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Abstract

In this thesis we explore the security models, features, and construction of two
privacy-preserving attribute-based cryptographic primitives: attribute-based sig-
natures (ABS) and updatable anonymous credentials (UAC). The core of ABS
and UAC is the principle that authentication is based on personal information
encoded as certified attributes. Authentication is then a process that shows that
the attributes satisfy a policy without revealing the attributes. This gives users
sovereignty over their attributes (personal information) and provides expressive
authentication by the inclusion of policies.

The first part of this thesis focusses on ABS. An ABS scheme allows users to
authenticate messages in a privacy-preserving manner while proving that their
personal information encoded as attributes in their secret keys satisfy a policy.
Formally, the experiment-based security model of ABS in the literature includes
privacy of attributes and secret keys and unforgeability of signatures. We enhance
the security model of ABS schemes in this thesis in three ways. First we present
a strengthened experiment-based definition and second we show an ideal ABS
functionality secure in the universal composability framework (UC). The third
enhancement is that we show that our strengthened experiment-based definition of
ABS is equivalent to our ideal ABS functionality in UC. In detail, we strengthen
the existing experiment-based security definitions for privacy in the form of simu-
lation privacy that is stronger than the privacy definitions from the literature with
respect to general policies. Further, we show that two major existing generic ABS
constructions are simulation private and are therefore UC secure. Our enhanced
experiment-based security model also results in more general experiment-based
definitions that do not make implicit assumptions on the supported policies. Ad-
ditionally, we strengthen the experiment-based soundness definition of ABS in the
form of simulation-extractability and show a generic construction of ABS from
simulation-extractable signatures of knowledge. We then present an instantiation
based on succinct signatures of knowledge which is, to the best of our knowledge,
the first adaptively secure ABS scheme simultaneously achieving constant-size
signatures (three group elements) and arithmetic circuits as policies.

The second part of this thesis considers updatable anonymous credentials (UAC)
that allow users to authenticate to a service via anonymous credentials that en-
code and certify personal information as attributes. We present UAC as a practical
extension to the features of anonymous credentials as defined in the literature. In
UAC users can get privacy-preserving updates on their attributes by the issuer
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of the corresponding anonymous credential, i.e., the updates are hidden from the
issuer. Additionally, we apply the same techniques used to realize the privacy-
preserving updates to allow the issuing of anonymous credentials on hidden at-
tributes. Both features enable new and modern applications with regular updates
to users’ attributes that are not possible with anonymous credential systems from
the literature. We solve the challenges that hidden updates and attributes mean
for the experiment-security definitions of UAC with a simulation-based anonymity
definition and a specialized extractability definition. Furthermore, we present a
generic construction of UAC from blind signatures on commitments and argument
systems. To complement this, we provide an efficient instantiations in the random
oracle model (ROM) and a variant in the common reference string (CRS) model.
Finally, we combine the two parts of this thesis and discuss the connection of
UAC and ABS by presenting an instantiation of UAC from ABS with minimal
requirements on the ABS.
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Zusammenfassung

In dieser Dissertation untersuchen wir die Sicherheitsmodelle, die Eigenschaften
und die Konstruktion von zwei die Privatsphire wahrenden attributbasierten
kryptographischen Primitiven: Attribute-based Signatures (ABS) und Updatable
Anonymous Credentials (UAC). Der Kern von ABS und UAC ist das Prinzip,
dass die Authentifizierung auf personlichen Informationen basiert, die als zerti-
fizierte Attribute kodiert sind. Die Authentifizierung ist ein Prozess, der zeigt,
dass die Attribute eine Policy erfiillen, ohne die Attribute offen zu legen. Dies
gibt den Benutzern die Hoheit iiber ihre Attribute (personlichen Informationen)
und ermoglicht eine aussagekriftige Authentifizierung durch die Einbeziehung von
Authentifizierungsregeln.

Der erste Teil dieser Dissertation befasst sich mit ABS. Ein ABS Schema er-
moglicht es Benutzern, Nachrichten unter Wahrung der Privatsphére zu authen-
tifizieren und gleichzeitig zu beweisen, dass ihre persénlichen Informationen, die als
Attribute in ihren geheimen Schliisseln kodiert sind, eine Authentifizierungsregel
erfiillen. Formal umfasst das experimentbasierte Sicherheitsmodell von ABS in der
Literatur Privatsphdre (Privacy) von Attributen und geheimen Schliisseln und Un-
féalschbarkeit (Unforgeability) von Signaturen. In dieser Dissertation erweitern wir
das Sicherheitsmodell von ABS Verfahren auf drei Arten. Erstens prasentieren wir
eine starkere experimentbasierte Definition und zweitens zeigen wir eine ideale ABS
Funktionalitit, die in dem Universal Composability Framework (UC) sicher ist.
Die dritte Erweiterung ist, dass wir zeigen, dass unsere stérkere experimentbasierte
Definition von ABS dquivalent zu unserer idealen ABS Funktionalitéit in UC ist.
Im Detail verstiarken wir die bestehenden experimentbasierten Sicherheitsdefini-
tionen fiir Privacy in Form von Simulation Privacy, die stéarker ist als die Privacy-
Definitionen aus der Literatur in Bezug auf allgemeine Authentifizierungsregeln.
Dariiber hinaus zeigen wir, dass zwei wichtige existierende generische ABS Kon-
struktionen Simulation Privacy erfiillen und daher UC sicher sind. Unser erweit-
ertes experimentbasiertes Sicherheitsmodell fiihrt auch zu allgemeineren experi-
mentbasierten Definitionen, die keine impliziten Annahmen iiber die unterstiitzten
Authentifizierungsregeln machen. Zuséatzlich verstarken wir die experimentbasierte
Soundness-Definition von ABS in Form von Simulation-Extractability und zeigen
eine generische Konstruktion von ABS aus simulations-extrahierbaren Signatures
of Knowledge. AnschlieBend stellen wir eine Instanziierung vor, die auf kurzen Sig-
natures of Knowledge basiert und unseres Wissens nach das erste adaptiv sichere
ABS Verfahren ist, das gleichzeitig Signaturen konstanter Grole (drei Gruppenele-
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mente) und arithmetische Schaltungen als Authentifizierungsregeln erreicht.

Der zweite Teil dieser Dissertation befasst sich mit Updatable Anonymous Cre-
dentials, die es Benutzern ermdglichen, sich bei einem Dienst mittels Anonymous
Credentials zu authentifizieren, die personliche Informationen als Attribute kodieren
und zertifizieren. Wir préasentieren UAC als eine praktische Erweiterung der in der
Literatur definierten Funktionen von Anonymous Credentials vor. In UAC kdénnen
Benutzer vom Aussteller des entsprechenden Anonymous Credentials Aktualisierun-
gen ihrer Attribute unter Wahrung der Privatsphére erhalten, d.h. Aktualisierungen
sind fir den Aussteller verborgen. Dariiber hinaus wenden wir dieselben Techniken
an, die fiir die Realisierung der Aktualisierungen unter der Wahrung der Privat-
sphare verwendet werden, um die Ausstellung von Anonymous Credentials fiir
versteckte Attribute zu ermdglichen. Beide Funktionen ermdéglichen neue und mod-
erne Anwendungen mit regelméfligen Aktualisierungen der Attribute der Benutzer,
die mit Anonymous Credential Systemen aus der Literatur nicht moglich sind.
Die Herausforderungen, die versteckte Aktualisierungen und Attribute fiir die ex-
perimentbasierten Sicherheitsdefinitionen von UAC bedeuten, 16sen wir mit einer
simulationsbasierten Anonymitdtsdefinition und einer speziellen Extractability-
Definition. Auflerdem présentieren wir eine generische Konstruktion von UAC
aus Blind Signatures auf Commitments und Argument Systems. Erginzend dazu
zeigen wir eine effiziente Instanziierung im Random Oracle Modell (ROM) und eine
Variante im Common Reference String (CRS) Modell. Abschliefend kombinieren
wir die beiden Teile dieser Dissertation und diskutieren die Verbindung von UAC
und ABS, indem wir eine Instanziierung von UAC aus ABS mit minimalen An-
forderungen an die ABS vorstellen.
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Introduction

On a high level, authentication can be viewed as a process proving that some
statement is true. For example, if a user authenticates a document, the authentica-
tion proves that the user is the original author of the document, or that the user
approves the content of the document similar to a handwritten signature. Similarly
users can authenticate themselves towards a third party by showing their passport
or other identifying information. Hence, classical authentication also always means
identification. Usually in digital identity-based authentication at a service provider
(e.g., to get access) users also provide identifying information (e.g., mail address,
user name) and a secret (e.g., password). The service provider then stores this
information in a database together with other information (attributes) of the user,
e.g., affiliation, role, purchase history, favorite item, name, address, or access rights.
This allows the service provider to construct comprehensive profiles of users. Fur-
thermore, if multiple service providers collude, they can track users across several
services. This is a serious threat to the privacy of users. An additional threat is a
data breach. If an adversary gets access to the database it gets the private infor-
mation of users (e.g., name and purchase history of users, role and access rights of
employees) that can be harmful to users and to organizations alike.

A similar concern exists for authentication of documents instead of users. Usually
a document that is signed via a digital signature scheme is associated to and verified
with a public key of the user that signed the document. For example an employee
in a sales department is allowed to sign documents such as contracts with her
secret key. On verification under her public key it is publicly known who signed
the document and who is responsible. However, if such documents are leaked, then
not only the identities of the signers are leaked, but also the internal processes,
i.e., who is allowed to sign what kind of documents. Therefore, it is desirable to
sign documents in the name of the sales department and specific roles. This means,
attribute-based instead of identity-based.

In this thesis we consider privacy-preserving attribute-based cryptography that
enables authentication without identification via a practical feature set combined
with strong security models. Motivated by the observation that privacy-preserving
cryptography and its techniques are becoming more relevant for real-world ap-
plications we focus on practical features that are attribute-based and security
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notions that capture real-world threats. Constructing privacy-preserving schemes
and defining their security is a delicate task that has to balance strong security
definitions including privacy, the efficiency of schemes and the support of practical
features.

The two privacy-preserving attribute-based schemes that we are focussing on in
this thesis are attribute-based signatures (ABS) and updatable anonymous creden-
tials (UAC). They solve the above problems and more by loosening the connection
between authentication and identification, providing privacy and practical features.
At the core of ABS and UAC schemes is the principle that authentication is based
on personal information encoded as certified attributes. Attribute-based authen-
tication is then a process that shows that the attributes satisfy a policy without
revealing the attributes. This gives users sovereignty over their attributes and the
inclusion of policies leads to expressive authentication.

Attribute-based signatures extend digital signatures such that the link between a
signature and a user’s public key is removed. In ABS a user’s secret key that encodes
her attributes is issued by an authority. A user can sign message-policy pairs with
her secret key if the encoded attributes satisfy the policy. Here, a signature is
not verified according to a user’s public key instead it is verified with respect to
public parameters that are applicable to all users. If the signature is valid, a verifier
knows that the signer of the message-policy pair has a secret key that encodes
satisfying attributes with respect to the policy without revealing the secret key
or the attributes. Intuitively, the user’s attributes are hidden with respect to the
policy and all users that could have signed the message-policy pair, i.e., all users
with attributes (encoded in their secret keys) that satisfy the policy. This security
notion is called privacy in ABS.

An updatable anonymous credential (UAC) system is a privacy-preserving au-
thentication system for users that replaces the usual way of authentication where
users provide identifying information (e.g., mail address, user name) and a secret
(e.g., password). In UAC users receive credentials that certify attributes from an
issuer. Users can then anonymously authenticate to service providers (verifiers)
by proving possession of a credential without revealing anything about their at-
tributes except that they satisfy the access polices. Hence, in a UAC system users
authenticate themselves towards verifiers and in ABS users authenticate messages
(documents). The difference is that ABS schemes are signature schemes and UAC
systems are authentication systems for users. Besides anonymous authentication,
updatable anonymous credential (UAC) makes use of privacy-preserving techniques
to allow users to get credentials on their attributes without revealing them to the
issuer. Furthermore, UAC adds to the feature set of anonymous credential (AC) a
novel and practical feature such that users can get their attributes (certified in a
credential) updated by the issuer of the corresponding credential without revealing
the updates, their credentials, or their attributes. This enables practical applica-
tions with regular updates of users’ attributes such as updating a subscription
status, points, or number of semesters.

Constructing such privacy-preserving attribute-based schemes comes with addi-
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tional challenges compared to normal identity-based schemes. We not only have to
consider the privacy of users, but also a meaningful soundness notion for service
providers (verifiers). Soundness means here that a service provider can be sure that
users cannot authenticate without having the necessary credentials or secret keys.
Since the identity and attributes of users that generate signatures or authenticate
via credentials are hidden, we also have to consider security (soundness) against
colluding users that try to pool their attributes to satisfy policies. Besides security,
we also have to consider the efficiency of schemes (bandwidth, processing resources),
the supported attributes, and the expressiveness of the supported policies. These
considerations then lead to our concrete goals for ABS and UAC: security with
respect to a strong security model while supporting expressive policies combined
with practical features and efficiency.

1.1 Contribution

We show that ABS and UAC have security models and features that make them
ready to be used in real-world applications to protect user’s privacy.

In the first part of this thesis we enhance the security model of ABS by presenting
a strengthened experiment-based definition and ABS in the universal composabil-
ity framework (UC). By this, we show that ABS can be securely composed with
other schemes to form larger practical systems. In detail, we show the equiva-
lence of our strengthened experiment-based definition and our ABS model in UC.
To demonstrate the applicability of this result we show that two major generic
ABS construction from the literature are secure with respect to our strengthened
experiment-definition and therefore are secure in UC. Additionally, we present a
generic ABS construction from signatures of knowledge and a concrete instantiation
that features expressive policies combined with constant-size signatures.

UAC are the focus of the second part of this thesis. We present UAC as a practical
extension of AC that allows users to update their attributes encoded in credentials
in a privacy-preserving way. For this we present a formal definition of UAC and
experiment-based security definitions. We then show a generic construction of UAC
from building blocks that are commonly used to construct AC in the literature.
Furthermore, we present an efficient instantiation of the generic UAC construction.
Finally, we discuss the connection of UAC and ABS and present how to instantiate
UAC from ABS.

1.2 Outline

In Chapter 2 we present preliminaries including general notation and definitions of
building blocks that we use in this thesis. The main body of this thesis is presented
in two parts. In Part I we present enhanced security models for ABS and in Part II
we present UAC an extension of anonymous credentials with privacy-preserving
updates. Part I is comprised of Chapters 3 and 4. In Chapter 3 we focus on the
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experiment-based security model of ABS and our generic ABS construction. Then,
in Chapter 4 we present our UC result that shows the equivalence between ABS
in UC and our experiment-based security model. After that we move to Part II of
this thesis and focus on UAC in Chapter 5. There, we present the formal definition,
experiment-based security model, and a generic construction of UAC. Finally, we
conclude this thesis with a summary of the contributions in Chapter 6.
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In this chapter we present general notation that we use throughout this thesis and
introduce cryptographic building blocks in the form of assumptions, schemes, and
security definitions. For the security definitions in this work we use experiment-
based definitions and definitions based on ideal functionalities. For the definition
of ideal functionalities we rely on the universal composability framework (UC) by
Canetti [Can01] and introduce the framework only conceptually in this chapter.
The formal details of the framework are presented in Chapter 3 where we also
show the technical execution in form of an ideal functionality for attribute-based
signatures. This way of structuring the preliminaries, allows us to focus first on
the experiment-based definitions, which are more common in cryptography, and
then move towards ideal functionalities. Therefore, we start the preliminaries with
some general notational definitions, proceed with definitions of groups, relations,
cryptographic assumptions, definitions of schemes that we use as building blocks in
this thesis, and then describe the concept of the universal composability framework.

2.1 General Notation

In the following we introduce general notation that is used in this thesis, e.g., for
the security parameter, adversaries, sets, oracles, and schemes.

Security parameter. We refer to A € N as the security parameter and if the
context is clear we omit that it is an element of N. Additionally, we refer to the
security parameter A in unary representation as 1M

Algorithms. The algorithms considered in this thesis are (mostly) probabilis-
tic polynomial-time (ppt). A ppt algorithm A uses internal randomness r and
its running time is polynomially bounded in its input length. We also consider
deterministic polynomial-time (dpt). The running time of a dpt algorithm is also
polynomially bounded in its input length, but it does not use internal randomness.
We also refer to a ppt (and dpt) algorithm as an efficient algorithm. We denote
with A(z;r) that algorithm A runs with fixed randomness r on input z. Also, for
an algorithm A let trans4 denote its transcript containing all inputs, outputs and
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randomness of algorithm A. If not stated otherwise, we use the terms adversary,
distinguisher, forger and ppt algorithm synonymously. For a stateful algorithm A
we denote the state by st and by A(z, st) we mean algorithm A runs on input
x and state st. The (current) state of the algorithm is also part of its output. If
the state is not explicitly given we assume, for cleaner notation, that a stateful
algorithm A implicitly gets as input the (initially empty) state from its last run
and that it implicitly includes its state in the final output. Generally, we consider
algorithms to be stateless and we explicitly emphasize it if they are not.

Basics. In the following we introduce basic notation. For a set S we denote by
y < S that y is chosen uniformly at random from set S. For an algorithm 4
we write y < A(z) and mean that y is the output of algorithm A on input x. If
algorithm A is a ppt, then the output y is also determined by the randomness of A,
therefore y is a random variable. For algorithm A we write y € A(x) to denote that
y is in the set of all possible outputs of A on input 2. We refer to an interactive
protocol as two ppt algorithms Alg’ and Alg” that interact with each other by
exchanging messages. We denoted an interactive protocol as Alg’(c, u) <> Alg”(c,v)
with common input ¢, u as the private input for algorithm Alg’, and v as the private
input for algorithm Alg”. We denote oracle access to (’)gg;"e(inputl, ..., input;) of
an algorithm A with A% where the oracle Opar < has access to fixed parameter
list par and algorithm A determines the inputs input,, ..., input; for each oracle
query. To simplify notation, we also refer to an oracle as O"@™¢ if the parameter
list is clear from the context. An oracle O"™¢ is interactive if it runs an interactive
protocol (Alg'(c,v) <+ Alg”(c,w)) with algorithm A®™"™, where the oracle O"me
executes one of the ppt algorithms of the interactive protocol and algorithm A
replaces the other ppt algorithm of the interactive protocol. We denote this as
Alg'(c,v) <+ A or A + Alg”; (c,w) respectively. For readability, for a list L we use
the operator U to append an element to the list and we use L[i] to access the i-th
element of the list.

Scheme notation. For a scheme X with algorithm K, we write X.K to denote
which schemes and algorithms we refer to. For example, in case of a signature
scheme Sig = (Setup, KeyGen, Sign, Verify) we use Sig.Sign to refer to the signing
algorithm of Sig.

Schemes. In this work, we adopt the schemes to support a common setup al-
gorithm that outputs some public parameters. In case of a signature scheme, this
means that the key generation algorithm gets as input the public parameters in-
stead of the security parameter. For example, public parameters can be a group
description generated by a group generator algorithm with respect to the security
parameter. Then, the common setup is the group generator.
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Advantage. Throughout this thesis, we denote the advantage of an adversary
A as Advxg‘e, where name refers to the name of the security goal and experiment,
and S refers to the scheme for which the advantage is defined. Similarly we denote
security experiments as Expge.

To define security of a scheme S we need a notion that the advantage of an
adversary A is “very small”. To formally define this notion we define negligible

functions.

Definition 2.1.1 (Negligible Function)
A function f: N — R20 is negligible, if for every ¢ € N there exists a A\g € N, such
that for all A > Ao it holds that f(A) < 1/A°. ©

For readability, we denote a negligible function in security parameter A by negl(A).

2.2 Groups, Relations, and Assumptions

In the following we introduce some basic definitions of prime order groups, and
bilinear groups since we use them as a building blocks in this thesis. Furthermore,
we define relations and basic assumptions.

Definition 2.2.1 (Group Generator - [KL14])

A group generator GrGen is a ppt algorithm that on input security parameter 1*
outputs a group description GD = (G, p, g), where G is cyclic group of prime order
p, with bit-length |p| = A, and g € G is a generator of group G. o

Definition 2.2.2 (Bilinear Groups - [BLS04])

A bilinear group is a tuple (Gi,Ga,Gr,p,e€,g1,92) such that Gi, Gy, and G
are cyclic groups, of prime order p, and g; and go are generators of G; and Go
respectively. We call e: Gy x Gy — G a bilinear map or pairing if it is efficiently
computable and fulfills the following conditions:

Bilinear V(g1,92) € G1 x Ga, ¥(a,b) € Z]%: e(9%, 95) = elgr, g2)*°
Non-degenerate ¢(g1, 92) # 1g,, where 1g,. is the identity element of Gr.

o

To generate a bilinear group to be used in cryptographic schemes we rely on a
bilinear group generator.

Definition 2.2.3 (Bilinear Group Generator)

We call a group generator GrGen bilinear group generator if it on input security
parameter 1* outputs a bilinear group description GID = (G1,G2,Gr,p,e,q1,92),
such that the bit-length of prime p is [p| = . o
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To formally define signatures of knowledge and non-interactive arguments in
the following we need the notion of a relation. Intuitively, a relation R determines
some setup parameters and which instances x are valid. For valid instances there
exists a witness w such that (z,w) € R holds. In the following, we formally define
relations.

Definition 2.2.4 (Relation - [BS20; CFQ19])

Let P be a ppt algorithm that on input security parameter 1*, outputs system
parameter A € {0, 1}p0ly</\), where the length is polynomial in A. A collection
{R)HA})\EN,AEP(IA) of finite sets Ry  of relations R; C Z; x W, is called a family
of relations if:

e 7;, and W; are finite sets,

o for every instance-witness pair (z,w) € R;, it holds that |w| < poly(|z|), i.e.,
the size of a witness w is polynomial in the size of the instance z

o there is a description of R; which size is polynomial in A,

o and there exists a ppt algorithm that on input security parameter A, system
parameter A, description of R;, instance z, and witness w outputs 1 if (z, w) €
R; and 0 otherwise.

o

As in [Grol6] we assume that the security parameter \ and system parameter
A are implicitly included in the description of a relation R.

Definition 2.2.5 (Relation Generator - [GM17])
A relation generator RGen for family of relations {Rj A} yA 18 a ppt algorithm

that on input security parameter 1* outputs description of relation R from Ry .
Denoted as R < RGen(1%). o

We use a relation generator in this thesis as an algorithm that internally uses a
setup algorithm (e.g., a group generator) to determine the system parameters and
outputs a description of a relation.

Let us consider the following example of a relation based on computing discrete
logarithms. Here, the description of relation R specifies a group, the instance con-
sists of two elements of that group (u, k) and the witness for this instance is then
an exponent a such that u* = h holds. Next, we give a formal definition of a cryp-
tographic assumption called the discrete logarithm assumption that corresponds
to the above example.

Definition 2.2.6 (Discrete Logarithm Assumption - [KL14])
Let GrGen be a group generator and A an adversary. We define the advantage in
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dl
EXpA?érGen (/\)
1: (G,p,g) < GrGen(1*)
2: (u,h) < G*

3: a+ A(G,p,g,u,h)
4: if u* = h return 1

5: else return 0

Experiment 2.1: Discrete logarithm experiment for a group generator.

the experiment Expi{ongen()\) (Experiment 2.1) as
dl dl
AdvA?érGen()\) = Pr [Eprf’érGen()\) = 1}

and say that the discrete logarithm (dlog) assumption holds with respect to group
generator GrGen if for all ppt adversaries A it holds that Advi{ongen()\) < negl(\).

o

2.3 Schemes and Security Definitions

In this section we formally define important building blocks, that we use for our
constructions in this thesis, and we define their security. Schemes that we use as
building blocks range from hash functions and signatures to more involved schemes
like non-interactive zero-knowledge arguments.

2.3.1 Hash Functions

Hash functions in cryptography are typically used to compress inputs in such a
way that collisions are hard to find for an adversary. A collision is a pair of two
inputs mg and m1, where mg # mq, that under the hash function map to the same
value. Naturally, compressing requires that the domain of the function is larger
than the range, otherwise the identity function is good enough. Hash functions
that are interesting for cryptography require some form of collision-resistance as
a security guarantee. Let us first define hash functions and then their security in
form of collision-resistance and target collision-resistance.

Definition 2.3.1 (Hash Function - [KL14])
A hash function Hash with key length [x(\) and output length I, (\) consists of
ppt algorithms (KeyGen, H) where:

o hk < KeyGen(1?*) is a ppt key generation algorithm that on input security
parameter 1%, outputs a hash key hk of length Iz (\).
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e h < H(hk,m) is a ppt hash algorithm that on input m € {0,1}* outputs a
hash value of length 5 ()).

Alternatively, a key generation algorithm KeyGen can take as input public pa-
rameters pp, where we assume that they implicitly encode the security parameter.
If a hash function only takes inputs m € {0, 1}l(>‘) we require that the input length
is greater than the output length, I(\) > [,()), such that the hash function is
compressing. o

In the following security definitions for hash functions we let KeyGen run on
input 1*. We omit explicit definitions for the alternative variant with input public
parameters pp generated by some setup algorithm, e.g., group generator. Let us
define collision-resistance for hash functions in the following. Intuitively, it should
be infeasible for an adversary on input the hash key to output two distinct messages
that have the same hash value.

Definition 2.3.2 (Collision-Resistant Hash Function - [GM17])
We call a hash function Hash = (KeyGen, H) a collision-resistant hash function, if
for all ppt adversaries A, there exists a negligible function negl such that

Pr [k + KeyGen(1%); mg, my + A(hk) :
mo 7£ mi1 A H(hk‘,mo) = H(hk,ml)] = negl()\) .

o

A weaker form of collision-resistance is the so called target collision-resistance.
Here, it should be infeasible for an adversary to output one input, the target, before
the generation of the hash key and then given the hash key find a distinct second
input that collides.

Definition 2.3.3 (Target Collision-Resistant Hash Function - [GM17])
We call a hash function Hash = (KeyGen, H) target collision-resistant hash function,
if for all ppt adversaries A, there exists a negligible function negl such that

Pr [mo, st < A(1%); hk + KeyGen(1*); my < A(hk, st) :
mo # mi A H(hk, mo) = H(hk, m1)] = negl()) .

2.3.2 Digital Signatures

Digital signatures are used to authenticate messages in an identity-based way. This
means, a public key of a signature scheme is associated to a user and a user signs
a message with its corresponding secret key. If a signature verifies as valid under
a public key, the verifier can be sure that the user associated to the public key

10
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signed the message. Hence, digital signatures provide authenticity, integrity, and
non-repudiation. We base the notion of digital signature schemes on the definition
by Goldwasser, Micali and Rivest [GMRS&8] and adapt it accommodate a setup
algorithm.

Definition 2.3.4 (Signature Scheme)
A (digital) signature scheme Sig consists of the algorithms Setup, KeyGen, Sign,
and Verify.

e pp <+ Setu p(l)‘) is a ppt setup algorithm that on input security parameter
1* outputs public parameters pp.

o (pk, sk) «+ KeyGen(pp) is a ppt key generation algorithm that on input public
parameters pp outputs a key pair (pk, sk). We assume that the public key
pk includes the public parameters pp and public key pk defines the message
space M.

o o <« Sign(pk, sk, m) is a ppt signing algorithm that on input a public key pk,
a secret key sk, and a message m € M outputs a signature o.

o 0/1 « Verify(pk,m, o) is a dpt verification algorithm that on input a public
key pk, a message m € M, and a signature o outputs a bit b € {0, 1}, where
b =1 means valid and b = 0 means invalid.

o

We require that a signature scheme is correct which intuitively means that, under
an honest setup and honestly generated keys, all honestly generated signatures are
declared as valid by the verification algorithm.

Definition 2.3.5 (Correctness)
A signature scheme Sig is correct, if for all A € N, all pp € Setup(1?), all (pk, sk) €
KeyGen(pp) and all m € M it holds that Verify(pk, m, Sign(pk, sk,m)) = 1. o

Let us next define the security of a digital signature scheme, called unforgeability.
For an adversary, also called forger, it should be infeasible to output a valid signature
on a message that was never queried to the provided signing oracle.

Definition 2.3.6 (EUF-CMA)
Let Sig be a signature scheme and A an adversary. We define the advantage in the
experiment Expj‘fgi‘:gma(/\) (Experiment 2.2) as

AdveGeme (A) = Pr[ExpHSam () = 1
and call Sig existentially unforgeable against adaptively chosen message attacks

(EUF-CMA) if for all ppt adversaries A, it holds that Advi‘fs'icgma()\) =negl(A). o

11
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Exp () O3 (m)
1 Q=10 1:  o; < Sign(pk, sk, m;)
2: pp + Setup(1?) 2: Q=QU{m;}
3: (pk, sk) < KeyGen(pp) 3: return o;

oSEn
4: (m,o) « A rksk(pk)
5: return 1 if
Verify(pk,m,o) =1 A
m ¢ Q

8: elsereturn 0

~N O

Experiment 2.2: Unforgeability experiment for a digital signature scheme.

The above definition of unforgeability is also called weak, since we only require
that the output message of the adversary is new, i.e., m ¢ Q. To define the strong
version we have to require that the output message-signature pair was never queried
by the adversary, i.e., (m,0) ¢ Q.

2.3.3 Blind Signatures

In the following we formalize blind signature (BS) schemes which capture that
a user should be able to get a message signed by another party, called signer,
holding a secret key without revealing the message to the signer. The concept
of blind signatures were first introduced in [Cha82]. For a detailed discussion of
the field of blind signatures we refer to [FHKS16; FPS20]. Constructions that use
blind signatures, e.g., group signatures and anonymous credentials, provide further
semantics that explain why a signer should blindly sign a message that it does
not know. For example, the user provides a proof that shows that a predetermined
statement about the message is true, e.g., that the message corresponds to the user’s
unique identity. Here, the user’s goal is to get a signature on her identity without
revealing her identity to the signer. We consider in this thesis blind signatures that
follow a commit-then-sign structure like “user commits to the message and then a
signature is jointly computed”. To this end, we explicitly define the commitment
step separately from the interactive signing protocol. Hence, the signing protocol is
of the form “signing a committed value”. Anticipatory, this allows us in a credential
system to use an argument system to prove properties of the commitment before
signing it, see Chapter 5.

Definition 2.3.7 (Blind Signature Scheme)

A blind signature scheme BS consists of the algorithms Setup, KeyGen, Commit,
BlindSign, BlindRcv, and Verify.

12
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e pp < Setu p(l)‘) is a ppt setup algorithm that on input security parameter
1* outputs public parameters pp. We assume that the public parameters pp
implicitly define parameters for the message space.

o (pk,sk) < KeyGen(pp,1™) is a ppt key generation algorithm that on input
public parameters pp outputs a key pair (pk, sk). We assume that the public
key pk defines the message space M"™ and commitment randomness space
RCom.

o com < Commit(pp, pk,m,r) is a dpt committing algorithm that on input
the public parameters pp, public key pk, message m € M"™, and commitment
randomness r € R°™ outputs a commitment com.

o o < BlindRev(pp, pk,m,r) « BlindSign(pp, pk, sk, com) is an interactive
protocol with common input public parameters pp and public key pk be-
tween receiver’s ppt algorithm BlindRcv and signer’s ppt algorithm BlindSign.
BlindSign gets as additional input a secret key sk and a commitment com.
BlindRcv with additional input a message m € M™ and commitment random-
ness r € R®™ outputs a signature ¢ or failure symbol L (if the interaction
was not successful).

e 0/1 < Verify(pp, pk, m, o) is a dpt verification algorithm that on input public
parameters pp, public key pk, a message m € M™, and a signature o outputs
a bit b € {0,1}, where b = 1 means valid and b = 0 means invalid.

o

An example of the parameters for the message space is that the public parameters
pp contain a group description which fixes the structure of the messages, e.g.,
messages contain elements from Z,. Then, the public key pk defines the length of
the supported messages, e.g., M" = Z.

In the following, we call a message-randomness pair (m,r) corresponding to
a commitment com < Commit(pp, pk, m,r) an opening of the commitment com.
Further, we require that an BS scheme is correct, unforgeable, and message private
as defined in the following.

Definition 2.3.8 (Correctness)

A blind signature scheme BS is correct, if for all \,n € N, all pp € Setup(1*), all
(pk, sk) € KeyGen(pp, 1), all m € M", and all commitment randomness r € R°™
it holds that

Pr[o < BlindRev(pp, pk,m,r) <>
BlindSign(pp, pk, sk, Commit(pp, pk,m,r)) :
Verify(pp, pk,m,o0) =1] =1 .

13
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f- -b: BlindSi
EXpitBCSma s()\) Opp:;k’;in (mi, TZ‘)
10 Q=10 1:  com; = Commit(pp, pk, m;, ;)
2: pp  Setup(1?) 2: A < BlindSign(pp, pk, sk, com;)

3: (1™, st) < A(pp)
4: (pk,sk) «+ KeyGen(pp, 1™)

w

Q=QU{m}

BlindSign

51 (m,o) < A%kt (pk, st)
6: return 1 if

7 Verify(pp, pk,m,0) =1 A
8: m ¢ Q

9: else return 0

Experiment 2.3: Unforgeability experiment for blind signature schemes.

The following unforgeability notion for blind signatures captures, besides the
unforgeability of the signatures, also the (computational) binding of the commit-
ment. This means an adversary should not be able to open a commitment in two
different ways.

Definition 2.3.9 (Unforgeability)
Let BS be a blind signature scheme and A an adversary. We define the advantage
in the experiment Expj’fécsma'bs(/\) (Experiment 2.3) as

AdvEEm (A = Pr[ExpEd™(\) = 1]

and call BS existentially unforgeable against adaptively chosen message attacks
(short unforgeable) if for all ppt adversaries A, it holds that Advj’fécsma'bs()\) =
negl(\). o

Next, we define the privacy for the receiver of a blind signature. Intuitively, we
want that the commitment and the interaction with the signer does not leak any
information about the message to be signed. This means, the following definition
captures that the committed message is hidden from the signer and that the
interaction with the signer is independent of the message, i.e., the interaction with
the signer does not leak any information about the receiver’s message.

Definition 2.3.10 (Message Privacy)
Let BS be a blind signature scheme and A an adversary. We define the advantage

in the experiment Expzsé'spriv'bs()\) (Experiment 2.4) as

Advrggpriv_bs(/\) = ‘2 - Pr [Exp.rzfé'spriv'bs(A) = 1} — 1‘

14
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Expzsg-spriv-bs()\)
1: L=40

2: pp + Setup(1?)
3:  (pk,st) < A(pp)
40 b {0,1})

Commit BlindRev .
5: b o« Aopp,pk,b’opp,pk (J)(st)

6: return 1 if
7: b=1"¥
8 : else return 0
oggarion) Rt
1: 1 REOM 1: parse L[j] = (mj,7j)
2: if b=0 then 2: if (mj,r;) = (L, L) then
3 m <+ M" 3 ignore
4: else 4: o <« BlindRev(pp, pk,mj,r;) < A
5: m = my;

6: com; < Commit(pp, pk, m,r;)
7: L:=LU(m,nr;)

8 : return com;

Experiment 2.4: Message privacy experiment for blind signature schemes.

and call BS perfectly message private, if for all (unbounded) adversaries A it holds
that Advjfé’spr'v'bs()\) =0.

2.3.4 Signatures of Knowledge

Signatures of knowledge (SoKs) were first formalized by Chase and Lysyanskaya
[CLO6]. Before that, there where folklore constructions from the Fiat-Shamir trans-
formation applied to non-interactive zero-knowledge proof of knowledge systems
(mostly Sigma protocols [Dam10; FKMV12]) known. Intuitively, a SoK lets a signer
generate a signature on an instance of a publicly known relation if the signer knows
a witness for the instance. Here, the expressiveness of the signature of knowledge
depends on the relation and the message. In general, SoKs are a generalization of

15
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signature schemes.

The following definitions for a SoK scheme are originally presented by Groth and
Maller [GM17]. We use their model and a concrete construction of a SoK to show
and instantiate a generic attribute-based signature construction in Section 3.3.

Definition 2.3.11 (Signature of Knowledge)
A signature of knowledge scheme SoK for relation generator RGen consists of the
algorithms Setup, Sign, Verify, SimSetup, and SimSign.

« pp « Setup(R) is a ppt setup algorithm that on input a relation R € RGen(1*)
returns public parameters pp. We assume that the public parameters pp define
the message space M.

o o + Sign(pp, x,w,m) is a ppt signing algorithm that on input pp, instance-
witness pair (z,w) and a message m € M returns a signature o.

o 0/1 < Verify(pp,x,m, o) is a dpt verification algorithm that on input pp, an
instance z, a message m € M, and a signature o outputs either 0 or 1.

o (pp, tdsim) < SimSetup(R) is a ppt simulation setup algorithm that on input
a relation R € RGen(1*) returns public parameters pp and a trapdoor td .

o 0 < SimSign(pp, tdsim,x, m) is a ppt signing algorithm that on input pp, a
simulation trapdoor tdg;,, an instance x, and a message m € M returns a
signature o.

o

We require correctness from a SoK scheme which guarantees that honestly
generated signatures under an honest setup and keys are declared as valid by the
verification algorithm, i.e., algorithm Verify outputs 1.

Definition 2.3.12 (Correctness)

A signature of knowledge scheme SoK for relation generator RGen is correct, if for
all A € N, all R € RGen(1%), all (z,w) € R, all pp € Setup(R), all messages m € M,
and all o € Sign(pp, z, w, m) it holds that Verify(pp, z,m, o) = 1 with certainty. <

Simulatability. The verifier of a SoK should obtain no information about the
witness w from an instance before seeing a signature. We model this property by
defining a simulation signing algorithm that can generate signatures without using a
witness. The simulation algorithm works under possibly different setup parameters,
however the simulated parameters and simulated signatures are required to be
indistinguishable from the real counterparts.
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EXPii{,T%oK (A) Ozs,;gg(:%dsim (@i, wi, my)
1: R+ RGen(1%) 1: if (z4,w;) ¢ RV m; ¢ M then
2: pp; < Setup(R) 2: ignore
31 (ppo tdsim) < SimSetup(R) 3: o; + Sign(ppg, i, wi, m)
4: b+ {0,1} 4: return o;
s W e A%k (o) s
6: return 1 if PP, tdsim (i, wi, my)
- b= 1: if (z,w;) ¢ RV m; ¢ M then
8: else return 0 2t ignore

3: o; « SimSign(ppy, tdsim, xi, m)

4: return o;

Experiment 2.5: Simulatability experiment for SoK.

Definition 2.3.13 (Simulatability)
Let SoK be a signature of knowledge scheme and let A be an adversary. We define

sim

the advantage in the experiment Exp%{s,x () (Experiment 2.5) as
Advio (M) = |2 Pr[ExpiBox(A) = 1] — 1]
and call SoK perfectly simulatable, if for all ppt adversaries A it holds that

AdviEk(A) =0 .

Simulation-extractability. Since simulatability is considered, the adversary A
has access to simulated signatures on false instances z, i.e., Vw € W: (z,w) ¢
R. Even then adversary A should not be able to issue valid signatures without
knowing a witness. Knowing is modeled by requiring that there exists an extractor,
that extracts a witness from a given proof. The following definition from [GM17]
captures this. We adapt the naming of the definitions based on the weak and strong
simulation-extractability notions defined in [BKSV21; Kos+15].

Definition 2.3.14 (White-Box Strong Simulation-Extractability)
Let SoK be a signature of knowledge scheme and let A be an adversary. We define

the advantage in the experiment Expﬁ?g("t':jfg‘oK()\) (Experiment 2.6) as

b-sok- . b-sok-
AdVIPER S (A) = Pr[ExpiERs et (V) = 1]

17
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b-sok-
EXpﬁ,Es;tr;,)goK ()‘) O;p,tdsim (551" mz)

1: R+ RGen(1");Q =0 1: o; < SimSign(pp, tdsim, i, m;)
2: (pp, tdsim) < SimSetup(R) Q= QU {(zi,m;,04)}
3: return o;

N

31 (o,m, ) A% (pp)

4: w < Extry(transy)

5: return 1 if

6:  Verify(pp,z,m,0) =1 A
7 (w,m,o) EQ A(ww) ER

8: else return 0

Experiment 2.6: White-box strong simulation-extractability experiment for SoK.

and we call a simulatable SoK white-box strong simulation-extractable if for all
wb-sok-ext

ppt adversaries A there exists a ppt extractor Extr 4 such that Advi'gqy Fsok(A) =
negl(\). o

We call it strong simuation-extractable because the winning condition in Experi-
ment 2.6 checks if the instance, message, and signature output by the adversary A
was not queried before, i.e., (x,m,0) ¢ Q. A weak variant only requires that the
signature o was not queried before. This is similar to strong and weak EUF-CMA
signatures.

Intuitively, the above definition says that the better the adversary is in breaking
the simulation-extractability the better the extractor has to perform. To illustrate
this, take any adversary and an extractor that outputs L on every input, where |
is a failure symbol assumed not to be an element of any relation. Clearly, L is then
not a valid witness for the instance z that the adversary produced, i.e., (z, L) ¢ R
holds. Hence, the last part of the winning condition is already satisfied. The rest
of the winning condition is then only up to the ability of the adversary. Overall, to
break simulation-extractability an adversary has to accomplish that no extractor
can succeed in extracting a valid witness for the instance even if it has access to
the adversary’s code, input, outputs, and random coins. Additionally, the instance,
message, and signature tuple that the adversary outputs has to be valid and at
the same time it has to be new, i.e., not queried before.

Definition 2.3.15 (Succinctness for SoK - [GM17])

Let A be a security parameter and let x be an instance of some relation R. A
signature of knowledge scheme SoK is called succinct, if the verifier’s runtime is
polynomial in A + |z| and the signature size is polynomial in A. o

The white-box definition of simulation-extractability comes with technical chal-
lenges for concrete schemes, because it requires the existence of a white-box ex-
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tractor and the existence relies on non-falsifiable assumptions, so called knowledge
assumptions [BCCT12; GW11]. If one further requires very short signatures that
are independent of the size of the witness (succinctness) one cannot hope that the
witness is somehow encoded in the signature and easily extractable for the extrac-
tor without having access to the transcript of the adversary. Therefore, white-box
definitions are typically used for applications where succinctness is important.

If succinctness is not a crucial point or falsifiable assumptions are favorable and
to circumvent technical challenges there are also black-box simulation-extractable
signatures of knowledge [BGPR20; CL06; FO11]. Constructing such schemes and
working with them in security reductions is simpler since the extractor does not
depend on any specific adversary. Here the black-box extractor (also called online
extractor) works with an additional extraction trapdoor that enables the extraction
of the witness given an instance, a message and a signature.

Definition 2.3.16 (Black-Box Strong Simulation-Extractability - [CLO06])
Let SoK be a signature of knowledge scheme and let A be an adversary. We define
the advantage in the experiment Exp%‘éftkr:ng()\) (Experiment 2.7) as

AdVRPEES (V) = Pr[BxpPEslsde (V) = 1]

and call a simulatable SoK black-box strong simulation-extractable if (1) there
exists a ppt algorithm ExtrSetup such that for all ppt adversaries A and for any
R € RGen(1%) it holds that

‘Pr[(crs, tdsim) < SimSetup(R): A(crs) = 1]—

Pr{(crs, tdgim, tdegr) < ExtrSetup(R): A(crs) = 1]‘

is negligible and (2) there exists a ppt extractor Extr such that for all ppt adversaries
A it holds Advﬁf’éﬁfﬂﬁ:ffsto,(()\) = negl(A). ©

2.3.5 Non-Interactive Argument Systems

We present in the following two notions for argument systems; one in the common
reference string (CRS) model, where a trusted party sets up a trusted (structured)
string, and a second notion in the random oracle model (ROM). We opt to separate
the notions to circumvent overly complex definitions and not to overload the nota-
tion which would be the case if we captured both notions in one set of definitions.
Note, that in the literature there is also the term proof system. The difference
is that security notions in proof systems are defined with respect to unbounded
adversaries where in argument systems computationally bounded adversaries are
considered, i.e., in argument systems they are ppt algorithms.
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bb-sok-
EXpA,Iésgtr,eS):)tK ()‘) OISUD,tdsim (xia mz)

1: R+ RGen(1");Q =0 1: o; < SimSign(pp, tdsim, i, m;)
2:  (pp, tdsim, tdestr) < ExtrSetup(R) 2: Q=QU{(x;m40;)}
3: return o;

3: (z,m,o0) + AOIS’Pvtdsim (pp)

41 w <+ Extr(pp, tdegtr, x, m,0,Q)
5: return 1 if

6 Verify(pp, z,m,0) =1 A

7: (x,m,0) ¢ Q A (z,w)¢ R

8: else return 0

Experiment 2.7: Black-box strong simulation-extractability experiment for SoK.

Argument Systems with CRS

In the following, we use the definition from [GM17] for non-interactive zero-
knowledge argument of knowledge (NIZK) in the CRS model. In this model the
CRS is honestly generated by some trusted third party. Intuitively, a CRS deter-
mines public parameters that are available to all parties of a system, e.g., a group
description and further public parameters of schemes that need a trusted setup.
In real-world applications this is a drawback since a trusted third party is not
always available. However, there are prominent example of systems that generated
their CRS with a specialized multi-party computation that guarantees, as long as
one party was honest, that the CRS was honestly and correctly generated, e.g.,
Zcash [COM22]. For further details on how to generate a CRS in real-world ap-
plication we refer to [Ben+15; BGG19]. In the CRS model a so called trapdoor
can usually be generated alongside the CRS that just exists for the modeling of
security, i.e., it is used to define security and concretely to be able to prove the
security of systems. For example, in an argument system a simulation trapdoor
enables that an efficient simulation algorithm outputs simulated proofs that are
indistinguishable from non-simulated proofs without using a witness. This notion
is used to define a form of privacy, called zero-knowledge. Similarly, an extraction
trapdoor for the CRS enables that an efficient extractor exists that can extract
witnesses from non-simulated proofs. Intuitively, this notion is used to define a
form of soundness for argument systems called extractability.

Definition 2.3.17 (Argument System)
An argument system Arg for relation generator RGen consists of algorithms Setup,
Prove, Verify, and SimProve.

o (crs, tdgim) < Setup(R) is a ppt setup algorithm that on input a relation R €
RGen(1*) returns a common reference string crs and a simulation trapdoor
tdsim-
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o 7 « Prove(ers,x,w) is a ppt proving algorithm that on input a common
reference string crs and instance-witness pair (z,w) € R returns a proof .

e 0/1 < Verify(crs, x, ) is a dpt verification algorithm that on input a common
reference string crs, an instance x, and a proof 7 outputs either 0 or 1.

o 7 < SimProve(crs, tdsim, x) is a ppt proof simulator algorithm that on input
a common reference string crs, a simulation trapdoor td;,, and an instance
x returns a (simulated) proof .

o

Note, that in the above definition the CRS denoted as crs (and simulation
trapdoor td;,) depends on the relation R output by the relation generator RGen.
This means that the simulation algorithm SimProve outputs simulated proofs for
this specific relation R. For an argument system Arg we require that it is correct.
Therefore, let us define what correctness means for an argument system Arg.

Definition 2.3.18 (Correctness)

An argument system Arg for relation generator RGen is perfectly correct, if for all
A €N, for all R € RGen(1%), all (z,w) € R, all (crs, tdgm) € Setup(R), and all
7 € Prove(crs, z,w) it holds that Verify(crs,z, ) = 1. o

Security notions for argument system include witness-indistinguishability, zero-
knowledge, soundness, and simulation-extractability. Witness-indistinguishability
captures that two proofs for the same instance generated using different witnesses
should be indistinguishable for an adversary.

Definition 2.3.19 (Witness-Indistinguishability)
Let Arg be an argument system for relation generator RGen and let A be an
adversary. We define the advantage in the experiment Expj' org(A) (Experiment 2.8)

as
Adv¥iag (V) i= [2- Pr[Exp ag (V) = 1] 1]

and call argument system Arg a non-interactive witness-indistinguishable (WT)
argument system if for all ppt adversaries A, it holds that Advij o.z(A) = 0.

The term zero-knowledge is motivated by the intuitive description that what
an adversary can compute before engaging with the prover should be the same
compared to what the adversary can compute after engaging with the prover. This
means the adversary gained no knowledge by interacting with the prover. In the
security definition this is captured by requiring that it should be infeasible for an
adversary to distinguish if it gets simulated proofs, generated without using the
witness, or real proofs, generated with the witness for the instance. Intuitively, if
there is an efficient algorithm that can simulate indistinguishable proofs without
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EXP%Arg()\) 05;;’”‘* (@i, wi0, wi1)
1: R+ RGen(1") 1: if (z4,wi0) ¢ RV (z5,w;1) ¢ R then
2:  (ers, tdsim) < Setup(R) 2: ignore
3: b« {0,1} 3: m; < Prove(crs, xi, w;p)
Provey, 4: return T

a: b A% (ers)
5: return 1 if

6 : b=10

7: else return 0

Experiment 2.8: Witness-indistinguishability experiment for argument systems with a
CRS.

ExpZf arg (V) 0P (g, uwy)
1: R+ RGen(1%) 1: if (z;,w;) ¢ R then
2:  (crs, tdsim) < Setup(R) 2: ignore
3: b« {0,1} 3: m; < Prove(cers, x;, w;)
Provey, . .
2oy ACersidm (crs) 4: return m;
5: return 1 if p
: O erstd, (> i)
6 b=1b

1: if (z4,w;) ¢ R then

2: ignore

7: else return 0

3: m; « SimProve(crs, tdsim, ;)

4: return m;

Experiment 2.9: Zero-knowledge experiment for argument systems with a CRS.

using a witness, then it must hold that real proofs do not leak anything about the
witness.

Definition 2.3.20 (Zero-Knowledge)

Let Arg be an argument system for relation generator RGen and let A be an
adversary. We define the advantage in the experiment Expit Arg(A) (Experiment 2.9)
as

AdVﬂiArg()\) = ’2 - Pr [Expﬁ(’Arg()\) = 1} - 1‘

and call argument system Arg a non-interactive (perfect) zero-knowledge argument
system if for all ppt adversaries A, it holds that Advffﬁ Arg(A) = 0. o

Next, let us define extractability for argument systems, where we require that
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Exp? R0 ()

1: R+ RGen(1%)

2:  (crs, tdegy) < ExtrSetup(R)
3: (z,m) « A(crs)

41 w < Extr(ers, tdegy, x, )
5: return 1 if

6: Verify(crs,z,m) =1 A
7: (x,w) ¢ R

8: elsereturn 0

Experiment 2.10: Extractability experiment for argument systems with a CRS.

there is an efficient extraction algorithm that works for every adversary and extracts
the witness of a given proof. This extractor is also called a black-box extractor.

Definition 2.3.21 (Black-Box Extractability)

Let Arg be an argument system for relation generator RGen and let A be an adver-
sary. We define the advantage in the experiment Exp%ffg”()\) (Experiment 2.10)
as

AdVEPRAT(A) = Pr[ExpRe () = 1

and call Arg computational black-box extractable or an (black-box) argument of
knowledge, if (1) there exists a ppt algorithm ExtrSetup such that for all ppt adver-
saries A and for any R € RGen(1%) it holds that

‘Pr[(crs, tdsim) < Setup(R): A(crs) = 1]

— Pr((crs, tdegtyr) < ExtrSetup(R): A(crs) = 1]‘

is negligible and (2) if there exists a ppt algorithm Extr such that for all ppt
adversary A it holds that Adv%ffg“()\) = negl(\). If the advantage Adv%ffgt;r()\)
is 0 for an (unbounded) adversary A then we call Arg perfect extractable. o

Definition 2.3.22 (NIWI)
We call a witness-indistinguishable and extractable argument system a non-inter-
active witness indistinguishable argument of knowledge (NIWT). o

An example of such a NIWT is the Groth-Sahai proof system [GS12].

Next, we define the notion of extractability via a white-box extractor that de-
pends on the adversary and has access to the code and randomness of the adver-
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ExpCeir s arg(M)
1: R+ RGen(1%)
2:  (ers, tdsim) < Setup(R)
3: (z,m) < A(crs)

41 w4+ Extrg(transs)

5: return 1 if

6: Verify(crs,z,m) =1 A
7: (x,w) ¢ R

8: else return 0

Experiment 2.11: White-box extractability experiment for argument systems with a CRS.

sary. Hence, an argument system white-box extractable if from every algorithm
outputting a valid proof it is possible to efficiently extract a valid witness.

Definition 2.3.23 (White-Box Extractability)

Let Arg be an argument system for relation generator RGen and let A be an
adversary. We define the advantage in the experiment Expﬁf’éiﬁt&’ Arg(A) (Experi-
ment 2.11) as

AV, (V) = Pr[Expi, ag(V) = 1]

and call Arg white-box computational extractable or an (white-box) argument of
knowledge if for all ppt adversary A, there exists a ppt extractor Extr 4 such that
Advml,)l_iiﬁ;,/-\rg()O - negl()‘) ©

Next, we define simulation-extractability for argument systems. Intuitively, this
definition is a combination of the zero-knowledge property and extractability.
Hence, it captures that, even if the adversary can query simulated proofs of its
choice, it is infeasible for the adversary to produce a new proof such that no
extractor can output the witness that the adversary used.

Definition 2.3.24 (Simulation-Extractability)
Let Arg be a non-interactive zero-knowledge argument system for relation generator
RGen and let A be an adversary. We define the advantage in the experiment

sim-ext

ExpA'Eatr 4 Arg(A) (Experiment 2.12) as

AdViTlgs::A,Arg()‘) = Pr[EXpiilr?E-S?rtA,Arg()‘) - 1]

and call Arg (white-box) simulation-extractable (sim-ext) if for all ppt adversaries
A there exists a ppt extractor Extr4 such that AdviExl  ag(A) = negl()). o
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ExpiEen o Arg(A) OAmEove ()
1: R+ RGen(1");Q =0 1: m; < SimProve(crs, tdgim, ;)

2:  (ers, tdsim) < Setup(R)

N

Q=QU{(zi,m)}

3: return m;

SimProve

51 (2,m) « A%t (crs)
4: w <+ Extry(transy)

5: return 1 if

(=)}

Verify(crs,z,m) =1 A
(z,m) QN (z,w) ¢ R

8: else return 0

N1

Experiment 2.12: Simulation-extractability experiment for argument systems with a CRS.

Observe that simulation-extractability implies extractability where the adversary
has no access to a simulation oracle. An important property of an argument system
for real-world applications is the length of the proofs that it produces. Intuitively,
argument systems with “very short” proofs (independent of the size of the witness)
are called succinct.

