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Abstract

The cryptographic protocol OpenPGP exists since 1991 and is used for the en-
cryption and signing of e-mails and data. OpenPGP uses public key cryptogra-
phy and requires that key authenticity is verified in a secure manner. Histor-
ically this is done via key servers and a decentralized trust model, the Web of
Trust.

In this thesis, we describe and analyze the OpenPGP key exchange method “Web
Key Directory”. We provide security definitions for OpenPGP key exchange meth-
ods. Based on these definitions, we evaluate whether the Web Key Directory speci-
fication and its reference implementation are secure.

We find inconsistencies and specification gaps in the Web Key Directory specification
draft. We reveal that the main assumption of the Web Key Directory Update Pro-
tocol is too vague. We describe several scenarios and interpretations of the main as-
sumption and analyze them. We can show that the Web Key Directory Update Pro-
tocol is vulnerable in multiple scenarios and interpretations.

Furthermore, we find errors in the reference implementation. We could utilize errors
to describe an attack on the reference implementation with almost no assumptions.
It allows an attacker to illegitimate publish OpenPGP keys for any e-mail address
for any domain of a Web Key Directory provider.
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1 Introduction

The majority of today’s communication is exchanged via electronic communication.
Initially designed in the 1970s, e-mails are still a ubiquitous medium for this pur-
pose [59]. E-mails hold no necessary provisions to ensure secure communication,
such as guarantees about message integrity, authenticity, and confidentiality [64].
Neither the message itself nor the transmission was secured [9, 45]. Although these
problems are well-known and improvements have been made, securing e-mails is
still challenging; e-mail infrastructure is highly decentralized and can contain many
services.
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Figure 1.1: System image of components of a typical e-mail infrastructure with two
mail providers. (Source: see Section 7.2 (Acknowledgements))

In Figure 1.1, we see an e-mail infrastructure for two users, Alice and Bob, who use
different e-mail providers. The black arrows indicate the path an e-mail from Alice
to Bob might take. Alice and Bob interact with the e-mail system via their Mail
User Agents (MUA), like Mozilla Thunderbird or Microsoft Outlook, where they
can access, write, and manage their e-mails. Both have a mailbox wherein their e-
mails are organized. Each mailbox is present at the MUA and the provider’s server.
If both mailboxes should be kept in sync, the Internet Message Access Protocol
(IMAP) [8] protocol can be used. If new e-mails should only be downloaded to the
local mailbox, the Post Office Protocol (POP) [39] can be used. Both protocols
are the most relevant ones for accessing mailboxes. To reduce the risk of data loss,
providers might backup mailboxes. In addition, e-mails processed at their systems
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might also be scanned for spam or viruses. To make communication possible, e-mails
must be transmitted from one user to another user via different e-mail providers.
If Alice wants to write an e-mail to Bob, her MUA transmits the e-mail to her
provider’s Mail Transfer Agent (MTA), which is responsible for transmitting e-mails
to the next responsible MTA. The e-mail might pass several different MTAs and
providers before it arrives at Bob’s provider’s Mail Delivery Agent (MDA). The
MDA delivers the e-mail to Bob’s mailbox. The communication between one MTA
and another MTA or MDA is done mostly via the Simple Mail Transfer Protocol
(SMTP) for mail exchange. Each MUA might check periodically for new arrived
e-mails and download them.

One improvement to secure e-mails was the introduction of SSL/TLS to relevant
protocols like SMTP, IMAP, and POP [41, 23]. Therefore, the connection between
each component in the e-mail system can be secured. As we see, Alice’s e-mail is
processed at many different components from different entities. The e-mail is present
in plain text at every component and can be altered and read. Even if Alice runs her
own network, e-mail provider, and knows that everything is properly secured. Once
her e-mail is transferred to a different MTA, she simply can not make assumptions
about the security of her e-mail. Therefore, securing the transport layer is not suffi-
cient and end-to-end security protocols were introduced.

Phil Zimmermann developed Pretty Good Privacy (short: PGP) in 1991. It is a
protocol and program to sign, verify, encrypt, and decrypt files including e-mails.
Later it was publicly standardized as OpenPGP and expanded in several RFCs [7].
Due to limitations of the early e-mail format, the Multipurpose Internet Mail Exten-
sions was introduced. It allows, for example, other text encodings than ASCII and
multipart message bodies [19]. With PGP/MIME, OpenPGP can be integrated in
the MIME structure [15]. Another protocol is the 1996 introduced Secure/Multipur-
pose Internet Mail Extensions (short: S/MIME), with which the MIME structure
in e-mails can be signed and encrypted [46].

OpenPGP is based on public key cryptography. Each participant has to gener-
ate their own private-public key pair. A user’s public key must be distributed to
their communication partners. Without proper key validation, no trust could be
gained in the distributed key material and no secure communication could be es-
tablished. An attacker can simply create and distribute keys with a victim’s name
and e-mail address. Without proper key validation, the attacker’s keys might be
used for encryption or signature verification instead of the legitimate participant’s
keys [22].

In this thesis, we will address the end-to-end encryption protocol PGP. Especially,
we will be concerned with key exchange methods to distribute and validate PGP
keys.
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1.1 Key Exchange and Validation Problems

Historically key validation in PGP is done in two ways. First, a public key could be
manually validated by its fingerprint. Thereby the fingerprint of the copied key is
compared with the fingerprint of the key owner’s local key. After that, the key will
be signed with the validating person’s private key and could be uploaded to a key
server to share their key validation with the community.

Second, the validation could be done indirectly via a mechanism called “web of
trust” (WoT). Here, the user assigns a trust property to a key, which indicates
how much the person identified by the key is trusted to faithfully verify other keys.
OpenPGP has six levels of trust: ultimate (reserved for the keyring owner’s public
keys), full, marginal, untrusted, undefined, and unknown [2]. An unverified key
K is validated automatically via the web of trust if the following both conditions
apply:

1. Key K has enough validation signatures1 by valid keys. This means one of the
following must apply:

• You have signed K personally (direct validation)

• K has been signed by one2 fully trusted and valid key (indirect validation),

• K has been signed by three2 marginally trusted and valid keys (indirect
validation)

2. The length of the path of signed keys from key K back to your own key is at
most five2 steps.

We illustrate an example of a web of trust in Figure 1.2. To make the example
shorter, we reduce the maximum path length (as shown in enumeration point 2
above) to at most three steps and assume that only two marginal keys as sufficient
for indirect validation.

Keys could be transmitted via direct one-to-one communication or via publicly
available key servers. These offer the possibility to upload, search, and down-
load other public keys. To make it difficult for censorship to take down pub-
lic keys, key servers began to automatically synchronize between each other (so
called Synchronizing Key Server (SKS)) via the OpenPGP HTTP Keyserver Pro-
tocol (HKP). As a consequence, it is nearly impossible to remove an uploaded
key [4].

As it turned out, the web of trust and key servers have fundamental problems in
their current form. Public (non verifying) key servers do not verify uploaded keys.
Everyone can upload keys for any e-mail address, which lead to different attack

1A “certification” signature type as per [7, Sec. 5.2.1].
2Implementation dependent. Might be lower or higher. The value is the default used by GnuPG.
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Alice
t: ultimate, v: valid

Bob
t: marginal, v: valid (directly)

Charlie
t: marginal, v: valid (directly)

Dave
t: full, v: valid (via WoT)

Erin
t: full, v: valid (via WoT)

Frank
t: unknown, v: invalid

Figure 1.2: Example of a web of trust. “t:” indicates the trust level as seen from
Alice. “v:” indicates whether Alice sees the key as valid. Edges be-
tween nodes describe validation signatures. Alice trusts Bob and Charlie
marginally. Alice trusts Dave and Erin fully. Alice sees Bob’s and Char-
lie’s keys as valid because she validated them directly. Alice sees Dave’s
and Erin’s keys as valid because of indirect validation through the web
of trust. Alice sees Frank’s key as invalid because the length of the path
of signed keys from Frank to Alice is four and therefore larger than our
(reduced) maximum path length of three.

vectors. The “evil32” attack [28] showed that it is very efficient to generate and
upload keys with the same short fingerprint (the last 4 byte of the fingerprint). Users
who check only the short fingerprint can not distinguish between the legitimate and
the counterfeit key. To make the “web of trust” possible, everyone can sign a public
key to express that they have verified it. By massively signing and uploading a
victim’s key to a key server, the key size will grow steadily. As a result, a key with
too many signatures (the specific amount depends on the used software) can not be
processed anymore. Synchronizing key servers are practically only appending key
material, which complicates mitigation of such attacks. Not only manipulated keys,
but also public keys where users no longer possess the corresponding private key,
remain in the system [22]. Ulrich et al. [61] found out that only a fraction of the
users of the “web of trust” can profit from it. This is contrasted by the disclosure
of personal data and the social graphs of the users, which can be derived from the
key signatures [22]. The SKS key server network, which was used as the default key
server in GnuPG, is no longer maintained and has been shutdown on 2021-06-21 due
to privacy problems and legal problems resulting from the European General Data
Protection Regulation [6].

The vast majority of e-mails are not signed or encrypted. Research was therefore
also done on the usability of end-to-end encryption including the PGP ecosystem
and tools. According to a study from Reuter et al. [52], most users are aware
of the problems of unprotected e-mails but do not know or can not use tools to
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mitigate them. Renaud et al. [47] could not find evidence for non-awareness of basic
privacy issues. However, the lack of understanding of e-mail security mechanisms
leads to users not even thinking about using end-to-end encryption in the context
of e-mails.

1.2 Solution Approaches

Web Key Directory, Autocrypt, and e-mail validating key servers, are relatively
new methods. They were introduced to mitigate problems in key exchange, key
validation, and usability.

Web Key Directory wants to achieve an easy way to exchange and reach a basic level
of key validation of PGP public keys. It is currently in the standardization process.
Public keys are therefore provided via a TLS secured HTTP connection to a web
server. The responsible web server is found by deriving a well-known path from
the e-mail address. It is further possible, but not recommended, to use a foreign
web server as a Web Key Directory as a Service (WKDaaS) by indicating it via
a DNS entry. With Web Key Service (WKS), a tool and protocol is available to
reduce the administrative effort to publish and update keys to the WKD [5, 21,
33].

The Hagrid key server is a free and open source e-mail validating key server running
on keys.openpgp.org. It tries to solve typical problems which apply to the non-
validating key servers like the SKS key server network. The contents of PGP keys
are separated into identity information (like the name and e-mail address of its
owner) and non-identity information (like technical metadata and the public key
material). Identity information is only saved and distributed if the owner explicitly
approves that. For this approval process, an e-mail is sent to the key owner’s e-mail.
Additionally, it is possible to request a deletion. Signatures (like the validation
signatures mentioned in the web of trust description above) are also removed from
the PGP key before key publication. The Hagrid key server is not part of any
SKS key server network and can be used as a Web Key Directory as a Service [43,
40].

Autocrypt is an opportunistic security protocol for e-mail, which tries to simplify key
exchange and usability. It is not in a process to become an official standard. PGP
public keys are distributed via e-mail. Key management, including key validation
is done completely automatic. It uses the cryptographic constructions from PGP
but introduces protocol-specific mail headers. The protocol makes no attempt to
protect against active attackers [1, 22].

To the best of our knowledge, there is no dedicated scientific security research on
Web Key Directory, Autocrypt, and e-mail validating key servers which investigates

keys.openpgp.org
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the above methods in detail. Currently, there is an ongoing bachelor thesis on how
usage of WKD can be furthered.3

1.3 Contributions

The goal of this thesis is the description and analysis of the Web Key Directory key
exchange method. We analyze both the specification and the reference implemen-
tation. For the analysis, we define security definitions for OpenPGP key exchange
methods and typical operations for those key exchange methods. To the best of our
knowledge, this is the first scientific security research on the Web Key Directory key
exchange method.

Our results include the finding of inconsistencies and specification gaps in the spec-
ification draft. We also analyze Web Key Directory’s usage of the SHA-1 hash
algorithm but find its usage in Web Key Directory might be secure despite SHA-
1 being long deprecated because of its broken collision resistance. Furthermore,
the local-part of e-mail addresses is mapped to lowercase by Web Key Directory.
According to a small case study, this appears to be relatively unproblematic for
bigger providers but could affect specific setups. Furthermore, we see that the Web
Key Directory Update Protocol main assumption is to vague and depending on the
circumstances an attacker could illegitimately publish keys. The reference imple-
mentation has several mistakes and errors. We describe an attack on the reference
implementation which utilizes some of those errors. With this attack, an attacker
could publish OpenPGP keys for any e-mail address of any domain of a Web Key
Directory provider.

1.4 Organization of this Thesis

This thesis is divided into 7 chapters. In Chapter 2, we summarize the background
relevant to this thesis. In Chapter 3, we give a brief description of our approach and
research method. In Chapter 4, we define security definitions which are applicable
to OpenPGP key exchange methods. We will make use of them in the analysis. We
then consider the OpenPGP key exchange method Web Key Directory. First, we
describe the method’s components and functionality in Chapter 5. After that, we
analyze Web Key Directory according to our security definitions in Chapter 6. In
Chapter 7, we conclude our work and give a brief outlook about research questions
which could not be answered in this thesis.

3https://wiki.gnupg.org/WKD/BachelorThesisIncreaseWKDUsage2021

https://wiki.gnupg.org/WKD/BachelorThesisIncreaseWKDUsage2021


2 Background

In this chapter, we give a description of OpenPGP, the underlying cryptographic
protocol used in the three key exchange and validation methods Web Key Directory,
e-mail validating key server, and Autocrypt which are examined in this thesis. Fur-
thermore, we describe the Transport Layer Security protocol briefly since it is used
to secure access to Web Key Directory and key servers and is essential for the process
of gaining trust in exchanged keys in both methods. The third method, Autocrypt,
belongs to the class of opportunistic cryptography protocols and therefore a short
description of that class if given, too.

2.1 Transport Layer Security

Transport Layer Security (TLS) [49] is a cryptographic protocol which provides a se-
cure channel between two communication peers independent of the application layer
protocol. It relies on a reliable and in-order medium provided by, for example, TCP.1
Protocols such as HTTP in the World Wide Web context [48] and SMTP, IMAP, and
POP in the mail context [37] are secured usually with TLS nowadays. TLS provides
data authenticity, confidentiality, and integrity.

The protocol consists mainly of a handshake protocol and a record protocol. For
efficiency reasons a combination of asymmetric and symmetric cryptography is used.
Asymmetric cryptography is used in the handshake to authenticate peers, negotiate
cryptographic modes and parameters, and a shared secret. The application layer
data is then divided into records and symmetrically encrypted with this shared
secret between the peers.

The level of security gained from TLS secured communication channel is severely af-
fected by the used version, cryptographic modes, and parameters. By using ephem-
eral key exchange methods, like Ephemeral Diffie-Hellman (DHE) or Ephemeral
Elliptic Curve Diffie-Hellman (ECDHE), TLS also provides forward secrecy. TLS
versions 1.0 and 1.1 were formally deprecated in 2021, leaving versions 1.2 and 1.3
remaining as Proposed Standards [38].

1With DTLS a specification for TLS exists which does not rely on these properties, so that trans-
port protocols like UDP can be supported.
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TLS is used mostly in the client-server model context and requires that the server-
side peer is authenticated. Authentication of the client peer is optional. How-
ever, for proper server authentication, a client must be able to check the validity
of the server’s public key ownership. Otherwise, an attacker could impersonate as
the server without being detected by the client. Therefore, the public key must
be signed by a Certificate Authority (CA) through an issued certificate and the
client must trust the CA. A CA might be publicly trusted or a private “self-signed”
one [56].

A Certificate Authority might issue intermediate certificates (also called sub-CA),
which again can be used to issue certificates which proof the server’s public key
ownership. Therefore, a server’s public key could be signed via a certificate which
was issued by a sub-CA which was issued by another (sub-)CA. This is called a
“chain-of-trust” and the chain must always start with a CA the client trusts. This
trust anchor is normally distributed in operating systems or the web browser itself
(“trust store”) [56].

As a consequence, Certificate Authorities are the centerpiece of this trust model.
While there are measures in place to detect CAs issuing illegitimate certificates at
least after the fact (e.g. Certificate Transparency Logs [35]), ultimately, TLS clients
will trust certificates as long as they are technically valid (e.g. within the validity pe-
riod time) and signed by a CA in the client’s trust store.

2.2 OpenPGP

As briefly addressed in Chapter 1, OpenPGP is a cryptographic protocol which is ca-
pable to sign and encrypt data. It is based upon asymmetric cryptography but also
uses symmetric cryptography during encryption. OpenPGP provides data authen-
ticity, confidentiality, and integrity. In this section, we provide a description of the
OpenPGP basics we need in later chapters based on RFC 4880 [7].

OpenPGP offers probabilistic encryption due to a randomly generated symmet-
rical key during encryption. Each encryption process of the same plain text re-
sults in a non-connectable different encrypted text. OpenPGP is not forward se-
cret because it uses its private-public key pair as long-term keys [7]. There are
no session keys like in TLS with ephemeral key exchange methods. Once an at-
tacker gets in possession of the private key, all past (and future) ciphers can be
decrypted.

OpenPGP uses a binary format consisting of 8 bit octets. This format can be
converted to a Radix-64 ASCII representation for transporting the format through
communication channels which are incapable of transmitting 8 bit octets. This
representation is nearly identical to the MIME Base64 encoding and also called
ASCII Armor. A shell, for example, might interfere with raw binary data as it could
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be interpreted as a shell control character. Encrypted data, signatures, and keys
can be exported in this armored encoding.

The OpenPGP format consists of several records. Record types are identified through
specific tags. Records are loosely tied together. Only individual records are signed.
As a consequence, records can be omitted but not modified without being noticed.
OpenPGP messages (encrypted and/or signed data), keys and keyrings are in this
format. Some record types are not included in all of these.

There are the following major records in OpenPGP keys:

User-ID A User-ID consists of a name and an e-mail address. An OpenPGP key
may have multiple User-IDs, but exactly one should be primary.

Secret Key Contains the private key. An OpenPGP key may contain multiple keys,
but exactly one should be primary. A non-primary key is referred to as a sub-
key. Sub-keys are automatically trusted if they are signed by the primary
key. Keys may have an intended usage, so different keys can be used for
certification, authentication, encryption, and signatures. The primary secret
key is used to sign records in the OpenPGP key.

Public Key Contains the (primary) public key.

Secret Sub-Key Contains the private key of a sub-key.

Public Sub-Key Contains the public key of a sub-key.

Signature Packets This record type is used for different signature purposes. It is
used for self-signing other records with the primary secret key to ensure in-
tegrity. Another important purpose of this packet is to encode signatures from
other OpenPGP key owners which express their verification of the OpenPGP
key belonging to a user identified by a specific User-ID. The verification state-
ment always refers to a single User-ID.

OpenPGP keys and even sub-keys can be revoked with a revocation signature (a
signature packet type) [7, Sec. 5.2.1]. A revocation signature is valid if it is signed
by the key being revoked, or by an authorized revocation key [7, Sec. 5.2.1]. The
revocation signatures can be used both as stand-alone “revocation certificates” or
as part of a OpenPGP keys.

An OpenPGP keyring contains multiple OpenPGP keys of different entities and acts
as a local trust store. Each key in the keyring can be assigned a trust record which
represents how trustworthy the owner of the key is regarding the verification of other
keys, as specified by the keyring’s owner.

A more human-readable representation of a public key is the fingerprint which is with
160 bit much smaller compared to a (RSA) public key with 2048 or 4096 bit length.
The fingerprint of a OpenPGP key is always generated on its primary public key.
OpenPGP keys can be identified by their fingerprints.
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There are design decisions in OpenPGP which do not conform with standards of
modern cryptography. For example, it uses sign-than-encrypt, message compression,
and has extended adherence to backwards compatibility [22].

The trust model of OpenPGP does not rely on centralized authorities to validate
the correct connection between a key and an entity. As described in Chapter 1,
the trust model is decentralized and each entity must either check the validity
of a key directly or indirectly via the “web-of-trust”. This uses both the ver-
ification signature packets in OpenPGP keys and the trust records in the local
keyring.

2.3 Multipurpose Internet Mail Extensions

Key exchange methods in this thesis make usage of e-mails in the Multipurpose In-
ternet Mail Extensions (MIME) format [19]. Due to the extensive character of the
MIME specifications, we will only discuss the most important parts that are required
for the description of the addressed key exchange methods.

A MIME message contains multiple headers and a body. The headers specify meta
information about how the MIME message or body is to be interpreted. Header types
can have parameters. Messages can contain multiple bodies which are separated by
specially formed text strings, so-called boundaries, and are called multipart mes-
sages. Each of these body parts contain a header and a body themselves. It is thus
possible to add different data types in one single message.

Important header fields are:

MIME-Version. Required header field to be compliant with MIME specification.
Currently, the only possible parameter is the value 1.0.

Content-Type. The Content-Type field specifies the nature and form of the data
in the body. If no Content-Type header is given, the default type is plain
text in US-ASCII encoding. The value in this field is the Media Type but
it is often denoted as Content Type in practice. Media Types consists of a
type and subtype and are in the form type/subtype. This makes appropriate
handling of such types possible even if an implementation does not know the
specific subtype as it can still determine the nature of the given data. For
example, there exist the following types: text (plain text), image (images),
application (uninterpreted binary data or data which is processed by an
application), multipart (multipart messages).

In the context of OpenPGP, three additional Media Types are defined [15]:
application/pgp-encrypted is used for OpenPGP encrypted data, applica-
tion/pgp-signature for OpenPGP signed data, and application/pgp-keys
for the distribution of OpenPGP public keys.
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Content-Transfer-Encoding. E-mails (without MIME) are 7 bit US-ASCII only.
Many data formats are transmitted in their natural form and not in this rep-
resentation. This header field defines which mechanism is used for the encoding
in the body. There are seven encodings defined in the RFC: For example, 7bit,
8bit, binary, and base64. If a body is of the Content-Type multipart only,
the first three encodings above are permitted.





3 Methodology

This chapter provides an overview of our approach for the examination of OpenPGP
key exchange methods. We define typical operation classes for key exchange meth-
ods in the OpenPGP ecosystem and describe our approach for the security def-
initions used in the analysis. The operation classes and security definitions are
kept broad enough to be used for the examination of Web Key Directory, e-mail
validating key servers, and Autocrypt. In this thesis, we address Web Key Direc-
tory.

As described in Chapter 1, Web Key Directory, e-mail validating key server, and
Autocrypt are fairly new. None of them are officially standardized, with only some
being in the process of becoming standards. Therefore, we focus our research for
method description and analysis on primary sources which includes drafts, speci-
fications, and source code. The goal of this work is not to find flaws in the un-
derlying cryptographic protocols OpenPGP or TLS used in the mentioned meth-
ods.

