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Simulation of High-Definition Headlamp Systems. 9. VDI/VDE-Fachtagung
AUTOREG (2019)
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem simulationsbasierten Entwurf hochauflösender
Pixel-Scheinwerfersysteme durch virtuellen Nachtfahrten. Nach einer Darstellung der
notwendigen theoretischen Grundlagen wird zunächst der derzeitige Stand der Technik
beschrieben. Besonderes Augenmerk erhält die simulationsgestützte Entwicklung von
Pixel-Scheinwerfersystemen. Die existierenden Lösungen werden vorgestellt und bewertet.
Abgeleitet aus den vorhandenen Schwächen derzeitiger Nachtfahrtsimulationen wird ein
Anforderungskatalog erarbeitet, den die hier vorgestellte Lösung bestmöglich erfüllen
soll. Es folgt die Beschreibung der zu diesem Zweck entwickelten Nachtfahrtsimulation
„Hyperion“. Nach einer Darstellung der Gesamtarchitektur, der dazugehörigen Kompo-
nenten und ihrer Wechselwirkungen, wird der Forschungskern der vorliegenden Arbeit
detailliert betrachtet. Hierzu gehört im ersten Schritt die echtzeitfähige und qualitativ
hochwertige Nachbildung des Lichts von Pixel-Scheinwerfern in einer virtuellen Um-
gebung. Bei der Virtualisierung von Pixel-Systemen werden neben dem ausgesandten
Licht beider Scheinwerfer auch das Steuergerät und damit verbundene Sensoren betrachtet.
Im zweiten Schritt werden darauf aufbauend Analyse- und Entwurfsverfahren für diese
Systeme methodisch eingeführt, prototypisch implementiert und validiert. Hierbei liegt
der Fokus nicht auf der optischen Auslegung des Scheinwerfers, sondern auf dem Entwurf
von Lichtfunktionen zur situationsadaptiven Steuerung der zahlreichen Lichtquellen eines
Pixel-Scheinwerfers. Schließlich wird die entwickelte Lösung anhand des zuvor angefer-
tigten Anforderungskatalogs bewertet. Zum Abschluss werden die zentralen Ergebnisse
der Arbeit zusammengefasst. In einem Ausblick werden weitere Potentiale und Ausbau-
möglichkeiten der Nachtfahrtsimulation diskutiert.

Abstract

This thesis deals with the simulation-based design of high definition pixel headlamp sys-
tems by virtual night driving. After a presentation of the necessary theoretical basics the
current state of the art is presented. Special attention is given to the simulation-based deve-
lopment of pixel headlamp systems. The existing solutions are presented and evaluated.
Derived from the prevailing weaknesses of current night driving simulations, a catalog
of requirements will be worked out, which the solution presented here should fulfill in
the best possible way. The description of the night driving simulation „Hyperion“ deve-
loped for this purpose follows. After a presentation of the total architecture, the relevant
components and their interactions, the research core of the present work is regarded in
detail. This includes in the first step the real-time capable and high-quality reproduction
of the light of pixel headlamps in a virtual environment. In the virtualization of pixel
systems, the control unit and the sensors connected to it are considered in addition to
the emitted light of both headlamps. In a second step, analysis and design procedures
for these systems are methodically introduced, prototypically implemented and validated.
Here, the focus is not on the optical design of the headlamp, but on the design of light
functions for situation-adaptive controlling the numerous light sources of a pixel headlamp.
The developed solution is evaluated on the basis of the previously prepared requirements
catalog. Finally, the central results of the work are summarized. In an outlook, further
potentials and expansion possibilities of the night driving simulation are discussed.
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Symbolverzeichnis

Name Beschreibung Einheit
AE Empfängerfläche m2

AK Kugeloberfläche m2

AP Primärvalenz eines beliebigen Farbraums (analog: BP, CP) −

AS Senderfläche m2

AFzg Fahrzeugstirnfläche m2

AT M Skalierungsparameter der γ-Kompression −

A Farbwert bezüglich der Primärvalenz AP (analog: B, C) −

Ca Reflektiertes Licht bei ambienter Reflexion als RGB-
Farbvalenz

−

Cd Reflektiertes Licht bei diffuser Reflexion als RGB-Farbvalenz −

Cl Lichtfarbe als RGB-Farbvalenz −

Cs Reflektiertes Licht bei spiegelnder Reflexion als RGB-
Farbvalenz

−

C∑ Summe aus Ca, Cd und Cs −

Ca,m Ambiente Reflexion eines Material bzgl. der RGB-Primärva-
lenzen

−

Cd,m Diffuse Reflexion eines Material bzgl. der RGB-Primärvalen-
zen

−

Cs,m Spiegelnde Reflexion eines Material bzgl. der RGB-Primär-
valenzen

−

Ee Bestrahlungsstärke W
m2

Ev Beleuchtungsstärke lm
m2

Eλi Farbvalenz des schmalbandigen Spektralanteils λ ∈ [λi, λi +

∆λ] des energiegleichen Spektrums
−

Emn,k Durch Lichtquelle k im Segment (m, n) realisierte Beleuch-
tungsstärke

lx

Emn,re f Im Segment (m, n) einzustellende Beleuchtungsstärke lx
Emn Insgesamt im Segment (m, n) realisierte Beleuchtungsstärke lx
Ev,∅ Im Raumwinkel Rsel gemittelte Beleuchtungsstärke lx
Ev,re f Im Raumwinkel Rsel einzustellende Beleuchtungsstärke lx
FL Luftwiderstandskraft N
Fz Radaufstandskraft N
Fs,max Bei smax übertragene Reifenlängs-/Reifenquerkraft N
F Allgemeine Farbvalenz eines beliebigen Farbraums (F ∈ R3) −

G Anzahl der Lichtquellen-Gruppen eines Scheinwerfers −
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Name Beschreibung Einheit
Ie Strahlstärke W

sr

Iv Lichtstärke cd
Iv,a Lichtstärke eines ambienten Lichts (analog: Beleuchtungs-

stärke Ev,a)
cd

Iv,d Lichtstärke eines gerichteten Lichts (analog: Beleuchtungs-
stärke Ev,d)

cd

Iv,i(Ω) Lichtstärke der Lichtquelle i ∈ I in Richtung Ω cd
Iv,k,∅ Mittlere Lichtstärke der Lichtquelle k im Winkelbereich Rl,k cd
Iv,k,re f Beitrag der Lichtquelle k zu Iv,re f cd
Iv,re f Im Raumwinkel Rsel einzustellende Lichtstärke cd
I Indexmenge der geometrisch voneinader abgegrenzten

Lichtquellen einer Szene
−

K′m Maximalwert des photometrischen Strahlungsäquivalents für
skotopisches Sehen

lm
W

Km Maximalwert des photometrischen Strahlungsäquivalents für
photopische Sehen

lm
W

Ko maximale Anzahl von Lichtquellen, die das selbe Raumwin-
kelelement bestrahlen

−

K Anzahl der Lichtquellen eines Scheinwerfers bzw. eines HD-
Moduls

−

LA Leuchtdichtebeiwert der Primärvalenz AP (analog: LB, LC) cd
m2

LF Leuchtdichtebeiwert der Farbvalenz F cd
m2

LR Leuchtdichtebeiwert der Primärvalenz RP des RGB-
Farbraums (analog: LG, LB)

cd
m2

LX Leuchtdichtebeiwert der Primärvalenz XP des XYZ-
Farbraums (analog: LY , LZ)

cd
m2

Le Strahldichte W
sr·m2

Lg Diskretisierte Gesamtlichtverteilung der Lichtquellen aus der
Gruppe g ∈ 1, . . . ,G

−

Lk Diskretisierte Lichtverteilung der Lichtquelle k −

Lv(v,Ω) Leuchtdichte an der Position v in Richtung Ω cd
m2

Lv Leuchtdichte cd
m2

L∑ Momentane, diskretisierte Gesamtlichtverteilung des Schein-
werfers bzw. des HD-Moduls

−

Lv,i(v,Ω) Beitrag der Lichtquelle i ∈ I zu Lv(v,Ω) cd
m2

Mg Zeilenzahl von Lg −

Mk Zeilenzahl von Lk −

Ms Zeilenzahl des segmentierten Ausleuchtungsbereichs eines
HD-Moduls

−

M∑ Zeilenzahl von L∑ −
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Name Beschreibung Einheit
M Transformationsmatrix von m nach w in R4×4 −

Ng Spaltenzahl von Lg −

Nk Spaltenzahl von Lk −

Ns Spaltenzahl des segmentierten Ausleuchtungsbereichs ei-
nes HD-Moduls

−

NMC Stichprobengröße bei der Monte-Carlo-Integration −

NPh Photonenzahl −

N∑ Spaltenzahl von L∑ −

P Transformationsmatrix von e nach c in R4×4 −

Qe Strahlungsenergie J
Qv Lichtmenge lm · s
Qopt Matrix des quadratischen Anteils eines quadratischen Opti-

mierungsproblem (Q ∈ RK×K)
−

RP Rote Primärvalenz des RGB-Farbraums (analog: GP, BP) −

Rh Rotationsmatrix in R4×4 −

Rl,k Von Lichtquelle k ausgeleuchteter Raumwinkelbereich −

Ro,k Überlappungsbereich von Ro,k und Rsel −

Rrot Rotationsmatrix in R3×3 −

Rsel Raumwinkelbereich, in dem Beleuchtungsstärke Ev,re f um-
gesetzt werden soll

−

R Farbwert bezüglich der Primärvalenz RP (analog: G, B) −

S h Skalierungsmatrix in R4×4 −

S Skalierungsmatrix in R3×3 −

Th Translationsmatrix in R4×4 −

Tv Zeitkonstante der Dynamik der Fahrzeuggeschwindigkeit s
TS B Transformationsmatrix von n nach s in R4×4 −

Tdim Zeitkonstante der Dimmdynamik der Lichtquellen s
T Allgemeine Transformationsmatrix in R4×4 −

V ′(λ) Hellempfindlichkeitsfunktion für skotopisches Sehen −

V(λ) Hellempfindlichkeitsfunktion für photopisches Sehen −

V Transformationsmatrix von w nach e in R4×4 −

XP X-Primärvalenz des XYZ-Farbraums (analog: YP, ZP) −

Xe Allgemeine radiometrische Größe [Xe]
Xv Allgemeine photometrische Größe [Xv]
Xe,λ Spektralverteilung von Xe

[Xe]
m

X Farbwert bezüglich der Primärvalenz XP (analog: Y, Z) −

∆Tgap Zeitlücke zwischen sp und s f s
∆T Diskretisierungsschrittweite s
∆Ψp f Gierwinkelunterschied auf cTr zwischen sp und s f rad
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Name Beschreibung Einheit
∆θ̄ f b Maximaler vertikaler Abstand zwischen fl,k und bl,k zur Be-

rücksichtigung der Lichtquelle k
rad

∆ϕ̄ f b Maximaler horizontaler Abstand zwischen fl,k und bl,k zur
Berücksichtigung der Lichtquelle k

rad

∆λ Breite eines Wellenlängenintervalls m
∆θ f b,k Vertikaler Abstand zwischen fl,k und bl,k rad
∆θ Diskretisierungsschrittweite des Polarwinkels rad
∆ϕ f b,k Horizontaler Abstand zwischen fl,k und bl,k rad
∆ϕ Diskretisierungsschrittweite des Azimutwinkels rad
∆v Verschiebungsvektor in R3 −

Ω′n Stichprobenelement aus Ω+ sr
Ω+ Hemisphäre um einen Flächenpunkt sr
ΩE Raumwinkel der sendenen Fläche aus Sicht des Empfängers sr
ΩS Raumwinkel der empfangenden Fläche aus Sicht des Sen-

ders
sr

Ωk Raumwinkel von Rl,k sr
Ω Allgemeiner Raumwinkel sr
Φv Lichtstrom lm
ΦEE,e,λ Spektralverteilung der Strahlungsleistung des energieglei-

chen Spektrums

W
m

Φe,λi Strahlungsleistunganteil im Wellenlängebereich [λi, λi + ∆λ] W
Φmn,k Lichtstrom der Lichtquelle k im Winkelbereich des Segments

(m, n)
lm

Φv,k Lichtstrom der Lichtquelle k im Winkelbereich Rl,k lm
Φv,p Lichtstrom einer Punktlichtquelle (analog: Lichtstärke Iv,p,

Beleuchtungsstärke Ev,p)
lm

Φv,s Lichtstrom eines Spotlichts (analog: Lichtstärke Iv,s, Beleuch-
tungsstärke Ev,s)

lm

Ψ Gierwinkel eines Fahrzeugs rad
αh Horizontales Field of View rad
αv Vertikales Field of View rad
λ̄ Obere Grenze eines Wellenlängenbereichs m
θ̄k Polarwinkel der oberen Grenze des Ausleuchtungsbereichs

der Lichtquelle k
rad

θ̄ Polarwinkel der oberen Grenze des Ausleuchtungsbereichs
von L∑ rad

ϕ̄k Azimutwinkel der rechten Grenze des Ausleuchtungsbe-
reichs der Lichtquelle k

rad

ϕ̄ Azimutwinkel der rechten Grenze des Ausleuchtungsbe-
reichs von L∑ rad



Symbolverzeichnis XIII

Name Beschreibung Einheit
ā(λ) Spektralwertfunktion bezüglich der Primärvalenz AP (analog:

b̄(λ), c̄(λ))
−

m̄k Größter Zeilenindex in Lk (analog: Spaltenindex n̄k) −

m̄ Größter Zeilenindex in L∑ (analog: Spaltenindex n̄) −

r̄(λ) Spektralwertfunktion bezüglich der Primärvalenz RP des
RGB-Farbraums (analog: ḡ(λ), b̄(λ))

−

x̄(λ) Spektralwertfunktion bezüglich der Primärvalenz XP des
XYZ-Farbraums (analog: ȳ(λ), z̄(λ))

−

Īv,k Maximal auftretende Lichtstärke der Lichtquelle k cd
θ̄l,k Obere Grenze von Rl,k rad
θ̄mn Obere Grenze des Segments (m, n) des Ausleuchtungsbe-

reichs
rad

ϕ̄l,k Rechte Grenze von Rl,k rad
ϕ̄mn Rechte Grenze des Segments (m, n) des Ausleuchtungsbe-

reichs
rad

δi Lenkwinkel des kurveninneren Rads (analog: kurvenaußen
δo)

rad

δs Öffnungswinkel eines Spotlichts rad
δ Abstrahlwinkel bezüglich Mittelachse des Spotlichts rad
εΩ′r Winkel zwischen Ω′ und rspec rad
εer Winkel zwischen e und rspec rad
dv
dΨ

Bremsverhalten des Fahrzeugs abhängig von der Krümmung
des Straßenverlaufs

m
s·rad

γT M Exponentieller Parameter der γ-Kompression −

γe Exponentieller Parameter der logarithmischen Wahrneh-
mung des menschlichen Auges

−

λ Wellenlänge m
ρL Luftdichte kg

m3

τ Kollisionswahrscheinlichkeit eines Lichtstrahls im Nebel pro
LE (Nebeldichte)

−

θE Winkel zwischen Flächennormale und empfangenem Licht-
strahl (Polarwinkel)

rad

θS Winkel zwischen Flächennormale und abgesandtem Licht-
strahl (Polarwinkel)

rad

θ Allgemeiner Polarwinkel rad
λ Untere Grenze eines Wellenlängenbereichs m
θk Polarwinkel der unteren Grenze des Ausleuchtungsbereichs

der Lichtquelle k
rad

θ Polarwinkel der unteren Grenze des Ausleuchtungsbereichs
von L∑ rad
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Name Beschreibung Einheit
ϕ

k
Azimutwinkel der linken Grenze des Ausleuchtungsbereichs
der Lichtquelle k

rad

ϕ Azimutwinkel der linken Grenze des Ausleuchtungsbereichs
von L∑ rad

mk Kleinster Zeilenindex in Lk (analog: Spaltenindex nk) −

m Kleinster Zeilenindex in L∑ (analog: Spaltenindex n) −

θl,k Untere Grenze von Rl,k rad
θmn Untere Grenze des Segments (m, n) des Ausleuchtungsbe-

reichs
rad

ϕ
l,k

Linke Grenze von Rl,k rad

ϕ
mn

Linke Grenze des Segments (m, n) des Ausleuchtungsbe-
reichs

rad

ϕE Azimutwinkel eines eintreffenden Lichtstrahls rad
ϕS Azimutwinkel eines abgesandten Lichtstrahls rad
ϕ Allgemeiner Azimutwinkel rad

T u Allgemeine horizontale Texturkoordinate ∈ [0, 1] −

T v Allgemeine vertikale Texturkoordinate ∈ [0, 1] −

cv Vektor v im Clipspace c −

ev Vektor v im Eye-/Viewspace e −

mv Vektor v im Model-/Objectspace m −

nv Vektor v in NDC-Koordinaten n −

pv Projektion des Vektors v auf die Near Clipping Plane −

sv Vektor v im Screenspace s −

wv Vektor v im Worldspace w −

ar Augpunkt (entspricht Kameraposition) −

are f Reflexionswahrscheinlichkeit eines Lichtstrahls nach Kollisi-
on im Nebel

−

a Farbwertanteil bezüglich der Primärvalenz AP (analog: b, c) −

bFzg Spurbreite des Fahrzeugs m
bl,k Zu fl,k nächstgelegener Randpunkt auf Rsel −

bout Breite der Ausgabe m
cK Kugelzentrum −

c j Interpolationsfaktor zwischen dstd,k und der Sollvorgabe einer
dynamischen Lichtfunktion für die Lichtquelle j

−

cw Strömungswiderstandskoeffizient −

cHDR Farbkoordinate im HDR −

cLDR Farbkoordinate im LDR (normiert) −

cTr Trajektorie des Fahrzeugs als bezüglich der Bogenlänge
parametrisierte Kurve

−



Symbolverzeichnis XV

Name Beschreibung Einheit
copt Vektor des linearen Anteils eines quadratischen Optimie-

rungsproblem (copt ∈ R
K)

−

cphy Physikalische Helligkeit −

csen Wahrgenommene Helligkeit −

cspec(λ) Spektralfarbenzug −

dA′ Projiziertes differentielles Flächenelement m2

dAp Projektion von dA auf Kugelfläche m2

dA Differentielles Flächenelement m2

dE Differentielles Energiepaket J
dΩ Differentielles Raumwinkelelement sr
dΦe an dA empfangene Strahlungsleistung W
dk Momentaner, normierter Dimmwert der Lichtquelle k −

dr Richtungsvektor eines Rays −

ds Mittelachse des Spotlichts −

dstd,k Standarddimmwert der Lichtquelle k −

e Normierter Richtungsvektor von bestrahlter Fläche zur Ka-
mera

−

fc Distanz zwischen Kamera und Far Clipping Plane m
fr Bidirektionale Reflektanzfunktion −

fT M Tone Mapping Funktion −

fl,k Zentrum von Rl,k −

fo,k Zentrum von Ro,k −

fopt Konstanter Anteil eines quadratischen Optimierungspro-
blems ( fopt ∈ R)

−

f Frequenz Hz
gr Geradengleichung eines Rays in Parameterform −

hout Höhe der Ausgabe m
h Planksches Wirkungsquantum Js
l(m, n) Eintrag in Zeile m und Spalte n aus L∑ −

lk(m, n) Eintrag in Zeile m und Spalte n aus Lk −

lFzg Radstand des Fahrzeugs m
l Normierter Richtungsvektor von bestrahlter Fläche zur Licht-

quelle
−

nc Distanz zwischen Kamera und Near Clipping Plane m
nr Abschwächung der spiegelnden Reflexion abhängig von εer −

ns Abschwächung des Spotlichts abhängig von δ −

n Normalenvektor einer Fläche −

p(Ω) Wahrscheinlichkeitsdichtefunktion über Ω+ −
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Name Beschreibung Einheit
pPh(Ω′,Ω) Wahrscheinlichkeit für die Reflexion eines Lichtstrahls aus

Rtg. Ω′ in Rtg. Ω (Phasenfunktion)
−

rK Kugelradius m
ri Abstand der Lichtquelle i ∈ I vom bestrahlten Punkt m
rmn Abstand zwischen Lichtquelle und bestrahlter Fläche in Rich-

tung des Segments (m, n)
m

ro,k Abstand zwischen Lichtquelle k und bestrahlter Fläche in
Richtung fo,k

m

rspec Normierter Richtungsvektor der idealen spiegelnden Reflexi-
on

−

r Abstand zw. Lichtquelle und bestrahlter Fläche m
s f Bogenlängenparameter des Vorausschaupunkts des Fahr-

zeugs auf cTr

m

sp Bogenlängenparameter der momentanen Fahrzeugposition
auf cTr

m

s∞ Schlupfwert, bei dem sich ein asymptotischer Kraftverlauf
einstellt

m
s

smax Schlupfwert mit maximaler Reifenlängs-/Reifenquerkraft m
s

s Relativgeschwindigkeit zwischen Radnaben- und Radum-
fangsgeschwindigkeit (Schlupf)

m
s

tr Ray-Parameter −

t Zeit s
v(s) Über Bogenlänge parametrisierter Pfad im Raum −

vx x-Koordinate des Vektors v (analog: vy, vz, vw) m
vFzg Fahrzeuggeschwindigkeit m

s

valt Geschwindigkeit des Fahrzeugs im vorhergehenden Zeit-
schritt

m
s

vist Momentane Geschwindigkeit des Fahrzeugs m
s

vsoll Sollgeschwindigkeit des Fahrzeugs m
s

v allgemeiner Vektor −

wmn Gewichtung des Segments (m, n) in der Zielfunktion eines
Optimierungsproblems

−

xw Basisvektor bezüglich der x-Koordinate im Worldspace w
(analog: yw, zw)

−

xopt Vektor der Optimierungsvariablen eines quadratischen Opti-
mierungsproblems (xopt ∈ R

K)
−



1

1 Einleitung

Die Entwicklung automobiler Scheinwerfer schritt in den letzten Jahren rasant voran.
Während die früheren Scheinwerfersysteme ausschließlich über statische Komponenten
verfügten, kamen im Laufe der Zeit stetig dynamische Elemente hinzu. Motiviert wird
diese Entwicklung durch den Wunsch, das ausgesandte Licht an die jeweilige Umge-
bungssituation anzupassen. Diese Situationsadaptivität bezieht sich inzwischen nicht mehr
ausschließlich auf die bestmögliche Ausleuchtung des Fahrzeugumfelds und der Ent-
blendung anderer Verkehrsteilnehmer, sondern auch auf gänzlich neue Aspekte, wie der
Kommunikation mit dem Fahrer und weiteren Verkehrsteilnehmern durch Symbolprojek-
tionen.

Im ersten Schritt wurde diese Adaptivität durch die Einbringung verschiedener Lichtquellen
im Scheinwerfer realisiert. Durch unterschiedliche Abstrahlcharakteristika der Leuchtmittel
und Reflektor- bzw. Streuscheibengeometrien konnte durch das Um- oder Zuschalten der
Lichtquellen zwischen definierten Lichtverteilungen gewechselt werden. Allen voran sind
hier die Abblend- und Fernlichtfunktion zu nennen. Darauf folgten mechanische Aktoren
im Scheinwerfer, welche die Lage der Lichtquelle oder des Reflektors manipulieren. Durch
diese wurde es möglich, die Lichtverteilung horizontal und vertikal zu verschieben, wie es
beispielsweise für die dynamische Leuchtweitenregelung oder das Kurvenlicht eingesetzt
wird. Zur Umsetzung eines blendfreien Fernlichts wurde in frühen Phasen eine rotierende
Walze eingesetzt, die abhängig vom Rotationswinkel unterschiedliche Konturen aufweist
und auf diese Weise verschiedene Lichtverteilungen auf der Straße realisiert.

Heutige Scheinwerfersysteme verzichten weitgehend auf mechanische Aktoren. Stattdes-
sen ähnelt das Prinzip zur Gestaltung der Lichtverteilung einem Schwarz-Weiß-Beamer,
weshalb der Begriff „Pixellicht“ für diese Systeme etabliert ist. Der insgesamt auszuleuch-
tende Bereich wird in viele kleine Segmente unterteilt, wobei jedes Segment exklusiv
durch eine Lichtquelle bestrahlt wird. Hierzu ist eine Vielzahl einzelner Lichtquellen
bzw. Pixellichter notwendig. Jedes Pixellicht kann individuell gedimmt werden. Durch die
Gesamtheit der Dimmwerte kann die Lichtverteilung des Scheinwerfers in den Grenzen der
Auflösung bausteinartig zusammengesetzt werden. Die Flexibilität dieser Systeme über-
steigt die Möglichkeiten der zuvor genannten Entwicklungsstufen um ein Vielfaches.

Zur Realisierung von Pixellicht existieren verschiedene Technologien. Nicht alle ver-
wenden für jedes Segment des Raumwinkelbereichs eine physische Lichtquelle. So wird
beispielsweise in DLP (Digital Light Processing)-Scheinwerfern eine leuchtstarke Licht-
quelle eingesetzt, deren Licht durch einzeln ansteuerbare Mikrospiegel in die verschiedenen
Raumrichtungen abgelenkt werden kann. Das grundsätzliche Prinzip zur Gestaltung der
Gesamtlichtverteilung bleibt jedoch erhalten.

Diese Arbeit befasst sich mit der simulationsbasierten Entwicklung derartiger Pixelsysteme.
Im nachfolgenden Abschnitt werden die Herausforderungen genannt, die im Zuge der
Pixellicht-Technologie auf den Entwicklungsingenieur zukommen. Daraus abgeleitet wird
in Abschnitt 1.2 die Zielsetzung der Arbeit, deren Ergebnisse den Ingenieur in bestmög-
licher Weise beim Entwurf derartiger Systemen unterstützen sollen. Abschließend zeigt
Abschnitt 1.3 die Gliederung der Arbeit auf.



2 1 Einleitung

1.1 Problemstellung

Im Entwicklungsprozess von Fahrzeugscheinwerfern sind besondere Erschwernisse zu
überwinden. Neben den vielfältigen Produktanforderungen seitens der OEM und des Ge-
setzgebers sowie dem hohen Zeit- und Kostendruck, sind im Kontext von Scheinwerfern
die aufwendigen Testvoraussetzungen und der hohe subjektive Anteil innerhalb der Eva-
luierung zu nennen. Scheinwerfer können unter realen Bedingungen nur in nächtlichen
Testfahrten erprobt werden, welche sehr zeit- und kostenintensiv sind. Hinzu kommt, dass
die Prototypen üblicherweise auf einem Versuchsträger (Rack) am Fahrzeug installiert
werden, wodurch kein Fußgängerschutz gewährleistet ist. Bild 1-1 zeigt ein solches Rack
an einem Versuchsfahrzeug. Darüber hinaus ist während der Erprobung im realen Um-
feld mit potentiell gefährlichen Fehlfunktionen zu rechnen. Neben den zuvor genannten
Problemen ist also auch der Sicherheitsaspekt kritisch zu sehen. Aus diesen Gründen
weichen Scheinwerferhersteller soweit möglich auf statische Tests aus. Im Bild 1-2 wird
der in Lippstadt befindliche 140m lange Lichtkanal des Scheinwerferherstellers HELLA
GmbH & Co. KGaA (nachfolgend: HELLA) gezeigt. Damit entfallen viele der genannten
Nachteile. Gleichzeitig ist jedoch die Erprobung dynamischer Fahrfunktionen in einer
statischen Verkehrssituation nur sehr begrenzt möglich.

Bild 1-1: Rack zur Erprobung von Scheinwerfer-Prototypen montiert an einem Testfahrzeug
der HELLA.

Bedingt durch die genannten Schwierigkeiten wurde bereits vor dem Aufkommen der Pixel-
Technologie auf die simulationsbasierte Erporbung virtueller Prototypen in frühen Phasen
der Entwicklung gesetzt. Diese Erprobung geschieht in Form von virtuellen Nachtfahrten.
Um eine vollständige Testabdeckung zu erzielen, muss nicht nur das Scheinwerfersystem,
sondern auch die gesamte Wechselwirkung mit der Umgebung virtualisiert werden. Konkret
sind in diesem Kontext das von den Scheinwerfern ausgesandte Licht, dessen Wechsel-
wirkung mit Objekten in der Umgebung, das Scheinwerfersteuergerät, das Testfahrzeug,
relevante Sensoren, andere Verkehrsteilnehmer und verschiedene Witterungsverhältnisse
zu nennen.

Mit der Fülle neuer Möglichkeiten, die moderne Pixelsysteme bieten, steigen die An-
forderungen an das Virtual Prototyping weiter an. Insbesondere die Virtualisierung des
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Lichts gewinnt immens an Komplexität. Bisher konnte ein Scheinwerfer durch wenige
virtuelle Lichtquellen mit statischen Lichtverteilungen abgebildet werden. Verschwenkak-
toren ließen sich durch die Rotation der Lichtquelle berücksichtigen. Zur Virtualisierung
von Pixelscheinwerfern ist dieses Vorgehen ungeeignet. Für einen einzigen Scheinwerfer
wären dann hunderte bis hin zu einigen zehntausend virtuelle Lichtquellen erforderlich.
Die für eine Fahrsimulation grundlegende Echtzeitfähigkeit wäre unter diesen Vorausset-
zungen nicht gewährleistet. Folglich müssen zur Virtualisierung von Pixel-Scheinwerfern
grundlegend neue Ansätze verfolgt werden.

Bild 1-2: Lichtkanal des Scheinwerferherstellers HELLA in Lippstadt mit 140m langer
Straße [Quelle: Hella].

Eine weitere Komponente, deren Komplexitätszuwachs durch die Pixel-Technologie enorm
ist, stellt das Steuergerät des Scheinwerfersystems dar. Dessen Aufgabe ist die adäquate
Auswahl der Dimmwerte aller Pixellichtlichtquellen zu jedem Fahrzeugzustand und jeder
Fahrsituation. Die Wahl der Dimmwerte basiert im Wesentlichen auf den Sensorinformatio-
nen und Daten anderer Steuergeräte, die an das Scheinwerfersteuergerät übermittelt werden.
Wie genau die Dimmwertvorgabe getroffen wird, hängt von den Lichtfunktionen ab, die
auf dem Steuergerät implementiert sind. Aufgrund der hohen Adaptivität von Pixellicht-
Systemen lassen sich vielfältigere, exaktere und dynamischere Lichtfunktionen realisieren,
als es bei klassischen Systemen der Fall ist. Gleichzeitig steigt die Anzahl der Eingangs-
und Ausgangsgrößen einer Lichtfunktion erheblich. So wäre beispielsweise die direkte
Vorgabe der Dimmwerte durch den Ingenieur schon für niedrig aufgelöste Systeme nicht
mehr praktikabel. Zur Ausschöpfung des Potentials von Pixelsystemen muss die Fülle an
Eingangs- und Ausgangsdaten bei der Auslegung von Lichtfunktionen durch geeignete
Abstraktionen beherrschbar werden.
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1.2 Zielsetzung

Motiviert durch die dargelegte Problemstellung ist das Ziel der vorliegenden Arbeit die
Entwicklung eines Verfahrens zur echtzeitfähigen und qualitativ hochwertigen Simulation
des Lichts von Pixelscheinwerfern im Rahmen von virtuellen Nachtfahrten. Zur Sicher-
stellung der Praxistauglichkeit soll das Verfahren in eine Nachtfahrtsimulation eingebettet
und anhand realer Scheinwerferdatensätze validiert werden. Darauf aufbauend ist ein
weiteres Ziel dieser Arbeit die Unterstützung des Lichtingenieurs bei der Auslegung von
Lichtfunktionen für Pixelsysteme. Hierzu soll ein Verfahren entwickelt werden, welches
die Komplexität der Entwurfsaufgabe drastisch reduziert. Dieses Verfahren soll ebenfalls
in die Nachtfahrtsimulation integriert werden. Ein drittes wesentliches Ziel ist die hard-
und software-seitige Skalierbarkeit der Nachtfahrtsimulation. Das heißt konkret, dass
die Anwendung einerseits kostengünstig am Arbeitsplatz des Lichtingenieurs eingesetzt
werden kann und sich andererseits zum Betrieb eines Großsimulators eignet. Außerdem
soll eine vollständige Testabdeckung durch MiL-, SiL- und HiL-Tests des Steuergeräts
gewährleistet sein.

1.3 Vorgehensweise

Das Kapitel 2 legt zunächst die theoretische Basis zum Verständnis der erarbeiteten Verfah-
ren. Hierbei werden vorrangig Inhalte eingeführt, die nicht zwangsläufig zur Wissensbasis
im ingenieurwissenschaftlichen Umfeld des Maschinenbaus zählen. Auf oberster Ebene
werden die Fachgebiete Optik, Farbmetrik und Computergrafik unterschieden. Bei der Dar-
legung dieser Disziplinen beschränken sich die Ausführungen auf Inhalte, die im Verlauf
dieser Arbeit unmittelbar oder indirekt Anwendung finden.

Im anschließenden Kapitel 3 folgt die Vorstellung des Stands der Technik. Der erste Ab-
schnitt führt in die Scheinwerfertechnik ein und gibt einen groben Überblick über die
historische Entwicklung von den ersten einfachen KFZ-Scheinwerfern bis hin zu den
modernen Pixelscheinwerfern, die den Betrachtungsgegenstand dieser Arbeit darstellen.
In Abschnitt 3.2 folgt eine ausführliche Darstellung der aktuellen Arbeiten zu Licht-
funktionen im Kontext von Pixelsystemen. Abschließend werden die derzeit etablierten
Nachtfahrtsimulationen in Abschnitt 3.3 vorgestellt.

Bevor die Lösungen zur Erreichung der in Abschnitt 1.2 dargelegten Ziele präsentiert
werden, detailliert Kapitel 4 diese Ziele durch 13 technische Anforderungen. Diese Anfor-
derungen sollten von einer Nachtfahrtsimulation für Pixelsysteme erfüllt werden, damit
eine bestmögliche Hilfestellung für den Lichtingenieur erzielt wird. Die in Abschnitt 3.3
vorgestellten Nachtfahrtsimulationen werden hinsichtlich dieser Anforderungen bewertet.
Aus den Ergebnissen der Bewertung wird im Abschnitt 4.4 schließlich der Handlungsbedarf
abgeleitet.

Mit Kapitel 5 beginnt die Vorstellung der entwickelten Nachtfahrtsimulation, die fort-
laufend unter der Bezeichnung „Hyperion“ adressiert wird. Den Leitfaden des Kapitels
bildet die Hard- und Softwarearchitektur der Simulation. In den Abschnitten 5.2 bis 5.7
werden Hyperions Komponenten und ihre Wechselwirkungen dargestellt. Den Abschluss
des Kapitels 5 bildet die Vorstellung einiger Beispielkonfigurationen in Abschnitt 5.8.
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Die detaillierte Betrachtung des Forschungskerns dieser Arbeit erfolgt in Kapitel 6. Dort
wird ein Verfahren vorgestellt, welches das Rendering von Pixelsystemen mit einer hohen
Anzahl von Lichtquellen im Rahmen einer Nachtfahrtsimulation erlaubt. Die Betrachtung
erfolgt zweigeteilt. Zuerst wird in Abschnitt 6.2 die Bestimmung der Gesamtlichtverteilung
eines Scheinwerfers basierend auf den momentan vorliegenden Dimmwerten beschrieben.
Nachfolgend wird in Abschnitt 6.3 die Implementierung der logischen Ersatzlichtquelle
erläutert, welche das Licht des Scheinwerfers in die Szene projiziert. Es schließt sich in
Abschnitt 6.4 eine Validierung der Lösung an, wobei aufgrund der besseren Vergleichbar-
keit etablierte Simulationssoftware als Referenz herangezogen wird. Außerdem wird in
Abschnitt 6.5 die Laufzeit des vorgestellten Verfahrens sowohl komplexitätstheoretisch,
als auch anhand von Messungen mit Parametervariationen analysiert. Den Abschluss des
Kapitels 6 bildet der Abschnitt 6.6. Dieser stellt die Simulation bestimmter Witterungsver-
hältnisse und die simulative Nachbildung damit einhergehender Phänomene am Beispiel
von Nebel dar.

Aufbauend auf Kapitel 6 führt Kapitel 7 Analyse- und Entwurfsverfahren für Pixelsysteme
ein. Die in Abschnitt 7.1 diskutierten Analyseverfahren werden zum Teil von konventio-
nellen Scheinwerfersystemen auf Pixelsysteme adaptiert. Darüber hinaus werden neue
Analyseverfahren eingeführt, die speziell zur Analyse des Pixelsystemen zugrunde lie-
genden Funktionsprinzips ausgelegt sind. Die Designverfahren werden in Abschnitt 7.2
beginnend von der zugrundeliegenden Methodik bis hin zur prototypischen Implemen-
tierung vorgestellt und validiert. Beim zuerst vorgestellten Ansatz wird ein besonderes
Augenmerk auf Laufzeit gelegt, wodurch sich dieser potentiell zur Integration auf dem
Scheinwerfersteuergerät eignet und so eine elegante Implementierung verschiedener Licht-
funktionen ermöglicht. Der zweite Ansatz, vorgestellt in Abschnitt 7.2.4, nutzt globale
Optimierungsverfahren und erfordert einen erhöhten Rechenaufwand, liefert aber auch
bessere Ergebnisse.

In Kapitel 8 erfolgt die Evaluierung der vorgestellten Nachtfahrtsimulation. Sie wird
anhand der Anforderungen vorgenommen, die in Kapitel 4 aufgestellt werden. Eine zu-
sammenfassende Übersicht der Evaluierungsergebnisse erfolgt in Abschnitt 8.2.

Schließlich werden die wesentlichen Ergebnisse der vorliegenden Arbeit in Kapitel 9
zusammengefasst. Außerdem werden Schlussfolgerungen aus den erhaltenen Ergebnissen
gezogen, welche in einem Ausblick auf weitere Potentiale und Ausbaumöglichkeiten der
vorgestellten Lösung resultieren.
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2 Grundlagen

Zum Verständnis der nachfolgenden Kapitel sind einige theoretische Grundlagen von
Bedeutung, die einem Maschinenbauer nicht zwangsläufig bekannt sind. In den nachfol-
genden Abschnitten werden diese Grundlagen unterteilt in die Themengebiete „Optik“,
„Farbmetrik“ und „Computergrafik“ vermittelt, sodass eine geeignete Wissensbasis für die
folgenden Ausführungen sichergestellt ist.

2.1 Optik

Dieser Abschnitt gibt einen Überblick über die optischen Grundlagen, die im Kontext der
Aufgabenstellung von Relevanz sind. Dazu werden nach einer allgemeinen physikalischen
Einordnung des Lichts Grundgrößen der Strahlungsphysik vorgestellt. Anschließend wer-
den die Wahrnehmung des Lichts durch das menschliche Auge thematisiert und die daraus
abgeleiteten Hellempfindlichkeitskurven eingeführt. Durch Bewertung der strahlungsphy-
sikalischen Größen mit diesen Kurven wird schließlich auf die photometrischen Größen
übergeleitet, welche die Grundlage für alle nachfolgenden lichttechnischen Betrachtungen
darstellen.

Inhaltlich wird in diesem Abschnitt hauptsächlich auf Grundlagenliteratur der Optik Bezug
genommen. Konkret sind die Quellen [PPBS05], [Ree62] und [Hen82] in die nachfolgen-
den Unterabschnitte eingeflossen. Alle vorgestellten Größen und Zusammenhänge werden
außerdem in den Teilen 1 bis 3 der DIN 5031 definiert [DIN01].

2.1.1 Beschreibung des Lichts

Zur Definition des Lichts bietet es sich an, zunächst einen Blick auf das elektromagnetische
Spektrum zu werfen. Licht ist ein kleiner Ausschnitt dieses Spektrums – nämlich elektroma-
gnetische Strahlung im Wellenlängenbereich von 380 bis 780 nm bzw. im Frequenzbereich
von 390 und 790 T Hz. Gerade dieses Intervall mit individuellen Abweichungen bezüglich
der unteren und oberen Grenze stellt den Teil der elektromagnetischen Strahlung dar,
den das menschliche Auge sensieren kann und in Farbreize umsetzt. Bild 2-1 ordnet den
sichtbaren Bereich ins elektromagnetische Spektrum ein, welches, wie aus der Literatur
bekannt, entlang der Frequenz bzw. der Wellenlänge im Vakuum geordnet ist.

Besonders kurzwelliges Licht nehmen wir als violett wahr, weshalb der Bereich unterhalb
der kürzesten sichtbaren Wellenlänge bzw. oberhalb der höchsten sichtbaren Frequenz
als ultraviolette (UV) Strahlung bezeichnet wird. Erhöht sich die Wellenlänge, so wird
sie durch unser Auge von blau über grün, gelb und orange bis hin zu rot wahrgenommen.
Oberhalb der längsten sichtbaren Wellenlänge bzw. unterhalb der niedrigsten sichtbaren
Frequenz spricht man von Infrarot (IR)-Strahlung.

Zur Beschreibung von Licht haben sich je nach Anwendungsbereich verschiedene Diszi-
plinen ausgebildet, die das Licht auf verschiedene Arten und in verschiedenen Abstrakti-
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Bild 2-1: Einordnung des Lichts in das elektromagnetische Spektrum.

onsebenen modellieren. Sie können dabei ganz unterschiedliche Phänomene des Lichts
abbilden. Man unterscheidet dabei konkret die Bereiche

• Geometrische Optik,

• Strahlungsoptik bzw. Lichttechnische Optik,

• Wellenoptik

• und Quantenoptik.

Die Quantenoptik erklärt Prozesse der Lichterzeugung und Lichtabsorption. Sie stellt
die Lichtstrahlung als Photonenstrom dar, wobei jedes Photon ein von dessen Frequenz
abhängiges Energiepaket trägt. In der Wellenoptik befasst man sich mit Lichtausbreitung,
Reflexion, Brechung, Interferenz, Beugung und Polarisation. Im Folgenden werden die
Wellen- und Quantenoptik ausgeklammert, da die Phänomene, welche in diesen Ansätzen
beschrieben werden können, im betrachteten Kontext nicht relevant sind.
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In der geometrischen Optik untersucht man die Abbildung von Objekten in Bildern durch
Licht unter Einsatz von Linsen, Prismen oder Spiegeln. Licht wird als unendlich dünner
Strahl aufgefasst, der Objekt- und Bildpunkte verbindet. Dementsprechend werden Wel-
lenphänomene und Energieaspekte außer Acht gelassen. Die geometrische Optik begegnet
dem Leser in dieser Dissertation nur beiläufig. Das Abbildungssystem des Scheinwerfers
ist nicht Teil der Betrachtung. Die Bezüge auf die geometrische Optik beschränken sich
deshalb lediglich auf die Lichtausbreitung im Raum.

Von hoher Relevanz für die betrachtete Anwendung ist hingegen die Strahlungs- und darauf
aufbauend die lichttechnische Optik. In Kurzform befasst sich diese Disziplin mit der
Leitung des Lichts in eine gewünschte Richtung durch Lichtquellen und der Wirkung des
Lichts auf den Menschen. Aufgrund dieser Zielvorgabe werden folgende Annahmen bei
der Modellierung des Lichts zugrunde gelegt:

• geradlinige Ausbreitung in homogenen Medien

• Reflexions- und Brechungsgesetze der Wellenoptik

• Gültigkeit des Energiesatzes

• Amplitude der Lichtstrahlung wird durch Strahlungsleistung oder davon abgeleitete
Größen beschrieben

• Beschreibung lichtschwächender, absorbierender und lichtstreuender Eigenschaften
von Medien zwischen Lichtquelle und Empfänger durch Koeffizienten

• Beschreibung der Wirkung des Lichts auf Empfänger durch spektrale Empfindlich-
keitsfunktionen

Die Bedeutungen und Notwendigkeiten der einzelnen Annahmen werden in den nächsten
Abschnitten deutlich. Im Verlauf der Arbeit wird sich zeigen, dass das lichttechnische
Modell und dessen zugrunde liegende Annahmen für die betrachtete Anwendung adäquat
sind. Deshalb richten sich die Folgeabschnitte diesem Themenkomplex zu und fassen die
hier relevanten Aspekte in übersichtlicher Form zusammen.

2.1.2 Raumwinkel

Als wichtiges geometrisches Maß wird der Raumwinkel zur Definition grundlegender
Größen der Optik herangezogen. Deshalb soll dieser Abschnitt zunächst das Konzept des
Raumwinkels und insbesondere dessen Bedeutung im Kontext von Beleuchtungssituatio-
nen darstellen, bevor anschließend die in dieser Arbeit relevanten strahlungsphysikalischen
bzw. lichttechnischen Größen eingeführt werden. Zum besseren Verständnis setzt Bild
2-2 die zur Definition des Raumwinkels benötigten geometrischen Größen in Bezug. Be-
trachtet wird ein ebenes Flächenelement mit dem Flächeninhalt dA, welches von einer
Punktlichtquelle bestrahlt wird. Die Lichteinfallsrichtung wird durch den normierten Vek-
tor l vom Flächenelement zur Lichtquelle beschrieben. l ist für einen hinreichend großen
Abstand zwischen Flächenelement und Lichtquelle bzw. ein hinreichend kleines Flächen-
element identisch für alle Punkte der Fläche. Die Orientierung der Fläche wird über den
Normalenvektor n beschrieben.

Wie man sich leicht verdeutlichen kann, ist die von der Lichtquelle an das Flächenelement
abgegebene Strahlungsleistung dΦe nicht unmittelbar von dessen Flächeninhalt dA, son-
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Bild 2-2: Scheinbare Fläche und Raumwinkel eines ebenen Flächenelements.

dern nur von der in Lichteinfallsrichtung projizierten Fläche dA′ abhängig. Diese ergibt
sich aus dA unter Berücksichtigung des Winkels θE zwischen n und l:

dA′ = dA · cos(θE).

dA′ wird auch als scheinbare Fläche bezeichnet und wird in Bild 2-2 ebenfalls visualisiert.
Ihr Normalenvektor n′ ist stets parallel zur Lichteinfallsrichtung l. Festzuhalten bleibt
die Proportionalität zwischen der empfangenden Strahlungsleistung und der scheinbaren
Fläche eines Flächenelements:

dΦe ∼ dA′. (2-1)

Neben der scheinbaren Fläche stellt der Abstand r zwischen Lichtquelle und Flächenele-
ment eine weitere Einflussgröße für die vom Flächenelement empfangene Strahlungsleis-
tung dar. Genau wie die Lichteinfallsrichtung ist auch r unter den getroffenen Annahmen
für alle Punkte der betrachteten Fläche näherungsweise gleich. Legt man gedanklich eine
Kugel um die Lichtquelle, deren Zentrum mit der Punktlichtquelle zusammenfällt, so
verteilt sich die Strahlungsleistung auf die einzelnen Flächenelemente der Kugelfläche.
Unabhängig vom Radius dieser Kugel bleibt die Summe der Strahlungsleistungen auf allen
Teilflächen konstant, da sie als eine Eigenschaft der Lichtquelle unabhängig von der Um-
gebungsgeometrie ist. Insbesondere lässt sich aus der Formel für die Kugeloberfläche

AK = 4πr2
K

ableiten, dass die auf ein Flächenelement fallende Strahlungsleistung umgekehrt pro-
portional mit dem quadratischen Kugelradius rK abfällt. Wählt man den Kugelradius
entsprechend der Distanz r im Bild 2 − 2, wird deutlich, dass die von dem Flächenelement
empfangene Strahlungsleistung außerdem folgende Proportionalität aufweist:

dΦe ∼
1
r2 . (2-2)
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Insgesamt hängt die empfangene Strahlungsleistung eines Flächenelements nach den
Gleichungen (2-1) und (2-2) gemäß

dΦe ∼
dA′

r2

von der Lage zur Lichtquelle ab. Dieser Quotient wird auch als Raumwinkel dΩ bezeichnet
und nimmt für die folgenden Betrachtungen eine zentrale Rolle ein. Die Einheit des
Raumwinkels ist der Steradiant (sr). Hierbei handelt es sich um eine dimensionslose Größe
(Vgl. rad), die deshalb im Allgemeinen und auch in den folgenden Abschnitten dieser
Arbeit nicht mitgeführt wird.

Bisher wurde vereinfacht davon ausgegangen, dass der Lichteinfallsvektor l und der Ab-
stand zur Lichtquelle r für alle Punkte des Flächenelements dA konstant sind. Exakt gilt
diese Definition jedoch nur, wenn man infinitesimal kleine Flächenelemente betrachtet.
Allgemein ergibt sich der Raumwinkel einer gegebenen Fläche dA aus Sicht eines Be-

dA

dAP

B

rK

Bild 2-3: Projektion eines Flächenelements auf eine Kugel.

zugspunkts B aus dem Verhältnis des Flächeninhalts der Projektion dAP dieser Fläche
auf eine Kugel und dem quadratischen Kugelradius rK , wobei B im Kugelzentrum liegt.
Das Bild 2-3 veranschaulicht diesen Zusammenhang. Es wird ebenfalls deutlich, dass die
Ausdehnung der Kugel den Raumwinkel nicht beeinflusst, da sich die Projektionsfläche
dAP proportional zum Quadrat des Kugelradius rK verhält. Der gesamte Raum um den
Bezugspunkt (in den Bildern 2-2 und 2-3 entspricht dieser der Lichtquelle) umfasst

Ωvoll =
AK

r2
K

=
4πr2

K

r2
K

= 4πsr.

Der Bezugspunkt kann anstelle der Punktlichtquelle dieses Beispiels auch als beleuchteter
Punkt einer Oberfläche gewählt werden. Bei der Einführung der verschiedenen lichttechni-
schen Größen im Abschnitt 2.1.3 werden beide Ansätze Anwendung finden.

2.1.3 Strahlungsphysikalische Größen

In den folgenden Unterabschnitten werden strahlungsphysikalische Größen eingeführt, aus
denen an späterer Stelle die für diese Arbeit relevanten lichttechnischen Größen abgeleitet
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werden. Die Strahlungsphysik oder Radiometrie beschäftigt sich mit der Messung elektro-
magnetischer Strahlung im sichtbaren und nicht sichtbaren Bereich. Zur Unterscheidung
von den lichttechnischen Größen, welche später eingeführt werden, erhalten diese Größen
den im Kontext geläufigen Index e (energetisch).

Strahlungsfluss und -energie

Der Strahlungsfluss Φe (auch Strahlungsleistung) ist die differentielle Energiemenge dE,
die im Zeitraum dt von einer Strahlungsquelle abgegeben wird. Er trägt die Einheit Watt
(W).

Φe =
dE
dt

[Φe] = W (2-3)

Geht man zunächst von einer monochromatischen Strahlung aus, so besitzen alle elektroma-
gnetischen Wellen die gleiche Wellenlänge λ bzw. alle Photonen die gleiche Energiemenge
QPh = h · f , wobei h das Planck’sche Wirkungsquantum und f die Strahlungsfrequenz
bezeichnet. Dabei stehen Wellenlänge und Strahlungsfrequenz für ein gegebenes Aus-
breitungsmedium über die Lichtgeschwindigkeit c = λ · f im direkten Zusammenhang.
Der Strahlungsfluss kann in diesem Fall direkt über den Photonenstrom dNPh

dt angegeben
werden:

Φe = h · f ·
dNPh

dt
.

Für polychromatische Strahlung gilt grundsätzlich der gleiche Zusammenhang. Allerdings
müssen die enthaltenen Frequenzen aufgrund ihrer verschiedenen Energiegehalte diffe-
renziert berücksichtigt werden. Dazu wird der Photonenstrom dNPh( f )

dt frequenzabhängig.
Insgesamt ergibt sich für den Strahlungsfluss

Φe = h ·
∫ ∞

f =0
f ·

dNPh( f )
dt

d f . (2-4)

Integriert man den Strahlungsfluss über einen Zeitraum ∆T , so erhält man die Strahlungs-
energie Qe, die von der Strahlungsquelle im Zeitintervall ∆T abgegeben wurde. Die Einheit
ist Joule (J). Aus Gleichung (2-3) folgt für den monochromatischen Fall

Qe = h · f ·
∫ ∆T

t=0

dNPh

dt
dt [Qe] = J

und für den polychromatischen Fall

Qe = h ·
∫ ∆T

t=0

∫ ∞

f =0
f ·

dNPh( f )
dt

d f dt.

Strahl- und Bestrahlungsstärke

Ist eine emittierende Fläche einer Strahlungsquelle gegenüber dem Abstand zum Beob-
achter hinreichend klein, so kann die Strahlungsquelle als sogenannte Punktlichtquelle
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approximiert werden, welche keine räumliche Ausdehnung besitzt. Die Quelle aller von
ihr ausgesandten Strahlen fällt auf einen Punkt zusammen. Unter diesen Voraussetzungen
kann die Strahlstärke Ie eingeführt werden. Diese bezieht den Strahlungsfluss, der von
einer Lichtquelle ausgesandt wird, auf den Raumwinkel. Dabei wird der Bezugspunkt des
Raumwinkels auf die Position der Punktlichtquelle gesetzt.

dΦe

dΩ

Bild 2-4: Geometrische Zusammenhänge bei der Definition der Strahlstärke.

Ie =
dΦe

dΩ
[Ie] =

W
sr

Die Strahlstärke beschreibt also die richtungsabhängige Abstrahlcharakteristik der Licht-
quelle. Anstelle einer Lichtquelle im engeren Sinne, kann natürlich auch eine extern
bestrahlte Fläche, die einen Teil des empfangenen Lichts reflektiert, als solche aufgefasst
werden.

Fällt ein Strahlungsfluss Φe auf eine Empfängerfläche AE, so wird die flächenbezogene
Dichte des Strahlungsflusses als Bestrahlungsstärke Ee bezeichnet. Im Gegensatz zur
Strahlstärke ist hier also nicht die Lichtquelle, sondern die Oberfläche eines bestrahlten
Objekts Gegenstand der Betrachtung.

dAE
dΦe

Bild 2-5: Geometrische Zusammenhänge bei der Definition der Bestrahlungsstärke.

Ee =
dΦe

dAE
[Ee] =

W
m2 (2-5)

Die Bestrahlungsstärke dient als Grundlage zur Berechnung des empfangenen Strahlungs-
flusses, indem man sie über die Oberfläche des betrachteten Objekts integriert.
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Strahldichte

Im Gegensatz zur Strahlstärke berücksichtigt die Strahldichte Le die Ausdehnung der Licht-
quelle. Sie differenziert nicht nur zwischen den Raumwinkeln bzw. Abstrahlrichtungen
dΩ, sondern variiert auch abhängig vom betrachteten Punkt der Lichtquellenoberfläche AS

(Senderfläche):

dAS

n
θS

dΩ

dΦe

Bild 2-6: Geometrische Zusammenhänge bei der Definition der Strahldichte.

Le =
dIe

dAS cos θS
=

d2Φe

dΩdAS cos θS
[Le] =

W
sr · m2 . (2-6)

In Gleichung (2-6) entspricht die Größe θS dem Winkel zwischen der betrachteten Abstrahl-
richtung und der Normalen n des Flächenelements dAS , sodass das Produkt dAS ·cos θS die
scheinbare Senderfläche unter Berücksichtigung der Abstrahlrichtung beschreibt. d2Φe be-
schreibt letztlich die Strahlungsleistung, die vom Flächenelement dAS der Strahlungsquelle
in das Raumwinkelelement dΩ abgestrahlt wird.

Spektralverteilung

Als Spektralverteilung (auch "Frequenzspektrum") einer Strahlung bezeichnet man die
Gesamtheit der Frequenzen unterschiedlicher harmonischer Schwingungen, die im Licht-
strahl enthalten sind. Die Amplituden der jeweiligen Frequenzen können beispielsweise
durch Fourier-Analyse aus dem zeitlichen Signalverlauf ermittelt werden. Das zu messende
Signal Xe entspricht dabei zwangsläufig direkt oder indirekt einer physikalischen Größe. Im
Kontext von Strahlung kommen je nach betrachteter Situation meist die Strahlstärke Ie, die
Bestrahlungsstärke Ee, die Strahldichte Le oder die Strahlungsleistung Φe in Betracht.

Als Spektralverteilung fassen wir nun stets die Dichtefunktion der jeweiligen Signalgröße
Xe bezüglich der Wellenlänge λ auf und kennzeichnen diese durch den Index λ an der
Signalgröße:

Xe,λ =
dXe(λ)

dλ
[Xe,λ] =

[Xe]
m

.
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Die Spektralverteilung der Strahlungsleistung würde gemäß dieses Schemas mit Φe,λ

bezeichnet werden und die Einheit W
m tragen.

Strahlungsübertragung

Nachdem die für diese Arbeit relevanten strahlungsphysikalischen Größen eingeführt
sind, sollen nun ihre Zusammenhänge beleuchtet werden. Dazu wird das in Bild 2-7 skiz-
zierte Szenario angenommen, welches eine Lichtquelle mit der Sendefläche AS und eine
von ihr bestrahlte Empfängerfläche AE beinhaltet. Es stellt sich nun die Frage, welcher
Strahlungsfluss von AS an AE übertragen wird und wie genau sich die örtliche Bestrah-
lungsstärkeverteilung auf AE darstellt. Zur Beantwortung dieser Frage kann man das

dAS

nS

θS

Le,S

dAE

nE

θEr

Bild 2-7: Visualisierung der Größen im Grundgesetz der Strahlungsübertragung.

photometrische Grundgesetz

d2Φe,S→E = Le,S ·
dAS cos θS · dAE cos θE

r2
(2-7)

heranziehen, welches die von der Teilfläche dAS des Senders an die Teilfläche dAE des
Empfängers übertragene Strahlungsleistung d2Φe,S→E beschreibt. Es besagt, dass sich diese
proportional zu den scheinbaren Teilflächen verhält, welche von den Winkeln θS bzw. θE

zwischen der jeweiligen Flächennormale und der Abstrahl- bzw. Einfallsrichtung abhängen.
Weiterhin verhält sich d2Φe,S→E umgekehrt proportional zum quadratischen Abstand r zwi-
schen Sender und Empfänger, da der Raumwinkel, den die Empfängerfläche aus Sicht des
Senders überdeckt, mit dem Quadrat des Abstands kleiner wird. Proportionalitätskonstante
ist die Strahldichte Le,S des Flächenelements dAS in Richtung dAE.

Diese Gesetzmäßigkeit kann zur Berechnung der insgesamt übertragenen Strahlungsleis-
tung auf zweierlei Wegen genutzt werden. Einerseits kann die von AS auf AE abgestrahlte
Strahlungsleistung bestimmt werden.
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Weg 1: Abstrahlung von AS auf AE

Aus Sicht des Senders bedeckt die Teilfläche dAE den Raumwinkel

dΩS = dAE ·
cos θE

r2 . (2-8)

Nach Gleichung (2-6) ist die von dAS nach dAE übertragene Strahlungsleistung

d2Φe = Le,S dAS dΩS cos θS .

Um die insgesamt von dAS an den Empfänger abgegebene Strahlungsleistung dΦe zu
erhalten, muss über alle Teilflächen dAE bzw. die nach Gleichung (2-8) zugehörigen
Raumwinkelbereiche dΩ integriert werden:

dΦe = dAS

∫
dΩS ∈ΩS

Le,S cos θS dΩS .

Summiert man nun noch die Anteile der Strahlungsleistung über alle Teilflächen dAS des
Senders zur Gesamtfläche AS auf, so erhält man die insgesamt vom Sender zum Empfänger
übertragene Strahlungsleistung

Φe =

∫
dAS ∈AS

∫
dΩS ∈ΩS

Le,S cos θS dΩS dAS . (2-9)

Weg 2: Zustrahlung auf AE von AS

Alternativ kann das Szenario aus Sicht der bestrahlten Fläche AE betrachtet werden. Für
diese hat die scheinbare Fläche des abstrahlenden Flächenelements dAS den Flächeninhalt
AS · cos θS und deckt damit aus Sicht des Empfängers den Raumwinkel

dΩE = dAS ·
cos θS

r2
(2-10)

ab. Wieder lässt sich mit Gleichung (2-6) die auf dAE auftreffende von dAS kommende
Strahlungsleistung beschreiben:

d2Φ = Le,S cos θEdΩE.

Einmaliges Integrieren über die Elemente der Senderfläche bzw. die nach Gleichung (2-10)
zugehörigen Raumwinkel dΩ führt auf die insgesamt von dAE empfangene Strahlungsleis-
tung

dΦe = dAE

∫
dΩE∈ΩE

Le,S cos θEdΩE.

Erneute Integration über die einzelnen Teilflächen des Empfängers führt letztlich auf die
insgesamt übertragene Strahlungsleistung

Φe =

∫
dAE∈AE

∫
dΩE∈ΩE

Le,S cos θEdΩEdAE. (2-11)

Grundgesetz der Strahlungsübertragung
Natürlich führen beide Wege zur gleichen Strahlungsleistung. Die Strukturen der Glei-
chungen (2-9) und (2-11) sind auch weitgehend identisch. Sie unterscheiden sich nur im
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Betrachtungspunkt, der bei Weg 1 auf der Senderfläche und bei Weg 2 auf der Empfänger-
fläche liegt. Aus diesem Grund werden die Indizes meist weggelassen und es gilt für die
von einer Fläche AE an eine Fläche AS übertragene Strahlungsleistung:

Φe =

∫
dA∈A

∫
dΩ∈Ω

Le,S cos θdΩdA. (2-12)

Diese Gleichung ist das Grundgesetz der Strahlungsübertragung. Bei seiner Anwendung
können die Größen θ, Ω und A wahlweise, aber konsequent, auf die Sender- oder die
Empfängerfläche bezogen werden.

Photometrisches Entfernungsgesetz

Gemäß der Definition der Bestrahlungsstärke nach Gleichung (2-5) und unter der Berück-
sichtigung des Grundgesetzes der Strahlungsübertragung (2-12) bzw. (2-11) ergibt sich für
eine Empfängerfläche AE die Bestrahlungsstärke

Ee =
dΦe

dAE
=

∫
dΩE∈ΩE

Le,S cos θEdΩE,

wenn sie durch einen Sender mit der Strahldichte Le,S bestrahlt wird. Für eine Punktlicht-
quelle kann dieser Term noch weiter reduziert werden. Dazu ersetzt man zunächst den
Integranden dΩE gemäß Gleichung (2-10) und erhält

Ee =

∫
dAS ∈AS

Le,S
cos θE cos θS

r2 dAS .

Weiterhin kann die Strahldichte Le,S durch ihre Definition (2-6) ersetzt werden und es
folgt

Ee =

∫
dAS ∈AS

dIe,S

dAS cos θS

cos θE cos θS

r2 dAS .

Kürzen und umformen führt letztlich auf das photometrische Entfernungsgesetz

Ee =
cos θE

r2

∫
dAS ∈AS

dIe,S dAS

dAS
=

Ie,S

r2 cos θE, (2-13)

dessen Zusammenhänge in Bild 2-8 visualisiert werden. Während die Strahlstärke eine
Eigenschaft der Lichtquelle und unabhängig von der Distanz zwischen Sender und Emp-
fänger ist, nimmt die Bestrahlungsstärke mit dem Quadrat des Abstands ab. Gleichzeitig
geht hervor, dass nur die scheinbare Empfängerfläche zur empfangenen Bestrahlungsstärke
beiträgt. Das photometrische Entfernungsgesetz gilt nur für ein differentielles Flächenele-
ment auf der Empfängerfläche, da sowohl die ausgesandte Strahlstärke Ie,S als auch der
Winkel θE zwischen der Strahleinfallsrichtung und der Normalen der Empfängerfläche
variieren können.

Reale Lichtquellen besitzen stets eine räumliche Ausdehnung. Insofern sind Berechnungen
auf Basis des photometrischen Entfernungsgesetzes stets fehlerbehaftet. Man bezeichnet
deshalb den Abstand zwischen Sender und Empfänger, in dem die Lichtquelle als Punkt-
lichtquelle approximiert werden kann ohne einen nennenswerten Fehler einzubringen, als
photometrische Grenzentfernung. Die DIN 13032 zur Vermessung von Lampen und Leuch-
ten fordert in Teil 1 eine Mindestentfernung von dem fünf- bis zehnfachen des größten
Durchmessers der leuchtenden Fläche zwischen Leuchte und Messapparatur [DIN02].
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Ie,S

nE

θE
r

Bild 2-8: Visualisierung der Größen im photometrischen Entfernungsgesetz.

2.1.4 Photometrie

Alle bisher eingeführten Größen fußen auf physikalisch motivierten Basisgrößen, indem
sie direkt mit dem Energiegehalt und der Anzahl existierender Photonen in Beziehung
stehen. Das menschliche Auge kann diese Größen jedoch nicht unmittelbar messen, wo-
durch sie nicht als Beschreibung der visuellen Eindrücke durch den Meschen dienen.
Die Photometrie (auch "Lichttechnische Optik") schafft hier Abhilfe, indem sie die strah-
lungsphysikalischen Größen durch eine Bewertungsfunktion in photometrische Größen
überführt. Diese wiederum bemessen die Strahlung anhand ihres wahrnehmbaren Anteils –
dem Licht.

Photometrischer Normalbeobachter

Ein wesentliches Problem bei der Bewertung der strahlungsphysikalischen Größen ist
die Subjektivität der menschlichen Wahrnehmung. Krankheiten wie Farbenblindheit, Rot-
Grün-Schwäche, Grüner Star oder Nachtblindheit stellen Extrembeispiele für die unter-
schiedlichen Wahrnehmungen dar. Aber auch unter normal sehenden Personen gibt es
Abweichungen in der Empfindung von Helligkeit und Farbe. Folglich muss zur Herleitung
einer Bewertungsfunktion zunächst ein möglichst repräsentativer Beobachter definiert
werden, der eine Art Mittelwert aus der Menge normal sehender Menschen darstellt.

Die Internationale Beleuchtungskommission (CIE) hat deshalb im Jahre 1924 als Resultat
umfangreicher Untersuchungen eine spektrale Hellempfindlichkeitsfunktion für normal-
sichtige Beobachter festgelegt. Diese als V(λ)-Funktion notierte wellenlängenabhängige
Gewichtung von Strahlungsanteilen definiert den photometrischen Normalbeobachter
[CIE19].

Hellempfindlichkeitsfunktionen

Die lichttechnischen Größen werden aus den strahlungsphysikalischen Größen durch spek-
trale Gewichtung gewonnen. Die wellenlängenabhängigen Gewichtungsfaktoren werden
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Bild 2-9: Hellempfindlichkeitsfunktionen für Tages (V(λ))- und Nachtsehen (V ′(λ)) von
380 nm bis 780 nm in 5 nm Schritten nach DIN 5031 Teil 3. [DIN01]

dabei durch die sogenannten Hellempfindlichkeitsfunktionen beschrieben. Für eine ge-
gebene Hellempfindlichkeitsfunktion V(λ) und eine strahlungsphysikalische Größe Xe(λ)
kann die zugehörige photometrische Größe Xv (Index v für "visuell") wie folgt ermittelt
werden:

Xv = Km

∫ λ̄

λ=
¯
λ

Xe(λ) · V(λ)dλ. (2-14)

Dabei entspricht das Intervall [
¯
λ; λ̄] dem sichtbaren Wellenlängenbereich des Spektrums,

z.B. 380 nm bis 780 nm. Die Konstante Km verknüpft das radiometrische und das photo-
metrische Basissystem und trägt die Einheit [Km] = lm

W . Der in Lumen (lm) gemessene
Lichtstrom als Äquivalent zur Strahlungsleistung wird nachfolgend eingeführt. Durch die
Wahl von Km wird die Hellempfindlichkeitsfunktion V(λ) so normiert, dass ihr Wertebe-
reich dem Intervall [0; 1] entspricht.

Ursprünglich wurde die V(λ)-Funktion durch die CIE von 380 nm bis 750 nm in 10 nm-
Schritten vermessen. Die DIN 5031 definiert im Teil 3 die spektrale Empfindlichkeit V(λ)
durch Inter- und Extrapolation in einem Bereich von 380 nm bis 780 nm in 1 nm-Schritten
[DIN01]. Bild 2-9 visualisiert durch die grüne Kurve die dort notierten Datenpunkte. Ihr
Maximum liegt bei einer Wellenlänge von 555 nm, welches einem monochromatischen
Licht mit der Farbe Grün entspricht. Eine Aussage der Hellempfindlichkeitsfunktion
ist zum Beispiel, dass grünes Licht (555 nm) bei einer nur halb so hohen strahlungs-
physikalischen Strahldichte die gleiche photometrische Leuchtdichte bzw. den selben
Helligkeitseindruck wie blaues Licht (510 nm) erzeugt.

Bedingt durch den Aufbau des menschlichen Auges, welches in dunklen und hellen Umge-
bungen unterschiedliche Rezeptoren nutzt (Zäpfchen und Stäbchen), gilt die in Bild 2-9
beschriebene V(λ)-Kurve ausschließlich für das photopische Sehen (reines Tagsehen). Die
mit V ′(λ) bezeichnete Kurve beschreibt die Hellempfindlichkeit des photometrischen Nor-
malbeobachters beim skotopischen Sehen (Nachtsehen), deren Datengrundlage ebenfalls
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aus der DIN 5031 Teil 3 stammt [DIN01]. Wie aus Bild 2-9 hervorgeht, verschiebt sich
das Maximum für ein dunkeladaptiertes Auge in den kurzwelligen blauen Bereich. Die
Werte des Faktors Km aus Gleichung 2-14 sind nach DIN 5031 Teil 3 für das photopische
Sehen Km = 683 lm/W und für das skotopische Sehen K′m = 1699 lm/W.

Die Candela

Die Candela (cd) ist neben Meter (m), Kilogramm (kg), Sekunde (s), Ampere (A), Kelvin
(K) und Mol (mol) eine der sieben Basiseinheiten des internationalen Einheitensystems
(SI) und international standardisiert [DIN03]. Sie misst die Lichtstärke Iv (Äquivalent zur
strahlungsphysikalischen Strahlstärke) und ist so normiert, dass eine monochromatische
Lichtquelle der Frequenz 540 T Hz mit einer Strahlstärke von 1

683
W
sr die Lichtstärke 1 cd

besitzt. Eine Strahlung dieser Frequenz hat in Luft eine Wellenlänge von λcd = 555nm und
wurde gewählt, da der zugehörige V(λ)-Wert 1 ist. Deshalb entspricht die Strahlstärke von

1
683

W
sr auch dem Kehrwert des Faktors Km aus Gleichung 2-14, welcher strahlungsphysika-

lische und photometrische Größen in Beziehung setzt. Wendet man diese Gleichung auf
die beschriebene Situation an, erhält man

Iv = Km

∫ λ̄

λ=
¯
λ

Ie(λ) · V(λ)dλ = Km · Ie(λcd) · V(λcd) = 683
lm
W
·

1
683

W
sr
· 1 = 1

lm
sr

= 1 cd.

Die Wahl der Lichtstärke als photometrische Basisgröße überrascht aus heutiger Sicht,
da man den Lichtstrom Φv als fundamentalere Größe ansehen würde (s. Tab. 2-1). In den
Anfängen der Photometrie stand jedoch der rein visuelle Vergleich von Lichtquellen im
Vordergrund, sodass die Lichtstärke die einzige der Lichtquelle zurechenbare Eigenschaft
war, die durch das Auge unter der Voraussetzung eines einheitlichen Abstands wahrge-
nommen werden konnte. Daher wurde die Lichtstärke Iv als fundamentale photometrische
Größe eingeführt [BS75]. Bei der Zerlegung der nachfolgend eingeführten photometrischen
Größen in ihre Basiseinheiten, findet sich die Candela stets wieder.

Photometrische Größen

Im Abschnitt 2.1.3 werden die strahlungsphysikalischen Größen Strahlungsfluss, Strah-
lungsenergie, Strahlstärke, Bestrahlungsstärke und Strahldichte eingeführt. Außerdem
beschreibt Abschnitt 2.1.4 die Hellempfindlichkeit des menschlichen Auges und zeigt, wie
mit Gleichung (2-14) strahlungsphysikalische in photometrische Größen überführt werden
können. In diesem Abschnitt werden nun alle in dieser Arbeit relevanten photometrischen
Größen vorgestellt und mit ihren strahlungsphysikalischen Äquivalenten verknüpft. Die
Tabelle 2-1 leistet dieses in übersichtlicher Form.

In den weiteren Ausführungen wird nur noch auf die photometrischen Größen Bezug
genommen, da im betrachteten Kontext die Wahrnehmung des Lichts durch den Menschen
im Fokus steht. Für sie gelten die bereits vorgestellten Beziehungen, wie das Grundgesetz
der Strahlungsübertragung (auch: "Photometrisches Grundgesetz") und das photometri-
sche Entfernungsgesetz, auf gleiche Weise. Es genügt, die Indizes e durch v zu ersetzen.
Grundsätzlich ist es möglich, eine beliebige Beleuchtungssituation zuerst auf strahlungs-
physikalischer Ebene zu beschreiben und anschließend die Ergebnisse mit Gleichung
(2-14) in die Photometrie zu überführen.
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Tabelle 2-1: Gegenüberstellung photometrischer und strahlungsphysikalischer Größen.

Photometrie Radiometrie
Größe Einheit Größe Einheit

Lichtmenge Qv lm · s Strahlungsenergie Qe J
Lichtstrom Φv lm = cd · sr Strahlungsleistung Φe W
Lichtstärke Iv cd Strahlstärke Ie

W
sr

Beleuchtungsstärke Ev lx = lm
m2 Bestrahlungsstärke Ee

W
m2

Leuchtdichte Lv
cd
m2 Strahldichte Le

W
sr·m2

Von den aufgeführten Größen hat die Leuchtdichte unmittelbaren Bezug zur optischen
Sinneswahrnehmung. Der Beobachter nimmt die Leuchtdichten der ihn umgebenden
Flächen als deren Flächenhelligkeit wahr. Das menschliche Auge ist ausgesprochen anpas-
sungsfähig und kann Leuchtdichten über viele Größenordnungen sensieren. Die Tabelle
2-2 gliedert die verschiedenen Adaptionsniveaus des Auges bezüglich der vorliegenden
Leuchtdichten auf.

Tabelle 2-2: Wahrnehmbarer Leuchtdichtebereich und Zuordnung der Adaptionsbereiche
[Wik20].

Adaption Bemerkung Leuchtdichte
[

cd
m2

]
Sehschwelle ca. 3 · 10−6

skotopisches Sehen Nachtsehen 3 · 10−6 bis 3..30 · 10−3

mesopisches Sehen Kombination 3..30 · 10−3 bis 3..30
photopisches Sehen Tagsehen über 3..30
Zapfensättigung Blendung ab 105..106

Um eine Einschätzung der Größenordnungen zu ermöglichen, zeigt Tabelle 2-3 beispielhaft
die Leuchtdichten einiger natürlicher und künstlicher Lichtquellen aus dem alltäglichen
Leben.

Aus den angeführten Beispielen geht das hohe Adaptionsvermögen des Auges hervor.
Zwischen Sehschwelle und Blendung liegen ca. zwölf Größenordnungen. Gleichzeitig
wird deutlich, dass die Wahrnehmung einer Helligkeit extrem kontextabhängig ist. So muss
zur immersiven Simulation einer Nachtfahrt die räumliche Umgebung stark abgedunkelt
werden. Außerdem geht aus den Leuchtdichteangaben für schwarze und weiße Ausgaben
eines LCD-Monitors hervor, dass die heutigen Ausgabegeräte nicht ansatzweise die reale
Dynamik einer Nachtfahrt von absoluter Dunkelheit in der Ferne oder im Seitenbereich
bis hin zur Blendung durch Gegenverkehr abbilden können. Es kann in der Simulation
deshalb nur das Ziel sein, die Relationen der Leuchtdichtewerte möglichst unverändert zu
erhalten.
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Tabelle 2-3: Leuchtdichten natürlicher und künstlicher Lichtquellen aus dem Alltag
[Wik20].

Beispiel Leuchtdichte
[

cd
m2

]
bewölkter Nachthimmel 10−6 bis 10−4

sternklarer Nachthimmel 0, 001
Oberfläche des Mondes 2500
bedeckter Himmel 2000
klarer Himmel 8000
Sonnenscheibe am Mittag 1, 6 · 109

Schwarz auf LCD-Monitor 0, 15..0, 8
Weiß auf LCD-Monitor 150..500
HDR-Monitor 600..1000
Draht einer Halogenlampe 20..30 · 106

weiße LED 50 · 106

2.1.5 Reflexion

Bisher lag der Fokus auf der direkten Wechselwirkung zwischen Lichtquelle und einer
beleuchteten Fläche. Neben dem direkten Licht spielt jedoch auch das indirekte Licht
eine wesentliche Rolle für die visuelle Wahrnehmung. Deshalb wird in diesem Abschnitt
eine Beschreibung von Reflexionseigenschaften verschiedener Materialien eingeführt und
durch das Beispiel des Lambertschen Reflektors angewendet.

Bidirektionale Reflektanzverteilungsfunktion

Eine zentrale Rolle bei der Berechnung von Lichteffekten in einer gegebenen Szene
spielt die Wechselwirkung der Lichtstrahlen mit den verschiedenen Oberflächen bzw. den
Materialien, aus welchen sie bestehen. In einen mathematischen Kontext können diese
Wechselwirkungen durch die sogenannten bidirektionalen Streulichtverteilungsfunktio-
nen (BSDF) gesetzt werden, welche 1977 durch Nicodemus et. al. eingeführt wurden
[NRH+77]. Diese Verteilungsfunktionen, welche die allgemeinste Variante von BxDF-
Funktionen darstellen, berücksichtigen sowohl Reflexion als auch Transmission. Meist
werden diese beiden Effekte jedoch durch verschiedene Verteilungsfunktionen beschrieben.
Die Beschreibung von Reflexion erfolgt dann durch bidirektionale Reflektanzfunktionen
(BRDF), während Transmission durch bidirektionale Transmissionsfunktionen (BTDF)
beschrieben wird. Letztere werden hier nicht näher thematisiert, da sie nur für transparente
Objekte von besonderer Bedeutung sind. Eine BRDF beschreibt das Reflexionsverhalten
von Oberflächen eines Materials unter einem gegebenem Einfallswinkel eines Lichtstrahls.
Dazu ordnet sie jedem Paar aus Ein- und Ausfallwinkel das Verhältnis fr der Strahldichte
Le des austretenden Lichts und der Bestrahlungsstärke Ee des auftreffenden Lichts zu (Vgl.
Bild 2-10).

fr(θE, ϕE, θS , ϕS ) =
Le(θS , ϕS )
Ee(θE, ϕE)

(2-15)
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Bild 2-10: Geometrische Zusammenhänge einer bidirektionalen Reflektanzfunktion
(BRDF).

Auch hierbei werden schon einige wesentliche Vereinfachungen getroffen. Neben der
dargestellten BRDF gibt es auch allgemeinere Varianten, wie der räumlich variierenden
bidirektionalen Reflektanzverteilungsfunktion (SVBRDF). Ihr Definitionsraum wird um
zwei Dimensionen erhöht, indem sie die Koordinaten auf der Objektoberfläche berücksich-
tigt. Dadurch ist sie in der Lage, örtlich variierendes Reflexionsverhalten abzubilden. Eine
weitere Variante stellen die bidirektionalen Oberflächenstreuung-Reflektanzverteilungs-
funktionen (BSSRDF) dar. In dem Fall ist der Definitionsbereich sogar 8-dimensional, da
er zwei Oberflächenpunkte enthält. Nötig ist diese Erweiterung, da Transmissionseffekte
berücksichtigt werden, die dafür sorgen, dass der eintreffende Lichtstrahl die Oberfläche
des Materials durchdringt, darin reflektiert wird und es an einer anderen Stelle wieder ver-
lässt. Schließlich weist das Reflexionsverhalten verschiedener Materialien auch deutliche
Abhängigkeiten von der Wellenlänge auf. Um sie zu berücksichtigen, muss eine weitere
Dimension eingeführt werden. Erst so gelingt es, die Farbigkeit von Objektoberflächen
geeignet zu modellieren. Alle genannten Erweiterungen sollen hier nicht weiter diskutiert
werden, da in der Computergrafik typischerweise stark vereinfachte Modelle Anwendung
finden.

Die Funktionswerte einer BRDF können einerseits durch die Speicherung geordneter
Messwerte bzw. Simulationsergebnisse oder mittels Approximation durch analytische
Funktionen gewonnen werden. Grundsätzlich weist eine BRDF folgende Eigenschaften
auf:

• Positivität: fr(θE, ϕE, θS , ϕS ) ≥ 0 ∀θE, ϕE, θS , ϕS

• Helmholtz-Reziprozität: fr(θE, ϕE, θS , ϕS ) = fr(θS , ϕS , θE, ϕE)
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• Energieerhaltung:
∫

ΩS ∈Ω+ fr(θE, ϕE, θS , ϕS ) cos θS dΩS ≤ 1∀ΩE ∈ Ω+

Die in der Computergrafik Anwendung findenden BRDF werden typischerweise durch
analytische Funktionen abgebildet, sodass verschiedene Materialien durch die Anpassung
weniger Parameter modelliert werden können. Außerdem ist die recheneffiziente Lösbarkeit
ein wichtiges Kriterium.

Lambertsches Gesetz

Das Lambertsche Kosinusgesetz bildet den Extremfall des Reflexionsverhaltens von Kör-
pern ab, welche bedingt durch wiederholte mikroskopische Reflexionen innerhalb ihrer
Oberflächenstruktur (Streuzentren) das Licht in alle Richtungen streuen und auf diese
Weise eine konstante Strahldichte erzeugen. Für die Reflexionscharakteristik spielt es in
diesem Fall keine Rolle, aus welcher Richtung die Fläche beleuchtet wird. In der Realität
reflektiert kein Material exakt nach dem Lambertschen Gesetz. Es existiert stets eine
Abhängigkeit von der Beleuchtungsrichtung. Insbesondere für große Winkel zwischen
Flächennormale und Beleuchtungsrichtung werden Abweichungen von der Gesetzmäßig-
keit deutlich. Es gibt aber Materialien, die für das menschliche Auge fast unabhängig
vom Betrachtungswinkel gleich hell wirken. Mattes Papier oder Milchglas sind Beispiele
dafür. Da die vom Auge wahrgenommene Helligkeit der Leuchtdichte entspricht, weist das
reflektierte Licht eines Lambertschen Flächenelements dA eine konstante Leuchtdichte
Lv bzw. Strahldichte Le = const auf. Somit gilt nach Gleichung (2-6) für die reflektierte
Strahlstärke dIe dieses Flächenelements

dIe(θS ) = dA cos θS Le = Ie,max cos θS ,

wobei θS gemäß Abbildung 2-6 den Winkel zwischen der Flächennormalen und der Refle-
xionsrichtung beschreibt. Bild 2-11 veranschaulicht grafisch die von einem Lambertschen
Flächenelement in verschiedene Raumrichtungen ausgesandte Lichtstärke.

Ein Lambertsches Flächenelement reflektiert die einfallende Strahlung vollständig. Es
treten weder Absorption, noch Diffusion auf. Aus diesem Grund steht die reflektierte
Strahldichte Le in einem proportionalen Zusammenhang mit der Bestrahlungsstärke Ee. Ba-
sierend auf der Energieerhaltung kann man aus den Gleichungen (2-5) und (2-6) folgenden
Ansatz gewinnen:

Φe,E = Φe,S

Ee · dA =

∫
ΩS ∈Ω+

Le cos θS dΩS · dA

Ee =

∫
ΩS ∈Ω+

Le cos θS dΩS

=

∫ 2π

ϕS =0

∫ π
2

θS =0
Le cos θS sin θS dθS dθS

= πLe.

Die BRDF eines Lambertschen Flächenelements hat somit gemäß Gleichung (2-15) die
besonders einfache Form

fr =
Le

Ee
=

1
π
. (2-16)
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Bild 2-11: Strahlstärkeverteilung der reflektierten Strahlung eines Lambertschen Flächen-
elements.

2.2 Farbmetrik

Die bisher vorgestellten photometrischen Größen beschreiben die physikalische Strahlung
ausschließlich bezüglich ihres Helligkeitseindrucks. Dieser wird durch die Bewertung
der Strahlungsenergie mit der spektralen Hellempfindlichkeitsfunktion des menschlichen
Auges, genauer des photometrischen Normalbeobachters, quantifiziert. Die Farbmetrik
hingegen befasst sich mit der quantitativen Beschreibung von Farbreizen und differenziert
die wahrgenommene Strahlung somit noch feiner. Entsprechend der drei Farbrezeptoren im
menschlichen Auge, bedarf es drei Koordinaten zur eindeutigen Identifizierung eines Farb-
reizes. Das Farbsehen wird im Auge durch Zapfen geleistet. Man unterscheidet L (long)-,
M (middle)- und S (short)-Zapfen entsprechend der Lage ihrer Empfindlichkeitsmaxima
im Frequenzspektrum des sichtbaren Lichts. Die Farbwahrnehmung im menschlichen
Auge wird als Farbvalenz bezeichnet. Eine Farbvalenz kann nicht eindeutig auf das Spek-
trum eines Lichtstrahls zurückgeführt werden. Stattdessen können verschiedene spektrale
Zusammensetzungen zur gleichen Farbvalenz führen, solange sie die verschiedenen Re-
zeptoren jeweils in gleichem Maße anregen.

Die folgenden Abschnitte sollen ein grundlegendes Verständnis der Farbmetrik vermit-
teln und fokussieren dabei vor allem diejenigen Aspekte, die im weiteren Verlauf von
Bedeutung sind. Umfängliche Darstellungen der Farbwissenschaft finden sich in [Ric81]
und [WS82], welche auch die Grundlage für die folgenden Unterabschnitte bilden. Die
themenbezogenen Normen finden sich in der DIN 5033 [DIN04].
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2.2.1 Farbräume

Farben lassen sich trotz ihres rein physiologischen Ursprungs formal und mit mathemati-
scher Exaktheit beschreiben. Genauer können die verschiedenen Farbvalenzen als Vektoren
in einem Vektorraum, der im vorliegenden Kontext als Farbraum bezeichnet wird, aufge-
fasst werden. Das Bild 2-12 setzt die mathematischen Begriffe zur Beschreibung eines
Vektors mit den korrespondierenden Farbeigenschaften in Beziehung.

A

B

C

F
Farbwert

Farbort

Farbart

Bild 2-12: Farbvalenz als Vektor in einem Farbraum.

Die Koordinaten A, B und C des Vektors F bezüglich der hier beispielhaft gewählten
Basisvektoren AP, BP und CP bestimmen den Farbort. Die Länge von F heißt Farbwert.
Die Richtung wird als Farbart bezeichnet und die Basisvektoren von Farbräumen werden
Primärvalenzen genannt. Linear abhängige Vektoren gehören zur selben Farbart. Sie
unterscheiden sich nur bezüglich ihrer Helligkeit. Eine Farbvalenz F ist in diesem Sinne
stets eine Linearkombination (auch additive Mischung) der Primärvalenzen AP, BP und
CP:

F = A · AP + B · BP + C ·CP. (2-17)

Dabei sind die Koeffizienten A, B und C die benötigten Skalierungen und somit die
Farbwerte der Primärvalenzen zur Mischung von F. Wie aufgrund der drei Koordinaten
zu erwarten ist, beschreibt die Farbvalenz die Reize eines Lichtstrahls im menschlichen
Auge genauer als es die Photometrie tut. Aus diesem Grund kann aus der Farbvalenz
auf die photometrischen Größen geschlossen werden. Der umgekehrte Weg ist nicht
möglich. Um eine photometrische Größe anhand der Farbwerte bestimmen zu können,
müssen die verwendeten Primärvalenzen bezüglich dieser Größe vermessen sein. Hier kann
eine beliebige der im Abschnitt 2.1.4 vorgestellten photometrischen Größen eingesetzt
werden. Beispielhaft gehen wir davon aus, dass die Leuchtdichten LA, LB und LC der
Primärvalenzen bekannt sind. Diese werden auch als Leuchtdichtebeiwerte bezeichnet. Für
die Leuchtdichte LF der Farbvalenz F gilt dann nach dem Abneyschen Gesetz [Ric81]:

LF = A · LA + B · LB + C · LC. (2-18)



2.2 Farbmetrik 27

2.2.2 Farbwertanteile

Farbräume stellen eine vollständige Beschreibung der möglichen Farben und ihrer Abhän-
gigkeiten dar. Da Farbräume als dreidimensionales Gebilde jedoch schlecht visualisiert
werden können und zudem in vielen Fällen nur die Farbarten, nicht aber die Helligkei-
ten der Farbvalenzen von Interesse sind, wird anstelle des dreidimensionalen Farbraums
oftmals die zugehörige zweidimensionale Farbtafel betrachtet. Dabei wird auf die Hellig-
keitsinformation durch Normierung auf die Summe der Farbwerte aller Primärvalenzen
verzichtet. Man definiert die normierten Größen a, b und c der Farbwerte A, B und C
gemäß

a =
A

A + B + C
, b =

B
A + B + C

und c =
C

A + B + C
(2-19)

und bezeichnet sie sinngemäß als Farbwertanteile. Bedingt durch die Definition der Spek-
tralwerte genügt es, zwei der drei Werte in einer sogenannten Farbtafel aufzutragen, da
sich der dritte stets ergibt (a + b + c = 1). Die Normierung der Farbwerte gemäß Gleichung
(2-19) kann als Querschnitt des Farbraums in der Ebene A + B + C = 1 verstanden werden.
Alle Farbvalenzen der gleichen Farbart schneiden die Ebene im selben Punkt. Erstellt man
beispielsweise ein (a, b)-Diagramm, so erhält man eine zweidimensionale Darstellung
aller Farbarten, welche als Farbtafel bezeichnet wird. Das Bild 2-16 zeigt beispielsweise
die Farbtafel des später eingeführten Normfarbraums CIE-XYZ. Sie wird bezüglich der
Farbwertanteile x und y der Primärvalenzen X und Y aufgetragen.

A′

B′

C′

BP

AP

CP

Gamut-Dreieck
Farbtafel

Bild 2-13: Darstellung des Gamut-Dreiecks der Primärvalenzen AP, BP und CP in einem
anderen Farbraum mit den Primärvalenzen A′P, B′P und C′P.

Sind zwei Farbvalenzen bzw. ihre Punkte auf der Farbtafel gegeben, so befinden sich alle
additiven Mischungen aus ihnen (Linearkombinationen mit positiven Koeffizienten) auf
der direkten Verbindungslinie dieser Punkte innerhalb der Farbtafel. Ausgehend von den
drei Primärvalenzen AP, BP und CP eines Farbraums befinden sich alle Farben, welche
durch ihre additive Mischung entstehen, innerhalb eines Dreiecks, dessen Eckpunkte durch
die Farbwertanteile der Primärvalenzen definiert sind. Das in Bild 2-13 durch die Pri-
märvalenzen aufgespannte Dreieck wird auch Gamut-Dreieck genannt. Bild 2-16 zeigt
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Gamut-Dreiecke etablierter Farbräume bezogen auf den genormten CIE-XYZ-Farbraum
in der Farbtafeldarstellung. Farbvalenzen außerhalb des Dreiecks sind physikalisch nicht
unter den gegebenen Primärvalenzen darstellbar, da die Intensität des Lichts nicht negativ
werden kann. Mathematisch können sie sehr wohl formuliert werden. Es sind dazu Linear-
kombinationen mit negativen Koeffizienten notwendig. Entsprechend haben Farbvalenzen
außerhalb des Gamut-Dreiecks negative Farbwerte und heißen äußere Mischungen (im
Ggs. zu inneren Mischungen). Die negativen Farbwerte sind jedoch keine Eigenschaft
der Farbe sondern des Farbraums. Abhängig von den gewählten Primärvalenzen können
Farben von inneren zu äußeren Mischungen werden und umgekehrt.

2.2.3 Spektralwerte

Nachdem das mathematische Grundgerüst zum Umgang mit Farbvalenzen vorgestellt
ist, soll nun die Brücke von der physikalischen Beschreibung eines Lichtstrahls hin zur
wahrgenommenen Farbvalenz geschlagen werden. Man betrachtet dazu eine allgemeine
polychromatische Strahlung mit der Sepktralverteilung Φe,λ. Die gesamte Strahlungsleis-
tung Φe dieses Lichtstrahls kann in näherungsweise monochromatische Komponenten
Φe,λi , welche jeweils in einem kleinen Wellenlängenband ∆λ strahlen, zerlegt werden. Die
durch diesen Lichtstrahl hervorgerufene Farbvalenz F kann nun ebenso additiv aus den
Farbvalenzen der monochromatischen Komponenten gemäß

F =

imax∑
i=0

Fλi · ∆λ mit λi =
¯
λ + i · ∆λ und imax = b

λ̄ −
¯
λ

∆λ
c (2-20)

gebildet werden, wobei Fλi die Farbvalenz des monochromatischen Lichtanteils Φe,λi ,
welches das Wellenlängenband von λi bis λi + ∆λ umfasst, bezeichnet.

Außerdem betrachten wir das sogenannte energiegleiche Spektrum ΦEE,e,λ = const, wel-
ches für alle Wellenlängen mit der gleichen Leistung strahlt (EE: Equal Energy). Die
Berechnung der Strahlungsleistung nach Gleichung (2-4) würde bei einem energiegleichen
Spektrum für jedes beliebige Frequenzband [

¯
f , f̄ ] zum gleichen Ergebnis führen, solange

die Bandbreite f̄ −
¯
f konstant ist. Wir bezeichnen mit Eλi die Farbvalenz eines monochro-

matischen Lichtstrahls mit der Wellenlänge λi aus dem energiegleichen Spektrum. Nach
Gleichung (2-17) kann Eλi stets durch die Linearkombination der Primärvalenzen eines
Farbraums wiedergegeben werden:

Eλi = ā(λi) · AP + b̄(λi) · BP + c̄(λi) ·CP. (2-21)

Die Koeffizienten ā(λi), b̄(λi) und c̄(λi) haben bei der Verwendung des energiegleichen
Spektrums eine besondere Bedeutung und werden Spektralwerte genannt. Die durch Varia-
tion von λ resultierenden Verläufe ā(λ), b̄(λ) und c̄(λ) heißen Spektralwertfunktionen. Unter
ihrer Kenntnis kann die Farbvalenz F der polychromatischen Strahlung Φe,λ berechnet
werden. Man setzt dazu die Gleichungen (2-17) und (2-20) gleich und erhält

A · AP + B · BP + C ·CP = F =

imax∑
i=0

Fλi · ∆λ.
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Die monochromatischen Farbvalenzen Fλi entsprechen den Farbvalenzen Eλi des ener-
giegleichen Spektrums, wenn man diese mit den Werten Φe,λi aus der Spektralverteilung
Φe,λ des Lichtstrahls und einer wellenlängenunabhängigen Konstanten k skaliert. Diese
Überlegung führt zu

F =

imax∑
i=0

Fλi · ∆λ =

imax∑
i=0

Eλi · kΦe,λi∆λ.

Einsetzen von Gleichung (2-21) und Umformung führt schließlich auf

F = (k ·
imax∑
i=0

ā(λi) · Φe,λi∆λ) · AP+

(k ·
imax∑
i=0

b̄(λi) · Φe,λi∆λ) · BP+

(k ·
imax∑
i=0

c̄(λi) · Φe,λi∆λ) ·CP,

wobei die Klammerterme gemäß Gleichung (2-17) den gesuchten Farbwerten A, B und
C der Farbvalenz F unter den gegebenen Primärvalenzen AP, BP und CP des Farbraums
entsprechen. Beim Übergang zu infinitesimalen Wellenlängenintervallen erhält man die
exakten Beziehungen

A = k ·
∫ λ̄

λ=
¯
λ

ā(λ) · Φe,λdλ

B = k ·
∫ λ̄

λ=
¯
λ

b̄(λ) · Φe,λdλ

C = k ·
∫ λ̄

λ=
¯
λ

c̄(λ) · Φe,λdλ.

2.2.4 Spektralfarbenzug

Die mit Gleichung (2-21) eingeführten Spektralwertfunktionen ā(λ), b̄(λ) und c̄(λ) ent-
sprechen für ein festes λ der Farbvalenz eines monochromatischen Lichtstrahls mit der
Wellenlänge λ im ausgewählten Farbraum. Betrachtet man durch Variation von λ im In-
tervall des sichtbaren Lichts [

¯
λ, λ̄] alle Farbvalenzen, die durch monochromatisches Licht

hervorgerufen werden können, und bildet diese durch die Bestimmung ihrer Farbwertan-
teile auf die Farbtafel ab, so erhält man den in Bild 2-14 dargestellten Spektralfarbenzug.
Auf der Farbtafel ist der Spektralfarbenzug eine λ-parametrisierte Kurve cspec(λ) mit

cspec(λ) =

(
a(λ)
b(λ)

)
mit a(λ) =

ā(λ)
ā(λ) + b̄(λ) + c̄(λ)

b(λ) =
b̄(λ)

ā(λ) + b̄(λ) + c̄(λ)
,

wobei die Koordinaten a und b die Farbwertanteile darstellen. Die Terme für a und b
folgen aus den Gleichungen (2-19) und (2-21). In Bild 2-16 ist der Spektralfarbenzug
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A
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cspec(λ)λ
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Bild 2-14: Spektralfarbenzug auf der Farbtafel eines Farbraums mit den Primärvalenzen
AP, BP und CP.

beispielhaft für den CIE-XYZ-Farbraum einsehbar. Er ist unabhängig vom konkreten
Farbraum konvex gekrümmt, da sich alle Farbvalenzen aus der additiven Mischung von
Spektralfarben ergeben und demzufolge alle geraden Verbindungslinien zwischen zwei
beliebigen Spektralfarben innerhalb von cspec(λ) verlaufen. Man bezeichnet die Farbarten
innerhalb der Fläche, die von cspec(λ) und der Verbindungslinie zwischen c(

¯
λ) und c(λ̄)

(auch Purpur-Linie, Vgl. Bild 2-16) eingeschlossen werden, als reell. Alle anderen Farbar-
ten werden als imaginär oder virtuell bezeichnet, da Farbvalenzen dieser Farbarten in der
Realität nicht auftreten. Wir werden nachfolgend sehen, dass es dennoch von Vorteil sein
kann, einen Farbraum mit imaginären Primärvalenzen zu definieren.

2.2.5 CIE-RGB-Farbraum

Vergleichbar mit der V(λ)-Kurve, welche den Energiegehalt einer monochromatischen
Strahlung mit dem Helligkeitsempfinden des Menschen in Bezug setzt, hat die CIE 1931
Spektralwertfunktionen auf Grundlage des photometrischen Normalbeobachters festgelegt.
Diese beruhen auf Arbeiten von Wright und Guild um 1930 [WS82]. Konkret sollten
mehrere Beobachter monochromatische Farbreize durch die additiven Mischungen von
rotem, grünem und blauem Licht – den Primärvalenzen – nachstellen. Dabei wurden für
jede Wellenlänge der monochromatischen Farbreize die von den Beobachtern eingestellten
Anteile der Primärvalenzen aufgezeichnet. Teilweise war es den Beobachtern nicht möglich,
die Referenzvalenz durch additive Mischung der Primärvalenzen nachzubilden. In diesem
Fall durften sie die Referenz durch Addition einer Primärvalenz verändern, um eine
Äquivalenz herstellen zu können. Die notwendige Zugabe zum Referenzlicht wurde dann
durch einen negativen Farbwert der jeweiligen Primärvalenz berücksichtigt.

Bevor die CIE die dabei entstandenen Ergebnisse zusammenfasste und 1931 veröffent-
lichte, wurden die Messungen so umgerechnet, als wären die Primärvalenzen ebenfalls
monochromatische Strahlungsquellen. Wie auch aus Bild 2-16 hervorgeht, liegen die
durch die Primärvalenzen festgelegten Eckpunkte des Gamut-Dreiecks für den CIE-RGB-
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Bild 2-15: Spektralwertfunktionen r̄(λ), ḡ(λ) und b̄(λ) bezüglich der roten (RP), grünen
(GP) und blauen (BP) Primärvalenz zur addititven Mischung einer monochro-
matischen Farbvalenz der Wellenlänge λ.

Farbraum auf dem Spektralfarbenzug. Konkret wurden aus technischen Gründen die Wel-
lenlängen 700,0 nm für Rot (RP), 546,1 nm für Grün (GP) und 435,8 nm für Blau (BP)
gewählt [Sch07]. Das Bild 2-15 zeigt die aus Versuchen gewonnenen Daten in Form der
Spektralwertfunktionen.

Die Kurven r̄(λ), ḡ(λ) und b̄(λ) stellen also die Anteile der entsprechenden Primärvalenzen
dar, die zur Erzeugung der Referenzvalenz nötig sind. Die Helligkeiten der Primärva-
lenzen wurden dabei so gewählt, dass ihre additive Mischung mit gleichen Farbwerten
zur Farbvalenz des energiegleichen Spektrums (Weiß) führt. Die Absolutwerte der Spek-
tralwertfunktionen sind für die Farbart nicht von Bedeutung. Sie ergeben sich aus den
Helligkeiten der Primärvalenzen. Deren Leuchtdichtebeiwerte wurden so gewählt, dass zur
Erzeugung der Farbvalenz eines energiegleichen Spektrums mit einer Leuchtdichte von
LW = 1 cd

m2 die Farbwerte R = G = B = 1 notwendig sind. Die konkreten Leuchtdichtebei-
werte der Primärvalenzen sind wie folgt:

LR = 0, 17697
cd
m2

LG = 0, 81240
cd
m2

LB = 0, 01063
cd
m2 .