Definition 2.3.25 (Succinctness for Argument Systems - [GM17])
A non-interactive argument system where the verifier runs in time polynomially
in A + |z| and the proof size is polynomial in \ is called succinct. o

In the following we define some naming conventions of argument systems that
we use in this thesis.

Definition 2.3.26 (SNARK, NIZK, SE-SNARK)

A succinct non-interactive argument of knowledge is a SNARK. A succinct non-
interactive zero-knowledge argument of knowledge is called a succinct NIZK, and
a succinct simulation-extractable NIZK argument is called SE-SNARK. o

Argument Systems in the ROM

In the following we define argument systems in the random oracle model (ROM)
[BR93]. The ROM follows a paradigm that simplifies the design and security proofs
of cryptographic schemes while capturing elements that are used in a real-world
implementation. Intuitively a random oracle is black-box that is available to all
parties. On a query that defines input « of the black-box, it checks whether it has
already answered a query for x. If yes it uses the previous answer to the query
as its output. If it has not yet answered a query for input z it chooses every bit
of its output uniformly at random. Let us describe the paradigm of the ROM in
more detail. In the ROM all parties have access to a random oracle RO which
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technically is a random function mapping arbitrary bit strings to bit strings of
a specific length. Then one constructs a cryptographic scheme in the ROM and
proves its security with respect to the random oracle RO. Then one replaces the
random oracle RO with a hash function that “behaves like a random oracle”. In
practice this means a random oracle is instantiated by SHA-2 or SHA-3. Note, the
last step is only heuristic and informed by practical experience. For more details
on the paradigm and formalism we refer to [BR93; MF21].

Compared to the CRS model there is no trusted party in the ROM that sets up
a string or the random oracle. Hence, simulation (extraction) does not work with a
trapdoor that is generated alongside the CRS rather the random oracle is used to
simulate. Argument systems in the ROM can be online extractable (straight-line
extractable) [Fis05] or extractable via rewinding [FS87].

The most well known transformations that give us practical argument systems
without a CRS in the ROM are the Fischlin transformation [BFW15; Fis05] and
the Fiat-Shamir transformation [FKMV12; FS87]. The following definitions are
based on [Fis05; FKMV12; IV19] adapted to our notation. Hence, we rely on
the explicitly programmable random oracle model [Wee09] where a simulator can
explicitly program the random oracle. This means, a simulator can program the
output of the random oracle on inputs adaptively and the simulator outputs the
programming, e.g., as part of its state.

Definition 2.3.27 (Argument System in the ROM)
An argument system Arg in the ROM for relation R consists of algorithms Setup,
Prove, and Verify with oracle access to random oracle RO.

o pp « Setup(1?) is a ppt setup algorithm that on input security parameter A
returns public parameters pp.

o 7+ ProveRO(pp, z,w, ctz) is a ppt proving algorithm that on input public
parameters pp, instance-witness pair (z,w) € R, and context ctx returns a
proof .

e 0/1 « VerifyRO(pp,:L',w, ctr) is a dpt verification algorithm that on input
public parameters pp, an instance x, a proof 7w, and context ctr outputs either
0 or 1.

o

We include a context ctz in the definition of argument systems in the ROM to
explicitly state that the context of the proof should be considered during the proof
generation and verification, e.g., a session identifier, verifier’s identity, a timestamp
or a random nonce. By this, we bound the proof to the context to avoid replay
attacks, where a proof (potentially generated by a honest user) is just replayed by
an adversary to a verifier. Since, we use an argument system in the ROM to build
anonymous credentials (Chapter 5) where replay attacks are a real-world threat
we already consider replay attacks in this building block.
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We require that an argument system in the ROM is correct.

Definition 2.3.28 (Correctness)
An argument system Arg in the ROM for relation R is correct, if for all A € N, all
random oracles RO, all public parameters pp € Setup(1*), all instance-witness pairs
(x,w) € R, all contexts ctz € {0,1}", and all proofs 7 € ProveRO (pp, z, w, ctz) it
holds that

Pr [VerifyRo(pp, x,m, ctr) = 0} = negl(\) .

Next, we want to define the notion that a proof generated by an argument
system in the ROM does not reveal any information to an adversary. We define
this with the help of a stateful ppt simulator Sim = (SimRO, SimProve) where
ppt algorithm SimRO(v, st) programs the random oracle RO at position v and ppt
algorithm SimProve(pp, z, ctz, st) simulates a proof for instance x and context ctz
without a witness as input. Both algorithms use state st, that is synced between
the algorithms. Hence, they share a common state that gets implicitly updated by
each run of the algorithms of Sim.

Definition 2.3.29 (Zero-Knowledge)

Let Arg be an argument system in the ROM for relation R, let A be an adversary,
and RO a random oracle. We define the advantage in the experiment Expﬂ‘ﬁ'g"()\)
(Experiment 2.13) as

AdVER(A) = \2 Pr[Expder(V) = 1] - 1|

and call argument system Arg a non-interactive zero-knowledge argument system
(in the ROM) if there exists a stateful ppt simulator Sim := (SimRO, SimProve)
such that for all ppt adversaries A, it holds that Advi'l‘ﬁg‘(k) = negl(\). ©

With zero-knowledge we have a security guarantee for the prover in place, but the
verifier also wants to have the guarantee that no (adversarial) prover can convince
it that a statement is true if it is indeed false. To this end, we define extractability
in the random oracle model.

Definition 2.3.30 (Extractability - [Fis05])

Let Arg an argument system in the ROM for relation R and let A be an adversary,
and RO a random oracle. We define the advantage in the experiment ExpG A" (A)
(Experiment 2.14) as

AdvEREm(2) = Pr[Expge™(\) = 1]

and call Arg extractable or argument of knowledge (in the ROM) if there exists a
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ExpZiarg ()

1: pp+ Setup(l’\)

2: b+« {0,1}

31 b AOTOR (pp)
4: return 1 if

5 b="V

6: elsereturn 0

ORO1(y,) ng"el (x4, w4, ctx;)
1: return RO(v;) 1: if (z5,w;) ¢ R then
2: ignore
OROO (Uz)

31 M ProveORob(
1: (ys,st) < SimRO(v;, st) 4

2: return y;

pp, Ti, Wy, Ctl’z)

return m;

Prove
OV (w4, wi, ctr;)

1: if (z;,w;) ¢ R then

2: ignore

3: (m,st) < SimProve(pp, z;, ctz;, st)

4: return m;

Experiment 2.13: Zero-knowledge experiment for argument systems in the ROM.

ppt extractor Extr such that for all ppt adversaries A, it holds that

Adv%f,&','g"m()\) = negl(\) .

If the adversary even gets access to simulated proofs we still have to be able to
extract. This notion is captured in the following simulation-extractability definition
in the random oracle model.

Definition 2.3.31 (Simulation-Extractability)
Let Arg a non-interactive zero-knowledge argument system in the ROM for relation
R, let A be an adversary, and let RO be a random oracle. We define the advantage
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ExpZiag (M) ORO (1)

1 Qu=10 11y < RO(vy)

2: pp<—Setup(1/\) 2: Qnp=QuU{(v,u)}
3: (x,m,ctr) o (pp) 3: return y;

4: w < Extr(pp,z, 7, ctz,Qm)

5: return 1 if
6: VerifyoRO (pp,x,m, ctr) =1 A
7: (r,w) ¢ R

8: else return 0

Experiment 2.14: Extractability experiment for argument systems in the ROM.

in the experiment Expjrf’,&fgt'r°m()\) (Experiment 2.15) as

AdvETRem (V) = Pr[ExpSRntom (V) = 1]
and call Arg simulation-eztractable (in the ROM) if there exists a ppt extractor Extr
such that for all ppt adversaries A, it holds that Adviian""""()\) = negl(A). o

CS notation. We use in Chapter 5 the standard notation, called CS notation, to
denote argument system proofs which was introduced by Camenisch and Stadler
[CS97]. This means a proof generated by an argument system Arg for a statement
(corresponding to an instance) and context ctz with a list of witnesses is denoted
as:

Arg[(witnesses) : statement |(ctx)

For example,
Argl(u,a,c,r) : v1 = gihSTY A vy = g§h% A (10 < ¢ < 100) V a € S)](ctz)

denotes a proof generated by algorithm Prove of an argument system Arg that
proves knowledge of the witnesses u, a, ¢, such that the predicates given in the
statement are satisfied. In the above example we include a disjunction of a range
proof (10 < ¢ < 100) and a set membership proof a € S to show the support for rich
statement. There is a large body of work on efficient argument systems that realize
the statements captured by the CS notation, e.g., [Bem+18; Cam+16b; CCs08;
CDS94; CM99; Fis05; FKMV12; GOS12; Gro06; Grol6; GS08; GS12; MKWK19;
Sch91]. This includes the definition of Sigma protocols [Dam10; FKMV12] as
a generalization of Schnorr’s protocol [Cam+16b; Sch91], composition of Sigma
protocols in Boolean formulas [CDS94], set membership proofs and range proofs
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St ()

L QH, QP = @

2: pp < Setup(1?)

3. (xa T‘—, Ctx) — AORO,OIS);;T‘PI’OVe (pp)

4: w < Extr(pp, st,x,m, clr,Qu,Qp)

5: return 1 if

Exp

6: VerifyoRO (pp,x,m, ctx) =1 A

7: (x,m,ctx) ¢ Qp N (z,w) ¢ R
8: else return 0

ORO (Uz) O}S)}i)mProve(mh CtIi)

1: (yi,st) < SimRO(v;, st) 1: (m;, st) < SimProve(pp, x;, ctz;, st)
2: Qup=QuU{(vi,y)} 2: Qp=QpU{(z;m, ctr;)}

3: return y; 3: return m;

Experiment 2.15: Simulation-Extractability experiment for argument systems in the ROM.

[CCs08; MKWK19], and argument systems specialized on equations over bilinear
groups [GS08]. Practically efficient argument systems based on Sigma protocols in
the universal composability framework (UC) [Can01] were presented in [CKS11b],
where the full version [CKS11a] shows the combination of the techniques mention
above, i.e., set membership proofs, range proofs, equality proofs, Boolean compo-
sition, and more related techniques. Note, we do not use the CS notation if the
statement to be proven demands a specialized argument system, e.g., for the ABS
constructions from the literature presented in Section 3.5.

2.4 Universal Composability Framework

In the following we only want to introduce the concept of the universal composabil-
ity framework (UC) by Canetti [Can01; Can20]. We present the formal definitions
and details in Chapter 4.

The UC framework is interesting for cryptography, because the universal compos-
ability theorem of UC [Can01; Can20] allows us to build compositions of different
schemes, individually shown to be secure in UC, without the need to redo all the
proofs for the concrete composition. Additionally it gives us the guarantee that
the individual schemes stay secure in any composition and any environment. In
detail, considering a scheme (called protocols in UC) that is defined using other
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subprotocols, e.g., a group signature that uses a signature scheme and proof sys-
tem as building blocks. UC allows us to prove security of the protocol in a hybrid
model, where any used UC secure subprotocol can be considered as ideal. Thereby,
in the security proof we can assume that the signature scheme and proof system
behave ideally, i.e., they are secure, and focus on the additional details of the group
signature scheme. Thus it enables simpler security proofs for composed protocols
(schemes) compared to the experiment-based definitions approach, provided the
building blocks are already shown to be secure in UC.

In general the concept of UC security for a single protocol is to consider an ideal
version of a scheme and give a real-world equivalent of it. The ideal version, formally
called ideal protocol, includes an ideal functionality, that describes the ideal input,
output behavior of the scheme and the information that an adversary gets. By this
it defines correctness and security guarantees. For readers the ideal functionality
can also provide a more intuitive understanding of what correctness and security
ideally means for the scheme, compared to experiment-based definitions, where a
reader typically has to parse the set of oracles available to the adversary to get
an understanding of the definitions. Intuitively, modeling the ideal protocol of a
cryptographic scheme is like modeling all involved parties via a trusted party, the
ideal functionality that does everything for them, and precisely modeling which
information is leaked to the adversary. Usually as a result, cryptography is no longer
used in the ideal functionality. However, if we can replace the trusted party with
real cryptography in a real protocol, executed by real parties with their own code,
we have shown that the real protocol is as good as the ideal protocol. Intuitively
this is what UC security captures; a formal definition is given in Section 4.2.

Overall, UC represents on the one side the ideal core of a scheme, which leads to
results that look different from what cryptographers are accustomed to, e.g., UC-
secure commitments [AKS19; CDR16; Linl1], and on the other side real protocols
that capture the security defined by the ideal functionality. To get an idea of such
an ideal functionality let us consider a sketch of ideal signatures, formally presented
and proven to be equivalent to the standard EUF-CMA security of digital signature
in [Can03]. Suppose a trusted party that you can ask to keep a signing record.
The signing record stand for that you authenticated a message of your choice. The
trusted party gives you a reference to this record as a response. Anyone else in
possession of this reference can ask the trusted party if the referenced record is
valid. In this simplified ideal signatures functionality there are no digital signatures
in use. Just a trusted party that keeps record of who signed what. We present in
Chapter 4 our ideal attribute-based signature functionality that follows the same
idea as the ideal signatures.

Congruously, a formal definition of an ideal functionality in the universal com-
posability framework [Can01; Can20] is technically challenging, since the formal
details of UC include the consideration of network traffic, communications modes,
state, and corruption of parties.
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Enhanced Security of
Attribute-Based Signatures

Summary. In this chapter we present and further extend the results of [BEJ18b]
and its full version [BEJ18a]. The two main contributions of these works are that
we enhance the security model of attribute-based signature (ABS) schemes in the
form of a strengthened experiment-based definition and an ideal ABS functionality
in the universal composability framework (UC). The ideal ABS functionality is
presented in Chapter 4. In this chapter we focus on the experiment-based defi-
nition of ABS. Concretely, we strengthen the existing experiment-based security
definitions for privacy in the form of simulation privacy (Sections 3.2.1 and 3.4.2).
We then show that two major existing generic ABS constructions are indeed sim-
ulation private (Section 3.5). In addition to the results of [BEJ18a; BEJ18b]
we strengthen the experiment-based soundness definition of ABS in the form of
simulation-extractability in this thesis. Regarding this, we show a generic construc-
tion of ABS from signatures of knowledge. Our concrete instantiation based on
succinct signatures of knowledge is, to the best of our knowledge, the first adap-
tively secure ABS scheme simultaneously achieving constant-size signatures (three
group elements) and arithmetic circuits as policies.
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In the following we give an introduction to ABS and present a detailed discussion
of the related work in Section 3.1. From that we formulate our research questions
and outline how we answer them in this chapter. The groundwork for this chapter
are the experiment-based security definitions for ABS including simulation privacy,
unforgeability, and simulation-extractability (Section 3.2). With respect to our
security definitions we then show a secure ABS construction with constant-size
signatures supporting expressive policies in Section 3.3. With the knowledge of
how to build such an ABS scheme we discuss in Section 3.4 our experiment-based
security definitions and show relations between them. In Section 3.5 we then show
that two existing generic ABS constructions are simulation private and use this
insight to outline how simulation privacy can be shown for other ABS constructions.

3.1 Introduction

Attribute-based signature (ABS) were introduced by Maji, Prabhakaran and Ro-
sulek [MPR11]. Compared to digital signatures ABS extend the concept by con-
sidering multiple signers under one set of public parameters and an authority
responsible for issuing secret keys to signers. Secret keys in ABS are issued on
the attributes of signers, e.g., (department, role). A signature in ABS is then
generated on a message-policy pair using a secret key with encoded attributes.
Therefore, a signer does not authenticate a message in the sense of identification
as it is the case with digital signatures. Instead, a valid attribute-based signature
on a message-policy pair convinces a verifier that the message was signed by a
signer with attributes that satisfy the policy. For example, consider a business
environment where traditionally a specific employee has to sign a document, i.e.,
a sales confirmation. If digital signatures are used and the employee is on vaca-
tion (and only she has access to her secret key), no one else can sign the sales
confirmation. Additionally, a digital signature valid under her public key identi-
fies her and therefore leak internal processes, e.g., who is allowed to sign which
type of documents. Using ABS, the signing policy for sales confirmations can be
defined as: either the signer has to be employed at the sales department or is the
chief executing officer. Hence, all employees of the sales department get a secret
key where the department attribute is set to “sales” and the role attribute is
set to “employee”. Further, the chief executing officer gets a secret key where the
department attribute is set to “management” and the role attribute is set to
“CEO” A document is then signed with a policy that checks if the department
attribute is “sales” and the role attribute is “employee” or that the role attribute
is “CEO” The advantage is that the ABS does not leak the identity of the signer
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nor the attributes and secret key used to sign the document with respect to the
policy. Considering authentication at service providers, the above example can
be adapted to challenge-response protocol where a user has to sign a nonce (the
challenge) and a policy get access to a specific service. Here, the policy can require
the user has to to work at a specific department, e.g., research and development
Application areas of ABS that are mentioned in the literature include leaking se-
crets [MPRI11], attribute-based authentication [MPR11], an access control system
[Li+10], attribute-based messaging [Bob+06; MPR11], trust-negotiation [MPR11],
and a privacy-preserving certification mechanism [Kaa+17].

A secure ABS scheme guarantees unforgeability and privacy. Unforgeability
captures that an adversary is not able to produce a valid signature on a message-
policy pair without a secret key for a satisfying attribute set for the policy. Since
there are multiple signers in an attribute-based signature scheme, unforgeability
also captures that signers can not collude and combine secret keys to produce
a signature if none of them has a single key that encodes satisfying attributes.
Privacy of ABS guarantees that an adversary given a signature does neither learn
the secret key nor the attributes used to generate a signature. Here, privacy has to
be considered with respect to the policy, i.e., the adversary learns from a signature
no more than what it can compute from the policy.

There are many ABS schemes and generic constructions presented in the litera-
ture [Che+13; DGM18; DOT19; EHM11; EK18; Ghalb; GM19; Herl4; Herl6;
MPR11; OT14; SAH16; SKAH18; Zha+19] with features such as revocation
[GM22], traceability [EGK14; EHM11; Ghal5; KCD09], multi-authorities [EGK14;
Ghal5; OT13], and hierarchical authorities [DGM18; GM19; GM22|. In multi-
authority ABS schemes the responsibility for issuing secret keys on attributes is
split across multiple authorities that can act independently from each other. In
hierarchical ABS [DGM18; GM19; GM22] this is even further extended to fea-
turing a root authority that delegates rights to issue secret keys to intermediate
authorities which again can delegate some rights further and issue secret keys to
users. During delegation the rights to issue secret keys can be restricted to a subset
of attributes. In this thesis we focus on ABS with a single authority, since even
in this case there are a variety of security definitions and ABS schemes in the
literature with support for different policies and varying efficiency.

3.1.1 Related Work

Early works of ABS focussed mostly on the feasibility of schemes and started an
interest to make the supported policy classes as expressive as possible while still
ensuring security and efficiency. The concept of ABS started with a preliminary
version [MPROS8] of the later published work by Maji et al. [MPR11]. Maji et
al. [MPR11] formally introduced ABS and the main contribution was a generic
construction of ABS supporting threshold policies and monotone span programs
(MSPs). Following the preliminary version [MPROS], there were works that pre-
sented ABS schemes with limited policies and privacy guarantees. The scheme by
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Li and Kim [LKO8] only supports conjunctions (n out of n, (n,n)-threshold) and
therefore privacy of attributes is not considered. With normal privacy guarantees,
Shahandashti and Safavi-Naini [SS09], Li and Au [Li+10], Chen et al. [Che+13],
and El Bansarkhani and El Kaafarani [EE16] showed ABS schemes with (k,n)-
threshold policies, where Khader et al. [KCDO09] showed a scheme for threshold
trees. From the groundwork of Maji et al. [MPR11] the expressiveness of sup-
ported policies paired with novel and interesting techniques to realize ABS were
the main research focus. Over the years with many more schemes with the support
for MSP as policies [DGM18; ECGD14; EG17; EGK14; EHM11; Ghalb; GM19;
Her14; Her16; HLLR12; Kaa+17; UKLC15] and featuring various approaches to
the construction of ABS were presented.

Okamoto and Takashima were the first to widen the class of policies to non-
monotone span programs [OT11; OT13; OT14] and Attrapadung et al. [AHY15]
showed how to construct ABS from attribute-based encryption (ABE) techniques
also supporting non-monotone span programs.

We summarize that the expressiveness of the policies and therefore the relation
between attributes and policies is already sophisticated. The next major step was
then the support of unbounded circuits (unbounded depth) and therefore a non-
uniform computation model as policies. The two existing, and similar, constructions
supporting this are by Sakai et al. [SAH16] and El Kaafarani and Katsumata [EK18]
based on bilinear groups and lattices respectively.

ABS, rather key-policy ABS where the policy is encoded in the key, supporting
an uniform computation model via Turing machines and nondeterministic finite
automata as policies were presented by Datta et al. [DDM17] from indistinguisha-
bility obfuscation (IO) and more efficiently by Sakai et al. [SKAH18] with bilinear
groups from standard assumptions. These constructions also lift previously existing
bounds on the number of attributes.

An ABS construction that moves the policies to arithmetic computations was
presented by Datta et al. [DOT19]. Their ABS supports arithmetic branching pro-
grams and therefore supports a wider class of policies than the most of the above
schemes except the ones for Turing machines and circuits. In [DOT19] the authors
show that the policies can be seen as polynomials over some finite field and mention
that there are efficient transformations from a Boolean or arithmetic formula to
arithmetic branching programs. Another in-between policy class supported by re-
cent lattice-based ABS constructions [GM22; Zha+19] is realized via inner-product
relations (conjunctive, disjunctive, threshold policies, and polynomial evaluation
of attributes).

How to construct ABS. There are several approaches of constructing ABS in
the literature. The most represented approach is to use a signature scheme and
an argument system as building blocks. In ABS schemes constructed like this, the
authority generates a signature on attributes to issue a secret key to a user. The
user signs a message of its choice with a policy satisfied by the attributes encoded
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in its secret key by generating a public verifiable proof via the argument system.
The proof guarantees two parts. First, that the user has a secret key on satisfying
attributes with respect to the policy. Second, the proof is bound to the signed mes-
sage. Otherwise, an adversary could reuse the first part for arbitrary messages to
construct forgeries. Note, we simplify the approach here and concrete constructions
also rely on other building blocks to bound the message to the proof, e.g., commit-
ment schemes, collision-resistant hash functions, and one-time signature schemes.
Variants of this approach include the consideration of different argument systems,
e.g., in the ROM and CRS model, different signature schemes, and replacing the
argument system with a SoK. For example the ABS constructions presented in
[AAS16; DGM18; EGK14; EK18; Herl6; MPR11; SAH16; SKAH18] are based on
the above described approach. Notable exceptions from that approach are ABS con-
structions from functional, identity-based, and attribute-based encryption schemes
presented in [AHY15; DOT19; HLLR12; OT11] and the ABS construction based
on indistinguishable obfuscation presented in [DDM17].

Extended features for ABS. Features to broaden the applicability of ABS such
as the support for multiple secret key issuing authorities [MPR11] and traceability
of users [EGK14; EHM11; Ghal5; KCD09] were added over the years. The most
advanced multi-authority ABS schemes are fully decentralized [EGK14; Ghalb;
OT13]. Another interesting feature is linkability [ECGD14; EG17; UKLC15] for
establishing sessions between multiple authentications.

Security of ABS. For the purpose of this thesis we focus on signature-policy
ABS, referred to as ABS, in the single authority setting without any extended
features and summarize the state of the security model in the following. We have
to note that the security model for ABS was not the focus of the overall ABS
research. As we highlighted, the expressiveness of the policy class was the main
driving factor. Maji et al. [MPRO8; MPR10; MPRI11]| introduced the security
model that was then adopted by subsequent works. The security model includes an
experiment-based existential unforgeability (EUF) definition with a signing oracle,
that is asked to find satisfying attributes for a given message-policy pair.
Okamoto and Takashima [OT14], were the first to observe that this definition
is policy class specific and without restricting the policy class is problematic with
respect to falsifiability [GW11; Nao03] (of the assumption) that a scheme under this
EUF definition is secure. That is because the challenger modeling the experiment is
not necessarily efficient depending on the policy class, e.g., for conjunctive normal
form (CNF) formulas as policies, it is asked to solve the formulas by finding
a satisfying input. Such a polynomial-time solver also means that we can decide
boolean satisfiability problem (SAT) in polynomial-time. Hence, efficiently checking
if an adversary breaks the scheme via the challenger is not possible in general.
Furthermore, this can lead to non-efficient reductions (as part of a security proof)
if one has to answer queries of an ABS adversary. Note, for ABS schemes that
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just support monotone policies, e.g., threshold or MSP policies, the challenger is
indeed efficient realizable. In this thesis, we show that the observation, that the
original EUF definition depends on the policy class, also plays a major role in
the definition of a stronger privacy notion. In the same paper as the observation
[OT14] Okamoto and Takashima introduced a general EUF definition for ABS.

Maji et al. [MPRO08; MPR10; MPR11] also introduced a privacy definition con-
sidering the distribution of signatures. In particular it requires that the distribution
is independent of the secret key. This definition is not formulated via a security ex-
periment and is widely adopted [AHY15; Che+13; DDM17; DOT19; OT13; OT14;
SAH16; SKAH18]. An experiment-based version of the privacy definition was also
introduced and used throughout the literature [EE16; EG17; EK18; Ghals; GM19;
GM22; KCD09; Zha+19] where most of the schemes consider extended ABS, e.g.,
decentralized ABS.

Another approach to define privacy/anonymity is simulation and is widely used
in privacy-preserving cryptography such as AC [BB18; BCKLO08; CL01; CL04]
and zero-knowledge argument systems [Fis05; FKMV12; FS87; GOS12; Gro06;
GS08; GS12; IV19]. Simulatability for signatures was also formalized by Abe et al.
[Abe+10; AHO10; AO09; AO12] in the context of blind signatures and structure-
preserving signature (SPS) schemes and by Chase et al. [CKLM14] for malleable
signatures. Intuitively, it requires the existence of a simulation signing algorithm
that generates signatures with the help of a trapdoor instead of using a secret key
as the normal signing algorithm.

Directly related to ABS is the work on policy-based signature (PBS) schemes by
Bellare and Fuchsbauer [BF14]. In PBS the policy is associated to a signer’s secret
key and a signer can only sign a message if the message satisfies a policy and the
signer knows a witness for the message-policy pair. Compared to ABS not only
the attributes, here witness, but also the policy is hidden in a private PBS. PBS
has interesting application areas where policies reveal secrets, e.g., organization
structures and rules. Also, a verifier can be sure that a signer was permitted to sign
the message, even if the verifier cannot inspect the policy. In [BF14] the authors
also show how to build the generic ABS construction by Maji et al. [MPR11] from
PBS, among other interesting implications such as group signatures, simulation-
extractable NIZK, and public key encryption. A special case of PBS are functional
signatures introduced in [BGI14]. In functional signatures signers can get secret
keys for a function f and then sign any messages in the range of f. Mapped to
PBS the witness is then the pre-image of f.

Regarding the equivalence of ABS to other primitives, there is the result by
Tsabary [Tsal7] that states that ABS is equivalent to homomorphic signatures. The
details of this equivalence are important to assess this result. Actually, Tsabary show
the equivalence with a weak security model for ABS. In detail, it is only existential
unforgeable with respect to a single key and the provided transformation to full
existential unforgeability is only weak hiding. Here, weak hiding means that an
adversary with a secret key can recognize signatures under its secret key. Such a
definition is also called selfless anonymity, e.g., in group signatures. Following this
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terminology, ABS are fully anonymous, i.e., an adversary cannot recognize its own
signatures.

Efficiency of ABS. In addition to the support of a wider class of polices, it is
important to study the effect of it on the efficiency of the ABS in the from of the
size of the elements. Primarily the focus is on the signature size, since signatures
are generated and transmitted often, whereas for keys this usually happens just
once per signer.

With exceptions, that we list in the following, the signature size of almost all of
the ABS schemes in the literature depend on the bound of the supported number
of attributes. For example, the signature size of the ABS constructions in [MPR11;
OT11; OT13; SAH16] is linear in the number of attributes and in case of [SKAH18]
linear in the size of the policy.

Attribute-based signature schemes with constant-size signatures are presented
in [EG17; GMZ12; HLLR12; WHHL15; ZXLZ12]. While featuring constant-size
signatures, these ABS schemes only support threshold policies. Furthermore, the
ABS schemes in [GMZ12; HLLR12; WHHL15; ZXLZ12] are only proven to be
unforgeable under selective-policy attacks (non-adaptive unforgeability), which
requires that the adversary submits a challenge policy at the beginning of the un-
forgeability experiment. An ABS scheme for threshold policies with constant-size
signatures and claimed to be adaptively unforgeable was presented in [Che+13]
using composite order groups instead of the common bilinear group setting. How-
ever, no formal security proofs for the ABS scheme was given. In [EG17] an ABS
scheme supporting threshold policies and constant-size signatures is presented and
shown to be adaptively unforgeable.

Concluding the related work, we can state that the research in the area of ABS
has achieved the construction of ABS for very expressive policy classes (Turing
machines, arithmetic branching programs, circuits) based on the security model
introduced by Maji et al. [MPRO8; MPR11]. Considering the signature size of the
ABS constructions from the literature, we observe that constant-size signatures
are only known for threshold policies.

3.1.2 Research Questions

As pointed out there are still open questions regarding the security of ABS in the
experiment-based setting and in composed systems. Related to this is the question
if we can strengthen the security notions of ABS. Furthermore, it is interesting
to consider the efficiency (in terms of signature size) of schemes that support
expressive policies. We identified the following questions.

Q1 Are there strong experiment-based security definitions that are not for specific
policy classes and precisely capture both security aspects of ABS, namely
privacy and unforgeability, and how are they related to existing security
definitions?
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Q2 Are there ABS constructions that are secure with respect to such experiment-
based security definitions?

Q3 Is there a fully secure ABS construction supporting expressive policies with
constant-size signatures?

3.1.3 Our Contribution

In this chapter we answer the above questions affirmatively in the following way.

Research question Q1. We answer the first question by combining the general
ABS unforgeability definition of Okamoto and Takashima [OT14] and an adapted
version of the PBS simulation-based privacy definition presented by Bellare and
Fuchsbauer [BF14] into a ABS experiment-based security model (Section 3.2). As
we noted in the related work, the idea of simulatability of signatures is not new and
interestingly the early versions [MPRO8; MPR10] of the Maji et al. construction
[MPR11] presented a so called AltSign algorithm that is asked to output signatures
without a secret key. In the concrete description of the AltSign algorithm the
authors then require that it finds satisfying attributes for a given policy. As already
mentioned, this is not efficiently feasible for all policy classes.

We concretize the simulatability of signatures in the form of simulation privacy
independently from the policy class based on privacy definition presented in [BF14]
for PBS. Therefore, we require that ppt simulation algorithms exists such that
no adversary can distinguish them from the normal (non-simulation-based) algo-
rithms of ABS. Concretely, we require that a ppt simulation algorithm for signing,
called SimSign, with corresponding setup (SimSetup) and key generation algorithm
(SimKeyGen) exists. The novelty of our experiment-based security model for ABS
comes from the combination of the general (policy-independent) unforgeability def-
inition [OT14] and the simulation privacy. In addition to that, we also introduce a
simulation-extractability definition. Enabling security proofs of ABS schemes that
use a building block that is simulation-extractable (e.g., SoK) to be more direct
instead of incorporating a reduction to unforgeability.

We also show the relation of the security definition to one another in Section 3.4.
There, we show that the simulation privacy definition is stronger than the standard
privacy definition with respect to hard policy classes, where satisfying attributes
for a policy are unique but not efficiently computable. Additionally, we show that
the standard privacy definition for ABS does not guarantee the desired privacy.
In detail, we present that for hard policy classes the standard privacy definition
allows ABS schemes that append the attributes in the clear to generated signatures.
Whereas our simulation privacy definition does not allow that. As a consequence
of this result our simulation privacy definition should be considered. Regarding
unforgeability, we show in Section 3.4.1 that simulation-extractability implies un-
forgeability for ABS.
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Research question Q2. We show that the generic ABS constructions by Sakai
et al. [SAH16] and by Maji et al. [MPR11] satisfy our simulation privacy definition
in Section 3.5. Since originally for both schemes weaker privacy guarantees were
shown, we think that simulation privacy is interesting on its own. Note, that for
unforgeability there is nothing to show since we only changed the unforgeability
definition such that the efficiency of the challenger does not depend on the policy
class. Furthermore, the reductions in the respective unforgeability proofs given in
[MPR11; SAH16] were already efficient. We also highlight lessons learned from
that adaption of the existing ABS schemes and list additional schemes that we
checked to be simulation private.

Research question Q3. We answer the question by showing a generic ABS con-
struction from signatures of knowledge (SoKs) and digital signatures (Section 3.3),
and by presenting a concrete instantiation with constant-size ABS signatures from
a succinct SoK (Section 3.3.3). Our concrete instantiation supports arithmetic
circuits as policies with signatures consisting of only three group elements. As
a consequence of the generic construction (from simulation-extractable SoK), we
introduce simulation-extractability to the experiment-based security model of ABS
and show that it implies unforgeability (Section 3.4.1).

This chapter presents results published in [BEJ18b]. The extended proofs and de-
scriptions presented in this thesis are based on the full version [BEJ18a] of the paper
published at CANS’18. In detail, the simulation privacy definition (Section 3.2.1),
that simulation privacy implies privacy (Section 3.4.2), and the result that two
generic ABS construction from the literature are simulation private (Section 3.5)
were published in [BEJ18b]. In this chapter we additionally present a generic
ABS construction (Section 3.3), an ABS scheme with constant-size signatures (Sec-
tion 3.3.3), show that simulation-extractibility implies unforgeability for ABS, and
further analyze the relation of simulation privacy and privacy (Section 3.4).

3.2 Attribute-Based Signatures

To study and enhance the security definitions of attribute-based signature (ABS)
we start with the formal definition of the syntax and then present the security
definitions.

In an ABS scheme users get secret keys that are issued by an authority on
their attributes and signatures are generated on message-policy pairs. We denote
attributes A as a vector from an attribute universe Uy, where Uy, is implicitly
defined by the public parameters pp of an ABS scheme. The attribute universe Uy,
in turn implicitly defines a vector length [ and a policy P is a map P : U, — {0, 1}.
By A € U, we denote that the attributes A are an element of U,,. Hence a vector
of length [. Note, in the literature attributes are sometimes modeled as sets. Since
our results do not depend on the concrete modeling of the attributes we use the
vector modeling in this thesis which allows us to treat attributes as message vectors

43



3 Enhanced Security of Attribute-Based Signatures

for other schemes.

An ABS scheme supports a policy class {P} pp that denotes the set of all supported
policies that map from the attribute universe to {0, 1}, i.e., policies P such that
P : Uy, — {0,1}. The supported policies depend on the concrete ABS scheme,
e.g., boolean formulas, CNF formulas, boolean circuits or arithmetic circuits. We
say that policy P is defined over the attributes of U, and denote it by P € U, if
P € {P},,. Further, we say that attributes A satisfy policy P if P(A) = 1.

Definition 3.2.1 (Attribute-based Signature Scheme)
An attribute-based signature scheme ABS consists of algorithms Setup, KeyGen,
Sign, and Verify.

o (pp, msk) < Setup(1%) is a ppt setup algorithm that on input security param-
eter 1* outputs public parameters pp and master secret key msk, where the
public parameters pp implicitly define the message space M and attribute
universe Upy,.

o ska < KeyGen(pp, msk,A) is a ppt key generation algorithm that on input
public parameters pp, a master secret key msk, and attributes A € U,
outputs a secret key sky.

e o < Sign(pp, ska,m,P) is a ppt signing algorithm that on input public
parameters pp, a message m € M, a policy P over the attributes of U, and
a secret key sk, outputs a signature o or a failure symbol 1.

e 0/1 < Verify(pp, m,P,0) is a ppt or dpt verification algorithm that on input
public parameters pp, a message m € M, a policy P, and a signature o
outputs b € {0,1}.

We require from an ABS scheme that is correct and consistent. Intuitively,
correctness guarantees under honestly generated setup parameters that signatures
on message-policy pairs computed with honestly generated secret keys are valid.

Definition 3.2.2 (Correctness)

An ABS scheme ABS with ppt algorithm Verify is correct, if for all A € N, all
(pp, msk) € Setup(1*), all messages m € M, all attributes A € Uy, all sky €
KeyGen(pp, msk, A), all policies P € Uy, such that P(A) = 1, and all signatures
o € Sign(pp, ska, m,P) it holds that

Pr [Verify(pp, m,P, o) = O} < negl(\) .
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If Verify is a deterministic polynomial-time algorithm then we require that it
outputs 1 with certainty.

Note, that our definition of ABS considers a probabilistic Verify algorithm. There-
fore, consistency guarantees that a signature that was once declared by ppt algo-
rithm Verify as valid, will be declared as invalid, by an independent run of Verify,
only with negligible probability (and vice versa).

Definition 3.2.3 (Consistency)

An ABS scheme ABS with a probabilistic verification algorithm Verify is consistent,
if for all A € N, all (pp, msk) € Setup(1*), all m, all P, and all o it holds that there
exists b € {0,1} such that

Pr[Verify(pp, m,P, o) # b] < negl(\) .

<

Note, we call a scheme perfectly correct and perfectly consistent if negl()) is 0
respectively.

Remark 3.2.1: We consider ABS in this work to be correct and consistent without
mentioning it explicitly.

The following requirement allows a signer to verify secret keys. We use this for
ABS in the universal composability framework (Chapter 4) where users can get
secret keys generated by an adversary.

Remark 3.2.2: We further require that secret keys are efficiently verifiable. In
detail we require that there is a ppt algorithm that for all A € N, on input public
parameters pp € Setup(1}) and secret key sk € KeyGen(pp, msk, A) outputs 1
with certainty.

Note that this is a natural requirement, since a signer has to be able to verify if
a secret key issued by an authority is valid with respect to the user’s attributes. Al-
most all schemes that we checked fulfill this requirement since they are constructed
such that secret keys are signatures on the attributes, e.g., [DGM18; EHM11;
MPR11; OT13; SAH16].

3.2.1 Privacy

We present two privacy definitions. The first one captures that an adversary deter-
mining two attributes for two secret keys should not be able to tell which secret key
was used to sign a given message-policy pair. The second definition is simulation-
based and requires, that even the attributes used to generate a signature are hidden
with respect to what is efficiently computable from the policy. Formally, both def-
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3 Enhanced Security of Attribute-Based Signatures

initions are a specialization of the definitions for policy-based signatures (PBS)
presented in [BF14] to ABS. We present the two formal privacy definitions in the
following. Details of the differences between the privacy definitions are examined
in Section 3.4.2. With regard to our simulation-based definition, we show in Sec-
tion 3.5 simulation algorithms for two generic ABS constructions [MPR11; SAH16]
and show that they satisfy our simulation-based privacy definition.

Standard Privacy

Privacy definitions that do not specify an experiment are common in ABS [Her16;
MPRI11; OT14; SAH16]. In more detail, they say that an ABS scheme is perfectly
private, if for all honest setups, all honestly generated secret keys sky, and ska,,
and all message m, and all policies P, such that P(Ag) = P(A;), the distributions
of the signatures under ska, and sky, are identical [MPR11].

We capture the above in form of an equivalent security experiment, where the
capabilities of the adversary are explicitly stated, e.g., oracle access, input and
output behavior. Informally, our experiment-based privacy requires that it should
be infeasible for an adversary to distinguish which secret key was used to generate
a signature, even if it has access to the master secret key and the secret keys.

We refer to this privacy notion as standard privacy, if we compare it to other
privacy notions. Our definition is adapted from [BF14].

Definition 3.2.4 (Privacy)
Let ABS be an attribute-based signature scheme and let D be a distinguisher. We
define the advantage in the experiment ExpfweY’(\) (Experiment 3.1) as

AdVBTRX(N) = | Pr{ExpRiast O(\) = 1] — Pr[Expist' () = 1]

and call ABS perfectly private, if for every (unbounded) distinguisher D it holds
that

AV () = 0
or computationally private, if for every ppt distinguishers D it holds that
Adviy'REs(A) = negl(}) .
o

Note, that in the above privacy experiment the oracle outputs the secret keys
together with the signature similar to full anonymity definitions for group signatures
[BMWO03].

Definition 3.2.4 states that the relation between the signature and the secret
keys is hidden. In particular, an adversary cannot determine which secret key was
used to issue a signature, for this the oracle outputs the generated secret keys. To
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Expasy” (V) OF s (M, P, Ag, Ay)
1: (pp, msk) < Setup(1*) 1: if P(Ag) =1,P(A1) =1, then
a: B Dogwnsk(p% mak) 2: ska, < KeyGen(pp, msk, Ay),
3: return b 3: ska, < KeyGen(pp, msk, A1),
4: o < Sign(pp, ska,,m,P),
5: return (o, ska,, ska,)

6: elsereturn L

Experiment 3.1: Privacy experiment for ABS.

further motivate the above privacy definition, let us momentarily consider a weaker
definition. For this, we change the above definition such that it does not output
the secret keys on oracle queries. Then let us assume a scheme, that generates
secret keys that include unique identifiers. Furthermore, during signing the scheme
appends this identifier to the signature. Notice, that in the described scheme all
signatures under the same secret key are linkable via the unique identifier appended
to each signature. The described scheme satisfies the weaker definition, since an
adversary just see a signature output by the oracle and each secret key is just
used once by the oracle. Hence, the included identifier does not help the adversary
to link signatures. This weaker definition does not capture the real requirements,
where we want signatures to be unlinkable. Therefore, the oracle in our privacy
definition outputs both secret keys sky, and skp, in addition to the signature. By
this, any scheme that appends identifiers to signatures is not considered private
in our security model. In group signature terminology such a weaker definition as
we described is called selfless-anonymity [BS04].

Simulation Privacy

Another way to describe privacy, is that given a valid signature o on a policy
P, an adversary should not be able to learn which attributes are necessary to
satisfy the policy P from the signature o, except for what it can compute from
the policy P. Simulation privacy captures this privacy description. To argue why
simulation privacy is desirable in practice consider the following example. Which
is presented in [BF14] to motivate simulation privacy for policy-based signatures
in a similar way. Consider an ABS scheme that is perfectly private according to
Definition 3.2.4. Additionally, assume for every P € Uy, there is just one satisfying

attribute A. Therefore, the adversary (distinguisher) D in Expgi‘f%’b()\) has to

input Ay = A; for P to its challenge oracle ng,msk' Let us modify algorithm
Sign such that it appends the attribute vector to each signature. As a result, the
returned signatures are (of course) still indistinguishable as required in standard
privacy Definition 3.2.4 (since Ag = A), but the used attributes are not hidden.
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This is not the desired privacy guarantee in a real-world application, where the
attributes are secret or satisfying attributes of a policy are hard to compute, e.g.,
policies modeling NP-hard problems. To achieve the privacy level that is demanded
in such applications we introduce simulation privacy for ABS. In Section 3.4.2 we
show that simulation privacy is actually a stronger notion than standard privacy.

In the simulation-based definition of privacy we additionally require that the
signatures are independent of the attributes. Therefore, simulation privacy is based
on a simulation signing algorithm. The normal signing algorithm Sign in ABS
gets a secret key for an attribute vector as an input, whereas the simulation
signing algorithm SimSign does not. Intuitively, if signatures can be simulated
without a given secret key for satisfying attributes (regarding the given policy),
then signatures do not leak any information about the attributes used to generate
it, except what can be computed from the policy. More formally, no adversary
should be able to distinguish whether a signature was generated by the normal
signing algorithm Sign or by the simulation signing algorithm SimSign.

The following simulation-based definition is based on the definition presented in
[BF14] for policy-based signatures.

Definition 3.2.5 (Simulation Privacy)

Let ABS be an attribute-based signature scheme and let D be a distinguisher. We
define the advantage in the experiment Exp%TA'pBrévacy’b(A) for b € {0,1} (Experi-
ment 3.2) as

AdVETRBEY (A) = |Pr[ExpPRBe ™0 (\) = 1] — Pr[ExpPge ™! () = 1|

and call ABS perfectly simulation private, if there exists a tuple of ppt algorithms
called (SimSetup, SimKeyGen, SimSign) such that for every (unbounded) distin-
guisher D it holds that

AdviRBs " () = 0

or computational simulation private, if there exists a tuple of ppt algorithms called
(SimSetup, SimKeyGen, SimSign) such that for every ppt distinguisher D it holds
that

AdvHTBEY(A) = negl()) .
Here SimKeyGen and SimSign can be stateful.

We want to note that the oracle O;;%%sk,tdsim in Definition 3.2.5 only outputs

a simulated signature, if the attributes satisfy the policy (P(A) = 1), otherwise
it outputs the failure symbol L. This is required, since SimSign unlike Sign can
(potentially) simulate signatures even for false statements (P(A) = 0). Implicitly,
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sim-privacy,1
Exppaps (A

sim-privacy,0<)\)

Expp ags

L: QKeyGen =0
2:  (pp, msk) < Setup(1)

KeyGenq Signq
3: b/ < Dopp,msk ’OPP (pp’ msk)

4: return ¥

1: QKeyGen =10
2:  (pp, msk, tdsm) < SimSetup(l’\)

KeyGenq OSignO
3 b/ — D pp,msk,tdgiy, > pp,msk,tdgiy, (pp, msk)

4: return b

OKeyGen1 (Az) :

pp,msk

KeyGen .
Oppvaka(;dsim (AZ) :

1: ska, < KeyGen(pp, msk, A;)

2 QKeyGen = QKeyGen U {(7’7 SkAiaAi)}
3: return sk,

1: ska, < SimKeyGen(pp, msk, td sim, A;)

2 QKeyGen = QKeyGen U {(7/7 SkAiaAi)}
3: return sky,

OSignO (i,mj,Pj) .

pp,msk,tdsim

Signq /. .
Opp (i, my, Pj) -

1: if (i, S/CAZ-,A@') ¢ QKeyGen then L:
2 ignore 2:
3: o < Sign(pp, ska,, m;,P;) 3:
4: return o 4

if (4, ska;s Ai) € QKeyGen then
ignore

if P;(A;) =0 then
return |

else
o < SimSign(pp, msk, tdgim, m;,P;)

return o

Experiment 3.2: Simulation Privacy experiment for ABS.

this demands that also Sign(pp, ska, m,P) o

utputs the failure symbol L if P(A) = 0.

Intuitively, Sign should not output a (valid) signature in such a case anyway, hence it
can just output L. In the above Definition 3.2.5, we introduce a simulation trapdoor

tdsim to capture that SimKeyGen and SimS
simulate. For many of the ABS schemes in

ign use some additional information to
the literature the simulation trapdoor

is the master secret key msk, e.g., [AHY15; ECGD14; EG17; EGK14; MPR11;
SAH16; SKAH18; UKLC15]. In Section 3.5 we go into more details and show for
two generic ABS constructions [MPR11; SAH16] that they are simulation private.

Defining simulation with a simulation trapdoor, instead of requiring that it is

the master secret key, is more general and

covers ABS schemes that simulate its

signatures without msk, e.g., using a trapdoor for a zero-knowledge or signature
of knowledge simulator as we present in Section 3.3.
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3.2.2 Unforgeability

In contrast to digital signatures (Section 2.3.2) the unforgeability of ABS has
to consider secret keys on attributes that were revealed to the adversary and
the signatures that can be produced with them in respect to the policy that the
adversary outputs as part of its forgery. Hence, the unforgeability notion captures
that it should be infeasible for an adversary to output a valid signature on a
message-policy pair where it never got a secret key that satisfies the policy nor
a signature for that message-policy pair. We base the following unforgeability
definition on the definition presented in [OT14].

Definition 3.2.6 (Unforgeability - [OT14])
Let ABS be an attribute-based signature scheme and A an adversary. We define
the advantage in the experiment EXpi{‘fABS(A) (Experiment 3.3) as

Adviihgs(V) = Pr|ExpPes (V) = 1]

and call ABS existentially unforgeable regarding an adaptive chosen message-policy
attack, if for all ppt adversaries A it holds that

Adviiags(A) = negl(}) .

o

Intuitively, an adversary A is successful in the above unforgeability experiment,
if the following statements are true.

1. The signature o* output by A is valid for the message m* and policy P*, i.e
Verify(pp, m*,P*,0%) = 1,

2. the signing oracle never returned a signature for message-policy pair (m*, P*),
i'e'7 (m*7]P)*) ¢ QSigm

3. and for all attributes A;, where the corresponding secret key sky, was revealed
by the oracle ORevea! it holds that the attributes A; do not satisfy the policy
P*, ie., P*(A;) = 0.

Note, the above definition also guarantees collusion resistance in the following
sense. The adversary A can get secret keys on attributes of its choice by first
querying oracle O;f;yﬂffg and then oracle OR®¥¢ Even then the adversary cannot
output a valid signature for policy P* if none of the revealed secret keys alone
(representing a group of colluding signers) is sufficient to satisfy the policy P*.

Note, that the above definition is weak in a similar sense as our EUF-CMA
definition for digital signatures (Definition 2.3.6). This means, that a successful
adversary has to output a signature on a fresh message-policy pair and cannot
reuse answers from the Sign oracle. This is usually viewed as a feature in privacy-
preserving cryptography, since it allows that signatures are randomizable. Strongly
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Exp%fags(A)

1: QKeyGena QSigm QReveaI =10
2: (pp,msk) < Setup(1*)

KeyGen OReveaI OSign

3 (m*, IP*, 0'*) <— Aopp,msk’ PP (pp)
4: return 1 if
5: Verify(pp, m*,P*,0*) =1 A

6: (m*,}P’*) ¢ QSign A
T VA; € QReveal : P*(Az) =0
8 : else return 0
Op (i, mj, P)) : ORevedl () .
1: if <i7 SkAmAi) ¢ QKeyGen then 1 if (ia SkAiaAi) ¢ QKeyGen then
2: ignore 2: return |
3: o <« Sign(pp, ska,, m;,P;) 3: else
4: QSign = QSign U {(mj,Pj)} 4: QReveaI = QReveaI U {Az}
5: return o 5 return sky,
KeyG
O pprmsk (Ai) :

1: skp, < KeyGen(pp, msk, A;)
2: QKeyGen = QKeyGen U {(Za SkAiaAi)}

Experiment 3.3: Unforgeability experiment for ABS.

unforgeable signatures are not randomizable. For strong unforgeability in ABS we
just need to change the second winning condition to (m*,P*, o) ¢ Qsign.

3.2.3 Simulation-Extractability

Next, we introduce simulation-extractability for ABS and in Section 3.4.1 we show
that it implies unforgeability. The definition enables more direct constructions
and proofs of ABS schemes that use a simulation-extractable building block. For
example in Section 3.3 we show a generic ABS construction that uses a simulation-
extractable SoK as a building block. In the following we introduce two variants
of simulation-extractability. One that we call white-box, where the extractor de-
pends in the adversary, and another that we call black-box, where the extractor is
independent of the adversary. The naming is based on the naming that we use for
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wh-sim-ext

ExpExer 2 ABs (M)
1: QKeyGena QSign = (Z)
2:  (pp, msk, tdgm) + SimSetup(1*)

SimKeyGen SimSign

(m*,IP’*, U*) i AT ppimskitdsi = ppsmskstdsim (pp)
(A™) < Extra(trans.)

return 1 if
Verify(pp,m*,P*,c*) =1 A
(m*,P*) ¢ Qsign N
(A" ¢ QkeyGen V P*(A") = 0)
else return 0

© 00 N o o ks W

SimKeyGen . SimSign .
Opp:mSkvtdsim (Al) . Opp:mSk:tdsim (m]’ P]) :

1:  ska, < SimKeyGen(pp, msk, tdsim, A;) 1: o; < SimSign(pp, msk, tdsim, m;,P;)

2: QKeyGen = QKeyGen U {(717 SkAiaAi)} 2: QSign = QSign ) {(mjvpj)}
3: return sky, 3: return o;

Experiment 3.4: White-box simulation-extractability experiment for ABS.

the security definitions of argument systems (Section 2.3.5).

Definition 3.2.7 (White-Box Simulation-Extractability)

Let ABS be a simulation private attribute-based signature scheme and A be an
adversary A. We define the advantage in the experiment Expﬁf’éﬂ?:jﬁ%()\) (Ex-
periment 3.4) as

AV Res (V) = Pr{Exp e oRes () = 1]

and call ABS white-box simulation-extractable, if for all ppt adversaries A there
exists a ppt extractor Extr 4 such that Adv"A"tE’;'SS:ﬂ:Eﬁ, L (A) = negl(}).

In the following we define the simulation-extractability with a black-box extrac-
tor. A black-box extractor is also called online extractor in the literature, since it
does not rely on any rewinding techniques, rather it gets an extraction trapdoor
for the CRS to extract.

Definition 3.2.8 (Black-Box Simulation-Extractability)
Let ABS be a simulation private attribute-based signature scheme and A be a
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bb-sim-ext
Exp 2 Exir.aBs (M)

1: QKeyGem QSign =10
2 (pp, msk, tdsim, tdest,) <+ ExtrSetup(1*)

SimKeyGen SimSign

31 (m B, 0%) - Amhiton Ot stan (pp)
4: (A") < Extr(msk, tdegr, m*, P*, 0™, QkeyGen, @sign)
5: return 1 if
6: Verify(pp, m*,P*,c*) =1 A
7: (m*,P*) ¢ Qsign N
8: (A" ¢ QkeyGen VP*(A") = 0)
9: else return 0
O ety (B) : AT COR E
1:  skp, < SimKeyGen(pp, msk, tdsim, A;) 1: o; < SimSign(pp, msk, tdsim, m;,P;)
2 QKeyGen = QKeyGen U {(4, ska,, Aj)} 2: Qsign = Qsign U {(m;,P;)}
3: return sky, 3: return o,

Experiment 3.5: Black-box simulation-extractability for ABS.

ppt adversary. We define the advantage in experiment Expi{”'é‘j(rt“r"?és()\) (Experi-

ment 3.5) as
bb-sim-ext bb-sim-ext

AdVA,Extr,ABS()‘) = Pr[EXpA,Extr,ABS()‘) = 1]

and call ABS black-box simulation-extractable, if (1) there exists a ppt algorithm
ExtrSetup such that for all ppt adversaries A it holds that

\PT[(pp, msk, tdsim) < SimSetup(1*): A(pp) = 1] -
Pr{(pp, msk, tdsim, tdesy) < ExtrSetup(1%): A(pp) = 1”

is negligible and (2) there exists a ppt extractor Extr such that for all ppt adversaries
A it holds AdvRpeTEL,(A) = negl(A). o

3.3 Attribute-Based Signature Scheme from
Signatures of Knowledge

In this section we present our generic ABS construction from signature of knowl-
edge (SoK) and a digital signature scheme. We then show an instantiation that
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supports arithmetic circuits with constant-size signatures consisting only of 3 group
elements. We use here our enhanced experiment-security model, since we prove
the construction secure in the sense of white-box simulation-extractability. This is
a conscious decision, since we use a succinct SoK for the instantiation, where only
white-box secure instantiations are known. Nonetheless, our ABS construction is
not inherently bound to white-box security definitions. Therefore, we also discuss
the security of the construction under black-box simulation-extractability.

