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Abstract

Electric vehicles are ever increasing in popularity and will likely supersede vehicles
with internal combustion engines in the future. But short driving ranges and long
charging times still make them less convenient for long-distance travel. Also, drivers
that cannot charge at home have to rely on the public charging infrastructure for
everyday charging, which often requires extra time compared to filling up an internal
combustion engine vehicle or charging at home. Another potential issue is that long
wait times could occur when too many vehicles want to charge at the same time at
the same charging station. In this thesis, we present several approaches to address
these issues.

First, by planning long-distance trips including charge stops, we can minimize
the total travel time on long journeys. We select the best compromise between
fast and energy-efficient routes by using a multicriteria shortest path search. We
also take into account nonlinear charge curves and consider only partially charging
the vehicle’s battery at the charge stops. To achieve practical computation times,
we exploit the fact that most route queries are between the known locations of
the charging stations and precompute parts of the shortest path search for these
locations. Simulation experiments confirmed that our routing and charging strategy

results in reduced total travel times compared to alternative strategies.

Second, to minimize the extra time required for everyday charging, we plan
urban trips including charge stops while taking the driver’s schedule for the day into
account. The vehicle is charged either en route while stopping at a fast charging
station, similar to using a gas station, or at a charging station close to the destination.
The latter has the advantage that the driver can visit the destination and does not
have to wait with the vehicle, but it is only feasible if a charging station is available
within walking distance of the destination. Simulation results indicate that having
both options can significantly improve the extra time spent with charging compared

to being limited to one option.

Third, we propose a central service that coordinates charging between vehicles
to reduce the time people have to wait at charging stations. Vehicles can query wait

time estimates for any charging station at any point in the future, if they agree to
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announce their own planned charge stops to the service in exchange. The wait time
estimates can be used by the vehicles when planning their trips to avoid long wait
times. In simulations, we were able to achieve a reduction in wait times of up to
98 %.

Fourth, we introduce an approach to extend the public charging infrastructure.
By analyzing typical driver schedules, we identify locations for new slow and fast
charging stations and, using simulations, we determine a suitable number of charge
points. With a combination of a few fast charging stations and many slow charging
stations, we were able to significantly reduce the average extra time spent with
charging.



Kurzfassung

Elektroautos werden immer beliebter und in Zukunft wahrscheinlich Fahrzeuge mit
Verbrennungsmotoren verdrangen. Aufgrund der geringeren Reichweite und der
langen Ladezeiten sind Langstreckenfahrten jedoch nach wie vor mit mehr Aufwand
verbunden. Falls keine Lademoglichkeit zu Hause besteht, muss auflserdem fiir das
alltdgliche Laden die 6ffentliche Ladeinfrastruktur genutzt werden. Dies nimmt oft
zusatzliche Zeit in Anspruch, im Vergleich zum Tanken von Verbrennern oder dem
Laden zu Hause. Ein weiteres potenzielles Problem sind lange Wartezeiten, wenn
zu viele Fahrzeuge gleichzeitig an einer Ladestation laden wollen. In dieser Arbeit
stellen wir mehrere Ansitze vor, um diese Probleme anzugehen.

Zum einen konnen wir durch eine Routenplanung inklusive Ladestopps die Ge-
samtreisedauer auf Langstrecken minimieren. Wir wihlen den besten Kompromiss
aus schnellen und energiesparenden Routen mithilfe einer multikriteriellen Routen-
planung. AuBerdem beriicksichtigen wir nichtlineare Ladekurven und kénnen bei
Ladestopps Teilladungen der Fahrzeugbatterie planen. Damit die Rechenzeiten in
einem akzeptablen Rahmen bleiben, fithren wir Vorberechnungen der Routenpla-
nung fiir bestimmte Standorte durch. Wir nutzen dabei die Tatsache aus, dass die
meisten Routen zwischen den bekannten Standorten der Ladestationen berechnet
werden miissen. Simulationsexperimente bestatigten, dass unsere Routenplanungs-

und Ladestrategie bessere Gesamtreisedauern als alternative Strategien erzielt.

Im zweiten Ansatz minimieren wir die zusétzliche Zeit, die fiir das alltdgliche
Laden benétigt wird. Wir erreichen dies mit einer Routenplanung fiir den stddtischen
Raum die den Tagesplan des Fahrers beriicksichtigt. Das Laden erfolgt entweder
bei Zwischenstopps an Schnellladestationen, dhnlich der Nutzung einer Tankstelle,
oder an Ladesdulen in der Nihe des Zielortes. Letzteres hat den Vorteil, dass der
Fahrer wiahrend des Ladevorgangs nicht beim Fahrzeug warten muss, setzt aber
eine Ladesdule in fuBléufiger Entfernung zum Zielort voraus. Simulationsergebnisse
zeigen, dass durch Verwendung beider Optionen deutlich bessere Zeiten erreicht
werden konnen, als wenn nur eine der Optionen zur Verfiigung steht.

Der dritte Ansatz ist ein zentraler Dienst, der durch Koordinierung der Fahrzeuge

untereinander Wartezeiten an Ladestationen verringern kann. Fahrzeuge konnen
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geschitzte Wartezeiten fiir beliebige Ladestation in der Zukunft abfragen, wenn sie
dem Dienst im Gegenzug ihre eigenen geplanten Ladestopps mitteilen. Die geschétz-
ten Wartezeiten konnen die Fahrzeuge bei ihrer Routenplanung beriicksichtigen, um
lange Wartezeiten zu vermeiden. In Simulationen konnten wir eine Reduzierung
der Wartezeiten um bis zu 98 % erreichen.

Als Viertes préasentieren wir einen Ansatz zum Ausbau der 6ffentlichen Ladeinfra-
struktur. Durch die Analyse typischer Tagesplane bestimmen wir geeignete Standorte
fiir neue Langsam- und Schnellladestationen. Die passende Anzahl an Ladepunkten
ermitteln wir mit Simulationen. Mit einer Kombination aus wenigen Schnell- und
vielen Langsamladestationen konnten wir die zusétzliche Zeit, die fiir das alltdgliche

Laden benoétigt wird, deutlich verringern.
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Chapter 1

Introduction

Electric vehicles! are ever growing in popularity. Global sales of electric vehicles
doubled in 2021 compared to 2020, and nearly 10 % of cars sold worldwide were
electric [1]. Many countries have already announced to ban the sale of cars with
internal combustion engines in the next few years. In June 2022, the European
Parliament voted to effectively ban the sale of combustion engine cars by 2035 [2].

Nevertheless, electric vehicles still have some disadvantages compared to cars
with internal combustion engines. The average driving range of an electric vehicle
in 2021 was only 350 km [1]. Longer ranges are usually only available for large and
expensive vehicles. Also, compared to refueling a combustion engine car, recharging
still takes a lot more time, even at fast charging stations. In Germany, there are
much fewer fast charging stations (about 2600 in 2022) than there are gas stations
(14458 in 2021 [3]). This means that long-distance trips require more travel time
and planning, especially for vehicles with smaller driving ranges. Apart from driving
long-distance trips, regular everyday charging can also be a problem. Not everyone
has the option to install a charger at home or can charge at the workplace. These
drivers have to rely on the public charging infrastructure instead. But slow charging
can take many hours, and even fast charging often takes half an hour or more to
recharge the vehicle’s battery to 80 % state of charge (SOC). The long charge times,
during which the charge points are occupied, can also lead to long wait times if
multiple vehicles arrive at a charging station at the same time. Today, most electric
vehicles are charged at home (or at work) [4], but as electric vehicles are becoming
more common, this will likely change. Then, many more vehicles will rely on the

public charging infrastructure, and this problem will become even more relevant.

1Although the term electric vehicles can refer to all kinds of vehicles, including bicycles, trains, buses,
and aircraft with electric propulsion, in this work, we use the term exclusively for electric cars that only
use energy stored in a rechargeable battery, also called battery electric vehicles (BEVs).
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These issues can be tackled from multiple directions. Apart from technological
advancements, such as larger batteries to improve the driving range and higher
charging speeds, we can support drivers by planning trips that optimize the use of
charging stations. We can also coordinate charging between vehicles to improve

wait times and extend the charging infrastructure to provide more charging options.

1.1 Trip Planning

Planning trips for electric vehicles involves finding a route to drive and selecting
charging stations to make charge stops when necessary. Finding the route is more
challenging than for conventional vehicles because energy consumption plays a more
important role. The fastest route (the one with the shortest drive time) might require
a lot of energy that has to be recharged. Taking a slower, but more energy-efficient
route might actually be faster overall, if it means the vehicle has to make fewer
charge stops. To find the optimal route, a multicriteria shortest path search can
be used for the criteria drive time and energy consumption. It will find all Pareto
optimal routes from the fastest to the most energy-efficient route, but is a lot more
computationally expensive than regular (single-criteria) route planning.

Optimizing the charge stops is also challenging. Charge speeds are highly nonlin-
ear, especially for fast charging. Usually, the highest charge speed is only available
when the battery’s SOC is still low. It drops significantly as the battery is being
charged, especially after reaching about 80 % SOC. Therefore, it might make sense
to only charge the battery partially to keep the average charging speed high.

When planning long-distance trips, minimizing the total travel time, i.e., the
sum of drive time and charge time, is usually the main goal. A routing and charging
strategy is needed to find the optimal combination of routes and charge stops,
including how much should be charged. On a realistically sized street network,
thousands of routing and charging options have to be evaluated. The challenge is to
find a routing and charging strategy that can do this and still achieves practical run
times.

Urban trip planning has a different goal. The range of modern electric vehicles
is typically long enough to cover all trips of the day in an urban scenario without
recharging, assuming the vehicle has been fully charged overnight. But if the driver
does not have the option to charge at home, the vehicle cannot simply be charged
overnight. Instead, the driver has to rely on the public charging infrastructure to
charge the vehicle throughout the day. The goal is then to minimize the extra time
the driver spends with charging, compared to simply driving to each destination of
the day. Two different types of charging can be considered for this purpose: en-route

charging and destination charging. En-route charging means stopping to charge while
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en route to some other destination, while the driver waits with the vehicle, similar
to using a gas station. Since the driver waits with the vehicle while it charges, it
is only suitable for fast charging. Destination charging, on the other hand, means
that the vehicle is charging at or near the destination that the driver is visiting. It
is therefore also suitable for slow charging, especially if the driver is staying at the
destination for several hours. To find the optimal combination of en-route charging
and destination charging when planning trips, the driver’s schedule for the day has
to be taken into account. The challenge is to find a strategy that does this while also

considering multicriteria route options and realistic nonlinear charge models.

Another issue is the optimization of wait times, i.e., vehicles having to wait at a
charging station for a charge point to become free. The charge points are occupied
by other vehicles that may have also planned their trips. If the trips of the vehicles
are planned independently of each other; it is likely that some charging stations that
are positioned in favorable locations will be selected by too many vehicles, which
may result in queues and long wait times. This can be avoided by coordinating
the charge stops of the vehicles in some way. Route planning for an individual
vehicle is already computationally expensive and planning the trips of all vehicles
simultaneously would be impractical for a realistic number of vehicles. The challenge
is to coordinate charge stops between vehicles and effectively reduce the average

wait time without adding computational complexity to the route planning.

1.2 Charging Infrastructure Planning

Extending the charging infrastructure and thereby creating additional charging
options for electric vehicles is another way to improve the situation. Planning the
extension involves finding suitable locations for new charging stations (siting) and
determining the right number of charge points at each charging station (sizing).
Since fast and slow charging stations are used in a completely different manner [5],
they have to be considered separately in the siting process. Fast charging stations
are mainly used for en-route charging and slow charging stations for destination
charging. Or to put it simply, fast charging stations are needed where many cars
drive and slow charging stations where many cars park. The challenge is to find a
siting and sizing strategy that leverages a combination of slow and fast charging

stations to effectively improve the situation of electric vehicles.
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1.3 Contributions

The goal of this thesis is to tackle problems that still exist with charging electric
vehicles. This includes supporting drivers to optimize charge stops on their trips,

coordinating charging between vehicles, and extending the charging infrastructure.

The first major contribution of this thesis is our long-distance trip planning
approach [6], which plans trips including charge stops that minimize the total travel
time. It is based on a multicriteria shortest path search to find optimal routes from
the fastest to the most energy-efficient route. It uses realistic energy consumption
and nonlinear charging models and supports partial charging. The multicriteria
shortest path search is very computationally expensive. To achieve acceptable run
times, we introduce the acceleration technique shortest-path-tree precomputing,
which exploits the fact that most path queries are between the known locations of
the charging stations.

The next contribution is our urban trip planning approach [7]. It builds upon
our long-distance trip planning approach, but instead of minimizing the total travel
time to reach the destination, it minimizes the extra time spent with charging within
the day’s schedule of the driver. The most important addition is the option for
destination charging, which uses the time the driver spends at an activity to charge
the vehicle. The planner can decide between destination charging and en-route
charging at fast charging stations. This way, it can utilize the available fast charging
stations as well as slow charging stations.

Another major contribution is the coordination of charging between vehicles
with our charging station database (CSDB) in order to reduce wait times [8]. The
CSDB is a central service that electric vehicles can use when planning their trips to
get wait time estimates in the future. In exchange for providing wait time estimates,
the CSDB expects the vehicles to announce their own planned charge stops. The
planned charge stops of all vehicles, along with the current utilization of the charging
stations and historical data about past utilizations, form the basis for the calculation
of the estimates. Both our long-distance trip planner and our urban trip planner can
use them to effectively reduce wait times.

The final major contribution is our charging infrastructure siting and sizing
approach [9], which has the goal of extending the public charging infrastructure to
meet the future demand of electric vehicles. By analyzing typical driver schedules,
it can find new locations for slow and fast charging stations in an urban scenario.
Simulations are used to find a suitable number of charge points for the charging
stations to reach acceptable wait times. By using our CSDB to coordinate charging

between vehicles, we can reduce the number of necessary charge points.
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1.4 Publications

This thesis is based on the following peer-reviewed publications:

* S. Schoenberg and E Dressler, “Planning Ahead for EV: Total Travel Time
Optimization for Electric Vehicles,” in 22nd IEEE International Conference on
Intelligent Transportation Systems (ITSC 2019), Auckland, New Zealand: IEEE,
Oct. 2019

In this conference publication, I presented a long-distance trip planning ap-
proach that uses a multicriteria shortest path search. It can plan charge stops
with partial charging using a nonlinear charge model. To accelerate the mul-
ticriteria shortest path search, I introduced shortest-path-tree precomputing,
which takes advantage of the fact that most searches are between the known

charging station locations and precomputes parts of the graph exploration.

* S. Schoenberg and E Dressler, “Reducing Waiting Times at Charging Stations
with Adaptive Electric Vehicle Route Planning,” IEEE Transactions on Intelligent
Vehicles (T-1V), Jan. 2022

This journal article is an extension of the previous conference paper. I in-
troduced the CSDB to coordinate charge stops between vehicles in order to
reduce wait times at charging stations.

* S. Schoenberg, D. S. Buse, and F. Dressler, “Coordinated Electric Vehicle Re-
Charging to Reduce Impact on Daily Driving Schedule,” in 32nd IEEE Intelligent
Vehicles Symposium (IV 2021), Nagoya, Japan: IEEE, Jul. 2021

In this conference publication, I created an urban trip planning approach that
aims to charge vehicles of drivers that have no option to charge at home. It
takes into account the drivers’ schedules of the day when planning charge
stops and can select between en-route charging and destination charging. The
urban scenario including the drivers’ schedules was contributed by Dominik S.
Buse.

