ (0, 1] we always have Tα(µ) � µ. As a consequence of
Lemma 2.2.2 this implies that Tα(µ) ∈ P1.

Firstly, we will collect the statements concerning the effect of Pt on the
Wasserstein distance. These comparatively simple statements may be found
in the existing literature, but we have not been able to locate them directly
and will give their proofs instead.

Lemma 2.2.24. Let µ, ν ∈ P1. Then for t ≥ 0 holds

(i) dW (Ptµ, Ptν) ≤ dW (µ, ν) and

(ii) |dW (Ptµ, ν)− dW (µ, ν) | ≤
√
t.
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Proof. Let (X,Y ) be a coupling of µ and ν, this is X ∼ µ and Y ∼ ν. Let
Bt ∼ N (0, t) be independent from X and Y . Then we have

dW (Ptµ, Ptν) ≤ E [|X +Bt − (Y +Bt)|] = E [|X − Y |]

and

dW (Ptµ, ν) ≤ E [|X +Bt − Y |] ≤ E [|X − Y |] + E [|Bt|] ≤ E [|X − Y |] +
√
t.

Taking the infimum over all possible couplings on the right-hand side of both
inequalities yields (i) and dW (Ptµ, ν) ≤ dW (µ, ν) +

√
t. For the inequality left

we use (2.12) and consider

dW (µ, ν) = sup
‖ϕ‖Lip≤1

E [ϕ(X)− ϕ(Y )]

≤ sup
‖ϕ‖Lip≤1

E [|ϕ(X)− ϕ(X +Bt)|] + sup
‖ϕ‖Lip≤1

E [ϕ(X +Bt)− ϕ(Y )]

≤ E [|Bt|] + dW (Ptµ, ν) ≤ dW (Ptµ, ν) +
√
t,

which yields the statement.

We now turn to the effect of Tα on the Wasserstein distance.

Lemma 2.2.25. Let µ, ν ∈ P1. For α ∈ (0, 1] holds

(i) dW (Tα(µ), ν) ≤ dW (µ, ν) + 2
∫
|x|>qα(µ) |x|dµ(x) and

(ii) if we assume that µ((−∞,−qα(µ))) = ν((−∞,−qα(ν))) and in addition
µ([−qα(µ), qα(µ)]) = ν([−qα(ν), qα(ν)]) then we have

dW (Tα(µ), Tα(ν)) ≤ 1

α
dW (µ, ν) .

Proof. For (i) we only have to consider the case µ([−qα(µ), qα(µ)]) < 1. Let
(X,Y ) be a coupling of µ and ν, and independent ofX and Y takeX0 ∼ Tα(µ).
Define

X̄ := X0 + (X −X0)1{|X|≤qα(µ)}.

We have that X̄ ∼ Tα(µ). Thus

dW (Tα(µ), ν) ≤ E
[
|X̄ − Y |

]
≤ E

[
|X̄ −X|

]
+ E [|X − Y |] .

Further, using that µ([−qα(µ), qα(µ)]) < 1 and that Tα(µ) � µ, we have

E
[
|X̄ −X|

]
= E

[
|X0 −X|1{|X|>qα(µ)}

]
≤ E [|X0|]P (|X| > qα(µ)) + E

[
|X|1{|X|>qα(µ)}

]
≤ E [|X|]P (|X| > qα(µ)) + E [|X|||X| > qα(µ)]P (|X| > qα(µ))

≤ 2E [|X|||X| > qα(µ)]P (|X| > qα(µ))

≤ 2

∫
|x|>qα(µ)

|x| dµ(x).
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Taking the infimum over all possible coupling yields (i).
Let F,G be the distribution functions of µ and ν, and F̄ , Ḡ the distribution

functions of Tα(µ), Tα(ν), respectivly. Set α̂ := µ([−qα(µ), qα(µ)]) and cµ :=
qα(µ), cν := qα(ν). The distribution functions satisfy

F̄ (x) =


0 : x < −cµ,
F (x)−F (−cµ)

α̂ : |x| ≤ cµ,
1 : else,

Ḡ(x) =


0 : x < −cν ,
G(x)−G(−cν)

α̂ : |x| ≤ cν ,
1 : else.

Without loss of generality cµ > cν . By (2.13) we can write

dW (Tα(µ), Tα(ν)) =

∫
R
|F̄ (x)− Ḡ(x)|dx

=
1

α̂

∫ −cν
−cµ

|F (x)− F (−cµ)|dx+
1

α̂

∫ cµ

cν

|F (x)− F (−cµ)− α̂|dx

+
1

α̂

∫ cν

−cν
|F (x)− F (−cµ)−G(x) +G(−cν)| dx.

Since for x ∈ (cν , cµ) holds F (x) − F (−cµ) − α̂ = F (x) − (α̂ + F (−cµ)) =
F (x)−F (cµ) ≤ 0, we have that the first two summands of the quantity above
equal

1

α̂

(∫ −cν
−cµ

(F (x)− F (−cµ)) dx+

∫ cµ

cν

(F (cµ)− F (x)) dx

)

=
1

α̂

(∫ −cν
−cµ

F (x) dx−
∫ cµ

cν

F (x) dx+ (cµ − cν)(F (cµ)− F (−cµ))

)

= (cµ − cν) +
1

α̂

(∫ −cν
−cµ

F (x) dx−
∫ cµ

cν

F (x) dx

)
. (2.14)

Now observe that∫ −cν
−cµ

F (x) dx−
∫ cµ

cν

F (x) dx

=

∫ −cν
−cµ

(F (x)−G(x)) dx+

∫ cµ

cν

(G(x)− F (x)) dx

−

(∫ cµ

cν

G(x) dx−
∫ −cν
−cµ

G(x) dx

)

≤
∫ −cν
−cµ

∣∣F (x)−G(x)
∣∣dx+

∫ cµ

cν

∣∣G(x)− F (x)
∣∣ dx

− (cµ − cν)(G(cν)−G(−cν))

=

∫ −cν
−cµ

∣∣F (x)−G(x)
∣∣dx+

∫ cµ

cν

∣∣F (x)−G(x)
∣∣ dx− (cµ − cν)(α̂)
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which means that (2.14) can be bounded from above by

1

α̂

(∫ −cν
−cµ

∣∣F (x)−G(x)
∣∣dx+

∫ cµ

cν

∣∣F (x)−G(x)
∣∣ dx) .

Putting it together, using that F (−cµ) = G(−cν), yields

W (µ̄, ν̄)

≤ 1

α̂

(
W (µ, ν) +

∫ cν

−cν
|F (x)− F (−cµ)−G(x) +G(−cν)| dx−

∫ cν

−cν
|F (x)−G(x)|dx

−
∫ −cµ
−∞

|F (x)−G(x)|dx−
∫ ∞
cµ

|F (x)−G(x)| dx

)

≤ 1

α̂

(
W (µ, ν)−

∫ −cµ
−∞

|F (x)−G(x)| dx−
∫ ∞
cµ

|F (x)−G(x)|dx

)
≤ 1

α̂
W (µ, ν),

which finishes the proof.

Remark 2.2.26. Corresponding statements to Lemma 2.2.25 for the total
variation distance and further statements are to be found in the appendix as
Lemma A.4.2 and Lemma A.4.3.
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2.3 Uniqueness, properties and examples

We now turn our focus back to the inverse first-passage time problem and will
complete our analysis of solutions in this section. For this purpose our main
tool is the discrete approximation

Tαnk ◦ Ptnk−tnk−1
◦ . . . ◦ Tαn1 ◦ Ptn1 (µ), (2.15)

where αnk := g(tnk)/g(tnk−1), already introduced in (2.8). From this we will
extract a discrete boundary function, which serves us as approximant of so-
lutions. The results of the previous section allow us to compare solutions to
these and other approximants, compare solutions corresponding to different
survival functions ordered in the hazard rate order and compare solutions cor-
responding to ordered initial distributions. The results with respect to the
probability distances will let us study the convergence of the approximants,
and the results of Section 2.1.1 will let us pass properties through the limit.
This approach enables us to deduce the known uniqueness result by a Wasser-
stein convergence result of the approximants (2.8) to the marginal measure in
(1.2). Furthermore we derive new qualitative results, such as a comparison
principle and sufficient conditions on g for monotonicity or Lipschitz continu-
ity by using Brownian scaling. We demonstrate the results for some classical
examples such as the exponential distribution.

2.3.1 Auxiliary results: boundary functions, survival
distribution and marginal distributions

Before we begin carrying out our main approach of this section, we will prepare
our analysis with a study of the direct properties of the objects which appear in
the context of boundary functions, survival distributions and the corresponding
marginal distribution. We begin with the intuitively clear statement that we
cannot have the occasion for the Brownian paths to hit the boundary solution
instantaneously.

Recall that for a measure µ ∈ P its support is defined as

supp(µ) := {x ∈ R : U ⊆ R open , x ∈ U ⇒ µ(U) > 0}.

Lemma 2.3.1. Let b ∈ ifpt(g, µ). Then

lim inf
t↘0

b(t) ≥ sup supp(µ).

Proof. Without loss of generality we suppose that sup supp(µ) = sup supp(µ).
Assume that

ξ := lim inf
t↘0

b(t) < sup supp(µ).
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Let δ > 0 such that ξ+ δ < sup supp(µ). Let tn → 0 be a decreasing sequence
such that b(tn) < ξ + δ for every n. Now choose x ∈ supp(µ) with x > ξ + δ.
Let U be a neighbourhood of x with U ⊆ (ξ + δ,∞). For every y > ξ + δ we
have

Py (τb = 0) ≥ Py (|Xtn | ≥ b(tn) i.o.) = 1,

since Xtn → y almost surely. Therefore

0 = 1− g(0) = Pµ (τb = 0) ≥
∫
U
Py (τb = 0) dµ(y) = µ(U) > 0,

since U was a neighbourhood of x ∈ supp(µ). This contradiction yields the
statement.

For a boundary function b we call

tb := inf{t > 0 : b(t) = 0}

the extinction time of b. Further denote tg := sup{t ≥ 0 : g(t) > 0}.

Lemma 2.3.2. Let b ∈ ifpt(g, µ). Then

tb = sup{t ≥ 0 : g(t) > 0} = tg.

with b(tb) = 0.

Proof. By the definition of τb we see that τb ≤ tb almost surely. This implies
g(tb) = 0 and therefore we have tb ≥ tg. Assume that tb > tg. Choose ε > 0
such that ε < tg < tg + ε < tb. By Lemma B.2.1 we get that

inf
s∈[ε,tg+ε]

b(s) > 0.

By Lemma B.2.4 we obtain a continuous function f : [ε, tg + ε]→ (0,∞) such
that f(ε) = b(ε) and f(tg + ε) = b(tg + ε) and f ≤ b. By Lévy’s forgery
theorem B.1.1 we see that

0 < Pµ (|Xs| < f(s) ∀s ∈ [ε, tg + ε] |τb > ε)

≤ Pµ (τb > tg + ε) = g(tg + ε) = 0.

This contradiction yields that tb = tg. Let tn ↘ tb such that b(tn) = 0. Since
b is lower semicontinuous we have b(tb) ≤ lim infn→∞ b(tn) = 0.

If we ask for uniqueness of boundary functions we have to shrink the general
set of boundary functions. For instance, suppose we have a boundary function
b such that at one time point t > 0 the function’s value is 0. Thus, Brownian
paths will run into the boundary function by no later than t. Therefore,
the corresponding survival distribution does not depend on the values of the
boundary function after time t. In view of this there is a natural way of
standardizing a boundary function, which is a generalized version of [EJ16],
and motivated by Lemma 2.3.1 and Lemma 2.3.2.
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Definition 2.3.3. We say a boundary function b is standard if b satisfies

(i) b(0) = lim inft→0 b(t), b(∞) = lim inft→∞ b(t)

(ii) b(t) = 0 for t > 0 implies b(s) = 0 for all s > t

and define b̄(t) := lim infs→0 b(s)1{0}(t)+ b(t)1(0,tb)(t) as the standardized ver-
sion of b.

The reason, why (i) differs from the definition in [EJ16] is that b̄ should
remain continuous if b is.

For µ with unbounded support we have that lim inft↘0 b(t) = ∞. For µ
with compact support we have at least the following assertions.

Lemma 2.3.4. Let µ ∈ P and g be a survival distribution. Assume that
supp(µ) is bounded and

lim sup
t→0

(1− g(t))t−1/2e
ε2

2t =∞ ∀ε > 0.

Then for b ∈ ifpt(g, µ) it follows

lim inf
t↘0

b(t) = sup supp(µ).

If µ has an atom at K := sup supp(µ) then

lim sup
t↘0

b(t)−K√
2t log(1/t)

≥ 1.

If µ is absolutely continuous with density f , lim supt→0 t
−1(1 − g(t)) = 0 and

lim infx↘0 x
−1f(K − x) > 0, we have

lim sup
t↘0

t−1/2(b(t)−K) =∞.

Proof. For the first part assume lim inft↘0 b(t) > K. For every 0 < ε <
lim inft↘0 b(t) − K, using Lemma 2.2.4 and the reflection principle, we have
for t small enough that

1− g(t) = Pµ (τb ≤ t) ≤ PδK (τb ≤ t) = PδK (∃s ≤ t : |Xs| ≥ b(s))

≤ 2P0 (∃s ≤ t : Xs ≥ ε) ≤ 4P0 (|Xt| ≥ ε) = 8

(
1− Φ

(
ε√
t

))
≤ 8

√
t

ε
φ

(
ε√
t

)
,

where φ(x) := 1√
2π
e−

x2

2 and Φ(x) =
∫ x
−∞ φ(z) dz. But this means

∞ = lim sup
t→0

(1− g(t))t−1/2e
ε2

2t ≤ 8

ε
√

2π
.
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Together with Lemma 2.3.1 this contradiction implies that

lim inf
t↘0

b(t) = sup supp(µ).

Now assume additionally that µ has an atom at sup supp(µ). Without loss of
generality let µ have the atom at K. Suppose that

lim sup
t↘0

b(t)−K√
2t log(1/t)

< 1.

Then for ε > 0 small enough there is t > 0 such that for all s ≤ t we have
b(s) − K ≤ (1 − ε)

√
2s log(1/s). But Lévy’s modulus of continuity yields

that almost surely there are arbitrary small s ≤ t, such that Xs − X0 ≥
(1 − ε)

√
2s log(1/s). Since there is a positive probability p > 0 to start from

K, we had that 1 − g(t) = Pµ (τb ≤ t) ≥ p for arbitrarily small t > 0. This
contradiction shows lim supt↘0

b(t)−K√
2t log(1/t)

≥ 1.

For the last case we can assume without loss of generality that µ is symmetric
and has density f . Note that it holds 2f(K − x) = f(K − x). Now suppose
lim supt↘0 t

−1/2(b(t) − K) =: R < ∞. Let tn → 0 be a sequence such that
b(tn)→ K. By Lemma B.1.2 we obtain

0 = lim inf
n→∞

1

tn
Pµ (τb ≤ tn) ≥ lim inf

n→∞

1

tn
Pµ (|Xtn | ≥ b(tn))

≥ lim inf
x↘0

f(K − x)

x
2

∫ ∞
0

y

(
1− Φ

(
y + lim sup

n→∞

b(tn)−K√
tn

))
dy

≥ lim inf
x↘0

f(K − x)

x
2

∫ ∞
0

y (1− Φ (y +R)) dy > 0

with Φ(x) :=
∫ x
−∞ φ(z) dz and the convention Φ(−∞) = 0. This contradiction

yields the desired statement.

Remark 2.3.5. In Lemma 2.3.4 we did not aim to carry out a full study of the
asymptotic behavior at zero and only used naive arguments. In the one-sided
case and initial position at the origin more elaborated results concerning the
limit at zero have been achieved in [Che+06].

The following intuitively clear but important result shows that we can
recover the boundary function from the distribution of a Brownian motion
conditioned to stay below the boundary function and is a reformulation of
Proposition 3.1 from [EJ16] for the two-sided case.

Lemma 2.3.6. Let b a boundary function and define µt := Pµ (Xt ∈ · |τb > t)
for t > 0 such that Pµ (τb > t) > 0. Then holds

supp(µt) = [−b(t), b(t)]

for those t > 0.
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Proof. Since τb > t implies |Xt| < b(t) we have supp(µt) ⊆ [−b(t), b(t)]. Con-
versely, let x ∈ (−b(t), b(t)). We will show that every neighbourhood of x has
positive mass in µt. For this assume without loss of generality that x ≥ 0. Oth-
erwise we can mirror the initial measure µ. Let ε > 0 such that (x−ε, x+ε) ⊆
(−b(t), b(t)). Set s := t/2. We have µs((−b(s), b(s))) = 1, thus there exists
δ ∈ (0, b(s)) such that µs((−δ, δ)) > 0. The function b1 : [s, t] → [0,∞] given
by

b1(r) :=


δ : r = s,

b(r) : r ∈ (s, t),

x+ ε : r = t

is lower semicontinuous and does not vanish on [s, t]. Corollary B.2.4 yields
the existence of a function f1 : [s, t]→ (0,∞) with b1 ≥ f1 pointwise as well as
f1(s) = δ and f1(t) = x+ε. Further, let f2 : [s, t]→ R be a continuous function
such that f1 > f2 ≥ −f1 pointwise as well as f2(s) = −δ and f2(t) = x − ε.
We have that

µt((x− ε, x+ ε))g(t) = Pµ (Xt ∈ (x− ε, x+ ε), τb > t)

≥ Pµ (f2(r) < Xr < f1(r) ∀r ∈ [s, t], τb > t)

= Pµ (f2(r) < Xr < f1(r) ∀r ∈ [s, t], τb > s)

> 0

by Lévy’s forgery theorem B.1.1. Since x and ε were arbitrary this means that
(−b(t), b(t)) ⊆ supp(µt), which finishes the proof.

Of course the several typical properties of Brownian motion are reflected in
the properties of solutions for the inverse problem. As first example, this results
in the following invariance among suitable parameter families of distributions.

For a survival distribution g and a number λ > 0 define gλ(t) := g(λt) and

bλ(t) :=
1√
λ
b(λt)

for b ∈ ifpt(g, µ).

Lemma 2.3.7. Let g be a survival distribution and µ ∈ P. Let b ∈ ifpt(g, µ).
Then for λ > 0 it holds that bλ ∈ ifpt(gλ, ν), where ν(dx) := µ(

√
λ dx).
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Proof. Since b ∈ ifpt(g, µ) and by Brownian scaling we have that

Pν (τbλ > t) =

∫
R
P
(
|Ws + x| < 1√

λ
b(λs) ∀s ∈ [0, t]

)
ν(dx)

=

∫
R
P
(∣∣ 1√

λ
Wλs + x

∣∣ < 1√
λ
b(λs) ∀s ∈ [0, t]

)
ν(dx)

=

∫
R
P
(∣∣ 1√

λ
Ws +

1√
λ
y
∣∣ < 1√

λ
b(s) ∀s ∈ [0, λt]

)
µ(dy)

=

∫
R
P
(∣∣Ws + y

∣∣ < b(s) ∀s ∈ [0, λt]
)
µ(dy)

= Pµ (τb > λt) = g(λt) = gλ(t),

which shows the statement.

We have the following connection to last-exit times.

Remark 2.3.8. For a boundary function b, by the time inversion property
the last exit time

σb̃ := sup{t ≥ 0 : |Xt| ≥ b̃(t)}

of b̃(t) = t · b
(

1
t

)
is connected to the first-passage time of b, by

P0 (τb > t) = P0 (|Xs| < b(s) ∀s ≤ t) = P0

(
|sX 1

s
| < b(s) ∀s ≤ t

)
= P0

(
1

u
|Xu| < b

(
1

u

)
∀u ≥ 1

t

)
= P0

(
|Xu| < b̃(u) ∀u ≥ 1

t

)
= P0

(
σb̃ <

1

t

)
.

Thus first-passage time problems can be solved by finding the distribution of
the corresponding last exit time and vice versa. See [Sal88] for example.

We now turn to the approach of dividing Gaussian convolution and mass
truncation. We begin with a preparing statement.

Lemma 2.3.9. Let µ be a probability measure and b a boundary function,
such that D := {0} ∪ {t ∈ [0,∞] : 0 < b(t) < ∞} is a discrete set. Write
D = {t0, t1, . . .} with tk < tk+1. Then for k ∈ {1, . . . , |D|} we have

Pµ (Xtk ∈ · |τb > tk) = Tαk ◦ Ptk−tk−1
◦ . . . ◦ Tα1 ◦ Pt1(µ),

where αk := Pµ (τb > tk |τb > tk−1).
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Proof. The equality is clear for k = 0, since 0 = t0 < t1 and Pµ (τb > 0) = 1.
Abbreviate µk := Pµ (Xtk ∈ · |τb > tk). We have by the Markov property

Ptk+1−tk(µk)([−b(tk+1), b(tk+1)]) = Pµk
(
|Xtk+1−tk | ≤ b(tk+1)

)
= Pµ

(
|Xtk+1

| ≤ b(tk+1)
∣∣τb > tk

)
= Pµ (τb > tk+1 |τb > tk)

= αk+1.

This implies qαk+1
(Ptk+1−tk(µk)) = b(tk+1). Consequently, for measurable A,

µk+1(A) = Pµ
(
Xtk+1

∈ A
∣∣τb > tk+1

)
= Pµ

(
Xtk+1

∈ A
∣∣|Xtk+1

| ≤ b(tk+1), τb > tk
)

=
Pµ
(
Xtk+1

∈ A, |Xtk+1
| ≤ qαk+1

(Ptk+1−tk(µk))
∣∣τb > tk

)
Pµ
(
|Xtk+1

| ≤ qαk+1
(Ptk+1−tk(µk))

∣∣τb > tk
)

=
Ptk+1−tk(µk)(A ∩ [−qαk+1

(Ptk+1−tk(µk)), qαk+1
(Ptk+1−tk(µk))])

Ptk+1−tk(µk)([−qαk+1
(Ptk+1−tk(µk)), qαk+1

(Ptk+1−tk(µk))])

= Tαk+1
◦ Ptk+1−tk(µk)(A).

Hence, the statement follows by induction.

The next statement transfers the ordering of the starting measures to the
corresponding ordering of some of the existing boundary functions. At a later
stage we will be able to extend this result to the more general Theorem 2.3.34.

Theorem 2.3.10. Let µ1, µ2 ∈ P such that µ1 � µ2 and g a survival distri-
bution. Let i ∈ {1, 2} and let bi ∈ ifpt(g, µi). Then for j ∈ {1, 2} \ {i} there
exists a barrier bj ∈ ifpt(g, µj) with b1 ≤ b2.

Remark 2.3.11. In the special case g(t) = e−t a corresponding comparison
principle is also to be found for the unique solutions of a free boundary problem
in [Ber+21] and [BBP19].

In order to prove Theorem 2.3.10 we will use an approximation of boundary
functions, which was already used in [EJ16] and [Che+11]. For the application
at a later stage in the proof of Theorem 2.3.17 we present a slightly adapted
version.

Let b be a standard boundary function and D(b) an arbitrary countable set
and Dn(b) ⊆ Dn+1(b) finite such that

⋃
n∈NDn(b) = D(b). For n ∈ N define

for every k ∈ N

tnk := inf

{
t ∈ [k2−n, (k + 1)2−n] : b(t) = inf

s∈[k2−n,(k+1)2−n]
b(s)

}
.

Set A1
n(b) := {tnk : k ∈ {1, . . . , n2n}}. Furthermore, let (tn)n∈N be an enu-

meration of {t ∈ [0,∞) : Pµ (τb = t) > 0}. Set A2
n(b) := {t1, . . . , tn} and
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An(b) := A1
n(b) ∪ A2

n(b) ∪ Dn(b). The mentioned adaption of the construc-
tion in comparison to [EJ16] is merely the addition of Dn(b) to the discrete
timesteps. By this we are able to take into account other required dependen-
cies in the construction. If not especially defined, one can take D(b) = ∅ as
default value and ends up with the construction of [EJ16]. Since

inf
s∈[k2−n,(k+1)2−n]

b(s) = min

 inf
s∈

[
2k

2n+1 ,
2k+1

2n+1

] b(s), inf
s∈

[
2k+1

2n+1 ,
2(k+1)

2n+1

] b(s)


we have that A1
n(b) ⊆ A1

n+1(b) and thus An(b) ⊆ An+1(b). For n ∈ N we define
the boundary function

bn(t) :=

{
b(t) : t ∈ An(b),

∞ : t /∈ An(b).
(2.16)

Note that bn ≥ bn+1 ≥ b and thus τbn ≥ τbn+1 ≥ τb.
In the following we collect adapted versions of results in [EJ16], which

where achieved in the context of the approximation of (2.16). The proofs
follow the lines of the proofs in [EJ16].

Proposition 2.3.12 ([EJ16]). Let b be a boundary function. Then

τb = τ ′b := inf{t > 0 : |Xt| > b(t)}

almost surely.

Proof. By definition we have τ ′b ≥ τb. Let 0 < s < t and Z1
s,t := supu∈[s,t](Xu−

b(u)) and Z2
s,t := supu∈[s,t](−Xu − b(u)). It holds

Z1
s,t = Xs + sup

u∈[s,t]
(Xu −Xs − b(u)),

where the terms of the sum are independent and Xs has a density. Hence
Z1
s,t has no atoms. In the same manner one sees that Z2

s,t has no atoms.
Consequently,

Zs,t := sup
u∈[s,t]

(|Xu| − b(u)) = sup
u∈[s,t]

(max(Xu,−Xu)− b(u))

= sup
u∈[s,t]

max(Xu − b(u),−Xu − b(u)) = max(Z1
s,t, Z

2
s,t)

has no atoms. Now, note that on the event {τb ∈ [s, t]} we have

Zs,t ≥ |Xτb | − b(τb) ≥ 0,

since b is lower semicontinuous. Thus

Pµ (τb ∈ [s, t]) = Pµ (τb ∈ [s, t], Zs,t ≥ 0)

= Pµ (τb ∈ [s, t], Zs,t > 0) = Pµ
(
τb ∈ [s, t], τ ′b ∈ [s, t]

)
,

which shows that Pµ (s ≤ τb ≤ t < τ ′b) = 0. Since this holds for all such rational
s, t, we have τb = τ ′b almost surely.
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Lemma 2.3.13 ([EJ16]). We have

(i) limn→∞ τbn = τb almost surely and

(ii) limn→∞ Pµ (τbn > t) = Pµ (τb > t) for every t ≥ 0.

Proof. We begin with (i). Since τbn ≥ τb, it suffices to show that lim supn→∞ τbn ≤
τb. In the following we fix a path. By Lemma 2.3.12 we can assume that τb = τ ′b
and since for τb = ∞ there is nothing left to show, we assume τb < ∞. Let
ε > 0. Since τb = τ ′b there is a t < τb+ ε, such that |Xt| > b(t). Since s 7→ |Xs|
is continuous, there exists δ > 0 with |Xu| > b(t) for all u ∈ (t− δ, t+ δ). For
n large enough we have 2−n < δ and 2−n < min(t, ε) ≤ max(t, ε) < n. For
k := b2ntc holds t ∈ [k2−n, (k + 1)2−n]. This implies |tnk − t| < δ, and thus

|Xtnk
| > b(t) ≥ b(tnk).

Since tnk ∈ An(b), we have τbn ≤ tnk ≤ t + 2−n ≤ τb + 2ε. Thus, by letting
ε→ 0, for any path of the event {τb = τ ′b} we have lim supn→∞ τbn ≤ τb.
Finally we prove (ii). For t ≥ 0 define gn(t) := Pµ (τbn > t) and g(t) :=
Pµ (τb > t). We have g(t) ≤ gn+1(t) ≤ gn(t). In particular, limn→∞ gn(t)
exists. From τbn → τb almost surely follows gn(s) → g(s) for all continuity
points of g. Fix t ≥ 0. If Pµ (τb = t) = g(t−)− g(t) > 0, for n large enough we
have t ∈ An(b), and thus τb = t implies that τbn = t. This means that τbn > t
for almost all n implies τb 6= t and t ≤ limn→∞ τbn = τb, hence τb > t. On
the other hand, by limn→∞ τbn = τb, one sees that τb > t implies τbn > t for
almost all n. Consequently,

lim
n→∞

gn(t) = lim
n→∞

Pµ (τbn > t) = Pµ

(⋂
n∈N
{τbn > t}

)
= Pµ (τb > t) = g(t),

which finishes the proof.

Proof of Theorem 2.3.10. We will execute the proof for the case of i = 2. The
other case is analoguous. Hence, assume b2 ∈ ifpt(g, µ2). Let (b2n)n∈N be the
construction of (2.16) with D(b2) = ∅. At first we claim that b2n

Γ→ b2. Since
An(b2) is a finite set it is clear that b2n is a lower semi-continuous function. Let
b̃2 be any accumulation point of the sequence and let (b2nk)k∈N be a subsequence

such that b2nk
Γ→ b̃2 in the Hausdorff metric. Since b2nk ≥ b2 by construction,

we have lim infk→∞ τb2nk
≥ τb2 > 0 almost surely. From Proposition 2.1.12

we have that τb2nk → τb̃2 in probability. Due to the almost sure convergence
of Lemma 2.3.13 we obtain τb2 = τb̃2 almost surely. By Lemma 2.3.6 we get
b2 = b̃2. Thus every accumulation point coincides with b and thus the claim is
proved.

Now define gn(t) := Pµ2
(
τb2n > t

)
and gn(∞) := g(∞). By Lemma 2.3.13

we obtain in particular gn(t)→ g(t) for every continuity point t ∈ [0,∞] of g.
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Write An(b2) = {tn1 , . . . , tnmn} with mn := |An(b2)| and set tn0 := 0. Define
αnk := gn(tnk)/gn(tnk−1) for k such that gn(tnk−1) > 0.

Recall Tα from (2.6) and the definition qα(µ) := inf{c ≥ 0 : µ([−c, c]) ≥ α}.
Further, let Pt be the operator defined in (2.7).

Now define

µik := Tαnk ◦ Ptnk−tnk−1
◦ . . . ◦ Tαn1 ◦ Ptn1 (µi)

for k such that gn(tnk) > 0. By Proposition 2.2.3 and Corollary 2.2.8 we have
that Tαnk ◦Ptnk−tnk−1

preserves the order and thus it is a direct consequence that

µ1
k � µ2

k. (2.17)

Now, we claim that b2(tnk) = b2n(tnk) = qαnk (Ptnk−t
n
k−1

µ2
k−1). If we assume the

statement for k − 1 by Lemma 2.3.9 we can identify

µ2
k−1 = Pµ2

(
Xtnk−1

∈ ·
∣∣∣τb2n > tnk−1

)
and thus we can compute

Ptnk−t
n
k−1

µ2
k−1([−b2(tnk), b2(tnk)]) = Pµ2

(
|Xtnk
| ≤ b2(tnk)

∣∣τb2n > tnk−1

)
= Pµ2

(
τb2n > tnk

∣∣τb2n > tnk−1

)
= gn(tnk)/gn(tnk−1) = αnk ,

which means that b2(tnk) = qαnk (Ptnk−t
n
k−1

µ2
k−1). Hence the claim follows by

induction. Now set b1n(tnk) := qαnk (Ptnk−t
n
k−1

µ1
k−1) and b1n(t) :=∞ for t /∈ An(b2).

All in all we can identify by Lemma 2.3.9 that

µik = Pµi
(
Xtnk
∈ ·

∣∣τbin > tnk
)
.

By construction we have for t ∈ [tnk , t
n
k+1) that

Pµ1
(
τb1n > t

)
= Pµ1

(
|Xtnk
| ≤ b1n(tnk), . . . , |Xtn1

| ≤ b1n(tn1 )
)

= αnk · . . . · αn1 = gn(tnk) = gn(t).

Therefore, since gn → g in distribution, by Proposition 2.1.12, for an accu-
mulation point b1 of (b1n)n∈N we have that τb1 has distribution according to g,
which means that b1 ∈ ifpt(g, µ1). In addition, by (2.17) and Lemma 2.3.6 we
see that b1n ≤ b2n. By Lemma 2.1.7 follows b1 ≤ b2.

In the context of finding ordered solutions we have the following intuitive
statement, which emphasizes once again that the choice to search for solutions
among lower semicontinuous functions is suitable for the inverse first-passage
time problem.

Lemma 2.3.14. Let µ ∈ P and g a survival distribution. Let b1, b2 ∈ ifpt(g, µ)
standard with b1 ≤ b2. Then b1 = b2.
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Proof. Assume that there is t > 0 such that b1(t) < b2(t). This means in
particular that t < tb. For s ∈ (0, t) there is by Corollary B.2.4 a continuous
function f : [s, t]→ (0,∞) such that f ≤ b2 and f(s) = b1(s) and f(t) = b2(t).
This means

0 = Pµ (τb2 > t)− Pµ (τb1 > t) = Pµ (τb2 > t)− Pµ (τb1 > t, τb2 > t)

= Pµ (τb2 > t, τb1 ≤ t) ≥ Pµ (|Xu| < f(u) ∀u ∈ [s, t], |Xt| ≥ b1(t), τb1 > s)

> 0,

where the positivity is due to Levy’s forgery theorem B.1.1. This contradiction
shows that b1 = b2.

Since we are working with arbitrary initial measures, we could have allowed
survival functions, which do not satisfy g(0) = 1. In particular, this would lead
to allow the Brownian motion to start above lim infs→0 b(s). The following
intuitively clear statements shows that this generalization is not necessary.

Lemma 2.3.15. Let µ ∈ P and b be a standard boundary function. Then for
t > 0 with Pµ (τb > t) > 0 holds

Pµ (Xt ∈ · |τb > t) = PT b(0)(µ) (Xt ∈ · |τb > t) .

Proof. Due to the continuity of the path of (Xt)t≥0 we have that {τb > t} ⊆
{|X0| ≤ b(0)}, since b is standard. This yields

Pµ (Xt ∈ A |τb > t) =
Pµ (Xt ∈ A, τb > t)

Pµ (τb > t)

=
Pµ (Xt ∈ A, τb > t, |X0| ≤ b(0))

Pµ (τb > t, |X0| ≤ b(0))
=

Pµ (Xt ∈ A, τb > t ||X0| ≤ b(0))

Pµ (τb > t ||X0| ≤ b(0))

=
PT b(0)(µ) (Xt ∈ A, τb > t)

PT b(0)(µ) (τb > t)
= PT b(0)(µ) (Xt ∈ A |τb > t)

for every measurable A.

Staying in the context of arbitrary initial distributions we could ask how
the initial distribution affects the survival distribution. By tools which were
used in the proof of Proposition 2.1.12 we can deduce some sort of continuity
in the initial distribution, which will be used in proof of the general uniqueness
result of Theorem 2.3.33.

Lemma 2.3.16. Let µn → µ weakly in P. Further, let b be a boundary
function such that lims↘0 lim supn→∞ Pµn (τb ≤ s) = 0 = Pµ (τb = 0). Then it
holds Pµn (τb > t)→ Pµ (τb > t) for all t ≥ 0.
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Proof. Let s > 0. First consider

lim sup
n→∞

|Pµn (τb > 0)− Pµ (τb > 0) |

= lim sup
n→∞

Pµn (τb = 0) ≤ lim sup
n→∞

Pµn (τb ≤ s) .

Now let t > 0. For 0 < s < t let bs(u) = b(u) for u ≥ s and bs(u) = ∞ for
0 ≤ u < s. Then we have

|Pµn (τb > t)− Pµ (τb > t) |
= |Pµn (τb > t, τbs = τb)− Pµ (τb > t, τbs = τb) |
= |Pµn (τbs > t)− Pµn (τbs > t, τbs 6= τb)− Pµ (τbs > t) + Pµ (τbs > t, τbs 6= τb) |
≤ |Pµn (τbs > t)− Pµ (τbs > t) |+ Pµn (τbs 6= τb) + Pµ (τbs 6= τb)

≤ |Pµn (τbs > t)− Pµ (τbs > t) |+ Pµn (τb ≤ s) + Pµ (τb ≤ s) .

By writing

Px (τbs > t) = Px (|Xu| < b(u) ∀u ∈ [s, t])

=

∫
R
Py
(
|Xu| < b

(
u+

s

2

)
∀u ∈

[s
2
, t− s

2

])
P s

2
δx(dy)

we see that the mapping x 7→ Px (τbs > t) is continuous. Thus by the weak
convergence we have Pµn (τbs > t)→ Pµ (τbs > t). Hence,

lim sup
n→∞

|Pµn (τb > t)− Pµ (τb > t) | ≤ lim sup
n→∞

Pµn (τb ≤ s) + Pµ (τb ≤ s) .

Letting s↘ 0, the assumption yields the statement.

When working with boundary functions, the distribution of the Brownian
motion conditioned to stay below the boundary function plays an important
role. The following theorem provides a useful tool to connect the ordering of
boundary functions to the ordering of the corresponding conditioned distribu-
tions. It is strongly related to Lemma 2.1.2 from [Rob91b] and Theorem 2.8
from [Rob91a]. For more details regarding these relations see Remark 2.3.18.

Theorem 2.3.17. For i ∈ {1, 2} let bi be a standard boundary function and
µi ∈ P, such that P

T b
i(0)(µi)

(τbi = 0) = 0. Assume that µ1 �|lr| µ2 and b1 ≤ b2.
Then for t ≥ 0 with Pµi (τbi > t) > 0 holds

Pµ1 (Xt ∈ · |τb1 > t) �|lr| Pµ2 (Xt ∈ · |τb2 > t) . (2.18)

Remark 2.3.18. Similar, related or more general problems as Theorem 2.3.17
have been considered for a larger class of processes or functions in the past.
In the following we try to give a few details of related statements.
In terms of the usual stochastic order, in [Rob91b] it is stated, combining
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Lemma 2.1.1 and Lemma 2.1.2 therein, that for suitable strictly positive func-
tions f ≤ g it holds

Px (Yt ∈ · |τf > t) � Py (Yt ∈ · |τg > t) ,

for x < y, where (Yt)t≥0 is a time-homogeneous one-dimensional diffusion pro-
cess with point symmetric drift coefficient and symmetric diffusion coefficient.
In terms of the likelihood ratio order, in [Rob91a] it is stated in Theorem 2.8
that for cadlag functions f ≤ g it holds

Px (Zt ∈ · |τf > t) �lr Px (Zt ∈ · |τg > t) ,

where (Zt)t≥0 is a real-valued, possibly time-inhomogeneous Markov process
with initial value x ∈ R, whose transition preserves the likelihood ratio order
in the following sense. Whenever y < z, 0 ≤ s < t it shall hold that

Px (Zt ∈ · |Zs = y) �lr Px (Zt ∈ · |Zs = z) .

In an application as first step this preservation has to be established. For
example, in the case of Zt = |Xt| being the reflected Brownian motion it would
follow from Corollary 2.2.19. The work of [Rob91a] refers to the likelihood ratio
order between processes as strong stochastic monotonocity.
Another approach to establish an ordering in the usual stochastic order is to
construct realizations of the conditioned processes which are ordered pathwise.
In the case of Itô diffusions this is done for sufficiently smooth boundaries
f ≤ g in the introduction of [Rob91a]. In the case of squared Bessel processes
of dimension 2 this approach is carried out for positive measurable boundaries
f ≤ g in [BB10].

In order to prove Theorem 2.3.17 we will use the approximation of bound-
ary functions, which we introduced in (2.16) and which is an adapted version
of an approximation already used in [EJ16] and [Che+11].

Proof of Theorem 2.3.17. At first note, that by Lemma 2.3.15 we can assume
without loss of generality that already Pµi (τbi = 0) = 0.
For the boundary functions bi let (bin)n∈N the construction of (2.16), where we
choose Dn(bi) := A1

n(bj) ∪A2
n(bj) with j ∈ {1, 2} \ {i}.

We claim that for fixed n ∈ N the boundary functions b1n and b2n fulfill (2.18).
For this note that by construction An := An(b1) = An(b2). Let m := |An|
and write An = {a1, . . . , am} and am+1 := ∞ such that ak < ak+1 for k ∈
{1, . . . ,m}. Let k such that t ∈ [ak, ak+1). Observe that by the Markov
property we have the representation

Pµi
(
Xt ∈ ·

∣∣τbin > t
)

= Pt−ak ◦ T
bi(ak) ◦ Pak−ak−1

◦ . . . ◦ T bi(a1) ◦ Pa1(µi).
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Since µ1 �|lr| µ2 and b1(a`) ≤ b2(a`) we obtain by alternating application of
Proposition 2.2.19 and Lemma 2.2.21 that

Pµ1
(
Xt ∈ ·

∣∣τb1n > t
)

= Pt−ak ◦ T
b1(ak) ◦ Pak−ak−1

◦ . . . ◦ T b1(a1) ◦ Pa1(µ1)

�|lr| Pt−ak ◦ T
b2(ak) ◦ Pak−ak−1

◦ . . . ◦ T b2(a1) ◦ Pa1(µ2)

= Pµ1
(
Xt ∈ ·

∣∣τb1n > t
)
.

This means that b1n and b2n fulfill (2.18). We will know pass this property
through the limit.
By Lemma 2.3.13 we have that τbin → τbi almost surely. This implies that for
any t ∈ (0, tb

i
) it holds

{τbi > t} ⊆ lim inf
n→∞

{τbin > t}

holds almost surely. Consequently, using Fatou’s Lemma this yields

lim sup
n→∞

Pµi
(
τbi > t ≥ τbin

)
= lim sup

n→∞
Pµi (τbi > t)− Pµi

(
τbi > t, τbin > t

)
≤ Pµi (τbi > t)− Pµi

(
{τbi > t} ∩ lim inf

n→∞
{τbin > t}

)
= Pµi (τbi > t)− Pµi (τbi > t) = 0.

Further, for t > 0 by Lemma 2.3.13 we have that Pµi
(
τbin > t

)
→ Pµi (τbi > t)

as n→∞ and using this we obtain

Pµi
(
τbin > t ≥ τbi

)
= Pµi

(
τbin > t

)
− Pµi

(
τbin > t, τbi > t

)
= Pµi

(
τbin > t

)
− Pµi (τbi > t) + Pµi

(
τbi > t ≥ τbin

)
→ 0

as n→∞. Therefore, for every t > 0 we get for every c ≥ 0 that

|Pµi
(
|Xt| ≤ c, τbin > t

)
− Pµi (|Xt| ≤ c, τbi > t) |

= |Pµi
(
|Xt| ≤ c, τbin > t, τbi ≤ t

)
− Pµi

(
|Xt| ≤ c, τbi > t, τbin ≤ t

)
|

≤ Pµi
(
τbin > t ≥ τbi

)
+ Pµi

(
τbi > t ≥ τbin

)
→ 0.

This means that

Pµi
(
|Xt| ∈ ·

∣∣τbin > t
)
→ Pµi (|Xt| ∈ · |τbi > t)

in the sense of convergence of distributions. Now, since the ordering (2.18)
holds for b1n and b2n for all n ∈ N, by Theorem B.1.4 follows that (2.18) holds
also for b1 and b2.



62 CHAPTER 2. THE INVERSE FIRST-PASSAGE TIME PROBLEM

2.3.2 The lower approximation and uniqueness of continuous
solutions

We have seen that Anulova’s approach contains the construction of a sequence
of barriers whose first-passage times converge in distribution to the given sur-
vival function. In our setting this construction can be done as follows.

Let µ ∈ P and g be a survival distribution. Recall tg := sup{t ∈ R : g(t) >
0} as the final extinction time. From now on we fix a timepoint h ∈ (0, tg)
and set δ := δ(n) := h2−n.
For every k ∈ N with kδ < tg set

αk := α
(n)
k :=

g(kδ)

g((k − 1)δ)

and define

µ+
k := µ+,n

k := Tαk ◦ Pδ ◦ . . . ◦ Tα1 ◦ Pδ(µ)

and µ+
0 := µ, where the last equality above is a consequence of Lemma 2.3.9.

We define

b+n (kδ) = sup supp(µ+
k ),

b+n (t) := ∞ for all t ∈ (0, tg) \ δN and b+n (t) := 0 else. In the following this
construction will be called the lower barrier approximation. By Lemma 2.3.9
we have

µ+,n
k = Pµ

(
Xkδ ∈ ·

∣∣∣τb+n > kδ
)
.

Further, note that b+n (kδ) is the unique value such that

Pµ
(
|Xkδ| ≤ b+n (kδ)

∣∣|X`δ| ≤ b+n (`δ) ∀l ∈ {1, . . . , k − 1}
)

= αk

and thus essentially coincides with the construction of Anulova.

In the special case of g corresponding to the exponential distribution several
properties of the sequence (µ+,n

k )n,k∈N already appeared implicitly in [De +19a]
in the context of a free boundary problem. More precisely, in the special setting
g(t) = exp(−t) and under the assumption that the initial distribution admits
a Lebesgue density with bounded support, analogues of Lemma 2.3.19 and
Lemma 2.3.20 are to be found in [De +19a] for the one-sided case.

Now, note that by construction we have

Pµ
(
τb+n > kδ(n)

)
= g(kδ(n)).

Hence by Lemma 2.1.18 we have τb+n → g in distribution as n→∞.
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Although the lower barrier approximation only depends on the survival
distribution g and the initial measure µ, its relation to arbitrary solutions of
the inverse first-passage time problem always contains the following remarkable
property.

Lemma 2.3.19. Let b ∈ ifpt(g, µ) and µt := Pµ (Xt ∈ · |τb > t). Then

µ+,n
k � µkδ

for all k ∈ N such that kδ < tg, and n ∈ N.

Proof. Let n ∈ N be fixed. In the following the dependency on n is dropped in
the notation. For s ≥ 0 we introduce the shifted boundary function bs(r) :=
b(r + s). For s < t < tg and ν ∈ P set

St,s(ν) := Pν (Xt−s ∈ · |τbs > t− s) ,

as long as it is defined. Furthermore, for k > ` such that kδ < tg, define

S+
k,`(ν) := Tαk ◦ Pδ ◦ . . . ◦ Tα`+1

◦ Pδ(ν).

By the definition of µ+
` we see that

S+
k,`(µ

+
` ) = Tαk ◦ Pδ ◦ . . . ◦ Tα`+1

(Pδ ◦ Tα` ◦ Pδ ◦ . . . ◦ Tα1 ◦ Pδ(µ)) = µ+
k .

By the Markov property we have that

St,s(µs) = Pµs (Xt−s ∈ · |τbs > t− s) =
Pµs (Xt−s ∈ · , τbs > t− s)

Pµs (τbs > t− s)

=
Eµ
[
PXs (Xt−s ∈ · , τbs > t− s)1{τb>s}

]
Eµ [PXs (τbs > t− s)]1{τb>s}

=
Pµ (Xt ∈ · , τb > t)

Pµ (τb > t)
= Pµ (Xt ∈ · |τb > t) = µt.

In order to make an induction argument, let k ∈ N such that kδ < tg and
assume that µ+

k−1 � µ(k−1)δ. By Proposition 2.2.3 and Corollary 2.2.8 we see
that then S+

k,k−1(µ+
k−1) � S+

k,k−1(µ(k−1)δ). We claim that

S+
k,k−1(µ(k−1)δ) � Skδ,(k−1)δ(µ(k−1)δ).

For this, note that by the Markov property, similar as above,

Pµ(k−1)δ
(τb(k−1)δ > δ) =

Eµ
[
PX(k−1)δ

(τb(k−1)δ > δ)1{τb>(k−1)δ}

]
Pµ (τb > (k − 1)δ)

=
Pµ (τb > kδ)

Pµ (τb > (k − 1)δ)
=

g(kδ)

g((k − 1)δ)
= αk.
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Now let c ≥ 0. If c ≥ qαk(Pδµ(k−1)δ), then

S+
k,k−1(µ(k−1)δ)([−c, c]) = 1 ≥ Skδ,(k−1)δ(µ(k−1)δ)([−c, c]).

If c < qαk(Pδµ(k−1)δ) we have

S+
k,k−1(µ(k−1)δ)([−c, c]) =

1

αk
Pδµ(k−1)δ([−c, c]) =

1

αk
Pµ(k−1)δ

(|Xδ| ≤ c)

≥ 1

αk
Pµ(k−1)δ

(|Xδ| ≤ c, τb(k−1)δ > δ) = Pµ(k−1)δ
(|Xδ| ≤ c |τb(k−1)δ > δ)

= Skδ,(k−1)δ(µ(k−1)δ)([−c, c]),

which shows the claim. Altogether it follows that

µ+
k = S+

k,k−1(µ+
k−1) � S+

k,k−1(µ(k−1)δ) � Skδ,(k−1)δ(µ(k−1)δ) = µkδ.

