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Zusammenfassung

Ziel dieser Arbeit ist es, die Korrespondenz des Laplace-Spektrums eines kompakten lokal
symmetrischen Rang-1-Raumes mit dem ersten Band der Ruelle-Pollicott-Resonanzen
des geodatischen Flusses auf dessen Einheitssphéarenbiindel zu vervollstandigen. Die Er-
forschung dieser Fragestellung wurde von Flaminio und Forni im Kontext hyperbolischer
Flachen begonnen und von Dyatlov, Faure und Guillarmou fiir reell hyperbolische Raume
sowie von Guillarmou, Hilgert und Weich fiir allgemeine Rang-1-Rdume fortgefiihrt.
Mit Ausnahme des Falles hyperbolischer Flachen wurde in sdmtlichen Arbeiten eine
abzahlbare Menge von Ausnahmepunkten ausgeschlossen, da die zugehorigen Poisson-
Transformationen an diesen Punkten weder injektiv noch surjektiv sind. Wir benutzen
vektorwertige Poisson-Transformationen, um auch die Ausnahmepunkte zu behandeln.
Insbesondere werden explizite quanten-klassische Korrespondenzen bewiesen und die
zugehorigen Darstellungen identifiziert. Wahrend die Ausnahmepunkte im Fall hyper-
bolischer Fliachen auf Darstellungen der diskreten Reihe von SL(2,R) fiihren, erweisen
sich die resultierenden Darstellungen im Allgemeinen als Darstellungen relativer diskreter
Reihen assoziierter nicht-Riemann’scher symmetrischer Raume.

Abstract

The aim of this thesis is to complete the program of relating the Laplace spectrum for
rank one compact locally symmetric spaces with the first band Ruelle-Pollicott resonances
of the geodesic flow on its sphere bundle. This program was started by Flaminio and Forni
for hyperbolic surfaces, continued by Dyatlov, Faure and Guillarmou for real hyperbolic
spaces and by Guillarmou, Hilgert and Weich for general rank one spaces. Except for
the case of hyperbolic surfaces a countable set of exceptional spectral parameters was
always left untreated since the corresponding Poisson transforms are neither injective nor
surjective. We use vector-valued Poisson transforms in order to treat also the exceptional
spectral parameters. In particular, explicit quantum-classical correspondences are proven
and the associated representations are identified. Whereas for hyperbolic surfaces
the exceptional spectral parameters lead to discrete series representations of SL(2,R),
the resulting representations turn out to be relative discrete series representations for
associated non-Riemannian symmetric spaces in the general case.
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Introduction

Dynamical systems with additional symmetry are surprisingly rigid. One manifestation of
this observation is the close connection between geodesic flows on locally symmetric spaces
and their quantizations, the Laplace-Beltrami wave kernels. This was first observed for
tori in the form of the Poisson summation formula and its non-commutative analog, the
Selberg trace formula, where the length spectrum of closed geodesics and the spectrum
of the Laplacian enter. In specific cases correspondences on the level of eigenfunctions
were established about twenty years ago [LZ01, FF03, DHO5, Miih06, Poh12].

In [DFG15] Dyatlov, Faure and Guillarmou showed that the spectrum of the geodesic
flow on compact hyperbolic manifolds essentially decomposes into bands, the first of
which is in one to one correspondence with the Laplace spectrum. For these spectral
values they also constructed linear isomorphisms between the corresponding eigenspaces.
In this context essentially means that there is a countable set of explicitly known spectral
values for which the methods do not apply.

In [GHW18] the very explicit information available for hyperbolic surfaces was used
to establish spectral correspondences also for the exceptional spectral values. In these
cases the quantum side turns out to be related to the discrete series representations of
SL(2,R), whereas the regular spectral values were related to irreducible unitary spherical
principal series representations.

The theory of quantum-classical spectral correspondences with spherical principal
series representations on the quantum side was extended to all rank one compact locally
symmetric spaces in [GHW21]. In this thesis we complete the program for these spaces
by establishing quantum-classical spectral correspondences on the level of eigenvectors
for all exceptional spectral values.

We describe the setting in a little more detail. Let G be a non-compact simple Lie group
of real rank one and I" be a co-compact discrete subgroup of G. For simplicity we assume
that G has finite center and I' is torsion free. We fix a maximal compact subgroup K
and observe that the locally symmetric space I'\G/K is a compact Riemannian manifold.
Therefore its (elliptic) Laplace-Beltrami operator has discrete spectrum on L?(I'\G/K)
with smooth eigenfunctions lifting to I-invariant eigenfunctions on G/K. Note that
on G/K the Laplace-Beltrami operator comes from a Casimir element and generates
the algebra of G-invariant differential operators. For generic spectral parameters p
the eigenfunctions generate an irreducible G-representation which is equivalent to a
spherical principal series representation H,. The corresponding intertwiner is the Poisson
transform P,. So, generically the Laplace-Beltrami eigenspaces FE_M can be identified
with the I'-invariant distribution vectors I' . in the corresponding spherical principal
series representation, where the normalization of the spectral parameters is taken from
[GHW21].
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The word generic in the previous paragraph can be given a precise meaning. Let gg be
the Lie algebra of G and g the complexification of gy (we use the analogous convention
for all subspaces of gg). The eigenvalues of the Laplace-Beltrami operator on G/K are
parameterized by elements of a* via the Harish-Chandra isomorphism, where g = € + p
is the Cartan decomposition of the Lie algebra g fixed by the choice of K and ag is a
maximal abelian subspace of pg. The parameters are unique up to the action of the Weyl
group W = Ng(a)/Zk(a). A spectral parameter p is generic if and only if it is not a
zero of the Harish-Chandra e-function which in turn is equivalent to the bijectivity of
the intertwining Poisson transform P,,. Thus the exceptional parameters alluded to in
the title of the thesis are the zeros of the e-function.

In the case of compact hyperbolic surfaces (see [GHW18]) the exceptional spectral
parameters are related to discrete series representations, which can be realized as smooth
(in fact, holomorphic or anti-holomorphic) sections of certain G-homogeneous vector
bundles over G/K. In these spaces of sections one has the action of a suitable Bochner-
Laplace operator (see [O1b94, Lemma 2.2]). While these representations are no longer
completely determined by the action of the Bochner-Laplacian, they are still irreducible
unitary representations of G obtained by a suitable vector-valued Poisson transform.
This part can be generalized and we view the I'-invariant sections, which descend to the
locally symmetric space, as part of the quantization of the cotangent bundle of this space.

The cotangent bundle 7*(I'\G/K) = T'\G x g p§ of I'\G/ K is foliated into the cosphere
bundles I'\G/Zk (a) x {r} with r € aj = R determining the radius and the zero section
I'\G/K. Each leaf of the foliation is invariant under the geodesic flow. On the zero
section it is trivial, whereas on the cosphere bundles it is given by the right action
MNG/M x A — T'\G/M, (gM,a) — gaM, where we use the standard abbreviation M
for the centralizer Zx (a) and set A = exp(ag). This decomposition reduces the spectral
analysis of the geodesic flow to the A-action on I'\G/M. This action is Anosov as
one sees from the Bruhat decomposition T(I'\G/M) = G xu (ng + ag + ng ), where
go =%t +ap+ ngE are the two Iwasawa decompositions of gg associated with the two
possible orderings of the set X of restricted roots in aj. The approach to Ruelle-Pollicott
resonances for the geodesic flow used in [GHW21] makes use of the set D/, (T\G/M)
consisting of the distributions u € D'(I'\G /M) whose wavefront set WF(u) is contained
in the annihilator T\G x s (ng + ag)* € T*(I'\G/M). Then the set of resonant states
for the spectral parameter u € a* is defined as

Res(p) := {u e D\ ('\G/M) |VH € ap: H - u+ p(H)u =0},

where H acts as a left-invariant vector field on G/M descending to I'\G/M. A spectral
parameter p € a* is called a Ruelle-Pollicott resonance if Res(u) # 0. The Ruelle-
Pollicott resonances form a discrete set and the corresponding spaces of resonant states
are finite dimensional. A first band resonant state is a resonant state v which satisfies
X -u =0, where X is any vector field on I'\G/M which is a section of the subbundle
G xpyng € T(I'\G/M). We denote the space of first band resonant states for the
spectral parameter y € a* by Res’ (). In the case of generic spectral parameters the
quantum-classical spectral correspondence says that the push-forward of the canonical
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projection pr : T\G/M — T'\G/K is a linear isomorphism pr, : Res’(u — p) — 'E,,
where p € afj is the usual half-sum of positive restricted roots counted with multiplicity
(see [GHW21, Theorem 4.5]).

The strategy for our extension of the quantum-classical correspondence to exceptional
spectral parameters is as follows. As in the generic case (see [GHW21, § 3.2]) we start by
lifting the first band Ruelle-Pollicott resonances to I'-invariant distributions on the global
symmetric space. The lifted spaces can be interpreted in terms of spherical principal
series (that part works for all spectral parameters, see [GHW21, Proposition 3.8]) and
the first band resonant states Res’(—u — p) correspond to the space ' H ,, °° of I-invariant
distribution vectors of the corresponding principal series. For an exceptional spectral
parameter j the corresponding principal series H,, is no longer irreducible. But it has a
manageable composition series and it turns out that the I'-invariant distribution vectors
are all contained in the socle (i.e. the sum of all irreducible subrepresentations) of the
representation, see Theorem 6.1.1. In each of the rank one cases except SOg(2,1) (the
case of surfaces, see [GHW18]) the socle turns out to be irreducible with a unique
minimal K-type 7, (see Theorem 6.2.1) and we can show that the vector-valued Poisson
transform associated with this K-type (sum of K-types in the case of surfaces) is injective,
see Proposition 5.1.3. The image consists of spaces of I'-invariant sections of vector
bundles over I'\G/K and we have a quantum-classical correspondence as soon as we have
characterized the image of this Poisson transform.

We achieve the characterization of the image of the minimal K-type Poisson trans-
form via Fourier expansions of M-invariant functions with respect to M-spherical K-
representations. More precisely, we determine necessary and sufficient conditions for
a Fourier series to represent a distribution vector of the reducible spherical principal
series H,,, see Theorem 7.4.11, where the conditions are given in terms of generalized
gradients (see [BOQ96]). In each of the cases it is possible to determine a G-invariant
system of differential equations on the sections of the homogeneous bundle G' x g V7,
given by the minimal K-type (7, V7,) of the socle such that on the space of I'-invariant
solutions we can write down an explicit boundary value on K/M in terms of Fourier
coefficients, see Theorems 8.2.3, 8.3.2 and 8.4.2. Then our Fourier characterization of
H, > allows us to show that the boundary values are contained in g , >°. In the case of
SOp(n, 1) and for most exceptional spectral parameters in the case of SU(n, 1) we have an
alternative (and simpler) characterization of the vector-valued Poisson transform, which
is based on techniques developed in [Mea89] to study Cauchy-Szegé maps for SU(n, 1),
see Theorems 8.1.1 and 8.2.1.

We can explicitly determine the socle of all reducible spherical principal series rep-
resentations in rank one (see Theorem 6.2.1), and we see that the surface case is quite
untypical. Not only is it the only case where the socle is not irreducible, it is also one of
the very few cases in which the representation generated by the resonant states belongs
to the discrete series of G. This is only the case for SOg(2, 1) (surfaces), SU(2,1), Sp(2,1)
and Fy(_og), see Theorem 6.2.2. On the other hand it turns out that all of these represen-
tations are unitarizable, see Theorem 6.2.1. We can determine the Langlands parameters
(see Theorem 6.2.2), and in some cases geometric realizations, e.g. as solution spaces of
differential equations are well-known (see [O1b94, Gai88]). But for most cases we did not
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find such descriptions in the literature. From the detailed information on the K-types
we can actually identify the representations as relative discrete series representations of
non-Riemannian symmetric spaces G/H associated with G/K (Theorem 6.2.3). [TW89]
provides a geometric interpretation of a generating vector of such a representation in
terms of cohomology, but it gives no description of the representation space as such. So
our geometric realization as solution spaces of differential equations describing the images
of minimal K-type Poisson transforms might actually be new.

As mentioned above, our results complete the picture of first band quantum-classical
correspondences for compact locally symmetric spaces of rank one. In higher rank an
analogous quantum-classical correspondence for generic spectral parameters has been
established in [HWW21]. Extending that result to exceptional spectral parameters will
be substantially harder as the information available on composition series of spherical
principal series is much less explicit in higher rank. Moreover, some of the multiplicity
one results we use (Propositions 2.4.3, 6.1.2, 7.3.2) or prove (Proposition 7.3.1) here are
not always available in higher rank. As far as non-compact locally symmetric spaces
are concerned, one has to replace the (discrete) spectrum of the algebra of invariant
differential operators by a suitable concept of quantum resonances. So far one only
has quantum-classical correspondences for convex co-compact real hyperbolic spaces
and, for dimensions larger than two, only generic spectral parameters [GHW18, Had20].
For locally symmetric spaces with cusps the results on record are either very special
(e.g. [LZ01, Miih06]) or else give only very rough information (e.g. [DHO05]). In view of
[GW22, Poh12], however, a quantum-classical correspondence for surfaces seems to be
within reach. Finally, we mention [KW21], where quantum-classical correspondences for
lifts of geodesic flows on compact locally symmetric spaces of rank one are treated for
generic spectral parameters. That exceptional spectral parameters occur also in such
situations can be seen from [KW20], where the authors have to leave out the case of
three dimensional hyperbolic spaces because the Gaillard Poisson transform they use is
not bijective.

Outline of the thesis

We conclude this introduction with a brief description of the way the thesis is organized.

In the first two chapters we introduce the notion of Ruelle resonances and explain how
they are related to principal series representations. After giving the relevant definitions
we discuss several realizations and properties of principal series representations and
investigate their K-types.

In Chapter 3 we recall the scalar Poisson transforms for symmetric spaces and introduce
vector-valued analogs of it. Moreover, we define the exceptional parameters and relate
them to reducible principal series representations.

Then, in Chapter 4, we consider the instructive example of surfaces. From [GHW18]
we first recall the quantum-classical correspondence for exceptional parameters. In
order to extend its proof to other cases, we reformulate several — mostly geometrically
defined — objects into representation theoretic terms and discuss how vector-valued
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Poisson transforms enter the picture.

Chapter 5 is concerned with mapping properties of vector-valued Poisson transforms
leading to the choice of minimal K-types. Moreover, we determine the socles and their
minimal K-types in all cases.

Chapter 6 deals with I'-invariant distribution vectors in principal series representations.
We show that these have to be contained in the socle of the representation.

In Chapter 7 we study Fourier expansions of M-invariant functions with respect to M-
spherical K-representations. Apart from convergence issues we deal with the technicalities
needed to characterize the spherical principal series representations in terms of Fourier
expansions.

In Chapter 8 we complete the determination of the spectral correspondences by
describing the I'-invariant vectors in the image of the minimal K-type Poisson transform.

Finally, the last chapter discusses the real hyperbolic case in more detail and provides
explicit forms of all occurring objects in this case.

Notation: N = {1,2,3,...}.






1. Ruelle resonances

In this chapter we describe the classical side of the quantum-classical correspondence,
i.e. the first band Ruelle resonances and its associated Ruelle resonance states. After
introducing some basic notation we give a short overview of the definition, structure and
properties of these resonances.

1.1. Basic notation

Let G be a noncompact, connected, real, semisimple Lie group with finite center and
I' < G a co-compact, torsion free lattice. We denote the Iwasawa decomposition of G
by G = KAN. The K-, A-, or N-component in the Iwasawa decomposition is denoted
by kr, ar, or ny, respectively. Let M := Zx(A) denote the centralizer of A in K. The
corresponding Lie algebras will be denoted by go, £, ag, ng, mg with complexifications
g, a,n,m. Moreover, let go = £y @ po be the Cartan decomposition and denote the
corresponding Cartan involution by 6 (on gp and on G). Associated with the ag-action
we define the restricted root spaces

g6 ={X €g0: [H,X] =a(H)X}, o€,

corresponding to the restricted roots X C afj. Furthermore, we have the Bruhat decom-
position given by gg = ap ©® mg ®© P,y 95- The Iwasawa decomposition determines a
positive system X7 C 3. The half-sum of positive roots is denoted by p = % Y oaent Mol
with the multiplicities m, = dimg g§. If log : A — ap denotes the logarithm on A and
p € a* we define a# = e(l08a) By K (resp. G, M ) we denote the equivalence classes
of irreducible unitary representations of K (resp. G, M). The Weyl group of (go, ao)
is denoted by W. Let k denote the Killing form of g and U(g) denote the universal
enveloping algebra of g. For T € {K, M} and a finite-dimensional representation (7, V)
of T we define the associated vector bundle G xy V' as the quotient (G x V')/ ~, where

VgeG,zeY,veV: (g,v)~ (gz,7(z" o).
We always identify the space of smooth sections of this bundle with
Co(G xx V) ={f € C¥(G,V) |Vge G,z € T: f(gz) =7(z7")f(9)}.

On each occurring Lie group, we always use a fixed Haar measure and, if not stated
otherwise, normalize it in the compact case. For each smooth manifold X we denote the
space of distributions by D'(X).



1. Ruelle resonances

1.2. Ruelle resonances on rank one locally symmetric spaces

In this section we assume G to be of real rank one, i.e. that dimg(A) = 1.

Resonances assign intrinsically defined discrete spectra to operators that do not have a
discrete L2-spectrum. They can be defined in many different equivalent ways using a wide
variety of tools. Let us consider the example of a smooth vector field X on a compact
Riemannian manifold M. Then, resonances can be defined as poles of a meromorphic
continuation — as a family of continuous operators R(\): C*°(M) — D'(M) — of the
resolvent R(\) == (=X — A\)~': L2 (M) — L?*(M) to C. In order to achieve such a
continuation, one has to impose some conditions on the vector field. If X generates an
Anosov flow, i.e. if there exists a continuous flow-invariant splitting TM = Ey @ Es & E,,
of the tangent bundle of M such that the flow acts exponentially contracting resp.
expanding on F resp. E, and Ey = RX, such a continuation can be established (see e.g.
[GHW21] and the literature cited therein). From now on, we investigate the case of the
geodesic flow as follows.

Notation 1.2.1 (cf. [GHW21, Section 3.1]). Under our assumptions on G the quotient
G /K is a hyperbolic space (of rank one) over R, C,H or @, where the latter two denote
the quaternions and the octonions. We write

H" =KH" = G/K,

where n is the real dimension of G/K. Since G/M = G/K x K/M = H" x S"~! by the
N AK-decomposition we can identify G/M with the unit sphere bundle

SH™ = G/M.

Let M :=T'\G/K =T'\H". Then M is a smooth compact Riemannian locally symmetric
space of rank 1 with unit sphere bundle M := SM = I'\G/M. Under this isomorphism
the geodesic flow on M is given by the natural right action of A. This flow is Anosov
and the corresponding Anosov splitting of the tangent bundle T'M is given by

TM=Ey® E; ® E,,
where each subbundle can be expressed as an associated vector bundle:
Eo = F\G XM A, Es = F\G XM N, E, = F\G XM 9110.

We call these subbundles the neutral, stable, and unstable bundle. Similarly, the unit
sphere bundle SH" = G/M admits an Anosov splitting into

Ey =G xu ap, E, =G X M Mo, Ey = G x 1 Ong.
Each splitting induces a splitting of the cotangent bundle

T"M = E; & E. & E}



1.2. Ruelle resonances on rank one locally symmetric spaces

defined (pointwise) by E§(Es ® E,) =0, Ef(Ey® E,) =0 and EX(Ey® E;) = 0.

By our rank one assumption, there exists a unique simple positive restricted root of
(g0, ap) that we denote by a. Let H € ag be defined by a(H) = 1. Finally, we introduce
the rescaled natural positive-definite scalar product

Ly G0
() =) (1.1)

on go (and thus on gf), so that the map

a* =

, A= A(H)
becomes isometric. The generator X of the geodesic flow on M is given by H € ayg.

The following microlocal description of Ruelle resonance states turns out to be the
most convenient in our setting.

Definition 1.2.2 (cf. [GHW21, Lemma 2.2]). Let
Resx(\) ={u € D'(M) | (X + AN)u=0, WF(u) C E}},

where WF(u) C T* M denotes the wave-front set of the distribution u. If Resx (M) # 0,
we call A\ a Ruelle resonance (or simply resonance) and Resx () the space of Ruelle
resonant states for \. By duality, we define

Resx+(\) == {u € D'(M) | (X —Nu=0, WF(u) C E!}.

If Resx+(A) # 0, we call A a co-resonance and Resx+(\) the space of co-resonant states

for A.

1.2.1. The first band resonances

In [DFG15] resp. [KW21, Theorem 4.1] it is shown for compact real hyperbolic spaces
resp. compact locally symmetric spaces of rank one that the Ruelle resonances form an
exact band structure. More precisely, if A is a Ruelle resonance with Im(\) # 0, then the
real part Re(A) of A is contained in —p(H) — Ny (see also [GHW21, Remark 3.2]). The

first of these bands allows a particularly beautiful description.

Definition 1.2.3 (cf. [GHW21, Definition 3.1]). A Ruelle resonant state w is said to
belong to the first band if it is annihilated by each smooth section of the unstable bundle
E,. We write Res} (\) for the first band resonant states at the resonance A € C.
Similarly, we define the first band co-resonant states as the space of all Ruelle resonant
states which are annihilated by each smooth section Uy of the stable bundle Ej, i.e.

Res% - (\) == {u | u € Resx+(\), YU, € C*®(G xprng): Upu = 0}.



1. Ruelle resonances

By the canonical projection
mr: G/M — T\G/M, gM w— T'gM,

we can lift the (co-)resonant states to the cover SH" = G/M of SM =TI'\G/M. We
define for p € a*, with ng 4 == ng, ng_ = fny,

Ra() = {u € D(G/M) | (X F u(H))u =0, YUs € C®(G xar ng2): Usu = 0}.
By [GHW21, Remark 3.3], the pullback (71)* induces linear isomorphisms (u € a*)
(rr)" : Res (u(H)) = TR_ (1), (mr)" : Rese (u(H)) = TR (1),

This uses the fact that the wave-front condition may be removed in the definition of the

first band resonant states (see [DFG15, p. 9]).
The resonant states of the first band can be related to the representation theory of G.

This relation is described in the following chapter.

10



2. Reducible principal series

In the representation theory of real reductive groups, principal series provide representa-
tions of great importance. One manifestation of this fact is Casselman’s subrepresentation
theorem (see e.g. [Wal88, 3.8.3]) that states that, in a certain sense, every representation
of the group occurs as a subrepresentation of such a representation.

In this chapter we recall the main facts about the principal series we use in this
thesis. In the context of the quantum-classical correspondence, spherical principal series
representations appear as intermediate objects between the classical and quantum side
(see Proposition 2.2.3). Since the exceptional parameters will lead to reducible principal
series representations, we need a precise knowledge of their structure. Therefore, apart
from different realizations and general properties, we inter alia discuss composition series
and describe the occurring K-types in great detail (see e.g. Proposition 2.4.4).

While the general properties are also available in higher rank, the more explicit results
on the composition series and the K-types are generally not. Therefore, we first consider
G as described in Section 1.1 and later on restrict to the rank one case for more explicit
results.

2.1. Realizations of principal series representations

The principal series representations can be realized in different ways (“pictures”) all
of which have their advantages. Let (o, V,) € M with inner product (-,-), and p € a*.
Denote by L?(K,V,) the space of V,-valued functions which are L? with respect to the
normalized Haar measure dk on K.

In the induced picture the representation space H, ;, is given by all measurable functions
f G =V, such that

i) f(gman) = a* Po(m=1)f(g) forall g € G,m € M,a € A,n € N,
ii) f|, € L*(K,V;).
The representation is given by
(Tou(9))(x) = flg™2), g2 €G, f€Hpp

Endowed with the norm || f||? == [, | f(k)||Z dk this realization is a Hilbert space repre-
sentation. The parametrization is chosen such that Hy , is unitary if 4 € iag is imaginary.
Note that this definition is well-defined up to equivalence since each intertwiner between
two equivalent irreducible unitary representations (o1, Vs, ), (02, Vs,) of M extends to
an intertwiner of the corresponding principal series representations.

11



2. Reducible principal series

The Iwasawa decomposition shows that a function in H, , is completely determined
by its restriction to K. Thus, the surjective isometry

H,, = ngg, (2.1)

where HgP! denotes the Hilbert space of all functions f in L?*(K,V,) such that f(km) =
o(m=1)f (k) for all k € K, m € M, endowed with the same norm as above, gives another
realization of the principal series representation. This realization is called the compact
picture. Note that the representation space does not depend on u. However, in this
picture the G-action is more complicated compared to the induced picture. It is induced
by the action 7, , via the isometry above and given by

(w652 () ) (k) = ar(g™ k)P f (ki (g~ 'k)),

where k € K,g€ G and f € H gr;j In the following, we will simply write H, , for both
realizations for the sake of simplicity. If o is the trivial representation we write (7, H,,)
and refer to these representations as the spherical principal series. The representation
spaces in the spherical case naturally factor through the quotient G/M, respectively
K /M, in the induced or compact picture and we will use these realizations in that case.

The same definitions can be made with respect to the opposite order on agp, i.e. by
choosing —XT as the positive system. More precisely, denoting N_ := N, we define
the opposite principal series representation on the space HZIP given by all measurable
functions f : G — V, such that

i) f(gman) =a=WPo(m=1)f(g) forallge G,m € M,a € A,n € N_,
ii) f|, € L*(K, V)

equipped with the left regular representation Tgy where p is still defined with respect to
¥ 7. By restricting to K we again obtain a compact picture on H C‘;}’/}Opp =H gl;} given by

(TPEOPP(g) ) (k) = ay (g7 k)W) f(ky (97 k),

where G 3 g = k; (g)aj (g)n; (9) € KAN_ denotes the opposite Iwasawa decomposition.
We also abbreviate H(g) := logas(g) and H_(g) :=loga; (g). The Iwasawa decompo-
sition is related to its opposite analog by the longest Weyl group element w_, i.e. the
unique element in W which maps ¥ to —X". More precisely we have, for each g € G,

kr(gw-) = k; (g)w— and ar(gw_) = w>tay (g)w_ (2.2)

for a fixed representative of w_ in the normalizer Ni(A) of A in K since

gw_ = k; (9)w_w='a; (9)w_w ' ny (g)w_ € KAN.

Note that the Weyl group acts on M by wo(m) = o(w 'mw) where w denotes a
representative in N (A). There is an interesting connection between the two introduced

principal series.

12



2.2. Principal series and the first band

Proposition 2.1.1. The map

— Hoy P O(f)(k) = fkw-)

. cpt
®: HP, cporp,

— 07—w:1H+P
defines a bijective intertwiner between the associated representations.

Proof. Since w_ € N (A) we have w™'mw_ € M for each m € M and thus
VEe K:  ®(f)(km) = w lo(w='m ™ w ) f(kw_) = o(m 1 ®(f)(k)
so that ®(f) € H, g{;}opp. For the intertwining part we first note that for each a € A
exp(Ad(w™Nloga) = wlaw_ = Ad(w>')loga = log(w " aw_). (2.3)
Now we calculate for g € G and k € K using (2.2) and (2.3)
(9) 1) (k) = ar(g™ kw_) ™= ¥ f (ki (g~ kw_))

— e*(wilu)(log(wilal’(g‘lk)w—))f(kl—(g—lk)w_)

cpt
(I)(ﬂ' p71 —1
w_ o, —w " ptp

= e~ (W= WA logar (710)) (i (g~ k) )
_ efu(loga;(g’lk))f(kl— (g7 k)w_)
= (xB()B( 1)) (). -

Remark 2.1.2. Note that —w ™'y 4+ p = p 4 p so that H®" = Hg};fvopp for each

1
w_o,u
p e a* and w-'o = w_o. However, in the stated form Proposition 2.1.1 works for every
element w of the Weyl group if one uses the Iwasawa decomposition associated to the
positive system induced by w. Moreover, note that in the spherical case (i.e. o is trivial)

we have H,, = Hﬁpp.

2.2. Principal series and the first band

In this section we briefly return to the rank one case and describe the relation between
Ruelle resonant states and distributional vectors in the spherical principal series repre-
sentations. Geometrically, this relation is established by associating to each point in the
sphere bundle its two boundary values at infinity.

Definition 2.2.1 (cf. [GHW21, Section 3.3]). The initial resp. end point map B_ resp.
B which assigns to any point y in the sphere bundle G/M of G/K the limiting point at
—o0 resp. +00 of the geodesic passing through y is given by

By :G/M — K/M, B(gM) = ki(gwy)M

with the (non)trivial Weyl group element (w_ resp.) wy =eM € W = Ng(A)/M. We
denote the pullback of By by

Q. : D'(K/M) — D'(G/M), Qi(T) = BLT

13



2. Reducible principal series

and introduce the map
®L: G/M — R, gM s ¢ @67 Be(gM))
Finally we define the initial resp. end point transform Q,, + for any p € a* by
Qu : D/(K/M) = D/(G/M), Qu+(T) = 4" 0L (T)
and abbreviate Q = Q and Q, = Q, ..

Proposition 2.2.2 (cf. [GHW21, Proposition 3.7]). Let Q, + denote the initial and end
point transforms from Definition 2.2.1. If we extend the G-representation ﬂ'f}’t for p e a*
to D'(K /M) via the pullback obtained by the left G-action on K/M = G/P, the maps

Quu : (D'(K/M),m,) = Re(p) € D'(G/M)
are equivariant topological isomorphisms.

Composing Q,, + with the pullback (7r)* gives the following

Proposition 2.2.3 (cf. [GHW21, Proposition 3.8]). There are isomorphisms of finite
dimensional vector spaces

ResS (u(H)) = "(D'(K/M), m5,) and Resk.(u(H)) = (D'(K/M), m0,)

where V() denotes the subspace of T-invariant elements.

The following lemma connects the initial and end point transforms to the (opposite)
principal series.

Lemma 2.2.4.
i) The maps ®y are given by
O (gM) = M) gnd &_(gM) = e~ *H-0),

In particular, ®4 € Hoy)p and ®_ € Hgl_f;.

i) Let f € O®(K/M) = C®(K)M. Then we have for every pu € a*
a) Q+(f) € Hy, Q_(f) € HPP,
b) Qui(f) € Hutp, Qu(f) € H.Y, and

¢) Qu+(f) (kM) = f(k), Qu-(f)(kM) = f(kw-).

Thus, Q, +(f) is the (unique) extension of f to a function in H,y, and Q, _(f) is

the (unique) extension of f(sw_) to a function in H.".
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2.2. Principal series and the first band

Proof. By definition we have
H(g™'By(gM)) = H(g "k1(9)) = H(ni(g) "ar(9)™")
= H(ar(9)™") = —H(ar(g)) = —H(9)

where the third equality follows since A normalizes N. For ®_ note that conjugation
Cy_ with w_ acts as inversion on A so that by (2.2)

H(gw-) = logar(gw-) = loga; (¢9)"' = —H_(g)

independent of the representative of w_ € W. This implies that
H(g™'B-(gM)) = H(g™"k1(gw-)) = H((gw-
= H(ns(gw-)""ar(gw-)"") = —H(gw_) = H_(g)

and the claimed expressions for ®4 follow. Now

N—
L
T
~
—~
Q
:
~—
~—

gman = kr(g)ar(g)ni(g)yman = ki(g)m ar(g)a (ma)~'n;(g)man
eK cA eN

implies
This proves ®; € Hap and & € H.'P is obtained analogously.
For ii) let f € C*°(K)M. Then
Q+(f)(gmanM) = f(By(gmanM)) = f(kr(g)m) = f(By(gM)) = Q+(f)(9M)
shows Q. (f) € H, and Q_(f) € HyPP follows similarly. For ii)b note that

Q,..+(f)(gmanM) = "™ (gmanM) Q. (f)(gmanM)

= a" Mot (gM)Q L (f)(gM)
= a4 (gM) Q4 (f)(gM) = a" Q1 (F)(9M).

Finally we have

Qu+ () (kM) = 4D (kM)Q(F) (kM) = Qu(f) (kM) = f(k),
Qu— () (kM) = "D (kM)Q_(F)(kM) = Q_(f)(kM) = f(kuw_). O

Remark 2.2.5. In view of Lemma 2.2.4, ii)c the isomorphism Qu = Qu,+ should be
considered as the map (2.1) between different realizations of the spherical principal
series representations, namely the compact picture and the induced picture extended to
distributions. More precisely we have that R, (u) is the space of distributional elements
of H,4, (we will be more precise about this terminology in Section 2.3). We also have
the corresponding statement for the opposite principal series but in that case, by Lemma
2.2.4, ii)c, the map Q, _ is not consistent with the unique extension of a function

f € C®(K/M) to a function in H 5" but one has to twist f with w_ first.
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2. Reducible principal series

2.3. Globalizations and infinitesimal character

Let (m,H) denote a Hilbert space realization of a (subrepresentation of a) principal series
representation. In this paragraph we define smooth and distribution vectors in (7, H).
We call a vector v € H a smooth or C'*°-vector for « if

G— H, g — m(g)v

is smooth. Let H* C H denote the vector space of all smooth vectors in H. For m = wg{jj

the smooth vectors are actually smooth functions (see e.g. [Vog08, Equation (5.15)(a)]):
H>® ={f: K — V, smooth |Vk € K, m € M: f(km) =o(m™ 1) f(k)}.

The distributional vectors H~°° are given by the elements of the dual representation of the
smooth vectors in the dual representation of (7, ). We give an alternative description
which often is more convenient. Let & denote the dual representation of o. Then, using
[Hel00, Chapter I, §5.3, Equation (25)], we see that

Vot Hop X Hoy = Cy (1, f2)o = /K Fa () (f1.(K)) dk

is a nondegenerate, bilinear, and G-invariant pairing between H, , and Hs _, for each
o € M and p € a*. By this pairing, we see that the distributional vectors H, ’° of the
principal series representation H, , are given by the contragredient representation of
Hg_ . If o is trivial, the distributional vectors can be realized on D'(K /M), the space
of distributions on K /M.
In rank one, as mentioned in Remark 2.2.5, the distributional vectors in the induced
picture of H, are given by R(u — p) = R (p — p) since
Qu: (D'(K/M),mP') = R(n— p) (2.4)

intertwines the G-actions and continuously extends (2.1) (see Proposition 2.2.2).
Note that we always have the linear embedding

2R Ha,u — H;zo’ La,u(fl)(f?) = <f17 f2>a,u-

For each subrepresentation V' < H,, ,, we have the restricted pairing

V 5 (Hp_ufVEor) 5 €, (o, ot VEor) g, = /K f2(B)(f1 (k) d,
where
Vdor = {fs € Hs_, | V1 € V: (f1, fo)ou = O} (2.5)
This implies that V=°° is the contragredient representation of (Hg,—,/VLo#)>.

Any principal series representation has an infinitesimal character. In order to describe
the infinitesimal character of H, , we first fix some notation. Let t < m denote a #-stable
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2.4. Reducibility

Cartan subalgebra of m, A, be the highest weight of o with respect to some ordering in
t* and pm denote the half-sum of positive roots for (m,t). Then H, , has infinitesimal
character A\, + pm — p relative to h .= a @ t (cf. [Kna86, Proposition 8.22]). We recall
the Casimir element g, an important element of the center Z(U(g)) of U(g). Let B be
a fixed multiple of the Killing form . For a basis X1, ..., Xdimg, of g0 let (¢%/);; denote
the inverse matrix of (B(X;, X;)); ;. Then the dual basis (X?); is given by X* = 3" ¢¥ X
and the Casimir element is defined by

O =2, XXi=) 97X Xi € ZU(g)).

Since B is nondegenerate, there are unique elements X, € go for each ¢ € gg such that
o(X) = B(X, X,) for each X € gg. We put (p,v) = B(X,, Xy) for ¢,¢ € g§ resp. g*.
Let us extend the ordering on a to b such that X1 arises by restriction from the positive
roots of (g,h). By [Kna86, Lemma 12.28], the action of the Casimir element is then given
by the scalar

Tou(Qg) = (Ao + pms Ao 4 pm) + (14, 1) — (0 + Py p+ Pm)
= (Aos Ao + 2pm) + (1, 11) — {p, p)- (2.6)

2.4. Reducibility

We are particularly interested in reducible principal series representations, i.e. in the set
A= {(o, 1) € M x a* | H,,, reducible}.

In this section we introduce the representation theoretic tools we need to describe the
structure of these reducible representations.

2.4.1. Composition series, minimal K-types and socle

In general, principal series representations are not completely reducible. However, they
are all of finite length (cf. [Kra78]). This means, there exists a finite composition series,
i.e. a chain of subrepresentations of H, , of the form

0CVic...CVh=Hsy

such that the quotients V;11/V;, the composition factors, are irreducible. By the Jordan-
Hoélder theorem, any two composition series have the same length and the same com-
position factors up to permutation and isomorphism. For rank one groups, a detailed
description of the composition series of spherical principal series representations can be
found in Appendix B.

Let 7 denote an admissible Hilbert representation of G (i.e. a continuous representation
such that each K-isotypic component has finite dimension) and fix a Cartan subalgebra
bo of €. With respect to some ordering, we define p¢ as the half-sum of the positive roots
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2. Reducible principal series

of (¢£,b). We say that Y € K with highest weight \ is a minimal K -type of 7 if Y occurs
in 7 restricted to K and

(A4 2pe, A + 2pp)

is minimal with respect to this property. The set of minimal K-types is independent
of the choice of the ordering and its cardinality is finite and at least one. For principal
series representations 7, ,, each minimal K-type of 7, , occurs in 74 ,| ;- With multiplicity
one (cf. [Vog79, Theorem 1.1]).

For any Hilbert representation (m,H) of G we define socw, the socle of 7, as the
closure (in the sense of [Kna86, Theorem 8.9]) of the sum of all completely reducible
(g, K)-submodules of the underlying (g, K)-module of (7, H) (see [KV95, p. 538]).

2.4.2. K-representations

We begin this section with a brief discussion of the decomposition of 7, u’ - in general and

then give some more precise results of this decomposition in the rank one case. Moreover,

we define so-called generalized gradients which will be of great importance later on.
For the decomposition as K-representation we consider the compact picture H, gpg As

K-representation this coincides with the induced representation Indﬁ o of o to K. By
Frobenius reciprocity we thus obtain for each Y € K that

Homp (H,Y') = Homg (Ind}y 0,Y) = Homy (V,, Y).

Denote the multiplicity of V,, in Y (and similarly for other groups and spaces) by
multys (V,Y) :== dime Homy, (V,,Y).

Then, writing
K, ={Y € K: multy(V,,Y) #0},

we have that, denoting equivalence as K-representations by =y and the Hilbert space
direct sum by €9,

]{Cpt =i @ P multM VU,Y)

In the spherical case we will abbreviate K M= f(triv v - 1f not stated otherwise, we will
always realize Y € Ky as a subrepresentation of Hgh, = L?(K/M). Note that L?(K/M)
carries the left regular representation L. We denote the derived representation of L by £.

Intertwiner

In the following, we describe a procedure to obtain G-equivariant maps between sections
of associated vector bundles. As we shall see in Chapter 4, these generalized gradients
generalize the classical raising and lowering operators of PSL(2,R). In the literature
similar operators, so-called Schmid operators, occur in realizations of discrete series
representations (see e.g. [KW76]). To define the gradients, we need the following fact.
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2.4. Reducibility

Proposition 2.4.1 (cf. [Ors00, Proposition 3.1]). Let K act on p* by the coadjoint
representation. The following map is defined for every (1,Y) € K:

V:C®(GxgY)—C®GExg (Y ®pY),

(V1)(g) € Hom(p.Y) =Y @p", (V@)X = 5|

flgexptX).
Moreover, it defines a G-equivariant covariant derivative with zero torsion.

Definition 2.4.2. Let (1;,Y;,) € K, i € {1,2}, be such that Y;, < Y;, ® p*. Then, for
T € Homg (Y-, @ p*,Y,,), we define the generalized gradient

To V:C%%GxkgYy) = C®G xg Ys,).

If not stated otherwise, we choose T' = pr,_, the orthogonal projection onto Y,.

T2

M -spherical functions in rank one

Let us now assume that G has real rank one. In this case some more precise results on
the K-types of the spherical principal series can be achieved. Most importantly, (K, M)
is a Gelfand pair in this case (cf. [Hel94, Chapter II, §6, Corollary 6.8]). This implies:

Proposition 2.4.3. Let C denote the trivial M -representation. Then
VY € Ky: multg (Y, H,) = multy(C, V) = dime YV =1, (2.7)

where YM .= {v € Y | Vm € M: m.v = v} C Y denotes the subspace of M -invariant
elements. In particular, we have the multiplicity free decomposition

H, = Y.
H K@YGKM

Proof. The first equality follows from Frobenius reciprocity and the last equality follows
from [Hel00, Chapter V, Theorem 3.5 (iv)]. O

Note that Indf (trivas) = L?(K/M) is isomorphic to L?(K)M, the M-invariant ele-
ments of L?(K) with respect to the right regular representation. The following proposition
describes the M-spherical elements Y™ for each Y € K and is well-known to specialists.
Since it turns out to be difficult to find a precise reference in the literature, we give a
proof for the convenience of the reader.

Proposition 2.4.4 (cf. [Hel00, Introduction, Proposition 3.2]). Let 0 # (7,Y) < L*(K)M
be an irreducible representation. Then

i) there exists a unique ¢y € YM such that ¢y (e) =1 and Y™ = Coy,
i) p(k)(dy, oy )r2x) = (. T(k)dy ) r2(iy for k € K, p €Y,

i) (Py, Py )r2(k) = Ty, Oy (k7Y = ¢y (k), ¢y (k)| <1 for k € K. Moreover, for
each k € Nk (A) we have |¢y (k)| = 1.
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2. Reducible principal series

Proof. i) By Equation (2.7) we have dimc¢ Y™ = 1. Let 0 # ¢ € Y and choose some
k € K such that (k) # 0. Replacing ¢ by 7(k~1)¥ we may assume that v(e) # 0. The

function

V:K—-C, k— /M T(m)y(k)dm

is contained in Y™ with ¥(e) = v(e) # 0. This proves the first part.
ii) For each m € M we have by the K-invariance of the Haar measure

(erov) ) = [ e)dr (Tdk = [ ooy Th) dk
= [ elmkyoy R dk = [ 68 [ plmk)dm .
Note that the map
0:K—C, k— / w(mk)dm = / 7(m™Hp(k) dm
M M
is contained in VM = C¢y. We infer that 6 = 0(e)¢y = p(e)¢y and thus
(ovdv) 2 = #(€) [y (o (k) dk = o(e) (0 &) 1201

Replacing ¢ by 7(k~1)¢ we obtain ii).
iii) By the Schur orthogonality relations we have

1
dimY

(s @) 12 (k) (DY, DY) 12(K) :/K<T(k)¢YaW)LQ(K)<T(k)¢YaSO>L2(K) dk

i)

:/K‘P(k)<¢Y7¢Y>L2(K)80(k)<¢Ya¢Y>L2(K)dk

= (6v.0v)iae [ PFYo(k)

= (by: dv) L2 (0 9) L2 (1)

This proves (¢y, ¢y)r2(x) = dim%. By ii) we deduce

oy (k) = dim Y (dy, 7(k)dy) r2(x) = dim Yoy, T(k~1)dy) 2y = ¢y (k1)
and, using the Cauchy-Schwarz inequality,
|py (k)| = dim Y[(dy, 7(k)dy) r2(x)| < dimY(y, dy)r2(x) = 1.

If k € Ng(A) we have k~'mk € M for each m € M (W is a group) and thus 7(k)¢y €
YM = Cpy since 7(mk)oy = 7(kk~'mk)¢y = 7(k)¢y. Therefore, 7(k)¢y and ¢y are
linearly dependent and we have an equality in the Cauchy-Schwarz inequality. 0
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3. Poisson transforms

In the generic case, the quantum-classical correspondence is established by scalar Poisson
transforms. These are given by certain G-equivariant mappings defined on spherical
principal series representations whose images are contained in common eigenspaces
of invariant differential operators. In rank one, these common eigenspaces are given
by eigenspaces of the Laplacian so that bijective Poisson transforms lead to quantum-
classical correspondences. We call parameters for which the Poisson transform defines
an isomorphism regular. In the case of exceptional — i.e. non-regular — parameters it
turns out that the Poisson transforms are not even injective (Theorem 3.2.2), so that we
need some alternative. For this we introduce vector-valued Poisson transforms based on
[O1b94], which admit similar properties to the scalar ones and generalize the latter in a
natural way (Section 3.3). Moreover, they can be characterized by a universal property
(Lemma 3.3.3), which — along with its corollaries — will be one of our main tools for
proving spectral correspondences.

3.1. Invariant differential operators and eigensections

Let (1,Y) € K. A differential operator D on C®(G xx Y) is called invariant if
it commutes with the left regular representation L on C*°(G xg Y). Let D(G,7)
denote the algebra of all invariant differential operators on C*°(G x g Y') and abbreviate
D(G/K) := D(G,triv). Then D(G,7) is isomorphic to U(g)* /(U(g)Iz)¥ via the right
regular representation r, where Iz := ker7 C & denotes the kernel of 7, the dual
representation of 7 (see [Olb94, Satz 2.4]).

For the trivial bundle the Harish-Chandra homomorphism x : D(G/K) — S(ag)"
allows us to identify D(G/K) with the W-invariants S(ag)" of the symmetric algebra
S(ap) of ag (see [Hel0O, Chapter II, Theorems 4.3, 5.18]). Moreover, every character of
D(G/K) is of the form

Xp: D(G/K) = €, xu(D) = x(D)(n)

for some p € a* and x,, = x,, if and only if v € Wy (cf. [Hel00, Chapter III, Lemma 3.11]).
Let us denote the space of joint eigenfunctions of D(G/K) by

& ={f € CF(G/K) |VD e D(G/K): Df = xu(D)f},
and, with the Riemannian distance function dg/x on G /K, for each r > 0

Eur(GIK) = {f € &, | sup|e "do/x(K9K) £(g)| < o0} (3.1)
geG
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3. Poisson transforms

We put €, 00(G/K) = U,>0 €ur(G/K), equipped with the direct limit topology.
For arbitrary (7,Y) € K we define a representation x,., of D(G,7) for each y € a*
and (o,V) € M with multy (V,Y) # 0 by
Xopu : D(G,7) = End(Homg (Hy 1, Y)),  Xou(r(w)(T) =T o 7, (0ppu),

where u € U(g)® and opp : U(g) — U(g) is defined by opp(X) := —X for X € g (see
[O1b94, Definition 2.10]). If multy/(V,Y) = 1 these representations are one dimensional
and we can define the space of joint eigensections

Eoy = {f € C®(G xx Y) | VD € D(G,7): Df = Xou(D)F},

where we identified End(Homg (H,.;,, Y')) with C. Each E, ,, has an infinitesimal character
and it coincides with that of H, , (see [O1b94, Folgerung 2.15]).

3.2. Mapping properties of scalar Poisson transforms

The asymptotics of joint eigenfunctions in £, can be described by a specific meromorphic
function on a*, the Harish-Chandra c-function c(u). We define its “denominator”, the
meromorphic function e(u) ™!, by (1 € a*)

e T (3 1+ )0 (3 e+ )

aext <Oz7 a>

see e.g. [Sch84, Equation (5.17)]. Then e is an entire function on a* without zeros on the
closure of the positive Weyl chamber.

Definition 3.2.1. For u € a* we define the scalar Poisson transform by
P, :D(K/M) = £u00(G/K), Py (T)(gK) =T (kM ~ aj(g— k)~ r+0).
The mapping properties of these maps turn out to be closely related to the e-function.

Theorem 3.2.2 (cf. [vdBS87, Theorems 10.6, 12.2]). P, is a topological isomorphism if
and only if e(p) # 0. If e(u) = 0 then P, is neither injective nor surjective.

This leads to the following definition.
Definition 3.2.3. We call

Ex = {u € a* | e(u) = 0}
the set of exceptional parameters.

In the rank one case the algebra D(G/K) is generated by the Laplacian on G/K
([Hel00, Chapter II, Theorem 5.18]). Note that the scalar by which it acts on £, (G /K)
resp. Eirivy,,u can be deduced from Equation (2.6). For regular parameters p € a* \ Ex
this leads to the following correspondence between first band (co-)resonant states and
eigenfunctions of the (positive) Laplacian Ang on L?(M), which is obtained by composing
the isomorphisms from Proposition 2.2.3 with the bijective Poisson transform.
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3.3. Vector-valued Poisson transforms

Theorem 3.2.4 (cf. [GHW21, Theorem 4.5]). If u € a* \ Ex is a reqular spectral
parameter, then there are natural isomorphisms

Res (1 — p)(H)) = Eiga,, (1),  Resk((u — p)(H)) = Eiga,, (1),
induced by the scalar Poisson transform P,, where
Bigay, (1) == {u € L2A(M): (Ant — p(H)? + u(H)?)u = 0}.
The aim of this thesis is to generalize this result to the case of exceptional parameters.

Remark 3.2.5. Note that our definition of exceptional parameters agrees with the
parameters which were excluded in [DFG15] and [GHW21]. Indeed, let G be of real rank
one. Then the e-function is zero if and only if one of the Gamma functions has a pole
which is the case if and only if

1 1
w e (—2ma —1- 2N0> a U (—Qma — Moy — 2N0) a,
with the simple positive restricted root a. Moreover, by [Hel70, Chapter IV, Theorem 1.1},

H,, irreducible & e(u)e(—u) # 0.

Therefore, irreducibility of H,, is sufficient but not necessary for the bijectivity of P,.

3.3. Vector-valued Poisson transforms

In this section we describe generalized Poisson transforms based on [O1b94], which will
serve as a substitute for the scalar Poisson transform for the exceptional parameters.

Definition 3.3.1 (cf. [O1b94, Definition 3.2/Satz 3.4]). Let 7 € K, o € M and p € a*.
Then we define the (vector-valued) Poisson transform by

P, :Homg (Hoy Vo) @ Hy o = CF(G xx V), Py (T ® f)(g) =T(msulg)f).

(3.2)

If F: Homg (He y, Vr) = Homp Vs, V;) denotes the Frobenius isomorphism we have
PLT® f)lg) = [ TFD)(f(gh) dk (33)
= [ g Rl R EO) SR AR (34)

for T'e€ Homg (Hy,, V), f € Hyy and g € G. The image of P7,, is contained in Eq
and Py, is D(G, 7) x G-equivariant, where D(G, 7) acts on Homg (Ho i, Vr) by Xopu- We
abbreviate P7 , by P if o is the trivial representation of M. We may also define the
Poisson transform in the compact picture where the definition agrees with Equation (3.4).
Especially we have

PR (T ® f) = PH(T @ Qu—p+(f)) (3.5)

for each f € D'(K/M). For convenience of notations we simply write P for PP if the
definition space is clear from the context.
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3. Poisson transforms

Remark 3.3.2 (Scalar vs. vector-valued). If 7 = trivg is the trivial K-representation
we have Homg (H,,, V;) = Hom(C,C) = C. Let t € Homy,(C, C) be the identity and
T = F~(t). Then

PT® £)(g) = [ arlg™ k) 4 (k) dk = Pu(P)(9E).

The following lemma illustrates the naturalness of Olbrich’s Poisson transforms.

Lemma 3.3.3 (cf. [O1b94, Remark after Lemma 3.3]). Let ¥ : H,, — C*(G xx V;)
be a G-equivariant map. Then

U="pP (T®-)
where T € Homg (Hy y, V) is defined by T'(f) == ¥(f)(e).
Proof. For every k € K we have
T(mou(k)f) = W(mou(k)f)(€) = WK = 7(R)¥(f)(e) = T(K)T(f)
and thus T' € Homg (Hy,,, V). Moreover we have for every g € G and f € H, ),
P; (T ® f)(9) = U(roulg™)f)(e) = ¥ (f)(g). O
This lemma admits the following important implications.

Corollary 3.3.4. Let V : H,, — C>®(G xi V;) be a G-equivariant map where V; does
not contain the M -representation V,. Then ¥ = 0.

Proof. By Lemma 3.3.3 there exists 7" € Hom g (Hy y,, V) such that ¥ = P} (T'®-). But
Hompg (Hyy, Vy) = Homp (V,, V;) = 0 by Frobenius reciprocity. a

Corollary 3.3.5. Let (r;,Vy,) € K, i € {1,2}, be such that
multx (V-,, Hy ) = dime Homg (Hyp, Vi) =1

and let ® : C°(G xg V) — C®(G xg V;,) be a G-equivariant map. By choosing
0# T; € Homg (Hy p, Vr,) we consider the Poisson transforms Pri, as maps from H,
to C*(G xk Vz,). Then there exists some ¢ € C such that

Qo Pl =c- P,
Proof. Since
do P;L(Tl X ') : Hg’u — COO(G XK VTQ)
is a G-equivariant map there exists, by Lemma 3.3.3, some T' € Homg (Hy ,, V,) with
®o PP (T ©+) = PR(T®").