* S. Schoenberg, D. S. Buse, and E Dressler, “Siting and Sizing Charging Infras-
tructure for Electric Vehicles with Coordinated Recharging,” IEEE Transactions
on Intelligent Vehicles (T-IV), Apr. 2022

This journal article is an extension of the previous conference paper. I intro-
duced a siting and sizing approach to extend the existing charging infrastruc-

ture with slow and fast charging stations.
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1.5 Structure

The remainder of this thesis is structured as follows: In Chapter 2, the fundamentals
of route planning in general and for electric vehicles in particular are explained.
Chapter 3 describes how we model electric vehicles in this work. We use five vehicle
types from different car segments, each with individual battery capacities, realistic
energy consumption models and charge curves.

Our long-distance trip planning approach is presented in Chapter 4. It also
includes our acceleration technique, shortest-path-tree precomputing, which enables
us to use multicriteria shortest path searches with acceptable run times. Following,
in Chapter 5, we describe our urban trip planning approach. Chapter 6 is about
the coordination of charging between vehicles with our CSDB to reduce wait times.
In Chapter 7, we present our siting and sizing approach to extend the charging
infrastructure with new charging stations and charge points. Finally, in Chapter 8,

we conclude the findings of this thesis.



Chapter 2

Fundamentals and Related Work

In this chapter, we introduce the fundamentals and discuss related work that the rest
of the work is built upon. We describe how the street network can be represented
digitally, as well as how route planning works in general and specifically for electric
vehicles.

2.1 Street Network

The street network is the system of interconnected streets and roads. Digitally, it is
represented as a graph, with nodes forming the shape of the streets and directed edges
signifying the permitted driving direction. The nodes have a position, which can be
either two-dimensional (i.e., latitude and longitude) or three-dimensional (latitude,
longitude, and elevation). They might also hold additional information about the
junction type, traffic lights, etc. The edges can be annotated with information about
the type of street and its speed limit.

The graph is a weighted graph, which means that each edge has a cost (or weight)
associated with it, which represents how expensive it is to travel across it. The cost
depends on the selected criterion. A simple criterion is driving distance, where the
cost is the distance between the nodes of the edge. More practically useful criteria
for path finding in a street network are travel time and energy consumption. They
depend on the driving speed that is driven on the edge and can be vehicle specific.

A popular source of data for such a graph is OpenStreetMap (OSM), which is
an open geospatial database that stores, among other things, information about the
street network of the entire world and is freely available for anyone to use. We can
extract information about the layout of the streets and roads, speed limits (either
specified directly or inferred from the road classification), and traffic lights. However,
the node positions in OSM are only two-dimensional. To create three-dimensional

node positions, we have to include elevation data from an additional data source.
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We can use the freely available data from NASAs Shuttle Radar Topography Mission
(SRTM), which provides high-resolution elevation data for most of the Earth.

In this work, all graphs were created from OSM data combined with an improved
version [10] of SRTM elevation data.

2.2 Shortest Path Problem

The shortest path problem is the problem of finding the path with the least cost in a
graph between an origin node and a destination node. It is the fundamental problem
that must be solved when planning routes in a street network. Depending on the
criterion for the edge cost, the shortest path might be the shortest route (distance
criterion), fastest route (travel time criterion), most energy-efficient route (energy

consumption criterion), or some combination thereof.

There are several different algorithms that can solve the shortest path problem.
In the following, we will discuss Dijkstra’s algorithm, A*, and contraction hierarchies.
All of them have to explore the graph when finding the shortest path, i.e., going
through the nodes and edges to sum up the cost. Depending on the size of the
graph and the distance between the origin and destination node, a large number of
edges might have to be explored, which can make this a computationally expensive
task. An example of how the edges are explored by these algorithms can be seen in
Figure 2.1.

2.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm [11] is a well-known solution to solve the shortest path problem.
The algorithm explores the graph node by node, starting with the origin node with
a cost of zero and continuing with the node with the least summed up cost so far.
For each node, it explores the edges to the neighbor nodes and sums up the cost to
reach them. It continues to explore the graph until it reaches the destination node.
Since the search is undirected, the exploration has a roughly circular shape, with
the origin node in the center and the destination node at the edge of the circle (cf.
Figure 2.1 (a)).

To reduce the number of nodes and edges that must be explored, we can also do
a bidirectional search. In that case, the algorithm explores the graph simultaneously
from the origin (forward search) and the destination (backward search) until both
searches meet in the middle. This approximately halves the number of nodes and

edges that have to be explored (cf. Figure 2.1 (c)).
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2.2.2 A*

The A* algorithm [12] is a variant of Dijkstra’s algorithm that uses a heuristic to
do a directed search. The heuristic is an estimation of the minimal cost required
to get from a node to the destination and is used in addition to the summed-up
cost of the nodes to determine the order of node exploration. If the heuristic never
overestimates the cost, the shortest path is guaranteed to be found. For the distance
criterion, the heuristic could be the linear distance (beeline) between the node and
the destination; for the travel time criterion, it could be the linear distance traveled
at the maximum possible speed.

Depending on the heuristic, this can significantly reduce the number of nodes
and edges that have to be explored. For a further reduction, a bidirectional search

can also be used, analogous to Dijkstra’s algorithm (cf. Figure 2.1 (b) and (d)).

2.2.3 Contraction Hierarchies

Contraction hierarchies, introduced by Geisberger et al. [13], are an approach to
accelerate the shortest path search. Shortcuts are added to the graph in a prepro-
cessing step to speed up query times. The preprocessing step is computationally
expensive but only has to be performed once. Afterwards, queries for shortest paths
can be computed significantly faster, compared to using Dijkstra’s algorithm or A*
on the original graph.

In the preprocessing step, the nodes of the graph are contracted one by one. When
contracting a node, it is temporarily removed from the graph. As a replacement, new
edges (called shortcuts) are added to the graph that directly connect the neighbor
nodes with each other that were previously connected via the contracted node. The
shortcuts are only added if the previous connection via the contracted node was the
shortest path between the neighbor nodes. This ensures that the shortest paths are
maintained after contracting a node without introducing unnecessary new edges.
To find the shortest paths between the neighbor nodes, a shortest path search with
Dijkstra’s algorithm from each neighbor node to all other neighbor nodes has to
be performed. The contracted node is also assigned a level, which is simply an
ascending number (the first contracted node is level 1, the second node is level
2, and so on). A higher level indicates that the node was contracted later, and its
shortcuts might have replaced shortcuts of lower level nodes.

The shortest path can be queried using a bidirectional search with a modified
version of Dijkstra’s algorithm. Both searches only traverse upwards, i.e., they only
explore edges that lead to nodes with a higher level, which significantly limits the
number of nodes and edges that are being explored. In contrast to the regular
bidirectional version of Dijkstra’s algorithm, the search is not finished as soon as

both searches meet at a node. Instead, the searches will eventually overlap, i.e.,
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explore several common nodes. Of these common nodes, the one with the lowest
total cost determines the shortest path. The searches can be terminated when the
next node to explore would have a higher summed up cost than the currently best
shortest path determined by the common nodes.

The number of nodes and edges that must be explored is significantly reduced
while also guaranteeing to find the optimal path. To further speed up the query,
A* can be used instead of Dijkstra’s algorithm for the bidirectional search [14]. An

example of the exploration of such queries can be found in Figure 2.1 (e) and (f).

2.3 Route Planning for Electric Vehicles

There are special considerations to take into account when planning routes for
electric vehicles, compared to simply finding the shortest path. When braking or
driving downhill, the battery can recuperate energy, which means that there can be
negative energy consumption. How to deal with the resulting negative edge costs is
described in Section 2.4.

The battery of the electric vehicle creates additional constraints. The limited
range must be taken into account, meaning the battery must not run empty, but also
the battery cannot be charged to more than 100 % state of charge (SOC) when recu-
perating energy. Finding the shortest path that also considers the battery constraints
is a Constrained Shortest Path (CSP) problem [15].

A common use case is to find the fastest route that is still reachable with the
limited range of the vehicle. This can be done with a multicriteria shortest path
search, using the criteria travel time and energy consumption. A multicriteria
shortest path search returns all Pareto optimal paths for the selected criteria. From
these paths, we can select the one with the best travel time that still fits the energy
constraint. Having the option to select the best compromise between the fastest and
most energy-efficient paths is also useful when taking recharging into account, as
we will discuss later. How to do a multicriteria shortest path search is described in
Section 2.5.

Apart from the path to be driven, the travel time and energy consumption can
also be influenced by the driving speed. Driving at a high speed can shorten the
travel time but also significantly increase energy consumption. Especially on roads
with a high speed limit or no speed limit at all, such as the German Autobahn, driving
below either the speed limit, or the maximum speed of the vehicle, can make sense
to save energy. When using contraction hierarchies, this makes the preprocessing
step more complicated as this would lead to variable edge costs. A trivial way to
solve this problem would be to preprocess the graph separately for a number of

discrete maximum driving speeds. The downside is the amount of computational
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effort required to preprocess and the amount of storage required to store all the
graphs. Hartmann and Funke [16] presented a way to only preprocess the graph
once for a set of discrete maximum driving speeds. It could then be queried for any
speed within that set.

Baum et al. [14] define the Electric Vehicle Constrained Shortest Path (EVCSP)
problem as finding the path that is feasible, i.e., the battery never runs empty on
the way, and minimizes drive time. Their approach also considers variable driving
speeds, but it is not limited to discrete values, instead allowing continuous adaptive
speeds. They use a variant of contraction hierarchies and A*, modified for adaptive
speeds, and can query optimal results in less than a second in a street network of
Europe for realistic battery sizes.

In most practical use cases, getting the optimal solution is not as necessary as
fast query times. When small inaccuracies are acceptable, heuristics can be used to
significantly improve query times [14], [16].

2.4 Dealing with Negative Edge Costs

Electric vehicles can recuperate energy when braking or driving downhill, meaning
we can have negative energy consumption and therefore negative edge costs. Dijk-
stra’s algorithm, and, consequentially, contraction hierarchies, are limited to graphs
with only non-negative edge costs. The alternative Bellman-Ford algorithm [17],
[18], which does not have this constraint and can handle negative edge costs, is

significantly slower in practice and too slow for graphs of realistic sizes.

As a solution, we can use Johnson’s algorithm [19]. It is an additional prepro-
cessing step, in which we use the Bellman-Ford algorithm to compute potential
shift values for each node and reweight the edges such that there are no negative
edge costs anymore. This preprocessing step only has to be performed once. For a
graph of the street network of Germany, the preprocessing time is in the order of
minutes. Afterwards, we can use Dijkstra’s algorithm or contraction hierarchies on
the reweighted graph to find the shortest path as usual. Since the edge costs have
been modified, the cost (the sum of the edge costs or length of the path) returned
by Dijkstra’s algorithm, is shifted. We must reverse the potential shift by subtracting
the potential shift value of the origin node and adding the potential shift value of
the destination node.

In the case of multicriteria path finding with the criteria travel time and energy
consumption, only the energy consumption values can become negative. We can
ignore the travel time values when running Johnson’s algorithm and only apply the

potential shift on the energy consumption values.
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2.5 Multicriteria Shortest Path Problem

The multicriteria shortest path problem is an extension of the shortest path problem,
in which the edges have multiple edge cost values from different criteria. It is an
optimization problem where the goal is to find all Pareto optimal paths for the
selected criteria. In case of the criteria travel time and energy consumption, the
solution is the set of Pareto optimal paths from the fastest to the most energy-efficient

route. When two criteria are used, it is also called a bicriteria shortest path problem.

2.5.1 Dijkstra’s Algorithm

Dijkstra’s algorithm can be extended to solve the multicriteria shortest path problem
[20]. Instead of having one label with the current best cost at each node, there is
a Pareto set of labels at each node. And instead of exploring the graph from each
settled node, it is explored from each label. As there can be multiple labels at each
node, we might have to explore the same nodes and edges multiple times. Each
label represents one Pareto optimal path alternative to the node, and the further
away from the initial node we explore, the more path alternatives there will be. This
makes the exploration much more computationally expensive, especially for longer

distances.

2.5.2 Contraction Hierarchies

Contraction hierarchies can also be used to speed up multicriteria shortest path
searches [21]. The preprocessing step has to be altered slightly. When a node is
contracted, shortcuts are added to the graph to connect the neighbor nodes if the
contracted node was part of any Pareto optimal path between them. This results
in a lot more shortcuts being added, which in turn makes preprocessing a lot more
computationally expensive.

Especially towards the end of the preprocessing, when the vast majority of
nodes have already been contracted, the remaining few uncontracted nodes will be
connected to many neighbor nodes via shortcuts. Because a multicriteria shortest
path search has to be performed from every neighbor to find out which shortcuts
have to be added, contracting the last few nodes might be prohibitively expensive for
large graphs. In that case, it can make sense to leave the last few nodes uncontracted.
Storandt [22] found that contracting only 99.5 % of the nodes resulted in reasonable
preprocessing times. The uncontracted part of the graph is called the core graph
[23]. Performing queries on a partially contracted graph is possible but affects query
times. Figure 2.2 shows the effect of leaving parts of the graph uncontracted on

the preprocessing time and the average query time. In this example of the street
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network of North Rhine-Westphalia, contracting all nodes takes more than 17 h, while
contracting only 99.90 % takes less than five minutes. While saving preprocessing
time, the average query time is several times higher. In this case, contracting 99.97 %
seems to be a good compromise between preprocessing time and average query

time.
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Figure 2.2 — Effect of number of contracted nodes on preprocessing time and
average query time with the street network of North Rhine-Westphalia (based
on [6] © 2019 IEEE)



Chapter 3

Electric Vehicle Modeling

Accurate models of electric vehicles are the basis for all routing and charging decisions
made by our trip planning approaches. They compare routes with each other based
on travel time and energy consumption and make charging decisions based on the
time it takes to recharge the battery. There are many kinds of electric vehicles on
the road today that have very different characteristics. We therefore cannot simply
create one model that fits all.

In this chapter, we describe the vehicle types that we use in this work and present

our travel time and energy consumption models, as well as our charge model.

