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Abstract

Electric vehicles are ever increasing in popularity and will likely supersede vehicles

with internal combustion engines in the future. But short driving ranges and long

charging times still make them less convenient for long-distance travel. Also, drivers

that cannot charge at home have to rely on the public charging infrastructure for

everyday charging, which often requires extra time compared to filling up an internal

combustion engine vehicle or charging at home. Another potential issue is that long

wait times could occur when too many vehicles want to charge at the same time at

the same charging station. In this thesis, we present several approaches to address

these issues.

First, by planning long-distance trips including charge stops, we can minimize

the total travel time on long journeys. We select the best compromise between

fast and energy-efficient routes by using a multicriteria shortest path search. We

also take into account nonlinear charge curves and consider only partially charging

the vehicle’s battery at the charge stops. To achieve practical computation times,

we exploit the fact that most route queries are between the known locations of

the charging stations and precompute parts of the shortest path search for these

locations. Simulation experiments confirmed that our routing and charging strategy

results in reduced total travel times compared to alternative strategies.

Second, to minimize the extra time required for everyday charging, we plan

urban trips including charge stops while taking the driver’s schedule for the day into

account. The vehicle is charged either en route while stopping at a fast charging

station, similar to using a gas station, or at a charging station close to the destination.

The latter has the advantage that the driver can visit the destination and does not

have to wait with the vehicle, but it is only feasible if a charging station is available

within walking distance of the destination. Simulation results indicate that having

both options can significantly improve the extra time spent with charging compared

to being limited to one option.

Third, we propose a central service that coordinates charging between vehicles

to reduce the time people have to wait at charging stations. Vehicles can query wait

time estimates for any charging station at any point in the future, if they agree to
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announce their own planned charge stops to the service in exchange. The wait time

estimates can be used by the vehicles when planning their trips to avoid long wait

times. In simulations, we were able to achieve a reduction in wait times of up to

98 %.

Fourth, we introduce an approach to extend the public charging infrastructure.

By analyzing typical driver schedules, we identify locations for new slow and fast

charging stations and, using simulations, we determine a suitable number of charge

points. With a combination of a few fast charging stations and many slow charging

stations, we were able to significantly reduce the average extra time spent with

charging.



Kurzfassung

Elektroautos werden immer beliebter und in Zukunft wahrscheinlich Fahrzeuge mit

Verbrennungsmotoren verdrängen. Aufgrund der geringeren Reichweite und der

langen Ladezeiten sind Langstreckenfahrten jedoch nach wie vor mit mehr Aufwand

verbunden. Falls keine Lademöglichkeit zu Hause besteht, muss außerdem für das

alltägliche Laden die öffentliche Ladeinfrastruktur genutzt werden. Dies nimmt oft

zusätzliche Zeit in Anspruch, im Vergleich zum Tanken von Verbrennern oder dem

Laden zu Hause. Ein weiteres potenzielles Problem sind lange Wartezeiten, wenn

zu viele Fahrzeuge gleichzeitig an einer Ladestation laden wollen. In dieser Arbeit

stellen wir mehrere Ansätze vor, um diese Probleme anzugehen.

Zum einen können wir durch eine Routenplanung inklusive Ladestopps die Ge-

samtreisedauer auf Langstrecken minimieren. Wir wählen den besten Kompromiss

aus schnellen und energiesparenden Routen mithilfe einer multikriteriellen Routen-

planung. Außerdem berücksichtigen wir nichtlineare Ladekurven und können bei

Ladestopps Teilladungen der Fahrzeugbatterie planen. Damit die Rechenzeiten in

einem akzeptablen Rahmen bleiben, führen wir Vorberechnungen der Routenpla-

nung für bestimmte Standorte durch. Wir nutzen dabei die Tatsache aus, dass die

meisten Routen zwischen den bekannten Standorten der Ladestationen berechnet

werden müssen. Simulationsexperimente bestätigten, dass unsere Routenplanungs-

und Ladestrategie bessere Gesamtreisedauern als alternative Strategien erzielt.

Im zweiten Ansatz minimieren wir die zusätzliche Zeit, die für das alltägliche

Laden benötigt wird. Wir erreichen dies mit einer Routenplanung für den städtischen

Raum die den Tagesplan des Fahrers berücksichtigt. Das Laden erfolgt entweder

bei Zwischenstopps an Schnellladestationen, ähnlich der Nutzung einer Tankstelle,

oder an Ladesäulen in der Nähe des Zielortes. Letzteres hat den Vorteil, dass der

Fahrer während des Ladevorgangs nicht beim Fahrzeug warten muss, setzt aber

eine Ladesäule in fußläufiger Entfernung zum Zielort voraus. Simulationsergebnisse

zeigen, dass durch Verwendung beider Optionen deutlich bessere Zeiten erreicht

werden können, als wenn nur eine der Optionen zur Verfügung steht.

Der dritte Ansatz ist ein zentraler Dienst, der durch Koordinierung der Fahrzeuge

untereinander Wartezeiten an Ladestationen verringern kann. Fahrzeuge können
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geschätzte Wartezeiten für beliebige Ladestation in der Zukunft abfragen, wenn sie

dem Dienst im Gegenzug ihre eigenen geplanten Ladestopps mitteilen. Die geschätz-

ten Wartezeiten können die Fahrzeuge bei ihrer Routenplanung berücksichtigen, um

lange Wartezeiten zu vermeiden. In Simulationen konnten wir eine Reduzierung

der Wartezeiten um bis zu 98 % erreichen.

Als Viertes präsentieren wir einen Ansatz zum Ausbau der öffentlichen Ladeinfra-

struktur. Durch die Analyse typischer Tagespläne bestimmen wir geeignete Standorte

für neue Langsam- und Schnellladestationen. Die passende Anzahl an Ladepunkten

ermitteln wir mit Simulationen. Mit einer Kombination aus wenigen Schnell- und

vielen Langsamladestationen konnten wir die zusätzliche Zeit, die für das alltägliche

Laden benötigt wird, deutlich verringern.
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Chapter 1

Introduction

Electric vehicles1 are ever growing in popularity. Global sales of electric vehicles

doubled in 2021 compared to 2020, and nearly 10 % of cars sold worldwide were

electric [1]. Many countries have already announced to ban the sale of cars with

internal combustion engines in the next few years. In June 2022, the European

Parliament voted to effectively ban the sale of combustion engine cars by 2035 [2].

Nevertheless, electric vehicles still have some disadvantages compared to cars

with internal combustion engines. The average driving range of an electric vehicle

in 2021 was only 350 km [1]. Longer ranges are usually only available for large and

expensive vehicles. Also, compared to refueling a combustion engine car, recharging

still takes a lot more time, even at fast charging stations. In Germany, there are

much fewer fast charging stations (about 2600 in 2022) than there are gas stations

(14 458 in 2021 [3]). This means that long-distance trips require more travel time

and planning, especially for vehicles with smaller driving ranges. Apart from driving

long-distance trips, regular everyday charging can also be a problem. Not everyone

has the option to install a charger at home or can charge at the workplace. These

drivers have to rely on the public charging infrastructure instead. But slow charging

can take many hours, and even fast charging often takes half an hour or more to

recharge the vehicle’s battery to 80 % state of charge (SOC). The long charge times,

during which the charge points are occupied, can also lead to long wait times if

multiple vehicles arrive at a charging station at the same time. Today, most electric

vehicles are charged at home (or at work) [4], but as electric vehicles are becoming

more common, this will likely change. Then, many more vehicles will rely on the

public charging infrastructure, and this problem will become even more relevant.

1Although the term electric vehicles can refer to all kinds of vehicles, including bicycles, trains, buses,
and aircraft with electric propulsion, in this work, we use the term exclusively for electric cars that only
use energy stored in a rechargeable battery, also called battery electric vehicles (BEVs).
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2 1 Introduction

These issues can be tackled from multiple directions. Apart from technological

advancements, such as larger batteries to improve the driving range and higher

charging speeds, we can support drivers by planning trips that optimize the use of

charging stations. We can also coordinate charging between vehicles to improve

wait times and extend the charging infrastructure to provide more charging options.

1.1 Trip Planning

Planning trips for electric vehicles involves finding a route to drive and selecting

charging stations to make charge stops when necessary. Finding the route is more

challenging than for conventional vehicles because energy consumption plays a more

important role. The fastest route (the one with the shortest drive time) might require

a lot of energy that has to be recharged. Taking a slower, but more energy-efficient

route might actually be faster overall, if it means the vehicle has to make fewer

charge stops. To find the optimal route, a multicriteria shortest path search can

be used for the criteria drive time and energy consumption. It will find all Pareto

optimal routes from the fastest to the most energy-efficient route, but is a lot more

computationally expensive than regular (single-criteria) route planning.

Optimizing the charge stops is also challenging. Charge speeds are highly nonlin-

ear, especially for fast charging. Usually, the highest charge speed is only available

when the battery’s SOC is still low. It drops significantly as the battery is being

charged, especially after reaching about 80 % SOC. Therefore, it might make sense

to only charge the battery partially to keep the average charging speed high.

When planning long-distance trips, minimizing the total travel time, i.e., the

sum of drive time and charge time, is usually the main goal. A routing and charging

strategy is needed to find the optimal combination of routes and charge stops,

including how much should be charged. On a realistically sized street network,

thousands of routing and charging options have to be evaluated. The challenge is to

find a routing and charging strategy that can do this and still achieves practical run

times.

Urban trip planning has a different goal. The range of modern electric vehicles

is typically long enough to cover all trips of the day in an urban scenario without

recharging, assuming the vehicle has been fully charged overnight. But if the driver

does not have the option to charge at home, the vehicle cannot simply be charged

overnight. Instead, the driver has to rely on the public charging infrastructure to

charge the vehicle throughout the day. The goal is then to minimize the extra time

the driver spends with charging, compared to simply driving to each destination of

the day. Two different types of charging can be considered for this purpose: en-route

charging and destination charging. En-route charging means stopping to charge while
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en route to some other destination, while the driver waits with the vehicle, similar

to using a gas station. Since the driver waits with the vehicle while it charges, it

is only suitable for fast charging. Destination charging, on the other hand, means

that the vehicle is charging at or near the destination that the driver is visiting. It

is therefore also suitable for slow charging, especially if the driver is staying at the

destination for several hours. To find the optimal combination of en-route charging

and destination charging when planning trips, the driver’s schedule for the day has

to be taken into account. The challenge is to find a strategy that does this while also

considering multicriteria route options and realistic nonlinear charge models.

Another issue is the optimization of wait times, i.e., vehicles having to wait at a

charging station for a charge point to become free. The charge points are occupied

by other vehicles that may have also planned their trips. If the trips of the vehicles

are planned independently of each other, it is likely that some charging stations that

are positioned in favorable locations will be selected by too many vehicles, which

may result in queues and long wait times. This can be avoided by coordinating

the charge stops of the vehicles in some way. Route planning for an individual

vehicle is already computationally expensive and planning the trips of all vehicles

simultaneously would be impractical for a realistic number of vehicles. The challenge

is to coordinate charge stops between vehicles and effectively reduce the average

wait time without adding computational complexity to the route planning.

1.2 Charging Infrastructure Planning

Extending the charging infrastructure and thereby creating additional charging

options for electric vehicles is another way to improve the situation. Planning the

extension involves finding suitable locations for new charging stations (siting) and

determining the right number of charge points at each charging station (sizing).

Since fast and slow charging stations are used in a completely different manner [5],
they have to be considered separately in the siting process. Fast charging stations

are mainly used for en-route charging and slow charging stations for destination

charging. Or to put it simply, fast charging stations are needed where many cars

drive and slow charging stations where many cars park. The challenge is to find a

siting and sizing strategy that leverages a combination of slow and fast charging

stations to effectively improve the situation of electric vehicles.



4 1.3 Contributions

1.3 Contributions

The goal of this thesis is to tackle problems that still exist with charging electric

vehicles. This includes supporting drivers to optimize charge stops on their trips,

coordinating charging between vehicles, and extending the charging infrastructure.

The first major contribution of this thesis is our long-distance trip planning

approach [6], which plans trips including charge stops that minimize the total travel

time. It is based on a multicriteria shortest path search to find optimal routes from

the fastest to the most energy-efficient route. It uses realistic energy consumption

and nonlinear charging models and supports partial charging. The multicriteria

shortest path search is very computationally expensive. To achieve acceptable run

times, we introduce the acceleration technique shortest-path-tree precomputing,

which exploits the fact that most path queries are between the known locations of

the charging stations.

The next contribution is our urban trip planning approach [7]. It builds upon

our long-distance trip planning approach, but instead of minimizing the total travel

time to reach the destination, it minimizes the extra time spent with charging within

the day’s schedule of the driver. The most important addition is the option for

destination charging, which uses the time the driver spends at an activity to charge

the vehicle. The planner can decide between destination charging and en-route

charging at fast charging stations. This way, it can utilize the available fast charging

stations as well as slow charging stations.

Another major contribution is the coordination of charging between vehicles

with our charging station database (CSDB) in order to reduce wait times [8]. The

CSDB is a central service that electric vehicles can use when planning their trips to

get wait time estimates in the future. In exchange for providing wait time estimates,

the CSDB expects the vehicles to announce their own planned charge stops. The

planned charge stops of all vehicles, along with the current utilization of the charging

stations and historical data about past utilizations, form the basis for the calculation

of the estimates. Both our long-distance trip planner and our urban trip planner can

use them to effectively reduce wait times.

The final major contribution is our charging infrastructure siting and sizing

approach [9], which has the goal of extending the public charging infrastructure to

meet the future demand of electric vehicles. By analyzing typical driver schedules,

it can find new locations for slow and fast charging stations in an urban scenario.

Simulations are used to find a suitable number of charge points for the charging

stations to reach acceptable wait times. By using our CSDB to coordinate charging

between vehicles, we can reduce the number of necessary charge points.
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1.4 Publications

This thesis is based on the following peer-reviewed publications:

• S. Schoenberg and F. Dressler, “Planning Ahead for EV: Total Travel Time

Optimization for Electric Vehicles,” in 22nd IEEE International Conference on

Intelligent Transportation Systems (ITSC 2019), Auckland, New Zealand: IEEE,

Oct. 2019

In this conference publication, I presented a long-distance trip planning ap-

proach that uses a multicriteria shortest path search. It can plan charge stops

with partial charging using a nonlinear charge model. To accelerate the mul-

ticriteria shortest path search, I introduced shortest-path-tree precomputing,

which takes advantage of the fact that most searches are between the known

charging station locations and precomputes parts of the graph exploration.

• S. Schoenberg and F. Dressler, “Reducing Waiting Times at Charging Stations

with Adaptive Electric Vehicle Route Planning,” IEEE Transactions on Intelligent

Vehicles (T-IV), Jan. 2022

This journal article is an extension of the previous conference paper. I in-

troduced the CSDB to coordinate charge stops between vehicles in order to

reduce wait times at charging stations.