We define the following key exchange operations with which the functionality of key
exchange methods can be modeled:

Key Submission A (public) key is uploaded to a certain key exchange method.

Key Lookup/Delivery A user requests a key for a certain user/e-mail address or
fingerprint.

Key Update A submitted key is revoked or updated.

Key Refresh A user checks if certain keys in their keyring are up-to-date and re-
freshes certain keys which are out-of-date.

Key Deletion A submitted key is removed from the key exchange method.

For the analysis part, we need to know what a secure key exchange method is.
Therefore, we need to define security definitions including attacker models and se-
curity goals. These are modeled to cover attacker models and security goals which
are applicable to key exchange methods in the OpenPGP ecosystem. The defined
operation classes and security definitions make a comparison between different key
exchange methods possible, even if they take into account approaches to optimize
or simplify prior mechanisms.
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The provided security goals can be fulfilled ( ), partially fulfilled (G#), or not fulfilled
(#). A security goal is partially fulfilled if the partial fulfillment criteria defined in
the security goal are satisfied. If a goal has none of these criteria it can only be
either fulfilled or not fulfilled.

The definition of the security goals follows the principles of confidential requests,
authentic keys, and privacy. The content and even the metadata originating from
a request might have security implications if leaked as they could indicate commu-
nication partners or persons’ trust dependencies. A typical expectation from the
user’s perspective is that a key provided in a key exchange method belongs to the
person indicated in the key and that the provided key is identical to the submitted
key. Keys might be submitted not only by the key owner and OpenPGP keys might
contain personal data. Unauthorized publishing of personal information can lead
to severe security implications and even infringement of laws which endanger the
availability of the key exchange method.

In this thesis, we describe and examine the Web Key Directory key exchange method
in detail. The description contains the components and functionality of Web Key
Directory. In the analysis, we are concerned with both the Web Key Directory speci-
fication and its reference implementation. We evaluate whether the specification and
reference implementation fulfill our security goals, or not. In addition, we evaluate
the coverage of the provided key operations.



4 Security Definitions

In this chapter, we define attacker models and security goals (our security defi-
nitions). The security definitions are modeled in such a way that they cover the
needs for OpenPGP key exchange methods and can be used to analyze and eval-
uate them. Based on the definitions, we can determine whether a key exchange
method is secure, or not. While we will only analyze Web Key Directory in this
thesis, the definitions can also be used to compare several key exchange meth-
ods.

4.1 Attacker Model

We define four different attacker models. The attacker in none of these models is
able to break TLS or OpenPGP.

Malicious User. (𝐴𝑈 ) Malicious users are users described by the system of the
key exchange method. They may deviate arbitrarily from the key exchange
method specification.

These users may have knowledge about the name and e-mail address of other
users since these information are not kept confidential and are necessary for
participation in the given systems.

Malicious Server. (𝐴𝑆) This attacker class has full control over services and data
provided by the server.

For this class it makes no difference whether the server is successfully compro-
mised by an attacker, a software malfunction, or a misconfiguration. A server
could be, in our case, for example, a key server or a mail transfer agent.

Active Network Attacker. (𝐴𝑎𝑁 ) An Active network attacker has full control over
the network and may access, modify, create, or delete all unprotected traffic.

Passive Network Attacker. (𝐴𝑝𝑁 ) A passive network attacker can read all unpro-
tected traffic of the network.
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4.2 Security Goals

The primary purpose of our security goals in this thesis is to ensure the integrity and
authenticity of OpenPGP keys and the confidentiality of OpenPGP key exchange
method requests. OpenPGP certificates contain personal data which might fall un-
der certain data protection laws; thus, a key exchange method should also handle
these data properly to ensure service availability (see SKS key server network shut-
down in Chapter 1) and the privacy of their users.

OpenPGP keys contain (possibly multiple) User-IDs which connect the key material
with a name and an e-mail address. For this thesis, we define the term “legitimate
key owner” (short: “key owner”) as the person identified by the e-mail address of
the key’s User-ID. If a key contains User-IDs of different persons, each person is only
the “legitimate key owner” with regard to those User-IDs which identify this person
via their e-mail address. For example, if Mallory (mallory@example.org) creates an
OpenPGP key with a User-ID “Alice <alice@example.org>”, only Alice is considered
the legitimate key owner (even though Mallory controls the private key). Thus, only
Alice and not Mallory must be allowed to, for example, approve (or refuse to approve)
key authenticity for this key as described below.

Having defined the “(legitimate) key owner”, we can now define the security goals
which an OpenPGP key exchange method should fulfill:

Authentic keys. (𝐺𝐴) If a user receives a requested key, this key must be the
same and most recent confirmed submitted key. A submitted key qualifies as
confirmed if the legitimate key owner approves its authenticity and integrity.
This confirmation must be done for each of the key User-IDs.

Partial fulfillment: We define this security goal as partially fulfilled if the
received key is a subset of the most recent confirmed submitted key, all parts
in the received key are identical to those in the submitted key, and the key
material (key and subkey parts) of the submitted key is present in the received
key. In this case, the confirmation must only be done for those User-IDs which
are part of this (partial) key.

Key exchange termination. (𝐺𝑇 ) A legitimate key owner must be able to remove
and terminate the key exchange for their key from the key exchange method.

Key revocation. (𝐺𝑅) If a user requests a key for which a submitted valid revo-
cation signature exists, this revocation signature must be delivered, too. A
revocation signature is valid if it is signed by the key being revoked, or by
an authorized revocation key [7, Sec. 5.2.1]. The revocation signature does
not have to be confirmed as described in security goal “authentic keys”. The
above concerns key revocation signatures and subkey revocation signatures [7,
Sec. 5.2.1], both as stand-alone revocation certificates or as part of a larger
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OpenPGP key. A later key exchange termination as per 𝐺𝑇 supersedes the
obligation for revocation signature delivery defined here.

Confidential key requests. (𝐺𝐶) If a user requests a key for a User-ID or a fin-
gerprint nobody except that user and the server the request is made to must
be able to determine information regarding User-ID, fingerprint, or requested
key.

Partial fulfillment: We define this security goal as partially fulfilled if the
domain parts of the email addresses in the User-IDs are not kept confidential,
but all other aspects of confidential key requests are fulfilled.

Privacy considering key exchange. (𝐺𝑃 ) Names, e-mail addresses, and images
must only be exchanged if the legitimate key owner has approved that.





5 Web Key Directory

In this chapter, we address the key exchange method Web Key Directory (WKD). It
provides a method to associate OpenPGP keys to a well-known URI and distribute
them over HTTPS. Web Key Directory incorporates security properties of the TLS
ecosystem by the use of HTTPS for key exchange. Trusting exchanged keys over
this method, therefore, implies trusting in TLS and the (web)server responsible
for the publication. We will describe the method and used components and their
functionality. In Section 5.1, we will be concerned with the Web Key Directory
Discovery Protocol and in Section 5.2 with the Web Key Directory Update Protocol.
We also address inconsistencies and specification gaps in the Web Key Directory
specification in Appendix A.

The OpenPGP Web Key Directory draft [33] describes two protocols: The main
(Web Key Directory) protocol is defined in Section 3.1 and the update protocol is
defined in Chapter 4 of the draft specification. In the following, we will name the
Web Key Directory Protocol as Web Key Directory Discovery Protocol to distinguish
it from the eponymous method. With this protocol, users are able to discover
and receive OpenPGP keys published via the Web Key Directory. The Web Key
Directory Update Protocol can be used to submit keys in an automated, e-mail
driven basis to the Web Key Directory.

UserDNS

Admin

Webserver

Mailserver WKS

connection
variant

determination

manual key
submission

key submission

key publishing

key discovery

e-mail
forwarding

key publishing

Figure 5.1: System image of components used by the Web Key Directory method.
The blue path and components are used in addition if the update protocol
is supported.
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In Figure 5.1, we see an image of components used by Web Key Directory and
their connections. The black components and connections are required for Web Key
Directory. In Web Key Directory, the user asks a DNS server to determine the
responsible web server for a requested OpenPGP key. The requested key is then
discovered via a request to a well-known path. It is possible to manually submit
OpenPGP keys to the Web Key Directory via the server administrator without
making use of the update protocol. The security properties of this approach are
hardly determinable because they depend on various conditions which are not in the
scope of the key exchange method. We assume that keys submitted via this approach
are securely transmitted and the administrator processing this submission complies
with the specification and not consider this approach further. This is not a major
assumption since such administrators are already capable of compromising the server
and, therefore, the whole Web Key Directory service.

In addition, Web Key Directory provides with the Web Key Directory Update Pro-
tocol an automated e-mail based protocol to ease the submission of OpenPGP keys
and relieve the administrators. The blue-colored components in Figure 5.1 are also
required to support the Web Key Directory Update Protocol. Although defined in
the context of Web Key Directory, the update protocol can also be used for publish-
ing OpenPGP keys via the DNS based OpenPGP DANE key exchange approach.
We will not consider OpenPGP DANE further since it is only stated as another pos-
sible way for publishing the successfully verified keys and not part of the Web Key
Directory method which is addressed in this chapter.

In Appendix A, we will describe inconsistencies and specification gaps in both the
Web Key Directory Discovery Protocol and the Web Key Directory Update Proto-
col.

5.1 Web Key Directory Discovery Protocol

The purpose of the Web Key Directory Discovery Protocol is to locate and request
OpenPGP keys which are published by the Web Key Directory method. The method
associates keys with their e-mail address. Only keys with User-IDs containing e-mail
addresses can be published by this method. As OpenPGP keys can contain multiple
User-ID packets, the method ensures that published keys must contain only the
User-ID used for the association. Other User-IDs and their binding signatures must
be removed from the key.

Web Key Directory makes OpenPGP keys available via web servers with the use
of HTTPS. Thus, we need to know which domain name is used for the responsible
web server. The method provides two variants for this: the direct and the advanced
method. Both variants use the domain from the e-mail address of the OpenPGP
key. For a key associated with the e-mail address Alice.Wonderland@example.org
this would be example.org. For the advanced variant the subdomain “openpgpkey”
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is prepended to the domain. Only if this subdomain does not exist or consists of an
empty TXT Resource Record, the direct method is allowed to be used. The direct
method uses only the base domain. By using “openpgp” subdomain of the e-mail
domain the advanced variant is more flexible as multiple e-mail domains can be
pointed to a single Web Key Directory. This also enables the possibility to provide
the Web Key Directory key exchange method for own domains without hosting
the Web Key Directory by yourself. This is called Web Key Directory as a Service
(WKDaaS). The construction of the URI differs slightly between both variants which
we will see in Figures 5.2 and 5.3.

The discovery of published OpenPGP keys is done via well-known URIs. The con-
cept of well-known URIs is standardized and introduces the path prefix /.well-
known/ for HTTP(S) and (Secure) WebSockets [42]. Other protocol schemes are
possible, too, but only HTTPS is relevant for Web Key Directory. Therefore, well-
known URIs enable a standardized procedure for applications to discover informa-
tion over the Internet. Applications which want to publish information via such
URIs must register the used name in conformance with the RFC by the well-known
name registry maintained by IANA. For Web Key Directory, this name is “open-
pgpkey” which results in the well-known path /.well-known/openpgpkey/. The
advanced connection variant appends the domain for which keys are published to
this path. This is beneficial for systems which serve Web Key Directories for mul-
tiple domains within the Web Key Directory well-known path. Within this path,
published keys and protocol information are organized. We denote the concate-
nation of schema, domain, well-known path, and in case of the advanced variant
e-mail address domain in the following as base URI or “BASE_URI”. With regard
to the discovery protocol, only the directory hu/ is relevant as it contains all pub-
lished keys. Nevertheless, the Web Key Directory method requires to serve a policy
file which can provide information used for key submission. The policy file can be
empty and clients can use it to figure out if Web Key Directory is offered for a given
domain. It is not sufficient to check only the existence of that file to determine
the availability of a Web Key Directory. Policy flags are defined which disable this
publication method. We will address the policy file in the update protocol section
(Section 5.2).

In addition to the domain and path, we need to know how the names of these keys are
organized to successfully discover OpenPGP keys. We know that Web Key Directory
associates keys with their e-mail addresses. The local-part of e-mail addresses (the
part before the @) in lower-case is used for the association. All ASCII characters in
uppercase are mapped to lower-case. Non-ASCII characters are not changed. This
lower-case representation of the local-part is hashed with SHA-1 and then encoded
with Z-Base-32 [67, Sec. 5.1.6]. Z-Base-32 is a Base32 [26, Chap. 7] like data
encoding but deviates slightly from the specification of Base32. Just like Base32 it
maps every 5 bits of the input byte string to one of 32 ASCII letters or digits. This
alphabet differs from the one used by Base32 and is chosen in such a way that it is
more human-readable. Additionally, Z-Base-32 does not use padding as in Base32
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where the encoded output is always a multiple of 8 symbols. In the case of Web Key
Directory, the local-part is hashed to 160 bits via SHA-1 and then encoded resulting
in a fixed length of 256 bits which can be represented with 32 ASCII characters.
The purpose of the encoding is to have a name for a key which does not contain
symbols which would prevent the storing in file systems.

Besides the Z-Base-32 encoded SHA-1 hash of the lower-case local-part, the URI
contains the query parameter “l” which contains the unchanged local-part in per-
centage escaping.

In Figures 5.2 and 5.3, we see the corresponding key lookup request URIs formed
by the advanced and direct connection variant for an OpenPGP key associated with
Alice.Wonderland@example.org.

https://openpgpkey.example.org/.well-known/openpgpkey/example.org/ ⤦
Ç hu/5gt5gnaq1zccz7f19kq9whu4ezf1uofq?l=Alice.Wonderland

openpgpkey subdomain of e-mail address domain e-mail address domain

Z-Base-32 encoded SHA-1 hash of lower-case local-part local-part of e-mail address
with URI percentage-
encoding as needed

base URI

Figure 5.2: Example URI used by the advanced connection variant for requesting
Alice.Wonderland@example.org’s key. The URI has been wrapped for
rendering purposes.

https://example.org/.well-known/openpgpkey/ ⤦
Ç hu/5gt5gnaq1zccz7f19kq9whu4ezf1uofq?l=Alice.Wonderland

e-mail address domain

Z-Base-32 encoded SHA-1 hash of lower-case local-part local-part of e-mail address
with URI percentage-
encoding as needed

base URI

Figure 5.3: Example URI used by the direct connection variant for requesting
Alice.Wonderland@example.org’s key. The URI has been wrapped for
rendering purposes.

The server hosting the Web Key Directory must provide HTTP HEAD in addition
to HTTP GET. With this, clients can check for the existence and whether there are
newer keys without downloading the key as payload.

A requested OpenPGP key must be delivered in binary and not in ASCII armored
form. It must contain a User ID packet for the requested e-mail address. Delivered
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keys can be expired or revoked. It is up to the client to handle this properly. A
server may deliver revoked keys for a requested e-mail address in addition to the
new valid key in a single response. Keys in this response are concatenated. The
preferred MIME Content-Type for the response is “application/octet-stream” which
indicates generic binary data. Any other Content-Type can also be used and clients
should also accept these.

5.2 Web Key Directory Update Protocol

The Web Key Directory Update Protocol is an additional protocol in the Web Key
Directory key exchange method. The purpose of this e-mail driven protocol is to
automate and ease the publication process of OpenPGP keys to the Web Key Direc-
tory. It is based primarily on OpenPGP secured e-mail exchange between the user
and their Web Key Directory provider.

This protocol covers only the e-mail driven submission process and not the creation
of an OpenPGP key. We assume that a key was successfully created and should now
be published. For the submission process, we need information which is served by
the web server hosting the Web Key Directory. In the description of the Web Key
Directory Discovery Protocol, we considered the determination of the responsible
web server based on a given e-mail address in detail. For the description of the
update protocol, we make use of the “base URI” to reference the relative position of
used files. Furthermore, we don’t depict the mail server in Figure 5.1 for simplifica-
tion of the protocol procedure. With regard to the update protocol, it only processes
e-mails from the user and the Web Key Directory Update Protocol implementation
and makes e-mail communication between them possible. We denote the implemen-
tation of the Web Key Directory Update Protocol as the Web Key Directory Service
(WKS).

In Figure 5.4, we see the update protocol as a diagram. We must consider that the
protocol procedure can be changed by the usage of policy flags. For better compre-
hensibility, implications of policy flags are not part of the figure. The policy flag file
and their implications will be addressed in detail below. For the submission process
the user wants to sent their OpenPGP key via e-mail to their provider. Therefore,
they must know the responsible submission e-mail address which is located at the
file served under BASE_URI/submission-address. This file must contain only the
submission e-mail address in one line and is terminated by LF or CRLF line break.
The submission e-mail address can optionally be defined as a policy flag. The actual
submission process of the user’s key contains three e-mails: The submission e-mail,
confirmation request, and confirmation response.

The user has to send their key via an OpenPGP encrypted e-mail to the submis-
sion e-mail address. Therefore, the user needs to obtain the OpenPGP key for the
provider’s submission e-mail address. It can be received via Web Key Directory or
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UserDNS WebserverWKS

connection vari-
ant determination determine submission e-mail address

get submission key

Submission e-mail

Confirmation Request

Confirmation Response
Publishing

Figure 5.4: Diagram of the Web Key Directory Update Protocol. The procedure can
be altered by the usage of policy flags. “get submission key” means the
key discovery process (see Sec. 5.1) for the OpenPGP key associated with
the submission e-mail address performed by the user. The submission
e-mail is encrypted, the confirmation request is signed and contains also
an encrypted body-part, and the confirmation response is signed and
encrypted with OpenPGP.

DANE. The provider must ensure an OpenPGP key capable of encrypting and sign-
ing is published for the designated submission e-mail address.

The user begins the submission process of their key by sending a submission e-mail
to their provider. The submission e-mail must be encrypted, but not signed. The
reason for the non signing is that the server could not properly validate the signa-
ture because the required OpenPGP public key is sent with the submission e-mail
and is not yet confirmed to belong to the legitimate e-mail user. The submission
e-mail must contain the user’s OpenPGP public key in ASCII armored representa-
tion and the Content-Type application/pgp-keys as required by the PGP/MIME
specification for the distribution of OpenPGP public keys [15, Sec. 7]. In addi-
tion, the above MIME part must be encrypted with the OpenPGP key obtained
for the submission e-mail address. The detailed structure of PGP/MIME encrypted
and/or signed messages is not relevant for the protocol description and therefore
not further discussed here. RFC 3156 [15, Sec. 4, 5] provides further informa-
tion.

The provider checks if the User-ID of the submitted key matches an account name of
the provider and if the submission satisfies policies defined in the policy file. Unless
defined otherwise in the policy file, the provider must ensure that the submitted
OpenPGP key is legitimate. This is done via the e-mail driven confirmation request
and response challenge.

For the confirmation request the provider sends an e-mail in response to the above
submission e-mail. This response must be sent from the designated submission
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e-mail address to the e-mail address given in the submitted OpenPGP key. The
confirmation request is a PGP/MIME message containing two MIME parts. It is
signed by the provider’s OpenPGP key associated with the submission e-mail ad-
dress. The first part is of the Content-Type text and its purpose is to explain the
confirmation request to the user and what they have to do for a successful con-
firmation. The second part contains a Web Key Directory specific textual format
and must be encrypted to the submitted key but not signed. The used Content-
Type differs according to the Web Key Directory draft version the provider sup-
ports. application/vnd.gnupg.wkd must be used for draft versions as of 5 or
higher and application/vnd.gnupg.wks for an unknown or less than draft version
5.

The textual format contains name-value pairs with only one of these pairs per line.
Lines are terminated by LF or CRLF and empty lines are ignored. A name is termi-
nated by a colon. The possible name-value pairs of this format are fully character-
ized by the content description of the confirmation request and response as specified
below.

A confirmation request must contain the following name-value pairs in the following
order:

type The value must be “confirmation-request”.

sender This e-mail address must be equal with the e-mail address from the e-mail’s
“From” header. Exactly one e-mail address must be given. The purpose
of this name-value pair is to indicate the user the e-mail address where the
confirmation response is to be sent to.

address The value must be the e-mail address defined in the User-ID of the sub-
mitted key. It should match with the recipient’s e-mail address used for this
confirmation request. As required for OpenPGP User-IDs the value must be
UTF-8 encoded.

fingerprint The value must be the fingerprint of the submitted key in upper-case
hexadecimal encoding without interleaving spaces.

nonce The nonce must be a string of random ASCII letters and digits with a length
between 16 to 64 characters. The purpose of the nonce is to act as a proof for
the legitimacy of the key submission. As the nonce is in the encrypted part of
the confirmation request, only the legitimate key owner can decrypt it.

The user receives the confirmation request of their provider and verifies the outer
message signature. This can be done without the user having to enter their private
key password and is intended to reveal spam at an early stage. The user is expected
to disregard this confirmation request if they can not verify the signature or if the
signing was not conducted by the OpenPGP key associated with the provider’s sub-
mission e-mail address. Afterward, the encrypted second part in the confirmation
request is decrypted and it must be checked if the constraints of the textual format
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are given. This includes that the fingerprint pair must match the fingerprint of the
OpenPGP key the user wants to publish, the address pair must match the e-mail
address of a User-ID of such a key, and the user must have a pending publication
request. If and only if all of these constraints are given, this confirmation request
is legitimate and should be responded via the confirmation response. A suitable
Mail User Agent (MUA) should perform above verification and checks automati-
cally and then sent the confirmation response silently if the verification and checks
succeeded. If any of the above constraints are not fulfilled, the MUA may notify the
user.

After the first successful delivery of the confirmation request, no further delivery
attempts should be performed by the provider regardless of the confirmation state
of the user’s key submission. The provider is expected to discard pending key
submissions without confirmation after a suitable time.

The confirmation response must be sent from the e-mail address associated with
the User-ID of the key which should be published. The confirmation response must
be addressed to the “From” header e-mail address of the confirmation request. It
must be signed with the user’s key and encrypted to the provider’s key and must
use the PGP/MIME Combined format described in [15, Sec. 6.2]. The format used
for the confirmation response is the same as described above for the confirmation
request.

A confirmation response must contain the following name-value pairs in the following
order:1

type The value must be “confirmation-response”.

sender This e-mail address must be equal with the e-mail address from the “sender”
parameter of the confirmation request.

address This e-mail address must be equal to the e-mail address in the “address”
parameter of the confirmation request.

nonce This must be the value of the “nonce” parameter in the confirmation request.

The provider receives the confirmation response and checks if the extracted nonce
matches with the one used in the confirmation request. If they match, the provider
assumes that the legitimate key owner wants to publish their key. The key is then
published and the user is notified about the successful publication.

As indicated above, the Web Key Directory draft defines a policy file. It may be
empty since all entries are optional. The purpose of this file is to provide certain
information about the Web Key Directory to the provider’s clients in advance of
key generation and submission. Based on given policies, the submission process can
be modified. This file is located at BASE_URI/policy and must be served if Web

1The “sender” parameter description was clarified in draft version 14. The “address” parameter
was added in draft version 14.