Since dimc Homg (Hy y, Vr,) = 1 there exists some ¢ € C with T' = ¢ - Tb. O
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3.3. Vector-valued Poisson transforms

We may also define the analog of the Poisson transform for the opposite principal
series, i.e.
PriPP : Homp (HGRP, Vr) @ HPP ™% — C(G x ¢ Vr),

PIPP(T @ f)(g) = T(mh (97 ).
As in Definition 3.3.1 we get

EriP (T @ f)(9) =/ T(R)F(T)(f(gk)) dk

K
= [ ar (g™ P or(hy (g DTS () b

for T € Homg (H, gf;f’OPp, V:), f€H g}’;vopp and g € G. Here the Frobenius isomorphism
F' is defined as before by realizing the principal series in the compact picture.

Corollary 3.3.6. Let (1,V;) € K be such that
multg (V, H,) = dimc Homg (H,, V) = 1.

Let 0 #T € HomK(Hﬁpt, Vz) and consider the Poisson transforms P} resp. PP as
maps from Hﬁpt to C®°(G x g V;). Then, with the isomorphism ® from Proposition 2.1.1,

PP od =c- P],
where ¢ is given by % for some arbitrary 0 # ¢, € VM.
Proof. Note that
PP o &: HP' — C™(G xk Vr)

is G-equivariant. Thus, by Lemma 3.3.3, PrPP o @ equals ¢ - P for some ¢ € C. In
order to compute ¢ we evaluate both sides at the delta distribution §.3s at eM. Using
Equation 2.2 we obtain

PP (@(bear)) = PP (8uw_nr) = a7 (97w )" Pr(ky (97 w-))F(T)(1)
= ar(g™") Tk (g Ywo ) F(T)(1).

Note that CF(T)(1) = V.M by the multiplicity one assumption. Moreover we have
(w_)F(T)(1) € VM since

T(m)T(w_)F(T)(1) = 7(w-)r(w>'mw_)F(T)(1) = 7(w-) F(T)(1)
for each m € M since w”'mw_ € M. Thus,

(r(w ) F(T)(1), F(T)(1))~
(F(T)(1), F(T)(1))

T(w)F(T)(1) = F(T)(1) = cF(T)(1)

and therefore

ProPP(@(3enr)) = ar(g™") " # P r(kr(g™ ) F(T)(L)e = Py (enr)e- =
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3. Poisson transforms

Note that in rank one, where we realized each Y € Kj; in C®(K/M), we have
¢y € YM for the ¢y from Proposition 2.4.4. In this case Proposition 2.4.4ii) yields

— <T(w—)¢Y;¢Y>L2(K) B i
- <¢Y7¢Y>L2(K) o (ZSY(’UJ_ ) = (25)/(’11)_)7

since w? € M and ¢y is M-invariant. Note that since ¢y (k™1) = ¢y (k) for each k € K,
this implies that ¢ is real. Moreover, |¢y (w_)| =1 (again by Proposition 2.4.4ii)) and
thus c € {£1}.
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4. An example: The case of surfaces

This chapter is devoted to the quantum-classical correspondence for exceptional parame-
ters in the case of hyperbolic surfaces — corresponding to G = PSL(2,R) — as described
in [GHW18]. In order to generalize the proof of [GHW18] to other rank one cases, our
goal is to replace it with a more representation theoretic one. This will be instructive
for the general rank one case where various challenges arise which are not present in the
case of surfaces.

We start by introducing some notation and stating the correspondence. After relating
the occurring objects to the representation theory of PSL(2,R), we see that the correspon-
dence is actually induced by vector-valued Poisson transforms (Lemma 4.1.7). Section 4.2
is concerned with the proof of the correspondence, which uses Fourier decompositions to
describe the spherical principal series. In the last two sections we discuss how the proof
may be extended to more general situations. To this end, we first address the question
of which Poisson transforms might be chosen in general, or rather, what distinguishes
the occurring ones from other choices. As the raising and lowering operators used in the
proof are restricted to the case of surfaces, we need some replacement for them as well.
In the last section we see that generalized gradients provide such a replacement.

4.1. The quantum-classical correspondence
For g € SL(2,R) we denote the equivalence class of g in G = SL(2,R)/{£1} by [g].

Definition 4.1.1. Let M = I'\H? for some co-compact discrete torsion free subgroup
I' < G be a quotient of the upper half plane so that M is a smooth oriented compact
hyperbolic surface. Let Kr = (T*M)'Y denote the canonical line bundle on M and
Kpt = (T*M)%! be its dual, where the complex structure on M is chosen such that
the canonical projection 7p: H? — M is holomorphic. For each n € N we denote the
tensor powers /Cl@” =Kr®...%Krp resp. IC1?1®n = /lel R...® ICfl by ICf resp. ™.
For v € IC%El we denote the n-fold tensor product v® ... v € IC%" by v®". For each
m € Z \ {0} we consider the map

7k s OO (M, KRE) — O°(SM),  7hu(z,v) = u(z)(©®™)

and its dual operator 7, : D'(SM) — D'(M, Kf*) as in [GHW18]. Moreover, we consider
the Dolbeault operators 9 and 0.

We can now state the quantum-classical correspondence for the exceptional parameters
in the case of surfaces.
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4. An example: The case of surfaces

Theorem 4.1.2 (Quantum-classical correspondence for exceptional spectral parameters,
see [GHW18, Theorem 3.3]). Let I' < G be a co-compact torsion free discrete subgroup,
M :=T\H? be a smooth oriented compact hyperbolic surface and SM be its unit tangent
bundle. For each n € N there is an isomorphism

T ® Tt Resk (—n) = H,(M) @ H_,(M),
where H,(M) and H_,,(M) are given by
Hp,(M) := {u € C®°(M,K") | du = 0}, H_,(M) == {u € C°(M,K™") | du = 0}.

In order to give a version of Theorem 4.1.2 that fits better with representation theory,
we first give some introductory definitions of the structure theory of G.

Definition 4.1.3. Let K = PSO(2) < G be maximal compact and A resp. N denote
the projections of the diagonal resp. the unipotent upper triangular matrices in SL(2, R)
to G so that G = KAN is an Iwasawa decomposition of G. Note that M is trivial in
this case. We abbreviate

- cosp sing
7 |\ —sing cosep

For each m € Z we obtain a representation of K on C,, = C given by L, (k) :
We have K = {L,, | m € Z} and let G x i Cp,, m € Z, be the associated line bundles.
As on M, we denote the canonical line bundle on H? by K = (T*H?)', its dual by
K1 = (T*H?)"0 and their respective tensor products for n € N by K" resp. K~". For
g € G we define the pullback of the differential form dz by

(¢'(20)X)

€K, pcl0,n.

— e2mcpz )

g*(dz)‘Z:ZO (X) == dz|

2=g.20

for every X € T, ,H? and every zy € H2, where G acts on H? by Mé&bius transformations.
Furthermore, we use the natural projections

7Gxk Cp — G/K, [g,\] — gK, m:K"— H?, (TZ*OHQ)®” D ®_1Wz,j = 20
and trivialize G x g C,,, resp. K™ via
i ({gK}Y) = C, (g, A] = [n(g)alg), N]— X

* ®n
(oK) =€ A ((nlg)ae) @) ) A

for ¢ € G with Iwasawa decomposition g = n(g)a(g)k(g).

There is the following close connection between the bundles K™ and G xx C_,, (and
analogously between £~ and G xg C,). Note that G xx Cyp = G/K is the trivial
bundle.
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4.1. The quantum-classical correspondence

Lemma 4.1.4. For every n € N there is an isomorphism of homogeneous line bundles
GxgC_,=2K"

given by (f1, f2) where

fi:GxgCpy = K", [g,A] = Ag.dz|__,)®" = A (91*((12)

Qn
z:gi)

Proof. First note that f; is well-defined: For g € G, k, € K and A € C it holds that

f2: G/K - H?, gK s g.i.

Z_g.i) on _ 2y (dz|zzi(kglg_1)'(g.i)>®n
— 2l ) (dz|zzi(1€;1)/(i)(g_l)/(g-i)>®n
= 0" (4] (o)
= (2], (g™ (9:)) "

* ®n
— (g—l (d2) ) ,
z=g.i

where the fourth equality follows from A/(i) = —L- for h = (CCL

Lol gk, (@)

b

= rap d>' Moreover, we

have a commuting diagram

GXKC_HLIC"

G/K — — H?
2

since w2 (f1([g,\])) = g.i = f2(gK) = fa(m1([g, A])). Furthermore, for every ¢K € G/K
the mapping
®n
z:gi)

is the identity in the trivializations from Definition 4.1.1 and thus clearly linear. Finally
note that f; maps golg, Al = [gog, Al to Algog-dz|,_,)®" = go.f1([g, X)) (here G acts by
pulling back by the inverse of gg) and f2 is G-equivariant since the Mébius transformations
define a group action. O

1 {gKY) = 1 ({F2095))), (9. = filg, A) = A (gl*(dZ)

Having identified the line bundles, we are now in a position to describe the analogs of
the maps 7, and 7. for the bundles G x g C_,,. We first lift the definitions to H2.

Definition 4.1.5. For every m € Z \ {0} let
75 CP(H2K™) — C*(SH?), 75 u(z,v) = u(z)(v®™)
and 7. D' (SH?) — D'(H?,K™) be its dual operator.
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4. An example: The case of surfaces

We will now use Lemma 4.1.4 and the fact that SH? & G to understand 7 as a
mapping from C°(G/K,G xx C_,,) to C°(G) (here we again concentrate on the case
of n € N to avoid cluttered notation; the case of —n can be treated in an analogous
manner). At first we identify SH? with G via

G — SH?, g (9.4,9(i) 1),

where i = 9z € T;H? is the element with dz|,_,(9z) = 1. With this identification 7,
becomes

frt CR(H?,K™) = CR(G), mhulg) = u(g4) ((¢'(i) i)®").
Now we use Lemma 4.1.4 to obtain

¥ O°(G/K,G xg C_,) = C*(H%,K") — C(G),
frfiofofyt = (g (fiofofy g () ).

Fixing g € G and writing f(gK) = [g, A\] we note that

For every k, € K we also obtain
(FnS)(gke) = Lon(ky A = Lop(k, ) (75,/)(9)
since [g, L_n(ky)0] = [gky, 0] = f(gkoK) = f(9K) = [g,A] if f(9K) = [gky,6]. This

shows that 7 is just the natural mapping between different realizations of sections of
the associated vector bundle G x g C_,;: Indeed, note that we can identify the sections

C=(G/K,G xx C_y,) with

C2(G xx Cop) = {f € CZ(G) | f(gk) = Ln(k)™" f(9)}

via the trivialization of G x g C_,, from Definition 4.1.1, i.e. f € C°(G/K,G xx C_,)
gets mapped to ®(f) € C°(G xx C_,,) with

®(f)(na) = X for n € N, a € A where f(naK) = [na, \AJ.
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4.1. The quantum-classical correspondence

In this realization we have

Tnt C(G xk Cop) = CR(G), [ f
Let us now describe the pullback 7. : D'(G) — D/'(G xx C_,) = (CX(G xi Cy,)) of
7*,. We embed C*°(G x g C,) into D'(G xk C,) by

n: C®(G xg Cp) = D'(G Xk Cp), wtn(f)(o) = - f(gK)¢(9K) dgK,

where we choose the invariant measure on G/K to be compatible with the fixed Haar
measures on K and G.

Lemma 4.1.6. For f € C®(G) we have T_p.(f) € C*°(G xi C,) C D'(G xx Cy,) and

Foand(9) = [ FGRL-a(R) b= [ f(gk)La(k) dk

forall g € G.
Proof. Let f € C*°(G) and ¢ € C°(G xx C_y,). Then

| Fned - 09K = (Goanf)(0) = £(70) = [ f-7i(0)dg
G/K G
= [ | fgk)slgh) dkdg
G/K JK
= [ | HR L) dkolg) dgic.
G/K JK

Thus, #_p.f is represented by the smooth function g — [} f(gk)L_n(k)~! dk. O

We are now able to see that the quantum-classical correspondence can be described by
vector-valued Poisson transforms.

Lemma 4.1.7. Let i € ag. and recall the definitions from Corollary 3.3.6. Then

Pim = F(T)(1)(fns 0 Qu_py) and PrmoPPo® = F(T)(1)(F_px 0 Qup,-)

and in particular

=L
3

_ 671(P;n,0pp 0®) = 'F(T)(1)(F—ps 0 Qu—p—)
with ¢ = Lyp(w-) = (=1)".

Proof. By a density argument we restrict our attention to smooth functions. In this
case the first two equations of the Lemma are immediate from the integral description
(3.3) of the Poisson transform resp. its analog for the opposite Poisson transform (recall
from Lemma 2.2.4, ii)c that Q,_, _(f) is the unique extension of ® o f to a function in
HPP). The last equation follows from Corollary 3.3.6 and, choosing ¢r,, = 1, we infer
¢=Ly(w_) = (—1)" from the definition of L,,. O
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4. An example: The case of surfaces

Remark 4.1.8. Lemma 4.1.7 generalizes the description of the scalar Poisson transform
as given in [GHW18, Lemma 2.1] (which was later generalized to general rank one groups
in [GHW21, Proposition 4.4]) to the case of vector-valued Poisson transforms respectively
nontrivial K-types.

We conclude this section by comparing different normalizations of scalar Poisson
transforms as given in [GHW18] and [GHW21].

Remark 4.1.9 (Comparison of different Poisson transforms and exceptional points).

(i) For the comparison it suffices to investigate the different versions of the Schwartz
kernel of the Poisson transform. For this purpose we view G as PSU(1,1) and H? as the
Poincaré disk. In [GHW18, Lemma 2.1], the Poisson transform Py : D'(S!) — C>(H?)
for A € C is defined by

P@)(@) = w, PP @ e = [ @) P () dpss (v)

where jg1 is the standard measure on S' and the kernel P! is given by

1+ 1— |z a 2 1
PNz, v) = ,veH” veS. (4.1)

|z —v]?
In [GHW21, Definition 4.1], the kernel p,, for u € a* of the Poisson transform is defined
as in Definition 3.3.1 (choosing 7 as the trivial K-representation)
Pu(gK, kM) = ar(g~ k)~ € C®(G/K x K/M).

In our case H is given by diag(3, —3) € ag. We identify a* = C, p = p(H)a — p(H)
where p gets mapped to 3. We have (see e.g. [JW77, p. 148))

20(H)
1—1g.02 P 1 g02 1 |g.0]? (42)
)| '

—17.\—2
k)% = — = — = :
arlgk) (1—<g.O,k.1 1— g0 k12 90— k1P

Moreover, note that

pu(gK, kM) = e~ (W tp)(H (g7 k) — o~ (u(H)+5)a(H (g™ k) _ (e—Qp(H(g”k)))u(H)Jr%_

Therefore, Equation (4.2) implies

(H)+5
1—1g.0/? a 2

Comparing this with (4.1) shows that for each g € PSU(1,1) and k € K
pulgK, kM) = P02 (6.0, £.1).
(ii) By Remark 3.2.5, the exceptional parameters for G = PSL(2,R) are given by

Ex = (—TZQ—I—QNO)aU<—n;a—mga—QNo)a

1 1 1
= (—2—1—2N0>04U(—2—2N0>Oé: (—2—N0>a

so that 1 € Ex < pu(H) € —3 — Ny resp. A = u(H) — 3 € —N.
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4.2. Proof of the quantum-classical correspondence

4.2. Proof of the quantum-classical correspondence

In this section we outline the proof of the quantum-classical correspondence from [GHW18]
(Theorem 4.1.2). We will already use our reformulations of the objects used in the
correspondence and see how generalized gradients fit into the overall picture. We first
note that for each fixed f € C*°(G) and each g € G the function

© — f(gky)

is m-periodic and the formula for 7. f(g) from Lemma 4.1.6 corresponds to the n-th
Fourier coefficient of that function (see also Lemma 4.1.7); viewing G' as SH?, these
Fourier coefficients are given by the Fourier expansion in the fibers of SH?. Evaluating
at ¢ = 0, we can thus write

F=" fr with fi = 75 (Fre(f)) € FHC™(G x ¢ C_y)), (4.3)
kEZ

where the series converges at least pointwise. By [GHW18, §2.4] the series and its
derivatives even converge uniformly on compact sets and one has an analogous decom-
position for distributions (converging in the distribution sense; note that the dual of
gt CP(G) = CX(G x g Cy) extends 7} to D' (G x g C_y)). Defining the infinitesimal

= (_01 ) et (4.4)
2

rotation matrix
we note that V fi = ik fi where V acts from the right. We further define

O M=

1 . 11 =i 1/(0 1
ni_Q(HiZB)_zL(:l:i _1) WhereB.—2<1 0). (4.5)

These operators are called raising and lowering operators as they increase resp. decrease
the eigenvalues of V' by +i since they fulfill the commutation relation [V, n4] = £iny and
thus, in the universal enveloping algebra of g,

Vg =neV + [Ving] = naV i
In particular, they induce operators
nt COO(G XK (C,k) — COO(G XK C—(k::l:l))a (4.6)

where 7+ acts by the derived right regular representation. The idea now is to characterize
the resonant states resp. the principal series by relations between the Fourier coefficients
f1 using the raising and lowering operators. More precisely, we have the following

Lemma 4.2.1 (see [GHW18, Lemma 2.2]). Let u € a* and f € D'(G). Then f is an
element of R(n) = H, 7 (see Equation (2.4)) if and only if

20 fo= (u(H) +1£0) foea

for every £ € Z.
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4. An example: The case of surfaces

Proof. For f € R(u) we have Hf = u(H)f and Uy f = 0 with U = (8 é) Since

H = ny + n_ this yields

0=+ +n-—wH))f = VEL: nyfor+n-for1 —p(H)fe=0 (4.7)

by applying 7} o 7y to both sides and using that 7y, o 71} = 0 for £ # k and 7y, o 7} is
the identity. Similarly Uy = —i(ny —n—) + V and V f; = ilf, imply

0= (il —n )+ V) = VEEZi 0= —ilnfor—n for) +ilfy  (48)
Combining (4.7) and (4.8) finishes the proof. O

Remark 4.2.2. Note that [GHW18, Lemma 2.2] uses the opposite principal series. We
get the original result of that lemma as follows. By Lemma 4.1.7, Lemma 4.2.1 shows
that

(W(H) + 1+ 0P+

L_
2n+P, 5, ptp

pwtp

for each ¢ € Z if we choose T such that F(T')(1) = 1. Thus, by the same lemma,
(—1) 20 (g 0 Qp-) = (1) (u(H) + 1+ £)(Fps1 0 Q)

resp. 20+ fe = —(u(H) 4 14 £) friq for each f € H, 7°"" = R_(u). Therefore,

204 fop1 = —(u(H) 12 (L F 1) frr141 = (—p(H) FO) fo

as in [GHW18, Lemma 2.2]. Alternatively, one can also directly use the fact that the
right action of w_ on K = S! is given by —1 and consider the C,,’s as spaces of functions
on S!.

The main idea of the proof of the quantum classical correspondence is as follows:

i) Fix a finite set of K-types such that the direct sum of the corresponding "Fourier
component maps” is injective on Res% (—n).
ii) Determine the image of the direct sum:

a) Use the Fourier characterization from Lemma 4.2.1 to find necessary conditions
for the image and to reconstruct all the other Fourier coefficients from the
fixed ones.

b) Define f as the formal sum of the Fourier coefficients and show that it gives
rise to an element of Res% (—n).

Let us describe the proof in some more detail.
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4.2. Proof of the quantum-classical correspondence

ny n-
PP . —— o e e e
n

—-n 0

b

Figure 4.1.: Fourier components of f € ' H . 0°PP. White dots represent Fourier compo-
nents that are zero.

Idea of the proof of Theorem 4.1.2. Let p € a* with

1 1
p(H) = —nt p(H) = —n+ L € N+
be an exceptional parameter and f = Q,_, _(¢) € 'R_(u — p) = FH,IOO’OPP for some
@ € D'(K/M). Let all Poisson transforms be defined by normalizing T" by F(T)(1) = 1.

Then Lemma 4.1.7 implies
o (f) = Tou(Quop,— (%)) = P () € " €40 (G/K).
Thus, 7o.(f) descends to an eigenfunction of Apg with eigenvalue
p(H)? — u(HY2 = —n(n — 1)

by Equation (2.6). By the positivity of the Laplacian we get 7p.(f) = 0 and thus fo =0
(for n = 1 one has to use a slightly modified argument, see [GHW18, p. 20]). In particular,
the image of the scalar Poisson transform restricted to the I'-invariant elements is zero in
all exceptional cases. By Remark 4.2.2 we have

24 fe—1=(n—k)fy and 2n_fr=n+k)fi (4.9)

for each k € Z and thus fx, = 0 for |k| < n. Therefore, ny f—, = 0 and n_f, = 0. This
implies that m,.(f) € H,(M) and 7m_p.(f) € H_,(M) if we consider f as an element of
Res% (—n). Thus, the image of T, @ m_,. is really contained in the claimed space. For
the injectivity let f,, and f_, be zero. Then (4.9) implies that f has to be zero.

For the surjectivity let u € H,(M) and denote its I'-invariant lift on C*°(G x g C_p,)
by @. Then we define f,, := 7} (u), fr =0 for k < n and (see (4.9))

2
fo=—

Nt fr—1

for all £ > n. By the same calculation as in the proof of [GHW18, Theorem 3.3] we see
that

F=>re
keZ
defines a distribution. Moreover, it fulfills both relations from Equation (4.9) (also at

k =n) and is an element of " H, 7>°"" = "R _ (1) by Remark 4.2.2. Thus, it descends to

an element of Res% (—n). The case u € H_,,(M) is analogous. O]
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4. An example: The case of surfaces

4.3. Vector-valued Poisson transforms

In this section we determine the kernel of the vector-valued Poisson transform P!f".
As these Poisson transforms are given by the "Fourier component maps” m_,, on the
principal series, discussing the injectivity will shed some light on which K-types we
could choose for the quantum-classical correspondence. In particular, we will see that in
contrast to the generic parameters there does not exist an injective Poisson transform
in the exceptional cases for G = PSL(2,R) (see Lemma 4.3.1 for (u — p)(H) € —N).
This shows that we have to take the direct sum of two Poisson transforms as we did
in Theorem 4.1.2. However, the injectivity of the used sum has nothing to do with the
I-invariant elements (Lemma 4.3.3). Later on, in Proposition 5.1.3 and Theorem 5.1.6,
we will see that the non-existence of injective Poisson transforms in the exceptional cases
is rather special to the case G = PSL(2,R).

By the definition of PML" (Definition 3.3.1) we can study its kernel by determining
invariant subspaces of the principal series representation H,,. Let us first identify SL(2, R)
with SU(1, 1) using the Cayley transform

[1]

: SL(2,R) 2 g+ CgC~ € SU(1,1), C:= G 7) .

Now realizing (7(P*, HP') on L*(S') = L?(K /M) by identifying

K/M=S' kM Z(k).1 (4.10)
via Mébius transformations on the closed Poincaré disk H2 = B (0) gives

(P9 () = PO (4.0,2)f(g712), | € TXSY), € 8

with the standard Poisson kernel P (see Remark 4.1.9). The images of the raising and
lowering operators from Equation (4.5) in su(1,1) (complexified) are given by

_ (o i (00

Their action on functions e, : St — C, 2+ 2P (p € Z) is

21 (N1 )ep = ((p — ) (H) — plep1
2mP (n-)ep = ((p — p)(H) + plepya
R (H)ey = w4 Jep = R 0m AR, gy

By the Cartan decomposition g = €@ p with p = Ugex Ad(k)a we have that the a-action
determines the g-action on each K-type. Since the K-finite vectors of L%(S') are given
by (the algebraic direct sum) @®,cz €p and a = RH, the g-action is completely given by
formula (4.11). Realizing the vector-valued Poisson transforms on D'(S!) we can now
determine their kernels.
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4.3. Vector-valued Poisson transforms

Lemma 4.3.1 (Kernel of vector-valued Poisson transforms). Let L,, € K (m € Z) be
arbitrary (see Definition 4.1.8). Identifying K = K/M = S' via (4.10), Ly, corresponds
to the representation e,, of S'. Then:

(i) The Poisson transform
P D'(SY) = H; ™ — C®(G xg Cp)
is injective if and only if (p — p)(H) & —|m|+ N ={—|m|+1,—|m|+2,...}.

(it) If (p — n)(H) € —|m|+ N and | € Z we have

I<(p—p)(H) :=m|+1<(p—p)(H) < |m|

e ker Sl
1€ Py <:>{|l|2(p—,u)(H) dm| < (p— p)(H)

and

e € ker P {l > (p—p)(H) :—|m|+1< (p—p)(H) < |m]
1> (p—p)(H) :|m| < (p—p)(H).

Proof. Let us abbreviate equation (4.11) by

mu(H)ep = au(p)ept1 + bu(p)ep—1.

If (p — p)(H) ¢ Z we have a,(p) # 0 # b,(p) for every p € Z. Thus, iteratively applying
mu(H) to e (for some arbitrary | € Z) will eventually have a non-zero ep,-part, i.e.
pre,, (mu(H)%;) # 0 for some ¢ € N. This implies that Pi™ is injective if (p — p)(H) & Z.

Now let (p — u)(H) = —|m| — k € —|m| — No. We have to show that P is injective.
Note that a,(p) =0 < p = |m|+ k and b,(p) = 0 < p = —(|m| + k). This gives the
K-type picture described in Figure 4.2a

i < - -3 < -

D R {000 0000 06 -0 -0 0 0 0
—ml—k —fm| O |m| |ml+k ¥ “im| —m|+kO |ml—k |m| T
(@) (p—p)(H) = —|m| -k, k€N (b) (p—p)(H) =—m|+Fk, 1<k <|m|

Figure 4.2.: K-type pictures with kernel of P;'m‘ (dotted) and arrows indicating the
g-action

and shows that iteratively applying 7, (H) to ¢; (for some arbitrary [ € Z) will
eventually have a non-zero e,,-part, i.e. Pg™ is injective.

We are left to prove that PS™ is not injective if (p — u)(H) = —|m|+k € —|m| + N
and determine the kernel in this case. Note that

ay(p) =0 p=|m|—kandb,(p) =0 p=—(Im| —k).
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4. An example: The case of surfaces

< y - > <= -
{890 -8 -8 0 06 0 6 0 06 0 0> » ‘o8 00 06 0 06 0 0 0 0 0 0
—lm| |m|—k O —|m|+k |m]| Im|—k —|m| 0 |m| —|m|+k

() [m| < k < 2|m| (b) k > 2|m]|

Figure 4.3.: K-type pictures for (p — p)(H) = —|m| + k with kernel of P,™

Let us first consider the case 1 < k < |m]:

Then the situation is described in Figure 4.2b. Thus, every ¢; with [ < |m| — k is in the
kernel of P;™! and these are the only ones. Moreover, ¢; is in the kernel of P, ™! if and
only if I > —|m| + k.

Let us finally consider the case k > |m/:

We distinguish between the two cases k < 2|m| and k > 2|m/|, see Figure 4.3. In the
first case, we infer that e; € ker P:‘m‘ if and only if I < |m| — k and in the second case we
have e; € ker P, if and only if |l > —|m| + k. Similarly, we have ¢; € ker P, if and
only if I > —|m|+k and in the second case ¢; € ker P, "™ if and only if [I| > —|m|+k. O

Example 4.3.2. Applying Lemma 4.3.1 to m = 0 shows that the scalar Poisson transform
P, is injective if and only if (p—p)(H) € N & p(H) & —% —Np (as mentioned in Remark
4.1.9(ii)). The kernel of P, agrees with the kernel given in [GHW18, Equation (2.19)].

Lemma 4.3.1 in particular shows that there do not exist injective vector-valued Poisson
transforms in the exceptional cases. To obtain an injective map, we thus have to consider
direct sums of them. The following lemma distinguishes the sum used in Theorem 4.1.2
from other ones and suggests that this choice is more related to the structure of the
principal series than to the I'-invariant elements.

Lemma 4.3.3. For everyn € N and p € a* with u(H) = —n + % the mapping
Plr @ Pl HPY = 2 D/(S) — C®(G x g Cp) & CF(G x g C_p)

—m

is injective. Moreover, Pf’" @ PML is not injective for each m € Ny with m < n.

Proof. We first consider the case of m < n. Since (p — pu)(H) = n, Lemma 4.3.1 implies

er € kerP,fm S| >nee e kerP;f*m

so that in particular the direct sum is not injective. However, in the case of PML” &) PML -
Lemma 4.3.1 implies that ¢; € C°°(S') is in the kernel of PL» resp. PNL_n if and only if

[ < —n resp. | > n. This implies the injectivity since the ¢; are the K-finite vectors in
Hﬁpt’*oo =~ DI(Sh). O
4.4. The role of generalized gradients

This section is devoted to the question of which operators could play the role of the raising
and lowering operators in the general case. More precisely, we discuss how generalized
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4.4. The role of generalized gradients

gradients come into play and how they can be used to give another proof of the Fourier
relations from Lemma 4.2.1 which suggests a generalization beyond the case of PSL(2,R).

We define the Poisson transform PMLZ’Cpt (see Definition 3.3.1) by ¢t € Hom(C, Cy)
with #(1) := 1, where 1, denotes the 1 in Cy, i.e.

PLot DK /M) — C(G x g Cy),
PLePt(4)(g) = /K ar(g™ k) =0 Lok (g7 k))t(6(k)) dk.
By Equation 3.5 we have PLePt = Plt o Q,, with
Pl H;® = C%(G % Cp), PE(f)(g) = FH () (mulg ™) f)-
Lemma 4.1.7 implies
(Qu-p(0))e = 71 (7es(Qu—p(0))) = 7T (P~ (8)) = P~ (Qu-0(0))

and thus f, = P,f"’(f) for each f € H, .
Note that p decomposes as a K-representation into p = py @ p_ where

zZ 1z z —1z
p+'_{<iz _Z>.Z€C} and p.-{(_z,z _Z>.ZG(C}.

Thus, for every [(L¢, Cy)] € ff\,
Coop”=(Ce@pl)®(Coopl)

with associated projections Ty given by the restriction to p+ if C, ® p* is viewed as
Hom(p, Cy). This gives rise to two generalized gradients dy := T4 oV, i.e.

di: C®(G x g Cp) = O (G xk (C,@p%)) =2 C®(G x ¢ Hom(pg, Cy))
f(gexpt°)] :

d
fHPme

Since p+ = Cny, we may write the operators ny from Equation (4.6) more complicated
as the composition of the evaluation map at n+ with d+. We claim that

evy,: Hom(p+,C_p) = C_(pr1), f— f(nx)

is a K-equivariant isomorphism. Note first that the K-module structure on Hom(p+, Cy)
induced by the structure on C; ® p* is given by

(k- £)(X) = 7(k)(Ad” (k) ) (X).

The infinitesimal rotation matrix V' (see Equation (4.4)) acts on C; by the scalar if. For
f € Hom(py,C_y) this gives

V-£)02) = G| LdesptV)f(Adexp(—tV))ns)
= Gl ) = (£ if(ns)
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4. An example: The case of surfaces

and the claim follows. This proves ev,, o T} € Homg (Cy ® p*,Cy;) and in particular
that the ny are (up to scalar multiples all) generalized gradients in the case of PSL(2,R).

We are now ready to give an alternative proof of the Fourier relations of principal
series representations from Lemma 4.2.1 using generalized gradients.

Lemma 4.4.1. Let p € a* and f € H, . Then

20t fo= (W(H) +1£0) frar.
Proof. By Corollary 3.3.5 there exist constants c4(¢) € C such that

L_y L_(ex1)
neo By, = cx(0) - Py

Especially we have 1y f; = c£(f) - fex1 for each f € H . In order to compute the

scalars, let 0.5 denote the delta distribution at eM on K /M. Then we have

PECP (o) (9) = ar(g™") W20 Ly (7)1

and thus

_oC L_ ,cpt
(112 © Prct Y (Genr)(€) = ea(0) - P (Genr) (€) = e () - 1_ ().

Let us compute the differential (V o Pf_;é’cpt)(éeM)(e) € C_y®p* ZHom(p,C_y). A

1
basis of p is given by {H, B} with B = 5 <(1] (1)> We have
C d —¢,C
(Vo By ™) Gean) (€} (H) = g| Pl ™ (Gear)(exptH)
= i ar(exp —tH)_('lH_Qp)l_g
dt |i=o
d
== 20U ) — (14 2p) (H)1_y.
t=0

Moreover, B =U; —V € n @ ¢ implies

(Vo Py ™) Gear) (€)(B) = =(V 0 By ™ (Gean)) () (V)

ptp ptp
d
= — — L_y(exp—tV)1_, = —ill_y.
dt =0
Now we can use 74 = 5(H +iB) to compute ev,, ((d+ o P!f;é’Cpt)(éeM)(e)):
L_,, 1 L w(H)+1+4
(s 0 PES ™) ear)(€) = 5 (1 20)(H) (=) gy = I, )
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4.4. The role of generalized gradients

Generic: Res% (1 — p)(H Theorem 3.2.4 i )
Generic: x((r=p)(H)) Ban

Proposition 2.2.3 P, (Theorem 3.2.2)

I' rr—oc0
Hu

. Theorem 4.1.2
Exceptional: Resgf(—n) H,(M)® H_,(M)

Proposition 2.2.3 PML,:" ® P#Lnn (Lemma 4.1.7)

I rr—o0
HM'VL

Figure 4.4.: Comparison of the generic with the exceptional case (u,(H) = % —n, n €N)

Figure 4.4 summarizes the case of PSL(2,R) schematically. In order to generalize the
proof of the exceptional quantum-classical correspondence to other groups we have to
address several questions. We give a short list of necessary steps for this approach.

i) Determine the kernels of vector-valued Poisson transforms and find injective direct
sums of them.

ii) Prove an analog of the Fourier expansion in the fibers from Equation (4.3).

iii) Characterize the principal series by relations between the Fourier components
(generalizing Lemma 4.2.1).

iv) Determine the image of the injective (sums of) Poisson transforms by using the
Fourier relations.

Another more representation theoretic approach arises from the fact that the spaces
Hy,(M) are given by the I'-invariant elements of (anti-)holomorphic discrete series
representations (see e.g. [Kna86, Chapter VI]). Since the resonant states are also given
by the I'-invariant elements of the principal series one might try the following approach
to establish a quantum-classical correspondence:

i) Why do holomorphic discrete series occur and how are they connected to the

principal series?

ii) Do holomorphic discrete series occur in general or, if not, are there any substitutes
for them?

iii) Find geometric realizations in sections of vector bundles of the representations from
the previous step in order to describe the images of the (direct sums of) Poisson
transforms.

In this thesis we will use a combination of these two approaches.
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5. Mapping properties of vector-valued
Poisson transforms

In the case of surfaces, it turned out that a quantum-classical correspondence can be
established by an injective direct sum of vector-valued Poisson transforms. In this chapter
we prove the analogous result in the general rank one case (Proposition 5.1.3). In higher
rank, one has to take care of higher multiplicities of K-representations. Nevertheless,
choosing appropriate Poisson transforms for each copy of the K-representation in the
principal series, the same proof should also work in this case. However, to determine the
direct sum explicitly (Theorem 5.1.6), we need to know the K-types of the irreducible
constituents of the principal series representations. Besides injectivity we investigate
necessary conditions for the images of vector-valued Poisson transforms. The main result
in this context is Proposition 5.3.2, which uses generalized gradients to connect different
Poisson transforms.

5.1. Injectivity of vector-valued Poisson transforms

In this section we investigate specific vector-valued Poisson transforms if G is of rank
one. We will see that if we pick a minimal K-type for each irreducible subspace of
the representation, the direct sum of the associated Poisson transforms is injective. By
our rank one assumption each spherical principal series representation H, decomposes
multiplicity-freely as a K-representation (see Proposition 2.4.3). Therefore, we have the
following

Lemma 5.1.1. Let 0 # (7,V) be an irreducible K -representation with multg (V, H,) # 0
and t € Homy;(C, V). Then

PIE 0 0 = T prpry o),

where F denotes the Frobenius isomorphism (see Definition 3.3.1).

Proof. By Equation (3.2) we have for each f € H,° and g € G that

PIF ()@ f)(g) = F 1 () (mu(g) " f) and P (pry @ f)(g) = pry (mu(9) "' f).

By Proposition 2.4.3 we obtain that Homg (H,, V) = Cpry is one-dimensional since
(1,V) € Kjps. This proves that there exists some ¢ € C such that

P;(F_l(t) ®+) = cPy(pry ® ).
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5. Mapping properties of vector-valued Poisson transforms

Recall the M-invariant function ¢y from Proposition 2.4.4. By Definition 3.3.1 we have
PIE 0@ ov)(e) = [ rtov(k)dk = [ ovr(ie() ak
= [ ovR)r )0 dk,

where we recall that V' is realized in C*°(K)™ so that t(1)(e) makes sense, and we used
Proposition 2.4.41) for the last equality. Using Proposition 2.4.4iii) we infer

P(F(t) @ dv)(e /¢>v dk—/ ov(k oy (k) dk
= H(1)()bv, V) 2k —ﬁj}ljlv

On the other hand (3.2) yields

P (pry @ ¢v)(e) = pry(ov) = ¢v.
Thus,

e PIET B ®@ev)(e)e) (1)) _ t(1)(e)

Pr(pry @ ¢v)(e)(e)  ¢v(e)dimV — dim V' -

From now on we choose t € Hom(C, V) for each (1,V) € Ky by t(1) = ¢y and
define

P, H, > — C™(Gxg V), Pi(f) =P (F~ L)@ f).

Note that, by Lemma 5.1.1, we have for each f € H; > and g € G

FL(F)(9) = 3o pro(mule) 1), (51)

Proposition 5.1.2. Let [(1,V;)] € Ky and i € a*. Then the Poisson transform

PT:H;™ = C%(G %k V)

is injective if and only if every mon-trivial G-invariant subspace of H, > contains .
Moreover, the kernel is given by the distributional elements in the closure of the sum of
all G-invariant subspaces V' < H,, with multg(7,V’) = 0.

Proof. Since PJ is G-equivariant, the kernel ker P is G-invariant. We claim that it
equals the closure of the sum of all invariant subspaces of H, which do not contain the
K-representation (7, V;):

If {0} # W < H, is an invariant subspace of H, which does not contain the K-
representation 7, by (5.1) we have

S
dim V; Py,

Pr(f)(g) = mu(g™h)f) =0
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5.1. Injectivity of vector-valued Poisson transforms

for every f € W and g € G since m,(g~1)f € W. Thus, f € ker P7. This proves the first
inclusion because the kernel is closed.

Conversely, let f € ker Pj. Since the kernel is invariant, the distributional elements in the
G-cyclic space Wy of f are also contained in the kernel of Pj. Therefore, f is contained
in an invariant space which does not contain 7 (if W contains 7 we can choose g = e to
get a contradiction to Wy C ker Py). O

We now use this result to construct injective direct sums of Poisson transforms, which
allow us to prove the spectral correspondences later on.

Proposition 5.1.3. Let p € a* and Irr(u) be the set of all non-zero irreducible subrep-
resentations of H,. Then, if (1, Vy,) is any non-zero K-type of U for U € Irr(u), the
direct sum of the corresponding Poisson transforms

@Uelrr(u)P;U : HM_OO — @ C™®(G x g VTU)
Uelrr(p)

is injective. A natural choice of (1, V) is given by a minimal K -type of U.

Proof. Since the kernel of the direct sum @yerer(,) P,V is the intersection of the kernels
of PJv, U € Irr(p), we can apply Proposition 5.1.2 to deduce

Ouerrr(n) Py injective & V{0} #V < H, 3U € Irr(p): multg(ry, V) # 0.

Let {0} # V < H, be a non-trivial (closed) G-invariant subspace. We claim that there
exists some U € Irr(u) such that multg (77, V') # 0. In fact, since H,, has a composition
series, V also has a composition series by [KV95, p. 815]. In particular, there exists an
irreducible subrepresentation {0} # I < V. But I € Irr(u) by the definition of Irr(u)
and multg (77, V) # 0 since I < V. O

Corollary 5.1.4. With the notation from Proposition 5.1.3 we have

Resk (- p)(H) = @ TmPr)C @ TO®G xk Vi),
U€lrr(p) U€lrr(p)

As already mentioned in Proposition 5.1.3, a natural choice of the K-types is given by
so-called minimal K-types, which are defined as follows.

Definition 5.1.5 (cf. [Vog79, Definition 5.1]). Let 7' < K be a maximal torus with Lie
algebra ty (and t := (t)c), root system Ap := A(E,t) and positive system A;” = AT(E,t).
If X is a Harish-Chandra module for gg, the set of minimal K-types of X is given by

{pe £ multg (p, X) # 0 and s(p + 2pe, 1+ 2p.) minimal with this property},

where

. tC (itp)* denotes the set of the highest weights of the elements of K w.r.t. the
positive system Aj,
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5. Mapping properties of vector-valued Poisson transforms

o K(++) denotes the form on g* induced by the Cartan-Killing form of g,
e pc denotes the half sum of the positive roots A;.
We call k(++ 2p¢, *+ 2p.) the Vogan norm.

The following theorem shows that among the rank one Riemannian symmetric spaces
of non-compact type, the only case in which we really have a direct sum in Proposition
5.1.3 is given by the case of surfaces. Thus, in every other case, we obtain an injective
Poisson transform, which we will call the minimal K -type Poisson transform. The proof
of the theorem is done case by case in the following section.

Theorem 5.1.6. With the notation from Proposition 5.1.3 every U € Irr(u) has a
unique minimal K-type (17, Vy,). Moreover, Irr(p) is a singleton if go # sl(2,R). If
p € Ex, Irr(u) = {U} is always a singleton! (also for go = sI(2,R)) and (i, Vz,) is the
trivial K -representation.

Remark 5.1.7 (Connection to the exceptional set of [O1b94]). For exceptional parameters
w € Ex in the case of go # sl(2,R), Irr(u) = {U} is a singleton and the minimal K-type
Poisson transform

PV H,;® — C°(G xk Vi)

is injective by Proposition 5.1.3. As a first approach one might try to use [Olb94]
to deduce whether this map is also surjective onto the corresponding space of joint
eigensections. Unfortunately, [O1b94] itself defines some exceptional sets A/ (o) that are
excluded in most of the results concerning mapping properties and into which all our
minimal K-type Poisson transforms from above fall (for SL(2,R) they are empty). For
7€ K, 0 € 7|y these sets are defined by (see [01b94, Definition 4.7])

Alfo)={pea* |3 ¢W pn, o €7]y, weW: Eypupun By o #1{0}, sy’ > pu},

where s denotes the maximal element of W. We prove that indeed p € A7 (trivys) for
each exceptional parameter 1 € Ex as above. Since U < H, corresponds to an irreducible
subquotient of H_,,, we first infer that Pf‘[L is not injective by Proposition 5.1.2. We claim
that this proves u € A7 (trivys). Indeed, by [O1b94, Satz 3.17], det ¢, (trivas, —p) = 0
and [O1b94, Lemma 4.29, 2] implies 1 € A7, (trivas) since PV is injective.

The proof of Theorem 5.1.6 is done case by case (see Section 5.2) and organized as
follows:

i) Calculate the highest weights of the representations in Ky w.r.t. some positive
system (see Appendix A).

ii) Specify the composition series of the spherical principal series (see Appendix B).

!This part also follows from the uniqueness of the Langlands quotient (see [Kna86, Theorem 8.54]).
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5.2. Minimal K-types and proofs of injectivity results

iii) Calculate the minimal K-types of all irreducible subrepresentations of the spherical
principal series representations.

In each case, we also compare Proposition 5.1.2 to the injectivity of the scalar Poisson
transform from Theorem 3.2.2.

Let us stress that our choice of Poisson transforms in Proposition 5.1.3 generalizes
all known cases. More precisely, for u ¢ Ex, Proposition 5.1.3 always gives the scalar
Poisson transform since the minimal K-type of the unique irreducible subrepresentation
is the trivial representation by Theorem 5.1.6. Therefore, our choice is consistent with the
generic quantum-classical correspondence from Theorem 3.2.4 (see also Remark 3.3.2).
Moreover, if 4 € Ex and go = s[(2,R) we have u(H) = —n+ 1 for some n € N by Remark
4.1.9(ii) and H,, has irreducible subrepresentations D,,_1  and D,_; — by Lemma B.1.1.
The (unique) minimal K-type of D,_1 4 resp. D,_; _ is given by e, resp. e_, (or L,
resp. L_, when defined on functions on K = PSO(2,R)). Thus, our choice gives the
same maps as in the exceptional quantum-classical correspondence from Theorem 4.1.2
(see also Lemmas 4.1.7 and 4.3.3).

5.2. Minimal K-types and proofs of injectivity results

We now prove Theorem 5.1.6 in each case.

The case of SOy(n,1), n > 3

We first describe the exceptional set in this case.

Lemma 5.2.1. For G = SOq(n, 1) we have
Ex = —(p+ Noa).

Proof. Since mo, =0 and p = %(maa + myn2a) we obtain

—(p+N0a)_—(";“+No)a_ (—?—1—2N0>au<—n;o‘—0—2Ng>a. O

For the scalar Poisson transform, Proposition 5.1.2 agrees with Theorem 3.2.2.

Comparison to Theorem 3.2.2. Let u € a*. If H, is irreducible, P, is injective since the
kernel is an invariant subspace and P, is not the zero map since H,, contains the trivial
K-representation Yy (compare with Equation (5.1) and choose f € Yy, g = e). Thus, we
may assume p(H) € £(p(H) + Ny) by Lemma B.2.1.

Case u(H) = p(H) + k € p(H) + Ny : Every non-trivial invariant subspace of H, (i.e.
Vi) contains the trivial representation Yy and P, is injective by Proposition 5.1.2.

Case u(H) = —(p(H) + k) € —(p(H) + No) : W}, is a G-invariant subspace of H,,
which does not contain the trivial representation and P, is not injective. Thus, P, is not
injective if and only if (recall a(H) = 1)

e —(p+ Noa) = Ex. O
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5. Mapping properties of vector-valued Poisson transforms

Minimal K-types of irreducible subrepresentations

Recall the half-sum of positive roots in the odd resp. even case from Equation (A.1)

1 3 1
pe=|m—=)er+{m—=)ea+...4+zepnresp. p.=(m—1)e; + ...+ ep_1.

2 2 2

Using that the highest weight of Y; is fe; (see Appendix B.2.2 for the notation) we
are now able to compute the minimal K-types of the irreducible subrepresentations
Vi and Wy, from Lemma B.2.1. Since the Cartan-Killing form of so(2m + 2,C) resp.
g = s0(2m + 1,C) is a multiple of the trace form (X,Y) — tr(XY'), we can use the
explicit definitions of the roots of ¢ from [Kna02, Chapter II, §1, Example 4 resp. 2] to
see that the e; are orthogonal w.r.t. the Killing form and that every e; has the same
length.

Lemma 5.2.2. Let U C Ky = {Y;: £ € No} be a set of M-spherical K-types. Then the
Vogan norm is minimal for Y, € U if and only if £ is minimal for Y, € U.

Proof. By the definition of minimal K-types we have to minimize
K(ler + 2pe, Ler + 2pe)

for Y, € M (since fe; is the highest weight of Y;). We first consider the even case, i.e.
G = S0¢(2m, 1) with m > 1. We have

k(ler + 2pe, ber + 2p.) = k(Ley, Ler) + 4k (Ler, pe) + 4k (pe, pe)
= (02 + 40(m — 1))k(e1, 1) + 46(pe, pe)

which is clearly minimal if and only if ¢ is minimal. The proof for G = SOg(2m + 1, 1) is

analogous (changing m — 1 to m — %) O

Proposition 5.2.3. Let k € Ng. Then Vi and Wy from Lemma B.2.1 have unique
minimal K -types which are given by Yy and Yj11 respectively (note that Yy is the trivial
K -representation).

Proof. By Lemma B.2.1 the K-types of Vi resp. Wy, are given by {Yz: 0 < ¢ < k} resp.
{Yi: k+1 < ¢}. The Proposition now follows from Lemma 5.2.2. O

Proof of Theorem 5.1.6. 1If u ¢ Ex, the spherical principal series H, is irreducible or the
unique irreducible subrepresentation of H), is given by V}, for some k € Ny by Lemma
B.2.1. In both cases the unique minimal K-type is given by the trivial representation by
Proposition 5.2.3.

If 1 € Ex, there exists some k € Ny such that u(H) = —(p(H) + k). By Lemma B.2.1
we see that there is only one irreducible subspace, namely Wj. The proposition thus
follows from Proposition 5.2.3. O
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5.2. Minimal K-types and proofs of injectivity results

The case of SU(n,1), n # 1
Lemma 5.2.4. For G = SU(n,1) we have

Ex = —(p + 2Npa).

Proof. Since p = %(maa + man2a) and ma, = 1 we obtain

—(p + 2N0a) = — (ﬂ;a + Moy + 2N0) a = Ex. ]
Comparison to Theorem 3.2.2. Let p € a* such that H, is reducible.

Case u(H) = p(H) + 2k € p(H) + 2Ny : The non-trivial subspaces are F, Hj + and
Hj,  + Hj, . Each of these contains the trivial representation Yy o and P, is injective by
Proposition 5.1.2.

Case p(H) = —p(H) — 2k € —(p(H) + 2Np) : I, is an invariant subspace of H,,
which does not contain the trivial representation. Thus, P, is not injective in this case.
Altogether, P, is not injective if and only if (recall o(H) =1)

uwe€ —(p+2Npa) = Ex. O

Minimal K-types of irreducible subrepresentations

We will now compute the minimal K-types of the irreducible subrepresentations Fj and
I, occurring in Lemma B.3.2. Recall the half sum of positive roots from Equations
(A.2.3)

n—1 n—3 n—1

Pc = 5 el + 5 e+ ... — 5

en.

Since the Cartan-Killing form of g = sl(n + 1,C) = (su(n,1))c is a multiple of the trace
form (X,Y) — tr(XY) we see that the e; are orthogonal w.r.t. the Killing form and
that every e; has the same length. We rescale the Killing form such that the e; are
orthonormal and denote the resulting form by .

Lemma 5.2.5. Let U C Ky = {Y,q:p,q € No} be a set of M-spherical K-types. Then
the Vogan norm is minimal for Y, , € U if and only if (p+n—1)2+(g+n—1)>+(p—q)?
is minimal for Y, , € U.

Proof. By Lemma B.3.1, the highest weight of a K-type Y}, , is given by ge; — pe,, + (p —
q)én+1. We have that
i(ger — pen + (p — @)ent1 + 2pc, ge1 — pen + (P — @)ent1 + 2pc)
=lg+n—1Ter+(n—=3)ez+...— (n=3)en1— P+n—1)en+ (0 — Qensal
=(g+n-12+0-3+n-5°+...+ (-3 +(p+rn-1)*+(p-q¢* O
Proposition 5.2.6. Let £k € Nyg. Then Fy and I from Lemma B.3.2 have unique

minimal K-types which are given by Yoo and Yji1 p41 respectively (note that Yy is the
trivial K -representation).
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5. Mapping properties of vector-valued Poisson transforms

Proof. By Lemma B.3.2 the K-types occurring in F} resp. I are given by
{Yoqlpge{l,...,k}} respectively {Y,,|p,q € Nwith p,q¢>k+1}.

By Lemma 5.2.5 it suffices to minimize (p+n—1)2+ (¢+n—1)?+ (p—¢)?. The minimum
is attained at p = ¢ = 0 in the case of Fj and at p = ¢ = k + 1 in the case of I. ]

Proof of Theorem 5.1.6. 1f ;1 € Ex the spherical principal series H, is irreducible or the
unique irreducible subrepresentation of H, is given by Fj, for some k € Ny by Lemma
B.3.2. In both cases the unique minimal K-type is given by the trivial representation by
Proposition 5.2.6.

If 1 € Ex there exists some k € Ny such that u(H) = —(p(H) + 2k). Lemma B.3.2
shows that Ij is the only irreducible subspace of H,. By Proposition 5.2.6 the minimal
K-type of I}, is uniquely given by Yy 11 1. ]

The case of Sp(n,1), n > 2
Lemma 5.2.7. For G = Sp(n, 1) we have

Ex = —(p + (2N0 - 2)01).

Proof. Since p = %(maa + maq2a) and ma, = 3 we obtain

—(p+ (2Ng — 2)a) = — (”;‘“ +1+2N0> a

:(”?+1+2No>au(”;("+3+2No>a:Ex. O

Comparison to Theorem 3.2.2. Let pu € a* be such that H,, is reducible.

Case u(H) = p(H) — 2+ 2k, k € N : The non-trivial subspaces are Wy and Mj. Each
of these contains the trivial representation Vg o. By Proposition 5.1.2, P, is injective.

Case u(H) = —(p(H) — 2+ 2k), k € N : My, is an invariant subspace of H,, which does
not contain Vp . Thus, P, is not injective in this case.

Case u(H) = p(H) — 2 : T is the only invariant subspace of H,,. Since it contains the
trivial representation, P, is injective in this case.