(2-22)

Wie man mit Gleichung (2-18) leicht sieht, besitzt die durch

FW = R · RP + G ·GP + B · BP mit R = G = B = 1

definierte Farbvalenz FW des energiegleichen Spektrums die gewünschte Leuchtdichte von
1 cd

m2 .
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2.2.6 CIE-XYZ-Farbraum

Neben dem RGB-Farbraum führte die CIE zeitgleich einen weiteren Farbraum ein – den
CIE-XYZ-Farbraum. Im Gegensatz zum CIE-RGB-Farbraum hat dieser keinen direk-
ten Bezug zur experimentellen Vermessung. Mehrere andere Vorteile, die im Folgenden
erläutert werden, rechtfertigen jedoch die Aufnahme in den Standard.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 x
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0,5

0,6

0,7
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y

Spektralfarbenzug

Purpur-Linie

CIE-XYZ-Gamut
CIE-RGB-Gamut

sRGB-Gamut
EE-Weißpunkt

D65-Weißpunkt

Bild 2-16: Darstellung der Farbarten durch ihre Farbwertanteile x und y in der Normfarb-
tafel des CIE-XYZ-Farbraums.

Aus den Spektralwertfunktionen des RGB-Farbraums wird ersichtlich, dass nicht alle
Farben durch additive Mischungen der Primärvalenzen erzeugt werden können. Beispiels-
weise weisen die Spektralfarben im Bereich von ca. 440 bis 550 nm negative Farbwerte
für die Primärvalenz RP (rot) auf. Allgemeiner weisen alle Farben negative Koordinaten
auf, die außerhalb des Gamut-Dreiecks liegen, welches durch die Primärvalenzen des CIE-
RGB-Farbraums aufgespannt wird (Vgl. blaues Gamut-Dreieck in Bild 2-17). Wie aus
Bild 2-16 hervorgeht, weist der CIE-RGB-Gamut insbesondere im Bereich blauer und
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grüner Farbarten deutliche Defizite auf. Negative Spektralwerte waren für die damalige
Handhabung unbequem und sollten im XYZ-System nicht auftreten. Dazu war es nötig,
Primärvalenzen zu wählen, deren Gamut-Dreieck den in Bild 2-16 dargestellten Bereich
reeller Farben, welcher durch den Spektralfarbenzug und die Purpur-Linie begrenzt wird,
vollständig umschließt. So können alle reellen Farben durch innere Mischungen formuliert
werden. Das ist nur möglich, wenn die Primärvalenzen selbst imaginär sind und somit
nicht physikalisch dargestellt bzw. wahrgenommen werden können. Auf der in Bild 2-16
dargestellten Farbtafel befinden sich die Primärvalenzen XP, YP und ZP per Definition
(siehe Gleichung (2-19)) gerade auf den Koordinaten (1, 0), (0, 1) und (0, 0). Ihr Gamut-
Dreieck ergibt sich somit aus den Koordinatenachsen und der durchgezogenen schwarzen
Linie, die ihre Enden verbindet. Zum besseren räumlichen Verständnis zeigt Bild 2-17
den gleichen Sachverhalt in räumlicher Darstellung. Man erkennt, dass der Spektralfar-
benzug (schwarze Kurve) vom roten Gamut-Dreieck des CIE-XYZ-Farbraums vollständig
umschlossen wird.
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Bild 2-17: Gegenüberstellung des CIE-RGB-(blau) und des CIE-XYZ(rot)-Gamuts auf der
Farbtafel.

Eine weitere hilfreiche Eigenschaft des XYZ-Farbraums ist der unmittelbare Bezug zur
Photometrie. Dazu hat man die photometrische Information in der Y-Koordinate isoliert,
während die X- und Z-Koordinaten die Farbart beschreiben. Je nach Vorhaben können
die relevanten Informationen so unmittelbar aus dem Farbvalenzvektor abgelesen werden.
Erreicht wird diese Entkopplung, indem man für die Primärvalenzen XP und ZP Vektoren
aus der sogenannten Alychne (die Lichtlose) wählt. Hierbei handelt es sich um die Ebene
der Farbvalenzen, deren photometrische Größe (meist Leuchtdichte) null ist. Für das
Beispiel der Leuchtdichte kann die Alychnenebene mithilfe der Leuchtdichtebeiwerte aus
Gleichung (2-22) bezüglich der Koordinaten im RGB-Farbraum formuliert werden:

LR · R + LG ·G + LB · B = 0.
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Um mit der Y-Koordinate des CIE-XYZ-Farbraums besonders komfortabel umgehen
zu können, wird die Spektralwertfunktion ȳ(λ) so gewählt, dass sie der Hellempfind-
lichkeitsfunktion V(λ) aus Bild 2-9 entspricht. Diese Wahl setzt voraus, dass ȳ(λ) aus
farbmetrischen Spektralwert-Funktionen (hier: r̄(λ), ḡ(λ), b̄(λ)) linear kombiniert werden
kann. Diese Forderung ist jedoch unter sehr allgemeinen Voraussetzungen erfüllt [WS82].
Durch Gegenüberstellung der Gleichung (2-14) zur Ermittlung einer photometrischen Grö-
ße Xv aus einer strahlungsphysikalischen Größe Xe und der Gleichung (2-20), welche die
Farbvalenzkoordinaten auf Basis der Spektralverteilung Φe,λ der strahlungsphysikalischen
Größe Xe ausdrückt, ergibt sich folgender Zusammenhang:

Xv = Km

∫ λ̄

λ=
¯
λ

Xe(λ) · V(λ)dλ = k
∫ λ̄

λ=
¯
λ

Φe,λ · ȳ(λ)dλ = Y.

Nun ist offensichtlich, dass die photometrische Größe Xv und die Y-Koordinate des XYZ-
Farbraums über das Verhältnis der Konstanten Km und k in einem proportionalen Zu-
sammenhang stehen. Erfährt der Beobachter die Farbvalenz durch die Betrachtung einer
Lichtquelle, wählt man k = Km und damit Y = Xv. Für die Betrachtung beleuchteter,
nicht selbst leuchtender farbiger Gegenstände, muss darüber hinaus noch das spektrale
Reflexionsvermögen des Objekts berücksichtigt werden. Den angestellten Überlegungen
zufolge müssen sich die Leuchtdichtebeiwerte

LX = 0
cd
m2

LY = 1
cd
m2 und

LZ = 0
cd
m2

für die Primärvalenzen im CIE-XYZ-Farbraum ergeben, damit gemäß des Abneyschen
Gesetzes (Gleichung 2-18) die Gleichheit der Leuchtdichte (für Xv) und der Y-Koordinate
der Farbvalenz F einer Strahlung gegeben ist:

LF = LX · X + LY · Y + LZ · Z = Y.

Unter den genannten und einigen weiteren Forderungen an den CIE-XYZ-Farbraum ergibt
sich schließlich die folgende Transformation von CIE-RGB nach CIE-XYZ [Hun98]:X

Y
Z


 0, 49 0, 31 0, 20
0, 17697 0, 81240 0, 01063

0, 00 0, 01 0, 99


R
G
B

 (2-23)

Die Matrix in Gleichung (2-23) ist die Basiswechselmatrix zwischen beiden Farbräumen.
Ihre Werte in Zeile 2 entsprechen den Leuchtdichtebeiwerten der RGB-Primärvalenzen
(Vgl. (2-22)). Da außerdem alle Zeilensummen gleich 1 sind, stimmen die Weißpunkte des
RGB-Raums und des XYZ-Raums überein (R = G = B ≡ X = Y = Z). Aus diesem Grund
befindet sich der EE-Weißpunkt, der zuvor für den CIE-RGB-Farbraum mit r = g = b = 1

3
eingeführt wurde, auch auf der CIE-XYZ-Farbtafel in Bild 2-16 an den Koordinaten
x = y = 1

3 .

Die Transformationsmatrix kann so modifiziert werden, dass ein Weißpunktwechsel statt-
findet. Das Weiß des energiegleichen Spektrums (R = G = B bzw. r = g = b = 1

3) ist
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Bild 2-18: Spektralwertfunktionen x̄, ȳ und z̄ des CIE-XYZ-Farbraums von 360 nm bis
830 nm in 1 nm Schritten nach DIN 11664 Teil 1 [DIN05].

nicht immer die ideale Wahl für den Weißpunkt, da sich das menschliche Auge auf die
dominante Beleuchtung einstellt und diese als weiß empfindet, während ähnliche Farb-
valenzen als leicht farbstichig empfunden werden. Beispielsweise hat der Weißpunkt der
Normlichtart D65, welche sich besonders für Beleuchtungssituation bei Tageslicht eignet,
auf der Farbtafel des CIE-XYZ-Farbraums die Koordinaten x = 0, 3127 und y = 0, 329
(leicht blau). Stellt sich das Auge auf eine solche Beleuchtungssituation ein, rückt der
D65-Weißpunkt auf die Farbtafel-Position a = b = 1

3 und das energiegleiche Spektrum
erscheint leicht rötlich.

Es ergeben sich die in Bild 2-18 dargestellten Spektralwertfunktionen für den CIE-XYZ-
Farbraum. Erwartungsgemäß nehmen die Spektralwertfunktionen keine negativen Werte an.
Außerdem entspricht die Spektralwertfunktion ȳ(λ) der Primärvalenz YP der V(λ)-Kurve
aus Bild 2-9.

Der CIE-XYZ-Farbraum wurde nach DIN 5033 als Grundlage zur „Farbbeschreibung
von Materialien und Lichtern auf metrischer Grundlage“ erklärt [DIN04]. Demzufolge
heißen die Primärvalenzen XP, YP und ZP auch Normvalenzen, die Farbwerte X, Y und Z
Normfarbwerte, die Farbwertanteile x, y und z Normfarbwertanteile, die Spektralwerte x̄, ȳ
und z̄ Normspektralwerte und die (x, y)-Farbtafel Normfarbtafel.

2.2.7 Standard-RGB-Farbraum

Zuletzt soll noch auf den Standard-RGB-Farbraum (sRGB) hingewiesen werden, wel-
cher für Farbschirme eine herausragende Rolle spielt. Zur Erzeugung von Farbvalenzen
haben Monitore pro Pixel drei verschiedenfarbige Lichtquellen, welche die Rolle der
Primärvalenzen einnehmen. Um einen möglichst großen Anteil der Farben innerhalb des
Spektralfarbenzugs darstellen zu können, sollten die Primärvalenzen so gewählt werden,
dass sie ein möglichst großes Gamut-Dreieck aufspannen. Gleichzeitig bedeutet dies, dass
sie sich nahe der Spektralfarben befinden sollten. Hier entsteht ein Konflikt zwischen der
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Vielfalt darstellbarer Farben und der Leuchtkraft sowie der technischen Realisierbarkeit,
da die Primärvalenzen nur auf einem sehr schmalen Wellenlängenbereich leuchten dür-
fen. Aus diesem Grund muss bei der Positionierung der Primärvalenzen ein Kompromiss
getroffen werden.

Die Primärvalenzen des sRGB-Farbraums, welche repräsentativ für Bildschirme sind,
liegen an den Koordinaten (0, 64; 0, 33) (Rot), (0, 30; 0, 60) (Grün) und (0, 15; 0, 06) (Blau)
in der Normfarbtafel. Es spannt sich so das in Bild 2-16 dargestellte Gamut-Dreieck auf.
Außerdem wird der Weißpunkt der Normlichtart D65 verwendet.

2.3 Computergrafik

Der Schlüssel zur echtzeitfähigen Darstellung virtueller Szenen, aber auch zur rasanten
Lösung einiger allgemeiner Fragestellungen aus Wissenschaft und Technik geht auf die
Computergrafik zurück, die durch raffinierte und hochgradig parallelisierte Prozesse ra-
sante Berechnungen ermöglicht. Die zusätzliche hard- und softwareseitige Unterstützung
zur Verwendung der Grafikkarte in grafikfernen Problemstellungen, wie sie beispielsweise
durch CUDA (NVIDIA) oder OpenCL (Khronos Group) geleistet wird, erleichtert die
Einbindung der Grafikkarte in alle Programme mit parallel berechenbaren Programmab-
schnitten und schafft so einen erheblichen Performance-Gewinn [Nvi07], [Khr19].

Um dem Leser ohne Hintergrundwissen in Themen der Computergrafik einen schlüssigen
Einstieg zu ermöglichen, soll in diesem Abschnitt zunächst die klassische Fixed Function
Pipeline mit Fokus auf die Berechnung grafischer Ausgaben vorgestellt werden. Anschlie-
ßend wird die im Laufe der Jahre zunehmende Anpassbarkeit der Rendering Pipeline
thematisiert bis schließlich auf Möglichkeiten eingegangen wird, allgemeine grafikferne
Berechnungen auf der GPU (Graphics Processing Unit) auszuführen. Besonderes Au-
genmerk wird auf die etablierten Methoden der Berechnung von Lichteinflüssen in der
virtuellen Szene gelegt, die im Rahmen dieser Arbeit von besonderem Interesse sind.

Die aufgeführten Inhalte und viele darüber hinaus gehende Aspekte der Computergrafik
werden in [AFS+13] zugänglich beschrieben. Bezüglich der Darstellung der Rendering-
Pipeline kann insbesondere auf die gut dokumentierte OpenGL-Pipeline verwiesen werden
[SA06]. Diese Quellen bilden zusammen mit [FK03], welche den Fokus auf Shader (auf
der GPU ausführbare Programme) richtet, die Wissensbasis der nachfolgenden Darstellun-
gen.

2.3.1 Fixed Function Pipeline

Bis 2001 konnte die auf der Grafikkarte stattfindende Verarbeitungskette durch die in Bild
2-19 dargestellte Fixed Function Pipeline beschrieben werden. Sie trägt ihren Namen, da
sie zwar von außen konfigurierbar, aber nicht programmierbar ist. Die Beeinflussung der
Verarbeitungsschritte kann nur innerhalb eines vordefinierten Parameterraums erfolgen,
während die zugrunde liegenden Abläufe durch die Hardware-Architektur vorgegeben sind.
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Bild 2-19: Fixed Function Pipeline.

In den nun folgenden Unterabschnitten sollen die Teilprozesse innerhalb der Fixed Func-
tion Pipeline in Kürze dargestellt werden, sodass darauf aufbauend die Unterschiede zur
programmierbaren Pipeline deutlich werden.

Input

Zuallererst soll auf die Herkunft und Gestalt der in die Rendering Pipeline einfließenden
Daten eingegangen werden. Ausgangspunkt für ein Rendering ist zunächst eine grafische
Anwendung (siehe Bild 2-20: 3D-Anwendung). Sie enthält Daten zur Beschreibung aller
Objekte und Oberflächen, die sich in ihr darstellen lassen. Die Objektgeometrie wird dabei
meist durch Polyeder beschrieben. Formen, die nicht exakt durch Polyeder dargestellt
werden können, werden durch solche approximiert. Hierbei steigt die Genauigkeit mit der
Anzahl der Polygone. Datentechnisch werden die Polyeder durch Listen ihrer Eckpunkte
(Vertex, pl. Vertices) und der sie verbindenden Kanten (Edge, pl. Edges) beschrieben.
Neben der Geometrie bildet das Aussehen der Objektoberflächen einen weiteren wichtigen
Bestandteil zur Erzeugung einer realistischen visuellen Wahrnehmung. Neben verschiede-
nen Parametern, die z.B. die Wechselwirkung der Flächen mit Licht beschreiben, nehmen
vor allem Texturen eine wesentliche Rolle ein. Diese kann man sich als Bilder vorstellen,
welche auf die Objektgeometrie gelegt werden und so die Einfärbung der Oberflächen
definieren. Auf diese Weise können reale Objekte mit verhältnismäßig wenigen Polygonen
einigermaßen realistisch visualisiert werden. Am Beispiel einer Straße kann man sich diese
als einen einfachen Quader vorstellen, während eine auf der Quaderoberfläche liegende
Textur die Seiten- und Mittelstreifen und sogar die Poren des Asphalts visualisiert. Es wird
leicht deutlich, welchen Aufwand man betreiben müsste, um ein ähnliches Ergebnis durch
das Zusammensetzen einfarbiger Polygone zu erzeugen. Die Positionierung der Texturen
auf den Polygonflächen erfolgt dabei über die Verknüpfung der Eckpunkte der Polygone
mit definierten Stellen auf der Textur (Texturkoordinaten). Vertices tragen also nicht nur
die Information über ihre Position, sondern enthalten darüber hinaus Texturkoordinaten,
Flächennormalen und andere Daten, die während des Pipeline-Durchlaufs benötigt werden.
Neben Texturen, die zur Einfärbung der Objektflächen dienen, gibt es ähnliche Konstrukte,
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mit denen die Wechselwirkungen mit Licht innerhalb der Polygonflächen variiert werden
können (z.B. Normal-Maps, Bump-Maps, Displacement-Maps).
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Bild 2-20: Schnittstelle zwischen 3D-Anwendung und Grafikkarte.

Neben den Objektbeschreibungen müssen weitere Informationen durch die 3D-Anwendung
spezifiziert werden. Zentral für die Darstellung der zunächst dreidimensionalen Szene
auf einem 2D-Ausgabegerät ist auch der Betrachter. Alle notwendigen Spezifikationen
zur Position, Orientierung, Sichtweite und Perspektive des Betrachters werden unter
dem Begriff Kameraparameter zusammengefasst. Im Kontext der Computergrafik ist
der Betrachter mit der Kamera gleichzusetzen, da der Anwender die virtuelle Szene
als Aufnahme einer virtuellen Kamera beobachtet, deren Ausgabe auf dem Bildschirm
dargestellt wird. Als letztes wesentliches Element zur Beschreibung einer 3D-Szene sei
auf die in ihr befindlichen Lichter hingewiesen. Weitere Details zu allen bisher genannten
Aspekten folgen in den nächsten Unterabschnitten.

Die Entwicklung einer interaktiven Anwendung mit dynamischen 3D-Szenen erfordert
den Einsatz von darauf zugeschnittenen Grafik-Engines. Diese stellen zahlreiche Funk-
tionen, die im Kontext der grafischen Ausgabe von 3D-Szenen benötigt werden, bereit
und unterstützen den Entwickler bei der Verwaltung und Verarbeitung der Szene. Oft mit
Grafik-Engines gleich gesetzt, aber genau genommen noch umfangreicher, sind Spiele-
Engines. Beispiele hierfür sind Unity3D oder Unreal [Uni20], [Epi20]. Sie ergänzen den
Funktionsumfang einer Grafikengine durch zusätzliche spieletypische Funktionen, wie die
Modellierung physikalischer Effekte (Schwerkraft, Kollision von Objekten, Trägheit, ...)
oder vorbereitete GUI-Elemente (Menüs, Schaltflächen, ...). Zudem wird hier ein größe-
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res Augenmerk auf Echtzeitfähigkeit gelegt, da in interaktiven Anwendungen nur einige
Millisekunden zur Berechnung eines Bilds zur Verfügung stehen.

Unabhängig davon, ob bei der Entwicklung auf eine Spiele-Engine zurückgegriffen wird
oder der Programmierer sämtliche Abläufe selbst implementiert, muss die 3D-Anwen-
dung zur grafischen Ausgabe auf eine 3D-Programmierschnittstelle (API, Application
Programming Interface) zurückgreifen. Die bekanntesten Beispiele an dieser Stelle sind
DirectX und OpenGL [Mic18], [SA06]. In den letzten Jahren erfreut sich die in 2016
eingeführte API Vulkan vermehrter Beliebtheit [The14]. Diese reduziert die Abstraktions-
schicht zwischen Grafikkarte und 3D-Anwendung stärker als es die etablierten Varianten
tun und verschiebt damit den Fokus von einer einfach und komfortabel benutzbaren High-
Level-Schnittstelle zur Recheneffizienz. Aufgabe der 3D-API ist es, die unterschiedlichen
Grafikkarten der verschiedenen Anbieter soweit zu abstrahieren, dass die Anwendung weit-
gehend unabhängig von der konkreten Hardware des Zielsystems implementiert werden
kann. Dazu agiert sie, wie in Bild 2-20 zu sehen, als Dolmetscher und übergibt die allge-
meingültigen API Befehle als hardwarespezifische Anweisungen an die Grafikkarte weiter.
Konkret beinhalten die übermittelten Informationen zum Beispiel Objektdaten (Vertex-
und Edge-Listen, Texturen, ...) oder das Rendering beeinflussende Kontextinformationen
(Transformation des Objektmodells in die Szene, Kameralage).

Vertex Processing

Die in der Anwendung definierte Szene ist zeitveränderlich, weil sich beispielsweise Ob-
jektlagen, die Kameralage oder die Beleuchtungssituationen ändern können. Aus diesem
Grund muss ihr Abbild (Frame) aus Sicht der Kamera wiederholt erstellt werden. Wie oft
das geschieht, hängt von der Komplexität der Szene und des Renderings sowie der Rechen-
leistung der GPU ab. Basierend auf der menschlichen Wahrnehmung sollten mindestens
30 Frames pro Sekunde (fps) erreicht werden, um ein flüssig wirkendes Video zu erzeugen.
Gängige Ausgabegeräte verfügen über eine Bildwiederholfrequenz von 60 fps, sodass
dieser Wert als wünschenswert angesehen werden kann [AFKN95]. Im Gaming-Bereich
exisitieren inzwischen noch höhere Bildwiederholfrequenzen. Neue Spielkonsolen, wie die
XBox Series X oder die Playstation 5 unterstützen bis zu 120 fps [Mic20],[Son20]. High
End Gaming Monitore erlauben die Darstellung von bis zu 360 fps [ASU20]. Aufgrund
der vielen Berechnungen, die innerhalb kürzester Zeit durchgeführt werden müssen, ist
die Abarbeitung der einzelnen Schritte des Renderings zur Durchsatzoptimierung in einer
Pipeline organisiert. So kann mit der Ausführung der nächsten Instruktion bereits begonnen
werden, nachdem der erste Teilschritt der vorhergehenden Instruktion abgeschlossen ist.

Um die 3D-Szene in einen Frame zu überführen, findet im ersten Teilschritt das Vertex Pro-
cessing statt. Dieser Begriff fasst alle Operationen zusammen, die pro Vertex abgearbeitet
werden. Wichtig hierbei ist, dass die Verarbeitung der einzelnen Vertices unabhängig von-
einander geschieht. Diese Forderung bildet eine wichtige Voraussetzung für den enormen
Durchsatz der Rendering Pipeline. Würden Abhängigkeiten zwischen den verschiedenen
Vertices bestehen, so müsste die Ausführung an vielen Stellen pausiert werden, um auf
Ergebnisse anderer Ausführungseinheiten (Threads) zu warten, wodurch die hochgradig
parallele Abarbeitung des Datenstroms in mehreren Pipelines nur noch eingeschränkt
möglich wäre.
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Der wichtigste Schritt innerhalb des Vertex Processing ist die Transformation der Vertices,
welche zunächst im lokalen Koordinatensystem des jeweiligen Objekts vorliegen (Model
Space m), über verschiedene Zwischenschritte in die normalisierten Ausgabekoordinaten
(Normalized Device Coordinates, NDC), von denen an späterer Stelle auf das Pixelraster
des Ausgabegeräts übergegangen wird. Bild 2-21 gibt einen Überblick über die zunächst
relevanten Koordinatensysteme.
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Bild 2-21: Verschiedene Koordinatensysteme bei der Vertex-Tranformation (Model Space
m, World Space w, Eye Space e und Light Space l).

Zu Beginn der Pipeline liegen die Vertices in den Model Spaces der jeweiligen Objekte vor.
In Bild 2-21 wird beispielsweise durch die Vertices v1, ..., v8 die dargestellte Zylinderform
im Model Space m approximiert. Die Transformationen zwischen den Koordinatensyste-
men lassen sich in drei atomare Operationen zerlegen – Rotation, Skalierung und Translati-
on. Die Rotation eines dreidimensionalen Vektors v kann am Beispiel der Drehung um den
Winkel α bezüglich der x-Achse durch

v′ = Rrot · v; Bsp. Rotation um x-Achse: Rrot = Rrot,x =

1 0 0
0 cosα − sinα
0 sinα cosα


ausgedrückt werden. Entsprechende Drehungen um andere Achsen ergeben sich analog.
Allgemeine Drehungen können durch Konkatenation der Rotationsmatrizen realisiert
werden und werden üblicherweise durch Euler- bzw. Kardan-Winkel oder Quaternionen
ausgedrückt. Skalierungen bezüglich der verschiedenen Achsen werden gemäß

v′ = S · v mit S =

sx 0 0
0 sy 0
0 0 sz


beschrieben. Die Translation hingegen kann nicht durch die Multiplikation mit einer Matrix
ausgedrückt werden, sondern bedarf der Addition

v′ = v + ∆v mit ∆v =

∆vx

∆vy

∆vz

 .
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Sie kann deshalb nicht als lineare Abbildung aufgegriffen werden. Zur Transformation
eines Objekts in ein anderes Koordinatensystem, müssen auf alle Vertices die gleichen
atomaren Operationen angewandt werden. Die Nichtlinearität der Translation ist insofern
hinderlich, als dass die Konkatenation linearer Abbildungen zu einer einzigen Matrix
zusammengefasst werden kann und deshalb besonders recheneffizient wäre. Aus diesem
Grund verwendet man zur Dastellung von Vertices im dreidimensionalen Raum homogene
Koordinaten [AFS+13]. Dazu wird der Vertex v künstlich um eine vierte Dimension
erweitert, wobei aus dem so gewonnenen Vektor vh jederzeit der ursprüngliche Vertex
durch Normierung auf die vierte, auch als w bezeichnete Komponente rekonstruiert werden
kann.

v =

vx

vy

vz

 ∈ R3 → vh =


w · vx

w · vy

w · vz

w

 ∈ R4,w , 0 (normalisiert: w = 1)

Vektoren mit unterschiedlichen Werten für w, aber gleichen Werten für vx, vy und vz sind
äquivalent. Sie stellen den gleichen dreidimensionalen Vertex dar. Zur Erweiterung eines
Vertex auf die homogene Form wählt man der Einfachheit halber w = 1. Handelt es sich
nicht um Orts- sondern Richtungsvektoren, muss als vierte Komponente eine 0 ergänzt
werden. Unter Verwendung homogener Koordinaten ergeben sich folgende Abwandlungen
der vorgestellten atomaren Transformationen:

Rrot → Rh Bsp.: Rh,x =


1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1


S → S h =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


+t → Th =


1 0 0 ∆vx

0 1 0 ∆vy

0 0 1 ∆vz

0 0 0 1

 .
Wie sich herausstellt, handelt es sich in allen Fällen um lineare Abbildungen. Demzufolge
können alle notwendigen Operationen zur Tranformation eines Vertex in ein anderes
Koordinatensystem durch eine einzige Transformationsmatrix

T =


a b c d
e f g h
i j k l
0 0 0 1

 (2-24)

beschrieben werden. Dabei entsprechen die Einträge d, h und l dem Translationsvektor.
Die Einträge a, f und k beinhalten die Skalierungsfaktoren. Gleichzeitig wird die obere
linke 3x3-Matrix durch die atomaren Rotationen bestimmt.



42 2 Grundlagen

Auf dieser mathematischen Grundlage können nun für einen Frame der Szene zunächst
objektspezifische Transformationsmatrizen M gefunden werden, welche die Vertices mv
der Objekte in den World-Space w transformieren. Auf gleiche Weise kann eine framespe-
zifische Matrix V gefunden werden, welche die Vertices wv anschließend in den Eye-Space
überführt. Zusammengefasst können die in die Pipeline einfließenden Vertices mv mit nur
einer Matrixmultiplikation

ev = V · M · mv

in den Eye-Space transformiert werden, wobei die Matrizen V (spezifisch für den Frame)
und M (spezifisch für Objekt und Frame) von der 3D-Anwendung vorgegeben sind und ihr
Produkt V · M zuvor objektweise gebildet wurde.

Mit der Überführung aller Vertices in das Kamerakoordinatensystem sind die notwendigen
Schritte zur Darstellung auf einem Ausgabegerät noch nicht abgeschlossen. Die Szene liegt
noch immer in dreidimensionaler Gestalt vor. Sie muss nun unter Berücksichtigung der
Perspektive auf eine Ebene abgebildet werden. Bild 2-22 veranschaulicht die vorliegende
Situation.

x

y

z

pv

ev

x

z

ev
pv

nc

fc

αh
pvx

evx

pvz evz

Bild 2-22: Abbildung der Vertices vom View-Space auf die Near Clipping Plane.

Im linken Bereich von Bild 2-22 wird die Abbildung des Vertex ev auf die Projektionsebene
visualisiert. Sein Abbild wird mit pv bezeichnet. Zur besseren Übersicht zeigt der rechte
Teil die gleiche Situation auf die xz-Ebene reduziert. Die Projektionsebene wird auch als
Near Clipping Plane bezeichnet. Ihr Abstand zur xy-Ebene des Kamerakoordinatensystems
beträgt nc. Vertices, deren z-Koordinate kleiner als nc ist, liegen außerhalb des sichtbaren
Volumens der Kamera (View Frustum) und werden nicht dargestellt. Nach hinten wird das
View Frustum durch die Far Clipping Plane mit dem Abstand fc zur xy-Ebene begrenzt.
Die seitlichen Grenzebenen des View Frustum ergeben sich über den horizontalen (αh) oder
vertikalen (αv) Öffnungswinkel (FoV: Field of View) und das Seitenverhältnis bout : hout

(aspect ratio).

Unter Zuhilfenahme des Strahlensatzes kann auf Basis der Skizze 2-22 eine Zuordnung
zwischen ev und seiner Projektion pv gemäß

evx

pvx
=

evz

nc
⇔ pvx =

nc

evz
· evx; analog pvy =

nc

evz
evy
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gefunden werden. Weiterhin gilt pvz = nc. Zusammengefasst kann die Projektion eines
Vertex auf die Near Clipping Plane in homogenen Koordinaten ebenfalls linear formuliert
werden:

pv′ = P′ · ev mit P′ =


nc 0 0 0
0 nc 0 0
0 0 nc 0
0 0 1 0

→ pv′ =


ncevx

ncevy

ncevz

evz

 norm
−−−−→

pv′ =


nc

evz evx
nc

evz evy

nc

1

 (2-25)

Die perspektivischen Divisionen im letzten Schritt der Umformung (2-25) sind aus re-
chentechnischer Sicht kostspielig. Es empfiehlt sich deshalb, diese Operationen nur für
Vertices zu vollziehen, die sich innerhalb des View Frustums befinden (Clipping). Die
dazu notwendige Überprüfung ist im Eye-Space aufgrund der Pyramidenstumpf-Geome-
trie rechenintensiv. Ein weiterer Nachteil der vorgestellten Transformation ist, dass die
Tiefeninformation des Vertex nach der Normierung verloren geht. Diese wird jedoch an
späterer Stelle nochmal benötigt. Um die angeführten Probleme zu umgehen, wählt man
anstelle der in Gleichung (2-25) vorgestellten Lösung eine Transformation, welche das
pyramidenstumpfförmige View Frustum auf einen im Ursprung zentrierten Würfel mit
Kantenlänge 2 abbildet (Clip-Space). Das Bild 2-23 veranschaulicht die Transformation
in den Clip-Space, wie sie durch die Matrix P in Gleichung (2-26) realisiert wird. Die
Variablen bout und hout bezeichnen dabei die Breite (entlang der x-Achse) und Höhe (ent-
lang der y-Achse) der Near Clipping Plane, welche sich aus dem FoV αh und αv sowie nc

ergeben.

P =


2

bout
nc 0 0 0

0 2
hout

nc 0 0
0 0 fc+nc

fc−nc
−

2nc fc
fc−nc

0 0 1 0

→ cv = P · ev =


2

bout
ncevx

2
hout

ncevy
fc+nc
fc−nc evz −

2nc fc
fc−nc

evz

 (2-26)

ex

ey

ez

P·
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cy

cz

-1 1

-1

1

Bild 2-23: Transformation vom Eye-Space in den Clip-Space durch die Matrix P.

Das Clipping, welches namensgebend für den Clip-Space ist, vereinfacht sich für den
transformierten Vektor cv erheblich, da aufgrund des nun würfelförmigen View Frustums
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einfache Intervall-Tests der einzelnen Koordinaten genügen. Um die zur Normierung
notwendige Division aller Komponenten durch ez auszusparen, vergleicht man die x-, y-
und z-Komponenten betragsmäßig gegen die w-Komponente des Vektors cv (anstelle von
1):

ev im View Frustum⇔ −cvw < cvx, cvy, cvz < cvw

Vertices, die diese Bedingung nicht erfüllen, liegen außerhalb des View Frustums. Ab-
hängig davon, ob die durch sie beschriebenen Polygone ausschließlich oder nur teilweise
außerhalb des View Frustums liegen, müssen gegebenenfalls neue Vertices generiert wer-
den, um die sichtbare Teilfläche des Polygons zu erhalten. Bild 2-24 veranschaulicht
denkbare Fälle.

A B

C

Bild 2-24: Clipping von Polygonen im Clip-Space.

Im Fall A liegen alle Vertices innerhalb des View Frustum. Sie werden nicht entfernt.
Das durch sie und die zugehörigen Edges aufgespannte Polygon bleibt erhalten. Das
Dreieck B hingegen enthält Vertices innerhalb und außerhalb des View Frustum. Da die im
Sichtbereich liegende Dreiecksspitze für eine korrekte Darstellung nicht verloren gehen
darf, müssen anstelle der entfernten Vertices neue im View Frustum liegende Vertices
erzeugt werden. Außerdem müssen die betreffenden Edges neu referenziert werden. Sollten
zwei Vertices eines Dreiecks innerhalb des View Frustum liegen, so wird das sichtbare
Viereck durch zwei Dreiecke substanziiert. Liegen, wie im Fall des Dreiecks C, alle
Vertices eines Polygons außerhalb des View Frustum, können diese ersatzlos verworfen
werden.
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Auf die verbliebenen Vertices wird schließlich die perspektivische Division angewendet,
welche in der Regel durch Hardware-Beschleunigung vollzogen wird. Die Koordinaten des
normierten Vektors nv werden als Normalized Device Coordinates (NDC) bezeichnet.

cv norm
−−−−→

nv =


2nc
bout

evx

evz
2nc
hout

evy

evz

−
2nc fc
fc−nc

1
evz

+
fc+nc
fc−nc

1


Entsprechend des würfelförmigen View Frustums im Eye-Space liegen die x-, y- und z-
Komponenten des Vektors nv im Intervall [−1, 1]. Während die x- und y-Komponenten im
NDC-System einen linearen Bezug zu den unverzerrten Eye-Space-Koordinaten aufweisen,
ist der Zusammenhang zwischen der z-Komponente und der tatsächlichen Tiefe des Vertex
nichtlinear. Er wird in Bild 2-25 dargestellt.

evz

nvz

nc fc

-1

1

Bild 2-25: Nichtlinearer Zusammenhang zwischen der tatsächlichen Tiefe evz eines Vertex
in der Szene und der Tiefe nvz in NDC-Koordinaten.

Aufgrund des degressiven Verlaufs nimmt die Auflösung der Tiefeninformation bei ge-
gebener Bitmenge mit zunehmendem Abstand zur Kamera ab. Das hat einerseits den
Vorteil, dass Objekte im Nahbereich der Kamera auch bei kleinen Tiefenunterschieden
noch korrekt dargestellt werden. Andererseits ist nachteilig, dass sich weit entfernte und
nah beieinander liegenden Flächen aufgrund einer zu geringen Auflösung nicht mehr
korrekt überdecken. Dieser Zusammenhang macht sich häufig als „Flackern“ bemerkbar,
da schon bei minimalen Veränderungen der Kameralage mal die eine und mal die andere
Fläche als sichtbar dargestellt wird. Man bezeichnet diesen Effekt als „Depth Fighting“.

Im letzten Schritt des Vertex Processing erfolgt der Wechsel vom NDC-System auf die
Pixelkoordinaten des Ausgabegeräts (Viewport Transformation). Auch hierzu kann eine
geeignete Matrix gefunden werden. Die sogenannte Scale&Bias-Matrix TS B skaliert die
NDC-Koordinaten einerseits von den normierten Werten auf die Anzahl der verfügbaren
Rasterpunkte und verschiebt außerdem alle Koordinaten in den positiven Bereich. Der
entstehende Vektor sv liegt nun im Screen-Space vor. Bild 2-26 zeigt beispielhaft das
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Resultat der Viewport Tranformation, wie es aus der in Bild 2-24 dargestellten Situation
hervorgehen würde.

sv = TS B · nv mit TS B =


bout

2 0 0 bout
2

0 hout
2 0 hout

2
0 0 1

2
1
2

0 0 0 1

→ sv =


svx ∈ [0, bout]
svy ∈ [0, hout]

svz ∈ [0, 1]
svw = 1



svx

svy

bout

hout

Bild 2-26: Polygone nach der Transformation in den Screen-Space.

Das Bild 2-27 fasst die im Vertex Processing stattfindenden Transformationen noch einmal
zusammen.

Object-Space World-Space View-Space Clip-Space Screen-Space

·M = ·V = ·P = ·TS B =

Bild 2-27: Transformationsfolge im Vertex Processing.

Primitve Assembly

Innerhalb des Vertex Processing werden die zu verarbeitenden Vertices weitgehend isoliert
voneinander betrachtet. Nach der Verarbeitung liegen die Vertices im Screen-Space vor.
Ziel ist jedoch nicht die Darstellung der Vertices, sondern der durch sie beschriebenen
Polygone. Um diese zu rekonstruieren, werden in der Primitve Assembly-Stufe gemäß
Bild 2-28 Vertex-Listen zu geometrischen Primitiven zusammengefasst.

Als Eingabe erwartet diese Pipeline-Stufe zum einen die Vertices, welche zuvor durch das
Vertex Processing modifiziert wurden, und zum anderen die Konnektivitätsinformationen
zwischen den Vertices. Auf Basis dieser Informationen werden Primitive gebildet, welche
die Gestalt eines Punkts, einer Linie oder eines Dreiecks haben können.

Außerdem greift hier ein weiteres Verfahren, um nicht relevante Elemente zu entfernen und
so den Vertex- sowie den Pixel-Load (Anzahl der insgesamt zu verarbeitenden Vertices bzw.
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v4
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v6
Assembly
Primitive

Dreieck: v1,v2,v3

Dreieck: v4,v5,v6

Bild 2-28: Primitve Assembly: Konstruktion geometrischer Primitive aus einzelnen Verti-
ces.

Pixel) für nachgeschaltete Pipeline-Schritte zu reduzieren. Der als Face Culling bezeichnete
Ansatz entfernt die Vertices aller Flächenprimitive, die nicht zur Kamera orientiert sind. Die
Entscheidungsgrundlage stellen hierbei die Flächennormalen dar, welche aus zwei Kanten
gebildet werden können. Ist das Skalarprodukt aus Flächennormale und einem von der
Fläche zur Kamera zeigenden Vektor positiv, so ist die Fläche sichtbar und muss gerendert
werden. Im anderen Fall wird das Primitiv verworfen. Stellt man sich beispielsweise einen
Würfel vor, so kann dessen Rendering durch Culling auf maximal drei Flächen reduziert
werden, da die übrigen Würfelflächen nicht sichtbar sind.

Rasterization und Coloring

Im nächsten Schritt wird von dem bisher als kontinuierlich angenommenen Screen-Space
auf das diskrete Raster technischer Ausgabegeräte übergegangen. Ausgangspunkt stellen
die zuvor berechneten Primitive dar.

Zunächst gilt es herauszufinden, welche Pixel in ihrer Einfärbung potentiell durch das
aktuell betrachtete Primitiv bestimmt werden könnten. Aufgrund von Überdeckungen und
anderen Details ist jedoch zum Zeitpunkt der Rasterung noch nicht abschließend klar, ob
und in wie weit die Farbe des entsprechenden Pixels durch das aktuelle Primitiv bestimmt
wird. Man spricht deshalb in dieser Pipeline-Stufe noch nicht von Pixeln sondern Fragmen-
ten. Sie können als Kandidaten für Pixel verstanden werden. Wie genau die verschiedenen
Primitive in Fragmente zerlegt werden, hängt von dem jeweiligen Primitivtyp ab. Da die
grundlegende Idee unverändert bleibt, soll hier beispielhaft die Rasterung eines Dreiecks
vorgestellt werden. Bild 2-29 zeigt die dafürnotwendigen Schritte.

Im Schritt 1 werden die Vertices des betrachteten Primitivs auf diskrete Pixelpositionen
überführt (z.B. durch Runden). Dabei vererben die Vertices ihre Attribute (Farbe, Tiefe,
Normale, Texturkoordinaten, ...) an die entstehenden Fragmente. Als Nächstes werden die
Kanten des Dreiecks gerastert (siehe Schritt 2 in Bild 2-29). Hierzu können verschiedene
rechenzeitoptimierte Algorithmen eingesetzt werden. Bekannte Beispiele sind Bresenham
oder Midpoint [Bre65], [Pit67]. Schließlich müssen noch die Innenbereiche des Dreiecks
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Bild 2-29: Rasterization: Bestimmung der durch ein Primitiv potentiell beeinflussten Pixel-
positionen (Fragmente).

gerastert werden, wofür ebenfalls verschiedene Filling-Ansätze existieren. Während der
Rasterung der Dreiecksfläche, werden die Attribute der in Schritt 1 erzeugten Fragmente
bezüglich der Distanz auf die übrigen Rasterpunkte interpoliert. Das Bild 2-30 stellt die
bilineare Interpolation durch das Scanline-Verfahren dar [Bou70].

a f 1 a f 2

a f 3

a f a a f b

a f

Bild 2-30: Zuweisung der Attribute an die Fragmente eines Primitivs durch bilineare
Interpolation der Vertex-Attribute.

In der vorgestellten Variante erhalten zunächst die Fragmente auf den Kanten ihre Attribute,
indem zwischen den zugehörigen Endpunkten linear bezüglich der Distanz interpoliert
wird. Betrachtet man die Kante mit den Endpunkten 1 und 3, wobei a f 1 und a f 3 ein zu
interpolierendes Attribut (z.B. Farbe, Texturkoordinaten) dieser Punkte bezeichnen, so
ergibt sich das Attribut a f a eines Rasterpunkts auf dieser Kante gemäß

a f a = cint · a f 1 + (1 − cint) · a f 3. (2-27)

Dabei ist der Parameter cint der Quotient der Distanzen a f aa f 3 und a f 1a f 3. Nachdem
über alle Kanten interpoliert wurde, wird im Scanline-Verfahren eine erneute zeilenweise
Interpolation angewendet. In Bild 2-30 liegt das zu bestimmende Fragmentattribut a f

beispielsweise auf einer Zeile, die durch die zuvor berechneten Randpunktattribute a f a und
a f b bestimmt wird. a f kann analog zu Gleichung (2-27) bestimmt werden.

In Bild 2-30 wird die Interpolation von Farbwerten über die Fragmente visualisiert. Für
detaillierte Visualisierungen von Oberflächen genügt diese Methode jedoch nicht oder
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würde eine Vielzahl von Primitiven erfordern, ohne dass sie aus geometrischer Sicht
erforderlich wären. Deutlich häufiger werden deshalb Texturen zur Färbung der Fragmente
eingesetzt. Anstelle der Farbwerte werden dann die Texturkoordinaten bei der Rasterung
interpoliert. Zur besseren Nachvollziehbarkeit wird die Verknüpfung zwischen Textur und
Polygon in Bild 2-31 veranschaulicht.

T u1, T v1 T u2, T v2

T u3, T v3

T u1

T v
1

T u3

T v3

Bild 2-31: Einfärbung der Fragmente durch Texturen unter Berücksichtigung von Texturko-
ordinaten.

Im rechten Bereich ist eine Steintextur dargestellt, die beispielsweise zur Texturierung
eines Felsen in der virtuellen Szene eingesetzt werden kann. Zur Referenzierung der
Textur werden normalisierte Koordinaten (uv-Koordinaten) eingesetzt. Jedes Modell ei-
ner dreidimensionalen Szene kann mit einer Textur verknüpft werden. Den Vertices des
Modells können uv-Koordinaten zugewiesen werden, die dann auf Punkte in der Textur
referenzieren. In Bild 2-31 wird dieser Zusammenhang für die Texturkoordinaten (T u3,T v3)
visualisiert. Durch die Rasterung bekommt jedes Fragment eines Primitivs geeignete Tex-
turkoordinaten. Zur Einfärbung des Fragments wird schließlich die Farbe der Textur an
der Stelle, die durch die uv-Koordinaten des Fragments spezifiziert ist, ausgelesen und
als Fragmentfarbe übernommen. Je nach Wahl der uv-Koordinaten für die Vertices kann
der Texturausschnitt, der schließlich auf dem Modell sichtbar ist, erheblich verzerrt und
gedreht sein.

Raster Operations

Wie im vorhergehenden Unterabschnitt bereits erwähnt, sind Fragmente Kandidaten für
die Pixel des Frame Buffers. In den Raster Operations wird entschieden, welche Fragmente
auf welche Weise zum finalen Pixel im Frame Buffer beitragen. Der Frame Buffer besteht
aus verschiedenen Buffern, die eine einheitliche Größe aufweisen und unterschiedliche
Informationen der Pixel verwalten. Der wichtigste Buffer ist der Color Buffer. Er beinhaltet
die Pixelfarben und stellt somit den Anteil der Pixelinformationen dar, welcher durch das
Ausgabegerät visualisiert wird. Daneben existiert der Depth Buffer. Dieser speichert für
die aktuell im Frame Buffer befindlichen Pixel die Tiefen. Auf seiner Grundlage wird
entschieden, ob ein neu eingeleitetes Fragment den Pixel an seiner Position überschreibt
oder ob es verworfen wird. Bedingung für die Übernahme des Fragments ist, dass sein
Tiefenwert geringer als die Tiefe des derzeit im Frame Buffer befindlichen Pixels ist. Damit
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ist sichergestellt, dass sich das Fragment näher an der Kamera befindet und den derzeit im
Frame Buffer existierenden Wert überdeckt. Diese Überprüfung wird auch als Depth Test
oder z-Test bezeichnet. Zur Sicherstellung der korrekten Funktion ist es wichtig, dass die
Werte im Depth Buffer vor der Berechnung des nächsten Frames auf das Maximum gesetzt
werden. Auf diese Weise führt der Depth Test für das erste Fragment auf einer bestimmten
Pixelposition stets zu einem positiven Ergebnis (Fragment wird in Pixel geschrieben). Der
Frame Buffer wird zu Beginn mit einer benutzerdefinierten Clear-Color initialisiert. Im
Bild 2-32 werden die verschiedenen Raster Operationen und ihre Wechselwirkungen mit
dem Frame Buffer dargestellt. Neben dem Depth Test kann eine weitere als Stencil Test

Fragment
Color

Depth

Stencil
Stencil Test Depth Test Blending

Frame Buffer

Bild 2-32: Raster Operations: Übernahme der Fragmente für die Pixel des Frame Buffers.

bezeichnete Prüfung durchgeführt werden. Dazu existiert neben Color- und Depth- ein
Stencilbuffer, der pro Pixel einen Stencilwert enthält. Abhängig von der Belegung des
Stencil Buffers kann die Übernahme von Fragmenten in den Framebuffer auf bestimmte
Eigenschaften der Stencilwerte beschränkt werden. Die konkrete zu prüfende Bedingung
ist anders als beim Depth Test manipulierbar und wird als Stencilfunction bezeichnet.
Genauso kann die Stenciloperation angepasst werden, welche bei der Verarbeitung eines
Fragments darüber entscheidet, wie der Stencilwert angepasst werden soll. Ein einfaches
Beispiel für die Anwendung des Stencilbuffer ist die Begrenzung des Rendergebiets. So
könnte der statische Fahrzeuginnenraum ausmaskiert werden, sodass nur der durch die
Frontscheibe sichtbare Bereich der Szene gerendert wird.

Schließlich gibt es noch die Möglichkeit des Blendings. Im Gegensatz zu den bisher
aufgeführten Raster Operationen handelt es sich beim Blending nicht um einen Test.
Stattdessen bietet Blending neben dem Verwerfen oder der Übernahme eines Fragments
in den Frame Buffer die Möglichkeit, sowohl das zu verarbeitende Fragment als auch
den derzeitigen Pixel in die neue Belegung des Color Buffers einfließen zu lassen. Dabei
können die Farbwerte additiv, multiplikativ oder auch abhängig vom Transparenzwert
(Alpha Blending basierend auf viertem Farbkanal) überlagert werden. Mittels Blending
wird beispielsweise das Rendering transparenter Objekte oder Nebel (Fog Blending)
umgesetzt.
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2.3.2 Programmable Pipeline

Die Entwicklung der Rendering-Ansätze verlief Hand in Hand mit den Fortschritten in der
Hardware-Entwicklung. Die erste Hardware-Unterstützung für Rasteranzeigen, wie sie bis
heute das Funktionsprinzip von Ausgabegeräten darstellen, erschien in den 80er Jahren.
Diese waren jedoch ausgesprochen teuer und wurden nur im akademischen und gewerb-
lichen Umfeld eingesetzt. Erst Mitte der 90er Jahre hielten Grafikkarten mit Produkten
von IBM, ATI oder Intel Einzug in die Computer privater Anwender. Ihre Architektur
bildete über mehrere Zwischenschritte die in Abschnitt 2.3.1 vorgestellte Fixed Function
Pipeline ab. Im selben Zeitraum entwickelten sich die APIs OpenGL und Direct3D zu den
Standard-Abstraktionsschichten der hersteller- und modellspezifischen Schnittstellen der
Grafikhardware und boten den Anwendungsentwicklern auf diese Weise einen intuitiven
Zugang zu den neuen Möglichkeiten. Von nun an schritten die Leistungsfähigkeit und
Flexibilität der Grafikkarten und APIs, einerseits bedingt durch die erheblichen Fortschritte
in der Hardware-Entwicklung und andererseits getrieben durch die ständig wachsenden An-
forderungen seitens der Anwendungsentwicklung, rasant voran. Den größten Treiber stellte
dabei die Spiele-Industrie dar, die mit jedem neuen Produkt auch durch neue grafische
Effekte glänzen wollte.

Der zunehmende Trend der Individualisierung brachte die Fixed Function Pipeline an
ihre Grenzen. Wenn sich ihr Verhalten auch an verschiedenen Stellen konfigurieren ließ,
war ihre Architektur in Hardware gegossen und ließ deshalb keine Anpassungen zu. Um
den steigenden Anforderungen gerecht zu werden, erschienen 2001 gemeinsam mit den
API-Standards OpenGL 1.4 und Direct3D 8 Grafikkarten, die an verschiedenen Stellen
der Verarbeitungskette alternative Zweige zuließen, die unter Einhaltung der Schnittstel-
lendefinitionen durch eigenen Programmcode spezifiziert werden konnten. Aufgrund der
Koexistenz der Fixed Function Pipeline und der programmierbaren Ausführungseinheiten
wird diese Generation auch hybride Pipeline genannt. Bezeichnet werden die Programme,
die innerhalb der hybriden Pipeline durchlaufen werden können, angelehnt an ihren primä-
ren Einsatzzweck zur Bestimmung von Pixelfarben für die grafische Ausgabe, als Shader
(to shade: schattieren, abtönen). Tatsächlich ist diese Bezeichnung jedoch irreführend, da
sie nicht auf diese Aufgabe begrenzt, sondern vielfältig einsetzbar sind. Großflächigen
Einsatz erfuhr die Shader-Technologie mit dem Aufkommen der Hochsprachen HLSL/Cg
(Zusammenarbeit von Microsoft und NVIDIA) und GLSL (Konsortium zur OpenGL-
Spezfikation), wodurch Shader einerseits wesentlich besser lesbar wurden und andererseits
an Plattformunabhängigkeit gewonnen haben [FK03], [KBR17]. Eingesetzt wurden Shader
in dieser Einführungsphase typischerweise zur Realisierung spezieller Effekte, während
der Großteil der Szene weiterhin durch die Fixed Function Pipeline gerendert wurde.

Erwartungsgemäß wurde der Anteil von Individuallösungen zur Darstellung spezieller
Effekte mit den Jahren immer größer. Insbesondere die zunehmende Rechenleistung und
der ständig wachsende Funktionsumfang der Grafikkarten-Befehlssätze und APIs führte
zu einer so intensiven Nutzung der Shader-Technologie, dass die Fixed Function Pipeline
seit 2009 mit den API-Versionen OpenGL 3.2 und Direct3D 10 aus der Architektur ent-
fernt wurde. In der programmierbaren Pipeline existieren für das Vertex- und Fragment-
Processing keine in Hardware realisierten Pipeline-Stufen mehr. Um das Rendering von
Anwendungen, die für diese Stufen keine eigenen Shader definieren, weiterhin zu unter-
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Bild 2-33: Programmierbare Rendering Pipeline.

stützen, stellen die APIs sogenannte Kompatibilitätsprofile bereit, welche die zuvor durch
Hardware realisierten Verarbeitungsschritte in Shadercode abbilden.

Im Folgenden soll auf die Struktur der Vertex und Fragment Shader detaillierter eingegan-
gen werden, da sie im weiteren Verlauf der Arbeit eine wesentliche Rolle spielen werden.
An dieser Stelle sei noch erwähnt, dass es weitere Shader gibt, welche in die Pipeline
eingreifen können. Ihre Verwendung ist im Gegensatz zu den beiden genannten jedoch
optional. Zum einen handelt es sich hierbei um den Geometry Shader. Dieser ist nachge-
lagert zum Vertex Shader, operiert auf einzelnen Primitiven und kann eine (in Grenzen)
beliebige Menge von Primitiven ausgeben, die im weiteren Pipeline-Verlauf der Rasterung
zugeführt wird. Zwischen Vertex- und Geomtery Shader kann außerdem ein Tessellation
Shader eingebunden werden. Durch diesen können die Primitive in kleinere Primitive
zerlegt werden, wodurch beispielsweise eine adaptive Detaillierung von Szenenmodellen
implementiert werden kann. Geometry- und Tesselation Shader werden im Bild 2-33 nicht
berücksichtigt und im Folgenden nicht weiter diskutiert.

Vertex Shader

Den Eingang für den Vertex Shader stellt ein einzelner Vertex dar. Dieser umfasst in jedem
Fall die Position im Model Space und darüber hinaus meist verschiedene weitere Informa-
tionen. Typische Beispiele hierfür sind Farbe, Texturkoordinaten, Normale, aber auch oft
individuell wählbare weitere Daten, die für die spezifische Aufgabe des Shaders bzw. seines
nachgelagerten Fragment Shaders von Bedeutung sind. Neben diesen vertexspezifischen
Daten kann auf sogenannte Uniform-Variablen zugegriffen werden, die für alle Ausfüh-
rungsstränge des Shaders und somit für alle Vertices des aktuell zu rendernden Objekts
gleich sind. Seit dem Shader-Modell 3.0 (DirectX 9.0c) können im Vertex Shader auch
Daten aus Texturen ausgelesen werden, die ebenfalls für alle Vertices gleich sind, jedoch
typischerweise abhängig vom aktuellen Vertex an verschiedenen Stellen gesampelt werden.
Die klassische Aufgabe des Vertex Shaders ist die Tranformation der Vertex Position aus
dem Model Space in den Clip Space, wie es im Abschnitt 2.3.1 ausführlich dargestellt wird.
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Weitere Berechnungen ergeben sich aus der entsprechenden Aufgabenstellung und müssen
nicht zwangsläufig einen Bezug zum klassischen Vertex Processing der Fixed Function
Pipeline haben.

Auch wenn die Möglichkeiten eines programmierbaren Vertex Shaders vielfältig sind,
unterliegen alle Realisierungen einer wichtigen Restriktion: der exklusiven Berechnung
des jeweiligen Vertex. Beispielsweise können im Vertex Shader nicht andere Vertices des
selben Polygons referenziert werden (hier schafft der Geometry Shader Abhilfe). Diese
Einschränkung ist essentiell für die hohe Parallelisierbarkeit und damit für das echtzeitfä-
hige Rendering komplexer Szenen. Auf diese Weise können große Mengen von Vertices
auf verschiedenen Rechenkernen der Grafikkarte parallel abgearbeitet werden. Die GPU
nutzt genau diese Eigenschaft von Shader Programmen aus, indem sie über erheblich mehr
Rechenkerne als die CPU verfügt (GEFORCE RTX 3090: 10496 CUDA Kerne [Nvi20],
AMD Ryzen Threadripper: 32 Kerne [Adv20]). Die Ausführung einer Instanz des Vertex
Shaders auf einem einzelnen Kern geschieht dabei nach der in Bild 2-34 dargestellten
Logik. Initial werden die Vertex Daten in das Input Register geschrieben, auf welches
während der Ausführung des Shadercodes ausschließlich Lesezugriff gewährt wird. Bei
der Abarbeitung der Befehlssequenz kann das temporäre Register zum Zwischenspeichern
von Ergebnissen verwendet werden. Zugriffe auf Texturen sind im Vertex Shader unüblich,
weshalb diese in Bild 2-34 nicht visualisiert werden. Die Rückgabedaten des Shaders
werden während des Durchlaufs in das Output Register geschrieben. Auf dieses besteht
ausschließlich Schreibzugriff.
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Bild 2-34: Ablaufdiagramm des Vertex Shaders.

Die mindestens notwendige Rückgabe des Vertex Shaders ist der in den Clip Space
transformierte Vertex. Darüber hinaus werden typischerweise die transformierte Normale,
Texturkoordinaten oder weitere für den Einsatzzweck dienliche Informationen zurückgege-
ben. Bezugnehmend auf das in Abschnitt 2.3.1 vorgestellte Vertex Processing der Fixed
Function Pipeline fehlen noch einige Arbeitsschritte, bevor die Rasterung durchgeführt
werden kann. Konkret sind das Clipping, Culling und die perspektivische Division. Diese
sind in der Programmable Pipeline aus Performance-Gründen weiterhin durch Hardware
realisiert und werden in der OpenGL-Pipeline unter dem Begriff „Vertex-Postprocessing“
zusammengefasst. In der anschließenden Rasterung werden alle Rückgabewerte des Vertex
Shaders auf die verschiedenen Rasterpunkte entsprechend der Gleichung (2-27) interpoliert
und dienen so als Eingabe für den nachgelagerten Fragment Shader.
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Fragment Shader

Für jeden Rasterpunkt, der durch das aktuell zu rendernde Objekt überdeckt wird, schließt
sich ein Durchlauf des Fragment Shaders an. Im direkten Vergleich zum Vertex Shader
wird der Fragment Shader gemäß Bild 2-35 auf ähnliche Weise abgearbeitet. Anstelle der
Vertex Daten werden Fragment Daten in das Input Register geladen. Diese beinhalten die
Interpolationsergebnisse aller durch den Vertex Shader zurückgegeben Vertex Daten für
das im Fokus stehende Fragment. Klassischer Weise finden innerhalb der Befehlssequenz
des Fragment Programms auch Texturzugriffe statt. Die auszulesende Stelle der Textur
wird durch die interpolierten Texturkoordinaten (siehe Bild 2-31) referenziert. Diese
werden typischerweise in einem kontinuierlichen Wertebereich und normiert vorgegeben.
Die Pixel der Textur (Texel) haben jedoch diskrete Positionen. Im Allgemeinen wird
der Rückgabewert bei einem Texturzugriff also anhand der umliegenden Texel durch
Interpolation errechnet. Man spricht in diesem Zusammenhang auch von Filterung oder
Sample.
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Bild 2-35: Ablaufdiagramm des Fragment Shaders.

Rückgabe des Fragment Shaders ist die finale Farbe des Fragments und mittelbar die Farbe
des an derselben Position befindlichen Pixels des Ausgabegeräts. Nicht zwingend, jedoch
häufig, wird zudem der Tiefenwert des Fragments zurückgegeben, sodass im Anschluss
eine Überdeckungsprüfung (siehe „Depth Test“ in Abschnitt 2.3.1) erfolgen kann. Nachdem
alle Objekte der Szene die Rendering Pipeline durchlaufen haben, enthält der Frame Buffer
die darzustellenden Fragmente bzw. Pixel, welche nun auf dem Ausgabegerät angezeigt
werden.

2.3.3 Forward vs. Deferred Rendering

Das in den vorhergehenden Abschnitten beschriebene Renderingverfahren wird als For-
ward Rendering bezeichnet. Es ist das meist und bis vor einigen Jahren ausschließlich
genutzte Verfahren. Kennzeichnend für das Forward Rendering ist, dass Polygon für Poly-
gon bis zu seiner Darstellung auf dem Frame Buffer verarbeitet wird. Häufig werden neu
verarbeitete Polygone bereits gerenderte Polygone verdecken. Die korrekte Überlagerung
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wird in letzter Instanz durch den Z-Test für jedes Fragment sichergestellt. Aus rechentech-
nischer Sicht nachteilig ist hierbei, dass verdeckte Fragmente von Polygonen die gesamte
Rendering Pipeline durchlaufen, obwohl sie schlussendlich nicht zur Ausgabe beitragen.
Die damit einhergehende Ressourcenverschwendung kann abhängig von der Szenenge-
staltung, den existierenden Lichtern und den Kameraeinstellungen sehr groß sein. Der
größte Rechenaufwand entsteht im Fragment Shader, da die Anzahl der Fragmente eines
Polygons je nach Größe und Entfernung zur Kamera erheblich größer als die Anzahl der
Vertices ist. Innerhalb des Fragment Shaders besteht die Kernaufgabe in der Anwendung
des Beleuchtungsmodells (Per-Fragment-Lighting).

Deferred Rendering greift diese Überlegung auf und nimmt eine Neustrukturierung der
Rendering Pipeline vor, welche die beschriebene Ressourcenverschwendung gezielt ver-
meidet. Zur Diskussionsgrundlage stellt Bild 2-36 die Strukturen der Forward und Deferred
Rendering Piplines gegenüber.
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Bild 2-36: Gegenüberstellung der Forward und Deferred Rendering Piplines.

Im Deferred Rendering wird ein Zwischenschritt eingefügt. Anstatt jede Geometrie isoliert
von allen anderen in den Frame Buffer zu rendern, werden die Geometrien im Deferred
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Rendering zunächst in den sogenannte G(eometry)-Buffer abgebildet. Bei diesem ersten
Schritt, der auch als Base-Pass bezeichnet wird, wird die komplexe Szene bereits auf ihr
zweidimensionales Abbild im Screen Space überführt. Genau wie im Forward Rendering
verbleiben nur die Fragmente im G-Buffer, welche später tatsächlich als Teil der Ausgabe
sichtbar sind. Verdeckte Fragmente werden durch den Z-Test eliminiert. Der namensge-
bende Unterschied ist, dass Beleuchtungsberechnungen an dieser Stelle noch nicht erfolgt
sind, sondern nachgelagert im sogenannten Lighting-Pass vorgenommen werden. Der
rechentechnische Aufwand ist deshalb bei der Erstellung des G-Buffers deutlich geringer
als im Forward Rendering.

Die Beleuchtung muss in einem zweiten Schritt erfolgen. Vorteilhaft hierbei ist, dass das
Beleuchtungsmodell nur noch auf die sichtbaren Fragmente angewendet wird. Der G-
Buffer fungiert somit als Filter, welcher schon vor aufwendigen Beleuchtungsberechnun-
gen alle nicht sichtbaren Fragmente verwirft. Da das Beleuchtungsmodell erst im Screen
Space angewendet wird und nicht wie üblich in der dreidimensionalen Szene, erfordert das
Konzept des Deferred Rendering die Verwendung mehrerer Render Targets. Als Render
Target wird eine, meist zweidimensionale, Datenstruktur (Buffer) bezeichnet, in welche
das Rendering-Ergebnis geschrieben wird. Neben den Farbinformationen der Fragmente
müssen im Deferred Rendering parallel weitere Informationen, wie der Tiefenwert und
die Aurichtung der Flächennormale, vorgehalten werden. Seit OpenGL 2.0 und Direct3D
9 unterstützen Grafikkarten das gleichzeitige Rendern verschiedener Informationen in
verschiedene Buffer. Bezeichnet wird diese Funktion als „Multiple Render Targets“ (MRT).
Der G-Buffer hält alle für das Beleuchtungsmodell relevanten Informationen fragmentspe-
zifisch vor. Im Lighting-Pass werden die Informationen des G-Buffers zusammengeführt,
um die finale Ausgabe zu ermitteln. Technisch wird dazu ein fiktiver Volumenkörper, das
sogenannte Lichtvolumen, durch einen Lighting Shader gerendert. Dieses Lichtvolumen
beinhaltet den Raum der Szene, in dem das Licht potentiell Einfluss nehmen kann. Ziel des
Lighting Shaders ist jedoch nicht die Visualisierung des Licht-Volumens. Stattdessen dient
es nach der Transformation im Vertex Shader und der Rasterung als Selektionsbereich
innerhalb des G-Buffers und markiert die Fragmente, auf welche das Beleuchtungsmodell
der betrachteten Lichtquellen angewendet werden muss. Die Beleuchtungsberechnungen
erfolgen schließlich im Fragment Shader des Lighting-Pass. Die Abläufe im Lighting-Pass
erfolgen für alle Lichtquellen in der Szene und ergeben additiv das finale Szenenbild.

Ein Nachteil des Deferred Rendering ist einerseits, dass es nicht auf jeder Hardware
unterstützt wird. Hierbei ist vor allem der Bereich mobiler Endgeräte hervorzuheben. Es ist
allerdings davon auszugehen, dass die Durchdringung in den nächsten Jahren auch dieses
Marktsegment erreichen wird. Andererseits ist Deferred Rendering durch die zusätzlichen
Arbeitsschritte nicht prinzipiell schneller als Forward Rendering. Grundsätzlich kann
man jedoch festhalten, dass Deferred Rendering bei der Verwendung vieler dynamischer
Lichtquellen eine höhere Performance erreicht. Während sich für das Forward Rendering
bei m Objekten und n Lichtquellen innerhalb der Szene ein asymptotischer Aufwand von
O(m ·n) ergibt, kann dieser durch das Deferred Rendering auf O(m+n) reduziert werden.
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2.3.4 Beleuchtungsmodelle

Bei den bisherigen Ausführungen zum Rendering wurden die Einflüsse von Lichtquellen
ausgeklammert. Aufgrund ihrer besonderen Relevanz im betrachteten Kontext sollen sie in
diesem Abschnitt gesondert beschrieben werden. Verfahren, die in der 3D-Computergrafik
zur Simulation von Licht eingesetzt werden, bezeichnet man als Beleuchtungsmodelle. Man
unterscheidet dabei grundsätzlich zwischen lokalen und globalen Ansätzen. Bevor diese
Typen thematisiert werden, wird vorgelagert die Rendergleichung eingeführt. Sie stellt die
mathematische Basis aller Beleuchtungsalgorithmen dar. Den Abschluss dieses Abschnitts
bildet das High Dynamic Range Rendering, mit welchem der Versuch unternommen wird,
die hohe Dynamik realer Beleuchtung auf einem technischen Wiedergabegerät möglichst
unverzerrt darzustellen.

Rendergleichung

Die Rendergleichung dient in der Computergrafik als Grundlage zur Berechnung globaler
Beleuchtung und wurde 1986 zeitgleich von Jim Kajiya und David Immel et al. eingeführt
[Kaj86], [ICG86]. Es handelt sich um eine Integralgleichung der Form

Lv(v,Ω) = Lv,e(v,Ω) +

∫
Ω′∈Ω+

fr(v,Ω′,Ω)Lv(v,Ω′) cos θEdΩ′, v ∈ R3,Ω ∈ Ω+ (2-28)

und sie beschreibt die Leuchtdichte Lv(v,Ω) an einem Punkt v in Richtung Ω. Bild 2-37
visualisiert die Größen der Gleichung (2-28). Zur Ermittlung von Lv(v,Ω) werden die
Leuchtdichten der Reflexionen in Richtung Ω aller Lichtstrahlen, die aus der Umgebung
auf v fallen, integriert. Diese erhält man durch die Anwendung des BRDF fr (siehe
Abschnitt 2.1.5) auf die einfallenden Leuchtdichten Lv(v,Ω′), welche je nach Einfallswinkel
θE auf die effektive Fläche zu beziehen sind. Das Integral umfasst alle differentiellen
Raumwinkelelemente dΩ′ innerhalb der Hemisphäre Ω+ über dem Flächenelement bei
v. Befindet sich v selbst auf der Oberfläche einer Lichtquelle, so kann der Term Lv,e(v,Ω)
genutzt werden, um die von der Lichtquelle bei v emittierte Strahlung abzubilden.

Um den Einfluss von Farbe berücksichtigen zu können, müsste die Rendergleichung für
jedes differentielle Wellenlängenintervall im sichtbaren Bereich ausgewertet werden. So-
wohl die Leuchtdichte der bei v einfallenden Lichtstrahlen, die von v emittierte Strahlung
als auch das durch fr abgebildete Reflexionsverhalten bei v variieren wellenlängenabhän-
gig. Die einzelnen Beiträge könnten schließlich addiert werden. Tatsächlich greift man
hier jedoch wieder die Idee der Primärvalenzen von Farbräumen auf, mit denen visuelle
Farbreize in guter Näherung durch nur drei Wellenlängen approximiert werden können.
Man beschreibt Lichtfarben und Reflexionen also nur bezüglich der gegebenen Primärva-
lenzen (meist RGB) und reduziert das Integral der Rendergleichungen über den sichtbaren
Wellenlängenbereich auf die Summe der Auswertungen an den drei Primärvalenzen.

Lichtquellen

Bevor im nachfolgenden Abschnitt beschrieben wird, wie Beleuchtungsmodelle zur Be-
rücksichtigung von Lichteinflüssen in der virtuellen Szene eingesetzt werden können, greift
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Bild 2-37: Geometrische Zusammenhänge in der Rendergleichung.

dieser Abschnitt zunächst die Modellierung der Lichtquellen innerhalb der Szene auf. Die
etablierten Lichtquellen in der Computergrafik sind starke Vereinfachungen ihrer realen
Vorbilder. Man unterscheidet grundsätzlich geometrische und globale Lichtquellen.

Eine bezeichnende Eigenschaft von geometrischen Lichtquellen ist ihre Position im Raum.
Sie werden vereinfachend auf einen Punkt reduziert und besitzen keine räumliche Aus-
dehnung. Lichtquellen dieses Typs weisen außerdem, analog zur Realität, eine distanz-
abhängige Abschwächung ihrer Beleuchtungsstärke auf. Die klassischen Beispiele für
geometrische Lichtquellen sind Punktlichtquellen (Bild 2-38 links) und Spotlichtquellen
(Bild 2-38 Mitte). Eine Punktlichtquelle verfügt über eine homogene Lichtstärkeverteilung.
Die Lichtstärke beträgt in alle Richtungen Iv,p. Der von ihr abgegebene Lichtstrom beträgt
demnach Φv,p = 4πIv,p. Ein beleuchtetes Flächenelement dAE (je nach Rendering-Methode
erfolgt die Diskretisierung in Vertices oder Fragmente) erfährt durch die Punktlichtquelle
die Beleuchtungsstärke Ev =

dΦv,p

dAE
. Es ergibt sich für den auf dAE fallenden Lichtstrom

dΦv = dΩS Iv,p und somit für die Beleuchtungsstärke des Flächenelements nach dem
photometrischen Entfernungsgesetz (2-13):

Ev,p =
dΦv,p

dAE
=

Iv,p cos θE

r2 . (2-29)

Eine Spotlichtquelle hingegen strahlt in einem Kegel aus, dessen Spitzenwinkel δs durch
den Anwender vorgegeben werden kann. Dabei ist es möglich, die Lichtstärke von der
Symmetrieachse des Kegels zu seiner Mantelfläche hin abzuschwächen, sodass ein sanfter
Übergang von beleuchteten zu dunklen Flächen entsteht. Um diesen Sachverhalt mathe-
matisch abzubilden, wird die in Gleichung (2-29) konstante Lichtstärke durch einen vom
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Abstrahlwinkel δ abhängigen Term ersetzt. Es ergibt sich somit für die Beleuchtungsstärke
Ev,s unter Verwendung eines Spotlichts der Zusammenhang

Ev,s =
Iv,s cos θE

r2 mit Iv,s =

Iv,s0 cosns δ |δ| ≤ δs

0 sonst,

wobei Iv,s0 die Lichtstärke des Spotlichts entlang der Kegelmittelachse ds beschreibt. Durch
den Parameter ns ≥ 0 kann beeinflusst werden, ob und wie stark die Lichtstärke im
Außenbereich des Kegels abgeschwächt werden soll.

r
θE

Iv,p

n

dAE

Iv,s

δ

δs

ds

dd

Iv,d

Bild 2-38: Lichtquellen in der Computergrafik (v.l.n.r. Punktlichtquelle (point light), Spot-
licht (spot light) und gerichtetes Licht (directional light)).

Eine weitere Eigenschaft geometrischer Lichter ist die Reichweite. Durch sie wird ein
Volumen (Lichtvolumen) definiert, in welchem das jeweilige Licht potentiell Einfluss
nehmen kann. Diese Eigenschaft spielt für die Performanz der 3D-Anwendung eine
entscheidende Rolle. Durch Schnitttests des Lichtvolumens mit einem Objekt der Szene
wird geprüft, ob die entsprechende Lichtquelle beim Rendern dieses Objekts berücksichtigt
werden muss. Nur wenn das Lichtvolumen und das Objekt eine Schnittmenge haben, ist
das der Fall.

Im Gegensatz zu geometrischen Lichtquellen haben globale Lichter keine räumliche
Position und somit auch keinen Volumenkörper, der ihre Einflussnahme begrenzt. Sie
wirken gleichermaßen in der gesamten Szene. Reale Lichtquellen haben immer eine
Position im Raum. Dennoch ist es sinnvoll, globale Lichtquellen einzuführen. Insbesondere
Sonnenlicht wird auf diese Weise modelliert. Grundsätzlich wäre es auch denkbar, die
Sonne als Punktlichtquelle abzubilden. In diesem Fall müsste die Punktlichtquelle jedoch
sehr weit entfernt von allen übrigen Szenenobjekten positioniert werden und ein sehr großes
Lichtvolumen besitzen. Während des Renderings müsste dann für jeden Rasterpunkt der
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Objektoberflächen der Lichteinfallsvektor gebildet werden, der sich von Rasterpunkt
zu Rasterpunkt kaum unterscheiden würde, da der Abstand zwischen der Sonne und
den Objekten erheblich größer ist, als der Abstand der Objekte untereinander. Aus dem
gleichen Grund führt die distanzabhängige Lichtabschwächung zu nicht wahrnehmbaren
Differenzen in der Beleuchtungsstärke auf den Objekten. Um den Rechenaufwand zu
reduzieren, nimmt man deshalb vereinfachend an, dass das Sonnenlicht überall mit einer
konstanten Richtung und gleich bleibender Lichtstärke strahlt. Ein derartiges Lichtmodell
wird in der Computergrafik als gerichtetes Licht (directional light) bezeichnet und wird im
Bild 2-38 auf der rechten Seite dargestellt. Die durch ein gerichtetes Licht hervorgerufene
Beleuchtungsstärke Ev,d hängt unter den genannten Vereinfachungen ausschließlich vom
Einfallswinkel θE ab:

Ev,d =
dΦv,d

dAE
∼ Iv,d cos θE.

Neben gerichtetem Licht kann ambientes Licht (ambient light) ebenfalls als globale Licht-
quelle aufgefasst werden. Hierbei handelt es sich um Licht, das überall und in alle Rich-
tungen mit gleicher Lichtstärke strahlt. Lichtstärke und Beleuchtungsstärke sind in diesem
Fall direkt proportional zueinander:

Ev,a ∼ Iv,a. (2-30)

Ambientes Licht hat kein reales Gegenstück. Die Begründung und Modellierung von
ambientem Licht wird im nachfolgenden Abschnitt detaillierter beschrieben.

Die Lichtstärken der bisher vorgestellten Lichtquellen haben keine bzw. eine sehr einfache
(Spotlicht) Richtungs- bzw. Ortsabhängigkeit. Im Gegensatz dazu sind diese Eigenschaften
bei realen Lichtquellen von großer Bedeutung. Zur Abbildung dieser Effekte existieren in
der Computergrafik sogenannte Cookies (Kurzform von "cucoloris"), welche man sich als
Transparente vor der Lichtquelle vorstellen kann, die abhängig von der Abstrahlrichtung
bzw. dem Abstrahlort verschieden lichtdurchlässig sind. Als Datenstruktur zur Verwaltung
dieser Lichtverteilungen dienen Texturen. Diese sind entweder monochrom und bestimmen
nur die Helligkeit der Lichtquelle oder farbig, wodurch sie auch die Farbe des Lichts
variieren können. Das Bild 2-39 zeigt im rechten Bereich eine einfach Szene, welche durch
ein Fenster eintretendes Sonnenlicht darstellen soll. Die Szene selbst beinhaltet jedoch nur
den Boden und eine Seitenwand des Raums, sowie die als gerichtetes Licht approximierte
Sonne.

Um die Schatten, welche durch den Fensterrahmen entstehen, zu visualisieren, wird das im
linken Bereich von Bild 2-39 dargestellte Cookie auf das gerichtete Licht angewendet. Die
Farbe schwarz codiert die vollständige Lichtundurchlässigkeit, während die Farbe weiß
vollkommene Transparenz repräsentiert. Die Interpretation des Cookies wurde im Beispiel
so gewählt, dass dessen Randwerte extrapoliert werden. Im anderen Fall würde neben dem
Fenster ebenfalls Licht in den Raum scheinen. Man kann so den Effekt eines durch ein
Sprossenfenster eintretendes Licht erzeugen, ohne die zugrunde liegenden Phänomene,
wie die Verschattung, modellieren zu müssen.

Bisher wurden die Lichtquellenmodelle der Computergrafik ausschließlich photometrisch
diskutiert. Um farbiges Licht und im weiteren Verlauf auch farbabhängige Reflexion model-
lieren zu können, genügt diese Betrachtung jedoch nicht. Tatsächlich werden Lichtquellen
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Bild 2-39: Verwendung eines Cookies zur ortsabhängigen Variation der Lichtstärke Iv,d

eines gerichteten Lichts (links: Cookie-Textur, rechts: Rendering einer einfachen
Beispielszene).

nicht durch ihre skalare Lichtstärke, sondern als Farbe beschrieben. In Abschnitt 2.2.6
wurde gezeigt, wie Licht durch seine Farbkoordinaten nicht nur bezüglich der Helligkeit,
sondern auch bezüglich des Farbtons festgelegt werden kann. Grundlage dafür bildete
die Bewertung des Lichtspektrums mit den Spektralwertfunktionen. Auf diese Weise
konnte der Farbeindruck des Spektrums durch drei skalare Größen – die Farbwerte der
Primärvalenzen – beschrieben werden. Als Farbraum wird im Hinblick auf die spätere
Ausgabe durch einen Monitor der RGB-Raum verwendet. Man nähert auf diese Weise das
kontinuierliche Spektrum des Lichts durch die RGB-Farbanteile an und wertet Reflexionen
auf Objekten pro Farbanteil aus. Dieses Verfahren ermöglicht die Modellierung farbiger
Lichter und Objekte mit einem vertretbaren rechentechnischen Aufwand und einem über-
sichtlichen Parameterraum. Mit Ausnahme des High Dynamic Range (HDR) Rendering-
Verfahrens (siehe Abschnitt 2.3.4) werden die Farbwerte von Lichtquellen normiert einge-
setzt. Da die verwendeten Ausgabegeräte die reale Helligkeit durch hardware-technische
Einschränkungen in den allermeisten Fällen nicht wiedergeben können, ist der direkte
Bezug zu photometrischen Größen ohnehin nicht von Bedeutung. Entscheidend für die
realistische Wahrnehmung ist nur das Verhältnis der Helligkeiten innerhalb der Szene.
Die hellste definierbare Lichtquelle ist dementsprechend weiß und hat den Farbvektor
(1, 1, 1)T .

Lokale Beleuchtungsmodelle

Nachdem die Lichtquellenmodelle diskutiert wurden, stellt sich nun die Frage, wie das von
ihnen ausgesandte Licht mit den Objekten in der virtuellen Szene wechselwirkt. Grundlage
hierfür bilden Beleuchtungsmodelle. Die meist genutzten Beleuchtungsmodelle in der
Computergrafik sind lokale Modelle. Sie zeichnen sich dadurch aus, dass die Farbe eines
Oberflächenpunkts (je nach Ansatz ein Vertex oder ein Fragment) in der Szene, welche von
der Beschaffenheit des Materials und dem Einfluss darauf fallender Lichtstrahlen abhängt,
unabhängig von allen anderen Szenenpunkten bestimmt werden kann. Offensichtlich
werden hierbei drastische Vereinfachungen getroffen, da ein derartiger Ansatz wesentliche
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Effekte, wie reflektiertes Licht oder Transmission, gänzlich ignoriert. Gleichzeitig stellen
diese Vereinfachungen jedoch sicher, dass die Farben einzelner Szenenpunkte isoliert
voneinander und in einem Schritt berechnet werden können, wodurch erneut die Effizienz
der GPU bei der parallelen Berechnung genutzt wird. Aufgrund der Echtzeitanforderungen
werden die meisten Anteile in interaktiven Anwendungen, wie Computerspielen oder
Simulationen, auf Basis lokaler Beleuchtungsmodelle gerendert.

Anhand des 1975 veröffentlichten Phong-Beleuchtungsmodells, welches bis heute in den
Grundzügen unverändert geblieben ist, soll nun der Einsatz von lokalen Beleuchtungsmo-
dellen in der Computergrafik verdeutlicht werden [Pho75]. Aufgabe jedes Beleuchtungs-
modells ist die Bestimmung der Objektfarbe aus Sicht des Betrachters. In photometrischen
Größen ist die Leuchtdichte für die wahrgenommene Helligkeit entscheidend. Sie ist das
Maß für die Wahrnehmung durch das menschliche Auge. Um Farben abbilden zu kön-
nen, muss diese Größe jedoch separat für die drei Primärvalenzen des RGB-Farbraums
ausgewertet werden. Zur Überführung der Bestrahlungsstärke auf einem gegebenen Flä-
chenelement in dessen Leuchtdichte können die in Abschnitt 2.1.5 beschriebenen BRDF
eingesetzt werden.

Bei dem Phong-Beleuchtungsmodell handelt es sich um ein empirisches Modell zur
Beschreibung von Reflexionsphänomenen an Objektoberflächen. Das Phong-Modell be-
stimmt die finale Farbe eines Oberflächenpunkts durch die materialabhängige Interpolation
verschiedener BRDF. Dazu unterscheidet Phong drei Grenzfälle von Reflexionen, für
die jeweils reduzierte BRDF definiert werden. Diese sind ambiente (a: ambient), diffu-
se (d: diffuse) und glänzende (s: specular) Reflexionen. Für jeden dieser Fälle können
den verschiedenen Materialien der Szenenobjekte unterschiedliche farbabhängige Refle-
xionscharakteristiken (Ca,m, Cd,m, Cs,m ∈ [0, 1]3) zugewiesen werden. Die Koordinaten
der Farbvektoren beschreiben die Reflexionskoeffizienten der Materialien bezüglich der
Primärvalenzen des RGB-Farbraums. Insgesamt ergibt sich die beobachtete Farbe eines
Objektes aus der RGB-Lichtfarbe Cl ∈ [0, 1]3 und dem Reflexionsverhalten Ca,m, Cd,m

und Cs,m des Materials für die verschiedenen Reflexionsfälle. Wählt man beispielsweise
als Materialfarbe den RGB-Vektor (1, 1, 1)T , so bleibt die Lichtfarbe (im diffusen Re-
flexionsfall) nach der Reflexion unverändert. Für (1, 0, 0)T wird hingegen nur die rote
Komponente des Lichts reflektiert. Das Objekt erscheint deshalb für den Betrachter rot,
sofern Lichtquellen mit rotem Farbanteil in der Szene existieren. Im anderen Fall ist das
Objekt schwarz. Die für den jeweiligen Reflexionsfall spezifischen BRDF setzen Beleuch-
tungsstärke und Leuchtdichte somit in Beziehung. Während sich der Zusammenhang im
diffusen Fall durch einfache farbspezifische Proportionalitätsfaktoren äußert, werden bei
der spiegelnden Reflexion zusätzliche Abhängigkeiten berücksichtigt. Die Details werden
im Folgenden diskutiert.

Die ambiente Komponente beschreibt Reflexion durch Licht, das aus allen Richtungen
in gleichbleibender Intensität strahlt. Dieses Licht hat keinen physikalischen Ursprung.
Es wird der Vernachlässigung von Mehrfachreflexion in lokalen Beleuchtungsmodellen
geschuldet. Lokale Beleuchtungsmodelle berücksichtigen abgesehen von der ambienten
Komponente ausschließlich Licht, das direkt von einer Lichtquelle auf den betrachteten
Oberflächenpunkt geworfen wird, um dessen Farbe aus Sicht des Betrachters zu ermit-
teln. Tatsächlich fällt Licht jedoch aus allen Richtungen auf einen Oberflächenpunkt, da
andere Objekte in der Umgebung Licht reflektieren und auf diese Weise unendlich viele
Lichtquellen verschiedener Farbe erzeugen. Da diese Gegebenheit in lokalen Modellen aus
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Gründen der Recheneffizienz nicht berücksichtigt wird, dient das Modell des ambienten
Lichts zur Approximation der realen Effekte. Aus Gleichung (2-30) ist bekannt, dass sich
die Beleuchtungsstärke unabhängig von allen geometrischen Gegebenheiten proportional
zur definierten Lichtstärke verhält. Nach Gleichung (2-15) liefert die BRDF somit den
direkten Übergang von der definierten Lichtfarbe zur Leuchtdichte. Da die BRDF des
ambienten Reflexionsfalls durch farbspezifische Proportionalitätsfaktoren Ca,m gebildet
wird, ergibt sich letztlich für die Objektfarbe Ca der Term

Ca = Ca,m ◦Cl. (2-31)

Der Operator ◦ bezeichnet hierbei das Hadamard-Produkt, sodass Ca ebenfalls ein Element
des [0, 1]3 ist und die vom Betrachter wahrgenommene Farbe des Szenenpunkts im RGB-
Raum definiert.

Als nächstes soll die diffuse Reflexion betrachtet werden. Sie bildet das Reflexionsverhal-
ten von Körpern ab, deren Oberflächen nach dem Lambertschen Gesetz (siehe Abschnitt
2.1.5) reflektieren. Ein Lambertsches Flächenelement weist eine richtungsunabhängige
Leuchtdichte auf. Sie hängt nur von der Beleuchtungsstärke ab. Diese ergibt sich abhängig
vom Lichtquellentyp gemäß Abschnitt 2.3.4 durch die geometrischen Lagebeziehungen
zwischen Lichtquelle und Objekt sowie der definierten Lichtfarbe Cl. Unter den Reflexi-
onsfaktoren Cd,m des Materials für den diffusen Fall ergibt sich somit die wahrgenommene
Objektfarbe Cd gemäß

Gerichtetes Licht: Cd = Cd,m ◦ cos θE ·Cl = Cd,m ◦ (l · n) ·Cl

Punktlicht: Cd = Cd,m ◦
cos θE

r2 ·Cl = Cd,m ◦
l · n
r2 ·Cl

Spotlicht: Cd = Cd,m ◦
cos θE

r2 ·C?
l = Cd,m ◦

l · n
r2 ·C

?
l

mit C?
l =

Cl · cosns δ |δ| ≤ δs

0 sonst.

(2-32)

Da die Koordinaten der Vertices aller Objekte zur Verfügung stehen und Vektoroperationen
auf der GPU sehr schnell ausgeführt werden können, erfolgt die Berechnung des Lichtein-
fallswinkels θE vektorbasiert. Dazu werden die in Bild 2-40 dargestellten Hilfsvektoren
genutzt. Der Normalenvektor n steht für jedes Vertex und nach der Rasterung auch für
jedes Fragment zur Verfügung. Der Einheitsvektor l, welcher ausgehend vom betrachteten
Oberflächenpunkt auf die Lichtquelle zeigt, wird berechnet. Auf die gleiche Weise kann
der Cosinus von δ durch das Skalarprodukt d · (−l) ausgedrückt werden.

Die zugrunde liegende BRDF findet sich im diffusen Fall im Vektor Cd,m. Je nach betrachte-
ter Primärvalenz des RGB-Farbraums entspricht die BRDF fr der Rendergleichung (2-28)
dem ersten (rote Primärvalenz RP), zweiten (grüne Primärvalenz GP) oder dritten (blaue
Primärvalenz BP) Eintrag aus Cd,m:

fr,d,R = cd,m,R

fr,d,G = cd,m,G

fr,d,B = cd,m,B

mit Cd,m = (cd,m,R, cd,m,G, cd,m,B)T .
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Bild 2-40: Vektorbasierte Berechnung diffuser Reflexion nach Phong.

Hieran zeigt sich, dass das Phong-Beleuchtungsmodell die Forderung der Energieerhal-
tung (siehe Abschnitt 2.1.5) an eine physikalisch korrekte Reflexionsdichtefunktion im
Allgemeinen nicht erfüllt. Aus den Betrachtungen in Abschnitt 2.1.5 ist hervorgegangen,
dass nach Gleichung (2-16) der Wert von fr,L = 1

π
für eine BRDF eines Lambertschen

Flächenelements bei vollständiger Reflexion gilt, während für die Einträge des Vektors Cd,m

Werte im Intervall [0, 1] zulässig sind. Um die Energieerhaltung sicherzustellen, müssten
die BRDF also um den Faktor 1

π
ergänzt werden. Da es sich hierbei jedoch nur um einen

konstanten Skalierungsfaktor handelt, wird von dieser Normierung abgesehen.

Der dritte Reflexionsfall des Phong-Modells ist die spiegelnde Reflexion. Dieser Fall
tritt primär auf glatten Oberflächen, wie geschliffenen Metallen oder nassen Strukturen,
auf. Er dient der Darstellung von Glanzeffekten. Bei der spiegelnden Reflexion hängt
die Leuchtdichte des betrachteten Szenenpunkts nicht nur von der Beleuchtungsstärke,
sondern auch von der Beleuchtungsrichtung und der Beobachtungsrichtung ab. Das Licht
wird primär in die ideale Reflexionsrichtung reflektiert. Im Bild 2-41 werden die relevanten
Größen zur Berechnung der spiegelnden Reflexion nach Phong visualisiert.

Neben den Größen, die bereits aus dem diffusen Fall bekannt sind, kommen die Vektoren
zum Betrachter e und der idealen Reflexionsrichtung rspec hinzu. Entscheidend für die
Stärke der Reflexion ist die Übereinstimmung von e und rspec. Der Reflexionsvektor rspec

kann aus den bekannten Vektoren durch

rspec = 2n · (n · l) − l (2-33)

ermittelt werden. Da diese Berechnung verhältnismäßig aufwendig ist, hat James F. Blinn
1977 eine erheblich schnellere Approximation eingeführt, die heute typischerweise Anwen-
dung findet [Bli77]. Die optimierte Variante wird als Blinn-Phong-Modell bezeichnet.
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Bild 2-41: Berechnung spiegelnder Reflexion nach Phong.

Sind e und rspec gleich, nimmt der Beobachter die maximale Helligkeit wahr. Durch
den Cosinus des Winkels εer wird die Übereinstimmung der Vektoren gemessen. Wie
bereits aus der Lichtstärke des Spotlichts bekannt, wird darüber hinaus ein Exponent nr

eingesetzt, um die Abschwächung bei zunehmendem Winkel εer parametrieren zu können.
Es handelt sich bei nr um eine materialspezifische Größe, die für raue Materialien klein ist
und mit der Glattheit zunimmt. Für einen idealen Spiegel gilt nr → ∞. Insgesamt findet
sich abhängig von der eingesetzten Lichtquelle folgende Berechnungsvorschrift für die
spiegelnde Reflexion:

Gerichtetes Licht: Cs = Cs,m ◦
nr + 1

2π
cosnr εer ·Cl = Cs,m ◦

nr + 1
2π

(rspec · v)nr ·Cl

Punktlicht: Cs = Cs,m ◦
nr + 1

2π
cosnr εer

r2 ·Cl = Cs,m ◦
nr + 1

2π
(rspec · v)nr

r2 ·Cl

Spotlicht: Cs = Cs,m ◦
nr + 1

2π
cosnr εer

r2 ·C?
l = Cs,m ◦

nr + 1
2π

(rspec · v)nr

r2 ·C?
l .

(2-34)

Die physikalischen Hintergründe der spiegelnden Reflexion sind komplex und werden
in dieser Arbeit nicht betrachtet. Bei den Gleichungen (2-34) handelt es sich um rein
empirische Approximationen. Der Normierungsfaktor knorm = nr+1

2π dient dazu, den reflek-
tierten Lichtstrom vom Exponenten nr zu entkoppeln. Würde man auf diese Normierung
verzichten, würde der reflektierte Lichtstrom bei konstanter Beleuchtungsstärke mit nr

variieren. Um ihn zu finden, nutzt man die Bedingung der Energieerhaltung einer BRDF
aus Abschnitt 2.1.5, indem man fordert, dass die Integration des Reflexionsfaktors eines



66 2 Grundlagen

Szenenpunkts über seiner gesamten Hemisphäre Ω+ unabhängig von nr Eins entsprechen
soll:

knorm ·

∫
ΩS ∈Ω+

cosnr θS dΩS
!
= 1.

Durch partielle Integration findet man, dass∫
ΩS ∈Ω+

cosnr θS dΩS =

∫ 2π

ϕS =0

∫ π
2

θS =0
cosnr θS sin θS dθS dϕS =

2π
nr + 1

gilt. Der gesuchte Normierungsfaktor knorm ergibt sich schließlich durch Kehrwertbildung
und stellt die Invarianz bezüglich des Exponenten nr sicher.

Typischerweise ist es so, dass die Lichtquellenfarbe Cl bei der spiegelnden Reflexion im
Gegensatz zur diffusen Reflexion meist die ausschlaggebende Komponente darstellt. Es
findet sich also im reflektierten Licht Cs primär die Farbe der Lichtquelle, weniger die
Farbe des beleuchteten Objekts Cs,m wieder. Aus diesem Grund erhalten die Einträge der
Farbvektoren für den spiegelnden Fall häufig die gleichen Werte. Glatte Kunststoffe stellen
hierfür ein Beispiel dar. Gleichzeitig gilt diese Regel jedoch nicht für alle Metalle (z.B.
Gold, Kupfer), deren Eigenfarbe auch an den Glanzpunkten deutlich zu erkennen ist (Vgl.
Tabelle 2-4).

Bis hierhin wurden drei Komponenten vorgestellt, welche die Wahrnehmung eines Szenen-
punkts durch den Beobachter approximieren. Die meisten Objekte können nicht durch eine
einzelne dieser Komponenten beschrieben werden. Stattdessen spannen sie das Feld auf,
in dem die Objekte der Szene entsprechend ihres Materials einsortiert werden können. Das
Beleuchtungsmodell führt deshalb alle beschriebenen Effekte zusammen und bestimmt
so die finale Farbe C∑ jedes Szenenpunkts durch die Summierung der angesprochenen
Reflexionsfälle

C∑ = Ca + Cd + Cs. (2-35)

Für einen gegebenen Szenenpunkt gilt es, die Gleichung (2-35) für jede auf ihn einwirkende
Lichtquelle auszuwerten, wobei je nach Lichtquellentyp die entsprechende Beziehung
aus den Gleichungen (2-31), (2-32) und (2-34) zu wählen ist. Das Bild 2-42 zeigt ein
nach dem Phong-Modell beleuchtetes Objekt und isoliert die Einflüsse der verschiedenen
Reflexionstypen innerhalb der Gesamterscheinung.

Ca Cd Cs C∑
Bild 2-42: Einflüsse der verschiedenen Reflexionstypen innerhalb des Phong-Beleuchtungs-

modells [Quelle: Wikipedia].

Um einen Eindruck geeigneter Parametrierungen des Phong-Beleuchtungsmodells zu
erhalten, werden in Tabelle 2-4 abschließend die Werte für verschiedene Materialien
aufgelistet.
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Tabelle 2-4: Materialparameter verschiedener Materialien für das Phong-Beleuchtungs-
modell nach [BB06].

Material CT
a,m CT

d,m CT
s,m nr

Kunststoff (0.00, 0.00, 0.00) (0.01, 0.01, 0.01) (0.50, 0.50, 0.50) 32
Messing (0.33, 0.22, 0.03) (0.78, 0.57, 0.11) (0.99, 0.94, 0.81) 28
Bronze (0.21, 0.13, 0.05) (0.71, 0.43, 0.18) (0.39, 0.27, 0.17) 26
Kupfer (0.19, 0.07, 0.02) (0.70, 0.27, 0.08) (0.26, 0.14, 0.09) 13
Gold (0.25, 0.20, 0.07) (0.75, 0.61, 0.23) (0.63, 0.56, 0.37) 51
Silber (0.19, 0.19, 0.19) (0.51, 0.51, 0.51) (0.51, 0.51, 0.51) 51

Globale Beleuchtungsmodelle

Im Unterschied zu lokalen Beleuchtungsmodellen, die eine isolierte Betrachtung von
Objektoberflächen zur Berechnung der wahrgenommenen Farbe ermöglichen, simulieren
globale Beleuchtungsmodelle die Ausbreitung von Licht in der Szene. Dabei berücksich-
tigen sie auch Wechselwirkungen zwischen Objekten der Szene, die keine Lichtquellen
sind, aber Licht reflektieren und insofern letztlich selbst als Lichtquellen aufgefasst werden
müssen. Globale Ansätze sind erheblich rechenintensiver und nach dem aktuellen Stand der
Technik für die allermeisten Echtzeitanwendungen nicht als alleinige Rendering-Verfahren
geeignet. Andererseits führen sie aufgrund der deutlich größeren Nähe zur Physik zu realis-
tischeren Ergebnissen. Viele Effekte, die bei der Verwendung von lokalen Ansätzen durch
aufwendige Zusatzberechnungen (z.B. Shadow-Maps, Ambient Occlusion, Screen Space
Reflection, Depth of Field [AFS+13]) generiert werden müssen und hier nicht thematisiert
werden, enstehen beim Einsatz globaler Beleuchtungsmodelle implizit und in überlegener
Qualität.

In der Computergrafik finden zwei grundlegend verschiedene Ansätze zur Berechnung
globaler Beleuchtung Anwendung. Hierbei handelt es sich um Radiosity und Raytracing.
Beide Verfahren bilden die Szene auf unterschiedliche Weise ab und verfügen deshalb
über verschiedene Vor- und Nachteile. Da Radiosity annimmt, dass die gesamte Szene aus
ideal Lambertschen Flächen besteht (siehe Abschnitt 2.1.5), ist die Beleuchtungssituation
unabhängig vom Blickwinkel des Betrachters. Für den Fall statischer Lichtquellen genügt
es deshalb, die Beleuchtungssituation einmalig zu ermitteln. Anschließend ist nur noch die
Darstellung der Szenenkörper in der richtigen Orientierung und Verdeckung zu leisten. Auf
diese Weise ermöglichte das Radiosity-Verfahren schon früh die Berücksichtigung globaler
Beleuchtung in Grafik-Anwendungen. Mit der exponentiell steigenden Rechenleistung
und neuen algorithmischen Umsetzungen gewann das rechenintensivere Raytracing (dt.
Strahlverfolgung) bis heute jedoch immer mehr an Bedeutung und ist dem Radiosity-
Verfahren inzwischen in den meisten Fällen überlegen. Es führt insbesondere bei der
Existenz spiegelnder Flächen in der Szene zu deutlich besseren Ergebnissen, während
glatte Oberflächen im Radiosity-Ansatz in keinster Weise Berücksichtigung finden. Aus
diesem Grund soll die globale Beleuchtung im Folgenden am Beispiel des Raytracing-
Verfahrens vorgestellt werden.

Wie für die in Abschnitt 2.3.1 beschriebene Rasterisierung in der klassischen Rendering
Pipeline, bilden auch bei Verwendung des Raytracing-Verfahrens der Szenegraph und
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insbesondere die Lagen und Eigenschaften der Lichter und der Kamera die Grundlage. Bei
der Rasterisierung werden Objekt für Objekt, Vertex für Vertex und schließlich Fragment
für Fragment weitestgehend unabhängig voneinander abgearbeitet wird. Man nennt diesen
Ansatz auch objektorientiert, da die jeweilige Objektgeometrie Kern der Betrachtung ist.
Sie bildet den Startpunkt der Algorithmik und aus ihrer Sicht werden Einflüsse von Licht
und Betrachtungswinkel bewertet. Das Raytracing-Verfahren hingegen ist bildorientiert.
Es arbeitet Pixel für Pixel des aktuellen Frames ab. Bild 2-43 veranschaulicht das zugrunde
liegende Prinzip. Obwohl es naheliegend wäre, Lichtstrahlen von den Lichtquellen auf
ihrem Weg bis zum Beobachter zu verfolgen, gehen Raytracing-Ansätze in vielen Fällen
den umgekehrten Weg. Sie verfolgen den Lichtstrahl ausgehend vom Einfallswinkel am
Auge zurück. Das hat den erheblichen Vorteil, dass nur die Strahlen berücksichtigt werden,
welche den Betrachter erreichen. Würde man an der Lichtquelle beginnen, so wäre die
Chance einen Strahl auszuwählen, der schließlich am Augpunkt (Kameraposition) eintrifft,
verschwindend gering. Wie viele Einfallswinkel dabei berücksichtigt werden, hängt von der
erwünschten Bildgüte ab. Je mehr Strahlen (Rays) betrachtet werden, desto rechenintensiver
wird das Verfahren. Eine untere Schranke für die Menge der zu betrachtenden Rays ist
bei einer vollständig durch Raytracing gerenderten Szene durch die Pixel des Frames bzw.
die Rasterpunkte der Bildebene gegeben. Im einfachsten Fall schießt man vom Augpunkt
durch jeden Pixel einen Ray, wie es in Bild 2-43 beispielhaft für zwei konkrete Pixel
dargestellt wird. Diese Rays werden auch als Primärrays bezeichnet, da sie den ersten
Schritt der Strahlverfolgung darstellen.

