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Zusammenfassung
Ziel dieser Arbeit ist es, die Korrespondenz des Laplace-Spektrums eines kompakten lokal
symmetrischen Rang-1-Raumes mit dem ersten Band der Ruelle-Pollicott-Resonanzen
des geodätischen Flusses auf dessen Einheitssphärenbündel zu vervollständigen. Die Er-
forschung dieser Fragestellung wurde von Flaminio und Forni im Kontext hyperbolischer
Flächen begonnen und von Dyatlov, Faure und Guillarmou für reell hyperbolische Räume
sowie von Guillarmou, Hilgert und Weich für allgemeine Rang-1-Räume fortgeführt.
Mit Ausnahme des Falles hyperbolischer Flächen wurde in sämtlichen Arbeiten eine
abzählbare Menge von Ausnahmepunkten ausgeschlossen, da die zugehörigen Poisson-
Transformationen an diesen Punkten weder injektiv noch surjektiv sind. Wir benutzen
vektorwertige Poisson-Transformationen, um auch die Ausnahmepunkte zu behandeln.
Insbesondere werden explizite quanten-klassische Korrespondenzen bewiesen und die
zugehörigen Darstellungen identifiziert. Während die Ausnahmepunkte im Fall hyper-
bolischer Flächen auf Darstellungen der diskreten Reihe von SL(2,R) führen, erweisen
sich die resultierenden Darstellungen im Allgemeinen als Darstellungen relativer diskreter
Reihen assoziierter nicht-Riemann’scher symmetrischer Räume.

Abstract
The aim of this thesis is to complete the program of relating the Laplace spectrum for
rank one compact locally symmetric spaces with the first band Ruelle-Pollicott resonances
of the geodesic flow on its sphere bundle. This program was started by Flaminio and Forni
for hyperbolic surfaces, continued by Dyatlov, Faure and Guillarmou for real hyperbolic
spaces and by Guillarmou, Hilgert and Weich for general rank one spaces. Except for
the case of hyperbolic surfaces a countable set of exceptional spectral parameters was
always left untreated since the corresponding Poisson transforms are neither injective nor
surjective. We use vector-valued Poisson transforms in order to treat also the exceptional
spectral parameters. In particular, explicit quantum-classical correspondences are proven
and the associated representations are identified. Whereas for hyperbolic surfaces
the exceptional spectral parameters lead to discrete series representations of SL(2,R),
the resulting representations turn out to be relative discrete series representations for
associated non-Riemannian symmetric spaces in the general case.
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Introduction

Dynamical systems with additional symmetry are surprisingly rigid. One manifestation of
this observation is the close connection between geodesic flows on locally symmetric spaces
and their quantizations, the Laplace-Beltrami wave kernels. This was first observed for
tori in the form of the Poisson summation formula and its non-commutative analog, the
Selberg trace formula, where the length spectrum of closed geodesics and the spectrum
of the Laplacian enter. In specific cases correspondences on the level of eigenfunctions
were established about twenty years ago [LZ01, FF03, DH05, Müh06, Poh12].

In [DFG15] Dyatlov, Faure and Guillarmou showed that the spectrum of the geodesic
flow on compact hyperbolic manifolds essentially decomposes into bands, the first of
which is in one to one correspondence with the Laplace spectrum. For these spectral
values they also constructed linear isomorphisms between the corresponding eigenspaces.
In this context essentially means that there is a countable set of explicitly known spectral
values for which the methods do not apply.

In [GHW18] the very explicit information available for hyperbolic surfaces was used
to establish spectral correspondences also for the exceptional spectral values. In these
cases the quantum side turns out to be related to the discrete series representations of
SL(2,R), whereas the regular spectral values were related to irreducible unitary spherical
principal series representations.
The theory of quantum-classical spectral correspondences with spherical principal

series representations on the quantum side was extended to all rank one compact locally
symmetric spaces in [GHW21]. In this thesis we complete the program for these spaces
by establishing quantum-classical spectral correspondences on the level of eigenvectors
for all exceptional spectral values.

We describe the setting in a little more detail. Let G be a non-compact simple Lie group
of real rank one and Γ be a co-compact discrete subgroup of G. For simplicity we assume
that G has finite center and Γ is torsion free. We fix a maximal compact subgroup K
and observe that the locally symmetric space Γ\G/K is a compact Riemannian manifold.
Therefore its (elliptic) Laplace-Beltrami operator has discrete spectrum on L2(Γ\G/K)
with smooth eigenfunctions lifting to Γ-invariant eigenfunctions on G/K. Note that
on G/K the Laplace-Beltrami operator comes from a Casimir element and generates
the algebra of G-invariant differential operators. For generic spectral parameters µ
the eigenfunctions generate an irreducible G-representation which is equivalent to a
spherical principal series representation Hµ. The corresponding intertwiner is the Poisson
transform Pµ. So, generically the Laplace-Beltrami eigenspaces ΓE−µ can be identified
with the Γ-invariant distribution vectors ΓH−∞µ in the corresponding spherical principal
series representation, where the normalization of the spectral parameters is taken from
[GHW21].
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The word generic in the previous paragraph can be given a precise meaning. Let g0 be
the Lie algebra of G and g the complexification of g0 (we use the analogous convention
for all subspaces of g0). The eigenvalues of the Laplace-Beltrami operator on G/K are
parameterized by elements of a∗ via the Harish-Chandra isomorphism, where g = k + p
is the Cartan decomposition of the Lie algebra g fixed by the choice of K and a0 is a
maximal abelian subspace of p0. The parameters are unique up to the action of the Weyl
group W = NK(a)/ZK(a). A spectral parameter µ is generic if and only if it is not a
zero of the Harish-Chandra e-function which in turn is equivalent to the bijectivity of
the intertwining Poisson transform Pµ. Thus the exceptional parameters alluded to in
the title of the thesis are the zeros of the e-function.
In the case of compact hyperbolic surfaces (see [GHW18]) the exceptional spectral

parameters are related to discrete series representations, which can be realized as smooth
(in fact, holomorphic or anti-holomorphic) sections of certain G-homogeneous vector
bundles over G/K. In these spaces of sections one has the action of a suitable Bochner-
Laplace operator (see [Olb94, Lemma 2.2]). While these representations are no longer
completely determined by the action of the Bochner-Laplacian, they are still irreducible
unitary representations of G obtained by a suitable vector-valued Poisson transform.
This part can be generalized and we view the Γ-invariant sections, which descend to the
locally symmetric space, as part of the quantization of the cotangent bundle of this space.

The cotangent bundle T ∗(Γ\G/K) = Γ\G×K p∗0 of Γ\G/K is foliated into the cosphere
bundles Γ\G/ZK(a)× {r} with r ∈ a∗0 ≡ R determining the radius and the zero section
Γ\G/K. Each leaf of the foliation is invariant under the geodesic flow. On the zero
section it is trivial, whereas on the cosphere bundles it is given by the right action
Γ\G/M × A → Γ\G/M, (gM, a) 7→ gaM , where we use the standard abbreviation M
for the centralizer ZK(a) and set A = exp(a0). This decomposition reduces the spectral
analysis of the geodesic flow to the A-action on Γ\G/M . This action is Anosov as
one sees from the Bruhat decomposition T (Γ\G/M) = G ×M (n+

0 + a0 + n−0 ), where
g0 = k0 + a0 + n±0 are the two Iwasawa decompositions of g0 associated with the two
possible orderings of the set Σ of restricted roots in a∗0. The approach to Ruelle-Pollicott
resonances for the geodesic flow used in [GHW21] makes use of the set D′+(Γ\G/M)
consisting of the distributions u ∈ D′(Γ\G/M) whose wavefront set WF(u) is contained
in the annihilator Γ\G×M (n+

0 + a0)⊥ ⊆ T ∗(Γ\G/M). Then the set of resonant states
for the spectral parameter µ ∈ a∗ is defined as

Res(µ) := {u ∈ D′+(Γ\G/M) | ∀H ∈ a0 : H · u+ µ(H)u = 0},

where H acts as a left-invariant vector field on G/M descending to Γ\G/M . A spectral
parameter µ ∈ a∗ is called a Ruelle-Pollicott resonance if Res(µ) 6= 0. The Ruelle-
Pollicott resonances form a discrete set and the corresponding spaces of resonant states
are finite dimensional. A first band resonant state is a resonant state u which satisfies
X · u = 0, where X is any vector field on Γ\G/M which is a section of the subbundle
G ×M n−0 ⊆ T (Γ\G/M). We denote the space of first band resonant states for the
spectral parameter µ ∈ a∗ by Res0(µ). In the case of generic spectral parameters the
quantum-classical spectral correspondence says that the push-forward of the canonical

2
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projection pr : Γ\G/M → Γ\G/K is a linear isomorphism pr∗ : Res0(µ − ρ) → ΓEµ,
where ρ ∈ a∗0 is the usual half-sum of positive restricted roots counted with multiplicity
(see [GHW21, Theorem 4.5]).

The strategy for our extension of the quantum-classical correspondence to exceptional
spectral parameters is as follows. As in the generic case (see [GHW21, § 3.2]) we start by
lifting the first band Ruelle-Pollicott resonances to Γ-invariant distributions on the global
symmetric space. The lifted spaces can be interpreted in terms of spherical principal
series (that part works for all spectral parameters, see [GHW21, Proposition 3.8]) and
the first band resonant states Res0(−µ− ρ) correspond to the space ΓH−∞µ of Γ-invariant
distribution vectors of the corresponding principal series. For an exceptional spectral
parameter µ the corresponding principal series Hµ is no longer irreducible. But it has a
manageable composition series and it turns out that the Γ-invariant distribution vectors
are all contained in the socle (i.e. the sum of all irreducible subrepresentations) of the
representation, see Theorem 6.1.1. In each of the rank one cases except SO0(2, 1) (the
case of surfaces, see [GHW18]) the socle turns out to be irreducible with a unique
minimal K-type τµ (see Theorem 6.2.1) and we can show that the vector-valued Poisson
transform associated with this K-type (sum of K-types in the case of surfaces) is injective,
see Proposition 5.1.3. The image consists of spaces of Γ-invariant sections of vector
bundles over Γ\G/K and we have a quantum-classical correspondence as soon as we have
characterized the image of this Poisson transform.
We achieve the characterization of the image of the minimal K-type Poisson trans-

form via Fourier expansions of M -invariant functions with respect to M -spherical K-
representations. More precisely, we determine necessary and sufficient conditions for
a Fourier series to represent a distribution vector of the reducible spherical principal
series Hµ, see Theorem 7.4.11, where the conditions are given in terms of generalized
gradients (see [BÓØ96]). In each of the cases it is possible to determine a G-invariant
system of differential equations on the sections of the homogeneous bundle G ×K Vτµ
given by the minimal K-type (τµ, Vτµ) of the socle such that on the space of Γ-invariant
solutions we can write down an explicit boundary value on K/M in terms of Fourier
coefficients, see Theorems 8.2.3, 8.3.2 and 8.4.2. Then our Fourier characterization of
H−∞µ allows us to show that the boundary values are contained in ΓH−∞µ . In the case of
SO0(n, 1) and for most exceptional spectral parameters in the case of SU(n, 1) we have an
alternative (and simpler) characterization of the vector-valued Poisson transform, which
is based on techniques developed in [Mea89] to study Cauchy-Szegö maps for SU(n, 1),
see Theorems 8.1.1 and 8.2.1.
We can explicitly determine the socle of all reducible spherical principal series rep-

resentations in rank one (see Theorem 6.2.1), and we see that the surface case is quite
untypical. Not only is it the only case where the socle is not irreducible, it is also one of
the very few cases in which the representation generated by the resonant states belongs
to the discrete series of G. This is only the case for SO0(2, 1) (surfaces), SU(2, 1), Sp(2, 1)
and F4(−20), see Theorem 6.2.2. On the other hand it turns out that all of these represen-
tations are unitarizable, see Theorem 6.2.1. We can determine the Langlands parameters
(see Theorem 6.2.2), and in some cases geometric realizations, e.g. as solution spaces of
differential equations are well-known (see [Olb94, Gai88]). But for most cases we did not
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find such descriptions in the literature. From the detailed information on the K-types
we can actually identify the representations as relative discrete series representations of
non-Riemannian symmetric spaces G/H associated with G/K (Theorem 6.2.3). [TW89]
provides a geometric interpretation of a generating vector of such a representation in
terms of cohomology, but it gives no description of the representation space as such. So
our geometric realization as solution spaces of differential equations describing the images
of minimal K-type Poisson transforms might actually be new.

As mentioned above, our results complete the picture of first band quantum-classical
correspondences for compact locally symmetric spaces of rank one. In higher rank an
analogous quantum-classical correspondence for generic spectral parameters has been
established in [HWW21]. Extending that result to exceptional spectral parameters will
be substantially harder as the information available on composition series of spherical
principal series is much less explicit in higher rank. Moreover, some of the multiplicity
one results we use (Propositions 2.4.3, 6.1.2, 7.3.2) or prove (Proposition 7.3.1) here are
not always available in higher rank. As far as non-compact locally symmetric spaces
are concerned, one has to replace the (discrete) spectrum of the algebra of invariant
differential operators by a suitable concept of quantum resonances. So far one only
has quantum-classical correspondences for convex co-compact real hyperbolic spaces
and, for dimensions larger than two, only generic spectral parameters [GHW18, Had20].
For locally symmetric spaces with cusps the results on record are either very special
(e.g. [LZ01, Müh06]) or else give only very rough information (e.g. [DH05]). In view of
[GW22, Poh12], however, a quantum-classical correspondence for surfaces seems to be
within reach. Finally, we mention [KW21], where quantum-classical correspondences for
lifts of geodesic flows on compact locally symmetric spaces of rank one are treated for
generic spectral parameters. That exceptional spectral parameters occur also in such
situations can be seen from [KW20], where the authors have to leave out the case of
three dimensional hyperbolic spaces because the Gaillard Poisson transform they use is
not bijective.

Outline of the thesis

We conclude this introduction with a brief description of the way the thesis is organized.
In the first two chapters we introduce the notion of Ruelle resonances and explain how

they are related to principal series representations. After giving the relevant definitions
we discuss several realizations and properties of principal series representations and
investigate their K-types.

In Chapter 3 we recall the scalar Poisson transforms for symmetric spaces and introduce
vector-valued analogs of it. Moreover, we define the exceptional parameters and relate
them to reducible principal series representations.
Then, in Chapter 4, we consider the instructive example of surfaces. From [GHW18]

we first recall the quantum-classical correspondence for exceptional parameters. In
order to extend its proof to other cases, we reformulate several – mostly geometrically
defined – objects into representation theoretic terms and discuss how vector-valued

4
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Poisson transforms enter the picture.
Chapter 5 is concerned with mapping properties of vector-valued Poisson transforms

leading to the choice of minimal K-types. Moreover, we determine the socles and their
minimal K-types in all cases.

Chapter 6 deals with Γ-invariant distribution vectors in principal series representations.
We show that these have to be contained in the socle of the representation.

In Chapter 7 we study Fourier expansions of M -invariant functions with respect to M -
spherical K-representations. Apart from convergence issues we deal with the technicalities
needed to characterize the spherical principal series representations in terms of Fourier
expansions.
In Chapter 8 we complete the determination of the spectral correspondences by

describing the Γ-invariant vectors in the image of the minimal K-type Poisson transform.
Finally, the last chapter discusses the real hyperbolic case in more detail and provides

explicit forms of all occurring objects in this case.

Notation: N = {1, 2, 3, . . .}.

5





1. Ruelle resonances

In this chapter we describe the classical side of the quantum-classical correspondence,
i.e. the first band Ruelle resonances and its associated Ruelle resonance states. After
introducing some basic notation we give a short overview of the definition, structure and
properties of these resonances.

1.1. Basic notation

Let G be a noncompact, connected, real, semisimple Lie group with finite center and
Γ ≤ G a co-compact, torsion free lattice. We denote the Iwasawa decomposition of G
by G = KAN . The K-, A-, or N -component in the Iwasawa decomposition is denoted
by kI , aI , or nI , respectively. Let M := ZK(A) denote the centralizer of A in K. The
corresponding Lie algebras will be denoted by g0, k0, a0, n0,m0 with complexifications
g, k, a, n,m. Moreover, let g0 = k0 ⊕ p0 be the Cartan decomposition and denote the
corresponding Cartan involution by θ (on g0 and on G). Associated with the a0-action
we define the restricted root spaces

gα0 := {X ∈ g0 : [H,X] = α(H)X}, α ∈ Σ,

corresponding to the restricted roots Σ ⊂ a∗0. Furthermore, we have the Bruhat decom-
position given by g0 = a0 ⊕ m0 ⊕

⊕
α∈Σ gα0 . The Iwasawa decomposition determines a

positive system Σ+ ⊂ Σ. The half-sum of positive roots is denoted by ρ := 1
2
∑
α∈Σ+ mαα

with the multiplicities mα := dimR gα0 . If log : A→ a0 denotes the logarithm on A and
µ ∈ a∗ we define aµ := eµ(log a). By K̂ (resp. Ĝ, M̂) we denote the equivalence classes
of irreducible unitary representations of K (resp. G, M). The Weyl group of (g0, a0)
is denoted by W . Let κ denote the Killing form of g and U(g) denote the universal
enveloping algebra of g. For Υ ∈ {K,M} and a finite-dimensional representation (τ, V )
of Υ we define the associated vector bundle G×Υ V as the quotient (G× V )/ ∼, where

∀g ∈ G, x ∈ Υ, v ∈ V : (g, v) ∼ (gx, τ(x−1)v).

We always identify the space of smooth sections of this bundle with

C∞(G×Υ V ) := {f ∈ C∞(G,V ) | ∀g ∈ G, x ∈ Υ: f(gx) = τ(x−1)f(g)}.

On each occurring Lie group, we always use a fixed Haar measure and, if not stated
otherwise, normalize it in the compact case. For each smooth manifold X we denote the
space of distributions by D′(X).

7



1. Ruelle resonances

1.2. Ruelle resonances on rank one locally symmetric spaces
In this section we assume G to be of real rank one, i.e. that dimR(A) = 1.

Resonances assign intrinsically defined discrete spectra to operators that do not have a
discrete L2-spectrum. They can be defined in many different equivalent ways using a wide
variety of tools. Let us consider the example of a smooth vector field X on a compact
Riemannian manifoldM. Then, resonances can be defined as poles of a meromorphic
continuation – as a family of continuous operators R(λ) : C∞(M) → D′(M) – of the
resolvent R(λ) := (−X − λ)−1 : L2(M) → L2(M) to C. In order to achieve such a
continuation, one has to impose some conditions on the vector field. If X generates an
Anosov flow, i.e. if there exists a continuous flow-invariant splitting TM = E0 ⊕Es ⊕Eu
of the tangent bundle of M such that the flow acts exponentially contracting resp.
expanding on Es resp. Eu and E0 = RX, such a continuation can be established (see e.g.
[GHW21] and the literature cited therein). From now on, we investigate the case of the
geodesic flow as follows.

Notation 1.2.1 (cf. [GHW21, Section 3.1]). Under our assumptions on G the quotient
G/K is a hyperbolic space (of rank one) over R,C,H or O, where the latter two denote
the quaternions and the octonions. We write

Hn := KHn := G/K,

where n is the real dimension of G/K. Since G/M ∼= G/K ×K/M ∼= Hn × Sn−1 by the
NAK-decomposition we can identify G/M with the unit sphere bundle

SHn ∼= G/M.

Let M := Γ\G/K = Γ\Hn. Then M is a smooth compact Riemannian locally symmetric
space of rank 1 with unit sphere bundleM := SM ∼= Γ\G/M . Under this isomorphism
the geodesic flow onM is given by the natural right action of A. This flow is Anosov
and the corresponding Anosov splitting of the tangent bundle TM is given by

TM = E0 ⊕ Es ⊕ Eu,

where each subbundle can be expressed as an associated vector bundle:

E0 := Γ\G×M a0, Es := Γ\G×M n0, Eu := Γ\G×M θn0.

We call these subbundles the neutral, stable, and unstable bundle. Similarly, the unit
sphere bundle SHn = G/M admits an Anosov splitting into

Ẽ0 := G×M a0, Ẽs := G×M n0, Ẽu := G×M θn0.

Each splitting induces a splitting of the cotangent bundle

T ∗M = E∗0 ⊕ E∗s ⊕ E∗u
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1.2. Ruelle resonances on rank one locally symmetric spaces

defined (pointwise) by E∗0(Es ⊕ Eu) = 0, E∗u(E0 ⊕ Eu) = 0 and E∗s (E0 ⊕ Es) = 0.
By our rank one assumption, there exists a unique simple positive restricted root of

(g0, a0) that we denote by α. Let H ∈ a0 be defined by α(H) = 1. Finally, we introduce
the rescaled natural positive-definite scalar product

〈·, ·〉 := − κ(·, θ·)
κ(H,H) (1.1)

on g0 (and thus on g∗0), so that the map

a∗ ∼= C, λ 7→ λ(H)

becomes isometric. The generator X of the geodesic flow onM is given by H ∈ a0.

The following microlocal description of Ruelle resonance states turns out to be the
most convenient in our setting.

Definition 1.2.2 (cf. [GHW21, Lemma 2.2]). Let

ResX(λ) := {u ∈ D′(M) | (X + λ)u = 0, WF(u) ⊂ E∗u},

where WF(u) ⊂ T ∗M denotes the wave-front set of the distribution u. If ResX(λ) 6= 0,
we call λ a Ruelle resonance (or simply resonance) and ResX(λ) the space of Ruelle
resonant states for λ. By duality, we define

ResX∗(λ) := {u ∈ D′(M) | (X − λ)u = 0, WF(u) ⊂ E∗s}.

If ResX∗(λ) 6= 0, we call λ a co-resonance and ResX∗(λ) the space of co-resonant states
for λ.

1.2.1. The first band resonances

In [DFG15] resp. [KW21, Theorem 4.1] it is shown for compact real hyperbolic spaces
resp. compact locally symmetric spaces of rank one that the Ruelle resonances form an
exact band structure. More precisely, if λ is a Ruelle resonance with Im(λ) 6= 0, then the
real part Re(λ) of λ is contained in −ρ(H)− N0 (see also [GHW21, Remark 3.2]). The
first of these bands allows a particularly beautiful description.

Definition 1.2.3 (cf. [GHW21, Definition 3.1]). A Ruelle resonant state u is said to
belong to the first band if it is annihilated by each smooth section of the unstable bundle
Eu. We write Res0

X(λ) for the first band resonant states at the resonance λ ∈ C.
Similarly, we define the first band co-resonant states as the space of all Ruelle resonant

states which are annihilated by each smooth section U+ of the stable bundle Es, i.e.

Res0
X∗(λ) := {u | u ∈ ResX∗(λ), ∀U+ ∈ C∞(G×M n0) : U+u = 0}.

9



1. Ruelle resonances

By the canonical projection

πΓ : G/M → Γ\G/M, gM 7→ ΓgM,

we can lift the (co-)resonant states to the cover SHn = G/M of SM = Γ\G/M . We
define for µ ∈ a∗, with n0,+ := n0, n0,− := θn0,

R±(µ) := {u ∈ D′(G/M) | (X ∓ µ(H))u = 0, ∀U± ∈ C∞(G×M n0,±) : U±u = 0}.

By [GHW21, Remark 3.3], the pullback (πΓ)∗ induces linear isomorphisms (µ ∈ a∗)

(πΓ)∗ : Res0
X(µ(H))→ ΓR−(µ), (πΓ)∗ : Res0

X∗(µ(H))→ ΓR+(µ).

This uses the fact that the wave-front condition may be removed in the definition of the
first band resonant states (see [DFG15, p. 9]).

The resonant states of the first band can be related to the representation theory of G.
This relation is described in the following chapter.
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2. Reducible principal series

In the representation theory of real reductive groups, principal series provide representa-
tions of great importance. One manifestation of this fact is Casselman’s subrepresentation
theorem (see e.g. [Wal88, 3.8.3]) that states that, in a certain sense, every representation
of the group occurs as a subrepresentation of such a representation.
In this chapter we recall the main facts about the principal series we use in this

thesis. In the context of the quantum-classical correspondence, spherical principal series
representations appear as intermediate objects between the classical and quantum side
(see Proposition 2.2.3). Since the exceptional parameters will lead to reducible principal
series representations, we need a precise knowledge of their structure. Therefore, apart
from different realizations and general properties, we inter alia discuss composition series
and describe the occurring K-types in great detail (see e.g. Proposition 2.4.4).

While the general properties are also available in higher rank, the more explicit results
on the composition series and the K-types are generally not. Therefore, we first consider
G as described in Section 1.1 and later on restrict to the rank one case for more explicit
results.

2.1. Realizations of principal series representations
The principal series representations can be realized in different ways (“pictures”) all
of which have their advantages. Let (σ, Vσ) ∈ M̂ with inner product 〈·, ·〉σ and µ ∈ a∗.
Denote by L2(K,Vσ) the space of Vσ-valued functions which are L2 with respect to the
normalized Haar measure dk on K.

In the induced picture the representation space Hσ,µ is given by all measurable functions
f : G→ Vσ such that

i) f(gman) = aµ−ρσ(m−1)f(g) for all g ∈ G,m ∈M,a ∈ A,n ∈ N ,

ii) f
∣∣
K
∈ L2(K,Vσ).

The representation is given by

(πσ,µ(g)f)(x) := f(g−1x), g, x ∈ G, f ∈ Hσ,µ.

Endowed with the norm ‖f‖2 :=
∫
K‖f(k)‖2σ dk this realization is a Hilbert space repre-

sentation. The parametrization is chosen such that Hσ,µ is unitary if µ ∈ ia∗0 is imaginary.
Note that this definition is well-defined up to equivalence since each intertwiner between
two equivalent irreducible unitary representations (σ1, Vσ1), (σ2, Vσ2) of M extends to
an intertwiner of the corresponding principal series representations.

11



2. Reducible principal series

The Iwasawa decomposition shows that a function in Hσ,µ is completely determined
by its restriction to K. Thus, the surjective isometry

Hσ,µ
∼= Hcpt

σ,µ , (2.1)

where Hcpt
σ,µ denotes the Hilbert space of all functions f in L2(K,Vσ) such that f(km) =

σ(m−1)f(k) for all k ∈ K, m ∈M , endowed with the same norm as above, gives another
realization of the principal series representation. This realization is called the compact
picture. Note that the representation space does not depend on µ. However, in this
picture the G-action is more complicated compared to the induced picture. It is induced
by the action πσ,µ via the isometry above and given by

(πcpt
σ,µ(g)f)(k) := aI(g−1k)µ−ρf(kI(g−1k)),

where k ∈ K, g ∈ G and f ∈ Hcpt
σ,µ . In the following, we will simply write Hσ,µ for both

realizations for the sake of simplicity. If σ is the trivial representation we write (πµ, Hµ)
and refer to these representations as the spherical principal series. The representation
spaces in the spherical case naturally factor through the quotient G/M , respectively
K/M , in the induced or compact picture and we will use these realizations in that case.
The same definitions can be made with respect to the opposite order on a0, i.e. by

choosing −Σ+ as the positive system. More precisely, denoting N− := θN , we define
the opposite principal series representation on the space Hopp

σ,µ given by all measurable
functions f : G→ Vσ such that

i) f(gman) = a−(µ−ρ)σ(m−1)f(g) for all g ∈ G,m ∈M,a ∈ A,n ∈ N−,

ii) f
∣∣
K
∈ L2(K,Vσ)

equipped with the left regular representation πopp
σ,µ where ρ is still defined with respect to

Σ+. By restricting to K we again obtain a compact picture on Hcpt,opp
σ,µ := Hcpt

σ,µ given by

(πcpt,opp
σ,µ (g)f)(k) := a−I (g−1k)−(µ−ρ)f(k−I (g−1k)),

where G 3 g = k−I (g)a−I (g)n−I (g) ∈ KAN− denotes the opposite Iwasawa decomposition.
We also abbreviate H(g) := log aI(g) and H−(g) := log a−I (g). The Iwasawa decompo-
sition is related to its opposite analog by the longest Weyl group element w−, i.e. the
unique element in W which maps Σ+ to −Σ+. More precisely we have, for each g ∈ G,

kI(gw−) = k−I (g)w− and aI(gw−) = w−1
− a−I (g)w− (2.2)

for a fixed representative of w− in the normalizer NK(A) of A in K since

gw− = k−I (g)w−w−1
− a−I (g)w−w−1

− n−I (g)w− ∈ KAN.

Note that the Weyl group acts on M̂ by wσ(m) := σ(w−1mw) where w denotes a
representative in NK(A). There is an interesting connection between the two introduced
principal series.
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2.2. Principal series and the first band

Proposition 2.1.1. The map

Φ : Hcpt
w−1
− σ,−w−1

− µ+ρ → Hcpt,opp
σ,µ+ρ , Φ(f)(k) := f(kw−)

defines a bijective intertwiner between the associated representations.

Proof. Since w− ∈ NK(A) we have w−1
− mw− ∈M for each m ∈M and thus

∀k ∈ K : Φ(f)(km) = w−1
− σ(w−1

− m−1w−)f(kw−) = σ(m−1)Φ(f)(k)

so that Φ(f) ∈ Hcpt,opp
σ,µ . For the intertwining part we first note that for each a ∈ A

exp(Ad(w−1
− ) log a) = w−1

− aw− =⇒ Ad(w−1
− ) log a = log(w−1

− aw−). (2.3)

Now we calculate for g ∈ G and k ∈ K using (2.2) and (2.3)

Φ(πcpt
w−1
− σ,−w−1

− µ+ρ(g)f)(k) = aI(g−1kw−)−w
−1
− µf(kI(g−1kw−))

= e−(w−1
− µ)(log(w−1

− a−I (g−1k)w−))f(k−I (g−1k)w−)

= e−(w−1
− µ)(Ad(w−1

− ) log a−I (g−1k))f(k−I (g−1k)w−)

= e−µ(log a−I (g−1k))f(k−I (g−1k)w−)
= (πcpt,opp

σ,µ+ρ (g)Φ(f))(k).

Remark 2.1.2. Note that −w−1
− µ + ρ = µ + ρ so that Hcpt

w−1
− σ,µ

∼= Hcpt,opp
σ,µ for each

µ ∈ a∗ and w−1
− σ = w−σ. However, in the stated form Proposition 2.1.1 works for every

element w of the Weyl group if one uses the Iwasawa decomposition associated to the
positive system induced by w. Moreover, note that in the spherical case (i.e. σ is trivial)
we have Hµ

∼= Hopp
µ .

2.2. Principal series and the first band
In this section we briefly return to the rank one case and describe the relation between
Ruelle resonant states and distributional vectors in the spherical principal series repre-
sentations. Geometrically, this relation is established by associating to each point in the
sphere bundle its two boundary values at infinity.

Definition 2.2.1 (cf. [GHW21, Section 3.3]). The initial resp. end point map B− resp.
B+ which assigns to any point y in the sphere bundle G/M of G/K the limiting point at
−∞ resp. +∞ of the geodesic passing through y is given by

B± : G/M → K/M, B(gM) := kI(gw±)M

with the (non)trivial Weyl group element (w− resp.) w+ = eM ∈W = NK(A)/M . We
denote the pullback of B± by

Q± : D′(K/M)→ D′(G/M), Q±(T ) := B∗±T

13



2. Reducible principal series

and introduce the map

Φ± : G/M → R, gM 7→ e−α(H(g−1B±(gM))).