5.2 Web Key Directory Update Protocol 27

Key Directory is available for the given domain. Clients can check this file to figure
out if Web Key Directory is offered. The policy file is made up of keywords which
can have additional values. A keyword with value is directly followed by a colon as
a separator to the value. Between colon and value adding white space is possible.
Each line contains one keyword and is LF or CRLF terminated. Empty lines and lines
starting with a number sign (“#”) are ignored as comments. Keywords can contain
letters, digits, hyphens, and dots. They always start with a letter. Underscores are
allowed as name space delimiters. All official keywords are defined in the draft itself.
Experimental or provider specific keywords must be prefixed with an underscore and
a domain.

The following keywords are currently defined:

mailbox-only The provider does only accept e-mail addresses in the User-ID pack-
ets. User-IDs with an additional real name will be rejected and can not be
published.

dane-only The provider provides only an OpenPGP DANE service. A Web Key
Directory is not provided. OpenPGP keys submitted through the update
protocol are published via DNS.

auth-submit The provider uses other mechanisms to check the validity of a key
submission. For example, the connection between the client’s MUA and the
provider’s MTA might be authenticated. As a consequence, no confirmation
request and confirmation response must be performed and OpenPGP keys are
published immediately after their submission.

protocol-version A provider can specify its supported version of the Web Key Di-
rectory Update Protocol. Implementations can use this information to handle
workarounds for older versions of this protocol.

This keyword must contain the draft revision number as an integer value.

submission-address An alternative way to define the submission e-mail address.
This e-mail address must be the same as defined in the BASE_URI/submission-
address file.

This keyword must contain the submission address as value.





6 Security Analysis of Web Key Directory

In the chapter above, we described the Web Key Directory method in detail. In
this chapter, we will analyze this method. We will discuss various design decisions
of the specification and examine their security implications. Furthermore, we will
address the reference implementation of the Web Key Directory method and examine
inconsistencies and implementation errors. In addition, we will introduce an attack
on the reference implementation to publish keys for any e-mail address for any
domain a Web Key Directory provider offers.

6.1 SHA-1 Hashed Local-parts

In Section 5.1, we described that the URI for the OpenPGP key discovery con-
tains the local-part of the requested e-mail address twice: as a lowercase mapped,
SHA-1 hashed and then Z-Base-32 encoded hash and an unaltered GET parame-
ter.

The choice of SHA-1 stands out here because Web Key Directory is a quite recent
OpenPGP key exchange method currently still in the status of an RFC draft, while
SHA-1 has known weaknesses and has been deprecated for several uses for quite a
while [44, 3, 62]. The protocol authors evaluate the usage of SHA-1 as unproblematic
because “the use of SHA-1 for the mapping of the local-part to a fixed string is not
a security feature but merely used to map the local-part to a fixed-sized string made
from a well-defined set of characters” [33, Chap. 5] and that “it is not intended to
conceal information about a mail address” [33, Chap. 5].

We will now discuss whether it is possible to attack the key discovery of Web Key
Directory by taking advantage of the SHA-1 hashed local-part. We assume that
the OpenPGP keys published in the Web Key Directory are served by the Z-Base-
32 encoded hash and not by the unaltered GET parameter. This is not a major
assumption because it corresponds to the Web Key Directory setup with the Web
Key Directory server reference implementation (which is the only known one to us)
and a generic web server as described in the GnuPG wiki [21]. If the GET parameter
is used instead of the encoded hash, the below attack is not possible. We define the
following attack vector:

Alice has a mail provider which offers Web Key Directory and the Web Key Directory
Update Protocol. Mallory has access to this mail provider, too, so she is able to
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register e-mail users with this provider. Mallory wants to publish an OpenPGP key
to the Web Key Directory which will be served for key discovery requests for Alice’s
e-mail address. Mallory, therefore, wants to find and register an e-mail address which
results in the same hash as Alice’s e-mail address. In other words: Mallory could
replace Alice’s OpenPGP key if she is able to break the second-preimage resistance
of SHA-1. This would target mainly our security goal “Authentic keys” (𝐺𝐴) but
also “Privacy considering key exchange” (𝐺𝑃 ), especially if Alice has not already
published a key.

As a reminder, the second-preimage resistance property states: For a given hash
function ℎ∶𝑋 → 𝑌 and input 𝑥 ∈𝑋, it is computationally infeasible to find a second
input 𝑥′ ∈𝑋 with 𝑥 ≠ 𝑥′ such that ℎ(𝑥) = ℎ(𝑥′) [58].

The complexity to find such a second-preimage for a cryptographic hash func-
tion with an image length of 𝑛 bits is maximally 2𝑛 steps because w.l.o.g. ⋃︀𝑋 ⋃︀ >
2𝑛, ⋃︀𝑌 ⋃︀ = 2𝑛 and therefore the 2𝑛 + 1 distinct input must match to one of the pre-
vious images. The SHA-1 hash function maps to a 160 bit image and therefore the
theoretical resistance would be 160 bit or an attack would need a complexity of
2160.

According to Tchórzewski et al. [58], the resistance for a second-preimage attack
on SHA-1 can be lowered depending on the input length. This reduction can be
calculated by the following equation:

𝐿(𝑀) = ⌈︂log2
len(𝑀)

𝐵
⟩ (6.1)

len(𝑀) is the length of the input message 𝑀 in bits. 𝐵 is the block size of the
hash function. SHA-1 uses a block size of 512 bits. Therefore, the second-preimage
resistance for SHA-1 can be calculated by:

2nd-Preimage-ResistenceSHA-1(𝑀) = 160 − ⌈︂log2
len(𝑀)

512
⟩ (6.2)

Our input message in this case is the local-parts which can have a length from 1
byte up to (including) 64 bytes (512 bits) [30, Sec. 4.5.3.1.1]. This results in a
resistance of 160 bits for an input length of 64 bytes and a resistance of 147 bits
for an input length of 500.000 bytes. The function is also plotted in Figure 6.1.

Consequently, the second-preimage resistance of SHA-1 is not broken, even if a mail
server implementation does not enforce the local-part limits of the RFC, and we can
not attack the Web Key Directory method via this attack vector.

The question arises whether this “strong” second-preimage property of SHA-1 is
really necessary or whether we can achieve better results by taking advantage of the
“much weaker” collision resistance property.
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Figure 6.1: This diagram shows the resistance of SHA-1 in bits dependent on the
input length.

As a reminder, the collision resistance property states: For a given hash function
ℎ∶𝑋 → 𝑌 , it is computationally infeasible to find a pair 𝑥, 𝑥′ ∈ 𝑋 with 𝑥 ≠ 𝑥′ such
that ℎ(𝑥) = ℎ(𝑥′) [58].

For this, we must adapt our attack vector. Mallory (𝐴𝑈 ) is now also in a position
where she can register e-mail addresses for other users. Alice needs an e-mail address
and asks Mallory to register one for her. If Mallory can generate a suitable e-
mail address and a second different e-mail address where the local-parts result in
the same SHA-1 hash, she might perform the attack on the Web Key Directory
method. This would also target the same security goals (mainly 𝐺𝐴 but also 𝐺𝑃 )
as above.

We want to consider two aspects: First, we mentioned the collision resistance as
“much weaker” because the complexity to find a collision for a cryptographic hash
function with an image length of 𝑛 bits is up to 2𝑛⇑2 because of the birthday para-
dox [14]. For SHA-1 the complexity for a collision attack would therefore be 280. The
best known collision attacks on SHA-1 have a complexity of 261.2 and are practically
feasible [36].

Furthermore, local-parts can not be treated as generic binary data with arbitrary
length. Even if a mail server implementation technically supports local-parts longer
than the specified 64 byte limit, a cryptic local-part containing arbitrary characters
is neither intuitive nor practical. Local-parts must consist of UTF-8 characters, but
not all bytes represent valid UTF-8 characters, limiting the viable input set further.
The implications of such a limited subset 𝑋 ′ ⊂ 𝑋 on the current SHA-1 collision
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attacks are not exactly known. Theoretically, this could make these attacks not
just unfeasible, but impossible if the reasonable input set 𝑋 ′ is smaller than the
image of the hash function 𝑌 and the hash function is injective for 𝑋 ′ ⊂ 𝑋 and 𝑌 .
While we can not give exact numbers on the attack complexity for a limited 𝑋 ′, it
seems at least intuitive that such constraints on the input set increase the attack
complexity.

The described attacker model where Mallory can assign an e-mail address to Alice
(instead of Alice picking one) seems rather unrealistic. Even in this case we would
assume the attack complexity to be considerably higher than a plain collision attack.
Thus, while we can not guarantee this attack to be unfeasible, we will not consider
it further.

6.2 Lowercase Mapped Local-parts

In Appendix A (Inconsistencies and Specification Gaps), we mentioned the draft’s
assumption for the key discovery that “almost all MTAs treat the local-part case-
insensitive” [33, Sec. 3.1]. In this section, we will discuss implications that could
result from this assumption and conduct a small evaluation about how the case of
local-parts is handled by providers.

In Section 6.1, we described an attack vector where Mallory tries to attack the
second-preimage resistance of SHA-1 to publish an illegitimate OpenPGP key for
Alice. A similar attack would be possible, if Mallory (𝐴𝑈 ) could register an e-
mail address similar to Alice’s which only differs in case and Mallory receives at
least e-mails for her registered e-mail address. It is necessary that Mallory at least
receives e-mails for her own e-mail address because she must be able to receive the
confirmation request to publish keys. For the attack it does not matter, even if
this would imply a configuration mistake by the e-mail provider, if Mallory or Alice
receives e-mails from each other or if Alice’s e-mails are delivered only to Mallory.
This attack utilizes the lowercase mapping of local-parts prior to hashing described
in [33, Sec. 3.1]. As a consequence, OpenPGP keys for Alice’s and Mallory’s e-
mail addresses would be mapped to the same Z-Base-32 encoded SHA-1 hash and
therefore to the same file stored in the file system. Therefore, mainly the security
goals “Authentic keys” (𝐺𝐴) but also “Privacy considering key exchange” (𝐺𝑃 ) is
targeted. As in Section 6.1 mentioned, we disregard the case where the keys are
delivered based on the unaltered GET parameter.

Handling local-parts in a case-sensitive manner is in full compliance with the relevant
e-mail specification [30] and historically intended but nowadays probably not realis-
tic since e-mail addresses are treated as case-insensitive by convention (for reasons
including convenience) and the possibility to treat them case-sensitive might not be
widely known. Nonetheless, providers offering Web Key Directory and the Web Key
Directory Update Protocol are consequently prone to this attack if the corresponding
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e-mail provider allows e-mail addresses which differ only in case. However, it should
also be noted that it is likely that such behavior would result in problems not only for
Web Key Directory but also other tools and protocols because handling local-parts in
a case-insensitive manner might be prevalent nowadays.

To get an impression of the real world situation about how the case of local-parts is
handled by e-mail providers, we conducted a small case study. For this evaluation,
we chose the e-mail providers used in [55, Table 4] which are based on common e-mail
providers and the e-mail providers mentioned in [21, Mail Service Providers offering
WKD] as explicitly offering Web Key Directory. We chose 16 random lowercase
ASCII letters to build our local-parts. The first local-part (ID1) is the unaltered
string: eavhupphzqtswnxm. The second local-part (ID2) is the string with the first
three letters capitalized: EAVhupphzqtswnxm.

The evaluation covers two questions:

1. Case-sensitive IDs. Is the registration of accounts / e-mail addresses with the
names ID1 and ID2 possible? This means, is it possible to have e-mail addresses
which differ only in their case?

2. Case-sensitive delivery. Are e-mails sent to ID1 and ID2 delivered to the same
e-mail account?

The test was conducted as follows:

1. Register an account with the name of ID1.

2. Try to register an account with the name of ID2.

3. Sent an e-mail to ID1@domain.tld and check if it is delivered to the account
of ID1 or ID2.

4. Sent an e-mail to ID2@domain.tld and check if it is delivered to the account
of ID2 or ID1.

For the evaluation we apply the following criteria:

For the question “Case-sensitive IDs”, we denote the test as negative “no” if only
ID1 and not ID2 could be registered. We use “(no)” if we could not register any
account but the registration form allows only lowercase characters. This could be a
characteristic of registration form and could not correspond with restrictions in the
underlying mail infrastructure. However, we do not assume that the provider allows
the registration of such case-sensitive e-mail addresses in another way, which would
result in the same non-support. If we can register both accounts, we consider the
test as positive and mark it as “yes”.

For the question “Case-sensitive delivery”, we denote the test as positive “yes” if
e-mails sent to ID1 are delivered to ID1 and e-mails sent to ID2 are delivered to ID2.
Otherwise, the result is considered to be negative is donated as “no”. Additionally,
we add the ID, to which e-mails are delivered, to the test result: “(ID1)” if the
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e-mails were delivered to ID1, “(ID2)” if they were delivered to ID2, and “(ID1, ID2)”
if the e-mails were delivered to both.

The above evaluation is shown in Table 6.2. All tests which could be successfully con-
ducted indicated that local-parts are handled in a case-insensitive manner (i.e. in low-
ercase) by these e-mail providers. We could not identify any e-mail provider which
would be susceptible to this attack in our short survey.

Table 6.2: Evaluation of case sensitivity behavior of e-mail providers. Providers in
the upper section are chosen from [55, Table 4]. Providers in the lower
section are chosen from [21, Mail Service Providers offering WKD].

Domain Case-sensitive IDs Case-sensitive
delivery

AOL Mail aol.com no no (ID1)
FastMail fastmail.com no no (ID1)
Gmail gmail.com no no (ID1)
GMX Mail gmx.de no no (ID1)
Outlook.com outlook.com no no (ID1)
Yahoo! Mail yahoo.com no no (ID1)
Runbox runbox.com no -a

Hushmailb hushmail.com (no) -
Mail.rub mail.ru (no) -
iCloudb - - -
Zoho Mailb - - -

posteo posteo.de no no (ID1)
protonmail protonmail.com no no (ID1)
mailbox mailbox.org no no (ID1)
mail.de mail.de no no (ID1)
mailfence mailfence.com no no (ID1)
systemli.orgb - - -
netzguerilla.netb - - -

- Test could not be conducted.

aE-mails to ID1 and ID2 could not be delivered. Provider’s MTA reporting unroutable address.
Outgoing e-mails from ID1 to other providers were delivered. It seems to be a survey unrelated
mail infrastructure error of this provider. Possibly due to a not unlocked test account. We have
not been able to narrow down the reason for this error.

bCould not register mail accounts for this provider. Reasons given below:
Mail.ru: We did not want to use our private phone number. iCloud: We found no way to
register an e-mail account. Hushmail: Due to pricing reasons. Zoho Mail: Needs further
configuration (e.g. own DNS zone). systemli.org: Invitation codes required for registration.
netzguerilla.net: No registration form given. Accounts seems to be manually created after
request.
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At the end, we want to note that this was only a small survey and without quan-
tifiable data about mail provider market shares it is not rational to draw more con-
clusion from it. A larger and more detailed evaluation could strengthen these indica-
tions which might be relevant for not only Web Key Directory.

6.3 Update Protocol Main Assumption

The Web Key Directory Update Protocol is based on the fundamental assumption
that “a mail provider can securely deliver mail to the INBOX of a user (e.g. an
IMAP folder)” [33, Sec. 4]. Unfortunately, this assumption is quite unspecific and
explicable in different ways. In the following, we want to discuss interpretations
of this assumption and their implications on the security of the update protocol.
Therefore, we will present an attack vector for the Web Key Directory Update Pro-
tocol. The above assumption might be intended to prevent these kinds of attacks.
We will first describe the attack vector and then different interpretations of the
assumption and their implications. For the attack, we do not assume social engi-
neering or misconfigured ACLs (i.e. Eve can not read Alice’s mailbox at the file
system level).

6.3.1 Scenario Description

In Figure 6.3, we see a diagram containing three scenarios of how the Web Key Direc-
tory Update Protocol can be used. We consider the following scenarios:

1. one provider. (𝑆1) Provider A does manage their own Web Key Directory on
their own infrastructure.

2. WKDaaS direct. (𝑆2) Provider A does not manage their own Web Key Di-
rectory but uses provider B as a Web Key Directory as a Service provider.
Provider A and provider B use only their own infrastructure and exchange
e-mails directly (i.e. provider A sends e-mails directly to the corresponding
mail server of provider B).

3. WKDaaS indirect. (𝑆3) Provider A does not manage their own Web Key
Directory but uses provider B as a Web Key Directory as a Service provider.
Provider A uses a preceding e-mail provider C for their ingoing and outgoing
e-mails. Provider B does not provide an own mail server but uses provider
D for handling the e-mail exchange for the submission-address. Consequently,
e-mails between provider A and provider B are not exchanged directly but
indirectly over provider C and provider D.
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Scenario 𝑆3: handles all incom-
ing and outgoing external e-mails
for/from provider A’s mailserver

Scenario 𝑆3: mail provider for do-
main example.net

Scenario 𝑆1: Mailserver, Mailboxes,
Webserver (Web Key Directory), WKS
Scenario 𝑆2, 𝑆3: Mailserver, Mailboxes

Provider A example.org

 
Alice

alice@example.org

´ 1○

Scenario 𝑆2: Mailserver, Mailboxes,
Webserver (Web Key Directory), WKS
Scenario 𝑆3: MUA, Webserver (Web
Key Directory), WKS

Provider B example.net

­ WKD System User
key-submission@example.net

e-mail
transmission
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´

Provider C
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Figure 6.3: Three Web Key Directory scenarios with enabled update protocol.
Provider A wants to offer Web Key Directory. Provider B can act as
a Web Key Directory as a Service provider for provider A (green parts).
The Web Key Directory implementation is handled by the WKD Sys-
tem User at provider B’s space. Additional blue parts describe a more
complex variant how provider A and provider B could be connected.
Possible attack points for Eve are marked with Eve (´) and arrows on
the correspondent path/element. If such a point is only applicable in
some scenarios, it is in the correspondent color.

6.3.2 Attack Vector

In the attack vector, Eve wants to publish a self created OpenPGP key with the
identity of Alice. Alice is a user of provider A. Eve might or might not require a
e-mail address by provider A (like eve@example.org) depending on the setup of the
mail servers (e.g. spoof protection measures with SPF [27], DMARC [34]). This
attack targets the security goals 𝐺𝐴 and 𝐺𝑃 and Eve is required to have at least
the capabilities of the attacker models 𝐴𝑈 and 𝐴𝑝𝑁 . If she intercepts e-mails or
intervenes actively (e.g. downgrade attacks to enforce unencrypted SMTP, IMAP,
or POP3 connections), she also needs the active network attacker (𝐴𝑎𝑁 ) capabili-
ties.

Eve sends a submission message according to the update protocol with a spoofed
“From” field impersonating as Alice’s e-mail address. According to the update pro-
tocol, a confirmation request will be sent back to Alice because the submission seems
valid. To succeed, Eve must know the nonce in the confirmation request. Eve could
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try to read this request as a man-in-the-middle when the e-mail is in transport or
when Alice fetches/synchronizes her e-mails from her mailbox at provider A. In case
Eve was successful, she can decrypt the request with her created OpenPGP key
and can sent a correct confirmation response (with spoofed “From” and “sender”
fields impersonating as Alice). Provider B would then accept Eve’s key submission
as valid. Consequently, the key would be published, and a success message may be
sent to Alice. If Eve is not able to intercept the confirmation request and success
message, Alice could take notice of this attack and inform one of the mentioned
providers. This however, requires that Alice could interpret and understand both
messages and their implications.

6.3.3 Assumption Interpretations

The assumption is explicable in different ways and for the discussion we consider
the following interpretations. For the interpretations, we assume that the term
“securely deliver” covers at least confidentiality and that the term “provider space”
means the entirety of all systems and infrastructure over which a provider has full
control.

1. narrow interpretation. (𝐼1) A mail provider can securely deliver e-mails to the
INBOX of their own users once the e-mail enters the provider’s space.

2. closure interpretation. (𝐼2) A mail provider can securely deliver e-mails to the
INBOX of the recipient’s user. The recipient might be a user of a different
provider.

3. security-conscious providers. (𝐼3) The mail provider, who wants to offer a Web
Key Directory for their users, and if applicable, their Web Key Directory as a
Service provider can guarantee the secure delivery within their own provider
spaces. The providers enforce at least confidential connections to and from
their provider spaces.

Furthermore, we have two interpretations for the term “securely deliver mail to the
INBOX” used in interpretations 𝐼1 and 𝐼2:

a. e-mails are securely delivered to the INBOX of a user on their provider’s mail
server.

b. e-mails are securely delivered to the INBOX of a user on their own MUA.

We want to mention that interpretation 𝐼2 might be a very rare and unrealistic
scenario in the real world as a provider must ensure security properties of different
third party provider.
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6.3.4 Implications

We will now discuss the implications of the different assumption interpretations on
the described scenarios.

Scenario 𝑆1, Interpretation 𝐼1. In Scenario 𝑆1, provider A manages all necessary
mail server, web server, and WKD infrastructure. Web Key Directory Update Pro-
tocol related e-mails are sent directly between the provider and their user. Eve could
therefore only get in possession of the content of the confirmation request while it
is in transfer from Alice’s provider to Alice (attack point 1). For this interpreta-
tion, it is essential which scope the assumption has regarding the “delivery to the
INBOX”.

If we apply interpretation (𝑎.), the transport to the INBOX of Alice’s MUA is not
covered by the assumption. The confirmation request is only delivered securely
to Alice’s INBOX stored by her provider. We must assume that Eve could get
in possession of the confirmation request and could succeed in her attack. Eve
might also intercept the delivery of e-mails to Alice to obfuscate her attack as the
connection is not secured.

If we apply interpretation (𝑏.), the transport to the INBOX of Alice’s MUA is covered
by the assumption. This would effectively prevent access by Eve as the confirmation
request transport and other e-mails are protected, for example, by Transport Layer
Security (e.g. POP3S, IMAPS) between Alice and provider A.

Scenario 𝑆1, Interpretation 𝐼2. Same as for Scenario 𝑆1, Interpretation 𝐼1.

For Scenario 𝑆1, interpretations 𝐼1 and 𝐼2 are the same, as the recipients are always
users of provider A.

Scenario 𝑆1, Interpretation 𝐼3. Same implications as for Scenario 𝑆1, Interpreta-
tion 𝐼1 (𝑏.).