Since µ+
0 = µ = µ0, the desired statement follows by induction.

Lemma 2.3.20. Let n ∈ N. Then it holds that

µ+,n
k � µ+,n+1

2k

for all k ∈ N such that kδ(n) < tg.

Proof. Let k such as in the statement’s condition. For ν ∈ P defineH+,n
k (ν) :=

T
α
(n)
k

◦ Pδ(n)(ν). We first claim that

H+,n
k (ν) � H+,n+1

2k ◦H+,n+1
2k−1 (ν).

Note that Pδ(n+1) ◦Pδ(n+1) = Pδ(n) due to the semigroup property of the Gaus-
sian kernel and the fact that δ(n) = δ(n+1)+δ(n+1). Thus the claim is equivalent
to

T
α
(n)
k

◦ Pδ(n+1) ◦ Pδ(n+1)(ν) � T
α
(n+1)
2k

◦ Pδ(n+1) ◦ T
α
(n+1)
2k−1

◦ Pδ(n+1)(ν).

Using Lemma 2.2.12 and Lemma 2.2.10 we obtain for arbitrary ν̃ ∈ P that

T
α
(n+1)
2k

◦ Pδ(n+1) ◦ T
α
(n+1)
2k−1

(ν̃) � T
α
(n+1)
2k

◦ T
α
(n+1)
2k−1

◦ Pδ(n+1)(ν̃)

= T
α
(n+1)
2k α

(n+1)
2k−1

◦ Pδ(n+1)(ν̃)

= T
α
(n)
k

◦ Pδ(n+1)(ν̃),

where we have used that α(n+1)
2k α

(n+1)
2k−1 = α

(n)
k by definition. Choosing ν̃ =

Pδ(n+1)(ν) yields the claim. For an induction, assume that µ+,n
(k−1) � µ+,n+1

2(k−1).
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We obtain by Lemma 2.2.3 and Corollary 2.2.8 that H+,n
k is dominance pre-

serving. Using this and observing that

µ+
`δ = H+,n

` ◦ . . . ◦H+,n
1 (µ)

we get by using the assumption and the statement of the claim that

µ+,n
k = H+,n

k (µ+,n
k−1) � H+,n

k (µ+,n+1
2(k−1))

� H+,n+1
2k ◦H+,n+1

2k−1 (µ+,n+1
2(k−1)) = µ+,n+1

2k .

By induction the statement follows.

The statements above yield the following corollary.

Corollary 2.3.21. Let N ∈ N, h > 0 and recall δ(n) = h2−n. Let b ∈
ifpt(g, µ). Then for all n ≥ N holds

b+n (t) ≤ b+n+1(t) ≤ b(t)

for every t ∈ h2−NN ∩ [0, tg]. Every accumulation point b+ of (b+n )n∈N with
respect to the Hausdorff metric fulfills τb+ ∼ g.

Proof. By Lemma 2.3.19 and Lemma 2.3.20 we obtain the ordering

µ+,n
t

δ(n)

� µ+,n+1
t

δ(n+1)

� µt.

By recovering the boundary functions by Lemma 2.3.6 we obtain the desired
inequalities, since the supports of the measures are ordered in the same way.
By the fact that τb+n → g in distribution as n→∞ and Proposition 2.1.12 we
obtain the last part.

At this stage, by the lower barrier approximation, it is already possible to
deduce a uniqueness property for continuous solutions.

Proposition 2.3.22 (uniqueness of continuous boundary functions). There is
at most one standard b ∈ ifpt(g, µ) which is continuous on (0, tg).

Proof. Assume b ∈ ifpt(g, µ) is standard and continuous on (0, tg). Let h =
1. Due to the compactness of the set of boundary functions there exists an
accumulation point b0 of the lower barrier approximation with respect to the
Hausdorff topology. Let b+nk be a subsequence with limit point b0. Let t ∈
(0, tg). For k ∈ N choose tk ∈ 2−nkN∩[0, tg] such that tk → t. By Lemma 2.3.21
and Theorem 2.1.4 we deduce that

b0(t) ≤ lim inf
k→∞

b+nk(tk) ≤ lim inf
k→∞

b(tk) = b(t)

since b is continuous at t. Since b0 ∈ ifpt(g, µ), by Lemma 2.3.14 the boundary
function b has to coincide with the standard version of b0. This proves the
desired statement.
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2.3.3 The upper approximation and uniqueness

In the previous section we established a lower bound for the marginal measure
µt, which gives rise to search for an upper bound. Recalling the statement
from Lemma 2.2.12 we observe that adopting the setting from the previous
section, the measure resulting from µ+

k , when interchanging the truncation
and the convolution, namely

µ−k := µ−,nk := Pδ ◦ Tαk ◦ . . . ◦ Pδ ◦ Tα2 ◦ Pδ ◦ Tα1(µ) (2.19)

is larger than the measure µ+
k in the two-sided stochastic order. In the special

case of g(t) = e−t and µ admitting a density, a one-sided version of this
sequence would coincide with a construction made in [De +19a] in the context
of a free boundary problem. In our general setting we have to work with a
slight modification of this sequence. For fixed n ∈ N define for all k ≥ 2 the
sequence of measures

µ̃−k := µ̃−,nk := Pδ ◦ Tαk ◦ . . . ◦ Pδ ◦ Tα2 ◦ Pδ(µ)

and µ̃−1 := µ̃−,n1 := Pδµ and µ̃−0 := µ̃−,n0 := µ. In comparison to µ−,nk we
removed the first application of Tα1 .

This family of sequences will be called the upper barrier approximation and
will serve us as the desired upper bound.

Again, for the special case g(t) = e−t the properties of µ−k obtained by
Lemma 2.3.23 and Lemma 2.3.27 implicitely appeared in [De +19a] in terms
of (2.19) and for our proofs we draw from ideas therein.

Lemma 2.3.23. Let b ∈ ifpt(g, µ) and µt := Pµ (Xt ∈ · |τb > t). Then

µkδ � µ̃−,nk

for all k ∈ N such that kδ < tg, and n ∈ N.

In order to prove Lemma 2.3.23 we will prove an auxiliary statement by
the use of the stochastic inequality of Theorem 2.3.17 with respect to the two-
sided usual stochastic order, which already appeared in the context of the first-
passage time problem in [Rob91b]. In fact, we could also use Lemma 2.1.2 of
[Rob91b] instead of Theorem 2.3.17 in the following proof of Proposition 2.3.24.
The formulation of the following statement is optimized for the application in
the proof of Lemma 2.3.23.

Proposition 2.3.24. Let t > 0. Let b be a boundary function and ν ∈ P such
that Pν (τb > t) > 0. Let s ∈ (0, t]. Choose x ∈ R such that |x| ≥ b(s). Then

Pν (Xt ∈ · |τb > t) � Px (Xt−s ∈ · )
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Proof. Define νs := Pν (Xs ∈ · |τb > s) and bs(t) := b(t + s). We have that
supp(νs) ⊆ [−b(s), b(s)]. This means that for νs-almost every y ∈ supp(νs) we
have |y| ≤ b(s) ≤ |x| and thus using Theorem 2.3.17 for the first inequality
and Lemma 2.2.3 for the second, we have

Py (Xt−s ∈ · |τbs > t− s) � Py (Xt−s ∈ ·) � Px (Xt−s ∈ ·) .

Now we have

Pν (Xt ∈ · |τb > t) = Pνs (Xt−s ∈ · |τbs > t− s)

=

∫
R Py (Xt−s ∈ · , τbs > t− s) dνs(y)

Pνs (τbs > t− s)

=

∫
R Py (Xt−s ∈ · |τbs > t− s)Py (τbs > t− s) dνs(y)

Pνs (τbs > t− s)

�
∫
R Px (Xt−s ∈ · )Py (τbs > t− s) dνs(y)

Pνs (τbs > t− s)
= Px (Xt−s ∈ · ) ,

which yields the statement.

The following statement will yield the induction basis in the proof of
Lemma 2.3.23.

Lemma 2.3.25. Let b be a boundary function and ν ∈ P such that Pν (τb = 0) =
0. Let t > 0 such that Pν (τb > t) > 0. Then

Pν (Xt ∈ · |τb > t) � Pν (Xt ∈ · ) .

Proof. For the following note that |Xτb | ≥ b(τb) and τb > 0 almost surely. For
c ≥ 0 we have by Proposition 2.3.24 with s = τb that

Pν (|Xt| ≤ c, τb ≤ t) = Eν
[
1{τb≤t}PXτb (|Xt−s| ≤ c)s=τb

]
≤ Eν

[
1{τb≤t}Pν (|Xt| ≤ c |τb > t)

]
= Pν (τb ≤ t)Pν (|Xt| ≤ c |τb > t) .

Now we can deduce

Pν (|Xt| ≤ c)
= Pν (|Xt| ≤ c, τb ≤ t) + Pν (|Xt| ≤ c, τb > t)

≤ Pν (τb ≤ t)Pν (|Xt| ≤ c |τb > t) + Pν (τb > t)Pν (|Xt| ≤ c |τb > t)

= Pν (|Xt| ≤ c |τb > t) ,

which shows the desired statement.

Remark 2.3.26. On the first glance the statement of Lemma 2.3.25 could
seem like a special case of Lemma 2.1.2 in [Rob91b], but due to a different
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definition of the random initial value in equation (2.1.7) in [Rob91b] this is
only the case if ν = δx.

The statement of Lemma 2.3.25 can also be shown directly in an elemen-
tary but technical way, by first showing the statement for discrete boundary
functions, then for continuous boundary functions, and then using the approx-
imation of general boundary functions by continuous ones in the Hausdorff
metric. The proof is given in the appendix as Lemma A.1.1.

Proof of Lemma 2.3.23. Fix n ∈ N. Since µ̃−1 = Pδµ we obtain the statement
for k = 1 as consequence of Lemma 2.3.25. Let k ≥ 2 with kδ < tg and assume
that µ(k−1)δ � µ̃−k−1. Let ν ∈ P such that supp(ν) ⊆ [−b((k−1)δ), b((k−1)δ)]
and ν has no point mass at the boundary. Note that this already implies
Pν (τb(k−1)δ = 0) = 0, where b(k−1)δ denotes the shifted boundary function given
by b(k−1)δ(t) = b(t + (k − 1)δ). Set βk := Pν (τb(k−1)δ > δ) and assume that
βk ≤ ν([−qαk(ν), qαk(ν)]). We claim that

Hk(ν) := Skδ,(k−1)δ(ν) � H−k (ν) := Pδ ◦ Tαk(ν), (2.20)

where we use the notation from the proof of Lemma 2.3.19. We have to show
that for c ≥ 0 holds

H−k (ν)([−c, c]) ≤ Hk(ν)([−c, c]). (2.21)

We can rewrite both sides as follows. On the one hand

Hk(ν)([−c, c]) = Pν (|Xδ| ≤ c |τb(k−1)δ > δ)

=
1

βk

∫
R
Px (|Xδ| ≤ c, τb(k−1)δ > δ) dν(x),

on the other hand

H−k (ν)([−c, c]) = Pδ ◦ Tαk(ν)([−c, c]) = PTαk (ν) (|Xδ| ≤ c)

=

∫
R
Px (|Xδ| ≤ c, τb(k−1)δ ≤ δ) + Px (|Xδ| ≤ c, τb(k−1)δ > δ) dTαk(ν)(x).

which makes the inequality (2.21) above equivalent to∫
R
Px (|Xδ| ≤ c, τb(k−1)δ ≤ δ) dTαk(ν)(x)

≤
∫
R
Px (|Xδ| ≤ c, τb(k−1)δ > δ) d

(
ν

βk
− Tαk(ν)

)
(x). (2.22)
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Now observe that∫
R
Px (τb(k−1)δ ≤ δ) dTαk(ν)(x)

= 1−
∫
R
Px (τb(k−1)δ > δ) dTαk(ν)(x)

=
1

βk

∫
R
Px (τb(k−1)δ > δ) dν(x)−

∫
R
Px (τb(k−1)δ > δ) dTαk(ν)(x)

=

∫
R
Px (τb(k−1)δ > δ) d

(
ν

βk
− Tαk(ν)

)
(x). (2.23)

Essentially we have shown the desired inequality (2.22) for c = ∞, which
means that the appearing measures corresponding to the distribution functions
depending on c have the same mass. As next step we will establish an inequality
between the integrands by the help of Corollary 2.3.24. The idea is to stop
the process at the time point, when it passes the boundary and use that at
this timepoint it has to be located over any point the process conditioned to
survival could be at. Since |Xτ

b(k−1)δ
| ≥ b(τb(k−1)δ) almost surely, by using

Corollary 2.3.24 we obtain

Px (|Xδ| ≤ c, τb(k−1)δ ≤ δ) = Ex
[
Ex
[
1{|Xδ|≤c}

∣∣∣Fτ
b(k−1)δ

]
1{τ

b(k−1)δ≤δ}

]
= Ex

[
PXτ

b(k−1)δ
(|Xδ−s| ≤ c)s=τ

b(k−1)δ
· 1{τ

b(k−1)δ≤δ}

]
≤ Pz (|Xδ| ≤ c |τb(k−1)δ > δ)Px (τb(k−1)δ ≤ δ)

for any z with |z| < b((k − 1)δ). Hence, the bound also stays true, if we take
the infimum over those z. Recall that βk ≤ ν([−qαk(ν), qαk(ν)]). Additionally,
recall that we assumed supp(ν) ⊆ [−b((k−1)δ), b((k−1)δ)] and that ν has no
point mass at the boundary. By the definition of Tαk we see that ν

βk
− Tαk(ν)

is a positive measure with mass completely in (−b((k − 1)δ), b((k − 1)δ)).
Therefore, due to the mass equality from (2.23), we have∫
R
Px (|Xδ| ≤ c, τb(k−1)δ ≤ δ) dTαk(ν)(x)

≤ inf
|z|<b((k−1)δ)

Pz (|Xδ| ≤ c |τb(k−1)δ > δ)

∫
R
Px (τb(k−1)δ ≤ δ) dTαk(ν)(x)

= inf
|z|<b((k−1)δ)

Pz (|Xδ| ≤ c |τb(k−1)δ > δ)

∫
R
Px (τb(k−1)δ > δ) d

(
ν

βk
− Tαk(ν)

)
(x)

≤
∫
R
Px (|Xδ| ≤ c |τb(k−1)δ > δ)Px (τb(k−1)δ > δ) d

(
ν

βk
− Tαk(ν)

)
(x)

=

∫
R
Px (|Xδ| ≤ c, τb(k−1)δ > δ) d

(
ν

βk
− Tαk(ν)

)
(x),

which proves the claim. Observe that ν = µ(k−1)δ fulfilles the required con-
ditions and we have indeed βk = αk ≤ ν([−qαk(ν), qαk(ν)]). By combining
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Corollary 2.2.8 and Proposition 2.2.3 that H−k is dominance preserving for
measures, which are absolutely continuous with respect to Lebesgue measure.
Since µ(k−1)δ is absolutely continuous with respect to Lebesgue measure, to-
gether with the result (2.20) above this yields

µkδ = Hk(µ(k−1)δ) � H−k (µ(k−1)δ) � H−k (µ̃−k−1) = µ̃−k .

The statement follows therefore by induction.

Similar as in the case of the lower barrier approximation we can establish
a corresponding monotonicity property.

Lemma 2.3.27. Let n ∈ N. Then it holds that

µ̃−,nk � µ̃−,n+1
2k

for all k ∈ N such that kδ(n) < tg.

Proof. For ν ∈ P define H−,nk (ν) := Pδ(n) ◦ Tα(n)
k

(ν) for k ∈ N such that

kδ(n) < tg. We claim that for ν such that c 7→ ν((−∞, c]) is continuous, we
have

H−,nk (ν) � H−,n+1
2k ◦H−,n+1

2k−1 (ν).

By Lemma 2.2.12 and Lemma 2.2.10 we obtain

T
α
(n+1)
2k

◦ Pδ(n+1) ◦ T
α
(n+1)
2k−1

(ν)

� Pδ(n+1) ◦ T
α
(n+1)
2k

◦ T
α
(n+1)
2k−1

(ν)

= Pδ(n+1) ◦ T
α
(n)
k

(ν).

Applying Pδ(n+1) on both sides yields the claim by using Lemma 2.2.3 and the
semigroup property of the Gaussian kernel. For k = 1 we obtain

µ̃−,n+1
2 = Pδ(n+1) ◦ T

α
(n+1)
2

◦ Pδ(n+1)(µ)

� Pδ(n+1) ◦ Pδ(n+1)(µ) = Pδ(n)(µ) = µ̃−,n1 .

Now assume that µ̃−,nk−1 � µ̃−,n+1
2(k−1) for fixed k ≥ 2. Both measures are abso-

lutely continuous with respect to Lebesgue measure. Therefore, by combining
Corollary 2.2.8 and Proposition 2.2.3, and using the claim above we have

µ̃−,nk = H−,nk (µ̃−,nk−1) � H−,nk (µ̃−,n+1
2(k−1)) � H

−,n+1
2k ◦H−,n+1

2k−1 (µ̃−,n+1
2(k−1)) = µ̃−,n+1

2k .

Thus, the statement follows by induction.
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Remark 2.3.28. The construction of the upper barrier approximation would
be more intuitive, if we worked with µ−k instead of µ̃−k as in the special case of
the exponential distribution. In the one-sided situation this was done in [De
+19a] in the context of a free boundary problem. But the desired direction of
� in the step of the proof of Lemma 2.3.27, where Lemma 2.2.10 is applied, can
only be obtained in the extreme case Tα◦Tβ(ν) = Tαβ(ν), as Proposition 2.2.11
shows. For arbitrary µ as starting measure the inequality may fail to be true
for k = 1. The actual construction is a work around for this technical problem.
However, the more intuitive way of construction above would work for every
starting measure µ which satisfies Tα ◦ Tβ(µ) = Tαβ(µ), which includes for
example µ = δ0 and non-atomic measures.

Remark 2.3.29. The statements Lemma 2.3.19, Lemma 2.3.20, Lemma 2.3.23
and Lemma 2.3.27 add up to a monotonic squeezing type statement by which
any marginal distribution Pµ (Xt ∈ · |τb > t) corresponding to a b ∈ ifpt(g, µ)
is affected. It is natural to strive after an argument about some sort of distance
of the lower and the upper barrier approximation. In the special case of [De
+19a], the approach in terms of the L1-distance of the involved densities would
give rise to the total variation distance of measures in the general case. The
general setting differs from the special case in the cruical point that in the
special case the sequence of (αk)k∈N is constant for fixed n, namely αk = e−δ for
every k ∈ N, which would lead in the general case to a comparison of truncating
operators with different mass truncation. Unfortunately, this comparison is
inconvenient for our purpose, for example see Lemma A.4.3 related to the
total variation distance. In order to get rid of this problem, we align the lower
and upper barrier approximation as

µ+,n
k = Tαk ◦ Pδ ◦ . . . ◦ Tα2 ◦ Pδ ◦ Tα1 ◦ Pδ (µ),

µ̃−,nk = Pδ ◦ Tαk ◦ . . . ◦ Pδ ◦ Tα2 ◦ Pδ (µ),

which leads to the natural comparison of truncation with same amounts of
mass and some single extra applications of truncation and convolution.

Let dW denote the Wasserstein distance from (2.11). With the comparing
of Remark 2.3.29 in mind we obtain the following behavior with respect to the
Wasserstein distance.

Lemma 2.3.30. Assume that µ ∈ P1 is symmetric and let g be a survival
distribution. The upper and lower barrier approximation satisfy

dW

(
µ+,n
k , µ̃−,nk

)
≤ εn(µ, g)

g(kδ(n))
+
√
δ(n),

for all n, k ∈ N, where (εn(µ, g))n∈N is a sequence converging to zero only
depending on µ and g.
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Proof. Recall the definition of S+
k,1 and H+

1 from the proof of Lemma 2.3.19.
Note that

µ+,n
k = S+

k,1 ◦H
+
1 (µ) and

µ̃−,nk = Pδ ◦ S+
k,1(µ).

Since all of the operations on µ preserve the symmetricness of µ, we obtain by
the second item of Lemma 2.2.24 and alternated application of Lemma 2.2.25
and Lemma 2.2.24 that

dW

(
µ+,n
k , µ̃−,nk

)
≤ dW

(
S+
k,1 ◦H

+
1 (µ), S+

k,1(µ)
)

+
√
δ

≤

(
k∏
`=2

α`

)−1

dW

(
H+

1 (µ), µ
)

+
√
δ

=
g(δ)

g(kδ)
dW (Tα1 ◦ Pδ(µ), µ) +

√
δ.

Take εn(µ, g) := g(δ(n))dW

(
T
α
(n)
1

◦ Pδ(n)(µ), µ
)
. We claim that this sequence

converges to zero. For the following, note thatWt := Xt−X0 defines a standard
Brownian motion. Another application of Lemma 2.2.25 and Lemma 2.2.24
yields

dW (Tα1 ◦ Pδ(µ), µ) ≤ dW (Pδµ, µ) + 2

∫
R\[−qα1 (Pδµ),qα1 (Pδµ)]

|x|dPδµ(x)

≤
√
δ + 2Eµ

[
|X0 +Wδ|1{|X0+Wδ|>qα1 (Pδµ)}

]
≤
√
δ + 2Eµ [|Wδ|] + 2Eµ

[
|X0|1{|X0+Wδ|>qα1 (Pδµ)}

]
.

On the one hand we have Eµ [|Wδ|] ≤
√
δ. On the other hand observe that

the finite measure |X0|dPµ is absolutely continuous with respect to Pµ. Con-
sequently, since for n→∞ we have

Pµ (|X0 +Wδ| > qα1(Pδµ)) = 1− Pδµ([−qα1(Pδµ), qα1(Pδµ)])

= 1− α1 = 1− g(δ(n))→ 0,

it follows that

Eµ
[
|X0|1{|X0+Wδ|>qα(Pδµ)}

]
→ 0

as n→∞. This eventually yields εn(µ, g)→ 0.

Remark 2.3.31. In the general case and the aligning of Remark 2.3.29 the
use of the total variation distance is inconvenient. We already mentioned that
by another alignment in the special case of [De +19a] it was worked with
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the total variation distance, which was suitable since the truncated mass was
constantly 1−e−δ. Working with their alignment, for continuous g it is possible
to derive the total variation result Lemma A.5.2 in the spirit of Lemma 2.3.30
by altering the discrete timesteps. For an application similar as in the following
Theorem 2.3.32 see Proposition A.5.4.

We will now connect the result of Lemma 2.3.30 to solutions of the inverse
first-passage time problem.

Theorem 2.3.32. Assume µ ∈ P1 is symmetric and b ∈ ifpt(g, µ). Then
we have both µ+,n

2n , µ−,n2n converge to µh := Pµ (Xh ∈ · |τb > h) in Wasserstein
distance.

Proof. For abbreviation set µ+,n := µ+,n
2n and µ−,n := µ−,n2n and µ̃−,n := µ̃−,n2n .

Combining Lemma 2.3.19 and Lemma 2.3.23 and considerig the fact that
dropping truncation makes a measure at most wider, this is applying Corol-
lary 2.2.9, we have

µ+,n � µ̃−,n � µ ∗ N (0, h) (2.24)

for every n ∈ N. Therefore the sequences of probability measures (µ+,n)n∈N
and (µ̃−,n)n∈N are tight. Let (µn)n∈N ∈ {(µ+,n)n∈N, (µ̃

−,n)n∈N}. In view of
Prohorov’s theorem let µ0 be an accumulation point such that µ0 = lim`→∞ µ

n`

in the sense of weak convergence. For every c ≥ 0 we have that by either
Lemma 2.3.20 or Lemma 2.3.27 the sequence µn([−c, c]) is monotone. But
this means that it has a limit and thus

lim
n→∞

µn([−c, c]) = lim
`→∞

µn`([−c, c]).

Let c ∈ R be a continuity point of R → [0, 1], x 7→ µ0((−∞, x]). Since µ was
symmetric, so is µn for all n ∈ N. Hence, by using that µn has no atoms,

lim
n→∞

µn((−∞, c]) =
1

2
+

1

2
sgn(c) lim

n→∞
µn([−c, c])

=
1

2
+

1

2
sgn(c) lim

`→∞
µn`([−c, c])

= lim
`→∞

µn`((−∞, c]) = µ0((−∞, c]),

which means that actually µn → µ0 in the sense of weak convergence. Denote
with µ+ and µ̃− the weak limits of µ+,n and µ̃−,n, respectively. Now observe
that by (2.24) and the gluing lemma B.1.13 in combination with Lemma 2.2.2
there exist random variables Z+

n ∼ µ+,n, Z−n ∼ µ̃−,n and Z ∼ µ ∗N (0, h) such
that

|Z+
n | ≤ |Z−n | ≤ |Z|,
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which implies that for R > 0 we have

E
[
|Z+
n |1{|Z+

n |>R}

]
≤ E

[
|Z−n |1{|Z−n |>R}

]
≤ E

[
|Z|1{|Z|>R}

] R→∞→ 0,

since Z is integrable. Now Theorem B.1.10 yields that dW (µ+,n, µ+)→ 0 and
dW (µ̃−,n, µ̃−) → 0. By Lemma 2.3.30 we can conclude that µ+ = µ̃− = µ0.
Now let c ∈ R be again a continuity point of µ0.
Let b ∈ ifpt(µ, g) and define µt := Pµ (Xt ∈ · |τb > t). Observe that µt is
symmetric, since µ is. Due to Lemma 2.3.19 and Lemma 2.3.23 in the case
c ≥ 0 we have

µ0((−∞, c]) =
1

2
+

1

2
lim
n→∞

µ+,n([−c, c]) ≥ 1

2
+

1

2
µh([−c, c])

≥ 1

2
+

1

2
lim
n→∞

µ̃−,n([−c, c]) = µ0((−∞, c])

and in the case c < 0 we have

µ0((−∞, c]) =
1

2
− 1

2
lim
n→∞

µ̃−,n([−c, c]) ≥ 1

2
− 1

2
µh([−c, c])

≥ 1

2
− 1

2
lim
n→∞

µ+,n([−c, c]) = µ0((−∞, c]).

Since the set of continuity points is dense in R we obtain that µh = µ0.
Furthermore, note that we have clearly µ−,nk � µ̃−,nk and by Lemma 2.2.12
it follows inductively that µ+,n

k � µ−,nk for all kδ < tg. Therefore, we have
analogously to above

µ+,n([−c, c]) ≥ µ−,n([−c, c]) ≥ µ̃−,n([−c, c]),

which implies in the same manner as above, that dW (µ−,n, µh)→ 0.

Let us now finalize the goal of uniqueness.

Theorem 2.3.33 (Uniqueness). Let µ ∈ P and g be a survival distribution.
Then the standard boundary function b ∈ ifpt(g, µ) is unique.

Proof. As first step assume that µ ∈ P1 is symmetric. Let b ∈ ifpt(g, µ) and
let µ0 be the limit of µ+,n

2n . By Lemma 2.3.6 and Theorem 2.3.32 we see that
b(h) = sup supp(µ0), but since h ∈ (0, tg) was arbitrarily chosen and µ0 did not
depend on the choice of b we obtain that every boundary function in ifpt(µ, g)
has to coincide with b on (0, tg) and thus there is only one standard boundary
function.

As second step let µ ∈ P be arbitrary. We can assume without loss of
generality that µ is symmetric, since ifpt(g, µ) = ifpt(g, µ̃), where µ̃ is the
symmetrized version of µ, i.e. µ̃(A) = µ(A∩{0})+ 1

2µ(A\{0})+ 1
2µ(−A\{0}).

We define µn := µ(· |[−n, n]) for every n ∈ N such that µ([−n, n]) > 0. Then
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µn is symmetric and it holds µn ∈ P1. Furthermore, we have µn � µn+1 �
µ. By Theorem 2.3.10 we have that for b there exist bn ∈ ifpt(g, µn) such
that bn ≤ bn+1 ≤ b. Without loss of generality we can assume that bn is
standard. But then since µn ∈ P1, the boundary functions bn are the unique
standard boundary functions in ifpt(g, µn), and thus do not depend on b. By
the monotonicity and Lemma 2.1.8 we obtain that there exists b such that
bn

Γ→ b in Hausdorff distance. At first we claim that b ∈ ifpt(g, µ).
By Lemma 2.1.7 we have b ≤ b. For n ∈ N we have bn ≤ b and thus on the
one hand

lim
s↘0

lim sup
n→∞

Pµn
(
τb ≤ s

)
≤ lim

s↘0
lim sup
n→∞

Pµn (τbn ≤ s) = lim
s↘0

1− g(s) = 0.

For ε > 0 let n be large enough such that µ([−n, n]) ≥ 1− ε. Then

Pµ
(
τb ≤ s

)
≤ ε+ µ([−n, n])Pµn

(
τb ≤ s

)
.

In the view of the above we have lims↘0 Pµ
(
τb ≤ s

)
≤ ε, which means on the

other hand Pµ
(
τb = 0

)
= 0 by ε ↘ 0. Now by Lemma 2.3.16 we obtain that

for every t ≥ 0 we have

g(t) = Pµ (τb > t) ≥ Pµ
(
τb > t

)
= lim

n→∞
Pµn

(
τb > t

)
≥ lim

n→∞
Pµn (τbn > t) = g(t),

which means that b ∈ ifpt(g, µ). Since b ≤ b, by Lemma 2.3.14 this implies
that every standard solution b coincides with the standardized version of b.

2.3.4 Comparison principle and properties of solutions

If we pose the inverse first-passage time problem with initial measures, which
are ordered in the two-sided stochastic order, it is natural to expect that the
marginal distributions of the Brownian motions conditioned to not have hit
the corresponding boundary solutions stay ordered in the two-sided stochastic
order. Indeed, one can fix two different survival distributions which are ordered
in the well-known hazard rate order of random variables, to get the following
strengthened version of Theorem 2.3.10.

Theorem 2.3.34 (Comparison principle). Let µ1, µ2 ∈ P, such that µ1 � µ2.
Let g1 and g2 be two survival distributions, such that g2/g1 is non-decreasing
on [0, tg

1
). Then the unique standard solutions bi ∈ ifpt(gi, µi) for i ∈ {1, 2}

satisfy

b1 ≤ b2

pointwise.
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In order to prove Theorem 2.3.34 we will use the lower barrier approx-
imation from Subsection 2.3.2. The uniqueness guarantees us the following
statement about convergence in the Hausdorff distance, by which we will be
able to pass properties of the approximants to the limit.

Lemma 2.3.35. Let µ ∈ P. Let gn, n ∈ N and g be survival distributions
such that gn → g in distribution. Let bn ∈ ifpt(µ, gn) and b ∈ ifpt(µ, g). Then
bn1(0,tg)

Γ→ b1(0,tg).

Proof. Let N ′ ⊆ N be a subsequence. Then, due to compactness, there exists
a subsequence N ′′ ⊆ N ′, such that bn → b0 along N ′′, where b0 is a boundary
function. The assumptions on bn yield that τbn → g in distribution. Thus by
Proposition 2.1.12 it follows that b0 ∈ ifpt(µ, g). Therefore, due to uniqueness,
the standardized versions of b0 and b coincide. In particular, b01(0,tg) = b1(0,tg).
If t /∈ (0, tg), for any sequence tn → t along N ′′ it holds

lim inf
n∈N ′′

bn(tn)1(0,tg)(tn) ≥ 0 = b(tn)1(0,tg)(t)

and the constant sequence tn = t fulfills limn∈N ′′ bn(tn)1(0,tg)(tn) = 0 =
b(tn)1(0,tg)(t). Else if t ∈ (0, tg) and tn → t along N ′′, then for n large enough
we have

b(t) = b0(t) ≤ lim inf
n∈N ′′

bn(tn) = lim inf
n∈N ′′

bn(tn)1(0,tg)(tn),

since bn
Γ→ b0 along N ′′. Furthermore, there exists a sequence tn → t such

that

bn(tn)1(0,tg)(tn) = bn(tn)→ b0(t) = b(t) = b1(0,tg)(t).

Hence, by Theorem 2.1.4, we have bn1(0,tg)
Γ→ b1(0,tg) along N ′′. Since the

space of boundary functions is a metric space and N ′ was arbitrary we obtain
the statement.

Since the value of the lower barrier approximants b+n is defined to be 0 at
t ∈ {0,∞} we obtain the following corollary.

Corollary 2.3.36. Let µ ∈ P and b ∈ ifpt(g, µ) the unique standard boundary
function. Then b+n

Γ→ b1(0,∞).

Proof of Theorem 2.3.34. At first note, that by the monotonicity we have tg1 ≤
tg

2 . Let (bin)n∈N be the lower barrier approximation from Subsection 2.3.2 with
h = 1 corresponding to gi and µi. Fix n ∈ N and recall that for k2−n < tg

i

αik =
gi(k2−n)

gi((k − 1)2−n)
.
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Now Lemma 2.3.9 yields, that for k2−n < tg
1 holds

Pµi
(
Xk2−n ∈ ·

∣∣τbin > k2−n
)

= Tαik
◦ P2−n ◦ . . . ◦ Tαi1 ◦ P2−n(µi)

and by the assumption on the survival distributions we obtain

g2((k − 1)2−n)

g1((k − 1)2−n)
≤ g2(k2−n)

g1(k2−n)

which implies α1
k ≤ α2

k. By iteratively applying the statements of Proposi-
tion 2.2.3 and Lemma 2.2.6 we get

Pµ1
(
Xk2−n ∈ ·

∣∣τb1n > k2−n
)
� Pµ2

(
Xk2−n ∈ ·

∣∣τb2n > k2−n
)
.

Hence, Lemma 2.3.6 implies that b1n(k2−n) ≤ b2n(k2−n) for all k2−n < tg
1 . By

the definition of the lower barrier approximation and tg
1 ≤ tg

2 follows that
b1n ≤ b2n. By Corollary 2.3.36 we have that bin

Γ→ bi1(0,∞). By Lemma 2.1.7
we deduce that b11(0,∞) ≤ b21(0,∞), and thus, since b1 and b2 were standard,
b1 ≤ b2.

Remark 2.3.37. The assumption on g1 and g2 in Theorem 2.3.34 that t 7→
g2(t)/g1(t) is non-decreasing on [0, tg

1
) coincides with the notion of the hazard

rate order of random variables as defined in Section 1.B of [SS07].

Remark 2.3.38. For g1 = g2 = g the comparison principle of Theorem 2.3.34
motivates the following question. The solution in ifpt(g, δ0) is dominated by
any other solution ifpt(g, µ2). Thus, one could fix b and ask whether µ exists,
such that b ∈ ifpt(g, µ). This problem is sometimes called randomized first-
passage time problem. For the one-sided situation see for example [JKZ09],
[JKV09b], [JKV14]. In the two-sided situation this question has been studied
for the special case of constant boundaries in [Abu13b]. A partial overview is
given in [Abu13a].

Remark 2.3.39. In the special case g1(t) = g2(t) = e−t a corresponding com-
parison principle appears for solutions of a free boundary problem in [Ber+21]
and [BBP19].

Remark 2.3.40. For certain survival distributions, it is possible to show by
Theorem 2.3.34 that the corresponding solutions are bounded. For example,
see Corollary 2.3.54 in the exponential case. In this case that the boundary
is bounded, the integral equation from Proposition A.2.1 connects the initial
distribution µ, the survival distribution g and the solution b.

The assumption in Theorem 2.3.34 that g1 and g2 are ordered in the hazard
rate order cannot be weakened to the usual stochastic order as the following
example demonstrates.
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Example 2.3.41. Let µ ∈ P. We merely prove the existence of an artificial
example of two boundary functions such that their survival distributions are
ordered in the usual stochastic order but the boundary functions are not or-
dered pointwise. For this purpose let K, c, ε > 0 and s2 > s1 > s0 > 0. First,
set bi(t) =∞ for t /∈ [s0, s2]. Let one boundary function be given by b2(t) := K
for t ∈ [s0, s2]. Let the other one be given by

b1(t) :=

{
K + (c−K)

s1
· t : t ∈ [s0, s1],

c+ K+ε−c
s2−s1 · (t− s1) : t ∈ (s1, s2].

For an illustration compare Figure 2.2. Thus on [s0, s2] the function b1 is
continuous and piecewise linear, with b1(s1) = c. Observe that

lim
c↘0

Pµ (τb1 > s1) ≤ lim
c↘0

Pµ (|Xs1 | ≤ c) = 0.

Thus we can choose c ∈ (0,K) such that Pµ (τb1 > s1) ≤ Pµ (τb2 > s2) since
Pµ (τb2 > s2) > 0. We have Pµ (τb1 > t) ≤ Pµ (τb2 > t) for t ∈ [0, s1] and

Pµ (τb1 > t) ≤ Pµ (τb1 > s1) ≤ Pµ (τb2 > s2) ≤ Pµ (τb2 > t)

for t ∈ [s1, s2] and thus τb1 is smaller in the usual stochastic order than τb2 ,
but b1(s2) = K + ε > K = b2(s2).

b1(t), b2(t)

ts0 s1 s2

K

K + ε

c

b2

b1

Figure 2.2: Illustration of the boundary functions in Example 2.3.41.

Concerning the converse direction, it is clear that b1 ≤ b2 implies that τb1 is
smaller in the usual stochastic order than τb2 . Similarly to above, this cannot
be strengthened to an implication of the hazard rate order of the survival
distributions as the next example shows. Thus the converse of Theorem 2.3.34
is not true.
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Example 2.3.42. Let µ ∈ P. Again we merely prove the existence of an
artificial example of two boundary functions, which are ordered pointwise, but
their survival distributions are not ordered in the hazard rate ordering. For
this purpose letK, c and s2 > s1 > s0 > 0. Again, set bi(t) =∞ for t /∈ [s0, s2].
Then, let one boundary function be given again by b2(t) := K for t ∈ [s0, s2].
Let the other one be given by

b1(t) :=

{
K + (c−K)

s1
· t : t ∈ [s0, s1],

K : t ∈ (s1, s2].

Now, denote gi(t) := Pµ (τbi > t) and µis1 := Pµ (Xs1 ∈ · |τbi > s1). We have

Pµ (τb2 > s2 |τb2 > s1) = Pµ2s1 (τK > s2 − s1) < P0 (τK > s2 − s1) .

Furthermore, by limc↘0 µ
1
s1 = δ0 weakly, we can deduce that

lim
c↘0

Pµ (τb1 > s2 |τb1 > s1) = lim
c↘0

Pµ1s1 (τK > s2 − s1) = P0 (τK > s2 − s1) .

Thus we can choose c > 0 such that

g1(s1)g2(s2)

g1(s2)g2(s1)
=

Pµ (τb2 > s2 |τb2 > s1)

Pµ (τb1 > s2 |τb1 > s1)
< 1,

which means

g2(s2)

g1(s2)
<
g2(s1)

g1(s1)

and shows that g1 is not smaller than g2 in the hazard rate order.

b1(t), b2(t)

ts0 s1 s2

K

c

b2
b1

Figure 2.3: Illustration of the boundary functions in Example 2.3.42.

The following is devoted to apply the comparison principle above in order
to deduce properties of solutions.
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Regularity

By making use of Brownian scaling a first application of Theorem 2.3.34 is the
following, giving a sufficient but strong condition for local Lipschitz continuity
of a non-decreasing boundary function. Recall the notation gλ(t) := g(λt) for
a survival distribution g and a number λ > 0. Note that then tgλ = tg/λ.

Proposition 2.3.43. Let g be a survival distribution and b ∈ ifpt(g, 0) stan-
dard. Assume that for all λ ∈ (0, 1) holds that gλ/g is non-decreasing on
(0, tg). Then t 7→ b(t)√

t
is non-increasing. In particular,

b(t)− b(s) ≤ |t− s|b(s)
s

for 0 < s < t.

Proof. Recall the notation bλ(t) := 1√
λ
b(λt). Let λ1 > λ2 > 0. Then

Lemma 2.3.7 we have bλi ∈ ifpt(gλi , 0). Now set λ := λ2
λ1
. For s, t ∈ (0, tg/λ1)

with s < t we have

g(λ2s)

g(λ1s)
=
g(λλ1s)

g(λ1s)
≤ g(λλ1t)

g(λ1t)
=
g(λ2t)

g(λ1t)
.

Thus gλ2/gλ1 is non-decreasing on (0, tg
λ
1 ). Consequently, Theorem 2.3.34

yields that we have bλ1 ≤ bλ2 . For 0 < s < t and r > t this means and
choosing λ2 = s

r and λ1 = t
r that

b(s)√
s

=
b(λ2r)√
λ2r

=
1√
r
bλ2(r) ≥ 1√

r
bλ1(r) =

b(λ1r)√
λ1r

=
b(t)√
t
, (2.25)

which yields the first part of the statement. By b(t) ≤
√

t
sb(s) we can deduce

b(t)− b(s) ≤

(√
t

s
− 1

)
b(s) ≤

(√
t

s
+ 1

)(√
t

s
− 1

)
b(s) =

t− s
s

b(s),

which finishes the proof.

Remark 2.3.44. • In terms of the hazard rate h(t) := − ∂
∂t

log(g(t)) of
a differentiable survival function g the condition that gλ(t)/g(t) is non-
decreasing in t for λ ∈ (0, 1) is equivalent to h(t) ≥ λh(λt) for λ ∈ (0, 1).
By this, the condition is often to be checked conveniently, if g belongs
to a suitable parameter family of distributions.

• The statement of Proposition 2.3.43 exploits the Brownian scaling for a
boundary function of Lemma 2.3.7. This property was already used in
the context of first-passage times in [Val09, p.112]. Reversed to (2.25),
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it is shown that under the assumption bλ1 ≥ bλ2 for all λ1 ≤ λ2 ≤ 1, it
holds that t 7→ b(t)√

t
is non-decreasing. Regarding this, the complementary

condition that gλ/g shall be non-increasing for all λ ∈ (0, 1) comes into
mind, but this cannot be fulfilled by any survival distribution as the
following computation shows. If we assumed this condition we had

1 ≤ g(λt)

g(t)
≤ g(λ0)

g(0)
= 1

for all λ ∈ (0, 1) and t ∈ (0, tg). This would imply that g ≡ 1, which is
a degenerate survival function.

The applicable part of Proposition 2.3.43 is the following corollary.

Corollary 2.3.45. Let g be a survival distribution and b ∈ ifpt(g, 0) is non-
decreasing. Assume that for all λ ∈ (0, 1) holds that gλ/g is non-decreasing on
(0, tg). Then b is locally Lipschitz continuous on (0,∞).

A weaker condition for continuity of non-decreasing boundary functions is
given by the following refinement of Theorem 8.2 of [EJ16] in the one-sided
inverse first-passage time problem. In the situation that the boundary function
is non-decreasing, the proof of Theorem 8.2 of [EJ16] shows Hölder continuity
for any parameter smaller than 1/2, but the arguments of [EJ16] can be refined
to yield Hölder continuity with parameter 1/2.

Proposition 2.3.46. Let I := (η, T ) with 0 < η < T . Let g be a survival
distribution, which satisfies −g′(t) ≥ C for almost all t ∈ I for some C > 0.
Let b ∈ ifpt(g, µ) for a symmetric µ ∈ P and assume that b is non-decreasing
on I. Then there is a constant K > 0 such that

|b(t)− b(s)| ≤ K|t− s|
1
2

for s, t ∈ I.

Proof. Note that since b is non-decreasing on I we have g(T−) > 0. As in the
proof of Theorem 8.2 of [EJ16], let t0 ∈ I, a > 0 and d > 0 and define

E := {s ∈ (t0, t0 + a) : b(s) > b(t0) + d}.

As preparation we consider the densities f and h of the probability measures

f(x) dx := Pµ (Xt0 ∈ dx |τb > t0) ,

h(x) dx := Pµ (Xt0 ∈ dx ||Xs| ≤ b(t0) ∀s ≤ t0) ,

respectively. By Theorem 2.3.17, since b(t0) ≥ b(s) for all s ≤ t0, we obtain

Pµ (Xt0 ∈ dx |τb > t0) �|lr| Pµ
(
Xt0 ∈ dx

∣∣τb(t0) > t0
)

= Pµ (Xt0 ∈ dx ||Xs| ≤ b(t0) ∀s ≤ t0) .
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Regarding this note that b(t0) <∞ since otherwise−g′ = 0 in a neighbourhood
of t0. We have by Lemma 2.2.17 that

f(x)

h(x)
is non-increasing for almost all x ∈ [0, b(t0)].

Since off the nullset there has to exist y ∈ (0, b(t0)) such that f(y) ≤ h(y),
we also have that there is ε > 0 such that f(x) ≤ h(x) for almost all x ∈
[b(t0) − ε, b(t0)]. The density h is given explicitly in Proposition B.1.5. In
particular, we have that h(b(t0)) = 0 and that the following limits exist and
are finite. In view of the above it holds

lim sup
z↘0

f(b(t0)− z)
z

≤ lim
z↘0

h(b(t0)− z)
z

= −h′(b(t0))

off a nullset. The value −h′(b(t0)) can be bounded from above. For this denote
with ht,m, t,m > 0, the density of the measure Pµ (Xt ∈ · |τm > t). We arrive
at

lim sup
z↘0

f(b(t0)− z)
z

≤ −h′(b(t0)) ≤ sup
t∈[η,T ],m∈[b(η),b(T )]

−h′t,m(m) <∞, (2.26)

where the supremum over this compact set is finite due to continuity in the pa-
rameters t and m, which follows from the representation in Proposition B.1.5.
On the other hand we have

sup
y∈R

f(y) =
1

g(t0)
sup
y∈R

Pµ (Xt0 ∈ dy, τb > t0)

dy
≤ 1

g(T−)
sup
y∈R

Pµ (Xη ∈ dy)

dy
<∞.

(2.27)

The bounds in (2.26) and (2.26) imply that there is a constant L > 0 only
depending on η and T such that f(y) ≤ L · (b(t0)− y) for almost all y ≤ b(t0).
Further, define the boundary function

b1(t) := b(t)1[0,t0](t) + (b(t0) + d)1(t0,∞)(t).

The corresponding hitting time is

τb1 = inf{t > 0 : |Xt| ≥ b1(t)}.

As in Theorem 8.2 of [EJ16] we have that τb ∈ E implies τb1 ∈ E. Hence

Pµ (τb1 ∈ E) ≥ Pµ (τb ∈ E) =

∫
E

(−g′(t)) dt ≥ Cλ(E),

where λ denotes the Lebesgue measure. Let us introduce the notation

τ+
b1

:= inf{t > 0 : Xt ≥ b1(t)}, τ−b1 := inf{t > 0 : Xt ≤ −b1(t)}
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and note that by symmetry

Pµ (τb1 ∈ E) = Pµ (τb1 ∈ E, τb1 > t0)

≤ Pµ
(
τ+
b1
∈ E, τb1 > t0

)
+ Pµ

(
τ−b1 ∈ E, τb1 > t0

)
= 2Pµ

(
τ+
b1
∈ E, τb > t0

)
≤ 2Pµ

(
τ+
b1
∈ E

∣∣∣τb > t0

)
.

Before we make the refinement step, note that under Py the hitting time τ+
b(t0)+d

of the constant level b(t0) + d has the following well-known density by the
reflection principle. We have

Py
(
τ+
b(t0)+d ∈ dt

)
=
b(t0) + d− y√

2π(t− t0)3
e
− (b(t0)+d−y)

2

2(t−t0) dt.