The approach of a SoK-based construction is a natural candidate to construct
ABS and other cryptographic constructions. For example, constructions that use
SoK are presented in [BBS04; BCKL08; BEJ18c; BF14; BMW03; BSZ05; CDHK15;
DP06; DS18] including but not limited to non-interactive anonymous credentials,
reputation system, as well as static and dynamic group signatures. The first for-
mal and universally composable security definition for SoKs was presented by
Chase and Lysyanskaya in [CL06]. Initially, interactive zero-knowledge arguments
of knowledge protocols were transformed to non-interactive variants by the so
called Fiat-Shamir transformation [FS87]. The same technique yields a signature
of knowledge. The efficiency of most of the constructions that rely on signatures
of knowledge [BCKLO08; BEJ18c; BF14; CDHK15; DS18] inherits the efficiency of
the used SoK scheme. Recently, Groth and Maller [GM17] presented a succinct
signature of knowledge based on SE-SNARK shown in the same work. The proofs
generated by the SE-SNARK and therefore the resulting signatures of knowledge
consist only of three group elements [GM17]. The SoK in [GM17] can be instan-
tiated for relations given as an arithmetic circuit. With regard to ABS, an ABS
scheme build from SoKs based on lattice assumptions was presented in [EE16].
However, the scheme only supports policies consisting of (A, V) combinations of
attributes. Compared to this scheme we add in the following the formal definition
and usage of an ABS relation and a generic construction based on SoKs and digital
signatures. We also present a concrete instantiation with a wider class of policies,
namely arithmetic circuits.

Before we present our generic ABS construction, we define what an attribute-
based signature certifies as a formal relation, where the attributes are part of the
witness and the policy is part of the instance. This formalization allows us to rely
on a SoK for the ABS relation to formally define our generic ABS construction.
Based on this we show our instantiation and analyze its efficiency.

Defining a relation for signatures with extended authentication semantics is also
used in [BF14]. There, PBS are constructed by first defining an appropriate relation.
The difference to ABS is that the policy is also part of the witness in the PBS
relation. As described in Section 3.1.1 this means that the policy is hidden from
verifiers in PBS where in ABS it is public. Regarding ABS, the ABS constructions
presented in [DGM18; EK18; GM19] are also build from a relation. There, the
relations are very specific to the building blocks that are used, i.e., how the policy
is modeled.

Let us start with the definition of the relation for ABS.
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Definition 3.3.1 (ABS Relation)

Let Sig = (Sig.Setup, Sig.KeyGen, Sig.Sign, Sig.Verify) be a signature scheme for
message space U. Let U also be the attribute universe. We define relation RégBS
as follows:

((z,w)) = ((pk, P), (A, 0)) € RGSS <= Sig.Verify(pk,0,A) = LAP(A) =1

where (pk,P) is the instance and (A,#) is the witness. Let Rélgs be implicitly

defined by the message space U. Further, let RGenégs be the relation generator for

Régs that on input 1* generates public parameters pp via Sig.Setup. The public

parameters also define the message space (and the attribute universe) U. o

To present some intuition for the above definition and what it means to have a
signature of knowledge for the ABS relation generator RGenégS, consider RGenéi]gBS
as the setup algorithm that creates the public parameters, e.g., a group description.
Then, the role of the signature scheme Sig is to create ABS secret keys as signatures
on attributes. Further, considering signature of knowledge scheme SoK for the ABS
relation RégBS, the scheme SoK signs message-policy pairs (m,P) given satisfying
attributes A (i.e., P(A) = 1) and a valid Sig signature on the attributes A. Here, the
validity of the signature on the attributes is determined by Sig.Verify. Specifically,
the verification equation, e.g., a collection of product pairing equations if Sig is
based on bilinear groups.

3.3.1 Generic ABS Construction

In the following, we present a generic ABS construction from a signature of knowl-
edge and digital signature scheme. The construction is similar to the second generic
construction of policy-based signatures (PBS) in [BF14|. However, the PBS con-
struction directly uses non-interactive zero-knowledge arguments of knowledge
instead of a signature of knowledge for a specific PBS relation. This means their
NIZK has to hide the policy and prove that the message and a provided witness
satisfy the policy. In ABS we do not have to hide the policy and the policy does
not involve the message to be signed.

Our approach for the generic ABS construction is that the ABS setup fixes public
parameters for the signature scheme. A signer gets an ABS secret key consisting
of a signature on its attributes A. Then, to sign a message m with P the signer
generates a signature of knowledge on m proving that its secret key satisfies P and
that the secret key is a valid signature on attributes A.

Construction 3.3.1 (Generic ABS Construction)
Let Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify) be signature scheme and let SoK =
(SoK.Setup, SoK.SimSetup, SoK.Sign, SoK.SimSign, SoK.Verify) be a signature of
knowledge for ABS relation generator RGenéES. We define the generic attribute-
based signature construction ABS&¢ in Figure 3.6.
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We assume that the initial public parameters pp’ are part of the public key pk
and the public parameters ppg .

Lemma 3.3.1. If the signature scheme Sig is perfectly correct and the signature
of knowledge scheme SoK is perfectly correct, then the ABS construction ABS&®
(Construction 3.3.1) is also perfectly correct.

Proof. From inspection it follows that the message space of ABS&® is the mes-
sage space Msok of the signature of knowledge scheme SoK. Further, the at-
tribute universe Uy, is the message space Ms;g of the signature scheme Sig. Let
A €N, (pp, msk) «+ ABSE® Setup(1), message m € Msok, attributes A € Msig,
ska < ABSE&°.KeyGen(pp, msk, A), policy P € U,,, such that P(A) = 1, and let
signature o < ABS®“.Sign(pp, ska, m,P). Then by definition of the algorithms,
we have that the public parameters pp consists of the public parameters of SoK
and the public key of generated by Sig.KeyGen and the master secret key is the
secret key of the signature scheme Sig. In detail, (pp, msk) = ((ppsok, Pk), sk)
where (pk, sk) < Sig.KeyGen(pp') and (ppsok, tdsim) < SoK.SimSetup(pp’) for
pp’ <+ RGenégs(l)‘). Further, we have that a secret key of ABS®® consists of
a Sig signature and a message from its message space Ms;g, i.e., for sky <
ABSE®.KeyGen(pp, msk, A) we have that sky = (A € Ms;g, 0 < Sig.Sign(pk, sk, A)).
By definition of the signing algorithm of ABS# we know that a signature o <«
ABSE°.Sign(pp, ska, m,P) is just a signature generated by the signature of knowl-
edge scheme SoK, i.e., o < SoK.Sign(ppsek, (pk, P), (A, 0), m). Putting it together,
we have that ABS&.Verify(pp, m,P, o) outputs 1, if and only if

SOK'Verify(ppSoKv (pka P)7 m, U)

outputs 1. From the perfect correctness of the signature scheme Sig it follows that
Sig.Verify(pk, 6 < Sig.Sign(pk, sk, A),A) = 1. We also know that the attributes A
satisfy the policy P, i.e., P(A) = 1. Then, by the definition of the ABS relation
R§PS (Definition 3.3.1) it follows that ((pk,P), (A,0)) € R§ES. Finally, by the
perfect correctness of SoK we know that, if ((pk,P), (A, 0)) € Régs holds we have
that SoK.Verify(ppsok, (pk,P), m, o) outputs 1. O

Perfect correctness of Construction 3.3.1, follows directly from the perfect cor-
rectness of the signature scheme Sig and the signature of knowledge SoK. Since
SoK.Verify is deterministic and hence also ABS&“.Verify is deterministic, we have
that ABS8 is perfectly consistent (Definition 3.2.3).

Privacy. We start the formal proofs by showing the perfect simulation privacy
for ABS&® Construction 3.3.1. Subsequently, we focus on the unforgeability of
Construction 3.3.1. In the privacy proof we build an adversary against the perfect
simulatability of the signature of knowledge scheme SoK from a distinguisher
against the simulation privacy of ABS®°.
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ABSE®.Setup(1*) ABS&°.KeyGen(pp, msk, A)

pp’ RGenéigBS(l’\) parse pp = (ppsox, pk), msk = sk
(pk, sk) + Sig.KeyGen(pp') if A ¢ Uy, then

(ppsoK, tdsim) — SOK.SimSetup(pp/) return L

return (pp = (ppsox, pk), msk = sk)  else
0 «+ Sig.Sign(pk, sk, A)
return sk = (A, 0)

ABSE°.Sign(pp, ska, m,P) ABSE° Verify(pp, m,P, o)
parse pp = (ppsok, Pk), ska = (A, 0) parse pp = (ppsok, Pk)
if P ¢ U,, VP(A) =0 then set = = (pk,P)
return L set b := SoK.Verify(pps.k, €, m, o)
else return b
set w = (A, 0)
set = = (pk,P)

o < SoK.Sign(ppsok, &, w, m)

return o

ABSE°.SimSetup(1*)

same as ABSE.Setup(1*) but with
additional output of the trapdoor ¢dg;n,

return (pp = (ppsok, Pk), msk = sk, tdsim)

ABSEC.SimKeyGen(pp, msk, tdsim, A)  ABSE.SimSign(pp, msk, tdsimm, m,P)

return ABS®“.KeyGen(pp, msk, A) parse pp = (ppsox, Pk), msk = sk
set = = (pk,P)
o < SoK.SimSign(ppscks tdsim, T, M)

return o

Figure 3.6: Generic ABS construction ABS®°.
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Theorem 3.3.1. If SoK is perfectly simulatable (Definition 2.3.13), then ABS&®
(Construction 3.3.1) is perfectly simulation private (Definition 3.2.5) with respect
to RGenéigs.

Proof. Let D be a distinguisher for simulation privacy of ABS® with advantage
AQVITRERE () = PrExpRER " (V) = 1] - Pr{ExpERga="(3) = 1]. We use
D to define an adversary A against the simulatability of SoK (Exp¥{g.x(A))-

We start with the definition of A and then we analyze its advantage.

1. Expfj{:"SOK(/\) provides A the public parameters pp, and access to a signing
SEmy (L)

oracle Oppb,t Lo

2. A generates a signature key pair (pk, sk) < Sig.KeyGen(pp,), sets master
secret key msk := sk and public parameters pp == (ppy, pk).

3. A runs D on input (pp, msk) and answers D’s oracle queries as follows.

OKeyGeny (7)) On i-th query, given attribute vector A;, A generates secret
key (A;, 0;) «— ABSE“.KeyGen(pp, msk, A;), adds (i, ska,, A;) t0 QKeyGen;
and outputs ska, == (A;,0;).

O;;%nmbsk(i, mj,P;) : On j-th query, given (i, m;,P;) for an already recorded i,

if Pj(A;) = 0 return L, else A first sets w; := (A;,6;) and z; == (pk, P;).

Sign,,
Then A outputs o; < Oppb,tdsim(xj’ wj, mj).

4. Eventually D outputs bit &’. A outputs also v'.

First, let us analyze how the oracle queries of D are answered by A. If the bit b
chosen in the simulatability experiment EprfC‘SOK()\) of SoK, is equal to 1 the public
parameters pp; are generated by the real setup SoK.Setup in the experiment. This
means that the signing oracle ©O5€™ outputs real signatures generated by the sign-
ing algorithm SoK.Sign. If the bit b is 0, the public parameters pp, are generated by
the simulation setup SoK.SimSetup. Thus, the signing oracle @58" outputs simu-
lated signatures generated by the simulation signing algorithm SoK.SimSign. Since
the simulation trapdoor tdg;, is not used in either cases of b and except for td gy,
output/input algorithms ABS&.SimSetup and ABS®#“.Setup, and ABS&°.SimKeyGen
and ABS&¢.KeyGen are the same, A can generate the setup parameters in the same
way for both cases. Therefore, A knows msk and can just execute ABS&°.KeyGen to
answer the key generation oracle queries of D in both cases of b. This means in case
b = 1, adversary A simulates the experiment Exp%m/;pBrévacy’l()\) for distinguisher D,
with real setup and real signatures, perfectly. In case b = 0, adversary A simulates
the experiment Exp%'?,&gévacy’o()\), with simulated setup and simulated signatures,
perfectly.

Next, we analyze the success probability of A, where b is the internal bit of
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Expféilr,nSoK(A)'

PrExpiBox(V) = 1] = Pr[tf =bAb=1] + Pr[t) =bAb=0]

:%-(Pr[b’:llbzl] +Pr[l =0 b=0])
:%.(pr[b’:1yb:1]+(1—Pr[b’:1|b=0D)
:%+%.(pr[b/:1yb:1] —Pr[t =1|b=0])
- % n % - (Pr[Expimiiesl () = 1]
~ Pr[ExpBe () = 1])
= 45 AdvimEe ()
Consequently, Advggf(”,u()\) =2-Pr [EXPiTSoK()‘)] —1= AdV%TA_ErSI\gcy()‘) -

Unforgeability. In the following we focus on the unforgeability of ABS& (Con-
struction 3.3.1). We show that the unforgeability of ABS#® follows from the EUF-
CMA security of the digital signature scheme Sig and from the simulation-extract-
ability of the signature of knowledge scheme SoK. The latter gives us the choice
of white-box simulation-extractability (for each adversary a specific extractor) or
the black-box variant (one extractor for all adversaries). Our instantiation, that
we present in Section 3.3.3, is based on a succinct SoK. Since secure succinct SoKs
(and succinct non-interactive argument of knowledge (SNARK)) are only known
with respect to the white-box variant [BCCT12; GW11], we opt to use white-box
simulation-extractability for ABS as well. To look ahead, the advantage of this
approach is that our instantiation is a succinct ABS, i.e., signatures consists only
of 3 group elements.

Before starting with the actual unforgeability proof of ABS&® we have to intro-
duce some preliminaries. Currently the only known secure succinct constructions
of SoK, that we later use, is based on a simulation-extractable SNARK [GM17].
Even proving unforgeability of constructions that combine digital signatures with
SNARKS, that are (only) white-box knowledge sound (extraction without simula-
tion), turns out to be a delicate task, as pointed out by Fiore and Nitulescu [FN16a;
FN16b]. To understand the problem behind this, let us give an informal theorem
and outline the proof structure. In the proof outline we highlight the problem and
describe the solutions that Fiore and Nitulescu [FN16a; FN16b] gave in related
context of SNARK-based constructions.

Informal theorem: If Sig is EUF-CMA (Definition 2.3.6), and SoK is white-
boz strong simulation-extractable (Definition 2.3.14), then ABS®® is white-box
sitmulation-extractable (Definition 3.2.7).

In the proof, the first major step is to prove the existence of a white-box extractor
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for ABS®® given the white-box extractor of the signature of knowledge scheme SoK.

The next major step, that needs more explanation, is then to show a forger for
Sig that uses a white-box sim-ext adversary A’ and extractor. The existence of this
extractor is challenging, since the adversary A’ in this situation has oracle access
to a signing oracle from the unforgeability experiment of the digital signature
scheme. This signing oracle holds the secret key of the digital signature scheme Sig.
Therefore, adversary A’ is formally not a sim-ext adversary against the SoK. Note,
the sim-ext experiment (Definition 2.3.14) only provides specific oracle access to an
oracle that outputs simulated SoK signatures. Hence, without further assumptions
we cannot assume that an extractor exists for the white-box sim-ext adversary A’.

As Fiore and Nitulescu [FN16b] pointed out, the described problem is common,
if one uses white-box extractors, e.g., [BBFR15; BF11; BGI14]. Fiore and Nitulescu
[FN16b] presented a range of solutions for the problem in the context of SNARKS.
As mentioned above SNARKs are knowledge sound and not necessarily simulation-
extractable.

First they formalize SNARK in the presence of oracles (O-SNARK), where the
adversary in the knowledge soundness experiment has access to oracles. For a
detailed discussion of this matter we refer to the full version [FN16a] of the paper
by Fiore and Nitulescu. We do not have to introduce O-SNARKSs formally in this
thesis, since fortunately in [FN16a; FN16b] the authors show that if one uses a
hash-then-sign EUF-CMA secure signature scheme, then classical SNARKs are
O-SNARKSs in the random oracle model. Note, that the hash-then-sign technique
relies on a hash function modeled in the random oracle model (ROM). This comes
with some shortcomings according to Fiore and Nitulescu [FN16a; FN16b]. In
detail, the verification algorithm of the hash-then-sign signature scheme uses a
random oracle. This means the SNARK used to prove validity of the signatures,
has to be able to prove pre-images of the random oracle. However, in real-world
applications we instantiate the random oracle with a hash function such as SHA-
256 or SHA-3. Hence, in real-world applications we have to consider a SNARK
that proves pre-images of a hash function instead of the random oracle. As done in
[FN16a; FN16b] we have to assume that this is still secure. For further discussions
we refer to [FN16a; FN16b].

Since the O-SNARK results of Fiore and Nitulescu [FN16a; FN16b] only consider
knowledge soundness (SNARKSs) and not simulation-extractability (SE-SNARKSs)
we have to assume that the results also expand to simulation-extractability. In our
case we assume that SoK is white-box strong simulation-extractable with respect to
the signing oracle specified by Sig. Note, the O-SNARK results should also hold for
SE-SNARKs since they are as SNARKSs based on knowledge assumptions. However,
to be clear, no concrete results for SE-SNARKSs are known to us. As a consequence,
we additionally present a theorem with black-box simulation-extractability and
therefore fewer assumptions after the following Theorem 3.3.2 with white-box
simulation-extractability and the corresponding proof.

Theorem 3.3.2. If the signature scheme Sig is EUF-CMA (Definition 2.53.6) and
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uses the hash-then-sign technique, and the SoK scheme SoK is white-box strong
simulation-extractable (Definition 2.3.14) with respect to Sig, then ABS&® (Con-
struction 3.3.1) is white-box simulation-extractable (Definition 3.2.7) with respect
to RGenéig’S and in the random oracle model.

The following proof is in structure and techniques based on the proof of white-box
simulation-extractable SoK from white-box simulation-extractable non-interactive
zero-knowledge arguments (NIZK) and collision-resistant hash functions presented
in [GM17, Proposition 3.1]. Note, in [GM17] the authors do not have to consider O-
SNARKS, since their SoK construction does not use building blocks with additional
problematic oracles. We adapt the proof from [GM17] to our setting. In our setting,
we start with a white-box simulation-extractable SoK, instead of a NIZK argument,
and an unforgeable signature scheme, instead of a collision-resistant hash function.
The similarity is that we take something (SoK) that is white-box simulation-
extractable to build something different (ABS) that is also white-box simulation-
extractable.

Let us start with the formal proof of Theorem 3.3.2.

Proof. As a general outline of the proof, we first have to give simulation algorithms
for ABSE® before we deal with the extraction part. We can skip this, since we already
showed that ABS8® is simulation private and gave simulation algorithms for ABS&¢
in the above proof of Theorem 3.3.1. Therefore, we assume that ABS8€ is perfectly
simulation private and focus on the extraction part in this proof.

We bound the advantage Advﬁl”;ﬂ”é'seg)ét()\) of an adversary A against ABS&® in the
white-box simulation-extractability experiment. We proceed in three steps, starting
by showing the existence of an ABS extractor. For this, on a high level, we construct
an adversary B against the white-box strong simulation-extractability (wb-sok-ext)
of SoK using an adversary A against the white-box simulation-extractability of
ABSE¢ as a subroutine. In the remainder of this proof we omit “white-box” and
“strong” to shorten notation. Then, the wb-sok-ext supplies that for adversary
B there exists an extractor SoK.Extrg, such that Adv"é’f’éf(‘t’lr‘;gtc,K()\) = negl. From
SoK.Extrg we then build the ABS&® extractor ABS&®.Extr 4. Based on this, we
then bound the advantage of adversary A against the simulation-extractability
of ABS8¢ via two reductions. One reduction to the wb-sok-ext of the SoK and
one to the unforgeability of the signature scheme Sig. More formally, we show
that for all adversaries A against the simulation-extractability of ABS&®, there
exists an adversary B against the simulation-extractability of SoK, such that for
any extractor SoK.Extrg, there exists an extractor ABS8°.Extr 4, and there exists
a forger F against the unforgeability of Sig such that

AdVIPET hasee (V) < AdVEEROTE K (V) + AdviEEe™ (1),

Let us start with the construction of the wb-sok-ext adversary B in the experiment
Exp‘g?éf(‘:r;ggK()\) (Definition 2.3.14).
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1. B receives input ppg.k and is given oracle access to a simulation signing

oracle OISH?SOKstim' Note, that pps.k includes the public parameters pp’. Let

r denote the randomness of B.

2. B generates a Sig key pair (pk, sk) < Sig.KeyGen(pp),

e sets msk := sk and
o sets pp = (PPsok; Pk)-

3. B runs A(pp;r) and answers the oracle queries by A as follows.

(’)Z;?nffgg;:m(&) : B generates (A;, 0;) < ABS&.KeyGen(pp, msk, A;), adds

(4, ska;, Ai) to QkeyGen and outputs secret key sky, == (A4, 0;).

SimSi . . .
p;)mm;gkntdm (m;,P;) : B sets zj = (pk,P;), queries its oracle for a signature
gj OSPSOKvtdsim (xj,m;), adds (m;,P;) to Qsign, and outputs ;.

4. Eventually A outputs (m*,P*, 0*), then B outputs (z* := (pk,P*), m*, c*).

Extractor for ABS8. Next, let us move to the construction of the ABS extrac-
tor ABS&®.Extr 4 from SoK.Extrp for adversary B as defined above. We observe
that a SoK extractor is sufficient, since the witness w that it extracts for RSAigBS
is an attribute A* and Sig signature 6* on A*. Together they form the ABS&®
secret key skp» = (A*, 6%). Formally, to use SoK.Extrg we need a transcript transg
of B as an input. The definition of white-box simulation-extractability for ABS
(Definition 3.2.7) supplies us with the transcript trans4 of A in the experiment.

Observe, that given transcripts trans4, we can efficiently compute transg. Tran-
scripts trans 4 and transg only differ in the key generation (step 2) for Sig and
the key generation oracle queries that BB answers on its own. Recall that we start
adversary 4 with adversary B’s randomness, hence given trans (inputs, outputs,
and randomness of A4), we can efficiently compute the keys via Sig.KeyGen and
ABSE°.KeyGen respectively. Hence, let T be a polynomial-time algorithm that does
what we described above, computing transg given trans4 as input. Formally, our
ABSE® extractor ABS&®.Extr 4 is then defined as follows.

ABSEC Extr 4(trans4)

transg := T(trans,)
return SoK.Extrg(transg)

With the extractor for ABS&® in place, we proceed and look at the winning
condition of A in Expﬁl”ésx'{?:fﬁ,gs()\) and its advantage. We then relate it to the
winning condition of B in Exp"é’f’éi‘t’lr‘;gtoK()\) and later to F' in Exp‘}#:g‘i‘éma(/\). After
A’s final output and using extractor ABS8°.Extr 4 to extract A*, adversary A wins,
if all the following conditions hold.

o ABSE.Verify(pp, m*,P* 0*) =1 A
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« (m*P7) ¢ Qsign A
° (A* ¢ QKeyGen \ P*(A*) = 0)

We distinct two cases based on the disjunction in the last item. In the first case,
we bound the advantage of A against wb-sim-ext of ABS&® with the simulation-
extractability of SoK and in the second case with the unforgeability of Sig. In the
following, we refer to adversary A that wins in case 1 as 4; and A in case 2. In
the first case let the winning condition of A; be:

(Aj.a) ABSE Verify(pp, m*,P*,c*) =1 A
(A1.b) (m*,P*) & Qsign A
(Ar.c) (A" ¢ QkeyGen V P*(A") = 0)
In the second case let the winning condition of Ay be:
(Ag.a) ABSE Verify(pp, m*,P*,0*) =1 A
(A2.b) (m™, P*) & Qsign N
(A2.c) (A" € Qreycen A P*(A*) = 1)

Case 1. We show that whenever sim-ext ABS adversary A; wins, then sim-ext

SoK adversary B also wins. Therefore, let us also consider B’s winning condition

in Exp"éf’éi‘i&‘fggK(A) and relate it in the following to A;’s winning condition.

(B.a) SoK.Verify(ppsok, * = (pk,P*),m*,0*) =1 A
(B:b) (2, m*,0%) & Q A
(B.c) (z*,w* = (A*,6%)) ¢ Régs

By construction it holds that (A.a) implies (B.a). In detail, ABS&.Verify just
runs SoK.Verify, hence whenever ABS& Verify(pp, m*,P*, 0*) = 1 holds, it also
holds that SoK.Verify(ppsok, z*, m*,0*) = 1. Regarding (A.b), if (m*,P*,) ¢ Qsign
holds, then B did not query his signing oracle and therefore it also holds that
(x*,m*, 0%) ¢ Q (B.b) for any o*. Since (A;.c) is a disjunction, if P*(A*) = 0 holds,
then the instance z* = (pk, P*) and witness w* = (A*, #*) is not an element of the
relation Réigs (B.c). Note, for an instance-witness pair (z/,w’) € Réigs, it has to
hold that P*(A*) = 1. By the above we conclude, if 4; wins Expﬁ?:séﬂ}i‘fABs()\),

then adversary B wins ExpyEorso ().
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Case 2. In the following we build a forger F' against the signature scheme Sig in
experiment Expiijg'icgma()\) using adversary As. In case 2 we know that the ABS&®
signature is valid, a signature for (m*, P*) was never queried, and most importantly
a secret key for the satisfying attribute A* was also never queries. Since secret
keys are Sig signatures on attributes and ABS signatures are just signatures of
knowledges generated by SoK, we extract the SoK to obtain the corresponding
Sig signature 8* on A*. Finally, we can then output (A*, 6*) as the forgery for Sig.

wb-sim-ext

More formally, assuming A2 in Expl g ags(}), and that the SoK is wb-sok-ext,
we build a forger F' in Exp%jg};ma()\), which is defined as follows.

1. F receives input pk and is given oracle access to a signing oracle Oz;szk. Note,
that pk includes the public parameters pp’.

2. I gets (ppsok: tdsim) < SoK.SimSetup(pp'), and sets pp = (ppsok. k),
msk = sk, and tdgjy, = tdsm. (— ABSE setup finished —)

3. F runs As(pp) and answers oracle queries by As as follows.

Olsjgsggszm(&) . if A ¢ U, F outputs L. Else F' queries his own oracle for

a signature 0; + OO (A;). Sets ska, = (A, 0;) adds (i, ska,, A;) to

QkeyGen and outputs secret key sky, .

O;;Tnslggkr:tdsim(mj,ﬁbj) : F sets xj := (pk,P;), adds (m;,P;) to Qsign and out-

puts o; < SoK.SimSign(ppsok, tdsim, 5, m;).

4. On output (m*,P*, o) by Ag, set (z* := (pk,P*),m*, c*) and use the extrac-
tor ABSE.Extr 4, to get the witness w = (A*,0*) for R&g’s.

5. If Ay winning condition (Ag.c) A* ¢ Qkeygen A P*(A*) = 1 is not fulfilled
abort, else proceed.

6. Output (A*,0*) as a forgery.

First, observe that F' is a ppt and it simulates the experiment for A, perfectly
by executing the ABS&® algorithms and for the key generation queries F' uses its
own signing oracle. Also observe, F' uses Ao, where As is just A conditioned on the
case 2. An extractor for F' exists by the result of [FN16a; FN16b] (see O-SNARK
discussion above). Formally, this involves the definition of an adversary B’ that
works similar to B above, but using a successful forger instead of A, and having
access to pre-sampled signing oracle answers. Intuitively, B’ casts a forger into the
structure of a wb-sok-ext adversary in Exp‘g’hﬁgl‘r';ffsoK(A) (Definition 2.3.14). The
details of the transformation from extraction with oracles and a hash-then-sign
signature scheme to extraction without oracles are not insightful here and we refer
to [FN16a, Section 4.3]. Next, let us look at the winning condition of F' and relate
it to (AQ.C).

(F.a) Sig.Verify(pk,A*,0*) =1 A

64



3.3 Attribute-Based Signature Scheme from Signatures of Knowledge

(F.b) (A%) ¢ Q

From the first part of the conjunction in (Asz.c), A* ¢ Qkeygen A P*(A*) = 1, we
know that a Sig signature on A* was never queried. Therefore, (F.b) holds. Further,
from (Ag.a), ABSE Verify(pp, m*,P*, 0*) = 1, we know that the ABS®® secret key
is valid, since the verification runs SoK.Verify. In detail, if SoK.Verify outputs 1 we
know that o* is a valid SoK for the relation RSAigBS (Definition 3.3.1), which says
that the secret key 6* on the attributes A* used to generate ¢* has to be valid,
i.e., Sig.Verify(pk, A*,60*) = 1. Hence, (F.a) holds.

In conclusion, we have shown that for all adversaries A against the simulation-
extractability of ABS8¢, with advantage Advﬁ?&ﬂ@fﬁ%gc(/\), there exists an ad-
versary B against the white-box strong simulation-extractability of SoK, with ad-
vantage Advﬁ?ﬁi‘i‘ﬁfﬁoK(A), such that for any extractor SoK.Extrg, there exists an
extractor ABS&°.Extr 4, and there exists a forger F against the unforgeability of
Sig, with advantage Adv%‘:g}‘éma()\), such that

AdVICERT ShBsec (V) < AdVIPEG S8ok (V) + AdVESE™ ()

3.3.2 Discussion of the Generic ABS Construction

Our construction is similar to the generic policy-based signature (PBS) scheme
by Bellare and Fuchsbauer [BF14] in that they are both based on a relation. The
difference in the PBS is that the message is part of the instance and the policy is
part of the witness. Also, where we use a signature of knowledge as a black-box,
Bellare and Fuchsbauer rely on simulation-extractable NIZK compatible with their
PBS relation. As a result (to hide the policy and bind the message) they have to
instantiate Groth-Sahai proofs [GS08; GS12] with custom proof equations. The
resulting PBS [BF14] is not succinct and is black-box simulation-extractable. Also
note, that the proofs are more straightforward in [BF14], because of the black-
box variant of simulation-extractability. To be clear, if one changes their PBS
construction to use a succinct simulation-extractable SNARK (SE-SNARK), then
the resulting PBS scheme is also succinct. Additionally our construction is similar
to the succinct functional signature construction in [BGI14], where we have to
note that their unforgeability claim does not hold without assuming the existence
of O-SNARKSs as shown in [FN16a; FN16b].

Overall, the idea of employing SNARKS in combination with a signature scheme
to get succinctness is not novel, but we have formally proven our construction
secure by considering and stating all necessary assumptions.

For the proof of Theorem 3.3.2 we have to assume that the extraction in pres-
ence of oracles, introduced in [FN16b], also works for simulation-extractability
(SE-SNARK) and not only for knowledge soundness (SNARK). Another way of in-
stantiating our generic ABS&® is to consider black-box extraction. Then, we cannot
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achieve succinctness of ABS, however we do not have to deal with the white-box
extraction in presence of an oracle.

Generalization to black-box simulation-extractability. The Theorem 3.3.2
is specifically stated for the white-box variant of simulation-extractability, where
the extractor depends on the adversary. Hence, the extractor has access to the code
and the transcript of the adversary. As already mentioned, the reason for the white-
box variant in Theorem 3.3.2 is that we use a succinct SoK based on a SE-SNARK
to instantiate the generic construction in the next section (cf. Section 3.3.3). Ac-
cording by Gentry and Wichs [GW11] constructing a black-box SE-SNARK is an
open question and all known constructions rely on special non-falsifiable assump-
tions, so called knowledge assumptions, with white-box extractors. The current
state of research is that such assumptions seem inherent for SE-SNARKs [BCCT12;
GW11].

Additionally, we note that white-box definitions are more involved to work with
in security proofs (reductions) compared to the black-box variant. We have already
seen this by considering O-SNARKs (and extraction in the presence of oracles)
in the proof of Theorem 3.3.2. Considering the proof of the Theorem 3.3.2, we
observe that the white-box notion is only used in the extra steps taken to show
the existence of the extractor for ABS®, e.g., we showed that the transcript can
be efficiently computed. Theorem 3.3.2 and its proof generalizes to a black-box
variant of simulation-extractability (for both SoK and ABS®), if we handle the
steps differently. Let us first state the theorem as a black-box variant before we
describe the steps in detail.

Theorem 3.3.3. If Sig is EUF-CMA (Definition 2.3.6) and SoK is black-box
strong simulation-extractable (Definition 2.3.16), then ABS& (Construction 3.3.1)

is black-box simulation-extractable (Definition 3.2.8) with respect to RGenéiES.

Here we can use any EUF-CMA signature scheme and we do not need to require
that it is based on the hash-then-sign paradigm. This was only necessary for the
O-SNARK solution. We can also drop that the simulation-extractability holds
with respect to the specific signature scheme compared to Theorem 3.3.2, i.e., the
signing oracle specified by the signature scheme. We do not provide a formal proof
for Theorem 3.3.3, since it is similar to the proof of Theorem 3.3.2. However we
give an outline next.

The case distinction and corresponding structure of reductions, presented in
the proof of Theorem 3.3.2, stay the same. Only the steps involving the white-
box extractor have to be addressed. Overall, the proof in the black-box setting is
straightforward, since given a black-box simulation-extractable SoK scheme SoK,
we know that there exists one extractor for all adversaries and we can just use this
extractor as our ABS8® extractor. Hence, there is no need for extra steps to show
that a specific adversary dependent extractor exists and how to get a transcript.
In the remainder of the proof, we just use the SoK extractor to extract the final
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output of the adversaries, i.e., we extract from a signature of knowledge to get the
witness necessary in the reductions for case 1 to bb-sok-ext and case 2 to euf-cma.

Note, if we use a SoK with a black-box extractor (also called online extractor) in
the ROM, for example one based on the Fischlin transformation [BEW15; Fis05]
(which is based on the Fiat-Shamir transformation [FS87] on Sigma protocols),
or the CRS based transformation from [Gro06], we directly get simulatability
via the ROM. However, the security of the resulting attribute-based signature
(Theorem 3.3.3) is then also in the ROM. Note that supported policies depend
on the concrete relations that the signatures of knowledge support. For example,
satisfiability of boolean formulas over attributes if we use a SoK based on Sigma
protocols [CDS94; FKMV12].

Another option, in the standard model, is the black-box simulation-extractable
signature of knowledge for boolean circuits presented in [BGPR20]. Using this
signature of knowledge to instantiate Construction 3.3.1 gives us an ABS scheme
supporting boolean circuits as policies and with signatures of size O(l + d) (d is
the depth of the circuit and [ the size of the input).

Consequently, there are instantiations of our generic attribute-based signature
scheme (Construction 3.3.1) using black-box and white-box simulation-extractable
signatures of knowledge. Since, ABS schemes using similar black-box construc-
tions exist [AAS16; EE16; EK18; Ghal5], even though they do not explicitly use
simulation-extractability, we present in the following a concrete instantiation of
Construction 3.3.1 using a succinct white-box simulation-extractable signature
of knowledge. We deem the resulting succinct attribute-based signature scheme
interesting, even under the consideration of the assumptions necessary to prove
Theorem 3.3.2.

3.3.3 ABS Instantiation from SNARKY Signatures

In this section we show an instantiation of our generic ABS construction ABS&®
that is succinct, i.e, constant-size signatures (3 group elements) and therefore
independent of the number of attributes, size of the policy and message. To prove
the security of ABS8® (Theorem 3.3.2) we relied on a hash-then-sign and EUF-CMA
secure signature scheme Sig, and a white-box strong simulation-extractable SoK
scheme SoK with respect to Sig (and RGenéilg’S). Intuitively, we can use any hash-
then-sign and EUF-CMA secure signature scheme Sig, as long as the signature
of knowledge can prove the validity of the Sig signatures. More interestingly, is
to instantiate the signature of knowledge for Réi]gg‘s — RGenéig’S to get an efficient

attribute-based signature scheme.

SNARKY Signatures from succinct SE-SNARK. In [GM17] Groth and
Maller show a pairing-based succinct simulation-extractable non-interactive zero-
knowledge argument of knowledge (SE-NIZK) with a CRS, called simulation-
extractable SNARK (SE-SNARK). See Section 2.3.5 for a formal definition of
NIZK and SNARK. Importantly for us, the authors show a transformation from
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SE-SNARKS to a succinct signature of knowledge scheme, which we refer to as
GM-SoK. They call this SNARKY signatures. In [BKSV21] it is shown that this
transformation not only works with strong simulation-extractable SE-SNARKSs
as presented in [GM17], but also with weak simulation-extractable SE-SNARKSs.
Interesting for our goal to construct an ABS scheme with constant-size signatures
is that GM-SoK features constant-size signatures consisting of only 3 group ele-
ments. This is proven to be optimal for pairing-based succinct SoK in [GM17].
In general, the transformation to a SoK can be instantiated with any simulation-
extractable non-interactive zero-knowledge argument of knowledge (SE-NIZK), as
long as it supports a specific relation that we present in the following. However,
if the SE-NIZK is also succinct (a SE-SNARK) the SoK inherits the succinct-
ness property. Furthermore, the SE-SNARK and GM-SoK presented by Groth and
Maller [GM17] can prove satisfiability of arithmetic circuits via representing them
as square arithmetic programs.

We use the SoK scheme GM-SoK to instantiate our generic ABS construction
ABS&°. This means, that the features of GM-SoK directly transfers to our resulting
ABS scheme. Hence, it features constant-size signatures and expressive policies
in the form of arithmetic circuits. Note, for a sound instantiation of our generic
ABS construction we have to assume that the SE-SNARK of [GM17] is simulation-
extractable with respect to the signing oracle specified by the signature scheme
Sig that we use, see the discussion in Section 3.3.1. Regarding security, in [GM17]
the authors prove their SE-SNARK secure under the extended power knowledge
of exponent (XPKE) and computational polynomial (Poly) assumption for type 3
pairings. Both assumptions hold in the generic group model (cf. [GM17]). To prove
the security of the SoK scheme GM-SoK the authors additionally assume a target
collision-resistant hash function (Definition 2.3.3). Since we instantiate our generic
ABS construction ABS& with the succinct signature of knowledge GM-SoK, we
describe GM-SoK for completeness in the following. Subsequently, we discuss the
details of our instantiation of ABS&®.

Let us first give an intuition of the GM-SoK scheme before presenting the formal
definition. Given a SE-SNARK Arg we can generate proofs for instance-witness
pairs of a relation R’ (satisfiability of arithmetic circuits), but for a signature of
knowledge we need to bind the message m to be signed to the proofs. In GM-SoK
this is done via a target collision-resistant hash function Hash (Definition 2.3.3),
where the hash value H(hk, m) and the hash key hk is part of an extended instance
of R'. Hence, the message is bound to an instance-witness pair of R’ via a simple
extension of the relation, that guarantees that the hash key and value is of the
right length. This means, that GM-SoK proves that the signer knows a hash key
and value together with a valid instance-witness pair of R’. Since the SE-SNARK
Arg [GM17] proves satisfiability of arithmetic circuits, the extended relation, in the
following called R, is just a constant extension of the arithmetic circuit of the inner
relation R'. For details on representing relations as arithmetic circuit we refer to
[GM17].
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Definition 3.3.2 (GM-SoK [GM17])
Given an inner relation generator RGen’. We define the following relation relation
for R’ < RGen’(1") and Ik, I;, polynomial in A:

R = {((hk, h,z),w) : bk € {0,1}"N A h € 0,1}V A (2,w) € R}

Let RGen denote a relation generator that first runs R’ < RGen’(1}) and returns R
defined as above. Let Hash = (Hash.KeyGen, Hash.H) be a target collision-resistant
hash function with key length [x and hash length [;, and let Arg = (Arg.Setup,
Arg.Prove, Arg.Verify, Arg.SimProve) be a SE-SNARK for RGen. The following de-
scribes GM-SoK (RGen') for the inner relation generator RGen'.

SoK.Setup(R) SoK.Sign(pp, x, w, m)
(ers, tdsim) < Arg.Setup(R) hk + Hash.KeyGen(pp)
return pp = crs h = Hash.H(hk, m)

m <« Arg.Prove(crs, (K, h, z),w)

return o = (K, )

SoK.Verify(pp, z,m, o) SoK.SimSetup(R/)
parse 0 = (K, 7) (ers, tdgim) < Arg.Setup(R)
h = Hash.H(hk, m) return pp = (crs, tdsim)

return Arg.Verify(crs, (K, h, x), )

SoK.SimSign(pp, tdsim, z,m)

hk < Hash.KeyGen(pp)

h = Hash.H(hk, m)

7 Arg.SimProve(crs, tdgim, (K, h, x))

return o = (K, )

The GM-SoK and the following theorem are originally presented in [GM17].

Theorem 3.3.4. If Hash is a target collision-resistant hash function and Arg
is an secure SE-SNARK argument (perfect completeness, perfect zero-knowledge,
stmulation-extractable) for RGen, then the SoK scheme GM-SoK is a secure (perfect
correctness, perfect simulatability, white-box simulation-extractability) signature of
knowledge for RGen' with respect to the message space M = {0,1}".

The perfect correctness and perfect simulatability of GM-SoK follow from the
perfect completeness of Arg respectively that Arg is perfectly zero-knowledge. Since
Arg is white-box simulation-extractable the white-box simulation-extractability of
GM-SoK follows. The full proof is given by Groth and Maller in [GM17], where the
authors also show the reverse direction of the above theorem.
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Succinct ABS from GM-SoK. Next, let us turn to the instantiation of our
generic ABS construction ABS& with GM-SoK. Since the signatures of GM-SoK
are succinct (only 3 group elements), it is our signature of knowledge of choice
to instantiate ABS&® (Construction 3.3.1). By using GM-SoK we also fix the pol-
icy class to be arithmetic circuits. To formalize the instantiation of Construc-
tion 3.3.1, let Sig be a hash-then-sign and EUF-CMA secure signature scheme.
Then, GM—SoK(RGenéi]gBS) instantiated with our ABS relation generator RGenéilgSS
as the inner relation generator yields a succinct signature of knowledge for ABS&°.
Hence, ABS&® (Construction 3.3.1) instantiated with Sig and GM—SOK(RGenélgBS)
is an ABS scheme with constant-size signatures (3 group elements) and we refer
to it as ABSSUeS,

Note, a resulting signature of ABS“““' is essentially a succinct SE-SNARK proof,
where we arithmetized the relation (including the verification of the Sig signature).
It proves that the ABS signer of a message-policy pair knows a valid Sig signature
on attributes that satisfy the policy.

Bandwidth concerned applications benefit the most from constant-size ABS. For
example, ABS*“! can improve existing authentication mechanisms, e.g., challenge-
response authentication, by providing a rich attribute-based authentication without
straining the bandwidth of involved parties.

3.3.4 Evaluation of our Succinct ABS

Important for practical application of ABS are the concrete sizes of the signatures
and keys and the supported policies. Therefore, we give a comparison to other
ABS schemes and report on a prototype implementation of ABS*“. The latter
provides an outlook on practical performance and key sizes.

Comparison of ABS schemes. We present a comparison of existing ABS
schemes with ABS®““ in Table 3.1. The table is not exhaustive, but lists attribute-
based signature schemes that are presented in a similar model compared to ours.

Prototype implementation of our Succinct ABS. In the following we ana-
lyze the signature and key sizes of the scheme ABS®'“! on the basis of a prototype
implementation. This serves an outlook for real-world applications of the scheme
ABS®“*“_ Since our scheme ABS®U““ is instantiated with GM-SoK which is based on
a SE-SNARK over arithmetic circuits [GM17], it is not straightforward to count
the size of the elements (public parameters, keys) by studying the construction
of the scheme. To get a (non optimized) estimate we evaluated ABSS“““ in the
libsnark [SCI20] library as a prototype. Hence, it is a proof of concept. Note,
the SE-SNARK by Groth and Maller [GM17] used in GM-SoK was already im-
plemented in libsnark. For the prototype we used the pairing-based signature
scheme by Pointcheval and Sanders [PS16] as Sig, i.e., for the issuing of the ABSSU“
secret keys. To setup the system we used the type 3 pairing bilinear group mnt4
provided by 1ibsnark. In a type 3 pairing, other than type 2, there is no efficiently
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Table 3.1: Overview of signature sizes of attribute-based signature schemes. We list the
signature size, model, assumptions, and supported policies for each scheme.

Scheme Signature size Model Assumption Policies

(1) [MPR11] 36s + 2t + 24ks std q-SDH, SXDH MSP

(2) [MPR11] 28s+2t+ 12k +38 std SXDH MSP

(3) [MPR11] s+t+2 GGM coll-res hash MSP
[HLLR12]* 3 std n-DHE Threshold
[OT11] 7s+11 std DLIN, coll-res hash Non-monotone SP
[OT13] 13s ROM DLIN Non-monotone SP
[Che+413]** 3 std SDP Threshold
[SAH16] 121 4+ 20N + 26 std SXDH Non-monotone circuit
[EG17] 27|G1| + 28|Go| std SXDH Threshold
ABSsu<e 3 GGM XPKE, Poly Arithmetic circuit

* [HLLR12] is only selective-policy unforgeable. All others are adaptive unforgeable.
** [Che+13] composite order groups, no detailed security proofs provided.

s X t is the size of the (monotone) span program (MSP or non-monotone SP) where s
corresponds to the number of attributes, A\ security parameter, [ input size of the circuit
and number of attributes, and N number of gates in the circuit. GGM: generic group model.
¢-SDH: g-Strong Diffie-Hellman assumption [BBS04], SXDH: Symmetric External Diffie-
Hellman assumption [GS12], n-DHE: n-Diffie-Hellman Exponent assumption [HLLR12],
DLIN: Linear Diffie-Hellman assumption (Decision Linear assumption) [BBS04], SPD:
Subgroup decision problem for 3 primes [LW10], XPKE: extended power knowledge of
exponent assumption [GM17], Poly: computational polynomial assumption [GM17].

computable isomorphism from group Gs to G;. As mentioned, this is a prototype
and to optimize the key sizes and timings we suggest to utilize other EUF-CMA
signature schemes that are not pairing-based and other SNARK libraries, since
active development of libsnark stopped.

In Table 3.2 we present the resulting sizes and the timings needed to generate
the elements. For the evaluation we used a MacBook Pro (version late 2016, Intel
Core i5-6287U, 3.1 GHz, 16 GB 2133 MHz LPDDR3). Hence, Table 3.2 shows that
even on older hardware the prototype gets verification times lower than a second.
The public parameters can be split for the signer and verifier, which yields a more
practical scheme, cf. [GM17] for details. Note, that the signer’s public parameters
increases by 3 elements in G; and 1 element in Go (plus a constant) for each gate
in the policy. The verifier’s public parameters only increase by 1 element in Gj.
Further, our prototype does not use hash-then-sign to simplify its implementation.
For this an additional constant number of elements, depending on the hash function,
gets added to the public parameters.

3.4 On the Experiment-Based Security of ABS

In this section we analyze the relation of the presented experiment-based security
notions of ABS. We show that simulation privacy is a stronger security notion
than privacy and that simulation-extractability implies unforgeability. In detail,
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Table 3.2: Overview of the libsnark prototype of our ABS scheme ABS™““ using GM-SoK.
We used a simple policy consisting of just one attribute. With (-,-) we denote the number
of elements in G; and Gs.

Size Time Elements
Signer public params 12MB J (205291, 49703)
Verifier public params 0.35MB  20s (9357,3)
Signature 145B 15s (2,1)
Verification 0.65s
Verification (pre-computation included) 1.1s

we show for ABS that simulation privacy (Definition 3.2.5) implies privacy (Defini-
tion 3.2.4) and that privacy does not imply simulation privacy. We show the latter
with respect to policy classes, where satisfying attributes given a policy are not ef-
ficiently computable. Further, we show that a simulation-extractable ABS scheme
is unforgeable, with respect to our definitions. This bridges the gab from ABS
schemes constructed from simulation-extractable building blocks, like our generic
ABS construction in Section 3.3, to the unforgeability notion of ABS schemes.
Another ABS scheme from the literature that is build using SoK [EE16] does not
use a simulation-extractability notion and directly shows that it is unforgeable. In
terms of unforgeability, we our experiment-based unforgeability definition (Defini-
tion 3.2.6) does not implicitly assume a specific policy class as it is the case if we
assume a policy class where satisfying attributes for a given policy are efficiently
computable. It is therefore more general than the notion introduced by Maji et
al. [MPRO8; MPR10; MPR11]. Maji et al. define unforgeability with a signing
oracle that computes satisfying attributes given a policy, generates a secret key
on these attributes, and then outputs a signature under this secret key. Hence,
the authors either implicitly assumed that satisfying attributes given just a policy
are efficiently computable, which corresponds to their monotone policies, or their
challenger is not efficient for general policies. Interestingly, Maji et al. [MPR10;
MPRI11] present an efficient algorithm to simulate signatures in the first step of
their unforgeability proof. We observed that this step is common in ABS unforge-
ability proofs in the literature and present in [AHY15; ECGD14; EG17; EGK14;
Li+10; SKAH18; UKLC15].

Overall, the security model of ABS was not the focus of the research com-
munity unlike security models of other privacy-preserving schemes, e.g., group
signatures [BHSB19; BMW03; DS18; Gro07] and anonymous credentials [BB18;
CDHK15; CKLM14; CL01]. In this section we show that the experiment-security
model of ABS benefits from a simulation-based privacy, general unforgeability and
simulation-extractability definition. We believe that our results simplifies security
proofs of ABS. Namely, (1) simulation-extractable primitives can directly be used
to build simulation-extractable ABS without taking the extra steps to show unforge-
ability separately, and (2) unforgeability proofs of simulation private ABS schemes
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do not have to show that signatures are simulatable. Let us start with analyzing
the relation of the unforgeability and simulation-extractability definitions.

3.4.1 On the Unforgeability of ABS

In the following we show that a simulation-extractable ABS scheme is also unforge-
able. The proof is done via a sequence of games [Sho04]. Note, our definitions of
simulation-extractability Definitions 3.2.7 and 3.2.8 require that the ABS scheme
is simulation private. However, in the following we state simulation privacy as an
explicit assumption to make it more clear.

Theorem 3.4.1. If an ABS scheme is perfect simulation private (Definition 3.2.5)
and white-box simulation-extractable (Definition 3.2.7), then it is unforgeable (Def-
inition 3.2.6).

Proof. The proof is done via a sequence of games (experiments), where we (1) start
with the unforgeability experiment, (2) introduce simulation algorithms in the next
experiment and (3) in the last experiment we change the winning condition to
the one from the extractability experiment. Let us start with the definition of the
corresponding experiments for an ABS scheme called ABS. We define the experi-
ments ExpUF(\), ExpYFT5m()\), and ExpYFHSm+Et(\) in Experiment 3.7, where
changes from one experiment to the next are highlighted. For ExpYF+Sim+Ext(y)
the extractor Extr 4 is a white-box extractor for an adversary A, i.e., it has access
to the transcript of A. Note, EXpUF()\) is our unforgeability experiment (Defini-
tion 3.2.6) repeated here for completeness. We refer to the experiments also as UF,
UF + Sim, and UF + Sim + Ext.

Suppose an adversary A against unforgeability (UF). We show in the following
that, if adversary A recognizes a change in the experiments, i.e., adversary A
distinguishes two consecutive experiments, we can construct adversaries against
the assumptions. This means, if adversary A can distinguish experiment UF and
UF + Sim, we build an adversary B against simulation privacy. Next, we show
that from A in experiment UF + Sim we construct an adversary C in experiment
UF 4 Sim + Ext. Finally, we show that from adversary C we can construct an
adversary D against the white-box simulation-extractability (Definition 3.2.7).

Oracles in all experiments. The reveal oracle is present in all experiments.

OReveal(i) .

if (Zv SkAi,Ai) ¢ QKeyGen then
return |

else

QReveaI = QReveaI U {Az}
return sky,
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UF UF+Si
Expsags(}) EXpAXBsIm()‘)
QKeyGenv QSigm QReveal = 0 QKeyGena QSign; QReveal = 0
(pp, msk) < Setup(17) (pp, msk, tdgim) + SimSetup(1*)

KeyGen yReveal (Sign
(m*a IP*) 0*) — Aopp,msk’O 701}1}

return 1 if

(#p)  (m*,P*,0%) SO e, OFevesl, 08

return 1 if

Verify(pp, m”, P*, 0%) = 1 A Verify(pp, m*,P*, ") =1 A
(m*’]P)*) ¢ QSign A (m*7P*) ¢ QSign A
YAi € Qreveal : P7(Ai) = 0 ¥Ai € QReveal : P*(A;) = 0

else return 0 else return 0

UF+Sim+Ext
EXD A Exer 4 ABS (A)

QKeyGem QSigm QReveaI = (Z)
(pp, msk, tdgim) < SimSetup(17)

KeyGen (OReveal Sign

(m*, P, 0*) = A Ot ()
(A*) < Extr4(trans.)
return 1 if
Verify(pp, m*,P*,c*) =1 A
(m*,P*) & Qsign A
(A* ¢ QReveal V P*(A*) = 0)
else return 0

pp,msk,tdsim (pp)

Experiment 3.7: Experiments for the proof of Theorem 3.4.1.

Oracles in ExpY". The unforgeability experiment has additionally a key gener-
ation and signing oracle using algorithms KeyGen and Sign respectively.

