
Institute of Electrical Engineering and Information Technology
Paderborn University

Department of Power Electronics and Electrical Drives
Prof. Dr.-Ing. Joachim Böcker

Master Thesis

Combined Current Control and
System Identification of a PMSM
with Neural Ordinary Differential

Equations

by

Marvin Meyer

Supervisor: Wilhelm Kirchgässner and Maximilian Schenke
Thesis Nr.: MA129
Filing Date: November 24, 2022

Declaration of Authorship

I declare that I have authored this thesis independently, that I have not used other
than the declared sources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources. This paper was not previously
presented to another examination board and has not been published.

Paderborn,
Date Signature

i

24.11.2022

Abstract

This thesis deals with current control and system iden-
tification of a permanent magnet synchronous machine.
To learn a data-driven controller for current control,
a model of the motor is required. Such model can
be constructed with the utilization of neural ordinary
differential equations. Through this approach, expert
knowledge can be used in combination with learnable
parameters to identify the motor parameters. With
the help of this model, a neural network can then
be trained to control the current. The proposed ap-
proach will be compared with both model-based and
model-free methods for current control.

ii

Contents

1 Introduction 1

2 Theoretical Fundamentals 3
2.1 Electric Drive . 3

2.1.1 Inverter . 4
2.1.2 Pulse Centering . 5
2.1.3 Permanent Magnet Synchronous Machine 5
2.1.4 Modeling . 6
2.1.5 Field-Oriented Control with PI-Controller 10
2.1.6 Simulation Environment . 11

2.2 System Identification . 13
2.3 Machine Learning . 14

2.3.1 Neural Networks . 14
2.3.2 Reinforcement Learning . 19

3 Modeling 22
3.1 Neural Ordinary Differential Equations . 22
3.2 Internal Plant Model with Neural Controller 24

3.2.1 Structure . 24
3.2.2 Current Control via Neural Controller 25
3.2.3 Current Control and System Identification 27

3.3 Data Generation . 30
3.4 Hyperparameter Optimization . 32

4 Experimental Evaluation 33
4.1 GEM Drive Simulation . 33
4.2 Current Control of a PMSM . 34

4.2.1 Baselines . 34
4.2.2 Neural Controller . 38
4.2.3 Results . 39
4.2.4 Discussion . 40

4.3 HPO of the Neural Controller . 43
4.3.1 Setup . 43
4.3.2 Results . 44
4.3.3 Discussion . 46

iii

Marvin Meyer CC & SysID of a PMSM

4.4 Current Control and System Identification 47
4.4.1 Setup . 47
4.4.2 Training . 48
4.4.3 Results . 49
4.4.4 Discussion . 54

5 Summary 56
5.1 Summary . 56
5.2 Outlook . 57

Appendix 59
A.1 Dynamical Systems . 59
A.2 Derivation of NODE . 59
A.3 Equations . 61

A.3.1 Ornstein-Uhlenbeck Prozess . 61
A.3.2 Approximation Error . 61

A.4 Plots . 62
A.4.1 Sigmoid . 62
A.4.2 HPO . 63

A.5 Algorithms . 65
A.5.1 DDPG Algorithm . 65
A.5.2 Current Control and System Identification Algorithm 66

Lists 67
List of Tables . 67
List of Figures . 67
Acronyms . 69
Glossary . 70
Nomenclature . 70
References . 73

iv

1 Introduction

In recent years, the permanent magnet synchronous motor (PMSM) has become increasingly
popular for industrial and automotive applications. The appeal results primarily from a
broad spectrum of advantages: high efficiency, good control accuracy, high torque and
power density, low rotor inertia and high life expectancy. This motor rotates synchronously
the stator’s rotating magnetic field and has permanent magnets instead of windings in the
rotor, which maintain a constant magnetic field. The permanent magnets have to meet
high requirements, especially with regard to the specific energy density, which results in a
higher acquisition cost. An alternative design of the electric motors is certainly worthwhile
from an ecological point of view, since the rare earths in particular have a poor carbon
footprint. However, as raw material prices are expected to decrease in the coming years,
and in combination with the beneficial properties of the PMSM, it is expected that the
PMSM drive system will continue to gain popularity.

In order for the PMSM drive system to achieve the best possible steady-state and dynamical
performance, various control strategies have been developed. One of the model based
methods is the field-oriented control (FOC). The classical FOC is implemented by simple
proportional-integral controllers (PI controllers), with the proportional and integration
part adjusted to the plant. The FOC uses a mathematical model of the motor. However,
modeling complex systems is not always possible without simplifications. In the case of
the PMSM, i.e., these can be parasitic effects that occur in the plant but are not taken
into account in the model.

Modern control approaches utilize the progress made in the field of machine learning
(ML). A branch of this is reinforcement learning (RL), which has gained popularity in
recent years due to many remarkable results [1][2]. These control algorithms use function
approximators, such as artificial neural networks (ANNs), to develop a control strategy,
referred to as policy. Instead of requiring a plant model for their design, they determine
an appropriate policy based on interactions with the plant. Since a policy is learned on
the basis of data, it can be better adapted to the given plant.

Both approaches are at the different edges of the spectrum, that measures the exploitation
of available system information. The goal in this work is to use as much expert knowl-
edge about the plant as possible, but also to take advantage of the adaptability of ML
approaches.

1

Marvin Meyer CC & SysID of a PMSM

In this thesis, a novel approach to current control using ML is presented utilizing the
concept of neural ordinary differential equations (NODEs) [3]. With the help of this
approach, models can be learned from data in a supervised manner. On the one hand,
an internal plant model is learned, which is to approximate the behavior of the plant.
Here, expert knowledge of the plant can be used to improve the internal plant model. On
the other hand, based on the internal plant model, a policy is learned, which takes over
the control of the plant. Both components, the internal plant model and the policy, are
represented by ANN and can be learned simultaneously. This approach uses both expert
knowledge of the plant and ML’s function approximation capabilities to obtain the best
possible controller.

The thesis is structured as follows. In chapter 2, the theoretical fundamentals are presented.
This includes the considered drive system and its corresponding model. In addition to
the classic methods of control, also data-driven methods are explained. In chapter 3, the
NODE approach will be elaborated. The current control with the help of the NODE
is specified, which is extended by making use of the NODEs’ capability for system
identification. Chapter 4 deals with the evaluation of the experiments. First, the setting of
the experiments is explained in more detail. This is followed by the results and discussion
of those experiments. Chapter 5 summarizes the work and provides an outlook.

2

2 Theoretical Fundamentals

This chapter deals with the basics of the work in order to provide a better understanding
of the later topics. The first section deals with the basics of the drive system. The
components and the modeling of such a system will be discussed in more detail. After
that, concepts of the system identification are given. The basics of mechanical learning
are then discussed, first covering neural networks (NNs) and followed by RL.

2.1 Electric Drive

A modern drive system consists of four essential components: A power supply, the inverter,
as well as the motor which is connected to the load [4]. The power supply’s task is to
provide the inverter with a constant voltage on the input side. The inverter uses the control
signals from the controller to ensure that a voltage is applied to the motor through which a
target current is then obtained. The voltage can be adjusted variably by the inverter using
modulation methods. For the vast majority of drive-related tasks, the electrical energy is
converted into mechanical energy, the so-called motor operating mode. In the opposite
case, the system is in generator mode. Fig. 2.1 shows a simple drive system.

Supply
Voltage Inverter Motor Mech. Load

Control Signal

Fig. 2.1: Structure of the drive system.

Before this section is devoted to the modeling of the motor, the inverter and the type of
motor used in the work will be introduced. Subsequently, a basic classical control method
will be presented.

3

Marvin Meyer CC & SysID of a PMSM

2.1.1 Inverter
The voltage-source inverter (VSI) converts the DC link voltage into an AC voltage [4].
This is solved by a three-phase bridge circuit composed of half-bridges for each phase,
shown conceptually in Fig. 2.2.

uDC(t)

uDC(t)
2

uDC(t)
2

Sa

Sb

Sc

a

b

c

ua(t)

ub(t)

uc(t)

1
−1

1
−1

1
−1

Fig. 2.2: Conceptual structure of a three-phase VSI.

The input voltage uDC(t) is applied across the two identically assumed capacitance. Between
line a and ground the potential difference causes a voltage of ua(t). In dependence of the
switch Sa the voltage can alternate between ±uDC(t)

2 . Whether ua(t) is at the high or low
potential is determined by the controller, which can change the switch position with the
signal sa(t). Usually the switch is realized in hardware by paired metaloxide semiconductor
field-effect transistors (MOSFETs) or insulated-gate bipolar transistors (IGBTs), as shown
in Fig. 2.3. It depends on the application which of the two technologies are used.

Each phase i ∈ {a,b,c} can be controlled by a separate signal si(t) to generate the necessary
phase shift of 120◦ between the voltages ui(t). In addition, the frequency can be controlled
via the operating speed of the switches [5].

uDC(t)

uDC(t)
2

uDC(t)
2

sa(t)

−sa(t)

sb(t)

−sb(t)

sc(t)

−sc(t)

a
b

c

ui(t)

Fig. 2.3: Structure of the B6 bridge.

4

Marvin Meyer CC & SysID of a PMSM

In Fig. 2.3 a three-phase VSI with IGBTs is shown. The voltages can be converted in
vector notation to the following equation:

ua(t)
ub(t)
uc(t)

 = uDC(t)
2

sa(t)
sb(t)
sc(t)

 (2.1)

2.1.2 Pulse Centering
To calculate the input voltage of the motor, the physical voltage limits are first examined,
which follow from the DC supply voltage and the inverter. The maximum voltage of the
inverter is thus one half of the positive or negative supply voltage. Projecting this onto
the abc-coordinates results in two stripes for each of the coordinates as boundaries. Due
to the phase offset of 120◦, the intersection points can be used to form a regular hexagon,
as shown in Fig. 2.4. The maximum line-to-line voltage available at the motor therefore
results from the input DC voltage. However, the modulation range can be extended by
subtracting the zero component

u0(t) = 1
2 (max[u∗

a(t), u∗
b(t), u∗

c(t)] + min[u∗
a(t), u∗

b(t), u∗
c(t)]) (2.2)

so that the string voltages are increased:

u∗∗
a (t) = u∗

a(t)− u0(t)
u∗∗

b (t) = u∗
b(t)− u0(t)

u∗∗
c (t) = u∗

c(t)− u0(t).
(2.3)

This gives the maximum possible modulation range for the line-to-line voltages

|uab,bc,ca(t)|
uDC(t) ≤ 1, (2.4)

which is represented by the outer hexagon in Fig. 2.4.

2.1.3 Permanent Magnet Synchronous Machine
This thesis deals with PMSMs. These consists of two parts, the stator and the rotor,
whose cross-section is illustrated in Fig. 2.5.

The non-moving part of the motor is called the stator. Using the three-phase AC coming
from the inverter and the arrangement of the coils, the necessary rotating magnetic field
is built up. The frequency of the voltage can thus be used to set the rotation speed of
the rotor. Conversely, the rotor is the moving part of a PMSM. The necessary constant
magnetic field is generated by permanent magnets, which are integrated in the rotor. The

5

Marvin Meyer CC & SysID of a PMSM

1

uDC(t) 2√
3

β

α, a
uDC(t)4

3

b

c
Fig. 2.4: Visualization of the voltage constraints forming two hexagons [6].

design determines how many pole pairs are involved. For the purpose of convenience, only
one pole pair is shown in the figure. In steady-state, the rotor and stator flux vectors are
synchronized and rotate with the same angular velocity [6].

2.1.4 Modeling
For machines with rotating fields, it is common to use two coordinate systems to simplify
the calculation. The first one is the stator-fixed coordinate system. Opposed to this, the
other coordinate system is rotor-fixed. Since the system has three phases j ∈ {a,b,c}, the
following transformations are applied to the voltage uj, the current ij, and the magnetic
flux Ψj, respectively.

The αβ- and abc-coordinate systems share the same origin, where the α-axis overlaps
with the a-axis and the β-axis is perpendicular to the α-axis (Compare Fig. 2.7). The
transformation can be performed with the help of the following equations:

(
xα(t)
xβ(t)

)
= T23

xa(t)
xb(t)
xc(t)

 (2.5)

where

6

Marvin Meyer CC & SysID of a PMSM

ia(t)

N

ib(t)

ic(t)S

Rotor
Stator

Fig. 2.5: Cross section of a PMSM with only one pole pair. This is a simplification to
better distinguish the individual elements. Usually PMSMs contain several pool pairs.

T23 =
(2

3 −
1
3 −

1
3

0 1√
3 −

1√
3

)
. (2.6)

Applying this transformation to the system results in the equivalent circuit diagrams of
the two components shown in Fig. 2.6.

Rsiα Ls
diα
dt

uα −Ψpωel sin ε

(a) α-axis

Rsiβ Ls
diβ
dt

uβ −Ψpωel cos ε

(b) β-axis

Fig. 2.6: The equivalent circuit diagrams for the PMSM in αβ-coordinates.

Rs is the winding resistance and Ls the inductance of the winding system. Generally, the
inductances in the two lines are different. For simplicity, the inductances are assumed

7

Marvin Meyer CC & SysID of a PMSM

to be equal. Different inductances will be taken into account later when the rotor-fixed
coordinate system is introduced. The induced voltage of the permanent magnet results
from the flux Ψp and the sine or cosine of the angle ε between rotor and stator, as well as
the derivative of the angle, the angular velocity ωel. This results in the two differential
equations (DEs):

uα(t) = Rsiα(t) + Ls
diα(t)

dt
−Ψpωel sin ε

uβ(t) = Rsiβ(t) + Ls
diβ(t)

dt
−Ψpωel cos ε

(2.7)

The voltages uα(t) and uβ(t), as well as the currents iα(t) and iβ(t) result from the
previously discussed transformation. In order to get rid of the dependence on ε, i.e., the
rotor position in relation to the stator, the second coordinate system is introduced.

The dq-coordinate system is fixed to the rotor. Therefore, the d-axis is placed across the
pole pair and the q-axis again orthogonal to it. Since the rotor flux vector follows the field
of the stator, there is a direct connection between the coordinate systems, whereby the
angle ε indicates the twisting of the systems.

ia(t)

N

ib(t)

ic(t)S

ε

α

β

d

q

Fig. 2.7: Illustration of the different coordinate systems within the PMSM.

8

Marvin Meyer CC & SysID of a PMSM

The projection between the systems is described by the Park-Transformation with the
rotation matrix Q(ε):

Q(ε) =
(

cos ε − sin ε
sin ε cos ε

)
(2.8)

Hence, the following relationship can be stated:(
xα(t)
xβ(t)

)
= Q(ε)

(
xd(t)
xq(t)

)
(2.9)

Applying this transformation to the Eq. (2.7) yields the ordinary differential equations
(ODEs) in dq-coordinates:

ud(t) = Rsid(t) + Ld
did(t)

dt
− ωelLqiq

uq(t) = Rsiq(t) + Lq
diq(t)

dt
+ ωel (Ldid + Ψp)

dε(t)
dt

= ωel

(2.10)

The torque results to

T = 3
2p (Ψp + (Ld − Lq) id) iq (2.11)

and is therefore dependent on both currents, but no longer on the angle. The scaling
factor 3

2 takes into account the conversion from a three- to a two-phase motor model. In
Fig. 2.8 the equivalent circuit is shown.