• S. Schoenberg, D. S. Buse, and F. Dressler, “Coordinated Electric Vehicle Re-

Charging to Reduce Impact on Daily Driving Schedule,” in 32nd IEEE Intelligent

Vehicles Symposium (IV 2021), Nagoya, Japan: IEEE, Jul. 2021

In this conference publication, I created an urban trip planning approach that

aims to charge vehicles of drivers that have no option to charge at home. It

takes into account the drivers’ schedules of the day when planning charge

stops and can select between en-route charging and destination charging. The

urban scenario including the drivers’ schedules was contributed by Dominik S.

Buse.

• S. Schoenberg, D. S. Buse, and F. Dressler, “Siting and Sizing Charging Infras-

tructure for Electric Vehicles with Coordinated Recharging,” IEEE Transactions

on Intelligent Vehicles (T-IV), Apr. 2022

This journal article is an extension of the previous conference paper. I intro-

duced a siting and sizing approach to extend the existing charging infrastruc-

ture with slow and fast charging stations.
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1.5 Structure

The remainder of this thesis is structured as follows: In Chapter 2, the fundamentals

of route planning in general and for electric vehicles in particular are explained.

Chapter 3 describes how we model electric vehicles in this work. We use five vehicle

types from different car segments, each with individual battery capacities, realistic

energy consumption models and charge curves.

Our long-distance trip planning approach is presented in Chapter 4. It also

includes our acceleration technique, shortest-path-tree precomputing, which enables

us to use multicriteria shortest path searches with acceptable run times. Following,

in Chapter 5, we describe our urban trip planning approach. Chapter 6 is about

the coordination of charging between vehicles with our CSDB to reduce wait times.

In Chapter 7, we present our siting and sizing approach to extend the charging

infrastructure with new charging stations and charge points. Finally, in Chapter 8,

we conclude the findings of this thesis.



Chapter 2

Fundamentals and Related Work

In this chapter, we introduce the fundamentals and discuss related work that the rest

of the work is built upon. We describe how the street network can be represented

digitally, as well as how route planning works in general and specifically for electric

vehicles.

2.1 Street Network

The street network is the system of interconnected streets and roads. Digitally, it is

represented as a graph, with nodes forming the shape of the streets and directed edges

signifying the permitted driving direction. The nodes have a position, which can be

either two-dimensional (i.e., latitude and longitude) or three-dimensional (latitude,

longitude, and elevation). They might also hold additional information about the

junction type, traffic lights, etc. The edges can be annotated with information about

the type of street and its speed limit.

The graph is a weighted graph, which means that each edge has a cost (or weight)

associated with it, which represents how expensive it is to travel across it. The cost

depends on the selected criterion. A simple criterion is driving distance, where the

cost is the distance between the nodes of the edge. More practically useful criteria

for path finding in a street network are travel time and energy consumption. They

depend on the driving speed that is driven on the edge and can be vehicle specific.

A popular source of data for such a graph is OpenStreetMap (OSM), which is

an open geospatial database that stores, among other things, information about the

street network of the entire world and is freely available for anyone to use. We can

extract information about the layout of the streets and roads, speed limits (either

specified directly or inferred from the road classification), and traffic lights. However,

the node positions in OSM are only two-dimensional. To create three-dimensional

node positions, we have to include elevation data from an additional data source.

7



8 2.2 Shortest Path Problem

We can use the freely available data from NASA’s Shuttle Radar Topography Mission

(SRTM), which provides high-resolution elevation data for most of the Earth.

In this work, all graphs were created from OSM data combined with an improved

version [10] of SRTM elevation data.

2.2 Shortest Path Problem

The shortest path problem is the problem of finding the path with the least cost in a

graph between an origin node and a destination node. It is the fundamental problem

that must be solved when planning routes in a street network. Depending on the

criterion for the edge cost, the shortest path might be the shortest route (distance

criterion), fastest route (travel time criterion), most energy-efficient route (energy

consumption criterion), or some combination thereof.

There are several different algorithms that can solve the shortest path problem.

In the following, we will discuss Dijkstra’s algorithm, A*, and contraction hierarchies.

All of them have to explore the graph when finding the shortest path, i.e., going

through the nodes and edges to sum up the cost. Depending on the size of the

graph and the distance between the origin and destination node, a large number of

edges might have to be explored, which can make this a computationally expensive

task. An example of how the edges are explored by these algorithms can be seen in

Figure 2.1.

2.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm [11] is a well-known solution to solve the shortest path problem.

The algorithm explores the graph node by node, starting with the origin node with

a cost of zero and continuing with the node with the least summed up cost so far.

For each node, it explores the edges to the neighbor nodes and sums up the cost to

reach them. It continues to explore the graph until it reaches the destination node.

Since the search is undirected, the exploration has a roughly circular shape, with

the origin node in the center and the destination node at the edge of the circle (cf.

Figure 2.1 (a)).

To reduce the number of nodes and edges that must be explored, we can also do

a bidirectional search. In that case, the algorithm explores the graph simultaneously

from the origin (forward search) and the destination (backward search) until both

searches meet in the middle. This approximately halves the number of nodes and

edges that have to be explored (cf. Figure 2.1 (c)).
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(a) Dijkstra’s algorithm unidirectional
(27939 explored edges)

(b) A* algorithm unidirectional
(16350 explored edges)

(c) Dijkstra’s algorithm bidirectional
(9692 explored edges)

(d) A* algorithm bidirectional
(6183 explored edges)

(e) Contraction hierarchies
(490 explored edges)

(f) Contraction hierarchies with A* query
(404 explored edges)

Figure 2.1 – Graph exploration of different routing algorithms. Blue: Explored
edges of forward search. Green: Explored edges of backward search. Red:
Shortest path. (© OpenStreetMap contributors, CC-BY-SA)
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2.2.2 A*

The A* algorithm [12] is a variant of Dijkstra’s algorithm that uses a heuristic to

do a directed search. The heuristic is an estimation of the minimal cost required

to get from a node to the destination and is used in addition to the summed-up

cost of the nodes to determine the order of node exploration. If the heuristic never

overestimates the cost, the shortest path is guaranteed to be found. For the distance

criterion, the heuristic could be the linear distance (beeline) between the node and

the destination; for the travel time criterion, it could be the linear distance traveled

at the maximum possible speed.

Depending on the heuristic, this can significantly reduce the number of nodes

and edges that have to be explored. For a further reduction, a bidirectional search

can also be used, analogous to Dijkstra’s algorithm (cf. Figure 2.1 (b) and (d)).

2.2.3 Contraction Hierarchies

Contraction hierarchies, introduced by Geisberger et al. [13], are an approach to

accelerate the shortest path search. Shortcuts are added to the graph in a prepro-

cessing step to speed up query times. The preprocessing step is computationally

expensive but only has to be performed once. Afterwards, queries for shortest paths

can be computed significantly faster, compared to using Dijkstra’s algorithm or A*

on the original graph.

In the preprocessing step, the nodes of the graph are contracted one by one. When

contracting a node, it is temporarily removed from the graph. As a replacement, new

edges (called shortcuts) are added to the graph that directly connect the neighbor

nodes with each other that were previously connected via the contracted node. The

shortcuts are only added if the previous connection via the contracted node was the

shortest path between the neighbor nodes. This ensures that the shortest paths are

maintained after contracting a node without introducing unnecessary new edges.

To find the shortest paths between the neighbor nodes, a shortest path search with

Dijkstra’s algorithm from each neighbor node to all other neighbor nodes has to

be performed. The contracted node is also assigned a level, which is simply an

ascending number (the first contracted node is level 1, the second node is level

2, and so on). A higher level indicates that the node was contracted later, and its

shortcuts might have replaced shortcuts of lower level nodes.

The shortest path can be queried using a bidirectional search with a modified

version of Dijkstra’s algorithm. Both searches only traverse upwards, i.e., they only

explore edges that lead to nodes with a higher level, which significantly limits the

number of nodes and edges that are being explored. In contrast to the regular

bidirectional version of Dijkstra’s algorithm, the search is not finished as soon as

both searches meet at a node. Instead, the searches will eventually overlap, i.e.,
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explore several common nodes. Of these common nodes, the one with the lowest

total cost determines the shortest path. The searches can be terminated when the

next node to explore would have a higher summed up cost than the currently best

shortest path determined by the common nodes.

The number of nodes and edges that must be explored is significantly reduced

while also guaranteeing to find the optimal path. To further speed up the query,

A* can be used instead of Dijkstra’s algorithm for the bidirectional search [14]. An

example of the exploration of such queries can be found in Figure 2.1 (e) and (f).

2.3 Route Planning for Electric Vehicles

There are special considerations to take into account when planning routes for

electric vehicles, compared to simply finding the shortest path. When braking or

driving downhill, the battery can recuperate energy, which means that there can be

negative energy consumption. How to deal with the resulting negative edge costs is

described in Section 2.4.

The battery of the electric vehicle creates additional constraints. The limited

range must be taken into account, meaning the battery must not run empty, but also

the battery cannot be charged to more than 100 % state of charge (SOC) when recu-

perating energy. Finding the shortest path that also considers the battery constraints

is a Constrained Shortest Path (CSP) problem [15].

A common use case is to find the fastest route that is still reachable with the

limited range of the vehicle. This can be done with a multicriteria shortest path

search, using the criteria travel time and energy consumption. A multicriteria

shortest path search returns all Pareto optimal paths for the selected criteria. From

these paths, we can select the one with the best travel time that still fits the energy

constraint. Having the option to select the best compromise between the fastest and

most energy-efficient paths is also useful when taking recharging into account, as

we will discuss later. How to do a multicriteria shortest path search is described in

Section 2.5.

Apart from the path to be driven, the travel time and energy consumption can

also be influenced by the driving speed. Driving at a high speed can shorten the

travel time but also significantly increase energy consumption. Especially on roads

with a high speed limit or no speed limit at all, such as the German Autobahn, driving

below either the speed limit, or the maximum speed of the vehicle, can make sense

to save energy. When using contraction hierarchies, this makes the preprocessing

step more complicated as this would lead to variable edge costs. A trivial way to

solve this problem would be to preprocess the graph separately for a number of

discrete maximum driving speeds. The downside is the amount of computational
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effort required to preprocess and the amount of storage required to store all the

graphs. Hartmann and Funke [16] presented a way to only preprocess the graph

once for a set of discrete maximum driving speeds. It could then be queried for any

speed within that set.

Baum et al. [14] define the Electric Vehicle Constrained Shortest Path (EVCSP)

problem as finding the path that is feasible, i.e., the battery never runs empty on

the way, and minimizes drive time. Their approach also considers variable driving

speeds, but it is not limited to discrete values, instead allowing continuous adaptive

speeds. They use a variant of contraction hierarchies and A*, modified for adaptive

speeds, and can query optimal results in less than a second in a street network of

Europe for realistic battery sizes.

In most practical use cases, getting the optimal solution is not as necessary as

fast query times. When small inaccuracies are acceptable, heuristics can be used to

significantly improve query times [14], [16].

2.4 Dealing with Negative Edge Costs

Electric vehicles can recuperate energy when braking or driving downhill, meaning

we can have negative energy consumption and therefore negative edge costs. Dijk-

stra’s algorithm, and, consequentially, contraction hierarchies, are limited to graphs

with only non-negative edge costs. The alternative Bellman-Ford algorithm [17],
[18], which does not have this constraint and can handle negative edge costs, is

significantly slower in practice and too slow for graphs of realistic sizes.

As a solution, we can use Johnson’s algorithm [19]. It is an additional prepro-

cessing step, in which we use the Bellman-Ford algorithm to compute potential

shift values for each node and reweight the edges such that there are no negative

edge costs anymore. This preprocessing step only has to be performed once. For a

graph of the street network of Germany, the preprocessing time is in the order of

minutes. Afterwards, we can use Dijkstra’s algorithm or contraction hierarchies on

the reweighted graph to find the shortest path as usual. Since the edge costs have

been modified, the cost (the sum of the edge costs or length of the path) returned

by Dijkstra’s algorithm, is shifted. We must reverse the potential shift by subtracting

the potential shift value of the origin node and adding the potential shift value of

the destination node.

In the case of multicriteria path finding with the criteria travel time and energy

consumption, only the energy consumption values can become negative. We can

ignore the travel time values when running Johnson’s algorithm and only apply the

potential shift on the energy consumption values.
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2.5 Multicriteria Shortest Path Problem

The multicriteria shortest path problem is an extension of the shortest path problem,

in which the edges have multiple edge cost values from different criteria. It is an

optimization problem where the goal is to find all Pareto optimal paths for the

selected criteria. In case of the criteria travel time and energy consumption, the

solution is the set of Pareto optimal paths from the fastest to the most energy-efficient

route. When two criteria are used, it is also called a bicriteria shortest path problem.

2.5.1 Dijkstra’s Algorithm

Dijkstra’s algorithm can be extended to solve the multicriteria shortest path problem

[20]. Instead of having one label with the current best cost at each node, there is

a Pareto set of labels at each node. And instead of exploring the graph from each

settled node, it is explored from each label. As there can be multiple labels at each

node, we might have to explore the same nodes and edges multiple times. Each

label represents one Pareto optimal path alternative to the node, and the further

away from the initial node we explore, the more path alternatives there will be. This

makes the exploration much more computationally expensive, especially for longer

distances.

2.5.2 Contraction Hierarchies

Contraction hierarchies can also be used to speed up multicriteria shortest path

searches [21]. The preprocessing step has to be altered slightly. When a node is

contracted, shortcuts are added to the graph to connect the neighbor nodes if the

contracted node was part of any Pareto optimal path between them. This results

in a lot more shortcuts being added, which in turn makes preprocessing a lot more

computationally expensive.

Especially towards the end of the preprocessing, when the vast majority of

nodes have already been contracted, the remaining few uncontracted nodes will be

connected to many neighbor nodes via shortcuts. Because a multicriteria shortest

path search has to be performed from every neighbor to find out which shortcuts

have to be added, contracting the last few nodes might be prohibitively expensive for

large graphs. In that case, it can make sense to leave the last few nodes uncontracted.

Storandt [22] found that contracting only 99.5 % of the nodes resulted in reasonable

preprocessing times. The uncontracted part of the graph is called the core graph

[23]. Performing queries on a partially contracted graph is possible but affects query

times. Figure 2.2 shows the effect of leaving parts of the graph uncontracted on

the preprocessing time and the average query time. In this example of the street
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network of North Rhine-Westphalia, contracting all nodes takes more than 17 h, while

contracting only 99.90 % takes less than five minutes. While saving preprocessing

time, the average query time is several times higher. In this case, contracting 99.97 %

seems to be a good compromise between preprocessing time and average query

time.
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Figure 2.2 – Effect of number of contracted nodes on preprocessing time and
average query time with the street network of North Rhine-Westphalia (based
on [6] © 2019 IEEE)



Chapter 3

Electric Vehicle Modeling

Accurate models of electric vehicles are the basis for all routing and charging decisions

made by our trip planning approaches. They compare routes with each other based

on travel time and energy consumption and make charging decisions based on the

time it takes to recharge the battery. There are many kinds of electric vehicles on

the road today that have very different characteristics. We therefore cannot simply

create one model that fits all.

In this chapter, we describe the vehicle types that we use in this work and present

our travel time and energy consumption models, as well as our charge model.