KeyGe Si .
Opp,ymsl? (AZ) : Ol’;)gn (Z’ My, Pj) :
ska, < KeyGen(pp, msk, A;) if (i, ska,,A;) ¢ QkeyGen then
QKeyGen = QKeyGen U {(Za SkAwAz)} ignore

o < Sign(pp, ska,,m;,P;)
QSign = QSign U {(mﬁ]P)J)}

return o

UF+Sim UF+Sim+Ext

Oracles in Exp and Exp The last two experiments share the
key generation and signing oracle. The change here is that they use algorithms
SimKeyGen and SimSign respectively.
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Ot (i) O st (15 By)
ska, < SimKeyGen(pp, msk, tdsim, A;) if (7, ska,,Ai) ¢ Qkeycen then
QKeyGen = QKeyGen U { (7, ska,, A;)} ignore
if P;(A;) =0 then
return |
else

o < SimSign(pp, msk, tdsim, m;, P;)
QSign = QSign U {(mj7 ]P)])}

return o

Note, that the two simulation oracles OX®¥¢en and 58" in the experiments
ExpYF M and ExpUF+>m+E<t qiffer compared to the corresponding oracles in
the simulation-extractability experiment Exp"P$met (Definition 3.2.7). Oracle
OKeyGen yises SimKeyGen, but it does not output the generated secret key, where in
simulation-extractability it does. Further, O>%®" only outputs a simulated signature,
if the attributes satisfy the policy (P(A) = 1). This is necessary, since SimSign,
unlike Sign, simulates signatures even for P(A) = 0. Hence, without this check
(P(A) = 1) the experiment UF and UF 4 Sim are easy to distinguish. An adversary
only has to query a signature with (P(A) = 0) and it would get different answers
in the experiments. Note, that simulation privacy (Definition 3.2.5) requires from
a scheme that Sign outputs L for inputs where P(A) = 0 holds.

1. UF to UF 4+ Sim. Suppose adversary A distinguishes the two experiments
ExpYF and ExpYFt5™ with advantage

| Pr[ExpYaps(V) = 1] = Pr[ExplSm () = 1] .

Using adversary A we build an adversary B against the simulation privacy of
ABS. Adversary B has access to two oracles OX®Y¢e" and ©5%". Depending on
the setting (b € {0,1}) the oracles use the real (b = 1) or simulation algorithms
(b=0) in Expgxggvacy’b()\) (Definition 3.2.5). The adversary A expects a sign, key
generation, and reveal oracle. A’s signature queries are directly mapped by B to
its signing oracle. B in its simulation privacy experiment has no reveal oracle, since
its key generation oracle directly outputs the generated secret keys. Therefore, B
stores them internally on key generation queries by .4 and outputs the key on a
corresponding reveal query by A.

sim-privacy,b

Next, we construct B in Expg Ags (\) using A.

1. B receives input (pp, msk), runs A(pp)

2. B answers oracle queries by A as follows:

O;f;yﬁ:,:(.&,) : calls own oracle sk, +— OXYCeM (A;) and adds (4, ska,) to Qke

for the i-th query.
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OReveal (7). returns sky,, if (4, ska,) € Qkg and adds A; to QRey, otherwise
returns L.

OSien (7, m;,P;) : returns o < 058 (i,m;, P;) and adds (m;,P;) to Qs.

3. On A’s output (m*,P*,0*), B outputs 1, if A’s winning conditions hold:
o Verify(pp, m*,P*,0*) =1 A
o (m"P*) ¢ Qs A
o VA, € QRev : ]P’*(A1> =0

and 0 otherwise.

Before analyzing B’s advantage, we note that B’s running time is polynomial
in the security parameter, since it only runs ppt adversary A and has to store
polynomial many queries of A.

The main part of the analysis of adversary B is to relate the settings of B in
ExpztnA'ggvacy’b()\) to the experiments EXpE{ABS()‘) and Exp%:,%m()\) of adversary
A. Adversary B has access to the simulation setting with the simulation algo-
rithms SimSetup, SimKeyGen, and SimSign, if b = 1 holds and to the real setting
(Setup, KeyGen, Sign), if b = 0 holds. In case b = 0, the oracle queries by A are
answered by B’s oracles, that use the real algorithms KeyGen and Sign as in experi-
ment ExpYF. In case b = 1, A’s oracle queries are answered by B’s oracles, that use
the simulation algorithms SimKeyGen and SimSign as in experiment ExpYF 5™ In

both cases, B simulates the experiments for A perfectly. Hence, we conclude that

AGVER(3) = [Pr [BxpiI2er (3) = 1] — e [BxpEt o) = 1]

= [Pr[Expans ) = 1 — PriExplfE () = 1

2. UF + Sim and UF 4 Sim + Ext. In the second step, we construct from adver-
sary A in Exp%:Bssim()\) an adversary C against EXpéJ"EttSanXEEXt(A). In other words
we show UF 4 Sim + Ext = UF 4 Sim. We conclude this in the third and final
step, by showing that we construct an adversary against simulation-extractability
(Definition 3.2.7) from adversary C.

Back to step 2, observe that all the changes in the game UF + Sim + Ext occur
after the final output of the adversary. Therefore, we will show that all winning
outputs in UF + Sim are also winning in UF + Sim + Ext. Let us start with the
description of adversary C. The oracle queries of A in ExpYF 5 are answered by
C’s oracles, since the experiments ExpYFt5™ and ExpYF+5m+E<t ghare the same
oracles. Next, we formally construct C in ExplCJFE';tSr'cm:BEgt()\) from A.

1. C receives input pp and runs A(pp).

2. C answers oracle queries by A as follows:
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KeyGen /a1 . KeyGen /o
O pomsk (Ai) © returns sk, <= O = GH(A;)

OReveal (3) : returns sky, < OReveal(4).
OS&n (i, m;,P;) : returns o < O€" (i, m;, P;).
3. On A’s output (m*,P*,o*), C outputs (m*,P*,c*).

C is efficient since it only runs the ppt adversary A. It also simulates A’s ex-
periment Exp}i’Fstém()\) perfectly, since C has access to the same oracles and just
relays on A’s queries. To analyze C’s winning probability (experiment outputs 1)

in experiment ExpéJ 'Eitsricm,&fgt we look at the winning condition of adversary A in

Exij:BSSim and show what the condition means for adversary C. Let us assume

A wins ExpiF:BSSim. Since the first two parts of the winning condition of both

experiments are the same (see Experiment 3.7), we only look at the third part. For
A in EXpJLiF:B%m this is:

(.A?)) VA,‘ c QReveaI : ]P)*(AZ) =0
and for C in Explcj'lzzttsr'cm:ggt()\) this is:
(C.3) (A* ¢ Qreveal VP*(A*) =0)

We assume that extractor Extre for C exists for the following analysis. We show
how to construct it in the next proof step. Let (A*) < Extrc(msk, m*,P* o).
From (A.3) we know that all revealed attributes do not satisfy the policy. So, if
A* € QReveal it holds that P*(A*) = 0 and the second part of the disjunction in
(C.3) is fulfilled. Thus C wins. Otherwise, A* ¢ QReveal holds, then C also wins,
because of the first part of the disjunction in (C.3).

There is also a special case in which A loses, but C wins. This is expected, since
the extraction allows for a more specific third winning condition. In detail, assume
the first two parts of the winning condition hold and let us consider the following
set

Attr = {A € QReveat | P*(A) = 1 A A £ A*}

Attr contains all revealed attribute vectors that satisfy the output policy and are
not the extracted attribute A*. If Attr is not the empty set, adversary A loses,
because of (LA.3). This means there is one revealed attribute vector that satisfies
the output policy P* and therefore the best that we can do in Expgl';%sém, without
extraction, is to declare this as a loss. Without extraction, we cannot check, if such
a revealed attribute vector was really used to generate the claimed forgery. For C

with extraction in Exp(LzJ 'Ettsr'cmiggt there are two cases where C then wins:

o A* € QReveal N P*(A*) = 0. Here, C wins because of the second part of the
conjunction in (C.3).

o A* ¢ Qreveal N (P*(A*) = 0V P*(A*) = 1). Here, C wins because of the first
part of the conjunction in (C.3).
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Overall, we see that (C.3) can still hold even if there is a revealed attribute that
satisfies the output policy P*.
Consequently, it holds that

Pr [Expj%gsgm()\) = 1} <Pr [Expggttsr?::ézgt()\) = 1}

where < comes from the fact that C wins in the above described cases where A
loses.

3. UF + Sim + Ext and sim-ext. In the last step we finish the proof by showing

that from adversary C in Exp(LzJ 'Ettsricmjggt we can construct an adversary D against

the simulation-extractability of ABS in the experiment Exp%?éﬂ?:;ﬁ%()\) (Defi-
UF+Sim+Ext

UF+Sim+Ext

nition 3.2.7). Looking at the definitions of the two experiments Exp
and Exp"Psim-et explicitly their oracles, we see that in experiment Exp
there are separate key generation and reveal oracles. Here, the key generation
oracle only generates keys and the reveal oracle returns them to the adversary.
In Exp"P¥™et we have a key generation oracle that generates and returns the
generated key. This makes a separate reveal oracle obsolete.

We can of course simulate this behavior in adversary D. On i-th key generation
query by adversary C for attribute A;, D stores the query (i, A;). Then on a reveal
query for i, D queries its own oracle sky, + O>MKe¥Gen(A) and outputs secret
key skp, if a stored query (i,A;) exists, otherwise it returns L. For subsequent
reveal queries, D stores already revealed keys. For the signing oracle, we also have
to consider that in ExpYFT5M+EXt the signing oracle only simulates signatures for
attributes that satisfy the policy, where in Exp"?S™<t the simulation signing
oracle does it regardless. In fact, in Exp"Ps™e the attributes are not an input to

the simulation signing oracle. Next, we construct D in Exp%?éﬂ{?;ﬁlgs()\) from C.

1. D receives input pp and runs C(pp).

2. D answers oracle queries by C as follows:

(’);;ynfjg (A;) : adds (i, L, A;) to Qke for the i-th query.

OReveaI(i) .
o if (4, 1,A;) € Qke returns sky, < O
to (i, SkZAi,AZ'),
o clse if (7, ska,,Ai) € Qe returns sky,, else returns L.
OSign (i, mj,Pj) .
o if (i,ska, # L,A;) € Qg and P;(A;) = 1, returns signature o

SimSign
Opp’mSkatdsim (m-]’ PJ)’

SimKeyGen

op.msk.td, (A) and changes entry

o Else, if (i, L, A;) € Qg and Pj(A;) = 1, runs sk, O;;Tg:,ﬁ;:m (Ay),

. SimSign
changes entry to (i, ska,, A;), and returns o <= O, ay - (mj, Pj).
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3. On C’s output (m*,P* o*), C outputs (m*,P* o*).

Regarding the efficiency of D, it only runs ppt adversary C and does efficient
operations on a polynomially sized set. D simulates the experiment for C perfectly,
since, as we described above, the oracles behave exactly like in C’s experiment
ExpYFHSim+EBxt 16t us next look at the winning condition of both adversaries C
and B in their respective experiments Exp"Psm et and ExpYF5m+E<t Note, the
first two parts of the winning condition are the same in both experiments. Hence,
we focus on the third part. For C in ExpYF>Sm+EXt this is:

(63) (A* Qé QReveal V P*(A*) = 0)
and for D in Exp"Psimet thig is:
(D.3) (A* € QkeyGen V P*(A*) =0)

The change in (D.3) compared to (C.3) is only due to the above described difference
in the oracles, but represents the same behavior, i.e., the C’s reveal oracle and D’s
key generation oracle output secret keys. To finish the proof let us construct an
extractor Extre for adversary C. Since we assume that ABS is simulation-extractable,
an extractor Extrg for adversary D in Exp"P$™e gives us an extractor Extre for
adversary C. Due to the fact that the experiments, besides the slight difference in
the oracles, differ only after the final output of the adversaries. In detail, given
a transcript of C (input, output, randomness) we can compute a transcript of
D efficiently, i.e., we just have to interpret each new revel query by C as a key
generation query for D and ignore repeated revel queries. Therefore, let T be a
polynomial-time algorithm that computes transp given transe as described above.
The extractor Extre is then defined as follows.

Extre(transe)

transp = T(transc)

return Extrp(transp)
Overall, we conclude that
AdviEimetss (V) = Pr[ExphEinedss () = 1] = Pr[ExpgEami&e () = 1].
This finishes the last step and collecting all of the above steps we get the following.
Pr [Exp%ABS()\) = 1} = Pr {EXp%ABS()\) = 1} —Pr [Exp%;BSSim()\) = 1}
+ Pr {Expgl’FIBsém()\) = 1}
< ’Pr [ExpYass(V) = 1] — Pr[Expiisim(y) = 1”
+ Pr[Explisim () = 1]

=AdvTREL* (V) + Pr[ExpYASim (\) = 1]
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< AdvETRB () + Pr[Bxp g oihas (V) = 1]
= AdViTRBLAY (A) + AdviPEimeta s (A)
Il

We can adapt Theorem 3.4.1 and the above proof to black-box simulation-extract-
ability of ABS (Definition 3.2.8), since we only relied on the white-box variant of
the extractor to argue that an extractor exists for a specific adversary. In case
of black-box simulation-extractability, we have one extractor for all adversaries
that we use throughout the proof. Everything else stays the same. Note, this only
simplifies the proof. Hence, the following theorem follows.

Theorem 3.4.2. If an ABS scheme is perfect simulation private (Definition 3.2.5)
and black-box simulation-extractable (Definition 3.2.8), then it is unforgeable (Def-
inition 3.2.6).

Considering the reverse direction of Theorems 3.4.1 and 3.4.3 that an unforgeable
ABS scheme is simulation private and simulation-extractable we do not have a
formal negative result. However, we have also not found a way to argue the existence
of efficient simulators or an efficient extractor from unforgeability.

Next, we focus on the relation of the privacy definitions for ABS.

3.4.2 On the Privacy of ABS

In the following we analyze the relationship between our privacy and simulation
privacy definitions. We first show that simulation privacy implies privacy. Then
we show that the reverse direction is not true for all policy classes.

Theorem 3.4.3. If an ABS scheme ABS is perfectly simulation private (Defini-
tion 3.2.5), then it is also perfectly private (Definition 3.2.4).

Proof. Suppose that ABS is not perfectly private. Then, there exists a distinguisher
A such that the advantage

Advf;fz\agg(A) — Pr[Expi{f\féé’l(/\) =1] - Pr[Expi{f\fég’o(/\) =1]>0 .

We construct a distinguisher D for perfect simulation privacy using .4 as a black-box

in the following. Distinguisher D in Exp%m,&‘égvacy’b()\) works as follows.

1. D receives (pp, msk) and runs A(pp, msk).
2. D flips a coin d < {0, 1}.

3. D on the k-th oracle query (m,P, Ay, A;) from A (k > 0):
a) It checks whether P(Agp) = 1 and P(A;) = 1 hold, if not ignore query
b) Get sky, < OKYCeM(Ag) and sky, + OXYEes(A)
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C) Get o4 + OSignb(zk —1+d,m, P)
d) Return (og, ska,, ska,)

4. Eventually A outputs d'.
5. Dsets b/ :=1if d = d', otherwise D sets b/ := 0.
6. D outputs V.

Let us analyze the advantage of distinguisher D. First, we analyze the case in
which distinguisher D is in the simulation privacy experiment Expgxggacy’l()\)
with b = 1. In this case, the experiment including the oracles use the normal
algorithms (Setup, KeyGen, Sign). Hence, for d € {0, 1} distinguisher D simulates
the experiment Expfé{:\/ﬂ%’d()\) for adversary A perfectly. Therefore, we get the

following.

Pr[Exppabe @ (A) =1] =Pr[d' =1|d = 1] - Pr[d = 1]
+Pr[d =0|d=0]-Pr[d=0]
1

1
= S(Prfd =1|d=1] = Pr[d = 1[d=0) + 5

1 .
= 5 (PrExpliEe" () = 1]

i 1

= Pr{ExpfiaEd () = 1) + 5

1 i 1

= AR (V) + 5

Second, in the case b = 0 distinguisher D is in the simulation privacy experiment
Exp%mA'Egvacy’o()\). Here, the signatures are generated independently from the bit

d that D chooses. In detail, the signing oracle Oi;g,:gsk’tdsm generates signatures

using the simulation signing algorithm SimSign. Hence, signatures are generated
independent of the secret key for the attributes AY. Consequently, the view of A is
independent of d and Pr[Exp%'?A'Erévacy’o()\) = 1] = Pr[d = d'] = }. Overall, it holds
that

AdVITRERS (3) = = - AdvRRSL (),

O

Corollary 3.4.1. If an ABS scheme ABS is computationally simulation private
(Definition 3.2.5), then it is also computationally private (Definition 3.2.4).

Corollary 3.4.1 follows from Theorem 3.4.3 since, if we only consider ppt ad-
versaries as in the computational definitions, the reduction in the proof of Theo-
rem 3.4.3 is efficient.

For policy-based signature (PBS) Bellare and Fuchsbauer [BF14] show without
restricting the polices the reverse direction of Corollary 3.4.1 does not hold by
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presenting a counter-example. In the following, we present a counter-example for
ABS that shows that the reverse direction of Corollary 3.4.1 and Theorem 3.4.3
does not hold in general for ABS, i.e., standard privacy does not imply simulations
privacy without restricting the policy class.

Counter-example. To show that simulation-based privacy is a stronger notion
than privacy without restricting the policy class, we fix a specific policy class
based on discrete logarithms (dlog) and present an ABS scheme for it as a counter-
example. The ABS scheme is an adaptation of our generic ABS construction ABS&¢
(Section 3.3). Then, we show that the presented ABS scheme is private, but not
simulation private. After that we generalize this to hard policy classes, i.e., where
computing a satisfying attribute vector for a policy is infeasible for an ppt adversary.
We formulate this in the following in a definition that, similar to our simulation
privacy definition, requires that the setup of the setup algorithm Setup and of a
simulation setup algorithm SimSetup is indistinguishable. Further, it captures that
it should be infeasible for an ppt adversary to compute a satisfying attribute vector
even if it gets access to the master secret key and simulation trapdoor.

Definition 3.4.1 (Hard Policy Class)

Let {IP’}pp be a policy class of an ABS scheme ABS with public parameters pp. We
call {]P’}pp a hard policy class, if (1) there exists a ppt algorithm SimSetup such
that for all ppt adversaries A’ it holds that

‘Pr[(pp, msk) < ABS.Setup(lA): A (pp, msk) = 1}_

Pr{(pp, msk, td sim,) < ABS.SimSetup(l)‘): A (pp, msk) = 1”
and (2) for all ppt adversaries A and all P € {P} op it holds that

Pr((pp, msk, tdgim) < ABS.SimSetup(1),
A — A(P, pp, msk, tdsim) : P(A) = 1] = negl(A).

o

Let us start with an informal counter-example to outline the general idea. We
consider our example ABS scheme that we used before, where the Sign algorithm on
input attributes and a message-policy pair generates a signature and then appends
to the signature the attributes that where used to generate it. Suppose a hard
policy class. Then we have that the example scheme with this hard policy class is
not perfectly simulation private. In detail, assume there is a ppt algorithm SimSign
which output is indistinguishable from the output of algorithm Sign, i.e., SimSign
computes a satisfying attribute vector for a policy and appends it to the signature
given just the master secret key, the simulation trapdoor, and a message-policy
pair. This algorithm SimSign is then an adversary for the hard policy class that
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computes a satisfying attribute vector with non-negligible probability. Hence, by
assumption that we have an ABS scheme for a hard policy class the described
algorithm SimSign cannot exist.

For the concrete counter-example we use a policy class based on the discrete
logarithm (dlog) of an element. In detail, a policy P in the dlog policy class
specifies a group element Y of a prime order group (Gi,p,¢1) and the unique
satisfying attribute for it is then y € Z,, i.e., g{ =Y € G;. Computing a policy
with a satisfying attribute is easy. Pick its dlog y <+ Z,, set P ==Y = ¢{ € G;.
However, under the dlog assumption (Definition 2.2.6) given only P (and the group
description) it is hard to compute y € Z,, i.e., there is no ppt algorithm that
computes y. The main arguments that we need for the following counter-example
are that the satisfying attribute is a unique element in Z, and that under the dlog
assumption computing the element is hard.

We base our counter-example scheme, called ABS®®, on our generic scheme ABS8°.
For this we adapt the ABS relation Régs (Definition 3.3.1) and then present ABS®®

in the following. In detail, we adapt the policy part of the Régs to the dlog policy
B

class and call it Réigs'dlog. Let P(A) =1 <Y = g/ € Gy where policy P:=Y € G4
and attributes A := y € Z,. Hence, we work with a signature of knowledge for
the statement Sig.Verify(pk,0,A) = 1 AY = ¢! € Gy, meaning that a signer
has a valid key 6 on attribute A = y € Z, and the attribute is the dlog of the
policy P =Y € G;. Next, we present our counter-example scheme ABS®® based
on ABSEC. For ABS® we only alter the signing algorithm ABSE&¢.Sign, such that it
additionally outputs the attribute vector next to the signature and ignore, for now,
the ABS&°.SimSign algorithm. We call this altered algorithm Sign’.

Example 3.4.1: Let SoK be a signature of knowledge with respect to a relation
generator for RégBS'dlog and let Sig be a signature scheme with message space Z,,.
We define an ABS scheme ABS®® based on ABS8® (Construction 3.3.1) with signing

algorithm ABS®®.Sign’ instead of ABS#°.Sign.

ABS<.Sign’(pp, skx, m,P)

1. parse pp = (ppSOK7 pk), skp = (A7 9)
2: o < ABSE“.Sign(pp, ska, m,P)
3: if o = 1 then

4: return L
5: else
6: return o’ = (0, A)

ABS® is an ABS scheme for the dlog policy class, since attributes are elements

from Z, and SoK generates signatures of knowledge with respect to RégBS'dlog.
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In the following, we start with showing that ABS®® is still private (Defini-
tion 3.2.4). However, subsequently we show that under the dlog assumption ABS®®
is not simulation private (Definition 3.2.5).

Theorem 3.4.4. If ABS& (Construction 3.3.1) is perfectly simulation private
(Definition 3.2.5), then ABS®® (Example 3.4.1) is perfectly private (Definition 3.2.4).

Let us outline the proof of the theorem. Note, we have already shown that ABS&®
is perfectly simulation private, see Theorem 3.3.1. Therefore, in the following we
have to show that no adversary that adaptively queries signatures of his choice
by providing policy Py,, two attribute vectors (Ao, A;), and a message m can
distinguish whether the signatures in the privacy experiment are generated using Ag
or Aq. Such queries are answered by a signature under one of the attributes and two
freshly generated secret keys for Ag and A;. See the experiment in Definition 3.2.4
for reference.

From the perfect simulation privacy of ABS&® we directly get that the actual
signature o of Sign’’s output is simulatable without an attribute vector as an input.
Hence, o is independent of the attribute choices (Ag or Aj) of the experiment
in each signature query. It remains to show that Sign’ outputting the attribute
vector next to o does not help the adversary to guess which attributes were used
to generate the signatures, i.e., it does not change its advantage. For this we have
to look at the oracle given to the adversary in the privacy experiment. There,
signatures are only generated under the condition that P(Agy) = 1, P(A;) = 1,
and P € U, hold, where the attributes are given by the adversary. Translated
to dlog policies this means, that the policy P defines a group element Y, such
that Ay and A; are the discrete logarithm of this group element Y with respect
to g1, given in the public parameters. Since the discrete logarithm is unique (in
Zp) the adversary, for valid queries, is forced to input two attributes that are
equal, Ag = A1 = log,, (Y). Hence, additionally outputting the used attribute does
not give the adversary any information, that he did not have before the query,
regardless of the adversary’s setting (b = 0, the oracle outputs signatures under
Ap, or b =1, the oracle outputs signatures under A;).

Note, this is not specific to dlog policies, since we only use the fact that for any
policy the satisfying attributes are unique. In general, this means if the policy class
includes only policies with unique satisfying attributes, then appending attributes
to signatures does not clash with the privacy notion.

The formal proof is skipped here, since it is the same as the one for Theorem 3.4.3
(simulation privacy implies standard privacy) with an additional argument, that
Sign’ additionally outputting the attribute vector does not affect the adversary’s
advantage. As detailed above, the argument is that the satisfying attributes for a
policy are unique. Therefore the two attribute vectors given by the adversary in
valid queries have to be equal, i.e., the unique attributes which are already known
to the adversary before the query.

If we consider policy classes that only include policies with at least two distinct
satisfying attribute vectors, the above argument does not work. In this case, an
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adversary can query the signing oracle with two distinct attribute vectors Ag and
A; and a policy that both attribute vectors satisfy. Then, any signing algorithm
that appends the used attribute vector to signatures leaks the challenge bit of the
privacy experiment to the adversary. Hence, on output (o, Ap) an adversary can
just output b and wins the privacy experiment.

Next, we present that without restricting the policy class to policies where
computing satisfying attributes is efficient, not every private ABS scheme is also
simulation private.

Theorem 3.4.5. Under the discrete logarithm assumption (Definition 2.2.6) with
respect to the group generated by the relation generator for RéigBS_leg, ABS®® (Ex-
ample 3.4.1) with the dlog policy class is not computational simulation private

(Definition 3.2.5).

Let us assume that ABS® is (computational) simulation private, then there exist
ppt algorithms SimSetup, SimKeyGen, and SimSign such that no ppt adversary can
distinguish whether it is interacting with the normal or the simulation algorithms
(cf. Definition 3.2.5). Hence, SimSign is a ppt that on input (pp, msk, td sy, m,P)
outputs simulated signatures ¢’ = (o, A) that are indistinguishable from signatures
produced by Sign’(pp, ska, m,P) for P(A) = 1. Outputting the attribute A, that
was used to create the signature, is easy for Sign’, since it gets the secret key for
A as input, but SimSign does not. This means, that SimSign outputs the discrete
logarithm A of a given group element PP in polynomial-time. In the following we
outline the proof details. Given a dlog instance (G, p, g, u, h) with the challenge to
compute log, (h) as described in the dlog experiment (Definition 2.2.6), we generate
the rest of the parameters of the ABS® accordingly. Then, we run SimSign on policy
h (and an arbitrary message) and output the attribute that SimSign returns in
its signature as the dlog of h. Note, SimSign only fails with negligible probability,
since we assumed that ABS®® is computational simulation private.

Theorem 3.4.5 can also be generalized to hard policy classes. We used dlog as
an illustrative example, since the dlog assumption is simple and essential in many
cryptographic schemes. Note, if we only consider policy classes that are not hard,
i.e., with policies where satisfying attributes are efficiently computable, called easy
policy classes in the remainder, a simulation signing algorithm can just compute
satisfying attributes in polynomial-time, e.g., ABS schemes that support monotone
policies. Then, the simulation signing algorithm can just generate a secret key on
the satisfying attributes (using msk) and output a signature under the secret key by
running the normal signing algorithm. We formalize this in the following theorem.

Theorem 3.4.6. If an ABS scheme ABS is computational private (Definition 3.2.4)
and defined for an easy policy class, then ABS is also computational simulation
private (Definition 3.2.5).

Proof. Let ABS = (Setup, KeyGen, Sign, Verify). We have to define ppt simulation
algorithms SimSetup, SimKeyGen, and SimSign and show that no adversary can
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distinguish them from the normal algorithms, except with negligible probability.
We define SimSetup such that it sets tdg;, = L, runs Setup and outputs whatever
Setup outputs. Also, we define SimKeyGen such that it runs KeyGen and outputs
KeyGen’s output. Further, we define SimSign as follows.

SimSign(pp, msk, td sim, m,P)

compute A such that P(A) =1
ska < KeyGen(pp, msk, A)
0 < Slgn(pp7 SkA? m, IED)

return o

The first step of the simulation signing algorithm SimSign is efficiently computable
by the assumption that the policy class is easy. The remaining steps are also efficient
since SimSign runs ppt algorithms KeyGen and Sign. SimSign only uses the master
secret key msk, hence we set tdg;, to L in SimSetup. Further, SimSign generates
signatures exactly as Sign does with a secret key sk as input. In conclusion, since
the simulation algorithms use the normal algorithms to produce their output, i.e.,
the output distributions are identical, no adversary can distinguish an interaction
with the normal algorithms from an interaction with the simulation algorithms. [

Let us summarize the relation of privacy and simulation privacy in the following.
We showed that simulation privacy is a stronger notion than privacy for policy
classes that include only policies with unique satisfying attributes where these
satisfying attributes are not efficiently computable (hard policy classes). This
might sound familiar. In fact it resembles the results with respect to witness
indistinguishable (WI), witness hiding (WH), and zero-knowledge (ZK) argument
systems [FS90]. As a reminder, in an argument system a prover wants to convince a
verifier that a common input z is a valid instance of a relation R, i.e., there exists a
witness w for x such that (z,w) € R. ABS privacy can be compared to WI. WI can
be trivially fulfilled by a prover that outputs the witness to the verifier, if the witness
is unique. The simulatability of simulation privacy is similar to the one required
by ZK. Intuitively, ZK requires a simulator that outputs proofs (without a witness
as input) that are indistinguishable from real proofs (generated with a witness as
input). To conclude, let us first repeat the results known for argument systems. As
presented in [FS90] the relations between witness indistinguishable, witness hiding,
and zero-knowledge protocol are as follows. Every zero-knowledge argument system
is also witness indistinguishable, but not every witness indistinguishable argument
system is witness hiding. The relation between zero-knowledge and witness hiding
(zero-knowledge implies witness hiding) only holds under additional assumptions,
i.e., the existence of a claw free function and a proper generator for instance and
witness, cf. [FS90, Theorem 4.1]. Regarding ABS, our results above seems logical,
since most ABS schemes are build from (non-interactive) witness indistinguishable,
zero-knowledge argument systems or signatures of knowledge schemes based on
NIZK argument systems.
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This result and resemblance to argument systems are also a motivation to answer
the question “how can ABS privacy be modeled ideally”. In Chapter 4 we discuss
this question and answer it with a universally composable ideal functionality for
attribute-based signatures. Before this, we focus on existing ABS schemes from
the literature and show that they are simulation private.

3.5 On the Security of Existing Schemes

We have seen that our new notion of simulation privacy for ABS is strictly stronger
than the (standard) privacy notion, if we consider policy classes that include only
policies with unique satisfying attributes and where these satisfying attributes are
not efficiently computable. The goal of this section is to show that there are existing
schemes that satisfy our simulation privacy definition. This result is not only
interesting on its own, but also with respect to our universal composability result for
ABS in Chapter 4. There, our UC result Theorem 4.5.1 shows that if and only if an
ABS scheme is correct, consistent, unforgeable, and simulation private then the ABS
scheme achieves UC security. Therefore, we show in this section that the generic
ABS constructions of Maji et al. [MPR11] and Sakai et al. [SAH16] satisfy our
perfect simulation privacy definition. Combined with our UC result (Theorem 4.5.1),
this shows that the two generic ABS constructions achieve UC security. Since the
two ABS constructions cover two generic constructions, we use them in this work
to show how our result actually improves the state of the art security for ABS.
For example, the construction in [SAH16] covers many common approaches in
the literature to define ABS. In detail, it uses NIWI argument systems, collision-
resistant hash functions, and SPS as building blocks. Both constructions were
originally shown to satisfy correctness, consistency, unforgeability, and the (weaker)
perfect privacy. As we have shown by our counter-example (Theorem 3.4.5), not
every private ABS is simulation private. Therefore, we show that the two generic
ABS constructions are perfectly simulation private by defining three simulation
algorithms (SimSetup, SimKeyGen, SimSign) for each construction. Then, we prove
that they guarantee simulation privacy according to Definition 3.2.5. To define the
simulation signing algorithms SimSign of the generic ABS constructions we only
apply minor modifications to the original signing algorithms. In particular these
modifications do not imply changes to the setup and key generation algorithms.
An interesting insight is that both constructions implicitly define the simulation
signing algorithm in the first step of their unforgeability proof. In detail, the first
proof step is to replace real signatures with simulated signatures. This typically
prepares further proof steps that are then more scheme specific. Our literature
research and analysis of other ABS schemes (and generic constructions) show that
this first step is common and present in [AHY15; ECGD14; EG17; EGK14; Li+10;
SKAH18; UKLC15] among others. In other cases this step is not present. However,
if the schemes are build from simulatable argument systems, then signatures can
be simulated via the zero-knowledge simulator, i.e., [DGM18; EE16; EK18; Ghalb;
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GM19; GM22]. Simulation privacy is not formalized but implicitly used in the
works by Okamoto et al. [DOT19; OT13; OT14]. There, simulated signatures are
used to show standard privacy directly. Hence, we expect that the techniques and
insight used to define simulation algorithms in the following for the constructions
by Sakai et al. [SAH16] and Maji et al. [MPR11] can be used for the other schemes.

Concretely, to formally define a simulation signing algorithm SimSign for the
constructions, we exploit a similarity in the signing algorithms of both schemes. The
signing algorithms fulfill two basic properties. First, the signature on a message-
policy pair proves that the signer knows a valid secret key on attributes satisfying
the policy. Second, it binds the policy to the signed message. In detail, in the
constructions from [MPR11; SAH16] a signature on a message-policy pair (m,P)
of the signing algorithm Sign, proves that the signer knows a secret key for attributes
satisfying the given policy PP or that he knows a special signature on (m,P) that
one can only generate with access to the master secret key. We exploit the second
part of the or to define the simulation signing algorithms for both constructions
[MPR11; SAH16]. This so called (parallel) OR-proof technique originated from
[CDS94; JSI96] and in general it allows a user to show that an original statement is
true or that the user knows a value where actually the user does not know it. Only
in the security reduction we can then argue that we know the value, because we
alternate the setup accordingly, e.g., we generate a trapdoor. For example, Groth
[Gro06] uses the technique to add simulatability to an extractable proof system,
Bernhard et al. [BFG13] use it to construct a SoK in the standard model and
Derler and Slamanig [DS19] use it together with key-homomorphic signatures to
construct a SE-NIZK from a NIWI system. Furthermore, the technique is used to
construct tightly-secure schemes [Bad+15; GJ18; HJ12]. There are also sequential
OR-proofs [AOS02; FHJ20] and they are used to build signature schemes [AOS02;
FHJ20] and tightly-secure signature schemes [DGJL21].

3.5.1 Generic ABS Construction by Sakai et al.

Next, we present simulation algorithms for the generic construction by Sakai,
Attrapadung and Hanaoka [SAH16] and show that the construction is simulation
private (Definition 3.2.5). Then, we discuss concrete instantiations of the generic
construction and their efficiency originally presented by Bemmann [Bem17]. Here,
the concrete instantiations also highlight that the generic construction by Sakai
et al. covers many approaches to define an ABS scheme.

Recall that simulation privacy demands the existence of three ppt simulation
algorithms, namely SimSetup, SimKeyGen, and SimSign. We have to define such
simulation algorithms and show that no adversary can distinguish the output of
the simulation algorithms from the normal algorithms Setup, KeyGen, and Sign
of an ABS scheme as given in Definition 3.2.1. The simulation signing algorithm
SimSign that we present is implicitly given in the unforgeability proof by Sakai et
al. in [SAH16, Theorem 1, Game 2|. Note that we focus on the construction given
by Sakai et al. in [SAH16] which is also one of the two constructions presented in
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the journal version [SAH18]. Considering the journal version, the first construction
shows the idea of the construction more clearly whereas the second construction
is more efficient, but also more complicated, since it is an optimization of the first
construction.

Building Blocks

Let us start with the description of the building blocks of the Sakai et al. con-
struction. Originally the construction by Sakai et al. uses a non-interactive witness
indistinguishable argument of knowledge (NIWI) (Definition 2.3.22) for circuits
[GOS12; GS12], a collision-resistant hash function (Definition 2.3.2), a structure-
preserving signature (SPS) [KPW15], an extractable commitment scheme [GS08;
GS12] and supports circuits C' as policies.

NIWI. Sakai et al. [SAH16] introduce a combination of the techniques from
Groth-Ostrovsky-Sahai proofs [GOS12] and Groth-Sahai proofs [GS12] to build an
efficient NIWT for circuit satisfiability. Their NIWI supports arbitrary circuits of
unbounded size and depth. Is is the reason why the generic ABS construction of
Sakai et al. [SAH16] support arbitrary circuits as policies.

Circuits. Let us briefly describe how circuits are represented in [SAH16]. A
circuit C has L input wires and overall N NAND gates, including the last output
gate. Wires are references by indices 1,...,L, L+ 1,...,L + N, where the first
L indices are input wires, the internal wires are indices L + 1,..., L + N — 1,
and the output wire is L + N. To define which NAND gate involves which two
wires, then called incoming wires of the gate, there are topology functions Iy, I> :
{L+1,...,L+ N} —{1,...,L+ N — 1}, where it is required that I;(i) < ¢ and
I5(i) < i. The topology functions take as input a non-input wire corresponding
to the outgoing wire of a NAND gate and output the first and second incoming
wires of this gate. Hence given C, we know the wires, their role, and how they are
connected.

Putting the above together, Sakai et al. [SAH16] employ the Groth-Ostrovsky-
Sahai proof system [GOS12] approach to prove that for each gate the NAND
relation —(u A v) = w is satisfied, where u,v are incoming wires and w is the
outgoing wire. The combination with Groth-Sahai proofs [GS12] allows them to
generate commitments to each wire and prove the arithmetized NAND relation
1—wu-v = w via a product pairing equation, which is the specialty of Groth-Sahai
proofs. The corresponding relation for circuit satisfiability is then (x = C,w =
(.%‘1,... ,$L)) €ER& C((ml,. . .,.%‘L)) =1.

Commitments. The Sakai et al. generic ABS construction also relies on ex-
tractable commitment scheme that are a part of the NIWI system that they use.
Security of extractable commitment schemes includes binding and hiding. As in
commitment schemes, binding means that it is infeasible for an adversary to open a

89



3 Enhanced Security of Attribute-Based Signatures

commitment in two different ways. Furthermore, hiding means that it is infeasible
for an adversary to distinguish two commitments on two distinct messages. Addi-
tionally in extractable commitment schemes, there is an ppt extraction algorithm
that extracts the committed message from a commitment. Sakai et al. [SAH16] use
the Groth-Sahai extractable commitment scheme that is part of the Groth-Sahai
proof system and that is presented in [GS08; GS12]. It allows two setups. The
first setup provides perfect hiding and computational binding commitments. The
second setup provides computational hiding and perfect binding commitments. For
a detailed formal definition we refer to [Fucl0].

SPS. The last building block is the so called structure-preserving signature (SPS)
[Abe+16]. These are signature schemes with the additional requirement that mes-
sages, signatures, and public keys are all group elements. Sakai et al. [SAH16] use
the SPS scheme by Kiltz et al. [KPW15]. The SPS scheme is used to issue secret
keys on attributes in the Sakai et al. generic ABS construction.

Construction

With the building blocks in place, we move on with the description of how the
construction works. As usual, secret keys for attributes A are signatures, here a
SPS on the attributes. A message-policy pair (m,P := C) consists of a message
m € {0,1}*, and a policy P represented as an arbitrary circuit. The challenge in
creating a signature on such a message-policy pair is that several statement has to
be proven efficiently. That is, one has to prove the satisfiability of the circuit with
respect to the attributes of a secret key, the validity of a signature on the attributes,
and one has to bind the message to the proof. The last part is necessary, since
the NIWI proof is otherwise independent of the message. Sakai et al. use a special
NIWT for circuits and an OR-proof, involving the hash of the message-policy pair,
to achieve this. As mentioned above, the OR-proof is a common technique to bind
messages to proofs and, as we will see, to get simulatability. For further details
on the NIWI proofs we refer to [SAH16]. In this work we only focus on how the
OR-proof technique is used.

In the following, let Hash = (KeyGen, H) be a collision-resistant hash function
and h < H(hk, (m,C)) be the hash value of the message-policy pair (m,C). The
satisfiability proof of the circuit C is done via the NIWI. To bind the message m to
the NIWI proof, the circuit is at first extended in such a way that it is additionally
satisfied by the hash value h. This is done via an OR~gate in the circuit. Intuitively,
for each signature generation we extend the set of satisfying inputs of circuit C
by an additional input corresponding to the hash value of the message-policy pair
to be signed. Furthermore, for the ABS construction the NIWI is used to prove
the validity of a secret key, a SPS signature, for attributes that satisfy the circuit.
Note, secret keys for the extended satisfying input are never generated for users.
This is exactly where the simulation signing algorithm SimSign starts to formulate.
Basically, SimSign is the original signing algorithm Sign executed with a special
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secret key generated on the hash value of the message-policy pair (m,C) (the
extended satisfying input). This is done to satisfy the circuit via the extended OR
part. Note, this special secret key, an SPS signature, can only be generated with
the master secret key (the SPS secret key). Hence, we set the simulation trapdoor
tdsim, that allows SimSign to generate simulated signatures, to the master secret
key msk.

Next, we present the construction by Sakai et al. [SAH16] for completeness and
adapt the notation to ours. Subsequently, we present the simulation algorithms. The
construction by Sakai et al. represents attributes as bit vectors A = (z1,...,2;) €
{0, 1}l of length [ € N. This can be interpreted in different ways. One interpretation
is that they consider binary attributes. That is, if x; = 1 holds then an attribute
a; € U is set and if z; = 0 holds then it is not set. The attribute universe is
therefore U = {ay,...,a;}. Another interpretation is that Sakai et al. support a
single attribute representing a numerical value encoded in [ bits or a combination
of both, where some bits correspond to numerical values and others indicate binary
attributes. The latter is a more expressive interpretation, where the policy can
also include some threshold and range checks.

Construction 3.5.1 (Generic Construction by Sakai et al. - [SAH16])

Let GrGen be a bilinear group generator, let Hash = (Hash.KeyGen, Hash.H) be a
collision-resistant hash function with output length [, let NIWI = (NIWI.Setup,
NIWI.Prove, NIWI.Verify) be a NIWI for circuit satisfiability relation, let SPS =
(SPS.Setup, SPS.KeyGen, SPS.Sign, SPS.Verify) be a structure-preserving signature
scheme, let Com = (Com.Commit, Com.Extr) be an extractable commitment scheme,
and let [ € N, [ > [, be the size of the attribute vectors and let [ + 1 be the
input length of the circuits. The attribute-based signature scheme ABSSAH for
message space {0,1}" is defined in Figure 3.8.

Note, a secret key sky consists of attributes A and SPS signature # on A. Hence,
a user can efficiently verify a secret key sks by running SPS.Verify(pk, A, 6). The
Sign algorithm is the most complex part of the construction, since it combines
the two techniques of the Groth-Ostrovsky-Sahai [GOS12] and Groth-Sahai proof
systems [GS12]. Hence, it outputs a proof that the extended circuit C evaluates
to 1 on input the attributes or the hash value of the message-policy pair. Note,
that the key generation algorithm KeyGen of ABSSAH only generates secret keys
where the first attribute is fixed to be 0. To achieve this, it prepends the 0 to the
attributes given, before generating the signature using SPS. Also note, that by
definition of the extended circuit €' the first input X7 has to be 0 on left side of the
or and on the right side the input X; has to be 1. Hence, honestly generated secret
keys (output of KeyGen) never satisfy the right side of the disjunction. Even if one
asks for a secret key on a hash value of a message-policy pair the key generation
by KeyGen adds a zero attribute in front of the hash value. For completeness, we
include the following theorem in this thesis and refer for the proof to [SAH16].
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ABSSAH.Setup(l)‘) ABSSAH.KeyGen(pp, msk, A)

GD = (G1,Gy,Gr,p, e, g,§) « GrGen(1*)  parse pp = (I, crs, pk, hk), msk = sk
crs <— NIWI.Setup(GD) parse A = (z1,...,1;)

(pk, sk) « SPS.KeyGen(GD, 1:+1) A= (g% g™, ..., g")

hk + Hash.KeyGen(1%) 0 < SPS.Sign(pk, sk, A)

pp = (I, crs, pk, hk), msk = sk return sk = (A, 0)

return (pp, msk)

ABSSAH Sign(pp, sk, M, P)

parse pp = (I, crs, pk, hk), ska = (A, 0),A = (z1,...,2;),P as circuit C
h + Hash.H(hk, (M, C))
// extend circuit C to (A,‘, where hash value h is hard-wired
CX1,.., X)) =1 (X1 =0AC(Xy,...,X131) =) V(X1 = 1A Xy||--- || X1, 41 = h)
// use leading 0 and attributes A = (x1,...,x;) to set the input wires
X1 =0,Xo=21,...,X141 =1
// compute assignment for each non-input wire in C with NAND input arithmetization
fori=({+1)+1,....,(0+1)+(N—-1)do X; :=1—X;,5) - X1,(5)
// compute group elements for all wires except output wire
fori=1,...,(14+1)+ (N —1) do W; := g%, W; = g%
// compute commitment to the secret key element 6
comy < Com.Commit(pp, )
// compute commitments to all wire group elements
fori=1,...,(l+1)+ (N —1) do

comyy, < Com.Commit(pp, W;), comy; < Com.Commit(pp, W)
// prove that the secret key is valid for the attributes that are also the input of the circuit
use NIWI.Prove to generate proof msig, for equation SPS.Verify(pk, (W1,...,Wi41),0) =1
// prove that the input wire commitments are to the same value
fori=1,...,1+1do

use NIWI.Prove to generate proof m; for equation e(g, W;) = e(W;, §)
// prove internal wire commitments are to the same value and NAND relation holds
fori=(0+1)+1,...,(0+1)+(N—-1) do

use NIWI.Prove to generate proof m; for equations

e(ga WZ) = e(Wivg), e(Wll(i)a WIQ(Z)) : e(Wl,g) = e(g7g)
// prove that the NAND relation holds for the last gate
use NIWI.Prove to generate proof m(;41y4n for output wire equation
(W1, (1+1)+85)> W (@41)+n)) = 1
return o = (comg, COMW, , ..., COMW, ., 1), (x—1y> COMGY, s+ s COMY 1L ) WSigns

Ty 37T(l+1)+N)

Figure 3.8: Generic Construction by Sakai et al. [SAH16].
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ABSSAH Verify (pp, M, P, o)
parse pp = (I, crs, pk, hk)

parse P as circuit C

parse o = (comg, comyy,, . .., COMW 1)1y COM s+ oy COMG

TSigns T1y -+ 7T(l+1)+N)
extend C as above to C
use NIWI.Verify and the commitments in o to verify every proof 7; in o
if all proofs are valid set b := 1, otherwise set b := 0

return b

Figure 3.8: Generic Construction by Sakai et al. [SAH16] (continued).

Theorem 3.5.1. If NIWI is a perfect witness-indistinguishable proof system, Hash
s a collision-resistant hash function, SPS is an existential unforgeable structure-
preserving signature scheme, and Com is an perfectly hiding and perfectly ez-
tractable commitment scheme, then the attribute-based signature scheme ABSSAH
is perfectly private (Definition 3.2.4) and unforgeable (Definition 3.2.6).

Intuitively, perfect privacy follows directly from the witness indistinguishability
of the proof system and the perfect hiding property of the commitment scheme. For
the unforgeability we move to the perfect binding setup of the commitment scheme.
This gives us perfect extractability for the commitments and therefore access to
the witness used in the proofs. Additionally, signatures are only generated with
witnesses for the right side of the OR in the extended circuit. Then, an adversary
either finds a collision in the hash function or generates a forgery for the SPS
scheme.

Next, we present that ABSS*H is simulation private. For this we have to define
simulation algorithms SimSetup, SimKeyGen, and SimSign. Recall that the simula-
tion signing algorithm SimSign was already given in the unforgeability proof of the
Sakai et al. construction in [SAH16]. In the following, we formalize it according to
our simulation privacy notion.

Theorem 3.5.2. If NIWI is perfectly witness-indistinguishable and Com is perfectly
hiding, then ABSSA s perfectly simulation private (Definition 3.2.5).

Proof. Major changes to Setup and KeyGen are not necessary, since the SimSign
algorithm uses the master secret key msk to simulate signatures, which is already
output by Setup. Therefore, SimSetup behaves exactly as Setup, but SimSetup
additionally outputs tds;, = msk, and KeyGen behave exactly as SimKeyGen, but
with additional input tds;, that SimKeyGen ignores. Major changes compared to
Sign are necessary to define the simulation algorithm SimSign that uses the master
secret key msk to generate ABS signatures without any attributes as an input.
To achieve this, it uses the right side of the or in the extended circuit C' as we
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described above. We present simulation algorithm SimSign in the following where
we highlight the changes.

ABS®ALSimSign(pp, msk, tdsim, m, P)

parse pp = (I, crs, pk, hk), msk = sk, td g = sk
parse P as circuit C

h < Hash.H(hk, (M, C))

/| parse h as bits and pad with 0 to the length [ + 1
parse h = (hy,--- ,hy,)

hi=(h1,-- ,h,,0,...,0) € {0,1}'*"

Ap = (g4, g™, .., 9", g% ... g% € GHH?

0 « SPS.Sign(pk, sk, Ap,)

skp, == (h,0)
// next extend circuit C to €, where hash value h is hard-wired
C(Xl,. . -aXl+1) =1
(X1 =0AC(Xa,.o, Xpt1) = 1)V (X1 = 1A Xol| -+ [| X111 = h)
// use leading 1 and padded hash value h to set the input wires

X1=1,Xo=hy,..., Xp, 11 ="M, X5,42=0,..., X541 =0
// the remaining steps are as defined in Sign

/...

return o

Note, that all three simulation algorithms are ppt algorithms, since they are based
on existing ppt algorithms of the construction and only add efficiently computable
steps. In the definition of SimSign above we omit at the end the unchanged steps of
Sign. Here, the only internal difference is that the NIWI proofs are generated with
respect to the special secret key (the SPS signature on the group representation
of the padded hash value) and with respect to the input wires (the padded hash
value with a leading zero). Therefore, the NIWI proves that the extended circuit C
is satisfied as before in Sign. However, internally it uses a different witness, namely
the special secret key for the right side of the disjunction.

SimSetup and SimKeyGen are unchanged from Setup and KeyGen, except for
the additional output of SimSetup and input of the simulation trapdoor td;, for
SimKeyGen. Hence, their distribution of the other outputs is unchanged. Thus, it
remains to show, that SimSign generates the same distribution as Sign.

Sign uses the secret key of the signer as the commit messages and the witness for
the proofs. Whereas SimSign generates a special secret key skj on the hash value of
the message-policy pair via the master secret key msk on-demand. Then, SimSign
uses skp as for the commitments and as a witness for the proofs. Notice, that
both algorithms expand the given circuit C such that it is additionally satisfied
by the hash value used to compute the special secret key. The final output of
both algorithms, SimSign and Sign, consists of commitments and proofs where just
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Table 3.3: Overview of signature sizes of instantiations of the Sakai et al. [SAH16] generic
construction (Construction 3.5.1) originally presented in [Bem17]

l input size of the circuit and length of attribute vector, and N number of gates in the
circuit.

Used SPS Gq Go Assumption of SPS
SPSkpw [KPW15] 6/ + 10N +20 60+ 10N 46 SXDH
SPS;r [JR17] 6/ + 10N +18 61+ 10N +6 SXDH
SPSacno [AGHO11] 61+ 10N +12 61+ 10N +6 GGM

different messages and witnesses were used. From the perfect hiding property of
the commitment scheme and the perfect witness indistinguishability of the proof
system it follows that the distributions of SimSign and Sign are independent of the
witness (messages) used and that they are identical.

O

Instantiations and efficiency. Next, we want to give some examples of how
to instantiate the Sakai et al. generic construction ABSSA and their efficiency
originally presented by Bemmann [Bem17]. Since the proof system is specific for the
construction, as described above, and implicitly defines the commitment scheme,
the only have to instantiate the SPS scheme in the following. Originally Sakai et
al. [SAH16] present an instantiation with the SPS scheme by Kiltz, Pan and Wee
[KPW15], denoted by SPSkpw, and list the signature size for this instantiation. In
[Bem17] the generic construction is also instantiated by using the SPS schemes by
Jutla and Roy [JR17], denoted by SPSjgr, and by Abe, Groth, Haralambiev and
Ohkubo [AGHO11], denoted by SPSagro. Details of the SPS schemes are out of
scope of this thesis. However, Table 3.3 from [Bem17] shows the resulting signature
sizes of the corresponding instantiations of the Sakai et al. generic constructions.
Note that the used SPS scheme only influences the size of the commitment comy to
the SPS signature € (included in ABS secret keys) and the size of the NIWI proof
Tsign of the validity of the SPS signature. The other parts of the ABS signature are
unchanged, since they depend only on the NIWI and how the circuit is presented.
Since, the SPS scheme SPSagro of Abe et al. is proven to be optimal (signature
size of 3 elements) [AGHO11] the corresponding instantiation of ABSSAH! is also
optimal regarding the used SPS scheme.

3.5.2 Generic ABS Construction by Maji et al.

Maji, Prabhakaran and Rosulek present in [MPR11] a generic construction of ABS
supporting monotone boolean functions as policies. A full version of the work is
available [MPR10], with full formal proofs and extended explanations. There is
also a preliminary version of the work available [MPROS8], which has only historical
significance. In the following, we show similar to Section 3.5.1 that the construction
of Maji et al., originally shown to be private and unforgeable, is simulation private.
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Hence, we have to define ppt simulation algorithms SimSetup, SimKeyGen, and
SimSign and then show that they are indistinguishable from the algorithms Setup,
KeyGen, and Sign in the simulation privacy experiment Definition 3.2.5.

Building Blocks

Let us start with a description of the construction and its building blocks. The
generic construction by Maji et al. is based on a NIWI system and a so called cre-
dential bundle. A credential bundle is a tagged signature (¢, o) < Sig.Sign(sk, t||m;)
on a uniformly random tag ¢ and message m; realized by a EUF-CMA secure sig-
nature scheme Sig. Intuitively, the tag is a nonce that binds signatures under the
same tag together. This is used to generate ABS secret keys on attribute vectors
A = (a1,...,a;) € U consisting of [ individual signatures o; on the attributes a;
(i =1,...,1) with the same tag t. Hence, in the following we use a signature scheme
in the Maji et al. construction to sign attributes in the key generation. Maji et
al. [MPR11] show three instantiations of their generic ABS construction. For the
first two instantiations they use the Groth-Sahai proof system [GS08; GS12] as
the NIWI system and combine it with the Boneh-Boyen signature scheme [BB04;
BBO08] and with the Waters signature scheme [Wat05] respectively. The third
instantiation is directly proven to be secure in the generic group model [MPR10].

Construction

As we have discussed before, the challenge in constructing ABS from proof systems
is to bind the message to be signed to the proof and therefore the policy. Hence,
the generic Maji et al. construction [MPR11] supports a universe of attributes that
contains a pseudo-attribute for every message-policy pair (m,P). The construction
defines a ABS signing algorithm Sign, that on input (m,P) and a secret key sky
extends the policy to policy P := P v “pseudo-attribute (m,P) is in A”, i.e, a
disjunction of the original policy and the statement that the signer has a secret key
for the pseudo-attribute for (m,P). Important here is that secret keys on pseudo-
attributes are not generated by the key generation algorithm. Second, it uses the
signers secret key ska (a signature on attributes A) to generate the ABS signature.
Here, the ABS signature is a NIWI proof. In detail, the NIWI proof shows that
the signer knows a valid signature on attributes that satisfy the extended policy
P. Here, the the left side of the disjunction in policy P is satisfied.