3.1 Vehicle Types

Electric vehicles are available in various sizes that can differ significantly in terms
of battery capacity, energy consumption, as well as charging performance. These
differences have a great impact on trip planning and charge planning decisions. In
this work, we use five vehicle types from different car segments, ranging from small
city cars (A segment) to big SUVs (J segment). These vehicle types were introduced
in [24], as part of an energy consumption model that we use in this work as well.
Four vehicle types are based on real production vehicles, and one, the vehicle type
for the J segment, is a generic model of an SUV. Of the electric vehicles sold in
Germany in 2020, more than 90 % were from these five segments [25], which gives
us a realistic coverage of vehicles on the road. The distribution of vehicle types that
we use in our simulations is based on the market share of the segments [25]. An
overview of the vehicle types and their battery capacities, energy consumption and

charging speeds as well as their share in our simulations can be seen in Table 3.1.
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Table 3.1 — Vehicle types and distribution within our simulations (based on
market share of segments of electric vehicles sold in Germany in 2020 [25])

Segment Share Vehicle Battery Average Max charge
model capacity  consumption  power (kW)
(kwh) (kWh/100km) AC/DC

A (city) 17% VW e-up! 32 14.8 7.2 / 40

B (small) 31% BMWi3 42 15.5 11 /50
C (medium) 20% VWID.3 58 15.9 11 /100
D (large) 11% VWID4 77 18.6 11 /125
J (SUV) 21 %  generic 70 23.7 11 /150

3.2 Driving

In our trip planning approach, driving the vehicle means finding the multicriteria
shortest paths for the criteria travel time and energy consumption. Therefore, our
model needs to calculate accurate values for these criteria to be used as edge costs
in our graph. Travel time and energy consumption both depend on how the vehicle
interacts with traffic. We do not simulate traffic in our trip planning approach, but
we do use results from the traffic simulator SUMO to calibrate our models of travel

time and energy consumption to make them more accurate.

3.2.1 Travel Time

A trivial approach to calculate travel time would be to assume that vehicles simply
drive at the posted speed limit for the length of the road. This would underestimate
the travel time because vehicles have to slow down and wait from time to time.
Assuming only light traffic, most vehicles drive close to the speed limit, but have to
slow down and wait at traffic lights and other junctions.

Our model uses the trivial travel time, i.e., driving at the speed limit, as a basis
and applies a constant factor to it. Additionally, a correction offset is added when
encountering a junction. We distinguish between priority junctions, priority-to-the-
right junctions, and traffic light junctions. We assume all vehicle types have the same

travel time characteristics.

3.2.2 Energy Consumption

To calculate the energy consumption, we use the energy consumption model intro-
duced in [24]. It is a physics-based model of individual powertrain components’
characteristics that can be parametrized to accurately calculate the energy consump-
tion of different electric vehicles. Five parameter sets for different electric vehicles

were created, which match the vehicle types we use in this work. The energy con-
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sumption data of the four vehicles that are based on real production vehicles, was

validated against manufacturer data and test bench measurements.

The model was developed for the traffic simulator SUMO to calculate the dynamic
energy consumption of a vehicle with acceleration and deceleration in traffic. In
this work, we only need static consumption values for the edge costs of our graph.
To calculate the energy consumption, the model needs velocity, acceleration, and
slope values as parameters. Because we do not consider it, we set the acceleration
to zero and only set the velocity and the slope. Similar to the travel time, this would
underestimate the energy consumption because we ignore traffic effects, especially
deceleration and acceleration at junctions. Therefore, we also apply a factor and

add correction offsets for different junction types.

3.2.3 Offset Calibration with SUMO

To calibrate the correction offsets of our travel time and energy consumption model,
we used the traffic simulator SUMO. We simulated thousands of trips with each
vehicle type, so we could compare the travel time and energy consumption results to
our static calculation of the same trips. Then, we carefully adjusted the offsets until
our static calculation matched the simulation results. The correction offsets for travel
time can be seen in Table 3.2, and the vehicle-type specific energy consumption
offsets in Table 3.3.

Figure 3.1 shows the correlation between our calibrated static calculations and
the SUMO simulation results. The results of the static calculation can, of course,
not always exactly match the results of the traffic simulation, because it does not
consider dynamic traffic effects. However, for the majority of trips, the static values

match the simulation results within +10 %.

Table 3.2 — Travel time correction offsets

Factor  Priority Priority-to- Traffic light
junction  the-right junction (s)
(s) junction (s)

1.02 0.5 2 10
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3.3 Charging

There are two main ways to charge an electric vehicle, with alternating current
(AC), and with direct current (DC). The electricity coming from the electrical grid is
always AC, and the battery inside the vehicle is always charged with DC. Therefore, a
conversion from AC to DC is necessary. The difference between AC and DC charging
is that with AC charging, the conversion happens inside the vehicle with an onboard
charger, and with DC charging, the charging station does the conversion.

The electrical grid transmits power with AC in three phases. Most public AC
charging stations in Germany support three-phase AC charging, but not all electric
vehicles do. All of our five vehicle types support three-phase charging, except the VW
e-up!, which only supports two-phase charging. The available charge power with AC

charging depends on the number of phases and the maximum current per phase that

Table 3.3 — Energy consumption correction offsets

Segment Factor Priority Priority-to- Traffic light

junction  the-right junction

(Wh) junction (Wh) (Wh)
A 1.057 4.6 3.4 0.0
B 1.038 6.3 3.9 16.7
C 1.000 11.3 0.0 0.0
D 1.074 12.5 10.0 0.0
J 1.082 9.0 6.0 10.0
T T T
Travel time |- 1 A

| | | | |
0.6 0.8 1 1.2 1.4
Correlation (edge costs / simulation results)

Energy consumption
wOawm»>
T
|

Figure 3.1 — Correlation of travel time and vehicle-type specific energy con-
sumption of trips between our calibrated edge costs and the results of the
SUMO simulation. (based on [9] © 2022 IEEE)
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is supported by both the charging station and the vehicle’s onboard AC charger. In
this work, we make the simplifying assumption that all AC charging stations support
three-phase charging, and only compare the supported charge power of the charging
station and the vehicle.

Most AC charging stations support up to 22 kW, but many electric vehicles are
only capable of charging at up to 11 kW or even less. Because it can take several
hours to fully charge the battery, we define AC charging as slow charging. DC
charging is much faster, with charging stations typically capable of charging at rates
of between 50 kW and 350 kW. We therefore define DC charging as fast charging.
The actual achievable charge power varies significantly between vehicles and can
only be held for a part of the charge process. Not all electric vehicles are capable of

DC charging; some manufacturers offer it as an optional extra.

Batteries in modern electric vehicles use lithium-ion cells, which must be charged
with a charging protocol. The most commonly used charging protocols are CC-CV
(constant current — constant voltage) and the very similar CP-CV (constant power —
constant voltage), although there are also alternative charging protocols to improve
fast charging [26]. The CC-CV charging protocol has two phases. In the first phase,
the battery is charged with constant current. The cell voltage rises until it reaches
its maximum voltage uy;gp,. Then, it switches to the second phase, constant voltage.
The charge current then steadily decreases, and when it is near zero, the charge
process is complete. The alternative CP-CV uses constant power in the first phase.
Figure 3.2 shows the battery’s state of charge (SOC) and the charge current, power,
and voltage for the CC-CV and CP-CV charging protocols.

CC-CvV CP-CV

N N
/ /—

Time Time

SOC

Current

Voltage

Figure 3.2 — CC-CV and CP-CV charging protocols
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3.3.1 Slow Charging

The battery charging model we use in this work for slow charging supports both
the CC-CV and the CP-CV protocols. We assume that the switch between the phases
occurs at 80 % SOC and that the cell voltage increases linearly with the SOC [27].
The charge power p,,,, is determined by taking the lower value of charging station
power and electric vehicle AC charging power. The SOC of the battery can be in the
range 0 < soc < 1. The cell voltage rises linearly with the SOC until 80 %, and then

stays constant:

Uy + 2= (Upjon, — Upyy) fOr soc < 0.8
u(soc) — low 0.8 \"high low ) (31)
Unigh for soc > 0.8

with the minimum cell voltage u;,, = 3.8V and the maximum voltage uy,,, = 4.2V.
The charge current and power for the CC-CV protocol can be calculated as:

] Tmax for soc < 0.8
lCC-CV(SOC) = > (3‘2)
1550¢ . ax forsoc>0.8
pcc-cv(soc) = u(soc) : icc-cv(soc) . (33)
The calculation of current and power for the CP-CV protocol is very similar:
s for soc < 0.8
fepev(s00) = { 10 : 3.4
%55 lmax forsoc=0.8
DPmax for soc < 0.8
Pep-cv(s0€) = (3.5)

u(soc) - izp.cy(soc) forsoc>0.8 '

The model calculates the power in one-second steps and iteratively adds the
charged energy to the battery until soc > 0.99. To validate the model, we compared
it to a measurement of the charging of an electric vehicle [28]. The source did not
mention the charging protocol used, but we assume it was CP-CV. In Figure 3.3,
we can see that our model matches the measurements within £2 % when using the
CP-CV protocol, but with CC-CV it has a relative error of about 10 % at the beginning.

3.3.2 Fast Charging

Our simple charging model works well for slow charging, but fast charging is more

complicated. The switch between phases can happen a lot earlier than at 80 % SOC,
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Figure 3.3 — Comparison of CC-CV and CP-CV charging protocols with mea-
surement data [28]. Absolute charge time (left) and relative error compared
to measurement data (right). (based on [6] © 2019 IEEE)

Relative error (%)

and some vehicles might use an alternative charging protocol. To make realistic
calculations for fast charging, we used publicly available fast charging curves from
the charging station operator Fastned [29], which were available for the four vehicles
of our vehicle types that are based on real electric vehicles. For our generic SUV
vehicle type in the J segment, we created a fast-charging curve similar to the others.

As can be seen in Figure 3.4, the maximum charge power can only be held for a

short time and then drops significantly for most vehicles. And, while the highest

maximum charge power is more than three times greater than the lowest, the charge
times are much closer together. This can be attributed to the fact that the vehicles

with high fast charging speeds also have larger batteries.
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Figure 3.4 — Fast charging curves of vehicle types at a fast charging station
with at least 150 kW charge power (based on [9] © 2022 IEEE; data from [29])
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Chapter 4

Long-Distance Trip Planning

In this chapter, we describe our long-distance trip planning approach. By long-
distance trips, we mean trips that cannot be driven non-stop without recharging
the battery on the way. The goal of our trip planner is to find the route, including
charge stops, that minimizes the total travel time. We define the total travel time as
the sum of drive time and charge time. The trip planner also has to find the optimal
charge amount at each charge stop. Since charging curves are highly nonlinear,
especially for fast charging, and charge power generally decreases as the state of
charge (SOC) of the battery rises, it makes sense to only partially charge the battery

at each charging station to avoid charging at low speeds towards the end.

The problem with minimizing the total travel time is that while driving a faster
route decreases the drive time, it also increases the energy consumption and therefore
the charge time. It might be faster overall to choose an energy-efficient route
over a fast route, if it saves time at the charging station. Our trip planner uses
an adaptive routing and charging strategy that selects the optimal route from all
Pareto optimal routes from fastest to most energy efficient, together with the optimal
charge amount at each charging station. But this multicriteria shortest path search is
very computationally expensive, and we have to repeat it many times to find routes
between the charging stations and the origin and destination. To speed this up, we
take advantage of the fact that we already know where the charging stations are
and calculate parts of the shortest path search ahead of time.

4.1 Related Work

Related work regarding route planning for electric vehicles in general was already
discussed in Section 2.3. In this section, we describe works that also consider charge

stops to recharge on long-distance trips.

23
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Storandt and Funke [30] presented an approach to find routes for electric vehicles
that include charge stops. They create an auxiliary graph of charging stations
(or battery swapping stations), where each charging station is connected to those
charging stations that are within the vehicle’s range. They can efficiently query for
routes that minimize the number of necessary charge stops to reach the destination.
In a subsequent work, Storandt [21] also took travel times and driving distances into
account to find routes that are a practical compromise between quick and energy
efficient. This includes, among other things, finding the most energy-efficient route,
which is at most 5% longer than the shortest one, or finding the fastest route with a
limited number of charge stops. To accelerate the query, contraction hierarchies are
used with an uncontracted core graph that includes all charging station nodes.

Baum et al. [31] can compute energy-optimal shortest paths in polynomial
time, which allows for very low query times. This also applies to profile queries,
which find energy-optimal routes for different initial SOC values that respect battery
constraints. Using these profiles, they can find optimal amounts of energy to recharge
at charge stops to minimize the energy consumption. In [32], they take into account
the total travel time, i.e., the drive time and charge time, which is much more
computationally expensive. To accelerate queries, they use contraction hierarchies
with an uncontracted core graph that includes the charging stations, similar to [21].
They combine this with using an A* search, restricted to the core graph, when
making queries that include charge stops.

Morlock et al. [33] use a very different approach. In a first step, they query
a set of route alternatives between the origin and destination from a commercial
routing service. These routes are then used as a very simple street network graph. In
the second step, they make multicriteria shortest path queries on the graph to find
routes including charge stops. Because the graph is so heavily reduced, compared to
a full country-sized graph, they can use the Bellman-Ford algorithm, which would be
too slow in practice for ordinary sized street network graphs. This enables them to
achieve good query times in practice, but the reduced graph might lead to suboptimal
routes.

Similarly, Hecht et al. [34] also describe an electric vehicle route planner based
on routes from a commercial routing service. They use precise charging curves for
five electric vehicles to accurately calculate charging speeds. In their work, they
discuss more general questions, such as how much extra travel time an electric
vehicle causes on long-distance trips due to recharging, compared to a vehicle with
an internal combustion engine, and the influence of different parameters such as
battery capacity and charging station power. The results, which are specific to the
real-world charging infrastructure of Germany, show that the travel time is about
8 % longer compared to non-stop driving and depends on the travel distance and

the battery size. Increasing the charging station power has only a negligible effect,
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as there are already many charging stations in Germany with higher charging power
than vehicles can utilize.

Many modern electric vehicles are capable of fast charging with more than
100 kW, but they can usually only hold the top charging power for a short period of
time (cf. Section 3.3.2). With the exception of [34], the aforementioned works use
simple charging models, either ignoring charge time altogether [30], [31], using
a fixed time penalty [21], assuming that charge power is constant [33], or that it
drops only after about 80 % SOC [32]. Consequently, some works [21], [30], [35]
always assume to fully recharge the battery.

The long-distance trip planner presented in this chapter extends the state of the
art in the following way: It minimizes the total travel time, including charge stops,
by considering partial charging with an adaptive charging strategy that uses realistic
fast-charging curves and energy consumption models for five different vehicle types
(cf. Chapter 3). Optimal routes are selected with a multicriteria shortest path search.
To achieve practical query times, we present a way to use precomputed shortest-path

trees for the known locations of the charging stations.

4.2 Concept

To plan long-distance trips including charge stops, we create a separate graph with
the origin, destination, and all charging stations as nodes. We call this the charging
station graph. While the graph is being explored, edges are dynamically added to
connect the nodes that are within the driving range of the vehicle.

The goal of our trip planner is to minimize the total travel time. Traversing an
edge on the charging station graph represents driving to a charging station and
charging there. The edge cost therefore consists of the travel time and the charge
time. The charge time depends on the energy that was consumed while driving, i.e.,
driving a more energy-efficient route might increase travel time, but will decrease the
charge time. To select the optimal route, for each edge on the charging station graph,
we perform a multicriteria shortest path search on the street network graph for the
criteria travel time and energy consumption. From the resulting set of Pareto-optimal
paths, we select the one that results in the least combined travel time and charge
time.

