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And they that are wise shall shine

as the brightness of the firmament;

and they that turn many to righteousness
as the stars for ever and ever.

— Daniel 12:3
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ABSTRACT

Approximate computing has emerged as one way to meet the challenge of
improving a computing system’s performance by trading off an application’s
quality against a target metric. This dissertation focuses on approximate
computing at hardware level, where it is referred to as approximate logic syn-
thesis (ALS) and has the goal of generating approximate circuits; specifically,
this dissertation makes five contributions and comprehensively considers
automated search-based ALS processes that are modeled with four main
steps: search, approximate, verify, and estimate.

Firstly, this dissertation contributes the CIRCA framework that imple-
ments a general and fully configurable ALS process to provide an environ-
ment for comparing different ALS methods. Secondly, we propose the jump
search methodology that minimizes syntheses and verifications by exploit-
ing domain knowledge to rapidly generate approximate circuits. Thirdly,
the technique MUSCAT contributes to the approximation step and utilizes
formal verification techniques to construct approximate circuits that are
valid-by-construction regarding their quality. The fourth contribution con-
siders the verification step and is the concept of proof-carrying approxi-
mate circuits, which brings together the fields of approximate computing
and proof-carrying hardware. Finally, this dissertation proposes a formal
verification-based methodology that characterizes the search space of approx-
imate circuits prior to the ALS process.
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ZUSAMMENFASSUNG

Approximate computing hat sich als ein Weg herauskristallisiert, die Verar-
beitungsleistung von Rechensystemen weiter zu steigern, indem die Qualitat
einer Anwendung gegen eine Zielmetrik eingetauscht wird. Diese Disserta-
tion betrachtet approximate computing auf der Hardwareebene, auf der es
approximierte Schaltungen generiert und als approximate logic synthesis
(ALS) bezeichnet wird. Konkret leistet die Arbeit fiinf Beitrdge und betrachtet
automatisierte, suchbasierte ALS Prozesse, die in vier Schritten modelliert
werden: suchen, approximieren, verifizieren und abschitzen.

Zunichst stellt die Dissertation das Framework CIRCA vor, das den ALS
Prozess allgemeingiiltig und konfigurierbar implementiert und so eine Um-
gebung fiir den Vergleich von ALS Methoden bereitstellt. Anschlieflend wird
das Suchverfahren jump search diskutiert, das approximierte Schaltungen
schnell generiert, indem es Synthesen und Verifikationen mittels Doménen-
wissen minimiert. Des Weiteren wird die Approximationstechnik MUSCAT
vorgestellt, die auf formaler Verifikation basiert und Schaltungen hinsichtlich
ihrer Qualitit korrekt konstruiert. Ferner betrachtet die Arbeit den Verifikati-
onsschritt und stellt das Konzept von proof-carrying approximate circuits vor,
das die Felder approximate computing und proof-carrying hardware vereint.
Abschlieflend behandelt die Arbeit ein auf formaler Verifikation basierendes
Verfahren, das vorab den Suchraum von approximierten Schaltungen fiir den
ALS Prozess charakterisiert.
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INTRODUCTION

With the breakdown of Dennard scaling at the beginning of the century and
the continuous slow-down — and eventually the end — of Moore’s law, chip
designers are challenged to find new ways to increase processing performance
under strict power and area constraints. The design paradigm approximate
computing (AC) is one way of meeting the challenge.

Approximate computing exploits the fact that many domains show an
inherent resilience against inaccuracies and even errors to trade off computa-
tional accuracy (or quality) against target metrics, e.g., hardware area, delay,
or power consumption. Mittal [58] describes the trade-off as the gap between
the level of required accuracy by the user and the provided accuracy by the
computing system. Research groups from academia [24] and industry [17,
33, 57, 63] have shown that this gap can be found in numerous domains,
including signal processing, audio, image and video processing, machine
learning, and data analytics. For example, Chippa et al. [24] reported that
representative applications from the domain of recognition, data mining,
and search spend on average 83% of the runtime on resilient computations;
thus, demonstrating the potential that approximate computing offers. An
application’s resilience against inaccuracies and errors can be attributed to
several factors [24, 58, 82, 112]:

* Redundant input data: Redundancy in the input data makes the applica-
tion more robust against imprecisions.

* Error attenuation: Computational patterns, such as iterative refinement
or statistical aggregation, in the application’s algorithm increase the
resilience; thus, facilitating the processing of noisy, imprecise, or incom-
plete input data, e.g., data from physical sensors such as cameras or
microphones.

* Lack of golden result: Rather than a golden result (or correct answer), a
range of acceptable results exists, e.g., recommender systems or web
searches.

* Perceptual limitations: Visual and audio perception of humans, for ex-
ample, is limited and slight differences of individual pixels cannot be
recognized.

Figure 1.1 shows a practical example of approximate computing, demon-
strating the resilience of an application and the potential of approximate



INTRODUCTION

computing. Gupta et al. [38] replaced the precise adder cells with approxi-
mate counterparts within a hardware module for JPEG compression and, in
this way, achieved power savings of around 53%. The left-hand image shows
the original, precise compression outcome; the right-hand image shows an
outcome produced by the approximate hardware. Compared to the precise
outcome, the quality of the approximate outcome is reduced, as indicated
by the lower peak signal-to-noise ratio (PSNR). However, the differences are
merely visible due to perceptual limitations, and the approximate outcome
is almost indistinguishable from the original, which justifies the acceptance
of the suboptimal quality in return for the significantly reduced power con-
sumption.

Reference Approx. adder

PSNR =31.16 dB PSNR =28.90 dB

(a) Reference (b) Approximate outcome

Figure 1.1: Demonstration of approximated JPEG compression. Taken from [38].

In fact, suboptimal quality of results and limited accuracy have always
been present in computer science and engineering due to limited precision
of data types, the use of (meta-)heuristics, or the exact or optimal result
being out of reach. Approximate computing, however, goes further and
exploits the resilience by applying approximations through the judicious
introduction of errors to leverage the trade-off of quality and target metrics.
Here, the approximations are complementary [25, 113, 119] and can be
applied to all system components (processing, storage, and communication)
at all levels of the computing stack (from applications down to semiconductor
technology) [58, 82, 112]. Figure 1.2 shows the computing stack assumed in
this dissertation that divides into a software and a hardware part.

The application/algorithm level represents the highest level of abstraction,
and approximations target the application’s algorithm via source-code trans-
formations. Precision scaling (or quantization), for example, states a well-
known, general approximation technique that reduces a variable’s bit width
to simplify computations and reduce the memory footprint. Other techniques
target specific applications such as neural networks to improve the network’s
energy efficiency by approximating resilient neurons using, for instance,
precision scaling or an approximated activation function [93].
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r
Application / algorithm
Software <
Language / compiler
.
r
Register-transfer
This dissertation
Hardware Logic
Technology
-

Figure 1.2: Computing stack with focus of this dissertation highlighted in gray.

On the language/compiler level, programming or hardware description lan-
guages have been extended to allow developers to specify parts of the code
that are amenable to approximations. Ener| [72], for example, extends Java
by approximate data types that enable the developer to declare which data
can be processed by approximate processing units or stored in approximate
storage. Compared to Ener], Axilog [115] locates at a lower level and extends
the hardware description language Verilog by a set of language annotations
to denote parts of the design for which relaxed quality constraints apply. For
languages, the designer manually specifies the parts that may be subjected
to approximation, what approximations are eventually applied, however, is
decided by the compiler [18] or synthesis flow [69, 101] and also depends
on the underlying approximate hardware which can comprise quality pro-
grammable processors [92], approximate hardware accelerators [34], and
approximate storage [73]. General approximation techniques used by com-
pilers are loop perforation [83], which reduces the loop count by skipping
iterations, and code perforation [2], which skips computations in the algo-
rithm. Both techniques reduce the computational workload, and thus, the
application’s computation time and the overall energy consumption.

On the hardware level, approximate computing is denoted as approximate
logic synthesis (ALS) [75], which describes the process of generating approx-
imate circuits (AxCs) for approximate hardware. The register-transfer level
represents the most abstract hardware level in our computing stack and, at
this level, precise components are replaced by approximate counterparts —
ranging from simple components to complex hardware accelerators [34] or
even complete processors [92]. Components subjected to approximations are
denoted as candidates, and ALS at register-transfer level (RTL) seeks to find
a combination of approximate candidates that optimizes the target metrics.
Hence, ALS at RTL becomes a combinatorial problem where exhaustive
enumeration is infeasible due to the large number of candidates that real-
world hardware designs provide. Thus, automated ALS generally employs
search or optimization algorithms to explore the design space [65, 69, 102]
and approach the problem systematically. For the approximate candidates,

3
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ALS can resort to approximate component libraries [44, 45, 62, 70, 81, 88],
approximation techniques that operate on the candidate’s implementation
at lower levels of abstraction [22, 41, 50, 91, 94, 106], or precision scaling to
truncate least significant bits [69, 86, 101].

On the logic level, ALS modifies a circuit’s Boolean representation or trans-
forms a circuit’s gate level netlist. Boolean techniques operate on abstract data
structures, e.g., truth tables, and-inverter-graphs, or binary decision diagrams,
and apply transformations to simplify the logic through Boolean matrix fac-
torization [41], tying signals to constant values [22, 35], or extending the
circuit’s set of don’t cares by approximate don’t cares [91]. Approaches trans-
forming the circuit’s gate level netlist operate on a lower level of abstraction
than Boolean approaches since the approximations target the description of
the circuit’s electrical components and their connections. Pruning gates [77],
substituting signals to enforce simplification [94], or random gate replace-
ments [50] represent common netlist transformation techniques.

The technology level represents the lowest level of abstraction where tran-
sistors are — even manually — removed from a logic gate [38, 54] or timing-
induced approximations are introduced [117, 118]. Timing-induced approxi-
mations involve over scaling a circuit’s supply voltage and/or the operating
frequency, meaning that the circuit operates at a supply voltage below its
nominal value or an operating frequency above its maximum, respectively.
The effects of the timing-induced approximations are immediate since the
quadratic relationship between voltage and power is exploited, or the circuit
produces its output with less delay. However, timing-induced approximations
require an expensive and complex timing-aware analysis of the circuit to
detect and evaluate the failing timing paths; otherwise, the errors become
uncontrollably large [75, 86, 112].

This dissertation focuses on approximate computing at hardware level,
i.e.,, approximate logic synthesis; specifically, the focus is on automated
search-based ALS processes on the register-transfer level and logic level, as
highlighted in Figure 1.2. At these levels, the approximations deliberately
modify the circuit’s original function and range from fine-grained to coarse-
grained, i.e., from gates at logic level to more abstract components at RTL,
while the provided abstraction allows for an efficient analysis of the circuit’s
quality and target metrics.

Modeling approximate logic synthesis as a search or an optimization
problem is common to perform the approximation systematically, and four
main steps can be defined to describe a general search-based ALS process:
search, approximate, verify, and estimate. This dissertation makes methodologi-
cal contributions to three of the four steps (search, approximate, and verify).
Furthermore, the dissertation contributes the flexible ALS framework CIRCA
and a novel pre-processing technique for search space characterization. In
summary, the main contributions of this dissertation are:
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* CIRCA (Chapter 3, [101, 103]): We design and implement the frame-
work CIRCA for search-based approximate logic synthesis. In a detailed
analysis, we classify existing ALS frameworks on the basis of a set of
orthogonal categories. Our analysis shows that existing frameworks
suffer from an inflexible design that severely hampers the develop-
ment and evaluation of new techniques for AxC generation, as well as
the comparison to existing ones. Using the analysis, we identify key
requirements that an ALS framework should fulfill, yet the existing
frameworks lack. With CIRCA, we present the first ALS framework
that meets all requirements, and thus, presents a flexible framework
to the approximate computing community to facilitate comparability
among ALS methods.

* Jump search (Chapter 4, [102, 108]): We propose jump search, a novel
technique for rapidly synthesizing approximate circuits and our contri-
bution to the search step. ALS usually explores a large number of AxCs,
but the required syntheses and verifications are costly; thus, forming
a bottleneck for ALS. Jump search seeks to minimize the invoked syn-
theses and verifications by first selecting a set of AxCs-of-interest from
the search space and then only evaluating a subset of the selected
AxCs via synthesis and verification. The initial selection bases on a
heuristic function that is free of synthesis and verification. Instead, the
heuristic incorporates pre-computed impact factors that encode infor-
mation on a candidate’s impact on the target metric and the overall
circuit error. In our experimental results, we show speed-ups of up to
468 x while achieving improvements in the target metrics comparable
to commonly-used search algorithms.

* MUSCAT (Chapter 5, [106]): We present MUSCAT, a technique to ap-
proximate netlists and our novel contribution to the approximation step.
MUSCAT substitutes connections with constant values by activating cut-
points. In this way, MUSCAT enables synthesis tools to simplify the logic
by pruning dangling gates and propagating constants. Utilizing the
concept of minimal unsatisfiable subsets from the field of formal verifi-
cation, MUSCAT determines a maximal number of activated cutpoints
and generates AxCs that are valid-by-construction regarding their quality
constraints. We show that MUSCAT achieves up to 80% higher savings
in the target metric hardware area than a state-of-the-art technique.

* Proof-carrying approximate circuits (Chapter 6, [104, 105]): The concept
of proof-carrying approximate circuits brings together the fields of
approximate computing and proof-carrying hardware, and is a novel
contribution to the verification step. We utilize the concept of proof-
carrying hardware [30] to annotate approximate circuits with proof
certificates. The proof certificates allow the verification of the AxCs’
quality without referring to a full formal verification of the quality
constraints. A full verification generally shows long runtimes and is
required to overcome trust issues between a producer and a consumer
of an AxC. Using an AxC’s proof certificate, however, allows the con-
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sumer to verify the quality of the AxC quickly without having to trust
the AxC producer; in fact, the burden of the full formal verification
and the generation of the proof certificate is on the producer’s side,
which has the computational resources to carry out the task efficiently
and economically — in contrast to the consumer. In our experimental
results, we reduce the consumer’s runtime for verifying an AxC by up
to 99.83% over the producer’s runtime.

* Search space characterization (Chapter 7, [107, 109]): We present a formal
verification-based methodology that performs prior to the ALS pro-
cess and characterizes regions of the search space that only contains
valid AxCs, i.e., AxCs that meet the quality constraints. We propose
a novel approximation miter that makes our methodology independent
of subsequently applied approximations and guarantees the validity
of the as-valid characterized regions through the formal verification
approach. Thus, the subsequent ALS process can employ any approx-
imation technique and safely omit verifications for AxCs falling into
the valid regions. In our experimental results, our approach achieves
speed-ups of up to 3.7x over a standard ALS that requires verifying all
explored AxCs.

The remainder of this dissertation structures as follows:

Chapter 2 introduces the underlying concepts of this dissertation and
discusses the state-of-the-art in the domain of approximate logic synthesis. In
more detail, Section 2.1 describes the concepts of a general search-based ALS
and discusses the state-of-the-art ALS methods on the register-transfer level
and logic level. Section 2.2 elaborates on methods for the quality assurance
of AxCs.

Chapter 3 presents CIRCA, our flexible ALS framework. Section 3.2 pro-
vides an analysis and a classification of existing ALS frameworks, Section 3.3
identifies key requirements for a flexible ALS framework, and Section 3.4
discusses CIRCA’s concept and architecture in detail. Section 3.5 evaluates
CIRCA'’s experimental results.

Chapter 4 proposes our synthesis methodology jump search. Section 4.2
motivates jump search’s concept, Section 4.3 presents the methodology, and
Sections 4.5 and 4.6 discuss the different impact factors used in the heuristics
presented in Section 4.7. Sections 4.8 and 4.9 detail jump search’s implemen-
tation and discuss the experimental results.

Chapter 5 presents our approximation technique MUSCAT. Section 5.2
discusses MUSCAT’s methodology, Section 5.3 presents comprehensive exper-
imental results, and a case study in Section 5.4 probes MUSCAT’s potential
at higher levels of abstraction, i.e., at register-transfer level.

Chapter 6 discusses the concept of proof-carrying approximate circuits.
Section 6.2 elaborates on proof-carrying hardware, Section 6.3 discusses the
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approach, Section 6.4 details the verification-based ALS process and the proof
certificates, and Section 6.5 presents the experimental results.

Chapter 7 presents our methodology for characterizing valid regions in
the search space prior to ALS. Section 7.2 discusses the related work and
describes our novel approach. Then, Sections 7.3.1 and 7.3.2 detail on the
construction of our novel approximation miter and Section 7.3.3 presents our
methodology, before Section 7.4 evaluates the experimental results.

Chapter 8 concludes the dissertation, and Chapter 9 discusses future work.






BACKGROUND

In the previous chapter, we have provided an introduction to the field of
approximate computing and have set the focus for this thesis on approximate
logic synthesis. In this chapter, we describe a general approximate logic
synthesis process and discuss the state-of-the-art in this field. Then, we
elaborate on methods for assuring the quality of the approximate outcome
generated during the approximate logic synthesis process.

2.1 APPROXIMATE LOGIC SYNTHESIS

In this section, we first provide an overview of approximate logic synthesis
in general and elaborate on the focus of this dissertation, i.e., automated
search-based approximate logic synthesis. Then, we discuss the related work
and the state-of-the-art, following in parts our published analyses [101, 106].

2.1.1  Overview

Approximate computing (AC) on the hardware level is also referred to
as approximate logic synthesis (ALS) [75]. ALS starts from an exact circuit
design and applies approximations to optimize one or multiple target metrics,
e.g., hardware area, delay, or power consumption. The approximations are
applied to subcircuits or components amenable to approximations, so-called
candidates. Candidates can be complex processing units or cuts in a gate level
netlist and can be identified manually [115] or automatically [37, 65]. In order
to ensure that an approximate circuit (AxC) provides sufficient quality to an
application, the user imposes quality constraints upon the circuit’s primary
outputs (POs). Consequently, satisfying the user-defined quality constraints is
a primary concern for an AxC. If an AxC adheres to the constraints, the AxC
is considered wvalid; otherwise, the AxC is considered invalid. An input design
provides many possible approximation opportunities, and existing work on
ALS seeks to generate optimal AxCs either via analytical methods [42, 49, 79,
80] or search-based methods [20, 50, 65, 69, 76, 94].

Analytical methods are developed for a specific set of approximation
techniques and error metrics, making the approach less flexible but generally
runtime-efficient. Vasicek [9o] additionally observed that analytical models
at gate level might be fast, but increasing model granularity increases the
complexity of their derivation due to non-trivial conditional probabilities.
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Thus, constructing accurate yet simple mathematical models is currently
impossible. Search-based methods, on the other hand, are more flexible
and support a general set of approximation techniques and error metrics.
However, search-based methods usually endure longer runtimes due to the
increased generality.

This dissertation considers automated search-based ALS on the register-
transfer level (RTL) and logic (or gate) level, where the original circuit
design is iteratively approximated. In general, search-based ALS executes the
following four main steps:

1. Search to explore the search space of approximate circuits.
2. Approximate to generate approximate circuits.

3. Verify to ensure that the approximate circuit satisfies the user-defined
quality constraints and is valid.

4. Estimate (or evaluate) to determine the approximate circuit’s target
metrics.

In search-based ALS, a search or optimization algorithm explores the
search space of AxCs and acts as central controller of the ALS process.
In each iteration, the search explores new AxCs that are generated in an
approximation step. The generated AxCs are then evaluated for the target
metrics; a quality assurance step verifies the AxC’s validity.

Scarabottolo et al. [75] classify the related work on ALS into three cate-
gories: 1) approximate high-level synthesis (AHLS), 2) Boolean rewriting,
and 3) netlist transformation. The categories mainly differ in the level of
abstraction and can complement each other [82, 86, 113, 119].

AHLS operates on the highest level of abstraction in ALS, the behavioral
RTL, where designs are described, for example, in C/C++ or behavioral
RTL Verilog. Both Boolean rewriting and netlist transformation locate on the
logic level. Boolean rewriting approximates a Boolean representation of a
design, e.g., truth tables or and-inverter-graphs (AIGs), and thus, operates on
a more abstract level than netlist transformation that approximates a circuit’s
gate level netlist. Sections 2.1.2 to 2.1.4 provide an overview of prominent
techniques and methods from the three categories. For more details, we refer
the interested reader either to the corresponding publication of the method
or to the survey of Scarabottolo et al. [75].

The three categories comprise methods that apply functional approxi-
mations, i.e., the implemented functionality of the circuit is simplified by
introducing errors to the computations judiciously. In contrast to functional
approximations stand timing-induced approximations applied on the technol-
ogy level, which are out of the scope of this dissertation yet briefly explained
for the sake of completeness.

Timing-induced approximations [68, 117, 118] are caused by voltage over-
scaling or over-clocking and can be applied to any digital circuit [89]. With
over-clocking, the circuit operates above its maximum operating frequency
to lower the circuit’s delay. Voltage over-scaling operates a circuit at a supply
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voltage below its nominal value while maintaining the operating frequency.
By exploiting the quadratic relationship between the supply voltage and the
dynamic power dissipation, voltage over-scaling thus achieves power savings.
Path delays, however, increase with decreasing supply voltage which, in
turn, leads to timing errors. The timing-induced errors are extremely difficult
to predict since the actual timing errors depend on the chip’s design and
layout. Thus, expensive timing-aware simulations on the final chip design
must be performed for a thorough and reliable analysis, leading to a very
time-consuming ALS process. In fact, without a systematic analysis, the
errors can become uncontrollably large [75, 86, 112]. Furthermore, timing-
induced approximations often achieve relatively small energy efficiency
gains since circuits often contain many near-critical paths that the timing
errors affect [60, 112]. Thus, most proposed approximation methods resort to
functional approximations [112].

2.1.2  Approximate High-level Synthesis

Approximate HLS integrates approximate operators as building blocks, i.e.,
substitutes original candidates with approximate variants. To substitute the
candidates, AHLS can utilize approximate candidates from a pre-generated
approximate component library [45, 55, 62, 88] or employ dedicated approxi-
mation techniques from the logic level [22, 41, 56, 77, 91, 121, 122] to generate
the approximate candidates during the ALS process. By employing methods
from the lower levels, AHLS becomes, in a sense, an over-arching ALS pro-
cess, which breaks ALS down into sub-problems that are solved on the lower
levels, e.g., through Boolean rewriting methods or netlist transformations,
and stitched back together in AHLS.

Nepal et al. [64, 65] proposed the ABACUS methodology that transforms
a circuit into an abstract synthesis tree (AST). In an iterative approach,
transformations on the AST are applied to create approximate circuits. The
accuracy of the AxCs is evaluated by testing, area and power characteristics
via ASIC synthesis using a standard cell library. The resulting three metrics
are then combined into a fitness function, and the AxC with the best fitness
is greedily selected as the starting circuit for the next iteration. This heuristic
process runs for a user-defined number of iterations. Eventually, a Pareto
front of designs is given, trading off accuracy for power.

The ASLAN framework [69] by Ranjan et al. is, to the best of our knowl-
edge, the only framework able to approximate sequential circuits while
guaranteeing error bounds. In a first step, ASLAN extracts combinational
subcircuits amenable to approximation, i.e., the candidates. Then, a search
space is generated by creating approximated versions of the candidates that
vary in their local error constraints and estimated energy consumption. The
applied approximation techniques are precision scaling and SALSA [91], al-
though the authors also mention the applicability of other techniques. Finally,
ASLAN employs hill climbing to find a locally optimal combination of ap-
proximated candidates. In each iteration, candidate versions with larger error

11



12

BACKGROUND

bounds are considered, and the combination resulting in the most significant
energy savings is selected if the circuit adheres to the global error bound.
Otherwise, the next-best combination of candidates is selected. Quality assur-
ance relies on a so-called sequential quality constraint circuit that raises a flag
if the error bound is violated. Since ASLAN deals with sequential circuits,
time frame expansion is used to unroll both the original and the approximate
circuit until they finish their computations. The resulting Boolean expression
is then formally verified with a satisfiability (SAT) solver.

Barbareschi et al. [10] proposed the IDEA framework that employs a
branch-and-bound algorithm. In each iteration, IDEA utilizes a depth-first
search strategy and examines all approximation possibilities for a target
candidate until no more approximations are possible, i.e., no further approx-
imations can be applied to the candidate or the resulting AxC violates the
user-defined quality constraints. Then, IDEA backtracks and explores the
remaining branches until the search budget is exhausted. The branch-and-
bound algorithm solely considers the quality of an AxC and IDEA only
determines circuit parameters, such as area and power consumption, once all
AxCs are found that meet the quality constraints. In this way, IDEA spends
the largest amount of the search budget on identifying the best possible
approximation of the early selected candidates in the design.

2.1.3 Boolean Rewriting

Boolean rewriting approximates the logical or Boolean representations of a
circuit, such as truth tables or AIGs. The methodology BLASYS [41] relies
on Boolean matrix factorization and factorizes a circuit’s truth table into two
smaller truth tables, which results in a smaller AxC after synthesis. Consider-
ing complete truth tables, however, limits BLASYS to small combinational
circuits. For larger circuits, the authors propose to firstly factorize subcircuits
for every factorization degree. Then, by integrating the approximated sub-
circuits into the overall design, BLASYS explores the search space until the
user-defined error threshold is reached.

ALSRAC [56] by Meng et al. relies on approximate care sets, determined
via logic simulation and expressed for internal nodes. Using the approximate
care patterns, ALSRAC generates local approximate changes (or approximate
resubstitutions), which are applied iteratively until the error threshold is
reached.

Venkataramani et al. presented SALSA [91] which forms a so-called quality
constraint circuit by providing the original and the approximate circuit, which
initially is identical to the original circuit, with the same input and feeding the
outputs of the circuits into a quality function that checks whether the given
error bound holds. Forcing the error bound to hold, SALSA works backwards
and applies standard don’t care logic optimization techniques to reduce the
area of the approximate circuit. Thus, the technique creates approximate
combinational circuits that adhere to the error bound by construction.
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Similar to SALSA, the approach of Chandrasekharan et al. [22] employs a
setup with a quality constraint circuit but formally verifies the error constraint
by combinational equivalence checking using a SAT solver. The approach
represents a circuit’s logic function as AIG and employs approximation-aware
AIG rewriting as approximation technique, i.e., setting nodes to constant
zero. Among all possible cuts on the critical paths of the circuit, the one
with the smallest cut size is selected for rewriting. This heuristic is greedily
iterated until there is no more possibility for rewriting without violating the
error bound or the maximum number of iterations is reached.

Soeken et al. [85] represent the circuit description as a binary decision
diagram (BDD) and apply approximations to reduce the size of the BDD.
Frohlich et al. [35] also utilize a BDD representation to determine an optimal
BDD, i.e., a BDD with a minimum number of nodes, satisfying the quality
constraints. Using BDDs allows the authors to make precise statements about
the resulting error. However, the major weakness of these approaches is that
BDDs are only applicable to small combinational circuits, i.e., BDDs do not
scale well for large Boolean functions.

2.1.4 Netlist Transformation

Netlist transformation techniques operate on a circuit’s gate level netlist,
and a commonly-used approach is gate level pruning (GLP) presented by
Schlachter et al. [77, 78]. GLP disconnects a wire from the node driving it and
inserts a constant as driver instead. As a result, a synthesis tool can optimize
the logic by 1) removing (or pruning) dangling nodes and 2) simplifying the
subsequent logic through constant propagation. To determine which node to
prune, the authors rank the nodes by the product of their switching activity
and their significance, a measure for the node’s impact on the circuit’s error.
An iterative algorithm simulates the hardware design to compute each node’s
significance-activity product and evaluates whether the design meets the
quality constraints. The algorithm then prunes the node with the lowest
significance-activity product from the design in the next iteration. However,
Scarabottolo et al. [74, 76] showed that a node’s significance is often too
conservative, leading to suboptimal AxCs.

Thus, Scarabottolo et al. [76] extended GLP to circuit carving. Circuit
carving seeks to carve out the largest subcircuit in the design so that the
resulting AxC still meets the quality constraints. The authors propose to use
a node’s significance as an error estimate and explore a binary search tree
to determine whether a node is included in the subcircuit. However, as an
AxC’s actual error cannot be determined via the significances, a subsequent
quality check is performed. An exploration of the complete binary search
tree is considered intractable; hence, the authors defined pruning criteria for
the tree. One criterion considers a node’s estimated significance (or estimated
error). To estimate the nodes’ significance, the authors suggest simulating
the complete circuit exhaustively, which is accurate but only applicable to
small circuits, or employing an error estimation model, which has shown to
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be often too conservative. In any case, the error estimation’s accuracy dictates
the approximate outcome.

In an attempt to increase the error estimation accuracy and improve the
quality of results in GLP, Scarabottolo et al. [74] proposed Partition & Propa-
gate (P&P). P&P partitions the design into cuts which are simulated exhaus-
tively to determine each node’s significance. Due to the exhaustive simulation,
the accuracy of the nodes’ significance becomes more accurate. The authors
argue that the number of inputs to the cuts is small, and thus, simulation
can be performed efficiently. Nevertheless, the approach can only specify an
estimate of an error bound, which, as their experimental results show, may
still be too conservative by several orders of magnitudes. Consequently, a
subsequent quality verification is required.

Another netlist transformation approach is circuit design by evolutionary
algorithms that iterate over thousands of circuit generations and modify
netlists by mutation operators. This approach often leads to unusual yet
efficient AxCs as, for example, shown by the adders and multipliers provided
in the EvoApproxLib [62].