For Scenario 𝑆1, provider A has no Web Key Directory as a Service provider. The
only difference between 𝑆1, 𝐼1 (𝑏.) and 𝑆1, 𝐼3 is that e-mails, which are sent by
Alice are securely transmitted to her provider (e.g. SMTPS) (attack point 1), too.
(Interpretation (𝑏.) is only concerned about e-mails received by Alice, not sent.)
There is no difference for e-mails Alice receives (e.g. confirmation request). In the
context of the attack vector, the additional secured connection for Alice’s outgoing
e-mails is not relevant as Eve does not depend on reading or intercepting Alice’s
outgoing e-mails.
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Scenario 𝑆2, Interpretation 𝐼1. In Scenario 𝑆2, provider A uses provider B as
their Web Key Directory as a Service provider and e-mails between provider A and
provider B are exchanged directly. Both providers use their own e-mail infrastructure
and are therefore considered “a mail provider” for the purpose of the assumption.
In this scenario, we have to consider the attack points marked in black or green in
Figure 6.3.

The implications for the black attack point 1 are the same as for 𝑆1, 𝐼1.

The green attack point 2 is not covered by the assumption because the transport is
between the provider spaces of providers A and B and not within a provider space.
Additionally, provider B could not be considered a user of provider A with an INBOX
(and vice versa). Therefore, interpretations (𝑎.) and (𝑏.) are not applicable and do
not affect the implications. We must assume that Eve could get in possession of the
confirmation request and could succeed with her attack. Eve might also intercept
the delivery of e-mails sent from provider B to Alice to obfuscate her attack as the
connection is not secured.

Scenario 𝑆2, Interpretation 𝐼2. According to the interpretation, both provider A
and provider B can securely deliver e-mails to the users of each provider. This is
Alice at provider A and the Web Key Directory User at provider B. Therefore, the
transport path between both providers must be secured (e.g. SMTPS). This would
effectively prevent access by Eve as the confirmation request transport and other
e-mails are protected.

For Eve, only the black attack point 1 remains for which the implications are the
same as for 𝑆2, 𝐼1 or 𝑆1, 𝐼1.

Scenario 𝑆2, Interpretation 𝐼3. Provider A connects only to Alice and provider B.
Provider B connects only to provider A. Consequently, all of these connections are
direct and therefore must have been secured per assumption (attack points 1 and
2).

Eve can not get in possession of the confirmation request.

Scenario 𝑆3, Interpretation 𝐼1. In Scenario 𝑆3, we have a more complex connection
between provider A and their Web Key Directory as a Service provider, provider
B. Provider A uses provider C as a preceding mail provider (i.e. all ingoing and
outgoing e-mails from provider A are handled at provider C before reaching other
providers). Provider B does not manage their own mail server anymore, but uses
provider D as a mail server as a Service provider for their e-mails. As a consequence,
this presents the attack points marked blue in Figure 6.3 to Eve. The green attack
point disappears for Eve in this scenario due to the indirect communication between
provider A and provider B.
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According to this scenario, provider A and provider D are considered mail providers
that deliver e-mails to their own users’ INBOXes. Consequently, attack point 6 is
covered by the assumption and not accessible for Eve.

For attack points 1 and 7, the implications are similar to scenario 𝑆1, 𝐼1. The differ-
ence to the mentioned case is that in addition to Alice (a user of provider A) we have
the WKD User of provider B that is an e-mail user of provider D.

The assumption interpretation does not include any guarantees regarding provider
C’s space (attack point 4), or the transmission between provider C and provider D
(attack point 5), or between provider A and provider C (attack point 3). We must
assume that Eve can access and intercept e-mails including the confirmation request.
Therefore, she can succeed with her attack.

Scenario 𝑆3, Interpretation 𝐼2. In this interpretation, the whole e-mail transport
between provider A and provider D is secure because these providers are “mail
providers” for the purpose of the assumption. Therefore, attack points 3, 4, 5, and
6 are not accessible by Eve.

The implications for the remaining two attack points 1 (between Alice and her
provider A) and 7 (between providers B’s WKD user and their provider D) are the
same as described in case 𝑆3, 𝐼1.

Scenario 𝑆3, Interpretation 𝐼3. Per interpretation provider A and provider B en-
force at least confidential connections to and from their spaces in this scenario.
Provider A has connections to Alice (attack point 1) and provider C (attack point
3). Provider B has connections to provider D (attack point 7). Consequently, these
three attack points are not accessible by Eve.

We have no assumption about the provider spaces of provider C and provider D and
the connection between them (attack points 4, 5, 6). Therefore, we must assume
that Eve can access and intercept e-mails, including the confirmation request, and
she can succeed with her attack.

6.3.5 Summary

Summarizing the above discussion, we showed that the main assumption of the Web
Key Directory Update Protocol offers too much room for interpretation. We showed
that there exist several attack points in real world relevant scenarios which are
not covered in various discussed assumption interpretations. For scenario 𝑆3, only
interpretation 𝐼2 (𝑏.) completely prevents the attack where an attacker can publish
a self created OpenPGP key with the identity of another user (see attack description
in Section 6.3.2). For scenarios 𝑆1 and 𝑆2, only about half of the interpretations
prevent this attack. As a consequence, an attacker could be able to submit OpenPGP
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keys for other users in several e-mail infrastructure scenarios. Hence, security goals
𝐺𝐴 and 𝐺𝑃 are targeted. The attacker needs at least the capabilities of 𝐴𝑈 and
𝐴𝑝𝑁 . If the attacker also intercepts e-mails or intervenes actively (e.g. downgrade
attacks to enforce unencrypted SMTP, IMAP, or POP3 connections), the active
network attacker (𝐴𝑎𝑁 ) capabilities are also needed. The results of the discussion
are condensed in Table 6.4 below.

Table 6.4: Evaluation of the Web Key Directory Update Protocol main assumption
discussion for different scenarios and interpretations. In each cell the
attack points (see Fig. 6.3) are recorded which are exploitable by Eve for
the given scenario and interpretation.

𝑆1 𝑆2 𝑆3

𝐼1 𝑎. 1 1, 2 1, 3, 4, 5, 7
𝐼1 𝑏. - 2 3, 4, 5
𝐼2 𝑎. 1 1 1, 7
𝐼2 𝑏. - - -
𝐼3 - - 4, 5, 6

- No attack points accessible by Eve.

The assumption should point out in which context the update protocol is intended
to be used securely. Therefore, the meaning of the term “secure delivery” should
be defined and the concrete security aspects should be stated. We assumed at least
confidentiality must be covered as otherwise an attack could succeed easily. The
context of the delivery (i.e. to the user’s INBOX on the mail server or the MUA and
which users are actually meant) should be clarified as well, as this has a major impact
on the security implications. We want to mention the differences for the implications
in Table 6.4 between interpretation (𝑎.) and (𝑏.). (They are not differentiated for
𝐼3 because 𝐼3 implicitly assumes secure delivery to the user’s INBOX and the next
MTA.) The need to consider the case of multiple different providers is well illustrated
in the amount of possible attack points for scenario 𝑆3. The assumption should point
out more clearly which providers are committed to and covered by the assumption
as the term “[a] mail provider” is not sufficient for scenarios with multiple providers.
If the specification authors do not intend the update protocol to securely perform
in such complex mail infrastructure scenarios as seen in 𝑆3, the assumption should
at least be accompanied by a corresponding warning about the possible security
implications.

Only interpretation 𝐼2 (𝑏.) prevents this attack in all described scenarios. However,
as already mentioned in Section 6.3.3 (Assumption Interpretations), we consider only
interpretations 𝐼1 and 𝐼3 as realistic in the real world application as interpretation
𝐼2 requires a provider to ensure the secure delivery to another provider’s user’s
INBOX. Considering scenarios 𝑆1 and 𝑆2, the evaluation indicates that the Web
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Key Directory Update Protocol can securely be used without being susceptible to
this attack on key authenticity if e-mails are always securely delivered to the user’s
INBOX on the MUA and between the e-mail provider and their Web Key Directory
as a Service provider.

6.4 Reference Implementation

In this Section, we will address the server and client reference implementations of
the Web Key Directory method which are developed by the GnuPG Project. We
noticed that the implementation adds additional headers to the e-mails which are
not specified and cause the implementations to not behave according to the specifi-
cation anymore. Furthermore, we will look into errors in the signature creation and
processing behavior of the implementations concerning the confirmation response.
However, this section is not to be seen as a full review of the reference implementa-
tion.

We want to mention that Appendix B (WKD Update Protocol Run) contains all
messages emerging from a complete and successful OpenPGP key submission using
the Web Key Directory Update Protocol. We have tested the implementation of the
current upstream version 2.3.6 and of the current LTS version 2.2.35. Both versions
show the same behavior.

We also want to mention that according to the source code both versions implement
the Web Key Directory specification in version 3 [20, tools/gpg-wks.h:28]. After
examining the differences between draft versions 2, 3, and 13, we can acknowledge
that there are no breaking changes in the format of the messages (since beginning of
version 2) and they can be considered compatible with client implementations based
on at least draft version 2 [54].

6.4.1 Additional Headers

During the examination of the Web Key Directory method we noticed the occurrence
of additional header fields which were added by the client and server implementation
to all generated e-mails.

Wks-Phase The confirmation request and the optional key publication success
e-mail contain the Wks-Phase header. The value is either “confirm” for the confirma-
tion request or “done” for the publication success e-mails.

We were curious about the relevance and reason this header was introduced in the
reference implementation as it is not specified and not secured by any means (as
all e-mail headers). It turned out that the reason was to help the plugin Enigmail
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for handling OpenPGP in the MUA Thunderbird with the identification of these
messages and was added in version 2.1.19 in 2017-03-01 [20, NEWS:1579]. According
to comments in the source code, it was not meant to use this header as a secured
feature [20, tools/gpg-wks-server.c:1009]. In the worst case an attacker could add,
remove, or change this header or its value to affect the proper detection of tools
which rely on it.

We want to mention that this header is not interpreted by the reference implemen-
tation and apparently not used in Enigmail [16] or in Thunderbird [60] anymore.
Therefore, this header must be considered as superfluous and should be removed
because its purpose is not relevant anymore – at least with the information we
have.

Wks-Draft-Version All e-mails generated by the reference implementation contain
the Wks-Draft-Version header.

This header was introduced in 2016-09-29 as a preparation for draft version 2 [20,
commit: 33800280d]. The idea for the introduction according to the commit mes-
sage was to support a way to handle a new message format (versions ≥ 2) without
breaking existing (version 1) implementations. Old implementations would not add
or interpret this header field and newer implementations could decide a format ver-
sion fallback based on the value and existence of this header. However, the Wks-
Draft-Version header was not considered in the specification process and is still
not specified.

The reference implementation checks if the header was added and that the value is
at least 2 [20, tools/wks-receive.c:453/280]. If this does not apply, the messages are
considered to be in draft version 1.

A problem emerges from the incompatibility of the confirmation request which
was fundamentally changed. In version 1, the e-mail was encrypted and option-
ally signed. Beginning with version 2, it is signed and contains a text and an
encrypted part [53]. As a consequence, the reference implementation does not
operate specification-compliant and in a way that would break other implemen-
tations which are only based on the specification. However, a submission e-mail
compliant to the current specification version (but without the Wks-Draft-Version
header) would trigger a confirmation request in the incompatible draft version 1.
The format of the submission e-mail and the confirmation response seems to be
backward compatible as they enforce aspects (“MUST”) which where prior marked
as “SHOULD” (see RFC 2119 which defines Notational Conventions which are used
in RFCs).

The Wks-Draft-Version header is, similar to the Wks-Phase header, not protected
and could be altered. An attacker could perform downgrade attacks via this header.
Currently, there only exist an “old” message format (prior version 2) and the “new”
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format added with version 2. An attacker could remove the header or change the
value to 0 which would result in the reference implementation considering a new
message format as an old one. This would, for example, mean that the signature in
the confirmation request is not required anymore. If we consider this header as a
mechanism to add versioning to the Web Key Directory Update Protocol messages
and the assumption that there might be further security relevant format changes to
the protocol, this problem would aggravate.

However, the header is not specified and the specification authors should address
this issue either with changes to the reference implementation or by considering this
header in the specification process. It should be examined whether it is possible
to provide sufficient integrity for the transmitted version number, for example, by
binding it to the used key(s) through signatures.

6.4.2 Irregularities in Message Generation and Processing

We performed a full and successful run of the Web Key Directory Update Protocol
and compared the generated messages with the specification. To our surprise, the
confirmation response message was only encrypted and not encrypted and signed
as specified, although it has been considered valid by the server implementation.
Due to this finding, we decided to examine the reference implementation further in
regard to specification compliance.

confirmation request checking The confirmation request is specified as a signed
multipart MIME message containing a text and an encrypted WKD format part
since version 2 [53, 31, 33]. This signature is easily accessible as it is a MIME part
which is added to both parts mentioned above. We tested the implementation by
checking its behavior when processing confirmation requests with a valid, manu-
ally invalidated, and removed signature part. Interestingly, all these messages were
accepted and confirmation response messages were created. The only difference in
behavior was printed warnings.

The reason for this behavior can be directly seen in the function verify_signa-
ture [20, tools/wks-receive.c:147ff] which is called if the parser collects signature
parts. The function actually only calls the gpg executable with arguments as seen
in Listing 6.5 and checks the return code. The return code handling is defective as in
both cases (successful and non-successful exit of gpg) the function only prints mes-
sages, frees the argument array, and returns. Consequently, the verification checking
is useless and has no impact on the following program flow. This problem is un-
derlined by the “Fixme: Verification result is not used” message which is always
printed when the function is called. The problem exists since 2016 [20, commit:
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5d6c83dea]. Three months later, the above debug message was added, and the com-
mit message contains an additional note: “There are still a lot of FIXMEs - take
care.” [20, commit: 33800280d].

1 gpg --no-options --batch ( | --verbose) --enable-special-filenames --status-fd=2 --always-
trust --verify -- -&@INEXTRA@ -

Listing 6.5: Call signature of the gpg executable by the verify_signature (lines
147ff) function in tools/wks-receive.c. (x | y) means argument x
or argument y. The argument -&@INEXTRA@ is not relevant for our
considerations.

confirmation response generation The confirmation response message must both
be signed by the signing key of the OpenPGP key which should be published and
encrypted to the OpenPGP key associated with the provider’s submission e-mail ad-
dress using the PGP/MIME Combined format [31, 33]. However, the PGP message
generated by gpg-wks-client, which can be seen in Listing B.6 in the appendix, is
only encrypted and not signed. We could narrow down the reason in the source code
to the corresponding encrypt_response function [20, tools/gpg-wks-client.c:1225ff]
which misses signature creation completely. The function actually only calls the gpg
executable with arguments for encryption and checks the return code. Apparently,
it misses the –-sign argument which leads directly to an encrypted but not signed
message. The program call with arguments is given in Listing 6.6. According to the
git history, the mistake is present since 2016.

1 gpg --no-options ( | --quiet | --verbose) --batch --status-fd=2 --always-trust --armor -z0
(--auto-key-locate=clear,local | --auto-key-locate=clear,wkd,dane,local) --recipient
addrspec --recipient fingerprint --encrypt --

Listing 6.6: Call signature of the gpg executable by the encrypt_response (lines
1225ff) function in tools/gpg-wks-client.c. (x | y) means argument x or
argument y. addrspec is the e-mail address of the recipient and the
fingerprint is the fingerprint of the corresponding recipient’s key.

The confirmation response is sent unencrypted if no encryption key for the provider’s
submission e-mail address is found [20, tools/gpg-wks-client.c:1508ff]. This behavior
has been present since 2016 too, and interestingly it appears to be intentional due to
the comment in the source code. This mistake appears to be a consequence of chang-
ing the specification (draft version 1 “SHOULD be encrypted”, starting version 2 “MUST
be encrypted”) but not adapting the implementation.

confirmation response checking Besides the aspects regarding the generation of
the confirmation response message, this message is also processed by the server
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implementation and was accepted although it does not comply with the specifi-
cation. Confirmation responses which are only encrypted and not signed are ac-
cepted. Confirmation responses which are encrypted and signed (as required by
the specification) are not accepted. We narrowed down the reason for this behav-
ior.

Incoming messages are parsed regarding their MIME structure and data, which is
for example, encrypted or signed, is collected and then processed by defined callback
functions [20, tools/mime-parser.c:676ff, tools/wks-receive.c:409ff]. OpenPGP uses
the sign-then-encrypt approach. This means the plain text is first signed and then
encrypted and obviously the validation must first decrypt the cipher to get at the
plain text and signature. Consequently, signed-and-encrypted ciphers look like only
encrypted ciphers before decryption and are handled by the same callback function
in the implementation [20, tools/wks-receive.c:197ff/72ff]. The function tries to
decrypt the collected cipher by calling gpg with the arguments given in Listing 6.7.
The decrypted cipher (the stdout output of the program call) is written into a data
stream.

1 gpg --no-options --max-output=0x10000 --batch ( | --verbose) --always-trust --decrypt --

Listing 6.7: Call signature of the gpg executable by the decrypt_data (lines 73ff)
function in tools/wks-receive.c.

A stream is a sequence of data where bytes can be added over time, and a certain
amount of bytes are processed once at a time instead of all at once. As an example,
we can picture a file descriptor which points to a file and we can thereby read
characters from the file. After we read a character, the next read will give us
the next character. We can also set the read position to the beginning of the file
without the need to close and open the descriptor again. The streams used in the
implementation have at least a beginning, an end, and a current position which
indicates the last read byte. It is possible to set the current position back to the
beginning which is called “rewinding”.

If the called gpg program exits with a non-zero exit code (non-success exit), the
function prints an error message and jumps to the “leave” flag where the program call
arguments are freed and then it returns. If the program exits successfully, the stream
is rewinded prior to the arguments freeing and returning.

The observed problem is caused by this improper handling of the exit code and the
fact that the cipher is decrypted to the stream even if the signature is not present
or could not be properly validated. The stream is not cleared in the case of a non-
success exit. The only difference is that the current read position of the stream is
set to the beginning if no error occurs. The reason why the confirmation response
is not accepted in the error exit case is that the parser, which tries to parse the
stream (e.g. to determine contained WKD format data) finds no data due to the
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read position of the stream. As a side note, this bears the risk that unaware added
code to print the contents of the stream, for example, debugging purposes (which
rewinds the stream afterwards again), indicates the stream is empty and makes the
contents afterwards (through rewinding) accessible again which could directly lead
to the acceptance of the message.

Interestingly this improper handling has been present since the function was added in
2016 [20, commit: 5d6c83dea]. This mistake can not be ascribed to a not adequately
updated implementation of an older draft version because the confirmation response
e-mail must be signed (and should be encrypted) since version 0 (and must be
encrypted since version 3) [32, 31].

In addition, this function has a design flaw: The gpg program is not called with
proper arguments regarding the verification of the signature. This is currently
also not possible because the corresponding to be published key is not handed
over to the function in which the signature should be verified. Currently, the
called gpg program checks implicitly against the keys which are imported in the
executing user’s local keyring. The to be published key is not intended/specified
to be present in this keyring. According to the man page of gpg(1), signature
verification needs knowledge about the key which a signature should be checked
against and only interpreting the return value is not suitable to properly verify
signatures.

The behavior of the reference implementation according to the confirmation response
checking can be summarized as follows:

If the confirmation response is encrypted to the key of the submission address1 and
not signed (not as specified by the draft), the reference implementation accepts the
message. The called gpg executable exits with success and the decrypted cipher
is written to the stream. The stream is rewinded by the reference implementa-
tion.

If the confirmation response is encrypted to the key of the submission address and
is signed by the target key (as specified by the draft specification), the reference
implementation will not accept the message. The called gpg executable will fail
with a non-success exit return code while trying to verify the signature because
the executable has no knowledge about the target key which is required for proper
signature verification. The executable checks implicitly against the imported keys in
the executing user’s keyring, but it is not specified or intended that target keys are
in this keyring. Nevertheless, the decrypted cipher is already written to the stream.
Due to the non-success exit return code of the executable call, the stream is not
rewinded by the reference implementation.

1For the sake of completeness, it is theoretically possible to encrypt the message to any public key
where the corresponding secret key is imported in the executing user’s keyring (i.e. WKS user’s
keyring) because the gpg executable checks implicitly against these keys.
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If the confirmation response is encrypted to the key of the submission address and
signed by any private key where the corresponding public key is imported in the ex-
ecuting user’s keyring, the reference implementation will accept the message (which
is in conflict with the draft specification). The called gpg executable will exit suc-
cessfully because it was able to verify the signature. The verification was not done
against the target key but against an imported key in the executing user’s keyring.
The decrypted cipher is written to the stream. The stream is rewinded by the
reference implementation.

Thus, the reference implementation will not accept draft-compliant confirmation
responses, but will accept many other confirmation responses with missing or wrong
signatures.

6.4.3 Irregularities in the WKD Format Checking

During the examination in the source, we also noticed incomplete implementation of
Web Key Directory format key-pair checks. This concerns the sender and address
fields in the confirmation request and confirmation response checking and the nonce
field in the confirmation response checking.

For the sender field, it is only checked for both confirmation request and confir-
mation response whether it exists and contains a valid e-mail address according to
RFC 822 [20, common/mbox-util.c:166ff, tools/gpg-wks-client.c:1485ff, tools/gpg-
wks-server.c:1532ff]. It is not checked that the e-mail address corresponds with the
one given in the From: header as specified.

For the address field, it is only checked for both confirmation request and confir-
mation response whether it exists and contains a RFC 822 compliant e-mail ad-
dress [20, common/mbox-util.c:166ff, tools/gpg-wks-client.c:1472ff, tools/gpg-wks-
server.c:1545ff]. It is not checked that the e-mail address corresponds with the e-
mail of the to be published User-ID in the confirmation request and that the e-mail
address matches the value of the address field of the confirmation request in the
confirmation response as specified. In fact, the missing check of the correspondence
of the address field value in the confirmation response will make an attack possible
to successfully submit any OpenPGP key for a supported domain to a Web Key
Directory. We will describe the attack in Section 6.4.4.

Interestingly the nonce value is not checked properly as specified to be the same
as the nonce of the confirmation request. It is only checked whether it exists
and the length is at least 16 bytes long [20, tools/gpg-wks-server.c:1556ff]. Fur-
thermore, a file path constructed from the nonce has to exist [20, tools/gpg-wks-
server.c:1382ff]. The file path is constructed basically as a concatenation of strings
as shown in Listing 6.8 [20, common/stringhelp.c:607]. The function used for the
concatenation is used in several other places in the repository. This might allow
path traversals like the one described below to be exploited in other parts of the



6.4 Reference Implementation 49

GnuPG code, too if the input strings used for the concatenation are not properly
checked.

1 file_path := opt.directory / domain / "pending" / nonce
2
3 Example path traversal:
4 /var/lib/gnupg/wks / example.org / pending / ../../../../../../to/any/file

Listing 6.8: Construction of the file path to access the pending OpenPGP key. An
example is shown for a simple path traversal. The file pointed to must
be a PGP file with a User-ID corresponding to the address field value.