Case u(H) = —(p(H) — 2) : T is an invariant subspace of H » which does not contain
Vo,0- Thus, P, is not injective.
Altogether, P, is not injective if and only if (recall o(H) =1)

we —(p—2a+2Nya) = Ex. O

Minimal K-types of irreducible subrepresentations

Recall the positive system from Equation (A.3.9) and the fundamental weights from
Equation (A.3.11). Recall the half sum of positive roots from Equation (A.3.10)

pe=mne1+ (n—1es+ ...+ 2ep-1 + €n + €ny1.
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5.2. Minimal K-types and proofs of injectivity results

Since the Cartan-Killing form of g = sp(n + 1,C) is a multiple of the trace form
(X,Y) — tr(XY) we can use the explicit definitions of the roots of £ from [Kna02,
Chapter II, §2, Example 3] to see that the e; are orthogonal w.r.t. the Killing form and
that every e; has the same length. We rescale the Killing form such that the e; are
orthonormal and denote the resulting form by &.

Lemma 5.2.8. Let U C Ky = {Vap: a,b €Ny, a>0b} be a set of M-spherical K -types.
Then the Vogan norm is minimal for Vo € U if and only if (a+n)*+(b+n—1)2+(a—b+1)?
is minimal for V,, € U.

Proof. By Section A.3, the highest weight of a K-type V, 4 is given by ae1+bea+(a—b)eny1.
We have that

R(aer + beg + (a — b)ent1 + 2pe, aer + bes + (a — b)ent1 + 2pc)
:||(a+n)el+(b+n—1)62—|—(n—2)63+...—l—en+(a—b+1)en+1||%
=(a+n)’4+0b+n—-124+n-22+.. . +1+(a—b+1)>2% O

Proposition 5.2.9. Let k € N. Then the irreducible representations Wy, Mk, T and T
from Lemma B.4.1 have unique minimal K -types which are given by Voo, Vit1 k+1, Voo
or Vi1 respectively (where Voo is the trivial K-representation) with highest weights
0, (k + 1))\2, 0 or )\2.

Proof. By definition of the representations the occurring K-types are (with a,b € Ny)
AWR) = {Vap:b<a<k—1},  AMy) = {Vap: a >b>k},
A(T) = {Vao: a € N}, A(T) == {Vap:a>b>0}.

By Lemma 5.2.8 it suffices to minimize (a +n)? + (b+n —1)? + (a — b+ 1)2. In each
case, minimizing a and b also minimizes (a — b+ 1)? so that the minima are attained at
a=b=0for Wy and T and at a=b=k + 1 resp. a =b =1 for M, resp. T. O

Proof of Theorem 5.1.6. If u ¢ Ex, the spherical principal series H,, is irreducible or
the unique irreducible subrepresentation of H,, is given by Wj, for some k € N, or by
T by Lemma B.4.1. In every case, the unique minimal K-type is given by the trivial
representation by Proposition 5.2.9.

Now let u € Ex. We distinguish the following two cases:

Case w(H) = —(p(H) — 2+ 2k), k € N : By Lemma B.4.1, M, is the only irreducible
subspace of H,. By Proposition 5.2.9, the minimal K-type of Mj, is uniquely given by

Viet1,k41- ~
Case u(H) = —(p(H) — 2) : By Lemma B.4.1, T is the only irreducible subspace of
H,,. By Proposition 5.2.9, the minimal K-type of 7" is uniquely given by V1 1. O

The case of F4_s)

Lemma 5.2.10. For G = Fy_p) we have

Ex = —(p+ (2Nyg — 6)a) = —(5 + 2Np)av.
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5. Mapping properties of vector-valued Poisson transforms
Proof. Since p = %(maa + maq2a) and mao, = 7 we obtain
7o
S (”;“+1+2N0>au— (”;“+7+2N0>a:Ex. 0

Comparison to Theorem 3.2.2. Let u € a* be such that H,, is reducible.
Case p(H) = p(H) —6+2k, k € N>3 : The non-trivial subspaces are W}, and M. Each
of these contains the trivial representation Vg o. By Proposition 5.1.2, P, is injective.
Case p(H) = —(p(H) — 6 + 2k), k € Ny : My, is an invariant subspace of H,, which
does not contain Vpo. Thus, P, is not injective in this case.
Case pu(H) = p(H) — 6 + 2k, k € {0,1,2} : M}, is the only invariant subspace of H,.
Since it contains the trivial representation, P, is injective in this case.
Altogether, P, is not injective if and only if (recall o(H) = 1)

w e —(p—6a+2Nga) = Ex. O

Minimal K-types of irreducible subrepresentations

Recall the positive system from Section A.4 and the associated half sum of positive roots
from Equation (A.4.16)

7 5 3 1
Pc = 561 + 562 + 563 + 564.
By Section A.4 the e; are orthogonal and have the same length w.r.t. the Killing form. We
again rescale the Killing form such that the e; are orthonormal and denote the resulting

form by &.

Lemma 5.2.11. Let U C Ky = {Vine: m, 0 € Ng, m > £, m = fmod2} be a set of
M -spherical K-types. Then the Vogan norm is minimal for Vi, € U if and only if
(m+T7)2+ ((+5)2+ (L +3)%+ (£ +1)? is minimal for V€ U.

Proof. By Section A.4, the highest weight of a K-type V;, ¢ is given by %61+%€2+%€3—|—%64.
We have that

_(m 14 14 14 m 14 14 14
E| e+ sex+ sez+ -eq+2pe, —e1+ sex+ -ez+ -eq+2p.

2 2 2 2 2 2 2 2
—Fo(m+7e +£+5e +€+36 —|—€+1e m+7e —|—€+5e +£+3e €+1e>
= 5 1 5 2 5 3 5 4, 5 1 5 2 5 3 5 4

_<m+7>2+<€+5)2+<€+3>2+(€+1)2 -
B 2 2 2 2 ‘
Proposition 5.2.12. Let k € Nyg. Then the irreducible subrepresentations Wy (for

k>3), My (for k <2) and M, from Lemma B.5.1 have unique minimal K-types which
are given by Voo resp. Vaopqao (where Vi is the trivial K -representation).
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5.3. The role of generalized gradients

Proof. By definition of the representations, the occurring K-types are (with m,¢ €
No, m > ¢, m = {mod 2)

AWy) ={Vine:m+L <2k -6}, A(My) ={Vine:m—L£ <2k},
A(My) == {Vipgo: m — £ > 2k},

By Lemma 5.2.11 it suffices to minimize the quantity (m+7)%+(£+5)2+(£+3)2+(£+1)2.
Choosing m = ¢ = 0 resp. m = 2k + 2, £ = 0 minimizes m and ¢ simultaneously so that
the minima are attained at these and only these points. O

Proof of Theorem 5.1.6. 1f i ¢ Ex, the spherical principal series H,, is irreducible or the
unique irreducible subrepresentation of H,, is given by W}, (if u(H) > p(H)) or by M;,
(if w(H) < p(H)) by Lemma B.5.1. In every case, the unique minimal K-type is given by
the trivial representation by Proposition 5.2.12.

Now let ;4 € Ex. Then, by Lemma B.5.1, Mk is the only irreducible subspace of H,,.
By Proposition 5.2.12; the minimal K-type of Mk is uniquely given by V511 0- O

5.3. The role of generalized gradients

In this section we use generalized gradients to connect different Poisson transforms
associated with inequivalent K-representations for G of rank one (Proposition 5.3.2).
This connection is one of the main ingredients for the Fourier characterization we prove in
Chapter 7, which will allow us to characterize the images of the minimal K-type Poisson
transforms. We first introduce some notation.

Notation 5.3.1. Recall the inner product (-, ) = —;ES}%'}) on go from Equation (1.1)
and extend it to g using complex linearity. We identify

I:ip—p*, X (X, ).

If X1,..., Xdimp is a basis of p we denote the dual basis with respect to (-,-) by
X1, ce 7Xdimp7 i.e.

I(X0)(X;) = (Xi, Xj) = 65
We now relate Poisson transforms using generalized gradients.

Proposition 5.3.2. ForY € Ky let dY, = Tef/ oV with T‘}/ € Homg (Y @ p*, V), where
V < L*(K) denotes an irreducible subrepresentation of Y ® p*, be a generalized gradient
and p € a*. Choose a basis X1,..., Xdimp of po such that X1 € a and X; € t®n (e.g.
an orthonormal basis of p with X1 € a). Let

dimp
Py = (p+p)(X)oy @ I(X1) — Y U(ki(X;))oy @ I(X;) € Y @ p*,
j=2

where kr(X;) € € denotes the €-component in the € @ a ® n-decomposition of X;. Then
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5. Mapping properties of vector-valued Poisson transforms

i) py,u is independent of the basis and M -invariant,
i) d¥ o PZ = T‘}//(py#)(e)P/Y if V is M-spherical, i.e. V < L*(K)M
i11) d‘g ) PZ =0 if V is not M-spherical, i.e. VM = 0.
Proof. i) Identifying
Y @p*=Hom(p,Y), f@A— (X = XNX)f),

the tensor py,, corresponds to the homomorphism given by

pyu(X) = (u+p)(X)py VX €a,
pyu(X) =L(k(X))py VX epn(EDn),

which is independent of the basis. For the M-invariance note first that the K-action on
Hom(p,Y) is given by

(k.®)(X) = k.(I)(k_l.X) = L(k)CD(Ad(k_l)X), X ep, ® € Hom(p,Y).
Since M stabilizes a and ¢y is M-invariant we have for each X € a,

(m.py,)(X) = L(m)py,u(Ad(m™") X) = L(m)py,,(X)
= (u+p)(X)L(m)dy = (1 + p)(X)dy = py,u(X).

Moreover, since M leaves ¢, a and n invariant, we have for each X € pn (€@ n),

(m-PY,#)( )

~

L(m)py,u(Ad(m™")X) = L(m)l(kr(Ad(m™")X))py
(m)e(Ad(m™")kr(X))by

(m)L(m™)e(kr (X)) L(m) ¢y

(k1(X))dy = py,u(X).

I
~

This proves the first part.
ii), iii) Let dcps denote the Delta distribution at eM on K/M. Then

PY (enr)(9) = ar(g™") " # P r(ki(g7")) gy € CF(G xk Y). (5:2)

We first obtain

(Vo PZ(éeM))(e)(Xl) == o PZ(éeM)(exthl)

= df ay (exp _tXl)_(lJ'+p) ¢Y
tli=o

_a et(,qup)(Xl)QgY = (u+ p)(X1)¢Y-
dt |i—o
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5.4. Zelobenko operators

For j € {2,...,dimp} we write X; = k7(X;) + n;(X;) € £y @ ng and obtain

(Vo By (denr))(e)(X;) = (V0 Py (enr))(e) (k1 (X;)) + (V 0 By (8enr))(€) (n1(X;))
= (Vo P) (6em))(e) (k1(X;))

= S rlesp—thi(Xp)y =~ (X;))ov-
t=0

where we used in the second step that PZ(éeM)(n) = ¢y for n € N by (5.2). Thus,

dim p
(Vo Py (Senr))(e) = (1 + p)(X1)dy @ I(X1) — Z U(kr(X;)py © L(X;)

and therefore

(dV © By (dean))(€) = Ty ((V 0 Py (denr)) (€))
dim p

=Ty ((M+P)(X1)¢Y®I (X1) - Z ((kr(X5))py @ I(X )) :

By Corollary 3.3.4 and 3.3.5, dY o PY has to be a multiple of PX if V' is M-spherical
and 0 otherwise. In particular, we deduce that

dim p

Ty ((M+P)(X1)¢Y®I (X1) - Z O(kr (X ¢Y®I(Xj)>

is a multiple of P} (6car)(e) = ¢v. Since ¢y (e) =1 this multiple is given by

dim p

Ty ((u+p)(X1)<z>y®I X1) - Z k(X)) ¢y © (X )) (e). O

5.4. Zelobenko operators

As the minimal K-type Poisson transforms appear in the exceptional sets from [O1b94]
(see Remark 5.1.7), we consider these sets in some more detail. Their existence is closely
related to so-called Zelobenko operators or discrete symmetry operators (see [O1b94,
Definition 4.7]). Like the Knapp-Stein intertwiners, these are non-trivial intertwiners
between different principal series representations, where, in contrast to the Knapp-Stein
intertwiners for the spherical principal series, the associated M-representation may change.
Moreover, they are induced by the “big” Weyl group W(g, ), where h denotes a Cartan
subalgebra of g, instead of the real Weyl group W (g, a). These operators can be used to
relate the minimal K-type Poisson transforms to Poisson transforms of the intertwined
representations. Unfortunately, we do not leave the exceptional sets from [O1b94] so that
these relations do not allow us to describe the images. Therefore, the results of this
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5. Mapping properties of vector-valued Poisson transforms

section will have no further application in the following chapters and are intended for
completeness only. We define the Zelobenko operators as in [Z76] and determine the
principal series representations they relate to our exceptional ones for the classical rank
one groups.

We fix a #-stable Cartan subalgebra tg in mg and let hg denote the Cartan subalgebra
to @ ag of go. We order the nonzero roots A := A(g, h) of (g,h) in such a way that we
have {alq, | @« € AT} = X7 for the set A1 of positive roots in A, denote the sum of all
positive/negative root spaces by u® and the half sum of positive roots by 4.

Setting b := b @ ut, the Verma module M(A) of some A € h* is defined by

M(A) = U(g) @ri(6) Ca—s»

where C)_g denotes the (one dimensional) b-representation in which b acts by A — ¢ and
ut acts trivially.

We fix a W(g, h)-invariant inner product (-,-) on h. Let 3 € AT and suppose that
2W8) . N e N. According to [Z76, Definition 3.1], there exists an element Q5 x € U(u™)

(B8,8)
and a non-trivial, g-equivariant map

Sp(A): M(A = NB) = M(A),  Ss(A)(u®2) = ulpy © 2.
Moreover, both Sg(A) and €23 are uniquely defined up to a constant.

Definition 5.4.1 (cf. [276, §3]). Let 5 € AT,N € N and P} denote the set of all
parameters (o, 1) € M x a* such that

ZW = N, where hw(5) € it§ C h* denotes the highest weight of &,

o hw(d) — Nf|y, is the highest weight of an M-representation.

Write M = MyZ, where My denotes the analytic subgroup of my and Z is a finite abelian
subgroup which is central in M and generated by elements of order two ([Z76, p. 1006]).
For each (o,pu) € Pév let (08, 1p) € M x a* be defined by

i) og|np is dual to the My-representation of highest weight hw(d) — Nf|¢, and Z acts
through o,

it) pg = p— NBla.

Then there exists a unique G-equivariant map Lg . Hg), — H 327 us such that

<U557 Lﬁﬂ:ﬂf(e» = (vs, T(QBJV)JC(e))?

where v, resp. v; denote highest weight vectors of 6 resp. 7, r denotes the right regular
representation and (-, -) is the natural pairing. We call Lg , , a discrete symmetry operator
or Zelobenko operator of HZ,.

Proof. See [276, Proposition 3.2] with hw(5) + pm + p € EJﬁV and [Z76, Definition 3.1] for
the definition of Lg,,, (which is called Sg(hw(&) + pm + ) there). O
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5.4. Zelobenko operators

Using the Frobenius isomorphism from Definition 3.3.1 we define
18,0t Homps (Vy,, Vo) = Hompy (Vr, V2), t—= F(F7(t) o Lg,,),

where Vi, denotes a finite dimensional vector space assigned to the highest weight ¢. From
[O1b94, Satz 3.16] we cite the following result relating Poisson transforms.

Theorem 5.4.2 (cf. [O1b94, Satz 3.16]). Let f € ¥t and (o,u) € Pév for some N € N.
Then, for each t € Homp (Voy, V7) and f € HYS,,

P;/%MB (t® L,B,o,,u(f)) = P;,,u(lﬁ,cr,,u(t) ® f).

By [Z76, Corollary 3.4] we have Lg s, = 0 for each imaginary root f3, i.e. for each
B € AT with 8|, = 0 (note that there are no noncompact imaginary roots since by is
maximally noncompact, see [Kna02, Proposition 6.70]). Therefore, we only consider
roots 8 € AT such that 3], # 0. Moreover, since the maps appearing in Theorem 5.4.2
otherwise vanish, we are particularly interested in K-types 7 such that o and og both
occur in 7|p7. The following proposition investigates Zelobenko operators for classical
rank one groups in the case of exceptional parameters (note that our minimal K-types
are always in U).

Proposition 5.4.3. Let u, € Ex be an exceptional parameter. Then, for uy < —p, there
always exist parameters (o, p) € M x a* such that there exists a Zelobenko operator Z,, =
Lg oy of Hg,, mapping into H7 where 3 is a complex root, i.e. neither an imaginary
nor a real root (i.e. Bly, # 0). The following table lists all these parameters. Here, the
highest weight of the M -representations are denoted as in [Bal79, Lemmas 4.3, 5.3] for
G € {SU(n,1),Sp(n,1)} and as in Appendiz A for G = SOq(n, 1) (then M = SO(n—1)).
Moreover, the common K -types of Hy,, and H,, determine a (g, K)-submodule U of H,, .
For SL(2,R) complex roots do not exist so that there is no such operator in this case.

pg = pe € Ex o " U
SOp(n, 1) —p — Ll (L+1)ey a—p Wy
BLE +51) - L+ 1)E Wy _
o 2 1 n+1 n N l,
SU(n, 1) p—2la *HTI(EI R+ (4 1) p— (-1 W
Sp(n.1)  —p— (2~ 2a ffes + 252) —p-(t-2a W,

Proof. Let us first consider the case of G = SOq(n,1), n > 3. In the notation of
Definition 5.4.1 we want to have o3 = 0 and pg = puy = —p — o for some 3 € AT Since
0 = og|n, is dual to the My-representation of highest weight hw(d) — N[, we must
have hw(&) = Nf|y,. By the dominance of hw(&) we deduce that (¢, has to be dominant.
However, the only positive complex root with this property is given by eg + e, where eg
denotes the real root « extended trivially to h and e is as in Appendix A (extended to
h). Moreover, since pug = p — N 3|4, we infer that

p=NBla+pg=N(eo+er)a—p—La=(N—La—p.
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5. Mapping properties of vector-valued Poisson transforms

Furthermore,
<hw(&)+pm+ﬂ7/8> <N/8‘fo+pm+N/B‘a+/1«Eu8> <Pm+ﬂbﬁ>
N=2 =2 =2N 42— ~—+
(3.8) (3.5) TR B
implies that (pm = "7_361 +...+ %em,l with m = [§] and p = ”T_loz)
<pm + Mfaﬁ>
N= gt BoD) By = 1.

Thus, hw(o) = (£ + 1)e; and u = a — p. Finally, we see that (o, pu) € Pff;leg and thus
that there exists a Zelobenko operator of Hg%, mapping into H .

In the case of G = SU(n, 1), n > 2, we use [Bal79, §4] to describe the roots. We use the
same notation as in that paper but add a 'B’ to the index of the Cartan subalgebras. With
respect to her maximally compact Cartan subalgebra hp (diagonal matrices), the roots
of g are given by £(g; — ¢;), 1 <i < j <n+ 1. We use a Cayley transform associated
to the imaginary noncompact root 5 := &; — €,11 to obtain a maximally noncompact
Cartan subalgebra h of g. More precisely, in the notation of [Kna02, Chapter VI, §7] we
choose Eg = FEj ;11 so that Fg = Ep41,1, where E; ; denotes the matrix which is 1 in
the (7,7) entry and zero elsewhere. Then we have the Cayley transform

1 -1
v
¢s = Ad(exp 7 (B — By)) = Ad(5 )
V2
1 1

and the (real form of the) new Cartan subalgebra b is given by
ho = g0 Nca(hp) = b ©®R(Es + Ep)

with H = Eg+ Eg, RH = ag. Let ¢; :=¢; o cgl € h*. Then the roots of g with respect
to b are given by +(e; —e;), 1 <i < j <n+ 1 and there are two positive complex roots
such that the restriction to m is dominant, given by es — e, 41 and e; — e,.

We first consider ey — e,,+1. Note that the half sum of positive roots is given by

€1 — €ntl el —e n—2 n—4 n— 2
P(H)il 2n+ + pm = p(H) ! 2”“—1— 5 ez + 5 es+...— 5 ¢n
n n—2 n—4 n—2 n
2561-1— 5 e + 5 es+...— 5 en—§6n+1.
As in the real case we calculate
N—_9 (pm + 110, €2 — €nt1)
(€2 — €nt1,€2 — €ny1)
n—2 el —e
=—(F5e -+ 20) = e —enp)
n n—2
:<(§+£)(61—€n+1)— 5 e2,€2 — eny1) =L+ 1
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5.4. Zelobenko operators

which is always in N. We infer that & has highest weight N (es — en+1)]hf ={+1)g2 —
6'51 (E14+En+1) € Dy in the notation of [Bal79, Lemma 4.3] so that its dual representation

€+1(

o corresponds to €1+ E&nt1) — (0 + 1)g,. Moreover we obtain

i=pe+ (L4 1)z — ensn)lo = —p— 2a+ (£ + a= —p— (£~ Lo

Let us finally determine the joint K-types of H, , and H,,. The K-types of the latter
are the Y, ;, with highest weight pgi — ¢g2 + (¢ — p)€n+1. We use [Bal79, Theorem 4.4] to
determine which of these are also K-types of H, ,. In that notation we have by = 431’
b, =—(+1)and b; =0 for 2 < i < n. Moreover, a; = p, a, = —q and ap+1 = ¢ — p.
Then we have by = a1 + ap, + (£ + 1) and thus

(+1 ar+ap+ap1+0+1 b+ api

2 2 N 2
since a1 +a, + a1 = 0. We obtain that Y}, 4 occurs in Hy , if and only if b, = —(¢+ 1) >
an < q> L0+ 1.

In the case of e; — e, the calculations are similar. We obtain

bo =

N
<€1 —€n,€1 — en>
n—2 ep—e
=—{-— €n—(n+2€)%>61—6n>

-2
nTen,el —ep) =L+ 1.

In the notation of [Bal79, Lemma 4.3], o corresponds to (¢+ 1)gs — £ (51 +Z441) € Dy
and y = —p — (¢ — 1)a. By the branching rule [Bal79, Theorem 4.4] we obtain that the
joint K-types of H,, and H,, are given by the Y}, , with p > £ + 1.

Let us now turn to the case of Sp(n, 1), n > 2. Again we use the notation from [Bal79,
§5] resp. [BSK80]. This time the Cayley transform we use and the roots are described in
[BSKS80, §1], the latter given by

O ={te;te; |1<i<j<n+1}U{£2e|1<i<n+1}.

= {(5 +0e1 —enp) +

The real roots are +(e; + e2) and the unique positive complex root with dominant
restriction to m is given by e; + e3. We have p, = %(61 —e)+(n—1es+ ...+ ent1,
pe = —(2n + 20 — 1)9£22 and calculate

N = —{pm + e, )
1 1
= —<§(€1 —e)+(n—1ez+...+epp1 — (n+L£— 5)(6’1 +e2),e1 + e3)
= <(TL+£ - 1)61 - (n - 1)63761 + 63) = ‘€7

which is in N if and only if uy < —(2n 4+ 1)a = —p. The highest weight of ¢ is given by
llez + 95%2) and p = la — (2n + 20 — 1) = —(2n + £ — 1)cv. For the joint K-types of
H,,, and H,, we use the branching rule [Bal79, Theorem 5.5]. In that notation we have
by = % and obtain the restriction a; > by = £ so that the joint K-types are given by Vg4,
with highest weight aey + bey + (a — b)ep+1, where a > £. O
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6. I'-invariant elements

In this chapter we investigate which principal series representations admit I'-invariant
distributional elements and, if the representation is reducible, in which composition factors
they can occur. As these turn out to be given by the socle, it then suffices to determine
the images of the injective minimal K-type Poisson transforms from Proposition 5.1.3
and Theorem 5.1.6 restricted to the socle to obtain spectral correspondences (recall
Proposition 2.2.3). In rank one we investigate the socle in more detail. In particular, we
obtain an interesting relationship between the socles of the principal series attached to
the exceptional parameters and the representations of the relative discrete series of the
associated pseudo-Riemannian symmetric spaces in Theorem 6.2.3. We do not have to
assume that the co-compact lattice I' < G is torsion free in this chapter.

6.1. Location of I'-invariant elements

Let G be as in Section 1.1 (i.e. not necessarily of rank one).

Theorem 6.1.1 (Location of T-invariant elements). Let o € M and jn € a*. Assume
that the socle of H,,, decomposes multiplicity-freely. Then

I'rr—oo ~ T —00 __ I'yr—o0
Hy Y=V (socHs ) = P Ve,
V<Hg,, irred.

where the sum on the right hand side is finite. Moreover, for each irreducible V < H, ,,,
the existence of I'-invariant distributional elements in V implies that V' is infinitesimally
unitary.

Proof. Note first that H,, has finitely many irreducible subrepresentations by the
finite length of H,, and our multiplicity one assumption. We claim that the dual
principal series representation Hg _, has finitely many irreducible quotients. Indeed, let
Hs _,,/V, for some subrepresentation V' < Hj _,, denote an irreducible quotient of Hs _,.
Then we have that V+o-« < H, , is a subrepresentation (see Equation (2.5) for the
notation). Moreover, Vie—n < H,,, is the dual representation of Hs _,,/V and therefore
irreducible. If Hs _,,/Vi # Hs _,/V> are two different irreducible quotients, we obtain two

different irreducible subrepresentations VlL&’*“ #* V;"”*“ < H, , by the non-degeneracy
of (-,-)5,—pu- Since there are only finitely many of the latter, Hz —, resp. H3°_, has finitely
many irreducible quotients Hz —,,/Vj, j=1,...,nresp. HZ°  /V>®, j=1,...,n.

By definition we have that H, 7° = Homc(Hg_,,, C) is the space of continuous linear
maps from Hg° , to C, equipped with the dual representation of Hz° . This implies

"H, > =" Hom¢(H_,,C) = Homp(Hg>_,, C). (6.1)

s
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6. I'-invariant elements

Note that HZ®_ is a nuclear Fréchet space (consider the compact picture and see e.g.
[CHMO0, §2]) and a differentiable G-module. Moreover, C is a differentiable nuclear
I'-module. Therefore we may use Frobenius reciprocity to obtain (see [Zuc78, Lemma 1.3])

PH; % = Homr(HE_,, C) = Homg (HZ_,,, Indf"™(C)),

where Indlg’oo((C) = C°(I'\G) denotes the representation smoothly induced by the trivial

representation of I'. By [GGPS69, Chapter 1, §2.3], there exists a countable subset
Gr C G such that Ind$(C) decomposes as a direct sum

—

wdd(C) = @__, mr(mr,

where each multiplicity mp () > 1 is finite. Therefore, if 0 # ¢ € ' H o With correspond-

ing pr € Homg(HZ_,,1 d?’oo((C)), there exists some 7 € G such that pr, o pp # 0,
where pr,. denotes the orthogonal projection onto one copy of m in Ind{(C). Since ¢ and
pr, are continuous and linear they are smooth. Therefore, pr; o op maps Hg”_, into
By [War72, §4.4, p. 253], H, -, and > are smooth Fréchet representations. Therefore,
the image of pr.. o pp is closed and a topological summand of 7°° [Wal92, Lemma 11.5.1,
Theorem 11.6.7(2)]. Since 7 is irreducible, 7 is irreducible (see e.g. [War72, p. 254])
and therefore pr, o¢p is surjective. Now [Die?O Theorem 12.16.8] implies that the
canomcal factorization H3°_,/ker(pr, opr) — 7 is a topological isomorphism. Since

°° is irreducible, Hg°_,/ ker(pr o F) is irreducible. It follows that ker(pr, opr) = V>
for some j € {1,...,n}. Thus we proved that if pr opr # 0, then it factors through an
irreducible quotient of Hg_,.

Consider the finite set

F={reGr|3je{l,...,n}: 7> 2 HZ JV>}
For m € F with 7°° = HZ° [V we set j(m) = j. Moreover, let
Ir={je{l,...,n} | 3Imj =m e F: j(n)=j}.
Then Home(HZ_,, Indf*(C)) = Home(HZ_,, @ e pmr(m)7) is isomorphic to

g,—
() mp ()
D B tonc( ,m)= B P Homa(H /v m
neF k=1 TeF k=1
>~ @ Homg (H, /V mr(m)T)
weF
o~ @ Hom(;(Hg?_u/V}oo,mF(Wj)Trj)
J€Ir
~ (P Homg(H,/V5°, Ind$=(C))
JEIr
o @ Homp(HgfL#/Vfo,C)
Jelr
~ @ Homr((H&,fu/Vj)oovc)'
J€Ir
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6.1. Location of I'-invariant elements

Note that the dual representation of Hs _,/V; is given by W; := Vji—&,w < H, . There-
fore, as in (6.1),

€ Homr((Hs,-,/Vj)®,C) = @ "W, ™.

JEIr JElr

This proves the first part. We now prove the second part concerning the infinitesimal
unitarity. Let ¢ and w as above. Then, denoting the K-finite elements by - g, we have
(cf. [Wal92, Corollary 11.6.8])

(Hgf’fu/ker(pr7r oapF))K =K

as (g, K)-modules. Since 7 is unitary we infer that Hs _,,/ ker(pr, opp) is infinitesimally
unitary. U

Note that Theorem 6.1.1 applies if H, , is irreducible. The following proposition shows
that the hypotheses of Theorem 6.1.1 are in particular satisfied in the rank one case.

Proposition 6.1.2. Let G be of real rank one. Then the socle of H,, decomposes
multiplicity-freely for each o € M and p € a*.

Proof. See [Col85, Theorem (6.1.3)]. O

Example 6.1.3. Figure 6.1 describes the spherical principal series representations
which can possibly contain I-invariant elements for G = SOg(n,1), n > 2, and G =
Sp(n,1), n > 2. The unitary principal series is given by p € iaj in both cases and the
complementary series consists of the parameters p with pu(H) €] — p(H), p(H)| resp.
w(H) €] —p(H)+2,p(H) — 2], where H € ag as before denotes the unique element with
a(H) =1 for the unique simple positive real root «. Moreover, H,, is reducible if and
only if u € +(p + Noa) resp. u € £(p + (2Ng — 2)«) and p is exceptional if and only if
H,, # H, is reducible and has a unitarizable subrepresentation. In each case, the constant
functions form an irreducible subspace of H, and thus !'(soc H,)~*° # {0}.

Remark 6.1.4. Recall from Theorem 6.1.1 that

I r7—00 I'rr—oo
H>= P "
Uelrr(p)

Choosing (7y, Vr,) as in Proposition 5.1.3 (e.g. a minimal K-type of U) we have by

Proposition 5.1.2 that each PjV is injective and therefore

UJ—o°

"Hy>= @ "PrU—™)c @ TC®G xk Vy).
U€lrr(p) U€lrr(p)

Moreover, since the socle never contains the trivial representation in the exceptional
cases, the scalar Poisson transform maps I H . °° to zero in these cases.
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6. I'-invariant elements

~lag 107

—— o —e—o 1 - ——o—e 0
-p P —p —pt+2a p—2a p

Figure 6.1.: Parameters p for which H,, has a unitarizable subrepresentation (gray) resp.
is reducible (dots) for G = SOq(n, 1), n > 2, (left) resp. G = Sp(n, 1), n > 2,
(right). The exceptional set is given by the gray dots except for u = p.

6.2. The socle

In rank one we can describe the socle of spherical principal series representations in more
detail. Let us first summarize what we know so far.

Theorem 6.2.1. Denoting the set of minimal K -types by Tmin and the Harish-Chandra
module of soc(Hy) by soc(H,)x we have (see Appendiz A for the notation)

G Ex = {us| ¢ € No} soc(Hy,) K Temin (S0C(Hp, ))
SOp(2,1) pe = —p — Lo i1 Ve O Y AY_(e41), Yer) )
SOo(n,1), n =23 | pe=—p—La Dizrr1 Ve {Yes}
SU(n,1), n>2 pe = —p — 2la DPpig=r+1 Ypa {Yer1,001}
Sp(n,1), n > 2 pe=—p—(20=2)a  Dasp>rr1 Vab {Ver1,e01}
Fy(—20) pe=—p— (20 —6)a @T;li?ifﬁg Vink  {Vaer20}

In each case, every irreducible subrepresentation of soc(H,) is unitarizable and has a
unique minimal K-type. For G # SOq(2,1) the socle is irreducible for all exceptional pa-
rameters. For G = SOq(2,1) the socle decomposes into two irreducible subrepresentations
which are given by discrete series representations.

Proof. For the exceptional parameters and the minimal K-types of the socles we refer
the reader to Chapter 5.1 — precise information about the socles and its K-types can be
found in Appendix B. Moreover, [JW77, Theorem 6.3 (1-3)] resp. [Joh76, Theorem 5.3
(2)] show that the socles are unitarizable. For G = SOg(2, 1) the decomposition of the
socle follows from [Kna86, p. 38] with n = 2(¢ + 1), where two (unitary, irreducible)
discrete series representations D;(z +1) and D;@ +1) oceur, O

In each case we can compute the Langlands parameters of the socle representations.
Similar calculations can be found in [Rob22].
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6.2. The socle

Theorem 6.2.2 (Langlands parameters). We have the following Langlands parameters
for soc(Hy,), e € Ex (see Theorem 6.2.1), in the notation of [Kna86, Theorem 8.54]

G S we M vear
o — —
SOp(m,1), n>2 | CU" .
Pifn#2 (L+1)eq o
o — 9 ~ ~
SU(n,1), n>2 G ifn _
P ifn #2 (L+1)(E2 —En) (n—2)a
P ~ ~
Sp(n,1), n>2 G ifn
P ifn#2 (£+1)(E2+23) (2n —3)a
Fy(—20) G - -

Here, the highest weight of the M -representation w is denoted as in [Bal79, Lemmas 4.3,
5.8] for G € {SU(n,1),Sp(n,1)} and as in Appendiz A for G = SO¢(n,1) (then M =
SO(n —1)). By definition, if S = G, the socle soc(H,,) is tempered. Moreover, in these
cases, it is a discrete series representation if and only if pe(H) < —p(H). The Blattner
parameter of the discrete series (see [Kna86, Terminology p. 310]) is given by its minimal
K-type. If pne(H) > —p(H), the socle is a limit of discrete series representation (this
case only occurs for G = Sp(2,1) and G = Fy_y) ).

Proof. Using the branching rules described in [Bal79] and [Kna02, Theorem 9.16] we
first try to find w € M such that the minimal K-type of soc(Hy,) is also minimal for
the induced representation Ind(w). To determine v € a* we compare the infinitesimal
character of the socle, which is the same as that of H,,, with the infinitesimal character
of the principal series representation corresponding to the pair (w,v). They have to
coincide up to the action of an element of the Weyl group and can be calculated using
[Kna86, Proposition 8.22]. If one of the two steps above does not work, we must have
S = G, i.e. the socle is tempered. In this case [KZ82, Theorem 14.2] shows that it has to
be a discrete series representation or a limit of discrete series representation depending
on the infinitesimal character being regular or singular. The connection to the Blattner

parameter follows from [Kna86, Chapter XV, §1, Example (1)]. O
In the real case, for soc(H,,), we get the same parameters as obtained by the Zelobenko
operator in Proposition 5.4.3 since (a — p)(H) = 1 — 27} = —23 (note that the a-

parameter of [Kna86, Theorem 8.54] has a minus sign in comparison to our a-parameter).
Figure 6.2 schematically summarizes the main results on the exceptional case so far.
In the case of surfaces, the exceptional parameters lead to discrete series representations
of SL(2,R). This phenomenon generalizes to the rank one case in the following way.

Theorem 6.2.3. There is a one-to-one correspondence between the representations
soc(Hy,), pu € Ex (see Theorem 6.2.1), and the relative discrete series of the associated
pseudo-Riemannian symmetric spaces G/H starting at the end of the complementary se-
ries’. More precisely, each of these representations corresponds to a minimal closed invari-

"More precisely, if the complementary series corresponds to the real parameters s € [—so, 0], we only
consider representations associated to parameters s € R with |s| > so.
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6. I'-invariant elements

Corollary 5.1.4

Res (1 — p)(H)) P pminoctle)) (o 1, ) =o0)

Proposition 5.1.3

Proposition 2.2.3 P;Z]in(soc(HM))

FH;ZOO 1“(soc H,, )

Theorem 6.1.1

Figure 6.2.: The exceptional case for G # SO¢(2,1) and uy as in Theorem 6.2.1

ant subspace of L*(G/H) with H = SOg(n —1,1), S(U(1) x U(n —1,1)) 2 U(n — 1,1),
Sp(1) x Sp(n — 1,1), or Spin(1,8) respectively.

Proof. In the classical cases the Plancherel formula for G/H is determined in [Far79,
Theorem 10 (¢ = 1)], where the representations occurring in its discrete part are described
in [Far79, proof of Theorem 9.2] (note that c(s)c(—s) = 0 for s > sp — where [—sp, o]
corresponds to the complementary series (see [Far79, p. 417]) — if and only if u(H) := —s
defines an exceptional parameter). Comparing the K-types one recovers our socle
representations, where %, in [Far79, p. 399] corresponds to our Yy, Y, , @ Y;, with
2p :=L+m, 2q :=L{—m, or Vo with 2a :== £+m, 2b:={—m, for G = SOg(n,1), n > 3,
or G = SU(n,1), Sp(n,1), n > 2, respectively (note that O(n,1), U(n,1) are used
instead of SOg(n,1), SU(n,1) in [Far79]). For G = SO¢(2,1) the %, = %2 ® %,} in
[Far79] is two-dimensional (%2 is spanned by (z + iy)¢) and corresponds to Y; @ Y_; in
our notation.

For the exceptional case we refer to Appendix C for details and only present an
outline of the proof here. The Plancherel formula can be found in [Kos83, p. 85], where
0, should also occur for » = 0. Again, the exceptional points occur in the discrete
part of this formula and thus again lead to relative discrete series representations by
[Kos83, Theorem 3.12.1] (in [Kos83, Remark 3.13.4] (5 and —0 are missing). By the
definitions of the spherical distributions 6, and (s in [Kos83, pp. 62, 81] we see that their
associated representations are subquotients of spherical principal series representations
and, comparing the occurring K-types (see [Kos83, Proposition 3.9.4, pp. 71, 82]), that
they are given by our socle representations. O
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7. Fourier characterization

From now on we consider spherical principal series representations for exceptional
parameters in the rank one case. Our aim is to find explicit realizations of the unitary
irreducible subrepresentations occurring in Theorem 6.1.1 in the space of smooth sections
of a specific vector bundle. In the case of surfaces this realization relied heavily on the
decomposition of distributions in the fibres of the sphere bundle (see Equation (4.3)). We
prove an analog of this decomposition — which, taking care of higher multiplicities, also
works in higher rank — in the first two sections (see especially Propositions 7.2.3 and 7.2.4).
Apart from being interesting itself, it is closely related to Poisson transforms (Lemma
7.1.4) and allows a nice characterization of spherical principal series representations using
the conditions determined by Proposition 5.3.2 (see Theorem 7.4.11). While we formulate
everything on the cover G/K, the same proofs — by taking the quotient by I' — show the
same characterization for the locally symmetric space M. We use this characterization
to give explicit descriptions of the images of I'-invariant elements under the injective
vector-valued Poisson transforms from Section 5.1 in each of the cases listed in Chapter 8.
Furthermore, we prove a number of results concerning decompositions of tensor products
and generalized gradients which may be of independent interest.

7.1. Generalized Fourier series

In the following we describe a generalized Fourier series that is closely related to the
Poisson transform and essentially gives that, properly interpreted, each f € H,, is the
sum of all its Poisson transform images.

Definition 7.1.1. For each Y € KM let
Ty 1 OF(G xx Y) = C2(G)M, a1y (0)(9) = wlg)(e),

where C°(G)M denotes the right M-invariant elements in C*°(G). Moreover, let
D'(G xg Y) denote the dual of C2°(G xk Y), where we realize the dual representa-
tion Y of Y as the complex conjugate representation of Y. We embed C*°(G/M) into
D'(G/M) by

ez C=(G/M) = D(GIM), 16p(1)(@) = [ FladD(ahD)dg
and C°(G xg Y) into D'(G xx Y) by

by :C®°(G xgY)=D(GxgY), w(f)(p):= /Gﬂy(f)(g)ﬂfv(w)(g) dg.
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7. Fourier characterization

If it is clear from the context we omit the embeddings ¢, for the sake of readability. Let
us further define the pullback

Ty D(G/M) = D'(G xkY), my(f)(e) = f(ry ()
We now give a first version of generalized Fourier series.

Lemma 7.1.2. Let f € C®°(G)M be a right M -invariant smooth function and
pry. : L*(K/M) = Y;
denote the orthogonal projection onto Y» € K. For every fized g € G, the series

> pry. (flge)),
TGK]\/[
where f(ge) € C°(K/M) is defined by
flge) : K/M — C, kM  f(gk),

converges absolutely and uniformly to f(ge). Moreover, we can uniquely decompose f
into the generalized Fourier series

f = Z fY77
TEKM
where fy, € my, (C*°(G Xk Y;)) and the series converges pointwise. The functions fy.
are given by

fy, = my. (g = pry_(f(g))).

Proof. We decompose f according to the right regular K-representation: For fixed g € G
consider the function

fo: K —=C, fy(k) = f(gk).

Then f, € C®(K)M = C>®(K/M). Since, by definition of Ky,

L*(K/M) =P

TGKM T

we can decompose
fg = Z erT(fg) (7.1)
TGKM

which converges in the Hilbert sense. By [Hel00, Chapter V, Theorem 3.5 (iii)] this
convergence is absolute and uniform. Thus, we have for every k € K

flgk) = fa(k) = > pry, (fy) (k).

TEK}M
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7.1. Generalized Fourier series
Note that (g — pry. (fy)) € C°(G xx Y;); indeed

Foi(k) = f(gkk) = fo(kk) = > pry, (f)(kk) = > (r(k)™" pry. (fy))(k)

TEKM TGK}VI

implies erT(ng) = (k) pry. (fg) for every g € G, k € K. We can write

f:ZfT7

TGRM

where f, == 7y, (g — pry, (fy)) € C>°(G)M since, by Equation (7.1),

f(g) Z Py, (fg)(e Z f-(g

TEK[M TEK]\/[

for every g € G.
Conversely, for proving uniqueness, let f =3 __ Koy TYr (¢r) with ¢, € C°(G xg Y7).
We need to show that ¢, (g) = pry._(fy) for every g € G. We calculate for k € K, g€ G

fok) = flgk) = D myv. (o) (gk) = > ¢r(gk)(e

TERJ\J TEK}W

= 3 ) e @) = Y. erlg)(k)

’TEKJW TGk]p[

This yields pry, (fy) = ©-(g) and proves the uniqueness. O
Notation 7.1.3. Let

my: D'(G xx Y) = D(G/M), 7y (f)(¥) = f(m5(2)).
In Lemma 7.1.4iii) we see that this extends the definition of my from Definition 7.1.1.

The following lemma also provides an alternative form of the generalized Fourier series,
which we mainly use later on, and connects it to Poisson transforms.

Lemma 7.1.4. Let Y € Ky and recall the maps tq/nr, by from Definition 7.1.1. Then

i) 7(£)(9) = pry (f(g")) for cach f € C=(G/M), g € G, so that T(C*(G/M)) C
C(G x g Y) and 75 (CX(G/M)) C C2(G xg Y),

i) f=3 ck, T (T, (f)) pointwise for each f € C*(G/M),

i) my (ty (f)) = tam(my (f)) for each f € CF(G xk Y) and

) Vp € a*: PY = oy 0 Qu-p on D'(K/M).
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7. Fourier characterization

Proof. i) By Lemma 7.1.2 we can write f =3 g 7y, (u-), where u; € C(G xx Y7)
is given by u,(g) = pry. (f(g+)). For each ¢ € CX°(G x Y) we use the orthogonality of
the Y, to obtain

W;(f)((p) = f(ﬂ'f/((p)) = /GTFY(SO)(Q)]C(Q) dg
:/G/K/Kﬂ- (0)(gk)f(gk) dk dgK
- /G » /K w(g)(k)TGZ]A(:M 7y, (ur)(gk) dk dgK
:/G/K L{w(g)(k)uf(g)(k) dk dgK
:/G/K/Kw(g 9)(k) dk dgK
- /G/K /K” )(gk)y (uy)(gh) dk dgK
e

Note that if f has compact support supp f C G/M and pr : G — G/M denotes the
canonical projection, we have that supp(n}-(f)) C pr~!(supp f) - K is compact since M
is compact.

ii) follows from Lemma 7.1.2 and i).

iii) Let f € C®°(G xk Y) and ¢ € C°(G/M). By ii) we decompose

p= 2 (. (»))

TEIA(M

where 75 () € C°(G x g Y'). By the orthogonality of the Y, we have
ol (N)(e) = [ wv(NeMeM)dg = [ [ wv(£)(gkM)p(ghd) dkdgK
a G/K JK

/G/K 2 /f J(EM)Ty. (9)(9) (k) dk dg K

GK

- /é/K | 1@ kM) () ) () kg
- /Gwy(f)(g)wy(ﬂ§(¢))(g) dg = vy (f)(75(9)) = 7y (by () ()

iv) By continuity (recall Proposition 2.2.2) we restrict our attention to smooth functions
¢ € C®(K/M). In this case the equality follows from Lemma 5.1.1 and i) (recall that

QSYT(G) = 1). O
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7.2. Convergence of generalized Fourier series

7.2. Convergence of generalized Fourier series

In the following we will prove that the convergence in Lemma 7.1.4ii) is uniform on
compact sets and that the same is true for each derivative. Therefore the convergence
is a convergence in C°(G/M) for f € CX(G/M), where we equip C°(G /M) with the
inductive limit topology C2°(G/M) = limgcg/n CF (G /M), where the limit runs over all
compact subsets C' C G/M and we denote by C&(G/M) C C*(G/M) the subset of all
functions which are supported in C'. We describe the topology on the spaces C& (G /M)
in some more detail by defining a family of norms.

Let B := {X1,...,X,} C go be a basis of gg. For £ € Ny and C' C G compact we
introduce the following norm on C*°(G/M):

¢
Ifllgeen =, >,  sup|(Xi--- Xif)(gM)],

k=0 X1,..., XyeBIEC’

where X € gg acts on f € C°°(G/M) by the derived left regular representation

Vg e G (Xf)gM) = L

o f(exp(—tX)gM).

t=0

The summand for k& = 0 is understood as not differentiating, i.e. as supyccr|f(gM)].
Identifying C>®(I'\G/M) = T'C>(G /M) using the pullback of the canonical projection
71, we can transfer the topology generated by these norms to C*°(I'\G/M).

We have the following lemma related to the Riemann-Lebesgue lemma.

Lemma 7.2.1. Let f € C*°(G/M). For each C C G compact, £ € Ny and N € N there
exists a constant Cr o ¢ > 0 independent of Y, such that

VYr € Ku: [lmy, (m3, (M)l meey < Crene - (L+ 17137,

where ||T|| denotes the length of the highest weight of Y,. Moreover, if f, — 0 in
C>®(G/M) we can find Cy, c N such that lim, o Cf, c,ne = 0.

Proof. For each g € G we have f(g+) € C*°(K/M). By a slight abuse of notation we will
write 7 also for the highest weight of (7,Y;). Applying [Hel00, Chapter V, Lemma 3.2] to
C*°(K /M) with the uniform norm |[+||oc and the left regular representation A we obtain

VY € Ky, Ym e N: |7y (f)(9)lloo < Crez™ dim(Y2)2[MQ™) f(g)llooy  (7:2)
where
i) Q is a bi-invariant differential operator on K with
Oxr = crXr

for the character y, of Y; (cf. proof of [Hel00, Chapter V, Theorem 3.1]),
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7. Fourier characterization

ii) ¢ > 14T+ ppe, T+ o) — (Pl Pey) = 1+(T, T+2ppey), where pp g denotes the
half-sum of positive roots in the semisimple part [¢, €] of €, (see [Hel00, Chapter V,
Equation (16) of §1 & proof of Lemma 3.2])

iii) C7 > 0 is some constant independent of f,C, N, ¢ and g given by the continuity of
Aon C®(K/M).

By the Weyl dimension formula we have

T+ ,
dim(Y;) = [] (T Pleay @) : Pl > ),
aGAE;e] p[é,?b «
where AFE' { denotes the positive roots in [¢, ¢]. Therefore, we can conclude that there

exists a constant C' depending only on ¢ such that, for m > my € N large enough,
c,mdim(Y;)2 < C- (14|77
and thus, by Equation (7.2),
VY, € Ky:o g, (1)(9)lloo < CLEIINQ™) F(g)lloo - (14 [I7]7) Y.
Taking the supremum over C' on both sides we hence infer

VYr € Kar: supllay, (£)(9)lloo < C1CsupANQ7) f(ge)l|oo - (1+ [|7I1*) 7.
gel geC

Note that since the map g — [[A(2"V)f(g*)|loo from G to Rxq is continuous by the
smoothness of f, the suprema are actually finite. We abbreviate

Crono = Clésug\M(QmN)f(g-)lloo < o0
g€

Note that the procedure above also works for X - - - X f instead of f for Xy,..., X, € B
and 0 < k < ¢. We set

Cﬁqu = maX{Cgo,C,N,O | 30 < k < E, E|X1,. . .,Xk eB: Y = X1 ka}

By the definition of 7§, we have 7y, (X1 -+ Xpf) = Xy - Xpmy, (f) for all Xy,..., X},
as above. Finally we obtain that for each Y, € K M

sup(X1 - - - Xgy, (7, (£)))(9)] = Sugl(ﬂx*vf (X1 X f))(9)(e)|

geC ge
< sugllm*wf(Xl  Xef)(@)lloo < Creve - (L+ (I3,
ge

This proves the first part and the second part follows from the definition of Cfr o ne. [

Remark 7.2.2. We remark that the proof of Lemma 7.2.1 also works for smooth functions
f € C*(G) on G. Moreover, since 2 is K-bi-invariant, all constants are invariant under
right translations with elements of K, i.e. we obtain the same constants when considering
r(k)f instead of f for k € K.
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7.2. Convergence of generalized Fourier series

Proposition 7.2.3. Let f € C°(G/M). Then

> v (v, (f)) (7.3)

TEKM
is absolutely convergent with respect to each ||| ge(cy and converges to f in C°(G/M).

Proof. Let pr: G — G/M denote the canonical projection. By the definition of the
inductive limit topology on C2°(G /M) we have to find a compact set C' C G/M such
that supp(my, (73, (f))) € C for each Y, € Ky and such that for each ¢ € Ny we have
that 3 g 7y, (73, (f)) converges to f with respect to ||| ge(pe-1(cy)- As in the proof
of Lemma 7.1.41) we see that the condition on the supports is fulfilled if we choose
C = supp(f) - K. Let £ € Ny and N € N be fixed. By Lemma 7.2.1 there exists a
constant C'¢ ¢ n ¢ independent of Y, such that

VY; € Kyt llmy, (75 (F)lrecey < Crenve - L+ 737
Thus we have for each finite subset I’ C K v that

1> v, (75, ) ey < D Imva (03, () [ reoe—1cy) < Crome D (L4171~
TeF TEF TeF
(7.4)

Let £ > 0. Note that the weight lattice of [¢, €] is a lattice in the finite dimensional space
(ito)*, where tg denotes the Lie algebra of a maximal torus 7" in K, the analytic subgroup
of [¢o, &y]. Therefore, we may identify K with a subset of Z¢ in R with d := dim ty. We
infer that if IV is large enough, there exists a finite set Fy C K such that the right hand
side of (7.4) is smaller than ¢ for each finite set F' C Ky, with F N Fy = 0. Therefore,
for each such F,

1Y v, (v, (D mepe-1 )y < D Imvs (75 ()l gee-1(c)) < Crene - €.
TEF TEF

Hence, the series in (7.3) converges absolutely and to its pointwise limit f (see Lemma
7.1.41i)) with respect to [|+[| ge(pr-1(c))- O

We can also decompose distributions.

Proposition 7.2.4. Let u € D'(G/M) be a distribution. Then the sum

> v (y, ()

Tek]p[
converges absolutely and to u in the weak sense.

Proof. Let f € C°(G/M). For each Y, € Kj we have (see Definition 7.1.1 and
Notation 7.1.3)

v, (my, (W) (f) = 7y, (u)(75(f)) = u(ry (75 (f)))
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7. Fourier characterization

and therefore, by Proposition 7.2.3 and the continuity of u,

Y (3 () = fin CX(G/M) = ) ulrg(m3(f))) = ulf).

TEK}W TGKM

For the absolute convergence note that (see [H6r90, Definition 2.1.1]) the restriction of u
to C*°(supp(f)K) is of finite order, i.e. there exist £ € Ny and C' > 0 with

\V/QP € Cm(supp(f)K): |U(4p)| < CH()OHHe(supp(f)K)'
Then
7y, (my, (u) ()] = |u(my (75 (H)] < Cllmg (75 () e supp(£) 1)
The absolute convergence now follows from Lemma 7.2.1. O

Lemma 7.2.5. Fiz ¢ >0 and N € N. If ), € C°(G xg Y;) for T € Ky are chosen
such that

tam(my, (U0) (my, (9r)) < e (L4 |I7]1*)Y,

then v =3 _x ta/m(my, (¥7)) is absolutely convergent in the weak sense and defines
a distribution on G /M.