Venkataramani et al. proposed SASIMI [94], which uses a substitute-and-
simplify approximation technique. SASIMI identifies near-identical signal
pairs, i.e., two signals which show similar behavior, and substitutes one with
the other to simplify the logic. First, SASIMI evaluates and ranks signal pairs
with a heuristic function including area and delay parameters. Then, with a
gradient ascent technique, more accurately hill climbing, the highest-ranked
pair is selected for substitution. The process is iterated until the user-defined
quality constraints are violated. Additionally, the authors suggest the concept
of quality configurable circuits, which are circuits that can operate in either an
accurate or approximate version.

The SCALS framework presented by Liu and Zhang [50] initially maps
a gate level logic network to a target technology. In an iterative process,
SCALS extracts sub-netlists from the mapped netlist to which randomly
chosen approximations or optimizations are applied. The candidates are then
evaluated by a function including the area and the error, gained through
a testing approach. A Metropolis-Hastings algorithm steers the candidate
selection and the search until reaching a predefined number of iterations.
Additionally, the user can specify a confidence interval for the estimated
error. To evaluate the confidence on the estimated error, SCALS employs the
T-test [99].

2.2 QUALITY ASSURANCE

Approximations applied to a design’s candidates cause errors that propagate
and potentially amplify or attenuate. In fact, the correlation between the er-
rors at the candidates and the circuit’s primary outputs is generally complex,
making it a complex task to determine the resulting error at the circuit’s
primary outputs. Thus, approximate logic synthesis must employ a quality
assurance step that checks whether an AxC satisfies the user-defined quality
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constraints. The quality constraints are defined either by application-specific
metrics, e.g., structural similarity [96], or by general error metrics, which
can be further distinguished into worst-case error metrics (also denoted as
non-statistical error metrics) or average-case error metrics (also denoted as
statistical error metrics). This dissertation focuses on the general error metrics
and discusses commonly used metrics in the following.

Consider the Boolean function f: B™ — B™ with n primary input bits
and m primary output bits that describes the correct functionality of cir-
cuit C, and let the Boolean function f: B™ — B™ of the AxC C be an ap-
proximate function of f. The function int(x) : B™ — Z translates the binary
vector x to an integer value, e.g., considering the binary representation
int(x) = Y™, 2tx; (cf. [89]).

With the notation above, we can then define the following worst-case or
non-statistical error metrics:

e Worst-case absolute error ey c: The worst-case (WC) absolute error (short:
worst-case error), which is sometimes also denoted as error magnitude
or error significance [89], computes the maximum absolute difference
between the outputs of the original circuit C and the AxC C over all
input values. In fact, the WC error is a fundamental error metric [89]
and is mainly considered in this dissertation. The WC error is defined
as follows:

ewc(f,f) = Vr)?eagn {1nt f(x)) —int(?(x))‘ (2.1)

e In its normalized form, we normalize the worst-case error ey c to the
maximum output value of f(x):

3 €EwcC (fl ?)

f,f) = -
ewcnorm(f,f) max int(f(x))
VxeBn"

(2.2)

* Worst-case relative error ey c re1: The worst-case relative error is similar
to the worst-case error but computes the maximum relative difference
between the original and the approximate outputs rather than the
absolute difference. The worst-case relative error is defined as follows,
where the division by max(1, f(x)) prevents a division by zero:

|int(f(x)) — int(f(x))|

f,f) = '
€WC,rel( ) V?Ealé(“ max(1,f(x)) e 3)

* Bit-flip error eg: The bit-flip error, also denoted as maximum Hamming
distance [89], computes the maximum number of bits that discern be-
tween the precise value of f and the approximate value of f. The bit-flip
error is defined as follows:

epr(f, f) = = Jmax (Z fi( ) (2.4)
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The average-case or statistical error metrics are defined as follows:

* Mean absolute error epmae: The mean absolute error (or average-case
arithmetic error) sums the absolute differences between the original and
approximated function and averages the results over the number of
inputs:

emat(f,f) 2” Z ‘1nt —int(f(x)){ (2.5)
vxeBn

® Mean squared error ense: The mean squared error is similarly computed
as the mean absolute error; instead of computing the absolute difference,
the difference between the original and the approximate function output
is squared:

2

emsek (f, ) in Z (int(f(x)) —int(f(x))) (2.6)
x€B

e Mean relative error enpre: The mean relative error sums the relative
errors between the original and the approximate function and averages
the result over the number of inputs:

‘lnt )) —int(f(x ))}
n Z max] int(f(x)))

emre(f, ) (2.7)

VxeB™

* Error rate egr: The error rate (or error probability) specifies the percentage
of inputs for which the outputs of the original and the approximate
function differ:

1
eER f f 7n Z (28)
xeB

In order to assess the error or quality of an AxC, analytical methods [74,
76, 77, 80], testing-based approaches [65, 94], or formal verification [23, 69,
89—91] can be employed. Analytical methods employ error models for the
input design, which allow to predict or estimate an AxC'’s error prior to its
generation [5, 80]. While analytical methods can perform the predictions
efficiently, the error model must be accurate and fully specified for the input
design to deliver meaningful estimations. In fact, analytical methods are
usually utilized to provide information to the ALS process for guidance rather
than to verify an AxC’s adherence to the quality constraints. Thus, the existing
analytical approaches nevertheless rely on formal verification or testing in
an additional quality assurance step to ensure the quality of a generated
AxC [76, 77]. Furthermore, Vasi¢ek observed that constructing accurate yet
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simple mathematical models on the gate level is currently impossible, as
described in Section 2.1.1.

Testing represents the most general approach for assessing the quality
as the approach relies on circuit simulation, which works with any circuit
design. In testing, a circuit simulator simulates the circuit using test vectors
from a test vector set. For exhaustive simulation, the test vector set contains
all possible inputs, meaning that all inputs are explicitly enumerated, which
leads to an exponential worst-case execution time [9o] and limits the approach
to small-scale circuits. Thus, in practice, many authors scale the simulation’s
workload over the size of the test vector set and only employ a subset of
all inputs. The larger the test vector set is, the higher is the confidence in
the estimated error value. However, the testing runtime increases with the
increasing size of the set [89].

Furthermore, employing a subset of all inputs is only viable for average-
case (or statistical) metrics since these metrics converge towards a particular
value. For determining worst-case metrics, the analysis of a subset of test
vectors is insufficient since there is generally no correlation between the errors
of different inputs, and convergence towards a particular error value is not
given. As a result, an input that is not part of the subset but produces a quality
violating error may remain undetected, which may result in a catastrophic
underestimation of the actual worst-case error. Thus, formal methods are
generally used to verify worst-case error metrics. Formal methods can also
asses statistical metrics, and Vasicek [90] discusses algorithms for determining
these metrics for combinational circuits. However, the experimental results
from small-scale circuits highlight the complexity of determining such error
metrics with formal methods. In fact, since error information over all input
vectors must be counted, the problem becomes very challenging [90], and
Chandrasekharan et al. [23], furthermore, demonstrate that some average-
case metrics cannot be determined efficiently for practical designs, e.g., the
mean absolute error.

Formal methods provide a guarantee on the result, which is always exact
since formal methods verify all inputs — but without referring to the explicit
enumeration of all inputs [90]. In fact, in this dissertation, we mainly con-
sider formal methods in combination with the commonly used concept of
approximation miters. This dissertation, however, makes no contributions to
the formal verification methods or engines themselves since these belong to
a separate field of research with its own challenges. Instead, this dissertation
utilizes formal methods as a tool to facilitate the verification of AxCs, and
contributes appropriate and novel quality assurance environments in the
form of the approximation miters. Thus, we only briefly elaborate on gen-
eral approximation miters and the verification engines in the following, and
provide more detailed discussions on the related topics at the appropriate
locations of this dissertation, i.e., Section 3.4.5 and Chapters 5 to 7.

A common approach in formal verification is to construct an approximation
miter [22, 23, 69, 90, 91] which comprises the original circuit, the AxC, and
logic for error computation. Then, instead of computing the exact error
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value, which states an extremely hard task as described above, a satisfiability
(SAT) problem is formulated. In essence, solving the SAT problem then
answers whether the encoded logical formula can be satisfied. In the context
of this dissertation, the question asked is whether the error between the
original function f and the approximate function f can exceed the user-
defined threshold T: e(f, f) < T. In order to solve the SAT problem efficiently
for combinational circuits, SAT solvers are being utilized, which operate on
Boolean logic and can verify designs with millions of gates in a reasonable
time [89]. The SAT solver verifies all possible inputs and reports unsatisfiable
if no input assignment results in a violation of the error threshold T. In this
case, the user holds a guarantee that the verified AxC is valid, i.e., cannot
violate the error threshold (or quality constraints). If, however, the SAT solver
finds an input assignment that results in a threshold violation, the AxC is
invalid, and the solver reports satisfiable and returns the input assignment
that caused the violation.

Besides SAT solvers, there are satisfiability modulo theories (SMT) solvers
which generalize the SAT problem and combine a SAT solver with one or
more theory solvers. In this way, the SMT solver operates at a higher level of
abstraction [12] than a SAT solver that operates on Boolean logic only. In fact,
SMT solvers verify the satisfiability of a formula that may contain operations
from various theories, e.g., bit vectors, arrays, or integer arithmetic, and
use the highly-specialized theory solvers for efficient solving. Assume, for
example, that the problem statement a +b = b + a has to be verified, with a
and b being integers. A SAT solver must translate the problem into a formula
that expresses the addition in Boolean logic at bit level. In contrast, a SMT
solver can employ a theory solver, e.g., for integer arithmetic, to verify the
statement at a higher level of abstraction and efficiently find the answer to
the obvious problem statement.

In order to verify sequential circuits, input sequences have to be verified
instead of individual input assignments. One approach to verify a finite
sequence of a sequential circuit is bounded model checking, where a SAT
solver verifies the unrolled circuit [23, 69]. Other approaches are inductive
reasoning [120] or, more recently, property-directed reachability (PDR) [31],
which facilitate the verification of an infinite number of time frames [23].



CIRCA: A SEARCH-BASED APPROXIMATE LOGIC
SYNTHESIS FRAMEWORK

3.1 INTRODUCTION

This chapter presents our framework for search-based approximate logic
synthesis (ALS), CIRCA [101]. CIRCA’s main contribution is providing the
research community of approximate computing (AC) with a framework that
allows for the rapid implementation of new methods and establishes the
setup of custom ALS processes at any of the levels of abstraction described
in Section 2.1. In this way, CIRCA provides an ALS environment to fairly
compare different methods and techniques under consistent conditions.

In Section 2.1.1, we have defined a general search-based ALS process with
the main steps search, approximate, verify, and estimate. Consequently, the
main task for an ALS framework is to implement these steps to enable a
complete ALS process. In addition to this main task, we have found that
a comprehensive ALS framework needs to be general, modular, compatible,
extensible, and available (see Section 3.3). Our analysis of the related work (see
Section 3.2), however, showed that existing ALS frameworks lack these key
requirements and, instead, often implement the ALS process in monolithic
blocks with interwoven phases. Due to this fact, a fair comparison of ALS
methods is often not possible since the ALS setup may be inconsistent. Hence,
in contrast to the existing frameworks, CIRCA considers these criteria.

e Approximate logic synthesis within CIRCA
Register-transfer B Approximate
o
S Search - Verify
-% Logic -
& > Estimate
T _—
~

Figure 3.1: Approximate logic synthesis in the computing stack and CIRCA.
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CIRCA provides an architecture that divides the ALS process into the four
main steps as shown in Figure 3.1 and, from a high-level view, allocates an
individual module for each step. The individual modules can be configured
independently to facilitate swift changes in the ALS setup and even allow for
complementing different methods. In this way, CIRCA enables the evaluation
of new methods and fosters comparative studies by enabling a fair exper-
imental comparison of alternative methods. For seamless integration into
existing synthesis flows, separate input and output stages frame CIRCA’s
ALS process for pre-processing or post-processing, respectively.

In summary, we make the following contributions:

¢ We present CIRCA?, a general, modular, compatible, and extensible
open-source ALS framework, which the research community can easily
employ to implement, verify, and evaluate emerging ALS methods.

* We demonstrate CIRCA’s capabilities in our experiments by compar-
ing three different search methods in combination with two different
approximation techniques.

Multiple people contributed to CIRCA’s development: Tobias Wiersema
and Hassan Mohammadi Ghasemzadeh contributed to the conceptual design.
Muhammad Awais provided CIRCA’s Monte Carlo tree search implemen-
tation. My student research assistant, Matthias Artmann, was involved in
the architectural development and the implementation of the framework.
My contribution to this work lies in the conceptual and architectural design
as well as in the implementation of CIRCA. In fact, I have initially started
CIRCA’s development in my Master’s thesis [100], which Tobias Wiersema
supervised. The outcome of the thesis has then been developed further to
the state presented in this dissertation.

In Section 2.1 of the background chapter, we have discussed the state-of-
the-art ALS frameworks related to CIRCA. To discuss CIRCA in detail, we
structure this chapter as follows: For related frameworks, we first provide an
evaluation in Section 3.2 and then identify key requirements for a flexible
ALS framework in Section 3.3. Then, in Section 3.4, we present the CIRCA
framework in detail, which was developed under the consideration of the
identified key requirements. Finally, we demonstrate CIRCA’s capabilities
through experiments presented in Section 3.5 and conclude the chapter in
Section 3.6.

We have previously presented the CIRCA framework at a workshop [103]
and published CIRCA in a journal [101]. This chapter largely follows the
discussion of the journal publication and cites most parts of the discussion
of the classification of the related work (Section 3.2), the discussion on re-
quirements for a comprehensive ALS framework (Section 3.3), and parts of
the experimental results (Section 3.5). Section 3.4.5 combines discussions
from [101, 105]. My colleague, Tobias Wiersema, contributed to the publica-
tion [105] and follows the discussions in his dissertation; hence parts of the

1 https://git.uni-paderborn.de/circa/public/circa_v2
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3.2 CLASSIFICATION OF EXISTING FRAMEWORKS

discussions in Section 3.4.5 overlap in his and my dissertation. The distinct
contributions, however, are made clear in Chapter 6.

3.2 CLASSIFICATION OF EXISTING FRAMEWORKS

Table 3.1 presents our attempt to classify a representative selection of ALS
methods and frameworks from Section 2.1. From the classification, we then
identify key requirements for a general ALS framework in Section 3.3. The
challenges are two-fold. Firstly, we need to identify meaningful and orthogo-
nal categories to provide a clear and distinct classification. Secondly, we have
to retrieve the required information from related works. Table 3.1 states the
classification of the ALS method according to the categories from Section 2.1
and comprises categories in four groups: the input, the ALS, the output, and
whether the framework has been made publicly available.

Regarding the input, the first category is the circuit type. Most of the frame-
works approximate combinational circuits, while ASLAN was developed for
sequential circuits. However, it has to be noted that it is not necessarily the
characteristic of the input circuit that determines its type in our classification.
Rather, an approximation technique for sequential circuits means that at least
the approximation technique or the quality assurance step (as for ASLAN)
are considering the clocked nature of the circuit. For example, several frame-
works use sequential circuits such as FIR filters as benchmarks but restrict
the approximation to the datapath and do not report on testing the resulting
circuit for a sequence of clock cycles or formally verifying it. Hence, we
classify these approaches as combinational in Table 3.1. For ABACUS, we are
somewhat uncertain how to classify it since the mentioned approximation
techniques are clearly for sequential behavior, e.g., loop transformations, but
a corresponding quality assurance was not detailed.

In terms of input model, SASIMI, SALSA, and AIG rewriting rely on gate
level netlists or a Boolean representation. SCALS takes technology-mapped
netlists as input, ASLAN begins with circuits described in a structural hard-
ware description language (HDL), and ABACUS, operating on a more ab-
stract level, requires a behavioral HDL or register-transfer level code. Another
issue is how the user can control the error. Most frameworks allow for speci-
fying an error bound, often in several error metrics such as error rate or mean
absolute error. SALSA and ASLAN define quality functions or quality evalu-
ation circuits, respectively, which encode error bounds. Again, ABACUS is
different as it generates a Pareto front showing reasonable trade-offs between
accuracy and power. A user-specified number of iterations controls the ALS
process. Generally, more iterations lead to more approximations and, in turn,
can add non-dominated designs to the Pareto front with larger errors.

The second group of rows in Table 3.1 characterizes the ALS, split into the
three categories search, approximation technique, and quality assurance. All
techniques rely on heuristics for search. The only exception is SALSA that
does not apply a search method but systematically iterates over the outputs of
the approximate circuit (AxC) to apply don’t care optimization. Consequently,
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3.3 REQUIREMENTS FOR A FLEXIBLE FRAMEWORK

SALSA creates circuits that adhere to the error bound by construction, making
a subsequent quality assurance step obsolete. ASLAN and AIG rewriting
formally verify the AxC’s quality, which is time-consuming but provides a
much stronger statement about quality than the testing approaches used in
SASIMI, ABACUS, and SCALS.

The next group of categories characterizes the result produced by the
respective framework. Mostly, the tools return one AXC in the form of a gate
level netlist or structural HDL. ABACUS, however, returns a set of designs
in behavioral HDL at register-transfer level that form a Pareto frontier with
respect to accuracy and power. Since the results of all frameworks are either
netlists or synthesizable hardware descriptions, they can potentially target
standard cell and FPGA technology. In contrast, with the category target
technology, we refer to the technology used to get estimates for area, delay,
and power during the synthesis process. Here, most frameworks target
standard cell libraries except for AIG rewriting, where the and-inverter-
graph (AIG) representation and ABC functions, respectively, are employed to
retrieve technology-independent estimates for area and delay.

Finally, only the authors of ABACUS and AIG rewriting decided to make
their frameworks publicly available.

3.3 REQUIREMENTS FOR A FLEXIBLE FRAMEWORK

Our analysis of related frameworks and the attempt to categorize them has
shown that all these approaches have been developed for specific circuit
types and limited approximation techniques. In particular, ALS is typically
described as a monolithic block with interwoven phases for approximation,
search, and assuring quality. Moreover, only few frameworks are openly avail-
able for experimentation. This situation severely hampers the development
and evaluation of new techniques for ALS, and the comparison to existing
ones.

With CIRCA, we aim at overcoming these shortcomings and provide
a flexible framework for ALS. As a starting point for this development,
we take our classification of Table 3.1. This classification provides several
categories and shows that many of these are largely orthogonal, giving rise
to a reasonable structuring of our ALS framework. Generally, we envision a
framework that fulfills the following technical key requirements:

* General: The framework should not be restricted to certain circuit types,
error metrics, approximation and search techniques, or specific target
technologies.

* Modular: The framework architecture should enable the exchange of
certain processing steps without affecting other steps. Modularity is key
for the evaluation and the comparison of different techniques under a
consistent experimental setup.

* Compatible: The framework, in particular its inputs and outputs, should
connect to other, widely-used academic and commercial front-end
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and back-end tools, e.g., tools synthesizing circuits for ASIC or FPGA
technology.

* Extensible: The framework should facilitate the swift implementation
and evaluation of new techniques.

Additionally, the framework should satisfy the community requirement:

* Open source availability: The framework should be publicly available and
allow other researchers to use, modify, and extend it. Open-source avail-
ability encourages the evaluation and comparison of new techniques
against existing ones, and fosters comparative studies.

3.4 THE CIRCA FRAMEWORK

Considering the previous discussion on related work and identification of key
requirements, we present our CIRCA framework in the following sections as
a flexible ALS framework. First, we will describe CIRCA’s general concept.
Then, we will detail on CIRCA’s individual building blocks and underlying
principles. Finally, we classify CIRCA into the categories from Section 3.2.

3.4.1  The Concept of CIRCA

Figure 3.2 shows CIRCA’s conceptual design, which has been developed
under the consideration of the key requirements of an ALS framework
(general, modular, compatible, extensible, and open-source, cf. Section 3.3)
and divides into three stages: the input stage, the QUAES stage, and the
output stage. While the quality assurance, approximation, estimation, and
search space exploration (QUAES) stage implements the main ALS process,
the input and output stage frame the QUAES stage and pre-process the input
design from preceding tools or post-process the output designs for succeeding
tools, respectively. Via a separate interface, CIRCA enables communication
with external tools, e.g., ABC [14], Yosys [110], or Xilinx Vivado.

The input stage fulfills the two main tasks of pre-processing the input
design and ensuring compatibility between CIRCA and external tools and
formats. In the pre-processing, the input stage has to identify the candidates
in the input design. Candidates are usually arithmetic components from a
design’s data path, e.g., adders or multipliers, and can be identified either
through automated methods or manually by the user through code annota-
tions in the input design. In order to ensure CIRCA’s compatibility, the input
stage has to translate the input design into one of the formats CIRCA uses
internally, Verilog or Berkeley logic interchange format (BLIF).

The QUAES stage implements the ALS process and further subdivides
into the processing blocks quality assurance, approximation, estimation, and
search space exploration, and the blocks perform operations following their
descriptive names.

CIRCA targets search-based ALS processes as described in Section 2.1, and
the search space exploration block implements the algorithm that explores
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Figure 3.2: Overview of CIRCA’s conceptual design. Extended from [101].

the search space and acts as the central control block of the QUAES stage.
The search algorithm operates on nodes, i.e., abstract representations of AxCs
that dissociate circuit-specific information, and CIRCA relates a node to a
unique AXC outside of the search. In this way, the search is kept agnostic
of the context of AxCs, which allows the utilization of a wide range of off-
the-shelf search algorithms, e.g., hill climbing or breadth-first search, and
renders domain-specific adjustments to the search algorithm obsolete. Since
the configuration of the candidates, i.e., the approximation technique and the
specific parametrization of the individual candidates, uniquely describes an
AxC, CIRCA refers to AxCs also as circuit configurations.

Throughout execution, the search explores nodes and queries information
on different properties, i.e., validity and performance in a target metric. In
order to determine the different properties, CIRCA automatically translates
a node to its corresponding AxC and invokes the required circuit-specific
operations. If the AxC has not been generated yet, CIRCA firstly invokes the
approximation block for AxC generation.

The approximation block approximates the candidates using the approx-
imation technique and the parameters encoded in the node or circuit con-
figuration, respectively. CIRCA then uses the approximated candidates to
assemble the AxC by replacing the candidates in the input design with their
approximated counterparts. Afterward, CIRCA invokes the corresponding
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processing block on the circuit configuration to provide the information
requested by the search.

If the search requests the node’s validity, CIRCA invokes the quality assur-
ance block. The quality assurance block verifies whether the AxC adheres
to the user-specified quality constraints through formal verification, testing-
based approaches, or analytical methods. If the AxC satisfies the constraints,
the AxC and the corresponding node are considered valid; otherwise, both
are invalid.

If the search requests the node’s performance, CIRCA invokes the estima-
tion block to determine the target metrics, usually through external tools,
e.g., ABC [14] or Yosys [110]. The estimation block can directly attribute the
AxC with the target metrics, e.g., hardware area, delay, power consumption,
or the AxC’s error, or implement a heuristic function to aggregate multiple
performance metrics into a single value.

When the search terminates and thus completes the ALS, the output stage is
invoked for post-processing. Post-processing involves selecting and preparing
AxCs for succeeding back-end tools for actual circuit implementation. First,
the output stage receives the search’s result, which may be multiple nodes
or a single node, and translates them to AxCs in the desired output format.
Then, the output stage selects as CIRCA’s output a single AxC, e.g., the
circuit that optimizes the target metric, or the stage selects a set of AxCs as
CIRCA’s output, e.g., the Pareto frontier.

CIRCA’s ALS process is fully configurable by the user through a config-
uration file. In the file, the user can set up each stage, block, and method
individually. In addition, if the candidates are known in advance, the user
can provide tailored configurations to customize operations on specific candi-
dates, e.g., to tailor an approximation technique towards a specific candidate.
If not specified otherwise, CIRCA refers to the default configuration specified
by the user.

3.4.2 Search Space Exploration

Figure 3.3 shows the search space exploration block in more detail. In the
initial publication of CIRCA [101], the search space exploration block sug-
gested a procedure that is followed by many search algorithms: 1) select a
node, 2) expand the node for search space exploration, and 3) evaluate newly
explored nodes. The procedure, however, may impose artificial restrictions
upon the search algorithm. Thus, the design of the search space exploration
block was adjusted; the block now further divides into different independent
modules, each fulfilling a specific task to provide a modular and generic
architecture.

As described in the previous section, the search block implements the
search algorithm, which operates on nodes only. A node is an abstract data
structure and attributes as properties a node’s validity, performance, and
relationships, such as parents, children, and siblings. The relationships of the
nodes define a search graph, and the search graph represents the search space
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Figure 3.3: CIRCA’s search space exploration block in more detail. Dashed lines
indicate optional blocks.
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that the search algorithm explores. Each node explored can then be evaluated
based on its validity and performance — for which CIRCA automatically
invokes the required circuit-specific operations, as described in Section 3.4.1.
The search is thus agnostic and abstracted from the context of circuits and
ALS, which enables a straightforward implementation of a wide range of
off-the-shelf search algorithms. Currently, CIRCA implements the following
search algorithms:

* the local searches simulated annealing and hill climbing (see [101] for
implementation details),

¢ a breadth-first search,

* the genetic algorithm non-dominated sorting genetic algorithm (NSGA-
1) [28],

* a heuristic Monte-Carlo tree search (see [101] for implementation de-
tails),

¢ the domain knowledge exploiting jump search (see Chapter 4).

The blocks search filter and search heuristic are optional for an ALS process
and enable the search to exploit domain knowledge to improve the ALS” per-
formance. In contrast to the search, both blocks have access to circuit-specific
properties of a node, i.e., the blocks operate on nodes and the corresponding
circuit configurations. In this way, the search algorithm itself is kept general
by abstracting domain-specific knowledge, yet domain knowledge can be
exploited during the search if desired.

The input to the filter is a list of nodes to which the block applies a filter
function that considers circuit-specific properties or domain knowledge to
remove unfit nodes. A filter can, for example, be used to enforce constraints
on circuit-specific parameters, such as delay or hardware area, or to compare
nodes against each other. The search filters currently implemented in CIRCA
are:

* arandom filter that filters randomly selected nodes, and
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¢ a k-means clustering [67] filter that clusters nodes based on the errors
of the candidates and only returns the centroids of the clusters.

The search heuristic can be used to evaluate nodes with a heuristic function
that considers circuit-specific properties, e.g., error information of candidates
as done in jump search (see Chapter 4). While the estimation block in the
QUAES stage can also implement a heuristic function, the search heuristic
is more specific since the block can also consider a node’s relations and
circuit-specific properties. Currently, CIRCA implements the following search
heuristics:

¢ a method showcasing the block’s functionality by evaluating a node in
terms of delay or hardware area, and

¢ a method to compute jump search’s heuristic function (see Chapter 4).

The search space manager creates the nodes and arranges them in the search
space by defining their relationships, i.e., the parents, children, and siblings
of a node. In this way, CIRCA abstracts circuits to nodes and separates the
construction of the search space from the search algorithm, which eases
the implementation of new search algorithms and enables greater flexibility,
since a swift change of the search space can be performed without requiring
changes in other parts of the search space exploration block.

Many factors qualify for defining the relationships, and the construction
of the search space can become arbitrarily complex. Thus, the search space
manager allows implementing custom algorithms to define the relationships
between nodes. Furthermore, as the relationships usually depend on the
approximation techniques and their parameters as well as circuit-specific
properties, e.g., the quality of the candidates, the search space manager
operates on nodes and the corresponding circuit configurations.

CIRCA implements two search space managers. A general search space
manager that defines the parents/children of a node by the quality of the
candidates so that a parent/child instantiates one candidate with the next-
highest/next-lowest quality. The second manager builds upon the general
manager but exploits information from the method described in Chapter 7
to prune nodes from the search space to reduce the search space’s size.

Figure 3.4 visualizes two exemplary search spaces constructed with the
general search space manager for a design with two candidates. In Fig-
ure 3.4a, one approximation technique per candidate is employed, and €; ; is
used to describe the candidates” local quality constraints (LQCs), i.e., quality
constraints that are imposed upon and limited to the candidate. The first
index 1 of € indicates the candidate; the second index j indicates the can-
didate’s LQC, which is ranked in ascending order, i.e., LQC €1 imposes
stronger error bounds than LQC €; , for i € {0,1},1 < m. A tuple (e, €1 5)
comprises the LQCs of the candidates and defines each node in the example.
The tuple (€00, €1,0) represents the original design since both candidates are
assumed error-free.

As described above, the general manager defines those nodes as a current
node’s children that instantiate one candidate of the next-lower quality. For
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example, in Figure 3.4a, the children of the original design are the nodes
(€0,1,€1,0) and (€p,0, €1,1). The resulting search space then has a shape of a
lattice.

Orignial design Orignial design
(€00r 1,0

(€o2s SL'O)/CD\(SQ" £) oo €12)
C)\(Sz,z’ ) (Eo1» 81)2)/()

O

(a) A search space for two candidates with ~ (b) A search space for two candidates,
one approximation technique each. one employing two approximation tech-
niques.

3

Figure 3.4: Exemplary search spaces as constructed by the general search space
manager.

Figure 3.4b visualizes the more complex scenario where a candidate em-
ploys more than one approximation technique. In the example, candidate 0
employs the approximation techniques Ag o and Ao,7, while candidate 1 only
employs approximation technique A1 . The general search space manager
then constructs a search space that considers the possible combinations of
approximation techniques and LQCs. As shown in Figure 3.4b, the manager
constructs lattice-shaped sub-spaces for the specific combination of approxi-
mation techniques and the sub-spaces contain the LQC combinations of the
candidates. As a result, the search space expands in a controlled manner
from the least to the most aggressively approximated nodes. The resulting
size of the search space then equals to the sum of the sizes of the individual
sub-spaces whose size can be computed via the product of the LQCs of the
candidates, using the following equation:

> T1/tQcs(c,ac) (3.1)

acA ceC

The tuple a € A specifies a combination of approximation techniques and
the set A holds all possible combinations. The set C contains all candidates,
and the function LQCs(c, a.) returns the set of distinct LQCs under the
approximation technique a. for candidate ¢ € C.