Now the refinement is to observe that for measurable A ⊆ (t0, t0 + a)

Pµ
(
τ+

1 ∈ A
∣∣τb > t0

)
=

∫ b(t0)

−b(t0)
Py
(
τ+
b(t0)+d ∈ A

)
P (Xt0 ∈ dy |τb > t0)

=

∫ b(t0)

−b(t0)
Py
(
τ+
b(t0)+d ∈ A

)
f(y) dy

=

∫ b(t0)

−b(t0)

∫
A

b(t0) + d− y√
2π(t− t0)3

e
− (b(t0)+d−y)

2

2(t−t0) dtf(y) dy

≤
∫ b(t0)

−b(t0)

∫
A

b(t0) + d− y√
2π(t− t0)3

e
− (b(t0)+d−y)

2

2(t−t0) dtL(b(t0)− y) dy

= L

∫ 2b(t0)

0

∫
A

y + d√
2π(t− t0)3

e
− (y+d)2

2(t−t0) dty dy

=

∫
A

[
− L√

2π(t− t0)

∫ 2b(t0)

0
y
∂

∂y
e
− (y+d)2

2(t−t0) dy

]
dt

=

∫
A

[
− L√

2π(t− t0)
2b(t0)e

− (2b(t0)+d)
2

2(t−t0) +
L√

2π(t− t0)

∫ 2b(t0)

0
e
− (y+d)2

2(t−t0) dy

]
dt

≤
∫
A

L√
2π(t− t0)

∫ ∞
d

e
− y2

2(t−t0) dy dt =

∫
A
L

∫ ∞
d√
t−t0

1√
2π
e−

u2

2 dudt

≤
∫
A

L
√
t− t0

d
√

2π
e
− d2

2(t−t0) dt ≤ L
√
a

d
√

2π
e−

d2

2a · λ(A).

With this at hand, we can now deduce that

Cλ(E) ≤ P (τ1 ∈ E) ≤ 2
L
√
a

d
√

2π
e−

d2

2aλ(E).
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If E is non-empty we have λ(E) > 0, which then implies that by the inequality

above either d ≤
√
a or e

d2

2a ≤ 2L
C
√

2π
, yielding altogether that

d ≤
√

2 log(C0)a

with C0 = max( 2L
C
√

2π
, e). For t > t0 such that b(t) − b(t0) > 0 the inequality

above is true for all a > t − t0 and d ∈ (0, b(t) − b(t0)) since E is non-empty.
Letting d↗ b(t)−b(t0) yields b(t)−b(t0) ≤

√
2 log(C0)a and letting a↘ t−t0

afterwards yields then

b(t)− b(t0) ≤
√

2 log(C0)|t− t0|
1
2 ,

which finishes the proof.

Monotonicity

The previous statements become useful, if the boundary function is known to
be non-decreasing. In order to make this more accessible we will prove that
the following conditions are sufficient for non-decreasingness.

Theorem 2.3.47. Let g be a survival distribution which is logarithmically
convex on (0, c) ⊆ (0, tg). Let µ ∈ P fulfill one of the following conditions:

(i) µ = δ0 or

(ii) µ is symmetric, has compact support [−K,K] and is absolutely continu-
ous with respect to the Lebesgue measure with a version f of a density of
µ such that

(a) lim infx↘0
f(K−x)

x > lim inft↘0
1−g(t)
t and

(b) µ �|lr| Ptµ for every t > 0.

Then b ∈ ifpt(g, µ) is non-decreasing on [0, c).

Remark 2.3.48. Further below Lemma 2.3.51 gives sufficient conditions for
the property that µ �|lr| Ptµ for all t > 0.

Remark 2.3.49. The condition of Theorem 2.3.47 is not expected to be sharp,
which is suggested at a later stage by the example given in Corollary 2.3.65.

Before we begin with the proof of Theorem 2.3.47, we start with some
preparational statements, which will be used for the situation of non-trivial
initial distributions. In the case of standard Brownian motion starting in zero
the proof of Theorem 2.3.47 could be carried out already at this stage by
working with the lower barrier approximation.
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In the situation of a non-trivial initial distribution we will work with the
following sequence of piecewise constant boundary functions, which is a more
suitable construction for this situation.

Let µ ∈ P be absolutely continuous with respect to the Lebesgue measure
and g be a survival distribution. For n ∈ N let δ := δ(n) > 0 be a positive step
width. For every k ∈ N set

αk := α
(n)
k :=

{
g(kδ(n))

g((k−1)δ(n))
: kδ(n) ≤ tg,

0 : else.

Now we define a sequence (cnk)k∈N0 of non-negative numbers in the following
way. Set cn0 := sup supp(µ). For k ∈ N0 assume cn0 , cn1 , . . . , cnk are already
defined. Then, if α(n)

k+1 > 0 choose cnk+1 ∈ [0,∞] as the unique value such that

α
(n)
k+1 = Pµ

(
sup

s∈(kδ,(k+1)δ]
|Xs| ≤ cnk+1

∣∣∣∣∣ sup
s∈((`−1)δ,`δ]

|Xs| ≤ cn` ∀` ∈ {1, . . . , k}

)

and set cnk+1 = 0, if α(n)
k+1 = 0. Now define the piecewise constant boundary

function

bpc
n :=

∞∑
`=0

cn`+11(`δ,(`+1)δ) + min(cn` , c
n
`+1)1{`δ}. (2.28)

The extra definition at the discrete lattice points ensures that bpc
n is lower

semicontinuous.
The key idea to prove Theorem 2.3.47 will be to establish inductively the

monotonicity of the approximating boundary functions. For the base case of
the induction we will use the following statement.

Lemma 2.3.50. Let µ ∈ P be symmetric, such that µ �|lr| Ptµ for all t >
0. Further, let b be a standard boundary function such that inft∈[0,∞] b(t) ≥
sup supp(µ). Then we have

µ �|lr| Pµ (Xt ∈ · |τb > t) .

Proof. Let K := sup supp(µ) and t > 0. Then in view of Theorem 2.3.17 it
suffices to prove the statement for b ≡ K. From now on assume therefore that
b ≡ K. Define for n ∈ N the boundary function

bn(s) :=

{
K : s ∈ {tk2−n : k ∈ {1, . . . , 2n}}
∞ : else.

Then we have

Pµ (Xt ∈ · |τbn > t) = (TK ◦ Pt2−n)2n(µ).
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We claim that (TK ◦Pt2−n)k−1(µ) �|lr| (TK ◦Pt2−n)k(µ) for k ∈ N. Assuming
the claim for k, it follows for k+ 1 by Corollary 2.2.19 and Lemma 2.2.21. By
the assumption of the statement we have µ �|lr| Pt2−nµ. Moreover, Lemma 2.2.21
yields µ = TK(µ) �|lr| TK ◦ Pt2−n(µ). Hence, the claim follows by induction.
It follows therefore, that

µ �|lr| Pµ (Xt ∈ · |τbn > t)

for every n. We have that Pµ (Xt ∈ · |τbn > t)→ Pµ (Xt ∈ · |τb > t) in distribu-
tion. Since the likelihood ratio order is preserved in the limit, see Lemma B.1.4,
the desired statement follows.

We are now ready to proof Theorem 2.3.47 also in the situation of non-
trivial initial distributions.

Proof of Theorem 2.3.47. We claim that it suffices to find bn non-decreasing
on {bn <∞} ∩ (0, c) such that τbn → g in distribution.

As first step, we will prove the claim. Subsequently, we will prove the
existence of such approximations distinguished by the cases (i) and (ii).

Assume we have found a sequence bn non-decreasing on {bn <∞} ∩ (0, c)

and τbn → g in distribution. By Lemma 2.3.35 we obtain that bn1(0,tg)
Γ→

b1(0,tg) in the Hausdorff distance. Since (0, c) ⊆ (0, tg), by Lemma 2.1.9 we
get that b is non-decreasing on {b < ∞} ∩ (0, c). It is left to extend this
to (0, c). By the convexity of log ◦g it follows that g is continuous on (0, c).
As in Theorem 8.1 of [EJ16] this implies that for every t ∈ (0, c) we have
lim infs↗t b(s) = b(t). Assume there is t ∈ (0, c) such that b(t) = ∞. Now,
suppose that there is r ∈ (t, c) such that b(r) <∞. Since lim infs↗t b(s) =∞
there has to be 0 < s < t such that b(s) > b(r). This contradiction to b being
non-decreasing on (0, c)∩{b <∞} shows that b(t) =∞ for all t ∈ (a, c), where
a := inf{t ∈ (0, c) : b(t) =∞}∧ c. Therefore, b is non-decreasing on (0, a) and
hence, since b(0) = lim infs→0 b(s), we have b is non-decreasing on [0, c).

Now, we focus on the existence on the approximating sequences. We will
treat both cases differently, but make a common preparation first.

We define αk = g(kδ(n))/g((k−1)δ(n)) for kδ(n) < tg. Since log ◦g is convex
on (0, c) we have by Lemma B.2.8 that

log(αk) = log ◦g((k − 1)δ(n) + δ(n))− log ◦g((k − 1)δ(n))

≤ log ◦g(kδ(n) + δ(n))− log ◦g(kδ(n)) = log(αk+1),

if (k + 1)δ(n) < c. Therefore αk ≤ αk+1 for such k. We will use this property
in the following.
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We first consider the case (i). In this case we set δ(n) = 2−n and let (bn)n∈N
be the lower barrier approximation from Subsection 2.3.2 for g and µ = δ0,
which fulfills τbn → g. We denote

µnk := Pµ
(
Xkδ(n) ∈ ·

∣∣∣τbn > kδ(n)
)

for k ∈ N with kδ(n) < tg. Now, we claim that for n large enough we have

µnk−1 � µnk

for all k ∈ N with kδ(n) < c. If we assume the claim for k ∈ N with (k+1)δ(n) <
c, then by Proposition 2.2.3 and Lemma 2.2.6 it follows that

µnk = Tαk ◦ Pδ(n)(µ
n
k−1) � Tαk+1

◦ Pδ(n)(µ
n
k) = µnk+1.

Hence, it is left to show that µn0 � µn1 , which is clear since µ0 = δ0. From the
statement of the claim together with Lemma 2.3.6 it follows that bn(kδ(n)) ≤
bn((k + 1)δ(n)) for k ∈ N with (k + 1)tn < c. By the construction of the
lower barrier approximation this means that bn is non-decreasing on {bn <
∞} ∩ (0, c).

Consider now case (ii). Without loss of generality we can assume c = tg by
replacing g by g1(−∞,c). Let tn → 0 be a decreasing sequence of positive real
numbers such that limn→∞(1−g(tn))/tn = lim inft↘0(1−g(t))/t. Let (bpc

n )n∈N
be the piecewise constant barrier approximation with δ(n) = tn corresponding
to g and µ. Now for k ∈ N define the boundary function

bkn := bpc
n 1[0,kδ(n)) + bpc

n (kδ(n)−)1[kδ(n),∞]

and denote

µnk := Pµ
(
Xkδ(n) ∈ ·

∣∣∣τbkn > kδ(n)
)
.

The use of the boundary function bkn has technical reasons, since we want
to study the quantities bpc

n (kδ(n)−) = sup supp(µnk). In the definition of
µnk we would rather use directly bpc

n instead, but apriori by the construction
of bpc

n it is still possible that bpc
n (kδ(n)) < bpc

n (kδ(n)−) = bkn(kδ(n)), which
would result in sup supp(µnk) = bpc

n (kδ(n)+). Now, by construction, we have
Pµ
(
τbkn > kδ(n)

)
= g(kδ(n)).

Let us continue with the claim that for n large enough we have

µnk−1 �|lr| µnk (2.29)

for all k ∈ N with kδ(n) < c. If we assume the claim for k ∈ N with (k+1)δ(n) <
c, then in particular it holds µnk−1 � µnk . Assume bkn(kδ(n)) > bk+1

n ((k+1)δ(n)).
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By Lemma 2.2.4 it follows that

αk = Pµnk−1

(
sup

s∈[0,tn]
|Xs| ≤ bkn(kδ(n))

)

≥ Pµnk

(
sup

s∈[0,δ(n)]

|Xs| ≤ bkn(kδ(n))

)

> Pµnk

(
sup

s∈[0,δ(n)]

|Xs| ≤ bk+1
n ((k + 1)δ(n))

)
= αk+1.

This contradiction shows bkn(kδ(n)) ≤ bk+1
n ((k + 1)δ(n)). By Theorem 2.3.17 it

follows

µnk = Pµnk−1

(
Xδ(n) ∈ ·

∣∣∣τbkn(kδ(n)) > δ(n)
)

�|lr| Pµnk
(
Xδ(n) ∈ ·

∣∣∣τbk+1
n ((k+1)δ(n)) > δ(n)

)
= µnk+1.

Hence, it is left to show that µn0 �|lr| µn1 . For this it suffices to show that
for n large enough it holds that bn(0) = b1n(δ(n)) ≥ K, because in this case
we could deduce by the assumption (b) that µ �|lr| Ptµ for every t > 0 and
Lemma 2.3.50 that

µ �|lr| Pµ
(
Xtn ∈ ·

∣∣τb1n > tn
)

= µn1 .

Therefore, we want to show that for n large enough it holds that bn(0) =
b1n(δ(n)) ≥ K. As preparation for this, recall that δ(n) = tn and define τ±K :=
inf{s > 0 : ±Xs ≥ K} and observe that by the reflection principle we have
that

1

t
Pµ
(
τ+
K ∨ τ

−
K ≤ t

)
≤ 1

t
P−K

(
τ+
K ≤ t

)
=

1

t
P (|Xt −X0| ≥ 2K)→ 0 as t→ 0.

Thus, we have by the symmetry of µ and the reflection principle that

lim inf
n→∞

1

tn
Pµ (τK ≤ tn) = lim inf

n→∞

1

tn
(2Pµ

(
τ+
K ≤ tn

)
− Pµ

(
τ+
K ∨ τ

−
K ≤ tn

)
)

= 2 lim inf
n→∞

1

tn
Pµ
(
τ+
K ≤ tn

)
= 2 lim inf

n→∞

1

tn
Pµ (|Xtn | ≥ K) .

By Lemma B.1.2 we have that

lim inf
n→∞

1

tn
Pµ (|Xtn | ≥ K) ≥ 1

2
lim inf
x↘0

f(K − x)

x
.



2.3. UNIQUENESS, PROPERTIES AND EXAMPLES 89

Assume now that b1n(tn) < K along a subsequence N ⊆ N. Then would follow

lim inf
t↘0

1− g(t)

t
= lim

n∈N

1− g(tn)

tn
= lim inf

n∈N

1− g(tn)

tn

= lim inf
n∈N

1

tn
Pµ
(
τb1n ≤ tn

)
≥ lim inf

n→∞

1

tn
Pµ (τK ≤ tn)

≥ lim inf
x↘0

f(K − x)

x
.

By recalling that δ(n) = tn, this contradiction shows that b1n(tn) ≥ K for all n
large enough, which finally establishes the claim from (2.29). By this, together
with Lemma 2.3.6 it follows that bkn(kδ(n)) ≤ bk+1

n ((k + 1)δ(n)) for k ∈ N with
(k + 1)δ(n) < c, which in turn implies that bkn(kδ(n)) = bk+1

n (kδ(n)) for every
k ∈ N with (k + 1)δ(n) < c. Thus, for n ∈ N we have that the boundary
function bbc/δ

(n)c
n is non-decreasing on (0, c). Hence the boundary function

bn := bbc/δ
(n)c

n 1[0,c)

inherits this property. It is left to show that τbn converges to g in distribution.
In order to show this, we check the requirements of Lemma 2.1.18. We have
that bpcn is non-decreasing on [0, bc/δ(n)cδ(n)) and that bbc/δ

(n)c
n (t) = bpcn (t) for

every t ∈ [0, bc/δ(n)cδ(n)). By this we have for k ≤ bc/δ(n)c = btg/δ(n)c that

Pµ
(
τbn > kδ(n)

)
= Pµ

(
τbpcn > kδ(n)

)
= Pµ

(
sup

s∈((`−1)δ,`δ]
|Xs| ≤ cn` ∀` ∈ {1, . . . , k}

)
=

k∏
`=1

α
(n)
k = g(kδ(n)).

Hence, since δ(n) = tn → 0, by Lemma 2.1.18 we have τbn → g in distribution
as n→∞, which yields the desired statement.

In order to make Theorem 2.3.47 more accessible we give the following
characterization for the condition (b) in case (ii). For this purpose recall the
generalized absolute value density from (2.9) and the notion of total positivity
of order 2 from (2.10).

Lemma 2.3.51. For a symmetric probability measure the property µ �|lr| Ptµ
is fulfilled, if one of the following conditions, ordered by descending strength,
is fulfilled:

(i) µ ∗ δu1 �|lr| µ ∗ δu2 whenever |u1| ≤ |u2|.

(ii) µ �|lr| µ ∗ δu for any u ∈ R.

If µ has a density f we have the following list of sufficient conditions, ordered
by descending strength,
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(i)’ f∗ is totally positive of order 2 almost everywhere.

(ii)’ [0,∞) ∩ supp(f) → R, v 7→ f∗(v,u)
f(v) is non-decreasing almost everywhere

for any u ∈ R.

(iii)’ [0,∞) ∩ supp(f) → R, v 7→ Ev
[
f(Xt)
f(X0)

]
is non-decreasing almost ever-

where,

where the last condition is also necessary.

Proof. We denote Wt := Xt − X0, which is a standard Brownian motion.
Regarding the first part, it is clear that (i) implies (ii). Recall that for A ≤ B,
if x ∈ A, y ∈ B implies x ≤ y. In order to see that (ii) is sufficient, let A,B ⊆ R
be measurable with A ≤ B. Recall µ from Definition 2.2.1 and consider

µ(A)Ptµ(B) =

∫
R
µ(A)µ ∗ δu(B)P (Wt ∈ du)

≥
∫
R
µ(B)µ ∗ δu(A)P (Wt ∈ du) = µ(B)Ptµ(A),

which means that µ �|lr| Ptµ.
In the case when µ has a density f it it folllows by Theorem 2.2.18 that

(i) is equivalent to (i)’ and by Lemma 2.2.17 it follows that (ii) is equivalent
to (ii)’. In order to see the remaining part, observe that by Lemma 2.2.17 the
property µ �|lr| Ptµ is equivalent to

f∗(v1, 0)E [f∗(v2,Wt)] ≥ f∗(v2, 0)E [f∗(v1,Wt)]

for almost all v1, v2 ∈ [0,∞)∩ supp(f) with v1 ≤ v2, which exactly means that

E [f∗(v,Wt)]

f∗(v, 0)
=

E [f(v +Wt) + f(v −Wt)]

2f(v)
= Ev

[
f(Xt)

f(X0)

]
is non-decreasing for almost all v ∈ [0,∞) ∩ supp(f).

2.3.5 The shape of the exponential boundary and further
examples

This subsection is devoted to prove properties of the exponential boundary
and other examples. The visualizations were done by a Monte-Carlo method,
which we will discuss in Subsection 2.4.3.

For λ > 0 set gλ(t) := e−λt throughout this subsection. Obviously, we
have tgλ =∞. By the uniqueness of Theorem 2.3.33 it is justified to speak of
the Shiryaev boundary as the unique standard boundary function contained in
ifpt(gλ, 0). A visualization can be found later in Figure 2.4. Furthermore, let

Mλ :=
π

2
√

2λ



2.3. UNIQUENESS, PROPERTIES AND EXAMPLES 91

and νλ be the probability measure on [−Mλ,Mλ] given by

νλ(dx) := ϕλ(x) dx :=
√
λ/2 cos(

√
2λx) dx.

If the situation is clear, we write M := Mλ, g := gλ, ϕ := ϕλ and ν := νλ. In
order to begin our analysis we give a proof of the following well-known result
reformulated for the context of the inverse first-passage time problem.

Proposition 2.3.52. Let λ > 0. The constant boundary function b ≡ Mλ

is a solution to the inverse first-passage problem with respect to gλ and initial
distribution νλ, i.e. Pνλ (τb > t) = e−λt.

Proof. Define f : [0,∞) × R → R, f(t, x) := eλt cos(mx) for m > 0. We
introduce the process Yt := f(t,Xt). Then, by the Itô formula,

Yt − Y0 =

∫ t

0
(λ− m2

2
)eλs cos(mXs) ds−

∫ t

0
eλsm sin(mXs) dWs.

We observe that setting m :=
√

2λ makes Yt − Y0 a martingale, and hence
Zt := Yt∧τb − Y0 defines a martingale. Note that

τb = τM = inf{t > 0 : |Xt| = M}

is almost surely finite under Px for |x| ≤M and therefore, using cos(mXτb) =
cos(mM) = 0, we have

cos(mx) = Ex [Zt + Y0] = Ex
[
Yt1{τM>t}

]
+ Ex

[
YτM1{τM≤t}

]
= Ex

[
eλt cos(mXt)1{τM>t}

]
+ Ex

[
eλτM cos(mXτM )1{τM≤t}

]
= eλtEx

[
cos(mXt)1{τM>t}

]
= eλt

∫ M

−M
p
_
−(t, x, y) cos(my) dy,

where p_
−(t, x, y) denotes the transition density of Px (Xt ∈ dy, τM > t). It

holds that p_
−(t, x, y) = p

_
−(t, y, x), for example this can be seen by the repre-

sentation of p_
−(t, x, y) from Proposition 8.2 in Chapter 2 of [PS78], which is

written down explicitly in Proposition B.1.5. By this we obtain

cos(mx) = eλt
∫ M

−M
p
_
−(t, y, x) cos(my) dy. (2.30)
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Now consider

1 =

∫ M

−M
ν(dx) =

∫ M

−M

m

2
cos(mx) dx

= eλt
∫ M

−M

m

2

∫ M

−M
p
_
−(t, y, x) cos(my) dy dx

= eλt
∫ M

−M

∫ M

−M
p
_
−(t, y, x) dx ν(dy)

= eλt
∫ M

−M
Py (τM > t) ν(dy) = eλtPν (τM > t) .

Consequently, Pν (τM > t) = g(t).

Remark 2.3.53. Note that in view of Pνλ (τMλ
> t) = e−λt by (2.30) in fact

we have shown that

Pνλ (Xt ∈ dx |τMλ
> t) = νλ(dx), (2.31)

which means that νλ is a quasi-stationary distribution. The equation (2.31)
can be also established by direct computation by the representation of the
transition density from Proposition B.1.5. The quasi-stationarity of νλ is a
well-known result and essentially one of the simplest examples in the context of
quasi-stationary distributions of diffusions in a bounded interval. For example
see the more general result Theorem 6.4 in [CMS13]. This property of νλ is
the same as the fact that ϕλ corresponds to a time-independent solution of the
one-dimensional free boundary problem of [Ber+21].

By the comparison principle, this leads to the following statement about
the solutions corresponding to the exponential distribution.

Corollary 2.3.54. Let λ > 0 and µ � νλ. The standard boundary function
b ∈ ifpt(gλ, µ) satisfies b ≤Mλ.

Proof. By Proposition 2.3.52 the constant barrier bν ≡ π/(2
√

2λ) is the stan-
dard solution corresponding to g and ν. Therefore, by Theorem 2.3.34, we
have b ≤ π

2
√

2λ
.

In view of Corollary 2.3.54 for µ � νλ the integral equation of Propo-
sition A.2.1 holds for b ∈ ifpt(gλ, µ). In the context of the free boundary
problem in [BBP19] a one-sided version of the integral equation is stated as
tool to study the asymptotic behavior of the free boundary. For the mere
asymptotic long time limit we can carry out a direct analysis using methods
from quasi-stationary distributions.

Proposition 2.3.55. Let b ∈ ifpt(gλ, µ), such that supp(µ) ⊆ [−Mλ,Mλ] with
µ({−Mλ,Mλ}) = 0 and b ≤Mλ. Then

lim
t→∞

b(t) = Mλ.
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Proof. Write τM := inf{t > 0 : |Xt| ≥ M}. By Lemma B.1.7 we have that
Px (Xt ∈ dy |τM > t)→ ν in total variation exponentially fast and uniformly in
x ∈ (−M,M). By Theorem B.1.8 this means that the so-calledQ-process given
by Qx := limt→∞ Px ( · |τM > t) exists and has the property that Qx(Xt ∈ ·)
converges for all x ∈ (−M,M) in total variation to a measure β. By Propo-
sition B.1.6 and the formula from Theorem B.1.8 we obtain that β has the
density 4

π

√
2
λϕ

2. We now assume that

lim inf
t→∞

b(t) < M,

which implies that there exists δ ∈ (0,M) and a sequence (tn)n∈N such that
tn ↗ ∞ and b(tn) < M − δ for all n ∈ N. Define the boundary function
γ(t) = M − δ · 1{tn:n∈N}(t) and let Iδ := [−M + δ,M − δ]. Note that we have
b(t) ≤ γ(t) ≤M for t ≥ 0. Let m ∈ N. Then for t ≥ tm holds

Pµ (τb > t) ≤ Pµ (τγ > t) = Pµ (τγ > t, τM > t)

= Pµ (τM > t)Pµ (τγ > t |τM > t)

≤ Pµ (τM > t)Pµ (τγ > tm |τM > t)

= Pµ (τM > t)Pµ (Xt1 ∈ Iδ, . . . , Xtm ∈ Iδ |τM > t) .

Now note, that by Theorem B.1.8 we have in particular that

eλtPx (τM > t) =
Px (τM > t)

Pν (τM > t)
→ 4

π

√
2

λ
ϕ(x).

Consequently, using the definition of the Q-process of Theorem B.1.8, we have

1 = lim
t→∞

eλtPµ (τb > t)

≤ lim
t→∞

eλtPµ (τM > t)Pµ (Xt1 ∈ Iδ, . . . , Xtm ∈ Iδ |τM > t)

=

∫
R

2

Mλ
ϕ(x) dµ(x)Qµ(Xt1 ∈ Iδ, . . . , Xtm ∈ Iδ). (2.32)

We claim that

Qµ(Xt1 ∈ Iδ, . . . , Xtm ∈ Iδ)→ 0

as m→∞. By Theorem B.1.8 we have also that

dTV (Qx(Xt ∈ · ), β)→ 0 (2.33)

for every x ∈ (−M,M). Now, by Theorem 4.1 in Chapter 6 of [Tho00] the
tail-σ-algebra T of X is Qx-trivial for every x ∈ (−M,M). The set

E :=
⋃
l∈N

⋂
k≥l
{Xtk ∈ Iδ}
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lies in T and thus we have Qx(E) ∈ {0, 1}. Note that β(Iδ) < 1, and thus
ε := 1− β(Iδ) > 0. By (2.33) choose Lx ∈ N large enough such that

Qx(Xs ∈ Iδ)− β(Iδ) ≤ sup
t≥tLx

dTV (Qx(Xt ∈ · ), β) ≤ ε

2

for s ≥ tLx . This implies

Qx(Xs ∈ Iδ) ≤
ε

2
+ β(Iδ) =

ε

2
+ 1− (1− β(Iδ)) = 1− ε

2

for all s ≥ tLx . Now for l ≥ Lx holds

Qx

⋂
k≥l
{Xtk ∈ Iδ}

 ≤ Qx(Xtl ∈ Iδ) ≤ 1− ε

2
.

We obtain

Qx(E) = lim
l→∞

Qx

⋂
k≥l
{Xtk ∈ Iδ}

 ≤ 1− ε

2
< 1

and therefore Qx(E) = 0, hence∫
R
Qx(Xtk ∈ Iδ ∀k ∈ N) dµ(x) ≤

∫
R
Qx(E) dµ(x) = 0.

But in view of (2.32) this yields a contradiction. Eventually, this means our
assumption was false, therefore limt→∞ b(t) = M .

Recall that in the context of the Shiryaev boundary the Brownian motion
starts in the origin.

Proposition 2.3.56. The solution b ∈ ifpt(gλ, 0) is non-decreasing.

Proof. Let s > 0 and set µs := P0 (Xs ∈ · |τb > s). Further define the shifted
boundary function bs(t) := b(s+ t). By the Markov property one sees that

Pµs (τbs > t) = P0 (τb > s+ t |τb > s) = e−λt

which means that bs ∈ ifpt(g, µs). Note that bs is standard. By Theorem 2.3.34
we deduce that bs ≥ b1(0,∞]. Since s was arbitrary this implies b(t) ≤ b(t+ s)
for all t > 0 and s ≥ 0, which proves the statement.

Using the monotonicity and exploiting the explicit formula of the density
given in Proposition B.1.5 in a naive way we obtain the following speed of
convergence.
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Proposition 2.3.57. Let b ∈ ifpt(gλ, 0). Then

|Mλ − b(t)| ≤Mλ −

(
8 log

(
4
π + 1

)
π2t

+
1

M2
λ

)− 1
2

≤
M4
λ · 8 log

(
4
π + 1

)
π2

· 1

t

for t > 0.

Proof. Define λ(m) := π2

8m2 for m > 0. Let t > 0. Suppose for a fixed h > 0
holds |M − b(t)| ≥ h, this is b(t) ≤M − h. Then since b is non-decreasing we
have by the integrated density of Proposition B.1.6 that

e−λ(M)t = P0 (τb > t)

≤ P0 (τM−h > t) =
4

π

∞∑
k=0

1

2k + 1
e−(2k+1)2λ(M−h)t sin

(
(2k + 1)

π

2

)
=

4

π

∞∑
k=0

1

2k + 1
e−(2k+1)2λ(M−h)t(−1)k

≤ 4

π

∞∑
k=0

e−(4k+1)2λ(M−h)t

≤ 4

π
e−λ(M−h)t

∞∑
k=0

e−8kλ(M−h)t

≤ 4

π
e−λ(M−h)t

(
1− e−8λ(M−h)t

)−1
.

From this we obtain the inequality

1− e−8λ(M−h)t ≤ 4

π
e−(λ(M−h)−λ(M))t,

which transforms into the inequality

1 ≤ 4

π
e−(λ(M−h)−λ(M))t + e−8λ(M−h)t

= e−(λ(M−h)−λ(M))t

(
4

π
+ e−(7λ(M−h)+λ(M))t

)
≤
(

4

π
+ 1

)
e−(λ(M−h)−λ(M))t,

which implies

log
(

4
π + 1

)
t

≥ λ(M − h)− λ(M)

=
π2

8(M − h)2
− π2

8M2
=
π2

8

(
1

(M − h)2
− 1

M2

)
.
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We obtain

1

(M − h)2
≤ 8

π2

log
(

4
π + 1

)
t

+
1

M2
,

which transforms into

h ≤M −

(
8

π2

log
(

4
π + 1

)
t

+
1

M2

)− 1
2

.

The first inequality of the statement follows by choosing h = M − b(t).
For the remaining inequality we compute

M −

(
8 log

(
4
π + 1

)
π2t

+
1

M2

)− 1
2

≤

M −(8 log
(

4
π + 1

)
π2t

+
1

M2

)− 1
2

M +

(
8 log

(
4
π + 1

)
π2t

+
1

M2

)− 1
2


≤M2 −

(
8 log

(
4
π + 1

)
π2t

+
1

M2

)−1

=

(
M2

(
8 log

(
4
π + 1

)
π2t

+
1

M2

)
− 1

)
·

(
8 log

(
4
π + 1

)
π2t

+
1

M2

)−1

≤M4 8 log
(

4
π + 1

)
π2t

which finishes the proof.

Remark 2.3.58. In the situation of Proposition 2.3.57, by which we mean
the convergence from below, in the context of a free boundary problem, The-
orem 2.2 of [Ber+21] proves an exponential convergence rate.

Another way to establish the statement of Proposition 2.3.56 would be
an application of Theorem 2.3.47, which will be done below for νλ as initial
measure.

Corollary 2.3.59. For λ ≥ λ0 every b ∈ ifpt(gλ0 , νλ) is non-decreasing.

Proof. At first observe that by Theorem 2.3.17 we have

νλ = Pνλ (Xt ∈ · |τMλ
> t) �|lr| Pνλ (Xt ∈ ·) = Ptνλ. (2.34)

Futhermore, we have that

lim
x↘0

ϕλ(Mλ − x)

x
= λ > λ0 = lim

t↘0

1− e−λ0t

t
.

By Theorem 2.3.47 the statement follows.
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Remark 2.3.60. At this point it is worth mentioning that the generalized
absolute value density ϕ∗λ of ϕλ is in fact a totally positive function of order 2,
which is shown in Proposition A.3 and which also implies the condition (2.34)
of Theorem 2.3.47 by Lemma 2.2.18.

Figure 2.4: Shiryaev boundary corresponding to Exp(1) and µ = δ0.

The following statement collects the properties of the Shiryaev boundary,
which follow from the scaling property of the exponential distribution. A
visualization of the Shiryaev boundary can be found in Figure 2.4.

Proposition 2.3.61. Let bλ ∈ ifpt(gλ, 0) and λ1 > λ2 > 0. Then

(i) bλ1 ≤ bλ2,

(ii) bλ is locally Lipschitz continuous on (0,∞),

(iii) supt≥0 |bλ2(t)− bλ1(t)| ≤Mλ2 −Mλ1.

Proof. We have that gλ2(t)/gλ1(t) = e(λ1−λ2)t is increasing. Combining the
statements of Lemma 2.3.7 and Theorem 2.3.34 yields (i). Corollary 2.3.45
yields (ii).
Let t ≥ 0. By (i) and the fact that b is non-decreasing we have

|bλ2(t)− bλ1(t)| = bλ2(t)− bλ1(t) =
1√
λ2
b(λ2t)−

1√
λ1
b(λ1t)

≤ 1√
λ2
b(λ1t)−

1√
λ1
b(λ1t) =

(
1√
λ2
− 1√

λ1

)
b(λ1t)

≤
(

1√
λ2
− 1√

λ1

)
M1 = Mλ2 −Mλ1 ,

which yields (iii).



98 CHAPTER 2. THE INVERSE FIRST-PASSAGE TIME PROBLEM

Remark 2.3.62. By Lemma 2.3.4 it follows limt→0 b(t) = b(0) = 0. Thus we
have shown that b is continuous and even almost everywhere differentiable on
(0,∞). Regularity properties of the boundary corresponding to the exponen-
tial distribution have been also derived indirectly in the literature. Depending
on the context the considered problem relates to reflected or standard Brown-
ian motion or different initial distributions. For the two-sided case in [Ber+21]
the continuity of the solution of a certain free boundary problem correspond-
ing to the inverse first-passage time problem for the exponential distribution
is shown. Further, the authors establish a local Hölder continuity for non-
decreasing solutions. In the one-sided situation, continuity follows from sev-
eral more general criteria for continuity. For example, see [Che+11], [EJ16]
and [Pot21]. The work of [CCS21] provides sufficient criteria for smoothness
on (0,∞), which include the exponential distribution. In the context of the
one-sided free boundary problem corresponding to the exponential distribu-
tion [BBP19] showed continuity of the boundary solution, and in [Lee20] the
local existence of a continuously differentiable solution was established. More
details were given in the introduction.

Results on further survival distributions

In the following we will consider other examples of survival distributions g, for
which properties of the solution to the inverse first-passage time problem can
be derived. The numerical visualizations are done by a method we will discuss
in Subsection 2.4.3.

Figure 2.5: Boundary function corresponding to Lomax(1, 1).

Corollary 2.3.63 (cf. Figure 2.5). Let g be the survival distribution corre-
sponding to the Lomax distribution with scale λ > 0 and shape α > 0, this
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is g(t) =
(
1 + t

λ

)−α. The standard boundary function b ∈ ifpt(g, 0) is non-
decreasing and locally Lipschitz continuous.

Proof. Note that tg =∞. We have

∂2

∂t2
log(g(t)) =

α

λ2

1(
a+ t

λ

)2 ≥ 0.

Thus g is logconvex and non-constant on (0,∞). Hence, Theorem 2.3.47 yields
that b is non-decreasing. Further, let η ∈ (0, 1). Then

gη(t)

g(t)
=

(
λ+ ηt

λ+ t

)−α
.

Thus

∂

∂t
log

(
gη(t)

g(t)

)
= −α

(
1

λ/η + t
− 1

λ+ t

)
≥ 0.

Theorem 2.3.43 yields that b is Lipschitz continuous.

Figure 2.6: Lomax boundaries approximating the Shiryaev boundary.

Corollary 2.3.64 (cf. Figure 2.6). Let gn(t) := (1 + t
n)−λn with λ > 0, this is

gn corresponds to the Lomax distribution with scale n ∈ N and shape λn, and
g(t) = e−λt. Let bn ∈ ifpt(µ, gn) and b ∈ ifpt(µ, g) be standard. Then bn ↘ b
pointwise.
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Proof. Since gn/gn+1 and gn/g are non-decreasing and tg =∞ Theorem 2.3.34
implies

b ≤ bn+1 ≤ bn.

Now Lemma 2.1.8 yields that bn converges in Hausdorff distance to its point-
wise limit b̃ given by b̃(t) = limn→∞ bn(t). By the inequality above we also
obtain b ≤ b̃. On the other hand we have by Lemma 2.3.35 that

bn1(0,∞)
Γ→ b1(0,∞).

Thus b coincides with b̃ on (0,∞). But since b is standard we obtain

b(0) = lim inf
t→0

b(t) = lim inf
t→0

b̃(t) ≥ b̃(0)

and analogously b̃(∞) ≤ b(∞). All in all this yields b = b̃.

Figure 2.7: Boundary function corresponding to Kumaraswamy(1/2, 1).

Regarding the next statement cf. Figure 2.7, which suggests that the suf-
ficient condition of Theorem 2.3.47 is not sharp. Intuitively, this is due to the
fact that a positive slope of the boundary function is not only induced by the
decreasing hazard rate of g, but also by the concentration of mass away from
0.

Corollary 2.3.65. Let g be the survival distribution corresponding to the Ku-
maraswamy distribution with parameters α, β > 0, this is g(t) = (1− tα)β for
t ∈ [0, 1]. The standard boundary function b ∈ ifpt(g, 0) is non-decreasing on
[0, (1− α)1/α).
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Proof. We have for t ∈ (0, 1)

∂2

∂t2
log(g(t)) = −βαt

α−2(α− 1 + tα)

(1− tα)2
.

Thus ∂2

∂t2
log(g(t)) ≥ 0 for t ≤ (1−α)1/α. Theorem 2.3.47 yields the statement.

Figure 2.8: The uniform boundary and Lerche’s boundary bL on (0, 1).

The next example shows that by the direct first-passage time problem we
can deduce statements about certain inverse first passage-time problems via
Theorem 2.3.34.

Corollary 2.3.66 (cf. Figure 2.8). Let g(t) = max(1− t/a, 0) be the survival
distribution of the uniform distribution on (0, a). Then for b ∈ ifpt(g, δ0) holds

b(t) ≥
√
t log

(a
t

)
for all t ∈ (0, a).

Proof. By Example 4 in Section 1 of Chapter 1 in [Ler86] we have that the
first-passage time τbL of the boundary function

bL(t) := 1(0,a)(t)

√
t log

(a
t

)
, (2.35)
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has density

1√
2π

√
log
(
a
t

)
at

, t ∈ (0, a)

which is non-increasing on (0, a). This implies that the distribution of τbL is
smaller in the likelihood ratio order that the distribution of τb, which implies
that this ordering holds also with respect to the hazard rate order, for example
see Theorem 1.C.1 from [SS07]. By Theorem 2.3.34 this means that b ≥ bL.

We will end this subsection with an example concerning the connection
between the first-passage and the last-exit time.

Proposition 2.3.67. Let γ > 0 and σb := sup{t > 0 : |Xt| ≥ b(t)} and

b(t) =

√
t log

(
t

γ

)
1(γ,∞)(t).

Then under P0 the last-exit time σb has the density

1√
2π
t−

3
2

√
γ log

(
t

γ

)
for t ∈ (γ,∞).

Proof. Recall the boundary bL from (2.35). As above, by Example 4 in Section
1 of Chapter 1 in [Ler86] we know the density of the first-passage time τbL of
the boundary function bL(t). It holds for t > 1

a that

t · bL
(

1

t

)
= 1(0,a)

(
1

t

)√
t log(at) = 1( 1

a
,∞)(t)

√
t log(at).

By the computation of Remark 2.3.8 it follows for t > 1
a that

∫ a

1
t

1√
2π

√
log
(
a
u

)
au

du = P0

(
τbL >

1

t

)
= P0 (σb < t) .

Differentiating in t yields that σb has the density

1√
2π
t−

3
2

√
log(ta)

a
.

Choosing γ = 1
a yields the statement.
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2.4 Simulation and interacting particle
representation

In the introduction we presented a connection of the inverse first-passage time
problem with a free boundary problem. For appropriate partial differential
equations sometimes solutions can be found to correspond to so-called hydro-
dynamic limits of interacting particle systems. Roughly speaking, these cases
often have in common that the macroscopic, continuous dynamic described
by the partial differential equation corresponds to microscopic effects between
finitely many particles and a driving dynamic of the particles.

In this section we will discuss two possible choices of interacting particle
systems, which give rise to the inverse first-passage time problem in this man-
ner. First of all we will shortly address the mass-preserving particle system
with branching and selection analyzed in [De +19a] and propose a generaliza-
tion in order to connect the system with the general inverse first-passage time
problem. For this generalized particle system we conjecture the corresponding
generalized result of [De +19a]. Subsequently, we analyze a particle system
without branching, which could be seen as a simplification of the system in [De
+19a], since it only holds a similar selection mechanism. We prove that the
hydrodynamic limit exists and corresponds to the general inverse first-passage
time problem. At last, motivated by and connected to the non-branching
particle system, but usable without it, we specify the Monte-Carlo approxima-
tion of Anulova-type boundary approximants, which is used in this thesis to
generate visualizations of solutions.

An overview about related work on particle systems is to be found in
Remark 2.4.6.

2.4.1 Generalization of the N -Branching Brownian motion

As discussed in the introduction the work of [De +19a] studies the so-called
N -Branching Brownian motion, abbreviated with N -BBM, and shows that the
hydrodynamic limit can be identified as a solution to a certain free boundary
problem, which is a description of the inverse first-passage time problem for
the exponential distribution. Let us recall the model of the N -BBM in R with
respect to the general description by [Ber+20]. The particle system starts with
N particles at positions (X1

0 , . . . , X
N
0 ) in RN , each independently sampled from

µ ∈ P. Every particle moves independently as Brownian motion and branches
independently at rate one. At any branching time the particle with the lowest
fitness is removed from the system, where fitness is measured by a function
F : R → R. The particle system is illustrated in Figure 2.9. The work [De
+19a] studied the particular case F(x) = x, but [Bec19] pointed out that their
proof also works for the case F(x) = −|x|. In order to connect this with the
inverse first-passage time problem for a lower semicontinuous function b we
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Xt
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X1
0

X3
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X2
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X3
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Figure 2.9: Illustration of the N -BBM with N = 3, F(x) = −|x|.

introduce the notation

τFb := inf{t > 0 : F(Xt) ≤ −b(t)},

where Xt is the Brownian motion with initial distribution µ.
In [De +19a] the following hydrodynamic limit was identified as solution

of a free boundary problem.

Theorem 2.4.1 ([De +19a]). Let F(x) = x and g(t) = e−t. Let µ be absolutely
continuous with support bounded from below. Let b : (0,∞)→ R be the unique
lower semicontinuous solution such that Pµ

(
τFb > t

)
= g(t). Then for t ∈

(0, tg) and a ∈ R it holds almost surely

1

N

N∑
i=1

1{F(Xi
t)≥a}

n→∞−→ Pµ
(
F(Xt) ≥ a

∣∣τFb > t
)
.

The statement of Theorem 2.4.1 gives rise to a connection to the general
inverse first-passage time problem. Regarding this we propose a modification
of the N -BBM to generalize this model in order for the hydrodynamic limit to
correspond to more general survival distributions.

Let g be a survival distribution which is absolutely continuous on (0, tg).
Note that g is differentiable almost everywhere. Let

h(t) := − ∂

∂t
log(g(t)), for t ∈ (0, tg) almost everywhere,

denote the hazard rate of g. Then the generalized model for the time horizon
[0, tg) is as follows, where we only modify the rate of branching. Again the
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particle system starts with N particles at random positions (X1
0 , . . . , X

N
0 ) in

RN . Every particle moves independently as a Brownian motion and branches
independently with rate h. In other words, the process of the number of
branching events of one particle is given by a Poisson process on [0, tg) with
intensity measure h(t) dt. The remaining part of the model remains unchanged:
at any branching time the particle with the lowest fitness is removed from the
system, where fitness is measured by a function F : R→ R. For an illustration
see again Figure 2.9.

We make the following conjecture.

Conjecture 2.4.2. Let F(x) = x or F(x) = −|x|. Furthermore, let µ be
a probability measure and g be an absolutely continuous survival distribution.
With these more general assumptions the statement of Theorem 2.4.1 is true.

From a computational point of view, the N -BBM with generalized branch-
ing rate would be hard to realize since the successive computations of the
branching times afford the computation of new conditioned survival distri-
butions within every branching time step. Therefore, we want to turn our
attention to a simpler particle system, which has the additional advantage of
being not restricted to differentiable survival distributions.

2.4.2 A particle system without branching

In the following we present a simpler type of particle system without branching,
which also gives rise to the inverse first-passage time problem.

The matter of this section is motivated by the following illustrative pro-
cess. Let g be a survival distribution. For a particle number N ∈ N consider
N independent Brownian motions, which we will refer to as particles in the
following. Independently from the particles, let T1, . . . , TN be independent and
identically distributed random variables with T1 ∼ g. Let

T(1) ≤ . . . ≤ T(N)

be the corresponding order statistics. Let (Xi
t)i∈A(t),t≥0 be the process, which

results from the following scheme. At every timepoint T(i) we remove the
particle with the greatest absolute value from the system and define the index
set A(t) of surviving particles up to a time t as the particles, which have not
been removed up to this time. For an illustration compare Figure 2.10.

A more formal definition will be given later on. The main result of this
section will be a generalized version of the following result.

Theorem 2.4.3. Let b ∈ ifpt(g, 0). Then for t ∈ (0, tg) holds

lim
N→∞

1

N

∑
i∈A(t)

δXi
t
([−a, a]) = P0 (Xt ∈ [−a, a], τb > t) , ∀a ∈≥ 0,

almost surely, where (Xt)t≥0 denotes the Brownian motion.



106 CHAPTER 2. THE INVERSE FIRST-PASSAGE TIME PROBLEM
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Figure 2.10: Illustration of the non-branching system with N = 4.

Let us now prepare the formal definitions. For a particle number N and a
initial distribution µ ∈ P let (B1

0 , . . . , B
N
0 ) ∼ µ⊗N . Let B1, . . . , BN be inde-

pendent Brownian motions with initial configurations B1
0 , . . . , B

N
0 independent

from the increments. Furthermore, from now on let

0 =: tN0 < tN1 ≤ . . . ≤ tNN (2.36)

be N + 1 fixed timepoints. Let the number of timepoints up to a time t be
denoted with

kN (t) := sup{k ∈ {1, . . . , N} : tNk ≤ t}.

Set A0 := {1, . . . , N} and define inductively for ` ∈ {1, . . . , N}

A` := A`−1 \ {arg max
i∈A`−1

|Bi
tN`
|}.

The continuous time particle system we want to consider is then the system
with empirical measure

χNt :=
1

|AkN (t)|
∑

i∈A
kN (t)

δBit .

To describe it in words, the change of AkN (t) over time only consists of removing
the particle with highest absolute value from the system at the timepoints
tNk . Note that we have |AkN (t)| = N − kN (t). We will prove the following
statement, which implies Theorem 2.4.3 due to the law of large numbers. It is
worth mentioning that we do not impose conditions on g.
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Theorem 2.4.4. Assume that for every t ∈ (0, tg) holds

lim
N→∞

kN (t)

N
= 1− g(t). (2.37)

Let b ∈ ifpt(g, µ) with symmetric µ ∈ P1 and fix t ∈ (0, tg). Then

lim
N→∞

χNt ([−a, a]) = Pµ (Xt ∈ [−a, a] |τb > t) , ∀a ≥ 0,

almost surely, where (Xt)t≥0 denotes the Brownian motion.

Remark 2.4.5. The assumption (2.37) is to be understood as an assumption
on the sequence of ordered timepoints

tN1 ≤ . . . ≤ tNN

from (2.36). The two main situations, which we want to cover up with this
assumption are the following.

• As in the situation of Theorem 2.4.3 let T(k) denote the k-order statistic
of the N samples T1, . . . , TN of the distribution given by g. Then if we
choose tNk := T(k) for fixed t ∈ (0, tg) we have

kN (t)

N
=

1

N

N∑
k=1

1{Tk≤t} → P (T1 ≤ t) = 1− g(t)

almost surely as N →∞.

• A deterministic choice of timepoints is given by tNk := t
(N)
k , where

t
(N)
k := g−1

(
N − k
N

)
, k ∈ {1, . . . , N},

and g−1 denotes the generalized inverse as defined in (A.4). The property
limN→∞N

−1kN (t) = 1− g(t) is established in Lemma A.5.1.