Rsid Ld
did
dt

ud −ωelLqiq

(a) d-axis

Rsid Ld
did
dt

ud ωel(Ldid + Ψp)

(b) q-axis

Fig. 2.8: The equivalent circuit diagrams for the PMSM in dq-coordinates.

9

Marvin Meyer CC & SysID of a PMSM

2.1.5 Field-Oriented Control with PI-Controller
The FOC is one of the widely used classical control methods [7][8][9]. As described above,
three-phase sinusoidal voltages are applied to the stator terminals. The aim of the FOC is
to calculate the required voltages in field-oriented quantities, i.e., in the dq-coordinates,
and then to convert these back to the stator-fixed coordinates in order to apply them to
the motor. The advantage is that the previously sinusoidal quantities in the abc-coordinate
system become constant quantities in the dq-coordinate system and thus a simpler control
policy can be established as shown in Eq. (2.11).

Given a desired signal, the reference r(t) and a system output y(t), a control error e(t) can
be determined by subtracting the two values. The control of the plant is performed via
linear PI controller. Based on the control error and the control policy, given by the PIC, a
control variable u(t) can be determined. A simple control loop is shown in Fig. 2.9.

Controller Plant
e(t)r(t) u(t) y(t)

Fig. 2.9: Standard control loop.

Like the name indicates, the PI controller consists of two parts: the proportional and the
integral component. The proportional part ensures a fast control when the error increases,
whereas the integral part ensures that the steady state error is reduced. The control
variable u(t) is calculated as

u(t) = Kpe(t) + Ki

t∫
0

e(τ)dτ = Kp

e(t) + 1
TN

t∫
0

e(τ)dτ

 . (2.12)

The factors Kp and Ki represent the proportional and integral parts of the controller.
Ki is the quotient of the proportionality factor and integration time TN, which must be
designed by the user. In order to apply two independent PI controller for the d and q
components of the current, additional calculations are required. Figure Fig. 2.10 shows
the controller structure for the FOC with PI controller.

To decouple the equation Eq. (2.10), the error of both currents is given to separate PI
controllers. Furthermore the voltages are pre-controlled with

u0
d = −ωelLqiq

u0
q = ωel(Ldid + Ψp),

(2.13)

10

Marvin Meyer CC & SysID of a PMSM

Plant
e(t)r(t) u(t) y(t)

P

I

Kpe(t)

Ki
∫ t

0 e(τ)dτ

Fig. 2.10: Contol loop with PI controller.

yielding the DEs

∆u∗
d = Rsid + Ld

did

dt

∆u∗
q = Rsiq + Lq

diq

dt

(2.14)

with

u∗
d = u0

d + ∆u∗
d

u∗
q = u0

q + ∆u∗
q.

(2.15)

Another point that must be taken into account when converting the voltage into the
stator-fixed coordinates is the angular lead. This is given by

∆ε = 1.5τωel (2.16)

where τ is the sampling interval of the system. Due to the discretization and the time
delay caused by the pulse width modulation, the angular lead is used to compensate for
both effects. Another problem that arises due to the described limitations in Section 2.1.2
is the wind-up effect. This occurs when the control error is integrated although the input
variable is already in the constraint. The integral part of the controller increases because
it cannot be applied, which leads to the feedback into the control loop being invalid. This
proportion decreases after the sign of the control error changes, but the reduction of the
error requires time and therefore the control variable has to remain in the limit longer than
necessary. This decreases the dynamics and can also cause instability. To prevent this
problem the integral part of the controller can be activated only when the input variable
is not in the constraint.

2.1.6 Simulation Environment
Since real test rigs are expensive and the realization of an experiment is time-consuming, a
simulation of the electric drive is used in this work. A Python package for the simulation of

11

Marvin Meyer CC & SysID of a PMSM

Plant
e(t)r(t) u(t) y(t)

P

I
1, if umin < u(t) < umax
0, else

Constraints

Fig. 2.11: PI controller with anti-wind-up.

electric drives, with all its above described components, is the gym-electric-motor (GEM)
toolbox [10]. Furthermore, the toolbox provides classical controllers but the API can be
used to apply own algorithms. Fig. 2.12 visualizes the various components of the GEM
environment.

Fig. 2.12: Block diagram of the drive system created by the GEM toolbox showing the
environment and the controller (cf. [10]).

12

Marvin Meyer CC & SysID of a PMSM

Within this environment the supply voltage can be adjusted and it is also possible to
choose from a variety of different converters. A range of both DC and AC motors, which
includes the PMSM, are provided in the toolbox. Physical parameters of the selected
motor can be set as well. In addition to the classical components, a reference generator
and a reward function can be specified. The reference generator can be used to configure
trajectories which output the required reference values during runtime. Commonly used
functions are trigonometric, triangular, step or constant but also stochastic processes. The
reward function defines a reward depending on the system states, e.g., the mean squared
error (MSE) between reference and current trajectory of the motor. This is mainly used in
the RL control methods. The GEM environment is based on the gym API established at
OpenAI [11]. Therefore, the same functions can be used with GEM to create the classic
agent environment loops [12], which will be discussed in Section 2.3.2.1.

2.2 System Identification
The system identification (SI) is a branch of systems theory that focuses on creating
and validating empirical models [13][14]. Those models result from the identification of
dependencies between input and output data of the system. In this context, a priori
knowledge about the underlying system can be useful in order to incorporate physical
relationships into the modeling. However, models can also be generated without prior
knowledge through deterministic or statistical approximations.

Model
Input Outputẋ = f(x, u)

y = g(x, u)

(a) Control

Model
Input Outputẋ = f(x, u)

y = g(x, u)

(b) Identification

Model
Input Outputẋ = f(x, u)

y = g(x, u)

(c) Simulation

Fig. 2.13: The various sub-disciplines within system theory. Highlighted in red is the
desired quantity.

In this context, it is common to refer to black-, grey- and white-box models, which will be
discussed in the following.

White-box

In white-box models, an exact relation between input and output data exists or is assumed.
In physical models, for example, Newtonian relationships are used. An advantage of these
models is the short calculation time and the simpler interpretability. Unfortunately, this
also leads to the fact that they are rarely applied because most real processes are complex
by nature.

13

Marvin Meyer CC & SysID of a PMSM

Grey-box

In the case of grey-box models, the underlying process is tried to be represented by
differential equations, but with the knowledge that an exact representation is not possible.
Therefore, unknown free parameters are to be determined via SI methods, which contribute
to increasing the accuracy of the model.

Black-box

If a model is created using a black-box approach, no information is utilized from the
underlying process. Typical examples are ANNs, which are learned by input and output
data. Models of this type can be accurate, but this also comes with a high internal
complexity. Therefore, they can be rarely interpreted and the calculation effort is also
significantly higher.

SI is therefore always a trade-off between different aspects: Accuracy, interpretability,
computational demand and design effort. Thus, depending on the application, it is
necessary to choose the type of modeling that fits the problem best.

2.3 Machine Learning
This chapter deals with the basics of ML. The term ML dates back to 1959 [15] and was
shaped by Arthur L. Samuel, who worked as a pioneer in the field of artificial intelligence
(AI). A precise definition for this form of learning was provided by T. Mitchell:

”A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance a tasks in T,
as measured by P, improves with experience E.”[16]

In the following no formal definition of the entities is to be provided but rather brief
descriptions. Since a computer program is the formulation of an algorithm and its dataset,
the term algorithm is used in the following, since the dataset is yet not denoted. Tasks
T are possible fields of applications for ML based algorithms, where often traditional
algorithms reach their limits, e.g., image classification or data clustering. In order to
evaluate an algorithm based on its performance on a task, a performance measure P is
required. It is important that this measure is suitable for the respective task. Experience
E is gathered by an algorithm based on the learning process. For this the algorithm uses
a dataset, which consists of many examples. From each of these examples, features can
be extracted, with the help of which the algorithm should learn the properties of the
examples.

2.3.1 Neural Networks
A subclass of ML are the ANNs or short NNs [17]. These networks are formed by artificial
neurons, which are modeled after the biological brain. Many of these neurons are linked in
layers and can be trained by large amounts of data. In the following sections, the structure

14

Marvin Meyer CC & SysID of a PMSM

of the NNs will be discussed. Thereby the structures, which are also used in this work, are
explained in more detail.

2.3.1.1 Structure of Neural Networks

Neural networks can be organized into layers of neurons. The first layer is often referred
to as the input layer. This is where the data, or in this context also the so-called features,
are fed into the network. The features then propagate further from layer to layer, being
modified by the mathematical functions present in the layers. These layers, within the
network, are the so-called hidden layers, where the depth of the NN is defined as the
number of layers used. At the output layer of the network, the result of the entered
features is then obtained. There are two main areas of application. In classification tasks,
a class label is assigned to the input features, while in regression tasks, the NN assigns a
floating-point value [17].

Fully-Connected Layer

A fully-connected layer is the simplest type of connection [17]. As the name implies, all
output neurons of the previous layer are connected to each input neuron of the next layer.
Each of these connections can be assigned a learnable weight and bias. This results in an
affine transformation of the input signals, which is followed by a non-linear function. This
can be represented mathematically by the following equation

y = g(W x + b) (2.17)

where x is the input of the layer and y is the output of the layer. W corresponds to the
weights and b to the bias, which are both to be learned. The non-linearity g(·) is also
referred to as the activation function, because it determines whether neurons in the next
layer become active. Typical functions are tanh [17] and rectified linear units (ReLUs)
[17], as well as modified functions of the latter [18][19][20]. The typical structure of an NN
which has fully connected layers is shown in Fig. 2.14.

Residual Connections

Another configuration that is mainly used in really deep networks are the so-called residual
blocks [21]. Here, the residual xi of a block of layers f(xi) is added to the output of this
block yi. A block can be composed of one or more layers regardless of their function. The
purpose of this is to ensure that gradient information is better transferred to the foremost
layers when the error is traced back. NN where those residual blocks are mainly used are
refereed us residual neural networks (ResNets) [21]. Fig. 2.15 shows a NN with residual
blocks.

2.3.1.2 Training

Now that NN has been described structurally, it is important to understand how the
parameters are determined. Therefore these models go through a learning process, refereed

15

Marvin Meyer CC & SysID of a PMSM

...
... ...

x1

x2

x3

xn

h
(1)
1

h(1)
n

ŷ1

ŷn

Input
layer

Hidden
layer

Ouput
layer

Fig. 2.14: Visualization showing the structure of a small NN with three layers, which are
all fully connected.

x

h(1)

xi

h(i+1) h(i+r)

f(xi)

h(i)

xi + f(xi)

h(N)

ŷ

Residual block

Fig. 2.15: Example implementation of a NN with residual blocks. Blocks can contain
arbitrary number of layers, which in themselves can have different functions. If the size
changes within the skipped block, it must also be adjusted in the skip connection. These
blocks can be used alongside other layers.

to as training. Based on the examples seen in the training and with the help of gradient
methods, parameters can be learned. Following is the derivation of the parameter updates
and then it will be described how these gradients can be determined efficiently [17].

16

Marvin Meyer CC & SysID of a PMSM

Parameter Update

Assume a dataset D consists of N data tuples (xn, yn) and an NN f(xn; θ) which predicts
an output ŷn. The local loss for each of these tuples can then be written as Llocal(ŷn, yn),
where summing over all data points gives the global loss

Lglobal(D; θ) = 1
N

N∑
n=1
Llocal(ŷn, yn) (2.18)

with
ŷn = f(xn; θ). (2.19)

The preferred loss function depends on the application, e.g., the MSE is often used for
regression tasks [17]. A low loss follows from a good model, therefore the goal is to find
an optimal set of parameters using gradient descent methods. To update the parameters
of the network a gradient step is performed. The stochastic gradient descent (SGD) is
one of the most common methods for calculating gradients, where the minimization of the
global loss is achieved by repeated calculation of gradients on smaller random subsets Db
(mini-batch), which is sampled from D

∂Lglobal(D; θ)
∂θ

≈ ∂Lglobal(B; θ)
∂θ

= 1
|B|

∑
(xn,yn)∈B

∂Llocal(ŷn, yn)
∂θ

. (2.20)

This leads to the update rule

θ ← θ − η
∂Lglobal(B; θ)

∂θ
, (2.21)

with the learning rate η. In summary, to train the NN, it is necessary to calculate the
derivative of the loss function w.r.t. the NN parameters. Thus, by gradient descent a
parameter set can be determined, which leads to a proper model fit. The SGD is often only
a basis for a more complex algorithm, such as the adaptive moment estimation (Adam) [22].
Besides, there are also other methods of gradient descent [23], e.g., Levenberg–Marquardt
algorithm [24] or Nelder-Mead method [25].

Backpropagation

To calculate the gradients in the NN efficiently, the chain rule is used. Consider a network
consisting of N chained functions f 1, f 2, ..., fN , each parameterized by a parameter set θi,
yielding

ŷ = f (1:N)(x; θ(1:N)) = f (N)
(
f (N−1)

(
· · · f (1)(x; θ(1)) · · · , θ(N−1)

)
θ(N)

)
(2.22)

The activation of a neuron j within a the n-th hidden layer results from the output of
neuron i of the previous hidden layer h(n−1). This is then transformed by weight wji and

17

Marvin Meyer CC & SysID of a PMSM

bias bj and assigned the activation function g(·). If summed up for all inputs I(n−1) this
yields

h
(n)
j = gn

 ∑
i∈I(n−1)

w
(n)
ji h

(n−1)
i + b

(n)
j

 . (2.23)

This can be summarized in general for a hidden layer n via matrix notation:

h(n) = gn

(
h(n−1)W (n)⊤ + b(n)

)
(2.24)

with

W (n)⊤ =


w

(n)
1,1 · · · w

(n)
1,I(n)

...
w

(n)
I(n−1),1 · · · w

(n)
I(n−1),I(n)

 ,

h(n−1) = (h(n)
1 · · ·h

(n)
I(n−1)),

b(n) = (b(n)
1 · · · b

(n)
I(n)).