Finally we define the initial resp. end point transform Qµ,± for any µ ∈ a∗ by

Qµ,± : D′(K/M)→ D′(G/M), Qµ,±(T ) := Φµ(H)
± Q±(T )

and abbreviate Q := Q+ and Qµ := Qµ,+.

Proposition 2.2.2 (cf. [GHW21, Proposition 3.7]). Let Qµ,± denote the initial and end
point transforms from Definition 2.2.1. If we extend the G-representation πcpt

µ for µ ∈ a∗

to D′(K/M) via the pullback obtained by the left G-action on K/M ∼= G/P , the maps

Qµ,± : (D′(K/M), πcpt
µ+ρ)→ R±(µ) ⊆ D′(G/M)

are equivariant topological isomorphisms.

Composing Qµ,± with the pullback (πΓ)∗ gives the following

Proposition 2.2.3 (cf. [GHW21, Proposition 3.8]). There are isomorphisms of finite
dimensional vector spaces

Res0
X(µ(H)) ∼= Γ(D′(K/M), πcpt

µ+ρ) and Res0
X∗(µ(H)) ∼= Γ(D′(K/M), πcpt

µ+ρ)

where Γ() denotes the subspace of Γ-invariant elements.

The following lemma connects the initial and end point transforms to the (opposite)
principal series.

Lemma 2.2.4.

i) The maps Φ± are given by

Φ+(gM) = eα(H(g)) and Φ−(gM) = e−α(H−(g)).

In particular, Φ+ ∈ Hα+ρ and Φ− ∈ Hopp
α+ρ.

ii) Let f ∈ C∞(K/M) ∼= C∞(K)M . Then we have for every µ ∈ a∗

a) Q+(f) ∈ Hρ, Q−(f) ∈ Hopp
ρ ,

b) Qµ,+(f) ∈ Hµ+ρ, Qµ,−(f) ∈ Hopp
µ+ρ and

c) Qµ,+(f)(kM) = f(k), Qµ,−(f)(kM) = f(kw−).
Thus, Qµ,+(f) is the (unique) extension of f to a function in Hµ+ρ and Qµ,−(f) is
the (unique) extension of f(•w−) to a function in Hopp

µ+ρ.
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2.2. Principal series and the first band

Proof. By definition we have

H(g−1B+(gM)) = H(g−1kI(g)) = H(nI(g)−1aI(g)−1)
= H(aI(g)−1) = −H(aI(g)) = −H(g)

where the third equality follows since A normalizes N . For Φ− note that conjugation
Cw− with w− acts as inversion on A so that by (2.2)

H(gw−) = log aI(gw−) = log a−I (g)−1 = −H−(g)

independent of the representative of w− ∈W . This implies that

H(g−1B−(gM)) = H(g−1kI(gw−)) = H((gw−)−1kI(gw−))
= H(nI(gw−)−1aI(gw−)−1) = −H(gw−) = H−(g)

and the claimed expressions for Φ± follow. Now

gman = kI(g)aI(g)nI(g)man = kI(g)m︸ ︷︷ ︸
∈K

aI(g)a︸ ︷︷ ︸
∈A

(ma)−1nI(g)man︸ ︷︷ ︸
∈N

implies

Φ+(gmanM) = eα(H(aI(g)a)) = eα(H(a))eα(H(g)) = aαΦ+(gM).

This proves Φ+ ∈ Hα+ρ and Φ− ∈ Hopp
α+ρ is obtained analogously.

For ii) let f ∈ C∞(K)M . Then

Q+(f)(gmanM) = f(B+(gmanM)) = f(kI(g)m) = f(B+(gM)) = Q+(f)(gM)

shows Q+(f) ∈ Hρ and Q−(f) ∈ Hopp
ρ follows similarly. For ii)b note that

Qµ,+(f)(gmanM) = Φµ(H)
+ (gmanM)Q+(f)(gmanM)

= aµ(H)αΦµ(H)
+ (gM)Q+(f)(gM)

= aµΦµ(H)
+ (gM)Q+(f)(gM) = aµQµ,+(f)(gM).

Finally we have

Qµ,+(f)(kM) = Φµ(H)
+ (kM)Q+(f)(kM) = Q+(f)(kM) = f(k),

Qµ,−(f)(kM) = Φµ(H)
− (kM)Q−(f)(kM) = Q−(f)(kM) = f(kw−).

Remark 2.2.5. In view of Lemma 2.2.4, ii)c the isomorphism Qµ = Qµ,+ should be
considered as the map (2.1) between different realizations of the spherical principal
series representations, namely the compact picture and the induced picture extended to
distributions. More precisely we have that R+(µ) is the space of distributional elements
of Hµ+ρ (we will be more precise about this terminology in Section 2.3). We also have
the corresponding statement for the opposite principal series but in that case, by Lemma
2.2.4, ii)c, the map Qµ,− is not consistent with the unique extension of a function
f ∈ C∞(K/M) to a function in Hopp

µ+ρ but one has to twist f with w− first.
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2. Reducible principal series

2.3. Globalizations and infinitesimal character
Let (π,H) denote a Hilbert space realization of a (subrepresentation of a) principal series
representation. In this paragraph we define smooth and distribution vectors in (π,H).
We call a vector v ∈ H a smooth or C∞-vector for π if

G→ H, g 7→ π(g)v

is smooth. Let H∞ ⊆ H denote the vector space of all smooth vectors in H. For π = πcpt
σ,µ

the smooth vectors are actually smooth functions (see e.g. [Vog08, Equation (5.15)(a)]):

H∞ = {f : K → Vσ smooth | ∀k ∈ K, m ∈M : f(km) = σ(m−1)f(k)}.

The distributional vectors H−∞ are given by the elements of the dual representation of the
smooth vectors in the dual representation of (π,H). We give an alternative description
which often is more convenient. Let σ̃ denote the dual representation of σ. Then, using
[Hel00, Chapter I, §5.3, Equation (25)], we see that

〈·, ·〉σ,µ : Hσ,µ ×Hσ̃,−µ → C, 〈f1, f2〉σ,µ :=
∫
K
f2(k)(f1(k)) dk

is a nondegenerate, bilinear, and G-invariant pairing between Hσ,µ and Hσ̃,−µ for each
σ ∈ M̂ and µ ∈ a∗. By this pairing, we see that the distributional vectors H−∞σ,µ of the
principal series representation Hσ,µ are given by the contragredient representation of
H∞σ̃,−µ. If σ is trivial, the distributional vectors can be realized on D′(K/M), the space
of distributions on K/M .
In rank one, as mentioned in Remark 2.2.5, the distributional vectors in the induced

picture of Hµ are given by R(µ− ρ) := R+(µ− ρ) since

Qµ : (D′(K/M), πcpt
µ ) ∼−→ R(µ− ρ) (2.4)

intertwines the G-actions and continuously extends (2.1) (see Proposition 2.2.2).
Note that we always have the linear embedding

ισ,µ : Hσ,µ ↪→ H−∞σ,µ , ισ,µ(f1)(f2) := 〈f1, f2〉σ,µ.

For each subrepresentation V ≤ Hσ,µ we have the restricted pairing

V × (Hσ̃,−µ/V
⊥σ,µ)→ C, 〈f1, f2 + V ⊥σ,µ〉σ,µ :=

∫
K
f2(k)(f1(k)) dk,

where

V ⊥σ,µ := {f2 ∈ Hσ̃,−µ | ∀f1 ∈ V : 〈f1, f2〉σ,µ = 0}. (2.5)

This implies that V −∞ is the contragredient representation of (Hσ̃,−µ/V
⊥σ,µ)∞.

Any principal series representation has an infinitesimal character. In order to describe
the infinitesimal character of Hσ,µ we first fix some notation. Let t ≤ m denote a θ-stable
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2.4. Reducibility

Cartan subalgebra of m, λσ be the highest weight of σ with respect to some ordering in
t∗ and ρm denote the half-sum of positive roots for (m, t). Then Hσ,µ has infinitesimal
character λσ + ρm − µ relative to h := a⊕ t (cf. [Kna86, Proposition 8.22]). We recall
the Casimir element Ωg, an important element of the center Z(U(g)) of U(g). Let B be
a fixed multiple of the Killing form κ. For a basis X1, . . . , Xdim g0 of g0 let (gij)ij denote
the inverse matrix of (B(Xi, Xj))i,j . Then the dual basis (Xi)i is given by Xi = ∑

gijXj

and the Casimir element is defined by

Ωg :=
∑

i
XiXi =

∑
i,j
gijXjXi ∈ Z(U(g)).

Since B is nondegenerate, there are unique elements Xϕ ∈ g0 for each ϕ ∈ g∗0 such that
ϕ(X) = B(X,Xϕ) for each X ∈ g0. We put 〈ϕ,ψ〉 := B(Xϕ, Xψ) for ϕ,ψ ∈ g∗0 resp. g∗.
Let us extend the ordering on a to h such that Σ+ arises by restriction from the positive
roots of (g, h). By [Kna86, Lemma 12.28], the action of the Casimir element is then given
by the scalar

πσ,µ(Ωg) = 〈λσ + ρm, λσ + ρm〉+ 〈µ, µ〉 − 〈ρ+ ρm, ρ+ ρm〉
= 〈λσ, λσ + 2ρm〉+ 〈µ, µ〉 − 〈ρ, ρ〉. (2.6)

2.4. Reducibility

We are particularly interested in reducible principal series representations, i.e. in the set

A′ := {(σ, µ) ∈ M̂ × a∗ | Hσ,µ reducible}.

In this section we introduce the representation theoretic tools we need to describe the
structure of these reducible representations.

2.4.1. Composition series, minimal K-types and socle

In general, principal series representations are not completely reducible. However, they
are all of finite length (cf. [Kra78]). This means, there exists a finite composition series,
i.e. a chain of subrepresentations of Hσ,µ of the form

0 ( V1 ( . . . ( Vn = Hσ,µ

such that the quotients Vi+1/Vi, the composition factors, are irreducible. By the Jordan-
Hölder theorem, any two composition series have the same length and the same com-
position factors up to permutation and isomorphism. For rank one groups, a detailed
description of the composition series of spherical principal series representations can be
found in Appendix B.

Let π denote an admissible Hilbert representation of G (i.e. a continuous representation
such that each K-isotypic component has finite dimension) and fix a Cartan subalgebra
b0 of k0. With respect to some ordering, we define ρk as the half-sum of the positive roots
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2. Reducible principal series

of (k, b). We say that Y ∈ K̂ with highest weight λ is a minimal K-type of π if Y occurs
in π restricted to K and

〈λ+ 2ρk, λ+ 2ρk〉

is minimal with respect to this property. The set of minimal K-types is independent
of the choice of the ordering and its cardinality is finite and at least one. For principal
series representations πσ,µ each minimal K-type of πσ,µ occurs in πσ,µ

∣∣
K

with multiplicity
one (cf. [Vog79, Theorem 1.1]).
For any Hilbert representation (π,H) of G we define socπ, the socle of π, as the

closure (in the sense of [Kna86, Theorem 8.9]) of the sum of all completely reducible
(g,K)-submodules of the underlying (g,K)-module of (π,H) (see [KV95, p. 538]).

2.4.2. K-representations
We begin this section with a brief discussion of the decomposition of πσ,µ

∣∣
K

in general and
then give some more precise results of this decomposition in the rank one case. Moreover,
we define so-called generalized gradients which will be of great importance later on.

For the decomposition as K-representation we consider the compact picture Hcpt
σ,µ . As

K-representation this coincides with the induced representation IndKM σ of σ to K. By
Frobenius reciprocity we thus obtain for each Y ∈ K̂ that

HomK(Hcpt
σ,µ , Y ) = HomK(IndKM σ, Y ) ∼= HomM (Vσ, Y ).

Denote the multiplicity of Vσ in Y (and similarly for other groups and spaces) by

multM (Vσ, Y ) := dimC HomM (Vσ, Y ).

Then, writing

K̂σ := {Y ∈ K̂ : multM (Vσ, Y ) 6= 0},

we have that, denoting equivalence as K-representations by ∼=K and the Hilbert space
direct sum by ⊕̂,

Hcpt
σ,µ
∼=K

⊕̂
Y ∈K̂σ

multM (Vσ, Y )Y.

In the spherical case we will abbreviate K̂M := K̂trivM . If not stated otherwise, we will
always realize Y ∈ K̂M as a subrepresentation of Hcpt

σ,µ = L2(K/M). Note that L2(K/M)
carries the left regular representation L. We denote the derived representation of L by `.

Intertwiner

In the following, we describe a procedure to obtain G-equivariant maps between sections
of associated vector bundles. As we shall see in Chapter 4, these generalized gradients
generalize the classical raising and lowering operators of PSL(2,R). In the literature
similar operators, so-called Schmid operators, occur in realizations of discrete series
representations (see e.g. [KW76]). To define the gradients, we need the following fact.
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2.4. Reducibility

Proposition 2.4.1 (cf. [Ørs00, Proposition 3.1]). Let K act on p∗ by the coadjoint
representation. The following map is defined for every (τ, Y ) ∈ K̂:

∇ : C∞(G×K Y )→ C∞(G×K (Y ⊗ p∗)),

(∇f)(g) ∈ Hom(p, Y ) ∼= Y ⊗ p∗, (∇f)(g)(X) := d

dt

∣∣∣∣
t=0

f(g exp tX).

Moreover, it defines a G-equivariant covariant derivative with zero torsion.

Definition 2.4.2. Let (τi, Yτi) ∈ K̂, i ∈ {1, 2}, be such that Yτ2 ≤ Yτ1 ⊗ p∗. Then, for
T ∈ HomK(Yτ1 ⊗ p∗, Yτ2), we define the generalized gradient

T ◦ ∇ : C∞(G×K Yτ1)→ C∞(G×K Yτ2).

If not stated otherwise, we choose T = prτ2 , the orthogonal projection onto Yτ2 .

M -spherical functions in rank one

Let us now assume that G has real rank one. In this case some more precise results on
the K-types of the spherical principal series can be achieved. Most importantly, (K,M)
is a Gelfand pair in this case (cf. [Hel94, Chapter II, §6, Corollary 6.8]). This implies:

Proposition 2.4.3. Let C denote the trivial M -representation. Then

∀Y ∈ K̂M : multK(Y,Hµ) = multM (C, Y ) = dimC Y
M = 1, (2.7)

where YM := {v ∈ Y | ∀m ∈ M : m.v = v} ⊆ Y denotes the subspace of M-invariant
elements. In particular, we have the multiplicity free decomposition

Hµ
∼=K

⊕̂
Y ∈K̂M

Y.

Proof. The first equality follows from Frobenius reciprocity and the last equality follows
from [Hel00, Chapter V, Theorem 3.5 (iv)].

Note that IndKM (trivM ) ∼= L2(K/M) is isomorphic to L2(K)M , the M -invariant ele-
ments of L2(K) with respect to the right regular representation. The following proposition
describes theM -spherical elements YM for each Y ∈ K̂M and is well-known to specialists.
Since it turns out to be difficult to find a precise reference in the literature, we give a
proof for the convenience of the reader.

Proposition 2.4.4 (cf. [Hel00, Introduction, Proposition 3.2]). Let 0 6= (τ, Y ) ≤ L2(K)M
be an irreducible representation. Then

i) there exists a unique φY ∈ YM such that φY (e) = 1 and YM = CφY ,

ii) ϕ(k)〈φY , φY 〉L2(K) = 〈ϕ, τ(k)φY 〉L2(K) for k ∈ K, ϕ ∈ Y ,

iii) 〈φY , φY 〉L2(K) = 1
dimY , φY (k−1) = φY (k), |φY (k)| ≤ 1 for k ∈ K. Moreover, for

each k ∈ NK(A) we have |φY (k)| = 1.
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2. Reducible principal series

Proof. i) By Equation (2.7) we have dimC Y
M = 1. Let 0 6= ψ ∈ Y and choose some

k ∈ K such that ψ(k) 6= 0. Replacing ψ by τ(k−1)ψ we may assume that ψ(e) 6= 0. The
function

Ψ : K → C, k 7→
∫
M
τ(m)ψ(k) dm

is contained in YM with Ψ(e) = ψ(e) 6= 0. This proves the first part.
ii) For each m ∈M we have by the K-invariance of the Haar measure

〈ϕ, φY 〉L2(K) =
∫
K
ϕ(k)φY (k) dk =

∫
K
ϕ(k)φY (m−1k) dk

=
∫
K
ϕ(mk)φY (k) dk =

∫
K
φY (k)

∫
M
ϕ(mk) dm dk.

Note that the map

θ : K → C, k 7→
∫
M
ϕ(mk) dm =

∫
M
τ(m−1)ϕ(k) dm

is contained in VM = CφY . We infer that θ = θ(e)φY = ϕ(e)φY and thus

〈ϕ, φY 〉L2(K) = ϕ(e)
∫
K
φY (k)φY (k) dk = ϕ(e)〈φY , φY 〉L2(K).

Replacing ϕ by τ(k−1)ϕ we obtain ii).
iii) By the Schur orthogonality relations we have

1
dimY

〈ϕ,ϕ〉L2(K)〈φY , φY 〉L2(K) =
∫
K
〈τ(k)φY , ϕ〉L2(K)〈τ(k)φY , ϕ〉L2(K) dk

ii)=
∫
K
ϕ(k)〈φY , φY 〉L2(K)ϕ(k)〈φY , φY 〉L2(K) dk

= 〈φY , φY 〉2L2(K)

∫
K
ϕ(k)ϕ(k) dk

= 〈φY , φY 〉2L2(K)〈ϕ,ϕ〉L2(K).

This proves 〈φY , φY 〉L2(K) = 1
dimY . By ii) we deduce

φY (k) = dimY 〈φY , τ(k)φY 〉L2(K) = dimY 〈φY , τ(k−1)φY 〉L2(K) = φY (k−1)

and, using the Cauchy-Schwarz inequality,

|φY (k)| = dimY |〈φY , τ(k)φY 〉L2(K)| ≤ dimY 〈φY , φY 〉L2(K) = 1.

If k ∈ NK(A) we have k−1mk ∈M for each m ∈M (W is a group) and thus τ(k)φY ∈
YM = CφY since τ(mk)φY = τ(kk−1mk)φY = τ(k)φY . Therefore, τ(k)φY and φY are
linearly dependent and we have an equality in the Cauchy-Schwarz inequality.
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3. Poisson transforms

In the generic case, the quantum-classical correspondence is established by scalar Poisson
transforms. These are given by certain G-equivariant mappings defined on spherical
principal series representations whose images are contained in common eigenspaces
of invariant differential operators. In rank one, these common eigenspaces are given
by eigenspaces of the Laplacian so that bijective Poisson transforms lead to quantum-
classical correspondences. We call parameters for which the Poisson transform defines
an isomorphism regular. In the case of exceptional – i.e. non-regular – parameters it
turns out that the Poisson transforms are not even injective (Theorem 3.2.2), so that we
need some alternative. For this we introduce vector-valued Poisson transforms based on
[Olb94], which admit similar properties to the scalar ones and generalize the latter in a
natural way (Section 3.3). Moreover, they can be characterized by a universal property
(Lemma 3.3.3), which – along with its corollaries – will be one of our main tools for
proving spectral correspondences.

3.1. Invariant differential operators and eigensections
Let (τ, Y ) ∈ K̂. A differential operator D on C∞(G ×K Y ) is called invariant if
it commutes with the left regular representation L on C∞(G ×K Y ). Let D(G, τ)
denote the algebra of all invariant differential operators on C∞(G×K Y ) and abbreviate
D(G/K) := D(G, triv). Then D(G, τ) is isomorphic to U(g)K/(U(g)Iτ̃ )K via the right
regular representation r, where Iτ̃ := ker τ̃ ⊂ k denotes the kernel of τ̃ , the dual
representation of τ (see [Olb94, Satz 2.4]).
For the trivial bundle the Harish-Chandra homomorphism χ : D(G/K) → S(a0)W

allows us to identify D(G/K) with the W -invariants S(a0)W of the symmetric algebra
S(a0) of a0 (see [Hel00, Chapter II, Theorems 4.3, 5.18]). Moreover, every character of
D(G/K) is of the form

χµ : D(G/K)→ C, χµ(D) := χ(D)(µ)

for some µ ∈ a∗ and χν = χµ if and only if ν ∈Wµ (cf. [Hel00, Chapter III, Lemma 3.11]).
Let us denote the space of joint eigenfunctions of D(G/K) by

Eµ := {f ∈ C∞(G/K) | ∀D ∈ D(G/K) : Df = χµ(D)f},

and, with the Riemannian distance function dG/K on G/K, for each r ≥ 0

Eµ,r(G/K) := {f ∈ Eµ | sup
g∈G
|e−rdG/K(eK,gK)f(g)| <∞}. (3.1)
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3. Poisson transforms

We put Eµ,∞(G/K) := ⋃
r≥0 Eµ,r(G/K), equipped with the direct limit topology.

For arbitrary (τ, Y ) ∈ K̂ we define a representation χσ,µ of D(G, τ) for each µ ∈ a∗

and (σ, V ) ∈ M̂ with multM (V, Y ) 6= 0 by

χσ,µ : D(G, τ)→ End(HomK(Hσ,µ, Y )), χσ,µ(r(u))(T ) := T ◦ πσ,µ(oppu),

where u ∈ U(g)K and opp : U(g) → U(g) is defined by opp(X) := −X for X ∈ g (see
[Olb94, Definition 2.10]). If multM (V, Y ) = 1 these representations are one dimensional
and we can define the space of joint eigensections

Eσ,µ := {f ∈ C∞(G×K Y ) | ∀D ∈ D(G, τ) : Df = χσ,µ(D)f},

where we identified End(HomK(Hσ,µ, Y )) with C. Each Eσ,µ has an infinitesimal character
and it coincides with that of Hσ,µ (see [Olb94, Folgerung 2.15]).

3.2. Mapping properties of scalar Poisson transforms
The asymptotics of joint eigenfunctions in Eµ can be described by a specific meromorphic
function on a∗, the Harish-Chandra c-function c(µ). We define its “denominator”, the
meromorphic function e(µ)−1, by (µ ∈ a∗)

e(µ)−1 :=
∏
α∈Σ+

Γ
(1

2

(1
2mα + 1 + 〈µ, α〉

〈α, α〉

))
Γ
(1

2

(1
2mα +m2α + 〈µ, α〉

〈α, α〉

))
,

see e.g. [Sch84, Equation (5.17)]. Then e is an entire function on a∗ without zeros on the
closure of the positive Weyl chamber.

Definition 3.2.1. For µ ∈ a∗ we define the scalar Poisson transform by

Pµ : D′(K/M)→ Eµ,∞(G/K), Pµ(T )(gK) := T (kM 7→ aI(g−1k)−(µ+ρ)).

The mapping properties of these maps turn out to be closely related to the e-function.

Theorem 3.2.2 (cf. [vdBS87, Theorems 10.6, 12.2]). Pµ is a topological isomorphism if
and only if e(µ) 6= 0. If e(µ) = 0 then Pµ is neither injective nor surjective.

This leads to the following definition.

Definition 3.2.3. We call

Ex := {µ ∈ a∗ | e(µ) = 0}

the set of exceptional parameters.

In the rank one case the algebra D(G/K) is generated by the Laplacian on G/K
([Hel00, Chapter II, Theorem 5.18]). Note that the scalar by which it acts on Eµ,∞(G/K)
resp. EtrivM ,µ can be deduced from Equation (2.6). For regular parameters µ ∈ a∗ \Ex
this leads to the following correspondence between first band (co-)resonant states and
eigenfunctions of the (positive) Laplacian ∆M on L2(M), which is obtained by composing
the isomorphisms from Proposition 2.2.3 with the bijective Poisson transform.

22



3.3. Vector-valued Poisson transforms

Theorem 3.2.4 (cf. [GHW21, Theorem 4.5]). If µ ∈ a∗ \ Ex is a regular spectral
parameter, then there are natural isomorphisms

Res0
X((µ− ρ)(H)) ∼= Eig∆M(µ), Res0

X∗((µ− ρ)(H)) ∼= Eig∆M(µ),

induced by the scalar Poisson transform Pµ, where

Eig∆M(µ) := {u ∈ L2(M) : (∆M − ρ(H)2 + µ(H)2)u = 0}.

The aim of this thesis is to generalize this result to the case of exceptional parameters.
Remark 3.2.5. Note that our definition of exceptional parameters agrees with the
parameters which were excluded in [DFG15] and [GHW21]. Indeed, let G be of real rank
one. Then the e-function is zero if and only if one of the Gamma functions has a pole
which is the case if and only if

µ ∈
(
−1

2mα − 1− 2N0

)
α ∪

(
−1

2mα −m2α − 2N0

)
α,

with the simple positive restricted root α. Moreover, by [Hel70, Chapter IV, Theorem 1.1],

Hµ irreducible ⇔ e(µ)e(−µ) 6= 0.

Therefore, irreducibility of Hµ is sufficient but not necessary for the bijectivity of Pµ.

3.3. Vector-valued Poisson transforms
In this section we describe generalized Poisson transforms based on [Olb94], which will
serve as a substitute for the scalar Poisson transform for the exceptional parameters.
Definition 3.3.1 (cf. [Olb94, Definition 3.2/Satz 3.4]). Let τ ∈ K̂, σ ∈ M̂ and µ ∈ a∗.
Then we define the (vector-valued) Poisson transform by

P τσ,µ : HomK(Hσ,µ, Vτ )⊗H−∞σ,µ → C∞(G×K Vτ ), P τσ,µ(T ⊗ f)(g) = T (πσ,µ(g−1)f).
(3.2)

If F : HomK(Hσ,µ, Vτ ) ∼= HomM (Vσ, Vτ ) denotes the Frobenius isomorphism we have

P τσ,µ(T ⊗ f)(g) =
∫
K
τ(k)F (T )(f(gk)) dk (3.3)

=
∫
K
aI(g−1k)−(µ+ρ)τ(kI(g−1k))F (T )(f(k)) dk (3.4)

for T ∈ HomK(Hσ,µ, Vτ ), f ∈ Hσ,µ and g ∈ G. The image of P τσ,µ is contained in Eσ,µ
and P τσ,µ is D(G, τ)×G-equivariant, where D(G, τ) acts on HomK(Hσ,µ, Vτ ) by χσ,µ. We
abbreviate P τσ,µ by P τµ if σ is the trivial representation of M . We may also define the
Poisson transform in the compact picture where the definition agrees with Equation (3.4).
Especially we have

P τ,cpt
µ (T ⊗ f) = P τµ (T ⊗Qµ−ρ,+(f)) (3.5)

for each f ∈ D′(K/M). For convenience of notations we simply write P τµ for P τ,cpt
µ if the

definition space is clear from the context.
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3. Poisson transforms

Remark 3.3.2 (Scalar vs. vector-valued). If τ = trivK is the trivial K-representation
we have HomK(Hµ, Vτ ) ∼= HomM (C,C) ∼= C. Let t ∈ HomM (C,C) be the identity and
T := F−1(t). Then

P τµ (T ⊗ f)(g) =
∫
K
aI(g−1k)−(µ+ρ)f(k) dk = Pµ(f)(gK).

The following lemma illustrates the naturalness of Olbrich’s Poisson transforms.

Lemma 3.3.3 (cf. [Olb94, Remark after Lemma 3.3]). Let Ψ : Hσ,µ → C∞(G×K Vτ )
be a G-equivariant map. Then

Ψ = P τσ,µ(T ⊗ •)

where T ∈ HomK(Hσ,µ, Vτ ) is defined by T (f) := Ψ(f)(e).

Proof. For every k ∈ K we have

T (πσ,µ(k)f) = Ψ(πσ,µ(k)f)(e) = Ψ(f)(k−1) = τ(k)Ψ(f)(e) = τ(k)T (f)

and thus T ∈ HomK(Hσ,µ, Vτ ). Moreover we have for every g ∈ G and f ∈ Hσ,µ

P τσ,µ(T ⊗ f)(g) = Ψ(πσ,µ(g−1)f)(e) = Ψ(f)(g).

This lemma admits the following important implications.

Corollary 3.3.4. Let Ψ : Hσ,µ → C∞(G×K Vτ ) be a G-equivariant map where Vτ does
not contain the M -representation Vσ. Then Ψ = 0.

Proof. By Lemma 3.3.3 there exists T ∈ HomK(Hσ,µ, Vτ ) such that Ψ = P τσ,µ(T ⊗•). But
HomK(Hσ,µ, Vτ ) ∼= HomM (Vσ, Vτ ) = 0 by Frobenius reciprocity.

Corollary 3.3.5. Let (τi, Vτi) ∈ K̂, i ∈ {1, 2}, be such that

multK(Vτi , Hσ,µ) = dimC HomK(Hσ,µ, Vτi) = 1

and let Φ : C∞(G ×K Vτ1) → C∞(G ×K Vτ2) be a G-equivariant map. By choosing
0 6= Ti ∈ HomK(Hσ,µ, Vτi) we consider the Poisson transforms P τiσ,µ as maps from Hσ,µ

to C∞(G×K Vτi). Then there exists some c ∈ C such that

Φ ◦ P τ1σ,µ = c · P τ2σ,µ.

Proof. Since

Φ ◦ P τ1σ,µ(T1 ⊗ •) : Hσ,µ → C∞(G×K Vτ2)

is a G-equivariant map there exists, by Lemma 3.3.3, some T ∈ HomK(Hσ,µ, Vτ2) with

Φ ◦ P τ1σ,µ(T1 ⊗ •) = P τ2σ,µ(T ⊗ •).

Since dimC HomK(Hσ,µ, Vτi) = 1 there exists some c ∈ C with T = c · T2.
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3.3. Vector-valued Poisson transforms

We may also define the analog of the Poisson transform for the opposite principal
series, i.e.

P τ,opp
σ,µ : HomK(Hopp

σ,µ , Vτ )⊗Hopp,−∞
σ,µ → C∞(G×K Vτ ),

P τ,opp
σ,µ (T ⊗ f)(g) := T (πopp

σ,µ (g−1)f).

As in Definition 3.3.1 we get

P τ,opp
σ,µ (T ⊗ f)(g) =

∫
K
τ(k)F (T )(f(gk)) dk

=
∫
K
a−I (g−1k)µ+ρτ(k−I (g−1k))F (T )(f(k)) dk

for T ∈ HomK(Hcpt,opp
σ,µ , Vτ ), f ∈ Hcpt,opp

σ,µ and g ∈ G. Here the Frobenius isomorphism
F is defined as before by realizing the principal series in the compact picture.

Corollary 3.3.6. Let (τ, Vτ ) ∈ K̂ be such that

multK(Vτ , Hµ) = dimC HomK(Hµ, Vτ ) = 1.

Let 0 6= T ∈ HomK(Hcpt
µ , Vτ ) and consider the Poisson transforms P τµ resp. P τ,opp

µ as
maps from Hcpt

µ to C∞(G×K Vτ ). Then, with the isomorphism Φ from Proposition 2.1.1,

P τ,opp
µ ◦ Φ = c · P τµ ,

where c is given by 〈τ(w−)φτ ,φτ 〉τ
〈φτ ,φτ 〉τ for some arbitrary 0 6= φτ ∈ VM

τ .