3.1 Vehicle Types

Electric vehicles are available in various sizes that can differ significantly in terms

of battery capacity, energy consumption, as well as charging performance. These

differences have a great impact on trip planning and charge planning decisions. In

this work, we use five vehicle types from different car segments, ranging from small

city cars (A segment) to big SUVs (J segment). These vehicle types were introduced

in [24], as part of an energy consumption model that we use in this work as well.

Four vehicle types are based on real production vehicles, and one, the vehicle type

for the J segment, is a generic model of an SUV. Of the electric vehicles sold in

Germany in 2020, more than 90 % were from these five segments [25], which gives

us a realistic coverage of vehicles on the road. The distribution of vehicle types that

we use in our simulations is based on the market share of the segments [25]. An

overview of the vehicle types and their battery capacities, energy consumption and

charging speeds as well as their share in our simulations can be seen in Table 3.1.

15
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Table 3.1 – Vehicle types and distribution within our simulations (based on
market share of segments of electric vehicles sold in Germany in 2020 [25])

Segment Share Vehicle
model

Battery
capacity
(kWh)

Average
consumption
(kWh/100km)

Max charge
power (kW)
AC / DC

A (city) 17 % VW e-up! 32 14.8 7.2 / 40
B (small) 31 % BMW i3 42 15.5 11 / 50

C (medium) 20 % VW ID.3 58 15.9 11 / 100
D (large) 11 % VW ID.4 77 18.6 11 / 125
J (SUV) 21 % generic 70 23.7 11 / 150

3.2 Driving

In our trip planning approach, driving the vehicle means finding the multicriteria

shortest paths for the criteria travel time and energy consumption. Therefore, our

model needs to calculate accurate values for these criteria to be used as edge costs

in our graph. Travel time and energy consumption both depend on how the vehicle

interacts with traffic. We do not simulate traffic in our trip planning approach, but

we do use results from the traffic simulator SUMO to calibrate our models of travel

time and energy consumption to make them more accurate.

3.2.1 Travel Time

A trivial approach to calculate travel time would be to assume that vehicles simply

drive at the posted speed limit for the length of the road. This would underestimate

the travel time because vehicles have to slow down and wait from time to time.

Assuming only light traffic, most vehicles drive close to the speed limit, but have to

slow down and wait at traffic lights and other junctions.

Our model uses the trivial travel time, i.e., driving at the speed limit, as a basis

and applies a constant factor to it. Additionally, a correction offset is added when

encountering a junction. We distinguish between priority junctions, priority-to-the-

right junctions, and traffic light junctions. We assume all vehicle types have the same

travel time characteristics.

3.2.2 Energy Consumption

To calculate the energy consumption, we use the energy consumption model intro-

duced in [24]. It is a physics-based model of individual powertrain components’

characteristics that can be parametrized to accurately calculate the energy consump-

tion of different electric vehicles. Five parameter sets for different electric vehicles

were created, which match the vehicle types we use in this work. The energy con-
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sumption data of the four vehicles that are based on real production vehicles, was

validated against manufacturer data and test bench measurements.

The model was developed for the traffic simulator SUMO to calculate the dynamic

energy consumption of a vehicle with acceleration and deceleration in traffic. In

this work, we only need static consumption values for the edge costs of our graph.

To calculate the energy consumption, the model needs velocity, acceleration, and

slope values as parameters. Because we do not consider it, we set the acceleration

to zero and only set the velocity and the slope. Similar to the travel time, this would

underestimate the energy consumption because we ignore traffic effects, especially

deceleration and acceleration at junctions. Therefore, we also apply a factor and

add correction offsets for different junction types.

3.2.3 Offset Calibration with SUMO

To calibrate the correction offsets of our travel time and energy consumption model,

we used the traffic simulator SUMO. We simulated thousands of trips with each

vehicle type, so we could compare the travel time and energy consumption results to

our static calculation of the same trips. Then, we carefully adjusted the offsets until

our static calculation matched the simulation results. The correction offsets for travel

time can be seen in Table 3.2, and the vehicle-type specific energy consumption

offsets in Table 3.3.

Figure 3.1 shows the correlation between our calibrated static calculations and

the SUMO simulation results. The results of the static calculation can, of course,

not always exactly match the results of the traffic simulation, because it does not

consider dynamic traffic effects. However, for the majority of trips, the static values

match the simulation results within ±10 %.

Table 3.2 – Travel time correction offsets

Factor Priority
junction
(s)

Priority-to-
the-right
junction (s)

Traffic light
junction (s)

1.02 0.5 2 10
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3.3 Charging

There are two main ways to charge an electric vehicle, with alternating current

(AC), and with direct current (DC). The electricity coming from the electrical grid is

always AC, and the battery inside the vehicle is always charged with DC. Therefore, a

conversion from AC to DC is necessary. The difference between AC and DC charging

is that with AC charging, the conversion happens inside the vehicle with an onboard

charger, and with DC charging, the charging station does the conversion.

The electrical grid transmits power with AC in three phases. Most public AC

charging stations in Germany support three-phase AC charging, but not all electric

vehicles do. All of our five vehicle types support three-phase charging, except the VW

e-up!, which only supports two-phase charging. The available charge power with AC

charging depends on the number of phases and the maximum current per phase that

Table 3.3 – Energy consumption correction offsets

Segment Factor Priority
junction
(Wh)

Priority-to-
the-right
junction (Wh)

Traffic light
junction
(Wh)

A 1.057 4.6 3.4 0.0
B 1.038 6.3 3.9 16.7
C 1.000 11.3 0.0 0.0
D 1.074 12.5 10.0 0.0
J 1.082 9.0 6.0 10.0

Travel time

0.6 0.8 1 1.2 1.4

J

D

C

B

A

Correlation (edge costs / simulation results)

E
n
er
gy

co
n
su
m
p
ti
on

Figure 3.1 – Correlation of travel time and vehicle-type specific energy con-
sumption of trips between our calibrated edge costs and the results of the
SUMO simulation. (based on [9] © 2022 IEEE)
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is supported by both the charging station and the vehicle’s onboard AC charger. In

this work, we make the simplifying assumption that all AC charging stations support

three-phase charging, and only compare the supported charge power of the charging

station and the vehicle.

Most AC charging stations support up to 22 kW, but many electric vehicles are

only capable of charging at up to 11 kW or even less. Because it can take several

hours to fully charge the battery, we define AC charging as slow charging. DC

charging is much faster, with charging stations typically capable of charging at rates

of between 50 kW and 350 kW. We therefore define DC charging as fast charging.

The actual achievable charge power varies significantly between vehicles and can

only be held for a part of the charge process. Not all electric vehicles are capable of

DC charging; some manufacturers offer it as an optional extra.

Batteries in modern electric vehicles use lithium-ion cells, which must be charged

with a charging protocol. The most commonly used charging protocols are CC-CV

(constant current – constant voltage) and the very similar CP-CV (constant power –

constant voltage), although there are also alternative charging protocols to improve

fast charging [26]. The CC-CV charging protocol has two phases. In the first phase,

the battery is charged with constant current. The cell voltage rises until it reaches

its maximum voltage uhigh. Then, it switches to the second phase, constant voltage.

The charge current then steadily decreases, and when it is near zero, the charge

process is complete. The alternative CP-CV uses constant power in the first phase.

Figure 3.2 shows the battery’s state of charge (SOC) and the charge current, power,

and voltage for the CC-CV and CP-CV charging protocols.

SOC

CC-CV

Current

Power

Time

Voltage

CP-CV

Time

Figure 3.2 – CC-CV and CP-CV charging protocols
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3.3.1 Slow Charging

The battery charging model we use in this work for slow charging supports both

the CC-CV and the CP-CV protocols. We assume that the switch between the phases

occurs at 80 % SOC and that the cell voltage increases linearly with the SOC [27].
The charge power pmax is determined by taking the lower value of charging station

power and electric vehicle AC charging power. The SOC of the battery can be in the

range 0≤ soc ≤ 1. The cell voltage rises linearly with the SOC until 80 %, and then

stays constant:

u(soc) =







ulow +
soc
0.8 (uhigh − ulow) for soc < 0.8

uhigh for soc ≥ 0.8
, (3.1)

with the minimum cell voltage ulow = 3.8 V and the maximum voltage uhigh = 4.2 V.

The charge current and power for the CC-CV protocol can be calculated as:

icc-cv(soc) =







imax for soc < 0.8
1−soc

0.2 · imax for soc ≥ 0.8
, (3.2)

pcc-cv(soc) = u(soc) · icc-cv(soc) . (3.3)

The calculation of current and power for the CP-CV protocol is very similar:

icp-cv(soc) =







pmax
u(soc) for soc < 0.8
1−soc

0.2 · imax for soc ≥ 0.8
, (3.4)

pcp-cv(soc) =







pmax for soc < 0.8

u(soc) · icp-cv(soc) for soc ≥ 0.8
. (3.5)

The model calculates the power in one-second steps and iteratively adds the

charged energy to the battery until soc ≥ 0.99. To validate the model, we compared

it to a measurement of the charging of an electric vehicle [28]. The source did not

mention the charging protocol used, but we assume it was CP-CV. In Figure 3.3,

we can see that our model matches the measurements within ±2 % when using the

CP-CV protocol, but with CC-CV it has a relative error of about 10 % at the beginning.

3.3.2 Fast Charging

Our simple charging model works well for slow charging, but fast charging is more

complicated. The switch between phases can happen a lot earlier than at 80 % SOC,
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and some vehicles might use an alternative charging protocol. To make realistic

calculations for fast charging, we used publicly available fast charging curves from

the charging station operator Fastned [29], which were available for the four vehicles

of our vehicle types that are based on real electric vehicles. For our generic SUV

vehicle type in the J segment, we created a fast-charging curve similar to the others.

As can be seen in Figure 3.4, the maximum charge power can only be held for a

short time and then drops significantly for most vehicles. And, while the highest

maximum charge power is more than three times greater than the lowest, the charge

times are much closer together. This can be attributed to the fact that the vehicles

with high fast charging speeds also have larger batteries.
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Figure 3.4 – Fast charging curves of vehicle types at a fast charging station
with at least 150 kW charge power (based on [9]© 2022 IEEE; data from [29])





Chapter 4

Long-Distance Trip Planning

In this chapter, we describe our long-distance trip planning approach. By long-

distance trips, we mean trips that cannot be driven non-stop without recharging

the battery on the way. The goal of our trip planner is to find the route, including

charge stops, that minimizes the total travel time. We define the total travel time as

the sum of drive time and charge time. The trip planner also has to find the optimal

charge amount at each charge stop. Since charging curves are highly nonlinear,

especially for fast charging, and charge power generally decreases as the state of

charge (SOC) of the battery rises, it makes sense to only partially charge the battery

at each charging station to avoid charging at low speeds towards the end.

The problem with minimizing the total travel time is that while driving a faster

route decreases the drive time, it also increases the energy consumption and therefore

the charge time. It might be faster overall to choose an energy-efficient route

over a fast route, if it saves time at the charging station. Our trip planner uses

an adaptive routing and charging strategy that selects the optimal route from all

Pareto optimal routes from fastest to most energy efficient, together with the optimal

charge amount at each charging station. But this multicriteria shortest path search is

very computationally expensive, and we have to repeat it many times to find routes

between the charging stations and the origin and destination. To speed this up, we

take advantage of the fact that we already know where the charging stations are

and calculate parts of the shortest path search ahead of time.

4.1 Related Work

Related work regarding route planning for electric vehicles in general was already

discussed in Section 2.3. In this section, we describe works that also consider charge

stops to recharge on long-distance trips.

23



24 4.1 Related Work

Storandt and Funke [30] presented an approach to find routes for electric vehicles

that include charge stops. They create an auxiliary graph of charging stations

(or battery swapping stations), where each charging station is connected to those

charging stations that are within the vehicle’s range. They can efficiently query for

routes that minimize the number of necessary charge stops to reach the destination.

In a subsequent work, Storandt [21] also took travel times and driving distances into

account to find routes that are a practical compromise between quick and energy

efficient. This includes, among other things, finding the most energy-efficient route,

which is at most 5 % longer than the shortest one, or finding the fastest route with a

limited number of charge stops. To accelerate the query, contraction hierarchies are

used with an uncontracted core graph that includes all charging station nodes.

Baum et al. [31] can compute energy-optimal shortest paths in polynomial

time, which allows for very low query times. This also applies to profile queries,

which find energy-optimal routes for different initial SOC values that respect battery

constraints. Using these profiles, they can find optimal amounts of energy to recharge

at charge stops to minimize the energy consumption. In [32], they take into account

the total travel time, i.e., the drive time and charge time, which is much more

computationally expensive. To accelerate queries, they use contraction hierarchies

with an uncontracted core graph that includes the charging stations, similar to [21].
They combine this with using an A* search, restricted to the core graph, when

making queries that include charge stops.

Morlock et al. [33] use a very different approach. In a first step, they query

a set of route alternatives between the origin and destination from a commercial

routing service. These routes are then used as a very simple street network graph. In

the second step, they make multicriteria shortest path queries on the graph to find

routes including charge stops. Because the graph is so heavily reduced, compared to

a full country-sized graph, they can use the Bellman-Ford algorithm, which would be

too slow in practice for ordinary sized street network graphs. This enables them to

achieve good query times in practice, but the reduced graph might lead to suboptimal

routes.

Similarly, Hecht et al. [34] also describe an electric vehicle route planner based

on routes from a commercial routing service. They use precise charging curves for

five electric vehicles to accurately calculate charging speeds. In their work, they

discuss more general questions, such as how much extra travel time an electric

vehicle causes on long-distance trips due to recharging, compared to a vehicle with

an internal combustion engine, and the influence of different parameters such as

battery capacity and charging station power. The results, which are specific to the

real-world charging infrastructure of Germany, show that the travel time is about

8 % longer compared to non-stop driving and depends on the travel distance and

the battery size. Increasing the charging station power has only a negligible effect,
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as there are already many charging stations in Germany with higher charging power

than vehicles can utilize.

Many modern electric vehicles are capable of fast charging with more than

100 kW, but they can usually only hold the top charging power for a short period of

time (cf. Section 3.3.2). With the exception of [34], the aforementioned works use

simple charging models, either ignoring charge time altogether [30], [31], using

a fixed time penalty [21], assuming that charge power is constant [33], or that it

drops only after about 80 % SOC [32]. Consequently, some works [21], [30], [35]
always assume to fully recharge the battery.

The long-distance trip planner presented in this chapter extends the state of the

art in the following way: It minimizes the total travel time, including charge stops,

by considering partial charging with an adaptive charging strategy that uses realistic

fast-charging curves and energy consumption models for five different vehicle types

(cf. Chapter 3). Optimal routes are selected with a multicriteria shortest path search.

To achieve practical query times, we present a way to use precomputed shortest-path

trees for the known locations of the charging stations.

4.2 Concept

To plan long-distance trips including charge stops, we create a separate graph with

the origin, destination, and all charging stations as nodes. We call this the charging

station graph. While the graph is being explored, edges are dynamically added to

connect the nodes that are within the driving range of the vehicle.

The goal of our trip planner is to minimize the total travel time. Traversing an

edge on the charging station graph represents driving to a charging station and

charging there. The edge cost therefore consists of the travel time and the charge

time. The charge time depends on the energy that was consumed while driving, i.e.,

driving a more energy-efficient route might increase travel time, but will decrease the

charge time. To select the optimal route, for each edge on the charging station graph,

we perform a multicriteria shortest path search on the street network graph for the

criteria travel time and energy consumption. From the resulting set of Pareto-optimal

paths, we select the one that results in the least combined travel time and charge

time.