The parameters of a layer n are summarized for convenience in the vector θ(n). Together
with the chain rule, an expression for calculating the gradient of the layer n can be
formulated:

∂L
∂θ(n) = ∂L

∂h(N−1)
∂h(N−1)

∂h(N−2) · · ·
∂h(n+1)

∂θ(n) (2.25)

If the gradient ∂L
∂θ(n−1) is also to be determined, the previously calculated result ∂L

∂h(N−1) in
Eq. (2.25) can be used. From the chain rule follows

∂L
∂θ(n−1) = ∂L

∂h(N−1)
∂h(N−1)

∂h(N−2) · · ·
∂h(n+1)

∂θ(n)
∂h(n)

∂θ(n−1) (2.26)

which can be repeated in this way for the remaining N parameters. The parameters of the
network are then updated by the backpropagation of error, or short backpropagation [26].
This method is based on automatic differentiation (AD) [27]. In the forward pass through
the NN a computational graph is built up in which operations and associated derivations
are stored. In the backward pass this graph is utilized to compute the gradients. Common
packages for Python where AD is already directly implemented are, e.g., PyTorch [28] and
TensorFlow [29].

18

Marvin Meyer CC & SysID of a PMSM

2.3.2 Reinforcement Learning

Besides supervised and unsupervised learning, which is used in the previously described
NNs, there is another type of ML application, RL [30]. The focus lies on finding a policy
function for cost-optimal, sequential decisions that affect an environment. The unit acting
according to the policy is called agent. This agent learns from experience by receiving
feedback on whether the action leads to a desired outcome in the environment. In contrast
to supervised learning, no input/output tuples are specified here. An agent can therefore
find a suitable policy even without information about the environment. This section covers
some general information about RL and afterwards one type of agent is explained in more
detail.

2.3.2.1 Agent-Enviroment Setup

In this setup, an agent is inserted into an environment and can take actions for which it
receives a reward. Besides the reward, the states of the environment are changing, which
the agent can observe and perform another action based on it. In this loop, the agent’s
goal is to maximize the accumulated reward. This is illustrated in Fig. 2.16.

Fig. 2.16: Illustration of a typical agent-environment setup (cf. [31]).

As described, the agent interacts with the environment but does not need a priori informa-
tion about it to learn from it. Secondly, the selected actions do not have to be optimal. In
order to be able to develop an optimal policy, that is, a rule according to which actions
are selected, it is always important to explore. On the other hand, the agent should be
able to choose accurate actions at some point in time. Therefore, the goal is to find a
good balance between exploration and exploitation [31].

19

Marvin Meyer CC & SysID of a PMSM

2.3.2.2 Deep Deterministic Policy Gradient

The choice of the agent depends mostly on the environment, where for continuous state
and action spaces the deep deterministic policy gradient (DDPG) agent [32] is a possible
choice. It includes four NNs: an actor, a target actor, a critic and a target critic network.
The action uk results from the current state of the environment xk given the parameters
θ present in actor network. Since the chosen action is always deterministic, this algorithm
does not explore on its own. Therefore, an action noise N , often implemented by a
stochastic process, e.g., Ornstein-Uhlenbeck (see Eq. (A.5)), is added to the selected action
in training:

uk = µ(xk; θ) +N . (2.27)

The actor network µ(xk; θ) is often referred to as policy of the DDPG agent. For each
transition, the current state xk, current action uk as also the received reward rk and future
state xk+1 is stored in a data buffer D. This data tuple is often referred to as experience
and will be used to update the policy. If the data buffer is sufficiently filled, a mini-batch
Db is randomly sampled containing N data tuples

(xi, ui, ri, xi+1). (2.28)

Based on the states, the targets for the Q-function of the critic is given by the Bellman
equation

q̂i = ri + γQ′(xi+1, u′
i; w−) (2.29)

with

u′
i = µ′(xi; θ−). (2.30)

The function Q′(xi+1, u′
k; w−) is the target critic network, which outputs the expected

future reward for the given state action combination, where the action u′
k is given by the

target actor network µ′. γ ∈ [0, 1) is the discount factor, causing events in the present
to be weighted more than events in the near future. Now the target Q-value q̂i and the
Q-value of the critic network

qi = Q(xi, ui; w) (2.31)

are used to calculate the mean squared Bellman error (MSBE)

L = 1
N

N∑
i=1

(qi − q̂i)2. (2.32)

20

Marvin Meyer CC & SysID of a PMSM

With this loss gradients can be computed to updated the parameters θ and w within a
gradient descent fashion (see Eq. (2.21)). The update of the target networks is delayed
by

w− ← (1− δ)w− + δw

θ− ← (1− δ)θ− + δθ
(2.33)

where δ ≪ 1. This update of the target network corresponds with a low-pass characteristic,
therefore abrupt changes are dampened. The minimization of MSBE becomes more stable
and thus the training of the DDPG agent becomes more robust. The structure of this
agent is summarized in Fig. 2.17, a detailed algorithm is attached to the appendix (see
Algorithm 1).

Fig. 2.17: Summarized DDPG agent (cf. [31]).

21

3 Modeling

This part of the work deals with the elaboration of the task formulated in the introduction.
The goal is to use NODE to perform both current control and system identification. For
this purpose, the concept of NODE and how they are applied within this work will be
explained in more depth. Subsequently, the creation of the test data and the splitting of
the data sets will be discussed. Finally, it is clarified how optimal settings of the system
can be found to increase performance.

3.1 Neural Ordinary Differential Equations
As been shown in [33] and [34], the depth of an NN contributes significantly to its
performance in certain tasks. At the same time the training of these deeper NNs is more
difficult [35][36], due to the increased complexity in the connection between the parameters
and the objective of the NN. One solution to the problem is the ResNet [21], which
implements skip connections over multiple layers. This reduces the complexity and thus
makes it feasible to add more layers.

Examining the resulting structure, one can find forms that typically occur in the numerical
solution to ODE, using Euler’s Method [37](see Appendix A.2). An idea that results from
this realization is to express the ODE as an implicit layer in the NN, in order to take
advantage of both methods. This approach is called NODE [38]. The NODE defines a
parameterizable function f(t, x(t); ϕ) with a parameter set ϕ that determines the change
in the hidden state x(t):

dx(t)
dt

= ẋ(t) = f(x(t), t; ϕ), (3.1)

In other words, the NODE is a learnable vector field and therefore defined continuously in
time [38]. Since fϕ(x(t), t) := f(x(t), t; ϕ) is still an autonomous system, the definition is
to be rewritten such that the equation receives an input vector u(t)

ẋ(t) = f(x(t), u(t), t; ϕ). (3.2)
Under the assumption that the system is linear, Eq. (3.2) can be rewritten to

22

Marvin Meyer CC & SysID of a PMSM

ẋ(t) = fϕ(x(t), u(t), t) = Aϕx(t) + Bϕu(t) (3.3)

where Aϕ and Bϕ are system matrices which contain the learnable parameters.

To train the NODE, i.e., the NN, a loss function is needed. In [39] the following cost
function was established

L(x0) =
T∫

0

l(ξϕ(x0, u(τ), τ), u(τ), τ)dτ

︸ ︷︷ ︸
integral cost

+ L(ξϕ(x0, u(T), T), u(T), T)︸ ︷︷ ︸
terminal cost

. (3.4)

The first term reflects the integral costs that occur over the trajectory within the integration
interval [0, T] and the second term specifies the cost in the terminal point T . The function
ξϕ(x0, u(t), t) with a parameter set ϕ describes the solution of the initial value problem
with exogeneous input [39]. To determine the loss, however, Eq. (3.1) must first be solved.
For this purpose, the equation is to be set up as the following initial value problem
(IVP):

ẋ(t) = fϕ(x, t) s.t. x(t0) = x0 (3.5)

The IVP is to be solved within the interval t ∈ [0, T], by conventional ODE solvers with
either fixed step size (e.g., Euler’s method, Runge-Kutta [40][41]) or adaptive step size
(e.g., Dormand-Prince [42]). With the result, the loss can be determined, which in turn
can be used to approximate the necessary gradients via the typical approach of AD. The
problem is not to compute and apply the gradients via backpropagation through the ODE
solvers but rather the memory usage related to this approach [38]. If the ODE solver
requires N steps to solve the IVP on the interval [0, T], the computational cost as well as
the memory requirement for AD can be described by O(N). This means that if the ODE
is to be solved with sufficient accuracy and the time interval is selected to be large, thereby
increasing the number of necessary steps, the memory requirement increases significantly.
Thus, the calculation of the gradients is performed using the adjoint method, which was
first developed by Pontryagin [43] and then adopted for the use of NODE [38]. The great
benefit of this method is the constant memory efficiency given by O(1). In the following,
the adjoint method will be discussed in more detail in the context of the NODE.

Adjoint Method

The generalized form of the adjoint method is considered here. Given the IVP Eq. (3.5)
and the cost function Eq. (3.4) the derivative with respect to the parameters then results
in

23

Marvin Meyer CC & SysID of a PMSM

∂L
∂ϕ

= ∂L

∂ϕ
+

T∫
0

(
a(t)⊤ ∂fϕ(x, t)

∂ϕ
+ ∂l

∂ϕ

)
dτ. (3.6)

The a(t) is the Lagrangian multiplier which has to satisfy

da(t)⊤

dt
= −a(t)⊤ ∂fϕ(x, t)

∂x
− ∂l

∂x
, s.t. a(T)⊤ = ∂L

∂x(T) .

This equation can be solved by another call of the ODE solver, which solves this terminal
value problem backwards in time. The gradients are calculated accurate, if the ODE was
solved accurately as well. The numerical errors can therefore be adjusted by a suitable
choice of the error tolerance [38][39].

3.2 Internal Plant Model with Neural Controller
The goal is to exploit the concept of the NODE in the first step for a current control.
Subsequently, the controller is to be extended to perform system identification. For the
current control is first performed on an internal plant model (IPM), which has perfect
model knowledge.
In the following, it will be discussed how this IPM is structured and how the current
control is performed on it. In the next section the setup is extended by the system
identification.

3.2.1 Structure
As shown in Eq. (3.3), the NODE can be rewritten to a linear dynamic system. This is
exploited to integrate the ODEs of the PMSM into the IPM. For this purpose, ODEs from
Eq. (2.10) are first to be converted into vector notation in order to determine the system
matrices (and the vector). This results in

A =

 −Rs
Ld

ωel
Lq
Ld

−ωel
Ld
Lq
−Rs

Lq

 , (3.7)

B =

 1
Ld

0
0 1

Lq

 (3.8)

and

24

Marvin Meyer CC & SysID of a PMSM

e =
 0
−Ψp

Lq
ωel.

 (3.9)

The e is only a constant excitation, i.e., a shifting of the equilibrium. The vector e is kept
within the IPM resulting in an affine linear system:

ẋ(t) = Ax(t) + Bu(t) + e. (3.10)

The state vector x(t) of the IPM contains the actual currents in dq-coordinates:

x(t) =
(

id(t)
iq(t)

)
, (3.11)

while the input vector u(t) contains the voltages in dq-coordinates:

u(t) =
(

ud(t)
uq(t)

)
. (3.12)

What can be observed is that a structure has now been brought into the IPM. From the
incorporation of this additional information, the black-box model can be transformed into
a grey-box model.

3.2.2 Current Control via Neural Controller
Since in this case perfect model knowledge within the IPM is assumed, Eqs. (3.7) to (3.9)
contain the true parameters of the system to be controlled. In order to control the current
of the PMSM or here the IPM, the voltage at the motor must be set. For this purpose,
the input vector u(t) is selected by an NN, which is subsequently referred to as neural
controller (NC). This vector is defined on the basis of the policy of the NC

u(t) = π(xaug(t), t; θ), (3.13)

which is described by the parameter set θ. This policy receives as input features an
augmented state vector

x̃aug(t) =
(ˆ̃x(t)

x̃∗(t)

)
(3.14)

=
(̂
ĩd(t) ˆ̃iq(t) ĩ∗

d(t) ĩ∗
q(t)

)⊤
. (3.15)

25

Marvin Meyer CC & SysID of a PMSM

It contains the current estimate ˆ̃x(t) and the reference value x̃∗(t) of the state vector.
The tilde above the quantities indicates a normalization, which is performed by dividing
through the limit s of the respective quantity. Since the input features were normalized,
the policy outputs the normalized input vector ũ(t), which again has to be multiplied
with the limit to get the denormalized quantity:

u(t) = suũ(t). (3.16)

In summary, the IPM accurately models the PMSM. The current control is done by the
NC which provides the necessary input voltages given the policy πθ, which is to be learned
in the training. How the gradients can be determined has been explained in the previous
sections, but not the practical implementation. For these, appropriate software frameworks
are required. In Python the popular packages for these application are torchdiffeq [44]
and torchdyn [45]. Both are based on PyTorch and have a similar usage, in this work the
latter package is used.
The call of an ODE solver looks like this:

x̂(t1), x̂(t2), · · · , x̂(tN) = ODEsolver(x0, f(x̂(t), πθ(x̃aug(t), t), t), [t1, t2, · · · , tN]).
(3.17)

Besides the initial values x0, the solver takes the IPM as input argument and also the
time steps tn = n · ts, where ts corresponds to the sampling interval. This allows the
specification where the solver should evaluate the ODE. In solvers with a fixed step size,
the procedure is evaluating a point in time and step to the next one, whereas adaptive
methods do not have a fixed number between evaluating two points. Although this work
does not deal with systems that have to be evaluated at runtime, a method with a fixed
step size shall be chosen to ensure convergence in a reasonable time. In the Eq. (3.17),
the NODE, or here in our application the IPM, is evaluated at the given points in time,
so that the output is a trajectory of estimated states x̂. This trajectory is then used to
determine the loss with the help of a suitable cost function. The goal of the NC is to
follow the reference trajectories but under the constraint not to exceed the current limits
present in the PMSM, therefore a composed loss is defined as

CL(ˆ̃x, x̃∗) = λ ·MSE(ˆ̃x, x̃∗) + (1− λ) · B(ˆ̃x). (3.18)

λ is the weighting of the terms, while B is a barrier function defined as

B(ˆ̃x) = 1
N

N∑
n=1

c1

 1

1 + exp
(
−c2

(
ˆ̃
itotal[tn]− c3

))
 (3.19)

with

26

Marvin Meyer CC & SysID of a PMSM

ˆ̃
itotal =

√(
ˆ̃id

)2
+
(
ˆ̃iq

)2
. (3.20)

The barrier function averages over the normalized total current trajectory ˆ̃
itotal, which is

additionally scaled with a sigmoid. The scaling is defined by c1, c2 defines the slope in
the transition and c3 corresponds to the shift of the sigmoid (see Fig. A.1). Exceeding
the allowed total current at any time will add additional but bounded costs due to the
sigmoid. An exponential barrier function would lead to instabilities in the calculation of
the gradients if the limit is exceeded for a longer period of time.
With the help of this loss, gradients can now be calculated, which allow the parameters of
the NC to be learned via the classical gradient methods. In the block diagram Fig. 3.1 the
setup is summarized.

CL(ˆ̃x, x̃∗)

x̃∗

x̂

Internal Plant

u

Neural Controller

∂CL
∂θ

f(x̂, u)
˙̂x

πθ(x̃aug)
ˆ̃x

ũ

Denormalization

Normalization

x̃aug

Fig. 3.1: Block diagram of the current control via the NC. Time dependencies have been
omitted here in favor of a readable illustration.