Before we begin with the preparation for the proof of Theorem 2.4.4 we
give a short overview on the related work in the context of this particle system.

Remark 2.4.6. The system presented in Theorem 2.4.4 can be seen as a
very simple case of a more general class of particle systems with topological
interactions. Prototypes of this generic term are the basic model presented
in [Car+16] and the N -BBM model of [De +19a] discussed in the previous
subsection, in which removed particles are re-injected into the system. The
latter model has been further modified in [De +19b] and generalized in [GS21],
where the generalization consists of a branching rate dependent on the position
of the particles. On top of that, the work of [Ata20] presents two very general
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models. Concerning the first one, the injection of new particles is governed by
a given function I : [0,∞)→ [0,∞) and a so-called injection measure, and the
removal of particles is also governed by a function J : [0,∞) → [0,∞), but
restricted to the right-most particle. Under suitable conditions existence of the
hydrodynamic limit is proven, where it is identified as a solution to a partial
differential equation with an additional so-called order-respecting absorption
condition.

Let g be a given survival distribution. Then, if we choose in the model
of [Ata20] the injections to be zero, i.e. I ≡ 0, and the removal function to
be J(t) := 1 − g(t), we end up with the one-sided version of the system from
Theorem 2.4.4 with the specific removal times

tNk = inf{t ≥ 0 : bN(1− g(t))c ≥ k},

which correspond to the second point of Remark 2.4.5 and meet the condition
of Theorem 2.4.4 by Lemma A.5.1. The conditions of the result of [Ata20]
are fulfilled, if g is absolutely continuous and Hölder continuous with expo-
nent larger than 1/2. Therefore, the intersection of the work of [Ata20] and
this thesis is that, for survival distributions fulfilling the conditions mentioned
above and the timepoints of the second point of Remark 2.4.5, the hydrody-
namic limit exists, but is characterized in different ways.

In the second model of [Ata20], there are also no injections, but the removal
is restricted to empirical quantiles among the particles, where the target quan-
tile does not depend on the number of particles. Hence, the system cannot be
adjusted to remove the right-most particle.

Let us begin with the analysis of the system in Theorem 2.4.4. From now
on for m ∈ N let (t

(m)
k )k∈{1,...,nm} be another fixed sequence such that

0 =: t
(m)
0 < t

(m)
1 ≤ t(m)

2 ≤ . . . ≤ t(m)
nm ≤ t

g (2.38)

with nm ∈ N ∪ {∞}. We will use these timepoints as fixed time lattice, when
the number of particles goes to infinity.

We denote the index of the largest lattice point left from a timepoint t ∈
(0, tg) again with

k(m)(t) := sup{k ∈ N0 : t
(m)
k ≤ t}

and the corresponding lattice point by (t)m := t
(m)

k(m)(t)
. The largest index which

results in the same lattice point as the lattice point of an index k ∈ {1, . . . , nm}
is then [k]n := k(m)(t

(m)
k ).

Parametrized with m ∈ N we will construct two processes whose empirical
measures serve as almost sure lower and upper bounds of χNt in the two-sided
stochastic order for every N ≥ m. The following technique of notation and
construction for the particle system is inspired from [De +19a].
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Define A+
0 := {1, . . . , N} and inductively for k ∈ {1, . . . , nm}

A+
k := A+,m

k := {i ∈ A+
k−1 : |Bi

t
(m)
k

| ≤ q+,N
k }

where

q+,N
k := q+,N,m

k := inf

a ≥ 0 :
∑

i∈A+
k−1

1{|Bi
t
(m)
k

|≤a} ≥ N − k
N (t

(m)
k )

 . (2.39)

In words, for the construction of A+
k , from lattice point t(m)

k−1 to t(m)
k we count

the amount of particles, which would have been removed in between these
lattice points in the non-branching process and remove this amount at time
t
(m)
k at once from the system by cutting off the particles with largest absolute
value at time t(m)

k . For an illustration compare Figure 2.11.

Xt

t
tN1 tN2 t

(m)
1

tN3 tN4 t
(m)
2

tg

X1
0

X3
0

X2
0

X4
0

Figure 2.11: Illustration of the A+-process for the non-branching system with
N = 4.

Further let A−1 be an independently, uniformly chosen random subset of
{1, . . . , N} with N − k(N)(t

(m)
1 ) elements and for k ∈ {2, . . . , nm} define in-

ductively

A−k := A−,Nk := {i ∈ A−k−1 : |Bi

t
(m)
k−1

| ≤ q−,Nk }

where

q−,Nk := q−,N,mk := inf

a ≥ 0 :
∑

i∈A−k−1

1{|Bi
t
(m)
k−1

|≤a} ≥ N − k
N (t

(m)
k )

 .
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In words, for the construction of A−k , we again count the amount of particles
which are removed from the non-branching process between t

(m)
k−1 and t

(m)
k ,

but in contrary to A+
k we remove this amount of particles from the system

by cutting off the particles with largest absolute value at time t(m)
k−1. For an

illustration compare Figure 2.12.
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tN2 tN3 t
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0

X2
0

X3
0

X4
0

Figure 2.12: Illustration of the A−-process for the non-branching system with
N = 4.

Define the empirical measures

ξ±,Nk :=
1

|A±k |
∑
i∈A±k

δBi
t
(m)
k

and

χ±,Nt :=
1

|A±
k(m)(t)

|
∑

i∈A±
k(m)(t)

δBit , (2.40)

as long as |A±k |, |A
±
k(m)(t)

| > 0. We want to compare the empirical measures of

the processes at the timepoints (t
(m)
k )k∈{1,...,nm} by a suitable coupling, which

in our case demands that the particle numbers of both processes are equal.
Note that by the definitions it follows immediately that we have

|A`| = N − `, ` ∈ {1, . . . , N}

and

|A±k | = N − kN (t
(m)
k ), k ∈ {1, . . . , nm}.
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Therefore, we have at time t(m)
k that

|A±
k(m)(t

(m)
k )
| = N − kN (t

(m)
k ) = |A

k(N)(t
(m)
k )
|.

It is more convenient to couple rather the discrete time step processes
instead of just the continuous time process, even if it is the case that for a
k ∈ {1, . . . , nm − 1} holds t(m)

k = t
(m)
k+1, which then implies that in the discrete

time process from k to k + 1 does not happen anything. We define

ξm,Nk :=
1

|A
kN (t

(m)
k )
|

∑
i∈A

kN (t
(m)
k

)

δBi
t
(m)
k

and

χm,Nt :=
1

|AkN ((t)m)|
∑

i∈A
kN ((t)m)

δBit ,

as long as |A
kN (t

(m)
k )
|, |AkN ((t)m)| > 0.

We will prove that the processes χ±,Nt can serve us as stochastic barriers
for χm,Nt .

Lemma 2.4.7. There is a coupling (ξ̃+,N , ξm,N , ξ̃−,N ) of the tripel of random
measures (ξ+,N , ξm,N , ξ−,N ) such that for every k

ξ̃+,N
k � ξm,Nk � ξ̃−,Nk

almost surely, and thus there is also a coupling χ̃+,N
t � χm,Nt � χ̃−,Nt .

Before we prove Lemma 2.4.7 we make some preparations. Our strategy
will be an induction from discrete time step to discrete time step. Concerning
such a single time step, the only thing we have to ensure about our constructed
coupling is then, that the ordering property is preserved by the dynamic of
the involved processes. In order to achieve this in a rigorous way, we will
first introduce notation, which enables us to crystallize out the dynamic of
the involved processes in one discrete step. Then we state some auxiliary
statements about set orderings, which will help us to construct the desired
couplings.

Let M ∈ N and y, x, z ∈ RM . Let By, Bx, Bz denote M -dimensional
Brownian motions with By,i

0 = yi, B
x,i
0 = xi and Bz,i

0 = zi. Fix t ≥ 0 and
timepoints s0 := 0 ≤ s1 ≤ . . . ≤ sj ≤ t with j ≤M . Define

A+,y
t (j) := {i ∈ {1, . . . ,M} : |By,i

t | ≤ q
+,y
t (j)}
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where

q+,y
t (j) := q+,y

t := inf{a ∈ R :

M∑
i=1

1{|By,it |≤a}
≥M − j}.

Let Ax := {1, . . . ,M} and for ` ∈ {2, . . . , j}

Ax(s1, . . . , s`) := Ax(s1, . . . , s`−1) \ { arg max
i∈Ax(s1,...,s`−1)

|Bx,i
s`
|}.

Further define

A−,z(j) := {i ∈ {1, . . . ,M} : |zi| ≤ q−,z(j)}

where

q−,z(j) := q−,z := inf{a ≥ 0 :

M∑
i=1

1{|zi|≤a} ≥M − j}.

Set ordering

For a tuple x ∈ Rn and a subset A ⊆ R let us introduce the notation

|x ∩A| :=
n∑
i=1

1A(xi) = |{i ∈ {1, . . . , n} : xi ∈ A}|.

Definition 2.4.8. For tuples x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , ym) ∈
Rm define the partial order

x � y :⇔ |x ∩ [−a, a]| ≥ |y ∩ [−a, a]| ∀a ≥ 0. (2.41)

In this case, call x dominated by y.

Note that, if x � y, it directly follows that n ≥ m.

Lemma 2.4.9. Let x ∈ Rn and y ∈ Rm with n ≥ m, such that |xi| ≤ |yi| for
all i ∈ {1, . . . ,m}. Then x � y.

Proof. Let a ∈ R. We have

I := {i ∈ {1, . . . ,m} : |yi| ≤ a} ⊆ J := {j ∈ {1, . . . ,m} : |xj | ≤ a}.

Thus

|x ∩ [−a, a]| = |{i ∈ {1, . . . , n} : |xi| ≤ a}| ≥ |J | ≥ |I| = |y ∩ [−a, a]|,

which shows the statement.
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Lemma 2.4.10. Let x ∈ Rn and y ∈ Rm. Then the following conditions are
equivalent:

(i) x � y

(ii) n ≥ m and there exists an injective function π : {1, . . . ,m} → {1, . . . , n}
such that |xπ(j)| ≤ |yj | for every j ∈ {1, . . . ,m}.

If |yi| and |xi| are non-decreasing in i then π can be chosen as identity.

Proof. Without loss of generality we can assume that |yi| and |xi| are non-
decreasing in i. Then the implication from (ii) to (i) follows from Lemma 2.4.9
above. For the remaining direction note that (i) directly implies n ≥ m. By our
initial assumption it is left to show that |xj | ≤ |yj | for every {j ∈ {1, . . . ,m}}.
For this we will carry out an induction over m. For m = 1 the statement is
clear. Let now m ≥ 2, x � y, and assume the implication from (i) to (ii) holds
for all tuples x̃ and (m − 1)-tuples ỹ. We will first show that |x1| ≤ |y1|. In
order to see this consider

1 ≤ |y ∩ [−|y1|, |y1|]| ≤ |x ∩ [−|y1|, |y1|]|.

Since |xi| is non-decreasing in i this implies |x1| ≤ |y1|. Now define

x̃ = (x2, . . . , xn) and ỹ = (y2, . . . , ym).

Let a ≥ 0. If a ≥ |y1| we have

|(y2, . . . , yk) ∩ [−a, a]| = |y ∩ [−a, a]| − 1

≤ |x ∩ [−a, a]| − 1 = |(x2, . . . , xn) ∩ [−a, a]|,

where the last equality holds since |x1| ≤ |y1| ≤ a. This means x̃ = {x2, . . . , xn} �
ỹ = {y2, . . . , ym}. But by the assumption of the induction for (m − 1)-tuples
this means that for j ∈ {2, . . . ,m} we have |xj | ≤ |yj |. All in all we have
shown that |xj | ≤ |yj | for all j ∈ {1, . . . ,m}.

Definition 2.4.11. For a tuple z = (z1, . . . , zm) ∈ Rm define %k with k ≤ m
as the function, which assigns to z the k-tuple consisting of the first k entries
of z, which have the smallest absolute value. This means %k(z) is defined by

• %k(z) = (zι(1), . . . , zι(k))
for an increasing, injective map ι : {1, . . . , k} → {1, . . . ,m},

• for i ∈ {1, . . . , k} and j ∈ {1, . . . ,m}, if |xι(i)| = |xj | for ι(i) ≥ j, then
j ∈ ι({1, . . . , k}),

• |xi| ≤ |xj | for all i ∈ ι({1, . . . , k}), j /∈ ι({1, . . . , k}).

Lemma 2.4.12. Let x ∈ Rn and y ∈ Rm be tuples with n ≥ m and x � y.
Then for every m ≤ k ≤ n holds %k(x) � y.
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Proof. By Lemma 2.4.10 we can assume without loss of generality that |xi| and
|yi| are non-decreasing in i. Note that then %k(x) = (x1, . . . , xk). For every
j ∈ {1, . . . ,m} we have by the lemma above that |xj | ≤ |yj |. By Lemma 2.4.9
above the statement follows.

In the following situation the set ordering can be expressed by the two-sided
stochastic order.

Lemma 2.4.13. Let x ∈ Rn and y ∈ Rm and n = m. Then x � y if and only
if 1

n

∑n
i=1 δxi �

1
m

∑m
j=1 δyj .

Proof. Since n = m, it holds for a ≥ 0 that

|x ∩ [−a, a]| ≥ |y ∩ [−a, a]| ⇔
n∑
i=1

1[−a,a](xi) ≥
m∑
i=1

1[−a,a](yi)

⇔ 1

n

n∑
i=1

1[−a,a](xi) ≥
1

m

n∑
i=1

1[−a,a](yi).

This was to be shown.

Coupling of the stochastic barriers

Now we begin with the preparation of the coupling, where the key idea is to
imitate the dynamic of the particle process with coupled Brownian paths. The
existence of the required couplings in the following statements can be seen from
the explicit construction of Lemma 2.2.4. Between tuples, for the formulation
of the following lemmas we use the partial order from (2.41).

Recall thatBy, Bx, Bz denoteM -dimensional Brownian motions withBy,i
0 =

yi, B
x,i
0 = xi and B

z,i
0 = zi.

Lemma 2.4.14 (cf. Figure 2.13). Let x, y ∈ RM . Assume that By and Bx

are coupled such that |By,i
t | ≤ |B

x,i
t | for all t ≥ 0 and i ∈ {1, . . . ,M}. Then

(By,i
t )i∈A+,y

t (j) � (Bx,i
t )i∈Ax(s1,...,sj).

Proof. Since

(By,i
t )i∈{1,...,M} � (Bx,i

t )i∈{1,...,M} � (Bx,i
t )i∈Ax(s1,...,sj)

and |Ax(s1, . . . , sj)| = M − j by Lemma 2.4.12 we can deduce that

(By,i
t )i∈A+,y

t (j) = %M−j((B
y,i
t )i∈{1,...,M}) � (Bx,i

t )i∈Ax(s1,...,sj)

which proves the statement.
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By
t , Bx

t

ts1 s2

y1

y2

y3

x1

x2

x3

By,1
t

By,2
t

By,3
t

Bx,1
t

Bx,2
t

Bx,3
t

Figure 2.13: Illustration of the coupling construction from Lemma 2.4.14 for
M = 3 and j = 2. The common colors black, blue and red indicate the
pairing of the coupling, where the gray colorization represents the removal
from Ax(s1, . . . , sj) and A+,y, respectively. Note that the removal from A+,y

takes place at time t.

Lemma 2.4.15 (cf. Figure 2.14). Let x, z ∈ RM . Let Bx be given as in
Lemma 2.4.14 and assume that x � z. Then there exists a Brownian motion
Bz such that

(Bx,i
t )i∈Ax(s1,...,sj) � (Bz,i

t )i∈A−,z(j).

Proof. Define sj+1 := t. Assume that for ` ∈ {0, 1, . . . , j} up to time s` we
have found Bz and the ordering is already fulfilled, this is we assume

x̃ := (Bx,i
s`

)i∈Ax(s1,...,s`) � (Bz,i
s`

)i∈A−,z(j) =: z̃.

By Lemma 2.4.10 there exists an injective map π0 : A−,z(j) → Ax(s1, . . . , s`)
such that |z̃i| ≥ |x̃π0(i)| for all i ∈ A−,z(j). Let W z̃ be a |z̃|-dimensional
Brownian motion with W z̃

0 = z̃ such that |W z̃,i
u | ≥ |Bx,π0(i)

u+s`
| for all u ≥ 0 and

i ∈ A−,z(j). Set

Bz,i
s := W z̃,i

s−s` , s ∈ (s`, s`+1], i ∈ A−,z(j).
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Bx
t , Bz

t

ts1 s2

x1

x2

x3

z1

z2

z3

Bz,2
t

Bz,3
t

Bx,1
t

Bx,2
t

Bx,3
t

Bz,1
t

Figure 2.14: Illustration of the coupling construction from Lemma 2.4.15 for
M = 3 and j = 2. The common color black indicates the pairing of the cou-
pling, where the gray colorization represents the removal from Ax(s1, . . . , sj)
and A−,z, respectively. Note that the removal from A−,z takes place at time
zero.

We have then by Lemma 2.4.10 that (Bx,i
s`+1)i∈Ax(s1,...,s`) � (Bz,i

s`+1)i∈A−,z(j)

since

|Bz,i
s`+1
| = |W z̃,i

s`+1−s` | ≥ |B
x,π0(i)
s`+1

|

for all i ∈ A−,z. By Lemma 2.4.12 follows that

(Bx,i
s`+1

)i∈Ax(s1,...,s`+1) = %Ax(s1,...,s`)−1((Bx,i
s`+1

)i∈Ax(s1,...,s`)) � (Bz,i
s`+1

)i∈A−,z(j),

where %k is defined in Definition 2.4.11. By induction the statement follows.

With these coupling lemmas we are now ready to proof Lemma 2.4.7.
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Proof of Lemma 2.4.7. Assume the statement for k ∈ {0, . . . , nm − 1}. Let
M := N − kN (t

(m)
k ) = |A

k(N)(t
(m)
k )
| and x, y, z ∈ RM such that

1

M

M∑
i=1

δyi = ξ̃+,N

t
(m)
k

,
1

M

M∑
i=1

δxi = ξ̃m,N
t
(m)
k

,
1

M

M∑
i=1

δzi = ξ̃−,N
t
(m)
k

.

By the asssumption of the induction we have y � x � z. The underlying
process from ξm,Nk to ξNk+1 has its particles removed at the timepoints

s1 := tN
kN (t

(m)
k )+1

− t(m)
k , . . . , sj := tN

kN (t
(m)
k+1)
− t(m)

k

with altogether

j := kN (t
(m)
k+1)− kN (t

(m)
k )

particles removed. (As mentioned before j = 0 is possible.) To achieve a
coupling between ξm,Nk+1 and ξ−,Nk+1 we can take an arbitrary Brownian motion
Bx and corresponding to that, Bz as produced in Lemma 2.4.15 with start in
x and z. For the coupling between ξm,Nk+1 and ξ+,N

k+1 we take a Brownian motion
By with start in y coupled to Bx in the way required by Lemma 2.4.14. We
obtain a coupling of ξ+,N

k+1 , ξ
m,N
k+1 , ξ

−,N
k+1 by defining

ξ̃+,N
k+1 :=

1∣∣A+,y

t
(m)
k+1−t

(m)
k

(j)
∣∣ ∑
i∈A+,y

t
(m)
k+1
−t(m)
k

(j)

δ
By,i

t
(m)
k+1
−t(m)
k

,

ξm,Nk+1 :=
1∣∣Ax(s1, . . . , sj)

∣∣ ∑
i∈Ax(s1,...,sj)

δ
Bx,i

t
(m)
k+1
−t(m)
k

,

ξ̃−,Nk+1 :=
1∣∣A−,z(j)∣∣ ∑

i∈A−,z(j)

δ
Bz,i

t
(m)
k+1
−t(m)
k

,

where we use the notation of Lemma 2.4.15 and Lemma 2.4.14. Since

N − k(N)(t
(m)
k+1) =

∣∣A+,y

t
(m)
k+1−t

(m)
k

(j)
∣∣

= |Ax(s1, . . . , sj)| = |A−,z(j)|

we have by Lemma 2.4.14 and Lemma 2.4.15 combined with Lemma 2.4.13
that this coupling fulfills the desired ordering property, namely that

ξ̃+,N
k+1 � ξ

m,N
k+1 � ξ̃

−,N
k+1 .

The statement for the discrete time processes follows therefore by induction.
Now observe, if for t ≥ 0 we have t > t

(m)

k(m)(t)
we can start with the coupled

configurations of ξ̃+,N

k(m)(t)
, ξm,N
k(m)(t)

, ξ̃−,N
k(m)(t)

and choose the increments of By and
Bz in such a way that the particle systems stay ordered up to time t. See for
example the proof of Lemma 2.2.5 for such a coupling.
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Hydrodynamic limit of stochastic barriers

As next step we will establish a hydrodynamic limit for the lower and upper
stochastic barriers χ±,Nt from (2.40).

We define α(m)
k := g(t

(m)
k )/g(t

(m)
k−1) for k ∈ {1, . . . , nm} such that t(m)

k < tg.
Let ν−,m1 := P

t
(m)
1

(µ) and

ν+,m
k := T

α
(m)
k

◦P
t
(m)
k −t(m)

k−1

◦ . . . ◦ T
α
(m)
1

◦ P
t
(m)
1

(µ),

ν−,mk := P
t
(m)
k −t(m)

k−1

◦ T
α
(m)
k

◦ . . . ◦ P
t
(m)
2 −t(m)

1

◦ T
α
(m)
2

◦ P
t
(m)
1

(µ)

and

q+
k := q+,m

k := sup supp(ν+,m
k ), k ∈ {1, . . . , nm}, (2.42)

q−k := q−,mk := sup supp(T
α
(m)
k

◦ ν−,mk−1 ), k ∈ {2, . . . , nm},

for k such that t(m)
k < tg. Set q+

k := 0 if t(m)
k = tg.

Theorem 2.4.16. Assume that for every t ∈ (0, tg) holds

lim
N→∞

kN (t)

N
= 1− g(t).

Let ϕ : R→ R be a measurable and bounded function and t ∈ (0, tg). Then

χ±,Nt (ϕ)→ Pt−(t)m ◦ ν
±,m
k(m)(t)

(ϕ)

almost surely as N →∞.

Proof. In order to bring the empirical process together with the deterministic
quantiles, in the following we use ideas from the proof of Proposition 3 in [De
+19a]. Define F±,N0 (i) := F±0 (i) := 1 and

F+,N
k (i) := 1{|Bi

t
(m)
1

|≤q+,N1 ,...,|Bi
t
(m)
k

|≤q+,Nk }, k ≥ 1

F+
k (i) := 1{|Bi

t
(m)
1

|≤q+1 ,...,|Bi
t
(m)
k

|≤q+k }
, k ≥ 1

F−,N1 (i) := F−1 (i) := 1{i∈A−1 }

F−,Nk (i) := F−,N1 (i)1{|Bi
t
(m)
1

|≤q−,N2 ,...,|Bi
t
(m)
k−1

|≤q−,Nk }, k ≥ 2

F−k (i) := F−1 (i)1{|Bi
t
(m)
1

|≤q−2 ,...,|Bi
t
(m)
k−1

|≤q−k }
, k ≥ 2.

The definition for F−,N1 differs since we only defined A−1 to be a independently,
uniformly chosen random subset of {1, . . . , N} with N − k(N)(t

(m)
1 ) elements.
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We first claim that for every k ∈ {0, . . . , k(m)(t)} we have that

1

N

N∑
i=1

∣∣F±,Nk (i)− F±k (i)
∣∣→ 0 (2.43)

almost surely as N → ∞ and will deduce the desired statement by using the
assertion of the claim. We have for any s ≥ t(m)

k that

∣∣ |A±k |
N
· 1

|A±k |
∑
i∈A±k

ϕ(Bi
s)− g(t

(m)
k )P

s−t(m)
k

ν±,mk (ϕ)
∣∣

≤
∣∣ 1

N

∑
i∈A±k

ϕ(Bi
s)−

1

N

N∑
i=1

ϕ(Bi
s)F

±
k (i)

∣∣
+
∣∣ 1

N

N∑
i=1

ϕ(Bi
s)F

±
k (i)− g(t

(m)
k )P

s−t(m)
k

ν±,mk (ϕ)
∣∣. (2.44)

The first term tends to zero as N →∞ by observing

∣∣ 1

N

∑
i∈A±k

ϕ(Bi
s)−

1

N

N∑
i=1

ϕ(Bi
s)F

±
k (i)

∣∣
=
∣∣ 1

N

N∑
i=1

ϕ(Bi
s)F

±,N
k (i)− 1

N

N∑
i=1

ϕ(Bi
s)F

±
k (i)

∣∣
≤ ‖ϕ‖∞

1

N

N∑
i=1

∣∣F±,Nk (i)− F±k (i)
∣∣→ 0

almost surely. For the second term we treat the lower and upper process
differently. By the law of large numbers we have that

∣∣ 1

N

N∑
i=1

ϕ(Bi
s)F

+
k (i)− g(t

(m)
k )P

s−t(m)
k

ν+,m
k (ϕ)

∣∣
=
∣∣ 1

N

N∑
i=1

ϕ(Bi
s)F

+
k (i)− Eµ

[
ϕ(B1

s )F+
k (1)

] ∣∣→ 0 (2.45)

almost surely as N → ∞. For the upper barrier recall that A−1 was defined
to be a independently, uniformly chosen random subset of {1, . . . , N} with
N − k(N)(t

(m)
1 ) elements. It follows that

1

N

N∑
i=1

F−1 (i) =
N − kN (t

(m)
1 )

N
→ g(t

(m)
1 )
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and thus by Lemma B.1.9 and the law of large numbers it follows that

1

N

N∑
i=1

ϕ(Bi
s)F

−
k (i) =

1

N

N∑
i=1

ϕ(Bi
s)F

−
1 (i)1{|Bi

t
(m)
1

|≤q−2 ,...,|Bi
t
(m)
k−1

|≤q−k }

N→∞−→ g(t
(m)
1 )Eµ

[
ϕ(B1

s )1{|B1

t
(m)
1

|≤q−2 ,...,|B1

t
(m)
k−1

|≤q−k }

]
= g(t

(m)
k )P

s−t(m)
k

ν−,mk (ϕ) (2.46)

almost surely as N →∞. Thus the quantity in (2.44) converges to zero almost
surely. Therefore, by noting that |A±k |/N → g(t

(m)
k ) almost surely, the desired

statement follows by choosing k = k(m)(t) and s = t ≥ t(m)

k(m)(t)
= (t)m.

We will now prove the claim from (2.43) by induction. Note that by the
definitions the claim is true for k = 0 and in the case of the upper barrier
also for k = 1. For this assume that the convergence of (2.43) is true for
fixed k ∈ {0, . . . , k(m)(t) − 1}. We will treat the lower and the upper barrier
separately. We have

1

N

N∑
i=1

∣∣F+,N
k+1 (i)− F+

k+1(i)
∣∣

=
1

N

N∑
i=1

∣∣F+,N
k (i)1{|Bi

t
(m)
k+1

|≤q+,Nk+1 }
− F+

k (i)1{|Bi
t
(m)
k+1

|≤q+k+1}
∣∣

≤ 1

N

N∑
i=1

∣∣F+,N
k (i)1{|Bi

t
(m)
k+1

|≤q+,Nk+1 }
− F+,N

k (i)1{|Bi
t
(m)
k+1

|≤q+k+1}
∣∣

+
1

N

N∑
i=1

∣∣F+,N
k (i)1{|Bi

t
(m)
k+1

|≤q+k+1}
− F+

k (i)1{|Bi
t
(m)
k+1

|≤q+k+1}
∣∣

≤ 1

N

N∑
i=1

F+,N
k (i)

∣∣1{|Bi
t
(m)
k+1

|≤q+,Nk+1 }
− 1{|Bi

t
(m)
k+1

|≤q+k+1}
∣∣

+
1

N

N∑
i=1

∣∣F+,N
k (i)− F+

k (i)
∣∣.

The last term is tending to zero by assumption while the remaining term can
be written as follows.

1

N

N∑
i=1

F+,N
k (i)

∣∣1{|Bi
t
(m)
k+1

|≤q+,Nk+1 }
− 1{|Bi

t
(m)
k+1

|≤q+k+1}
∣∣

=
1

N

N∑
i=1

sgn(q+,N
k+1 − q

+
k+1)F+,N

k (i)(1{|Bi
t
(m)
k+1

|≤q+,Nk+1 }
− 1{|Bi

t
(m)
k+1

|≤q+k+1}
)
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=
∣∣ 1

N

N∑
i=1

F+,N
k (i)1{|Bi

t
(m)
k+1

|≤q+,Nk+1 }
− F+,N

k (i)1{|Bi
t
(m)
k+1

|≤q+k+1}
∣∣

≤
∣∣ 1

N

N∑
i=1

F+,N
k (i)1{|Bi

t
(m)
k+1

|≤q+,Nk+1 }
− F+

k (i)1{|Bi
t
(m)
k+1

|≤q+k+1}
∣∣

+
∣∣ 1

N

N∑
i=1

F+
k (i)1{|Bi

t
(m)
k+1

|≤q+k+1}
− F+,N

k (i)1{|Bi
t
(m)
k+1

|≤q+k+1}
∣∣

≤
∣∣ 1

N

N∑
i=1

F+
k+1(i)− 1

N

N∑
i=1

F+,N
k+1 (i)

∣∣+
1

N

N∑
i=1

∣∣F+,N
k (i)− F+

k (i)
∣∣.

Again by assumption the last term tends to zero. For the upper barrier, we
assume k ≥ 2 and we have

1

N

N∑
i=1

∣∣F−,Nk+1 (i)− F−k+1(i)
∣∣

=
1

N

N∑
i=1

∣∣F−,Nk (i)1{|Bi
t
(m)
k

|≤q−,Nk+1 }
− F−k (i)1{|Bi

t
(m)
k

|≤q−k+1}
∣∣

≤ 1

N

N∑
i=1

∣∣F−,Nk (i)1{|Bi
t
(m)
k

|≤q−,Nk+1 }
− F−,Nk (i)1{|Bi

t
(m)
k

|≤q−k+1}
∣∣

+
1

N

N∑
i=1

∣∣F−,Nk (i)1{|Bi
t
(m)
k

|≤q−k+1}
− F−k (i)1{|Bi

t
(m)
k

|≤q−k+1}
∣∣

≤ 1

N

N∑
i=1

F−,Nk (i)
∣∣1{|Bi

t
(m)
k

|≤q−,Nk+1 }
− 1{|Bi

t
(m)
k

|≤q−k+1}
∣∣

+
1

N

N∑
i=1

∣∣F−,Nk (i)− F−k (i)
∣∣.

The last term is tending to zero by assumption while the remaining term can
be written as follows.

1

N

N∑
i=1

F−,Nk (i)
∣∣1{|Bi

t
(m)
k

|≤q−,Nk+1 }
− 1{|Bi

t
(m)
k

|≤q−k+1}
∣∣

=
1

N

N∑
i=1

sgn(q−,Nk+1 − q
−
k+1)F−,Nk (i)(1{|Bi

t
(m)
k

|≤q−,Nk+1 }
− 1{|Bi

t
(m)
k

|≤q−k+1}
)

=
∣∣ 1

N

N∑
i=1

F−,Nk (i)1{|Bi
t
(m)
k

|≤q−,Nk+1 }
− F−,Nk (i)1{|Bi

t
(m)
k

|≤q−k+1}
∣∣

≤
∣∣ 1

N

N∑
i=1

F−,Nk (i)1{|Bi
t
(m)
k

|≤q−,Nk+1 }
− F−k (i)1{|Bi

t
(m)
k

|≤q−k+1}
∣∣
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+
∣∣ 1

N

N∑
i=1

F−k (i)1{|Bi
t
(m)
k

|≤q−k+1}
− F−,Nk (i)1{|Bi

t
(m)
k

|≤q−k+1}
∣∣

≤
∣∣ 1

N

N∑
i=1

F−k+1(i)− 1

N

N∑
i=1

F−,Nk+1 (i)
∣∣+

1

N

N∑
i=1

∣∣F−,Nk (i)− F−k (i)
∣∣.

Again by assumption the last term tends to zero. Thus the assertion left to
show for the claim is

∣∣ 1

N

N∑
i=1

F±k+1(i)− 1

N

N∑
i=1

F±,Nk+1 (i)
∣∣→ 0

almost surely as N →∞. But on the one hand we have almost surely

1

N

N∑
i=1

F±,Nk+1 (i) =

∣∣A±k+1

∣∣
N

=
N − kN (t

(m)
k+1)

N
→ g(t

(m)
k+1).

On the other hand it holds almost surely

1

N

N∑
i=1

F±k+1(i)→ g(t
(m)
k+1),

which is clear by the arguments in (2.45) and (2.46) for ϕ ≡ 1. This finishes
the proof.

Lemma 2.4.17. Fix t ∈ (0, tg) and recall the notation (t)m = t
(m)

k(m)(t)
. Assume

that

lim
N→∞

kN (t)

N
= 1− g(t)

and limm→∞ g((t)m) = g(t). Then, for measurable, bounded ϕ : R→ R holds

lim
m→∞

lim sup
N→∞

∣∣χNt (ϕ)− χm,Nt (ϕ)
∣∣ = 0

almost surely.
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Proof. We have that∣∣χNt (ϕ)− χm,Nt (ϕ)
∣∣

=

∣∣∣∣∣∣ 1

|AkN (t)|
∑

i∈A
kN (t)

ϕ(Bi
t)−

1

|AkN ((t)m)|
∑

i∈A
kN ((t)m)

ϕ(Bi
t)

∣∣∣∣∣∣
≤ 1

|AkN (t)|
∑

i∈A
kN ((t)m)

∣∣ϕ(Bi
t)−

|AkN (t)|
|AkN ((t)m)|

ϕ(Bi
t)
∣∣

+
1

|AkN (t)|
∑

i∈A
kN ((t)m)

\A
kN (t)

∣∣ϕ(Bi
t)
∣∣

≤ 2‖ϕ‖∞
1

|AkN (t)|

(
|AkN ((t)m)| − |AkN (t)|

)
= 2‖ϕ‖∞

1

N − kN (t)

(
kN (t)− kN ((t)m)

)
N→∞−→ 2‖ϕ‖∞

1

g(t)
(g((t)m)− g(t))

which converges to 0 as m→∞ by assumption.

Now we will put all results together to yield Theorem 2.4.4.

Proof of Theorem 2.4.4. Let t ∈ (0, tg). Without loss of generality we assume
that g(t) < 1. Using the coupling of Lemma 2.4.7 we get that for a ≥ 0 we
have almost surely

χ̃+,N
t ([−a, a]) ≥ χm,Nt ([−a, a]) ≥ χ̃−,Nt ([−a, a])

yielding by Theorem 2.4.16 that

Pt−(t)mν
+,m

k(m)(t)
([−a, a]) ≥ lim sup

N→∞
χm,Nt ([−a, a])

≥ lim inf
N→∞

χm,Nt ([−a, a]) ≥ Pt−(t)mν
−,m
k(m)(t)

([−a, a]) (2.47)

almost surely. Now we make the specific choice t(m)
k := k2−nt. Note that then

(t)m = t and ν±,mk coincide with µ+,m
k and µ̃−,mk from Theorem 2.3.33. By

the weak convergence implied by Theorem 2.3.32 we have then, since µt is
non-atomic, that

lim
m→∞

ν+,m

k(m)(t)
([−a, a]) = lim

m→∞
ν−,m
k(m)(t)

([−a, a]) = µt([−a, a]).

Thus for a ≥ 0, as a consequence of (2.47) and Lemma 2.4.17 we obtain that

lim
N→∞

χNt ([−a, a]) = µt([−a, a]) (2.48)
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almost surely. In order to see that the almost sure event can be chosen inde-
pendent from a, note that we get that the limit of (2.48) holds for all rational
a ≥ 0 on one almost sure event. By the continuity of a 7→ µt([−a, a]) it follows
that on this almost sure event, the limit of (2.48) holds for all a ≥ 0.

Remark 2.4.18. The proof of Theorem 2.4.4 relied on the convergence of the
sequences ν±,m

k(m)(t) , which was achieved by choosing dyadic numbers as lattice
points and using the convergence result Theorem 2.3.33. When g is continuous
this convergence is also guaranteed by Proposition A.5.4 for the lattice points
given by (2.51).

2.4.3 Simulation of solutions

In the inverse first-passage time problem some research has focused on solving
the problem numerically, which in particular leads to visualization techniques
for the boundary function. This is particularly interesting since in general the
existing and unique boundary can be expected to not have a certain closed
form which can be determined.

In the following we will give a short overview of the methods in the lit-
erature. In the context of credit risk modeling the work of [HW01] proposes
a numerical approximation of a discretization scheme similar to the scheme
in [Anu80]. The work of [AZ01] proposes to solve a free boundary problem
related to the problem in [Che+06] numerically. The mathematical work of
[ZS09] presents two approaches. The one approach is based on a continuous,
piecewise approximation, which is estimated by a Monte-Carlo method. The
other approach numerically approximates the solution of an integral equation,
the so-called Master equation (cf. Section 14, [PS06]). The author of [Abu06]
transfers the latter to the case of reflected Brownian motion. The authors of
[GP21] propose a modified method by estimating the integral of the equation
by using the empirical distribution of g. Another approach can be found in
[SZ11], which is sometimes called tangent-method.

In the following we present a Monte-Carlo approach resulting from Subsec-
tion 2.4.2, which we used in this thesis to visualize the unknown solution. The
method will be specified in Definition 2.4.20. Essentially, it is a Monte-Carlo
approximation of Anulova’s scheme of quantiles, but with a different choice of
discrete time points.

Let a survival distribution g and an initial measure µ, and timepoints

0 < t
(m)
1 ≤ t(m)

2 ≤ . . . t(m)
nm ≤ t

g

be given. We recall the quantiles

q+,m
k := sup supp(ν+,m

k ),

where

ν+,m
k := T

α
(m)
k

◦ P
t
(m)
k −t(m)

k−1

◦ . . . ◦ T
α
(m)
1

◦ P
t
(m)
1

(µ)
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with α
(m)
k := g(t

(m)
k )/g(t

(m)
k−1). In the case of dyadic timesteps, the discrete

boundary functions

bm(s) :=

{
q+,m
k : s = t

(m)
k , k ∈ {1, . . . , nm},

∞ : else,
s ∈ [0, tg],

served us as approximants of the solution of ifpt(g, µ) as m → ∞ in the
Hausdorff distance. Here we use the general time points from (2.38). Now,
Theorem 2.4.16 suggests the alternative approach to approximate the deter-
ministic quantiles q+,m

k by the random quantiles from (2.39). Let us recall the
setting. For N ∈ N we had timepoints tN0 < tN1 ≤ . . . ≤ tNN and the number of
timepoints up to a time t was denoted with

kN (t) := sup{k ∈ {0, 1, . . . , N} : tNk ≤ t}.

For independent Brownian motions B1, . . . , BN we defined the empirical quan-
tiles

q+,N,m
k := inf

a ≥ 0 :
∑

i∈A+
k−1

1{|Bi
t
(m)
k

|≤a} ≥ N − k
N (t

(m)
k )

 , (2.49)

where inductively for k ∈ {1, . . . , nm} we defined

A+
k−1 := {i ∈ {1, . . . , n} : |Bi

t
(m)
k−1

| ≤ q+,N
k−1 , . . . , |B

i

t
(m)
1

| ≤ q+,N
1 }.

Eventually, we obtain the sequence of random boundary functions

bNm(s) :=

{
q+,N,m
k : s = t

(m)
k , k ∈ {1, . . . , nm},

∞ : else,
s ∈ [0, tg], (2.50)

which can be seen as the corresponding Monte-Carlo method. The next lemma
justifies that this yields an appropriate candidate for an approximation of bm.

Lemma 2.4.19. Assume that for every t ∈ (0, tg) holds

lim
N→∞

kN (t)

N
= 1− g(t).

Then, for every k ∈ {1, . . . , nm} it holds that

lim
N→∞

bNm(tmk ) = bm(tmk )

almost surely.
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Proof. Assume that lim infN→∞ q
+,N,m
k < R < q+,m

k . We obtain by (2.43) in
the proof of Theorem 2.4.16 that

0 = lim sup
N→∞

1

N
(|{i ∈ A+,N

k : |Bi

t
(m)
k

| ≤ q+
k }| − |{i ∈ A

+,N
k : |Bi

t
(m)
k

| ≤ q+,N
k }|)

≥ lim inf
N→∞

1

N
(|{i ∈ A+,N

k : |Bi

t
(m)
k

| ≤ q+
k }| − |{i ∈ A

+,N
k : |Bi

t
(m)
k

| ≤ R}|)

= lim
N→∞

1

N

∑
i∈A+,N

k

1(R,q+k )(|B
i

t
(m)
k

|) = Pµ
(
|X

t
(m)
k

| ∈ (R, q+
k ), τbm > t

(m)
k

)
> 0.

If we assume that lim supN→∞ q
+,N,m
k > R > q+,m

k , we analogously obtain a
contradiction. These contradictions show that limN→∞ q

+,N,m
k = q+,m

k almost
surely.

For our simulations we work with specific lattice points, which are adapted
on the structure of g and result in a simpler algorithm. Additionally, it can be
hoped that this choice yields better accuracy and efficiency of the Monte-Carlo
simulation.

The lower barrier approximation using g-quantiles

For the rest of the subsection we choose the lattice points t0 := 0 and

t
(m)
k := g−1

(
m− k
m

)
, k ∈ {1, . . . ,m} (2.51)

where g−1 denotes the generalized inverse of g, this is

g−1(q) := inf{t ≥ 0 : g(t) ≤ q}, q ∈ [0, 1]. (2.52)

For the discrete boundary function bm we have due to the definition and
Lemma A.5.1 that

Pµ (τbm > t) = Pµ (τbm > (t)m) = g((t)m)→ g(t)

for t ∈ (0, tg), which implies that τbm → g in distribution. Using Lemma 2.1.17,
the compactness of the set of boundary functions and the uniqueness it fol-
lows that bm

Γ→ b in the Hausdorff distance. Furthermore, note that by
Lemma A.5.1 we have km(t)

m → 1− g(t). This justifies the use of the following
approximation.

Definition 2.4.20. Let g be a survival distribution and µ ∈ P. For m ∈
N let (t

(m)
k )k∈{1,...,m} be given by (2.51). For N ≥ m set tNk := t

(N)
k . Our

Monte-Carlo approximation of b ∈ ifpt(g, µ) consists of generating the random
functions

bNm : {t(m)
0 , t

(m)
1 , . . . , t(m)

m } → [0,∞], t
(m)
k 7→ q+,N,m

k

from (2.50).
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Remark 2.4.21. The specific choice of tNk and t(m)
k in Definition 2.50 simplifies

the definition of bNm(t
(m)
k ) for those N ≥ m such thatm|N . Namely, if N = m`,

using the definition (2.39) we have

bNm(t
(m)
k ) = q+,m

k = inf

a ≥ 0 :
∑

i∈A+
k−1

1{|Bi
t
(m)
k

|≤a} ≥ N − k
N (t

(m)
k )


= inf

a ≥ 0 :
∑

i∈A+
k−1

1{|Bi
t
(m)
k

|≤a} ≥ m`− k`

 .

Hence, in the procedure at every time step the constant amount of ` particles
is removed.

A common practice to present the approximation methods both for the
inverse and the direct first-passage time problem is the application for a par-
ticular example of a solution to the direct first-passage time problem, for which
the pair of the boundary function and survival distribution is known in an ex-
plicit way and given by a closed-form expression. For the one-sided problem
the commonly used example is the so-called Daniel’s boundary, see [Dan69],
which was constructed with the method of images. Usual examples for the two-
sided problem are affine linear boundaries, see for example [And60], [Abu02]
and [SY11], and square-root boundaries as in [NFK99]. In these cases the
simplicity of the boundaries is paid with very cumbersome survival functions.
Moreover, other specific boundaries for the two-sided case can be constructed
from the already mentioned method of images, see for example [Dan82] and
[Ler86]. From the latter we will take the following pair in order to apply our
approximation.

Example 2.4.22. For b(t) = 1(0,1)(t)
√
−t log(t) and initial distribution δ0

the corresponding survival distribution is according to [Ler86] given by

P0 (τb > t) = 1− 2Φ(−b(t)/
√
t)− 2

π
b(t)

= 1− 2Φ(−
√
− log(t))− 2

π

√
−t log(t).

Since the exact boundary is known, in Figure 2.15 we can make a comparison
between the approximation and b, which we will call Lerche’s boundary, where
the generalized inverse of g is obtained numerically from the density of τb.

In Figure 2.15 we observe that this approximation seems to have similar
monotonicity and boundedness properties as the lower barrier approximation
of Anulova in Section 2.3.2. This behaviour is made rigorous by Proposi-
tion A.5.5, which in particular states that for n,m ∈ N with m | n we have

b+m(t
(m)
k ) ≤ b+n (t

(m)
k ) ≤ b(t(m)

k ), k ∈ {1, . . . ,m}. (2.53)
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Figure 2.15: The approximated boundary for Lerche’s boundary withN = 107.

For the case when the exact boundary function is not known and shall be
visualized it is a problem not to know how large one has to choose m to obtain
an appropriate visualization. In the following we provide at least a heuristic
solution to this problem.

The path of the maximal particle

Since the empirical measure of the non-branching process is converging to the
marginal distribution of the Brownian motion conditioned to not have crossed
the boundary solution to the inverse first-passage time problem, the trajectory
of the maximal absolute value of the particles is also a canonical candidate to
be a visualization of the actual boundary function. To be more precise, we
define the process

MN
t := max{|Bi

t| : i ∈ Ak(N)(t)}

for t ∈ (0, tg), where Ak(N)(t) is the set of particles alive in the system intro-
duced in the Subsection 2.4.2.

We can observe the following by Theorem 2.4.4.

Proposition 2.4.23. Let g be a survival distribution and µ ∈ P1. Let b ∈
ifpt(g, µ). For t ∈ (0, tg) we have

lim inf
N→∞

MN
t ≥ b(t)

almost surely.
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Figure 2.16: Path of the maximal particleMN
t of the non-branching system for

the survival distribution corresponding to Lerche’s boundary with N = 105.

Proof. Assume that lim infN→∞M
N
t < R < b(t), we obtain

0 = lim sup
N→∞

|Ak(N)(t)|
N

 1

|Ak(N)(t)|
∑

i∈A
k(N)(t)

δBit(−b(t), b(t))− 1


= lim sup

N→∞

1

N
(|{i ∈ Ak(N)(t) : |Bi

t| ≤ b(t)}| − |{i ∈ Ak(N)(t) : |Bi
t| ≤MN

t }|)

≥ lim inf
N→∞

1

N
(|{i ∈ Ak(N)(t) : |Bi

t| ≤ b(t)}| − |{i ∈ Ak(N)(t) : |Bi
t| ≤ R}|)

= lim
N→∞

1

N

∑
i∈A

k(N)(t)

1(R,b(t))(|Bi
t|) = Pµ (|Xt| ∈ (R, b(t)), τb > t) > 0,

which shows that lim infN→∞M
N
t ≥ b(t) almost surely.

As example, compare Figure 2.16, where we can see that the trajectory
of the maximal absolute value of the particles behaves similar to the known
boundary.

Remark 2.4.24. From this we can derive a visual criterion to decide whether
m is large enough. Note that by (2.53) we have that

q+,m
k = bm(t

(m)
k ) ≤ b(t(m)

k ).
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Thus, if we can assume that the Monte-Carlo method performs well enough, i.e.
assuming q+,N,m

k ≈ bm(t
(m)
k ) and b(t(m)

k ) /MN

t
(m)
k

, we have a visual criterion for

whether m is large enough, i.e. an appropriate simulation of b, by demanding

q+,N,m
k ≈MN

t
(m)
k

.

For this we compare the following example regarding Figure 2.17.

Figure 2.17: Approximated boundaries for the uniform distribution with N =
107.

Example 2.4.25. We consider g(t) = max(1 − t, 0), which corresponds to
the uniform distribution. Note that t(m)

k = g−1((m − k)/m) = k/m. For
m = 104 the affinity of the paths ofMN

t and bNm indicates that both pathes are
good visualizations of the unknown boundary corresponding to the uniform
distribution.