A complication arises from the fact that we consider partial charging, i.e., not

always charging to 100 % SOC. The target SOC depends on which edge will be trav-

eled next, i.e., we need to charge less if the next charging station or the destination

is close. The target SOC is therefore unknown when we explore an edge, which

means we cannot calculate the exact charge time. To solve this issue, we temporarily

assume to charge to 100 % SOC and subtract the excess charge time from the edge
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Figure 4.1 – Long-distance trip planning example with multiple charge stops

cost of the following edge2. Additionally, we add a time penalty of tpen = 5 min for

each charge stop, to account for the time needed to park and plug in the vehicle.

This also prevents the algorithm from making an excessive number of short charge

stops, which would be inconvenient to the driver. The edge cost for an edge between

charging stations a and b is therefore calculated as follows:

edgecost=min
r∈R
(−ta

chr(socstar t) + t r + tpen + t b
chr(socstar t −

er

C
)) , (4.1)

where t r and er denote the travel time and energy consumption of route r ∈ R

respectively, and C is the battery capacity. t c
chr(soc) calculates the charge time at

charging station c from soc to 100 %. socstar t denotes the target SOC to which the

previous charging station should charge the vehicle. Calculating this value is part of

the charging strategy discussed in Section 4.2.1.

We use a slightly modified version of Dijkstra’s algorithm (or A*) to find the

shortest path on the charging station graph. The modifications being that we dynam-

2The apparent alternative to only consider the charge time of the previous charging station when
calculating the edge cost is not feasible, because then, we could not take into account the time required to
recharge the consumed energy when we select a route from the route alternatives on the street network
graph.
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ically generate the graph and the edge costs while traversing it and keeping track

of the battery’s SOC. The resulting shortest path contains the optimal charge stops

including partial charge amounts to minimize the total travel time. The selected

routes of the drives between charging stations can be joined to form the complete

route on the street network graph. An example can be seen in Figure 4.1.

4.2.1 Charging Strategy

Many trip planning approaches assume that the vehicle is being fully charged at

every stop. But charging speeds are highly nonlinear, especially for fast charging.

The speed is generally high at the beginning, and then decreases significantly with

increasing SOC. It can therefore make sense to only partially charge the vehicle to

prevent wasting time with slow charging speeds at high SOCs. We call selecting the

partial charge amount the charging strategy. Trivial charging strategies are to always

fully recharge or to always charge to 80 % SOC. Another charging strategy would

be to charge just enough to reach the next charging station.

Our adaptive charging strategy selects the charge amount based on the charge

curve of the vehicle and the maximum charge powers of the current charging station

and the following one. For the charge curves, we use our charging model from

Section 3.3. We charge at least enough energy to reach the following charging

station or the destination. We continue charging as long as the charge power,

according to the charge curve, is above the maximum charge power of the following

charging station. See Figure 4.2 for an example.

0 0.2 0.4 0.6 0.8 1
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Figure 4.2 – Adaptive charging strategy example. Minimum SOC to reach next
charging station: 70 %. Next charging station max charge power: 50 kW. We
charge until the power drops below the following charging stations maximum
charge power (84 %).
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4.3 Acceleration Techniques

The long-distance trip planner makes frequent multicriteria shortest path searches

on the street network graph to calculate edge costs for the charging station graph

between the origin, destination, and charging stations. These multicriteria shortest

path searches are very computationally expensive and would lead to unacceptable

run times if we were simply using contraction hierarchies to query routes. We make

use of several acceleration techniques to achieve acceptable performance.

4.3.1 Shortest-Path-Tree Precomputing

When making multicriteria shortest path searches, the most computationally expen-

sive part is exploring the graph and creating Pareto sets of labels at each visited

node. By using contraction hierarchies, we can greatly reduce the number of nodes

that have to be visited, which significantly improves run time, but even then, it is

still expensive. For long distances of >200 km on a complex graph, the query times

might still be in the order of seconds or even minutes. Because the long-distance

trip planner makes many such queries, the overall computation time would become

unacceptably long.

All these queries are between the origin, the destination, and the charging

stations. We can exploit the fact that we know the locations of the charging stations

in advance and can explore the graph and create Pareto sets of labels for all of them

in a preprocessing step. The result of this exploration is a shortest-path tree, which

is why we call this approach shortest-path-tree precomputing. The trip planner only

has to explore the graph once from the origin and the destination. After that, queries

between the origin, the destination, and all charging stations are about two orders

of magnitude faster, compared to exploring the graph for every query again. An

example of this concept can be seen in Figure 4.3.

It should be noted that this is only feasible in combination with contraction

hierarchies. Otherwise, the number of nodes being explored, and consequently the

Pareto sets being created, would be too large to be practically stored.

4.3.1.1 Precomputing

Precomputing the shortest-path trees is an additional preprocessing step, in which

we explore the graph around each charging station and store the result to be used in

queries later. The exploration can be limited to an energy cost equal to the battery

capacity of the vehicle.

The queries for contraction hierarchies use a bidirectional search. Because the

street network graph is directed, to represent the allowed driving direction, the

exploration for the forward and backward search is different. While the forward
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O

D

Figure 4.3 – Shortest-path-tree precomputing concept. Red circles: shortest-
path trees that can be precomputed by exploring the graph around the charging
stations. Blue circles: Exploration around origin and destination necessary for
a query.

search (origin to destination) explores the graph in the direction of the edges, the

backward search (destination to origin) explores it in the opposite direction. Since

the charging stations can be both the origin and the destination in a query, we have

to explore the graph in both directions. Therefore, for each charging station, we

create a forward shortest-path tree, and a backward shortest-path tree.

4.3.1.2 Query

A query is bidirectional, we therefore need the forward shortest-path tree of the

origin node and the backward shortest-path tree of the destination node. First, we

find the common nodes, i.e., the nodes that are covered by both trees. Second, for

each common node, we create the sumset of the Pareto sets of labels for that node

from both trees and remove non Pareto optimal entries. Each of these Pareto sets

contains the costs of the Pareto optimal shortest paths from origin to destination,

but only for those paths that contain the respective node. Finally, we combine all

the Pareto sets into one, which gives us the costs of all Pareto optimal shortest paths.

An example query with shortest-path trees for two criteria is depicted in Figure 4.4.

In addition to the cost, each entry in a Pareto set of labels contains the predecessor

node within the shortest-path tree. The node is necessary to reconstruct the path

on the street network graph. When we create the sumsets of Pareto sets for the

common nodes, the labels have to contain the predecessor nodes of both trees. The

labels in the combined Pareto set additionally have to store the common node from

which the label is from. Together, this information can be used to reconstruct each

shortest path of the query result.

Reconstructing a path involves resolving all shortcuts to their underlying edges

in both shortest-path trees. Doing this for all shortest paths in the Pareto set is

computationally expensive. To save computation time, the long-distance trip planner



30 4.3 Acceleration Techniques

does not reconstruct every path. It makes decisions based on the costs alone and

only reconstructs the final path.

4.3.2 Charging Station Lookup Table

We can also simply calculate the Pareto sets of costs between all charging stations in

another preprocessing step. A simple lookup table can be used to get the resulting
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Figure 4.4 – Example query with precomputed shortest-path trees (based on
[8] © 2022 IEEE)
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Pareto set for each combination of charging stations, which is significantly faster

than doing a query even with shortest-path-tree precomputing.

This is, of course, only feasible if the number of charging stations is somewhat

limited. For long-distance trip planning in Germany, it is sufficient to consider the fast

charging station locations in Germany, of which there are 2667 in our scenario. This

creates n · (n−1) = 7112889 possible combinations. To be able to precompute these

entries in a reasonable amount of time, we use shortest-path-tree precomputing.

4.3.3 Preliminary Edge Costs

In a realistic scenario with a dense network of charging stations and an electric

vehicle with a long range, there are many charging stations to choose from. Even

with shortest-path-tree precomputing, the trip planner has to minimize the number

of queries. Finding a single-criteria shortest path is orders of magnitude faster

than finding all multicriteria shortest paths. Thus, when we explore a node in the

charging station graph and have to calculate the edge costs to all neighbor nodes,

we do not perform multicriteria shortest path searches for all edges. Instead, we

calculate a preliminary heuristic edge cost, based on two single-criteria shortest path

searches for the fastest and the most energy-efficient route. With this, we create a

best-case cost for this edge, assuming the travel time of the fastest route and the

energy consumption of the most energy-efficient route. Only if this edge is selected

to be explored next, do we perform the multicriteria shortest path search and replace

the cost with the accurate value.

Note that this only affects the costs between the origin or destination with the

charging stations. The costs between the charging stations themselves are queried

with the charging station lookup table.

4.4 Performance Evaluation

4.4.1 Experimental Setup

The algorithms were implemented in C and compiled with GCC 10.3.0 with the

highest optimization setting (-03). All experiments were run on a 64-core AMD

Ryzen Threadripper 3990X with 256 GB of RAM.

The street network graph was created from OpenStreetMap (OSM) data, com-

bined with an improved version [10] of SRTM elevation data. It contains the entire

street network of Germany, with the exception of very small streets3. The graph is

3Downloaded from http://download.geofabrik.de on 2022-01-01. All OSM ways with highway
tag except for path, steps, elevator, corridor, platform, bridleway, footway, cycleway, pedestrian, proposed,
construction, raceway, emergency_bay, rest_area, track, unclassified, residential, living_street, service,
tertiary, or tertiary_link.

http://download.geofabrik.de
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made up of 4 599 852 nodes. The majority of these nodes only define the shape of

the street or road. Only 163 697 have more than two edges.

For our experiments, we also need a list of charging stations. To get a realistic

coverage of the German charging infrastructure, we use the extensive list of public

charging stations provided by the German Bundesnetzagentur4. For the experiments

in this chapter, which regard long-distance trip planning, we only consider fast

charging stations. We merged very close (distance < 500 m) locations together,

which resulted in 2611 fast charging station locations.

4.4.2 Shortest-Path-Tree Precomputing

Our long-distance trip planner makes many multicriteria shortest path queries be-

tween the charging stations and the origin and destination. As described in Sec-

tion 4.3.1, to achieve practical run times, we precompute all shortest-path trees for

the known locations of the charging stations. This potentially saves us a lot of query

time at the cost of some additional preprocessing time and disk space.

In our first experiment, we test how much preprocessing time and disk space is

required for different battery capacities. Because the exploration of the shortest-path

trees is limited by the battery capacity, it has a big influence on the precomputing

effort. Not only are more nodes and edges explored, but the further away the nodes

are, the more potential route alternatives exist and therefore the size of the Pareto

sets is greater. The results can be found in Table 4.1. As can be seen, precomputing

the shortest-path trees for all 2611 charging stations takes only a few seconds for a

25 kWh battery, and the size of each shortest-path tree is less than one MB. Increasing

the battery capacity causes significantly higher precomputing time and disk space

requirements. For the 100 kWh battery, it takes nearly half an hour and almost 50 GB

for all shortest-path trees.

We then tested how the precomputed shortest-path trees compare against plain

contraction hierarchies in terms of query times. We queried multicriteria shortest

paths for origin-destination (OD) pairs of different distances, from 100 km to 500 km

in 100 km steps (all distances ± 10 %). Both the origin and the destination nodes

4https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/E-
Mobilitaet/Ladesaeulenkarte/start.html (visited on 27th Apr. 2022)

Table 4.1 – Shortest-path-tree precomputing times and sizes

Battery capacity (kWh) Time Size (GB) Size per CS (MB)

25 00:00:13 1.2 0.5
50 00:02:24 9.0 3.3
75 00:12:21 27.3 10.0

100 00:28:33 49.4 18.0

https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/E-Mobilitaet/Ladesaeulenkarte/start.html
https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/E-Mobilitaet/Ladesaeulenkarte/start.html
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were charging stations, therefore precomputed shortest-path trees existed for them.

Reconstructing the paths of all route alternatives is computationally expensive and

not necessary for our trip planner. We measured query times with and without

reconstructing all paths. For each distance step, we measured the query times of

100 OD pairs and averaged the results. As can be seen in Table 4.2, the query times

for precomputed shortest-path trees with path reconstruction are about one order

of magnitude smaller than for plain contraction hierarchies. Not reconstructing

the paths improves the query times by another one or two orders of magnitude.

Reconstructing the paths is especially expensive for longer distances, because there

are likely more route alternatives and each path consists of more edges.

4.4.3 Trip Planner

In our next experiment, we test how our long-distance trip planning approach with

its adaptive charging and routing strategy compares to related strategies. We have

generated 100 random OD pairs with distances of more than 500 km, ensuring that

the vehicles have to recharge on the way, often multiple times. For each strategy,

we plan the trips for all OD pairs with our trip planner and average the results. We

do this for each of our five vehicle types (cf. Section 3.1). Since the vehicle types

have different energy consumption models, we have to preprocess the shortest-path

trees and the charging station lookup tables for each vehicle type separately. As

an additional comparison, we have also calculated the drive times for all OD pairs

when driving the fastest route non-stop. This way, we can easily see how much extra

time is spent with charging, i.e., making detours to charging stations and taking

more energy-efficient (but slower) routes. The average non-stop drive time for all

OD pairs is 06:25 h.

We have plotted the results of these tests in Figure 4.5. In Figure 4.5 (a), we

compare the trip results of our five vehicle types. It is clear to see that the vehicles

vary greatly in their suitability for long-distance travel. The A segment vehicle’s

total travel time is more than 4 h or 70 % longer than the non-stop drive time. The

vehicle has a comparatively small battery and poor fast-charging capabilities. Even

Table 4.2 – Query time comparison between plain contraction hierarchies (CH),
precomputed shortest-path trees (SPT) with (R) and without reconstructing
all paths.

Type Average query times (s)

100 km 200 km 300 km 400 km 500 km
Plain CH 0.202 2.672 13.903 37.822 88.522
SPT (R) 0.043 0.370 1.551 4.188 9.911
SPT 0.010 0.010 0.024 0.058 0.114
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though it has the lowest energy consumption, it makes more than 6 charge stops

on average and has the highest charge time of all vehicles. Higher charging speeds

significantly shorten the extra time. The D segment vehicle has a large battery and

good fast-charging speeds. It has the lowest extra time with 1.5 h or 25 % and only

needs two charge stops on average, which could be considered tolerable breaks on a

trip that takes more than 6 h. The J segment vehicle’s fast-charging speed is even

higher compared to the D segment vehicle, but its total travel time is worse, which

can be attributed to the higher energy consumption and smaller battery capacity.

The comparison of our adaptive charging and routing strategy with other related

strategies can be found in Figure 4.5 (b). The differences between the strategies

were very similar for all vehicle types. To make the charts easier to read, we have

therefore averaged the trip results of all vehicle types. We compare our adaptive

charging strategy to three different strategies: Only charging the minimum amount

required to reach the next charging station (charge min), always charging 80 %

(charge 80%) and always making a full charge (charge full). Our adaptive charging

strategy has a significant advantage over charge 80% (2.4 % slower) and especially

charge full (11 % slower). These strategies cause a lot more charge time, because the

charge power drops significantly as the SOC increases, especially after about 80 %.