Similar to the Sakai et al. construction (Section 3.5.1), the set of satisfying
attributes with respect to the policy is extended to include a special element (the
pseudo-attribute). Signers do not have a valid signature on this special element.
However, the simulation signing algorithm utilize this. Concretely, the simulation
signing algorithm SimSign uses the master secret key msk to issue a secret key
sk for the pseudo-attribute (m,P) and uses the extended policy P to generate
an ABS signature in the same way as Sign generates it. By using the pseudo-
attribute (m,P) the right side of the disjunction in the extend policy P is satisfied
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and is proven by using sk in the NIWI proof. The indistinguishability of the
simulated and normal signatures then follows from the witness indistinguishability
of the NIWI system. Hence, the approach of the SimSign algorithm for this generic
construction by Maji et al. is similar to the one that we used above for the Sakai
et al. construction. Also here simulated signatures and an alternative signing
algorithm are at least mentioned by Mayji et al. in all available versions of the work
[MPRO8; MPR10; MPR11]. Maji et al. define an alternative signing algorithm
primarily to use it in the unforgeability definition. Note, that they define the
alternative signing algorithm in such a way that it limits the formal usability.
Namely, given just the master secret key and a policy it should find satisfying
attributes for the policy, generate a secret key for these attributes and then produce
a signature with this secret key by using the normal signing algorithm. This
alternative signing algorithm is not a (probabilistic) polynomial-time algorithm if
the pseudo-attributes technique is not used and more importantly for hard policy
classes, where one cannot compute satisfying attributes in polynomial-time from a
given policy. Besides their alternative signing algorithm, there is another signing
algorithm presented in the first step of the unforgeability proof of the generic
construction. The simulation signing algorithm that we present is based on the
latter.

Next, we describe the Maji et al. construction [MPR11] with adapted nota-
tion. Then, we present the simulation algorithms in detail. Their generic construc-
tion describes five algorithms TSetup, ASetup, KeyGen, Sign, and Verify. The key
generation algorithm KeyGen is originally called AttrGen. They define two setup
algorithms: TSetup for the so called signature trustee and ASetup for the attribute-
issuing authority. In detail, this separates the setup of the NIWI proofs from the
setup for the secret key generation on attributes. The separation is a preparation
for multi-authority attribute-based signatures that are also covered by Maji et
al. [MPR10; MPR11]. There attribute-issuing authorities have to register at the
signature trustee. Since we focus on the single attribute-issuing authority case
we combine the setups. Hence, we define algorithm Setup, such that it combines
TSetup and ASetup in one algorithm to match our syntax. Accordingly, we define the
generic ABS construction by Maji et al. as ABSMPR = (Setup, KeyGen, Sign, Verify).
Let U be the universe of attributes and let ¢ denote the space of pseudo-attributes,
where U NU = (). One pseudo-attribute a,, p € U is added for each message-policy
pair (m,P). A policy is defined as a monotone boolean function P: 24 — {0, 1},
where 21 denotes the powerset of U.

Construction 3.5.2 (Generic Construction by Maji et al. - [MPR11])

Let GrGen be a bilinear group generator, let CB = (Setup, Sign, Verify) be a signa-
ture scheme with message space U U, and let NIWI = (NIWI.Setup, NIWI.Prove,
NIWI.Verify) be a non-interactive witness indistinguishable proof system for mono-
tone boolean functions. The generic ABS construction ABSMPR for message space
{0,1}" is defined in Figure 3.9.
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Note, a secret key ska consists of attributes A and signature 6 on A. Therefore,
to efficiently verify a secret key sky a user runs CB.Verify(apk, A, 6). Let us explain
the above construction in more detail. The setup is straightforward. Maji et al.
[MPR11] define it such that it generates two key-pairs such that the authors can
later extend the construction to multi-authorities and to separate the validity of the
pseudo-attributes and the attributes (issued by the authority). The authority also
checks in the key generation KeyGen that the given attributes do not include any
pseudo-attributes. Hence, secret keys that are honestly generated by an authority
never include any pseudo-attributes. Therefore, in Sign we set the i-th public key
pk; to the public key used to generate attribute a;. In detail, we set public key pk;
to be tpk for the pseudo-attribute and to apk for attributes. Consequently, if the
pseudo-attribute is part of the NIWI proof the statement includes the signature
trustee’s public key tpk. To understand the statement that the NIWI proves, we
have to mention that in the construction of Maji et al. a signer only needs valid
signatures for a subset of attributes that are sufficient to satisfy the policy. This
is what the equation for the NIWI proof in algorithm Sign expresses. Hence, the
statement that the NIWI proves is that the signer has sufficient attributes in his
secret key to satisfy the extended policy. For this to work, all elements were set
appropriately beforehand. Here, we have to mention that setting the signatures &;
to 0 is not a problem since they are not used in the NIWI statement. The concrete
instantiation of a NIWI that can efficiently proof such statements is based on the
Groth-Sahai proof system [GS08; GS12] and is given by Maji et al. [MPR11]. For
further details on the concrete statements for the Groth-Sahai proof system we
refer to [MPR10]. The following theorem is included for completeness and we refer
for the full proof to [MPR10; MPR11].

Theorem 3.5.3. If NIWI is a perfectly witness indistinguishable argument of
knowledge, CB is an EUF-CMA signature scheme, then the attribute-based signa-
ture scheme ABSMPR s perfectly private (Definition 3.2.4) and unforgeable (Defi-
nition 3.2.6).

The perfect privacy of the construction ABSMPR follows from the perfect witness
indistinguishability of the NIWI proof system. Unforgeability of ABSMPR is shown
by two reductions, that use the extractor of the NIWI. Given an adversary against
the unforgeability of ABSMPR and extracting a valid proof, i.e., an ABS signature,
output by the adversary as its forgery, gives us a witness that is either a valid CB
signature on a pseudo-attribute under the trustee’s public key tpk or a valid CB
signature under the authority’s public key apk. The extracted CB signature can
then be used to claim a forgery in a corresponding reduction to one of the CB
key generations for signature trustee or authority. For the full proof see [MPR10].
Next, we show simulation privacy for ABSMPR,

Theorem 3.5.4. If NIWI is perfectly witness indistinguishable, then ABSMPR g
perfectly simulation private (Definition 3.2.5).
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ABSMPR Setup(17) ABSMPR KeyGen(pp, msk, A)

GD := (G1,Gy,Gr,p, e, g,§) « GrGen(1*)  parse pp = (crs, tpk, apk), msk = (tsk, ask)
crs <— NIWI.Setup(GD) parse A = (a1,...,a;)

/| generate signature trustee key pair if A contains pseudo-attributes, abort
(tpk, tsk) < CB.KeyGen(GD) else

/| generate attribute-issuing authority key pair 0 :=(t,o1,...,01) + CB.Sign(apk, ask, A)
(apk, ask) < CB.KeyGen(GD) return sky = (A, 6)

pp = (crs, tpk, apk), msk = (tsk, ask)
return (pp, msk)

ABSMFR Sign(pp, sky,m,P)

parse pp = (C’I’S, tpk7 apk)? SkA = (A79)7A = (ala .- 'aal)ae = (tvgala . 'ao-al)
if P¢UVP(A) =0 return L else

// extend policy with pseudo-attribute a,, p € u

A

P:=PVanp
Let {ai,...,a,} be the attributes in P
fori=1,...,k do
if 0,, € ska then
0 == 0g,
else 6; =0

if a; = amp then

pk; = tpk
else
pk; = apk

use NIWI.Prove to generate proof w for the statement
A(t, b1, ..., ) : P({a; | CB.Verify(pk;, a;, (t,6;)) = 1}) =1

return o =7

ABSMPR Verify(pp, M, P, o)

parse pp = (crs, tpk, apk)

parse o =T

/| extend policy with pseudo-attribute a,, p € U
P=Pv Qm P

use NIWI.Verify to verify the proof 7

if it is valid set b := 1, otherwise set b :=0

return b

Figure 3.9: Generic Construction by Maji et al. [MPR11].
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Proof. To show simulation privacy we start with the definition of ppt algorithms
SimSetup, SimKeyGen, and SimSign. We can use Setup as SimSetup and KeyGen as
SimKeyGen. We only have to add the additional output of the simulation trapdoor
tdsim to SimSetup and give tdg;, to SimKeyGen as an additional output that it
ignores. The simulation trapdoor is set to the signature trustee’s secret key tsk.
The following simulation signing algorithm SimSign is mentioned as an idea for the
reduction in the unforgeability proof in the conference version [MPR11, Theorem
1] and is defined in the full version [MPR10, Appendix C.1]. We highlight the
changes compared to the signing algorithm Sign in the following definition of the
simulation signing algorithm SimSign.

ABSMT.SimSign (pp, msk, tdsim, m, P)

parse pp = (crs, tpk, apk), msk = (tsk, ask), tdsim = tsk
// generate secret key for pseudo-attribute an, p € U

sk CB.Sign(tpk, tsk, am p)

// the remaining steps are the same as in Sign

o+ ABSMPR.Sign(pp, sk, m, P)

return o

The SimSign algorithm uses the signature trustee secret key tsk to generate
a signature on the pseudo-attribute a,,p for the given message-policy pair m,P.
Thus, the right side of the extend policy P:=Pv am,p is satisfied and the NIWI proof
can be generated as in Sign. However, internally it uses only the pseudo-attribute
am,p and the signature on it as the witness. Finally, note that all three simulation
algorithms are ppt algorithms, since they extend existing ppt algorithms only with
efficiently computable steps.

Regarding simulation privacy, the algorithms SimSetup and SimKeyGen are un-
changed compared to Setup and KeyGen with respect to what the adversary gets as
input. Hence, we focus on the signing algorithms in the following. The signatures
generated by Sign and SimSign are just NIWI proofs that use different witnesses
for the same extended policy P:=Pv am,p. Therefore, the extend policy has the
same set of satisfying attributes in both algorithms. As we previously described,
internally the NIWI proofs of Sign are over attributes issued by the authority.
Therefore, the proofs are with respect to the authority public key apk. The wit-
ness that Sign uses is the ABS secret key for these attributes including the issued
attributes under apk. This is a witness for the left side of the disjunction in the
extended policy P. Internally SimSign uses as the witness the pseudo-attribute
amp and the signature under the trustee public key ¢pk on it. This is a witness
for the right side of the disjunction in the extend policy P. Note, that technically
SimSign can also sign policies P where there are no satisfying attributes, because it
always extends the policy to be satisfiable by the pseudo-attribute a,, p. We handle
this in the simulation privacy experiment (Definition 3.2.5) by requiring that the
simulation oracle only answers with a signature, if the given attributes satisfy the
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policy P. Otherwise, it outputs the failure symbol L. The same behavior is defined
in the second step of ABSMPR Sign. Hence, trivially distinguishing SimSign and
Sign is precluded. It follows from the perfect witness indistinguishability of NIWI
that the output distributions of Sign and SimSign algorithms are independent of
the witness an identical. d

In conclusion, we have shown that the generic ABS constructions by Maji et al.
[MPR11] and Sakai et al. [SAH16] are our perfectly simulation private. Looking
ahead, our UC result (Theorem 4.5.1) that we present in Chapter 4 shows that
the two generic ABS constructions achieve UC security.
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Universal Composable
Attribute-based Signatures

Summary. In this chapter we present the attribute-based signatures in the
universal composability framework (UC) results of [BEJ18b] and its full version
[BEJ18a]. The main contribution of these works that we present in this thesis is that
we enhance the security model of ABS in the form of an ideal ABS functionality
in UC (Section 4.3).

Furthermore, we show that an ABS scheme is simulation private and existential
unforgeable regarding our experiment-based definitions (Chapter 3) if and only if
it is UC secure. This shows that the two existing generic ABS construction that
are simulation private, as presented in Section 3.5, are also UC secure (Section 4.5).

4.1 Introduction. . . . . . . . . . ... 104
4.1.1 Related Work . . . . .. . . ... ... 106
4.1.2 Research Questions. . . . . . . ... ... ... ....... 107
4.1.3 Contribution . . . .. .. ..o 108

4.2 Preliminaries of UC . . . . . .. .. .. oo 109
4.2.1 Model of Computation . . . . . ... .. ... ... 109
4.2.2 Bounded Computation . . . . . ... ... ... ... .... 110
4.2.3 Protocol Execution . . . . . . . ... ... L. 111
4.2.4 UC-Emulation . . ... ... ... ... ... ........ 111
425 UCSecurity . . . . . . . . o v i 114
4.2.6  Universal Composition . . . . . . .. .. ... ... . .... 115
4.2.7 UC Framework Utilities . . . . ... ... ... ... .... 116

4.3 Ideal Attribute-Based Signatures Functionality . . . . .. ... .. 119
4.3.1 Description of Ideal ABS Functionality Fags . . . . . . .. 119
4.3.2 Security of Ideal ABS Functionality Fags . . . . . . . . .. 125

4.4 Attribute-Based Signatures Protocol . . . . . . ... ... ... .. 127

4.5 UC Security for ABS . . . . . . ... 130
4.5.1 Experiment-Based Security implies UC Security . .. . . . 131
4.5.2 UC Security implies Experiment-Based Security . . . . . . 140

103
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We present the basic concepts of Canetti’s universal composability framework (UC)
[Can01] as an introduction to the formalisms of the framework before we define UC
preliminaries including the overall framework, structure, model of computation, and
UC security in (Section 4.1). Based on this we present our universally composable
ideal functionality for attribute-based signatures in Section 4.3. Subsequently, we
introduce a protocol that transforms ABS schemes to the UC model (Section 4.4).
Finally, we show the relation of the ideal ABS functionality and the experiment-
based security definition of Chapter 3. Hence, in Section 4.5 we show our main
result that the protocol realizes our ideal ABS functionality, i.e., the protocol is
UC secure, if and only if the used ABS scheme is correct, consistent, unforgeable
and computationally simulation private.

In this thesis we use the most recent version of UC presented in [Can20], since
this version fixes some flaws present in previous versions including [Can01]. The
years from the original publication of the UC framework [Can01] to the current
version [Can20] showed that security in UC is difficult to formalize, see discussion in
[Can20]. This is the reason why we base our ideal functionality for attribute-based
signatures in this thesis on the most recent version of UC [Can20]. Earlier versions
included some bugs and oversights. For a list of major changes see [Can20]. Note,
most of the changes are mentioned inline and not listed separately.

Compared to [BEJ18b] we add the current formal security definitions of UC,
properly consider balanced and identity-bounded environments, structured pro-
tocols and use the current probabilistic polynomial-time definition for UC from
[Can20]. Intuitively, our UC result shown in [BEJ18b] does not change, however
formally we present it here based on a sound UC definition.

4.1 Introduction

Universal composability of cryptographic schemes is a key concept of analyzing the
security of schemes in arbitrary compositions. It facilitates a modular approach
to security analyses. Many frameworks and models of universal composability
were introduced in the literature [Can01l; CCL15; CDPWO07; CKKR19; HS15;
Kiis06; Maull; PWO01]. The universal composability framework (UC) introduced
by Canetti [Can01] is the most used framework in the literature. The basic ap-
proach in UC is to define an ideal protocol that captures the ideal behavior of a
scheme without relying on concrete cryptographic schemes. The main part of the
ideal protocol is a so called ideal functionality that acts as a trusted party in the
name of all parties in the protocol. Then one gives a real protocol using concrete
cryptographic schemes (e.g., a digital signature scheme) replacing the ideal func-
tionality. Intuitively, to show security one proves that in any execution the real
protocol behaves like the ideal protocol. As already mentioned in the conceptual
description of UC in Section 2.4 the appeal of UC comes from the universal com-
posability theorem [Can01] that allows us to compose multiple schemes without
compromising the security of the individual schemes. To this end, cryptographers
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Figure 4.1: Ideal setting with ideal protocol IDEAL . The dashed lines represent that
the dummy parties just forward any messages (input) received by the environment £ to
the ideal functionality F and vice versa. The connection between the ideal functionality
F and simulator S represents backdoor communication that is only visible to F and S.
The connection between the environment £ and the simulator S represents communication
that the simulator has to be able to simulate for £, i.e., communication that happens in
the real setting.

show that individual schemes are secure in UC. Then, they can rely on the uni-
versal composability theorem to build larger systems out of them. Intuitively, the
universal composability theorem asserts that regardless of the environment of the
larger system the individual schemes remain secure. This universality with regard
to any execution environments is the strength of UC.

Let us describe Canetti’s UC [Can20] on a high level. In UC a scheme, or
more general a task, is described by an ideal functionality F as a part of an
ideal protocol IDEALx (Figure 4.1) and is then compared to a (real) protocol p
(Figure 4.2). In the ideal protocol IDEALx, the ideal functionality F models a
trusted party that handles all tasks in the name of all other parties. Hence, parties
in the ideal protocol are just dummies and forward any messages. Therefore, the
communication of parties is also handled by the ideal functionality F. The real
protocol p involves parties that handle their tasks on their own. Hence, parties run
their own code and can directly communicate with each other. Figure 4.1 shows the
ideal setting with an environment £, a simulator S, and an ideal protocol IDEAL
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consisting of dummy parties P; to P, and an ideal functionality F. Figure 4.2
shows the real setting with an environment £, an adversary 4, and a protocol p
consisting of parties P; to P,. The solid lines in Figure 4.1 for the ideal setting
represent the same communication that is present in the real setting (Figure 4.2).
The environment &, present in both the real and the ideal setting, is considered as
the execution environment of the task (scheme) captured by the protocols. As such
it controls the inputs and activations (computations) of parties. The capabilities of
the environment capture that in reality, protocols do not exist in isolation. There
are other tasks, like higher-level protocols (and schemes), that interact with each
other. The environment & also communicates with the adversary A in the real
setting (Figure 4.2) and with the simulator (ideal adversary) in the ideal setting
(Figure 4.1).

Regarding security in UC, an environment £ acts as an distinguisher that has
to decide whether it is in the ideal or real setting. The role of the simulator in the
ideal setting is to translate the behavior of the real protocol and an adversary A
to the ideal protocol, such that an environment £ cannot distinguish the ideal and
real settings. Intuitively, a protocol p is called UC secure, if for every adversary A
against the protocol p, there exists a simulator S considered as the ideal adversary
for ideal functionality F, such that no environment £ can distinguish, if it talks to
the ideal protocol and simulator S or to the protocol p and adversary A. To formally
define security we have to introduce some UC preliminaries in the following. We
then present the formal UC security definition in Section 4.2.5. The universal
composability framework by Canetti [Can20] captures ideal protocols and (real)
protocols by the same definitional framework for protocols. Indeed, ideal protocols
and protocols are instantiation of the same formalism.

Before going into the formal details of Canetti’s UC we discuss other schemes
in UC that are related to digital signatures and state the research questions that
arise from considering attribute-based signature in UC.

4.1.1 Related Work

Universal composability has been considered as the framework for many important
constructions in the literature [ACHMO05; CDHK15; CDL16; CLNS17; FHH14;
FLM11; KM16; Lin11]. Among others there are UC secure multi-commitments by
Lindell [Lin11]}, string commitments by Fischlin et al. [FLM11], group signatures by
Ateniese et al. [ACHMO5], anonymous credentials by Camenisch et al. [CDHK15],
non-interactive public-key encryption [CLNS17], and non-interactive key exchange
by Freire et al. [FHH14]. In this chapter we present the first universal composable
ABS. The ABS schemes and construction in the literature as presented in Sec-
tion 3.1.1 are all defined using an experiment-based model. These ABS schemes
(constructions) and their security definitions look at ABS as an isolated primitive,
where a composition with other schemes demand additional specialized security
proofs. However, in real applications, ABS is combined and composed with other
cryptographic primitives to achieve more comprehensive security goals. For exam-
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Figure 4.2: Real setting with protocol p. The connections between the environment £
and parties Py to P, represent input from & to the parties and output from the parties to
E. All parties can communicate with each other represented by the simplified connections
between them. The connections between the adversary A and the protocol p represents
that the adversary (potentially) controls the communication network and that it is able to
interact with the parties, e.g., it sends messages to them or corrupts parties. Adversary A
also exchanges messages with the environment £ represented by the connection between
them.

p

ple, application areas of ABS mentioned in the literature include attribute-based
messaging [Bob+06; MPR11], leaking secrets [MPR11], attribute-based authenti-
cation [MPRI11], access control systems [Li+10], trust-negotiation [MPR11], and
a privacy-preserving certification mechanism [Kaa+17]. For example, ABS can be
deployed as an authentication mechanism by service providers, i.e., in a challenge-
response protocol. In such a protocol the user is asked to sign a policy and a
nonce given by the service provider. Usually such authentication mechanisms are
deployed in large scale applications. Canetti [Can01] introduced the UC to describe
and prove security with such applications in mind. In the field of digital signatures
in UC the research started with the result by Canetti [Can03] that a presented
ideal digital signature functionality is equivalent to the standard experiment-based
security model (EUF-CMA, Definition 2.3.6) of digital signatures [GMRS88]. An-
other equivalence result was given by Abe and Ohkubo [AO12] for blind signatures.
They define UC secure blind signatures and an equivalent experiment-based secu-
rity notion. More complex signature related constructions were presented in UC
by Ateniese et al. [ACHMO5] with the construction of a group signature scheme
and Camenisch et al. [CDHK15] presented an anonymous credential system.

4.1.2 Research Questions

Based on the related work, research questions and answers of Chapter 3 we identify
the following questions regarding ABS in UC.
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Q1 Are ABS universal composable? In detail, how to define ABS as an ideal
functionality in UC? Including the question of how to model privacy ideally?

Q2 Are the experiment-based security definitions and the UC definition equiva-
lent?

4.1.3 Contribution

In this chapter we answer the research questions affirmatively in the following way.

Research question Q1. To answer the UC question, we model the first univer-
sally composable ideal attribute-based signature functionality in Section 4.3. Our
ideal ABS functionality is rooted in the ideal digital signatures functionality by
Canetti [Can03] that allows signature creation on a message with a identity-based
secret key. The novelty (and difficulty) comes from extending it to support mul-
tiple signing parties and signature creation on message-policy pairs under secret
keys with attributes. Then, we show that unforgeable and simulation private ABS
schemes are UC secure. This lifts existing schemes that we listed in Section 3.5 to
be simulation private to UC security. This directly leads to the answer of the next
question.

Research question Q2. Our main result of this chapter shows the equivalence
of the experiment-based and UC security of ABS under standard requirements
on the environment (Section 4.5). In detail, we first show that an ABS scheme
that is secure regarding our experiment-based definitions (simulation privacy and
unforgeability) implies UC security for the ABS scheme with minimal restrictions
on the environment. Essential for this result is the simulation aspect of the privacy
definition. We also show the reverse direction, i.e., a UC secure ABS scheme
is secure with respect to our experiment-based security definitions. The proof
techniques are based on the work of Abe and Ohkubo [AO12] for UC secure blind
signature schemes. The main result highlights the applicability of our ABS security
models even under such strong requirements such as in UC. Note, that for the
main result we consider the experiment-based definitions (Chapter 3) of simulation
privacy (Definition 3.2.5) and unforgeability (Definition 3.2.6), but not simulation-
extractability (Definitions 3.2.7, 3.2.8). The reason for this is that (1) simulation-
extractability is a strong requirement, (2) it is only known that schemes (argument
systems) with black-box extraction (i.e., without rewinding, access to the code and
randomness of the environment) are UC secure [Bagl9; BPR20; CLOS02; GOS12;
Kos+15]. In more detail, in UC one cannot assume to be able to rewind arbitrary
environments or to have access to the code and randomness of the environment as
it is required for white-box extactability. Regarding (1), non of the ABS schemes
from the literature is proven to be simulation-extractable. Our generic construction
in Section 3.3 is the first. Hence, basing our main result on simulation-extractable
ABS is in conflict with our goal to show that existing schemes are UC secure.
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We can also use the same approach as we used for simulation-privacy and show
that existing schemes fulfill simulation-extractable. However, close inspection of
the building blocks of the existing ABS schemes reveals that they do not fulfill
simulation-extractability. Furthermore, if we also consider (2) the approach is even
more limiting, since then we have to limit the main result to ABS schemes that
are black-box extractable, i.e., straight-line extractable [Fis05]. Consequently, we
use the less limiting experiment-based security definitions (simulation privacy and
unforgeability) such that our main result is applicable to as many ABS schemes
from the literature as possible.

4.2 Preliminaries of UC

The goal of the following detailed introduction is to present all necessary pre-
liminaries to define security in UC. To do this formally, we introduce important
preliminaries for protocols and their execution in UC. As mentioned above, the
UC framework has a challenging goal: to enable universal composition of proto-
cols while guaranteeing the security of the individual protocols. Therefore, the
UC framework consists of many definitions that build on each other. We do not
include all the definitions and details given by Canetti [Can20], since this is out of
scope. We rather give intuitive descriptions and repeat formal definitions, if they
are essential for the understanding and definition of security in UC. For the full
formal treatment of UC we refer to [Can20]. In the following we describe the model
of computation, how protocols are executed and emulation of protocols to finally
define security. Let us start with the model of computation in the UC framework
to understand what happens in the background, if we write that a party does
something in a protocol or a party gets activated in an execution.

4.2.1 Model of Computation

A protocol is modeled as an interactive Turing machine (ITM) that extends the
notion of Turing machines by interaction with other interactive Turing machines
via dedicated communication tapes and a read only identity tape, see [Can20,
Definition 4] for details. The identity tape of an ITM p contains the program
description of p and an (unique) identity string id. Formally the two strings
form the extended identity of y. An interactive Turing machine instance (ITI) is
denoted as M = (u, id), where p in this context refers to the program description.
An activation (computation) of an ITI M = (u, id) is a computation of program
w1 [Can20]. A party in UC is an ITI. Model details such as the extended identity
and communication tapes are used implicitly in this work. For example we refer to
parties via a unique name, by using that parties know their program (and identity)
and are able to communicate with each other. Concretely, if we write that one
party sends a message to another party then this means that an ITI writes the
message on a communication tape of another ITI.
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We skip defining the detailed semantics of executing I'TMs in the UC by Canetti,
since it is out of scope. We refer for the full formal treatment to [Can20] and only
recap important formal definitions and give intuitions for the semantics where pos-
sible. The following descriptions are based on the definitions and descriptions given
in [Can20]. Execution of ITMs is modeled via a system of ITIs (£, C) consisting
of an initial ITM & and a control function C'. The control function C' determines
programs of I'TIs and if an information flow between ITIs is allowed or not. Con-
cretely, the initial ITM is the environment and the control function, among others,
encodes the adversary and the protocol program.

An execution is thereby a sequence of activations of ITIs guided by the control
function. The questions here is, how can it be a system of I'TMs, if it just starts
with an initial ITM. The technique here is that an ITT of the initial ITM (and any
other to be precise) can invoke new ITIs. The mechanism that allows this is the
same that is used for the communication of I'TIs. Intuitively, if a message is sent
to an ITI M’ = (4, id’) that so far did not exist in the system, then a new ITI M’
with code p’ and identity id’ is created. If the ITI M’ does exist, it just receives the
message (via a write operation on a tape) and is activated next. The execution of
the system ends with the initial I'TT halting and the final output written on a tape.
Later we will use a random variable describing the final output of an execution on
some input to define security in UC.

Now that the formal model of computation is set, let us relate it to the informal
description of UC given before. A protocol in UC is defined as a ITM. If a protocol
has roles (for different parties) then the program of the protocol ITM consists of
programs for each of the roles. For example, a party that is responsible for the
setup role has its own program different from the program for a party that has the
role of a signer. To bind ITTs, invoked by the initial protocol ITM, together in one
session of a protocol, UC uses that an identity of an I'TI consists of two strings: the
session identifier (sid) and the actual party identifier. Hence, ITT with the same
session identifier form a session of a protocol. Hence, we can now concretely state,
that, if we write party P;, we actually refer to an ITI with a party identifier P,
and a session identifier sid. Collecting the above, we now can say that parties in
an execution of a UC protocol are I'TIs and activations of parties are executed in
a system of I'TMs. Still open is some form of resource bound for the system to be
useful in cryptography.

4.2.2 Bounded Computation

As described in [Can20], the definition of bounded computation in UC is a com-
bination of two notions. It combines the notion of a function in the input length
to capture how many computational steps are required, with the notion of what
can be computed given a specific bound. Intuitively, runtime is handled in UC
by a budget of runtime tokens. There is an initial budget of tokens and tokens
are included in every message exchanged. This is called the import of a message.
Therefore, receiving a message gives some extra runtime by the token included
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in the import. Hence, probabilistic polynomial-time in UC is with respect to the
tokens received and tokens sent, such that the steps taken by every ITI in the
system (protocol) is bounded by a polynomial in the difference of tokens received
and sent. More specifically, to define ppt for ITMs, UC extends the notion of a
T-bounded Turing machine that halts after at most 7'(k) steps on an input with
length k. The extension is to consider T-bounded ITMs that take at most T'(n)
steps at any point of the execution of a system of ITMs. Here, n is defined to be
7 = Nnput — NOutput, i-€-, the difference of tokens received and sent. A ITM p is
said to be ppt, if there exists a polynomial ¢ such that p is g-bounded in the above
sense. For more formal details confer [Can20, Section 3.2, Definition 6]. To bridge
this ppt definition for I'TMs to the experiment-based definition framework, UC
considers I'TMs that are parameterized with the security parameter \. Intuitively,
this means that the runtime token bucket is at least of size polynomial in the
security parameter.

We skip here further discussions of the ITM model and parameterized security.
For a detailed discussion including the mechanism for the unique identities, deletion
and halting of ITIs, and a mechanism for the session identifier, we refer to [Can20,
Section 3]. For our purpose it is sufficient to know that parameterizing the ITMs
(protocols) with a security parameter captures the usual “for all ppt algorithms’
model that cryptographers are more accustomed to in the framework of experiment-
based definitions.

9

4.2.3 Protocol Execution

We have seen the formal background mainly to define probabilistic polynomial-time
in UC. Furthermore, we have seen the ITM computational model of environment,
adversary, protocol and parties. In UC we execute a system of I'TMs (&, CE?EC) for
protocol p, environment £, and adversary .A. Note, we only consider environments
that are parameterized with the security parameter. As before, the initial ITM of
the system is the environment £ and the control function CE’)?EC determines the
program of all party I'TIs to be p. Hence, every party in the system takes part in the
same protocol. Further, control function C’]';’{lEC regulates the communication of the
adversary and the parties, e.g., it allows or disallows communication between parties.
Intuitively this means, there is a control function that regulates communication,
there is an environment that is the initiator of any activation and parties know
their program code to run in the protocol. With this in place, we present a core

concept on the road to defining security in UC.

4.2.4 UC-Emulation

An important concept, to formally define security, is emulation. To that end, we
first define UC-emulation some preliminaries. Intuitively, if one protocol p UC-
emulates another protocol ¢ it means that there is a simulator that translates
an execution of protocol p to the other protocol ¢. Anticipatory, for security we
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consider that protocol ¢ is ideal and protocol p is real. However, before talking
about security we define some preliminaries and UC-emulation first.

UC considers balanced environments and optionally identity-bounded environ-
ments. Identity-bounded environments are restricted to communicate with a limited
set of parties. A detailed description of the latter is omitted, since this restriction
is not needed in this work, i.e., formally the identity-bound is {0,1}" and we leave
it out of the formal definitions. Intuitively, this means that the environment can
use any identity in a protocol. In turn, balanced environment is a core principle,
since it circumvents unnatural situations that have no counter-part in a realistic
scenario, but formally lead to problems, see [Cam+16a; KTR20] for details. Follow-
ing [Can20] we only consider balanced environments ensuring that the adversary
has enough import (i.e., runtime tokens) at any point of the execution to read
all the inputs which are given by the environment to all other parties. This is
to circumvent unnatural situations, where the adversary is not able to process
messages sent by the parties or to send messages to other parties, just because his
computational resources (i.e., runtime tokens) are exhausted. In formal definitions
we mention that the environment is balanced, but for readability we omit it in
textual description.

Next, in preparation of the emulation definition, let us define two binary random
variables over the internal randomness of all machines involved. For ppt environ-
ment &, ppt protocols p, ¢, ppt adversaries A, S, and ¢ polynomial in A:

o Let &[p, A](A, z) be a binary random variable describing the output of environ-
ment &£ of an execution with protocol p, adversary A and security parameter
A € N on input z € {0,1}Y™ and

o let £[p, S](A, z) be a binary random variable describing the output of en-
vironment £ of an execution with protocol ¢, adversary S, and security
parameterA € N on input z € {0,1}7™.

Now, we are ready to formally define UC-emulation.

Definition 4.2.1 (UC-Emulation - [Can20, Definition 9])

Let p and ¢ be ppt protocols. We say that p UC-emulates ¢, if for any ppt adversary
A there exists a ppt simulator S such that for any balanced ppt environment £
there exists a negligible function negl such that for all inputs 2z € {0, 1}(1()\) it holds

[Pr[€[¢, SI(A, 2) = 1] = Pr[€]p, AJ(A, 2) = 1]| < negl(}).

o

In Definition 4.2.1 the ppt environment £ acts as an interactive distinguisher that
outputs either 0 or 1. Also, there are two adversarial machines, the environment
and the adversary A. The simulator S has a special role that we describe later.
Considering the environment £ and adversary A separately renders the intuition
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and formal proofs more difficult, since the simulator depends on the adversary
A. With the definition above we have to present for every adversary A a cus-
tomized simulator S. Fortunately, Canetti shows in [Can20] two additional and
equivalent definitions for UC-emulation: one with a dummy adversary and another
with a black-box simulator. Here, the dummy adversary is a simplified adversary
that just passes on any messages that the environment exchanges with any party.
Canetti [Can01] shows that the dummy adversary is the strongest adversary in
UC, since £ takes over the responsibilities of A and has therefore control over the
communication with the protocol. For more details see [Can20, Section 4.3.1].

Let us next describe the special role of the simulator. The simulator S is also
called the ideal adversary in the literature. The special role of the simulator S is to
translate everything that can happen in the real protocol with adversary A to the
ideal protocol. To this end, there is a special backdoor communication mechanism
that allows the simulator and ideal functionality F to directly communicate with
each other. The backdoor messages are used in ideal functionalities to ask the
simulator for help and to model information that leaks to the adversary in a real
protocol. In Section 4.2.7 describe how these backdoor messages are handled by
so called responsive environments.

In this work, we formally use the UC-emulation with black-box simulator. We
have to note that a black-box simulator S# in UC just has the adversary A as a
subroutine without access to the program, internal state or random tape of adver-
sary A. Therefore, the protocol execution is as defined above. As a consequence,
black-box simulation in UC is without rewinding access to the adversary A. The
reason for this is that the adversary A still exchanges messages with the environ-
ment and rewinding then also means rewinding the environment. Otherwise, the
environment can easily recognize a rewind of adversary A and detect an execu-
tion with simulator S#. In conclusion, rewinding the environment is an unrealistic
model. Let us next define UC-emulation with a black-box simulator.

Definition 4.2.2 (UC-Emulation with Black-Box Simulator - [Can20, Def. 12])
Let p and ¢ be ppt protocols. We say that p UC-emulates ¢, if there exists a ppt
(black-box) simulator S () such that for any ppt adversary A and any balanced

ppt environment £ there exists a negligible function negl such that for all inputs
z € {0, 1}’1(’\) it holds:

\Pr[g[gz), S\, 2) = 1] = Pr[€[p, A\, 2) = 1” < negl()) .
&

The following equivalence between the UC-emulation definitions is formally
proven in [Can20).

Theorem 4.2.1 (UC-Emulation Equivalence - [Can20, Claim 13]). Let p and
¢ be ppt protocols, then p UC-emulates ¢ as in Definition 4.2.1 if and only if p
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UC-emulates ¢ with black-box simulation as in Definition 4.2.2.

Using UC-emulation (black-box simulator) we define UC security in the follow-
ing.

4.2.5 UC Security

Roughly, security in UC is defined via a real protocol that UC-emulates an ideal
protocol, this process is called realization of an ideal functionality. Let us first
describe preliminaries regarding the structure of protocols. A common theme in
UC is that there are many model details that are important solely for the secu-
rity analysis and some of them have no real-world counterpart. To give protocol
designers a level of abstraction of these model details the UC framework defines
structured protocols. A structured protocol is a shell around a protocol, called the
body. The shell code contains most of the code necessary for the model details
and the body protocol itself can be defined by protocol designers more directly.
The shell is therefore responsible for backdoor messages exchanged between the
simulator and the ideal functionality, communication in general and corruption
of parties, among others. Furthermore, UC as presented in [Can20] considers sub-
routine respecting protocols to circumvent runtime and communication problems
that were present in previous versions. Basically, a subroutine respecting protocol
restricts the communication to protocol parties and their subroutines in one ses-
sion. Thus eliminating unwanted inputs from other protocols (and sessions) that
might be executed in the environment. This makes it easier to define protocols,
since otherwise protocol designers have to specify how to react on any incoming
messages. This can be compared to experiment-based security definitions. Where
in one run of the experiment we usually only consider the security of the current
session defined by the setup of the experiment. The formal details of both mecha-
nisms go to far and for our purpose we assume structured protocols and use the
sandbox shell given in [Can20] to handle the model details and to get subroutine
respecting protocols. This means we only define the body protocol and implicitly
apply the sandbox shell.

We formally define security via realizing ideal functionalities in the following. Let
us repeat what an ideal protocol is. An ideal protocol IDEAL x consists of multiple
dummy parties and an ideal functionality 7. A dummy party just forwards all
input to the ideal functionality, all outgoing messages to the specified recipient, and
outputs to the environment. Dummy parties exists to syntactically match the real
protocol, where parties execute their own program code. The ideal functionality is a
machine modeled as a trusted party that describes the ideal process including state
information, and input-output behavior. The simulator § and the ideal functionality
F communicate via a special backdoor tape (modeled in the shell). The formal
ITM details of the ideal functionality are omitted here and we refer to [Can20,
Section 5.3] for the details.
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Definition 4.2.3 (Realizing Ideal Functionalities - [Can20, Definition 20])

Let F be an ideal functionality, p be a protocol and let IDEALx be the ideal
protocol for F. We say that p UC-realizes F, if p is subroutine respecting, and p
UC-emulates IDEAL £. o

Intuitively, the above definition captures correctness and security. Correctness as
defined by the ideal functionality transfers to the realizing protocol (and vice versa),
because the output of the environment has to be indistinguishable in both, ideal
and real, protocol executions. Regarding security, the indistinguishability of the
(ideal and real) protocol executions gives us also that any attack against the (real)
protocol p by an adversary is translated to an attack against the ideal protocol
IDEAL# by a simulator. Similarly, if any information is leaked to an adversary in
p it is translated to information provided by the simulator in the ideal protocol
IDEALf. The above definition captures security of (single) protocols referred to
as realization of an ideal functionality. This is not the universal composability that
UC promises, however it is an essential part.

4.2.6 Universal Composition

The core of the universal composability framework is that the universal compos-
ability theorem presented in [Can20] states that, if a ppt protocol p UC-emulates
ppt protocol ¢, then for any ppt protocol , that uses ¢ as a subroutine, the com-
posed protocol (?~* UC-emulates protocol ¢. Here ¢ — p means that any call to
subprotocol ¢ in protocol ( is replaced by a call to p. The called hybrid-model
in the UC framework make use of this composed protocol principle. In detail, a
security analysis in the hybrid-model can be simplified by working with protocol
¢ that calls an ideal protocol internally and focus the analysis on what ¢ adds
to the composed protocol. The universal composability theorem takes care of the
rest, i.e., securely replacing the ideal protocol with a real protocol. This is a small
example and can be extended to multiple subprotocols.

We only state the formal universal composability theorem by Canetti [Can20]
for completeness in the following. However, we skip detailed description, further
formal preliminary definitions (e.g., compliant protocols, subroutine exposing), and
the proof of the universal composability theorem since they are out of scope and
better presented in context in [Can20, Section 6].

Theorem 4.2.2 (Universal Composition - [Can20, Theorem 22]). Let p, ¢, and ¢
be ppt protocols and let £ be a ppt predicate on identities, such that ¢ is (p, ®,&)-
compliant, protocol ¢ and p are subroutine respecting and subroutine exposing, and
p &-UC-emulates ¢. Then protocol (97 UC-emulates protocol (.

Roughly, (p, ¢, )-compliant means that there is a shell code that enforces that p
and ¢ behave the same, i.e., write operations of instances of p and ¢ are either for p
or ¢ and never mixed. Also instances do not leak which protocol they are executing
and all extended identities of all communicating instances of p and ¢ satisfy the
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predicate &. Hence, & can be used to limit the set of instances (and identities) that
are allowed to communicate. For the formal definition of compliant protocols see
[Can20, Section 6.1]. A protocol is subroutine exposing, if the protocol on a query
of an identity id by the (real or ideal) adversary answers if id is part of the session
of the protocol. This requirement is again provided by UC with a shell code, for
details we refer to [Can20, Definition 21].

4.2.7 UC Framework Utilities

In the following, we present some conventions of how to write ideal functionalities
and utilities to deal with standard tasks, such as corruption and authenticated
channels for the communication of the parties. To this end, Canetti [Can20, Section
7] presents mechanisms and modeling details that we can use out of the box. Let
us introduce some notation before we explain the mechanisms that we use in
this work: For environment &, ideal functionality F, simulator S”, protocol p, and
adversary A, we call an execution E[F, S")] the ideal setting (Figure 4.1) and with
E[p, A] the real setting (Figure 4.2). Here, we omit the security parameter A and
input z for £ to simplify notation.

Corruption, erasure and secure channels. In UC parties can be corrupted
by the adversary A, which means that the adversary A takes control of the party.
Hence, in the real setting a corrupted party cannot be assumed to act honestly
(i.e., follow the protocol). In the ideal setting parties are just dummy parties.
Hence, to show that a protocol UC-realizes an ideal functionality the simulator
needs to handle corruptions by the adversary A. This means the simulator has
to provide A with the same information that it gets by a corruption in the real
setting. [Can20] presents variants of corruption model and which information the
adversary gets after a corruption. Our corruption model is based on adaptive
corruptions. Adaptive corruptions allow the adversary A to trigger a corruption of
a party at any time. Adversary A is in full control of a corrupted party. Further, we
consider the erasure model [Can20], denoted as erasure, where honest parties erase
ephemeral randomness immediately after usage. This means that on corruption of
a party the adversary A only gets the result of previous computations, but not the
randomness used. This models the real world, where usually used randomness is
not stored. For the setting of ABS, we restrict the corruption, such that the party
responsible for the setup of the ABS scheme can only be corrupted after an honest
setup was completed. In a corruption of the setup party we only output the public
parameters and master secret key, and not the simulation trapdoor. This is not a
strong restriction, in the sense that it matches the ABS security definitions. There,
we have that the adversary, in case of privacy (Definition 3.2.4, Definition 3.2.5),
indeed gets the master secret key, but obviously not the simulation trapdoor which
is only available in one of the experiment settings. Intuitively, it would be trivial to
distinguish the settings by only getting the simulation trapdoor in the simulation
setting. This restriction is denoted as adaptive and is explained in more detail in
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Section 4.5.

For communication between the parties we assume authenticated secure chan-
nels, denoted as secure channels, such that the adversary is not able read secret
keys and has to deliver them unmodified. For details of how to realize this as-
sumption we refer to Canetti [Can20]. Overall, our results are shown in an adap-
tive, erasure, and secure channels model for an ideal functionality F, denoted as
Fladaptive, erasure, secure channels].

Delayed output. Delayed output is a feature of the UC framework that allows
the simulation of real-world transmission delay, e.g., network traffic, and allows
the involvement of the adversary and simulator, e.g., adversarial withholding of
messages. Hence, any problems with messages sent over the network is handled by
this UC framework feature and we do not have to deal with all the details in the
ideal functionality.

In detail, the ideal functionality instead of sending output x directly to the
recipient party P, it informs the simulator (think of an ideal adversary) that it
wants to output x to P over the backdoor tape, including a unique identifier. On
an acknowledgement of the simulator the ideal functionality delivers the output
x to P. Importantly, there are two modes: public and private. If it is a public
delayed output, the output = is transmitted in the clear to the simulator. If it
is a private delayed output, the output x is not included in the transmission to
the simulator. This corresponds to transmitting secrets to a party (over a secure
channel). Hence, the simulator, in its simulation, does not include the secret output
x, as it is also not available in the real protocol, because of secure channels. The
simulator acknowledges a delayed output by responding with the corresponding
unique identifier via the backdoor tape.

We use this feature to inform the simulator about the intended output, where
one of the involved parties is corrupted. In this situation, the simulator is then
able to execute further steps that simulate the steps of a real-world protocol with
a corrupted party. In general this allows it to simulate network delay, involvement
of the adversary via corrupted parties, and computations that are necessary for
the simulation.

Simulation and message exchange. In UC the ideal functionality and sim-
ulator often exchange some messages via a backdoor tape for modeling reasons.
Typically protocol designers assume that the simulator answers immediately on
such messages, where according to the UC framework the simulator can do anything
it likes (activating other parties and even protocols) after receiving a message from
the ideal functionality. This introduces state changes of parties and unexpected be-
havior of the ideal functionality that were not anticipated by the protocol designer.
Therefore, the handling of the exchanged messages, and responses of the simulator
makes the description of the ideal functionality unnecessarily more complex. Then
again, the side effects of such message exchanges cannot be ignored. As Camenisch
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et al. highlight in [Cam+16a] such messages can lead to runtime problems. To
circumvent the problems the authors [Cam+16a] define responsive environments,
where the adversary, simulator, and environment are bound to answer to so called
restricting messages immediately. We model our ideal functionality with responsive
environments. Therefore, we employ the generic restriction defined by Camenisch
et al. [Cam+16a], where every message prefixed with “Respond” is restricting.

Writing ideal functionalities: process and challenges. Besides the already
mentioned details of UC, there are some technical challenges that come with the
definition of ideal functionalities. Already simple ideal functionalities, like the ideal
signatures [Can03], have some details moved to the simulator that seem like they
belong in the ideal functionality at first. This peculiarity of the UC framework
comes even more pronounced in complex ideal functionalities. This also applies to
our ideal functionality for attribute-based signatures.

The process of defining ideal functionalities can be described as a three step
process. (1) The definition starts with just the core ideal process of a scheme. For
example, we want to sign message-policies pairs with attributes. Hence, we define
three activations: Setup, Key Generation, Signature, and Verify corresponding to
the syntax of ABS (Definition 3.2.1). Then, we have to enable parties to activate
the ideal functionality for a key generation on attributes and we have to store
the result. To enable parties to sign a message-policy pair with attributes, via the
Signature activation, we just have to look up, if there was a key generation result
with these attributes and that they satisfy the policy. As a result of this, we mark the
message-policy pair as validly signed. (2) The next step of the ideal functionality
definition process is to deal with corrupted parties. This usually requires the
involvement of the simulator, since if we departure from the ideal process the
concrete steps typically depend on the real protocol. Hence, the ideal functionality
asks the simulator to deal with the details of activations from corrupted parties
and the ideal functionality is extended with steps that handle the results given by
the simulator. Extending just one activation is often not enough. A key generation
with a corrupted party affects the Signature activation and ultimately the Verify
activation. (3) The last step of the definition process, is the consideration of the
real protocol, since eventually we want to show a real protocol that UC-realizes
the ideal functionality. This last step is, challenging since we have to consider all
three components: ideal functionality, simulator, and real protocol, at once. For
example a change in the input-output behavior of the real protocol either has to
be simulatable by the simulator or leads to changes in the ideal functionality. In
conclusion, this explains why ideal functionalities, simulators and partially the real
protocols are so convoluted in UC and describes the process of defining an ideal
functionality.
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4.3 Ideal Attribute-Based Signatures Functionality

In this section, we formally define the ideal functionality for attribute-based signa-
ture, describe the security properties that it provides and compare them intuitively
to the experiment-based security of ABS (Section 3.2). Subsequently, we present
the definition of a real protocol for ABS that wraps an ABS scheme and transforms
it to the UC protocol model.

The formal definition of the ideal functionality Fags for ABS with access to a
simulator S is presented in Figure 4.3. The ideal functionality for ABS models a
scheme with an unique setup party Psetyp and arbitrary parties P; that can query
for secret keys, sign message-policy pairs and verify signatures via the corresponding
activations. Note, all activations are instantiated by the environment £. Hence,
after a Setup activation through Pseyp was completed, any party P; can ask for
a secret key on attributes A using the Key Generation activation. A party P; can
generate a signature on a message-policy pair by a Signature activation and it can
verify a signature through a Verify activation.

Let us first explain the notation used in the ideal functionality Fags, before
explaining the definition of Fags in more detail. We use “record (keyword, entryq,
..., entry;)” to denote that the protocol (ideal functionality) stores the element
(entryq, ..., entry;) via a list with the name keyword in state. The element (entry,
..., entry;) is then a list element and called a record. We assume that new records
are appended to the list (the latest record is the last in the list) and that records
can be looked up and added in polynomial-time. To look up a record we use the
notation (keyword, entryy, ..., entry;, -, entry; o, ..., entry; ) where - is a wildcard
that can be mapped to any entry. During recording we denote by L a placeholder
for an entry that we might insert via an update later on.

4.3.1 Description of Ideal ABS Functionality Fags

Before we describe each activation of Fags (Figure 4.3) in detail, we start with the
explanation of general UC mechanisms for the definition of ideal functionalities
that we use. After the detailed description of the activations, we focus on the
security guarantees of Fags.

In the UC framework each ideal functionality instance has a unique session iden-
tifier sid to identify multiple instances of the same functionality and to know which
instance is responsible for which message. Therefore messages include the sid. The
session identifier sid can be determined in several ways (cf. [Can20], Section 3.1.3).
For simplicity we let the first Setup activation determine the sid, which consists
of the party’s identifier and a unique session identifier sid’. Therefore, the sid also
determines the unique party responsible for the setup and key generation and every
party in the same session (same sid) knows the setup party. An instance of the
functionality stores the sid in the first Setup activation and ignores all activations
with a different sid’. In general, the inputs for the Setup, Key Generation, Signature
and Verify activations are determined by the environment £. Next, let us explain
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Setup: On input (Setup, sid) from a party Psetup

Key Generation: On input (KeyGenRequest, sid, kid, A) from party P;

Key Generation: On input (KeyGen, sid, kid) from party Psetyp

1. If sid = (Psetup, sid') for some sid’ continue, else ignore.

2. If there is no record (SetupParams, sid’, Psetup, pp, msk, tdsiy), send
(Respond, (Setup, sid)) to S. Upon receiving (Setup, sid,S.Setup,
S.KeyGen, §.Sign, S.Verify) from S do:

a) Generate (pp, msk, tdgy,) < S.Setup

b) Record  (SetupParams, sid’, Psetup, pp, msk, tdspm) — and
Algorithms, S.Setup, S.KeyGen, S.Sign, S.Verify).

3. Else, use recorded (SetupParams, sid’, Psetup, PP, msk, tdim ).

4. In both cases output (PublicParams, sid, pp) to Psetup.

1. If sid = (Psetup, sid’) continue, else ignore.
2. Record the request as (KeyGenRequest, sid, kid, A, P;,b' = 0) with
b := 0 to mark it unprocessed.

3. Send public delayed output (KeyGenRequest, sid, kid, pp, A, P;) to
PSetup

1. If sid = (Psetup, sid’) continue, else ignore.

2. If there is an unprocessed record (KeyGenRequest, sid, kid, A, P;,/ =
0) from party P;, mark it processed by setting &’ = 1 and continue.
Else ignore.

3. If Psetyp is corrupt then record (KeyGen, sid, kid, L, 1, A, 1) and send
as a public delayed output (KeyGen, sid, kid, A) to P;.
4. Else, if (sid/,Psetup, pp, msk, tdsim) is recorded proceed, else ignore.

a) Generate secret key skp < S.KeyGen(pp, msk, tdsim,A) and
record (KeyGen, sid, kid, L, pp, A, sks). Send (Respond, (KeyGen,
sid, kid, A, Py, skp)) to S.

b) Upon receiving (KeyGen, sid, kid, A, P;, ska,1) from S send
(KeyGen, sid, kid, A) as a public delayed output to P;.
5. In both cases, when (KeyGen, sid, kid, A) is delivered to P; update the
record by adding the party P; to (KeyGen, sid, kid, P;, -, A, -).
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Signature: On input (Signature, sid, kid, pp’, A, m,P) from some party P;
1. If sid = (Psetup, sid’), continue, else ignore.
2. Look up latest record (KeyGen, sid, kid, P;, pp’, A, -),

a) if none exists ignore,

b) else if P(A) = 0, record (Signature, sid, kid,pp’, A, m,P,
o= 1,0) and output (Signature, sid, kid, A,m,P,0c = 1) to
P;

¢) else it holds that P(A) = 1 and proceed:
3. If pp’ = pp for recorded pp,
a) generate o < S.Sign(pp, msk, tdspm, m,P).

b) if a record (Signature, sid, kid, pp’, A, m,P,0,0) exists, output
error and halt.

c) else, record valid signature (Signature, sid, kid, pp’, A, m,P, o,
fm )
4. If pp’ # pp , send (Respond, (Signature, sid, kid, pp’, A,m,P)) to S
and receive the answer (Signature, sid, kid, pp’, A,m,P, o) from S.

5. Output (Signature, sid, kid, A,m,P, o) to P;.

Verify: On input (Verify, sid, pp’, m,P, o) from some party P,
1. Compute b + S.Verify(pp',m,P, o)
2. If pp’ = pp for recorded pp then

a) If (Signature, sid, kid, pp, A, m,P, o, f) recorded for any f, then
set output bit fout == f

b) Else, if for any o’ record (Signature, sid, kid, pp, A, m,P, o', 1)
exists or Psep is corrupt or there exists at least one corrupted
P; with a record (KeyGen, sid, kid, P;, pp,A’,-) where P(A’) =
1, then set output bit fous = b and record (Signature, sid,
kid == 1, pp, A = L,m,P, 0, fout)

c) Else, set output bit fout = 0 and record (Signature, sid,
kid .= L, pp, A :==,m,P,0,0).

3. If pp’ # pp for recorded pp then

a) If record (Signature, sid, kid,pp’, A, m,P, o, f) exists, then set
output bit fout = f

b) Else set output bit fous = b and record (Signature, sid,
kld = J—a pp,a A = J—a m, P? g, fout>

4. Output (Verified, sid, m,P, o, four) to P

Figure 4.3: Ideal attribute-based signatures functionality Fags (continued).
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the records that ideal functionality Fags stores.