Pixel
Pixel

Bildebene

Hit 1

Hit 2
Hit 3

Hit 4

Ray
Primär

Ray (Miss)
Primär

Bild 2-43: Prinzip des bildorientierten Raytracing-Verfahrens.

Die ursprüngliche Aufgabe des Raytracings ist die Prüfung der Sichtbarkeit von Objekten
aus der Perspektive des Augpunkts. Umgesetzt wird diese Überprüfung durch Schnittpunkt-
tests zwischen dem jeweiligen Ray und den Objekten der Szene. Dazu müssen sowohl der
Ray als auch die Geometrien der Szenenobjekte mathematisch gefasst werden. Ein Ray
kann als Halbgerade gr im dreidimensionalen Raum durch die Vorschrift

gr : v = tr · dr + ar, tr ≥ 0 (2-36)
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formuliert werden, wobei dr ∈ R
3 der normierte Richtungsvektor und ar ∈ R

3 die Position
des Augpunkts sind. Der skalare Wert tr ist der Halbgeradenparameter und v ∈ R3 der mit
ihm korrespondierende Punkt auf gr. Die Koordinaten von dr ergeben sich durch den Pixel
auf der Bildebene. Die Geometrien der Objekte werden durch Primitive zusammengesetzt.
Im Gegensatz zur Rasterisierung bestehen nun jedoch andere Anforderungen an die Primi-
tive. Wesentlich ist, dass die Schnittpunktberechnung effizient erfolgen kann, da diese den
größten rechentechnischen Aufwand von Raytracern einnimmt. Trotz dessen beschränkt
man sich meist auf Polygone, da Raytracer bis heute größtenteils in hybriden Pipelines,
welche einige Aspekte des Renderings durch Rasterisierung und andere durch Raytracing
abdecken, zum Einsatz kommen. Wir betrachten beispielhaft eine Kugel, welche durch ihr
Zentrum cK ∈ R

3 und ihren Radius rK ∈ R
≥0 bestimmt wird.

Die Punkte auf der Kugeloberfläche s erfüllen die Gleichung

s : |v − cK |
2 = r2

K ≡ (v − cK) · (v − cK) = r2
K . (2-37)

Einsetzen des Rays (2-36) für den Punkt v in der Kugelgleichung (2-37) führt nach Umfor-
mung auf die Gleichung

(dr · dr) · t2
r + 2 · (dr · (ar − cK)) · tr + (ar − cK) · (ar − cK) − r2

K = 0

und somit zu der Lösung

tr =
−h1 ±

√
h2

1 − 4d2
r h2

2d2
r

mit h1 = 2dr · (ar − cK)

h2 = (ar − cK)2 − r2
K .

Abhängig vom Wert der Diskriminate D = h2
1 − 4d2

r h2 ergeben sich die Fälle

• D > 0: Ray durchstößt die Kugel (2 Schnittpunkte)

• D = 0: Ray tangiert die Kugel (1 Kontaktpunkt)

• D < 0: Ray verfehlt die Kugel,

wobei vorausgesetzt wird, dass der Rayparameter tr für die entsprechende Lösung mindes-
ten so groß ist, dass der Schnittpunkt aus Sicht des Augpunkts hinter der Bildebene liegt.
Im anderen Fall werden die Lösungen verworfen.

Ein Schnittpunkt des Rays mit einem Primitiv der Szene wird als Hit bezeichnet. Im
Regelfall ergeben sich für jeden Ray eine Vielzahl von Hits. Von Interesse ist jedoch nur
derjenige, welcher den geringsten Abstand zum Augpunkt hat. Transparente Medien stellen
eine Ausnahme dar, sollen aber hier nicht näher betrachtet werden. Die Schnittpunktberech-
nung nimmt den größten Anteil des Rechenaufwands von Raytracing-Verfahren ein. Die
Berechnung der Hits mit allen Objekten der Szene ginge mit einer immensen Verschwen-
dung der Rechenleistung einher. Um Raytracer zu beschleunigen, fasst man die Elemente
der Szene rekursiv in lokale Gruppen zusammen und sortiert diese in einer geeigneten
Datenstruktur. Man spricht bei dieser Konstruktion von einer Hüllkörper-Hierarchie (BVH,
Bounding Volume Hierarchy).
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Ein Hüllkörper vereinfacht allgemein die Berechnung von Schnittüberprüfungen. Dazu
umhüllt er die eigentliche, komplexe Geometrie und weist dabei selbst eine einfache Form
auf. Es haben sich verschiedene Formen von Hüllkörpern etabliert. Beispiele sind Axis-
Aligned Bounding Boxes (AABB), Oriented Bounding Boxes (OBB), Kugeln oder Boun-
ding Slabs (k-DOP, Discretely Oriented Polytopes). Die Auswahl des Hüllkörpertyps ist
ein Kompromiss zwischen einfacher Form bzw. schnellem Schnitttest und der Volumen-
zunahme gegenüber der eigentlichen Geometrie, welche zu einer größeren Anzahl von
Schnittprüfungen führt.

Beispielhaft soll hier die Schnittprüfung mit AABB-Hüllkörpern vorgestellt werden. Bei
diesen Hüllkörpern handelt es sich um Quader, deren Kanten parallel zum globalen Koor-
dinatensystem ausgerichtet sind. Die Quader müssen bei dynamischen Objekten deshalb
so groß gewählt werden, dass das umhüllte Objekt in allen Rotationen enthalten ist. In Bild
2-44 wird ein Zylinder dargestellt, der von einem AABB-Hüllkörper umschlossen wird.

ar

x

y

z

dr

wdr,z

¯
zB

z̄B

Bild 2-44: Schnitttest mit AABB-Hüllkörper.

Im Folgenden wird beschrieben, wie die Kollisionsprüfung zwischen einem Ray und dem
skizzierten Hüllkörper erfolgt. Im ersten Schritt wird der Ray auf die Achsen des globalen
Koordinatensystems projiziert, an welchem der Hüllquader ausgerichtet ist. Dazu werden
sowohl der Augpunkt als auch der Richtungsvektor des Rays (siehe Gleichung (2-36)) mit
den Basisvektoren xw, yw und zw des Weltkoordinatensystems w skalarmultipliziert.

ar · xw = war,x, dr · xw = wdr,x

ar · yw = war,y, dr · yw = wdr,y

ar · zw = war,z, dr · zw = wdr,z

(2-38)
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Der AABB-Hüllkörper kann aufgrund seiner Orientierung im Koordinatensystem w beson-
ders einfach beschrieben werden. Er umfasst alle Punkte v ∈ R3, deren Koordinaten in den
Intervallen

wvx ∈ [w¯
xB, w x̄B]

wvy ∈ [w
¯
yB, wȳB]

wvz ∈ [w
¯
zB, wz̄B]

(2-39)

enthalten sind. Diese Eigenschaft erlaubt die isolierte Kollisionsprüfung je Koordinaten-
achse, indem man durch Gleichsetzen der Rayterme (2-38) und der Intervallgrenzen des
Hüllkörpers (2-39) für die jeweilige Dimension die Rayparameter erhält:

¯
tx =

w¯
xB − wvx

wdr,x
, t̄x =

w x̄B − wvx

wdr,x

¯
ty =

w
¯
yB − wvy

wdr,y
, t̄y =

wȳB − wvy

wdr,y

¯
tz =

w
¯
zB − wvz

wdr,z
, t̄z =

wz̄B − wvz

wdr,z
.

Aufbauend auf diesen Vorüberlegungen gilt nach Cyrus-Beck die folgende Äquivalenz
[CB78]:

Ray ∩ AABB = ∅ ≡ max{
¯
tx,¯

ty,¯
tz} > min{t̄x, t̄y, t̄z}

Mit dieser einfachen Überprüfung können viele Rays bereits vor einem exakten Schnitt-
test mit der tatsächlichen Geometrie ausgeschlossen werden. Diejenigen Rays, die den
Hüllkörper schneiden, müssen einem erneuten Schnitttest mit der konkreten Geometrie
unterzogen werden. Dieser ist im Regelfall erheblich aufwendiger. Bei Polygonmodel-
len ist die Schnittprüfung mit jeder Polygonfläche erforderlich. Weiterhin ist nun von
Interesse, wo die Schnittpunkte auf der Geometrie liegen, um dort die Auswertung des
Beleuchtungsmodells vornehmen zu können.

In komplexen Szenen existiert eine Vielzahl von Objekten, sodass die Verwendung von
Bounding Volumes die Schnittprüfung bereits erheblich vereinfacht. Ein iteratives Prüfen
aller Bounding Volumes in der Szene wäre jedoch noch immer zu rechenintensiv, als
dass es die Realisierung eines Echtzeit-Raytracings ermöglichen würde. Zur Reduzierung
der nötigen Schnitttests organisiert man die Hüllkörper der einzelnen Objekte in einer
Hierarchie, wobei lokale Gruppen von Hüllkörpern wiederum durch Hüllkörper zusam-
mengefasst werden. Auf diese Weise entsteht eine hierarchische, meist baumartige Struktur.
Bild 2-45 setzt den Szenegraphen und die korrespondierende BVH in Beziehung.

Die in Bild 2-45 grau dargestellten Szenenobjekte werden jeweils von ihren Hüllkörpern C,
D und E umhüllt. D und E werden dabei wiederum durch den Hüllkörper B in einer lokalen
Gruppe zusammengefasst. Schließlich umhüllt A alle dargestellten Objekte. Während in
Bild 2-45 auf der linken Seite die räumliche Anordnung der Objekte und Hüllkörper in der
Szene visualisiert wird, ist auf der rechten Seite die Baumstruktur des BVH dargestellt. Der
die gesamte Szene umfassende Hüllkörper A stellt die Wurzel des Baums dar. Die Kinder
von A sind B und C. Bei C handelt es sich um ein Blatt des BVH, da es der Hüllkörper einer
Geometrie der Szene ist. Im Gegensatz dazu hat B die Kinder D und E und repräsentiert
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A

D
B

E

C
Ray A

B C

D E

Bild 2-45: Organisation der Szenenobjekte in einer BVH.

somit kein Objekt der Szene, sondern einen räumlichen Bereich. D und E sind als Blätter
schließlich wieder mit Szenenobjekten verknüpft.

Der Nutzen einer BVH offenbart sich, wenn man die Schnittprüfung eines Rays betrachtet,
wie er beispielhaft in Bild 2-45 visualisiert wird. Anstelle der iterativen Schnittprüfung
zwischen dem Ray und allen Hüllkörpern der Objekte (im Beispiel: C,D,E) wird die
Hierarchie traversiert. Beginnend an der Wurzel zeigt sich, dass der Ray den Hüllkörper
A schneidet. Dementsprechend werden anschließend dessen Kinder überprüft. Da der
Ray den Hüllkörper B nicht schneidet, können alle unterhalb vom Knoten B organisierten
Elemente bei der weiteren Traversierung vernachlässigt werden. Zwischen C und A findet
sich eine Schnittmenge. Da C ein Blatt ist, wird schließlich die aufwendigere Kollisi-
onsprüfung mit dem eigentlichen Szenenobjekt durchgeführt. Auf diese Weise kann die
Anzahl der notwendigen Schnittprüfungen mit zunehmender Anzahl von Szenenobjekten
drastisch reduziert werden. Statt des Aufwands O(n) für den iterativen Durchlauf von n
Szenenobjekten ergibt sich bei Verwendung einer BVH eine mittlere Anzahl von O(log n)
Prüfungen. Durch eine geschickte BVH-Organisation und Traversierungsreihenfolge kann
der Effizienzgewinn in der Praxis noch deutlicher ausfallen [SR17].

Da Szenen typischerweise auch dynamische Objekte enthalten, muss die BVH in regelmä-
ßigen Abständen neu organisiert werden. Ohne diese Updates würden die Hüllkörper der
Baumknoten mit der Relativbewegung enthaltener Objekte an Volumen gewinnen. Dadurch
erhöht sich die Anzahl der positiven Schnittprüfungen mit diesen Knoten, wodurch die
notwendigen Traversierungsschritte zunehmen. Auch für diese Problemstellung gibt es
zahlreiche effiziente Algorithmen [YL14].

Bisher wurde beschrieben, wie die Rays im Zusammenhang mit den Pixeln der Ausgabe
stehen und wie ihre Verfolgung durch die Szene bis hin zur Kollision mit darin befindlichen
Elementen auf effiziente Weise realisiert werden kann. Nun gilt es zu klären, wie die Hits
zur finalen Pixelfarbe beitragen. Dazu sei erneut auf das Bild 2-43 verwiesen, in welchem
beispielhaft zwei Primärrays visualisiert werden. Mit wenigen Ausnahmen ist nur der
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erste Hit eines Rays von Bedeutung. Im Bild 2-43 entspricht das dem Hit 1. Nach der
ersten Kollision mit einem Szenenobjekt wird der Ray entweder absorbiert, reflektiert
oder abgelenkt. Bei der Absorption endet das Raytracing für den betrachteten Primärstrahl
bereits an dieser Stelle. Im zweiten und dritten Fall werden neue Sekundärstrahlen erzeugt,
die bei Hit 1 entspringen und in verschiedene, oft zufällige Richtungen ausgesendet werden.
Mit zunehmender Anzahl der Sekundärstrahlen (auch: Samples) steigt die Qualität des
Renderingergebnisses maßgeblich. Gleichzeitig wird die Rechenzeit jedoch exponentiell
erhöht. Mathematisch kann das Absenden mehrerer Rays als die Approximation der
Rendergleichung (2-28) durch die Monte-Carlo-Methode aufgefasst werden [HH75]. Sei
der Integrand der Rendergleichung mit

f (v,Ω,Ω′) B fr(v,Ω′,Ω)Lv(v,Ω′) cos θE (2-40)

bezeichnet, so lässt sich das Integral mit der Monte-Carlo-Integration∫
Ω′∈Ω+

f (v,Ω,Ω′)dΩ′ ≈
1

NMC
·

NMC∑
n=1

f (v,Ω,Ω′n)
p(Ω′n)

(2-41)

approximieren. Dabei sind Ω′n Stichprobenelemente aus der oberen Hemisphäre Ω+ des
Szenenpunktes v. p(Ω′n) ist die Wahrscheinlichkeitsdichtefunktion, welche die Verteilung
der Stichprobenelemente Ω′n beschreibt, und NMC die Größe der Stichprobe. Betrachtet man
den Hit eines Primärstrahls mit einem Szenenobjekt, so bezeichnet v den Kollisionspunkt,
Ω die Einfallsrichtung des Primärstrahls und Ω′n die Richtung eines der NMC Sekundär-
strahlen. Ist der Szenenpunkt v Teil einer diffusen Oberfläche, sind Lichteinflüsse aus
allen Richtungen relevant. Schließlich ist die Leuchtdichte eines Lambertschen Flächenele-
ments unabhängig von der Betrachtungsrichtung (siehe Abschnitt 2.3.4). Dementsprechend
könnte man die Stichprobenelemente Ω′n für diffuse Flächen gleichverteilt wählen. Da das
Volumen des Integrationsbereichs (obere Hemisphäre Ω+) dem Wert 2π entspricht, ergibt
sich bei Gleichverteilung für die Wahrscheinlichkeitsdichtfunktion p(Ω′) = 1

2π und somit
insgesamt das Integral∫

Ω′∈Ω+

f (v,Ω,Ω′)dΩ′ ≈
2π

NMC
·

NMC∑
n=1

f (v,Ω,Ω′n).

Auch wenn diese Variante für ein hinreichend großes NMC zum richtigen Ergebis führt,
kann es sinnvoll sein, die Wahrscheinlichkeitsdichtefunktion p gezielt auf die Bereiche
mit dem größten Einfluss zu konzentrieren. Wie aus Gleichung (2-11) hervorgeht, ist
die übertragene Strahlungsleistung von einer Sender- auf eine Empfängerfläche dann
maximal, wenn der Einfallswinkel der Strahlung auf der Empfängerfläche parallel zu
ihrem Normalenvektor ist. Für andere Anordnungen nimmt sie mit dem Cosinus des
Winkels θE ab. Schlussfolgernd ist es sinnvoll, die Hemisphäre Ω+ primär im Bereich
kleiner Werte von θE abzutasten. Anstelle der Gleichverteilung wählt man für p deshalb
geschickter

p(Ω′) =
1
π

cos(θE) mit θE ∈ [0;
π

2
],

wobei θE den Winkel zwischen der Flächennormale n und der Samplerichtung Ω′ bezeich-
net. Diese effizientere Art des Samplings wird auch als Importance Sampling bezeichnet.
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Wie man durch Integration prüfen kann, erfüllt p die Anforderung einer Wahrscheinlich-
keitsdichtefunktion, denn es gilt∫

Ω′∈Ω+

1
π

cos(θE)dΩ′ =

∫ 2π

ϕE=0

∫ π
2

θE=0

1
π

cos θE sin θEdθEdϕE = 1.

Auf diese Weise kann die Varianz der Approximation bei gegebener Stichprobengröße
N reduziert werden, sodass ein Gesamtbild der Szene im Umkehrschluss durch weniger
Samples erzielt werden kann. Insbesondere bei der Berechnung spiegelnder Reflexionen
ist die verwendete Verteilungsfunktion von maßgeblicher Bedeutung. Bei Verwendung des
Phong-Beleuchtungsmodells empfiehlt sich unter Berücksichtigung der Gleichung (2-34)
die Wahrscheinlichkeitsdichtefunktion

p(Ω′) =
nr + 1

2π
cosnr (εΩ′r),

wobei εΩ′r den Winkel zwischen dem jeweiligen Sample Ω′ und dem Vektor der perfekten
spiegelnden Reflexion im Sinne der Gleichung (2-33) bezeichnet. Der Betrachter nimmt
in der Gleichung (2-33) die Rolle der Lichtquelle ein. Das ist aufgrund der Helmholtz-
Reziprozität (siehe Abschnitt 2.1.5) zulässig. Auf diese Weise werden hauptsächlich
Samples generiert, deren Reflexionen näherungsweise dem Primärstrahl entsprechen. Diese
haben für den spiegelnden Fall den größten Einfluss auf die Erscheinung des Szenenpunkts
v aus der Perspektive des Betrachters.

Die Monte-Carlo-Integration stellt somit eine Möglichkeit dar, Samples zu generieren. Sie
kann sowohl zur Generierung mehrerer Primärstrahlen pro Pixel, als auch zur Erzeugung
von Sekundärstrahlen, ausgehend von einem Hit, eingesetzt werden. Die ausgesandten
Sekundärstrahlen kollidieren wiederum mit Szenenobjekten. Ihre Hits werden ebenfalls
ausgewertet, bis schließlich bei einer definierbaren maximalen Rekursionstiefe abgebro-
chen wird. Diesen Ansatz nennt man Path Tracing. Neben der Stichprobengröße NMC ist
die Rekursionstiefe ein wesentlicher Faktor für die Performance und Qualität des Rende-
rings. Die Beiträge zu den Pixelfarben ergeben sich nach diesem Verfahren erst dann, wenn
innerhalb der Rekursion ein Ray mit einer Lichtquelle kollidiert. Dazu müssen Lichtquellen
entgegen ihrer bisherigen Auffassung im klassischen Rendering volumenbehaftet sein.

Um zu verdeutlichen, wie die Auswertungen an den verschiedenen Hits in unterschied-
lichen Rekursionstiefen zur finalen Pixelfarbe beitragen, soll der folgende Pseudocode
dienen. Initial wird der Algorithmus 1 aufgerufen. Er bestimmt basierend auf dem Szene-
graphen, der Kameraposition und der Bildebene die Farben aller Pixel.

Der Parameter countPrimRays definiert die Anzahl der Primärstrahlen, die pro Pixel
generiert werden sollen. Diese entspringen am Kameraursprung und durchstoßen das
jeweilige Pixel p der Bildebene an einem zufällig ausgewählten Punkt q. Sie werden durch
den Algorithmus 2 verfolgt, welcher die Farbe, die sich bei Verfolgung des betrachteten
Primärstrahls ergibt, zurückliefert. Die ermittelten Farben aller Primärstrahlen eines Pixels
werden in der Variablen col summiert. Abschließend wird die Farbe des Pixel durch die
Normierung der Summe auf die Anzahl der Primärstrahlen gesetzt.

Der wesentliche Path Tracing Gedanke verbirgt sich im Algorithmus 2. Dieser erwartet
den Szenegraphen sowie den Ursprung und die Richtung des Rays als Parameter. Wird
traceRay durch den Algorithmus 1 aufgerufen, so handelt es sich bei den übergebenen
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Algorithm 1 Render Image

1: require: scene as BVH-Scenegraph, image containing pixels, camOrigin ∈ R3,
countPrimRays ∈ N>0

2: function renderImage(scene, image, cameraOrigin, countPrimRays)
3: local variables: q, d ∈ R3, col ∈ [0, 1]3 RGB-Color
4: for all Pixel p in image do
5: col← 0
6: for i = 1 to countPrimRays do
7: q ← randomPointInPixel(p)
8: d ← norm(q − camOrigin)
9: col← col + traceRay(scene, camOrigin, d, 1)

10: end for
11: p.color ← col/countPrimRays
12: end for
13: end function

Rayparametern um einen Primärstrahl. Da sich traceRay rekursiv erneut aufruft, kann es
sich hierbei an späterer Stelle auch um einen Sekundärstrahl handeln. Innerhalb der Funk-
tion wird zunächst geprüft, ob die maximale Rekursionstiefe bereits erreicht ist. In diesem
Fall liefert traceRay die Farbe schwarz zurück. Das gilt auch, wenn der übergebene Ray
nichts trifft. Hierzu wird die f irstHit-Funktion eingesetzt, die den als BVH organisierten
Szenegraphen traversiert. Sie liefert denjenigen Hit zurück, der die geringste Entfernung
zum Rayursprung aufweist. Sollte kein Objekt getroffen werden, weist das Attribut ob ject
des Hits den Wert null auf. Die Ausführung des Algorithmus endet in diesem Fall eben-
falls mit der Rückgabe der Farbe schwarz. Schreitet die Programmausführung über die
Fallunterscheidung hinweg, liegt ein Hit vor. Durch die Funktion randomDirection wird
eine zufällige Richtung dir für den darauf folgenden Sekundärstrahl bestimmt. Hierbei
kann das Importance Sampling Anwendung finden, sodass nicht gleichverteilt über der
oberen Hemisphäre des Hits, sondern insbesondere in den wesentlichen Einflussbereichen
gesampelt wird. Der neue Ray wird ausgehend vom aktuellen Hit mittels eines rekursiven
Aufrufs von traceRay in die zufällig bestimmte Richtung dir abgesendet. Der Parameter
recDepth wird inkrementiert, um die Zunahme der Rekursionstiefe zu dokumentieren.
Die Rückgabe von traceRay wird in der Variablen indirectCol zwischengespeichert. Sie
repräsentiert das Licht, welches aus Richtung des Sekundärstrahls auf den aktuellen Hit
trifft. Durch Anwendung eines BRDF kann ermittelt werden, welcher Anteil dieses Lichts
in Richtung des vorhergehenden Strahls (bei recDepth = 1 ist es der Primärstrahl) fällt.
Dieser Anteil entspricht dem Integranden der Rendergleichung (2-40) und wird in der
Variablen re f lectCol gespeichert. Der Winkel θE liegt analog zu Gleichung (2-40) zwi-
schen dir und der Flächennormalen am Hit. Gemäß der Monte-Carlo-Integration (2-41)
muss der Integrand mit der Wahrscheinlichkeit prob des Samples (zweite Rückgabe von
randomDirection) normiert werden. Die Division durch die Stichprobengröße entfällt,
da im klassischen Path Tracing nur ein Sekundärstrahl generiert wird. Dementsprechend
sind für eine hinreichend dichte Abtastung der Szene viele Primärstrahlen notwendig.
Für den Fall, dass sich der Hit auf einer Lichtquelle befindet, wird auf die Rückgabe
deren Leuchtdichte addiert, welche im Pseudocode durch das Attribut emittance des Hits
abgefragt werden kann. Bei nicht leuchtenden Objekten gilt emittance = 0.
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Algorithm 2 Trace Ray

1: require: scene as BVH-Scenegraph, rayOrigin ∈ R3, rayDirection ∈ R3,
recDepth ∈ N>0

2: function traceRay(scene, rayOrigin, rayDirection, recDepth)
3: local variables: dir ∈ R3, prob, re f lectCoe f f ∈ [0, 1],

indirectCol, re f lectCol ∈ [0, 1]3

4: if recDepth = maxRecDepth then
5: return black
6: end if
7: hit ← f irstHit(scene, rayOrigin, rayDirection)
8: if hit.object = null then
9: return black

10: end if
11: (dir, prob)← randomDirection(hit, rayDirection)
12: indirectCol← traceRay(scene, hit.position, dir, recDepth + 1)
13: re f lectCoe f f ← BRDF(hit, rayDir, dir)
14: re f lectCol← re f lectCoe f f · indirectCol · cos θE

15: return reflectCol/prob + hit.emittance . light source ≡ emittance > 0
16: end function

Oft ist in der Praxis die notwendige Menge an Samples und die Tiefe der Rekursion zur
Erreichung einer akzeptablen Qualität zu hoch, da die Chance, dass der verfolgte Pfad in
einer Lichtquelle endet, abhängig von der Szenengeometrie sehr gering sein kann. Auf
diese Weise liefern viele Rekursionszweige die Farbe schwarz zurück. Deshalb weicht
man in der Praxis häufig von dieser stringenten Vorgehensweise ab. Stattdessen berechnet
man die direkte Beleuchtung jedes Hits durch sogenannte Schattenstrahlen (Shadow Ray).
Diese werden ausgehend vom Hit zu jeder Lichtquelle in der Umgebung gebildet. Falls
sich der erste Hit eines Schattenstrahls auf der jeweiligen Lichtquelle befindet, ist sicher,
dass der betrachtete Szenenpunkt nicht durch andere Objekte verschattet wird und somit
das Licht dieser Lichtquelle direkt auf ihn Einfluss nimmt. Der Szenenpunkt wird dann
wie im klassischen Rendering anhand des Beleuchtungsmodells ausgewertet. Das Ergebnis
bestimmt zusammen mit den Rückgaben der Sekundärstrahlen die finale Erscheinung. Bild
2-46 stellt das Prinzip grafisch dar.

Zur Bestimmung der Farbe eines Pixels werden zufällig verteilte Primärstrahlen (z.B. r in
Bild 2-46) vom Augpunkt durch diesen Pixel abgesendet. Dessen erster Hit h befindet sich
auf der Kugel. Ausgehend von diesem Hit wird der Sekundärstrahl r′ in eine zufällige Rich-
tung ausgesendet. Wahlweise kann hier Importance Sampling eingesetzt werden. Genauso
wird ein Schattenstrahl s vom Hit in Richtung Lichtquelle ausgesandt. Im Beispiel befindet
sich der erste Hit des Schattenstrahls auf der Lichtquelle, sodass eine Verschattung des
Hits h ausgeschlossen werden kann. Das Beleuchtungsmodell wird somit für h ausgewertet
und zusammen mit den Ergebnissen des Sekundärstrahls akkumuliert. Der Sekundärstrahl
r′ trifft zuerst den dargestellten Zylinder (Hit h′). Auch an dieser Position wird wieder
ein Schattenstrahl s′ abgesendet, welcher die Lichtquelle erreicht. Die Lichtquelle nimmt
auf die Farbe des Hits h′ und somit mittelbar auf die Farbe des Hits h Einfluss, welcher
letztlich zur Pixelfarbe beiträgt. Außerdem wird erneut ein Strahl r′′ von h′ in eine zufällige
Richtung abgesandt. Der Ray r′′ wird zurück auf die Kugel reflektiert. Die Schattenprüfung
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Bild 2-46: Prinzip des Path Tracing.

zeigt, dass ausgehend von Hit h′′ kein direkter Sichtkontakt zur Lichtquelle gegeben ist.
Sekundärstrahlen werden an h′′ nicht generiert, da die maximale Rekursionstiefe erreicht
ist.

Die Varianten der Raytracing Verfahren sind vielfältig. Alle bewegen sich im Spannungs-
feld von Recheneffizienz und der korrekten Wiedergabe verschiedener optischer Phä-
nomene, wie weichen Schatten, Reflexion, Brechung und Streuung von Licht oder der
korrekten Berücksichtigung indirekter Beleuchtung. Einige bekannte Verfahren sind rekur-
sives Raytracing, diffuses Raytracing, Light Raytracing oder bidirektionales Path Tracing
(Kombination aus Path Tracing und Light Raytracing) [Gla07]. Die Tabelle 2-5 vergleicht
die genannten Verfahren hinsichtlich dieser Kriterien und schließt die Übersicht der Rayt-
racing Methoden zur globalen Beleuchtung ab.

High Dynamic Range

Über lange Zeit wurden zur Speicherung der Farbinformation 8 Bit pro Farbkanal ver-
wendet, wodurch 256 Helligkeitsabstufungen möglich waren. Auch wenn die meisten
Ausgabegeräte bis heute über die gleiche Auflösung pro Farbkanal verfügen, stellt der
geringe Dynamikumfang von 256 Abstufungen ein Hindernis in der Beschreibung von
Szenen dar, welche gleichzeitig dunkle und helle Bereiche beinhalten. Schon während
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Tabelle 2-5: Vergleich verschiedener Raytracing Ansätze zur Beleuchtungsberechnung

Verfahren Schatten Reflexion/Streuung Beleuchtung

Nur Primärstrahl und
ein Schattenstrahl

Nur harte Keine Direkt

Rekursives Raytracing Nur harte Keine Direkt und Spiegelung
Diffuses Raytracing Vollständig Spiegelnde Flächen Direkt und Spiegelung
Path Tracing Vollständig Vollständig Vollständig (globale Be-

leuchtung)

der Pipeline-Verarbeitung sind helle Bereiche an der oberen Wertegrenzen abgeschnitten
oder dunkle Bereiche durch Rundungsfehler verfälscht worden. Man hat deshalb das High
Dynamic Range (HDR) Rendering (im Ggs. zu Low Dynamic Range Rendering mit 8 Bit)
eingeführt, welches intern mit höherer Präzision rechnet. Mit DirectX 9 [Mic18] wurde
die Unterstützung von mindestens 24 Bit im Fragment-Shader vorausgesetzt. Außerdem
wurde die Kompatibilität zu Texturen mit 32 Bit pro Farbkanal erforderlich. Dabei wurden
die Werte intern nicht mehr durch Fest- sondern Fließkommazahlen codiert, wodurch sich
der darstellbare Dynamikumfang weiter erhöht.

Im HDR-Rendering wird die Kompatibilität zum Ausgabegerät, welches bis heute meist
noch 8 Bit pro Farbkanal vorsieht (HDR-Monitore stellen hier eine Ausnahme dar), durch
Tone Mapping sicher gestellt. Bei Tone Mapping handelt es sich um ein Dynamikkom-
pressionsverfahren, welches den hohen Kontrast eines HDR-Bildes auf den Kontrast der
Ausgabe reduziert. Die Farbwerte der Ausgabe werden meist auf das Intervall [0, 1] nor-
miert, sodass eine Mapping-Funktion fT M als Abbildung von HDR-Werten im Intervall
[0,∞) auf das LDR-Intervall [0, 1] verstanden werden kann. Eine besonders einfache
Variante eines Tone Mappings entspricht

fT M : R≥0 → [0, 1]; cLDR(cHDR) =
cHDR

cHDR + 1
. (2-42)

Nachteilig bei dieser Wahl ist der extreme Kontrastverlust für hohe Werte cHDR des HDR-
Bilds, da diese nach dem Mapping sehr nah bei 1 und somit auch beieinander liegen. Für
cHDR → 0 werden die Werte hingegen sehr gut differenziert. Diese Diskrepanz wird im
grünen Verlauf des Bildes 2-47 wiedergegeben. Unvermeidbar ist, dass der Kontrast des
Bildes durch das Tone Mapping verschlechtert wird. Ein häufig verwendetes und schnelles
Verfahren ist die γ-Kompression, welche sich gemäß

fT M : [0, A
− 1
γT M

T M ]→ [0, 1]; cLDR(cHDR) = AT M · c
γT M
HDR.

beschreiben lässt. Die Parameter AT M > 0, AT M ∈ R und 0 < γT M < 1 sind wählbar und
müssen auf die vorliegenden Lichtverhältnisse abgestimmt werden. Sie definieren zum

einen, bis zu welchem Maximalwert von cHDR,max = A
− 1
γT M

T M noch Unterschiede im LDR-
Bild sichtbar sein werden. Zum anderen beschreiben die Parameter, wie fein zwischen
Werten im dunkleren Bereich gegenüber Werten im helleren Bereich differenziert wird.
Der Plot 2-47 zeigt drei denkbare Parametersets der γ-Kompression für ein HDR-Bild,
dessen maximale Helligkeit im Bereich von cHDR,max = 100 liegt. Zudem stellt der mit
„simpel“ bezeichnete Verlauf das Vorgehen nach Gleichung (2-42) dar.
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Bild 2-47: Verschiedene Tone Mapping Funktionen zur Konvertierung von Farbwerten aus
dem HDR in den LDR Bereich.

Man stellt fest, dass für kleine γT M-Werte die Differenzierung der dunkleren Bereiche
zunimmt, während die γ-Kompression in eine proportionale Beziehung zwischen HDR-
und LDR-Wert übergeht, wenn γT M → 1 gilt.

Die γ-Kompression ist nicht mit der γ-Korrektur zu verwechseln. Letztere wird unabhängig
von HDR auch im normalen Rendering benötigt und berücksichtigt die logarithmische
Wahrnehmung des Menschen. Nach der Stevensschen Potenzfunktion nimmt das mensch-
liche Auge dunklere Bereiche im Vergleich zu hellen Bereichen differenzierter wahr
[Ste57]. Der Zusammenhang zwischen wahrgenommener (csens) und physikalischer (cphys)
Helligkeit kann dabei ebenfalls durch eine γ-Kurve gemäß

csens(cphys) = cγe
phys (2-43)

beschrieben werden, wobei dem Auge ein γ-Wert im Bereich γe ∈ [0.35; 0.5] zugeordnet
wird. Damit die Helligkeit eines linear arbeitenden Ausgabegeräts linear wahrgenommen
wird, wenden Monitore intern eine γ-Korrektur an, um den Effekt nach Gleichung (2-43)
auszugleichen. Der Standardwert für den sRGB-Farbraum wird mit γT M = 2.2 angegeben,
sodass die Konkattenation der Wahrnehmung nach Gleichung (2-43) und der Ausgabe-
gerät-Korrektur zu einem ungefähr linearen Zusammenhang zwischen dem tatsächlichen
Helligkeitswert und der wahrgenommenen Helligkeit führt [WS82].

Die bisher erwähnten Tone Mapping Varianten sind sehr einfach und insbesondere global,
d.h. an jeder Stelle im Bild wird die gleiche Funktion fT M angewendet. Neben diesen glo-
balen Ansätzen existieren auch lokale Tone Mapper, welche zu noch besseren Ergebnissen
führen können [EUM16].

2.3.5 General Purpose Computation on GPU

Mit den weitgehend frei programmierbaren Shadern innerhalb der Programmable Rende-
ring Pipeline und der Unterstützung von Fließkommaoperationen seit 2001 gewann die
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GPU auch abseits grafischer Anwendungen an Bedeutung. Mit der Flexibilität heutiger
Shader können Berechnungen aus verschiedensten Bereichen von Wissenschaft und Tech-
nik erheblich beschleunigt werden. Voraussetzung für einen Performancegewinn gegenüber
der klassischen Ausführung auf der CPU ist die hohe Parallelisierbarkeit der Algorithmen.
Die Aufgabe muss sich in viele kleine Ausführungsstränge zerlegen lassen, welche unter-
einander keine oder zumindest wenige Abhängigkeiten haben. Unter dieser Voraussetzung
lassen sich viele der Ausführungsstränge auf den Kernen der GPU gleichzeitig ausführen.
Die Zweckentfremdung der Grafikkarte in Form solcher Anwendungen nennt man General
Purpose Computation on GPU (GPGPU).

Mit dem Einsatz des Grafikchips in GPGPU-Anwendungen wurde auch die softwareseitige
Unterstützung grafikferner Berechnungen weiter vorangetrieben. Mit Direct3D 11 und
OpenGL Version 4.3 werden seit 2009 bzw. 2012 sogenannte Compute Shader unterstützt.
Diese werden auf der Grafikkarte ähnlich den bereits vorgestellten Shader Typen abge-
arbeitet, sind dabei jedoch völlig losgelößt von der Grafikpipeline. Da Compute-Shader
in OpenGL und Direct3D eingebettet sind, lassen sie sich einfach in Grafikanwendungen
integrieren und eignen sich beispielsweise zur Vorberechnung von Informationen, welche
in einem nachgelagerten Schritt bei der Visualisierung Berücksichtigung finden.

Mit der Einführung von CUDA und OpenCL in 2007 und 2008 wurden Schnittstellen
geschaffen, mit welchen die Grafikkarte vollends abstrahiert als hochgradig parallele
Recheneinheit gleichwertig zur CPU aufgefasst werden kann. Während CUDA eine Ei-
genentwicklung von NVIDIA darstellt und nur auf NVIDIA Hardware eingesetzt werden
kann, stellt OpenCL einen allgemeinen Standard dar, der keinen Einschränkungen unter-
liegt. Mittels dieser Schnittstellen können einzelne Ausführungsstränge der Anwendung,
beschrieben durch einen Kernel, dynamisch auf die zur Verfügung stehenden Rechen-
kapazitäten (Devices) aufgeteilt werden. Bild 2-48 zeigt die Architektur aus Sicht des
OpenCL-Standards in stark vereinfachter Form. Der Bezug zur Grafikpipeline oder die
manuelle Erstellung von Shadern in den entsprechenden Shader-Sprachen entfällt. Statt-
dessen abstrahieren OpenCL und CUDA die verfügbaren heterogenen Recheneinheiten,
wie CPU und GPU, als Compute Devices mit verschieden vielen Compute Units. Die
Implementierung kann deshalb vollständig in einer Hochsprache erfolgen. Aufteilbare
Programmabschnitte müssen in sogenannten Kernels formuliert werden, welche strukturell
Ähnlichkeit zu den zuvor beschriebenen Compute-Shadern aufweisen. Der zur Verfügung
stehende Befehlssatz ist in den Kerneln jedoch deutlich umfangreicher. Die Verwendung
verschiedener Recheneinheiten bringt den Nachteil mit sich, dass das Speichermanage-
ment nicht mehr ohne Eingriff des Programmierers im Hintergrund erfolgt. Da die Host-
Anwendung (Übergreifende Anwendung) und das Device (die zu verwendende Rechen-
einheit, meist GPU) verschiedene Laufzeitspeicher verwenden, muss der Programmierer
die Kopie von Daten, die als Berechnungsgrundlage dienen, vom Host-Speicher (meist
Arbeitsspeicher (RAM)) zum Device-Speicher (meist Arbeitsspeicher der GPU (VRAM))
explizit veranlassen. Nach der Berechnung müssen die Ergebnisse wieder zurück zum Host
geleitet werden. Die Allokierung und Freigabe von Speicher obliegt dabei ebenfalls dem
Entwickler. Diese Speichertransfers können bei großen Datenmengen einen wesentlichen
Teil der gesamten Berechnungsdauer ausfüllen und stellen deshalb eine Einschränkung für
den Einsatz der GPU in allgemeinen Berechnungen dar.
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Bild 2-48: Stark vereinfachte Sicht von Recheneinheiten und dedizierten Speicherbereichen
in OpenCL.
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3 Stand der Technik

Nachdem im Kapitel 2 physikalische, physiologische und technischen Grundlagen, die
zur Realisierung einer virtuellen Nachtfahrtsimulation von zentraler Bedeutung sind,
ausführlich dargestellt werden, soll sich der Fokus nun auf den heutigen Stand der Technik
richten. Dabei stehen moderne Pixel-Scheinwerfersysteme und die simulative Entwicklung
dieser im Vordergrund.

3.1 Scheinwerfertechnik

Die Hauptscheinwerfer eines Kraftfahrzeugs erfüllen heutzutage eine Vielzahl von Aufga-
ben. Während zu Beginn des elektrischen Fahrzeugscheinwerfers die Ausleuchtung der vor
ihm liegenden Straße bei Dunkelheit im Fokus stand, umfasst das Spektrum der sogenann-
ten Lichtfunktionen inzwischen ein weitaus breiteres Feld. Angefangen mit den Abblend-
und Fernlichtfunktionen über Tagfahrlicht, Kurvenlicht und der dynamischen Leucht-
weitenregulierung bis hin zu modernen Lichtfunktionen, wie dem blendfreien Fernlicht,
der Symbolprojektion, der optischen Spurführung oder des Markierungslichts, verfügen
heutige Scheinwerfer über eine immense Leistungsfähigkeit.

3.1.1 Lichtverteilungen

Umgesetzt werden die verschiedenen Lichtfunktionen durch die geeignete Gestaltung der
Lichtverteilung des jeweiligen Hauptscheinwerfers. Das Bild 3-1 zeigt das Messprinzip,
mit dem die Lichtverteilung eines Scheinwerfers vermessen werden kann.

Rotationszentrum

ϕ

θ

Lichtstrahl

Sensor

Messgerät

Bild 3-1: Goniophotometer zur Aufzeichung von Lichtstärkeverteilungen von Hauptschein-
werfern (links: Verschwenkeinheit zur Orientierung des Scheinwerfers [Quelle:
Instrument Systems Optische Messtechnik GmbH], rechts: Prinzipskizze eines
Goniophotometers).
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Als zugrunde liegendes Koordinatensystem zur Beschreibung einer Lichtverteilung hat
sich ein Kugelkoordinatensystem etabliert, dessen Ursprung in einem Referenzpunkt
innerhalb des Scheinwerfers liegt. Die Abstrahlrichtung des Scheinwerfers kann über den
Polarwinkel θ und den Azimutwinkel ϕ beschrieben werden. Ein Winkelpaar (ϕ, θ) definiert
somit eine Abstrahlrichtung, wobei die Richtung (0◦, 0◦) per Konvention der Fahrtrichtung
bzw. Vorwärtsrichtung entspricht und die Polachse parallel zur Gierachse bzw. Hochachse
liegt.

Durch die Rotation des Scheinwerfers um seinen inneren Referenzpunkt bezüglich Polar-
und Azimutwinkel, kann durch einen feststehenden Sensor das abgestrahlte Licht in
allen Richtungen vermessen werden. Typischerweise wird die Lichtverteilung in Form
einer Lichtstärkeverteilung erfasst, sodass die Lichtstärke Iv (siehe Abschnitt 2.1.4) als
Messgröße fungiert. Sind neben der Helligkeit auch spektrale Effekte von Bedeutung, so
beschreibt man die Lichtverteilung des Scheinwerfers spektral und verwendet anstelle der
Lichtstärke die X-, Y- und Z-Koordinaten nach den Vorgaben der CIE (2.2.6). Dabei ist die
Lichtstärke in Form der Y-Koordinate als Teilinformation enthalten. Zur Visualisierung
der abhängig vom Polar- und Azimutwinkel variierenden Lichtstärke wird häufig eine
Falschfarbendarstellung eingesetzt, wie sie in Bild 3-2 visualisiert wird.

θ/◦

-5

-10

-15

ϕ/◦-30 -20 -10 10 20

Iv/cd25 250 2,500 25,000
Bild 3-2: Lichtstärkeverteilung eines HD84-Scheinwerfers mit aktiver Abblendlichtfunkti-

on.

Beispielhaft wird die Lichtverteilung der Abblendlichtfunktion eines linken HD84-Matrix-
Scheinwerfers der HELLA dargestellt. Charakteristisch für jede Abblendlichtverteilung ist
die nach rechts ansteigende Hell-Dunkel-Grenze (HDG). Die tiefere vertikale Lage der
HDG im linken Bereich der Lichtverteilung stellt sicher, dass der Gegenverkehr auf der
linken Fahrspur nicht geblendet wird, während die rechte Fahrspur weiter ausgeleuchtet
werden kann, ohne andere Verkehrsteilnehmer zu behindern. Die Fernlichtfunktion ist
hingegen symmetrisch zur θ-Achse und hat eine noch höher gelegene HDG.
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3.1.2 Aufbau und Prinzip

Die Realisierung der Lichtverteilungen für die verschiedenen Lichtfunktionen hat sich
in der Vergangenheit maßgeblich verändert. Dabei gab es nicht nur technische Verbes-
serungen, sondern auch einen fundamentalen Wechsel der eingesetzten lichttechnischen
Konzepte.

Die ersten elektrischen Komplettsysteme, bestehend aus Scheinwerfer, Lichtmaschine und
Lichtmaschinen-Regler wurden von der Firma Bosch in 1913 mit dem „Bosch-Licht“ auf
den Markt gebracht. Mit den ersten elektrischen Scheinwerfern koexistierten weiterhin
petroleum- und acetylenbetriebene Scheinwerfer. Erst in den Zwanzigerjahren verdrängte
die Elektrik die veralteten Systeme.

Im Jahre 1924 präsentierte die Firma Osram die Zweifaden-Glühlampe (auch Bilux-
Lampe). Diese ermöglichte die Erzeugung zweier unterschiedlicher Strahlenbündel und
erlaubte so erstmalig die Unterbringung der Abblend- und Fernlichtfunktion im selben
Reflektor. Bis 1956 unterschieden sich Abblend- und Fernlicht nur in der Höhe der Hell-
Dunkel-Grenze. Später wurde das Abblendlicht als asymmetrische Lichtverteilung mit
nach rechts ansteigender Hell-Dunkel-Grenze erzeugt.

In den folgenden Jahrzehnten löste die Halogentechnik die bisherige Glühwendel-Licht-
quelle ab. Erstmals kamen Halogen-Glühlampen unter der Bezeichnung H1 in Zusatz-
scheinwerfern von HELLA zum Einsatz. Ab 1965 wurden die H1-Lampen im Haupt-
scheinwerfer durch Zweikammersysteme für Abblend- und Fernlicht eingesetzt. Mit der
Zweifaden-Halogen-Glühlampe H4, welche die Abblend- und Fernlichtfunktion im selben
Reflektor ermöglicht, wurde die Bilux-Lampe 1971 abgelöst.

Das optische Konzept der bisher beschriebenen Scheinwerfer ist die Reflexionstechnik.
Das zunächst undefinierte Licht, welches die Lichtquelle aussendet, wird durch den Re-
flektorschirm zur gewünschten Lichtverteilung geformt. Beispielhaft zeigt Bild 3-3 einen
Scheinwerfer mit H4-Lampe, welcher über Abblend- und Fernlichtfunktion verfügt.

Durch die zwei zur Verfügung stehenden Glühfäden können bei H4-Lampen Abblend- und
Fernlichtfunktion im selben Reflektor realisiert werden. Dazu verfügt der Glühfaden, wel-
cher für das Abblendlicht genutzt wird (rote Ellipse in Bild 3-3), über eine Abdeckpfanne,
welche die untere Reflektorhälfte abschirmt und nur Licht auf die obere Reflektorhälfte
fallen lässt. An der oberen Reflektorhälfte wird das Licht vergleichsweise steil auf den
Boden reflektiert, wodurch eine blendungskritische Ausleuchtung vermieden wird.

Im Fernlichtfall wird der Fernlicht-Glühfaden (graue Ellipse in Bild 3-3) bestromt. Dieser
verfügt nicht über eine Abdeckpfanne und bestrahlt somit den gesamten Reflektorschirm,
wie die schwarz gestrichelten Linien in Bild 3-3 visualisieren. Während der obere Teil des
Reflektors weiterhin für die fahrzeugnahe Ausleuchtung von Bedeutung ist, dient das Licht,
das an der unteren Reflektorhälfte reflektiert wird, zur Ausleuchtung des Fernbereichs.

Die tatsächliche Gestaltung der Lichtverteilung ist insbesondere im Abblendlichtfall kom-
plizierter, als das Bild 3-3 suggeriert. Beispielsweise ist bisher noch nicht beschrieben
worden, wie die Asymmetrie der HDG eines Abblendlichts technisch umgesetzt werden
kann. Die älteste technische Umsetzung ist der Paraboloid-Scheinwerfer. Dessen Reflektor
hat die Geometrie eines Paraboloiden und ist demnach verhältnismäßig einfach gestaltet.
Die Lichtverteilung wird erst nach der Reflexion durch Brechung an der Abschlussscheibe
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Lampensockel
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Reflektor Abblendlicht

Abschlusscheibe

Fernlicht

H4-Lampe
FL-Glühfaden

Bild 3-3: Prinzip eines Hauptscheinwerfers mit H4-Lampe und Reflexionstechnik.

gestaltet. Dazu weist die Abschlussscheibe eine entsprechende Profilierung auf, die das
Licht horizontal (senkrechte zylindrische Profilierung) und vertikal (prismatische Pro-
filierung) ablenkt. In Bild 3-4 ist ein solcher Paraboloid-Scheinwerfer eines Audi 100
dargestellt. Die Profilierung der Abschlussscheibe, die aufgrund ihrer optischen Funktion
auch als Streuscheibe bezeichnet wird, ist gut erkennbar.

Bild 3-4: Paraboloid-Scheinwerfer eines Audi 100 mit Einkammersystem (H4) [Quelle:
HELLA].

Abgelöst wurden die Paraboloid-Scheinwerfer durch Freiflächen-Scheinwerfer. Die Ab-
schlusscheibe dieser Scheinwerfer weist keine optische Funktion auf. Sie dient lediglich
dem Schutz vor Verschmutzung und Witterungseinflüssen. Die Gestaltung der Lichtver-
teilung wird ausschließlich durch den Reflektor vorgenommen. Die Form des Reflektors
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wird computerunterstützt generiert. In Zweikammersystemen kann durch geeignete Form
die gesamte Reflektorfläche für das Abblendlicht genutzt werden. Diese Eigenschaft sorgt
für eine Verbesserung des Wirkungsgrads gegenüber Paraboloid-Scheinwerfern. Das Bild
3-5 zeigt einen Freiflächen-Scheinwerfer mit Einkammersystem eines VW Bora. Man
erkennt die klare Abschlussscheibe und die verschieden orientierten Flächensegmente im
Reflektorschirm.

Bild 3-5: Freiflächen-Scheinwerfer eines VW Bora mit Einkammersystem (H4) [Quelle:
HELLA].

Mit der darauffolgenden Generation von Scheinwerfern kam es zu einem Wandel des
lichttechnischen Konzepts. Anstelle der bisher angewandten Reflexionstechnik werden
von nun an Projektionssysteme genutzt. Der Aufbau eines sogenannten dreiachsigen
Ellipsoid(DE)-Scheinwerfers, in welchem die Projektionstechnik genutzt wird, ist in Bild
3-6 dargestellt.

Der Reflektor eines DE-Scheinwerfers wird nicht zur Gestaltung der Lichtverteilung
eingesetzt. Seine Aufgabe ist es, das gesamte Licht der Lichtquelle in einem zweiten
Brennpunkt zu bündeln. Kurz nach dem zweiten Brennpunkt ist eine Linse montiert. Diese
verteilt das gebündelte Licht auf der Straße. Die Abblendlichtverteilung kann mit einem
DE-Scheinwerfer realisiert werden, indem eine Blende kurz vor dem zweiten Brennpunkt
vorgesehen wird. Diese Blende erzeugt durch ihre Geometrie die Hell-Dunkel-Grenze.
Dabei ist zu beachten, dass die Lichtverteilung an der Blende horizontal und vertikal
gespiegelt vorliegt. Konzeptbedingt verfügen Projektionsscheinwerfer über eine erheblich
kleinere Lichtaustrittsfläche, als sie bei Reflexionsscheinwerfern benötigt wird. Deshalb
werden sie auch unter Designaspekten bevorzugt verbaut. Eine Weiterentwicklung des DE-
Scheinwerfers ist der Super-DE-Scheinwerfer, welcher auf die Blende verzichten kann,
indem er die Lichtverteilung durch einen Freiflächen-Reflektor erzeugt. In diesem Fall kann
nicht mehr von einem zweiten Brennpunkt, sondern nur noch von einem ausgedehnten
Brennraum vor der Linse gesprochen werden. Aufgrund der fehlenden Blende, welche
im DE-Scheinwerfer einen Teil des Lichts absorbiert, weist ein Super-DE-Scheinwerfer
einen höheren Wirkungsgrad auf. Im Bild 3-7 ist der Scheinwerfer eines Skoda Superb zu
sehen. Er verfügt über ein Freiflächen-Abblendlicht mit Reflexionstechnik und ein Super-
DE-Projektionsystem für die Fernlichtfunktion. Der deutlich größere Flächenanteil des
Reflexionssystems im linken Bereich ist deutlich erkennbar.
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Bild 3-6: Prinzip eines DE-Hauptscheinwerfers mit Projektionstechnik.

3.1.3 Wandel durch Pixellicht

Die bisher vorgestellten Reflexions- und Projektionsscheinwerfer haben alle gemeinsam,
dass die umgesetzten Lichtverteilungen statisch sind. Sie sind abhängig vom eingesetzten
System durch die Streuscheibe, die Reflektorgeometrie oder die Blendengeometrie festge-
legt. Trotzdem verfügen diese Systeme zum Teil über dynamische Lichtfunktionen, wie das
Kurvenlicht. Die Dynamik wird dann allerdings durch ein mechanisches Verschwenken
des Lichtsystems realisiert, wodurch nicht die Gestalt, sondern nur die Ausrichtung der
Lichtverteilung angepasst werden kann. Auch blendfreies Fernlicht kann bereits durch
die klassischen Systeme realisiert werden. Hierzu werden ebenfalls elektromechanische
Aktuatoren (z.B. verfahrbare Blenden) im Scheinwerfer eingesetzt.

Den Durchbruch in der Gestaltungsfreiheit von Lichtverteilungen und insbesondere ihrer
dynamischen Anpassung auf die aktuelle Fahrsituation wurde durch die Idee des Pixel-
lichts geleistet. Der Gedanke einer Lichtverteilung, die durch die Zusammensetzung vieler,
voneinander separierter Lichtbausteine, den Pixeln, gestaltet werden kann, wurde von
Enders auf der PAL-Konferenz (heute ISAL) bereits 2001 vorgestellt [End01]. Der Haupt-
scheinwerfer kann dabei als Schwarz-Weiß-Beamer verstanden werden. Umgesetzt wurde
dieser Gedanke erst wesentlich später und in kleinen Schritten.

Um den Jahreswechsel 2013/2014 sind mit dem Matrix-LED Scheinwerfer im Audi A8
und dem MULTIBEAM LED Scheinwerfer von Mercedes-Benz die ersten Systeme auf
den Markt gekommen, die zumindest die Fernlichtfunktion durch mehrere LED-Licht-
quellen abbilden und darauf aufbauend das blendfreie Fernlicht vollelektrisch realisieren
[MMH15]. Aufgrund der geringen Auflösung (20 bis 30 einzeln ansteuerbare LEDs pro
Scheinwerfer) werden andere Lichtfunktionen, wie das Abblend- oder Abbiegelicht durch
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Bild 3-7: Freiflächen-Reflexionssystem für die Abblendlichtfunktion und Super-DE-Projek-
tionssystem für die Fernlichtfunktion im Hauptscheinwerfer eines Skoda Superb
[Quelle: HELLA].

Zusatzlichtquellen geleistet, sodass die Lichtverteilung im relevanten Winkelbereich des
blendfreien Fernlichts hinreichend flexibel angepasst werden kann.

Der nächste Meilenstein zur Realisierung der Vision von Pixellicht wurde 2014 auf der
VISION in Paris angekündigt [Kle14]. Er ging 2016 mit dem HD84-Matrix-LED Schein-
werfer der HELLA, nachfolgend als HD84-Scheinwerfer bezeichnet, mit der E-Klasse von
Mercedes Benz in Serie [SP18]. Das HD84-System verfügt über 84 LED pro Scheinwerfer,
welche in drei Zeilen angeordnet sind. Dabei verfügt die untere Zeile (Nahbereich) über
30 LED, die mittlere Zeile über 28 LED und die obere Zeile über 26 LED (Fernbereich).
Anders als die bisher vorgestellten Systeme erfüllt die LED-Matrix im HD84-Scheinwerfer
nicht nur die Fernlicht-, sondern auch die Abblendlichtfunktion. Letztere wird im Fahr-
zeugvorfeld durch vier statische Basislichter unterstützt, welche in Bild 3-8 gekennzeichnet
sind. Das Kurvenlicht wird ebenfalls ohne mechanische Aktuatoren umgesetzt. Außerdem
verfügt der Scheinwerfer über zusätzliche, einzeln ansteuerbare LED an der seitlichen
Innenwand, mit welchen eine Abbiegelichtfunktion umgesetzt wird.

dyn. Abbiegelicht

Basislicht

HD84-Matrix

Bild 3-8: HD84-Matrix-LED Scheinwerfer eines Porsche Panamera (links: Skizze, rechts:
Foto) [Quelle: HELLA].

Der durch die Matrix ausgeleuchtete Winkelbereich (auch: Field of View) erstreckt sich
über 40◦ in der Horizontalen und 10◦ in der Vertikalen. So ergibt sich eine gemittelte Auflö-
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sung von etwa 1.3◦ × 3.3◦, wobei die horizontale Auflösung des Systems im Zentralbereich
höher ist und in den Randbereichen abnimmt. Im Bild 3-9 sind die einzelnen Komponenten
des HD84-Moduls dargestellt.

Bild 3-9: Komponenten des HD84-Matrix-LED Moduls [Quelle: HELLA].

Ganz rechts im Bild 3-9 befindet sich die Lichtquelle. Die 84 LED sind auf einer Platine
mit weiterer Ansteuerungselektronik integriert. Rückseitig befindet sich ein Kühlkörper
zur Ableitung der thermischen Energie. Das ausgesandte Licht der einzelnen LED wird
durch eine Primäroptik aus Silikon voneinander separiert fokussiert und auf eine Linse
(Sekundäroptik) geleitet, welche das Lichtbündel auffächert und in die Umgebung aussen-
det. Die 84 LED können nahezu kontinuierlich zwischen 0% und 100% ihres maximal
zulässigen Stroms betrieben werden. Die einzustellenden Dimmwerte werden durch das
Scheinwerfersteuergerät mit einer Taktung von 50 Hz vorgegeben.

Inzwischen zeichnet sich ab, dass auch der HD84-Scheinwerfer nur einen Zwischen-
schritt zum digitalen Licht darstellt. HELLA kündigte Ende 2019 an, die Lichttechnologie
SSL|HD (Solid state lighting | high definition) für die Großserienproduktion vorbereitet zu
haben [KPW19]. Auf dieser technischen Grundlage werden zehntausende von Lichtquellen
pro Scheinwerfer realisiert. Erste Fahrzeuge, die mit diesem Lichtsystem ausgestattet sind,
sind in den darauffolgenden drei Jahren zu erwarten. Derartig hoch aufgelöste Scheinwer-
fer eröffnen erneut die Möglichkeit neuartiger, frei programmierbarer Lichtfunktionen.
Beispiele hierfür sind die optische Fahrspurmarkierung, Symbolprojektionen, weitere Indi-
vidualisierungsmöglichkeiten wie Begrüßungs- und Verabschiedungsanimationen sowie
optische Kommunikation mit anderen Fahrzeugen oder Fußgängern. Technisch basieren
die SSL|HD-Scheinwerfer auf den Ergebnissen des geförderten Forschungsprojekts „µ-
AFS“, welches durch ein Konsortium aus Daimler, HELLA, OSRAM Specialty Lighting
and Opto Semiconductors, dem Fraunhofer IZM und IAF sowie Infineon durchgeführt
wurde [GPL+15], [MMFG16]. Anstelle der Montage einzelner LED-Lichtquellen auf
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einer Platine (Vgl. HD84-Modul) wird dort ein adressierbares LED-Array eingesetzt. Ein
einziger fingernagelgroßer µ-AFS Chip verfügt über 1024 Pixel, wobei jedes einzelne
unabhängig angesteuert werden kann. Im SSL|HD-Scheinwerfer sind mehrere LED-Arrays
verbaut, deren Licht durch nachgeschaltete Optiken auf die Straße projiziert wird. Parallel
arbeitet der französische Scheinwerferhersteller VALEO an dieser Technik und stellte in
2019 einen 4.000-Pixel-Prototypen vor [CCRP19]. Im Beitrag wird auch der funktionale
Vorteil gegenüber den Matrix-Systemen herausgestellt.

Neben dem SSL|HD-System, welches als konsequente Weiterentwicklung und Miniaturi-
sierung des Matrix-LED-Systems betrachtet werden kann, existieren konzeptionell neue
Ansätze. Einer dieser Ansätze wurde im BMBF-geförderten Forschungsprojekt „VoLi-
Fa2020 “erarbeitet [Hes15]. Das Resultat ist ein Scheinwerfer mit Liquid Crystal Display
(LCD) Technik. Im Anschluss an das Projekt entwickelte HELLA den entstandenen Proto-
typen, dargestellt in Bild 3-10, zur Serienreife aus [DF17].

LCD

Spiegel

Polarisationsfilter

Primäroptik
LED-Matrix

Analysator

Elektronik für LED und LCD

Kühlkörper

Projektionslinse

vertikal polarisiert
horizontal polarisiert

Bild 3-10: Komponenten des LCD-HD-Moduls [Quelle: HELLA].

Als Lichtquelle des LCD-Moduls werden 25 Hochleistungs-LED eingesetzt, welche sich
unten rechts im Bild 3-10 befinden. Diese sind einzeln ansteuerbar, wodurch eine grobe Vor-
gestaltung der gewünschten Lichtverteilung erfolgt. Ihr Licht wird mittels einer Primäroptik
auf einen im 45◦-Winkel zur Lichteinfallsrichtung orientierten Polarisationsfilter fokussiert.
Dieser spiegelt das horizontal polarisierte Licht und kann von dem vertikal polarisierten
Licht durchdrungen werden. Letzteres trifft auf einen ebenfalls im 45◦-Winkel positionier-
ten Spiegel und wird dort reflektiert. Auf diese Weise trifft das Licht separiert nach seiner
Polarisation auf LC-Displays. Abhängig von ihrer momentanen elektrischen Beschaltung
drehen die LC-Displays die Polarisationsrichtung des Lichts, welches anschließend einen
Analysator durchqueren muss, der das Licht nur in einer Polarisationsrichtung passieren
lässt. Auf diese Weise kann die Lichtverteilung dynamisch angepasst werden. Der Prototyp
des VoLiFA2020-Projekts verfügt über eine Auflösung von 0.1◦ bei einem ausleuchtbaren
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Winkelbereich von 30◦ in der Horizontalen und 10◦ in der Vertikalen. Neben LCD findet
man im gleichen Kontext auch häufiger die Bezeichung Liquid Crystal on Silicon (LCoS),
wobei es sich im Wesentlichen um das gleiche Funktionsprinzip handelt. Während das
Licht einen LCD durchdringt, wird es am LCoS reflektiert.

Hinsichtlich Effizienz ist das LCD-Modul dem SSL|HD-System unterlegen. Letzteres
gestaltet die Gesamtlichtverteilung durch das variable Zuschalten einzelner Lichtquellen.
Man spricht auch von einer additiven Komposition der Lichtverteilung. Das LCD-Modul
hingegen erzeugt zunächst eine undefinierte Lichtverteilung, welche in einem nachgelager-
ten Schritt durch Absorption am LC-Display zugeschnitten wird. Das absorbierte Licht
wird in Wärme umgesetzt und geht dem System verloren. In diesem Sinne gestaltet ein
LCD-Modul die Lichtverteilung subtraktiv.

Die Auflösung des Systems bei gleichzeitig großem Winkelbereich ist für dieses frühe
Entwicklungsstadium beachtlich, wie das im Lichtkanal der HELLA aufgenommene Bild
3-11 eindrucksvoll unter Beweis stellt.

Bild 3-11: Demonstration der Möglichkeiten eines LCD-Scheinwerfers [Quelle: HELLA].

Ein weiterer Ansatz, der in Verbindung mit Fahrzeugscheinwerfern erstmalig in 2015
durch Texas Instruments prototypisch realisiert wurde, beruht auf der Digital Microscopic
Mirror Device (DMD)-Technik [BB15]. Der serienreife Chip wurde in 2018 auf der
Vision in Paris vorgestellt [FB18]. Dieses ursprünglich vom selben Unternehmen für
Digital Light Processing (DLP)-Projektoren eingeführte Prinzip beruht auf einem Array
von mikroskopischen Spiegeln, die elektromechanisch angesteuert und verkippt werden
können. Das Bild 3-12 zeigt die Komponenten eines DMD-Moduls in stark vereinfachter
Form.

Ausgehend von der Lichtquelle, die meist durch LED realisiert wird, wird das Licht durch
eine Primäroptik auf das DMD fokussiert. Die einzelnen Mikrospiegel auf dem DMD
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Bild 3-12: Komponenten eines DMD-Scheinwerfer-Moduls.

bilden die Pixel dieses Lichtsystems. Durch elektrische Beschaltung können die Spiegel
verkippt werden. Die Mikrospiegel können dabei nur diskrete Kippwinkel erreichen. Ein
kontinuierliches Umlenken von Licht ist also nicht möglich. Stattdessen muss entschieden
werden, ob der Anteil des Lichtbündels, der auf den jeweiligen Mikrospiegel fällt, durch
die Sekundäroptik auf die Straße projiziert werden soll oder stattdessen durch eine Ab-
sorberfläche innerhalb des Scheinwerfergehäuses aus der Lichtverteilung entfernt werden
soll. Die DMD-Technik zählt somit zu den subtraktiven Verfahren. Hinzu kommt, dass
insbesondere die Sekundäroptik recht komplex ist und eine Gesamtzahl von fünf bis sechs
Linsen innerhalb eines DMD-Scheinwerfers erfordert. Ein weiterer Nachteil von DMD-
Systemen ist das geringe Field of View, welches aufgrund der geringen optischen Effi-
zienz des Systems vorausgesetzt werden muss, um die erforderliche Beleuchtungsstärke
im spezifizierten Winkelbereich erbringen zu können. Hinzu kommt, dass die anfangs
eingesetzten Hochleistungs-LED gleichmäßige Lichtverteilungen emittieren, welche von
der gewünschten Gestalt von Scheinwerferlichtverteilungen abweichen. Abhilfe kann hier
durch die Verwendung von Laserdioden (LD) geschaffen werden, wie Texas Instruments
in 2018 zeigt [FB18].

Trotz der vielen Nachteile spricht die extrem hohe Auflösung in der Größenordnung von
106 Pixeln für die Verwendung eines solchen Systems in einem kleinen Winkelbereich mit
hohen Anforderungen an die Anpassung der Lichtverteilung, während die umliegenden
Bereiche durch andere Systeme beleuchtet werden müssen. Im Bild 3-13 zeigt Mercedes,
wie die gewonnene Größenordnung der unterstützten Auflösung Wege für neuartige Licht-
funktionen ebnet. Die erste Kleinserie von Fahrzeugen mit DMD-Technik im Scheinwerfer
hat Mercedes-Maybach in 2018 auf den Markt gebracht [Ros18]. Unterstützt wird das in
einem kleinen Winkelbereich agierende DMD-Modul durch ein HD84-Modul und drei
Basislichter.
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Bild 3-13: Demonstration der Möglichkeiten eines DMD-Scheinwerfers [Quelle: Merce-
des].

Das neueste Konzept zur Realisierung hochauflösender Scheinwerfer stellen Laser-Scanner
dar. Der Grundstein für diese Technologie wurde durch das BMBF-geförderte Projekt
„Intelligentes Laserlicht für kompakte und hochauflösende adaptive Scheinwerfer“ (iLaS)
im Zeitraum von 2015 bis 2017 gelegt [PHG+15], [AHW+16], [HSB+17]. Das Projektkon-
sortium umfasste die Firmen Audi, Bosch und Osram, sowie das Karlsruher Institut für
Technologie (KIT) und die österreichische Firma ZKW. Im Rahmen des Projekts sind erste
Demonstratoren mit verbleibenden technischen Schwierigkeiten entstanden. Von 2016 bis
2019 entwickelten der Scheinwerferhersteller HELLA und das Fraunhofer-Anwendungs-
zentrum für Anorganische Leuchtstoffe in Soest im Rahmen des Förderprojekts "Hoch-
innovative pixelierte Leuchtstoffe für laserbasierte Emissionen im Scheinwerfer"(HipE)
des Europäischen Fonds für regionale Entwicklung (EFRE) einen Prototypen, wobei sie
schwerpunktmäßig den Phosphor-Konverter optimierten [SHSN18]. Dieser wandelt das
insbesondere bei Nacht kaum sichtbare, blaue Laser-Licht in weißes Licht um und hat
hohen Einfluss auf den Kontrast, welcher bei Laser-Scanner-Systemen stets als kritische
Zielgröße einzustufen ist. Wie auch in den zuvor beschriebenen HD-Scheinwerfersyste-
men sind die detaillierten physikalischen Aspekte komplex und können auch im Fall des
Laser-Scanner-Verfahrens anhand der Skizze 3-14 nur oberflächlich vermittelt werden.
Die Laserdiode erzeugt zunächst ein schmalbandiges, hochenergetisches (λ ≈ 450 nm)
Licht, welches ähnlich zur DMD-Technologie auf einen Mikrospiegel (MEMS) trifft, der
durch elektrische Signale mechanisch um zwei Rotationsachsen verkippt werden kann.
Anders als beim DMD-System genügt der Laser-Scanning-Technologie jedoch ein einziger
Spiegel zur Gestaltung der gesamten Lichtverteilungen. Dazu muss der Mikrospiegel ein
kontinuierliches Spektrum von Kippwinkel anfahren können. Alternativ lassen sich zwei
sequentiell gekoppelte Spiegel verwenden, die jeweils um eine Achse drehbar sind. Das
vom Spiegel reflektierte Licht trifft auf einen Leuchtstoff und regt darin befindliche Atome
zu höheren Energieniveaus an, welche nach der Anregung Photonen emittieren um in
ihren Ruhezustand zurückzugelangen. Der Leuchtstoff ist für die Anwendung so gewählt,
dass die vom Leuchtstoff emittierten Photonen in Summe ein weißes Licht erzeugen. Das
Laserlicht selbst darf den Scheinwerfer aus Sicherheitsgründen nicht verlassen und wäre
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Bild 3-14: Komponenten eines Laser-Scheinwerfer-Moduls.

aufgrund seiner Wellenlänge für die Ausleuchtung der Straße nicht gewinnbringend (Vgl.
V(λ′)-Kurve in Bild 2-9) [LLT+19]. Die vom Leuchtstoff emittierten Photonen werden
schließlich über eine Optik auf die Straße projiziert. Durch sehr schnelle Bewegungen
des MEMS lässt sich die gesamte zweidimensionale Lichtverteilung beispielsweise zei-
lenweise scannen. Die Lichtstärke in die jeweilige Raumrichtung kann dabei durch die
Belichtungszeit und die Leistung der Laserdiode frei gewählt werden. Konzeptionell han-
delt es sich also um eine Pulsweitenmodulation in jeder Raumrichtung. Bei hinreichend
schnellem Scan nimmt das Auge lediglich den photometrischen Mittelwert wahr.

Ein zentraler Forschungsschwerpunkt ist die Verbesserung der Kontrastschärfe von Laser-
Scannern, da das vom Leuchtstoff emittierte Licht nicht so definiert und punktförmig
austritt, wie der zuvor aufgetroffene Laserstrahl in den Leuchtstoff eingedrungen ist. Im
Projekt „HipE“ konnte der Kontrast bereits deutlich verbessert werden, indem man den
Leuchtstoff durch eine Gitterstruktur in kleine Flächenelemente diskretisiert hat.

Ein Alleinstellungsmerkmal der Laser-Scanner-Technologie gegenüber allen anderen
beschriebenen Technologien ist die erzielbare Leuchtdichte. Sowohl bei additiven als
auch subtraktiven Verfahren muss der insgesamt zur Verfügung stehende Lichtstrom der
Lichtquelle bereits beim Design des Scheinwerfers auf den auszuleuchtenden Raum-
winkelbereich verteilt werden. Dynamisch kann nur der momentan genutzte Anteil der
realisierbaren Gesamtlichtverteilung angepasst werden. Beim Laser-Scanner hingegen
kann der maximale Lichtstrom, welcher durch die Leistung der Laserdiode vorgegeben
ist, zu jedem Zeitpunkt neu auf den relevanten Winkelbereich verteilt werden. Aus die-
sem Grund erreichen Laser-Scanner höhere Leuchtdichten als die anderen vorgestellten
Verfahren. Diese Eigenschaft macht sie insbesondere für Fernlichtfunktionen besonders
interessant, da sie die Reichweiten konkurrierender Systeme deutlich übertreffen. Das
Bild 3-15 zeigt den Nutzen dieses Alleinstellungsmerkmal am BMW i8. Es sei darauf
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hingewiesen, dass dieses Modell nur über ein statisches Laser-Licht verfügt. Adaptive
Laser-Scanning-Systeme sind bislang nicht in Serie.

Bild 3-15: Vergleich des Fernlichts eines LED- und eines LD-Scheinwerfers [Quelle:
BMW].

Nachdem die vier momentan diskutierten Technologien zur Realisierung von hochauf-
lösenden Scheinwerfer-Systemen vorgestellt sind, fasst Tabelle 3-1 die wesentlichen Ei-
genschaften der verschiedenen Ansätze zusammen und vergleicht sie in übersichtlicher
Form. Hierbei handelt es sich um eine vereinfachte Zusammenfassung einer umfangreichen
Studie von Knöchelmann et al. [KHKL19].

Tabelle 3-1: Wesentliche Eigenschaften verschiedener lichttechnischer Konzepte zur Reali-
sierung hochauflösender Scheinwerfer (Zusammenfassung aus [KHKL19]).

Technik SSL|HD LCD DMD Scanner

Auflösung 104 104 106 anders definiert (hoch)
Winkelbereich groß mittel klein beliebig (meist klein)
Komposition additiv subtraktiv subtraktiv additiv
Lichtquelle LED LED/LD LED/LD

(weiß)
LD (blau)

Opt. Effizienz hoch niedrig niedrig hoch
Komplex. des
Linsensystems

mittel gering hoch gering
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3.2 Lichtfunktionen von HD-Scheinwerfern

Die im vorhergehenden Abschnitt vorgestellten optischen Systeme stellen die technische
Grundvoraussetzung für die nachfolgend beschriebenen Lichtfunktionen dar. Doch erst
durch raffinierte und hochgradig adaptive Lichtfunktionen schaffen die Potentiale, die
durch HD-Systeme erschlossen werden, einen Gewinn für die Fahrzeuginsassen und
andere Verkehrsteilnehmer. Zunächst werden Lichtfunktionen beschrieben, die in aktuellen
Fahrzeugen bereits Anwendung finden könnten. Die größte Hürde stellt hierbei nur noch
die rechtliche Zulassung dieser neuen Technologien dar. Abschließend wird ein Ausblick
auf zukünftige Lichtfunktionen gegeben, die auf wissenschaftlichen Konferenzen bisher
nur konzeptionell vorgestellt wurden. Beispiele hierfür sind Lichtfunktionen im Kontext
des autonomen Fahrens und der Einsatz von maschinellen Lernmethoden.

Durch HD-Systeme können sowohl bestehende Lichtfunktionen, wie Abblend- und Fern-
licht, signifikant optimiert, als auch neuartige fortgeschrittene Lichtfunktionen, wie Stra-
ßenprojektionen oder der optische Fahrspurassistent, etabliert werden. Beide Aspekte
führen zu einem Sicherheits- und Komfortgewinn. Das System umfasst dabei je nach Licht-
funktion neben dem Scheinwerferpaar verschiedene Sensoren und komplexe Software, die
auf dem Steuergerät des Scheinwerfersystems implementiert ist. Erst im Zusammenspiel
aller Komponenten gemäß Bild 3-16 kann eine optimale Situationsadaptivität realisiert
werden. In diesem Abschnitt werden ausschließlich Forschungsergebnisse mit der Licht-
funktion im Fokus vorgestellt. Aus Gründen der Übersichtlichkeit wird auf die Diskussion
der Sensorik und der Perzeption auf Basis der Sensorrohdaten verzichtet. In 2019 präsentie-

Sensoren Steuergerät Scheinwerfer

Bild 3-16: Komponenten eines adaptiven Scheinwerfersystems.

ren Roth et al. die Möglichkeiten eines Micro-LED-Systems anhand eines Demonstrators
[RTH+19]. Sie zeigen auf, dass die quadratischen Seitenverhältnisse aktueller LED-Arrays
nicht die Anforderungen einer geeigneten Straßenausleuchtung erfüllen. Durch die horizon-
tale Anordnung mehrerer LED-Arrays erzielen sie mit einem horizontalen Field of View
(HFOV) von 30◦ und einem vertikalen Field of View (VFOV) von 10◦ ein für die Anwen-
dung optimiertes Seitenverhältnis von 3:1. Durch die asymetrische Überlagerung beider
Scheinwerfer können sie den HFOV des Gesamtsystems auf 40◦ ausdehnen, womit der
erforderliche Winkelbereich für die meisten HD-Anwendungen bis zu einem Kurvenradius
von mindestens 100m gegeben ist [GCN16], [KKBK17]. Gleichzeitig erreichen sie eine
Auflösung von 0.3◦ in der Horizontalen und 0.15◦ in der Vertikalen. Auf Grundlage dieses
und ähnlicher Scheinwerfersysteme leiten Roth et al. mögliche Lichtfunktionen auf Basis
von Unfallstatistiken ab. Bei 85% aller nächtlichen Unfälle handelt es sich um Kollisionen
zwischen Fahrzeugen an Kreuzungen bzw. bei Wendemanövern oder mit Fußgängern,
Auffahrunfälle oder Unfälle aufgrund mangelnder Spurhaltung [GID18]. Zur Prävention
dieser Unfalltypen leiten Roth et al. die in Bild 3-17 dargestellten Lichtfunktionen ab.
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a

b

c

d

Bild 3-17: HD-Lichtfunktionen zur Vermeidung der häufigsten nächtlichen Unfalltypen
nach Roth et al. [RTH+19].

Die in den Bildteilen 3-17 a und b visualisierten Lichtfunktionen unterstützen bei der
Spurführung. In Bildteil a handelt es sich um ein Baustellenlicht. Diese Lichtfunktion erhält
zur Zeit in mehreren Forschungsarbeiten besondere Aufmerksamkeit. Durch die hellen
Streifenprojektionen kann der Fahrer die Breite des Fahrzeugs besser einschätzen und somit
besser durch schmale Fahrspuren, wie sie häufig auf Autobahnbaustellen vorkommen,
navigieren. Im Bildteil b wird der Fahrer auf das Verlassen der Fahrspur hingewiesen. Der
nach rechts deutende Pfeil visualisiert die Notwendigkeit einer Lenkbewegung.

Im Bildteil c wird eine typische Kreuzungssituation dargestellt. Das rote Fahrzeug möchte
in die Fahrspur des Egofahrzeugs (eigenes Fahrzeug in Abgrenzung zu anderen Verkehrs-
teilnehmern) eintreten. Durch einen hellen Streifen an der Einmündung wird einerseits der
Fahrer auf dieses Fahrzeug aufmerksam gemacht und andererseits dem anderen Fahrzeug
signalisiert, dass die Vorfahrt des Egofahrzeugs zu achten ist. Schließlich stellt Bildteil d
die Markierung eines Fußgängers dar.

Die vorgestellten Lichtfunktionen sind so gewählt, dass ein Mikro-LED-System, wie es
durch Roth et al. beschrieben wird, über eine hinreichende Auflösung zur Realisierung der
notwendigen Projektionen und Maskierungen verfügt.

Eine weitere Studie zu den Möglichkeiten von Mikro-LED-Systemen wird durch Lee
vorgestellt [Lee19]. Dieser nennt zunächst die in den letzten Jahren entwickelten Licht-
funktionen und kategorisiert sie anhand ihres erzielten Mehrwerts, der zur Implementierung
notwendigen Auflösung und des Winkelbereichs, in welchem sie aktiv sind. Die Tabelle
3-2 stellt einen Ausschnitt der von Lee erstellten Zuordnung dar.

Anhand der Winkelbereiche der verschiedenen Lichtfunktionen und der für die jeweilige
Funktion erforderlichen Auflösung segmentiert Lee die Gesamtausleuchtung in Felder mit
unterschiedlichen Auflösungsanforderungen. Das Bild 3-18 ist an diese Strukturierung
angelehnt.

Aus seiner Anforderungsanalyse folgert Lee, dass ein Mikro-LED-System insbesondere im
Zentralbereich erhebliche Vorteile gegenüber den bestehenden Matrix-Systemen aufweist.
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Tabelle 3-2: Kategorisierung verschiedener Lichtfunktionen nach erzieltem Mehrwert und
benötigter Auflösung (Ausschnitt aus [Lee19]).

Nutzen Auflösung
Sicherheit Komfort Kommun. Unterhaltung > 2◦ 0.5◦ < 0.1◦

GFHB x x x x x
Schildent-
blendung

x x x x

DBL x x x x
Links-
/Rechts-
verkehr

x x x x

Navigations-
symbole

x x x

Animationen x x x

Durch die dort erforderlichen Mindestauflösungen, die er im Bereich von 0.5◦ bis 0.7◦

beziffert, genügen die Auflösungen von Matrixsystemen nicht.

Die bereits erwähnten Beiträge zeigen, dass durch HD-Systeme Potentiale für neuartige
Lichtfunktionen erschlossen werden können. Die Freiheiten in der Gestaltung sind dabei so
weitreichend wie die Unsicherheiten in der Akzeptanz dieser neuen Funktionen. Krieft et
al. untersuchten, welche Lichtfunktionen von Probanden als sinnvoll eingeschätzt werden
und welche Kriterien erfüllt sein müssen, damit eine neu eingeführte Lichtfunktion auf
Akzeptanz stößt [KTW+19]. Im Rahmen des Beitrags wurde ein breites Spektrum von
Lichtfunktionen in verschiedenen Probandenstudien untersucht.

In der ersten vorgestellten Studie wurde ein optischer Spurhalte- und Geschwindigkeits-
assistent durch zwölf Probanden auf insgesamt ca. 750 gefahrenen Kilometern evaluiert.
Beide Systeme wurden akzeptiert (4-5 von 6 Punkten), wobei der Spurassistent besser
abgeschnitten hat. Während sich die erste Studie mit der Fahrerassistenz beschäftigte,
wurden in der zweiten Studie Lichtfunktionen für das autonome Fahren untersucht. Diese
Funktionen haben die Aufgabe, den anderen Verkehrsteilnehmern (Radfahrer, Fußgänger,
...) Hinweise zu geben, weshalb diese anstelle des Fahrers die Bewertung vornehmen.
Es zeigt sich, dass die zur Kommunikation verwendeten Lichtzeichen in vielen Fällen
unverständlich sind und fehlinterpretiert werden.

In einer dritten Studie wurden Informationsprojektionen zur Kommunikation mit dem
Fahrer analysiert. Beispiele hierfür sind Projektionen von Navigationspfeilen, Geschwin-
digkeitsbegrenzungen oder Willkommens- und Abschiedsanimationen. Die Akzeptanz
dieser Projektionen durch die 21 Probanden ist weit gestreut. Sie variiert von starker Akzep-
tanz für Wildwechsel- und Navigationshinweise bis hin zu fast einstimmiger Ablehnung
für eine Animation beim Einschalten des Fernlichts.

Als Fazit folgern Krieft et al., dass Lichtprojektionen durchaus nutzenbringend sein können.
Voraussetzung hierfür sind jedoch die Verständlichkeit des Symbols, dessen Positionierung
und Form sowie das richtige Timing.
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ϕ = 0◦

θ = 0◦

ABL (Vorfeld), Symbolprojektion

ABL (HDG), DBL

GFHB GFHB GFHB
Gegenverkehr Eigene Spur Gegenverkehr

GFHB, Schildentblendung

Bild 3-18: Segmentierung des Gesamtausleuchtungsbereichs in die Wirkbereiche verschie-
dener Lichtfunktionen (orientiert an [Lee19]).

Ist die Interpretierbarkeit von Symbolprojektionen sichergestellt, gilt es nachfolgend zu
prüfen, ob durch die optische Unterstützung des Fahrers Verbesserungen erzielt werden
können. Diese Fragestellung haben Budanow und Neumann untersucht [BN19]. Grund-
lage der Untersuchung waren ein Spurwechsel- und ein Bremsmanöver aufgrund eines
Hindernisses auf der Fahrspur (siehe Bild 3-19). Dabei wurde verglichen, wie die Reak-
tionsfähigkeit des Fahrers ohne und mit der Unterstützung von Lichtfunktionen variiert.
In beiden Manövern konnten Verbesserungen von etwa 30% bezüglich der Entfernung
zwischen dem Hindernis und dem Beginn der Reaktion verzeichnet werden. Auch der
subjektive Eindruck der 82 Testpersonen war mit großer Mehrheit positiv. Sie stellen
außerdem heraus, dass die verwendeten Projektionslinien besser interpretierbar sind, als
die in anderen Studien (z.B. [RTH+19]) eingesetzten Dreiecke.

Bild 3-19: Untersuchung des Einflusses optischer Signale auf die Reaktion des Fahrers
anhand verschiedener Fahrmanöver aus [BN19] (links: Spurwechsel, rechts:
Bremsung).
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Das Baustellenlicht (Construction Zone Light, CZL) wird verstärkt als HD-Lichtfunktion
mit herausragendem Mehrwert diskutiert. Hamm hat dazu in 2019 eine umfangreiche
Studie vorgestellt, die neben der Bewertung der Vorteile des CZL für den Fahrer auch
zulassungsrelevante Aspekte, wie die Auswirkungen auf die Blendung anderer Verkehrsteil-
nehmer, beleuchtet [Ham19]. Dazu haben 21 Testpersonen ein Überholmanöver innerhalb
einer Autobahnbaustelle in verschiedenen Szenarien durchfahren. Verglichen wurden die
Lenkeingaben und Gaspedalstellungen mit und ohne CZL. Hamm zeigt, dass die Anzahl
der Lenkkorrekturen bei aktivem CZL deutlich reduziert werden können. Außerdem wurde
die Gaspedalstellung während des Überholmanövers beobachtet. Es zeigt sich, dass Fahrer
ohne CZL häufiger die Gaspedalstellung und damit ihre Geschwindigkeit während des
Überholvorgangs ändern. Insgesamt schlussfolgert Hamm, dass CZL zu einem ruhigeren
und kontrollierteren Verhalten des Fahrers führt und somit zu einem Sicherheitsgewinn.

Im zweiten Teil der Studie untersucht Hamm mögliche blendungskritische Auswirkun-
gen von CZL. Hierbei zieht er sowohl objektive als auch subjektive Bewertungen heran.
Eine Vermessung der Beleuchtungsstärke im Bereich der links vom Egofahrzeug befindli-
chen Spur für verschiedene Distanzen zeigt, dass ein aktives CZL von einem einfachen
Abblendlicht messtechnisch kaum unterscheidbar ist. Diese Beobachtungen werden für
trockene und nasse Fahrbahnen bestätigt. Die subjektiven Beurteilungen erfolgten durch
44 Testpersonen, die in einem entgegenkommenden Fahrzeug positioniert wurden. Sie
spiegeln die messtechnischen Resultate wider.

Bild 3-20: Construction Zone Light (CZL) zur Unterstützung des Fahrers in engen Fahr-
spuren von Autobahnbaustellen aus [RL19].

Rosenhahn und Link bestätigen in einer ähnlichen Untersuchung die positiven Auswir-
kungen des CZL auf das Fahrverhalten [RL19]. Sie zeigen, dass Fahrer, welche sich ohne
optische Unterstützung in 20%-40% der Zeit außerhalb des Sicherheitsbereichs (+/- 25 cm
der Idealspur) aufhalten, in ihrer Spurführung stark verbessert werden können. Durch CZL
kann der zeitliche Anteil außerhalb des Sicherheitsbereichs auf 10% reduziert werden.

Mit dem Schlechtwetterlicht zeigen Thoma und Vollrath eine weitere HD-Lichtfunkti-
on, die in Teilen bereits durch Matrix-Systeme implementiert werden kann [TV19]. Sie
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vergleichen drei verschiedene Ansätze zur Anpassung der Lichtverteilung bei Nebel von
Rosenhahn und Schmidt [Ros00], [Sch17]. Dabei stellen die Autoren insbesondere heraus,
wie aufwendig und teilweise unmöglich verlässliche Tests durch Realfahrten bei der Erpro-
bung von Lichtfunktionen sein können. Sie greifen deshalb schließlich auf eine künstliche
Szenerie in einer Halle mit Nebelmaschinen zur Durchführung der Probandenstudie zurück.
Das Bild 3-21 zeigt das Testsetup.

Bild 3-21: Probandenstudie zur Bewertung verschiedener Schlechtwetterlichtfunktionen
mit künstlichem Nebel in einer statischen Szenerie aus [TV19].

Die 34 Teilnehmer bewerten die verschiedenen Lichtfunktionen hinsichtlich der Sicht-
barkeit von Objekten, die sich vor dem Fahrzeug befinden, und der Eigenblendung, wie
sie durch die Reflexion des Scheinwerferlichts an Nebelpartikeln hervorgerufen wird.
Außerdem wird durch die Sichtbarkeitsreichweite ein objektives Kriterium herangezogen.
Es zeigt sich, dass eine niedrigere HDG verwendet werden sollte, da eine Fernlichtver-
teilung eine zu starke Eigenblendung hervorruft. Außerdem zeichnet sich ab, dass eine
Dimmung der Vorfeldausleuchtung zu einer besseren Erkennbarkeit von Objekten führt.
Da in der Studie das methodische Vorgehen bei der Bewertung von Schlechtwetterlicht im
Fokus steht, müssen nachfolgende Arbeiten die konkreten Eigenschaften einer geeigneten
Schlechtwetterlichtverteilung präzisieren.

Zum Ende dieses Abschnitts sollen einige HD-Lichtfunktionen vorgestellt werden, die
im Kontext des autonomen Fahrens an Bedeutung gewinnen werden. Auch wenn der
Scheinwerfer bei autonomen Fahrzeugen des SAE-Levels 5 nicht mehr zur direkten Un-
terstützung des menschlichen Sehens notwendig ist, kommen ihm in diesem Kontext
neuartige funktionale Aufgaben zu.

In autonomen Fahrzeugen stellt der Kamerasensor eine Schlüsselkomponente zur Wahr-
nehmung der Umgebungssituation dar. Tesla wagt sogar die These, dass ein Sensorsetup,
welches ausschließlich aus Kameras besteht, ausreicht, um autonome Fahrfunktionen
umzusetzen [Tem19]. Ein Vorteil gegenüber LiDAR- und RADAR-Sensoren ist die hö-
here örtliche Auflösung [Fec18] und die farbbasierte Objekterkennung. Im Gegensatz zu
anderen Sensoren im Kontext des autonomen Fahrens erfordert die Kamera allerdings
eine hinreichende Ausleuchtung der zu beobachtenden Umgebung. Bei Nacht muss diese
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Ausleuchtung durch das Scheinwerfersystem sichergestellt werden, womit der Fortbestand
von Scheinwerfern in autonomen Fahrzeugen gesichert ist.

Gut et al. schlussfolgern vier Funktionen von Scheinwerfern in autonomen Fahrzeugen
[GXB19]. Diese sind

• Signal an die Umgebung: Sicherung der Erkennbarkeit durch andere Verkehrsteil-
nehmer bei Nacht,

• Kommunikation mit der Umgebung: Symbolprojektionen von HD-Scheinwerfern
stellen einen Kommunikationskanal zu anderen Verkehrsteilnehmern dar,

• Trajektorienbeleuchtung: Die Fahrzeuginsassen können die zukünftige Bewegung
des autonomen Fahrzeugs überwachen und gewinnen ein Sicherheitsgefühl

• Sensorunterstützung: Ausleuchtung der Umgebung zur Kameraerkennung von Ob-
jekten, Farben und Wetterverhältnissen bei Nacht.

Die Autoren fokussieren in ihrem Beitrag den letzten Stichpunkt. Sie verdeutlichen, dass
die Unterstützung der Kamerasensorik durch spezielle Lichtfunktionen und das damit
einhergehende SAE-Level 5 zu einem signifikanten Rückgang der Verkehrstoten führen
könnte. Gründe hierfür sind das Entfallen von müdigkeitsbedingten Fehlern des menschli-
chen Fahrers und die gezielte Beleuchtung von Stellen, die durch LiDAR- und RADAR-
Sensoren nicht interpretiert werden können. Als weiteren Punkt nennen die Autoren die
Erkennung von Wetterverhältnissen, welche tagsüber bereits durch die Kamera geleistet
werden kann. Bei geeigneter Ausleuchtung ist somit zu erwarten, dass diese Erkennung
auch auf die Nachtfahrt überführt werden kann. Die vorliegenden Wetterverhältnisse lassen
wiederum Rückschlüsse auf die Verlässlichkeit verschiedener Sensoren und die geeignete
Reisegeschwindigkeit zu. Zur Implementierung geeigneter Lichtfunktionen leiten Gut et
al. die in Tabelle 3-3 aufgeführten Anforderungen an das Scheinwerfersystem ab.

Tabelle 3-3: Anfordernungen an ein Scheinwerfersystem in autonomen Fahrzeugen nach
[GXB19].

Typ Anwendung Anforderungen

Text Erkennung von Verkehrsschil-
dern und Straßenmarkierungen

Präzise Auflösung und anpassba-
re Lichtstärke

Farbe Erkennung von Farben von Ver-
kehrsschildern und von Straßen-
markierungen

Hoher Farbwiedergabeindex
(CRI) (möglichst kontinuierli-
ches Spektrum der Lichtquelle)

Kontrast Klassifizierung nicht beleuchte-
ter Objekte und Straßenränder

Hohe Lichtstärke im Bereich der
Fahrzeugtrajektorie, hohe Adap-
tivität der Lichtverteilung

Auch Böhm stellt eine ähnliche These zur Rolle von Licht in zukünftigen autonomen
Fahrzeugen auf [Böh19]. Er spricht vom ersten „Closed-Loop“ Ansatz von Aktoren
und Sensoren, der über die klassische Sensorfusion hinaus geht. Einerseits verbessert
das Licht die Wahrnehmung der Umgebung durch die Kamera und andererseits kann
durch die gewonnenen Umfeldinformationen eine bessere Gestaltung der Lichtverteilung
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vorgenommen werden. Während das Scheinwerferlicht heutzutage den Fahrer unterstützt,
wird es zukünftig den Sensoren das nächtliche Sehen ermöglichen.

Die getätigten Aussagen unterstützt Böhm durch verschiedene Studien. In einem Ver-
such vergleicht er die Erkennung eines Fußgängers an einer Landstraße ohne zusätzliche
Lichtquellen bei verschiedenen Geschwindigkeiten. In den insgesamt 16 Tests wird der
Fußgänger bei Abblendlicht nur zweimal durch den Algorithmus erkannt. Bei Verwendung
des Fernlichts konnte der Fußgänger 14 mal detektiert werden. Diese Studie zeigt, dass die
Informationsqualität des Kamerasensors maßgeblich durch die Eignung der Lichtvertei-
lungen beider Scheinwerfer bestimmt wird. In einer weiteren Studie zeigt Böhm, dass die
Konfidenzintervalle der Objekterkennung bei Nacht von 50% auf über 90% angehoben wer-
den können, wenn anstelle des Abblendlichts eine gezielte Beleuchtung relevanter Bereiche
erfolgt. Damit bewegen sich die Konfidenzintervalle im Wertebereich einer Tagfahrt.

Mit der wachsenden Zahl von Umfeldsensoren, wie sie mit der Einführung autonomer
Fahrzeuge zu erwarten ist, wird neben der logischen auch die physikalische Integration
von Sensoren und Scheinwerfern Gegenstand der Forschung. Mathes und Reiss zeigen auf,
dass die Integration der Sensoren in das Scheinwerfergehäuse geometrische, elektronische
und physikalische Vorteile liefert [MR18]. Argumente hierfür sind vorhandene Reinigungs-
anlagen der Scheinwerfersysteme, die günstige Anbaulage an der Fahrzeugfront, welche
beispielsweise den „Blick“ um eine Gebäudeecke früh erlaubt, existierende Kühlsysteme
der Scheinwerfer oder die Verwendung eines zentralen Steuergeräts für Licht, RADAR
und LiDAR. Darüber hinaus beschreiben die Autoren ein Konzept, in welchem dieselben
Optiken gemeinsam durch die HD-Lichtquelle des Scheinwerfers und die Kamera genutzt
werden.

3.3 Simulation in der Scheinwerfertechnik

Die Vielfältigkeit der technischen Lösungen und ihre jeweiligen Vor- und Nachteile er-
fordern schon in frühen Phasen der Entwicklung eines Scheinwerfersystems die Berück-
sichtigung verschiedenster Aspekte im Hinblick auf die zu realisierenden Lichtfunktionen.
Darüber hinaus zeigt der vorhergehende Abschnitt, dass die Funktionen und Dynamiken
des Scheinwerferlichts durch die HD-Technik stark zunehmen. In dem Zuge gewinnt auch
der Entwicklungsprozess der Lichtfunktionen an Komplexität. Außerdem ist der Testauf-
wand im Scheinwerferbereich aufgrund der Anforderungen an Tageszeit und Witterung
enorm zeitintensiv und kostspielig. Aufgrund dieser Gegebenheiten und zusätzlichen Si-
cherheitsaspekten ist die simulationsbasierte Entwicklung moderner Scheinwerfersysteme
eine Methode, welche die Realisierung von HD-Lichtfunktionen nicht nur erleichtert, son-
dern überhaupt erst ermöglicht. Dieser Abschnitt thematisiert, welche simulationsbasierten
Methoden in der Entwicklung von HD-Scheinwerfern Anwendung finden und fokussiert
dabei virtuelle Nachtfahrtsimulationen, welche das Kernthema dieser Arbeit darstellen.

Bei der Recherche zu virtuellen Nachtfahrtsimulationen stechen verschiedene kommerziel-
le Lösungen heraus. Diese Produkte werden nachfolgend diskutiert und hinsichtlich ihrer
Funktionalität im Kontext von HD-Scheinwerfern verglichen.

Synopsys bietet die Toollandschaft „LucidShape“ an [Syn19]. Hierbei handelt es sich um
eine Produktfamilie von miteinander kompatiblen Tools, welche die Lichtentwicklung im
automobilen Umfeld in vielen Bereichen unterstüzten. Neben Tools zur Simulation der
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Lichtausbreitung im Scheinwerfer, welche zur Auslegung des Scheinwefers und zur simu-
lativen Erzeugung von Lichtstärkeverteilungen dienen, können mit dem Tool „LucidDrive“
virtuelle Nachtfahrten durchgeführt werden [Syn20].

Bild 3-22: Screenshot aus der Nachtfahrtsimulation „LucidDrive“ der Firma Synopsys
[Syn20].

LucidDrive wird fortlaufend weiterentwickelt und verfügt inzwischen über weitreichende
Funktionen. Es können monochrome und spektrale Lichtverteilungen dargestellt werden.
Letztere haben gegenüber Lichtstärkeverteilungen den Vorteil, dass beispielsweise Farbsäu-
me im Randbereich optischer Linsen sichtbar werden. Diese Phänomene kommen durch
die wellenlängenabhängige Brechung des Lichts zustande. Der zugrunde liegende Effekt
wird als Dispersion bezeichnet [PPBS05].

Seit September 2019 unterstützt LucidDrive die Simulation hochauflösender Scheinwerfer
mit dem „AFS Masking PixelLight“-Feature in idealisierter Form [Syn19]. Das Bild 3-22
zeigt eine Momentaufnahme während der Verwendung dieses Features. Dazu wird initial
die Lichtverteilung der HD-Lichtquelle unter maximaler Bestromung aller Pixellichter
generiert. Während der Simulation können dann definierbare Winkelbereiche aus dieser
Lichtverteilung vollständig oder teilweise abgedunkelt werden. Hierbei handelt es sich um
eine stark idealisierte Nachbildung der HD-Lichtquelle, da die physikalische Realisierbar-
keit der Maskierung nicht überprüft wird. Aus diesem Grund können Streulichtanteile und
Überlappungen der einzelnen Pixellichtquellen mit dem AFSMaskingLight-Feature nicht
korrekt wiedergegeben werden. Vorteilhaft bei diesem Ansatz sind die geringeren Anforde-
rungen an die Rechenperformance und die einfache Manipulation der Lichtverteilung.