Proof. We first prove the pointwise convergence of 1) on C2°(G/M). For each test
function f € C°(G/M) we have by Lemma 7.1.4iii), Notation 7.1.3 and Definition 7.1.1

vam (v, (V) () = v, (v, ($2))(f) = vy, (§r) (my,_(f)) = /GWYT(%)(Q)WT(WE(J”))(Q) dg.

The Cauchy-Schwarz inequality thus implies that

(. @ < [ I @)@ dg- [ I, (75, (1)) s
For the first factor we obtain
Lm0 0) 2 g = 1as v, (), (7)) < - (14 1),

For the second factor Lemma 7.2.1 implies that for each m € N there exists a constant

C = vapr—l(supp(f))K’m’O independent of Y, such that

VY € KM: H’]TYT(W;;(f))HHO(prfl(supp(f))K) < C- (1 + ”THZ)_m'

Choosing m sufficiently large we thus obtain that

> gy, (92))(f)] < 00

TEKM
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7.3. Tensor product decompositions

converges absolutely. We now prove the continuity of 1. Let C C G be a compact set
and (fn)nen be a sequence of functions f,, € C°(G/M) such that supp(f,) C CM for
each n € N and || fp| gre(cary converges to 0 for each fixed £ € Ny. We have to prove that
P(fn) — 0 (see [H6r90, Theorem 2.1.4]). Again by Lemma 7.2.1 we may choose for each
m € N constants C,, independent of Y; such that

VY; € Ku: [lmy, (73, (f))llmooany < Cn - (14 |73 7™

Moreover, by the second part of Lemma 7.2.1 we may choose the constants C,, such that

lim,,— 00 C,, = 0. Proceeding as above we arrive at

S (v @) ()l < Ve Go 3 (14 725 =0,

TEK}M TEK}M

since the series on the right hand side converges for m large enough. O

7.3. Tensor product decompositions

In order to use the conditions from Proposition 5.3.2 for computations, we need to
describe the generalized gradients more precisely. It turns out that this can be done
rather uniformly and the corresponding scalars can be computed explicitly.

In this section we describe the general results in the rank one case. Since the definition
of generalized gradients involves the K-decomposition of Y @ p for YV € K, we first
prove some results on it. Then, we define and describe the generalized gradients we
will use in the proof of the Fourier characterization (Definition 7.3.4 and Proposition
7.3.9) and depict a method to determine the corresponding scalars from Proposition 5.3.2
(Lemma 7.3.10 and 7.3.11). Explicit forms of all decompositions and scalars are stated
and computed in Appendix A.

We start with the following multiplicity one result.

Proposition 7.3.1. LetY € K. Then Y ® p* decomposes multiplicity-freely.

Proof. By [Kna02, Chapter IX, §8, Problem 15] it suffices to prove that all weights of
p =i p* have multiplicity one, i.e. if ty < €y is a maximal torus we have that t acts
multiplicity-freely on p.

Let us first assume that the ranks rk £y and rk go coincide. Then t < £ < g is a Cartan
subalgebra of g and we have the root-space decomposition

g=1ta @ Yo

acA(g,t)

where each g, is one-dimensional. We note that the root spaces g, are invariant under
the (C-linear continuation of the) Cartan involution 6; indeed we have for each X € g,

VH € t:  [H,0X]=0[0H,X]=0[H,X] =a(H)0X =  0XE€ga.
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7. Fourier characterization

Therefore, writing X = % + X_29X, we obtain g, = (6N ga) @ (p N gs) and thus

p= P (®Nga)

acA(g,t)

Since dimc(p N ga) € {0,1} we see that t acts multiplicity-freely on p.

Let us now consider the case rk £y < rk go. By [Kna02, Proposition 6.60] the centralizer
ho == Zy,(to) = to ® Zp,(to) is a f-stable Cartan subalgebra of go. Our real rank one
assumption shows that ag := Z,,(to) is one-dimensional. For a@ € A we first note that

X € go = 0X € goa,

where we define (fa))(H) := a(6H). Thus, go + goa is 0-stable and decomposes into a €-
and p-part.

We claim that if o, o/ € A are two roots with a|, = o[, then o/ = o or o/ = fa. If
this is true we obtain the result as follows. Let 8 € t*. For g = 0 the weight space of
B in p is given by a, which is one-dimensional. For 5 # 0 the weight space of 8 in p is
given by

Z (8o + 96a),

acA
ale=p

where m: g = p, X — % denotes the projection onto p. Then our claim implies
that there are at most two roots «, fa € A with a}t = 90¢|t = (. Therefore, the weight
space of £ in p is given by the one-dimensional space 7(ga + 9o )-

Let us finally prove our claim in the rank one case. By the classification of real forms
it suffices to consider the groups SOg(n, 1) with n = 2p + 1 odd (recall that we are in the
case rk ¢y < rk gp). In this case all roots have the same length and this implies our claim
since every root « € A is determined by its restrictions to t and a. O

Note that the proof of Proposition 7.3.1 does not use our rank one assumption if
rk g = rk €. In this case we can say more.

Proposition 7.3.2. Let tkg = vkt and Y, € K with highest weight 7. Denote the
non-compact roots by A,. Then the tensor product Y ® p* decomposes into

Y ® p* = @ m(ﬁ)Y’r,Ba
BEA,

where the multiplicities m(5) are at most 1 and Y, g has weight T+ . Moreover, we have
m(p) =1 = ges,

with S :={p € A, | 7+ B dominant} C A,,.
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7.3. Tensor product decompositions

Proof. First we note that p =g p* by the Killing form. By [Kna02, Proposition 9.72] the
highest weight of each irreducible constituent of Y, ® p is of the form 7 + 3, where [ is
a weight of p, i.e. § € A,,. Moreover each irreducible constituent occurs at most with
multiplicity one by [Kna02, Chapter IX, §8, Problem 15] since the weight spaces of p
have multiplicity one by the root space decomposition. Since the highest weight 7 + 5
has to be dominant we can restrict the sum to the subset S C A,,. (]

Notation 7.3.3. For V, Y € K we write
VeV eoVIYepesY Ve,

if V is reachable from Y by tensoring with p. Here, the second equivalence follows from
[BOW96, Remark 2.8].

We also introduce a more refined version of reachability using matrix coefficients
of p and use it to define the generalized gradients we will use to prove the Fourier
characterization.

Definition 7.3.4. Define the K-equivariant map
w:p— CO(K/M), w(X)(kM):=(Ad(k™")X, H),

where (-, -) is as in Notation 5.3.1 and H € qag is defined on page 9. Note that w(H)(eM) =
1. For each Y € Kj; we further define the K-equivariant map

wy Y @p— CK/M), wy(lp®X):=w(X)e.
For V € K with V < Y we write
VEY oV <wuy(Yep).

Note that V <% Y implies V € K since the image of wy is contained in C°°(K/M). By
[BOM96, Lemma 4.4 (c)] we have

VEY Y SV
In this case we realize V < L*(K/M) and define TY € Homg (Y ® p*, V) by
TV :Y®p =V, Ty(p@e) =pry(wy(p @I '(¥),

where I is as in Notation 5.3.1 and pry, denotes the orthogonal projection

—

pry : LA(K/M) = @WEKMW - V.
If V< Y but not V<Y we define

TY :Yop* =V, Ty =pryo(idy @), (7.5)
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7. Fourier characterization

with the orthogonal projection pri; : ¥ @ p — V. In each case, let d%; denote the
associated generalized gradients given by T‘}// o V. Since the tensor product decomposes
multiplicity-freely by Proposition 7.3.1, there exist uniquely determined homomorphisms
¥ € Homg (V,Y ® p*) such that

TY o) =idy and TY o} =0 (7.6)

for each W ¢ Y with V 2 W. In Proposition 7.3.9 we give an explicit formula for ¢ in
the case V € K.

Example 7.3.5. In the case G = PSL(2,R) we have

24271 27 l—2
w(H)(ky) = 2tr(H Ad(k,)H) = +2 . w(B)(ky,) = 2tr(BAd(k,)H) =

, 1 0 0 1 cos sin
: 201 _ 1 _ 1 _ ¥ 2
with 2z = e*', H = 3 (O _1>, B =3 (1 0) and k, = (—sincp cosgo) e G.

Hence, we obtain for f € C*°(G x g C,) — by recalling dﬁz+ T oV -

1~ T Lnt1

(A", P)9) = prp,,, (WL, (H.f)(9) ® H+ (B.f)(9) © B))

z —

z4 271 “1_ 2
=prp, ., (2(H-f)(g)+ 57 (B-f)(g))

z

5 (H +1B).f)(g) = 2n+f(g),

where we considered C; as the one dimensional space spanned by z¢ € C>(S"™1).

Remark 7.3.6. By definition we have for each Y € Ky

Z TY =wy o (idy @I71).
VDY
In the following we describe the embeddings L¥ from Definition 7.3.4 in more detail.
Lemma 7.3.7. Let Y, V € Ky with V < Y. Then the operator
dim p ~
¢V =Yep, Of) =) pry(w(X;)f) e 1(X))
j=1
is independent of the basis (X;); of p and K-equivariant. Moreover, the map
dimp ~
V=V, fe ) pry(w(X;)pry (w(X;) )
j=1

is a multiple of the identity. We denote the corresponding scalar by A(V,Y).
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7.3. Tensor product decompositions

Proof. Let k € K and consider Y ® p* as Hom(p,Y') by
Y ®p" = Hom(p,Y), f@A= (X = ANX)f).

Then, for f €V,

dim p

®(k-f)(Xi) = Y pry (X)) (k-F))LX;)(X;) = pry (w(X) (k-f))-
j=1

By linearity we obtain ®(k.f)(X) = pry (w(X)(k.f)) for each X € p. Note that this
expression and thus ® is independent of the basis. On the other hand, note that

dim p
k®(f) = Y k.pry(w(X))f) ® Ad* (k)I(X))
=1

and thus

(k-@(f))(Ad(k)Xi) = k. pry (w(Xi) f) = pry ((kw(Xi))(k.f)) = pry (w(Ad(k) Xi) (k.f))-

Since Ad(k)X71,...,Ad(k)Xqimp is a basis of p we have (k.®(f))(X) = pry(w(X)(k.f))
for each X € p. This proves ®(k.f) = k.®(f) and thus the first part of the lemma. From
Definition 7.3.4 we recall that

U= pryowy o (idy @I ): Y @ p* =V

is K-equivariant. The map in the lemma is given by the composition ¥ o ®. It is scalar
by Schur’s lemma. O

The scalar A\(V,Y") has the following properties.

Proposition 7.3.8 (cf. [BO®96, Lemma 4.4, Theorem 4.6]). Let V, Y € Ky such that
VY. Then

i) A(V.Y) >0,

i) VEY S AV,Y)A0e MY, V) #£0,
iii) 3, 0 MY, W) =1,
w) MV,Y)dimV = A(Y,V)dimY.

The embeddings associated with the generalized gradients also admit a nice description
using matrix coefficients.

Proposition 7.3.9. Let Y, V € Ky with V <5 Y. Then we have for each f € V

1 dim p

w(f) = \V,Y) pry (w(X;) f) ® I(X;). (7.7)
YY)
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Proof. By Lemma 7.3.7 we know that the rand hand side of (7.7) is K-equivariant as a
function in f. The scalar A\(V,Y") is non-zero by Proposition 7.3.8. For each W € K with
W+ Y and V 2 W, the map T, 3(, o L}‘i is an intertwiner between V' and W and thus zero
by Schur’s lemma. The normalization by A(V,Y’) ensures that T{ o} is the identity on
V. This finishes the proof since we have multiplicity one by Proposition 7.3.1. O

The following lemma provides a method to calculate the scalars A(V,Y") (for explicit
forms see Appendix A).

Lemma 7.3.10. The scalar A(V,Y) from Lemma 7.3.7 is given by

AV,Y) = pry (w(H)¢v)(eM).
Proof. If H = X1,..., Xdimp is as in Proposition 5.3.2 and H = Xi,... ,Xdimp its dual
basis (see Notation 5.3.1) we may write, for each f € V,

dim p
w(f)=> [iol(X;) €Y @p* (7.8)
Jj=1

for some fi,..., faimp € Y. In particular, we have .(f)(H)(eM) = fi(eM) by con-
sidering 1V (f) as an element of Hom(p,Y). By Definition 7.3.4 and Remark 7.3.6 we
infer

dim p dim p
f=Y Twly(f) =w((idy @I () = Y wr(fjeX) =Y w(X))f
WSy j=1 j=1

Note that, since X; € €@ n for j = 2, -..,dimp and X, € a, the orthogonality of a and
t @ n with respect to (-,-) implies w(X;)(eM) = (X;,H) = 0 for each j = 2,...,dimp
and therefore

dim p

fleM) =) w(X;)(eM)fj(eM) = fi(eM) = oy (f)(H)(eM).

j=1
In particular, we have for f = ¢y
Y (ov)(H)(eM) = ¢y (eM) = 1.
On the other hand, Proposition 7.3.9 shows that

Y (6v) (H)(eM) = le) pry (w(H)pv)(eM). 0

Note that, in the situation of Proposition 5.3.2, we have for VY € Ky with V&Y
that

T (pvu)(e) = (u+ p) H)A(V,Y) + v(V,Y) with v(V,Y) = TY (pv.—p)(e). (7.9

The following lemma allows us to compute the scalars Ty (pv,,)(e) from Proposition 5.3.2
explicitly in all the rank one cases (see Appendix A).
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7.4. Computations for the Fourier characterization

Lemma 7.3.11. Let V, Y € Ky be such that V <5 Y and {0} # U < H, be a
closed G-invariant subspace with multg (Y,U) # 0 and multg(V,U) = 0. Then we have
TV (pv,u)(e) = 0 and thus

Moreover, for V€ Ky with V <5 C we have
T (pvu)(e) = 0 & p(H) = p(H).

Proof. Let 0 # f € Y < U. Then, by Equation (5.1), Pg(f)(e) = Lo pry(f) #0. On
the other hand Proposition 5.1.2 implies that Ply (f) = 0. Therefore,

0 =dy (P (f))(e) = T¥ (pvu) (e) By ()(e)

implies that 7Y (py,,)(e) = 0. For u(H) = p(H) we have that the constant functions
form an invariant subspace, proving one direction. For the equivalence note that for each
V € Ky with V <% C, TY (pv,)(e) = v(V,C) + (u + p)(H)A(V, C) is an affine map in
w(H) with A(V,C) # 0 (by Proposition 7.3.8.ii)). O

Proposition 7.3.12. LetY € Ky and V € K with V < Y. Then, for each p € a,
dy o PY #£0=V &5 Y.

Proof for G # SOq(3,1). By Proposition 5.3.2.iii) we see that d¥; o PBL/ = 0 implies that
Ve K. Using Proposition 7.3.8.ii), Lemma 7.3.10 and Lemma A.1.2, A.2.1, A.3.1 resp.
A.4.1 we infer that V <> Y if and only if V <> Y and V € K. O

7.4. Computations for the Fourier characterization

The aim of this section is proving the converse direction in Proposition 5.3.2, i.e. we
want to prove that if the equations derived from Proposition 5.3.2 are satisfied for some
distribution f € D'(G/M) we already have f € H,°°. The precise result is given in
Theorem 7.4.11. It provides a technique to determine images for Poisson transforms. We
start with the following reformulation of Proposition 5.3.2.

Lemma 7.4.1. Assume the setting from Proposition 5.3.2. Then, for each f € H, >,

i) (dV o) (f) = T\}//(py,#)(e)gﬁ‘};ﬂ{‘/(f) if V is M-spherical, i.e. V < L*(K)M,

i) (Y o 7%)(f) =0 if V is not M-spherical, i.e. VM = 0.

'For G = S00(3,1) we have, for k € Ny, Y < Yi but Y; <—/°1> Y. by Proposition A.1.4 and
Lemma A.1.2. Realizing Yj explicitly as a subrepresentation of Y; ® p* one can prove that
pry, ((idy @I M) (py,,u))(e) = 0 for each y € a and thus dgﬁ o PY* = 0 by Proposition 5.3.2.ii).
This is done in Section B.2.4.
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7. Fourier characterization

Proof. This is a direct consequence of Proposition 5.3.2 and Lemma 7.1.4iv). O
We consider the ag- and ng-action separately and start with the first one.

Lemma 7.4.2. Let p € a* and f =3 i 7y, (7Y, (f)) € D'(G/M) (recall Proposition
7.2.4) with 73, (f) € C°(G xk Y7) such that the equations from Lemma 7.4.13) and ii)

hold for f for every irreducible constituent of Y, ® p* and every Y, € Ky Let X € ap.
For each V, Y, € Ky with V < Y, we define

furx € C®(G/M),  furx(gM) =17 (73, (/) (9)(X)(e).

Then, in the weak sense,

dimV
= > > dmY. Ty. (pv)(€) furx,

TeKn vy,
VEKM

where r denotes the right reqular representation of ag on D'(G/M).

Proof. Note first that, as in the proof of Lemma 7.3.10, fv,; x(gM) = 7y, (f)(g)(e)t if
X =tH. For each ¢ € C°(G/M) we have (denoting f(y) by (f,¥))

(r(X)f,0) = ~(fr(X)p) == D {nv, (77, (), r(X)e) = D (r(X)my, (75, (1)), ¢)-
TERM TGK}\/[
In particular, by the absolute convergence from Proposition 7.2.4, we obtain that
Y r(X)my, (x3, (f))
TERM
converges absolutely to r(X)f in the weak sense. We will now compute the summands
explicitly. Note first that for each g € G

d

(r(X)my, (73, (F))9) = | 7y (f)lgexptX)(e) = (Vomy, (£))(9))(X))(e).

t=0
(7.10)

We claim that

(Vory (M9 = D Gy, o Ty ) (Vo ny (£))(9))- (7.11)

VeYr

Indeed, both sides are elements of Y, ® p* and by Definition 7.3.4 they are equal if

Ty (Vo i (/)(9) = Ty ( > Gy, OTVYT)((VOW{‘VT(f))(g)))

VeY:

for each irreducible subrepresentation W with W <« Y,. But this follows from the
definition of the L¥T.
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7.4. Computations for the Fourier characterization

Note that, since d%;* =T, 0oV,

> o Ty )(Vory (M9) = Y . (dy (73, (5))(9))-

V&rYr VeYr

The equations from Lemma 7.4.1 yield

(Vory, (M9) = D o, (dy (73, (f)(9)
VoY,

= 3 b (e i )@ ()

VHAYT
VeKy

dim Y
dimV

VEKM

Ty (py, o) (e)ey, (1 (f)(9))-

By Proposition 7.3.12 it suffices to sum over all V € Ky with V <5 Y. Using Equation
(7.10) we thus obtain

O (5, (0 = 3 Gt T (v ) (G (i () (X))

V<Y,
VeKy

dim Y,
= ; dlmVTV (py, u)(e) fy,,v,x (gM)
vy,
VGKM

and r(X)f =3 i r(X)7y, (77, (f)) equals

dim Y dim Y
Z Z dl V V pY-,—,,u) fYTaVX - Z Z dl V V pY‘rvN)( )fYTyV:X'
TGKM VHY VGKM VHY
VGK]\/[ TEKM
O
In order to compute the sums occurring in Lemma 7.4.2 we write
pvu = (b +p)(H)oy @ I(H) + pv,—p. (7.12)

Let us first consider the contribution of the first summand in this decomposition.

Lemma 7.4.3. Let Y € Ky;, X €p and ¢ € Y. Then

> S v o IH)EA ()X (e) = @(X)e)(e).

V<Y
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7. Fourier characterization

Proof. By Definition 7.3.4 and Lemma 7.3.10 we have for each V € K with V <5 Y

TY (¢v © I(H))(e) = pry (w(H)gv)(e) = AV, Y).
Using Proposition 7.3.8 iv) and 7.3.9 we calculate
dimV %

>0 S IV (v © I(H)) ()l (9)(X)(e)
vSy
B A(Y, V) 1 i
= 2 55y Wv)]leww(X])so)(e)I(Xg)(X)
V<Y
dim p
= > > v (W(X)e) (LX) (X)
vy I=1
= > pry(@X)p)(e) = @X)p)(e). 0
vy

For the contribution of the second summand in (7.12) we need some preparation. This
is the content of the following three lemmas.

Lemma 7.4.4. Let go be a semisimple Lie algebra, B be some non-zero multiple of the
Killing form k. If X1,..., Xdim(po/ao) S @ basis of po N (L © ng) let Xi,.. Xdlm(po/ao)

denote the dual basis defined by B(X;, X;) = 6;;. Then Zzhzni po/aO)[ kr(X;)] € ag and

dim(po/ao) ~
Y. B([Xj k(X)) H) = 2p(H) VH € a.

Proof of Lemma 7.4.4. We first claim that Zdlm pO/mo)[XJ, kr(X;)] € po is independent

of the basis. Let X1,.. X(’ilm(po/a ) be another basis with base change matrix (a;;), i.e.

= > @mjXm. If (bij) denotes the inverse of (a;;) we claim that X]’. =3 bngg.
Indeed,

B(Z bjeXbX{) = B(Z ijXZaZamiXm) = ZZbﬂami X£7 ijmamz — 5”
l V4 m ¢ m

Thus,

Z[ k[ X/ Z ijeXé,kl(Zamj ZZ kal Zam] il
i
ZZ [Xe, kr(Xom))0me = D[ Xom, kr(Xom))

m 4 m

is independent of the basis.
We will now construct a convenient basis of pg N (89 ® ng). Let X7 denote the set of
positive restricted roots. We may assume that B is a positive multiple of the Killing
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7.4. Computations for the Fourier characterization

form (otherwise —B is of this form and the signs of the X'j’s are flipped). For each
A € ©F we choose a basis Y7),... ’Yd)i\mg’\ of the restricted root space g(} such that
0

B (Yj’\7 oY) = —%5]%, where 6 denotes the Cartan involution, and define
X} =Y -0}, je{l,... dimgy}.
Note that, since
B(X}, X}!) = —2B(Y},0Y}') = —2B(Y}, 0Y}" )6,

we have that the X7’ A’s are orthonormal, i.e. X A= = X7 A. By the restricted root space

decomposition, every X € poN(toDnyp) is of the form Z)\GE"' X —0X) for some X € gj.
Therefore, the X]?‘, A € X, form a basis of pg N (& @ ng). Note that

XP=22V} - (Y 40y enmty = k(X)) =—(Y]+0Y}).

By the invariance of the Killing form we deduce for each H € ag

BUX) k(X)) H) = BN [ki(X)), H) = BX)[H, Y} + 677
= B(X} MH) (Y} — 0Y})) = NH)B(X}, X}) = \(H).
Thus,
dim g;)
SO BOIXM k(X)) H) = Y A(H) dimg) = 20(H).
Aext j=1 ALt
Moreover,

(X3 ki (X)) = X7 kr(X)] = [Y) = 0V, = (V) + 0] = 2[0Y), Y] € g9 N po

implies that [XJ/-\, k:I(XJA)] € ag since gy = mp @ ap. O

Lemma 7.4.5. Let X1, ..., Xqimp be as in Proposition 5.3.2. Then Zdlmp Uk (X;))w(X;) =
—2p(H)w(H).

Proof. Since w : p — C*°(K/M) is K-equivariant we have

dim p _ dim p _
Y Ukr(X))w(X)) = Y w(lki(X;), X))
=2 =2

By Lemma 7.4.4, Zdlmp[ kr(X;), X;] is an element of ag and therefore a multiple of H.
Let A € R denote thls multiple. Then Lemma 7.4.4 implies that

dim p

A= (H H) = 3" ([ke(X;), X), H) = 2p(H). O
j=2

85



7. Fourier characterization

Lemma 7.4.6. Let Y € Ky and X € p. Then

2 jﬂm%vm - {

veSsy

—2p(H)¢py X =H
(ki (X)dy X La

i

where the bar denotes complexr conjugation.

Proof. For each ¢ € L?(K /M) we have by orthogonality and Proposition 2.4.41i),

Py Py
(Py, by ) r2(K) (Py, dy)r2(k)

Therefore, since w(X), X € po, is real valued (second step) and using the product rule
and Lemma 7.4.5 (third step), TV (pv.—,)(e) equals

pry (¢)(e) = (pry (¥), Yr2(k) = (¥, ) L2(K)- (7.13)

dimp dimp
S , Py
~ 2wyl <>mw><§mmmwmw%wmwpm
dim p ¢Y
=— Z )ov,w(X; )W>L2(K)

(2%
(Pv, dy)r2(k)

dim p
Py )
+ <¢V7 32::2 ( )g(kl( )) <¢)Y’ ¢Y>L2(K)>L (K)-

= (¢v, —2p(H)w(H) )L2(K)

Applying Equation (7.13) for V' and Proposition 2.4.4iii) to this equation, we infer that
dim V- TY (py,—,)(e) = dimY - T{ (—py,,)(e) and thus

dmV —f—~ v
> Gy Vv @O 00)(X) = 30 T (mpy) (@il (69) ().
VY V<Y

Note that T\X// (=pyv,p) € V is left M-invariant since py,, is left M-invariant by Proposi-
tion 5.3.21) and T‘}// 'Y ® p* — V is K-equivariant. Therefore it is a multiple of ¢y and
we have TY (—py,,) = T (—py,p)(e)y. We infer that

Y T (=pyp)@ny (ov)(X) = D (¥ (—pyp)(X) = —py,p(X).
=% vSy

The lemma now follows from the definition of py, ,(X). O

We are now able to compute the contribution of the second part in (7.12).

Lemma 7.4.7. Let Y € Ky, X € pand p €Y. Then

Eiiﬁﬁﬂwwm@ﬁwmm@z{

w

V=Y

~2p(H)ple)  :X=H
~(Uk(X)p)e) X La
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7.4. Computations for the Fourier characterization

Proof. Note first that Proposition 7.3.9 implies that

dim V' dim V' 1
g; T () (@ (@) (X)(€) = ij T () O 551 7 P E(XR)e)
VY VeSY
By Equation (7.13) we infer that
dim V' 1
> Gy D v @5 P (X))
VeSY 7
B dimV 1 v
= V%y dimYTY (p\/,fp)(e)i)\(y’ %) (w(X)ep, v oV )L2(K)
B dim Vo 1 v
- <S07 v%y dim YTY (pV,*P)(e) )\(Y, V)OJ(X) <¢V7 ¢V>L2(K) >L2(K)
_ dmV i~ 1 ov
- <()O7er( ; dleTl‘//(pv’_p)(e))\(Y, V)w(X) <¢V7 ¢V>L2(K) ))LQ(K)a
VESY

where the last equation follows from ¢ € Y and the orthogonality of the K-types. Using
Propositions 7.3.9 and 7.3.8 we deduce that

dimV —w———~ 1
VoY
B dim V v
- zw: dleT)‘//(pV,—P)(e) (Y, V) er(w(X) <¢V7 ¢V>L2(K)
VY
- V%y dleTY (pV,—,D)(e) )\(Y, V) LY(<¢V7 ¢V>L2(K) X)

= Y W el —2yx).

" (ov, dv) L2(k)
veSy

—_

> >

Finally Proposition 2.4.4iii) and Lemma 7.4.6 imply that

S v @b (—2 ) x)

<¢Va¢V>L2(K)
VesY

= <¢y,¢y>L2(K) ol <¢V7¢V>L2(K) Ty (pv,—p)(e)ty (Pv)(X)

1 dimV—r—
= ot 2 Gmy D ove) 8 (o))

vy

__ v {—2P(H)¢Y X =H
B oy, ov)ey L(kr( X))y X La
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7. Fourier characterization

Summarizing, we have for X = H

>0 T IV (v (@ () (X))
vy
= 2p(H) s ) 1oy = —20(H)p(e)

oy, by 12(k)
and for X € p with X L a

dimV
5 Gy T B ORI = (o k(X)) )
V<Y
(X))o ) o) = — (k1 (X)) (e). =

oy, dY) 2(k)
We are now ready to prove the Fourier characterization.
Proposition 7.4.8. In the setting of Lemma 7.4.2 we have

r(H)f = (p—p)(H)f.
Proof. By Lemma 7.4.2 we have

Hf= 3 2 3

TeRn V(—)YT

dlmV
TY (pv,.)(€) fvrm,

with (for g € G) fyru(gM) = LV (73 (f)(g))(H)(e). Lemma 7.4.3 and 7.4.7 imply that

> BT v @ (57, (@) ()
V<Y,
— (u+ P)(H), ()(9)(€) — 20(H) 73, () (9)(e)
— (u— p)(H), (/)(9)(e)
= (- p)(H)mv. (75, (1) (9)
Thus, r(H) f =3 g, (0= p)(H)my, (73, (f) = (u— p)(H) [ O

-
Remark 7.4.9. In view of fv. g(gM) = 7y, (f)(g)(e) (as in the proof of Lemma 7.3.10),
Proposition 7.4.8 proves
dim V' A(Ys, V)
T = SRl Y —p)(H).

w

VS Y, VEsSY,

Proposition 7.4.10. Let p € a* and f = 3 i 7y, (73, (f)) € D'(G/M) be as in
Lemma 7.2.5 such that the equations from Lemma 7.4.11%) and ii) hold for f for every
irreducible constituent of Yy @ p* and every Y, € K. Let Uy € C®(G xprn) be a smooth
section. Then Urf = 0.
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7.4. Computations for the Fourier characterization

Proof. Note first that
Urf = Y Usny, (7y. ().
TGRA{

Let X1,..., Xdimn be a basis of ng. Then there exist functions x; € C*°(G) such that

dimn

Ui(g) = Y wi(9)X; Vg€G.
j=1

Writing k¢ (X;) resp. pc(X;) for the € resp. p-part of the Cartan decomposition of Y}
we define

dimn dimn
Ul(9) = rj(9)ke(X;), ULlg):= Y rj(9)pc(X;).
j=1 j=1
Note that, by definition of U, and since M preserves the Cartan decomposition, we have

U+ (gm) = Ad(m™)U(g), U (gm) = Ad(m™")U* (g), U%(gm) = Ad(m™")U" (g)

for each g € G and m € M. We have

dimn
Ulry, (73, (D)aM) = Y w0) 5| 7ve (o, () g ex th (X))

dimn
S slo) S| (Dgespthe(X))(e)
=1 =
dimn
== > i(9) (ke (X))my, (f)(9)(e)- (7.14)
j=1
For the p-part we obtain
dimn
Uy, (=5, (D)aM) = Y. wi(0) | 7 (3 () g exptne ()00
— -
C‘I]Iml'l d
=2 5i9) 2| (Hlgeptpo(X;))(e)
j=1 =
dimn
= > £V ory, (/))9)(pc(X;)))(e)
j=1

As in the proof of Lemma 7.4.2 we infer that

dim n dimY;

Ubmy, (73, (M) (gM) = 3 #5(9) D0 7 Tv (vo ) (@), (7 (£)(9)) (e (X)) (€).

J=1 vsy,
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7. Fourier characterization

If we define
dimn
Tyy, € C®(G/M), Tyy, (gM) = > ri(g)ey. (73 (£)(9))(pc(X;))(e)
j=1
we thus have
dle
Ub my, (3 (f Z dlmV T (py, ) (€) ¥vy, -

Before we consider the series over these expressions, we make sure that each summand
converges faster to zero than any polynomial when tested against some test function
© € C®(G)YM. Indeed, it suffices to consider, for some j € {1,...,dimn},

JRACHGOIEEIEEnLY
[ by (wloc ()i (D)) (e)elg) dg

T AWY,)

_ . i Py

= 5775 |, e el (1) ) dg. 72 ¢YT>>\
vdim Y,

< St DO | [ewmnwas

where we used Proposition 7.3.9 in the first, Equation (7.13) in the second and Proposition
2.4.4 and the Cauchy-Schwarz inequality in the third step. For k € K we set pr(g) ==
o(gk™1) and write

< k)d
LQ(K)_I&%/w g)(k) g‘

—max| [ elo)mi(P)gh)(e) dg\

keK

= max /ka(g)ﬁ(f)(g)(e)dg‘-

97y (f)(g)dg

Now, using Remark 7.2.2 we may proceed as in Lemma 7.2.5 to prove the convergence.
Hence, we can consider

dim Y,
U Z U+7TY7' 7TYT Z Z d] TYT YT?U) (e)\IlV7YT
Y-eK €Ky vESY,

dle
= > TV Ty (py, 1) (€) ¥y, .

VeKu vy,

Finally Lemmas 7.4.3 and 7.4.7 imply that, for V' € K fixed,

dim Y: .y
> SR oy, ) (6) By, (9M)

w
V=Y,
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7.5. Properties of generalized gradients

dimn
=Y wile) Y ST (v, ) (€ (5 (D) (9) (e (X)) e)

=t vy,

dimn
= > w5(9)(~ Ll (X)) (H(9))(e)

j=1

dimn
= > w5 (@) Uk (F(9)e). (7.15)
j=1

Combining Equation (7.14) and (7.15) we infer

dim Y,

d1 TYT (py, ) (€)¥vy, = 0. [

Usf=ULF+ U f= Y Ulav(ny () + Z
VEKM

Theorem 7.4.11 (Fourier characterization of spherical principal series). Let p € a* and
f=% ck,, ™ (77 (f)) € D'(G/M) be as in Lemma 7.2.5 such that the equations from
Lemma 7.4.11) and ii) hold for f for every irreducible constituent of Y; ® p* and every
Y; € Ky Then f € H;™.

Proof. This follows from Propositions 7.4.8, Proposition 7.4.10 and the characterization
R(p— p) of H, > from (2.4). O

7.5. Properties of generalized gradients

We conclude this chapter with some results on the structure of generalized gradients.
The following result is independent of the basis (Xj); of p.

Lemma 7.5.1. Let Y € Ky and fe€C®G xkY). Then, for each g € G,

dim p
> () = Y (X)) )

veSY i=1
Proof. By definition we have (Vf)(g) = Z?Ep(r(Xj)f)(g) ®1(X;) € Y ® p*. Therefore,

(wy o (idy @) ((VF)(9) = D w(X;)(r(X;)f)(9)-

By Remark 7.3.6 and d¥, = T\}// o V we obtain

dim p ~
Y dv(lg) = D w(X) (X)) f)(9)- O
vy =1

Lemma 7.5.2. Let V, Y € Ky with V<Y, o € C°(G xg Y) and ¢ € C®°(G xx V).
Then, if one side exists,

(my (), 1y (dy (V) 22(@) = — (v (dV (), 7v (¥)) 12(6)-
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7. Fourier characterization

Proof. Note first that if Y # W € K and n € C®(G x ¢ W) we have

(v (), mw(n))r2qy =0
by splitting the integral into G/K and K. Therefore we obtain
(my () AV )2y = (v (@) S T (dlp ()12
WSy

Evaluating Lemma 7.5.1 at eM € K/M yields (since w(X;)(eM) = 0 for j > 2)

S mw(diy () = r(H)my ().
weSsy

Together we conclude that

(my (), 7y (dy () 12(6) = (my (@), r(H)mv () 12() = —(r(H)my (), v () r2(6

where we used the right-invariance of the Haar measure on G. The same argument yields
(r(H)my (@), v (¥)) 12(6) = (v (dy-(9)), v (¥)) r2()- 0

We may also define operators T}, and ¢}/ for each V € K (and not just V' € Ky) in
analogy to Equations (7.5) and (7.6) by Proposition 7.3.1. With this we can formulate
the following lemma, which is especially useful if d‘Y/ f=0forallVekKwithV <Y
but not V <% Y (e.g. as in Proposition 7.3.12).

Lemma 7.5.3. Let Y € Ky and Q, = Z?i:npriXi € U(g), for some basis (Xi)?i:rrfp of

po, denote the “Casimir element of p” with respect to (-,-) from Equation (1.1). Then,
forVeoYand W <V,

dim p
FW Y, ee 3w (9)(X))(X))
=1

is K-equivariant and
VfeC®(GxkY), geG: (r(Q)f)g) = Y AV (dVdy f(g).
V&Y

FEach ]—';/’V is a multiple of the identity on' Y. For V <Y this multiple is given by ﬁ

Proof. Note first that for each f € C*°(G xg Y) and g € G

Vilg) = > wdyflg) €Y @p
V&Y

since, by definition, both sides agree after applying T\X// for some V e K with V <+ Y. In
particular, we infer for X € p

r(X)f(g) = > w(dyf(9)(X).

V&Y
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7.5. Properties of generalized gradients

Moreover, for another element Z € p, by applying the previous equation twice,

(r(Z)r(X)f)(g) = D ¥ (r(Z2)dy f(9))(X)

V&Y

= > 0> Wddl f(9)(2)(X)

V&Y W&V

= > Y Y (ddl £(9)(2)(X).

VeY WeV

Hence, we obtain

Q)N = > > AV (ddif(g).

VY WaV

We now prove that ]-";V’V is K-equivariant. Indeed, note first that by the K-equivariance
of L‘V}/

VX ep ke K: o (w(k)e)(X) = 1v(k)ey) (0) (Ad(k™ ) (X)),

where 7y resp. Ty denote the K-actions on V resp. W. Thus,

dim p
AV (rw(k)e) = 3 A (k)Y (0) (Ad (K1) X)) (X;)
Jj=1
dim p

=1y (k) > (W (9)(Ad(E™H)X;)) (Ad(k™)X;).
j=1

Therefore, to prove the claim, it suffices to show the independence of f)‘y ’V(gp) from the
chosen basis. However, this follows as in the proof of Lemma 7.4.4.
By Schur’s lemma, the K-equivariance implies

(r( Q) N)g) = Y FV(dVdy f(g))

V&Y

and each ]-"3,/"/ is a multiple of the identity. Now let V € K with V <% Y be fixed. Using
Proposition 7.3.9 in the first two and Lemma 7.3.7 in the last step, we have for p € Y

dim p
V@) = X sy P e @)

1 dim p -
A DNAR Jz::l pry (W pry (L )2)
1
A% )
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7. Fourier characterization

For G = PSL(2,R), Lemma 7.5.3 reduces to a calculation in #(g). Indeed, realizing
the elements of K on S*~! (as in Lemma 4.3.1), we have

n—1 Z_l_z_l n—1 1
MLn-1,Ly) = pry, (w(H)2 ><1>:pan< = ><1>=2=A<Ln+1,Ln>

by Example 7.3.5. Thus, a direct calculation shows

1
o+ - = H? 4+ B2 = Q.
)‘(Ln+17 Ln)n e )\(Lnflen)n—i_n r

We can also check Lemma 4.2.1 by obtaining — recall p(H) = % -

2(n4m- +n-n4)fo = (n+ p)(H)? — p(H)? — %) o,

where the first two summands correspond to the action of the Casimir operator {}; =
H?+ B2 —V?%on H,,, by Equation (2.6) and the last one to the action of V2 € U(¥).
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8. Spectral correspondence

Let us now, finally, state and prove the quantum-classical correspondences for the
exceptional parameters. By Remark 6.1.4 we obtain such correspondences as soon as we
have determined the images of the minimal K-type Poisson transforms restricted to the
socle (see also Proposition 5.1.3 and Theorem 5.1.6). The characterization of the Poisson
images requires the case by case calculations for decompositions of tensor products from
Appendix A.

8.1. The case of G = SO¢y(n,1), n >3
By Propositions A.1.4 and A.1.6 we have for each k& € Ny
Ve@p 2Y, 1 @Y1 © Vi ifn#3, Ve@p 2V, 1 @Y1 @Y, ifn=3,

where Vi is not M-spherical. We define generalized gradients d‘};’“ = T‘l//’“ o V with
T‘}//’“ € Homg (Y, ® p*, V) as in Definitions 2.4.2, 7.3.4 and abbreviate

Y Y, Y,
dy = dY’Zil, D:=dy; resp. D:=dy;

for n # 3 resp. n = 3. Let y = —p — b € Ex, see Theorem 6.2.1, be an exceptional
parameter and recall the structure and properties of soc(H,) from Theorem 6.2.1. Using
Proposition 7.3.12, Proposition 7.3.8.ii) and Remark A.1.3 we infer for each k € Ny

VhY, = d)oPr=0 and VSY, < Ve (Yo, Y}
if Y}, exists!. Therefore,

DoP}* =0.
By Theorem 6.2.1 the minimal K-type of soc(H,,) is Yy41. Since

Y, Yy
d_o P,u“—l = TY;H (pYH-LN)(e)P/z/Z

= 0, we obtain

by Proposition 5.3.2.ii) and Proposition 5.1.2 implies P;/‘v’ (soe(,))
soc(Hy))—=°

=0.

d OPYZJrl
T (soc(Hy))

.e.: For k = 0 we only have Y; on the right hand side of the second equivalence.
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8. Spectral correspondence

d_ dy
o o o o 20— oo oo
k
0 {+1

Figure 8.1.: Fourier components of f € "H . White dots represent Fourier components
that are zero; see also Figure B.2.

Summarizing, we have
Py (soc(H,)) ™ — {f € C(G xx Yopr) | d_f =0, Df = 0}.

We will now investigate which K-types p with highest weight p1e; + ... 4+ thmem, m =
tk€ = [ 5|, occur on the right hand side. Applying [DGK88, Theorem 6] to the minimal
K-type 7 := Y41 (with highest weight (¢ + 1)e;) of soc(H,), we find that p; = 0 for
7> 1, pp > £+ 1 and that each p of this form occurs with multiplicity one. Therefore,
the highest weights of the K-types in {f € C*(G Xk Yy+1) | d_f =0, Df = 0} are
given by ke; for k > ¢+ 1. Since Y} has highest weight ke;, these K-types are exactly
the same as the K-types of soc(H,) (see Theorem 6.2.1). Hence, we have

(soc(Hp))x ={f € CF(G xk Yiy1) [ d-f =0, Df = 0}k,

where the K in the index denotes the Harish-Chandra module. Proceeding as in [O1b94,
Satz 4.13] we infer that the Poisson transform PZ“I yields an isomorphism (similar to

the scalar case, see Equation (3.1), Theorem 3.2.2) from (soc(H,))~> to

{f € C®G xk Yip1) |d_f =0, Df =0,3r > 0: suple "e/x(€K9K) r(g)] < o0}
geG

In particular, we have the following correspondence for the I'-invariant elements.

Theorem 8.1.1 (Spectral Correspondence). Let Ex 5> = —(p + fa), ¢ € Ny, be an
exceptional parameter. Then the socle soc(H,) of H, is irreducible, unitary and its
K -types are given by Yy for k > £+ 1. The minimal K-type is Yo11 and the corresponding
Poisson transform induces an isomorphism

P T (soc(H,)) ™ 2 T{f € C(G % Yir) | d-f = 0, Df =0},

Proof. This follows from the discussion above and the fact that each I'-invariant function
fulfills the growth condition (for each r > 0)

suple /(19K ()] = suple e K9 ()] < oo,
geG geF

where F denotes a fundamental domain of I'\G (note that the latter is compact by
assumption). O
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8.2. The case of G = SU(n, 1), n > 2

Example 8.1.2 (see Section 9.4.2 for more details). For the first exceptional parameter
p=—p we get (Y1 =p”)

PY: F(soc(Hop)) ™ 2 {f € C®(AY(I\G/K)) | 6f =0, df =0},

where A'(T'\G/K) denotes the bundle of one forms and (J resp.) d is the (co)-differential.
The dimension is given by the first Betti number b1 (I'\G/K).

8.2. The case of G = SU(n,1), n > 2

By Proposition 7.3.2 and Remark A.2.3 we have for p,q € Ny

Ypq®p" = @ Yp.0.85
BES

where S = {£(e1 — ent1),62 — €nt1, —€n—1 + €nt1,t(en — €ny1)} € A,. The rep-
resentations V; resp. Vo with highest weights ge; + e — pen, + (p — ¢ — 1)ep+1 resp.
ge1 — en—1 — pen + (p — g+ 1)en41 are not M-spherical. In this notation we have

Yo q®@p Yy 100 Ypi10D Ypg-1 0 Ypgt1 ® V1O V2,

whenever these representations exist (i.e. whenever the corresponding weights of Y}, ; 5

are indeed dominant). We define generalized gradients d}‘;"’q = T&fp 1oV with T‘}//” e
Hompg (Ypq ® p*, V) as in Definition 7.3.4 and abbreviate

Yp.q
Ypqt1’

Yp,q

d:t,l = de’q di,g =d Dj = dVJ , =12

Ypt1,9’

Let u = —(p+ 2la) € Ex, ¢ € Ny, be an exceptional parameter and recall the structure
and properties of soc(H,) from Theorem 6.2.1. Using Proposition 7.3.12, Proposition
7.3.8.ii) and Remark A.2.2 we infer

Vb Yy, = d"oPi=0 and V&Y, &= Ve Vg Yo
whenever the occurring representations exist. Therefore, for j € {1, 2},
Djo PYri =0. (8.1)
The minimal K-type of soc(H,,) is Yp11 ¢+1 (see Theorem 6.2.1). By Proposition 5.3.2.ii),
d_jo Pizz+1,e+1 _ TY£+1,£+1(

Yo 041 pYz+1,e+17u)(€)

Yer1,041  aYet1,041 Yei1,e
d_20Fy, = TYHM (pYzH,eH,u)(e)Pu .

Y041
Py

Since Proposition 5.1.2 implies that Pp’“l](SOC(H#))foo =0 and Pp“’q(soc(Hu))ﬂo =0,
we obtain that, for j € {1,2},

Yoi1,641 .
dfvj © P.U' - 0

(soc(Hp)) =
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8. Spectral correspondence

+1 p

Figure 8.2.: Fourier components of f € "H . *- White dots represent Fourier components
that are zero; see also Figure B.4.

Summarizing, we have

PUH (soc(H,)) ™™ — {f € CF(G Xk Yerneat) | doyf =0, Dif =0, j € {1,2}}.
(8.2)

We will first present a method similar to the case of G = SOg(n, 1). For this method we
have to assume n # 2 and ¢ # 0. Then [Mea89, Equations (2.7.3), (2.7.4), Lemma 6.2.1,
Proposition 6.4.6] imply that the highest weights of the K-types on the right hand side of
(8.2) are given by p'e; — ¢'en, + (¢’ —p')eny1 with p’ > £+1 and ¢’ > £+ 1, each occurring
with multiplicity at most one. By definition, the corresponding representations are Y}, , for
p,q > ¢+ 1. Since the Poisson transform P;/e L g injective by Proposition 5.1.3, each
K-type of the socle (see Theorem 6.2.1) has to occur in its image (restricted to the socle).
Therefore the K-types of {f € C°(G Xk Yiy1041) |d—j;f =0, Djf =0, j € {1,2}} are
given by Y, 4, p,q > £+ 1, each one occurring with multiplicity one. Hence, we obtain

(SOC(HM))K = {f S COO(G XK ng+1,g+1) ‘ d_7jf = 07 Djf = O, j S {1,2}}}(.
Proceeding as in the case of G = SOg(n,1) we find

Theorem 8.2.1 (Spectral Correspondence 1). Let n # 2 and Ex > p = —(p + 2la),
for £ € N (i.e. £ #0), be an exceptional parameter. Then the socle soc(H,) of H, is
irreducible, unitary and its K-types are given by Y, 4 for p,q > ¢+1. The minimal K -type
is Yy41,041 and the corresponding Poisson transform induces an isomorphism

P,f"“f“ T (soc(H,)) ™™ 2 f € (G xKk Yoy1041): d_jf =0, D;jf =0, j € {1,2}}.
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8.2. The case of G = SU(n, 1), n > 2

Proof. See Theorem 8.1.1. O

In order to treat the remaining parameters (n = 2 or ¢ = 0) we will use the Fourier
characterization of the principal series. The following lemma is based on Lemma 7.2.5.

Lemma 8.2.2. Let 1 :== —(p + 2la), £ € Ny, an exceptional parameter. Let ¢, €
C®(G xg Yyq) for p,qg > £+ 1 be such that the equations from Lemma 7.4.1 are fulfilled
(with tp,q instead of w3, (f)). Assume that 7y, ,,,(Vyvyi,4,) € CF(G) has finite

L?-norm. Then the formal sum

f= > wemlry,,(pg))

p,q>4+1

defines a distribution on G/M.

. Y, .
Proof. We abbreviate TPl .= Ty (py, . )(e) € C. It suffices to prove the estimate

YPQ:QQ
in Lemma 7.2.5. Using Lemma 7.5.2 (second step) and the equations from Lemma 7.4.1

(first and third step) we infer for the L? inner product

dimY, 1
||7rYp,q (@Z’p,q) ||2 = dim Y. p’f Tpfl,q <7TYp,q (wp,q)a TYp.q (d+,1¢p*1»Q)>
p—L4 Lp,q
dimY, 4 1

~  dim Yp—14 Tlg’gl,q (MY, 1 (d-1p4q), TY, 14 (Yp=1,4))

. 2 g
_ ( dim Y, ) Tyt
i p—1,q
dimY,_14 e

<7TYp—l,q (d’p—Lq)a TYp_1,q (wp—l,q»-

By Proposition A.5.1, Remark A.2.2 and Remark A.2.3 this equals

(n+p—2)(n+p+q—1) n+p

2
p(n+p+q—2) p—1—1¢ I

HTFYP,Lq (@bpfl,q)

Iteratively applying this equation we find that for each m € Ny

m

1Yoy Cerma)? = ]

r=2

m+l+r—2)n+l+r+q—1)n+Ll+r
l+r)(n+l+r+qg—2) r—1

7Y 1, (Wer1,0) 1%

The latter product equals

n+l+m+qg—1)n+Ll+m—=2)1({+1)(n+L+m)! 9
(n+L4+q)(n+ L= +m)(m—1)(n+L+1)! 12,0 (VeI

which grows polynomially in m (in fact it is O(m2?"*+)). Interchanging the roles of p and
q this proves the estimate in Lemma 7.2.5 and therefore the lemma. O

If the 1 4 from Lemma 8.2.2 happen to be [-invariant we can consider the 7y,  (1pq)
as functions in C*°(I'\G). Choosing a (compact) fundamental domain for the action of
I' in G, we can thus use Lemma 8.2.2 to construct a I'-invariant distribution on G/M
respectively a distribution on the locally symmetric space I'\G/M.
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8. Spectral correspondence

Theorem 8.2.3 (Spectral Correspondence 2). Let Ex 3 u = —(p + 2¢a), £ € Ny, be
an exceptional parameter. Then the socle soc(H,) of H, is irreducible, unitary and its
K -types are given by Yy, for p,q > £+ 1. The minimal K-type is Y4141 and the
corresponding Poisson transform induces an isomorphism from *(soc(H,))™> onto

u € C®(G x i Yir1.041) | properties i) — vi) below},

where the properties are as follows.
Foru e C®(G xk Yiy1,041) let Yoq1 041 = dim Yoy o411 - u and define recursively for
p,q>C+1 (see Lemma 7.4.1)

’(7[} . dim }/p-f-l,f-l-l 1 ’()Z) 1][) dim Y;% 1 ¢
14+1 = : AWpe+1, 4 = s 2 1,
P14+ dleZD,E—‘rl Tpf;_;_'_l + DA+ p,q dim Y, 1 qu 1 + p,q—
where we abbreviate TH! "1 = Ty:21 :21 (PYy, q,.1)(€) € C. Then we define the properties
dim Y,
Z) d-ﬁ—,ld}pq Zf-gqudll#pj_lqlﬁp-i-l,Q) (p > L+ 17 q > L+ 2)7
.. dim Y]
i) d_ 19y g =T)" ,qdu;myppfq%J 1,5 (p=l+2, g=2L+1),
i) d—1ter1,q =0, (¢=€+1),
dim Y]
w) d—2¢pq = zquq 1d1$1mypzq11/’pq 1s p=2l+1, ¢g=>1+2),
U) d7,2¢p,é+1 = Oa (p > {+ ]-)7
’UZ) Djwp,q = Oa (pa q > l+ 17 j € {17 2})

Proof. We first prove that the Poisson transform maps into the claimed space. If
u= Py“’“l(f) for some f € (soc(Hy))™> we have 111041 =y, . (f) by Lemma
7.1.4.iv). Properties 7),ii),iv) and vi) are exactly the equations from Lemma 7.4.1. To
prove the third property we note that

* l+1, dimYZ-f-l, *
do1teprg =doamy,,, () =T,7 q(ﬁTY%;qu(f) =0,

since the socle does not contain the K-type Y;,. Similarly we see that property v) is
fulfilled. Since the Poisson transform is G-equivariant it preserves I'-invariant elements.
For the surjectivity let u € 'C®(G x k Yi41,¢+1) with the desired properties. Define

F= > wamlry,,(pg).

p,q>E+1

Note first that each 1), ; is I-invariant since ty11 ¢41 is I-invariant and each involved
map is G-equivariant. Lemma 8.2.2 thus implies that f defines a I'-invariant distribution
on G/M. By Theorem 7.4.11 we have f € 'H . °° and, since there are only terms for
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8.3. The case of G = Sp(n, 1), n > 2

p,q > £+ 1 in the defining sum of f, we also have f € I'(soc(H,))~>°. The orthogonality
of the K-types implies (see Definition 7.1.1 for the relevant definitions)

ﬂ-;;g+17¢+1( Z LG/M(TrYp,q (wp#]))) = Z LG/M(TrYp,q (wpﬂ)) © 7T-Y'Z-kl,l-kl = 0
p.geJ p,geJ

for J := {(p,q) € N3: (p,q) # (£ + 1,/ +1)} and

ﬂ-ik/g+1,g+1 (LG/M(WYZ+1,2+1 (¢€+17£+1))) = Yo 041 <w€+17£+1)7
where we used Lemma 7.1.4.iii) and i). Using Lemma 7.1.4.iv) we obtain

1 1

Y *
Pue+1,l+l(f) — 7TY}&+1,1€+1(f)

= o Yev1,041 = . O
dim Yy 41,041

dim Yy 41,041

8.3. The case of G = Sp(n,1), n > 2
By Proposition 7.3.2 and Remark A.3.3 we have for each a,b € Ny with a > b

Vap @9 Vo100 Va1 @ Vaps1 @ Vap1 ® P Vaps.
ges.
Va,b,8 KM
We define generalized gradients d“;“’b = T‘Y"’b o V with T“//“’b € Homg (Vo @ p*, V) as in
Definition 7.3.4 and abbreviate

Va,b
di:

—-d Vab
S ‘/zzil,b7

Va,bil’

Va,b

DB = dVa,b,ﬁ

d:bg =d
for each 8 € S with Vop5 & K. Let p = —(p + (20 — 2)a) € Ex be an exceptional
parameter and recall the structure and properties of soc(H,,) from Theorem 6.2.1. Using
Proposition 7.3.12, Proposition 7.3.8.ii) and Remark A.3.2 we infer for each a,b € Ny
with a > b
Va Va

Vi Vo = Ao P, =0and V <5V, <= V € {Vai1p, Vao1.6y Vaps1, Vap—1}
whenever the occurring representations exist. The minimal K-type of soc(H,) is given
by Vit1,e41 (see Theorem 6.2.1).