A complication arises from the fact that we consider partial charging, i.e., not
always charging to 100 % SOC. The target SOC depends on which edge will be trav-
eled next, i.e., we need to charge less if the next charging station or the destination
is close. The target SOC is therefore unknown when we explore an edge, which
means we cannot calculate the exact charge time. To solve this issue, we temporarily

assume to charge to 100 % SOC and subtract the excess charge time from the edge
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(a) Charging station graph with selected route (red)
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(b) Street network graph with selected route (red)

Figure 4.1 - Long-distance trip planning example with multiple charge stops

cost of the following edge®. Additionally, we add a time penalty of tpen = Smin for
each charge stop, to account for the time needed to park and plug in the vehicle.
This also prevents the algorithm from making an excessive number of short charge
stops, which would be inconvenient to the driver. The edge cost for an edge between
charging stations a and b is therefore calculated as follows:

. b e
edgeCOSt = rrnel}lg(_tghr(socstart) +t, + tpen + tchr(socstart - Er)) s (41)

where t. and e, denote the travel time and energy consumption of route r € R
respectively, and C is the battery capacity. t, (soc) calculates the charge time at
charging station ¢ from soc to 100 %. soc,,,, denotes the target SOC to which the
previous charging station should charge the vehicle. Calculating this value is part of
the charging strategy discussed in Section 4.2.1.

We use a slightly modified version of Dijkstra’s algorithm (or A*) to find the
shortest path on the charging station graph. The modifications being that we dynam-

2The apparent alternative to only consider the charge time of the previous charging station when
calculating the edge cost is not feasible, because then, we could not take into account the time required to
recharge the consumed energy when we select a route from the route alternatives on the street network
graph.
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ically generate the graph and the edge costs while traversing it and keeping track
of the battery’s SOC. The resulting shortest path contains the optimal charge stops
including partial charge amounts to minimize the total travel time. The selected
routes of the drives between charging stations can be joined to form the complete

route on the street network graph. An example can be seen in Figure 4.1.

4.2.1 Charging Strategy

Many trip planning approaches assume that the vehicle is being fully charged at
every stop. But charging speeds are highly nonlinear, especially for fast charging.
The speed is generally high at the beginning, and then decreases significantly with
increasing SOC. It can therefore make sense to only partially charge the vehicle to
prevent wasting time with slow charging speeds at high SOCs. We call selecting the
partial charge amount the charging strategy. Trivial charging strategies are to always
fully recharge or to always charge to 80 % SOC. Another charging strategy would
be to charge just enough to reach the next charging station.

Our adaptive charging strategy selects the charge amount based on the charge
curve of the vehicle and the maximum charge powers of the current charging station
and the following one. For the charge curves, we use our charging model from
Section 3.3. We charge at least enough energy to reach the following charging
station or the destination. We continue charging as long as the charge power,
according to the charge curve, is above the maximum charge power of the following

charging station. See Figure 4.2 for an example.

150

100

Charge power (kW)
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S

SOC charge to 84 %
min SOC to reach next CS

Figure 4.2 — Adaptive charging strategy example. Minimum SOC to reach next
charging station: 70 %. Next charging station max charge power: 50 kW. We
charge until the power drops below the following charging stations maximum
charge power (84 %).
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4.3 Acceleration Techniques

The long-distance trip planner makes frequent multicriteria shortest path searches
on the street network graph to calculate edge costs for the charging station graph
between the origin, destination, and charging stations. These multicriteria shortest
path searches are very computationally expensive and would lead to unacceptable
run times if we were simply using contraction hierarchies to query routes. We make
use of several acceleration techniques to achieve acceptable performance.

4.3.1 Shortest-Path-Tree Precomputing

When making multicriteria shortest path searches, the most computationally expen-
sive part is exploring the graph and creating Pareto sets of labels at each visited
node. By using contraction hierarchies, we can greatly reduce the number of nodes
that have to be visited, which significantly improves run time, but even then, it is
still expensive. For long distances of >200 km on a complex graph, the query times
might still be in the order of seconds or even minutes. Because the long-distance
trip planner makes many such queries, the overall computation time would become
unacceptably long.

All these queries are between the origin, the destination, and the charging
stations. We can exploit the fact that we know the locations of the charging stations
in advance and can explore the graph and create Pareto sets of labels for all of them
in a preprocessing step. The result of this exploration is a shortest-path tree, which
is why we call this approach shortest-path-tree precomputing. The trip planner only
has to explore the graph once from the origin and the destination. After that, queries
between the origin, the destination, and all charging stations are about two orders
of magnitude faster, compared to exploring the graph for every query again. An
example of this concept can be seen in Figure 4.3.

It should be noted that this is only feasible in combination with contraction
hierarchies. Otherwise, the number of nodes being explored, and consequently the

Pareto sets being created, would be too large to be practically stored.

4.3.1.1 Precomputing

Precomputing the shortest-path trees is an additional preprocessing step, in which
we explore the graph around each charging station and store the result to be used in
queries later. The exploration can be limited to an energy cost equal to the battery
capacity of the vehicle.

The queries for contraction hierarchies use a bidirectional search. Because the
street network graph is directed, to represent the allowed driving direction, the

exploration for the forward and backward search is different. While the forward
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Figure 4.3 — Shortest-path-tree precomputing concept. Red circles: shortest-
path trees that can be precomputed by exploring the graph around the charging
stations. Blue circles: Exploration around origin and destination necessary for

a query.

search (origin to destination) explores the graph in the direction of the edges, the
backward search (destination to origin) explores it in the opposite direction. Since
the charging stations can be both the origin and the destination in a query, we have
to explore the graph in both directions. Therefore, for each charging station, we
create a forward shortest-path tree, and a backward shortest-path tree.

4.3.1.2 Query

A query is bidirectional, we therefore need the forward shortest-path tree of the
origin node and the backward shortest-path tree of the destination node. First, we
find the common nodes, i.e., the nodes that are covered by both trees. Second, for
each common node, we create the sumset of the Pareto sets of labels for that node
from both trees and remove non Pareto optimal entries. Each of these Pareto sets
contains the costs of the Pareto optimal shortest paths from origin to destination,
but only for those paths that contain the respective node. Finally, we combine all
the Pareto sets into one, which gives us the costs of all Pareto optimal shortest paths.
An example query with shortest-path trees for two criteria is depicted in Figure 4.4.

In addition to the cost, each entry in a Pareto set of labels contains the predecessor
node within the shortest-path tree. The node is necessary to reconstruct the path
on the street network graph. When we create the sumsets of Pareto sets for the
common nodes, the labels have to contain the predecessor nodes of both trees. The
labels in the combined Pareto set additionally have to store the common node from
which the label is from. Together, this information can be used to reconstruct each
shortest path of the query result.

Reconstructing a path involves resolving all shortcuts to their underlying edges
in both shortest-path trees. Doing this for all shortest paths in the Pareto set is

computationally expensive. To save computation time, the long-distance trip planner
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does not reconstruct every path. It makes decisions based on the costs alone and
only reconstructs the final path.

4.3.2 Charging Station Lookup Table

We can also simply calculate the Pareto sets of costs between all charging stations in

another preprocessing step. A simple lookup table can be used to get the resulting
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(b) Forward and backward shortest-path trees with labels of common
nodes. Solid: Forward tree from node A. Dashed: Backward tree from
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(c) Create sumsets from node labels and combining them to get
resulting Pareto set

Figure 4.4 — Example query with precomputed shortest-path trees (based on
[8] © 2022 IEEE)



4.4 Performance Evaluation 31

Pareto set for each combination of charging stations, which is significantly faster
than doing a query even with shortest-path-tree precomputing.

This is, of course, only feasible if the number of charging stations is somewhat
limited. For long-distance trip planning in Germany;, it is sufficient to consider the fast
charging station locations in Germany, of which there are 2667 in our scenario. This
creates nn-(n—1) = 7112889 possible combinations. To be able to precompute these

entries in a reasonable amount of time, we use shortest-path-tree precomputing.

4.3.3 Preliminary Edge Costs

In a realistic scenario with a dense network of charging stations and an electric
vehicle with a long range, there are many charging stations to choose from. Even
with shortest-path-tree precomputing, the trip planner has to minimize the number
of queries. Finding a single-criteria shortest path is orders of magnitude faster
than finding all multicriteria shortest paths. Thus, when we explore a node in the
charging station graph and have to calculate the edge costs to all neighbor nodes,
we do not perform multicriteria shortest path searches for all edges. Instead, we
calculate a preliminary heuristic edge cost, based on two single-criteria shortest path
searches for the fastest and the most energy-efficient route. With this, we create a
best-case cost for this edge, assuming the travel time of the fastest route and the
energy consumption of the most energy-efficient route. Only if this edge is selected
to be explored next, do we perform the multicriteria shortest path search and replace
the cost with the accurate value.

Note that this only affects the costs between the origin or destination with the
charging stations. The costs between the charging stations themselves are queried
with the charging station lookup table.

4.4 Performance Evaluation

4.4.1 Experimental Setup

The algorithms were implemented in C and compiled with GCC 10.3.0 with the
highest optimization setting (-03). All experiments were run on a 64-core AMD
Ryzen Threadripper 3990X with 256 GB of RAM.

The street network graph was created from OpenStreetMap (OSM) data, com-
bined with an improved version [10] of SRTM elevation data. It contains the entire

street network of Germany, with the exception of very small streets®. The graph is

3Downloaded from http://download.geofabrik.de on 2022-01-01. All OSM ways with highway
tag except for path, steps, elevator, corridor, platform, bridleway, footway, cycleway, pedestrian, proposed,
construction, raceway, emergency_bay, rest_area, track, unclassified, residential, living_street, service,
tertiary, or tertiary link.


http://download.geofabrik.de
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made up of 4599 852 nodes. The majority of these nodes only define the shape of
the street or road. Only 163 697 have more than two edges.

For our experiments, we also need a list of charging stations. To get a realistic
coverage of the German charging infrastructure, we use the extensive list of public
charging stations provided by the German Bundesnetzagentur®. For the experiments
in this chapter, which regard long-distance trip planning, we only consider fast
charging stations. We merged very close (distance < 500m) locations together,

which resulted in 2611 fast charging station locations.

4.4.2 Shortest-Path-Tree Precomputing

Our long-distance trip planner makes many multicriteria shortest path queries be-
tween the charging stations and the origin and destination. As described in Sec-
tion 4.3.1, to achieve practical run times, we precompute all shortest-path trees for
the known locations of the charging stations. This potentially saves us a lot of query
time at the cost of some additional preprocessing time and disk space.

In our first experiment, we test how much preprocessing time and disk space is
required for different battery capacities. Because the exploration of the shortest-path
trees is limited by the battery capacity, it has a big influence on the precomputing
effort. Not only are more nodes and edges explored, but the further away the nodes
are, the more potential route alternatives exist and therefore the size of the Pareto
sets is greater. The results can be found in Table 4.1. As can be seen, precomputing
the shortest-path trees for all 2611 charging stations takes only a few seconds for a
25 kWh battery, and the size of each shortest-path tree is less than one MB. Increasing
the battery capacity causes significantly higher precomputing time and disk space
requirements. For the 100 kWh battery, it takes nearly half an hour and almost 50 GB
for all shortest-path trees.

We then tested how the precomputed shortest-path trees compare against plain
contraction hierarchies in terms of query times. We queried multicriteria shortest
paths for origin-destination (OD) pairs of different distances, from 100 km to 500 km
in 100 km steps (all distances £+ 10 %). Both the origin and the destination nodes

“https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/E-
Mobilitaet/Ladesaeulenkarte/start.html (visited on 27th Apr. 2022)

Table 4.1 — Shortest-path-tree precomputing times and sizes

Battery capacity (kWh) Time Size (GB) Size per CS (MB)
25 00:00:13 1.2 0.5
50 00:02:24 9.0 3.3
75 00:12:21 27.3 10.0

100 00:28:33 49.4 18.0



https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/E-Mobilitaet/Ladesaeulenkarte/start.html
https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/E-Mobilitaet/Ladesaeulenkarte/start.html
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were charging stations, therefore precomputed shortest-path trees existed for them.
Reconstructing the paths of all route alternatives is computationally expensive and
not necessary for our trip planner. We measured query times with and without
reconstructing all paths. For each distance step, we measured the query times of
100 OD pairs and averaged the results. As can be seen in Table 4.2, the query times
for precomputed shortest-path trees with path reconstruction are about one order
of magnitude smaller than for plain contraction hierarchies. Not reconstructing
the paths improves the query times by another one or two orders of magnitude.
Reconstructing the paths is especially expensive for longer distances, because there
are likely more route alternatives and each path consists of more edges.

4.4.3 Trip Planner

In our next experiment, we test how our long-distance trip planning approach with
its adaptive charging and routing strategy compares to related strategies. We have
generated 100 random OD pairs with distances of more than 500 km, ensuring that
the vehicles have to recharge on the way, often multiple times. For each strategy,
we plan the trips for all OD pairs with our trip planner and average the results. We
do this for each of our five vehicle types (cf. Section 3.1). Since the vehicle types
have different energy consumption models, we have to preprocess the shortest-path
trees and the charging station lookup tables for each vehicle type separately. As
an additional comparison, we have also calculated the drive times for all OD pairs
when driving the fastest route non-stop. This way, we can easily see how much extra
time is spent with charging, i.e., making detours to charging stations and taking
more energy-efficient (but slower) routes. The average non-stop drive time for all
OD pairs is 06:25 h.

We have plotted the results of these tests in Figure 4.5. In Figure 4.5 (a), we
compare the trip results of our five vehicle types. It is clear to see that the vehicles
vary greatly in their suitability for long-distance travel. The A segment vehicle’s
total travel time is more than 4 h or 70 % longer than the non-stop drive time. The

vehicle has a comparatively small battery and poor fast-charging capabilities. Even

Table 4.2 - Query time comparison between plain contraction hierarchies (CH),
precomputed shortest-path trees (SPT) with (R) and without reconstructing
all paths.

Type Average query times (s)

100km 200km 300km 400km 500km
Plain CH 0.202 2.672 13.903 37.822 88.522
SPT (R) 0.043 0.370 1.551 4.188 9.911
SPT 0.010 0.010 0.024 0.058 0.114
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though it has the lowest energy consumption, it makes more than 6 charge stops
on average and has the highest charge time of all vehicles. Higher charging speeds
significantly shorten the extra time. The D segment vehicle has a large battery and
good fast-charging speeds. It has the lowest extra time with 1.5h or 25 % and only
needs two charge stops on average, which could be considered tolerable breaks on a
trip that takes more than 6 h. The J segment vehicle’s fast-charging speed is even
higher compared to the D segment vehicle, but its total travel time is worse, which
can be attributed to the higher energy consumption and smaller battery capacity.

The comparison of our adaptive charging and routing strategy with other related
strategies can be found in Figure 4.5 (b). The differences between the strategies
were very similar for all vehicle types. To make the charts easier to read, we have
therefore averaged the trip results of all vehicle types. We compare our adaptive
charging strategy to three different strategies: Only charging the minimum amount
required to reach the next charging station (charge min), always charging 80 %
(charge 80%) and always making a full charge (charge full). Our adaptive charging
strategy has a significant advantage over charge 80% (2.4 % slower) and especially
charge full (11 % slower). These strategies cause a lot more charge time, because the
charge power drops significantly as the SOC increases, especially after about 80 %.
Our strategy only has a negligible advantage over the charge min strategy. In fact,
in many cases, the selected routes and charge amounts are identical. Our strategy
only has an advantage in cases where a charging station on the trip has a higher
usable charging power than the following one. As there are many fast charging
stations available in Germany that are more than powerful enough for the charging
capabilities of the vehicles, slower fast charging stations are only rarely ever selected.
However, our strategy can be advantageous in cases where more factors are involved
when selecting charging stations, such as wait time.