Our strategy only has a negligible advantage over the charge min strategy. In fact,

in many cases, the selected routes and charge amounts are identical. Our strategy

only has an advantage in cases where a charging station on the trip has a higher

usable charging power than the following one. As there are many fast charging

stations available in Germany that are more than powerful enough for the charging

capabilities of the vehicles, slower fast charging stations are only rarely ever selected.

However, our strategy can be advantageous in cases where more factors are involved

when selecting charging stations, such as wait time.

We also compare our adaptive routing strategy with alternative strategies, namely

always taking the fastest route (route fast) and always taking the most energy-efficient

route (route eco). Especially the latter strategy is commonly used in literature [16],
[30], [31]. It is therefore an interesting observation that this strategy causes the

highest total travel time with 34 % more than our strategy. The most energy-efficient

routes often take small, slow roads, far from major highways. It saves significant

amounts of energy and therefore has the best charge time, but this does not make-

up the lost time on the road. Always taking the fastest route is much closer to

the optimum. Even though the energy consumption and the average number of

charge stops are a bit higher, the total trip time is only slightly worse (0.5 %) than

our adaptive routing strategy. This can be attributed to a sufficient number of fast

charging stations that can quickly recharge the vehicles along the way.
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Figure 4.5 – Long-distance trip planner results





Chapter 5

Urban Trip Planning

In this chapter, we describe our urban trip planning approach. In contrast to long-

distance trip planning, reaching the destination, with recharging, if necessary, is not

the main objective. The range of modern electric vehicles is long enough to cover a

typical day in an urban scenario without recharging, assuming the vehicle has been

fully charged at home. But what if it is not possible to charge the vehicle at home,

because, e.g., the driver lives in an apartment without a dedicated parking spot? As

vehicles with internal combustion engines are slowly being phased out, more and

more people are driving electric vehicles with no option to charge at home. These

drivers rely on the public charging infrastructure to recharge their vehicles.

The problem is that charging an electric vehicle takes a lot of time, even at fast

charging stations. But if we charge the vehicle while it is parked anyway, e.g., at

work or during other long stays, the charge time does not matter as much. Our urban

trip planner plans charge stops that fit into the driver’s schedule and minimizes the

extra time spent with charging. It can select between en-route charging, where the

driver stops en route to some other activity at a fast charging station and waits with

the vehicle until the charge process has finished, and destination charging, where

the driver parks the car at a charging station near the activity (the destination) and

visits the activity while the vehicle charges. In the latter case, if the charging station

is not directly adjacent to the activity, the driver has to walk to the activity and back.

5.1 Related Work

Urban trip planning is used by many works in various ways. In contrast to long-

distance trip planning, reaching the destination is usually not the main objective.

Many works consider the effect of electric vehicle charging on the power grid and

select when and where vehicles should charge to flatten the load on the grid (peak

shaving) [36]–[41]. From the driver’s perspective, the algorithms minimize the

37
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charge cost. In some cases, the vehicles can also sell energy back to the grid (vehicle-

to-grid (V2G)) [36], [40], [41].

Some works [36], [37], [39], [41] only consider charging the vehicle at times

when it is parked anyway (destination charging). For destination charging, it is

essential to take user behavior and mobility patterns into account [42]. Sortomme

and El-Sharkawi [36] use driving profiles that include morning and evening commutes

on weekdays and different random trips on weekends. An algorithm decides when

parked vehicles are charged or discharged using V2G, with the goal of minimizing

the charge costs for drivers and reducing the peak load on the power grid. Similarly,

Sun et al. [41] consider commuting electric vehicles that travel between home and

the workplace at certain time slots. The vehicles can form homogeneous fleets that

share the same activities, including charging/discharging and routing decisions and

can participate in day-ahead electric power scheduling. While the individual vehicles

minimize their travel time, the fleets optimize charge costs and discharge revenue.

They assume that charging and V2G is possible at home and at the workplace.

In cases where there is no charging station directly at the destination, we could

also consider walking to and from a charging station that is nearby. Rigas et al. [39]
consider the time it takes to walk from the charging station to the destination when

selecting charging stations. They minimize the drive time, charge time, and walk

time and also the charge costs. Gerding et al. [43] describe a similar park ’n charge

scenario, where the vehicle is charged at a charging station while the driver walks to

the nearby destination. They also consider en-route charging in a different scenario,

but do not combine both approaches, such that there would be a choice between

them. The approach presented by Yang et al. [38] does this to some degree. Their

route selection and charging navigation strategy considers destination charging when

the car is parked and en-route fast charging if necessary to reach the destination.

Gambuti et al. [44] also consider something similar in their multimodal trip planning

approach. Vehicles can be charged en-route at fast charging stations to reach their

destination, but also at slow charging stations while the driver is changing to another

mode of transportation, such as public transit. However, none of these works consider

the driver’s schedule to make charging decisions or select between en-route charging

and destination charging.

All of the works mentioned above employ simple energy consumption models

with a fixed energy consumption value per km. They also do not use charge curves

but assume constant charge power or fixed charge times.

We extend the state of the art with an approach to plan charge stops within the

day’s schedule of the driver that minimize the extra time spent with charging. It can

select between en-route charging and destination charging, including the option to

walk to and from the charging station to the destination. We also use the realistic

energy consumption and charging models of our five vehicle types (see Chapter 3).
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5.2 Concept

Our urban trip planner plans charge stops for drivers of electric vehicles that rely on

the public charging infrastructure because they do not have the option to charge

their vehicle at home. The goal is to minimize the extra time the driver has to spent

with charging the vehicle throughout the day.

5.2.1 Driver Schedules

To minimize the extra time spent with charging, the trip planner has to know the

driver’s schedule. The schedule is an activity chain of times and locations the driver

plans to visit throughout the day, e.g., going to work, shopping, or leisure activities.

The initial starting point, and the final destination might be the same, e.g., home.

It could be created by the vehicle’s on-board navigation system or a smartphone

app based on a prediction from historical data, maybe combined with analyzing the

user’s calendar, or simply by user input. Within this work, the schedule is simply

assumed to be known.

The schedule is divided into segments, each consisting of an activity and the trip

to it. An additional segment is the trip to the final destination. For each of these

segments, the trip planner can make separate charging decisions. Figure 5.1 shows

an example of a driver’s schedule, divided into three segments.

5.2.2 Charging Alternatives

The trip planner can make a charging decision for each segment of the schedule.

For each segment, it selects one of the following three alternatives (cf. Figure 5.2):

The first (trivial) alternative is to drive directly to the activity without charging the

vehicle and simply parking it there. The second alternative is en-route charging.

While en route to the activity, the driver makes a stop at a fast charging station,

lets the vehicle charge and afterwards continues to drive to the activity, similar to

using a gas station. Since the driver has to wait with the vehicle, this is only really

suitable for fast charging. The battery is also only charged to 80 % state of charge

(SOC), because the charging speed typically drops significantly after that point. In

the third alternative, destination charging, the vehicle is charged near the activity

(the destination) while the driver visits the activity. If there is no charging station

home work shopping home

S1 S2 S3

Figure 5.1 – Driver’s schedule divided into segments (based on [7] © 2021
IEEE)
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directly adjacent to the activity, the driver has to walk from the charging station to

the activity and back. This may take some time, but the driver also saves time by

not having to wait with the vehicle while it charges. Depending on the duration of

the activity, this makes it suitable for slow charging, especially if the driver stays at

the activity for several hours. The vehicle is charging as long as the driver is away,

which means it could charge to any SOC up to 100 %. We assume that the driver

will not interrupt the activity to unplug and repark the vehicle after it has reached

100 % SOC. Doing so would only cost extra time without any benefit to the driver.

5.2.3 Route and Charging Station Selection

When evaluating the charging alternatives, the urban trip planner also has to select

the route to take when driving to an activity or a charging station. Similarly to our

long-distance trip planner in Chapter 4, we do not simply take the fastest route to

minimize drive time, because a slower, more energy-efficient route that saves us

charge time, might take less time overall. The route must, of course, also respect the

battery constraints, i.e., the battery must not run empty on the way. The trip planner

selects the route from the set of Pareto-optimal routes from fastest to most energy

efficient. To efficiently find these routes, we use shortest-path-tree precomputing

(see Section 4.3.1).

There are usually multiple charging stations to choose from. The alternatives thus

include the charging stations and the route alternatives to (and from) these charging

stations as well. For each segment, the planner iterates over all alternatives and

calculates the SOC and the time at the end of the segment. The time depends on the

charge time and the drive time to and from the charging stations, in case of en-route

charging, and on the walk time between the charging station and the activity, in case

of destination charging. After calculating these values for all alternatives, the planner

can dismiss those alternatives that are dominated by others, i.e., those that have

lower time and a higher SOC at the end of the segment. The remaining alternatives

Direct drive
work

park

En-route charging drive charge drive
work

park

Destination charging drive
walk work walk

charge

Figure 5.2 – Charging alternatives for each segment (based on [7] © 2021
IEEE)
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are used as possible result candidates and are the basis for the calculation of the

next segment. The planner evaluates a segment for each candidate of the previous

segment separately, thereby creating a result tree.

Once the candidates for the final segment have been calculated, we can select

one of them as our end result. Each candidate has a predecessor candidate in the

result tree. This way, we can recreate the selected charging alternative, charging

station, and route for each segment that led to the end result. We can select the

result based on some criterion, such as having a minimum battery SOC of 70 % at

the destination or having charged at least once.

5.3 Performance Evaluation

5.3.1 Scenario

We evaluate our urban trip planner by planning a large number of trips for drivers

in an urban environment that all have individual schedules.

The scenario we are using is based on the Paderborn traffic simulation sce-

nario [45]. It was developed for the traffic simulator SUMO [46] and takes place in

the City of Paderborn, a mid-sized German city with a population of around 150 000.

Each simulated inhabitant has an individual schedule over a 24 h period that was

Figure 5.3 – Overview of the Paderborn traffic simulation scenario with slow
charging stations (blue) and fast charging stations (red) (based on [7]© 2021
IEEE)
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created using SUMO’s ACTIVITYGEN tool. The schedules consist of activities such as

driving to work or University, going shopping, etc. The resulting traffic demand con-

sists of more than 200 000 trips and resembles real-world measurements. The street

network was generated from OpenStreetMap (OSM) data, enriched with elevation

data from SRTM and contains some SUMO specific details, e.g., lanes, internal edges

at intersections, traffic lights, etc.

For our experiments, we have extracted the street network and removed the

SUMO-specific details. To model the public charging infrastructure of Paderborn,

we added 15 slow charging stations with a power of 22 kW and two fast charging

stations with a power of 150 kW. An overview can be seen in Figure 5.3.

We assume that the vehicles have no option to charge at home and charge every

few days using the public charging infrastructure. To simulate such a day, we set the

initial SOC of the vehicles’ batteries to 20 %. The goal is to reach the final destination

with an SOC of 70 %. This way, the vehicle can be charged to 80 % at a fast charging

station and still has enough energy for the rest of the trip.

5.3.2 En-Route Charging and Destination Charging

In our first experiment, we compare our strategy of selecting between en-route

charging and destination charging with being limited to just one of these options.

We examine how much extra time the driver has to spend with charging the vehicle,

compared to just driving the fastest route to each activity of the schedule without

charging. For each trip, we measure the composition of drive time, walk time,

and charge time from en-route charging. We do not count the charge time from

destination charging, because the driver is spending the time at the scheduled

activity. But if the driver has to delay his stay at the activity because the vehicle

would otherwise not be sufficiently charged to reach the 70 % goal, we report this as

stay delay time. The trip planner plans around 30 000 trips with random schedules

from the scenario for each vehicle type and averages the results.

As can be seen in Figure 5.4, our strategy causes significantly less extra time

than the alternative strategies across all vehicle types. The only en-route charging

strategy is especially disadvantageous to the smaller vehicle types. These vehicle

types have poor fast-charging capabilities and therefore high charge times. This

strategy also causes higher drive times for all vehicle types, because the scenario

only contains two fast charging stations and many vehicles have to drive significant

detours to reach them.

The only destination charging strategy, on the other hand, is unfavorable to the

larger vehicle types. Destination charging is mainly used with slow charging stations,

and the high battery capacities of the larger vehicle types cause very long charge

times. They are often longer than the planned stay durations at the activities of
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the schedules, which in turn results in long stay delay times. Additionally, at many

locations of the activities, there are simply no charging stations within a comfortable

walking distance. This causes average walk times of around 20 min, which makes

the strategy impractical for our scenario, because we cannot assume drivers would

be willing to walk that far.

Averaged over all vehicle types, only en-route charging causes an extra time of

39.0 min, and only destination charging 39.3 min. Our strategy clearly improves the

situation with an average extra time of only 20.0 min. It selects the optimal charging

type for each schedule and vehicle type, which is also reflected by the significantly

higher share of destination charging for smaller vehicles. However, the average walk

times of the trips generated by our trip planner are between 9 min . . . 14 min, which

might also be too long to be practical for some drivers.
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5.3.3 Walk Time Limit

Some drivers may not accept long walk times for destination charging. We can set

a walk time limit for the trip planner, so that only charging stations within that

limit are considered for destination charging. This could make destination charging

infeasible in some places and might increase the extra time spent with charging, as

vehicles now have to drive detours to fast charging stations for en-route charging.

To see how different walk time limits affect the extra time, we tested 3 different

walk time limits: 5 min, 10 min and 15 min.

The results can be seen in Figure 5.5. Limiting the walk time to 5 min reduces the

share of destination charging from 67 % . . . 85 % to 32 % . . . 36 %. This significantly

increases the extra time spent with charging, especially for the smaller vehicles.

While the extra time for the J segment vehicle increases by 22 % from 19.1 min to

23.3 min, for the A segment vehicle it increases by 61 % from 21.7 min to 35.0 min.

These results are, of course, highly dependent on the available charging infras-

tructure. In our scenario, there are simply not enough charging stations available to

allow the majority of drivers to comfortably charge their vehicles within their daily

schedules. Drivers either have to be willing to walk long distances or endure waiting

with their vehicles at fast charging stations. In Chapter 7, we will look at how to

extend the charging infrastructure to improve the situation.
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Chapter 6

Coordination of Charging Between

Vehicles

In this chapter, we describe our approach to coordinate charging between electric

vehicles in order to reduce wait times. Charging can take a lot of time, and charging

stations only have a limited number of charge points. Without coordination between

vehicles, there will be queues and long wait times. We propose a central charging

station database (CSDB) that assists vehicles with planning their trips. The vehicles

can query wait time estimates for any charging station and for any point in time in

the future. In exchange, the vehicles have to announce their own planned charge

stops to the CSDB.

The wait time information can easily be used by our long-distance trip planner

(Chapter 4) and our urban trip planner (Chapter 5) as an additional time cost at the

beginning of each charge stop. The adaptive charging and routing strategy will take

advantage of this information when planning trips. It might, for instance, select a

slower but more energy-efficient route if the vehicle has to wait at the next charging

station anyway. It might also select a different charging station if the additional

drive time for the detour is less than the saved wait time.