The current control can now be performed on the IPM, but since the IPM describes perfect
knowledge of the system, this is a special case. In reality the current control should run
on a separate PMSM, where the parameters usually are not known. For this reason, the
setup is now to be further expanded.

3.2.3 Current Control and System Identification
The control of an external plant (EP) is the actual goal. As in the previous section, a
NC is trained for this purpose. The problem is that the EP, being a black-box, does not

27

Marvin Meyer CC & SysID of a PMSM

provide a chain of mathematical operations along which gradients could be computed,
which are needed to optimize the NC. Therefore, the IPM is used in order to identify
the assumed constant values of the EP. On the basis of the IPM, gradients can then be
obtained which are utilized to train the NC. Hence, the learnable parameters represented
in Eq. (3.3) are now used. Since the current control is executed via the NC defined in the
previous section, the system can be described by

ẋ(t) = fϕ(x(t), πθ(x(t), t), t) = Aϕx(t) + Bϕπθ(x(t), t) (3.21)

where

Aϕ =


− R̂s

L̂d
ωel

L̂q

L̂d

−ωel
L̂d
L̂q
−R̂s

L̂q

 , Bϕ =


1

L̂d
0

0 1
L̂q

 (3.22)

and

eϕ =

 0

−Ψ̂p

L̂q
ωel

 . (3.23)

Here the available information about the structure of the PMSM ODEs is fully exploited.
If the entire system is to be identified, exactly four values must therefore be identified.
In this case, the parameters L̂d, L̂q, R̂s and Ψ̂p. The hat indicating that these are the
predictions i.e., the learnable parameters, that will be optimized/identified during the
training.
The following steps are then carried out for the control and system identification. First,
the control of the EP by the NC produces a state trajectory x(t1), x(t2), . . . , x(tN). The
identical controller is then used to control the IPM by calling the ODE solver

x̂(t1), x̂(t2), · · · , x̂(tN) = ODEsolver(x0, fϕ(x̂(t), πθ(x̃aug(t), t), t), [t1, t2, · · · , tN]),
(3.24)

which leads to the estimated state trajectory. Here the case can occur that the trajectories
do not have identical lengths. For example, the EP may have been aborted sooner due to
limits being exceeded. In this work, therefore, an additional zero padding was inserted,
which keeps the state trajectory of the EP at a constant length. The estimated trajectory
of the state is multiplied by zeros depending on the trajectory length of the EP, in order

28

Marvin Meyer CC & SysID of a PMSM

to neglect the information gained after termination. After the normalization of both
trajectories, the MSE is then used to obtain the loss

L(ˆ̃x, x̃) = MSE(ˆ̃x, x̃), (3.25)

which in turn is used to adapt the parameters of the IPM. The parameters of the NC are
not updated in this step, since the objective is not to fit the trajectories between IPM
and EP, but rather follow the actual reference trajectory. Therefore, after the update of
the IPM, another trajectory is created according to Eq. (3.24) by the IPM with updated
parameters. The trajectories are also modified according to the length of the run within
the EP. The modified state estimation trajectory is then used along with the reference
trajectory according to Eq. (3.18) to provide the necessary loss for the updated parameter
of NC. Block diagram Fig. 3.2 is intended to summarize the structure, with a detailed
implementation of the code added to the appendix (see Algorithm 2).

Internal Plant

Neural Controller

∂CL
∂θ

???

External Plant

L(ˆ̃x, x̃)
∂L
∂ϕ

ũu x̃aug x̃∗

CL(ˆ̃x, x̃∗)

πθ(x̃aug)

˙̂x
fϕ(x̂, u)

x x̃

x̂ ˆ̃x
Normalization

Normalization

Denormalization

Fig. 3.2: Block diagram of the current control via the NC and simultaneously system
identification of the EP by fitting the IPM. Time dependencies have been omitted here in
favor of a readable illustration.

29

Marvin Meyer CC & SysID of a PMSM

3.3 Data Generation
Now that it has been clarified how the NODEs can be trained, it should be explained with
which example trajectories. It will be explained how these trajectories were created and
how the data sets for the training are composed.
Besides gradients, the training of the NODE also requires examples from which the
parameters of the NC but also IPM can be learned. For this purpose, a data set with
reference trajectories for the current components d and q is generated in advance. The
basis for this is a Wiener process W(t), which is a continuous-time stochastic process. For
0 ≤ s < t ≤ T the increments

W(t)−W(s) ∼
√

t− s N (0, σ) (3.26)

are independent and normal distributed with a variance σ. Since continuous processes
cannot be represented within a digital environment, the process has been discretized with
a step size dt = T/N , yielding

dW(t) ∼ N (0, σ
√

dt) (3.27)

as increments, where N denotes the number of samples. Since the trajectories created
here are later used as reference currents, they have to be within the current constraints of
the motor. These are quadratic constraints of the form

(
ĩ∗
d

)2
+
(
ĩ∗
q

)2
≤ 1. (3.28)

Furthermore, the ĩ∗
d component is limited to the negative range so that the motor is

operating in flux-weakening mode if ĩ∗
d < 0 and armature control range if ĩ∗

d = 0 [6].
The compliance with these constraints is taken into account during the incrementation of
the Wiener process, so that the current vector does not exceed its limit but remains within
the negative ĩd half plane. Figure 3.3 shows the space of reference trajectories.

Each trajectory is given a random starting point within the said half-plane and a randomly
chosen variance between [1 · 10−3, 1 · 10−1], with which the stochastic process starts. In
order to create a balanced coverage over the half-plane and thus informative examples,
the probability density of trajectories are tracked via density estimation-based state-space
coverage acceleration (DESSCA) [46]. At random times, based on a DESSCA sample,
reference steps are applied to obtain more realistic drive trajectories and to cover operating
points that have not occurred frequently. An example reference trajectory for the current
components is shown in Fig. 3.4.

A total of 101000 trajectories for each current component were generated for this work. The
training set includes 100000 examples with which the parameters are to be learned. 500
examples each are used for validation and evaluation respectively. Validation is performed

30

Marvin Meyer CC & SysID of a PMSM

ĩq

ĩd

1

−1

−1

1

Fig. 3.3: Illustration of the reference space.

−1.0

−0.5

0.0

0.5

1.0

ĩ∗ d

0 25 50 75 100 125 150 175 200

Steps

−1.0

−0.5

0.0

0.5

1.0

ĩ∗ q

Fig. 3.4: Example reference trajectories.

after a certain number of episodes in order to measure performance. To prevent overfitting
on the training data, early stopping can be performed based on the validation performance.
The evaluation takes place after the training is completed. The performance achieved is
the measure by which the systems are compared.

31

Marvin Meyer CC & SysID of a PMSM

3.4 Hyperparameter Optimization
Hyperparameters are those parameters that affect the actual learning process. In terms of
a NN, those can be, e.g., the number of layers and the neurons they contain, the activation
function of the layers but also the optimizer and the learning rate with which the gradient
update is performed. In contrast, the individual weights within the layers are not referred
to as hyperparameters, as these are learned within the learning process.
Finding the parameter set that leads to the best performance at a particular setup is a
complex problem, since there are countless possible combinations. This problem is solved
by the process of hyperparameter optimization (HPO). There are different approaches
such as grid search, random search, gradient-based optimization, evolutionary algorithms,
etc. In this work the optuna framework [47] is used, which uses a Bayesian optimization.
It is often used for black-box models such as NNs, since it shows better results than the
previously listed methods [48][49]. The goal of the Bayesian optimization is to build a
probabilistic model of a function, which maps the hyperparameters to actual objective,
i.e., evaluating a NN. When selecting the parameters, the potential gain in information is
always taken into account. The aim is to reduce uncertainties in the probabilistic model
(i.e., exploration) but also to evaluate those combinations which are close to the optimum
(i.e., exploitation). The parameter set that are most likely to improve the probabilistic
model are then iteratively selected and evaluated. Based on the result of the evaluation,
the probabilistic model is updated and a new parameter set is determined. The process of
the HPO is shown in Fig. 3.5.

Sampling
Set of

Training Evaluatingπθ

MSE on evaluation set

parameters
one NC the NC

Fig. 3.5: Block diagram of the HPO.

32

4 Experimental Evaluation

In this chapter, the experiments are evaluated. First, a performance comparison between
the approaches is made with respect to the current control. Secondly, the HPO for the
NC approach is intended to find more about the different dependencies within the system.
Finally, the current control and system identification is presented in a proof-of-concept
and the results are presented and discussed for different applications.

4.1 GEM Drive Simulation
For the experiments the GEM toolbox is used to model a drive system. The environment
includes the DC supply, the reference generator, and the PMSM that is to be simulated.
The voltage supply is set to a constant value of uDC = 400 V. The data sets presented
in section Section 3.3 are stored in the reference generator. For training, trajectories are
thus randomly sampled from the training dataset. For the evaluation, the corresponding
trajectories can be run one after the other. Each trajectory has a length of 201 steps.
With a sampling interval of τ = 0.1 ms, this corresponds to a duration of T = 20 ms. The
controlled motor plant is a PMSM with the parameters as listed in Table 4.1.

Tab. 4.1: Drive parameters of the PMSM.

Name Symbol Value
Winding resistance Rs 15 mW
Series inductance Ld 0.37 mH
Cross inductance Lq 1.2 mH
Pole pair number p 3
Permanent magnet flux Ψp 65.6 mVs
Moment of inertia of the rotor Jrotor 0.039 kg/m2

Current limit of the motor imax 400 A
Voltage limit of the motor umax 450 V
Angular velocity limitation ωel,max 400π s−1

The angular velocity of the PMSM is kept constant at ωel = 100π s−1.

33

Marvin Meyer CC & SysID of a PMSM

4.2 Current Control of a PMSM
In this section, the current control capability of the different approaches are compared. First,
the setups will be explained in more detail before the results are presented. Subsequently,
the results will be put into context and will be discussed.

4.2.1 Baselines
The consider baselines are the classical FOC and the RL agent, which have already been
presented in Section 2.1.5 and Section 2.3.2.2. The following sections describe the settings
of these.

4.2.1.1 FOC with PI controller

The basics for controlling the PMSM by the FOC with a PI controller have been given, but
now it should be specified how to set the parameters of the controller. The controller design
usually takes place in the Laplace domain. For this purpose, the Laplace transformation
is applied to the controller policy Eq. (2.12), which then yields

U(s) = Kp
TNs + 1

TNs
E(s). (4.1)

The transfer function of the PI controller is therefore given by

GPI(s) = U(s)
E(s) = Kp

TNs + 1
TNs

E(s). (4.2)

Besides the controller, the controlled system must also be transformed into the Laplace
domain. This results in two separate transfer functions for the d and q component

Gd,q(s) = 1
Rs

1
1 + τd,qs

(4.3)

with

τd,q = Ld,q

Rs
. (4.4)

Both components of the control loop can be described as PT1 elements in the Laplace
domain.

There are various requirements for the design in terms of steady-state and dynamic
behavior, such as stationary accuracy, control behavior and disturbance behavior. The
design procedure is done using the transfer function and its time constants. One method

34

Marvin Meyer CC & SysID of a PMSM

of controller design for electric drives is the symmetric optimum (SO) [4]. According to
that the general settings are

TN = a2Tσ, TN > Tσ

Kp = 1
a

T1

VsTσ

.
(4.5)

The time constants T1 and Tσ are the large and small delay constants of the drive system,
respectively. Vs specifies the gain of the controlled system. The parameter a will be
explained in more detail later on. Since the behavior is equivalent to a PT1-element there
is only one time delay. The discretization results in a delay of τ and the control results
in a further delay of 0.5τ . These dead times can be represented in the Laplace domain
by another PT1-element with a time constant of 1.5τ . If the elements of the controlled
system are combined, the result is a PT2-element with the following parameters:

T1 = τd,q,

Tσ = 1.5τ,

Vs = 1
Rs

.

(4.6)

This results in the following control law after the transformation into the time domain:

u(t) = 1
a

Ld,q

1.5τ
e(t) + Ld,q

a3(1.5τ)2

t∫
0

e
(
t̃
)

dt̃. (4.7)

The parameter a decisively determines the dynamics of the system. The smaller the value,
the faster the system is controlled, but at the expense of greater overshoot and lower noise
damping. Due to the constraint in Eq. (4.5), a must always be chosen greater than one.
In this work a = 4 was chosen, because it is the default setting within the implementation
of the GEM toolbox. A summary of the control loop in the Laplace domain is shown in
Fig. 4.1.

Since the implementation of the controller takes place within a digital environment, the
control law given in Eq. (2.12) must be discretized. The continuous variables are defined
at time points k, which are multiples of the sampling interval τ . This yields

u[k] = Kpe[k] + Kp

TN

k∑
i=0

e[k]τ (4.8)

where e[k] is the discrete control error. In addition to the now discrete P component,
the integral of the I component is approximated by a sum, where the control errors are
multiplied by the sampling interval and summed up.

35

Marvin Meyer CC & SysID of a PMSM

GPI(s) Gd,q(s)
E(s)R(s) U(s) Y (s)

Fig. 4.1: Contol loop within the Laplace domain.

The FOC by the PI controller is summarized in Fig. 4.2.

Fig. 4.2: Block diagram of the current control via PI controller of the PMSM.

4.2.1.2 RL Agent

The second baseline for current control is the DDPG agent. It provides the comparison to
a data-driven approach. For this work a slightly adapted version of the example available
in the GEM toolbox is used. In the following the setup is specified in more detail.

The actor network receives the state vector as input. This includes the normalized reference
currents and actual currents:

x =
(
ĩd ĩq ĩ∗

d ĩ∗
q

)⊤
. (4.9)

36

Marvin Meyer CC & SysID of a PMSM

The output is the respective action u. The parameters of the actor network are listed in
Table 4.2.

Tab. 4.2: Parameters of the actor network.

Name Symbol Value
Number of hidden layer lh,actor 3
Number of neurons per hidden layer nh,actor 64
Hidden layer activation function gh,actor LeakyReLU (α = 0.1)
Output layer activation function gout,actor tanh

The critic network receives besides the state vector also the chosen action of the actor. The
output is a scalar value. Parameters of the critic network can be seen in Table 4.3.

Tab. 4.3: Parameters of the critic network.

Name Symbol Value
Number of hidden layer lh,critic 4
Number of neurons per hidden layer nh,critic 128
Hidden layer activation function gh,critic LeakyReLU (α = 0.1)
Output layer activation function gout,critic linear

The target networks are copies of the networks presented above.
For the agent to learn, it needs a reward function that depends on the total current

ĩtotal =
√(

ĩd
)2

+
(
ĩq
)2

. (4.10)

The reward per time step is given by

r =


1−

(
ĩtotal − in

ilim

)(
1− in

ilim

)−1
· 1/10− 1/10, if ĩtotal > in

ilim

(2− rd − rq) · 1/20, else
−1, if episode terminates early

(4.11)

with

37

Marvin Meyer CC & SysID of a PMSM

rd =
√ |̃i∗

d − ĩd|
2 +

(
ĩ∗
d − ĩd

2

)2 · 1/2

rq =


√√√√ |̃i∗

q − ĩq|
2 +

 ĩ∗
q − ĩq

2

2
 · 1/2.