An example with a singular survival distribution via order statistics

Another possible choice of t(m)
k and tNk are the order statistics of the distri-

bution g, which in some sense approximate the timepoints g−1((m − k)/m).
Again g((t)m)→ g(t), at least a.s., yields that bm → b in Hausdorff distance.

Example 2.4.26. In this example let g correspond to the Cantor distribution,
this means g corresponds to the weak limit limn→∞Uniform(Cn), where Cn is
the n-th step in the construction of the Cantor set. An approximative sample
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of g can be obtained by

2

K∑
j=1

3−jUj ,

where Uj are independent Bernoulli variables with parameter 1/2. Setting
K = ∞ would result in an exact sample of g. Generating approximated
order statistics in this way for g yields the approximation in Figure 2.18 of
b ∈ ifpt(g, 0).

Figure 2.18: Approximated boundary for the Cantor distribution with N =
107, m = 104 and K = 104.





Chapter 3

The inverse first-passage time
problem with soft-killing

In this chapter we will be concerned with the inverse first-passage time problem
with soft-killing, which we directly formulate in terms of Markov processes.
Suppose that (Xt)t≥0 is a Markov process on a filtrated probability space
(Ω,F , (Ft)t≥0,P) with transition semigroup (Pt)t≥0 and cadlag paths. For a
measurable function b : (0,∞)→ [−∞,∞] let

τ sk
b := inf

{
t ≥ 0 :

∫ t

0
1(−∞,b(s))(Xs) ds > U

}
(3.1)

be the soft-killing time of the first-passage of b, where U is an independent and
exponentially distributed random variable. Note that with this definition we
already set λ = 1 in comparison with (1.3). Given a random variable ξ with
values in (0,∞) we search for a function b : (0,∞)→ R such that

Pµ
(
τ sk
b > t

)
= P(ξ > t) ∀t ≥ 0, (3.2)

where µ is the initial distribution of (Xt)t≥0. Denote the set of solutions to
the inverse-first passage time problem with soft-killing with

ifptk(g, µ) :=
{
b : (0,∞)→ R measurable : g(t) = Pµ

(
τ sk
b > t

)
∀t > 0

}
.

We will impose some requirements on the process (Xt)t≥0 and its semigroup
(Pt)t≥0, where we understand Pt as an operator on the space of (sub-)probability
measures by the relation

Ptµ(f) :=

∫
R
E [f(Xt)|X0 = x]µ(dx)

for measurable and bounded functions f : R → R. In this chapter we prove
the following general statement.

133
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Theorem 3.0.1. Assume that (Xt)t≥0 is such that

(i) Ptδx is equivalent to the Lebesgue measure for every x ∈ R and t > 0,

(ii) (Xt)t≥0 has almost surely continuous sample paths,

(iii) for any tight collection S of probability measures on (R,B(R)) we have

sup
µ∈S

dP(Ptµ, µ)→ 0 as t→ 0, (3.3)

(iv) Pt preserves the usual stochastic order, i.e. µ �st ν implies Ptµ �st Ptµ.

Let µ ∈ P. Furthermore, let g be a survival distribution continuously differen-
tiable on (0,∞) and fulfilling

0 < −g′(t) < g(t) ∀t > 0 (3.4)

Then there is exactly one continuous b : (0,∞)→ R such that (3.2) is fulfilled.
If additionally{
µ� Lebesgue measure, supp(µ) is connected and
g′(0) := limh↘0

g(h)−g(0)
h exists with g′(0) = g′(0+) and 0 < −g′(0) < 1,

(3.5)

then b(0+) exists and is the unique value such that µ((−∞, b(0+))) = −g′(0).

The uniqueness result is proven in Theorem 3.2.13. The statement of the
remaining part follows from Corollary 3.2.10.

Remark 3.0.2. The condition (3.4) can be rewritten as

0 < h(t) := − ∂

∂t
log(g(t)) < 1 ∀t > 0

in terms of the hazard rate function h of g. The soft-killing time from (3.1)
essentially waits for the time, when the exponential random variable is ex-
ceeded by the amount of time spent below the boundary. Thus, the rate of the
soft-killing time cannot exceed the rate of the exponential random variable,
which is 1. On the other hand, the Brownian motion can spend time below
the boundary in any time-interval, thus can exceed the exponential random
variable at any time. This means the rate of the soft-killing time should be
larger than zero at any time. Hence, intuitively, for the existence of a continu-
ous solution, the condition of (3.4) is necessary for g. Later, this will be made
rigorous in Lemma 3.2.1.
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Remark 3.0.3. The conditions of Theorem 3.0.1 are fulfilled by Brownian
motion, of which the transition kernel is equivalent to Lebesgue measure and
the sample paths are continuous. We already know that the Gaussian convo-
lution preserves the usual stochastic order. For point (iii) of Theorem 3.0.1
consider Lemma B.1.11, from which follows that

dP (Ptµ, µ) ≤
√
E [|Bt|] ≤ t1/4,

where Bt ∼ N (0, t). Since this bound is independent from µ the property (iii)
is fulfilled.

In the general situation naturally the question arises, which processes fulfill
the properties (iii) and (iv) from Theorem 3.0.1. We give the following suffi-
cient criteria, where the proofs are to be found as Lemma A.6.1, Lemma A.6.2
and Lemma A.6.3.

Remark 3.0.4. Consider again the conditions on the process in Theorem 3.0.1.

1. If (Xt)t≥0 has the strong Markov property and fulfills (ii), then (iv) is
fulfilled.

2. If (Xt)t≥0 is locally uniformly continuous in probability, then (iii) is
fulfilled.

3. If (Xt)t≥0 is a Cb-Feller process, then (iii) is fulfilled.

Related work in the soft-killing problem for the case of Brownian
motion: The inverse first-passage time problem with soft-killing for Brownian
motion was considered the first time in [EEH14], where existence of a solution
under stronger conditions on µ and g was shown. In the subsequent work
[EHW20] the existence and uniqueness of continuous solutions were shown un-
der similar conditions, which were already mentioned in the introduction. A
common condition of both works is the requirement on g to be continuously
differentiable on [0,∞) and to fulfill (3.4) for t = 0 as well. Furthermore,
regularity assumptions on µ are required. Roughly speaking, these additional
conditions at t = 0 are due to the use of analytical methods from partial dif-
ferential equations. Namely, the approach of [EHW20] consists of a connection
to the following free boundary problem, where, given a survival distribution g,
one wants to find a function u : [0,∞)×R→ R and a boundary b : [0,∞)→ R
such that

∂tu(t, x) = 1
2∂

2
xu(t, x)− 1(−∞,b(t)](x) · u(t, x) : x ∈ R, t > 0,

u(0, x) = u0(x) > 0 : x ∈ R,
b(0) = b0,∫
R u(t, x) dx = g(t) : t ≥ 0,

(3.6)
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where u0 : R→ R and b0 ∈ R is given initial data. Heuristically, if b is a solu-
tion to the inverse first-passage time problem with soft-killing corresponding
to g, then the density of

Qbt(µ) := Pµ
(
Xt ∈ · , τ sk

b > t
)

is a solution candidate of the free boundary problem. The work of [EHW20]
shows that this is indeed the unique solution.

For diffusion processes, in [EHW20] it is conjectured under imposing con-
ditions on the diffusion coefficients, that the inverse first-passage time problem
should have also a unique continuous solution. Theorem 3.0.1 shows that this
is indeed true for a large class of diffusion processes.

Motivation of the stochastic order approach: Before we get into the
details, let us motivate our approach. If b is a measurable function and µ a
probability measure it follows directly from the identity

{τ sk
b > t} = {U >

∫ t

0
1(−∞,b(s))(Xs) ds}

that

Qbt(µ) = Eµ
[
1{Xt∈ · }e

−
∫ t
0 1(−∞,b(s))(Xs) ds

]
. (3.7)

Taking a partition 0 = t0 < t1 < . . . < tn = t of [0, t] we can approximate
the integral appearing in Qbt(µ) by a Riemann-type sum, which results in
approximating

Qbt(µ) ≈ Qb,nt (µ) := Eµ
[
1{Xt∈ · }e

−
∑n
k=1(tk−tk−1)1(−∞,b(tk))(Xtk )

]
= Eµ

[
1{Xt∈ · }

n∏
k=1

e−(tk−tk−1)1(−∞,b(tk))(Xtk )

]
,

which, by the Markov property can be written as an inductive scheme by

Qb,ntk (µ)(dx) = e−(tk−tk−1)1(−∞,b(tk))(x)Ptk−tk−1
(Qb,ntk−1

(µ))(dx) (3.8)

and Qb,nt0 (µ) = µ.
Seen from the perspective of the inverse problem the only part in this

inductive scheme depending on the knowledge of b is the multiplication with
e−(tk−tk−1)1(−∞,b(tk))(x) and thus depends on the values (b(tk))

n
k=1. A possible

approach is now to substitute these values by values obtained from g, which
is originally the only information we ought to make use of. A natural choice
consists of chosing the substitutes (qk)

n
k=1 iteratively such that given the first

k − 1 values and Qq,ntk−1
(µ) we choose qk as the value such that∫

R
e−(tk−tk−1)1(−∞,qk)(x)Ptk−tk−1

(Qq,ntk−1
(µ))(dx) = g(tk) = Qbtk(µ)(R) (3.9)
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and set

Qq,ntk (µ)(dx) = e−(tk−tk−1)1(−∞,qk)(x)Ptk−tk−1
(Qq,ntk−1

(µ))(dx), (3.10)

which is now only depending on µ and g. For the endpoint of the interval
[0, t] we obtain a value q(t) := qn. It is now very reasonable to ask, whether
the function q is an approximative solution to the inverse first-passage time
problem for soft-killed Brownian motion, when letting the mesh of the parti-
tion going to zero. This will be approached by the use of the usual stochastic
order relation and probability distances on the measures appearing from (3.10).

3.1 Properties of Markovian evolution and
reweighting

In this section, our aim is to prepare the analysis of the discretization technique
in (3.10). In order to formalize the appearing quantities in the previous mo-
tivation let us introduce the following abstract description of the reweighting
mechanism from (3.10) and (3.9).

Let µ ∈ P. For t > 0 define for α ∈ (e−tµ(R), µ(R)] the reweighting
operator by

Rtα(µ) := e
−t1

(−∞,qtα(µ))
(x)
µ(dx), (3.11)

where

qtα(µ) := sup{q ∈ R :

∫
R
e−t1(−∞,q)(x)µ(dx) ≥ α}

with sup ∅ := −∞ is the reweighting threshold. Note that, if µ is non-atomic,
Rtα(µ) is again non-atomic and we have Rtα(µ)(R) = α and

Rtα(µ)((−∞, qtα(µ))) = e−tµ((−∞, qtα(µ)))

=
1

et − 1
(1− e−t)µ((−∞, qtα(µ))) =

µ(R)− α
et − 1

. (3.12)

Also, it follows directly from the definition that, if α ∈ (e−tβµ(R), βµ(R)] with
β > 0, we have

Rtα(βµ) = βRtα/β(µ). (3.13)

Further, let (Pt)t≥0 merely be a semi-group of Markov kernels with P0 = id.
Additionally required assumptions will be made within the statements.

Note, that for g fulfilling (3.4), by Rtα it is now possible to formalize the
quantity in (3.10) into

R
tk−tk−1

g(tk) ◦ Ptk−tk−1
◦ . . . ◦Rt1g(t1) ◦ Pt1(µ),

which we will analyze by first carrying out a study of the individual and joint
effects of Rtα and Pt on the usual stochastic order and probability distances.
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3.1.1 Usual stochastic order: Markovian evolution,
reweighting

As a first observation we will state that the already mentioned reweighting
operator preserves the usual stochastic ordering under appropriate conditions.

Lemma 3.1.1. Let µ, ν be sub-probabilty measures with µ(R) = ν(R) and
µ �st ν. Let t > 0 and α ∈ (e−tµ(R), µ(R)) and assume that Rtα(ν)(R) = α.
Then it holds that Rtα(µ) �st R

t
α(ν).

Proof. For q ∈ R is x 7→ e−t1(−∞,q)(x) a non-decreasing function. Thus it holds∫
R
e−t1(−∞,q)(x) dµ(x) ≤

∫
R
e−t1(−∞,q)(x) dν(x).

Therefore it follows qtα(ν) ≥ qtα(µ) and thus e−t1(−∞,qtα(µ))
(x) ≥ e−t1(−∞,qtα(ν))

(x).
Now, observe that for c < qtα(ν) it holds

Rtα(µ)((−∞, c]) =

∫
(−∞,c]

e
−t1

(−∞,qtα(µ))
(x)

dµ(x) ≥
∫

(−∞,c]
e−t dµ(x))

= e−tµ((−∞, c]) ≥ e−tν((−∞, c]) =

∫
(−∞,c]

e−t dν(x)

=

∫
(−∞,c]

e
−t1

(−∞,qtα(ν))
(x)

dν(x) = Rtα(ν)((−∞, c]).

On the other hand, for c ≥ qtα(ν) we find

Rtα(µ)((c,∞)) =

∫
(c,∞)

e
−t1

(−∞,qtα(µ))
(x)

dµ(x) =

∫
(c,∞)

dµ(x) = µ((c,∞))

≤ ν((c,∞)) =

∫
(c,∞)

e
−t1

(−∞,qtα(ν)(x))
(x)

dν(x) = Rtα(ν)((c,∞)),

which means that

Rtα(µ)((−∞, c]) = Rtα(µ)−Rtα(µ)((c,∞))

≥ α−Rtα(ν)((c,∞)) = Rtα(ν)((−∞, c]).

All in all, this shows Rtα(µ) �st R
t
α(ν).

Remark 3.1.2. We want to emphasize that for α ≥ β, the stochastic inequal-
ity α−1Rtα(µ) �st β

−1Rtβ(µ) is not true, in contrast to the hard killing case.
For instance, let µ be equivalent to the Lebesgue measure and α > β in the
situation of Lemma 3.1.1. Then for c < qtα(µ) ≤ qtβ(µ) it holds

α−1Rtα(µ)((−∞, c]) =
e−t

α
µ((−∞, c])

<
e−t

β
µ((−∞, c]) = β−1Rtβ(µ)((−∞, c]).
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Since the mass below the reweighting threshold is not truncated but reweighted
with the same weighting factor, the mass below the lower threshold gets more
weight in the normalized measure.

For t > 0 recall Ptµ :=
∫
R Px (Xt ∈ · ) dµ(x) =

∫
R Ptδx dµ(x).

Lemma 3.1.3. Let µ ∈ P, t, s > 0 and α ∈ (e−t, 1]. Assume that α =
Rtα(Psµ)(R). Then we have

PsR
t
α(µ) �st R

t
α(Psµ).

Proof. Abbreviate q := qtα(Psµ). First let c ≥ q. It holds

Rtα(Psµ)((c,∞)) =

∫
(c,∞)

e−t1(−∞,q)(x)Psµ(dx)

= Psµ((c,∞)) =

∫
R
Psδx((c,∞))µ(dx)

≥
∫
R
Psδx((c,∞))e

−t1
(−∞,qtα(µ))(x)µ(dx) = PsR

t
α(µ)((c,∞)).

Due to the fact that PsRtα(µ)(R) ≥ α = Rtα(Psµ)(R) it holds that

PsR
t
α(µ)((−∞, c]) = PsR

t
α(µ)(R)− PsRtα(µ)((c,∞))

≥ α−Rtα(Psµ)((c,∞)) = Rtα(Psµ)((−∞, c]).

Now let c < q. We have

Rtα(Psµ)((−∞, c]) =

∫
(−∞,c]

e−t1(−∞,q)(x)Psµ(dx) = e−tPtµ((−∞, c])

=

∫
R
e−tPsδx((−∞, c])µ(dx)

≤
∫
R
e
−t1

(−∞,qtα(µ))
(x)
Psδx((−∞, c])µ(dx)

= PsR
t
α(µ)((−∞, c])

which finishes the proof.

Lemma 3.1.4. Let t, s > 0, µ a non-atomic probability measure and β ∈
(e−tµ(R), µ(R)), α ∈ (e−sβ, β). Then it holds

Rsα(Rtβ(µ)) �st R
s+t
α (µ).

Proof. At first note that

Rsα(Rtβ(µ)) = e
−s1

(−∞,qsα(Rt
β
(µ)))

(x)
Rtβ(µ)(dx)

= e
−s1

(−∞,qsα(Rt
β
(µ)))

(x)−t1
(−∞,qt

β
(µ))

(x)
µ(dx).
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Let c < qs+tα (µ). Then

Rsα(Rtβ(µ))((−∞, c])

=

∫
(−∞,c]

e
−s1

(−∞,qsα(Rt
β
(µ)))

(x)−t1
(−∞,qt

β
(µ))

(x)
µ(dx)

≥
∫

(−∞,c]
e−(s+t)µ(dx) =

∫
(−∞,c]

e
−(s+t)1

(−∞,qs+tα (µ))
(x)
µ(dx)

= Rs+tα (µ)((−∞, c]).

On the other hand, since Rsα(Rtβ(µ))(R) = α = Rs+tα (µ)(R), we have for
c ≥ qs+tα (µ), that

Rs+tα (µ)((−∞, c]) = α−Rs+tα (µ)((c,∞))

= α− µ((c,∞))

≤ α−
∫

(c,∞)
e
−s1

(−∞,qsα(Rt
β
(µ)))

(x)−t1
(−∞,qt

β
(µ))

(x)
µ(dx)

= Rsα(Rtβ(µ))((−∞, c]),

which shows the desired statement.

Corollary 3.1.5. Let t, s, u, v > 0, µ ∈ P and β ∈ (e−tµ(R), µ(R)), α ∈
(e−sβ, β). Assume that Pvµ is non-atomic. Then it holds

Rsα ◦ Pu ◦Rtβ ◦ Pv(µ) �st R
s+t
α ◦ Pu+v(µ).

Proof. Note that by Lemma 3.1.1 Rsα preserves the order in the following
situation, such that by using Lemma 3.1.3, Lemma 3.1.4 we can deduce

Rsα ◦ Pu ◦Rtβ ◦ Pv(µ) �st R
s
α ◦Rtβ ◦ Pu ◦ Pv(µ)

�st R
s+t
α ◦ Pu ◦ Pv(µ) = Rs+tα ◦ Pu+v(µ),

which finishes the proof.

3.1.2 Total variation distance: Markovian evolution,
reweighting

Definition 3.1.6. We define the total variation distance between two measures
µ, ν ∈ P by

dTV (µ, ν) := sup
A∈B(R)

|µ(A)− ν(A)|. (3.14)

If µ and ν are absolutely continuous with respect to the Lebesgue measure
with densities f and g, respectivly, we see that by taking A = {f ≥ g}
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the supremum in the definition of the total variation is attained. Since from
µ(R) = ν(R) follows that (µ− ν)({f ≥ g}) = −(µ− ν)({f < g}) we have

dTV (µ, ν) =
1

2

∫
R
|f(x)− g(x)| dx. (3.15)

This means, the total variation distance of µ and ν coincides with the half of the
L1-distance of their densities. Furthermore, the identity |f−g| = f+g−2(f∧g)
implies

dTV (µ, ν) =

(
1−

∫
R

(f ∧ g)(x) dx

)
. (3.16)

Another representation is

dTV (µ, ν) = inf{P (X 6= Y ) : X ∼ µ, Y ∼ ν}, (3.17)

which is a consequence of Theorem 1.27 from [Vil03].

It is well-known that Markov kernels are contractive for the total variation
distance. For completeness we give a short proof by the independent-then-
forever coupling, e.g. see [Dou+18].

Lemma 3.1.7. Let µ, ν ∈ P and t > 0. Then dTV (Ptµ, Ptν) ≤ dTV (µ, ν).

Proof. Let X ∼ µ and Y ∼ ν. Let the distribution π on R2 given by

π(A×B) = E
[
1{X=Y }PtδX(A ∩B) + 1{X 6=Y }PtδX(A)PtδY (B)

]
.

Let (Xt, Yt) ∼ π. It holds Xt ∼ Ptµ and Yt ∼ Ptν. Note that Xt 6= Yt implies
X 6= Y . Hence

dTV (Ptµ, Ptν) ≤ P (Xt 6= Yt) ≤ P (X 6= Y ) .

Now, taking the infimum over all possible couplings of X and Y yields the
statement.

At next we study the effect of the reweighting on the total variation dis-
tance.

Lemma 3.1.8. Let µ, ν ∈ P be absolutely continuous with respect to the
Lebesgue measure and t > 0. Then for all α, β ∈ [e−t, 1] it holds

dTV

(
α−1Rtα(µ), β−1Rtβ(ν)

)
≤ (α ∨ β)−1dTV (µ, ν) +

(
1− α ∧ β

α ∨ β

)
.
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Proof. As first step let α = β. Let µ = f dx and ν = g dx and without loss
of generality qtα(µ) ≤ qtα(ν). We have that the densities of α−1Rtα(µ) and
α−1Rtα(ν) are given by α−1e

−t1
(−∞,qtα(µ))f and α−1e

−t1
(−∞,qtα(ν))g. Thus we

have

min(α−1e
−t1

(−∞,qtα(µ))(x)f(x), α−1e
−t1

(−∞,qtα(ν))(x)g(x))

=
1

α


min(f(x), g(x)) : x ≥ qtα(ν),

min(f(x), e−tg(x)) : qtα(µ) ≤ x < qtα(ν),

e−t min(f(x), g(x)) : x < qtα(µ).

Note that by min(f(x), g(x))−min(f(x), e−tg(x)) ≤ g(x)− e−tg(x) we have∫ qtα(ν)

qtα(µ)
(min(f(x), g(x))−min(f(x), e−tg(x))) dx

+ (1− e−t)
∫ qtα(µ)

−∞
min(f(x), g(x)) dx

≤ (1− e−t)
∫ qtα(ν)

qtα(µ)
g(x) dx+ (1− e−t)

∫ qtα(µ)

−∞
g(x) dx

= (1− e−t)ν((−∞, qtα(ν))) = 1− α.

Thus, by the respresentation of the total variation distance from (3.16) we
obtain

dTV

(
α−1Rtα(µ), α−1Rtα(ν)

)
=

1

α

(
α−

∫ ∞
qtα(ν)

min(f(x), g(x)) dx−
∫ qtα(ν)

qtα(µ)
min(f(x), e−tg(x)) dx

−
∫ qtα(µ)

−∞
e−t min(f(x), g(x)) dx

)

=
1

α

(
1−

∫
R

min(f(x), g(x)) dx− (1− α)

+

∫ qtα(ν)

qtα(µ)
(min(f(x), g(x))−min(f(x), e−tg(x))) dx

+(1− e−t)
∫ qtα(µ)

−∞
min(f(x), g(x)) dx

)

≤ 1

α

(
1−

∫
R

min(f(x), g(x)) dx

)
=

1

α
dTV (µ, ν)

which shows the desired inequality for the first step.
As second step let α, β ∈ (e−t, 1] and µ = ν = f dx. Then the densities of
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α−1Rtα(µ) and β−1Rtβ(µ) are given by α−1e
−t1

(−∞,qtα(µ))f and β−1e
−t1

(−∞,qt
β
(µ))
f .

Without loss of generality assume that α > β. In particular, this implies
qα(µ) < qβ(µ). By the representation in (3.15) we have

2dTV

(
α−1Rtα(µ), β−1Rtβ(µ)

)
=

∫
R

∣∣α−1e
−t1

(−∞,qtα(µ))
(x)
f(x)− β−1e

−t1
(−∞,qt

β
(µ))

(x)
f(x)

∣∣dx
=

∣∣∣∣e−tα − e−t

β

∣∣∣∣ ∫ qtα(µ)

−∞
f(x) dx+

∣∣∣∣ 1α − e−t

β

∣∣∣∣ ∫ qtβ(µ)

qtα(µ)
f(x) dx

+

∣∣∣∣ 1α − 1

β

∣∣∣∣ ∫ ∞
qtβ(µ)

f(x) dx

=

(
1

β
− 1

α

)
e−tµ((−∞, qtα(µ)))

+

(
1

α
− e−t

β

)
(µ((−∞, qtβ(µ)))− µ((−∞, qtα(µ))))

+

(
1

β
− 1

α

)
(1− µ((−∞, qtβ(µ))))

=
α− β
αβ

e−t
1− α

1− e−t
+
β − αe−t

αβ

(
1− β

1− e−t
− 1− α

1− e−t

)
+
α− β
αβ

(
1− 1− β

1− e−t

)
=
α− β
αβ

e−t − αe−t

1− e−t
+
β − αe−t

αβ

α− β
1− e−t

+
α− β
αβ

β − e−t

1− e−t

=
α− β
αβ

1

1− e−t
(
e−t − αe−t + β − αe−t + β − e−t

)
=
α− β
αβ

2
β − αe−t

1− e−t
= 2

(
1− β

α

)
1− α

β e
−t

1− e−t

≤ 2

(
1− β

α

)
.

Combining the results of the first and the second step and employing the
triangle inequality of the total variation distance finishes the proof.

Remark 3.1.9. An analogous statement of Lemma 3.1.8 for the Wasserstein
distance in the case that β = α is to be found in the appendix as Lemma A.4.4.

Corollary 3.1.10. Assume that Psδx is absolutely continuous with respect to
Lebesgue measure for every x ∈ R. Let µ, ν ∈ P and t, s > 0. Then for all
α ∈ [e−t, 1] it holds

dTV

(
α−1Rtα ◦ Ps(µ), Ps(ν)

)
≤ dTV (µ, ν) + 1− α.
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Proof. By using that Ps(ν) = Rt1(Ps(ν)) is absolutely continuous we have by
Lemma 3.1.8 that

dTV

(
α−1Rtα ◦ Ps(µ), Ps(ν)

)
≤ dTV (Ps(µ), Ps(ν)) + 1− α

and by Lemma 3.1.7 that

dTV (Ps(µ), Ps(ν)) + 1− α ≤ dTV (µ, ν) + 1− α,

which finishes the proof.
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3.2 Existence and uniqueness of continuous
solutions

This section is devoted to prove Theorem 3.0.1. Therefore, throughout this
section, we will assume that the Markov process (Xt)t≥0 admits the properties
required by Theorem 3.0.1, this means that

(i) Ptδx is equivalent to the Lebesgue measure for every x ∈ R and t > 0,

(ii) (Xt)t≥0 has almost surely continuous sample pathes,

(iii) for any tight collection S of probability measures we have

sup
µ∈S

dP(Ptµ, µ)→ 0 as t→ 0,

(iv) Pt preserves the usual stochastic order, i.e. µ �st ν implies Ptµ �st Ptµ.

We will begin with an analysis of the properties of the marginal measure
Qbt(µ) from (3.7) and its approximation. Subsequently, we arrive at Theo-
rem 3.0.1 by comparing Qbt(µ) with its approximation in the usual stochastic
order, by proving convergence properties of the approximation and by ex-
tracting a candidate of solution to the inverse first-passage time problem with
soft-killing from a suitable limit.

3.2.1 Auxiliary results: boundary functions, survival
distribution and marginal distributions

For b : (0,∞) → R measurable and a sub-probability measure µ we define
Qbt,s(µ) by

Qbt,s(µ)(f) := Qt,s(µ)(f) := Eµ
[
f(Xt−s)e

−
∫ t
s 1(−∞,b(r))(Xr−s) dr

]
(3.18)

for measurable and bounded functions f : R → R. Furthermore denote the
time the Markov process spends below the boundary function with

Γbt := Γt :=

∫ t

0
1(−∞,b(r))(Xr) dr.

By {τ sk
b > t} = {U > Γt}, we observe that

Eµ
[
f(Xt)1{τ skb >t}

]
= Eµ

[
f(Xt)e

−Γt
]

= Qt,0(µ)(f)

and thus we have

Qbt(µ) := Qt(µ) := Qt,0(µ) = Pµ
(
Xt ∈ ·, τ sk

b > t
)
.

The next statement shows that under appropriate conditions on b, we can
recover the boundary function b, if we only know the pair consisting of g and
Qbt(µ). The statement is essentially a reformulation of Lemma 4.2 in [EHW20].
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Lemma 3.2.1. Assume that b : (0,∞) → R is continuous, µ ∈ P and g a
survival distribution, such that b ∈ ifptk(g, µ). Then g is continuously differ-
entiable on (0,∞) and it holds

∂

∂t
g(t) = −Qbt(µ)((−∞, b(t)))

for all t > 0. In particular g fulfills (3.4). If b(0+) exists and µ has no atoms,
g has a right-derivative g′(0) in 0 and g′(0+) = g′(0) = −µ((−∞, b(0+))).

Proof. For fixed t > 0, since then Xt 6= b(t) almost surely, we have by conti-
nuity of the boundary function and the paths that almost surely∫ t+h

t
1(−∞,b(r))(Xr) dr = h1(−∞,b(t))(Xt)

for h > 0 small enough. Therefore, we can deduce by the dominated conver-
gence theorem with the bound

|h−1
(
e−

∫ t+h
t 1(−∞,b(r))(Xr) dr − 1

)
| ≤ h−1

(
1− e−h

)
≤ h−1 (1− (1− h)) = 1

for h > 0, that

lim
h↘0

g(t+ h)− g(t)

h
= lim

h↘0
Eµ
[
h−1

(
e−

∫ t+h
t 1(−∞,b(r))(Xr) dr − 1

)
e−Γt

]
= Eµ

[
lim
h↘0

h−1
(
e−

∫ t+h
t 1(−∞,b(r))(Xr) dr − 1

)
e−Γt

]
= Eµ

[
lim
h↘0

h−1(e−h1(−∞,b(t))(Xt) − 1)e−Γt

]
= Eµ

[
−1(−∞,b(t))(Xt)e

−Γt
]

= −Qt(µ)((−∞, b(t))).

For the left-derivative fix t > 0. We have again that, since then Xt 6= b(t)
almost surely, we have by continuity of the boundary function and the paths
that almost surely ∫ t

t−h
1(−∞,b(r))(Xr) dr = h1(−∞,b(t))(Xt)

for h > 0 small enough. With the bound

|h−1
(
e
∫ t
t−h 1(−∞,b(r))(Xr) dr − 1

)
|

≤ h−1
(
eh − 1

)
≤ h−1

(
1

1− h
− 1

)
=

1

1− h
≤ 2
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for h ∈ (0, 1/2), we obtain by the dominated convergence theorem that

lim
h↘0

g(t− h)− g(t)

h
= lim

h↘0
Eµ
[
h−1

(
e
∫ t
t−h 1(−∞,b(r))(Xr) dr − 1

)
e−Γt

]
= Eµ

[
lim
h↘0

h−1
(
e
∫ t
t−h 1(−∞,b(r))(Xr) dr − 1

)
e−Γt

]
= Eµ

[
lim
h↘0

h−1(eh1(−∞,b(t))(Xt) − 1)e−Γt

]
= Eµ

[
1(−∞,b(t))(Xt)e

−Γt
]

= Qt(µ)((−∞, b(t))).

By the continuity of the paths and the boundary function and the fact that
Xt 6= b(t) almost surely for fixed t > 0, it follows that

g′(t) = −Eµ
[
1(−∞,b(t))(Xt)e

−Γt
]

is continuous in t > 0. With the additional conditions at t = 0, the arguments
above are true for t = 0 and the convention b(0) := b(0+). This finishes the
proof.

We will now begin with our study of the discrete approximations of the
time marginal 3.7.

Let g be a survival distribution differentiable on (0,∞) and fulfilling (3.4).
For a probability measure µ and n ∈ N let δ := δ(n) be a dyadic sequence, i.e.
δ(n) = 2δ(n+1), and define

Sg,+,nk (µ) := Rδ
(n)

g(kδ(n))
◦ Pδ(n) ◦ . . . ◦R

δ(n)

g(δ(n))
◦ Pδ(n)(µ)

for k ∈ N, where Rtα is the reweighting operation defined in (3.11). Further
set qnk := qδg(kδ)(PδS

g,+,n
k−1 (µ)) and D := ∪n∈NDn with Dn := {kδ(n) : k ∈ N0}.

As abbreviation we set btcn := bt/δ(n)cδ(n).

With respect to the survival distribution g, for t ≥ 0 and n ∈ N we define

Q+,n
t (µ) := R

t−btcn
g(t) ◦ Pt−btcn ◦ S

g,+,n

bt/δ(n)c(µ)

= R
t−btcn
g(t) ◦ Pt−btcn ◦R

δ(n)

g(btcn) ◦ Pδ(n) ◦ . . . ◦R
δ(n)

g(δ(n))
◦ Pδ(n)(µ).

Further we define

q(n)(t) :=

q
n
bt/δ(n)c : t ∈ Dn \ {0},
q
t−btcn
g(t) (Pt−btcnS

g,+,n

bt/δ(n)c(µ)) : t /∈ Dn.
(3.19)

Additionally, if the right-derivative g′(0) exists we define q(n)(0) := inf{q ∈ R :
µ((−∞, q)) ≥ −g′(0)}.

We want to emphasize that Q+,n
t (µ) is a sort of discrete approximation for

Qtµ as it was in the hard killing case. We have Qt(µ)(R) = g(t) = Q+,n
t (µ)(R)

and have additionally the following lemma, which gives us the interpretation
that q(n)(t) is a sort of approximation to a possible solution b.
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Lemma 3.2.2. Let g be a survival distribution continuously differentiable on
(0,∞) and fulfilling (3.4). Let 0 < η < T . As n→∞ we have

Q+,n
t (µ)((−∞, q(n)(t)))→ −g′(t)

uniformly in t ∈ [η, T ]. If µ has no atoms and g has right-derivative in 0 with
g′(0+) = g′(0) the statement holds for η = 0.

Proof. With the additional conditions the following arguments also apply for
the case η = 0. In view of (3.12) we have for t > 0 that

Q+,n
t (µ)((−∞, q(n)(t))) =


Sg,+,n
bt/δ(n)c−1

(µ)(R)−g(t)

eδ
(n)−1

= g(t−δ(n))−g(t)
eδ

(n)−1
: t ∈ Dn,

Sg,+,n
bt/δ(n)c

(µ)(R)−g(t)

et−btcn−1
= g(btcn)−g(t)

et−btcn−1
: t /∈ Dn.

Since g fulfilles (3.4) we have that −g′(t) ≤ g(t) for t ≥ η. Furthermore, g′ is
uniformly continuous on [η2 , T ]. If η > 0 let n large enough such that δ(n) < η

2 .
Further, let n be large enough such that for ε > 0 we have |u − r| < δ(n),
u, r ∈ [η2 , T ], implies |g′(u) − g′(r)| ≤ ε. We can deduce by the mean value
theorem and the inequality |1− h/(eh − 1)| ≤ h that

|Q+,n
t (µ)((−∞, q(n)(t)))− (−g′(t))|

=

{
|g′(t)− g′(ξ) δ(n)

eδ
(n)−1

| : t ∈ Dn with ξ ∈ [t− δ(n), t],

|g′(t)− g′(ξ) t−btcn
et−btcn−1

| : t /∈ Dn with ξ ∈ [btcn, t]

≤

|g
′(t)− g′(ξ)|+

∣∣g′(ξ)(1− δ(n)

eδ
(n)−1

) ∣∣ : t ∈ Dn with ξ ∈ [t− δ(n), t],

|g′(t)− g′(ξ)|+ |g′(ξ)
(

1− t−btcn
et−btcn−1

)
| : t /∈ Dn with ξ ∈ [btcn, t]

≤ ε+ g(T )δ(n)

for t ∈ [η, T ]. Letting n → ∞ yields the statement, since ε can be chosen
arbitrarily small.

We will make use of the following alternative representation for Q+,n
t (µ).

Lemma 3.2.3. For n ∈ N and k ∈ N0 we have that

Q+,n
t (µ)

= Eµ

[
1{Xt∈· }e

−(t−btcn)1
(−∞,q(n)(t))(Xt)e

−
∑bt/δ(n)c
`=1 δ(n)1

(−∞,q(n)(`δ(n)))(X`δ)

]
= g(btcn)R

t−btcn
g(t)

g(btcn)

◦ Pt−btcn

◦ 1

α
(n)

bt/δ(n)c

Rδ
(n)

α
(n)

bt/δ(n)c

◦ Pδ(n) ◦ . . . ◦
1

α
(n)
1

Rδ
(n)

α
(n)
1

◦ Pδ(n)(µ),

where α(n)
k = g(kδ)/g((k − 1)δ).
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Proof. We abbreviate qn` := q(n)(`δ(n)). We first claim that

Sg,+,nk (µ) = Eµ
[
1{Xkδ∈· }e

−
∑k
`=1 δ1(−∞,qn

`
)(X`δ)

]
= g(kδ)

1

α
(n)
k

Rδ
(n)

α
(n)
k

◦ Pδ(n) ◦ . . . ◦
1

α
(n)
1

Rδ
(n)

α
(n)
1

◦ Pδ(n)(µ).

The statement is clear for k = 0. Assume the statement is true for k. Regard-
ing the first equality, we have by the Markov property that

PδS
g,+,n
k (µ) = ESg,+,nk (µ)

[
1{Xδ∈· }

]
= Eµ

[
EXkδ

[
1{Xδ∈· }

]
e
−

∑k
`=1 δ1(−∞,qn

`
)(X`δ)

]
= Eµ

[
Eµ
[
1{X(k+1)δ∈· }

∣∣∣σ(Xs : 0 ≤ s ≤ kδ)
]
e
−

∑k
`=1 δ1(−∞,qn

`
)(X`δ)

]
= Eµ

[
Eµ
[
1{X(k+1)δ∈· }e

−
∑k
`=1 δ1(−∞,qn

`
)(X`δ)

∣∣∣∣σ(Xs : 0 ≤ s ≤ kδ)
]]

= Eµ
[
1{X(k+1)δ∈· }e

−
∑k
`=1 δ1(−∞,qn

`
)(X`δ)

]
.

Therefore we have

Rδg((k+1)δ)(PδS
g,+,n
k (µ))

= Eµ
[
e
−δ1(−∞,qn

k+1
)(X(k+1)δ)

1{X(k+1)δ∈· }e
−

∑k
`=1 δ1(−∞,qn

`
)(X`δ)

]
= Eµ

[
1{X(k+1)δ∈· }e

−
∑k+1
`=1 δ1(−∞,qn

`
)(X`δ)

]
.

Furthermore, regarding the second equality, we have by the assumption that∫
R
e
−δ1(−∞,qn

k+1
)(x)

Pδ
1

α
(n)
k

Rδ
(n)

α
(n)
k

◦ Pδ(n) ◦ . . . ◦
1

α
(n)
1

Rδ
(n)

α
(n)
1

◦ Pδ(n)(µ)(dx)

=

∫
R
e
−δ1(−∞,qn

k+1
)(x) 1

g(kδ)
PδS

g,+,n
k (µ)(dx) =

g((k + 1)δ)

g(kδ)
= α

(n)
k+1,

which implies

qnk+1 = qδ
α
(n)
k+1

(Pδ
1

α
(n)
k

Rδ
(n)

α
(n)
k

◦ Pδ(n) ◦ . . . ◦
1

α
(n)
1

Rδ
(n)

α
(n)
1

◦ Pδ(n)(µ)).

Therefore

Rδ
α
(n)
k+1

(Pδ
1

α
(n)
k

Rδ
(n)

α
(n)
k

◦ Pδ(n) ◦ . . . ◦
1

α
(n)
1

Rδ
(n)

α
(n)
1

◦ Pδ(n)(µ))

=
1

g((k + 1)δ)
α

(n)
k+1R

δ
g((k+1)δ)(PδS

g,+,n
k (µ)).
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The claim follows thus by induction. The full statement follows by the claim
combined with (3.13), the definition of Q+,n

t and the definition of the reweight-
ing operator.

3.2.2 The upper approximation: existence, uniqueness and
comparison principle

We now concentrate on the goal to find a candidate of solution by the discrete
approximation. In order to obtain existence and uniqueness all at once we
will constantly compare our approximation to possible solutions. A key step
towards our goal is the following monotonicity and bounding statement, which
can be understood as counterpart of the statements regarding the lower barrier
approximation in the hard-killing case in Subsection 2.3.2.

Lemma 3.2.4. Let µ be a probability measure and g survival distribution dif-
ferentiable on (0,∞) fulfilling (3.4). Then for b ∈ ifptk(g, µ) it holds

Qbt(µ) �st Q
+,n+1
t (µ) �st Q

+,n
t (µ).

for t ≥ 0.

Proof. As preparational step we claim that for t ≥ s > 0 we have

Qt(µ) �st R
t−s
g(t) ◦ Pt−s(Qs(µ)). (3.20)

For the following recall Qt,s(µ) from (3.18). We abbreviate δ = δ(n) and denote
q := qδg(kδ)(PδQs(µ)). Let c ≥ q. In this case we have

Rt−sg(t)(Pt−sQs(µ))((c,∞)) =

∫
(c,∞)

e−(t−s)1(−∞,q)(x)PQs(µ) (Xt−s ∈ dx)

= PQs(µ) (Xt−s > c) ≥ EQs(µ)

[
1{Xt−s>c}e

−
∫ t−s
0 1(−∞,b(r+s))(Xr) dr

]
= Qt,s(Qs(µ))((c,∞)) = Qtµ(c,∞))

by the Markov property. From this follows, since Rt−sg(t)(Pt−sQs(µ))(R) =

g(t) = Qtµ(R), that

Rt−sg(t)(Pt−sQs(µ))((−∞, c]) ≤ Qt(µ)((−∞, c]).

Now let c < q. We find

Qt(µ)((−∞, c]) = Qt,s(Qs(µ))((−∞, c])

= EQs(µ)

[
1{Xt−s≤c}e

−
∫ t−s
0 1(−∞,b(r+s))(Xr) dr

]
≥ Eν

[
1{Xt−s≤c}e

−(t−s)
]

= EQs(µ)

[
1{Xt−s≤c}e

−(t−s)1(−∞,q)(Xt−s)
]

= Rt−sg(t)(Pt−sQs(µ))((−∞, c]).
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This shows Qt(µ) �st R
t−s
g(t)(Pt−sQs(µ)).

Now as first step we show that

Qkδ(µ) �st S
g,+,n+1
2k (µ) �st S

g,+,n
k (µ) (3.21)

for k ∈ N. For this assume that it holds ν := Q(k−1)δ(n)(µ) �st S
g,+,n
k−1 (µ).

Thus, we can deduce by (3.20) and Lemma 3.1.1 that

Qkδ(µ) �st R
δ
g(kδ)(Pδν) �st R

δ
g(kδ)(PδS

g,+,n
k−1 (µ)) = Sg,+,nk (µ).

For the second inequality assume that Sg,+,n+1
2(k−1) (µ) �st S

g,+,n
k−1 (µ). We then

have by using Corollary 3.1.5 and Lemma 3.1.3 that

Sg,+,n+1
2k (µ) = Rδ

(n+1)

g(2kδ(n+1))
◦ Pδ(n+1) ◦Rδ

(n+1)

g((2k−1)δ(n+1))
◦ Pδ(n+1) ◦ Sg,+,n+1

2(k−1) (µ)

�st R
δ(n)

g(kδ(n))
◦ Pδ(n) ◦ S

g,+,n+1
2(k−1) (µ)

�st R
δ(n)

g(kδ(n))
◦ Pδ(n) ◦ S

g,+,n
k−1 (µ) = Ssk,+,n

k (µ).

The desired inequality (3.21) follows inductively, since for k = 0 all inequalities
are fulfilled. For t > 0 we have now by (3.20) and (3.21) that

Qt(µ) = Qt,btcn(Qbtcn(µ)) �st R
t−btcn
g(t) ◦ Pt−btcn(Qbtcn(µ))

�st R
t−btcn
g(t) ◦ Pt−btcn(Sg,+,nbt/δ(n)c(µ)) = Q+,n

t (µ).

Furthermore, we have by Corollary 3.1.5 and (3.21) that

Q+,n+1
t (µ) = R

t−btcn+1

g(t) ◦ Pt−btcn+1
(Sg,+,n+1

bt/δ(n+1)c(µ))

= R
t−btcn+1

g(t) ◦ Pt−btcn+1
◦Rbtcn+1−btcn

g(btcn+1) ◦ Pbtcn+1−btcn(Sg,+,n+1

2bt/δ(n)c(µ))

�st R
t−btcn
g(t) ◦ Pt−btcn(Sg,+,n+1

2bt/δ(n)c(µ))

�st R
t−btcn
g(t) ◦ Pt−btcn(Sg,+,nbt/δ(n)c(µ)) = Q+,n

t (µ),

which finishes the proof.

Remark 3.2.5. Contrary to the hard killing case, the stochastic inequalities
of Lemma 3.2.4 do not imply inequalities of the reweighting thresholds of the
operators Rδ(n) and Rδ(n+1) appearing in Sg,+,n(µ). This can be seen by the
following artificial manipulation of g. For fixed n ∈ N let β = g(δ(n+1)) and
α = g(δ(n)). Further, let µ be a non-atomic probability measure. We have
qδ

(n+1)

β (Pδ(n+1)µ) → −∞ for β → 1. Thus Rδ(n+1)

β (Pδ(n+1)µ)(f) → Pδ(n+1)µ(f)
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for every bounded measurable f as β → 1. Hence

lim
β→1

∫
R
e−δ

(n+1)
1(−∞,q)(x)Pδ(n+1)Rδ

(n+1)

β (Pδ(n+1)µ)(dx)

=

∫
R
e−δ

(n+1)
1(−∞,q)(x)Pδ(n)µ(dx)

>

∫
R
e−δ

(n)
1(−∞,q)(x)Pδ(n)µ(dx).

By the definition of the reweighting threshold, we can deduce that there is a
β such that

qδ
(n+1)

α (Pδ(n+1)Rδ
(n+1)

β (Pδ(n+1)µ)) > qδ
(n)

α (Pδ(n)µ).

By letting β → e−δ
(n+1) we get in analogy the possibility of observing the case

qδ
(n+1)

α (Pδ(n+1)Rδ
(n+1)

β (Pδ(n+1)µ)) < qδ
(n)

α (Pδ(n)µ).

Remark 3.2.6. Additional to the stochastic inequalities from above, we could
seek for stochastic inequalities from below as we have done in the hard killing
case. It turns out that in the soft-killing problem this type of inequality is more
inaccessible. The crucial ingredient of the desired bound from below would be
PtR

t
g(t)(µ) �st Q

b
tµ, which is equivalent to

Pµ|[qg(t)(µ),∞)
(Xt ∈ · |Γt ≥ U) �st Pµ|(−∞,qg(t)(µ)) (Xt ∈ · |t ≥ U > Γt)

We were not able to show this inequality and the difficulty seems to lie in the
counteracting behavior of the initial positions and the conditioning.

Now we leave the path we have taken in the hard killing case. From now
on we will concentrate on the upper approximation, which we obtain by the
stochastic inequalities of Lemma 3.2.4. The next statement establishes the
convergence of Q+,n

t and lets us extract a candidate of solution from the limit.

Theorem 3.2.7. Let µ be a probability measure, g a survival distribution
differentiable on (0,∞) and fulfilling (3.4). For every t > 0 there exists a
sub-probability measure Q+

t (µ) such that

(i) Q+,n
t (µ)→ Q+

t (µ) in the sense of weak convergence as n→∞,

(ii) If b ∈ ifptk(g, µ), it holds Qbt(µ) �st Q
+
t (µ),

(iii) Q+
t (µ) is equivalent to the Lebesgue measure and Q+

t (µ)(R) = g(t),

(iv) q(n)(t)→ q(t) as n→∞ for every t > 0, where q(t) is the unique value
determined by Q+

t (µ)((−∞, q(t))) = −g′(t) and

(v) If b ∈ ifptk(g, µ) is continuous, then q(t) ≥ b(t).
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Proof. Let t > 0. By Lemma 3.2.3 we have

e−tPµ (Xt ∈ A) ≤ Q+,n
t (µ)(A) ≤ Pµ (Xt ∈ A) (3.22)

for every measurable A ⊆ R. By the upper bound of these inequalities we
have that, the collection (Q+,n

t (µ))n∈N, seen as finite measures, is tight since
Pµ (Xt ∈ · ) is tight. Since Q+,n

t (µ)(R) = g(t) we can deduce by Prokhorov’s
theorem that (Q+,n

t (µ))n∈N is relatively compact. Let σt be an accumulation
point of (Q+,n

t (µ))n∈N in the sense of weak convergence. Then by the Port-
manteau theorem and (3.22) we have that for all closed sets F ⊆ R it holds

σt(F ) ≥ lim sup
n→∞

Q+,n
t (µ)(F ) ≥ e−tPµ (Xt ∈ F )

and for all open sets U ⊆ R we have

σt(U) ≤ lim inf
n→∞

Q+,n
t (µ)(U) ≤ Pµ (Xt ∈ U) .