Seit 2020 unterstützt LucidDrive auch eine physikalisch korrekte Simulation von HD-
Scheinwerfern, welche für jedes Pixel der Lichtquelle eine Lichtverteilung vorhält. Hier
gibt der Hersteller eine Anzahl von mindestens 12.800 Pixeln an, die in Echtzeit simuliert
werden können. Damit beinhaltet LucidDrive die mit Abstand performanteste Pixellichtsi-
mulation am Markt. Jedoch weist die Implementierung auch einen erheblichen Nachteil auf:
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spektrale Lichtverteilungen werden im Kontext von HD-Scheinwerfern nicht unterstützt.
Somit relativiert sich der sehr hohe Maximalwert gleichzeitig simulierbarer Pixel.

Im Kontext von Fahrsimulatoren kommen häufig mehr Anzeigegeräte zum Einsatz, als ein
einziger Rechner versorgen kann. Der Renderaufwand skaliert linear mit der Anzahl von
Ausgabegeräten, weshalb zumindest die grafisch relevanten Komponenten auf mehrere
Rechner, die in einem gemeinsamen Netzwerk kommunizieren, verteilt werden müssen.
LucidDrive unterstützt vornehmlich Büroarbeitsplätze und kleine Simulatoren mit bis
zu drei Ausgabegeräten. Eine Unterstützung von Großsimulatoren steht aktuell nicht im
Fokus.

Das Fahrzeugmodell ist sehr einfach gehalten und bildet die Dynamik realer Fahrzeuge
nicht ab. Witterungseinflüsse, wie Regen, Nebel oder Schnee, können in LucidDrive nicht
nachgebildet werden. Zur Analyse von Lichtfunktionen kann die momentane Lichtver-
teilung durch Falschfarben- und Isolinien-Darstellungen visualisiert werden. Eine aktive
Unterstützung bei der Gestaltung von Lichtfunktionen existiert nicht.

Bekannt für umfangreiche Kompetenzen bei der Echtzeitsimulation und insbesondere
HiL-Simulation im automobilen Umfeld ist die Firma dSPACE. Der Hersteller bietet
sowohl Hardware- als auch Software-Lösungen in diesem Anwendungsfeld an. Mit der
Software „MotionDesk“ bietet dSPACE eine Visualisierung der in Echtzeit berechneten
Fahrsimulation und unterstüzt seit 2017 und ab Version 4.1 virtuelle Nachtfahrten [dSP17].
Bild 3-23 zeigt beispielhaft einen Screenshot aus MotionDesk.

Bild 3-23: Screenshot einer virtuellen Nachtfahrt im Tool „MotionDesk“ der Firma
dSPACE [Quelle: dSPACE].

Der Fokus von dSPACE liegt jedoch derzeit mehr im Bereich der Simulation von Um-
feldsensorik, wie LiDAR-, RADAR- oder Kamera-Sensoren. Im Rahmen der Scheinwer-
fersimulation werden nur statische Lichtverteilungen unterstützt. Eine Simulation von
hochauflösenden Scheinwerfern exisitert bisher nicht. Die Farbe des Scheinwerferlichts
kann in MotionDesk variiert werden, wobei keine lokalen Farbunterschiede in der Lichtver-
teilung möglich sind. Spektrale Messdaten werden somit nicht unterstützt. Analyse- und
Designtools zur Beurteilung der Lichtverteilung sind nicht implementiert. Obwohl dSPACE
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eine Vielzahl von HiL-Simulationen verschiedenster Steuergeräte des Fahrzeugs unter-
stützt, können die Reaktionen des Scheinwerfersteuergeräts in MotionDesk mangels HD-
Unterstützung nicht visualisiert werden. Die grundsätzliche Anbindung von Steuergeräten
ist unter Verwendung der hauseigenen Echtzeithardware sehr flexibel umsetzbar.

Die Anforderungen an die Skalierbarkeit deckt MotionDesk weitestgehend ab. Die Si-
mulation ist sowohl auf einem normalen Desktop-PC, als auch auf der Echtzeithardware
ausführbar. Außerdem ist die Verteilung der Visualisierung auf mehrere Rechner möglich,
sodass auch Großsimulatoren geeignet betrieben werden können. Als Schwachpunkt ist
die Notwendigkeit einer Echtzeithardware zur HiL-Anbindung des Steuergeräts zu nennen.
Alternativ bietet dSPACE die Plattform VEOS an, welche neben SiL- und MiL-Tests mit
vollständiger CAN Simulation auch reale Steuergeräte mit einem CAN-USB Adapter
ankoppeln kann.

MotionDesk unterstützt die Visualisierung von Regen, Schnee und Nebel. Dabei muss
jedoch angemerkt werden, dass keine Wechselwirkung des Scheinwerferlichts mit Partikeln
in der Luft simuliert wird. Daran wird jedoch aktuell gearbeitet. Ebensowenig ändert sich
das Reflektionsverhalten der Umgebungsobjekte bei entsprechender Witterung. Insofern
kann nur von einer rudimentären Witterungssimulation gesprochen werden.

Eine besondere Stärke von dSPACE ist das komplexe Fahrzeugmodell der „Automotive
Simulation Models“ (ASM) Tool Suite [dSP20]. Hierbei handelt es sich um ein Fahr-
zeugmodell mit insgesamt 26 Freiheitsgraden, die sich auf den Fahrzeugaufbau, den
Antriebsstrang, das Lenksystem und die Räder verteilen. Das Fahrzeugmodell kann über
das Tool „ModelDesk“ komfortabel parametriert werden [dSP20]. Ein Ausschnitt aus
ModelDesk wird in Bild 3-24 dargestellt.

Als weiterer Vorteil ist die weitgehende Quelloffenheit des Fahrzeugmodells zu nennen.
Die Implementierung wird von dSPACE in MATLAB/Simulink vorgenommen und als
einsehbares Modell zur Verfügung gestellt. Durch die quelloffene Verfügbarkeit kann der
Anwender selbstständig tiefergehende Änderungen an der Modellierung vornehmen, zu-
sätzliche Komponenten ergänzen oder Schnittstellen zu anderen Simulationskomponenten
erzeugen. Das Fahrzeugmodell kann für die dSPACE Echtzeithardware kompiliert und mit
einer Schrittweite von einer Millisekunde simuliert werden.

Der Scheinwerferhersteller HELLA pflegt eigene Softwaretools zur Unterstützung der
Entwicklungsarbeit. Die Toolkette wird unter dem Namen „Helios“ geführt und bietet
Berechnungen und Simulationen von lichttechnischen Geräten. Obwohl Automobilität
im Fokus steht, werden darüber hinaus auch andere Sektoren, wie z.B. der Flugzeugbau,
bedient. Innerhalb der Helios Toolsuite stellt der LightDriver Professional, im Folgenden
als LightDriver bezeichnet, die virtuelle Nachtfahrtsimulation dar [Pla12], [WPKB02],
[WP01].

Seit 2019 untersützt der LightDriver die physikalische Simulation von Pixel-Scheinwerfern
mit etwa 100 Lichtquellen. Die Einzellichtverteilungen können hierbei auch spektral vor-
liegen. Um höher aufgelöste Systeme zu unterstützen, wird derzeit an der HD-Simulation
durch Maskierung gearbeitet, welche zukünftig in den LightDriver integriert werden soll.

Das Fahrzeugmodell des LightDriver ist einfach gehalten und bildet die Fahrdynamik realer
Fahrzeuge nicht ab. Eine Witterungssimulation ist ebenfalls nur in stark vereinfachter Form
möglich. Eine physikalische Nachbildung von Witterungsphänomenen wird im LightDriver
nicht unterstützt.
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Bild 3-24: Screenshot des Tools „ModelDesk“ zur Parametrierung des Fahrzeugmodells
der ASM Toolsuite [Quelle: dSPACE].

Hinsichtlich der Analysetools verfügt der LightDriver neben dem üblichen Portfolio,
wie Isolinien- und Falschfarbendarstellungen von photometrischen Größen, über eine
Auswertung der Lichtverteilungen bezüglich gesetzlicher und kundenspezifischer Vorgaben.
Eine aktive Unterstützung bei der Lichtfunktionsgestaltung sieht aber auch der LightDriver
nicht vor.

Die HiL-Simulation des Scheinwerfersteuergeräts wurde in der Vergangenheit für her-
kömmliche Scheinwerfersysteme angewendet. Eine Unterstützung von HD-Steuergeräten
befindet sich derzeit in Entwicklung.

Der LightDriver kann zum Betrieb von Großsimulatoren eingesetzt werden. Dazu kann er
in einer verteilten Client-Server-Architektur betrieben werden. Durch die variable Anzahl
an Clients können hinreichend viele Ausgabegeräte versorgt werden. Die Steuerung erfolgt
in diesem Betriebsmodus zentral am Server, sodass dieser neben der Koordination des
Netzwerkbetriebs die Rolle einer Remote-Applikation übernimmt.

Die Vires Simulationstechnologie GmbH als Teil der Hexagon-Gruppe bietet die Software
„Virtual Test Drive“ an. Hierbei handelt es sich um eine Software zur Generierung und
Animation von virtuellen Testumgebungen im Bereich der Fahrsimulation. Dabei werden
auch Umfeldsensorsimulationen unterstützt. Im Bild 3-26 ist eine Momentaufnahme der Si-
mulation zu sehen. Die vielfältigen Möglichkeiten der Verkehrs- und Umfeldsimulationen
werden besonders deutlich.

Im Kontext der physikalisch basierten Umfeldsimulation stellt die korrekte Wiedergabe
des Scheinwerferlichts einen zentralen Bestandteil des Portfolios dar. Deshalb arbeitet
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Bild 3-25: Screenshot der Nachtfahrtsimulation „LightDriver“ aus der Toolsuite „Helios“
der HELLA [Quelle: HELLA].

Vires auch an der Simulation von Pixellichtsystemen. Die Einbindung phyiskalischer
Lichtquellen im Sinne einzelner Lichtverteilungen ist jedoch auf 100 Elemente beschränkt,
wobei auf Rückfrage bei Vires eine Anzahl von 5 bis 20 einzelnen Lichtquellen aufgrund
des hohen Rechenaufwands empfohlen wird. Demzufolge ist diese Variante zwar für die
Simulation konventioneller Scheinwerfer mit einigen Zusatzlichtquellen geeignet. Sie
kann jedoch nicht für die Simulation selbst niedrig aufgelöster Pixelsysteme eingesetzt
werden. Um dennoch moderne Systeme mit hoher Auflösung simulieren zu können, bietet
Vires das sogenannte Beamerelement an, welches einmalig pro Scheinwerfer eingebunden
werden kann. Dieses verfügt über eine Auflösung von maximal 1.000 × 1.000 Pixel.
Das Beamerelement ist jedoch nicht als eine physikalisch motivierte HD-Simulation,
sondern als Maskierung einzuordnen. Eine HiL-Einbindung des Scheinwerfersteuergeräts
ist ebenfalls möglich. VTD implementiert die üblichen Analysetools zur Beurteilung von
Lichtverteilungen. Designtools für Lichtfunktionen werden nicht bereitgestellt.

Eine Besonderheit von VTD ist die Voraussetzung an das Betriebssystem. Die Software
läuft ausschließlich auf Linux-Systemen. Durch die zugrunde liegende Server-Client-Ar-
chitektur ist eine hohe Skalierbarkeit der Simulation gegeben. Sie kann auf nur einem oder
mehreren Rechnern betrieben werden. Entsprechend ist die Anzahl der Ausgabemedien va-
riabel, wodurch die Anwendbarkeit vom Desktop-PC bis hin zum Großsimulator gegeben
ist.

Hinsichtlich der Fahrzeugmodellierung unterstützt VTD ein breites Spektrum. Vom Ein-
spurmodell bis hin zum ADAMS-Fahrzeugmodell kann der Anwender entsprechend seiner
Anforderungen wählen. Das ADAMS-Fahrzeugmodell wird von dem Unternehmen MSC
Software, welches ebenfalls Teil der Hexagon-Gruppe ist, entwickelt und weist eine hohe
Komplexität auf. Weitere Informationen zu diesem Modell finden sich in [MSC20].
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Bild 3-26: Screenshot des Tools „Virtual Test Drive“ der Vires Simulationstechnologie
GmbH [Quelle: MSC Software].

Eine Witterungssimulation wird in VTD unterstützt. Diese bewegt sich im Kontext der
Lichtsimulation allerdings auf einer eher oberflächlichen Ebene und lässt keine Interaktio-
nen zwischen dem Scheinwerferlicht und den Partikeln in der Luft zu.

Umfassende Simulationsanwendungen bietet neben Hexagon auch die in den USA ansäs-
sige Firma Ansys an. Die von Ansys geführte Produktfamilie Optis umfasst dabei Simu-
lationstools im Bereich des automotiven Lichts. Innerhalb von Optis bildet die Software
VRXPERIENCE (VRX) virtuelle Nachtfahrtsimulationen ab [Ans20]. Die Szenengenerie-
rung wird hierbei durch die Simulation SCANeR des Anbieters AVSimulation realisiert
[AVS20]. Eine Momentaufnahme mit aktiver Falschfarbenvisualisierung photometrischer
Größen zeigt Bild 3-27.

Ansys unterstützt die Simulation von HD-Scheinwerfern. Die Lichtverteilungen der einzel-
nen Pixel können photometrisch oder spektral geladen werden. Die maximale Anzahl der
Pixel pro Scheinwerfer werden auf 500 begrenzt. Auf Nachfrage teilte das Unternehmen
jedoch mit, dass sich die Simulation unter der Annahme einer Gaming-Grafikkarte, wie
der GeForce GTX 1080 Ti, eher im Bereich von maximal 120 Pixeln sinnvoll betreiben
lässt.

Die HiL-Einbindung des Scheinwerfersteuergeräts ist in VRX möglich. Darüber hinaus
kann auch das Steuergerät der Umfeldkamera im In-the-Loop-Betrieb eingebunden werden.
Die Skalierbarkeit des Systems ist ebenfalls gegeben. So lassen sich abhängig von der
Lizenz bis zu 16 Ausgabegeräte an die Simulation koppeln, womit auch Großsimulatoren
hinreichend bedient werden können. Die Single Server Architektur erfordert allerdings
die Kopplung aller Ausgabegeräte an einen Rechner, weshalb entsprechende Hardware
vorzuhalten ist.

Wie in den meisten bereits diskutierten Anwendungen unterstützt VRX die gängigen Ana-
lysetools zur Beurteilung der Lichtverteilungen und -funktionen, bietet aber keine aktive
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Bild 3-27: Screenshot des Tools „VRXPERIENCE“ von Ansys [Quelle: Ansys].

Unterstützung bei der Modifikation bestehender oder der Auslegung neuer Lichtfunktio-
nen. Durch Cosimulation mit dem Tool VRX DS können visuelle Witterungsverhältnisse
simuliert werden. Die physikalisch motivierte Simulation von Witterungsbedingungen
steht in VRX bisher nicht zur Verfügung. Diese Funktionalität steht aber für 2021 auf der
Agenda.

Hinsichtlich der verwendbaren Fahrzeugmodelle ist VRX sehr flexibel. Es erlaubt die
Einbindung eigener Modell durch verschiedene Schnittstellen und bietet alternativ mit der
hauseigenen Software Twin Builder die Möglichkeit, digitale Zwillinge realer Fahrzeuge
zu generieren.

Zum Abschluss der Diskussion der am Markt verfügbaren Nachtfahrtsimulationen, wer-
den sie in Tabelle 3-4 hinsichtlich der relevanten Eigenschaften in übersichtlicher Form
verglichen. Die Tabelle wird im nachfolgenden Kapitel die Grundlage zur Ableitung des
Handlungsbedarfs bilden.
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Tabelle 3-4: Vergleich der Funktionsumfänge verschiedener Nachtfahrtsimulationen.

Kriterium MotionDesk LightDriver VTD LucidDrive VRX

Hersteller dSPACE HELLA Vires Synopsys Ansys
Softwarepaket ASM Helios - LucidShape Optis
Lichtverteilung ja ja ja ja ja
Maskierung nein nein ja ja ja
HD-Simulation nein ja nein ja ja
HD-Sim. seit - 2019 - 2019 2017
max. Pixelzahl - ≈100 - ≈12.800 120/500
Spektrale HD-
Sim.

nein ja - nein ja

Steuergeräte-HiL (nein) nein ja ja ja
Skalierbarkeit (ja) ja ja (nein) ja
Lichtfkt. Analyse nein ja ja ja ja
Lichtfkt. Design nein nein nein nein nein
Fahrzeugmodell komplex einfach komplex einfach komplex
Witterung einfach einfach einfach nein einfach
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4 Anforderungen und Handlungsbedarf

Das vorhergehende Kapitel zeigt, dass derzeit keine umfassende Lösung zur simulativen
Erprobung hochauflösender Scheinwerfer und insbesondere zur Auslegung ihrer Licht-
funktionen verfügbar ist. Hieraus ergibt sich die Forschungsfrage: Welche Funktionen und
Eigenschaften muss eine softwaretechnische Lösung zur bestmöglichen Unterstützung
eines Ingenieurs bei der Auslegung von Lichtfunktionen hochauflösender Scheinwerfer
aufweisen und wie können diese implementiert werden? Dieses Kapitel kann als Lastenheft
der zu realisierenden Software verstanden werden.

4.1 Definition der Anforderungen

In den vorliegenden Unterabschnitten werden die wesentlichen Anforderungen an ei-
ne Nachtfahrtsimulation aufgelistet. Konkret unterteilen sich die Anforderungen an die
softwaretechnische Lösung in die Kriterien

• visuelle Qualität,

• Technologie-Kompatibilität und Pixel-Skalierbarkeit,

• Echtzeitfähigkeit und X-in-the-Loop Testing,

• Latenz,

• Lichtanalyse und -entwurf,

• Witterung,

• Fahrdynamik,

• Konfigurierbarkeit,

• Parametrierbarkeit

• sowie Remote-Fähigkeit.

Für jedes dieser Kriterien werden nachfolgend im jeweiligen Unterabschnitt konkrete Leis-
tungsmerkmale für eine Nachtfahrtsimulation, wie sie im Kontext von HD-Scheinwerfern
zu erbringen sind, abgeleitet.

4.1.1 Visuelle Qualität

Die Bewertung von Scheinwerferlicht und Lichtfunktionen erfolgt neben den geltenden
Gesetzen und Normen bis heute primär subjektiv. Der visuelle Eindruck des Lichtinge-
nieurs ist ausschlaggebend im Entwicklungsprozess. Um Teile der Entwicklung von der
realen in die virtuelle Umgebung verlagern zu können, ist eine realistische Nachbildung
des Scheinwerferlichts in der virtuellen Szene grundlegend. Die hinreichende Übereinstim-
mung zwischen realer und virtueller Lichtverteilung sollte durch die virtuelle Nachbildung
einer realen Szene erfolgen. Die gerenderte Szene muss im direkten Vergleich eine gute
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Übereinstimmung mit der realen Umgebung aufweisen. Diese Übereinstimmung muss für
verschieden geartete Lichtverteilungen nachgewiesen sein.

Der visuelle Gesamteindruck der Lichtverteilung ergibt sich aus verschiedenen Kompo-
nenten. Hierbei sind vor allem die geometrische Verteilung der Beleuchtungsstärke, die
Wechselwirkungen mit verschiedenen Materialien und der Farbverlauf zu nennen. Zur Ab-
bildung der Beleuchtungsstärke in einer virtuellen Szene sind die korrekte Nachbildung
der Lichtstärkeverteilungen, die distanzabhängige Abschwächung der Lichtintensi-
tät und vorliegende Lichteinfallswinkel zu berücksichtigen. Um die Wechselwirkung
zwischen Licht und verschiedenen Oberflächenmaterialien nachzubilden, müssen die bi-
direktionalen Reflektanzverteilungsfunktionen der Materialien in geeigneter Form
approximiert werden. Eine korrekte Nachbildung des Farbverlaufs erfordert die Unter-
stützung spektraler Lichtverteilungen. Zudem muss die Konvertierung des Quellfarb-
raums (meist CIE XYZ) in den Zielfarbraum (meist RGB) bei geeigneter Kalibrierung
erfolgen.

4.1.2 Technologie-Kompatibilität und Pixel-Skalierbarkeit

Wie Abschnitt 3.1.3 zeigt, existieren derzeit verschiedene technische Konzepte zur Um-
setzung hochauflösender Scheinwerfer. Unter diesen Umständen ist eine möglichst große
Kompatibilität wünschenswert. Zum einen bedeutet die Verwendung unterschiedlicher
Nachtfahrtsimulationen für die verschiedenen technischen Realisierungen einen erheb-
lichen Mehraufwand und zum anderen ist die Vergleichbarkeit derartiger Systeme über
verschiedene Simulationen nur eingeschränkt möglich. Als weitere Anforderung lässt sich
deshalb ableiten, dass die Implementierung der Lichtsimulation unabhängig von der
konkreten Scheinwerfertechnologie vorgenommen werden soll.

Verwandt, aber nicht gleichbedeutend mit der Technologie-Kompatibilität ist die Skalierbar-
keit bezüglich der Pixelzahl. Jede technische Realisierung von Pixellicht hat individuelle
Stärken und Schwächen. Dabei unterscheiden sich verschiedene Technologien bezüglich
der Anzahl ihrer Pixel über mehrere Größenordnungen. Bild 4-1 ordnet die Technologien
entlang dieses Kriteriums. In den kommenden Jahren werden häufig Kombinationen der
verschiedenen Realisierungsmöglichkeiten im Scheinwerfer anzutreffen sein. Gleichzei-
tig werden veraltete Systeme bei der Marktdurchdringung von den Sport-/Luxusklasse-
Fahrzeugen (S/F Segment) bis hin zu Kleinstwagen (A Segment) über viele Jahre am
Markt bestehen bleiben. Innerhalb dieses Zeitraums ist davon auszugehen, dass Hardware-
Anpassungen und weitere Lichtfunktionen für die bestehenden Systeme zu entwickeln
sind. Es leitet sich deshalb die Skalierbarkeit der HD-Lichtsimulation von wenigen
Matrix-Pixeln auf die hochaufgelösten Systeme als weitere Anforderung ab. Dabei gilt
es, auch bei einer großen Anzahl von Pixellichtquellen die Echtzeitfähigkeit zu erhalten.

4.1.3 Echtzeitfähigkeit und X-in-the-Loop Testing

Die Komplexität der Scheinwerfersteuergeräte hat sich durch die HD-Technologie wesent-
lich erhöht. Die Vielzahl der in Abschnitt 3.2 diskutierten Lichtfunktionen müssen auf
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Konventionell Matrix SSL|HD/LCD DLP

100 102 104 106 Pixelzahl

Bild 4-1: Verschiedene HD-Technologien und die jeweiligen Anzahlen von Pixellichtquel-
len.

ihnen logisch abgebildet werden. Das Steuergerät und die Scheinwerfer beanspruchen zur
Kommunikation so hohe Datenraten, dass über Alternativen zum bisher im Automobil
etablierten CAN Bus Protokoll nachgedacht wird [LKVZ11]. In der Konsequenz ist das
Steuergerät und die auf ihm ausgeführte Software eine kritische Komponenten im Ge-
samtsystem und bedarf umfangreicher Erprobung. Diese Erprobung findet nach heutigem
automobilen Standard durch In-the-Loop Tests in mehreren Stufen statt. Das Bild 4-2
ordnet die verschiedenen In-the-Loop Techniken in den Entwicklungsprozess ein.

Bild 4-2: Einsatz von In-the-Loop Techniken entlang des Entwicklungsprozesses [Quelle:
Fraunhofer IEM].

In der ersten Stufe werden Model-in-the-Loop (MiL) Tests durchgeführt. Dabei wird
zunächst nur die logische Funktion des Steuergeräts in der Simulationssoftware abge-
bildet. Details der späteren Zielhardware und dessen Schnittstellen werden in diesem
ersten Validierungsschritt ausgeblendet. Entspricht das abgebildete Modellverhalten den
Erwartungen, so wird das Modell in Steuergerätcode überführt. Hierbei werden technische
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Voraussetzungen der Zielhardware berücksichtigt. Der entstehende Code wäre bereits
zur Implementierung auf dem Steuergerät verwendbar. Stattdessen wird die Steuergerät-
hardware jedoch in der Simulationssoftware emuliert, sodass es sich weiterhin um ein
vollständig virtuelles Testsystem handelt. Dieses Vorgehen wird als Software-in-the-Loop
(SiL) Testing bezeichnet. Erst bei den Hardware-in-the-Loop (HiL) Tests wird das reale
Scheinwerfersteuergerät getestet. Dazu wird die in den SiL-Tests als valide befundene
Software auf das Steuergerät übertragen. Zur vollständigen Funktionsabsicherung muss das
Steuergerät so umfassend an die Simulation gekoppelt sein, dass dessen wahrgenommene
Umgebung der Einbausituation in einem realen Fahrzeug entspricht. Man spricht in diesem
Zusammenhang auch von einer Restbussimulation.

Bedingt durch die bereits angesprochene Komplexität von Steuergeräten für HD-Schein-
werfersysteme stellt die Unterstützung von MiL-, SiL- und HiL-Tests eine weitere
Anforderung an die Simulation dar. Hieraus leitet sich insbesondere ab, dass die Nacht-
fahrtsimulation eine durch den Steuergerättakt vorgegebene Echtzeitfähigkeit aufweisen
muss. Am Beispiel des HD84-Scheinwerfersystems wird das Steuergerät mit einer Taktung
von 50 Hz betrieben. Es verarbeitet somit in 20 ms neue Sensorwerte und überführt sie
gemäß den Regeln der implementierten Lichtfunktionen in Dimmwerte für alle Pixel-
lichtquellen des Scheinwerferpaars. Demzufolge muss die Simulation die Sensorwerte,
welche in einer X-in-the-Loop Konfiguration durch virtuelle Sensoren erzeugt werden, in
diesem Zeitrahmen bereitstellen und die vom Steuergerät empfangenen Dimmwerte in
korrespondierende Lichtverteilungen überführen.

Neben der korrekten Interaktion mit dem Steuergerät stellt auch die menschliche Wahrneh-
mung eine Echtzeitanforderung dar. Digitale Ausgabegeräte können nur statische Bilder
(Frames) anzeigen. Der Eindruck von Bewegung entsteht durch die hochfrequente Aktuali-
sierung des dargestellten Frames. Ein flüssiger Eindruck entsteht ab etwa 30 Hz. Allerdings
steigt die Immersion bei interaktiven Anwendungen mit noch höheren Bildwiederholfre-
quenzen. Die meisten Ausgabegeräte unterstützen eine Bildwiederholfrequenz von 60 Hz,
welche im Idealfall durch die Nachtfahrtsimulation erreicht werden sollte.

Zusammengefasst definiert das Maximum der idealen Bildwiederholfrequenz von 60
Hz und des Steuergerättakts die zu erfüllende Echtzeitschranke. Es ist jedoch davon
auszugehen, dass sich die Taktungen von Scheinwerfersteuergeräten auch zukünftig in
diesem Frequenzbereich aufhalten werden. Höhere Taktfrequenzen würden zu visuell
kaum wahrnehmbaren Verbesserungen führen.

4.1.4 Latenz

Bei einer HiL-Nachtfahrtsimulation interagieren eine Vielzahl technischer Geräte, wie ein
oder mehrere Simulationsrechner, das Scheinwerfersteuergerät, Ein- und Ausgabegeräte
sowie der menschliche Fahrer. Jede technische Einheit benötigt einen gewissen Zeitraum
für die Datenverarbeitung sowie für das Senden und Empfangen der Daten. In einer interak-
tiven Fahrsimulation beginnt diese Übertragungskette mit den Eingaben des menschlichen
Fahrers, die z.B. durch Lenkrad- und Pedalpositionen erfolgen, und endet mit der visuellen
Anzeige auf einem oder mehreren Ausgabegeräten. Die verstrichene Zeitspanne, welche
von den Eingaben bis zur Reaktion der Ausgabe verstreicht, wird als Latenz oder Totzeit
bezeichnet. Eine zu große Latenz kann zu der sogenannten Simulatorkrankheit führen.
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Ursächlich für das Unwohlsein des Fahrers sind die von seinen Erwartungen abweichenden
Bewegungen und Bilder. Die Einhaltung einer möglichst geringen Latenz stellt deshalb
eine weitere Anforderung an die Nachtfahrtsimulation dar.

4.1.5 Lichtanalyse und -entwurf

Die realitätsnahe Darstellung der Szene steht im Rahmen der Fahrsimulation im Vorder-
grund. Abseits von Probandenstudien kann es im Rahmen der Entwicklung sinnvoll sein,
von dieser Darstellung abzuweichen und stattdessen künstliche Einblendungen vorzuneh-
men, die bei der Wahrnehmung sonst schwer erkennbarer Lichteigenschaften unterstützen.
Hierzu haben sich verschiedene visuelle Analysewerkzeuge etabliert. Vorrangig ist hier die
Hervorhebung verschiedener photometrischer Größen durch Isolinien- oder Falschfarben-
darstellungen zu nennen. Konkret eignen sich primär die Lichtstärke, die Beleuchtungs-
stärke und die Leuchtdichte zur Visualisierung. Im Kontext von HD-Scheinwerfern sind
weitere Analysen sinnvoll. So wären beispielsweise die echtzeitfähige Einblendung der
Lichtverteilungen beider Scheinwerfer oder der Dimmwerte denkbare Möglichkeiten. Die
Unterstützung von Analysewerkzeugen wird deshalb in den Anforderungskatalog mit
aufgenommen.

Ein ganz neuer Aspekt im Kontext von HD-Systemen sind die hinzu gewonnenen Entwurfs-
möglichkeiten. Bisher endete der Entwurfsprozess der Lichtverteilung mit der Konstruk-
tion des Scheinwerfers. Das Zusammenspiel aus Lichtquellen und Reflektorgeometrien
bestimmt die Gestalt der Lichtverteilung. Eventuelle Verschwenkaktoren erlauben nach-
trägliche Anpassungen in geringem Maße. Mit dem Aufkommen der HD-Technologie
wandelt sich der Entwurfsprozess maßgeblich. Die Konstruktion des Scheinwerfers stellt
nur einen Teil des Entwurfs der Gesamtlichtverteilung dar. Ein zweiter, noch einflussrei-
cherer Teil ergibt sich durch den Entwurfs der Lichtsteueralgorithmen, die auf die Gestalt
der Gesamtlichtverteilung und insbesondere auf ihr dynamisches Verhalten im höchsten
Maße Einfluss nehmen [KW18]. Vor diesem Hintergrund sollte eine Nachtfahrtsimulation
bei der Auslegung der Lichtsteueralgorithmen aktiv unterstützen und durch geeignete
Entwurfsfunktionen eine logische Fortsetzung der Analysefunktionen zur Verfügung
stellen.

4.1.6 Witterung

Für Lichtfunktionen, wie das Schlechtwetterlicht, ist die reale Erprobung eine besondere
Herausforderung. Neben den Schwierigkeiten, die für alle nächtlichen Erprobungsfahrten
gelten, kommt hinzu, dass die notwendigen Testbedingungen besonders schwer zu finden
sind. Die Wetterverhältnisse sind nicht beeinflussbar. Etwaige Phänomene, wie dichter
Nebel, sind darüber hinaus nicht zuverlässig vorhersagbar. Geeignete Orte und Zeitpunkte
für die Erprobung in einer Nebelfahrt entstehen daher spontan. In der Konsequenz ist die
Vorbereitung eines Erprobungsszenarios kaum möglich. Deshalb werden derartige Licht-
funktionen meist in abgeschlossenen Räumen mit künstlichem Nebel oder Regen erprobt.
Hierbei ist aufgrund des begrenzten Platzangebots und der fehlenden Straßenumgebung
nur eine statische Validierung möglich.
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Diesen Entwicklungsschwierigkeiten entgegenwirkend leitet sich die Nachbildung ver-
schiedener Witterungsbedingungen als zusätzliche Anforderung an die Nachtfahrtsi-
mulation ab. Die unterschiedlichen Witterungseinflüsse in der Realität sind vielfältig und
komplex. Sie können im Rahmen dieser Arbeit nicht vollständig und detailliert abgebildet
werden. Es soll jedoch anhand eines konkreten Beispiels deutlich gemacht werden, dass
solche Phänomene zumindest vereinfacht rekonstruierbar sind und bei der simulativen
Erprobung der Lichtfunktion berücksichtigt werden können.

4.1.7 Fahrdynamik

Oftmals kommt der realistischen Abbildung der Fahrdynamik im Kontext der Schein-
werfersimulation ein untergeordneter Stellenwert zu. Ein Großteil der Lichtfunktionen
kann auch bei stark vereinfachter Fahrdynamik hinreichend beurteilt werden. Dennoch
gibt es Situationen, in denen das dynamische Verhalten des Fahrzeugaufbaus einen aus-
schlaggebenden Einfluss auf das Scheinwerferlicht nimmt. Von vorrangiger Bedeutung
sind dabei Nickbewegungen. Ein starkes Nicken, welches statisch durch eine asymmetri-
sche Lastverteilung im Fahrzeug oder dynamisch durch starkes Bremsen hervorgerufen
werden kann, äußert sich in einer vertikalen Verschiebung der Gesamtlichtverteilung. Bei
aktivem Abblendlicht geht damit eine sicherheitskritische Verlagerung der Hell-Dunkel-
Grenze einher. Lichtfunktionen zur dynamischen HDG-Einstellung sollen diesen Effekten
entgegenwirken. Bei der simulativen Auslegung derartiger Lichtfunktionen kommt der
genauen Abbildung der realen Fahrdynamik eine hohe Bedeutung zu. Das Fahrzeugmodell
muss dazu hinreichend detailliert und über weite Bereiche parametrierbar sein. Nur so
kann das Fahrverhalten des realen Fahrzeugs, welches zukünftig mit dem zu entwickelnden
Scheinwerfersystem ausgestattet werden soll, in der Simulation nachgebildet werden. Das
ASM Fahrzeugmodell der Firma dSPACE, visualisiert in Bild 4-3, stellt ein Beispiel für
ein komplexes Fahrzeugmodell dar.

Bild 4-3: Visualisierung des komplexen Fahrzeugmodells der ASM Toolsuite von dSPACE
[Quelle: dSPACE].
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Um eine möglichst umfangreiche Testabdeckung der existierenden und denkbaren Licht-
funktionen zu gewährleisten, stellt die Option zur Verwendung eines komplexen Fahr-
zeugmodells eine weitere Anforderung an die Nachtfahrtsimulation dar.

4.1.8 Konfigurierbarkeit

Im Kontext der Nachtfahrtsimulation erweisen sich sehr viele Konfigurationen der zusam-
menwirkenden Komponenten als sinnvoll. So ist der Einsatz einer Nachtfahrtsimulation
am Schreibtisch eines Lichtingenieurs ebenso plausibel, wie der Betrieb eines Großsimu-
lators mit Fahrzeug-Mockup und Mehrkanalausgabe. Im Kontext der Echtzeitfähigkeit
wurden bereits XiL-Tests diskutiert. Auch diese Funktionalität stellt hohe Ansprüche
an eine flexible Konfigurierbarkeit der Nachtfahrtsimulation. Idealerweise variieren die
Möglichkeiten der Lichtsteuerung von statischen Lichtverteilungen über MiL-Steueral-
gorithmen bis hin zur HiL-Anbindung des realen Steuergeräts via CAN Bus. Als weitere
Konfigurationskomponente ist der Fahrmodus zu nennen. Hier stellt die eigene Steuerung
des Fahrzeugs die Alternative mit der höchsten Interaktivität dar. Gleichzeitig kann es aber
aus Gründen der Ablenkung und der Reproduzierbarkeit sinnvoll sein, den Streckenverlauf
durch einen Autopiloten zu befahren. Zur bestmöglichen Vergleichbarkeit mit der realen
Erprobungsfahrt ist es darüber hinaus denkbar, reale Fahrzeugtrajektorien aufzuzeichnen
und auf der nachgebildeten virtuellen Strecke nachzufahren.

Um einen breiten Einsatz der Nachtfahrtsimulation in verschiedenen Use Cases zu er-
möglichen, muss eine umfassende Konfigurierbarkeit des hard- und softwareseitigen
Setups gegeben sein. Die Konfiguration umfasst dabei unter anderem den Fahrmodus, die
Lichtsteuerung sowie die Ein- und Ausgabegeräte.

4.1.9 Parametrierbarkeit

Die große Stärke der Simulation ist die flexible Erzeugung beliebiger Testszenarien mit
minimalem Aufwand sowie die vollständige Reproduzierbarkeit dieser Szenarien. Auf
diese Weise schafft die simulationsbasierte Entwicklung einen erheblichen Zeit- und
Kostenvorteil gegenüber der Erprobung in realen Nachtfahrten. Zudem entfällt das hohe
Unfallrisiko bei der Fahrt mit nicht ausgereiften Systemen, welche häufig an Racks vor
dem Fahrzeug montiert sind und somit keinen Fußgängerschutz gewährleisten.

Damit dieser Vorteil gewinnbringend genutzt werden kann, muss die Nachtfahrtsimulation
eine umfassende und reproduzierbare Parametrierung des Testszenarios erlauben. Die
Parameter gliedern sich dabei mindestens in die Themenfelder

• Streckenverlauf,

• Streckenumgebung,

• Verkehrsteilnehmer und ihre Bewegungstrajektorien,

• Tageszeit und Witterung,

• Egofahrzeug

• und Ego-Scheinwerfersystem
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auf. Um ein konkretes Szenario fehlerfrei reproduzieren zu können, sollten sich die Werte
aller Parameter sichern und zu einem späteren Zeitpunkt erneut laden lassen.

Insbesondere kann es bei einzelnen Parametern sinnvoll sein, zur Laufzeit Manipulationen
vorzunehmen. So wird beispielsweise der direkte Vergleich zweier Scheinwerfersysteme
bzw. Lichtverteilungen unter sonst gleichen Bedingungen möglich. Es empfiehlt sich
deshalb eine weitere Untergliederung der Parameter in Offline-Parameter, welche vor
Beginn der Simulation festgelegt werden und zur Laufzeit konstant sind, und Online-
Parameter, die während der Simulation angepasst werden können.

Zusammengefasst ergibt sich die umfassende, sicher reproduzierbare und zur Laufzeit
manipulierbare Parametrierung der Nachtfahrtsimulation als weitere Anforderung.

4.1.10 Remote-Fähigkeit

Innerhalb der Anforderung „Konfigurierbarkeit“ wurde bereits der Betrieb von Großsimu-
latoren angesprochen. Bei der Verwendung derartiger Großsimulatoren verfolgt man das
Ziel, eine möglichst hohe Immersion des Fahrers zu erzeugen. Das gelingt, wenn alle im
Kontext des Fahrens relevanten Sinne durch realistische und zueinander konsistente Reize
angesprochen werden. Es ist selbstverständlich, dass der Fahrer dabei keine Aufgaben
übernehmen sollte, die nicht der eigentlichen Fahraufgabe entsprechen. Administrative
Aufgaben, wie die Initialisierung, das Starten oder Stoppen und die Anpassung von Pa-
rametern innerhalb der Simulation, sollten von einer weiteren Person in der Rolle eines
Versuchsleiters übernommen werden. Hierzu muss die Nachtfahrtsimulation ferngesteuert
von einem Leitstand aus betrieben werden können. Als letzte Anforderung ergibt sich die
Existenz einer Remote-Bedienung, welche mit der eigentliche Nachtfahrtsimulation
über eine Netzwerkverbindung in Kontakt steht und über alle notwendigen Funktionen
zur Fernbedienung der Simulation verfügt.

4.2 Zusammenfassung der Anforderungen

Zur besseren Übersichtlichkeit und der späteren Referenzierbarkeit der definierten Anfor-
derungen erfolgt nachfolgend eine indexierte Auflistung:

• A1 Korrekte Abbildung photometrischer Zusammenhänge

• A2 Unterstützung spektrale Lichtverteilungen

• A3 Unabhängigkeit von der Scheinwerfer-Technologie

• A4 Skalierbarkeit bezüglich der Pixelanzahl

• A5 Unterstützung von XiL-Techniken

• A6 Echtzeitfähigkeit und Latenz

• A7 Lichtanalyse

• A8 Lichtentwurf

• A9 Unterstützung verschiedener Witterungsbedingungen
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• A10 Verwendbarkeit eines komplexen Fahrzeugmodells

• A11 Konfigurierbarkeit des Hard- und Software-Setups

• A12 Umfangreiche, reproduzierbare Parametrierung mit Laufzeitanpassung

• A13 Remote-Bedienbarkeit

Nachfolgend wird auf die aufgelisteten Anforderungen nur noch in dieser Kurzform ver-
wiesen, worunter die im Abschnitt 4.1 ausführlich diskutierten Bedeutungen zu verstehen
sind.

4.3 Analyse bestehender Simulationen

Nachdem die Anforderungen an eine Nachtfahrtsimulation festgelegt sind, gilt es, die in
Abschnitt 3.3 vorgestellten Nachtfahrtsimulationen hinsichtlich dieser Anforderungen zu
prüfen. Hierbei soll herausgearbeitet werden, welche Elemente bereits in guter Qualität ge-
löst sind und an welchen Stellen prinzipielle Defizite vorliegen, deren weitere Betrachtung
sich im Rahmen dieser Arbeit als gewinnbringend erweisen könnte.

Da alle genannten Nachtfahrtsimulationen im produktiven Umfeld seit mehreren Jahren
erfolgreich eingesetzt werden, ist davon auszugehen, dass sie die Anforderungen A1 und
A6 hinreichend erfüllen. Die Importfunktionen von Lichtverteilungen in allen Simulationen
versichern die prinzipielle Gestaltbarkeit der Lichtverteilung. Abgesehen von MotionDesk
unterstützen alle Simulation spektrale Lichtverteilungen zumindest bei der Simulation
konventioneller Scheinwerfer. Insofern ist anzunehmen, dass auch farbliche Aspekte der
Lichtverteilung korrekt abgebildet werden können.

Alle am Markt verfügbaren Nachtfahrtsimulationen weisen Defizite bezüglich der Unter-
stützung von HD-Scheinwerfersystemen auf. Zu Beginn dieser Forschungsarbeit konnte
keine der genannten Simulationen eine Funktion vorweisen, welche die Simulation von
HD-Systemen ermöglicht. Doch auch bis heute ist die Unterstützung lückenhaft realisiert.
Hinsichtlich der Pixelzahl bewegen sich alle Nachtfahrtsimulationen mit Ausnahme von
LucidDrive deutlich unter 1.000 Einzellichtquellen. Diese Begrenzung erlaubt zwar die
Simulation von Matrix-Systemen, sie stößt jedoch bei HD|SSL- und LCD-Systemen an
ihre Grenzen. Ebenso können DMD- oder Scanner-Systeme nicht simulativ abgebildet
werden. In dieser Hinsicht erfüllen sie die Anforderungen A3 und A4 nicht. LucidDrive
hingegen erlaubt mit mindestens 12.800 Pixellichtquellen pro Scheinwerfer eine wesentlich
höher aufgelöste Darstellung. Auf dieser Basis ist zumindest die Simulation von µAFS-
und LCD-Systemen in vielen Fällen möglich. Nachteilig hierbei ist jedoch, dass spektrale
Lichtverteilungen im Rahmen der HD-Simulation nicht unterstützt werden. Somit erfüllt
LucidDrive die Anforderungen A3 und A4 deutlich besser, kann jedoch der Anforderung
A2 nicht standhalten.

Drei der fünf vorgestellten Nachtfahrtsimulationen unterstützen die HiL-Einbindung des
Scheinwerfersteuergeräts (A5) und ermöglichen somit eine hohe Testabdeckung. Gleiches
gilt für die Skalierbarkeit. Leider lässt sich LucidDrive als beste Simulation bezüglich der
Anforderung A4 nicht vollständig skalieren. Die maximale Anzahl von Ausgabegeräten
ist auf drei begrenzt. Ein Betrieb von Großsimulatoren ist deshalb im Regelfall nicht
möglich. Beispielsweise verfügt der ATMOS Fahrsimulator des Heinz Nixdorf Instituts
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über elf Ausgabemedien. LucidDrive erfüllt die Anforderung A11 somit nicht. Diejenigen
Simulationen, die für den Großsimulatorbetrieb geeignet sind, bieten auch eine Remote-
Bedienbarkeit gemäß der Anforderung A13. Für die übrigen Simulationen besteht keine
Notwendigkeit einer solchen Remote-Bedienbarkeit.

Mit Ausnahme von MotionDesk verfügen alle Nachtfahrtsimulationen über die üblichen
Analysetools zur Visualisierung von photometrischen Größen. Das sind vorrangig Visua-
lisierungen von Isolinien- oder Falschfarbendarstellungen der photometrischen Größen.
Die Anforderung A7 kann für die übrigen Simulationen als erfüllt betrachtet werden.
Eine andere Situation ergibt sich für die aktive Unterstützung beim Entwurf von Licht-
funktionen. Die Anforderung A8 muss als gänzlich ungelöst betrachtet werden. Keine
der Nachtfahrtsimulationen stellt Funktionen zur Auslegung der Lichtsteueralgorithmen
bereit.

Bei Überprüfung der Anforderung A9 ist ein vergleichbarer Missstand auffindbar. Auch
wenn der Großteil der Nachtfahrtsimulationen verschiedene Witterungsbedingungen dar-
stellen kann, sind die zugrunde liegenden Ansätze derart vereinfacht, als dass die Witte-
rungseinflüsse auf keinem physikalischen Modell basieren und insofern nicht mit dem
Scheinwerferlicht interagieren. Diese Interaktion ist jedoch essentiell, um jene reale Phä-
nomene abzubilden, denen mit fortschrittlichen Lichtsteueralgorithmen zu begegnen ist.
Die Anforderung A9 muss insofern ebenfalls als nicht erfüllt betrachtet werden.

Auch bezüglich der Tiefe der Fahrzeugmodellierung zeigen sich die vorgestellten Nacht-
fahrtsimulationen sehr divers. Sie reichen von sehr einfachen, kinematischen Modellen
in den Simulationsumgebungen LightDriver und LucidDrive bis hin zu hochkomplexen,
detaillierten Fahrzeugmodellen, wie ASM oder ADAMS. Die Anforderung A10 wird
demnach von drei der fünf Nachtfahrtsimulationen vollständig erfüllt.

Da alle vorgestellten Simulationen seit langem im industriellen Umfeld eingesetzt werden,
stellen sie durch hochwertige grafische Benutzeroberflächen eine zugängliche Bedienung
sicher. Dazu gehören auch die Möglichkeit einer umfangreichen, reproduzierbaren Parame-
trierung sowie die Anpassung von Parametern während der Simulation. Die Anforderung
A12 kann somit als unkritisch betrachtet werden.

4.4 Ableitung des Handlungsbedarfs

Die Gegenüberstellung verfügbarer Nachtfahrtsimulationen an den in Abschnitt 4.2 zu-
sammengefassten Anforderungen hat gezeigt, dass einige Punkte bereits in hoher Qualität
geleistet werden, während andere noch lückenhaft oder gar nicht gelöst worden sind. Aus
dieser Motivation heraus soll die hier vorgestellte Arbeit eine Nachtfahrtsimulation her-
vorbringen, die insbesondere in den Punkten überzeugt, die aktuell als ungelöst betrachtet
werden müssen.

Eine bisher nur lückenhaft gelöstes Problem stellt die echtzeitfähige Simulation von HD-
Systemen dar, die weit über die Auflösung von Matrix-Systemen mit wenigen hundert
Pixeln hinaus gehen. Als einziger Anbieter liefert Synopsys mit LucidDrive eine Nachtfahrt-
simulation, welche Simulationen von Systemen mit über 10.000 Pixeln erlaubt. LucidDrive
unterstützt jedoch keine spektralen Simulationen, obwohl wellenlängenabhängige Gestalt-
unterschiede in der Lichtverteilung insbesondere im Kontext von LED-basierten Systemen
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zu berücksichtigen sind. Als zweiter wesentlicher Nachteil von LucidDrive ist die geringe
Konfigurierbarkeit zu nennen, welche den Betrieb in Großsimulatoren mit mehr als drei
Ausgabegeräten verhindert.

Die Untersuchung der bestehenden Simulationen hat außerdem gezeigt, dass der durch die
HD-Technologie neu gewonnene Entwurfsfreiheitsgrad in Form der Lichtsteueralgorithmen
bisher in keiner Software Berücksichtigung findet. Die hier entstehende Nachtfahrtsimu-
lation soll diesen Aspekt aufgreifen und den Entwickler aktiv bei der Auslegung von
Lichtsteueralgorithmen unterstützen.

Ein drittes großes Defizit ist die zu stark vereinfachte Modellierung von Witterungsein-
flüssen. Keine der am Markt verfügbaren Simulationen modelliert Witterungseinflüsse
auf einer physikalischen Basis. In der Konsequenz wird die Wechselwirkung zwischen
dem Scheinwerferlicht und den Witterungseinflüssen nicht berücksichtigt, weshalb die
Witterungssimulation für die Auslegung darauf abgestimmter Lichtfunktionen ungeeignet
ist. Ziel muss es sein, Witterungsverhältnisse so zu modellieren, dass es zu einer visuell
wahrnehmbaren und physikalisch plausiblen Wechselwirkung mit dem Scheinwerferlicht
kommt. Die Ausprägungen der Witterungseinflüsse sind in der Realität vielfältig. Nebel,
Regen und Schnee können in verschiedenen Ausprägungen und ausgelöst durch vollkom-
men unterschiedliche Phänomene Einfluss auf die Sicht des Fahrers nehmen. Innerhalb der
Arbeit wird deshalb mit dem Nebel beispielhaft ein Witterungseinfluss herausgegriffen,
um die Machbarkeit einer physikalisch motivierten Modellierung zu untersuchen.

Zusammengefasst stellen die echtzeitfähige spektrale HD-Simulation, die aktive Unterstüt-
zung beim Entwurf von Lichtsteueralgorithmen und die physikalisch basierte Modellierung
von Witterungseinflüssen die bisher noch ungelösten Problemstellungen dar, aus welchen
sich der wissenschaftliche Handlungsbedarf dieser Arbeit ableitet. Im Sinne einer umfas-
senden und nutzbaren Lösung, müssen außerdem die übrigen in Abschnitt 4.2 aufgeführten
Anforderungen durch die im Rahmen der Arbeit entwickelten Nachtfahrtsimulation erfüllt
werden. Da diese nicht den wissenschaftlichen Kern der vorliegenden Arbeit darstellen,
werden sie im Rahmen des nachfolgenden Kapitels 5 zur Architektur der Simulation
oberflächlich beschrieben, während die wissenschaftlichen Kernthemen in den Kapiteln 6
und 7 im Detail diskutiert werden.
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5 Architektur der Simulation

Gegenstand dieses Kapitels ist die Vorstellung der unter den Vorgaben aus Kapitel 4
entwickelten Nachtfahrtsimulation, welche fortführend auch als „Hyperion“ bezeichnet
wird. Das Architekturbild 5-1 ist möglichst allgemeingültig gehalten, um einen Großteil
der möglichen Konfigurationen von Hyperion zu erfassen. Dennoch können nicht alle Use
Cases durch Bild 5-1 erfasst werden. Im Abschnitt 5.8 werden spezifischere Architekturen
zu konkreten Konfigurationen dargestellt.

Statusinformation

Fahrdynamiksimulation

Visualisierung

FahrerEingabe

Visuelle Simulation

Fahrzeugmodell

Offline-Parameter
Straße, Gelände, 

Fahrzeugtyp, …

Online-Parameter
Regen, Nebel, 

Analysesicht, …

Virtuelle Sensorik

Interface und Fahrer

Ausgabe

Remote-Applikation

XiL-Komponente

Scheinwerfer

Steuergerät

Umgebung und Verkehr

Berechnung der

Lichtverteilungen

Bild 5-1: Abstraktes Architekturdiagramm der Nachtfahrtsimulation „Hyperion“.

Die grau hinterlegten Bereiche fassen logische Einheiten der Simulationsarchitektur zu-
sammen. Abhängig von der gewählten Konfiguration kann jede logische Einheit auf einem
separaten technischen System ablaufen oder zusammen mit anderen logischen Einheiten
auf demselben System ausgeführt werden. Die logischen Einheiten sind im Detail die
visuelle Simulation, die Fahrdynamiksimulation, das Steuergerät als XiL-Komponente,
das Ein- und Ausgabeinterface für den Fahrer bzw. Entwickler und die optionale Remote-
Applikation zur Fernsteuerung von Hyperion. Zwischen den logischen Einheiten existie-
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ren verschiedene Wechselwirkungen und Abhängigkeiten. Insbesondere findet sich im
Architekturbild ein Regelkreis wieder, welcher durch die logischen Einheiten „Interface
und Fahrer“, „Fahrdynamiksimulation“, „Visuelle Simulation“ und „XiL-Komponente“
geschlossen wird. Der Fahrer nimmt dabei die Rolle des Reglers ein, wobei seine visuelle
Wahrnehmung die Regelgröße und die Fahreingaben die Stellgröße darstellen. Es wird in
diesem Kontext auch von Human-in-the-Loop-Anwendungen gesprochen.

Der folgende Abschnitt erklärt die ausgewählte Entwicklungsumgebung und die Hinter-
gründe für diese Entscheidung. Im Anschluss werden die Komponenten der in Bild 5-1
dargestellten Architektur beschrieben.

5.1 Entwicklung in Unity3D

Im Rahmen dieses Abschnitts kann nur ein kleiner Ausschnitt der Entwicklungsumgebung
und der Konzepte, die der Unity-Engine zugrunde liegen, beschrieben werden. Für eine
tiefergehende Auseinandersetzung mit Unity3D stellt Unity Technologies eine umfangrei-
che Plattform bereit, die über eine Vielzahl von Kursen, Tutorien und Beispielprojekten
verfügt [Uni20].

In Abschnitt 2.3.1 wurde bereits diskutiert, dass bei der Implementierung einer umfang-
reichen 3D-Anwendung auf eine Engine zurückgegriffen werden sollte, welche bereits
viele vorgefertigte Inhalte und Funktionen bereitstellt. Im Rahmen der Nachtfahrtsimu-
lation ist insbesondere die Wahl einer Spiele-Engine sinnvoll, da diese zusätzlich bei der
Modellierung physikalischer Sachverhalte und weiteren wiederkehrenden Erfordernissen,
wie beispielsweise bei dem Management des Szenengraphen, unterstützt. Derzeit wird der
Markt durch verschiedene Spiele-Engines angeführt, von denen Unity3D und Unreal ohne
Lizenzgebühren eingesetzt werden dürfen [Uni20], [Epi20]. Beide Produkte sind grund-
sätzlich geeignet, um eine Nachtfahrtsimulation zu implementieren. Die Funktionsumfänge
von Unity3D und Unreal befinden sich auf Augenhöhe, wobei sie sich in einigen Details
unterscheiden [Vis20]. Am Heinz Nixdorf Institut bestand zu Beginn der Arbeiten durch
das zuvor durchgeführte Traffis-Projekt eine größere Wissensbasis in Unity3D [Gau15].
Deshalb fiel die Entscheidung auch im Rahmen der vorliegenden Arbeit auf diese Engine,
welche darüber hinaus als leichter zu erlernen gilt.

Da nachfolgend mehrfach Bezug auf Unity3D genommen wird, soll die Spiele-Engine
und ihre zugehörige Entwicklungsumgebung nun vorgestellt werden. Der hier vorgestellte
Stand von Hyperion wird mit der Version 2019.3.12f1 von Unity3D betrieben. Das Bild
5-2 zeigt die Benutzeroberfläche der Entwicklungsumgebung.

Die Oberfläche setzt sich aus verschiedenen Elementen zusammen. Im linken Bereich (s.
Bild 5-2a) findet man den Szenegraphen (auch: Hierarchie). Hierbei handelt es sich um
eine hierarchische Anordnung von Szenenelementen. Das können neben physischen Objek-
ten oder Lichtquellen der Szene auch nicht sichtbare, logische Elemente sein. Ein Element
des Szenengraphs wird in Unity3D als Gameobject bezeichnet. Jedes Gameobject kann
Children haben. Hierbei handelt es sich um weitere Gameobjects, die einem anderen Ga-
meobject (Parent) in der hierarchischen Struktur untergeordnet sind. Diese Unterordnung
äußert sich darin, dass bestimmte Veränderungen eines Parent auch auf dessen Children
angewandt werden. So werden sie beispielsweise bei jeder Veränderung der Position,
Rotation oder Skalierung ihres Parent ebenfalls verschoben, rotiert und skaliert. Jedes
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a) b)c)

d)

Bild 5-2: Benutzeroberfläche der Entwicklungsumgebung und Spiele-Engine Unity3D in
der Version 2019.3.12f1.

Gameobject kann ein oder mehrere Components beinhalten. Erst durch die Components
bekommt das Gameobject eine Funktion. Man kann ein Gameobject auch als Container
für Components begreifen. Durch die Selektion eines Gameobjects im Szenegraphen wer-
den dessen Components im Inspector angezeigt (s. Bild 5-2b). Das einzige unbedingt
notwendige Component ist das Transform-Component. Es enthält alle Informationen zur
Formulierung einer Transformationsmatrix, welche die Lage, Orientierung und Skalierung
des Gameobjects innerhalb der Szene bzw. bezüglich des World-Space festlegen. In Bild
5-3 ist die Darstellung des Inspectors bei Selektion eines Gameobjects zu sehen, welches
lediglich über ein Transform-Component verfügt. Die Checkbox neben dem Bezeichner
„Leeres GameObject“ kennzeichnet die Aktivität des Gameobject. Durch das Deaktivie-
ren verhält sich die grafische Ausgabe, als wäre das entsprechende Gameobject nicht im
Szenegraphen enthalten. Darunter findet sich eine Auflistung aller Components, über die
das selektierte Gameobject verfügt. Typischerweise besitzen Components Attribute, die
komfortabel im Inspector angepasst werden können. Im Fall des Transform-Components
sind das die Position, die Rotation und die Skalierung bezüglich der Raumachsen. Durch
den „Add Component“-Button (s. Bild 5-3 unten) können weitere Components an ein
Gameobject geknüpft werden. Dabei lassen sich zusätzlich zu den Standard-Components
der Unity-Engine eigene Components durch sogenannte Skripte programmieren. Diese
Skripte können in der Programmiersprache C# formuliert werden und müssen von der
Basisklasse „MonoBehaviour“ aus der Unity-Engine abgeleitet sein. Damit wird sicher-
gestellt, dass die Anbindung an ein Gameobject möglich ist und zentrale Methoden, wie
das Updateverhalten pro Frame oder die Initialisierung beim Programmstart durch den
Entwickler spezifiziert werden können.

Der zentrale und größte Bereich in Bild 5-2c wird durch den Scene- und Gameview
eingenommen, zwischen welchen durch die darüber befindlichen Reiter gewechselt werden
kann. Der Sceneview ist immer verfügbar. Dieser wird für eine beispielhafte Szene aus
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Bild 5-3: Ein leeres Gameobject im Inspector der Entwicklungsumgebung Unity3D.

Hyperion im oberen Teil von Bild 5-4 dargestellt. Er kann als anschaulichere Alternative
zum Szenegraphen verstanden werden und gibt einen Eindruck, wie die Szene in der
späteren Anwendung aussehen wird. Im Sceneview werden die Gameobjects der Szene
bereits in der richtigen Lage und Orientierung dargestellt. Im Unterschied zum Gameview
werden jedoch keine aufwendigen Rendering-Operationen ausgeführt. Außerdem zeigt der
Sceneview weitere Informationen (Gizmos), die im Gameview zwar verborgen bleiben
sollen, jedoch hilfreich bei der Implementierung sind. Beispiele hierfür sind die Kamera-
positionen (siehe weiße Kamerasymbole im Bereich des Fahrzeugs in Bild 5-4 oben) oder
die Ursprünge und Ausrichtungen der jeweiligen Objektkoordinatensysteme (siehe roten,
grünen und blauen Achsenpfeil in Bild 5-4 oben). Welche Anteile dargestellt werden sollen,
kann über die Aus- und Abwahl der Gizmos weitgehend frei parametriert werden. Der Sce-
neview soll den Entwickler in der Gestaltung des Szenegraphen unterstützen. Während der
Gameview die Szene aus Sicht einer definierten Kamera darstellt, kann sich der Entwickler
im Sceneview frei durch die Szene bewegen. Die direkte Manipulation des Szenegraphen
ist im Sceneview ebenfalls möglich. Objekte können mit direktem visuellen Feedback
verschoben, rotiert und skaliert werden. Genauso lassen sich Gameobjects kopieren oder
löschen.

Der Gameview, dargestellt im unteren Teil von Bild 5-4, zeigt den aktuellen Stand der
Anwendung, wie sie ein potentieller Benutzer wahrnehmen würde. Insofern dient der
Gameview als Kontrollinstrument für den Entwickler. Die Szene wird aus Sicht der Kamera
und der an ihr gebundenen Parameter und Components dargestellt. Die freie Bewegung in
der Szene und die Manipulation des Szenegraphen sind nicht möglich. Es sind nur durch
den Entwickler vorgesehene Aktionen verfügbar. So sind beispielsweise Schaltflächen
(siehe weiße Felder am Bildrand in Bild 5-4 unten), die zur Interaktion mit dem Benutzer
dienen, vorhanden. Alle Gameobjects und ihre Components verhalten sich wie in der
laufenden Anwendung. Benutzereingaben werden verarbeitet und durch entsprechende
Reaktionen ausgeführt. So kann der Entwickler das Verhalten der Anwendung schon vor
dem Kompilieren umfänglich testen.

In Bild 5-2d finden sich die Konsole und der Projektexplorer. Letzterer dient ähnlich
einem Dateiexplorer eines Betriebssystems zur Navigation in der Ordnerstruktur eines
Unity-Projekts. Der Projektexplorer ermöglicht die komfortable Verknüpfung des Szene-
graphen mit den Projektdateien. Ein Beispiel hierfür ist die Zuweisung einer als Bilddatei
vorliegenden Textur auf die Oberfläche eines geometrisch ausgedehnten Gameobjects.
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Bild 5-4: Gegenüberstellung von Sceneview (oben) und Gameview (unten) in der Entwick-
lungsumgebung Unity3D.

Die Konsole dient dem Debugging während der Anwendungsentwicklung. Sie zeigt tex-
tuelle Ausgaben der Unity-Engine, Fehlermeldungen, Warnungen und weitere durch den
Entwickler ausgelöste Meldungen an. Da derartige Meldungen nicht in der grafischen
Ausgabe für den Benutzer sichtbar sein sollten, bietet die Konsole eine komfortable Mög-
lichkeit des Monitorings des Programmverhaltens ohne in die grafische Oberfläche der
Anwendung eingreifen zu müssen.

5.2 Fahrdynamiksimulation

Aufgrund der überschaubaren Abhängigkeiten von anderen Logikeinheiten wird die Fahr-
dynamiksimulation als erste Architektur-Komponente diskutiert. Ihre Aufgabe ist die
Modellierung und fortlaufende Berechnung des Fahrzeugzustands in Abhängigkeit von
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den Fahrereingaben und den Wechselwirkungen mit der Fahrbahn und Umgebung. Von
besonderem Interesse sind hierbei die Lage, Orientierung und weitere lichtrelevante Grö-
ßen des Egofahrzeugs, da diese von anderen logischen Einheiten der Nachtfahrtsimulation
benötigt werden.

Im Rahmen der Simulation wird die Fahrdynamiksimulation in zwei Varianten mit unter-
schiedlichen Komplexitätsgraden unterstützt. Zum einen existiert ein internes, vereinfachtes
Fahrzeugmodell. Hierbei wird über den Simulationsrechner hinaus keine zusätzliche Hard-
ware benötigt. Die logischen Einheiten „Fahrdynamik“ und „Visuelle Simulation“ werden
auf einer gemeinsamen Recheneinheit betrieben und bilden eine Applikation. Dieses Set-
up empfiehlt sich beispielsweise zur Verwendung an einem normalen Büroarbeitsplatz,
an dem typischerweise keine Echtzeithardware zur Verfügung steht. Bei dieser Variante
werden viele Vereinfachungen getroffen, die eine detaillierte Nachbildung eines realen
Fahrzeugs nicht ermöglichen. Da viele Lichtfunktionen weitestgehend unbeeinflusst von
der Fahrdynamik agieren, genügt diese Variante dennoch, um eine Vielzahl von Lichtfunk-
tionen simulativ zu erproben. Ein besonderer Vorteil des internen Fahrzeugmodells ist die
Kompaktheit der Gesamtkonfiguration und die Unabhängigkeit von Drittanbieter-Software.
Es wird in Unterabschnitt 5.2.1 detaillierter vorgestellt.

Um der Anforderung A10 (komplexes Fahrzeugmodell) gerecht zu werden, kann alternativ
zum internen Fahrzeugmodell die Anbindung an ein dSPACE-Echtzeitsystem mit ASM
Fahrzeugmodell erfolgen. Das ASM Fahrzeugmodell wurde in Abschnitt 3.3 bereits
kurz vorgestellt. Es handelt sich um ein komplexes Modell mit vielen Freiheitsgraden
und Parametern. Durch die Berechnung des Modells auf einem Echtzeitsystem ist die
echtzeitfähige Simulation mit hoher Taktrate sichergestellt. Der Unterabschnitt 5.2.2
stellt das Modell detaillierter vor und beschreibt die notwendigen Erweiterungen und
Schnittstellen zur Integration in Hyperion.

Den Abschluss dieses Abschnitts bilden die fremdgesteuerten Fahrmodi. Diese Steue-
rungsvarianten benötigen kein Fahrzeugmodell, da die Trajektorie des Fahrzeugs entweder
exakt der Sollspur bei vorgegebenen Wunschgeschwindigkeiten folgt, oder die Trajektorie
und alle weiteren lichtrelevanten Fahrzeuggrößen im Vorhinein aufgezeichnet wurden.
Vorteile der fremdgesteuerten Fahrmodi sind zum einen das Entfallen der Fahraufgabe,
welche eine stärkere Konzentration auf das Licht zulässt, und zum anderen die vollständige
Reproduzierbarkeit der gefahrenen Trajektorie.

5.2.1 Internes Fahrzeugmodell

Das interne Fahrzeugmodell wird vollständig in der Unity3D-Entwicklungsumgebung mo-
delliert. Hierzu kann auf einige Components der Unity-Engine zurückgegriffen werden, die
verschiedene Aspekte des Gesamtfahrzeugmodells abbilden. Bei dem internen Fahrzeug-
modell handelt es sich um ein Mehrkörpersystem bestehend aus dem Fahrzeugaufbau mA

und den vier Rädern der Masse mR. Im Szenegraphen ist jedes Fahrzeug ein Gameobject,
welches zumindest die folgende Hierarchie aufweist:

• Car mit Components: Transform, Rigidbody, Car Model, Car Input

• COG mit Components: Transform

• Mesh mit Components: Transform, Mesh Filter, Mesh Renderer, Mesh Collider
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• Wheel Colliders mit Components: Transform

• ColliderFL mit Components: Transform, Wheel Collider

• ColliderFR mit Components: Transform, Wheel Collider

• ColliderRL mit Components: Transform, Wheel Collider

• ColliderRR mit Components: Transform, Wheel Collider

• Wheel Meshes mit Components: Transform

• MeshFL mit Components: Transform, Mesh Filter, Mesh Renderer

• MeshFR mit Components: Transform, Mesh Filter, Mesh Renderer

• MeshRL mit Components: Transform, Mesh Filter, Mesh Renderer

• MeshRR mit Components: Transform, Mesh Filter, Mesh Renderer

In dieser Auflistung sind Gameobjects fett und ihre zugehörigen Components kursiv
geschrieben. Das Gameobject COG spezifiziert in seinem Transform-Component die Lage
des Fahrzeugschwerpunkts. Mesh Filter und Mesh Renderer dienen nur der grafischen
Darstellung des jeweiligen Gameobject und haben keine physikalische Relevanz. Der
Mesh Filter verknüpft sein Gameobject mit dem jeweiligen Polygonnetz (auch: Mesh),
welches dessen Geometrie modelliert. Dazu muss das Mesh im Projektverzeichnis liegen.
Der Mesh Renderer definiert die Visualisierung des Meshes. Er verknüpft es mit einem
Material, sodass unter anderem eventuelle Texturen, Shader und Beleuchtungsgrößen für
das Rendering festgelegt sind. Durch die Manipulation des Transform-Components kann
das Mesh zum Koordinatenursprung des Gameobject ausgerichtet werden. Das Mesh
des Fahrzeugaufbaus wird durch den Mesh Filter des Car-Gameobject referenziert. Die
Visualisierungen der vier Räder sind im Wheel Meshes-Gameobject organisiert. Jedes
Rad wird durch ein eigenes untergeordnetes Gameobject abgebildet. Die physikalische
Berücksichtigung der Räder ist aus praktischen Gründen davon unabhängig und findet sich
innerhalb des Wheel Collider-Gameobjects.

Fahrzeugaufbau

Zur physikalischen Modellierung des Fahrzeugaufbaus eignet sich ein Rigidbody-Com-
ponent. Dieses Standard-Component von Unity dient zur generellen Modellierung von
Festkörpern, welche von Kräften beeinflusst werden und sich unter deren Einfluss bewegen.
Das Bild 5-5 zeigt die zur Verfügung stehende Parametrierung des Rigidbody-Components.

Der Parameter Mass definiert die Masse des Festkörpers in Kilogramm. Zur Abbildung
des Luftwiderstands können die Parameter Drag und Angular Drag verwendet werden.
Dabei bezieht sich Drag auf den Widerstand bei translatorischen und Angular Drag auf
den Widerstand bei rotatorischen Bewegungen. Die interne Berücksichtigung dieser Werte
ist jedoch nicht physikalisch korrekt. In Hyperion werden deshalb beide Parameter auf
null gesetzt. Stattdessen wird der Luftwiderstand über ein eigenes Skript, bezeichnet
mit „Air Resistance“, berücksichtigt. Als einzige Parameter können der cw-Wert und
die Stirnfläche AS des Fahrzeugs in diesem Script-Component definiert werden. Der
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Bild 5-5: Attribute des Rigidbody-Components der Unity-Engine.

rotatorische Luftwiderstand wird vernachlässigt. Innerhalb des Skripts werden Betrag und
Richtung der Luftwiderstandskraft FL gemäß

FL = −
1
2
· ρL · cw · AS · |vFzg| · vFzg

berechnet. Dabei bezeichnet ρL die Dichte der Luft und vFzg ∈ R
3 den Vektor der Fahrzeug-

geschwindigkeit. Der Kraftvektor FL wirkt am Schwerpunkt des Fahrzeugaufbaus.

Mit der Checkbox „Use Gravity“ in Bild 5-5 kann bestimmt werden, ob der Festkörper dem
Einfluss der Schwerkraft unterliegt. Für das Fahrzeug ist diese Checkbox aktiv. In Unity
wirkt die Schwerkraft, sofern nicht anders definiert, in Richtung der negativen y-Achse
des Weltkoordinatensystems. Ihr Angriffspunkt ist am Schwerpunkt des Rigidbody. Unity
berechnet den Schwerpunkt aus allen Kollisionsgeometrien (auch Collider), die an das Ri-
gidbody gebunden sind. Alternativ kann der Schwerpunkt über das Attribut centerOfMass
des Rigidbody manuell definiert werden. Diese Variante wird hier genutzt. Zur intuitiven
Festlegung des Schwerpunkts wird dieser als Child-Gameobject „COG“ des Fahrzeugs
mit eigenem Transform abgebildet. So kann die momentane Lage des Schwerpunkts im
Sceneview visualisiert und manipuliert werden. Die nachfolgende „Is Kinematic“-Check-
box muss deaktiviert werden, damit das Rigidbody durch Kräfte beeinflusst werden kann.
Ist diese Checkbox aktiv, so kann das Fahrzeug nur durch die direkte Manipulation des
Transform durch Skripte oder vorgefertigte Animationen bewegt werden.

Das Dropdown-Menü „Interpolate“ legt die Interpolation der Bewegung von Frame zu
Frame fest. Da die Physik-Engine von Unity mit einer festen Framerate operiert, während
das Rendering abhängig von der Rechenlast und der zur Verfügung stehenden Leistung
eine variable Framerate aufweist, sind die momentane Fahrzeugposition und die grafische
Ausgabe nicht exakt synchronisiert. Zur Auswahl stehen die Modi None, Interpolate und
Extrapolate. Um störende visuelle Artefakte zu vermeiden, die insbesondere dann auftreten,
wenn die Kamera das betreffende Rigidbody verfolgt, sollte für das Egofahrzeug eine
Interpolation durchgeführt werden.

Soll das derzeitige Rigidbody in die Kollisionsprüfung einbezogen werden, so kann durch
das zweite Dropdown-Menü aus Bild 5-5 die Art und Weise der Berücksichtigung spe-
zifiziert werden. Für sich schnell bewegende Objekte wird die Einstellung Continous
Dynamic empfohlen. Voraussetzung für die Durchführbarkeit der Kollisionsprüfung ist
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das Vorhandensein eines Colliders. Diese stehen in Unity in verschieden komplexen For-
men zur Verfügung. Besonders flexibel ist ein Mesh Collider, wie er in dieser Arbeit
für den Fahrzeugaufbau verwendet wird. Mit wachsender Polygonzahl wird die Kolli-
sionsprüfung jedoch immer rechenintensiver. Deshalb approximiert man das grafische
Mesh meist grob mit einem zweiten Mesh, das ausschließlich von dem Collider verwendet
wird. Dieser besitzt also ein eigenes Mesh Filter für dieses Kollisions-Mesh. In Bild 5-6
wird das zur Kollisionsprüfung eingesetzte Mesh des Fahrzeugs dargestellt, indem dessen
Polygonkanten durch grüne Linien hervorgehoben werden (auch Wireframe).

Bild 5-6: Mesh zur Kollisionsprüfung des Fahrzeugs visualisiert durch grünen Wireframe.

Rad und Reifen

Neben dem Fahrzeugaufbau stellen die vier Räder die weiteren Massen des Fahrzeugmo-
dells dar. Zur Modellierung von Rädern stellt Unity spezielle Wheel Collider Components
zur Verfügung, welche die Radaufhängung am Fahrzeugaufbau und den Rad-Straße-Kon-
takt abbilden. In Bild 5-7 werden die im Inspector dargestellten Parametriermöglichkeiten
des Wheel Colliders gezeigt.

Der erste Parameter „Mass“ bezeichnet die Radmasse in Kilogramm. Es schließt sich der
dynamische Radradius in Metern an. Die Wheel Damping Rate nimmt Einfluss auf die
rotatorische Bewegung des Rads. Sie hat keinen Einfluss auf die Vertikaldynamik. Da die
genaue Einflussnahme dieses Werts nicht dokumentiert ist, wird er für das hier verwendete
Fahrzeugmodell auf den Minimalwert von 10−4 gesetzt.

Durch die Zuweisung des Wheel Collider besitzt das Rad nur einen translatorischen Frei-
heitsgrad relativ zum Fahrzeugaufbau entlang der lokalen y-Achse bzw. Hochachse. Der
zulässige Federweg entlang dieses Freiheitsgrads kann durch den Parameter „Suspension
Distance“ vorgegeben werden. Weitere Konfigurationen bezüglich des Feder-Dämpfer-
Systems können in der Gruppe „Suspension Spring“ vorgenommen werden. Einstellbar
sind die Feder- und Dämpferkonstante in den Einheiten N

m bzw. Ns
m und die Ausfederung

des unbelasteten Rads relativ zum Gesamtfederweg. Ein Wert von null für „Target Position“
entspricht der vollständigen Ausfederung, während ein Wert von eins einer Ruhelage bei
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Bild 5-7: Attribute des Wheel Collider-Components der Unity-Engine.

vollständiger Einfederung entspricht. Die Federkraft ergibt sich durch die Abweichung
von dieser Ruhelage.

Der Parameter „Force App Point Distance“ spezifiziert den Krafteinleitungspunkt der
Kräfte, die durch das jeweilige Rad hervorgerufen auf den Fahrzeugaufbau wirken. Neben
den Feder- und Dämpferkräften gehören hierzu auch die Längs- und Seitenführungskräfte
des Rad-Straße-Kontakts. Der Krafteinleitungspunkt liegt stets auf einer Parallelen zur
y-Achse bzw. Hochachse des Rigidbody, welche die Ruheposition des Rads beinhaltet.
Durch den genannten Parameter wird die genaue Lage des Krafteinleitungspunkts auf
dieser Geraden bestimmt, indem er den Abstand dieses Punkts zur Ruhelage des Rads in
Metern definiert.

Zur Ausrichtung der Collider und der grafischen Meshes der Räder zueinander kann
der Parameter „Center“ eingesetzt werden. Da die Meshes und Collider der Räder des
hier vorgestellten Fahrzeugmodells in separaten Gameobjects mit eigenen Transforms
verwaltet werden, werden x-, y- und z-Koordinate des Radzentrums auf null gesetzt und
die Ausrichtung über das Transform vorgenommen.

Es schließen sich zwei weitere Parametergruppen an, welche den Längs- und Querschlupf
spezifizieren. Die Prinzipien sind für beide Gruppen dieselben. Es liegt eine nichtlineare
Reifenkraftkennlinie zugrunde. Der Extrempunkt und das asymptotische Verhalten die-
ser Kennlinie kann parametriert werden. Das Bild 5-8 gibt Aufschluss über die genaue
Bedeutung der einzelnen Parameter.

Der genaue Verlauf der Kurve ergibt sich durch einen Spline durch die Punkte (0, 0),
(Fmax, smax) sowie (F∞, s∞) und der Forderung, dass die Steigung der Kurve für s = smax
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Bild 5-8: Schlupfkurve des Wheel Collider der Unity-Engine.

und s > s∞ null ist. Auch wenn hier nicht die klassische Formulierung der Kennlinie
über Arcustangens-Funktionen zugrunde liegt, ist der im Wheel Collider verwendete
Reifenkraftverlauf dennoch eng an der Magic Formula nach Pacejka angelehnt [PB12].
Die Zuordnung der Parameter des Wheel Collider auf die charakteristischen Größen der
Kennlinie aus Bild 5-8 ist wie folgt:

• Extremum Slip: smax

• Extremum Value: Fmax
Fz

• Asymptote Slip: s∞

• Asymptote Value: F∞
Fz

Die Kraftwerte werden mithilfe der Radaufstandskraft Fz normiert, sodass die Reifen-
kraftkennlinie unabhängig von dieser beschrieben werden kann. Der Schlupf wird als
Relativgeschwindigkeit zwischen Radumfangsgeschwindigkeiten und Radnabengeschwin-
digkeit in der Einheit m

s angegeben. Die aus dem Schlupf resultierende Kraft wird in der
Einheit N angegeben. Nachteilig ist, dass eine direkte Reibwertvorgabe im Modell nicht
vorgesehen ist. Allerdings können die Werte Fmax und F∞ durch den Parameter „Stiffness“
skaliert werden. Da dieser Parameter zur Laufzeit angepasst werden kann, ist eine Be-
rücksichtigung eines veränderlichen Reibwerts möglich. Im Rahmen dieser Arbeit wird
allerdings angenommen, dass der Reibwert konstant ist.

Antrieb und Bremse

Zur Vervollständigung des Fahrzeugmodells werden weitere Komponenten benötigt, die
nicht durch vorgefertigte Components der Unity-Engine abgedeckt werden. Zur Modellie-
rung dieser weiteren Aspekte wird ein eigenes Script-Component „Car Model“ eingesetzt.
Da das interne Fahrzeugmodell nicht das Ziel hat, das reale Fahrzeugverhalten detailgetreu
abzubilden, werden die weiteren Komponenten stark vereinfacht modelliert.

Eine wesentliche Komponente ist der Antriebsstrang, welcher zur Momentenübertragung
vom Motor, über Kupplung, Getriebe und Differential, bis hin zum Rad verantwortlich
ist. Die Kupplung und das Getriebe werden vernachlässigt. Der Motor wird über zwei
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Parameter beschrieben. Zum einen ist das maximale Motormoment festzulegen und zum
anderen ist der Momentenaufbau mit einer PT1-Dynamik versehen, deren Zeitkonstante
den zweiten Parameter darstellt. Stellgröße ist die normierte Gaspedalstellung.

Unter der Annahme eines Achsdifferentials wird das Motormoment zu gleichen Teilen auf
die Räder der antreibende Achse verteilt. Die Wahl der Antriebsachse ist dem Anwender
überlassen. Zudem ist die Simulation eines Allradfahrzeugs möglich. Dann ist die Mo-
mentenaufteilung zwischen Vorder- und Hinterachse jedoch statisch vorzugeben. Die sich
ergebenden Antriebsmomente für die einzelnen Räder können dem Attribut „motorTorque“
(Einheit Nm) des jeweiligen Wheel Collider in jedem Zeitschritt zugewiesen werden.

Auch das Bremsmodell ist im internen Fahrzeugmodell sehr einfach gehalten und weist
eine hohe Ähnlichkeit zum Antriebsmodell auf. Die Bremskraft wird zwischen dem linken
und rechten Rad gleich verteilt. Die Aufteilung zwischen Vorder- und Hinterachse erfolgt
wieder durch eine statische Vorgabe. Genau wie der Motor wird auch das Bremsmoment
mit einer Aufbaudynamik versehen. Diese Aufbaudynamik dient zur numerischen Stabili-
sierung und ist physikalisch begründbar, da sich die Normalkraft zwischen Bremsbelag
und Scheibe bei der Betätigung des Bremspedals ebenfalls stetig erhöht. Die Zeitkonstante
dieser Aufbaudynamik sollte jedoch deutlich niedriger als die Zeitkonstante der Motor-
dynamik gewählt werden. Außerdem wird das betragsmäßige Bremsmoment nach oben
begrenzt. Die Drehrichtung ist der Raddrehung entgegengesetzt. Die Bremsmomente der
einzelnen Räder können dem Attribut „brakeTorque“ (Einheit Nm) des jeweiligen Wheel
Collider in jedem Zeitschritt zugewiesen werden.

Lenkung

Zur Modellierung der Lenkung sieht der Wheel Collider der Unity-Engine bereits das
Attribut „steerAngle“ vor. Dieses Attribut bezeichnet den Verdrehwinkel des Rads um die
lokale y-Achse bzw. Hochachse in Grad. Im Rahmen der Arbeit wird von einer Vorderachs-
lenkung ausgegangen, wie sie in den meisten PKW üblich ist. Genau wie die Antriebs- und
Bremsmomente wird auch der Lenkwinkel mit einer Aufbaudynamik versehen. So werden
sprunghafte Änderungen des Lenkwinkels vermieden, welche zu Stabilitätsproblemen
führen können. Gleichzeitig verbessert sich die Bedienbarkeit durch Eingabegeräte, die
keine kontinuierliche Stellgrößenvorgabe erlauben, wie es beispielsweise für die Tastatur
der Fall ist.

Die Lenkwinkel an den Spuren eines zweispurigen Fahrzeugs sind bedingt durch die
Achskinematik unterschiedlich. Da das kurveninnere Rad stärker eingeschlagen werden
muss, um der Bahnkurve folgen zu können, wird der Querschlupf in Kurvenfahrten durch
diese Maßnahme minimiert. Auch in diesem stark vereinfachten internen Modell sollte
dieser Effekt berücksichtigt werden, um hohe Schlupf- und damit Kraftwerte an den Rädern
zu vermeiden. Im Rahmen des internen Modells wird ausschließlich der Ackermann-
Fall betrachtet, welcher nur bei sehr langsamer Fahrt ohne Schlupf exakt gilt. Nach
Ackermann werden die Vorderräder gemäß Bild 5-9 so eingeschlagen, dass sich alle Räder
um einen gemeinsamen Momentanpol M drehen. Es ergeben sich die Lenkwinkel δo für
das kurvenäußere und δi für das kurveninnere Rad. Abhängig von der Spurbreite bFzg und
dem Radstand lFzg stehen diese Lenkwinkel nach [PH11] in Beziehung:

cot δo = cot δi +
bFzg

lFzg
. (5-1)
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Bild 5-9: Unterschiedliche Lenkwinkel des kurveninneren und kurvenäußeren Rads nach
Ackermann.

Im internen Fahrzeugmodell wird δi durch die Fahrereingabe vorgegeben, während δo

gemäß Gleichung (5-1) berechnet wird.

Fahrzeugparametrierung

Zur vollständigen Definition eines Fahrzeugs bedarf es selbst für das vereinfachte in-
terne Modell einer Vielzahl von Parametern. Um eine komfortable, übersichtliche und
reproduzierbare Parametrierung verschiedener Fahrzeuge zu ermöglichen, werden alle
fahrzeugrelevanten Parameter in einer zentralen JSON-Datei zusammengefasst. Diese
Datei dient zur zentralen Manipulation der Fahrzeugparameter, zur Speicherung und zum
Laden der Fahrzeugdaten. Ein Beispiel für eine derartige Parametrierung findet sich im
Anhang A1.1.

Fahrzeugsteuerung

Noch ungeklärt ist, wie die normierten Fahreingaben für Motor, Bremse und Lenkung
zustande kommen. Die Berechnung dieser Stellgrößen ist abhängig vom gewählten Einga-
bemedium. Zur Zeit stehen die Tastatur und eine Lenkrad-Pedal-Kombination als Eingabe-
geräte zur Auswahl.

Bei Verwendung der Lenkrad-Pedal-Kombination gestaltet sich die Ermittlung besonders
einfach, da dieses Eingabegerät bereits kontinuierliche Größen liefert. Diese müssen
lediglich durch geeignete Proportionalitätsfaktoren in den Wertebereich [0, 1] (Motor und
Bremse) bzw. [−1, 1] (Lenkung) überführt werden.

Eine Tastatur eignet sich wesentlich schlechter als Eingabemedium. Allerdings ist sie an
jedem Büroarbeitsplatz verfügbar. Ihre Unterstützung trägt somit maßgeblich zur Erfüllung
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der Anforderung A11 (Konfigurierbarkeit) bei. Nachteil der Tastatur sind die nicht kon-
tinuierlichen bzw. binären Informationen der Tasten. Es können nur die Zustände „Taste
gedrückt“ und „Taste nicht gedrückt“ unterschieden werden. Die Zustandsvariable der
entsprechenden Taste sei mit kin ∈ {0, 1} bezeichnet, wobei der Wert „1“ den Zustand
„Taste gedrückt“ repräsentiert.

Zur Überführung dieses binären Zustands in eine kontinuierlichen Fahreingaben uin werden
die Tastenzustände gemäß

uin = max(0,min(uin,alt + cin · ∆T · kin, 1)) (5-2)

zeitlich diskret integriert. Dabei bezeichnet uin,alt die entsprechende Fahreingabe zum
vorhergehenden Zeitpunkt, kin den aktuellen Zustand der Taste, ∆T die Schrittweite der
zeitlichen Diskretisierung und cin die Empfindlichkeit der Fahreingabe auf den Tastendruck.
Je höher der Wert von cin > 0, desto schneller ändert sich die Fahreingabe uin. Die
Minimum- und Maximum-Funktionen stellen die Einhaltung des gültigen Wertebereichs
für die normierten Fahreingaben sicher. Die Gleichung (5-2) eignet sich unmittelbar für
die Motor- und Bremsmomentvorgaben. Für die Lenkvorgaben sind zwei Tasten und eine
angepasste Verarbeitung notwendig.

5.2.2 ASM Fahrzeugmodell

Im Abschnitt 5.2.1 sind eine Reihe von zum Teil schwerwiegenden Vereinfachungen
getroffen worden. Es ist deshalb nicht möglich, die Fahrdynamik realer Fahrzeuge mit
dem internen Fahrzeugmodell detailliert nachzubilden. Sollen mit der Simulation Aspekte
einer Lichtfunktion untersucht werden, die kritisch durch das Fahrverhalten beeinflusst
werden, wird die Verwendung des wesentlich komplexeren ASM Fahrzeugmodells emp-
fohlen. Im Rahmen der Arbeit ist eine vollständige Beschreibung dieses Fahrzeugmodells
nicht möglich. Detaillierte Informationen finden sich in [dSP20]. In den nachfolgenden
Unterabschnitten soll lediglich eine Übersicht gegeben werden.

ASM Toolsuite

Das ASM Fahrzeugmodell ist in eine umfangreiche Toolsuite eingebettet, die zur Simulati-
on von verschiedensten Fahrzeugkomponenten bis hin zur Fahrzeugumgebung eingesetzt
werden kann. Die Toolsuite weist detaillierte und variantenreiche Modelle in den Berei-
chen Antriebsstrang, Fahrdynamik, elektrische Komponenten und Fahrzeugumgebung
auf, welche zueinander kompatibel sind und so die zugeschnittene Konfiguration des
Gesamtfahrzeugs erlauben.

dSPACE implementiert die Modelle in MATLAB/Simulink, sodass diese in der Developer-
Version weitgehend quelloffen sind und eine Manipulation durch den Anwender möglich ist.
Diese Quelloffenheit garantiert eine hohe Flexibilität in anwenderspezifischen Vorhaben.
Einzelne Modellkomponenten können beispielsweise angepasst oder ausgetauscht werden.
Außerdem kann das ASM Modell um geeignete Schnittstellen erweitert werden, die eine
Kopplung zusätzlicher anwenderspezifischer Modelle ermöglichen.
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Neben diesen tiefen Eingriffen in die Modellarchitektur wird durch das Tool „ModelDesk“
eine intuitive Benutzeroberfläche zur vollständigen Offline-Parametrierung von Fahrzeug
und Umgebung bereitgestellt (s. Bild 3-24). Die Vielzahl der einstellbaren Parameter
werden in Kategorien übersichtlich organisiert und können durch geeignete Eingabefelder
manipuliert werden. Stellenweise werden die Bedeutungen der Parameter durch grafische
Schaubilder visualisiert. Die Parametrierung in ModelDesk steht im direkten Zusam-
menhang mit dem zugrunde liegenden Simulink-Modell. Durch die Übernahme einer
Parametrierung werden entsprechende Anpassungen im Modell automatisiert vorgenom-
men. Hierbei kann es sich um Wertänderungen einzelner Kenngrößen oder sogar um den
Wechsel von einem Verbrennungs- auf einen Elektromotor handeln.

Die Verwendung von ModelDesk findet vor der eigentlichen Simulation statt und dient
der Offline-Parametrierung. Während der Simulation wird das Controlling durch das Tool
„ControlDesk“ ermöglicht. Dessen Benutzeroberfläche wird in Bild 5-10 dargestellt.

Bild 5-10: ControlDesk-Benutzeroberfläche der ASM Toolsuite.

ControlDesk ermöglicht die Echtzeitvisualisierung des Modellzustands. Es können an-
wenderspezifische Layouts konfiguriert werden. Hierzu stehen verschiedene Elemente,
wie numerische Ausgaben, Ladebalken, Zeitplots und Ähnliches zur Verfügung. Das Ta-
choinstrument und die darunter befindlichen Plots in Bild 5-10 sind ein Beispiel für ein
derartiges Layout. Zur Verknüpfung der Layout-Elemente mit den Modellgrößen kann
durch die gesamte Modellhierarchie navigiert werden. Einzelne Parameter und Signale des
Simulink-Modells können den Anzeigeelementen zugewiesen werden. Neben der Anzeige
aktueller Modellgrößen wird in ControlDesk die Interaktion mit dem Modell ermöglicht.
Die Modellparameter können zur Laufzeit durch Eingabefelder im Layout manipuliert
werden. Neben der Visualisierung des Modellzustands und dem Eingriff in das Modell stellt
die Aufzeichnung von Signalverläufen eine dritte wichtige Funktionalität von ControlDesk
dar. Während der Simulation können Messungen aufgenommen werden, in denen beliebige
Signale zeitgleich und synchronisiert über einen gewählten Erfassungszeitraum aufge-
zeichnet werden. Die entstehenden Aufnahmen sind kompatibel zu MATLAB/Simulink
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und können dort auf verschiedene Weisen visualisiert und weiterverarbeitet werden. Auf
diese Weise lassen sich die Wirkzusammenhänge einzelner Größen im Modell detailliert
analysieren.

Die Visualisierung der Fahrsimulation erfolgt innerhalb der ASM Toolsuite durch Motion-
Desk. Da MotionDesk den hier gestellten Anforderungen einer Nachtfahrtsimulation nicht
genügt (s. Tabelle 3-4), wird auf dieses Tool im Rahmen der vorliegenden Arbeit nicht
zurückgegriffen.

Schnittstelle zu Hyperion

Wie erwähnt, handelt es sich bei dem ASM Fahrzeugmodell um ein quelloffenes Mo-
dell, dessen Implementierung in MATLAB/Simulink vorgenommen wird. Durch diese
Eigenschaft ist die Herstellung einer Schnittstelle möglich, welche die Einbindung des
ASM Fahrzeugmodells in Hyperion ermöglicht. Die meisten Signale des ASM Modells
sind in zentralen Bussen organisiert. Aus diesen Signalbussen müssen die außerhalb der
Fahrdynamiksimulation relevanten Informationen extrahiert und weitergegeben werden.
Das ASM Modell auf Wurzelebene ist grau umstrichelt in Bild 5-11 dargestellt. Es wird in
die Subsysteme „ASM Fahrzeugmodell“ und „Benutzerschnittstelle des ASM Modells“
untergliedert. Letzteres ist für die Ankopplung anwendungsspezifischer Komponenten
besonders geeignet, da es die wesentlichen Signale und Parameter des Fahrzeugmodells
enthält und diese in zugänglicher Form kategorisiert.

Fahrerwunsch
ASM

ASM Fahrzeugmodell

des ASM Modells
Benutzerschnittstelle ASM Busse

selektion
Signal- Hyperion Bus

versand
Nachrichten-

Bild 5-11: Modifiziertes ASM Modell mit Schnittstelle zu Hyperion auf der Wurzelebene.

Zur Herstellung einer Schnittstelle zu den Umgebungskomponenten der Gesamtarchitektur
(s. Bild 5-1) werden die benötigten ASM Busse aus der ASM Benutzerschnittstelle ausge-
leitet und dem Subsystem „Signalselektion“ zugeführt. Dieses wählt die relevanten Signale
aus den verschiedenen ASM Bussen aus und führt sie zu einem Hyperion Bus zusammen.
Die Signale im Hyperion Bus werden schließlich in einem definierten Takt an die visuelle
Simulation versendet.

Das Bild 5-12 zeigt die Signalausleitung aus dem ASM Modell detaillierter. Zu sehen ist
eine abstrahierte Darstellung der Inhalte des Subsystems „Benutzerschnittstelle des ASM
Modells“.

In diesem Subsystem werden die Signale entsprechend der Fahrzeugkomponenten „Steuer-
gerät“, „Motor“, „Antriebsstrang“, „Fahrdynamik“ sowie der „Fahrzeugumgebung“ unter-
gliedert. Jede Komponente verwaltet einen zentralen Bus, welcher alle Signale im Kontext
dieser Komponente enthält. Alle für die Gesamtsimulation relevanten Signale können aus
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…
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Antriebs-

dynamik
Fahr-
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Fahrzeug-

Antrieb-Bus
FzgDyn-Bus

Umgebung-Bus

ASM Busse

Bild 5-12: Ausleitung der in Hyperion relevanten Signalbusse aus der Benutzerschnittstelle
des ASM Modells.

den Bussen des Antriebsstrangs „Antrieb-Bus“, der Fahrdynamik „FzgDyn-Bus“ und der
Fahrzeugumgebung „Umgebung-Bus“ extrahiert werden. Deshalb werden die entspre-
chenden Busse aus den Fahrzeug- und Umgebungskomponenten ausgeleitet und in einem
Sammelbus, welcher in Bild 5-12 mit „ASM Busse“ bezeichnet wird, zusammengeführt.

Die gesammelten ASM Busse werden der Signalselektion zugeführt. Deren Struktur
wird in Bild 5-13 gezeigt. Der Sammelbus wird zunächst in die Komponentenbusse
aufgeteilt. Aus diesen werden dann die einzelnen Signale ausgewählt und in neue Busse
mit den Bezeichnungen „Ego Info“ und „Fellow Info“ überführt. Zusätzlich wird das
Signal „Manöverzeit“ durchgereicht. Die neu erzeugten Busse und die Manöverzeit bilden
den Hyperion Bus, welcher alle für die Restsimulation relevanten Signale in einem Bus
zusammenfasst.

Der neu erzeugte Bus „Ego Info“ enthält alle Informationen, die im Kontext des Egofahr-
zeugs von Bedeutung sind. Zur Positionierung in der virtuellen Umgebung werden die
Position und Rotation des Egofahrzeugs bezüglich des Inertialkoordinatensystems benötigt.
Bei diesen Signalen handelt es sich jeweils um dreidimensionale Vektoren, wobei jedes
Element vom Datentyp „double“ ist und somit durch acht Byte codiert wird.

Eine weitere logische Gruppe bilden die lichtrelevanten Parameter. Diese Gruppe setzt sich
am Beispiel des HD84-Systems aus der Gierrate des Fahrzeugaufbaus, den Radumfangsge-
schwindigkeiten des linken und rechten Vorderrads und dem mittleren Radeinschlagwinkel
beider Vorderräder zusammen. Mit diesen und weiteren Größen, die in der visuellen
Simulation erzeugt werden, ermittelt das Steuergerät eine geeignete Lichtverteilung.

Darüber hinaus werden Parameter übermittelt, die ausschließlich Einfluss auf die Ton-
wiedergabe nehmen. Diese Parameter sind die betragsmäßige Geschwindigkeit des Fahr-
zeugaufbaus, die Motordrehzahl und die Gaspedalstellung. Auch wenn die akustische
Simulation im Rahmen dieser Arbeit nicht beschrieben wird, seien diese Größen zur
Vollständigkeit erwähnt.

Die drei logischen Gruppen der Fahrzeuglage, der lichtrelevanten Daten und der akustisch
relevanten Daten bilden den Ego Info Bus. Darunter wird der Fellow Info Bus gebildet.
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ASM Busse

FzgDyn

Antrieb

Umgebung
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Radwinkel

Gaspedal

Fellow aktiv

Fellow Pos.

Fellow Rot.

Fellow Ges.
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Bild 5-13: Erzeugung des Hyperion-Signalbusses in der Signalselektion.

Dieser kapselt alle Informationen, die im Kontext weiterer Verkehrsteilnehmer (auch
„Fellow“) relevant sind.

Das ASM Fahrzeugmodell ist in der Lage bis zu 15 Fellows zu simulieren. Deshalb wird
durch das Signal „Fellow aktiv“ codiert, welche der maximal 15 Verkehrsteilnehmer in
der aktuellen Simulation aktiv sind. Das Signal besteht aus einer Folge von 15 Bytes.
Das für den jeweiligen Fellow repräsentative Byte trägt den Wert 1, wenn dieser aktiv ist,
und den Wert 0 bei Inaktivität. Zur Darstellung der Fellows in der virtuellen Umgebung
werden ihre jeweiligen Positionen und Rotationen benötigt. Die Signale „Fellow Pos.“ und
„Fellow Rot.“ beinhalten diese Daten. Strukturell handelt es bei diesen Signalen um je 15
dreidimensionale Vektoren. Zur akustischen Simulation werden durch das Signal „Fellow
Ges.“ zusätzlich die betragsmäßigen Geschwindigkeiten aller Fellows übermittelt.

Neben den Ego und Fellow Info Bussen wird zudem die Manöverzeit durchgereicht. Dieser
Wert beinhaltet die Dauer seit Simulationsstart und kann zur Auslösung zeitgesteuerter
Events verwendet werden. Insbesondere bei fremdgesteuerten Fahrmodi, welche im nach-
folgenden Abschnitt thematisiert werden, kann auf diese Weise sichergestellt werden,
dass sich Online-Parameter stets in der gleichen Fahrsituation ändern. Somit trägt die
Übermittlung der Manöverzeit zur Erfüllung der Anforderung A12 (Reproduzierbarkeit)
bei.
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Die Ego und Fellow Info Busse sowie die Manöverzeit bilden gemeinsam den Hyperion
Bus, dessen Signale zur weiteren Verarbeitung in der visuellen Simulation benötigt werden.
Zur Weitergabe wird der Hyperion Bus deshalb dem Nachrichtenversand zugeführt. Dieser
Block wird in Bild 5-14 dargestellt.

……

…

Hyperion Bus

Nachrichtentyp 0

Byte-Paketierung
Typkonvertierung

Byte-Paketierung
Typkonvertierung

UDP Send

Bild 5-14: Versand des Hyperion-Signalbusses via UDP.

Da der Hyperion-Server verschiedene Arten von UDP (User Datagram Protocol) Nach-
richten entgegen nehmen kann, enthält jede UDP Nachricht im ersten Byte der Nutzdaten
einen Typflag. Dieser Typflag codiert eine Nummer, welche die Anzahl und Interpretation
der nachfolgenden Bytes festlegt. Für eine ASM Zustandsnachricht, wie sie hier dargestellt
wird, trägt der Typflag den Wert 0. Nachfolgend werden sämtliche Signale des Hyperion
Busses aneinandergereiht. Hierzu kann der Simulink-Standardblock „Byte Pack“ verwen-
det werden. Da dieser jedoch nicht mit allen Datentypen umgehen kann, müssen double-
Werte zunächst in single-Werte konvertiert werden. Außerdem müssen Ganzzahltypen
durch Konvertierung als solche deklariert werden, wenn sie zuvor als Fließkommawerte
behandelt wurden.

Die aneinandergereihten Bytefolgen des Nachrichtentyps und aller Signale werden als
Nutzdaten in eine UDP Nachricht überführt und an den Hyperion-Server übermittelt,
welcher die visuelle Simulation ausführt.