We also compare our adaptive routing strategy with alternative strategies, namely
always taking the fastest route (route fast) and always taking the most energy-efficient
route (route eco). Especially the latter strategy is commonly used in literature [16],
[30], [31]. It is therefore an interesting observation that this strategy causes the
highest total travel time with 34 % more than our strategy. The most energy-efficient
routes often take small, slow roads, far from major highways. It saves significant
amounts of energy and therefore has the best charge time, but this does not make-
up the lost time on the road. Always taking the fastest route is much closer to
the optimum. Even though the energy consumption and the average number of
charge stops are a bit higher, the total trip time is only slightly worse (0.5 %) than
our adaptive routing strategy. This can be attributed to a sufficient number of fast

charging stations that can quickly recharge the vehicles along the way.
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Chapter 5

Urban Trip Planning

In this chapter, we describe our urban trip planning approach. In contrast to long-
distance trip planning, reaching the destination, with recharging, if necessary, is not
the main objective. The range of modern electric vehicles is long enough to cover a
typical day in an urban scenario without recharging, assuming the vehicle has been
fully charged at home. But what if it is not possible to charge the vehicle at home,
because, e.g., the driver lives in an apartment without a dedicated parking spot? As
vehicles with internal combustion engines are slowly being phased out, more and
more people are driving electric vehicles with no option to charge at home. These
drivers rely on the public charging infrastructure to recharge their vehicles.

The problem is that charging an electric vehicle takes a lot of time, even at fast
charging stations. But if we charge the vehicle while it is parked anyway, e.g., at
work or during other long stays, the charge time does not matter as much. Our urban
trip planner plans charge stops that fit into the driver’s schedule and minimizes the
extra time spent with charging. It can select between en-route charging, where the
driver stops en route to some other activity at a fast charging station and waits with
the vehicle until the charge process has finished, and destination charging, where
the driver parks the car at a charging station near the activity (the destination) and
visits the activity while the vehicle charges. In the latter case, if the charging station

is not directly adjacent to the activity, the driver has to walk to the activity and back.

5.1 Related Work

Urban trip planning is used by many works in various ways. In contrast to long-
distance trip planning, reaching the destination is usually not the main objective.
Many works consider the effect of electric vehicle charging on the power grid and
select when and where vehicles should charge to flatten the load on the grid (peak

shaving) [36]-[41]. From the driver’s perspective, the algorithms minimize the
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charge cost. In some cases, the vehicles can also sell energy back to the grid (vehicle-
to-grid (V2G)) [36], [40], [41].

Some works [36], [37], [39], [41] only consider charging the vehicle at times
when it is parked anyway (destination charging). For destination charging, it is
essential to take user behavior and mobility patterns into account [42]. Sortomme
and El-Sharkawi [36] use driving profiles that include morning and evening commutes
on weekdays and different random trips on weekends. An algorithm decides when
parked vehicles are charged or discharged using V2G, with the goal of minimizing
the charge costs for drivers and reducing the peak load on the power grid. Similarly,
Sun et al. [41] consider commuting electric vehicles that travel between home and
the workplace at certain time slots. The vehicles can form homogeneous fleets that
share the same activities, including charging/discharging and routing decisions and
can participate in day-ahead electric power scheduling. While the individual vehicles
minimize their travel time, the fleets optimize charge costs and discharge revenue.
They assume that charging and V2G is possible at home and at the workplace.

In cases where there is no charging station directly at the destination, we could
also consider walking to and from a charging station that is nearby. Rigas et al. [39]
consider the time it takes to walk from the charging station to the destination when
selecting charging stations. They minimize the drive time, charge time, and walk
time and also the charge costs. Gerding et al. [43] describe a similar park 'n charge
scenario, where the vehicle is charged at a charging station while the driver walks to
the nearby destination. They also consider en-route charging in a different scenario,
but do not combine both approaches, such that there would be a choice between
them. The approach presented by Yang et al. [38] does this to some degree. Their
route selection and charging navigation strategy considers destination charging when
the car is parked and en-route fast charging if necessary to reach the destination.
Gambuti et al. [44] also consider something similar in their multimodal trip planning
approach. Vehicles can be charged en-route at fast charging stations to reach their
destination, but also at slow charging stations while the driver is changing to another
mode of transportation, such as public transit. However, none of these works consider
the driver’s schedule to make charging decisions or select between en-route charging
and destination charging.

All of the works mentioned above employ simple energy consumption models
with a fixed energy consumption value per km. They also do not use charge curves
but assume constant charge power or fixed charge times.

We extend the state of the art with an approach to plan charge stops within the
day’s schedule of the driver that minimize the extra time spent with charging. It can
select between en-route charging and destination charging, including the option to
walk to and from the charging station to the destination. We also use the realistic

energy consumption and charging models of our five vehicle types (see Chapter 3).
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5.2 Concept

Our urban trip planner plans charge stops for drivers of electric vehicles that rely on
the public charging infrastructure because they do not have the option to charge
their vehicle at home. The goal is to minimize the extra time the driver has to spent
with charging the vehicle throughout the day.

5.2.1 Driver Schedules

To minimize the extra time spent with charging, the trip planner has to know the
driver’s schedule. The schedule is an activity chain of times and locations the driver
plans to visit throughout the day, e.g., going to work, shopping, or leisure activities.
The initial starting point, and the final destination might be the same, e.g., home.
It could be created by the vehicle’s on-board navigation system or a smartphone
app based on a prediction from historical data, maybe combined with analyzing the
user’s calendar, or simply by user input. Within this work, the schedule is simply
assumed to be known.

The schedule is divided into segments, each consisting of an activity and the trip
to it. An additional segment is the trip to the final destination. For each of these
segments, the trip planner can make separate charging decisions. Figure 5.1 shows

an example of a driver’s schedule, divided into three segments.

5.2.2 Charging Alternatives

The trip planner can make a charging decision for each segment of the schedule.
For each segment, it selects one of the following three alternatives (cf. Figure 5.2):
The first (trivial) alternative is to drive directly to the activity without charging the
vehicle and simply parking it there. The second alternative is en-route charging.
While en route to the activity, the driver makes a stop at a fast charging station,
lets the vehicle charge and afterwards continues to drive to the activity, similar to
using a gas station. Since the driver has to wait with the vehicle, this is only really
suitable for fast charging. The battery is also only charged to 80 % state of charge
(SOCQ), because the charging speed typically drops significantly after that point. In
the third alternative, destination charging, the vehicle is charged near the activity

(the destination) while the driver visits the activity. If there is no charging station

’ home }—>{ work H shopping }—>{ home ‘

f S1 i S2 —-S3-

Figure 5.1 — Driver’s schedule divided into segments (based on [7] © 2021
IEEE)
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directly adjacent to the activity, the driver has to walk from the charging station to
the activity and back. This may take some time, but the driver also saves time by
not having to wait with the vehicle while it charges. Depending on the duration of
the activity, this makes it suitable for slow charging, especially if the driver stays at
the activity for several hours. The vehicle is charging as long as the driver is away,
which means it could charge to any SOC up to 100 %. We assume that the driver
will not interrupt the activity to unplug and repark the vehicle after it has reached

100 % SOC. Doing so would only cost extra time without any benefit to the driver.

5.2.3 Route and Charging Station Selection

When evaluating the charging alternatives, the urban trip planner also has to select
the route to take when driving to an activity or a charging station. Similarly to our
long-distance trip planner in Chapter 4, we do not simply take the fastest route to
minimize drive time, because a slower, more energy-efficient route that saves us
charge time, might take less time overall. The route must, of course, also respect the
battery constraints, i.e., the battery must not run empty on the way. The trip planner
selects the route from the set of Pareto-optimal routes from fastest to most energy
efficient. To efficiently find these routes, we use shortest-path-tree precomputing
(see Section 4.3.1).

There are usually multiple charging stations to choose from. The alternatives thus
include the charging stations and the route alternatives to (and from) these charging
stations as well. For each segment, the planner iterates over all alternatives and
calculates the SOC and the time at the end of the segment. The time depends on the
charge time and the drive time to and from the charging stations, in case of en-route
charging, and on the walk time between the charging station and the activity, in case
of destination charging. After calculating these values for all alternatives, the planner
can dismiss those alternatives that are dominated by others, i.e., those that have
lower time and a higher SOC at the end of the segment. The remaining alternatives

e { e ’

park

work l
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En-route charging I drive Hcharge“ drive

|walk| | work || walk|
| P charge |

Destination charging

Figure 5.2 — Charging alternatives for each segment (based on [7] © 2021
IEEE)
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are used as possible result candidates and are the basis for the calculation of the
next segment. The planner evaluates a segment for each candidate of the previous
segment separately, thereby creating a result tree.

Once the candidates for the final segment have been calculated, we can select
one of them as our end result. Each candidate has a predecessor candidate in the
result tree. This way, we can recreate the selected charging alternative, charging
station, and route for each segment that led to the end result. We can select the
result based on some criterion, such as having a minimum battery SOC of 70 % at

the destination or having charged at least once.

5.3 Performance Evaluation

5.3.1 Scenario

We evaluate our urban trip planner by planning a large number of trips for drivers
in an urban environment that all have individual schedules.

The scenario we are using is based on the Paderborn traffic simulation sce-
nario [45]. It was developed for the traffic simulator SUMO [46] and takes place in
the City of Paderborn, a mid-sized German city with a population of around 150 000.
Each simulated inhabitant has an individual schedule over a 24 h period that was

Figure 5.3 — Overview of the Paderborn traffic simulation scenario with slow
charging stations (blue) and fast charging stations (red) (based on [7] © 2021
IEEE)
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created using SUMO’s ACTIVITYGEN tool. The schedules consist of activities such as
driving to work or University, going shopping, etc. The resulting traffic demand con-
sists of more than 200 000 trips and resembles real-world measurements. The street
network was generated from OpenStreetMap (OSM) data, enriched with elevation
data from SRTM and contains some SUMO specific details, e.g., lanes, internal edges
at intersections, traffic lights, etc.

For our experiments, we have extracted the street network and removed the
SUMO-specific details. To model the public charging infrastructure of Paderborn,
we added 15 slow charging stations with a power of 22 kW and two fast charging
stations with a power of 150 kW. An overview can be seen in Figure 5.3.

We assume that the vehicles have no option to charge at home and charge every
few days using the public charging infrastructure. To simulate such a day, we set the
initial SOC of the vehicles’ batteries to 20 %. The goal is to reach the final destination
with an SOC of 70 %. This way, the vehicle can be charged to 80 % at a fast charging

station and still has enough energy for the rest of the trip.

5.3.2 En-Route Charging and Destination Charging

In our first experiment, we compare our strategy of selecting between en-route
charging and destination charging with being limited to just one of these options.
We examine how much extra time the driver has to spend with charging the vehicle,
compared to just driving the fastest route to each activity of the schedule without
charging. For each trip, we measure the composition of drive time, walk time,
and charge time from en-route charging. We do not count the charge time from
destination charging, because the driver is spending the time at the scheduled
activity. But if the driver has to delay his stay at the activity because the vehicle
would otherwise not be sufficiently charged to reach the 70 % goal, we report this as
stay delay time. The trip planner plans around 30 000 trips with random schedules
from the scenario for each vehicle type and averages the results.

As can be seen in Figure 5.4, our strategy causes significantly less extra time
than the alternative strategies across all vehicle types. The only en-route charging
strategy is especially disadvantageous to the smaller vehicle types. These vehicle
types have poor fast-charging capabilities and therefore high charge times. This
strategy also causes higher drive times for all vehicle types, because the scenario
only contains two fast charging stations and many vehicles have to drive significant
detours to reach them.

The only destination charging strategy, on the other hand, is unfavorable to the
larger vehicle types. Destination charging is mainly used with slow charging stations,
and the high battery capacities of the larger vehicle types cause very long charge
times. They are often longer than the planned stay durations at the activities of
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the schedules, which in turn results in long stay delay times. Additionally, at many
locations of the activities, there are simply no charging stations within a comfortable
walking distance. This causes average walk times of around 20 min, which makes
the strategy impractical for our scenario, because we cannot assume drivers would
be willing to walk that far.

Averaged over all vehicle types, only en-route charging causes an extra time of
39.0 min, and only destination charging 39.3 min. Our strategy clearly improves the
situation with an average extra time of only 20.0 min. It selects the optimal charging
type for each schedule and vehicle type, which is also reflected by the significantly
higher share of destination charging for smaller vehicles. However, the average walk
times of the trips generated by our trip planner are between 9 min... 14 min, which

might also be too long to be practical for some drivers.
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5.3.3 Walk Time Limit

Some drivers may not accept long walk times for destination charging. We can set
a walk time limit for the trip planner, so that only charging stations within that
limit are considered for destination charging. This could make destination charging
infeasible in some places and might increase the extra time spent with charging, as
vehicles now have to drive detours to fast charging stations for en-route charging.
To see how different walk time limits affect the extra time, we tested 3 different
walk time limits: 5min, 10 min and 15 min.

The results can be seen in Figure 5.5. Limiting the walk time to 5 min reduces the
share of destination charging from 67 %...85% to 32%...36 %. This significantly
increases the extra time spent with charging, especially for the smaller vehicles.
While the extra time for the J segment vehicle increases by 22 % from 19.1 min to
23.3 min, for the A segment vehicle it increases by 61 % from 21.7 min to 35.0 min.

These results are, of course, highly dependent on the available charging infras-
tructure. In our scenario, there are simply not enough charging stations available to
allow the majority of drivers to comfortably charge their vehicles within their daily
schedules. Drivers either have to be willing to walk long distances or endure waiting
with their vehicles at fast charging stations. In Chapter 7, we will look at how to

extend the charging infrastructure to improve the situation.
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Chapter 6

Coordination of Charging Between
Vehicles

In this chapter, we describe our approach to coordinate charging between electric
vehicles in order to reduce wait times. Charging can take a lot of time, and charging
stations only have a limited number of charge points. Without coordination between
vehicles, there will be queues and long wait times. We propose a central charging
station database (CSDB) that assists vehicles with planning their trips. The vehicles
can query wait time estimates for any charging station and for any point in time in
the future. In exchange, the vehicles have to announce their own planned charge
stops to the CSDB.

The wait time information can easily be used by our long-distance trip planner
(Chapter 4) and our urban trip planner (Chapter 5) as an additional time cost at the
beginning of each charge stop. The adaptive charging and routing strategy will take
advantage of this information when planning trips. It might, for instance, select a
slower but more energy-efficient route if the vehicle has to wait at the next charging
station anyway. It might also select a different charging station if the additional

drive time for the detour is less than the saved wait time.

6.1 Related Work

There are several ways to coordinate electric vehicle charging in order to reduce
charging station wait times. A popular approach is to use a reservation system [47]-
[53]. Vehicles can reserve a time slot at a charging station in advance to avoid
waiting when they arrive. The time slot is either selected by the vehicle [48], [49] or
assigned by a central scheduler [47], [50], [52], [53]. In some systems [48], [53],
the vehicles can update their reservations if needed. While most systems operate
on a first-come, first-served basis, Cao et al. [50] describe a system with prioritized

47
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reservations, where vehicles with a high priority charge before vehicles with a low
priority. To minimize the average wait time, a central scheduler needs to know the
time preferences of its users. Hou, Wang, and Yan [51] assume that users are selfish
and would not reveal their true preferences to avoid unfavorable time slots. They
propose a bidding process which, by progressively eliciting the users’ preferences in

an iterative auction, preserves the users’ privacy.