The example also shows that we can uniquely describe a node with the
candidates” approximation techniques and LQCs. Thus, CIRCA encodes the
information into two tuples to represent each node and circuit configuration
uniquely in an abstract yet unified data structure. For example, the node
described by the tuples {(A¢,1, A1,0), (€0,2, €1,1)} could encode for candidate 0
approximation-aware AIG rewriting in maximum effort mode in Ag 7 and
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ewc < 3 as LQC in €p . The approximation block decodes the values in
the tuples and deduces the approximation technique and corresponding
approximation parameters for each candidate (see Section 3.4.3) to invoke
the appropriate techniques. Furthermore, as the possible parameters and
the ordering of the LQCs is unique to and thus determined by the approx-
imation techniques, the techniques provide this information to the circuit
configuration, which the search space manager eventually utilizes to arrange
the nodes in the search space.

At this point, we want to note that CIRCA does not expect the candidate’s
approximations to be ordered in terms of the LQCs, since the metric used for
the ordering is abstracted through the encoded tuples. In fact, the ordering
in the approximation block can be chosen freely, and any metric a designer
deems suitable can be used. In this dissertation, however, all orderings base
on the LQCs, allowing for a controlled search space expansion. From a
technical point of view, the search space manager can change the ordering
and prepare own orderings, which, however, results in a highly customized,
non-generic search space that likely shows high dependencies between the
different processing steps in CIRCA.

3.4.3 Approximation

The approximation block implements the approximation techniques to ap-
proximate the candidates. A setup phase attributes at least one approximation
technique to each candidate and initially analyzes the candidate’s informa-
tion to set up the technique for each candidate individually. Setting up the
approximation method depends on the respective approximation technique
and, for example, demands determining compatible components from an
approximate component library or the maximal number of bits that can be
truncated from a candidate. During ALS, CIRCA automatically invokes the
approximation block if new circuit configurations need to be generated.

Furthermore, each approximation technique of each candidate initially
generates an order of the possible approximations and then provides that
order to the search space manager, as mentioned in Section 3.4.2, to enable
controlled and gradual advances in the approximations. The designer de-
fines the order arbitrarily but could, for example, consider the degree of
approximation that can be applied to the candidates with the respective
technique.

In order to control the degree of approximation, approximation techniques
usually provide control parameters, e.g., parameters to control the resulting
quality in terms of error metrics via LQCs. As approximation techniques
usually employ different parameters, CIRCA uses an encoded representa-
tion for the approximation techniques and their parameters to unify the
information outside the approximation block. In this way, for example, the
search space manager can directly utilize the encoded information in the
ordering to define children, parents, and siblings. To nevertheless enable
highly customized approaches, the approximation block can be queried to
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decode the information and provide the raw information, which can then
be processed, e.g., in the search space manager to construct tailored search
spaces or in a search heuristic.

CIRCA currently implements as approximation techniques:

* precision scaling,
¢ approximation-aware AIG rewriting [22], and

¢ the EvoApproxLib [62].

3.4.4 Estimation

CIRCA invokes the estimation block to estimate the target metrics for a
circuit configuration. The metrics can either be estimated via internal func-
tions or external tools, e.g., ABC [14] or Xilinx Vivado, accessed through
CIRCA'’s external tool interface. The estimation block is kept generic, and any
target technology or metric is supported. CIRCA can currently estimate the
following performance metrics of circuits:

¢ hardware area and delay for standard cell technology using ABC [14],
Synopsys Design Compiler, or Yosys [110],

* hardware area and delay for field-programmable gate array (FPGA)
technology using ABC [14], Yosys [110], or Xilinx Vivado, and

* power consumption using Xilinx Vivado or Synopsys Design Compiler.

The determined metric values can then be directly attributed to the circuit
configuration or node, respectively, or a heuristic function aggregates multiple
values into a single value.

3.4.5 Quality Assurance

The quality assurance block verifies whether an AxC satisfies the user-defined
quality constraints and refers to the approximated yet not verified circuit as
circuit-under-test (CUT). For quality assurance, CIRCA can employ testing
or formal verification. While approaches based on formal verification lead to
conceptually much stronger statements about quality than testing, they also
tend to endure very long runtimes.

For testing, either the user provides a set of test vectors or CIRCA generates
a random test vector set. Quality assurance procedures can then utilize a
circuit simulator and apply all of these vectors or a randomly selected subset
to a CUT, i.e., the AxC whose quality is checked. Comparing the output
of the CUT against the precise output data then allows for computing the
quality. As an exhaustive simulation of all input vectors is generally not
feasible, testing is usually employed for statistical error metrics such as the
mean squared error or the error rate.

Formal verification focuses on the property equivalence between a circuit
specification and its implementation. In the context of AC, however, this
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property needs to be relaxed to equivalence up to some bound [89]. We use
an approximation miter to verify this property, as shown in Figure 3.5a.
Following the terminology of Ranjan et al. [69], we denote the approximation
miter as sequential quality constraint circuit (SQCC).

. )
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» Sequence , '
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cut ! -
out =4 !
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(b) Quality evaluation circuit.

Figure 3.5: Overview of the sequential quality constraint circuit and the quality
evaluation circuit. Taken from [101].

As Figure 3.5a outlines, the SQCC comprises the original circuit, the CUT,
and the quality evaluation circuit (QEC) that forms a property checker.
The three configurable blocks — depicted by dashed boxes — extend the
applicability of our verification approach to a large range of circuits. The
block start sequence primes the original circuit and the CUT for operation
by implementing a startup protocol. A typical startup protocol might first
assert a reset signal and then a start or enable signal before beginning the
actual computation on the input sequence. This additional knowledge may
decrease the runtime of the verification since fewer state transitions have to
be considered. The capture block and output block work together to ensure
that error bounds are checked only when the original circuit and the CUT
are specified to generate valid output signals.

When inputs are applied to purely combinational circuits, the result is
immediately present at the primary outputs (POs). Thus, the SQCC’s con-
figurable blocks are simply passing through the signals for this circuit type.
For sequential circuits, we distinguish between three different types, which
require different configurations of the blocks capture and output (cf. Fig-
ure 3.6):

(i) Run-to-completion (RTC): This circuit type reads inputs and produces
an output, whose presence is indicated by a valid flag. We allow different
latencies between the original circuit and the AxCs. The SQCC ensures the
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error bound verification is conducted at the correct clock cycles of the original
circuit and the CUT, which is visualized in column RTC of Figure 3.6. The
RTC circuit type has also been used by ASLAN [69].

(ii) Streaming (STR): The second circuit type also covers sequential circuits
with valid flags. However, instead of only comparing one set of results at
the end of the computation, we allow for an endless stream of results, each
indicated by a raised valid flag. For this case, we require the valid flags of the
original circuit and the CUT to be checked at the same clock cycles, i.e., both
circuits must have the same latencies. This case is exemplified in column STR
of Figure 3.6.

(iii) Cycle-by-cycle (CBC): Circuits of this type come without a valid flag
indicating the completion of a result. Hence, we have to be more strict when
verifying the error bounds and check for quality in every single clock cycle.
The capture and output blocks of the SQCC are turned into pass-through
circuits. Column CBC of Figure 3.6 shows this case. Although the CBC type
can be seen as a special case of the STR type, we have to distinguish them in
terms of automating the verification setup and forming the SQCC.

valid valid valid
Original 11, . = . 1, 11
areuit || iiE 1BHHEB i
1 \1’0,75/ cycles 1 I I I cycles 1 I III III IIcycIes
L I H e
cycles I cycles cycles
Type RTC Type STR Type CBC

Figure 3.6: Circuit types with resulting verification steps.

The QEC generates a single output flag errorgec, which is raised if
the comparison between the output signals of the original circuit and the
CUT indicates a quality constraint violation. Figure 3.5b displays the QEC,
which holds one or more encoded quality constraints, Py,...,Pn—1. The
corresponding quality constraint checker modules are OR-ed to form the
output flag errorggc. The figure furthermore details the encoding of a worst-
case (WCQC) error bound in Py. First, the absolute value of the difference of
the two POs of the original circuit and the CUT is computed. Then, the
result is compared against a specified threshold T. If all possible deviations
are lower than this threshold, the error flag will never be raised, meaning
that the quality constraints are never violated. Other error metrics can be
encoded similarly. The bit flip error, for example, is determined by counting
the number of differing bits in the two output patterns of the original circuit
and the CUT. Note, however, that some error metrics cannot yet be efficiently
verified using formal verification methods (see Section 6.4.1), e.g., statistical
error metrics, such as the mean squared error [23, 9o], or generally metrics
that involve divisions [23].
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Depending on the original circuit, the CUT, the error bounds, and the
circuit type, we set up the SQCC. The verification task is then to prove that,
for any input assignment or input sequence, the SQCC never reaches a state
in which it raises its output error, and thus, indicates a quality constraint
violation. Consequently, to formally verify that the quality constraints hold,
we need to prove the unsatisfiability of the SQCC’s output. CIRCA currently
offers two different inductive solvers for this step from the tools ABC [14]
and Yosys [110]. For combinational circuits, CIRCA additionally provides the
satisfiability modulo theories (SMT) solver z3 [61].

For error metrics, we distinguish between statistical and non-statistical
metrics. Since statistical error metrics cannot yet be efficiently verified using
formal verification methods, CIRCA employs testing and currently imple-
ments one statistical error metric:

¢ the mean squared error.

For the following non-statistical error metrics, CIRCA utilizes formal
verification:

¢ the worst-case error, and

¢ the bit-flip error.

3.4.6 Classification of CIRCA

Table 3.2 classifies CIRCA into the categories identified in Section 3.2. The
table distinguishes between CIRCA’s concept and the implemented function-
ality. As the table shows, CIRCA’s current implementation provides different
methods for the particular categories. Conceptually, however, CIRCA pro-
vides large flexibility to developers and a highly configurable system to
users.

3.4.7 The Configuration File

The user prepares a configuration file that contains all information to set
up a concrete ALS process, and CIRCA uses Python’s configparser [47] to
process the configuration file. The configuration file separates into individual
sections to set up stages and processing blocks via parameter-value pairs. The
parameter ID is mandatory for each stage or processing block, and CIRCA
uses the parameter to instantiate the correct class object for the method to
provide the desired functionality. In addition, method-dependent parameters
might follow, and dedicated sections allow the user to configure candidates
individually to customize the ALS process for the candidate’s properties. An
exemplary configuration file is described in the following, which includes all
mandatory sections and some optional configuration possibilities to showcase
CIRCA'’s flexibility.

Listing 3.1 shows mandatory sections to describe the input design and
the user-defined quality constraints to CIRCA. In the configuration file,



Table 3.2: Overview and classification of CIRCA for approximate logic synthesis.
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Adapted from Witschen et al. [101]

CIRCA CIRCA
Category
(concept) (current implementation)
ALS method Independent AHLS with Boolean rewriting
and netlist transformation for candidates
. Combinational + Combinational +
Circuit type
sequential sequential
Input model Configurable* Verilog HDL
. . . . o I1
Error control Configurable Sequential quality constraint circuit
Error bound(s)
Hill climbing
Simulated annealing
Search method Configurable Monte Carlo tree search
NSGA-II
Jump search
Breadth-first search
Precision scaling
AC technique Configurable AIG rewriting
EvoApproxLib
Quality assurance Configurable Formal verification
Testing
Output Approx. circuit(s) Approx. circuit(s)
Output model Configurable* Verilog HDL
Gate netlist
Target technology Techn. independent Techn. independent
Publicly available Not applicable Yes

* For example, SystemC, behavioral or structural HDL, gate netlist, AIG, etc.

i . . . . . . . . . . .
For combinational circuits, registers in the sequential quality constraint circuit are

bypassed.
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the section OriginalCircuit gathers information on the input design and
contains two parameters: Module, pointing to the input design’s information
in section Module: top_mod, and QAMethod, pointing to the quality constraints
and the method used for verification in section QAMethod: ga_top.

# General information about the input circuit
[OriginalCircuit ]

Module = mod_top

QAMethod = qa_top

# Information about the top-level module ’"top’
[Module :mod_top |

Name = top

CircuitType = run_to_completion

RelevantOutputs = data_out

Partition:data_out = [23:16],[15:8],[7:0]
ValidSignal = valid

ResetSignal = rst

HighActive:rst = True

# Quality assurance for the top-level module "top’
[QAMethod : qa_top |

ID = abc_dprove

QC:WC = 42

Listing 3.1: Configuration of the input design.

The section Module:mod_top contains information on the top module of
the input design, which is relevant for ALS, e.g., the top module’s name,
the circuit type, and the output that has to satisfy the user-defined quality
constraints. Furthermore, the user can specify whether an output signal
partitions into multiple output signals and provide information on commonly
used circuit signals, e.g., reset signals and valid flags. In fact, sections with the
prefix Module: contain specific information about modules of the input design
and can also be used to, for example, provide information on candidates,
which is described later using Listing 3.5.

The section QAMethod: qa_top configures the quality assurance block and
defines the quality constraints imposed upon the relevant outputs of the top
module, i.e., on the three partitions of data_out. In the example, ABC’s [14]
dprove command is employed via the parameter ID to verify the WC error with
a bound of 42. Sections with the prefix QAMethod: specify quality constraints
and methods for verifying the constraints. CIRCA allows the definition of
multiple such sections, which are then assigned to either the input design or
candidates using the section’s name that follows the prefix, e.g., ga_top. In
this way, CIRCA can verify combinations of different quality constraints and
even invoke quality verification on individual candidates.

Listing 3.2 shows the sections Evaluation and Estimation, which jointly
set up the estimation block in CIRCA. The section Evaluation specifies the
target metric — hardware area in this case. The section Estimation specifies
the employed back-end for synthesis — lookup table (LUT) mapping via ABC
in this case.
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# Evaluation and Estimation specify the target metric

# Estimation calls tools to acquire target metric information
# Evaluation may process information further, e.g.,

# by incorporating metric values into a heuristic function
[Evaluation]

ID = eval_area

[Estimation ]

ID = abc_if

Listing 3.2: Configuration of the estimation block.

Listing 3.3 shows the ALS setup for the search space exploration block.
The setup configures CIRCA to utilize jump search (see Chapter 4) as search
method with the associated search heuristic that provides domain-specific
knowledge for jump search in the section SearchHeuristic:js_heuristic.In
addition, the selected search space manager General defines the relations be-
tween the nodes via the errors of the individual candidates (cf. Section 3.4.2).

# Specifying the search space manager
[SearchSpaceManager]
ID = General

# Setup for the search method

[Search]
ID = JUMP_SEARCH
Heuristics = js_heuristic

[SearchHeuristic:js_heuristic]
ID = ImpactFactorsAreaHeuristic

FoM = fom_c
ImpactFactorsErr = {’cand_cstm’: 0.67, ’cand_o’: 1.0}
ImpactFactorsArea = {’cand_cstm’: 0.4, ‘cand_o’: 0.37}

Listing 3.3: Configuration of the search space exploration block.

Similar to quality assurance, multiple approximation techniques can be
specified in the configuration file via sections with the prefix Approximator:,
which are then attributed to candidates. The example in Listing 3.4 shows
the specification of approximation-aware AIG rewriting [22] and precision
scaling. In the section Default, precision scaling is then set as the default
approximation technique for candidates that have not been customized by
the user in other sections of the configuration file. Generally, the section
Default defines the default or fallback values for the ALS process in case of
missing information.

Listing 3.5 shows sections for customizing the candidate cand_cstm. Simi-
lar to section OriginalCircuit, the user provides information on the candi-
date’s module in section Module: cand_cstm. In this case, only the module’s
name is provided, which is required for CIRCA to parse the design for the cor-
responding candidate module. CIRCA then automatically extracts the remain-
ing information, e.g., the candidate’s outputs. Furthermore, the candidate is
assigned quality constraints and both approximation techniques specified in
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# Setup for the approximation methods: precision saling and AIG rewriting
[Approximator :app_ps]

ID = PS
[Approximator:app_aig |
ID = AIG

# Setup for default methods
[DEFAULT]
Approximators = app_ps

Listing 3.4: Configuration of the approximation block and the default configurations.

Listing 3.4, approximation-aware AIG rewriting and precision scaling. Speci-
fying the approximation techniques for the candidates overrides the default
values from section Default, meaning that, different from the other candi-
dates in the design, the candidate employs two approximation techniques.
Using the specified method in section QAMethod:ga_cand_cstm, CIRCA per-
forms a dedicated quality check of the candidate’s quality constraints after
each approximation of the candidate. Defining quality constraints for an
individual candidate can be useful if, for example, approximation techniques
are used that offer no native quality check for particular error metrics.

# Customizing the candidate ’'cand_cstm’
[Candidate:cand_cstm]

Name = cand_cstm

Module = cand_cstm_mod

Approximators = app_ps, app_aig
QAMethod = qa_cand_cstm

[Module: cand _cstm_mod]
Name = cand_cstm

[QAMethod : qa_cand _cstm |
ID = abc_dprove
QC:BF = 4

Listing 3.5: Candidate-specific configurations.

3.5 EXPERIMENTAL RESULTS
In this section, we summarize the experimental results from the CIRCA’s

initial publication [101] to demonstrate CIRCA’s generality and to motivate
the further research topics of this dissertation.

3.5.1 Experimental Setup

For experimentation, we have selected seven sequential circuits from our
open-source benchmark suite PaderBench? and manually annotated adder

2 http://go.upb.de/paderbench
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and multiplier components in the data path as approximation candidates.
Table 3.3 gives an overview of the benchmark circuits, showing the name of
the benchmark, the primary output’s bit width, the hardware area in terms of
the number of 4-input LUTs reported by ABC’s if command, and the number
of candidates.

Table 3.3: Sequential benchmark circuits

Benchmark Name Output Bit Width #4-LUTs #Candidates
butterfly [71] 32F 19,038 7
fir_8tap 67 12,401 15
fir_pipe_16 [53] 18 8935 23
pipeline_add [27] 40 572 2
rgb2ycber [52] 24% 4981 5
ternary_sum_nine [27] 20 1484 4
weight_calculator 12 2272 4

* Concatenation of real and imaginary part.
¥ Concatenation of three channels, each 8-bit wide.

We vary the WC error bound from 0.50% to 5.0%, expressed in percentage
of the circuit’s maximum possible output value, to employ formal verification
with ABC’s [14] dprove for assuring quality and the hardware area as target
metric. Moreover, we have systematically experimented with the three search
methods hill climbing (HC), simulated annealing (SA), and Monte Carlo tree
search (MCTS) in different parametrization, and with precision scaling (PS)
and approximation-aware AIG rewriting (AIG rewriting) [22] as approxi-
mation techniques. While this dissertation recapitulates the most important
findings, CIRCA’s publication [101] gives a full, in-detail discussion.

We have run the ALS process five times for each benchmark circuit and
determined the averages as representative results. The experiments have
been performed on the OCuLUS compute cluster of the Paderborn Center for
Parallel Computing (PC?), which runs Scientific Linux 7.2 (Nitrogen), and we
have provided one core of an Intel® Xeon E5-2670@2.6GHz and 2 Gigabyte
main memory for a single benchmark run.

3.5.2 Experimental Evaluation

Figure 3.7 shows an excerpt of the experimental results presented in CIRCA’s
publication [101] and highlights the most important findings for this dis-
sertation. The figure divides into seven bar plots, one for each benchmark,
and displays the area normalized to the area of the original circuit over the
normalized WC error bound. Each bar plot shows results achieved with
different setups regarding the search method and approximation technique;
the ALS setup is denoted as search-method_approx. -technique.
Comparing the approximation techniques over the experiments, we see
that PS could achieve area savings of up to ~ 55% (cf. pipeline_add with
SA), while AIG rewriting could only achieve area savings of up to ~ 25%
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(cf. ternary_sum_nine with SA). An explanation for the superiority of PS
over AIG rewriting in our experiments is that we have selected arithmetic
components as candidates. For such components, precision scaling degrades
the accuracy more gracefully than AIG rewriting since AIG rewriting targets
the critical path with the approximations, which usually affects the carry-
chain of a multiplier or adder. Thus, the approximations may lead to excessive
errors and, in turn, to rejecting the AxC if moderate error bounds are applied.
On the other hand, PS introduces smaller errors when operating on the least
significant bits of the output vector of a candidate and thus approaches the
error boundaries more carefully.
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Figure 3.7: Resulting average of the relative area. Adapted from [101].

Figure 3.7 also allows to study the impact of the search method on the qual-
ity of the approximate outcome, and the figure reveals differences between
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the different search methods. In general, SA performs very well and achieves
higher savings than HC — especially for the benchmarks pipeline_add and
rgb2ycbcr. SA is more explorative than HC, allowing SA to escape a local
minimum and explore larger parts of the search space, whereas HC’s greedy
approach seems to hinder exploration and thus achieved savings. The perfor-
mance of MCTS lies between HC and SA. For improved performance, MCTS
needs to compute more iterations, which would allow MCTS to explore more
search tree branches to find better solutions. With higher budgets, MCTS
can also trade off the exploration of branches with low visit counts and
the exploitation of nodes which proved to be more rewarding in previous
iterations (cf. experimental results in [101]). Awais et al. [6—9] conducted
further research on MCTS in ALS.

Overall, our experiments show that the quality of the result highly de-
pends on the approximation technique as well as on the search method.
This underlines the necessity of conducting extensive experiments with dif-
ferent approximation and search techniques, which CIRCA well supports.
Furthermore, our results also point to the fact that the achievable area sav-
ings strongly depend on the input design. For example, the benchmarks
butterfly or fir_pipe_16 describe challenging approximation problems for
which all search methods could achieve only marginal area savings.

Table 3.4 lists the average runtimes of the experiments. The formal verifica-
tion used for quality assurance dominates the runtime of the ALS process,
which ranges from a few seconds up to several days, depending on the
number of verifications performed and depending on the complexity of the
occurring verification problems. However, due to randomness in the taken
path through the search space and in the applied approximations, the com-
plexity of the occurring verification problems may differ. Thus, the runtime
of the ALS may vary even though the same number of verifications has been
performed for the same benchmark circuit, e.g., the butterfly benchmark
(cf. HC with AIG rewriting).

Comparing the runtimes of the three search methods reveals that HC
often provides significantly shorter runtimes than SA or MCTS; however, as
Figure 3.7 shows, at the cost of lower area savings on average. Furthermore,
HC performs, in general, significantly fewer iterations compared to SA and
MCTS. There are two explanations for this: The first relates to how we
count iterations. Basically, we increase the iteration count once a node gets
selected. Compared to HC, SA tends to accept more nodes which naturally
increases its iteration count. MCTS performs an iteration when performing
back propagation. This leads to more iterations, although the runtime is
not increased significantly. Second, HC might get stuck in a local minimum
quickly. While HC then terminates the search, SA and MCTS continue with
more iterations (cf. rgb2ycbcr).

Concluding our experimental results, we demonstrated that CIRCA is
general and modular, allows for a swift configuration of an ALS process, and
thus qualifies as an experimental environment for conducting research in the
field of approximate computing. Furthermore, for the ALS process, we identi-
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3.6 CONCLUSION

fied that 1) the search method as well as 2) the approximation technique affect
the outcome of the ALS, and 3) formal verification significantly contributes
to the ALS runtime. Consequently, each of the main steps of the general ALS
process described in Section 2.1 impacts the achieved improvements in the
target metric and/or the runtime of the ALS process; thus, the experiments
motivate the different research directions of this dissertation.

The approach in Chapter 4, jump search, considers the findings 1) and 3)
to enhance the overall ALS efficiency by considering domain knowledge in
the search. Chapter 5 devotes itself to finding 2) and proposes MUSCAT, a
novel approximation technique. Chapters 6 and 7 consider finding 3). The
concept of proof-carrying approximate circuits in Chapter 6 seeks to render
a full verification process for library components obsolete by exploiting the
concept of proof-carrying hardware. Chapter 7 presents a pre-processing step
that pre-verifies the search space for the ALS process to omit verifications
during ALS.

3.6 CONCLUSION

In this chapter, we have presented the flexible open-source ALS framework
CIRCA. We have elaborated on CIRCA’s architecture that incorporates the
key requirements that we identified from related work: general, modular,
compatible, extensible, and open-source. Through its architecture, CIRCA
qualifies as a research tool for approximate computing to conduct compara-
tive studies of different methods and techniques under static conditions.

Our experimental results have demonstrated that CIRCA allows for swift
changes in the ALS setup, confirming that CIRCA indeed satisfies the key
requirements. Furthermore, we formulated three main findings that moti-
vate the different research directions presented in Chapters 4 to 7 of this
dissertation.
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JUMP SEARCH: FAST SYNTHESIS OF APPROXIMATE
CIRCUITS

4.1 OVERVIEW

In the last years, several automated approximate logic synthesis (ALS)
methodologies [10, 50, 65, 69, 91, 94] have been presented that state the
synthesis process as an optimization problem with the target metrics as objec-
tives and a user-defined error bound as a constraint (see Section 2.1). A major
issue for this search or optimization problem is that only very few general
assumptions can be made about the design space except that typically it
is huge, rendering exact optimization techniques infeasible. Thus, to find
suitable solutions, the methodologies employ search-based methods that
iteratively expand the design space step-by-step. The found solutions are
evaluated and ranked with respect to their error or output quality. Due to
the vast design space, a large number of solutions should be evaluated to
increase the chance of finding a suitable approximate circuit (AxC). Quality
assurance is either done via formal verification or testing, and both require
considerable runtime, making the quality assurance step often a bottleneck in
automated approximate logic synthesis. Additionally, many of the evaluated
solutions are not of interest since their quality is unacceptable.

The related work discussed in Section 2.1 and the approaches in CIRCA (see
Section 3.5) heavily rely on circuit parameters, such as hardware area, delay,
power consumption, or quality. The parameters and the quality are deter-
mined via synthesis and verification and then usually incorporated into
heuristic functions either to guide the search, e.g., ASLAN [69], or to eval-
uate randomly generated AxCs, e.g., SCALS [50], leading to considerable
runtimes of the approximation process. In fact, the employed search methods
in current ALS processes spend their search budget uniformly throughout
the search, i.e., the search does not utilize domain knowledge, which causes
the search to spend the search budget on parts of the design space that are
not of interest. Thus, we present the jump search (JS) methodology in this
chapter, which performs a guided, non-uniform sub-sampling of the design
space, and takes domain knowledge into account to spend the search budget
on the most promising parts of the design space.

We present jump search as an approach that minimizes the required
number of evaluations, i.e., syntheses and verifications, and thus, enables
a rapid ALS process. Instead of iteratively expanding the search space and
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evaluating solutions step-by-step, jump search uses a different scheme and
proceeds in three phases:

1. Pre-processing: We determine so-called impact factors for all suitable
approximation candidates in the input design. The impact factors char-
acterize a candidate’s effect on the target metric — hardware area in our
case — and on the error at the output of the circuit.

2. Path planning: We generate a path in the search space by iteratively
applying a heuristic function that selects the next solution based on the
pre-computed impact factors. While the solutions along the path are
more and more aggressively approximated, they are not evaluated for
their quality or target metric.

3. Binary search: We perform a binary search on the path and now evaluate
solutions through synthesis and verification to find the one AxC that
applies approximations most aggressively while still satisfying the
user-defined quality constraint.

Key to jump search is that costly evaluations, i.e., syntheses and verifications,
are performed only in the third phase and due to the binary search technique,
which allows us to literally jump over solutions on the path, on a relatively
small number of solutions compared to other heuristic search methods,
resulting in a significantly reduced runtime of the approximation process. We
follow the commonly made assumption [22, 41, 69, 85] that more aggressive
approximations lead to more significant improvements in the target metric,
which might not always hold. Thus, jump search might actually miss the
best solution on the path and, since jump search bases on heuristics, there is
obviously no guarantee that we find the optimal solution in the overall design
space. However, jump search achieves similar improvements in hardware
area as the commonly used search techniques simulated annealing or hill
climbing, but at a greatly reduced runtime.

We have presented jump search first at a workshop [108] and then in a
conference publication [102]. This dissertation extends the previously pre-
sented jump search, and studies different and more sophisticated techniques
for calculating impact factors and path generation. We present the approach
and assess several techniques for realizing the pre-processing and path plan-
ning phases. In the pre-processing phase, we study more straightforward
constant area impact factors and more involved area impact factors that
functionally depend on a candidate’s worst-case (WC) error. For calculating
suitable error impact factors, we experiment with different feature ranking
methods, namely least absolute shrinkage and selection operator (LASSO),
Hilbert-Schmidt independence criterion LASSO (HSIC LASSO), and random
forest (RF). In the path planning phase, we employ two different heuristics
that differ in the way area reduction and error increase are considered when
selecting the next node in the path. In summary, we make the following
contributions with jump search:

¢ We present jump search as a methodology for rapid approximate logic
synthesis, operating in three phases.



4.2 MOTIVATIONAL EXAMPLE AND CONCEPTUAL OVERVIEW

¢ We propose to exploit candidate information on the area and error to
select a subset of promising approximate circuits from the search space.

* We demonstrate in our experimental results that jump search remains
competitive to the commonly used search methods simulated anneal-
ing and hill climbing while enduring significantly shorter runtimes;
in particular, jump search achieves speed-ups of up to 468x in our
experiments.