Die Frequenz der Nachrichten kann in Simulink durch einen sogenannten „Rate Transi-
tion“ Block bestimmt werden. Dieser muss vor dem „UDP Send“ angeordnet sein und
ermöglicht das Überspringen mehrere Zeitschritte des vorgelagerten Modells. Da das ASM
Fahrzeugmodell mit einer Schrittweite von 1 ms gerechnet wird, während für die visuelle
Simulation gemäß Anforderung A6 Frequenzen im Bereich von 60 Hz ausreichen, dient
der „Rate Transition“ Block zur Vermeidung einer unnötig hohen Netzwerkauslastung.

5.2.3 Fremdgesteuerte Fahrmodi

Sowohl beim einfachen internen Fahrzeugmodell, als auch beim komplexen ASM Fahr-
zeugmodell wurde bislang davon ausgegangen, dass der Anwender bzw. der Proband das
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Fahrgeschehen durch seine Eingaben interaktiv beeinflusst. Auch wenn auf diese Weise
die maximale Immersion des Fahrers sichergestellt wird, ist seine Konzentration zu einem
wesentlichen Teil auf die Fahraufgabe gerichtet. Hinzu kommt, dass die gefahrenen Trajek-
torien in den verschiedenen Simulationsdurchläufen Unterschiede aufweisen, die letztlich
die Vergleichbarkeit der Durchläufe mindern. In der Konsequenz ist es sinnvoll, alternativ
zu den selbstgesteuerten Fahrmodi aus den Abschnitten 5.2.1 und 5.2.2 auch fremdgesteuer-
te Fahrmodi anzubieten, die dem Ingenieur die Lichtbeurteilung in ungestörter Atmosphäre
erlauben.

Interner Autopilot

Die erste und einfachste Variante des fremdgesteuerten Fahrens bildet der interne Autopilot.
Er berechnet die Trajektorie des Fahrzeugs ausschließlich anhand des Streckenverlaufs. Da-
bei berücksichtigt er Sollgeschwindigkeiten und Verzögerungen in Kurven, die als weitere
Parameter vorgegeben werden können. Neben der optionalen Steuerung des Egofahrzeugs
übernimmt der interne Autopilot auch die Fremdverkehrssimulation, wenn diese nicht
durch ASM vorgenommen wird.

Die Verkehrsführung ist nicht eindeutig. Auf mehrspurigen Straßen und Kreuzungen stehen
verschiedene Optionen zur Weiterfahrt zur Verfügung. Zur Definition der Solltrajektorie
wird deshalb ein XML-basiertes Format eingeführt, dass die Fahrzeugtrajektorie mit dem
zugrunde liegenden Straßennetz verknüpft. Im Anhang A1.2 findet sich die ausführliche
Dokumentation und eine Beispieldatei gemäß dieses Formats. Das Bild 5-15 zeigt die
Struktur eines gültigen XML-Baums zur Manöverdefinition.

Die Trajektorien aller Fahrzeuge für eine gegebene Streckendefinition werden unter dem
Begriff „Manöver“ zusammen gefasst. Zur Streckendefinition werden im nachfolgenden
Abschnitt detaillierte Informationen folgen. Das Manöver untergliedert sich logisch in
Fahrzeuge und Routen. Um die Verkehrsteuerung des ASM Modells und des internen
Autopiloten in anderen Simulationskomponenten auf gleiche Weise behandeln zu können,
wird das Limit von 16 Fahrzeugen (Ego und max. 15 Fellows) aus ASM auch für den
internen Autopiloten übernommen. Die Fahrzeuge haben zwei Attribute. Zum einen tragen
sie eine ID. Die ID -1 kennzeichnet das Egofahrzeug, während die Werte 0 bis 14 Fellow-
Fahrzeuge repräsentieren. Für jedes Fahrzeug kann außerdem ein Offset definiert werden,
an welchem das Fahrzeug relativ zum Nullpunkt der ihm zugewiesenen Route startet. So
kann vermieden werden, dass Fahrzeuge mit einer gemeinsamen Route permanent die
gleichen Positionen aufweisen.

Die andere Komponente eines Manövers sind Routen, von denen beliebig viele, aber
mindestens eine zu definieren sind. Jede Route trägt eine Liste von Fahrzeug-IDs als
Attribut. So können die 16 Fahrzeuge den verschiedenen Routen zugewiesen werden.
Zudem ist festzulegen, welche Straßen Bestandteil der Route sind. Jede Straße hat vier
Attribute. Die ID der Straße muss ihrer ID in der Streckendefinition entsprechen. Weiterhin
wird spezifiziert, in welche Richtung und an welcher Bogenlänge beginnend die Straße zu
befahren ist.

Optional kann eine Straße mehrspurig sein. In diesem Fall kann durch die Spuren definiert
werden, auf welcher Spur die Fahrzeuge, welcher der jeweiligen Route zugewiesen sind,
fahren sollen. Dazu hat jede Spur eine ID, die ihrer ID in der Streckendefinition entsprechen
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Bild 5-15: Struktur der Manöverdefinition des internen Autopiloten.

muss. Außerdem ist festzulegen, in welchem Bogenlängenbereich die Spur zu befahren ist.
Wird das Attribut „Ende“ der Spur nicht gesetzt, bleibt die Spur bis zum Ende der Straße
aktiv.

In einem besonderen Fall können Straßen definiert werden, welche nicht in der Strecken-
definition vorhanden sind. Dieser Sonderfall zeichnet sich durch das Setzten des Attributs
„Verbindung“ auf den Boolschen Wert true aus. In diesem Fall wird eine Verbindungslinie
zwischen der vorhergehenden und nachfolgenden Straße interpoliert. Dementsprechend
müssen die Attribute „StrID“, „StartOffset“ und „Richtung“ nicht gesetzt werden. Statt-
dessen ist durch die Attribute „Start“ und „Ende“ zu spezifizieren, an welcher Stelle die
vorhergehende Straße verlassen werden soll und an welcher Stelle die Verbindungsstraße
in die nachfolgende Straße münden soll. Die Attribute beziehen sich auf die Bogenlängen-
parameter der jeweiligen Straße. Ein Anwendungsbeispiel für diesen Sonderfall stellen
Kreuzungen dar. Das Fahrzeug folgt beim Überfahren der Kreuzung einer Verbindungs-
straße, um sich von der einmündenden auf die ausgehende Straße zu bewegen.

Es treten Situationen auf, in denen die zu fahrende Bahnkurve nicht eindeutig aus der
Streckendefinition abgeleitet werden kann. Neben Kreuzungen stellen Spurwechsel ein
weiteres Beispiel dar. Im Rahmen dieser Arbeit werden solche Manöversegmente als dyna-
misch bezeichnet. Um geeignete Trajektorien für dynamische Abschnitte zu generieren,
werden im Rahmen von Hyperion sogenannte NURBS-Kurven (nicht-uniforme rationale
B-Splines) eingesetzt [Ger11]. NURBS sind eine Verallgemeinerung nicht-rationaler B-
Splines und Bézier-Kurven. Sie sind in der Lage einen beliebigen stetigen Linienzug
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abzubilden. Anwendung finden sie vor allem im Bereich der computergenerierten Bild-
gebung (CGI) und der computergestützten Konstruktion (CAD). Ihre Stützpunkte treffen
NURBS im Allgemeinen nicht exakt, sondern nähern sie nur an. Diese Eigenschaft kann
zu Problemen in der Stetigkeit bzw. der stetigen Differenzierbarkeit an den Übergängen
zwischen statischen und dynamischen Manöversegmenten führen. Um diese Probleme zu
umgehen, werden mehrere Stützpunkte in den Übergangsbereichen für zwei aufeinander
folgende Segmente gleich gewählt. Die notwendige Anzahl der identischen Stützpunkte
korreliert mit der Ordnung der NURBS. Man kann zeigen, dass abhängig von der Ordnung
stets nur eine Teilmenge der Stützpunkte lokal Einfluss nimmt [Sel07]. Diese Eigenschaft
der NURBS erlaubt die Sicherstellung der stetig differenzierbaren Umschaltung zwischen
den Segmenten.

Die Streckendefinition legt gemeinsam mit der Manöverspezifikation und dem beschriebe-
nen Verhalten in dynamischen Manöversegmenten fest, entlang welcher Bahnkurve sich
ein Fahrzeug fortbewegt. Noch nicht definiert ist die zeitliche Komponente und somit die
Geschwindigkeit, mit der das Fahrzeug die Bahnkurve abfährt. Die Geschwindigkeitsvor-
gabe wird im internen Autopiloten sehr einfach realisiert und greift nicht auf das interne
Fahrzeugmodell zurück.

Zunächst kann der Anwender eine Sollgeschwindigkeit vsoll vorgeben, mit der das Fahrzeug
fährt, wenn die Gegebenheiten es erlauben. Gründe für eine Reduzierung der Geschwin-
digkeit stellen enge Kurven, Abbiegevorgänge oder langsamer vorausfahrende Fahrzeuge
dar.

Die beiden erstgenannte Fälle werden berücksichtigt, indem der Autopilot ähnlich einem
menschlichen Fahrer einen Blick auf den vor ihm liegenden Streckenverlauf wirft. Dazu
wird zunächst ein Bogenlängenparameter s f berechnet, der auf der bezüglich s parametri-
sierten Kurve cTr(s) vor dem Fahrzeug liegt, welches sich derzeit auf der Position cTr(sp)
befindet. Das Bild 5-16 veranschaulicht diesen Zusammenhang.

x

y

cTr(s)

cTr(sp)
cTr(s f )

∆Ψ

c′Tr(sp)
c′Tr(s f )

Bild 5-16: Geschwindigkeitsanpassung des internen Autopiloten in Kurven oder vor Abbie-
gevorgängen.

Die Lage des Vorausschaupunkts cTr(sp) kann über die Zeitlücke ∆Tgap zur momenta-
nen (tp) Position parametriert werden. Unter der Annahme einer konstanten Fahrzeug-
geschwindigkeit im Zeitintervall [tp, tp + ∆Tgap] ergibt sich der Bogenlängenparameter
s f = sp + vist · ∆Tgap des Vorausschaupunkts. Nun werden die Tangentenvektoren der
Bahnkurve cTr(s) für die Parameter sp und s f hinsichtlich ihrer Richtung verglichen. Kon-
kret wird die Winkeldifferenz ∆Ψ beider Vektoren bezüglich der Hochachse ermittelt.
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Sie entspricht gleichzeitig der Drehung des Fahrzeugs im Zeitintervall ∆Tgap und stellt
auf diese Weise ein Maß für die Schärfe einer eventuell vorausliegenden Kurve dar. Auf
einer Geraden ist die Winkeldifferenz ∆Ψ = 0◦. Im Fall einer unmittelbar bevorstehenden
90◦-Kurve kann ∆Ψ abhängig vom Parameter ∆Tgap und der zum Zeitpunkt tp vorliegenden
Fahrzeuggeschwindigkeit vist zwischen 0◦ und 90◦ betragen. Die Wahl von ∆Tgap sollte
also einerseits so groß sein, dass voraus liegende Kurven berücksichtigt werden können.
Andererseits darf ∆Tgap nicht so groß sein, dass eine bevorstehende S-Kurve vollständig
übergangen wird und so fälschlicherweise keine Geschwindigkeitsanpassung erfolgt. Ver-
suche haben gezeigt, dass sich ein Wert von 3 s für den Großteil aller Streckenverläufe gut
eignet.

Der Zusammenhang zwischen der Winkeldifferenz ∆Ψ und der angepassten Sollgeschwin-
digkeit vsoll,dyn des Fahrzeugs lautet

vsoll,dyn = max(vsoll −
dv
dΨ
· ∆Ψ, vmin),

wobei das Bremsverhalten dv
dΨ

(Standard-Wert: 0, 2 m/s
◦ ) des Fahrers beim Auftritt einer

Kurve und die Minimalgeschwindigkeit vmin (Standard-Wert: 15 km
h ) weitere Auslegungs-

parameter darstellen. Die tatsächliche Geschwindigkeit des Fahrzeugs folgt der Sollge-
schwindigkeit mit einer PT1-Dynamik entsprechend

vist = T? · (vsoll,dyn − vist,alt) + vist,alt

wobei T? =
1

Tv
δT + 1

.

Die Zeitkonstante Tv dieser PT1-Dynamik stellt den letzten Auslegungsparameter des
Autopiloten dar. Ihr Standardwert in Hyperion liegt bei 3 s. Auch wenn das Geschwindig-
keitsverhalten des Autopiloten einheitlich dargestellt wird, können die genannten Parameter
fahrzeugspezifisch vorgegeben werden.

ASM Autopilot

Im Kontext der Fahrzeugmodelle wurde bereits die Einbindung des ASM Fahrzeugmodells
in Hyperion diskutiert. Die ASM Toolsuite bietet zudem die Möglichkeit der automati-
schen Steuerung des Ego- und der Fremdfahrzeuge. Hierzu stellt das Tool ModelDesk
eine benutzerfreundliche Oberfläche zur Festlegung der Fahrzeugtrajektorien bereit, von
welcher in Bild 5-17 ein Screenshot zu sehen ist.

Das Vorgehen bei der Manöverdefinition in ModelDesk ist in [dSP20] genau beschrieben
und soll hier nicht detaillierter ausgeführt werden. Prinzipiell gleicht die zugrunde liegende
Logik dem im vorhergehenden Abschnitt vorgestellten Autopiloten.

GPS Autopilot

Die hinreichende Übereinstimmung der virtuellen Umgebung und der realen Erlebnisse ist
die zentrale Anforderung jeder Fahrsimulation. Nur wenn diese Übereinstimmung gegeben
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Bild 5-17: Manöverdefinition in ModelDesk aus der ASM Toolsuite.

ist, lassen sich zeitintensive, kostspielige und zum Teil gefährliche reale Tests im Entwick-
lungsprozess durch simulative Erprobungen ersetzen. Zur Validierung einer Simulation
muss die hinreichende Übereinstimmung mit der Realität nachgewiesen werden. Diese
Vergleichbarkeit ist nur dann gegeben, wenn virtuelle Abbildungen realer Umgebungen in
der Simulation zur Verfügung stehen. Vollständig wird die Vergleichbarkeit dann, wenn
die Fahrzeugbewegungen der Realität durch die Simulation wiedergegeben werden.

Hyperion ermöglicht diese Gegenüberstellung von Realität und Simulation, indem reale
Fahrzeugtrajektorien, welche beispielsweise durch ein Messfahrzeug bezüglich GPS-
Koordinaten und weiteren Fahrzeugdaten aufgezeichnet wurden, in der Simulation geladen
werden können. Steht für die befahrene Strecke ein virtuelles Abbild zur Verfügung (s.
Abschnitt 5.3), kann die geladene Trajektorie nachgefahren werden.

Ausgangspunkt für den Import der realen Fahrzeugtrajektorie sind die Messdaten. Diese
müssen zur Festlegung der Fahrzeuglage den Längen- und Breitengrad umfassen. Da eine
Höhenmessung in der Regel nicht mit hinreichender Genauigkeit möglich ist, wird diese
abhängig von der horizontalen Lage durch das Streckenprofil ermittelt. Ist die korrekte
Abbildung der Hubbewegung des Fahrzeugaufbaus erwünscht, muss in diesem Fahrmodus
deshalb eine dedizierte Messung dieser Größe erfolgen. Zur Festlegung der Fahrzeugorien-
tierung sind außerdem Roll-, Nick- und Gierwinkel aufzuzeichnen. Bei Verwendung des
GPS Autopiloten ist kein Fahrzeugmodell aktiv. Dementsprechend müssen auch Fahrzeug-
größen, welche relevant für das Scheinwerfersteuergerät sind, aufgezeichnet werden. Alle
genannten Daten werden über die Fahrtdauer mit einer vorgegebenen Frequenz abgetastet
und liegen als Zeitreihen vor. Schließlich muss die Aufzeichnung über einen Verweis auf
die korrespondierende virtuelle Strecke verfügen.
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Im nächsten Schritt müssen die Längen- und Breitengrade in die kartesischen Koordinaten
des Weltkoordinatensystems der Unity-Szene überführt werden. Dazu werden die Werte
zuerst mittels Mercator-Projektion aus dem kugelförmigen WGS84-System in ein planares
System überführt. Zur Eliminierung des Messrauschens werden die so gewonnenen X-
und Y-Koordinaten und alle weiteren Messdaten durch eine gleitende Mittelwertbildung
gefiltert. Die Phasenfreiheit der Filterung wird dabei sichergestellt, indem ein gegebenes
Element mit gleich vielen zeitlichen Vorgängern und Nachfolgern ermittelt wird. Die
Fensterbreite des Filters kann für jeden Messwerttyp parametriert werden. Bei einer
Messfrequenz von 50 Hz haben sich für die planaren Koordinaten eine Fensterbreite
von etwa 25 Zeitschritten und für die Orientierungen eine Fensterbreite von etwa 10
Zeitschritten als geeignet herausgestellt.

Im Rahmen dieser Arbeit wurde der GPS Autopilot anhand einer Messfahrt in der Nähe von
Paderborn erprobt. Der Rundkurs durch Borchen und Etteln mit innerörtlichen Abschnitten,
Landstraßen und einem Autobahnabschnitt eignet sich aufgrund seiner Diversität gut für
den Eignungsnachweis. Die aufgezeichnete Fahrzeugtrajektorie wird auf der Kartenansicht
in Bild 5-18 als blaue Linie überlagert.

Die auf diesem Weg generierte Fahrzeugtrajektorie wird als Zeitreihe im Verzeichnis der
zugehörigen virtuellen Strecke abgelegt und kann im Rahmen einer Simulation durch das
Egofahrzeug vollständig reproduzierbar nachgefahren werden.

5.3 Streckengenerierung

Innerhalb von Hyperion können virtuelle Strecken auf zwei unterschiedliche Arten er-
zeugt werden. Jede Ausprägung verfügt über individuelle Vor- und Nachteile. Die beiden
Möglichkeiten werden in den nachfolgenden Unterabschnitten näher beleuchtet.

5.3.1 Import von OpenDRIVE-Strecken

Die schnellste und einfachste Möglichkeit zur Generierung virtueller Strecken stellt der
Import von Streckendefinitionen nach dem OpenDRIVE-Standard dar. OpenDRIVE ist ein
offenes XML-basiertes Format zur logischen Beschreibung von Straßennetzwerken. Das
Format zielt auf den Einsatz in der Fahrsimulation ab und erlaubt daher eine präzise geo-
metrische Beschreibung des Streckenverlaufs durch stückweise definierte mathematische
Funktionen. Es unterstützt Höhen- und Querneigungsprofile für Straßen und erlaubt vielfäl-
tige Spurkonstellationen. Entwickelt wird das offene Format durch ein Expertengremium
aus dem Bereich der Fahrsimulation, welches sich sowohl aus Personen öffentlicher Ein-
richtungen als auch der Industrie zusammensetzt. Weiterführende Informationen können
der Spezifikation und der Website des Standards entnommen werden [DHB19],[VIR20].

Hyperion stellt eine Funktionalität bereit, welche die textuelle Streckendefinition gemäß
des Standards ohne manuelles Einwirken in eine virtuelle Szene überführt. Die im Standard
definierte Straße wird dabei geometrisch sehr genau wiedergegeben. Ebenso werden die
Spuren auf den Teilabschnitten korrekt dargestellt. Übergänge zwischen verschiedenen
Teilabschnitten, wie Kreuzungen, Wechsel der Spurzahlen und ähnliches sind im Rahmen
der automatischen Generierung aufgrund der Vielzahl ihrer möglichen Ausprägung nur
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Bild 5-18: Aufzeichnung einer Realfahrt bei Paderborn zur späteren Nachverfolgung der
Fahrzeugtrajektorie innerhalb der Simulation.

unter sehr hohem Aufwand umsetzbar. Da die Streckengenerierung nicht den Forschungs-
fokus dieser Arbeit adressiert, werden derartige Elemente durch Polygone mit Asphalt-
Textur, jedoch ohne Straßenmarkierungen oder ähnliches, dargestellt.

Zur Generierung der virtuellen Strecke werden auf Basis der geometrischen Primitive des
Standards (Linien, Kreisbögen, Klothoide und Polygone) Stützstellen entlang des gesamten
Streckenverlaufs berechnet. Diese verfügen über eine räumliche Position und Orientierung.
Auf diese Weise kann die Lage, Richtung, Steigung und Querneigung der Straße an jeder
Stützstelle exakt wiedergegeben werden. Die Abstände der Stützstellen sind parametrierbar.
Mit dem Paket „SuperSplines“ aus dem Unity Asset Store können Listen von Stützstellen
durch Splines approximiert werden [Evo13]. Hierbei können verschiedene Splinetypen
verwendet werden. In Hyperion fällt die Wahl auf B-Spline-Kurven [Boo01]. Hierbei han-
delt es sich um stückweise definierte Polynomfunktionen unter Verwendung bestimmter
Basisfunktionen (Basis-Spline). Durch das Aneinanderlegen von Mesh-Primitiven entlang
des Splines erhält die Straße ihre dreidimensionale Ausdehnung. Auf Geraden sind die
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Primitive flache Quader, die in Kurven und bei einem Wechsel der Spurzahlen entspre-
chend verzerrt werden. Die Anpassung der Breite innerhalb eines Splines, wie er bei dem
Wechsel der Spuranzahl notwendig wird, ist nicht Bestandteil von SuperSplines, weshalb
dieses Paket um weitere Funktionalitäten ergänzt wurde. Genauso ist in SuperSplines
die Verwendung der gleichen Textur für alle Primitive vorgesehen. Die unterschiedlichen
Straßenmarkierungen, die unter anderem von der Anzahl der Fahrspuren und möglichen
Fahrrichtungen abhängen, haben ebenfalls eine Erweiterung des Pakets erfordert. Bild
5-19 zeigt das Ergebnis der automatischen Straßengenerierung auf Basis der einfachen
OpenDRIVE-Definition aus Anhang A1.3.

Bild 5-19: Automatisch generierter Straßenverlauf durch Import einer OpenDRIVE-Defini-
tion.

Während der OpenDRIVE-Standard den Straßenverlauf bezüglich aller Freiheitsgrade
exakt spezifiziert, enthält er keine Informationen über das Höhenprofil des umliegenden
Geländes. Die Existenz eines Untergrunds im Bereich der Straße ist für die realitätsnahe
Abbildung des Scheinwerferlichts jedoch unabdingbar. Um diese Informationslücke zu
schließen, wird das Höhenprofil im Bereich der Strecke durch Interpolation generiert. Die
äquidistanten Stützpunkte der Straße dienen auch hierfür als Grundlage. In Bild 5-20 ist
ein beispielhafter Stützpunkt s mit seiner Position xs, ys und zs und Orientierung, welche
sich durch die Winkel αs, βs und γs der Straße an diesem Punkt ergibt, dargestellt. Seine
Orientierung kann gemäß

dys

dxs
= cos(−βs) · tan γs + sin(−βs) · tanαs und

dys

dzs
= sin(−βs) · tan γs − cos(−βs) · tanαs

in die Gradienten dys
dxs

und dys
dzs

bezüglich der horizontalen Achsen überführt werden. Mit
diesen Informationen kann eine Ebene definiert werden, welche das ideale Höhenprofil
des Untergrunds im lokalen Bereich des jeweiligen Stützpunkts darstellt. Sie wird in Bild
5-20 für den Stützpunkt s als Straßenstück visualisiert.
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Bild 5-20: Skizze zur Interpolation des Geländehöhenprofils auf der Basis einzelner Stütz-
punkte mit Lage- und Orientierungsinformationen.

Das Höhenprofil des Geländes wird durch eine diskretisierte Fläche abgebildet. Dazu
werden entlang der horizontalen Raumrichtungen in einer Schrittweite von ∆x bzw. ∆z
Höhenwerte vorgegeben. Setzt man den Nullpunkt für beide horizontalen Richtungen an
eine beliebige Stelle, so kann jeder Punkt des Rasters in der horizontalen Ebene alternativ
zu den kontinuierlichen Koordinaten x und z mit den Indizes i und j ausgedrückt werden,
indem sein Versatz zum Nullpunkt in x- bzw. z-Richtung durch die jeweilige Schrittweite
∆x bzw. ∆z geteilt wird. Nachfolgend sei der Nullpunkt so gesetzt, dass er auf einer Ecke
des Geländes liegt und nur in positive x- und z-Richtung weitere Stützpunkte existieren.
Die Fläche wird diskretisiert, indem ihre Höhe nur für ganzzahlige Paarungen von i und
j festgehalten wird, während Zwischenräume durch die vier umliegenden Rasterpunkte
interpoliert werden. Insgesamt kann das Höhenprofil der diskretisierten Fläche somit als
ein zweidimensionales Array H(i, j) mit i ∈ 0, imax und j ∈ 0, jmax aufgefasst werden,
wobei der Eintrag hi j ∈ R die Höhe des Geländes an den diskreten Koordinaten i und j
bzw. den kontinuierlichen Koordinaten xi = ∆x · i und z j = ∆z · j beschreibt.

Im nächsten Schritt werden die Stützpunkte des Streckenverlaufs auf die nächstgelegenen
Rasterpunkte des Höhenprofils übertragen. Der Stützpunkt s weist zum nächstgelegenen
Rasterpunkt r einen Offset von xerr in x-Richtung und zerr in z-Richtung auf. Um die
Höhe von s unter Berücksichtigung dieses Offsets korrekt auf r zu übertragen, muss sie
entsprechend der Gradienten korrigiert werden. Es ergibt sich die folgende Höhe für den
Rasterpunkt r:

yr = ys + xerr · ∆x ·
dys

dxs
+ zerr · ∆z ·

dys

dzs
.
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Dabei dienen die Multiplikationen mit ∆x bzw. ∆z zur Überführung der Gradienten, welche
die Steigung pro Meter wiedergeben, in das Einheitensystem des Rasters. Da der Raster-
punkt seine Daten direkt von einer Stützstelle der Straße erhält, wird dieser Rasterpunkt
als Stützpunkt gekennzeichnet. Er erhält über den Zeitraum der Generierung des Höhen-
profils zusätzlich die Gradienteninformationen von s normiert auf das Einheitensystem des
Rasters:

dyr

dxr
= ∆x ·

dys

dxs
und

dyr

dzr
= ∆z ·

dys

dzs
.

Nachdem dieser Vorgang für alle Stützstellen der Strecke durchgeführt wurde, existiert eine
Teilmenge Rinit aus der Menge aller Rasterpunkte R, welche bereits Höheninformationen
durch die unmittelbaren Streckenstützstellen erhalten haben. Jeder Punkt r aus Rinit schlägt
nun einen Höhenwert für jeden Rasterpunkt t aus der Differenzmenge R \ Rinit gemäß

yt,r = yr +
dyr

dxr
· (xt − xr) +

dyr

dzr
· (zt − zr)

vor. Für den Rasterpunkt t werden auf diese Weise alle Vorschläge der Punkte aus Rinit

gesammelt. Die finale Höhe yt wird schließlich aus allen Vorschlägen yt,r mit r ∈ Rinit

aggregiert, wobei eine abstandsabhängige Gewichtung erfolgt. Konkret ergibt sich der
Wert yt gemäß

yt =
1∑

r∈Rinit
w(t, r)

·
∑

r∈Rinit

w(t, r) · yt,r

mit w(t, r) =
1

|r − t|3

und |r − t| =
√

(xr − xt)2 + (zr − zt)2,

(5-3)

wobei die Gewichtungsfunktion w anpassbar ist. Für die meisten Streckenprofile hat sich
die hier gewählte kubische Bewertung des Abstands als geeignet erwiesen. In jedem Fall
sollte die Gewichtung mit zunehmendem Abstand von t und r monoton fallen.

Nachdem die Höhe aller Punkte t ∈ R \Rinit nach Gleichung (5-3) festgelegt wurde, verfügt
das gesamte Höhenraster R über gültige Höhenwerte. Die Geometrie des Geländes ist somit
vollständig beschrieben und kann als Polygonnetz mit geeigneten Texturen visualisiert
werden. Bild 5-21 zeigt ein Beispiel.

Neben der Straße und dem Geländeprofil stellt die Randbebauung einen dritten wichtigen
Aspekt bei der Bewertung des Scheinwerferlichts dar. Durch umliegende Objekte werden
vertikale Projektionen der Lichtverteilung sichtbar, wodurch die Hell-Dunkel-Grenze be-
sonders scharf wahrgenommen wird. Aus diesem Grund unterstützt Hyperion das Einfügen
von Objekten im Randbereich der Straße. Um den Anwender hierbei bestmöglich zu
unterstützen, ist auch dieser Schritt über weite Bereich automatisiert.

Der OpenDRIVE-Standard erlaubt die Definition sogenannter Custom User Tags, welche
die Kennzeichnung von Streckenabschnitten mit eigenen Schlüsselwörtern erlauben. In
Hyperion wird diese Möglichkeit genutzt, um die Streckenabschnitte mit Meta-Informa-
tionen zu ihrer Randbebauung zu versehen. So kann für einen Abschnitt beispielsweise
definiert werden, ob und an welcher Seite Bäume, Leitpfosten oder ähnliches existieren.
Die Tabelle 5-1 zeigt die Gesamtheit der hierfür spezifizierten Tags.
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Bild 5-21: Automatisch generierter Straßenverlauf mit interpoliertem Gelände durch Im-
port einer OpenDRIVE-Definition.

Bei der Generierung werden die vorgesehenen Objekte automatisiert positioniert. Die
Software berücksichtigt dabei den geeigneten Abstand zur Straße und bringt, sofern es
sinnvoll ist (Bsp. Bäume), zufällige Positionsabweichungen mit ein. In Bild 5-22 sind die
Bürgersteige, Straßenlaternen und Leitplanken automatisiert erzeugt worden.

Schließlich muss mit Objekten umgegangen werden, die sich für die automatische Generie-
rung nicht eignen oder nur mit immensem Aufwand in diese integriert werden könnten. So
sind Gebäude beispielsweise schwer zu handhaben, da sie durch ihre große Grundfläche
eine Einbettung in unebenes Gelände erschweren. Außerdem gibt es anwenderspezifische
Wünsche, die nicht umfassend durch die Objektbibliothek von Hyperion bereitgestellt
werden können. Abhilfe schafft hier, dass die automatische Szenegenerierung einen Sze-
negraphen liefert, der nachträglich im Unity-Editor beliebig angepasst werden kann. Das
nachträgliche, manuelle Einfügen weiterer Objekte kann also jederzeit erfolgen.

5.3.2 Import von OpenStreetMap-Strecken

Die im Abschnitt 5.3.1 beschriebene Variante des Streckenimports stellt den schnellsten
und einfachsten Weg zur Generierung frei definierbarer Strecken dar. Dennoch kann es
im Rahmen des Virtual Prototyping sinnvoll sein, auf die Freiheiten der Simulation zu
verzichten und die Gegebenheiten realer Teststrecken möglichst getreu nachzubilden.
Die Nachbildung von Realstrecken ist insbesondere zur Validierung der Simulation von
zentraler Bedeutung. Des Weiteren erfordert der in Abschnitt 5.2.3 vorgestellte GPS
Autopilot ein virtuelles Abbild der real abgefahrenen Strecke. Motiviert durch diese
Überlegungen erlaubt Hyperion den Import von realen Strecken. Aufgrund der Komplexität
dieses Vorgangs sind jedoch deutlich mehr manuelle Eingriffe notwendig, als es die
OpenDRIVE-Strecken erfordern.
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Tabelle 5-1: User Data Tags zur Erweiterung des Informationsgehalts einer OpenDRIVE-
Defintion.

Tag Datentyp Kommentar

ReflectorPosts Boolean Leitpfosten an den Seiten
ReflectorPostDistance Float Abstand zwischen Leitpfosten
Guardrails Boolean Leitplanken an den Straßenrändern
GuardrailPostDistance Float Abstand der Pfosten der Leitplanken
StreetLamps Boolean Straßenlaternen an den Seiten
StreetLampDistance Float Abstand der Straßenlaternen
SideTrees {None,Left,Right,Both} Bäume an den Seiten
TreeRoadDistance Float Abstand vom Straßenrand zu Bäumen
TreeBaseDistance Float Mittl. Abstand zwischen Bäumen
TreeDistanceVariant Float Max. Variation des Abtands

TreeDistanceVariant ≤ TreeBaseDistance
2

Sidewalk {None,Left,Right,Both} Bürgersteige an den Seiten
SidewalkWidth Float Breite des Bürgersteigs

Als Eingangsdaten für den Import realer Strecken wird der relevante Bereich im Open-
StreetMap (OSM) Format benötigt [OSM20a]. Bei OpenStreetMap handelt es sich um
ein in 2004 gegründetes internationales Projekt und um einen freien Standard, welcher
vornehmlich zur Navigation entwickelt wurde. Der Streckenverlauf wird lediglich durch
grob gewählte Stützpunkte und geraden Verbindungslinien zwischen diesen modelliert. Zur
Fahrdynamiksimulation ist der OSM Standard zu ungenau und erfordert eine nachgelagerte
Aufbereitung der Daten. In Hyperion wird dennoch auf diese Datenquelle zurückgegriffen,
da OSM Daten flächendeckend und kostenfrei verfügbar sind. Der relevante Kartenbereich
kann mit einem Editor selektiert und extrahiert werden. Es existieren verschiedene Edito-
ren, die den OSM Standard unterstützen. Im Rahmen dieser Arbeit wurde mit dem Java
OpenStreetMap Editor (JOSM) gearbeitet [OSM20b]. Ein Screenshot des Editors wird
in Bild 5-23 gezeigt. Anschließend sollten nicht relevante Straßen im Selektionsbereich
entfernt werden. So kann die zu verarbeitende Datenmenge zu diesem frühen Zeitpunkt
bereits auf das Notwendigste beschränkt werden.

Das verbleibende Straßennetz kann mit dem Kommandozeilentool „netconvert“ aus der
Verkehrssimulation „Simulation of Urban Mobility“ (SUMO) von OSM in OpenDRIVE
konvertiert werden. Im Anschluss kann der Workflow des Imports von OpenDRIVE-
Strecken gemäß Abschnitt 5.3.1 durchlaufen werden. Nach der Generierung der virtuellen
Strecke gemäß dieses Verfahrens ist das Ergebnis hinsichtlich zweierlei Kriterien zu prüfen.
Einerseits muss die Anzahl der Fahrspuren auf den relevanten Straßenbereich mit den
den real vorhandenen verglichen werden. Zumindest zum aktuellen Zeitpunkt befindet
sich netconvert noch in der Entwicklung. Außerdem sind die zugrunde liegenden OSM
Spezifikation nicht immer vollständig und korrekt. Sollten hier Unterschiede zwischen der
realen Umgebung und der virtuellen Szene vorhanden sein, müssen die entsprechenden
Tags im OpenDRIVE-Dokument nachträglich angepasst bzw. ergänzt werden. Soll der GPS
Autopilot verwendet werden, muss andererseits überprüft werden, ob dessen Trajektorie mit
dem generierten Straßenverlauf übereinstimmt. Ist das nicht der Fall, kann die Trajektorie
im OSM Editor eingeblendet werden. Der Editor erlaubt die Verschiebung der vorhandenen
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Bild 5-22: Automatisch generierter Straßenverlauf mit interpoliertem Gelände und Rand-
objekten durch Import einer OpenDRIVE-Definition.

und die Ergänzung neuer Stützpunkte zur Annäherung an den realen Streckenverlauf. Nach
der Korrektur ist der bereits beschriebene Workflow zu wiederholen.

Auch wenn der OSM Standard Höheninformationen grundsätzlich unterstützt, sind sie
in den meisten Fällen nicht verfügbar. Diese sind für die Nachbildung von Realstre-
cken allerdings unverzichtbar. Steilhänge am Straßenrand, Gräben und der generelle An-
oder Abstieg, sowie die Querneigung der Straße werden vom Fahrer deutlich wahrge-
nommen. Nur wenn diese Eindrücke in die virtuelle Szene übertragbar sind, wird ein
realistischer Eindruck der Fahrstrecke erzielt. Um das bis hierhin planare Straßennetz um
die Höheninformationen anzureichern, erlaubt Hyperion die Integration der Daten aus
Höhendatenbanken. Im hier betrachteten Anwendungsbeispiel des Rundkurses Borchen-
Etteln (siehe Bild 5-18) wird der Prozess unter Rückgriff auf die Höhendatenbank NRW
beschrieben [Inf20].

Die Höhendatenbank enthält Höhendaten von NRW mit einer Genauigkeit von 1 m × 1
m in Universal Transverse Mercator (UTM) Koordinaten. UTM Koordinaten sind bis auf
einen konstanten Offset kompatibel zu den Positionsdaten des generierten Streckenverlaufs,
da die Mercator-Projektion bereits angewandt wurde. Aufgrund der Fülle von Daten ist
das Höhenprofil von NRW in Dateien mit einer Ausdehnung von 2 km × 2 km unterteilt.
Abhängig von der befahrenen Strecke müssen die benötigten Dateien aus der Höhen-
datenbank geladen werden. Für den Rundkurs Borchen-Etteln sind acht dieser Dateien
erforderlich. Nach diesen Vorarbeiten kann Hyperion die Höhendaten automatisiert in ein
virtuelles Gelände überführen. Aufgrund der hohen Auflösung werden auch Straßengräben
abgebildet. Das Bild 5-24 zeigt das Ergebnis für den Rundkurs Borchen-Etteln.

Das erzeugte Gelände wird darüber hinaus genutzt, um die aus der OSM-Definition
generierte Straße mit Höhendaten anzureichern. Dazu wird über alle Stützpunkte aller
Straßen iteriert. An jedem Stützpunkt werden mehrere Abfragen der Geländehöhe zwischen
dem linken und rechten Fahrbahnrand vorgenommen. Der sich ergebende Mittelwert bildet
die Höhe der Straßenmitte. Darüber hinaus wird über die Höhenunterschiede zwischen den
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Bild 5-23: Screenshot des Java OpenStreetMap Editors (JOSM) mit geladenem Kartenma-
terial der Paderborner Innenstadt.

Abfragen im linken und rechten Bereich der Straße eine geeignete Querneigung der Straße
ermittelt. Schließlich wird über die Höhenunterschiede von Stützpunkt zu Stützpunkt
die Steigung der Straße generiert. Hierbei werden unrealistisch hohe Änderungen, die
beispielsweise durch Brücken über der Fahrbahn zustande kommen können, übersprungen.
Hyperion bietet einen Export des mit diesen Informationen angereicherten Straßennetzes
im OpenDRIVE-Format. Da das Format Höhenprofile und Querneigungsprofile der Straße
als stückweise definierte kubische Polynome beschreibt, müssen die Daten an den diskreten
Stützstellen durch Curve Fitting approximiert werden.

Von hier an liegen das Geländeprofil und die Strecke im OpenDRIVE-Format vollständig
vor. Letztere kann mit dem in Abschnitt 5.3.1 beschriebenen Verfahren visualisiert werden.
Zur besseren Wiedererkennbarkeit der realen Fahrstrecke bietet sich die manuelle Nach-
bearbeitung der generierten Szene an. So können markante Elemente entlang der Strecke
und Gebäude in innerörtlichen Bereichen ergänzt werden. Die in Tabelle 5-1 gelisteten
User Tags können weiterhin zur automatisierten Positionierung von Straßenrandobjekte
eingesetzt werden. Das Bild 5-25 zeigt das Ergebnis für einen Ausschnitt des Rundkurses
Borchen-Etteln.
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Bild 5-24: Automatisch generiertes Gelände mit Höhenprofil für den Rundkurs Borchen-
Etteln.

5.4 Visuelle Simulation

In den nachfolgenden Unterabschnitten werden die Komponenten der visuellen Simulati-
on, dargestellt im mittleren Bereich des Architekturbilds 5-1, beschrieben. Die visuelle
Simulation ist der zentrale Baustein zur Beantwortung der in Abschnitt 4.4 formulierten
Forschungsfrage. Nachdem im Unterabschnitt 5.4.1 kurz auf einige allgemeine Aspekte
der Visualisierung eingegangen wird, schließt sich ein Abschnitt zur virtuellen Sensorik
an. Diese generiert die vom Scheinwerfersteuergerät benötigten Eingangsgrößen. Die
Rückgaben des Steuergeräts, welche sich in Dimmwerten der Pixellichter äußern, werden
in der visuellen Simulation visualisiert. Der Unterabschnitt 5.4.3 beschreibt das Licht-
quellenmodell, das zur Virtualisierung von Pixel-Scheinwerfersystemen entwickelt wurde,
hinsichtlich seiner Integration in die Gesamtarchitektur. Eine ausführliche Diskussion der
Lichtsimulation folgt in Kapitel 6. Die Komponente „Umgebung und Verkehr“ wird nicht
in einem gesonderten Abschnitt dargestellt, da Streckengenerierung und die Steuerung der
anderen Verkehrsteilnehmer bereits in den Abschnitten 5.3 und 5.2.3 beschrieben wurden.
Noch nicht diskutiert wurde die Simulation von Witterungseinflüssen, auf welche aufgrund
ihrer engen Verzahnung mit der Lichtsimulation in Kapitel 6 näher eingegangen wird.

5.4.1 Visualisierung

Einleitend sollen in diesem Abschnitt allgemeine Informationen zum Aufbau und zur
grundlegenden Funktion der Visualisierung vorgestellt werden. Spezifiziert durch die Off-
line-Parametrierung, welche in Abschnitt 5.7 Erwähnung findet, wird zum Simulationsstart
die Szenerie geladen. Unmittelbar danach startet die Simulation. Das Bild 5-26 zeigt eine
Momentaufnahme der laufenden Simulation.
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Bild 5-25: Realstrecke mit eingebettetem OSM-Straßennetz und generierter Randbebauung
in Hyperion.

Um das Ausgabegerät bestmöglich zu nutzen, wird das ganze Bild durch die Simulations-
ausgabe ausgefüllt. Zur Interaktion mit der Anwendung befinden sich an den seitlichen und
oberen Rändern Schaltflächen, durch welche verschiedene Menüs geöffnet werden können.
Zum Beispiel werden in Bild 5-26 Fahrzeugzustände und Fahreingaben dargestellt, indem
zuvor die Schaltfläche „Vehicle Variables“ am rechten Rand der Anzeige betätigt wurde.
Weitere Schaltflächen dienen zur Manipulation der Online-Parameter, zur Analyse und
zum Design der Lichtfunktion oder zum Setzen von Tastaturkürzeln. Nachfolgend werden
die einzelnen Funktionalitäten detaillierter beschrieben.

5.4.2 Virtuelle Sensorik

Zur Bestimmung einer Lichtverteilung, die für die vorliegende Verkehrssituation adäquat
ist, benötigt das Steuergerät sowohl Informationen über das eigene Fahrzeug als auch
über das Fahrzeugumfeld. Die Sensoren stellen dabei die Sinnesorgane des Steuergeräts
zur Wahrnehmung des Umfelds dar. In der Simulation müssen die realen Sensoren durch
virtuelle ersetzt werden, um für das im HiL-Betrieb eingebundene Steuergerät gleiche
Umgebungsbedingungen sicherzustellen. Dieser Abschnitt beschreibt die Umsetzung der
virtuellen Sensoren.

Das von HELLA bereitgestellte Steuergerät eines HD84-Pixelsystems dient zur Erprobung
der Implementierung. Dieses Steuergerät bestimmt die Dimmwerte der Pixel beider Schein-
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Bild 5-26: Stadtfahrt mit Abblendlicht in Hyperion (rechts: Fahrzeuggrößen).

werfer unter Berücksichtigung der in Tabelle 5-2 zusammengefassten Fahrzeugsensorwerte.

Tabelle 5-2: Im Scheinwerfersteuergerät berücksichtigte Fahrzeugsensorwerte.

Wert Datentyp Kommentar

vFL Float Radgeschw. vorne links in km/h
vFR Float Radgeschw. vorne rechts in km/h
φS teer Float Mittlerer Radeinschlag in ◦

Φ̇ Float Gierrate in ◦/s

Neben den Informationen über das eigene Fahrzeug muss das Umfeld sensiert werden.
Dazu verwendet das Steuergerät des HD84-Systems eine Umfeldkamera, welche über ein
zwischengeschaltetes Kamerasteuergerät angekoppelt ist. Das Kamerasteuergerät extrahiert
aus den Bildsequenzen des Kamerasensors Objektlisten, welche es an das Lichtsteuergerät
weiterleitet. Im betrachteten Fall können maximal acht Objekte gleichzeitig erkannt werden,
wobei für jedes Objekt die in Tabelle 5-3 aufgelisteten Informationen bereitgestellt werden.
In diesem Zusammenhang schlüsselt Tabelle 5-4 die Typziffern auf. Die Winkelgrößen
beziehen sich auf den Ursprung des Kamerakoordinatensystems. Zum besseren Verständnis
werden sie in Bild 5-27 visualisiert.

Da die Umfeldkamera und ihr Steuergerät nicht Teil des zu erprobenden Systems sind, kann
ihre Virtualisierung einfach umgesetzt werden [Goh18]. Die Positionen und Orientierungen
aller Fahrzeuge sind in der Simulation zu jedem Zeitpunkt vollständig bekannt. Es genügt,
die Positionen der Scheinwerfer und Rücklichter der anderen Verkehrsteilnehmer in das
Kamerakoordinatensystem des Egofahrzeugs zu überführen und dann die in Tabelle 5-3
aufgelisteten Größen zu ermitteln.
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Tabelle 5-3: Objektdaten eines Objekts aus der Objektliste der Umfeldkamera.

Wert Datentyp Kommentar

ID 0, 127 Über die Sichtbarkeitsdauer eindeutige ID
Typ 0, 7 Typisierung des Objekts
HorPos [−25.5◦; 25.5◦] Horizontaler Winkel zur Objektmitte
HorDim [0◦; 10◦] Horizontale Ausdehnung des Objekts
VerPos [−12.75◦; 12.75◦] Vertikaler Winkel zur Objektuntergrenze

Tabelle 5-4: Aufschlüsselung der Typziffern von detektierten Objekten.

Typziffer Bedeutung

0 kein Objekt erkannt
1 einzelner Scheinwerfer
2 einzelnes Rücklicht
3 Scheinwerferpaar
4 Rücklichtpaar
5 Objektcluster
6/7 bisher nicht definiert

Ein Verkehrsteilnehmer wird jedoch nur dann in die Objektliste aufgenommen, wenn dieser
im Sichtbarkeitsbereich der Kamera liegt. Hierzu werden verschiedene Überprüfungen
durchgeführt. Zunächst wird gemäß den Ungleichungen (5-4) geprüft, ob das erkannte
Objekt im View Frustum der Umfeldkamera liegt.

minHorPos ≤ HorPos ≤ maxHorPos
minVerPos ≤ VerPos ≤ maxHorPos

Dist ≤ maxDist
(5-4)

Die Grenzen für die winkelbezogenen Größen können Tabelle 5-3 entnommen werden.
Als maximale Distanz maxDist wird initial ein Wert von 120m verwendet. Alle genannten
Größen sind anpassbar. Außerdem muss sichergestellt werden, dass das Objekt nicht durch
andere Szenenelemente verdeckt wird. Dazu werden Raycasts auf das Objekt angewendet.
Hierbei handelt es sich um Strahlen, die von der Umfeldkamera in Richtung des Objekts
ausgesendet werden. Betrachtet wird die Kollision dieser Strahlen mit Objekten innerhalb
der virtuellen Szene. Nur, wenn diese nicht im Vorhinein mit anderen Objekten der Szene
kollidieren, wird das betrachtete Objekt in der Objektliste berücksichtigt.

Die bisher beschriebenen Tests werden für jeden Scheinwerfer und jedes Rücklicht al-
ler anderen Verkehrsteilnehmer durchgeführt. Sollte nur ein getestetes Element eines
Verkehrsteilnehmers als sichtbar eingestuft werden, so wird dieses durch die Wahl der
entsprechenden Typziffer gemäß Tabelle 5-4 berücksichtigt.

Neben der Objektliste liefert die Kamera noch eine Information darüber, ob sich das
Egofahrzeug zurzeit inner- oder außerorts befindet. Diese Funktion wird durch die Er-
kennung der Straßenbeleuchtung realisiert und durch den Wert „CityDetection“ an das
Lichtsteuergerät weitergegeben. Die zulässigen Werte sind die Ziffern 0 bis 4, welche die
Bedeutungen „nicht aktiv“, „außerorts“, „innerorts“ und „nicht definiert“ tragen.
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Bild 5-27: Koordinatensystem der Umfeldkamera und Zuordnung geometrischer Größen
der Objektliste.

Die in diesem Abschnitt genannten Signale, bilden die Eingänge der verschiedenen Licht-
funktionen, die auf dem Steuergerät implementiert sind. Insofern nimmt die Qualität der
Sensorik einen erheblichen Einfluss auf die Leistungsfähigkeit und die Funktionalität des
Scheinwerfersystems. Beispielsweise wäre es sinnlos, hoch aufgelöste Lichtmodule für
ein blendfreies Fernlicht zu verbauen, wenn die Umfeldkamera die Lage anderer Ver-
kehrsteilnehmer nur mit viel gröberer Auflösung beschreiben kann. Die Zuführung der
Sensorsignale an das Steuergerät wird im Abschnitt 5.5 beschrieben.

5.4.3 Virtuelle Lichtquelle

Eine der wesentlichen Herausforderungen bei der Gestaltung einer Nachtfahrtsimulation
ist die adäquate Virtualisierung der Fahrzeugscheinwerfer. Tatsächlich eignet sich keine der
Lichtquellentypen aus der Unity-Engine für diese Anwendung. Am ehesten infrage käme
das Spotlicht, dessen grundsätzliche Funktion bereits in Abschnitt 2.3.4 erläutert wurde.
Problematisch hierbei ist jedoch die Berücksichtigung der dynamischen Lichtverteilung des
Scheinwerfers. In Unity lassen sich lokale Anpassungen der Lichtintensität durch Cookies
realisieren, welche als Transparente mit lokal variierender Durchlässigkeit über die Licht-
quelle gelegt werden. Genaueres hierzu wurde ebenfalls in Abschnitt 2.3.4 diskutiert. Die
geometrische Handhabung eines Cookies ist im Fall des Spotlichts insofern problematisch,
als dass es die Grundfläche einer Pyramide darstellt, in deren Spitze die Lichtquelle sitzt.
Lichtverteilungen von KFZ-Scheinwerfern, wie sie in Abschnitt 3.1.1 beschrieben wurden,
werden bezüglich Kugelkoordinaten mit der Lichtquelle als Drehzentrum aufgezeichnet.

Für einen gegebenen Spitzenwinkel der Pyramide und einer gegebenen Rastergröße des
Cookies könnte die Lichtintensität für jedes Rasterelement des Cookies ermittelt werden.
Allerdings ergibt sich hierbei ein Auflösungsproblem. Während die bezüglich Polar- und
Azimutwinkel dargestellte Lichtverteilung in allen Raumrichtungen mit gleichbleibender
Rastergröße auflöst, wird das Cookie des Unity Spotlichts mit zunehmender Nähe zur
Lichtmittelachse ungenauer bezüglich der Raumwinkel. Die Skizze 5-28 visualisiert diesen
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Effekt, wobei die Darstellung aus Gründen der Übersichtlichkeit auf zwei Dimensionen
reduziert ist. Links in Bild 5-28 wird die Interpretation der Lichtverteilung bzw. des Cookies

∆x ∆x

∆θ′

∆θ

θS pot

Cookie

θS pot

∆θ

∆θ

Cookie

Bild 5-28: Unterschiede in der geometrischen Interpretation einer Lichtverteilung zwischen
Unity’s Spotlicht und einem KFZ-Scheinwerfer.

durch ein Spotlicht der Unity-Engine visualisiert. Die Lichtverteilung wird geometrisch
als Pyramidengrundfläche verstanden. Die Auflösung innerhalb der Pyramidengrundfläche
ist konstant. Für die dargestellte Dimension beträgt der Abstand zweier Messpunkte ∆x.
Geometrisch bedingt werden die Raumwinkel, für welche die Messpunkte gültig sind,
mit zunehmendem Abstand zur Lichtmittelachse kleiner. In der Skizze findet sich dieser
Zusammenhang durch die Beziehung ∆θ′ < ∆θ wieder.

Außerdem ist problematisch, dass einige Lichtverteilungen über einen Azimutintervall
von −90◦ bis +90◦ vermessen werden. Um diese Lichtverteilungen vollständig abbilden
zu können, müsste die Pyramide des Spotlichts einen nicht realisierbaren Spitzenwin-
kel von 180◦ haben. Derartige Lichtverteilungen ließen sich auf ein Spotlicht nur durch
vorheriges Beschneiden der Lichtverteilung und unter starken Auflösungseinbußen im Zen-
tralbereich anwenden. Dieses Vorgehen ist mit der Anforderung A1 (Korrekte Abbildung
photometrischer Zusammenhänge) jedoch nicht in Einklang zu bringen.

Rechts in Bild 5-28 ist hingegen eine fiktive Lichtquelle dargestellt, welche die Lichtvertei-
lung mit einem geeigneten geometrischen Ansatz interpretiert. Dazu wird die Lichtvertei-
lung bzw. das Cookie nicht als planare Fläche, sondern als Kugelflächenstück aufgefasst.
Der Winkel ∆θ zwischen benachbarten Messpunkten bleibt in jeder Raumrichtung unver-
ändert.

Zusammengefasst findet sich keine geeignete Lösung zur physikalisch korrekten Nachbil-
dung von KFZ-Scheinwerfern innerhalb der Unity-Engine. Aus diesem Grund wird eine
eigene Lichtquelle implementiert, welche auf die Anforderungen im vorliegenden Kontext
zugeschnitten ist.

Ein weiterer Vorteil einer Eigenentwicklung ist die freie Manipulierbarkeit aller zugrunde
liegenden Funktionen. Diese Möglichkeit wird im Rahmen von Hyperion beispielsweise
zur Unterstützung von Retroreflexion eingesetzt. Hierbei handelt es sich um die Wech-
selwirkung von Licht mit Reflektoren, wie sie als Folie auf Straßenschildern oder an
Leitpfosten zu finden sind. Außerdem werden die in Kapitel 7.1 vorgestellten Analysesich-
ten in der Hyperion-Lichtquelle integriert.
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Bei der Implementierung dieser nachfolgend als Basislichtquelle bezeichneten Kompo-
nente wird auf Ray Tracing Verfahren verzichtet und stattdessen klassische Rastergrafik
eingesetzt. Der primäre Grund für diese Entscheidung ist die Anforderung A6 (Echtzeitfä-
higkeit). Zu Beginn der Arbeiten in 2017 existierten noch keine Grafikkarten am Markt,
welche Ray Tracing durch Hardware-Unterstützung beschleunigten. Ray Tracing basierte
Verfahren sind insbesondere aufgrund der Traversierung des Szenegraphen bei der Kolli-
sionsprüfung sehr rechenintensiv. Genaueres hierzu kann in Abschnitt 2.3.4 nachgelesen
werden. Heute werden Ray Tracing Verfahren für einzelne Effekte in Echtzeitanwendungen
wie Computerspielen eingesetzt. In den kommenden Jahren ist mit einer vollständigen
Durchdringung zu rechnen. Wesentliche Treiber sind hierbei die Ende 2018 neu aufge-
kommene Hardware-Unterstützung durch die Grafikkarte (z.B. GeForce RTX-Serie) und
intensive Forschungsarbeiten im Bereich der zugrunde liegenden Algorithmik. Unter den
genannten Gegebenheiten wurde die Architektur der Lichtsimulation so gewählt, dass
eine nachträgliche Überführung der Basislichtquelle auf Ray Tracing Verfahren ohne
fundamentale Anpassungen möglich ist. Dies wird vor allem durch die Entkopplung der
Gesamtlichtverteilungsermittlung von der Lichtquelle sichergestellt.

Nachdem Ray Tracing Verfahren ausgeschlossen wurden, verbleibt die Entscheidung zwi-
schen Forward und Deferred Rendering. Die Gegenüberstellung dieser Verfahren wurde
bereits in Abschnitt 2.3.3 vorgenommen. In der vorliegenden Anwendung ist mit einem
hohen Aufkommen dynamischer Lichter in der Szene zu rechnen. Zunächst verfügt jedes
Auto über vier dynamische Lichtquellen, da die Scheinwerfer jedes Fahrzeugs ihre Lage in
der Szene zusammen mit dem Fahrzeugaufbau verändern. Darüber hinaus sind die Schein-
werfer in doppelter Hinsicht dynamisch, da neben ihrer Position auch ihre Lichtverteilung
zeitlichen Änderungen unterliegt. Es lassen sich deshalb keine Preprocessing-Verfahren zur
Aufwandsreduzierung anwenden. Aufgrund der hohen Anzahl dynamischer Lichtquellen
fällt die Entscheidung auf die Deferred Rendering Pipeline, welche das Beleuchtungsmo-
dell nur auf die tatsächlich ausgegebenen Pixel anwendet und somit bei dieser Vielzahl
von Lichtquellen zur Einhaltung der Anforderung A6 (Echtzeitfähigkeit) beiträgt.

Technisch angebunden wird die virtuelle Lichtquelle durch eine Skript-Komponente mit
der Bezeichnung „Headlight-Controller“, welches unmittelbar an das Gameobject des
Fahrzeugs angebunden ist. Der Headlight-Controller stellt die einzige Komponente dar,
die der Anwender in den Szenegraphen einbinden muss, um hochauflösende Scheinwerfer
an einem virtuellen Fahrzeug simulieren zu können. Beim Simulationsstart vervollständigt
der Headlight-Controller die Architektur der Lichtquellen im Szenegraphen selbstständig.
Nachfolgend ist die auf diese Weise generierte Struktur innerhalb des Szenegraphen
dargestellt. Das Wurzelobjekt „Car“ ist mit dem im Abschnitt 5.2.1 gleich benannten
Gameobject gleichzusetzen. Die dort aufgeführten Child-Elemente und Components von
Car werden hier der Übersichtlichkeit halber durch Auslassungspunkte ersetzt.

• Car mit Components: Headlight-Controller, ...

• Headlight mit Components: -

• FL mit Components: Headlamp, CustomLight, (Combiner)

• FR mit Components: Headlamp, CustomLight, (Combiner)

• ...
Zuerst erzeugt der Headlight-Controller ein Child-Gameobject des Fahrzeugs und bezeich-
net dieses mit dem Namen „Headlight“. Dieses dient ausschließlich der Übersichtlichkeit,
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indem es die weiteren notwendigen Elemente kapselt. Darin werden weitere Child-Objekte
mit den Bezeichnungen „FL“ und „FR“ erzeugt. Ihre Positionen und Orientierungen rela-
tiv zum lokalen Koordinatensystem des Fahrzeugs können durch Parameter vorgegeben
werden. Auf diese Weise lassen sich beliebige Einbaulagen abbilden. FL und FR erhalten
außerdem jeweils ein Script-Component mit der Bezeichnung „Headlamp“. Dieses Skript
verwaltet einen einzelnen Scheinwerfer. Es erzeugt am selben Gameobject ein weiteres
Script-Component mit der Bezeichnung „CustomLight“, welches die Lichtquelle zur Vir-
tualisierung von HD-Scheinwerfern repräsentiert. Außerdem erzeugt das Headlamp-Script
eine Instanz der Klasse „Combiner“. Der Combiner taucht nicht im Szenegraphen auf, da
er die Klasse „MonoBehaviour“ nicht implementiert. Seine Aufgabe ist die Ermittlung
der Gesamtlichtverteilung des Scheinwerfers aus den momentanen Dimmwerten seiner
Lichtquellen. Diese Gesamtlichtverteilung kann im Anschluss als Cookie des zugehörigen
CustomLight verwendet werden. Er ist somit hierarchisch auf der gleichen Stufe und wird
eingeklammert in obiger Struktur aufgeführt.

Der Headlight-Controller übernimmt neben der Initialisierung des Scheinwerfersystems
auch das Management zur Laufzeit. So werden zum Beispiel über ihn Dimmwerte an die
Scheinwerfer weitergegeben oder Ausfälle einzelner LEDs simuliert. Konkret gibt er die
Anweisungen an das jeweilige Headlamp-Script weiter, welches wiederum entsprechen-
den Manipulationen des CustomLight oder des Combiner vornimmt. Eine detailliertere
Darstellung der Scheinwerfersimulation findet sich in Kapitel 6.

5.5 XiL-Betrieb des Steuergeräts

Primäres Ziel bei der simulativen Erprobung ist die optimale Auslegung von Lichtfunktio-
nen. Technisch werden Lichtfunktionen durch Algorithmen abgebildet, welche auf dem
Lichtsteuergerät implementiert sind. Zum Test des Steuergeräts stehen dem Entwickler
verschiedene Einbindungsvarianten zur Verfügung. Hyperion deckt mit der Möglichkeit
von Model(MiL)-, Software(SiL)- und Hardware(HiL)-in-the-Loop-Tests alle Stufen ab
und erfüllt somit die Anforderung A5 (XiL-Techniken).

Die MiL-Einbindung des Steuergeräts erfordert weder reale Fahrzeugkomponenten, noch
eine Umgebung, die das Steuergeräteumfeld detailgetreu simuliert. Hyperion sieht die
MiL-Einbindung durch die Implementierung der Steuergerätelogik in einer C# -Klasse
vor, welche unmittelbar in die Klassenhierarchie der Gesamtsimulation eingebunden
werden kann. Die Kompatibilität zwischen der Steuergeräte-Klasse und Hyperion wird
über die Vorgabe sogenannter Interfaces sichergestellt, welche durch die Steuergeräte-
Klasse implementiert werden müssen. Somit ist sichergestellt, dass zur Funktionalität
unverzichtbare Schnittstellen zur Verfügung stehen, ohne deren innere Logik vorzugeben.
Die folgende Aufzählung listet die wichtigsten Schnittstellenmethoden auf:

• IHeadlightECU ECU-Interface

• InitSensorSetup (SensorList) Übergabe der Sensorreferenzen

• Calculate () Berechnung der Dimmwerte

• IsReady () : Boolean Berechnung abgeschlossen?

• CurrentValues () : ValueList Ausgabe der aktuellen Dimmwerte
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• LastValues () : ValueList Ausgabe der Dimmwerte des vorigen Takts

• IsDirty () : Boolean Dimmwerte nach letztem Takt geändert?

• ActivateFunction (LightFunction) Lichtfunktion aktivieren

• DeactivateFunction (LightFunction) Lichtfunktion deaktivieren

• GetActiveFunctions () : LightFunctionList Ausgabe aktiver Lichtfunktionen

• IHeadlightECUInject Interface zur externen Manipulation

• SetCurrentValues (ValueList) Dimmwerte vorgeben

• DimPixel (PixelID, DimValue) Dimme Lichtquelle mit ID PixelID

• DegradePixels (DegrationList) Degradierung der Lichtquellen vorgeben

• DegradePixel (PixelID, Degration) Degradiere Lichtquelle mit ID PixelID

Wie aus der Auflistung hervorgeht, sind zwei Interfaces für die MiL-Einbindung der Steu-
ergerätelogik vorgesehen. Dabei ist die Implementierung des Interfaces IHeadlightECU
zwingend erforderlich, während das Interface IHeadlightECUInject nicht notwendiger-
weise implementiert werden muss. Letzteres ist vorgesehen, um über die Vorgaben des
Steuergeräts hinaus externe Eingriffe vornehmen zu können. Diese Schnittstelle kann
beispielsweise genutzt werden, um den Ausfall oder die Degradierung verschiedener
Lichtquellen zu simulieren.

Die eigentlichen Lichtfunktionen bindet der Entwickler in der Calculate-Methode ein. Die
im Abschnitt 5.4.2 beschriebenen Sensorwerte stehen ihm dabei als Eingangswerte zur
Verfügung. Abhängig davon, welche Sensoren durch das Steuergerät tatsächlich genutzt
werden, können diese durch die Methode InitSensorSetup an die Steuergeräte-Instanz
übergeben werden. Ausgabe der Algorithmen sind die Dimmwerte aller Pixel des linken
und rechten Scheinwerfers, welche durch die Methode CurrentValues abgefragt werden
können. Diese werden schließlich über den Headlight-Controller an die virtuellen Schein-
werfer weitergegeben, sodass die Auswirkungen der implementierten Lichtsteuerung in
der virtuellen Szene beobachtbar werden.

MiL-Tests stellen die agilste Variante der XiL-Einbindungen dar. Durch die einfache Ein-
bindung können innerhalb kürzester Zeit Anpassungen und Parameterstudien durchgeführt
werden. Auf diese Weise kann der Entwickler zielgerichtet ein Modell der Lichtsteuerung
entwerfen, dass den Anforderungen gerecht wird.

Im nächsten Schritt wird dieses Modell in die Steuergerätesoftware übersetzt und für die
Ausführung auf einer Echtzeithardware kompiliert. Darüber hinaus müssen die Umge-
bungsbedingungen des realen Steuergeräts nachgebildet werden. Vorrangig handelt es sich
hierbei um die CAN Kommunikation mit anderen Fahrzeugkomponenten. Hyperion weist
hierzu eine CAN Schnittstelle auf und emuliert das Restfahrzeug. Als Hardware wird ein
USB-CAN Adapter der PEAK-System Technik GmbH verwendet, weshalb der einfache
Betrieb an einem normalen Desktop-PC ohne weitere Hardwareanforderungen möglich ist
[PEA20]. Beispielsweise werden die Werte der virtuellen Sensoren mit dem vorgegebenen
Takt an das Lichtsteuergerät gesendet. Umgekehrt empfängt Hyperion die Nachrichten
des Steuergeräts, welche die Dimmwerte aller Pixel beider Scheinwerfer enthalten. Diese
Konfiguration stellt einen SiL-Test dar.
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In der finalen Teststufe wird der HiL-Test des Steuergeräts vollzogen. Dazu wird dieses
prototypisch realisiert und anstelle der Echtzeithardware an die Simulation gekoppelt.
Hinsichtlich der Einbindung seitens Hyperion besteht kein Unterschied zwischen SiL- und
HiL-Tests. Zusammenfassend stellt das Bild 5-29 die drei möglichen XiL-Einbindungen
skizzenhaft dar.

MiL

Desktop-PC

Hyperion

Steuergerät
Virtuelles

SiL

Desktop-PC

Hyperion

USB

CAN

Echtzeithardware
Steuergerätesoftware

HiL

Desktop-PC

Hyperion

USB

CAN

Steuergerät

Bild 5-29: XiL-Einbindungsmöglichkeiten der Lichtsteuerung in Hyperion.

5.6 Simulator-Interface

Die Interaktion des Anwenders mit der Fahrsimulation geschieht über das Simulator-Inter-
face. Dieses ist bidirektional und gliedert sich deshalb in zwei Aspekte. Zum einen fließen
durch die visuelle Ausgabe Informationen von der Simulation zum Anwender. Anderer-
seits kann der Anwender durch Bedienelemente Einfluss auf die zukünftige Entwicklung
nehmen. Beide Aspekte werden in den nachfolgenden Unterabschnitten beschrieben.

5.6.1 Ausgabe

Als Anwender der Nachtfahrtsimulation muss der Entwickler oder Testfahrer bestmöglich
über das aktuelle Verhalten der Lichtsteuerung und dessen Wechselwirkung mit der Umwelt
informiert sein. Diese Kopplung zwischen der Nachtfahrtsimulation und dem Menschen
geschieht durch die visuelle Ausgabe. Um der Anforderung A11 (Konfigurierbarkeit)
gerecht zu werden, kann die visuelle Ausgabe durch Hyperion auf verschiedene Art
und Weise erfolgen. Grundsätzlich kann zwischen Desktop- und Simulator-Varianten
unterschieden werden.

Die Desktop-Varianten sind auf den Betrieb der Nachtfahrtsimulation am Büroarbeitsplatz
zugeschnitten. Konkret kann der Anwender zwischen 1-, 2- und 3-Monitor-Betrieb wählen.
In Bild 5-30 werden diese Modi visualisiert.

Der 1-Monitor-Betrieb (oben links in Bild 5-30) stellt die geringsten Anforderungen an
Rechenleistung und Hardware-Verfügbarkeit. Er lässt sich deshalb an jedem Desktop-PC
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1 Monitor 2 Monitore

3 Monitore

Bild 5-30: Verschiedene Ausgabemodi von Hyperion im Desktop-Betrieb.

mit hinreichender Grafikleistung betreiben. Der Monitor zeigt die Szene aus Sicht einer
virtuellen Kamera. Deren Perspektive kann zur Laufzeit variiert werden. Im Randbereich
der Anzeige können auf Wunsch verschiedene Menüs eingeblendet werden, die sämtliche
verfügbare Interaktionen mit dem Benutzer ermöglichen, welche über das normale Fahren
hinausgehen. Insbesondere kann anstelle des normalen Renderings eine Isolinien- oder
Falschfarbendarstellung der Szene erfolgen, durch welche verschiedene photometrische
Größen visualisiert werden können.

Häufig sind Arbeitsplätze mit zwei Monitoren ausgestattet. In diesem Fall erlaubt Hype-
rion die Wahl eines anderen Ausgabemodus. Dieser kann den Zustand der vorliegenden
Verkehrssituation auf beiden Ausgaben vollkommen unabhängig voneinander visualisieren.
Beispielsweise lassen sich verschiedene Kameraperspektiven einstellen. Noch interessan-
ter ist allerdings die normale Darstellung auf einem Ausgabegerät, während die zweite
Ausgabe die Szene aus der gleichen Perspektive, jedoch in einer Analyseansicht zeigt. Eine
derartige Konfiguration wird im oberen rechten Bereich des Bilds 5-30 visualisiert. Details
zu möglichen Analysefunktionen folgen in Kapitel 7. Außerdem können auf der zweiten
Ausgabe die verschiedenen Menüs bedient werden, ohne die Darstellung der virtuellen
Szene auf dem ersten Ausgabegerät zu beschneiden.

Schließlich verfügt Hyperion über eine 3-Monitor-Ausgabe, deren Verwendung sich für
kompakte Fahrsimulatoren eignet. Dieser Modus ist im unteren Bereich des Bilds 5-30
dargestellt. In dieser Variante werden die virtuellen Kameras, welche zur Bildgenerierung
für die verschiedenen Ausgabegeräte dienen, so parametriert, dass sich die Einzelbilder zu
einem Gesamtbild der Szene zusammenfügen. Die Kameraeinstellungen sind in diesem Fall
von den Beschaffenheiten und den Ausrichtungen der einzelnen Monitore abhängig und
können in Hyperion parametriert werden. Durch die Verteilung der Ausgabe auf mehrere
Geräte erhält der Anwender einen besseren Überblick und erfährt die Fahrsimulation
immersiver.

Um auch Großsimulatoren bedienen zu können, verfügt Hyperion über einen weiteren
hochgradig konfigurierbaren Ausgabemodus. Der besondere Anspruch in diesem Fall ist
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die Vielzahl der Ausgabegeräte, die in einem Großsimulator typischerweise zum Einsatz
kommen. Der Atlas Motion System (ATMOS) Fahrsimulator des Heinz Nixdorf Instituts
diente zur Erprobung von Hyperion im Großsimulator-Betrieb. Das Bild 5-31 zeigt ein
Foto des Simulators. Er verfügt über elf Ausgabegeräte.

Bild 5-31: Foto des ATMOS Fahrsimulators in der Laborhalle des Heinz Nixdorf Instituts
der Universität Paderborn.

Im Detail versorgen acht Beamer eine 240◦-Rundprojektion. Drei weitere Displays ersetzen
die Außen- und den Innenspiegel des Fahrzeugmockups. Zur Versorgung dieser Vielzahl
von Ausgabegeräten genügt ein einzelner Desktop-PC nicht. Um auf anwendungsspe-
zifische und kostenintensive Hardware verzichten zu können, muss das Rendering der
vielen virtuellen Kameras auf mehrere Rechner verteilt werden. Hierzu verfügt Hyperion
über eine Netzwerkfähigkeit, welche durch die in Bild 5-32 dargestellte Master-Slave-
Architektur umgesetzt wird.

Die mit „Master“ oder „Slave“ gekennzeichneten Einheiten können durch normale Desk-
top-PC mit hinreichender Grafikleistung dargestellt werden. Auf jedem dieser Rechner
läuft eine Instanz von Hyperion, wobei sich die Initialisierungen der Instanzen rechner-
spezifisch unterscheiden. Der Master ist für das gesamte Management der Simulation
zuständig. Nur er bindet, sofern vom Anwender gewünscht, das Scheinwerfersteuerge-
rät im HiL-Betrieb ein oder koppelt sich via Ethernet mit dem ASM Modell auf einer
externen Echtzeithardware. Die Zustandsermittlung der Simulation zur Laufzeit erfolgt
ebenfalls zentral am Master. So werden zum Beispiel die Lagen des Egofahrzeugs und der
weiteren Verkehrsteilnehmer ermittelt. Auch die Interaktion des Versuchsleiters mit der
Software erfolgt am Master. Hierzu verfügt der Master über eigene Ein- und Ausgabegeräte,
durch welche die virtuelle Szene visualisiert und Eingaben entgegen genommen werden
können.
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Bild 5-32: Netzwerkfähigkeit durch Master-Slave-Architektur beim Einsatz von Hyperion
an Großsimulatoren.

In regelmäßigen Zeitabständen, die idealerweise der Bildwiederholrate entsprechen, syn-
chronisiert der Master den momentanen Simulationszustand mit den Slaves durch eine
UDP-Broadcast-Nachricht. Da diese Zustandsnachricht nicht spezifisch für einen einzel-
nen Slave gilt, wird die Performance durch eine hohe Anzahl von Slave-Rechnern nicht
beeinträchtigt. Neben den Zustandsnachrichten gibt der Master auch vom Versuchsleiter
vorgenommene Manipulationen an Online-Parametern durch eine UDP-Broadcast-Nach-
richt weiter. Im Gegensatz zur Zustandsnachricht wird die Parameternachricht allerdings
nicht zeitgesteuert, sondern einmal pro Manipulation versendet.

Für jeden Slave können individuell virtuelle Kameras konfiguriert werden, welche die
Szene aus einer bestimmten Perspektive rendern. Hierbei können bis zu drei Kameras
pro Slave eingesetzt werden. Auf diese Weise kann die hohe Belastung des Renderings
für viele Ausgabegeräte, wie sie in Großsimulatoren stets gegenwärtig ist, durch eine
Skalierung der Hardware-Architektur angemessen aufgefangen werden. Im Beispiel des
ATMOS Fahrsimulators werden fünf Slave-Rechner eingesetzt. Die Slaves 1 bis 4 rendern
die Ausgaben von jeweils zwei Beamern der Rundprojektion, während Slave 5 den Innen-
und die Außenspiegel mit Bildmaterial versorgt.
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5.6.2 Eingabe

Neben den verschiedenen Ausgabemodi muss Hyperion zur Erfüllung der Anforderung
A11 (Konfigurierbarkeit) auch im Bereich der Eingabe entsprechend anpassbar gestaltet
sein. Das Spektrum vom einfachen Arbeitsplatz-PC ohne besondere Hardwareausstattung
bis hin zum Großsimulator müssen abgedeckt werden.

Zur grundlegenden Ausstattung eines Desktop-PC gehören Tastatur und Maus. Diese Ein-
gabegeräte erlauben bereits die vollständige Bedienung der Nachtfahrtsimulation. Während
die Maus vor allem zur Navigation und Auswahl in den verschiedenen Menüs eingesetzt
wird, erfolgt die Fahrzeugsteuerung über die Tastatur. Zusätzlich können Shortcuts definiert
werden, welche häufig verwendete Aktionen mit Tastenkombinationen verknüpfen.

Auch wenn diese Konfiguration der Eingabegeräte eine Minimalanforderung darstellt, die
eine Verwendung der Software unter nahezu allen Bedingungen ermöglicht, stellt sie nicht
den Idealfall dar. Ein großer Nachteil liegt in der binären Charakteristik der Tasteneingaben.
Diese können nur die Zustände „Taste gedrückt“ und „Taste nicht gedrückt“ annehmen. Für
kontinuierliche Stellgrößen, wie die Gaspedalstellung oder den Lenkwinkel, ist diese Art
der Eingabe denkbar ungeeignet und führt zu einer schlechten Steuerbarkeit des Fahrzeugs.
Damit begründet sich die Unterstützung einer Lenkrad-Pedal-Kombination als weiteres
mögliches Eingabegerät in Hyperion. Näheres zur Verarbeitung der Fahreingaben wurde
bereits in Abschnitt 5.2.1 thematisiert.

Die Lenkrad-Pedal-Kombination kann sowohl für die verschiedenen Desktop-Varianten als
auch in Großsimulatoren verwendet werden. Bei letzteren wird jedoch meist ein komplexes
Fahrzeugmodell eingesetzt, um die Sollvorgaben für das Bewegungssystem möglichst rea-
litätsnah generieren zu können und die Immersion zu maximieren. In diesem Fall sind die
Eingabegeräte gar nicht an Hyperion angebunden. Stattdessen wirken die Eingaben direkt
auf die extern angebundene Echtzeithardware, auf welcher das Fahrzeugmodell simuliert
wird. Hyperion wird durch den Fahrzeugzustand nur indirekt durch die Fahreingaben
beeinflusst.

5.7 Remote-Applikation

Das Bild 5-32 skizziert die Architektur von Hyperion im Großsimulator-Betrieb. In diesem
Betriebsmodus interagieren oft mehrere Personen in verschiedenen Rollen mit der Anwen-
dung. Einerseits erfüllt ein Proband die eigentliche Fahraufgabe. Er nimmt die visuelle
Ausgabe wahr und agiert durch Eingabeinstrumente, wie die Pedale oder das Lenkrad. Das
Durchführen weiterer Aufgaben würde den Immersionsgrad für den Probanden reduzieren.
Deshalb interagiert in einer zweiten Rolle der Versuchsleiter mit der Simulation. Dieser
übernimmt die übergeordnete Steuerung der Simulation. Um den Rechnerverbund aus Bild
5-32 ortsungebunden und zentral steuern zu können, verfügt Hyperion über eine Remote-
Applikation und erfüllt somit die Anforderung A13 (Remote-Bedienbarkeit).

Der Master- und sämtliche Slave-Rechner stellen Netzwerkschnittstellen bereit, über
welche die Remote-Applikation Anweisungen verteilen kann. Gleichzeitig teilen alle
Rechner der Remote-Applikation ihre Zustände mit. Der Versuchsleiter erhält somit eine
zentrale Kontrollmöglichkeit über die verteilte Simulation.
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Der Funktionsumfang der Remote-Applikation kann in drei Gruppen untergliedert werden.
Für jede Gruppe steht innerhalb der Applikation eine eigene Ansicht zur Verfügung.
Die allgemeine Rechner-Steuerung bildet die erste Gruppe. Ihre Ansicht in der Remote-
Applikation wird in Bild 5-33 dargestellt.

Bild 5-33: Allgemeine Statusanzeige und Steuerung von Hyperion in der Remote-Applika-
tion.

Im oberen Bereich befinden sich die Aktionsmöglichkeiten, während der untere Bereich
Informationen der einzelnen Rechner des Clusters zurückliefert. Innerhalb der Rechner-
steuerung können alle Rechner hoch- und heruntergefahren werden. Genauso lassen sich
die netzwerkfähigen Ausgabegeräte ein- und ausschalten. Nach dem Starten der Rechner
besteht schließlich die Möglichkeit Hyperion zu laden. Als weitere Funktion können neue
Versionen von Hyperion automatisiert auf allen Rechner des Clusters installiert werden.

Der untere Bereich aus Bild 5-33 umfasst die Rückmeldung an den Versuchsleiter. Rechts
werden die Zustände aller Rechner und Ausgabegeräte durch Statusampeln gekennzeichnet.
Er kann so auf einen Blick den Zustand des Gesamtsystems erfassen. Zusätzlich findet
sich links eine chronologische Auflistung aller Statusmeldungen, wodurch alle vom Ver-
suchsleiter eingeleiteten Aktionen durch ein Feedback jedes einzelnen Cluster-Rechners
quittiert werden können.

In der zweiten Ansicht kann die Offline-Parametrierung vorgenommen werden. Dort stehen
dem Versuchsleiter alle Parameter, die Hyperion zur Manipulation freigibt, zur Verfügung.
Im Kontext der Offline-Parametrierung sind aber vor allem diejenigen Parameter von Inter-
esse, die zur Laufzeit nicht mehr angepasst werden können. Dazu gehören beispielsweise
die zu befahrende Strecke oder das verwendete Scheinwerfersystem. Der Versuchslei-
ter kann die Parametrierung in dieser Ansicht komfortabel vornehmen. Die Parameter
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sind entsprechend ihrer Semantik gruppiert. Außerdem stellen entsprechende Eingabe-
masken sicher, dass die eingegebenen Werte im Gültigkeitsbereich des entsprechenden
Parameters liegen. Nach Fertigstellung der Offline-Parametrierung können die Parameter
durch einen Mausklick an alle Rechner übertragen werden. Außerdem ist es möglich,
die Wertekonfiguration zu speichern und zu einem späteren Zeitpunkt erneut zu laden.
Mit den genannten Funktionen wird ein wichtiger Beitrag zur Erfüllung der Anforderung
A12 (Reproduzierbarkeit und Laufzeitanpassung) geleistet. Eine Momentaufnahme der
Initialisierungsansicht wird in Bild 5-34 dargestellt.

Bild 5-34: Fernparametrierung von Hyperion über die Remote-Applikation.

Während sich die zweite Ansicht zur Initialisierung der Simulation eignet und somit vor
dem Start von Hyperion herangezogen wird, eignen sich die in der dritten Ansicht aufge-
führten Online-Parameter zur Laufzeitmanipulation. Dementsprechend zeigt diese Ansicht
auch nur eine Teilmenge der insgesamt zur Verfügung stehenden Parameter. Strukturell
entspricht die dritte Ansicht jedoch weiterhin der in Bild 5-34 dargestellten. Manipulatio-
nen einzelner Online-Parameter werden von der Remote-Applikation ausschließlich an
den Master geleitet. Dieser reicht die Anpassung an alle Slaves weiter. Die Unterstützung
der Online-Parameter stellt ebenfalls einen Beitrag zur Erfüllung der Anforderung A12
(Reproduzierbarkeit und Laufzeitanpassung) dar.

5.8 Konfigurationen

Wie aus den zurückliegenden Abschnitten hervorgeht, verfügt Hyperion über eine Skalier-
barkeit, die Einsätze vom Arbeitsplatz-Rechner bis hin zum Großsimulator ermöglicht.
Diese Skalierbarkeit gelingt, indem die abstrakten Funktionsbausteine der Gesamtsimu-
lation, wie sie in Bild 5-1 zu sehen sind, in unterschiedlichen technischen Abstufungen
realisiert werden können. Um der Anforderung A11 (Konfigurierbarkeit) gerecht zu wer-
den, werden in diesem letzten Abschnitt des Kapitels beispielhaft drei Konfigurationen
vorgestellt, die sich im Rahmen der Entwicklung als besonders geeignet erweisen. Sie
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werden nachfolgend als „Desktop-“, „Mini-Simulator-“ und „Großsimulator“-Varianten
bezeichnet.

Die Desktop-Variante stellt die Minimalkonfiguration dar. Sie kann an jedem Arbeitsplatz
zur Anwendung kommen, sofern die verfügbare Grafikleistung ausreicht. Wie aus Bild
5-35 hervorgeht, genügt eine normale Arbeitsplatzausstattung als Hardware-Setup. Diese
Eigenschaft erlaubt einen breiten Einsatz in der Entwicklung. Aufgrund des Verzichts auf
geeignete Eingabeinstrumente empfiehlt es sich, fremdgesteuerte Fahrmodi zu verwenden.
Der Anwender kann sich somit ausschließlich auf das Scheinwerferlicht konzentrieren.
Die MiL-Einbindung des Steuergeräts erlaubt schnelle Anpassungen, welche aufgrund der
Fremdsteuerung unter idealen Bedingungen verglichen werden können. Insbesondere in
frühen Phasen der Entwicklung, in denen Machbarkeitsstudien und grobe Vorauslegungen
stattfinden, stellt diese Realisierung von Hyperion ein adäquates, kostengünstiges und
zeiteffizientes Mittel dar.
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Bild 5-35: Beispielkonfiguration „Desktop“ zum Betrieb von Hyperion an normalen Ar-
beitsplätzen.

Auch wenn die Desktop-Variante aufgrund ihrer niedrigen Anforderungen sehr breit einge-
setzt werden kann, erlaubt sie aufgrund der fehlenden Interaktion mit einem menschlichen
Fahrer keine vollständige Testabdeckung. Die direkte Reaktion des Scheinwerfersystems
auf Fahreingaben und die subjektive Wahrnehmung eines Lichtexperten stellen wesentliche
Kriterien bei der Bewertung eines Scheinwerfersystems dar. Derartige Erprobungen sind
nur in einem Simulator-Umfeld möglich.

Da Großsimulatoren erhebliche Kosten verursachen und ihre Verfügbarkeit begrenzt ist,
erlaubt Hyperion mit der Mini-Simulator-Konfiguration den Betrieb einer kostengünstigen
Alternative. Anders als in Großsimulatoren wird hierbei auf ein Bewegungssystem ver-
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zichtet. Als Eingabeinstrumente dienen Lenkrad-Pedal-Kombinationen aus dem Gaming-
Bereich. Zusätzlich sollte der Mini-Simulator über drei Monitore verfügen, um die visuelle
Immersion hinreichend sicherzustellen. Da eine Echtzeithardware ebenfalls hohe Kosten
verursacht und die Anbindung der Eingabeinstrumente an diese zusätzlichen Aufwand
darstellt, schlägt die in Bild 5-36 vorgestellte Konfiguration die Verwendung des internen
Fahrzeugmodells vor. Der Betrieb des ASM Modells auf einer Echtzeithardware ist alter-
nativ möglich. In der visualisierten Konfiguration ist das Steuergerät als HiL-Komponente
eingebunden. Sollte zum Zeitpunkt der Erprobung noch kein Prototyp vorhanden sein,
kann dieses analog zu Bild 5-35 im MiL-Betrieb eingebunden werden.
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Bild 5-36: Beispielkonfiguration „Mini-Simulator“ zum Betrieb von Hyperion an kleinen
Fahrsimulatoren.

Die in Bild 5-37 dargestellte Konfiguration entspricht der im ATMOS Fahrsimulator
verwendeten. Sie ist aber in gleicher Weise auf andere Großsimulatoren übertragbar.
Der Hardware-Aufwand ist erheblich größer, als es für den Mini-Simulator der Fall ist.
Gleichzeitig ist jedoch auch die Immersion wesentlich höher.

In der Großsimulator-Konfiguration sind ein Rechencluster, die Echtzeithardware, das
reale Steuergerät, ein in der Regel aus mehreren Einheiten bestehendes Ausgabesystem
und ein typischerweise als Fahrzeug-Mockup realisiertes Eingabesystem die wesentlichen
Hardware-Komponenten. Die Anzahl der Rechner im Cluster orientiert sich an der Anzahl
der Ausgabegeräte und an ihrer Auflösung. Im ATMOS Fahrsimulator werden der Master-
und fünf Slave-Rechner betrieben.

Neben dem Hardware-Aufwand entsteht auch ein personeller Aufwand, da mindestens
eine weitere Person in der Rolle des Versuchsleiters involviert ist. Der Versuchsleiter
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Bild 5-37: Beispielkonfiguration „Großsimulator“ zum Betrieb von Hyperion an Großsi-
mulatoren.

übernimmt die administrative Steuerung der Simulation durch die Remote-Applikation um
den Probanden zu entlasten und dessen Immersion zu erhöhen.
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6 Rendering von HD-Scheinwerferlicht

Das nun folgende Kapitel stellt gemeinsam mit Kapitel 7 den Forschungskern der vor-
liegenden Arbeit dar. Es beinhaltet die Vorstellung des methodischen Vorgehens und der
technischen Implementierung zur Simulation des Lichts von Pixel-Scheinwerfersystemen.
Nach der Vorwegnahme einiger Designentscheidungen durch Abschnitt 5.4.3, wird in
Abschnitt 6.1 zunächst die Beschaffenheit eines Datensatzes zur Spezifikation eines HD-
Scheinwerfersystems vorgestellt.

Die Simulation des Lichts erfolgt in zwei Stufen. Zuerst wird die von den momentan
vorliegenden Dimmwerten abhängige Gesamtlichtverteilung des Scheinwerfers ermittelt.
Das hierzu notwendige Vorgehen wird in Abschnitt 6.2 eingeführt. Mit Abschnitt 6.3
schließt sich die Implementierung der Lichtquelle an, mit welcher die ermittelte Gesamt-
lichtverteilung in die Szene projiziert wird. Das erarbeitete Verfahren wird abschließend
validiert (Abschnitt 6.4) und hinsichtlich seiner Laufzeit diskutiert (Abschnitt 6.5). In
Abschnitt 6.6 wird die Eignung der Lösung zur physikalisch motivierten Nachbildung von
Witterungsbedingungen am Beispiel von Nebel nachgewiesen.

6.1 Datensatz eines HD-Scheinwerfersystems

Die dynamische Lichtverteilung eines HD-Scheinwerfers kann durch die Gesamtheit
der Lichtverteilungen all seiner Lichtquellen und die zum aktuellen Zeitpunkt vorlie-
genden Dimmwerte aller Lichtquellen vollständig beschrieben werden. Diese Aussage
gilt zunächst nur für additive Systeme mit einzelnen Lichtquellen, wie Matrix- oder
SSL|HD-Systeme (siehe Tabelle 3-1). Sie kann auf Scanner-Systeme erweitert werden,
wenn man jede diskrete Position des MEMS als einzelne Lichtquelle interpretiert (siehe
Abschnitt 3.1.3). Auf ähnliche Weise lassen sich subtraktive Systeme in gleicher Weise
datentechnisch darstellen, indem man jedes diskrete Ausblendungselement als eigene
Lichtquelle auffasst. Am Beispiel eines LCD-Scheinwerfers entspricht die Anzahl der
fiktiven Lichtquellen somit der Pixelzahl des LCD-Moduls. Zusammenfassend zeigt sich,
dass die datentechnische Beschreibung eines HD-Scheinwerfers durch die Gesamtheit
seiner Einzellichtverteilungen als universell angesehen werden kann. Hyperion verwendet
diese Repräsentation des Scheinwerfers zur bestmöglichen Erfüllung der Anforderung A3
(Technologie-Unabhängigkeit).

Die grundsätzliche Gestalt von Lichtverteilungen wurde bereits in Abschnitt 3.1.1 dis-
kutiert. Dort wurden sowohl monochrome Lichtstärkeverteilungen als auch spektrale
Lichtverteilungen beschrieben. Der wesentliche Unterschied ist, dass im monochromen
Fall die Lichtstärke als eindimensionaler Wert und im spektralen Fall der dreidimensionale
Farbvektor für jedes Winkelpaar (θ, ϕ) aufgezeichnet wird. Dabei wird der Farbvektor
typischerweise durch die X-, Y- und Z-Koordinaten gemäß der CIE beschrieben (siehe
Abschnitt 2.2.6). Nach Anforderung A2 (Spektrale Lichtverteilungen) soll Hyperion beide
Varianten unterstützen. Zur Sicherstellung eines einheitlichen Workflows werden Lichtstär-
keverteilungen in spektrale Lichtverteilungen überführt. Dazu wird der Lichtstärkewert als
Y-Koordinate des spektralen Pendants übernommen, während die Farbart der gesamten
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Lichtverteilung, spezifiziert durch die X- und Z-Koordinaten, durch den Anwender gewählt
werden kann. Lokale Farbunterschiede finden sich in der so erzeugten Lichtverteilung
erwartungsgemäß nicht.

Technisch liegen die Lichtverteilungen im monochromen Fall als Dateien im IES-Format
(Illuminating Engineering Society) vor [ANS01]. Neben den eigentlichen Lichtstärkewer-
ten und den Winkelpaaren, auf die sie sich beziehen, enthält eine IES-Datei weitere Header-
Informationen. Hierzu gehören zum Beispiel die Anzahl der Messschritte in horizontaler
und vertikaler Richtung oder der Bezeichner dieser Messung. Im Anhang A2.1 findet
sich ein Ausschnitt einer Beispieldatei im IES-Format. Spektrale Lichtverteilungen liegen
stattdessen als Textdateien vor. Sie weisen jedoch ein ähnliches Schema auf. Zuerst wird im
Header spezifiziert, wie die Polachse liegt, um die Bedeutung von Polar- und Azimutwinkel
zu definieren. Weiterhin wird spezifiziert, dass die Farben nach dem Standard der CIE im
XYZ-Farbraum (s. Abschnitt 2.2.6) vorliegen. Abschließend erfolgt die Benennung des
vermessenen Winkelbereichs und der Auflösung. Nach dem Header folgen die eigentlichen
Daten, wobei die Farbkoordinaten X, Y und Z über alle Messpunkte hinweg aneinander
gereiht sind. Die Zählfolge der Messpunkte ist parametrierbar. Wichtig ist, dass sie beim
Speichern und Laden der Daten in gleicher Weise eingehalten wird. Der Anfangsbereich
einer CIE-Datei kann in Anhang A2.2 eingesehen werden.

Da ein HD-Scheinwerfer über eine Vielzahl von Lichtquellen verfügt, ist ein vollständiger
Satz der Lichtverteilungen aller Einzellichtquellen notwendig, um einen derartigen Schein-
werfer zu beschreiben. Der Datensatz eines HD-Scheinwerfers verfügt somit über eine
Vielzahl von IES- bzw. CIE-Dateien. Die Zuordnung der Lichtverteilungen zu den Licht-
quellen im Scheinwerfer und damit zu den Dimmwerten, die vom Steuergerät vorgegeben
werden, erfolgt in den zur Verfügung stehenden Daten über die Dateinamen. Eine Hinterle-
gung im Dateiheader wäre ebenfalls möglich und erscheint robuster. Darüber hinaus werden
die Einzellichtquellen nicht zwangsläufig über den gleichen Winkelbereich vermessen. Im
Fall des zur Erprobung verwendeten HD84-Systems liegen beispielsweise die Messdaten
der Matrix im Winkelintervall [−6◦, 6◦] × [−25◦, 25◦] vor, während die Vorfeldleuchten im
Bereich [−30◦, 15◦]× [−90◦, 90◦] vermessen wurden. Die Messbereiche orientieren sich an
den unterschiedlichen Bereichen der Einflussnahme der verschiedenen Lichtquellen. Um
maximale Kompatibilität und die Erfüllung der Anforderung A3 sicherzustellen, erlaubt
Hyperion neben variierenden Vermessungsbereichen auch unterschiedliche Auflösungen
der Messungen.

6.2 Bestimmung der Gesamtlichtverteilung

In Abschnitt 5.4.3 wurde die Hyperion-Lichtquelle innerhalb der Gesamtarchitektur einge-
ordnet. Nun erfolgt die Beschreibung der zugrunde liegenden Methodik und der technischen
Implementierung. Dieser Abschnitt bezieht sich auf die Bestimmung der Gesamtlichtver-
teilung, während Abschnitt 6.3 die zweite Stufe des Licht-Renderings erläutert.

Die in Abschnitt 6.1 beschriebenen Lichtverteilungen stellen die zeitinvariante Komponen-
te der datentechnischen Repräsentation eines HD-Scheinwerfers dar. Dynamik erhält die
Gesamtlichtverteilung eines solchen Scheinwerfers, indem die Einzellichtverteilungen auf
oder abgedimmt werden. Auf diese Weise fügen sich die Einzellichtverteilungen in unter-
schiedlicher Weise zur Gesamtlichtverteilung zusammen und erlauben eine bausteinartige
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Gestaltung des Lichts. Technisch wird die Dimmstufe durch das Scheinwerfersteuergerät
vorgegeben. Der nachfolgende Unterabschnitt beschreibt genauer, wie die Gesamtlichtver-
teilung eines Scheinwerfers basierend auf den zeitinvarianten Einzellichtverteilungen und
den dynamischen Dimmwerten ermittelt werden kann. Dabei wird zunächst die intuitive
Vorgehensweise der Ermittlung vorgestellt. Anschließend wird in Unterabschnitt 6.2.3 die
tatsächliche Implementierung des Verfahrens in Hyperion beschrieben. Hierbei wurde zu-
gunsten der Anforderungen A4 (Skalierbarkeit der Pixelanzahl) und A6 (Echtzeitfähigkeit)
erheblich von der intuitiven Vorgehensweise abgewichen.

6.2.1 Funktionsprinzip

Die von einzelnen Pixeln eines HD-Scheinwerfers ausgeleuchteten Winkelbereiche sind
so gestaltet, dass sie den insgesamt ausgeleuchteten Bereich durch eine Rasterstruktur
ausfüllen. Bei der Auslegung der Lichtverteilung einzelner Pixel ist ein Kompromiss
zwischen der scharfen Abgrenzung zu den benachbarten Pixeln und sanften Ausläufen
im Randbereich zu treffen. Während die erstgenannte Eigenschaft zusammen mit der
Auflösung des Systems die Genauigkeit bestimmt, stellen sanfte Ausläufe eine homogene
Lichtverteilung ohne störende Artefakte im Sichtfeld sicher. Das Bild 6-1 visualisiert
den Ausleuchtungsbereich einzelner Pixel der Matrix und deren Komposition zu ver-
schiedenen Gesamtlichtverteilungen am Beispiel des HD84-Systems. Beim HD84-System
handelt es sich im Vergleich zu den modernsten Technologien um ein niedrig aufgelöstes
Scheinwerfersystem. Zur Anschauung ist es jedoch gut geeignet und dient deshalb als
Anwendungsbeispiel. Das nachfolgend beschriebene Verfahren gilt in gleicher Weise für
hoch aufgelöste Scheinwerfersysteme.

Im oberen Bereich des Bildes 6-1 werden die LED der HD84-Matrix entsprechend ih-
rer Einbauanordnung im Scheinwerfer visualisiert. Die darin befindliche Nummerierung
entspricht der Indexierung der 84 Pixellichter. Die verschiedenen Zeilen verfügen über
unterschiedlich große Reichweiten. Die untere Zeile (1) dient ausschließlich der Ausleuch-
tung des Nahbereichs vor dem Fahrzeug, während die mittlere Zeile (2) für die Reichweite
des Abblendlichts ausreicht. Die obere Zeile (3) wird hingegen nur bei aktivem Fernlicht
eingesetzt. Dementsprechend liegt der Schwerpunkt der Lichtstärkeverteilung im positiven
Bereich des Polarwinkels θ. Genau wie die vertikale Anordnung steht auch die horizontale
Anordnung der Lichtquellen im direkten Bezug zum ausgeleuchteten Winkelbereich. Auf
der linken Seite angeordnete LED strahlen zum Beispiel primär auf die linke Fahrbahnseite
(ϕ < 0). Zur besseren Nachvollziehbarkeit sind die Lichtstärkeverteilungen der LED 1,
45 und 84 im mittleren Bereich des Bildes 6-1 dargestellt. Der Zusammenhang zwischen
Einbaulage und Ausleuchtungsbereich ist klar erkennbar. Außerdem wird deutlich, dass
eine einzelne LED exklusiv ein kleines Winkelsegment der Gesamtlichtverteilung bestrahlt.
Diese Eigenschaft eines HD-Systems bildet die Grundlage zur freien Gestaltung der Ge-
samtlichtverteilung. Am Beispiel des HD84-Systems stellt man fest, dass LED 45 einen
wesentlich kleineren Bereich ausleuchtet, als es für die in den Randzonen angeordneten
LED 1 und 84 der Fall ist. Dieses Design ist den richtungsabhängig variierenden Anfor-
derungen an die Auflösung geschuldet. Beispielsweise muss das Scheinwerfersystem zur
Ausblendung von Gegenverkehr im Zentralbereich schärfer als für ein Kurvenlicht im
Seitenbereich auflösen.
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Bild 6-1: Lichtstärkeverteilungen einzelner Pixel und ihre mit Dimmwerten gewichtete
Komposition zur Gesamtlichtstärkeverteilung (links: Abblendlicht, rechts: Fern-
licht).

Die Lichtstärkeverteilungen der einzelnen Pixel werden bei maximaler Bestromung aufge-
zeichnet. Während des Betriebs kann jede Pixellichtquelle quasikontinuierlich im Bereich
von 0-100% gedimmt werden, indem die zugeführte Leistung durch Pulsweitenmodulation
(PWM) angepasst wird. Im unteren, linken Bereich des Bildes 6-1 ist die Abblendlicht-
verteilung des HD84-Systems dargestellt. Sie entsteht durch die geeignete Bestromung
der Pixellichter. Beispielhaft sind die Beiträge der Pixel 1, 45 und 84 zur Gesamtlichtver-
teilung visualisiert. Während LED 1 (3%) und 45 (24%) eingeschaltet sind, trägt LED
84 nicht zum Abblendlicht bei. Im Vergleich dazu findet sich auf der rechten Seite die
Fernlichtverteilung des HD84-Systems. In diesem Fall ist auch LED 84 (3%) aktiv. Ebenso
wird der Strom der LED 45 im Vergleich zum Abblendlicht angehoben um eine höhere
Lichtstärke zu erzielen, da die Fernlichtverteilung im Schwerpunkt etwa dreimal stärker
als das Abblendlicht strahlt. Generell fällt auf, dass die LED 1 und 84 mit nur 3% sehr
schwach betrieben werden. Diese Leistungsreserven sind im Randbereich nötig, da wesent-
lich höhere Werte erzielt werden müssen, wenn beispielsweise die Kurvenlichtfunktion
den Lichtschwerpunkt horizontal verschiebt.