Since the measures are regular it follows that

e−tPµ (Xt ∈ A) ≤ σt(A) ≤ Pµ (Xt ∈ A)

for every measurableA ⊆ R, which implies that σt is equivalent to the Lebesgue
measure.

Then by Lemma 3.2.4, we have that for every c ∈ R we have that the se-
quence Q+,n

t (µ)((−∞, c]) is monotonic in n and thus, by the equivalence to the
Lebesgue measure and the Portmanteu theorem, must converge to σt((−∞, c]).
But in view of the equivalence to the Lebesgue measure and the Portmanteau
theorem, this already means that Q+,n

t (µ) converges weakly to Q+
t (µ) := σt.

Let b ∈ ifptk(g, µ). By Lemma 3.2.4 we have Qbt(µ) �st Q
+,n
t (µ). This

ordering is preserved in the limit n→∞, and thus Qbt(µ) �st Q
+
t (µ).

For t > 0, due to the fact that Q+
t (µ) is equivalent to the Lebesgue measure

and g fulfills (3.4), we can find a unique value q(t), such that

Q+
t (µ)((−∞, q(t)]) = −g′(t).

If b ∈ ifptk(g, µ) is continuous we have due to Lemma 3.2.1 that

Qtµ((−∞, b(t)) = −g′(t),

By the inequality Qbtµ �st Q
+
t (µ) it follows that b(t) ≤ q(t). Since

Q+
t (µ)((−∞, c]) = lim

n→∞
Q+,n
t (µ)((−∞, c]))

for all c ∈ R and Q+
t (µ) is equivalent to Lebesgue measure, for every (cn)n∈N

with Q+,n
t (µ)((−∞, cn]) → −g′(t) follows cn → q(t). Hence, considering

Lemma 3.2.2 we have q(n)(t)→ q(t).
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Theorem 3.2.8. Let µ �st ν. Then Q+
t (µ) �st Q

+
t (ν).

Proof. By Lemma 3.1.1 and the fact that the Markov operator preserves the
order we obtain that

Rδ
(n)

g(kδ(n))
◦ Pδ(n) and R

t−btcn
g(t) ◦ Pt−btcn

preserve the usual stochastic order. In order to begin with an induction, we
have

Sg,+,n0 (µ) = µ �st ν = Sg,+,n0 (ν).

Let us assume Sg,+,nk−1 (µ) �st S
g,+,n
k−1 (ν). Then it follows that

Sg,+,nk (µ) = Rδ
(n)

g(kδ(n))
◦ Pδ(n) ◦ S

g,+,n
k−1 (µ)

�st R
δ(n)

g(kδ(n))
◦ Pδ(n) ◦ S

g,+,n
k−1 (ν) = Sg,+,nk (ν).

By induction it follows that Sg,+,nk (µ) �st S
g,+,n
k (ν). Altogether it follows that

Q+,n
t (µ) = R

t−btcn
g(t) ◦ Pt−btcn ◦ S

g,+,n

bt/δ(n)c(µ)

�st R
t−btcn
g(t) ◦ Pt−btcn ◦ S

g,+,n

bt/δ(n)c(ν) = Q+.n
t (ν).

The ordering is preserved in the weak limit.

From Theorem 3.2.8 we can deduce the ordering between the corresponding
quantile functions q. This will be done later in Theorem 3.2.14.

We continue with a study of the function q. We will be able to obtain the
continuity of q by the following continuity of the measure Q+

t (µ).

Lemma 3.2.9. Let µ ∈ P. Let g be a survival distribution continuously dif-
ferentiable on (0,∞) and fulfilling (3.4). Let dP denote the Prohorov metric
from (B.1). Let 0 < η < T and t, s ∈ [η, T ]. Then there is a tight collection of
probability measures ST only depending on T and µ such that

dP

(
g(t)−1Q+

t (µ), g(s)−1Q+
s (µ)

)
≤ |t− s|+ sup

σ∈ST
dP

(
P|t−s|σ, σ

)
.

If µ is absolutely continuous to Lebesgue measure the statement holds also for
η = 0.

Proof. By the fact that the Prohorov metric is bounded by 1, we can assume
without loss of generality that |t− s| ≤ 1. Since the Prohorov metric metrizes
the weak convergence it suffices to show a bound of the type

dP

(
g(t)−1Q+,n

t (µ), g(s)−1Q+,n
s (µ)

)
≤ |t− s|+ sup

σ∈ST
dP

(
P|t−s|σ, σ

)
+ εn,
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where (εn)n∈N is a sequence converging to zero. Without loss of generality
assume that t ≥ s ≥ η. By the triangle inequality we observe

dP

(
g(t)−1Q+,n

t (µ), g(s)−1Q+,n
s (µ)

)
≤ dP

(
g(t)−1Q+,n

t (µ), Pt−bscn(g(bscn)−1Q+,n
bscn(µ))

)
+ dP

(
Pt−s ◦ Ps−bscn(g(bscn)−1Q+,n

bscn(µ)), Ps−bscn(g(bscn)−1Q+,n
bscn(µ))

)
+ dP

(
Ps−bscn(g(bscn)−1Q+,n

bscn(µ)), g(s)−1Q+,n
s (µ)

)
. (3.23)

In the following we abbreviate

ν := g(bscn)−1Q+,n
bscn(µ).

Observe that in view of Remark 3.2.3 we obtain

g(t)−1Q+,n
t (µ)

=
g(btcn)

g(t)
R
t−btcn
g(t)

g(btcn)

◦ Pt−btcn ◦
1

αbt/δ(n)c
Rδ

(n)

αbt/δ(n)c
◦ Pδ(n) ◦ . . . ◦

1

α1
Rδ

(n)

α1
◦ Pδ(n)(µ)

=
g(btcn)

g(t)
R
t−btcn
g(t)

g(btcn)

◦ Pt−btcn ◦
1

αbt/δ(n)c
Rδ

(n)

αbt/δ(n)c
◦ Pδ(n) ◦ . . .

. . . ◦ 1

αbs/δ(n)c+1

Rδ
(n)

αbs/δ(n)c+1
◦ Pδ(n)(ν),

(3.24)

where αk := g(kδ)/g((k − 1)δ). Further we can write

Pt−bscnν = Pt−btcn ◦ Pδ(n) ◦ . . . ◦ Pδ(n)(ν). (3.25)

Denote h(t) := − ∂
∂t log(g(t)). Recall that by (3.4) we have 0 < h(t) < 1 for all

t > 0. It holds

αk =
g(kδ(n))

g((k − 1)δ(n))
= e
−

∫ kδ(n)
(k−1)δ(n)

h(y) dy
.

In view of (3.24) compared with (3.25), by Lemma B.1.11 and Corollary 3.1.10
we have

dP

(
g(t)−1Q+,n

t (µ), Pt−bscng(bscn)−1Q+,n
bscn(µ)

)
≤ dTV

(
g(t)−1Q+,n

t (µ), Pt−bscng(bscn)−1Q+,n
bscn(µ)

)
≤ 1− g(t)

g(btcn)
+

bt/δ(n)c∑
k=bs/δ(n)c+1

(1− αk)
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= 1− e−
∫ t
btcn h(y) dy

+

bt/δ(n)c∑
k=bs/δ(n)c+1

1− e−
∫ kδ(n)
(k−1)δ(n)

h(y) dy

≤
∫ t

btcn
h(y) dy +

bt/δ(n)c∑
k=bs/δ(n)c+1

∫ kδ(n)

(k−1)δ(n)
h(y) dy =

∫ t

bs/δ(n)cδ(n)
h(y) dy

≤ (t− bs/δ(n)cδ(n)) ≤ |t− s|+ δ(n) (3.26)

using that 0 ≤ h ≤ 1, since g fulfilles (3.4). In the case η = 0 here we have to
use that µ has a density, since then we can use Lemma 3.1.8 even in the case
s = 0. In a similar manner as above we have

g(s)−1Q+,n
s (µ) =

g(bscn)

g(s)
R
s−bscn
g(s)

g(bscn)

◦ Ps−bscn(g(bscn)−1Q+,n
bscn(µ)).

This means we have, with a further application of Lemma 3.1.10, that

dP

(
Ps−bscn(g(bscn)−1Q+,n

bscn(µ)), g(s)−1Q+,n
s (µ)

)
≤ dTV

(
Ps−bscn(g(bscn)−1Q+,n

bscn(µ)), g(s)−1Q+,n
s (µ)

)
≤ 1− g(s)

g(bscn)
. (3.27)

As next step observe that for all n ∈ N and s ∈ [0, T ] we have

Ps−bscnν(A) = Ps−bscng(bscn)−1Q+,n
bscn(µ)(A)

=

∫
R
Ex
[
1{Xs∈A}e

−
∑bscn2n

k=0 2−n1
(−∞,q(n)(k2−n))

(Xk2−n )
]
µ(dx)

≤ g(bscn)−1

∫
R
Px(Xs ∈ A)µ(dx)

≤ g(T )−1

∫
R
Px(Xs ∈ A)µ(dx).

This implies that for all n ∈ N and s ∈ [0, T ] we can see Ps−bscnν as part of
a bigger collection ST of tight probability measures, since (Psµ)s∈[0,T ] is tight
due to the continuity of the pathes. Now we have

dP

(
Pt−s ◦ Ps−bscn(g(bscn)−1Q+,n

bscn(µ)), Ps−bscn(g(bscn)−1Q+,n
bscn(µ))

)
= dP

(
Pt−s ◦ Ps−bscn(ν), Ps−bscn(ν)

)
≤ sup

σ∈ST
dP (Pt−sσ, σ) .

As last step, by putting the above, (3.26) and (3.27) together, we obtain in
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view of the triangle bound in (3.23) that

dP

(
g(t)−1Q+

t (µ), g(s)−1Q+
s (µ)

)
= lim

n→∞
dP

(
g(t)−1Q+,n

t (µ), g(s)−1Q+,n
s (µ)

)
≤ lim

n→∞
|t− s|+ δ(n) + sup

σ∈ST
dP (Pt−sσ, σ) +

(
1− gu(s)

gu(bscn)

)
= |t− s|+ sup

σ∈ST
dP (Pt−sσ, σ) ,

which shows the statement.

Corollary 3.2.10. Let µ ∈ P. Let g be a survival distribution continuously
differentiable on (0,∞) and fulfilling (3.4). Then the function q : (0,∞)→ R
implicitly defined by Q+

t (µ)((−∞, q(t))) = −g′(t) is continuous. If addition-
ally (3.5) is fulfilled, then q(0+) exists and is the unique value such that
µ((−∞, q(0+))) = −g′(0).

Proof. Let η > 0. Employing the third point of the imposed assumptions
on the Markov process the previous Lemma 3.2.9 yields in particular that
t → Q+

t (µ) is continuous in t ≥ η in the sense of weak convergence. Assume
there is a sequence (tm)m∈N of non-negative numbers such that tm → t ≥
η and x := limm→∞ a(tm) 6= q(t). Assume that then x > q(t). By the
above mentioned continuity it holds Q+

tm(µ) → Q+
t (µ) in the sense of weak

convergence. For c ∈ (q(t), x) we would have

−g′(t) = lim
m→∞

−g′(tm) = lim
m→∞

Q+
tm(µ)((−∞, q(tm)))

≥ lim
m→∞

Q+
tm(µ)((−∞, c)) = Q+

t (µ)((−∞, c))

> Q+
t (µ)((−∞, q(t))) = −g′(t),

which is a contradiction. The case x < q(t) is analogous, and thus q has to be
continuous in t. With the additional assumption, the arguments above apply
for the case t = 0.

Regarding the representation of Q+,n
t (µ) by Lemma 3.2.3 in terms of a type

of Riemann sums, it makes sense to demand more control over the convergence
of q(n) to q.

Lemma 3.2.11. Let g be a survival distribution continuously differentiable on
(0,∞) and fulfilling (3.4) and µ ∈ P. Recall the function q : (0,∞) → R
implicitely defined by Q+

t (µ)((−∞, q(t))) = −g′(t). Then for 0 < η < T the
function q(n) converges uniformly in t ∈ [η, T ] to the function q.

In order to prove Lemma 3.2.11 we will use Dini’s theorem on certain
approximants and therefore need the continuity of the approximants. This
continuity will be provided by the following auxiliary statement.
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Lemma 3.2.12. Let g be a survival distribution continuously differentiable on
(0,∞) and fulfilling (3.4) and µ ∈ P. Then the mapping

[0,∞)→ P, t 7→ g(t)−1Rtg(t)(Ptµ)

is continuous in the sense of weak convergence, where we identify R0
1(µ) = µ.

Proof. Recall that we have that [0,∞) → P, t 7→ Ptµ is continuous in the
sense of weak convergence and Ptµ is equivalent to the Lebesgue measure for
every t > 0. Let f : R → R continuous and bounded. For simplicity of
notation abbreviate qt := qtg(t)(Ptµ). For the continuity in t = 0 consider∣∣∣∣∫

R
f(x)Rtg(t)(Ptµ)(dx)− Ptµ(f)

∣∣∣∣
=
∣∣∣Eµ [f(Xt)e

−t1(−∞,qt)(Xt) − f(Xt)
]∣∣∣ ≤ ‖f‖∞|e−t − 1| → 0,

as t → 0. Thus the continuity in t = 0 follows from the assumption that
Ptµ → µ in the sense of weak convergence and that g is continuous in t = 0.
Now consider t > 0 and let tm → t as m → ∞. We have Ptmµ → Ptµ in the
sense of weak convergence. As first case assume that there is ε > 0 such that
lim supm→∞ qtm ≥ qt + ε. Then we had, since Ptµ has no atoms, that

1− g(t)

1− e−t
= lim

m→∞

1− g(tm)

1− e−tm
= lim

m→∞
Ptmµ((−∞, qtm))

≥ lim
m→∞

Ptmµ((−∞, qt + ε)) = Ptµ((−∞, qt + ε))

> Ptµ((−∞, qt)) =
1− g(t)

1− e−t
,

which is a contradiction. Analogously, the case that there is ε > 0 with
lim infm→∞ qtm ≤ qt − ε leads to a contradiction. Hence, we obtain that

lim
s→t

qs = qt.

Therefore we have, as s→ t,∣∣∣∣∫
R
f(x)Rsg(s)(Psµ)(dx)− Eµ

[
f(Xs)e

−t1(−∞,qt)(Xs)
]∣∣∣∣

=
∣∣∣Eµ [f(Xs)

(
e−s1(−∞,qs)(Xs) − e−t1(−∞,qt)(Xs)

])∣∣∣
≤ ‖f‖∞ ·

(
|e−s − e−t|+ Psµ([qs ∧ qt, qs ∨ st))

)
due to the weak convergence of Psµ→ Pt and the assumption that Ptµ has no
atoms. By the same weak convergence in follows that

Eµ
[
f(Xs)e

−t1(−∞,qt)(Xs)
]
→
∫
R
f(x)Rtg(t)(Ptµ)(dx),

since x 7→ f(x)e−t1(−∞,qt)(x) has only one point of discontinuity and Ptµ is
non-atomic. This proves the statement.



3.2. EXISTENCE AND UNIQUENESS 159

We are now ready to prove Lemma 3.2.11.

Proof of Lemma 3.2.11. With the additional assumption the following argu-
ments are also true for η = 0. For t ≥ η let a(n)(t) implicitly defined by

Q+,n
t (µ)((−∞, a(n)(t))) = −g′(t),

which is possible since Q+,n
t (µ) is equivalent to the Lebesgue measure and g

fulfills (3.4). By Lemma 3.2.12 we can deduce that t 7→ Q+,n
t is continuous

in t ≥ η in the sense of weak convergence. Now, analogously to the prove
of Corollary 3.2.10, it can be seen that a(n) is continuous for t ≥ η. By the
ordering of Lemma 3.2.4 we have that

q(t) ≤ a(n+1)(t) ≤ a(n)(t)

for every t ≥ η. Since Q+,n
t ((−∞, a(n)(t))) → Q+

t ((−∞, q(t)), it follows as
in proof of Theorem 3.2.7, that a(n)(t) → q(t). In view of this and by Dini’s
theorem, for example see Theorem 7.3 from [Rud76], by continuity of q and
a(n) it follows that supt∈[η,T ] |a(n)(t)− q(t)| → 0 as n→∞. We will finish the
proof by showing that

sup
t∈[η,T ]

|q(n)(t)− a(n)(t)| → 0

as n → ∞. As preparation for this, we claim that there exists a compact set
KT ⊂ R only depending on η and T , such that for all n large enough we have

q(n)(t), a(n)(t) ∈ KT

for all t ∈ [η, T ]. In order to see this, we begin as follows. By Prohorov’s
theorem the collection of measures (Ptµ)t∈[η,T ] is tight. Thus for ε > 0, by
Lemma 3.2.3 we can find k(ε) > 0 such that for all n ∈ N and t ∈ [η, T ]

Q+,n
t (µ)(R \ [−k(ε), k(ε)]) ≤ Ptµ(R \ [−k(ε), k(ε)]) ≤ ε.

Thus, we have Q+,n
t (µ)((q(n)(t),∞)) ≤ ε, whenever q(n)(t) > k(ε), and simi-

larly Q+,n
t (µ)((−∞, q(n)(t)))) ≤ ε, whenever q(n)(t) < −k(ε). For a function f

denote ‖f‖[η,T ] := supt∈[η,T ] |f(t)|. We have by Lemma 3.2.2 for t ∈ [η, T ] that

Q+,n
t ((q(n)(t),∞)) = |g(t)−Q+,n

t ((−∞, q(n)(t)))|
= |g(t) + g′(t) + (−g′(t)−Q+,n

t ((−∞, q(n)(t))))|
≥ |g(t) + g′(t)| − |Q+,n

t ((−∞, q(n)(t)))− (−g′(t))|

≥ g(T )

∣∣∣∣1 +
g′(t)

g(t)

∣∣∣∣− sup
s∈[η,T ]

|Q+,n
s ((−∞, q(n)(s)))− (−g′(s))|

≥ g(T ) inf
s∈[η,T ]

∣∣∣∣1 +
g′(s)

g(s)

∣∣∣∣− sup
s∈[η,T ]

|Q+,n
s ((−∞, q(n)(s)))− (−g′(s))|

→ g(T ) inf
s∈[η,T ]

∣∣∣∣1 +
g′(s)

g(s)

∣∣∣∣
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as n→∞. On the other hand we have

Q+,n
t (µ)((−∞, q(n)(t)))) ≥ |g′(t)| − |Q+,n

t (µ)((−∞, q(n)(t)))) + g′(t)|

≥ g(T )

∣∣∣∣g′(t)g(t)

∣∣∣∣− sup
s∈[η,T ]

|Q+,n
s ((−∞, q(n)(s)))− (−g′(s))|

≥ g(T ) inf
s∈[η,T ]

∣∣∣∣g′(s)g(s)

∣∣∣∣− sup
s∈[η,T ]

|Q+,n
s ((−∞, q(n)(s)))− (−g′(s))|

→ g(T ) inf
s∈[η,T ]

∣∣∣∣g′(s)g(s)

∣∣∣∣ .
Now, note that due to (3.4) and the continuity of g and g′ we have

εT :=
1

2
g(T ) min

(
inf

s∈[η,T ]

∣∣∣∣1 +
g′(s)

g(s)

∣∣∣∣ , inf
s∈[η,T ]

∣∣∣∣g′(s)g(s)

∣∣∣∣) > 0.

In view of the above, for n large enough we have necessarily that q(n)(t) ≤
k(εT ) and q(n)(t) ≥ −k(εT ) for all t ∈ [0, T ]. For a(n)(t) holds

Q+,n
t ((a(n)(t),∞)) = g(t) + g′(t) ≥ g(T ) inf

s∈[η,T ]

∣∣∣∣1 +
g′(s)

g(s)

∣∣∣∣
and

Q+,n
t (µ)((−∞, a(n)(t)))) = −g′(t) ≥ g(T ) inf

s∈[η,T ]

∣∣∣∣g′(s)g(s)

∣∣∣∣ .
Hence, analogously to above we have necessarily that |a(n)(t)| ≤ k(εT ) for all
t ∈ [η, T ]. This yields the claim by setting KT := [−k(εT ), k(εT )].
As next step assume that

lim sup
n→∞

sup
t∈[η,T ]

|q(n)(t)− a(n)(t)| 6= 0. (3.28)

Then there would exist θ > 0, a subsequence (nk)k∈N of N and a converging
sequence (tk)k∈N contained in [η, T ], such that

|q(nk)(tk)− a(nk)(tk)| ≥ θ (3.29)

for all k ∈ N. Denote t0 := limk→∞ tk and observe that, since q(n)(t), a(n)(t) ∈
KT for all t ∈ [η, T ], we can assume without loss of generality that the limits
limk→∞ q

(nk)(tk) and limk→∞ a
(nk)(tk) exist. We denote

c1 := min( lim
k→∞

q(nk)(tk), lim
k→∞

a(nk)(tk))

and

c2 := max( lim
k→∞

q(nk)(tk), lim
k→∞

a(nk)(tk)).
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By (3.29) it would follow that |c1 − c2| ≥ θ > 0. Now let

An(t) := (min(q(n)(t), a(n)(t)),max(q(n)(t), a(n)(t)))

and observe, that on the one hand we have by Lemma 3.2.3 that

Q+,n
tk

(µ)(An) ≥ e−TPµ (Xtk ∈ Ank(tk))→ Pµ (Xt0 ∈ (c1, c2)) > 0,

since Ptµ is continuous in t ∈ [η, T ] and is equivalent to Lebesgue measure for
every t ≥ η. But on the other hand we have in view of Lemma 3.2.2 that

sup
t∈[η,T ]

Q+,n
t (µ)(An) = sup

t∈[η,T ]
|Q+,n

t (µ)((−∞, q(n)(t)))−Q+,n
t (µ)((−∞, a(n)(t)))|

= sup
t∈[η,T ]

|Q+,n
t (µ)((−∞, q(n)(t)))− (−g′(t))|

→ 0.

Consequently, the assumption in (3.28) has to be false, and it follows

sup
t∈[η,T ]

|q(n)(t)− a(n)(t)| → 0,

which finishes the proof.

With the uniform convergence at hand, we can finalize our goal by estab-
lishing the convergence of the Riemann type sum appearing in Q+,n

t (µ) to an
integral of the desired form Γqt .

Theorem 3.2.13. Let µ ∈ P. Let g be a survival distribution continuously dif-
ferentiable on (0,∞) fulfilling (3.4). Let q be the continuous function implicitly
defined by Q+

t (µ)((−∞, q(t))) = −g′(t). We have

Q+
t (µ) = Qqt (µ) = Eµ

[
1{Xt∈ ·}e

−
∫ t
0 1(−∞,q(s))(Xs) ds

]
for every t ≥ 0, thus q ∈ ifptk(g, µ). Additionally, if b ∈ ifptk(g, µ) is contin-
uous it follows b = q.

Proof. Let t > 0. By Lemma 3.2.11 we have that q(n) converges to q uniformly
on [η, t] for any 0 < η < t. In order to use Lemma B.2.9 we consider

Eµ
[∫ t

η
1{0}(q(s)−Xs) ds

]
=

∫ t

η
Eµ
[
1{0}(q(s)−Xs)

]
ds

=

∫ t

η
Pµ (Xs = q(s)) ds = 0.

Since the integral is non-negative it follows that almost surely∫ t

η
1{0}(q(s)−Xs) ds = 0.
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By Lemma B.2.9 we can now deduce that almost surely

lim
n→∞

bt/δ(n)c∑
`=bη/δ(n)c+1

δ(n)
1(−∞,q(n)(`δ(n)))(X`δ) =

∫ t

η
1(−∞,q(s))(Xs) ds.

Thus by the representation of Lemma 3.2.3 and the dominated convergence
theorem we get for measurable A ⊆ R that

lim sup
n→∞

∣∣∣Q+,n
t (µ)(A)− Eµ

[
1{Xt∈A}e

−
∫ t
η 1(−∞,q(s))(Xs) ds

]∣∣∣
≤ lim sup

n→∞
Eµ

[∣∣∣e−(t−btcn)1
(−∞,q(n)(t))(Xt)e

−
∑bt/δ(n)c
`=1 δ(n)1

(−∞,q(n)(`δ(n)))(X`δ)

−e−
∫ t
η 1(−∞,q(s))(Xs) ds

∣∣∣1{Xt∈A}]
≤ lim sup

n→∞
Eµ

[∣∣∣e−∑bt/δ(n)c
`=bη/δ(n)c+1

δ(n)1
(−∞,q(n)(`δ(n)))(X`δ) − e−

∫ t
η 1(−∞,q(s))(Xs) ds

∣∣∣]

+ lim sup
n→∞

Eµ

[∣∣∣e−(t−btcn)1
(−∞,q(n)(t))(Xt)e

−
∑bt/δ(n)c
`=1 δ(n)1

(−∞,q(n)(`δ(n)))(X`δ)

−e
−

∑bt/δ(n)c
`=bη/δ(n)c+1

δ(n)1
(−∞,q(n)(`δ(n)))(X`δ)

∣∣∣]

= Eµ

[
lim
n→∞

∣∣∣e−∑bt/δ(n)c
`=bη/δ(n)c+1

δ(n)1
(−∞,q(n)(`δ(n)))(X`δ) − e−

∫ t
η 1(−∞,q(s))(Xs) ds

∣∣∣]

+ lim sup
n→∞

Eµ

[
e
−

∑bt/δ(n)c
`=bη/δ(n)c+1

δ(n)1
(−∞,q(n)(`δ(n)))(X`δ)·

·
∣∣∣e−(t−btcn)1

(−∞,q(n)(t))(Xt)e
−

∑bη/δ(n)c
`=1 δ(n)1

(−∞,q(n)(`δ(n)))(X`δ) − 1
∣∣∣]

≤ lim sup
n→∞

Eµ

[∣∣∣e−(t−btcn)1
(−∞,q(n)(t))(Xt)e

−
∑bη/δ(n)c
`=1 δ(n)1

(−∞,q(n)(`δ(n)))(X`δ) − 1
∣∣∣]

≤
∣∣e−η − 1

∣∣
for η > 0. By letting η → 0 we obtain

lim
n→∞

Q+,n
t (µ)(A) = Eµ

[
1{Xt∈A}e

−
∫ t
0 1(−∞,q(s))(Xs) ds

]
= Qqt (µ)(A).

This means that Q+
t (µ) = Qqt (µ).

Let b ∈ ifptk(g, µ) be continuous. We will prove that necessarily b = q. In
view of Theorem 3.2.7 we have q ≥ b pointwise. Consequently, we have also
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Γqt ≥ Γbt . By using that Q+
t (µ) = g(t) given by Theorem 3.2.7 this yields

0 ≤ Eµ
[
e−Γbt − e−Γqt

]
= Pµ

(
τ sk
b > t

)
−Q+

t (µ)(R) = g(t)− g(t) = 0,

which implies that Γqt = Γbt almost surely.
In the following let us fix a continuous path such that Γqt = Γbt . For such a

path we have that∫ T

0

(
1(−∞,q(s))(Xs)− 1(−∞,b(s))(Xs)

)
ds = Γqt − Γbt = 0. (3.30)

Since by q ≥ b for every 0 ≤ s ≤ t holds 1(−∞,q(s))(Xs) ≥ 1(−∞,b(s))(Xs) it
follows by (3.30) that 1(−∞,q(s))(Xs) = 1(−∞,b(s))(Xs) for Lebesgue almost all
s ∈ (0, t], which means that Xs /∈ [b(s), q(s)) for Lebesgue almost all s ∈ (0, t].
By the continuity of the path and the continuity of b and q this implies that
we have Xs /∈ (b(s), q(s)) for all s ∈ (0, t].

Altogether, this implies, on the almost sure event that the Brownian motion
is continuous and it holds that Γqt = Γbt , we have Xt /∈ (b(t), q(t)). This implies
that Pµ (Xt ∈ (b(t), q(t))) = 0. Since by our general assumption the measure
Pµ (Xt ∈ · ) is equivalent to the Lebesgue measure it follows that b(t) = q(t).
Since t was arbitrary we obtain b = q.

We conclude by stating a comparison principle for solutions corresponding
to ordered initial distributions.

Theorem 3.2.14. Let g be a survival distribution continuously differentiable
on (0,∞) fulfilling (3.4). Let µ1, µ2 ∈ P with µ1 �st µ2. Let bi ∈ ifptk(g, µi)
be continuous. Then it holds

b1 ≤ b2

pointwise.

Proof. By Theorem 3.2.13 and Theorem 3.2.8 we obtain that

Qb1t (µ1) = Q+
t (µ1) �st Q

+
t (µ2) = Qb2t (µ2).

By the uniqueness of Theorem 3.2.13 we obtain that b1 and b2 fulfill

Q+
t (µi)((−∞, bi(t))) = −g′(t)

for t > 0. By the stochastic ordering it follows that b1(t) ≤ b2(t) for all
t > 0.
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3.3 Simulation of solutions for the soft-killing
problem

In this section we shortly discuss how to achieve a simulation of the unknown
but unique continuous boundary function b ∈ ifptk(g, µ) in the case of Brow-
nian motion. In Section 2.4 we already discussed an interacting particle rep-
resentation for the inverse first passage-time problem for reflected Brownian
motion, which will be referred to as hard-killing problem in the following. Re-
garding this, a first idea for the soft-killing problem could be to begin with
N particles, which perform Brownian motion independently between certain
timepoints and employ a certain jumping effect at these specific timepoints.

In the soft killing problem moving particles do not have to be necessarily
killed but could be reweighted instead. This makes it possible to introduce an
approach which makes use of a weighting factor for every particle, depending
on the time a particle has approximately spend under the boundary function.
This leads to the following Monte-Carlo method which approximates for n ∈ N
the function q(n) from (3.19) at the timepoints N02−n.

Let g be a survival distribution continuously differentiable on (0,∞), and
recall that the hazard rate of g is given by h(t) = − ∂

∂t log(g(t)). Let µ ∈ P
and assume that g fulfills the hazard rate condition of (3.4).

Let (X1
t , . . . , X

N
t )t≥0 be an N -dimensional Brownian motion with initial

configuration (X1
0 , . . . , X

N
0 ) ∼ µ⊗N . For n ∈ N let timepoints (tnk)k∈N be given

by

tnk := k · 2−n = kδ(n).

We define the weighting process (̂wk)k∈N0 = (̂w1
k, . . . , ŵ

N
k )k∈N0 inductively by

ŵi0 := 1
N for any i ∈ {1, . . . , N} and for k ∈ N

ŵik := ŵik−1 · e
−δ(n)1

(−∞,̂q(n)
k

)
(Xi

kδ(n)
)
,

where

q̂
(n)
k := sup

{
q ∈ R :

N∑
i=1

ŵik−1e
−δ(n)1(−∞,q)(X

i

kδ(n)
) ≥ g(kδ(n))

g((k − 1)δ(n))

N∑
i=1

ŵik−1

}
.

Heuristically, q̂(n) is the empirical version of q(n) from (3.19). In order to study
this empirical approximation rigorously, we begin with the following.

Lemma 3.3.1. Fix n ∈ N. Let T > 0 and q(n) be given as in (3.19). For any
measurable and bounded function ϕ : C[0, T ]→ R we have that

N∑
i=1

ŵikϕ((Xi
t)t∈[0,T ])→ Eµ

[
ϕ((Xt)t∈[0,T ])e

−
∑k
`=1 δ

(n)
1
(−∞,q(n)(`δ(n)))(X`δ(n) )

]
as N →∞ almost surely.
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Proof. The technique is similar to the idea used in Theorem 2.4.16. At first
define (wk)k∈N0 by wi0 := 1

N and

wik := wik−1 · e
−δ(n)1

(−∞,q(n)(kδ(n)))(X
i

kδ(n)
)
.

We claim that
N∑
i=1

|̂wik − wik| → 0 (3.31)

as N →∞ almost surely. In order to see this, consider

N∑
i=1

|̂wik − wik|

≤
N∑
i=1

|̂wik − ŵik−1 · e
−δ(n)1

(−∞,q(n)(kδ(n)))(X
i

kδ(n)
)|

+
N∑
i=1

|̂wik−1 · e
−δ(n)1

(−∞,q(n)(kδ(n)))(X
i

kδ(n)
) − wik|

≤
N∑
i=1

ŵik−1|e
−δ(n)1

(−∞,̂q(n)
k

)
(Xi

kδ(n)
)
− e−δ

(n)
1
(−∞,q(n)(kδ(n)))(X

i

kδ(n)
)|

+

N∑
i=1

|̂wik−1 − wik−1|. (3.32)

The sign of the first term does only depend on q̂(n)
k and q(n)(kδ(n)), which can

be exploited as follows.

N∑
i=1

ŵik−1|e
−δ(n)1

(−∞,̂q(n)
k

)
(Xi

kδ(n)
)
− e−δ

(n)
1
(−∞,q(n)(kδ(n)))(X

i

kδ(n)
)|

=
N∑
i=1

ŵik−1 sgn
(
q(n)(kδ(n))− q̂(n)

k

)
·

·
(
e
−δ(n)1

(−∞,̂q(n)
k

)
(Xi

kδ(n)
)
− e−δ

(n)
1
(−∞,q(n)(kδ(n)))(X

i

kδ(n)
)
)

=

∣∣∣∣∣
N∑
i=1

ŵik−1

(
e
−δ(n)1

(−∞,̂q(n)
k

)
(Xi

kδ(n)
)
− e−δ

(n)
1
(−∞,q(n)(kδ(n)))(X

i

kδ(n)
)
)∣∣∣∣∣

≤

∣∣∣∣∣
N∑
i=1

ŵik −
N∑
i=1

wik

∣∣∣∣∣+

∣∣∣∣∣
N∑
i=1

wik −
N∑
i=1

ŵik−1 · e
−δ(n)1

(−∞,q(n)(kδ(n)))(X
i

kδ(n)
)

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

ŵik −
N∑
i=1

wik

∣∣∣∣∣+
N∑
i=1

|wik−1 − ŵik−1|. (3.33)
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Thus, let us now assume that

N∑
i=1

|wik−1 − ŵik−1| → 0 (3.34)

for N →∞ almost surely. As preparational step observe that by the definition
of q̂(n)

k we have

N∑
i=1

ŵik−1 ·
g(kδ(n))

g((k − 1)δ(n))
≤

N∑
i=1

ŵik

=

N∑
i=1

ŵik−1 ·

(
e
−δ(n)1(

−∞,̂q(n)
k

](Xi

kδ(n)
)

+ (1− e−δ(n))1{Xi

kδ(n)
=̂q

(n)
k }

)

=

N∑
i=1

ŵik−1 · e
−δ(n)1(

−∞,̂q(n)
k

](Xi

kδ(n)
)

+ (1− e−δ(n))
N∑
i=1

ŵik−11{Xi

kδ(n)
=̂q

(n)
k }

≤
N∑
i=1

ŵik−1 ·
g(kδ(n))

g((k − 1)δ(n))
+

1

N
,

which implies by the assumption and limN→∞
∑N

i=1w
i
k−1 = g((k − 1)δ(n))

almost surely that

lim
N→∞

N∑
i=1

ŵik = g(kδ(n))

almost surely. By the law of large numbers we have limN→∞
∑N

i=1w
i
k =

g(kδ(n)) almost surely. From this we can deduce by (3.32) and (3.33) and
combined with the assumption from (3.34) that

lim sup
N→∞

N∑
i=1

|̂wik − wik| ≤ lim sup
N→∞

∣∣∣∣∣
N∑
i=1

ŵik −
N∑
i=1

wik

∣∣∣∣∣ = 0

almost surely. By induction, this yields the claim from (3.31). Since by the
claim we have∣∣∣∣∣

N∑
i=1

ŵikϕ((Xi
t)t∈[0,T ])−

N∑
i=1

wikϕ((Xi
t)t∈[0,T ])

∣∣∣∣∣ ≤ ‖ϕ‖∞
N∑
i=1

|̂wik − wik| → 0

almost surely as N →∞, we obtain the desired statement by the law of large
numbers.

From this we can deduce the convergence of the Monte-Carlo method.
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Theorem 3.3.2. Let n ∈ N. Then we have almost surely

q̂
(n)
k → q(n)(kδ(n)) ∀k ∈ N

as N →∞.

Proof. Fix k ∈ N. Set α := g(kδ(n))/g((k−1)δ(n)). From Lemma 3.3.1 follows
that we have

F̂N (x) :=

(
N∑
i=1

ŵik−1

)−1 N∑
i=1

ŵik−1 · 1(−∞,x)(X
i
kδ(n)

)

→ g((k − 1)δ(n))−1Eµ
[
1{X

kδ(n)
<x}e

−
∑k−1
`=1 δ

(n)
1
(−∞,q(n)(`δ(n)))(X`δ(n) )

]
=: F (x)

for every x ∈ Q almost surely as N →∞. Since F̂N and F are non-decreasing
and F is continuous we can extend this to the property that F̂N (x) → F (x)
for all x ∈ R as N → ∞ almost surely. Furthermore, since F is continuous,
we can deduce by Lemma B.2.11 that the convergence is in fact uniform. This
means supx∈R |̂FN − F | → 0 as N →∞ almost surely. Since the normalizing
factor for F̂N is

∑N
i=1 ŵ

i
k−1 we observe that

q̂
(n)
k = sup

{
q ∈ R : e−δ

(n)
F̂N (q) + 1− F̂N (q) ≥ g(kδ(n))

g((k − 1)δ(n))

}

= sup

{
q ∈ R : F̂N (q) ≤ 1− α

1− e−δ(n)

}
. (3.35)

Further, with the definition of q(n)(kδ(n)) in (3.19) we can use (3.12) and the
representation from Lemma 3.2.3 and we have that

g((k − 1)δ(n))F (q(n)(kδ(n)))

= Eµ
[
1{X

kδ(n)
<q(n)(kδ(n))}e

−
∑k−1
`=1 δ

(n)
1
(−∞,q(n)(`δ(n)))(X`δ(n) )

]
= Pδ(n)S

g,+,n
k−1 (µ)((−∞, q(n)(kδ(n))))

=
g((k − 1)δ(n))− g(kδ(n))

1− e−δ(n)
= g((k − 1)δ(n))

1− α
1− e−δ(n)

.

Hence, since F is strictly increasing and continuous q(n)(kδ(n)) is the unique
value with

F (q(n)(kδ(n))) = β :=
1− α

1− e−δ(n)
.
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In the following we work on the event limN→∞ supx∈R |̂FN−F | = 0. Let ε > 0
such that min(β, 1−β) > ε > 0 and N ∈ N such that supx∈R |̂FN (x)−F (x)| <
ε/2. Then

F̂N (F−1(β − ε)) ≤ sup
x∈R
|̂FN (x)− F (x)|+ F (F−1(β − ε)) ≤ β − ε

2
.

Analogously we have

F̂N (F−1(β + ε)) ≥ − sup
x∈R
|̂FN (x)− F (x)|+ F (F−1(β + ε)) = β +

ε

2
.

Therefore, by (3.35) we see that q̂(n)
k ≥ F−1(β−ε). Since F̂N is left-continuous

we have F̂N (̂q
(n)
k ) ≤ β and it also follows that q̂(n)

k ≤ F−1(β+ε), which means
that

F−1(β − ε) ≤ lim inf
N→∞

q̂
(n)
k ≤ lim sup

N→∞
q̂

(n)
k ≤ F−1(β + ε).

Since F−1 is continuous, letting ε→ 0 yields the statement.

Simulation

Now we turn the focus to the simulation of solutions of the inverse first-passage
time problem for soft-killed Brownian motion. For n ∈ N and N ∈ N the
random function

q̂(n) : Nδ(n) → R, kδ(n) 7→ q̂
(n)
k

is a Monte-Carlo approximation of the discrete and deterministic approxima-
tion q(n) from (3.19).
Naturally, known distributions of τ sk

b for explicitly given boundaries b are use-
ful examples to test the Monte-Carlo algorithm. By the identity

Pµ
(
τ sk
b > t

)
= Eµ

[
e−Γbt

]
= Eµ

[
e−

∫ t
0 1(−∞,b(s))(Xs) ds

]
.

one may computes the distribution of τ sk
b by the means of the distribution of

the occupation time Γbt .
At least one example for which the distribution of Γbt is in some sense

explicitly known is the case b(t) = c + νt, where c, ν ∈ R. The explicit
formulas of [Pec99a] and [Pec99b] can be used to compute Eµ

[
e−Γbt

]
, but lead

to formulas which are inconvenient for a computational implementation. The
special case of ν = 0 is treated in a more elementary way in Lemma B.1.12
and leads to the following example.
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Figure 3.1: The approximated boundary q̂(n) with n = 4 corresponding to
g1 from Example 3.3.3 with N = 107 and µ = δ0. The exact solution is the
constant function with value 1.

Example 3.3.3. Let b(t) = 1 for all t ≥ 0 and set µ = δ0. Then, due to
Lemma B.1.12, the distribution of the soft-killing time τ sk

b is given by

g1(t) = e−t

(
2Φ

(√
1

t

)
− 1

)
+

∫ t

0
e−u1F1(1/2; 1;−(t− u))

√
1

2πu3
e−

1
2u ,

where 1F1 denotes the confluent hypergeometric function of the first kind.
Thus we can make a comparison of the constant boundary and the approxi-
mated solution (cf. Figure 3.1), where we have chosen µ = δ0.

Visualizations for unknown boundaries can be seen in Figure 3.2.

Figure 3.2: The approximated boundaries for g(t) = e−
1
2
t (Exp(1/2)),

g(t) = (1 + t)−
1
2 (Lomax(1/2, 1)) and g(t) = e−

1
4
t2 (Weibull(2, 2)).





Chapter 4

Outlook

In this chapter we want to address open questions, which are connected to the
results in this thesis. We will divide the discussion into two parts concerning
the hard-killing and the soft-killing problem.

The hard-killing problem

Regularity and further properties of solutions

In this thesis we approached the problem of finding properties of solutions from
a probabilistic point of view. On the one hand we provided sufficient criteria
for Lipschitz continuity and Hölder continuity in Subsection 2.3.4, where the
probabilistic method for the latter came from [EJ16]. More subtle conditions
for the regularity of solutions were obtained in the work of [CCS21] in the
context of free boundary problems. This gives rise to the question, whether
such results could be also obtained in a probabilistic way. On the other hand,
by our stochastic order approach we studied properties of solutions such as the
shape of solutions in terms of monotonicity. The question arises whether one
can extend the approach in order to study further properties such as concavity.
These properties can be particularly relevant in order to connect the inverse
problem with results from the direct first-passage time problem. For example
in [Pes02a] the author studies the behavior at zero of the first-passage time
density under the assumption that the boundary is continuously differentiable,
increasing and concave .

Generalization to a larger class of Markov processes

In the inverse first-passage time problem for general processes as stated in
terms of (1.12), the first issues are naturally the existence and uniqueness of
solutions. In this thesis the approach for Brownian motion was build on the
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marginal distribution (2.1) and the discrete approximation

Tαnk ◦ Ptnk−tnk−1
◦ . . . ◦ Tαn1 ◦ Ptn1 (µ)

from (2.15). For Markov processes, for which the truncation operator trun-
cates at unique quantiles qαnk , the corresponding lower barrier approximation
of [Anu80] is unique. As it was the case for Brownian motion it is reasonable
to expect that a solution is to be found as limit point of the lower barrier
approximation. More specifically, for the class of processes with continuous
paths and the first-passage time property

τb = inf{t > 0 : |Xt| ≥ b(t)}
!

= τ ′b := inf{t > 0 : |Xt| > b(t)}

the arguments of Anulova in Subsection 2.1.2 can be applied. For Brownian
motion this first-passage time property was directly proved by [EJ16], e.g.
see Proposition 2.3.12, but it can also be seen by the proof of Lemma 2.1.15.
The properties used therein apply for more general processes, which therefore
suggests that a generalization of the discretization approach in this thesis is
possible for more general diffusions. Related to this, in [EJ16] it is mentioned
that their results for the case of Brownian motion, including uniqueness, are
expected to hold for more general diffusion processes. As example, the spe-
cific generalization from reflected Brownian motion to Bessel processes would
be particularly interesting, due to the correspondence to a multi-dimensional
Brownian motion model as it was considered in the free boundary context of
[Ber+21]. The problem of existence and uniqueness for processes with discon-
tinuous paths remains open.

The maximum process of the particle system without
branching

Given a survival distribution g as parameter, in Subsection 2.4.2 we introduced
a particle system (Bi

t)i∈Ak(N)(t)
, t ≥ 0, for which we showed in Theorem 2.4.4

that its hydrodynamic limit exists and corresponds to the marginal distribution
from (1.2) for the solution of the inverse first-passage time problem. Since
this limit measure possibly has bounded support, the process given by of the
maximal particle alive at time t ≥ 0, i.e.

MN
t := max{|Bi

t| : i ∈ Ak(N)(t)}, t ≥ 0,

is an interesting object. We obtained in Proposition 2.4.23 that almost surely
lim infN→∞M

N
t ≥ b(t) and Figure 2.16 suggests that even

lim
N→∞

MN
t = b(t)

almost surely. If this can be made rigorous, the question arises, whether the
deviations are governed by a central limit theorem and in which sense the
deviations depend on t ≥ 0.
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The soft-killing problem

Comparison principle and properties of solutions

A canonical continuation of the study of the soft-killing problem would be the
study of properties of solutions. This is particularly relevant since the soft-
killing first-passage time with arbitrary killing rate λ > 0 as in (1.3) converges
to the first-passage time for λ→∞. Therefore, at least heuristically, the solu-
tions to the soft-killing inverse first-passage time problem should approximate
the solution of the hard-killing problem. Although this limiting behavior has
not yet been provided rigorously, this connection would lead to an approach
to pass properties from the soft-killing solutions to the hard-killing solutions.

As matters stand, there has as yet been no detailed study of the properties
of solutions for the inverse first-passage time problem with soft-killing. On the
one hand, the study of regularity in the hard-killing problem in the context of
free boundary problems of [CCS21] may motivate a study of regularity in the
soft-killing problem in the context of the free boundary problems as it was the
setting in [EHW20]. On the other hand the question arises, whether a direct
probabilistic approach is possible.

In this thesis, we began the study of properties of solutions in the hard-
killing problem by establishing a comparison principle. In Theorem 3.2.14 we
showed a related comparison principle for the soft-killing problem. However, a
crucial difference is the fact that the reweighting mechanism is not monotone
in the mass parameter as it was demonstrated in Remark 3.1.2. This pre-
vented us from extending the comparison principle in the soft-killing problem
to a comparison between different survival distributions as it was the case in
the hard-killing problem. Nevertheless, the question arises which properties
of solutions can be deduced by the comparison principle in the soft-killing
problem.

Extension of the existence and uniqueness result

For a general survival distribution, if there are solutions at all, reasonable
equivalence classes of solutions would be given by the equivalence relation

b1 ∼ b2 :⇔
∫ ∞

0
|b1(s)− b2(s)|ds = 0.

Note that if the survival distribution does not meet the conditions of Theo-
rem 3.0.1 on the survival distribution, it follows by Lemma 3.2.1 that we can-
not have continuous solutions. The question arises how many different equiv-
alence classes can be found in ifptk(g, µ). In the setting of Theorem 3.0.1,
this question means that, a priori, there may exist other discontinuous so-
lutions b ∈ ifptk(g, µ), but their relation to the unique continuous solution
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bc ∈ ifptk(g, µ) is unknown. More precisely, we have the inclusion

{b measurable :

∫ ∞
0
|b(s)− bc(s)|ds = 0} ⊆ ifptk(g, µ),

but do not know whether there is equality or not.

Another direction in which Theorem 3.0.1 could be extended is to con-
sider other classes of processes. We made the restriction to processes with
continuous paths. The problem of existence and uniqueness for processes with
discontinuous paths remains open.