The remainder of this chapter is structured as follows: In Section 4.2, we
first provide a motivational example to derive the concept of jump search.
Then, we present in Section 4.3 the algorithm in pseudo-code form to explain
jump search’s three phases in detail: pre-processing, path planning, and
binary search. Section 4.5 presents an approach to improve the accuracy of
the estimation of the impact factor of the area. Section 4.6, contributed by my
colleague, Hassan Ghasemzadeh Mohammadi, discusses the feature ranking
methods used to determine the impact factor for the candidate’s error. The
figure-of-merits (FoMs) and the integration of the impact factors into the
FoMs are discussed in Section 4.7. Section 4.8 details the implementation of
jump search’s tool flow. The experimental results are presented in Section 4.9
and detail different aspects of jump search. Finally, Section 4.10 concludes
the chapter.

Multiple people have been involved in the development and implemen-
tation of jump search. My colleague, Hassan Ghasemzadeh Mohammadi,
provided the idea of utilizing feature ranking methods to determine a candi-
date’s impacts on the overall circuit error and contributed Section 4.6. My
student research assistant, Matthias Artmann, contributed to the implemen-
tation, and Khushboo Chandrakar implemented different feature ranking
methods and provided a comparison of the methods in her Master’s the-
sis [21]. My contribution to this work lies in developing the overall concept
and methodology, and in the implementation.

4.2 MOTIVATIONAL EXAMPLE AND CONCEPTUAL OVERVIEW

Figure 4.1a shows the data flow graph of an exemplary circuit that imple-
ments a data path with four arithmetic components. The two adders, ¢y and
c1, have been selected as candidates for approximation. Precision scaling is
employed as approximation technique and a normalized WC error bound
of 1.5% is imposed as the quality constraint upon the output o. Figure 4.1b
shows the resulting decision space or search space, respectively, spanned
by applying precision scaling to both candidates from zero bits, which de-
notes the unapproximated adder, to eight bits, which means the adder is
completely removed. We explored the search space exhaustively, and deter-
mined the overall area and the WC error for each design point. We have used
the number of four input lookup tables (4-LUT) after circuit synthesis with
ABC [14] as area metric and evaluated the WC error by formal verification.
In Figure 4.1b, blue dots represent AxCs that adhere to the quality constraint,
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and gray dots represent the invalid ones that show a limit-exceeding WC
error; colors indicate the area (cf. heat map).
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(a) Example circuit. (b) Visualization of the search space and paths.

Figure 4.1: Examplary circuit (a) along with its search space (b). The approximation
candidates of the circuit are highlighted in gray. To span the design space,
precision scaling is utilized as approximation method and a WC error of
1.5% of the maximal output value is used as quality constraint. Out of
the 81 circuits that form the design space 42 are valid.

Intuitively, looking at the circuit in Figure 4.1a, one would expect that
approximating candidate c leads to higher area savings than approximating
candidate cg since synthesis tools will reduce both the subsequent multiplier
and the adder after precision-scaling candidate cq. On the other hand, due to
the data flow, the impact of candidate c’s inaccuracy on the WC error of the
output o is higher than the impact of candidate co. Figure 4.1b underlines
the intuition: While approximating all output bits of candidate c still leads
to a valid approximate circuit, we must keep at least the four most significant
bits of candidate c;’s output to satisfy the quality constraint. The optimal
solution (green star), i.e., the valid AxC with the smallest area, is found in
this case when balancing the approximations of the candidates.

For more complex circuits, the search space grows extremely large, ren-
dering an exhaustive search infeasible. Moreover, a substantial part of the
search space can represent design points that do not meet the quality con-
straint. Hence, many related frameworks [22, 69, 94, 101] proposed iterative
techniques that expand the search space step-by-step, starting from the unap-
proximated circuit. There are two issues with such techniques: First, for each
new AxC, synthesis and quality assurance need to be run, which are very
time-consuming. Second, it is not apparent how the search space should be
expanded to find a suitable solution within a given time budget.

Jump search considers the described intuition from the example to achieve
low runtimes while still finding suitable AxCs that meet the quality constraint.
Central to ]S is the concept of a path in the search space. A path always starts at
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the original, unapproximated circuit and ends at an AxC with all candidates
fully approximated. For example, in Figure 4.1, the path’s starting point is at
(0,0) and the path’s endpoint at (8, 8), when both candidates ¢y and ¢ have
been removed. The figure displays two possible paths through the search
space, path; and path,. Walking along path path; means to apply first a
sequence of approximations to candidate ¢, which quickly reduces area but
also quickly leads to invalid design points. In contrast, path path; balances
the importance of both the candidates” impact on area and quality.

JS creates a path in the search space by employing a heuristic, called figure-
of-merit, incorporating the impact of the candidates on the target metric and
quality through impact factors. The impact factors are candidate-specific and
determined once in a pre-processing phase. Importantly, ]S determines the
path without referring to expensive synthesis and quality assurance, solely
relying on the impact factors.

After creating the path, JS searches for the best AXC on the path, which is
the one that minimizes the target metric and satisfies the quality constraint.
As the degree of approximation increases along the path, we assume that
AxCs deeper on the path generally achieve higher savings. To that end, JS
performs a binary search to efficiently find the deepest (or last) valid AxC on
the path. Costly synthesis and quality assurance steps are only performed
for the inspected nodes on the path.

4.3 JUMP SEARCH METHODOLOGY

This section gives an overview of the jump search technique and its three
phases: pre-processing, path planning, and binary search. We focus on a JS imple-
mentation (see Section 4.8) that uses hardware area as target metric, employs
precision scaling as approximation technique, relies on the worst-case error
as quality metric, and utilizes formal verification for quality assurance.

Algorithm 4.1 shows the pseudo-code of JS. The algorithm takes as inputs
the original circuit i, the set of candidates for approximation C, and the
user-defined quality constraint Ty ¢, which we consider to be a worst-case
error threshold. JS assumes that either the user or automated methods (see.
Section 2.1) provide the set of candidates C. Then, JS proceeds in the phases
described in more detail in the following sections.

4.3.1  Pre-processing Phase

Jump search’s pre-processing phase, shown in Lines 2 to 4 of Algorithm 4.1,
determines the impact factors for the candidates ¢ € C concerning area and
error, ifgreq(c) and iferr(c). Different methods and approaches for defining
and computing these impact factors are discussed in detail in Sections 4.5
and 4.6.
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Algorithm 4.1: Pseudo-code of the jump search algorithm.

Input: Original circuit i, set of candidates C, global WC error threshold Ty, ¢
Output: Approximate circuit AxC
1 Function jumpSearch(i,C, Tywc):

/* Pre-processing phase */
2 foreach c € C do
3 ifareal(c) < computelmpactOnArea( c,1)
4 iferr(c) < computeImpactOnError( c, i)
/* Path planning phase */
5 P« 0 // Path, each node represents an AxC
6 s+ 1i // Start from original circuit
7 while () # S < determineDirectSuccessorNodes( s ) do
8 bestFoM + —inf
9 foreach ss € S do
10 f < FoM(s, s, C) // evaluate node with heuristic FoM
11 if bestFoM < f then
12 bestFoM « f
13 S < Sg
14 P+ P.append( s ) // Add best node to path
/* Binary search phase */
15 low + 0

16 high « length(P) —1
17 while low # high do

18 mid « [M]

19 AxC.area < synthesize( P[mid] ) // Determine target metric
20 AxC.valid < verify( i, P[mid], Twc ) // Verify quality
21 if AxC.valid then

2 | low « mid

23 else

2 | high« mid—1

25 return AxC

4.3.2 Path Planning Phase

Jump search’s path planning phase, shown in Lines 5 to 14 of Algorithm 4.1,
creates a path through the search space, starting from the original circuit
and ending at the fully approximated circuit. In each iteration, jump search
determines all direct successor nodes that represent AxCs with a lowered
local quality constraint (LQC) €(c) of a candidate ¢ by one step (see Sec-
tion 3.4.2). Thus, the number of candidates defines the dimensionality of the
search space.

The concept of local quality constraints enables jump search to expand
the search space in a controlled way and uniquely define AxCs. Figure 4.2
visualizes JS for a scaled-down version of the circuit in Figure 4.1a, where
the two candidates, cp and c1, have only four-bit outputs so that the search
space comprises a total of 25 nodes. Path planning starts from the error-free
circuit, i.e., the candidates satisfy the LQCs e(co) < 0 and e(cq) < 0. Direct
successor nodes are the two AxCs with the LQCs {e(cg) < 1,€e(cy) < 0}and
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{e(co) €0,€e(cq) < 1}. Which AxC is chosen as the best successor is deter-
mined by the heuristic FOM (see Section 4.7) that takes the pre-computed
impact factors into account. As the FoM only depends on the pre-computed
impact factors, jump search omits synthesis or verification steps completely
and plans the path quickly. Path planning completes when no more succes-
sors are available, i.e., all candidates are fully approximated. The blue nodes
in the center of Figure 4.2 highlight a fully planned path and, in the example,
the fully approximated circuit relates to the LQCs {e(co) < 15,€(cq) < 15}

{e(co) < 1,e(c) <0} {e(co) < 0,e(cy) < 13

@ Node passed verification

{eco) < 0.6(c1) < 3} » N @ (root is assumed valid)

) .'.i/

© Last valid node on the path
© Node failed verification

© Node assumed to be invalid
® Anode on the selected path

i+ Anode in the design space,
representing an approximate
circuit instance

- (&) ( & Approximate
B p [=]
~a {e(co) < 15,¢(¢y) < 15} @ 4, ® Accurate
o4 @
Search space Finding the most promising Finding the last valid node @

(e.g., two candidates c,and c;) path via FOM on the given path i o

Path planning

Figure 4.2: Visualization of the jump search phases. The circuit shown is a scaled-
down version of the example of Figure 4.1a, where the two candidates
co and ¢y have four-bit outputs. Note that due to the scaled-down bit
widths, jump search generates a path different from the one shown in
Figure 4.1b.

4.3.3 Binary Search Phase

In the last phase, jump search performs a binary search on path P to find
the deepest (or last) AXC that still satisfies the user-defined WC error thresh-
old Twc, shown in Lines 15 to 24 of Algorithm 4.1; only in this phase, JS
finally employs synthesis and verification steps for evaluating the AxCs.

The right-hand side of Figure 4.2 visualizes the binary search phase. Path P
is highlighted in blue, the valid AxCs are highlighted in green, and red
highlights AxCs deemed invalid through verification. Binary search first
visits the fifth node on path P, which represents an AxC where one bit of
candidate cp and three bits of candidate c; have been precision-scaled. The
AxC does not pass the quality assurance and is thus invalid. As a result,
jump search assumes all succeeding AxCs are invalid (checked gray nodes in
the figure) since these AxCs exhibit an even higher degree of approximation,
and thus, presumably even larger errors. Next, binary search visits the third
node on path P, which is valid, and finally, the fourth node, which is also
valid and returned by ]S as the deepest valid AxC.
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4.4 SEARCH TECHNIQUES AND THEIR LIMITATIONS

This section discusses the size of the search space, the differences between
search techniques, and their potential limitations. Assuming a circuit with n
candidates, where each candidate c;,1 € [0,n — 1] has b; output bits that can
be precision-scaled, the total number of nodes in the search space naxc is
given by:

n—1

naxc = [ [(oi+1) (4.1)

i=0

The search space is exponential in the number of candidates and forms a
lattice with the number of candidates n defining the number of dimensions,
each extending to the range [0, bi] (cf. Section 3.4.2). The longest path in the
lattice visits

n—I1
1+ Y (by) (42)
i=0

nodes.

Evaluating a node in the search space requires generating the circuit in a
synthesis step to determine the area, followed by a verification step to verify
the circuit’s quality. Since these runs are computationally expensive — espe-
cially formal verification — exhaustive search becomes impractical for larger
circuits, and randomly selecting nodes in the search space is presumably not
effective with a limited compute time budget.

Since the search space expands towards increasing local WC errors of
the candidates, starting from the unapproximated circuit, we actually deal
with a search problem in a directed acyclic graph. For this kind of problem,
related work applied search techniques such as hill climbing and simulated
annealing [69, 94, 101].

Hill climbing as a greedy local search technique evaluates all direct succes-
sor nodes of a given node and moves on to the valid successor that minimizes
the circuit’s target metric but can easily get stuck when all successor nodes
are invalid or no valid successor node improves the target metric. While the
number of required synthesis and verification steps for hill climbing strongly
depends on how long the search continues, a conservative upper bound can
be given as follows: Along the longest path in the lattice, each expansion step
evaluates n successor nodes except for the last expansion step where only
the fully approximated node is left. This amounts to

n—1 n—1
1+ ) (b)) + (=) (b)) —1) (4-3)
i=0 i=0

AxCs on path  Additional evaluations at each step, excluding the last



4.4 SEARCH TECHNIQUES AND THEIR LIMITATIONS

synthesis and verification steps, considering that we also need one synthe-
sis (and verification) run to determine the area (and quality) of the unapprox-
imated circuit.

Simulated annealing randomly selects one successor node. If the node
is valid and improves the area, it is selected; if it does not improve the
area, it is selected with a certain probability or rejected otherwise. If the
node is not accepted, the next successor node is randomly selected and
evaluated. Eventually, if no successor node is accepted, the search terminates.
As a result, simulated annealing can escape local minima and typically
requires fewer synthesis steps than hill climbing. However, in the worst case,
simulated annealing always accepts the last evaluated node in each expansion
step, giving simulated annealing the same upper bound for synthesis and
verification steps as hill climbing (HC).

Jump search differs from hill climbing and simulated annealing in that it
does not run synthesis and verification during the path planning phase but
applies fast heuristics to select the next node and create the longest path in
the search space. In the subsequent binary search phase, jump search inherits
the complexity of the binary search and evaluates

n—1
[logz (1+ Z bi)-‘ (4-4)
i=0

synthesized and verified nodes. In addition, jump search performs synthe-
sis in its pre-processing phase to determine the area impact factors. Depend-
ing on the actual method chosen, this ranges from n+1 to 1+ Z{L:_O] (bi)
synthesis steps, including the initial synthesis of the unapproximated circuit.
In our experiments, we have limited this effort to 4n + 1 runs (see Section 4.9).
The determination of the error impact factors does not require additional
synthesis. Instead, the circuit is simulated functionally for a set of input
vectors, and a feature ranking method is applied. Importantly, neither the
computation of ifqreq Nor iferr requires formal verification, and our experi-
mental results show that the runtime for pre-processing is low compared to
the overall runtime (see Section 4.9.4).

The difference in synthesis and verification steps between hill climbing
and simulated annealing, on the one hand, and jump search, on the other
hand, is pronounced. For example, assuming a circuit with 20 candidates
with 32-bit outputs, hill climbing and simulated annealing would require
12782 synthesis and verification steps in the worst case, whereas jump search
requires only ten synthesis and verification steps plus 128 synthesis-only
steps for pre-processing.

The jump search technique proposed in this chapter, as well as hill climbing
and simulated annealing, also have limitations as they assume that both the
global error and the overall area savings are monotonically increasing when
going down to deeper nodes in the search space. Since we use precision
scaling as approximation technique and the WC error as error metric, this
assumption certainly holds for the global error. However, other approxi-
mation techniques and error metrics might violate the assumption about
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error monotonicity, and then jump search and related techniques need to be
revisited and adapted. In addition, the area savings are not strictly increasing
since circuit synthesis tools, including technology-mapping to 4-LUTs, can
sometimes better exploit optimization potential for larger circuits than for
smaller circuits. In our experience, this effect is not pronounced except for
very small circuits (cf. Section 4.5 and Figure 4.3).

4.5 ESTIMATING A CANDIDATE’S IMPACT ON AREA

This section presents the computation of the area impact factor ifgreq(c),
which expresses the impact on the overall circuit area when a candidate c
is approximated. To achieve a metric with an intuitive interpretation and
comparability between different candidates and approximation degrees, we
define the area impact factor as area savings achieved by a specific approx-
imation of a particular candidate relative to the area of the original circuit.
In this way, ifgreq(c) lies in the range [0, 1], where the lower bound of zero
models the area impact without any approximation and the upper bound of
one indicates approximations that obliterate the circuit. ifqreq(c) is obviously
dependent on the original circuit and the specific candidate that undergoes
approximation, but also on the applied approximation technique and the
degree of approximation that the candidate’s local quality constraint controls.

The function computelmpactOnArea(c,i) in Line 3 of Algorithm 4.1 involves
a trade-off between accuracy and computational effort. The most accurate
characterization of a candidate’s impact on the overall area is achieved by
computing it for all possible approximation degrees, i.e., for all possible
bit truncations when precision scaling is used. Since these approximation
degrees correspond to different LQCs €(c), the area impact factor turns into
the function ifgreq(c, €(c)). In order to determine this function, jump search’s
pre-processing phase needs to perform a synthesis run for each candidate
and approximation degree. In many cases, this will be prohibitively expensive
and contradict jump search’s design goal of a rapid synthesis process.

Figure 4.3 shows an example for the benchmark ternary_sum_nine, where
precision scaling approximates the candidate c, an adder from the data
path with 18 output bits. The gray dots visualize all data points that can be
acquired for the candidate, i.e., each data point represents the candidate with
a different number of precision-scaled output bits; note that the area savings
are not monotonically increasing, as pointed out in Section 4.4. The green
and the blue curve represent two possible functions of ifqreq(c, €(c)), both
determined via curve fitting but with different samples.

Jump search reduces the required synthesis steps during pre-processing
by inspecting the area savings only at a subset of approximation degrees and
applying curve fitting to derive an estimation function for ifgreq(c, €(c)). For
the benchmarks in our experiments, which provide adders and multipliers as
candidates and precision scaling as approximation technique, we found that
the power function a(e( c))® mostly provides a good model for ifqreq(c, €(c)).
Naturally, the number and position of data points used for fitting significantly
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Figure 4.3: Relative area savings achieved for the benchmark ternary_sum_nine
through precision-scaling an adder with an 18 bit output. The gray dots
show all data points that can be acquired with precision scaling for the
candidate. The green and blue triangles are the data points which have
been used to determine the green fitting curve (ap = 0.0191, by = 0.203)
and the blue fitting curve (a; = 0.0108, by = 0.281), respectively.

impact the fitting function. The dashed green and blue lines in Figure 4.3
present the fitting functions determined with five data points, comprising
the area impact factor of the original circuit and four approximated versions
of the candidate c. While the data points for generating the blue line include
a fully approximated candidate ¢ with e(c) = 2'8 — 1, the green line was
generated with less aggressive approximations. As a result, the blue line over-
estimates the achievable area savings for more aggressive approximations and
is less accurate than the green line for small and moderate approximations.
Since aggressive approximations, such as a fully approximated candidate, are
unlikely to occur in real applications, we argue that the accuracy for less and
moderate approximations should be emphasized. Hence, in our experiments
with benchmark circuits, we have omitted the data point corresponding to
full approximation and selected data points where 0%, ~ 12.5%, ~ 25%,
~ 70%, and =~ 90% of the output bits are precision-scaled for curve fitting.

Another extreme approach for estimating ifqreq(c) is to determine a single
data point only, turning the area impact for a candidate into a constant. While
this requires only one synthesis step per candidate, the resulting estimate
will be somewhat inaccurate for certain approximations. In our experiments,
we chose the data point representing the full approximation or maximal
possible area savings, respectively. That is, ifqreq(c) denotes the area of the
overall circuit with candidate ¢ being fully approximated. Even though this
approach may lead to over-estimated area impacts, we apply this simple
scheme since it over-estimates the area savings for all candidates, and it is
even independent of the approximation method.

46 ESTIMATING A CANDIDATE’S IMPACT ON ERROR

In this section, we discuss the error impact factor iferr(c), which expresses
the impact on the overall circuit’s error when a candidate c is approximated.
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Our estimation method for iferr(c) exploits feature ranking methods and is
exemplified in Figure 4.4. We apply d vectors of randomly generated data
to the primary inputs of the circuit and sample the resulting values at the
outputs of the n candidates and the primary output(s). The sampled values
of the candidates, i.e., X € R4*™ and values at the primary outputs, i.e.,
y € R¢ for a single primary output, form a labeled dataset that is used for
the training of the feature ranking methods. After the training, the feature
ranking methods can rank the candidates based on their contribution to the
error observed at the primary output(s) of the design. Since the corresponding
correlations are in the range of [—1,+1], we take their absolute values and
create a list of candidates with associated ifer(c) € [0,+1], that is sorted
according to non-decreasing values.

s Prima; Prima
inputrsy output?sl)

T =

—_—

:>[

M ¢

X € Rd xXmn y

:r Feature ranking method ’:
Ts5 | Tn | 2 | |Tn—1
ferr(6s)|ferr(en)| ferr()|  [ferr(a-1)

Figure 4.4: Training of feature ranking methods for the estimation of iferr(c). The
result is a list of candidates sorted according to non-decreasing contribu-
tions to the overall circuit’s error, and corresponding error impact values
iferr(c) € [0, +1].

A feature ranking method for estimating ife,r(c) is required to satisfy four
properties: First, the quality of the ranking method should be independent
of the distribution of training data. In fact, the ranking method should
not impose any restrictions on the statistical distributions of the sampled
values in the obtained dataset. This is a key requirement since the actual
distribution depends on the concrete workload, which may not be available
during the AxC synthesis step. Second, it is necessary to consider both linear
and non-linear correlations among the sampled outputs of the candidates,
i.e., X, as well as the non-linearity between these values and the sampled
primary output(s), i.e., y. Correlations exist due to dependencies in the data
flow graph, as shown for x6, x5, x4, and x2 in Figure 4.4. Such correlations
become non-linear when non-linear arithmetic operators appear in the data
flow graph, e.g., an absolute operator. Moreover, the correlation of errors is
in general non-linear. Third, the ranking method should be able to handle
multi-output functions, which requires that the underlying feature ranking
considers the contribution of each component on the error of all primary
outputs jointly. Last, the training time of the ranking method should be
negligible in comparison with the path planning and the binary search
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phases of JS. In the following, we introduce three statistical feature ranking
methods that use different approaches to solve the ranking problem.

4.6.1  Least Absolute Shrinkage and Selection Operator

A popular approach for feature selection is to use regularized statistical
models in which features are ranked according to their contributions to
the underlying model. The least absolute shrinkage and selection operator
(LASSO) [87] is a linear regression technique that exploits 1;-norm regular-
ization to both select features and boost the regressor’s accuracy. In our work,
we have a labeled training dataset in which each pair, (xi,yi) € R™ x R,
has been generated independently of an unknown distribution. The goal of
LASSO is then to find a regression of the feature vector, i.e., vector of candi-
dates, to rank the labels R : R™ — R, utilizing the most influential features.
LASSO selects the features subject to the following objective function:

1
argmin (3]ly —Xw]}2 + A[w] 49

where y € RY is a sample vector of the primary output, X € R4*" is
the sample matrix of n input features, i.e., candidate outputs, and w € R™
refers to the vector of regression coefficients. Moreover, A € R denotes
the regularization hyper parameter, which is a non-negative real number
that controls the values of the regression coefficients. In fact, A controls
the shrinkage of coefficients. A large value for A decreases the number of
non-zero elements in w and hence keeps the value of the objective function
small. The linear regression along with the penalty term implies a consistent
parameter ranking. In fact, the ranking of the features is preserved when A
increases. Thus, for our purposes, A only needs to be tuned in a way that
the number of non-zero coefficients is maximized. The obtained absolute
values of the coefficients then represent the contribution of each feature to
the output and are used as the feature selection metric.

The LASSO technique benefits a convex objective function with a linear
constraint, which can then be efficiently solved. However, LASSO neglects
non-linear dependencies among features, which is a limiting factor for our
error impact factor estimation which involves non-linear correlations [59].

4.6.2  Hilbert-Schmidt Independence Criterion LASSO

HSIC LASSO [114] improves upon LASSO by replacing the mean square
error part of the objective function with a non-linear error measure. This
allows us to take into account the non-linear dependencies between features
and the output variable:
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argmin R— w;U +A|w
in (51Re = 3wl 47w o

s.t.Vw; >0

where ||. |- is the Frobenius norm, R, € R4*4 and U ¢ RI%4 are cartelized
Gram matrices of R]‘,k = R(Xi,j, Xi,k) and Uj,k = u(yi,j/yi,k)- The Gram
matrices are obtained by:

1 1
Re = (Ig— a1d1I)R(Id — 51(113)

Uec =(Ia— Jildlg)U(Id - 311(11})

where I4 is the d-dimensional identity matrix and 14 is the d-dimensional
vector of all ones. R(y,y’) and U(x, x’) are kernel functions which provide
non-linearity to the model. They operate in a higher-dimensional space
without computing the coordinates of the data in that space, but by solely
computing the inner products between the images of all pairs of data in that
space. The common choice for these kernel functions is the Gaussian kernel,
in which the similarity of a pair of input samples, e.g., (x,x’), is computed
via:

(4-7)

K(x,x') = (—(XZ_;)Z) (4.8)

where oy is a hyper parameter and denotes the width of the Gaussian kernel.
The first term in Equation (4.6) represents the distance between the Gram
matrices of features and the output variable. The second term, i.e., the penalty
term, penalizes those features whose Gram matrices do not contribute to the
estimation of the output Gram matrix. The first term can be written as:

1
SIRe ZWIUC (= fHSICy,y)

(4-9)

n
_ Z WiHSIC (x4 1,y) + 3 Z WiwjHSIC (x4 1, X+ )
i=1 ij=1

where x, ; denotes the i-th column of the feature matrix, and the HSIC
operator refers to the Hilbert-Schmidt independence criterion that measures the
independence of two random variables as follows:

tr(ULVR,) (4.10)

where tr(.) stands for the trace.
HSIC always gives a positive value for two random variables and its
magnitude directly depends on the correlation between the variables. If two
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random variables are statistically independent, HSIC returns 0. The first term
in Equation (4.9), i.e., HSIC(y,y), becomes constant and can be dropped
from the optimization. The second term, i.e., HSIC(x, i,y), computes the
correlation between the i-th feature and the output variable. If the i-th
feature has a significant impact on the output, HSIC(x, i,y) takes a large
value, and thus, w; needs to take a large value to minimize the objective
function in Equation (4.6). Otherwise, if the i-th feature has a negligible
impact on the output, HSIC(x, i, y) leads to a small value close to zero, and
its corresponding coefficient, i.e., wj, shrinks to zero due to the l-norm. Thus,
the important features that have a large impact on y are selected. In case of
highly dependent features, e.g., x; and x;, the third term, i.e., HSIC(x. i, x4 ),
results in a large value. Since the corresponding coefficients, i.e., w; and wj,
are positive, they tend to be eliminated by the 1-1 regularizer. This means
that redundant features are not selected by HSIC LASSO.

Unlike LASSO, HSIC LASSO takes into account both linear and non-linear
dependencies, not only among input variables but also between the input
and output variables.

4.6.3 Decision Trees and Random Forests

A decision tree (DT) is a non-parametric statistical learning model that is
commonly being used for both classification and regression problems. The
model, which is mostly represented by a binary tree, divides the training data
into several subspaces. A node of the tree, e.g., v, indicates a subspace X, € X
and the root node denotes the whole input space X. Each non-leaf node v
has a split value s that is used to divide X, into two disjoint subspaces, e.g.,
Xy, and X, . The input features correspond to the nodes in the tree.

A random forest is an ensemble extension of DTs in which several DTs are
built by bootstrap sampling of a randomly selected subset of input features.
A majority vote over the outcomes of the individual decision trees is used to
generate the outcome of the RF. For every node in a tree, the regression cost
function R. is defined as follows:

Re(W) = = 3 (g’ (411

Xk« EV

where {j(v) is the average output value at the node v. When v is split into
two children, vi and v,, the total cost at node v is the upper bound of the
sum of its children’s costs:
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Xk« EV
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Xk, x EVL Xk« EVr

> Re(vi) + Re(vr)

where v; and v, are the left and right child nodes of v.

Finding the smallest tree that minimizes the regression cost for a given
dataset is an NP-complete task. Thus, a greedy strategy is used to keep the
regression tree small. The strategy looks for the best split of an internal
node v in a way that locally minimizes the regression cost of its children, v;
and v,. To that end, an impurity measure is defined for every internal node v
as:

Im(v) = Re(v) = Re(vi) — Re(vr) (4.13)

The largest impurity is then selected to split the node v as:

arglnax (Im(v)> (4.14)

where s denotes the split value of node v. In this way, the average of the
obtained impurities for every feature in each decision tree can be utilized as
a measure of feature ranking as follows:

1
rxi) = — ) Im(v) 1

o V;i (4.15)
where n; is the number of decision trees in the random forest, and S;
indicates the set of nodes split by feature x;. In fact, the obtained ranking
scores can be interpreted as the relevancy of each feature with respect to
the given output variable. Unlike the previous parametric methods, RFs
do not provide any associated parameter w; to each feature x;; instead the
importance of the features is measured via Equation (4.15).

With a minor modification, RFs can be exploited for the problem of multi-
output feature selection. In this regard, the information gain is used as
the splitting criteria and is modified to compute the average reduction of
impurities for all output variables. This requires storing all output values in
the leaves of each decision tree.

4.6.4 Comparison of the Feature Ranking Methods

This section briefly compares the described feature ranking methods LASSO,
HSIC LASSO, and random forest with respect to the requirements discussed.



4.7 DETERMINING THE FIGURE-OF-MERIT

The first requirement, the independence of distribution of sample data, is
satisfied for all three methods. The second requirement, the ability to deal
with linear and non-linear correlations, is fulfilled by HSIC LASSO and RF,
where HSIC LASSO can even deal with non-linear correlations between
features and output(s) separately. LASSO is weaker as it is limited to linear
correlations. The third requirement is that the methods should be applicable
to multi-output functions and, again, can be met by all three methods. LASSO
and HSIC LASSO require an aggregation function, and RF needs a minor
modification to be able to handle multi-output functions. The last requirement
is that the training time should be negligible in comparison with the path
planning and the binary search phases of jump search, which we demonstrate
experimentally in Section 4.9.4.