6.2.2 Formalismus

Aus den vorangegangenen Erläuterungen geht das Funktionsprinzip hervor. Zur genauen
Berechnung der Gesamtlichtverteilung eines Scheinwerfers gilt es, die angesprochenen
Merkmale eines HD-Scheinwerfers geeignet zu formalisieren. Darauf aufbauend kann die
Gesamtlichtverteilung als Rechenvorschrift formuliert werden.
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Dazu sei die Anzahl der Pixellichtquellen nachfolgend mit K bezeichnet. Zusatzlichtquel-
len, wie Vorfeld- und Kurvenleuchten oder Zusatzfernlichter, können im beschriebenen
Formalismus ebenfalls als Pixellichtquellen behandelt werden, obwohl sie nicht Teil des
HD-Moduls sind. Für jede Lichtquelle k ∈ {1, ...,K} kann die Lichtverteilung in diskreti-
sierter Form als zweidimensionales Array Lk abgebildet werden. Die Diskretisierung ist
kein eigener Zwischenschritt im gesamten Verfahren. Sie ergibt sich durch die Messung
oder modellbasierte Berechnung inhärent. Darüber hinaus ist die Information über den
Vermessungsbereich der Lichtquelle k unverzichtbar. Er kann durch die unteren und oberen
Grenzen der Polar- und Azimutwinkel

¯
θk, θ̄k,

¯
ϕk, ϕ̄k beschrieben werden, welche in Bild 6-2

visualisiert sind. Aus der Zeilenzahl Mk, der Spaltenzahl Nk und den Winkelgrenzen ergibt
sich die Auflösung der diskretisierten Lichtverteilung Lk. Die horizontale Schrittweite
beträgt ∆ϕ =

ϕ̄k−
¯
ϕk

Nk−1 und die vertikale Schrittweite beträgt ∆θ =
θ̄k−

¯
θk

Mk−1 . Diese Schrittweiten
werden für alle Lichtverteilungen als einheitlich angenommen. Sind sie es nicht, wird die
Einheitlichkeit durch eine vorgelagerte bilineare Interpolation herbeigeführt. Der Eintrag
lk(m, n) aus Lk, welcher sich in Zeile m und Spalte n befindet, entspricht dem Wert der
Lichtverteilung der Lichtquelle k für das Winkelpaar (θ, ϕ) = (

¯
θk +m ·∆θ,

¯
ϕk +n ·∆ϕ). Auch

die Bedeutung dieses Bezeichners wird in 6-2 veranschaulicht. Um spektrale Lichtvertei-
lungen vollständig abbilden zu können, repräsentieren die Einträge lk ∈ R

3
≥0 Farbvalenzen.

Werden monochrome Lichtstärkeverteilungen verarbeitet, wird nur ein Eintrag des Farb-
valenzvektors benötigt. Zum Erhalt eines einheitlichen Verfahrens wird die vektorielle
Struktur der Einträge aus Lk dennoch beibehalten.

θ

ϕ

lk(2, 3)

∆ϕ

∆θ

¯
θk

θ̄k

¯
ϕk ϕ̄k

m = n = 0 n = 7

m = 3

Bild 6-2: Diskretisierung einer kontinuierlichen Lichtverteilung durch ein zweidimensiona-
les Array.

Mit den beschriebenen Größen kann jede Lichtquelle des Scheinwerfers hinsichtlich ih-
rer statischen Eigenschaften spezifiziert werden. Die Menge der Daten skaliert mit der
Anzahl der Lichtquellen, den Größen der Vermessungsbereiche und den Diskretisierungs-
schrittweiten innerhalb der Lichtverteilung. Nachfolgend wird angenommen, dass das
Diskretisierungsraster bezüglich der Polar- und Azimutwinkel über alle Lichtverteilungen
des Scheinwerfers hinweg einheitlich ist. Formal wird dadurch vorausgesetzt, dass die
horizontalen und vertikalen Winkeldifferenzen zweier Messpunkte (θ1, ϕ1) und (θ2, ϕ2)
stets ganzzahlig durch die Diskretisierungsschrittweiten ∆θ bzw. ∆ϕ teilbar sind. Das gilt
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insbesondere dann, wenn diese Messpunkte aus verschiedenen Lichtverteilungen stammen.
Wird diese Forderung durch den zur Verfügung stehenden Datensatz nicht erfüllt, können
die Daten durch bilineare Interpolation in das gewünschte Diskretisierungsraster überführt
werden.

Alle bisher eingeführten Größen sind bezogen auf das betrachtete Scheinwerfersystem
unveränderlich. Die dynamische Komponente des Scheinweferlichts wird durch die zeitver-
änderlichen Dimmwerte geleistet. Der Dimmwert der Lichtquelle k sei durch dk(t) ∈ [0, 1]
bezeichnet. Dieser stellt einen globalen Skalierungsfaktor für alle Einträge des Arrays Lk

dar. Die momentan vorliegende, diskretisierte Lichtverteilung der Lichtquelle k ergibt sich
somit zu

Lk(t) = dk(t) · Lk. (6-1)

In Gleichung (6-1) kann Lk als Matrix aufgefasst werden. Die Multiplikation mit dem ska-
laren Dimmwert dk(t) ist dann entsprechend der üblichen Rechenregeln komponentenweise
durchzuführen.

Basierend auf den genannten Definitionen und Annahmen kann die Gestalt der Gesamt-
lichtverteilung L∑ des Scheinwerfers beschrieben werden. Der Messbereich der Gesamt-
lichtverteilung soll der kleinst mögliche sein, der alle Einzellichtverteilungen vollständig
enthält. Die Winkelgrenzen ergeben sich deshalb gemäß

¯
θ = min

k∈1,...,K ¯
θk, θ̄ = max

k∈1,...,K
θ̄k und

¯
ϕ = min

k∈1,...,K ¯
ϕk, ϕ̄ = max

k∈1,...,K
ϕ̄k.

(6-2)

Die Auflösung innerhalb dieses Bereichs entspricht der Auflösung aller Einzellichtvertei-
lungen, sodass sich die Zeilen- und Spaltenzahlen von L∑ zu

M∑ =
θ̄ −

¯
θ

∆θ
+ 1 und N∑ =

ϕ̄ −
¯
ϕ

∆ϕ
+ 1

ergeben. Die Einträge l∑(m, n) mit m ∈ {1, ...,M∑}, n ∈ {1, ...,N∑} der Gesamtlichtvertei-
lung ergeben sich durch die Komposition der momentanen Einzellichtverteilungen Lk(t)
mit k ∈ 1, ...,K und sind somit ebenfalls zeitveränderlich. Zur Herleitung von L∑ wird
zunächst die bereichsweise Matrizenaddition eingeführt. Sie wird fortlaufend mit dem
Operator +� bezeichnet. Zur Definition der bereichsweisen Addition müssen im Vorhinein
die Zeilen- und Spaltengültigkeitsbereiche einer Matrix eingeführt werden. Eine Matrix A,
welche über die Zeilenindizes

¯
mA bis m̄A und die Spaltenindizes

¯
nA bis n̄A gültig ist, wird

im Folgenden als

A[
¯
mA, m̄A, ¯

nA, n̄A]

notiert. A muss in diesem Beispiel m̄A − ¯
mA + 1-viele Zeilen und n̄A − ¯

nA + 1-viele Spalten
aufweisen. Die bereichsweise Addition zweier Matrizen A und B kann nun wie folgt notiert
werden:

C[
¯
mC, m̄C, ¯

nC, n̄C] = A[
¯
mA, m̄A, ¯

nA, n̄A] +� B[
¯
mB, m̄B, ¯

nB, n̄B]. (6-3)
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Für den Gültigkeitsbereich der Matrix C gilt

¯
mC = min{

¯
mA, ¯

mB},

m̄C = max{m̄A, m̄B},

¯
nC = min{

¯
nA, ¯

nB} und
n̄C = max{n̄A, n̄B}.

(6-4)

Die Konstruktion von C erfolgt durch die vorhergehende Anpassung der Summanden A und
B. Diese Anpassung basiert auf den Resultaten der Minimums- und Maximumsfunktionen
nach Gleichung (6-4). Für den Fall

¯
mA < ¯

mB wird B um
¯
mB− ¯

mA-viele Nullzeilen nach unten
erweitert. Gilt hingegen

¯
mA > ¯

mB wird A um
¯
mA− ¯

mB-viele Nullzeilen nach unten erweitert.
Im Fall

¯
mA =

¯
mB müssen weder A, noch B manipuliert werden. Neben den unteren

Grenzen der Zeilengültigkeitsbereiche werden auch die oberen Grenzen verglichen. Gilt
m̄A < m̄B wird A um m̄B − m̄A-viele Nullzeilen nach oben erweitert. Das Schema entspricht
dem Vorgehen für die unteren Grenzen. Zusätzlich werden die Spaltengültigkeitsbereiche
verglichen. Im Fall

¯
nA < ¯

nB wird B um
¯
nB − ¯

nA-viele Nullspalten nach links ergänzt. Die
weiteren Vergleiche erfolgen analog zu dem Vorgehen für die Zeilengültigkeitsbereiche.

Die beschriebene Anpassung der Summanden A und B führt dazu, dass die Dimensionen
beider Matrizen identisch sind. Sie können anschließend anhand der üblichen Rechenregeln
zur Addition zweier Matrizen addiert werden. Außerdem gilt, dass die bereichsweise
Matrizenaddition kommutativ und assoziativ ist.

Die Gleichung (6-5) veranschaulicht die bereichsweise Matrizenaddition an einem einfa-
chen Beispiel.

A[0, 1, 0, 1] =

(
3 4
1 2

)
B[1, 2, 1, 2] =

(
7 8
5 6

)

C[0, 2, 0, 2] = A[0, 1, 0, 1] +� B[1, 2, 1, 2] =

0 7 8
3 9 6
1 2 0


(6-5)

Basierend auf der eingeführten Rechenoperation kann die Gesamtlichtverteilung durch
die Einzellichtverteilungen und den vorliegenden Dimmwerten ausgedrückt werden. Dazu
werden die bisher als Arrays beschriebenen Einzellichtverteilungen gemäß der Beziehung
(6-6) in bereichsweise definierte Matrizen überführt.

Lk →Lk[ ¯
mk, m̄k, ¯

nk, n̄k] mit

¯
mk = ¯

θk − ¯
θ

∆θ
, m̄k =

θ̄k − ¯
θ

∆θ
,
¯
nk = ¯

ϕk −
¯
ϕ

∆ϕ
und n̄k =

ϕ̄k −
¯
ϕ

∆ϕ

(6-6)

Lk[
¯
mk, m̄k, ¯

nk, n̄k] hat per Definition die gleiche Dimension wie das Array Lk und übernimmt
die Einträge aus Lk unverändert. Schließlich ergibt sich die Gesamtlichtverteilung L∑ zu

L∑[
¯
m∑, m̄∑,

¯
n∑, n̄∑](t) =

K∑
k=1

� dk(t) · Lk[ ¯
mk, m̄k, ¯

nk, n̄k], (6-7)
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wobei das Summenzeichen mit nachgestelltem � die bereichsweise Matrizenaddition nach
Gleichung (6-3) meint. Konstruktionsbedingt gilt für die Gültigkeitsbereiche von L∑

L∑[
¯
m∑, m̄∑,

¯
n∑, n̄∑] = L[0,

θ̄ −
¯
θ

∆θ
, 0,

ϕ̄ −
¯
ϕ

∆ϕ
].

Die Rückführung der Bereichsmatrix L[
¯
m∑, m̄∑,

¯
n∑, n̄∑] nach Gleichung (6-7) in das

diskretisierte Lichtverteilungsarray L∑ geschieht durch die bloße Übernahme der Einträge.
Die Winkelgrenzen von L∑ entsprechen den globalen Minima und Maxima der Polar- und
Azimutwinkel nach Gleichung (6-2).

6.2.3 Implementierung

Im Abschnitt 6.2.2 wird das formale Vorgehen zur Berechnung der zeitveränderlichen
Gesamtlichtverteilung aus den Einzellichtverteilungen eines Scheinwerfers beschrieben.
Dieser Formalismus diente in einer ersten Implementierung als direkter Leitfaden. Dabei
wurden die zeitaufwendigen und hochgradig parallelisierbaren Matrixadditionen auf dem
Grafikprozessor ausgeführt. Das hat neben der kürzeren Berechnungszeit den Vorteil, dass
die Gesamtlichtverteilung als Ergebnis des Verfahrens für das weitere Rendering bereits
im Speicher der Grafikkarte zur Verfügung steht. Trotz der vorgenommenen Laufzeit-
optimierung stellte sich heraus, dass die Implementierung des Verfahrens orientiert am
Formalismus nach Abschnitt 6.2.2 auf Desktop-Rechnern, die für heutige Verhältnisse
über eine sehr gute Grafikleistung verfügen, nur bis auf wenige hundert Lichtquellen pro
Scheinwerfer skaliert. Die Implementierung eignet sich insofern ausschließlich für niedrig
aufgelöste Matrix-Systeme, womit die Anforderungen A3 (Technologie-Unabhängigkeit)
und A4 (Pixel-Skalierbarkeit) durch diese erste Realisierungsvariante nur unzureichend
erfüllt werden können.

Auf der Suche nach Lösungen, die den Anforderungen A3 und A4 gerecht werden, entstand
schließlich eine Implementierung, die in wesentlichen Schritten von dem Formalismus
aus Abschnitt 6.2.2 abweicht und weniger intuitiv erscheint. Die neu gestaltete Imple-
mentierung sieht jedoch an keiner Stelle Vereinfachungen vor und führt zur gleichen
Gesamtlichtverteilung L∑. In den folgenden Unterabschnitten wird diese laufzeit- und
speicheroptimierte Vorgehensweise vorgestellt. Das Verfahren befindet sich derzeit unter
dem Aktenzeichen DE 10 2020 110 860.5 im Anmeldeverfahren beim Deutschen Patent-
und Markenamt (DPMA).

Import

Die Datenvorbereitung wird eingeleitet, indem der Anwender den Datensatz eines Schein-
werfersystems importiert. Hierzu steht ihm der in Bild 6-3 gezeigte Import-Dialog zur
Verfügung. Es wird nachfolgend von einer spektralen Lichtverteilung ausgegangen. Ei-
ne Lichtstärkeverteilung kann als Spezialfall einer spektralen Lichtverteilung angesehen
werden. Wie diese in eine spektrale Verteilung umgeformt werden kann, wurde bereits in
Abschnitt 6.1 diskutiert.

Im Import-Dialog können verschiedene Einstellungen getroffen werden, von denen die
wichtigsten nachfolgend vorgestellt werden. Durch die Auswahl des Dateityps (CIE/IES)
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Bild 6-3: Dialog zum Importieren neuer Scheinwerferdatensätze in Hyperion.

wird spezifiziert, ob es sich um monochrome oder spektrale Lichtdatensätze handelt.
Weiterhin muss angegeben werden, wo der Weißpunkt der Quelldaten bezüglich der
Primärvalenzen des CIE-Farbraums liegt. Durch die zusätzliche Angabe des Weißpunkts
des Zielfarbraums kann auf Wunsch ein Weißpunktwechsel vollzogen werden (s. Abschnitt
2.2.6). Der Zielfarbraum selbst ist ebenfalls parametrierbar, wobei der Standard-RGB-
Raum die übliche Wahl darstellt (s. Abschnitt 2.2.7). Bei Verwendung moderner Monitore
kann durch die Wahl eines Farbraums mit größerem Gamut-Dreieck ein besseres Ergebnis
erzielt werden. Codiert werden die einzelnen Farbkanäle durch Fließkommawerte (Float,
32 Bit). Hiermit wird die darstellbare Bittiefe heutiger Ausgabegeräte weit überschritten.
Die hohe Genauigkeit ist dennoch aufgrund von Rundungsfehlern und Tone Mapping
von Vorteil (s. Abschnitt 2.3.4). Zur Laufzeitoptimierung kann ein Schwellwert definiert
werden. Messpunkte, die eine Lichtstärke unterhalb dieses Schwellwerts aufweisen, werden
nicht berücksichtigt. Auf diese Weise kann das Rendering beschleunigt werden. Bei einem
zu großen Schwellwert besteht jedoch die Gefahr, dass Streulicht in der Simulation nicht
korrekt wiedergegeben wird. Soll auf diese Vereinfachung verzichtet werden, kann der
Anwender den Wert des Schwellwerts bei 0 belassen. Schließlich kann ein Bezeichner für
den importierten Datensatz vorgesehen werden. Dieser dient bei zukünftigen Simulationen
zur Identifikation des Scheinwerfersystems.

Im Anschluss kann der Import-Vorgang gestartet werden. Der Vorgang wird in Bild
6-4 durch ein Ablaufdiagramm veranschaulicht. Daneben ist die während des Imports
entstehende Datenstruktur visualisiert. Zu Beginn wird die Wurzel der aufzubauenden
Datenstruktur angelegt, welche als logisches Abbild des gesamten Scheinwerfersystems
verstanden werden kann. Durch einen zuvor gewählten Bezeichner kann dieses System
in späteren Simulation ausgewählt werden. Darüber hinaus enthält das System weitere
Meta-Informationen. Beispiele hierfür sind die Information, ob die Lichtverteilungen der
einzelnen Lichtquellen monochrom oder spektral sind, und die Art und Weise der Dimm-
wertvorgabe. Während die Dimmwerte eines Matrix-Systems typischerweise durch die
einzelnen Indizes der Lichtquellen vorgegeben werden, ist dieses Vorgehen bei hoch aufge-
lösten Systemen nicht handhabbar. Alternativ können die Dimmwerte hoch aufgelöster
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Systeme durch Texturen mit nur einem Farbkanal beschrieben werden. Die Farbwerte der
einzelnen Pixel entsprechen in diesem Fall den Dimmwerten der Lichtquellen. Es ergeben
sich zusammengefasst index- und texturbasierte Methoden zur Vorgabe der Dimmwerte.

system anlegen
Scheinwerfer-

einlesen
CIE-Datei

extrahieren
Meta-Daten

angelegt?
Scheinwerfer Nein

anlegen
ScheinwerferJa

angelegt?
Gruppe Nein

anlegen
GruppeJa

anlegen
Lichtquelle

anlegen
RGB-Matrix

aktualisieren
Gruppendaten

aktualisieren
SW-Daten

speichern
Konfiguration

nä
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e
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at

ei

Laufzeitoptimierung

Scheinwerfersystem
Bezeichner: HD84
Spektral: Ja
Dimmvorgabe: Index
...

Scheinwerfer

ID: FL
#Gruppen: 4
[
¯
ϕ, ϕ̄]: [−90◦, 90◦]

[
¯
θ, θ̄]: [−30◦, 15◦]

M∑: 1000
N∑: 3600

Scheinwerfer

ID: FR
#Gruppen: 4
[
¯
ϕ, ϕ̄]: [−90◦, 90◦]

[
¯
θ, θ̄]: [−30◦, 15◦]

M∑: 1000
N∑: 3600

Gruppe

ID: 0
Bezeichner: Matrix
#Lichtquellen: 84
[
¯
ϕ, ϕ̄]: [−25◦, 25◦]

[
¯
θ, θ̄]: [−6◦, 6◦]

Mg: 240
...

Gruppe

ID: 1
Bezeichner: Vorfeld
#Lichtquellen: 4
[
¯
ϕ, ϕ̄]: [−90◦, 90◦]

[
¯
θ, θ̄]: [−30◦, 15◦]

Mg: 1000
...

Lichtquelle

ID: 0
Bezeichner: LED_01
[
¯
ϕ, ϕ̄]: [−25◦, 25◦]

[
¯
θ, θ̄]: [−6◦, 6◦]

Mk: 240
...
RGBY-Textur

Bild 6-4: Import des Datensatzes eines HD-Scheinwerfersystems.

Nachdem das Scheinwerfersystem als logische Kapsel für die nachfolgenden Daten vor-
handen ist, wird die erste CIE-Datei im ausgewählten Ordner eingelesen. Für das End-
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ergebnis ist es unerheblich, in welcher Reihenfolge die CIE-Dateien eingelesen werden.
Aus der Datei werden zunächst die Meta-Daten extrahiert. Aus dem Dateinamen geht die
Scheinwerferzugehörigkeit und der Index, welcher den Bezug zum Dimmwert in späteren
Simulationen herstellt, hervor. Je nach Datensatz kann die Gruppenzugehörigkeit eben-
falls aus dem Dateinamen oder dem vermessenen Winkelbereich abgeleitet werden. Die
Einteilung der Pixellichtquellen in Gruppen ist nicht zwingend erforderlich. Abhängig
vom Scheinwerfersystem kann sie die Geschwindigkeit des Renderings jedoch erheblich
verbessern. Bei der Gruppierung wird ausgenutzt, dass sämtliche Lichtquellen des HD-
Moduls in der Regel innerhalb eines Winkelbereichs wirken, der wesentlich kleiner als
der gesamte Wirkbereich des Scheinwerfers ist. Es führt deshalb zu einer erhöhten Effizi-
enz, erst in einem reduzierten Winkelbereich die Gesamtlichtverteilung des HD-Moduls
zu berechnen, bevor diese mit den übrigen Lichtquellen zur Gesamtlichtverteilung des
Scheinwerfers zusammengeführt wird.

Anschließend wird geprüft, ob der Scheinwerfer oder die Gruppe, die der gerade verarbei-
teten Lichtquelle zuzuordnen sind, bereits angelegt wurden. Das ist der Fall, wenn zuvor
verarbeitete Lichtquellen zum gleichen Scheinwerfer oder zur gleichen Gruppe gehörten.
Sind diese Datenstrukturen bisher nicht vorhanden, werden sie neu angelegt. Im anderen
Fall wird die Lichtquelle in der in Bild 6-4 als Baum organisierten Datenstruktur an der
richtigen Stelle eingeordnet.

Das logische Abbild der Lichtquelle enthält neben der eigentlichen Lichtverteilung weitere
Daten. Zur Identifikation wird jede LED durch einen Bezeichner gekennzeichnet, welcher
aus dem Dateinamen abgeleitet wird. Parallel dazu trägt die Lichtquelle zur technischen
Identifizierung eine ID. Diese ID ist maßgeblich, um die zeitveränderlichen Dimmwerte
korrekt auf die Lichtquellen zuzuweisen. Sie ist nicht nur innerhalb der Gruppe, sondern
für das gesamte Scheinwerfersystem eindeutig. Weitere wesentliche Informationen sind die
horizontalen und vertikalen Winkelbereiche [

¯
ϕ, ϕ̄] und [

¯
θ, θ̄], in denen die Lichtquelle ver-

messen wurde. Gemeinsam mit der Zeilen- und Spaltenzahl (Vgl. Mk und Nk in Abschnitt
6.2.2) ergibt sich die Auflösung der Lichtverteilung.

Die Einzellichtverteilung wird formal bereits in Abschnitt 6.2.1 als bereichsweise definierte
Matrix Lk eingeführt. Der Index k korrespondiert mit der bereits angesprochenen ID. Da-
tentechnisch wird die Lichtverteilung als Textur mit vier Farbkanälen pro Texel abgebildet.
Hierbei enthalten die ersten drei Kanäle die Farbe im spezifizierten Zielfarbraum (meist
sRGB). Der vierte Kanal beinhaltet die Lichtstärke (Y-Koordinate des Quellfarbraums
CIE-XYZ). Diese Information, welche an späterer Stelle benötigt wird, kann auch aus dem
RGB-Wert ermittelt werden. Dennoch wird sie zur Laufzeitoptimierung redundant in der
Textur vorgehalten. Fortlaufend werden die so strukturierten Farbkanäle durch das Kürzel
„RGBY“ referenziert. Die RGBY-Textur enthält Mk-viele Zeilen und Nk-viele Spalten. So
können die Daten der Lichtverteilung verlustfrei abgebildet werden.

Das Hinzufügen einer Lichtquelle erfordert die Aktualisierung der übergeordneten Gruppe
und des Scheinwerfers. Innerhalb der Gruppe wird die Anzahl der enthaltenen Lichtquellen
inkrementiert. Sofern erforderlich werden der Winkelbereich sowie die Dimensionen Mg

und Ng der Gruppe vergrößert. Gleiches gilt für den Scheinwerfer.

Im Anschluss wird das beschriebene Vorgehen für die nächste CIE-Datei wiederholt. Diese
Iteration terminiert, nachdem alle CIE-Dateien des Scheinwerfersystems durchlaufen
wurden. Ist das der Fall, gibt die baumartige Datenstruktur aus Bild 6-4 den Datensatz des



188 6 Rendering von HD-Scheinwerferlicht

Scheinwerfersystems vollständig wieder. Im finalen Schritt der Datenvorbereitung wird der
gewonnene Datensatz gesichert. Hierbei kann zwischen der logischen Strukturierung samt
der Metadaten und den Lichtverteilungsdaten in Form der RGBY-Texturen unterschieden
werden.

Die erstgenannten Informationen werden mittels JavaScript Object Notation (JSON) durch
eine textbasierte Datei gesichert. Bei JSON handelt es sich um eine gut lesbare und
komfortable Variante zur Serialisierung und Deserialisierung strukturierter Daten. JSON ist
in den Standards [ISO01] und [ECMA01] dokumentiert. Im Vergleich zu XML (Extensible
Marup Language)-basierten Dateien überzeugt JSON durch die besonders kompakte
Darstellung und die bessere Unterstützung komplexerer Datentypen. Die RGBY-Texturen
werden hingegen binär codiert gespeichert. Auf diese Weise sind sie kompakt und können
schneller gespeichert und geladen werden. Die textbasierte Einsehbarkeit bringt aufgrund
der hohen Datenmenge ohnehin keinen Vorteil.

Hiermit ist der Import-Vorgang eines Scheinwerferdatensatzes vollständig abgeschlossen.
Die gewonnenen Daten sind gesichert. Auf sie kann jederzeit zurückgegriffen werden. An
die Datenvorbereitung schließt sich die Datenoptimierung an.

Datenoptimierung

Die Echtzeitanforderung A6 ist kritisch für die Qualität der Nachtfahrtsimulation. Sie sollte
unter allen Umständen eingehalten werden. Um Echtzeitfähigkeit gewährleisten zu können,
wird die im Abschnitt 6.2.3 vorgestellte Datenbasis im Rahmen eines Preprocessings
so aufbereitet, dass die Laufzeitberechnungen mit minimalem Aufwand durchgeführt
werden können. Die Datenoptimierung muss für jedes zu simulierende Scheinwerfersystem
nur einmalig durchgeführt werden. Die aufbereiteten Daten stehen anschließend für die
Simulation zur Verfügung.

Anhand von Pseudocode soll das Vorgehen beim Preprocessing erläutert werden. Der
Algorithmus 3 organisiert die Datenoptimierung auf oberster Ebene. Eingang des Algo-
rithmus stellen die importierten Daten dar, welche im Pseudocode durch den Parameter
headlampSystem bezeichnet sind. Diese umfassen sowohl die Datenstruktur entsprechend
Bild 6-4 als auch die RGBY-Matrizen als datentechnische Abbildungen der einzelnen
Lichtverteilungen. Wie aus den geschachtelten Iterationen in Algorithmus 3 hervorgeht,
werden die Daten des Scheinwerfersystems gruppenweise verarbeitet. Algorithmisch spielt
es keine Rolle, ob die derzeit bearbeitete Gruppe zum linken oder rechten Scheinwerfer
gehört. Gleichwohl ist diese Information bei den späteren Laufzeitberechnung relevant
und kann aus den Metadaten extrahiert werden.

Für jede Gruppe von Lichtquellen wird in Zeile 6 der Algorithmus 4 aufgerufen. Seine
Aufgabe ist es, die Daten ausgabeorientiert umzustrukturieren. Hiermit ist gemeint, dass
die Daten in eine Struktur gebracht werden, welche ideal zur Ermittlung der Gesamt-
lichtverteilung gestaltet ist. Bisher sind alle Einzellichtverteilungen separiert voneinander
dargestellt. Stattdessen soll nun die Komposition einzelner Einträge aus verschiedenen
Einzellichtverteilungen zum jeweiligen Pixel der Gesamtlichtverteilung maßgeblich für
die Strukturierung sein. Im Bild 6-5 wird beispielhaft dargestellt, wie ein Pixel der Grup-
penlichtverteilung (weißes Kästchen im oberen Teil von Bild 6-5) durch drei verschiedene
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Algorithm 3 Preprocess Headlampsystem
1: require: headlampS ystem as Datastructure like Fig. 6-4
2: function preprocessHeadlampSystem(headlampS ystem)
3: local variables: reorganizedData as Set of Datastructures, bu f f erdData as Set

of Buffers
4: for all Headlamp lamp in headlampS ystem do
5: for all Group group in lamp do
6: reorganizedData← reorganizeGroupdata(group)
7: bu f f eredData← createBu f f ers(reorganizedData)
8: saveToDisk(bu f f eredData)
9: end for

10: end for
11: end function

Einzellichtverteilungen (LED X, Y und Z) entsteht. Die relevanten Pixel in den Einzel-
lichtverteilungen (weiße Kästchen im unteren Teil von Bild 6-5) liegen abhängig vom
vermessenen Winkelbereich an verschiedenen Positionen.

Gruppenlichtverteilung
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en

LED X LED Y LED Z

Bild 6-5: Komposition der Einzellichtverteilungen zur Gruppenlichtverteilung.

In Form des Parameters group erhält der Algorithmus 4 alle Daten, welche die aktuelle
Gruppe und die in ihr enthaltenen Lichtquellen betreffen. Der Algorithmus iteriert über alle
Einzellichtquellen innerhalb der Gruppe (Zeile 6). Die Zeilen- und Spaltenzahlen aus der
Datenstruktur nach Bild 6-4 bestimmen die Größe der Gesamtlichtverteilung dieser Gruppe.
Abhängig von den Winkelbereichen der einzelnen Lichtquellen sind diese gegebenenfalls
nur in einem Teilbereich der Gruppenlichtverteilung vermessen. Deshalb wird durch die
Funktion calcO f f set der Versatz der Einzellichtverteilung zur Gruppenlichtverteilung
entsprechend der bereichsweisen Matrizenaddition ermittelt. Unter der getroffenen An-
nahme eines einheitlichen Diskretisierungsrasters und der bekannten Winkelbereiche der
Einzellichtverteilung und der Gruppenlichtverteilung ist diese Berechnung einfach möglich.
calcO f f set gibt dementsprechend einen 2-elementigen Vektor mit positiven und ganzzah-
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Algorithm 4 Reorganize Groupdata
1: require: group as Datastructure like Fig. 6-4, minLumIntens ∈ R lowest considered

Luminous Intensity
2: function reorganizeGroupdata(group, minLumIntens)
3: local variables: totalS rcPixel ∈ N, trgLocList as List of N2, pixelO f f set ∈
N2, trgLoc ∈ N2, srcRGBYAtTrg as Dictionary from N2 to List of R4,
srcIDAtTrg as Dictionary from N2 to List of N

4: totalS rcPixel← 0
5: trgLocList ← ∅
6: for all Light light in group do
7: pixelO f f set ← calcO f f set(light.angleBounds, group.angleBounds)
8: for m = 1 to light.M do
9: for n = 1 to light.N do

10: trgLoc.m← pixelO f f set.m + m
11: trgLoc.n← pixelO f f set.n + n
12: if light.RGBYMat(m,n).Y > minLumIntens then
13: totalS rcPixel + +

14: if trgLoc < trgLocList then
15: trgLocList.Add(trgLoc)
16: srcRGBYAtTrg(trgLoc)← new empty List
17: srcIDAtTrg(trgLoc)← new empty List
18: end if
19: srcRGBYAtTrg(trgLoc).Add(light.RGBY Mat(m, n))
20: srcIDAtTrg(trgLoc).Add(light.ID)
21: end if
22: end for
23: end for
24: end for
25: result ← totalS rcPixel, trgLocList, srcRGBYAtTrg, srcIDAtTrg
26: return result
27: end function
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ligen Einträgen zurück, welcher durch die Variable pixelO f f set für die Berechnungszeit
der aktuellen Lichtquelle light gesichert wird.

Anschließend wird durch verschachtelte Iteration durch alle Pixel der aktuellen Einzel-
lichtverteilung light iteriert. Für jedes Pixel wird der Schleifenrumpf von Zeile 10 bis
25 durchlaufen. Im ersten Schritt wird die Entsprechung des aktuellen Pixels der Einzel-
lichtverteilung innerhalb der Gruppenlichtverteilung ermittelt. Die korrekte Zuordnung
ist dann gegeben, wenn beide Pixel dem gleichen Winkelpaar (θ, ϕ) entsprechen. Diese
Koordinatentransformation von der Einzellichtverteilung in die Gruppenlichtverteilung
kann durch die Addition des zuvor berechneten pixelO f f set auf die Koordinaten m und
n des Pixels geleistet werden. Die Lage des Pixels in der Gruppenlichtverteilung wird
durch die Variable trgLoc (Zielposition) gesichert. Der Lichteintrag des Pixels wird aus
der RGBY-Matrix an den Koordinaten (m, n) ausgelesen und stellt einen Vektor mit vier
Einträgen dar.

Im nächsten Schritt wird überprüft, ob die Lichtstärke light.RGBY Mat(m, n).Y der Licht-
quelle light in der gerade betrachteten Richtung (m, n) einen konfigurierbaren Schwellwert
minLumIntens überschreitet (s. Bild 6-3). Durch das Setzen dieses Schwellwerts können
Effekte durch Messrauschen und die Datenmenge reduziert werden. Ist diese Reduktion
nicht gewünscht, wählt man minLumIntens = 0. Lichtstärkewerte, welche die in Zeile 13
definierte Bedingung nicht erfüllen, führen zum direkten Übergang zum nächsten Pixel der
Einzellichtverteilung und werden nicht weiter berücksichtigt.

Erfüllt light.RGBY Mat(m, n).Y hingegen die Bedingung, ist der Beitrag relevant für die
Gruppenlichtverteilung und muss datentechnisch abgebildet werden. In diesem Fall wird
zunächst der Zähler totalSrcPixel inkrementiert, welcher die Anzahl aller Pixel aus Einzel-
lichtverteilungen zählt, die einen Beitrag zur Gruppenlichtverteilung leisten. Der weiterfüh-
rende Ablauf hängt davon ab, ob ein zuvor verarbeitetes Pixel einer anderen Einzellichtver-
teilung bereits einen Beitrag zum Pixel an der Position trgLoc in der Gruppenlichtverteilung
geleistet hat.

Ist das nicht der Fall, so wird das Pixel der Gruppenlichtverteilung mit seiner Position
trgLoc in die Liste trgLocList aufgenommen. Zusätzlich werden für das Pixel der Grup-
penlichtverteilung die Listen srcRGBYAtTrg(trgLoc) und srcIDAtTrg(trgLoc) angelegt.
srcRGBYAtTrg(trgLoc) erhält mit light.RGBYMat(m,n) den ersten Eintrag. Genauso erhält
die Liste srcIDAtTrg(trgLoc) mit der ID der aktuell betrachteten Lichtquelle ihren ersten
Eintrag. Die Reihenfolgen innerhalb der Listen müssen erhalten bleiben, um eine spätere
Zuordnung der IDs zu den Lichteinträgen gewährleisten zu können.

Im anderen Fall wurde das Pixel trgLoc der Gruppenlichtverteilung schon vorher durch
einen Pixel einer Einzellichtverteilung getroffen. Insofern existiert der Eintrag trgLoc in
trgLocList und die Listen srcRGBYAtTrg(trgLoc) und srcIDAtTrg(trgLoc) wurden bereits
angelegt. Es genügt dann, den Lichteintrag des gerade betrachteten Pixels der Einzellicht-
verteilung und deren ID in die entsprechenden Listen aufzunehmen.

Wurde das beschriebene Verfahren durchlaufen, enthalten der Zähler totalSrcPixel, die Liste
trgLocList sowie die Listensammlungen srcRGBYAtTrg und srcIDAtTrg alle Informationen,
die für den weiteren Ablauf benötigt werden. Es sei angemerkt, dass trgLocList nicht
zwangsläufig alle Pixel der Gruppenlichtverteilung beinhalten muss. Wird ein Pixel der
Gruppenlichtverteilung nicht durch mindestens ein Pixel einer Einzellichtverteilung, dessen
Lichteintrag den Schwellwert minLumIntens überschreitet, erfasst, findet dieses Pixel im
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weiteren Verlauf keine Berücksichtigung mehr. Das ist wünschenswert, da es keinen
Beitrag zur Gruppenlichtverteilung leistet.

Im Anschluss an die Reorganisation der Daten ruft der übergeordnete Algorithmus 3 den
Algorithmus 5 auf. Dessen Aufgabe ist es, die ausgabeorientierten Daten in eine Struktur
zu überführen, durch welche die Gruppenlichtverteilung zur Laufzeit mit bestmöglicher
Effizienz berechnet werden kann. Neben der Pseudocode-Darstellung wird das zugrunde
liegende Prinzip des Algorithmus 5 in Bild 6-6 grafisch visualisiert.

Algorithm 5 Create Buffers

1: require: totalS rcPixel ∈ N, trgLocList as List of N2,
srcRGBYAtTrg as Dictionary from N2 to List of R4,
srcIDAtTrg as Dictionary from N2 to List of N

2: function createBuffers(totalS rcPixel, trgLocList, srcRGBYAtTrg, srcIDAtTrg)
3: local variables: totalTrgPixel ∈ N, trgBu f f er as Buffer of N4,

srcRGBYBu f f er as Buffer of R4, srcIDBu f f er as Buffer of N,
srcBu f f erO f f set ∈ N, trgLoc ∈ N2, srcPixelAtTrg ∈ N

4: totalTrgPixel← count(trgLocList)
5: trgBu f f er ← newBu f f er(Type : N4, S ize : totalTrgPixel)
6: srcRGBYBu f f er ← newBu f f er(Type : R4, S ize : totalS rcPixel)
7: srcIDBu f f er ← newBu f f er(Type : N, S ize : totalS rcPixel)
8: srcBu f f erO f f set ← 1
9: for i = 1 to totalTrgPixel do

10: trgLoc← trgLocList[i]
11: srcPixelAtTrg← count(srcRGBYAtTrg(trgLoc))
12: trgBu f f er[i]← (trgLoc, srcBu f f erO f f set, srcPixelAtTrg)
13: for j = 1 to srcPixelAtTrg do
14: srcRGBYBu f f er[srcBu f f erO f f set]← srcRGBYAtTrg(trgLoc)[ j]
15: srcIDBu f f er[srcBu f f erO f f set]← srcIDAtTrg(trgLoc)[ j]
16: srcBu f f erO f f set + +

17: end for
18: end for
19: return trgBu f f er, srcRGBYBu f f er, srcIDBu f f er
20: end function

Als Eingangsparameter erwartet Algorithmus 5 die Rückgabe des zuvor ausgeführten Algo-
rithmus 4. Die diskretisierte Gruppenlichtverteilung wird in Bild 6-6 oben links dargestellt.
Jeder Kasten repräsentiert einen Pixel. Die x- und y-Koordinaten dieser Pixel sind in der
Liste trgLocList enthalten, sofern mindestens eine Einzellichtverteilung einen Lichteintrag
an diesem Pixel der Gruppenlichtverteilung aufweist. Rechts im Bild 6-6 sind beispielhaft
die Listen der Lichteinträge (srcRGBYAtTrg) und der Lichtquellen-IDs (srcIDAtTrg) für
drei Pixel der Gruppenlichtverteilung dargestellt. Die Gruppenlichtverteilung am Koordi-
natenpaar (1, 1) wird durch die Einzellichtquellen mit den IDs 1, 2 und 4 bestimmt. Dabei
hat die Lichtquelle mit ID 1 bei voller Bestromung einen Eintrag von val1, die Lichtquelle
mit ID 2 einen Eintrag von val2 und die Lichtquelle mit ID 4 einen Eintrag von val3. Die
übrigen Lichtquellen nehmen auf die Koordinaten (1, 1) keinen Einfluss. Das Koordinaten-
paar (1, 2) wird hingegen durch keine Lichtquelle beeinflusst. Dem entsprechend sind die
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Listen srcRGBYAtTrg(1,2) und srcIDAtTrg(1,2) leer. Als abschließendes Beispiel wird das
Koordinatenpaar (1, 3) der Gruppenlichtverteilung durch fünf Einzellichtquellen mit den
IDs 2, 3, 4, 6 und 7 beeinflusst.

Gruppenlichtverteilung

y-
D

im
en

si
on

x-Dimension

ID RGBY

1
2
4

val1
val2
val3

ID RGBY

— —
ID RGBY

2
3
4
6
7

val4
val5
val6
val7
val8

trgBu f f er 1 1 1 3 3 1 4 5 4 1 9 2 ...

srcRGBYBu f f er val1 val2 val3 val4 val5 val6 val7 val8 ...

srcIDBu f f er 1 2 4 2 3 4 6 7 ...

Bild 6-6: Komposition von Einzellichtverteilungen zur Gesamtlichtverteilung durch lineare
Buffer.

Algorithmus 5 iteriert nun über alle Koordinaten der Liste trgLocList und somit über alle
Pixel der Gruppenlichtverteilung, die durch mindestens eine Lichtquelle ausgeleuchtet
werden. Bei der Iteration befüllt der Algorithmus die Buffer trgBuffer, srcRGBYBuffer
und srcIDBuffer, welche initial leer sind. Sie werden im unteren Bereich von Bild 6-6
dargestellt. In der äußeren Schleife wird der Buffer trgBuffer beschrieben. Seine Länge
korreliert mit der Anzahl der Einträge in trgLocList. Für jedes Koordinatenpaar trgLoc in
trgLocList werden in trgBuffer vier Werte gespeichert. Die ersten beiden Werte stellen die
Koordinaten trgLoc selbst dar. Der dritte Wert srcBufferOffset gibt die Adresse an, an der
die übrigen Buffer ausgelesen werden müssen, um die für das aktuell betrachtete Pixel
relevanten Werte zu erhalten. Der vierte Wert srcPixelAtTrg gibt an, wie viele Werte ange-
fangen von srcBufferOffset sich auf das aktuelle Pixel beziehen. srcPixelAtTrg entspricht
der Anzahl von Lichtquellen, die an der Koordinate trgLoc auf die Gruppenlichtverteilung
Einfluss nehmen. In der inneren Schleife werden die Buffer srcRGBYBuffer und srcID-
Buffer beschrieben. srcRGBYBuffer und srcIDBuffer weisen konstruktionsbedingt stets
die gleichen Längen auf. Nach jedem neuen Eintrag in diese Buffer wird die Zählvariable
srcBufferOffset inkrementiert. So ist der Buffer-Offset für srcIDBuffer und srcRGBYBuffer
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bei der Verarbeitung des nächsten Koordinatenpaars in trgLocList bekannt. In Bild 6-6 sind
die semantisch zusammenhängenden Buffereinträge durch verlängerte vertikale Linien
gruppiert. Während trgBuffer stets Gruppen aus vier Elementen beinhaltet, variieren die
Gruppengrößen der anderen Buffer mit dem Koordinatenpaar. Im Beispiel aus Bild 6-6
führt das Pixel mit den Koordinaten (1, 1) innerhalb der Gruppenlichtverteilung zu jeweils
3 Einträgen in srcRGBYBuffer und srcIDBuffer. Da es das erste verarbeitete Koordinaten-
paar darstellt, wird in trgBuffer der Buffer-Offset 1 eingetragen. Der nachfolgende Wert
3 gibt an, dass beginnend bei Index 1 ingesamt 3 Werte der Buffer srcRGBYBuffer und
srcIDBuffer auf das Pixel mit den Koordinaten (1, 1) Bezug nehmen. Die RGBY-Werte
und die IDs der Einzellichtquellen finden sich entsprechend der visualisierten Tabelle im
oberen rechten Bereich des Bilds 6-6 in den Buffern srcRGBYBuffer und srcIDBuffer. Im
Beispiel wird das Pixel mit den Koordinaten (2, 1) durch keine Einzellichtquelle beeinflusst.
Es findet sich deshalb in der Buffer-Struktur nicht wieder. Stattdessen schließen sich die
Daten zu dem Pixel mit den Koordinaten (3, 1) an.

Der Algorithmus terminiert, nachdem alle Pixel der Gruppenlichtverteilung (trgLocList),
die den Schwellwert der Lichtstärke überschreiten, durchlaufen worden sind. Anschließend
werden die Inhalte der vorher komplexen Datenstruktur durch drei eindimensionale Buffer
wiedergegeben. Wie sich nachfolgend zeigen wird, ist diese ausgabeorientierte Umstruktu-
rierung mit einem erheblichen Performancegewinn der kritischen Laufzeitberechnungen
verbunden.

Initialisierung

In den vorhergehenden Unterabschnitten werden die notwendigen Schritte zur Vorbereitung
eines Scheinwerfersystems für die Nachtfahrtsimulation beschrieben. Diese Arbeitsschritte
erfolgen einmalig für das jeweilige System, sodass die resultierenden Daten anschließend
für die Simulation zur Verfügung stehen. In diesem Unterabschnitt werden die Abläufe
thematisiert, welche zu Beginn jeder Simulation erforderlich sind. Durch sie wird der
erforderlich Kontext für die Laufzeitberechnungen erzeugt.

Im Rahmen der Offline-Parametrierung wählt der Anwender das zu simulierende Schein-
werfersystem aus. Die Identifikation des Systems erfolgt durch die Bezeichnung, welche
beim Import des Scheinwerferdatensatzes vergeben wurde. Zu Beginn der Simulation
wird der Szenengraph erzeugt, welcher das Egofahrzeug und die hierarchisch darunter
angeordnete, in Abschnitt 5.4.3 diskutierte, Struktur für das Scheinwerfersystem beinhaltet.
Jeder Scheinwerfer innerhalb der Szene enthält ein Headlamp-Script. Das Headlamp-Script
beinhaltet wiederum eine Instanz der Klasse „Combiner“. Die Bestimmung der Gesamt-
lichtverteilung geschieht exklusiv in dieser Klasse. Mit dem Simulationsbeginn durchläuft
der Combiner den in Bild 6-7 als Flussdiagramm visualisierten Vorgang, welcher den
datentechnischen Kontext für die Laufzeitberechnungen generiert. Diese Schritte werden
für jeden Scheinwerfer durchlaufen.

Zunächst werden die Daten der ersten Gruppe des jeweiligen Scheinwerfers geladen. Hier-
zu gehören zum einen die optimierten Buffer als Ergebnis des Algorithmus 5 und zum
anderen die Metadaten der Gruppen, wie sie in der Baumstruktur des Bilds 6-4 visualisiert
werden. Da die Bestimmung der Gesamtlichtverteilung durch einen hochgradig parallelen
Ansatz auf dem Grafikprozessor erfolgen soll, werden nun die Buffer in Form sogenannter
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Bild 6-7: Initialisierung des Combiners.

Computebuffer auf den Grafikspeicher transferiert. Vorbereitend werden dafür entspre-
chende Computebuffer mit der richtigen Länge und den erforderlichen Datentypen erzeugt.
Anschließend werden die Daten der Buffer trgBuffer, srcRGBYBuffer und srcIDBuffer in
die Computebuffer des Grafikspeichers kopiert. Zusätzlich wird ein vierter Buffer dim-
ValBuffer erzeugt. Dessen Länge entspricht der Anzahl von Lichtquellen innerhalb der
aktuellen Gruppe. Die Daten dieses Buffers sind Fließkommawerte, welche im Intervall
[0, 1] liegen. Dieser Buffer dient zur Aufnahme der momentanen Dimmwerte. Er kann
zum jetzigen Zeitpunkt nicht mit Daten befüllt werden, da die Dimmwerte zeitlichen
Änderungen unterliegen und im Verlauf der Simulation permanent angepasst werden
müssen. Schließlich wird die Zieltextur der aktuellen Gruppe initialisiert. Ihre Größe ist
entsprechend der Zeilen- und Spaltenzahl der Gruppe zu wählen (s. Bild 6-4).

Dieses Verfahren wird für alle Gruppen des Scheinwerfers wiederholt. Die Zieltexturen der
Gruppen werden in einer Liste mit der Bezeichnung groupTextures gesammelt. Nachdem
alle Gruppen durchlaufen wurden, wird abschließend die Zieltextur für die Gesamtlicht-
verteilung erzeugt. Ihre Größe entspricht der x- und y-Dimension des Scheinwerfers. Sie
trägt den Namen L∑. Sowohl die Gruppen- als auch die Gesamtzieltexturen beinhalten
Elemente aus der Menge R4, da es sich um Summen von RGBY-Vektoren handelt.
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Laufzeitberechnungen

Nach der vollständigen Initialisierung der Simulation beginnt ein sich stetig wiederholender
Berechnungszyklus. In kurzen Zeitschritten wird der Zustand des eigenen Fahrzeugs
und der übrigen Umgebung angepasst. Die sich verändernden Simulationszustände und
Fahreingaben führen auch zu neuen Dimmwertvorgaben des Scheinwerfersteuergeräts.
Dementsprechend unterliegen sie permanenten zeitlichen Änderungen und können erst
zur Laufzeit einfließen. In diesem Abschnitt wird beschrieben, wie die Dimmwerte und
die bereits beschriebenen, statischen Buffer zur Gesamtlichtverteilung kombiniert werden.
Formal wird die Gleichung (6-7) gelöst. Zur möglichst zeiteffizienten Lösung wird dazu
ein hochgradig paralleler Ansatz gewählt, welcher ausgeführt auf den vielen Rechenkernen
des Grafikprozessors innerhalb kürzester Zeit zur Gesamtlichtverteilung führt.

Die Berechnung der Gesamtlichtverteilung erfolgt zweistufig. Im ersten Schritt werden
die Gruppenlichtverteilungen für alle Gruppen des Scheinwerfersystems ermittelt. Nach-
folgend werden die Gruppenlichtverteilungen zur Gesamtlichtverteilung aggregiert. Auch
wenn die wesentlichen Berechnungen auf der GPU durchgeführt werden, dirigiert die
CPU sämtliche Abläufe. Der entsprechende Code zur Koordination der Berechnung ist
als Methode „combine“ in der Klasse „Combiner“ verankert. Der Pseudocode 6 gibt die
wesentlichen Inhalte wieder.

Algorithm 6 Combine - Script-Component „Combiner“

1: require: headlampS ystem as Datastructure like Fig. 6-4, dimValues ∈ [0, 1]K ,
groupLightDistList as List of (R4)Mg×Ng

2: function combine(dimValues)
3: local variables: L∑ ∈ (R4)M∑×N∑
4: dimValBu f f er ← asComputeBu f f er(dimValues)
5: for all Group grp ∈ headlampS ystem.groups do
6: trgBu f f er ← grp.trgBu f f er
7: srcRGBYBu f f er ← grp.srcRGBYBu f f er
8: srcIDBu f f er ← grp.srcIDBu f f er
9: groupLightDistList[grp.ID]← dispatch(combineGroup, sizeO f (trgBu f f er)

threadGroupS ize )
10: L∑ ← Blit(groupLightDistList[grp.ID], L∑, combineOverall)
11: end for
12: end function

Ein einleitendes Zurücksetzen der Gesamtlichtverteilung L∑ ist nicht erforderlich, da alle
sich dynamisch ändernden Einträge in jeder Iteration überschrieben werden. Zurückset-
zen bedeutet in diesem Zusammenhang, dass sämtliche RGBY-Einträge der Zieltextur
durch den Nullvektor ersetzt werden. Zuerst werden die Dimmwerte in den dimValBuf-
fer geschrieben, sodass sie dem Grafikprozessor zur Verfügung stehen. Anschließend
wird die Gesamtlichtverteilung gruppenweise ermittelt. Dazu wird über alle Lichtquellen-
Gruppen des Scheinwerfers iteriert. Im Schleifenrumpf ist das initiale Zurücksetzen der
Gruppenlichtverteilung mit dem bereits erwähnten Argument im Kontext der Gesamt-
lichtverteilung nicht erforderlich. Es stehen nun alle Daten auf dem Grafikspeicher bereit,
um die Gruppenlichtverteilung zu ermitteln. In Zeile 9 wird der Computeshader durch
einen dispatch-Befehl gestartet. Neben der Methode combineGroup des Shaders wird als
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zweiter Parameter die Anzahl der Threadgruppen erwartet. Durch diesen wird indirekt
die Größe der Threadgruppen definiert, welche für den Datenaustausch zwischen den
Threads relevant ist. Der hier formulierte Algorithmus wurde bewusst so formuliert, dass
ein Datenaustausch unter den Threads nicht erforderlich ist, da derartige Abhängigkeiten
die Performance erheblich beeinträchtigen können. Vor diesem Hintergrund ist hier die
kleinste empfohlenen Gruppengröße zu wählen. Diese ist von der Grafikhardware abhängig
und liegt häufig bei 32 oder 64 Threads pro Gruppe. Da es eine hardwarespezifische obere
Schranke für die Anzahl der Threadgruppen gibt, muss die Gruppengröße bei sehr hohen
Dimensionen der Gruppenlichtverteilung weiter erhöht werden.

Der Computeshader, dessen Pseudocode im Algorithmus 7 dargestellt ist, wird auf der
GPU ausgeführt. Entsprechend den Parametern des dispatch-Befehls werden genau so
viele nebenläufige Threads gestartet, wie Einträge im trgBuffer vorhanden sind. Jeder
dieser Threads durchläuft den in Algorithmus 7 gezeigten Pseudocode.

Algorithm 7 Group Combiner Shader (Compute)

1: require: instID ∈ N, dimValBu f f er ∈ [0, 1]K , trgBu f f er as Buffer of N4,
srcRGBYBu f f er as Buffer of R4, srcIDBu f f er as Buffer of N, groupLightDist ∈
(R4)Mg×Ng

2: function combineGroup(instID, dimValBu f f er)
3: local variables: trgLoc ∈ N2, srcBu f f erO f f set, srcBu f f erCount ∈ N,

srcVal, tmpVal ∈ R4, srcID ∈ N
4: trgLoc.m← trgBu f f er[instID][1]
5: trgLoc.n← trgBu f f er[instID][2]
6: srcBu f f erO f f set ← trgBu f f er[instID][3]
7: srcBu f f erCount ← trgBu f f er[instID][4]
8: tmpVal← (0, 0, 0, 0)
9: for i = srcBu f f erO f f set to srcBu f f erO f f set + srcBu f f erCount − 1 do

10: srcVal← srcRGBYBu f f er[i]
11: srcID← srcIDBu f f er[i]
12: tmpVal← tmpVal + dimValBu f f er[srcID] · srcVal
13: end for
14: groupLightDist[trgLoc]← tmpVal
15: end function

Die einzige threadspezifische Komponente ist der Parameter instID. Er enthält eine ID,
die eindeutig dem Thread zugewiesen werden kann. Die IDs der Threads werden von
0 an fortlaufend durchnummeriert. Durch diese Information kann sichergestellt werden,
dass die Berechnungen einerseits vollständig und andererseits nicht doppelt erfolgen.
Konkret wird die instID in den Zeilen 4 bis 7 als Index zum Auslesen des trgBuffer
eingesetzt. Jeder Thread berechnet also den RGBY-Vektor für ein Koordinatenpaar trgLoc
der Gruppenlichtverteilung. Die Schreibweise trgBuffer[x][y] meint die y-te Komponente
des x-ten Eintrags aus trgBuffer. Auf die Bedeutung der Komponenten der Vektoren aus
N4 wird bereits in der Beschreibung von Algorithmus 5 ausführlich eingegangen. Durch
die For-Schleife in den Zeilen 9 bis 13 wird über alle Einzellichtquellen iteriert, die
am Koordinatenpaar trgLoc einen Beitrag zur Gruppenlichtverteilung leisten. Im Detail
wird der RGBY-Vektor der Einzellichtverteilung ausgelesen, der für die betrachteten
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Zielkoordinaten relevant ist. Er wird in srcVal gesichert und muss anschließend mit dem
Dimmwert skaliert werden (Zeile 12). Dazu wird die ID srcID der Einzellichtquelle aus
dem srcIDBuffer ausgelesen, welche in Zeile 12 wiederum als Index dient, um den zur
Lichtquelle gehörigen Dimmwert aus dimValBuffer zu erhalten. Das Produkt aus diesem
Dimmwert und dem RGBY-Vektor liefert den momentanen Beitrag der Einzellichtquelle
zum betrachteten Pixel der Gruppenlichtverteilung. Die Beiträge aller Einzellichtquellen
werden in der lokalen Varibale tmpVal summiert. Abschließend wird der aus der Gesamtheit
aller Einzellichtquellen resultierende RGBY-Vektor an das Koordinatenpaar trgLoc der
Gruppenlichtverteilung groupLightDist geschrieben.

Da jeder Thread des Computeshaders den RGBY-Vektor eines Koordinatenpaars trgLoc
der Gruppenlichtverteilung exklusiv ermittelt, ist die Gruppenlichtverteilung nach dem
vollständigen Durchlauf aller Threads vollständig bestimmt.

Die ermittelte Gruppenlichtverteilung wird schließlich durch Zeile 10 des Algorithmus 6
in die Gesamtlichtverteilung des Scheinwerfers integriert. Diese Integration erfolgt durch
einen Blit-Befehl, welcher es ermöglicht, Texturen ohne Bezug zu Geometrien mit der
Grafikpipeline zu rendern. Dazu wird ein geometrisches Primitiv erzeugt, welches das
Renderziel vollständig ausfüllt.

In der hier betrachteten Anwendung ist die Gruppenlichtverteilung die Textur, welche
in die Gesamtlichtverteilung als Renderziel geschrieben wird. Die geeignete Gestaltung
der Vertex und Fragment Shader erlauben die korrekte Integration der Lichtverteilungen.
Der Vertex-Shader wird als Pseudocode in Algorithmus 8 wiedergegeben. Gleichzeitig
veranschaulicht Bild 6-8 die implementierten Vorgänge.

Da das Primitiv durch seine Rechteck-Geometrie aus nur vier Vertices besteht, werden
lediglich vier Threads des im Algorithmus 8 formulierten Vertex-Shaders aufgerufen.
Die vier Vertices sind in Bild 6-8 mit v1, v2, v3 und v4 bezeichnet. Nach der Transforma-
tion in den Clipspace (Zeile 8) haben sie die x- und y-Koordinaten v1 = (−1,−1), v2 =

(1,−1), v3 = (1, 1) und v4 = (−1, 1). Ziel ist es, die Vertices so zu verschieben, dass das
von ihnen beschriebene Rechteck nur den Bereich bedeckt, den die Gruppenlichtvertei-
lung in der Gesamtlichtverteilung beeinflusst. Zuerst wird in Zeile 10 die in Bild 6-8a
dargestellte Koordinatentransformation vorgenommen. Die Gruppenlichtverteilung, wel-
che sich zuvor über den Bereich [−1, 1] × [−1, 1] erstreckte, entspricht nun dem Bereich
[0, 1] × [0, 1]. Entsprechend werden aus den Vertices v1, v2, v3 und v4 die transformierten
Vertices v′1 = (0, 0), v′2 = (1, 0), v′3 = (1, 1) und v′4 = (0, 1). Zur korrekten Beschreibung
des Einflussbereichs der Gruppenlichtverteilung erfolgt in den Zeilen 11 und 12 eine
weitere Verschiebung der Vertices. Diese Verschiebung basiert auf den Winkelgrenzen
der Gruppen- und Gesamtlichtverteilungen in horizontaler und vertikaler Richtung. Auf
Basis dieser Werte lässt sich der Einflussbereich der Gruppenlichtverteilung normiert auf
den Winkelbereich der Gesamtlichtverteilung formulieren. Die Vertices v′′1 , v

′′
2 , v

′′
3 und v′′4

in Bild 6-8b geben die Lage der Gruppenlichtverteilung gemäß der Verschiebungsvor-
schrift wieder. Mit Zeile 13 wird die Koordinatentransformation aus Bild 6-8a rückgängig
gemacht (s. Bild 6-8c). Die Lage und Skalierung der Gruppenlichtverteilung relativ zur
Gesamtlichtverteilung ist damit sichergestellt. Die uv-Koordinaten, die zur Adressierung
der Textur dienen, können übernommen werden, da sie normiert vorliegen. Sie haben die
Werte (0, 0), (1, 0), (1, 1) und (0, 1) und bilden somit die Gruppenlichtverteilung vollständig
auf das transformierte Rechteck ab.
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Algorithm 8 Overall Combiner Shader (Vertex Stage)

1: require: globalBounds ∈ R4, groupBounds ∈ R4

2: function combineOverallVert(vin ∈ R
4, T u, T v ∈ R)

3: local variables: vc, vout ∈ R
4, v, v′, v′′, v′′′ ∈ R2

4: globalWidth← globalBounds.right − globalBounds.le f t
5: globalHeight ← globalBounds.top − globalBounds.down
6: groupWidth← groupBounds.right − groupBounds.le f t
7: groupHeight ← groupBounds.top − groupBounds.down
8: vc ← P · V · M · vin

9: v ←
(
vc.x
vc.y

)
10: v′ ← 0.5 · v +

(
0.5
0.5

)
11: v′′.x← groupBounds.le f t+groupWidth·v′.x−globalBounds.le f t

globalWidth

12: v′′.y← groupBounds.down+groupHeight·v′.y−globalBounds.down
globalHeight

13: v′′′ ← 2 ·
(
v′′ −

(
0.5
0.5

))

14: vout ←


v′′′.x
v′′′.y
vc.z
vc.w


15: return vout, T u, T v
16: end function
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Bild 6-8: Komposition der Gruppenlichtverteilungen durch geometrische Transformationen
in der Vertex-Stufe des Combiner-Shaders.

Schließlich werden der transformierte Positionsvektor vout und die unangetasteten uv-Koor-
dinaten zurückgegeben. Im Rahmen der Rasterung wird das Rechteck in viele Fragmente
diskretisiert. Die uv-Koordinaten werden basierend auf den Werten in den Vertices über alle
Fragmente interpoliert. Es schließt sich der durch den Algorithmus 9 formulierte Fragment-
Shader an. Für jedes Fragment des Rechtecks wird ein Thread des Shaders initiiert.

Der Fragment-Shader liest lediglich für das jeweilige Fragment die Textur groupLightDist,
welche die Gruppenlichtverteilung repräsentiert, an den entsprechenden uv-Koordinaten
aus. Da der Texturzugriff über uv-Koordinaten erfolgt, sind die Werte T u und T v nicht als
Zeilen- und Spaltenindizes, sondern als kontinuierliche Koordinaten zu verstehen. Der in
der Variabeln val gespeicherte RGBY-Vektor ergibt sich also durch die bilineare Interpola-
tion der vier umgebenden Einträge in groupLightDist. Der Fragment Shader gibt val bei
aktivem additiven Blending zurück. So wird der bisherige Wert in der Gesamtlichtvertei-
lung nicht überschrieben, sondern auf den Beitrag der Gruppenlichtverteilung addiert. Ein
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Algorithm 9 Overall Combiner Shader (Fragment Stage)

1: require: Blend Mode: Additive Blending, groupLightDist ∈ (R4)Mg×Ng

2: function combineOverallFrag(T u, T v)
3: local variables: val ∈ R4

4: val← groupLightDist[T u, T v]
5: return val
6: end function

Rücksetzen der Gesamtlichtverteilung darf nur zu Beginn der Lichtberechnung erfolgen
und wird entsprechend durch Algorithmus 6 vorgenommen.

Die vorgestellten Compute-, Vertex- und Fragment-Shader operieren auf allen Gruppen-
lichtverteilungen. Mit dem Terminieren der Schleife in Algorithmus 6 sind die Gruppen-
lichtverteilungen vollständig berücksichtigt worden. Als finales Resultat findet sich die
gesuchte Gesamtlichtverteilung in der Textur L∑ des Algorithmus 6. Sie ist die Basis für
das Rendering der Scheinwerfereinflüsse innerhalb der Szene.

6.2.4 Vorteile der Implementierung

Die vorgestellte Implementierung weicht vom intuitiven Vorgehen ab. Es soll abschließend
aufgezeigt werden, warum dieses Vorgehen sowohl hinsichtlich der Laufzeit als auch des
Speicherbedarfs von Vorteil ist.

Um diesen Vergleich anstellen zu können, muss zunächst definiert werden, wie eine in-
tuitive Implementierung gestaltet sein könnte. Es liegt nahe, sich am mathematischen
Formalismus nach Abschnitt 6.2.2 zu orientieren. Entsprechend Gleichung (6-7) werden
die Lichtverteilungen aller Einzellichtquellen des Scheinwerfers sukzessive addiert und
führen auf diese Weise zur Gesamtlichtverteilung. Auch im Rahmen dieser Arbeit folgte
eine erste Umsetzung nach diesem Prinzip. Dazu können prinzipiell die Vertex- und Frag-
ment-Shader 8 und 9 eingesetzt werden. Eine CPU-seitige Organisation des Ablaufs folgt
dann der in Algorithmus 10 formulierten Logik. Die Einzellichtquellen des Scheinwerfers

Algorithm 10 Intuitive Combine

1: require: headlampS ystem, lightDistList as List of (R4)Mk×Nk , dimValues ∈ [0, 1]K ,
L∑ ∈ (R4)M∑×N∑

2: function intuitiveCombine(dimValues)
3: clear L∑
4: for all Light light ∈ headlampS ystem.lights do
5: IntuitiveCombinerS hader.dimValue← dimValues[light.ID]
6: L∑ ← Blit(lightDistList[light.ID], L∑, IntuitiveCombine)
7: end for
8: end function

werden durch den Intuitive Combiner Shader iterativ zur Gesamtlichtverteilung addiert.
Eine Gruppierung der Lichtquellen findet nicht statt. Ebenso entfällt die in Abschnitt
6.2.3 beschriebene Neustrukturierung der importierten Daten. Der Intuitive Combiner
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Shader weist eine hohe Ähnlichkeit zum Overall Combiner Shader auf. Es handelt sich
ebenfalls um einen Vertex- und einen Fragment-Shader im Kontext der Rendering Pipeline.
Der Vertex-Shader ist nahezu identisch zu Algorithmus 8 und wird deshalb nicht durch
Pseudocode formuliert. Als einziger Unterschied ist zu erwähnen, dass die Variable group-
Bounds anstelle der Winkelgrenzen der Gruppenlichtverteilung die Winkelgrenzen der
Einzellichtverteilung der gerade betrachteten Lichtquelle light beinhalten muss.

Innerhalb des Fragment Shaders sind hingegen Änderungen erforderlich, um eine Berück-
sichtigung des momentanen Dimmwerts zu ermöglichen. In den Gruppenlichtverteilungen
des zuvor präsentierten Verfahrens sind diese bereits inkludiert, da der vorgeschaltete
Compute-Shader sie berücksichtigt. Um die Dimmwerte in der intuitiven Implementie-
rungsvariante einzubeziehen, liest der in Algorithmus 11 formulierte Fragment-Shader
den RGBY-Vektor aus der Lichtverteilung aus und skaliert ihn mit dem momentanen
Dimmwert dimValue der Lichtquelle. Die CPU setzt diesen Dimmwert durch Zeile 5 im
Algorithmus 10, bevor sie den Shader aufruft. Im Übrigen bleibt die Funktionsweise des
Fragment-Shaders ebenfalls nah an Algorithmus 9. Insbesondere muss additives Blending
eingesetzt werden, damit jede neu verarbeitete Lichtquelle die bisherigen Werte innerhalb
der Gesamtlichtverteilung nicht überschreibt, sondern addiert.

Algorithm 11 Intuitive Combiner Shader (Fragment Stage)

1: require: Blend Mode: Additive Blending, lightDist ∈ (R4)Mk×Nk , dimValue ∈ [0, 1]
2: function intuitiveCombineFrag(T u, T v)
3: local variables: val ∈ R4

4: val← dimValue · lightDist[T u, T v]
5: return val
6: end function

Stellt man den intuitiven Ansatz und die Implementierung nach Abschnitt 6.2.3 gegenüber,
ergeben sich prinzipielle Unterschiede, aus welchen die Überlegenheit der hier verwendeten
Lösung resultiert. Sie äußert sich sowohl in einer reduzierten Berechnungsdauer zur
Laufzeit, als auch in einem geringeren Speicherbedarf. Diese Vorteile werden in den
folgenden Unterabschnitten herausgearbeitet.

Komplexität

Zur Erfüllung der Anforderungen A4 (Skalierbarkeit bezüglich der Pixelanzahl) und A6
(Echtzeitfähigkeit und Latenz) ist eine kurze Berechnungsdauer zur Laufzeit von höchster
Priorität. Tests des intuitiven Ansatzes zeigen, dass die Anzahl der Lichtquellen auf wenige
hundert pro Scheinwerfer beschränkt sein muss, um den Anforderungen gerecht zu werden.
Mit Blick auf die modernen Scheinwerfertechnologien (Vgl. Bild 4-1) eignet sich der
intuitive Ansatz lediglich für die Simulation niedrig aufgelöster Matrixsysteme.

Das prinzipbedingte Problem des intuitiven Ansatzes ist seine Eingangssensitivität. Seine
Berechnungsdauer steht in einem proportionalen Verhältnis zu der Anzahl von Lichtquellen
K. Orientiert an Algorithmus 10 ist für jede Lichtquelle ein erneuter Aufruf des Vertex-
und Fragment-Shaders notwendig. Der Aufwand für den Vertex-Shader ist vernachläs-
sigbar, da dieser auf nur vier Vertices pro Einzellichtverteilung operiert. Die Threads des
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Fragment-Shaders richten sich hingegen nach der Auflösung der Gesamtlichtverteilung
M∑ × N∑ und dem Einflussbereich der gerade betrachteten Einzellichtverteilung innerhalb
der Gesamtlichtverteilung. Deshalb entsteht für die Bestimmung der Gesamtlichtverteilung
insgesamt ein Berechnungsaufwand von O(K · M∑ · N∑).

Der in Abschnitt 6.2.3 vorgestellte Ansatz umgeht den linearen Zusammenhang zwischen
der Lichtquellenanzahl K und dem Berechnungsaufwand durch die Umstrukturierung der
Daten gemäß Abschnitt 6.2.3. Da der Import und das Preprocessing des Scheinwerfer-
systems vor der Simulation durchgeführt werden können und nicht für jede Simulation
wiederholt werden müssen, wird die Erfüllung der Anforderungen A4 und A6 nicht gefähr-
det. Die zusätzliche Verarbeitungszeit des Preprocessings stellt somit keinen nennenswerten
Nachteil dar. Vernachlässigt man die Gruppierung der Lichtquellen, ist zur Berechnung der
Gesamtlichtverteilung nur ein Aufruf des Compute-Shaders notwendig. Er ist somit nicht
eingangssensitiv. Es gilt jedoch zu beachten, dass innerhalb des Compute-Shaders eine For-
Schleife implementiert ist. Demzufolge ist die Ausführungsdauer eines einzelnen Threads
nicht konstant. Sie unterliegt der Anzahl von Iterationen der For-Schleife. Diese Anzahl
sei mit Ko bezeichnet und entspricht der maximalen Anzahl von Lichtquellen, die einen
Lichtbeitrag zu dem betrachteten Pixel der Gruppen- bzw. Gesamtlichtverteilung liefern.
Der Berechnungsaufwand des Algorithmus beträgt damit O(Ko · M∑ · N∑). Am Beispiel
des HD84-Systems beträgt Ko im Mittel 2,8. Generell gilt Ko << K. Insbesondere existiert
keine Proportionalität zwischen der Lichtquellenzahl K und dem Wert Ko. Mit wachsendem
K rücken zwar die Ausleuchtungsbereiche benachbarter Lichtquellen enger zusammen.
Gleichzeitig werden sie jedoch kleiner und mit ihnen auch die Überlappungsbereiche. Es
ist somit davon auszugehen, dass der Wert Ko unabhängig von der Lichtquellenzahl durch
eine verhältnismäßig kleine Konstante nach oben abgeschätzt werden kann, womit der
Berechnungsaufwand des Verfahrens auf O(M∑ · N∑) reduziert wird. Der Algorithmus
ist somit ausschließlich ausgabesensitiv. Auf diese Weise ist es dem intuitiven Vorge-
hen mit einem Berechnungsaufwand von O(K · M∑ · N∑) insbesondere hinsichtlich der
Anforderungen A4 und A6 prinzipbedingt überlegen.

Bisher wurde das zweistufige Kombinationsverfahren, das im ersten Schritt Gruppenlicht-
verteilungen und nachgelagert die Gesamtlichtverteilung ermittelt, ausgeblendet. Statt-
dessen wurde angenommen, dass das Scheinwerfersystem aus nur einer Gruppe besteht.
Diese Annahme kann implementiert werden. Die vorherige Gruppierung reduziert den
Rechenaufwand jedoch weiter, indem sie Lichtquellen mit lokaler Zusammengehörigkeit
vorgelagert kombiniert und so die Auflösung M∑ · N∑ der Gesamtlichtverteilung auf den
lokalen Bereich Mg · Ng der Gruppe g verkleinert. Gleichzeitig entsteht neuer Aufwand
durch die anschließende Fusion der Gruppen zur Gesamtlichtverteilung. Zusammenge-
fasst ergibt sich ein Berechnungsaufwand von O(

∑G
g=1 Mg · Ng + G · M∑ · N∑), wobei G

die Anzahl der Gruppen darstellt. Mit Mg < M∑ und Ng < N∑∀g ∈ 1, ...,G kann der
Aufwand durch O(G · M∑ · N∑) abgeschätzt werden. Nimmt man weiterhin an, dass die
Gruppenzahl G durch eine kleine Konstante beschränkt ist, ergibt sich O(M∑ · N∑). Die
Gruppierung der Lichtquellen stellt also keinen prinzipiellen Vorteil dar. Durch die Ge-
staltung der Lichtmodule im Scheinwerfer führt sie in der Praxis dennoch zu deutlichen
Laufzeiteinsparungen.
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Speicherbedarf

Auch hinsichtlich des Speicherbedarfs kann das hier vorgestellte Verfahren deutliche Vor-
teile gegenüber dem intuitiven Ansatz vorweisen. Bei der Abschätzung des erforderlichen
Speichers genügt es, die Lichtverteilungen zu betrachten. Metadaten sind im Vergleich dazu
vernachlässigbar. Der intuitive Ansatz hält sämtliche Lichtverteilungen des Scheinwerfers
voneinander separiert im Speicher vor. Der minimale Speicherbedarf einer Lichtverteilung
Lk ergibt sich aus dessen Auflösung Mk × Nk und der Codierung der Datenpunkte. Jeder
Datenpunkt stellt einen RGBY-Vektor dar, wobei die Einträge als Fließkommazahlen
mit je 4 Byte codiert werden. Es ergibt sich somit eine Speicherbedarf von 16 · Mk · Nk

Byte pro Lichtverteilung. Nimmt man vereinfachend an, dass alle Lichtverteilungen die
gleiche Auflösung und den gleichen Vermessungsbereich vorweisen, ergibt sich mit der
Lichtquellenzahl K ein Speicherbedarf von 16 · M∑ · N∑ · K Byte für einen Scheinwerfer.
Am Beispiel des HD84-Systems mit einer Auflösung von 1000 × 240 und K = 84 werden
für das HD-Modul etwa 308 MiB (1 MiB (Mebibyte) entspricht 220 Byte) benötigt.

Der hier präsentierte Ansatz hält die Lichtverteilungen nicht in ihrer ursprünglichen Form
im Speicher vor. Durch das in Abschnitt 6.2.3 vorgestellte Preprocessing werden die Infor-
mationen aller Lichtverteilungen in wenigen großen Buffern geschickt zusammengeführt.
Insbesondere werden Pixel der Lichtverteilungen, die keinen oder einen vernachlässig-
baren Lichtbeitrag liefern, nicht durch die neue Struktur abgebildet. Maßgeblich für den
Speicherbedarf ist die Anzahl der Pixel aller Einzellichtquellen, die einen Lichtbeitrag
liefern. Um einen fairen Vergleich mit dem intuitiven Ansatz vornehmen zu können, wer-
den nur diejenigen Pixel verworfen, die einen Beitrag von exakt 0 liefern. In anderen
Worten wird der Parameter „minLuminousIntensity“ in Algorithmus 4 auf 0 gesetzt. Am
Beispiel des HD84-Systems existieren über alle Einzellichtquellen hinweg 543.519 Pixel,
die einen Beitrag zur Lichtverteilung leisten. Hieraus können unmittelbar die Größen der
Buffer srcRGBYBuffer und srcIDBuffer ermittelt werden, da sie dementsprechend 543.519
Elemente haben. Elemente des srcRGBYBuffer sind RGBY-Vektoren, wobei jeder Vektor-
eintrag durch 4 Byte (Float) codiert wird. Im srcIDBuffer sind Ganzzahlwerte enthalten,
die ebenfalls durch jeweils 4 Byte (Integer) codiert werden. Es ergibt sich für beide Buffer
somit ein Speicherbedarf von 543.519 · 20 Byte ≈ 10 MiB. Davon entfallen ca. 2 MiB auf
den srcIDBuffer und ca. 8 MiB auf den srcRGBYBuffer.

Die Größe des trgBuffer hängt hingegen von der Anzahl der Pixel in der Gruppen- bzw.
Gesamtlichtverteilung ab, die von mindestens einer Einzellichtquelle einen Lichtbeitrag
erhalten. Am Beispiel des HD84-Systems ist das für 175.575 Pixel der ingesamt 1000 ×
240-Pixel großen Lichtverteilung der Fall. Das entspricht 73,15%. trgBuffer enthält für
jeden der 175.575 Pixel vier Ganzzahlwerte. Es ergibt sich somit ein Speicherbedarf von
175.575 · 16 Byte ≈ 3 MiB für trgBuffer.

In Summe werden für alle Buffer insgesamt etwa 13 MiB benötigt. Das entspricht nur 4,2%
des Speicherbedarfs des intuitiven Ansatzes. Die Einsparungen durch das Preprocessing
sind somit erheblich. Ursächlich hierfür ist vor allem das frühzeitige Verwerfen nicht
relevanter Messpunkte in den Einzel- und Gruppen- bzw. Gesamtlichtverteilungen. Diese
Messpunkte sind zwangsläufig in den Eingangsdaten enthalten, da die Konturen der
Lichtverteilung nicht die Messbereichsgrenzen widerspiegeln. So haben Lichtverteilungen
in der Regel runde oder ovale Geometrien, während die Messbereiche typischerweise eine
rechteckige Gestalt bezüglich der Kugelkoordinaten aufweisen. Hinzu kommt, dass der
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Messbereich bewusst deutlich größer gewählt wird, als es der Ausleuchtungsbereich der
Lichtquelle erfordern würde, um unbeabsichtigtes Streulicht der Lichtquelle, welches zum
Teil in stark abweichende Richtungen abgegeben wird, einzufangen.

6.3 Beleuchtung der Szene

Mit der Gesamtlichtverteilung ist die Charakteristik des Scheinwerferlichts vollständig
beschrieben. Nun muss die Interaktion des Lichts mit der Umgebung modelliert werden.
Aus den in Abschnitt 5.4.3 genannten Gründen kann dazu nicht auf eine existierende Licht-
quelle der Unity-Engine zurückgegriffen werden. Stattdessen wird eine eigene Lichtquelle
in die Engine integriert, deren grundsätzliche Struktur am Spotlicht der Unity-Engine
orientiert ist.

Im nachfolgenden Abschnitt 6.3.1 wird dargestellt, wie die Integration einer selbst im-
plementierten Lichtquelle innerhalb der Unity-Engine und insbesondere der Deferred
Rendering Pipeline gelingt. Daran angeschlossen wird in Abschnitt 6.3.2 das Vorgehen
der Beleuchtungsberechnung innerhalb der Szene thematisiert. Hierbei handelt es sich
zum Großteil um etablierte Konzepte des Deferred Lighting. Da an diversen Stellen Mo-
difikationen vorgenommen wurden, wird der grundsätzliche Ablauf dennoch vollständig
dargestellt.

6.3.1 Integration der Lichtquelle

Im Rahmen des Architekturkapitels 5 wird in Abschnitt 5.4.3 gefolgert, dass im Rahmen
von Hyperion eine neue Lichtquelle zu entwickeln ist, um die Anforderungen bei der
virtuellen Abbildung eines HD-Scheinwerferlichts zu erfüllen. Weiterhin wird argumentiert,
dass die Verwendung der Deferred Rendering Pipeline in Verbindung mit der hohen
Zahl dynamischer Lichtquellen unvermeidbar ist. In der Konsequenz gilt es, ein eigenes
Lichtquellenmodell in die Deferred Rendering Pipeline der Unity-Engine zu integrieren.

Zur Integration eigener Befehlssequenzen innerhalb der Rendering Pipeline sieht Unity
sogenannte Commandbuffer vor [Uni20]. Diese erlauben an verschiedenen Stellen die
Injektion eigener Befehle innerhalb der normalen Befehlsfolge des Renderings. In diesem
Fall ist der Injektionsort „After Lighting“ von besonderem Interesse. In Bild 2-36 wurde
bereits der grobe Ablauf des Deferred Renderings dargestellt. Die Scheinwerferlichtquellen
werden im Anschluss an den Lighting Pass integriert und ebenfalls durch einen Shader mit
Vertex- und Fragment-Stufe implementiert. Dieser Shader wird nachfolgend als Headlamp-
Shader bezeichnet. Das Bild 6-9 stellt die modifizierte Deferred Rendering Pipeline dar.
Über den Ort der Injektion „After Lighting“ wird sicher gestellt, dass der Headlamp-
Shader den gleichen Kontext wie die Buit-In-Shader für die Lichtquellen der Unity-Engine
vorfindet. Auf der einen Seite stehen ihm die Daten aus dem G-Buffer zur Verfügung
und auf der anderen Seite ist sein Rendertarget der Frame-Buffer und somit die finale
Bildschirmausgabe. Der Headlamp-Shader kann somit orientiert an den Built-In-Shadern
implementiert werden. Eine weiterer Vorteil der Integration durch Commandbuffer ist
der Erhalt der Kompatibilität zu den Standard-Lichtquellen der Unity-Engine, welche vor
Beginn des Headlamp-Shaders durchlaufen werden. Der Headlamp-Shader wird einmal pro
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Bild 6-9: Durch Commandbuffer-Injektion modifizierte Deferred Pipeline.

Scheinwerfer ausgeführt. Insofern stellt der zu injizierende Commandbuffer eine Iteration
von Shader-Aufrufen dar. Die Erstellung des Commandbuffers geschieht CPU-seitig und
erfolgt im CustomLight-Skript, welches eine Komponente des jeweiligen Scheinwerfers
innerhalb des Szenengraphen ist (s. Abschnitt 5.4.3). Das Flussdiagramm 6-10 veran-
schaulicht die sich zur Laufzeit stetig wiederholende Erzeugung des Commandbuffers.

Einmalig zu Beginn der Simulation wird das Material für das Rendering des Scheinwerfer-
lichts erzeugt. Dieses beinhaltet die Elemente, welche die Art und Weise des Renderings
einer Geometrie festlegen. Hierzu gehören insbesondere der Headlamp-Shader und die
zuvor bestimmte Gesamtlichtverteilung des Scheinwerfers, aber auch Parameter, wie der
horizontale und vertikale Winkelbereich der Ausleuchtung und die maximale Reichweite
des Scheinwerferlichts.

Nach der Initialisierung beginnt ein sich in jedem Frame wiederholender Ablauf. Wie in
Abschnitt 2.3.3 beschrieben, wird zur Selektion der vom Licht beeinflussten Fragmente
des G-Buffers ein fiktives Lichtvolumen gerendert. Da die optimale Form dieses Licht-
volumens vom Vermessungsbereich des jeweiligen Scheinwerfersystems abhängt, wird
dieses Lichtvolumen in Hyperion prozedural erstellt. Im Bild 6-11 werden die Lichtvolu-
men für drei unterschiedliche Winkelbereiche dargestellt. Dabei sind die Ausrichtungen
der Koordinatensysteme, in deren Ursprung sich die Lichtquelle befindet, spaltenweise
konstant. Weiterhin entspricht die z-Achse der Lichtmittelachse (θ = ϕ = 0◦). Polachse
der Kugelkoordinaten für die Lichtverteilungen ist die y-Achse. Die maximal möglichen
Ausleuchtungswinkelintervalle sind horizontal und vertikal [−90◦, 90◦]. Sie führen zu einer
Halbkugel, wie sie in Bild 6-11a dargestellt ist. In der Variante c wird der asymmetrische
Ausleuchtungsbereich der HD84-Matrix zugrunde gelegt, welcher horizontal den vollen
Messbereich ausschöpft, während sich der vertikale Messbereich über nur 45◦ erstreckt.
Neben den Winkelbereichen kann die Tesselierung vorgegeben werden, welche die An-
zahl der Vertices bestimmt, die zur Approximation der Form verwendet werden. Für den
beschriebenen Zweck ist eine eher grobe Tesselierung ausreichend.
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Bild 6-10: Iterative Erzeugung des Commandbuffers zur Laufzeit.

Um das so gestaltete Lichtvolumen gemäß der beschriebenen Lage zu orientieren, wird
die Transformationsmatrix L vom Licht- in das Weltkoordinatensystem gebildet. Neben
der Translation und Rotation wird die maximale Reichweite der Lichtquelle durch die
gleichmäßige Skalierung des Lichtvolumens entlang aller Achsen bezüglich des Zentrums
x = y = z = 0 in L berücksichtigt. Dieses Vorgehen entspricht einer Anpassung des Kugel-
radius. L unterliegt aufgrund der Fahrzeugbewegung dynamischen Änderungen. Genauso
kann sich die Gesamtlichtverteilung permanent ändern, weshalb sie ebenfalls in jedem
Frame aktualisiert werden muss. Schließlich wird das Rendering des Lichtvolumens durch
den Headlamp-Shader und den im Material spezifizierten Parametern als Anweisung für
die GPU in den „After Lighting“-Commandbuffer geschrieben. Sollten mehrere Kameras
aktiv sein, wird das Rendering für jede Kamera separiert vorgenommen. In diesem Fall
muss der Render-Befehl für jede Kamera injiziert werden. Ausgeführt werden die im
Commandbuffer aufgelisteten Befehle nach dem eigentlichen Lighting-Pass der Unity-
Engine (s. Bild 6-9). Der beschriebene Ablauf wiederholt sich Frame für Frame.

6.3.2 Implementierung

In Abschnitt 6.3.1 wird die Integration der eigenen Lichtquelle zum Rendering von Schein-
werferlicht innerhalb der Deferred Pipeline beschrieben. Dieser Abschnitt thematisiert nun
die Vorgänge innerhalb des Headlamp-Shaders, welcher die Beleuchtung der virtuellen
Szene durch das Scheinwerferlicht implementiert. Entsprechend dem üblichen Vorgehen
im Lighting-Pass der Deferred Pipeline setzt sich der Headlamp-Shader aus Vertex- und
Fragment-Stufe zusammen. Diese werden nachfolgend detailliert erläutert. In Bild 6-12
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Bild 6-11: Prozedural generiertes Lichtvolumen zur optimalen Anpassung an die ho-
rizontalen und vertikalen Winkelbereiche [ϕ, ϕ̄] × [θ, θ̄] der Lichtverteilung
((a) [−90◦, 90◦] × [−90◦, 90◦]; b) [−60◦, 60◦] × [−30◦, 30◦]; c) [−90◦, 90◦] ×
[−30◦, 15◦]).

ist eine stark reduzierte Szene skizziert, welche die nachfolgend verwendeten Größen in
einen bildlichen Zusammenhang stellt und beim Verständnis unterstützen soll.

Die relativen Lagen aller Szenenelemente werden im Weltkoordinatensystem w beschrie-
ben. Das Kamerakoordinatensytem e beschreibt die Elemente der Szene aus Sicht der
Kamera. Das View Frustum, welches das Volumen der sichtbaren Punkte begrenzt, ist in
Bild 6-12 in blau dargestellt (s. Abschnitt 2.3.1). Dabei hat die Near Clipping Plane den
Abstand n und die Far Clipping Plane den Abstand f zur Kamera. Um darüber hinaus die
relevanten geometrischen Größen bei der Anwendung des Beleuchtungsmodells an einem
Objekt der Szene visualisieren zu können, wird in Bild 6-12 beispielhaft ein Zylinder
betrachtet. Er verfügt über das lokale Objektkoordinatensystem m. Im Zentrum des in
gelb skizzierten Lichtvolumens befindet sich die Lichtquelle. Im Lighting-Pass ist dieses
Lichtvolumen mit seinem lokalen Lichtkoordinatensystem l das zu rendernde Objekt. Die
übrige Szene wurde bereits im Base-Pass in den G-Buffer gerendert.
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Bild 6-12: Einfache Szene mit Weltkoordinatensystem w, Kamerakoordinatensystem e,
Lichtkoordinatensystem l und einem beispielhaften Objekt mit dem Objektkoor-
dinatensystem m.

Vertex-Shader

Der Vertex-Shader operiert auf allen Vertices des in Bild 6-11 dargestellten Lichtvolumens,
dessen genaue Gestalt zuvor prozedural generiert wurde. Das Lichtvolumen schlüpft in die
Rolle eines gewöhnlichen Szenenobjekts im Base-Pass. In Bild 6-12 ist das Lichtvolumen
als ideale Halbkugel (Vgl. 6-11a) in gelb dargestellt. Auf diesem wird beispielhaft der
Vertex v′ betrachtet. Gemäß den Abschnitten 2.3.1 und 2.3.2 ist die primäre Aufgabe des
Vertex-Shaders die Transformation der Vertices vom lokalen Koordinatensystem über Welt-
und Kamerakoordinatensystem bis in den Clipspace. Zur Abgrenzung von gewöhnlichen
Szenenobjekten wird die Transformationsmatrix von lokalen ins Weltkoordinatensytem
im Fall des Lichtvolumens mit L (anstelle von M) bezeichnet. Die Gestalt von L wurde
in Abschnitt 6.3.1 bereits diskutiert. Auch wenn das Lichtvolumen im gerenderten Frame
nicht sichtbar sein wird, ist dessen Transformation in den Clipspace notwendig, um das
Volumen zu umreißen, welches potentiell durch die Lichtquelle beeinflusst werden kann.
Durch die nachgelagerte Rasterung wird aus diesem Volumen ein Bereich von Fragmenten,
für welche die Beleuchtungsberechnungen zu vollziehen sind.

Die genauen Berechnungsschritte des Vertex-Shaders werden in Algorithmus 12 durch
Pseudocode beschrieben. Da im Deferred Rendering zwangsläufig Per-Fragment-Lighting
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eingesetzt wird, gestalten sich die Berechnungen in der Vertex-Stufe verhältnismäßig über-
sichtlich. Die eigentliche Anwendung des Beleuchtungsmodells erfolgt im nachgelagerten
Fragment-Shader.

An jeden Thread des Vertex-Shaders wird ein Vertex lv′ des Lichtvolumens aus Bild 6-11
übergeben. Dieses liegt initial im Lichtkoordinatensystem l vor, da dieses dem Objektkoor-
dinatensystem des Lichtvolumens entspricht. Durch Multiplikation mit den verschiedenen
Transformationsmatrizen kann lv′ zu ev′ überführt werden und liegt somit im Clipspace
vor. Im Detail erfolgt die Transformation vom Licht- in das Weltkoordinatensystem durch
die Matrix L, vom Welt- in das Kamerakoordinatensystem durch die Matrix V und vom
Kamerakoordinatensystem in den Clipsspace durch die Matrix P (s. Abschnitt 2.3.1).
Der Clipspace c wird in Bild 6-12 nicht aufgeführt. Entsprechend den Ausführungen in
Abschnitt 2.3.1 hat er den gleichen Ursprung und die gleiche Achsenausrichtung wie e.
Die Koordinaten werden jedoch perspektivisch verzerrt, um das nachfolgende Clipping
und die Überführung in Bildschirmkoordinaten zu vereinfachen. Die Vertexkoordinaten
cv′ bilden die Grundlage für die Rasterung, die zwischen Vertex- und Fragment-Stufe
stattfindet. cv′ zählt deshalb auch zu den Rückgabewerten der Vertex-Stufe. Darüber hinaus
wird die normierte Frameposition cv′uv des Vertex v′ ermittelt. Wenn cv′ im View Frustum
enthalten ist, so liegen seine x- und y-Koorinaten vor der perspektivischen Division im
Intervall [−cw,c w]. Durch die Zeilen 5 und 6 und der späteren perspektivischen Division
im Fragment-Shader bewegen sich die x- und y-Koordinaten von cv′uv im Intervall [0, 1],
wenn v′ sich innerhalb des View Frustum befindet. Somit können die Koordinaten von
cv′uv als Texturkoordinaten zur Addressierung des G-Buffers genutzt werden. Aus diesem
Grund stellen sie die zweite Rückgabe der Vertex-Stufe dar. Letztlich wird der Vektor ev′

von der Kamera zum Vertex v′ durch Multiplikation von lv′ mit L und V bestimmt. Dieser
Wert wird neben cv′uv zur Rekonstruktion der räumlichen Position der Fragmente innerhalb
der Fragment-Stufe benötigt und bildet deshalb die dritte Ausgabe der Vertex-Stufe. Auf
die beschriebene Weise werden alle Vertices des Lichtvolumens parallel verarbeitet.

Algorithm 12 Headlamp Shader (Vertex Stage)

1: require: lv′ ∈ R4 vertex of light volume as homogeneus coordinates in l
2: function headlampVert(lv′ ∈ R4)
3: local variables: cv′, cv′uv, ev′ ∈ R4

4: cv′ ← P · V · L · lv′ . vertex in c
5: cv′uv.x←

1
2 · cv′.x + 1

2 · cv′.w . transform to screen space
6: cv′uv.y←

1
2 · cv′.y + 1

2 · cv′.w . transform to screen space
7: cv′uv.z← cv′.z
8: cv′uv.w← cv′.w
9: ev′ ← V · L · lv′ . vertex in e

10: return cv′, cv′uv, ev′

11: end function

Nach der Vertex-Stufe wird zunächst das Clipping vollzogen. Es verbleiben die Vertices,
welche sich innerhalb des View Frustums befinden. Auf diese wird die perspektivische
Division angewendet, sodass cv′ zu nv′ im NDC-System überführt wird (s. Abschnitt 2.3.1).
Anhand der Koordinaten von nv′ erfolgt die Rasterung. Die übrigen Rückgaben der Vertex-
Stufe werden bilinear auf die Fragmente interpoliert.
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Fragment-Shader

Im Anschluss an die vorangegangenen Schritte wird die in Algorithmus 13 als Pseudocode
notierte Fragment-Stufe ausgeführt. Die Fragment-Stufe prozessiert alle Fragmente, die
durch das gerasterte Lightvolumen getroffen werden. Als Parameter erhält jeder Thread
des Fragment-Shaders die Interpolationsergebnisse der Rückgaben cv′uv und ev′ der Vertex-
Stufe, für welche weiterhin die gleichen Bezeichner verwendet werden.

Der Pseudocode kann in fünf logische Blöcke unterteilt werden. Im ersten Block (Zeile
4 bis 10) wird die räumliche Position des im aktuellen Fragment sichtbaren Oberflächen-
elements der Szene rekonstruiert. Bezogen auf das Minimalbeispiel 6-12 handelt es sich
um den Punkt v auf dem zylinderförmigen Szenenobjekt. Der G-Buffer allein würde
diese Rekonstruktion nicht ermöglichen. Durch die zusätzlichen Ausgaben der Vertex-
Stufe können die fehlenden Informationen jedoch ergänzt werden. Ausgelöst wurde der
betrachtete Thread des Fragment-Shaders durch den Punkt v′, welcher zur Oberfläche des
Lichtvolumens gehört. Da das Lichtvolumen nicht dargestellt werden soll, ist die genaue
Lage von v′ nicht von Bedeutung. Lediglich die Blickrichtung auf v′, welche durch die
schwarz gestrichelte Linie in Bild 6-12 visualisiert wird, ist maßgeblich. Sie kennzeichnet
alle Punkte im Raum, die der gleichen Bildschirmposition entsprechen. Dort, wo die Linie
ausgehend von der Kamera erstmalig auf ein Szenenobjekt trifft, befindet sich der anstelle
von v′ zu rendernde Punkt v. Die Blickrichtung der Kamera auf die Punkte v, v′ und v′′ ist
durch den Vektor ev′ bekannt. Zudem enthält der G-Buffer die auf die Far Clipping Plane
normierten Tiefenwerte aller Fragmente. Nach der perspektivischen Division in Zeile 5
können die Einträge aus cv′uv genutzt werden, um den G-Buffer an der korrekten Stelle
auszulesen (Zeile 6). Da die Tiefe des Punkts v bisher nur in normierter Form bekannt
ist, wird in einem Zwischenschritt der Punkt ev′′ ermittelt, welcher sich in der gleichen
Blickrichtung befindet, aber exakt auf der Far Clipping Plane liegt. Diesen erhält man durch
die Skalierung des Punkts ev′ mit dem Quotienten aus der Tiefe f der Far Clipping Plane
und der z-Koordinate des Punkts ev′ (Zeile 4). Die anschließende Skalierung des Punkt
ev′′ mit dem normierten Tiefenwert zuv des G-Buffers führt schließlich auf die Position
von v im Kamerakoordinatensystem e. Diese kann durch Multiplikation mit der Inversen
von V in das Weltkoordinatensystem überführt werden (Zeile 8). Neben der Position von
v ist auch die Blickrichtung auf v für das Beleuchtungsmodell relevant (s. Vektor e in
Bild 2-41). In den Zeilen 9 und 10 wird der normierte Blickvektor we bezogen auf das
Weltkoordinatensystem berechnet.

Neben der Blickrichtung spielt auch die Lichteinfallsrichtung eine zentrale Rolle bei
der Auswertung des Bleuchtungsmodells. Der Lichtvektor wird in den Zeilen 12 bis 14
bestimmt. Zuerst wird die Position wl der Lichtquelle im Weltkoordinatensystem aus
der Matrix L extrahiert (Zeile 23). Hierbei wird ausgenutzt, dass der Headlamp-Shader
innerhalb der Deferred Pipeline ausschließlich das Lichtvolumen rendert, sodass die Trans-
formationsmatrix L vom Licht- zum Weltkoordinatensystem w über alle Aufrufe des
Fragment-Shaders konstant ist. Die Einträge von L ergeben sich aus den Translationen,
Rotationen und Skalierungen, die zur Positionierung des Lichtvolumens im Weltkoordina-
tensystem erforderlich sind. Allgemein kann ein Punkt wv in Weltkoordinaten durch die
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Algorithm 13 Headlamp Shader (Fragment Stage)

1: require: cv′uv, ev′ ∈ R4 position of v′ of light volume in c and e, f ∈ R distance
camera↔ far clipping plane, Gdepth,Gnormal,Gmaterial G-Buffer information, wvcam ∈ R

4

camera position in w, L∑ ∈ (R4)M∑×N∑ overall light distribution of current headlamp,
globalBounds ∈ R4 angle bounds of L∑, globalWidth, globalHeight ∈ R angle ranges
of L∑, intens ∈ R scale factor for brightness of headlight

2: function headlampFrag(cv′uv, ev′)
3: local variables: ev′′ ∈ R4 position of v′′ in e, ev, wv ∈ R4 position of v in e and w,

T uB, T vB ∈ R G-Buffer coords of current fragment, zuv ∈ R depth of current fragment,
wl, ll ∈ R4 position of headlamp in w and l, wvc,m ∈ R

4 vector v → wvcam, wvl,m ∈ R
4

vector v → wl, θ, ϕ ∈ R polar and azimuth angle of light ray, T uL, T vL ∈ R texture
coords of light ray in L∑, we ∈ R4 eye vector at v for light model, wn ∈ R4 nprmal
at v for light model, Cl, cl,att ∈ R

4 (attenuated) light color as RGB-vector, Cm ∈ R
4

reflection of material
4: ev′′ ←

f
ev′.z · ev′ . scale to far clipping distance (f)

5: (T uB,T vB)← 1
cv′uv.w

· cv′uv.xy . buffer coords of v′ (same for v)
6: zuv ← Gdepth(T uB,T vB) . norm. depth at screen position (T uB,T vB)
7: ev← zuv · ev′′ . position of v in e
8: wv← V−1 · ev . position of v in w
9: wvc,m ← wc − wv . vector v→camera in w

10: we← wvc,m

|wvc,m |
. direction v→camera in w

11:
12: wl← L[1 : 4, 4] . position of light in w
13: wvl,m ← wl − wv . vector v→light in w
14: wl← wvl,m

|wvl,m |
. direction v→light in w

15:
16: ll← −L−1 · wl . direction light→v in l
17: θ ← π

2 − arccos ll.y . polar and azimuth angle
18: ϕ←atan2(ll.x, ll.z) . between light axis and ll
19: T uL ←

ϕ−globalBounds.le f t
globalWidth . Light-Cookie u-coordinate

20: T vL ←
θ−globalBounds.down

globalHeight . Light-Cookie v-coordinate
21: Cl ← L∑(T uL, T vL) . light power in specific direction
22:
23: att ← 1

intens2 · wvl,m · wvl,m . light attenuation
24: Cl,att ← att ·Cl . attenuated light color
25:
26: wn← Gnormal(T uB, T vB) . normal at screen position (T uB, T vB)
27: Cm ← Gmaterial(T uB, T vB) . material at screen position (T uB, T vB)
28:
29: return lightingModel(Cm, wn, we, wl,Cl,att)
30: end function
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Multiplikation seiner Lichtkoordinaten lv mit der homogenen Transformationsmatrix L
von l nach w transformiert werden:

wv = L · lv with L =


l11 . . . l14
...