SetupParams: records the setup parameters generated during the first setup acti-
vation Setup as a record

(SetupParanms, sid’, Psetyp, pp, msk, td im)

with session identifier sid’, setup party identity Psetyp, public parameters pp,
master secret key msk, and simulation trapdoor td;,. This enables the ideal
functionality Fags to look up recorded setup parameters, e.g., to determine
if an activation is for the recorded public parameters (corresponds to one
instance).

Algorithms: records the algorithms S.Setup, S.KeyGen, S.Sign, and S.Verify out-
put by the simulator during the first setup activation Setup as a record

(Algorithms, S.Setup, S.KeyGen, S.Sign, S.Verify).

This enables the ideal functionality Fags to use the algorithms in its activa-
tions.

KeyGenRequest: records a key generation of a party P; as a record
(KeyGenRequest, sid, kid, A, P;, V')

with session identifier sid, key identifier kid, attributes A, party identity P;,
and bit ¥ € {0,1} (0 := unprocessed, 1 := processed). This enables the
ideal functionality Fags to store key generation requests that are yet to
be answered by a key generation by setting & := 0 and by setting &’ := 1
the ideal functionality Fags marks the request as processed and therefore
answered.

KeyGen: records a generated key for party P; as a record
(KeyGen, sid, kid, P;, pp, A, sk )

with session identifier sid, key identifier kid, party identity P;, public pa-
rameters pp, attributes A, and secret key ska for attributes A. This enables
the ideal functionality Fags to store key generations and to look up key
generations of a party in a signature activation.

Signature: records signature and its validity as a record
(Signature, sid, kid, pp’, A, m, P, o, f)
with session identifier sid, key identifier kid, public parameters pp’, attribute

A, message m, policy P, signature o (can be 1), and validity bit f € {0,1}
(0 := invalid, 1 := valid). This enables the ideal functionality Fags to store
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(valid and invalid) signatures and to answer verify activations, e.g., Faps is
able to answer verify activations consistently.

Next, we explain the activations of Fags (Figure 4.3) to give an intuitive un-
derstanding of the ideal functionality. The explanation follows and references the
steps of Figure 4.3. Hence, we recommend to read the explanations and Figure 4.3
alternately.

Setup. In the Setup activation the simulator S is responsible for providing ppt
algorithms S.Setup, S.KeyGen, S§.Sign, and S.Verify. These have to be stateless
ppt algorithms such that the outputs of Fags generated with these algorithms are
independent of the internal state of the simulator and previous activations. Further,
this modeling allows us to give a technically sound equivalence proof in Section 4.5.
The algorithm S.Setup is used to generate and fix the public parameters pp, the
master secret key msk, and the simulation trapdoor tdg;, of the functionality
instance. The algorithm S.KeyGen and S.Sign always take as input the recorded
(pp, msk, tdsi,). We give an explicit input to highlight that we use the recorded
elements.

Key Generation. The Key Generation activation models an exchange between
a party F;, that queries a key via KeyGenRequest on a given attribute vector A,
and the setup party Psetyp responsible for the actual key generation (KeyGen). In
the KeyGenRequest activation from a party P; the ideal functionality records the
request (KeyGenRequest, sid, kid, A, P;,b') and marks it as unprocessed by setting
b == 0. This bit is used in the corresponding key generation activation KeyGen
of the setup party Psetyp to determine, if the key generation request was already
answered or not. Note, the key identifier kid models that the requesting party
(more specifically the environment) can use a unique key identifier kid for each
request, e.g., to distinguish multiple secret keys for the same attributes. We do not
enforce uniqueness of the key identifiers in the ideal functionality. Hence, in the
a signature activation we use the latest recorded secret key. Before describing the
signature activation in more detail let us explain the key generation of Psetyp in
more detail.

The KeyGen activation for Pseryp models that it is triggered after receiving the
output (KeyGenRequest, sid, kid, pp, A, P;) from the KeyGenRequest activation of
P;; telling the setup party that P; asks for a key on A. This modeling also en-
compasses that Pseyyp (and environment &) in a higher level protocol can decide
whether to answer a key generation request. Pseryp proceeds only if there is an
unprocessed key generation request with the key identifier kid for the party P;
(Step 2 of KeyGen activation). It then changes the bit b for the request to 1 to
mark it as processed. In Step 3, if Psetyp is corrupt, the ideal functionality informs
the party P; and the simulator via a public delayed output and a KeyGenRequest
is recorded by Faps (L for unknown). Skipping slightly ahead, the record with
corrupted Pseryp enables Fags in the Signature activation to ask the simulator S
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to sign a message under a key that corresponds to the record. Fags delegates this
to S, since if Psetyp is corrupt Fags can not record the generated secret keys. A
corrupt Psetyp is controlled by environment £ (and adversary A) and therefore the
secret keys are generated outside of the ideal functionality.

For honest Pseryp in Step 4, the ideal functionality Fags first checks, if a setup
was finished and then it uses the algorithm §.KeyGen provided by S to generate the
secret key for A. Next, § is informed about the key generation. This is necessary
since S has to simulate the transmission of the secret key to the party P;. We
explain the details in Section 4.5 and the definition of a simulator. In Step 5, if
the final output to P; is delivered, Fags is assured that the simulator transmitted
the secret key and Faps can record a successful key generation for P;.

Signature. The Signature activation is responsible for the generation of signa-
tures. After a check if the inputs are valid, the Signature activation checks if the
activated party has a secret key for the given attribute by looking for a matching
KeyGen record. If none exists it ignores the activation. If there is a record but the
attribute vector does not satisfy the policy (P(A) = 0) it outputs L and records
the signature as invalid (f = 0). In the other case where P(A) = 1 holds and if the
activation is under registered pp, it utilizes S.Sign to output a signature without
using the secret key of the party and without the activated party’s identity as
an input to S.Sign. Otherwise it asks S for a signature under unregistered public
parameters. Overall and if all checks pass, the signatures generated in Fags are
recorded as valid (f = 1).

Verify. In this activation we handle any public parameters. Hence, we cover the
cases where pp’ is invalid or belongs to another instance, even if the activated
party is honest. Verify Step 2a handles the case where an exact record exists (every
element matches). Then Verify uses the recorded bit f as the output. Verify Step
2b handles two cases. First, a presumably manipulated signature (e.g., randomized)
that was not recorded in a Signature activation. Second, the existence of corrupted
parties. In any case, to decide whether a signature is valid we use the algorithm
S .Verity, provided by &, and the results is recorded by Fags. By this we allow
strongly and weakly unforgeable signatures depending on S.Verify which, as we
will see in Section 4.5, can depend on an actual verify algorithm of a scheme.
The simplest verify case is, if there is no corrupted party. Then Fags verifies
all signatures where the corresponding message and policy was not signed in a
Signature activation as invalid (Verify 2c, fout == 0).

Note, parties can be corrupted in our adaptive model, with the restriction that
the setup party Psetyp can only be corrupted after a finished Setup activation. We
explain this in more detail in Section 4.5.
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4.3.2 Security of Ideal ABS Functionality Fags

In the following we explain the security guarantees modeled by the ideal ABS
functionality Fags. This includes the description of the security guarantees and
how the keys are managed.

Scope of Security. Let us describe the scope of the security of the ideal function-
ality Fags by describing how the public parameters and simulator are used. The
ideal ABS functionality Fags is based on the ideal digital signatures functionality
by Canetti [Can03]. In detail, the support of verification under any public key. This
allows the functionality to be more modular and to be used in diverse applications.
Motivated by this, Fags supports Signature and Verify activations with unregis-
tered public parameters pp’. Importantly and similar to the ideal digital signatures
by Canetti [Can03|, Faps itself only guarantees security for honest parties under
the registered (honestly generated) public parameters. Therefore, we have to check
in Key Generation, Signature and Verify, if the given public parameters pp’ are
equal to the registered public parameters pp and act accordingly.

For unregistered public parameters, corrupted parties, and inputs that are not
recorded not all guarantees are lost, rather we rely on the simulator to match the
guarantees that the real setting has in such cases. This is important, since the
environment (and adversary) can give arbitrary inputs in any party’s activation,
even if the party is honest (not corrupt). Hence, with unregistered public param-
eters, in the Signature activation (Step 4) we ask the simulator S and we rely
on the algorithm supplied by S in the Verify activation (Step 1). Therefore, the
guarantees are determined by S. For example, if the supplied algorithms allow ran-
domized signatures such that S.Verify declares them as valid Fags will also do this
by using S.Verify. This also holds for signatures originally signed by Fags under
registered public parameters, since randomization of signatures happens outside of
Fags- In such a case, the Verify activation ends up in Step 2b, because of the first
part of the if-statement. Namely, it exists a record that marks the message-policy
pair as signed and valid, but with a different signature. This corresponds to the
unforgeability definition of ABS (Definition 3.2.6) that also allows rerandomization
of signatures.

Important for the security guarantees is also, that we allow the corruption of
any party with the restriction that Pseryp can only be corrupted after the Setup
activation was executed once. The privacy guarantee of Fags is closely related
to the simulation privacy (Definition 3.2.5). The corresponding experiment in
Definition 3.2.5, models that the setup of (pp, msk) is honestly executed by the
experiment. After that the distinguisher gets as input (pp, msk). This is compatible
to our model of corruption of the setup party denoted as adaptive, see Section 4.2.7.

Correctness and Consistency. Intuitively, the ideal functionality Fags guar-
antees correctness and consistency in the form that honestly generated signatures
are directly recorded as valid by setting the bit f to 1 (Signature, Step 3c). To
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verify signatures, these records are consistently used, i.e., if there is a Signature
record with f € {0,1} the ideal functionality Fags uses this bit f as its output.
In detail, if all checks hold in a Signature activation, it corresponds to an honest
party (a honest signer) that signs a message-policy pair under registered public pa-
rameters. Under this conditions, a Signature activation like (Signature, sid, kid,
pp, A, m,P) in Fags always results in a record (Signature, sid, kid, pp, A, m,P,
o, f :=1) (Signature, Step 3c), where f := 1 marks the signature as valid, since it
was honestly generated in Fags under registered public parameters pp. This leads
to a verification output with fo,ut = 1 in a corresponding Verify activation (Step
2a). Thus, correctness is guaranteed.

Consistency is captured by the Steps 2a and 3a of the Verify activation. There
we just output what is recorded. To verify (m, P, o), where Fags already generated
a different signature o’ for (m,P), we rely on Step 2b and use the bit output by
S.Verify. An example for this are randomized signatures as we mentioned before.
Step 2b also handles the case of corrupted parties. Corrupted parties generate
signatures without the involvement of Fags and may share their secret keys. In
these cases, we have to use the output b of S.Verify. Hence, the guarantees are
provided by the simulator S and the algorithms that S outputs. For correctness
and consistency the simulator S has to ensure that §.Verify outputs the same bit
as the real setting outputs, otherwise distinguishing the ideal setting from the real
setting is easy.

Non-Colluding. That parties do not collude is handled in the Signature acti-
vation Step 2. There, we check if the activated party has a single secret key for
attributes that satisfy the given policy. Therefore, attributes from different secret
keys and other parties cannot be pooled.

Privacy. Privacy for honest users under registered public parameters pp is guar-
anteed by the algorithms returned by S. That means the algorithms do not take any
privacy relevant information as input. Concretely, The algorithm S.Sign generates
signatures with the public parameters, the master secret key, simulation trapdoor,
message, and a policy as input. Hence, for an honest signing party and under the
registered pp we guarantee that the signatures output by Fags are independent
of the party’s identity, secret key, and attribute vector encoded in the secret key.
Intuitively, this guarantees that an adversary cannot link signatures to a party, an
attribute vector, or to a secret key. Since Faps only guarantees privacy under the
registered public parameters pp, we can ask S for a signature under unregistered
public parameters pp’ or if Pseyp was already corrupted during the corresponding
key generation (Signature, Step 4).

In a Key Generation activation with honest Pser,p We guarantee that the secret
key is independent of the party’s identifier by using the S.KeyGen algorithm where
the identifier P; is not an input. Even if Pset,p is corrupted after a successful key
generation with party P;, we require that a signature can be generated without
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the knowledge of P;’s secret key by using algorithm S.Sign with the registered
(pp, msk) pair.

We show in Section 4.5 that we can instantiate the algorithms, returned by the
simulator, with the simulation algorithms of a simulation private ABS scheme.

Unforgeability. Regarding unforgeability, as explained for correctness, assuming
no corruptions, the ideal functionality Fags only declares a signature valid and
sets fous = 1 (Verify, Step 2a), if it was signed by itself in a Signature activation
(Step 3c). Unforgeability is then guaranteed in Fags by the Verify Step 2c¢, where
Fags declares all other signatures invalid by setting the bit fou to 0. In detail, if
Fags enters Verify Step 2c, we know that all possible signing parties are honest and
that the corresponding message-policy pair was not signed by Fags in a Signature
activation, otherwise we are in one of the two previous Verify activation steps. Here,
we only consider the message-policy pair and not also the signature on purpose,
since as already mentioned, we also support rerandomized signatures. This captures
the experiment-based unforgeability notion (Definition 3.2.6). There, a forger is
only successful, if it outputs a forgery under honest setup for a policy that is not
satisfied by any attribute vector A where the forger got a corresponding secret
key skp by the reveal oracle. Translated to Fags, the reveal oracle corresponds
to corruption of the party with secret key sky. A successful forger means that its
output includes a valid signature, where in Fags, as described above, we declare
it as invalid in Verify Step 2c. We use this difference in behavior in the formal
unforgeability proof of the UC realization with the real protocol (Lemma 4.5.4).

4.4 Attribute-Based Signatures Protocol

In this section we present our attribute-based signatures protocol pags and we
show that the protocol pags UC-realizes the ideal functionality Fags in the sense
of Definition 4.2.3. Concretely, the protocol pags serves as a transformation of an
attribute-based signature scheme to UC. Therefore, our result shows that existing
ABS schemes are UC secure. We give the formal definition of the protocol pags
in Figure 4.4. The protocol uses an ABS scheme ABS and the activations Setup,
Key Generation, Signature and Verify use the algorithms of ABS. Since protocol
paBs is not an ideal protocol each party runs an instance of the protocol in a
session (same session identifier sid). The Setup activation of the protocol is run by
a unique party with the identifier Pser,p. The Key Generation activation involves
a requesting party P; and the setup party Pseyp that generates the secret key for
F;. The Signature and Verify activations can be executed by any party P; without
the involvement of the setup party Psetp. Note, secret keys are never output to &£
in the protocol pags, since in a real-world application a honest party should never
reveal its secret keys.

Let us describe the definition of the ABS protocol pags (Figure 4.4) in more
detail. The protocol pags stores records SetupParams,KeyGenRequest,KeyGen
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similar to the ideal functionality Fags (see Section 4.3) with the difference that
for SetupParams it does not store a simulation trapdoor, and in KeyGen records
it does not store the party. Both values that pags does not store are not used in
the protocol. In the following we describe the activations defined in protocol pags.
Here we omit some parameters in the inputs and outputs (e.g., public parameters
and key identifiers) to simply the description.

Setup. In the first Setup activation Setup the party Psetyp generates and records
(pp, msk) + Setup(1}) where pp are the public parameters and msk is the master
secret key. If it is not the first setup activation, the party Pseryp uses the existing
SetupParams record. In both cases party Psetup then outputs the public parameters
pp to the environment £.

Key Generation. A party P; in a KeyGenRequest activation gets from the
environment the session identifier sid, key identifier kid and attributes A as input.
Party P; then sends a KeyGenRequest message to the setup party Pseryp. On an
answer by the party Psetyp in the form of a message (KeyGen, sid, kid, pp, A, sky), it
checks if the secret key sky is valid and if this is the case it records the secret key ska
to be able to sign message-policy pairs with sks. The role of the party Psetyp in the
key generation is to answer the KeyGen messages by a party F;. Therefore, it records
an unprocessed request and notifies the environment £ via an output that it is ready
to process the KeyGen under key identifier kid. Then, on input (KeyGen, sid, kid)
from & the party Pseryp looks up the unprocessed request for key identifier kid,
marks it processed and generates a secret key sk < KeyGen(pp, msk, A), if the
SetupParams are already recorded. Otherwise, party Pseryp Was activated by the
environment £ for a key generation before the first Setup activation. Finally, party
Pseryp outputs the generated secret key sky to the requesting party ;.

Signature. In a Signature activation a party P; receives form the environment
& a message (Signature, sid, kid, pp’, A, m,P) where the key identifier kid, public
parameters pp’, and attributes A are used to identify the recorded secret key skjy
that party P; should use to generate a signature on message-policy pair (m,P).
Party P; then generates a signature using the recorded secret key sk and outputs
the signature to the environment £.

Verify. On a Verify activation by environment &, a party F; just runs the Verify
algorithm and outputs the result to the environment £. Hence, it does not rely on
any records and uses the input that it gets from the environment £. This means
it verifies signatures also under any given public parameters.
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Setup When party Psetyp receives input (Setup, sid) from €
1. If sid = (Psetup, sid’) for some sid’ continue, else ignore.

2. If a record (SetupParams, sid’, Psetup, pp, msk) does not exist, Psetup
runs (pp, msk) < Setup(1*) and records (SetupParams, sid’, Psetup,

pp, msk).
3. Else, it uses the record (SetupParams, sid’, Psetup, pp, msk).

4. Pseryp outputs (PublicParams, sid, pp) to £.

Key Generation
o When party P; receives (KeyGenRequest, sid, kid, A) from &
1. If sid = (Psetup, sid’) continue, else ignore.
2. P; sends (KeyGenRequest, sid, kid, A) to Psetup-

o DPseryp on receiving (KeyGenRequest, sid, kid, A) from P;, it records
the request (KeyGenRequest, sid, kid, A, P;,b' := 0) as unprocessed,
and outputs (KeyGenRequest, sid, kid, pp, A, P;) to £.

o When party Psetyp receives (KeyGen, sid, kid) from &

1. If sid = (Psetup, sid’) continue, else ignore.

2. Look up unprocessed request record (KeyGenRequest, sid, kid, A,
P;, b = 0) from P;. If there is none, ignore. Else mark it processed
by setting b’ := 1 and continue.

3. If (SetupParams, sid’, Psetup, pp, msk) is not recorded by Psetup,
then ignore.

4. Else Pseryp computes sky < KeyGen(pp, msk,A) and sends
(KeyGen, sid, kid, pp, A, ska) to P;.

e P; on receiving (KeyGen, sid, kid, pp, A, sky) as an answer from Psegyp.
If (ska,A) is valid under received pp, P; appends record (KeyGen,
sid, kid, pp, A, ska) and outputs (KeyGen, sid, kid, A) to &.
Signature When party P; receives (Signature, sid, kid, pp’, A, m,P) from &
1. If sid = (Psetup, sid’), continue, else ignore.
2. P; looks up last record (KeyGen, sid, kid, pp’, A, sky).
3. If there is no record, then ignore.
4. Else, P; computes signature o <« Sign(pp/, ska, m,P) and outputs
(Signature, sid, kid, A,m,P, o) to £.
Verify When party P; receives (Verify, sid, pp’,m,P, o) from &

o P;runs b < Verify(pp’, m,P, o) and outputs (Verified, sid, m, P, o,b)
to &.

Figure 4.4: Attribute-based signature protocol pags. 129
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4.5 UC Security for ABS

In the following we show that the ABS protocol pags UC-realizes the ideal ABS
functionality Fags. To this end, we use an ABS scheme that is correct, consistent,
unforgeable and computational simulation private in the protocol pags. With the
protocol pags and ideal ABS functionality Fags defined, we can describe how adap-
tive corruption works. On a high level, the adversary A (potentially triggered by
the environment) can initiate a corruption of any party P by sending (corrupt, P).
In case of a corruption of Pset,p, adversary A gets the public parameters and the
master secret key that was recorded for Psetyp. Then adversary A (and therefore
environment £) can issue arbitrary secret keys. This includes the issuing of secret
keys to honest parties. For this case, Fags also keeps records of successful key
generations with an honest party P; and corrupted Pset,p. Additionally, Fags only
generates signatures for P;, if such a record exists.

Overall, the UC-realization is proven under the assumption that (1) the setup
party can only be corrupted after the setup activation was executed once and (2)
that the corruption output does not include the simulation trapdoor. The first
assumption models the guarantees of our privacy definitions (Definitions 3.2.4 and
3.2.5) and mirrors existing experiment-based secure ABS schemes that are defined
with an honest setup like [EHM11; MPRO08; MPR11; OT14; SAH16]. The second
assumption is in place to make notation easier. It can be avoided by hardcoding
the simulation trapdoor in the algorithms that S outputs, by this the simulation
trapdoor is not explicitly available to Pseryp. We instead use the common notation
where the inputs, like the simulation trapdoor, are explicit inputs to the algorithms
and not hardcoded to make readability easier.

Note that one can lift the restriction that the corruption of the setup party is
allowed only after the setup has been executed once by defining ABS with a CRS.
The CRS is setup trustworthy and includes honest setup parameters of an ABS
scheme. This is similar to the definition of blind signatures by Abe and Ohkubo
[AO12]. Since we do not want to restrict our result to ABS with a CRS we do not
consider this option in this thesis. Further we want to note that it is not unusual
to restrict the environment. Similar environment restrictions regarding the setup
of schemes are present in other UC-realizations. To give an example, in the work
of Buan et al. [Bsk06] the signer can only be corrupted after the key generation.
For UC non-committing blind signatures [AO12] the environment is restricted to
activate the key generation only once. Overall, our assumptions are a restriction
on the UC environment and is denoted as adaptive.

With the details of the UC model clarified, let us state the main theorem of this
chapter, where we denote with ABS the attribute-based signature schemes used in
the protocol pags.

Theorem 4.5.1. Let ABS be an attribute-based signature scheme. ABS is correct,
consistent, unforgeable and computationally simulation private if and only if proto-
col pags UC-realizes ideal functionality Fags[adaptive, erasure, secure channels].
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The theorem is with respect to the UC-realization of Definition 4.2.3 and we
use the UC-emulation with black-box simulator of Definition 4.2.2.

For the formal proof of the theorem we split it in two parts and prove them
separately in Sections 4.5.1 and 4.5.2. To shorten notation we will omit the UC
assumptions adaptive, erasure, and secure channels in textual descriptions and if
the context is clear.

4.5.1 Experiment-Based Security implies UC Security

In this section we show that a correct, consistent, unforgeable, and computationally
simulation private ABS scheme ABS is also UC secure. The UC security is shown
with respect to our ideal ABS functionality Fags (Figure 4.3) and the ABS protocol
pass (Figure 4.4) which uses the ABS scheme ABS.

Lemma 4.5.1. If the attribute-based signature scheme ABS that protocol pags uses
is correct, consistent, unforgeable and computationally simulation private, then pro-
tocol pags UC-realizes ideal functionality Fags[adaptive, erasure, secure channels].

In the following, we define simulator 864 that, with black-box access to any given
adversary A, interacts with ideal functionality Fags such that for all environments
£ it holds that []—"ABS7S()4} and [pags, A] are indistinguishable. Concretely, for an
ABS scheme ABS = (Setup, KeyGen, Sign, Verify, SimKeyGen, SimSetup, SimSign),
any ppt adversary A and our ideal ABS functionality Fags we define the simulator
Sg! in Figure 4.5, where Sg has black-box access to A. Note, that in the Setup
activation of 864 it sends algorithms SimSetup(1*), SimKeyGen, SimSign, Verify to
Faps, where SimSetup(l)‘) means that the security parameter is hardcoded.

Before starting the proof of Lemma 4.5.1, note that 864 is ppt with respect to
the UC definition (Section 4.2) since it runs the ppt adversary A and its other
steps consists of simple checks, look ups and writing records which are all efficiently
computable.

Next, we prove Lemma 4.5.1 via a sequence of games. Starting in Game 0 with
the ideal setting [.FABS,854] and ending in Game 5 with the real setting [pags, Al.
In the sequence of games we gradually modify Fags and 854 in each step. Thereby,
every game expands the modifications introduced in the games before and we only
present the modifications of the current game for better readability. With each
modification we show that, if an environment £ can distinguish Game ¢ — 1 and
Game i, then there exists an adversary that breaks one of the security guarantees
of ABS.

In Figure 4.6 we present an overview of the sequence of games and the related
security guarantees; computational simulation privacy, unforgeability, correctness
and consistency. Note, that the model [adaptive, erasure, secure channels] for the
ideal functionalities stays in place in the sequence of games. For readability we
omit it in the following lemmas.
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Setup On input (Respond, (Setup, sid)) from Fags

 Set the algorithms as S.Setup = SimSetup(1*), S.KeyGen := SimKeyGen,
S.Sign := SimSign, and S.Verify := Verify.

o Send (Setup, sid, S.Setup, S.KeyGen, S.Sign, S.Verify) to Fags.

Key Generation: If P; is honest
e On seeing public delayed output (KeyGenRequest, sid, kid, pp, A, P;) for
Pserup by Fags send (KeyGenRequest, sid, kid, A) from P; to Psetyp.
Key Generation: If Ps.,, is honest

o On receiving message (Respond, (KeyGen, sid, kid, A, P;, ska)) from Faps
record (KeyGen, sid, kid, pp, A, P;, ska) and send (KeyGen, sid, kid, A, P;, sk,
1) to Fags.

1. On seeing the public delayed output (KeyGen, sid, kid, A) for P; by Fags
simulate the Psetyp key generation part:
2. Check for the existence of record (KeyGen, sid, kid, pp, A, P;, ska). If it exists
then send (KeyGen, sid, kid, pp, A, skp) from Pseyp to P;.
Key Generation: If P; is corrupt

+ On receiving (KeyGenRequest, sid, kid, A) sent t0 Pseyyp from P; (controlled
by A). Send (KeyGenRequest, sid, kid, A) on behalf of P; to Fags and deliver
public delayed output directly without notifying A.

Key Generation: If Ps.,, is corrupt
1. On (KeyGen, sid, kid, pp’, A, ska) from Pseyp (controlled by A). If (sk, A) is
valid under pp’, send (KeyGen, sid, kid) on behalf of Pset,p to Fags-
2. On seeing the corresponding public delayed output (KeyGen, sid, kid, A) for
P; by Fags record (KeyGen, sid, kid, pp’, A, P;, skp).
Signature On input (Respond, (Signature, sid, kid, pp’, A, m,P)) from Fags

o Look up last record (KeyGen, sid, kid, pp’, A, P;, ska), if none exists ignore.
Else, o < Sign(pp’, ska, m,P) and send (Signature, sid, kid, pp’, A, m,P, o)
to Fags.

Others

e On (corrupt,P;) from A. Inform Fags with (corrupt,P;), to get all in-
put, output and exchanged messages including (KeyGen, sid, kid, pp, A;, P;)
messages. Send it all to A.

o Public delayed output send to honest parties is acknowledged after the
specified steps are processed. For corrupted parties it is never acknowledged.

Figure 4.5: Simulator S
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ideal Game 0 Game 1 Game 2 Game 3 Game 4 Game 5 real

O O » O » O > O » O O O

= sim privacy unforgeability corr. & cons. corr. & cons. = =

Figure 4.6: Sequence of Games

Game 0. Let Fy be the ideal functionality Fags from Figure 4.3. Environment £
interacts with Fy and the simulator 864 from Figure 4.5. Therefore, the probability
that £ outputs 1 is the same as in the ideal setting. Hence, the following lemma
follows directly.

Lemma 4.5.2. For all ppt adversaries A and all ppt environments £, it holds that
Pr|€[Fass, S§'] = 1] = Pr|&[Fo, S = 1] .

Game 1. (Remove simulation algorithms) In this step we modify Fy to F; and
854 to Sf*. The goal is to use the algorithms Setup, KeyGen, and Sign instead of
SimSetup, SimKeyGen and SimSign of ABS.

+ In Setup: Simulator Si* does not send algorithms SimSetup(1*), SimKeyGen
and SimSign instead it sends Setup(1*), KeyGen and Sign to F;. To match
this change, 1 on running S.Setup = Setup in Setup Step 2a does not
record the simulation trapdoor tdgn,

e In the ideal functionality all usages of the algorithms, given by the simulator,
are adapted by leaving out msk and tdg;, in the inputs to match the inputs
of KeyGen and Sign. Putting it together, F; uses only the algorithms Setup,
KeyGen, and Sign.

o In Signature: Steps 3a and 4 of Fy = Fags (Figure 4.3) are modified. Step
4 is omitted completely. As a result, F; never asks Si* for a signature. In
Step 3a the check (pp’ = pp) is omitted and the rest is changed such that
F7 looks up last recorded entry (KeyGen, P;, pp/, A, sks) with P(A) =1 and
generates the signature as Sign(pp’, ska, m,P) instead of using SimSign as in
Fo.

We change the setting of environment £ from Game 0 to Game 1, thus from a
game with simulated setup, simulated keys and simulated signatures to one with
the signatures, keys and setup of the real protocol pags. Hence, Game 0 and Game
1 correspond the two experiment settings in the simulation privacy experiment
(Definition 3.2.5) and leads us to the following lemma.

Lemma 4.5.3. If ABS scheme ABS is a computationally simulation private
attribute-based signature scheme, then for all ppt adversaries A and all ppt envi-
ronments £ it holds that

| Pr[E[Fo, Sg'] = 1] — Pr[€[F1, S1'] = 1] < negly (V)
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where negly 1 (+) is negligible.

Proof. We show that, if an environment & distinguishes [Fo,Sg'] and [Fi, Si]
with non-negligible probability, then it distinguishes the output of the simulation
algorithms from the output of the real algorithms. Let us look at the view of
environment £ in both settings. In [Fo, Sg!] the instances resulting from the Setup
activations are simulated, involving SimSetup, SimKeyGen and SimSign. In [Fi, Sfl]
the instances run the algorithms Setup, KeyGen and Sign. Recall, all algorithms are
defined by the ABS scheme ABS. Given an environment £ and adversary A that
distinguishes [Fo, Sg'] from [F1, S7Y], we define algorithm D to attack computational
simulation privacy (Definition 3.2.5).

Definition of algorithm D. In the following description of algorithm D, we
define how D emulates for environment £ the behavior of [F, Si!] by interacting
with its challenger from the simulation privacy experiment Expgj;%révacy’b()\) (be
{0,1}). To make the definition of D as readable as possible, we omit session
identifier sid and parameter checks. To shorten the description, we omit the concrete
format of the input and output messages, and recording of entries. All of this works
as in the ideal functionality and simulator and is therefore omitted. We also refer
to Figure 4.5 to see how corruption works in D. Overall this means, to emulate
[.7-"1,,854], algorithm D follows the input and output behavior determined by the
ideal functionality, i.e., the message formats for inputs and outputs.

Initialization: D on input (pp, msk) from Exp%m/iggvacy’b()\), first runs environ-

ment £ and adversary A. If £ and A want to exchange messages, i.e., activa-
tions and results of a corruptions, then D lets them communicate. Overall,

whenever Fags uses the algorithms S.KeyGen or §.Sign provided by a simu-

lator, D will relate it to the oracles provided by Exp%mApBrévacy’b()\), i.e., oracles

OKeyGenb and OSignb‘

Setup: On & sending (Setup, sid) to Psetup, D outputs (PublicParams, sid, pp)
where pp is given by the experiment
Key Generation: On & sending (KeyGenRequest, sid, kid, A;) to a party P.
D behaves like [Fo, Sg'] (note: not changed in [Fy, S7'])

Key Generation: On & sending (KeyGen, sid, kid) to party Psetyp.

o If P and Pseyyp are honest, D behaves like [Fo, S4Y], but for key genera-
tions it queries oracle OKeYGens (A).

o If P is corrupt and Psetyp is honest, D first queries OKeyGeny (7)), then
queries OReveal(]) to get sky,, and outputs (KeyGen, sid, kid, pp, Ay, ska,)
to A for P.

o If P; is honest and Pset,p is corrupt, D follows the steps of 854 in Fig-
ure 4.5 (not changed in S{!) to simulate the communication with the
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corrupted party. This includes the recording of (KeyGen, sid, kid, pp/,
Al, Pi, SkAl)-

Signature: If £ sends (Signature, sid, kid, pp’, A;, m;,P;) for a corrupted party
P, D lets A handle it as the simulator 854 does. If P; is honest and

o pp’ = pp: D answers with a signature from 58" (4, mj, Pj)

o pp' # pp: If (B, pp', Ay, ska,) is recorded, D answers with a signature
by running Sign(pp’, ska,, m;,P;).

Verification: If € sends (Verify, sid, pp, m,P, o) to a corrupted P}, D lets A handle
it. If P, is honest, then D executes the verification steps of Fy (not changed
in F1).

Output: If £ outputs a bit b, D outputs it as well.

Analysis. Since in UC an environment £ is parameterized with the security
parameter A\, environment &, adversary A, ideal functionality F; and simulator Sg“
are ppt algorithms. Hence, algorithm D is also a ppt algorithm. Let us analyze
algorithm D and its emulation for environment £ in the following. First of all, the
view of £ regarding the verification was not altered, since the Verify activation
was not changed from Fy to Fi. In the case of pp’ # pp in a Signature activations,
[Fo,Sg'] and [Fi, S] use Sign to generate a signature under pp’. The same holds
for D. All the other steps of D also perfectly emulate the behavior of [Fy, Sg'] and
[F1, 874, ey

If D is taking part in Exp%r?A'Erévacy’o()\), then the public parameters given by

KeyGen,

opmsk.td., AT€ generated

the game are output by SimSetup, keys returned by O

by SimKeyGen, and signatures returned by the Oi;i)g,%)sk,tdsim are computed using

SimSign. Therefore, the view of £ in this case is distributed as in [Fo, Sg\]. If D is

taking part in Exp%m/&’égvacy’l()\), then the given public parameters are the output

KeyGen,

ppomsk A€ generated by KeyGen, and the signatures

of Setup, keys returned by O

returned by Oi},gnl are computed using the Sign algorithm. Hence, the view of

environment & is distributed as in [F;, S7']. At the end the final output of D is the
output of environment £. Overall, for a computationally simulation private ABS
scheme ABS we can conclude that,

’Pr E1F0, 8§ = 1| = Pr|€[F1, 87 = 1“ < ’Pr |ExpiaBe O\ = 1] -
PrlExpiREe ™" () = 1]
— AR,

sim-privacy

where the advantage Advp ags (M) is negligible in A. O
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Game 2. (modifying unforgeability) Recall that for honest parties under regis-
tered pp our ideal ABS functionality guarantees unforgability with certainty, see
security of Fags in Section 4.3.2. In this step we modify the setting [F, Sf'] and
denote the result as [Fa, Sy'], where we only modify the functionality F; and the
simulator is not changed, hence S{! = Si*. To define JF3, we introduce one modifi-
cation to the Verify Step 2c (see Figure 4.3, the step was not changed up to now),
where fout == 0 is set. This step is changed to fout = b, where b is the output of
the verification done with S.Verify.

Lemma 4.5.4. If ABS scheme ABS is unforgeable (Definition 3.2.6), then for all
ppt adversaries A and all ppt environments £ it holds that

| PrE[F1, S = 1] = Pr[E[F2, 85Y) = 1]| < negly 5(N),
where negly o(-) is negligible.

Proof. Notice that the modification of Game 2 only introduces a difference to
Game 1 in Verify, Step 2c only if the verify bit b = 1 holds, i.e., we set f:=b=1
where we set f := 0 in Game 1. We show that this event only happens, if the
unforgeability of the scheme was broken. Let us denote the event that b = 1 holds
in Step 2c of the Verify activation with Forge.

First, let us make clear what it means if Verify Step 2c in the ideal functionality
(Figure 4.3) is reached and Forge happens for input (Verify, sid, pp, m,P, o). If
the verification of F; and F» reaches Step 2¢, we know that the conditions for the
previous steps of the Verify activation did not hold. In particular, we know that
the signature o on (m,P) was not generated by the ideal functionalities and it
was not verified in a previous Verify activation (Step 2a). Further, we know that
(m,P) was never signed (Step 2b) by the ideal functionalities. Importantly, from
Step 2b it follows that the setup party Psetyp is honest. Hence, as in Expi”Ast()\)
the master secret key is kept secret. Furthermore, from Step 2b it follows that
there is no corrupted signer P; with a record (KeyGen, sid, kid, P;, pp, A’, -) where
P(A’) = 1. Therefore, no corrupted party could have legitimately generated the
signature o. We conclude that, if Forge happens, then the signature is one of a
party without a satisfying secret key for P and the signature was not generated
by the ideal functionalities, i.e., it is a forgery. More formally we define in the
following a forger F' that utilizes the forging event Forge.

Definition of forger F'. Let us define a forger F' against the unforgeability of
ABS in Exp%:RBS()\) (Definition 3.2.6) using an adversary A and environment £.
Similar to the distinguisher from Lemma 4.5.3, forger F' behaves like the ideal
functionality and simulator [Fi, Sf']. Hence, we just describe the situations where
F' behaves differently to utilize the forging event Forge. Overall, ' follows the
input and output message format as defined by Fags in Figure 4.3 (same as in JFy
and F3). Also, F' uses the oracle access provided by the unforgeability experiment
Exp%ijBs()\) to answer £’s Sign and Key Generation activations, instead of using
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the algorithms provided by the simulator. To shorten the description we omit in
the following the output messages, sid and parameter checks, and details of the
corruption. They are the same as in Figure 4.3 and Figure 4.5.

Initialization: On input pp from Exp‘f}iBs()\), forger F' runs environment £ and
adversary A. Messages between A and £ are forwarded by F. F' emulates
Fags and S as described in the following.

Setup: If € sends (Setup, sid) to Psetyp, £ returns (PublicParams, sid, pp).

Key Generation A;: ' while simulating the key generation part of Pseyyp. For

pK;}'nffgl(Ai) and returns (KeyGen, sid,

kid,A;). If P; is corrupt, F queries O;;?ﬁ:;l(Ai) gets skp, by querying

OReveal(j) and outputs (KeyGen, sid, kid, pp, A;, ska,) to A for P;.

honest party F;, F' queries the oracle O

Signature: If £ sends (Signature, sid, kid, pp, A;, m;,P;) to a corrupted party P,
F lets A handle it. If P, is honest and a key for (A;,P) with P;(A;) =1
was generated, F' computes the signature with a query to (’)]S,},gn (1,m;,P;),
otherwise I ignores the activation.

Verification/Output: If £ sends (Verify, sid, pp’,m,P, o) to a corrupted party
P, F lets A handle it. If P, is honest, I’ executes the verification steps of
Fags. If Forge happens during the verification checks, F' uses (m, P, o) as its
final output. Otherwise, F' outputs (L, L, 1).

Analysis. Since an environment £ in UC is parameterized with the security
parameter A, environment &£, adversary A, the ideal functionality and simulator
are ppt algorithms. Hence, forger F' is also a ppt algorithm.

Forger F' answers the activations send by £ with the outputs of its oracles. The
oracles use the same algorithms (i.e., Setup, KeyGen, Sign, Verify) as the simulator
Ss' of the current Game 2. From the argumentation above it follows that, if £ causes
Forge, then forger F' outputs a valid forgery and wins experiment ExpiiijBS()\).
Hence, it holds that

‘Pr [5[.7:1,8{4] = 1] —Pr {5[]:2,554] = 1” < Pr[Forge] = Pr [Exp%‘ijBS()\) = 1}.
O

Game 3: (Verification with algorithm Verify) To define [F3, S5'] we modify [Fa, Ss']
such that the interaction between them works as follows.

F3 on input (Verify, sid, pp’, m,P, o) from some party P:

1. Send (Verify, sid, pp’,m,P, ) to S§* and Si* runs b < Verify(pp’, m, P, o)
and sends (Verified, sid, pp’, m,P,0,b) to Fs.
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2. Upon (Verified, sid, pp’,m,P,0,b) from Si* record (Signature, sid,
kid pp', A == L ,m, P, o, four = b) and output (Verified, sid,m,P,o,
fout) to P.

This replaces all verification steps that were present in Fs. Everything else
stays as in [Fa, S5V

Lemma 4.5.5. If ABS scheme ABS is correct (Definition 3.2.2) and consistent
(Definition 3.2.3), then for all ppt adversaries A and all ppt environments & it
holds that

| Pr[E[Fo, 5] = 1] — Pr[€[F3, 85 = 1]| < negly 3(\),
where negly 5(-) is negligible.

Proof. In F3 the output of a Verification activation is determined by the output
of the algorithm Verify of the ABS scheme ABS. In the following, we show that
for every Verification activation input to F3 the output bit fout is equal to the
bit that is used in F», assuming ABS is correct and consistent. Recall that F»
guarantees correctness and consistency for honest users (under hostly generated
keys) with certainty. Hence, if consistency or correctness fails an environment can
easily recognize this and distinguish Game 3 from Game 2. First, observer that
the Steps 2b, 2¢, and 3b in F» (see Figure 4.3) already set fous = b, where b is
the output of Verify. The interesting Steps are 2a and 3a in Fo. In both steps,
the bit fout is set to a previously recorded bit f, but due to the changes in Game
3 we now use the bit b of Verify in F3 instead. The bit f could previously been
recorded in two cases. First during the corresponding Signature activation (Step
3¢ in Figure 4.3) and second in a previous Verification activation. In the first
case, for honest signers, parameters and keys F» directly records signatures that it
generates itself as valid. This is exactly what correctness of ABS requires. Hence, it
follows from the correctness that f # b only occurs with negligible probability. For
corrupted signers (or not recorded (dishonest) parameters) the same follows from
the consistency of ABS. In the second case, we can conclude that f was previously
recorded in Verify activation Steps 2b, 2¢ (modified in Game 2) or 3b. Thus, by
definition of the steps the bit b was already used in F». Overall, the environment
& can distinguish [Fy, S5'] and [F3,S3\] only if the correctness or consistency fails.

O

Game 4. (Remove halting condition in Signature activation) We use [F3, Sx!]
as a starting point and modify them to define [.7-"4,514]. We remove from F3 the
halting condition in Step 3b of the Signature activation (was still unchanged from
Fo in Figure 4.3) and directly record (Signature, sid, kid, pp, A, m,P, o, f = 1)
and output (Signature, sid, kid, A,m,P,0) to P, in Step 3c. The simulator is
unchanged, hence St = S§4.
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Lemma 4.5.6. If ABS scheme ABS is correct (Definition 3.2.2) and consistent
(Definition 3.2.8), then for all ppt adversaries A and all environments £ it holds
that

| Pr{€[Fs, S5 = 1] - Pr[€[F4, 81 = 1]| < negly 4(V),
where negls 4(-) is negligible.

Proof. In the Signature Step 3b (see Figure 4.3) the condition that a record
(Signature, sid, kid pp, A, m, P, 0,0) exists can only hold, if previously a Verifica-
tion activation (Verify, sid, pp, m, P, o) recorded fou = 0. However, this means
that the output of the algorithm Verify(pp, m,P, o) was b = 0. Since correctness
holds, we conclude that signatures for honest signers generated by the algorithm
Sign are verified by algorithm Verify with b = 0 only with negligible probability.
From the consistency we conclude the following. If the same signature o was pre-
viously generated by a corrupted signer and verified by a Verification activation
(in other words by Verify) the result fous = 0 is recorded only with negligible
probability. O

Game 5: (Remove records for signatures) Game 5 is a modification of Game 4
where the simulator is unchanged. Hence Sg* = Sit. Only F is modified to
JFs, such that it does not create records for signatures like (Signature, sid, kid
pp’, A, m! P’ o', f’) in Signature and Verification activations.

Lemma 4.5.7. For all ppt adversaries A and all ppt environments € it holds that
Pr[E[Fs, S{Y] = 1] = Pr[€[F5, 88 = 1] .

Proof. Through the modifications in Game 3 and Game 4 the signature records
Signature were never read by F4. Hence we just removed unused records in Game
5 and hence the view of an environment env does not change. Looking at all the
changes introduced here and in all the previous steps that are now present in F5
we observe that F5 only performs parameter and sid checks, asks its simulator 854
and outputs what 854 outputs. Overall, we moved all of the steps that generate
ABS elements (public parameters, secret keys, signatures, verification bits) to the
simulator S£. The simulator S uses internally the algorithms of the ABS scheme
ABS, i.e., the same algorithms as used in the protocol pags. O

As noted above, F5 in comparison to Fy only does parameter checks and the
output of Fy is determined by the simulator 854. Additionally, the simulator 864
was modified such that S behaves like protocol pags (Figure 4.4).

Lemma 4.5.8. For all ppt adversaries A and all ppt environments € it holds that

Pr{E[Fs, 84 = 1] = Pr[€[pngs, A] = 1] -
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Proof. For every activation the output of F5 is determined by the output of sim-
ulator S£ and the algorithms (Setup, KeyGen, Sign, Verify) used in the simulator,
where 854 simulates the communication of the honest parties with A. In detail,
the same algorithms with the same inputs are used as in protocol pags. Further,
as in protocol pags the simulator 854 let A determine the behavior and output of
corrupted parties. Consequently, the view of environment € in [Fs, S£] is equal to
the view of £ in [pags, Al d

Proof of Lemma 4.5.1. From Lemmas 4.5.2, 4.5.3, 4.5.4, 4.5.5, 4.5.6, 4.5.7, and
4.5.8 it follows that

| Pr(E[Fags, S3'] = 1]— Pr[€]pass, Al(A) = 1]]
< negly 1 (A) + negly 5(A) + negly 5(A) + negls 4 ()
<v(A)

where v(-) is negligible. Hence, the protocol pags UC-realizes the ideal ABS func-
tionality Fags|adaptive, erasure, secure channels|.

4.5.2 UC Security implies Experiment-Based Security
We show the second part of Theorem 4.5.1 in the following.

Lemma 4.5.9. If protocol pags UC-realizes the ideal functionality Fags[adaptive,
erasure, secure channels|, then the ABS scheme ABS used in protocol ppgs is correct,
consistent, computationally simulation private, and unforgeable.

Lemma 4.5.9 follows from Lemmas 4.5.10, 4.5.11, 4.5.12 and 4.5.13 stated in the
following. Regarding the lemmas, we use the contraposition of Lemma 4.5.9 to make
the description easier to follow. Concretely, ABS is not (correct A consistent A
unforgeable A computationally simulation private) implies that protocol pags does
not UC-realize ideal functionality Fags. Here, protocol “pags does not UC-realize
Fags” denotes that there is an adversary A such that for all simulators S, there
exists an environment & such that [Fags, S] and [pags, A] are not computationally
indistinguishable with respect to the security parameter. Intuitively, this approach
allows us in the following lemmas to focus on the individual assumptions and to
exclude cases that we have already dealt with. In the following, we start with
correctness (Lemma 4.5.10), then show consistency (Lemma 4.5.11), and then we
focus on simulation privacy assuming correct and consistency of the ABS scheme
ABS (Lemma 4.5.12). Finally, we focus on the unforgeability of ABS and assume
correctness, consistency, and simulation privacy (Lemma 4.5.13).

Lemma 4.5.10. Assume ABS is not correct (Definition 3.2.2), then protocol pags
does not UC-realize the ideal functionality Fags[adaptive, erasure, secure channels].

Proof. If ABS is not correct then there exists a message m € M, attributes A € U,
and policy P € U,,, such that P(A) = 1, and a signature o € Sign(pp, ska, m,P)
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such that

Pr [Verify(pp, m,P, o) = 0} = Kr(\)

is non-negligible. Let environment £ be such that it uses these elements to distin-
guishes [€[paBs, A](A) = 1] and [Fags, S]. The environment £ works as follows. En-
vironment & first sets sid = (Psetup, 0) and runs the setup through Psetyp with input
(Setup, sid) and obtains as a result the public parameter pp. Secondly, £ activates
some party P with (KeyGenRequest, sid, kid, A) and then sends the corresponding
activation (KeyGen, sid, kid) to Pseryp. After that, it activates the same party P with
(Signature, sid, kid, pp, A, m,P) and obtains the signature o. At last, environment
& activates a party Py with (Verify, sid, pp,m,P, o) to verify the signature and
outputs the result. Observe that environment £ always outputs 1 in the ideal setting
[FaBs, S], since the ideal setting guarantees for honest parties perfect correctness,
but environment £ outputs 0 with non-negligible probability in the real setting
[paBs, A]. Hence, | Pr[€[pags, A](A) = 1] — Pr[€[Fags, S](A) = 1]| = (A). O

Lemma 4.5.11. Assume ABS scheme ABS is not consistent (Definition 3.2.3),
then protocol pags does not UC-realize the ideal functionality Fags[adaptive, era-
sure, secure channels].

Proof. If ABS is not consistent then there exists a message m, policy P, and sig-
nature o, and for all b € {0,1} it holds that

Pr[Verify(pp, m,P,0) # b] = k()

is non-negligible. Intuitively, this means algorithm Verify outputs on different bits
for the same input. Overall, the argument here is similar to the argument in the
proof of Lemma 4.5.10. Let environment £ be such that it uses the above elements.
Environment £ then works as described in the proof of Lemma 4.5.10 except that it
activates Py polynomial-many times with (Verify, sid, pp, m,P, o) to trigger that
it produces two different verify outputs, i.e., b and 1 — b. Let us denote this event
with bad. Environment £ outputs 1 if event bad does occur and 0 otherwise. In the
ideal setting [Fags, S| the event bad never occurs, because the ideal verification
guarantees consistency with certainty. Hence, the environment £ always outputs
0. In the real setting [pags,.4], it follows from our assumption that ABS is not
consistent that event bad occurs with non-negligible probability. Consequently,
| Pr[€]pags, Al(A) = 1] — Pr[€[Faps, S](A) = 1]| = Pr[bad] = x()) O

Simulation Privacy. Intuitively, to show simulation privacy we define an en-
vironment that distinguishes the output of the simulation algorithms and the
non-simulation algorithms. The structure and technique how to define the simu-
lation algorithms in the proof of the following lemma is based on the simulation
blindness proof in [AO12].
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Lemma 4.5.12. Let ABS be correct and consistent. If ABS is not computationally
simulation private (Definition 3.2.5), then protocol pags does not UC-realize the
ideal functionality Fags[adaptive, erasure, secure channels].

Let us first outline the proof. Since we assume that ABS is not computation-
ally simulation private, it holds that for all tuples of ppt algorithms (SimSetup,
SimKeyGen, SimSign) according to Definition 3.2.5, that there exists an algorithm
D that distinguishes the experiment Exp%r?/iggvacy’o(/\) from Exp%TApBgvacy’l()\) with
non-negligible advantage.

For a fixed adversary A and for every simulator S we first show how to define
such a tuple of algorithms (SimSetup, SimKeyGen, SimSign). This is necessary
since the definition of simulation privacy requires the existence of these algorithms.
Then, from the assumption that ABS is not computationally simulation private
we know that there exists a distinguisher Dga for the three algorithms (SimSetup,
SimKeyGen, SimSign) that we define. Finally, we use this distinguisher Dga to
construct an environment & that distinguishes the two settings [Fags,S*] and

[pA557 ‘A} .

Proof. Note, since we show that the protocol pags does not UC-realize the ideal
functionality Fags we are in full control of the environment and adversary and can
define them in the following. Hence, we define and use an adversary A that corrupts
the setup party Psetryp after the Setup activation is completed. That means, if
adversary A sees the output (PublicParams, sid, pp) from Pseyyp it corrupts Psetup
and outputs (pp, msk) to the environment. After that it lets the environment handle
Pseryp and therefore forwards every message for Pserp to the environment. For
every other message it behaves as the dummy adversary. Note, intuitively this
definition of adversary A forces a simulator S to act similar (up to computational
difference) in the described corruption case. Otherwise, an environment can directly
distinguish, if it talks to adversary A or a simulator S*.

To define simulation algorithms we use that by definition of Fags the simulator
S# has to send, among other things, stateless ppt algorithms (S.Setup, S.KeyGen,
S.Sign) to Fags. Hence, the technique that we apply to get simulation algorithms
is to put the appropriate parts of the ideal functionality and simulator in the
three algorithms. This means, SimSetup runs the setup like Fags does with S
adjusted to the corruption on Pset,p, which allows us later in the proof to initialize
a distinguisher. SimKeyGen executes the steps that [Fags, S] executes for the Key
Generation activation by a party P; with corrupted Psetyp, with the difference that
SimKeyGen generates the secret keys on its own by using the KeyGen algorithm of
the ABS scheme. This becomes more clear after the definition of our environment
that acts just the same. SimSign simply runs the Signature activation steps of
Faps and outputs the generated signature. To make sure the three algorithms run
the same instance of S*, we let SimSetup choose the randomness of S and use
the same randomness, via an input, in SimKeyGen and SimSign to start S again.

In the following definition of the algorithms we do not repeat the steps of the
activations of [Fags,S] in detail, because of their complexity. For details of the
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activations we refer to Fags in Figure 4.3 and S in Figure 4.5. If we refer to
activations, the following algorithms use fixed sid = (Psetup,0).

SimSetup(1*): On input security parameter 1, SimSetup basically simulates party
Pseryp and a setup activation as in [Fags, SA]. Tt picks randomness 7, starts
S# with randomness r and sends (Respond, (Setup, sid)) to S*A.

Upon receiving (Setup, sid, S.Setup, S.KeyGen, S.Sign, S.Verify) from S, it
generates (pp, msk, tdgm) < S.Setup, records (SetupParams, sid’, Psetup, PP
msk, tds;y,) and (Algorithms,S.Setup,S.KeyGen, S.Sign, S.Verify). Then al-
gorithm SimSetup simulates output (PublicParams, sid, pp) for party Psetup.
After that, SimSetup outputs (pp, msk, tdsim, == 1).

SimKeyGen(pp, msk, tdgim, A, stkg): The algorithm starts S with randomness
encoded in td ;. The remainder defined as in SimSetup except the last output
step.

The steps result in the records (SetupParams, sid’, Psetup, pp, msk, tds;y) and
(Algorithms, S.Setup, S.KeyGen, S.Sign, S.Verify).

It restores the state from stxg. Then, SimKeyGen executes the steps of the
Key Generation activation (KeyGenRequest, sid, kid, A;) as in [Faps, S*], for
a new honest party P; and an unique kid, including storing the KeyGen records.
Therefore, SimKeyGen delegates public delayed output to S* including the
request (KeyGenRequest, sid, kid, pp, A, P;). On answer (KeyGen, sid, kid) by
S#, SimKeyGen generates ska, < KeyGen(pp, msk, A;) and records (KeyGen,
sid, kid, P;, pp, A;, ska,). It updates the state stkg to include the KeyGen
records. SimKeyGen outputs ska,, stke.