Proof. Note that

P τ,opp
µ ◦ Φ: Hcpt

µ → C∞(G×K Vτ )

is G-equivariant. Thus, by Lemma 3.3.3, P τ,opp
µ ◦ Φ equals c · P τµ for some c ∈ C. In

order to compute c we evaluate both sides at the delta distribution δeM at eM . Using
Equation 2.2 we obtain

P τ,opp
µ (Φ(δeM )) = P τ,opp

µ (δw−M ) = a−I (g−1w−)µ+ρτ(k−I (g−1w−))F (T )(1)
= aI(g−1)−(µ+ρ)τ(kI(g−1)w−)F (T )(1).

Note that CF (T )(1) = VM
τ by the multiplicity one assumption. Moreover we have

τ(w−)F (T )(1) ∈ VM
τ since

τ(m)τ(w−)F (T )(1) = τ(w−)τ(w−1
− mw−)F (T )(1) = τ(w−)F (T )(1)

for each m ∈M since w−1
− mw− ∈M . Thus,

τ(w−)F (T )(1) = 〈τ(w−)F (T )(1), F (T )(1)〉τ
〈F (T )(1), F (T )(1)〉τ

F (T )(1) = cF (T )(1)

and therefore

P τ,opp
µ (Φ(δeM )) = aI(g−1)−(µ+ρ)τ(kI(g−1))F (T )(1)c = P τµ (δeM )c.
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3. Poisson transforms

Note that in rank one, where we realized each Y ∈ K̂M in C∞(K/M), we have
φY ∈ YM for the φY from Proposition 2.4.4. In this case Proposition 2.4.4 ii) yields

c =
〈τ(w−)φY , φY 〉L2(K)
〈φY , φY 〉L2(K)

= φY (w−1
− ) = φY (w−),

since w2
− ∈M and φY is M -invariant. Note that since φY (k−1) = φY (k) for each k ∈ K,

this implies that c is real. Moreover, |φY (w−)| = 1 (again by Proposition 2.4.4 ii)) and
thus c ∈ {±1}.
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4. An example: The case of surfaces

This chapter is devoted to the quantum-classical correspondence for exceptional parame-
ters in the case of hyperbolic surfaces – corresponding to G = PSL(2,R) – as described
in [GHW18]. In order to generalize the proof of [GHW18] to other rank one cases, our
goal is to replace it with a more representation theoretic one. This will be instructive
for the general rank one case where various challenges arise which are not present in the
case of surfaces.

We start by introducing some notation and stating the correspondence. After relating
the occurring objects to the representation theory of PSL(2,R), we see that the correspon-
dence is actually induced by vector-valued Poisson transforms (Lemma 4.1.7). Section 4.2
is concerned with the proof of the correspondence, which uses Fourier decompositions to
describe the spherical principal series. In the last two sections we discuss how the proof
may be extended to more general situations. To this end, we first address the question
of which Poisson transforms might be chosen in general, or rather, what distinguishes
the occurring ones from other choices. As the raising and lowering operators used in the
proof are restricted to the case of surfaces, we need some replacement for them as well.
In the last section we see that generalized gradients provide such a replacement.

4.1. The quantum-classical correspondence

For g ∈ SL(2,R) we denote the equivalence class of g in G = SL(2,R)/{±1} by [g].

Definition 4.1.1. Let M = Γ\H2 for some co-compact discrete torsion free subgroup
Γ ≤ G be a quotient of the upper half plane so that M is a smooth oriented compact
hyperbolic surface. Let KΓ := (T ∗M)1,0 denote the canonical line bundle on M and
K−1

Γ := (T ∗M)0,1 be its dual, where the complex structure on M is chosen such that
the canonical projection πΓ : H2 → M is holomorphic. For each n ∈ N we denote the
tensor powers K⊗nΓ := KΓ ⊗ . . .⊗KΓ resp. K−1

Γ
⊗n := K−1

Γ ⊗ . . .⊗K
−1
Γ by KnΓ resp. K−nΓ .

For v ∈ K±1
Γ we denote the n-fold tensor product v ⊗ . . . ⊗ v ∈ K±nΓ by v⊗n. For each

m ∈ Z \ {0} we consider the map

π∗m : C∞c (M,KmΓ )→ C∞c (SM), π∗mu(z, v) := u(z)(v⊗m)

and its dual operator πm∗ : D′(SM)→ D′(M,KmΓ ) as in [GHW18]. Moreover, we consider
the Dolbeault operators ∂ and ∂.

We can now state the quantum-classical correspondence for the exceptional parameters
in the case of surfaces.
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4. An example: The case of surfaces

Theorem 4.1.2 (Quantum-classical correspondence for exceptional spectral parameters,
see [GHW18, Theorem 3.3]). Let Γ ≤ G be a co-compact torsion free discrete subgroup,
M := Γ\H2 be a smooth oriented compact hyperbolic surface and SM be its unit tangent
bundle. For each n ∈ N there is an isomorphism

πn∗ ⊕ π−n∗ : Res0
X(−n) ∼−→ Hn(M)⊕H−n(M),

where Hn(M) and H−n(M) are given by

Hn(M) := {u ∈ C∞(M,Kn) | ∂u = 0}, H−n(M) := {u ∈ C∞(M,K−n) | ∂u = 0}.

In order to give a version of Theorem 4.1.2 that fits better with representation theory,
we first give some introductory definitions of the structure theory of G.

Definition 4.1.3. Let K := PSO(2) ≤ G be maximal compact and A resp. N denote
the projections of the diagonal resp. the unipotent upper triangular matrices in SL(2,R)
to G so that G = KAN is an Iwasawa decomposition of G. Note that M is trivial in
this case. We abbreviate

kϕ :=
[(

cosϕ sinϕ
− sinϕ cosϕ

)]
∈ K, ϕ ∈ [0, π[.

For each m ∈ Z we obtain a representation of K on Cm ∼= C given by Lm(kϕ) := e2mϕi.
We have K̂ = {Lm | m ∈ Z} and let G×K Cm, m ∈ Z, be the associated line bundles.
As on M, we denote the canonical line bundle on H2 by K := (T ∗H2)1,0, its dual by
K−1 := (T ∗H2)1,0 and their respective tensor products for n ∈ N by Kn resp. K−n. For
g ∈ G we define the pullback of the differential form dz by

g∗(dz)
∣∣
z=z0(X) := dz

∣∣
z=g.z0(g′(z0)X)

for every X ∈ Tz0H2 and every z0 ∈ H2, where G acts on H2 by Möbius transformations.
Furthermore, we use the natural projections

π1 : G×K Cm → G/K, [g, λ] 7→ gK, π2 : Kn → H2, (T ∗z0H
2)⊗n 3 ⊗nj=1ωz0,j 7→ z0

and trivialize G×K Cm resp. Kn via

π−1
1 ({gK}) ∼= C, [g, λ] = [n(g)a(g), λ′] 7→ λ′

π−1
2 ({gK.i}) ∼= C, λ

(
(n(g)a(g))−1∗(dz)

∣∣∣
z=g.i

)⊗n
7→ λ

for g ∈ G with Iwasawa decomposition g = n(g)a(g)k(g).

There is the following close connection between the bundles Kn and G×K C−n (and
analogously between K−n and G ×K Cn). Note that G ×K C0 ∼= G/K is the trivial
bundle.
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4.1. The quantum-classical correspondence

Lemma 4.1.4. For every n ∈ N there is an isomorphism of homogeneous line bundles

G×K C−n ∼= Kn

given by (f1, f2) where

f1 : G×K C−n → Kn, [g, λ] 7→ λ(g.dz
∣∣
z=i)

⊗n := λ

(
g−1∗(dz)

∣∣∣
z=g.i

)⊗n
f2 : G/K → H2, gK 7→ g.i.

Proof. First note that f1 is well-defined: For g ∈ G, kϕ ∈ K and λ ∈ C it holds that

L−n(k−1
ϕ )λ

(
(gkϕ)−1∗(dz)

∣∣∣
z=g.i

)⊗n
= e2nϕiλ

(
dz
∣∣
z=i(k

−1
ϕ g−1)′(g.i)

)⊗n
= e2nϕiλ

(
dz
∣∣
z=i(k

−1
ϕ )′(i)(g−1)′(g.i)

)⊗n
= e2nϕik′−ϕ(i)nλ

(
dz
∣∣
z=i(g

−1)′(g.i)
)⊗n

= λ
(
dz
∣∣
z=i(g

−1)′(g.i)
)⊗n

= λ

(
g−1∗(dz)

∣∣∣
z=g.i

)⊗n
,

where the fourth equality follows from h′(i) = 1
(ci+d)2 for h =

(
a b
c d

)
. Moreover, we

have a commuting diagram
G×K C−n

f1
//

π1
��

Kn

π2

��

G/K
f2

// H2

since π2(f1([g, λ])) = g.i = f2(gK) = f2(π1([g, λ])). Furthermore, for every gK ∈ G/K
the mapping

π−1
1 ({gK})→ π−1

2 ({f2(gK)}), [g, λ] 7→ f1([g, λ]) = λ

(
g−1∗(dz)

∣∣∣
z=g.i

)⊗n
is the identity in the trivializations from Definition 4.1.1 and thus clearly linear. Finally
note that f1 maps g0[g, λ] = [g0g, λ] to λ(g0g.dz

∣∣
z=i)

⊗n = g0.f1([g, λ]) (here G acts by
pulling back by the inverse of g0) and f2 is G-equivariant since the Möbius transformations
define a group action.

Having identified the line bundles, we are now in a position to describe the analogs of
the maps π∗m and πm∗ for the bundles G×K C−m. We first lift the definitions to H2.

Definition 4.1.5. For every m ∈ Z \ {0} let

π̃∗m : C∞c (H2,Km)→ C∞c (SH2), π̃∗mu(z, v) := u(z)(v⊗m)

and π̃m∗ : D′(SH2)→ D′(H2,Km) be its dual operator.
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4. An example: The case of surfaces

We will now use Lemma 4.1.4 and the fact that SH2 ∼= G to understand π̃∗n as a
mapping from C∞c (G/K,G×K C−n) to C∞c (G) (here we again concentrate on the case
of n ∈ N to avoid cluttered notation; the case of −n can be treated in an analogous
manner). At first we identify SH2 with G via

G→ SH2, g 7→ (g.i, g′(i) i),

where i = ∂z ∈ TiH2 is the element with dz
∣∣
z=i(∂z) = 1. With this identification π̃∗n

becomes

π̃∗n : C∞c (H2,Kn)→ C∞c (G), π∗nu(g) = u(g.i)
(
(g′(i) i)⊗n

)
.

Now we use Lemma 4.1.4 to obtain

π̃∗n : C∞c (G/K,G×K C−n)→ C∞c (H2,Kn)→ C∞c (G),
f 7→ f1 ◦ f ◦ f−1

2 7→ (g 7→ (f1 ◦ f ◦ f−1
2 )(g.i)(g′(i) i)⊗n).

Fixing g ∈ G and writing f(gK) = [g, λ] we note that

(π̃∗nf)(g) = (f1 ◦ f ◦ f−1
2 )(g.i)(g′(i) i)⊗n

= (f1 ◦ f)(gK)(g′(i) i)⊗n

= f1([g, λ])(g′(i) i)⊗n

= λ

(
g−1∗(dz)

∣∣∣
z=g.i

)⊗n
(g′(i) i)⊗n

= λ
(
dz
∣∣
z=i(g

−1)′(g.i)g′(i) i
)n

= λ
(
dz
∣∣
z=ie

′(i) i
)n

= λ.

For every kϕ ∈ K we also obtain

(π̃∗nf)(gkϕ) = L−n(k−1
ϕ )λ = L−n(k−1

ϕ )(π̃∗nf)(g)

since [g, L−n(kϕ)δ] = [gkϕ, δ] = f(gkϕK) = f(gK) = [g, λ] if f(gK) = [gkϕ, δ]. This
shows that π̃∗n is just the natural mapping between different realizations of sections of
the associated vector bundle G×K C−n: Indeed, note that we can identify the sections
C∞c (G/K,G×K C−n) with

C∞c (G×K C−n) := {f ∈ C∞c (G) | f(gk) = L−n(k)−1f(g)}

via the trivialization of G×K C−n from Definition 4.1.1, i.e. f ∈ C∞c (G/K,G×K C−n)
gets mapped to Φ(f) ∈ C∞c (G×K C−n) with

Φ(f)(na) := λ for n ∈ N, a ∈ A where f(naK) = [na, λ].
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4.1. The quantum-classical correspondence

In this realization we have

π̃∗n : C∞(c)(G×K C−n)→ C∞(c)(G), f 7→ f.

Let us now describe the pullback π̃n∗ : D′(G) → D′(G×K C−n) = (C∞c (G×K Cn))′ of
π̃∗−n. We embed C∞(G×K Cn) into D′(G×K Cn) by

ιn : C∞(G×K Cn) ↪→ D′(G×K Cn), ιn(f)(φ) :=
∫
G/K

f(gK)φ(gK) dgK,

where we choose the invariant measure on G/K to be compatible with the fixed Haar
measures on K and G.

Lemma 4.1.6. For f ∈ C∞(G) we have π̃−n∗(f) ∈ C∞(G×K Cn) ⊂ D′(G×K Cn) and

π̃−n∗f(g) =
∫
K
f(gk)L−n(k)−1 dk =

∫
K
f(gk)Ln(k) dk

for all g ∈ G.

Proof. Let f ∈ C∞(G) and φ ∈ C∞c (G×K C−n). Then∫
G/K

π̃−n∗f · φ dgK = (π̃−n∗f)(φ) = f(π̃∗n(φ)) =
∫
G
f · π̃∗n(φ) dg

=
∫
G/K

∫
K
f(gk)φ(gk) dk dgK

=
∫
G/K

∫
K
f(gk)L−n(k)−1 dk φ(g) dgK.

Thus, π̃−n∗f is represented by the smooth function g 7→
∫
K f(gk)L−n(k)−1 dk.

We are now able to see that the quantum-classical correspondence can be described by
vector-valued Poisson transforms.

Lemma 4.1.7. Let µ ∈ a∗C and recall the definitions from Corollary 3.3.6. Then

PLnµ = F (T )(1)(π̃−n∗ ◦ Qµ−ρ,+) and PLn,opp
µ ◦ Φ = F (T )(1)(π̃−n∗ ◦ Qµ−ρ,−)

and in particular

PLnµ = c−1(PLn,opp
µ ◦ Φ) = c−1F (T )(1)(π̃−n∗ ◦ Qµ−ρ,−)

with c = Ln(w−) = (−1)n.

Proof. By a density argument we restrict our attention to smooth functions. In this
case the first two equations of the Lemma are immediate from the integral description
(3.3) of the Poisson transform resp. its analog for the opposite Poisson transform (recall
from Lemma 2.2.4, ii)c that Qµ−ρ,−(f) is the unique extension of Φ ◦ f to a function in
Hopp
µ ). The last equation follows from Corollary 3.3.6 and, choosing φLn = 1, we infer

c = Ln(w−) = (−1)n from the definition of Ln.
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4. An example: The case of surfaces

Remark 4.1.8. Lemma 4.1.7 generalizes the description of the scalar Poisson transform
as given in [GHW18, Lemma 2.1] (which was later generalized to general rank one groups
in [GHW21, Proposition 4.4]) to the case of vector-valued Poisson transforms respectively
nontrivial K-types.
We conclude this section by comparing different normalizations of scalar Poisson

transforms as given in [GHW18] and [GHW21].
Remark 4.1.9 (Comparison of different Poisson transforms and exceptional points).
(i) For the comparison it suffices to investigate the different versions of the Schwartz
kernel of the Poisson transform. For this purpose we view G as PSU(1, 1) and H2 as the
Poincaré disk. In [GHW18, Lemma 2.1], the Poisson transform Pλ : D′(S1)→ C∞(H2)
for λ ∈ C is defined by

Pλ(ω)(x) := 〈ω, P 1+λ(x, •)〉S1 :=
∫
S1
ω(ν)P 1+λ(x, ν) dµS1(ν)

where µS1 is the standard measure on S1 and the kernel P 1+λ is given by

P 1+λ(x, ν) :=
(

1− |x|2
|x− ν|2

)1+λ

, x ∈ H2, ν ∈ S1. (4.1)

In [GHW21, Definition 4.1], the kernel pµ for µ ∈ a∗ of the Poisson transform is defined
as in Definition 3.3.1 (choosing τ as the trivial K-representation)

pµ(gK, kM) := aI(g−1k)−(µ+ρ) ∈ C∞(G/K ×K/M).
In our case H is given by diag(1

2 ,−
1
2) ∈ a0. We identify a∗ ∼= C, µ = µ(H)α 7→ µ(H)

where ρ gets mapped to 1
2 . We have (see e.g. [JW77, p. 148])

aI(g−1k)−2ρ =
(

1− |g.0|2
|1− 〈g.0, k.1〉|2

)2ρ(H)

= 1− |g.0|2

|1− g.0 · k.1|2
= 1− |g.0|2
|g.0− k.1|2 . (4.2)

Moreover, note that

pµ(gK, kM) = e−(µ+ρ)(H(g−1k)) = e−(µ(H)+ 1
2 )α(H(g−1k)) = (e−2ρ(H(g−1k)))µ(H)+ 1

2 .

Therefore, Equation (4.2) implies

pµ(gK, kM) =
(

1− |g.0|2
|k.1− g.0|2

)µ(H)+ 1
2

.

Comparing this with (4.1) shows that for each g ∈ PSU(1, 1) and k ∈ K

pµ(gK, kM) = P 1+(µ(H)− 1
2 )(g.0, k.1).

(ii) By Remark 3.2.5, the exceptional parameters for G = PSL(2,R) are given by

Ex =
(
−mα

2 − 1− 2N0

)
α ∪

(
−mα

2 −m2α − 2N0

)
α

=
(
−1

2 − 1− 2N0

)
α ∪

(
−1

2 − 2N0

)
α =

(
−1

2 − N0

)
α

so that µ ∈ Ex⇔ µ(H) ∈ −1
2 − N0 resp. λ = µ(H)− 1

2 ∈ −N.
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4.2. Proof of the quantum-classical correspondence

4.2. Proof of the quantum-classical correspondence
In this section we outline the proof of the quantum-classical correspondence from [GHW18]
(Theorem 4.1.2). We will already use our reformulations of the objects used in the
correspondence and see how generalized gradients fit into the overall picture. We first
note that for each fixed f ∈ C∞(G) and each g ∈ G the function

ϕ 7→ f(gkϕ)

is π-periodic and the formula for π̃n∗f(g) from Lemma 4.1.6 corresponds to the n-th
Fourier coefficient of that function (see also Lemma 4.1.7); viewing G as SH2, these
Fourier coefficients are given by the Fourier expansion in the fibers of SH2. Evaluating
at ϕ = 0, we can thus write

f =
∑
k∈Z

fk with fk := π̃∗k(π̃k∗(f)) ∈ π̃∗k(C∞(G×K C−k)), (4.3)

where the series converges at least pointwise. By [GHW18, §2.4] the series and its
derivatives even converge uniformly on compact sets and one has an analogous decom-
position for distributions (converging in the distribution sense; note that the dual of
π̃−k∗ : C∞c (G)→ C∞c (G×K Ck) extends π̃∗k to D′(G×K C−k)). Defining the infinitesimal
rotation matrix

V :=
(

0 1
2

−1
2 0

)
∈ k (4.4)

we note that V fk = ikfk where V acts from the right. We further define

η± = 1
2(H ± iB) = 1

4

(
1 ±i
±i −1

)
where B := 1

2

(
0 1
1 0

)
. (4.5)

These operators are called raising and lowering operators as they increase resp. decrease
the eigenvalues of V by ±i since they fulfill the commutation relation [V, η±] = ±iη± and
thus, in the universal enveloping algebra of g,

V η± = η±V + [V, η±] = η±V ± iη±.

In particular, they induce operators

η± : C∞(G×K C−k)→ C∞(G×K C−(k±1)), (4.6)

where η± acts by the derived right regular representation. The idea now is to characterize
the resonant states resp. the principal series by relations between the Fourier coefficients
fk using the raising and lowering operators. More precisely, we have the following

Lemma 4.2.1 (see [GHW18, Lemma 2.2]). Let µ ∈ a∗ and f ∈ D′(G). Then f is an
element of R(µ) = H−∞µ+ρ (see Equation (2.4)) if and only if

2η±f` = (µ(H) + 1± `)f`±1

for every ` ∈ Z.
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4. An example: The case of surfaces

Proof. For f ∈ R(µ) we have Hf = µ(H)f and U+f = 0 with U+ :=
(

0 1
0 0

)
. Since

H = η+ + η− this yields

0 = (η+ + η− − µ(H))f ⇒ ∀` ∈ Z : η+f`−1 + η−f`+1 − µ(H)f` = 0 (4.7)

by applying π̃∗` ◦ π̃`∗ to both sides and using that π̃`∗ ◦ π̃∗k = 0 for ` 6= k and π̃`∗ ◦ π̃∗` is
the identity. Similarly U+ = −i(η+ − η−) + V and V f` = i`f` imply

0 = (−i(η+ − η−) + V )f ⇒ ∀` ∈ Z : 0 = −i(η+f`−1 − η−f`+1) + i`f`. (4.8)

Combining (4.7) and (4.8) finishes the proof.

Remark 4.2.2. Note that [GHW18, Lemma 2.2] uses the opposite principal series. We
get the original result of that lemma as follows. By Lemma 4.1.7, Lemma 4.2.1 shows
that

2η±PL−`µ+ρ = (µ(H) + 1± `)PL−(`±1)
µ+ρ

for each ` ∈ Z if we choose T such that F (T )(1) = 1. Thus, by the same lemma,

(−1)`2η±(π̃`∗ ◦ Qµ,−) = (−1)`±1(µ(H) + 1± `)(π̃`±1∗ ◦ Qµ,−)

resp. 2η±f` = −(µ(H) + 1± `)f`±1 for each f ∈ H−∞,opp
µ+ρ = R−(µ). Therefore,

2η±f`∓1 = −(µ(H) + 1± (`∓ 1))f`∓1±1 = (−µ(H)∓ `)f`

as in [GHW18, Lemma 2.2]. Alternatively, one can also directly use the fact that the
right action of w− on K = S1 is given by −1 and consider the Cm’s as spaces of functions
on S1.

The main idea of the proof of the quantum classical correspondence is as follows:

i) Fix a finite set of K-types such that the direct sum of the corresponding ”Fourier
component maps” is injective on Res0

X(−n).

ii) Determine the image of the direct sum:

a) Use the Fourier characterization from Lemma 4.2.1 to find necessary conditions
for the image and to reconstruct all the other Fourier coefficients from the
fixed ones.

b) Define f as the formal sum of the Fourier coefficients and show that it gives
rise to an element of Res0

X(−n).

Let us describe the proof in some more detail.
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4.2. Proof of the quantum-classical correspondence

p
0 n−n

η−η+

Figure 4.1.: Fourier components of f ∈ ΓH−∞,opp
µ . White dots represent Fourier compo-

nents that are zero.

Idea of the proof of Theorem 4.1.2. Let µ ∈ a∗ with

µ(H) = −n+ ρ(H) = −n+ 1
2 ∈ −N + 1

2

be an exceptional parameter and f = Qµ−ρ,−(ψ) ∈ ΓR−(µ − ρ) = ΓH−∞,opp
µ for some

ψ ∈ D′(K/M). Let all Poisson transforms be defined by normalizing T by F (T )(1) = 1.
Then Lemma 4.1.7 implies

π̃0∗(f) = π̃0∗(Qµ−ρ,−(ψ)) = PL0
µ (ψ) ∈ ΓEµ,∞(G/K).

Thus, π̃0∗(f) descends to an eigenfunction of ∆M with eigenvalue

ρ(H)2 − µ(H)2 = −n(n− 1)

by Equation (2.6). By the positivity of the Laplacian we get π̃0∗(f) = 0 and thus f0 = 0
(for n = 1 one has to use a slightly modified argument, see [GHW18, p. 20]). In particular,
the image of the scalar Poisson transform restricted to the Γ-invariant elements is zero in
all exceptional cases. By Remark 4.2.2 we have

2η+fk−1 = (n− k)fk and 2η−fk+1 = (n+ k)fk (4.9)

for each k ∈ Z and thus fk = 0 for |k| < n. Therefore, η+f−n = 0 and η−fn = 0. This
implies that πn∗(f) ∈ Hn(M) and π−n∗(f) ∈ H−n(M) if we consider f as an element of
Res0

X(−n). Thus, the image of πn∗ ⊕ π−n∗ is really contained in the claimed space. For
the injectivity let fn and f−n be zero. Then (4.9) implies that f has to be zero.
For the surjectivity let u ∈ Hn(M) and denote its Γ-invariant lift on C∞(G×K C−n)

by ũ. Then we define fn := π̃∗n(ũ), fk = 0 for k < n and (see (4.9))

fk := 2
n− k

η+fk−1

for all k > n. By the same calculation as in the proof of [GHW18, Theorem 3.3] we see
that

f :=
∑
k∈Z

fk

defines a distribution. Moreover, it fulfills both relations from Equation (4.9) (also at
k = n) and is an element of ΓH−∞,opp

µ+ρ = ΓR−(µ) by Remark 4.2.2. Thus, it descends to
an element of Res0

X(−n). The case u ∈ H−n(M) is analogous.
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4.3. Vector-valued Poisson transforms
In this section we determine the kernel of the vector-valued Poisson transform PLnµ .
As these Poisson transforms are given by the ”Fourier component maps” π−n∗ on the
principal series, discussing the injectivity will shed some light on which K-types we
could choose for the quantum-classical correspondence. In particular, we will see that in
contrast to the generic parameters there does not exist an injective Poisson transform
in the exceptional cases for G = PSL(2,R) (see Lemma 4.3.1 for (µ − ρ)(H) ∈ −N).
This shows that we have to take the direct sum of two Poisson transforms as we did
in Theorem 4.1.2. However, the injectivity of the used sum has nothing to do with the
Γ-invariant elements (Lemma 4.3.3). Later on, in Proposition 5.1.3 and Theorem 5.1.6,
we will see that the non-existence of injective Poisson transforms in the exceptional cases
is rather special to the case G = PSL(2,R).
By the definition of PLnµ (Definition 3.3.1) we can study its kernel by determining

invariant subspaces of the principal series representation Hµ. Let us first identify SL(2,R)
with SU(1, 1) using the Cayley transform

Ξ: SL(2,R) 3 g 7→ CgC−1 ∈ SU(1, 1), C :=
(

1 −i
1 i

)
.

Now realizing (πcpt
µ , Hcpt

µ ) on L2(S1) ∼= L2(K/M) by identifying

K/M ∼= S1, kM 7→ Ξ(k).1 (4.10)

via Möbius transformations on the closed Poincaré disk H2 = B1(0) gives

(πcpt
µ (g)f)(z) = P (ρ−µ)(H)(g.0, z)f(g−1.z), f ∈ L2(S1), z ∈ S1

with the standard Poisson kernel P (see Remark 4.1.9). The images of the raising and
lowering operators from Equation (4.5) in su(1, 1) (complexified) are given by

η+ :=
(

0 1
2

0 0

)
∈ su(1, 1), η− :=

(
0 0
1
2 0

)
∈ su(1, 1).

Their action on functions ep : S1 → C, z 7→ zp (p ∈ Z) is

2πcpt
µ (η+)ep = ((ρ− µ)(H)− p)ep−1

2πcpt
µ (η−)ep = ((ρ− µ)(H) + p)ep+1

πcpt
µ (H)ep = πcpt

µ (η+ + η−)ep = (ρ− µ)(H)− p
2 ep−1 + (ρ− µ)(H) + p

2 ep+1. (4.11)

By the Cartan decomposition g = k⊕ p with p = ∪k∈K Ad(k)a we have that the a-action
determines the g-action on each K-type. Since the K-finite vectors of L2(S1) are given
by (the algebraic direct sum) ⊕p∈Z ep and a = RH, the g-action is completely given by
formula (4.11). Realizing the vector-valued Poisson transforms on D′(S1) we can now
determine their kernels.
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4.3. Vector-valued Poisson transforms

Lemma 4.3.1 (Kernel of vector-valued Poisson transforms). Let Lm ∈ K̂ (m ∈ Z) be
arbitrary (see Definition 4.1.3). Identifying K = K/M ∼= S1 via (4.10), Lm corresponds
to the representation em of S1. Then:

(i) The Poisson transform

P emµ : D′(S1) ∼= H−∞µ → C∞(G×K Cm)

is injective if and only if (ρ− µ)(H) 6∈ −|m|+ N = {−|m|+ 1,−|m|+ 2, . . .}.

(ii) If (ρ− µ)(H) ∈ −|m|+ N and l ∈ Z we have

el ∈ kerP e|m|µ ⇔
{
l ≤ (µ− ρ)(H) : −|m|+ 1 ≤ (ρ− µ)(H) ≤ |m|
|l| ≥ (ρ− µ)(H) : |m| < (ρ− µ)(H)

and

el ∈ kerP e−|m|µ ⇔
{
l ≥ (ρ− µ)(H) : −|m|+ 1 ≤ (ρ− µ)(H) ≤ |m|
|l| ≥ (ρ− µ)(H) : |m| < (ρ− µ)(H).

Proof. Let us abbreviate equation (4.11) by

πµ(H)ep = aµ(p)ep+1 + bµ(p)ep−1.

If (ρ− µ)(H) 6∈ Z we have aµ(p) 6= 0 6= bµ(p) for every p ∈ Z. Thus, iteratively applying
πµ(H) to el (for some arbitrary l ∈ Z) will eventually have a non-zero em-part, i.e.
prem(πµ(H)qel) 6= 0 for some q ∈ N. This implies that P emµ is injective if (ρ− µ)(H) 6∈ Z.
Now let (ρ− µ)(H) = −|m| − k ∈ −|m| − N0. We have to show that P emµ is injective.

Note that aµ(p) = 0 ⇔ p = |m| + k and bµ(p) = 0 ⇔ p = −(|m| + k). This gives the
K-type picture described in Figure 4.2a

p
|m|−|m| |m|+ k−|m| − k 0

(a) (ρ− µ)(H) = −|m| − k, k ∈ N0

p
|m| − k−|m|+ k |m|−|m| 0

(b) (ρ− µ)(H) = −|m|+ k, 1 ≤ k ≤ |m|

Figure 4.2.: K-type pictures with kernel of P e|m|µ (dotted) and arrows indicating the
g-action

and shows that iteratively applying πµ(H) to el (for some arbitrary l ∈ Z) will
eventually have a non-zero em-part, i.e. P emµ is injective.
We are left to prove that P emµ is not injective if (ρ− µ)(H) = −|m|+ k ∈ −|m|+ N

and determine the kernel in this case. Note that

aµ(p) = 0⇔ p = |m| − k and bµ(p) = 0⇔ p = −(|m| − k).
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4. An example: The case of surfaces

p
−|m|+ k|m| − k |m|−|m| 0

(a) |m| < k ≤ 2|m|

p
|m|−|m| −|m|+ k|m| − k 0

(b) k > 2|m|

Figure 4.3.: K-type pictures for (ρ− µ)(H) = −|m|+ k with kernel of P e|m|µ

Let us first consider the case 1 ≤ k ≤ |m|:
Then the situation is described in Figure 4.2b. Thus, every el with l ≤ |m| − k is in the
kernel of P e|m|µ and these are the only ones. Moreover, el is in the kernel of P e−|m|µ if and
only if l ≥ −|m|+ k.
Let us finally consider the case k > |m|:
We distinguish between the two cases k ≤ 2|m| and k > 2|m|, see Figure 4.3. In the

first case, we infer that el ∈ kerP e|m|µ if and only if l ≤ |m| − k and in the second case we
have el ∈ kerP e|m|µ if and only if |l| ≥ −|m|+ k. Similarly, we have el ∈ kerP e−|m|µ if and
only if l ≥ −|m|+k and in the second case el ∈ kerP e−|m|µ if and only if |l| ≥ −|m|+k.