The spectral correspondence in the quaternionic case is established by using the Fourier
characterization of the principal series as in Theorem 8.2.3. By Lemma 7.2.5 we obtain
the following result.

Lemma 8.3.1. Let p == —(p+ (20 — 2)a), £ € Ny, an exceptional parameter. Let
Yap € CF(G X Vap) for a,b> £+ 1 be such that the equations from Lemma 7.4.1 are
fulfilled (with gy instead of my, ,(f)). Assume that my, ., ., (Vv .0y) € CF(G) has

finite L?>-norm. Then the formal sum

f= > v, (Wap))

a>b>4+1

defines a distribution on G/M.
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8. Spectral correspondence

Proof. We abbreviate T}, 1’51 =T “,/al’bl (
2,02 ag,by

in Lemma 7.2.5. Using Lemma 7.5.2 (second step) and the equations from Lemma 7.4.1

(first and third step) we infer for the L?-norm as in Lemma 8.2.2

PV, 4, .)(€) € C. It suffices to prove the estimate

2 pa,b
dim V, b T, 7_1 b
“ ) — ||7TVa71,b(¢a—1,b)||2'

dim Vafl,b Tg;l’b

17y, (Cap)lI” = — (

By Equation (7.9), Proposition A.5.1 and Proposition 7.3.8.iv) we have

T;l’_bLb —2n+1—a—LAVap, Vac1p)  —2n+1—a—£dimV, 1,

T;;Lb - a—{¢ )\(Va,b, Va—l,b) B a—1 dim Va,b

and thus

2n—1+4+a+{¢ dimV,,
a—1¥ dim V,_1

7y, (ap)II* = 17,1y (Ba10)II*.

Iteratively applying this equation we infer that for each m € Ny

e 2n—14+20+r dimV,
2 _ L+r,b 2
17V (Vesmp) I* = g " dim Virr 15 (A CasEy]|

dim Vigmp v 2n — 14+ 20+ 7 9

= — ’ T (Wer10) |7

dlm w+17b g r H £+1,b + )”
Note that []/., 22=LE2r — (2:5(12:3@8?)! is O(m?"~1+26) Moreover, the dimension
formula from Remark A.3.3 shows that dim Vji,,; grows at most polynomially in m. A
similar argument works for the b-variable. O

Theorem 8.3.2 (Spectral Correspondence). Let Ex 5 p = —(p + (2 — 2)a), ¢ € Ny,
be an exceptional parameter. Then the socle soc(H,) of H, is irreducible, unitary and
its K-types are given by Vo for a > b > £+ 1. The minimal K-type is Vi1 041 and the
corresponding Poisson transform induces an isomorphism from *(soc(H,))™> onto

Mu e 0@ xg Vis1,041): properties i) — v) below},

where the properties are as follows.
Foru e C®(G Xk Vig1,041) let Yoqq 041 = dim Viyq p41 - u and define recursively for
a>b>{0+1 (see Lemma 7.4.1)

w dim Va+175+1 1 d w '¢ dim Vmb 1 d ¢
at+1,04+1 "= —; A +,1%a, 41, ab = T ap—1 4+2Wab—1,
dim Va,£+1 Ta+1,£+1 dim Vavbfl Ta,b
. Va ,
where we abbreviate T;;,’,il = TVa;”;;l (PV,, 4,..)(€) € C. Then we define the properties
. o a,b dimVa,b
'l) d+71’l/]a,b - Ta+1,bdimVa+1,bwa+1’b7 (a 2 b Z E + 2)7
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8.4. The case of G = Fy_qq)

b
-
l °
| o o
| e o o

s

Figure 8.3.: Fourier components of f € "H .. ~°- White dots represent Fourier components
that are zero; see also Figure B.6.

ii) d_ 1ty = ;blbd?r;mVZabwa 1,b; (a>0+2, b>0+1),
i) d_ 29 p = 55 1di;myvzbl¢ab 1, (a>b>1+2),
i) d— 2041 =0, (a>0+1),
v) Ay ey = 0, (@>b>0+1, V& Vay, V & Kup).
Proof. The proof is analogous to the proof of Theorem 8.2.3. 0

8.4. The case of G = Fy(_»)

By Proposition 7.3.2 and Remark A.4.3 we have for each m,k € Ny with m > k and
m =k mod 2

Vi @9 Z Vi1 k11 @ Vin—1,k—1 @ Vi 1,51 © Vi1 k41 @ @ Vink, 8-
pes
Vin ks €K a1
We define generalized gradients d,/™" :=T},"" o V with T},"" € Homg (V;,, 1 ® p*, V) as
in Definition 7.3.4 and abbreviate
di1:=d Vin,k dro=d Vin,k Dg = dv

Vint1,k+1" Vint1,651° ™.k, B

for each 3 € S with V,,, 1. 3 & K.
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8. Spectral correspondence

Let p = —(p+ (20 — 6)a) € Ex, ¢ € Ny, be an exceptional parameter and recall
the structure and properties of soc(H,) from Theorem 6.2.1. Using Proposition 7.3.12,
Proposition 7.3.8.ii) and Remark A.4.2 we infer for each m > k € Ny with m = k mod 2

Vb Ve = A o Py =0 and V< Vg <= Ve {Visips )

whenever the occurring representations exist. The minimal K-type of soc(H,) is given
by Vary2,0 (see Theorem 6.2.1).

As in the quaternionic case we use Theorem 7.4.11 to prove a spectral correspondence.
By Lemma 7.2.5 we obtain

Lemma 8.4.1. Let p:= —(p+ (2 —6)a), £ € Ny, an exceptional parameter. Let ¢y, €
C®(GX g Vi) form = kmod2, m—k > 2({+1), be such that the equations from Lemma
7.4.1 are satisfied (with Y, . instead of wy;  (f)). Assume that my,, , o(Vvy,,,) € C*(G)

has finite L?>-norm. Then the formal sum

f= > wmlmv,, (Ymnk)
m—k>20+2
m=k mod 2

defines a distribution on G/M.

Vim
Proof. We abbreviate anf;’,f; = Ty PV, 5y)(€) € C. Tt suffices to prove the
) mo,ko K1

estimate in Lemma 7.2.5. Using Lemma 7.5.2 (second step) and the equations from
Lemma 7.4.1 (first and third step) we infer for the L2-norm as in Lemma 8.2.2

2 m,k
dimV, T
2 m,k m—1,k—1 9
TV Wm) " = — | = : — 1TVt (V1 e—1) [
73 (o) ( = mG> i ORI

By Equation (7.9), Proposition A.5.1 and Proposition 7.3.8.iv) we have

Tty 14— 20— m — EA(Viggo, Vi1 he1)  —14— 20— m — k dim Viyr_y 4y

pm=Lk=1 " 4 _ 4+ m+k A Vinges Vin—1,k—1) 4 —24+m+k dim V;,,

m,k
and thus
144+20+m+k dimV,,
2 _ m, 2
Hﬂ-vm,k (wm,k)n - 4— 9/ 4+ m 4 k dim Vm—l,k—l HTerkafl(wmfl,kfl)H .
Iteratively applying this equation we infer for a(m, k) := mT‘H‘: and p == a(m,k) — (£ +1)

Pt a(m k) —r  dim Vi, gy

2 _
HTer,k(wm,k)” - rl;[l 2/ + a(m, k') — rdim Vm—'r’—l,k—'r—l

Hﬂ-vmfp,k—p (wm—P,k—p) ||2

 dim Vi pt T+0+a(m, k) —
~dim Vi pk—p 52— LC+a(m k) —

r
r HTerfp,kfp (wm_p)k_p) ||27
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8.4. The case of G = Fy_qq)

k
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o o o o
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b
‘ o o o o o /
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N .
0 o o o o ®
N .
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N d_» , /Ay
7/
20— 6 20 m

Figure 8.4.: Fourier components of f € "H . *- White dots represent Fourier components
that are zero; see also Figure B.9.

i —1 7+ k) — TH204p)6 . _
with a(m —p, k—p) = £+ 1. Note that [[°_; 2212&137: — (7+(2Jér+1;r!?()2+p)z is O(pT+2L-2),

Moreover, the dimension formula from Remark A.4.3 shows that dimV,,; grows at
most polynomially in m and k. A similar argument works for the step from V,,
with a(m, k) = £+ 1 to Vy(41),0 by decreasing b(m, k) = ’”T_k (by going from V,, 1 to
Vin—1,k+1)- O

Theorem 8.4.2 (Spectral Correspondence). Let Ex 5 u= —(p+ (20 — 6)«), £ € Ny,
be an exceptional parameter. Then the socle soc(H,) of H, is irreducible, unitary and
its K-types are given by Vi, i for m = kmod2, m —k > 2({ + 1). The minimal K-
type is Vapio0 and the corresponding Poisson transform induces an isomorphism from
U(soc(H,))™> onto

Tu € C®(G x i Vapyap): properties i) — v) below},

where the properties are as follows. Let a(m,k) = mT+k and b(m, k) = mT_k For

u € C(G xg Vagyap) let pyr 41 = dim Vapio - u and define recursively for m =
kmod2, m —k >2({+1) (see Lemma 7.4.1)

dim Vm7m—2é—2 1 dim Vm,k 1

. dy1Ya—1041, Vap = + dy 2%ab-1,
dim Vi1 m—20-3 Tjﬁ’f” ’ ’ dim Vi—1 o1 79071 ’

wa,ﬁ—‘rl =

: a1,b1 . Vay+by,a1—by
where we abbreviate T, 1} = TVa2+b2,a2—b2 (PVi, 5,0, 0,0 )(€) € C. Then we define the
properties

105



8. Spectral correspondence

dim V;, %

. b
Z) d—&-,lwa,b = T;+17bdime+1,k+1 zﬁa-l—l,ba (a > b > + 2)7

dim V,,, %

i) d_1Yap = Tgfl;,m%q,b, (@>€+2, b>1+1),

iii) d-2%ap = Ty'y ) gt a 1, (a>b>0+2),
w) d-2t4e+1 =0, (a={l+1),
v) AV Fahgy = 0, (@>b>0+41, V& Vg, V& Kup).
O

Proof. The proof is analogous to the proof of Theorem 8.2.3.
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9. An example: The real hyperbolic case

In this chapter we describe the case of G = SOg(n, 1), n > 3, in some more detail. In
particular, we explicitly describe the projections and embeddings for tensor products, the
Fourier characterization of the spherical principal series and the generalized gradients in
this case. For the general structure of G we refer the reader to Appendix B.2.1. Recall
also the decomposition of the spherical principal series into spherical harmonics from
Appendix B.2.2.

9.1. Generalized gradients

In order to describe the generalized gradients, we first need to decompose Y; ® p* for
[(1¢,Y2)] € K as a K-representation. This is done in Proposition A.1.4 and A.1.6. By
these, we have Y, ® p* = Yypi1 & Y1 & Vp for £ € N, where V; does not contain the
trivial M-representation if n # 3 and we write V; .= Y, if n = 3, and Yy ® p* £ Y;. The
associated generalized gradients are given by

di =T, 0 Vi C0%(Gxx Yo) = C¥(G xx Vi),
d_ = Tg’/fq o V:C%G xgYy) - C®(G xk Y1),
D= pron:Coo(G X Yy) = CF(G xg V), (9.1)

where the maps T, %"ﬂ € Hompg (Yy ® p*, Yye1) are given as follows: We have p = C" as
K-representation, i.e.

Ad(diag(A4,1)) X, = Xa,

for every v € C", diag(A,1) € K (see Appendix B.2.1 for the notation). Thus, we may
identify

Vop 2Y, e (C")', ¢@X, —o¢®ec], (9.2)
where X7 (Xe,) == dj; = €j(e;). This shows that the map
Ye@p' = CX(E"), 9@ X7 — )9,

is K-equivariant, where x; is the monomial on S*~1 corresponding to e;. By Equation
(B.2.3) we can decompose

26 = 67 + |z*d;
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9. An example: The real hyperbolic case

where qﬁf € Yy1; are explicitly given by (cf. [F©?19, Equation (B.4)])

lz* 3¢ I

ni2—202, % T nioi—20s, O3

¢ =P(xjp) = x;¢ -

This leads to the definition T%"_l (9® X)) :=¢; and T;/ZLI (p®X7) = qﬁ}“ for p® X¢, €
Yy@p* =Y, ® (C")*. We also define d_ for £ = 0 for convenience of notation (note that
it is the zero map because of the derivative).

Note that the definition of the projections coincides with the general one from Definition
7.3.4 since the identification of K/M with S"~! comes from the adjoint action on pg (see
Appendix B.2.2), w(X,;) = z; € C*(S"!) and I(X,;) = X,,. The following lemma
turns out to be very useful for computations involving spherical harmonics.

Lemma 9.1.1. Let f be a homogeneous polynomial of degree £. Then
P(zif) = P(z:iP(f))-
Proof. Writing f = P(f) + |x|?q with ¢ homogeneous of degree ¢ — 2 implies
wif = 2P(f) + |2[*ziq = P(aif) = P(x:P(f))
by applying P to both sides since multiples of |x|? are in the kernel of P. O

We now describe the embeddings of Yy41 into Y; ® p* 2 Y, ® (C™)* corresponding to
TY:  and TY

Yo1 Yoy1-
Lemma 9.1.2. Let

Yer1 .y, Y, @ (C™)* LS~ 0f
ty, Y1 = Y, ® (CM)7, fw—zi(g)ej

+1 s Zj
and
Y, n+20—4C
by Ve 2 Vi@ (€ e e Y Plaif) @6
j=1
Then
i) L§2+1 and L};ﬁ‘l are K -equivariant,
ii) T}},;‘H ) L§ﬁ+1 =idy,,, and T;//j_l o Lz_l =1idy,_,,
iii) Té"ﬂ o L%‘l =0 and T;/ZI o L%-H =0.

Let us first compare these definitions with Proposition 7.3.9. We shall confine ourselves
to the case Lg_l and obtain — due to Remark A.1.3 —

\7 B 1 B 1 L n+20—4
by, ([)(Xe;) = mprn(w(Xej)f) = mp(%f) i E——

A similar argument works for the projections TI}I/}. Lemma 9.1.2 may also be proved in
the following direct way using only the structure of spherical harmonics.
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9.1. Generalized gradients

Proof. i) We first prove the K-equivariance of ¢/ “1 . Let f € Yyy1 and k € K. Then

o+1 z+1 1 nafok_l *
G =g = 2 W o

and
1
by (f) = ——= > k. afA Okej=77d ookt @ejok

Using the canonical isomorphism
D 1Y ® (C)* 2 Hom(C",Y)), &(f @ \)(v) = A(v)f

we have

1 d(fok™)
E‘l‘ 1 (‘)xl ’

<1>(1<:.L§§+1(f e;) Z (axj ok” 1) ef(k7ey).

By the chain rule we obtain

O (13 (k.f)) (e5) =

n -1
(LYZH (k? f 6 Z o k1 akj
Ye VT rF = G:U] ox;

where k:j_l denotes the j-th component of k=% € Aut(C"). For each z € C" we have

Okt kx4 he) — k5 H(x)
J —1; J — -
By @) = fim h i

since k7! is linear. This proves the equlvarlance of vy, ”1.

Let us now prove the equivariance of LYZ . For f € Y;_1 and k € K we have to show
that

> P(xj(k.f)) @€} —ZkPx]f)@)e ok L.
7j=1 7=1

Evaluating at e; using ® this is equivalent to
n
for each i € {1,...,n}. Note that

kL. *:Ze;k (ke;) :Zej €i)e; (9.5)
7j=1 7j=1
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9. An example: The real hyperbolic case

since k is orthogonal. By the equivariance of P the left hand side of Equation (9.4) reads

P(zi(k.f)) = P(k.(k72:) f)) = k.P((k™".25) ).

Since the monomial z; equals e} we can use Equation (9.5) to get
P(zi(k.f)) = kP((k™L.el)f) = k.P (Z e;f(k—lei)e;f)

= i k.P(e;f)e;(kflei) = i k.P(xjf)e;(kflei)

by the linearity of P and the linearity of the action of k. This proves Equation (9.4) and

Y,
thus the equivariance of ¢y, '

ii) We first prove T Z o LYHI idy, ,. For each f € Y;,1 we have
p Ye 241 +

v v _ L N~ (9F
TY;+1(LYZ (f) = Yp+1 (gzax]@@ ) = g+1j:1TYe+1 ((%Uj ®

s (i) - e (Bt

Since f is a homogeneous polynomial of degree ¢ 4+ 1 we have

Z (¢ +1)f.
Since f is harmonic this yields
Ty, (5 () = =P (E+ 1)) = P(f) = f.
Y£+1 Yy g + 1
Let us now prove T Yo oo L% ! =1idy, ,. For each f € Y;_; we have

B = ZTyjl (@)@ e

n—l—%—élZ 1 OP(xz; f)
n+20—2 ’

{4+n—3 =1 aZL‘j
By Equation (9.3) we have
PN j/? of _ . la* of
Pll) =il = =1 =202, =% ~ni2i—dou,
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9.1. Generalized gradients

and thus
OP(a;f) _ 0 (xjf_ [2f? @f)
J

O0x; " Oz n+ 20 — 4 0z
of 1 of 282f
— N ) Y b
erx]@a:j n+2€—4<$]8xj+|x| 8x?

This implies

z:: a] f+z%axg W(Qj;%a +|’Af)

where A denotes the standard Laplacian on R™. Since f is homogeneous of degree ¢ — 1
and harmonic this simplifies to

zn:aP(x]‘-f)_ 1 (l+n—3)(n+20—2)

A Ao Tl Sl n+20—4 J

Plugging this into Equation (9.6) finishes the proof of ii).

iii) We first prove Ty, e o LZ ''=0. For f € Y;_1 we have

Yo n+20—4
T;%H(LYE () :Ti}/;éu ( ZP me )

n+20 —4 &

Y *
= T n_3 2T (Pl @)
j:l
n+20—4
:E—i-n— ZP% (@5 ))-

By Lemma 9.1.1 we have P(z;P(z;f)) = P(23f). This yields

Y, n+2¢—4 n —|— 20 — 4
Ly D) = s ZP (#35) = P(laf2f) =0.
Let us finally prove Téﬁ ) L};“'l = 0. For each f € Y1 we calculate
Y, Y Y 1 & of R of «
Ty, (" (1) =Ty, <+ 1 ; oz, © ej) =751 ;Tiffl Bz, €
1 & 1 0% f 1
= —_— A =
€+1Zn+2 —20z2  (L+1)(n+20-2) J=0
J=1 J
since f is harmonic. ]
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9. An example: The real hyperbolic case

For explicit calculations using generalized gradients we need the following two lemmas.
Lemma 9.1.3. For each f € Yy we have

5 £—2
aj;«n>::€f<eo andf*mlfxel>::§3§ész§

Proof. For the first equality note that
OF oy = (295N oy = [0, 98 _
g-(e) = (1150 ) (en) = (g v axj) (e1) = £(ex).

For the second equality we use Equation (9.3) to get

f(e).

lz>  of 1 af
P = _—-— e _—— .
(z1f)(e1) (iﬁf N 20201 (e1) = fle) n L 20201 (e1)
By the first equality this simplifies to
14 n+0—2
P = - = : O
(1f)(er) = fler) = —a—s fler) = =2 pen)
Lemma 9.1.4. Let £ € N. Then
i) P(x%) is a linear combination of x€_2j|x\2j, j=0,..., %,
3)

.. n — — Z n Z— —
i) P(af)(er) = ZHZEP (27" (e1) and 52 P(af) = LE=DP(af ).
Proof. i) By Lemma 9.1.1 and Equation (9.3) we have
P(z)) = P(zP(z{7Y)) = 2y P(2f1) — LiP(azé—l)
1 1 1 n+ 20 — 4 0z L

The first part now follows by induction.

ii) Since %P(:ﬂ{) is an M-invariant, harmonic, homogeneous polynomial of degree
¢ — 1 it has to be a multiple of P(z{™!) (recall Y, = CP(2{™") from Equation B.2.4).
We compute this multiple by evaluating at e;. By Lemma 9.1.3 and Lemma 9.1.1

ailP(ﬂf{)(el) = (P(z)(e1) = (P(x1P(a1 1)) (er) = €

We define the Poisson transform ijf":pt : D'(K/M) — C*(G xk Y;) by continuous
extension of (see Definition 3.3.1)

B (9)(g) = [ arlg™ k)"0 mylhr(g™ k)iO(R)) dk,

n—l—f— 3 /—1
mp(ﬂfl )(61). OJ

where t € Homy(C,Yy) is given by £(1) :== P(2%)!. By Equation (3.5) we have

Y _ pYecpt
Pu 0Qu p= Pu

P(zf)

BED(en as introduced in Section 5.1.

!Note that this normalization deviates slightly from ¢(1) = ¢y, =
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9.1. Generalized gradients

on D'(K/M) where Pﬁ/f 1 H > — C®(G X Yp) is given by continuous extension of

BN = [ mebtf(gh) dk = F (O malg ™)), 07)

The following lemma is the direct generalization of Lemma 4.4.1 to G = SO¢(n, 1).

Lemma 9.1.5. Let n € a* and f € H;*°. Then
(ds o PYOY(f) = (1 + p)(H) + €) Py (f) V£ € Ny,

(d_ o PY)(f) = Ao (u(H) — (p(H) + € — 1)) Py (f) WL €N,
(Do P)Y')(f)=0VLEN,

L L(l+n—3
where Ag = (2£+n(74)(22+)n72)'

Remark 9.1.6. Note that Ay # 0 since n > 3.

Again we provide an explicit proof of Lemma 9.1.5. We first consider the first two
equalities and postpone the proof of the last equality, which completes the proof of
Proposition 7.3.12, to Section B.2.4.

Proof of the first two equalities of Lemma 9.1.5. Let d.p; denote the Delta distribution
at eM on K/M. Then

By (ear) (9) = ar(g™") " # (ki (g™")P(af) € O%(G xx Yo).
A basis of p is given by H, X.,,..., X, (see Appendix B.2.1). We have
d

(Vo PYoPY(Gepr))(e)(H) = T PYoPY (Sopr) (exp tH)
t=0
d
= —|  ar(exp—tH) “HIP ()
dt |1—o
d
= S|P = (4 p)(H)P(af),
t=0
Note that, for j € {2,...,n},
T T
ej ej
Xej =|—€ e | — | —¢€ Endt.

e
Let the latter matrix (without the minus sign) be denoted by A; € £. Then
(V 0 PyeP(Senr))(e) (Xe,) = —(V 0 ByP(6ear)) (€)(45) = A; P(21) = P(4;.21).

A standard calculation shows that the elementary (n x n)-matrix E;; with (Ej)g = 0015
acts on functions f : R™ — R via the derived left regular representation by

0
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9. An example: The real hyperbolic case

Therefore
(Vo PYOPY(Gepp))(e)(Xe,) = P(—ajla]™) = (—O)P(ajzi ).

Altogether we see that (V o PfﬁCpt((SeM))(e) €Y, ® p* = Hom(p, Yy) is given by

(Vo PyeP (6ear))(e) = (u + p) (H)P(z}) @ H* — fZP ey ) © X
j=2

In order to calculate the generalized gradients we have to project this tensor onto Yj4.
More precisely, we have to decompose the corresponding polynomial

(1 + p)(H)P(z)ay — €Y Plajai ) (9.9)
j=2

according to Equation (B.2.3). By Lemma 9.1.1 we obtain P(z;P(z;z{™')) = P(a:jza:1 )
Plugging this into Equation (9.9) yields

P((1+ p)(H)P(2)a1 —ﬁif’(wﬁ?_l)%‘) = (n+ p)(H)P(z1*) —KZP wiai !
=2
= P(( 4 p) ()l €§}r% — P(((n+ p)(H) + 0t — )

— P(((u+ p)(H) + ) ﬁ*l) (1 + p)(H) + OP(aHh)
= (1 + p)(H) + OBy (5er) )

This shows

(dy o Py ) (Genr)(€) = (1 + p)(H) + O Pa" P (Senr) (e)

and the first equality of the lemma follows from Corollary 3.3.5.
For the second equality of the lemma we first claim that (9.9) can be written as

((p+ p)(H) + OP(a])zr — |z P( 1. (9.10)

Indeed, by the K-equivariance of P and Equation (9.8)

_ 0 0
—(P(zjai") = P(A;.20) = A;.P(zf) = <$18x] - xj@:m) P(z}).
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9.2. Fourier characterization

This yields

—5]; P(zjai ;=) x; (xlé?:cj - xj@xq) P(z})

=2 =2
- 0 0 “ 0
_ ) =2 -LP@t) | =S 2L Pt
x1 (jz::l T Bz (77) — 11 Py ($1)> ]Z:;’EJ By (x7)
0
= €x1P($€) - ’(L“anlP(ID{),

where we used the fact that the Euler operator acts on homogeneous polynomials of
degree ¢ by the scalar ¢. This proves Equation (9.10).
We apply Equation (9.3) on (9.10) to deduce that (d_ o pﬁ’e@pt)((;eM)(e) is given by

(ntp)H)+L O 0 _uH)—(pH)+£-1) 9
h 202 THTIP(JC{)—(?THP(%) = 20— 2 aTQIP(w{)

where we used p(H) = “51. Finally Lemma 9.1.4 ii) implies

((l+n—=3)u(H)— (p(H)+(-1)

)/Z7Cpt =
(dfoPM )(5eM)(e) n+20—4 n+20—2

P(ay ")

which finishes the proof since P(z!™1) = Pp’l’Cpt(éeM)(e). O

9.2. Fourier characterization

In this section we characterize the spherical principal series representations by relations
between their Fourier components (Proposition 9.2.10), generalizing Lemma 4.2.1 from
the PSL(2,R) case. The explicit structure of SOg(n, 1) allows a more transparent proof
compared to the general one given in Section 7.4. We first recall the important objects
and their properties from the general case.

Definition 9.2.1. We embed C*°(G X i Yy) into the smooth right M-invariant functions
C>(G)M by the map

Ty, : C®(G xx Yy) = C ()M, 7y,(p)(nak) == p(na)(k.e1), n € Nya € A,k € K,
where e; = (1,0,...,0) € S"~ 1. Note that Ty, is indeed injective since K acts transitively

on the sphere S*~! C R™ and Y} consists of polynomials on S"~1. Since ¢ € C®°(G x x Y,)
we have for each ¢ = nak € G = NAK

Ty, () (9) = ¢(na)(k.e1) = (re(k™")p(na))(e1) = p(g)(er).
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9. An example: The real hyperbolic case

We further denote by

™y, : D(G/M) = DG xk Yy), my,(f)(¢) = f(myv(¢))

the transpose of my, defined by duality where D'(G xx Y;) is given by the dual of
C®(G x g Yy). We embed smooth sections into distributional sections by

v €(G i i) = DG i Vi) dPe) = [ av(Dlo)mvi(e)(9) dg
and C*°(G/M) into D'(G/M) by
s C(G/M) = DG/, 16pu(De) = [ FaM)plad)ds.

As in Lemma 7.1.2, we can uniquely expand each f € C*°(G)™ into a Fourier series. We
extend the definition of 7y, to distributional sections as in Notation 7.1.3 and can also
decompose distributions (see Proposition 7.2.4). Let us introduce some scalars relating
the Poisson transforms to orthogonal projections.

Remark 9.2.2. There exist constants ¢y € C\ {0} such that

co- PY()(g) = pry,(f(g))

for all u € a*, f € C®°(G)M, g € G and £ € Ny where we extend the Poisson transform
PKZ to C°(G)YM by the same formula.

Proof. By the definition of the Poisson transform from Equation (9.7) we have
P (f)(9) = FH(1)(f(g).

Now F~!(t) and pry, are non-zero elements of Homp (L?(K/M),Y;) which is one-
dimensional by Proposition 2.4.3. Thus, there exists a constant ¢, € C\ {0} such
that pry, = ¢, - F71(t). O

As in Lemma 7.1.4 we have the following

Lemma 9.2.3. Recall the maps vq/yr and vy, from Definition 9.2.1. We have

i) 7y,(f)(g) = pry,(f(g)) for each f € C*(G/M), g € G, so that 73, (C*™(G/M)) <
C®(G xk Yy) and 73, (C(G/M)) C C°(G Xk Y),

i) f= > teN, Ww(ﬂ';}e(f)) pointwise for each f € C*°(G/M),
iti) v, (tv;(f)) = tayn(my, (f)) for each f € C(G xk Yy) and
iv) Vp € a*: P}L/‘f’Cpt = PZ" 0Q, ,= éw% 0 Q,—, on D'(K/M).

Proof. The first three parts follow as in Lemma 7.1.4. We prove part iv). By continuity
(recall Proposition 2.2.2) we restrict our attention to smooth functions ¢ € C*°(K/M).
The first equality follows from Equation (3.5). For the second equality we combine
Remark 9.2.2 and 1i). O
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9.2. Fourier characterization

Lemma 9.2.3 allows the following reformulation of Lemma 9.1.5.

Lemma 9.2.4. Let p € a* and f € H,*°. Then
(dy omy,)(f) =
Ce+1

(d- o my,)(f) = —=Ne(u(H) = (p(H) + £ = D), () V€N,

Ce

—((u+p)(H) + Oy, ,, () V€ € No,

/-1
(Domy,)(f) =0Vl eN,
(0+n—3)

where Ay

= Rn—0(20+n—2)"
In particular, we obtain

Remark 9.2.5. For each p € a* and f € H,* we have

did_my,(f) =&y, (f) and  d-dymy,(f) = &1y, (f),
where & = Ao - (W(H)? — (p(H) + £~ 1)?).

In order to use Lemma 9.2.4 for proving the Fourier characterization, we need to
determine the constants ¢, explicitly. Indeed, these constants follow a nice recursion.

Lemma 9.2.6. The scalar ¢y from Remark 9.2.2 is given by
P(z{)(e1)  dimYy
PG 2o s, P

where S"1 is equipped with the normalized Lebesque measure. Moreover we have the
recursion formula

Cy =

n+ 20
Cor1=—5—¢, co=1

Proof. Let f = my,(¢) € C=(G)M Wh:r: ; € C®(G x Yy) is given by
o(g) = mo(knax(g) " )P ().
By Equation (9.7) we have
Py (f)(e) = /Kfz(k)t(f(k)) dk = /K f(k)Te(k)E(1) dk
Since t(1) = P(x%) by definition we get
PY(f)(e)(er) /f )7e(k)t(1) (e dk:—/f Lep)dk

/ o(k)(e)P(@l) (kLes dk::/KP 2 (k.en)P()) (kVer) dk

O (ke )P(xh) (k™ er) dk

fiou?
/ ) (ker)P(a)) (K er) dk.
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9. An example: The real hyperbolic case

Now note that the first component of ke; equals the first component of kTe; (i.e.
(kei,e1) = (kTe1,e1)). By Lemma 9.1.4 i) we infer

P(z})(ke1) = P(a) (k" er).
Hence, since P(zf) is real,
P (f)(e)(er) = [P(DZ2(x) = IP(@DZ2(0-1)-
On the other hand we have for each k € K
(k) = f(ek) = my,(0)(ek) = p(e)(k.e1) = P(af)(k.e1)

so that f|,. € L*(K)M =~ [2(K/M) corresponds to P(z{) under the isomorphism
L*(K/M) = L*S™!) induced by (B.2.1). We obtain

pry,(f(er)) = pry, (P(21)) = P(a7)

since P(z%) € Y; and the orthogonal projection pry, is the identity on Yy. In particular
we see that

pry, (f(es))(er) = P(af)(er).
By Remark 9.2.2 the scalar ¢, is therefore given by

_ ey (f(e)(er) _ Paf)(en)
P e)e)  IPEDT2gny

Now [Hel00, Introduction, Proposition 3.2 (ii)] yields

H P(f)
P(z{)(e1)

2 1

~ dimY,

L2(Sn—1)

and thus

P(z{)(e1)dimY;  dimY,
P(z)(e1)?  P(af)(er)’

Cp =

As a result Lemma 9.1.4 ii) yields
cop1 dimYpyy P(2f)(er)  dimYpyqn+20—2

¢ dimY; P(z{*')(e;)  dimYy n+0-2"

Remark A.1.7 implies

dimYeyy  ("TO™SY n4l—2 n42

dimY; _(n+§—3)%_ (4+1 n+20-2

and finally

41 n+l—2 n+20 n+20-2 n+2/
ce 0+l n+2U-2n+0-2  L4+1°

118



9.2. Fourier characterization

We have the following expression for the sum of the generalized gradients.

Lemma 9.2.7. Let p € C*°(G xi Yy). Then, for each g € G,
d—(p)(9) +d+(9)(9) = D_ 7;(r(Xe,;)9)(9)-
j=1

In particular, evaluating both sides at e yields

T(H)WYZ (90) = TY,_4 (dfso) + Y41 (d+g0).
Proof. This follows directly from Lemma 7.5.1 since w(X,,) = z; € C®(S"1). O
The remainder of this section is devoted to the Fourier characterization of H " e,

Lemma 9.2.8. Let u € a* and f = Y ey, fo € D(G/M) with fi = my,(¢e) €
7y, (C™(G x i Yy)) such that the equations from Lemma 9.2.4 hold for f. Then r(X)f =

(= p)(X)f for every X € ag, where r denotes the right reqular representation of ag on
D'(G/M).

Proof. By definition we have for every ¢ € C°(G/M)

(r(X)) (@) = —f(r(X)p) == > folr(X)p) = D (r(X)fo) ().

£eNy £eNg

In particular, we infer that 3 ,cn, 7(X)fe converges absolutely to r(X)f in the weak
sense by Proposition 7.2.4. Let us prove that ¢, = 7y, (f)- Indeed, we infer by continuity

5, (F) = 75, (X v () = D w, (v, (v),

keNp k€Ng

where, for each g € G,

7y, (v, (Yr))(9) = pry, (Yr(9)) = retr(g)

by Lemma 9.2.31). This implies ¢, = 7y,(f). By the last equation of Lemma 9.2.4 we
may apply Lemma 9.2.7 to get

r(H) fe = r(H)my, (7y,(f) = 7v,_, (d-my, () + 7y, (demy, ()

The first two equations of Lemma 9.2.4 imply that

r(H) fo = —N(u(H) = (p(H) + £ = D)my, (75, ,(f)

Cr—1
+ = ((u+ P)H) + Oy, (75, (F)
Ce+1
= o ) = (p(H) €= D) et + (4 p)(H) + O
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9. An example: The real hyperbolic case

Summarizing we infer that

m m—1
Sor(H)fe =3 acfet "t p)(H) +m =1+ " ((u+ p)(H) +m) s,
=0 =0 m m+1

with

a = %MW(H) — (p(H) + ) + Ci—j«u +p)(H) + € 1),

where we define ¢_; := 0 for £ = 0. We claim that a; = (u — p)(H). By Lemma 9.2.6 and
the definition of Ay we see that ay equals

n+20 ((+1)({+n—2)

(n(H) = (p(H) +£)) + ((n+p)(H)+£-1)

(+1 (n+20—2)(n+20) n+20—2
l+n—2 l
= m(M(H) —(p(H) +0)) + m((MJrP)(H) +0-1)
l+n—2
=u(H)— ——(p(H —(p(H -1
pH) = 2= (o) + 0+ —— o (p(H) + £~ 1)
= u(H) — p(H),
where we used p(H) = "7_1 for the last equality. This proves the claim and we infer that
m m—1
Crm—
> r(H)fele) =(u—p)(H) D folg) + (4 p)(H) +m = 1) fu(0)
£=0 £=0 m

(4 ) (H) ) g (),

We finally claim that the last two summands converge to 0 as m — co. By Lemma 9.2.6
and the orthogonality of the Y; we have

Cm—1 _ Cm—1 _ Cm—1 _
o fm(p) = e Jm(om) = em J(om) nt2m—2

m

f(om)-

As in the proof of Proposition 7.2.4 we see that for each N > 0 there exists a constant C
independent of m such that

[f(pm)] < C(L+m*) ™,
Choosing N large enough implies the claim. O

Lemma 9.2.9. Let u € a* and f = Y ey, fr € D'(G/M) with f; € my,(C™(G Xk Yy))
such that the equations from Lemma 9.2.4 hold for f. Then Urf = 0 for every Uy €
COO(G XM n()).

Proof. Recall from Appendix B.2.1 the basis {Ye,,...,Ye, ,} of ng. We write Uy €
COO(G XM 110) as

U+(g) = ’{1(9)}/61 T+ %nfl(g)}/@nfw g e Ga
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9.2. Fourier characterization

for some real-valued smooth functions xk; € C°°(G). By definition we have for each

p e CRG)M
UL f)e) = f(ULe) =D folUte) = D> (Urfo)(e) = > Z Ye, ) fo)(kjp).
£eNg LeNg leNg j=1
(9.11)
Note that for each j € {2,...,n}
0 e]T 1 0 ejT
ng > Y'e];l = | —€i-1 0,1 ej—1| = Xej + | —ej € po D
0 e, 0
and denote the latter matrix by A; € £5. We have
r(Ye, ) e = r(Xe;) fo+1r(Aj) fe (9.12)
and first investigate the first summand. For each g € G it evaluates to
* d *
r(Xe,) felg) = r(Xe; )y, (my, (F))(9) = - . Ty, (f)(gexptXe,;)(e1)
(9.13)

= (Vmy, (1))(9)(Xe;) ().

According to Equation (7.11) we write
(Vs (1)(9) = oy (domy, (£)(9)) + 15 (dyy, (£)(9))
= “EN(u(H) = (p(H) + £ = 1)y~ (73, (5 (9))

+ i((,u + p)(H) + K)L%H(Wik/zH(f)(g))’

Ce+1
where we used the first two equations of Lemma 9.2.4. Moreover, we obtain

(Vry, () (9)(Xe;) = C%Ae(u(ﬂ) — (p(H) + £ = 1)1y~ (75, (F)(9)(Xe,)

Cy .
+@((N+p)( )+€)LYi+1(7TYe+1(f)(g))(Xej)
Since Xej € p corresponds to e; € C"

using the isomorphism Y; ® p* = Hom(p, Yy).
' and LY+1 that

under the isomorphism p = C" we have by the definition of Lyi
n+20—4 N
— = Py, (F)(9)

(VA ()(9)(Xey) = = Me(pu(H) = (p(H) + £ = 1)) =2 Playny,
1 9m,, (D)

Co—1
+ L ((u+p)(H) +0)
Cp+1 K p 41 81,‘]'
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9. An example: The real hyperbolic case

By Equation (9.3) we infer

|22 ory, (f)(9)
T n+200—1)—2 Ox;

P(zjmy, ,(F)(9)) = zjmy, (F)(9)

and therefore

1 ony, (f)9)

Plasmty (N(0)e1) =~y ).
As a result we obtain
(T 6K o) = M)~ )+ £~ 1) 2 e (7 e
b+ 0y e D
— LN ~ (plH) + £ D) %81;;0)(9) o
(et D) + 0 a&gg @ . (0.14)

Let us now discuss the second summand of Equation (9.12). We first note that

d

r(A4)fulg) = r(A) (3, (o) = |

7y, (7Y, (£))(g exp t4;).
Now 7y, (f) € C*(G xk Yy) and exptA; € K imply that

Ty, (13, (f))(gexptA;) = 7y, (f)(gexptAj)(e1) = me(exp —tA;)(ny,(f)(g))(e1).

We conclude that

d *
r(4j)fel9) = - - Te(exp —tA;)(my, (f)(9))(e1)-
Using Equation (9.8) we obtain that the matrix Ej; — E1; € so(n) acts on functions
1 : R® — R via the derived left regular representation by
N o

B — E1))ap = —a1 o + 222
(Ej1 15) xl@xj+$]31:1

Since 74 is the left regular representation and exptA;.9 = expt(Ey; — Ej1)d, 9 € S"71,
by the definition of the action of K on the sphere (see Appendix B.2.2) we deduce

ony oy ony
(A flg) = (mj yé(xfl)(g) . Yfa(xj?(g)) (1) = — yé(xf;)(g)

(e1). (9.15)
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9.2. Fourier characterization

Combining the Equations (9.12), (9.13), (9.14) and (9.15) we infer that
1 ony, ()9

PV M) = = N = (o) €= 1) g e ()
co 1 omy,, ()9 ony, (f)(9)
+@((M+P)(H)+£)€+1 oz, (61)—87%(61)
N H) = (o) + £ = 1)) () fea0)
= (ot () + O (A7) fera(9) + (4 fulg).
Ce+1
Summarizing we conclude that >y (r(Ye,;_,) fe)(¢) equals
m—1
>~ aulr(4) o) + (1 2t UEOTEM Y 47y,
£=0 m
- o WAL ) fs)) (9.16)

where the coefficient ay € C is given by

_ Gy p(H) = (p(H) +4)  co1(p+p)(H)+L-1 1
a= cy e n+f—2 B cy ¢ +

for ¢ # 0 and

gAlu(H)—p(H)

1.
Co n—2 +

ag —

Note that m.(f)(g) € Yy is the restriction of a homogeneous polynomial of degree zero,
i.e. of a constant function. In particular, the partial derivative of m.(f)(g) with respect
to x; is zero and thus

(r(4;) fo)(¥) = 0.
We will now prove that ay = 0 for each £ > 0, i.e.
vy, #H) = () +0) e (ot p)(H) 01
Cy n+f—2 Cy l
Applying Lemma 9.2.6 and using the definition of Ay it follows that the first summand is
given by

ay +1=0.

n+2fAZ p(H) — (p(H) +0)

(17T =2
n+2L (+1)(l+n-2) w(H) — (p(H)+£)
U+ U D) +n—4H)2¢+1)+n—2) n+4l—2
n4+20 ((+1)(l+n—-2) p(H)— (p(H)+ 1)

C+1 (n+20—2)(n+20) n+40—2
_n(H)—(p(H)+4) _ p(H)+€— p(H)

n+20—2 n+20—2
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9. An example: The real hyperbolic case

The second summand simplifies to

L pEpH) 1 (a1
n+20-1) 1 n+20—2

Finally, we deduce that

p(H)+l—p(H) (p+p)(H)+(-1

— 1
a n+20—2 ntoi—2
_ _pEH) - pH) + (ptp)H) -1
n—+20—2
2p(H) +20—1 n—1+20-1
ntal—2 ny2e—z T170

By Equation (9.16) and Lemma 9.2.6 we thus infer that

> (o (¥, 1) = (1 2t UEOTE =Y 45y,

/=0 Cm m
C::l 4 +£,2(_f1) . m(r(Aj)me)(tp)
— (1 - 277% — (1 + p)(fg +m— 1) AN ()

- m+1 (p+p)(H)+m

L bt I 0 )0
— (1— n+;®n_2(u+p)(Hﬂz+m—1)fm(r(Aj)@)

m+1 (u+p)(H)+m
n 4+ 2m m—+1

Equation (9.11) therefore yields

fm+1 (’I“(A])QO)

(U—i-f _n%gnoozz 6] 1 fé Rj— 130)

=0 j=2

—— I (1_ n+277n_2(u+p)(H)+m—1)fm (Zr(Aj)(ﬁj_lso))

+ lim m+1 (M+P)(H)+mfm+l (iT(Aj)(Hjlsﬁ)) ‘

m—oo n + 2m m+1

Since f defines a distribution, the series

> fe (Z ) (k- 1@)) f (iT(Aj)(ﬂj—w))

EENO J 2 j:2

converges and especially fo(37_o7(A;)(kj-1¢)) — 0 as £ — co. This implies that

Ueh)e) = (1-3) 045 -1:0=0.
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9.3. Explicit formulas for generalized gradients

Proposition 9.2.10. Let u € a* and f = Y ey, fo € D'(G/M) with fo € my,(C®(G x

Yy)). Then f € H,* if and only if the equations from Lemma 9.2.4 hold for f.

Proof. The if-part follows from Lemma 9.2.8 and Lemma 9.2.9. The only-if-part is given

by Lemma 9.2.4.

9.3. Explicit formulas for generalized gradients

O]

The following two lemmas provide explicit formulas for the generalized gradients (recall

that the embeddings 7y, are injective).

Lemma 9.3.1. Let uy_1 € C°(G xi Yy—1). Then

= O(r(Xe, Jue-1(9))

(n+20 = D)y, (drue)(9) = (n+ € = 3)(r(H)ue—1(g))(e1) = 3

=2 8xj

for each g € G.
Proof. By definition 7y, (d4us—1)(g) = (d+ue—1)(g)(e1) equals

Ty (Vuen)(@)er) = Ty (Z(Vw_lxg)(&j) ® ) (e1)

J=1

Ty (r(Xe, Jue—i (9) @ €5)(ex)

I
M=

.
Il
—

I
\E

P(z;(r(Xe;)ue-1(9)))(e1)-

<.
Il
-

Equation (9.3) yields

ol O(r (X, Jur-a(g))

P(x;(r(Xe;)ue-1(9))) = zjr(Xe; )ue-1(9) — ntol—4 Oz

For j € {2,...,n} we obtain

1 9(r(Xe)ue1(9))

Pl (X Juer (@) (€1) =~y g @)
and for j = 1 by Lemma 9.1.3
P (r(Xe,Jue1(9)))(e1) = (X, Jue-1(g)er)

The lemma now follows from X., = H.

(e1)
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9. An example: The real hyperbolic case

Lemma 9.3.2. Let uy € C*°(G xi Yy). Then

(n 420~ Dy, (A w)(g) = Lo (g en) + 3 2D
i=2 j
for each g € G.
Proof. By definition 7y, | (d—u¢)(g) = (d—ur)(g)(e1) equals
Ty! , (Vue)(9))(er) = Ty! (Z(VW)(g)(Xej) ® e;‘f) (1)
j=1
= > Ty (r(Xeyuelg) @ €5)(er)
j=1
- 1 9(r(Xe;)ue(g))
:j;n+2€—2 oz (1),
where we obtain
Ol ) _ KD ) ity
il T
using Lemma 9.1.3. ]

We can use these explicit forms to give a direct proof of Lemma 7.5.2 for SOg(n, 1).
Lemma 9.3.3. Let £ € N and uy € C*°(G xi Yy). Then
(Ty, (we), my, (due—1)) 2y = — Ty, (dwe), Ty, (we—1)) 12
for each ug_1 € C°(G X Y;_1) if one side exists.

Proof. By Lemma 9.3.1 we obtain

(n + 20 — 4)(my, (ue), Ty, (due—1)) 126y = /G ug(g)(e1)(n + € = 3)(r(H)ue-1(g))(e1) dg

- [uten . T ) g

=2

For the first summand we have

/GW(g)(el)(T(HW—l(g))(el)dg = —/ (r(H)ug(g))(e1)ue—1(g)(e1) dg.

G

For the second summand recall from Equation (9.15) that the element A; := [ —e;

of £ acts via the left regular representation on r(Xe;)us—1(g) by

O(r(Xe,)Jue-1(g))  O(r(Xe;)ue-1(9))
856j / 0r1

Ajr(Xey)ue-1(g) = 1
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9.3. Explicit formulas for generalized gradients

O(r(Xe; )ue—1(9))

and thus (A;.r(Xe,)ue—1(g))(e1) = #(61). Moreover, u;—1 € C°(G Xk Yi—1)
implies
d
(X Ju(o))(en) = | (X ues(9)(exp—tAs.e1)
t—
d d
== o @5 up—1(gexp sXe;)(exp —tA;.e1)
_ 4 4 ug—1(gexp sXe, exp—tA;)(er)
T 0 r—0 d5 oo ¢—1\g €XpP SAe; €XP j) €1

= —(r(Xe, Ajur1(9))(e1),

where we extend r to the universal enveloping algebra of g. We infer that

/GW (e1) Z": eéxlie 1(9))(81)(19

:_Z/ ug(g)(e1)(r(Xe; Aj)ue—1(g))(e1) dg

- —Z LA X Jur) e (9)en) dg

- —2_22 (e, 45 = Xy, AgDuelg)) er Vi (9) ) .

Note that the commutator [Aj, X,,] is given by H. It follows that

/ Uz 61
G

J

-- Z [ Ao e (G)e dg = (= 1) [ (o) erJuriG)fer) ds

e] Ug 1(9))(
Ox;j

e1)dg

n

2

— Z/ (‘;;JW (e1)us—1(g)(e1)dg — (n — 1)/G(T(H)W(Q))(el)w—1(g)(61)dg.

Therefore (n + 2¢ — 4)(my, (ur), my,(d+ue—1)) 12(c) equals

eJ UZ ))

— (¢ =3) [ (r(Huelg))er)uei(g) er) dg — Z / a—fgﬁ(el)ueﬂ(g)(endg

+ (=) [ (r(H)urlg)) e urr(g)(en) dg

e] uf ))

—(6=2) [ (r(Hulg))er)uer{g)(en) dg - Z [ A i s
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9. An example: The real hyperbolic case

Using Lemma 9.3.2 we may rewrite this expression as

~(n+ 26 = 2y, (d-we). v,y (ue-)) ) + 2 [ ((H)uolg) )1 () en) do.
(9.17)

According to Lemma 9.2.7 we obtain

/G(T(H)w(g))(61)W—1(g)(61) dg = (my,_, (d-ue) + 7wy, (dyue), Ty, (we1)) 2
= <7TYZ71 (d-uy), MYy (u€—1)>L2(G)
since — using the orthogonality of the Y, —
<7TY£+1 (d+Ug), Y1 (uﬂ—l»LQ(G) = /G MYy (d.,.uK)(g)ﬂ'Y[71 (ue_1)(g) dg

- / / (d ) (nak)(er) (ug_y) (nak) (1) dk dnaK
G/K JK

/ /(d+uz)(na)(k.el)(w_l)(na)(k.el)dk:dnaK
G/K JK

0.

Finally, Equation (9.17) yields

(n+ 20 — 4)(my, (we), my, (dywe—1)) 2y = —(n+ 20 — 4)(my,_, (d—ur), 7y, (we-1))L2(c)

withn+20—4>3+2—-4=1>0. O

9.4. Spectral correspondence

In this section we state and prove a correspondence using only our Fourier characterization.
We first investigate the general case and then consider the first exceptional parameter in
some more detail. In the latter case, the minimal K-type Poisson transform is related to
one-forms and some more precise results can be shown.

9.4.1. The case of arbitrary exceptional parameters

We start with a direct proof of Theorem 6.1.1 in the case of SOg(n, 1).