...
l41 . . . l44

 .
Nach Gleichung (2-24) entsprechen die Einträge l14, l24 und l34 der Translation von l
nach w entlang der x-, y- und z-Richtung. Da sich die Lichtquelle im Ursprung des
Lichtkoordinatensystems l befindet, entspricht die Translation in L gerade der Lichtposition
wl im Weltkoordinatensystem. wl kann somit aus der vierten Spalte von L ausgelesen
werden. Auf dieser Basis kann der normierte Lichtvektor wl vom Objekt zur Lichtquelle
im Weltkoordinatensystem bestimmt werden (Zeilen 13 und 14).

In den Zeilen 16 bis 21 findet die durch den Combiner-Shader bestimmte Gesamtlichtvertei-
lung L∑ des Scheinwerfers Berücksichtigung. Zur Bestimmung der spektralen Lichtabgabe
des Scheinwerfers auf das betrachtete Fragment sind zunächst der Polar- und Azimutwinkel
des Lichtstrahls aus Sicht der Lichtquelle zu ermitteln (s. Abschnitt 3.1.1). Zu diesem
Zweck wird die Lichteinfallsrichtung wl durch Multiplikation mit L−1 in das Lichtkoordi-
natensystem l übertragen und durch Negation in die Lichtausbreitungsrichtung gedreht.
Der Polar- und Azimutwinkel können nun durch Trigonometrie aus ll ermittelt werden
(Zeilen 17 und 18). Der Zugriff auf die Lichtverteilung L∑ muss durch normierte Tex-
turkoordinaten erfolgen. Deshalb wird das Winkelpaar (θ, ϕ) in den Zeilen 19 und 20
bezüglich des Vermessungsbereichs der Gesamtlichverteilung normiert. Über die normier-
ten Koordinaten (T uL, T vL) kann schließlich der Texturzugriff auf die Gesamtlichtverteilung
L∑ erfolgen. Der spektrale Lichtbeitrag in die betrachtete Richtung wird in Cl (RGBY-
Vektor) zwischengespeichert und bildet eine weitere wichtige Größe bei der Auswertung
des Beleuchtungsmodells.

Bevor das Beleuchtungsmodell ausgewertet werden kann, muss letztlich noch die distanzab-
hängige Abschwächung des Lichts Berücksichtigung finden. Nach Gleichung (2-7) nimmt
die Beleuchtungsstärke auf einem Objekt mit zunehmender Entfernung zur Lichtquelle
quadratisch ab. Die quadratische Entfernung kann durch das Skalarprodukt des Vektors
wvl,m mit sich selbst auf effiziente Weise berechnet werden. Darüber hinaus wird dieser
Wert durch das Quadrat der durch den Anwender einstellbaren Lichtquellenintensität
intens geteilt. Diese dient zur globalen Skalierbarkeit des Scheinwerferlichts und kann zur
Harmonisierung innerhalb der Szene verwendet werden. Um die Simulationsergebnisse
nicht zu verzerren, sollte intens für alle Scheinwerfer gleich gewählt werden. Durch Multi-
plikation der Gesamtabschwächung att mit dem RGBY-Vektor Cl aus der Lichtverteilung
L∑ resultiert schließlich der am Objekt wirkende Lichtbeitrag Cl,att.

Abschließend kann das Beleuchtungsmodell basierend auf den zuvor bestimmten Größen
ausgewertet werden. Hierzu wurde kein eigenes Beleuchtungsmodell entworfen, sondern
auf ein physikalisch basiertes Beleuchtungsmodell der Unity-Engine zurückgegriffen
[Rus20]. Dieses benötigt die normierten Richtungsvektoren we und wl, die Objektnormale
wn und Materialeigenschaften Cm, welche an den Koordinaten (T uB, T vB) aus dem G-Buffer
ausgelesen werden können (Zeilen 26 und 27) sowie den distanzgeschwächten Lichteintrag
Cl,att. Basierend auf diesen Daten bestimmt das Beleuchtungsmodell die resultierende Farbe
des betrachteten Oberflächenpunkts bzw. Fragments. Zuvor durch andere Lichtquellen
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bestimmte Farben werden additiv berücksichtigt. Mit Abschluss des Lighting-Pass sind
alle Lichtquellen durchlaufen. Jedes Fragment wird durch die Summe aller einwirkenden
Lichteinflüsse gefärbt. Der finale Frame kann schließlich auf dem Ausgabegerät dargestellt
werden.

6.4 Validierung

Im Anschluss an die detaillierte Beschreibung der Implementierung gilt es nachzuwei-
sen, dass die entwickelte Lösung einerseits die Gesamtlichtverteilung korrekt bestimmt
und andererseits einen Lichteindruck innerhalb der Szene realisiert, welcher die Realität
hinreichend gut abbildet. Die Validierung erfolgt in zwei Schritten.

In Unterabschnitt 6.4.1 werden die Resultate der Algorithmik mit einer gemessenen Ge-
samtlichtverteilung des HD84-Systems verglichen. Das gelingt, indem zuvor eine künstli-
che Szene konstruiert wird, welche den Großteil der Fremdeinflüsse auf die Lichtverteilung
eliminiert und somit eine gute Vergleichbarkeit zu den Messdaten erlaubt.

Um über diesen grundlegenden Nachweis hinaus zu überprüfen, ob der Lichteindruck in ei-
ner realistischen Szene den Erwartungen entspricht, wird die vorgestellte Implementierung
in Unterabschnitt 6.4.2 mit der Nachtfahrtsimulation „LightDriver“ verglichen (s. Ab-
schnitt 3.3). Da dieses Tool seit Jahren erfolgreich in der Lichtentwicklung der HELLA im
Einsatz ist, kann es als Referenz für eine Bewertung von Hyperion herangezogen werden.
Zum Zeitpunkt der Validierung konnte die Vielzahl der Lichtquellen eines HD84-Systems
nicht im LightDriver simuliert werden. Aus diesem Grund wurden die zu vergleichenden
Dimmwerteinstellungen für den LightDriver im Vorhinein in Gesamtlichtverteilungen
überführt und dann durch eine virtuelle Lichtquelle simuliert.

6.4.1 Bestimmung der Gesamtlichtverteilung

Wie in Abschnitt 3.1.1 beschrieben, kann die photometrische Charakteristik eines Schein-
werfers durch das Auftragen der Lichtstärke über dem Polarwinkel θ und dem Azimut-
winkel ϕ vollständig erfasst werden. Dieselbe Beschreibungsform könnte für die spektrale
Erfassung des Lichts herangezogen werden, wenn man anstelle der Lichtstärke die Farb-
werte der Primärvalenzen aufträgt. In der beschriebenen Implementierung werden die
spektralen Informationen zusammen mit der Lichtstärke in einem RGBY-Vektor zusam-
mengefasst. Insofern werden auf beide Beschreibungsformen die gleichen Operationen
angewendet. Zur besseren Darstellbarkeit wird deshalb auf die Visualisierung aller Grö-
ßen des Vektors verzichtet und stattdessen lediglich die Lichtstärke (Y-Komponente) zur
Validierung verwendet.

Zur Validierung der Lichtverteilung wird die in Bild 6-13 dargestellte konstruierte Szene
verwendet. Sie enthält nur drei Elemente – eine einfarbige graue Hohlkugel, einen linken
Scheinwerfer mit HD84-Modul im Mittelpunkt der Hohlkugel und eine Kamera, welche die
Perspektive für das Rendering definiert. Die Kamera wird dabei ebenfalls am Mittelpunkt
der Kugel positioniert. Zudem entspricht ihre Blickrichtung der Lichtmittelachse des
Scheinwerfers. Die Lage von Kamera und Scheinwerfer sind in Bild 6-13 durch das
Koordinatensystem mit den blauen, roten und grünen Pfeilen beschrieben, wobei der blaue
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Pfeil entlang der Lichtmittelachse bzw. der Blickrichtung zeigt. Das horizontale Field of
View der Kamera wird zu 120◦ gewählt. In Form des gelben Netzes wird das prozedural
generierte Lichtvolumen des Scheinwerfers visualisiert. Die Hohlkugel hat einen Radius
von 10m. Dementsprechend sollte der Radius des Lichtvolumens darüber liegen. Der
exakte Werte hat im Übrigen keinen Einfluss auf das Ergebnis.

Bild 6-13: Wireframe-Darstellung der Szene zur Validierung der Gesamtlichtverteilung.

Entsprechend der Szenendefinition bestrahlt der Scheinwerfer die Innenwand der Hohlku-
gel. Gibt man die Dimmwerte zur Ausgabe einer Abblendlichtverteilung vor (Vgl. Variable
dimValues in Algorithmus 6), so erhält man das im Bild 6-14a dargestellte Rendering-
Ergebnis. Zur genaueren Beurteilung zeigt Bild 6-14b die in logarithmisch skalierten
Falschfarben visualisierte Beleuchtungsstärke auf der Kugelinnenwand. In Bild 6-14c wird
die gemessene Referenzlichtverteilung, die es simulativ nachzubilden gilt, in logarithmi-
scher Falschfarbenskalierung dargestellt.

Das Rendering-Ergebnis weist die klassischen Eigenschaften einer Abblendlichtverteilung
auf. Hierbei ist vor allem die für ein HD84-System typische Stufe in der Hell-Dunkel-
Grenze hervorzuheben, welche sicherstellt, dass einerseits eine gute Ausleuchtung der
eigenen Fahrbahn und andererseits keine Blendung des Gegenverkehrs gegeben ist. Weiter-
hin kann beobachtet werden, dass Licht, welches erst in höherer Entfernung auf die Straße
fallen würde (große Werte für ϕ), auch eine höhere Beleuchtungsstärke auf der Kugelfläche
erzielt.
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a)

b) log(Ev)

c) log(Iv)

ϕ

θ

Bild 6-14: Vergleich des gerenderten Lichts a) eines HD84-Moduls im Abblendlicht-Mo-
dus (Falschfarben-Darstellung der Beleuchtungsstärke in Bildteil b)) mit den
Messdaten c) bei gleicher Konfiguration.

Der direkte Vergleich des Simulationsergebnisses aus Bild 6-14a mit der Referenz aus
Bild 6-14c verdeutlicht, dass die Übereinstimmung von Simulation und Realität auch im
Detail gewährleistet ist. Gleichzeitig muss festgestellt werden, dass ein Rendering in der
normalen Ansicht, wie es in Bild 6-14a gezeigt wird, nicht ausreicht, um Helligkeitsabstu-
fungen innerhalb der Lichtverteilung und Streulichtanteile detailliert zu analysieren. Diese
kommen in der Falschfarbenvisualisierung deutlich genauer zum Vorschein.

Um diesem Problem zu begegnen, wird die logarithmisch skalierte Falschfarbendarstellung
der Beleuchtungsstärke mit einem alternativen Shader bei sonst gleicher Konfiguration
gerendert. Die Beleuchtungsstärke Ev und die Lichtstärke Iv stehen nach Gleichung (2-13)
im Zusammenhang. Durch die spezifische Definition der Szene ist sowohl der Abstand
zwischen Lichtquelle und bestrahlter Fläche als auch der Lichteinfallswinkel an jedem
Punkt konstant. Es ergibt sich eine direkte Proportionalität zwischen der Lichtstärke Iv und
der Beleuchtungsstärke Ev. Somit ist eine direkte Vergleichbarkeit zwischen der Analyse-
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sicht des Renderings (Bild 6-14b), welche die Beleuchtungsstärke Ev visualisiert, und der
gemessenen Referenzlichtverteilung, welche bezüglich der Lichtstärke Iv aufgetragen ist,
gegeben.

Wie sich herausstellt, ist die Korrespondenz zwischen der simulierten Lichtverteilung und
der Referenz in der Falschfarbenrepräsentation noch überzeugender. Sowohl die Abstu-
fungen innerhalb der zentralen Lichtkeule als auch die Ausprägungen des Streulichts im
Randbereich sind in beiden Darstellungen nahezu identisch. Es sei darauf hingewiesen,
dass die Achsenskalierungen der Polar- und Azimutwinkel θ und ϕ von Bild 6-14c nicht
auf die Bilder 6-14a und b übertragen werden können, da diese die Szene aus der perspekti-
vischen Sicht der Kamera zeigen. Die Position und Ausdehnung der Lichtverteilung wurde
deshalb in einem separaten Versuch überprüft und bestätigt. Zusammengefasst kann die
Lichtverteilung als valide eingestuft werden.

6.4.2 Beleuchtung der Szene

Wenngleich die Korrektheit der Implementierung im Sinne der mathematisch korrekten
Wiedergabe der Lichtverteilung durch den Abschnitt 6.4.1 nachgewiesen wird, muss auch
die optische Erscheinung des Lichts in realitätsnahen Szenen beurteilt werden. Schließlich
nimmt die subjektive Bewertung des Lichts speziell in der Scheinwerferentwicklung einen
hohen Anteil der Gesamtevaluierung ein. Bei einer derartigen Betrachtung nehmen deutlich
mehr Faktoren Einfluss. Die Einschränkungen des Ausgabegeräts hinsichtlich Leuchtdichte
und Kontrast, die Modellierungstiefe der Szene hinsichtlich Geometrien, Diskretisierungen,
Texturen, Normal Maps, Reflexionseigenschaften und die Komplexität des verwendeten
Beleuchtungsmodells sind nur einige Beispiele.

Da die Erstellung realer Versuche gepaart mit der hoch genauen Nachbildung der realen
Umgebungen einen nicht darstellbaren Aufwand bedeuten würde, wird der HELLA Light-
Driver (s. Abschnitt 3.3) als Referenz verwendet. Die Eigenentwicklung der Hella wird
seit einigen Jahren erfolgreich im Entwicklungsprozess neuer Scheinwerfer und Licht-
funktionen eingesetzt. Im Gegensatz zur hier vorgestellten Implementierung, erlaubt der
LightDriver (Stand: Juli 2017) jedoch nicht die dynamische Anpassung der Lichtverteilung
basierend auf den Dimmwerten der Pixellichtquellen, wie es für ein HD-System erfor-
derlich ist. Dennoch schmälert diese Eigenschaft nicht die Eignung des LightDriver als
Referenz zur Validierung. Die gewünschte Gesamtlichtverteilung des HD-Scheinwerfers
wird im Vorhinein berechnet und als statische Lichtverteilung im LightDriver geladen.

Bild 6-15 vergleicht die Abblendlichtverteilungen des HD84-Systems (linker und rechter
Scheinwerfer) der Hyperion-Implementierung (unten) mit der Abblendlichtverteilung des
LightDriver (oben). Die zur Validierung herangezogenen Bilder können in Anhang A4
vergrößert und um weitere Informationen angereichert in Augenschein genommen werden.
Um die Reproduktion der Szene des LightDriver in Hyperion mit vertretbarem Aufwand
zu ermöglichen, wurde eine einfache zweispurige Straße gewählt. Rechts im Bild 6-15
wird die Szene um eine Messwand mit roten Kontrolllinien ergänzt. Diese befindet sich
in Fahrtrichtung 10m vom Scheinwerfersystem entfernt. Eine solche Messwand ist ein
typisches Analysewerkzeug bei der Bewertung von Lichtverteilungen, da die vertikale
Projektion des Lichts eine wesentlich bessere Erkennbarkeit der Konturen ermöglicht.
Die vertikalen Kontrolllinien fluchten mit den Einbaupositionen der Scheinwerfer be-
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züglich der Fahrzeugquerachse. Die drei horizontalen Kontrolllinien befinden sich aus
Sicht der Kugelkoordinatensysteme der Scheinwerfer bei den Polarwinkeln 0◦, −0.57◦

und −1◦. Die genaue Szenendefinition konnte nicht direkt aus dem LightDriver extrahiert
werden. Sie musste deshalb manuell nachgebildet werden. Aus diesem Grund können
die Szenen (Texturen, Farben, ...) im Detail voneinander abweichen. Weiterhin liegt dem
LightDriver ein anderes Beleuchtungsmodell zu Grunde. Für die Validierung der Hyperion-
Implementierung sollte die Übereinstimmung jedoch genügen.

Bild 6-15: Vergleich des LightDriver (oben) mit Hyperion (unten) bei der Simulation einer
Abblendlichtverteilung in einer einfachen Straßenszene (links) und mit einer
10m entfernten Messwand (rechts).

Vergleicht man die Abblendlichtverteilungen links im Bild 6-15, ist insgesamt eine gute
Übereinstimmung festzustellen. Bei genauerem Hinsehen sind jedoch leichte Unterschiede
erkennbar. Die Farbe bzw. die Helligkeit auf der Straße erscheint in den beiden Darstellung
leicht unterschiedlich. Ursächlich für die erwähnten Unterschiede können verschiedenste
Einflussfaktoren sein, wie sie bereits eingangs erwähnt werden.

Abgesehen von den leichten Unterschieden stimmen beide Simulationen gut überein, so
dass die in Hyperion eingesetzte Rendering-Methode auch in realistischen Szenen validiert
werden kann. Mit Hilfe der Fahrbahnmarkierungen wird die qualitative Formgleichheit der
beleuchteten Straßenbereiche beider Implementierungen deutlich. Darüber hinaus sind in
beiden Darstellungen die unterschiedlichen Lichtreichweiten auf der linken und rechten
Fahrbahn zu erkennen. Die weißen Kontrollfelder an den Fahrbahnrändern zeigen diese
für Abblendlicht typische Asymmetrie besonders deutlich und für beide Implementierung
auf gleiche Weise.

Auch wenn das Licht auf der Straße das zentrale Bewertungskriterium aus Sicht des
Fahrers ist, kann die Analyse von Lichtverteilungen an einer vertikalen Messwand vor
allem zu Vergleichszwecken hilfreich sein. Die Hell-Dunkel-Grenze wird durch die ver-
tikale Projektion scharf dargestellt, wodurch die unterschiedlichen Ausleuchtungen der
Fahrspuren als Stufen in der Lichtverteilung sichtbar werden. Unter Zuhilfenahme der
roten Kontrolllinien im rechten Teil des Bilds 6-15 ist die Ausprägung der HDG in beiden
Simulationen identisch.

Nachdem die Abblendlichtverteilungen in beiden Simulationen verglichen wurden, zeigt
Bild 6-16 einen ähnlichen Vergleich für das Fernlicht. Für den LightDriver wurde die
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Lichtstärkeverteilung erneut vorberechnet und als statische Gesamtlichtverteilung geladen.
Wie beim Abblendlicht lässt sich neben Detailunterschieden zwischen den Bildern eine
gute Gesamtübereinstimmung feststellen. Wie zu erwarten war, hat die Ausleuchtung der
entfernten Bereiche im Vergleich zum Abblendlicht in Bild 6-15 zugenommen. Besonders
stark kann dieser Unterschied auf der Gegenfahrbahn und den daran entlang positionierten
Kontrollfeldern wahrgenommen werden. Dieser Effekt wird durch eine grundlegende
Änderung der Lichtverteilung erreicht, wie an den Messwänden auf der rechten Seite
von Bild 6-16 zu erkennen ist. Die Stufe der HDG des Abblendlichts verschwindet bei
Verwendung des Fernlichts. Stattdessen wird eine symmetrische Lichtverteilung mit einem
so genannten Fernlichtkegel erzeugt, der auch weit entfernte Bereiche vor dem Fahrzeug
ausleuchtet.

Bild 6-16: Vergleich des LightDriver (oben) mit Hyperion (unten) bei der Simulation einer
Fernlichtverteilung in einer einfachen Straßenszene (links) und mit einer 10m
entfernten Messwand (rechts).

6.5 Laufzeit

Im Hinblick auf die Anwendung des Verfahrens innerhalb einer Nachtfahrtsimulation ist
A6 (Echtzeitfähigkeit) eine kritische Anforderung. Um nachzuweisen, dass Hyperion diese
Anforderung erfüllt, wird die Laufzeit des Renderings analysiert. Dabei können die Stufen
der zweistufigen Lichtsimulation isoliert voneinander betrachtet werden. Im nachfolgenden
Abschnitt wird die Laufzeit zur Bestimmung der Gesamtlichtverteilung diskutiert, während
Abschnitt 6.5.2 die Laufzeit des Shadings innerhalb der Szene betrachtet.

6.5.1 Bestimmung der Gesamtlichtverteilung

In Abschnitt 6.2.4 wurden die Komplexität und der Speicherbedarfs des hier eingesetzten
Verfahrens bereits auf theoretischer Ebene diskutiert. Nachfolgend sollen die theoretischen
Überlegungen durch reale Laufzeitmessungen untermauert werden.

Ausschließlich Vorgänge, die während der Simulation wiederholt ausgeführt werden müs-
sen, stellen kritische Elemente bei der Laufzeitbetrachtung dar. Eine Analyse des Imports
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und der Datenoptimierung von Lichtverteilungen sowie der Initialisierung ist deshalb nicht
erforderlich. Lediglich die in Abschnitt 6.2.3 vorgestellten Laufzeitoperationen sind für
die nachfolgende Betrachtung relevant.

Untersucht man den auf der CPU ausgeführten Algorithmus 6, so beschränkt sich die
Aufgabe der CPU auf die Übergabe der momentan vorliegenden Dimmwerte an die GPU
und dem Aufruf des GPU-seitig ausgeführten GroupCombiner-Shaders für jede Gruppe.
Die durch die CPU beanspruchte Berechnungszeit kann deshalb als vernachlässigbar
angesehen werden.

Deutlich kritischer ist hingegen der GPU-seitig ausgeführte Algorithmus 7. Betrachtet
man den Pseudocode, ergeben sich im Kontext der Anwendung vier relevante Parameter,
welche potentiell Einfluss auf die Laufzeit nehmen könnten. Diese sind

• die Anzahl der Lichtquellen innerhalb eines Scheinwerfers,

• die Größe des auszuleuchtenden Winkelbereichs,

• die Auflösung innerhalb dieses Winkelbereichs

• und die Überlappung der Lichtverteilungen einzelner Lichtquellen.

Um die Einflüsse der genannten Parameter auf die Laufzeit quantifizieren zu können,
müssen zunächst Maße für diese Größen definiert werden. Für den ersten Parameter ist
die Festlegung eines Maßes trivial, da die Zahl der Lichtquellen unmittelbar verwendet
werden kann. Die Größe des auszuleuchtenden Winkelbereichs muss hingegen in einen
eindimensionalen Wert überführt werden, der die Ausdehung bezüglich des Polar- und
Azimutwinkels [

¯
θ, θ̄] × [

¯
ϕ, ϕ̄] quantifiziert. Letztlich wirkt sich der Winkelbereich in der

Anzahl der Datenpunkte innerhalb der Gesamtlichtverteilung aus. Er wird deshalb durch
das nachfolgend als „Winkelfläche“ bezeichnete Produkt (θ̄ −

¯
θ) · (ϕ̄ −

¯
ϕ) beschrieben.

Die Auflösung der Lichtverteilung wird in der Einheit „Winkelgrad pro Pixel“ [◦/px]
gemessen. Da die Veränderung der Auflösung technisch den gleichen Effekt wie die An-
passung des Winkelbereichs hat, wird diese nicht in einer gesonderten Parameterstudie
betrachtet. Die Erkenntnisse über den Zusammenhang zwischen Laufzeit und Winkelbe-
reich können direkt auf den Einfluss der Auflösung überführt werden. Als Maß für die
Überlappung wird die Ausdehnung der Lichtverteilung einer Einzellichtquelle bezogen auf
den exklusiv durch sie zu bestrahlenden Bereich angegeben. Der exklusive Einflussbereich
ergibt sich dabei durch das Rastern des Gesamtwinkelbereichs entsprechend der insgesamt
vorliegenden Lichtquellenzahl (z.B. 20 Zeilen und 50 Spalten für ein 1.000 Pixel-System).
Beispielhaft wird er durch das durchgezogene Rechteck in Bild 6-17 visualisiert. Die
konkrete Bedeutung der relativen Überlappung orel wird im Bild ebenfalls visualisiert. Sie
bewirkt, dass die Lichtquelle über ihren exklusiven Bereich (durchgezogenes Rechteck in
Bild 6-17) hinaus strahlt und so insgesamt das gestrichelt dargestellte Rechteck bezüglich
der Raumwinkeldomäne ausleuchtet. Die bestrahlte Winkelfläche (θ̄k − ¯

θk) · (ϕ̄k −
¯
ϕk) der

Lichtquelle k vergrößert sich auf diese Weise um den Faktor (2orel + 1)2. Im Randbereich
der Gesamtlichtverteilung ist die Ausdehnung der Lichtquelle nicht zu allen Seiten mög-
lich. In diesem Fall wird sichergestellt, dass die gesamte Flächenzunahme unverändert
bleibt. Der relative Wert orel der Überlappung kann alternativ auf die mittlere Anzahl von
Lichtquellen, die auf den gleichen Pixel der Gesamtlichtverteilung strahlen, überführt
werden. Nachfolgend werden stets beide Kenngrößen genannt.

Da mit dem HD84-System im Rahmen dieser Arbeit nur ein realer Datensatz zur Verfü-
gung steht, ist die Generierung weiterer Scheinwerfer-Datensätze erforderlich, um die



6.5 Laufzeit 221

ϕ

θ

ϕ̄k −
¯
ϕk

θ̄k − ¯
θk

orel · (ϕ̄k −
¯
ϕk)

orel · (θ̄k − ¯
θk)

Bild 6-17: Maß für die relative Überlappung orel benachbarter Einzellichtquellen.

Einflüsse der zuvor genannten Größen auf die Laufzeit untersuchen zu können. Hinzu
kommt, dass die isolierte Betrachtung von Einflüssen nur möglich ist, wenn ein Parameter
variiert wird und alle anderen konstant gehalten werden. Weitere reale Datensätze wären
somit nur bedingt hilfreich. Aus diesem Grund werden für jede Parameterstudie fiktive
Scheinwerferdaten generiert, welche die laufzeitrelevanten Eigenschaften realer Lichtver-
teilungen nachbilden. Der Benutzerdialog für diese Generierung, die wählbaren Parameter
und ihre Bedeutung für das resultierende Scheinwerfersystem können in Anhang A3.1
eingesehen werden. Die fiktiven Datensätze sind stets Abwandlungen der in Tabelle 6-1
zusammengefassten Standardkonfiguration.

Tabelle 6-1: Standardkonfiguration eines Scheinwerfersystems zur Parameterstudie im
Rahmen der Laufzeitanalyse der Lichtverteilungsberechnung.

Eigenschaft Standardwert Einheit

Lichtquellenzahl 1.000 -
Winkelbereich [−60, 60] × [−30, 30] ◦

Winkelfläche 7.200 ◦◦

Auflösung 0.05
◦

px
Datenpunkte 2.880.000 -
Überlappung 67 %
Lichtquellen/Pixel ≈ 2.8 1

px
Spektral Ja -
Bit/Farbkanal 32 Bit
Dimmwertbuffer 8 kB
Threads/Gruppe 64 -
Threadgruppen 45.000 -

Sämtliche Messungen werden auf einem Notebook durchgeführt, dessen Hard- und Soft-
warespezifikation in Tabelle 6-2 angegeben ist. Zur Messung wird der Profiler der Unity-
Engine eingesetzt, welcher in der angegebenen Version als eingeständiger Prozess aufgeru-
fen werden kann und das Laufzeitverhalten der eigentlichen Anwendung nicht beeinflusst.
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Tabelle 6-2: Hard- und Softwarespezifikation im Rahmen der Laufzeitanalyse.

Betriebssystem Windows 10 Pro 64-bit (10.0, Build 16299)
Grafikengine Unity3D, Version 2020.1.6f1
Modell Dell Precision 7710
Prozessor Intel(R) Core(TM) i7-6820HQ CPU @2.7 GHz
Arbeitsspeicher 16384 MB RAM
DirectX Version DirectX 11
Grafikchip NVIDIA Quadro M3000M
Videospeicher 4062 MB VRAM (+ 8133 MB Shared)

Zuerst wird der Einfluss der Lichtquellenzahl auf die Laufzeit untersucht. Dafür werden
sechs HD-Scheinwerfer generiert, die über 10, 100, 1.000, 10.000, 100.000 und 1.000.000
Lichtquellen verfügen. Alle weiteren Eigenschaften entsprechen der in Tabelle 6-1 gezeig-
ten Standardkonfiguration. Die sich ergebenden Buffergrößen und weitere Informationen
zu den einzelnen Systemen fasst die Tabelle A3-1 im Anhang A3.2 zusammen.

Jedes Scheinwerfersystem wird simuliert. Dabei werden die Dimmwerte sämtlicher Licht-
quellen der Scheinwerfer in jedem Frame zufällig gewählt. Somit ist eine ständige Neube-
rechnung der Gesamtlichtverteilung erforderlich. Der in blau dargestellte Plot in Bild 6-18
zeigt die Berechnungszeiten tcomb der Lichtverteilungen pro Scheinwerfer auf der GPU.

100 101 102 103 104 105 106

Lichtquellen

0, 0

0, 5

1, 0

1, 5

2, 0

2, 5

3, 0

tcomb/ms

Bild 6-18: Laufzeit der Lichtverteilungsberechnung in Abhängigkeit von der Lichtquellen-
zahl mit (blau) und ohne (orange) stetiger Dimmwertaktualisierung.

Wie sich zeigt, nimmt die Anzahl der Lichtquellen bis zu einer Größenordnung von 104

keinerlei Einfluss auf das Laufzeitverhalten. Das ist nach Abschnitt 6.2.4 auch zu erwarten,
da die Lichtquellenzahl den ausgabesensitiven Algorithmus in seiner Komplexität nicht
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beeinflusst. Tatsächlich kann man jedoch ab einer Größenordnung von 105 Lichtquellen
einen rapiden Anstieg beobachten. Trotz dieser Zunahme der Berechnungszeit ist selbst
das 1.000.000 Lichtquellensystem mit unter 3 ms echtzeitfähig, wodurch die Eignung des
Verfahrens für sämtliche praxisrelevanten Scheinwerfer-Technologien nachgewiesen ist.

Weitere Untersuchungen haben gezeigt, dass die primäre Ursache für den Laufzeitanstieg
ab 105 Lichtquellen die Datenübertragung zwischen CPU und GPU ist. Die Größe des
Dimmwert-Buffers ist direkt proportional mit der Anzahl von Lichtquellen und muss in
jedem Frame von der CPU an die GPU übergeben werden. Das in Tabelle 6-2 spezifizierte
Testsystem weist hierfür ab etwa 105 Lichtquellen eine zu geringe Datenübertragung
auf. Ein Nachweis dieser Ursache gelingt durch die Neuberechnung der Lichtverteilung
bei unverändertem Dimmwert-Buffer. Die sich ergebenden Laufzeiten zeigt der orange
dargestellte Plot in Bild 6-18. Wie sich zeigt, ist dieser deutlich flacher. Dennoch verbleibt
ein geringer, linearer Anstieg, welcher durch die zunehmende Häufigkeit von Cache-Misses
innerhalb der srcRGBY- und srcID-Buffer erklärt werden kann.

Als Nächstes soll der Einfluss des Messbereichs und der Auflösung der Gesamtlichtvertei-
lung untersucht werden. Beide Größen bestimmen letztlich die Anzahl der Datenpunkte
der Gesamtlichtverteilung, welche sich aus dem Quotienten der Winkelfläche und der
quadratischen Auflösung ergibt. Es genügt somit, den Einfluss der Datenpunktzahl auf
die Laufzeit zu untersuchen. Auch hierfür wurden verschiedene Systeme generiert, die
weitestgehend der Standardkonfiguration aus Tabelle 6-2 entsprechen. Nur die Anzahl
der Datenpunkte wurde durch die Variation des Messbereichs von 160.000 bis hin zu
12.960.000 vergrößert. Weiterführende Informationen zu den resultierenden Buffergrößen
finden sich in Tabelle A3-2 im Anhang A3.2. Der Einfluss auf die Laufzeit wird durch
den Plot 6-19 visualisiert. Auch wenn die Auflösung der Lichtverteilung nicht im direkten
Zusammenhang mit der Ausgabeauflösung steht, werden im Plot zusätzlich die Anzahlen
der Pixel verschiedener standardisierter Ausgabeauflösungen markiert.

Der Zusammenhang zwischen der Anzahl von Datenpunkten und der Berechnungsdauer
ist erwartungsgemäß linear. Jeder Datenpunkt wird durch einen einzelnen Thread des
in Abschnitt 6.2.3 vorgestellten Compute-Shaders exklusiv bearbeitet. Da die GPU bei
weitem nicht genug Ausführungseinheiten vorweist, um alle Datenpunkte parallel zu ver-
arbeiten, kommt es zu einer sequentiellen Verarbeitung von Datenpunktgruppen, wobei
die Datenpunkte innerhalb einer Gruppe parallel berechnet werden. Die Messung bestätigt
auch die Komplexitätsbetrachtung in Abschnitt 6.2.4. Auch für sehr hohe Datenpunkt-
zahlen im Bereich von Ultra HD (3.840 × 2.160 Datenpunkte) terminiert der vorgestellte
Algorithmus in unter 10 ms. In Anbetracht der verwendeten Rechnerspezifikation nach
Tabelle 6-2 ist die Echtzeitfähigkeit auch für hochaufgelöste Systeme sichergestellt.

Zuletzt ist der Einfluss der Überlappung benachbarter Lichtquellen auf die Laufzeit zu
untersuchen. Auch hierfür wurden verschiedene Systeme generiert, welche mit Ausnahme
der Überlappung die in Tabelle 6-1 aufgeführte Spezifikation vorweisen. Die Überlap-
pungen der einzelnen Systeme und die damit einhergehenden mittleren Anzahlen von
Lichquellen pro Datenpunkt werden in Tabelle 6-3 gegenüber gestellt. Die Buffergrößen
der einzelnen Systeme und weiterführende Informationen können in Tabelle A3-3 im
Anhang A3.2 eingesehen werden. Der blaue Plot in Bild 6-20 zeigt die Berechnungsdauern
in Abhängigkeit von der Überlappung benachbarter Lichtquellen, während der orange Plot
selbige in Abhängigkeit von der mittleren Anzahl an Lichquellen pro Pixel darstellt. Wenn-
gleich die relative Überlappung benachbarter Pixel hinsichtlich der Bedeutung greifbarer
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Bild 6-19: Laufzeit der Lichtverteilungsberechnung in Abhängigkeit von der Anzahl der
Datenpunkte in der Gesamtlichtverteilung.

Tabelle 6-3: Relative Überlappungen und die mittlere Anzahl von Lichtquellen pro Daten-
punkt der zur Laufzeitanalyse generierten Scheinwerfersysteme.

Überlappung(%) 0 40 80 120 160 200

Lichtquellen/Pixel 1,0 2,0 3,2 4,9 6,8 9,0

ist, stellt die mittlere Anzahl von Lichtquellen, die auf einen Datenpunkt der Gesamtlicht-
verteilung strahlen, den kritischen Wert bezüglich der Laufzeit dar. Die Diskussion der
Laufzeitmessung soll deshalb anhand des orangen Plots in Bild 6-20 erfolgen.

Erwartungsgemäß steigt die Berechnungsdauer mit der Anzahl von Lichtquellen, die
auf einen Datenpunkt Einfluss nehmen. Schließlich stellt diese Kenngröße die mittlere
Anzahl der Iterationen dar, welche innerhalb des Compute-Shaders (Algorithmus 7) für
jeden Datenpunkt durchlaufen werden müssen. Mit dieser Begründung wäre jedoch ein
linearer Zusammenhang zu erwarten. Der Plot zeigt hingegen einen leicht progressiven
Anstieg. Diese Progression ist auf die zunehmende Größe der srcRGBY- und srcID-Buffer
zurückzuführen, welche linear mit der mittleren Lichtquellenzahl pro Pixel wachsen. Auch
wenn die Buffer zeitlich unveränderlich sind und zur Laufzeit nicht aktualisiert werden
müssen, führt ihre zunehmende Größe zu häufigeren Cache-Misses, welche ein Nachladen
von Daten erfordern und somit zeitliche Verzögerungen hervorrufen.

Zusammenfassend kann festgehalten werden, dass die Berechnung der Gesamtlichtver-
teilung auf dem in Tabelle 6-2 spezifizierten Testsystem, welches gemessen an heutigen
Maßstäben nur eine mittelmäßige Performance aufweist, für praxisrelevante Konfiguratio-
nen echtzeitfähig ist. Somit wird die Anforderung A6 (Echtzeitfähigkeit) erfüllt. Die in
Abschnitt 6.2.4 bereits diskutierte Ausgabesensitivität der Implementierung konnte durch
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Bild 6-20: Laufzeit der Lichtverteilungsberechnung in Abhängigkeit von der Überlappung
der Einzellichtverteilungen (blau: Laufzeit über relativer Überlappung, orange:
Laufzeit über mittlerer Anzahl von Lichtquellen pro Datenpunkt).

die Laufzeitmessungen unter Vernachlässigung der Speicherverwaltung nachgewiesen
werden. Die Laufzeit bleibt somit durch die Lichtquellenzahl weitgehend unbeeinflusst,
womit die Erfüllung der Anforderung A4 (Pixel-Skalierbarkeit) sichergestellt ist.

6.5.2 Beleuchtung der Szene

Basierend auf der ermittelten Gesamtlichtverteilung eines Scheinwerfers schließt sich
die Beleuchtung der virtuellen Szene an, welche durch die in Abschnitt 6.3 vorgestellte
Lichtquelle erfolgt. Da es sich bei dieser um eine Modifikation des Spotlichts der Unity-
Engine handelt, gelten die gleichen Zusammenhänge, wie für die Built-In-Lights der Unity-
Engine innerhalb der Deferred Pipeline. Nennenswerte Unterschiede zum Spotlicht stellen
das in Bild 6-11 dargestellte Lichtvolumen und die Interpretation der Lichtverteilung
in Kugelkoordinaten dar. Diese sollten jedoch keine erheblichen Auswirkungen auf die
Berechnungsdauer haben.

Betrachtet man die Implementierung der Lichtquelle und deren Einbindung in die De-
ferred Pipeline, so können vier maßgebliche Einflussfaktoren auf die Berechnungsdauer
identifiziert werden. Diese sind

• die Auflösung der Ausgabe,

• die Kameraperspektive,

• der Messbereich des Scheinwerfers und

• die Messauflösung des Scheinwerfers.
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Den offensichtlichsten Einfluss hat der zuerst genannte Punkt. Die Ausgabeauflösung
bestimmt die Anzahl der Fragmente, auf die der in Algorithmus 13 beschriebene Shader
maximal angewendet werden muss. Abhängig davon, ob das Lichtvolumen der Lichtquelle
die Ausgabe nur anteilig überdeckt, muss der Shader auch nur auf einen Anteil der insge-
samt im G-Buffer enthaltenen Fragmente angewendet werden. Da diese Überdeckung stark
von der Kameraperspektive und dem Messbereich abhängt, werden Lage und Orientierung
der Kamera für die Laufzeitmessung identisch zum simulierten Scheinwerfer gewählt. So
genügt die Variation des Messbereichs, welcher die Ausdehnung des Lichtvolumens und
damit dessen Überdeckung mit der Ausgabe spezifiziert. Der Messbereich wird deshalb als
zweiter Parameter bezüglich seiner Einflussnahme auf die Laufzeit untersucht. In Kombina-
tion mit dem Messbereich legt die Messauflösung des Scheinwerfersystems die Anzahl der
vermessenen Datenpunkte der Gesamtlichtverteilung fest und bestimmt damit die Größe
der Gesamtlichtverteilung. Bedingt durch das Laden der Daten vor der Anwendung des
Headlamp Shaders und den mit wachsender Größe zunehmenden Cache-Misses hat auch
die Messauflösung Einfluss auf die Laufzeit. Sie stellt den dritten Parameter dar, den es
zu untersuchen gilt. Insbesondere sei nochmal darauf hingewiesen, dass die Komplexität
der Szene den Berechnungsaufwand des Shaders aufgrund seiner Einbindung innerhalb
der Deferred Pipeline nicht beeinflusst. Die nachfolgend vorgestellten Laufzeitmessungen
haben somit eine generelle Aussagekraft.

Die Tabelle 6-4 fasst die in den nachfolgenden Messungen verwendete Konfiguration zu-
sammen. Mit Ausnahme der zu variierenden Parameter gelten die nachfolgend aufgeführten
Eigenschaften für Kamera und Scheinwerfersystem. Innerhalb der Standardkonfiguration
überdeckt das Scheinwerferlicht 91% des durch die Kamera einsehbaren Bereichs. Diese
Überdeckung ergibt sich aus der Wahl des FOV der Kamera und des Winkelbereichs des
Scheinwerfers. Es sei jedoch darauf hingewiesen, dass die Berechnung der Überdeckung
für eine gegebene Winkelkonfiguration nicht trivial ist und unter Berücksichtigung der
verschiedenen Geometrien von View Frustum und Lichtvolumen erfolgen muss. Für die
verwendete Hard- und Software gilt die in Tabelle 6-2 definierte Spezifikation weiterhin.

Bei der Laufzeitanalyse kann die Berechnungsdauer auf der CPU, welche lediglich die
Transformationsmatrix des Lichtvolumens und einige Parameter vorgibt, außer Acht gelas-
sen werden. Sie ist im Vergleich zum Berechnungsaufwand der GPU vernachlässigbar.

Zuerst wird der Einfluss des Messbereichs auf die Laufzeit des Shadings diskutiert. Bei
konstanter Messauflösung führt ein größer werdender Messbereich einerseits zu einer
höher werdenden Anzahl von Datenpunkten innerhalb der Gesamtlichtverteilung und
andererseits zu einer zunehmenden Überdeckung des einsehbaren Bereichs. Insofern ist in
jedem Fall mit einer Laufzeitzunahme zu rechnen. Der blaue Plot in Bild 6-21 visualisiert
die gemessenen Berechnungszeiten in Abhängigkeit der Anzahl von Datenpunkten. Diese
ergibt sich durch Division der Winkelfläche durch die quadratische Messauflösung. Im
Anhang A3.3 finden sich weitere Details zu dieser und den nachfolgenden Messreihen.

Bis zu einer Zahl von etwa zwei Millionen Datenpunkten weist die Berechnungsdauer tlight

einen proportionalen Zusammenhang zu den Datenpunkten auf. Hiermit war zu rechnen,
da die Datenpunkte die Größe des Ausleuchtungsbereichs innerhalb des einsehbaren Be-
reichs widerspiegeln. Die Anzahl der Datenpunkte stellt deshalb zeitgleich die Anzahl
der Aufrufe des Fragment Shaders 13 dar. Für noch höhere Datenpunktzahlen ändert sich
der Verlauf schlagartig. Die Laufzeit bleibt ab etwa zwei Millionen Datenpunkten mit ca.
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Tabelle 6-4: Standardkonfiguration eines Scheinwerfersystems zur Parameterstudie im
Rahmen der Laufzeitanalyse der Lichtverteilungsberechnung.

Eigenschaft Standardwert Einheit

Kamera
Seitenverhältnis 16:9 -
FOV Horizontal 91,5 ◦

FOV Vertical 60 ◦

Pixel Horizontal 1.920 -
Pixel Vertikal 1.080 -
Pixelzahl 2.073.600 -

Scheinwerfer
Winkelbereich [−45, 45] × [−25, 25] ◦

Winkelfläche 4.500 ◦◦

Messauflösung 0.05
◦

px
Datenpunkte 1.800.000 -
Überdeckung 91 %
Spektral Ja -
Bit/Farbkanal 32 Bit

0, 5 ms konstant. Dieses Phänomen kann erklärt werden, indem man die Überdeckung
der Kamerasicht durch den Einflussbereichs des Lichts betrachtet. Diese wird durch den
orangen Plot in Bild 6-21 visualisiert. Wie aus seinem Verlauf hervorgeht, beginnt das
Scheinwerferlicht ab einem Winkelbereich von ungefähr [−45◦, 45◦] × [−30◦, 30◦] den
einsehbaren Bereich der Kamera auszufüllen. Eine weitere Vergrößerung des Winkelbe-
reichs erhöht die Anzahl der zu berechnenden Fragmente nicht und wirkt sich deshalb
nicht auf die Laufzeit aus. Außerdem zeigt sich, dass nicht benötigte Bereiche innerhalb
der Gesamtlichtverteilung keinen negativen Einfluss auf die Laufzeit nehmen. Sie werden
nicht in den Cache geladen. Insgesamt kann man festhalten, dass die Performance des
Shadings auch für große Winkelbereiche mit ca. 0, 5 ms sehr gut ist.

Anstelle des Winkelbereichs wird nun die Messauflösung variiert. Diese führt ebenfalls zu
einer Veränderung der Datenpunktzahl. Im Unterschied zur Anpassung des Winkelbereichs
liegt dieses Mal eine konstante Überdeckung (91%) der Kamerasicht vor. Der Plot in
Bild 6-22 zeigt die Laufzeit des Shadings für Messauflösungen von 0, 02◦ bis 0, 10◦ pro
Datenpunkt.

Da die Verfeinerung der Messauflösung quadratischen Einfluss auf die Anzahl der Daten-
punkte nimmt, ist ein umgekehrt quadratischer Zusammenhang mit der Berechnungszeit zu
erwarten. Diese Erwartung wird durch den Verlauf des Plots in Bild 6-22 widergespiegelt.
Wie sich zeigt, reagiert die Laufzeit sehr empfindlich auf feine Messauflösungen. Gleich-
zeitig kann die maximal gemessene Laufzeit von 1, 2 ms im praxisrelevanten Bereich als
vollkommen akzeptabel angesehen werden.

Zuletzt wird der Einfluss der Ausgabeauflösung untersucht. Diese Größe ist im Kontext
der Deferred Pipeline besonders ausschlaggebend, da sie die Fragmentzahl des Bilds und
damit auch die insgesamt zu beleuchtenden Fragmente vorgibt. Insgesamt wurden mit HD



228 6 Rendering von HD-Scheinwerferlicht

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

0 0, 5 1 1, 5 2 2, 5 3 3, 5 4
·106 Datenpunkte

0

0, 25

0, 5

0, 75

1

rel. Überdeckung / -
tlight/ms

[−60, 60] × [−40, 40]

[−45, 45] × [−30, 30]

[−30, 30] × [−20, 20]

Bild 6-21: Laufzeit der Szenenbelichtung in Abhängigkeit von den Datenpunkten der Ge-
samtlichtverteilung (blau) und die normierte Überdeckung zwischen Lichtkeule
und View Frustum der Kamera (orange).

Ready, Full HD, Quad HD (QHD) und Ultra HD (4K) vier standardisierte Auflösungen
gemessen. Das Bild 6-23 zeigt die Ergebnisse.

Die Laufzeit wird bezüglich der Pixelzahl aufgetragen. Diese ergibt sich durch die Multi-
plikation von Zeilen- und Spaltenzahl des Bildrasters. Bei konstanter Überdeckung besteht
zwischen der Pixelzahl und der Anzahl von Fragment-Shader-Aufrufen ein linearer Zusam-
menhang. Der Plot in Bild 6-23 entspricht diesen Überlegungen uneingeschränkt. Selbst
bei UHD-Auflösung mit über acht Millionen Pixeln kann das Shading in einem Zeitfenster
von 1, 6 ms abgewickelt werden.

Zusammenfassend kann das Shading durch die in Abschnitt 6.3 vorgestellte Lichtquelle in
Bezug auf die Anforderung A6 (Echtzeitfähigkeit) als unkritisch betrachtet werden. Für
typische Konfigurationen liegt der Berechnungsaufwand pro Scheinwerfer bei etwa 1 ms.
Darüber hinaus werden moderne Hardwarekonfigurationen die Berechnungsdauer noch
weiter reduzieren.

6.6 Witterung am Beispiel von Nebel

Bei der Analyse bestehender Nachtfahrtsimulationen in Abschnitt 3.3 stellt sich heraus,
dass keine der derzeit verfügbaren Lösungen die physikalisch motivierte Simulation von
Witterungsbedingungen unterstützt. In Abschnitt 4.1.6 wird jedoch herausgearbeitet, dass
die simulative Erprobung insbesondere solcher Fahrsituationen einen hohen Mehrwert in
der Entwicklung liefert. Hyperion soll diese Lücke schließen, weshalb die Simulation von
Witterungseinflüssen als Anforderung A9 fixiert wurde. Die Ausprägung verschiedener
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Bild 6-22: Laufzeit der Szenenbelichtung in Abhängigkeit von der Messauflösung bei
konstantem Messbereich bzw. konstanter Überdeckung.

Wetterphänomene und ihre Wechselwirkungen mit dem Scheinwerferlicht sind sehr kom-
plex. Es ist deshalb nicht möglich, alle Witterungseinflüsse im Rahmen dieser Arbeit zu
modellieren. Um die grundsätzliche Eignung der Lichtimplementierung zur Nachbildung
von witterungsbedingten Phänomenen nachzuweisen, wird im Folgenden gezeigt, wie eine
nächtliche Nebelfahrt implementiert werden kann.

6.6.1 Wechselwirkung mit Licht

Jedem Autofahrer ist die starke Sehbeeinträchtigung bei einer Nebelfahrt bekannt. Beson-
ders eingeschränkt ist die Sicht, wenn der Nebel bei Nacht auftritt. In diesem Abschnitt
sollen die Ursachen für das erschwerte Sehen bei einer nächtlichen Nebelfahrt angespro-
chen werden, bevor darauf aufbauend im nachfolgenden Abschnitt 6.6.2 ein geeignetes
Nebelmodell abgeleitet wird.

Bei einer klaren Nacht durchdringt das Licht beginnend am jeweiligen Scheinwerfer den
Raum bis zum Auftreffen auf ein Umgebungsobjekt. Dort wird es reflektiert, wobei Anteile
des reflektierten Lichts auf die Augen des Fahrers treffen und so zur Sichtbarkeit des
Objekts führen. Unter Nebelbedingungen gilt diese Aussage nicht. Als Nebel werden
viele kleine Wassertropfen, die als Aerosole in der Luft schweben, bezeichnet. Anteile des
von den Scheinwerfern ausgesandten Lichts treffen auf ihrem Weg in unterschiedlichen
Abständen auf diese Wassertropfen. Dort werden sie absorbiert oder reflektiert. Letzteres
führt zu neuen Lichtstrahlen, die sich in zufällige Richtungen ausbreiten. Einige von ihnen
bewegen sich entgegengesetzt zum ursprünglichen Lichtstrahl und führen somit zu einer
Blendung des Fahrers. Man spricht in dem Fall auch von Eigenblendung, da der Fahrer
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Bild 6-23: Laufzeit der Szenenbelichtung in Abhängigkeit von der Ausgabeauflösung.

letztlich vom Licht seiner eigenen Scheinwerfer geblendet wird. Die Skizze 6-24 soll diese
prinzipiellen Überlegungen veranschaulichen.

Bild 6-24: Wechselwirkung des Scheinwerferlichts mit Nebel.

Neben der Eigenblendung ist die erhöhte Abschwächung des Lichts mit zunehmendem
Ausbreitungsweg der zweite Effekt, der zu einer eingeschränkten Sicht führt. Licht, das vor
dem Auftreffen auf einem Szenenobjekt absorbiert oder in eine andere Richtung reflektiert
wurde, reduziert die Beleuchtungsstärke gegenüber dem Erwartungswert unter klaren
Sichtverhältnissen. Außerdem wird das vom Objekt reflektierte Licht auf dem Weg zum
Fahrer erneut anteilig absorbiert oder abgelenkt, wodurch die Erkennbarkeit des Objekts
weiter verschlechtert wird.

Die Möglichkeiten zur Anpassung der Lichtverteilung auf die Wetterbedingungen sind
noch Gegenstand der Forschung. Insbesondere die Einführung hochauflösender Schein-
werfersysteme und die damit gewonnene Flexibilität hat der Entwicklung des Schlechtwet-
terlichts neuen Auftrieb verliehen. Die bereits in Kapitel 3 diskutierten Arbeiten beweisen
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die Brisanz dieses Themas. Umso wichtiger ist es, dass theoretische Überlegungen zur
wetterabhängigen Anpassung der Lichtverteilung durch Simulation schnell, kostengünstig
und gefahrlos evaluiert werden können.

6.6.2 Modellierung

Beim bisher vorgestellten Rendering des Licht wird angenommen, dass die Leuchtdichte
entlang eines Lichtstrahls konstant ist und Wechselwirkungen zwischen Licht und Sze-
ne nur an den Objektoberflächen auftreten. Für mit Licht wechselwirkenden Medien,
wie Nebel, gilt diese Annahme nicht. Stattdessen kann das Licht überall im Raum in
Interaktion mit diesem Medium treten. Da die Medien Transparenz aufweisen, kann die
Frage, ob und wo ein Lichtstrahl mit dem Medium interagiert, nicht sicher vorhergesagt
werden. Stattdessen lässt sich eine Kollisionswahrscheinlichkeit τ angeben. τ bezeichnet
die Wahrscheinlichkeit der Kollision eines Lichtstrahls mit dem Medium während seiner
Ausbreitung entlang einer Längeneinheit. Im betrachteten Anwendungsfall korrespondiert
τ mit der Nebeldichte. Im weiteren Verlauf wird eine konstante Nebeldichte angenommen.
Grundsätzlich ist das vorgestellte Konzept jedoch auch auf lokal variierende Nebeldichten,
wie z.B. Nebelschwaden oder inhomogenen Nebel, erweiterbar, indem τ ortsabhängig
definiert wird. Zur Abbildung der Zusammenhänge wird die in Abschnitt 2.3.4 vorgestellte
Rendergleichung zur volumetrischen Rendergleichung oder Strahlungstransportgleichung
[SSS08] erweitert:

dLv(v(s),Ω)
ds

= −τLv(v(s),Ω)+τare f

∫
Ω′∈Ω+

Lv(v(s),Ω′)pPh(Ω′,Ω)dΩ′. (6-8)

Das Bild 6-25 unterstützt beim Verständnis der Größen. In Gleichung (6-8) bezeichnet
Lv(v(s),Ω) die Leuchtdichte am Ort v(s) in Richtung Ω. Betrachtet wird ein Lichtstrahl
der am Ort v(0) beginnt und sich in Richtung Ω ausbreitet. Initial weist dieser Strahl die
Leuchtdichte Lv(v(0),Ω) auf. Bei der Ausbreitung durch das wechselwirkende Medium
verändert sich die Leuchtdichte des Strahls. Betrachtet man ein differentielles Strecken-
element ds, so kann die Veränderung des Lichtstrahls entlang dieses Streckenelements
durch die rechte Seite der Gleichung (6-8) beschrieben werden. Der rot dargestellte Term
τLv(v(s),Ω) ist der Verlustterm. Er umfasst den Anteil, welcher mit dem Medium kollidiert
und von diesem entweder absorbiert oder in eine andere Richtung reflektiert wird. In
beiden Fällen ist die Leuchtdichte aus Sicht des betrachteten Lichtstrahls entlang v(s)
verloren. Das in grün visualisierte Integral umfasst die Zunahme der Leuchtdichte. Sie
kommt zustande, indem Strahlen, die sich entlang anderer Pfade ausbreiten den Pfad v(s)
kreuzen und Anteile dieser Strahlen am Kreuzungspunkt kollidieren. Im Zuge der Kollision
leistet jedoch nur der Anteil einen Beitrag zum betrachteten Strahl v(s), der in Richtung Ω

reflektiert wird. Die Wahrscheinlichkeit, dass die Kollision zur Reflexion führt, wird durch
den Parameter are f beschrieben. Weiterhin beschreibt die Phasenfunktion pPh(Ω′,Ω) die
Wahrscheinlichkeit, dass ein aus Richtung Ω′ eintreffender Strahl in Richtung Ω reflektiert
wird. Um eintreffende Strahlen aus allen Richtungen Ω′ zu berücksichtigen, wird über den
vollen Raumwinkel Ω+ integriert.

Mit Gleichung (6-8) kann die Wechselwirkung des Lichts mit den Nebelpartikeln model-
liert werden. Problematisch ist jedoch, dass es sich um eine Integro-Differential-Gleichung
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Bild 6-25: Visualisierung der Größen in der Strahlungstransportgleichung.

handelt, welche nicht analytisch gelöst werden kann. Im Gebiet des fotorealistischen Ren-
derings wird die Lösung der Gleichung (6-8) durch Monte-Carlo-Methoden approximiert
[SSS08]. Als Anwendung im Echtzeit-Rendering ist diese Vorgehensweise jedoch unge-
eignet. Um die Wechselwirkung des Lichts in Echtzeit zu simulieren, ist es notwendig,
einige Vereinfachungen zu treffen [TU09].

Vereinfachung 1: Nachfolgend wird angenommen, dass jeder Lichtstrahl auf dem Weg von
der Lichtquelle bis zum Auftreffen auf einem Objekt der Szene maximal einmal reflektiert
wird. Mit dieser Annahme wird die Realität offensichtlich verfälscht. Da jedoch eine
Vielzahl von Lichtstrahlen betrachtet wird und reale Lichtstrahlen mit zunehmender Anzahl
von Reflexionen an Leuchtdichte verlieren, kann diese Vereinfachung getroffen werden,
ohne sich gänzlich von den realen Gegebenheiten zu entfernen. Sie hat rechentechnisch
positive Auswirkungen auf den grün dargestellten Term der Gleichung (6-8), da nun davon
ausgegangen werden kann, dass die darin aufgeführten Leuchtdichten Lv(v(s),Ω′) stets
unmittelbar von einer Lichtquelle der Szene stammen. Der grün dargestellte Term kann
somit gemäß

τare f

∫
Ω′∈Ω+

Lv(v(s),Ω′)pPh(Ω′,Ω)dΩ′ →
∑
i∈I

τare f
Iv,i(Ωi)

r2
i

e−τri pPh(Ωi,Ω) C Lv,i(v(s),Ω)

(6-9)

neu formuliert werden. Anstelle des Integrals über alle Raumrichtungen genügt nun die
Summe über alle Lichtquellen der Szene, welche in der Indexmenge I zusammengefasst
werden. Im Bild 6-26 werden die Größen der Gleichung (6-9) für eine Beispiellichtquelle
visualisiert. Die von einer Lichtquelle i am Ort v(s) hervorgerufene Leuchtdichte kann
durch deren Lichtverteilung Iv,i und den Abstand ri von der Lichtquellenposition vi zum
Punkt v(s) beschrieben werden. Dazu muss die Lichtstärke von der Lichtquelle in Richtung
Ωi durch das Quadrat des Abstands zwischen vi und v(s) geteilt werden. Hinzu kommt,
dass Anteile des Lichts auf dem Weg von der Lichtquelle bis hin zu v(s) bereits absorbiert
oder in andere Richtungen reflektiert wurden. Zur Berücksichtigung dieser Verluste muss
die Leuchtdichte mit e−τri multipliziert werden.
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Bild 6-26: Vereinfachung 1 zur Erlangung einer echtzeitfähigen Lösung der volumetrischen
Rendergleichung.

Die volumetrische Rendergleichung vereinfacht sich unter der getroffenen Annahme zu

dLv(v(s),Ω)
ds

= −τLv(v(s),Ω) + Lv,i(v(s),Ω)

und nimmt die Gestalt einer gewöhnlichen Differentialgleichung an. Ihre analytische
Lösung kann nun formuliert werden:

Lv(v(s),Ω) = e−τsLv(v(0),Ω) +

∫ s

l=0
Lv,i(v(l),Ω)e−τ(s−l)dl. (6-10)

Vereinfachung 2: Verglichen mit der ursprünglichen volumetrischen Rendergleichung
(6-8) stellt die Lösung (6-10) einen deutlich effizienteren Ausdruck dar. Das Integral der
Gleichung (6-10) ist jedoch ebenfalls nicht analytisch lösbar. Es wird gemäß∫ s

l=0
Lv,i(v(l),Ω)e−τ(s−l)dl ≈

N∑
n=0

Lv,i(v(ln),Ω)e−τ(s−ln)∆l mit ln = n∆l,N = b
s
l
e

durch eine Riemann-Summe approximiert. Die Schrittweite ∆l ist parametrierbar und
beeinflusst die Genauigkeit der Approximation.

Vereinfachung/Annahme 3: Die Phasenfunktion pPh(Ωl,Ω) wurde bislang nicht näher
spezifiziert. Sie beschreibt die Wahrscheinlichkeit, dass ein unter dem Raumwinkel Ωl

einfallender Lichtstrahl an einem Nebelpartikel in Richtung des Raumwinkels Ω reflektiert
wird. Vereinfachend wird angenommen, dass Ωl und Ω nicht korrelieren. Die Wahrschein-
lichkeit ist unabhängig von der Einfallsrichtung für alle Reflexionsrichtungen gleich. Da die
Phasenfunktion eine Wahrscheinlichkeitsdichtefunktion ist, muss sie die Voraussetzungen
für eine solche erfüllen. Insbesondere muss das Integral der Funktion über der Grundmenge
1 bzw. 100% sein. Die Grundmenge stellt hier den vollen Raumwinkel von 4π dar. Um
die zuvor genannten Annahmen mathematisch abzubilden, muss die Phasenfunktion als
Konstante formuliert werden:

pPh(Ωl,Ω) B
1

4π
.

Diese Definition hat zur Folge, dass die Lv,i-Terme ihre Abhängigkeit von Ω verlieren.
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Unter der Berücksichtigung aller drei Vereinfachungen ergibt sich abschließend die verein-
fachte volumetrische Rendergleichung

Lv(v(s),Ω) = e−τsLv(v(0),Ω) +

N∑
n=0

Lv,i(v(ln))e−τ(s−ln)∆l

mit Lv,i(v) = τare f

∑
i∈I

Iv(Ωi)
4πr2

i

e−τri .

(6-11)

6.6.3 Implementierung

Die vereinfachte volumetrische Rendergleichung (6-11) kann nun durch einen Ray Mar-
ching Ansatz implementiert werden [KH84]. Das Bild 6-27 visualisiert das damit verbun-
dene Vorgehen. Ausgehend von der Kameraposition wird durch jedes Pixel des Frame
Buffers ein Ray verfolgt. Dieser Ray wird mit einer gleich bleibenden Schrittweite gerastert
und an den diskreten Rasterstellen (s. blaue Punkte in Bild 6-27) ausgewertet. Beginnend
am getroffenen Szenenobjekt werden die Lichtbeiträge der Rasterstellen entsprechend den
einzelnen Summanden in der Summenformel aus Gleichung (6-11) summiert.

∆l
v(0)

Ω

ri

Lv,i(v(l2))

l2 = 2 · ∆l (N − 2) · ∆l

N · ∆l

1 Ray/Pixel

Bild 6-27: Implementierung der vereinfachten volumetrischen Rendergleichung mittels
Ray Marching.

Das genaue Vorgehen wird im Algorithmus 14 formuliert. Begonnen wird am Ende v(0) des
Rays und somit am getroffenen Szenenobjekt. Eine umgekehrte Vorgehensweise beginnend
an der Kamera wäre ebenfalls möglich. Der Leuchtdichtebeitrag Lv(v(0),Ω) am Punkt v(0)
entspricht der Beleuchtungssituation ohne Nebel. Insofern kann das Beleuchtungsmodell
bei v(0) auf herkömmliche Weise ausgewertet werden, wobei die Abschwächung des
Lichts von der Quelle zum Punkt v(0) durch den Faktor e−τri zu berücksichtigen ist (Zeile
4). Die Beiträge aller Rasterpunkte werden in der Variablen Lsum summiert. Sie wird in
Zeile 5 mit dem Lichtbeitrag bei v(0) initialisiert. Zusätzlich wird durch den Faktor e−τs

berücksichtigt, dass das am Szenenobjekt reflektierte Licht auf dem Weg bis zur Kamera
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durch den Nebel geschwächt wird. Bis hierhin beinhaltet Lsum den linken Summanden der
Gleichung (6-11).

Durch die nachfolgende For-Schleife wird die Summenformel bestimmt. Dazu wird der
Ray beginnend beim nächsten Rasterpunkt n = 1 bis zum letzten Rasterpunkt vor der Near
Clipping Plane abgeschritten und das Argument der Summenformel aus Gleichung (6-11)
ausgewertet (Zeile 7). Die Werte werden auf den bestehenden Wert von Lsum addiert. Nach
der Terminierung dieser Iteration beinhaltet Lsum die Lichtbeiträge aller Rasterpunkte und
somit den Lichtbeitrag, der am betrachteten Pixel durch die Kamera wahrgenommen wird.
Lsum wird als Resultat zurückgegeben.

Algorithm 14 Simplified Volumetric Rendering
1: require: vcam position of camera, vi position of each light i ∈ I, Iv,i luminous intensity

distribution of each light i ∈ I, τ ∈ R fog density, are f ∈ R reflection probability,
∆l ∈ R step size

2: function renderVolumetric(v(0) ∈ R3 position of ray start)
3: local variables: Lv(v(0),Ω) ∈ R4 light at object surface, Lsum ∈ R

4

4: Lv(v(0),Ω)← L��f og(v(0),Ω) with Iv,i(Ωi)e−τri

5: Lsum ← e−τN∆lLv(v(0),Ω)
6: for n = 1 to N do
7: Lsum ← Lsum + Lv,i(v(n · ∆l))e−τ(N−n)∆l∆l
8: end for
9: return Lsum

10: end function

Der Algorithmus 14 stellt das Vorgehen des volumetrischen Renderings von Nebel im
Kern dar. Bei der praktischen Umsetzung müssen einige weitere Details beachtet werden,
die hier nur kurz angeführt werden sollen.

Rekonstruktion der räumlichen Lagebeziehungen: Die Umsetzung des Algorithmus
14 erfolgt in Hyperion durch einen Image Effect Shader. Derartige Shader kommen erst
nach dem vollständigen Rendering der Szene zum Einsatz. Bei Verwendung der Deferred
Rendering Pipeline wird der Nebeleinfluss somit erst nach Abschluss des Lighting Pass
berücksichtigt. Zur Rekonstruktion der Lagebeziehungen, welche zur Implementierung
des Algorithmus 14 bekannt sein müssen, empfiehlt sich deshalb das für den Headlamp
Shader (Algorithmus 12) diskutierte Vorgehen. Die Vertices des Lichtvolumens stellen den
Eingang für die Vertex Stufe des Nebelrenderings dar. Innerhalb der Vertex Stufe wird ein
Ray-Vektor generiert, welcher von der Kamera auf den gerade verarbeiteten Vertex des
Lichtvolumens zeigt. In der späteren Fragment Stufe kann die Interpolation dieses Ray-
Vektors gemeinsam mit den Texturkoordinaten des betrachteten Fragments und dem z-
Buffer genutzt werden, um die räumliche Lage zu rekonstruieren.

Start und Ende der Rays: Der in Bild 6-27 beispielhaft skizzierte Ray beginnt an der Near
Clipping Plane und endet am Szenenobjekt. Diese Situation trifft nicht immer zu. So kann
es beispielsweise sein, dass ein Ray kein Objekt der Szenen trifft und deshalb spätestens
an der Far Clipping Plane beendet werden muss. Außerdem führen sehr lange Rays zu
sehr vielen Rasterpunkten, wodurch die Anzahl der Schleifeniterationen in Algorithmus 14
sehr hoch werden kann. Es sollte deshalb eine geeignete Obergrenze vorgesehen werden,
welche die Ausführung in Echtzeit zulässt.
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Zufälliger Startoffset der Rays: Das deterministische Vorgehen der Rasterung aller Rays,
wie es in Algorithmus 14 beschrieben wird, führt zu einer Auswertung des Nebeleinflusses
in dünnen Scheiben mit dazwischen befindlichen Leerräume der Dicke ∆l. Zur besseren
Verteilung der Rasterpunkte im auszuwertenden Volumen empfiehlt es sich, jeden Ray mit
einem im Intervall [0,∆l] zufällig gewählten Startoffset zu versehen. In der hier gewählten
Implementierung wird hierzu eine Blue-Noise-Textur verwendet, welche abhängig vom
gerade betrachteten Pixel an unterschiedlichen Stellen ausgelesen wird [Uli88].

Globaler Nebel: Das hier beschriebene Vorgehen beschreibt eine Methode zur Darstellung
der Wechselwirkung zwischen dem Scheinwerferlicht und den Nebelpartikeln. Prinzipiell
könnte diese Methode auf alle lokalen Lichtquellen angewendet werden. Zur Sicherung
der Echtzeitfähigkeit sollte hiervon jedoch abgesehen werden. Hinzu kommt, dass globale
Lichtquellen, wie gerichtetes oder ambientes Licht, mit der beschriebenen Methode nicht
abgebildet werden können. Es ist deshalb notwendig neben der beschriebenen Imple-
mentierung einen globalen Nebel vorzusehen. In Hyperion wird hierzu eine erweiterte
Variante der Implementierung aus der Unity-Engine eingesetzt. Die Abstimmung des
globalen und volumetrischen Nebels zueinander wird durch geeignete Parameter, wie z.B.
der Nebeldichte, ermöglicht.

Weichzeichnung: In der beschriebenen Implementierung wird ein Ray pro Pixel der
Ausgabe erzeugt. Hierbei werden die Bildinformationen im Vergleich zu den realen Ge-
gebenheiten stark reduziert. Mit steigender Auflösung oder der Interpolation zwischen
mehreren Rays innerhalb eines Pixels wird das Rendering-Ergebnis genauer. Gleichzei-
tig haben derartige Maßnahmen einen negativen Einfluss auf die Berechnungszeit und
gefährden somit die Anforderung A6 (Echtzeitfähigkeit). Stattdessen kann durch das nach-
trägliche Weichzeichnen ein vergleichbares Resultat ohne nennenswerte Laufzeiteinbußen
erzielt werden. In der hier vorgestellten Lösung wird dazu ein Gauß-Filter eingesetzt
[Jäh05].

6.6.4 Renderergebnis

Als Abschluss des Abschnitts 6.6 wird das Ergebnis der Nebelimplementierung vorgestellt.
Hierzu sei zunächst auf Bild 6-28 verwiesen, welches einen globalen Nebel zeigt, der
durch Unity-Bordmittel ohne weiteren Implementierungsaufwand erzeugt werden kann.
Wie sich zeigt, ist dieser globale Nebel für die Entwicklung von Scheinwerfersystemen
absolut ungeeignet, da er keine Wechselwirkung mit Licht erlaubt. Der in Unterabschnitt
6.6.1 diskutierte Effekt der weißen Wand bleibt gänzlich aus. Auch wenn globaler Nebel
sehr effizient berechnet werden kann, erfüllt er nicht die qualitativen Voraussetzungen der
Anforderung A9 (Simulation von Witterungseinflüssen).

Im Vergleich dazu zeigen die Bilder 6-29c und 6-30 die Resultate der hier vorgestellten
volumetrischen Implementierung für eine Abblendlicht- und eine Fernlichtverteilung.
Der Unterschied zum globalen Nebel der Unity-Engine ist deutlich erkennbar. Vor den
Frontscheinwerfern bilden sich Lichtkeulen aus. Besonders erwähnenswert ist, dass diese
Lichtkeulen ihre Gestalt der momentanen Ansteuerung des Scheinwerfers anpassen. So
kann die Stufe der Hell-Dunkel-Grenze in der Abblendlichtverteilung als weiche Kante in
den Lichtkeulen der Scheinwerfer wahrgenommen werden. Genauso ist klar erkennbar,
dass der wesentlich höhere Lichtstrom einer Fernlichtverteilung zu helleren Lichtkeulen vor
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Bild 6-28: Globaler Nebel der Unity-Engine.

dem Fahrzeug führt. Der Effekt einer weißen Wand kann demnach durch die vorgestellte
Implementierung reproduziert werden.

In den Bildern 6-29a und 6-29b sind Zwischenergebnisse des Renderings visualisiert, wie
sie auf dem Weg zum finalen Szenenbild 6-29c entstehen. Konkret zeigt Bild 6-29a die
zunächst isoliert gerenderten Lichtbeiträge der angestrahlten Nebelpartikel. Hierbei werden
bereits die vorliegende Perspektive und eventuellen Verdeckungen berücksichtigt, um das
spätere Blending der Nebeltextur mit der Szenentextur zu ermöglichen. In Bild 6-29a
werden bereits die zum Ende von Abschnitt 6.6.3 kurz erwähnten zufälligen Startoffsets
der einzelnen Rays verwendet. Hierdurch kann die Scheibenbildung vermieden werden.
Die strahlenden Nebelpartikel wirken gleichmäßig verteilt. Dennoch führt die diskrete
Abtastung zu erkennbaren Rauscheffekten. Diese werden in einem nachgelagerten Schritt
durch die ebenfalls am Ende des Abschnitt 6.6.3 erwähnte Weichzeichnung eliminiert. Das
Bild 6-29b zeigt die Weichzeichnung des Bilds 6-29a durch dreimaliges Anwenden des
örtlichen Tiefpassfilters. Das Filterergebnis kann letztlich durch additives Blending in die
Szene integriert werden.

Die vorgestellte Umsetzung eines volumetrischen Nebel zeigt die grundsätzliche Mach-
barkeit der Echtzeit-Simulation von Witterungsbedingungen im Rahmen von Hyperion.
Die genaue Validierung der simulierten Nebeleffekte anhand realer Referenzen wurde
im Rahmen der Arbeit nicht betrachtet. Es sei jedoch erwähnt, dass die hier vorgestellte
Implementierung bereits in anderen Untersuchungen herangezogen wurde [Tho21].
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a

b

c

Bild 6-29: Renderergebnisse des volumetrischen Nebels bei Abblendlicht.
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Bild 6-30: Renderergebnisse des volumetrischen Nebels bei Fernlicht.
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7 Analyse und Entwurf von Lichtfunktionen

Die echtzeitfähige Implementierung des Lichts von HD-Scheinwerfern innerhalb der Nacht-
fahrtsimulation „Hyperion“ wurde im vorangegangenen Kapitel detailliert vorgestellt. Sie
ermöglicht eine Erprobung virtueller Prototypen bereits vor der physischen Realisierung.
HD-Systeme sind hochflexibel und können dynamisch zwischen verschiedensten Lichtver-
teilungen wechseln. Dementsprechend kommt den Lichtfunktionen, welche die momentane
Gestalt der Lichtverteilung bestimmen, bei der Erprobung ein besonderer Stellenwert zu.
Fallen im Rahmen dieser Erprobung Fehler oder Schwachstellen auf, gilt es diese zu
korrigieren. Dieses Kapitel umfasst Tools und Ansätze, die den Entwickler sowohl bei der
Erkennung als auch bei der Beseitigung derartiger Mängel unterstützen.

7.1 Analyse

Der erste Teil des Kapitels befasst sich mit der Analyse eines Scheinwerfersystems. Die
detaillierte Erfassung des Ist-Zustands steht im Vordergrund. Dazu benennt Abschnitt 7.1.1
die photometrischen Größen, die zur Analyse des Scheinwerferlichts zur Verfügung stehen
und erläutert ihre Aussagekraft. Der nachfolgende Abschnitt 7.1.2 stellt die in Hyperion zur
Verfügung stehenden Visualisierungen dieser Größen vor. Da die Analyse des Lichts nur
den Ausgang des Scheinwerfersystems erfasst, umfasst Abschnitt 7.1.3 Visualisierungen
der Systemeingänge, welche im betrachteten Kontext durch Sensorinformationen gebildet
werden.

7.1.1 Photometrische Größen

Bevor die verschiedenen Visualisierungen im Abschnitt 7.1.2 thematisiert werden, be-
schreibt dieser Abschnitt die Größen, deren Visualisierungen bei der Analyse eines Schein-
werfersystems hilfreich sein kann. In der Photometrie sind hier die Lichtstärke, die Be-
leuchtungsstärke und die Leuchtdichte örtlich aufgelöst in der Szene zu nennen. Jede
dieser Größen hat Vorzüge und Nachteile bei der Analyse, da verschieden viele Einfluss-
größen Berücksichtigung finden. Diese sind in Tabelle 7-1 aufgeführt. Die Wahrnehmung

Tabelle 7-1: Photometrische Größen und ihre Abhängigkeiten von der Umgebung.

Größe Einflüsse

Lichtstärke Iv Polarwinkel, Azimutwinkel
Beleuchtungsstärke Ev + Distanz, Einfallswinkel
Leuchtdichte Lv + Materialeigenschaften (BRDF)

des menschlichen Auges ist im photometrischen Sinne an die Leuchtdichte gebunden.
Diese ist jedoch bedingt durch die vielen Einflussgrößen sehr komplex. Neben geometri-
schen Faktoren, welche auch die Lichtstärke und Beleuchtungsstärke bestimmen, fließen
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Materialeigenschaften ein, welche das Reflexionsverhalten der Oberfläche beeinflussen.
Beispiele hierfür sind die Rauigkeit der Oberfläche, die spektralen Eigenschaften und
die Dichte des Materials, die Anisotropie und weitere Einflussgrößen [Geb03]. Gerade
diese Materialeigenschaften sind sehr komplex und können im Rahmen dieser Arbeit
nur grob approximiert Berücksichtigung finden. In der Konsequenz kann der simulativ
ermittelte Leuchtdichtewert eines Szenenpunkts stark vom realen Wert abweichen. Auf
eine Visualisierung der Leuchtdichte wird deshalb verzichtet.

Hinzu kommt, dass der Lichtingenieur oftmals weniger an der Leuchtdichte als an der
Beleuchtungsstärke interessiert ist. Die Beleuchtungsstärke gibt die örtlich aufgelösten
Lichtbeiträge des Scheinwerfers basierend auf der Lichtstärkeverteilung und der Geometrie
der Szene (Distanz und Einfallswinkel) wieder. Auf diese Weise wird der Einfluss des
Scheinwerferlichts nicht durch unterschiedlich stark reflektierende Objekte der Szene
verfälscht. Auf das Reflexionsverhalten kann im realen Umfeld ohnehin keinen Einfluss
genommen werden. Neben der Leuchtdichte ist die Beleuchtungsstärke somit eine wichtige
Analysegröße für die Erprobung eines Scheinwerfersystems.

Doch auch die Beleuchtungsstärke verzerrt die Lichtstärkeverteilung bedingt durch die
Variation der Distanzen und der Einfallswinkel innerhalb der Szene erheblich. Möchte der
Lichtingenieur grundlegend prüfen, ob die Konturen der Lichtstärkeverteilung für eine
gegebene Situation korrekt gestaltet sind, kann es sinnvoll sein, auch die Einflüsse auf die
Beleuchtungsstärke außer Acht zu lassen und gezielt die Lichtstärke zu betrachten. In diese
fließt ausschließlich die Richtung ein, die vom jeweiligen Scheinwerfer auf das betrachtete
Szenenelement weist. Diese Richtung wird formal durch den Polar- und Azimutwinkel im
lokalen Scheinwerferkoordinatensystem beschrieben.

Das Bild 7-1 fasst die angestellten Überlegungen zusammen und visualisiert die Diskrepanz
zwischen der menschlichen Wahrnehmung und der technischen Beeinflussbarkeit, der
Situationsunabhängigkeit sowie der Präzision der simulativen Berechnungen. Aufgrund
dieses Kompromisses hat jede der betrachteten photometrischen Größen eigene Vorzüge
und Nachteile bei der Scheinwerferanalyse.

θ

ϕ

r

Lichtstärke
Beleuchtungsstärke

Leuchtdichte

θE

Menschliche Wahrnehmung

Technische Beeinflussbarkeit, Situationsunabhängigkeit, Präzision

Bild 7-1: Photometrische Größen zur Analyse von Scheinwerfersystemen.
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7.1.2 Analysesichten

Zur Erfüllung der Anforderung A7 können die im Abschnitt 7.1.1 beschriebenen Analy-
segrößen in Hyperion auf unterschiedliche Weise visualisiert werden. Derartige Analyse-
sichten etablierten sich in der Scheinwerferentwicklung auch schon vor dem Aufkommen
der HD-Technologie. Typischerweise werden die photometrischen Größen durch Isolinien-
oder Falschfarbendarstellungen visualisiert. Im Rahmen dieser Arbeit wurden die be-
stehenden Konzepte lediglich in die HD-Domäne überführt. Die Bilder im Anhang A5.1
zeigen einige Impressionen. Da die Lichtstärkeverteilungen der Scheinwerfer nach der
Bestimmung der Gesamtlichtverteilung gemäß Abschnitt 6.2.3 vorliegen, unterscheidet
sich die Implementierung der Analysesichten prinzipiell nicht von klassischen Scheinwer-
fersystemen. Dementsprechend werden die etablierten Analysesichten nicht ausführlicher
betrachtet. Neben den Visualisierungen der photometrischen Größen stellt Hyperion weite-
re etablierte Analysetools, wie beispielsweise die Einblendung von Distanzmarken oder
einer Messwand, zur Verfügung. Sie können im Anhang A5.2 eingesehen werden.

Mit dem Wandel der Scheinwerfertechnik im Zuge der HD-Technologie entstehen darüber
hinaus neue Möglichkeiten zur Analyse. Im Folgenden soll eine Analysesicht vorgestellt
werden, die insbesondere bei der Beurteilung der Lichtsteueralgorithmen hilft, indem sie
die Dimmwerte der Pixellichtquellen im Scheinwerfer visualisiert. Sie wird im weiteren
Verlauf als Dimmwertanalyse bezeichnet. Konkret werden zwei Varianten der Dimmwert-
analyse vorgestellt, die abhängig von der Auflösung des Scheinwerfersystems ausgewählt
werden sollten.

Das Bild 7-2 zeigt die Dimmwertanalyse für das HD84-System. Aufgrund der verhält-
nismäßig geringen Anzahl von Pixellichtquellen dieses Scheinwerfersystems wird die
Dimmwertanalyse in seiner ersten Variante gezeigt. Diese zeichnet sich dadurch aus, dass
die Dimmwerte aller Pixellichter in voneinander separierten Kästchen visualisiert werden
(s. Bild 7-2 unten). Die Anordnung der Kästchen entspricht den Einbaupositionen der
Pixellichter im Matrix-Modul. Die Position eines Pixellichts gibt gleichzeitig Aufschluss
über den Raumwinkelbereich, in dem es strahlt. Außerdem tragen die Kästchen Indizes
und erlauben darüber eine direkte Zuordnung zu den Lichtquellen der Scheinwerfer. Er-
wartungsgemäß werden die Dimmwerte des linken Scheinwerfers in der unteren linken
Ecke der Anzeige dargestellt. Entsprechend verhält es sich für den rechten Scheinwerfer.
Der Dimmwert der jeweiligen Pixellichtquelle wird durch Falschfarben visualisiert. Ist die
Lichtquelle ausgeschaltet, so ist das entsprechende Kästchen tiefblau gefärbt. Bei maxi-
maler Bestromung ist das Kästchen tiefrot. Alle Abstufungen ordnen sich im Farbverlauf
von blau über grün, gelb und orange bis rot ein. Parallel zu den Dimmwerten werden im
oberen Bereich die sich ergebenden Lichtstärkeverteilungen der Scheinwerfer bezüglich
des Polar- und Azimutwinkels durch Falschfarbendarstellungen visualisiert.

Der Lichtingenieur erhält auf diese Weise ein direktes Feedback über die Ausgabe der
Lichtsteueralgorithmen und kann hieraus gezielt Anpassungen ableiten. Des weiteren stellt
die Dimmwertanalyse Möglichkeiten zur Fehlerinjektion bereit. Durch Rechtsklick auf
ein Kästchen, kann die korrespondierende Pixellichtquelle von der Funktionstüchtigkeit
bis zum Totalausfall stufenweise degradiert werden. Die Konsequenzen für die Lichtver-
teilungen und die Ausleuchtung der Szene werden unmittelbar sichtbar. Darüber hinaus
kann die Dimmwertanalyse parallel zu den bereits genannten, klassischen Analysesichten
eingesetzt werden.
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Bild 7-2: Dimmwertanalyse eines niedrig aufgelösten Scheinwerfersystems (Bsp.: HD84).

Für höher aufgelöste Systeme ist die Repräsentation der Pixellichter durch einzelne Käst-
chen nicht übersichtlich darstellbar. Aus diesem Grund stellt die Dimmwertanalyse die
Dimmwertbelegung für höher aufgelöste Systeme durch eine Textur dar. Die Pixellichtquel-
len entsprechen dabei einzelnen Texeln dieser Textur, welchen abhängig vom Dimmwert
eine entsprechende Farbe analog zur ersten Variante zugewiesen wird. Die Lichtstärkever-
teilungen im oberen Bereich behalten unverändert ihre Bedeutung. Diese zweite Variante
der Dimmwertanalyse wird in Bild 7-3 am Beispiel eines fiktiven Systems mit 1200
Lichtquellen pro Scheinwerfer gezeigt.

Bild 7-3: Dimmwertanalyse eines fiktiven hoch aufgelösten Scheinwerfersystems.
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Sollten die Anzahlen der Pixel innerhalb einer Zeile variieren, so werden die Dimensionen
der Textur als das Maximum der vorkommenden Zeilen- und Spaltenzahlen gewählt.
Diejenigen Texel, die keiner Lichtquelle entsprechen, werden transparent dargestellt.

7.1.3 Sensorgrößen

Die Visualisierungen der photometrischen Größen und der Dimmwerte genügen nicht,
um das Systemverhalten vollständig zu analysieren. Sie stellen nur die Ausgänge des
Systems dar. Ebenso zentral ist die Analyse der Systemeingänge, welche letztlich zu den
Ausgangsgrößen führen. Im Kontext eines Scheinwerfersystems setzen sich die Eingänge
aus sensorisch erfassten Informationen über den Zustand des Fahrzeugs und dessen Umge-
bung zusammen (s. Abschnitt 5.4.2). Auch diese müssen auf intuitive Weise visualisiert
werden.

Hyperion bietet zur Darstellung des Fahrzeugzustands ein Dashboard im rechten Bereich
der Anzeige. Dieses Dashboard ist in Bild 7-4 zu sehen und kann auf Wunsch ein- oder
ausgeblendet werden.

Bild 7-4: Dashboard des Fahrzeugzustands und Visualisierung der Umfelderkennung zur
Analyse lichtrelevanter Eingangsgrößen.

Visualisiert werden die lichtrelevanten Größen. Das sind die Größen, die durch das Licht-
steuergerät bei der Dimmwertvorgabe berücksichtigt werden. Im dargestellten Beispiel
werden die Umfangsgeschwindigkeiten der Vorderräder, die Fahrzeuggeschwindigkeit und
-gierrate sowie der Lenkwinkel visualisiert. Abhängig davon, welcher Fahrmodus aktiv
ist, werden diese Größen intern berechnet, über die entsprechende Schnittstelle vom ASM
Fahrzeugmodell übertragen oder lediglich als aufgezeichnete Größen angezeigt.

Insbesondere für moderne Lichtfunktionen sind neben den Fahrzeuggrößen Umfeldin-
formationen ausschlaggebend. Wie in Abschnitt 5.4.2 am Beispiel der Umfeldkamera
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beschrieben, müssen die benötigten Umfeldsensoren als virtuelle Sensoren in die Simulati-
on integriert werden. Um den Einfluss der Umfeldinformationen auf die Lichtfunktionen
bestmöglich überblicken zu können, müssen auch die wahrgenommenen Informationen
der Umfeldsensoren transparent einsehbar sein. Vor diesem Hintergrund zeigt Bild 7-4
zusätzlich die Visualisierung der durch die Umfeldkamera erkannten Fahrzeuge. Sie wird
über das durch die linke Schaltfläche erreichbare Parametermenü aktiviert. Die in Abschnitt
5.4.2 genannten Objektinformationen werden unmittelbar neben jedem erkannten Objekt
eingeblendet.

7.2 Entwurf

Die in den Abschnitten 7.1.2 und 7.1.3 beschriebenen Visualisierungen unterstützen den
Entwickler bei der Fehlererkennung. In klassischen Systemen genügt die Anwendung
dieser Analysesichten in einigen ausgewählten Situationen, um die wenigen, darstell-
baren Lichtverteilungen zu optimieren. Durch die Flexibilität von HD-Systemen ist die
Menge der darstellbaren Lichtverteilungen jedoch so stark gewachsen, dass konventio-
nelle Entwicklungsmethoden die Potentiale moderner Systeme nicht voll ausschöpfen
können. Stattdessen muss der Lichtingenieur durch softwaretechnische Automatismen
aktiv beim Entwurf von Lichtverteilungen unterstützt werden. Dieser Abschnitt umfasst
die Methoden, die zur Unterstützung und Automatisierung des Auslegungsprozesses von
Lichtfunktionen entwickelt wurden und adressiert damit die Anforderung A8. Das kon-
krete Scheinwerfersystem wird dabei abstrahiert, sodass die Auslegung der Lichtfunktion
universell vorgenommen werden kann. Die Anpassung der generierten Lichtfunktionen
auf verschiedene Systeme ist anschließend automatisiert möglich.

7.2.1 Methodik

Die nachfolgend vorgestellte Methodik dient nicht nur der Handhabbarkeit der vielen
Freiheitsgrade beim Entwurf von Lichtfunktionen für HD-Systeme, sondern automatisiert
den Entwurfsprozess über weite Bereiche. Außerdem erlaubt sie die direkte Vorgabe
photometrischer Sollwerte und führt auf diese Weise schneller zur gesuchten Lichtfunktion,
als es in iterativen Annäherungsverfahren möglich ist. Die grundlegende Wirkkette ist in
Bild 7-5 dargestellt.

Szenario
Strecke, Wetter,
Verkehr, ...

Simulation

Virt. Sensoren

fdim

Lichtsteueralgorithmus

Automatisch generierter Funktionsteil

Selektion und
Sollvorgabe

Einflussanalyse Dimmwertvorgabe
Simulation
mit Licht

Bild 7-5: Methodik für den Entwurf von Lichtfunktionen für HD-Scheinwerfersysteme.

Der Entwurfsprozess beginnt mit der Definition des Testszenarios und der anschließenden
Simulation dessen in Hyperion. Innerhalb der Nachtfahrtsimulation werden alle lichtrele-
vanten Fahrzeugzustände (z.B. Lenkwinkel, Gierrate, Geschwindigkeit, ...) und Umfeld-
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sensoren (z.B. Umfeldkamera, ...) simuliert (s. Abschnitt 5.4.2). Die Informationen der
Fahrzeugsensorik bestimmen das Verhalten der verschiedenen Lichtfunktionen. Betrachtet
man beispielsweise das blendfreie Fernlicht, so werden die Dimmwerte der Pixellichter
primär durch die Umfeldkamera bestimmt. fdim gibt für die einzelnen Lichtquellen im
Regelfall die Dimmwerte für volles Fernlicht vor. Sobald jedoch durch die Umfeldsensorik
ein entgegenkommendes Fahrzeug erkannt wird, müssen die Dimmwerte der auf das Fahr-
zeug Einfluss nehmenden Lichtquellen reduziert werden. Eine Lichtfunktion kann insofern
als Mapping-Funktion fdim verstanden werden (s. Bild 7-5). Sie verweist im Allgemeinen
von der Gesamtheit der momentan vorliegenden Sensordaten auf die Dimmwerte des
HD-Scheinwerfers. Aufgrund der hochdimensionalen Ausgangsgröße von fdim, welche
abhängig vom Scheinwerfersystem zwischen einigen hundert bis mehreren zehntausend
Dimmwerten variieren kann, kann diese Mapping-Funktion auf direktem Wege nicht
adäquat formuliert werden. Die in Bild 7-5 veranschaulichte Methodik reduziert die Di-
mension der Mapping-Funktion fdim durch das Einfügen einer Abstraktionsschicht vor dem
Scheinwerfersystem erheblich. Diese Abstraktionsschicht, bestehend aus Einflussanalyse
und Dimmwertvorgabe, ist in der Lage räumliche Selektionen im Fahrzeugumfeld und
darin einzuhaltende photometrische Sollwerte in Dimmwerte der Pixellichter zu transfor-
mieren. Die Implementierung dieser Abstraktionsschicht, deren essentielle Komponente
die Einflussanalyse einzelner Lichtquellen auf den Selektionsbereich darstellt, wird im
nachfolgenden Abschnitt beschrieben.

Den methodischen Kern stellt die drastische Verringerung der Dimension der Mapping-
Funktion fdim dar. Aufgrund der Abstraktionsschicht beschränkt sich die Aufgabe des
Lichtingenieurs auf die Definition einer Zuordnung von Sensorinformationen auf Selek-
tionsbereiche und photometrische Sollwerte. In Bild 7-5 wird diese Zuordnung durch
den mit fdim beschrifteten Block abgebildet. Abhängig von der zu entwerfenden Licht-
funktion kann fdim ganz unterschiedlicher Gestalt sein und wird in dieser prototypischen
Umsetzung nicht näher diskutiert. Ist fdim gegeben, erfolgen alle nachfolgenden Schritte,
welche nötig sind, um die Dimmwerte der Pixellichter zu ermitteln, vollautomatisiert in
der Abstraktionsschicht.

7.2.2 Implementierung

Nach der Darstellung methodischer Grundlagen erfolgt nun die Diskussion der wesentli-
chen Aspekte der Implementierung. Zuerst wird das Preprocessing des Scheinwerfersys-
tems beschrieben. Im Rahmen dieses Vorgangs werden die essentiellen Eigenschaften aus
den Lichtverteilungen der einzelnen Pixellichter extrahiert. Insbesondere wird dabei die
konkrete Scheinwerferrealisierung abstrahiert, sodass die nachfolgenden Schritte davon
unabhängig implementiert werden können. Im Anschluss wird die Einflussanalyse der
einzelnen Pixellichter auf den räumlichen Selektionsbereich vorgestellt. Die hierzu ver-
wendete Implementierung ist echtzeitfähig und eignet sich auch zur Integration auf einem
Steuergerät. Abschließend werden Designparameter aufgeführt, welche vom Lichtinge-
nieur spezifiziert werden können und sowohl einen Kompromiss zwischen Robustheit und
Präzision ermöglichen als auch zur Individualisierung der Lichtfunktion beitragen.
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Preprocessing

Ziel des Preprocessings ist ähnlich wie in Kapitel 6 die Extraktion der wesentlichen
Informationen, um so zur Laufzeit schnell agieren zu können. Zu Beginn liegen die Licht-
verteilungen aller Pixellichter vor. Im monochromen Fall handelt es sich hierbei um Licht-
stärkewerte und im spektralen Fall um CIE XYZ Koordinaten, welche die Charakteristik
des Pixellichts abhängig von Polar- und Azimutwinkel wiedergeben. Für die nachfolgenden
Ausführungen wird ausschließlich die Lichtstärke verwendet, welche im spektralen Fall
im vierten Farbkanal der RGBY-Textur enthalten ist. Beispielhaft zeigt das Bild 7-6 die
Lichtstärkeverteilung der LED 1 (untere Zeile, links) eines HD84-Scheinwerfers. In Bild
7-6 sind die typischen Merkmale eines Pixellichts erkennbar. Die betrachtete Lichtquelle
bestrahlt nur einen kleinen Ausschnitt des insgesamt auszuleuchtenden Raumwinkels.

ϕ/◦−80 −60 −40 −20 20 40 60 80

θ/◦

10

−10
−20

Iv/cd18 180 1, 800 18, 000

Bild 7-6: Lichtstärkeverteilung der LED 1 der HD84-Matrix.

Um die nachfolgend benötigten Merkmale eines Pixellichts zu extrahieren, wird im ersten
Schritt zu jedem Pixel (Index k) der bestrahlte Raumwinkelbereich Rl,k ⊂ [−π2 ,

π
2 ]2 bestimmt.

Ziel ist die Identifikation der Konturen der Lichtkeule (s. Bereich bei ca. θ = −2◦, ϕ = −20◦

in Bild 7-6). Einerseits sollte die Lichtkeule in Rl,k vollständig enthalten sein, anderer-
seits sollten das umgebende Streulicht und Abbildungsfehler nicht zu einem übergroßen
Raumwinkelbereich führen. Die Tiefpass-Filterung der ursprünglichen Lichtverteilung
schafft hier Abhilfe, da Streulichtanteile aufgrund ihrer hohen örtlichen Variation stark
abgeschwächt werden. So kann beispielsweise der bei θ ≈ 17◦ und ϕ ≈ 0◦ befindliche
Streulichtschweif (s. Bild 7-6) durch die Tiefpassfilterung erheblich abgeschwächt werden,
da er nur sehr konzentriert auftritt und seine direkte Umgebung kein Licht empfängt. In
Hyperion wird dazu auf jeden 7×7-Block benachbarter Texel der Lichtverteilung ein Gauß-
Kernel der Größe 7 × 7 mit einer Standardabweichung von σ = 3 angewendet [Jäh05].
Die hier getroffene Wahl wurde auf die vorliegenden Messdaten optimiert und hängt von
der Auflösung der Lichtverteilung und den optischen Eigenschaften des Scheinwerfersys-
tems, insbesondere der Randschärfe der Ausleuchtungsbereiche und der Charakteristik des
Streulichts (, ab. In Bild 7-7a wird die Lichtverteilung der LED 1 gezeigt. Auch wenn die
dargestellte Lichtverteilung spektral ist, wird das Preprocessing ausschließlich auf Basis
der Lichtstärke vollzogen, welche im nicht visualisierten α-Kanal neben den drei Farbka-
nälen (RGB) ausgelesen werden kann. Das Bild 7-7b zeigt die Gradientendarstellung des
Bilds 7-7a. Diese kann durch die Anwendung des Sobel-Operators erzeugt werden, welcher
typischerweise zur Kantenerkennung eingesetzt wird [Jäh05]. In der Gradientendarstellung
wird das Streulicht deutlicher erkennbar (s. linker Randbereich in Bild 7-7b). Das Ergebnis
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der Tiefpassfilterung wird in Bild 7-7c ebenfalls in der Gradientendarstellung gezeigt.
Der Vergleich der Bilder 7-7b und 7-7c zeigt, dass das Streulicht durch die Tiefpass-
Filterung deutlich reduziert werden kann ohne die Konturen der Lichtkeule signifikant zu
beeinflussen.

a b

c d

Bild 7-7: Spektrale Lichtverteilung der LED 1 des HD84-Systems (a), deren Gradienten-
darstellung (b),deren Gradientendarstellung nach der Tiefpass-Filterung (c) und
ihr umhüllendes Rechteck in sphärischen Koordinaten (d).

Im nächsten Schritt wird der maximal auftretende Lichtstärkewert Īv,k innerhalb der betrach-
teten Lichtverteilung der LED k bestimmt. Bezogen auf Īv,k wird eine relative Schranke
bcut ∈ [0, 1] definiert. Lichtstärkewerte, welche unterhalb bcut · Īv,k liegen, werden als
irrelevant betrachtet. Die vorgelagerte Tiefpass-Filterung stellt sicher, dass auch für kleine
Werte von bcut kein Streulicht als relevant eingestuft wird. Die Wahl der Schranke definiert
vorrangig, wie scharf die Lichtkeule ausgeschnitten wird. Sie muss spezifisch für das
jeweilige Scheinwerfersystem gewählt werden. Der Abschnitt 7.2.3 wird zeigen, dass die
Wahl bcut = 50% im Falle des HD84-Systems zu einer guten Segmentierung des gesamten
Ausleuchtungsbereichs führt (s. Bild 7-10).

Um in den nachfolgenden Schritten effizient mit den identifizierten Winkelbereichen Rl,k

umgehen zu können, werden sie durch Rechteckgeometrien bezüglich der sphärischen
Koordinaten beschrieben. Somit lassen sie sich sehr kompakt durch ihren unteren linken
Eckpunkt (

¯
θl,k,

¯
ϕl,k) und ihren oberen rechten Eckpunkt (θ̄l,k, ϕ̄l,k) beschreiben. Zur Kon-

struktion des einhüllenden Rechtecks Rl,k für eine gegebene Lichtverteilung, wird dieses
mit einer Größe von einem Texel an dem zuvor ermittelten Maximalwert Īv,k initialisiert.
Dementsprechend gilt initial

(
¯
θl,k,

¯
ϕl,k) = (θ̄l,k, ϕ̄l,k) = (θmax, ϕmax),

wobei (θmax, ϕmax) die Texelkoordinaten von Īv,k sind. Nun wird über alle Texel der Licht-
verteilung iteriert. Für jedes Texel, dessen Lichtstärkewert Iv,θ?,ϕ? oberhalb der Schranke
(Iv,ϕ?,θ? > bcut · Īv,k) liegt, wird geprüft, ob es im bisherigen Rechteck Rl,k enthalten ist.
Sollte das Texel außerhalb von Rl,k liegen, werden die Eckpunkte von Rl,k so angepasst,
dass das neue Rechteck R?

l,k der kleinsten Rechteckgeometrie entspricht, für die gilt

Rl,k ⊂ R?
l,k ∧ (ϕ?, θ?) ∈ R?

l,k.
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Das Bild 7-7d zeigt das grün dargestellte Rechteck Rl,1, welches nach Iteration über alle
Texel der Lichtverteilung der LED 1 entsteht. Wie aus dem Bild hervorgeht, kann der vom
Pixellicht bestrahlte Raumwinkel durch dieses Verfahren extrahiert werden.

Neben den bestrahlten Winkelbereichen stellt der Lichtstrom Φv,k, welcher vom Pixel-
licht k bei voller Bestromung innerhalb des Bereichs Rl,k abgegeben wird, ein weiteres
wichtiges Merkmal der Lichtverteilung dar. Durch Integration der Lichtstärke über dem
Raumwinkelbereich Rl,k kann Φv,k bestimmt werden:

Φv,k =

∫ ϕ̄

ϕ=
¯
ϕ

∫ θ̄

θ=
¯
θ

Iv,k(θ, ϕ) cos θdθdϕ. (7-1)

Da keine kontinuierliche Form der Lichtstärkeverteilung Iv,k(θ, ϕ) besteht, muss das Integral
in Gleichung (7-1) durch die Riemann-Summe der diskreten Texel approximiert werden:

Φv,k =

Mk∑
m=1

Nk∑
n=1

Iv,k(θm, ϕn) cos θn∆ϕ∆θ

θm =
¯
θ + m · ∆θ, ϕn =

¯
ϕ + n · ∆ϕ.