4.7 DETERMINING THE FIGURE-OF-MERIT

Jump search’s path planning phase relies on a heuristic function, denoted
as figure-of-merit (FoM), which includes the candidates” impact factors for
area and error to rank the direct successors of a node in the search path.
We provide and experiment with two FoM functions, FoM, (s, ss,c) that
is applied when the candidates” area impact factors depend on their local
WC errors, and FoM, (s, ss, c) for use with a constant area impact factor per
candidate.

The set S holds all successor nodes of node s, and a node’s direct succes-
sor ss € S distinguishes in exactly one candidate, i.e., the error e(ss(c)) of
candidate ¢ of the successor node sg € S is different from the candidate’s
error €(s(c)) of node s. Consequently, for the FoMs, it is sufficient to only
evaluate the differing candidate of the nodes.

The heuristic function FoM,, that considers a function for the area impact
factor if greq is defined as follows:

FoM, (s, ss,c) = AAAEV((SZS:,::C)) X ifm(]c)+1 (4.16)
AAL(s,8s,¢) = if realC €lss(C)) —if i 1eq (e, €(s(c)) (4.17)
AE(s,ss, c) = €(ss(c)) —e(s(c)) (4.18)

This function computes the FoM of the successor node ss of node s by
evaluating the merit resulting from increasing the error of candidate c. With
AA., the FoM considers the difference in the area impact factor for the given
local quality constraints (or local errors) e(ss(c)) and €(s(c)) of candidate ¢
in node s; or s, respectively (cf. Section 4.5). AE accounts for the difference
in the error between the two nodes, which is needed if the changes in error
are non-uniform, as it is the case for precision scaling, where the error

AA

changes are described by the power of two. Hence, the term 2% essentially
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describes the slope of the change in the area over the error that is, in turn,
further adjusted by the term W, i.e., the candidate’s contribution to
the overall circuit error (cf. Section 4.6). Since ifgreq(c) and iferr(c) are both
in [0, 1], Equation (4.16) adds a constant to the denominator, which results
in a range of [0, %] for FoM,,. Among all successor nodes, the successor with
the maximum FoM,, (s, s, c) is then selected as the next node on the search
path (cf. Line 13).

The heuristic function FoM. that considers a constant area impact factor is
defined as follows:

AAC 7OSs .farea
FoMe(s,s5,¢) = RE(eae] X et (4-19)
AAc(s,ss,¢) = (zf\jii?c); )k — ;\(Aiic()c)) )k (4.20)

Again, the heuristic function evaluates all successor nodes ss € S of the
current node s in the search path by computing the gains through modifying
candidate c. While using a constant area impact factor for a candidate requires
only one additional synthesis step per candidate during pre-processing, it
also turns the second term into a constant for a candidate and, thus, statically
orders all candidates. In order to base the search also on the actual error, we
introduce AA. in the first term that emphasizes changes around small relative
local errors. Additionally, in AA, the exponent k helps balancing the impact
of the local errors. For example, k = 1 results in a linear dependency of FoM.
from the candidate’s LQC, which, in turn, again leads to a static ordering of
the candidates. Choosing k < 1, on the other hand, emphasizes the impact
of the local error in the sense that FoM. decreases faster with increasing
local error, possibly allowing the search to select other configurations with
less aggressively approximated candidates. In this dissertation, we employ
k = 0.5. FoM. also uses AE to estimate a slope and account for non-uniform

changes in the error, and, again, FoM_ is in the range [0, %].

48 IMPLEMENTATION OF JUMP SEARCH

Figure 4.5 shows the block diagram of jump search’s implementation. The
pre-processing step has been implemented in an automated flow using
custom Python scripts; in fact, the implementation was part of the outcome
of a Master’s thesis [21] that I have supervised. The CIRCA framework (see
Chapter 3) implements the execution phases path planning and binary search.
Figure 4.5 highlights the part of CIRCA which has been modified for jump
search’s integration, i.e., the search space exploration block in the quality
assurance, approximation, estimation, and search space exploration (QUAES)
stage.

The impact factors are computed independently of each other as well as
of the rest of the flow. Through this modularity, new impact factors can
be considered and different methods can be employed to compute of the
individual factors. The computed impact factors are stored as parameters for
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Figure 4.5: Overview of the jump search in the CIRCA framework [101]. Highlighting
indicates modified parts of CIRCA.

jump search in CIRCA'’s configuration file, which is used to set up the ap-
proximation process. Jump search’s path planning has been implemented as
a setup phase in CIRCA’s QUAES stage, and binary search follows CIRCA’s
suggested data flow, which allows for a swift exchange of approximation
methods, the use of different error and target metrics, and/or target technolo-
gies. Finally, the resulting AxC is given to the user in the form of a Verilog
design file.

As a reference for our experiments, we have decided on CIRCA’s simulated
annealing and hill climbing algorithms since they are commonly used [69, 94,
101] and previously performed experiments have shown that the algorithms
achieve significant area savings in different runtimes (cf. Section 3.5). Simu-
lated annealing forms a compromise between a greedy search and a random
walk. The simulated annealing algorithm starts from the original circuit and
is only allowed to progress towards increasing approximations. In this way,
simulated annealing is restrained from being too explorative and follows our
assumption of higher savings with higher degrees of approximation. As a
result, simulated annealing iteratively progresses a random path through
the search space. However, compared to random walk, simulated annealing
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might reject a bad move and decide on a better one. A move that improves
the target metric is always accepted.

4.9 EXPERIMENTAL EVALUATION

In this section, we will discuss our experimental results. We performed
several experiments to evaluate jump search and compare it against the
commonly used search algorithms simulated annealing and hill climbing.

4.9.1 Experimental Setup

For the evaluation of our approach, we have used seven circuits from the
approximate computing benchmark set PaderBench. Table 4.1 shows the
benchmark circuits, the number of candidates for each benchmark, the search
space’s size determined via Equation (4.1), and the path length for jump
search determined via Equation (4.2). Comparing the size of the search
spaces to the number of selected AxCs for the paths shows directly that JS
significantly reduces the number of AxCs-of-interest.

Table 4.1: Overview of the benchmarks.

Benchmark #Candidates Search space size Path length

basic_sad 16 5.63 x 1013 156
butterfly 5 1.68 x 107 145
fir_pipe_16 22 9.21 x 10'8 397
pipeline_add 2 441 43
rgb2ycber 12 1.81 x 1076 273
ternary_sum_nine 3 116, 640 55
weight_calculator 4 28,561 53

Our experiments have been performed on the OCuLUS compute cluster
of the Paderborn Center for Parallel Computing (PC?), which runs Scien-
tific Linux 7.2 (Nitrogen) and comprises nodes with an Intel® Xeon Es-
2670@2.6GHz (16 cores). For each job, eight Gigabyte of main memory has
been provided. Simulated annealing and hill climbing have been used as
reference implementations (see Witschen et al. [101] and Section 4.4). Due to
the involved randomness in the search methods (simulated annealing (SA)
involves random acceptances and hill climbing (HC) uses randomness as
a tie-breaker), we ran each experiment five times and report the averaged
results. We invoked ABC [14] to report on the circuit’s FPGA 4-LUT usage
via the if command and ABC’s dprove command to formally verify the quality
of the AxCs. A single verification has a time limit of seven hours; exceeding
the time limits deems the AxC invalid.

For ]S, we first simulated each circuit with a dataset of 10,000 random vec-
tors and sampled the output values of the candidates as well as the circuit’s
output. The benchmark circuit basic_sad is part of an image processing sys-
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tem and a 512 x 512-pixel image has been used to simulate the circuit. From
the sampled data, the feature ranking and selection techniques discussed in
Section 4.6 are used to determine the ife,, of each candidate. Namely, the
employed techniques are random forest, LASSO, and HSIC LASSO. Secondly,
for each candidate, two ifqreqs are determined with the methods detailed in
Section 4.5, i.e., a constant impact factor and an impact factor function. For
determining the ifyreq via curve fitting, five data points (the original circuit
plus four approximated designs, cf. Section 4.5) have been sampled for each
candidate to keep the number of synthesis steps small.

We have applied the worst-case error metric for each benchmark circuit,
varying the error bound from 0.50% to 5.00% of the maximal possible output
value, and performed several experiments. In the following, we will first
compare summarized area and runtime results of jump search to the results
achieved with simulated annealing and hill climbing in Section 4.9.2. Sec-
ondly, Section 4.9.3 elaborates on the number of performed verifications and
syntheses during ALS for the three approaches. Section 4.9.4 then details the
pre-processing phase of jump search and discusses the workload that the dif-
ferent methods for determining the impact factors create. Finally, we discuss
the impact of the different figure-of-merits and feature ranking methods on
jump search’s outcome in Section 4.9.5.

4.9.2  Experimental Evaluation of Jump Search

Figure 4.6 summarizes the experimental results of JS. The figure shows the
achieved relative area on the left-hand side and the runtimes on the right-
hand side. Note that the runtime of the pre-processing phase for jump search
is excluded from the runtimes and is discussed separately in Section 4.9.4.
The green bars indicate the results for jump search, the red bars for simulated
annealing, and the blue bars for hill climbing. For jump search, the figure
reports the averaged results over all combinations of the three feature ranking
methods, i.e., LASSO, HSIC LASSO, and RF, and the two figure-of-merits,
i.e.,, FoM. and FoM,. Additionally, all experiments” minimal and maximal
values are visualized through black bars with caps.

For JS, we observe area reductions for all benchmarks with negligible
variations among the different approaches of jump search, indicated by
small black bars (see Section 4.9.5 for more details). In fact, JS achieves
either comparable or better results than SA or HC. For the benchmark
rgb2ycbcr, for example, JS achieves up to ~ 18% higher reductions in area
compared to SA and up to =~ 37% compared to HC. Merely, for the benchmark
pipeline_add, SA achieves more prominent area reductions, which, however,
are not larger than ~ 4.5%. Neither of the approaches achieves significant
savings for the benchmarks that are difficult to approximate, i.e., butterfly,
fir_pipe_16, and weight_calculator.

The resulting runtimes of the three approaches differ significantly. In all
experiments, JS is faster than simulated annealing and achieves significant
speed-ups of up to =~ 58x (cf. butterfly, WC error 0.5%), thus, reduc-
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ing the runtime by over an order of magnitude. Compared to hill climb-
ing, JS achieves even more prominent speed-ups of up to ~ 468x for the
benchmark fir_pipe_16 with a worst-case error of 0.5%. The benchmark
weight_calculator states an exception where HC achieves very low run-
times due to terminating after the first iteration since the search gets stuck in
a local minimum immediately.

4.9.3 Comparison of Synthesis and Verification Steps

Figure 4.7 shows the average number of verifications on the left-hand side
and the average number of syntheses on the right-hand side for the three
approaches. As discussed in Section 4.4, ]S performs significantly fewer
verifications and synthesis steps compared to SA or HC, which, in turn,
results in the significantly reduced runtimes shown in the previous section.
In fact, JS generally reduces the number of verifications and syntheses by
one order of magnitude. As discussed in the previous section, however, the
benchmark weight_calculator marks an exception for HC as the search gets
stuck in a local minimum immediately; the effect can be observed through the
number of performed verifications for this benchmark in Figure 4.7. While
syntheses are performed, verifications of AxCs are not performed by HC -
apart from the original design.

Furthermore, the benchmark highlights the impact of formal verification
on the runtime. Even though only a few verifications are performed with JS or
SA, the runtimes increase significantly compared to HC (cf. Figure 4.6). In fact,
the verifications are terminated by exceeding the time limit of seven hours
rather than by the formal verification engine deciding the AxC’s validity.

For the benchmark butterfly, the runtimes of JS are slightly shorter than
with HC (cf. Figure 4.6). While ]S performs a few more verifications, HC
performs an order of magnitude more synthesis steps, which leads to the
increased runtimes in this case, and again exemplifies the impact of the
verification on the overall runtime.

4.9.4 Evaluation of the Pre-processing Phase

The runtimes of jump search in Figure 4.6 do not consider the runtime of
the pre-processing phase. Thus, to determine the total runtimes of JS, we
investigate the runtime of determining the impact factors ifgreq and iferr.
Note that both impact factors can be computed independently of each other,
and the pre-processing phase can thus be parallelized. Consequently, the
longest-running task dictates the runtime of the pre-processing phase.
Table 4.2 shows the runtimes for determining ifyreq. The original circuit
has to be synthesized once to establish the baseline, and the runtime is
shown in the column Synthesis orig. of the table. The table also lists the
number of candidates in each benchmark circuit, which, in turn, influences
the number of additional synthesis steps. The overhead introduced by de-
termining the constant ifgreqs is listed in column Synthesis 1x/cand. The
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Figure 4.7: Average number of verifications and syntheses.
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column shows the runtime for synthesizing the circuit candidate-many times
following the methodology described in Section 4.5. For example, the bench-
mark basic_sad has 16 candidates; hence, 16 additional synthesis steps are
required to determine the constant ifyreq for each candidate in the circuit.
The total runtime for sampling the four data points for each candidate (col-
umn Synthesis 4x/cand.) and the curve fitting (column Curve fitting) indicate
the overhead for determining the ifyreq functions. In the example of the
circuit basic_sad, four additional synthesis steps are performed to sample
the data points for each candidate, resulting in a total of 16 x 4 additional
synthesis steps. Note that the overhead from the additional synthesis steps
increases linearly with the number of candidates or the number of sampled
data points, respectively. As the table shows, the runtimes for determining
ifareaq are relatively small compared to the runtimes of the ALS process and
add no significant overhead that causes JS to endure longer total runtimes
than the reference implementations — even though pre-processing may take
several minutes (cf. fir_pipe_16).

Table 4.2: Runtimes for determining ifqreq. The number of candidates present in
each benchmark circuit and the runtime for synthesizing the original
benchmark circuit is listed. Along the total runtimes for synthesizing the
circuit once per candidate and four times per candidate, the runtime for
curve fitting is shown.

Benchmark #Can- Synthesis' Curve
didates orig. 1x/candidate 4x/candidate fitting [s]
basic_sad 16 1.70 29.59 2:04.04 2.44
butterfly 5 10.29 43.05 3:30.10 1.72
fir_pipe_16 22 8.02 2:47.38 11:32.08 2.81
pipeline_add 2 0.50 0.84 3.47 1.70
rgb2aycber 12 4.97 53.11 3:45.04 2.44
ternary_sum_nine 3 0.78 2.28 10.35 1.83
weight_calculator 4 252 10.71 41.75 1.82

T The runtimes are shown in the format minutes:seconds.milliseconds.

Table 4.3 shows the runtimes of the feature ranking methods used to
determine the impact factors iferr. Overall, LASSO shows the lowest runtimes
among the three methods, followed by RF. HSIC LASSO is the most complex
method among the approaches, and thus, endures the longest runtimes.
Compared to the ALS process, the runtimes of the feature ranking methods
are again low and are comparable to the runtimes of determining the impact
factors ifgreq, thus, adding no substantial overhead to the process.

4.9.5 Discussion on the Figure-of-merits and Feature Ranking Methods

The achieved area savings in Figure 4.6 indicate that the differences between
the employed FoM or the utilized feature ranking method are marginal for
our benchmark set. In fact, JS indicates variations in the results only for a
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Table 4.3: Runtimes of the feature ranking methods for determining iferr.

Benchmark Random forest LASSO HSIC LASSO

basic_sad 36.82 5.05 55.43
butterfly 9.68 2.24 22.90
fir_pipe_16 18.27 2.89 35.68
pipeline_add 415 221 10.44
rgb2ycber 11.46 1.05 37.27
ternary_sum_nine 4.68 1.44 11.91
weight_calculator 5.49 1.52 13.81

few benchmarks, and thus, this section provides a more detailed discussion
on the experiments that aggregated to the average results shown in Sec-
tion 4.9.2. Figure 4.8 shows the area results for the benchmarks basic_sad,
butterfly, pipeline_add, and rgb2ycbcr. For the six different combinations
of the feature ranking method and FoM, the figure shows the achieved nor-
malized area. The colors indicate the utilized feature ranking method and
the saturation the FoM.
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Figure 4.8: Normalized area for different combinations of feature ranking method
and figure-of-merit.

For the benchmarks butterfly and pipeline_add, no significant differ-
ences between the methods can be observed. The benchmark pipeline_add
provides only two candidates for which all feature ranking methods deter-
mine the same impact factors. Consequently, all methods achieve the same
savings, and differences can only be observed between the different FoMs,
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which are < 1%. For butterfly, this is likely caused by the marginal savings
that can be achieved.

The benchmarks basic_sad and rgb2ycbcr show more prominent varia-
tions in comparison. Among the feature ranking methods, LASSO provides
the best results since it performs best for the benchmark rgb2ycbcr; for
basic_sad, no differences can be seen between the three ranking methods.
While the FoM,,, which uses a function for ifyreq, achieves better results for
basic_sad than the FoM with a constant if qreq, FOM,, the situation inverses
for rgb2ycbcr, where FoM. in combination with LASSO achieves the best
results.

Table 4.4: Overview of the best combinations of figure-of-merit and feature ranking
method for each benchmark and worst-case error bound. An * indicates
that all approaches achieved the best result.

Worst-case error [%]

Benchmark 0.5 1.0 2.5 5.0
FoM Feat. FoM Feat. FoM Feat. FoM Feat.
basic_sad FoM. * FoM, = FoM, =* FoM, =*
butterfly FoM, x* FoM,, * FoM,, * FoM, LASSO
FoM,, RF
fir_pipe_16 * ok * % * ok * %
pipeline_add * % * % FoM. * FoM. =
rgbzycbcr FoMc LASSO FoM, RF FoM. LASSO  FoM. LASSO
FoM. RF
fernary_sum_nine x LASSO + HSIC * LASSO * LASSO
* RF * RF x RF
weight_calculator * * * ok * ok FoMy LASSO
FoM,, RF

Table 4.5: Summary of the number of times a combination of figure-of-merit and
feature ranking method achieved the best result. The first row or column
indicates the number for the respective method in that column or row,
respectively. The values in the matrix represent the combination of the
figure-of-merit and feature ranking method.

LASSO HSIC LASSO Random forest

26* 19 25
FoM. 20 18 13 17
FoM, 21* 20" 16 20*

* Best-performing method or combination of methods.

Table 4.4 shows the best-performing FoM and feature ranking method
for each benchmark and WC error bound; an * indicates that all FoMs or
ranking methods achieved the best result. Finally, Table 4.5 summarizes
the results and shows how often each FoM, feature ranking method, or
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their combinations lead to the best result. Table 4.4 reveals that the FoM
makes the difference in most cases rather than the employed ranking method.
Furthermore, from the two tables, it can be seen that LASSO and RF most
often achieve the best result, usually in combination with an ifgreq function
in the FoM,,.

In summary of our experimental results, we conclude that determining a
function for the impact factor ifyreq is beneficial since the area savings are
generally improved while the introduced overhead is marginal compared to
overall runtimes. However, against our expectations, the non-linear feature
ranking method HSIC LASSO has not led to better results than the linear
technique LASSO for our benchmarks. An explanation for this outcome may
be the relatively small number of candidates in our benchmark circuits, for
which a simple yet efficient method such as LASSO sulffices. Feature ranking
methods generally deal with a significantly larger number of candidates
where differences may become more prominent and, in these cases, HSIC
LASSO may perform better than LASSO. However, the formal verification
is currently a bottleneck and limits the number of candidates in our setup.
Moving towards designs with substantially more candidates would lead
to prohibitively long runtimes and, thus, is out of reach with our current
resources.

4.10 CONCLUSION

In this chapter, we have presented the jump search, a fast method for syn-
thesizing approximate circuits. Jump search divides into a pre-processing
phase, a path planning phase, and a binary search to find a suitable AxC
rapidly by omitting synthesis and verification wherever possible. During the
pre-processing phase, jump search determines two impact factors for each
candidate that represent the candidate’s impact on the area and the circuit
error. Incorporating the impact factors into the figure-of-merit, jump search
evaluates AxCs and plans a path through the search space without referring
to costly synthesis or verification steps. Finally, jump search employs a binary
search to find the deepest AXC on the planned path in order to achieve
significant savings.

We have analyzed different methods for determining the impact factors
during pre-processing and discussed two figure-of-merits for path planning.
In addition, we have presented approaches to determine a constant ifgreq
or a ifgreq function via curve fitting. Finally, for ife,,, we analyzed and
compared three different feature ranking methods, namely LASSO, HSIC
LASSO, and random forest.

Our experimental results confirmed that jump search leads to significant
improvements in the target metric hardware area, which are comparable to
the commonly used search methods simulated annealing and hill climbing.
However, jump search’s runtimes are substantially lower. In fact, through
the significantly reduced number of verifications and syntheses, we have
achieved speed-ups of up to ~ 468 x without sacrificing reductions in area.



MUSCAT: A MUS-BASED CIRCUIT APPROXIMATION
TECHNIQUE

5.1 OVERVIEW

This dissertation considers search-based approximate logic synthesis (ALS),
and this chapter devotes itself to the approximation step of the general ALS
presented in Section 2.1.1. The approximation step receives as input a candi-
date circuit and applies approximations according to a set of parameters dic-
tated by the overarching search-based ALS (cf. Section 3.6 and Section 2.1.2).
Thus, the approximation step acts as an executive body and applies approxi-
mations to the candidate circuit, following the defined methodology of the
employed ALS technique.

To further structure the ALS in the approximation step, we follow Scarabot-
tolo et al. [75] and distinguish between three categories for ALS methods (see
Sections 2.1.2 to 2.1.4): approximate high-level synthesis (AHLS), Boolean
rewriting, and netlist transformation. Furthermore, in their survey, Scarabot-
tolo et al. describe three components of a general ALS technique in the
approximation step: error modeling, the actual ALS method, and quality-of-
result evaluation (also called quality assurance or quality verification).

The error model is created for a specific input design and used by the
actual ALS method to quickly estimate the impact of an approximation
on the overall circuit error. Quality verification is needed to verify that an
approximate circuit (AxC) is valid, i.e., adheres to the quality constraints.
While error models can benefit the approximate outcome [77], an open issue
is that these models are often inexact and too conservative [75], leading to
unused approximation potential (cf. Section 2.1.3). Furthermore, a dedicated
quality verification applied from time to time may force the ALS to back-track
and revoke approximations to establish a valid AxC.

In this chapter, we present MUSCAT, a minimal unsatisfiable subset (MUS)-
based circuit approximation technique. MUSCAT is a netlist transformation
technique that creates AxCs wvalid-by-construction regarding their quality con-
straints, and thus, neither requires error models nor dedicated quality verifi-
cation.

Our ALS technique is based on the commonly-used concept of gate level
pruning (GLP) that substitutes connections between gates by constant val-
ues (see Section 2.1.4). To achieve this, MUSCAT firstly augments an input
netlist by so-called cutpoints, which, if activated, perform the substitution.
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Then, MUSCAT employs the novel approach of utilizing formal verification
engines to determine MUSes. The MUSes identify the maximal number of
cutpoints that can be activated together safely, i.e., the constructed AxC is
guaranteed to adhere to the quality constraint. Activating any further cut-
points would render the AxC invalid. Hence, a MUS specifies an optimal solu-
tion w.r.t. the number of activated cutpoints. Our practical experiments show
that after applying standard logic synthesis tools to subsequently minimize
the circuit, we indeed achieve significant improvements over state-of-the-art
techniques. Since formal methods are often questioned, it is important to note
that they have matured significantly in the recent past and can verify designs
with millions of gates and hundreds of inputs in a reasonable time [89, 9o].

Comparing MUSCAT to related work reveals that our MUS-based ap-
proach applies approximations via netlist transformations similar to GLP [77,
78] and also resembles the concept of cuts used in the Boolean rewriting
technique AIG rewriting [22] (see Section 2.1.3). However, our approach
is fundamentally different from related work in netlist transformation and
most approaches in Boolean rewriting since we generate AxCs that are valid-
by-construction without the need for an error model or dedicated quality
verification steps. The independence from an error estimation or propaga-
tion model enables our approach to support any non-statistical error metric,
while GLP and its successors only provide an error model for the worst-case
(WC) error. Furthermore, AIG rewriting considers only nodes on the critical
paths — usually carry-chains in arithmetic components — making the ap-
proach often too aggressive (see [101] and Section 5.3). Comparing MUSCAT
to the Boolean rewriting technique SALSA [91] (see Section 2.1.3), which also
spares error modeling and dedicated quality verification steps, we identify
two major differences in the employed ALS technique and the abstraction
level. MUSCAT inserts cutpoints into a netlist and computes minimal unsat-
isfiable subsets, while SALSA operates on a more abstract level as a Boolean
rewriting approach and relies on standard don’t care optimization.

In summary, our contributions are:

* We propose MUSCAT, a novel MUS-based ALS technique that exploits
modern formal verification engines to generate AxCs with quality con-
straints valid-by-construction. Our technique does not require an error
model and thus overcomes limitations of previous work; in particular,
it allows for supporting any non-statistical error metric.

* We present experiments showing that, compared to state-of-the-art ALS,
our method achieves up to 80% higher area savings.

* MUSCAT is open-source and publicly available®.

My colleague, Tobias Wiersema, supported me developing MUSCAT’s
concept, and my student research assistant, Matthias Artmann, helped with
the implementation. We have presented MUSCAT in our conference publica-
tion [106], and follow and cite its discussions largely in Sections 5.1 and 5.2.

1 https://git.uni-paderborn.de/muscat/muscat
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5.2 METHODOLOGY

The remainder of this chapter structures as follows: Section 5.2 presents our
ALS technique, and Section 5.3 discusses various experiments and results
achieved with MUSCAT that we have partially presented in our conference
publication. A case study in Section 5.4 evaluates MUSCAT on different levels
of abstraction. Finally, Section 5.5 concludes the chapter.

5.2 METHODOLOGY

We represent the gate level netlist of a combinational circuit as a directed
acyclic graph (DAG) G(N, E), where n € N represents a node (gate) in G,
and (a,b) € E represents an edge (a connection between gates). For an edge
(a,b), node a’s output drives node b’s input. We augment a given DAG G
with so-called cutpoints. A cutpoint is inserted at an edge (a, b) and consists
of one or two gates by which we can either activate or deactivate the cutpoint.
An activated cutpoint ruptures the connection and drives b’s input by either
constant 0 or 1; a deactivated cutpoint leaves the connection unchanged, i.e.,
the original signal from node a propagates to node b.

For a given DAG G, we denote the set of all cutpoints as C. At design time,
a cutpoint configuration (short: configuration) defines whether each cutpoint
c € C is activated or deactivated. Activated cutpoints offer optimization
potential, and subsequent logic synthesis tools will remove dangling nodes
and simplify the logic through constant propagation. We exploit modern
formal verification techniques to determine an optimal configuration via
minimal unsatisfiable subsets. A MUS provides an optimal configuration in
terms of the number of activated cutpoints and, furthermore, enables us to
construct AxCs valid-by-construction.

We first discuss different cutpoint designs and the approximation miter
for determining and verifying configurations in the following. Then, we
elaborate on minimal unsatisfiable subsets, and, finally, we present our ALS
algorithm and discuss the cutpoint insertion.

5.2.1  Cutpoints

Figure 5.1a shows a segment from a graph G(N, E) with the nodes a,b € N
and the edge (a, b) € E. The gray, vertically-dashed lines indicate the insertion
of a cutpoint ¢ € C for the edge (a, b). Figures 5.1b to 5.1d present different
cutpoint designs.

The AND-cut in the edge (a,b), as shown in Figure 5.1b, comprises an
AND gate with one input connected to the output of a and the second one
exposed as inverted new primary input (PI) PIanp. Depending on the value
for this new primary input, the edge remains either unchanged or is cut
with PIanp = 1, and the logic value 0 drives the input of node b. In this
way, the activated cutpoint provides potential for optimization since the logic
driving node a’s output becomes obsolete and the subsequent logic simplifies
through constant propagation.
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Figure 5.1: Concept of replacing an edge with a cutpoint in a netlist. Dashed gray
lines indicate the cut, solid gray lines indicate the original connection,
and boxes represent newly added primary inputs. Taken from [106].

The OR-cut shown in Figure 5.1c inverses the AND-cut’s behavior, i.e.,
propagates a constant 1 to the input of node b when activated via PIpgr = 1.
The AND-OR-cut displayed in Figure 5.1d allows for propagating either the
constant 0 or 1 when activated but exposes two new primary inputs, PIanp
and Plog, to realize the cutpoint. While the AND-cut and the OR-cut are
alternatives that, in general, will create different optimization potential for
subsequent logic synthesis, the AND-OR-cut subsumes the functionality of
both single gate cuts at the cost of increased complexity through doubling
the number of newly exposed PIs.

Conceptually, cutpoints can be added to every edge in a graph. However,
reducing the number of cutpoints can reduce complexity and thus be benefi-
cial to shorten the runtime of ALS. Section 5.2.4 discusses different heuristics
that allow the evaluation of the potential merit of a cutpoint in the graph.