It is possible to modify the nonce in such a way that it can point to any file and be
at least 16 characters long. To do that, we use the fact that on Unix-like systems
(e.g. Linux) a directory entry named “..” always points to the parent directory,
except for the root (top-most) directory, where “..” points to the directory itself.
Due to the implementation, the pointed file must be a PGP file with a User-ID
which corresponds with the address field value[20, tools/gpg-wks-server.c:1389ff].
We found no scope to utilize that path traversal to extract secret data from the server
system, only public OpenPGP keys. However, we will utilize this path traversal to
generalize the attack we will describe in Section 6.4.4 to additional domains beside
the domain of the attacker controlled e-mail address.

All submitted keys are stored in the pending directory for a given domain. This
directory is only accessible by the user under which the WKS tool is running. It is
part of the same directory tree that is usually served by the web server to enable
the Web Key Directory Discovery Protocol. If the web server runs under the same
user as the WKS tool, the web server is able to serve these files as well. If addi-
tionally the web server has directory indexing not disabled, it is trivial to confirm
each of these pending keys because the nonce is the filename, and the e-mail ad-
dress is in the stored key, and all these files would be easily accessible through the
web.

For the sake of completeness, we want to mention that the domain part is wrongly
extracted from the address value because the part after the first occurrence of an
“@” character is interpreted as the domain [20, tools/gpg-wks-server.c:1379ff]. This
is not true for a valid e-mail address like "user@something"@example.org [51, Sec.
3.4.1]. We have no evidence that this is a security relevant flaw since “"” and “@”
are not allowed in domain names [29, Sec. 2]. It only affects availability for these
users.

6.4.4 Attack on the Reference Implementation

In this section, we describe an attack on the reference implementation which allows
us to successfully publish OpenPGP keys for any e-mail address of the domains
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served by a Web Key Directory. We only assume that the reference implementation
is used and that an attacker has an e-mail address at the provider which offers
the Web Key Directory. We utilize the path traversal described in Section 6.4.3 to
extend the attack scope on e-mail addresses where the domain differs from that of the
attacker controlled e-mail address. Furthermore, we will show that by performing
this attack we can accomplish a denial-of-service for the Web Key Directory Update
Protocol by overwriting the published submission-address OpenPGP key necessary
for utilizing the protocol.

All generated messages and OpenPGP key material for this attack are given in
Appendix C.

Scenario description The scenario on which the attack is based is generic. It
only requires the reference implementation to be used. For the attack, we as-
sume Mallory (𝐴𝑈 ) is in possession of the e-mail address mallory@example.org.
She wants to tamper the OpenPGP key for Alice who uses the e-mail address al-
ice@example.org.

Furthermore, we assume that the Web Key Directory Provider manages both the do-
mains example.org and example.net. For the attack, it is not necessary that multiple
domains are managed, but we will use this to demonstrate the attack expansion on
other domains than the domain of Mallory’s e-mail address.

We also want to point out that the submission-address keys are treated like any
other key in the Web Key Directory by the implementation and can be managed by
the Web Key Directory Update Protocol as well.

For better understanding, we picture the directory structure which is used by the
reference implementation in Listing 6.9.

1 /var/lib/gnupg/wks/
2 |-- example.net
3 | |-- hu
4 | | ‘-- 54f6ry7x1qqtpor16txw5gdmdbbh6a73
5 | |-- pending
6 | | ‘-- o3euik3tr3d6rjwrq4i7o1gg77o48mn1
7 | |-- policy
8 | ‘-- submission-address
9 ‘-- example.org

10 |-- hu
11 | ‘-- 54f6ry7x1qqtpor16txw5gdmdbbh6a73
12 |-- pending
13 | ‘-- 7mpzp4cgkr5uy3bzaw4pqggwga8ksfz9
14 |-- policy
15 ‘-- submission-address
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Listing 6.9: The directory structure for a Web Key Directory managing the
example.org and example.net domains. In directory hu/ the successfully
submitted OpenPGP keys are stored named by their WKD hash for
publication (in this example only the key for the submission-address).
In directory pending/ the submitted keys which are not yet confirmed
are stored named by the nonce.

Attack description To perform the attack, we have to conduct the following steps:

1. Generate an OpenPGP key with two User-IDs. One for a self-controlled e-mail
address (e.g. mallory@example.org) and one for the to be attacked user (e.g.
alice@example.org). The domains of these e-mail addresses can differ. The
only requirement is that the server handles the chosen domains.

2. Mallory generates the submission e-mail for the User-ID mallory@example.org
using gpg-wkd-client.

3. Mallory replaces the public key in the PGP message with the public key which
contains both User-IDs. This means the PGP message must be decrypted with
the self generated key, the contained public key is changed, and the message is
encrypted again. This is necessary because the gpg-wkd-client tool generates
a submission e-mail for only the requested User-ID (as specified).

4. Mallory sends the edited submission e-mail to the provider.

5. The server sends one confirmation request e-mail to Alice and one to Mallory
(to each User-ID). The second part of these e-mails are encrypted with the key
Mallory has submitted. Alice is therefore not able to decrypt it. Nevertheless,
Alice can read the header including the Subject: header and the informational
text in the first part.

6. Mallory generates the confirmation response.

7. Mallory replaces the value of the address field which originally contains Mal-
lory’s e-mail address mallory@example.org with alice@example.org. This
means the PGP message must be decrypted with the self generated key, the
containing field is changed, and the message is encrypted again. In case Mal-
lory wants to target a user with a different domain, Mallory prefixes the relative
traversal path to her pending key to the nonce. For example, a nonce prefix
could be ../../example.org/pending/.

8. Mallory sends the edited confirmation response to the provider.



52 6 Security Analysis of Web Key Directory

9. The server publishes the submitted public key with the User-ID of Alice. If
for the targeted e-mail address a key is already published, the key is replaced.
The server sends a confirmation e-mail to alice@example.org to notify her
about the key publication. The confirmation e-mail is encrypted to Mallory’s
submitted key and Alice is not able to decrypt it. Nevertheless, Alice can read
the header including the Subject: header field.

Evaluation The attack targets the security goals “Authentic keys” (𝐺𝐴) and “Pri-
vacy considering key exchange” (𝐺𝑃 ). The attack is based on two security flaws:

1. Wrong handling of the confirmation response checking, especially the address
value and nonce value checking.

2. A path traversal attack on the nonce value.

For each User-ID, the complete key is stored in the pending directory of the corre-
sponding domain named by a different nonce. The implementation does not check
the value of the nonce in the confirmation response against the one send in the
confirmation request but decides the correctness based on the existence of a file
at the file path generated from the nonce. The decision on which User-ID is fi-
nally published is based on the value of the address field which is also not properly
checked. Because the complete key (so all User-IDs) is stored for each of the User-
IDs we can change the address field value to a different e-mail address and the
server will extract exactly this User-ID for the publication and stores it in the hu/
directory.

The path traversal is necessary in order to attack also User-IDs which have a dif-
ferent domain than the attacker’s e-mail address. This is based on the fact that
the domain is part of the created file path (see Listing 6.8) and the implementation
would otherwise not find a file named after the nonce for this domain because the
nonce is different for each User-ID. We can circumvent this problem by prefixing
a path to the domain which is used for the attacker controlled e-mail address (like
../../example.org/pending/). We know that there is a complete key (containing
all User-IDs) stored named after the nonce which was sent to the attacker in the
confirmation request. By combining the changed address and the prefixed nonce we
can therefore publish also tampered User-IDs for domains which are different to the
domain used in the attacker-controlled e-mail address.

Conclusion The implications of the attack are serious as it is possible to tamper
each key of a Web Key Directory for all served domains. If a key is already present,
it can be overwritten by the attack. The overwriting of the key associated with
the submission address leads to a denial-of-service as the Web Key Directory Up-
date Protocol requires this key because the e-mails to the server are secured by it.
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This poses a problem to all Web Key Directories managed by the reference imple-
mentation. Especially for Web Key Directory as a Service providers, this could be
a even more severe problem because they serve Web Key Directories for multiple
domains.

As a consequence, it is highly questionable whether trust in these keys can still
be assumed. Nevertheless, it is theoretically possible to detect such an attack at
user level as the user will receive the success message from the provider for a key
submission which was not ordered by themself.

6.4.5 Summary of our Findings in the Reference Implementation

We will now summarize our findings for the reference implementation. For a better
overview we also present the results in a concise form in Table 6.10.

We described in Section 6.4.1 that the reference implementation makes usage of two
headers in their messages which are not specified in the draft. The first header,
Wks-Phase, was introduced to help software like Enigmail to handle Web Key Di-
rectory e-mails. The header is not relevant anymore as far as we could figure
out because the software mentioned in the commit message does not use it any-
more.

The second header, Wks-Draft-Version, is used by the implementation to decide
which protocol draft version is used. We showed that this is problematic in two
ways: The header is not protected and an attacker could simply perform downgrade
attacks on it to ease potential attacks. Furthermore, the header is not specified in
the draft and the reference implementation assumes messages without the header
to follow a draft version prior to version 2 which is not compatible anymore. This
behavior would therefore break compatibility with other specification-compliant im-
plementations.

In Section 6.4.2, we addressed the generation and processing of messages in the refer-
ence implementation. We showed that the implementation does not act as specified
in several places and includes several points which are not properly implemented
since years.

We pointed out that the signature checking for the confirmation request as imple-
mented is useless and has no impact on the following program flow, thus permitting
messages without valid signatures. Furthermore, we showed that the implementa-
tion creates only encrypted and not encrypted and signed confirmation response
messages. If no OpenPGP key is found to encrypt the message to the implementa-
tion even sends the message unencrypted. Both conflicts with specified behavior. In
fact, the implementation can not parse properly encrypted and signed confirmation
responses.
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In Section 6.4.3, we showed that besides the generation and checking of the messages
in the Web Key Directory Update Protocol the Web Key Directory format (the key-
value pairs) are mostly not checked properly. The sender and address fields need
only to exist and contain valid e-mail addresses for the purpose of RFC 822. It is
not checked the values in the confirmation response correspond with the values of
the confirmation request.

We showed that improper checking of the address field will make it possible to pub-
lish OpenPGP keys for User-IDs other than the person who submits them.

The nonce field is also not properly checked against the value of the confirmation
request. The nonce is used as a part of a string concatenation which leads to a file
path where the implementation assumes the pending key to be be stored. The nonce
is seen as valid if a key with the User-ID from the address field is found at that
file path. We pointed out that this behavior is prone to path traversal attacks. The
usage of this vulnerability made it possible to generalizes the attack described in
Section 6.4.4 on other domains than the one used in the attacker controlled e-mail
address.

In Section 6.4.4, we then presented an attack on the Web Key Directory Update
Protocol which makes it possible for an attacker to publish OpenPGP keys for any
e-mail address of a domain which is handled by a Web Key Directory provider. For
the attack, we only assume that the reference implementation is used. Furthermore,
the attacker must be in possession of one e-mail address handled by the provider.
For the attack, basically only the OpenPGP key with both the own and the targeted
OpenPGP User-IDs has to be submitted and the address and (if the target User-ID
uses a different domain) the nonce have to be changed.

This attack is severe in the context of the level of trust which can be gained for
the exchanged OpenPGP keys for Web Key Directories provider using the reference
implementation.

6.5 Considerations on Further Security Goals

In this section, we will address the remaining security goals as defined in Chapter 4
(Security Definitions). We have already addressed the security goal “Authentic
keys” (𝐺𝐴) extensively in above sections and will not consider it further in this
section.

We will evaluate if the specification properly specifies the approach for the underlying
operations (like key publication, key revocation, or key exchange termination) of the
security goals and if the reference implementation properly implements these, for ex-
ample as part of the Web Key Directory Update Protocol.
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Table 6.10: Current implementation status of the reference implementation (version
2.3.6) based on Web Key Directory specification draft version 14.

submission confirmation request confirmation response

message format
generation complete complete partialab

checking complete partialc defective ☇1
key-value check

type - checked checked
sender - partiald partiald
address - partiale partialf ☇2
fingerprint - checked -
nonce - checked partialg ☇3

- Not applicable.
☇1 Message parsing fails for specification-compliant confirmation responses.
☇2 Utilized in the attack to publish attacker-controlled OpenPGP keys for any

e-mail address of the domains a WKD serves.
☇3 Path traversal possible. The file pointed to must be a OpenPGP key with a

User-ID containing the address e-mail address.

aOnly encrypted and not signed and encrypted.
bIf no key was found, the confirmation response is send unencrypted.
cThe signature is not properly verified. The verification implementation is effectively useless.
dIt is not checked that the “sender” field matches the “From” field e-mail address.
eIt is not checked that the “address” field matches the e-mail address of the to be published User-

ID.
fIt is not checked that the “address” field matches the “address” field of the confirmation request.
gIt is not checked that the given nonce corresponds with the one in the confirmation request. The

nonce is used as the last part of a string concatenation to generate a file path.



56 6 Security Analysis of Web Key Directory

6.5.1 Key Exchange Termination (𝐺𝑇 )

The security goal we address in this section requires that a key owner must be able to
remove and therefore terminate the key exchange for their key.

We do not have to deeply consider the Web Key Directory Discovery Protocol for this
security goal because key exchange termination is not in the scope of this protocol.
It only discovers and requests published keys. If the key is removed, it could not be
discovered anymore.

The first sentence in the description of the Web Key Directory Update Protocol
describes it as an automated way to put keys into the key directory [33, Sec. 4].
It is not mentioned that the update protocol would be intended to remove such
submitted keys. This is also reflected in the protocol flow: The update protocol
is initiated by the submission e-mail, followed by the confirmation request, and
the confirmation response. After the confirmation response, the server publishes
the key. There are neither extra messages nor special key-value pairs in the Web
Key Directory format which empowers the protocol to handle such a termination
request.

Consequently, we have to conclude that the termination of key publications is not
possible with the Web Key Directory Update Protocol. The proceedings for manual
interventions of administrators are, however, clear and in our view obvious because
a successful key exchange termination is achieved by simply deleting the key from the
publication source (e.g. the hu/ directory of the web server).

Reference Implementation Although the specification does not consider the re-
moval of published keys via the update protocol, the reference implementation could
behave differently. Therefore, we also check the reference implementation regarding
key exchange termination.

The gpg-wks-server implementation contains a command line flag –-remove-
key [20, tools/gpg-wks-server.c:398ff]. It takes a User-ID, computes the file path to
the hu/ directory, and removes the correspondent key [20, tools/wks-util.c:1162ff].
This operations needs direct file system access. It is not an operation which utilizes
the update protocol or introduces other mechanism which are not specified.

Interestingly we find the same command line flag with the same behavior in the
gpg-wks-client implementation as in gpg-wks-server [20, tools/gpg-wks-client.c:-
391ff]. This is odd because the client implementation is intended to be used at clients
and not by the server itself. Clients have no direct access (i.e. file system access) to
the Web Key Directory and the operation should always fail because it is dependent
on direct access.
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The existence of the –-remove-key command line flag is not in conflict with the spec-
ification. However, there is no (automated) way to make use of it according to the
specification, except for manual intervention by the administrator.

6.5.2 Key Revocation (𝐺𝑅)

The security goal “Key revocation” demands that if a user requests a key for which
a valid revocation signature has been submitted, this revocation signature must
be delivered, too. The purpose is that it must be possible to revoke published
keys and that users of Web Key Directory are enabled to receive such revoca-
tions.

We do not have to deeply consider the Web Key Directory Discovery Protocol for
this security goal because key revocation is not in the scope of this protocol. The
purpose of the discovery protocol is to provide a specified and secure way to discover
and request OpenPGP keys via a known e-mail address and HTTPS. The discovery
protocol mentions that servers may sent revoked keys along with the new key and
that clients may receive revoked or expired keys [33, Sec. 3.1]. The consequences
for a served key which is for example revoked (regardless whether the served key is
actually only a revocation certificate or a key which contains revocation signatures)
are, however, not in the scope of the discovery protocol and are explicitly delegated
to the client implementations [33, Sec. 3.1].

Similar to the key exchange termination case, the specification of the Web Key
Directory Update Protocol does not hold any additional messages or special key-
value pairs for key revocation. However, we need to discuss whether key revocation
has to be treated separately, or whether it is already implicitly specified by the
submission process.

For this, we want to consider the revocation of OpenPGP keys first briefly. It
is possible to revoke OpenPGP keys or individual sub-keys via revocation signa-
tures [7, Sec. 5.2.1]. These signatures can be appended to the corresponding key
or saved separately as a revocation certificate. Thus, revocation certificates contain
only an OpenPGP signature package and no User-ID packets, nor public keys. A
revocation signature packet or certificate is valid if it is signed by the key being
revoked, or by an authorized revocation key [7, Sec. 5.2.1]. Revoked keys must
not be used further [7, Sec. 5.2.1]. In Listing 6.11, we have presented a revocation
certificate.

1 # cat alice.rev | gpg --show-key
2 rvs? 17682DD1D31ACB7B 2022-06-10 [User ID not found]
3 reason for revocation: No reason specified
4

5 # cat alice.rev | gpg --list-packets
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6 :signature packet: algo 22, keyid 17682DD1D31ACB7B
7 version 4, created 1654871612, md5len 0, sigclass 0x20
8 digest algo 8, begin of digest e4 98
9 hashed subpkt 33 len 21 (issuer fpr v4 2

BE93B1EC9125C1FF6C20FE717682DD1D31ACB7B)
10 hashed subpkt 2 len 4 (sig created 2022-06-10)
11 hashed subpkt 29 len 1 (revocation reason 0x00 ())
12 subpkt 16 len 8 (issuer key ID 17682DD1D31ACB7B)
13 data: [256 bits]
14 data: [252 bits]

Listing 6.11: Revocation certificate for the OpenPGP key with the User-ID Alice
<alice@example.org> identified by the
fingerprint 2BE93B1EC9125C1FF6C20FE717682DD1D31ACB7B. The first
output is the interpretation of gpg and the second is the view on
the packet contained in the certificate. The revocation certificate was
issued by the (primary) secret key with key ID 17682DD1D31ACB7B.

In the following, we consider whether the specification covers revocation via revoca-
tion certificate or keys which contain revocation signature packets.

Revocation certificate The protocol is initiated by the submission e-mail, followed
by the confirmation request and confirmation response. The submission e-mail must
contain “the ASCII-armored transferable Public Key Packets as defined in RFC
4880” [33, Sec. 4.2]. Consequently, signature packets can not be submitted via a
protocol-compliant submission e-mail because they are not public key packets [7,
Sec. 5.2]. Besides that, a revocation certificate lacks a User-ID and a public key and
the server could not send a compliant confirmation request because the second part
of it must be encrypted. However, a revocation certificate should not have to be
approved by the user as with a normal public key submission. Due to the nature of
revocation certificates, their possession implies already the authorization to revoke
the corresponding key.

If we assume that the update protocol would accept revocation certificates, the
server should verify the revocation certificate prior to publication to ensure to have
received a valid certificate. For this validation, a confirmed key must be present
at the server. Without a confirmed key, the server can not determine whether
the submitted revocation certificate belongs to a key in possession of a provider’s
user. Without a validity check, an attacker could submit revocation certificates for
keys which do not belong to rightful keys at large scale which could affect service
maintainability and availability.

Consequently, it becomes apparent that the Web Key Directory Update Proto-
col needs separate specification to handle revocation certificates. This raises sev-
eral questions: What should be done if the server receives a revocation certificate
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for a key which was not already published in the past? What should happen
if the server can not verify a revocation certificate? Should the revocation sig-
nature packet be appended to an already published key or should it replace the
key?

OpenPGP key containing revocation signature packets Besides the revocation
certificate, revocation signature packets could also be embedded in a OpenPGP key.
Similar to the above case, the revocation signature packets of a key can not be
added to a compliant submission e-mail. Besides the conflict with the Web Key
Directory specification, a confirmation request would also be in conflict with the
OpenPGP specification because a revoked key must not be used further. The second
part of the confirmation request must always be encrypted to this (than revoked)
key. The server could check the validity of the revocation signature packets against
the submitted key, but we do not know for sure if the key is valid and therefore
if the revocation is valid. If the server publishes this unverified revoked key, an
attacker could submit fake revoked keys at a large scale which could affect service
maintainability and availability.

This indicates that the specification also does not cover revocation with embedded
revocation signatures in the submitted key.

To summarize, we can conclude that the specification does not allow the revoca-
tion of keys. This is not only applicable to the automated update protocol but
it also affects manual interventions of administrators as they do not know how to
properly handle this case. For example, the revocation certification could be added
to the already published user’s key or the key could be replaced by the revoca-
tion certificate. As a result, key revocation is also not clearly defined by manual
actions.

Reference Implementation According to the man page gpg-wks-server(1), “the
command –-revoke-key is not yet functional”.

The command line parser of the server implementation implements the above com-
mand which takes a User-ID and calls the command_revoke_key function [20, tools/-
gpg-wks-server.c:404ff]. Interestingly the function does not print any informational
message that the function is not yet supported, but it calls wks_cmd_remove_-
key [20, tools/gpg-wks-server.c:1982ff], which removes the key for a given e-mail
address from the Web Key Directory. It is from our point of view unintelligible and
counter-intuitive why the authors added such behavior. They are aware of this be-
cause before calling the removal function they added the comment: “Remove2 [sic!]
should be different from removing but we have not yet defined a suitable way to do
this.” [20, tools/gpg-wks-server.c:1986ff].

2There is a typo in the source code. It is clear from the context that “revoke” is meant here.
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This behavior is odd and unpleasant from a software engineering stance, even though
it is not in conflict with the specification.

6.5.3 Confidential Key Requests (𝐺𝐶)

We defined the security goal “Confidential key requests” as the requirement that
nobody except the server and the user who requests a key must be able to deter-
mine the User-ID, fingerprint, or requested key. If leaked, these could involuntarily
indicate communication partners or other relationships, so they must be kept confi-
dential.

For this security goal we do not have to consider the Web Key Directory Update
Protocol because we are only concerned with key requests. The update protocol does
not request published keys from the Web Key Directory.

The Web Key Directory Discovery Protocol is based on HTTPS (i.e. HTTP over
TLS). As a short reminder, in the discovery protocol a key is discoverable via the
e-mail address of a User-ID. A URI is derived from the e-mail address and a HTTP
GET request is sent. The server responses with the requested key to this GET
request. There exist two kinds of URIs depending on whether the advanced method
or the direct method is used. Compared with the URI of the direct method, the URI
of the advanced method uses the openpgpkey subdomain and the domain part of the
requested e-mail address is part of the well-known path. We described the discovery
protocol in detail in Section 5.1. We also picture the (direct) URI in Figure 6.12 in
this section, again.

https://example.org/.well-known/openpgpkey/ ⤦
Ç hu/5gt5gnaq1zccz7f19kq9whu4ezf1uofq?l=Alice.Wonderland

e-mail address domain

Z-Base-32 encoded SHA-1 hash of lower-case local-part local-part of e-mail address
with URI percentage-
encoding as needed

base URI

Figure 6.12: Example URI used by the direct connection variant for requesting
Alice.Wonderland@example.org’s key. The URI has been wrapped for
rendering purposes. The green part is located in the HTTP Host header
and the blue part in the GET header.