SimSign(pp, msk, tdsim, m, P, stkg): It starts with the same steps as SimSetup (us-
ing randomness 7 in tdg;, ), but changes the last output step. The steps re-
sult in the same record (SetupParams, sid’, Psetyp, pp, msk, tdsim) and record
(Algorithms, S.Setup, S.KeyGen, S.Sign, S . Verify).

SimSign restores the state (KeyGen records) from stkg. Then, SimSign uses
the Signature activation of [Fags,S%] to get the signature on (m,P). On
output (Signature, sid, A, m,P, o) algorithm SimSign outputs o.

Note, that SimSetup, SimKeyGen and SimSign are getting the same algorithms
from S#, since they use the same randomness r to run S*.

The specifics of the definition of the above algorithms is due to the circumstance
that we have to wrap and split the (stateful) behavior of [Fags,S*] in three
algorithms. However, this allows us to argue in the following with our environment
that, if we execute SimSign, SimKeyGen, and SimSign as defined above and use the
key generation state to essentially transfer the KeyGen records from SimKeyGen to
SimSign we simulate the setting [Fags, S*\] with these algorithms.

From the assumption we know ABS is not computationally simulation private.
Hence for the simulation algorithms (SimSetup, SimKeyGen, SimSign) as defined
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above, there exists a distinguisher Dga that distinguishes Exp%m:fr/z’;gy’o(/\) and
S b

Exp%?ffxggy’l()\) with non-negligible advantage Adv%l‘:frxlggy(/\).

Next, we define the environment &, for adversary A as defined above and arbitrary
but fixed SA. Note, € takes the role of Psetup as A will forward every message for
Psetyp after the corruption of Psetyp. The setup party is corrupted only to get the
master secret key and important is that £ will act as an honest Psetyp and answers
to requests as described in Fags.

1. &€ sends (Setup, sid) to Psetyp and gets (PublicParams, sid, pp) back. By the
definition of our A, from the corruption of Pseyp it gets (pp, msk) in return.

2. & starts Dga on input (pp, msk) and answers Dga’s oracle queries as follows.

OKeyGeny (7)) : £ activates a new party P; with (KeyGenRequest, sid, kid,
A;) and takes the role of corrupted Psetyp. Therefore, £ eventually gets
message (KeyGenRequest, sid, kid, pp, A;, P;) for party Psetyp from party
P; forwarded by adversary A. Environment £ then generates sk, <
KeyGen(pp, msk, A;), and sends message (KeyGen, sid, kid, pp, A;, ska,)
to party P;. After it is delivered, environment £ outputs ska, to Dga.

(’)Sig"b(z’, mj,[P;) : Environment & checks if A; was queried and processed by
a party P; and that P;(A;) = 1 holds. If not, it ignores the query.

Otherwise, environment £ activates party P; with (Signature, sid, kid;,
pp, Ai, m;,Pj,), eventually party P; returns (Signature, sid, kid;, A;,
m;,Pj,0;) and environment € outputs o; to Dga.

3. Eventually Dga outputs b and environment & also outputs b.

Analysis. We will now relate the advantage of environment £ to the advantage

of distinguisher Dga in the simulation private experiment Expg;‘;‘prip\\’ggy’b()\). We

analyze the real setting [pags,.A] and the ideal setting [Fags, S*] separately.

Case [pags,A]: From the definition of pags (Figure 4.4) we get the following.
The tuple (pp, msk) is generated by Setup(1*) and the secret keys sky,
are generated by the algorithm KeyGen (same in &) with input pp, msk
and attribute vector A;. The signatures o; are generated by an execution
of Sign(pp, ska,,m;,P;). Thus the view of Dga is equal to the view in

sim-privacy,1

EXpDSA,ABS (M), with algorithms Setup, KeyGen, Sign, and Verify as defined
by ABS, which is used in pags.

Case [Fags, S*]: In this case, the tuple (pp, msk, tdyy,) is generated by the algo-
rithm S.Setup output by S*. The same algorithm is used in our SimSetup
above. Further, the Signature activations from &£ result in signatures gener-
ated in Faps. This is the same process as specified by SimSign above. The
Key Generation activations are answered by £, with the use of KeyGen. In the
setting [Fags, S*] with a corrupted Psetyp the secret keys are also generated
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by &, due to the definition of our adversary A that hands the responsibility
for Psetyp to €. Hence, the key generation is done as specified by SimKeyGen
via KeyGen. Consequently, the view of Dga with the above defined algorithms

sim-privacy,0

SimSetup, SimKeyGen, and SimSign is equal to the view in EXPDSA AgS (A)-

From the analysis it follows that,
| Pr[€[Fass, §4] = 1] = Prl€[oass. A] = 1]
= | PriExppr PR () = 1] - PrlExpT PR3 (V) = 1]
= AT (3)

O]

Unforgeability. To show unforgeability we construct an environment £ that
uses a forger to distinguish the real and the ideal setting.

Lemma 4.5.13. Let ABS be correct, consistent, computationally simulation pri-
vate. If ABS is not unforgeable (Definition 3.2.6), then protocol ppgs does not
UC-realize the ideal functionality Faps|adaptive, erasure, secure channels].

The proof technique of the lemma is based on the proof of the unforgeability
of the blind signatures from a UC realization in [AO12] and is adapted to our
ABS case. Adaptations include that we have to deal with the specifics of our ideal
functionality Fags definition and three oracles instead of one compared to [AO12].

Proof. If ABS is not unforgeable (Definition 3.2.6) but correct, consistent and com-
putational simulation private, then there is a ppt forger F' with non-negligible
advantage Adv%ijBS()\) = Pl“[EXp%LijBS()\) = 1] (Definition 3.2.6). We construct
environment £ and A in the following. Let A be the dummy adversary (see Sec-
tion 4.2.4). Note, if environment £ wants to corrupts a party, A outputs the list
of the secret keys of the corrupted party to £. Hence, every simulator S has to do
the same for corrupted parties. If not, the settings are easy to distinguish. Envi-
ronment & first runs the setup through some party Pset,, with (Setup, sid), where
sid = (Psetup, 0), and obtains as a result (output by Psetyp) the public parameters
pp. Then, environment £ runs forger F' with pp. Let us describe the interaction of
& and F, which involves the description of how £ answers F’s oracle queries.

(9?;};2:; (A;) : On i-th query input A;, environment € activates a party P; with

a key generation (KeyGenRequest, sid, kid, A;). Eventually £ gets message
(KeyGen, sid, kid, A, ) for P; back after a finished key generation by Pset,p and
stores it.

OReveal(4) . On input ¢, if there was a t-th KeyGen query, then £ corrupts P, gets
the secret key skjy,, stores it, and outputs skp, to F. If there was no t¢-th
KeyGen query £ ignores the reveal query.
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OZS,I',gn (t,m;,P;) : On j-th query, if the corresponding secret key sky, was generated
in a KeyGen query and not revealed, £ activates P; with (Signature, sid, kid;,
pp, Ay, mj, P;). Eventually £ gets (Signature, sid, kid;, Aj, m;,Pj, 0;) back
and returns o; to F. If secret key sky, was not generated in a KeyGen
query ignore this signature query. In the case that sk, was revealed, the
corresponding party was corrupted and £ generates the signature with o; <
Sign(pp, ska,, m;,P;) and returns it to F.

Eventually F' outputs a triple (m*,P* ¢*). (1) If (m*,P*) was signed in a query or
P*(A¢) = 1 holds for any A; where the corresponding secret key sky, was revealed
to forger F', environment £ outputs 0. Else (2) £ activates a new and not corrupted
party Py with (Verify, sid, pp, m*, P*, o*) and outputs the result.

Analysis. Overall, we have two cases to consider for the final output of environ-
ment £ and they depend on forger F'. In (1) the signature that F' outputs can be
valid, but nonetheless F' does not win its unforgeability experiment, because the
message-policy pair was already signed in an oracle query or one of the revealed
attributes satisfy the output policy P*. In (2) the above does not hold and thus
the F' can win in its unforgeability experiment, if the signature is valid. In the
following, we analyze environment £ and its final output. We split up the analysis
for the two settings (ideal, real) that £ interacts with. We denote with “F wins”
the event that the unforgeability experiment outputs 1 (Exp%‘ijBs(/\) = 1) and
with “F fails” the event that it outputs 0 (Expiijf;Bs()\) =0).

Case [Fags, S]: Here, & interacting with [Fags, S*]. Note that in this case the
forger F' gets inputs (pp and answers from the queries) generated by algo-
rithms provided by the simulator. Intuitively, this means the advantage of
F is influenced, if it recognizes the simulation. More formally, the advan-
tage of F' is at least Adv%ff\BS()\) - Advjl_rfjfggacy()\). Where the advantage

AdV;',T:X)Q\S'aCy()\) = negly,(A) of on adversary F' that uses forger I internally

is negligible, since we assume that ABS is computationally simulation private.

If environment £ activates a party Py in (2), we know that the signature in the
output of F' was not signed by the ideal functionality, otherwise we are in case
(1). From the definition of Fags we know that every Verification activation for
a signature under recorded and honest public parameter pp (honest setup),
where the signature was not generated by the ideal functionality, results
in output 0, because Fags guarantees unforgeability (see Verify, Step 2c¢ in
Figure 4.3 and Section 4.3.2). This is exactly the case, if environment &
activates a party Py in (2). Thus, regardless of the success of F' the ideal
functionality Fags outputs 0 at the end of the activation of party Py and
therefore also environment £. Putting all together, £ as defined above outputs
0 in both output cases (1) where the F' was not successful and (2) because
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of the unforgeability guarantee of Fags. Hence, we get the following.

Pr [S[FABS,SA] = O} = Pr[€ in (1) outputs 0] + Pr[€ in (2) outputs 0]
= Pr[F fails in case (1)] + Pr[F fails in case (2)]
+ Pr[F wins in case (2)]
= Pr[F fails| + Pr[F" wins]
> 1~ (Advihgs (V) — neglsy(V))
+ Advihps(A) — neglg,(A)
=1

Which gives us that Pr[€[Faps,S*] = 1] = 0.

Case [paBs, A]: Here, environment £ interacts with [pags,.A]. The forger F' gets
as inputs (pp and query answers) generated by the algorithms Setup, KeyGen,
and Sign of the ABS scheme ABS. Hence, environment £ simulates the ex-
periment Exp‘}L:fABS(/\) for forger F' perfectly. The output of the Verifica-
tion activation in (2) and therefore the output of £ is just the output of
Verify(pp, m*,P*,0*), see Figure 4.4. This is the same in the winning condi-
tion of experiment Exp}‘iBs(}\). Accordingly, the following holds.

Pr[€[pags, A](A) = 1] = Pr[€ outputs 1 | F wins] - Pr[F wins]
+ Pr[€ outputs 1 | F fails] - Pr[F fails]
=1+ Advihgs(A) + 0+ (1 — Adviis()))
= Adviags(A)

Overall, we get that
| Pr[€[pags, A|(A) = 1] — Pr[€[Fags, S = 1]| = Advihgs (V).
O

In conclusion, Lemma 4.5.9 follows from Lemmas 4.5.10, 4.5.11, 4.5.12 and
4.5.13. This shows that an ABS scheme that is used in the protocol pags is correct,
consistent, computationally simulation private, and unforgeable, if protocol pags
UC-realizes the ideal functionality Fags. Overall, Theorem 4.5.1 follows from
Lemma 4.5.1 proven in Section 4.5.1 and Lemma 4.5.9 proven in Section 4.5.2.
Hence, the security model of our ideal functionality Fags is equivalent to our
experiment-based security model presented in Chapter 3.
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Anonymous Credentials






Updatable Anonymous
Credentials

Summary. In this chapter we present the results of the CCS’19 paper [BBDE19a]
and the corresponding full version [BBDE19b]. The main contribution of the
paper that we present in this thesis are updatable anonymous credentials UAC
(Section 5.2). UAC allows users to update their attributes of existing credentials in
a privacy-preserving way, i.e., the updates can be hidden. Additionally, UAC allows
users to get a credential on hidden attributes. To this end, UAC incorporates hidden
parameters and an update function directly in the issuing and update process of
credentials. The update function allows users to prove that their hidden and public
attributes satisfy a policy under which the issuer is willing to issue credentials.
In this thesis we revise the security model of UAC. Enabling us to precisely
state the requirements on the argument system that we use to present a generic
construction of UAC (Section 5.3), i.e., zero-knowledge and online extractability. As
a consequence, we change the used argument system from interactive as presented
in [BBDE19a; BBDE19b] to non-interactive. Together with online extractability,
this change simplifies the security proofs of the generic UAC construction presented
in this thesis. Further, we present an efficient instantiation of the generic UAC
construction based on blind signatures and zero-knowledge argument systems
with online extractability (Section 5.5). In addition to the results of [BBDE19a;
BBDE19b] we discuss the connection of UAC and ABS and sketch an instantiation
of UAC from ABS.
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We start with an introduction to anonymous credentials and existing extensions
from the literature (Section 5.1). We then formulate research questions and answer
them by defining updatable anonymous credentials UAC and their security in
Section 5.2 and by presenting a generic UAC construction in Section 5.3. To show
that the generic UAC construction can be efficiently instantiated, we present a
concrete instantiation in the random oracle model (ROM) and extend this to an
instantiation with a common reference string (CRS) (Section 5.5). We end this
chapter with a discussion of the connection between UAC and ABS in Section 5.6.

5.1 Introduction

In usual authentication systems personal information (e.g., mail address, user id)
and a secret (e.g., a password) is provided by users to authenticate at a service
provider. This allows multiple service providers that pool their data to identify
users, build comprehensive user profiles, and to track users across multiple services.
Anonymous credentials (AC) mitigate such problems by supporting authentica-
tion without identification via attributes that are not revealed and by supporting
access policies. In AC users receive credentials that certify personal information
(attributes) from a service provider (issuer). A credential encodes a vector of at-
tributes, e.g., date of birth,favorite item, number of purchases. A user can
then anonymously authenticate to a service provider (verifier) via a show protocol
by proving possession of a credential that satisfies an access policy (e.g., “favorite
item € {soda, chocolate} or number of purchases > 5”) without revealing any-
thing about her attributes except that they satisfy the access policy (predicate).
Typical examples of predicates includes that a user shows that she is old enough,
citizen of an EU member state, or that she has certain rights in an organization. AC
guarantees for the verifier of an anonymous authentication that the user has indeed
satisfying attributes (with respect to the predicate) encoded in a valid credential.
Here, the verifier has to trust the issuer of the credential since a dishonest issuer
can certify arbitrary attributes. Other examples of attributes of users are medical
records, subscription status, affiliations and roles in an organization, or biometric
data that can then be used to anonymously get physical access to locations. All
of these attributes correspond to a scenario where users naturally do not want to
reveal their attributes, however they want to use them to get access to services,
buildings, or archives.

In typical AC systems from the literature [BCKLO08; CL01; CL04; ILV11; PS16],
to get a credential on her attributes a user has to reveal them to the issuer or
the issuer exclusively determines the attributes. This limits the capabilities of AC.
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Consider the number of purchases attribute of our example. If a user wants to
increment this attribute in an AC system she has to reveal all of her attribute
values to the issuer. Only then the issuer is able to issue a new credential on her old
attributes with the attribute number of purchases incremented by 1. This means
an issuer can identify the user on the basis of her date of birth and number of
purchases. Hence, the user is anonymous with respect to all users that are born
on the same date and that have made equally many purchases. Hence, updating
attributes is not privacy-preserving in typical AC systems.

We present updatable anonymous credentials (UAC) as a solution to this prob-
lem. In UAC a user can get updates on attributes encoded in a credential from the
original issuer of the credential without revealing the attributes’ values. Further-
more, a user can also directly get a new credential on hidden and public attributes.
Previously, the latter was limited to include a hidden user secret (corresponding
to a pseudonym) in a credential and to transfer attributes of existing credentials
to a new one [Cam+16b]. Hence, UAC generalizes this to update functions for
the issue protocol that encode the public attributes and take hidden parameters
a (e.g., hidden attributes) as input. The output of an update function is the
attributes to be issued. Since issuance of credentials with an update function is
a special case of an update of credentials in UAC we start with the description
of an update. For an update of attributes of an existing credential the user and
issuer engage in an update protocol with an update function v as a common input.
The user then contributes her existing credential on attributes A and a hidden
parameter « to the protocol. The result of the update protocol is then a new
credential on updates attributes A* = v(A, ) for the user. The issuer on the other
hand only learns that the update function v was applied, but not hidden param-
eter o and not necessarily the resulting attributes A*. In our purchase example,
the user can now run the update protocol with an update function v defined as
v((A’, number of purchases),a) = (A’/,number of purchases+ 1) where A’ are
the unchanged attributes. Here the value of number of purchases stays hidden
from the issuer. The issuer only knows that it applied a “+1” update. Furthermore,
if the user also wants to change her favorite item to a gaming console, the update
function can be defined as v((A”, favorite item,number of purchases),«a =
gaming console) = (A” favorite item = «,number of purchases + 1) where
A" are the unchanged attributes. In this example the hidden parameter o stays
hidden from the issuer and as a result the issuer does not learn the user’s favorite
item. The same techniques are applied to the issuance of credentials. Hence, for the
issuance of a new credential the user and issuer engage in an issue protocol with an
update function v that only takes a hidden parameter « as input and no existing
attributes. For example, if an issuer just wants to issue a credential on public
attributes A without any involvement of a hidden parameter the update function v
is defined such that v(L,a) = A. Here, the hidden parameter « is ignored and the
update function v always maps to the attributes A. For example the attributes A
are (favorite item = - number of purchases = () modeling a favorite item
attribute value that is not yet set and a start value of 0 for number of purchases.
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More interesting is the issuance of a credential with hidden attributes encoded in
the hidden parameter. If the user wants hide some of the attributes in an issue pro-
tocol the update function v is set to v(L, a = (chocolate)) = (favorite item =
chocolate,number of purchases = 0) in our example. Here the attribute value 0
is known to the issuer and user, however chocolate is hidden from the issuer.

We show in this chapter an efficient instantiation of UAC based only on building
blocks that are commonly used to construct AC, e.g., argument systems, commit-
ments, and blind signatures. As mentioned before typical AC systems from the
literature limit the applicability of AC in scenarios where attributes are updated
regularly, e.g., the end date of a subscription or a counter for points or number of
purchases. The above purchase example is extended in [BBDE19a; BBDE19b] to
an incentive system based on UAC. An incentive system lets users collect points
according to their purchases, e.g., 5 points for every €10 and lets users spend
their points to get discounts or special items. The privacy-preserving incentive
system presented in [BBDE19a; BBDE19b] provides anonymity for the user, and
double-spending protection for the store. For more details we refer to [BBDE19a;
BBDE19b] and focus in the following on UAC.

5.1.1 Related Work

Anonymous credentials (AC) originally presented by Chaum [Cha81; Cha85] is
a broad research area covering AC constructions such as [BCKL08; BL13; CL01;
CL03; CL04; HP22; ILV11; RVH17] and UC security for AC [CDD17; CDHK15]
among others. These AC constructions are build from a versatile set of building
blocks. Namely commitments, (blind) signatures and argument systems. These
building blocks led to the addition of many practical features to AC over the
years such as delegation of credentials [BB18; Bel+09; CDD17; CL19; MSBM22],
revocation [CKS10; CLO1; CLO02], hidden predicates [Deu+18], auditing [CLNR14],
and efficient support of a broad class of predicates [Bem+18; CG08]. AC systems
that deviate from the above building blocks are systems build from structure-
preserving signatures on equivalence classes (SPS-EQ) [CLP22; FHS19; MSBM22]
or mercurial signatures [CL19]. Such AC systems are more efficient, since they
do not use commitment schemes in the case of mercurial signatures [CL19] which
simplifies protocols or they have more efficient show protocols (constant-size) in the
case of SPS-EQ. Furthermore, symmetric AC contrary to the typical asymmetric
notion of AC were introduced in [CMZ14] with efficient protocols. Motivated
by real-world applications the link between credential showings and the issuer’s
identity in asymmetric AC systems was loosened by the concept of issuer hiding in
[BFGP22; Bob+21; CLP22]. Without hiding the issuer, a show protocol is executed
with respect to the issuer’s public key of the credential to be shown, e.g., showing
a credential issued by a user’s country does not allow to hide the country since it is
encoded in the public key. The AC model was also adapted to more practical and
modern scenarios like having access to a cloud [HK19] and hardware structures
present in modern devices [HS21] where one part of the hardware is more powerful
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(e.g., smartphone) than the other (e.g., SIM card). Implementations and prototypes
of AC are also featured in the literature. The most well known implementations of
classical AC systems are U-Prove [Bra99; PZ13] and Identity Mixer [CL01; CV02].
Furthermore, a modern approach to AC with a link to reputation systems was
implemented and presented in [Bem+18]. Considering the general implementation
task, a prototyping library for AC and other privacy-preserving schemes called
Cryptimeleon was presented in [BEHF21] and features a framework for argument
systems in the form of Sigma protocols.

The concept of allowing hiding attributes during the issuance of credentials
was also considered in [Cam+16b] with the support that attributes carry over
from existing credentials to a new credential, if the attribute values stay the same.
In detail, the user proves for each hidden attribute value that it is equal to an
attribute value certified in an existing credential. Basic updates on credentials
were also considered in the literature [CKS10; DDD05; NDDO06]. In [DDDO05]
privacy-preserving updates of credentials in the form of addition and subtraction
of attribute values certified in an existing credential are presented for two concrete
AC system based on Brands’ system [Bra99] and CL-signatures [CL01]. However
without a corresponding security model. In [NDDO06] the authors first formalized
an update protocol in the syntax of AC that considers an unspecified update
operation. However, the authors require that a show protocol has to be executed
before every update protocol. Further, they do not define any security properties.
The AC system in [CKS10] supports update of credentials by their original issuer.
In contrast to UAC, the issuer learns all the attributes involved and the user cannot
contribute a hidden parameter.

Our modeling of the update function generalizes the existing approaches in
three aspects. First, an update function can perform arbitrary checks on attributes
and the hidden parameter, i.e., not limited to equality checks of attribute values.
Second, an update function involves an arbitrary hidden parameter, i.e., it does
not have to correspond to attributes certified in existing credentials. Third, the
issuer does not necessarily learn the attributes or hidden parameter of an update
function. Only if the user and issuer agrees on an update function that reveals
(parts of) them, e.g., with an equality check. Hence, with UAC users have the
choice of adding private information to their credentials and the issuer is able to
limit this by using a check on the hidden parameter. For example, if a user wants
to add her favorite item of a store as an attribute in an issue protocol, she sets the
favorite item as the hidden parameter and the store (issuer) adds to the update
function a check that the favorite item is on the inventory list. In UAC it is then
guaranteed that the store does not learn the user’s favorite item.

From a technical perspective closer related to our UAC are stateful anonymous
credentials [CGH11; GGM14]. There, a credential of a user encodes a state that
gets updated according to a public state machine model that then determines a
successor state. Similar to UAC, the old state stays private during the update. The
same functionality can be achieved using UAC by encoding the state transition in
the update function.
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Since we also consider ABS in this thesis, we want to note the difference between
ABS and AC in general. Most of the existing AC systems are build using signa-
ture schemes (or blind signature schemes), commitment schemes, and argument
systems, e.g., [BB18; BCKL08; BL13; CL01; CL04; ILV11; PS16; RVH17] and an
ABS scheme is indeed an extended signature scheme. Hence, intuitively one can
try to build an AC system using an ABS scheme as the signature scheme. However,
the obstacle is that an ABS is generated on a message-policy pair. This means, if
a user gets a credential from an issuer, here an ABS signature, the policy (predi-
cate) has be fixed during the issuing of the credential and therefore known to the
issuer. This makes it impossible for the user to choose the predicate for the show
protocol independently from the issuance of the credential. Furthermore, the issuer
can recognize the predicate and link showings to the issuing of credentials. To
circumvent this, we have to change the definition of ABS and allow that the policy
is not fixed during signing. To this end, an instantiation of an AC system from a
so called threshold attribute-based signatures (t-ABS) was shown in [SS09]. The
key feature of t-ABS is that the policy is fixed during verification of the signature.
This feature comes with the disadvantage of very limited policies, i.e., policies that
define a set of attributes and a valid t-ABS shows that the user’s secret key has
at least t attributes in common with the policy. In Section 5.6 we show a different
approach to build a UAC system from an ABS scheme.

5.1.2 Research Questions

We identify the following questions based on the related work and described limits
of existing AC systems.

Q1 How to define security for AC, i.e., anonymity and soundness, with hidden
attributes and an update function in the issue und update protocols?

Q2 Is there a generic construction of UAC with the sketched features (issuance
of hidden attributes and update of attributes) constructed from building
blocks that are commonly used in the AC literature?

Q3 Is there an efficient instantiation of the generic construction of UAC from
those building blocks?

Q4 What is the connection between ABS and UAC?

5.1.3 Our Contribution

We answer the questions in this chapter affirmatively in the following way.

Research question Q1. The challenge to define security for an AC with an
update function that includes hidden parameters, such as hidden attributes, is that
no issuer necessarily knows what kind of attributes (and credentials) it issued to
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users. In detail, in a soundness experiment we typically define that an adversary,
acting as dishonest users, outputs a forged credential on some attributes, if a
credential on these attributes was never issued by an honest issuer. However, in
our case we cannot define soundness in this way, because we as the experiment do
not know the hidden parameters (attributes) of the issued credentials. Therefore,
we define soundness differently with an extractor that outputs an explanation
list that includes the hidden parameters of every issue and update protocol in
Section 5.2. Regarding anonymity we use a simulation-based security definition
that requires that there is a simulator that can run the user side of the issue, update
and show protocols without having access to a user’s credentials, attributes, or
hidden parameters. This captures that adversarial issuers and verifiers do not learn
these private information by interacting with a user in the protocols.

Compared to [BBDE19a; BBDE19b] we revise the security model in two ways.
First, the soundness definition in this thesis is with respect to a black-box extractor
(also called online or straight-line extractor in the literature) that does not require
rewinding access to an adversary. Second, the anonymity definition presented in
[BBDE19a; BBDE19b] is formalized as an experiment in this thesis.

Research question Q2. We answer the second question by presenting a generic
UAC construction from a blind signature scheme and a zero-knowledge argument
of knowledge system in the ROM (Section 5.3). We prove the security of the
generic UAC construction using our security definitions in Section 5.4. Additionally,
we discuss the generic UAC construction and its security in the CRS model in
Section 5.4.3.

Research question Q3. We present an efficient instantiation of the generic
UAC construction in Section 5.5 to answer the third question. For this we use the
blind signature scheme by Pointcheval and Sanders [PS16] and a zero-knowledge
argument of knowledge system in the ROM construction with the Fischlin trans-
formation [BFW15; Fis05].

Research question Q4. This question is interesting since ABS is a signature
schemes and in the literature signature schemes are used to build AC systems.
However, as mentioned in Section 5.1.1 this direct approach used in [SS09] is
limited to very specific ABS schemes for which there is only one instantiation
presented in the same work [SS09]. We first discuss the high level similarities of
ABS and UAC in Section 5.6 and then describe an instantiation of our generic
UAC construction from an ABS scheme, where we use the ABS scheme for the
showing of credentials. For the latter we have to make requirements on how the
ABS scheme is constructed, i.e., that it uses a signature scheme to generate ABS
secret keys and that the signature scheme can be transformed to a blind signature
scheme.
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5 Updatable Anonymous Credentials

5.2 Updatable Anonymous Credentials (UAC)
Definitions

In the following, we formally define updatable anonymous credential (UAC) systems
and their security. In UAC there are three roles: issuers, users, and verifiers. An
issuer is responsible for issuing credentials on user attributes under its own key,
users can contact issuers to get a credential for their attributes and prove possession
of a credential to verifiers. Additionally, users can contact the issuer of a credential
to update its attributes. For the interaction of the roles we assume that the
communication is done via secure channels. Note, in practical applications it is
also necessary to hide identifying information of the communication network to
preserve anonymity of the users, e.g., the IP addresses, if UAC is used over an
IP-based network, or Media Access Control (MAC) address, if we use UAC in a
system with short-range communication (e.g., Bluetooth, NFC). However, these are
concerns on a higher level than the definition of UAC and are not considered further
in this thesis. Next, we define the syntax of UAC and mention the corresponding
roles.

Definition 5.2.1 (Updatable Anonymous Credentials)

An updatable anonymous credential (UAC) system denoted as UAC consists of
algorithms Setup, IssuerKeyGen, IssueCred, ReceiveCred, UpdateCred, ReceiveUpd,
ShowCred, and ShowVerify.

o Dp Setup(l)‘) is a ppt setup algorithms that on input security parameter 1A
outputs public parameters pp. We assume that the public parameters pp define
the attribute universe Uz,

o (pk, sk) < IssuerKeyGen(pp,1™) is a ppt issuer key generation algorithm that
on input public parameters pp and attribute vector length 1™ outputs an issuer
key pair (pk, sk). We assume that the issuer public key pk defines the attribute
space Up,,, of the issuer, and hence the update function universe T

T = {U | v U ¥ {0,117 = Uney, U{L}
Voo {L} x{0,1} = Upy U{L}},

and the predicate universe X’

X = {X ’ X:u;’glttr X {071}* — {071}}

o cred < ReceiveCred(pp, pk, ctx,v,a) <> IssueCred(pp, pk, ctz,v, sk) is an inter-
active protocol with common input public parameters pp, issuer public key pk,
context ctz, and update function v : { L} x{0,1}* — UR,,,U{L} between a user
running ppt algorithm ReceiveCred and issuer running ppt algorithm IssueCred.
Algorithm IssueCred gets as additional input an issuer secret key sk. Algorithm
ReceiveCred with additional input a hidden parameter o outputs a credential
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cred or failure symbol 1. We assume that a credential cred includes the issued
attributes A.

o cred” < ReceiveUpd(pp, pk, ctz,v, o, cred) <» UpdateCred(pp, pk, ctz,v, sk) — b
is an interactive protocol with common input public parameters pp, issuer public
key pk, context ctz, and update function v : Ug,,, x {0, 1}* — U, U{ L} between
a user running ppt algorithm ReceiveUpd and issuer running ppt algorithm
UpdateCred. Algorithm UpdateCred with additional input an issuer secret key
sk outputs a bit b € {0, 1}. Algorithm ReceiveUpd with additional input a hidden
parameter o and a credential cred outputs a credential cred® or failure symbol
L.

o ShowCred(pp, pk, ctz, x, a, cred) <> ShowVerify(pp, pk, ctz, x) — b is an interac-
tive protocol with common input public parameters pp, issuer public key pk,
context ctz, and show predicate y : Uy, x {0,1}" — {0,1} between a user
running ppt algorithm ShowCred and verifier running ppt algorithm ShowVerify.
Algorithm ShowCred gets as additional input a hidden parameter o and a cre-
dential cred. Algorithm ShowVerify outputs bit b € {0,1}.

o

Intuitively, correctness for an UAC system means that all credentials output by
algorithm ReceiveCred and ReceiveUpd are valid on the attributes determined by
the corresponding update function v and hidden parameter a.. We give a description
of the usage of an UAC system, before we formally define correctness and security
in the form of anonymity and soundness for UAC systems.

5.2.1 Description of an UAC System

Let us describe how the roles issuer, user, and verifier use an UAC system UAC as
defined above. In UAC each of the roles can be instantiated multiple times, hence
there are multiple issuers, users and verifiers in an UAC system.

Setup. We use an explicit setup algorithm Setup run by a trusted party that gen-
erates public parameters such as a group description to make our setup compatible
with other schemes and applications that run on the same public parameters. For
example the public parameters can include parameters for the commitment. With
that in place, everyone knows also the attribute universe Uattr, €.8., Uattr = Zp.

Key generation. FEach issuer generates its own public and secret key by running
(pk, sk) « lIssuerKeyGen(pp, 1), where each issuer chooses n to be length of the
attribute vectors that it uses in the issuing of credentials, e.g., the attribute space
of an issuer is Upy,, = Z,. An issuer with key-pair (pk, sk) uses its secret key
sk to issue credentials on attributes A € Uy, and to update previously issued
credentials.
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Issuing and updating credentials. User can either get a fresh credential
issued by an issuer or get an update of an existing credential. We first describe
the update protocol since issuing is a special case of an update. Let credential
cred be the existing credential of a user with attributes A that it wants to update
with an issuer identified by public key pk. To run the update protocol the user
and issuer agree on an update function v : Up,,, x {0,1}" — UR, U{L} that takes
attributes as its first argument and a hidden parameter « chosen by (and only
known to) the user as its second argument such that v(A, «) # L, otherwise the
update ends with a failure symbol. Note. a user should never start an update where
v(A,a) = L. Informally, we consider appropriately chosen update function v to
include a check of the attributes and hidden parameter before applying the update.
With the common input fixed, the user and issuer run the update protocol where
the user runs ppt algorithm ReceiveUpd(pp, pk, ctx, v, a, cred) and the issuer runs
ppt algorithm UpdateCred(pp, pk, ctz, v, sk). The result of this protocol is that the
user gets an updated credential cred™ on attributes A* determined by the update
function v, i.e., A* = v(A, a), or the failure symbol L, e.g., if v(A,a) = L or the
protocol aborted otherwise. On the issuer side algorithm UpdateCred produces as
an output a bit b. Intuitively, the output bit b indicates for the issuer, if the update
was successful or not. The correctness of UAC guarantees that, if the bit b is 1,
then we have that the update function “worked”, i.e., v(A, «) # L.

As already mentioned the issuing of credentials is a special case of an update.
Intuitively, the issuer updates an empty credential that has no attributes and
during the update the issuer adds attributes to the credential. First the user and
issuer agree on an update function v : {L} x {0,1}" — UR,,, U {L} that takes
no existing attributes as its first argument, we use | for this, and as a second
argument a hidden attribute « chosen by the user, such that v(L,«) # L. By this
the first input is hardcoded in the update function v. Then user and issuer run the
protocol where the user runs the ppt algorithm ReceiveCred(pp, pk, ctz,v, o) and
the issuer runs the ppt algorithm IssueCred(pp, pk, ctx, v, sk). To finish the protocol
algorithm ReceiveCred outputs a new credential cred on attributes A = v(L, ) on
the user side. If the protocol aborts the algorithm ReceiveCred outputs the failure
symbol, e.g., if v(L,a) = L.

Let us describe the role of the update function in more detail. In the simplest
case an issuer just wants to issue a credential on some known attributes, e.g.,
A = (a,b,c,d). Hence no attributes are hidden to the issuer. In this case the
update function is set to v(L,«) = A where the hidden parameter « is ignored. If
for example the user wants to hide some of the attributes from the issuer, then the
update function is set to v(L,a = (u,v)) = (a,b, c+u,u+ v) where the attributes
a, b, and ¢ are known to the issuer, however attributes u and v are only known
to the user. The update function is very versatile and can also include further
checks of the user’s attributes and hidden parameter. For example the update
function v can include a check of the hidden parameter « to restrict the choice
of the user, e.g., we can define that v(L,« = (u,v)) outputs the failure symbol
1L if w + v > 50. With this modeling we capture scenarios where only specific
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updates are allowed. To look ahead, the checks in the update function can be
instantiated by an argument system, e.g., a range proof that u +v < 50 holds. If a
user and issuer wants to update a credentials they also agree on an update function
v that includes the existing attributes. For example, consider for any attributes
A = (a,b,c,d) an update function v(A, «) = (a + 8,b,¢ + 20,d + 9 + ) meaning
that the first element of an attribute vector is increased by 8, the third by 20, and
the last by 9 + « . Here, the values +8, 420, and +9 are hardcoded in the update
function v and known to the user and issuer. However, the hidden parameter « is
only known to the user.

Showing credentials. Users can show credentials and prove predicates over
their attributes certified by credentials to any verifier in the system. To show a
credential cred on attributes A issued by an issuer with public key pk a user and a
verifier agree on a predicate x : Uz, x {0,1}* — {0, 1}. For this, the user chooses a
hidden parameter « such that the predicate evaluates to 1, i.e., x(A, a) = 1. Next,
the user and verifier execute the protocol where the user runs the ppt algorithms
ShowCred(pp, pk, ctz, x, «, cred) and the verifier runs ppt algorithm ShowVerify(pp,
pk, ctz, x). The algorithm ShowVerify outputs a bit b at the end of the protocol
on the verifier side. If b = 1 it indicates that the user has a valid credential under
issuer public key pk on some attributes A’ such that there is a hidden parameter
o/ where y(A’,o’) = 1. Hence, the verifier gets information, if the predicate x does
hold or not with respect to the user’s attributes and hidden parameter. Note, that
predicate y can perform checks on the attributes and the hidden parameter.

In above description of the usage of an UAC system the instantiation of the
update functions and predicates are left open. In Section 5.3 we show a generic UAC
construction that relies on non-interactive argument systems and blind signatures
to instantiate the update functions and predicates in a meaningful way.

A note on pseudonyms in AC. Anonymous credential (AC) are usually
defined with users having a user secret usk and the ability for users to generate
pseudonyms N from usk, e.g., [BB18; BCKL08; BL13; CL01; CL03; CL04; FHS19;
PS16]. Each credential then includes the user secret usk as one of its attributes
where the issuer of the credential does not learn usk, but it learns the pseudonym
N. This means, users can have multiple pseudonyms under which different issuers
can recognize them. Our UAC definition generalizes this by supporting hidden
attributes during issuing and update via the hidden parameter a that the user
chooses. In detail, a user with user secret usk computes a pseudonym N as a
commitment to usk, i.e., N < Commit(pp, pk, usk,0) with randomness o. Thus,
the opening of the commitment (pseudonym N) is (usk,o0). Then, in an issue
protocol for attributes A and pseudonym N the user sets its hidden parameter
a = (usk,0) and agrees with the issuer on an update function v that verifies if
(usk, 0) is the opening of pseudonym N and that sets one of the attribute values
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to the user secret usk. In detail the update function v is defined like this:

o(L,a) = {(usk,A), if N = Commit(pp, pk, usk, o)
1, otherwise

By this, the user proves during the issuing that it is the user that created the
pseudonym N. In the update protocol, user and issuer have to make sure that the
used update function does not update the user secret usk. To support pseudonyms
in the show protocol with a credential cred the predicate x is also modified such
that it checks if (usk,0) is the opening of pseudonym N where the user sets the
hidden parameter o := o and the user secret usk is checked against the user
secret of the credential cred. This ensures that the credential cred belongs to
the user known under pseudonym N. Concerning security, if the commitment is
computational hiding, then our simulation-based anonymity definition for UAC
captures that the commitment to a user secret can be simulated without knowing
the opening. Also, if the commitment is computationally binding, then the extractor
Extr of the soundness definition can extract an opening (usk, o) of the commitment
(pseudonym) N. Hence, if a user knows two openings of a pseudonym N, then
it holds that a consistent explanation list L contains two openings of the same
pseudonym N which breaks the binding property.

Next, we focus on the correctness and security definitions of UAC. To define
correctness formally we have to introduce the notion of valid credentials. For
this, we define an algorithm ValidCred(pp, pk, cred, A) that determines whether a
credential cred is valid on attributes A under an issuer public key pk and public
parameters pp.

Definition 5.2.2 (Valid Credentials)

Let ValidCred(pp, pk, cred, A) be an algorithm for an updatable anonymous creden-
tial system UAC that on input public parameters pp, issuer public key pk, credential
cred, and attributes A works as follows.

o if cred € ReceiveCred(pp, pk, ctz, v, a), where ctz € {0,1}", and cred # L,
then it holds that

ValidCred(pp, pk, cred, A = v(L,a)) =1,

o if cred* € ReceiveUpd(pp, pk, ctz, v, o, cred), where ctz € {0,1}", and cred* #
1 and ValidCred(pp, pk, cred, A) = 1 then it holds that

ValidCred(pp, pk, cred™, A* == v(A, o)) = 1,

e in every other case it holds that ValidCred outputs 0.
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Note, algorithm ValidCred is not required to be efficient and serves as a tool in
the definitions of correctness and anonymity. Intuitively, a UAC system is correct,
if under an honest setup all honestly generated credentials are valid (according
to algorithm ValidCred) and a corresponding run of the verify protocol (update
protocol) end with output 1 on the verifier side (issuer side). We require that an
UAC system is correct and define it formally in the following.

Definition 5.2.3 (Correctness)

An updatable anonymous credential system UAC is correct, if for all \;n € N, all
pp € Setup(1?), all issuer key pairs (pk, sk) € IssuerKeyGen(pp,1™), all contexts
ctz € {0,1}", all credentials cred, all attributes A € Ups,, whenever it holds that
ValidCred(pp, pk, cred, A) = 1, we have that

o for all predicates x € X, and all hidden parameters o € {0,1}" such that
X(A, a) =1, it holds that

Pr[ShowCred(pp, pk, ctz, x, a, cred)
+» ShowVerify(pp, pk, ctx, x) — 0] = negl(\)

o for all update functions v € Y, all hidden parameters o € {0,1}" such that
v(A, a) # L, it holds that

Pr[L = cred” + ReceiveUpd(pp, pk, ctz, v, a, cred)
> UpdateCred(pp, pk, ctx, v, sk) — 0] = negl(\).

<

Next, we define the security of UAC with the notion of anonymity for the user
and soundness for the issuer and verifier.

5.2.2 Anonymity

Intuitively, the anonymity notion captures that a user does not leak private in-
formation by interacting with an adversarial issuer or verifier. Hence, we require
for anonymity that there are simulators for the user side of the issue, update, and
show protocols. Further, we require that they simulate the interaction with an
adversary without having access to private user information, i.e., without access to
attributes, hidden parameters, and credentials, in such a way that the adversary
cannot distinguish if it interacts with the real protocol algorithms or the simulators.

In the following experiment the adversary acts as dishonest issuers and verifiers,
where the experiment executes the user side of the protocols honestly with the
given parameters. The adversary can ask oracles to issue a credential with the
adversary, to let the adversary update an existing credential, and to show an
existing credential to the adversary.
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Definition 5.2.4 (Anonymity)
Let UAC be an updatable anonymous credential system and let D be a distinguisher.
anon,b

We define the advantage in the experiment Exp}'\jAc(A) (Experiment 5.1) as
AdvEUac(A) = ‘Pr {EXP%],%nAOC(/\) = 1} —Pr [Expg%n,&lc()\) = 1} ‘

and call UAC (computational) anonymous, if there exists a (stateful) ppt simula-
tor Sim := (SimReceiveCred, SimReceiveUpd, SimShowCred) such that for every ppt
distinguishers D it holds that

AQVBTAc(N) = negl(A) .

Similar to argument systems in the ROM Section 2.3.5, if the simulator Sim in
the above definition is stateful then we require that the state is shared between
the algorithms SimReceiveCred, SimReceiveUpd, SimShowCred, i.e., they share a
common state that gets implicitly updated by each run of the algorithms.

5.2.3 Soundness

Formally defining soundness for UAC is not straightforward, since issuers (and
verifiers) do not necessarily know the attributes that are issued or are a result of an
update. Usually in AC one defines soundness such that it should be infeasible for an
adversary (acting as dishonest users) to show a credentials that it did not get from
an issuer. Meaning the adversary should not be able to forge a valid credential on
some attributes. However, in an UAC system with its hidden parameter for issuing
and updating credentials the issuers, verifiers and therefore also the experiment do
not know the hidden attributes (and credentials). Thus, we cannot define a typical
winning condition that checks if the forgery is a valid credential on attributes that
the experiment (the oracles) never generated. Hence, we have to define soundness
differently. Intuitively, we require that it is infeasible for an adversary to run issue,
update and show protocols such that there is no explanation of what happened
given the involved update functions, attributes, and hidden parameters of the
protocols. In detail, there has to be an efficient extraction algorithm that extracts
the used hidden parameters and attributes and generates a consistent explanation
of the state before and after each protocol run. Thus, our soundness notion is
comparable to extractability definitions as it is the case in argument systems
(Section 2.3.5).

Before defining the soundness of UAC we have to define explanation lists. An
explanation list L contains which attributes and hidden parameters were used in
protocols. To explain the usability of this, let us consider a series of protocol runs
(issue, update, show) where we are the issuer and verifier. This means, we do not
know the attributes and hidden parameters of any of the protocols. Further, let the
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Exp yac(A)

1: pp<+ Setup(lA),Lcred =10

2: (pk,st) + D(pp)

- ReceiveCred;, . ReceiveUpd;, - ShowCredy,
3: b+« D vk "~ pp,pk ek (st)
4: return b
E;f;,ic"ecredl (v, a, ctx) igzjﬁcredl (4, x, @, A, ctz)
1: ifveé TVou(l,a)=_L1 then 1: parse Leed[j] = cred
2: ignore 2: if cred= 1V
3: cred < ReceiveCred(pp, pk, ctz,v,a) <> D 3: x¢XVx(A a =0 then
4: if cred = 1 then 4: ignore
5: return | 5: if ValidCred(pp, pk, ctz, cred, A) = 0 then
6: else 6: ignore
7: Lered '= Lcrea U cred 7: ShowCred(pp, pk, X, o, cred) <> D
E;;;e,iﬂveUpdl (J,v,a, A, ctx) O?;Zf,icvecredo (v, a, ctx)
1: parse Leed[j] = cred 1: ifvéYTVou(l,a)=_1 then
2: ifcred=1LVvu¢gTVu(A a)=_L1 then 2 ignore
3: ignore 3: cred < SimReceiveCred(pp, pk, ctz,v) +> D
4 : if ValidCred(pp, pk, cred, A) = 0 then 4: if cred = L then
5: ignore 5 return |
6: cred” + ReceiveUpd(pp, pk, ctz,v,q, cred) <+ D 6: else
7: if cred® = L then 7 Lered = Lered U cred
8: return |
9: else
10 : Lered = Lered U cred”
(’)E;’c:,icveUpdo (J,v,a, A, ctx) O}S};’(;vzcredo (4, x, a, A, ctx)
1: parse Leed|j] = cred 1: parse Leed[j] = cred
2: ifcred=1Vuv¢gYTVu(A a)=_1 then 2: if cred=1V
3: ignore 3: x¢XVx(A a) =0 then
4 : if ValidCred(pp, pk, cred, A) = 0 then 4: ignore
5: ignore 5: if ValidCred(pp, pk, cred, A) = 0 then
6: cred” < SimReceiveUpd(pp, pk, ctz,v) <> D 6 ignore
7: if cred® = 1 then 7: SimShowCred(pp, pk, ctz, x) <> D
8: return |
9: else

Lered = Liered U cred”

Experiment 5.1: Anonymity experiment for updatable anonymous credentials.
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series of protocol runs end with a ShowVerify run that outputs b = 1. We would like
to know how this output came to be. For this we need to know which attributes
and hidden parameters were used such that ShowVerify outputs b = 1. We require
that if an explanation list L is consistent (with the series of protocol runs), then it
contains a series of entries consisting of attributes and hidden parameters starting
from an issue of a credential, over potentially several updates, to the final show
protocol run. Intuitively, the entries (attributes, hidden parameters) explain the
state before and after a protocol run. This means an explanation list L explains
all attribute vectors that are issued or are a result of an update. We build the
explanation list L like this, because old credentials stay valid even after an update
or issuance of new credentials to a user.

Definition 5.2.5 (Explanation List)

Let UAC be an updatable anonymous credential system, let A be an adversary, let
pp < Setup(11), and let (pk, sk) < IssuerKeyGen(pp, 1™) for some n € N. We define
an explanation list L for UAC that lists which attributes and hidden parameters
adversary A running the user side of protocols used in a series of issue, update,
and show protocols as follows. Explanation list L consists of one entry per protocol
where adversary A runs the user side, i.e., ReceiveCred, ReceiveUpd, or ShowVerify
respectively. The other side of the protocols (i.e., IssueCred, UpdateCred, ShowVerify)
is executed honestly (by an experiment). Hence, the i-th entry of explanation list
L is

o a tuple (A;, a;), if algorithm ShowVerify or UpdateCred was executed.
e a hidden parameter «y, if IssueCred was executed.

Next, we inductively define explanation sets F; of attributes that correspond to
the explanation list L and therefore to the attributes that adversary A is expected
to have after the i-th protocol finished. The sets start empty, hence Ey := (). Then:

« if i-th protocol algorithm is ShowVerify, we set F; = E;_1. Here, no creden-
tials are issued.

o if the i-th protocol executes IssueCred(pp, pk, ctz,v, sk) with update function
v, we set F; = F;_1 U{v(L,a;)} if v(L,a;) # L. Here, we expect that the
output for adversary A is a credential with attributes A’ = v(L, ;).

o if the i-th protocol executes UpdateCred(pp, pk, ctz, v, sk) and the output of
algorithm UpdateCred is 1 we set E; = E;—1 U {v(A;, aq)} if v(A;, o) # L.
Here, we expect that the output for adversary A is an updated credential
with attributes A* = v(A;, ;). If the output of algorithm UpdateCred is 0
we set F; := FE; 1. Here, we expect that no credential was output to the
adversary A.

We call an explanation list L consistent, if it includes entries such that
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o if the i-th protocol was a show protocol and algorithm ShowVerify(pp, pk, ctz,
X) output 1, then the i-th list entry (A;, o;) satisfies x, i.e., x(A;, ;) = 1
and attributes A; is a result of a previous issue or update protocol run, i.e.,
it holds that A; € E;_;.

o if the i-th protocol was an update protocol and algorithm UpdateCred(pp, pk,
ctz, v, sk) output 1, then for the i-th list entry (A;, a;) it holds v(A;, ;) # L
and attributes A; are a result of a previous issue or update protocol run, i.e.,
it holds that A; € E;_1.

o

With this in place we can formally define soundness for UAC. Here, we require
the existence of an efficient extractor that generates an explanation list L. This
means for every protocol of an adversary with an honest issuer and verifier there
is an explanation what happened, i.e., which attributes and hidden parameters
were used to start the protocol and what was the corresponding outcome of the
protocol. The soundness notion then requires that there is an extractor, such
that for all adversaries it should be infeasible to produce a series of protocol runs,
such that the explanation list generated by the extractor is not consistent. If an
adversary is indeed successful then it forged a credential on attributes (and hidden
parameters) that it did not get from the series of protocols. The following definition
also considers soundness in the ROM. Note, if we do not consider soundness in
the ROM the adversary does not get oracles access to the random oracle and the
same definition can be used.

Definition 5.2.6 (Soundness)
Let UAC be an updatable anonymous credential system and let A be an adver-

sary (and let RO a random oracle). We define the advantage in the experiment
sound

Exp%'Uac(A) (Experiment 5.2) as
AVEAC () = Pr[ExpRRc (V) = 1]

and call UAC sound (in the ROM), if there exists a ppt extractor Extr such that
for all ppt adversaries A it holds that

AdvUAc(V) = negl()) -

5.3 Generic UAC Construction

In this section we define our generic UAC construction based on blind signatures
and an argument system and show a concrete instantiation. We present here
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sound

Exp*{'Uac(A)
11 QnQu,Qv,Qu =10
2: pp « Setup(1?)
(1", st) + A" (pp)
(pk, sk) « lssuerKeyGen(pp, 1™)

howVerify
OIssueCred OUpdateCred OS ow eny7ORO

5:  halt <— A™repksk ™ pppkisk > pppk (pk, st)
6: L <« Extr(pp, pk,sk,Qr,Qu,Qv,Qn)
7: if L is not consistent then
8: return 1
9: else return 0
OlssueCred (y ctz) Oy Peeterd (v, ctr)
1: if v ¢ 7Y then 1: if v ¢ 7T then
2: ignore 2: ignore
3: A< IssueCred(pp, pk, ctz, v, sk) 3: A<« UpdateCred(pp, pk, ctz,v, sk) — b
4: Let st! be the exchanged messages 4: Let stV be the exchanged messages
5: Q= QIU{(U,ctx,stI)} 5: Qu:i= QUU{(U,b7Ct$,SﬁU>}
OppenV*™ (x, cta) 0% (v:)
1: if xy ¢ X then ignore 1: y; < RO(v;)
2: A« ShowVerify(pp, pk, ctz, x) — b 2: Qup=QuU{(vi,ui)}
3: Let stV be the exchanged messages 3: returny;
4: Qv =QyU {(X,b7 ctz, stv)}

Experiment 5.2: Soundness experiment for updatable anonymous credential

the generic construction in the random oracle model (ROM), because we rely on
argument systems in the ROM to allow efficient instantiations. To this end, we
present a concrete and efficient instantiation based on the blind signature scheme
by Pointcheval and Sanders [PS16] and non-interactive argument systems based on
the Fischlin transform [BFW15; Fis05] in Section 5.5. We also discuss the generic
UAC construction in the CRS model in Section 5.4.3.

Let us start with an intuitive description of our generic UAC construction called
UACE®. On a high level, the issuer uses the blind signature scheme to issue creden-
tials on attributes and the argument system is used by the users to prove statements
about their attributes and credentials. In more detail, consider a user that wants
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to get a credential by an issuer (known under its public key pk) on attributes
A = (u,a,c), where u and a should be private and ¢ is public, e.g., the issuer gives
such an attribute to all users like ¢ being a counter of how many purchases a user
has made (initially 0). For the issue protocol between the user and the issuer both
agree on the corresponding update function v, i.e., v(L,a = (u,a)) = (u,a,c). To
get a credential on the attributes A = (u, a, c) the user computes a commitment
com to attributes A and proves that it is well-formed, i.e., the user knows the
hidden parameters « such that v(L,a) = A and the commitment randomness r
that were used to compute com. Together attributes A and com form the opening
of the commitment. The issuer gets this proof and by checking that it is valid,
the issuer can be sure that, even if it signs the commitment com blindly (with-
out knowing the opening), the committed attributes are valid with respect to the
update function v. This is because, if the issuer does not agree with the update
function v, it does not start the protocol with the user. Thus, the issuing proceeds
by running the blind signing protocol that the user initiates. This means, the issuer
blindly signs the commitment com and the user receives a signature o on attributes
A = (u,a,c). The user checks the validity of the signature o. If it is valid the user
sets the credential cred := (A, o) and outputs it such that it can be stored. If the
signature o is not valid the user outputs the failure symbol L. For example this
can be a trigger to retry the issue protocol.