5.2.2  Approximation Miter

Our ALS technique determines a suitable configuration for a given set of
cutpoints C and simultaneously verifies the validity of the resulting AxC by
formulating a satisfiability (SAT) problem in the satisfiability modulo theories
(SMT) domain (see Section 2.2). To that end, we construct an approximation
miter as shown in the example of Figure 5.2 for a circuit with six nodes,
five primary inputs, three primary outputs (POs), and a set C of 16 possible
cuts. The approximation miter comprises the exact circuit, the AxC including
the cutpoints, and verification logic. The verification logic determines the
circuit’s error € by comparing the POs of the AXxC with the POs of the exact
circuit and checking whether € exceeds a given threshold T that corresponds
to the specified quality constraint. If the chosen configuration of cutpoints
leads to an error exceeding T, the miter becomes satisfiable (short: SAT) and
the output of the approximation miter will be raised, indicating a quality
constraint violation. Consequently, if we prove the unsatisfiability (UNSAT) of
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the approximation miter, we have a guarantee that the chosen configuration
actually leads to an AxC adhering to the quality constraint.
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Figure 5.2: Approximation miter with the cutpoints C = {cy, ..., c15} and the corre-
sponding control inputs PI.. Taken from [106].

5.2.3 Minimal Unsatisfiable Subsets

Under the assumption that an activated cutpoint leads to logic removal
and thus to savings in the target metric, we can state that the savings will
generally increase by activating more cutpoints. Hence, we are interested in
finding configurations with as many cutpoints activated as possible while still
respecting the quality constraint. That can be cast as a minimal unsatisfiable
subset problem: Given an UNSAT problem with a set of constraints Q,
M C Q is a MUS of Q iff M is unsatisfiable and for all m € M the set
M\ {m} is satisfiable [13]. Note that there can be several MUSes with different
cardinality.

Transferred to our ALS setting, we maintain the original primary inputs
of the circuit as free variables that a SMT solver can assign and use the
additional primary inputs driving the cutpoints as constraints. When setting
as constraints PI. = 0,Vc € C, the AxC resembles the exact circuit, and
the corresponding approximation miter will be unsatisfiable since the AxC
is error-free. Now, solving the MUS problem will return a minimal set of
constraints M required to keep unsatisfiability. Each constraint m € M
corresponds to a cutpoint that must be deactivated. Vice versa, the set of
remaining constraints, which is maximally large, is not required to maintain
unsatisfiability; thus, the corresponding cutpoints will be activated to reduce
the logic.
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In other words, we initially constrain each cutpoint’s PI to be deactivated
to resemble the exact circuit and construct an UNSAT problem. Then, solving
the MUS problem returns a configuration that is guaranteed to be UNSAT and
holds a minimal number of cutpoints that must be deactivated to maintain
unsatisfiability. Cutpoints that are not part of the returned configuration can
be activated safely to remove logic.

For example, assume a design with the cutpoints C ={Cy, C;, C,} and their
corresponding PIs Pl¢,c € C. Initially, MUSCAT deactivates all cutpoints
by defining the set of constraints Q = {PIc, =0, PIc, =0,PIc, = 0}. Then,
after solving the MUS problem, MUSCAT is provided with a minimal set
of constraints, for example, the MUS M = {PIc, =0, PIc, = 0}, that dictates
the deactivated cutpoints Cy and C; and allows activating the cutpoint Cy.

5.2.4 Approximate Logic Synthesis Flow

Algorithm 5.1 shows the flow for our proposed ALS technique, which takes
as inputs the exact circuit O, the used error metric EM, and the error thresh-
old T. First, the algorithm generates the set of cutpoints C and the AxC
by augmenting the exact design O with the cutpoints C (Line 2). Next, the
approximation miter AM is set up as in Figure 5.2 (Line 3). At this point, the
additional primary inputs determining the configuration are actually free
variables. In the following step (Line 4), these variables are constrained to
PI. =0,Vc € C, which we denote as UNSAT constraints since they guarantee
unsatisfiability. Then, based on the approximation miter AM and the UNSAT
constraints Q, the MUSes are computed (Line 5). From the constraints in
these MUSes, we can directly derive deactivated and, subsequently, activated
cutpoints to simplify the corresponding AxCs through logic synthesis (line 6).
Finally, Algorithm 5.1 returns the AxC with the highest savings in the target
metric.

Algorithm 5.1: Pseudo-code of our ALS technique. Taken from [106].

Input: Exact circuit O, error metric EM, error threshold T
Output: Best AxC

1 Function muscat( O,EM, T):

AxC, C < addCutpoints( O )

AM < constructApproximationMiter( O, AxC, EM, T )

Q  createUNSATConstraints(C, Q )

MUSes < determineMUSes( AM, Q)

AxCs < generateAxCs( AxC, MUSes )

return bestAxC( AxCs )

N o W AW N

5.2.5 Discussion on the Insertion of Cutpoints

There are several related decisions with respect to cutpoint insertion: How
many cutpoints should be inserted, and where in the circuit? Which cutpoint
design should be used, AND-cut, OR-cut, or AND-OR-cut? Generally, in-
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serting cutpoints into every edge of the circuit, as done in the example of
Figure 5.2, and using the AND-OR-cut maximizes the potential for savings
in the target metric. However, the increased number of constraints might
increase the runtime for solving the MUS problem considerably. Even though
formal techniques can verify designs with millions of gates and hundreds
of inputs in a reasonable time [89, 9o], selecting a sufficiently small num-
ber of well-positioned cutpoints is desirable to keep the solver runtimes
acceptable. Hence, we keep the number of cutpoints sufficiently small while
enabling graceful approximations by evaluating a cutpoint’s redundancy and
immediate savings.

Initially, the input edges of all nodes qualify for cutpoints. In a first step,
we evaluate a cutpoint’s redundancy based on its appearance in another
cutpoint’s maximum fanout-free cone (MFFC). Since cutpoints enclosed in
the MFFC become obsolete upon activation of the enclosing cutpoint, the
enclosed cutpoints pose redundancy and are thus omitted. Furthermore,
as all nodes within the MFFC become dangling and thus obsolete upon a
cutpoint’s activation, the MFFC’s size indicates the cutpoint’s immediate
savings.

Thus, we suggest utilizing the MFFC’s size as a ranking criterion for the
cutpoints if their number should be reduced further. While other heuristics
based on, for example, the fanin or fanout cone’s size, also take into account
the logic cone affected by constant propagation, the actual effects on the
savings are unknown in advance. Furthermore, such heuristics may have a
structural bias. For example, cutpoints closer to the circuit’s PIs will likely
have a larger fanout cone than those closer to the circuit’'s POs, which
introduces a bias towards the cutpoints closer to the PIs. For the fanin cone,
this applies vice versa. The MFFC, on the other hand, is more robust against
structural bias, and our experimental results show that the MFFC is indeed a
reasonable heuristic (see Section 5.3.4).

5.3 EXPERIMENTAL RESULTS

In this section, we present MUSCAT’s comprehensive experimental results
and analyze how the number of cutpoints, the cutpoint design, and the
different heuristics for cutpoint insertion affect the ALS process.

5.3.1 Implementation and Experimental Setup

We have implemented Algorithm 5.1 in a fully automated tool flow and made
it available as the open-source project MUSCAT. First, we employ Yosys [110]
to read the Verilog input design and convert it to a technology-independent
netlist. Custom Yosys passes then add the cutpoints and construct the ap-
proximation miter automatically. Afterward, we translate the approximation
miter into SMT-LIBv2 [11] standard format to ease the addition of constraints
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via named assertions® and to provide a unified interface to different SMT
solvers.

We have experimented with different tools for determining the MUSes,
the SMT solver z3 [61] (labeled z3 in the result plots) that returns the first
MUS found and the MUSTOOL [13] that enumerates a set of MUSes within
a given time budget (labeled must_time-budget in the plots). Internally, the
MUSTOOL utilizes z3 as verification engine; the employed algorithm for
determining the MUSes, however, differs from z3’s procedure.

Table 5.1 lists the used benchmark circuits, and details the number of
primary input and primary output bits, and the number of cutpoints available
in the design. From all available cutpoints in the gate level netlist, we vary
the number of inserted cutpoints from 1% to 100% (suffix _o.01 or _1.0 in
the plots), using the MFFC’s size as a heuristic for the cutpoint insertion if
not stated otherwise. The target metric is the circuit area, which ABC [14]
determines by technology mapping to the Nangate 45nm Open Cell library.
The experiments have been performed on the OCuLUS compute cluster
of the Paderborn Center for Parallel Computing (PC?) with Intel® Xeon
E5-2670@2.6GHz and 4 Gigabyte main memory.

Table 5.1: Benchmark circuits.

Benchmark Name Description #PI / #PO bits #Cutpoints
rca3z 32-bit ripple carry adder 64 /33 314
absdiff Absolute difference 16 /8 203
binsqrd Square of a binomial 16 /18 2267
am8 9-bit array multiplier 16/ 16 825
add8u_oFP 8-bit adder from EvoApproxLib [62] 16 /9 79
mulyg 4-bit multiplier 8/8 130

MUSCAT offers several parameters that affect the complexity of the prob-
lem, the runtime, and the achievable savings. We will present experimental
results for different benchmark designs and discuss how the different param-
eters influence the ALS process in the following. In Section 5.3.2, we scale
the number of cutpoints and employ the different tools for solving the MUS
problem, z3 and the MUSTOOL. In addition to the number of cutpoints, the
MUSTOOL offers the given time budget as an additional degree of freedom
for scaling the problem complexity. In Section 5.3.3, we experiment with
different cutpoint designs to investigate the impact on the approximate out-
come. Section 5.3.4 compares different heuristics for cutpoint insertion to
experimentally support our discussion from Section 5.2.1.

5.3.2  Owverall Evaluation

We experimentally compare our novel approach MUSCAT with AND-cuts
against two publicly available state-of-the-art ALS methods: AIG rewrit-
ing [22] and the designs in the EvoApproxLib [62]. As the EvoApproxLib

2 We can map named assertions directly to the corresponding cutpoints.
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comprises only adders and multipliers of certain bit widths, we only provide
a comparison when possible.

Figure 5.3 shows the experimental results of four benchmark circuits,
where the plots on the left side show the area savings normalized to the exact
design’s area for different WC errors normalized to the circuits’ maximum
output value. The plots in the center show the runtimes; for MUSCAT, the
runtimes reflect all steps of the tool flow, i.e., the cutpoint insertion, the miter
generation, the MUS finding, and the synthesis of the AxCs. The plot on the
figure’s right side depicts the number of MUSes found by must, and thus,
also the number of generated AxCs.

For the adder rca32, AIG rewriting saturates at ~ 1% savings, while
our approach achieves significantly higher savings of up to ~ 45%. Even
the setups using z3 that return only a single MUS achieve high savings
consistently. If cutpoints are inserted in 100% of the edges, z3_1.0 shows
variations in the savings since only one MUS is selected. Exploring the MUS
search space more thoroughly by producing more MUSes with the setup
must and a time budget of 20s, MUSCAT minimizes the variations in savings
and produces very compact AxCs. Exploring the MUS search space and
increasing the number of cutpoints is always beneficial for reducing circuit
area.

Comparing the ALS runtimes for this benchmark, z3 averages to 4s, 4.5s,
and 7s depending on the percentage of cutpoints, and must averages to 18s,
46s, and 30s. Interestingly, for this benchmark, must with 50% of the cutpoints
endures a longer average runtime than must with 100% of the cutpoints. This
effect is due to the reduced verification complexity when using 50% of the
cutpoints, which, in turn, results in a larger number of MUSes being explored.
As a result, MUSCAT generates a larger number of AxCs and the synthesis
becomes the dominating factor in MUSCAT. The effect can be observed in
the right plot of Figure 5.3a.

AIG rewriting’s runtime averages to 343s, and, clearly, our ALS approach
is an order of magnitude faster than AIG for the benchmark rca32. We can
further compare the ALS runtimes for rca32 with published data from other
related work. For example, partition & propagate (P&P) [74] reports a run-
time of 18s but for determining the nodes’ significances only. This figure
does not include the rather costly search and simulations for quality verifica-
tion. Both SALSA [91] and our approach create AxCs valid-by-construction.
Unfortunately, SALSA is not open source and the related paper does not
provide sufficient details for a re-implementation. However, for the same
benchmark, SALSA reported area savings of ~ 15% for an error of 1% 10>
and a runtime of around four minutes. Hence, for this data point, we outper-
form SALSA by achieving savings of ~ 25% or ~ 35% within a few seconds
using z3 or must, respectively.

For the benchmark absdiff, must outperforms AIG in terms of area sav-
ings, while, in the majority of the cases, AIG achieves better results than
z3. must_30_1.0 achieves the highest area savings, while must_30_0.25 and
must_30_0.5 appear to saturate, presumably due to a small number of cut-
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Figure 5.3: Comparison of MUSCAT (z3 and must) with different cutpoint percent-
ages to AIG and EAL for different benchmarks and varying error bounds.
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points which, in turn, limits the number of MUSes, as the right plot of
Figure 5.3b suggests. must_30_1.0 determines more MUSes than MUSCAT’s
remaining setups, and thus, generates more AxCs and shows the highest run-
times, also surpassing AIG’s runtimes. In fact, it can be seen that the runtime
follows the number of found MUSes, which is expected since more AxCs
have to be synthesized. In conclusion, the experiment shows the trade-off
between complexity and achievable savings, which allows MUSCAT to adjust
to a given time budget.

The results for an 8-bit array multiplier am8 and the 8-bit adder add8u_0FP
from the EvoApproxLib are compared against AIG and components from the
EvoApproxLib (EAL). For both benchmarks, AIG achieves the lowest savings
and our approach achieves up to ~ 80% higher savings while, in the majority
of the cases, enduring lower runtimes when employing z3.

am8 highlights the benefit of must that takes multiple samples from the MUS
search space since it achieves higher savings than z3 — at the costs of higher
runtimes. EAL achieves better area savings; only for larger error bounds,
our method remains competitive. However, EAL employs an evolutionary
design process over thousands of generations that typically requires very
long runtimes but can create efficient designs.

For the benchmark add8u_0FP, MUSCAT’s area savings are more competi-
tive with EAL, and both approaches z3 and must achieve high area savings
within a short time. For must, it can be seen that the runtimes again follow the
number of generated AxCs, which results in some cases in longer runtimes
than with AIG. Overall, MUSCAT outperforms AIG in runtime as well as area
savings.

5.3.3 Evaluation of Cutpoint Designs

In the next set of experiments, we evaluate different cutpoint designs. Fig-
ure 5.4a shows results for approximating the 8-bit adder of the EvoApprox-
Lib add8u_0FP. Furthermore, Figure 5.4b shows results for the benchmark
absdiff for which the MUSTOOL now has a large time budget of 120s to
allow for a thorough search space exploration.

For the benchmark add8u_0FP, the AND-OR-cut achieves the highest area
savings. In fact, MUSCAT even outperforms the EvoApproxLib for some
error bounds and states the dominant solution. The results for the benchmark
absdiff in Figure 5.4b additionally support the insight that the AND-OR-cut
is beneficial for achieving higher savings. As discussed in Section 5.2.1, the
AND-OR-cut offers greater flexibility as it subsumes the functionality of the
AND-cut and the OR-cut. However, at the cost of a higher complexity of the
verification problem. The higher complexity is indicated by a smaller number
of MUSes found within the same time limit (cf. plots on the right side in
Figure 5.4). Nevertheless, even though fewer MUSes, and thus fewer AxCs,
have been explored, the increased flexibility appears beneficial, as the larger
area savings suggest.
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Figure 5.4: Comparison of the method must with varying cutpoint designs for 100%
of the cutpoints against AIG and components of the EvoApproxLib (two
versions).

5.3.4 Evaluation of Heuristics for Cutpoint Insertion

Figure 5.5 investigates the impact of the cutpoint insertion on the approximate
outcome for the benchmarks add8u_0FP and mul4. We have employed z3
and ranked all available cutpoints with different heuristics: the cutpoint’s
size of the MFFC (mffc), the fanout cone (fo), the fanin cone (fi), as well
as the aggregate of the fanin and fanout cones (fi_fo). From the ranked
cutpoints, we then only inserted the subset of the 25%-best cutpoints. The
results for add8u_0FP show significant differences in the achieved savings
for the heuristics. The heuristic mffc performs best in the experiment by
consistently achieving high savings with slight deviations for small or large
worst-case errors, i.e., the heuristic enables graceful approximations even
though MUSCAT uses a small number of cutpoints. The heuristic fo achieves
high savings for small WC errors; however, the heuristic appears to saturate
at savings around 40% for larger errors. While showing the most considerable
deviations, the heuristic fi improves towards larger error bounds on average.
However, the achieved savings are significantly smaller than those achieved
with mffc. Overall, the heuristic fi_fo performs worst in the experiment.
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Figure 5.5: Comparison of different heuristics for the cutpoint insertion.

For the 4-bit multiplier mul4, the heuristic mffc performs best up to a WC
error of 10%. For larger error bounds, mffc’s performance stagnates or even
declines, and the heuristic fo achieves the highest savings. Both heuristics
mffc and fo outperform on average the heuristics fi and fi_fo. Overall,
the mffc achieves good results, and thus, justifies cutpoint ranking by the
MFEC’s size if only a subset of all available cutpoints should be inserted; fo,
however, represents a viable alternative.

5.4 CASE STUDY: SQUARE OF A BINOMIAL

In this section, we conduct a case study on a complex design for formal
verification methods. We analyze the impact of the SMT solver on the outcome
and elevate MUSCAT to the register-transfer level to abstract the complexity
of the design through which we anticipate reductions in runtime.

5.4.1  QOverview

The most challenging design in our benchmark set (see Table 5.1) is binsqrd
that contains two adders and three multipliers, which are known to be hard
to verify [9o0]. For this benchmark, we conduct a case study to motivate future
directions for MUSCAT to enable the approximation of complex designs in
shorter time at the cost of potentially lower approximation granularity. We
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use AND-cuts, experiment with raising the design’s level of abstraction, and
compare the performance of different SMT solvers.

A SMT solver essentially combines a SAT solver with one or more theory
solvers, enabling the SMT solver to operate at a higher level of abstraction [12]
than a SAT solver that operates on Boolean variables and operations. In fact,
SMT solvers verify the satisfiability of a formula that may contain operations
from various theories, e.g., bit vectors or integer arithmetic, and use the
highly-specialized theory solvers for efficient solving (cf. Section 2.2). We
exploit the expressive power of modern SMT solvers and elevate MUSCAT
to the register-transfer level, which brings two advantages.

Firstly, the employed SMT solver can exploit its available potential through
the ability to handle different theories, e.g., arithmetics or bit vectors, to
solve a generalized SAT problem. In this way, the benchmark’s behavioral
description of the arithmetic operations can be preserved at register-transfer
level (RTL), rather than describing the operations in Boolean logic at gate level,
which results in a complex verification problem as the runtimes in Figure 5.6a
show. As a result, the solver can handle the arithmetics more efficiently by
utilizing the highly-specialized theory solvers for such predicates and their
conjunctions.

Secondly, the overall complexity of the problem is abstracted since the
design contains fewer details, i.e., fewer components and connections, as it is
not described via Boolean logic over individual bits, which is reflected in the
reduced number of available cutpoints of 115 instead of 2267 as in the bench-
mark’s gate level netlist. However, the cost for the higher abstraction is that
the cutpoints affect larger portions of the design instead of individual logic
gates, which may lead to less graceful but coarse-grained approximations.

5.4.2 Experimental Evaluation

Figure 5.6a shows the area savings and the runtimes for MUSCAT as pre-
sented in this chapter, i.e., MUSCAT operates on the gate level netlist. Due to
the complexity of the benchmark, we only generate a single AxC with z3 and
consider a smaller percentage of inserted cutpoints. In most cases, MUSCAT
achieves better area saving than AIG rewriting. However, it can also be seen
that limiting the number of cutpoints too aggressively or extracting only
one sample from the MUS search space may lead to suboptimal results, e.g.,
z3_0.01 saturates at low savings or the achieved savings of a setup deviate
largely. As the runtime plot shows, AIG rewriting has a significantly shorter
runtime than z3_0.35 and z3_0.15; the runtime of z3_0.01 is comparable
to AIG rewriting’s runtime. Overall, the runtimes average to 1755s, 43146s,
and 139965s for the different cutpoint percentages, and AIG rewriting has an
average runtime of 1327s.

Figure 5.6b shows the results for MUSCAT at RTL with z3 determining a
single MUS. z3_1.0 achieves the highest area savings, which are comparable
to MUSCAT’s gate level implementation. However, the savings deviate largely.
The area savings for z3_0.50 and z3_0.25 are more steady but lower. While
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Figure 5.6: Experimental results for the benchmark binsqrd.

87



88

MUSCAT: A MUS-BASED CIRCUIT APPROXIMATION TECHNIQUE

z3_.0.50 achieves similar savings to AIG rewriting, z3_0.25 achieves the
lowest savings. In fact, the area curves suggest a recurring saw tooth pattern,
which we attribute to internal heuristics used in the SMT solver. Further
research into the heuristics may reduce the deviations and lead to more
steady savings over the increasing WC error.

MUSCAT’s runtimes are significantly reduced by one order of magnitude,
and average to 261s, 2147s, and 57775 for 25%, 50%, and 100% of the cutpoints,
respectively, resulting in a ~ 24 x speed-up for 100% of the cutpoints. Thus,
the experimental results confirm our intuition of lower runtimes at the costs
of lower approximation granularity.

In order to evaluate the impact of the formal verification engine on the
performance, we have conducted experiments with the SMT solver Math-
SAT [26]. By default, MathSAT provides no support for MUSes [39]; thus,
we integrated the solver into the MUSTOOL as the underlying verification
engine. Figure 5.6c shows the results achieved with MUSCAT and MathSAT.
Remarkably, a time budget of only 50s or 75s is sufficient for MathSAT with
25% or 50% of the cutpoints, respectively, to determine multiple MUSes from
which MUSCAT generates compact AxCs. When using 100% of the cutpoints,
a substantially higher time budget of 2500s was required to generate compact
AxCs consistently; for lower time budgets, some of the experiments did not
complete and MUSCAT generated no AxCs. The runtimes average to 137s,
147s, and 2519s for 25%, 50%, and 100% of the cutpoints, respectively.

Interestingly, employing a smaller number of cutpoints is beneficial for the
approximate outcome for smaller error bounds since better area savings are
achieved in a significantly shorter time. For larger error bounds, however, the
setup using 100% of the cutpoints achieves the highest area savings among
all experiments — at the cost of higher runtimes. Compared to AIG rewriting,
MUSCAT with 75% of the cutpoints consistently achieves larger area savings
at lower runtimes.

We also performed experiments with the MUSTOOL and z3 as underlying
verification engine and provided the same time budget as for MathSAT.
However, in this setup, no MUSes have been found, and thus, no AxCs
have been generated. Thus, for this benchmark, MUSCAT combined with
MathSAT outperforms the other approaches by several orders of magnitude
in runtime while achieving higher area savings. The experiment highlights
the impact of the underlying formal verification engine on the approximate
outcome and motivates further research into selecting the verification engine
most suitable for the input design.

In conclusion, the case study on the benchmark circuit binsqrd demon-
strates that MUSCAT scales to complex designs by raising abstraction to
the register-transfer level to reduce approximation granularity and leverage
the potential of SMT solvers. As a result, MUSCAT reduces the runtimes
significantly. The main factors for reducing the runtimes are 1) the simplified
verification problem through a reduced approximation granularity and 2) the
SMT solvers that can leverage the theory solvers more efficiently at RTL.
However, as the case study comprises only a single benchmark circuit, fur-
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ther experiments with different benchmarks have to be conducted to confirm
the results.

5.5 CONCLUSION

In this chapter, we have presented the approximate logic synthesis method
MUSCAT to generate valid-by-construction approximate circuits. Our ap-
proach augments an input design by cutpoints that, when activated, allow
for logic optimization through dangling node removal and constant propaga-
tion. Formulating the AxC’s construction as an unsatisfiability problem, we
exploit the performance of modern formal verification engines to determine
minimal unsatisfiable subsets that translate to sets of cutpoints that should
be activated.

In our experiments, MUSCAT achieves up to 80% higher savings than AIG
rewriting while enduring lower runtimes in most experiments, and remains
competitive with a computationally expensive evolutionary algorithm, the
EvoApproxLib. In fact, MUSCAT allows for scaling the runtimes by either
scaling the number of employed cutpoints or exploring the MUS space more
or less thoroughly. We have also compared MUSCAT to SALSA on a design
point taken from literature. This comparison indicates that MUSCAT can
achieve higher area savings at substantially lower runtimes. Finally, we con-
ducted a case study on a complex benchmark design. We elevated MUSCAT
to the register-transfer level and evaluated the impact of the formal verifica-
tion engine on the approximate outcome. In this way, we achieved significant
reductions in runtime by several orders of magnitude and exemplified MUS-
CAT’s potential for approximating more complex designs on a higher level
of abstraction.

89






PROOF-CARRYING APPROXIMATE CIRCUITS

6.1 OVERVIEW

When performing approximate logic synthesis (ALS) for generating an ap-
proximate circuit (AxC), an important problem is determining the actual
quality of the resulting circuit to analyze the suitability of the AxC in a spe-
cific application context. For some applications, the specified constraints are
soft, for example, when statistical constraints such as the mean squared error
are specified (cf. Section 2.2). However, adhering to the quality constraints is
crucial for other applications, and these applications thus require a guarantee
on the constraints. These scenarios rule out testing-based approaches since
exhaustive testing of all possible input combinations, e.g., when specifying a
worst-case (WC) error bound, is clearly infeasible. Instead, formal verification
methods must be employed to guarantee the specified quality constraints of
the AxC. Unfortunately, most of the existing automated ALS frameworks use
a testing-based approach [48, 50, 65, 94], and only a few ALS frameworks
generate AxCs with guaranteed error bounds [22, 69, 91]. While being con-
ceptually much stronger than testing-based approaches, formal verification
techniques also tend to lead to considerable runtimes.

We expect in the near future that approximate components will be offered
and traded as intellectual property (IP) cores, possibly in libraries, as it is the
case for other digital circuits. Today such approximate component libraries
already exist for small arithmetic components [19, 62, 70, 81], but the concept
can easily be extended in scope. In this scenario, a pressing question for the
party that purchases an approximate IP core and integrates it into a larger
design is whether the core actually meets the specified quality constraints.
Even though some of the existing ALS frameworks provide a guarantee on
the quality through formal verification, the consumer has no proof that the
guarantee actually applies to the purchased core, i.e., the consumer of the IP
core has to trust the producer and the producer’s tool flows. Naturally, trust
in a producer or producer’s tool flows is also an issue for core characteristics
such as hardware area, energy consumption, and delay. Accuracy, however,
is a functional parameter and thus more critical, as a too low accuracy can
render a design completely useless for a specific application.

As a novel contribution, we present the concept of proof-carrying approximate
circuits and propose to apply the technique of proof-carrying hardware
(PCH) [30] to approximate circuits. The producer annotates the AxC with
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a formal proof of its quality and offers the result as IP core, ranging from
simple arithmetic components to complex applications. The purchasing party
can verify the proof and, if successful, be certain about the core’s quality. A
key aspect of PCH is that the effort for verifying the proof is much lower
than for creating the proof, shifting the burden of the formal verification
task to the producer. As a result, no trust in the producer is needed and
the consumer can verify the core’s quality at a fraction of the computational
costs.

This chapter makes the case for proof-carrying approximate circuits and
elaborates on this concept, including the required tool flows for the pro-
ducer (vendor) and consumer (purchasing party) of an approximate circuit.
We base the elaboration on an early adoption of our CIRCA framework
presented in Chapter 3 that resulted from a Master’s thesis [100], which we
configure for the approximation of sequential circuits. We then guarantee the
error bounds via inductive verification and demonstrate the proof-carrying
approximate circuits scenario.

We have presented proof-carrying approximate circuit first in our workshop
paper [104] and eventually published a journal version [105]; this chapter
is based on these publications, and cites and extends their discussions. My
contribution to this work is the approximate computing part, while my
colleague, Tobias Wiersema, contributed the proof-carrying hardware side of
the project, which he has further detailed in his dissertation [97].

6.2 PROOF-CARRYING HARDWARE

Proof-carrying hardware was first introduced by Drzevitzky et al. [30], who
described its context as the interaction of two parties, a hardware module (or
IP core) producer and a consumer, as depicted in Figure 6.1. The consumer
requests a hardware module with a function according to a given design
specification and for which certain constraints must hold. These constraints
are also denoted as (safety) properties. Instead of forcing the consumer to
trust the received module — or to formally verify that the property actually
holds at their own expense — the PCH technique requires the producer to
attach evidence of a formal proof (often denoted as proof certificate) to the
IP core. The consumer then can retrace the proof steps at a fraction of the
regular computational verification cost since making a formal proof certificate
is (usually) much harder than verifying a given proof certificate. Thus, the
cost of trust shifts to the producer who typically has sufficient computational
resources and formal verification methods already in place.

Note that the application of the PCH method actually evaluates the trust-
worthiness of all gray components in Figure 6.1, so it even works if the
consumer trusts neither the producer, the module, the proof, nor the commu-
nication channel via which they receive both. Here, the key element is that
by specifying the design and the property, the consumer forms a proof base
against which the received proof certificate can be verified. Any tampering
done in any of the untrusted gray areas in Figure 6.1 will be detected by PCH
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Figure 6.1: Proof-carrying hardware flow.

because, in such a case, either the module or the proof will not match the
consumer’s proof base, or the proof will be corrupt and cannot be validated.
A successful validation using the PCH technique thus guarantees ultimate
trustworthiness of the transmitted module with respect to the agreed-upon
property.