6.1 Related Work

There are several ways to coordinate electric vehicle charging in order to reduce

charging station wait times. A popular approach is to use a reservation system [47]–
[53]. Vehicles can reserve a time slot at a charging station in advance to avoid

waiting when they arrive. The time slot is either selected by the vehicle [48], [49] or

assigned by a central scheduler [47], [50], [52], [53]. In some systems [48], [53],
the vehicles can update their reservations if needed. While most systems operate

on a first-come, first-served basis, Cao et al. [50] describe a system with prioritized

47
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reservations, where vehicles with a high priority charge before vehicles with a low

priority. To minimize the average wait time, a central scheduler needs to know the

time preferences of its users. Hou, Wang, and Yan [51] assume that users are selfish

and would not reveal their true preferences to avoid unfavorable time slots. They

propose a bidding process which, by progressively eliciting the users’ preferences in

an iterative auction, preserves the users’ privacy.

Some approaches use deep reinforcement learning to schedule charging stations.

Qian et al. [54] present a charging navigation approach that tries to minimize the

charging cost as well as the total travel time. By considering wait times at charging

stations, traffic conditions, and charge prices, it can coordinate smart grid and

intelligent transportation systems. However, there is no direct coordination between

vehicles. They simply assume that the charging stations know how long the wait

times will be. Lee et al. [52] propose a similar system that coordinates charge stops

between vehicles with a reservation system and makes charging decisions with a

central service. However, both approaches suffer from poor scalability. The street

network graph used for evaluation consists of only 39 nodes and three charging

stations. Zhang et al. [55] demonstrate deep reinforcement learning for scheduling

charging stations on a larger scale. Their evaluation uses a graph of a big city

with more than 1000 charging stations. However, they assume that the energy

consumption simply depends on the driven distance, and only select the routes with

the shortest distance. While this may be sufficient for inner-city navigation, more

sophisticated models are needed for long-distance navigation.

Another approach is a central service that keeps track of the charging stations’

state and assists vehicles with their trip planning. It can provide vehicles with

information about the charging stations, such as the current queue length [56]
or average wait times [57]. De Weerdt et al. [58] also take into account the

vehicles’ future charging intentions. The vehicles announce their intentions to the

service, which in return predicts wait times in the future. By combining the charging

intentions with historical data, they were able to reduce average wait times in

some cases by about 80 %. Tian et al. [59] present a similar system to recommend

charging stations to electric vehicle taxis. The system uses real-time GPS data and

historical data to understand the drivers’ recharging behavior patterns and identify

their charging intentions. In real-world experiments, they were able to reduce the

wait times of electric vehicle taxis by 50 %.

We go one step further and combine information about the current utilization,

announced planned charge stops of other vehicles, and historical data to estimate

wait times at charging stations in the future. We use realistic energy consumption

and charging models and show that this system works well with long-distance and

urban trip planning to reduce average wait times.
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6.2 Charging Station Database (CSDB)

The CSDB is a central service that can be used by electric vehicles to coordinate

charging station visits. Its main function is to estimate wait times at charging stations

in the future. Electric vehicles may query wait time estimates for any charging station

and for any future point in time. They can use these estimates to plan their trips

and take them into account when selecting charging stations. To use this service,

the vehicles agree to announce their own planned charge stops to the database. In

addition to the planned charge stops it gets from the vehicles, the database also

knows the current utilization of the charging stations and maintains statistical data

about past utilization. The CSDB combines this data for the wait time estimation.

The concept is depicted in Figure 6.1.

The CSDB is not a reservation system, it only estimates wait times for vehicles

based on information from other vehicles and charging stations. This has several

advantages. One is that it is independent from the charging station operators.

It only needs to know the current utilization of the charging stations, and many

charging station operators publish this information as a service to potential customers.

Therefore, it is not limited to charging stations of operators that specifically support

the system. Another advantage is that deviations from the planned charge stops do

not cause any significant issues. Charge stops might be planned hours in advance, and

deviations from the planned arrival time at the charging stations due to, e.g., traffic

jams, could cause issues with a reservation system. Depending on the implementation

of the reservation system, a reserved charge point for a vehicle that is late might be

blocked for other vehicles even though it is unused. When the late vehicle finally

arrives, there might not be enough time left to complete the charge process before the

next reservation. This could potentially be a frustrating experience for the drivers.

In our system, we assume vehicles charge on a first-come, first-served basis. Aside

from making it more flexible to deviations from plans, it also means that vehicles

not participating in the system are not placed at a disadvantage.

CS
DB

Electric vehicle Charging station

wait time
estimates

planned
charge stops

current
utilization

charging

Figure 6.1 – Charging station database concept (based on [8] © 2022 IEEE)
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The CSDB was designed to work with our long-distance trip planner and our

urban trip planner to reduce wait times. The trip planner itself could be run locally

on a user’s device, such as a smartphone or on the vehicle’s on-board navigation

system. The only user data received by the CSDB would be requests for wait time

estimates and the planned charge stops. It would not need to know about the trip

destinations or the drivers’ schedules.

6.2.1 Wait Time Estimation

The CSDB estimates wait times by combining three data sources. The current

utilization of charging stations, announced planned charge stops of vehicles, and

statistics about historical utilization. To ease the reading of the following part, we

provide a table of the used symbols in Table 6.1.

For the charging stations’ current utilization, the database maintains the state of

each charge point. This includes whether the charge point is occupied and when

an occupying vehicle will depart. For each charge point c ∈ Cs of a charging station

s ∈ S, we denote the departure time of the occupying vehicle as t c
dep. In case the

charge point is vacant, we define t c
dep = t0, with t0 being the query time (the current

time when the query is made). The set of announced planned charge stops by electric

vehicles is denoted as P. Each planned charge stop p ∈ P has an arrival time t p
arr and

a charge time t p
chr . As we assume vehicles are charged on a first-come, first-served

Table 6.1 – Description of symbols

Symbol Description

S Set of charging stations
Cs Set of charge points of charging station s
t0 Query time
tq

arr Arrival time of the query
tq
star t Charge start time of the query

tq
wait Resulting wait time of the query

Ps Set of planned charge stops of charging station s
t p

arr Arrival time of planned charge stop p
t p
star t Charge start time of planned charge stop p

t p
chr Charge time (duration) of planned charge stop p

t p
dep Departure time of planned charge stop p

cp Charge point assigned to planned charge stop p
T Period of charge stops for statistical utilization
tchr Charge time of charge stops for statistical utilization
u Statistical utilization of charging station
n Number of charge points of charging station
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basis, the time when the charge process will start t p
star t , depends on the arrival

time at the charging station and implicitly on the vehicles that will arrive earlier (cf.

Equation (6.6)). The charge start time and departure time t p
dep are defined as:

t p
star t = tstar t(t

p
arr) , (6.1)

t p
dep = t p

star t + t p
chr . (6.2)

We assign each planned charge stop to one of the charge points c ∈ Cs of the charging

station. Which charge point is selected, depends on the arrival time of the planned

charge stop:

cp = argmin
c∈Cs

(t c
f ree(t

p
arr)) . (6.3)

The function t c
f ree(t

p
arr) (cf. Equation (6.5)) returns the time when the charge point

c would become free for a vehicle arriving at the given arrival time. This, of course,

depends on other planned charge stops assigned to that charge point with earlier

arrival times, which are denoted as:

Pc(tarr) = p ∈ Ps, cp = c, t0 < t p
arr < tarr . (6.4)

To calculate when a charge point becomes free for an arrival time tarr , we take the

last departure time of these planned charge stops. If there are none, we instead

return the departure time of the vehicle currently occupying the charge point t c
dep.

As mentioned before, if the charge point is vacant, this value is simply the query

time t0, i.e., the charge point is free immediately.

t c
f ree(tarr) =







maxp∈Pc(tarr ) t p
dep ifPc(tarr) 6=∅

t c
dep else

. (6.5)

With this, we can calculate the charge start time. It is the soonest time any charge

point of the charging station becomes free, but cannot be before the arrival time:

tstar t(tarr) =max(tarr , min
c∈Cs

(t c
f ree(tarr))) . (6.6)

We can use this function to calculate the charge start time for the query. The estimated

wait time is then simply the difference between the start charge time and the arrival

time:

tq
star t = tstar t(t

q
arr) , (6.7)

tq
wait = tq

star t − tq
arr . (6.8)
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6.2.2 Statistical Utilization

We assume that not all vehicles will participate in using the CSDB, and that, therefore,

not all charge stops will be announced to it. This could potentially lead to significant

errors in the wait time estimation. To also take charge stops into account that

were not announced, the CSDB maintains statistical data about the charging station

utilization, based on historical data. It is stored in the form of average utilization per

hour for a 24 h period. In our wait time estimation, we account for it by adding short

virtual charge stops that repeat periodically. The period depends on the duration

tchr of the virtual charge stops, the utilization u, and the number of charge points of

the charging station n:

T =
tchr

u · n
. (6.9)

In our experiments, we set tchr to 1 min. For a charging station with two charge

points and a 25 % utilization rate, we would add a virtual charge stop every two

minutes. Figure 6.2 depicts an example of a wait time estimation including virtual

charge stops.

6.2.3 Long-Distance Trip Planning

The long-distance trip planner plans the full trip before the departure of the vehicle.

It queries wait time estimates from the CSDB for charging stations that are potential

charge stops. Because the drive can take hours, by the time the vehicle arrives at a

charging station, the wait time may differ significantly from the original estimate.

Additional vehicles may have planned charge stops at the charging station but

announced them only after our vehicle planned the trip, or more vehicles than

expected arrived unannounced. We therefore might want to update the wait time

estimates from time to time and alter the plan if necessary. This requires additional

communication with the CSDB and additional computation time by the trip planner.

We have defined three levels of when trip plan updates take place:

Level 1 The trip is planned at the beginning and never updated. The vehicle

communicates with the CSDB once to query wait time estimates and to announce

its planned charge stops.

Level 2 The trip is updated when arriving at a charging station. In addition to the

communication for the initial planning, the vehicle communicates with the CSDB

at every charge stop to query wait time estimates. If any estimate changes, the trip

planner replans the trip and updates the planned charge stops at the CSDB.

Level 3 The trip can also be updated while driving. The vehicle is in constant

communication with the CSDB. Unlike levels 1 and 2, the CSDB actively monitors

the wait time estimates and automatically notifies the vehicle of any changes. The

vehicle can then immediately replan the trip from the current position on the road.
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Figure 6.2 – Wait time estimation example (based on [8] © 2022 IEEE)
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6.2.4 Urban Trip Planning

We can also use the CSDB to coordinate charging with our urban trip planner.

Similarly to long-distance trip planning, the trips of the day are planned before

the first departure of the vehicle. But unlike long-distance trip planning, the trips

have rather short drive segments (minutes instead of hours) and can have long stay

durations at activities. Updating the plan when arriving at a charging station or while

on the road provides little benefit, because the wait time estimates will not change

significantly after only a few minutes. They may, however, change significantly after

the vehicle has been parked at an activity for several hours. For urban trip planning,

we therefore only update the trip plan when departing from an activity.

6.3 Performance Evaluation

6.3.1 Experimental Setup

We evaluate the CSDB in combination with long-distance trip planning and urban

trip planning. For the experiments in this section, we use the same experimental

setups as we did in Chapter 4 and Chapter 5 respectively. In the previous chapters,

we simply calculated plans with the trip planners and analyzed the results. The

vehicles had no interaction with each other. In the experiments in this chapter, the

vehicles do interact and affect each other. We therefore now perform a discrete-event

simulation (DES) of the vehicles and charging stations. Each charging station has

a limited number of charge points. When all charge points are occupied, arriving

vehicles must wait in a queue for a free charge point before they can be charged.

6.3.2 Long-Distance Trip Planning

To evaluate the CSDB with long-distance trip planning, we simulate one day with

2000 vehicles making long-distance trips. Each vehicle is assigned a random origin-

destination (OD)-pair with a distance of 500 km, which ensures that the vehicle

has to recharge on the way. Departure times are selected randomly based on the

distribution of trips on a weekday (Mon–Fri) in Germany [60] (see Figure 6.3). The

charging infrastructure, which was taken from the scenario in Chapter 4, consists of

2611 fast charging stations with a total of 8356 charge points. We ran the simulations

10 times for each vehicle type and averaged the results.

In our first experiment, we examine how the total travel time of our vehicle types

is affected by the penetration rate of the CSDB, i.e., how many vehicles take part

in the system. We ran tests with penetration rates from 0 % . . . 100 % in 10 % steps.

Of the vehicles using the CSDB, one-third uses CSDB level 1, one-third level 2, and
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Figure 6.3 – Departure time distribution (based on distribution of trips on a
weekday (Mon–Fri) [60])

one-third level 3. We denote not using the CSDB as level 0. The division of CSDB

levels among vehicles for the penetration rate steps can be seen in Figure 6.4.

As can be seen in Figure 6.5, using the CSDB reduces the total travel time of all

vehicle types significantly. Higher penetration rates of the CSDB lead to significantly

lower wait times without affecting the drive or charge times in a major way. The A

segment vehicles have the smallest batteries and the worst fast-charging capabilities,

which results in long charge times and, in turn, long wait times at the charging

stations. At a 0 % penetration rate, the average wait time is about 4 h. When all

vehicles use the CSDB, it is reduced to 4 min, which is an improvement of about 98 %.

The D segment vehicles need to recharge a lot less as their batteries are larger and

their fast-charging capabilities better, which leads to lower wait times. Nevertheless,

we see a significant improvement here as well. The average wait time for 0 % and

100 % penetration rates is 17 min and 37 s respectively, which is an improvement of

96 %.
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Figure 6.4 – Division of vehicles into CSDB levels for the penetration rate
steps in our experiments
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Figure 6.5 – Travel time composition of all vehicle types for different CSDB
penetration rates

In Figure 6.6, we look at how the different CSDB levels affect the average wait

times of our vehicle types. A higher CSDB penetration rate improves the wait times

of all vehicles, even the ones not using the CSDB (level 0). They benefit from more

evenly utilized charging stations, which results in shorter queues and wait times.

For the vehicles using the CSDB, there is a significant difference between levels. The

average wait time has improved for all levels, but levels 2 and 3 see a much larger

improvement than level 1. Vehicles with CSDB level 1 only plan their trip once at

the beginning with the then current wait time estimates. These wait time estimates

become outdated after a while as more and more vehicles announce their planned

charge stops. By updating the trip plan at every charge stop, vehicles with CSDB

level 2 achieve significantly better average wait times. Vehicles with CSDB level 3

can update their plan while driving. This is an advantage, especially for vehicles

with large batteries that can drive for a long time between charge stops. For vehicles

with small batteries, e.g., the A segment, the difference between levels 2 and 3 is

smaller.

It should be noted that CSDB level 2 only has an advantage over level 1 when the

vehicle has to make multiple charge stops. Updating the trip plan at a charge stop

mostly improves the situation for the following charge stops. We therefore designed

the tests so that most vehicles have to make multiple charge stops.