After the user has made a purchase the issuer offers the user to update the user’s
credential cred = (A = (u,a,c),0) by increasing the purchases counter attribute ¢
by 1. For this example let attribute a be the users favorite item and suppose this
has changed and has to be updated as well. To do this, both interact in an update
protocol, where the update function v’ is defined such that /(A = (u,a,¢),a ==
favorite) = (u,a = favorite,c + 1). Here favorite is the user’s favorite item of
the last purchase and is for privacy reasons hidden to the issuer. Then, the user
computes commitment com to the updated attributes A* = (u, a = favorite,c+1).
Then the user proves that the commitment com is well-formed (as in the issue
protocol). Additionally, the user proves that its credentials cred = (A = (u, a,c),0)
is valid, i.e., that the signature ¢ on attributes A is valid. The remainder of the
protocol proceeds as the issue protocol, i.e., the issuer checks the proof, then
generates a blind signature ¢* on the commitment com, and the user checks the
signature and generates the output accordingly. If all checks are valid, the user
receives at the end of the issue protocol a credential cred™ on the updated attributes
A ie., cred” == (A* 0*). The user can now show this credential to any verifier,
e.g., to get a discount, because the purchase counter is higher than a threshold &
and the user’s favorite item is contained in a discount list of the verifier. These
conditions are then used to define a predicate x for the show protocol. In the
example the predicate x checks if the purchase counter attribute c¢ is higher than
the threshold k& and checks that the favorite item attribute a is equal to one of
the items on the discount list. In the show protocol, the user then proves that its
credential cred = (A, o) is valid, i.e., that o is a valid signature on attributes A, and
that the predicate evaluates to 1, i.e., x(A,a = 1) = 1. To extend the example
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to also use the hidden parameter «, let us consider that the user additionally has
to prove that it has access to an accepted payment option. Hence, let the hidden
attribute a be a signature by an accepted payment provider. Then, the predicate
x also checks that the signature is valid under a public key of an accepted payment
provider. The user then sends the proof to the verifier which gives the discount
to the user, if the proof is valid. In general the user can authenticate towards
a verifier without revealing any of its attributes. The expressiveness comes from
the predicate in the show protocol that allows the user to prove the validity of
statements over its attributes and hidden parameter without revealing the concrete
attributes or the hidden parameter.

Next, we formally define the generic UAC construction UACES. For this we require
that the setups of the blind signature scheme and argument system are compatible,
i.e., they both work with same public parameters (e.g., a group description).

Construction 5.3.1 (Generic UAC construction)

Let BS = (BS.Setup, BS.KeyGen, BS.Commit, BS.BlindSign, BS.BlindRcv, BS.Verify)
be a blind signature scheme (Definition 2.3.7). Further, let Arg = (Arg.ProveR©,
Arg VerifyR9) be an argument system in the ROM (Definition 2.3.27). We define
the generic UAC construction UACE® as follows.

o pp + Setup(1*) outputs public parameters pp < BS.Setup(1}) where the mes-
sage space parameters included in pp define the attribute universe Uagt, -

o (pk, sk) < IssuerKeyGen(pp, 1™) outputs a blind signature key pair (pk, sk) <
BS.KeyGen(pp, 1™). Public key pk defines the message space M"™ of the blind
signature scheme and hence the attribute space Uy,,, := M" of the issuer. The
update function universe Y is defined as

T = {U | v Upee ¥ {0,117 = Unee, U{L}
Voo {1} x{0,1}" = Uny, U{L}},

and the predicate universe is defined as

A= {x | X : Uper x {0,1}" = {0,1}}
and we require that they are supported by the argument system Arg.

o cred < ReceiveCred(pp, pk, ctz,v,a) <> IssueCred(pp, pk, ctz,v, sk) for v € T
proceeds as follows.

— The user computes its attributes A = v(L, «) and then a commitment to
the attributes A by com < BS.Commit(pp, pk, A, r) where r < R

— Next, the user computes the proof
m = Arg[(a, ) : com = BS.Commit(pp, pk,v(L, a),r)](ctx)

and sends the proof 7 together with the commitment com to the issuer.
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Then, the user starts the blind signing protocol with the issuer by running
algorithm BS.BlindRev(pp, pk, A, )

The issuer aborts, if the proof 7 is invalid, i.e., if it holds that
VerifyRO(pp, x = (pk,v, com),m, ctr) =0 .

Otherwise, the issuer runs algorithm BS.BlindSign(pp, pk, sk, com) in the
blind signing protocol.

Finally, the user on signature output o <« BS.BlindRev(pp, pk, A, r) it
checks if the signature o is valid by b < BS.Verify(pp, pk, A, o). If b =1
it outputs the credential cred = (A, o), otherwise it outputs the failure
symbol L.

o cred” < ReceiveUpd(pp, pk, ctz,v, a, cred) <> UpdateCred(pp, pk, ctz,v, sk) — b
for v € T proceeds as follows.

The user parses the credential cred = (A, o)

Then the user computes the updated attributes A* as A* = v(A, o) and
commits to the attributes A* by com < BS.Commit(pp, pk, A*,r) where
r < RCom,

Next, the user computes the proof

m =Arg[(A, o, a,r) : com = BS.Commit(pp, pk, v(A, a),r)
A BS.Verify(pp, pk, A, o) = 1](ctz)

and sends the proof 7 together with the commitment com to the issuer.

Then, the user starts the blind signing protocol with the issuer by running
algorithm BS.BlindRev(pp, pk, A*, 1)

The issuer outputs 0 and aborts, if the proof 7 is invalid, i.e., if it holds
that
VerifyRO (pp, 2 == (pk, v, com), , ctz) =0 .

Otherwise, the issuer runs BS.BlindSign(pp, pk, sk, com) in the blind signing
protocol.

The user on signature output o* <— BS.BlindRev(pp, pk, A*,r) it checks
if the signature o* is valid by b < BS.Verify(pp, pk, A*,0*). If b = 1 it
outputs cred* = (A*, 0*), otherwise it outputs the failure symbol L.

The issuer outputs 1 after the blind signing protocol finished.

o ShowCred(pp, pk, ctx, x, a, cred) <> ShowVerify(pp, pk, ctz,x) — b for x € X
proceeds as follows.

The user parses cred = (A, o)

Then, the user aborts if x(A, a) = 0 and informs the issuer
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— The issuer on abort by the user outputs 0

— The user, if x(A, a) = 1, computes the proof
m = Arg[(A, o, a) : BS.Verify(pp, pk, A, 0) = 1 A x(A, a) = 1](ctx)

and sends the proof 7 to the issuer.

— The issuer outputs 1, if the proof 7 is valid, i.e., if it holds that VerifyRo (pp,
x = (pk,x),m, ctxr) = 1, otherwise it outputs 0.

Correctness. The correctness of UACE® follows from the perfect correctness of
the blind signature scheme BS (Definition 2.3.8) and the correctness of the argu-
ment system Arg (Definition 2.3.28). Here, we instantiate the algorithm ValidCred
with the verification algorithm of the blind signature scheme BS. In detail, we define
algorithm ValidCred(pp, pk, cred, A) on input public parameters pp, issuer public
key pk, credential cred = (A’ o), and attributes A to output BS.Verify(pp, pk, A, o).
Hence, the perfect correctness of BS, that algorithm BS.Verify is deterministic, and
that the issue, update, and show protocols rely on BS (credentials are blind signa-
tures) gives us a way to verify credentials according to Definition 5.2.2. Together
with the correctness of the argument system Arg (in the ROM) the correctness of
the generic UAC construction UACE® (Definition 5.2.3) follows directly.

5.4 Security of the Generic UAC Construction

In the following we show that the generic UAC construction UACE is perfectly
anonymous and computationally sound. We show this in two separate theorems
and we start with the anonymity of UACE&C.

5.4.1 Anonymity

The anonymity of UACE® follows from the perfect message privacy of the blind sig-
nature scheme BS and that the argument system Arg is zero-knowledge. Intuitively,
that Arg is zero-knowledge gives us that the proofs in the protocols of UACE® do
not leak information to an adversarial issuer (verifier), that it did not already know
before the protocol run. Furthermore, from the message privacy of BS it follows
that (1) the commitments to the attributes in the protocols perfectly hide the
attributes from an adversarial issuer (verifier) and (2) the blind signing protocol
does not leak the message to be signed.

Theorem 5.4.1. If the blind signature scheme BS is perfectly message private (Def-
inition 2.8.10) and the argument system Arg is a non-interactive zero-knowledge
argument system in the ROM (Definition 2.3.29), then the generic UAC construc-
tion UACE® (Construction 5.53.1) is computational anonymous (Definition 5.2.4)
in the ROM.
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Proof. We show the anonymity of UACE® in the ROM and therefore we implic-
itly give the algorithms oracles access to the random oracle in the following . To
show that UACE® is computational anonymous, we have to define a ppt simulator
Sim := (SimReceiveCred, SimReceiveUpd, SimShowCred) consisting of three ppt al-
gorithms (simulators). Let us go through the three simulators step by step and show
their goal and define how they work. The goal for simulator SimReceiveCred is to use
the protocol SimReceiveCred(pp, pk, ctx, v) <> IssueCred(pp, pk, ctz, v, sk) instead of
ReceiveCred(pp, pk, ctz,v, a) <> IssueCred(pp, pk, ctx, v, sk) where SimReceiveCred
simulates to interaction without the hidden parameter o as an input. The sim-
ulator SimReceiveCred works like ReceiveCred, but it commits to a random at-
tribute vector instead of the actual attribute vector and simulates every proof by
using the zero-knowledge simulator of the argument system Arg. By this, the com-
mitment and proof is independent of the attributes and hidden parameter. This
change is not recognizable by an adversary, because of the message privacy of the
blind signature and the zero-knowledge property of the argument system. Next,
the simulator SimReceiveUpd is used in the protocol SimReceiveUpd(pp, pk, ctz,
v) <> UpdateCred(pp, pk, ctx, v, sk) instead of ReceiveUpd(pp, pk, ctz,v, a, cred) <>
UpdateCred(pp, pk, ctz, v, sk) where simulator SimReceiveUpd does not get the hid-
den parameter « and the credential cred as input. Simulator SimReceiveUpd works
like algorithm ReceiveUpd, but similar to simulator SimReceiveCred it commits to
a fixed value (0™) instead of the updated attributes and simulates the proof. The
third and last simulator SimShowCred is used in the protocol SimShowCred(pp, pk,
ctz,x) <> ShowVerify(pp, pk, ctz, x) instead of ShowCred(pp, pk, ctz, x, «, cred) <>
Show\Verify(pp, pk, ctz, x) where simulator SimShowCred simulates without the hid-
den parameter o and the credential cred as input. Again, simulator SimShowCred
works like algorithm ShowCred but it simulates the proof.

With the description of the simulators in place, let us outline the details of
the proof. Let D be an distinguisher against the anonymity (Definition 5.2.4) of
UACE®. We prove the anonymity in a sequence of experiments (games), where
we start with Exp%n cl’JnA’lcgc()\) and modify the used protocol algorithms ReceiveCred,
ReceiveUpd, and ShowCred in each step of the sequence. The sequence ends with the
above described simulation algorithms replacing the protocol algorithms, where the
commitments, proofs and blind signing protocols are independent of the attributes
and hidden parameters. Hence, at the end of the sequence we are in the experiment
Exp%1 TJnAOCgc()\) that uses the simulators to answer the oracle queries. The first step
in the sequence is to simulate all of the proofs generated by the argument system
Arg. This includes that the random oracle gets simulated. Note that there is
nothing left to do for the show protocol after this step, since simulating the proofs
is all that the simulator SimShowCred does. The second step is to commit to a
random attribute instead of the attribute determined by the update function and
the hidden attributes in the corresponding issue and update protocols. This also
means that the blind signing protocol (BS.BlindRcv <+ BS.BlindSign) runs on the
commitment to the random attributes. Note, for the blind signing protocol this
is just a commitment as any other commitment and hence does not change its
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behavior. The result of a blind signing protocol is then a credential on random
attributes. Since all the proofs are simulated (step 1) and therefore do not use the
credentials, this is not a problem for the other protocols (issue, update, show).

Step 1 simulating proofs. To simulate the proofs let Sim := (SimRO, SimProve)
be the stateful ppt simulator of the a non-interactive zero-knowledge argument
system Arg. Note, since Arg is a non-interactive zero-knowledge argument system
in the ROM there is a simulator for the random oracle (SimRO) and for the proofs
(SimProve) with shared state.

Let experiment Expgf)nfct:cp'l()\) be defined as Expg%n,&lcgc()\), but the protocol
algorithms ReceiveCred, ReceiveUpd, and ShowCred simulate the corresponding Arg
proofs by using simulator SimRO to simulate the random oracle (and answer queries
to it) and simulator SimProve to simulate the proofs. To show that distinguisher
D cannot recognize this change, i.e., Adv%?B'Alcgc()\) = |P1"[Exp%n %nAlcgc()\) =1] -
Pr[Expg"‘fJn:Ctgecp'l()\) = 1]| is negligible, we show a reduction to the zero-knowledge
property of the argument system Arg.

In detail, we use distinguisher D to define an adversary A against the zero-
knowledge property of the argument system Arg in the following. Hence, adver-
sary A has access to two oracles ORO and OP™Ve in the zero-knowledge experi-
ment Expjﬁg()\). Depending on the bit b they either use the random oracle RO
and algorithm Arg.Prove to generate proofs if b = 1, or they use the simulator
Arg.SimRO and simulator Arg.SimProve if b = 0. Distinguisher D expects in the
UAC anonymity experiments three oracles, namely (ReceiveCred, - ReceiveUpd;, 51y
OShowCreds We describe how queries to these oracles are answered in the following
construction of adversary A. Note, in the following the adversary A provides dis-
tinguisher D access to the random oracle via ORO». Next, we construct adversary
A in experiment Expﬂ‘:,&?g()\) using distinguisher D.

1. A receives as input public parameters pp and runs DO~ (pp). On output

(pk, st) by D adversary A runs DO (st) and

2. A answers oracle queries by D as follows:

Es’cﬁvecredb. executes the same steps as ORecg;cvecredl in Definition 5.2.4 ex-
cept that in ReceiveCred, instead of computing the proof 7 = Arg|[(a, ) :
com = BS.Commit(pp,pk:,v(J_, a),r)](ctzr) (see Construction 5.3.1), ad-
versary A queries its own oracle to compute the proof m «+ @IF)’;oveb (x =
(pk,v, com),w = (a,r),ctr). It then proceeds without any further

changes.

R Upd .
p;C;,'cve P%: executes the same steps as O in Definition 5.2.4 except

that in ReceiveUpd, instead of computlng the proof m = Arg[(A, o, a, 1) :
com = BS.Commit(pp, pk, v(A, ), ) A BS.Verify(pp, pk, A, o) = 1](ctz)
(see Construction 5.3.1), adversary A queries its own oracle to compute
the proof m « (’)gf"eb (z = (pk,v, com),w = (A,o,a,r), ctr). It then
proceeds without any further changes.

RecelveU pd;
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Sh‘;]"}'fmd”. executes the same steps as in Definition 5.2.4 except

that in ShowCred, instead of Computlng the proof m = Arg[(A, 0, ) :
BS.Verify(pp, pk, A, 0) = 1 A x(A, ) = 1](ctz) (see Construction 5.3.1),
adversary A queries its oracle to compute the proof 7 « O;;O"eb (z =
(pk, x),w = (A, o,), ctz). It then proceeds without any further changes.

OShowCredl

3. On D’s output b’ adversary A also outputs v’

From inspection it follows that adversary A is a ppt algorithm, since it uses the
ppt distinguisher D, the ppt simulators and ppt algorithms of UACE® as subroutines.
Let us analyze the advantage of adversary A. If the internal bit b of A’s experiment
Expjﬁg()\) is 1, then adversary A gives the distinguisher D access to the random
oracle RO since oracle ORO1 just uses RO. Further, the proof oracle (’);’f"el then
internally uses the algorithm Arg.Prove to generate proofs. This means the proofs
are generated as in Exp%"fjn'&lcgc (A). However, if b = 0 in Expﬂ‘ﬁg‘ (M), then adversary
A gives the distinguisher D access to the simulated random oracle via SimRO. The
proofs are then generated by the oracle (’)5150"60 which uses the simulation algorithm
Arg.SimProve to simulate proofs. Hence, ‘ghe random oracle queries are answered

anon-step-

and proofs are generated as in Exppyjacec ~ (A). In both cases adversary A simulates
the experiments for distinguisher D perfectly. In conclusion we have the following.

Pr [Expﬂ(}?g()\) = 1} =Pr[D outputs 1 | b = 1] + Pr[D outputs 0 | b = 0]
1 _step-
—1 - (Pe[BoBite ) = 1] + P BB o) =0])
1
=5 <Pr [Exp;]’%nAlc:gc()\) = 1}
+ (1= Pr[ExpBoaest (V) = 1]) >
1
_step- 1
—Pr [Exp;‘)”j;”;g:f ') = 1]) +3
. 1
- Adv %eBAchO\) T3
By this we get for the advantage of adversary A
zk-rom _ 1 step-1 1
AdV.A,Arg ()\) = 2 . 5 . AdV'D,UACgC(A) + 5 — 1
=Adviace(A) -

This ends the proof of the first step in the sequence since by assumption adversary
A’s advantage Advﬂ‘ﬁg()\) is negligible. O
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Step 2 commitments to random attributes. To introduce commitments to
random attributes, we start with the experiment of step 1, i.e., Expg‘fa”/fct;”‘l (M), and
modify it. Hence, let experiment Exp%]’%n:'ctgecp_z()\) be Exp;]’%n/fctgcp_l()\) with the dif-
ference that whenever a commitment is computed to a message m’ we instead choose
uniformly at random a message m and commit to message m instead. For example,
if commitment com is originally computed as com < BS.Commit(pp, pk,m’ =
A,r) for attributes A € UyR,,, and randomness 7’ < REo™ we compute com
BS.Commit(pp, pk, m,r) for message m < Up,,, and randomness r < REo™ . The

rest of the protocols run in experiment Expg‘%"/;sctgeg '2()\) as defined in experi-

ment Exp7) TJ":’thcp'l()\). This means, if the commitment com is used in a blind

signing protocol, the corresponding opening value (m,r) is used by the user.
In the following we show a reduction from a distinguisher D that recognizes
this change to the message privacy (Definition 2.3.10) of the blind signature
scheme BS. Hence, by the assumption that BS is message private we show that
AdV%?B'AZCgC(/\) = ]Pr[Expg]’%nA%gecp_l(/\) =1]— Pr[Expgthn:(;fcp'z()\) = 1]| is negligible.

Concretely, using distinguisher D we construct an adversary B against the mes-
sage privacy of the blind signature scheme (Definition 2.3.10). Let us start with
the description of the oracles before we show the detailed construction of adversary

B. Adversary B in experiment Expgsé'sp”v'bs()\) has access to two oracles (@Commit

and OBldRev ' The experiment Exp'gséép”v'bs()\) chooses a bit b € {0, 1} internally

by which it determines if the commitment oracle O“°™™t(1m,;) commits to message
m; (if b = 1) or if it commits to a random message m « Ux,, = M" (if b = 0).
As in step 1 the distinguisher D expects its anonymity experiments three oracles,
namely (OReceiveCred, Osecei"eu”db, and OShowCreds Next, we construct adversary B
in experiment Expgfgépr'v_bs(A) using distinguisher D. Note, we use as in step 1 the
simulators of the argument system Arg, i.e., random oracle simulator SimRO and
proof simulator Arg.ProveRC with shared state st. Also, we do not explicitly define
the steps that we introduces in step 1 to shorten the following description.

1. B receives as input public parameters pp and runs DSMRO(
(pk, st) by D adversary B runs D(st) and

pp). On output

2. B answers oracle queries by D as follows:

;;f,;vecredb. executes the same steps as ORSC;"'ecredl in Definition 5.2.4 ex-

cept that in ReceiveCred, instead of committing to the attributes A =

v(L, ) for hidden parameter « by computing com < BS.Commit(pp,
pk, A, r) where r <~ R™ (see Construction 5.3.1), adversary B queries
its own commit oracle com (’)CO’;,;‘}')t(mi = A). Also, adversary B then
simulates the proof 7 by using Arg.SimProve(pp, x = (pk, v, com), ctz,
st). Let the above query to the commit query be the j-th query. Then,
adversary B instead of running BS.BlindRev(pp, pk, A, r) it uses its own
oracle OE;';%RCV (j) to run the blind signing protocol and forwards any
messages of the oracle to distinguisher D and vice versa. Adversary B

then proceeds without any further changes.
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ReceiveUpd ReceiveUpd; . .
Op;fllve P%: executes the same steps as Op;C;]'Cve PA in Definition 5.2.4 ex-

cept that in ReceiveUpd, instead of committing to the updated at-
tributes A* = v(A, a) for hidden parameter o by computing com <
BS.Commit(pp, pk, A*,r) where r + R™ (see Construction 5.3.1), ad-
versary B queries its own oracle com < Og;?,?jgt (m; = A*). Also,
adversary B then simulates the proof 7 by using Arg.SimProve(pp, x =
(pk,v, com), ctz, st). Let the above query to the commit query be the [-th
query. Then, adversary B, instead of running BS.BlindRev(pp, pk, A*, ),
it uses its own oracle (’);’;gﬂfc"(l) to run the blind signing protocol and
forwards any messages of the oracle to distinguisher D and vice versa.
Adversary B then proceeds without any further changes.

igov}’ccredb. executes the same steps as in Definition 5.2.4 except

that in ShowCred it simulates the proof7r by using Arg.SimProve(pp, z =
(pk, x), ctz, st). Adversary B then proceeds without any further changes.

OShowCredl

3. On D’s output b’ adversary B also outputs v’

Note that adversary B is a ppt algorithm, since it uses the ppt distinguisher D,
the ppt simulators of the argument system Arg and ppt algorithms of UACE® as
subroutines. Next, let us analyze the advantage of adversary B. For this let us
look at the experiment that adversary B simulates for distinguisher D. If the in-

msg-priv-bs

ternal bit b of B’s experiment Expjgg (M) is 1, then adversary B provides

distinguisher D access to the commit oracle (’)C"”Z;,'C“it(mj) that outputs a commit-

ment com < BS.Commit(pp, pk, m;,7;) to a given message m; (attributes) and
7j < R°™. Hence, if B queries the blind receive oracle OZI)E%RCV (7) the blind sign-
ing protocol is run with the corresponding opening value (m;, ;) of commitment
com. Therefore, the commitments are generated and the blind signing protocol

is executed as in experiment Exp%1 ‘(J”,;sggef‘l(/\). If the internal bit b is 0, then ad-

versary B provides distinguisher D access to the commit oracle Ogg:;,’c‘j(i)t(mj) that
chooses a message m < Up,,, uniformly at random and outputs a commitment
com < BS.Commit(pp, pk, m,r) to message m and r R The commit oracle
stores the opening value (m,r) under index j. This means, that also the blind
receive oracle OE;";CLRCV (7) runs the blind signing protocol with the corresponding
opening value (m, 7). Therefore, if b = 0 we have that the commitments are gener-
ated and the blind signing protocol is executed as in experiment Expg’%n/&sct:cpa()\)
Hence, in both cases the adversary B simulates the experiments for distinguisher

D perfectly. Thus, we have the following.
Pr {Expgsgépriv'bs()\) = 1} =Pr[D outputs 1 | b = 1] + Pr[D outputs 0 | b = 0]
1 _step-
— - (Pr[Efma o) = 1]

+ Pr[ExpByaes 2 () = OD
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(P [t oy = 1]

N[ =

+ (1= Pr[Exppoacs () = 1]) )
:% ' (Pf [ExpPiaest(0) = 1]

— Pr[ExpPUaes 2 (V) = 1D + %
:% FAdvETace () + %

Therefore, the advantage of adversary B is

msg-priv-bs 1 step- 1
AdVB7BgSp b ()\) = ’2 . (2 . AdV«Z;BAzch ()\) + 2) - 1‘

This finishes the proof of the second step in the sequence, since by assumption
that the blind signature scheme BS is message private we have that the advantage
Advg’ngépr'V'bs(A) of adversary B is negligible. The final step does not introduce
any changes, since with the changes of step 2 the protocol algorithms ReceiveCred,
ReceiveUpd, and ShowCred are changed to what we described at the beginning of
the proof as the simulators for UACES, i.e., SimReceiveCred, SimReceiveUpd, and
SimShowCred. Hence, we use the changed protocol algorithms as the simulation
algorithms and thus experiment Expg’%":ggf '2()\) is equal to Expg"%nA’%gc(/\). There-
fore it holds that

Pr {Expapr'ﬁn/&()cgc()\) = 1} =Pr {Expgyﬁn:ggecp'z()\) = 1} ]
Overall we get that
AdvEacee () =AdvERT(A) + AdvEEP™ ()

which is negligible by the assumption that the argument system Arg is a non-
interactive zero-knowledge argument system in the ROM and the blind signature
scheme BS is perfectly message private.

5.4.2 Soundness

In the following we show that soundness of the generic UAC construction UACE® fol-
lows from the unforgeability of the blind signature scheme BS and the extractability
of the argument system Arg. Intuitively, the extractability of the argument system
Arg gives us an efficient extractor to generate the explanation list required of the
soundness definition of UAC. Then, if the explanation list is not consistent, this
means there is a credential on attributes that an adversary should not have, i.e.,

178



5.4 Security of the Generic UAC Construction

a forgery, we construct a reduction to the unforgeability of the blind signature
scheme BS.

Theorem 5.4.2. If the blind signature scheme BS is unforgeable (Definition 2.3.9)
and the argument system Arg is extractable in the ROM (Definition 2.3.30), then the
generic UAC construction UACE® (Construction 5.3.1) is sound (Definition 5.2.6)
in the ROM.

Proof. To prove soundness of UACE® we need to define an efficient extractor Extr
that outputs an explanation list L (Definition 5.2.5) as required by the soundness
definition. From the assumption that argument system Arg is extractable we
know that there is an extractor Arg.Extr that online extracts proofs, i.e., without
rewinding. Further, let A be an adversary against the soundness of UAC2, i.e., in
the experiment EprX’ngcgc()\) (Definition 5.2.6). We start the proof by presenting
the extractor Extr that internally uses the proof extractor Arg.Extr. Then we use the
extractor Extr and adversary A to construct an adversary against the unforgeability
of the blind signature scheme BS. Hence, we define extractor Extr for the soundness
experiment Expitudlgcgc()\) (Definition 5.2.6) that outputs an explanation list L as
follows.

1. Extr receives as input (pp, pk, sk, Qr, Qu, Qv,Qp) and sets explanation list
L=40

2. For the i-th IssueCred under (pk, sk) there is an entry (uv;, ctz;, st!) € Qy,
where st! contains the exchanged messages of the issue protocol with adver-
sary A. Hence, sti[ contains a commitment com; and a Arg proof ;.

a) if the proof m; is valid, let z; := (pk,v;, com;) be the instance of the
proof.

b) Extr uses the extractor Arg.Extr(pp, z;, m;, ctz;, Q) to extract a witness
(v, 15).

c¢) Extr adds the hidden parameter «; to the explanation list L

d) If the proof m; is invalid, it adds a random hidden parameter a to
explanation List L.

3. For the i-th UpdateCred under (pk, sk) there is an entry (v;, b;, ctz;, st¥) € Qu,
where st,f»] contains the exchanged messages of the update protocol with
adversary A. Hence, stZU contains a commitment com; and a Arg proof ;.

a) if the proof m; is valid, let z; := (pk,v;, com;) be the instance of the
proof.

b) Extr uses the extractor Arg.Extr(pp, z;, m;, ctx;, Q) to extract a witness
(A;, 04,5, 15), , where (A;, 0;) forms a credential

c) Extr adds the attributes A; and the hidden parameter «; to the expla-
nation list L
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d) If the proof 7; is invalid, it adds nothing to the explanation List L.

4. For the i-th ShowCred under pk there is an entry (x;, b;, ctz;, st}’) € Qu, where
st! contains the exchanged messages of the show protocol with adversary A.
Hence, stZV contains a Arg proof 7; or an abort information.

a) if there is an abort information Extr does nothing
b) if the proof m; is valid, let x; := (pk, x;) be the instance of the proof.

c) Extr uses the extractor Arg.Extr(pp, z;, m;, ctz;, Qp) to extract a witness
(A;, 0;), where (A;, 0;) forms a credential

d) Extr adds the attributes A; and signature o; to the explanation list L
e) If the proof 7; is invalid, it adds nothing to the explanation List L.

5. Finally, Extr outputs explanation list L

Observe that since the proof extractor Arg.Extr is a ppt algorithm the extractor
Extr is also a ppt algorithm.
With the extractor Extr for UACE® in place we construct in the following an adver-
euf-cma-bs

sary B against the unforgeability of the blind signature scheme BS (Expg'gs (M)
that uses adversary A against the soundness of UACS® (Expfi‘ij‘gcgc()\)) and the
extractor Extr. Note, that the extractor Extr internally uses the proof extractor
Arg.Extr of the argument system Arg in the ROM and therefore we give the adver-
saries oracle access to a random oracle RO.

1. B receives as input public parameters pp and runs A9 On output (17, st)
by A adversary B outputs (1", st') to its unforgeability experiment, where
st' is B’s state.

2. On input (pk, st) adversary B runs A(pk, st) and

3. B answers oracle queries by A as follows:

O'psgf‘]fkcred (v, ctz): B executes the same steps of the oracle in Expfﬁ“A”Cdgc()\)

(Definition 5.2.6) except that in the issue protocol with adversary A,
if A sends a proof m adversary B checks the proof. If the proof 7 is
valid, then B uses the extractor Arg.Extr to extract a witness («,r).

Then, B sets m := v(L,«) and queries its own blind signing oracle
OE;;:;?;%” (m,r) and forwards any messages of the oracle in the blind

signing protocol to adversary A and vice versa

O;JZ? ‘;Ztecred (v, ctz): B executes the same steps of the oracle in Expfﬁ‘j;ggc(/\)

(Definition 5.2.6) except that in the update protocol with adversary A,
if A sends a proof m adversary B checks the proof. If the proof 7 is valid,
then B uses the proof extractor Arg.Extr to extract a witness (A, o, a, 7).
If B did not query its blind signing oracle (’)E;';fﬁn (m) for m = A, then
B outputs (m, o) as a forgery and halts. Otherwise, B sets m := v(A, )
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. . . . BlindSign
and queries its own blind signing oracle Opp,pk, & (m,r) and forwards

any messages of the oracle in the blind signing protocol to adversary A
and vice versa

Oi;;“éverify(x, ctr): B executes the same steps of the oracle in EXp?ﬁlAncdgc()\)

(Definition 5.2.6) except that in the show protocol with adversary A, if
A sends a proof m adversary B checks the proof. If the proof 7 is valid,
then B uses the proof extractor Arg.Extr to extract a witness (A, o, ).

BlindSign (m) for m == A, then

If B did not query its blind signing oracle (’)pp7 ok.sh

B outputs (m, o) as a forgery and halts

ORO(v): B computes y < RO(v) and sets Qg = Qg U {(v,y)} and returns
y (Qp is initially empty)

4. On output halt by adversary A, adversary B computes explanation list L as
L+ Eth’(pp, pk) 5k7 QI) QU: QV7 QH)

5. Then adversary B halts

Observe that adversary B is a ppt algorithm, since it uses the ppt adversary
A and ppt extractors Arg.Extr and Extr as subroutines and besides that it runs
the ppt algorithms of UACE®. Adversary B simulates the soundness experiment
for adversary A perfectly, since B answers A’s oracles queries as defined in the
soundness experiment by using its own blind signing oracles.

Let us analyze the advantage of adversary B. For this let us consider 5’s winning
condition in the unforgeability experiment Exp%‘jfB'gma'bs()\). There, the output of B
is checked if it is a valid signature o on message m and that a signature on m was
never queried to the blind signing oracle ©BndSien sy nk sk, That the output (m, o)
of B is a valid signature is guaranteed by the valid Arg proofs that are extracted
by B, since the proofs indeed prove that the signature is valid. That the message
m of B’s output was not queried before is guaranteed by the construction of B, i.e.,
it only outputs a forgery, if the message was not queried before. If adversary B
does not output a forgery and therefore halts after adversary A halts, we have that
the explanation list L output by the extractor Extr is consistent (Definition 5.2.5).
Suppose that explanation list L is not consistent, then there is an index 7 in the
list such that L is not consistent for that index. Let the corresponding explanation
set be FE;. In the following we consider index ¢ and the corresponding ¢-th query
of adversary A that adversary B answers. This means up to that point adversary
B has queried its own blind signing oracle (95;)':;15,;%” only for attributes A’ in the
explanation set E; 1, i.e., A’ € F;_1. We have to consider three types of queries
for the i-th query that adversary B answers, namely queries to O'ps;:‘szcred (v, ctx),

UpdateCred ShowVerify
Opp ok (v, ctz), and O, " (X, ctz).

o If i-th query is to oracle O;f;f;,fred (v, ctx;), then by definition of the consis-

tency of the explanation list L, it holds that this query cannot have caused
that L is not consistent.
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e If i-th query is to oracle (’)U]'; ﬁtecred (v;, ctz;), then the corresponding entry in

the explanation list L is a tuple (A;, o;) consisting of attributes A; and hidden
parameter «; that were used in the show protocol. Now, since the i-th query
leads to that L is not consistent, we have that UpdateCred(pp, pk, ctz;, v;, sk)
output 1 and it holds that (1) v;(A;, ;) = L or (2) attribute set A; is
not in the explanation set E;_; (i.e., A; ¢ E;_1). However output 1 means
adversary B has extracted the corresponding proof of the update protocol
to get (A, o, a,r). Since the proofs guarantee that v;(A;, a;) # L holds, we
conclude that (1) cannot hold. If A; ¢ F;_4, this means the attributes A; were
never queried and adversary B outputs it as part of its forgery (m = A;, o)
and halts. However, this contradicts that adversary B does not halt before
adversary A.

ShowVerify

pp,pk
argument for the query to (QUpdateCred

o If i-th query is to oracle O (xi, ctr;) the argument is identical to the

We conclude that, if adversary B does not halt before adversary A and therefore
does not output a forgery, adversary B computes a consistent explanation list L
using extractor Extr. Note, the soundness experiment EprZ“lj‘ACgc(/\) outputs 0, if
explanation list L is consistent and 1, if it is not. Hence,

Pr [ExpHEE™5(\) = 1] > Pr[Bxpfiace (V) = 1]

holds and we have that AdveUf gmabs()) > AdeZ:Jchgc()\). By assumption that the
blind signature scheme BS is unforgeable and that the argument system Arg is
extractable in the ROM the advantage of B is negligible. O

5.4.3 Security in the CRS Model

In the following we briefly describe the generic UAC construction UAC& (Con-
struction 5.3.1) in the CRS model instead of the random oracle model. That the
generic construction UACE® is presented in the ROM is due to the used argument
system in the ROM. However the switch to argument systems with a CRS that
are not in the ROM only requires minor changes.

Changes. Let us describe the necessary changes to the generic construction in
the following. First observe that the blind signature scheme is unaffected by the
change to a CRS. Hence, we focus on an argument system with a CRS which
we call Arg®™ in the following. Let Arg™ be an argument system according to
Definition 2.3.17. Further, let it be a non-interactive zero-knowledge black-box
argument of knowledge, i.e., a NIZK. Comparing it to the argument system in
the ROM the NIZK Arg®™® is also zero-knowledge and black-box extractable. Intu-
itively, zero-knowledge means here that ppt algorithm Arg®®.SimProve simulates
proofs given a simulation trapdoor tdg, (Definition 2.3.20). Further, black-box
extractable means that extractor Arg®®.Extr extracts witnesses using an extraction
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trapdoor ¢d ¢y, where extractor Arg®®.Extr does not depend on the adversary (Def-

inition 2.3.21). Next, we describe how the construction UACE® has to be changed.
We refer to the construction with a CRS as UAC®®. For the change to the argu-
ment system Arg®® we first have to modify the setup algorithm Setup of UACE®,
see Construction 5.3.1. Hence, in addition to the setup of the blind signature
scheme pp’ < BS.Setup(1%) it runs the setup of the argument system Arg, i.e.,
(crs, tdgim) < Arg®™.Setup(pp’), where we require that the public parameters pp’ of
the blind signature scheme determines the relation, e.g., parameter of the message
space. Then UAC®™.Setup outputs public parameters pp := crs. Furthermore, in
UACE the protocol algorithms use the argument system Arg®™® to generate proofs
and to verify them. These are the changes that are needed. The result is that the
proofs are now generated by an argument system with a CRS.

Security. Considering the security of the construction UAC®™® the proofs for
UACE® only have to modified slightly. Therefore, we omit detailed proofs and
describe the changes in the following. Regarding anonymity of the construction
UAC®"™ we present the following theorem.

Theorem 5.4.3. If the blind signature scheme BS is perfectly message private (Def-
inition 2.3.10) and the argument system Arg™ is a non-interactive zero-knowledge
argument system (Definition 2.3.20), then the generic UAC construction UAC™™
is computational anonymous (Definition 5.2.4).

The proof is analogous to the proof of Theorem 5.4.1 with the difference that the
random oracle is removed from the proof, since the random oracle is no longer part
of any of the building blocks. Furthermore, simulation trapdoor td;, generated
in the setup algorithm of UAC®™ is used to simulate the proofs, i.e., via the proof
simulator Arg®™.SimProve of the argument system Arg”. The remaining arguments
are analogous.

Next, let us consider the soundness of the construction UAC®™.

Theorem 5.4.4. If the blind signature scheme BS is unforgeable (Definition 2.3.9)
and the argument system Arg is extractable (Definition 2.3.21), then the generic
UAC construction UAC™® is sound (Definition 5.2.6).

This proof is analogous to the proof of Theorem 5.4.2. Here, we modify the
setup algorithm of UAC™ to execute the extraction setup Arg®.ExtrSetup that
outputs an extraction trapdoor td.. instead of the simulation trapdoor tdg,. In
the remainder of the proof we then use the extractor Arg“.Extr with extraction
trapdoor td..,- to extract witnesses from the proofs.

5.5 Concrete Instantiation

In the following we discuss the instantiations of the generic UAC construction
UACE® (Construction 5.3.1) and its CRS based version UAC®® (Section 5.4.3).
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Further, we present a concrete instantiation based on the blind signature scheme
by Pointcheval and Sanders [PS16] and non-interactive argument systems based
on the Fischlin transform [BFW15; Fis05].

To instantiate construction UACE® we need to instantiate the blind signature
scheme BS and argument system Arg. Regarding the argument system Arg, we can
rely on the result that there are NIZK for all languages in NP [GMWO91|. However,
this generic approach leads to inefficient instantiations. For practical reasons we
presented the construction UACE® in the ROM. Thus, we get a wide support of
update functions and predicates by using argument systems in the ROM. In detail,
argument systems in the ROM that we use are based on Sigma protocols (also
called Y-protocols) [Dam10; FKMV12]. They are a generalization of Schnorr’s
protocol [Sch91]. Sigma protocols are then transformed to a NIZK in the ROM via
the Fiat-Shamir transformation [FKMV12; FS87] or the Fischlin transformation
[BFW15; Fis05]. Sigma protocols are interactive protocols with three messages
where the prover sends the first message (announcement) com to the verifier, the
verifier answers with a random challenge ch (independent of other messages, i.e.,
public-coin), and then the prover sends the third message (response) res. For a
formal definition we refer to [FKMV12]. The Fiat-Shamir transformation makes
Sigma protocols non-interactive by replacing the random challenge ch of the verifier
with a hash value of the announcement com, the context (e.g., verifier identity),
and the corresponding instance of the proof. Here, the hash function is modeled
as a random oracle. Faust et al. [FKMV12] showed that an argument system
resulting from the Fiat-Shamir transformation is zero-knowledge and white-box
simulation-extractable (i.e., with rewinding) in the ROM. For this, they have the
additional requirement that the responses are quasi unique. This means, for a
valid proof (com,ch,res), consisting of an announcement com, a challenge ch, and
a response res, it is infeasible for an adversary to find a second response res’ such
that (com,ch,res’) is also a valid proof. For example Schnorr-based protocols have
unique responses. Since extractions with rewinding can be problematic as described
in [BFW15; Fis05], we opt to use extractable argument systems for UAC that do
not use the rewinding technique. In detail, we use argument systems resulting
from the Fischlin transformation on Sigma protocols with quasi unique responses
originally presented in [Fis05]. Fischlin [Fis05] shows that the resulting argument
system is zero-knowledge (Definition 2.3.29) and extractable (Definition 2.3.30)
in the ROM. Fischlin calls this online extractable and we refer to them as black-
box extractors. This is already sufficient to construct UAC. Nonetheless, we still
want to mention that Bernhard, Fischlin and Warinschi [BFW15] show that the
Fischlin transformation even results in simulation-extractible argument systems
(Definition 2.3.31) in the ROM. Intuitively, the Fischlin transformation forces the
prover to rewind itself. This is achieved by requiring that the hash value, used
as the challenge ch, has a predetermined number of 0’s at the end. Since this
is very unlikely to happen in few hash attempts, the hash function modeled as
a random oracle is queried often enough on tuples consisting of announcement,
challenge, and response, such that an extractor can extract without rewinding the
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prover. For this the extractor need two valid proofs (com,ch,res) and (com,ch’,res’)
with the same announcement com, but different challenges ch and ch’. This is the
so called Schnorr-trick and is originally used to extract witnesses from Schnorr
protocol proofs. For further details we refer to [Fis05]. To summarize, the Fischlin
transformation gives the extractor access to two valid proofs as described above
and therefore is able to extract without rewinding the prover.

Considering our generic UAC construction UACE® it is important to note that
there is a wide range of Sigma protocols to prove rich statements, e.g., equality (of
dlog) proofs, set membership proofs, range proofs [CCs08; MKWK19] Or-proofs,
proofs of partial knowledge [CDS94; Ks22].

The other building block, that we need to instantiate, is the blind signature
scheme BS used in the construction UACE®. As mentioned before Pointcheval and
Sanders [PS16] present a blind signature scheme (Definition 2.3.7) using bilinear
groups that we use to instantiate BS. Here, the algorithm Commit computes a
perfectly hiding generalized Pedersen commitment [FHS15] to a message vector.
Perfectly hiding means that the output distribution of algorithm Commit is in-
dependent of the message vector. Furthermore, mapped to our commit-then-sign
structure of blind signature schemes, i.e., with an externalized proof over the com-
mitment via the argument system, the user algorithm BlindRcv presented in [PS16]
does not send any messages to the signer. This means an (adversarial) signer
running BlindSign does only get the perfectly hiding commitment and then signs
the commitment for the user. Hence, the message privacy of the blind signature
scheme follows.

The described instantiation of UACE® is also efficient, since the signature scheme
by Pointcheval and Sanders [PS16] is defined for type 3 bilinear groups (efficient
pairing and group operations). Additionally, we use argument systems in the ROM
which enables efficient generation of proofs by design. Furthermore, the argument
system in the ROM is non-interactive, which means a proof only consists of one
message sent from the prover to the verifier.

We omit presenting the concrete instantiation in detail, since it is very similar to
the generic construction only with the commitment and signature parts presented
in more detail. The proofs of the argument system still use the Camenisch-Stadler
notation Section 2.3.5, because the update functions and predicates are generic,
since they depend on the choice of the user and issuer.

Regarding a concrete instantiation of the generic UAC construction UAC®"™ with
a CRS we only have to instantiate the argument system with an argument system
Arg™ with a CRS and the rest stays the same. Depending on the argument system
Arg®"™ the supported predicates and update functions change, but also the efficiency
of UAC®™®. A candidate for an instantiation is the Groth-Sahai proof system [GS12].
Note that the Groth-Sahai proof system can efficiently prove the validity of the
signatures generated by the pairing-based signature scheme by Pointcheval and
Sanders [PS16].
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5.6 Anonymous Credentials and Attribute-based
Signatures

We discuss the connection and highlight the differences between attribute-based
Signatures ABS and anonymous credentials AC (and UAC) in this section. We
first list the roles and functionality of ABS as a reminder and then start to build a
variant of the generic UAC construction UACE® (Construction 5.3.1) from an ABS
scheme.

In an ABS scheme ABS = (Setup, KeyGen, Sign, Verify) we have users, an author-
ity, and verifiers as roles. The authority generates public parameters of the scheme
via algorithm ABS.Setup and issues secret keys on attributes to users via algo-
rithm ABS.KeyGen. Then, a user can sign message-policy pairs with such a secret
key via algorithm ABS.Sign, if the attributes of the secret key satisfy the policy.
Everybody can verify an attribute-based signature via the algorithm ABS.Verify
under the public parameters. As we have seen in the UC model of ABS the key
generation can be modeled as an interaction between the user and authority, where
the user and authority agree on attributes for the secret key to be issued. Note,
in ABS this key generation protocol has no (attribute) anonymity. The attributes
are communicated to the authority in the clear.

Let us map the roles (users, authority, verifiers) of ABS to the roles (users,
issuers, and verifiers) of an UAC system. Users get credentials on attributes from
the issuers and users can show them to verifiers in a privacy-preserving way. On a
high level there are two key similarities between UAC and ABS.

1. In ABS a user gets a secret key on attributes from an authority and in UAC
a user gets a credential on attributes from an issuer.

2. In ABS a user signs a message-policy pair, such that the validity of the
signature convinces a verifier that the user has a secret key on attributes
that satisfy the policy. In UAC a user proves that it has a valid credential
on attributes that satisfy a predicate (policy).

Next, we use these similarities for an intermediate variant of the generic UAC
construction UACE® build from an ABS scheme ABS = (Setup, KeyGen, Sign, Verify).
Let ppags be the public parameters and msk the master secret key for ABS gener-
ated by the issuer in IssuerKeyGen. Then, we let the issuer generate an ABS key on
attributes A as a credential for the users, i.e., cred <— ABS.KeyGen(ppags, msk, A).
Furthermore, instead of computing a proof in the show protocol a user shows its cre-
dential with respect to a predicate x by computing and sending an ABS signature
on the context ctx of the show protocol, i.e., m < ABS.Sign(ppags, ska, m = ctz, x).
The corresponding verifier of the show protocol then verifies the ABS signature,
i.e., b < ABS.Verify(ppaps, m = ctz, x, 7). Note, that the ABS scheme ABS now
determines the predicate universe X corresponding to the supported policy class
of the ABS scheme.
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We do not consider updates of credentials for now and rather inspect what we
have achieved. Observe that the above approach results in an issue protocol without
any anonymity (considering UAC), since the key generation of ABS gives the issuer
(authority) the attributes in plain. We call this semi-anonymous credentials, where
the issuing of credentials does reveal the attributes, however any showing of the
credentials provide anonymity. The advantage here is that the issuing protocol is
more efficient, since it does not use any argument system proofs. However, we lose
the feature to issue credentials on hidden attributes.

To get issuing of hidden attributes and updates of credentials, we have to make
some assumptions on how an ABS scheme ABS is build. The assumptions are:

e We only consider ABS schemes that use a signature scheme Sig to generate
secret keys, similar to our generic ABS construction ABS& (Section 3.3).

o Further, the ABS scheme has to be either build directly from SoK (Defi-
nition 2.3.11) to generate the attribute-based signatures, again similar to
ABSE® or it is based on a NIZK that with some technique binds the message
to the proof (which again can be seen as a SoK), e.g., the ABS schemes by
Sakai et al. [SAH16] and by Maji et al. [MPR11]. We need this to be able
to extract ABS signatures. Alternatively, we require that the ABS scheme is
simulation-extractable according to Definition 3.2.7 or Definition 3.2.8.

e Then, we require that the setup algorithm ABS.Setup outputs ABS specific
public parameters ppags on input the public parameters of the credential
system pp instead of the security parameter A as input.

e We further require that the signature scheme Sig, used to generate ABS secret
keys, can be modified to a blind signature scheme that follow the commit-
then-sign structure. Examples for such signature schemes are CL-Signatures
[CL04], P-Signatures [BCKLO7; BCKLO0S; ILV11], the signature scheme by
Pointcheval and Sanders [PS16], and structure-preserving blind signatures
[FHKS16; FHS15].

As a result of these assumptions and with the above mapping of roles and
algorithms of the simplified semi-anonymous credential system, we have that the
key generation of ABS is realized via a blind signature scheme and can directly be
used as the blind signature scheme in the issue and update protocol. This means,
a successful issue (update) protocol outputs a credential cred = (A, skp) for the
user. Here, the credentials cred contains an ABS secret key sky for attributes A.

We are ready to present the variant of the generic UAC construction UACE®
using an ABS scheme ABS that fulfills the above requirements. We call this variant
UACABS and present the changes compared to UACE (Construction 5.3.1) in the
following. Let BS be the blind signature scheme used in ABS. Note, we still use
the argument system used in UACE® during the issue and update protocols.
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(pk, sk) < IssuerKeyGen(pp, 1™) runs the setup of the ABS scheme ABS, i.e.,
(ppags, msk) < ABS.Setup(pp), and sets pk = ppaps and sk := msk. The
attribute space for the credentials is the attribute space of ABS.

e The issue protocol works as before by using the blind signature scheme BS
used in ABS. The output for the user is a credential cred = (A, ska) where
skp includes a blind signature o on A.

e The changes in the update protocol are analogous.

o In the show protocol ShowCred(pp, pk, ctz, x, «, cred) <> ShowVerify(pp, pk,
ctz, x) instead of using the argument system to generate the proof the user
in UACABS computes an ABS, i.e., 0 « Sign(ppags, ska, m = ctz,P =
Xa) Where x, is the predicate x with the hidden parameter « fixed. The
verifier, instead of verifying the argument system proof, it runs the verification
algorithm of ABS, i.e., ABS.Verify(ppags, m = ctz,P = x,0).

For concreteness and to see that this is correct, let us consider the proof 7 that
the user in the show protocol originally computes in UACE®, i.e.,

m = Arg[(A, o, a) : BS.Verify(pp, pk, A, 0) = 1 A x(A, ) = 1](ctz).

The explicit modeling of the hidden parameter « aside, this is the ABS relation
Régs (Definition 3.3.1). In detail, the first statement BS.Verify(pp, pk,A,0) =1
shows that the ABS secret key sky is valid and the second statement x (A, o) =1
shows that the attributes satisfy the policy (predicate). Intuitively, these two
statement are what a SoK or NIZK based ABS scheme proves to generate a
signature. Regarding security of UACABS, for anonymity we use the simulator from
the simulation privacy of ABS to argue that the show protocol is anonymous.
For the issue and update protocol the argument is the same that we used in the
anonymity proof of UACE® (Section 5.4.1), i.e., the message privacy of the blind
signature scheme and the zero-knowledge property of the argument system. To
show the soundness of UACABS the proof is similar to the soundness proof of UACE®
(Section 5.4.2). The difference is how we handle the extraction in a show protocol.
Since the verifier does now get an ABS signature instead of a proof of the argument
system, we have two cases to consider according to our requirements on the ABS
scheme. First, we use the extractor from the SoK or NIZK, if the used ABS scheme
generates its signatures using either of these building blocks. Second, we use the
ABS extractor, if the ABS scheme is simulation-extractable. Since the changes
to get UACABS and the adaptations to an ABS like our generic ABS construction
ABS®© (Section 3.3) are straightforward, we do not go into further details. Besides
that, a similar transformation based on anonymous key generation for ABS schemes,
but for anonymous credential systems without updates was presented in [Kaa+17]
with a concrete instantiation.
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Conclusion

Privacy-preserving cryptography and its techniques are becoming more relevant
for real-world applications. Therefore, security definitions that correspond to real-
world threats are needed. Defining security for privacy-preserving cryptography is
a delicate task that, as seen in this thesis, can lead to precise security definitions
allowing schemes to be UC secure, to be more efficient and to support practical
features such as updates.

We focussed in Part I on attribute-based signature (ABS), their security defi-
nitions (experiment-based and in UC), and on a generic ABS construction from
SoK. We started with a detailed discussion of existing security definitions, ABS
constructions, and support of expressive policies. We then defined a strengthened
experiment-based security model that does not make any assumptions on the pol-
icy classes. In detail, we presented a stronger simulation-based privacy definition,
introduced simulation-extractability for ABS and discussed in general the relations
between the security definitions. With respect to our experiment-based security
model, we presented a simulation private and simulation-extractable generic ABS
construction and an instantiation with constant-size signatures consisting only
of three group elements. Our next contribution for ABS was then an ideal ABS
functionality in UC. The main result was that we showed that simulation private
and unforgeable ABS schemes are secure in UC and vice versa. With regard to
that, another interesting contribution was that we showed that two major generic
ABS constructions from the literature [MPR11; SAH16] are simulation private.
Hence, we showed that the two ABS constructions [MPR11; SAH16] are UC secure.
Our results regarding the experiment-based and UC security models for ABS are
an enhancement of the ABS security model.

Considering future work, we identified in Section 3.3, motivated by our generic
ABS construction from SoK, the open question, if the results of SNARKSs in the
presence of oracles (O-SNARK) by Fiore and Nitulescu [FN16a; FN16b] extend to
simulation-extractable SNARKS (SE-SNARKs). Additionally, extending our ideal
ABS functionality to multi-authority ABS and hierarchical ABS is an interesting
direction for future work.

In Part IT we considered practical features of anonymous credential systems. We
focussed on privacy-preserving updates of credentials and presented this as the
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6 Conclusion

main part of updatable anonymous credentials. We motivated UAC by showing
that it allows more versatile applications than typical AC. In detail, we achieved
this by adding the feature of privacy-preserving updates of attributes certified by a
credential. This feature was modeled using an update function that takes attributes
A (of a credential) and a hidden parameter « as input and outputs the updated
attributes. This modeling allowed us to encode arbitrary checks on the inputs in
an update function. Furthermore, we allowed updates of attribute values using
the hidden parameters. Update functions were also integrated and generalized to
support issuing of credentials with respect to the hidden parameter, e.g., issuing
of hidden attributes. Regarding security, we presented a security model for UAC
covering privacy-preserving update including the special case of issuing credentials
on hidden attributes chosen by the user. To this end, we defined anonymity and
soundness for UAC, revised the security definitions in this thesis and showed that
the generic UAC construction UACE in the ROM is secure with respect to this
model. The generic UAC construction UACE was built using common building
blocks of AC in the literature, i.e., a blind signature scheme and an argument
system in the ROM. We then discussed a version of the generic UAC construction
UACE® with a CRS. Showing that UAC&® and UAC does not implicitly rely on the
ROM, but rather that it inherits this from the used argument system. Therefore,
we also sketched an instantiation using an argument system with a CRS. We closed
Part IT with the connection of ABS and AC in general. By analyzing the connection
we were able to state requirements on ABS schemes that allowed us to use ABS
schemes as a building block for UAC.

Regarding future work in the area of UAC, adding further practical features to
UAC, such as revocation and the concept of issuer-hiding [Bob+-21], is an interesting
avenue. Additionally, using UAC for more real-world applications besides incentive
systems, as presented in [BBDE19a], is a possible direction for future work.

Working with privacy-preserving techniques and constructing privacy-preserving
attribute-based schemes, like ABS, UAC and others, showed me that there are
many opportunities to build modern systems while protecting the privacy of users.
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