As we can see in Figure 6.12, the Web Key Directory Discovery Protocol simply
utilizes the HTTPS protocol and the security implications are, with regard to this
security goal, only dependent on HTTPS and the steps necessary to establish the
HTTPS connection. Both the request from the client, which contains for example
the mentioned Host and GET headers, and the following response with the requested
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key from the server are only accessible to both parties because the complete HTTP
traffic is end-to-end secured by TLS [18, Sec. 4.2.2].

To determine the fulfillment of this security goal, we therefore need to consider TLS
as the cryptographic foundation of HTTPS. The exact security implications depend
strongly on the used version and configuration of TLS. We want to point out that it
is not in the scope of this thesis to find security flaws in cryptographic protocols like
TLS. We assume that these protocols can be securely used and hold their security
promises.

Besides the information within the HTTP connection there are other locations and
situations where information of the request could be leaked that we need to consider.
This concerns primarily the used domain which could be used to draw inferences
about the requested key because keys are identified by their e-mail address. The
resulting security implications (like deniability of a key request) of a domain leakage
depend however on additional assumptions. If the key is requested from a domain
which only handles e-mail addresses for a single person, it is more likely for the
connection to identify that person, than for a domain with thousands of e-mail
users.

It is possible that the domain is leaked at the following locations/situations:

• non-confidential DNS resolving

• the destination IP address

• TLS Server Name Indication Extension (SNI) [13]

It is sufficiently well-known that (classical) DNS resolving is not confidential and
even protective mechanisms like DNSSEC only ensure integrity. Before a key re-
quest can be sent the domain must be resolved. Unless the resolving is performed
via a local cache, a passive network attacker could draw connections between the
domain resolving and the following TLS protected request to the HTTPS port of
the just resolved IP address. There are newer approaches to provide confidential
DNS resolving like DNS-over-TLS (DOT) [25] and DNS-over-HTTPS (DOH) [24]
but we will not go into these further. Even with confidential DNS requests the TLS
connection to the HTTPS port of a specific IP address alone could allow to infer a
WKD discovery protocol usage, depending on several factors like whether and what
other services are offered via HTTPS on that IP address, the server response size
etc.

In addition, there is a TLS extension called “Server Name Indication (SNI)” [13]
which is located in the Client Hello message in the TLS handshake and contains the
domain. The Client Hello is not encrypted and any passive network attacker could
read this information. According to the TLS 1.3 specification, clients should send
SNI when applicable [49, Sec. 4.4.2.2]. The TLS 1.2 specification is too old to men-
tion SNI because SNI was not specified then. A brief research indicates that all major
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web clients (e.g. Internet Explorer, Edge, Firefox, Safari, Chrome) and web servers
(e.g. Apache, nginx, Microsoft IIS) support SNI [66].

A mechanism to encrypt the Client Hello (ECH) and therefore protect also the SNI
extension is currently in draft status [50]. “ECH is only supported with (D)TLS 1.3
and newer versions of the protocol.” [50, Chap. 1].

It is very likely that SNI is used widely and that ECH has not yet become more
widely distributed. Therefore, we should assume that the domain part of the e-mail
address is leaked by the TLS handshake.

Apart from the e-mail domain the request is confidential. According to the security
goal definition we can conclude that the security goal Confidential key requests (𝐺𝐶)
is partially fulfilled.

Reference Implementation We wanted to see whether GnuPG uses Server Name
Indication in a WKD key lookup. We performed a key request using gpg and
examined the TLS Client Hello. The relevant part of the Client Hello is shown in
Listing 6.13.

The DNS lookup was performed against the default DNS resolver. The implemen-
tation adds the Server Name Indication and does not use the Encrypted Client
Hello.

1 TLSv1.3 Record Layer: Handshake Protocol: Client Hello
2 ...
3 Extension: server_name (len=16)
4 Type: server_name (0)
5 Length: 16
6 Server Name Indication extension
7 Server Name list length: 14
8 Server Name Type: host_name (0)
9 Server Name length: 11

10 Server Name: example.org
11 ...

Listing 6.13: Extraction of the Server Name Indication Extension of the TLS 1.3
Client Hello.

We can conclude that the domain for the requested e-mail address is leaked by the
TLS handshake if GnuPG is used.
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6.5.4 Privacy Considering Key Exchange (𝐺𝑃 )

The security goal we will now consider demands that personal information, specifi-
cally names, e-mail addresses, and images, must only be exchanged if the key owner
has approved that.

We do not have to consider the Web Key Directory Discovery Protocol because this is
only used to request already published key by the Web Key Directory.

The fulfillment of this security goal is tightly bound to the challenge-response mech-
anism in the Web Key Directory Update Protocol.

We showed in Section 6.3 (Update Protocol Main Assumption) that the main as-
sumption for the Web Key Directory Update Protocol leaves too much room for
interpretation. Additionally, we showed that the used scenario (i.e. the used e-mail
infrastructure) is crucial, too. The security implications regarding this security goal
are hence dependent on the interpretation and implementation of the main assump-
tion.

Based on the evaluation in Section 6.3, we can make a statement under which inter-
pretation and scenario an attacker could successfully publish a key impersonating as
another user. For the security goal it is not important that the key material but the
personal information of a user is published. This is also possible with an attacker
generated key impersonating another user.

Therefore, we conclude that the security goal is not fulfilled in all cases where an
attack vector is available as shown in Table 6.4.

Reference Implementation We presented an attack in Section 6.4.4 (Attack on
the Reference Implementation) which allows an attacker to publish keys for any
e-mail addresses of any domain a Web Key Directory provider handles. The at-
tack could utilize personal information like names, e-mail addresses, and images
of other people to generate keys and publish them. The publication of this infor-
mation is not approved by the person indicated by the name, e-mail address, or
image.

Therefore, the reference implementation does not fulfill the security goal.

6.6 Summary

During the analysis, it became apparent that we had to distinguish between the
Web Key Directory specification and the reference implementation in regard to
the security implications. Even though we have only knowledge about one Web
Key Directory implementation which implements also the Web Key Directory Up-
date Protocol, specifications are designed to make interoperability between several
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implementations possible, and therefore, we summarize the implications on the se-
curity goals separately for the specification and the reference implementation in
Table 6.14.

At the beginning of the analysis, we were concerned with the discovery of OpenPGP
keys via the Web Key Directory Discovery Protocol. Keys are identified by their
e-mail address and the request URI used by the discovery protocol contains the
local-part as a SHA-1 hash.

First, we examined in Section 6.1 (SHA-1 Hashed Local-parts) whether it is possible
to utilize the – for quite a while deprecated – hash algorithm SHA-1 to target the
discovery protocol. We described an idea for an attack where a malicious user
Mallory (𝐴𝑈 ) wants to find an e-mail address with a local-part which has the same
SHA-1 hash as the local-part of the e-mail address of the targeted user Alice. If
she succeeds, Mallory could upload her key and potentially overwrite Alice’s key.
Key requests for Alice’s key would then be responded with Mallory’s key. This
concerns mainly our security goal “Authentic keys” (𝐺𝐴) but also the goal “Privacy
considering key exchange” (𝐺𝑃 ), especially if Alice has not already published a key.
The attack targets the second-preimage resistance of SHA-1. We found that this
property is not broken. Hence, the attack idea is not feasible even for local-parts
which are way off the specified local-part length limits.

Second, we examined whether an attacker could succeed if only the much weaker
collision resistance is targeted. Therefore, we modified the attack model in such a
way that the attacker Mallory assigns users like Alice e-mail addresses. Thereby
Mallory can circumvent the strong second-preimage resistance and has only the col-
lision resistance to target because she can freely choose both local-parts instead of
only one local-part for the attack. Although there exist practically feasible colli-
sion attacks on SHA-1, we could not satisfyingly figure out how the constraints of
local-parts impair this feasibility. Due to the constraints (like length and character
set), a collision attack could be practically infeasible. At least we assume that the
complexity might be considerably higher than a collision attack for SHA-1 hashes
over generic data. We did not consider this attack further because the attack model
is rather unrealistic.

After the implications of the hashed local-parts, we examined in Section 6.2 (Low-
ercase Mapped Local-parts) the security implications of the lowercase mapping of
the local-parts as it is performed by the Web Key Directory method. We described
an attack which targets the same security goal as above (mainly 𝐺𝐴 and also 𝐺𝑃 )
but takes advantage of the lowercase mapping instead of attacks on the security
properties of SHA-1. The hash is generated over the lowercase mapped local-part
and Web Key Directory makes the assumption that local-parts are treated case-
insensitive by almost all providers. An attacker Mallory (𝐴𝑈 ) could register an
e-mail address similar to the target user Alice’s e-mail address which only differs in
case. The generated hash would be the same and Mallory could normally submit
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the key via the Web Key Directory Update Protocol. Consequently, she could suc-
cessfully publish a key where only the case differs and potentially overwrite Alice’s
already published key. Key requests for Alice’s key would then be responded with
Mallory’s key.

It is not in contradiction with relevant e-mail specifications that e-mail providers
treat their local-parts case-insensitive, but is also not required. To get an impression
of the real world situation about how the case of local-parts is handled by e-mail
providers, we conducted a small case study. We evaluated 18 providers and all tests
(12) which could be successfully conducted indicated that local-parts are handled in
a case-insensitive manner by these e-mail providers (see Table 6.2). Thus, we could
not identify any e-mail provider which would be susceptible to this attack in our
short survey. Without quantifiable data about mail provider market shares, we could
not draw more conclusion from it. Based on the survey, it is at least conceivable that
the described attack might not have any major practical relevance for generic e-mail
providers. However, the lowercase mapping should be considered by administrators
at the introduction of Web Key Directory.

Thereafter, we were concerned with the main assumption of the Web Key Directory
Update Protocol in Section 6.3. The main assumption is quite unspecific and ex-
plicable in different ways. To properly analyze it, we defined scenarios which cover
three relevant provider constellations in which Web Key Directory might be used
and several interpretations of the main assumption. In addition, we described an
attack idea where an attacker Eve (𝐴𝑈 , combined with 𝐴𝑝𝑁 or 𝐴𝑎𝑁 ) wants to pub-
lish a self created OpenPGP key which impersonates her target user Alice. This
attack targets the security goals 𝐺𝐴 and 𝐺𝑃 . We also addressed the implications
if Eve has also active network attacker (𝐴𝑎𝑁 ) abilities. After this, we exhaustively
discussed the security implications for all scenario and assumption interpretation
pairs.

We showed that there exist several attack points in real world relevant scenarios
which are not covered in various discussed assumption interpretations. For one
scenario, only one interpretation could prevent the described attack. For the other
two scenarios, only half of the interpretations could prevent the described attack.
We also gave a detailed summary of our evaluation of the Web Key Directory Update
Protocol main assumption in Section 6.3.5.

Besides the considerations in regard to the specification draft, we also addressed
the reference implementation of the Web Key Directory key exchange method in
Section 6.4. We found out that the implementation behaves in contradiction to the
specification draft in several parts, adds non specified behavior, and contains several
implementation errors. In addition, we provided an attack to successfully publish
OpenPGP keys for any e-mail address for any domain a Web Key Directory provider
offers with almost no assumptions.
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In Section 6.4.1 (Additional Headers), we described that the reference implemen-
tation makes use of two headers in their messages which are not specified in the
draft. The Wks-Phase header appeared to be not relevant anymore because the
reason, to help software to implement the protocol, is not accurate anymore ac-
cording to the referenced software. More relevant is the Wks-Draft-Version header
which is added by the implementation to each e-mail. The header is not protected
by any means and the reference implementation determines on basis of this header
which specification draft version is to be found in the message and which version
should be used for e-mail generation. If the above header is not used, the reference
implementation assumes the specification draft version prior to version 2 is used
which is incompatible with later versions. We pointed out that this is problematic
in respect to potential downgrade attacks and to interoperability between different
implementations.

In Section 6.4.2 (Irregularities in Message Generation and Processing), we showed
that the implementation does not act as specified in several places and include
several implementation errors with regard to the e-mail checking and generation.
The signature in the confirmation is not checked properly, the confirmation response
is not signed and might also be not encrypted if the relevant key is not found. In
addition, the reference implementation can not parse (and therefore not accept)
properly encrypted and signed confirmation responses due to implementation errors
but will accept many others.

In Section 6.4.3 (Irregularities in the WKD Format Checking), we addressed the
checking of the Web Key Directory format (the key-value pairs). We found out that
they are mostly not checked properly. The sender and address fields need only to
exist and contain valid e-mail addresses for the purpose of RFC 822. It is not checked
that the values in the confirmation response correspond with the values of the confir-
mation request. The nonce field is also not properly checked against the value of the
confirmation request and is only used as a component in the file path generation to
the pending OpenPGP key file. The nonce is seen as valid if a key with the User-ID
from the address field is found at this file path.

We showed that the improper handling of the Web Key Directory format key value
pairs, especially the address and nonce, has severe consequences on the overall
security of the Web Key Directory Update Protocol.

We presented in Section 6.4.4 (Attack on the Reference Implementation) an attack
on the Web Key Directory Update Protocol which makes it possible for an attacker
to publish OpenPGP keys for any e-mail address of any domain which is handled by
a Web Key Directory provider. This means a malicious user (𝐴𝑈 + in possession of
an e-mail address at the provider) can target security goals 𝐺𝐴 and 𝐺𝑃 . The attack
utilizes the improper handling of the above described key-value pairs. Furthermore,
the attack does not rely on strong assumptions because the attacker only needs to
be in possession of an e-mail address which is handled by the Web Key Directory
provider and the provider must use the reference implementation (with the Web
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Key Directory Update Protocol). The attacker has to create an OpenPGP key with
two User-IDs (the own and the targeted User-ID). The attacker has to submit this
(complete) key. In the confirmation request, the attacker has to change the address
field from his own e-mail address to the targets’ e-mail address. If the target’s e-mail
address contains a different domain than the own e-mail address, the attacker has
to prefix a path traversal string to the nonce field, too.

We also gave a detailed summary of Section 6.4 (Reference Implementation) in
Section 6.4.5.

Our examination of the Web Key Directory draft specification and reference imple-
mentation concerned mainly the security goal “Authentic keys” (𝐺𝐴) so far. There-
fore, we evaluated in Section 6.5 (Considerations on Further Security Goals) if the
specification properly specifies the approach for the underlying key exchange method
operations (like key publication, key revocation, or key exchange termination) of the
security goals and if the reference implementation properly implements these, for ex-
ample, as part of the Web Key Directory Update Protocol.

With regard to the security goal “Key exchange termination” (𝐺𝑇 ) (Section 6.5.1),
we found out that the automatic termination of key publications is not possible with
the Web Key Directory Update Protocol. However, the termination proceedings are
clear and administrators can manually perform these (e.g. by deleting the key from
the hu/ directory of the Web Key Directory). The reference implementation provides
a command line argument for this operation.

Key revocations (𝐺𝑅) (Section 6.5.2) are not possible with the Web Key Direc-
tory Update Protocol, as well. Key revocations are more complicated than key
removals because manual interventions from administrators are not clear. We ex-
amined revocations by revocation certificates and by OpenPGP keys with included
revocation signatures and described the open questions which have to be addressed
by the specification to make clear interventions possible. For example the revo-
cation certification could be added to the already published user’s key or the key
could be replaced by the revocation certificate. The reference implementation pro-
vides a command line argument for the revocation operation, too. We found out
that this operation is not implemented as expected and oddly performs only a key
removal.

With regard to the security goal “Confidential key requests” (𝐺𝐶) (Section 6.5.3),
we examined whether User-ID, fingerprint, or requested key of an OpenPGP key
request are confidential between server and requester. We described that Web Key
Directory utilizes HTTPS for key requests and therefore inherits HTTPS security
implications. We found out that above information except the domain part of the
e-mail address of the User-ID are confidential. The exception is mainly due to the
usage of the TLS Server Name Indication Extension which is part of the unencrypted
TLS Client Hello and contains the domain. This extension is also used by the key
discoveries performed by gpg.
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In the end, we addressed the security goal “Privacy considering key exchange” (𝐺𝑃 )
(Section 6.5.4) where we described that the fulfillment of this security goal is tightly
bound to the challenge-response mechanism in the Web Key Directory Update Pro-
tocol. We showed in our discussion of the Web Key Directory Update Protocol main
assumption that there is too much room for interpretation and we showed that there
are also different applicable scenarios. The security implications for privacy consid-
ering key exchanges are therefore dependent on the implications of the main assump-
tion. We concluded that the security goal is not fulfilled in all cases where an attacker
could succeed in the attack described in Table 6.4.

We condensed the above examinations regarding the fulfillment of the security goals
in Table 6.14 for a better overview.

Table 6.14: Evaluation results regarding the fulfillment of the security goals by the
Web Key Directory specification and its reference implementation.

Security
Goals

Web Key Directory
Protocol Reference Implementation

Authentic keys (𝐺𝐴) ( /#)a #
Key exchange termination (𝐺𝑇 ) #b #b

Key revocation (𝐺𝑅) # #
Confidential key requests (𝐺𝐶) G# G#
Privacy considering key exchange (𝐺𝑃 ) ( /#)a #

 Security goal is fulfilled.
G# Security goal is partially fulfilled.
# Security goal is not fulfilled.

aDepending on the main assumption interpretation and scenario.
bKey termination is possible if the key owner contacts an administrator and the administrator

deletes the key manually.

In Table 6.15, we give an overview about the coverage of Web Key Directory in regard
to the OpenPGP key exchange operations as defined in Chapter 3 (Methodology).
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Table 6.15: Implementation status of typical operations for OpenPGP key exchange
methods as defined in Chapter 3.

Operation Web Key Directory
Protocol Reference Implementation

Key Submission yes yes
Key Lookup yes (for e-mail address) yes (for e-mail address)a

Key Update yes (but no revocation) yes (but no revocation)
Key Refresh nob nob

Key Deletion no no (only manual)

aVia the gpg program in the same software project.
bOpenPGP keys can only be clearly identified by their fingerprint. Web Key Directory can only

identify keys by their e-mail address. Therefore, it is not possible to clearly check whether a
certain key is out-of-date or to request updates for that specific key.





7 Conclusions and Future Work

In this chapter, we will conclude our thesis. We will give an overview about
the main results in Section 7.1. Furthermore, we will mention aspects which we
could not address in this thesis and could be considered in future work in Sec-
tion 7.2.

7.1 Conclusions

We described the Web Key Directory key exchange method and analyzed both the
method and its reference implementation. To the best of our knowledge there was
no previous public research on the Web Key Directory key exchange method. Based
on the method description, we found some inconsistencies and specification gaps,
some of which we already reported to the specification author and were addressed in
version 14 of the Web Key Directory specification draft.

The analysis of the method and reference implementation is summarized in Sec-
tion 6.6. We will give an overview of our main results below.

Our most important result in regard to the method specification is that the Web Key
Directory Update Protocol main assumption is too vague. We showed that there are
several interpretations possible, many of which allow an attacker to illegitimately
publish keys, thus breaking security goals “authentic keys” (𝐺𝐴) and “privacy con-
sidering key exchange” (𝐺𝑃 ). To address this the assumption should be formulated
more clearly. It should also be pointed out in which context the update protocol is
intended to be securely used.

We found out that the reference implementation is not specification-compliant. The
reference implementation is also incompatible to specification-compliant implemen-
tations, for example, due to the implicit fallback to older draft version behavior if
the unspecified Wks-Draft-Version header is missing. In addition, we found further
conceptual and implementation errors like missing and incorrect signature genera-
tion and verification in the reference implementation. Due to time constraints, we
could not report our findings to the program authors yet. For most of these find-
ings we narrowed the problems down to individual code lines which will help the
program authors to fix the reference implementation and improve the specification
compliance. Furthermore, it would be desirable that the reference implementation
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is better maintained, since it has many “fixme”’s and almost no updates to the Web
Key Directory code since the end of 2016.

Exploiting some of the above errors brought us to our most important result regard-
ing the reference implementation. We found and described an attack on the Web
Key Directory Update Protocol implementation which allows an attacker to pub-
lish OpenPGP keys for any e-mail address for any domain of a Web Key Directory
provider. This attack is based on missing checks of values sent to the server in the
confirmation response e-mail, especially the address and nonce field of the WKD
format. The attack relies only on minor assumptions (i.e. the reference implementa-
tion is used, and the attacker has an e-mail address by the provider) and is breaking
security goals “authentic keys” (𝐺𝐴) and “privacy considering key exchange” (𝐺𝑃 ).
Thus, this security issue should be fixed as soon as possible. As above, we could not
report this yet due to time constraints.

We described that the Web Key Directory key exchange method supports only a
subset of relevant OpenPGP key exchange operations. Especially notable is that
key deletion and key revocation is neither specified, nor implemented (except for
manual interventions).

In Table 6.14, we condensed the evaluation results with regard to the security goals.
We will now conclude the impact on the security goals.

For the Web Key Directory specification, it is dependent on the exact context (which
scenario and main assumption interpretation) whether the security goals “authentic
keys” (𝐺𝐴) and “privacy considering key exchange” (𝐺𝑃 ) are fulfilled or not because
we showed that both security goals are broken in many, but not all of these scenario-
main assumption interpretation combinations. Both security goals are broken for
the reference implementation because the attack on the Web Key Directory Update
Protocol implementation (6.4.4) allows attackers to illegitimately publish keys. It is
not evident anymore whether a received key for a key request is legitimate and was
published with consent, or not.

The security goals “key exchange termination” (𝐺𝑇 ) and “key revocation” (𝐺𝑅) are
not fulfilled because the underlying operations “key deletion” and “key revocation”
are not specified. It is possible to delete a published key by manual interventions
of administrators. This is only feasible because the manual interventions for the
operation key deletion are obvious (unlike key revocation). However, the Web Key
Directory key exchange method does not provide specified or automated means for
key deletion or revocation..

The security goal “confidential key requests” (𝐺𝐶) is only partially fulfilled because
the domain part of the requested e-mail address is leaked, for example, through the
TLS Server Name Indication (SNI) extension. Names, local-parts, fingerprints, and
the requested key are secured within the TLS session.



7.2 Future Work

The description and analysis of the Web Key Directory key exchange method took
much more effort and time than initially planned. We could not address e-mail
validating key servers (by the example of Hagrid), and Autocrypt. Furthermore,
it was planned to compare the three key exchange methods Web Key Directory,
e-mail validating key server, and Autocrypt in a separate chapter. Due to the much
more time-consuming analysis of Web Key Directory, this had to be left out of this
thesis.