The main cause of long wait times is the uneven utilization of charging stations,

with a few hot spots where many vehicles want to charge at the same time, while the

majority of charging stations have low utilization. Using the CSDB shifts the load

from the hot spots to other charging stations and leads to a more evenly utilized

charging infrastructure. The effect can be seen in Figure 6.7. It shows the utilization
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Figure 6.6 – Wait times of all vehicle types for different CSDB levels and CSDB
penetration rates

of charging stations during peak hours (15 h . . . 18 h) with A segment vehicles, which

generally have the highest wait times in our experiments. We can see that with

a CSDB penetration rate of 100 %, there are no hot spot charging stations with a

utilization of 100 % anymore. In turn, the utilization of most other charging stations

has increased slightly. The charging stations are still far from being evenly utilized;

the majority are not used at all. This can be attributed to the design of our tests. We

consider all fast charging stations in Germany, but only test long-distance trips. Many

charging stations are not close to major highways, which makes them unsuitable for

long-distance travel.
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In our next experiment, we evaluate using statistical data about the charging

station utilization to improve the wait time estimation. We generated the statistical

data from the average charging station utilization of our previous experiment. In the

experiment, we compare the average wait time of A segment vehicles using CSDB

level 3, with and without using statistics. The results are plotted in Figure 6.8. As

can be seen, the average wait time when using the statistics is approximately halved,

compared to not using the statistics. We can also observe that the statistics not

only improve average wait times at low penetration rates, where only few vehicles

announce their planned charge stops to the CSDB, but also at high penetration rates,

including 100 %, when all charge stops are announced to the database. This can

be explained by the fact that the vehicles do not announce their planned charge

stops until the time of departure. Wait time estimates might become outdated when

other vehicles announce their planned charge stops later. And even though they can

update their route while driving, by the time they know they are on a suboptimal

path, it might already be too late to change it. It is therefore beneficial to account

for vehicles departing in the future by using statistical data.

6.3.3 Urban Trip Planning

In this experiment, we evaluate the effectiveness of using our CSDB for urban trip

planning. When evaluating urban trip planning, our main metric is the extra time

spent with charging. We do not use the wait time directly, because choosing a

different charging station to reduce wait time could significantly increase the walk
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Figure 6.8 – Wait times compared with and without using statistics on CSDB
level 3
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time for destination charging or, in the case of en-route charging, lead to additional

charge time. For simplicity, we assume that all vehicles either use the CSDB or do not

use it. We simulated scenarios with varying numbers of electric vehicles that want

to charge that day using the public charging infrastructure from 0.1 % . . . 0.2 %.

We can make a simple rule of thumb calculation to see that this range is a

realistic assumption. Even though the market share of electric vehicles in Germany

was 13.6 % in 2021 [61], the share of electric vehicles among the vehicle population

was only 1.3 % in January 2022 [62]. According to surveys, the vast majority of

charging in Germany happens at home (59 %), or at work (14 %), and only about

26 % by using the public charging infrastructure [63]. In 2020, German cars traveled

an average of 13 323 km [64]. If we assume an average range of an electric vehicle

of 350 km and that the vehicle is charged from 20 % . . . 80 % state of charge (SOC),

this corresponds to approximately one charge every 5.8 days. Therefore, on a given

day, we can expect that of all existing vehicles, about 0.013·0.27
5.8 = 0.0006 or 0.06 %

want to charge their vehicle using the public charging infrastructure. And with the

increasing popularity of electric vehicles, that number will likely rise quickly in the

near future.

In Figure 6.9, we can see that using the CSDB reduces the average extra time spent

with charging by 80 %. . . 90 %. However, due to the limited number of charging

stations and charge points, it is still unacceptably high. In the next chapter, we will

see how we could extend the charging infrastructure to achieve acceptable extra

times and how the CSDB can help with that.
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Chapter 7

Charging Infrastructure Siting and

Sizing

In this chapter, we describe our charging infrastructure siting and sizing approach.

While today most electric vehicles are charged at home (or at work), we assume that

in the future, many electric vehicles will be owned by drivers who do not have the

option to charge at home. They have to rely on the public charging infrastructure to

recharge their vehicle in everyday life. As we have seen in Chapter 5 and Chapter 6,

the existing public charging infrastructure is not yet sufficient to provide convenient

charging for the majority of drivers. The public charging infrastructure therefore

needs to be extended, especially for drivers who cannot charge at home.

Extending the charging infrastructure consists of two problems. Siting suitable

locations for new charging stations and sizing the charging stations, i.e., determining

the number of charge points to deploy. It is also important to distinguish between

slow and fast charging stations, because they are used in a completely different

manner [5]. We assume that slow charging stations are predominantly used for

destination charging due to the long charge times. Fast charging stations, on the

other hand, are more suitable for en-route charging where the driver waits with the

vehicle.

Our siting and sizing approach is designed to extend the charging infrastructure

for everyday charging in an urban scenario. The goal is to improve the average extra

time spent with charging by identifying locations for new slow and fast charging

stations, and to reduce the average wait time by finding an appropriate number of

charge points. We use the same scenario as in Section 5.3.1. Charging infrastructure

for long-distance travel would be sited in a different way, with most fast charging

stations set up along major highway corridors.

61
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7.1 Related Work

Extending the public charging infrastructure to meet the needs of electric vehicles

(in the future) is a popular research area. The public charging infrastructure is used

in different kinds of scenarios. It plays a crucial role in enabling electric vehicles to

travel long distances. Fast charging stations are usually placed along major highways

to allow vehicles to reach destinations beyond their normal range. Jochem, Szimba,

and Reuter-Oppermann [65] examined how many fast charging stations are needed

along European highways to cover all flows of electric vehicles. A similar study

[66] was conducted to find optimal locations for fast charging stations on interstate

highways in the United States. In addition to fast charging stations along highways,

slow charging stations may be placed at destinations where the vehicles stay for a

longer time. A well-known example of this concept in practice is Tesla’s network

of fast charging stations along major highways (Superchargers) and slow charging

stations at hotels, resorts, and restaurants (Destination Charging) [67]. The chargers

are intended to enable long-distance travel, with the assumption that everyday

charging takes place at home.

To enable everyday charging for drivers without the option to charge at home, one

approach is to place slow chargers distributed throughout the city. To find locations

for the chargers, Erbaş et al. [68] use GIS software to evaluate location candidates

with 15 criteria from the dimensions environmental/geographical, economic, and

urbanity. Król and Sierpiński [69] try to evaluate locations with easily accessible

data, such as proximity to major roads or densely populated areas. They use existing

parking lots as location candidates and have different criteria for slow and fast

charging stations. Fast charging stations can also be used for everyday charging.

Wolbertus and Van den Hoed [5] investigated the need for fast charging stations in

cities. They concluded that fast charging stations are used in a completely different

manner than slow charging stations and must be treated separately in the planning

of charging infrastructure. And that while slow charging is better suited for everyday

charging at home or at work, if there are no charging stations in the vicinity of these

locations, fast charging can be a substitute if the charging speed is fast enough.

Because slow and fast charging stations are used in a completely different manner,

it is important to distinguish between them. Simply put, fast charging stations are

needed where many cars drive, and slow charging stations are needed where many

cars park. Therefore, fast charging station siting approaches try to maximize the

capture of traffic flow [65], [66], [70]. Gas stations are used in a similar manner

to fast charging stations, and their locations are selected with similar objectives.

Some works [71]–[73] use existing gas stations as location candidates for new fast

charging stations. Slow charging stations, on the other hand, are generally placed

close to where potential customers live or park. One strategy is to minimize the
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number of charging stations while still providing all potential customers with a

station within a certain distance. Another is to deploy a fixed number of charging

stations and minimizing the median distance to the customers [70].

Another aspect that can be considered is the impact of electric vehicle charging

on the power grid. Ma and Zhang [74] present an approach to find locations for slow

charging stations in a city that satisfy power grid constraints. Especially fast charging

stations can place a considerable load on the power grid. Sun, Chen, and Yin [75]
describe an approach to plan charging infrastructure for long-distance travel that

takes the interaction between transportation and power networks into account. In

addition to fast charging stations for en-route charging, wireless charging lanes and

destination charging are also considered.

A different approach is an agent-based simulation where electric vehicles make

trips and recharge their batteries when necessary, in order to infer the demand for

charging infrastructure. The driver behavior with regard to recharging significantly

affects the results. It can be modeled in different ways. Simple models assume that

the drivers drive their trips until the battery’s state of charge (SOC) drops below a

certain threshold and only then begin looking for a charging station [73], [76]. In

other models, charge stops are planned at the beginning of the trip [72], [77]. Some

works generate the trips from random origin-destination (OD) pairs [73]. Other

works [72], [76]–[78] use activity chains (driver schedules), but they usually do not

differentiate between destination charging and en-route charging. One exception

is an approach by He, Yin, and Zhou [77]. They assume that drivers plan their

trips together with charge stops in order to minimize the total travel time. They

distinguish between slow and fast charging and can deploy charging stations in a

way that minimizes average travel times. However, they do not take wait times into

account, it is a pure siting approach without sizing.

Most works in the field of siting and sizing charging infrastructure use simple

models for charging and energy consumption of electric vehicles. The charge power

is often assumed to be constant ([72], [73], [76]–[78]) and the energy consumption

is often a fixed amount of energy per distance driven ([73], [76]–[78]).

The siting and sizing approach we present in this chapter intends to extend the

charging infrastructure for everyday charging. We use an agent-based simulation with

a sophisticated driver behavior model based on our urban trip planner (cf. Chapter 5)

to plan trips including charge stops with destination charging and en-route charging.

This includes using our five vehicle types from different vehicle segments with

realistic energy consumption and charging models. This way, we can site locations

for new slow and fast charging stations and extend existing ones to minimize the

extra time spent with charging, including wait time. By coordinating charging with

our charging station database (CSDB) (cf. Chapter 6), we can significantly reduce

the necessary number of charge points to reach acceptable extra times.
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7.2 Concept

Our approach to charging infrastructure siting and sizing builds upon our urban trip

planner (cf. Chapter 5). The goal is to improve the average extra time spent with

charging by extending the charging infrastructure with additional charging stations

and charge points. We consider both slow and fast charging stations and distinguish

between en-route charging and destination charging.

In our approach, siting and sizing are two separate phases. In the siting phase,

typical driver schedules are analyzed to find locations for new charging stations. The

new charging stations are added to the existing charging infrastructure, initially with

only one charge point. In the sizing phase, we identify which charging stations should

be extended with additional charge points. We run multiple parallel simulations to

test how each possible charging station extension would improve the average extra

time spent with charging, including wait time. The vehicles in the simulations plan

their trips with the urban trip planner and coordinate their charge stops with our

CSDB. An illustration of the concept can be found in Figure 7.1.

7.3 Siting

The siting algorithm tries to identify good locations for new charging stations. Po-

tential candidates for these locations are the nodes of our street network graph. We

assign a score to each node that reflects how much a charging station at that node

would potentially improve the average extra time for the vehicles. To calculate the

scores, we analyze the drivers’ schedules and also take into account the existing

charging infrastructure.

The charging station sites are selected iteratively, one by one. The node with the

highest score is selected as a new charging station site and added to the charging

infrastructure. After a new site has been added, the node scores are recalculated

because the new charging station affects the scores of the surrounding nodes by

satisfying the charging demand in its vicinity.

Slow and fast charging stations are used in an entirely different manner [5]. We

therefore use two different scoring algorithms.
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Figure 7.1 – Charging infrastructure siting and sizing concept (based on [9]
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7.3.1 Slow Charging Score Calculation

We assume that slow charging is mainly used for destination charging. To find

suitable locations for slow charging stations, it is therefore important to know where

vehicles park and for how long. We analyze the stops of typical driver schedules

to calculate the scores of the nodes. The scores reflect how much walk time a new

charging station at a node would save, compared to existing charging stations in the

area. We also take into account how long the vehicles are parked, i.e., a stop long

enough to completely charge the vehicle weighs more than a quick stop that only

takes a few minutes.

Let S be the stops of our typical driver schedules, V the nodes of the street

network graph, and C the existing charging stations. Each stop s ∈ S and each

charging station c ∈ C is assigned to a node vs ∈ V and vc ∈ V respectively. The

linear distance between two nodes v1, v2 ∈ V is defined as d(v1, v2). With this, the

distance from a stop s to the closest charging station is:

dmin,s =min
c∈C

d(vs, vc) . (7.1)

Stops only affect the scores of nodes within a certain search radius. To improve

the potential walk time, only nodes that are closer than already existing charging

stations are considered. We also assume that drivers are not willing to walk very long

distances from the charging station to the activity. The maximum walking distance

is dmaxwalk. The search radius around a stop s is therefore defined as:

dsearch,s =min(dmin,s, dmaxwalk) . (7.2)

The stops contribute to the scores of all nodes within their search radius. The

score of each node is the sum of these contributions:

xslow,v =
∑

s∈S|d(v,vs)<dsearch,s

x t(ts) · xd(d(vs, v)) , (7.3)

where ts is the stop duration time, and x t() and xd() are functions to calculate the

time score and distance score for the stop. The time score reduces the impact of the

stop on the score if the duration of the stop is too short to charge the vehicle to 80 %

SOC:

x t(ts) =







ts
tcharge80

if ts < tcharge80

1 else
, (7.4)

where tchar ge80 is the time it takes to charge the battery to 80 % SOC with slow

charging. The distance score represents the walking distance that could potentially
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be saved by installing a charging station at that node:

xd(d) = dsearch,s − d . (7.5)

An example of the score calculation for a node v can be seen in Figure 7.2. As

can be seen, the node’s score is only affected by the stops s2 and s3. The stop s1

does not contribute to the score, because the node is outside of the stop’s search

radius d(vs1
, v) > dsearch,s1

(cf. Equation (7.3)). Because the stop duration at stop

s2 is only half the time necessary to charge to 80 % SOC (tcharge80), its time score is

0.5. The stop duration of s3 is more than enough, therefore its time score is 1.0 (cf.

Equation (7.4)). Stop s3 has a distance to the node of 250 m, which is 200 m less than

the distance to the nearest charging station (450 m). Its distance score is therefore

200. The distance from the node to stop s2 is 500 m, which results in a distance score

of 100. Because there is no charging station within the maximum walking distance

of 600 m around stop s2, the search radius equals the maximum walking distance.

In this example, the total score of node v is xslow,v = 0.5 · 100+ 1.0 · 200= 250.

v

c1

c2

s1(4h)

s2(3h)

s3(8h)

dmin,s1

d m
in
,s
2

dm
in
,s3

50
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tcharge80 = 6h
dmaxwalk = 600m
dmin,s1 = 375m
dmin,s2 = 625m
dmin,s3 = 450m
dsearch,s1 = 375m
dsearch,s2 = 600m
dsearch,s3 = 450m

xslow,v =
xt(ts2)xd(d(vs2 , v))+
xt(ts3)xd(d(vs3 , v)) =
0.5 · 100 + 1.0 · 200 =
250

Figure 7.2 – Slow charging station siting. Example calculation of a node score
based on stops s2 and s3. Stop s1 is not used because the node is not within
the stop’s search radius. (based on [9] © 2022 IEEE)
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7.3.2 Fast Charging Score Calculation

In contrast to slow charging, we assume that fast charging is predominantly used

for en-route charging, which means the driver stops at a fast charging station while

en route to another destination. It does not matter where the destination is, but

whether the driver has to make a significant detour to stop at the charging station

on the way. We therefore evaluate fast charging station sites by how much time

vehicles would save on detours compared to existing fast charging stations. Similar

to the slow charging score calculation, we use typical driver schedules, but instead

of the stops, we look at the trips between activities.