In this case, in = 240 A is defined as nominal current and ilim = 400 A as current limit
through the respective motor. To speed up the learning process of the agent, the reward
per step is chosen on an interval of [0, 1].

Further settings for the training of the DDPG agent can be taken from Table 4.4.

Tab. 4.4: Parameters of the DDPG agent, regarding the training.

Name Symbol Value
Optimizer actor - Adam
Learning rate actor ηactor 5 · 10−6

Optimizer critic - Adam
Learning rate critic ηcritic 5 · 10−4

Action noise N Ornstein-Uhlenbeck
(see Eq. (A.5))

Discount factor γ 0.99
Update rate δ 0.25
Data buffer |D| 5 · 105

Batchsize |Db| 256

The algorithm trains for 800000 steps, which, assuming full episode length of 201 steps,
can be extrapolated to almost 4000 episodes within one training. In each episode a weight
update takes place.

4.2.2 Neural Controller
For this experiment, the setup described in Section 3.2.2, is used. Therefore, perfect model
knowledge within the IPM is assumed. Additionally, the IPM is extended by further
components. Those components are multiple transformations into the different coordinate
systems, which are present in the drive system implemented by GEM, but cannot be
represented by the ODE of the PMSM alone. Consequently, the IPM is extended with
those transformations.

The NC receives the augmented feature vector and outputs the control action. For the
further setup, the parameters of the NC are specified in Table 4.5.

38

Marvin Meyer CC & SysID of a PMSM

Tab. 4.5: Parameters of the NC.

Name Symbol Value
Number of hidden layer lh 1
Number of neurons per hidden layer nh 128
Hidden layer activation function gh ReLU
Output layer activation function gout clip(−1, 1)
Composed loss c1 1/10

c2 50
c3 1

Optimizer - Adam
Learning rate η 3 · 10−3

Batchsize |Db| 1024

The training runs for 200 episodes. After each episode the parameters are optimized on
the basis of a batch containing 1024 trajectories. In total, 200 parameter updates take
place over the duration of the training, whereby the NC is trained over a total of 204800
trajectories.

4.2.3 Results

The 500 evaluation trajectories, which were not shown to any data-driven control approach
during training, were used to compare the approaches. The benchmark metric for all of
them is the MSE between the normalized current and reference values. It should be noted
that since the FOC with PI controller is a purely deterministic approach, therefore only one
run is performed. Since the data-driven approaches are trained with a random initialization
of parameters, it follows that by using gradient descent and given the non-convex cost
landscape, the approaches end up in different local minimas. To better identify this
inadequacy of the SGD as a cost function optimizer, nine evaluations are conducted. Based
on the variance of these evaluations, a better prediction of the performance can be made.
The results obtained can be seen in Table 4.6.

Among the nine experiments conducted, the NC was unable to learn a successful policy in
only one experiment. This run is considered a failure and is not taken into account for the
statistical evaluations. In the median, the NC has the best performance with a value of
16.194 · 10−3, the FOC with PI controller is ranked behind it with a value of 23.672 · 10−3.
The MSE of the DDPG agent is 32.044 · 10−3 and is thus almost twice as high as of the
NC. On average over the runs, the NC has also the lead with a value of 16.526 · 10−3. Here,
the second place is occupied by the PI controller with a value of 23.672 · 10−3. The worst
performance was achieved by the DDPG agent with a value of 32.225 · 10−3. In Fig. 4.3,
the results are illustrated for the DDPG agent and the NC.

39

Marvin Meyer CC & SysID of a PMSM

Tab. 4.6: Results of the experiments. Shown here is the MSE on the evaluation set,
where 9 runs were performed for the data-driven algorithms. Bold font highlights the best
score across the control approaches.

MSE (10−3 p.u.)
Run PI controller DDPG agent NC
1 23.672 29.993 16.118
2 - 38.908 16.262
3 - 26.533 16.004
4 - 32.044 15.845
5 - 25.136 17.528
6 - 25.742 135.018
7 - 34.717 16.074
8 - 44.327 17.463
9 - 32.627 16.877
Median 23.672 32.044 16.194
Mean 23.672 32.225 16.526

15 20 25 30 35 40 45

MSE ×10−3

DDPG agent

NC without outliers

PI controller

Fig. 4.3: Graphical presentation of the results, with the data-driven approaches shown as
boxplots. The result of the PI controller is indicated as a vertical line.

4.2.4 Discussion

Based on Table 4.6, it can be concluded that the results of the NC are significantly better
than those of the baselines. It should be emphasized that the variance within the runs
considered is also significantly lower than with the DDPG agent (see Fig. 4.3). This can be
explained mainly by the fact that the NC has perfect model knowledge and can therefore
be learned in a more systematic way, leading to the lower variance in the results.

Selected evaluation trajectories will be used here to illustrate the behavior of the NC in
comparison to the other control algorithms (see Fig. 4.4).

40

Marvin Meyer CC & SysID of a PMSM

−0.6

−0.4

−0.2

0.0

ĩ d

Reference

PI controller

DDPG agent

NC

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t in s ×10−3

0.0

0.2

0.4

0.6

ĩ q

Fig. 4.4: Comparison between the different control algorithms.

The reference trajectory for both current components is shown in blue. It is clearly visible
that all control algorithms start from the origin. When comparing the trajectories, the
one of the DDPG agent stands out. This agent seems to have clear difficulties in following
the reference, so that an alternating pattern of overestimating and underestimating the
reference emerges. Steps in the d-component can still be followed relatively well, as can be
seen in the plot at a time of t ≈ 11 ms. By steps in the q-component, as at t ≈ 15 ms, the
following seems to be much more difficult for the agent. The orange trajectories of the PI
controller and the red trajectories of the NC show a similar good behavior in the stationary
case. However, the NC seems to systematically underestimate the q-component of the
current, visible here in the range of t ∈ [1, 5] ms. Both controllers also react similarly well
to steps regarding the tracking control. In the case of the PI controller, the d-component
is affected by steps in the q-component, as can be seen at t ≈ 50 ms and t ≈ 18 ms. A
dependence can also be observed for NC. In this case, steps in the d-component lead to
adjustments of the q-component as in t ≈ 11 ms, but they are significantly smaller.

This strong dependence of the PI controller between the d-component and the q-component
leads to problems when already operating close to the constraint. This is shown in Fig. 4.5.
At about t ≈ 8 ms, the d-component has a value of −0.7. Due to a step in the q-component,
the current of the d-component is further reduced so that it exceeds the current limit
at t ≈ 15 ms. At this point the GEM environment stops the evaluation, which leads to
the fact that the evaluation can be described as incomplete. Of the total 500 evaluation
trajectories, the current limit was exceeded 42 times by the FOC with PI controller. The
DDPG agent, which also works in the GEM environment, does not exceed the current
limits within the evaluations. The NC also remains within the current limits for all
evaluation trajectories.

41

Marvin Meyer CC & SysID of a PMSM

−0.8

−0.6

−0.4

−0.2

0.0

ĩ d

Reference

PI controller

DDPG agent

NC

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t in s ×10−3

−0.50

−0.25

0.00

0.25

ĩ q

Fig. 4.5: Comparison of the control algorithms, whereby the FOC is terminated prema-
turely due to the violation of the constraints. The time of termination is marked by the
dashed line.

Since the NC is also a data-driven approach, poor initialization can also lead to the failure
of a training, which clearly happened to run 6. This cannot be prevented, since the
problem originates from the gradient descent. Due to the non-convex cost landscape, the
system remains in a local minimum, which the optimizer cannot get out of.
It should be noted that the DDPG agent remained significantly below expectations.
Possible errors could be badly configured hyperparameters. Poorly set learning rates can
cause NNs to be stuck in poor local minimas. Furthermore, the update rate can also lead
to the fact that the target networks were adapted too quickly. Another point is the choice
of the update rate, which is relatively high here with 0.25. This could have led to a too
fast change of the target networks, which in turn could have brought instabilities into the
training. Whether it was a bad setting of hyperparameters or a bug in the implementation,
which caused the DDPG agent to produce such poor results, cannot be said without a more
detailed analysis of the setup. However, this was outside the scope of this thesis.

Nevertheless, the results of the NC show outstanding results that outperform the baselines.
Of course, this is always to be seen under the consideration that a perfect model knowledge
about the drive system was assumed here.

42

Marvin Meyer CC & SysID of a PMSM

4.3 HPO of the Neural Controller
This section deals with the HPO of the NC. First the setup will be explained and the
selectable parameters will be listed. Afterwards the results of the HPO will be presented
and discussed.

4.3.1 Setup
To evaluate the current control capabilities of the NC, again the setup described in
Section 3.2.2, is used. Therefore perfect model knowledge is assumed within the IPM
and the additional components of the drive systems are considered. The training data of
100000 trajectories is used and the final evaluation is performed on the evaluation set of
500 trajectories, equivalent to the previous experiment.

The choice of hyperparameters for the NC and the optimizer is up to the sampling method
of the HPO. The following parameters are taken into account:

Tab. 4.7: Parameters for the HPO

Description Range Datatype
Number of hidden layers {2, . . . , 5} Integer
Number of neurons within the hidden layers {16, . . . , 128} Integer
Activation function of the hidden layers Tanh Categorical

ReLU
LeakyReLU
ELU

Negative slope of the LeakyReLU [0.01, 0.3] Float
Optimizer Adam Categorical

SGD
Learning rate of the optimizer [1 · 10−5, 1 · 10−1] Float

The framework used here for the HPO is optuna. For one HPO, a study is created, which
contains a specified number of trials. In this work 650 trials are performed. In each of these
trials, nine NC are trained. A training lasts 200 episodes, after each episode a parameter
update with a batchsize of 1024 is performed. Each of these NC is then evaluate and the
median of these nine experiments is reported to the sampling algorithm. Based on the
result, new parameters are sampled, with which the next trial is then started.

43

Marvin Meyer CC & SysID of a PMSM

4.3.2 Results
Based on the given hyperparameters, the HPO was able to achieve the best result for the
NC with 5 hidden layers, using the ReLU activation function. Training was done with the
Adam optimizer with a learning rate of 9.521 · 10−3. The trial achieved in the median a
MSE of 15.605 · 10−3 on the evaluation set.

The course of the HPO can be seen in Fig. 4.6, where the median MSE obtained is plotted
for each trial. The line shows the course of the best result.

0 100 200 300 400 500 600

Trials

1.55× 10−2

1.6× 10−2

1.65× 10−2

1.7× 10−2

1.75× 10−2

1.8× 10−2

M
S

E

Best value

Objective value

Fig. 4.6: Results of trials plotted over the course of the HPO. The circles indicate the
achieved MSE of each trial on the evaluation set. The curve marks the best result over
the duration of the HPO.

The trend shows that rapid convergence has been achieved. After only about 100 trials,
the best value drops only slightly. The y-axis indicates that the plot has been zoomed in
strongly to make deviations visible (see Fig. A.2). The majority of the objective values lie
in the range close to the best value for the respective trial. This distribution indicates that
a local minimum has been reached and no major improvements are to be expected.

The following Fig. 4.7 shows the total sampled parameters over the course of the HPO. In
each plot, the median MSE is plotted over the selected parameters. The color of a point
indicates the time of the sample. In the following, the plots will be discussed in sequential
order.

44

Marvin Meyer CC & SysID of a PMSM

SGD Adam

Optimizer

1.55× 10−2

1.6× 10−2

1.65× 10−2

1.7× 10−2

1.75× 10−2

1.8× 10−2

M
S

E

10−5 10−4 10−3 10−2 10−1

Learning rate

ELU LeakyReLU ReLU Tanh

Activation

1.55× 10−2

1.6× 10−2

1.65× 10−2

1.7× 10−2

1.75× 10−2

1.8× 10−2

M
S

E

0.0 0.1 0.2 0.3

Negative slope

2 3 4 5

#Hidden layers

1.55× 10−2

1.6× 10−2

1.65× 10−2

1.7× 10−2

1.75× 10−2

1.8× 10−2

M
S

E

25 50 75 100 125

#Neurons in hidden layer 1

25 50 75 100 125

#Neurons in hidden layer 2

1.55× 10−2

1.6× 10−2

1.65× 10−2

1.7× 10−2

1.75× 10−2

1.8× 10−2

M
S

E

25 50 75 100 125

#Neurons in hidden layer 3

25 50 75 100 125

#Neurons in hidden layer 4

1.55× 10−2

1.6× 10−2

1.65× 10−2

1.7× 10−2

1.75× 10−2

1.8× 10−2

M
S

E

25 50 75 100 125

#Neurons in hidden layer 5

0

100

200

300

400

500

600

Trial number

Fig. 4.7: This plot shows the different parameters that were sampled during the HPO in
dependence of the achieved MSE of the respective constellation. Each trial is marked with
a dot and the time of the trial is indicated by the color.

45

Marvin Meyer CC & SysID of a PMSM

When sampling the optimizer, the Adam algorithm seems to achieve significantly better
results than the SGD. In the case of the learning rate, the range around 1 · 10−2 is strongly
sampled, whereby the learning rate was reduced in the course of the HPO. In the activation
function, the ReLU and LeakyReLU are ahead of the ELU and the tanh. But all functions
seem to be sampled quite frequently, as the colors indicate. The negative slope of the
LeakyReLU was sampled fairly uniformly, showing a trend toward 0.3 over the course of
the HPO. The choice of the number of hidden layers, as well as the number of neurons
within the layers, yields a similarly good result as can be seen in the plots. The best
performance of each model size, in terms of the number of hidden layers, is listed in
Table 4.8.

Tab. 4.8: Performance comparison regarding model size.

Hidden MSE
layers (10−3 p.u.)
2 15.734
3 15.637
4 15.605
5 15.605

The results indicate that the best results of the respective sizes are relatively close to each
other. Between the smallest and the largest model, there is a difference in performance of
about 1.3 · 10−4. It is also noticeable that the model size of 4 and 5 hidden layers are close
to the same result.

4.3.3 Discussion
When considering the results of the NC from the last experiment, it can first be stated that
the results can be improved even further with the selection of suitable hyperparameters.
The MSE could thus be reduced from 16.194 · 10−3 to 15.605 · 10−3.

The progression of the objective values shown in Fig. 4.6 suggests that the cost landscape
moved into a local minima fairly early. Samples are mainly made with slightly changed
parameters of the best trial, which leads to the results being close to the best value as
seen in Fig. 4.6. Larger jumps are not observed over the course of the best value of the
HPO, which suggests a relatively flat cost landscape.