As part of future work, the remaining OpenPGP key exchange methods e-mail val-
idating key server and Autocrypt could be described and analyzed. These analyses
could also be based on our security definitions (see Chapter 4) because they are
already designed to be used for OpenPGP key exchange methods and are not only
Web Key Directory specific. Based on the security definitions, Web Key Directory,
e-mail validating key server, and Autocrypt could then be compared as initially
planned for this thesis.

We found problems in the Web Key Directory specification and also in the reference
implementation. We will report our findings to the responsible persons. After a suit-
able time a reevaluation of Web Key Directory would be useful and could point out
whether reported findings were properly fixed, or not.

We have the impression that Web Key Directory specification and reference im-
plementation could be better maintained. We found avoidable mistakes and errors
which rest in the source code since years. It could be interesting to conduct security
analyses on further sub-projects in the GnuPG project. A more dedicated security
analysis on the reference implementation of Web Key Directory could also reveal
further insights.
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A Inconsistencies and Specification Gaps

In this appendix, we will describe inconsistencies and specification gaps in the Web
Key Directory specification. In the first paragraph of this appendix, we address
the discovery Protocol and thereafter we will be concerned with the update proto-
col.

Even though it is only a small mistake, in the assumption that “almost all MTAs
treat the local-part case-insensitive” [33, Sec. 3.1] the wording MTA (Mail Transfer
Agent) should be replaced by MDA (Mail Delivery Agent) or in general mail server.
MTAs are responsible for the e-mail transport between different mail servers and
MDAs deliver e-mails to the users’ mailboxes. MTAs must treat local-parts case-
sensitive and only the host in the domain part of the address must interpret the local-
part [30]. Regarding MTAs, Postfix, and Exim have together a market coverage of
approximately 93% and preserve the case of local-parts [12, 17, 11]. In case of acting
as MDA for an incoming e-mail, both deliver the e-mails in a case-insensitive manner
by default. Only Exim offers an option for case-sensitive delivery [17, 63, 65]. For
another popular MDA, Dovecot, it is up to the configuration if the delivery is handled
in case-sensitive or case-insensitive manner [10]. The potential consequences of this
assumption will also be discussed in the analysis below.

In Section 4, third paragraph, the Web Key Directory Update Protocol is described
briefly in an enumeration of steps which a user has to perform if they want to submit
their OpenPGP key. It is reasonable that such an enumeration does not cover all
aspects of the protocol as certain parts are described in detail in sections afterwards,
but it must be clear, without contradictions, and must contain all relevant parts.
It is not mentioned that the protocol flow can be directly modified by the usage of
keywords in the policy file. For example, the “auth-submit” keyword would modify
the flow in such a way that the confirmation request and response challenge (steps
4 to 7) are omitted and the OpenPGP key is directly published after its submission.
The fact that such modifications are possible through keywords in the policy file is
a characterizing property of the update protocol and must be referenced not only in
the policy file section. It should be mentioned that future specified keywords may
influence the protocol similarly.

Step 6 in the protocol flow enumeration contains a contradiction about the na-
ture of the confirmation response message. It is stated that it is suggested and
technically not required to encrypt the confirmation response e-mail. This is in



contrast with the definition of the confirmation response in Section 4.4 which de-
fines the response as a signed and encrypted e-mail in the PGP/MIME Combined
format.1

The specification of the server implementation behavior is not satisfying concern-
ing illegitimate OpenPGP key submission. The confirmation request and response
e-mails are only sent in legitimate cases and server implementations should cancel
pending key submission after a suitable time. No distinction is made between the
nature of illegitimate key submissions. A submission may be illegitimate due to
obvious cases like non-responsibility (submission to wrong provider), but also due
to violation of policies defined in the policy file. The protocol does not specify
that server implementations inform users about violations of policies. If this was a
conscious decision, the responsibility of the client implementations should be empha-
sized to check the policy file prior to key submission. The protocol does not specify
the client implementation behavior regarding this file. In the current specification,
for example, with the “mailbox-only” keyword set, a legitimate key owner with a key
containing a name besides the e-mail address submitting their key without actively
checking the policy file would not be notified about the reason why no confirmation
request is sent, and the submission is discarded. This behavior seems unnecessarily
user-unfriendly.

In Section 4.3, second paragraph, the draft defines the Content-Type of the first
MIME multipart part in the Confirmation Request as “text”. According to the
MIME Content-Type specification each type must also have a subtype. In this case,
the subtype “plain” is missing. Nonetheless, this is only a minor contradiction with
the specification as Content-Types are optional and if no type is given “text/plain”
is assumed [19].

The specification does not clearly distinguish between the e-mail provider and the
Web Key Directory provider. This is relevant in cases where Web Key Directory
as a Service is used and both providers are not the same entity. The users’ e-
mail provider is then only responsible for e-mail transport/delivery to the Web
Key Directory provider and the WKD provider for offering the submission address,
submission OpenPGP key, and policy file. As a reminder, Web Key Directory as a
Service is covered by the specification as it is a direct implication of the advanced
key discovery method (URI with subdomain “openpgpkey”. See Sec. 5.1) which was
introduced to be able to flexibly support environments in which several domains can
be served by a single Web Key Directory [33]. Therefore, the specification should
be more clear on which roles are addressed.

The draft specification contains an appendix with a sample protocol run of the Web
Key Directory Update Protocol. This appendix was added to the draft in its second

1The contradiction was addressed in draft version 14. It is now stated that the confirmation mail
MUST be encrypted to the provider’s public key. Unfortunately it is still not mentioned that
the confirmation response must also be signed.



revision and was not modified since then. It must be pointed out that the sample run
does not conform with the protocol definition since draft revision 2 (i.e. since the
same revision where it was added). Although this non-normative appendix specifies
no protocol behavior and is only for implementers’ guidance, it would be prefer-
able to update it to prevent confusion and ease the understanding. Prior to the
second revision the confirmation request was in the PGP/MIME Combined method
whereas thereafter the confirmation request is PGP/MIME signed. Consequently,
the Content-Types denoted in the appendix’s confirmation request differ from the
specification. Based on the nature of a PGP/MIME Combined method message,
the Content-Type of the Web Key Directory format (application/vnd.gnupg.wks,
-wkd) is within under an encrypted ciphertext and had to be added explicitly. Note
that in this case the Content-Transfer-Encoding is also set as “8bit” which is not
mentioned in the specification. In addition, the value of the “sender” keyword used
in the confirmation response does not conform with the specification as it contains
the provider’s submission e-mail address instead the e-mail address of the “From”
field of this response. Corresponding to the wording of the confirmation response
specification, this must be the user’s e-mail address because the request is send from
the provider to the user and the response from the user to the provider. Further-
more, it contains an “address” key-value pair which is not defined for the use in a
confirmation response.2

2The description of the “sender” keyword was clarified and the “address” keyword was introduced
in draft version 14. The usage of the “sender” keyword as given in the appendix was and is
correct.





B WKD Update Protocol Run

This appendix contains all messages emerging from a complete and successful Open-
PGP key submission using the Web Key Directory Update Protocol. This includes
also the used private keys from Alice and the WKS user to ensure reproducibil-
ity.

The messages were generated using the latest version available of the server im-
plementation gpg-wks-server and client implementation gpg-wks-client shipped
with GnuPG version 2.3.6. The message generation was also conducted with the im-
plementations shipped with the LTS version of GNUPG (2.2.35) but did not differ to
above messages and were therefore omitted.

Note that these messages are similar to those in the appendix of the draft specifica-
tion [33], but differ in details.

B.1 Sample Keys

1 -----BEGIN PGP PRIVATE KEY BLOCK-----
2
3 lFgEYokunhYJKwYBBAHaRw8BAQdAhXuXw4v8AW7IlGoWswHAXLPz8WgtkHvAf18U
4 6Ae7WfUAAP9czM+rd/qMCIkhxHiQM3HW/Bc3B4zvCGB2SKlI+Lli3RFptBprZXkt
5 c3VibWlzc2lvbkBleGFtcGxlLm9yZ4iQBBMWCAA4FiEELj/gG15TS9Frp3G44BGQ
6 dl+M0/4FAmKJLp4CGwMFCwkIBwIGFQoJCAsCBBYCAwECHgECF4AACgkQ4BGQdl+M
7 0/50FQD/a2jWq2H17f1Oe7lbFYb5Cvra4wDvSNbf6B/o+0I4uzAA/1TQafJA6Wll
8 9QR+PfLfWw7LLClXGOyhOWPdmG0DGu8OnF0EYokunhIKKwYBBAGXVQEFAQEHQJEB
9 yUXTeA8fqeGAHrTWLEUFLPwBfp7U5uFLbDKohZgAAwEIBwAA/0cQMOK+WDOCug7j

10 M3mpil/qkoW1gkTxQOrO8usGD9fIEhKIeAQYFggAIBYhBC4/4BteU0vRa6dxuOAR
11 kHZfjNP+BQJiiS6eAhsMAAoJEOARkHZfjNP+pPwBAKUq97bYepP8pkYKW8iOmlrS
12 ARZfLVZgSiXAolJoF6hXAQCFAUyzE8j55dHaPYFNDkt5OC76OtbjAFKvHYo+mesz
13 BA==
14 =olUh
15 -----END PGP PRIVATE KEY BLOCK-----

Listing B.1: Private key of the WKS user: key-submission@example.org

1 -----BEGIN PGP PRIVATE KEY BLOCK-----
2
3 lFgEYokuBhYJKwYBBAHaRw8BAQdAvLcXZVOrVheu/CnjlMKbHcZdkeZYBMp7P3RT
4 bGmS67QAAP98uv7Jgxq9h5RSDohYb+7QDx8kqp7cosMXKe030QMEZhBbtBlBbGlj
5 ZSA8YWxpY2VAZXhhbXBsZS5vcmc+iI8EExYIADgWIQQr6TseyRJcH/bCD+cXaC3R
6 0xrLewUCYokuBgIbAwULCQgHAgYVCgkICwIEFgIDAQIeAQIXgAAKCRAXaC3R0xrL



7 e2N4APdsmD2IjO5q2Xf3xgQOaDgZANxYvtlD3b4exyGGQDsAAQC4JxXDQJkL1XEJ
8 2bcH05HbcqALJkJTeMOh7eS82RpaBZxdBGKJLgYSCisGAQQBl1UBBQEBB0AEctAs
9 Uv4Ewi/XViIoU63WYjQUttRBNP+dU+2U68dXTgMBCAcAAP9Y9y1NOUikm/b370ix

10 3Fckb9oQGK0ESdBVUkL2qmhecBCuiHgEGBYIACAWIQQr6TseyRJcH/bCD+cXaC3R
11 0xrLewUCYokuBgIbDAAKCRAXaC3R0xrLe3RCAPkBc/pcIP+YktIyUerv5tNS+j0U
12 QaUUff+w8NsbovT5sAEAkDF5DV7wTe+dfDLdPJdw0SEJS56g01QBx7IdmaPVuwQ=
13 =BOJp
14 -----END PGP PRIVATE KEY BLOCK-----

Listing B.2: Private key of Alice: alice@example.org

B.2 Sample Messages

1 From: alice@example.org
2 To: key-submission@example.org
3 Subject: Key publishing request
4 Wks-Draft-Version: 3
5 MIME-Version: 1.0
6 Content-Type: multipart/encrypted; protocol="application/pgp-encrypted";
7 boundary="=-=01-wan5jhgokpq8wqx3ckjo=-="
8 Date: Sun, 22 May 2022 13:13:02 +0000
9

10
11 --=-=01-wan5jhgokpq8wqx3ckjo=-=
12 Content-Type: application/pgp-encrypted
13
14 Version: 1
15
16 --=-=01-wan5jhgokpq8wqx3ckjo=-=
17 Content-Type: application/octet-stream
18
19 -----BEGIN PGP MESSAGE-----
20
21 hF4DkI3CjsdYJvISAQdAeZmQoYNhy+YSKLTnB6Uug29mw3Zd6pFj2EmTWACL6nUw
22 9c0huXgTvmYUHUAWPjV1/sn1MkvcsTGMng2wGZUHYk+hG5CwRCQf8Rz/9+oBpKWl
23 hF4DVZl1Lb8thr8SAQdAJyIicuzjpwRd5eryl2ylQUliBHCIWdtNexNnSmb6xQww
24 aVffdwuo3sSPd2Z7qyLvKXIBvn60RE6gcwQ7NAVM9uCGtw56JdDvcTik3BsOrOuo
25 0ukBDDG1KOr+da9hn/Wbud3bSACRbWHaScfi6S90I5LbQ/bn+TC1yRCLceuNBMnk
26 8vgGLrRc1hfE6lzBbm4W5pVjnazce95FPbISYIKm531LxO3fY55sEEmDzzQoNDO9
27 66/3PZcO1g5IL3lFp6Pb8y1lPXrw88bmgbsOGs6JdgiIZOJ/juFda3hAzcFEAK0o
28 VP1pMAF6PFi2gr03YYC3oNaI9ZzICGc922J0PqdoKeEYGYF703nc+X/xmbOPXaBR
29 CgBrSRnMIm53N/jOg9V3FnJYcCK3M3+DeUW8LThl2UGnsWkUYXCdaUqrnFHcN9Wl
30 xefKQ7PKY2ZKI/yNTnUNHQf2t/saEM1e1XgunzbFgtsuEOlNUtjXn9YZ/vXJqICL
31 ZCGtQOYBEUYzMm/hXKvogX+Omf5kGf4wUZvNiCHV8JFcSm12kQrNq66Ac0Te/pw1
32 8h3lpGQCPVGuTGaVXz2bFcrrKtSNRK574/AHLmuguuOqr0crvgS6HWC7NSZmswRf
33 EFgwXokv5aFsSFneGLT71ny0cm4Ac5kr99ymqSQxlbS14fOWfrsNG8N9MT0mgmXJ
34 9EolkdxMQPXBnbge6PSxO0wIZnvSOsPGFIpheoeUd4HLbCDUN3Mkx8SLg2OGul5y
35 sDnbQJftvWpDi74blBS59xDj1TOV8/Phi2KVLj8ueanUV8AKdgjIlkdtmSbKRjXF
36 jebMvqibKrN/AJ4UkE3dcZM0jktCIiFcJ7UHSdrUxvJmcuymVYP9OLY3TEg0KJZ8
37 t2n0OdKYPDswHWS0g6MwPu/L+mr2KhXoPAjghKWqMts+8PDxE/JR5ODA9cxoR+65
38 Lxm0+d1s502mMnxXcPn5uQcsLRfpNphU3aXWzdyQWqHyTHv/9+lSBypCwKfhMZ2E
39 xKXbz/Clvk2AJKZGOV5xKdJqM9ky6HWSkxk37cClhceBEOMzrzWFbu6iK9sBUA==
40 =2lUj
41 -----END PGP MESSAGE-----
42
43 --=-=01-wan5jhgokpq8wqx3ckjo=-=--



Listing B.3: Submission Mail

1 From: key-submission@example.org
2 To: alice@example.org
3 Subject: Confirm your key publication
4 Wks-Draft-Version: 3
5 Wks-Phase: confirm
6 MIME-Version: 1.0
7 Content-Type: multipart/signed; protocol="application/pgp-signature";
8 boundary="=-=01-13m3fowney8irz7kawhy=-="
9 Date: Sun, 22 May 2022 13:14:00 +0000

10
11
12 --=-=01-13m3fowney8irz7kawhy=-=
13 Content-Type: multipart/mixed;
14 boundary="=-=02-13m3fowney8irz7kawhy=-="
15
16
17 --=-=02-13m3fowney8irz7kawhy=-=
18 Content-Type: text/plain
19
20 This message has been send to confirm your request
21 to publish your key. If you did not request a key
22 publication, simply ignore this message.
23
24 Most mail software can handle this kind of message
25 automatically and thus you would not have seen this
26 message. It seems that your client does not fully
27 support this service. The web page
28
29 https://gnupg.org/faq/wkd.html
30
31 explains how you can process this message anyway in
32 a few manual steps.
33
34 --=-=02-13m3fowney8irz7kawhy=-=
35 Content-Type: application/vnd.gnupg.wks
36
37 -----BEGIN PGP MESSAGE-----
38
39 hF4DVZl1Lb8thr8SAQdAqGXorsogA87aqeihSU1Uprmpv61noKU23RmdeNyIRkww
40 oTQIbNT3isbPwPzZ0HSYUNm7EJICMuwg/Ku9jSPumS1TQIigr/qub9KTHqjbgCip
41 0sAoAYuLiON239NLp81iBtltsooqfkDa9e6i8sSN1kY9x+XG9w30+fVJmJkfI46S
42 x+1IdpatMHNQiPG0VjFmZgwZFae9NV6RJFMvqFUuvr9kHxJqfIFGXDCpyLmNwMjN
43 sfLzPboAC+qUi1k6W6EYi87DS5DQ1x6OSWVSHgMeZeM8FsX73S18IVA6d892pqhX
44 lcUI16emb7jFEkf1BC/GOCIncrt7bBrxBQyn0k6Wozn6TYfE/SjWqL65dPpkqOLB
45 LdWF26bTx3Rnyd3EBmQrOLd4gypellQEbyfSQgegKdqAo10ZtLJzyO6Cug==
46 =52fG
47 -----END PGP MESSAGE-----
48
49 --=-=02-13m3fowney8irz7kawhy=-=--
50
51 --=-=01-13m3fowney8irz7kawhy=-=
52 Content-Type: application/pgp-signature
53
54 -----BEGIN PGP SIGNATURE-----
55
56 iJEEABYIADkWIQQuP+AbXlNL0WuncbjgEZB2X4zT/gUCYoo3GBsca2V5LXN1Ym1p



57 c3Npb25AZXhhbXBsZS5vcmcACgkQ4BGQdl+M0/7M9gEA/H1N0etXmdFFbMLdeV89
58 p108tP2KBgxYAhcbaVd5XawBAOnv0rrwvh7bEcypA7YPeyrcwQivhcZNfRQ9QnJ6
59 lbkI
60 =dc90
61 -----END PGP SIGNATURE-----
62
63 --=-=01-13m3fowney8irz7kawhy=-=--

Listing B.4: Confirmation Request

1 type: confirmation-request
2 sender: key-submission@example.org
3 address: alice@example.org
4 fingerprint: 2BE93B1EC9125C1FF6C20FE717682DD1D31ACB7B
5 nonce: 4tkd8z3yxmqkz4gpiybczpf8h8jof37e

Listing B.5: Decrypted PGP message in Confirmation Request

1 From: alice@example.org
2 To: key-submission@example.org
3 Subject: Key publication confirmation
4 Wks-Draft-Version: 3
5 MIME-Version: 1.0
6 Content-Type: multipart/encrypted; protocol="application/pgp-encrypted";
7 boundary="=-=01-sqbtgbja6k8a416ofrso=-="
8 Date: Sun, 22 May 2022 13:15:14 +0000
9

10
11 --=-=01-sqbtgbja6k8a416ofrso=-=
12 Content-Type: application/pgp-encrypted
13
14 Version: 1
15
16 --=-=01-sqbtgbja6k8a416ofrso=-=
17 Content-Type: application/octet-stream
18
19 -----BEGIN PGP MESSAGE-----
20
21 hF4DkI3CjsdYJvISAQdApwcfd8Q8GW2UQXMYloF3n3L+SIioUAXJOxg501mhlD0w
22 cUFQfT2rrk+PA9egp6FXlu/uJTnl3yLPL6yreJ4uCsAdmhrtE821ChB31u9VN8ob
23 hF4DVZl1Lb8thr8SAQdA5UD3gGIU/Ele+uFiV4j1n7kj3mYUpJGLtXWOIFmgKlYw
24 zCEpV62tdH55gqHUGg6b59QFfHTG5Qct2z1lUOHZ5VhXMdn7xgOtNCjVktYOXwaD
25 0sA9AXr/6jo1aaJO4ThRZdQTNvABcb1rbIxyQU3tKhNd8/OZCz+SI8iQ1mlQZ+GS
26 YvKZVHPFah5nlYbn55pDo9f6d53wkWxTyFQ2mMo17aiNpZBXnovTjXt4v93LH5h4
27 +hBe32lzgB7wIoGTv4uB6UiDIJhDQ1Ve+4S4Rp5GtheOTTxiHUF8baCBkrlTdbmk
28 yeDJ2tIAC+SV2NQ3V0g/Ige0ChO3zr+HVporS+4MLTCR95gPZsNuZFWkUF7uBBdy
29 Io4DsyoSPpJf4fbt2/WXdk+d3TV8IqUSj4U3tILwDS76Jfsqng2/QWUNizndA4Ts
30 C1l8YnxEVMp9r5ZF/qfS5g==
31 =l6c4
32 -----END PGP MESSAGE-----
33
34 --=-=01-sqbtgbja6k8a416ofrso=-=--

Listing B.6: Confirmation Response

1 Content-Type: application/vnd.gnupg.wks



2 Content-Transfer-Encoding: 8bit
3
4 type: confirmation-response
5 sender: key-submission@example.org
6 address: alice@example.org
7 nonce: 4tkd8z3yxmqkz4gpiybczpf8h8jof37e

Listing B.7: Decrypted PGP message in Confirmation Response

1 From: key-submission@example.org
2 To: alice@example.org
3 Subject: Your key has been published
4 Wks-Draft-Version: 3
5 Wks-Phase: done
6 MIME-Version: 1.0
7 Content-Type: multipart/encrypted; protocol="application/pgp-encrypted";
8 boundary="=-=01-4fr4rcjqmhrtpn3wyoiy=-="
9 Date: Sun, 22 May 2022 13:15:36 +0000

10
11
12 --=-=01-4fr4rcjqmhrtpn3wyoiy=-=
13 Content-Type: application/pgp-encrypted
14
15 Version: 1
16
17 --=-=01-4fr4rcjqmhrtpn3wyoiy=-=
18 Content-Type: application/octet-stream
19
20 -----BEGIN PGP MESSAGE-----
21
22 hF4DVZl1Lb8thr8SAQdAj20ZWqCI4n8NHi+gW0YE3J6wo5WlWtyZwKp7V/6vd2Mw
23 YKfJR9JQEtEZDi0G8D1320Ue18k/y7CnQl8OQ76X4k/u3GmJ5kzS5MIMe14/U1QQ
24 0sDfAfwsykiiicrnfwVvxLb9nrchyB8ub0j679jl16q8r7XggTHZI34XBOIT+2QH
25 gpsSzcEY4wZMEeTAtU5EXKDpqIqSTMr5dZ1+LKsWG3CRWxyfZTRPcYCkJC7ytvPq
26 G8FIlN7D8JiZWr5LElv/5L8hy5aEiyBBlXoDQZuyOSDIkcXRoJhhQKOB5lEa5lY4
27 lq3c5CPrjLpbjkNk28Q9PqL2FyawyTH41QA5N3fa0hPRj+rPhZ0GLwewgjmLZB87
28 sOFRhwfz6JWNWMuOKVA3rVKVpczRVq/VyaRL3QNlhZyAgyuy4U8DCx313iUYSsjt
29 8x0zEhfEu7hmPGEsWydmGUR41MtdTp6FfGH47fjMkA6mAi6hZw36nv9aWMYE0K8q
30 Zbb5PTmXugFR2n4gv00e5lOdCWthnTkUzdo7R9q8AfYHxQEadYONyat+Yp6PP2pD
31 Z7Ukmv8+2tilTySPXshX8t7hYpNEkfuK370AuiIB2TeRH3So4RB+QFujA7e4e6D5
32 V82JVYrhKRkMvqGKHovBFTJfvFKKdqUSJBVgJS6Jlz7bVA==
33 =pp2y
34 -----END PGP MESSAGE-----
35
36 --=-=01-4fr4rcjqmhrtpn3wyoiy=-=--

Listing B.8: Publication Message

1 Content-Type: text/plain; charset=utf-8
2 Content-Transfer-Encoding: 8bit
3
4 Hello!
5
6 The key for your address ’alice@example.org’ has been published
7 and can now be retrieved from the Web Key Directory.
8
9 For more information on this system see:

10



11 https://gnupg.org/faq/wkd.html
12
13 Best regards
14
15 GnuPG Key Publisher
16
17
18 --
19 For information on GnuPG see: https://gnupg.org

Listing B.9: Decrypted PGP message in the Publication Message



C WKD Attack

This chapter contains all messages and information emerging from the attack on
the Web Key Directory Update Protocol described in Section 6.4.4 (Attack on the
Reference Implementation).