Proposition 9.4.1 (see Theorem 6.1.1). Let p = —p — ka € a*, for some k € Ny,
be an exceptional spectral parameter (see Lemma 5.2.1). Recall the unique irreducible
subrepresentation Wy, of H,, from Lemma B.2.1. Then

FHZ _ F<Wk>*a

where ' ()* denotes the T-invariant smooth, L? or distribution vectors.
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9.4. Spectral correspondence
Proof. Since (W)* C H};, one inclusion is trivial. To prove FH; C '(Wy)* we need to
show that
Prn(f )=0
for every f € FH; and every ¢ < k. By Remark 9.2.2 we have
pry, (f) = pry, (mu(e) f) = co - By (f)(e)

for some ¢, € C\ {0}. Therefore, it suffices to prove P/}/f — 0 for ¢ < k. We start
w

with the case £ = 0. Recall from Section 3.2 that the scalar Poisson transform Pg/ 0 maps
H}, into

{fec=m): Af = (p(H)? - u(H)?) £},

where H” = G - [ep+1] = G/K denotes the real hyperbolic space of dimension n and
A denotes the positive Laplacian. Taking I'-invariants on both sides implies that the
G-equivariant Poisson transform Plf 0 maps FHZ into

{fec=mn): Amf = (p(H)? - u(H)?) f} (9.18)

by identifying 'C°°(H") = C>°(I'\H"). By the definition of I' we have that M = I'\H"
is a smooth compact Riemannian manifold. For k # 0, the positivity of the Laplacian
and

p(H)? — p(H)? = —2p(H)k — k*> < 0 (9.19)

therefore imply that the space in (9.18) is the zero space and P;/O

= 0. Let us
FH:;«

prove the same equality for k = 0, i.e. u = —p: In this case, by Equation (9.19), Pfop(f)
descends to a harmonic function on the compact Riemannian manifold I'\H" and thus
has to be constant. Lemma 9.1.5 yields

n—1

(d- o PYL)(f) = A1 - (=2p(H))PX(f) = PYo(f).

n
Using Lemma 9.3.3 (which is applicable by the last equation of Lemma 9.1.5) we obtain
n
0 < [lmyy (PXS(F)I72 = m(ﬂyo(d—Pf})(f)),WYO(PX%(f)»LQ

- n T,L 1 (v, (Pfk(f)), (%] (d+Pz/%(f))>L2 =0,

since the derivative of the constant function Pz/%( f) is zero. Thus, y; (PXZ( f)) =0and

Pfg( f) = 0 follows from the injectivity of my;. The first equation of Lemma 9.1.5 reads
W eNo, feHy: (dyoP)(f)=(—k)P(f)

and recursion yields P}L/’f R 0 for ¢ < k. O
m
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9. An example: The real hyperbolic case

In analogy to Proposition 2.2.3 we have the following

Proposition 9.4.2. Let u:= —p — ka € a*, for some k € Ny, be an exceptional spectral
parameter. Then there are isomorphisms of finite dimensional vector spaces

Res ((n— p)(H)) = " (Wy)™> and Resk-((n— p)(H)) = (W)™
where ()™ denotes the space of T-invariant distribution vectors.
To prepare for the quantum-classical correspondence, we need one more step.

Lemma 9.4.3. Let k € Ny, upy1 € C°(G x g Yii1),

cy 1

dyup_ 2
Cgfle—(k—'—l) +Ur—1 (9 O)

Uy =

for each £ >k + 1 and up =0 for each £ < k + 1. Define the formal sum

f = Z W}/Z(Ug).

£eNp
Then:
i) If Duy = 0 for each € Ny, then f defines a distribution on G.
it) If Duy = 0 and

d_u, = %)\g(—2p(H) —k— 0+ 1)upq (9.21)

for each £ € Ny, then f defines a distribution in H, > with p = —p — ka € a*.

Proof. We start with the first part. By Lemma 7.2.5 it suffices to show that ||y, (ue)||? is
O((1 + £)N) for some N € N as £ — oo. Using Lemma 9.3.3 and Lemma 9.2.6 we obtain

)H2 (9§0) cy 1
Co—1 /— (k: +1
cy 1

= T T g 1y e (A i ()

(921)_( ce )2)\4(—2/)(H)—k‘—€+1)
Co—1 f—(k‘—kl)
__(n+2£—2>2 l+n—-3)(—(n—-1)—k—£+1)
1 (n+20—4)(n+20—-2)(¢—(k+1)
m+20—-2)l+n—-3)(n+k+{—2)

N Un+20—4)(¢—(k+1)) 170y, (we—1)

170y (e ] (my; (we), Ty (due-1))

I

[y, (we—1)

) 17y, (we—1)|?

1.
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9.4. Spectral correspondence

For every m € N, iterating this equation yields that |7y, (wktm)|? equals

(n+2k+r)=2)(k+r+n—-3)n—2+k+k+r)

13 (k+r)(n+2(k+7r)—4)(k+r— (k+1)) v ()|
42k +r)—2)(k+r4+n—-3)(n—2+2k+r)
- er (k+r)(n+2(k+7r)—4)(r—1) v ()
_ 2k +22]7€n+—|—nn— 2 H (k—i—r—&-?k——i_ T))((n 2)—|— 2k+r)||7TYk+1(Uk+1)H2
r=2

214:—1—2m+n—2(k—i—m—H"L—3).(!’4:—1—1).(714—2!’{:—1—771—2)!H7r ()
2%k +n (k+n—2)1(k+m)(m—1)l(n+ 2k — 1)1 7Yk 764

I

Summarizing all constants that are independent of m into a constant

(k +1)!

O Bt n =2+ 2k — 1))

yields that |7y, (uktm)|* equals

(k+m+n—-3)(n+2k+m—2)!

(2k +2m+n —2) e )l m — 1))

C‘|7TYkI+1 (uk+1)||2'

Note that

(k+m+n—3)!
(k+m)!

=(k+m+n—-3)---(k+m+1)

is O(m"~3) (there are n — 3 factors) and

(n+2k+m—2)!
(m—1)!

is O(m"2*=1). Therefore |7y, (Urtm)||? is O(m>T2¥=3) This proves i).
Let us now prove the second part. By definition of u; we have

=Mn+2k+m—2)---m

diug 1 = %(—k + (- 1)) (9.22)

24
for every £ > k + 1. Note that this equation also holds for every ¢ < k + 1. Together
with the assumptions of the second part each equation of Lemma 9.2.4 is fulfilled for
w(H) = —p(H)—k. The lemma now follows from the first part and Proposition 9.2.10. ]

We can gain some more information about the action of the generalized gradients by
connecting them to the action of Casimir elements. This makes use of the fact that we
know the infinitesimal characters of principal series representations.
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9. An example: The real hyperbolic case
Remark 9.4.4. For ¢ € C°(G x g Yy) with Dy = 0 Lemma 7.5.3 implies

d-dip+ did_o =r(Q)e.

1
AYet1,Ye) AY—1,Yy)

If p = PEZ (f) for some f € H, we thus obtain — by Remark A.1.3 and Equation (2.6) —

n—+ 2/ n+20—4

——d_ _o = (u(H)? - p(H)? - -2
i1 G-+ g dedop = (uH)T — p(H)" — £l +n = 2))p,

where we used the fact that the Casimir operator of ¢ acts by (fe; + 2p., le1) (see e.g.
[Kna86, Lemma 12.28] for v = le; + p. with the highest weight fe; of Y;).

We can now prove a quantum-classical correspondence which, in contrast to the
correspondence from Theorem 8.1.1, does not use the multiplicity-one result of [DGKSS].

Theorem 9.4.5 (Quantum-classical correspondence for exceptional spectral parameters).
Let .= —p—ka € a*, for some k € Ny, be an exceptional spectral parameter (see Lemma
5.2.1). Recall the unique irreducible subrepresentation Wy, of H,, from Lemma B.2.1. By
Proposition 5.2.3, the minimal K -type of Wy, is given by Yy11. Then the map

Yii1
Py

P : FHM_oo — H,
where H denotes the space
{u e "'C®(G x g Yit1) | deu =0, r(Qp)u = (w(H)* — p(H)?)u, DATu =0 VYm € Ny},
is an isomorphism (with p(H)? — p(H)? = k(k +n —1)). Moreover, we have

H =T (W)™,
where U' (W)™ denotes the T-invariant distribution vectors in Wj.

Proof. The proof is separated into the following steps:

i) im (P,f k1

)gH,

N — 00
Hy,

ii) Pkt

is injective, and
rg—o°

oy Y,
iii) im (PM’“+1

FHMOO) = H

i) The second equation of Lemma 9.2.4 shows

(d- o PY)(f) = —2\p1 - (p(H) + k) PYE(f)
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9.4. Spectral correspondence

for each f € H, > and therefore d_ (im(Pg/’“Jrl

FH’W)) = 0 by Proposition 9.4.1. Using
n

Lemma 9.2.4 repeatedly proves that for each f € FHljoo, d’]:P,}fk“(f) is a multiple of
Py (f) and

DA P (f) = 0.

Finally, the scalar action of €2 follows from the infinitesimal character of H,, (see Equation
(2.6)) and the G-equivariance of PEL/ 1. This proves i).
ii) The injectivity follows from Proposition 5.1.3 since Irr(pu) = {Wj} by Lemma B.2.1
and multg (Yiq1, Wi) =1 #0.
iii) For the surjectivity let u € H. Recall the constants ¢, € C\ {0} from Remark 9.2.2.
Define uy =0 for £ < k + 1, ugy1 = cgy1 - v and recursively for £ > k + 1
cy 1

= diup_q. 2
PR T Bt (9.23)

We define the formal sum

f=>" my,(w). (9.24)

LNy

Note first that — by the third property — the first equation of Remark 9.4.4 is fulfilled for
each uy. Moreover, by the second property and since ug11 € C°(G X g Yit1), we infer
the second equation of Remark 9.4.4; which simplifies to

n+ 2k +2

S duug = (u(H) — p(H) = (b4 )+ 1= D),

since d_uyy1 = 0. Substituting djug41 for the corresponding scalar multiple of ugo
(by Equation (9.23)) we obtain

d_u, = %Ag(—zp(ﬂ) —k— €+ L)ug_1. (9.25)

for £ = k 4+ 2. Let us now iterate that argument to obtain this equation for all £ € Ny so
that we can use Lemma 9.4.3. Note that, as G-equivariant maps, the generalized gradients
commute with 4 so that the latter acts by u(H)? — p(H)? on each of the uy. As above,
we thus obtain the second equation of Remark 9.4.4 for each ¢. Replacing again djugyo
with the corresponding scalar multiple of uy. 3 in that equation for £ = k + 2, dyug.3
by the one for ug4 and so on, we iteratively infer Equation (9.25) for all £ > k + 2. As
d_u = 0 implies that equation for £ = k + 1 and as it is trivially fulfilled for ¢ < k& (both
sides are zero), it holds for each ¢ € Nj.

By Lemma 9.4.3, f defines a function in H,*°. Since every wuy is left I-invariant (note
that the generalized gradients are G-equivariant and w1 is I'-invariant by definition),
fe FHJOO. In order to prove the surjectivity we are left to prove that PEL/’““(f) = u.
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9. An example: The real hyperbolic case
Equation (2;4) resp. Proposition 2.2.2 implies that there exists some f € D’ (K/M) such
that Q,_,(f) = f. By Lemma 9.2.3 we infer

1 Uy

PY(f) = P (Qu-p() = m(gu () = =t (f) = L.

Cy Cy

For ¢ = k + 1 we especially infer

Y, Uk+1
Puk+1(f) = 7Ck+1 = U

All in all we constructed f € 'H , °° such that PZ *1(f) = u. This finishes the proof of
the surjectivity. The isomorphism

H = (W)™

follows directly from Proposition 9.4.1. O

9.4.2. One-forms on the real hyperbolic space

For the first exceptional parameter —p € Ex we can say slightly more about the
correspondence. Note first that the minimal K-type of Wy is given by Y; = p such that

GXKylgGXKp*gAlHn 3:,T>'<Hn7

where T*H"™ denotes the cotangent bundle of H”. The irreducible M-representations
occurring in 7 := (Ad, p) are given by

Pl =a® {Xy: v1 =0} = (00, Vo) ® (01, Viry)-

Here, oy is the trivial representation and V,, = n as M-representation. As in Definition
3.3.1 we define the Poisson transform PJ: H, > — C*(G xk p) = C>®(A'H") by

continuous extension of
PHA@) = [ arlg™ k)70 (k) Ad(kr(g™ k) H .
Note that the tensor product Y; ® p* is given by
Y1 @p* = Hom(p, p) = Mat, (C),

where SO(n) = K acts on Mat,,(C) by conjugation. Using this isomorphism we infer the
decomposition

diagonal symmetric and traceless skew symmetric [ __
Mat (C) {matrlces} ® { matrices } ® { matrices =Yoo V1 OY:
into irreducible K-representations.

Lemma 9.4.6. Let 7 := (Ad, A?p). Then 7 =g Vi and especially mult (oo, =0.

A
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9.4. Spectral correspondence

Proof. Identifying p with C", the adjoint representation corresponds to the defining
representation of SO(n) = K on C". The highest weights of the representation of SO(n)
on A?C" are given in [Kna02, Problems 7-10, p. 340f.] and coincide with those of V;
(note that both representations are reducible in the case of n = 4). By the branching
rules for SO(n) (cf. [Kna02, Theorem 9.16]), we see that the trivial M-representation og
does not occur in A2C" (we always have ¢; = 1 # 0 in the notation of [Kna02]). O

Thus, it is natural to consider the exterior derivative and the codifferential
d:C®(A*H") — C®°(A*TH")  and  §:C®(A*T'H") — C®°(A*H").

Note that Lemma 9.4.6 and Corollary 3.3.4 imply that d o P is the zero map. Moreover,

since § o P is a multiple of the scalar Poisson transform by Corollary 3.3.5 and the latter

one restricted to the socle soc(H_,) is zero by Remark 6.1.4, we infer that P1p|proo
-pP

maps into
H' = {n e C®°(A'H") | dn = 0, én = 0}.

It now follows from [Gai88, Theorem 2(e)] that H' is irreducible (as well as the socle)
and we conclude as in Section 8.1 that P”, is indeed an isomorphism from o :;,’o onto
31, In particular, we arrive at

Proposition 9.4.7. The Ruelle resonance states associated with the first exceptional
parameter p = —p are given by the I'-invariant elements in H':

Res (1 — p)(H)) = Resx (1 —n) = '{n € C*(ATH") | dn =0, on = 0}.
Moreover, we may also identify (recall M = T'\H")
Res% (—2p(H)) = {n € C*(A'M): Alp =0} = {n € C®°(A'M): dn =0, én =0},

where A == d§ + 6d denotes the Laplace operator on one forms. In particular, the
corresponding dimension is given by the first Betti number by(M).

Proof. The first isomorphism follows from Proposition 2.2.3. We prove the relation to
the Laplace operator. Since M = I'\H" is a smooth compact manifold, we have an L?
inner product on the one forms given by

<777 C)Al = /M n A *C?

where x denotes the Hodge star operator. It is well-known that the codifferential 0 is
the adjoint operator of the differential d with respect to this inner product. Thus, since
A = dj + §d, we obtain

(Aln,m) a1 = (dén,n)ar + (5dn,n)ar = (61, 0n) a1 + (dn, dn) z1.

Especially, we see that dn = 0 and én = 0 if Ay = 0. By the definition of A, this
is even an equivalence. For the dimension note that there is an isomorphism between
harmonic one forms and the first de Rham cohomology group H!(M;R) of M by the
Hodge theorem. Finally the dimension of H!(M;R) is given by b (M). O
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9. An example: The real hyperbolic case

Following the lines of [O1b94, §5.2], we may also remark that

o) ={-p}  and A1) = {~(p—a)}.
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A. Computations of scalars relating Poisson

transforms
G K K/M  mq man p(H)
SOg(n,1), n >2 S(O(n) x O(1)) 2SO(n) S ! n-1 0 n—l
SU(n,1), n>2 S(U(n)xU(1))=Un) S*»1 2m-2 1 n
Sp(n,1), n>2  Sp(n) x Sp(1) St 4n -4 3 2n+1
Fy(_20) Spin(9) Sto 8 7 11

Table A.1.: Structural data of rank one groups (recall that a(H) = 1 for the unique
simple positive restricted root « of (g,a)). The isomorphism of K/M with a
sphere is given by the adjoint action of K on H € ay C p.

In order to compute the scalars T; ‘3// (py,u) occurring in Proposition 5.3.2 we first compute
the scalars A(V,Y") in each case and then conclude by using Lemma 7.3.11 and Equation
(7.9). For the explicit calculations we will use hypergeometric functions.

Definition A.0.1. The (Gaussian, ordinary) hypergeometric function F (of type (2,1))
is defined by (if the series converges)

F(a,b,c,z) = Z —

= () n!
where a,b,c,z € R, ¢ > 0, and
1 n=20
(q)n::
q(g+1)...(¢g+n—-1) :n>0

denotes the Pochhammer symbol. Note that F' is a polynomial in z if a or b is a
non-positive integer.

Lemma A.0.2. (¢f. [JW77, Lemma 4.1]) Assume |z| < 1 or a € =Ny or b € —Nj.
Then F has the following properties:

(i) LF(a,bc,2) = LF(a+1,b+1,¢41,2),

(i) (c—b—a)F(a,b,c,z) = (c—b)F(a,b—1,¢,2) +a(z—1)F(a+1,b,¢,2),
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A. Computations of scalars relating Poisson transforms

(iii) (¢ —b—a)F(a,b,c,z) = (c—a)F(a—1,b,c,z) +b(z —1)F(a,b+1,¢,2z),
(iv) F(a,b+1,¢c,2) — F(a,b,c,z) = “2F(a+1,b+1,c+1,2),

(v) F(a+1,b,c,2) — F(a,b,c,2) = 2F(a+1,b+1,c+1,z).

A.1. The Case of G = SOy(n,1), n > 3

Considering the compact picture and the isomorphism K/M = S*~! we see that (see
Equation (B.2.2)) H,, decomposes as the Hilbert space direct sum

H, =g L*(K/M) = L*(S"!) =2k @ZEN 7
where Y; denotes the space of all spherical harmonics of degree £.
Remark A.1.1. For G = SO¢(2,1) we have H,, = @eez}/g, with Y, == C- 2 € C>(Sh).

The Dynkin diagram of K is of type B,, if n = 2m + 1 is odd and of type D,, if
n = 2m is even:

. .
Byt e e Dpp: o—e—
aq a2 Qm—2 Qm—1 Qm aq a2

We choose a Cartan subalgebra t of £ as in [Kna02, Chapter II, §1, Example 2, 4] with
roots

Ap={xe;xej: 1 <i#j<m}U{xe;: 1 <i<m}resp. Ap={Fe;te;:1<i#j<m}
if K =2 S0(2m + 1) resp. K = SO(2m) for some m € N. As positive systems we consider
Af ={eitej:1<i<j<mluU{e:1<i<m}resp. Af ={e;*te;:1<i<j<m}

with simple systems II given by

e; —€; < m
= {a,...,an} with aj:={" i+l ‘7
em, j=m
in the odd case and
€5 — €541 tj<m

II:={o,...,0n} with o= .
Em—1tem :)J=m

in the even case. The corresponding half sum of positive roots is given by

1 3 1
Pe = <m—2>61+(m—2)62+...+2emresp. pe=(m—1er+...+em_1.
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A.1. The Case of G = SO¢(n,1), n >3

The highest weight of Y} is fe; (see e.g. [Kna02, Example 1 of §V.1, p. 277]). Introducing
the angular coordinates

x1 =rcos(§), x; =rsin(éw;, i > 2,

where 31" yw? =1, 0 < ¢ <, we infer by [JW77, Theorem 3.1(2)] that

In order to compute the scalars A(V,Y) for Y, V € Ky = {[Yy]: £ € No} it suffices to
decompose w(H )¢y by Lemma 7.3.10.

Lemma A.1.2. For each k € Ny we have

k n+k—2

P T A

WO = or s

Proof. Recall that the identification from Equation (B.2.1) comes from the K-action on
p, where e; € S"~! corresponds to H € a. This implies that

w(H) = x1 = cos(§)

as a function in C*°(S"~!). Therefore,

k1—k n—1
w(H)¢y, = cos"(&)F (—, —_— r , — tan? {) :
2" 2 2
By Lemma A.0.2.(ii) with a = —%, = 1;21“, ¢ =251 and z = —tan®¢ we infer that
1—

(n+2k—-2)F (—%, Tk, %7 z) equals

k+1 k n-—1 k 1-k 2—k n—-1
—2)F | — —— F .
(n+k=2) ( 2 7 ’Z>+COS2§ ( 2 7 2 7 2 ’Z)

Multiplying by cos®! ¢ yields the result. O

Remark A.1.3. Note that Lemma 7.3.10 implies that

n+k—2 n+k—2

MYk, Yit1) = PYYHI(W(HWY;C)@M) = mﬁbYkH(@M) = nt2k—2

The scalars T;%il(pyk#)(e) will be computed

Similarly, we have \(Yy, Y1) = %

in Proposition A.5.1.

In order to describe the generalized gradients properly we will now decompose the
relevant tensor products.
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A. Computations of scalars relating Poisson transforms

Proposition A.1.4. Let K = SO(2m + 1), m > 1. For m > 1 the tensor product
Yi ® p* decomposes for k € N into

YV @p =Y 1 @Y1 0V

where Vi, is the K-representation with highest weight kei + ea. Moreover, we have
Vi@p =Y 1 @Y @Y1 if m=1.

Proof. The coadjoint representation of K on p* = C?™*! is equivalent to the defining
representation (as well as Y1) and has weights +e;, i € {1,...,m}, and 0. Writing

V,@p 2,0 = @ LiA;,
AZ'EK

where £; := mult(A;, Yy ® Y1) denotes the multiplicity, we have by [FS97, p.274]

L= Z sign(w) multy, (w(A; + pc) — pe — key),
weW

where multy, (1) € Ny denotes the multiplicity of the weight p in Yy and W denotes the
Weyl group of €. If £; # 0 there has to exist some w € W such that w(A; + p.) — pe — key
is a weight of Y7, i.e.

w(A; + pe) = pe — ker = £ej & A = w ™ (pe + ke £ €5) — pe
for some j € {1,...,m} or
w(A; 4 pe) — pe—ker =0 Ay = wH(pe + key) —

Let us first consider the case m # 1. Since A; is a highest weight it is dominant. Thus,
pe + ke £ ej resp. p. + kep must not lie on the boundary of any Weyl chamber. This
is the case if and only if the weight of Y] is contained in {0, +e;, ea, —€,,}. In the first
three cases we obtain for A; + p.

3 1
w~ (pc—i—kzel <<k+m—>61—|—(m—2>62+...—|—2em)
3 1
w” (,oc—i—kel:tel ((k:l:1+m—>61+(m—2)62+...+26m>

1 1 1
w(pe + key +e2) = w ! <(l€+m—2)€1+(m—2>€2+...—|—26m)

which is dominant if and only if w = id yielding A; = key, (k £+ 1)e1, ke1 + ea respectively.
For A; + pe = w™ (pe + key — e,,) we have

Ai+pc:w1(<k+m—1)61+<m—3>62+...+36m_1—1em>
2 2 2 2
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A.1. The Case of G = SO¢(n,1), n >3

which is dominant if and only if w = s, is the reflection along e,,. For this w we have
A; = key. Altogether we have

mult(key, Yy @ Y1) = Z sign(w) multy, (w(A; + pe) — pe — keq)
weW

= sign(id) multy, (0) + sign(se,, ) multy, (—e;,) =0

and similarly that the representations with highest weights (k £ 1)e; resp. kej + eo
occur with multiplicity one. For m = 1 the weights of Y; are —e;, 0 and e;. We get
A; = (k —1)eq, key resp. (k4 1)ep in this case, each with multiplicity one. O

Remark A.1.5. Using the Weyl dimension formula we see that (in the notation of
Proposition A.1.4)

_ L—1 _ _
dimyk:<2m+k 2>m+ , k(2k + 2m 1)<2m+k 1>‘

2 dimV, =

k m—1 R T om 2 k+1
Proposition A.1.6. Let K = SO(2m), m > 2. The tensor product Y}, ® p* decomposes
for k € N into

Y @p* =Y @Y @ Vi,

where Vi, is the K-representation with highest weight key + eo for m # 2 and the sum of
the K -representations with highest weight kei + e resp. key — eg for m = 2.

Proof. The coadjoint representation of K on p* = C?™ is equivalent to the defining
representation (as well as Y1) and has weights +e;, i € {1,...,m}. Each weight occurs
with multiplicity one. We can now decompose Yi ® p* = Y, ® Y1 using the Racah-Speiser
algorithm. Let

VoY) = @ LiN;
Al‘GK

with £; == mult(A;, Yy, ® Y1) = > e sign(w) multy, (w(A; + pe) — pe — kei) as in the
odd case. Since w(A; + pe) — pe — ke1 = +e; & Ay = w L (pe + key £ €;) — pe, the latter
expression has to be dominant since A; is a highest weight. Thus, the weight p. + ke te;
must not lie on the boundary of any Weyl chamber. For m # 2, this is the case if and
only if the weight +e; is eq or es. For m = 2 we get teq or Hes. In each case the
weight p. + kej + e; is dominant, so w = id. Moreover, the weight w=!(p. + ke1 & €;) — pe
is given by ke; £ e; = (k £ 1)ej resp. key + e for m # 2. For m = 2 we additionally get
k61 — €9. O

Remark A.1.7. Using the Weyl dimension formula we see that (in the notation of
Proposition A.1.6)

2 - ~1 Am + 2k — 4 —1) (2 —4
dimYk:<m+k 3>m+k1 (4m + 2k — 4)(m + k )<m+k )
m_

k » dim V= k+ 1 k—1
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A. Computations of scalars relating Poisson transforms

We remark that the dimensions of the constituents of V}, are both given by k(k + 2) in
the case of m = 2. The formula

n+k—3>§+k—1_ <n+k—3>n+2k—2

dimY; =
e ( g T k n—2

summarizes the odd and the even case.

A.2. The Case of G = SU(n,1), n > 2

By Equation (B.3.12) we can decompose H,, as the Hilbert space direct sum

—

H, =g D(K/M) =g L*(S*) 2 P Yp.q (A.2.1)

p,q€Ng

A maximal torus T in U(n) = K is given by the diagonal matrices
T = {diag(e,...,e"): 6, € R}.
Although £; is not semisimple, it is still reductive and can be decomposed as
to = 3(€0) @ [0, 8] = (iR - 1,,) ® su(n).

Let tg = Lie(T") denote the diagonal matrices in su(n,1). Then to = 3(¥y) ® ho where ho
is a Cartan subalgebra of [£g, £y] = su(n) (traceless diagonal matrices). Note that b is a
Cartan subalgebra of [¢, €] = su(n)c = sl(n, C) and that the roots of b in [¢, €] = sl(n, C)
determine the roots of t in ¢ (by extending them to t by defining them to be 0 on the
center 3(¢) = C-1,,). The Dynkin diagram of sl(n,C) is of type A,_1:

aq a2 Qp—2 Qp—1

Denoting the dual basis of the standard diagonal matrix basis F;, 1 <7 <n+ 1, by
(e;); we obtain that the roots Ag of (£,t) resp. A of (g,t) are given by

Ar={e;—ej:1<i#j<n}resp. A={e;—ej: 1 <i#j<n+1}. (A.2.2)
We choose the positive system A; = {e; — ej:1 <1< j< n} with simple roots
II={o,...,an—1}, aj :=e€j —€j41, and half sum
n—1 n—3 n—1
Pe = <2) er + <2> e+ ... — 5 Cn- (A.2.3)

By Lemma B.3.1, the highest weight of Y}, ; is given by ge1 —pe, +(p—q)en+1. Introducing
the angular coordinates (on C" & R?7)

21 =rcos(€)e’, zj=rsin(€w;, 2<ji<n
where 37 olwj[? =1, 0 < ¢ < 27 and 0 < € < § we have (see [JW77, Theorem 3.1(3)])
B,y = € PV7 cos?HI(E) F(—p, —g,n — 1, — tan®(£)).

We can now compute the scalars. In this case (for G = SU(n, 1)), similar computations
can be found in [Mea89, Theorem 5.6.6].

142



A.2. The Case of G =SU(n,1), n>2

Lemma A.2.1. For each p,q € Ng we have

2(p+q+n—1w(H)py,,=@+n—-1)¢y, ,, +9ov,,,
+ (q +n— 1)¢Yp,q+1 +p¢Yp_1,q'

Proof. Write ¢y, , = ei(p_q)ﬁohp,q(f ). In the angular coordinates from above we have
w(H) = Re(z1) = cos(&) cos(p)
as a function in C*°(S?"~1). Therefore,

w(H)y,, = cos(€) cos(@)e P~ Dhy, 4 (€)

_ 08()hpg(§) Lip—grye | 08 a() Lip—g-1)e. (A.2.4)
2 2

Lemma A.0.2.(iii) implies that

p+n—1 q
h = h — = hp_ A2,
cos(&)hp,q(£) Ptgt+n—1 p+1,q(6) +p+q+n— 1/'pa 1(8) ( 5)
and Lemma A.0.2.(ii) implies that
qg+n—1 P
h = h _ h,_ . A.2.6
cos(§)hp,q (&) ptag+n—1 pat+1(§) + ptqt+n—1"7 1,4(§) ( )
Combining the equations (A.2.4), (A.2.5) and (A.2.6) yields the result. O

Remark A.2.2. As in Remark A.1.3, Lemma A.2.1 determines the scalars A(Y, 4, V)
for each V € Kjr with V <+ Y, ,

To decompose the relevant tensor products we use Proposition 7.3.2. By Equation
(A.2.2) we infer that the non-compact roots are given by

A, ={x(e; —ent1): 1 <i<n}.

The following remark ensures that each representation Y, g, 8 € S, in Proposition 7.3.2
actually occurs.

Remark A.2.3. Using the Weyl dimension formula we see that

. g+n—=2\(p+n—-2\n+p+qg-—1
dim ¥y q = n—2 n—2 n—1

q+n—1> <p+n—2> (n+p+qg—1)p(n—2)
q p (n+q—-2)(p+1)

= dlm YQ7p’

= dlm Y(17p7627en+1 *

dlm }/pzlJ7ien—l+en+1 = (

For n = 2 this has to be read as dim Y, 0 —¢,4+e; =p = dim Ypp c,—e;. We get that

> dimY,,p =dimp-dimY,,; =2n-dimY,,
BESCAR

which implies that m(8) = 1 if and only if the corresponding formula for the dimension
of Y, 4.3 is not zero.
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A. Computations of scalars relating Poisson transforms

A.2.1. Alternative proof of tensor product decomposition

In this section we give another proof of the tensor product decomposition from Proposition
7.3.2 for SU(n,1), n > 2, using the Racah-Speiser algorithm. We first identify the
irreducible components of p in Ky = {Yy 4 | p,q € No}.

Lemma A.2.4. We have
D pT = Yl’()
as K -representations.

Proof. First recall from the proof of Lemma B.3.1 that Y7 o is spanned by z1, ..., z,. We

claim that
. 0, v
05 v w0 = (1),

a0 (% 1)) -

are K-equivariant isomorphisms. One easily sees that both maps map into the indicated
spaces and are inverses of each other. Let us prove the K-equivariance. Note that for
each k = diag(A4,\) € K and v € $?»~! C C" we have

0, v 0, M 1Av 0, kw
Ad(k)(o 0>:<0 0 >:<0 0)
with the action from Equation (B.3.11). Thus,
B(AL (D)) (0) =¢<Ad<k—1> ("0" 0)) — B() (k) = (hR(E)(0). O

Lemma A.2.5. We have
Ups = Yo
as K -representations.

Proof. By the proof of Lemma B.3.1 we infer that Yy is spanned by z1,...,%,. We

claim that
. 0, O
\P:p2—>}/0,1a \II(SO)(U) ::gp<<?}* O))v

v v (% 9)) v
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A.2. The Case of G =SU(n,1), n>2

are K-equivariant isomorphisms. Note first that ¥ maps into Yp 1 since, for A € C,

(o)) = ¢ (((f;)* 8)) = (A (21: 8)) = XU(p) ()

Similarly we see that ¥~! maps into p} since

vl() (A (?;: 8)) = (y) <<(f;>* 8)) = Y(R) = M(v)
_ 0, O
S ((%4)).

One easily sees that ¥ and U~! are inverse to each other. Let us finally prove the
K-equivariance. Note that for each k = diag(A4,\) € K and v € S~ C C" we have

0, 0O 0, 0 0, 0 0, O
Ad(k) <v* 0) - ()\U*A_l O) - (()\_IAU)* 0) - ((kzv)* 0) ’

where we used A* = A~! and A = A~1. Thus,

qf(Ad*(k)so)(v):so(Ad(k—l) (2?: 8)>=<(,§°1@})* 8)2(“’(@))@)- =

Proposition A.2.6. For n # 2 we have: For p,q # 0 the tensor product Y, , ® pj
decomposes into

Yp,q @ pgf = Y;hq—l @ Y;H-Lq ©® ‘/;91711’

where Vpl,q is the K -representation with highest weight ge; — €n—1 — pen + (P — g+ 1)eny1.
If p =0 we have

Y0, ®pT = Yo,q-1 8 Vg
and for g =0
Y0 ® P12 Ypr10 @ Vo,
with Yo,0 ® p] = Y10. For n =2 we have
Ypg@p1 = Vg1 @ Vi
for ¢ #0,
Y50 @7 = Ypi10® Vg

for p £ 0, where V;,l,o has highest weight —eq — pea + (p + 1)es, and Yoo @ p7 = Y1 .
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A. Computations of scalars relating Poisson transforms

Proof. We first decompose the tensor products with respect to [¢, €] (i.e. we omit the
action of the center). By the proof of Lemma B.3.1 we infer that p] = Y] o has weights
—ej, j €{1,...,n}, with respect to [¢,€]. Writing

Y, ®Yi02 @ Lil,
AiEI?

where £; := mult(A;,Y, ,; ® Y1 o) denotes the multiplicity, we have by [FS97, p. 274]

L= sign(w)multy, ,(w(A; + pc) — pe — (ge1 — pey)),
weWw

where multy, , (1) € No denotes the multiplicity of the weight 4 in Y,

n—1 +n—3 n n—1
= e e .=
Pc 5 1 5 2 5

by Equation (A.2.3) and W denotes the Weyl group of ¢. Note that

€n

w(A; + pe) — pe — (ge1 — pen) = —¢;
& A = w ' (pe + ger — pen — €5) = pe-

Since A; has to be dominant, p. + ge1 — pe, — e; must not lie on the boundary of any
Weyl chamber. We first discuss the case n # 2. Then p. + ge1 — pe, — ¢; is annihilated
by e; —ejq1 for j € {2,...,n —2}. For j =1 it is on the boundary if and only if ¢ =0
and for j = n — 1 if and only if p = 0. For j = n it is never on the boundary. In each
case the weight is dominant so that we have w = id in each case. This leads to

A; € {((] - 1)61 — P€n,q€1 — €n—1 — P€n,qe1 — (p + 1)871}

corresponding to the representations Y, ,_1, V;,lg resp. Yp41,4, where Y), ,_; does not
occur if ¢ =0 and V;,l’q does not occur if p = 0. For the highest weights w.r.t. £ we may
use [Kna02, Proposition 9.72] to obtain that each irreducible component of the tensor
product, with highest weight Z?Ill a;e;, has to fulfill Z?j’f a; = 0 (for the weights of Y}, 4
see Lemma B.3.1).

Let us finally discuss the case n = 2. Analogous to the previous calculations we obtain

1 1 1 3
Pc+qe1r —pex — €5 € {(q—2>€1— (p+2) €2, <Q+2) e — (p+2)€2}7

where the first one lies on the boundary if p = ¢ = 0 and thus
A; € {(q —1)e1 — pez,qer — (p+ 1)ea},

where the first one does not occur if p = ¢ = 0. The second weight corresponds to the
representation Y, 11 4. The first weight corresponds to the representation Y, ;1 for ¢ # 0.
For ¢ =0 and 0 # p it is given by —ej; — pes. For the highest weights w.r.t. ¢ we proceed
as above. O
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A.2. The Case of G =SU(n,1), n>2

Proposition A.2.7. For n # 2 the tensor product Y, ; ® p5 decomposes as follows. If
p,q # 0 we have

where V;%q is the K -representation with highest weight ge; + e2 — pep + (p — ¢ — 1)eny1.
If p =0 we have

Yo,4 ® 95 = Yo 041 ® V7,
and if =0

Y00p5=2Y,1 @Yy 10,
with Y0 ® p5 = Yp 1. For n =2 we obtain

Ypg®Pp3 = Ypgi1 @ Ypo14
for p#0 and

Yo,0 ® 95 = Y0041 ® Vi,
where Vo2,q has highest weight qe1 4+ e — (¢ + 1)ent1 and Yoo @ ps = Yo 1.

Proof. Again it suffices to decompose the tensor product with respect to [¢, €] (in the
following we always denote weights w.r.t. [£, €]; for the center we proceed as in the proof
of Proposition A.2.6). By the proof of Lemma B.3.1 we infer that p5 = Y ; has weights
ej for j € {1,...,n}. Writing

Vg ®Yo1 = @ Lil,
AiEI?
where £; := mult(A;, Y, ® Yo.1) denotes the multiplicity, we have by [FS97, p. 274]
L= Z sign(w) mU1tY0,1(w(Ai + pe) = pe — (ge1 — pen)),
weW

where multy; , (1) € No denotes the multiplicity of the weight x in Yp 1,

n—1 +n—3 n n—1
& (& e —
g ! 9 2 2

by Equation (A.2.3) and W denotes the Weyl group of ¢. Note that

€n

w(A; + pe) — pe — (ge1 — pen) = €5
-~ Az = wil(pc + ge1 — pe,, + ej) — Pc-

Since A; has to be dominant, p. + ge1 — pe,, + e; must not lie on the boundary of any
Weyl chamber. We first discuss the case n # 2. Then p. + ge1 — pe, + ¢; is annihilated
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A. Computations of scalars relating Poisson transforms

by ej_1 —ej for j € {3,...,n —1}. For j =1 it is never on the boundary. For j = 2 it is
on the boundary if and only if ¢ = 0 and for j = n if and only if p = 0. In each case the
weight is dominant so that we have w = id in each case. This leads to

A € {(g+ 1)e1 — pen,qe1 + ea — pen, ger — (p— 1)en}

corresponding to the representations Yj, 441, V2 resp. Y,—1,4, where V;fq does not occur

P
if ¢ =0 and Y, 4 does not occur if p = 0.
Let us finally discuss the case n = 2. Analogous to the previous calculations we obtain

3 1 1 1
Pc +qer —pex +e; € {<Q+2>€1— (p+2) €2, <Q+2> €1 — (p—Q)ez},

where the second one lies on the boundary if p = ¢ = 0, and thus

A; € {(q + 1)61 — pe2;qe1 — (p - 1)62}’

where the second summand does not occur if p = ¢ = 0. The first weight corresponds to
the representation Y), 4+1. The second weight corresponds to the representation Y,_i 4
for p # 0. For p =0 and ¢ # 0 it is given by ge; + es. O

A.3. The Case of G = Sp(n,1), n > 2

In this case we have K = Sp(n) x Sp(1) and g = sp(n,1)c = sp(n + 1,C). The Dynkin
diagram of K is of type C,, x Cy:

—————e—=—» °
(e31 [e%] Qp—2 Qp—1 Qn Qn+1

We choose a Cartan subalgebra of sp(n, C) x sp(1, C) and introduce notation as in [Kna02,
Chapter II, §1, Example 3 & p. 685] such that we have for the roots Ag of (£, 5) resp. A

of (g,h)

Ap={te;+ej: 1 <i#j<npU{E2e:1<i<n+1} (A.3.7)
A={te;£ej: 1<i#j<n+1}U{E2e:1<i<n+1}. (A.3.8)

We choose the positive system

Af ={e;tej:1<i<j<n}uU{2:1<i<n+1} (A.3.9)
with simple positive roots II := {aq,...,an4+1} given by
aj=e—eppfor1 <i<n-—1 and aj = 2e; for j € {n,n+ 1}.

The corresponding half sum of positive roots is given by

pe=mne1+ (n—1es+ ...+ 2ep-1 + €n + €ny1. (A.3.10)
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A.3. The Case of G = Sp(n,1), n>2

The fundamental weights A1, ..., Ay4+1 defined by 2% = 0;j are given by

J

J
Aj = Zei for1<j<n and A+l = €ne1- (A.3.11)
i=1

By Equation (B.4.15) we have

Hy, = IA(K/M) 2 L") 2 D), Vas
where Vg has highest weight ae; + bes + (a — b)eyr1. We now introduce angular

coordinates on H" = R*" as in [JW77, Theorem 3.1(4)]. For (w1, ...,w,) € H" we write
wy = rcos(§)(cos(t) + ysin(t)), w; =rsin(§)g, i > 2

where ¢;,y € H such that [y =1 = Y7 ,[q]? Re(y) =0and 0 <<%, 0<t <.

Then we have by [JW77, Theorem 3.1(4)]! (our V,; corresponds to V4 of [JW77] with
p=a+band q:=a—0bby [JWT77, Lemma 3.3])

1 sin((a — b+ 1)t)

Pa = a—b+1 sin(t)

cos (&) F (_b; —(a+1),2(n—1), —tanz(ﬁ)) ’

a_ll)_H follows from ¢y, ,(eM) = 1, where eM corresponds

W:a—qul-

where the normalizing factor

tot =€ =0, and using lim;_¢
Lemma A.3.1. For a,b € Ny with a > b we have

2(a—b+1)2n—1+a+bw(H)py,, =(a—b+2)2n—1+a)oy,,,,
+bla—b+2)pv,, ,
+(a—b)(2n -2+ b)¢va,b+1
+(a=0)(a+1)¢v,_,,-

Proof. Write ¢y, , = a%wxq(t)ha,b(f) such that x4(t) = W In the angular
coordinates above we have

w(H) = Re(wy) = cos(§) cos(t)
as a function in C*°(S*"~1). Note that 2cos(t)xq(t) = xg+1(t) + xg—1(t). Therefore,

w(H)oy, , = cos(§) cos(t)xq(t)hap(§)

Cos(f)ha,b(€> Cos(é‘)ha,b(g)

= Xg+1(t) + ——5——=

2 2

!There is a sign error in [JW77, Theorem 3.1(4)]; solving the differential equation in [JW77, p.147]

actually gives W cos?(§)F (%ﬂ, — L2 9(n — 1), —tan2(§)).

Xa-1(t). (A.3.12)
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A. Computations of scalars relating Poisson transforms

Lemma A.0.2.(iii) implies

2n —2+5b a+1
ot = gyt e Ot g e @ (AS19)
and Lemma A.0.2.(ii) implies that
2n—14a b
os(Ohesll) = g rarp o e P e @ (A3

Inserting Equation (A.3.13) and (A.3.14) into Equation (A.3.12) proves the result. [

Remark A.3.2. As in Remark A.1.3, Lemma A.3.1 determines the scalars A(V,, V)
for each V € Ky with V < Vb

To decompose the relevant tensor products we use Proposition 7.3.2. By Equation
(A.3.8) we infer that the non-compact roots are given by

A, ={xe; tey1: 1 <i<n}

The following remark ensures that each representation Y; g, § € S, in Proposition 7.3.2
actually occurs.

Remark A.3.3. Using the Weyl dimension formula we see that the representation
We, &5, With highest weight §1e1 + &2e2 + £3€,, 11 has dimension

. _§1+§2+2n—1 S +2n—2\ (& +2n—3
dlmthf%fS_(2n_1)(2n_2)(£1_£2+1)(£3+1)< o — 3 >< 2 — 3 )

and the representation ng &6, With highest weight &1 e1+§2e2+e3+E3€p+1 has dimension

dimwl, . = (T2 (2 =2 G+ &+ —1)E2n —4)(G — &L+ 1)
£1,62,83 2n — 3 2n—1 2(&1 4+ 2n —2)(&2 + 2n — 3)

G +1(E+1)
& +1 ’

Using these dimension formulas we get (note that p = Hg = V)

Z dimV, s =dimp -dimV, , = 4n - dim Vjp,
BESCAR

so that m() = 1 if and only if the corresponding formula for the dimension of V, 5 is
not zero. Alternatively, the algorithm we used in the case of SOg(n, 1) can be applied to
verify this result.

We can also compute the roots of p directly. For this we use the following
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A.3. The Case of G = Sp(n,1), n>2

Definition A.3.4 ([Bou05, Chapter VIII, § 7, no. 2]). A subset A of the weight lattice
is called Ag-saturated if for all A € A and all a € Ay we have A — ta € A for all integers
t € ZN[0,\(Hy)], where H, denotes the unique element of the commutator [gf, gy “]
with a(H,) = 2.

Lemma A.3.5. Every weight of p has multiplicity one. There are 4n weights, given by
{£e;i tept1:1<i<n}.

Proof. Recall from Section B.4.2 that the highest weight of p = V g is given by e1 + ep41.
Following [Bou05, Chapter VIII, §7, no. 2, Proposition 5(i)], the weights J# of p are the
smallest Ag-saturated subset of the weight lattice containing e; + e,41.

We use the realization of ¢ = sp(n,C) x sp(1,C) and its Cartan subalgebra b from
[Kna02, Chapter II, §1, Example 3]:

h={H(h): h € C""}, with
H(h) = diag(hl, ey hn, —hl, ey —hn, hn+1; —hn+1),
ej(H(h))=hj, 1<j<n+1, heC"

where the signs can be chosen independently. Recall the roots A from Equation (A.3.7).
The root normals H, from Definition A.3.4 are given by

Hieite, = H(te;+ej), 1<i<yj<n,
H:N:Zei :H(:i:ei), 1 SiSn—i—l.

We will now determine 7. Since e; + e,4+1 € S and 2e,11 is a root we have
Vt e ZN0,(e1 + ent1)(Hae, i) €1+ eng1 —t(2ent1) € H = €1 — epq1 € I,

since (e1 + ent1)(Hae,,,) = (€1 + €ng1)(H(ens1)) = 1. Similarly we have e; —e; € Ag
for 2 < j <n with (e1 £ enq1)(Hey—e;) = (e1 £ eny1)(H(er —e;)) = 1 and thus

61:|:€n+1—(€1—ej)=€j:|:€n+1G%.

Finally, since e; +e; € Ag for ¢ # j, 1 <1 < n, satisfies (e; £ ept1)(H(e; +€5)) =1 we
infer that

ej tent1 — (e +ej) =—e; Tepp1 €.
Summarizing, we have
Vi<i<n: te +eypy €5,

where the signs can be chosen independently. Hence we obtained 4n different weights.
Since dimp = 4n there can be no more weights and every weight has to occur with
multiplicity one. O
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A. Computations of scalars relating Poisson transforms

A.4. The Case of G = Fy_2)

In this case we have K = Spin(9) with £y = s0(9) and rk g = rk € = 4. Therefore, we may
choose a Cartan subalgebra t of both £ and g. The root system can be realized in V = R*
with the standard basis e, e, e3, e4 in the following way (see [Bou02, Plate VIII])

1
A={te;:1<i<4}U{xe; te;: 1§i<jS4}U{§(:l:€1:i:€2:|:€3:i:64)} (A.4.15)
Ap={Fe;: 1 <i<4}U{te; £e;:1<i<j <4}

We choose the positive system A" = {e; —e;: 1 <i<j <4} U{e;: 1 <i <4} with

7 5 3 1
= — — — —eq. A4l
pe=ge1+ g2+ ses+ s (A.4.16)
By (B.5.17) we have
Hy, =g DX(K/M) =g LX(SY) 2k @ 1izemo Vines (A.4.17)

m=/{ mod 2

where V,,, » has highest weight Fe; + %62 + %63 + %(34. Introducing angular coordinates
on R as in [Joh76, p. 275] we can write (see [Joh76, Theorem 3.1])

DV, = Xe(@) e (§)
with
L —0+1 7
() = cos() F (5, =, 1~ tan(e)?)
{—m _m_£_6,4,—tan(§)2>.
Lemma A.4.1. For m,f € Ny, £ <m, m = /¢ mod 2, we have

2 7 2
(64 20)(14 + 2m)W(H)¢Vm,e = (6+£)(14+m + £)¢Vm+1,l+l + (6 +£)(m — €)¢me1,l+1
+£(8+m — €)¢Vm+1,zf1 +(m+ L+ 6)¢Vm71,271'

(€)= cos(§)" F

Proof. In the angular coordinates of [Joh76, p. 275] we have
w(H) = x = cos(§) cos(p)

as a function in C°°(S'®). We claim that

6+ ¢ 14
=—— ———xe—1(¢p). A4
cos(P)xe(0) = ggpxer1(9) + ggpxe-1(9) (A.4.18)
Using Lemma A.0.2.(ii) and the symmetry of the hypergeometric function in the first
two variables we infer that for z := — tan(y)?
¢ —0+17 —(t+1) €7
6+20)F (—=, — = 2] = pl——r2 -
(6+20F (~5. =5 5.2) = 6+ OF (=5, -1, 7.2)
N 1 F(—€+1 —L+2 7 )
—,z
cos(p)? 2 72 7Y
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Multiplying both sides by cos(,)“*! now proves the claim. We now express the product
c08(§)hm ¢(§) in two different forms. By Lemma A.0.2.(iii) we have

8+m —/¢ m+{—6
cos(§)hm,e(§) = mhmﬂ,é—l(f) + mhm—l,e—l(@ (A.4.19)
and by Lemma A.0.2.(ii) similarly
14+m+/ m —{
cos(&)hme(€) = — 75— om hn1,e01(8) + 75 n 57y m=1,641(8)- (A.4.20)

Since w(H)avy,, , = cos(¢)x () cos(§)hm,e(§) we arrive at the desired result by combining
Equations (A.4.18), (A.4.19) and (A.4.20). O

Remark A.4.2. As in Remark A.1.3, Lemma A.4.1 determines the scalars A(Y,, s, V)
for each V € Ky with V <> Yy, 0.

To decompose the relevant tensor products we use Proposition 7.3.2. By Equation
(A.4.15) we infer that the non-compact roots are given by

1
An = {2(:|:el :|:€2 :|:€3 i€4>} .

The following remark ensures that each representation Y, g, 8 € S, in Proposition 7.3.2
actually occurs.

Remark A.4.3. Using the Weyl dimension formula we see that the representation
Wai a2,a3,a, With highest weight aie; + azea 4 aszez + ases has dimension

4
816203 [1(9+2(a; —4)),

i=1

1
6!-41.2.7-5.3

dim Wa, a5,03,00 =
with 0; = H?ziﬂ(ai +a;+9—1i—j)(a; —aj+j—1). Using this dimension formula we
get

> dimVp g = dimp - dim Vi, ¢ = 16 - dim V;,, 4,
BESCAR

so that m(f3) = 1 if and only if the corresponding formula for the dimension of V,,, ¢ 5 is
not zero. Alternatively, the algorithm we used in the case of SOg(n, 1) can be applied to
verify this result.

A.5. The scalars relating Poisson transforms

We will now compute the scalars Ty (py,,,)(e) from Proposition 5.3.2. Since we already
computed the scalars A(V,Y) in each case, it suffices to determine the scalars v(V,Y)
(see Equation (7.9) for the notation).
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Proposition A.5.1 (Scalars between Poisson transforms).

i) G =S0¢(n,1), n>3: Forl e Ny,

(Ve Yer1) = ONYe, Yerr),  v(Ye,Yeer) = —(2p(H) + £ — DAYz, Yeor),

it) G =SU(n,1), n>2: Forp,q € Ny,

V(an,tp Yp-l—l,q) = 2p)\(Yp Q> Y+1,q)7
v(Ypqs Ypg-1) = =2(p(H) + ¢ — DA (Yp,q, Ypg—1):
V(Yp,gs Ypat+1) = 2gA(Yp,q, Ypg+1),
v(Ypq, Yp-1,4) = =2(p(H) + p — D)A(Yp,q: Yp—1,9):

i1i) G = Sp(n,1), n >2: Fora,b € Ny with a > b,

v(Vab, Vatr1,p) = 2aA(Vap, Var1,p),

v(Vap, Vap—1) = —(4n — 2+ 20)A(Vap, Vap-1),
V(Vaps Vap1) = 2(0 — DAVap, Vapr1)s
V(Vap, Va—1) = —(4n + 2a)A\(Vap, Va—1),

) G = Fy_g0): Form,l €Ny, £ <m, m=/{mod 2,

v = (m+O)XVine, Vins1,041),
—(14 +m — é)A(Vm,g, Vm—1,€+1)7
= (m - — 6))\(Vm,b Vm-l—l,K—l)’

—(204+m + f))\(ij, Vm—l,é—l)-

m,ls m+1 /+1

14

v

V( mfa m—1,0+1
( m,ls m—l—lﬁ 1
Vi

~— ~— ~— ~—

meamlél

Proof. In view of Lemma 7.3.11 it suffices to find a closed G-invariant subspace U < H),,
for some p € a*, such that multx (V,U) = 0 and multx (Y, U) # 0. In this case we have
v(VY) = —(u+ p)(H)A(V,Y). The following table determines the Harish-Chandra
module Uy of U in each case (see Appendix B).
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A5,

The scalars relating Poisson transforms

G vV Y Uk p(H) (14 p)(H)
Yo Y Wi —p(H)—¢ —!
S0y, v, v, p(H)+ 1 ntl-2
Yoq Yprig Wy 4 —2p — p(H) —2p
SU(n 1) Yoq Ypg-1 Hy1+ P(H) + 2(61 - 1) 2(” +q- 1)
’ Yog  Ypgt1 Wy,— —2q — p(H) —2q
Yog Yp-14 Hp1- p(H)+2(p—1) 2(n+p—1)
Vo Varis  Wasi —(p(H) + 20) —2a
Sp(n, 1) Vap  Vap—1 M-y p(H)+2b—4 dn +2(b—1)
’ Vap  Vapst M, —(p(H) — 2+ 2b) -2(b—-1)
Vs  Va-1p W, p(H) — 2+ 2a 4n 4+ 2a
Vine Vg1, WmTHJrg —(p(H) +m + 1) —(m+1¢)
Fi(_20) Ve  Vin—1,41 %MT%* p(H)+m—1{—38 144+m -2
Vmﬁ Vm+1,z_1 MmT—E —(p(H) —6+m—€) 6—m+/¢
Ve Vin-te-1 Winge p(H)—=24+m+/{ 20+m+¢
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B. Structure theory of rank one groups

B.1. Structure theory of PSL(2, R)

We have
G = PSL(2,R) := SL(2,R)/{£1},
K =PS0O(2) :=SO(2,R)/{£1},

A= {(%t €9t te R} {1},

N::{(é T) :xER}/{il}

and M = Zg(A) = {[I]} where we denote the equivalence class of g € SL(2,R) in G by [g].
The corresponding Lie algebras (where gg = €y @ po denotes the Cartan decomposition)
are given by

go = {X € Mat(2,R): tr X = 0},

0o 1
Eoz{tV:tER,V:=< 1 2)},
-10

po={X€go: X = X"},

L0
apg = tH: H = 8 1 ,tER s
2

Note that mq = 1 so that p(H) = 1a(H) = 3.