Example 4.3.2. Applying Lemma 4.3.1 tom = 0 shows that the scalar Poisson transform
Pµ is injective if and only if (ρ−µ)(H) 6∈ N⇔ µ(H) 6∈ −1

2 −N0 (as mentioned in Remark
4.1.9(ii)). The kernel of Pµ agrees with the kernel given in [GHW18, Equation (2.19)].

Lemma 4.3.1 in particular shows that there do not exist injective vector-valued Poisson
transforms in the exceptional cases. To obtain an injective map, we thus have to consider
direct sums of them. The following lemma distinguishes the sum used in Theorem 4.1.2
from other ones and suggests that this choice is more related to the structure of the
principal series than to the Γ-invariant elements.

Lemma 4.3.3. For every n ∈ N and µ ∈ a∗ with µ(H) = −n+ 1
2 the mapping

PLnµ ⊕ PL−nµ : Hcpt,−∞
µ

∼= D′(S1)→ C∞(G×K Cn)⊕ C∞(G×K C−n)

is injective. Moreover, PLmµ ⊕ PL−mµ is not injective for each m ∈ N0 with m < n.

Proof. We first consider the case of m < n. Since (ρ− µ)(H) = n, Lemma 4.3.1 implies

e` ∈ kerPLmµ ⇔ |`| ≥ n⇔ e` ∈ kerPL−mµ

so that in particular the direct sum is not injective. However, in the case of PLnµ ⊕ PL−nµ ,
Lemma 4.3.1 implies that el ∈ C∞(S1) is in the kernel of PLnµ resp. PL−nµ if and only if
l ≤ −n resp. l ≥ n. This implies the injectivity since the el are the K-finite vectors in
Hcpt,−∞
µ

∼= D′(S1).

4.4. The role of generalized gradients
This section is devoted to the question of which operators could play the role of the raising
and lowering operators in the general case. More precisely, we discuss how generalized
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4.4. The role of generalized gradients

gradients come into play and how they can be used to give another proof of the Fourier
relations from Lemma 4.2.1 which suggests a generalization beyond the case of PSL(2,R).
We define the Poisson transform PL`,cpt

µ (see Definition 3.3.1) by t ∈ HomM (C,C`)
with t(1) := 1` where 1` denotes the 1 in C`, i.e.

PL`,cpt
µ : D′(K/M)→ C∞(G×K C`),

PL`,cpt
µ (φ)(g) :=

∫
K
aI(g−1k)−(µ+ρ)L`(kI(g−1k))t(φ(k)) dk.

By Equation 3.5 we have PL`,cpt
µ = PL`µ ◦ Qµ−ρ with

PL`µ : H−∞µ → C∞(G×K C`), PL`µ (f)(g) := F−1(t)(πµ(g−1)f).

Lemma 4.1.7 implies

(Qµ−ρ(φ))` = π̃∗` (π̃`∗(Qµ−ρ(φ))) = π̃∗` (P
L−`,cpt
µ (φ)) = P

L−`
µ (Qµ−ρ(φ))

and thus f` = P
L−`
µ (f) for each f ∈ H−∞µ .

Note that p decomposes as a K-representation into p = p+ ⊕ p− where

p+ :=
{(

z iz
iz −z

)
: z ∈ C

}
and p− :=

{(
z −iz
−iz −z

)
: z ∈ C

}
.

Thus, for every [(L`,C`)] ∈ K̂,

C` ⊗ p∗ = (C` ⊗ p∗+)⊕ (C` ⊗ p∗−)

with associated projections T± given by the restriction to p± if C` ⊗ p∗ is viewed as
Hom(p,C`). This gives rise to two generalized gradients d± := T± ◦ ∇, i.e.

d± : C∞(G×K C`)→ C∞(G×K (C` ⊗ p∗+)) ∼= C∞(G×K Hom(p±,C`))

f 7→
[
g 7→ d

dt

∣∣∣∣
t=0

f(g exp t •)
]
.

Since p± = Cη±, we may write the operators η± from Equation (4.6) more complicated
as the composition of the evaluation map at η± with d±. We claim that

evη± : Hom(p±,C−`)→ C−(`±1), f 7→ f(η±)

is a K-equivariant isomorphism. Note first that the K-module structure on Hom(p±,C`)
induced by the structure on C` ⊗ p∗ is given by

(k.f)(X) = τ(k)(Ad∗(k)f)(X).

The infinitesimal rotation matrix V (see Equation (4.4)) acts on C` by the scalar i`. For
f ∈ Hom(p±,C−`) this gives

(V.f)(η±) = d

dt

∣∣∣∣
t=0

L−`(exp tV )f(Ad(exp(−tV ))η±)

= d

dt

∣∣∣∣
t=0

e−`tif(e∓tiη±) = −(`± 1)if(η±)
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4. An example: The case of surfaces

and the claim follows. This proves evη± ◦ T± ∈ HomK(C` ⊗ p∗,C`∓1) and in particular
that the η± are (up to scalar multiples all) generalized gradients in the case of PSL(2,R).
We are now ready to give an alternative proof of the Fourier relations of principal

series representations from Lemma 4.2.1 using generalized gradients.

Lemma 4.4.1. Let µ ∈ a∗ and f ∈ H−∞µ+ρ. Then

2η±f` = (µ(H) + 1± `)f`±1.

Proof. By Corollary 3.3.5 there exist constants c±(`) ∈ C such that

η± ◦ P
L−`
µ+ρ = c±(`) · PL−(`±1)

µ+ρ .

Especially we have η±f` = c±(`) · f`±1 for each f ∈ H−∞µ+ρ. In order to compute the
scalars, let δeM denote the delta distribution at eM on K/M . Then we have

PL`,cpt
µ+ρ (δeM )(g) = aI(g−1)−(µ+2ρ)L`(kI(g−1))1`

and thus

(η± ◦ PL−`,cpt
µ+ρ )(δeM )(e) = c±(`) · PL−(`±1),cpt

µ+ρ (δeM )(e) = c±(`) · 1−(`±1).

Let us compute the differential (∇ ◦ PL−`,cpt
µ+ρ )(δeM )(e) ∈ C−` ⊗ p∗ ∼= Hom(p,C−`). A

basis of p is given by {H,B} with B = 1
2

(
0 1
1 0

)
. We have

(∇ ◦ PL−`,cpt
µ+ρ )(δeM )(e)(H) = d

dt

∣∣∣∣
t=0

P
L−`,cpt
µ+ρ (δeM )(exp tH)

= d

dt

∣∣∣∣
t=0

aI(exp−tH)−(µ+2ρ)1−`

= d

dt

∣∣∣∣
t=0

et(µ+2ρ)(H)1−` = (µ+ 2ρ)(H)1−`.

Moreover, B = U+ − V ∈ n⊕ k implies

(∇ ◦ PL−`,cpt
µ+ρ )(δeM )(e)(B) = −(∇ ◦ PL−`,cpt

µ+ρ (δeM ))(e)(V )

= − d

dt

∣∣∣∣
t=0

L−`(exp−tV )1−` = −i`1−`.

Now we can use η± = 1
2(H ± iB) to compute evη±((d± ◦ PL−`,cpt

µ+ρ )(δeM )(e)):

(η± ◦ PL−`,cpt
µ+ρ )(δeM )(e) = 1

2((µ+ 2ρ)(H)± i(−i`))1−(`±1) = µ(H) + 1± `
2 1−(`±1).
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4.4. The role of generalized gradients

Generic: Res0
X((µ− ρ)(H)) Eig∆M(µ)

ΓH−∞µ

Theorem 3.2.4

Pµ (Theorem 3.2.2)Proposition 2.2.3

Exceptional: Res0
X(−n) Hn(M)⊕H−n(M)

ΓH−∞µn

Theorem 4.1.2

P
L−n
µn ⊕ PLnµn (Lemma 4.1.7)Proposition 2.2.3

Figure 4.4.: Comparison of the generic with the exceptional case (µn(H) := 1
2−n, n ∈ N)

Figure 4.4 summarizes the case of PSL(2,R) schematically. In order to generalize the
proof of the exceptional quantum-classical correspondence to other groups we have to
address several questions. We give a short list of necessary steps for this approach.

i) Determine the kernels of vector-valued Poisson transforms and find injective direct
sums of them.

ii) Prove an analog of the Fourier expansion in the fibers from Equation (4.3).

iii) Characterize the principal series by relations between the Fourier components
(generalizing Lemma 4.2.1).

iv) Determine the image of the injective (sums of) Poisson transforms by using the
Fourier relations.

Another more representation theoretic approach arises from the fact that the spaces
H±n(M) are given by the Γ-invariant elements of (anti-)holomorphic discrete series
representations (see e.g. [Kna86, Chapter VI]). Since the resonant states are also given
by the Γ-invariant elements of the principal series one might try the following approach
to establish a quantum-classical correspondence:

i) Why do holomorphic discrete series occur and how are they connected to the
principal series?

ii) Do holomorphic discrete series occur in general or, if not, are there any substitutes
for them?

iii) Find geometric realizations in sections of vector bundles of the representations from
the previous step in order to describe the images of the (direct sums of) Poisson
transforms.

In this thesis we will use a combination of these two approaches.
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5. Mapping properties of vector-valued
Poisson transforms

In the case of surfaces, it turned out that a quantum-classical correspondence can be
established by an injective direct sum of vector-valued Poisson transforms. In this chapter
we prove the analogous result in the general rank one case (Proposition 5.1.3). In higher
rank, one has to take care of higher multiplicities of K-representations. Nevertheless,
choosing appropriate Poisson transforms for each copy of the K-representation in the
principal series, the same proof should also work in this case. However, to determine the
direct sum explicitly (Theorem 5.1.6), we need to know the K-types of the irreducible
constituents of the principal series representations. Besides injectivity we investigate
necessary conditions for the images of vector-valued Poisson transforms. The main result
in this context is Proposition 5.3.2, which uses generalized gradients to connect different
Poisson transforms.

5.1. Injectivity of vector-valued Poisson transforms
In this section we investigate specific vector-valued Poisson transforms if G is of rank
one. We will see that if we pick a minimal K-type for each irreducible subspace of
the representation, the direct sum of the associated Poisson transforms is injective. By
our rank one assumption each spherical principal series representation Hµ decomposes
multiplicity-freely as a K-representation (see Proposition 2.4.3). Therefore, we have the
following

Lemma 5.1.1. Let 0 6= (τ, V ) be an irreducible K-representation with multK(V,Hµ) 6= 0
and t ∈ HomM (C, V ). Then

P τµ (F−1(t)⊗ •) = t(1)(e)
dimV

P τµ (prV ⊗ •),

where F denotes the Frobenius isomorphism (see Definition 3.3.1).

Proof. By Equation (3.2) we have for each f ∈ H−∞µ and g ∈ G that

P τµ (F−1(t)⊗ f)(g) = F−1(t)(πµ(g)−1f) and P τµ (prV ⊗ f)(g) = prV (πµ(g)−1f).

By Proposition 2.4.3 we obtain that HomK(Hµ, V ) = C prV is one-dimensional since
(τ, V ) ∈ K̂M . This proves that there exists some c ∈ C such that

P τµ (F−1(t)⊗ •) = cP τµ (prV ⊗ •).
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5. Mapping properties of vector-valued Poisson transforms

Recall the M -invariant function φV from Proposition 2.4.4. By Definition 3.3.1 we have

P τµ (F−1(t)⊗ φV )(e) =
∫
K
τ(k)t(φV (k)) dk =

∫
K
φV (k)τ(k)t(1) dk

=
∫
K
φV (k)τ(k)t(1)(e)φV dk,

where we recall that V is realized in C∞(K)M so that t(1)(e) makes sense, and we used
Proposition 2.4.4 i) for the last equality. Using Proposition 2.4.4 iii) we infer

P τµ (F−1(t)⊗ φV )(e)(e) =
∫
K
φV (k)t(1)(e)φV (k−1) dk =

∫
K
φV (k)t(1)(e)φV (k) dk

= t(1)(e)〈φV , φV 〉L2(K) = t(1)(e)
dimV

.

On the other hand (3.2) yields

P τµ (prV ⊗ φV )(e) = prV (φV ) = φV .

Thus,

c =
P τµ (F−1(t)⊗ φV )(e)(e)
P τµ (prV ⊗ φV )(e)(e) = t(1)(e)

φV (e) dimV
= t(1)(e)

dimV
.

From now on we choose t ∈ HomM (C, V ) for each (τ, V ) ∈ K̂M by t(1) := φV and
define

P τµ : H−∞µ → C∞(G×K V ), P τµ (f) := P τµ (F−1(t)⊗ f).

Note that, by Lemma 5.1.1, we have for each f ∈ H−∞µ and g ∈ G

P τµ (f)(g) = 1
dimV

prV (πµ(g)−1f). (5.1)

Proposition 5.1.2. Let [(τ, Vτ )] ∈ K̂M and µ ∈ a∗. Then the Poisson transform

P τµ : H−∞µ → C∞(G×K V )

is injective if and only if every non-trivial G-invariant subspace of H−∞µ contains τ .
Moreover, the kernel is given by the distributional elements in the closure of the sum of
all G-invariant subspaces V ≤ Hµ with multK(τ, V ) = 0.

Proof. Since P τµ is G-equivariant, the kernel kerP τµ is G-invariant. We claim that it
equals the closure of the sum of all invariant subspaces of Hµ which do not contain the
K-representation (τ, Vτ ):
If {0} 6= W ≤ Hµ is an invariant subspace of Hµ which does not contain the K-
representation τ , by (5.1) we have

P τµ (f)(g) = 1
dimVτ

prVτ (πµ(g−1)f) = 0
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5.1. Injectivity of vector-valued Poisson transforms

for every f ∈W and g ∈ G since πµ(g−1)f ∈W . Thus, f ∈ kerP τµ . This proves the first
inclusion because the kernel is closed.
Conversely, let f ∈ kerP τµ . Since the kernel is invariant, the distributional elements in the
G-cyclic space Wf of f are also contained in the kernel of P τµ . Therefore, f is contained
in an invariant space which does not contain τ (if Wf contains τ we can choose g = e to
get a contradiction to Wf ⊆ kerP τµ ).

We now use this result to construct injective direct sums of Poisson transforms, which
allow us to prove the spectral correspondences later on.

Proposition 5.1.3. Let µ ∈ a∗ and Irr(µ) be the set of all non-zero irreducible subrep-
resentations of Hµ. Then, if (τU , VτU ) is any non-zero K-type of U for U ∈ Irr(µ), the
direct sum of the corresponding Poisson transforms

⊕U∈Irr(µ)P
τU
µ : H−∞µ →

⊕
U∈Irr(µ)

C∞(G×K VτU )

is injective. A natural choice of (τU , VτU ) is given by a minimal K-type of U .

Proof. Since the kernel of the direct sum ⊕U∈Irr(µ)P
τU
µ is the intersection of the kernels

of P τUµ , U ∈ Irr(µ), we can apply Proposition 5.1.2 to deduce

⊕U∈Irr(µ)P
τU
µ injective ⇔ ∀{0} 6= V ≤ Hµ ∃U ∈ Irr(µ) : multK(τU , V ) 6= 0.

Let {0} 6= V ≤ Hµ be a non-trivial (closed) G-invariant subspace. We claim that there
exists some U ∈ Irr(µ) such that multK(τU , V ) 6= 0. In fact, since Hµ has a composition
series, V also has a composition series by [KV95, p. 815]. In particular, there exists an
irreducible subrepresentation {0} 6= I ≤ V . But I ∈ Irr(µ) by the definition of Irr(µ)
and multK(τI , V ) 6= 0 since I ≤ V .

Corollary 5.1.4. With the notation from Proposition 5.1.3 we have

Res0
X((µ− ρ)(H)) ∼=

⊕
U∈Irr(µ)

Γ(imP τUµ ) ⊆
⊕

U∈Irr(µ)

ΓC∞(G×K VτU ).

As already mentioned in Proposition 5.1.3, a natural choice of the K-types is given by
so-called minimal K-types, which are defined as follows.

Definition 5.1.5 (cf. [Vog79, Definition 5.1]). Let T ≤ K be a maximal torus with Lie
algebra t0 (and t := (t0)C), root system ∆k := ∆(k, t) and positive system ∆+

k := ∆+(k, t).
If X is a Harish-Chandra module for g0, the set of minimal K-types of X is given by

{µ ∈ k̂ : multK(µ,X) 6= 0 and κ(µ+ 2ρc, µ+ 2ρc) minimal with this property},

where

• k̂ ⊂ (it0)∗ denotes the set of the highest weights of the elements of K̂ w.r.t. the
positive system ∆+

k ,
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5. Mapping properties of vector-valued Poisson transforms

• κ(•, •) denotes the form on g∗ induced by the Cartan-Killing form of g,

• ρc denotes the half sum of the positive roots ∆+
k .

We call κ(• + 2ρc, • + 2ρc) the Vogan norm.

The following theorem shows that among the rank one Riemannian symmetric spaces
of non-compact type, the only case in which we really have a direct sum in Proposition
5.1.3 is given by the case of surfaces. Thus, in every other case, we obtain an injective
Poisson transform, which we will call the minimal K-type Poisson transform. The proof
of the theorem is done case by case in the following section.

Theorem 5.1.6. With the notation from Proposition 5.1.3 every U ∈ Irr(µ) has a
unique minimal K-type (τU , VτU ). Moreover, Irr(µ) is a singleton if g0 6= sl(2,R). If
µ 6∈ Ex, Irr(µ) = {U} is always a singleton1 (also for g0 = sl(2,R)) and (τU , VτU ) is the
trivial K-representation.

Remark 5.1.7 (Connection to the exceptional set of [Olb94]). For exceptional parameters
µ ∈ Ex in the case of g0 6= sl(2,R), Irr(µ) = {U} is a singleton and the minimal K-type
Poisson transform

P τUµ : H−∞µ → C∞(G×K VτU )

is injective by Proposition 5.1.3. As a first approach one might try to use [Olb94]
to deduce whether this map is also surjective onto the corresponding space of joint
eigensections. Unfortunately, [Olb94] itself defines some exceptional sets A′τ (σ) that are
excluded in most of the results concerning mapping properties and into which all our
minimal K-type Poisson transforms from above fall (for SL(2,R) they are empty). For
τ ∈ K̂, σ ∈ τ |M these sets are defined by (see [Olb94, Definition 4.7])

A′τ (σ) := {µ ∈ a∗ | ∃µ′ 6∈W · µ, σ′ ∈ τ
∣∣
M
, w ∈W : Ewσ,wµ ∩ Eσ′ ,µ′ 6= {0}, sµ

′ > µ},

where s denotes the maximal element of W . We prove that indeed µ ∈ A′τU (trivM ) for
each exceptional parameter µ ∈ Ex as above. Since U ≤ Hµ corresponds to an irreducible
subquotient of H−µ, we first infer that P τU−µ is not injective by Proposition 5.1.2. We claim
that this proves µ ∈ A′τU (trivM ). Indeed, by [Olb94, Satz 3.17], det cτU (trivM ,−µ) = 0
and [Olb94, Lemma 4.29, 2] implies µ ∈ A′τU (trivM ) since P τUµ is injective.

The proof of Theorem 5.1.6 is done case by case (see Section 5.2) and organized as
follows:

i) Calculate the highest weights of the representations in K̂M w.r.t. some positive
system (see Appendix A).

ii) Specify the composition series of the spherical principal series (see Appendix B).
1This part also follows from the uniqueness of the Langlands quotient (see [Kna86, Theorem 8.54]).
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5.2. Minimal K-types and proofs of injectivity results

iii) Calculate the minimal K-types of all irreducible subrepresentations of the spherical
principal series representations.

In each case, we also compare Proposition 5.1.2 to the injectivity of the scalar Poisson
transform from Theorem 3.2.2.
Let us stress that our choice of Poisson transforms in Proposition 5.1.3 generalizes

all known cases. More precisely, for µ 6∈ Ex, Proposition 5.1.3 always gives the scalar
Poisson transform since the minimal K-type of the unique irreducible subrepresentation
is the trivial representation by Theorem 5.1.6. Therefore, our choice is consistent with the
generic quantum-classical correspondence from Theorem 3.2.4 (see also Remark 3.3.2).
Moreover, if µ ∈ Ex and g0 = sl(2,R) we have µ(H) = −n+ 1

2 for some n ∈ N by Remark
4.1.9(ii) and Hµ has irreducible subrepresentations Dn−1,+ and Dn−1,− by Lemma B.1.1.
The (unique) minimal K-type of Dn−1,+ resp. Dn−1,− is given by en resp. e−n (or Ln
resp. L−n when defined on functions on K = PSO(2,R)). Thus, our choice gives the
same maps as in the exceptional quantum-classical correspondence from Theorem 4.1.2
(see also Lemmas 4.1.7 and 4.3.3).

5.2. Minimal K-types and proofs of injectivity results
We now prove Theorem 5.1.6 in each case.

The case of SO0(n, 1), n ≥ 3

We first describe the exceptional set in this case.

Lemma 5.2.1. For G = SO0(n, 1) we have

Ex = −(ρ+ N0α).

Proof. Since m2α = 0 and ρ = 1
2(mαα+m2α2α) we obtain

−(ρ+ N0α) = −
(
mα

2 + N0

)
α =

(
−mα

2 − 1− 2N0

)
α ∪

(
−mα

2 − 0− 2N0

)
α.

For the scalar Poisson transform, Proposition 5.1.2 agrees with Theorem 3.2.2.

Comparison to Theorem 3.2.2. Let µ ∈ a∗. If Hµ is irreducible, Pµ is injective since the
kernel is an invariant subspace and Pµ is not the zero map since Hµ contains the trivial
K-representation Y0 (compare with Equation (5.1) and choose f ∈ Y0, g = e). Thus, we
may assume µ(H) ∈ ±(ρ(H) + N0) by Lemma B.2.1.
Case µ(H) = ρ(H) + k ∈ ρ(H) + N0 : Every non-trivial invariant subspace of Hµ (i.e.

Vk) contains the trivial representation Y0 and Pµ is injective by Proposition 5.1.2.
Case µ(H) = −(ρ(H) + k) ∈ −(ρ(H) + N0) : Wk is a G-invariant subspace of Hµ

which does not contain the trivial representation and Pµ is not injective. Thus, Pµ is not
injective if and only if (recall α(H) = 1)

µ ∈ −(ρ+ N0α) = Ex.
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Minimal K-types of irreducible subrepresentations

Recall the half-sum of positive roots in the odd resp. even case from Equation (A.1)

ρc =
(
m− 1

2

)
e1 +

(
m− 3

2

)
e2 + . . .+ 1

2em resp. ρc = (m− 1)e1 + . . .+ em−1.

Using that the highest weight of Y` is `e1 (see Appendix B.2.2 for the notation) we
are now able to compute the minimal K-types of the irreducible subrepresentations
Vk and Wk from Lemma B.2.1. Since the Cartan-Killing form of so(2m + 2,C) resp.
g = so(2m + 1,C) is a multiple of the trace form (X,Y ) 7→ tr(XY ), we can use the
explicit definitions of the roots of k from [Kna02, Chapter II, §1, Example 4 resp. 2] to
see that the ei are orthogonal w.r.t. the Killing form and that every ei has the same
length.

Lemma 5.2.2. Let U ⊆ K̂M = {Y` : ` ∈ N0} be a set of M -spherical K-types. Then the
Vogan norm is minimal for Y` ∈ U if and only if ` is minimal for Y` ∈ U .

Proof. By the definition of minimal K-types we have to minimize

κ(`e1 + 2ρc, `e1 + 2ρc)

for Y` ∈ M (since `e1 is the highest weight of Y`). We first consider the even case, i.e.
G = SO0(2m, 1) with m > 1. We have

κ(`e1 + 2ρc, `e1 + 2ρc) = κ(`e1, `e1) + 4κ(`e1, ρc) + 4κ(ρc, ρc)
= (`2 + 4`(m− 1))κ(e1, e1) + 4κ(ρc, ρc)

which is clearly minimal if and only if ` is minimal. The proof for G = SO0(2m+ 1, 1) is
analogous (changing m− 1 to m− 1

2).

Proposition 5.2.3. Let k ∈ N0. Then Vk and Wk from Lemma B.2.1 have unique
minimal K-types which are given by Y0 and Yk+1 respectively (note that Y0 is the trivial
K-representation).

Proof. By Lemma B.2.1 the K-types of Vk resp. Wk are given by {Y` : 0 ≤ ` ≤ k} resp.
{Y` : k + 1 ≤ `}. The Proposition now follows from Lemma 5.2.2.

Proof of Theorem 5.1.6. If µ 6∈ Ex, the spherical principal series Hµ is irreducible or the
unique irreducible subrepresentation of Hµ is given by Vk for some k ∈ N0 by Lemma
B.2.1. In both cases the unique minimal K-type is given by the trivial representation by
Proposition 5.2.3.

If µ ∈ Ex, there exists some k ∈ N0 such that µ(H) = −(ρ(H) + k). By Lemma B.2.1
we see that there is only one irreducible subspace, namely Wk. The proposition thus
follows from Proposition 5.2.3.
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5.2. Minimal K-types and proofs of injectivity results

The case of SU(n, 1), n 6= 1

Lemma 5.2.4. For G = SU(n, 1) we have

Ex = −(ρ+ 2N0α).

Proof. Since ρ = 1
2(mαα+m2α2α) and m2α = 1 we obtain

−(ρ+ 2N0α) = −
(
mα

2 +m2α + 2N0

)
α = Ex.

Comparison to Theorem 3.2.2. Let µ ∈ a∗ such that Hµ is reducible.
Case µ(H) = ρ(H) + 2k ∈ ρ(H) + 2N0 : The non-trivial subspaces are Fk, Hk,± and

Hk,+ +Hk,−. Each of these contains the trivial representation Y0,0 and Pµ is injective by
Proposition 5.1.2.
Case µ(H) = −ρ(H) − 2k ∈ −(ρ(H) + 2N0) : Ik is an invariant subspace of Hµ

which does not contain the trivial representation. Thus, Pµ is not injective in this case.
Altogether, Pµ is not injective if and only if (recall α(H) = 1)

µ ∈ −(ρ+ 2N0α) = Ex.

Minimal K-types of irreducible subrepresentations

We will now compute the minimal K-types of the irreducible subrepresentations Fk and
Ik occurring in Lemma B.3.2. Recall the half sum of positive roots from Equations
(A.2.3)

ρc = n− 1
2 e1 + n− 3

2 e2 + . . .− n− 1
2 en.

Since the Cartan-Killing form of g = sl(n+ 1,C) = (su(n, 1))C is a multiple of the trace
form (X,Y ) 7→ tr(XY ) we see that the ei are orthogonal w.r.t. the Killing form and
that every ei has the same length. We rescale the Killing form such that the ei are
orthonormal and denote the resulting form by κ̃.

Lemma 5.2.5. Let U ⊆ K̂M = {Yp,q : p, q ∈ N0} be a set of M -spherical K-types. Then
the Vogan norm is minimal for Yp,q ∈ U if and only if (p+n−1)2 + (q+n−1)2 + (p− q)2

is minimal for Yp,q ∈ U .

Proof. By Lemma B.3.1, the highest weight of a K-type Yp,q is given by qe1− pen + (p−
q)en+1. We have that

κ̃(qe1 − pen + (p− q)en+1 + 2ρc, qe1 − pen + (p− q)en+1 + 2ρc)
= ‖(q + n− 1)e1 + (n− 3)e2 + . . .− (n− 3)en−1 − (p+ n− 1)en + (p− q)en+1‖2κ̃
= (q + n− 1)2 + (n− 3)2 + (n− 5)2 + . . .+ (n− 3)2 + (p+ n− 1)2 + (p− q)2.

Proposition 5.2.6. Let k ∈ N0. Then Fk and Ik from Lemma B.3.2 have unique
minimal K-types which are given by Y0,0 and Yk+1,k+1 respectively (note that Y0,0 is the
trivial K-representation).
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5. Mapping properties of vector-valued Poisson transforms

Proof. By Lemma B.3.2 the K-types occurring in Fk resp. Ik are given by

{Yp,q | p, q ∈ {1, . . . , k}} respectively {Yp,q | p, q ∈ N with p, q ≥ k + 1}.

By Lemma 5.2.5 it suffices to minimize (p+n−1)2 +(q+n−1)2 +(p−q)2. The minimum
is attained at p = q = 0 in the case of Fk and at p = q = k + 1 in the case of Ik.

Proof of Theorem 5.1.6. If µ 6∈ Ex the spherical principal series Hµ is irreducible or the
unique irreducible subrepresentation of Hµ is given by Fk for some k ∈ N0 by Lemma
B.3.2. In both cases the unique minimal K-type is given by the trivial representation by
Proposition 5.2.6.
If µ ∈ Ex there exists some k ∈ N0 such that µ(H) = −(ρ(H) + 2k). Lemma B.3.2

shows that Ik is the only irreducible subspace of Hµ. By Proposition 5.2.6 the minimal
K-type of Ik is uniquely given by Yk+1,k+1.

The case of Sp(n, 1), n ≥ 2

Lemma 5.2.7. For G = Sp(n, 1) we have

Ex = −(ρ+ (2N0 − 2)α).

Proof. Since ρ = 1
2(mαα+m2α2α) and m2α = 3 we obtain

−(ρ+ (2N0 − 2)α) = −
(
mα

2 + 1 + 2N0

)
α

= −
(
mα

2 + 1 + 2N0

)
α ∪ −

(
mα

2 + 3 + 2N0

)
α = Ex.

Comparison to Theorem 3.2.2. Let µ ∈ a∗ be such that Hµ is reducible.
Case µ(H) = ρ(H)− 2 + 2k, k ∈ N : The non-trivial subspaces are Wk and Mk. Each

of these contains the trivial representation V0,0. By Proposition 5.1.2, Pµ is injective.
Case µ(H) = −(ρ(H)− 2 + 2k), k ∈ N : M̃k is an invariant subspace of Hµ which does

not contain V0,0. Thus, Pµ is not injective in this case.
Case µ(H) = ρ(H)− 2 : T is the only invariant subspace of Hµ. Since it contains the

trivial representation, Pµ is injective in this case.
Case µ(H) = −(ρ(H)− 2) : T̃ is an invariant subspace of Hµ which does not contain

V0,0. Thus, Pµ is not injective.
Altogether, Pµ is not injective if and only if (recall α(H) = 1)

µ ∈ −(ρ− 2α+ 2N0α) = Ex.