Appendix A

Appended proofs

In this section we collect alternative proofs to statements from the thesis, or
statements, which are not necessary for the main focus of the thesis but add
to the overall picture.

A.1 Alternative proof of Lemma 2.3.25

In Subsection 2.3.3 we made use of the statement of Lemma 2.3.25, which
can also be deduced from a related statement in [Rob91b]. In the thesis, the
statement of Lemma 2.3.25 follows directly by the more general likelihood
ratio ordering result of Theorem 2.3.17. Here we present a more self-contained
proof, which uses the usual stochastic order techniques of this thesis.

Lemma A.1.1. Let b be a standard boundary function and ν ∈ P such that ν
is absolutely continuous w.r.t. Lebesgue measure. Then

Pν (Xt ∈ · |τb > t) � Pν (Xt ∈ · ) (A.1)

for t ∈ [0, tb).

Proof. First note, that without loss of generality we can assume that b(0) > 0
and, by Lemma 2.3.15, assume that Pν (τ̄b = 0) = 0.
Now, as first step we claim, that it suffices to find a sequence (bn)n∈N of
boundary functions for which (A.1) holds and τbn → τb almost surely. The
first steps of the following proof of this claim is done in the spirit of the proofs
of Corollary 5.2 and Lemma 6.1 from [EJ16] and rely one ideas taken from
there. In order to see this, assume that (bn)n∈N is such a sequence. Note that
τbn → τb a.s. implies that for any s ∈ (0, tb)

{τb > s} ⊆ lim inf
n→∞

{τbn > s}
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holds almost surely. Consequently, using Fatou’s Lemma this yields

lim sup
n→∞

Pν (τb > s ≥ τbn) = lim sup
n→∞

Pν (τb > s)− Pν (τb > s, τbn > s)

≤ Pν (τb > s)− Pν
(
{τb > s} ∩ lim inf

n→∞
{τbn > s}

)
= Pν (τb > s)− Pν (τb > s) = 0.

If additionally s is an continuity point of t 7→ Pν (τb > t) it follows that
Pν (τbn > s)→ Pν (τb > s) as n→∞ and using this we obtain

Pν (τbn > s ≥ τb) = Pν (τbn > s)− Pν (τbn > s, τb > s)

= Pν (τbn > s)− Pν (τb > s) + Pν (τb > s ≥ τbn)

→ 0

as n→∞. Therefore, for every s > 0 being a continuity point we get for every
c ≥ 0 that

|Pν (|Xs| ≤ c, τbn > s)− Pν (|Xs| ≤ c, τb > s) |
= |Pν (|Xs| ≤ c, τbn > s, τb ≤ s)− Pν (|Xs| ≤ c, τb > s, τbn ≤ s) |
≤ Pν (τbn > s ≥ τb) + Pν (τb > s ≥ τbn)→ 0.

To have (A.1) being true for s and bn is equivalent to have

Pν (|Xs| ≤ c, τbn > s) ≥ Pν (|Xt| ≤ c)Pν (τbn > s)

for every c ≥ 0. By the results above we see that this already yields the same
inequality, by letting n → ∞, for every c ≥ 0, which means that (A.1) holds
for b for every continuity point s ∈ [0, tb). Consequently, (A.1) would be true
for arbitrary s if the expression Pν (|Xt| ≤ c, τb > t) was right-continuous in t.
To see this let t > 0. By continuity of measure and monotonicity we have

lim
s↘t

Pν (|Xt| ≤ c, τb > s) = Pν (|Xt| ≤ c, τb > t) .

Furthermore, for s > t we have

sup
r>t
|Pν (|Xs| ≤ c, τb > r)− Pν (|Xt| ≤ c, τb > r) |

≤ sup
r>t
|Pν (|Xs| ≤ c, τb > r, |Xt| > c)− Pν (|Xt| ≤ c, τb > r, |Xs| > c) |

≤ Pν (|Xs| ≤ c, |Xt| > c) + Pν (|Xt| ≤ c, |Xs| > c)→ 0
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as s↘ t. Altogether

|Pν (|Xs| ≤ c, τb > s)− Pν (|Xt| ≤ c, τb > t) |
≤ |Pν (|Xs| ≤ c, τb > s)− Pν (|Xt| ≤ c, τb > s) |

+ |Pν (|Xt| ≤ c, τb > s)− Pν (|Xt| ≤ c, τb > t) |
≤ sup

r>t
|Pν (|Xs| ≤ c, τb > r)− Pν (|Xt| ≤ c, τb > r) |

+ |Pν (|Xt| ≤ c, τb > s)− Pν (|Xt| ≤ c, τb > t) |
→ 0

as s↘ t, which proves the right-continuity in t, and thus the claim of the first
step.
As second step we will assume that b was already continuous. Denote with
Dn := {k2−n : k ∈ N} the dyadic numbers. Define boundary functions bn by

bn(t) :=


b(t) : t ∈ Dn,

∞ : t /∈ Dn, t < tb,

0 : else.

We claim that every bn fulfilles (A.1). In order to see this, denote dn := 2−n,
btcn := sup{kdn ≤ t : k ∈ N0} and

αnk :=
Pν (τbn > kdn)

Pν (τbn > (k − 1)dn)
.

By the Markov property of Brownian motion, Corollary 2.2.9 and the semi-
group property of the Gaussian convolution operator we have for every t ∈
(0, tb) that

Pν (Xt ∈ · |τbn > t) = Pν (Xt ∈ · |τbn > btcn)

= Pt−btcn ◦ Tαndnbtcn ◦ Pdn ◦ . . . ◦ Tαn1 ◦ Pdn(ν)

� Pt−btcn ◦ Pdn ◦ . . . ◦ Pdn(ν) = Pt−btcn ◦ Pbtcn(ν)

= Pν (Xt ∈ · ) ,

which proves the claim. Now observe, that in view of Theorem 2.1.4 we have
for any sequence (tn)n∈N converging to t that

lim inf
n→∞

bn(tn) ≥ lim inf
n→∞

b(tn) ≥ b(t),

since b is lower semicontinuous. Furthermore, we can take a sequence (tn)n∈N
converging to t such that tn ∈ Dn. Then

lim
n→∞

bn(tn) = lim
n→∞

b(tn) = b(t)
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since b is continuous. Hence, Theorem 2.1.4 yields that bn
Γ→ b. Since

Pν (τ̄b = 0) = 0, by Proposition 2.1.12 we obtain that τbn → τb in proba-
bility. But since we can take almost surely convergent subsequence from this,
the requirements of the first step are fullfilled and thus the statement holds
also for b.
As third and last step assume that b is as arbitrary as in the statement. Then
by Corollary B.2.5 there exists a sequence (bn)n∈N of continuous functions
such that bn ≤ bn+1, bn → b pointwise and bn(0) = b(0). First, we claim
that Pν (τbn = 0) = 0. For this note that by Lemma 2.3.1 it follows that
supp(ν) ⊆ [−b(0), b(0)], since b is standard. Now by assumption on ν we have
|X0| < b(0) = bn(0) = lim infs↘0 bn(s) almost surely, which indeed implies
that τbn > 0 almost surely. This means that by the second step every bn

fulfilles (A.1). Additionally, by Lemma 2.1.8 it follows that bn
Γ→ b in the

sense of boundary functions. Furthermore, Proposition 2.1.12 implies again
that τbn → τb in probability, from which we can deduce that there is an almost
surely convergent subsequence. But this means that by the first step that b
fulfilles (A.1), and thus the statement is proven.

Staying within the self-contained path we can derive Proposition 2.3.24
from Lemma A.1.1.

Corollary A.1.2. Let t > 0. Let b be a boundary function and ν ∈ P such
that Pν (τb > t) > 0. Let s ∈ (0, t]. Choose x ∈ R such that |x| ≥ b(s). Then

Pν (Xt ∈ · |τb > t) � Px (Xt−s ∈ · ) .

Proof. It holds νs := Pν (Xs ∈ · |τb > s) � δx, because we have that supp(νs) ⊆
[−b(s), b(s)]. Since νs is absolutely continuous w.r.t. Lebesgue measure, this
means that under the measure Pνs we have almost surely |X0| < b(s) ≤
lim infr↘0 b

s(r), which implies that Pνs (τbs = 0) = 0. By Lemma 2.3.25 and
Proposition 2.2.3 we have

Pν (Xt ∈ · |τb > t) = Pνs (Xt−s ∈ · |τbs > t− s)
� Pνs (Xt−s ∈ ·) � Px (Xt−s ∈ ·) ,

which yields the statement.

A.2 The Fredholm integral equation connecting g,
b and µ

In the following we derive the integral equation, which was mentioned in Re-
mark 2.3.40.
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Proposition A.2.1. Let µ ∈ P be symmetric and α ∈ R with
∫
R e

αx dµ(x) <
∞. Further, let g be a continuous survival distribution. Let b ∈ ifpt(g, µ) and
assume that lim supt→∞ b(t) <∞. Then∫

R
eαx dµ(x) =

∫ ∞
0

cosh(αb(t))e−
α2

2
tg(dt).

Proof. Due to the symmetry of µ we have that sgn(Xτb) is independent from τb
and has Rademacher distribution. A direct consequence of lim supt→∞ b(t) <
∞ is that τb < ∞ almost surely. Due to the continuity of g we obtain as in
Theorem 8.1 of [EJ16] that |Xτb | = b(τb) almost surely. Let

Nt := eαXt∧τb−
α2

2
t∧τb .

The Novikov condition and the optional stopping theorem yield that (Nt)t≥0

is a martingale. Now, using that lim supt→∞ b(t) < ∞ there is a T > 0 such
that M := supt≥T b(t) <∞. Thus we have

eαXt∧τb ≤ max
(
esupt≤T αXt∧τb , e|α|M

)
≤ max

(
esupt≤T αXt , e|α|M

)
≤ esupt≤T αXt + e|α|M = eαX0eα supt≤T (Xt−X0) + e|α|M

The right-hand side is integrable due to the assumption on µ and the fact,
that the moment generating function of the normal distribution exists, and
therefore, by the dominated convergence theorem, using that τb ∼ g, we have∫

R
eαx dµ(x) = Eµ [N0] = lim

t→∞
Eµ [Nt] = Eµ

[
eαXτb−

α2

2
τb

]
= Eµ

[
eαb(τb)−

α2

2
τb1{sgn(Xτb )=1}

]
+ Eµ

[
e−αb(τb)−

α2

2
τb1{sgn(Xτb )=−1}

]
=

1

2

(
Eµ
[
eαb(τb)−

α2

2
τb

]
+ Eµ

[
e−αb(τb)−

α2

2
τb

])
= Eµ

[
cosh(αb(τb))e

−α
2

2
τb

]
=

∫ ∞
0

cosh(αb(t))e−
α2

2
tg(dt)

which is the desired statement.

Remark A.2.2. The integral equation of Proposition A.2.1 appeared in the
one-sided situation for special cases of the parameters µ, g and b and is seen
from different viewpoints in the literature. In the context of the first-passage
time problem, for example, see [JKV09a], where the proof also relies on the
exponential martingale, and see [JKZ09], [JKV09b], [JKV14] in the context of
the randomized first-passage time problem. Indirectly, the equation appeared
also in [BBP19] in the special case that g corresponds to the exponential distri-
bution in the context of a free boundary problem. For the two-sided situation
the integral equation appeared in the special case of a constant boundary in
[Abu13b].
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A.3 Total positivity of the quasi-stationary
distribution νλ

In Subsection 2.3.5 we worked with the density function

ϕ(x) =
π

4a
cos(

πx

2a
)1[−a,a](x)

of the quasi-stationary distribution νλ. By the tools of quasi-stationarity in
Corollary 2.3.59 it was possible to derive one of the required conditions for
Theorem 2.3.47. A stronger sufficient condition is provided by Lemma 2.3.51,
namely total positivity of the generalized absolute value density of ϕ. In
Remark 2.3.60 it was stated that this is indeed fulfilled, but was not proved
nor needed in the thesis.

Proposition A.3.1. Let ϕ be the density of the quasi-stationary distribution
of the Brownian motion killed at a > 0 and −a, which is then given by ϕ(x) =
π
4a cos(πx2a )1[−a,a](x). Then the generalized absolute value density of ϕ, given
by ϕ∗(u, v) = ϕ(v+u) +ϕ(v−u) for v, u ≥ 0, is TP2 (totally positive of order
2).

Proof. At first, note that ϕ∗ is totally positive of order 2 if and only if (v, u) 7→
aϕ∗(bv, bu) is totally positive of order 2, where a, b > 0 are arbitrary constants.
Hence, without loss of generality we can assume that ϕ(x) = cos(x)1[−π/2,π/2](x).

Furthermore, due to the symmetry of ϕ∗(u, v) = ϕ∗(v, u), it holds that

det

(
ϕ∗(v1, u1) ϕ∗(v1, u2)
ϕ∗(v2, u1) ϕ∗(v2, u2)

)
= det

(
ϕ∗(u1, v1) ϕ∗(u1, v2)
ϕ∗(u2, v1) ϕ∗(v2, u2).

)
Thus it would suffice to show that

det

(
ϕ∗(v1, u1) ϕ∗(v1, u2)
ϕ∗(v2, u1) ϕ∗(v2, u2)

)
= ϕ∗(v1, u2)ϕ∗(v2, u2)− ϕ∗(v1, u2)ϕ∗(v2, u1)

(A.2)

≥ 0 ∀ 0 ≤ v1 ≤ v2 ≤ u2, 0 ≤ u1 ≤ u2,

which is automatically fulfilled, if |v1 − u2| ≥ π
2 or |v2 − u1| ≥ π

2 . From now
on, let 0 ≤ v1 ≤ v2 and 0 ≤ u1 ≤ u2 such that v2 ≤ u2 and max(|v1−u2|, |v2−
u1|) ≤ π

2 . We distinguish six cases.
1. case: v2 + u2 <

π
2 .

det

(
ϕ∗(v1, u1) ϕ∗(v1, u2)
ϕ∗(v2, u1) ϕ∗(v2, u2)

)
= (cos(v1 + u1) + cos(v1 − u1)) (cos(v2 + u2) + cos(v2 − u2))

− (cos(v1 + u2) + cos(v1 − u2)) (cos(v2 + u1) + cos(v2 − u1))

= 4 cos(v1) cos(u1) cos(v2) cos(u2)− 4 cos(v1) cos(u2) cos(v2) cos(u1)

= 0,
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which yields the desired statement.
2. case: v2 + u2 ≥ π

2 , v1 + u2 <
π
2 , v2 + u1 <

π
2

Note that this case implies π
4 < v2 ≤ u2 <

π
2 , |v2 − u2| = u2 − v2 <

π
2 , which

implies in particular v2 + u2 < π. Then

det

(
ϕ∗(v1, u1) ϕ∗(v1, u2)
ϕ∗(v2, u1) ϕ∗(v2, u2)

)
= (cos(v1 + u1) + cos(v1 − u1)) (0 + cos(v2 − u2))

− (cos(v1 + u2) + cos(v1 − u2)) (cos(v2 + u1) + cos(v2 − u1))

= 2 cos(v1) cos(u1) (cos(v2) cos(u2) + sin(v2) sin(u2))

− 4 cos(v1) cos(u2) cos(v2) cos(u1)

= 2 cos(v1) cos(u1) (cos(v2) cos(u2) + sin(v2) sin(u2)− 2 cos(v2) cos(u2))

= 2 cos(v1) cos(u1) (−(cos(v2) cos(u2)− sin(v2) sin(u2)))

= 2 cos(v1) cos(u1) sin
(
v2 + u2 −

π

2

)
≥ 0,

since v2 + u2 − π
2 ∈ (0, π2 ) and cos(v1) cos(u1) ≥ 0.

3. case: v1 + u2 ≥ π
2 , v2 + u1 <

π
2 .

It follows in this case, by the general assumption v2 ≤ u2 that v1 − u2 ≤ v2 −
u2 ≤ 0, hence |v1−u2| ≥ |v2−u2|, which in turn implies u2−v2 = |v2−u2| < π

2 ,
due to the general assumption |v1 − u2| < π

2 . Thus we have

det

(
ϕ∗(v1, u1) ϕ∗(v1, u2)
ϕ∗(v2, u1) ϕ∗(v2, u2)

)
= (cos(v1 + u1) + cos(v1 − u1)) (0 + cos(v2 − u2))

− (0 + cos(v1 − u2)) (cos(v2 + u1) + cos(v2 − u1))

= 2 cos(v1) cos(u1)(cos(v2) cos(u2) + sin(v2) sin(u2))

2 cos(v2) cos(u1)(cos(v1) cos(u2) + sin(v1) sin(u2))

= 2 cos(v1) cos(u1) sin(v2) sin(u2)− 2 cos(v2) cos(u1) sin(v1) sin(u2)

= 2 cos(u1) sin(u2)(cos(v1) sin(v2)− cos(v2) sin(v1))

= 2 cos(u1) sin(u2) cos(v1) cos(v2)(tan(v2)− tan(v1)),

which is non-negative, since v2 ≥ v1 and 0 ≤ v1 ≤ v2 ≤ v2 + u1 < π
2 and

0 ≤ u1 ≤ u2 <
π
2 + v1 < π, together with the fact that tan is increasing on

[0, π2 ).
4. case: v1 + u2 <

π
2 , v2 + u1 ≥ π

2
In analogy to the computation of the 3. case we obtain

det

(
ϕ∗(v1, u1) ϕ∗(v1, u2)
ϕ∗(v2, u1) ϕ∗(v2, u2)

)
= (cos(v1 + u1) + cos(v1 − u1)) cos(v2 − u2)

− (cos(v1 + u2) + cos(v1 − u2)) cos(v2 − u1)

= 2 cos(v1) sin(v2) cos(u1) cos(u2)(tan(u2)− tan(u1)),
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which is non-negative, since u2 ≥ u1 and 0 ≤ v1, v2, u1 ≤ u2 ≤ v1 + u2 <
π
2 .

5. case: v1 + u2 ≥ π
2 , v2 + u1 ≥ π

2 , v1 + u1 <
π
2

As in the 3. case we have π
2 > |v1−u2| ≥ |v2−u2| and therefore u2 <

π
2 +v1 < π.

We compute

det

(
ϕ∗(v1, u1) ϕ∗(v1, u2)
ϕ∗(v2, u1) ϕ∗(v2, u2)

)
= (cos(v1 + u1) + cos(v1 − u1)) cos(v2 − u2)− cos(v1 − u2) cos(v2 − u1)

= 2 cos(v1) cos(u1)(cos(v2) cos(u2) + sin(v2) sin(u2))

− (cos(v1) cos(u2) + sin(v1) sin(u2))(cos(v2) cos(u1) + sin(v2) sin(u1))

= 2 cos(v1) cos(u1) cos(v2) cos(u2) + 2 cos(v1) cos(u1) sin(v2) sin(u2)

− cos(v1) cos(u2) cos(v2) cos(u1)− sin(v1) sin(u2) sin(v2) sin(u1)

− cos(v1) cos(u2) sin(v2) sin(u1)− cos(v2) cos(u1) sin(v1) sin(u2)

= cos(v1) cos(u1) cos(v2) cos(u2)− sin(v1) sin(u1) sin(v2) sin(u2)

+ cos(v1) sin(v2) (cos(u1) sin(u2)− cos(u2) sin(u1))

+ cos(u1) sin(u2) (cos(v1) sin(v2)− cos(v2) sin(v1))

Assume v2, u2 6= π
2 . Then dividing the quantity above by the then non-zero

value cos(v1) cos(u1) cos(v2) cos(u2) results in

1− tan(v1) tan(u1) tan(v2) tan(u2)

+ tan(v2)(tan(u2)− tan(u1)) + tan(u2)(tan(v2)− tan(v1))

= (tan(v2)− tan(v1))(tan(u2)− tan(u1))

+ (1− tan(v1) tan(u1))(1 + tan(v2) tan(u2))

= (tan(v2)− tan(v1))(tan(u2)− tan(u1))

+
tan(v1) + tan(u1)

tan(v1 + u1)
(1 + tan(v2) tan(u2)). (A.3)

Now we treat three possible cases. In the case v2, u2 <
π
2 , the divisor

cos(v1) cos(u1) cos(v2) cos(u2)

used above is positive and the remaining quantity above in (A.3) is non-
negative, since v1 ≤ v2, u1 ≤ u2 < π

2 and v1 + u1 < π
2 . In the case that

v2 <
π
2 and u2 >

π
2 the divisor cos(v1) cos(u1) cos(v2) cos(u2) is negative, thus

we have to show that the quantity above in (A.3) is non-positive. For this note
that tan(v2)− tan(v1) ≥ 0, while

tan(u2)− tan(u1) = − tan(−u2)− tan(u1) = − tan(π − u2)− tan(u1)

= −(tan(π − u2)− tan(u1)) ≤ 0,

since u1, π − u2 ∈ [0, π2 ). Recall that it holds u2 − v2 < π
2 . We have

that (tan(v1) + tan(u1))/ tan(v1 + u1) ≥ 0, since 0 ≤ v1 + u1 ≤ π
2 , and
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1+tan(v2) tan(u2) = 1−tan(v2) tan(π−u2) = (tan(v2)+tan(π−u2))/ tan(v2+
π−u2) ≤ 0, since v2, π−u2 <

π
2 but π−(u2−v2) > π

2 . This completes the argu-
ment in this case. The case left is to assume that v2, u2 >

π
2 . Then the divisor

cos(v1) cos(u1) cos(v2) cos(u2) is positive and it is to show that (A.3) is non-
negative. In the same manner as above tan(v2)−tan(v1) and tan(u2)−tan(u1)
are both non-positive and tan(v2) tan(u2) ≥ 0, since v2, u2 ∈ (π2 , π), which
completes the 5. case.

6. case: v1 + u1 ≥ π
2

It holds

det

(
ϕ∗(v1, u1) ϕ∗(v1, u2)
ϕ∗(v2, u1) ϕ∗(v2, u2)

)
= cos(v1 − u1) cos(v2 − u2)− cos(v1 − u2) cos(v2 − u1)

= (cos(v1) cos(u1) + sin(v1) sin(u1))(cos(v2) cos(u2) + sin(v2) sin(u2))

− (cos(v1) cos(u2) + sin(v1) sin(u2))(cos(v2) cos(u1) + sin(v2) sin(u1))

= cos(v1) cos(u1) cos(v2) cos(u2) + cos(v1) cos(u1) sin(v2) sin(u2)

+ cos(v2) cos(u2) sin(v1) sin(u1) + sin(v1) sin(u1) sin(v2) sin(u2)

− cos(v1) cos(u2) cos(v2) cos(u1)− cos(v1) cos(u2) sin(v2) sin(u1)

− sin(v1) sin(u2) cos(v2) cos(u1)− sin(v1) sin(u2) sin(v2) sin(u1)

= cos(v1) cos(u1) sin(v2) sin(u2) + cos(v2) cos(u2) sin(v1) sin(u1)

− cos(v1) cos(u2) sin(v2) sin(u1)− sin(v1) sin(u2) cos(v2) cos(u1)

= (cos(v1) sin(v2)− cos(v2) sin(v1))(cos(u1) sin(u2)− cos(u2) sin(u1))

= sin(v2 − v1) sin(u2 − u1),

which is non-negative, since v2 − v1 ≤ u2 − v1 <
π
2 and u2 − u1 ≤ u2 − v1 +

v1 − u1 ≤ u2 − v1 + |v1 − u1| ≤ π.
This finishes the proof.

A.4 Truncation and reweighting with respect to
other probability distances

Total variation distance and truncation

Recall the total variation distance from (3.14). A total variation counterpart
for the Wasserstein distance related to the statements of Lemma 2.2.24 and
Lemma 2.2.25 are given by the following.

Lemma A.4.1. Let µ, ν ∈ P. Then for all t ≥ 0 we have

dTV (Ptµ, Ptν) ≤ dTV (µ, ν) .
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Proof. Let X ∼ µ, Y ∼ ν and Bt ∼ N (0, t) independent from X and Y . Then
X +Bt ∼ Ptµ and Y +Bt ∼ Ptν. Thus by (3.17) we have

dTV (Ptµ, Ptν) ≤ P (X +Bt 6= Y +Bt) = P (X 6= Y ) .

Taking the infimum over all possible X,Y yields the statement.

Lemma A.4.2. Let µ, ν ∈ P be absolutely continuous with respect to the
Lebesgue measure with densities f and g, respectivly. Then for all α ∈ (0, 1]
holds

dTV (Tαµ, Tαν) ≤ 1

α
dTV (µ, ν) .

Proof. Assume α < 1 and without loss of generality qα(µ) > qα(ν). The
densities of Tαµ and Tαν are given by 1

αf1[−qα(µ),qα(µ)] and 1
αg1[−qα(ν),qα(ν)].

Their minumum is given by

1

α
(f ∧ g)1[−qα(ν),qα(ν)].

For the next step note that∫
R\[−qα(ν),qα(ν)]

(f ∧ g)(x) dx ≤
∫
R\[−qα(ν),qα(ν)]

g(x) dx

= 1− ν([−qα(ν), qα(ν)]) = 1− α.

By (3.16) we obtain that

dTV (Tαµ, Tαν) =

(
1− 1

α

∫
[−qα(ν),qα(ν)]

(f ∧ g)(x) dx

)

=
1

α

(
1− (1− α)−

∫
[−qα(ν),qα(ν)]

(f ∧ g)(x) dx

)

≤ 1

α

(
1−

∫
R

(f ∧ g)(x) dx

)
=

1

α
dTV (µ, ν) ,

which completes the proof.

Lemma A.4.3. Let µ, ν ∈ P be absolutely continuous with respect to the
Lebesgue measure with densities f and g, respectivly. Then for all α ∈ (0, 1]
holds

dTV (Tαµ, ν) ≤ dTV (µ, ν) + (1− α).
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Proof. Recall the densities from the proof of Lemma A.4.2. Let q := min{qα(µ), sup supp(ν)}.
The minimum of the densities of Tαµ and ν is then given by

(α−1f ∧ g)1[−q,q].

Thus by (3.16) we can write

dTV (Tαµ, ν)− dTV (µ, ν) =

(∫
R

(f ∧ g)(x) dx−
∫

[−q,q]
(α−1f ∧ g)(x) dx

)

≤

(∫
R

(f ∧ g)(x) dx−
∫

[−q,q]
(f ∧ g)(x) dx

)

=

∫
R\[−q,q]

(f ∧ g)(x) dx

≤
∫
R\[−qα(µ),qα(µ)]

f(x) dx ≤ (1− α),

which yields the statement.

Wasserstein distance and reweighting

Recall the Wasserstein distance dW from (2.11) and the reweighting operator
Rtα from (3.11). The behaviour of Rtα with respect to this distance is described
by the next lemma and is an analogous statement to Lemma 3.1.8 as mentioned
in Remark 3.1.9.

Lemma A.4.4. Let µ, ν ∈ P1 non-atomic with Rtα(µ)(R) = Rtα(ν) = α, where
t > 0 and α ∈ (e−t, 1). Then 1

αR
t
α(µ), 1

αR
t
α(ν) ∈ P1 and

dW

(
1

α
Rtα(µ),

1

α
Rtα(ν)

)
≤ 1

α
dW (µ, ν) .

Proof. By the definition of Rtα it is clear that
∫
R |x|R

t
α(µ)(dx) ≤

∫
R |x|µ(dx),

and thus 1
αR

t
α(µ) ∈ P1 and analogous 1

αR
t
α(ν) ∈ P1.

For σ ∈ {µ, ν} let Fσ(x) := σ((−∞, x]). We have

F 1
α
Rtα(σ)(x) :=

1

α
Rtα(σ)((−∞, x])

=
1

α

{
e−tσ((−∞, x]) : x ≤ qtα(σ),

e−tσ((−∞, qtα(σ)) + σ((qtα(σ), x]) : x > qtα(σ),

=
1

α

{
e−tFσ(x) : x ≤ qtα(σ),

Fσ(x)− Fσ(qtα(σ))(1− e−t) : x > qtα(σ),

=
1

α

{
e−tFσ(x) : x ≤ qtα(σ),

Fσ(x)− (1− α) : x > qtα(σ),
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where in the last equation we used that by (3.12) we get that

Fσ(qtα(σ)) =
σ(R)− α
1− e−t

=
1− α

1− e−t
.

For the inequality left to show, we assume without loss of generality that
qtα(µ) ≤ qtα(ν). Observe that for x ∈ [qtα(µ), qtα(ν)] it holds

e−tFν(x) ≤ e−tFν(qtα(ν)) = e−t
1− α

1− e−t
=

1− α
1− e−t

− (1− e−t) 1− α
1− e−t

= Fµ(qtα(µ))− (1− α) ≤ Fµ(x)− (1− α).

By the alternative representation of the Wasserstein distance given in (2.13)
we obtain

αdW

(
1

α
Rtα(µ),

1

α
Rtα(ν)

)
= α

∫
R

∣∣F 1
α
Rtα(µ)(x)− F 1

α
Rtα(ν)(x)

∣∣dx
=

∫ qtα(µ)

−∞

∣∣e−tFµ(x)− e−tFν(x)
∣∣dx

+

∫ qtα(ν)

qtα(µ)

∣∣Fµ(x)− (1− α)− e−tFν(x)
∣∣dx

+

∫ ∞
qtα(ν)

∣∣Fµ(x)− (1− α)− (Fν(x)− (1− α))
∣∣dx

= e−t
∫ qtα(µ)

−∞

∣∣Fµ(x)− Fν(x)
∣∣dx+

∫ ∞
qtα(ν)

∣∣Fµ(x)− Fν(x)
∣∣dx

+

∫ qtα(ν)

qtα(µ)
(Fµ(x)− (1− α)− e−tFν(x)) dx.

Considering that (1− e−t)Fν(x) ≤ (1− e−t)Fν(qtα(ν)) = (1−α) for x ≤ qtα(ν)
we have

∫ qtα(ν)

qtα(µ)
(Fµ(x)− (1− α)− e−tFν(x)) dx

=

∫ qtα(ν)

qtα(µ)
(Fµ(x)− Fν(x) + (1− e−t)Fν(x)− (1− α)) dx

≤
∫ qtα(ν)

qtα(µ)

∣∣Fµ(x)− Fν(x)
∣∣ dx.
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Added together this yields

αdW

(
1

α
Rtα(µ),

1

α
Rtα(ν)

)
≤
∫ qtα(µ)

−∞

∣∣Fµ(x)− Fν(x)
∣∣dx+

∫ ∞
qtα(ν)

∣∣Fµ(x)− Fν(x)
∣∣ dx

+

∫ qtα(ν)

qtα(µ)

∣∣Fµ(x)− Fν(x)
∣∣dx

=

∫
R

∣∣Fµ(x)− Fν(x)
∣∣dx = dW (µ, ν) ,

which gives the desired statement.

A.5 Total variation version of Lemma 2.3.30 for
continuous survival distributions

If g corresponds to the exponential distribution, it was mentioned in reference
to [De +19a] that a total variation version of Lemma 2.3.30 is true. For more
arbitrary survival distributions a similar result becomes more difficult since the
truncated mass differs in the corresponding alignment. For general continuous
g, in Remark 2.3.31 we already proposed an approach in order to deal with
this difference. We chose discrete timesteps, which interact with the truncated
mass. By this we are able to derive the total variation version of Lemma 2.3.30
for continuous survival distributions as stated in Remark 2.3.31. Below we will
carry out the proof.

In the following let t(m)
k be given by the following fixed specific sequence.

We define the lattice points t0 := 0 and

t
(m)
k := g−1

(
m− k
m

)
, k ∈ {1, . . . ,m}

where g−1 denotes the generalized inverse of g, this is

g−1(q) := inf{t ≥ 0 : g(t) ≤ q}, q ∈ [0, 1]. (A.4)

Note that since g is a survival distribution we have always t(m)
1 > 0 but it can

happen that tk = tk+1 for some k.
We denote the index of the largest lattice point left from a timepoint t ∈

(0, tg) with

k(m)(t) := sup{k ∈ N0 : t
(m)
k ≤ t}

and the corresponding lattice point by (t)m := t
(m)

k(m)(t)
. The largest index which

results in the same lattice point as the lattice point of an index k ∈ {1, . . . ,m}
is then [k]n := k(m)(t

(m)
k ).
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Lemma A.5.1. For t ∈ (0, tg) we have

(i) k(m)(t) = bm(1− g(t))c and

(ii) (t)m → g−1(g(t)) as m→∞ and

(iii) {t(m)
k : k ∈ N0} ∩ (g−1(g(t)), t) = ∅ and

(iv) g((t)m)→ g(t).

Proof. We calculate

k(m)(t) = sup{k ∈ N0 : t
(m)
k ≤ t} = sup{k ∈ N0 : g−1(

m− k
m

) ≤ t}

= sup{k ∈ N0 : g(t) ≤ m− k
m
} = sup{k ∈ N0 : k ≤ m(1− g(t))}

= bm(1− g(t))c

and since g−1 is right-continuous we have

(t)m = t
(m)

k(m)(t)
= g−1

(
m− k(m)(t)

m

)
→ g−1(g(t))

which shows (ii). Since g−1 is non-increasing we have

(t)m = t
(m)

k(m)(t)
= g−1

(
m− k(m)(t)

m

)
≤ g−1(g(t))

which, combined with the definitions, implies (iii). For (iv), if g−1(g(t)) is
a continuity point of g the statement follows from (ii). Now assume that
g is discontinuous at u := g−1(g(t)). For m large enough there exists k ∈
{1, . . . ,m} such that

lim
s↗u

g(s) >
m− k
m

≥ g(u),

which implies that g(s) > m−k
m for all s > u. This implies that

t ≥ t(m)
k = inf{s ≥ u : g(s) ≤ m− k

m
} ≥ u.

By (iii) follows that t(m)

k(m)(t)
= u. Hence g(t

(m)

k(m)(t)
) = g(g−1(g(t))) = g(t),

which eventually implies limm→∞ g(t
(m)

k(m)(t)
) = g(t).
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Now let ν̃−,m1 := P
t
(m)
1

and

ν̃+,m
k := T m−k

m−k+1
◦P

t
(m)
k −t(m)

k−1

◦ . . . ◦ Tm−1
m
◦ P

t
(m)
1

(µ),

ν̃−,mk := P
t
(m)
k −t(m)

k−1

◦ T m−k
m−k+1

◦ . . . ◦ P
t
(m)
2 −t(m)

1

◦ Tm−2
m−1
◦ P

t
(m)
1

(µ)

and

q̃+,m
k := sup supp(ν̃+,m

k ), k ∈ {1, . . . ,m},
q̃−,mk := sup supp(T m−k

m−k+1
(ν̃−,mk−1 )), k ∈ {2, . . . ,m}.

Note that in the case that g is continuous, we have g(t
(m)
k )/g(t

(m)
k ) = m−k

m−k+1

and ν̃±,mk coincides with ν±,mk from Theorem 2.4.16.
We have the following statement, which implies a total variation version of

Lemma 2.3.30 for continuous survival distributions and timepoints as quantiles.

Lemma A.5.2. For m ∈ N≥2 and k ∈ {1, . . . ,m} we have

dTV

(
ν̃+,m
k , ν̃−,mk

)
≤ 1

m− k + 1
+

(m− 1)(k − 1)

(m− k + 1)3
.

Proof. We will begin by proving the following claim for k ∈ {1, . . . ,m− 1}.

dTV

(
ν̃+,m
k , Tm−(k+1)

m−k
(ν̃−,mk )

)
≤

k∑
`=1

k−1∏
j=l

m− j
m− (j + 1)

 1

(m− `)2
,

where
∏k−1
j=k := 1. For the following note that by Lemma 2.2.10 for ` ∈

{1, . . . , k − 1} we can write

Tm−(`+1)
m−`

= T (m−`)2−1

(m−`)2
◦ T m−`

m−(`−1)

on the space on absolutely continuous probability measures. As first step of
induction we have the following easy consequence of Lemma A.4.3.

dTV

(
ν̃+,m

1 , Tm−2
m−1

(ν̃−,m1 )
)

= dTV

(
ν̃+,m

1 , T (m−1)2−1

(m−1)2

(ν̃+,m
1 )

)
≤
(

1− (m− 1)2 − 1

(m− 1)2

)
=

1

(m− 1)2
.
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Now assume that the claim is true for l ∈ {1, . . . , k − 1}. Then we have by
applying Lemma A.4.3, Lemma A.4.2 and Lemma A.4.1 that

dTV

(
ν̃+,m
k , Tm−(k+1)

m−k
(ν̃−,mk )

)
= dTV

(
T m−k
m−k+1

◦ P
t
(m)
k −t(m)

k−1

(ν̃+,m
k−1 ), T (m−k)2−1

(m−k)2
◦ T m−k

m−k+1
(ν̃−,mk )

)
≤ 1

(m− k)2
+ dTV

(
T m−k
m−k+1

◦ P
t
(m)
k −t(m)

k−1

(ν̃+,m
k−1 ), T m−k

m−k+1
(ν̃−,mk )

)
≤ 1

(m− k)2
+
m− k + 1

m− k
dTV

(
P
t
(m)
k −t(m)

k−1

(ν̃+,m
k−1 ), ν̃−,mk

)
≤ 1

(m− k)2
+
m− k + 1

m− k
dTV

(
ν̃+,m
k−1 , T m−k

m−k+1
(ν̃−,mk−1 )

)
≤ 1

(m− k)2
+
m− k + 1

m− k

k−1∑
`=1

k−2∏
j=`

m− j
m− (j + 1)

 1

(m− `)2

=

k∑
`=1

k−1∏
j=`

m− j
m− (j + 1)

 1

(m− `)2
,

which proves the claim. Now observe that

k∑
`=1

k−1∏
j=`

m− j
m− (j + 1)

 1

(m− `)2

≤
k∑
`=1

k−1∏
j=1

m− j
m− (j + 1)

 1

(m− `)2

=
m− 1

m− k

k∑
`=1

2

(m− `)2
≤ m− 1

m− k
k

1

(m− k)2
.

Altogether by applying Lemma A.4.3 and Lemma A.4.1 we obtain

dTV

(
ν̃+,m
k , ν̃−,mk

)
= dTV

(
T m−k
m−k+1

◦ P
t
(m)
k −t(m)

k−1

(ν̃+,m
k−1 ), ν̃−,mk

)
≤ 1

m− k + 1
+ dTV

(
P
t
(m)
k −t(m)

k−1

(ν̃+,m
k−1 ), ν̃−,mk

)
≤ 1

m− k + 1
+ 1{k≥2}dTV

(
ν̃+,m
k−1 , T m−k

m−k+1
(ν̃−,mk−1 )

)
≤ 1

m− k + 1
+

k−1∑
`=1

k−2∏
j=`

m− j
m− (j + 1)

 1

(m− `)2
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≤ 1

m− k + 1
+

m− 1

m− k + 1
(k − 1)

1

(m− k + 1)2
,

which yields the statement.

For general g we have at least the following behavior.

Lemma A.5.3. For t ∈ (0, tg) holds

dTV

(
ν̃+,m

k(m)(t)
, ν+,m

k(m)(t)

)
→ 0,

as m→∞.

Proof. If g is continuous the statement is trivial, because ν̃+,m
k and ν+,m

k agree.
They key of this proof will be to reduce the definitions of ν̃+,m

k and ν+,m
k to the

relevant steps and distinguish at which steps can be made a significant error
in the total variation distance.

For this let D = {r1, r2, . . .} denote the points of discontinuities of g. It
is clear that p :=

∑∞
i=1 g(ri−) − g(ri) ≤ 1. For fixed ε ∈ (0, p) we can choose

K ∈ N such that

K∑
i=1

g(ri−)− g(ri) ≥ p− ε.

Now fix m and let

{k1, . . . , kn} = {k(m)(s) : s ∈ [0, t]}

with k1 < . . . < kn. Note that then, considering P0 as identity and using
Lemma 2.2.10, we have ν+,m

k(m)(t)
= R+

n and ν̃+,m

k(m)(t)
= R̃+

n with

R+
` := T

g(t
(m)
k`

)/g(t
(m)
k`−1

)
◦ P

t
(m)
k`
−t(m)
k`−1

◦ . . . ◦ T
g(t

(m)
k1

)
◦ P

t
(m)
k1

(µ)

R̃+
` := T m−k`

m−k`−1

◦ P
t
(m)
k`
−t(m)
k`−1

◦ . . . ◦ Tm−k1
m

◦ P
t
(m)
k1

(µ)

for ` ∈ {1, . . . , n} and R+
0 = R̃+

0 = µ. Further, define

a` := min

(
1

m
, g(t

(m)
k`
−)− g(t

(m)
k`

)

)
+ min

(
1

m
, g(t

(m)
k`−1
−)− g(t

(m)
k`−1

)

)
and

β` := max

 m− k`
m− k`−1

,
g(t

(m)
k`

)

g(t
(m)
k`−1

)

 .
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As preparing step one we will compute the following bound.

1− β−1
` min

 m− k`
m− k`−1

,
g(t

(m)
k`

)

g(t
(m)
k`−1

)

 ≤ a`
g(t)2

. (A.5)

For this, note that for ` ∈ {1, . . . , n} it holds

m− (k` + 1)

m
≤ g(t

(m)
k`

) ≤ m− k`
m

and thus

m− (k` + 1)

m− k`−1
≤

g(t
(m)
k`

)

g(t
(m)
k`−1

)
≤ m− k`
m− (k`−1 + 1)

.

Thus it follows

1− β−1
` min

 m− k`
m− k`−1

,
g(t

(m)
k`

)

g(t
(m)
k`−1

)


= 1−min

 (m− k`)g(t
(m)
k`−1

)

(m− k`−1)g(t
(m)
k`

)
,
(m− k`−1)g(t

(m)
k`

)

(m− k`)g(t
(m)
k`−1

)


= max

(m− k`−1)g(t
(m)
k`

)− (m− k`)g(t
(m)
k`−1

)

(m− k`−1)g(t
(m)
k`

)
,
(m− k`)g(t

(m)
k`−1

)− (m− k`−1)g(t
(m)
k`

)

(m− k`)g(t
(m)
k`−1

)


≤ max

(m− k`−1)g(t
(m)
k`

)− (m− k`)g(t
(m)
k`−1

)

mg(t
(m)
k`−1

)g(t
(m)
k`

)
,
(m− k`)g(t

(m)
k`−1

)− (m− k`−1)g(t
(m)
k`

)

mg(t
(m)
k`

)g(t
(m)
k`−1

)


≤ 1

g(t)2

∣∣∣∣m− k`−1

m
g(t

(m)
k`

)− m− k`
m

g(t
(m)
k`−1

)

∣∣∣∣
≤ 1

g(t)2

(∣∣∣∣m− k`−1

m
g(t

(m)
k`

)− g(t
(m)
k`

)g(t
(m)
k`−1

)

∣∣∣∣+

∣∣∣∣g(t
(m)
k`

)g(t
(m)
k`−1

)− m− k`
m

g(t
(m)
k`−1

)

∣∣∣∣)
≤ 1

g(t)2

(∣∣∣∣m− k`−1

m
− g(t

(m)
k`−1

)

∣∣∣∣+

∣∣∣∣m− k`m
− g(t

(m)
k`

)

∣∣∣∣)
≤ a`
g(t)2

.
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As preparating step two consider

∏̀
j=1

1

βj
=
∏̀
j=1

min

m− kj−1

m− kj
,
g(t

(m)
kj−1

)

g(t
(m)
kj

)


≤
∏̀
j=1

min

(
m− kj−1

m− kj
,

m− kj−1

m− (kj + 1)

)

≤
∏̀
j=1

m− kj−1

m− kj
=

m

m− k`

≤ 1

g(t
(m)
k`

)
≤ 1

g(t)
.

Assume that for ` ∈ {1, . . . , n} holds

dTV

(
R+
`−1, R̃

+
`−1

)
≤ 1

g(t)2

`−1∑
h=1

 `−1∏
j=h+1

1

βj

 ah.

Then, using Lemma 2.2.10, Lemma A.4.3, Lemma A.4.2 and Lemma A.4.1 it
follows

dTV

(
R+
` , R̃

+
`

)
= dTV

(
T
g(t

(m)
k`

)/g(t
(m)
k`−1

)
◦ P

t
(m)
k`
−t(m)
k`−1

(R+
`−1), T m−k`

m−k`−1

◦ P
t
(m)
k`
−t(m)
k`−1

(R̃+
`−1)

)
≤ dTV

(
Tβ` ◦ Pt(m)

k`
−t(m)
k`−1

(R+
`−1), Tβ` ◦ Pt(m)

k`
−t(m)
k`−1

(R̃+
`−1)

)

+

1− β−1
` min

 m− k`
m− k`−1

,
g(t

(m)
k`

)

g(t
(m)
k`−1

)


≤ 1

β`
dTV

(
R+
`−1, R̃

+
`−1

)
+

a`
g(t)2

≤ 1

β`

1

g(t)2

`−1∑
h=1

 `−1∏
j=h+1

1

βj

 ah +
a`
g(t)2

=
1

g(t)2

∑̀
h=1

 ∏̀
j=h+1

1

βj

 ah,
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where we have used (A.5). Using that R+
0 = R̃+

0 , it follows by induction that

dTV

(
ν+,m

k(m)(t)
, ν̃+,m

k(m)(t)

)
= dTV

(
R+
n , R̃

+
n

)
≤ 1

g(t)2

n∑
h=1

 n∏
j=h+1

1

βj

 ah
1

g(t)2
≤

n∑
h=1

 n∏
j=1

1

βj

 ah ≤
1

g(t)3

n∑
h=1

ah

=
1

g(t)3

n∑
h=1

min

(
1

m
, g(t

(m)
kh
−)− g(t

(m)
kh

)

)
+ min

(
1

m
, g(t

(m)
kh−1
−)− g(t

(m)
kh−1

)

)

≤ 1

g(t)3
2

∞∑
i=1

min

(
1

m
, g(ri−)− g(ri)

)

≤ 2
K∑
i=1

1

m
+ 2

∞∑
i=K+1

g(ri−)− g(ri)

≤ 2K

m
+ 2ε.

This shows that

lim
m→∞

dTV

(
ν+,m

k(m)(t)
, ν̃+,m

k(m)(t)

)
≤ ε.

Since ε can be chosen arbitrarily small, the statement follows.

If g is continuous one has ν±,mk = ν̃±,mk and thus the required property of
the proof of Theorem 2.4.4 was fulfilled by the following statement.

Proposition A.5.4. Let µ ∈ P. Let b ∈ ifpt(g, µ). Then Pt−(t)m ν̃
±,m
k(m)(t)

→
Pµ (Xt ∈ · |τb > t) weakly as m→∞.

Proof. For the discrete boundary function

b̃m(s) :=


b(0) : s = 0,

q̃+,m

k(m)(s)
: s = t

(m)
k , k ∈ {1, . . . , nm},

0 : s > tg,

∞ : else,

we see immediately that

Pµ
(
τb̃m > s

)
= Pµ

(
τb̃m > (s)m

)
=
m− k(m)(s)

m

= 1− bm(1− g(s))c
m

→ g(s)

for s ∈ (0, tg), which implies that τb̃m → g in distribution. By Lemma 2.1.17,
the compactness of the set of boundary functions and the uniqueness of The-
orem 2.3.33 it follows that b̃m

Γ→ b in the Hausdorff distance, which in turn
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implies by Lemma 2.1.17 that τb̃m → τb in probability. We can then choose
a subsequence (τb̃mn

)n∈N, such that τb̃mn → τb almost surely. With the same
reasoning as in the proof of Theorem 2.3.17 we obtain

Pt−(t)mn
ν̃+,mn
k(mn)(t)

= Pµ
(
Xt ∈ ·

∣∣∣τb̃mn > t
)
→ Pµ (Xt ∈ · |τb > t)

in the sense of weak convergence of distributions. Further we have by Lemma A.5.2
that

dTV

(
Pt−(t)mn

ν̃+,mn
k(mn)(t)

, Pt−(t)mn
ν̃−,mn
k(mn)(t)

)
≤ dTV

(
ν̃+,mn
k(mn)(t)

, ν̃−,mn
k(mn)(t)

)
≤ 1

mn − k(mn)(t) + 1
+

(mn − 1)(k(mn)(t)− 1)

(mn − k(mn)(t) + 1)3

=
1

dmng(t)e+ 1
+

(mn − 1)(bmn(1− g(t))c − 1)

(dmng(t)e+ 1)3

n→∞−→ 0,

which proves the statement.