C.1 Used Keys

The OpenPGP key for the key-submission@example.org e-mail address is the same
as in Listing B.1.

1 -----BEGIN PGP PRIVATE KEY BLOCK-----
2
3 lFgEYpkm8BYJKwYBBAHaRw8BAQdACP989Xb+FGGxDHpPH4OVQdeN1tsT5l+xcKKT
4 GjTjVTEAAQDMSpxAuFYSWZxwdDSVa08JrbBzeTcfqq2IIiDR/N44Cg4ltB1NYWxs
5 b3J5IDxtYWxsb3J5QGV4YW1wbGUub3JnPoiTBBMWCgA7FiEE/dBXv+Dd/BVJObwU
6 Cs1/SqVEVN8FAmKZJxICGwMFCwkIBwICIgIGFQoJCAsCBBYCAwECHgcCF4AACgkQ
7 Cs1/SqVEVN+i3wD7BZhwEVHbUNvvaXGDPqsN2TQ3UdS7UH5YXNcWroavWo0BAJQW
8 zFYeHbKXTumhLmD35HfLYo8ug1Yf4lhoqGlJrO8OtBlBbGljZSA8YWxpY2VAZXhh
9 bXBsZS5vcmc+iJYEExYKAD4CGwMFCwkIBwICIgIGFQoJCAsCBBYCAwECHgcCF4AW

10 IQT90Fe/4N38FUk5vBQKzX9KpURU3wUCYpko6wIZAQAKCRAKzX9KpURU33oSAQD4
11 t5A0qRx6+djBA9jvXGrcFA4PvoZ45WurQxfhrmi2tAEA4/NvaYkhhMHsduysVTqo
12 OqyoFW1uoGvrb0aBMuG8wQucXQRimSbwEgorBgEEAZdVAQUBAQdAgpQyhGVWQMHr
13 PYr7lW8jOi/z7AJx1/pEV8yE/JKmxjADAQgHAAD/S7y1t4rVjQPuG7zciBCw0Dot
14 y4Uj4i0+SzK/vON01KASBIh4BBgWCgAgFiEE/dBXv+Dd/BVJObwUCs1/SqVEVN8F
15 AmKZJvACGwwACgkQCs1/SqVEVN8O4QEAshX+Su9QkaeZ6Hj5mIA1GkzkM0VhGMkI
16 NzWVXfe48cwBAPB8hJs9Wj6qFMn4Lhi9TQkZkS6eqc5Q+2EHy2VdvSME
17 =PNI2
18 -----END PGP PRIVATE KEY BLOCK-----

Listing C.1: Private key which was created by Mallory (mallory@example.org) with
an additional (fake) User-ID for Alice (alice@example.org)

1 -----BEGIN PGP PUBLIC KEY BLOCK-----
2
3 mDMEYpkm8BYJKwYBBAHaRw8BAQdACP989Xb+FGGxDHpPH4OVQdeN1tsT5l+xcKKT
4 GjTjVTG0HU1hbGxvcnkgPG1hbGxvcnlAZXhhbXBsZS5vcmc+iJMEExYKADsWIQT9
5 0Fe/4N38FUk5vBQKzX9KpURU3wUCYpknEgIbAwULCQgHAgIiAgYVCgkICwIEFgID
6 AQIeBwIXgAAKCRAKzX9KpURU36LfAPsFmHARUdtQ2+9pcYM+qw3ZNDdR1LtQflhc
7 1xauhq9ajQEAlBbMVh4dspdO6aEuYPfkd8tijy6DVh/iWGioaUms7w60GUFsaWNl
8 IDxhbGljZUBleGFtcGxlLm9yZz6IlgQTFgoAPgIbAwULCQgHAgIiAgYVCgkICwIE
9 FgIDAQIeBwIXgBYhBP3QV7/g3fwVSTm8FArNf0qlRFTfBQJimSjrAhkBAAoJEArN

10 f0qlRFTfehIBAPi3kDSpHHr52MED2O9catwUDg++hnjla6tDF+GuaLa0AQDj829p
11 iSGEwex27KxVOqg6rKgVbW6ga+tvRoEy4bzBC7g4BGKZJvASCisGAQQBl1UBBQEB



12 B0CClDKEZVZAwes9ivuVbyM6L/PsAnHX+kRXzIT8kqbGMAMBCAeIeAQYFgoAIBYh
13 BP3QV7/g3fwVSTm8FArNf0qlRFTfBQJimSbwAhsMAAoJEArNf0qlRFTfDuEBALIV
14 /krvUJGnmeh4+ZiANRpM5DNFYRjJCDc1lV33uPHMAQDwfISbPVo+qhTJ+C4YvU0J
15 GZEunqnOUPthB8tlXb0jBA==
16 =u4S/
17 -----END PGP PUBLIC KEY BLOCK-----

Listing C.2: Corresponding public key to Listing C.1

C.2 Generated Messages

1 From: mallory@example.org
2 To: key-submission@example.org
3 Subject: Key publishing request
4 Wks-Draft-Version: 3
5 MIME-Version: 1.0
6 Content-Type: multipart/encrypted; protocol="application/pgp-encrypted";
7 boundary="=-=01-7tioooi47n9iqutjrogy=-="
8 Date: Thu, 02 Jun 2022 21:12:21 +0000
9

10
11 --=-=01-7tioooi47n9iqutjrogy=-=
12 Content-Type: application/pgp-encrypted
13
14 Version: 1
15
16 --=-=01-7tioooi47n9iqutjrogy=-=
17 Content-Type: application/octet-stream
18
19 -----BEGIN PGP MESSAGE-----
20
21 hF4DkI3CjsdYJvISAQdAtnMrI+lV5foFhwcC6Wff1m59pBTCHaA9SRHX+x4/+xAw
22 KdNePE22gFkK9QId0sKViEYTMXDmZZMgd8HutguypawEAKokPAxWV++aFgqzUO3/
23 0ukBBDISGgl9LGh1MxIGZOzfb3ZycjRHx6va+iGgRbRI/Tj00x2jYQuxMAir072L
24 StOPBprTyjmwilkvApiDJeohmMODIPwWDXYPosnIdS03643lfFjhjxpJOnMHm+Cp
25 YVkzBE1fHIQC4E02SZ7Zwqtp1GwF29flnoXsoeoVD9PXJD3kNO+SY4FPgIQgC0+Q
26 F0+TOOFel79DYbhoUKR9V/LnTXtLUoTyoghRJanUN8OqRgD3RT7PoWWhdh7I2xZt
27 9ti+693PY+z3F6VVYJMq4WAXx4chLttEht7DVMYJzc0ytOFoS71ehzaMK/iopgmp
28 Bhe4bf2b7wQL65I/fI4QfCmCVFNuFpwKtdncSkd4YpfgFpm1mt1hIgUc1xnjcR42
29 +fk8wN7PO2eHwn6AlvbjmDF0uyfO3DNgON6dpecJJPDHtMxBa3bEtLTWosfq7bsu
30 kz1AghYr3qkr8iY0XBrmb4gaIKo+h3ctYiRUjYHwoIPyFJ2jkN4ztjRnAtApYkhW
31 39Aj7U0C87C8ddF5ZRSW5owcMPN5TR8ip0h9kKlxFM20bfY6S8LpAfzwIkMr/cUW
32 U1s9q2mlwyH7OH8o/06HzmxqmrvxWIv20S3swAFkZ/LwKEMLn/uaba3oYFUOlpQC
33 A+Zflc5/V9PoA+mEMVgEcJmMDeNxHJ827EcKQkc0FgkzJ8AafZmlONAGGBw0l2rs
34 pu4YDlv59BbRM+MI8tnGZaTB0KYmOSo7ahA5xuNRg6+qca3NCwDPDshy5lCu8+Ce
35 MBOZc8RzUY7wve9ZStJ+C+8pNhTE8AuBueDoXlLfs4JY1/r6E1e8Uovty+1+1IGX
36 n0iN8VztYC+ET/9U8ATpf56LEA1i5l3ATbPCzOtseIpg4TqODSfJ/wqNEEl4dJjO
37 ZNAGH5Gscaygw0pCGBUKRR9lahMySctqTXtddRvdEOFGG5QdAyUBol0Zc7SAKRIc
38 2hSolznFAtaohthOptk=
39 =nclM
40 -----END PGP MESSAGE-----
41
42 --=-=01-7tioooi47n9iqutjrogy=-=--



Listing C.3: (Modified) Submission Mail. The public key (with only the User-ID of
Mallory) in the PGP message was replaced with the public key with
both User-IDs.

1 From: key-submission@example.org
2 To: alice@example.org
3 Subject: Confirm your key publication
4 Wks-Draft-Version: 3
5 Wks-Phase: confirm
6 MIME-Version: 1.0
7 Content-Type: multipart/signed; protocol="application/pgp-signature";
8 boundary="=-=01-xqoiptx19dckdwi9deyy=-="
9 Date: Thu, 09 Jun 2022 19:38:16 +0000

10
11
12 --=-=01-xqoiptx19dckdwi9deyy=-=
13 Content-Type: multipart/mixed;
14 boundary="=-=02-xqoiptx19dckdwi9deyy=-="
15
16
17 --=-=02-xqoiptx19dckdwi9deyy=-=
18 Content-Type: text/plain
19
20 This message has been send to confirm your request
21 to publish your key. If you did not request a key
22 publication, simply ignore this message.
23
24 Most mail software can handle this kind of message
25 automatically and thus you would not have seen this
26 message. It seems that your client does not fully
27 support this service. The web page
28
29 https://gnupg.org/faq/wkd.html
30
31 explains how you can process this message anyway in
32 a few manual steps.
33
34 --=-=02-xqoiptx19dckdwi9deyy=-=
35 Content-Type: application/vnd.gnupg.wks
36
37 -----BEGIN PGP MESSAGE-----
38
39 hF4DltbEIrO/3uASAQdAsikRXnx5AWRMZUwZHIftrHdue9X9Ga7w++T4cU3222Iw
40 bLn6Bf8z4N+37T/OkR2uF1R3yDKmoFXNxN0Vur6jgPE6xnAI5lA8G3H8WZdOVSTm
41 0sAoAVUbslPzUDCQBuda7LB++kEmDg9O3v/fkHQhy3TFjJgR7gi3Zezwtt3YylOB
42 Fmys9y6C1LfUNJEVgHrQ40lyhau5wWuw2P6Vt4//W/KjsOsxpBee1DU6XcZcHBgd
43 OMtgx8jRbR8lOANXvXmyI48J7kGAMlcu0PLaiAB6qc+FL8yvAmKKh7syqwi8KAaC
44 gJbFjfxrxtyV9DhvvMxKZXYfvnK+vqTU8SpKHm+cLm1AtHvnWgy2uzEsiKGifaO+
45 6Wsr56i3P9CdbUtyHOiabyI3fMWM7O7+RpTDfYzaSanIkm7ZdRmLUZR4Ug==
46 =C6K6
47 -----END PGP MESSAGE-----
48
49 --=-=02-xqoiptx19dckdwi9deyy=-=--
50
51 --=-=01-xqoiptx19dckdwi9deyy=-=
52 Content-Type: application/pgp-signature
53
54 -----BEGIN PGP SIGNATURE-----



55
56 iJEEABYIADkWIQQuP+AbXlNL0WuncbjgEZB2X4zT/gUCYqJMKBsca2V5LXN1Ym1p
57 c3Npb25AZXhhbXBsZS5vcmcACgkQ4BGQdl+M0/50+QD8CoP2Ws6283pLhJ1R/6yH
58 iapIFPIgCzgG1mIN6t2EHGcBAJPTyXWs6gmRJY5U0T5iDz1mZhji2usdtc4vPFf9
59 /FEB
60 =hqxp
61 -----END PGP SIGNATURE-----
62
63 --=-=01-xqoiptx19dckdwi9deyy=-=--

Listing C.4: Confirmation Request sent to Alice.

1 From: key-submission@example.org
2 To: mallory@example.org
3 Subject: Confirm your key publication
4 Wks-Draft-Version: 3
5 Wks-Phase: confirm
6 MIME-Version: 1.0
7 Content-Type: multipart/signed; protocol="application/pgp-signature";
8 boundary="=-=01-cmphm36pdzg41ixqgscy=-="
9 Date: Thu, 02 Jun 2022 21:19:55 +0000

10
11
12 --=-=01-cmphm36pdzg41ixqgscy=-=
13 Content-Type: multipart/mixed;
14 boundary="=-=02-cmphm36pdzg41ixqgscy=-="
15
16
17 --=-=02-cmphm36pdzg41ixqgscy=-=
18 Content-Type: text/plain
19
20 This message has been send to confirm your request
21 to publish your key. If you did not request a key
22 publication, simply ignore this message.
23
24 Most mail software can handle this kind of message
25 automatically and thus you would not have seen this
26 message. It seems that your client does not fully
27 support this service. The web page
28
29 https://gnupg.org/faq/wkd.html
30
31 explains how you can process this message anyway in
32 a few manual steps.
33
34 --=-=02-cmphm36pdzg41ixqgscy=-=
35 Content-Type: application/vnd.gnupg.wks
36
37 -----BEGIN PGP MESSAGE-----
38
39 hF4DltbEIrO/3uASAQdAHhgr7Sxk6BmQ9YcVWHcQi9XqPjCV37SWpGtLWAgP2Www
40 ekfTHIDkmClYDFKKKjlxcpEefd2wtJrYNblWNFCttdxBl5LFy+nKTtMCrM+lKKqu
41 0sAqAT19IOW40BYEdMtOGeNxYoy6qFX+6c2+zgB/LJwtEcLh+Aa6CNNbBGPRhl1A
42 RxW/0/cg+GDG/WxAFEJsOuFZa5FpK81oOl0Zq7iVKpcYfDGrplWUav2cC3ntAIIg
43 4TBLfvj6PmiDrjerMOmM0PIxgMwmPGj+PG5YUYE5hpjL2V9n+78HjenBioGvR6Nw
44 i2PIiL4sXlKYwMYknu+11RQH9ION2zsgfi0UHXhTFxqE3j8Lh1KrwaPyTUzfItYg
45 RXdHU7WCJsDXfby7uYSN4CYzo6fYA5gaFDxbqdsVFtxbU+Sz0poFb6ZBqF/l
46 =6dtE
47 -----END PGP MESSAGE-----
48



49 --=-=02-cmphm36pdzg41ixqgscy=-=--
50
51 --=-=01-cmphm36pdzg41ixqgscy=-=
52 Content-Type: application/pgp-signature
53
54 -----BEGIN PGP SIGNATURE-----
55
56 iJEEABYIADkWIQQuP+AbXlNL0WuncbjgEZB2X4zT/gUCYpkpexsca2V5LXN1Ym1p
57 c3Npb25AZXhhbXBsZS5vcmcACgkQ4BGQdl+M0/7IXQEAvCZfFlMo8OI5lbb97i7e
58 rXzngbLDiR5RQU3VrC/ZTj8A/0P1MAYbFtpgoVWsA+xskWnYR7B6OriYrCB9RaB/
59 wtkF
60 =Yalb
61 -----END PGP SIGNATURE-----
62
63 --=-=01-cmphm36pdzg41ixqgscy=-=--

Listing C.5: Confirmation Request sent to Mallory.

1 type: confirmation-request
2 sender: key-submission@example.org
3 address: alice@example.org
4 fingerprint: FDD057BFE0DDFC154939BC140ACD7F4AA54454DF
5 nonce: oxbptu91cb4dq3tnss3dm1b9rqbbixj6

Listing C.6: Decrypted Confirmation Request (send to Alice).

1 type: confirmation-request
2 sender: key-submission@example.org
3 address: mallory@example.org
4 fingerprint: FDD057BFE0DDFC154939BC140ACD7F4AA54454DF
5 nonce: 7mpzp4cgkr5uy3bzaw4pqggwga8ksfz9

Listing C.7: Decrypted Confirmation Request (send to Mallory).

1 From: mallory@example.org
2 To: key-submission@example.org
3 Subject: Key publication confirmation
4 Wks-Draft-Version: 3
5 MIME-Version: 1.0
6 Content-Type: multipart/encrypted; protocol="application/pgp-encrypted";
7 boundary="=-=01-7a4ouwa5x1ixx4h3gf3y=-="
8 Date: Thu, 02 Jun 2022 23:40:10 +0000
9

10
11 --=-=01-7a4ouwa5x1ixx4h3gf3y=-=
12 Content-Type: application/pgp-encrypted
13
14 Version: 1
15
16 --=-=01-7a4ouwa5x1ixx4h3gf3y=-=
17 Content-Type: application/octet-stream
18
19 -----BEGIN PGP MESSAGE-----
20
21 hF4DkI3CjsdYJvISAQdAwnH/6pHPzqhNHkyrHi65sOm+jIFZpuR030cVtc5kZnIw
22 bCcR04Ll8AINvUQGqtwOZ8WxK/zBn19pFF5BvTJjFmTmHkxbp9o/zaXrnGLLbtpS



23 0sAhAUrM9ZgEpvLxVwwD680xePkoRcZwcX+h19ENUky0Qkl6wLt4E9GKdGo0FYHI
24 URwZEgExynoui4i/7HSSVt/tuExz6eknpgIyGYdOoulxr2Tz3V6lWqh87/Qz14yf
25 UCkWbhgOHS/7AYhumjPxR3L/BhdlWFQr0pGIGtfL+tFG2kRlvINW3cLXHcsLOttq
26 nEVLStdQLvlLUjRAarpJriSNm2Vx/lwNzc1zB/TIRbv3R6wNI3XAjhLQq+aq7tcW
27 nt1CHektAoxBSvYM1rqQVo96iMOJ6vitSsJLQA1zV2wlTzn2
28 =CMUU
29 -----END PGP MESSAGE-----
30
31 --=-=01-7a4ouwa5x1ixx4h3gf3y=-=--

Listing C.8: (Modified) Confirmation Response. The address key-value field
in the WKS format was changed from mallory@example.org to
alice@example.org

1 Content-Type: application/vnd.gnupg.wks
2 Content-Transfer-Encoding: 8bit
3
4 type: confirmation-response
5 sender: key-submission@example.org
6 - address: mallory@example.org
7 + address: alice@example.org
8 nonce: 7mpzp4cgkr5uy3bzaw4pqggwga8ksfz9

Listing C.9: Decrypted Confirmation Response. Shown as a diff.

1 From: key-submission@example.org
2 To: alice@example.org
3 Subject: Your key has been published
4 Wks-Draft-Version: 3
5 Wks-Phase: done
6 MIME-Version: 1.0
7 Content-Type: multipart/encrypted; protocol="application/pgp-encrypted";
8 boundary="=-=01-ojz5pgg378htiq7qa1gy=-="
9 Date: Thu, 02 Jun 2022 23:46:57 +0000

10
11
12 --=-=01-ojz5pgg378htiq7qa1gy=-=
13 Content-Type: application/pgp-encrypted
14
15 Version: 1
16
17 --=-=01-ojz5pgg378htiq7qa1gy=-=
18 Content-Type: application/octet-stream
19
20 -----BEGIN PGP MESSAGE-----
21
22 hF4DltbEIrO/3uASAQdA1xOZSz8I38SZEw7I60nNwJRe/RWjpuvAnkjQp+tj+gYw
23 rn+XXzj0CM1wDIcG8c7PK0lqhQmB+hzE5JLpD8LMiSgwRxzjHOxH+oBn/oK2tYa7
24 0sDfAR2KnrSL5WNVFrKopmUyVmfcXlWlXlbcKSR6AW1RgZ40tijO134dxlrNvKaO
25 wq2Cj0ZdJ38JvTvxJJjFGUIzyYAyR9+PYkEh+xZG9IrIbMVH8MaKrKZi/46s7VWQ
26 ChJcwncsku0YXLxocbaEOMsKY57DWuSl/Vc7w9WY7pzWNkPY9euCuJPmFNhfAOr/
27 sMkaCURKb6PtU5nBNkAXBMbFgd/v+pawMQhtkgPOk70mzA774E22vvuUY/CKQJSq
28 4nwvYy4P0SyvJkakbwAfKLARtX+88M4cyEiZe0/iD08rB9xy1zq+ZPUwTC6Kwob6
29 o6CRtlftY1uDm3zxlzl1npVO0O2W/cJJGnGR1v0D+L4YDAabOD3XJ/sYhyyIvaw3
30 XlPqlX8BJyWSYVj7Q1aRpBt6kQ/FLZhOsEgQxp01B8LpDvFYyIQ+8DvOTKJquxzO
31 5SgSvz49HSYEhRhhRLrK1ZeKOxDaDYp1TLhXMhHkSRZGuaC62KxD7v+/5yy9Y1yk
32 2vrTBtAtupXjU1V/5jgQVm5JpaPhSgFZU1EVKQ167FePEw==



33 =RamN
34 -----END PGP MESSAGE-----
35
36 --=-=01-ojz5pgg378htiq7qa1gy=-=--

Listing C.10: Publication Message

1 Content-Type: text/plain; charset=utf-8
2 Content-Transfer-Encoding: 8bit
3
4 Hello!
5
6 The key for your address ’alice@example.org’ has been published
7 and can now be retrieved from the Web Key Directory.
8
9 For more information on this system see:

10
11 https://gnupg.org/faq/wkd.html
12
13 Best regards
14
15 GnuPG Key Publisher
16
17
18 --
19 For information on GnuPG see: https://gnupg.org

Listing C.11: Decrypted PGP message in the Publication Message
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