Let R be the set of trips of all schedules. The drive time of a trip r ∈ R with a

detour via node v is defined as t r,v , assuming the shortest path between the origin,

node v, and the destination. The minimum drive time for a trip with a detour to an

existing fast charging station is then:

tmin,r = min
c∈Cfast

t r,vc
, (7.6)

where Cfast ⊆ C is the set of fast charging stations. To calculate the score of a node

v, we sum up how much detour time could be saved over all trips as

xfast,v =
∑

r∈R|t r,v<tmin,r

tmin,r − t r,v . (7.7)

In Figure 7.3, you will find an example of the score calculation for a node v.

The node score is only affected by the trips r1 and r3. Trip r2 does not contribute

to the score, because driving by the node would be a bigger detour than driving by

an existing fast charging station: t r2,v > tmin,r2
(cf. Equation (7.7)). A fast charging

station at our example node would save 7.9 − 7.5 = 0.4 minutes for trip r1 and

9.2− 7.8 = 1.4 minutes for trip r3 compared to using existing fast charging stations.

The score of node v is therefore 1.8.

As we have just seen, calculating a node score involves finding the shortest

path for every trip with a detour using that node. Doing this for every node in a

typical street network graph would be very computationally expensive. We therefore

preselect a small number of nodes that see a lot of traffic. To do this, we find the

shortest paths of the trips once without detours and count the number of vehicles per

node. The graph in our example consists of 100 790 nodes, of which we preselected

the 2500 nodes with the highest vehicle count.
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r1r2

r3 v

c1

tmin,r1 = 7.9 tr1,v = 7.5
tmin,r2 = 8.0 tr2,v = 10.6
tmin,r3 = 9.2 tr3,v = 7.8

xfast,v = tmin,r1−tr1,v+tmin,r3−tr3,v =
7.9− 7.5 + 9.2− 7.8 = 1.8

Figure 7.3 – Fast charging station siting. Example calculation of a node score
based on trips r1 and r3. Trip r2 is not used because the condition t r2 ,v < tmin,r2

is not met. (based on [9] © 2022 IEEE)

7.4 Sizing

The siting algorithm only identifies locations for new charging stations, but it does

not determine how many charge points the charging stations should have. If multiple

vehicles want to charge at the same charging station at the same time, if and how

long they have to wait until they can charge, depends on the number of charge

points. The wait time cannot simply be calculated with a static analysis of the drivers’

schedules. It depends on the charging decisions made by the drivers or their vehicles,

which can also influence each other. To calculate it, we use the same discrete-event

simulation (DES) that we used to evaluate the CSDB in Chapter 6. The vehicles’

charging decisions are made by our urban trip planner. To coordinate charging

between the vehicles, they can use the CSDB.

The sizing algorithm works as follows: Initially, the charging infrastructure

consists of the existing charging stations and the new charging stations with one

charge point each at the sites identified by the siting algorithm. We then iteratively

add charge points to the charging stations. In each step, we select one charging

station to extend. To select the charging station, we temporarily add one charge point

to each charging station in separate parallel simulations to determine the average

extra time spent with charging. The charging station whose extension resulted in

the best improvement of extra time permanently keeps the additional charge point.

The steps are repeated until a set number of charge points have been added, or the

average extra time has dropped below some threshold.
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7.5 Performance Evaluation

7.5.1 Experimental Setup

To evaluate our siting and sizing approach, we use the same experimental setup as

in Section 6.3.1 for the urban trip planner. This includes using the Paderborn traffic

simulation scenario (Section 5.3.1).

7.5.2 Impact of the Number of Charging Station Sites

In our first experiment, we evaluate the impact of the number of slow and fast

charging station sites on the extra time spent with charging. This allows us to

determine the number of sites that are needed to achieve practical extra times for

the majority of drivers in our scenario. We ignore wait times for now, because they

mainly depend on the number of charge points at the charging stations, which is a

separate problem that we solve in the sizing phase. We run simulations to determine

the extra time spent with charging for a varying number of slow and fast charging

station sites. For slow charging, we test with 1 to 100 sites, and for fast charging,

we test with 1 to 50 sites. To find the sites, we use our siting algorithms.

The extra time spent with charging for different numbers of charging station sites

is plotted in Figure 7.4 for slow and fast charging stations. Because fast charging

stations are used somewhat similarly to gas stations, we also compare the extra time

of the fast charging station sites found by our siting algorithm with the existing 24
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Figure 7.4 – Comparison of extra time for numbers of fast and slow charging
station sites. The dashed line in (a) represents the extra time, if we were using
the 24 gas stations as fast charging station sites. (based on [9] © 2022 IEEE)
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gas station sites in our scenario. As can be seen, 10 fast charging station sites found

by our siting algorithm achieve roughly the same extra time as the 24 gas station

sites. But we also see that the benefit of installing more than 5 fast charging stations

is marginal. Fast charging stations are predominantly used for en-route charging,

where the drivers wait with the vehicle until charging is complete. The locations of

fast charging stations affect the extra time only through the detours that vehicles

must take for a charge stop. In our scenario, five well-placed fast charging stations

are sufficient to allow most vehicles to reach one with only a small detour.

In contrast to this, slow charging stations are used for destination charging,

where the driver visits the destination (activity) while the vehicle charges. The

extra time is primarily affected by the walk time from the charging station to the

destination and back. To improve the average walk time, the charging station sites

need to be close to popular destinations. Since there are many possible destinations,

we need a lot of charging stations. In our scenario, after about 50 slow charging

station sites, additional sites improve the extra time only marginally.

As a result, we have added 5 fast charging stations and 50 slow charging stations

to the existing charging infrastructure in our scenario. The extended charging

infrastructure will be used in the following experiments. The scenario with the

extended charging station sites can be seen in Figure 7.5 (see Figure 5.3 for the

original charging infrastructure).

Figure 7.5 – New charging station locations for fast and slow charging stations
from our charging station siting algorithm. Slow charging stations are shown
as blue and fast charging stations as red, existing charging stations opaque
and new locations half transparent. (based on [9] © 2022 IEEE)



72 7.5 Performance Evaluation

7.5.3 Impact of the New Charging Stations

In our next experiment, we analyze the impact of the new charging stations on

the travel times of our vehicle types. To compare it with the existing charging

infrastructure, we repeat the experiment from Section 5.3.2 with the extended

charging infrastructure. In the experiment, we compare our strategy of selecting

between destination charging and en-route charging with being limited to one of

these options. The original results for the existing charging infrastructure and the

new results for the extended charging infrastructure are depicted in Figure 7.6. The

original results are identical to the ones presented in Section 5.3.2. We present them

here again to make it easier to compare them with the new results.

In the following, we will discuss the differences in the results between the existing

and the extended charging infrastructure. For a detailed description of the original

results, please refer to Section 5.3.2.

We can see that the extended charging infrastructure significantly improves the

situation for both alternative strategies. Using only destination charging led to

average walk times of about 20 min for the existing charging infrastructure. With

the new charging stations, we have reduced this value to about 5 min. The stay delay

values have not improved however, because they are the result of driver schedules

with too short stays. Therefore, the strategy of only doing destination charging is

still impractical for many drivers. For the strategy of using only en-route charging,

the new fast charging stations significantly reduce the necessary detours, from about

5 min to about 1 min on average. However, due to long charge times, especially

for smaller vehicles with limited fast charging capabilities, this strategy is also still

impractical.

Our strategy of selecting between destination charging and en-route charging

benefits most from the additional charging stations. We use en-route charging to

avoid stay delays at slow charging stations or in cases when there are no charging

stations close to the destination. The additional fast charging stations improve the

drive time by reducing detours. More importantly, though, the additional slow charg-

ing stations offer new opportunities for destination charging, which is preferable to

en-route charging due to the long charge times. With the existing charging infrastruc-

ture, we had a destination charging share of 67 % . . . 85 %. This value increases to

83 % . . . 91 % with the additional charging stations. Overall, the extended charging

infrastructure reduces the average extra time spent with charging across all vehicle

types from about 20 min to under 10 min.
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7.5.4 Impact of Sizing Approach

After ignoring the wait time in the first two experiments to evaluate our siting

approach, we now focus on the sizing approach, where we try to minimize the wait

time. The wait time at a charging station mainly depends on the number of arriving

vehicles and the number of charge points. To improve wait times, our sizing approach

adds charge points to the charging stations. Additionally, by using the CSDB, we can

coordinate charging between vehicles to reduce the number of vehicles that want to

be charged at the same charging station at the same time.

In this experiment, we evaluate how adding charge points affects the extra time

spent with charging with and without using the CSDB. New charging stations that

were found by our siting algorithm are initialized with one charge point. In this

experiment, we assume that 250, or about 0.2 %, of the 121 176 vehicles are electric

vehicles that want to charge that day using the public charging infrastructure. The

sizing algorithm iteratively adds charge points to the charging stations one by one

until 200 charge points have been added. We ran the algorithm 20 times with

random vehicles and schedules and averaged the results.

In Figure 7.7, we can see that using the CSDB reduces the average extra time

significantly, especially when only few charge points have been added. As a result,

we need to install considerably fewer charge points to achieve acceptable extra times.

For example, to reach an average extra time of 15 min, we would only have to add

53 charge points when using the CSDB, but 104 without. When there are so many

charge points available that every vehicle can take the optimal trip without waiting

anywhere, using the CSDB does not make any difference anymore. In our scenario,

this starts at about 125 charge points. The average extra time then stays just under

10 min.
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Chapter 8

Conclusion

In this thesis, we presented several approaches to improve the situation of electric

vehicles, including trip planning for long-distance and urban scenarios, coordinating

charging between vehicles, and extending the charging infrastructure with additional

charging stations and charge points. All of them utilized realistic energy consumption

and charging models for five vehicle types in different car segments.

First, we created a long-distance trip planner that can plan trips including charge

stops with minimal total travel time. An adaptive charging strategy selects the

optimal amount of energy to charge at each charge stop, depending on the power

of the current and the following charging station. An adaptive routing strategy

selects the best compromise between fast and energy-efficient routes by using a

multicriteria shortest path search. To achieve acceptable query times for these

searches, we introduced shortest-path-tree precomputing, which exploits the fact

that most queries are between the known locations of the charging stations. Our

results show that when precomputed shortest-path trees are used for both origin

and destination, query times are reduced by about 2 to 3 orders of magnitude. The

results also show that our adaptive charging and routing strategies outperform other

similar strategies. The greatest advantage was achieved over the strategy of always

taking the most energy-efficient route, which, on average, took 34 % more total

travel time. This is noteworthy because many publications in the field of electric

vehicle routing have the goal of minimizing the energy consumption. On the other

hand, always choosing the fastest route and only charging the minimum amount

to reach the next charging station only led to marginally higher total travel times.

Driving a slower, more energy-efficient route to save time at the charging station

later does not seem to pay off when enough fast charging stations with high charge

power (≥ 150 kW) are available. Another observation is that larger vehicle types

require significantly less total travel time than smaller types, even though they have
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a higher energy consumption. This can be attributed to their larger batteries and

better fast-charging capabilities, which is advantageous for long-distance travel.

Second, we created an urban trip planner that was specifically designed for

drivers that have no option to charge at home and have to rely on the public charging

infrastructure for everyday charging. It plans trips by taking into account the driver’s

schedule for the day and minimizing the extra time spent with charging. The vehicle

can either be charged en route, with the driver waiting with the vehicle while it is

being charged, similar to using a gas station. Or it can be charged at the destination,

with the driver visiting the destination while the vehicle is being charged nearby.

This can save time and it makes slow charging stations a suitable option, but the

driver may have to walk from the charging station to the destination and back.

Our results clearly show that selecting between en-route charging and destination

charging results in significantly lower extra times, compared to being limited to

one of these options. Large vehicle types suffer especially from being limited to

destination charging, while small vehicle types suffer more from being limited to en-

route charging. Even though our strategy performs better than the alternatives, the

extra time was still high, with about 20 min on average. The average walk time might

also be unacceptably long with over 10 min for some drivers, but limiting it would

increase the extra time even further. This shows that the charging infrastructure in

our scenario was insufficient to provide acceptable extra times for the majority of

drivers.

Third, we created a central service, called charging station database (CSDB),

that coordinates charging between vehicles in order to reduce wait times. It can be

used by vehicles to query wait time estimates for any charging station in the future.

In exchange, the vehicles are expected to announce their own planned charge stops

to the service. The CSDB uses these announced charge stops, information about the

current utilization of the charging station, and statistical data about past utilizations

to calculate the wait time estimates. We evaluated the approach in combination

with our long-distance trip planner and our urban trip planner. The results with

the long-distance trip planner show that if all vehicles use the CSDB, the average

wait time can be reduced by up to 98 %. The wait time can also be significantly

reduced if only a subset of vehicles use it. When 10 % use it, the wait time is reduced

by about 75 % for these vehicles, assuming the CSDB uses statistical data of past

utilization and that these vehicles update their route immediately when wait time

estimates change. The experiments with the urban trip planner demonstrate a similar

effectiveness of the CSDB in that scenario. Using the CSDB significantly reduces the

average extra time spent with charging and would allow a larger number of electric

vehicles to use the public charging infrastructure.

Finally, we presented an approach to extend the charging infrastructure in an

urban scenario for everyday charging. It can analyze typical driver schedules to find
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new sites for slow and fast charging stations. Simply put, slow charging stations are

placed where many vehicles park, and fast charging stations are placed where many

vehicles drive. To determine the number of charge points for each charging station,

it uses simulations with the urban trip planner. The results show that adding 5 fast

charging stations and 50 slow charging stations to our urban scenario reduces the

average extra time spent with charging for all vehicle types from about 20 min to

under 10 min (without wait time). The average extra time was significantly improved

for en-route charging and for destination charging, and all vehicle types saw a higher

rate of destination charging. Additionally, we were able to significantly reduce the

necessary number of charge points to achieve an acceptable average extra time

(including wait time) by using the CSDB. To achieve an average extra time of 15 min,

we only had to add 53 charge points instead of 104 when not using the CSDB.

In conclusion, the approaches presented in this thesis can provide a step forward

in the advancement of electric vehicles. We have shown how smart trip planning and

coordination of charging between vehicles can help minimize the inconveniences

of long-distance travel and everyday charging. By extending the public charging

infrastructure with a combination of slow and fast charging stations, we can make

electric vehicles an attractive option even for drivers that cannot charge at home.

A potential direction for further research could be to also consider monetary

aspects. Optimizing charging costs when planning trips could increase the benefit

to the drivers. Also, potentially saving money could be an incentive to coordinate

charge stops with others. Furthermore, building new charging infrastructure is very

expensive. Taking the costs into account and planning new charging stations and

charge points on a limited budget would be an interesting problem. It would also be

interesting to see how the approaches perform in the real world. So far, all the results

have come from simulation experiments, where many simplifying assumptions have

to be made. Real-world experiments could provide valuable insights to further

improve the approaches and make them useful in practice.
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