Some approaches use deep reinforcement learning to schedule charging stations.
Qian et al. [54] present a charging navigation approach that tries to minimize the
charging cost as well as the total travel time. By considering wait times at charging
stations, traffic conditions, and charge prices, it can coordinate smart grid and
intelligent transportation systems. However, there is no direct coordination between
vehicles. They simply assume that the charging stations know how long the wait
times will be. Lee et al. [52] propose a similar system that coordinates charge stops
between vehicles with a reservation system and makes charging decisions with a
central service. However, both approaches suffer from poor scalability. The street
network graph used for evaluation consists of only 39 nodes and three charging
stations. Zhang et al. [55] demonstrate deep reinforcement learning for scheduling
charging stations on a larger scale. Their evaluation uses a graph of a big city
with more than 1000 charging stations. However, they assume that the energy
consumption simply depends on the driven distance, and only select the routes with
the shortest distance. While this may be sufficient for inner-city navigation, more

sophisticated models are needed for long-distance navigation.

Another approach is a central service that keeps track of the charging stations’
state and assists vehicles with their trip planning. It can provide vehicles with
information about the charging stations, such as the current queue length [56]
or average wait times [57]. De Weerdt et al. [58] also take into account the
vehicles’ future charging intentions. The vehicles announce their intentions to the
service, which in return predicts wait times in the future. By combining the charging
intentions with historical data, they were able to reduce average wait times in
some cases by about 80 %. Tian et al. [59] present a similar system to recommend
charging stations to electric vehicle taxis. The system uses real-time GPS data and
historical data to understand the drivers’ recharging behavior patterns and identify
their charging intentions. In real-world experiments, they were able to reduce the

wait times of electric vehicle taxis by 50 %.

We go one step further and combine information about the current utilization,
announced planned charge stops of other vehicles, and historical data to estimate
wait times at charging stations in the future. We use realistic energy consumption
and charging models and show that this system works well with long-distance and

urban trip planning to reduce average wait times.
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6.2 Charging Station Database (CSDB)

The CSDB is a central service that can be used by electric vehicles to coordinate
charging station visits. Its main function is to estimate wait times at charging stations
in the future. Electric vehicles may query wait time estimates for any charging station
and for any future point in time. They can use these estimates to plan their trips
and take them into account when selecting charging stations. To use this service,
the vehicles agree to announce their own planned charge stops to the database. In
addition to the planned charge stops it gets from the vehicles, the database also
knows the current utilization of the charging stations and maintains statistical data
about past utilization. The CSDB combines this data for the wait time estimation.
The concept is depicted in Figure 6.1.

The CSDB is not a reservation system, it only estimates wait times for vehicles
based on information from other vehicles and charging stations. This has several
advantages. One is that it is independent from the charging station operators.
It only needs to know the current utilization of the charging stations, and many
charging station operators publish this information as a service to potential customers.
Therefore, it is not limited to charging stations of operators that specifically support
the system. Another advantage is that deviations from the planned charge stops do
not cause any significant issues. Charge stops might be planned hours in advance, and
deviations from the planned arrival time at the charging stations due to, e.g., traffic
jams, could cause issues with a reservation system. Depending on the implementation
of the reservation system, a reserved charge point for a vehicle that is late might be
blocked for other vehicles even though it is unused. When the late vehicle finally
arrives, there might not be enough time left to complete the charge process before the
next reservation. This could potentially be a frustrating experience for the drivers.

In our system, we assume vehicles charge on a first-come, first-served basis. Aside
from making it more flexible to deviations from plans, it also means that vehicles
not participating in the system are not placed at a disadvantage.

Y
CS
DB
wait time
estimates current
planned

utilization
charge stops

S i
& ®

charging

Electric vehicle Charging station

Figure 6.1 — Charging station database concept (based on [8] © 2022 IEEE)
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The CSDB was designed to work with our long-distance trip planner and our
urban trip planner to reduce wait times. The trip planner itself could be run locally
on a user’s device, such as a smartphone or on the vehicle’s on-board navigation
system. The only user data received by the CSDB would be requests for wait time
estimates and the planned charge stops. It would not need to know about the trip

destinations or the drivers’ schedules.

6.2.1 Wait Time Estimation

The CSDB estimates wait times by combining three data sources. The current
utilization of charging stations, announced planned charge stops of vehicles, and
statistics about historical utilization. To ease the reading of the following part, we
provide a table of the used symbols in Table 6.1.

For the charging stations’ current utilization, the database maintains the state of
each charge point. This includes whether the charge point is occupied and when
an occupying vehicle will depart. For each charge point ¢ € C, of a charging station
s € S, we denote the departure time of the occupying vehicle as tfiep. In case the
charge point is vacant, we define tfiep = ty, with t, being the query time (the current
time when the query is made). The set of announced planned charge stops by electric
vehicles is denoted as P. Each planned charge stop p € P has an arrival time ¥ and
a charge time tf L+ As we assume vehicles are charged on a first-come, first-served

Table 6.1 — Description of symbols

Symbol Description

S Set of charging stations

C, Set of charge points of charging station s

to Query time

td ., Arrival time of the query

td ot Charge start time of the query

tfval. . Resulting wait time of the query

b, Set of planned charge stops of charging station s
th . Arrival time of planned charge stop p

th e Charge start time of planned charge stop p

tf b Charge time (duration) of planned charge stop p
tgep Departure time of planned charge stop p

Cp Charge point assigned to planned charge stop p
T Period of charge stops for statistical utilization
tenr Charge time of charge stops for statistical utilization
u Statistical utilization of charging station

n Number of charge points of charging station
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p

basis, the time when the charge process will start tg,,,;,

depends on the arrival
time at the charging station and implicitly on the vehicles that will arrive earlier (cf.

Equation (6.6)). The charge start time and departure time tgep are defined as:

p —
tsrart - tstart(tgrr) > (61)
P _ 4P p

tdep - tstart + tchr . (62)

We assign each planned charge stop to one of the charge points ¢ € C, of the charging
station. Which charge point is selected, depends on the arrival time of the planned
charge stop:

cp = argmin(t;ree(tﬁ’”)) . (6.3)

ceC;

The function t;ree(tgrr) (cf. Equation (6.5)) returns the time when the charge point
¢ would become free for a vehicle arriving at the given arrival time. This, of course,
depends on other planned charge stops assigned to that charge point with earlier

arrival times, which are denoted as:
P(tg)=pEP,cy=c,tg<th <tgy. (6.4)

To calculate when a charge point becomes free for an arrival time t,,,., we take the
last departure time of these planned charge stops. If there are none, we instead

C
dep*

As mentioned before, if the charge point is vacant, this value is simply the query

return the departure time of the vehicle currently occupying the charge point t

time t, i.e., the charge point is free immediately.

max,ep,(t,,,) tgep ifpc(tarr) 7& %)

teree(tarr) = (6.5)

C

taep else

With this, we can calculate the charge start time. It is the soonest time any charge
point of the charging station becomes free, but cannot be before the arrival time:

tseare (Carr) = max(ty,, min(tz  (tg,))) - (6.6)
ceCy

We can use this function to calculate the charge start time for the query. The estimated
wait time is then simply the difference between the start charge time and the arrival

time:
q —
tstart - tstart(tgrr) B (67)
q — +4
twait - tstarr - tzrr . (6.8)
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6.2.2 Statistical Utilization

We assume that not all vehicles will participate in using the CSDB, and that, therefore,
not all charge stops will be announced to it. This could potentially lead to significant
errors in the wait time estimation. To also take charge stops into account that
were not announced, the CSDB maintains statistical data about the charging station
utilization, based on historical data. It is stored in the form of average utilization per
hour for a 24 h period. In our wait time estimation, we account for it by adding short
virtual charge stops that repeat periodically. The period depends on the duration
t.n, of the virtual charge stops, the utilization u, and the number of charge points of
the charging station n:

t
T = ﬁ . (6.9)

In our experiments, we set t,. to 1 min. For a charging station with two charge
points and a 25 % utilization rate, we would add a virtual charge stop every two
minutes. Figure 6.2 depicts an example of a wait time estimation including virtual
charge stops.

6.2.3 Long-Distance Trip Planning

The long-distance trip planner plans the full trip before the departure of the vehicle.
It queries wait time estimates from the CSDB for charging stations that are potential
charge stops. Because the drive can take hours, by the time the vehicle arrives at a
charging station, the wait time may differ significantly from the original estimate.
Additional vehicles may have planned charge stops at the charging station but
announced them only after our vehicle planned the trip, or more vehicles than
expected arrived unannounced. We therefore might want to update the wait time
estimates from time to time and alter the plan if necessary. This requires additional
communication with the CSDB and additional computation time by the trip planner.
We have defined three levels of when trip plan updates take place:

Level 1 The trip is planned at the beginning and never updated. The vehicle
communicates with the CSDB once to query wait time estimates and to announce
its planned charge stops.

Level 2 The trip is updated when arriving at a charging station. In addition to the
communication for the initial planning, the vehicle communicates with the CSDB
at every charge stop to query wait time estimates. If any estimate changes, the trip
planner replans the trip and updates the planned charge stops at the CSDB.

Level 3 The trip can also be updated while driving. The vehicle is in constant
communication with the CSDB. Unlike levels 1 and 2, the CSDB actively monitors
the wait time estimates and automatically notifies the vehicle of any changes. The

vehicle can then immediately replan the trip from the current position on the road.
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Figure 6.2 — Wait time estimation example (based on [8] © 2022 IEEE)
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6.2.4 Urban Trip Planning

We can also use the CSDB to coordinate charging with our urban trip planner.
Similarly to long-distance trip planning, the trips of the day are planned before
the first departure of the vehicle. But unlike long-distance trip planning, the trips
have rather short drive segments (minutes instead of hours) and can have long stay
durations at activities. Updating the plan when arriving at a charging station or while
on the road provides little benefit, because the wait time estimates will not change
significantly after only a few minutes. They may, however, change significantly after
the vehicle has been parked at an activity for several hours. For urban trip planning,
we therefore only update the trip plan when departing from an activity.

6.3 Performance Evaluation

6.3.1 Experimental Setup

We evaluate the CSDB in combination with long-distance trip planning and urban
trip planning. For the experiments in this section, we use the same experimental
setups as we did in Chapter 4 and Chapter 5 respectively. In the previous chapters,
we simply calculated plans with the trip planners and analyzed the results. The
vehicles had no interaction with each other. In the experiments in this chapter, the
vehicles do interact and affect each other. We therefore now perform a discrete-event
simulation (DES) of the vehicles and charging stations. Each charging station has
a limited number of charge points. When all charge points are occupied, arriving

vehicles must wait in a queue for a free charge point before they can be charged.

6.3.2 Long-Distance Trip Planning

To evaluate the CSDB with long-distance trip planning, we simulate one day with
2000 vehicles making long-distance trips. Each vehicle is assigned a random origin-
destination (OD)-pair with a distance of 500 km, which ensures that the vehicle
has to recharge on the way. Departure times are selected randomly based on the
distribution of trips on a weekday (Mon-Fri) in Germany [60] (see Figure 6.3). The
charging infrastructure, which was taken from the scenario in Chapter 4, consists of
2611 fast charging stations with a total of 8356 charge points. We ran the simulations
10 times for each vehicle type and averaged the results.

In our first experiment, we examine how the total travel time of our vehicle types
is affected by the penetration rate of the CSDB, i.e., how many vehicles take part
in the system. We ran tests with penetration rates from 0%...100% in 10 % steps.
Of the vehicles using the CSDB, one-third uses CSDB level 1, one-third level 2, and
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Figure 6.3 — Departure time distribution (based on distribution of trips on a
weekday (Mon-Fri) [60])

one-third level 3. We denote not using the CSDB as level 0. The division of CSDB

levels among vehicles for the penetration rate steps can be seen in Figure 6.4.

As can be seen in Figure 6.5, using the CSDB reduces the total travel time of all
vehicle types significantly. Higher penetration rates of the CSDB lead to significantly
lower wait times without affecting the drive or charge times in a major way. The A
segment vehicles have the smallest batteries and the worst fast-charging capabilities,
which results in long charge times and, in turn, long wait times at the charging
stations. At a 0% penetration rate, the average wait time is about 4h. When all
vehicles use the CSDB, it is reduced to 4 min, which is an improvement of about 98 %.
The D segment vehicles need to recharge a lot less as their batteries are larger and
their fast-charging capabilities better, which leads to lower wait times. Nevertheless,
we see a significant improvement here as well. The average wait time for 0% and
100 % penetration rates is 17 min and 37 s respectively, which is an improvement of
96 %.

100 =
x 80 - m ﬂ ﬂ A Level 0
< 60 +|E Level 1
g 40| | | Level 2
7 20 | = || ELevel 3
0

0 10 20 30 40 50 60 70 80 90 100
CSDB penetration rate (%)

Figure 6.4 — Division of vehicles into CSDB levels for the penetration rate
steps in our experiments
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Figure 6.5 — Travel time composition of all vehicle types for different CSDB
penetration rates

In Figure 6.6, we look at how the different CSDB levels affect the average wait
times of our vehicle types. A higher CSDB penetration rate improves the wait times
of all vehicles, even the ones not using the CSDB (level 0). They benefit from more
evenly utilized charging stations, which results in shorter queues and wait times.
For the vehicles using the CSDB, there is a significant difference between levels. The
average wait time has improved for all levels, but levels 2 and 3 see a much larger
improvement than level 1. Vehicles with CSDB level 1 only plan their trip once at
the beginning with the then current wait time estimates. These wait time estimates
become outdated after a while as more and more vehicles announce their planned
charge stops. By updating the trip plan at every charge stop, vehicles with CSDB
level 2 achieve significantly better average wait times. Vehicles with CSDB level 3
can update their plan while driving. This is an advantage, especially for vehicles
with large batteries that can drive for a long time between charge stops. For vehicles
with small batteries, e.g., the A segment, the difference between levels 2 and 3 is

smaller.

It should be noted that CSDB level 2 only has an advantage over level 1 when the
vehicle has to make multiple charge stops. Updating the trip plan at a charge stop
mostly improves the situation for the following charge stops. We therefore designed

the tests so that most vehicles have to make multiple charge stops.

The main cause of long wait times is the uneven utilization of charging stations,
with a few hot spots where many vehicles want to charge at the same time, while the
majority of charging stations have low utilization. Using the CSDB shifts the load
from the hot spots to other charging stations and leads to a more evenly utilized

charging infrastructure. The effect can be seen in Figure 6.7. It shows the utilization
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Figure 6.6 — Wait times of all vehicle types for different CSDB levels and CSDB
penetration rates

of charging stations during peak hours (15h... 18 h) with A segment vehicles, which
generally have the highest wait times in our experiments. We can see that with
a CSDB penetration rate of 100 %, there are no hot spot charging stations with a
utilization of 100 % anymore. In turn, the utilization of most other charging stations
has increased slightly. The charging stations are still far from being evenly utilized;
the majority are not used at all. This can be attributed to the design of our tests. We
consider all fast charging stations in Germany, but only test long-distance trips. Many
charging stations are not close to major highways, which makes them unsuitable for

long-distance travel.