Minimal K-types of irreducible subrepresentations

Recall the positive system from Equation (A.3.9) and the fundamental weights from
Equation (A.3.11). Recall the half sum of positive roots from Equation (A.3.10)

ρc = ne1 + (n− 1)e2 + . . .+ 2en−1 + en + en+1.
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Since the Cartan-Killing form of g = sp(n + 1,C) is a multiple of the trace form
(X,Y ) 7→ tr(XY ) we can use the explicit definitions of the roots of k from [Kna02,
Chapter II, §2, Example 3] to see that the ei are orthogonal w.r.t. the Killing form and
that every ei has the same length. We rescale the Killing form such that the ei are
orthonormal and denote the resulting form by κ̃.

Lemma 5.2.8. Let U ⊆ K̂M = {Va,b : a, b ∈ N0, a ≥ b} be a set of M -spherical K-types.
Then the Vogan norm is minimal for Va,b ∈ U if and only if (a+n)2+(b+n−1)2+(a−b+1)2

is minimal for Va,b ∈ U .

Proof. By Section A.3, the highest weight of aK-type Va,b is given by ae1+be2+(a−b)en+1.
We have that

κ̃(ae1 + be2 + (a− b)en+1 + 2ρc, ae1 + be2 + (a− b)en+1 + 2ρc)
= ‖(a+ n)e1 + (b+ n− 1)e2 + (n− 2)e3 + . . .+ en + (a− b+ 1)en+1‖2κ̃
= (a+ n)2 + (b+ n− 1)2 + (n− 2)2 + . . .+ 1 + (a− b+ 1)2.

Proposition 5.2.9. Let k ∈ N. Then the irreducible representations Wk, M̃k, T and T̃
from Lemma B.4.1 have unique minimal K-types which are given by V0,0, Vk+1,k+1, V0,0
or V1,1 respectively (where V0,0 is the trivial K-representation) with highest weights
0, (k + 1)λ2, 0 or λ2.

Proof. By definition of the representations the occurring K-types are (with a, b ∈ N0)

A(Wk) := {Va,b : b ≤ a ≤ k − 1}, A(M̃k) := {Va,b : a ≥ b > k},
A(T ) := {Va,0 : a ∈ N0}, A(T̃ ) := {Va,b : a ≥ b > 0}.

By Lemma 5.2.8 it suffices to minimize (a+ n)2 + (b+ n− 1)2 + (a− b+ 1)2. In each
case, minimizing a and b also minimizes (a− b+ 1)2 so that the minima are attained at
a = b = 0 for Wk and T and at a = b = k + 1 resp. a = b = 1 for M̃k resp. T̃ .

Proof of Theorem 5.1.6. If µ 6∈ Ex, the spherical principal series Hµ is irreducible or
the unique irreducible subrepresentation of Hµ is given by Wk, for some k ∈ N, or by
T by Lemma B.4.1. In every case, the unique minimal K-type is given by the trivial
representation by Proposition 5.2.9.
Now let µ ∈ Ex. We distinguish the following two cases:
Case µ(H) = −(ρ(H)− 2 + 2k), k ∈ N : By Lemma B.4.1, M̃k is the only irreducible

subspace of Hµ. By Proposition 5.2.9, the minimal K-type of M̃k is uniquely given by
Vk+1,k+1.
Case µ(H) = −(ρ(H) − 2) : By Lemma B.4.1, T̃ is the only irreducible subspace of

Hµ. By Proposition 5.2.9, the minimal K-type of T̃ is uniquely given by V1,1.

The case of F4(−20)

Lemma 5.2.10. For G = F4(−20) we have

Ex = −(ρ+ (2N0 − 6)α) = −(5 + 2N0)α.
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Proof. Since ρ = 1
2(mαα+m2α2α) and m2α = 7 we obtain

−(ρ+ (2N0 − 6)α) = −
(
mα

2 + 1 + 2N0

)
α

= −
(
mα

2 + 1 + 2N0

)
α ∪ −

(
mα

2 + 7 + 2N0

)
α = Ex.

Comparison to Theorem 3.2.2. Let µ ∈ a∗ be such that Hµ is reducible.
Case µ(H) = ρ(H)−6+2k, k ∈ N≥3 : The non-trivial subspaces areWk andMk. Each

of these contains the trivial representation V0,0. By Proposition 5.1.2, Pµ is injective.
Case µ(H) = −(ρ(H) − 6 + 2k), k ∈ N0 : M̃k is an invariant subspace of Hµ which

does not contain V0,0. Thus, Pµ is not injective in this case.
Case µ(H) = ρ(H)− 6 + 2k, k ∈ {0, 1, 2} : Mk is the only invariant subspace of Hµ.

Since it contains the trivial representation, Pµ is injective in this case.
Altogether, Pµ is not injective if and only if (recall α(H) = 1)

µ ∈ −(ρ− 6α+ 2N0α) = Ex.

Minimal K-types of irreducible subrepresentations

Recall the positive system from Section A.4 and the associated half sum of positive roots
from Equation (A.4.16)

ρc = 7
2e1 + 5

2e2 + 3
2e3 + 1

2e4.

By Section A.4 the ei are orthogonal and have the same length w.r.t. the Killing form. We
again rescale the Killing form such that the ei are orthonormal and denote the resulting
form by κ̃.

Lemma 5.2.11. Let U ⊆ K̂M = {Vm,` : m, ` ∈ N0, m ≥ `, m ≡ `mod 2} be a set of
M-spherical K-types. Then the Vogan norm is minimal for Vm,` ∈ U if and only if
(m+ 7)2 + (`+ 5)2 + (`+ 3)2 + (`+ 1)2 is minimal for Vm,` ∈ U .

Proof. By Section A.4, the highest weight of aK-type Vm,` is given by m
2 e1+ `

2e2+ `
2e3+ `

2e4.
We have that

κ̃

(
m

2 e1 + `

2e2 + `

2e3 + `

2e4 + 2ρc,
m

2 e1 + `

2e2 + `

2e3 + `

2e4 + 2ρc
)

= κ̃

(
m+ 7

2 e1 + `+ 5
2 e2 + `+ 3

2 e3 + `+ 1
2 e4,

m+ 7
2 e1 + `+ 5

2 e2 + `+ 3
2 e3 + `+ 1

2 e4

)
=
(
m+ 7

2

)2
+
(
`+ 5

2

)2
+
(
`+ 3

2

)2
+
(
`+ 1

2

)2
.

Proposition 5.2.12. Let k ∈ N0. Then the irreducible subrepresentations Wk (for
k ≥ 3), Mk (for k ≤ 2) and M̃k from Lemma B.5.1 have unique minimal K-types which
are given by V0,0 resp. V2k+2,0 (where V0,0 is the trivial K-representation).
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Proof. By definition of the representations, the occurring K-types are (with m, ` ∈
N0, m ≥ `, m ≡ `mod 2)

A(Wk) := {Vm,` : m+ ` ≤ 2k − 6}, A(Mk) := {Vm,` : m− ` ≤ 2k},
A(M̃k) := {Vm,` : m− ` > 2k}.

By Lemma 5.2.11 it suffices to minimize the quantity (m+7)2 +(`+5)2 +(`+3)2 +(`+1)2.
Choosing m = ` = 0 resp. m = 2k + 2, ` = 0 minimizes m and ` simultaneously so that
the minima are attained at these and only these points.

Proof of Theorem 5.1.6. If µ 6∈ Ex, the spherical principal series Hµ is irreducible or the
unique irreducible subrepresentation of Hµ is given by Wk (if µ(H) ≥ ρ(H)) or by Mk

(if µ(H) < ρ(H)) by Lemma B.5.1. In every case, the unique minimal K-type is given by
the trivial representation by Proposition 5.2.12.
Now let µ ∈ Ex. Then, by Lemma B.5.1, M̃k is the only irreducible subspace of Hµ.

By Proposition 5.2.12, the minimal K-type of M̃k is uniquely given by V2(k+1),0.

5.3. The role of generalized gradients
In this section we use generalized gradients to connect different Poisson transforms
associated with inequivalent K-representations for G of rank one (Proposition 5.3.2).
This connection is one of the main ingredients for the Fourier characterization we prove in
Chapter 7, which will allow us to characterize the images of the minimal K-type Poisson
transforms. We first introduce some notation.

Notation 5.3.1. Recall the inner product 〈·, ·〉 = − κ(·,θ·)
κ(H,H) on g0 from Equation (1.1)

and extend it to g using complex linearity. We identify

I : p→ p∗, X 7→ 〈X, ·〉.

If X1, . . . , Xdim p is a basis of p we denote the dual basis with respect to 〈·, ·〉 by
X̃1, . . . , X̃dim p, i.e.

I(X̃i)(Xj) = 〈X̃i, Xj〉 = δij .

We now relate Poisson transforms using generalized gradients.

Proposition 5.3.2. For Y ∈ K̂M let dYV := T YV ◦∇ with T YV ∈ HomK(Y ⊗ p∗, V ), where
V ≤ L2(K) denotes an irreducible subrepresentation of Y ⊗ p∗, be a generalized gradient
and µ ∈ a∗. Choose a basis X1, . . . , Xdim p of p0 such that X1 ∈ a and Xj ∈ k ⊕ n (e.g.
an orthonormal basis of p with X1 ∈ a). Let

pY,µ := (µ+ ρ)(X1)φY ⊗ I(X̃1)−
dim p∑
j=2

`(kI(Xj))φY ⊗ I(X̃j) ∈ Y ⊗ p∗,

where kI(Xj) ∈ k denotes the k-component in the k⊕ a⊕ n-decomposition of Xj. Then
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5. Mapping properties of vector-valued Poisson transforms

i) pY,µ is independent of the basis and M -invariant,

ii) dYV ◦ P Yµ = T YV (pY,µ)(e)P Vµ if V is M -spherical, i.e. V ≤ L2(K)M ,

iii) dYV ◦ P Yµ = 0 if V is not M -spherical, i.e. VM = 0.

Proof. i) Identifying

Y ⊗ p∗ ∼= Hom(p, Y ), f ⊗ λ 7→ (X 7→ λ(X)f),

the tensor pY,µ corresponds to the homomorphism given by

pY,µ(X) = (µ+ ρ)(X)φY ∀X ∈ a,

pY,µ(X) = `(kI(X))φY ∀X ∈ p ∩ (k⊕ n),

which is independent of the basis. For the M -invariance note first that the K-action on
Hom(p, Y ) is given by

(k.Φ)(X) = k.Φ(k−1.X) = L(k)Φ(Ad(k−1)X), X ∈ p, Φ ∈ Hom(p, Y ).

Since M stabilizes a and φY is M -invariant we have for each X ∈ a,

(m.pY,µ)(X) = L(m)pY,µ(Ad(m−1)X) = L(m)pY,µ(X)
= (µ+ ρ)(X)L(m)φY = (µ+ ρ)(X)φY = pY,µ(X).

Moreover, since M leaves k, a and n invariant, we have for each X ∈ p ∩ (k⊕ n),

(m.pY,µ)(X) = L(m)pY,µ(Ad(m−1)X) = L(m)`(kI(Ad(m−1)X))φY
= L(m)`(Ad(m−1)kI(X))φY
= L(m)L(m−1)`(kI(X))L(m)φY
= `(kI(X))φY = pY,µ(X).

This proves the first part.
ii), iii) Let δeM denote the Delta distribution at eM on K/M . Then

P Yµ (δeM )(g) = aI(g−1)−(µ+ρ)τ(kI(g−1))φY ∈ C∞(G×K Y ). (5.2)

We first obtain

(∇ ◦ P Yµ (δeM ))(e)(X1) = d

dt

∣∣∣∣
t=0

P Yµ (δeM )(exp tX1)

= d

dt

∣∣∣∣
t=0

aI(exp−tX1)−(µ+ρ)φY

= d

dt

∣∣∣∣
t=0

et(µ+ρ)(X1)φY = (µ+ ρ)(X1)φY .
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5.4. Želobenko operators

For j ∈ {2, . . . ,dim p} we write Xj = kI(Xj) + nI(Xj) ∈ k0 ⊕ n0 and obtain

(∇ ◦ P Yµ (δeM ))(e)(Xj) = (∇ ◦ P Yµ (δeM ))(e)(kI(Xj)) + (∇ ◦ P Yµ (δeM ))(e)(nI(Xj))
= (∇ ◦ P Yµ (δeM ))(e)(kI(Xj))

= d

dt

∣∣∣∣
t=0

τ(exp−tkI(Xj))φY = −`(kI(Xj))φY ,

where we used in the second step that P Yµ (δeM )(n) = φY for n ∈ N by (5.2). Thus,

(∇ ◦ P Yµ (δeM ))(e) = (µ+ ρ)(X1)φY ⊗ I(X̃1)−
dim p∑
j=2

`(kI(Xj))φY ⊗ I(X̃j)

and therefore

(dYV ◦ P Yµ (δeM ))(e) = T YV ((∇ ◦ P Yµ (δeM ))(e))

= T YV

(µ+ ρ)(X1)φY ⊗ I(X̃1)−
dim p∑
j=2

`(kI(Xj))φY ⊗ I(X̃j)

 .
By Corollary 3.3.4 and 3.3.5, dYV ◦ P Yµ has to be a multiple of P Vµ if V is M -spherical
and 0 otherwise. In particular, we deduce that

T YV

(µ+ ρ)(X1)φY ⊗ I(X̃1)−
dim p∑
j=2

`(kI(Xj))φY ⊗ I(X̃j)


is a multiple of P Vµ (δeM )(e) = φV . Since φV (e) = 1 this multiple is given by

T YV

(µ+ ρ)(X1)φY ⊗ I(X̃1)−
dim p∑
j=2

`(kI(Xj))φY ⊗ I(X̃j)

 (e).

5.4. Želobenko operators
As the minimal K-type Poisson transforms appear in the exceptional sets from [Olb94]
(see Remark 5.1.7), we consider these sets in some more detail. Their existence is closely
related to so-called Želobenko operators or discrete symmetry operators (see [Olb94,
Definition 4.7]). Like the Knapp-Stein intertwiners, these are non-trivial intertwiners
between different principal series representations, where, in contrast to the Knapp-Stein
intertwiners for the spherical principal series, the associatedM -representation may change.
Moreover, they are induced by the “big” Weyl group W (g, h), where h denotes a Cartan
subalgebra of g, instead of the real Weyl group W (g, a). These operators can be used to
relate the minimal K-type Poisson transforms to Poisson transforms of the intertwined
representations. Unfortunately, we do not leave the exceptional sets from [Olb94] so that
these relations do not allow us to describe the images. Therefore, the results of this
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5. Mapping properties of vector-valued Poisson transforms

section will have no further application in the following chapters and are intended for
completeness only. We define the Želobenko operators as in [Ž76] and determine the
principal series representations they relate to our exceptional ones for the classical rank
one groups.

We fix a θ-stable Cartan subalgebra t0 in m0 and let h0 denote the Cartan subalgebra
t0 ⊕ a0 of g0. We order the nonzero roots ∆ := ∆(g, h) of (g, h) in such a way that we
have {α|a0 | α ∈ ∆+} = Σ+ for the set ∆+ of positive roots in ∆, denote the sum of all
positive/negative root spaces by u± and the half sum of positive roots by δ.

Setting b := h⊕ u+, the Verma moduleM(Λ) of some Λ ∈ h∗ is defined by

M(Λ) := U(g)⊗U(b) CΛ−δ,

where CΛ−δ denotes the (one dimensional) b-representation in which h acts by Λ− δ and
u+ acts trivially.
We fix a W (g, h)-invariant inner product (·, ·) on h. Let β ∈ ∆+ and suppose that

2 (Λ,β)
(β,β) =: N ∈ N. According to [Ž76, Definition 3.1], there exists an element Ωβ,N ∈ U(u−)

and a non-trivial, g-equivariant map

Sβ(Λ): M(Λ−Nβ)→M(Λ), Sβ(Λ)(u⊗ z) := uΩβ,N ⊗ z.

Moreover, both Sβ(Λ) and Ωβ,N are uniquely defined up to a constant.

Definition 5.4.1 (cf. [Ž76, §3]). Let β ∈ ∆+, N ∈ N and PNβ denote the set of all
parameters (σ, µ) ∈ M̂ × a∗ such that

• 2 〈hw(σ̃)+ρm+µ,β〉
〈β,β〉 = N , where hw(σ̃) ∈ it∗0 ⊆ h∗ denotes the highest weight of σ̃,

• hw(σ̃)−Nβ|t0 is the highest weight of an M -representation.

Write M = M0Z, where M0 denotes the analytic subgroup of m0 and Z is a finite abelian
subgroup which is central in M and generated by elements of order two ([Ž76, p. 1006]).
For each (σ, µ) ∈ PNβ let (σβ, µβ) ∈ M̂ × a∗ be defined by

i) σβ|M0 is dual to the M0-representation of highest weight hw(σ̃)−Nβ|t0 and Z acts
through σ,

ii) µβ := µ−Nβ|a.

Then there exists a unique G-equivariant map Lβ,σ,µ : H∞σ,µ → H∞σβ ,µβ such that

〈vσ̃β , Lβ,σ,µf(e)〉 = 〈vσ̃, r(Ωβ,N )f(e)〉,

where vσ̃β resp. vσ̃ denote highest weight vectors of σ̃β resp. σ̃, r denotes the right regular
representation and 〈·, ·〉 is the natural pairing. We call Lβ,σ,µ a discrete symmetry operator
or Želobenko operator of H∞σ,µ.

Proof. See [Ž76, Proposition 3.2] with hw(σ̃) + ρm + µ ∈ ΣN
β and [Ž76, Definition 3.1] for

the definition of Lβ,σ,µ (which is called Sβ(hw(σ̃) + ρm + µ) there).
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5.4. Želobenko operators

Using the Frobenius isomorphism from Definition 3.3.1 we define

lβ,σ,µ : HomM (Vσβ , Vτ )→ HomM (Vσ, Vτ ), t 7→ F (F−1(t) ◦ Lβ,σ,µ),

where V� denotes a finite dimensional vector space assigned to the highest weight �. From
[Olb94, Satz 3.16] we cite the following result relating Poisson transforms.

Theorem 5.4.2 (cf. [Olb94, Satz 3.16]). Let β ∈ Σ+ and (σ, µ) ∈ PNβ for some N ∈ N.
Then, for each t ∈ HomM (Vσβ , Vτ ) and f ∈ H∞σ,µ,

P τσβ ,µβ (t⊗ Lβ,σ,µ(f)) = P τσ,µ(lβ,σ,µ(t)⊗ f).

By [Ž76, Corollary 3.4] we have Lβ,σ,µ = 0 for each imaginary root β, i.e. for each
β ∈ ∆+ with β|a = 0 (note that there are no noncompact imaginary roots since h0 is
maximally noncompact, see [Kna02, Proposition 6.70]). Therefore, we only consider
roots β ∈ ∆+ such that β|a 6= 0. Moreover, since the maps appearing in Theorem 5.4.2
otherwise vanish, we are particularly interested in K-types τ such that σ and σβ both
occur in τ |M . The following proposition investigates Želobenko operators for classical
rank one groups in the case of exceptional parameters (note that our minimal K-types
are always in U).

Proposition 5.4.3. Let µ` ∈ Ex be an exceptional parameter. Then, for µ` ≤ −ρ, there
always exist parameters (σ, µ) ∈ M̂×a∗ such that there exists a Želobenko operator Zµ` :=
Lβ,σ,µ of H∞σ,µ mapping into H∞µ` where β is a complex root, i.e. neither an imaginary
nor a real root (i.e. β|t0 6= 0). The following table lists all these parameters. Here, the
highest weight of the M -representations are denoted as in [Bal79, Lemmas 4.3, 5.3] for
G ∈ {SU(n, 1),Sp(n, 1)} and as in Appendix A for G = SO0(n, 1) (then M ∼= SO(n− 1)).
Moreover, the common K-types of Hσ,µ and Hµ` determine a (g,K)-submodule U of Hµ` .
For SL(2,R) complex roots do not exist so that there is no such operator in this case.

µβ = µ` ∈ Ex σ µ U

SO0(n, 1) −ρ− `α (`+ 1)e1 α− ρ W`

SU(n, 1) −ρ− 2`α
`+1

2 (ε1 + εn+1)− (`+ 1)εn −ρ− (`− 1)α W`,−
− `+1

2 (ε1 + εn+1) + (`+ 1)ε2 W`,+
Sp(n, 1) −ρ− (2`− 2)α `(e3 + e1−e2

2 ) −ρ− (`− 2)α W̃`

Proof. Let us first consider the case of G = SO0(n, 1), n ≥ 3. In the notation of
Definition 5.4.1 we want to have σβ = 0 and µβ = µ` = −ρ− `α for some β ∈ ∆+. Since
0 = σβ|M0 is dual to the M0-representation of highest weight hw(σ̃) − Nβ|t0 we must
have hw(σ̃) = Nβ|t0 . By the dominance of hw(σ̃) we deduce that β|t0 has to be dominant.
However, the only positive complex root with this property is given by e0 + e1, where e0
denotes the real root α extended trivially to h and e1 is as in Appendix A (extended to
h). Moreover, since µβ = µ−Nβ|a, we infer that

µ = Nβ|a + µβ = N(e0 + e1)|a − ρ− `α = (N − `)α− ρ.
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5. Mapping properties of vector-valued Poisson transforms

Furthermore,

N = 2〈hw(σ̃) + ρm + µ, β〉
〈β, β〉

= 2〈Nβ|t0 + ρm +Nβ|a + µ`, β〉
〈β, β〉

= 2N + 2〈ρm + µ`, β〉
〈β, β〉

implies that (ρm = n−3
2 e1 + . . .+ n−(2m−1)

2 em−1 with m = bn2 c and ρ = n−1
2 α)

N = −2〈ρm + µ`, β〉
〈β, β〉

= −〈ρm + µ`, β〉 = `+ 1.

Thus, hw(σ) = (` + 1)e1 and µ = α − ρ. Finally, we see that (σ, µ) ∈ P`+1
e1+e2 and thus

that there exists a Želobenko operator of H∞σ,µ mapping into H∞µ` .
In the case of G = SU(n, 1), n ≥ 2, we use [Bal79, §4] to describe the roots. We use the

same notation as in that paper but add a ’B’ to the index of the Cartan subalgebras. With
respect to her maximally compact Cartan subalgebra hB (diagonal matrices), the roots
of g are given by ±(εi − εj), 1 ≤ i < j ≤ n+ 1. We use a Cayley transform associated
to the imaginary noncompact root β := ε1 − εn+1 to obtain a maximally noncompact
Cartan subalgebra h of g. More precisely, in the notation of [Kna02, Chapter VI, §7] we
choose Eβ = E1,n+1 so that Eβ = En+1,1, where Ei,j denotes the matrix which is 1 in
the (i, j) entry and zero elsewhere. Then we have the Cayley transform

cβ := Ad(exp π4 (Eβ − Eβ)) = Ad( 1√
2


1 −1√

2
. . . √

2
1 1

)

and the (real form of the) new Cartan subalgebra h is given by

h0 := g0 ∩ cβ(hB) = h−B ⊕ R(Eβ + Eβ)

with H = Eβ + Eβ, RH = a0. Let ej := εj ◦ c−1
β ∈ h∗. Then the roots of g with respect

to h are given by ±(ei − ej), 1 ≤ i < j ≤ n+ 1 and there are two positive complex roots
such that the restriction to m is dominant, given by e2 − en+1 and e1 − en.

We first consider e2 − en+1. Note that the half sum of positive roots is given by

ρ(H)e1 − en+1
2 + ρm = ρ(H)e1 − en+1

2 + n− 2
2 e2 + n− 4

2 e3 + . . .− n− 2
2 en

= n

2 e1 + n− 2
2 e2 + n− 4

2 e3 + . . .− n− 2
2 en −

n

2 en+1.

As in the real case we calculate

N = −2 〈ρm + µ`, e2 − en+1〉
〈e2 − en+1, e2 − en+1〉

= −〈n− 2
2 e2 − (n+ 2`)e1 − en+1

2 , e2 − en+1〉

= 〈(n2 + `)(e1 − en+1)− n− 2
2 e2, e2 − en+1〉 = `+ 1
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5.4. Želobenko operators

which is always in N. We infer that σ̃ has highest weight N(e2 − en+1)|h−B = (`+ 1)ε2 −
`+1

2 (ε1 +εn+1) ∈ DM in the notation of [Bal79, Lemma 4.3] so that its dual representation
σ corresponds to `+1

2 (ε1 + εn+1)− (`+ 1)εn. Moreover we obtain

µ = µ` + (`+ 1)(e2 − en+1)|a = −ρ− 2`α+ (`+ 1)α = −ρ− (`− 1)α.

Let us finally determine the joint K-types of Hσ,µ and Hµ` . The K-types of the latter
are the Yp,q with highest weight pε1 − qε2 + (q− p)εn+1. We use [Bal79, Theorem 4.4] to
determine which of these are also K-types of Hσ,µ. In that notation we have b0 = `+1

2 ,
bn = −(` + 1) and bi = 0 for 2 ≤ i < n. Moreover, a1 = p, an = −q and an+1 = q − p.
Then we have b1 = a1 + an + (`+ 1) and thus

b0 = `+ 1
2 = a1 + an + an+1 + `+ 1

2 = b1 + an+1
2

since a1 +an+an+1 = 0. We obtain that Yp,q occurs in Hσ,µ if and only if bn = −(`+1) ≥
an ⇔ q ≥ `+ 1.
In the case of e1 − en the calculations are similar. We obtain

N = −2〈ρm + µ`, e1 − en〉
〈e1 − en, e1 − en〉

= −〈−n− 2
2 en − (n+ 2`)e1 − en+1

2 , e1 − en〉

= 〈(n2 + `)(e1 − en+1) + n− 2
2 en, e1 − en〉 = `+ 1.

In the notation of [Bal79, Lemma 4.3], σ corresponds to (`+ 1)ε2− `+1
2 (ε1 + εn+1) ∈ DM

and µ = −ρ− (`− 1)α. By the branching rule [Bal79, Theorem 4.4] we obtain that the
joint K-types of Hσ,µ and Hµ` are given by the Yp,q with p ≥ `+ 1.

Let us now turn to the case of Sp(n, 1), n ≥ 2. Again we use the notation from [Bal79,
§5] resp. [BSK80]. This time the Cayley transform we use and the roots are described in
[BSK80, §1], the latter given by

Φ := {±ei ± ej | 1 ≤ i < j ≤ n+ 1} ∪ {±2ei | 1 ≤ i ≤ n+ 1}.

The real roots are ±(e1 + e2) and the unique positive complex root with dominant
restriction to m is given by e1 + e3. We have ρm = 1

2(e1 − e2) + (n− 1)e3 + . . .+ en+1,
µ` = −(2n+ 2`− 1) e1+e2

2 and calculate

N = −〈ρm + µ`, β〉

= −〈12(e1 − e2) + (n− 1)e3 + . . .+ en+1 − (n+ `− 1
2)(e1 + e2), e1 + e3〉

= 〈(n+ `− 1)e1 − (n− 1)e3, e1 + e3〉 = `,

which is in N if and only if µ` ≤ −(2n+ 1)α = −ρ. The highest weight of σ is given by
`(e3 + e1−e2

2 ) and µ = `α− (2n+ 2`− 1)α = −(2n+ `− 1)α. For the joint K-types of
Hσ,µ and Hµ` we use the branching rule [Bal79, Theorem 5.5]. In that notation we have
b0 = `

2 and obtain the restriction a1 ≥ b2 = ` so that the joint K-types are given by Va,b,
with highest weight aε1 + bε2 + (a− b)εn+1, where a ≥ `.
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6. Γ-invariant elements
In this chapter we investigate which principal series representations admit Γ-invariant
distributional elements and, if the representation is reducible, in which composition factors
they can occur. As these turn out to be given by the socle, it then suffices to determine
the images of the injective minimal K-type Poisson transforms from Proposition 5.1.3
and Theorem 5.1.6 restricted to the socle to obtain spectral correspondences (recall
Proposition 2.2.3). In rank one we investigate the socle in more detail. In particular, we
obtain an interesting relationship between the socles of the principal series attached to
the exceptional parameters and the representations of the relative discrete series of the
associated pseudo-Riemannian symmetric spaces in Theorem 6.2.3. We do not have to
assume that the co-compact lattice Γ ≤ G is torsion free in this chapter.

6.1. Location of Γ-invariant elements
Let G be as in Section 1.1 (i.e. not necessarily of rank one).

Theorem 6.1.1 (Location of Γ-invariant elements). Let σ ∈ M̂ and µ ∈ a∗. Assume
that the socle of Hσ,µ decomposes multiplicity-freely. Then

ΓH−∞σ,µ
∼= Γ(socHσ,µ)−∞ =

⊕
V≤Hσ,µ irred.

ΓV −∞,

where the sum on the right hand side is finite. Moreover, for each irreducible V ≤ Hσ,µ,
the existence of Γ-invariant distributional elements in V implies that V is infinitesimally
unitary.

Proof. Note first that Hσ,µ has finitely many irreducible subrepresentations by the
finite length of Hσ,µ and our multiplicity one assumption. We claim that the dual
principal series representation Hσ̃,−µ has finitely many irreducible quotients. Indeed, let
Hσ̃,−µ/V , for some subrepresentation V ≤ Hσ̃,−µ, denote an irreducible quotient of Hσ̃,−µ.
Then we have that V ⊥σ̃,−µ ≤ Hσ,µ is a subrepresentation (see Equation (2.5) for the
notation). Moreover, V ⊥σ̃,−µ ≤ Hσ,µ is the dual representation of Hσ̃,−µ/V and therefore
irreducible. IfHσ̃,−µ/V1 6= Hσ̃,−µ/V2 are two different irreducible quotients, we obtain two
different irreducible subrepresentations V ⊥σ̃,−µ1 6= V

⊥σ̃,−µ
2 ≤ Hσ,µ by the non-degeneracy

of 〈·, ·〉σ̃,−µ. Since there are only finitely many of the latter, Hσ̃,−µ resp. H∞σ̃,−µ has finitely
many irreducible quotients Hσ̃,−µ/Vj , j = 1, . . . , n resp. H∞σ̃,−µ/V∞j , j = 1, . . . , n.
By definition we have that H−∞σ,µ = HomC(H∞σ̃,−µ,C) is the space of continuous linear

maps from H∞σ̃,−µ to C, equipped with the dual representation of H∞σ̃,−µ. This implies
ΓH−∞σ,µ = Γ HomC(H∞σ̃,−µ,C) = HomΓ(H∞σ̃,−µ,C). (6.1)
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6. Γ-invariant elements

Note that H∞σ̃,−µ is a nuclear Fréchet space (consider the compact picture and see e.g.
[CHM00, §2]) and a differentiable G-module. Moreover, C is a differentiable nuclear
Γ-module. Therefore we may use Frobenius reciprocity to obtain (see [Zuc78, Lemma 1.3])

ΓH−∞σ,µ = HomΓ(H∞σ̃,−µ,C) ∼= HomG(H∞σ̃,−µ, IndG,∞Γ (C)),

where IndG,∞Γ (C) ∼= C∞(Γ\G) denotes the representation smoothly induced by the trivial
representation of Γ. By [GGPS69, Chapter 1, §2.3], there exists a countable subset
ĜΓ ⊂ Ĝ such that IndGΓ (C) decomposes as a direct sum

IndGΓ (C) ∼=
⊕̂

π∈ĜΓ
mΓ(π)π,

where each multiplicity mΓ(π) ≥ 1 is finite. Therefore, if 0 6= ϕ ∈ ΓH−∞σ,µ with correspond-
ing ϕF ∈ HomG(H∞σ̃,−µ, IndG,∞Γ (C)), there exists some π ∈ ĜΓ such that prπ ◦ϕF 6= 0,
where prπ denotes the orthogonal projection onto one copy of π in IndGΓ (C). Since ϕF and
prπ are continuous and linear they are smooth. Therefore, prπ ◦ϕF maps H∞σ̃,−µ into π∞.
By [War72, §4.4, p. 253], H∞σ̃,−µ and π∞ are smooth Fréchet representations. Therefore,
the image of prπ ◦ϕF is closed and a topological summand of π∞ [Wal92, Lemma 11.5.1,
Theorem 11.6.7(2)]. Since π is irreducible, π∞ is irreducible (see e.g. [War72, p. 254])
and therefore prπ ◦ϕF is surjective. Now [Die70, Theorem 12.16.8] implies that the
canonical factorization H∞σ̃,−µ/ ker(prπ ◦ϕF )→ π∞ is a topological isomorphism. Since
π∞ is irreducible, H∞σ̃,−µ/ ker(prπ ◦ϕF ) is irreducible. It follows that ker(prπ ◦ϕF ) = V∞j
for some j ∈ {1, . . . , n}. Thus we proved that if prπ ◦ϕF 6= 0, then it factors through an
irreducible quotient of H∞σ̃,−µ.
Consider the finite set

F := {π ∈ ĜΓ | ∃ j ∈ {1, . . . , n} : π∞ ∼= H∞σ̃,−µ/V
∞
j }.