For continuous g we could therefore use the statement of Theorem 2.4.4 in
the following way. We have that χN

t
(m)
k

= χm,N
t
(m)
k

. For continuous g the statement

of Lemma A.5.2 also yields the convergence of Theorem 2.4.4 for the timesteps
t
(m)
k = g−1((m − k)/m). Hence, combining the coupling of Lemma 2.4.7 and
the convergence of Theorem 2.4.16 yields for a ≥ 0 that almost surely

S+,m

k(m)(t
(m)
k )

(µ)([−a, a]) = lim
N→∞

χ+,N

t
(m)
k

([−a, a])

≥ lim
N→∞

χN
t
(m)
k

([−a, a]) = µ
t
(m)
k

([−a, a]),

which shows that for continuous g we have ν+,m
k � µ

t
(m)
k

. The following shows
that this is true for general g by a similar technique as used in Lemma 2.3.19.

Proposition A.5.5. Let g be a survival distribution and µ ∈ P. Let b ∈
ifpt(g, µ). Further, assume that n,m ∈ N with m | n. Then for k ∈ N holds

ν+,m
k � ν+,n

kn/m � µt(m)
k

:= Pµ
(
X
t
(m)
k

∈ ·
∣∣∣τb > t

(m)
k

)
where µ ∈ P. In particular, b+m(t

(m)
k ) ≤ b+n (t

(m)
k ) ≤ b(t(m)

k ).

Proof. We first prove that ν+,m
k � µ

t
(m)
k

. The proof is similar to the proof of
Lemma 2.3.19. Define bs(t) := b(t+ s) and for s < t and ν ∈ P define

H+,m
k (ν) := T

α
(m)
k

◦ P
t
(m)
k −t(m)

k−1

(ν).



196 APPENDIX A. APPENDED PROOFS

Note that by the Markov property we have

Pµ
t
(m)
k−1

(
τ
b
t
(m)
k−1

> t
(m)
k − t(m)

k−1

)
= α

(m)
k .

If c ≥ q
α
(m)
k

(P
t
(m)
k −t(m)

k−1

µ
t
(m)
k−1

), then

H+,m
k (µ

t
(m)
k−1

)([−c, c]) = 1 ≥ S
t
(m)
k ,t

(m)
k−1

(µ
t
(m)
k−1

)([−c, c]).

If c < q
α
(m)
k

(P
t
(m)
k −t(m)

k−1

µ
t
(m)
k−1

), then

H+,m
k (µ

t
(m)
k−1

)([−c, c])

=
1

α
(m)
k

P
t
(m)
k −t(m)

k−1

µ
t
(m)
k−1

([−c, c]) =
1

α
(m)
k

Pµ
t
(m)
k−1

(
|X

t
(m)
k −t(m)

k−1

| ≤ c
)

≥ 1

α
(m)
k

Pµ
t
(m)
k−1

(
|X

t
(m)
k −t(m)

k−1

| ≤ c, τ
b
t
(m)
k−1

> t
(m)
k − t(m)

k−1

)
= Pµ

t
(m)
k−1

(
|X

t
(m)
k −t(m)

k−1

| ≤ c
∣∣∣∣τ
b
t
(m)
k−1

> t
(m)
k − t(m)

k−1

)
= µ

t
(m)
k

([−c, c])

where the last equality follows again by the Markov property. Altogether, if
we assume that ν+,m

k−1 � µ
t
(m)
k−1

for k ∈ {1, . . . ,m}, we obtain by the claim and

the fact that H+,m
k is order preserving

ν+,m
k = H+,m

k (ν+,m
k−1 ) � H+,m

k (µ
t
(m)
k−1

) � µ
t
(m)
k

.

The desired statement follows by induction, since ν+,m
0 = µ

(m)
t0

= µ.

Now we prove that ν+,m
k � ν+,n

kn/m. The proof is similar to the proof of
Lemma 2.3.20. Let ` ∈ N such that n = `m. Suppose that ν+,m

k−1 � ν
+,n
(k−1)`. By

the identity t(m)
k = g−1(m−km ) = g−1(n−k`n ) = t

(n)
k` we have

α
(n)
k` · . . . · α

(n)
(k−1)`+1 =

g(t
(n)
k` )

g(t
(n)
(k−1)`)

=
g(t

(m)
k )

g(t
(m)
k−1)

= α
(m)
k .

Now observe that then by successive application of Lemma 2.2.12 and then
using Lemma 2.2.10 we have

H+,n
k` ◦ . . . ◦H

+,n
(k−1)`+1(ν)

= T
α
(n)
k`

◦ P
t
(n)
k` −t

(n)
k`−1

◦ . . . ◦ T
α
(n)
(k−1)`+1

◦ P
t
(n)
(k−1)`+1

−t(n)
(k−1)`

(ν)

� T
α
(n)
k`

◦ . . . ◦ T
α
(n)
(k−1)`+1

◦ P
t
(n)
k` −t

(n)
k`−1

◦ . . . ◦ P
t
(n)
(k−1)`+1

−t(n)
(k−1)`

(ν)

= T
α
(m)
k

◦ P
t
(n)
k` −t

(n)
k`−1

= H+,m
k (ν).
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Hence, by the fact that H+,m
k is dominance preserving we get

ν+,m
k = H+,m

k (ν+,m
k−1 ) � H+,m

k (ν+,n
(k−1)`)

� H+,n
k` ◦ . . . ◦H

+,n
(k−1)`+1(ν+,n

(k−1)`) = ν+,n
k` .

By induction the desired statement follows.

A.6 Sufficient criteria on Markov processes for the
conditions of Theorem 3.0.1

In the general situation of Theorem 3.0.1 naturally the question arises, which
Markov processes fulfil the properties (iii) and (iv) from Theorem 3.0.1. In the
following we will derive convenient sufficient criteria.

Lemma A.6.1. Assume that (Xt)t≥0 fulfills (ii) from Theorem 3.0.1 and has
the strong Markov property. Then property (iv) from Theorem 3.0.1 is fulfilled,
i.e. Pt preserves the usual stochastic order.

Proof. For x ∈ R let (Xx
t )t≥0 denote a version of (Xt)t≥0 such that Xx

0 = x
almost surely. For x ≤ y define T := inf{t > 0 : Xx

t = Xy
t }. Further define

X̃y
t := Xy

t 1{T>t} +Xx
t 1{T≤t}.

Since the processes have continuous pathes, we have Xx
T = Xy

T almost surely
on {T <∞}. Note that for a continuous and bounded function f by the strong
Markov property we have

E
[
f(Xx

t )1{T≤t}
]

= E
[
Pt−T δXx

T
(f)1{T≤t}

]
= E

[
Pt−T δXy

T
(f)1{T≤t}

]
= E

[
f(Xy

t )1{T≤t}
]
.

Thus

E
[
f(X̃y

t )
]

= E
[
f(Xy

t )1{T>t} + f(Xx
t )1{T≤t}

]
= E [f(Xy

t )] = Ptδy(f).

Since we have Xx
t ≤ X̃y

t almost surely, this shows that Ptδx �st Ptδy. For
c ∈ R this means that x 7→ Ptδx((−∞, c]) is a non-increasing function. Hence,

Ptµ((−∞, c]) =

∫
R
Ptδx((−∞, c]) dµ(x)

≥
∫
R
Ptδx((−∞, c]) dν(x) = Ptν((−∞, c]),

which shows the desired statement.

We now give two different criteria for property (iii).
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Lemma A.6.2. Assume that (Xt)t≥0 is locally uniformly continuous in prob-
ability, i.e. for every compact subset K ⊂ R we have

lim
t→0

sup
x∈K

Px (|Xt −X0| > ε) = 0.

Let S be a tight collection of probability measures. Then (3.3) is fulfilled.

Proof. If S is a tight family of probability measures, let K ⊂ R compact such
that µ(K) ≥ 1− ε, ε ∈ (0, 1). We have by Lemma B.1.11 that

dP(Pµ (Xt ∈ · ) , µ) ≤ (Eµ [|Xt −X0| ∧ 1])
1
2

≤
(
ε+ sup

x∈K
Ex [|Xt −X0| ∧ 1]

) 1
2

≤
(

2ε+ sup
x∈K

Px (|Xt −X0| > ε)

) 1
2

.

Since (Xt)≥0 is locally uniformly continuous in probability this implies that

lim sup
t→0

sup
µ∈S

dP(Pµ (Xt ∈ · ) , µ) ≤ (2ε)1/2,

which shows the statement, since ε can be chosen arbitrarily small.

For Feller processes property (iii) from Theorem 3.0.1 can also be deduced.

Lemma A.6.3. Assume (Pt)t≥0 is a Cb-Feller semigroup, i.e. for every f
continuous and bounded the function x 7→ Ptf(x) is continuous and bounded
and for compact K ⊆ R it holds

sup
x∈K
|Ptf(x)− f(x)| → 0 as t→ 0.

Let S be a tight collection of probability measures. Then (3.3) is fulfilled.

Proof. For a function f : R → R define ‖f‖∞ := supx∈R |f(x)| and ‖f‖L :=

supx 6=x
|f(x)−f(y)|
|x−y| . Further define ‖f‖BL := ‖f‖∞ + ‖f‖L.

dβ(µ, ν) := sup

{∣∣∣∣∫
R
f(x)µ(dx)−

∫
R
f(x)ν(dx)

∣∣∣∣ : ‖f‖BL ≤ 1

}
Since dP(µ, ν) ≤

√
3
2dβ(µ, ν), see for example [Dud02], it would suffice to show

sup
µ∈S

dβ(Ptµ, µ)→ 0

as t→ 0.
In order to achieve this let (tn)n∈N be a sequence with tn → 0.
Step 1:
We claim that the family

S̃ := {Ptnµ : n ∈ N, µ ∈ S}
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is tight. For this let (νm)m∈N be a sequence contained in S̃. Thus for m ∈ N
a νm takes the form νm = Ptnmµm with nm ∈ N and µm ∈ S. Since S is tight
we can find a subsequence (mk)k∈N such that µmk → µ̃ as k → ∞ and µ̃ is a
probability measure. Since (tn)n∈N is compact we can assume without loss of
generality that tnmk is convergent. We distinguish two cases:
Case 1: limk→∞ tnmk 6= 0.
Then tnmk = tn0 with n0 ∈ N without loss of generality. Now for an arbitrary
function f ∈ Cb(R) we have∫

R
f(x)νmk(dx) =

∫
R
f(x)Ptn0µmk(dx) =

∫
R
Ptn0f(x)µmk(dx)

→
∫
R
Ptn0f(x)µ̃(dx) =

∫
R
f(x)Ptn0 µ̃(dx),

since Ptn0f is continuous and bounded. This implies that νmk → Ptn0 µ̃ weakly.
Thus (νm)m∈N has a convergent subsequence.
Case 2: limk→∞ tnmk = 0.
Since µmk → µ̃ we have that for ε > 0 there is a compact set K ⊂ R, such
that µmk(R \K) ≤ ε for all k ∈ N. Then we have for f ∈ Cb(R) that∣∣∣∣∫

R
f(x)Ptnmk

µmk(dx)−
∫
R
f(x)µ̃(dx)

∣∣∣∣
≤
∣∣∣∣∫

R
f(x)Ptnmk

µmk(dx)−
∫
R
f(x)µmk(dx)

∣∣∣∣+

∣∣∣∣∫
R
f(x)µmk(dx)−

∫
R
f(x)µ̃(dx)

∣∣∣∣
≤
∫
R
|Ptnmk f(x)− f(x)|µmk(dx) +

∣∣∣∣∫
R
f(x)µmk(dx)−

∫
R
f(x)µ̃(dx)

∣∣∣∣
≤ 2‖f‖∞ε+ sup

x∈K
|Ptnmk f(x)− f(x)|+

∣∣∣∣∫
R
f(x)µmk(dx)−

∫
R
f(x)µ̃(dx)

∣∣∣∣
→ 2‖f‖∞ε → 0 (ε→ 0).

Again this implies that (νm)m∈N has a convergent subsequence.
All in all this means that S̃ is tight.
Step 2:
Let ε > 0 and K ⊂ R such that for all ν ∈ S̃ we have ν(R \ K) ≤ ε. Now
define B := {f : ‖f‖BL ≤ 1} and BK := {f |K : f ∈ B} ⊂ C(K). Then we
have

• ∀x ∈ K we have {|f(x)| : f ∈ BK} ⊂ [−1, 1] and

• ∀x ∈ K we have that for η > 0 the condition |x − y| < η implies
|f(x)− f(y)| ≤ ‖f‖BL|x− y| ≤ η for all f ∈ BK .

By the Arzela-Ascoli theorem we can deduce that BK is relatively compact in
C(K) with respect to ‖ ·‖∞. Thus there are finitely many f1, . . . , fp ∈ B, such
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that

B ⊂
p⋃
`=1

{f ∈ C(K) : sup
x∈K
|f(x)− f`(x)| ≤ ε}.

Now let f ∈ B be arbitrary. Then there is ` = 1, . . . , p such that supx∈K |f(x)−
f`(x)| ≤ ε. Hence it holds for all µ ∈ S and all n ∈ N that∣∣∣∣∫

R
f(x)Ptnµ(dx)−

∫
R
f(x)µ(dx)

∣∣∣∣
≤

∣∣∣∣∣
∫
R\K

f(x)Ptnµ(dx)−
∫
R\K

f(x)µ(dx)

∣∣∣∣∣
+

∣∣∣∣∫
K

(f(x)− f`(x))Ptnµ(dx)−
∫
K

(f(x)− f`(x))µ(dx)

∣∣∣∣
+

∣∣∣∣∫
K
f`(x)Ptnµ(dx)−

∫
K
f`(x)µ(dx)

∣∣∣∣
≤
∫
R\K
|f(x)|Ptnµ(dx) +

∫
R\K
|f(x)|µ(dx)

+

∫
K
|f(x)− f`(x)|︸ ︷︷ ︸

≤ε

Ptnµ(dx) +

∫
K
|f(x)− f`(x)|︸ ︷︷ ︸

≤ε

µ(dx)

+

∣∣∣∣∫
K
Ptnf`(x)µ(dx)−

∫
K
f`(x)µ(dx)

∣∣∣∣
≤ Ptnµ(R \K) + µ(R \K) + 2ε+

∫
K
|Ptnf`(x)− f`(x)|µ(dx)

≤ 4ε+ sup
x∈K
|Ptnf`(x)− f`(x)| .

But since f ∈ B was arbitrary this implies that

sup
µ∈S

dβ(Ptnµ, µ) = sup
µ∈S

sup
f∈B

{∣∣∣∣∫
R
f(x)µ(dx)−

∫
R
f(x)ν(dx)

∣∣∣∣}
≤ 4ε+ max

`=1,...,p
sup
x∈K
|Ptnf`(x)− f`(x)|

→ 4ε

as n→∞. Since ε > 0 was arbitrary we have supµ∈S dβ(Ptnµ, µ)→ 0, which
implies the statement.



Appendix B

Background tools

In this section we collect background tools from the literature and auxiliary
statements and their proofs, which are thematically independent from the issue
in this thesis, but used to to get along in the proofs of the thesis. We separate
the statements roughly by the mathematical branches probability and analysis.

B.1 Probability

In this subsection we present the statements which have a probabilistic context.
The following well-known result is stated as Theorem 38 in [Fre83] and was

used repeatedly in Subsection 2.3.1 for the purpose to study the behavior of
Brownian paths below a semi-continuous boundary.

Theorem B.1.1 (Levy’s forgery theorem). Let f : [0, 1] → R be continuous
with f(0) = 0. Let (Bt)t≥0 be a standard Brownian motion. Let ε > 0. Then

P (|Bt − f(t)| ≤ ε ∀t ∈ [0, 1]) > 0.

The following technical lemma was applied in Lemma 2.3.4, which consid-
ered the small time behavior of boundary functions.

Proposition B.1.2. Let (Bt)t≥0 be a Brownian motion, K > 0 and f a
symmetric probability density with supp(f) ⊆ [−K,K]. Further let Kn → K
and tn → 0 be converging sequences. Then

lim inf
n→∞

1

tn

∫ K

−K
P (|Btn + x| ≥ Kn) f(x) dx

≥ lim inf
x↘0

f(K − x)

x
2

∫ ∞
0

y

(
1− Φ

(
y + lim sup

n→∞

Kn −K√
tn

))
dy

with Φ(x) :=
∫ x
−∞ φ(z) dz and the conventions Φ(−∞) = 1− Φ(∞) = 0.

201
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Proof. In the following we will often use the inequality 1 − Φ(x) ≤ 1
xφ(x) for

x > 0. Consider

∫ K

−K
P (|Btn + y| ≥ Kn) f(y) dy

= 2

∫ K

0
f(y)

∫ ∞
Kn

1√
tn
φ((z − y)/

√
tn) dz dy

+ 2

∫ K

0
f(y)

∫ −Kn
−∞

1√
tn
φ((z − y)/

√
tn) dz dy

For the last term of the sum holds

2

∫ K

0
f(y)

∫ −Kn
−∞

1√
tn
φ((z − y)/

√
tn) dz dy

= 2

∫ K

0
f(y)

∫ ∞
Kn+y

1√
tn
φ(z/
√
tn) dz dy

≤ 2

∫ K

0
f(y)

∫ ∞
Kn

1√
tn
φ(z/
√
tn) dz dy

=

∫ ∞
Kn

1√
tn
φ(z/
√
tn) dz = 1− Φ(K/

√
tn)

≤
√
tn

Kn
φ(K/

√
tn) = o(tn).

Now choose ε ∈ (0,K) and εn such that εn > 0, Kn − K < εn ≤ Kn and
εn − (Kn −K)↗ ε. It holds

2

∫ K

0
f(y)

∫ ∞
Kn

1√
tn
φ((z − y)/

√
tn) dz dy = 2

∫ K

0
f(y)(1− Φ((Kn − y)/

√
tn)) dy

= 2

∫ Kn/
√
tn

(Kn−K)/
√
tn

√
tnf(Kn − y

√
tn)(1− Φ(y)) dy

= 2

∫ Kn/
√
tn

εn/
√
tn

√
tnf(Kn − y

√
tn)(1− Φ(y)) dy

+ 2

∫ εn/
√
tn

(Kn−K)/
√
tn

√
tnf(Kn − y

√
tn)(1− Φ(y)) dy.
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On the one hand we have∫ Kn/
√
tn

εn/
√
tn

√
tnf(Kn − y

√
tn)(1− Φ(y)) dy

≤ (1− Φ(εn/
√
tn))

∫ Kn/
√
tn

εn/
√
tn

√
tnf(Kn − y

√
tn) dy

= (1− Φ(εn/
√
tn))

∫ Kn

εn

f(Kn − y) dy

≤ (1− Φ(εn/
√
tn)) ≤

√
tn
εn

φ(εn/
√
tn) = o(tn).

On the other hand we have

1

tn
2

∫ εn/
√
tn

(Kn−K)/
√
tn

√
tnf(Kn − y

√
tn)(1− Φ(y)) dy

= 2

∫ εn/
√
tn

(Kn−K)/
√
tn

f(Kn − y
√
tn)

y
√
tn − (Kn −K)

(
y − Kn −K√

tn

)
(1− Φ(y)) dy

≥ inf
x∈(0,εn−(Kn−K))

f(K − x)

x
2

∫ εn/
√
tn

Kn−K√
tn

(
y − Kn −K√

tn

)
(1− Φ(y)) dy

Further we have∫ εn/
√
tn

Kn−K√
tn

(
y − Kn −K√

tn

)
(1− Φ(y)) dy

=

∫ (εn−(Kn−K))/
√
tn

0
y

(
1− Φ

(
y +

Kn −K√
tn

))
dy

=

∫ ∞
0

y

(
1− Φ

(
y +

Kn −K√
tn

))
dy

−
∫ ∞

(εn−(Kn−K))/
√
tn

y

(
1− Φ

(
y +

Kn −K√
tn

))
dy.

By ∫ ∞
(εn−(Kn−K))/

√
tn

y

(
1− Φ

(
y +

Kn −K√
tn

))
dy

≤
∫ ∞

(εn−(Kn−K))/
√
tn

y

y + Kn−K√
tn

φ

(
y +

Kn −K√
tn

)
dy

≤ max

(
1,
εn − (Kn −K))

εn

)∫ ∞
(εn−(Kn−K))/

√
tn

φ

(
y +

Kn −K√
tn

)
dy

≤ max

(
1,
εn − (Kn −K))

εn

)(
1− Φ

(
εn√
tn

))
→ 0
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as n→∞ and the fact that
∫∞

0 y(1−Φ(y+a)) dy is continuous and decreasing
in a, we can deduce that

lim inf
n→∞

∫ εn/
√
tn

Kn−K√
tn

(
y − Kn −K√

tn

)
(1− Φ(y)) dy

=

∫ ∞
0

y

(
1− Φ

(
y + lim sup

n→∞

Kn −K√
tn

))
dy.

Altogether, it follows with εn − (Kn −K)↗ ε that

lim inf
n→∞

1

tn
Pµ (|Xtn | ≥ Kn)

≥ inf
x∈(0,ε)

f(K − x)

x
2

∫ ∞
0

y

(
1− Φ

(
y + lim sup

n→∞

Kn −K√
tn

))
dy

Letting ε→ 0 yields the statement.

The following result is a direct consequence of Theorem 1.A.3 (a) in [SS07].

Lemma B.1.3. Let µ, ν be probability measures with µ �st ν. Let f : R→ R be
measurable. Assume that f is non-increasing. Then it holds ν◦f−1 �st µ◦f−1.
In particular, if |f | is bounded, we have∫

R
f(x)µ(dx) ≥

∫
R
f(x)ν(dx).

The following result can be found as Theorem 1.C.7 in [SS07].

Theorem B.1.4. Let µ, ν and (µn)n∈N and (νn)n∈N be probability measures,
such that for every n ∈ N holds µn �lr νn. Assume that µn → µ and νn → ν
in distribution as n→∞. Then we have µ �lr ν.

By Proposition 8.2 in Chapter 2 of [PS78] we have the following represen-
tation of the transition density of a Brownian motion absorbed at a two-sided
boundary. This result is used in Subsection 2.3.5 for the study of the expo-
nential case.

Proposition B.1.5. Let (Xt)t≥0 be a Brownian motion and M > 0. For
x, y ∈ [−M,M ] we have

Px (Xt ∈ dy, τM > t) =
1

M

∞∑
n=1

e−
n2π2t
8M2 sin

(
nπ

x+M

2M

)
sin

(
nπ

y +M

2M

)
dy.

By integration we obtain the following hitting time distribution.

Proposition B.1.6. For x ∈ [−M,M ] we have

Px (τM > t) =
4

π

∞∑
k=0

1

2k + 1
e−

(2k+1)2π2t

8M2 sin

(
(2k + 1)π

x+M

2M

)
.
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Proof. We have

Px (τM > t) = Px (Xt ∈ [−M,M ], τM > t)

=
1

M

∞∑
n=1

e−
n2π2t
8M2 sin

(
nπ

x+M

2M

)∫ M

−M
sin

(
nπ

y +M

2M

)
dy

=
1

M

∞∑
n=1

e−
n2π2t
8M2 sin

(
nπ

x+M

2M

)
2M

nπ
(1− cos(nπ))

=
1

M

∞∑
k=0

e−
(2k+1)2π2t

8M2 sin

(
(2k + 1)π

x+M

2M

)
2M

(2k + 1)π
2

=
4

π

∞∑
k=0

1

2k + 1
e−

(2k+1)2π2t

8M2 sin

(
(2k + 1)π

x+M

2M

)
.

This shows the statement.

From Proposition B.1.5 we can also deduce the following.

Lemma B.1.7. Let (Xt)t≥0 be a Brownian motion and M > 0. Let ϕ(x) =
π

4M cos
(
π

2M x
)
. It holds uniformly in A ⊆ [−M,M ] that

Px (Xt ∈ A |τM > t)→
∫
A
ϕ(y) dy

exponentially fast and uniformly in x ∈ (−M,M) as t→∞.

Proof. Let λ = π2

8M2 , note that ϕ(x) = sin
(
π x+M

2M

)
and consider∣∣∣∣∣Px (Xt ∈ A, τM > t)

e−λt 16M
π2 ϕ(x)

−
∫
A
ϕ(y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=1

e−
(n2−1)π2t

8M2
sin
(
nπ x+M

2M

)
sin
(
π x+M

2M

) ∫
A

π

4M
sin

(
nπ

y +M

2M

)
dy −

∫
A
ϕ(y) dy

∣∣∣∣∣
≤
∞∑
n=2

e−
(n2−1)π2t

8M2

∣∣∣∣∣sin
(
nπ x+M

2M

)
sin
(
π x+M

2M

) ∣∣∣∣∣ π

4M

≤ π

4M

∞∑
n=2

ne−(n2−1)λt,

which converges to 0 exponentially fast. Thus we have∣∣∣∣Px (Xt ∈ A |τM > t)−
∫
A
ϕ(y) dy

∣∣∣∣
≤

∣∣∣∣∣e−λt 16M
π2 ϕ(x)

Px (τM > t)

Px (Xt ∈ A, τM > t)

e−λt 16M
π2 ϕ(x)

−
∫
A
ϕ(y) dy

∣∣∣∣∣
≤
e−λt 16M

π2 ϕ(x)

Px (τM > t)

π

4M

∞∑
n=2

ne−(n2−1)λt +

∣∣∣∣∣e−λt 16M
π2 ϕ(x)

Px (τM > t)
− 1

∣∣∣∣∣ ,
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which converges to 0 exponentially fast, since∣∣∣∣∣e−λt 16M
π2 ϕ(x)

Px (τM > t)
− 1

∣∣∣∣∣ ≤ π

4M

∞∑
n=2

ne−(n2−1)λt

by the first computation.

In the proof of Proposition 2.3.55 we will make use of the so-called Q-
process, whose existence is described by the following statement, which follows
from Theorem 1.1 and Theorem 1.3 in [CV14].

Theorem B.1.8. Let (Xt)t≥0 be a Markov process with state space E ∪ {∂}
and τ∂ := inf{t ≥ 0 : Xt = δ}. Assume that there exists a probability measure
α on E such that

dTV (Px (Xt ∈ · |τ∂ > t) , α)→ 0

exponentially fast uniformly in x ∈ E. Then for any x ∈ E there exists the
measure

Qx(A) = lim
t→∞

Px (A |τ∂ > t) ,∀A ∈ σ(Xu : u ≤ s), ∀s ≥ 0.

Under the family (Qx)x∈E the process (Xt)t≥0 is a Markov process, has an
invariant distribution β and for any x ∈ E it holds that Qx(Xt ∈ · ) converges
in total variation to β. The limit η(x) = limt→∞

Px(τ∂>t)
Pα(τ∂>t)

exists and

β(dx) =
η(x)α(dx)∫
E η(y)α(dy)

.

The following statement is a purely auxiliary lemma for the application in
the context of the non-branching particle system with selection and will be
used in the proof of Theorem 2.4.16.

Lemma B.1.9. For N ∈ N let AN ⊂ {1, . . . , N} be a random set of deter-
ministic cardinality aN with N−1aN → a > 0 and XN

1 , . . . , X
N
N real-valued

random variables. We assume that there exists M < ∞ such that |XN
i | ≤ M

for every N and i and that

1

aN

∑
i∈AN

Xi → c

almost surely as N → ∞, where c ∈ R. Let Z1, Z2, . . . be independent from
each other and from all other randomness and identically distributed random
variables with E

[
Z4

1

]
<∞. Then it holds that

SN :=
1

aN

∑
i∈AN

ZiXi → E [Z1] c

almost surely as N →∞.
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Proof. Set p := E [Z1]. In the proof we drop the dependency of XN
i on N

in the notation. If we can prove that S̄N := SN − a−1
N

∑
i∈AN pXi converges

almost surely to zero the statement is proven. For this we define Z̄i := Zi − p
and calculate

S̄4
N =

1

a4
N

∑
i∈AN

X2
i Z̄

2
i

2

+

∑
i∈AN

∑
j∈AN :j 6=i

XiXjZ̄iZ̄j

2

+ 2
∑
k∈AN

X2
k Z̄

2
k

∑
i∈AN

∑
j∈AN :j 6=i

XiXjZ̄iZ̄j

 .

We have on the one hand

E

 ∑
k∈AN

X2
k Z̄

2
k

∑
i∈AN

∑
j∈AN :j 6=i

XiXjZ̄iZ̄j


= E

 ∑
k∈AN

∑
i∈AN

∑
j∈AN :j 6=i

X2
kXiXjE

[
Z̄2
kZ̄iZ̄j

∣∣X1, . . . , XN , AN
] = 0

and on the other hand

E

∑
i∈AN

X2
i Z̄

2
i

2
= E

∑
i∈AN

X4
i E
[
Z̄4
i

]+ E

∑
i∈AN

∑
j∈AN :j 6=i

X2
iX

2
jE
[
Z̄2
i Z̄

2
j

]
≤ NM4E

[
Z̄4

1

]
+N2M4E

[
Z̄2

1

]2
and

E

∑
i∈AN

∑
j∈AN :j 6=i

XiXjZ̄iZ̄j

2 = E

2
∑
i∈AN

∑
j∈AN :j 6=i

X2
iX

2
jE
[
Z̄2
i Z̄

2
j

]
≤ 2N2M4E

[
Z̄2

1

]2
Since for ε > 0 we have

P
(
|S̄N | > ε

)
≤

E
[
S̄4
N

]
ε4

the probability P
(
|S̄N | > ε

)
is summable over N which shows that S̄N → 0

almost surely by the Borel-Cantelli lemma.
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Recall the Wasserstein distance from (2.11). In the proof of Theorem 2.3.32
we will make use of the following statement, which is a consequence of Theo-
rem 7.12 in [Vil03].

Theorem B.1.10. Let (µn)n∈N be a sequence of probability measures in P1

and let µ ∈ P1. Then the following are equivalent:

(i) dW (µn, µ)→ 0 as n→∞,

(ii) µn → µ in the sense of weak convergence and it holds

lim
R→∞

lim sup
n→∞

∫
R
|x|1[R,∞)(|x|) dµn(x) = 0.

(iii) µn → µ in the sense of weak convergence and it holds

lim
n→∞

∫
R
|x| dµn(x) =

∫
R
|x| dµ(x).

We will also make use of the Prohorov metric in Lemma 3.2.9. For µ, ν ∈ P
the Prohorov metric defined by

dP (µ, ν) := inf{ε > 0 : µ(B) ≤ ν(Bε) + ε for all B ∈ B(R)}, (B.1)

where Bε := {x ∈ R : infy∈B |x − y| ≤ ε}. This metric metrizes the weak
convergence of probability measures as stated in Theorem 11.3.3 from [Dud02].

According to Corollary 11.6.4 in [Dud02] an alternative representation for
the Prohorov metric is given by the following.

dP (µ, ν) = inf{inf{ε > 0 : P (|X − Y | > ε) ≤ ε} : X ∼ ν, Y ∼ ν}. (B.2)

By this we can deduce the following lemma.

Lemma B.1.11. For µ, ν ∈ P it holds

(i) dP (µ, ν) ≤ dTV (µ, ν) and

(ii) dP (µ, ν) ≤
√

inf{E [|X − Y | ∧ 1] : X ∼ µ, Y ∼ ν} ≤
√
dW (µ, ν).

Proof. (i) LetX ∼ µ and Y ∼ ν. Without loss of generality assume P (X 6= Y ) >
0. For every ε > 0 we have P (|X − Y | > ε) ≤ P (X 6= Y ), thus in particular
for ε = P (X 6= Y ). We can deduce

dP (µ, ν) ≤ inf{ε > 0 : P (|X − Y | > ε) ≤ ε}
≤ P (X 6= Y ) .

Together with (3.17), taking the infimum over all possible couplings yields the
desired inequality.
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(ii) We can assume without loss of generality that 0 < dP (µ, ν) < 1, since
otherwise this implies that |X−Y | ≥ 1 almost surely for every coupling X ∼ µ
, Y ∼ ν. Now let X ∼ µ and Y ∼ ν be such a coupling. Further, assume that
0 < E [|X − Y | ∧ 1] < 1. Then we can deduce for ε =

√
E [|X − Y | ∧ 1] by the

Markov inquality that

P (|X − Y | > ε) = P (|X − Y | ∧ 1 > ε)

≤ ε−1E [|X − Y | ∧ 1] =
√

E [|X − Y | ∧ 1] = ε.

Therefore, we have

dP (µ, ν) ≤ inf{ε > 0 : P (|X − Y | > ε) ≤ ε}

≤
√

E [|X − Y | ∧ 1],

which finishes the proof by taking the infimum over all possible couplings.

In order to check our simulation for the soft-killing solutions we use the
following example of a distribution of a soft-killing first-passage time in Ex-
ample 3.3.3.

Lemma B.1.12. Let b(t) = c for all t ≥ 0, where c ∈ R. Then

Eµ
[
e−

∫ t
0 1(−∞,b(s))(Xs) ds

]
=

∫
R
e−t1(−∞,c)(x)

(
2Φ

(√
|c− x|
t

)
− 1

)
dµ(x)

+

∫
R

∫ t

0
e−u1(−∞,c)(x)

1F1(1/2; 1;−(t− u))

√
|c− x|
2πu3

e−
|c−x|
2u dudµ(x),

where 1F1 denotes the confluent hypergeometric function of the first kind.

Proof. Define the hitting time

Tc := inf{t > 0 : Xt = c},

whose distribution is the well-known unshifted Lévy distribution, this means
we have

Px (Tc ≤ t) =

∫ t

0

√
|c− x|
2πu3

e−
|c−x|
2u du = 2− 2Φ

(√
|c− x|
t

)

Furthermore, it is clear by the definitions that∫ t

0
1(−∞,b(s))(Xs) ds = (Tc ∧ t)1(−∞,c)(X0) +

∫ t

Tc∧t
1(−∞,c)(Xs) ds.
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Since XTc = c almost surely, we have by the strong Markov property that

Eµ
[
e−

∫ t
0 1(−∞,b(s))(Xs) ds

]
= Eµ

[
e−(Tc∧t)1(−∞,c)(X0)−

∫ t
Tc∧t 1(−∞,c)(Xs) ds

]
= Eµ

[
e−(Tc∧t)1(−∞,c)(X0)E0

[
e−

∫ t−u
0 1(−∞,0)(Xs) ds

]
u=Tc∧t

]
.

By the first arcsine law by Lévy it is well-known that under P0 the normed oc-
cupation time 1

t−u
∫ t−u

0 1(−∞,0)(Xs) ds has the standard arcsine distribution,
which coincides with the Beta(1/2, 1/2) distribution. Since the moment gen-
erating function corresponding to the Beta(α, β) distribution is the confluent
hypergeometric function 1F1(α;α+ β; · ) of the first kind, we have that

Eµ
[
e−

∫ t
0 1(−∞,b(s))(Xs) ds

]
= Eµ

[
e−(Tc∧t)1(−∞,c)(X0)

1F1(1/2; 1;−(t− Tc ∧ t))
]

= Eµ
[
e−t1(−∞,c)(X0)

1{Tc>t}

]
+ Eµ

[
e−Tc1(−∞,c)(X0)

1F1(1/2; 1;−(t− Tc))1{Tc≤t}
]

=

∫
R
e−t1(−∞,c)(x)

(
2Φ

(√
|c− x|
t

)
− 1

)
dµ(x)

+

∫
R

∫ t

0
e−u1(−∞,c)(x)

1F1(1/2; 1;−(t− u))

√
|c− x|
2πu3

e−
|c−x|
2u dudµ(x).

For two probability measures µ and ν on R a probability measure on R2

with marginals µ and ν is called a coupling of µ and ν.
The following lemma can be found as Lemma 7.6 in [Vil03].

Lemma B.1.13. Let µ1, µ2, µ3 be three probability measures supported in Pol-
ish spaces Ω1,Ω2,Ω3 respectively, and let π12 a coupling of µ1 and µ2 and
π23 a coupling of µ2 and µ3. Then there exists a probability measure π123 on
Ω1 × Ω2 × Ω3 with marginals π12 on Ω1 × Ω2 and π23 on Ω2 × Ω3.

B.2 Analysis

In this subsection we present the auxiliary results, which have an analytical
background. We will first collect multiple statements concerning semicontinu-
ous functions, which are used in Subsection 2.1.1 and Subsection 2.3.1 in order
to study the set of boundary functions and related aspects.

Lemma B.2.1. A lower semi-continuous function b : [0,∞] → [0,∞] attains
its infimum on compact sets I ⊂ [0,∞).
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Proof. Let x := infs∈I b(s) and (tn)n∈N ⊂ I a minimizing sequence, this means
b(tn) → x. If we assume that I is compact, we can assume without loss
of generality that (tn)n∈N has a limit point t. Then due to the lower semi-
continuity of b we have

b(t) ≤ lim inf
s→t

b(s) ≤ lim
n→∞

b(tn) = x

This shows that b(t) = infs∈I b(s).

In [Hah21] we find in Kapitel II, §10 the following two statements as Satz
III and IV.

Theorem B.2.2. Let S be a metric space and let g : S → R ∪ {−∞,∞} be
lower semi-continuous. Then there exists a sequence (gn)n∈N of continuous
functions such that gn ≤ gn+1 and gn → g pointwise.

Theorem B.2.3. Let S be a metric space. Further, let g : S → R∪{−∞,∞}
be lower semi-continuous and h : S → R be upper semi-continuous, such that
h ≤ g. Then there exists a continuous function f : S → R such that h ≤ f ≤ g.

We can deduce the following corollaries.

Corollary B.2.4. Let I ⊂ R be compact and b : I → (0,∞] be a lower semi-
continuous function. Let F ⊂ I be a finite set. Then there exist a continuous
function f : I → (0,∞) such that f ≤ b and f(t) = b(t) for all t ∈ F .

Proof. Let x := inft∈I b(t). By Lemma B.2.1 we obtain that x > 0. Define the
upper semi-continuous function h : I → R by

h(t) :=

{
b(t) : t ∈ F,
x : else.

Then by Theorem B.2.3 above there exists a continuous function f such that
h ≤ f ≤ b. Since f ≥ x > 0 the statement is proved.

Corollary B.2.5. Let S be a metric space and let g : S → R ∪ {−∞,∞} be
lower semi-continuous. Let F ⊆ S be a finite set. Then there exists a sequence
(gn)n∈N of continuous functions such that gn ≤ gn+1 and gn → g pointwise
and gn(t) = g(t) for all t ∈ F .

Proof. We obtain a sequence (fn)n∈N of continuous function with the first two
properties by Theorem B.2.2. Since f1 is continuous and f1 ≤ g we have that
the function

h : S → R ∪ {−∞,∞}, h(t) :=

{
g(t) : t ∈ F,
f1(t) : else

is upper semi-continuous. By Theorem B.2.3 there exists a continuous function
f such that h ≤ f ≤ g. Taking gn := max(f, fn) yields the statement.
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We will now collect some statements related to the Hausdorff topology,
which is used in Subsection 2.1.1.

Definition B.2.6. Let H = [0,∞]× [−∞,∞] and denote with K(H) the set
of compact and non-empty subsets of H. Consider the bijective map ϕ : H →
[0, 1]× [−1, 1], (t, x) 7→ (t/(1 + t), x/(1 + |x|)). Let r be metric on H, which is
induced by ϕ from the euclidean metric on [0, 1]× [−1, 1].

a) We define the Hausdorff-metric on K(H) by

rH(C,D) := max{sup
x∈C

r(x,D), sup
y∈D

r(y, C)} (B.3)

We equip K(H) with the so-called Hausdorff-topology.

b) Let (Bn)n∈N be a sequence in K(H). Denote with Ux the filter of neigh-
bourhoods of a point h ∈ H. We define the Kuratowski limit inferior
by

Li
n→∞

Bn := {h ∈ H : U ∈ Uh ⇒ U ∩Bn 6= ∅ for almost all n}

and the Kuratowski limit superior by

Ls
n→∞

Bn := {h ∈ H : U ∈ Uh ⇒ U ∩Bn 6= ∅ for infinitely many n}.

If Li
n→∞

Bn = Ls
n→∞

Bn =: B we call (Bn)n∈N Kuratowski-convergent to
the Kuratowski-limit B.

The following statement links the convergence in Hausdorff-metric with
the Kuratowski-convergence, which are in fact the same on compact ambient
spaces.

Theorem B.2.7. The Kuratowski-convergence on K(H) coincides with the
convergence in the Hausdorff-metric.

Proof. Let the Fell topology on K(H) be defined as in Definition 5.1.1 of
[Bee93]. By Corollary 5.1.11 in [Bee93], since H is a compact metric space,
the Fell topology and the topology induced by the Hausdorff-metric coincide
on the closed, non-empty subsets of H. Since H is compact, those are K(H).
In addition by Theorem 5.2.10 in [Bee93] the Kuratowski-limit coincide with
the limit of sequences with respect to the Fell topology.

The following statement eases the use of convexity in the proof of Theo-
rem 2.3.34.

Lemma B.2.8. Let f : (a, b) → R be a function. If f is convex then for all
s, t ∈ (a, b) with s < t and c ∈ (0, b− t) it holds, that

f(s+ c) + f(t) ≤ f(t+ c) + f(s).

If f is measurable the converse is also true.
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Proof. Assume that f is convex on (a, b). For such s, t, c we can choose

θ1 :=
t− s

t− s+ c
, θ2 :=

c

t− s+ c
.

We have that s+ c = θ1s+ (1− θ1)(t+ c) and t = θ2s+ (1− θ2)(t+ c), and
θ1 + θ2 = 1. Due to the convexity of f we get

f(s+ c) + f(t) ≤ θ1f(s) + (1− θ1)f(t+ c) + θ2f(s) + (1− θ2)f(t+ c)

= f(t+ c) + f(s).

Conversely, the by the equation in the statement we can deduce for two points
x, y ∈ (a, b) with x < y by setting s := x, t := (x + y)/2 and c := (y − x)/2,
that

2f

(
x+ y

2

)
≤ f(y) + f(x),

which means that f is midpoint convex. If a function is measurable and
midpoint convex it is convex, see for example [Don69, p.12], which finishes the
proof.

For completeness we give a proof for the following auxiliary lemma, for
which have not found a suitable reference in the literature. It will be used in
the proof of Theorem 3.2.13.

Lemma B.2.9. Let T > η > 0. Let f : [η, T ] → R be a continuous function
with ∫ T

η
1f−1({0})(s) ds = 0.

Furthermore, let fn → f uniformly on [η, T ]. Then for any sequence of
partitions (Zn) of [η, T ] with mesh tending to zero (this means that Zn =
{tn0 , . . . , tnmn}, where η = tn0 < . . . < tnmn = T and limn→∞maxi=1,...,mn |tni −
tni−1| = 0) it holds

mn∑
i=1

1(−∞,0)(fn(tni ))(tni − tni−1)→
∫ T

η
1(−∞,0)(f(s)) ds.

Proof. Let (Zn)n∈N be such a sequence of partitions. LetD := {t ∈ [η, T ] : s 7→
1(−∞,0)(f(s)) is discontinuous at t}. We have D ⊂ f−1({0}) and thus, by the
assumption, the bounded function s 7→ 1(−∞,0)(f(s)) is almost everywhere
continuous on [η, T ]. By Lebesgue’s criterion for Riemann integrability, for
example see Theorem 11.33 from [Rud76], it follows that we have

mn∑
i=1

1(−∞,0)(f(tni ))(tni − tni−1)→
∫ T

η
1(−∞,0)(f(s)) ds.
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For ε > 0 let

φε(x) :=


0 : |x| ≥ 2ε,
2ε−|x|
ε : |x| ∈ (ε, 2ε),

1 : |x| ≤ ε.

For ε > 0 let n be large enough such that supt∈[η,T ] |fn(t) − f(t)| < ε. Then
we have∣∣∣∣∣
mn∑
i=1

1(−∞,0)(fn(tni ))(tni − tni−1)−
mn∑
i=1

1(−∞,0)(f(tni ))(tni − tni−1)

∣∣∣∣∣
≤

mn∑
i=1

|1(−∞,0)(fn(tni ))− 1(−∞,0)(f(tni ))|(tni − tni−1)

=

mn∑
i=1

(
1(−∞,0)×(0,∞)∪(0,∞)×(−∞,0)(fn(tni ), f(tni ))

)
(tni − tni−1)

=

mn∑
i=1

(
1(−ε,0)×(0,ε)∪(0,ε)×(−ε,0)(fn(tni ), f(tni ))

)
(tni − tni−1)

≤
mn∑
i=1

(
1(−ε,0)(f(tni )) + 1(0,ε)(f(tni ))

)
(tni − tni−1)

≤
mn∑
i=1

1(−ε,ε)(f(tni ))(tni − tni−1) ≤
mn∑
i=1

φε(f(tni ))(tni − tni−1)→
∫ T

η
φε(f(s)) ds,

as n → ∞, since φε ◦ f is continuous and thus Riemann-integrable. Now by
letting ε→ 0 we get by the dominated convergence theorem that

lim sup
n→∞

∣∣∣∣∣
mn∑
i=1

1(−∞,0)(fn(tni ))(tni − tni−1)−
mn∑
i=1

1(−∞,0)(f(tni ))(tni − tni−1)

∣∣∣∣∣
≤
∫ T

η
φε(f(s)) ds→

∫ T

η
1{0}(f(s)) ds = 0,

since
∫ T
η 1f−1({0})(s) ds = 0. Thus the desired statement follows.

The following can be found as Problem 127 in [PS72, p.81], thus we present
it with a proof.

Lemma B.2.10. Let a < b. Let fn : [a, b]→ R be a non-decreasing functions
for every n ∈ N and f : [a, b]→ R a continuous function. If fn(x)→ f(x) as
n→∞ for every x ∈ [a, b], then supx∈[a,b] |fn(x)− f(x)| → 0 as n→∞.

Proof. We have that f is also non-decreasing. Furthermore, since f is continu-
ous, it follows that f is uniformly continuous on [a, b]. Let ε > 0. We can find
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finitely many points a = x0 < x1 < . . . < xm = b such that |f(xk)−f(xk−1)| <
ε for all k ∈ {1, . . . ,m}. Further, let N ∈ N be large enough such that for
n ≥ N we have |f(xk)− fn(xk)| < ε for all k ∈ {0, 1, . . . ,m}. For x ∈ [a, b] we
can find k ∈ {1, . . . ,m} such that xk−1 ≤ x ≤ xk. Thus for n ≥ N we have

f(x)− 2ε < f(xk−1)− ε < fn(xk−1) ≤ fn(x) ≤ fn(xk) < f(xk) + ε < f(x) + 2ε.

It follows that for any x ∈ [a, b] we have

|fn(x)− f(x)| < 2ε.

This shows the statement.

The following consequence of Lemma B.2.10 above will be used in the proof
of Theorem 3.3.2.

Lemma B.2.11. Let (Fn)n∈N and F be distribution functions on R. Assume
that F is continuous. Assume that Fn(x)→ F (x) as n→∞ for every x ∈ R.
Then

sup
x∈R
|Fn(x)− F (x)| → 0

as n→∞.

Proof. Let ε > 0. Choose M > 0 large enough such that F (−M) ≤ ε and
F (M) ≥ 1− ε. We can choose N ∈ N large enough such that on the one hand
we have |Fn(−M)−F (−M)| < ε and |Fn(M)−F (M)| < ε for all n ≥ N , and
on the other hand, taking Lemma B.2.10 into account, that

sup
x∈[−M,M ]

|Fn(x)− F (x)| < ε

for all n ≥ N . Altogether, we have

sup
x∈R
|Fn(x)− F (x)|

≤ sup
x∈[−M,M ]

|Fn(x)− F (x)|+ sup
x<−M

|Fn(x)− F (x)|+ sup
x>M

|Fn(x)− F (x)|

≤ ε+ sup
x<−M

(Fn(x) + F (x)) + sup
x>M

(1− Fn(x) + 1− F (x))

≤ ε+ Fn(−M) + F (−M) + 1− Fn(M) + 1− F (M)

≤ ε+ 2ε+ ε+ 2ε+ ε = 7ε

for all n ≥ N . This shows the statement.
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