Looking at the overall parameters, the choice of optimizer is the most significant, with
Adam being clearly preferred over SGD. The Adam algorithm can be seen as an extension,
which additionally uses the squared gradients to adjust the learning rate of individual
parameters. Furthermore, in the parameter update, the momentum is used by a moving
average over the gradients, while in the case of SGD only the gradient is used. The
learning rate also seems to be an important parameter, as it was sampled in a narrow
range. Especially since it can be observed here that in the course of the HPO the values

46

Marvin Meyer CC & SysID of a PMSM

move further into the said range. The activation function also seems to have only a
marginal effect on the performance of the NC. All functions were sampled equally, with
ReLU slightly ahead of LeakyReLU in terms of the median MSE. There is also no clear
trend in the number of hidden layers. Although the HPO sampled 5 layers more frequently
at the end, the results of 3 and 4 layers seem to be only minimally worse. In applications,
smaller meshes should be preferred due to faster execution time. In general, no precise
statement can be made about the suggested number of neurons within the hidden layer.
The samples are evenly distributed and are all close to the best value, so a lower number
should also be preferred here when it comes to implementation.

In summary, no unusual parameter dependence could be determined. With an appropriate
optimizer and a learning rate in the said range, reproducible results can be achieved
that are outperforming than the baselines considered in the previous experiment. Large
networks with many neurons are not significantly superior if the last percentages in the
performance are not important.

4.4 Current Control and System Identification
This experiment is intended to provide proof of concept for simultaneous current control
and system identification of a PMSM. For this purpose, the setup presented in Section 3.2.3
will first be specified in more detail. This is followed by the presentation of the results
and a final discussion.

4.4.1 Setup
The setup used within this experiment is divided into three components: the EP, the IPM
and the NC. Each component will be considered individually below.

External Plant

The EP is the system that is to be controlled. In this work it is a PMSM, which is
simulated by the GEM toolbox and specified with the parameters from Section 4.1. A
problem with the later training of the NC and parameter estimation is the serial execution
of the simulations, therefore several simulations cannot be executed in parallel. Hence, it is
necessary to store the trajectories of the simulation temporarily in order to create a batch.
Another problem is the different duration of the simulations due to the current limitation.
That is, if the NC let the currents exceed the limits, this can lead to the termination of
the simulation. Aborted simulations and therefore too short trajectories are therefore
zero-padded to have identical lengths.

Internal Plant Model

The parameters to be identified are now specified in the IPM. Based on the knowledge that
the plant PMSM can be modeled with a linear system model, the matrices Aϕ and Bϕ as
well as the vector eϕ are set up here according to Section 3.2.3. Two experiments are to
be conducted in the process. The first one considers partial model knowledge, therefore

47

Marvin Meyer CC & SysID of a PMSM

only two parameters, L̂d and L̂q, are identified, keeping the exact values of Rs and Ψp. In
another experiment, all four parameters, L̂d, L̂q, R̂s and Ψ̂p are to be identified. Hence,
the parameter identification experiments use the expert knowledge about the structure
and number of parameters of the EP.
For the initialization of the learnable parameters a value is sampled from a uniform
distribution between [0, 1]. Due to the fact that the true values are positive constants (see
Table 4.1) and cannot be negative in reality, the learnable parameters are additionally
placed in the exponential function, yielding

Aϕ =


−exp(R̂s)

exp(L̂d)
ωel

exp(L̂)q

exp(L̂d)
−ωel

exp(L̂d)
exp(L̂q)

−exp(R̂s)
exp(L̂q)

 , Bϕ =


1

exp(L̂d)
0

0 1
exp(L̂q)



and

eϕ =

 0

−exp(Ψ̂p)
exp(L̂q)

ωel

 .

This is another aspect where expert knowledge is brought to the IPM. On the one
hand, this ensures that the values are always greater than 0. On the other hand, the
exponential function accelerates a faster ascent or descent of the parameters in gradient-
based optimization. Identical to the current control, the IPM is also extended here by the
components of the GEM drive system.

Neural Controller

The NC is realized with the same parameters as in the current control experiment in
Section 4.2. Therefore the parametrization can be taken from Table 4.5. The setups should
be kept the same to allow a fair comparison between the experiments.

4.4.2 Training
The training is divided into two phases. First, a warm-up is performed, where initially only
the learnable parameters of the IPM are identified. The NC is left randomly initialized
and performs random control actions for both the EP and the IPM. The identification is
then based on the loss between EP and IPM, obtained by the 2 trajectories. The optimizer
of the learnable parameters of the IPM is Adam with a learning rate of 3 · 10−1. The
warm-up consists of 50 episodes, where after each episode a batch of 1024 trajectories is
used for the update.
In the second phase, not only the IPM is adapted but also the NC is trained on the basis

48

Marvin Meyer CC & SysID of a PMSM

of the IPM estimate and the reference, as explained in Section 3.2.3. Based on the loss
of these two trajectories, the parameters of the NC are updated with a second optimizer.
This is again Adam with a learning rate of 3 · 10−2. This phase of the training includes 200
episodes, again using a batch of 1024 trajectories to optimize in the first step the IPM and
afterwards the NC. Therefore, the parameter updates with respect to the NC are identical
to the current control from Section 4.2. This allows the comparison of the results.

4.4.3 Results

Since this experiment is composed of both current control and system identification, the
results are presented separately. First, the results of the current control of the NC with
parameter identification will be compared with the results of the NC with perfect model
knowledge from Section 4.2.3. Subsequently, the parameter identification of the individual
experiments are examined in more detail, and the best runs in each case are considered in
detail.

Current Control Comparison

For the results, the evaluation dataset is used which includes 500 episodes. The metric
is again the MSE between normalized current and reference trajectory on the EP. The
experiments are repeated nine times to compensate for the shortcoming of the SGD, as
discussed above. The results of the experiments are shown in Table 4.9.

Tab. 4.9: Results of the experiments. Shown here is the MSE on the evaluation set,
where 9 runs were performed for each setup. Bold font highlights the best score across the
experiments.

MSE (10−3 p.u.)
Run Perfect model Identifying Identifying

knowledge 2 parameters 4 parameters
1 16.118 15.729 15.714
2 16.262 138.983 149.979
3 16.004 15.726 150.159
4 15.845 15.722 150.159
5 17.528 15.813 150.159
6 135.018 137.859 15.760
7 16.074 15.845 15.827
8 17.463 15.781 149.979
9 16.877 15.817 150.016
Median 16.194 15.776 15.760
Mean 16.526 15.781 15.767

49

Marvin Meyer CC & SysID of a PMSM

In the left column, the results of the NC with perfect model knowledge are taken from
Section 4.2.3. The NC was not always finding a policy successfully. In the first experiment,
i.e., the identification of 2 parameters, run 2 and 6 failed. When identifying 4 parameters,
i.e., the whole system, only in run 1, 6 and 7 the NC was able to learn a policy.
If the results are only considered for those runs where the NC was able to learn a policy,
then the identification of 4 parameters leads to the best results with 15.760 · 10−3 in terms
of the median and 15.767 · 10−3 in terms of the mean. Then follows the experiment with
partial model knowledge. Here, the median is 15.776 · 10−3 and the mean is 15.781 · 10−3.
The results of the NC based on the perfect model knowledge only reach a median of
16.194 · 10−3 and mean of 16.526 · 10−3.

Partial Model Knowledge

First, for all 9 runs of the experiment, the ratio between the learned parameters and the
ground truth is reported. The results after completion of the warm-up phase, as well as
after training, are summarized in the table Table 4.10.

Tab. 4.10: Ratio between parameter estimates and ground truth after initial warm-up
phase and after completed training phase.

Parameter ratio
After warm-up After training

Run L̂d/Ld L̂q/Lq L̂d/Ld L̂q/Lq

1 1.126 1.122 1.000 1.000
2 1.115 1.098 1.000 1.000
3 1.073 0.919 1.000 1.000
4 1.098 0.885 1.002 1.000
5 1.000 1.043 0.977 0.998
6 0.993 1.019 1.000 1.000
7 0.999 1.096 1.000 1.000
8 1.124 0.859 0.999 1.000
9 0.895 0.989 1.000 1.000

After the warm-up phase, all runs are already close to the parameters to be identified.
After training, except for a stronger deviation at run 6 for L̂d, both inductances were
identified exactly to the 4th decimal place for almost all runs.
In order to get a better insight into the parameter identification, run 1 is examined in
more detail, as it provided the best results. In Fig. 4.8, two plots are shown. The upper
one displays the progression of the losses in logarithmic scale over the training. The blue
curve corresponds to the loss between the IPM to the EP. Due to the warm-up, the orange
curve starts at episode 50. This is the loss between estimated trajectory of the IPM
and reference trajectory. The lower plot shows the average trajectory length per episode.
Both losses converge quickly, where the MSE has already reached a value of 1 · 10−3 after

50

Marvin Meyer CC & SysID of a PMSM

10−12

10−10

10−8

10−6

10−4

10−2

L
os

s

IPM NC

0 50 100 150 200

Episode

0

100

200

A
v
g
.

tr
a

je
ct

or
y

le
n

gt
h

p
er

ep
is

o
d

e

Fig. 4.8: Training progression of the 2 parameter identification for run 1. The upper plot
shows the training progression of the IPM and NC in terms of the losses in logarithmic
scale. In the lower plot shows the progression of the averaged trajectory length of the EP.

completion of the warm-up. This then decreases steadily to a final value of approximately
5 · 10−13. The course of the CL reaches convergence at around the 90th episode with a
value of approximately 14 · 10−3. Around this value the trajectory fluctuates for the rest
of the training. The average trajectory curve initially oscillates around a value of about
160. After the warm-up, there is a sharp drop to an average length of 50, which increases
again sharply in the next episodes and already reaches a value of 201 in the 55th episode.
The rest of the training uses full trajectory lengths for the optimization. In Fig. 4.9, the
learnable parameters are plotted over the course of the training.

In both plots a convergence of the learnable parameters to the ground truth can be seen.
The parameter L̂d has a more damped trajectory after the warm-up, while L̂q oscillates
damped around the actual value for the whole training. The deviation between prediction
and the ground truth after 250 episodes the relative error (see Eq. (A.7)) is νLd = 4.77 ·10−6

and νLq = 9.83 · 10−6.

Four Parameter Identification

Firstly, the quotient between the learned parameters and the ground truth after each run
of this experiment are summarized. A perfect identification corresponds to a value of 1.
The results are shown in Table 4.11.

51

Marvin Meyer CC & SysID of a PMSM

3

4

5

L̂
d

in
H

×10−4

Truth Prediction

0 50 100 150 200

Episode

1.0

1.5

L̂
q

in
H

×10−3

Fig. 4.9: Progression of the IPM’s two learned parameters over the course of the training.

Tab. 4.11: Ratio between parameter estimates and ground truth after initial warm-up
phase and after completed training phase.

Parameter ratio
After warm-up After training

Run L̂d/Ld L̂q/Lq R̂s/Rs Ψ̂p/Ψp L̂d/Ld L̂q/Lq R̂s/Rs Ψ̂p/Ψp

1 1.084 1.147 1.365 0.995 1.013 1.002 1.616 1.062
2 0.000 0.024 0.946 0.006 1.006 0.004 0.112 0.116
3 0.032 0.001 0.042 0.037 1.004 0.001 0.166 0.172
4 0.036 0.003 0.001 0.004 0.023 0.002 0.000 0.042
5 0.044 0.046 0.012 0.027 1.011 0.002 0.068 0.070
6 0.620 0.206 0.035 0.113 1.116 0.989 0.240 4.508
7 0.805 0.939 6.325 1.091 1.000 1.002 10.546 0.985
8 0.016 0.009 0.001 0.007 1.111 0.000 0.007 0.007
9 0.050 0.236 0.018 0.056 1.017 1.130 0.321 0.558

After completion of the warm-up phase, it can be seen that the parameter ratios are
significantly worse than in the previous experiment. Exceptions to this are run 1 and 7,
which are closest to 1 in terms of the parameter ratio. After the training the parameter
L̂d is closely approximated in most runs. For the other parameters, it depends strongly on
the run whether a ratio is close to 1.
Since run one has the best result, this one will be looked at more closely here. In Fig. 4.10,
two plots summarizing the training progression. The upper plot shows the course of the

52

Marvin Meyer CC & SysID of a PMSM

two losses in logarithmic scale. In the lower plot the average trajectory length per episode
can be seen.

10−4

10−2

L
os

s

IPM NC

0 50 100 150 200

Episode

0

100

200

A
v
g
.

tr
a

je
ct

or
y

le
n

gt
h

p
er

ep
is

o
d

e

Fig. 4.10: Training progression of the 4 parameter identification for run 1. The upper
plot shows the training progression of the IPM and NC in terms of the losses in logarithmic
scale. In the lower plot shows the progression of the averaged trajectory length of the EP.

The loss of the IPM already reaches a value of 2.6 · 10−3 after the warm-up. Thereafter, it
steadily decreases to a final value of approximately 2.5 · 10−6. The loss of the NC starts at
episode 50 due to the warm-up. It quickly converges towards a value of 14 · 10−3 after 35
episodes. After that, it no longer changes significantly during the rest of the training. The
averaged length of the trajectories starts at about 160 and then oscillates slightly around
this value for the time of the warm-up. After the warm-up, a drop to a value of 120 can
be seen, but in the next step it is already close to the maximum averaged length again.
It stays at a maximum of 201 for the rest of the training after episode 85. In Fig. 4.11,
the progressions of the learned parameters over the training are shown. The blue curve
indicates the respective course of the parameter, with the red dotted line marking the
value of the true parameter.

The parameter L̂d moves quickly towards the true value, so that it is already close to
after the warm-up phase. Subsequently, it slowly converges against the true value. The
estimation of L̂q shows strong overshoots at the beginning of the training, which then
decrease over time and finally lead to a good identification of the exact parameter at the
end of the training. The parameter R̂s shows at the beginning also a fast change into the
direction of the true parameter. After completion of the warm-up, there is a deviation of
approx. 5 · 10−3Ω, which can then hardly be reduced during the rest of the training. For
the last parameter Ψ̂p a strong convergence in the warm-up phase can be seen again. After
the warm-up, this parameter reaches an almost exact approximation of the true value with
65.9 · 10−3Vs. In the further course of the training the value is slightly underestimated

53

Marvin Meyer CC & SysID of a PMSM

3
4
5

L̂
d

in
H

×10−4

Truth Prediction

1

2

L̂
q

in
H

×10−3

0.01

0.02

R̂
s

in
Ω

0 50 100 150 200

Episode

0.050

0.075

Ψ̂
p

in
V

s

Fig. 4.11: The learnable parameters of the IPM for run 1 are shown over the course of
the training.

and only towards the end of the training it approaches the true value again. The relative
error of the learned parameters at the end of the training are as follows: νLd = 16.9 · 10−3,
νLq = 115.2 · 10−3, νRs = 2.1133 and νΨp = 792.7 · 10−3.