For π ∈ F with π∞ ∼= H∞σ̃,−µ/V
∞
j we set j(π) := j. Moreover, let

IΓ := {j ∈ {1, . . . , n} | ∃ πj := π ∈ F : j(π) = j}.

Then HomG(H∞σ̃,−µ, IndG,∞Γ (C)) ∼= HomG(H∞σ̃,−µ,
⊕

π∈F mΓ(π)π) is isomorphic to

⊕
π∈F

mΓ(π)⊕
k=1

HomG(H∞σ̃,−µ, π) ∼=
⊕
π∈F

mΓ(π)⊕
k=1

HomG(H∞σ̃,−µ/V∞j(π), π)

∼=
⊕
π∈F

HomG(H∞σ̃,−µ/V∞j(π),mΓ(π)π)

∼=
⊕
j∈IΓ

HomG(H∞σ̃,−µ/V∞j ,mΓ(πj)πj)

∼=
⊕
j∈IΓ

HomG(H∞σ̃,−µ/V∞j , IndG,∞Γ (C))

∼=
⊕
j∈IΓ

HomΓ(H∞σ̃,−µ/V∞j ,C)

∼=
⊕
j∈IΓ

HomΓ((Hσ̃,−µ/Vj)∞,C).
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6.1. Location of Γ-invariant elements

Note that the dual representation of Hσ̃,−µ/Vj is given by Wj := V
⊥σ̃,−µ
j ≤ Hσ,µ. There-

fore, as in (6.1), ⊕
j∈IΓ

HomΓ((Hσ̃,−µ/Vj)∞,C) =
⊕
j∈IΓ

ΓW−∞j .

This proves the first part. We now prove the second part concerning the infinitesimal
unitarity. Let ϕF and π as above. Then, denoting the K-finite elements by ·K , we have
(cf. [Wal92, Corollary 11.6.8])(

H∞σ̃,−µ/ ker(prπ ◦ϕF )
)
K
∼= πK

as (g,K)-modules. Since π is unitary we infer that Hσ̃,−µ/ ker(prπ ◦ϕF ) is infinitesimally
unitary.

Note that Theorem 6.1.1 applies if Hσ,µ is irreducible. The following proposition shows
that the hypotheses of Theorem 6.1.1 are in particular satisfied in the rank one case.

Proposition 6.1.2. Let G be of real rank one. Then the socle of Hσ,µ decomposes
multiplicity-freely for each σ ∈ M̂ and µ ∈ a∗.

Proof. See [Col85, Theorem (6.1.3)].

Example 6.1.3. Figure 6.1 describes the spherical principal series representations
which can possibly contain Γ-invariant elements for G = SO0(n, 1), n ≥ 2, and G =
Sp(n, 1), n ≥ 2. The unitary principal series is given by µ ∈ ia∗0 in both cases and the
complementary series consists of the parameters µ with µ(H) ∈] − ρ(H), ρ(H)[ resp.
µ(H) ∈]− ρ(H) + 2, ρ(H)− 2[, where H ∈ a0 as before denotes the unique element with
α(H) = 1 for the unique simple positive real root α. Moreover, Hµ is reducible if and
only if µ ∈ ±(ρ+ N0α) resp. µ ∈ ±(ρ+ (2N0 − 2)α) and µ is exceptional if and only if
Hµ 6= Hρ is reducible and has a unitarizable subrepresentation. In each case, the constant
functions form an irreducible subspace of Hρ and thus Γ(socHρ)−∞ 6= {0}.

Remark 6.1.4. Recall from Theorem 6.1.1 that

ΓH−∞µ =
⊕

U∈Irr(µ)

ΓU−∞.

Choosing (τU , VτU ) as in Proposition 5.1.3 (e.g. a minimal K-type of U) we have by
Proposition 5.1.2 that each P τUµ

∣∣∣
U−∞

is injective and therefore

ΓH−∞µ
∼=

⊕
U∈Irr(µ)

ΓP τUµ (U−∞) ⊆
⊕

U∈Irr(µ)

ΓC∞(G×K VτU ).

Moreover, since the socle never contains the trivial representation in the exceptional
cases, the scalar Poisson transform maps ΓH−∞µ to zero in these cases.
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6. Γ-invariant elements

ia∗0

a∗0−ρ ρ

ia∗0

a∗0−ρ −ρ+2α ρ−2α ρ

Figure 6.1.: Parameters µ for which Hµ has a unitarizable subrepresentation (gray) resp.
is reducible (dots) for G = SO0(n, 1), n ≥ 2, (left) resp. G = Sp(n, 1), n ≥ 2,
(right). The exceptional set is given by the gray dots except for µ = ρ.

6.2. The socle

In rank one we can describe the socle of spherical principal series representations in more
detail. Let us first summarize what we know so far.

Theorem 6.2.1. Denoting the set of minimal K-types by τmin and the Harish-Chandra
module of soc(Hµ) by soc(Hµ)K we have (see Appendix A for the notation)

G Ex = {µ` | ` ∈ N0} soc(Hµ`)K τmin(soc(Hµ`))
SO0(2, 1) µ` = −ρ− `α ⊕

k≥`+1 Yk ⊕ Y−k {Y−(`+1), Y(`+1)}
SO0(n, 1), n ≥ 3 µ` = −ρ− `α ⊕∞

k=`+1 Yk {Y`+1}
SU(n, 1), n ≥ 2 µ` = −ρ− 2`α ⊕∞

p,q=`+1 Yp,q {Y`+1,`+1}
Sp(n, 1), n ≥ 2 µ` = −ρ− (2`− 2)α ⊕

a≥b≥`+1 Va,b {V`+1,`+1}
F4(−20) µ` = −ρ− (2`− 6)α ⊕

m−k≥2`+2
m≡kmod 2

Vm,k {V2`+2,0}

In each case, every irreducible subrepresentation of soc(Hµ) is unitarizable and has a
unique minimal K-type. For G 6= SO0(2, 1) the socle is irreducible for all exceptional pa-
rameters. For G = SO0(2, 1) the socle decomposes into two irreducible subrepresentations
which are given by discrete series representations.

Proof. For the exceptional parameters and the minimal K-types of the socles we refer
the reader to Chapter 5.1 – precise information about the socles and its K-types can be
found in Appendix B. Moreover, [JW77, Theorem 6.3 (1-3)] resp. [Joh76, Theorem 5.3
(2)] show that the socles are unitarizable. For G = SO0(2, 1) the decomposition of the
socle follows from [Kna86, p. 38] with n = 2(` + 1), where two (unitary, irreducible)
discrete series representations D+

2(`+1) and D−2(`+1) occur.

In each case we can compute the Langlands parameters of the socle representations.
Similar calculations can be found in [Rob22].
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6.2. The socle

Theorem 6.2.2 (Langlands parameters). We have the following Langlands parameters
for soc(Hµ`), µ` ∈ Ex (see Theorem 6.2.1), in the notation of [Kna86, Theorem 8.54]

G S ω ∈ M̂ ν ∈ a∗

SO0(n, 1), n ≥ 2 G if n = 2 − −
P if n 6= 2 (`+ 1)e1

n−3
2 α

SU(n, 1), n ≥ 2 G if n = 2 − −
P if n 6= 2 (`+ 1)(ε2 − εn) (n− 2)α

Sp(n, 1), n ≥ 2 G if n = 2 − −
P if n 6= 2 (`+ 1)(ε2 + ε3) (2n− 3)α

F4(−20) G − −

Here, the highest weight of the M -representation ω is denoted as in [Bal79, Lemmas 4.3,
5.3] for G ∈ {SU(n, 1),Sp(n, 1)} and as in Appendix A for G = SO0(n, 1) (then M ∼=
SO(n− 1)). By definition, if S = G, the socle soc(Hµ`) is tempered. Moreover, in these
cases, it is a discrete series representation if and only if µ`(H) ≤ −ρ(H). The Blattner
parameter of the discrete series (see [Kna86, Terminology p. 310]) is given by its minimal
K-type. If µ`(H) > −ρ(H), the socle is a limit of discrete series representation (this
case only occurs for G = Sp(2, 1) and G = F4(−20)).
Proof. Using the branching rules described in [Bal79] and [Kna02, Theorem 9.16] we
first try to find ω ∈ M̂ such that the minimal K-type of soc(Hµ`) is also minimal for
the induced representation IndKM (ω). To determine ν ∈ a∗ we compare the infinitesimal
character of the socle, which is the same as that of Hµ` , with the infinitesimal character
of the principal series representation corresponding to the pair (ω, ν). They have to
coincide up to the action of an element of the Weyl group and can be calculated using
[Kna86, Proposition 8.22]. If one of the two steps above does not work, we must have
S = G, i.e. the socle is tempered. In this case [KZ82, Theorem 14.2] shows that it has to
be a discrete series representation or a limit of discrete series representation depending
on the infinitesimal character being regular or singular. The connection to the Blattner
parameter follows from [Kna86, Chapter XV, §1, Example (1)].

In the real case, for soc(Hµ`), we get the same parameters as obtained by the Želobenko
operator in Proposition 5.4.3 since (α − ρ)(H) = 1 − n−1

2 = −n−3
2 (note that the a-

parameter of [Kna86, Theorem 8.54] has a minus sign in comparison to our a-parameter).
Figure 6.2 schematically summarizes the main results on the exceptional case so far.
In the case of surfaces, the exceptional parameters lead to discrete series representations

of SL(2,R). This phenomenon generalizes to the rank one case in the following way.
Theorem 6.2.3. There is a one-to-one correspondence between the representations
soc(Hµ`), µ` ∈ Ex (see Theorem 6.2.1), and the relative discrete series of the associated
pseudo-Riemannian symmetric spaces G/H starting at the end of the complementary se-
ries1. More precisely, each of these representations corresponds to a minimal closed invari-

1More precisely, if the complementary series corresponds to the real parameters s ∈ [−s0, s0], we only
consider representations associated to parameters s ∈ R with |s| ≥ s0.
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6. Γ-invariant elements

Res0
X((µ` − ρ)(H)) ΓP

τmin(soc(Hµ` ))
µ` ((socHµ`)−∞)

ΓH−∞µ`
Γ(socHµ`)−∞

Corollary 5.1.4

Proposition 5.1.3P
τmin(soc(Hµ` ))
µ`Proposition 2.2.3

Theorem 6.1.1

Figure 6.2.: The exceptional case for G 6= SO0(2, 1) and µ` as in Theorem 6.2.1

ant subspace of L2(G/H) with H = SO0(n− 1, 1), S(U(1)×U(n− 1, 1)) ∼= U(n− 1, 1),
Sp(1)× Sp(n− 1, 1), or Spin(1, 8) respectively.

Proof. In the classical cases the Plancherel formula for G/H is determined in [Far79,
Theorem 10 (q = 1)], where the representations occurring in its discrete part are described
in [Far79, proof of Theorem 9.2] (note that c(s)c(−s) = 0 for s ≥ s0 – where [−s0, s0]
corresponds to the complementary series (see [Far79, p. 417]) – if and only if µ(H) := −s
defines an exceptional parameter). Comparing the K-types one recovers our socle
representations, where Y`m in [Far79, p. 399] corresponds to our Y`, Yp,q ⊕ Yq,p with
2p := `+m, 2q := `−m, or Va,b with 2a := `+m, 2b := `−m, for G = SO0(n, 1), n ≥ 3,
or G = SU(n, 1), Sp(n, 1), n ≥ 2, respectively (note that O(n, 1), U(n, 1) are used
instead of SO0(n, 1), SU(n, 1) in [Far79]). For G = SO0(2, 1) the Y`m = Y 2

` ⊗ Y 1
m in

[Far79] is two-dimensional (Y 2
` is spanned by (x± iy)`) and corresponds to Y` ⊕ Y−` in

our notation.
For the exceptional case we refer to Appendix C for details and only present an

outline of the proof here. The Plancherel formula can be found in [Kos83, p. 85], where
θr should also occur for r = 0. Again, the exceptional points occur in the discrete
part of this formula and thus again lead to relative discrete series representations by
[Kos83, Theorem 3.12.1] (in [Kos83, Remark 3.13.4] ζ5 and −θ0 are missing). By the
definitions of the spherical distributions θr and ζs in [Kos83, pp. 62, 81] we see that their
associated representations are subquotients of spherical principal series representations
and, comparing the occurring K-types (see [Kos83, Proposition 3.9.4, pp. 71, 82]), that
they are given by our socle representations.
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7. Fourier characterization

From now on we consider spherical principal series representations for exceptional
parameters in the rank one case. Our aim is to find explicit realizations of the unitary
irreducible subrepresentations occurring in Theorem 6.1.1 in the space of smooth sections
of a specific vector bundle. In the case of surfaces this realization relied heavily on the
decomposition of distributions in the fibres of the sphere bundle (see Equation (4.3)). We
prove an analog of this decomposition – which, taking care of higher multiplicities, also
works in higher rank – in the first two sections (see especially Propositions 7.2.3 and 7.2.4).
Apart from being interesting itself, it is closely related to Poisson transforms (Lemma
7.1.4) and allows a nice characterization of spherical principal series representations using
the conditions determined by Proposition 5.3.2 (see Theorem 7.4.11). While we formulate
everything on the cover G/K, the same proofs – by taking the quotient by Γ – show the
same characterization for the locally symmetric space M. We use this characterization
to give explicit descriptions of the images of Γ-invariant elements under the injective
vector-valued Poisson transforms from Section 5.1 in each of the cases listed in Chapter 8.
Furthermore, we prove a number of results concerning decompositions of tensor products
and generalized gradients which may be of independent interest.

7.1. Generalized Fourier series
In the following we describe a generalized Fourier series that is closely related to the
Poisson transform and essentially gives that, properly interpreted, each f ∈ Hµ is the
sum of all its Poisson transform images.

Definition 7.1.1. For each Y ∈ K̂M let

πY : C∞(G×K Y ) ↪→ C∞(G)M , πY (ϕ)(g) := ϕ(g)(e),

where C∞(G)M denotes the right M -invariant elements in C∞(G). Moreover, let
D′(G×K Y ) denote the dual of C∞c (G ×K Ỹ ), where we realize the dual representa-
tion Ỹ of Y as the complex conjugate representation of Y . We embed C∞(G/M) into
D′(G/M) by

ιG/M : C∞(G/M) ↪→ D′(G/M), ιG/M (f)(ϕ) :=
∫
G
f(gM)ϕ(gM) dg

and C∞(G×K Y ) into D′(G×K Y ) by

ιY : C∞(G×K Y ) ↪→ D′(G×K Y ), ιY (f)(ϕ) :=
∫
G
πY (f)(g)πỸ (ϕ)(g) dg.
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7. Fourier characterization

If it is clear from the context we omit the embeddings ι∗ for the sake of readability. Let
us further define the pullback

π∗Y : D′(G/M)→ D′(G×K Y ), π∗Y (f)(ϕ) := f(πỸ (ϕ)).

We now give a first version of generalized Fourier series.

Lemma 7.1.2. Let f ∈ C∞(G)M be a right M -invariant smooth function and

prYτ : L2(K/M)→ Yτ

denote the orthogonal projection onto Yτ ∈ K̂M . For every fixed g ∈ G, the series∑
τ∈K̂M

prYτ (f(g•)),

where f(g•) ∈ C∞(K/M) is defined by

f(g•) : K/M → C, kM 7→ f(gk),

converges absolutely and uniformly to f(g•). Moreover, we can uniquely decompose f
into the generalized Fourier series

f =
∑

τ∈K̂M

fYτ ,

where fYτ ∈ πYτ (C∞(G×K Yτ )) and the series converges pointwise. The functions fYτ
are given by

fYτ = πYτ (g 7→ prYτ (f(g•))).

Proof. We decompose f according to the right regular K-representation: For fixed g ∈ G
consider the function

fg : K → C, fg(k) := f(gk).

Then fg ∈ C∞(K)M ∼= C∞(K/M). Since, by definition of K̂M ,

L2(K/M) ∼=
⊕̂

τ∈K̂M
Yτ

we can decompose

fg =
∑

τ∈K̂M

prYτ (fg) (7.1)

which converges in the Hilbert sense. By [Hel00, Chapter V, Theorem 3.5 (iii)] this
convergence is absolute and uniform. Thus, we have for every k ∈ K

f(gk) = fg(k) =
∑

τ∈K̂M

prYτ (fg)(k).
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7.1. Generalized Fourier series

Note that (g 7→ prYτ (fg)) ∈ C∞(G×K Yτ ); indeed

fgk̃(k) = f(gk̃k) = fg(k̃k) =
∑

τ∈K̂M

prYτ (fg)(k̃k) =
∑

τ∈K̂M

(τ(k̃)−1 prYτ (fg))(k)

implies prYτ (fgk̃) = τ(k̃)−1 prYτ (fg) for every g ∈ G, k̃ ∈ K. We can write

f =
∑

τ∈K̂M

fτ ,

where fτ := πYτ (g 7→ prYτ (fg)) ∈ C∞(G)M since, by Equation (7.1),

f(g) = fg(e) =
∑

τ∈K̂M

prYτ (fg)(e) =
∑

τ∈K̂M

fτ (g)

for every g ∈ G.
Conversely, for proving uniqueness, let f = ∑

τ∈K̂M πYτ (ϕτ ) with ϕτ ∈ C∞(G×K Yτ ).
We need to show that ϕτ (g) = prYτ (fg) for every g ∈ G. We calculate for k ∈ K, g ∈ G

fg(k) = f(gk) =
∑

τ∈K̂M

πYτ (ϕτ )(gk) =
∑

τ∈K̂M

ϕτ (gk)(e)

=
∑

τ∈K̂M

(τ(k)−1ϕτ (g))(e) =
∑

τ∈K̂M

ϕτ (g)(k).

This yields prYτ (fg) = ϕτ (g) and proves the uniqueness.

Notation 7.1.3. Let

πY : D′(G×K Y )→ D′(G/M), πY (f)(ϕ) := f(π∗
Ỹ

(ϕ)).

In Lemma 7.1.4 iii) we see that this extends the definition of πY from Definition 7.1.1.

The following lemma also provides an alternative form of the generalized Fourier series,
which we mainly use later on, and connects it to Poisson transforms.

Lemma 7.1.4. Let Y ∈ K̂M and recall the maps ιG/M , ιY from Definition 7.1.1. Then

i) π∗Y (f)(g) = prY (f(g•)) for each f ∈ C∞(G/M), g ∈ G, so that π∗Y (C∞(G/M)) ⊆
C∞(G×K Y ) and π∗Y (C∞c (G/M)) ⊆ C∞c (G×K Y ),

ii) f = ∑
τ∈K̂M πYτ (π∗Yτ (f)) pointwise for each f ∈ C∞(G/M),

iii) πY (ιY (f)) = ιG/M (πY (f)) for each f ∈ C∞(G×K Y ) and

iv) ∀µ ∈ a∗ : P Yµ = 1
dimY π

∗
Y ◦ Qµ−ρ on D′(K/M).
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7. Fourier characterization

Proof. i) By Lemma 7.1.2 we can write f = ∑
τ∈K̂M πYτ (uτ ), where uτ ∈ C∞(G×K Yτ )

is given by uτ (g) = prYτ (f(g•)). For each ϕ ∈ C∞c (G×K Ỹ ) we use the orthogonality of
the Yτ to obtain

π∗Y (f)(ϕ) = f(πỸ (ϕ)) =
∫
G
πỸ (ϕ)(g)f(g) dg

=
∫
G/K

∫
K
πỸ (ϕ)(gk)f(gk) dk dgK

=
∫
G/K

∫
K
ϕ(g)(k)

∑
τ∈K̂M

πYτ (uτ )(gk) dk dgK

=
∫
G/K

∑
τ∈K̂M

∫
K
ϕ(g)(k)uτ (g)(k) dk dgK

=
∫
G/K

∫
K
ϕ(g)(k)uY (g)(k) dk dgK

=
∫
G/K

∫
K
πỸ (ϕ)(gk)πY (uY )(gk) dk dgK

=
∫
G
πỸ (ϕ)(g)πY (uY )(g) dg

= ιY (uY )(ϕ).

Note that if f has compact support supp f ⊂ G/M and pr : G → G/M denotes the
canonical projection, we have that supp(π∗Y (f)) ⊆ pr−1(supp f) ·K is compact since M
is compact.
ii) follows from Lemma 7.1.2 and i).
iii) Let f ∈ C∞(G×K Y ) and ϕ ∈ C∞c (G/M). By ii) we decompose

ϕ =
∑

τ∈K̂M

πYτ (π∗Yτ (ϕ))

where π∗Y (ϕ) ∈ C∞(G×K Y ). By the orthogonality of the Yτ we have

ιG/M (πY (f))(ϕ) =
∫
G
πY (f)(gM)ϕ(gM) dg =

∫
G/K

∫
K
πY (f)(gkM)ϕ(gkM) dk dgK

=
∫
G/K

∑
τ∈K̂M

∫
K
f(g)(kM)π∗Yτ (ϕ)(g)(k) dk dgK

=
∫
G/K

∫
K
f(g)(kM)π∗

Ỹ
(ϕ)(g)(k) dk dgK

=
∫
G
πY (f)(g)πỸ (π∗

Ỹ
(ϕ))(g) dg = ιY (f)(π∗

Ỹ
(ϕ)) = πY (ιY (f))(ϕ).

iv) By continuity (recall Proposition 2.2.2) we restrict our attention to smooth functions
φ ∈ C∞(K/M). In this case the equality follows from Lemma 5.1.1 and i) (recall that
φYτ (e) = 1).
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7.2. Convergence of generalized Fourier series

7.2. Convergence of generalized Fourier series
In the following we will prove that the convergence in Lemma 7.1.4 ii) is uniform on
compact sets and that the same is true for each derivative. Therefore the convergence
is a convergence in C∞c (G/M) for f ∈ C∞c (G/M), where we equip C∞c (G/M) with the
inductive limit topology C∞c (G/M) = limC⊆G/M C∞C (G/M), where the limit runs over all
compact subsets C ⊆ G/M and we denote by C∞C (G/M) ⊆ C∞c (G/M) the subset of all
functions which are supported in C. We describe the topology on the spaces C∞C (G/M)
in some more detail by defining a family of norms.
Let B := {X1, . . . , Xn} ⊆ g0 be a basis of g0. For ` ∈ N0 and C ′ ⊂ G compact we

introduce the following norm on C∞(G/M):

‖f‖H`(C′) :=
∑̀
k=0

∑
X1,...,Xk∈B

sup
g∈C′
|(X1 · · ·Xkf)(gM)|,

where X ∈ g0 acts on f ∈ C∞(G/M) by the derived left regular representation

∀g ∈ G : (Xf)(gM) := d

dt

∣∣∣∣
t=0

f(exp(−tX)gM).

The summand for k = 0 is understood as not differentiating, i.e. as supg∈C′ |f(gM)|.
Identifying C∞(Γ\G/M) ∼= ΓC∞(G/M) using the pullback of the canonical projection
πΓ, we can transfer the topology generated by these norms to C∞(Γ\G/M).

We have the following lemma related to the Riemann-Lebesgue lemma.

Lemma 7.2.1. Let f ∈ C∞(G/M). For each C ⊂ G compact, ` ∈ N0 and N ∈ N there
exists a constant Cf,C,N,` > 0 independent of Yτ such that

∀Yτ ∈ K̂M : ‖πYτ (π∗Yτ (f))‖H`(C) ≤ Cf,C,N,` · (1 + ‖τ‖2)−N ,

where ‖τ‖ denotes the length of the highest weight of Yτ . Moreover, if fn → 0 in
C∞(G/M) we can find Cfn,C,N,` such that limn→∞Cfn,C,N,` = 0.

Proof. For each g ∈ G we have f(g•) ∈ C∞(K/M). By a slight abuse of notation we will
write τ also for the highest weight of (τ, Yτ ). Applying [Hel00, Chapter V, Lemma 3.2] to
C∞(K/M) with the uniform norm ‖•‖∞ and the left regular representation λ we obtain

∀Yτ ∈ K̂M , ∀m ∈ N : ‖π∗Yτ (f)(g)‖∞ ≤ C1c
−m
τ dim(Yτ )2‖λ(Ωm)f(g•)‖∞, (7.2)

where

i) Ω is a bi-invariant differential operator on K with

Ωχτ = cτχτ

for the character χτ of Yτ (cf. proof of [Hel00, Chapter V, Theorem 3.1]),
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7. Fourier characterization

ii) cτ ≥ 1+〈τ+ρ[k,k], τ+ρ[k,k]〉−〈ρ[k,k], ρ[k,k]〉 = 1+〈τ, τ+2ρ[k,k]〉, where ρ[k,k] denotes the
half-sum of positive roots in the semisimple part [k, k] of k, (see [Hel00, Chapter V,
Equation (16) of §1 & proof of Lemma 3.2])

iii) C1 > 0 is some constant independent of f, C,N, ` and g given by the continuity of
λ on C∞(K/M).

By the Weyl dimension formula we have

dim(Yτ ) =
∏

α∈∆+
[k,k]

〈τ + ρ[k,k], α〉
〈ρ[k,k], α〉

,

where ∆+
[k,k] denotes the positive roots in [k, k]. Therefore, we can conclude that there

exists a constant C̃ depending only on k such that, for m ≥ mN ∈ N large enough,

c−mτ dim(Yτ )2 ≤ C̃ · (1 + ‖τ‖2)−N

and thus, by Equation (7.2),

∀Yτ ∈ K̂M : ‖π∗Yτ (f)(g)‖∞ ≤ C1C̃‖λ(ΩmN )f(g•)‖∞ · (1 + ‖τ‖2)−N .

Taking the supremum over C on both sides we hence infer

∀Yτ ∈ K̂M : sup
g∈C
‖π∗Yτ (f)(g)‖∞ ≤ C1C̃ sup

g∈C
‖λ(ΩmN )f(g•)‖∞ · (1 + ‖τ‖2)−N .

Note that since the map g 7→ ‖λ(ΩmN )f(g•)‖∞ from G to R≥0 is continuous by the
smoothness of f , the suprema are actually finite. We abbreviate

Cf,C,N,0 := C1C̃ sup
g∈C
‖λ(ΩmN )f(g•)‖∞ <∞.

Note that the procedure above also works for X1 · · ·Xkf instead of f for X1, . . . , Xk ∈ B
and 0 ≤ k ≤ `. We set

Cf,C,N,` := max{Cϕ,C,N,0 | ∃ 0 ≤ k ≤ `, ∃X1, . . . , Xk ∈ B : ϕ = X1 · · ·Xkf}.

By the definition of π∗Yτ we have π∗Yτ (X1 · · ·Xkf) = X1 · · ·Xkπ
∗
Yτ

(f) for all X1, . . . , Xk

as above. Finally we obtain that for each Yτ ∈ K̂M

sup
g∈C
|(X1 · · ·XkπYτ (π∗Yτ (f)))(g)| = sup

g∈C
|(π∗Yτ (X1 · · ·Xkf))(g)(e)|

≤ sup
g∈C
‖π∗Yτ (X1 · · ·Xkf)(g)‖∞ ≤ Cf,C,N,` · (1 + ‖τ‖2)−N .

This proves the first part and the second part follows from the definition of Cf,C,N,`.

Remark 7.2.2. We remark that the proof of Lemma 7.2.1 also works for smooth functions
f ∈ C∞(G) on G. Moreover, since Ω is K-bi-invariant, all constants are invariant under
right translations with elements of K, i.e. we obtain the same constants when considering
r(k)f instead of f for k ∈ K.
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7.2. Convergence of generalized Fourier series

Proposition 7.2.3. Let f ∈ C∞c (G/M). Then∑
τ∈K̂M

πYτ (π∗Yτ (f)) (7.3)

is absolutely convergent with respect to each ‖•‖H`(C) and converges to f in C∞c (G/M).

Proof. Let pr : G → G/M denote the canonical projection. By the definition of the
inductive limit topology on C∞c (G/M) we have to find a compact set C ⊂ G/M such
that supp(πYτ (π∗Yτ (f))) ⊆ C for each Yτ ∈ K̂M and such that for each ` ∈ N0 we have
that ∑τ∈K̂M πYτ (π∗Yτ (f)) converges to f with respect to ‖•‖H`(pr−1(C)). As in the proof
of Lemma 7.1.4 i) we see that the condition on the supports is fulfilled if we choose
C := supp(f) · K. Let ` ∈ N0 and N ∈ N be fixed. By Lemma 7.2.1 there exists a
constant Cf,C,N,` independent of Yτ such that

∀Yτ ∈ K̂M : ‖πYτ (π∗Yτ (f))‖H`(C) ≤ Cf,C,N,` · (1 + ‖τ‖2)−N .

Thus we have for each finite subset F ⊆ K̂M that

‖
∑
τ∈F

πYτ (π∗Yτ (f))‖H`(pr−1(C)) ≤
∑
τ∈F
‖πYτ (π∗Yτ (f))‖H`(pr−1(C)) ≤ Cf,C,N,`

∑
τ∈F

(1 + ‖τ‖2)−N .

(7.4)

Let ε > 0. Note that the weight lattice of [k, k] is a lattice in the finite dimensional space
(it0)∗, where t0 denotes the Lie algebra of a maximal torus T in K̃, the analytic subgroup
of [k0, k0]. Therefore, we may identify K̂M with a subset of Zd in Rd with d := dim t0. We
infer that if N is large enough, there exists a finite set F0 ⊆ K̂M such that the right hand
side of (7.4) is smaller than ε for each finite set F ⊆ K̂M with F ∩ F0 = ∅. Therefore,
for each such F ,

‖
∑
τ∈F

πYτ (π∗Yτ (f))‖H`(pr−1(C)) ≤
∑
τ∈F
‖πYτ (π∗Yτ (f))‖H`(pr−1(C)) ≤ Cf,C,N,` · ε.