Since its inception, the PCH concept has been applied to several types
of digital circuits at different abstraction levels. For example, Drzevitzky
et al. [30] focused on combinational circuits and applied a satisfiability (SAT)-
based tool flow with proofs encoded as resolution proof traces. Later on,
Drzevitzky [29] extended their approach to bounded sequential verification
using a time frame expansion technique. Finally, Isenberg et al. [43] showed
a PCH flow with induction as proof principle, where inductive invariants
serve as evidence of the formal verification. This PCH flow is not limited by
time frame expansion and can thus provide stronger, i.e., for an unbounded
number of cycles, guarantees for sequential circuits. Also, the shift of work-
load to the producer was investigated by Isenberg et al. [43]. For example, in
the most pronounced case, the producer required 57 minutes to generate the
proof, whereas the consumer only needed 1.4 seconds to verify its validity.
In other words, instead of spending 57 minutes to perform a full verification,
the PCH scheme allowed the consumer to reduce their workload by 99.95%
down to 1.4 seconds without loss of verification strength. While all these ap-
proaches applied PCH at the level of an FPGA’s configuration bitstream, i.e.,
essentially a placed and routed netlist, Love et al. [51] have created a concept
to create manual proofs for a subset of the Verilog HDL, bringing PCH to the
source code level. Since after a successful verification the producer has to run
various design automation tools and transmit the resulting module to the
consumer, the trustworthiness of the latter two steps can not be guaranteed.
Actually, Krieg et al. [46] showed the vulnerability of source code level PCH
by describing an attack that inserts trojans into hardware modules although
they have been successfully verified at the source code level. Ahmed et al. [3]
showed that PCH at the configuration bitstream level can indeed detect such
trojans.

The PCH concept requires both the consumer and producer to agree on
formalisms to specify the circuit function and the property to be proven. It is
important to note that the PCH concept is not restricted to a specific property.
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While most PCH works provided proofs for the property equivalence of a
combinational or sequential circuit, respectively, to its specification, Wiersema
and Platzner [98] demonstrated the verification of the non-functional property
of meeting pre-defined response time limits for sequential circuits. In the
context of approximate computing, we seek to guarantee that an AxC does not
violate a pre-defined bound on some error metric by relaxing the equivalence
property to equivalence up to some bound [89] (cf. Section 2.2) .

63 PROOF-CARRYING APPROXIMATE CIRCUITS

We propose to apply the PCH concept to approximate circuits to formally
guarantee error bounds and allow any recipient of such a circuit to confirm
its trustworthiness without needing to trust the producer at a fraction of
the cost of a full formal verification. The left side of Figure 6.2 shows the
general form of interaction between a producer and a consumer for such
proof-carrying AxCs. We envision two different scenarios.

Offer:
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Figure 6.2: The left side shows the two scenarios, (1) and (2), for proof-carrying ap-
proximate circuits. The right side of the figure shows the conceptual flow
of an approximate logic synthesis framework utilized by the producer.
Adapted from [105].

Scenario (1) is described by dotted and solid lines on the left side in Fig-
ure 6.2. The producer generates AxCs with certain error bounds and offers
these as IP cores, e.g., as approximate function libraries. Additionally, the
producer prepares proof certificates that the AxCs actually meet the targeted
error bounds. To enable potential users (consumers) to find such approxi-
mated IP cores, the producer needs to publish both the design specification
and a specification of the error bound. When the consumer has decided on
such an approximated IP core, the producer packages the requested IP core
with the proof certificate and sends it off to the consumer. Upon success-
fully verifying the proof certificate, the consumer holds a guarantee for the
core’s quality. For PCH schemes, these certificates are always generated in a
way that allows for a much faster validation than generation. For example,
some PCH works employ resolution proofs for the satisfiability of a Boolean
formula in conjunctive normal form as the certificate. To check whether the
given sequence of resolution steps in such a proof actually leads to the empty
clause requires significantly less computational effort than generating that
sequence in the first place. This asymmetry in computational complexity
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between generation and validation is the core of the workload shift between
consumer and producer, typically leaving the consumer with a validation
problem that is significantly easier to solve than a full formal verification of
the desired circuit properties.

The approximate component libraries published in [19, 62] state examples
for scenario (1). These libraries contain approximate adders and multipliers,
which provide different characteristics in terms of hardware area, delay,
power consumption, and quality. Furthermore, the authors note that each
component has been verified using a SAT solver to guarantee the circuit’s
quality. A potential consumer of these components, however, still has to
trust the producer and the given specifications of the component. In our
proof-carrying AxC scenario, the bundle of approximate component and
proof certificate allows the consumer to verify the specifications quickly, and
thus, gain an ultimate level of trust. There are also examples for libraries
that do not give any guarantee, such as the adders and multipliers published
in [81] and [70]. These could also be used for scenario (1) by translating the
contained quality characterization into suitable error bounds. Note that the
components offered in an approximate component library for scenario (1)
are theoretically not limited in size or scope and can range from simple
arithmetic units, e.g., adders and multipliers, to more complex IP cores, e.g.,
discrete cosine transform cores [84].

Scenario (2) is indicated by dashed and solid lines on the left side in
Figure 6.2 and is more dynamic as it lets the consumer request the creation
of an approximated IP core with a specific error bound. To enable potential
producers to agree to such contract work, the consumer has to publish both
the design specification and a specification of the error bound. Next, the
contracted producer creates the approximated IP core, which again can be a
simple combinational circuit or a complex sequential design, along with the
proof certificate, and sends it off to the consumer. Additionally, the consumer
might want to set constraints on parameters such as area, delay, or energy
consumption that should be achieved by tolerating the specified error. This
process is, however, not covered by Figure 6.2.

Proof-carrying approximate circuit flows can be used for different target
technologies at the consumer’s side. If the consumer develops in custom or
an ASIC design style, the runtimes required for the verification steps will
possibly not negatively affect overall design time. If, on the other hand, the
consumer utilizes reconfigurable accelerator technology, time scales could
be dramatically shortened, requiring efficient tool flows. The extreme case
on-the-fly computing [40] performs all steps of scenario (2) at runtime.

A precondition for both scenarios is that the design and the error bound
are formally specified. In both scenarios, the consumer does not need to trust
the producer, the producer’s techniques and tool flows, or the transmission of
the proof-carrying approximate circuits (depicted in gray in Figure 6.2). Due
to the PCH approach, the consumer side will detect any tampering with the
circuit or the proof. Even matching modifications of the circuit and the proof

will be detected if they guarantee a property different from the specified one.
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In order to successfully implement the proof-carrying approximate circuit
concept, several requirements have to be met:

1. The employed approximation techniques have to generate circuits for
which definable quality constraints, i.e., error bounds, can be formally
guaranteed.

2. These error bound guarantees must be transformable into proof certifi-
cates, which can be transmitted with the circuit.

3. The verification of the proof certificates (the consumer’s workload)
should be faster than formally verifying the circuit’s error bound in the
first place (the producer’s workload), enabling the core benefit of our
approach for the consumer: gaining trust in AxCs at a fraction of the
verification costs.

64 VERIFICATION-BASED APPROXIMATE LOGIC SYNTHESIS

In this section, we will first elaborate on the verification-based ALS process.
Then, we will discuss the proof certificates in more detail.

6.4.1 Approximate Logic Synthesis and Quality Assurance

The right-hand side of Figure 6.2 depicts the general flow of a verification-
based ALS framework. The ALS process starts with an original (unapprox-
imated) circuit and an error bound as inputs, and performs, for example,
search-based ALS as described in Section 2.1 or Section 3.1. We leverage the
CIRCA framework (see Chapter 3) for experimental validation. Conceptually,
however, our approach can utilize any ALS process that applies functional
approximation and employs a formal verification method which provides a
proof certificate to fulfill the PCH requirements.

Approximations often target arithmetic components in the data path of
an application. Concepts for constructing approximate arithmetic units and
approximate component libraries comprising adders and multipliers have
been presented in the past of which some even provide guarantees on the
quality constraints [4, 19, 62, 70, 81, 116]. However, two issues remain when
using such components in a larger circuit: 1) The user has to either trust the
given guarantee or run a full verification process to ensure the quality. 2) The
errors of the individual components propagate through the circuit, possibly
amplifying or canceling out, which means individually verifying the quality
of candidates in the circuit is not sufficient; instead, the overall circuit has to
be verified (see Section 2.2). To assure the quality of an AxC, i.e., to verify
whether it satisfies the error bound, we form a sequential quality constraint
circuit (SQCC), as described in Section 3.4.5, and generate a proof certificate
for the AxC as evidence of a successful formal verification.

Evaluations of AxCs that rely on testing generally utilize statistical error
metrics, such as the mean absolute error, the mean relative error, or the
error rate. In formal verification, however, statistical metrics are extremely
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hard to guarantee because the SQCC needs to be extended to count error
information over all input vectors (cf. Section 2.2). In fact, statistical error
metrics do not state a SAT problem but a much more complex #SAT (counting
SAT) problem [90], of which current #SAT solvers can only process small
instances [89]. Vasicek [9o] discusses algorithms for determining statistical
error metrics for combinational circuits using formal methods and highlights
the complexity of determining such error metrics with experiments on small-
scale circuits. For sequential circuits, the complexity may even increase
to a multitude of #SAT problems, which, to the best of our knowledge,
currently renders the approach infeasible for real-world circuits. Interestingly,
Chandrasekharan et al. [23] use an approximation miter similar to ours and
try to guarantee the mean absolute error; their initial experiments, however,
did not conclude for practical designs.

Our research focuses on a non-statistical error metric of modest complexity,
the WC error — one of the most commonly used error metric in approximate
computing [111]. Conceptually, however, our approach is not limited to a
specific error metric; in fact, the scalability of our approach of proof-carrying
approximate circuit depends on 1) the ALS method and 2) the employed
verification engine. 1) dictates the number of verifications during ALS, which
directly impacts the overall runtimes [101, 102]. Furthermore, the runtime
of a single verification in the approximation process depends on 2), and,
depending on the verification problem, the differences between the methods
can be significant [15]. In summary, our approach inherits the scalability of
the underlying ALS and verification engine but does not add any bottleneck.

6.4.2 Creating Proof Certificates

Based on the SQCC, the producer must transform the error bound guarantee
into a proof certificate that is sent to the consumer, i.e., construct the proof
via a full formal verification. The proof certificate has to enable a consumer
to objectively draw the same conclusion as the original verification, only
much faster. Since the producer is inherently untrusted in this method, the
consumer has to construct the proof base themselves and independently from
the producer by combining their own design and error bound specifications
with the AxC’s implementation extracted from the IP core’s netlist into an
SQCC. The consumer can then take their SQCC and the received certificate
and check that 1) the proof bases match and 2) the proof is correct. Note that
both parties have to agree on a common representation and transformation
rule set to establish a working process, e.g., by agreeing on a set of tools to
use and allowed sequences of structural optimizations that the producer can
employ to make challenging verification problems tractable.

As the SQCC for combinational circuits is also combinational, it can be
directly verified by proving unsatisfiability of the SQCC. The proof base,
which both producer and consumer determine independently, is the set of
input clauses in the SQCC’s conjunctive normal form (CNF) representation.
The certificate is the trace of all clausal resolutions that imply the empty
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clause from the CNF formula. The consumer thus needs to transform their
own SQCC into CNF and apply the clausal resolutions step-by-step as listed
in the certificate. Finally, the error bound is verified if the empty clause is
obtained.

For sequential circuits, the SQCC has to be verified using sequential ver-
ification methods, which prove that the error bound holds in all reachable
states of the SQCC. Since the set of reachable states can be huge, an enu-
meration of these states and explicit checks for the error bound is infeasible.
Hence, we employ the efficient property-directed reachability (PDR) [31]
implementation from ABC [14]. PDR is an inductive solving technique that
first checks whether the property to be proven holds in the initial state of
the circuit (induction anchor, initiation) and second whether the property
unconditionally holds for all states after a transition, provided it held in the
previous states (induction step, consecution). However, since properties of
interest, such as guaranteed error bounds, are not necessarily inductive, PDR
searches for a so-called inductive strengthening of the original property. In par-
ticular, the circuit could have states — not reachable from the initial state — for
which the error bound holds, but not for their successor states. In such cases,
the consecution step of the induction would fail. The inductive strengthening
of the original property is a more restrictive property that holds in a subset of
the states in which the original property holds and, additionally, is inductive.
The resulting strengthening is also called an inductive invariant. Technically,
PDR breaks the induction on the circuit state down into a multitude of SAT
problems, which, if the SQCC is unsatisfiable, will yield such an inductive
invariant of the original property. Then, ABC outputs the inductive invariant,
which we use as certificate.

The consumer then builds the proof base by constructing the SQCC, and if
the producer has performed allowed structural pre-processing on the circuit,
the consumer has to apply the same sequence on their version. In our imple-
mentation, we allow the producer to apply structural optimizations in their
effort to minimize the consumer’s workload through their pre-verification,
ranging from minor cone-of-influence reductions up to the more heavy-duty
pre-processing of ABC’s dprove command. In case these steps alone solve
the SQCC, the producer cannot and does not need to generate a certificate,
but the consumer also has to perform no more than the previously agreed-
upon structural circuit optimizations to prove the AxC quality themselves.
Otherwise, the consumer checks three conditions, namely that the received
invariant 1) holds in the initial state, 2) is inductive (i.e., the induction step
holds), and 3) is indeed a strengthening of the SQCC’s derived CNF for-
mula. All three checks translate into quite simple SAT problems, which the
consumer can solve much faster than the multitude of SAT problems the pro-
ducer had to solve to arrive at the invariant. For a more in-depth description
of the technique, we refer to [43].
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We validated the proof-carrying AxC approach through experiments, using
AxCs generated by the CIRCA framework with the benchmark circuits listed
in Table 6.1. The candidates have been manually annotated to specify subcir-
cuits subjected to approximation. In addition, CIRCA has been configured
to use hill climbing as search method and precision scaling or AIG rewrit-
ing [22] as approximation techniques to prove the general applicability of our
approach. The circuit area was the minimization objective, and the WC error
was the error metric, varying from 0.025% to 2.0% of the circuit’s maximal
possible output value. Since the work of proof-carrying AxCs focuses on
verifying AxCs with PCH, and thus, the achieved savings in the ALS process
are secondary, we only summarize the ALS results: Overall, CIRCA achieved
area savings of up to ~ 26% through approximation while guaranteeing the
specified error bound. The average runtimes of the entire ALS process ranged
from around one minute up to five days.

As described in Section 6.4.2, we employ ABC'’s verification techniques,
which, in recent years, dominated the single property track of the Hard-
ware Model Checking Competition [15], where verification problems from
industry had to be solved, proving ABC’s performance and scalability, and
thus, the scalability of our approach to industrial-strength verification prob-
lems. Our verification experiments have been repeated ten times on the
OCuLUS cluster of the Paderborn Center for Parallel Computing (PC?) with
a time limit of seven days for each run of the flow. The cluster runs Scien-
tific Linux 7.2 (Nitrogen), provides 16 Gigabyte main memory per job, and
comprises nodes with an Intel® Xeon E5-2670@2.6GHz. Table 6.1 lists for all
benchmarks, approximation techniques, as well as error bounds the runtimes
of the producer flow, the consumer flow, and the reduction of computation
time the consumer experiences over full verification.

Our experimental results show the significant impact our approach of
proof-carrying AxCs has on the consumer’s runtimes. The observed runtime
reductions for the consumer highlight the effectiveness of our approach
and range from 0.00% (structural optimization solved the SQCC) to 99.83%,
averaging to around 71.03%. While the producer endures the runtimes of the
full formal verification, the consumer benefits from the workload shift and is
able to quickly verify the AxC’s quality with the proof certificate.

As the different approximation techniques modify the structure of the
circuit differently, and thus the complexity of the verification problem, signif-
icant differences in runtimes of the verification processes among the same
benchmark can be observed, cf. fir_gen, 0.25%. In fact, our results show that
the runtimes of the verifications are neither strictly increasing nor decreasing
with increasing error thresholds, cf. ternary_sum_nine and butterfly.

The 4-tap FIR filter benchmark fir_gen implements four generic 9-bit
multipliers, which are known to state a difficult verification problem [90].
With increasing error bounds, however, the verification problem seems to
become less complex. On the other hand, the 16-tap FIR filter fir_pipe_16,
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Table 6.1: Experimental results for the proof-carrying AxC approach. Taken from

[105].
AIG rewriting Precision Scaling

Circuit Error Runtime [s] Reduction Runtime [s] Reduction

name bound [%] Consumer Producer [%] Consumer Producer [%]
0.025 1.58 3.35 52.44 1.64 5.33 51.59
0.25 158 7.23 7813 1.49 3.44 37.99
butterfly 0.50 1.55 4.60 66.23 1.56 4.77 64.01
1.00 1.52 4.53 66.47 1.46 2.99 49.20
1.50 1.53 4.07 60.75 1.47 2.88 45.12
2.00 1.51 4.22 64.14 1.44 2.35 38.27
0.025 2.20 7.20 69.36 1.67 4.21 60.21
0.25 3641 193.84 79.55 1.33 2.55 46.58
fir_gen 0.50 15.03 65.67 77.09 1.31 219 40.03
1.00 9.89 44.43 77.71 1.25 2.16 4253
1.50 6.30 38.06 82.72 1.26 1.79 29.71
2.00 4.18 15.68 73.31 1.11 2.16 46.03
0.025 243 2.68 7.71 2.68 2.68 0.22
0.25 4.69 322.85 98.54 37.53 219.95 82.92
fir_pipe_16 0.50 23.76 224549 98.93 80.34 1982.81 94.73
1.00 145.18 1489.96 90.24 85.86 2132.54 93.19
1.50 134.46 2215.58 93.44 97.71 2415.09 94.76
2.00 215.10 2607.77 91.47 81.86 2356.28 96.29
0.025 0.08 0.08 0.00 0.11 0.35 68.05
0.25 0.13 1.34 84.11 0.14 0.45 70.10
pipeline_ 0.50 0.13 1.41 84.13 0.12 0.37 66.80
add 1.00 0.13 1.16 76.02 0.13 0.37 66.33
1.50 0.13 1.33 76.66 0.12 0.39 69.45
2.00 0.15 1.26 80.57 0.12 0.30 62.18
0.25 1.95 23.93 91.84 243 7.09 65.60
0.50 1.94 27.98 93.05 2.35 5.95 60.47
rgbzycbcr 1.00 1.82 18.49 90.13 243 6.21 60.72
1.50 1.87 21.37 91.24 2.33 5.33 56.26
2.00 2.10 24.43 91.38 2.28 5.16 55.73
0.025 0.48 0.49 1.41 0.61 0.77 21.54
0.25 59.42 506.69 87.85 0.48 6.43 38.96
ternary_ 0.50 6.70 709.78 99.05 0.19 3.65 90.01
sum_nine 1.00 4.01 2505.66 99.83 0.35 10.17 71.03
1.50 0.79 251.26 99.68 0.23 4.97 95.49
2.00 219 15441 98.58 0.18 2.10 91.28
0.25 1.57 1.57 0.00 16.97 1640.97 98.81
0.50 9.71 54117 97.90 18.06 1489.40 98.82

weight_

calculator 1.00 32.44 1399.23 97.60 13.21 1153.46 98.84
1.50 15.38 945.05 97.68 9.76 819.14 98.61

2.00 40.93 2084.28 97.92 10.02 1377.77 99.25
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which implements constant multipliers, shows the opposite behavior. Here,
the verification complexity increases with the error, and thus, the verifica-
tion runtimes. In both cases, however, our approach reduces the consumer
runtimes.

The benchmarks with pipelines (fir_pipe_16 and weight_calculator)
highlight the correspondence of the AxC verification challenge to the amount
of changes in the circuit. For small error thresholds, CIRCA could only
modify the last-most pipeline stages due to error propagation effects in
the pipeline, which results in significantly easier verifications than larger
error bounds, which lead to changes also in earlier pipeline stages, with
discontinuities presumably due to the complex interaction of the stages.

Compared to the runtimes of the entire ALS process, where a large number
of AxC is being generated and verified, the runtime of a single formal
verification on the producer’s side is comparably small. Hence, as discussed
in Section 6.4.1, our approach of proof-carrying AxCs is not the runtime-
limiting factor in the flow.

6.6 CONCLUSION

In this chapter, we have made the case for proof-carrying approximate circuits.
Using this novel concept, producers of approximated IP cores can provide
formal guarantees for their approximate circuit’s quality constraints, and
consumers are enabled to verify these constraints without having to trust
the producer or transmission channels. Importantly, consumers establish
trust at a fraction of the computational effort needed for full verification. We
have outlined two scenarios for proof-carrying AxCs with different producer-
consumer relations, and experimentally demonstrated and validated the
feasibility of proof-carrying AxCs.
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SEARCH SPACE CHARACTERIZATION FOR
APPROXIMATE LOGIC SYNTHESIS

7.1 OVERVIEW

In this dissertation, we have defined four main steps for a search-based ALS
process (see Section 2.1): search, approximate, verify, and estimate (or evalu-
ate). We have described the search as the central control unit, which explores
the search space of approximate circuits (AxCs) and invokes approximation
techniques, quality assurance methods, and synthesis on-demand to generate,
verify, or evaluate an AxC, resulting in a search-generate—verify—evaluate
cycle. Especially when formal verification is employed, the verification step
can significantly contribute to the overall runtime of the approximate logic
synthesis (ALS) (see Sections 3.5.2 and 4.9.3), which practically limits ALS
capabilities to explore the space of possible solutions rapidly and/or thor-
oughly.

This chapter presents a formal verification-based pre-processing meth-
odology that renders verification during ALS obsolete. Our methodology
characterizes the search space a priori into a region that is guaranteed to
contain valid AxCs regarding quality and a region for which validity is yet
unknown. Our technique employs formal verification on a novel approxi-
mation miter that relates the global quality constraint of the circuit to the
candidates” local error bounds, which are typically known, e.g., through error
annotations in an approximate component library. Thus, our technique is
independent of the actually chosen approximation technique. Subsequent
ALS can then omit costly verifications and save runtime when searching in
a region of the search space that has been characterized as valid. However,
these reductions in formal verification runs have to be balanced against the
additional verifications needed in the preceding search space characterization
phase.

In summary, the major contributions of the methodology presented in this
chapter are:

* We present an approach that characterizes the search space and de-
termines local quality constraints for components of combinational
circuits prior to approximate logic synthesis and independent of actual
approximation methods.
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¢ We have implemented our method and present experiments with sev-
eral benchmark circuits that demonstrate the usefulness of our ap-
proach. Compared to a standard ALS flow, our approach adds search
space characterization as a pre-processing step and achieves overall
speed-ups of up to 3.7x due to distinctly fewer verifications during
ALS.

¢ The implementation of our methodology is open-source and publicly
available'.

The remainder of the chapter is structured as follows: Section 7.2 analyzes
related work and introduces our novel approach. Section 7.3 discusses our
methodology, including the approximation miter and a heuristic algorithm
to characterize the search space. Our experimental results are discussed in
Section 7.4, and Section 7.5 concludes the chapter.

We have presented our work-in-progress at a workshop [109]. However,
the methodology and the implementation considerably matured over time,
and thus, this chapter relates only partially to the workshop version. In fact,
the matured approach is accepted for a conference publication [107], and this
chapter follows and largely cites the conference publication.

My colleague, Tobias Wiersema, developed the concept of the approxima-
tion miter. My contribution to the work comprises of the development of
the methodology and its implementation. In addition, my student research
assistant, Lucas Reuter, included the methodology in an automated tool flow
that based on the outcome of the System Design Team Project [36] that I have
supervised.

7.2 RELATED WORK AND NOVEL APPROACH

ALS starts from an input circuit with user-defined global quality constraints
(GQCs) imposed upon the design’s primary outputs (POs). A GQC can be
formulated as GQC := ¢(AxC) < Tggc with e(AxC) being the AxC’s error
at the PO(s), e.g., using the worst-case (WC) error metric, and Tggc being
the error bound. Initially, the input design is analyzed for the candidates
to be approximated, which can be complex processing units, arithmetic
components, or cuts in a gate level netlist.

Figure 7.1 shows an example circuit where boxes indicate six primary
inputs (PIs) and one primary output, respectively, and the set of nodes
O ={Co, Cy,C3,C3, C4} models the components or operations in the design.
For both components in the given candidate set Cset ={Co, C1} there are ap-
proximated versions available in a library. Each candidate can thus implement
its original operation or one of the eight available approximated versions,
resulting in a total number of possible AXCs Nayxcs = Hcecset Ncomps(c) =
92 — 81, with Ncomps(c) being the number of available implementations for
candidate ¢ € Cge (cf. Equation (3.1) in Section 3.4.2).

1 https://git.uni-paderborn.de/vegaxc/vegaxc
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7.2 RELATED WORK AND NOVEL APPROACH

The most often used approach in ALS is to set up a search or an opti-
mization problem and execute a search—generate—verify—evaluate cycle to
explore the search space starting from the original, exact design and iter-
atively expanding towards AxCs with lower quality yet potentially higher
improvements in terms of the target metric. In our example, the first iteration
could explore and generate the AxCs (ido, C1,,,) and (Co,,,,, ido), i.e., the
AxCs where each candidate implements the component with the next-lowest
quality from the library.

While the target metric is sought to be optimized, the quality states an
user-defined constraint and thus has to be satisfied to represent a valid AxC.
Although the quality of the individual approximated candidates is known,
the resulting quality at the design’s PO(s) is unknown, as the correlation
between the local error at the candidates and the global error of the design can
be quite involved depending on the actual circuit and its types of operations.
Consequently, the verification step is inevitable to determine the AxC’s
validity. As verifications are usually very costly [90, 102], ALS can endure
long runtimes or has to spare a thorough search space exploration.

In fact, for the verification, the vast majority of related work focuses on
the error analysis of generated AxCs, i.e., the quality verification is done
a posteriori to generating the AxC. MACACO [95] computes various error
metrics for AxCs subjected to functional and timing-induced approximations.
Chandrasekharan et al. [23], VaSi¢ek [90], and Abed et al. [1] employ formal
methods to determine errors of AxCs precisely. While Vasicek [go] and Abed
et al. [1] consider adders and multipliers in their experiments, Chandrasekha-
ran et al. [23] analyze different error metrics for more complex sequential
AxCs; some experiments, however, failed due to the problem’s complexity.
Sengupta et al. [80] presented a method to determine an AxC’s error by
propagating the probability mass functions of the individual candidates to
the AxC’s primary output. The candidates, however, are limited to adders
and multipliers.

We propose a novel approach to ALS that characterizes the search space
a priori to the search—-generate-verify—evaluate cycle. The approach utilizes
formal verification and aims at identifying a part of the search space for
which we can guarantee that it contains only valid AxCs; the validity of the
AxCs in the residual search space remains unknown. Through this a priori
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Figure 7.1: Exemplary design with approximate components. Taken from [107].
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knowledge, ALS can omit verifications, which is desirable for ALS runtime
reduction [102].

Instead of performing verifications on concrete candidate versions, we
reduce each candidate to the error at their local outputs since this is their
only relevant property regarding our characterization. Similar to the global
quality constraint for an AxC, we introduce local quality constraints (LQCs)
for each candidate. As already mentioned, whether a given candidate adheres
to a specific LQC is generally known, for example, through worst-case error
annotations in the libraries or since the employed approximation technique
provides a quality parameter. Using formal verification and a set of LQCs for
the candidates, our method will ascertain the worst-case error propagation
of accordingly constrained local outputs to the primary outputs of the circuit.
If we can formally prove that no GQC violation exists for the set of LQCs
imposed upon the candidates” outputs, then we call the conjunction of these
LQCs a valid LQC combination. In other words, independent of approximation
techniques, our method guarantees valid AxCs if each candidate adheres
to its LQC defined in a valid LQC combination. Note that usually multiple
valid LQC combinations exist that distribute the global error slack differently
among the candidates in the design. If the valid LQC combinations are
known for a given circuit and global quality constraint, ALS can simply
check whether the currently selected implementations for the candidates
satisfy the LQCs, instead of having to formally verify the overall design.

Assume, for the example in Figure 7.1, that it is known that the GQC :=
€(AxC) < Tgqc cannot be violated if the AxC satisfies the valid LQC combi-
nation LQCc¢, := €(Co) <4ALQCc, = €(Cy) <4, where ¢(c) is the quality
of candidate ¢ € Cget. Then, the AXC represented by (Co = ido, C; =id;),
which corresponds to the candidate qualities €(Cp) < 1 and €(Cy) <3, is
known to be valid.

Valid LQC combinations can be determined either via our approach based
on formal verification or, alternatively, by analytical error analysis. TDApprox
from Ansaloni et al. [5] is an example of an analytical approach. In their
work, candidates are nodes in a data flow graph (DFG) representation of the
input design and are limited to addition, subtraction, multiplication, and
division. For these node types, the authors define a set of computations to
determine the error at the node’s output, given the errors at the node inputs.
Using these manually-specified propagation rules, the error at the DFG’s
output can be expressed with the errors of the candidates. The key difference
between TDApprox and our method is that TDApprox analyzes the DFG
of the design, while our method operates on the logical representation of a
custom approximation miter (see Section 7.3.2) to verify a satisfiability (SAT)
problem.

On the one hand, operating at a higher level of abstraction, such as the
DEFG, potentially enables shorter runtimes; on the other hand, a higher level
of abstraction sacrifices details. In fact, Vasi¢ek [go] stated that construct-
ing accurate yet simple mathematical models for analytical approaches at
gate level is currently impossible, as discussed in Section 2.1.1. Furthermore,
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TDApprox relies on a manually-specified set of error propagation rules to
perform the error analysis, which limits its generality by requiring the in-
put design to only comprise supported operations. Our verification-based
method overcomes these limitations. Our approach is independent of ap-
proximation methods and spares manually-specified error propagation rules
since the propagation is inherently encoded in the design’s logic, which can
be represented on the gate level or the register-transfer level (RTL) as we
operate in the satisfiability modulo theories (SMT) domain (see Section 2.2).
Consequently, our approach supports arbitrary operations. The advantage
of supporting arbitrary operations becomes evident when an input design
is approximated incrementally, i.e., an iteration’s starting design already
contains approximated (or arbitrary) operations. In this case, TDApprox
requires propagation rules for the specific approximate functions.