4.4.4 Discussion
First of all, the results in Table 4.9 show that simultaneous current control and system
identification works. Thus, the experiments provide the desired proof of concept.
Considering the runs where the NC was able to learn a policy, the results of the 2 and 4
parameter identification are better than the experiment with perfect model knowledge.
This implies that parameter identification has a positive impact on the learning of the
policy. One explanation is that because of the slight changes in IPM due to the learning
parameters, the NC must still be able to find an appropriate policy. The control is
more challenging due to the model inaccuracies, which in turn leads to a more robust
control.

When comparing the parameter ratios in Table 4.10 and Table 4.10 of the two experiments
with parameter identification, it is also noticeable that in the case of the 2 parameters
the IPM was more accurate compared to the identification of the 4 parameters. However,

54

Marvin Meyer CC & SysID of a PMSM

a more accurate IPM did not lead to better current control as can be seen in Table 4.9.
This also supports the hypothesis that learning a good policy does not require perfect
model knowledge.

Another interesting conclusion is that even perfect model knowledge can lead to unsuccessful
training. According to Table 4.9, this was 1 run, which failed to learn a policy. The fact
that no policy could be learned even with perfect model knowledge indicates that in this
approach the initialization of the parameters of the NC already plays a role in learning a
successful policy. However, this is a known problem with data-driven approaches and does
not occur exclusively with the use of NODEs.

Another case that shows the dependence of the parameters is run 2 in the case of the
partially known model. In Table 4.10 it is clear that at the time after the warm-up there
was sufficient proximity to the parameters of the EP. Also, compared to the other runs,
these show similar variations in parameter ratio and were able to learn a successful policy.
Nevertheless, in this case the NC was not able to learn current control. This shows once
again that the initialization of the NC plays an important role in policy learning.
Furthermore, it also follows that even if parameters are identified almost perfectly over
the course of the training, the NC is not able to change its policy significantly. Again, the
problem lies in the nature of the cost landscape and the use of gradient decent als cost
function optimizer. Unfortunately, there is no simple solution to prevent this problem.
The run can only be aborted and repeated or the NC has to be reinitialized.

However, it turns out that the number of failed policies is significantly higher when the
entire system is identified than in the experiment with partial or full model knowledge.
This shows that learning an appropriate policy depends on the IPM as well. If the
parameters of the IPM are not well identified, the NC cannot learn a policy. Particularly
important is the phase after the warm-up. This is evident in Table 4.11, where runs 1
and 7 in particular show a proximity of the learned parameters to the true parameters
after the warm-up. This means that if no sufficient proximity to the true parameters has
been found up to this point, the NC will start learning an undesirable policy. Since the
NC is then optimized on an IPM which is an inadequate representation of the EP, an
undesirable policy is learned. This policy then in turn leads to the trajectories of the EP
aborting prematurely because current limits of the GEM environment are exceeded. Due
to shorter and therefore also non-informative trajectories, the IPM can only slowly identify
the parameters. The loss of the NC gets stuck in a local minimum, out of which the policy
cannot be further improved.
This problem can be avoided by not simply using the NC with random initialization to
control the EP in the warm-up phase, but by first applying a classical control approach. In
this way, longer and more informative trajectories can be generated on the EP, with the help
of which a faster identification of the parameters can presumably be achieved. Assuming
that the parameters converge close to a good approximation of the true parameters, it can
be excluded that the training of the NC fails due to wrong parameters in the IPM.

55

5 Summary

5.1 Summary
In this work, a novel approach to simultaneous current control and system identification
of a PMSM drive system was presented. Utilizing the NODE framework, a model could
be obtained from data by combining expert knowledge of plant structure with data-driven
learning. The proposed algorithm achieved better results than classical FOC and a
state-of-the-art RL algorithm.

At first, the approach was derived based on the NODEs. It was shown how to rewrite the
NODE equation into a linear system with learnable matrices. The adjoint method was
discussed, which allows to calculate memory efficient gradients within this framework. The
structure of the PMSM was then exploited to integrate expert knowledge into the system
matrices. The current control was then realized by implementing an NC. Based on an
augmented state vector and the learned strategy, the NC can select an action to perform
the current control. For the framework to run on external plants it needs a corresponding
system model. In the next step, the current control was extended by system identification.
Besides the current control, the entries of the matrices within are learned/identified at
the same time. In order to obtain the most informative test data, attention was paid to a
balanced coverage of the operating zone, while at the same time considering the limitations
of the system.
For the experiments a drive system was simulated with the help of the GEM toolbox
which was kept identical for all the experiments. The first experiment was a comparison of
the different methods of the current control of a PMSM. In this, the NC achieved better
results than the classical FOC with PI controller and the DDPG agent. In a further
experiment, the structure of the NC was examined more closely. Through a HPO it
was shown in which ranges the parameters should be chosen. In addition, it was shown
that the results in the closer range of the parameters led to identically results. In the
NC, large NNs do not achieve significantly better results than smaller ones. In the last
experiment, simultaneous current control and system identification was evaluated. The
results have been able to prove the concept with outstanding performance. The results of
the experiments with partial model knowledge and no model knowledge achieved better
results than the experiment with complete model knowledge. However, the system still
lacked robustness, especially when identifying more than 2 parameters, so that many of

56

Marvin Meyer CC & SysID of a PMSM

the runs failed. Problems that arise due to the system identification were discussed and
possible solutions were provided.

Although the results of this thesis are very promising, they need to be verified on real
world test benches. Nevertheless, this work provides a good foundation on which future
experiments can be built upon. In the following an outlook for possible extensions will be
given.

5.2 Outlook
First, the weaknesses pointed out in the presented implementation should be addressed.
The biggest problem with the simultaneous current control and system identification is the
transition from the warm-up phase to the actual learning of the NC. As already elaborated
in the evaluation, a method should be implemented which ensures convergence of the
learnable parameters. Trajectories that are as informative as possible help here. These
can, i.e., be obtained by a classic controller during the warm-up phase. It should be
checked in a further experiment whether the NC can be made to learn the policy again by
re-initializing it even during the running training.

A HPO should also be performed for simultaneous current control and system identification.
In particular, the learning rate of the optimizer for the IPM should be analyzed, since it is
very important for the convergence of the IPM. In the presented implementation, however,
this would take a very long time due to the implementation of the GEM toolbox, which
leads directly to the next enhancement.

Much of the time that has gone into this work has been spent on bringing the systems
implemented in the GEM toolbox into the framework used in this thesis. The insights
gained here can be used to create a version of GEM that allows both parallel processing
and support for AD. To facilitate future ML experiments, but also to exploit new research
opportunities, a corresponding extension of the GEM toolbox would be beneficial.

Since these are simulative experiments based only on models of the PMSM, the next step
should be to use a more complex model of the PMSM that takes into account, e.g., iron
losses, magnetic saturation or temperature dependencies. Also, an implementation on
the test bench would be a milestone for the NODE approach, as there are no practical
implementations of the approach in the literature so far.

In the following, further enhancements for the components and the system itself will
be given. The IPM can be extended to cover cross-saturation effects. Furthermore, the
learnable parameters can be represented by additional NNs to incorporate non-linearities,
e.g., time or temperature dependencies. In addition, an ODE solver with a fixed step size
is currently used to determine the estimated trajectories. The implementation could be
extended by adaptive solvers. The use of the adaptive solver would allow the possibility of
an additional adjustment between error tolerance and computational effort. To achieve
a faster overall system, the second call of the ODE solver could also be omitted. The

57

Marvin Meyer CC & SysID of a PMSM

gradients that are determined by a single execution are sufficient, but then two gradients
must be carried with each variable. This is a more elegant but also a more complex solution.
Nevertheless, should the system run in real time in the future, this could significantly
improve the runtime of the algorithm.

58

Appendix

A.1 Dynamical Systems
To model time-dependent processes in various fields, such as mathematics, physics, en-
gineering, finance, etc., dynamical systems are used. The goal is to create a connection
between the often highly complex system and the empirical data resulting from it. No
matter where those systems are applied, they always contain one or more states, which
represents a position in the related state-space [50]. The change of a state over time,
then is a function of the current state x(t) ∈ Rn with consideration of the initial state
x(t0)

ẋ(t) = f(x(t), t), x(t0) = x0. (A.1)

The Eq. (A.1) is an ODE. In simple cases, such as the function f(·) being linear in x(t),
an analytical solution can easily be derived. However, most applications in reality don’t
behave linearly and must either be approximated via a linearization or by using numerical
solvers.

A.2 Derivation of NODE
An intuitive derivation to the concept of NODEs will be shown. Looking at a ResNet a
residual block can be described given the following relationship:

xi+1 = f(xi, θ) + xi, (A.2)

where xi denotes the input, as well as the hidden state of the i-th layer. xi+1 is the
summation of the output of the residual block and the residual itself. On closer examination
of this equation, one recognizes a certain similarity to Euler’s method

xi+1 = xi + hf(xi, ti), (A.3)

but with a step size of h = 1. This leads to the conclusion, that the one residual block is a
discretization of a continuos function f(·) via Euler’s method. Assuming a ResNet with
an infinite number of these blocks could be generated and the step size would approach
zero, the resulting function could be framed as an ODE:

59

Marvin Meyer CC & SysID of a PMSM

ẋ(t) = f(x(t), t, θ). (A.4)

These infinitesimal small steps cause the transition from the discrete time domain to the
continuous time domain. The result is the parameterizable function f(x(t), t, θ) which
defines the derivative of the hidden state ẋ(t). The analogy to dynamical systems can
be clearly drawn by comparing it with the formula A.1. The evaluation of the function
f(x(t), t, θ) at a time t, given the hidden state ẋ(t), provides the dynamics in this particular
point, i.e. the answer to the question, how the hidden state will change.

60

Marvin Meyer CC & SysID of a PMSM

A.3 Equations

A.3.1 Ornstein-Uhlenbeck Prozess
dx(t) = Θ(µ− x(t))dt + σdW(t), (A.5)

where Θ > 0 and σ > 0. dW(t) is the discretized Wiener process. µ is a constant.

A.3.2 Approximation Error
The absolute error between a value x and its approximation x̂ is defined as

△x = |x− x̂| . (A.6)

The relative error is defined as

νx = △x

|x|
=
∣∣∣∣∣x− x̂

x

∣∣∣∣∣ =
∣∣∣∣∣1− x̂

x

∣∣∣∣∣ . (A.7)

61

Marvin Meyer CC & SysID of a PMSM

A.4 Plots

A.4.1 Sigmoid

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

S
ig

m
oi

d
(x

)

c2 = 30

c2 = 10

c3 = 0.4

c3 = 0.6

c1 = 1

c1 = 1

c1 = 0.1

Fig. A.1: Sigmoid with different parameters.

62

Marvin Meyer CC & SysID of a PMSM

A.4.2 HPO

0 100 200 300 400 500 600

Trials

1.55× 10−2

1.6× 10−2

1.65× 10−2

1.7× 10−2

1.75× 10−2

1.8× 10−2

M
S

E

Best value

Objective value

Fig. A.2: Results of trails plotted over the course of the HPO. The blue circles mark the
achieved MSE of each trail on the evaluation set. The red curve marks the best result at
the trail.

63

Marvin Meyer CC & SysID of a PMSM

SGD Adam

Optimizer

10−1

100

101

M
S

E

10−5 10−4 10−3 10−2 10−1

Learning rate

ELU LeakyReLU ReLU Tanh

Activation

10−1

100

101

M
S

E

0.0 0.1 0.2 0.3

Negative slope

2 3 4 5

#Hidden layers

10−1

100

101

M
S

E

25 50 75 100 125

#Neurons in hidden layer 1

25 50 75 100 125

#Neurons in hidden layer 2

10−1

100

101

M
S

E

25 50 75 100 125

#Neurons in hidden layer 3

25 50 75 100 125

#Neurons in hidden layer 4

10−1

100

101

M
S

E

25 50 75 100 125

#Neurons in hidden layer 5

0

100

200

300

400

500

600

Trial number

Fig. A.3: This plot shows the different parameters that were sampled during the HPO in
dependence of the achieved MSE of the respective constellation. Each trial is marked with
a dot and the time of the trial is indicated by the color.

64

Marvin Meyer CC & SysID of a PMSM

A.5 Algorithms

A.5.1 DDPG Algorithm

Algorithm 1 DDPG algorithm from [32]
Randomly initialize critic network Q(x, u; w) and actor µ(x; θ) with weights w and θ.
Initialize target networks Q′ and µ′ with weights w− ← w, θ− ← θ
Initialize data buffer D
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state x1
for t = 1, T do

Select action uk = µ(xk; θ) +N according to policy and exploration noise
Apply action uk and observe reward rk and observe new state xk+1
Store transition (xk, uk, rk, xk+1) in R
Sample random mini-batch Db of N transitions (xi, ui, ri, xi+1) from D
Set q̂i = ri + γQ′(xi+1, µ′(xi; θ−); w−)
Update critic by minimizing the loss: L = 1

N

∑N
i=1(Q(xi, ui; w)− q̂i)2

Update the actor policy using the sampled policy gradient:

∇θL ≈
1
N

N∑
i=1
∇uQ(xi, ui; w)∇θµ(xi; θ)

Update the target networks:

w− ← (1− δ)w− + δw

θ− ← (1− δ)θ− + δθ

end for
end for

65

Marvin Meyer CC & SysID of a PMSM

A.5.2 Current Control and System Identification Algorithm

Algorithm 2 IPM and NC optimization.
Randomly initialize IPM and NC with weights ϕ and θ.
for episode = 1, M do

for batch = 1, |Db| do
Receive initial state x0
for n = 1, N do

Apply NC to EP and obtain x(tn)
if x terminal then

break
end if

end for
if n < N then

Add N − n zero entries to x(t1), x(t2), . . . , x(tn)
end if

end for
Combine all N state trajectories to tensor
Use ODEsolver to obtain x̂(t1), x̂(t2), · · · , x̂(tN)
Update the IPM by minimizing the loss L(ˆ̃x, x̃) = MSE(ˆ̃x, x̃)
if episode > warm-up then

Use ODEsolver with the improved IPM to obtain x̂(t1), x̂(t2), · · · , x̂(tN)
Update the NC by minimizing the loss CL(ˆ̃x, x̃∗) = λ·MSE(ˆ̃x, x̃∗)+(1−λ)·B(ˆ̃x)

end if
end for

66

Lists

List of Tables

4.1 Drive parameters of the PMSM. 33
4.2 Parameters of the actor network. 37
4.3 Parameters of the critic network. 37
4.4 Parameters of the DDPG agent, regarding the training. 38
4.5 Parameters of the NC. 39
4.6 Results of the experiments. Shown here is the MSE on the evaluation set,

where 9 runs were performed for the data-driven algorithms. Bold font
highlights the best score across the control approaches. 40

4.7 Parameters for the HPO . 43
4.8 Performance comparison regarding model size. 46
4.9 Results of the experiments. Shown here is the MSE on the evaluation set,

where 9 runs were performed for each setup. Bold font highlights the best
score across the experiments. 49