(7-2)

Wenn Φk über einen großen Winkelbereich Rl,k verteilt ist, so ergibt sich eine niedrige
mittlere Lichtstärke Iv,k,∅. In der Konsequenz ist auch die am bestrahlten Objekt vorliegende
Beleuchtungsstärke niedrig. Zur Berücksichtigung dieses Effekts wird die Größe des
bestrahlten Raumwinkelbereichs ebenfalls bestimmt:

Ωk =

∫ θ̄

θ=
¯
θ

∫ ϕ̄

ϕ=
¯
ϕ

cos θdϕdθ

= (ϕ̄ −
¯
ϕ) · (sin θ̄ − sin

¯
θ).

(7-3)

Aufbauend auf den Gleichungen (7-2) und (7-3) kann die mittlere Lichtstärke im identifi-
zierten Bestrahlungsbereich Rl,k zu

Iv,k,∅ =
Φv,k

Ωk
(7-4)

bestimmt werden. Das Preprocessing ist damit abgeschlossen.

Einflussanalyse

Die im Preprocessing extrahierten Merkmale Rl,k, Φv,k, Ωk und Iv,k,∅ jeder Lichtquelle
werden für die Transformation der räumlichen Selektion und der Sollwertvorgabe in Dimm-
werte der einzelnen Pixellichter benötigt. Zuvor muss die räumliche Selektion jedoch in die
sphärischen Koordinaten der Scheinwerfer überführt werden. Details zu dieser Transforma-
tion können [RBM+19a] entnommen werden. Es wird im weiteren Verlauf angenommen,
dass der Selektionsbereich analog zu den Lichtkeulen der Pixellichter als Rechteck Rsel

bezüglich der sphärischen Koordinaten des jeweiligen Scheinwerfers interpretiert werden
kann. Neben der Selektion muss der Sollwert Ev,re f der Beleuchtungsstärke spezifiziert
werden. Die Wahl dieses Sollwerts ist abhängig von der betrachteten Lichtfunktion und den
vorliegenden Sensorinformationen. Im Falle des blendfreien Fernlichts ist zum Beispiel
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ϕ

θ

Rl,k

Rl, j

Rsel

Ro,k

fo,k

fl,k

¯
ϕsel ϕ̄sel

¯
θsel

θ̄sel

¯
ϕl,k ϕ̄l,k

¯
θl,k

θ̄l,k

∆ϕ f b, j

bl, j

fl, j

Bild 7-8: Überlappungsbereich zwischen der Selektion Rsel und der Lichtkeule Rl,k.

die Vorgabe Ev,re f = 0 lx im Bereich der Windschutzscheibe des entgegenkommenden
Fahrzeugs sinnvoll.

Im nächsten Schritt muss die Einflussnahme jedes Pixellichts auf Rsel analysiert werden.
Betrachtet man die Lichtquelle k, wird zuerst die Überlappung Ro,k zwischen dem Aus-
leuchtungsbereich Rl,k der Lichtquelle und der Selektion Rsel bestimmt. Es werden zwei
Typen von Überlappungssituationen unterschieden.

Im ersten Fall nimmt der Überlappungsbereich Ro,k mindestens ocut = 50% des Ausleuch-
tungsbereichs Rl,k ein. Dieser Fall trifft auf die Lichtquelle k in Bild 7-8 zu. Zur Erreichung
der Sollwertvorgabe Ev,re f im Bereich Rsel muss für die Lichtquelle k ein geeigneter Dimm-
wert dk ∈ [0, 1] gefunden werden. Da die Beleuchtungsstärke nicht direkt beeinflusst
werden kann, muss die Sollvorgabe zunächst in eine Referenzlichtstärke Iv,re f überführt
werden. Gemäß Gleichung (2-13) stehen diese Größen über die Distanz r und den Licht-
einfallswinkel θE in Zusammenhang. Während die Distanz zu Umgebungsobjekten durch
moderne Fahrzeugsensorik erfasst werden kann, kann die genaue Kenntnis von θE nicht
zwangsläufig vorausgesetzt werden. Ist θE unbekannt, empfiehlt es sich, den Wert von
θE abhängig von der Lichtfunktion festzulegen (z.B. blendfreies Fernlicht θE = 0◦). Die
Lichtverteilung eines einzelnen Pixellichts kann durch den Dimmwert nur global skaliert
werden. Deshalb wird die Distanz ro,k zwischen der Lichtquelle k und der beleuchteten
Fläche in Richtung des Fokuspunkts fo,k der Überlappung als Approximation der mittleren
Entfernung verwendet. Da der außerhalb Rsel liegende Anteil der Lichtkeule Rl,k keinen
Beitrag zur Beleuchtungsstärke im relevanten Bereich liefert (s. Bild 7-8), wird die Rich-
tung fo,k anstelle des Fokuspunkts fl,k der Lichtquelle präferiert. Falls Rsel die Lichtkeule
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Rl,k vollständig beinhaltet, sind fo,k und fl,k identisch. Basierend auf diesen Überlegungen
ergibt sich die Referenzlichtstärke zu

Iv,k,re f =
Ev,re f · r2

o,k

cos θE
(7-5)

und der gesuchte Dimmwert dk der Lichtquelle k entsprechend zu

dk =
Iv,k,re f

Iv,k,∅
. (7-6)

Im anderen Fall hat der Überlappungsbereich Ro, j maximal einen Anteil von ocut (< 50%)
am Ausleuchtungsbereich Rl, j, wie es Bild 7-8 am Beispiel der Lichtquelle j verdeut-
licht wird. Würden Lichtquellen auf die bereits beschriebene Weise behandelt werden,
so würden die unerwünschten Veränderungen außerhalb der Selektion den gewünschten
Veränderungen im Selektionsbereich überwiegen. Dennoch sollten Lichtquellen im Rand-
bereich der Selektion berücksichtigt werden. Einerseits kann das Dimmen im Randbereich
Sensorungenauigkeiten kompensieren. Andererseits ist die Schärfe der Hell-Dunkel-Gren-
ze, welche durch das Dimmverhalten gerade dieser Lichtquellen parametriert werden kann,
eine Individualisierungsmöglichkeit für die verschiedenen Fahrzeughersteller.

Als Maß der Entfernung zwischen einer Lichtkeule Rl, j und der Selektion Rsel wird die
horizontale (∆ϕ f b, j) und vertikale (∆θ f b, j = 0◦ in Bild 7-8) Winkeldifferenz zwischen
dem Fokuspunkt fl, j und dem nächstgelegenen Grenzpunkt bl, j der Selektion verwendet.
Aus den Differenzen ∆ϕ f b, j und ∆θ f b, j wird ein Interpolationsfaktor c j ∈ [0, 1] berechnet.
Der einzustellende Dimmwert d j ergibt sich schließlich aus der Interpolation des Dimm-
werts d?j nach Gleichung (7-6) und einem Standard-Dimmwert dstd, j (z.B. Fernlicht ohne
Ausblendungen):

d j = (1 − c j) · dstd, j + c j · d?j . (7-7)

Zur Berechnung von d?j wird die Entfernungsmessung zur bestrahlten Fläche in Richtung
des Randpunkts bl, j vorgenommen, da bl, j dem Fokuspunkt fl, j am nächsten gelegen ist.
Der Interpolationsfaktor c j in Gleichung (7-7) resultiert aus ∆ϕ f b, j und ∆θ f b, j sowie den
frei wählbaren Maximalabständen ∆ϕ̄ f b und ∆θ̄ f b, unter denen noch eine Beeinflussung
der Lichtquellen durch die Selektion gewünscht wird:

c j = max(1 −
∆ϕ f b, j

∆ϕ̄ f b
, 1 −

∆θ f b, j

∆θ̄ f b
, 0). (7-8)

Designparameter

In den vorhergehenden Abschnitten wird die Dimmwertermittlung als striktes Verfahren
beschrieben. Zur Sicherstellung der Robustheit gegenüber Sensorfehlern und zur Eröffnung
von Individualisierungsmöglichkeiten sollte dem Lichtingenieur an geeigneten Stellen
Spielraum eingeräumt werden. Diese Freiheitsgrade werden in der vorgestellten Imple-
mentierung durch wählbare Designparameter bereitgestellt.

Die Designparameter ∆ϕ̄ und ∆θ̄, welche die Kantenschärfe der Dimmbereiche spezifi-
zieren, werden bereits in Gleichung (7-8) angeführt. Große Werte für ∆ϕ̄ und ∆θ̄ führen
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zu weichen Übergängen vom Dimmbereich in die übrige Lichtverteilung. Wählt man
∆ϕ̄ = ∆θ̄ = 0◦, können Situationen auftreten, in welchen ein Pixellicht vollständig aus-
geschaltet ist, während ein benachbartes mit voller Bestromung versorgt wird. Hieraus
resultieren scharfe Übergänge zwischen Dimmbereich und restlicher Lichtverteilung.
Insbesondere ist es sinnvoll, die horizontale und vertikale Kantenschärfe unabhängig von-
einander parametrieren zu können, da die Rasterung der Gesamtlichtverteilung entlang
der horizontalen Winkel häufig feiner ist. Im Kontext von Sensorungenauigkeiten kann
durch die Parameter ∆ϕ̄ f b und ∆θ̄ f b ein Sicherheitsbereich beschrieben werden, welcher
die eigentliche Selektion umrahmt.

Neben örtlicher Tiefpass-Filterung, erlaubt die hier vorgestellte Lösung auch zeitliche
Tiefpass-Filterung. Hierzu werden PT1-Filter eingesetzt. Da die Dimmwerte der Pixellich-
ter zu diskreten Zeitpunkten bestimmt werden, werden die Dimmfilter in ihrer diskreten
Form

dk+1 = T? · (dre f ,k − dk) + dk mit T? =
1

Tdim
∆t + 1

(7-9)

verwendet. In Gleichung (7-9) ist dre f ,k der Referenzdimmwert nach Gleichung (7-6) bzw.
(7-7), dk der Dimmwert des vorhergehenden Zeitschritts und ∆t die zeitliche Diskretisie-
rungsschrittweite. Der Lichtingenieur kann die Dimmzeitkonstanten Tup (falls dk < dre f ,k)
und Tdown (falls dk > dre f ,k), welche die Zeitkonstante Tdim in Gleichung (7-9) ersetzen,
unabhängig voneinander wählen.

Auch die zeitliche Tiefpass-Filterung schafft Raum für Individualisierung. Beispielsweise
könnte ein OEM die Aufmerksamkeit des Kunden durch die technischen Möglichkeiten
des Scheinwerfersystems erregen wollen und deshalb schnelle und scharfe Veränderungen
in der Lichtverteilung bevorzugen. Ein anderer OEM verfolgt hingegen ein möglichst
unauffälliges Scheinwerfersystem und möchte ein hektisches Gefühl bei der Nachtfahrt
in jedem Fall vermeiden. In diesem Fall empfiehlt es sich, größere Zeitkonstanten zu
wählen. Zwischen der Ab- und Aufdimmzeitkonstanten (Tdown und Tup) wird neben der
Entwurfsfreiheit auch aus Sicherheitsgründen unterschieden. Die Abdimmgeschwindig-
keit muss hoch genug sein, um z.B. entgegenkommenden Verkehr nicht aufgrund einer
zu hohen Latenz zu blenden. Sie besitzt somit eine höhere Sicherheitsrelevanz als die
Aufdimmgeschwindigkeit.

7.2.3 Validierung

Zur Validierung des beschriebenen Entwurfsmethodik wird nun überprüft, in welcher
Qualität die Sollvorgabe umgesetzt werden kann. Neben der Korrektheit der Implementie-
rung wird dabei auch der Einfluss des Scheinwerfersystems mit seinen Möglichkeiten und
Grenzen diskutiert.

Szenario

In der hier vorgestellten Lösung gibt der Lichtingenieur den Sollzustand in Form der
Beleuchtungsstärke Ev,re f in einem Selektionsbereich Rsel vor. Dementsprechend sollte
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die Beleuchtungsstärke im Rahmen der Validierung als Gütemaß fungieren. Zu diesem
Zweck wird die durch das Scheinwerfersystem realisierte Beleuchtungsstärke Ev,∅ im
Selektionsbereich gemittelt und mit der Sollvorgabe Ev,re f verglichen. Außerdem wird eine
Falschfarbendarstellung über Polar- und Azimutwinkel herangezogen, um lokale Über-
und Unterschreitungen visualisieren zu können.

Um die Ergebnisse der Entwurfsmethodik möglichst isoliert von anderen Störeinflüssen,
wie Orientierungs- und Entfernungsunterschiede zu den bestrahlten Flächen, bewerten
zu können, wird eine stark reduzierte Szene zur Validierung erstellt. Die in Bild 7-9
gezeigte Szene enthält einen linken HD84-Scheinwerfer als einzige Lichtquelle. Dieser
Scheinwerfer befindet sich im Zentrum einer Hohlkugel mit einem Radius von rs = 10 m
und bestrahlt deren Innenwand. Demzufolge haben alle bestrahlten Flächenelemente die
gleiche Distanz und die gleiche Orientierung zur Lichtquelle. Somit kann die Sollvorgabe
Ev,re f unabhängig vom betrachteten Szenenpunkt in die Referenzlichtstärke Iv,k,re f aus
Gleichung (7-5) überführt werden.

ϕ

θ = 90◦

θ = 0◦

θ = −90◦

rs = 10 m
Zentrum

Bild 7-9: Szene zur Validierung der implementierten Entwurfsmethode.

Der Selektionsbereich sollte einerseits im Arbeitsbereich des Scheinwerfersystems enthal-
ten sein und andererseits die Analyse von störenden Effekten im Grenzbereich der Aus-
leuchtung erlauben. Er wird deshalb zu Rsel mit ϕ ∈ [−10.5◦,−3.0◦] und θ ∈ [−4.1◦,+3.6◦]
gewählt. Innerhalb von Rsel soll eine Beleuchtungsstärke Ev,re f von 100 lx eingestellt wer-
den. Um die Resultate der in Abschnitt 7.2.2 beschriebenen Implementierung möglichst
transparent zu zeigen, wird keine lokale Filterung angewendet (∆ϕ̄ = ∆θ̄ = 0◦). Aus dem-
selben Grund werden die Standarddimmwerte dstd, j nach Gleichung (7-7) zu 0% gewählt.
Die Einstellungen der zeitlichen Filter sind aufgrund der statischen Szene im Rahmen der
Validierung nicht relevant. Zur Erprobung der Implementierung wird der Datensatz des
HD84-Systems genutzt. Aufgrund der überschaubaren Anzahl von Lichtquellen lassen
sich die Berechnungsergebnisse für einzelne Pixellichter anschaulich visualisieren.

Ergebnisse

Auf das HD84-System wird zunächst das in Abschnitt 7.2.2 beschriebene Preprocessing
angewendet. Im ersten Schritt werden dabei die Einflussbereiche Rl,k sämtlicher Pixellichter
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ermittelt. Diese Bereiche weisen bezüglich des Polar- und Azimutwinkels eine rechteckige
Gestalt auf. Der Relativwert bcut, welcher die Trennung zwischen Nutz- und Streulicht
maßgeblich bestimmt, ist dabei so zu wählen, dass weder Lücken noch Überlappungen
zwischen den einzelnen Einflussbereichen dominieren. Für das betrachtete HD84-System
führt eine Wahl von bcut = 50% auf die in Bild 7-10 visualisierte Segmentierung.

-20 +20

-3

+3

ϕ/◦

θ/◦

Bild 7-10: Segmentierung des Ausleuchtungsbereichs eines HD84-Systems in die Einfluss-
bereiche einzelner Pixellichtquellen.

Wie sich zeigt, ergibt sich im Zentralbereich −10◦ < ϕ < +10◦ eine sehr gute Segmentie-
rung, während in den Randbereichen größere Überlappungen zu verzeichnen sind. Diese
sind jedoch der optischen Auslegung des Systems geschuldet. Eine Minimierung der
Überlappungen durch eine andere Wahl von bcut würde mit einer Verschlechterung im
Zentralbereich einhergehen. Die Gestaltung des Systems in drei Zeilen kann in der Seg-
mentierung ebenfalls sehr gut wiedererkannt werden. Zur besseren Erkennbarkeit werden
die obere Zeile in grau, die mittlere Zeile in orange und die untere Zeile in blau dargestellt.
Innerhalb der Zeilen werden zur Unterscheidung der einzelnen Lichtquellen gerade Indizes
in einem dunkleren und ungerade Indizes in einem helleren Farbton visualisiert.

Nach Gleichung (7-3) können die Raumwinkel Ωk der zuvor identifizierten Einflussbe-
reiche ermittelt werden. Das Bild 7-11 zeigt sämtliche Werte der drei Zeilen i = 1 . . . 30
(unten), i = 31 . . . 58 Mitte) und i = 59 . . . 84 (oben) des HD84-Moduls. Die Ergebnis-
se entsprechen den Erwartungen. Da θ aus Gleichung (7-3) über die Zeilen hinweg nur
geringen Veränderungen unterliegt, sind die Raumwinkel Ωk nahezu proportional zu den
Flächeninhalten der Rechtecke aus Bild 7-10. Darüber hinaus zeigt Bild 7-10, dass die
Lichtquellen der mittleren Zeile kleinere Einflussbereiche als die äußeren Zeilen vorweisen.
Diese Eigenschaft wird bei der optischen Auslegung beabsichtigt, da im Zentralbereich
die höchsten Flexibilitätsanforderungen gelten.

Neben den Raumwinkeln wird im Preprocessing der Lichtstrom Φv,k jeder Lichtquelle
gemäß Gleichung (7-2) ermittelt. Die Ergebnisse dieser Berechnungen werden in Bild
7-12 zusammengefasst. Da es sich bei allen Lichtquellen um LED des gleichen Typs
handelt, wird über alle Pixellichter hinweg ein gleichbleibender Lichtstrom mit zufälligen
leichten Schwankungen erwartet. Tatsächlich stellt man jedoch fest, dass die mittlere
Zeile im Zentralbereich systematisch höhere Werte erreicht. Erklärt werden kann diese
Anomalie durch die Fokussierung des Lichts auf einen kleineren Raumwinkel, welche zu
weniger abgeschnittenem Streulicht führt. Die Anstiege des Lichtstroms im Randbereich
der unteren und oberen Zeilen resultieren aus den vergrößerten Integrationsbereichen, wie
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Untere Zeile (i = 1..30)

Mittlere Zeile (i = 31..58)

Obere Zeile (i = 59..84)

1
31

59 84
58

30

Ωk/ · 10−4sr

20

15
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i =

Bild 7-11: Raumwinkel der Pixellichter eines HD84-Systems.

sie bereits in Bild 7-11 beobachtet werden konnten. Der signifikant höhere Lichtstrom der
LED i = 84 kann nicht erklärt werden. Er liegt bereits in den Vermessungsdaten vor.

1
31

59 84
58

30

Φv,k/lm

55

45

35

25

15
i =

Bild 7-12: Lichtstrom der Pixellichter eines HD84-Systems.

Abgeschlossen wird das Preprocessing durch die Bestimmung der mittleren Lichtstärke
Iv,k,∅, welche sich nach Gleichung (7-4) aus dem Verhältnis des Lichtstroms und des
Raumwinkels der jeweiligen Lichtquelle ergibt. In Bild 7-13 werden die Quotienten über
die drei Zeilen des Moduls visualisiert. Es zeigt sich, dass die kleineren Raumwinkel
und der erhöhte Lichtstrom der mittleren Zeile in Kombination zu einer besonders hohen
mittleren Lichtstärke in ihrem Einflussbereich führen. Die Anomalie der LED 84 ist auch
in der mittleren Lichstärke deutlich erkennbar. Allerdings erscheint sie durch den großen
bestrahlten Raumwinkel schwächer als in Bild 7-12.
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Bild 7-13: Mittlere Lichtstärke der Pixellichter eines HD84-Systems.

Basierend auf den extrahierten Merkmalen bestimmt das Verfahren die Dimmwerte, wel-
che für die Umsetzung der Referenzbeleuchtungsstärke Ev,re f im Selektionsbereich Rsel

erforderlich sind. In der Validierungsszene kann der Kugelradius rs = 10 m zur Kon-
vertierung von Ev,re f auf die Referenzlichtstärke Iv,re f = 10.000 cd verwendet werden.
Um Iv,re f einzustellen, werden die in Bild 7-14 gezeigten Dimmwerte gemäß Gleichung
(7-6) bestimmt. Es stellt sich heraus, dass die Lichtquellen i = 7 . . . 13 der unteren Zeile,
i = 36 . . . 42 der mittleren Zeile und i = 63 . . . 69 der oberen Zeile als relevant für den
Selektionsbereich Rsel eingestuft werden. Da die lokale Filterung inaktiv ist, behalten alle
übrigen Lichtquellen ihren Standarddimmwert dstd,i = 0%. Der Algorithmus kompensiert
den Abfall der mittleren Lichtstärke im Randbereich aller Zeilen durch die Erhöhung des
Dimmwerts mit zunehmender Randnähe. Zusätzlich wird die mittlere Zeile mit weniger
Leistung versorgt um die Lichtstärke der unteren und oberen Zeile anzugleichen.

Die berechneten Dimmwerte ergeben letztlich die Gesamtlichtverteilung des Scheinwer-
fers, welche unter Berücksichtigung der Szenengeometrie auf die Beleuchtungsstärke führt.
Zur Bewertung der eingestellten Lichtverteilung werden zwei Maße herangezogen. Zuerst
wird die mittlere Beleuchtungsstärke Ev,∅ innerhalb des Selektionsbereichs Rsel mit der Re-
ferenzbeleuchtungsstärke Ev,re f verglichen. Analog zur mittleren Lichtstärke (s. Gleichung
(7-4)) kann Ev,∅ durch die diskrete Integration der lokalen Beleuchtungsstärkewerte im
Selektionsbereich gemäß

Ev,∅ =
1

Ωsel

84∑
k=1

∫ ϕ̄

ϕ=
¯
ϕ

∫ θ̄

θ=
¯
θ

Iv,k(θ, ϕ)
r(θ, ϕ)2 cosα cos θdθdϕ

bestimmt werden, wobei Ωsel dem Raumwinkel der Selektion Rsel entspricht. Die Distanz
der Lichtquellen zu den beleuchteten Flächen wird für jede diskrete Richtungskomponente
(θ, ϕ) ermittelt. Im beschriebenen Validierungsszenario wird eine mittlere Lichtstärke von
Ev,∅ = 96.2 lx erreicht, sodass eine relative Abweichung von unter 4% erreicht wird. Es
sei jedoch darauf hingewiesen, dass die Abweichungen signifikant ansteigen, sobald die
Grenzen des Gesamtausleuchtungsbereichs erreicht werden oder der Selektionsbereich
schlecht durch die Segmentierung des Systems nachgebildet werden kann.
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Bild 7-14: Dimmwertvorgabe eines HD84-Systems basierend auf dem Selektionsbereich
Rsel und der Sollbeleuchtungsstärke Ere f .

Neben der mittleren Abweichung wird der Soll-Ist-Wertabgleich auch lokal aufgelöst
durchgeführt. In Bild 7-15 wird die relative Abweichung des Istwerts von der Referenz
Ev,re f bezüglich des Polar- und Azimutwinkels aus Sicht des Scheinwerfers in Falschfarben
visualisiert. Zunächst lässt sich feststellen, dass eine weitgehende Abdeckung des selektier-
ten Ausleuchtungsbereichs Rsel gegeben ist. Obwohl Ev,re f im Mittel sehr gut reproduziert
wird, treten in lokal begrenzten Bereichen signifikante Abweichungen vom Sollwert auf.
Diese Abweichungen lassen sich primär auf Hardware-Limitierungen zurückführen. Kon-
kret sind hierbei die begrenzte Auflösung des HD84-Systems, die Inhomogenitäten der
Lichtverteilungen einzelner Pixellichter und die Überlappung der einzelnen Ausleuchtungs-
bereiche im Randbereich der Matrix zu nennen. Letzteres äußert sich in der erheblichen
Überschreitung des Sollwerts im Bereich ϕ = −9◦. Die Inhomogenitäten spiegeln sich in
den horizontalen roten Linien der einzelnen Zeilen wieder, wobei der Sollwert im Bereich
der mittleren Zeile besser getroffen wird.

7.2.4 Globale Optimierung

Der bisher vorgestellte Ansatz ermittelt den Dimmwert jeder Lichtquelle unabhängig von
den Dimmwerten aller anderen Lichtquellen beider Scheinwerfer. Diese Lokalität und
die Eigenschaft, dass aufwendige Berechnungen zu einem Großteil in das Preprocessing
ausgelagert werden können, erlauben eine hochperformante Implementierung der bisher
vorgestellten Lösung, die sich in dieser Form problemlos für die Integration in einem
Scheinwerfersteuergerät eignet. Ein Nachteil des lokalen Ansatzes ist jedoch, dass die
Wechselwirkungen zwischen den einzelnen Lichtquellen außer Acht gelassen werden.
Licht, das eine Lichtquelle k außerhalb des zugewiesenen Einflussbereichs Rl,k strahlt, wird
von dem lokalen Verfahren vollkommen außer Acht gelassen, weshalb die Ergebnisse nicht
optimal sind.
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Bild 7-15: Falschfarbendarstellung der Abweichung von der Referenzbeleuchtungsstärke
Ev,re f .

Nun soll ein globaler Ansatz vorgestellt werden, der die gleiche Problemstellung auf eine
andere Weise löst. Den Ausgangspunkt bildet der relevante Ausleuchtungsbereich des
Scheinwerfersystems, welcher ohne Beschränkung der Allgemeinheit vereinfachend als
rechteckig bezüglich der Raumwinkelkoordinaten angenommen wird. Er wird durch das
umschließende Rechteck in Bild 7-16 dargestellt.

Dieser Ausleuchtungsbereich wird nun durch kleinere Rechtecke segmentiert. Im Beispiel
aus Bild 7-16 wird der Gesamtbereich in Ns äquidistante Einheiten entlang der Horizon-
talen und Ms äquidistante Einheiten entlang der Vertikalen unterteilt. Der nachfolgend
vorgestellte Algorithmus kann jedoch auf gleiche Weise eingesetzt werden, wenn die
Segmentierung inhomogen ist. Für jedes Segment (m, n) wird nun die Einflussnahme aller
Lichtquellen bei maximaler Bestromung in Form des einwirkenden Lichtstroms bestimmt.
Der Lichtstrom Φmn,k, welcher von der Lichtquelle k bei maximaler Bestromung in das
Segment (m, n) abgegeben wird, kann analog zur Gleichung (7-2) gemäß

Φmn,k =

∫ ϕ̄mn

ϕ=
¯
ϕmn

∫ θ̄mn

θ=
¯
θmn

Iv,k(θ, ϕ) cos θdθdϕ

berechnet werden. Dabei bezeichnen
¯
ϕmn, ϕ̄mn,

¯
θmn und θ̄mn die Begrenzungen des Segments

(m, n). Für einen gegebenen Dimmwert dk und einer im Segment (m, n) als ungefähr
konstant angenommenen Entfernung rmn zwischen Scheinwerfer und bestrahlter Fläche
kann basierend auf Φmn,k die realisierte Beleuchtungsstärke

Ev,mn,k = hmn,k · dk mit hmn,k =
1

r2
mn
·

Φmn,k

Ωmn
(7-10)

bestimmt werden. Dabei ist Ωmn der durch das Segment (m, n) überdeckte Raumwinkelbe-
reich, welcher analog zur Gleichung (7-3) auf Basis der Winkelgrenzen berechnet werden
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Bild 7-16: Segmentierung des Ausleuchtungsbereichs eines HD-Scheinwerfers zur Formu-
lierung der Dimmwertvorgabe als globales Optimierungsproblem.

kann. Die einzustellende Lichtverteilung kann nun durch die Vorgabe eines Referenz-
werts Ev,mn,re f für alle Segmente (m, n) des Ausleuchtungsbereichs beschrieben werden.
Der Istwert eines Segments (m, n) ergibt sich durch die Summation der Beiträge aller K
Lichtquellen aus Gleichung (7-10) zu

Ev,mn =

K∑
k=1

hmn,k · dk.

Um nun die global optimale Dimmwertauswahl zu finden, kann mithilfe der angestellten
Vorüberlegungen ein Optimierungsproblem formuliert werden, welches die Abweichungen
von den Referenzwerten über den gesamten Ausleuchtungsbereich hinweg minimiert.
Eine intuitive Variante dieser Formulierung wird durch das Optimierungsproblem (7-11)
dargestellt.

min
d1,...,dK∈R

w11(Ev,11,re f − Ev,11)2 + · · · + wMsNs(Ev,MsNs,re f − Ev,MsNs)
2

mit Ev,11 = h11,1 · d1 + · · · + h11,K · dK

... =
...

Ev,MsNs = hMsNs,1 · d1 + · · · + hMsNs,K · dK

u.d.N. 1 ≥ d1, . . . , dK

0 ≤ d1, . . . , dK

(7-11)

Die Optimierungsvariablen sind die normierten Dimmwerte d1 bis dK . Alle übrigen Grö-
ßen mit Ausnahme der Entfernungsgrößen rmn, welche durch die Umfeldsensorik für jede
Richtung (m, n) in der jeweiligen Fahrsituation ausgewertet werden müssen, sind bekannt.
Durch die Gewichtungsfaktoren wmn können die einzelnen Segmente verschieden stark
berücksichtigt werden. Hierbei empfiehlt es sich, diejenigen Segmente, welche durch die
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vorhandenen Lichtquellen aufgrund zu hoher Entfernung oder eines zu geringen Licht-
stroms kaum beeinflusst werden können, schwächer zu bewerten. Um den tatsächlichen
Einflussbereich des Scheinwerfers in den Fokus der Optimierung zu rücken, wird deshalb
die Wahl

wmn =

∑K
k=1 hmn,k

hmax
mit hmax = max

m∈{1,...,Ms},n∈{1,...,Ns}

K∑
k=1

hmn,k

für die Gewichtungsfaktoren vorgeschlagen. Bei diesem Vorgehen erhält das am besten
beeinflussbare Segment (mmax, nmax) die Gewichtung wmmax,nmax = 1, während die übrigen
Segmente Gewichtungsfaktoren aus dem Intervall [0, 1] erhalten. Die Normierung der
Gewichtungsfaktoren auf hmax ist für das Optimierungsergebnis unerheblich. Sie wird nur
zur leichteren Interpretation der Werte vorgenommen.

Weitere Modifikationen des Optimierungsproblems nach Gleichung (7-11) sind denkbar.
Beispielsweise könnte die Segmentierung optimiert werden, indem Winkelbereiche mit
hohen Dynamik- oder Präzisionsanforderungen feiner segmentiert werden, als es für
weniger relevante Bereiche der Fall ist. Damit wird gleichzeitig die Flexibilität bei der
Sollvorgabe beeinflusst, welche in der gleichen Segmentierung vorgenommen wird.

Die hier vorgestellte Lösung soll das zugrunde liegende Prinzip verdeutlichen und verzich-
tet auf die genannten Optimierungsmöglichkeiten. Der grundsätzliche Vorteil gegenüber
dem lokalen Verfahren ist die gleichzeitige Berücksichtigung aller Lichtquellen. Hierdurch
werden die Einflüsse der Lichtquellen nicht nur in ihren primären Ausleuchtungsbereichen,
sondern über den gesamten relevanten Bereich hinweg berücksichtigt und auf optimale
Weise kombiniert.

Weiterhin muss nachgewiesen werden, dass das Optimierungsproblem konvex ist. Nur
dann ist sicher gestellt, dass die gefundene Lösung dem globalen Optimum entspricht.
Im Falle eines quadratischen Optimierungsproblems, wie es in (7-11) vorliegt, genügt es
nachzuweisen, dass die quadratische Matrix Qopt der in (7-12) notierten Standardform
eines quadratischen Optimierungsproblems positiv semidefinit ist.

min
d1,...,dK∈R

xT
opt · Qopt · xopt + cT

opt · xopt + fopt

u.d.N. 1 ≥ d1, . . . , dK

0 ≤ d1, . . . , dK

mit xT
opt =

(
d1 . . . dK

)
Qopt =


q11 . . . q1K
...

...
qK1 . . . qKK

 , qi j ∈ R

cT
opt =

(
c1 . . . cK

)T
, ck ∈ R

fopt ∈ R

(7-12)

Um die Gestalt von Qopt genauer beschreiben zu können, wird das ursprünglich formu-
lierte Optimierungsproblem (7-11) in die Standardform überführt. Durch Auflösen der
quadratischen Terme in der Zielfunktion des Optimierungsproblems (7-11), Einsetzen



262 7 Analyse und Entwurf von Lichtfunktionen

der Nebenbedingungen und Umsortierung findet man, dass Qopt, copt und fopt für das
betrachtete Problem die Gestalt

Qopt = (qkk′)k,k′=1,...,K mit qkk′ =

Ms∑
m=1

Ns∑
n=1

wmnhmn,khmn,k′

cT
opt = (ck)k=1,...,K mit ck = −2 ·

Ms∑
m=1

Ns∑
n=1

wmnEv,mn,re f hmn,k

fopt =

Ms∑
m=1

Ns∑
n=1

wmnE2
v,mn,re f

mit hmn,k =
1

r2
mn
·

Φmn,k

Ωmn
> 0

annehmen. Um die positive Semidefinitheit von Qopt nachzuweisen, wird Qopt zunächst in
Ms · Ns-viele Summanden zerlegt:

Qopt =

M∑
m=1

Ns∑
n=1

Qmn mit Qmn = (qmn,kk′)k,k′=1,...,K = wmnhmn,khmn,k′ .

Sind alle Summanden Qmn positiv semidefinit, so ist auch Qopt positiv semidefinit. Es
genügt somit, einen allgemeingültigen Summanden Qmn zu betrachten. Die Matrix Qmn

kann durch das Vektorprodukt

Qmn = wmnhmn · hT
mn mit hmn =

(
hmn,1 . . . hmn,K

)T

formuliert werden. Basierend auf den Vorüberlegungen, kann die positive Semidefinitheit
von Qmn leicht nachgewiesen werden. Mit

xT · Qmn · x = wmnxT hmnhT
mnx = wmn

K∑
k=1

xkhmn,k ·

K∑
k=1

xkhmn,k = wmn(
K∑

k=1

xkhmn,k)2 ≥ 0

und der Eigenschaft wmn > 0∀m ∈ {1, . . . ,Ms}, n ∈ {1, . . . ,Ns} ist die positive Semidefi-
nitheit eines beliebigen Summanden Qmn und damit auch die positive Semidefinitheit der
Matrix Qopt selbst gezeigt. Schlussfolgernd ist das Optimierungsproblem (7-11) konvex,
womit die Konvergenz des Optimierers im globalen Optimum sichergestellt ist.
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8 Evaluierung

Im Kapitel 4 wurden Anforderungen definiert, welche durch eine Nachtfahrtsimulation
erfüllt werden müssen, um den Ingenieur bei der simulationsbasierten Entwicklung von
HD-Scheinwerfern bestmöglich zu unterstützen. Die Analyse hat gezeigt, dass derzeit
keine Lösung existiert, die das gesamte Spektrum der Anforderungen adäquat abdeckt.
Somit wurde letztlich ein Handlungsbedarf abgeleitet, den es im Rahmen dieser Arbeit
zu erfüllen galt. Daraus entstanden ist die Nachtfahrtsimulationsumgebung „Hyperion“.
Innerhalb dieses Kapitel wird bewertet, inwieweit die im Abschnitt 4.2 zusammengefassten
Anforderungen durch Hyperion erfüllt werden.

8.1 Überprüfung der Anforderungen

In den folgenden Unterabschnitten wird Hyperion entlang der Kriterien der Anforderungs-
definition analog zu Abschnitt 4.1 evaluiert. Im jeweiligen Unterabschnitt wird auf die
korrespondierenden Detailanforderungen A1 bis A13 direkt Bezug genommen.

8.1.1 Visuelle Qualität

In Abschnitt 4.1.1 ist die hohe Relevanz der subjektiven Bewertung des Lichtingenieurs
bereits hervorgehoben worden. Hieraus wurde abgeleitet, dass die visuelle Qualität der Si-
mulation durch eine hohe Übereinstimmung mit den realen Lichtverhältnissen überzeugen
muss. Die Validierung des vorgestellten Rendering-Verfahrens in Abschnitt 6.4 hat gezeigt,
dass Lichtverteilungen in Hyperion mit guter Übereinstimmung wiedergegeben werden
können. Als Referenz wurde hierbei anstelle realer Aufnahmen die Nachtfahrtsimulation
„LightDriver“ verwendet. Diese Wahl der Referenz ist zulässig, da die Software „Light-
Driver“ seit vielen Jahren erfolgreich im produktiven Umfeld genutzt wird. Sie bringt
den Vorteil, dass die Fahrzeugumgebung detailgetreu nachgebildet werden kann, womit
die Grundlage für einen aussagekräftigen Vergleich gegeben ist. Die Nachbildung realer
Umgebungen wäre aufgrund der komplexen Oberflächen und Geometrien entweder nicht
hinreichend genau oder mit enormem messtechnischen Aufwand verbunden gewesen.

Dieser Punkt führt auch zu einer Schwachstelle von Hyperion, die im Rahmen der Evaluie-
rung nicht unerwähnt bleiben soll. Während das Rendering des HD-Scheinwerferlichts,
welches den Forschungskern dieser Arbeit bildet, detailliert entwickelt und beschrieben
wird, kam der Modellierung von virtuellen Umgebungen eine untergeordnete Rolle zu.
Hyperion weist in der bisherigen Entwicklungsstufe wesentlich einfachere Umgebungs-
modelle als andere in Abschnitt 3.3 vorgestellte Simulationen auf. Dennoch ist das hier
präsentierte Rendering-Verfahren des Lichts in gleicher Weise auch auf komplexe Szenen
anwendbar, weshalb der wissenschaftliche Wert der implementierten Lösung durch diesen
Aspekt nicht beeinträchtigt wird.

Ein weiterer wesentlicher Aspekt ist die Simulation spektraler Lichtverteilungen. Hype-
rion stellt diese Funktionalität vollständig zur Verfügung. Darüberhinaus unterstützt ein
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Assistent beim Import spektraler Datensätze und stellt die korrekte Konvertierung vom
Quell- in den Zielfarbraum sicher.

Zusammengefasst kann die Anforderung A1 (Korrekte Abbildung photometrischer Zusam-
menhänge) als weitestgehend erfüllt betrachtet werden. Eine Einschränkung stellen die
rudimentären Szenenmodelle dar, welche im wissenschaftlichen Sinne als nebensächlich
eingestuft werden können. Die Anforderung A2 (Unterstützung spektraler Lichtverteilun-
gen) wird ohne Einschränkungen erfüllt.

8.1.2 Technologie-Kompatibilität und Pixel-Skalierbarkeit

Im Rahmen der Anforderungsdefinition wurde herausgestellt, dass am Markt unterschied-
lichste Scheinwerfer-Technologien zum Einsatz kommen werden. Als weitere Anforderung
wurde deshalb die Kompatibilität der Nachtfahrtsimulation zu den verschiedenen Techno-
logien in Form der Anforderung A3 festgehalten. Das in Hyperion eingesetzte Verfahren
zur Bestimmung der Gesamtlichtverteilung des Scheinwerfers nach Abschnitt 6.2.2 kann
für jede HD-Technologie eingesetzt werden, deren einzelne Lichtquellen durch statische
Lichtverteilungen beschrieben werden können. Diese Form der Beschreibung eignet sich
sowohl für physikalische Lichtquellen, wie sie bei LED-Matrix-Systemen existieren, als
auch für logische Pixellichter am Beispiel von LCD-Systemen. Insofern ist die Anforde-
rung A3 (Technologie-Kompatibilität) in Hyperion weitestgehend erfüllt. Es sei jedoch
darauf hingewiesen, dass die vorgestellte Implementierung nur eingeschränkt verwendbar
ist, wenn Scanner-Verfahren zum Einsatz kommen. Bei diesen Systemen wird der gesamte
Ausleuchtungsbereich hochfrequent durch einen konzentrierten, meist quasikontinuierli-
chen Lichtspot abgescannt. Die Vorgänge laufen dabei so schnell ab, dass der Mensch
diese nicht sieht und nur die Gesamtlichtverteilung wahrnimmt, deren Gestalt aus den
Belichtungszeiten der verschiedenen Winkelbereiche resultiert. Prinzipbedingt kann die
Gesamtlichtverteilung nicht aus der Summe fixer Einzellichtverteilungen beschrieben
werden, wodurch sich die eingeschränkte Eignung erklärt.

Einher mit den verschiedenen Scheinwerfer-Technologien gehen die unterschiedlichen
Größenordnungen der individuell ansteuerbaren Pixellichter. Insofern stellt die Skalierbar-
keit der Nachtfahrtsimulation hinsichtlich der Anzahl von Pixellichtquellen unter Erhalt der
Echtzeitfähigkeit die zentrale Anforderung A4 dar. Durch eine völlige Neustrukturierung
der Daten, die eine hochgradig parallele Bestimmung der Gesamtlichtverteilung durch die
GPU erlaubt, gelingt in Hyperion eine Echtzeit-Simulation in der Größenordnung von einer
Millionen Lichtquellen. Direkten Einfluss auf die Laufzeit nehmen die Rechenleistung
der Hardware, die Gestalt der Einzellichtverteilungen, der Raumwinkel der Gesamtlicht-
verteilung und die Winkelauflösung. Details dazu wurden in Abschnitt 6.5 ausführlich
untersucht. Verglichen mit den am Markt existierenden Nachtfahrtsimulationen ordnet
sich Hyperion damit an der Spitze ein. Alle praxisrelevanten Systeme können in Echtzeit
simuliert werden, ohne Einbußen bezüglich der Auflösung oder die Vernachlässigung von
Streulicht der einzelnen Pixellichter in Kauf nehmen zu müssen. Bild 8-1 greift das Bild
4-1 aus der Anforderungsdefinition auf und stellt die Kompatibilität von Hyperion mit den
verschiedenen Technologien bzw. Größenordnungen grafisch dar.

Wie sich zeigt, können grundsätzlich alle Systeme durch Hyperion simuliert werden.
Ursächlich hierfür ist die Formulierung eines ausgabesensitiven Algorithmus, welcher
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kompatibel mit Hyperion

Bild 8-1: Kompatibilität von Hyperion zu verschiedenen HD-Technologien und den jeweili-
gen Anzahlen von Pixellichtquellen.

algorithmisch nicht von der Lichtquellenzahl abhängt. Sowohl die theoretische Komple-
xitätsbetrachtung in Abschnitt 6.2.3 als auch die Laufzeitmessungen in Abschnitt 6.5.1
haben gezeigt, dass der Algorithmus bezüglich der Lichtquellenzahl nicht sensitiv ist. Die
Anforderung A4 (Skalierbarkeit bezüglich der Pixelanzahl) kann somit als vollständig
erfüllt betrachtet werden.

8.1.3 Echtzeitfähigkeit und X-in-the-Loop Testing

Mit dem Einzug der HD-Technologie im automobilen Licht ist die Komplexität des
Scheinwerfersteuergeräts erheblich gewachsen. Aus diesem Grund wurde in Abschnitt
4.1.3 die Anforderung A5 formuliert, welche die Unterstützung von In-the-Loop-Tests
fordert. Wie in Abschnitt 5.5 ausgeführt wurde, unterstützt Hyperion das gesamte Spektrum
von MiL-, SiL- und HiL-Tests. Die Anforderung A5 kann insofern als vollständig erfüllt
betrachtet werden.

Eine Grundvoraussetzung für SiL- und HiL-Tests stellt die Echtzeitfähigkeit der gesam-
ten Simulation dar. Diese beinhaltet den Kreislauf aus der Simulation von Fahrzeug und
Umgebung, der Berechnung virtueller Sensorsignale, der Übermittlung dieser Sensor-
werte an das Steuergerät sowie der Darstellung der Steuergeräteausgaben in Form des
Scheinwerferlichts in der virtuellen Umgebung. Die Echtzeitanforderung bezüglich des
Steuergerätetakts wird somit durch A5 impliziert. Wie jedoch in Abschnitt 4.1.3 ausgeführt
wird, muss im Rahmen der Nachtfahrtsimulation noch eine weitere Echtzeitschranke Be-
achtung finden. Diese begründet sich in der Immersion des menschlichen Fahrers, dessen
visuelle Wahrnehmung die Simulatorausgabe erst bei hinreichend vielen Frames pro Sekun-
de als flüssiges Video wahrnimmt. Zur Berücksichtigung beider Echtzeitschranken wurde
deshalb zusätzlich die Anforderung A6 definiert, welche eine Bildwiederholfrequenz von
etwa 60 Hz fordert.

Wie aus der Laufzeitbetrachtung in Abschnitt 6.5 hervorgeht, gelingt das Licht-Rendering,
welches die mit Abstand rechenintensivste Komponente der Gesamtsimulation darstellt,
mit deutlichen Reserven zur Echtzeitschranke. Die übrigen Komponenten der Simulation
können zum Teil parallel erfolgen oder sind bezüglich ihres Laufzeitbedarfs vernachläs-
sigbar. Der Echtzeit-Aspekt der Anforderung A6 kann demzufolge als erfüllt betrachtet
werden.



266 8 Evaluierung

8.1.4 Latenz

Gemäß Abschnitt 4.1.4 muss neben der Dauer einer Simulationsiteration, welche maßgeb-
lich für die Echtzeitfähigkeit der Anwendung ist, auch die Latenz beachtet werden. Die
Zeitspanne von den Eingaben des Fahrers bis zur Reaktion durch die visuelle Ausgabe
ergibt sich durch die Interaktion einer Vielzahl von technischen Komponenten, von denen
jede einen gewissen Zeitraum für das Empfangen, Verarbeiten und Senden von Daten
benötigt. Im Laufe der Implementierung von Hyperion wurden die iterativ erforderlichen
Operationen durch den flächendeckenden Einsatz von Preprocessing minimiert. Außerdem
wurde die Kommunikation zwischen den verschiedenen technischen Komponenten der
Architektur optimiert. Die verbleibende Latenz ist so gering, dass sie nicht wahrgenommen
werden kann. Somit kann auch der Latenz-Aspekt der Anforderung A6 als erfüllt betrachtet
werden.

8.1.5 Lichtanalyse und -design

Während die Nachtfahrtsimulation im Regelfall das Ziel verfolgt, die realen Licht- und
Sichtverhältnisse möglichst exakt wiederzugeben, kann es abseits von Probandenstudien
auch sinnvoll sein, die Wahrnehmung schwer erkennbarer Lichteigenschaften durch künst-
liche Einblendungen zu unterstützen. Die Anforderung A7 umfasst derartige Analysetools
und fordert zudem den Ausbau der etablierten Analysen um die neuen Aspekte im Zuge
der HD-Technologie.

In Hyperion werden alle etablierten Analysen angeboten. Zudem werden HD-spezifische
Analysesichten implementiert, welche unter dem Begriff „Dimmwertanalyse“ zusammen-
gefasst werden. Dazu gehören die Darstellung der Dimmwerte aller Pixellichter und der
daraus resultierenden Gesamtlichtverteilungen der Scheinwerfer in Falschfarben. Die analy-
sierbaren Größen und deren Visualisierungsmöglichkeiten werden in den Abschnitten 7.1.1
und 7.1.2 ausführlich dargestellt. Mit der HD-Technologie haben die Berücksichtigung
von Sensorgrößen und insbesondere der Umfelderkennung im Steuergerät an Bedeutung
gewonnen. Die Visualisierung derartiger Informationen wird deshalb ebenfalls in Hyperion
unterstützt und wird in Abschnitt 7.1.3 ausgeführt. Zusammengefasst kann die Anforderung
A7 als erfüllt betrachtet werden.

Als logische Folge der Analysewerkzeuge werden in Abschnitt 4.1.5 die Designwerkzeuge
genannt, welche den Ingenieur beim Entwurf neuer Lichtfunktionen aktiv unterstützen
sollen. Ursächlich hierfür ist die Zweiteilung des Entwurfsprozesses, die mit dem Einzug
der HD-Technologie einher geht. Gegenüber der physikalischen Auslegung des Schein-
werfers gewinnen die Lichtsteueralgorithmen an Bedeutung. Gleichzeitig ist die direkte
Formulierung dieser Algorithmen ohne unterlagerte Abstraktionsschichten zur logischen
Reduzierung der Lichtquellenmenge des Scheinwerfers schlicht nicht praktikabel.

In Abschnitt 7.2 wird eine neuartige Methodik vorgestellt, mit welcher die Vielzahl der
Lichtquellen eines HD-Scheinwerfers beherrschbar wird. Weiterhin erlaubt die dort ange-
wendete Abstraktion des realen Scheinwerfers eine weitgehend automatisierte Überführung
von Lichtfunktionen auf andere HD-Systeme. Ausbaufähig ist die Unterstützung bei der
Gestaltung der Mapping-Funktion von Sensorausgaben auf Selektionsbereiche. Hier sind
weitere Automatismen denkbar, wobei diese dann spezifisch für die Art der Lichtfunk-
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tion gestaltet werden müssten. Die Anforderung A8 wird deshalb als weitgehend erfüllt
betrachtet.

8.1.6 Witterung

Wie in Abschnitt 4.1.6 dargestellt wurde, gestaltet sich die Erprobung von Szenarien mit
spezifischen Witterungsbedingungen, wie Regen, Nebel oder Schnee, in einer realen Um-
gebung sehr schwierig. Derartige Wetterverhältnisse, darunter ganz besonders Nebel, sind
schwer vorhersagbar, wodurch anstelle von nächtlichen Erprobungsfahrten vermehrt auf
statische Tests in geschlossenen Räumen mit künstlich erzeugten Witterungsbedingungen
zurückgegriffen werden muss. Motiviert durch dieses Erschwernis in der Entwicklung wur-
de die Anforderung A9 (Unterstützung verschiedener Witterungsbedingungen) definiert.

Zur Nachbildung einzelner Witterungsbedingungen innerhalb der Simulation sind ganz
unterschiedliche Vorgehen erforderlich, wobei die Einflüsse jeder Wetterlage auf die Licht-
und Sichtverhältnisse sehr komplex sind. Im Rahmen von Hyperion wird in Form des Ne-
bels deshalb nur eine Witterungssituation nachgebildet, welche die grundsätzliche Eignung
des Licht-Renderings zur Darstellung derartiger Phänomene nachweisen soll. Die konkrete
Implementierung des Nebels in Hyperion wird im Abschnitt 6.6 ausführlich beschrieben.
Wesentliche Effekte, wie die Eigenblendung, die Lichtkeulen der Scheinwerfer und die
eingeschränkte Sicht, können reproduziert werden. Zukünftig wäre die Nachbildung weite-
rer Witterungen, wie Regen oder Schnee, interessant. Die Anforderung A9 wird deshalb
als teilweise gelöst eingestuft.

8.1.7 Fahrdynamik

Auch wenn die exakte Nachbildung der realen Fahrdynamik in der Nachtfahrtsimula-
tion eine untergeordnete Rolle spielt, existieren Lichtfunktionen, wie die dynamische
Leuchtweitenregelung, die durch das dynamische Verhalten des Fahrzeugs maßgeblich
beeinflusst werden. Aus diesem Grund wurde im Abschnitt 4.1.7 die Anforderung A10
(Verwendbarkeit eines komplexen Fahrzeugmodells) eingeführt.

Hyperion erfüllt die Anforderung A10, indem es die Kopplung des ASM Fahrzeugmodells
erlaubt. Wie in Abschnitt 5.2.2 beschrieben, kann der Simulationsrechner via Ethernet an
ein Echtzeitsystem gekoppelt werden, welches das ASM-Fahrzeugmodell berechnet. Die
Lage des Egofahrzeugs wird mit Hyperion synchronisiert und entsprechend visualisiert.
Die Anforderung A10 kann somit als erfüllt betrachtet werden. Da ein so aufwendiges
Fahrzeugmodell für viele Anwendungen nicht erforderlich ist, bietet Hyperion zusätzlich
die in Abschnitt 5.2 beschriebenen Alternativen an.

8.1.8 Konfigurierbarkeit

In Abschnitt 4.1.8 wurde mit der Anforderung A11 die Konfigurierbarkeit des Hard- und
Software-Setups eingefordert. Begründet wird diese Anforderung durch verschiedene
Aspekte. Ein wesentlicher Kern ist die Einsatzmöglichkeit von Hyperion auf dem Desktop-
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PC eines Ingenieurs bis hin zum Großsimulator mit Bewegungssystem, Fahrzeugmock-
up und mehrkanaliger Ausgabe. Ein weiterer Grund sind die bereits angeführten MiL-,
SiL- und HiL-Testmöglichkeiten, die Hyperion mitbringt. Die genannten und weitere
Einsatzzwecke erfordern ganz unterschiedliche Hard- und Softwarekonfigurationen. Hy-
perion stellt diese Flexibilität durch eine modulare Architektur sicher. Wie Abschnitt
5.8 nachweist, lässt sich Hyperion in einer Vielzahl von Konfigurationen betreiben. Die
Anforderung A11 kann somit als erfüllt betrachtet werden.

8.1.9 Parametrierbarkeit

Als große Stärke der Simulation wird in Abschnitt 4.1.9 der Anforderungsdefinition die
Erzeugung beliebiger Testszenarien mit geringem Aufwand und deren vollständige Repro-
duzierbarkeit hervorgehoben. Ein Szenario setzt sich dabei aus verschiedenen Parametern,
wie dem Streckenverlauf, der Streckenumgebung, den Verkehrsteilnehmern und ihren
Trajektorien, der Tageszeit und Witterung sowie dem Scheinwerfersystem zusammen.
Hinzu kommt, dass die Manipulation einzelner Parameter zur Laufzeit beispielsweise für
einen direkten Vergleich zweier Szenarien sinnvoll sein kann. Unter der Anforderung A12
(Umfangreiche, reproduzierbare Parametrierung mit Laufzeitanpassung) werden all diese
Merkmale zusammengefasst.

Zur Erfüllung der Anforderung A12 existieren in Hyperion verschiedene Komponenten.
Einerseits verfügt die Simulation über eine umfangreiche Streckengenerierung, die in
Abschnitt 5.3 detailliert dargestellt wurde. Diese Generierung erlaubt die automatische Er-
zeugung des dreidimensionalen Straßenverlaufs, des Geländes und der Randbebauung. Zur
Streckendefinition wird das standardisierte Format „OpenDRIVE“ unterstützt. Außerdem
können Ausschnitte aus der OpenStreetMap-Karte importiert werden. Hier müssen im Re-
gelfall jedoch manuelle Korrekturen am Kartenmaterial vorgenommen werden. Insgesamt
bietet Hyperion also die Möglichkeit einer schnellen und komfortablen Szenengenerierung.
Dem Ingenieur ist es somit einfach möglich, das Scheinwerfersystem auf verschiedenen
Strecken zu erproben.

Darüber hinaus verfügt Hyperion über eine umfangreiche Parameterverwaltung, mit wel-
cher auf alle Bereiche der Simulation Einfluss genommen werden kann. Einmal definierte
Parametersätze lassen sich jederzeit speichern und laden. Zudem wird zwischen Offline-
und Online-Parametern unterschieden, wobei letztere zur Laufzeit manipuliert werden
können. Zur Parametrierung des Szenarios steht zum einen in der Simulation selbst eine
Parameterliste zur Verfügung, die vom linken Bildrand aus erreicht werden kann. Zum
anderen kann Hyperion über eine Netzwerk-Schnittstelle durch einen entfernten Remote-
Client parametriert werden.

Durch die Kombination der Streckengenerierung und des umfangreichen Parameter-In-
terfaces mit Lade- und Sicherungsfunktionen von vordefinierten Parametersätzen erfüllt
Hyperion die Anforderung A12 vollständig.



8.2 Zusammenfassung der Evaluierung 269

8.1.10 Remote-Fähigkeit

Ein Aspekt der Anforderung A11 (Konfigurierbarkeit des Hard- und Softwaresetups)
sind die verschiedenen Einsatzbereiche von Hyperion, die von der Nutzung auf einem
Desktop-PC am Arbeitsplatz des Ingenieurs bis zum Betrieb eines Großsimulators reichen.
Letzterer erfordert in der Regel mindestens zwei Personen, wobei eine Person die Rolle
des Testfahrers einnimmt, während eine zweite Person den Simulator betreibt und als
Versuchsleiter agiert. In der Konsequenz wurde in Abschnitt 4.1.10 die Anforderung A13
(Remote-Bedienbarkeit) definiert. Sie fordert eine Netzwerkschnittstelle, durch welche alle
im Großsimulator-Betrieb erforderlichen Eingriffe aus der Ferne getätigt werden können.

Um diese Funktionalität zu erbringen, wurde eine Remote-Applikation entworfen, die sich
mit Hyperion permanent synchronisiert. In Abschnitt 5.7 werden die Funktionen dieser
Applikation umfänglich beschrieben. Sie erlaubt das Hoch- und Herunterfahren der Hard-
ware-Komponenten, das Starten und Stoppen der Simulation, die Manipulation der Offline-
und Online-Parameter sowie ihre Übergabe an die verteilten Recheneinheiten. Zudem zeigt
sie den aktuellen Status der im Verbund beteiligten Hard- und Softwarekomponenten an.
Zusammengefasst erfüllt Hyperion die Anforderung A13 vollständig.

8.2 Zusammenfassung der Evaluierung

Abschließend sollen die Evaluierungsergebnisse in übersichtlicher Form zusammenge-
fasst werden. Tabelle 8-1 stellt dazu das Evaluierungsergebnis bezüglich der einzelnen
Anforderungen aus Abschnitt 4.2 dar.

Tabelle 8-1: Evaluierungsergebnisse der Nachtfahrtsimulation „Hyperion“ bezüglich der
gestellten Anforderungen.

Erfüllungsgrad A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

gar nicht
teilweise x
weitestgehend x x x
vollständig x x x x x x x x x

Wie die Tabelle zeigt, wird der Großteil aller Anforderungen vollständig erfüllt. Nur
Anforderung A9 (Unterstützung verschiedener Witterungsbedingungen) wird als „teil-
weise erfüllt“ eingestuft. Hintergrund dieser Einstufung ist, dass mit dem Nebel nur eine
der relevanten Witterungstypen in hinreichender Tiefe modelliert wurde. Aufgrund der
Komplexität der verschiedenen Wetterphänomene und ihrer Wechselwirkungen mit Licht
musste der Aufwand im Rahmen dieser Arbeit auf ein Beispiel beschränkt werden. Die
grundsätzliche Eignung der Lichtmodellierung zur Integration dieser Phänomene wurde
dennoch nachgewiesen.
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9 Zusammenfassung und Ausblick

Im letzten Kapitel dieser Arbeit werden die zuvor dargestellten Inhalte unter Nennung
der wesentlichen Teilergebnisse zusammengefasst. Außerdem wird ein Fazit aus den
Ergebnissen gezogen. Daran angeschlossen gibt Abschnitt 9.2 einen Ausblick auf weitere
Ausbaumöglichkeiten der hier vorgestellten Nachtfahrtsimulation „Hyperion“.

9.1 Zusammenfassung

Mit dem Einzug der HD-Technologie ist die Komplexität von KFZ-Scheinwerfern erheb-
lich angestiegen. Die gewonnenen Potentiale der neuen Technologie können nur dann
ausgeschöpft werden, wenn die ohnehin erschwerten Bedingungen bei der Scheinwerfer-
entwicklung durch geeignete Werkzeuge verbessert werden. In diesem Kontext ist die
simulative Erprobung eine Schlüsselkomponente. Aufgrund der Zeit- und Kosteneffizienz,
der Reproduzierbarkeit sowie der Sicherheit werden KFZ-Scheinwerfer seit geraumer Zeit
simulationsgestützt entwickelt. Den wesentlichen Teil der Entwicklungsarbeit stellte vor
der HD-Technologie die Auslegung des physischen Scheinwerfers dar. Die Gestaltung der
Lichtquellen und Optiken waren die klassischen Kernaufgaben innerhalb der Auslegung
eines Scheinwerfersystems. Mit der dynamischen Anpassung der Lichtverteilung eröffnen
HD-Scheinwerfer ein völlig neues Feld und verschieben damit den Schwerpunkt der Ent-
wicklungstätigkeit. Lichtsteueralgorithmen und die durch sie umgesetzten Lichtfunktionen
(s. Abschnitt 3.2) rücken durch die gewonnene Flexibilität in den Fokus. Die Abdeckung
dieser neuen Technologie in der simulativen Entwicklung von Scheinwerfern ist somit
zwingend erforderlich.

Gemäß der Darstellungen in Abschnitt 3.3 arbeiten die Hersteller der etablierten Nacht-
fahrtsimulationen an der Unterstützung von HD-Systemen. Um die am Markt verfügbaren
Lösungen bewerten zu können, wurden in Kapitel 4 Anforderungen definiert, die eine
Nachtfahrtsimulation für HD-Scheinwerfersysteme erfüllen sollte. Die anschließende Be-
wertung und Gegenüberstellung der Simulationen hat gezeigt, dass keine der verfügbaren
Lösungen die verschiedenen Kriterien in hinreichender Weise erfüllt. Hieraus wurde der
Handlungsbedarf abgeleitet, welcher zu der vorliegenden Arbeit und der darin vorgestellten
Nachtfahrtsimulation „Hyperion“ führte.

In Kapitel 5 wird einleitend die Hard- und Softwarearchitektur von Hyperion vorge-
stellt. Das Bild 5-1 visualisiert die wesentlichen Komponenten der Architektur und ih-
re Wechselwirkungen untereinander in übersichtlicher Form. Auf oberster Ebene kann
zwischen der Fahrdynamiksimulation, der visuellen Simulation, dem Steuergerät als XiL-
Testkomponente und dem Simulator-Interface unterschieden werden. Die verschiedenen
Elemente werden anschließend genauer diskutiert. Ein besonderes Augenmerk kommt
der Streckengenerierung zu, welche die virtuellen Szenen zur simulativen Erprobung
weitestgehend automatisiert erzeugt. Am Ende des Kapitels werden verschiedene Kon-
figurationen vorgestellt, in denen Hyperion betrieben werden kann. Die Modularität der
Architektur erlaubt Einsätze vom Arbeitsplatzrechner eines Lichtingenieurs bis hin zum
Großsimulatorbetrieb.
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Das Rendering des Lichts hochauflösender Scheinwerfer wird in Kapitel 6 als wissenschaft-
licher Kern der Arbeit detailliert beschrieben. Einleitend wird die typische datentechnische
Abbildung von HD-Scheinwerfern vorgestellt, welche durch die Codierung der Einzellicht-
verteilungen aller Lichtquellen eines Scheinwerfers realisiert wird. Die Lichtverteilungen
können abhängig davon, ob sie nur photometrische oder auch spektrale Informationen
beinhalten, in verschiedenen Formaten vorliegen. Nachfolgend wird das formale Vorgehen
zur Bestimmung der Gesamtlichtverteilung dargelegt. Die einzelnen Lichtverteilungen
werden als Matrizen formalisiert und linear kombiniert, wobei die Koeffizienten der Line-
arkombination durch die normierten Dimmwerte der Lichtquellen vorgegeben sind.

Betrachtet man das intuitive Vorgehen zur Bestimmung der Gesamtlichtverteilung wird
deutlich, dass eine echtzeitfähige Implementierung für hohe Lichtquellenzahlen nicht
gewährleistet werden kann. Aus diesem Grund unterscheidet sich das implementierte
Vorgehen prinzipiell von der intuitiven Vorgehensweise. Dennoch führen beide Varianten
zur gleichen Gesamtlichtverteilung. Kernelement der Implementierung ist die völlige
Neustrukturierung der Scheinwerferdaten. Im Rahmen eines Preprocessings werden die
vielen Einzellichtverteilungen auf geschickte Weise durch drei Datenstrukturen (Compute
Buffer) abgebildet. Diese Reorganisation führt zu einer erheblichen Speicherreduktion,
wie es am Beispiel des HD84-Systems (95,8% Speicherreduktion) gezeigt werden konnte.
Gleichzeitig erlaubt sie die Formulierung eines effizienten Algorithmus zur Durchfüh-
rung der Berechnungen zur Laufzeit. In Abschnitt 6.2.4 wurde nachgewiesen, dass der
Berechnungsaufwand zur Laufzeit durch das vorgelagerte Preprocessing unabhängig von
der Lichtquellenzahl wird. Dieser theoretische Komplexitätsnachweis des ausschließlich
ausgabesensitiven Algorithmus konnte durch Laufzeitmessungen untermauert werden.
Allerdings zeigt sich in der Praxis ein Einfluss der Lichtquellenzahl ab ca. 10.000 Licht-
quellen, welcher auf das Speichermanagement der Grafikkarte zurückgeführt werden kann
(s. Abschnitt 6.5.1). Dieser ist im Bereich praxisrelevanter Lichtquellenzahlen jedoch so
gering, dass er die Echtzeitfähigkeit der Implementierung nicht gefährdet.

Nachdem die Gesamtlichtverteilung bekannt ist, müssen die darauf basierenden Einflüsse
des Lichts in der virtuellen Szene dargestellt werden. Hierzu wurde ein eigenes Lichtquel-
lenmodell mittels Command Buffer in die Deferred Pipeline injiziert. Auf diese Weise
können Anpassungen am Lichtquellenmodell vorgenommen werden, ohne die Kompati-
bilität zu bestehenden Lichtquellen der Unity-Engine zu gefährden. Die implementierte
Lichtquelle ist eng am Spotlicht der Unity-Engine orientiert, sodass die Laufzeiteigenschaf-
ten und die Korrektheit des implementierten Lichtquellenmodells weitgehend abgesichert
sind. Dennoch werden die Ergebnisse durch einen Vergleich mit dem LightDriver validiert
(s. Abschnitt 6.4.2). Neben der qualitativen Validierung wird in Abschnitt 6.5.2 das Lauf-
zeitverhalten durch Parameterstudien untersucht. Zusammengefasst ist die Kombination
der Gesamtlichtverteilungsberechnung und des Lichtquellenmodells über alle praxisrele-
vanten Lichtquellenzahlen hinweg echtzeitfähig, ohne dabei Vereinfachungen zu treffen
oder verlustbehaftete Komprimierungen vorzunehmen.

Den Abschluss von Kapitel 6 bildet die Simulation von Witterungsbedingungen. Am
Beispiel des Nebels wird gezeigt, dass die physikalisch motivierte Modellierung und
Implementierung einer Witterungsbedingung in Hyperion vorgenommen werden kann. Wie
sich zeigt, kann die Nebelsimulation die real auftretenden Effekte der Eigenblendung und
Sichtbeeinträchtigung nachbilden. Im direkten Vergleich mit der Nebelvisualisierung der
Unity-Engine sind die Vorteile der hier vorgestellten Variante deutlich erkennbar. Aufgrund



9.2 Ausblick 273

der Vielschichtigkeit realer Witterungsphänomene wird im Rahmen der vorliegenden
Arbeit auf die Integration weiterer Witterungsmodellierungen verzichtet.

Aufbauend auf der implementierten Lichtsimulation schließen sich in Kapitel 7 Analyse-
und Entwurfswerkzeuge für HD-Scheinwerfer an. Zunächst werden die relevanten photo-
metrischen Größen sowie ihre Vor- und Nachteile bei der Bewertung eines Scheinwerfer-
systems diskutiert. Die etablierten Visualisierungen dieser Größen durch Isolinien oder
Falschfarben werden in die HD-Domäne überführt. Außerdem wird eine neue Analyse-
sicht eingeführt, welche die momentanen Dimmwerte der Scheinwerfer und die daraus
resultierenden Lichtverteilungen in Echtzeit visualisiert. Abhängig von der Auflösung des
Systems existieren zwei Varianten dieser Dimmwertanalyse, welche in den Bildern 7-2
und 7-3 abgebildet sind. Neben der Analyse des Scheinwerferlichts können lichtrelevante
Werte der Fahrzeug- und Umfeldsensorik ebenfalls visualisiert werden.

Während die Analysen bei der Erfassung des Ist-Zustands unterstützen, folgen in Abschnitt
7.2 Entwurfswerkzeuge. Zur Realisierung dieser Werkzeuge wurde in Abschnitt 7.2.1
eine Methodik entwickelt, die wesentliche Teile der Lichtsteueralgorithmen automatisiert
generiert, indem eine Abstraktionsschicht zwischen der Vielzahl von Lichtquellen des
Scheinwerfers und den Vorgaben des Lichtingenieurs geschaffen wird. Diese Abstraktions-
schicht reduziert einerseits die Dimension der Stellgrößen erheblich und führt auf diese
Weise zur Beherrschbarkeit der hohen Lichtquellenzahl. Andererseits abstrahiert er das
konkrete HD-System und erlaubt damit die Überführung bereits definierter Lichtfunktionen
auf andere Scheinwerfersysteme. Es werden zwei Implementierungen der Methodik vorge-
stellt. Der erste, lokale Ansatz ist echtzeitfähig und eignet sich in der vorgestellten Form
zur Implementierung auf einem Steuergerät. Im Gegensatz zum zweiten Ansatz, welcher
auf einer globalen Optimierung beruht, führt er im Allgemeinen jedoch zu suboptimalen
Ergebnissen. Für den globalen Ansatz wird das quadratische Optimierungsproblem in
Gleichung (7-11) formuliert und dessen Konvexität nachgewiesen. Diese stellt sicher, dass
der Optimierer im globalen Optimum konvergiert. Zur Implementierung auf einem Steuer-
gerät eignet sich das globale Verfahren ohne vorherige Anpassungen und Vereinfachungen
jedoch nicht.

Schließlich wird Hyperion entlang der zuvor aufgestellten Anforderungen A1 bis A13
evaluiert. Die Evaluierungsergebnisse werden in Tabelle 8-1 zusammengefasst. Als einzige
Anforderung muss A9, die Witterungssimulation, als „teilweise erfüllt“ eingestuft werden,
da bisher nur Nebel modelliert wurde. Die Modellierung sämtlicher Witterungsphänomene
hätten den wissenschaftlichen Kern der vorliegenden Arbeit verfehlt. Im Übrigen zeigt sich,
dass die restlichen Anforderungen als weitestgehend oder vollständig erfüllt betrachtet
werden können. Das gilt insbesondere für die Anforderungen A2 bis A8, welche den
wissenschaftlichen Kern der Arbeit umreißen.

9.2 Ausblick

Im Verlauf der Bearbeitung der wissenschaftlichen Fragestellung haben sich verschiedene
Stoßrichtungen ergeben, deren weitere Verfolgung zu gewinnbringenden Ergebnissen
führen könnte. Zum Abschluss der Arbeit soll dieser Ausblick eine Motivation zur Weiter-
entwicklung der Nachtfahrtsimulation „Hyperion“ liefern.
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Bisher wird zur Bestimmung der Farbwerte aller Pixel auf ein physikalisch basiertes
Beleuchtungsmodell der Unity-Engine zurückgegriffen. Der breite Einsatz in VR-An-
wendungen beweist die hohe Qualität dieses Beleuchtungsmodells. Es eignet sich für
verschiedenste Beleuchtungskonstellationen und ist somit universell einsetzbar. In der
vorliegenden Arbeit sind im Vergleich dazu nur wenige Beleuchtungskonstellationen von
besonderem Interesse. Zum einen trifft das Scheinwerferlicht meist unter einem sehr fla-
chen Winkel auf die beleuchteten Flächen. Außerdem sind die Beschaffenheiten dieser
Flächen oft detailliert beschreibbar. So könnte die Integration dedizierter Beleuchtungsmo-
delle für einzelne häufig auftretenden Materialien zu einer weiteren Qualitätssteigerung
der visuellen Ausgabe führen. Ein Beleuchtungsmodell für Asphalt wäre ein konkretes
Beispiel. Diese dedizierten Beleuchtungsmodelle könnten dann mit größerer Komplexität
modelliert werden, als es für ein universelles Beleuchtungsmodell der Unity-Engine unter
Echtzeitanforderungen zulässig wäre.

Die vorliegende Arbeit beschreibt die Berechnung der Lichteinflüsse durch die klassischen
Methoden der Rastergrafik (Per-Fragment-Lighting). Gleichzeitig wird herausgestellt,
dass die vorgestellte Implementierung zur Gesamtlichtverteilungsberechnung, welche
den wissenschaftlichen Kern der Arbeit bildet, davon entkoppelt ist und sich in gleicher
Weise für die Anwendung eines Ray Tracers eignet. Die Ersetzung der klassischen Vertex
und Fragment Shader des Lichtquellenmodells durch einen Ray Tracing Ansatz erscheint
insofern vielversprechend. Die nun am Markt erhältliche Hardware ließe eine echtzeitfähige
Implementierung eines Ray Tracers für die Scheinwerfer zu. Durch die damit mögliche
Berücksichtigung von Mehrfachreflexion ist mit einer Verbesserung der grundsätzlichen
visuellen Ausgabe und insbesondere der Witterungssimulation zu rechnen.

Eine dritte Erweiterungsmöglichkeit der Nachtfahrtsimulation „Hyperion“ ergibt sich
durch die zunehmende Berücksichtigung der Umfeldsituation in neuartigen Lichtfunktio-
nen. Im Abschnitt 3.2 wurden im Kontext fortgeschrittener Fahrerassistenzsysteme und
des autonomen Fahrens Lichtfunktionen vorgestellt, deren Verhalten maßgeblich durch die
Fahrzeugumgebung bestimmt wird. Im Rahmen der vorliegenden Arbeit stand die Um-
feldsensorik nicht im Fokus, weshalb bislang nur eine rudimentäre Implementierung einer
Umfeldkamera existiert. Die detaillierte Modellierung des Kamerasensors und die Ergän-
zung von Sensorsimulationen für LiDAR- und RADAR-Systeme würde die ganzheitliche
Erprobung des Scheinwerfersystems von der Sensorwahrnehmung über die Datenverarbei-
tung bis hin zur Lichtdarstellung erlauben. Ein derart umfassendes Werkzeug stellt einen
hohen Mehrwert für die Entwicklung zukünftiger Sensor- und Scheinwerfersysteme dar.
Es soll im BMWi-geförderten Verbundprojekt „Robuste Sensorik für hochautomatisiertes
Fahren“ (RoSSHAF) durch die Kooperation aus dem Heinz Nixdorf Institut, dem Fraunho-
fer IEM, der HELLA GmbH & Co. KGaA, der dSPACE GmbH, der Smart Mechatronics
GmbH und der RTB GmbH & Co. KG erarbeitet werden.
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[Goh18] Gohar, A.; Rüddenklau, N. (BetreuerIn): Modellierung einer virtuellen
Sensorik zur HiL-Simulation eines Scheinwerfer-Steuergerätes. Unveröf-
fentlichte Masterarbeit. Fakultät für Maschinenbau, Universität Paderborn,
2018

[Hin22] Hinzmann, S.; Thoma, A. (BetreuerIn); Rüddenklau, N. (BetreuerIn): Un-
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A1 Definitionsdateien

A1.1 Parameterdatei für das interne Fahrzeugmodell

1 {
2 " CreatedOn " : " Montag , 3 0 . September 2019 " ,
3 "Name" : " ExampleCar " ,
4 " V e r s i o n " : " 1 . 0 " ,
5 " Mass " : 9 5 0 . 0 ,
6 " CenterOfMass " : [ 0 . 0 , 0 . 3 5 , 0 . 2 ] ,
7 " L e f t H e a d l i g h t " : [ −0 .52 , 0 . 7 8 , 1 . 0 8 ] ,
8 " R i g h t H e a d l i g h t " : [ 0 . 5 2 , 0 . 7 8 , 1 . 0 8 ] ,
9 " H e a d P o s i t i o n " : [ −0 .3941 , 1 . 1 4 4 8 , 0 . 0 4 ] ,

10 " E n v i r o n m e n t C a m e r a P o s i t i o n " : [ 0 . 0 , 1 . 2 9 1 6 , 0 . 5 5 6 ] ,
11 " F r o n t S p r i n g C o n s t a n t " : 2 6 0 0 0 . 0 ,
12 " R e a r S p r i n g C o n s t a n t " : 1 8 0 0 0 . 0 ,
13 " F r o n t T a r g e t P o s i t i o n " : 0 . 4 ,
14 " F ron tDamperCons t an t " : 1 2 0 0 . 0 ,
15 " RearDamperCons tan t " : 9 5 0 . 0 ,
16 " R e a r T a r g e t P o s i t i o n " : 0 . 4 ,
17 " F r o n t S u s p e n s i o n M a s s " : 4 0 . 0 ,
18 " RearSuspens ionMass " : 4 0 . 0 ,
19 " WheelRadius " : 0 . 3 2 ,
20 " S u s p e n s i o n D i s t a n c e " : 0 . 2 ,
21 " Fo rceAppDis t ance " : 0 . 3 ,
22 " ModelHasSteer ingWheel " : t r u e ,
23 " ModelHasKmhNeedle " : t r u e ,
24 " ModelHasRpmNeedle " : t r u e ,
25 " I s F r o n t W h e e l D r i v e " : t r u e ,
26 " I sRea rWhee lDr ive " : f a l s e ,
27 " I s F r o n t S t e e r i n g " : t r u e ,
28 " I s R e a r S t e e r i n g " : f a l s e ,
29 " HasEnvironmentCamera " : t r u e ,
30 " WheelBase " : 1 . 7 ,
31 " Overr ideEnvCameraPos " : f a l s e ,
32 " O v e r r i d e H e a d l i g h t P o s " : f a l s e ,
33 " I n e r t i a R a d i u s " : {
34 " x " : 0 . 6 4 ,
35 " y " : 1 . 1 3 ,
36 " z " : 1 . 1 5
37 } ,
38 " F r o n t S u r f a c e A r e a " : 2 . 0 ,
39 "Cw" : 0 . 3 ,
40 " TrackWidth " : 1 . 6 5
41 }

Listing A1.1: JSON-Definition des internen Fahrzeugmodells
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A1.2 Definition der Fahrzeugtrajektorien des internen Autopiloten

1 <? xml v e r s i o n=" 1 . 0 " e n c o d i n g=" u t f −8" ?>

2 <maneuver x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema− i n s t a n c e "
3 xs i :noNamespaceSchemaLoca t ion=" maneuvers . xsd ">

4 < r o u t e s >

5 < r o u t e i d s =" −1 ,0 ,4 ,1 ,3 ,12 " m i n D i s t a n c e=" 3 0 . 0 ">

6 < r o a d s>

7 < r oad i d=" 01 " d i r e c t i o n =" f o r w a r d " >

8 < l a n e O f f s e t s >

9 < l a n e O f f s e t s=" 0 " a=" 0 " b=" 0 . 5 " c=" 0 " d=" 0 " / >

10 < l a n e O f f s e t s=" 8 " a=" 4 " b=" 0 " c=" 0 " d=" 0 " / >

11 < l a n e O f f s e t s=" 50 " a=" 4 " b=" −0.5 " c=" 0 " d=" 0 " / >

12 < l a n e O f f s e t s=" 58 " a=" 0 " b=" 0 " c=" 0 " d=" 0 " / >

13 < / l a n e O f f s e t s >

14 < / r oad>

15 < r oad i d=" 03 " d i r e c t i o n =" backward " / >

16 < r oad i d=" 04 " d i r e c t i o n =" f o r w a r d " / >

17 < r oad i d=" 05 " d i r e c t i o n =" f o r w a r d " / >

18 < / r o a d s>

19 < / r o u t e >

20 < r o u t e i d s =" 5 , 1 0 , 1 1 , 7 , 2 , 6 , 8 , 9 , 1 3 , 1 4 " m i n D i s t a n c e=" 60 ">

21 < r o a d s>

22 < r oad i d=" 02 " d i r e c t i o n =" f o r w a r d " / >

23 < r oad i d=" 10 " d i r e c t i o n =" f o r w a r d " m i n D i s t a n c e=" 3 0 . 0 " / >

24 < / r o a d s>

25 < / r o u t e >

26 < / r o u t e s >

27 < / maneuver>

Listing A1.2: XML-Definiton der Fahrzeugmanöver für eine gegebene Strecke

• Ein Manöver (maneuver) kann mehrere Routen enthalten.

• Für jede Route (route) werden im Feld ids die IDs der Fahrzeuge aufgelistet, die
auf dieser Route fahren. Fremdfahrzeuge werden durch IDs zwischen 0 und 14
identifiziert. Das Egofahrzeug ist ID -1.

• Jede Route beinhaltet das Feld minDistance, welches den Mindestabstand aufeinan-
der folgender Fahrzeuge in Metern vorgibt.

• Eine Route kann sich über mehrere Straßen erstrecken.

• Jede Straße (road) ist über das Feld id mit der Streckendefinition verknüpft. Die IDs
der Manöver- und der Streckendefinition müssen übereinstimmen.

• Innerhalb der Straße kann der Wert des Felds minDistance, der durch die Route
vorgegeben wurde, optional überschrieben werden.

• Für jede Straße muss definiert werden, ob sie vorwärts oder rückwärts (direc-
tion=„forward/backward“) befahren werden soll, wobei „vorwärts“ die Fahrt entlang
aufsteigender Bogenlänge meint.

• Jede Straße kann keinen, einen oder mehrere Spurversätze (laneOffset) enthalten.
Dies ist der laterale Abstand, den das Fahrzeug von der Referenzlinie hat. Auf diese
Weise können Fahrzeuge auf die Spuren einer Straße verteilt werden.
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• Jeder Spurversatz wird als eine Polynomfunktion 3. Grades mit den Koeffizienten a
bis d angegeben: a + b · x + c · x2 + d · x3. Sein Gültigkeitsbereich beginnt bei der
Bogenlänge s und endet am Beginn des nächsten Spurversatzes oder dem Ende der
Straße. Die Spurversätze müssen entlang des Felds s geordnet sein.

A1.3 Definition des Streckenverlaufs nach dem OpenDRIVE-Standard

1 <? xml v e r s i o n=" 1 . 0 " e n c o d i n g=" u t f −8" ?>

2 <OpenDRIVE x m l n s : x s d=" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema" x m l n s : x s i ="
h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema− i n s t a n c e ">

3 <h e a d e r revMajo r=" 1 " revMinor=" 4 " name=" Rundkurs_ModelDesk " d a t e=

" 2018−02−20 A10:08:12 " vendor="dSPACE GmbH">

4 <g e o R e f e r e n c e>< ! [CDATA[ ] ] >< / g e o R e f e r e n c e>

5 < / h e a d e r>

6 < r oad name=" Road 1 " l e n g t h =" 713 .685 " i d=" 183349851 " j u n c t i o n ="−1"
>

7 < l i n k >

8 < p r e d e c e s s o r e lementType=" road " e l e m e n t I d=" 183349851 " / >

9 < s u c c e s s o r e lementType=" road " e l e m e n t I d=" 183349851 " / >

10 < / l i n k >

11 < t y p e s=" 0 " t y p e=" unknown ">

12 <speed max=" 200 " u n i t ="km / h " / >

13 < / t y p e>

14 < t y p e s=" 300 " t y p e=" unknown ">

15 <speed max=" 200 " u n i t ="km / h " / >

16 < / t y p e>

17 < t y p e s=" 800 " t y p e=" unknown ">

18 <speed max=" 200 " u n i t ="km / h " / >

19 < / t y p e>

20 <planView>

21 <geomet ry s=" 0 " x=" 0 " y=" 0 " hdg=" 0 " l e n g t h =" 100 ">

22 < l i n e / >

23 < / geomet ry>

24 <geomet ry s=" 100 " x=" 100 " y=" 0 " hdg=" 0 " l e n g t h =" 100 ">

25 < s p i r a l c u r v S t a r t =" 0 " curvEnd=" 0 . 0 2 " / >

26 < / geomet ry>

27 <geomet ry s=" 200 " x=" 190 .452 " y=" 31 .026 " hdg=" 0 .999 " l e n g t h ="
5 7 . 1 ">

28 < a r c c u r v a t u r e =" 0 . 0 2 " / >

29 < / geomet ry>

30 <geomet ry s=" 257 .1 " x=" 190 .452 " y=" 85 .074 " hdg=" 2 .1418 "
l e n g t h =" 100 ">

31 < s p i r a l c u r v S t a r t =" 0 . 0 2 " curvEnd=" 0 " / >

32 < / geomet ry>

33 <geomet ry s=" 357 .1 " x=" 99 .993 " y=" 116 .082 " hdg=" −3.141 "
l e n g t h =" 100 ">

34 < l i n e / >

35 < / geomet ry>

36 <geomet ry s=" 457 .1 " x=" −0.006 " y=" 116 .061 " hdg=" −3.141 "
l e n g t h =" 100 ">

37 < s p i r a l c u r v S t a r t =" 0 " curvEnd=" 0 . 0 2 " / >

38 < / geomet ry>

39 <geomet ry s=" 557 .1 " x=" −90.452 " y=" 85 .015 " hdg=" −2.141 "
l e n g t h =" 5 7 . 1 ">
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40 < a r c c u r v a t u r e =" 0 . 0 2 " / >

41 < / geomet ry>

42 <geomet ry s=" 614 .2 " x=" −90.441 " y=" 30 .968 " hdg=" −0.999 "
l e n g t h =" 99 .485 ">

43 <paramPoly3 aU=" 0 " bU=" 95 .596 " cU=" −18.028 " dU=" −2.618 " aV=

" 0 " bV=" 0 " cV=" 97 .600 " dV=" −38.260 " pRange=" n o r m a l i z e d "
/ >

44 < / geomet ry>

45 < / planView>

46 < e l e v a t i o n P r o f i l e >

47 < e l e v a t i o n s=" 0 " a=" 0 " b=" 0 .009 " c=" 0 " d=" 0 " / >

48 < e l e v a t i o n s=" 104 " a=" 1 " b=" 0 .010 " c=" 0 " d=" 0 " / >

49 < e l e v a t i o n s=" 201 " a=" 2 " b=" 0 .017 " c=" 0 " d=" 0 " / >

50 < e l e v a t i o n s=" 257 " a=" 3 " b=" −0.009 " c=" 0 " d=" 0 " / >

51 < e l e v a t i o n s=" 358 " a=" 2 " b=" −0.020 " c=" 0 " d=" 0 " / >

52 < e l e v a t i o n s=" 457 .1 " a=" 0 " b=" 0 " c=" 0 " d=" 0 " / >

53 < e l e v a t i o n s=" 563 " a=" 0 " b=" 0 " c=" 0 " d=" 0 " / >

54 < e l e v a t i o n s=" 615 " a=" 0 " b=" 0 " c=" 0 " d=" 0 " / >

55 < / e l e v a t i o n P r o f i l e >

56 < l a t e r a l P r o f i l e >

57 < s u p e r e l e v a t i o n s=" 0 " a=" 0 " b=" 0 " c=" 0 " d=" 0 " / >

58 < / l a t e r a l P r o f i l e >

59 < l a n e s >

60 < l a n e O f f s e t s=" 0 " a=" −1.75 " / >

61 < l a n e S e c t i o n s=" 0 ">

62 < l e f t >

63 < l a n e i d=" 1 " t y p e=" d r i v i n g ">

64 <wid th s O f f s e t =" 0 " a=" 3 . 5 " b=" 0 " c=" 0 " d=" 0 " / >

65 <roadMark t y p e=" s o l i d " wid th=" 0 . 2 5 " / >

66 < / l a n e>

67 < / l e f t >

68 < c e n t e r >

69 < l a n e i d=" 0 " t y p e=" d r i v i n g ">

70 <roadMark t y p e=" s o l i d " wid th=" 0 . 2 5 " / >

71 < / l a n e>

72 < / c e n t e r >

73 < / l a n e S e c t i o n >

74 < / l a n e s >

75 < / r oad>

76 < / OpenDRIVE>

Listing A1.3: XML-Definition eines Streckenverlaufs nach dem OpenDRIVE-Standard
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A2 Lichtverteilungen

A2.1 Messdaten einer Lichtverteilung im IES-Format

1 IESNA:LM−63−1995
2 [ TEST ]
3 [MANUFAC]
4

5 [LUMCAT]
6 [LUMINAIRE]
7 [LAMPCAT]
8 [LAMP]
9

10 [OTHER] c r e a t e d : Wed Nov 29 09 : 4 8 : 0 7 2017
11 [DATE]
12

13 TILT=NONE
14 1 −1 1
15 8 8 3 2
16 0 0 0
17 1 1 0
18 −14.0 −10.0 −6.0 −2.0
19 2 . 0 6 . 0 1 0 . 0 1 4 . 0
20 −28.0 −20.0 −12.0 −4.0
21 4 . 0 1 2 . 0 2 0 . 0 2 8 . 0
22 0 0 0 0 0 0 0 0
23 0 0 0 . 1 0 . 1 0 . 1 0 . 1 0 0
24 0 . 1 0 . 2 0 . 3 0 . 4 0 . 4 0 . 3 0 . 2 0 . 1
25 0 . 1 0 . 2 0 . 3 0 . 4 0 . 4 0 . 3 0 . 2 0 . 1
26 0 . 1 0 . 2 0 . 3 0 . 4 0 . 4 0 . 3 0 . 2 0 . 1
27 0 . 1 0 . 2 0 . 3 0 . 4 0 . 4 0 . 3 0 . 2 0 . 1
28 0 0 . 1 0 . 1 0 . 2 0 . 1 0 . 1 0 . 2 0
29 0 0 0 0 0 0 0 0

Listing A2.1: Reduzierte Beispieldatei einer Lichtstärkeverteilung im IES-Format
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A2.2 Messdaten einer Lichtverteilung im CIE-Format

1 Po le a x i s ,Y
2 Po le ang le , v e r t i c a l
3 Uni t s , CIE X Y Z ,
4 Rows , 4 ,
5 Columns , 4 ,
6 V e r t i c a l min ,−5
7 V e r t i c a l max , 5
8 H o r i z o n t a l min ,−10
9 H o r i z o n t a l max , 1 0

10 1 . 0 , 2 . 0 , 1 . 0 , 1 . 5 , 3 . 0 , 0 . 8 , 1 . 0 , 2 . 0 , 1 . 0 , 1 . 5 , 3 . 0 , 0 . 8 ,
11 1 . 1 , 3 . 0 , 1 . 1 , 1 . 5 , 3 . 2 , 0 . 6 , 2 . 0 , 5 . 0 , 1 . 0 , 1 . 5 , 3 . 0 , 0 . 6 ,
12 1 . 0 , 2 . 0 , 0 . 8 , 1 . 5 , 7 . 1 , 0 . 8 , 1 . 0 , 2 . 0 , 1 . 9 , 1 . 5 , 3 . 0 , 0 . 8 ,
13 1 . 5 , 2 . 0 , 1 . 0 , 1 . 5 , 3 . 0 , 0 . 9 , 4 . 0 , 2 . 0 , 1 . 4 , 1 . 5 , 7 . 0 , 1 . 8

Listing A2.2: Reduzierte Beispieldatei einer spektralen Lichtverteilung im CIE-Format
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A3 Laufzeitanalyse und Speicherbedarf

A3.1 Generierung von Lichtverteilungsdatensätzen

Bild A3-1: Grafische Benutzeroberfläche zur Generierung von Lichtverteilungsdatensätzen

Bild A3-1 zeigt die Benutzeroberfläche zur Generierung von Lichtverteilungsdatensätzen.
Diese Generierung wurde zur Erzeugung der fiktiven Scheinwerfersysteme eingesetzt,
welche nachfolgend aufgeführt werden. Zuerst wird das Zielverzeichnis ausgewählt, in
welchem das generierte System gespeichert werden soll. Der zweite Eintrag dient zur Be-
nennung des Scheinwerfersystems und ermöglicht eine Identifizierung und Referenzierung
in anschließenden Simulationen.

Der rechts darunter befindliche Block erlaubt die technische Beschreibung des Schein-
werfersystems. Das in Bild A3-1 gezeigte Beispiel führt zu einem HD-System mit 1.000
Lichtquellen pro Scheinwerfer. Die Gesamtlichtverteilung, welche sich über einen Win-
kelbereich von −60◦ bis +60◦ in der Horizontalen und −30◦ bis +30◦ in der Vertikalen
erstreckt, wird durch die Lichtquellen in 50 Spalten und 20 Zeilen segmentiert. Mit ei-
ner Überlappung von 67% zwischen benachbarten Lichtquellen, ist diese Segmentierung
nicht scharf (s. Abschnitt 6.5.1). Die Winkelbereich der Gesamtlichtverteilung wird in
0, 05◦-Schritten diskretisiert.

Im linken unteren Block werden einige resultierende Systemeigenschaften angzeigt. Hierzu
gehören die Anzahl der Lichtquellen (1.000), die Anzahl der diskreten Datenpunkte
entlang der Horizontalen (2.400) und Vertikalen (1.200), sowie die durch eine Lichtquelle
beeinflussten Datenpunkte entlang der Horizontalen (80) und Vertikalen (100).

Ein Klick auf den Button „Generiere“ erzeugt das spezifizierte System. Der Fortschritt
wird durch den Ladebalken veranschaulicht, welcher sich am unteren Rand des Bilds A3-1
befindet.
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A3.2 Laufzeitanalyse der Gesamtlichtverteilungsberechnung

Tabelle A3-1: Parameter, Berechnungsdauer und Speicherbedarf der Lichtdatensätze mit
variierender Lichtquellenzahl.

Lichtquellen 10 102 103 104 105 106

Laufzeit (ms) 1, 823 1, 820 1, 828 1, 841 2, 079 2, 880
Lichter/Pixel 2, 80 2, 79 2, 79 2, 79 2, 79 2, 79
srcValBu f f er(kB) 128.480 128.223 127.903 127.904 127.904 127.872
srcIDBu f f er(kB) 32.120 32.055 31.975 31.976 31.976 31.968
trgBu f f er(kB) 45.964 45.945 45.907 45.907 45.907 45.907
dimmValBu f f er(kB) 0, 08 0, 8 8 80 800 8.000
Abdeckung (%) 100,00 99,96 99,88 99,87 99,87 99,87
Laufzeit (konst. Dimm-
werte) (ms)

1, 823 1, 820 1, 828 1, 834 1, 986 2, 076

Tabelle A3-2: Parameter, Berechnungsdauer und Speicherbedarf der Lichtdatensätze mit
variierender Datenpunktzahl.

Datenpunkte 160 1.440 4.000 7.840 12.960
[
¯
θ, θ̄] [−10◦, 10◦] [−30◦, 30◦] [−50◦, 50◦] [−70◦, 70◦] [−90◦, 90◦]

[
¯
ϕ, ϕ̄] [−10◦, 10◦] [−30◦, 30◦] [−50◦, 50◦] [−70◦, 70◦] [−90◦, 90◦]

Threads/Gruppe 64 64 64 128 256
Gruppen 2.500 22.500 62.500 61.250 50.625

Laufzeit (ms) 0, 148 0, 917 2, 517 4, 916 8, 100
Lichter/Pixel 2, 714 2, 789 2, 801 2, 808 2, 790
srcValBu f f er(kB) 6.843 63.936 178.916 351.785 577.727
srcIDBu f f er(kB) 1.710 15.984 44.729 87.946 144.431
trgBu f f er(kB) 2.521 22.924 63.872 125.260 207.072
Abdeckung (%) 99,50 99,83 100,00 100,00 99,97

Tabelle A3-3: Parameter, Berechnungsdauer und Speicherbedarf der Lichtdatensätze mit
variierender Überlappung.

Überlappung (%) 0 40 80 120 160 200
Lichter/Pixel 1,00 1,96 3,23 4,87 6,78 9,02

Laufzeit (ms) 1, 095 1, 480 2, 034 2, 851 4, 248 6, 276
srcValBu f f er(kB) 46.022 89.967 148.504 223.744 311.850 414.374
srcIDBu f f er(kB) 11.505 22.491 37.126 55.936 77.962 103.593
trgBu f f er(kB) 45.964 45.945 45.945 45.964 45.964 45.964
Abdeckung (%) 100,00 99,96 99,96 100,00 100,00 100,00
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A3.3 Laufzeitanalyse der Szenenbeleuchtung

Tabelle A3-4: Parameter und Berechnungsdauer der Messreihe mit variierendem Messbe-
reich.

Messbereich
Horizontal(◦) ±15 ±22, 5 ±30 ±37, 5 ±45 ±52, 5 ±60
Vertikal(◦) ±10 ±15 ±20 ±25 ±30 ±35 ±40
Winkelfläche (◦◦) 600 1.350 2.400 3.750 5.400 7.350 9.600
Datenpunkte(·106) 0, 24 0, 54 0, 96 1, 50 2, 16 2, 94 3, 84

Abdeckung (%) 11,1% 25,5% 46,6% 74,6% 98,4% 100,0% 100,0%
Laufzeit (ms) 0, 047 0, 116 0, 214 0, 361 0, 508 0, 519 0, 519

Tabelle A3-5: Parameter und Berechnungsdauer der Messreihe mit variierender Messauf-
lösung.

Messauflösung (◦) 0,02 0,04 0,06 0,08 0,10
Datenpunkte (·106) 11, 25 2, 81 1, 25 0, 703 0, 450

Laufzeit (ms) 1, 242 0, 572 0, 408 0, 378 0, 373

Tabelle A3-6: Parameter und Berechnungsdauer der Messreihe mit variierender Ausgabe-
aufloesung.

Bezeichnung HD Ready Full HD Quad HD Ultra HD
Pixel Horiz. 1.280 1.920 2.560 3.840
Pixel Vert. 720 1.080 1.440 2.160
Pixelzahl (·106) 0,921 2,074 3,686 8,294

Laufzeit (ms) 0, 171 0, 370 0, 680 1, 580
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A4 Validierung

Bild A4-1: Vergleich des LightDriver (oben) mit Hyperion (mittig mit monochromer und
unten mit spektraler Lichtverteilung) bei der Simulation einer Abblendlichtver-
teilung in einer einfachen Straßenszene (links) und mit einer 10 m entfernten
Messwand (rechts).
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Bild A4-2: Vergleich des LightDriver (oben) mit Hyperion (mittig mit monochromer und
unten mit spektraler Lichtverteilung) bei der Simulation einer Fernlichtver-
teilung in einer einfachen Straßenszene (links) und mit einer 10 m entfernten
Messwand (rechts).
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A5 Analyse und Entwurf

A5.1 Isolinien- und Falschfarbendarstellungen

Bild A5-1: Falschfarbendarstellung der Lichtstärke eines HD84-Systems.

Bild A5-2: Isoliniendarstellung der Lichtstärke eines HD84-Systems.
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Bild A5-3: Falschfarbendarstellung der Beleuchtungsstärke eines HD84-Systems.

Bild A5-4: Isoliniendarstellung der Beleuchtungsstärke eines HD84-Systems.
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A5.2 Sonstige Analysesichten

Bild A5-5: Einblendung einer Messwand in 10 m Entfernung zur Kontrolle der Hell-Dunkel-
Grenze des Scheinwerfersystems (rote Kontrolllinien an spezifischen Positionen
dienen der Orientierung).

Bild A5-6: Einblendung von Distanzmarken zur Beurteilung der Reichweite des Schein-
werfersystems.
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Die vorliegende Arbeit befasst sich mit dem simulationsbasierten Ent-
wurf hochauflösender Pixel-Scheinwerfersysteme durch virtuellen Nacht-
fahrten. Nach einer Darstellung der notwendigen theoretischen Grund-
lagen wird zunächst der derzeitige Stand der Technik beschrieben. 
Besonderes Augenmerk erhält die simulationsgestützte Entwicklung von 
Pixel-Scheinwerfersystemen. Die existierenden Lösungen werden vorge-
stellt und bewertet. Abgeleitet aus den vorhandenen Schwächen derzei-
tiger Nachtfahrtsimulationen wird ein Anforderungskatalog erarbeitet, 
den die hier vorgestellte Lösung bestmöglich erfüllen soll. Es folgt die 
Beschreibung der zu diesem Zweck entwickelten Nachtfahrtsimulation
„Hyperion“. Nach einer Darstellung der Gesamtarchitektur, der daz gehö-
rigen Komponenten und ihrer Wechselwirkungen, wird der Forschungs-
kern der vorliegenden Arbeit detailliert betrachtet. Hierzu gehört im ers-
ten Schritt die echtzeitfähige und qualitativ hochwertige Nachbildung 
des Lichts von Pixel-Scheinwerfern in einer virtuellen Umgebung. Bei der 
Virtualisierung von Pixel-Systemen werden neben dem ausgesandten 
Licht beider Scheinwerfer auch das Steuergerät und damit verbundene 
Sensoren betrachtet. Im zweiten Schritt werden darauf aufbauend Ana-
lyse- und Entwurfsverfahren für diese Systeme methodisch eingeführt, 
prototypisch implementiert und validiert. Hierbei liegt der Fokus nicht 
auf der optischen Auslegung des Scheinwerfers, sondern auf dem En 
wurf von Lichtfunktionen zur situationsadaptiven Steuerung der zahl-
reichen Lichtquellen eines Pixel-Scheinwerfers. Schließlich wird die ent-
wickelte Lösung anhand des zuvor angefertigten Anforderungskatalogs 
bewertet. Zum Abschluss werden die zentralen Ergebnisse der Arbeit zu-
sammengefasst. In einem Ausblick werden weitere Potentiale und Aus-
baumöglichkeiten der Nachtfahrtsimulation diskutiert.