Hence, the series in (7.3) converges absolutely and to its pointwise limit f (see Lemma
7.1.4 ii)) with respect to ‖•‖H`(pr−1(C)).

We can also decompose distributions.

Proposition 7.2.4. Let u ∈ D′(G/M) be a distribution. Then the sum∑
τ∈K̂M

πYτ (π∗Yτ (u))

converges absolutely and to u in the weak sense.

Proof. Let f ∈ C∞c (G/M). For each Yτ ∈ K̂M we have (see Definition 7.1.1 and
Notation 7.1.3)

πYτ (π∗Yτ (u))(f) = π∗Yτ (u)(π∗
Ỹ

(f)) = u(πỸ (π∗
Ỹ

(f)))
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7. Fourier characterization

and therefore, by Proposition 7.2.3 and the continuity of u,∑
τ∈K̂M

πYτ (π∗Yτ (f)) = f in C∞c (G/M)⇒
∑

τ∈K̂M

u(πỸ (π∗
Ỹ

(f))) = u(f).

For the absolute convergence note that (see [Hör90, Definition 2.1.1]) the restriction of u
to C∞(supp(f)K) is of finite order, i.e. there exist ` ∈ N0 and C > 0 with

∀ϕ ∈ C∞(supp(f)K) : |u(ϕ)| ≤ C‖ϕ‖H`(supp(f)K).

Then

|πYτ (π∗Yτ (u)(f))| = |u(πỸ (π∗
Ỹ

(f)))| ≤ C‖πỸ (π∗
Ỹ

(f))‖H`(supp(f)K).

The absolute convergence now follows from Lemma 7.2.1.

Lemma 7.2.5. Fix c > 0 and N ∈ N. If ψτ ∈ C∞(G ×K Yτ ) for τ ∈ K̂M are chosen
such that

ιG/M (πYτ (ψτ ))(πỸτ (ψτ )) ≤ c · (1 + ‖τ‖2)N ,

then ψ := ∑
τ∈K̂M ιG/M (πYτ (ψτ )) is absolutely convergent in the weak sense and defines

a distribution on G/M .

Proof. We first prove the pointwise convergence of ψ on C∞c (G/M). For each test
function f ∈ C∞c (G/M) we have by Lemma 7.1.4 iii), Notation 7.1.3 and Definition 7.1.1

ιG/M (πYτ (ψτ ))(f) = πYτ (ιYτ (ψτ ))(f) = ιYτ (ψτ )(π∗
Ỹτ

(f)) =
∫
G
πYτ (ψτ )(g)πỸτ (π∗

Ỹτ
(f))(g) dg.

The Cauchy-Schwarz inequality thus implies that

|ιG/M (πYτ (ψτ ))(f)|2 ≤
∫
G
|πYτ (ψτ )(g)|2 dg ·

∫
G
|πỸτ (π∗

Ỹτ
(f))(g)|2 dg.

For the first factor we obtain∫
G
|πYτ (ψτ )(g)|2 dg = ιG/M (πYτ (ψτ ))(πỸτ (ψτ )) ≤ c · (1 + ‖τ‖2)N .

For the second factor Lemma 7.2.1 implies that for each m ∈ N there exists a constant
C̃ := Cϕ,pr−1(supp(f))K,m,0 independent of Yτ such that

∀Yτ ∈ K̂M : ‖πYτ (π∗Yτ (f))‖H0(pr−1(supp(f))K) ≤ C̃ · (1 + ‖τ‖2)−m.

Choosing m sufficiently large we thus obtain that∑
τ∈K̂M

|ιG/M (πYτ (ψτ ))(f)| <∞
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7.3. Tensor product decompositions

converges absolutely. We now prove the continuity of ψ. Let C ⊂ G be a compact set
and (fn)n∈N be a sequence of functions fn ∈ C∞c (G/M) such that supp(fn) ⊆ CM for
each n ∈ N and ‖fn‖H`(CM) converges to 0 for each fixed ` ∈ N0. We have to prove that
ψ(fn)→ 0 (see [Hör90, Theorem 2.1.4]). Again by Lemma 7.2.1 we may choose for each
m ∈ N constants C̃n independent of Yτ such that

∀Yτ ∈ K̂M : ‖πYτ (π∗Yτ (fn))‖H0(CM) ≤ C̃n · (1 + ‖τ‖2)−m.

Moreover, by the second part of Lemma 7.2.1 we may choose the constants C̃n such that
limn→∞ C̃n = 0. Proceeding as above we arrive at

∑
τ∈K̂M

|ιG/M (πYτ (ψτ ))(fn)| ≤
√
c · C̃n

∑
τ∈K̂M

(1 + ‖τ‖2)
N−m

2 → 0,

since the series on the right hand side converges for m large enough.

7.3. Tensor product decompositions
In order to use the conditions from Proposition 5.3.2 for computations, we need to
describe the generalized gradients more precisely. It turns out that this can be done
rather uniformly and the corresponding scalars can be computed explicitly.

In this section we describe the general results in the rank one case. Since the definition
of generalized gradients involves the K-decomposition of Y ⊗ p for Y ∈ K̂, we first
prove some results on it. Then, we define and describe the generalized gradients we
will use in the proof of the Fourier characterization (Definition 7.3.4 and Proposition
7.3.9) and depict a method to determine the corresponding scalars from Proposition 5.3.2
(Lemma 7.3.10 and 7.3.11). Explicit forms of all decompositions and scalars are stated
and computed in Appendix A.
We start with the following multiplicity one result.

Proposition 7.3.1. Let Y ∈ K̂. Then Y ⊗ p∗ decomposes multiplicity-freely.

Proof. By [Kna02, Chapter IX, §8, Problem 15] it suffices to prove that all weights of
p ∼=K p∗ have multiplicity one, i.e. if t0 ≤ k0 is a maximal torus we have that t acts
multiplicity-freely on p.

Let us first assume that the ranks rk k0 and rk g0 coincide. Then t ≤ k ≤ g is a Cartan
subalgebra of g and we have the root-space decomposition

g = t⊕
⊕

α∈∆(g,t)
gα,

where each gα is one-dimensional. We note that the root spaces gα are invariant under
the (C-linear continuation of the) Cartan involution θ; indeed we have for each X ∈ gα

∀H ∈ t : [H, θX] = θ[θH,X] = θ[H,X] = α(H)θX ⇒ θX ∈ gα.
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7. Fourier characterization

Therefore, writing X = X+θX
2 + X−θX

2 , we obtain gα = (k ∩ gα)⊕ (p ∩ gα) and thus

p =
⊕

α∈∆(g,t)
(p ∩ gα).

Since dimC(p ∩ gα) ∈ {0, 1} we see that t acts multiplicity-freely on p.
Let us now consider the case rk k0 < rk g0. By [Kna02, Proposition 6.60] the centralizer

h0 := Zg0(t0) = t0 ⊕ Zp0(t0) is a θ-stable Cartan subalgebra of g0. Our real rank one
assumption shows that a0 := Zp0(t0) is one-dimensional. For α ∈ ∆ we first note that

X ∈ gα ⇒ θX ∈ gθα,

where we define (θα)(H) := α(θH). Thus, gα + gθα is θ-stable and decomposes into a k-
and p-part.
We claim that if α, α′ ∈ ∆ are two roots with α

∣∣
t

= α′
∣∣
t
, then α′ = α or α′ = θα. If

this is true we obtain the result as follows. Let β ∈ t∗. For β = 0 the weight space of
β in p is given by a, which is one-dimensional. For β 6= 0 the weight space of β in p is
given by ∑

α∈∆
α|t=β

π(gα + gθα),

where π : g → p, X 7→ X−θX
2 denotes the projection onto p. Then our claim implies

that there are at most two roots α, θα ∈ ∆ with α
∣∣
t

= θα
∣∣
t

= β. Therefore, the weight
space of β in p is given by the one-dimensional space π(gα + gθα).

Let us finally prove our claim in the rank one case. By the classification of real forms
it suffices to consider the groups SO0(n, 1) with n = 2p+ 1 odd (recall that we are in the
case rk k0 < rk g0). In this case all roots have the same length and this implies our claim
since every root α ∈ ∆ is determined by its restrictions to t and a.

Note that the proof of Proposition 7.3.1 does not use our rank one assumption if
rk g = rk k. In this case we can say more.

Proposition 7.3.2. Let rk g = rk k and Yτ ∈ K̂ with highest weight τ . Denote the
non-compact roots by ∆n. Then the tensor product Yτ ⊗ p∗ decomposes into

Yτ ⊗ p∗ ∼=
⊕
β∈∆n

m(β)Yτ,β,

where the multiplicities m(β) are at most 1 and Yτ,β has weight τ +β. Moreover, we have

m(β) = 1 =⇒ β ∈ S,

with S := {β ∈ ∆n | τ + β dominant} ⊆ ∆n.
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Proof. First we note that p ∼=K p∗ by the Killing form. By [Kna02, Proposition 9.72] the
highest weight of each irreducible constituent of Yτ ⊗ p is of the form τ + β, where β is
a weight of p, i.e. β ∈ ∆n. Moreover each irreducible constituent occurs at most with
multiplicity one by [Kna02, Chapter IX, §8, Problem 15] since the weight spaces of p
have multiplicity one by the root space decomposition. Since the highest weight τ + β
has to be dominant we can restrict the sum to the subset S ⊆ ∆n.

Notation 7.3.3. For V, Y ∈ K̂ we write

V ↔ Y :⇔ V ≤ Y ⊗ p⇔ Y ≤ V ⊗ p,

if V is reachable from Y by tensoring with p. Here, the second equivalence follows from
[BÓØ96, Remark 2.8].

We also introduce a more refined version of reachability using matrix coefficients
of p and use it to define the generalized gradients we will use to prove the Fourier
characterization.

Definition 7.3.4. Define the K-equivariant map

ω : p→ C∞(K/M), ω(X)(kM) := 〈Ad(k−1)X,H〉,

where 〈·, ·〉 is as in Notation 5.3.1 and H ∈ a0 is defined on page 9. Note that ω(H)(eM) =
1. For each Y ∈ K̂M we further define the K-equivariant map

ωY : Y ⊗ p→ C∞(K/M), ωY (ϕ⊗X) := ω(X)ϕ.

For V ∈ K̂ with V ↔ Y we write

V
ω←→ Y :⇔ V ≤ ωY (Y ⊗ p).

Note that V ω←→ Y implies V ∈ K̂M since the image of ωY is contained in C∞(K/M). By
[BÓØ96, Lemma 4.4 (c)] we have

V
ω←→ Y ⇔ Y

ω←→ V.

In this case we realize V ≤ L2(K/M) and define T YV ∈ HomK(Y ⊗ p∗, V ) by

T YV : Y ⊗ p∗ → V, T YV (ϕ⊗ ψ) := prV (ωY (ϕ⊗ I−1(ψ))),

where I is as in Notation 5.3.1 and prV denotes the orthogonal projection

prV : L2(K/M) ∼=
⊕̂

W∈K̂M
W → V.

If V ↔ Y but not V ω←→ Y we define

T YV : Y ⊗ p∗ → V, T YV := prV ◦ (idY ⊗ I−1), (7.5)
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with the orthogonal projection prV : Y ⊗ p → V . In each case, let dYV denote the
associated generalized gradients given by T YV ◦ ∇. Since the tensor product decomposes
multiplicity-freely by Proposition 7.3.1, there exist uniquely determined homomorphisms
ιVY ∈ HomK(V, Y ⊗ p∗) such that

T YV ◦ ιVY = idV and T YV ◦ ιWY = 0 (7.6)

for each W ↔ Y with V 6∼= W . In Proposition 7.3.9 we give an explicit formula for ιVY in
the case V ∈ K̂M .

Example 7.3.5. In the case G = PSL(2,R) we have

ω(H)(kϕ) = 2 tr(H Ad(kϕ)H) = z + z−1

2 , ω(B)(kϕ) = 2 tr(BAd(kϕ)H) = z−1 − z
2i

with z := e2ϕi, H = 1
2

(
1 0
0 −1

)
, B = 1

2

(
0 1
1 0

)
and kϕ =

(
cosϕ sinϕ
− sinϕ cosϕ

)
∈ G.

Hence, we obtain for f ∈ C∞(G×K Cn) – by recalling dLnLn+1
= TLnLn+1

◦ ∇ –

(dLnLn+1
f)(g) = prLn+1(ωLn((H.f)(g)⊗H + (B.f)(g)⊗B))

= prLn+1

(
z + z−1

2 (H.f)(g) + z−1 − z
2i (B.f)(g)

)
= z

2((H + iB).f)(g) = zη+f(g),

where we considered C` as the one dimensional space spanned by z` ∈ C∞(Sn−1).

Remark 7.3.6. By definition we have for each Y ∈ K̂M∑
V

ω←→Y

T YV = ωY ◦ (idY ⊗ I−1).

In the following we describe the embeddings ιVY from Definition 7.3.4 in more detail.

Lemma 7.3.7. Let Y, V ∈ K̂M with V ↔ Y . Then the operator

Φ : V → Y ⊗ p∗, Φ(f) :=
dim p∑
j=1

prY (ω(Xj)f)⊗ I(X̃j)

is independent of the basis (Xj)j of p and K-equivariant. Moreover, the map

V → V, f 7→
dim p∑
j=1

prV (ω(X̃j) prY (ω(Xj)f))

is a multiple of the identity. We denote the corresponding scalar by λ(V, Y ).
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Proof. Let k ∈ K and consider Y ⊗ p∗ as Hom(p, Y ) by

Y ⊗ p∗ ∼= Hom(p, Y ), f ⊗ λ 7→ (X 7→ λ(X)f).

Then, for f ∈ V ,

Φ(k.f)(Xi) =
dim p∑
j=1

prY (ω(Xj)(k.f))I(X̃j)(Xi) = prY (ω(Xi)(k.f)).

By linearity we obtain Φ(k.f)(X) = prY (ω(X)(k.f)) for each X ∈ p. Note that this
expression and thus Φ is independent of the basis. On the other hand, note that

k.Φ(f) =
dim p∑
j=1

k. prY (ω(Xj)f)⊗Ad∗(k)I(X̃j)

and thus

(k.Φ(f))(Ad(k)Xi) = k.prY (ω(Xi)f) = prY ((k.ω(Xi))(k.f)) = prY (ω(Ad(k)Xi)(k.f)).

Since Ad(k)X1, . . . ,Ad(k)Xdim p is a basis of p we have (k.Φ(f))(X) = prY (ω(X)(k.f))
for each X ∈ p. This proves Φ(k.f) = k.Φ(f) and thus the first part of the lemma. From
Definition 7.3.4 we recall that

Ψ := prV ◦ωY ◦ (idY ⊗I−1) : Y ⊗ p∗ → V

is K-equivariant. The map in the lemma is given by the composition Ψ ◦ Φ. It is scalar
by Schur’s lemma.

The scalar λ(V, Y ) has the following properties.

Proposition 7.3.8 (cf. [BÓØ96, Lemma 4.4, Theorem 4.6]). Let V, Y ∈ K̂M such that
V ↔ Y . Then

i) λ(V, Y ) ≥ 0,

ii) V ω←→ Y ⇔ λ(V, Y ) 6= 0⇔ λ(Y, V ) 6= 0,

iii)
∑
W

ω←→Y
λ(Y,W ) = 1,

iv) λ(V, Y ) dimV = λ(Y, V ) dimY .

The embeddings associated with the generalized gradients also admit a nice description
using matrix coefficients.

Proposition 7.3.9. Let Y, V ∈ K̂M with V ω←→ Y . Then we have for each f ∈ V

ιVY (f) = 1
λ(V, Y )

dim p∑
j=1

prY (ω(Xj)f)⊗ I(X̃j). (7.7)
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Proof. By Lemma 7.3.7 we know that the rand hand side of (7.7) is K-equivariant as a
function in f . The scalar λ(V, Y ) is non-zero by Proposition 7.3.8. For each W ∈ K̂ with
W ↔ Y and V 6∼= W , the map T YW ◦ ιVY is an intertwiner between V and W and thus zero
by Schur’s lemma. The normalization by λ(V, Y ) ensures that T YV ◦ ιVY is the identity on
V . This finishes the proof since we have multiplicity one by Proposition 7.3.1.

The following lemma provides a method to calculate the scalars λ(V, Y ) (for explicit
forms see Appendix A).

Lemma 7.3.10. The scalar λ(V, Y ) from Lemma 7.3.7 is given by

λ(V, Y ) = prY (ω(H)φV )(eM).

Proof. If H = X1, . . . , Xdim p is as in Proposition 5.3.2 and H = X̃1, . . . , X̃dim p its dual
basis (see Notation 5.3.1) we may write, for each f ∈ V ,

ιVY (f) =
dim p∑
j=1

fj ⊗ I(X̃j) ∈ Y ⊗ p∗ (7.8)

for some f1, . . . , fdim p ∈ Y . In particular, we have ιVY (f)(H)(eM) = f1(eM) by con-
sidering ιVY (f) as an element of Hom(p, Y ). By Definition 7.3.4 and Remark 7.3.6 we
infer

f =
∑

W
ω←→Y

T YW (ιVY (f)) = ωY ((idY ⊗ I−1)(ιVY (f))) =
dim p∑
j=1

ωY (fj ⊗ X̃j) =
dim p∑
j=1

ω(X̃j)fj .

Note that, since Xj ∈ k⊕ n for j = 2, . . . ,dim p and X1 ∈ a, the orthogonality of a and
k ⊕ n with respect to 〈·, ·〉 implies ω(X̃j)(eM) = 〈X̃j , H〉 = 0 for each j = 2, . . . ,dim p
and therefore

f(eM) =
dim p∑
j=1

ω(X̃j)(eM)fj(eM) = f1(eM) = ιVY (f)(H)(eM).

In particular, we have for f = φV

ιVY (φV )(H)(eM) = φV (eM) = 1.

On the other hand, Proposition 7.3.9 shows that

ιVY (φV )(H)(eM) = 1
λ(V, Y ) prY (ω(H)φV )(eM).

Note that, in the situation of Proposition 5.3.2, we have for V, Y ∈ K̂M with V ω←→ Y
that

T VY (pV,µ)(e) = (µ+ ρ)(H)λ(V, Y ) + ν(V, Y ) with ν(V, Y ) := T VY (pV,−ρ)(e). (7.9)

The following lemma allows us to compute the scalars T VY (pV,µ)(e) from Proposition 5.3.2
explicitly in all the rank one cases (see Appendix A).
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7.4. Computations for the Fourier characterization

Lemma 7.3.11. Let V, Y ∈ K̂M be such that V ω←→ Y and {0} 6= U ≤ Hµ be a
closed G-invariant subspace with multK(Y, U) 6= 0 and multK(V,U) = 0. Then we have
T VY (pV,µ)(e) = 0 and thus

ν(V, Y ) = −(µ+ ρ)(H)λ(V, Y ).

Moreover, for V ∈ K̂M with V ω←→ C we have

T VC (pV,µ)(e) = 0⇔ µ(H) = ρ(H).

Proof. Let 0 6= f ∈ Y ≤ U . Then, by Equation (5.1), P Yµ (f)(e) = 1
dimY prV (f) 6= 0. On

the other hand Proposition 5.1.2 implies that P Vµ (f) = 0. Therefore,

0 = dVY (P Vµ (f))(e) = T VY (pV,µ)(e)P Yµ (f)(e)

implies that T VY (pV,µ)(e) = 0. For µ(H) = ρ(H) we have that the constant functions
form an invariant subspace, proving one direction. For the equivalence note that for each
V ∈ K̂M with V ω←→ C, T VC (pV,µ)(e) = ν(V,C) + (µ+ ρ)(H)λ(V,C) is an affine map in
µ(H) with λ(V,C) 6= 0 (by Proposition 7.3.8.ii)).

Proposition 7.3.12. Let Y ∈ K̂M and V ∈ K̂ with V ↔ Y . Then, for each µ ∈ a,

dYV ◦ P Yµ 6= 0⇒ V
ω←→ Y.

Proof for G 6= SO0(3, 1)1. By Proposition 5.3.2.iii) we see that dYV ◦ P Yµ 6= 0 implies that
V ∈ K̂M . Using Proposition 7.3.8.ii), Lemma 7.3.10 and Lemma A.1.2, A.2.1, A.3.1 resp.
A.4.1 we infer that V ω←→ Y if and only if V ↔ Y and V ∈ K̂M .

7.4. Computations for the Fourier characterization
The aim of this section is proving the converse direction in Proposition 5.3.2, i.e. we
want to prove that if the equations derived from Proposition 5.3.2 are satisfied for some
distribution f ∈ D′(G/M) we already have f ∈ H−∞µ . The precise result is given in
Theorem 7.4.11. It provides a technique to determine images for Poisson transforms. We
start with the following reformulation of Proposition 5.3.2.

Lemma 7.4.1. Assume the setting from Proposition 5.3.2. Then, for each f ∈ H−∞µ ,

i) (dYV ◦ π∗Y )(f) = T YV (pY,µ)(e)dimY
dimV π

∗
V (f) if V is M -spherical, i.e. V ≤ L2(K)M ,

ii) (dYV ◦ π∗Y )(f) = 0 if V is not M -spherical, i.e. VM = 0.
1For G = SO0(3, 1) we have, for k ∈ N0, Yk ↔ Yk but Yk

ω←→/ Yk by Proposition A.1.4 and
Lemma A.1.2. Realizing Yk explicitly as a subrepresentation of Yk ⊗ p∗ one can prove that
prYk

((idY ⊗ I−1)(pYk,µ))(e) = 0 for each µ ∈ a and thus dYk
Yk
◦ PYk

µ = 0 by Proposition 5.3.2.ii).
This is done in Section B.2.4.
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7. Fourier characterization

Proof. This is a direct consequence of Proposition 5.3.2 and Lemma 7.1.4 iv).

We consider the a0- and n0-action separately and start with the first one.

Lemma 7.4.2. Let µ ∈ a∗ and f = ∑
τ∈K̂M πYτ (π∗Yτ (f)) ∈ D′(G/M) (recall Proposition

7.2.4) with π∗Yτ (f) ∈ C∞(G×K Yτ ) such that the equations from Lemma 7.4.1 i) and ii)
hold for f for every irreducible constituent of Yτ ⊗ p∗ and every Yτ ∈ K̂M . Let X ∈ a0.
For each V, Yτ ∈ K̂M with V ↔ Yτ we define

fV,τ,X ∈ C∞(G/M), fV,τ,X(gM) := ιYτV (π∗Yτ (f)(g))(X)(e).

Then, in the weak sense,

r(X)f =
∑

τ∈K̂M

∑
V

ω←→Yτ
V ∈K̂M

dimV

dimYτ
T VYτ (pV,µ)(e)fV,τ,X ,

where r denotes the right regular representation of a0 on D′(G/M).

Proof. Note first that, as in the proof of Lemma 7.3.10, fV,τ,X(gM) = π∗Yτ (f)(g)(e)t if
X = tH. For each ϕ ∈ C∞c (G/M) we have (denoting f(ϕ) by 〈f, ϕ〉)

〈r(X)f, ϕ〉 = −〈f, r(X)ϕ〉 = −
∑

τ∈K̂M

〈πYτ (π∗Yτ (f)), r(X)ϕ〉 =
∑

τ∈K̂M

〈r(X)πYτ (π∗Yτ (f)), ϕ〉.

In particular, by the absolute convergence from Proposition 7.2.4, we obtain that∑
τ∈K̂M

r(X)πYτ (π∗Yτ (f))

converges absolutely to r(X)f in the weak sense. We will now compute the summands
explicitly. Note first that for each g ∈ G

(r(X)πYτ (π∗Yτ (f)))(g) = d

dt

∣∣∣∣
t=0

π∗Yτ (f)(g exp tX)(e) = (((∇ ◦ π∗Yτ (f))(g))(X))(e).

(7.10)

We claim that

(∇ ◦ π∗Yτ (f))(g) =
∑
V↔Yτ

(ιVYτ ◦ T
Yτ
V )((∇ ◦ π∗Yτ (f))(g)). (7.11)

Indeed, both sides are elements of Yτ ⊗ p∗ and by Definition 7.3.4 they are equal if

T YτW ((∇ ◦ π∗Yτ (f))(g)) = T YτW

 ∑
V↔Yτ

(ιVYτ ◦ T
Yτ
V )((∇ ◦ π∗Yτ (f))(g))


for each irreducible subrepresentation W with W ↔ Yτ . But this follows from the
definition of the ιVYτ .
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7.4. Computations for the Fourier characterization

Note that, since dYτV = T YτV ◦ ∇,∑
V↔Yτ

(ιVYτ ◦ T
Yτ
V )((∇ ◦ π∗Yτ (f))(g)) =

∑
V↔Yτ

ιVYτ (dYτV (π∗Yτ (f))(g)).

The equations from Lemma 7.4.1 yield

(∇ ◦ π∗Yτ (f))(g) =
∑
V↔Yτ

ιVYτ (dYτV (π∗Yτ (f))(g))

=
∑
V↔Yτ
V ∈K̂M

ιVYτ

(dimYτ
dimV

T YτV (pYτ ,µ)(e)π∗V (f)(g)
)

=
∑
V↔Yτ
V ∈K̂M

dimYτ
dimV

T YτV (pYτ ,µ)(e)ιVYτ (π∗V (f)(g)).

By Proposition 7.3.12 it suffices to sum over all V ∈ K̂M with V ω←→ Yτ . Using Equation
(7.10) we thus obtain

(r(X)πYτ (π∗Yτ (f)))(g) =
∑

V
ω←→Yτ

V ∈K̂M

dimYτ
dimV

T YτV (pYτ ,µ)(e)((ιVYτ (π∗V (f)(g)))(X))(e)

=
∑

V
ω←→Yτ

V ∈K̂M

dimYτ
dimV

T YτV (pYτ ,µ)(e)fYτ ,V,X(gM)

and r(X)f = ∑
τ∈K̂M r(X)πYτ (π∗Yτ (f)) equals

∑
τ∈K̂M

∑
V

ω←→Yτ
V ∈K̂M

dimYτ
dimV

T YτV (pYτ ,µ)(e)fYτ ,V,X =
∑

V ∈K̂M

∑
V

ω←→Yτ
τ∈K̂M

dimYτ
dimV

T YτV (pYτ ,µ)(e)fYτ ,V,X .

In order to compute the sums occurring in Lemma 7.4.2 we write

pV,µ = (µ+ ρ)(H)φV ⊗ I(H) + pV,−ρ. (7.12)

Let us first consider the contribution of the first summand in this decomposition.

Lemma 7.4.3. Let Y ∈ K̂M , X ∈ p and ϕ ∈ Y . Then

∑
V

ω←→Y

dimV

dimY
T VY (φV ⊗ I(H))(e)ιYV (ϕ)(X)(e) = (ω(X)ϕ)(e).
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Proof. By Definition 7.3.4 and Lemma 7.3.10 we have for each V ∈ K̂ with V ω←→ Y

T VY (φV ⊗ I(H))(e) = prY (ω(H)φV )(e) = λ(V, Y ).

Using Proposition 7.3.8 iv) and 7.3.9 we calculate
∑

V
ω←→Y

dimV

dimY
T VY (φV ⊗ I(H))(e)ιYV (ϕ)(X)(e)

=
∑

V
ω←→Y

λ(Y, V )
λ(V, Y )λ(V, Y ) 1

λ(Y, V )

dim p∑
j=1

prV (ω(Xj)ϕ)(e)I(X̃j)(X)

=
∑

V
ω←→Y

dim p∑
j=1

prV (ω(Xj)ϕ)(e)I(X̃j)(X)

=
∑

V
ω←→Y

prV (ω(X)ϕ)(e) = (ω(X)ϕ)(e).

For the contribution of the second summand in (7.12) we need some preparation. This
is the content of the following three lemmas.

Lemma 7.4.4. Let g0 be a semisimple Lie algebra, B be some non-zero multiple of the
Killing form κ. If X1, . . . , Xdim(p0/a0) is a basis of p0 ∩ (k0 ⊕ n0) let X̃1, . . . , X̃dim(p0/a0)

denote the dual basis defined by B(X̃i, Xj) = δij. Then
∑dim(p0/a0)
j=1 [X̃j , kI(Xj)] ∈ a0 and

dim(p0/a0)∑
j=1

B([X̃j , kI(Xj)], H) = 2ρ(H) ∀H ∈ a0.

Proof of Lemma 7.4.4. We first claim that ∑dim(p0/a0)
j=1 [X̃j , kI(Xj)] ∈ p0 is independent

of the basis. Let X ′1, . . . , X ′dim(p0/a0) be another basis with base change matrix (aij), i.e.
X ′j = ∑

m amjXm. If (bij) denotes the inverse of (aij) we claim that X̃ ′j = ∑
` bj`X̃`.

Indeed,

B(
∑
`

bj`X̃`, X
′
i) = B(

∑
`

bj`X̃`,
∑
m

amiXm) =
∑
`

∑
m

bj`amiB(X̃`, Xm) =
∑
m

bjmami = δij .

Thus,

∑
j

[X̃ ′j , kI(X ′j)] =
∑
j

[∑
`

bj`X̃`, kI(
∑
m

amjXm)
]

=
∑
m

∑
`

[X̃`, kI(Xm)]
∑
j

amjbj`

=
∑
m

∑
`

[X̃`, kI(Xm)]δm` =
∑
m

[X̃m, kI(Xm)]

is independent of the basis.
We will now construct a convenient basis of p0 ∩ (k0 ⊕ n0). Let Σ+ denote the set of

positive restricted roots. We may assume that B is a positive multiple of the Killing
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form (otherwise −B is of this form and the signs of the X̃j ’s are flipped). For each
λ ∈ Σ+ we choose a basis Y λ

1 , . . . , Y
λ

dim gλ0
of the restricted root space gλ0 such that

B(Y λ
j , θY

λ
k ) = −1

2δjk, where θ denotes the Cartan involution, and define

Xλ
j := Y λ

j − θY λ
j , j ∈ {1, . . . ,dim gλ0}.

Note that, since

B(Xλ
j , X

µ
k ) = −2B(Y λ

j , θY
µ
k ) = −2B(Y λ

j , θY
µ
k )δλµ,

we have that the Xλ
j ’s are orthonormal, i.e. X̃λ

j = Xλ
j . By the restricted root space

decomposition, every X ∈ p0∩ (k0⊕n0) is of the form∑
λ∈Σ+ Xλ−θXλ for some Xλ ∈ gλ0 .

Therefore, the Xλ
j , λ ∈ Σ+, form a basis of p0 ∩ (k0 ⊕ n0). Note that

Xλ
j = 2Y λ

j − (Y λ
j + θY λ

j ) ∈ n0 ⊕ k0 =⇒ kI(Xλ
j ) = −(Y λ

j + θY λ
j ).

By the invariance of the Killing form we deduce for each H ∈ a0

B([X̃λ
j , kI(Xλ

j )], H) = B(X̃λ
j , [kI(Xλ

j ), H]) = B(X̃λ
j , [H,Y λ

j + θY λ
j ])

= B(X̃λ
j , λ(H)(Y λ

j − θY λ
j )) = λ(H)B(X̃λ

j , X
λ
j ) = λ(H).