— 0%
— 100 %

Utilization

0 100 200 300 400 500 600
Charging station

Figure 6.7 — Average utilization of charging stations in peak hours
(15h...18h) for CSDB penetration rate of 0 % and 100 %, sorted by utilization
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In our next experiment, we evaluate using statistical data about the charging
station utilization to improve the wait time estimation. We generated the statistical
data from the average charging station utilization of our previous experiment. In the
experiment, we compare the average wait time of A segment vehicles using CSDB
level 3, with and without using statistics. The results are plotted in Figure 6.8. As
can be seen, the average wait time when using the statistics is approximately halved,
compared to not using the statistics. We can also observe that the statistics not
only improve average wait times at low penetration rates, where only few vehicles
announce their planned charge stops to the CSDB, but also at high penetration rates,
including 100 %, when all charge stops are announced to the database. This can
be explained by the fact that the vehicles do not announce their planned charge
stops until the time of departure. Wait time estimates might become outdated when
other vehicles announce their planned charge stops later. And even though they can
update their route while driving, by the time they know they are on a suboptimal
path, it might already be too late to change it. It is therefore beneficial to account

for vehicles departing in the future by using statistical data.

6.3.3 Urban Trip Planning

In this experiment, we evaluate the effectiveness of using our CSDB for urban trip
planning. When evaluating urban trip planning, our main metric is the extra time
spent with charging. We do not use the wait time directly, because choosing a

different charging station to reduce wait time could significantly increase the walk
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Figure 6.8 — Wait times compared with and without using statistics on CSDB
level 3
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time for destination charging or, in the case of en-route charging, lead to additional
charge time. For simplicity, we assume that all vehicles either use the CSDB or do not
use it. We simulated scenarios with varying numbers of electric vehicles that want
to charge that day using the public charging infrastructure from 0.1%...0.2%.

We can make a simple rule of thumb calculation to see that this range is a
realistic assumption. Even though the market share of electric vehicles in Germany
was 13.6% in 2021 [61], the share of electric vehicles among the vehicle population
was only 1.3 % in January 2022 [62]. According to surveys, the vast majority of
charging in Germany happens at home (59 %), or at work (14 %), and only about
26 % by using the public charging infrastructure [63]. In 2020, German cars traveled
an average of 13323 km [64]. If we assume an average range of an electric vehicle
of 350 km and that the vehicle is charged from 20 %. .. 80 % state of charge (SOC),
this corresponds to approximately one charge every 5.8 days. Therefore, on a given
day, we can expect that of all existing vehicles, about % =0.0006 or 0.06%
want to charge their vehicle using the public charging infrastructure. And with the
increasing popularity of electric vehicles, that number will likely rise quickly in the
near future.

In Figure 6.9, we can see that using the CSDB reduces the average extra time spent
with charging by 80%...90%. However, due to the limited number of charging
stations and charge points, it is still unacceptably high. In the next chapter, we will
see how we could extend the charging infrastructure to achieve acceptable extra
times and how the CSDB can help with that.
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Figure 6.9 — Average extra time spent with charging depending on electric
vehicle rate with and without using the CSDB






Chapter 7

Charging Infrastructure Siting and

Sizing

In this chapter, we describe our charging infrastructure siting and sizing approach.
While today most electric vehicles are charged at home (or at work), we assume that
in the future, many electric vehicles will be owned by drivers who do not have the
option to charge at home. They have to rely on the public charging infrastructure to
recharge their vehicle in everyday life. As we have seen in Chapter 5 and Chapter 6,
the existing public charging infrastructure is not yet sufficient to provide convenient
charging for the majority of drivers. The public charging infrastructure therefore

needs to be extended, especially for drivers who cannot charge at home.

Extending the charging infrastructure consists of two problems. Siting suitable
locations for new charging stations and sizing the charging stations, i.e., determining
the number of charge points to deploy. It is also important to distinguish between
slow and fast charging stations, because they are used in a completely different
manner [5]. We assume that slow charging stations are predominantly used for
destination charging due to the long charge times. Fast charging stations, on the
other hand, are more suitable for en-route charging where the driver waits with the

vehicle.

Our siting and sizing approach is designed to extend the charging infrastructure
for everyday charging in an urban scenario. The goal is to improve the average extra
time spent with charging by identifying locations for new slow and fast charging
stations, and to reduce the average wait time by finding an appropriate number of
charge points. We use the same scenario as in Section 5.3.1. Charging infrastructure
for long-distance travel would be sited in a different way, with most fast charging

stations set up along major highway corridors.
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7.1 Related Work

Extending the public charging infrastructure to meet the needs of electric vehicles
(in the future) is a popular research area. The public charging infrastructure is used
in different kinds of scenarios. It plays a crucial role in enabling electric vehicles to
travel long distances. Fast charging stations are usually placed along major highways
to allow vehicles to reach destinations beyond their normal range. Jochem, Szimba,
and Reuter-Oppermann [65] examined how many fast charging stations are needed
along European highways to cover all flows of electric vehicles. A similar study
[66] was conducted to find optimal locations for fast charging stations on interstate
highways in the United States. In addition to fast charging stations along highways,
slow charging stations may be placed at destinations where the vehicles stay for a
longer time. A well-known example of this concept in practice is Tesla’s network
of fast charging stations along major highways (Superchargers) and slow charging
stations at hotels, resorts, and restaurants (Destination Charging) [67]. The chargers
are intended to enable long-distance travel, with the assumption that everyday
charging takes place at home.

To enable everyday charging for drivers without the option to charge at home, one
approach is to place slow chargers distributed throughout the city. To find locations
for the chargers, Erbas et al. [68] use GIS software to evaluate location candidates
with 15 criteria from the dimensions environmental/geographical, economic, and
urbanity. Krél and Sierpinski [69] try to evaluate locations with easily accessible
data, such as proximity to major roads or densely populated areas. They use existing
parking lots as location candidates and have different criteria for slow and fast
charging stations. Fast charging stations can also be used for everyday charging.
Wolbertus and Van den Hoed [5] investigated the need for fast charging stations in
cities. They concluded that fast charging stations are used in a completely different
manner than slow charging stations and must be treated separately in the planning
of charging infrastructure. And that while slow charging is better suited for everyday
charging at home or at work, if there are no charging stations in the vicinity of these
locations, fast charging can be a substitute if the charging speed is fast enough.

Because slow and fast charging stations are used in a completely different manner,
it is important to distinguish between them. Simply put, fast charging stations are
needed where many cars drive, and slow charging stations are needed where many
cars park. Therefore, fast charging station siting approaches try to maximize the
capture of traffic flow [65], [66], [70]. Gas stations are used in a similar manner
to fast charging stations, and their locations are selected with similar objectives.
Some works [71]-[73] use existing gas stations as location candidates for new fast
charging stations. Slow charging stations, on the other hand, are generally placed

close to where potential customers live or park. One strategy is to minimize the
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number of charging stations while still providing all potential customers with a
station within a certain distance. Another is to deploy a fixed number of charging
stations and minimizing the median distance to the customers [70].

Another aspect that can be considered is the impact of electric vehicle charging
on the power grid. Ma and Zhang [74] present an approach to find locations for slow
charging stations in a city that satisfy power grid constraints. Especially fast charging
stations can place a considerable load on the power grid. Sun, Chen, and Yin [75]
describe an approach to plan charging infrastructure for long-distance travel that
takes the interaction between transportation and power networks into account. In
addition to fast charging stations for en-route charging, wireless charging lanes and
destination charging are also considered.

A different approach is an agent-based simulation where electric vehicles make
trips and recharge their batteries when necessary, in order to infer the demand for
charging infrastructure. The driver behavior with regard to recharging significantly
affects the results. It can be modeled in different ways. Simple models assume that
the drivers drive their trips until the battery’s state of charge (SOC) drops below a
certain threshold and only then begin looking for a charging station [73], [76]. In
other models, charge stops are planned at the beginning of the trip [72], [77]. Some
works generate the trips from random origin-destination (OD) pairs [73]. Other
works [72], [76]-[78] use activity chains (driver schedules), but they usually do not
differentiate between destination charging and en-route charging. One exception
is an approach by He, Yin, and Zhou [77]. They assume that drivers plan their
trips together with charge stops in order to minimize the total travel time. They
distinguish between slow and fast charging and can deploy charging stations in a
way that minimizes average travel times. However, they do not take wait times into
account, it is a pure siting approach without sizing.

Most works in the field of siting and sizing charging infrastructure use simple
models for charging and energy consumption of electric vehicles. The charge power
is often assumed to be constant ([72], [73], [76]-[78]) and the energy consumption
is often a fixed amount of energy per distance driven ([73], [76]-[78]).

The siting and sizing approach we present in this chapter intends to extend the
charging infrastructure for everyday charging. We use an agent-based simulation with
a sophisticated driver behavior model based on our urban trip planner (cf. Chapter 5)
to plan trips including charge stops with destination charging and en-route charging.
This includes using our five vehicle types from different vehicle segments with
realistic energy consumption and charging models. This way, we can site locations
for new slow and fast charging stations and extend existing ones to minimize the
extra time spent with charging, including wait time. By coordinating charging with
our charging station database (CSDB) (cf. Chapter 6), we can significantly reduce

the necessary number of charge points to reach acceptable extra times.
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7.2 Concept

Our approach to charging infrastructure siting and sizing builds upon our urban trip
planner (cf. Chapter 5). The goal is to improve the average extra time spent with
charging by extending the charging infrastructure with additional charging stations
and charge points. We consider both slow and fast charging stations and distinguish
between en-route charging and destination charging.

In our approach, siting and sizing are two separate phases. In the siting phase,
typical driver schedules are analyzed to find locations for new charging stations. The
new charging stations are added to the existing charging infrastructure, initially with
only one charge point. In the sizing phase, we identify which charging stations should
be extended with additional charge points. We run multiple parallel simulations to
test how each possible charging station extension would improve the average extra
time spent with charging, including wait time. The vehicles in the simulations plan
their trips with the urban trip planner and coordinate their charge stops with our
CSDB. An illustration of the concept can be found in Figure 7.1.

7.3 Siting

The siting algorithm tries to identify good locations for new charging stations. Po-
tential candidates for these locations are the nodes of our street network graph. We
assign a score to each node that reflects how much a charging station at that node
would potentially improve the average extra time for the vehicles. To calculate the
scores, we analyze the drivers’ schedules and also take into account the existing

charging infrastructure.

The charging station sites are selected iteratively, one by one. The node with the
highest score is selected as a new charging station site and added to the charging
infrastructure. After a new site has been added, the node scores are recalculated
because the new charging station affects the scores of the surrounding nodes by

satisfying the charging demand in its vicinity.

Slow and fast charging stations are used in an entirely different manner [5]. We

therefore use two different scoring algorithms.
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7.3.1 Slow Charging Score Calculation

We assume that slow charging is mainly used for destination charging. To find
suitable locations for slow charging stations, it is therefore important to know where
vehicles park and for how long. We analyze the stops of typical driver schedules
to calculate the scores of the nodes. The scores reflect how much walk time a new
charging station at a node would save, compared to existing charging stations in the
area. We also take into account how long the vehicles are parked, i.e., a stop long
enough to completely charge the vehicle weighs more than a quick stop that only
takes a few minutes.

Let S be the stops of our typical driver schedules, V the nodes of the street
network graph, and C the existing charging stations. Each stop s € S and each
charging station ¢ € C is assigned to a node v, € V and v, € V respectively. The
linear distance between two nodes v, v, € V is defined as d(v;, v,). With this, the
distance from a stop s to the closest charging station is:

dmin,s = mind(vs, vc) . (71)
ceC

Stops only affect the scores of nodes within a certain search radius. To improve
the potential walk time, only nodes that are closer than already existing charging
stations are considered. We also assume that drivers are not willing to walk very long
distances from the charging station to the activity. The maximum walking distance

iS dpaxwalk- The search radius around a stop s is therefore defined as:
dsearch,s = min(dmin,s: dmaxwalk) . (72)

The stops contribute to the scores of all nodes within their search radius. The
score of each node is the sum of these contributions:

xslow,v = Z xt(ts) : xd(d(vs; V)) 5 (73)

SES Id (V:Vs )<dsearch,s

where t, is the stop duration time, and x,() and x,4() are functions to calculate the
time score and distance score for the stop. The time score reduces the impact of the
stop on the score if the duration of the stop is too short to charge the vehicle to 80 %
SOcC:

t

s

ift, <t
t charge s charge80
xt(ts): hargeso > (74)
1 else
where t.pq,4050 1S the time it takes to charge the battery to 80 % SOC with slow

charging. The distance score represents the walking distance that could potentially
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be saved by installing a charging station at that node:

xd(d) = dsearch,s —d. (75)

An example of the score calculation for a node v can be seen in Figure 7.2. As
can be seen, the node’s score is only affected by the stops s, and s;. The stop s;
does not contribute to the score, because the node is outside of the stop’s search
radius d(v;,V) > dgearen s, (cf. Equation (7.3)). Because the stop duration at stop
s, is only half the time necessary to charge to 80 % SOC (hargeso), its time score is
0.5. The stop duration of s5 is more than enough, therefore its time score is 1.0 (cf.
Equation (7.4)). Stop s5 has a distance to the node of 250 m, which is 200 m less than
the distance to the nearest charging station (450 m). Its distance score is therefore
200. The distance from the node to stop s, is 500 m, which results in a distance score
of 100. Because there is no charging station within the maximum walking distance
of 600 m around stop s,, the search radius equals the maximum walking distance.
In this example, the total score of node v is x4y, = 0.5-100 + 1.0 - 200 = 250.

tchargeSO = 6h
dmaxwalk = 600m
dinin.s, = 375m

imin.s, = 625m

dmin,33 = 450m
d
d
d

search,s; — 375m
search,so — 600m
search,s3 — 450m

Tslow,v
xt(t52)wd(d(vsza U))
Ty (tsy)va(d(vs,,v))
0.5-100+1.0-200 =
250

+

Figure 7.2 — Slow charging station siting. Example calculation of a node score
based on stops s, and s;. Stop s; is not used because the node is not within
the stop’s search radius. (based on [9] © 2022 IEEE)
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7.3.2 Fast Charging Score Calculation

In contrast to slow charging, we assume that fast charging is predominantly used
for en-route charging, which means the driver stops at a fast charging station while
en route to another destination. It does not matter where the destination is, but
whether the driver has to make a significant detour to stop at the charging station
on the way. We therefore evaluate fast charging station sites by how much time
vehicles would save on detours compared to existing fast charging stations. Similar
to the slow charging score calculation, we use typical driver schedules, but instead
of the stops, we look at the trips between activities.