Lemma B.1.1 (Composition series of the spherical principal series). The spherical
principal series representation H,, associated to p € a* (see Section 2.1) is reducible if
and only if p(H) € £(p(H) + No) = £(5 + No) where H = diag(3,—3). Moreover, let
ep: St — S, e,(2) = 2P. Then

i) if W(H) = p(H) + k, k € No, the spaces (see Figure B.1)

k [e%S)

oo
Fp = @ Cep, Hy 4 = @ Cep and Hy, _ = @ Ce_,p
p=—k p=—k p=—k

are the only non-trivial (g, K)-submodules of (the Harish-Chandra module of) H,,.
Furthermore, Fy,, Hy, /Fy, and Hy, _/F}, are irreducible.
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B. Structure theory of rank one groups

- ‘- -5 < -
o—o—0— —0‘~~+@——&A‘0 —o—o—o— o—o—0— ;4—@A0—~;Ao—~—o—~a—>
-k 0 k b -k 0 k b
(a) Fy (b) Hy,+
- - - -
-k 0 k -k 0 k
(c) Hp, - (d) Dr,+
i o i o
etfc——(c‘) 4—0—0—0—0—;—0—0—> ecftf(c‘) —o—eo—9o oo (c‘)fof—oﬁ
-k 0 k P -k 0 k b
(e) D - (£) Dy + Dy
® [z
Twmin Invariant subspace

Figure B.1.: K-type images of the non-trivial invariant subspaces of H, for PSL(2, R)

it) (dual case) if W(H) = —p(H) — k, k € Ny, the spaces (see Figure B.1)

o0 oo
Dy 4 = @ Cep, Dy = @ Ce_p and Dy, 4+ © Dy,
p=k+1 p=k-+1

are the only non-trivial (g, K)-submodules of (the Harish-Chandra module of) H,.
Furthermore, Dy, 4, Dy, — and H,,/(Dy 4+ @ Dy,—) are irreducible.

Proof. This follows from Equation (4.11). O

B.2. Structure theory of SOy(n,1), n > 3

B.2.1. General structure

Let @ = diag(1,...,1,—1) € Mat,+1(R). Then we define
G = {g € SL,11(R): ' Qg = Q}o,
K= {(A 0) Ac SO(n)} ~ S0(n),

0 1
cosh(t) sinh(t)

A = In,1 . t E R 9
sinh(t) cosh(t)
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B.2. Structure theory of SOg(n,1), n >3

1— @ o7 ||v2||2
N = —v 1,1 v cve RV
i o 1+ ||v2||2
and
1
M = Zg(A) = B :BeSO(n—1);=S0(n—-1)
1

with Lie algebras (where gg = £y @ po denotes the Cartan decomposition)

go = {X € glln+ L,R): XTQ + QX =0}

— <;§ g) eg[(n—l—l,R):A—i—AT—O},

£y = (A 0)Eg[(n—i—l,]R):A—i—AT:O}%so(n),

{ 0 0
On v n ~ n
]JDZ{XUZ: (vT O)Eg[(n—i—l,R):vER}:R,
t
ag =< tH = 0,1 Eg[(n+1,R):t€R = R,
t
0 o 0
ng=<Y,=|-v 0,1 v|:veR"} 2R
0 oI 0
0
my = B :B+ BT =03 ~so(n—1).

The restricted root spaces

0 = {X €go: [H,X] = ANH)X}, Xe{a,2a},

are given by

g6 = no, gga = 0 with dimensions m, =n — 1, mg, = 0.

Especially we obtain

n—1

p = =(maa + may2at) =
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B. Structure theory of rank one groups

B.2.2. Decomposition of H,, into spherical harmonics

As a K-representation the spherical principal series representation H,, p € a*, is
equivalent to the left regular representation of K on L?(K /M), independently of the
parameter u. Letting diag(4,1) € K act on 9 € S~ ! by A defines a transitive action
of K on the unit sphere S"~! := {z € R": ||z|| = 1}. This allows us to identify
K/M=S"' kM ke, (B.2.1)

where e1 :== (1,0,...,0) € S, In view of Lie theory the latter isomorphism is just the
orbit-stabilizer theorem for the adjoint action of K on pg at H. We obtain

H, = L*(S" 1)

as K-representation. By the theory of spherical harmonics we therefore deduce that H,
decomposes as the Hilbert space direct sum (denoted by @)

H,= @, Ve (B.2.2)

where
Y, = {plgn,1 : p harmonic, homogeneous polynomial of degree ¢}
denotes the space of spherical harmonics of degree ¢. The highest weight of Y, is fe;

(see e.g. [Kna02, Chapter V, §1, Example 1, p. 277]). Note that every homogeneous
polynomial p of degree £ can be uniquely decomposed into

p=aq+ |z (B.2.3)

where |z|? == 31" | 22, ¢1 is harmonic and homogeneous of degree £ and ¢ is harmonic

and homogeneous of degree £ — 2. We write P for the K-equivariant projection onto the
harmonic part. By [JW77, Theorem 3.1(2)] we have
YM = CP(a)). (B.2.4)
Introducing the angular coordinates
x1 =rcos(§), x; =rsin(éw;, i > 2,
where 31" yw? =1, 0 < ¢ <7, we have

k1—k n—1
27 2 7 2

¢y, = cos*(€)F ( ,—tan2(§)> .
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B.2. Structure theory of SOg(n,1), n >3

(%) )

4= -
@~~+Ao~~~0—#‘4—0—0—0—0—0—> Q—H—Q—F@~+A&~~o—+~f>
0 kE+1 ¢ 0 kE+1
© 7
Tmin

Invariant subspace

Figure B.2.: K-type images of the non-trivial invariant subspaces of H,, with gray arrows
indicating the g-action

B.2.3. Composition series of H,

Recall from (B.2.2) the decomposition of the spherical principal series representation H,
into spherical harmonics:

—

H, = I*(K/M) = L*(S") = @ZGNOYZ'

Recall the definition of H € agp from page 9. We have H = F1 41 + E,41,1 with the
standard F; j-basis of Mat,,1(C).

Lemma B.2.1 (Composition series of the spherical principal series). The spherical
principal series representation H,, associated to p € a* (see Section 2.1) is reducible if
and only if p(H) € £(p(H) + No) = £(25% + Ny). Moreover, we have:

i) If u(H) = p(H) + k, k € Ny, the space

is an irreducible (g, K)-submodule of (the Harish-Chandra module of) H,,. Further-
more, the quotient H, [V}, is irreducible.

i1) (dual case) If u(H) = —p(H) — k, k € Ny, the space
Wy = @ Y,
l=k+1
is irreducible. Furthermore, the quotient H, /W, is irreducible.

Proof. See [JW77, Theorem 5.1 (2)] with v = (p — p)(H) = 25+ — u(H). O
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B. Structure theory of rank one groups

B.2.4. Tensor products and proof of Proposition 7.3.12
In this section we will make the tensor product decomposition
m & P — 1D Ym+1 ©® V

explicit and prove the last equality of Lemma 9.1.5 resp. Proposition 7.3.12 for SOg(n, 1)
with n > 3. By Definition 7.3.4,

: Y, Yim+1 |
ldej:l = TY::i Oty = Y1 2 Y ® p* — Yit1-

Therefore,

Yim—1 Sk ng { P(zre) @ I( Xk) | o € Yo 1} (B.2.5)

i M: i M:

Q
\ S

Yin+1 Sk L){ m+1 { PR I Xk) | P e Ym+1} (B26)

On Y = @ycn, Yr we have the Fisher inner product given by
(p, ) = (0(p)7)(0),

where 0(p) = p(a%l,...,%). Note that Y3 L Y, for & # m. We have (fg,h) =
{(g,0(f)h) for each f,g,h € Y and especially {|z|?>g,h) = (g, Ah) = 0. Moreover,

(f,9) = (g, f). OnY,, ® p* we define an inner product by (identifying p* = Y7)

O fe @ I(Xa), 290]@1 ZZ T i) (T = (fi or)-
=1 - =1 j=1

k=1

We obtain L§:+1(Ym+1) 1 L§Z‘1(Ym,1), since (for ¢ € Y1, ¥ € Yp41)

(3 Plarg) 9 1K), . 2 g 0 1K) = 3 (Plary). aikw

k=
_\ _ =P 0 v_N 9 _

where we used Equation (9.3) in the second step. In order to describe V;,, as the orthogonal
complement of L%i:-‘—l (Yina1) @ng_l (Yin—1) in Y,, ®p* we use that the Fisher inner product
is invariant under orthogonal transformations. We start with a preparatory lemma and
prove the invariance in Proposition B.2.3.

Lemma B.2.2. Let m,n € N and f;, g; € R"™ for each 1 <i <m. Then we have

= > i 900))2

oc€S, 1=1

for f=TIi2(z, fi)2, 9 =1l (x,gi)2, where (-,-)2 denotes the euclidean inner product.
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B.2. Structure theory of SOg(n,1), n >3

Proof. We first denote by f; ; the j-th component of f; € R" and express f as a linear
combination of monomials by multiplying out the product

flz) = ﬁ Zn:%‘fi,j =) a® > ﬁ Jiso(i)s (B.2.7)

i=1j=1 acN"™  peF([m],[n],e) i=1
|a|=m
where F([m], [n], @) denotes the set of all maps : {1,...,m} — {1,...,n} with |p~1(k)| =
oy, for each k € {1,...,n}. Doing the same for g and using that (z® %) = 0 for
a # € N" and (z%, %) = a! for the Fisher inner product we obtain that

(frg)= > o > > I1 fio9i.0)-

ﬁy?ﬁ; QOE]:([WLL[”LOC) gZae]:([m],[n],a) i=1

By composing ¢ as above with an element o of the symmetric group .S,,, we may write
poo = . The choice of ¢ is unique up to the action of the subgroup Sy, X ...%xS,, < Sn
which stabilizes . Thus, we obtain

foo)=> o > L1 fio9ipo10y

|a‘6N” weF([m],[n],a) 0€Sm [/(Say X... X Sa, ) 1=1
al=m

=> > > I fiewiceay

aeN" peF([m],[n],a) 0€Sm i=1
laj=m

=> > > I fiew9ow e

aeN" peF([m],[n],a) o€ESH =1
|a|=m

since g~ ol %: = 1. Factorizing the product (as in (B.2.7)) we arrive at

1 X XSap| T

(fr9)=">_ 11D fisgoni = D 11{Fis 9002 O

0E€S,y, i=1j=1 0ESm i=1

Proposition B.2.3 (Invariance of Fisher inner product). The Fisher inner product is
invariant by orthogonal transformations, i.e.

(Af,Ag) = (fo AT go A™Y) = (fg)
for each A € O(n) and any two homogeneous polynomials f, g in n variables.

Proof. This follows from Lemma B.2.2 by taking linear combinations of the special
polynomials introduced in that lemma and using the invariance of the euclidean inner
product under orthogonal transformations. O
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B. Structure theory of rank one groups

The invariance now implies that
~ Ym Ym_
Vm =K (‘/Ym-H (Ym-‘rl) SP Lym ! (Ym—l))L S Ym & p*

and, more precisely,

n 8 n
Vin =k ka@IXk)EY ®p* |Zai 0, Y Plzxfr) =0
k=1

k=1 k=1

since the inner product is non-degenerate and, for ¢ € Y,,,—1, fr € Y, and ¥ € Yy, 11
(recall Equation (B.2.5) and (B.2.6)),

0= (> Plzrp) @ I(Xy), ka®IXk = (P(zkp), kz_:lwk%fk

k=1 k=1 k=1
"9
= <(pa ];1 ail'kfk%
0= () L l(X), Y fi o 1K) =36 w,fk 0, wefi).
k=1 "k k=1 k=1 k=1

We will finally give another characterization of LYm“(YmH) & Lg’"*l (Yi—1) <Y, @ p*.
An element f € Y, ® p* is contained in this set if and only if f = L¥:+1(TYT’H"H( )+
LQZ 1(T}:211(f)). For f =Y, fr ® I(X},) this gives, for each k = 1,...,n,

0

! o <& n+2m—4
fk:iﬁig (@3 fs) + (m+n—3)(n+2m—2)P(xkj;8xjfj)’

which, using Equation (9.3) again (note that 8 f] € Yi,—1), is seen to be equivalent to

1

IR 9 . _ - 2 & '
mfk—j;xjaxkfj+m+n_3 ((m l)xkjgla |z Zax oz, ) (B.2.8)

We are now able to prove Proposition 7.3.12 for G = SOy(n, 1), n > 3.

Proof of 7.8.12 for G = SOg(n,1). We have to show (B.2.8) for
f=(p+p)(H)oy,, @L(H) = > U(kr(X)))dy,, @ 1(X;),

where m € Ny and ¢ denotes the derived left regular representation (see Proposition
5.3.2). We first consider the case k = 1 and abbreviate a := (u+p)(H). Since —€(kr(X;))
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B.2. Structure theory of SOg(n,1), n >3
acts as xla%j — xja%l on Y, and by Euler’s homogeneous function theorem we obtain

" 0 0 L 0 0
;xjmfj—ﬂ%acbmerj;wjam <$18x ]8:c >¢Ym
) o a9 no
= leaixléme + (fmxlj;xjaxj(by’” - Z:wj Tﬁ‘?Ym

0 0?

0
= a1+ g (mov, — w15, ) = (off = o) S0

Moreover, using A¢y, = 0 in step three and a%lqﬁym € Y,,_1 in step four, we infer

87.75]‘ ]8951

"0 0 "0 0 0
2 5= O T2 5 (*’“ - 1’) Pon
j=1""J j=2 "

0 n 52 LI 0
= %aﬁme + a1 Z @ﬁme - Z Oifnjx] %Gf)Y

0 8 “ 0 0 0
— § j —(n—1)—
8 ad)Ym 1 a 2¢Ym J 81]] 8301 ¢ (n )6.’E1 d)Ym

= TMC@YW —(m — 1)6761¢Ym —(n— 1)8761¢Ym

0

p— _— _ 27
(a—m—n+ )8331

by, (B.2.9)

Therefore, the right hand side of (B.2.8) for & =1 is given by

ar15 — ¢Ym 8 <m¢Ym — Ty - ¢Ym> — (J2? - w%)izqﬁifm
1 Oy
‘M«m ~ Vs, — laf g,
— aa:l(.fm¢ym + moy,, + mw188$1¢ym - 8?5 18?5 DY, (|$’2 - 951)8822 Py,
SR vy s ol )

0 0 0
= axr15—Py,, + My,, +mz; Txlﬁme - Qxlaixlﬁme |z ‘ ¢Ym

(9:131
a—m-—-n-+2

0
((m = Vs v, — |m|2—2¢ym>

m+n-—3
B (a—1)(n+2m—4) 0 a—1 9
= Moy, + m+n—3 x18x1¢ym m+n— | | 0z? 2¢Ym
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B. Structure theory of rank one groups

This equals mf; = magy,, if and only if

n+2m —4 0 1
mo, = I — el o,

m+n— m+n—

2
e m(m+n—3)py, =(n+2m—4)r;— — |z |2 0 d)ym (B.2.10)

0z

To prove this equation we use Lemma 9.1.1 and Equation (9.3) to obtain

2
m—+1 _ m |‘T| a
Pi*!) = P@iP(f") = 2iP(]) = 5 —5 = P(a)
and thus
0 n+2m-—4 0 |z|? 0?
i m+1 — P(z™ e e TP — — T P(™).
0xy (27) (x1)+n+2m—2x18x1 (21 n+2m — 2 0x? (21

Together with Lemma 9.1.1 and 9.1.3 we infer that

n+2m—4 OP(z]") |z|? O?P ()
n+om—2"" Oxy n+2m-—2 0x?

(m+1)(n+m—2)
( n—+2m — 2

_ 1) P = ,
- is a multiple of P(z]").

Let us now consider the case k # 1. By the product rule (third step) and Euler’s
homogeneous function theorem (fourth step) we have

which is equivalent to Equation (B.2.10) since ¢y;

n 0 0 " 0 0
;xjaxkfj = axlaiwkqﬁym +jzz:2xjaxk(xla . )¢Ym
0 0 0
= amlﬁixk(éym + xkaixk(xl@ixk — kﬁixl)qﬁym
" 0 0 0
+j§$jm(l‘1% —ijaTUlMYm
Jj#k

0 0
= ax a—xkqﬁym — (36187 )¢Ym
0 0 0 9 8
0 0 8 2
=(a—1+ m)xla—%géym + wkaTslcf?Ym Dzn ’ ¢Ym

0

0 2
=(a—1 +m)$1873k¢Ym —wkaleﬁﬁYm — || By 6:75 O
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B.2. Structure theory of SOg(n,1), n >3

Moreover, using Equation (B.2.9) we obtain that the right hand side of (B.2.8) is given
by

(a— 14 m)ar -2y, — an by — a2
! 69ck Ym k 8.731 Ym 8$kal’1 Ym
_i_(m—1)(a—m—n—i—2)gC iﬁf) _(a—m—n+2)~\x!2 0?

m+n—3 k@xl Ym m+n—3 0x,L 011 Yim
0 (m—1)(a—m—n+2) 0

=(a—1 — 1 .

(a + m)$1 8xk ngm + ( m-+n— 3 ) Tk 8901 ¢Ym

a—1 0?

m+n—3z 0x,011

We prove that this equals the left hand side of (B.2.8) for k # 1, which is given by
mfr = —ml(k1(Xy))dy,, = m(:m% - xka%l)gbym. For this it suffices to prove
Lemma B.2.4. We have

2

P = © pap) + (m— Dor-2 (e
aznkO:UlP(xl)_(m+n73)x17P(l‘1)Jr(m Dz 7—P(z]").

oxy, 0z

]

Indeed, using the lemma in the first step yields (¢y,, is a multiple of P(x7?))

0 (m—1)(a—m—n+2) ) 0
(a 1 +m)$1871‘k¢ym + ( et —3 1 ¢ym
a—1 , 0?
m+n— 3‘37 0x,L0x1 ¥

o 0 (m—1)(a—m-n+2) ) 0
= (a 1—|—m)x18$k¢ym+< T — 1 oy,
a—1

_m+n—3

(m+mn— B)xla(;cbym + (m— 1)5Eki1¢Ym)

0
=(a—14+4m—(a— 1))x18—%¢ym+

(m—1)(a—m—n+2) (a—1)(m—1) 0
( m+n—3 -1 m+n—3 > O

0 0
= m(mlﬁTck - évkaixl)ﬁbm-

It remains to prove the lemma. Using the K-equivariance of P (first step), Lemma 9.1.1
(fourth step) and Equation (9.3) (fifth step) we obtain

0 0 0 0

- _ my _— _ T \emy m—1
(xlaxk l’kaxl)P(% ) P((Jflaxk wkaxl)% ) P(magzy"™")
= —mP(zpx) = —mP (2 P(z]71))
= m(—1 (@) — ()

n+2m — 4 0xy
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B. Structure theory of rank one groups

Since P(z"!) = _nt2m—4. 9 pP(zm) by Lemma 9.1.4.ii) this implies

(n+m—3) Ox1
3} 0 my_|z]? ok m n+2m—4 0 m
(‘Tl@i:nk B xkaixl)P(xl )= n-+m— 38xk6xlp(x1 )~ n+m-—3 %P(ml )
0 my
g 07 9
of? - P(af?) — u(n+ 2m — 4 2 P(a])
0*P(x7) 0 0 0
22 1) _ — 3) (1 =— — T —)P(2" om — 4)— P ("
& PSS — = 3) (g — g PT) + ax(n+ 2m = 45 Pa])
0 0
= — —P(z™ -1 —P(zT).
(n+m 3)x18a:k () + (m )mkaxl (")

This finishes the proof.

B.3. Structure theory of SU(n,1), n # 1

B.3.1. General structure

With @ = diag(1,...,1,—1) € Mat,+1(R) we define

G ={g € SLnt1(C): g"Qg = Q},
K = {diag(A,\) € SL,+1(C): A€ U(n), |\ =1} 2 U(n),

cosh(t) sinh(t)
A= 1,1 teR ,
sinh(t) cosh(t)

N = (exp(X): X € ng),
M = Zk(A) = {diag(b, B,b) € SL,+1(C): Be U(n—1)}

with Lie algebras (where gg = £y @ po denotes the Cartan decomposition)

QOZ{X: <ﬁ Z}) €gliin+1,C): A+ A*=0, w+w=0, trX:()},

t
tH = 0, 1 eglln+1,R):teR; =R,
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B.3. Structure theory of SU(n, 1), n# 1

0 v* 0
gy = —v 0p_1 vl|:vecr !} =cr !,
0 v* 0
w 0 —w
g@*=<(0 0,, 0 |:weiR} =R,
w 0 —w
w
my = B :B+B*=02w+trB=0; Zu(n—1).
w

The dimensions of g§ resp. g3 are given by
Ma =2n — 2, Moy = 1.
Thus, p = 3(mea + ma2a2a) = na.
B.3.2. Decomposition of H,, into spherical harmonics
As in the orthogonal case we have
H, =~ L*(K/M)

as K-representation, where L?(K /M) carries the left regular representation. Consider
the real (2n — 1)-sphere

(z1,...,2n) € C™: Z\zj\Q =1, st
j=1
in C" embedded by the isomorphism
C" = R™, (z1,...,2,) — (Re(z1),Im(21),...,Re(z,),Im(2,)).

We also write S?*~! for this sphere and define a transitive K-action on it by

1
k= XM’ k= diag(A,\) € K, ¥ € St cCn. (B.3.11)

The stabilizer at e; = (1,0,...,0) € S>»~! is given by M. Hence,
K/M =81 kM k.e.

We can decompose H), as the Hilbert space direct sum (cf. [JW77, Theorem 3.1 (3)])

—

H, >y LX(K/M) =g L*(S* 1) 22 @kGNon >~ @kENO P v, (B312)
p,q€Ng
p+q=k
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B. Structure theory of rank one groups

where
Yy ={f € Ypiryg: f(az) = a?@lf(2) Ya € C,|a| =1,z € S** 1} (B.3.13)
with f(2) == f(Re(z1),Im(z1),...,Re(zy),Im(z,)). Moreover, again by [JW77, Theorem
3.1(3)], each Y, , is irreducible and
VM = CP(f79). (B.3.14)
For the convenience of the reader we give a detailed proof for the highest weights.

Lemma B.3.1 (cf. [Kna02, Chapter V, §1, Example 1]|). The highest weight of the
irreducible K-representation Y, , from Equation B.3.13 with respect to t is given by

gei1 — pen + (p - Q)en-‘rl-
Proof. Let f €Y, ,. By definition, f has the following two properties:

i) f € Ypiq, i.e. fis a harmonic, homogeneous, complex-valued polynomial of degree
p + q in 2n real variables x1, ..., Toy,,

ii) defining f(z) == f(Re(z1),Im(z1),...,Re(zn),Im(zy,)) for z = (21,...,2,) € C" it
holds that f(az) = aP@if(z) for every a € C.
Defining z; = w9;_1 +ix25, j = 1,...,n, we may consider f as a polynomial in the
variables z1,...,2n, 21, - - - , 2n, which is still homogeneous of degree p + q. By the second
property, f is a linear combination of monomials of the form

n n
ﬁ"zﬁgl-...-ﬁz" Withp:Zk?j andq:ZBj.

Jj=1 Jj=1

S

By [Kna02, Chapter V, §1, Example 1| these monomials are weight vectors of weight
7—1(¢j — kj)e; with respect to (su(n)c,b). This expression is maximal with respect to
AT for {1 = q, k, =p and ¢; = k; = 0 otherwise (so that the highest weight is ge; — pe,,
with respect to (su(n)c,b)). The corresponding weight vector is given by the monomial
h(z) = 23217 = (w2n—1 + Qw20 )P (21 — ix2)7.
We finally check that h € Y} 4

i) h €Y, 4 Every monomial occurring in the first factor of h(z) is of degree p and every
monomial occurring in the second factor is of degree q. Thus, f is a homogeneous
polynomial of degree p + ¢. It is also harmonic because

2 2 2 2
(Ah)(x1, ... ,x2,) = ((88:6% + E)asc% + 8;%)”_1 + 8?6%7) h) (X1,...,T2p)
= q(q — 1)(w2n—1 + w2, )P (21 — i29)7 >
—q(q — 1) (z2n_1 + iw9,)P(x1 — izg)1™?
+p(p—1)(xon—1 + inn)pd(m — ixg)?
—p(p — 1) (zon_1 + i0n)P 2 (21 — ix0)?
=0.
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B.3. Structure theory of SU(n, 1), n# 1

ii) h(az) = (azp)Pazr? = oPalh(z).

Calculating the action of k := diag(ity,...,it,, —i > t;) on h as in [Kna02, Chapter V,
§1, Example 1] using Equation (B.3.11) we obtain

_ 4
B dr r=0

= q(it1) — p(itn) + (p — @) (=i Y _ t:)

(k.h) (79) f(eiitlr*izt”’ﬂl, e e*’itnT*iZtirﬂr’Z)

so that the highest weight of Y}, ;, with respect to (¥, t) is given by ge; —pe,+(p—¢)en+1. O

B.3.3. Composition series of H,

Recall from (B.3.12) the decomposition of the spherical principal series representation
H,, into spherical harmonics:

H, = KM= LX) 2@, D Y
p,q€No
p+q=k

We have H = Ey 11 + Epy11 € a with the standard E; j-basis of Mat,,1(C).

Lemma B.3.2 (Composition series of the spherical principal series). The spherical
principal series representation H,, associated to u € a* (see Section 2.1) is reducible if
and only if p(H) € £(p(H) + 2Ny) = £(n + 2Ny). Moreover we have

i) If W(H) = p(H) + 2k, k € Ny, the spaces (see Figure B.3)

k oo k koo
by = @ YP?Q’ Hk,-‘r = @@i/p,qa Hk,— = @@)/pg, Hk’+ + Hk’_
P,q=0 p=0¢=0 p=0 g=0

are the only non-trivial (g, K)-submodules of (the Harish-Chandra module of) H,.
Furthermore, Fy,, Hy 1 /Fy, H, _/Fy, and H,/(Hy + + Hy, ) are irreducible.

it) (dual case) If p(H) = —p(H) — 2k, k € Ny, the spaces (see Figure B.4)

o0 oo [o.¢] o0 o0
Iy, = @ Yogr Wit = @ @Yp,qv Wi, — :@ @ Yog Wit + Wi -
p,q=k+1 p=k+1g¢=0 p=0g=k+1

are the only non-trivial (g, K)-submodules of (the Harish-Chandra module of) H,.
Furthermore, I, Wi 4 /I, Wi,/ I}, and H,,/(Wj + + W} _) are irreducible.

Proof. See [JWT77, Theorem 5.1 (3)] with v = (p —pu)(H) =n — u(H). O
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Figure B.3.: K-type images of the non-trivial invariant subspaces of H, in the case
p(H) = p(H) + 2k, k € No, with Hy 4 == Hy 4 + Hy, _
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Figure B.4.: K-type images of the non-trivial invariant subspaces of H, in the case
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B.4. Structure theory of Sp(n,1), n # 1

B.4.1. General structure

Let H denote the quaternions and recall @ = diag(1,...,1,—1) € Mat,,11(R). If g is a
matrix over H we define ¢* := g’ where the bar denotes the componentwise conjugation
in H. Then let

G = {g € GLn1(H): g"°Qg = Q},
K = {diag(A4,\) € GL,+1(H): AA* =1,, |\ =1} = Sp(n) x Sp(1),

cosh(t) sinh(t)
A= 1,1 teR ,
sinh(t) cosh(t)

N = (exp(X): X € nyg),
M = Zk(A) = {diag(b, B,b) € GL,41(H): B € Sp(n — 1), |b| =1},

where the symplectic group Sp(m), m € N, is defined by
Sp(m) == {A € GL,,(H): AA* =1,,}.

The corresponding Lie algebras (where go = €9 @ po denotes the Cartan decomposition)
are given by

g0 = {X: (ﬁ Z)) eglin+1,H): A+ A* =0, w—l—w:O},
A 0
b = ( ) 690} = sp(n) @ sp(1),

Xy = (2: S) € gl(n+1,H): UGH"} = H",

t
tH = 0,—1 cglin+1,R):te Ry =R,

200 __
90 =

B :B+B" =0w+w=0,; Zsp(n—1)Dsp(l).
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B.4. Structure theory of Sp(n,1), n # 1

The dimensions of g§ resp. g3 are given by
Mo =4n — 4, Moy = 3.

Thus, p = 2 (mea + ma2a) = (2n + 1)a.

B.4.2. Decomposition of H,, as K-representation and description of Ko

As before we have
H, = [*(K/M)

as K-representation, where L?(K/M) carries the left regular representation. We view
H" as a right H-vector space and consider the real (4n — 1)-sphere

{(wl,...,wn) EH™: ) |w;f* = 1} >~ gin-1

j=1
in H" embedded by the isomorphism
H™ 2 RY™, (wy,...,w,) — (®(wy),...,0(w,)),
®:H=CajC=RY, w=2z +jz — (Re(21),Im(z1), Re(22), Im(22))

where {1,4,j,k} C H is the standard R-basis of H. We also write S*"~! for this sphere
and define a transitive K-action on it by

1
k)= AV, k= diag(A,)) € K0 € st C H™

The stabilizer at e; = (1,0, ...,0) € S~ is given by M inducing the isomorphism
K/M 28" 1 EM — ke
By [Kna02, Chapter IX.8, Problem 12|, H, decomposes as the Hilbert space direct sum

—

Hy, =g L(K/M) =g LX(S" ) 2 B (B.4.15)

azbzova,bv

where V,; has highest weight ae; + bea + (a — b)epy1. By [JWT77, Theorem 3.1] we
moreover have (note that our V,; corresponds to VP4 of [JWT77] with p := a + b and
q:=a—bby [JW77, Lemma 3.3|)

Vi= P Vap

a>b>0
a+b=k

and the space V;;, with & = a + b is given by the K-cyclic space

Vap =K -P(fap) € Yy, (B.4.16)
where
[k/2] .
o (k—b—1 —9% 2i
e (7 s
i=b L
with 71 == 2Re(w;) and 2 := |wy|? for w = (wy,...,w,) € S~1 C H".
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B.4.3. Composition series of H|,

Recall from (B.4.15) the decomposition of the spherical principal series representation
H,, as K-representation:

—

Hy, =g LX(K/M) =g LX(8" ) 2k P, Vas-

We have H = E1 5,41 + Eny1,1 € a with the standard E; j-basis of Mat,, ;1 (H).

Lemma B.4.1 (Composition series of the spherical principal series). The spherical
principal series representation H,, associated to u € a* (see Section 2.1) is reducible if
and only if p(H) € £(p(H) — 2 + 2Np) = £(2n — 1 + 2Ny). Moreover, we have:

i) If wW(H) = p(H) — 2+ 2k, k € N, the spaces (see Figure B.5)

W= B Vas, M= €D Vap
b<a<k—1 a>b<k

are the only non-trivial (g, K)-submodules of (the Harish-Chandra module of) H,.
Furthermore, Wy, My /W), and H, /M), are irreducible.

it) (dual case) If u(H) = —(p(H) — 2 + 2k), k € N, the spaces (see Figure B.6)

Wk = @ Va,b, Mk = @ VQVb
b<a>k—-1 a>b>k

are the only non-trivial (g, K)-submodules of (the Harish-Chandra module of) H,.
Furthermore, My, Wy /My, and H, /Wy, are irreducible.

iti) If u(H) = p(H) — 2 the space (see Figure B.7a)

oo
T = @ Va0
a=0

is the only non-trivial (g, K)-submodule of (the Harish-Chandra module of) H,.
Furthermore, T and H, /T are irreducible.

i) (dual case) If u(H) = —(p(H) — 2) the space (see Figure B.7b)

K)-submodule of (the Harish-Chandra module of) H,,.

is the only non-trivial (g,
Furthermore, T and H, /T are irreducible.

Proof. See [JWT77, Theorem 5.1 (4)] with v = (p — p)(H) =2n+ 1 — u(H). O
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Figure B.7.: K-type images of the non-trivial invariant subspaces of H, in the case
p(H) = p(H) — 2 resp. p(H) = —(p(H) — 2)

B.5. Structure theory of Fy(_2)

B.5.1. Decomposition of H,, as K-representation and composition series
By [Joh76, Theorem 3.1] we see that H, decomposes as the Hilbert space direct sum
Hy =g LH(K/M) =g L*(S) 2k @ msks0 Vs (B.5.17)
m=k mod 2

where V,,, . is the K-representation with highest weight e + %62 =+ %63 + §e4 (see
[Joh76, p. 278]).

Lemma B.5.1 (Composition series of the spherical principal series). The spherical
principal series representation H,, associated to p € a* (see Section 2.1) is reducible if
and only if u(H) € £(p(H) — 6 + 2Ng) = £(5 + 2Ng). Moreover, we have:

i) If W(H) = p(H) — 6 + 20, { € N>3, the spaces (see Figure B.8)

We= B Viks My= € Vi
m+k<2(—6 m—k<2/

are the only non-trivial (g, K)-submodules of (the Harish-Chandra module of) H,,.
Furthermore, Wy, My/Wy and H, /M, are irreducible.

it) (dual case) If p(H) = —(p(H) — 6 + 2¢), £ € N>3, the spaces (see Figure B.9)

We= @B Vi My= B Vi
m+k>2(—6 m—k>2(
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Figure B.8.: K-type images of the non-trivial invariant subspaces of H, in the case
wH)=p(H)—6+2¢(, (€ N>3

are the only non-trivial (g, K)-submodules of (the Harish-Chandra module of) H,.
Furthermore, My, Wy/M; and H, /W, are irreducible.

i) If p(H) = p(H) — 6+ 2¢, £ € {0,1,2}, the space (see Figure B.8)

Mg = @ VmJg
m—k<2{

is the only non-trivial (g, K)-submodule of (the Harish-Chandra module of) H,.
Furthermore, My and H,, /M, are irreducible.

i) (dual case) If n(H) = —(p(H) — 6+ 2¢), £ € {0,1,2}, the space (see Figure B.9)

Mg = @ VmJg
m—k>2¢

is the only non-trivial (g, K)-submodule of (the Harish-Chandra module of) H,.
Furthermore, My and H, /M, are irreducible.

Proof. See [JWT7, Theorem 5.1 (4)] with v = (p — p)(H) = 11 — p(H). O
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C. Relative discrete series for F4_)

In this chapter we correct some misprints and fill in some omitted proofs from [Kos83]
in the case of G = Fy_g0), H = Spin(1,8). There, the K-types are denoted by H,,
for p,q € Ny, corresponding to V)24, in our notation. We first prove that (—1)7+19,
resp. its corresponding kernel (—1)"*10,. is a positive definite spherical distribution resp.
kernel for each r € Ny (see [Kos83, p. 81] for the definition and [Far79, Theorem 1.1] for
the correspondence). Indeed, by [Kos83, p. 84] we may write, for each ¢(x) = F ()Y (b) €
C*(G/H) as in [Kos83, p. 68], i.e. F' € C°(R) even and Y € Hy, 4,

2

0.(6.6) = lim Tmalg o

s—p+2r S—p—2r

/ 1Y (b)|? db, (C.0.1)

/0 TR0, ot p+ 20)A() dt

where 7(s) == 244y o sinh(#)7 cosh(1)1?

pta —s+p+2j -2 —s+p+2k—38
Opq(s Jl_[1 s+p+2j—2 kl;[l st+p+2k—8°
8 () 7-T4)-T(E)-25(5(s—p)—p—q+1)---(5(s —p))
p.a /T T(p+4) T(5(s—p)+q+8)

and

W, 4(t,8) == cosh(t)PT27 sinh(¢)PF ( 5 5P +p+yq, ;p +p+q+11,p+ 4, —sinh(¢) )
Note first that S, 4(—p — 2r) # 0 if and only if ¢ > r 4+ 4 (see also [Kos83, p. 71] with
h = r + 3). Therefore, and since the remaining terms are non-negative, it suffices to

T(=s)ap, q(

consider the sign of limy_, 19, = P %) for q > r + 4 and prove that it is independent

of p and q. We have

lim T(=5)ap,q(s)
s—pt2r s —p—2r

. 1 T(E(-s- p)+8)”1i[‘1—s+p+2g—21_[—s+p+2k—8
s—pt2r s —p—2r T(3(s—p)+8) o stpt2 -2 5 s+p+2k-38

~ tm 1 F(A(—s—p)+8) —s+p+2r pf[q —2r+2j -2
s—pt2r s —p—2r L(r+8) stp+2r 5 20+ 2r+2j -2

JFr+l
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—s+p+2r H —2r+2k -8
204+ 2r +2k —8

k=1
k#r+4
1 1 pﬁq —2r +2j — 2 12[ —2r + 2k — 8
(20 +4r)2T(r +8) o 2pH2r+2j-2 0 20+ 2r+2k-8
j#r+1 k#r+4
, 1
(im, (s —p=2r)0(5(=s —p) +8).

Defining ¢(s) := 3(—s — p) + 8 yields

ResZ:@(pHT) F(Z)

lim, (s~ p — 2r)D(5 (~5 — ) +8) = Resempian T(p(s)) =

s—p+2r CP/(P + 2T)
=y _ o ()
(r+3)(-1) “(r+3)
since o(p + 2r) = (11 + 2r) = —r — 3. Thus, we obtain that
lim T(—8)apq(s)
s—pt2r 5 —p—2r
1 1 (-1 " k-4 L 24+ 2k—38
 (2p+4r)2T(r +8) (r—|—3)!k:1p+r+k—4k:1_[+52p+2r+2k‘—8'
P _op 425 -2
i 20+ 2r +25 -2
JFr+l
1 1 1 L (r+)r+7) & —2r+2k-38
T 22+ rT(r+8) (r+3)! (p+2r—1) k1:[+52p+2r+2k;—8'
P _op 4252
};[1 20+ 2r +2j — 2
jAr+1
B 1 1 “ —r+k—4 M i (r41)
T 2p+4r(p+2r)!k:1_£5p+r+k—4' ]1;[1 p+r+j—1
j#r+1

has sign (—1)"*! independent of p and ¢ so that (—1)""16, is a positive definite spherical
distribution for each r € Nj.

We now state the Plancherel formula.

Theorem C.0.1 ([Kos83, Theorem 3.13.1]). For each ¢ € C°(G/H) we have

o [ =g [ 2o, 3 Bt R ()
1
O,( —_— 2
+p<§2r (¢, ¢)c-— 2( Oreani 7~>,
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where

2075 .71 T(5) O 6!-25. /1

c(s) = F(%%)F(%)F(%), = W’

Ress—s, (f) denotes the residue of f at so and c_a(f, s0) denotes the coefficient of (s—so) >

in the Laurent series for f near sq.

Remark C.0.2. This formulation differs from Kosters’s formulation only in that here
the point p is also allowed in the last summand.

Proof. The proof of [Kos83] mimics the proof of Faraut, [Far79, p. 428-431] and is based
on the Plancherel formula of the Fourier Jacobi transform, which has been worked out by
Flensted-Jensen in [FJ77, Appendix 1]. We first let ¢ denote a K-finite function, write

JLJo@)de = 272550 [y @)Ras TP A0 &
with a :=p+ 3, B :=p+ 2¢+ 7 and put
Agp(t) = 22+BHD ginh (1) 20H cosh(1)?P+!

as in [Kos83, Proof of Theorem 3.13.1]. Then, we use the Plancherel formula from [FJ77,
Equation (A.11)] to write (note the condition s > 0 in contrast to [Kos83])

00 1 -~ dv a 1
F(t)PPAa = —|FW))} 5y — 2mi F(u)P Resy= rormrs
Jy 1POFBasd = S PO s =>mi 8 PO Remn ey
C(—v0)=0
s>0

where
20FBF1=D () (o + 1)
F(a+B+1+iv)I(3(a—B+1+iv))

Cv) =

and F denotes the Fourier Jacobi transform of F, given by

(@)
= / F(£)6 (£)Anp(t) dt

with the Jacobi function

U, 4(t,iv)
sinh(t)P cosh(¢)P+2¢°

o0 (t) =

In order to connect the discrete part of the Plancherel formula to the discrete part of the
theorem, we need a last ingredient from [Kos83] and can then follow [Far79, p. 428-431]
to fill in the omitted proof of Kosters. As in [Kos83|, we first observe that for each
v € [0,00]

1 |e(iv)?

= C?.
‘C(V)P 2m2~2atB+1) qu(iy)‘?
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C. Relative discrete series for Fy(_op)

Since all involved functions are meromorphic on C, we can use the identity theorem to
obtain

c(iv)e(—iv)
C(v)C(—v)2m2= 2PN B 4 (iv) Bp o (—iv)

=C? (C.0.2)

for each v € C. For the discrete part of the Plancherel formula we have to describe the

residue of W at some 1 € iR. By Equation (C.0.2), we may write

-V

; — (2959 2(atB+1) Bp.q(iv)Bpq(—iv)
Res”:”°<0(y)o(—u)> o Res”=”0< c(iw)e(—iv) )

Now we can proceed as in [Far79, p. 431]. The zeros of C(—vp) for vy = is € iR with
s> 0 are given by s = p+ 2r, r € Z, with (recall p = 11)
O0<p+2r<2q+3&r<qg—4.
1

If r <0 then =7— has a simple pole at s = p + 2r. Moreover, Bpq(—(p+2r)) =0if
p+2r>2q+3<1r>q—4. For each r <0 and each p,q € Ny we may thus write

5p,q(¢”)5p7q(_iy)

c(iv)e(—iv)

Resy—y, ( ) = Bpg(p +2r)Bpqg(=p = 2r) Resy=y, <1)

c(iv)e(—iv)

and in turn get contributions of Z,, 2, for » < 0. On the contrary, for r € Ny, Wl(—s)
has a pole of order two at p + 2r. For r < g — 4 we have

Bpq(p+2r) =0 and Bp.g(—p —21) # 0.

Thus,
Bpa(iv) By q(—iV)> / ( 1 )
Resy=y, = — = 2 —p=2r)co|
SHv=so ( c(iv)e(—iv) Fnap+2r)pa(=p = 2r)e—s c(iv)c(—iv) Yo
and we get a contribution of ©, in these cases. O

We call invariant Hilbert subspaces in L?(G/H) resp. its corresponding positive definite
distributions relative discrete series if they are not embedded into the complementary
series. The corresponding distributions are then given by (,42, (corresponding to the
kernel Z,19,) for 5 < p+2r < p and (—1)""1¢, (corresponding to ©,) for r € Ny (see
also [Kos83, Remark 3.13.4], where (5 and —j are excluded). We conclude this chapter
by proving that the representations corresponding to these distributions are given by the
socle representations of the spherical principal series representations in the exceptional
cases. We first recall some notation from [Kos83]. The distribution 6, is defined by

Vo eCEG): 0,0)= [ Vi an(@)upmar) (D),
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where V,(€) = fsy log(Pi(€)) for € € B = K/M and Py : G/MN — R is defined in

[Kos83, p. 60]. Moreover, the spherical principal series is realized on = := G/M N by
Ey(E) = {f € C¥(E) |Vt € R, g € G: f(gait®) = PV f(g€")}

where ¢ € = is the element used to identify K/M = B, kM + k.£° such that the
stabilizer of €% in G equals M AN. Finally, we define the H-spherical element ug of
EL(E) = (E_s(2))" by

wlf) e e
1) = sy [, PO T0)

and set

WMWMﬁ:L%@wWW@w-

By [Kos83, p. 62], m.(¢)us € Es(Z) is actually smooth.
We now describe the realizations of the relative discrete series. Let

P: E;+2r(5) - D/(G)7 Y= (¢ — (p(ﬂ-lfpf%(gb)u—p—%))

and
o0 BpanlE) = C S [ Vi) ()b,
Then we have 6, = ®(p(). Note that ® is G-equivariant since, for each g € G,

(I)(ﬂ-,/oJrQr(g)SO)((b) = (71-;)4»27"(9)90)(77/7,0721"(4))“—,0—27‘) = 90(71-—/)—27"(gil)ﬂ-lfpf%"(qs)u—p—%’)
= (0 (9710 u—p-2r = D(0) (97 0) = (9 ())(9).

Therefore, the representation generated by 6, is equal to the image under ® of the
representation Gg generated by g, which in turn is given by Gyg/ ker(<I>|G—%). Since

G0, is unitary and irreducible, the latter quotient is a unitary, irreducible subquotient of
B, 5,(Z). Hence, it has to be the unique maximal quotient of E} , (Z) = (E_p-2,(E))".
This however is isomorphic to the unique irreducible subrepresentation of £_,_o,.. The
case of Z, 9, for 5 < p + 2r < p can be treated in an analogous fashion.

We can also verify that the occurring K-types match those of the socle. Let us first
consider the case of 6, for r € Ny. On the one hand we get from Equation (C.0.1) and
since fpq(—p — 2r) # 0 if and only if ¢ > r 4+ 4 (by [Kos83, p. 71] with h = r + 3) that
only K-types Hp 4 = Vpy24p With ¢ > r + 4 can occur in the representation generated
by 6,.. On the other hand, in the notation of Lemma B.5.1, the exceptional parameter
—p—2r = —(p— 6+ 2¢) corresponds to ¢ = r + 3, where the K-types in the socle M, are
(again) given by Vj, j, with ¢ = mT_k >{0=r+3.

Let us finally consider the case of (,19, for 5 < p+ 2r < p. In this case, [Kos83,
Proposition 3.9.4] implies that (s vanishes identically if and only if 5, 4(5)50,4(—s) vanishes.

By [Kos83, (i), (iii) on p. 70f.] we infer that
Bp,q(p+2r) # 0 for all p,q € Ny and Bog(—p—2r) #0<qg>r+4.
Thus, again only K-types Hp , = V124 With ¢ > r 4+ 4 occur.
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D. An example: G = SU(n,1), n > 2

In this chapter we consider the complex case in more detail. First, we describe the gener-

alized gradients more explicitly using the structure of complex spherical harmonics and
determine the corresponding embeddings L%’b from Definition 7.3.4. Then, after proving

»q
some facts about spherical harmonics, we give a proof of the Fourier characterization

and provide a more explicit spectral correspondence in Theorem D.5.4. For the general
structure of G and the decomposition of the spherical principal series into spherical
harmonics we refer to Appendix B.3.1 resp. Appendix B.3.2.

D.1. Generalized gradients

In order to describe the generalized gradients, we have to decompose Y, , ® p* for
[(Tp.q» Yp,q)] € K as a K-representation. Note first that p* is reducible and decomposes as

p* = pl @ p3,

0, v\ n . 0, 0) n
(% D) ek e {( Yvce).

Then, by Proposition A.2.6 and A.2.7, Y, , ® p* generically (for some special choices of p
and g some of the subrepresentations have dimension zero) decomposes as

where

Ypq® pr = Yp1,4 ® Ypr1,4 © Ypg-1 D Ypgt1 D V;ol,q ® V;oz,q-
Before defining the associated generalized gradients we first introduce a useful notation.

Notation D.1.1.

zj : C" = C, (vl,...,vn)THv],
z;: C" = C, (vl,...,vn)THQTj,
n n
]2\2:sz7j:C"—>C, (vl,...,vn)THZvﬂTj.
j=1 j=1
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D. An example: G = SU(n,1), n > 2

Next we define the generalized gradients

i pot =Ty 0V i C(G %k Yyg) = C%(G Xk Vi1,
d_ano =Ty 0V 1 C®(G %k Y q) = C%(G Xk Ypg1),
dy ahol = Tgf’:“ oV :C®(G Xk Ypq) = CF(G XK Y] q+1)7

d_pot =Ty 0V : C%(G Xk Ypq) = CF(G Xk Ypo14),

D’ = pryy oV C%(G xk Ypq) = C%(G xx Vi), i=1.2,

where 7. ”iql . € Hompg (Yy 4 ®p*, Ypi1,4) and TY” qi € Homg (Y, ®p*, Yy 4+1) are chosen
as follows: Usmg the K-equivariant maps

Yoq®Yio = CO(S™ ), o®z = 2,
Ypq®Yo1 — CO(S*™ Y, o®7% — Zo,

and the isomorphisms ®, ¥ from Lemma A.2.4 resp. A.2.5 we obtain K-equivariant maps
Vg ® P12 Yo @Yig = CFE"), ¥y @032 0@ Yoy - CF(E).

By [FO19, Equation (B.7)], we have for each ¢ € Y},

hol —,ahol _ hol — hol
Zjp = Soj ¢ !z\QSDj A Zjp = @}r’a “+ !z\ngj’ e (D.1.1)
with gof hol oy ot 1.gs cp;E pahol Y, q+1 given by
2
+,hol 2] Oy — hol 1 Oy
=P(zjp) =2jp — ————— A e D.1.2
i (0) = 2 p+q+n—109z’ i p+q+n—10z’ ( )
2
+,ahol — |Z’ 630 —,ahol 1 890
=P =% cabol = %Y (D13
90] (Z]SO) Z]SO p+q+n_18z]7 J p+q+n_1az ( )
Finally we set
Y - Jhol Y, ] — ahol
Vi (e @@ (7)) =, Ty (0@ @7 (z) =M,
Yy, —1/——\\ .__  +ahol Y, . _—hol
TY;,:Jrl ((,0 ® v 1(2])) = SOJ e ’ TY:jlyq(SO ® v (ZJ)) = SOJ ? )

.. . Y, i Y, i
and ex}t/end the deij/nltlons to Y}, ¢ ® p* by defining TY:qu and TYZ;1 to be 0 on Y, ; ® p3
and Tyz’qqﬂ and TY;’_quq to be 0 on Y, ; ® p7.

In order to be able to do most of the necessary computations in C*(S?"~1), we discuss
how p* embeds into C*°(S?"~!) using Lemma A.2.4 and A.2.5.

Lemma D.1.2. Let X, )~(ej, Jj€{1,...,n}, be the basis of p defined by
L On € v . On iej
Xej = <e]T 0> Koy = <—z'eJT 0 )
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D.1. Generalized gradients
and consider the corresponding dual basis X;"j, X; € p*. Then the isomorphism

pr=pl dp; =Y You
maps

1 . > ) _
X:j = i(zjﬁzj)v X:j = 7(_2]‘723)'

Proof. For each v € C™ we have

0, v 0, % 0, Z(_Z%) = Um .Um &
(0 0) <2 0>+<—z‘< Ty o )T 2 e

and thus
* 0, v

Moreover we obtain

VR
S =)
% 3
o O
~_
Il
VR
w‘ﬁ*zo
(@R NIIS]
~_—
+

and thus

With the isomorphisms from Lemma A.2.4 and A.2.5 this yields
1 (% 1% > _ . Zj 1 (.Z
Kmen () (5) mak = ((5) e ()

We can now describe the embeddings L%ii Z from Definition 7.3.4.
Lemma D.1.3. Let

v . 1 & of _
Lyfql’q Ypr1g 2 Ypq®P1, f 120z QP 1(Zj)
j=17"7
n
Yp.a+1 . * L ﬁ 1z
by, Yogr1 = Ypq @by, [ Q+1j:1 a@@@ ()
and
- n+p+q—2 15
LYZ’qlq Ypo19 = Ypg®p3, [ mz:lP(zjf) ® V()
j=
v . n+p+q—2~,__ -
vy Ve Yo @b1 o T i T ) PEH© 7).
j=1
Then
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D. An example: G = SU(n,1), n > 2

1 . .
i) Ly ”i and Ly ”qil are K-equivariant,

. Yp.q Yptiq : Yp.q Ypaqt1 _ .
i1) TYPil o =idy,,,, and TYMil oLt = idy, .45

Y.

ii1) Té’g o LY:Z =0 for each (a,b) # (c,d).

Let us again briefly explain how these embeddings are related to Proposition 7.3.9. We

Y11 .
confine ourselves to the case LYTq Y and obtain

0 = S S (39) 297 vons, (37) 095
— M > pry (ZQJf) ® 0 (2)

P+l =

1 & of
= Y
p+1 8z]® ( i)

where we used Remark A.2.2, Equation (D.1.1) and the fact that

0, €; _1 _ 0, €;
(% )00 = (s (% )

corresponds to % € C™(S?"~1) after identifying K/M = §?"~! (see Equation (B.3.11)).
As in the case of SOg(n, 1), we give a direct proof of Lemma D.1.3 using only the structure
of complex spherical harmonics.