7.3 SEARCH SPACE CHARACTERIZATION VIA FORMAL VERIFICATION

We want to characterize the search space in the sense that we identify a
part of it for which we can guarantee that it contains only valid AxCs. The
most important step to achieve this is to verify whether a specific set of
LQCs, to which the candidates adhere, enforces the AxC to be valid. To this
end, we introduce and set up a custom approximation miter that indicates
GQC violations in case a solver for SMT can prove the satisfiability of the
miter’s formula. If the SMT solver returns unsatisfiability, the AxC is valid.
In contrast to commonly used approximation miters [23], our novel miter
considers no specific implementation or approximation for the candidates
in the AxC. Instead, our miter exposes the outputs of the candidates as new
primary inputs, turning them into free variables for the SMT solver. In other
words, we disconnect the candidates” outputs from the design and give the
SMT solver full control to assign — in principle — any possible bit pattern
instead. Naturally, this subsumes every possible approximation technique
applied to the candidates, and thus, makes our approach independent of
concrete approximation techniques.

We add LQC combinations as assertions to the formula to be given to
the SMT solver. These LQC combinations limit the error between the pre-
cise output values of the original candidate and the output values of the
approximated candidate, which the SMT solver assigns. In this way, can-
didate outputs violating the LQCs are prevented from satisfying the miter,
and we have thus reduced the verification problem from identifying all
valid combinations of all possible candidate approximations to finding valid
combinations of constraints for the newly added input signals.

In the following, we first describe the preparation of the AxC for its usage
in the novel approximation miter, followed by the presentation of that miter.
Finally, we discuss an algorithm for determining LQC combinations that will
result in valid AxCs.
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7.3.1 Augmenting the Candidates

Before forming the SMT formula of the approximation miter, we augment the
candidates of the design by extending them with additional logic and primary
inputs. Figure 7.2 shows the design from Figure 7.1 whose candidates (Cset =
{Co, C1}) have been augmented to Caygset = {COAug’ C1Aug}. For ¢ € Cget,
the signals e(c) and LQC, represent the errors of candidates and the LQCs,
respectively. The primary inputs S¢, ¢ € Cgey, are the free variables for the
SMT solver that override the candidate outputs. The figure conceptualizes
how the LQCs constrain the primary inputs by merging the signals of the
LQC and the corresponding primary input. It has to be noted that these
signals are only used in the verification environment, i.e., in the SMT formula,
but not in the physical implementation of the AxC. Hence, they are indicated
by dashed lines in Figure 7.2.
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Figure 7.2: Extended example design showing the augmented candidates with their
additional primary inputs and their formal signals e(c) and LQC¢,c €
Cset. Taken from [107].

Figure 7.3 details the internals of the augmented candidate Co,,,, from
Figure 7.2. The augmented PI of the candidate S¢, is directly connected to
the candidate’s output. Thus, the SMT solver fully controls the candidate’s
functionality through setting Sc,, turning the actual candidate into a black
box. The original candidate Cy is still embedded, however, and forms together
with the local error computation (the WC error in the figure) the augmented
candidate Co,,,,. The local error computation compares the precise result of
the candidate with the override signal provided by the SMT solver.
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Figure 7.3: Detailed augmented candidate. Taken from [107].
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The resulting error €(c) is used to formulate the assertions on the LQCs
and Figure 7.3 visualizes exemplarily the concept of constraining a candi-
date’s output via an LQC. When LQCc¢, := €(Cp) < 5 is asserted in the SMT
formula to constrain the candidate’s WC error, it effectively forces the differ-
ence between the output of Cy and the signal Sc, to be at most 5, since the
solver has to satisfy the asserted LQC in order to satisfy the SMT formula.
The solver consequently excludes assignments violating the LQC since the
SMT problem cannot be satisfied otherwise.

By replacing the candidates with empty black boxes and constraining the
error ranges at their outputs via the LQCs in terms of the candidates” precise
results, we effectively enable error propagation through the circuit in a way
that captures all possible cancellation and amplification effects between the
candidates for any approximations the candidates might introduce. Impor-
tantly, candidates are not limited to a certain functionality, e.g., addition or
multiplication, but can implement any functionality, i.e., arithmetic or logical
functions, and the augmentation only affects the candidate’s internals while
the circuit’s general structure is maintained. In the approximation miter, the
augmented design represents the AxC that is verified against the original
design.

7.3.2 Approximation miter

Figure 7.4 shows the conceptual structure of our custom approximation miter.
The miter comprises of the augmented circuit as shown in Figure 7.2, the
original circuit, and a module to compute the WC error e¢(AxC) between
the outputs of the two circuits. As already described, the candidates in the
augmented circuit are extended by new PIs (S¢, ¢ € Cset), which are directly
connected to the outputs of the candidates and are free variables for the SMT
solver.
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Figure 7.4: Approximation miter. Taken from [107].

Assertions add LQC combinations to the miter’s formula to constrain
the local errors of the candidates. The miter encodes the verification prob-
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lem in the form of the logical expression ~GQC ALQCC, where the LQC
combination LQCC is defined as the conjunction of LQCs for all candidates
LQCC = A cc.., LQCc.? Upon verification, the SMT solver seeks to find a
satisfying assignment to this expression by properly setting the free variables,
i.e., the original PIs and the additional PIs S.. In order for the expression
to be satisfiable, the LQC combination has to be satisfied while the GQC
has to be violated. Consequently, the solver will only consider output values
for the candidates that satisfy the respective LQCs in the LQC combination.
If the solver proves the expression unsatisfiable, any AxC adhering to the
asserted LQC combination is guaranteed to be valid, regardless of the applied
approximation technique for the candidates.

7.3.3 Search Space Characterization Algorithm

In order to generate satisfying assignments for the approximation miter, the
SMT solver deals with a search space spanned by possible assignments to
the original and newly added PIs. While assigning values to the original
PIs covers all possible circuit inputs, we focus the discussion on the newly
added PIs, which are controlled by LQCs and corresponding assertions in
the miter formula. For our considerations, we can raise the abstraction level
when discussing search spaces to the local errors at which the LQCs are
defined. Then, for the two candidates, Cyp and Cy, in our running example,
the search space is spanned by the candidate’s errors, €(Cp) and €(Cy), as
depicted in Figure 7.5. Each point in such a space fixes the candidate’s local
errors and forms the root of a sub-search space in which the SMT solver is
free to assume any bit pattern for the original Pls.

eC)A _ _ _ _ _ ___ _ LQCChy £(Cy)
Exact Pareto |
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s —,\l"QCCa | Laceg,
i LQCCy I\ LQCCInvl | Il\
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! RN ! ] | ~ LQCCq

L [N > »

&(Co) e(Cy)
(a) LQCCq dominates LQCCyp and LQCCrpy, (b) Visualization of our algorithm.
is invalid.

Figure 7.5: Search space example with two candidates, Co and C;. The candidates’
errors, €(Cp) and €(Cy), define the search space’s dimensions. Taken
from [107].

This search space can generally be divided into a valid and an invalid
region, with the valid region being the union of all possible valid LQC
combinations. One observation when working with error metrics formulated
as error bounds, such as the WC error, is that such metrics include, or
dominate, stronger bounds inherently. For example, the WC error threshold

2 N LQCCs can be verified jointly via their disjunction ~GQC AV <;n LQCC;.
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of e <5 is included in € < 7. Thus, when a specific LQC combination is
verified to lead to a valid AxC, we know that all LQC combinations with
stronger error bounds will also lead to valid AxCs. The contrary is obviously
not true, i.e., an LQC combination that leads to an invalid AxC since the SMT
solver can find a satisfying assignment does not give us any information
about LQC combinations with stronger error bounds. Thus, a verified LQC
combination characterizes a valid region of the search space as a hypercuboid
of dimension |Cse¢| with the origin as one edge.

Figure 7.5a shows the search space for our two candidates with the valid
region indicated in gray. LQQCqx represents the LQC combination with
maximum errors for the candidates, LQCCr,,, an invalid LQC combination,
and LQCC, and LQCCy valid combinations of local error bounds. LQCC,
dominates LQCCy, since the error bounds for the LQCs in LQCC, are not
smaller than the corresponding bounds in the LQC combination LQCCy,
and at least one LQC in LQCCq has a higher threshold than LQCCy. Using
this dominance concept, we can define a Pareto frontier of non-dominated
LQC combinations that delineates a border between the valid and invalid
regions of the search space.

Finding the exact Pareto frontier in the search space is an intractable
task. Thus, we propose a simple, low-overhead algorithm that verifies a
limited number of LQC combinations to keep the runtime short while still
characterizing large-enough valid regions to speed up subsequent ALS.
Algorithm 7.1 outlines our methodology and takes the exact circuit O, the
candidate set Cset, and the GQC as inputs. During execution, the algorithm
verifies different LQC combinations by adding the corresponding assertions
to the miter and records the validity of LQC combinations.

Firstly, the algorithm augments the candidates in the design and constructs
the approximation miter AM in Lines 3 and 4. Secondly, the algorithm iterates
over the candidates c € Cse¢ to determine a maximally allowed error for each
candidate in Line 5 to Line 13. In order to determine the maximal error of
each candidate, Line 6 generates an LQC for each candidate ¢, € Cget \ ¢ that
enforces error-free candidates. Then, starting from a maximum error bound
for a candidate, Lines 8 to 13 verify the error bounds in descending order
until the SMT solver reports unsatisfiable. As the unsatisfiable combination
dominates all remaining LQC combinations of that candidate, the valid LQC
combination is added to the set of dominating LQC combinations LQCC gom
and the algorithm continues with the next candidate. Figure 7.5b depicts the
valid LQC combinations LQCCy and LQCC; of the respective candidates.
Since the number of possible error bounds grows exponentially with the
candidate’s output bit width, Line 9 only encodes the powers of two into
the LQC combinations to reduce the number of verifications and establish a
fine-grained resolution for small error bounds. For example, to determine
the maximally allowed error for a candidate with a 4-bit unsigned output,
our algorithms employs the WC error bounds 1, 2, 4, and 8, while enforcing
other candidates to be error-free.

111



112

SEARCH SPACE CHARACTERIZATION FOR APPROXIMATE LOGIC SYNTHESIS

Algorithm 7.1: Pseudo-code of our search space characterization.

Input: Exact circuit O, candidate set Cset, global quality constraint GQC
Output: Dominant LQC combinations LQCCsgqom
1 Function characterize( O, Cset, GQC):

2 LQCCsgom < 0 // set storing dominant LQC combinations
3 AxC < augmentCandidates( O, Cget )
4 AM < constructApproximationMiter( O, AxC, GQC)

/* Find maximum error of the individual candidates */
5 foreach c € Cset do
6 LQCCz = Ac.ec. o \c €lcz) ==0 // enforce zero error
7 bw <+ bitwidth(c) — 1
8 while bw > 0 do
9 LQCC + LQCC, Ae(c) < 2w // consider power of two
10 if verify( AM,LQCC ) == unsatisfiable then
11 LQCCsgom < LQCCsgom ULQCC
12 break
13 bw +— bw — 1

/* Find maximum errors on diagonal of hypercube */
14 bw + min(logz (LQCCqom)) // find min. error bound among candidates
15 while bw > 0 do
16 LQCC + Acec,,, €lc) <2°W
17 if verify( AM,LQCC ) == unsatisfiable then
18 LQCCsgom « LQCCsqom ULQCC
19 break
20 bw «— bw—1

/* Return dominating LQC combinations */
a1 | return LQCCsgom

Lastly, our algorithm considers the hypercube with edge length set to the
minimum of all maximally allowed error bounds for the single candidates
in Line 14, and verifies LQC combinations along the hyper diagonal in
descending order of error bounds from Line 15 to 20. For example, for the
two candidates shown in Figure 7.5b, the maximally allowed error bound of
C; is smaller than that of Cp, and thus, the search starts at LQCCs and finds
the dominating valid LQC combination in LQCCp. Line 16 limits again the
error bounds to powers of two to reduce complexity. Upon termination, the
algorithm returns the set of dominating LQC combinations LQCgom-

The choice of searching the diagonal of the hypercube is a heuristic, and
naturally more involved approaches exist that more accurately characterize
the search space. However, the presented approach is efficient as it performs
at most mincec,,, (bw(c)) +3_.cc.., bw(c) verifications with bw(c) being
the bit width of candidate ¢ € Cset, and returns (|Cset| + 1) valid LQC
combinations. The search-generate-verify—evaluate cycle of subsequent ALS
can now omit the verification step for the combinations of local error bounds
that are dominated by any of these valid LQC combinations.
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7-4 EXPERIMENTAL RESULTS

We have implemented our methodology in an automated open-source tool
flow which expects a RTL or gate level input design in Verilog. Initially,
our flow augments the candidates and constructs the approximation miter
using custom scripts and Yosys [110] passes. A Python script implements our
algorithm from Section 7.3.3 and translates the miter into SMT-LIBv2 [11]
standard format. The flow then utilizes Yosys” smt2 back-end to interface the
SMT solver Boolector [66], which performs in incremental mode and utilizes
CaDiCaL [16] as underlying SAT solver.

Subsequent to our flow, we employ the CIRCA framework (see Chapter 3)
to perform a search-based ALS using hill climbing search for search space
exploration, precision scaling and AIG rewriting [22] as approximation tech-
niques, and ABC’s [14] if command for look-up table mapping to evaluate the
hardware area. Our ALS setup omits verifications for AxCs that are known
to lie within the valid portion of the search space; otherwise, ALS invokes
Boolector to check the AxC’s validity.

Our benchmark set comprises of four circuits of which one was altered in
the number of candidates to evaluate scalability, resulting in six benchmarks
in total. We have selected arithmetic components as candidates and used
the worst-case error as global quality metric, which we varied from 0.5% to
10.0% of the maximal possible output value. A server with 32 Gigabyte main
memory and an Intel® Xeon E5-2609@2.5GHz has been employed to run the
experiments.

Figure 7.6 compares experimental results for the standard ALS (denoted
ALS) with the ALS that uses our methodology as pre-processing step (denoted
Our), where the orange bar indicates the portion of the time spent on search
space characterization. The plot reveals that performing our methodology
prior to ALS is beneficial for all but one combination of benchmark and WC
error. We observe speed-ups of up to 3.7x (cf. mac, WC error 10.0%) and, for
example, for basic_sad_4 with a WC error of 2.5%, the runtime decreased
from 480s to 240s. The time required for search space characterization ranges
between 1% and 38% of the total runtime and averages over all experiments
to ~11% of the total runtime. Most importantly, it can be seen that this
additional time is compensated during ALS by omitting verifications. Merely
for basic_sad_6 with a WC error of 2.5%, the total runtime increases by
113s since the verification in the characterization phase shows exceptionally
long runtimes; in fact, a single SMT query caused the increased runtime in
this case by accounting for 360s of the 410s of the characterization phase’s
runtime.

Table 7.1 details our experimental results and shows for each benchmark
the number of original PIs and POs, the number of candidates, the number
of added PI bits for verification, and the total number of possible LQC com-
binations in the search space. Furthermore, the table lists for each benchmark
and WC error combination the number of verifications performed during
ALS: first the number of verifications skipped due to our methodology, then
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Figure 7.6: Runtimes of ALS and our methodology. Taken from [107].

the number of verifications performed resulting in valid AxCs, and, finally,
the total number of verifications. We can interpret the ratio between skipped
verifications and valid AxCs as an indicator for our method’s coverage of
valid AxCs on the search path taken by the search method. For our bench-
marks, this ratio ranges between 50% and 100%. Thus, we conclude that,
even though our search space characterization algorithm is kept simple, the
coverage is sufficient to achieve significant reductions in runtime.

The achieved speed-up depends on the benchmark and the corresponding
difficulty it poses for verification, the WC error bound, and also on the num-
ber of candidates. For analyzing scalability with the number of candidates for
a given benchmark, we varied the number of candidates for basic_sad. As
expected, more candidates improve the area savings at the cost of increased
complexity, indicated by increasing numbers in Figure 7.6 and Table 7.1.
However, for all numbers of candidates, we have been able to achieve speed-
ups for all but one WC error bound. In fact, our approach renders 55% to
100% of the verifications obsolete for the valid AxCs, reducing the runtime by
55%, 36%, and 15% on average for two, four, and six candidates, respectively.

Additionally, Table 7.1 displays the number of synthesized AxCs. As it
can be seen, the number of synthesized AxCs is generally much larger
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Table 7.1: Experimental results. Taken from [107].

GQC: WC bound [%] 0.50 1.50 2.50 5.00 10.00

adder_tree (PIs: 8 x 8 bit; PO: 11 bit; 3 candidates)
#add. PI bits: 27; Total #LQC combs.: 1.34 x 108

#Verifications' 4/60100 5/11Q21) 6/12Q09 7/1524) 8/ 18(28)
#Syn. AxCs 26 41 44 53 61
Rel. area [%] 88 79 74 68 62
#LQC combs. 45 753 4961 36,033 2.75 x 10°

basic_sad_2 (PIs: 18 x 8 bit; POs: 13 bit; 2 candidates)
#add. PI bits: 22; Total #LQC combs.: 4.19 x 10°

#Verifications' 4/4@4) 4/4@4) 4/44) 4/4@4) 4/4@4)
#Syn. AxCs 12 12 12 12 12
Rel. area [%] 98 98 98 98 98
#LQC combs. 321 1153 4353 16,897 66,305

basic_sad_4 (PIs: 18 x 8 bit; PO: 13 bit; 4 candidates)
#add. PI bits: 43; Total #LQC combs.: 8.80 x 1012

#Verifications' 6/11(12) 11 /18019 16/18(19) 17 /24 (26) 18/ 26 (27)
#Syn. AxCs 60 88 88 107 113
Rel. area [%] N 87 86 79 78
#LQC combs. 6657 83,713 1.19% 108 1.79x 107 277 x 108

basic_sad_6 (PIs: 18 x 8 bit; PO: 13 bit; 6 candidates)
#add. PI bits: 61; Total #LQC combs.: 2.31 x 1018

#Verifications' 10 /17 (28) 17 /21(26) 18 /29 (33) 23/ 34 (46) 24 /35 (35)
#Syn. AxCs 166 190 237 258 259
Rel. area [%] 87 83 77 71 65
#LQC combs. 15,793 241 %107 1.29%x107 754x10'0 4.61x 1012

mac (PIs: 2 x 8 bit, 1 x 16 bit; PO: 17 bit; 2 candidates)
#add. PI bits: 33; Total #LQC combs.: 8.59 x 107

#Verifications' 13/14(15) 14/15(16) 15/16(16) 16 /16 (16) 16 /16 (16)
#Syn. AxCs 32 34 36 36 36
Rel. area [%] 87 86 86 86 86
#LQC combs. 66,561 264%x10°  1.05x10° 420x10° 1.68x 107

wallace_tree (PIs: 2 x 8 bit; PO: 16 bit; 4 candidates)
#add. PI bits: 32; Total #LQC combs.: 4.29 x 107

#Verifications' 18 /25(25) 18 /25(25) 18 /25(25) 18/ 25(25) 18/ 25(25)
#5Syn. AxCs 116 116 116 116 116
Rel. area [%] N 91 21 91 91
#LQC combs. 173 189 221 285 397

t #verifications skipped / #verifications resulting in valid AxCs (#total verifications).
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than the number of verifications since the hill climbing search expands the
search space by synthesizing all successor AxCs of a given AxC and then
only performing verifications until the valid successor with the largest area
reduction is found. Despite the high number of synthesis steps for evaluating
AxCs, it is the verification time that dominates the overall runtime; our
reduced runtimes reflect this, since we achieve the reduced runtimes by
omitting verifications only.

The rows #LQC combs. show the total number of valid LQC combina-
tions (dominating and non-dominating) that have been identified during
search space characterization, i.e., the hypervolume of the portion of the
search space characterized as valid. Taking this number as an estimate for
the search space’s real valid region and comparing it to the number of syn-
thesized AxCs, we can observe that the hill climbing search only explores
a fraction of the valid search space and even gets stuck rather early in local
minima for the benchmarks mac and wallace_tree.

For the benchmarks where hill climbing found a local minimum, we
experimented with a simple yet effective ad hoc strategy to overcome the local
minima to improve the achieved savings. We followed jump search’s (see
Chapter 4) assumption, that a higher degree of approximations leads to
improved savings, and generated AxCs from the valid LQC combinations
directly. Table 7.2 shows the results of the experiment and demonstrates
that the ad hoc approach reduces the area significantly while even achieving
lower overall runtimes compared to hill climbing due to fewer synthesis and
verification steps. The experiment thus shows that our approach allows to
quickly assess potential in savings by sub-sampling the valid search space.

Table 7.2: Experimental results for generating the AxCs from the valid LQC combi-

nations.
WC bound [%] 0.50 1.50 2.50 5.00 10.00 0.50 1.50 2.50 5.00 10.00
mac wallace_tree
Runtime [s] 40 46 39 24 20 122 56 54 53 52
#Syn. AxCs 13 13 13 13 13 65 65 65 65 65
Rel. area [%] 8 8 81 6l 49 9 79 79 78 72

7.5 CONCLUSION

In this chapter, we have presented a formal verification-based methodology
to determine combinations of local quality constraints for candidates that
guarantee valid approximate circuits. Our approach is independent of em-
ployed approximation methods and subsequent approximate logic synthesis
flows can exploit the provided information to reduce runtime by omitting
costly verifications. We have detailed our method and shown experimental
results that demonstrate the benefits of an a priori search space character-
ization. Compared to a standard search-based ALS flow performing a hill
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climbing search, we achieve speed-ups of up to 3.7 x using our methodology.
For the benchmarks that got stuck in local minima, we furthermore exploited
concepts from jump search to improve the achieved area savings while simul-
taneously reducing the runtime; thus, demonstrating the capabilities of our
methodology for exploring the search space efficiently.
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CONCLUSION

Research from academia and industry has shown that approximate comput-
ing is a practical design paradigm to react to the slow-down and the eventual
end of performance improvements through technology scaling. Approximate
computing exploits the inherent resilience of many applications against inac-
curacies and errors by trading off an application’s quality against a target
metric to gain performance improvements. Furthermore, the employed ap-
proximation methods are complementary and can be applied at all levels of
the computing stack — from applications and programming languages down
to semiconductor technology — to all system components — processing units,
storage as well as communication components.

This dissertation has focused on approximate computing on the hardware
level, where approximate computing is referred to as approximate logic
synthesis (ALS) to describe the process of generating approximate hardware
components or approximate circuits (AxCs). We have comprehensively con-
sidered automated search-based ALS at register-transfer level and logic level
and have modeled the ALS process with four main steps: search, approximate,
verify, and estimate. Figure 8.1 visually concludes this dissertation and high-
lights the contributed methodologies, techniques, and approaches to the ALS
process.

CIRCA framework

(Chapter 3)
MUSCAT
Chapter 7 ( (Chapter 5)
4 \ \ Approximate logic synthesis
Register-transfer \ -
Search space Approximate
% characterization Search Venfy
2 Logic : \
5 Estimate
T
Jump search Proof-carrying AxCs
L (Chapter 4) (Chapter 6)

Figure 8.1: Overview of approximate logic synthesis in the computing stack and the
dissertation’s contributions.
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In more detail, this dissertation presented the following methodologies
and approaches:

¢ We have presented CIRCA, our general, modular, compatible, extensible,
and open-source ALS framework. CIRCA’s design is flexible, fully
configurable, and provides an environment for implementing and
evaluating different methods in any of the steps of the ALS process.
We have demonstrated that CIRCA’s flexibility fosters comparative
studies and contributes a foundation for ALS research in general; in
fact, CIRCA has provided the technical foundation for the research in
this dissertation.

* We have presented jump search as a methodology to significantly re-
duce the runtime of approximate logic synthesis. Jump search first
acquires candidate-specific information in the form of impact factors in
a pre-processing phase. Secondly, jump search plans a path through
the search space to select a set of AxCs-of-interest using a heuristic
function that incorporates the impact factors and completely omits
evaluations via synthesis and verification. Finally, jump search per-
forms a binary search on the AxCs-of-interest to minimize the number
of invoked evaluations, which results in a significantly reduced run-
time; yet our experiments have shown that the achieved area savings
remain comparable to state-of-the-art approaches. With jump search,
we have demonstrated that incorporating meaningful information into
the search significantly impacts the ALS process and can considerably
reduce the workload.

¢ We have proposed the approximation technique MUSCAT that aug-
ments a gate level netlist by cutpoints and utilizes the concept of minimal
unsatisfiable subsets to simplify the netlist’s logic to create AxCs that
are valid-by-construction regarding their quality constraints. MUSCAT
has shown that modern formal verification engines can be leveraged
for finding optimal solutions during ALS which outperform state-of-
the-art methods. Furthermore, we have demonstrated in a case study
that MUSCAT also qualifies as an approximation technique at register-
transfer level to approximate complex designs at significantly lower
runtimes due to the raised level of abstraction.

¢ With the concept of proof-carrying approximate circuits, we have com-
bined the fields of approximate computing and proof-carrying hard-
ware to enable consumers of approximate intellectual property (IP)
cores to verify the core’s quality at a fraction of the runtime of a full for-
mal verification. In this way, consumers overcome trust issues against
the producer of the IP core and have a guarantee about the quality of
the purchased IP core. This dissertation has detailed the concept and
the experimental results have demonstrated that proof-carrying AxCs
significantly reduces the consumer’s verification workload.

* Finally, we have presented a novel methodology to characterize the
search space prior to ALS. Our formal verification-based methodology
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identifies regions in the search space that are guaranteed to contain
valid AxCs only, i.e., AxCs that satisfy the quality constraints. The
approach is independent of the subsequently employed approximation
techniques and allows ALS to omit costly verifications to reduce overall
runtime, as our experimental results have shown.
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The research in this dissertation has investigated different aspects of approxi-
mate logic synthesis (ALS) and has revealed potential future directions. The
future directions are manifold and concern the individual work and the
complementation of work:

¢ Common future work among the research projects includes investigat-
ing different error metrics, as this dissertation mainly considered the
worst-case error metric. Especially when formal verification engines
further advance and offer improved performance, more complex error
metrics can be considered for real-world applications — maybe even
average (or statistical) error metrics.

* A few research groups [25, 113, 119] investigated complementary ALS
over multiple levels of abstraction. However, the conducted work only
considers a limited set of approximation techniques and a unidirectional
execution flow, i.e., backtracking to revoke approximation decisions
on higher levels is not supported. Furthermore, identifying suitable
candidates on the different abstraction levels and selecting matching
approximation techniques remain open questions.

A student project group that I supervised [32] laid a foundation in the
direction of cross-layer ALS by designing and implementing a CIRCA-
based ALS setup. The designed tool flow is fully configurable, spans all
hardware levels, supports backtracking, and allows for analysis meth-
ods in-between ALS at different levels, e.g., to identify candidates or
acquire circuit-specific information to guide ALS at the next abstraction
level. The first experimental results followed the previously published
work in this field and showed that complementary ALS is indeed bene-
ficial. However, the ALS flow lacks a comprehensive methodology for
identifying candidates, selecting approximation techniques best suited
for a candidate, or controlling the backtracking to revoke previous ALS
decisions.

Jump search’s impact factors, for example, could guide candidate
selection, and, in fact, initial experiments suggest that pruning the set
of candidates based on the impact factors can reduce ALS” complexity
without sacrificing significant improvements [21]. The selection of a
suitable approximation technique for a candidate requires a thorough
evaluation of existing approximation techniques to identify techniques
that work best for a given candidate at a specific level of abstraction.
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¢ Future work in jump search includes investigating new impact factors

on different metrics and low-cost methods for determining them, e.g.,
impact factors for power or energy consumption.

Additionally, planning multiple paths through the search space could
improve the outcome’s performance. However, parallel processing of
the different paths is desirable to maintain short runtimes.

Our early research considered a post-processing phase in jump search
that utilizes the remaining time budget to fine-tune the approximate
circuit (AxC). However, the performed experiments have demonstrated
that the additional effort could be spared since, in most cases, the
runtime increased significantly while the achieved improvements stag-
nated.

For MUSCAT, our conducted case study on raising the level of abstrac-
tion to the register-transfer level (RTL) has shown promising results
and exposed the performance differences among formal verification
engines. Thus, future work includes assessing available formal veri-
fication engines and evaluating MUSCAT’s full potential at RTL by
conducting comprehensive experiments with complex designs.

Our methodology for formal verification-based search space charac-
terization shows a new direction of research to simplify subsequent
ALS, but, currently, the formal verification forms the bottleneck of this
approach. In fact, the verification problem can state a complex task that
increases with the design’s complexity and the number of candidates.
Thus, to reduce the verification complexity, an iterative approach could
be employed that characterizes the search space for a subset of the
candidates that are then approximated subsequently. The partially ap-
proximated circuit then forms the next iteration’s starting point. Initial
experiments in this direction have shown promising results to keep
runtimes reasonable and thus motivate the development to enable the
characterization of more complex designs.

Additional future work for the search space characterization com-
prises the evaluation of search algorithms to effectively explore the
search space’s valid region and the support of sequential circuits —
which is non-trivial. Finally, we envision the approach for runtime-
configurable circuits to define the search space regions that can be
operated safely at runtime. For example, MUSCAT could augment
a circuit with cutpoints and determine configurations for different
qualities. At runtime, a controller could then decide on the required
quality and enforce the local quality constraints by applying a cutpoint
configuration accordingly.
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