Let R be the set of trips of all schedules. The drive time of a trip r € R with a
detour via node v is defined as t,,, assuming the shortest path between the origin,
node v, and the destination. The minimum drive time for a trip with a detour to an

existing fast charging station is then:

tmin, = Mmin ¢, , (7.6)
CECpagt ¢
where Cp,, C C is the set of fast charging stations. To calculate the score of a node

v, we sum up how much detour time could be saved over all trips as

Xast,y = Z tmin,r - tr,v . (77)
reR|t,, <t

min,r

In Figure 7.3, you will find an example of the score calculation for a node v.
The node score is only affected by the trips r; and r5. Trip ry does not contribute
to the score, because driving by the node would be a bigger detour than driving by
an existing fast charging station: ¢, , > ty, », (cf. Equation (7.7)). A fast charging
station at our example node would save 7.9 — 7.5 = 0.4 minutes for trip r; and
9.2 — 7.8 = 1.4 minutes for trip r; compared to using existing fast charging stations.
The score of node v is therefore 1.8.

As we have just seen, calculating a node score involves finding the shortest
path for every trip with a detour using that node. Doing this for every node in a
typical street network graph would be very computationally expensive. We therefore
preselect a small number of nodes that see a lot of traffic. To do this, we find the
shortest paths of the trips once without detours and count the number of vehicles per
node. The graph in our example consists of 100 790 nodes, of which we preselected
the 2500 nodes with the highest vehicle count.
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Figure 7.3 - Fast charging station siting. Example calculation of a node score
based on trips r; and r5. Trip r, is not used because the condition t,, , <t
is not met. (based on [9] © 2022 IEEE)

min,ry

7.4 Sizing

The siting algorithm only identifies locations for new charging stations, but it does
not determine how many charge points the charging stations should have. If multiple
vehicles want to charge at the same charging station at the same time, if and how
long they have to wait until they can charge, depends on the number of charge
points. The wait time cannot simply be calculated with a static analysis of the drivers’
schedules. It depends on the charging decisions made by the drivers or their vehicles,
which can also influence each other. To calculate it, we use the same discrete-event
simulation (DES) that we used to evaluate the CSDB in Chapter 6. The vehicles’
charging decisions are made by our urban trip planner. To coordinate charging
between the vehicles, they can use the CSDB.

The sizing algorithm works as follows: Initially, the charging infrastructure
consists of the existing charging stations and the new charging stations with one
charge point each at the sites identified by the siting algorithm. We then iteratively
add charge points to the charging stations. In each step, we select one charging
station to extend. To select the charging station, we temporarily add one charge point
to each charging station in separate parallel simulations to determine the average
extra time spent with charging. The charging station whose extension resulted in
the best improvement of extra time permanently keeps the additional charge point.
The steps are repeated until a set number of charge points have been added, or the

average extra time has dropped below some threshold.
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7.5 Performance Evaluation

7.5.1 Experimental Setup

To evaluate our siting and sizing approach, we use the same experimental setup as
in Section 6.3.1 for the urban trip planner. This includes using the Paderborn traffic

simulation scenario (Section 5.3.1).

7.5.2 Impact of the Number of Charging Station Sites

In our first experiment, we evaluate the impact of the number of slow and fast
charging station sites on the extra time spent with charging. This allows us to
determine the number of sites that are needed to achieve practical extra times for
the majority of drivers in our scenario. We ignore wait times for now, because they
mainly depend on the number of charge points at the charging stations, which is a
separate problem that we solve in the sizing phase. We run simulations to determine
the extra time spent with charging for a varying number of slow and fast charging
station sites. For slow charging, we test with 1 to 100 sites, and for fast charging,
we test with 1 to 50 sites. To find the sites, we use our siting algorithms.

The extra time spent with charging for different numbers of charging station sites
is plotted in Figure 7.4 for slow and fast charging stations. Because fast charging
stations are used somewhat similarly to gas stations, we also compare the extra time
of the fast charging station sites found by our siting algorithm with the existing 24

[\
o
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S
(’L
|
\

0 \ \ \ \ \ \
0 20 40 0 20 40 60 80 100
Number of sites Number of sites
(a) Fast charging station sites (b) Slow charging station sites

Figure 7.4 — Comparison of extra time for numbers of fast and slow charging
station sites. The dashed line in (a) represents the extra time, if we were using
the 24 gas stations as fast charging station sites. (based on [9] © 2022 IEEE)
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gas station sites in our scenario. As can be seen, 10 fast charging station sites found
by our siting algorithm achieve roughly the same extra time as the 24 gas station
sites. But we also see that the benefit of installing more than 5 fast charging stations
is marginal. Fast charging stations are predominantly used for en-route charging,
where the drivers wait with the vehicle until charging is complete. The locations of
fast charging stations affect the extra time only through the detours that vehicles
must take for a charge stop. In our scenario, five well-placed fast charging stations
are sufficient to allow most vehicles to reach one with only a small detour.

In contrast to this, slow charging stations are used for destination charging,
where the driver visits the destination (activity) while the vehicle charges. The
extra time is primarily affected by the walk time from the charging station to the
destination and back. To improve the average walk time, the charging station sites
need to be close to popular destinations. Since there are many possible destinations,
we need a lot of charging stations. In our scenario, after about 50 slow charging
station sites, additional sites improve the extra time only marginally.

As a result, we have added 5 fast charging stations and 50 slow charging stations
to the existing charging infrastructure in our scenario. The extended charging
infrastructure will be used in the following experiments. The scenario with the
extended charging station sites can be seen in Figure 7.5 (see Figure 5.3 for the
original charging infrastructure).

o 1000m
[

Figure 7.5 — New charging station locations for fast and slow charging stations
from our charging station siting algorithm. Slow charging stations are shown
as blue and fast charging stations as red, existing charging stations opaque
and new locations half transparent. (based on [9] © 2022 IEEE)
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7.5.3 Impact of the New Charging Stations

In our next experiment, we analyze the impact of the new charging stations on
the travel times of our vehicle types. To compare it with the existing charging
infrastructure, we repeat the experiment from Section 5.3.2 with the extended
charging infrastructure. In the experiment, we compare our strategy of selecting
between destination charging and en-route charging with being limited to one of
these options. The original results for the existing charging infrastructure and the
new results for the extended charging infrastructure are depicted in Figure 7.6. The
original results are identical to the ones presented in Section 5.3.2. We present them
here again to make it easier to compare them with the new results.

In the following, we will discuss the differences in the results between the existing
and the extended charging infrastructure. For a detailed description of the original

results, please refer to Section 5.3.2.

We can see that the extended charging infrastructure significantly improves the
situation for both alternative strategies. Using only destination charging led to
average walk times of about 20 min for the existing charging infrastructure. With
the new charging stations, we have reduced this value to about 5 min. The stay delay
values have not improved however, because they are the result of driver schedules
with too short stays. Therefore, the strategy of only doing destination charging is
still impractical for many drivers. For the strategy of using only en-route charging,
the new fast charging stations significantly reduce the necessary detours, from about
5min to about 1 min on average. However, due to long charge times, especially
for smaller vehicles with limited fast charging capabilities, this strategy is also still

impractical.

Our strategy of selecting between destination charging and en-route charging
benefits most from the additional charging stations. We use en-route charging to
avoid stay delays at slow charging stations or in cases when there are no charging
stations close to the destination. The additional fast charging stations improve the
drive time by reducing detours. More importantly, though, the additional slow charg-
ing stations offer new opportunities for destination charging, which is preferable to
en-route charging due to the long charge times. With the existing charging infrastruc-
ture, we had a destination charging share of 67 %...85 %. This value increases to
83%...91 % with the additional charging stations. Overall, the extended charging
infrastructure reduces the average extra time spent with charging across all vehicle

types from about 20 min to under 10 min.



7.5 Performance Evaluation

73

1 Driving [ Charging

1 Walking [ Stay delay

[ Destination charging
- - - Travel time without charging

[ En-route charging

T T T T T

Our
strategy

Only
destination
charging

Only
en-route
charging

Our
strategy

Only
destination
charging

Only
en-route R
charging
| | | | | |
0 20 40 60 0 02 04 06 08 1
Time (min) Dest. charging share

Figure 7.6 — Travel time composition and destination charging share of the
vehicle types for our strategy, only destination charging, and only en-route
charging. Comparison between the existing charging station sites and the
extended charging station sites. (based on [9] © 2022 IEEE)

Existing charging station sites

Extended charging station sites



74 7.5 Performance Evaluation

7.5.4 Impact of Sizing Approach

After ignoring the wait time in the first two experiments to evaluate our siting
approach, we now focus on the sizing approach, where we try to minimize the wait
time. The wait time at a charging station mainly depends on the number of arriving
vehicles and the number of charge points. To improve wait times, our sizing approach
adds charge points to the charging stations. Additionally, by using the CSDB, we can
coordinate charging between vehicles to reduce the number of vehicles that want to
be charged at the same charging station at the same time.

In this experiment, we evaluate how adding charge points affects the extra time
spent with charging with and without using the CSDB. New charging stations that
were found by our siting algorithm are initialized with one charge point. In this
experiment, we assume that 250, or about 0.2 %, of the 121 176 vehicles are electric
vehicles that want to charge that day using the public charging infrastructure. The
sizing algorithm iteratively adds charge points to the charging stations one by one
until 200 charge points have been added. We ran the algorithm 20 times with
random vehicles and schedules and averaged the results.

In Figure 7.7, we can see that using the CSDB reduces the average extra time
significantly, especially when only few charge points have been added. As a result,
we need to install considerably fewer charge points to achieve acceptable extra times.
For example, to reach an average extra time of 15 min, we would only have to add
53 charge points when using the CSDB, but 104 without. When there are so many
charge points available that every vehicle can take the optimal trip without waiting
anywhere, using the CSDB does not make any difference anymore. In our scenario,
this starts at about 125 charge points. The average extra time then stays just under
10 min.



7.5 Performance Evaluation

75

3 I I
10 — Without CSDB

——  With CSDB

102

Extra time (min)

15minfF--------"=<=-----%---———————- -~ ~-
10!

| | |
0 50 100 150 200
Installed charge points

Figure 7.7 — Sizing charging stations with and without using the CSDB. Dashed
line at 15 min extra time for easier comparison. (based on [9] © 2022 IEEE)






Chapter 8

Conclusion

In this thesis, we presented several approaches to improve the situation of electric
vehicles, including trip planning for long-distance and urban scenarios, coordinating
charging between vehicles, and extending the charging infrastructure with additional
charging stations and charge points. All of them utilized realistic energy consumption
and charging models for five vehicle types in different car segments.

First, we created a long-distance trip planner that can plan trips including charge
stops with minimal total travel time. An adaptive charging strategy selects the
optimal amount of energy to charge at each charge stop, depending on the power
of the current and the following charging station. An adaptive routing strategy
selects the best compromise between fast and energy-efficient routes by using a
multicriteria shortest path search. To achieve acceptable query times for these
searches, we introduced shortest-path-tree precomputing, which exploits the fact
that most queries are between the known locations of the charging stations. Our
results show that when precomputed shortest-path trees are used for both origin
and destination, query times are reduced by about 2 to 3 orders of magnitude. The
results also show that our adaptive charging and routing strategies outperform other
similar strategies. The greatest advantage was achieved over the strategy of always
taking the most energy-efficient route, which, on average, took 34 % more total
travel time. This is noteworthy because many publications in the field of electric
vehicle routing have the goal of minimizing the energy consumption. On the other
hand, always choosing the fastest route and only charging the minimum amount
to reach the next charging station only led to marginally higher total travel times.
Driving a slower, more energy-efficient route to save time at the charging station
later does not seem to pay off when enough fast charging stations with high charge
power (= 150kW) are available. Another observation is that larger vehicle types
require significantly less total travel time than smaller types, even though they have

77
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a higher energy consumption. This can be attributed to their larger batteries and
better fast-charging capabilities, which is advantageous for long-distance travel.

Second, we created an urban trip planner that was specifically designed for
drivers that have no option to charge at home and have to rely on the public charging
infrastructure for everyday charging. It plans trips by taking into account the driver’s
schedule for the day and minimizing the extra time spent with charging. The vehicle
can either be charged en route, with the driver waiting with the vehicle while it is
being charged, similar to using a gas station. Or it can be charged at the destination,
with the driver visiting the destination while the vehicle is being charged nearby.
This can save time and it makes slow charging stations a suitable option, but the
driver may have to walk from the charging station to the destination and back.
Our results clearly show that selecting between en-route charging and destination
charging results in significantly lower extra times, compared to being limited to
one of these options. Large vehicle types suffer especially from being limited to
destination charging, while small vehicle types suffer more from being limited to en-
route charging. Even though our strategy performs better than the alternatives, the
extra time was still high, with about 20 min on average. The average walk time might
also be unacceptably long with over 10 min for some drivers, but limiting it would
increase the extra time even further. This shows that the charging infrastructure in
our scenario was insufficient to provide acceptable extra times for the majority of
drivers.

Third, we created a central service, called charging station database (CSDB),
that coordinates charging between vehicles in order to reduce wait times. It can be
used by vehicles to query wait time estimates for any charging station in the future.
In exchange, the vehicles are expected to announce their own planned charge stops
to the service. The CSDB uses these announced charge stops, information about the
current utilization of the charging station, and statistical data about past utilizations
to calculate the wait time estimates. We evaluated the approach in combination
with our long-distance trip planner and our urban trip planner. The results with
the long-distance trip planner show that if all vehicles use the CSDB, the average
wait time can be reduced by up to 98 %. The wait time can also be significantly
reduced if only a subset of vehicles use it. When 10 % use it, the wait time is reduced
by about 75 % for these vehicles, assuming the CSDB uses statistical data of past
utilization and that these vehicles update their route immediately when wait time
estimates change. The experiments with the urban trip planner demonstrate a similar
effectiveness of the CSDB in that scenario. Using the CSDB significantly reduces the
average extra time spent with charging and would allow a larger number of electric
vehicles to use the public charging infrastructure.

Finally, we presented an approach to extend the charging infrastructure in an

urban scenario for everyday charging. It can analyze typical driver schedules to find
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new sites for slow and fast charging stations. Simply put, slow charging stations are
placed where many vehicles park, and fast charging stations are placed where many
vehicles drive. To determine the number of charge points for each charging station,
it uses simulations with the urban trip planner. The results show that adding 5 fast
charging stations and 50 slow charging stations to our urban scenario reduces the
average extra time spent with charging for all vehicle types from about 20 min to
under 10 min (without wait time). The average extra time was significantly improved
for en-route charging and for destination charging, and all vehicle types saw a higher
rate of destination charging. Additionally, we were able to significantly reduce the
necessary number of charge points to achieve an acceptable average extra time
(including wait time) by using the CSDB. To achieve an average extra time of 15 min,
we only had to add 53 charge points instead of 104 when not using the CSDB.

In conclusion, the approaches presented in this thesis can provide a step forward
in the advancement of electric vehicles. We have shown how smart trip planning and
coordination of charging between vehicles can help minimize the inconveniences
of long-distance travel and everyday charging. By extending the public charging
infrastructure with a combination of slow and fast charging stations, we can make
electric vehicles an attractive option even for drivers that cannot charge at home.

A potential direction for further research could be to also consider monetary
aspects. Optimizing charging costs when planning trips could increase the benefit
to the drivers. Also, potentially saving money could be an incentive to coordinate
charge stops with others. Furthermore, building new charging infrastructure is very
expensive. Taking the costs into account and planning new charging stations and
charge points on a limited budget would be an interesting problem. It would also be
interesting to see how the approaches perform in the real world. So far, all the results
have come from simulation experiments, where many simplifying assumptions have
to be made. Real-world experiments could provide valuable insights to further

improve the approaches and make them useful in practice.
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