4.10 Ratio between parameter estimates and ground truth after initial warm-up
phase and after completed training phase. 50

4.11 Ratio between parameter estimates and ground truth after initial warm-up
phase and after completed training phase. 52

List of Figures

2.1 Structure of the drive system. 3
2.2 Conceptual structure of a three-phase VSI. 4
2.3 Structure of the B6 bridge. 4
2.4 Visualization of the voltage constraints forming two hexagons [6]. 6
2.5 Cross section of a PMSM with only one pole pair. This is a simplification

to better distinguish the individual elements. Usually PMSMs contain
several pool pairs. 7

2.6 The equivalent circuit diagrams for the PMSM in αβ-coordinates. 7
2.7 Illustration of the different coordinate systems within the PMSM. 8
2.8 The equivalent circuit diagrams for the PMSM in dq-coordinates. 9
2.9 Standard control loop. 10
2.10 Contol loop with PI controller. 11

67

Marvin Meyer CC & SysID of a PMSM

2.11 PI controller with anti-wind-up. 12
2.12 Block diagram of the drive system created by the GEM toolbox showing

the environment and the controller (cf. [10]). 12
2.13 The various sub-disciplines within system theory. Highlighted in red is the

desired quantity. 13
2.14 Visualization showing the structure of a small NN with three layers, which

are all fully connected. 16
2.15 Example implementation of a NN with residual blocks. Blocks can contain

arbitrary number of layers, which in themselves can have different functions.
If the size changes within the skipped block, it must also be adjusted in the
skip connection. These blocks can be used alongside other layers. 16

2.16 Illustration of a typical agent-environment setup (cf. [31]). 19
2.17 Summarized DDPG agent (cf. [31]). 21

3.1 Block diagram of the current control via the NC. Time dependencies have
been omitted here in favor of a readable illustration. 27

3.2 Block diagram of the current control via the NC and simultaneously system
identification of the EP by fitting the IPM. Time dependencies have been
omitted here in favor of a readable illustration. 29

3.3 Illustration of the reference space. 31
3.4 Example reference trajectories. 31
3.5 Block diagram of the HPO. 32

4.1 Contol loop within the Laplace domain. 36
4.2 Block diagram of the current control via PI controller of the PMSM. 36
4.3 Graphical presentation of the results, with the data-driven approaches

shown as boxplots. The result of the PI controller is indicated as a vertical
line. 40

4.4 Comparison between the different control algorithms. 41
4.5 Comparison of the control algorithms, whereby the FOC is terminated

prematurely due to the violation of the constraints. The time of termination
is marked by the dashed line. 42

4.6 Results of trials plotted over the course of the HPO. The circles indicate
the achieved MSE of each trial on the evaluation set. The curve marks the
best result over the duration of the HPO. 44

4.7 This plot shows the different parameters that were sampled during the
HPO in dependence of the achieved MSE of the respective constellation.
Each trial is marked with a dot and the time of the trial is indicated by the
color. 45

4.8 Training progression of the 2 parameter identification for run 1. The upper
plot shows the training progression of the IPM and NC in terms of the
losses in logarithmic scale. In the lower plot shows the progression of the
averaged trajectory length of the EP. 51

68

Marvin Meyer CC & SysID of a PMSM

4.9 Progression of the IPM’s two learned parameters over the course of the
training. 52

4.10 Training progression of the 4 parameter identification for run 1. The upper
plot shows the training progression of the IPM and NC in terms of the
losses in logarithmic scale. In the lower plot shows the progression of the
averaged trajectory length of the EP. 53

4.11 The learnable parameters of the IPM for run 1 are shown over the course
of the training. 54

A.1 Sigmoid with different parameters. 62
A.2 Results of trails plotted over the course of the HPO. The blue circles mark

the achieved MSE of each trail on the evaluation set. The red curve marks
the best result at the trail. 63

A.3 This plot shows the different parameters that were sampled during the
HPO in dependence of the achieved MSE of the respective constellation.
Each trial is marked with a dot and the time of the trial is indicated by the
color. 64

Acronyms
AD automatic differentiation

Adam adaptive moment estimation

AI artificial intelligence

ANN artificial neural network

DDPG deep deterministic policy gradient

DE differential equation

DESSCA density estimation-based state-space coverage acceleration

EP external plant

FOC field-oriented control

GEM gym-electric-motor

HPO hyperparameter optimization

IGBT insulated-gate bipolar transistor

IPM internal plant model

IVP initial value problem

ML machine learning

69

Marvin Meyer CC & SysID of a PMSM

MOSFET metaloxide semiconductor field-effect transistor

MSBE mean squared Bellman error

MSE mean squared error

NC neural controller

NN neural network

NODE neural ordinary differential equation

ODE ordinary differential equation

PI controller proportional-integral controller

PMSM permanent magnet synchronous motor

ReLU rectified linear unit

ResNet residual neural network

RL reinforcement learning

SGD stochastic gradient descent

SI system identification

SO symmetric optimum

VSI voltage-source inverter

Nomenclature
t time

k timestep

Sa, Sb, Sc switch

sa, sb, sc switching signal

uDC DC supply voltage

u0 zero component of the voltage

uab, ubc, uca line-to-line voltage

ua, ub, uc voltages for phase a,b,c

uα, uβ voltages in α- and β-coordinates

ud, uq voltages in d- and q-coordinates

ia, ib, ic currents for phase a,b,c

70

Marvin Meyer CC & SysID of a PMSM

iα, iβ currents in α- and β-coordinates

id, iq currents in d- and q-coordinates

Ψa, Ψb, Ψc magnetic flux for phase a,b,c

Ψα, Ψβ magnetic flux in α- and β-coordinates

Ψd, Ψq magnetic flux in d- and q-coordinates

T23 transformation matrix (αβ- to dq-coordinates)

Rs stator resistance

Ls stator inductance

Ld, Lq inductance in d- and q-coordinates

Ψp permanent magnet flux

ε rotor angle

Q(ε) rotation matrix

ωel electrical angular velocity

p pole pair number

ωme mechanical angular velocity

Jrotor moment of inertia of the rotor

e control error

u control variable

r reference

y system output

Kp proportional gain

Kp integral gain

TN integration time

τ , ts sampling interval

x feature/input/state vector

W weight matrix

b bias vector

g activation function

y output vector

71

Marvin Meyer CC & SysID of a PMSM

D data buffer/dataset

f function/model

θ, w, ϕ parameter set of a neural network

ŷ predicted output

L loss

B barrier function

η learning rate

u action/input vector

N random process

µ actor network

Q critic network

µ′ target actor network

Q′ target critic network

r reward

θ−, w− delayed parameter set

γ discount factor

q Q-value

q̂ target Q-value

δ update rate

a Lagrangian multiplier

T terminal point

A, B system matrix

e constant excitation vector

Aϕ, Bϕ system matrix containing learnable parameters

eϕ constant excitation vector containing learnable parameters

□̃ normalization

s limit

π policy

□̂ estimated

72

Marvin Meyer CC & SysID of a PMSM

□∗ ground truth/reference

□⊤ transpose

c1, c2, c3 form factors

λ weighting factor

W Wiener process

σ variance

dW discretized Wiener process

GPI transfer function of the PI controller

Gd,q transfer function of controlled system

τd,q stator time constant

T1, Tσ time constant

Vs gain of the controlled system

a adjustable parameter for the PI controller

References
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the
game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587,
pp. 484–489, 2016.

[3] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary
differential equations,” Advances in neural information processing systems, vol. 31,
2018.

[4] D. Schröder and J. Böcker, Elektrische antriebe-regelung von antriebssystemen.
Springer, 2009, vol. 2.

[5] R. M. Llorente, Practical Control of Electric Machines: Model-Based Design and
Simulation. Springer Nature, 2020.

[6] J. Böcker, “Geregelte drehstromantriebe,” Universität Paderborn, New York, vol. 170,
2009.

[7] K. Hasse, “Zum dynamischen verhalten der asynchronmaschine bei betrieb mit
variabler standerfrequenz und standerspannung,” ETZ-A Bd., vol. 89, p. 77, 1968.

[8] F. Blaschke, “The principle of field orientation as applied to the new transvector
closed-loop system for rotating-field machines,” Siemens review, vol. 34, no. 3,
pp. 217–220, 1972.

73

Marvin Meyer CC & SysID of a PMSM

[9] V. M. Bida, D. V. Samokhvalov, and F. S. Al-Mahturi, “Pmsm vector control
techniques—a survey,” in 2018 IEEE Conference of Russian Young Researchers in
Electrical and Electronic Engineering (EIConRus), IEEE, 2018, pp. 577–581.

[10] P. Balakrishna, G. Book, W. Kirchgässner, M. Schenke, A. Traue, and O. Wallscheid,
“Gym-electric-motor (gem): A python toolbox for the simulation of electric drive
systems,” Journal of Open Source Software, vol. 6, no. 58, p. 2498, 2021. [Online].
Available: https://doi.org/10.21105/joss.02498.

[11] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[12] A. Traue, G. Book, W. Kirchgässner, and O. Wallscheid, “Toward a reinforcement
learning environment toolbox for intelligent electric motor control,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 33, no. 3, pp. 919–928,
2022.

[13] K. J. Åström and P. Eykhoff, “System identification—a survey,” Automatica, vol. 7,
no. 2, pp. 123–162, 1971.

[14] R. Isermann and M. Münchhof, Identification of dynamic systems: an introduction
with applications. Springer, 2011, vol. 85.

[15] A. L. Samuel, “Some studies in machine learning using the game of checkers. ii—recent
progress,” Computer Games I, pp. 366–400, 1988.

[16] T. M. Mitchell and T. M. Mitchell, Machine learning. McGraw-hill New York, 1997,
vol. 1.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
[18] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network

learning by exponential linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.
[19] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations

in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.
[20] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, “Incorporating second-

order functional knowledge for better option pricing,” Advances in neural information
processing systems, vol. 13, 2000.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[23] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[24] J. J. Moré, “The levenberg-marquardt algorithm: Implementation and theory,” in
Numerical analysis, Springer, 1978, pp. 105–116.

[25] D. M. Olsson and L. S. Nelson, “The nelder-mead simplex procedure for function
minimization,” Technometrics, vol. 17, no. 1, pp. 45–51, 1975.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations
by error propagation,” California Univ San Diego La Jolla Inst for Cognitive Science,
Tech. Rep., 1985.

[27] L. B. Rall, Automatic differentiation: Techniques and applications. Springer, 1981.

74

https://doi.org/10.21105/joss.02498

Marvin Meyer CC & SysID of a PMSM

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information processing systems, vol. 32,
2019.

[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: A system for large-scale machine learning,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.
[Online]. Available: https://www.usenix.org/system/files/conference/osdi16/osdi16-
abadi.pdf.

[30] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A
survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[31] W. Kirchgässner, M. Schenke, O. Wallscheid, and D. Weber, Reinforcement learning
course material, Paderborn University, 2020. [Online]. Available: https://github.
com/upb-lea/reinforcement_learning_course_materials.

[32] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[35] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2,
pp. 157–166, 1994.

[36] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the thirteenth international conference on artificial
intelligence and statistics, JMLR Workshop and Conference Proceedings, 2010,
pp. 249–256.

[37] Y. Lu, A. Zhong, Q. Li, and B. Dong, “Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equations,” in International Conference
on Machine Learning, PMLR, 2018, pp. 3276–3285.

[38] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural ordinary
differential equations, 2019. arXiv: 1806.07366 [cs.LG].

[39] S. Massaroli, M. Poli, F. Califano, J. Park, A. Yamashita, and H. Asama, “Optimal
energy shaping via neural approximators,” SIAM Journal on Applied Dynamical
Systems, vol. 21, no. 3, pp. 2126–2147, 2022.

[40] C. Runge, “Über die numerische auflösung von differentialgleichungen,” Mathematis-
che Annalen, vol. 46, no. 2, pp. 167–178, 1895.

[41] W. Kutta, “Beitrag zur naherungsweisen integration totaler differentialgleichungen,”
Z. Math. Phys., vol. 46, pp. 435–453, 1901.

75

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://github.com/upb-lea/reinforcement_learning_course_materials
https://github.com/upb-lea/reinforcement_learning_course_materials
https://arxiv.org/abs/1806.07366

Marvin Meyer CC & SysID of a PMSM

[42] P. J. Prince and J. R. Dormand, “High order embedded runge-kutta formulae,”
Journal of computational and applied mathematics, vol. 7, no. 1, pp. 67–75, 1981.

[43] L. S. Pontryagin, Mathematical theory of optimal processes. CRC press, 1987.
[44] M. Poli, S. Massaroli, A. Yamashita, H. Asama, J. Park, and S. Ermon, “Torchdyn:

Implicit models and neural numerical methods in pytorch,”
[45] R. T. Q. Chen, Torchdiffeq, 2018. [Online]. Available: https://github.com/rtqichen/

torchdiffeq.
[46] M. Schenke and O. Wallscheid, Improved exploring starts by kernel density estimation-

based state-space coverage acceleration in reinforcement learning, 2021. arXiv: 2105.
08990 [cs.LG].

[47] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-generation
hyperparameter optimization framework,” in Proceedings of the 25rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2019.

[48] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
optimization,” Advances in neural information processing systems, vol. 24, 2011.

[49] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of
machine learning algorithms,” Advances in neural information processing systems,
vol. 25, 2012.

[50] P. J. Antsaklis and A. N. Michel, A linear systems primer. Springer Science &
Business Media, 2007.

76

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq
https://arxiv.org/abs/2105.08990
https://arxiv.org/abs/2105.08990

	Introduction
	Theoretical Fundamentals
	Electric Drive
	Inverter
	Pulse Centering
	Permanent Magnet Synchronous Machine
	Modeling
	Field-Oriented Control with PI-Controller
	Simulation Environment

	System Identification
	Machine Learning
	Neural Networks
	Reinforcement Learning

	Modeling
	Neural Ordinary Differential Equations
	Internal Plant Model with Neural Controller
	Structure
	Current Control via Neural Controller
	Current Control and System Identification

	Data Generation
	Hyperparameter Optimization

	Experimental Evaluation
	GEM Drive Simulation
	Current Control of a PMSM
	Baselines
	Neural Controller
	Results
	Discussion

	HPO of the Neural Controller
	Setup
	Results
	Discussion

	Current Control and System Identification
	Setup
	Training
	Results
	Discussion

	Summary
	Summary
	Outlook

	Appendix
	Dynamical Systems
	Derivation of NODE
	Equations
	Ornstein-Uhlenbeck Prozess
	Approximation Error

	Plots
	Sigmoid
	HPO

	Algorithms
	DDPG Algorithm
	Current Control and System Identification Algorithm

	Lists
	List of Tables
	List of Figures
	Acronyms
	Glossary
	Nomenclature
	References