Proof. 1) We first show the K-equivariance of ¢ ”“q. Let k = diag(A,\) € K and
f €Ypt14. Then

n —1
p+1q p+1q ) -1/,
B =arert) = g A s
and
1 & of

+1, _ -1 1y .
kaiqq p_'_le—@kCI) (zj) = okT @ & (k.zj).

p—l—lj 82]‘

=1
Note that there exists a canonical homomorphism

©:Ypq®p1 = Hom(C",Ypq), O(f @ A)(v) = 2(AN)(v)[.
It thus suffices to prove that

1 a(fok™)

@(L%Zl (k.f))(em) = p+1 Oz
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D.1. Generalized gradients

equals
Y+1, o ]. n ) 8f —1
@<k'LYZ,q “(f))em) = W;(k-za)(em)azj ok
for each m € {1,...,n}. By the chain rule we obtain
8<f ) S\ ok (ar ) okt
N z_: <82] ok ) 0zm + 0z; ok 0zm
7=1
n -1
i 82] 0Zm

since k:j_l (the j-th component of k=1 € Aut(C")) is linear. It remains to prove that

Ok;” 4
% = (k.zj)(em) = zj (k™" .em).

However, this follows directly from the deﬁnltlon of the derivative. This proves the

Ypi1,q Yp,q+1
P,q

equivariance of ¢/ and the equivariance of ¢/ is proven analogously.

For the K-equivariance of LYZ ql " we have to show that for f € Y,_14
n n

Z (zk-f) @ 0! Z P(zf) ® k.07 (7).

Let © be the isomorphism given by
0 : Vg ©p3 = Hom (T, V), O(F 8 A)(v) = ¥(N)(0)/,

where C" denotes C™ with the opposite complex structure. It suffices to prove

n

P(zmk.f) = Z P (2, f)(k-z;)(em)

for each m € {1,...,n}. Note that

k~tz, = Z z2m(k.€5)z;,
j=1

with, since k acts unitary,

zm(k.ej) = (k.ej,em)cn = <ej,k_1.em)@n = Z(k_l.em) = k.Zj(em)-
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D. An example: G = SU(n,1), n > 2
By the K-equivariance of P we thus obtain that
P(zmk.f) = P(k.(k™Y.2,) f) = kP((k™ zm) f) = k.P (Z(ks.zj)(em)zjf)
j=1

- zi: k.P(z f)(kZ5)(em).

This finishes the proof of the first part.
ii) For each f € Y,11,4 we have

»>

Yoq 1 Yoi1, 1 Y .
TY;ZLqu (Lyz?;l q(f)) = P € 1 Yp+q1 q (Z

el o

a4 18 analogous.

Yp.q Yp 1,9
For TYV1 oLy =idy,_,, let f € Y,_1 4. Then

The proof of TYP o L}{p I — dy

You ; Yo1. ntp+a—2.y, = _
Ty (o () = B )", (2_: (zif) ® ¥~ (%)

_ntptqg-2 1 zn:E)P(zjf)
n+p—2 p+qg+n-—1 0z; '
By Equation (D.1.2) we infer
OP(zf) 1 of 5 O%f
Z 0z; Zf+ ]82] p+q+n-— <JW+‘Z’ 02,07z

=nf+(@-1f p+q+n72(qf+12\ Af)
_ (n+p—2)(n+p+q—1)f
N n+p+q—2 '

Yp.q Yog-1 _ ;
The proof of T, L Oly = idy, ,_, is analogous.
iii) For each f € Y, ,—1 we have

Yoa  Yoqo Ypq MED+q—
TS ) = (RS e 0)
n+p+q—2
= n+q—2 E:P% (Zf))
n+p+q-—
TR = o
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D.2. Computations for spherical harmonics

: Y, Y,
where we used Lemma 9.1.1. This also proves TY;’;H LY” La _ ).

For each f € Y}, 4+1 we have, since f is harmonic,

n

Yy, Yy q+1 o 1 Yy, 8f -1/

Ty (e () = PP 1T S <az ® v (%))
]:

1 N
- S0
(a+1)(p+q+n-1) = 0207
This also proves TS}’ZO;qﬂ o L%zl,q = 0 and the other equalities are clear. Ul

D.2. Computations for spherical harmonics

In this section we prove some interesting relations in the spaces Y}, ; of complex spherical
harmonics. We will use these relations for the computation of the scalars relating the
Poisson transforms to the generalized gradients and for the Fourier characterization of
the principal series.

Lemma D.2.1. We have the following expressions for the derived representation 7,4 on
Yyqfor1<jm<n

lr + T — e — T

T 9zm % 0% "0z "oz’

o . (0 o __ 0 0 ,
Tp,q(diag(iEjm + iEpm;,0)) =i (Z’”az] — zma—zj + Zjﬁ - Zjazm> . J#m,

Tpq(diag(Ejm — Emj,0)) =

Y N - BN B
Thq(diag(~i, 0n-1,1)) = i (Z o iz 2 (T - 8)) |

Proof. Let ¢ € Y, ,. We first assume that j # m and extend the definition of 7, , to

Mat,, +1(C). Then we have for every z = (z1,...,2,) € S?»~1 c C"
Tl diog(Bym 0)plz) = G| plexp(—tding(Ey.0)).2)
CLE] elep(—tEm))
= % . o(z — tzme;).

Writing z, = x9,—1 + ix2, € R 4+ {R we obtain

. iy 0 )
ha(diag(Ejm, 0))¢(2) = —i <m To max> #(2)

B 0 g 0 (2)
= Zm@z] Zm@zj w(2).
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D. An example: G = SU(n,1), n > 2

This proves the first equation. The second equation follows for j # m from

.. d ..
Tp,q(diag(iEjm, 0))p(2) = s p(exp(—tdiag(iEjm,0)).2)
d )
== - o(z — itzme;)

=z 9 x 0 (2)
= 2m 81)23‘_1 2m—1 61'2_7 ¥

=1 Ti—z i (2:)

For the last equation we first obtain

. . . d . . ,
prq(dlag<_lv On—la ’L))SO(Z) - % =0 cp(exp(—t dlag(_% 071—17 Z))'Z)
= 4 o(diag(e®, e, ... e")z)
dt|;=o

= 3 HiEy (=) — A )ol2),
j=2

where [ denotes the derived left regular representation. For each j € {1,...,n} we have
. d —it
(iEj)e(z) = al O(21, oy Zj—1,€ 2, Zjg, - o5 Zn)

0 0
= (3721‘&%_1 - 3721‘—18962) ©(2)

=1 (Zja - Zja> ©(z2).
9z; 70z

This finishes the proof of the last two equations. O

Lemma D.2.2. For each f €Y, , we have

0 0
ai@ﬁ=pﬂq% ai@ﬂzqﬂm)
and
Plaufer) = —HT8tfen), PGS e) = ~ I e,

Proof. We have

of
8721(61)

Il
/

NE

<.

Q| @
K ‘kh
v

—
aQ
o
S~—
Il
=
-
—~
aQ
0
S~—
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D.2. Computations for spherical harmonics

and the second equality follows analogously. Using Equation (D.1.2) we obtain

K& of

P(z1f)(e1) = (Zlf - m%

q
) (e1) = f(e1) — Efljij;;;f:f[f(el)

and the claimed equality follows. The formula for P(z7f)(e1) follows similarly. O

Lemma D.2.3. Let p,q € Ng. Then
i)

P(zz1%)(e1) = MP(z{’_laq)(el),
Pla)(er) = P (AT (o),
;le(zfzq) _ WP@{‘%%,
P = e

ii) P(¥z1%) is a linear combination of zf_jzﬁq*j\zw, j=0,...,min(p,q).

Proof. Considering 21717 € Y, , as an element of Y,4, (see Equation (B.3.13)) we can
use Lemma 9.1.1 to obtain

P(£71%)(e1) = P(=1P (1 21%) (e0).

Now Lemma D.2.2 finishes the proof of the first equation. For the third equation note that
%P(zfzﬁq) is an M-invariant element of Y,_; , and therefore a multiple of P(z~'z79) by
Equation (B.3.14). We compute this multiple by evaluating at e;. Lemma D.2.2 implies

) _ plp+n—2)

G PEE e = pP(EH ") (o) = PE P ) ).

The remaining equations can be proved analogously.
For the second part we use Equation (D.1.2) to get

— — 2 0

P(P79) = P(2P(2P1579)) = 2 P(2P 1574 _L P(P 15

AT = PPl 20) = e ) e e o 1 )
|2|? qlg+n—2)

=z P(F 1 5) - Pz

p+q+n—2p+qg+n—3
and the result follows by induction. O

Lemma D.2.4. For every p,q € Ny we have
0 0
<z1 - ) P(z{717) = (p — )P(4717).

215—
82’1 821
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D. An example: G = SU(n,1), n > 2

Proof. By the proof of Lemma D.2.1 we first obtain that

0 0
(2’1 — 21871) = il(iEH),

where | denotes the derived left regular representation of U(n) on Y, ,. Since P is
O(2n)-equivariant and linear we have

il(iE11)P(z1%) = P(il(iE11) 2y 717) = P(p2lz19 — ¢2iz19). O

D.3. Poisson transforms

In this section we define vector-valued Poisson transforms and describe their relationship
to the generalized gradients. For each p,q € Ny we define the Poisson transform
Pzp’q’Cpt : D'(K/M) — C®°(G Xk Y, 4) by continuous extension of (see Definition 3.3.1)

BI (9)(g) = [ artg™ B) 0 ok (g™ R)6(04)) i,
where t € Hom(C,Y,,) is given by (1) :== P(2]'z1%). By Equation (3.5) we have

Yp.q — pYp,qgcpt
Pu 0Qu p= Pu

on D'(K/M) where P;p’q 1 H, = C®(G Xk Yp,) is given by continuous extension of

BI(0)(9) = [ mal0S(0k) dk = FAOmlg ™). (D3.4)

The following lemma generalizes Lemma 4.4.1 to SU(n, 1).

Lemma D.3.1. Let p € a* and f € H,;*. Then

+
(d4not © Py9)(f) = (m P +p>P”“q )Vp,q € Ny,

(dyahol © Py)(f) = <(M+p + q) PP (f)Vp, q € Ny,

(d—anot © PyP0)(f) = Apg(q) (u(H) — p(H) — 2(g — 1)) s> () ¥p € Ny, g € N,
p(H

(d— ot © BY29)(f) = Apg (0) (u(H) — p(H) — 2(p — 1)) Pu" () ¥p € N, ¢ € N,
(D7 o PYra)(f) =0 Vpe Ny, g €N, j €{1,2},

z(nt+ax—2)
2(p+g+n—2)(p+g+n—1)°

where Ay 4(x) =
Proof. Let d.ps denote the Delta distribution at eM on K/M. Then

Py (Sear)(g) = ar(g™h) U m,4(kr(g™)P(F719) € CF(G Xk Yig)-
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D.3. Poisson transforms

Recall the basis X, )?ej, j€A{l,...,n}, from Lemma D.1.2. Since X., = H € ay,

(VB 7P (5ear)) (€) (H) = By P (8epr) (exptH)

= 4 az(exp —tH)~WFHAP(2Pz19)
dtl;=o
= G| D ez — ot p)(H)P(ET).
t=0

Note that for each j € {2,...,n}

- 0 )
Xel =0 0,-1 0| —diag(—%,0,-1,7) € ny @ o,
- 0 )
0 eJT,l 0 ejT
Xe; = |—€j-1 On-1 ej-1| —[—¢ € ng @ ¥,
0 e, 0
_ 0 _ie] 1 0 —/éej
Xej = —iej_l 0,1 iej_l — —z'ej € ng P &.
0 —ie]; 0

Let the latter matrices (without the minus sign) be denoted by Z, Zj, Z € £y respectively.
Since P,fp %P5 11) is constant on N we have

(VEPP (b)) (e)(Xe,) = —(VPIPoP (Serr)) (€)(Z)) = Tpg(Z5)P(2171%)
and
(VY0P (Serr))(€)(Xe,) = Tpg(Z))P(F7TY),

Therefore we deduce that (VP;”“”Cpt(deM))(e) €Y, ,®p* is given by

(VP75 (Gerr))(e) = (u + p)(H)P(717) @ H* + Zqu P (h7) @ X,
j=2
—i—Zqu P2z )®X’;. (D.3.5)
By Lemma D.1.2 the projection of the right hand side of (D.3.5) onto Y}, 4 ® p} equals

(u+ p)(HPE) @ 07 (2) + prq P ee (2)

- ~ _ 125
+ 3 2 P @ 0! (—;) € Vi 9.
j=1
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D. An example: G = SU(n,1), n > 2

In order to calculate the images under dy 1,01 and d_ .01 we therefore have to decompose
the polynomial

n n .
21 . 2 ~
Su+ o) (H)PERE) + Y F10(2))P(H7Y) 2:5 P(}z?)  (D.3.6)
j:2 :

with respect to the decomposition from Equation (D.1.1). Lemma D.2.1 yields

> el P — FraZ)PEA
z
- g g (8‘9 o~ - ;’) P(4717)
+ %z (@ai — ij)a;zl +218(;)7 — z1£> P(2lz19)
:]ZZ <lej882j zjza ) P(2lz19)

0 0
= paP(x717) — - P(Fz17) — |2* =P (}719).
pxaP(z1217) — 21 <Zlaz1 Z1621> (21717) — |2| o (21217)

Using Lemma D.2.4 this simplifies to

0
g1 P(717) — ’Z\Q%P(zfﬁq)-

Moreover we have by the K-equivariance of P and Lemma D.2.1
Tog(Z1)P(471%) = P(—2i(q — p)2iz?) = 2i(p — )P(Fz?). (D.3.7)
This proves that the polynomial from Equation (D.3.6) is given by

(2D 1) 2iptane) - 2P =P )

By Equation (D.1.1) and Lemma 9.1.1 we may write the polynomial in the form

+ p)(H 2 5] 9]
(2D ) (P(zi”“zlq) s Ll WP(lelq)> 3P = P(:4)

= (wg)(H) +p) P (P 27) + (é‘é;f;(fitzf; - 1> \z|2a;P(zleq).

Using Lemma D.2.3 we infer that this equals

((M+P)(H)

DU 4 p) P2 o+ Apg(@) () — p(H) — 2(q = D)PP(E 1)
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D.3. Poisson transforms

since

<(u+p)(H)+2p_ > alg+n—2)
2p+q¢+n—1) p+q+n—2

where we used p(H) = n. Since Py ? P (5,1,)(e) = P(P T 219) and Py P (5.01) (e) =
P(2721971) the proof of the first and third equation follows from Corollary 3.3.5.

For the second and fourth equation we first describe the projection of the right hand
side of Equation (D.3.5) onto Y} ; ® p5. By Lemma D.1.2 it is given by

= Mpg(@) (u(H) — p(H) — 2(q — 1)),

(u+ p)EPEa e v () + ZTM g e ()

+Zqu P({z) @ O~ <2>6qu®p2

By the definition of d 401 and d_ 1,41 we have to decompose the polynomial

125 ~
P(z17) +Z < a(Z)P(EZT)  (D.3.8)
7j=1

b \&\

Sk PR + 35

with respect to the decomposition from Equation (D.1.1). By Lemma D.2.1 we infer that

7j=2
(9 D 0 )
jz:; 5 <z1 9z, + 71 0z Zj 21 Z; PEn (z1217)
_ 9 o _ 0 B, g
2 < T om0 “ 021 A 0%; “ 0z; P(z7r)
n L a o
e Z <Zlea7 ZJZJ@ ) P(Z?Z‘lq)
j=2 J
_[&_9 _ 9 -
=7 (]; Z]%J - 1821) P(27z19) — (|2 - zlzl)a P(21z17)
— PR + 71 (215 — A ) P |4 o P(AE)
! 821 621 1

which simplifies to
0
gzP(21717) — |2 5P (717
621

by Lemma D.2.4. Using Equation (D.3.7) we deduce that the polynomial from Equation
(D.3.8) is given by

(2 s o) mrptany) - | g P(ap)
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D. An example: G = SU(n,1), n > 2

Now we continue as in the previous case to obtain that it equals

<(M+P)(H)

P+ q) P(LZ0) + Ay (D) ((H) — p(H) — 2(p — 1))|2?P (71

Corollary 3.3.5 finishes the proof of the second and fourth equation.

The last equality follows from the fact that D’ maps into sections of the bundle associ-
ated to the K-representation ij?q which does not contain the trivial M-representation
and Corollary 3.3.4. O

Remark D.3.2. There exist constants ¢, , € C such that
Cpg - PYPa(f)(9) = pry, (f(g°)

for all p € a*, f € C®(G)M, g € G and p, ¢ € Ny, where we extend the Poisson transform
to C°°(G)M by the same formula. The constants are given by

dimY) 4
Cpg = ———— .
P4 Pz (er)
This leads to the recursion formulas

n—+p+gq n—+p+gq

c0 =1, Cpr14= p+1 Cp,q»  Cpg+l = q+1 Cp,q-

Proof. The existence and the first expression follow as in Remark 9.2.2 and Lemma 9.2.6.
By Remark A.2.3 and Lemma D.2.3 we have

it dimYyi1, P(2(719)(e1)

Cpq dim Y} q P(le)+171q)(€1)
_ (M%) ntp+g n4ptq-1_n+ptg
F A n+p+g—1 p+n-—1 p+1
and the second formula is analogous. O

D.4. Fourier characterization

In this section we characterize the spherical principal series representations by relations
between their Fourier components (Proposition D.4.8), generalizing Lemma 4.2.1 from
the PSL(2,R) case. We first repeat some notation.

Definition D.4.1. We embed C*°(G'x Y}, 4) into the smooth right M-invariant functions
C>(G)M by the map

Ty, CF(G XK Ypq) — C>®(GYM, Ty, ,(¢)(nak) = p(na)(k.e1), n € N,a € Ak € K,

200



D.4. Fourier characterization

where e; = (1,0,...,0) € S?"1 c C". Since p € C®(G xf Y,,) we have for each
g=nak € G=NAK
T4 (0)(9) = @(na)(k.e1) = (rq(k™")p(na))(er) = @(g)(er).

We further denote by

™y, D(GIM) = D' (G xx V), 7y, (@) = f(ry,, ()

the transpose of my, =~ defined by duality where D'(G xg Y,,) denotes the dual of
CX(G xk Yyp). We embed smooth sections into distributional sections by

0t (G X Yog) = DG X Vg 13, (D9 i= [ 70, (D(0)7y, (1)) dgK.

Using the same methodology as in the real case, we obtain analogous statements to
Lemmas 7.1.25/9.2.3 and Proposition 7.2.4. In particular we obtain, for each u € a*, that
P;p’q’cm =P, 0Q, ,= ngk/pq 0 Q,_, on D'(K/M) as in Lemma 9.2.3iv). This

¢ y
allows the following reformulation of Lemma D.3.1.

Lemma D.4.2. Let p € a* and f € H,;*. Then

((u+p)(H)
2

* ¢ )
(dy pot 07y, )(f) = 4

3 Vp, q € Ny,
— +p> TV, 14 (f) VP, g € No

H
(@i, )0f) = 20 (CDED o g) w5 Vog € o
(@ 075, )(F) = 50y a) uCH) — p(H) = 2a = D), (1) ¥ € N g € .
(@ 78, (1) = 22 ) () = () = 20 = D)5, () ¥ € N, g € No.

(D7 ory, )(f) =0VYpeNy, g €N, je{1,2},

z(nt+x—2)

where Ay q(x) = 2(p+qtn—2)(ptqtn—1)"

Before proving the Fourier characterization, we first prove two preparatory lemmas,
the first of which yields the explicit form of Lemma 7.5.1 in the complex case.

Lemma D.4.3. For each f € C*(G xk Y),4) we have

n
(d4 hol +d— anol + d— hol + d anol) f(g) =
=1
Proof. By definition, the gradient V is given by

n

VIi(g) =D r(Xe,)f9) @ X7, +1(Xe)) f(9) @ X7, € Y g @p™.
j=1
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D. An example: G = SU(n,1), n > 2
Lemma D.1.2 yields that

X = @7 () +0TE), X = @7 () - (),

By Equation (D.1.1) we obtain for each ¢ € Y, 4, fi € Y10 and f2 € Y1 (as identities
on the sphere §?"~1 c C")

Y, Y, _
ofi = (T + Ty )p®d ™ (1)),
Yp;fl YP;Q

0= (Typ+l,q + Yp.q-1

Yp7q®P’2€’
fo= (T, + T e @ U (f2)
pl2 = Yp,q+1 Ypfl,q ¥ 2))s
— Yp’q Ypaq
0= Ny, + T, Yp,q®p}

Thus we obtain that (dy nol + d— anol + d— not + dy ano1) f(g) equals

1 Z; ~ 1
> (X)) f9)5 +r(Xe,) Fg) 52+ r(Xe)) f9) 5 = r(Xe)) f9) 5%
j=1 L v
- Zj+ 7 |
=2 (X)) F(9) =5~ +r(Xe)) f9) 7 O
j=1 !
Lemma D.4.4. Let up, € C°(G Xk Yy ). Then r(H)rmy, (upq) equals
7TYpfl,q(d—,holup,q) T MYt (d+,holup,q) T Y, 41 (d—,aholup,q) T Y, 411 (d+,ah01unq)-
Proof. This follows directly from Lemma D.4.3 by evaluating both sides at e;. O

Lemma D.4.5. Letp € a* and f = 3, cn, fpg € D'(G/M) with fpq = ﬂypyq(ﬂ';}pyq (f) €
Ty, (C(G Xk Ypq)) such that the equations from Lemma D.4.2 hold for f. Then
r(X)f = (u—p)(X)f for every X € ag, where r denotes the right reqular representation
of ag on D'(G/M).

Proof. By definition we have for every ¢ € C°(G/M)

(X)) (@) = =f(r(X)p) == D frar(X)p) = D (1(X)fpq)(p).

p,q€No P,q€No
By the last equation of Lemma D.4.2 we may apply Lemma D.4.4 to obtain
r(H) fpq = r(H)my, ,(7y,  (f))

= T‘-Yp+1,q (dJ,»,holﬂ-ik/pyq(f)) =+ 7T}/p,qﬁ-l (d+7ah01ﬂ-§;pyq(f))
+ 7y, 41 (A anarmy, () + 7y, (= hay, (f)).
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D.4. Fourier characterization

The equations from Lemma D.4.2 imply that

c + H
T‘(H) g = P,q ((:UJ ,0)( )+p> fp—i—l,q
Cp+1,9 2

H
4 Cp,q ((M+P)( )—i-q) Fogit
Cp,g+1 2

N CZ;;,:AM(q)(M(H) —p(H) —2(q — 1)) fpq—1

PN () () = ) = 2(p = 1) 1

We infer that

m m—1

Z r(H) fpq = Z ap,qfpa

p,q=0 p,q=0

£ (apan = I i m D)) = p(H) = 2)) fyim

+ 3 (o= P 4 ) (a(H) = p(H) = 2m)) g

(g = 221 (4 1) (a(H) = pCH) = 2)) fon

o~ m+1  ((u+p)(H)
+Z:n+p—|—m( 2

+ m) Jpm+1
p=0
m

m+1  ((u+p)(H)
+Zn+q+m< 2

) o
q=0

where a, 4 is given by (recall Remark D.3.2 and the definition of A, ,)

0, = Lo ((u + p)(H) e 1) \ -t ((u +p)(H) | . 1)

“pq 2 Cpyq 2
Cp,g+1
+ PN g1 (g + 1) (u(H) — p(H) —29)
P,q
Cp+1,
+ N g (p o+ 1) (u(H) — p(H) — 2p)
P,q
_ p ((u+p)(H)+p_1>+ q ((u+p)(H)+q_1>
n+p+qg—1 2 n+p+qg—1 2

n+p+q (g+1)(n+q—1)
¢+1 2p+qg+n-1(p+q+n)
n+p+gq (p+1)(n+p—1)
M 2(p+q+n_1)(p+q+n)(ﬂ(ﬂ)*p(H)f2p)
p___(luto)H) @ ((u+p)(H)
”+p+q—1( 2 +p—1)+n+p+q_1( 2 +q_1>

(u(H) — p(H) — 2q)
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D. An example: G = SU(n,1), n > 2

n+q—1
50 o gy ) — p(H) 20
n+p—1
3o Ty () — ()~ 2)
= u(H) - p(H),

where we used p(H) = n for the last equality.

We finally claim that the remaining terms in Equation (D.4.9) converge to 0 as m — oc.
Note that every remaining term only involves f,, with p + ¢ > m. Moreover, by the
orthogonality of the Y}, 4, we have for each ¢ € C°(G/M) that

fp,q(‘P) = fpﬂ(%"nq) = f(‘Pp,q)'

As in the proof of Proposition 7.2.4 we see that for each N > 0 there exists a constant C'
independent of m such that

1flep) SC(L+(p+9)*) N <CA+m?*)™N for p+q > m.

Choosing N large enough implies the claim since there are only polynomially many terms
and the growth of the coefficients is polynomial. O

Lemma D.4.6. Let ¢ €Y, ,. Then, for j € {2,...,n},
1 of 1 of

P(z; S ——C P(%; . S——C Y
(zf)(e1) P (e1), P(z;f)(e1) P — (e1)
Proof. This is a direct consequence of Equation (D.1.2) and (D.1.3). O

We now prove the relation between the Fourier recursions and the action of ng to
complete the characterization of the spherical principal series by its Fourier components.

Lemma D.4.7. Let pp € a* and f =3, ;en, foq € D'(G/M) with fp 4 € Ty, ,(C®(G xK
Yy.q)) such that the equations from Lemma D.4.2 hold for f. Then Uyf =0 for every
U+ € COO<G X M no).

Proof. For v € C" ! let

0 v 0 —i 0 i
Y;} = | —v On—l v e gg and }/QQ = 0 On—l 0] € gga.
0 v* 0 —1 0 )

By Appendix B.3.1,
}/:217‘ ) '7}/:271717Yviela s 7}/ien71aY2a

is a R-basis of ng. We write Uy € C®(G x s ng) as

n—1

Ui(g) = 3 (kH9)Ye, + £2(9)Yie,) + £(9)Yaa, g € G,
j=1
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D.4. Fourier characterization

for some real-valued smooth functions n’?, k € C(G). For each ¢ € C(G)M we obtain

U))@)) = fUL0) = D foaUiv) = D Usfpa)(®)

p,q€Ng »,q€Np
Z Z e] qu }(9)90) + (r(}/;ej)fp,q)(“gz(g)@) + (7’(Y2a)fp,q)<“(9)90)~
p,q€Np j=1
For v = (0,v2,...,v,) € C" we write
/l]*
Zy = | —v € g and Zy,, = diag(—1,0,...,0,7) € &.

Using the notation from Appendix B.3.1 we obtain for j € {2,...,n}
Ye, | = Xe; +Zej, Yie, , = Xie; + Zieys Yoo = Xiey + Z2a € Po O to.
Let us first consider
7'(Yej71)fp7q = T(Xej)fzxq + T(Ze]')fm'

The first summand is given by

r(Xe,) Fpalg) = r(Xe,)my, (73, () (9) = jtt:ow*w<f><gexptx )(er)
= (Vg (M)(9)(Xe))er) (D.4.10)

for every g € G. We claim that

(Vay, ,(D)(9) = 02 (dynarmy, , (£)(9) + 2 (- pary, , ()(9))

P

+ LYp o (d-‘r,aholﬁ;’p,q (f)( )) + LYp o (d—vah‘)lﬂik/p,q (f)(g))

Indeed, note that both sides are equal after applying some TY: bq by Lemma D.1.3. Thus,

using D7 LS f) = 0 for j € {1,2}, the claim follows by using the tensor product
decompositions from Propositions A.2.6 and A.2.7. Therefore we may write

(Va3, , ())(9) = n2 " (depart, , (1)(9) + 62 (d_parmy,, ()(9))
+ 02 (d e anaiy,, (£)(9) + 620 (Ao anar, , (£)(9))

Cp,q ((N +p)(H) —|—p> LQT q<7TYp+1,q(f)(g))

B Cptl,q 2
PN () = p(H) = 20p = D)) (5, (D)
g (W ) 4 o, ()0
+ cz?;q1)‘P (@) (u(H) — p(H) = 2(q — 1)) pZ 1(7T;Pv4*1(f)(g))’
(D.4.11)
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D. An example: G = SU(n,1), n > 2

where we used the equations from Lemma D.4.2. Recall from Lemma D.1.2 that

O (z)) = Xg +iX5, and UT(z)) = X

J

.k
iXie,-

Identifying Y, ; ® p* with Hom(p, Y} ,) we thus obtain by Lemma D.1.3

C 87.‘_*
(Vs (D)(9)(Xe,) = —24 ((M+P)(H)+p> 1 Vi1, ()

Cp+1,q 2 p+1 (92’]'
+ P () () — () = 2(p = 1)
-2
A Py, (D)
cpq ((n+p)(H) 1 omy L (F)9)
" Cp,g+1 ( 2 + q) q +1 azj
+ P (a) () = pU) = 2(q = 1)
+p+q—2 .
ey PEL ().

Lemma D.4.6 yields that r(Xe;) fp.q(9) = (Vg (f))(9)(Xe;)(e1) equals

Cpcj-’f,q <(u +g)(H) +p> pi : 87r§'}p+5;;f)(9) @)
() (uCH) = p(H) 200~ 1) RS S %_%;f)(g)
n C::il ((u +5)(H) N q) q_|1_ : 8@’7’[15;;]()(9) ()
B o)) = pl) 2~ 1) 377Yp,q8;;f)(9)
_ cf.’i’f,q ((/L + g)(H) +p> . Jlr : 87T;</p+5;;f)(9) ()
_ Ciﬁq Moa(p) (1(H) = p(H) = 2(p = 1)) - +]19 - aw;pész)(g) ()
CZL ((u+§)(H) N ) qur 18w*yp,q5;jf)(g) ()
C;Z’: Ana(@)(u(H) — p(H) — 2(g ~ 1)) -— ; - aw?/p,qa;;f)(g) o).

Let us now investigate the term r(Z,)fy4. We have

d

r(Ze;) fpalg) = r(Zey)my, , (v, (F))(g) = dt |i—g

T, (Y, (f))(gexptZe, ).
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Since 7y, (f) € C*°(G xk Ypq) and exptZ; € K we infer

T,q (T, (g exptZe;) = my, (f)(gexptZe;)(er) = Tpq(exp —tZe, ) (my, ,(F)(9))(e1)

and conclude that

1(Ze;) fpa(9) = Tp.a(=Ze;) 7y, (£)(9))(e1).
Therefore the first equation of Lemma D.2.1 implies that

on* ors
T(@j)fp}q(gﬁ_( Y”;;g)(g)+ ypgifxg))(el)‘

Altogether 7(Ye,_,) fp.q(9) = 7( eg-)fp,q(g) + T(Zej)fp,q(g) equals

c ony
X ((M+P)(H) +p> 1 Yp+1,q(f)(g)(el)

Cp+l,q 2 p+1 0zj
ony. . ()9)
Cpyq _ B B 1 Yy_1.q
Cr—1.q Apg(P)(u(H) — p(H) —2(p 1))n+p— 5 oz; (e1)
o (WA ) L D)
Cp,q+1 2 q+1 %j
ory. . (f)(9)
Cpyq B B B 1 Yo g 1
P @) ) — p(H) = 2g = 1)y e )
B aTFYP,q(f)(g) N ory. (f)(9) ()
823’ 85]‘ 1
Therefore we have
i (f)9) ony. (f)(g)
Z T(Yej 1 qu Z apq qu ] (61) + bp,qmi'(el) + EI'I‘,
— 0%; 0%,
p,q=0 p,g=0
ons on¥
where Err consists of terms ngzif)(g) (e1), Yp’g‘%gf)(g) (e1) for p+ g > m with at most

polynomially growing coefficients and

cp—1,4 (0 +p)(H) > L cpgn pw(H) — p(H) —2q
= —1)=- A 1 —1
p,q Coa < 5 +p P g pat+1(q+1) ntq_1
cpg—1 [+ p)(H) L cp p(H) — p(H) —2p
bpg = 22 < +qg—-1)=—E=d) +1 -1
2] Cha 9 q q Cpa p1q(P + 1) ntp—1

We claim that a, 4 = b, 4 = 0. Indeed, Remark D.3.2 and the definition of A, , imply

+p)(H 1
o= 2 (LEDUD )
n+p+q—1 2 P
n+p+q 1
- 1 H)—p(H)—-2¢q)——— -1
T (g D) — p(H) = 20)
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D. An example: G = SU(n,1), n > 2

1 (1 +p)(H)
n+p+q—1< 2 +p—1>
n+p+q (g+1)(n+q-1)
a q+1 2(p+q+n—1)(p+q+n)(M(H)_p(H)_2Q)
1 (u+p)(H) 1
n+p+q—1( 2 +p_1>_2@+Q+n—1)
:O7

— 1
n+q—1

(u(H) = p(H) —2q) — 1

where we used p(H) = n for the last equality. The proof of b, , = 0 is identical with the
roles of p and ¢ interchanged.
Similar to the calculation above we get

m ! oy, (f)(9) oy, ()(9)
Z 7”(Yz‘ej_1)fp7q(9) = Z iap,qymi(el) - ibp,qyp’qf(el) + Erry
- — 0z; 0Z;
p,q=0 p,q=0 J J
= Erro,

where the error term Errs has the same properties as Err.
Let us finally compute r(Y2q)fp.q = 7(Xie,) fp,q + 7(Z24) fpq- Similar to Equation
(D.4.10) we have

r(Xiey ) fp.q(9) = (Vmy, , (f))(9)(Xie,)(e1)
for each g € G. Using Equation (D.4.11), Lemma D.1.3 and Lemma D.1.2 we obtain

((u—i—p)(H) +p> 1 8ﬂ§p+l,q(f)(g)i

(Vs (F)(9)(Xie,) = 24

Cp+1,9 2 p+1 021
L ) (H) ~ p(H) = 2(p = 1))
p—1l,q
PRS2, (F)(9))(-)
a1+ p)(H) 1 oy . (F)9) »
" Cpg+1 ( 2 * q> g+1 07, (=)
=L\, o(a) (u(H) = p(H) = 2(q — 1))
p,q—1
T2, L (@)

By Lemma D.2.2 the evaluation at e; is given by

7(Xiey) fpa(9) = X ((M + 5)(H) +p) iTrik/erl,q (F)(g)(er)
Cp+1,q

P ) () — () ~ 200~ ), (1)) en) ()

s (2 L ) m,  (De-)

+ LN, (@) ((H) — p(H) = 2(q — D)ms,  (F)(9)(e)i.

Cp,g—1

_l’_
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Since 1(Z2a) fp,q(9) = Tpa(—Z2a)(7y, (f)(g))(e1), Lemmas D.2.1 and D.2.2 imply

ony ony
)l = 20 (s P T DN () it~ i, (e

Altogether we obtain that r(Y2q) fp.q(9) = 7(Xie,) fp.q(9) + 7(Z20) fp,q(g) equals

(o) = 2 (VUi o)

Cp+1,9 2
P ) CH) — p(H) 20~ 1)y 1(0)(

cpq ((u+p)(H) |
i Cp,g+1 ( 2 T q) Ipgr1(9)(—9)

429N (@) ((H) = p(H) = 2(q — 1)) fog1(9)i

Cp,g—1
+2i(q — p) fpq(9)-

We infer that

m

m—1
Z 7(Y2a) fpq(9) = Z Np.afpaq(g) + Errs,

p,g=0 p,g=0

where Errs only consists of terms f, 4(g) for p+¢ > m with at most polynomially growing
coefficients and

Pﬂ%g—c?mqCH+§XH)+p_1)—%?”Mwm@+iﬂmﬂﬁ—mﬂﬁ—%ﬁ

_ Cpa- (w LU 1) + P o1 (g + 1) (u(H) — p(H) - 29)

Cp,q

P,q
+2(q —p).
We claim that 7, ; = 0. Indeed, by Remark D.3.2 and the definition of A\, , we obtain
, P (1 +p)(H) > n+p+gq
i)y = 1) - 2PN 1)(u(H) — p(H) — 2
(g = e (S PP o+ D) ~ p(H) - 20)
+p)(H
B q Cu M()+q_0
n+p+qg-1 2
n+p+gq
+ q_‘_71>‘p,q4rl(q + 1) (u(H) — p(H) —2q) +2(q — p)
P (1 +p)(H) ) n+p-1
= +p—1)— H) — p(H) -2
n+p+q—1< 2 b S+ q+n = 1) W) —p(H) = 2p)

+p)(H
B q Cu M()+q_g
n+p+qg—1 2
n+q—1
2(p+q+n—1)

(W(H) — p(H) —2q) +2(q — p)

=0,
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D. An example: G = SU(n,1), n > 2

where we used p(H) = n for the last equality. Let us finally prove that the error terms
converge to zero when tested against some test function ¢ € C°(G)M. We first prove
that

[ o, (N(9)
G

o, (e1)¢(g)dg — 0 (D.4.12)

for p,q — co. Lemma D.2.1 yields

0 a . ., 1 ) ) . «
(s15~ = Z%)Wyp,q(f)(g) = =5 Tpg(Ej1 = B1j,0) = impq(iBj1 + 1B, 0))7y,  (£)(9)
J

omy, ()9)

and thus, by Proposition 2.4.41ii) and iii), T(el) equals

1 . . . 3 :
—§<(Tp,q(Ej1 — E15,0) —impq(iEj +iEn;,0))my. (f)(9): ¢v,,) dimY) 4.

Thus,
or3. ()(g)
/G T(el)sﬁ’(g) dg
B dim Y 4

2 <(/G Toa(Ej1 = Enj, 0) = imp(1Ej1 +1Eny, 0)my, (F)(9)¢(9) dg, dy,,,)-

Taking absolute values on both sides and using the Cauchy-Schwarz inequality we infer

ons
!/G W(el)w(g) dg|

dimY,
< %K/G Tpa(Ej1 = B15,0)my,  (f)(9)¢(9) dg, by, )]

dimY, . . *
TMK/G Tpq(iEj +iE1;, 0)my. (f)(9)e(9) dg, ¢y, )|
_dimY,

S (B = B O, (D(9)6(9) dg, o, |

dimYp 4
2

dim
_ ;/MK/G w5, (@) (Ejn = Erj,000(g) dg, dv,,)|

dimY,
4 BTy [ g (PGB + iy, 0)0(9) dg, b, )

([ r(=iB = iy, 007, (£)(9)(g) dg. v, )

dimY, .
— TMH/G v, (D(@)r(Ejn — Eij,000(9) dgll 2y by, o | 2(x0)

dimYp 4
2

| 5 (D@ + i1, 0)0() gz 63, 1200

y/dimY,
VR [ w1
G

9Ir(Ej — E15,0)0(g) dgll 2
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D.4. Fourier characterization

v/dimY, N . )
+ %H/G Ty, (I (iEj +iE1,0)¢(g) dgll L2 (k)

< Psupl | m (£)(9)(ken)r(Ej — Eij,0)¢(g) dg|
keK JG

+ JT sup| | 75, ,(£)(9)(kex)r (i +iExj, 0)(g) dgl
S

dimY, . )
<Y ETe g [ 5, (Do) (B — By 0)glok ™) g

dimY, . ‘ . B
" \/72“}3' T (D@)(e)r (B + By, 0)p(gh Y dgl.
S

Now the functions r(Ej; — E1,0)p(-k~1) and r(iEj; +iE1;,0)p(- k) are again smooth
and compactly supported and by Remark 7.2.2 and the polynomial growth of dim Y ,
(see Remark A.2.3) and |7y, (75, (f))llr2(c) we obtain (D.4.12). The convergence of
the remaining error terms can be treated in an analogous manner. O

Proposition D.4.8. Let pn € a* and fp, € 7y, (C(G Xk Ypq)) be such that f =
> opaeno fog € D'(G/M). Then f € H;* if and only if the equations from Lemma D.4.2
hold for f.

Proof. The if-part follows from Lemma D.4.5 and Lemma D.4.7. The only-if-part is given
by Lemma D.4.2. O

Let us finally mention that, using the embeddings 7y, , from Definition D.4.1, the
generalized gradients d (a)no1 and —d_ (4)pe1 are adjoint with respect to the L?-inner
product.

Lemma D.4.9. For u,, € C*(G xi Y, 4) we have
<77Yp,q(up,q)v 7TYp,q(d+,holup—1,q)>L2(G) = _<7TYp_1,q (df,holup,q)v TYp_1,4 (up—Lq))L?(G)
(7Y, o (Up.g), TY, o (A aholUp 1)) £2(G) = — (7Y, o1 (A= aholUp.g), TV, o1 (Upg—1)) L2()
for each uqp € C°(G X Y, p) whenever no index is negative.

Proof. The orthogonality of the Y, , implies that
<7TYp,q (up,q)v Yy ot (up/,q’»LQ(G) =0

for (p,q) # (p',¢') € N3 by splitting the integral into G/K and K. Using Lemma D.4.4
we thus obtain

<7TYp,q (upq)s TYp.q (d+,holup—17q)>L2 G) = <7TYp,q (upq)s T(H)”Yp_m (up—Lq))L?(G) .

The right invariance of the Haar measure on GG implies that

<7TYp,q (Up,q)a ""(H)Wqu,q (up—l,q»L?(G) = - <7”(H)77Yp,q (Up,q)a Y, 1,4 (Up—l,q)>L2(G) .

Another application of Lemma D.4.4 and the orthogonality gives

—(r(H)my, ,(Upq)s Ty, 1, (Up-1,)) 12(G) = —(Ty,_1 o (A holUpg), TY,_y o (Up—14)) L2(C)-

This proves the first equation and the second is proven analogously. O
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D. An example: G = SU(n,1), n > 2

D.5. Spectral correspondence

Without using Theorem 6.1.1, we can still determine constraints on the location of
I’-invariant elements using only the mapping properties of the scalar Poisson transform
and the relations between the Fourier coefficients from Lemma D.3.1.

Proposition D.5.1. Let == —p—2ka € a*, for some k € Ny, be an exceptional spectral
parameter (see Lemma 5.2.4). Then

Pra(f)=0 Y(p,q) €{0,....k}?, feH,>.
Proof. Note first that the scalar Poisson transform P,zf %% maps H L 7 into

{f € C=(CH"): Af = (p(H)? — u(H)?)f},

where A denotes the Laplacian. Thus, " H . ° Is mapped into
{f € CX¥(T\CH"): Af = (p(H)? — u(H)*) [}, (D.5.13)

by identifying I'C*°(CH") = C>°(I'\CH"). Since I'\CH" is a smooth compact Rieman-
nian manifold the positivity of the Laplacian and

p(H)? — u(H)* = —4kp(H) — 4k* <0 if k £ 0

imply that the space in Equation (D.5.13) is the zero space if k # 0 and PZO’O

I'H

=0
I
in this case. Let us prove the same equality for kK = 0, i.e. u = —p. In this case we have

p(H)? — n(H)? = 0 so that P,z/o'o(f) is constant as a harmonic function on a compact
Riemannian manifold. The fourth equation of Lemma D.3.1 for p = 1, ¢ = 0 shows that

(d— ot © Ba"0)(f) = —Pa"°(f)

and we obtain by Lemma D.4.9 that

17v0 (Pa™ (P 2(c) = = (0 (A mor P () 7v,0 (Ba ™ () 22(6)

Y7 Yt
= (my1,0 (P (1)) 7v1 o (A nol P (F))) 22
pu— 07

where we used d+7h01PZ %(f) = 0 since P,r ®%(f) is constant and d y; is a differential
operator. Thus, FYO,O(PZO’O (f)) = 0 and, since 7y, , is injective, PO(f) =0.
Finally the first two equations of Lemma D.3.1 read

(dhot © PY20)(f) = (p — k)P () ¥p, q € No,
(A anot © PYP9)(f) = (¢ — k)Pu” (f) Vp, q € Ny,

and the proposition follows by recursion. O
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D.5. Spectral correspondence

We now turn to the spectral correspondence. To make the description clearer, we
introduce the following rescaled versions of the generalized gradients.

Notation D.5.2. For each p,q € Ny we define the generalized gradients

~ ~ 1
d =2 —1 d d_ = d-
+hol = 2(p+q+n—1)(p+q+n)dy o, ol = — 2) Gl
~ ~ 1
d+,ahol = 2(17 +q+n-— 1)(17 +q+ n)dJr,ahol, d—,ahol = md—,ahol

on C*(G xg Yy4). Moreover, we define the constants f;,q, {iq, 527(1 and 5;;7(1 by

1

& =5 (u(H)* = (p(H) +2(p = 1))?),
& = S (u(H)? — (p(H) + 2)"),
& = 3 (u(H)? — (o(H) + 20,
4 = S (u(H)? — (p(H) +2(g ~ 1))?).

Lemma D.5.3. Let p € a* and f € H,;*. Then

dy hod—noimy, ,(f) = &y, (f)
d_ pad i nomy, () = &7y, ()
d_ anotdy anormy, (f) = §q7fyp (f)
dy anotd— anaimy, (f) = &375. (f)
d hoid 1 anary, , (f) = di anoidt haiy, , (f)
d- noid s anoi ™, , (f) = di anoid - poimy, , (f)
d poid— ahol Ty ()= d_ ahold+ hol Ty, (f)
d_ pod-— aholy, (f)=d- ahotd— hoimy,  (f).

Proof. This follows from Lemma D.4.2. O

Theorem D.5.4 (Quantum-classical correspondence for exceptional spectral parameters).
Let == —p — 2ka € a*, for some k € Ny, be an exceptional spectral parameter (see
Lemma 5.2.4). Recall the irreducible subrepresentation Iy, of H, from Lemma B.3.2. By
Proposition 5.2.6, the minimal K-type of I}, is given by Yj 1 x+1. Then the map

Yi41,k+1
P +1,k+

-
s 1 H, % — He,

F[{;oo
where Hc denotes the space
{u e "C>®(G x i Yiy1611) | properties i) — vii)},

is an isomorphism, where the properties are given by
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D. An example: G = SU(n,1), n > 2

i) a+,h01(~13-7aholaﬁ—,holu = a?f—,aholag-—t—hlolu V(p,q) € No x N,
i) d-poidf pord” ottt = €447 apnod porw V(p,9) € N x No,
iii) - aho1d? a1 d? oyt = €A% o d porw V(p.) € No x N,
i) d_anod’ ou = dY o d—anoru Vp € No,
v) DI, dh u=0 V(p,q) €N3, g€ {1,2},
vi) d_ anoiu =0,
vii) d_ pou = 0.
Moreover, we have
He = ka_oo,
where FI,;OO denotes the I'-invariant distribution vectors in Iy,.

Proof. The proof is separated into the following steps:

o . Y;
i) im (PN k+1,k+1

)CHC>

N — 00
Hy,

.. Y}
11) Pu, k+1,k+1

is injective, and

FH_°0

i) The properties i) — v) follow from Lemma D.5.3 respectively Lemma D.4.2. For
property vi) note that

cee\ s Y;
iii) im (Pu ALk

Y;
df,aholP,LL Lk (f)

is a multiple of P,fk“’k (f) by Lemma D.4.2 and Proposition D.5.1 implies that P,f’““’k(f)
is zero. Property vii) follows from an analogous argument.

ii) The injectivity follows from Proposition 5.1.3 since Irr(u) = {I;} by Lemma B.3.2
and multK(YkJrLkJrl,Ik) =1#0.

iii) For the surjectivity let u € Hc. Recall the constants ¢,, € C\ {0} from
Remark D.3.2. Define u,, = 0 for (p,q) € Ng x {0,...,k} U{0,...,k} x Ny and
Uk41,k+1 = Ckt1,k+1 - u. Fitting the equations from Lemma D.4.2 we recursively define

Cha140k+1 1

U1 40k+1 = ———————dy holUgte ki1
Chytk+1 L
for £ € N and
_ Cpktrred o
Up k+14+£ = e, 0 +,aholUp k+£
Cp,k+¢
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D.5. Spectral correspondence

for / € Nand p € N>p41. Let f denote the formal sum

F= " 7y, (upg) (D.5.14)

p,9€Np

We claim that f defines a distribution and that the equations from Lemma D.4.2 hold
for f. Then Proposition D.4.8 implies that f € H,° and by construction (recall

Y, .
P,» = Lzt from Section D.4) we have
Cp,g  1pyq

Yit1k 1
Puk+1,k+l(f) — muk—i_l’m_l = u,

finishing the proof of iii) (note that f is I'-invariant since u is I'-invariant and the
generalized gradients are G-equivariant).

Let us finally prove the claim. First, a straightforward calculation using the definition
of the u, 4 and Notation D.5.2 yields that

~ ~ 1
Upg = Cpg——dT2, dT% - ,
o PR i (p g+ — 1)(2k 0+ D) T3 50+ )

7qm1!m2!

where m; :==p — (k+ 1) and mgy := ¢ — (k + 1). Using this formula it is now direct to
see that the properties i) — vii) ensure that the equations from Lemma D.4.2 hold for
each uy 4. For a proof of the fact that f defines a distribution, we refer the reader to
Lemma 8.2.2. O
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List of Symbols

Symbol
ar(g)

A (o)

al’l‘

By

COO(G Xt V)

dJr,ahol

d 1ol

D/(G XK Y)
dy

EOa Eu) Es
E

o1

Description

A-component of the Iwasawa decomposition of g € G
refined exceptional set of [O1b94]

short notation for e#(0g@)

initial resp. end point map

(isomorphic to) smooth sections of G xy V
generalized gradient belonging to pry,

generalized gradient belonging to Prys

generalized gradient belonging to Tp_1
generalized gradient belonging to TP% ™
generalized gradient belonging to 74— hol
generalized gradient belonging to T¢*!
generalized gradient belonging to TP-4+2hol
generalized gradient belonging to TP-4+hol

dual of C®(G xg Y)

generalized gradient given by T o V

Anosov splitting of the tangent bundle

space of joint eigensections

Frobenius isomorphism

complexification of gg

Lie algebra of GG

associated vector bundle

element in ag defined by a(H) =1

hyperbolic space of real dimension n

principal series representation

compact picture of principal series representation
spherical principal series representation

opposite principal series representation
ap-component logar(g) of g

ap-component loga; (g) of g

smooth resp. distributional globalization of (7, H)
isomorphism between p and p*

ahol

set of equivalence classes of irreducible unitary representation
of K

K-component of the Iwasawa decomposition of g € G
M-spherical representations in K

Page
46
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107
188

107
188
188
107
188
188
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List of Symbols

Symbol

b

Qu+
Resx (M)
Res% (\)
Resx+ ()
Res% (N)
Re(p)
Sn—l
SH"
Sp(m)
To—
T€+1

Y

u

Va,b

w

w_

Y,

&

(6
Ay
Af
1+

222

Description

specific element of PSO(2)

canonical line bundle on H?

canonical line bundle on I'\ H?

derived left regular representation on C*°(K /M)
left regular representation on L?(K /M)
representation of PSO(2)

centralizer of A in K

smooth compact Riemannian locally symmetric space of rank 1

defined by I'\G/K
unit sphere bundle of M, isomorphic to I'\G/M

N-component of the Iwasawa decomposition of g € G
projection onto the harmonic part of a homogeneous polynomial

specific Poisson transform associated with Yy

specific Poisson transform associated with Yy, compact realiza-

tion

specific Poisson transform associated with Y}, 4

specific Poisson transform associated with Y}, ,, compact realiza-

tion

vector-valued Poisson transform associated with 7

initial resp. end point transform

Ruelle resonant states

first band Ruelle resonant states

Ruelle co-resonant states

first band Ruelle co-resonant states
resonant states on the cover SH" = G/M
unit sphere in R"

unit sphere bundle of H", isomorphic to G/M
symplectic group

element of Homg (Yy ® p*,Y,_1)

element of Homg (Y, ® p*, Yy41)

specific element of Homg (Y ® p*, V)
universal enveloping algebra

irreducible Sp(n) x Sp(1)-representation
Weyl group of (go, ag)

longest Weyl group element

wave-front set of a distribution u
spherical harmonics of degree ¢

a constant

unique simple positive restricted root of (go, ap)
root system of £

positive roots of Ag

raising/lowering operator

Page
28
28
27
18
18
28

Qo

160
113
112

196
196

160

174
108
108
77

175

12

160
117

45
45
33



Symbol
la/M

List of Symbols

Description

embedding of C*°(G /M) into D'(G/M)
embedding of C*°(G xg Y) into D'(G xg Y)
right inverse of T\

Killing form of g

a constant

matrix coefficient map from p to C*°(K/M)
K-invariant, smooth elements of H$"”

quotient map from SH" to SM

embedding of C®(G x Yy) into C°(G)M

embedding of C2°(M, Kf) into C2°(SM)

embedding of C°(H?,K™) into C°(SH?)

pullback of 7,

embedding of C™(G x g Y, ) into C®(G)M

embedding of D'(G xk Y) into D'(G/M)

pullback of 7y

half-sum of the positive restricted roots with multiplicities
half-sum of the positive roots A;“

restricted roots

positive restricted roots

Cartan involution on gy and G

Page
67

67

78

7

113
7

14

10
115
27

29

27
200
67, 69
68

N N
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