Thus,

∑
λ∈Σ+

dim gλ0∑
j=1

B([X̃λ
j , kI(Xλ

j )], H) =
∑
λ∈Σ+

λ(H) dim gλ0 = 2ρ(H).

Moreover,

[X̃λ
j , kI(Xλ

j )] = [Xλ
j , kI(Xλ

j )] = [Y λ
j − θY λ

j ,−(Y λ
j + θY λ

j )] = 2[θY λ
j , Y

λ
j ] ∈ g0

0 ∩ p0

implies that [X̃λ
j , kI(Xλ

j )] ∈ a0 since g0
0 = m0 ⊕ a0.

Lemma 7.4.5. Let X1, . . . , Xdim p be as in Proposition 5.3.2. Then
∑dim p
j=2 `(kI(Xj))ω(X̃j) =

−2ρ(H)ω(H).

Proof. Since ω : p→ C∞(K/M) is K-equivariant we have

dim p∑
j=2

`(kI(Xj))ω(X̃j) =
dim p∑
j=2

ω([kI(Xj), X̃j ])

By Lemma 7.4.4, ∑dim p
j=2 [kI(Xj), X̃j ] is an element of a0 and therefore a multiple of H.

Let λ ∈ R denote this multiple. Then Lemma 7.4.4 implies that

λ = 〈λH,H〉 =
dim p∑
j=2
〈[kI(Xj), X̃j ], H〉 = −2ρ(H).
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7. Fourier characterization

Lemma 7.4.6. Let Y ∈ K̂M and X ∈ p. Then

∑
V

ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)ιVY (φV )(X) =

{
−2ρ(H)φY : X = H

`(kI(X))φY : X ⊥ a
,

where the bar denotes complex conjugation.

Proof. For each ψ ∈ L2(K/M) we have by orthogonality and Proposition 2.4.4 ii),

prY (ψ)(e) = 〈prY (ψ), φY
〈φY , φY 〉L2(K)

〉L2(K) = 〈ψ, φY
〈φY , φY 〉L2(K)

〉L2(K). (7.13)

Therefore, since ω(X), X ∈ p0, is real valued (second step) and using the product rule
and Lemma 7.4.5 (third step), T VY (pV,−ρ)(e) equals

−
dim p∑
j=2

prY (ω(X̃j)`(kI(Xj))φV )(e) = −〈
dim p∑
j=2

ω(X̃j)`(kI(Xj))φV ,
φY

〈φY , φY 〉L2(K)
〉L2(K)

= −
dim p∑
j=2
〈`(kI(Xj))φV , ω(X̃j)

φY
〈φY , φY 〉L2(K)

〉L2(K)

= 〈φV ,−2ρ(H)ω(H) φY
〈φY , φY 〉L2(K)

〉L2(K)

+ 〈φV ,
dim p∑
j=2

ω(X̃j)`(kI(Xj))
φY

〈φY , φY 〉L2(K)
〉L2(K).

Applying Equation (7.13) for V and Proposition 2.4.4 iii) to this equation, we infer that
dimV · T VY (pV,−ρ)(e) = dimY · T YV (−pY,ρ)(e) and thus∑

V
ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)ιVY (φV )(X) =

∑
V

ω←→Y

T YV (−pY,ρ)(e)ιVY (φV )(X).

Note that T YV (−pY,ρ) ∈ V is left M -invariant since pY,ρ is left M -invariant by Proposi-
tion 5.3.2 i) and T YV : Y ⊗ p∗ → V is K-equivariant. Therefore it is a multiple of φV and
we have T YV (−pY,ρ) = T YV (−pY,ρ)(e)φV . We infer that∑

V
ω←→Y

T YV (−pY,ρ)(e)ιVY (φV )(X) =
∑

V
ω←→Y

ιVY (T YV (−pY,ρ))(X) = −pY,ρ(X).

The lemma now follows from the definition of pY,ρ(X).

We are now able to compute the contribution of the second part in (7.12).

Lemma 7.4.7. Let Y ∈ K̂M , X ∈ p and ϕ ∈ Y . Then

∑
V

ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)ιYV (ϕ)(X)(e) =

{
−2ρ(H)ϕ(e) : X = H

−(`(kI(X))ϕ)(e) : X ⊥ a
.
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7.4. Computations for the Fourier characterization

Proof. Note first that Proposition 7.3.9 implies that∑
V

ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)ιYV (ϕ)(X)(e) =

∑
V

ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)

1
λ(Y, V ) prV (ω(X)ϕ)(e).

By Equation (7.13) we infer that
∑

V
ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)

1
λ(Y, V ) prV (ω(X)ϕ)(e)

=
∑

V
ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)

1
λ(Y, V )〈ω(X)ϕ, φV

〈φV , φV 〉L2(K)
〉L2(K)

= 〈ϕ,
∑

V
ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)

1
λ(Y, V )ω(X) φV

〈φV , φV 〉L2(K)
〉L2(K)

= 〈ϕ,prY (
∑

V
ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)

1
λ(Y, V )ω(X) φV

〈φV , φV 〉L2(K)
)〉L2(K),

where the last equation follows from ϕ ∈ Y and the orthogonality of the K-types. Using
Propositions 7.3.9 and 7.3.8 we deduce that

prY (
∑

V
ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)

1
λ(Y, V )ω(X) φV

〈φV , φV 〉L2(K)
)

=
∑

V
ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)

1
λ(Y, V ) prY (ω(X) φV

〈φV , φV 〉L2(K)
)

=
∑

V
ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)

λ(V, Y )
λ(Y, V ) ι

V
Y ( φV
〈φV , φV 〉L2(K)

)(X)

=
∑

V
ω←→Y

T VY (pV,−ρ)(e)ιVY ( φV
〈φV , φV 〉L2(K)

)(X).

Finally Proposition 2.4.4 iii) and Lemma 7.4.6 imply that
∑

V
ω←→Y

T VY (pV,−ρ)(e)ιVY ( φV
〈φV , φV 〉L2(K)

)(X)

= 1
〈φY , φY 〉L2(K)

∑
V

ω←→Y

〈φY , φY 〉L2(K)
〈φV , φV 〉L2(K)

T VY (pV,−ρ)(e)ιVY (φV )(X)

= 1
〈φY , φY 〉L2(K)

∑
V

ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)ιVY (φV )(X)

= 1
〈φY , φY 〉L2(K)

{
−2ρ(H)φY : X = H

`(kI(X))φY : X ⊥ a
.
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7. Fourier characterization

Summarizing, we have for X = H∑
V

ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)ιYV (ϕ)(X)(e)

= −2ρ(H)〈ϕ, φY
〈φY , φY 〉L2(K)

〉L2(K) = −2ρ(H)ϕ(e)

and for X ∈ p with X ⊥ a∑
V

ω←→Y

dimV

dimY
T VY (pV,−ρ)(e)ιYV (ϕ)(X)(e) = 〈ϕ, `(kI(X)) φY

〈φY , φY 〉L2(K)
〉L2(K)

= −〈`(kI(X))ϕ, φY
〈φY , φY 〉L2(K)

〉L2(K) = −(`(kI(X))ϕ)(e).

We are now ready to prove the Fourier characterization.

Proposition 7.4.8. In the setting of Lemma 7.4.2 we have

r(H)f = (µ− ρ)(H)f.

Proof. By Lemma 7.4.2 we have

r(H)f =
∑

τ∈K̂M

∑
V

ω←→Yτ

dimV

dimYτ
T VYτ (pV,µ)(e)fV,τ,H ,

with (for g ∈ G) fV,τ,H(gM) := ιYτV (π∗Yτ (f)(g))(H)(e). Lemma 7.4.3 and 7.4.7 imply that

∑
V

ω←→Yτ

dimV

dimYτ
T VYτ (pV,µ)(e)ιYτV (π∗Yτ (f)(g))(H)(e)

= (µ+ ρ)(H)π∗Yτ (f)(g)(e)− 2ρ(H)π∗Yτ (f)(g)(e)
= (µ− ρ)(H)π∗Yτ (f)(g)(e)
= (µ− ρ)(H)πYτ (π∗Yτ (f))(g).

Thus, r(H)f = ∑
τ∈K̂M (µ− ρ)(H)πYτ (π∗Yτ (f)) = (µ− ρ)(H)f .

Remark 7.4.9. In view of fV,τ,H(gM) = π∗Yτ (f)(g)(e) (as in the proof of Lemma 7.3.10),
Proposition 7.4.8 proves∑

V
ω←→Yτ

dimV

dimYτ
T VYτ (pV,µ)(e) =

∑
V

ω←→Yτ

λ(Yτ , V )
λ(V, Yτ ) T

V
Yτ (pV,µ)(e) = (µ− ρ)(H).

Proposition 7.4.10. Let µ ∈ a∗ and f = ∑
τ∈K̂M πYτ (π∗Yτ (f)) ∈ D′(G/M) be as in

Lemma 7.2.5 such that the equations from Lemma 7.4.1 i) and ii) hold for f for every
irreducible constituent of Yτ ⊗p∗ and every Yτ ∈ K̂M . Let U+ ∈ C∞(G×M n) be a smooth
section. Then U+f = 0.
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7.4. Computations for the Fourier characterization

Proof. Note first that

U+f =
∑

τ∈K̂M

U+πYτ (π∗Yτ (f)).

Let X1, . . . , Xdim n be a basis of n0. Then there exist functions κj ∈ C∞(G) such that

U+(g) =
dim n∑
j=1

κj(g)Xj ∀g ∈ G.

Writing kC(Xj) resp. pC(Xj) for the k- resp. p-part of the Cartan decomposition of Yj
we define

U k
+(g) :=

dim n∑
j=1

κj(g)kC(Xj), Up
+(g) :=

dim n∑
j=1

κj(g)pC(Xj).

Note that, by definition of U+ and since M preserves the Cartan decomposition, we have

U+(gm) = Ad(m−1)U+(g), U k
+(gm) = Ad(m−1)U k

+(g), Up
+(gm) = Ad(m−1)Up

+(g)

for each g ∈ G and m ∈M . We have

U k
+πYτ (π∗Yτ (f))(gM) =

dim n∑
j=1

κj(g) d

dt

∣∣∣∣
t=0

πYτ (π∗Yτ (f))(g exp tkC(Xj)M)

=
dim n∑
j=1

κj(g) d

dt

∣∣∣∣
t=0

π∗Yτ (f)(g exp tkC(Xj))(e)

= −
dim n∑
j=1

κj(g)(`(kC(Xj))π∗Yτ (f)(g))(e). (7.14)

For the p-part we obtain

Up
+πYτ (π∗Yτ (f))(gM) =

dim n∑
j=1

κj(g) d

dt

∣∣∣∣
t=0

πYτ (π∗Yτ (f))(g exp tpC(Xj)M)

=
dim n∑
j=1

κj(g) d

dt

∣∣∣∣
t=0

π∗Yτ (f)(g exp tpC(Xj))(e)

=
dim n∑
j=1

κj(g)(((∇ ◦ π∗Yτ (f))(g))(pC(Xj)))(e).

As in the proof of Lemma 7.4.2 we infer that

Up
+πYτ (π∗Yτ (f))(gM) =

dim n∑
j=1

κj(g)
∑

V
ω←→Yτ

dimYτ
dimV

T YτV (pYτ ,µ)(e)ιVYτ (π∗V (f)(g))(pC(Xj))(e).
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7. Fourier characterization

If we define

ΨV,Yτ ∈ C∞(G/M), ΨV,Yτ (gM) :=
dim n∑
j=1

κj(g)ιVYτ (π∗V (f)(g))(pC(Xj))(e)

we thus have

Up
+πYτ (π∗Yτ (f)) =

∑
V

ω←→Yτ

dimYτ
dimV

T YτV (pYτ ,µ)(e)ΨV,Yτ .

Before we consider the series over these expressions, we make sure that each summand
converges faster to zero than any polynomial when tested against some test function
ϕ ∈ C∞c (G)M . Indeed, it suffices to consider, for some j ∈ {1, . . . ,dim n},∣∣∣∣∫

G
ιVYτ (π∗V (f)(g))(pC(Xj))(e)ϕ(g) dg

∣∣∣∣
= 1
λ(V, Yτ )

∣∣∣∣∫
G

prYτ (ω(pC(Xj))π∗V (f)(g))(e)ϕ(g) dg
∣∣∣∣

= 1
λ(V, Yτ )

∣∣∣∣〈∫
G
ω(pC(Xj))ϕ(g)π∗V (f)(g) dg, φYτ

〈φYτ , φYτ 〉
〉
∣∣∣∣

≤
√

dimYτ
λ(V, Yτ ) max

k∈K
|ω(pC(Xj))(k)|

∥∥∥∥∫
G
ϕ(g)π∗V (f)(g) dg

∥∥∥∥
L2(K)

,

where we used Proposition 7.3.9 in the first, Equation (7.13) in the second and Proposition
2.4.4 and the Cauchy-Schwarz inequality in the third step. For k ∈ K we set ϕk(g) :=
ϕ(gk−1) and write∥∥∥∥∫

G
ϕ(g)π∗V (f)(g) dg

∥∥∥∥
L2(K)

≤ max
k∈K

∣∣∣∣∫
G
ϕ(g)π∗V (f)(g)(k) dg

∣∣∣∣
= max

k∈K

∣∣∣∣∫
G
ϕ(g)π∗V (f)(gk)(e) dg

∣∣∣∣
= max

k∈K

∣∣∣∣∫
G
ϕk(g)π∗V (f)(g)(e) dg

∣∣∣∣ .
Now, using Remark 7.2.2 we may proceed as in Lemma 7.2.5 to prove the convergence.
Hence, we can consider

Up
+f =

∑
Yτ∈K̂M

Up
+πYτ (π∗Yτ (f)) =

∑
τ∈K̂M

∑
V

ω←→Yτ

dimYτ
dimV

T YτV (pYτ ,µ)(e)ΨV,Yτ

=
∑

V ∈K̂M

∑
V

ω←→Yτ

dimYτ
dimV

T YτV (pYτ ,µ)(e)ΨV,Yτ .

Finally Lemmas 7.4.3 and 7.4.7 imply that, for V ∈ K̂M fixed,∑
V

ω←→Yτ

dimYτ
dimV

T YτV (pYτ ,µ)(e)ΨV,Yτ (gM)
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7.5. Properties of generalized gradients

=
dim n∑
j=1

κj(g)
∑

V
ω←→Yτ

dimYτ
dimV

T YτV (pYτ ,µ)(e)ιVYτ (π∗V (f)(g))(pC(Xj))(e)

=
dim n∑
j=1

κj(g)(−`(kI(pC(Xj)))π∗V (f)(g))(e)

=
dim n∑
j=1

κj(g)(`(kC(Xj))π∗V (f)(g))(e). (7.15)

Combining Equation (7.14) and (7.15) we infer

U+f = U k
+f + Up

+f =
∑

V ∈K̂M

U k
+πV (π∗V (f)) +

∑
V

ω←→Yτ

dimYτ
dimV

T YτV (pYτ ,µ)(e)ΨV,Yτ = 0.

Theorem 7.4.11 (Fourier characterization of spherical principal series). Let µ ∈ a∗ and
f = ∑

τ∈K̂M πYτ (π∗Yτ (f)) ∈ D′(G/M) be as in Lemma 7.2.5 such that the equations from
Lemma 7.4.1 i) and ii) hold for f for every irreducible constituent of Yτ ⊗ p∗ and every
Yτ ∈ K̂M . Then f ∈ H−∞µ .

Proof. This follows from Propositions 7.4.8, Proposition 7.4.10 and the characterization
R(µ− ρ) of H−∞µ from (2.4).

7.5. Properties of generalized gradients
We conclude this chapter with some results on the structure of generalized gradients.
The following result is independent of the basis (Xj)j of p.

Lemma 7.5.1. Let Y ∈ K̂M and f ∈ C∞(G×K Y ). Then, for each g ∈ G,

∑
V

ω←→Y

dYV (f)(g) =
dim p∑
j=1

ω(X̃j)(r(Xj)f)(g).

Proof. By definition we have (∇f)(g) = ∑dim p
j=1 (r(Xj)f)(g)⊗ I(X̃j) ∈ Y ⊗ p∗. Therefore,

(ωY ◦ (idY ⊗I−1))((∇f)(g)) =
dim p∑
j=1

ω(X̃j)(r(Xj)f)(g).

By Remark 7.3.6 and dYV = T YV ◦ ∇ we obtain

∑
V

ω←→Y

dYV (f)(g) =
dim p∑
j=1

ω(X̃j)(r(Xj)f)(g).

Lemma 7.5.2. Let V, Y ∈ K̂M with V ω←→ Y , ϕ ∈ C∞(G×K Y ) and ψ ∈ C∞(G×K V ).
Then, if one side exists,

〈πY (ϕ), πY (dVY (ψ))〉L2(G) = −〈πV (dYV (ϕ)), πV (ψ)〉L2(G).
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7. Fourier characterization

Proof. Note first that if Y 6= W ∈ K̂ and η ∈ C∞(G×K W ) we have

〈πV (ϕ), πW (η)〉L2(G) = 0

by splitting the integral into G/K and K. Therefore we obtain

〈πY (ϕ), πY (dVY (ψ))〉L2(G) = 〈πY (ϕ),
∑

W
ω←→V

πW (dVW (ψ))〉L2(G).

Evaluating Lemma 7.5.1 at eM ∈ K/M yields (since ω(X̃j)(eM) = 0 for j ≥ 2)∑
W

ω←→V

πW (dVW (ψ)) = r(H)πV (ψ).

Together we conclude that

〈πY (ϕ), πY (dVY (ψ))〉L2(G) = 〈πY (ϕ), r(H)πV (ψ)〉L2(G) = −〈r(H)πY (ϕ), πV (ψ)〉L2(G),

where we used the right-invariance of the Haar measure on G. The same argument yields

〈r(H)πY (ϕ), πV (ψ)〉L2(G) = 〈πV (dYV (ϕ)), πV (ψ)〉L2(G).

We may also define operators T VW and ιWV for each V ∈ K̂ (and not just V ∈ K̂M ) in
analogy to Equations (7.5) and (7.6) by Proposition 7.3.1. With this we can formulate
the following lemma, which is especially useful if dYV f = 0 for all V ∈ K̂ with V ↔ Y
but not V ω←→ Y (e.g. as in Proposition 7.3.12).

Lemma 7.5.3. Let Y ∈ K̂M and Ωp := ∑dim p
i=1 X̃iXi ∈ U(g), for some basis (Xi)dim p

i=1 of
p0, denote the “Casimir element of p” with respect to 〈·, ·〉 from Equation (1.1). Then,
for V ↔ Y and W ↔ V ,

FW,VY : W → Y, ϕ 7→
dim p∑
j=1

ιVY (ιWV (ϕ)(X̃j))(Xj)

is K-equivariant and

∀f ∈ C∞(G×K Y ), g ∈ G : (r(Ωp)f)(g) =
∑
V↔Y

FY,VY (dVY dYV f(g)).

Each FY,VY is a multiple of the identity on Y . For V ω←→ Y this multiple is given by 1
λ(V,Y ) .

Proof. Note first that for each f ∈ C∞(G×K Y ) and g ∈ G

∇f(g) =
∑
V↔Y

ιVY dYV f(g) ∈ Y ⊗ p∗,

since, by definition, both sides agree after applying T YV for some V ∈ K̂ with V ↔ Y . In
particular, we infer for X ∈ p

r(X)f(g) =
∑
V↔Y

ιVY (dYV f(g))(X).
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7.5. Properties of generalized gradients

Moreover, for another element Z ∈ p, by applying the previous equation twice,

(r(Z)r(X)f)(g) =
∑
V↔Y

ιVY (r(Z)dYV f(g))(X)

=
∑
V↔Y

ιVY (
∑
W↔V

ιWV (dVWdYV f(g))(Z))(X)

=
∑
V↔Y

∑
W↔V

ιVY (ιWV (dVWdYV f(g))(Z))(X).

Hence, we obtain

(r(Ωp)f)(g) =
∑
V↔Y

∑
W↔V

FW,VY (dVWdYV f(g)).

We now prove that FW,VY is K-equivariant. Indeed, note first that by the K-equivariance
of ιWV

∀X ∈ p, k ∈ K : ιWV (τW (k)ϕ)(X) = τV (k)ιWV (ϕ)(Ad(k−1)(X)),

where τV resp. τW denote the K-actions on V resp. W . Thus,

FW,VY (τW (k)ϕ) =
dim p∑
j=1

ιVY (τV (k)ιWV (ϕ)(Ad(k−1)X̃j))(Xj)

= τY (k)
dim p∑
j=1

ιVY (ιWV (ϕ)(Ad(k−1)X̃j))(Ad(k−1)Xj).

Therefore, to prove the claim, it suffices to show the independence of FW,VY (ϕ) from the
chosen basis. However, this follows as in the proof of Lemma 7.4.4.
By Schur’s lemma, the K-equivariance implies

(r(Ωp)f)(g) =
∑
V↔Y

FY,VY (dVY dYV f(g))

and each FY,VY is a multiple of the identity. Now let V ∈ K̂ with V ω←→ Y be fixed. Using
Proposition 7.3.9 in the first two and Lemma 7.3.7 in the last step, we have for ϕ ∈ Y

FY,VY (ϕ) =
dim p∑
j=1

1
λ(V, Y ) prY (ω(Xj)ιYV (ϕ)(X̃j))

= 1
λ(V, Y )λ(Y, V )

dim p∑
j=1

prY (ω(Xj) prV (ω(X̃j)ϕ))

= 1
λ(V, Y )ϕ.
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7. Fourier characterization

For G = PSL(2,R), Lemma 7.5.3 reduces to a calculation in U(g). Indeed, realizing
the elements of K̂ on Sn−1 (as in Lemma 4.3.1), we have

λ(Ln−1, Ln) = prLn(ω(H)zn−1)(1) = prLn

(
z + z−1

2 zn−1
)

(1) = 1
2 = λ(Ln+1, Ln)

by Example 7.3.5. Thus, a direct calculation shows

1
λ(Ln+1, Ln)η−η+ + 1

λ(Ln−1, Ln)η+η− = H2 +B2 = Ωp.

We can also check Lemma 4.2.1 by obtaining – recall ρ(H) = 1
2 –

2(η+η− + η−η+)f` = ((µ+ ρ)(H)2 − ρ(H)2 − `2)f`,

where the first two summands correspond to the action of the Casimir operator Ωg =
H2 +B2 − V 2 on Hµ+ρ by Equation (2.6) and the last one to the action of V 2 ∈ U(k).
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8. Spectral correspondence

Let us now, finally, state and prove the quantum-classical correspondences for the
exceptional parameters. By Remark 6.1.4 we obtain such correspondences as soon as we
have determined the images of the minimal K-type Poisson transforms restricted to the
socle (see also Proposition 5.1.3 and Theorem 5.1.6). The characterization of the Poisson
images requires the case by case calculations for decompositions of tensor products from
Appendix A.

8.1. The case of G = SO0(n, 1), n ≥ 3

By Propositions A.1.4 and A.1.6 we have for each k ∈ N0

Yk ⊗ p∗ ∼= Yk−1 ⊕ Yk+1 ⊕ Vk if n 6= 3, Yk ⊗ p∗ ∼= Yk−1 ⊕ Yk+1 ⊕ Yk if n = 3,

where Vk is not M -spherical. We define generalized gradients dYkV := T YkV ◦ ∇ with
T YkV ∈ HomK(Yk ⊗ p∗, V ) as in Definitions 2.4.2, 7.3.4 and abbreviate

d± := dYkYk±1
, D := dYkVk resp. D := dYkYk

for n 6= 3 resp. n = 3. Let µ = −ρ − `α ∈ Ex, see Theorem 6.2.1, be an exceptional
parameter and recall the structure and properties of soc(Hµ) from Theorem 6.2.1. Using
Proposition 7.3.12, Proposition 7.3.8.ii) and Remark A.1.3 we infer for each k ∈ N0

V
ω←→/ Yk =⇒ dYkV ◦ P

Yk
µ = 0 and V

ω←→ Yk ⇐⇒ V ∈ {Yk−1, Yk+1}

if Yk−1 exists1. Therefore,

D ◦ P Ykµ = 0.

By Theorem 6.2.1 the minimal K-type of soc(Hµ) is Y`+1. Since

d− ◦ P Y`+1
µ = T

Y`+1
Y`

(pY`+1,µ)(e)P Y`µ

by Proposition 5.3.2.ii) and Proposition 5.1.2 implies P Y`µ
∣∣∣
(soc(Hµ))−∞

= 0, we obtain

d− ◦ P Y`+1
µ

∣∣∣
(soc(Hµ))−∞

= 0.

1I.e.: For k = 0 we only have Y1 on the right hand side of the second equivalence.
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8. Spectral correspondence

k

d− d+

`+ 10

Figure 8.1.: Fourier components of f ∈ ΓH−∞µ . White dots represent Fourier components
that are zero; see also Figure B.2.

Summarizing, we have

P
Y`+1
µ : (soc(Hµ))−∞ → {f ∈ C∞(G×K Y`+1) | d−f = 0, Df = 0}.

We will now investigate which K-types µ with highest weight µ1e1 + . . .+ µmem, m :=
rk k = bn2 c, occur on the right hand side. Applying [DGK88, Theorem 6] to the minimal
K-type τ := Y`+1 (with highest weight (` + 1)e1) of soc(Hµ), we find that µj = 0 for
j > 1, µ1 ≥ `+ 1 and that each µ of this form occurs with multiplicity one. Therefore,
the highest weights of the K-types in {f ∈ C∞(G ×K Y`+1) | d−f = 0, Df = 0} are
given by ke1 for k ≥ `+ 1. Since Yk has highest weight ke1, these K-types are exactly
the same as the K-types of soc(Hµ) (see Theorem 6.2.1). Hence, we have

(soc(Hµ))K ∼= {f ∈ C∞(G×K Y`+1) | d−f = 0, Df = 0}K ,

where the K in the index denotes the Harish-Chandra module. Proceeding as in [Olb94,
Satz 4.13] we infer that the Poisson transform P

Y`+1
µ yields an isomorphism (similar to

the scalar case, see Equation (3.1), Theorem 3.2.2) from (soc(Hµ))−∞ to

{f ∈ C∞(G×K Y`+1) | d−f = 0, Df = 0, ∃ r ≥ 0: sup
g∈G
|e−rdG/K(eK,gK)f(g)| <∞}.

In particular, we have the following correspondence for the Γ-invariant elements.

Theorem 8.1.1 (Spectral Correspondence). Let Ex 3 µ = −(ρ + `α), ` ∈ N0, be an
exceptional parameter. Then the socle soc(Hµ) of Hµ is irreducible, unitary and its
K-types are given by Yk for k ≥ `+1. The minimal K-type is Y`+1 and the corresponding
Poisson transform induces an isomorphism

P
Y`+1
µ : Γ(soc(Hµ))−∞ ∼= Γ{f ∈ C∞(G×K Y`+1) | d−f = 0, Df = 0}.

Proof. This follows from the discussion above and the fact that each Γ-invariant function
fulfills the growth condition (for each r ≥ 0)

sup
g∈G
|e−rdG/K(eK,gK)f(g)| = sup

g∈F
|e−rdG/K(eK,gK)f(g)| <∞,

where F denotes a fundamental domain of Γ\G (note that the latter is compact by
assumption).
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8.2. The case of G = SU(n, 1), n ≥ 2

Example 8.1.2 (see Section 9.4.2 for more details). For the first exceptional parameter
µ = −ρ we get (Y1 ∼= p∗)

P Y1
−ρ : Γ(soc(H−ρ))−∞ ∼= {f ∈ C∞(Λ1(Γ\G/K)) | δf = 0, df = 0},

where Λ1(Γ\G/K) denotes the bundle of one forms and (δ resp.) d is the (co)-differential.
The dimension is given by the first Betti number b1(Γ\G/K).

8.2. The case of G = SU(n, 1), n ≥ 2

By Proposition 7.3.2 and Remark A.2.3 we have for p, q ∈ N0

Yp,q ⊗ p∗ ∼=
⊕
β∈S

Yp,q,β,

where S := {±(e1 − en+1), e2 − en+1,−en−1 + en+1,±(en − en+1)} ⊆ ∆n. The rep-
resentations V1 resp. V2 with highest weights qe1 + e2 − pen + (p − q − 1)en+1 resp.
qe1 − en−1 − pen + (p− q + 1)en+1 are not M -spherical. In this notation we have

Yp,q ⊗ p∗ ∼= Yp−1,q ⊕ Yp+1,q ⊕ Yp,q−1 ⊕ Yp,q+1 ⊕ V1 ⊕ V2,

whenever these representations exist (i.e. whenever the corresponding weights of Yp,q,β
are indeed dominant). We define generalized gradients dYp,qV := T

Yp,q
V ◦ ∇ with T Yp,qV ∈

HomK(Yp,q ⊗ p∗, V ) as in Definition 7.3.4 and abbreviate

d±,1 := dYp,qYp±1,q
, d±,2 := dYp,qYp,q±1

, Dj := dYp,qVj
, j = 1, 2.

Let µ = −(ρ+ 2`α) ∈ Ex, ` ∈ N0, be an exceptional parameter and recall the structure
and properties of soc(Hµ) from Theorem 6.2.1. Using Proposition 7.3.12, Proposition
7.3.8.ii) and Remark A.2.2 we infer

V
ω←→/ Yp,q =⇒ dYp,qV ◦ P Yp,qµ = 0 and V

ω←→ Yp,q ⇐⇒ V ∈ {Yp±1,q, Yp,q±1}

whenever the occurring representations exist. Therefore, for j ∈ {1, 2},

Dj ◦ P Yp,qµ = 0. (8.1)

The minimal K-type of soc(Hµ) is Y`+1,`+1 (see Theorem 6.2.1). By Proposition 5.3.2.ii),

d−,1 ◦ P
Y`+1,`+1
µ = T

Y`+1,`+1
Y`,`+1

(pY`+1,`+1,µ)(e)P Y`,`+1
µ

d−,2 ◦ P
Y`+1,`+1
µ = T

Y`+1,`+1
Y`+1,`

(pY`+1,`+1,µ)(e)P Y`+1,`
µ .

Since Proposition 5.1.2 implies that P Y`,`+1
µ |(soc(Hµ))−∞ = 0 and P Y`+1,`

µ |(soc(Hµ))−∞ = 0,
we obtain that, for j ∈ {1, 2},

d−,j ◦ P
Y`+1,`+1
µ

∣∣∣
(soc(Hµ))−∞

= 0.
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8. Spectral correspondence

p

q

d−,1

d−,2

`+ 1

`+ 1

Figure 8.2.: Fourier components of f ∈ ΓH−∞µ . White dots represent Fourier components
that are zero; see also Figure B.4.

Summarizing, we have

P
Y`+1,`+1
µ : (soc(Hµ))−∞ → {f ∈ C∞(G×K Y`+1,`+1) | d−,jf = 0, Djf = 0, j ∈ {1, 2}}.

(8.2)

We will first present a method similar to the case of G = SO0(n, 1). For this method we
have to assume n 6= 2 and ` 6= 0. Then [Mea89, Equations (2.7.3), (2.7.4), Lemma 6.2.1,
Proposition 6.4.6] imply that the highest weights of the K-types on the right hand side of
(8.2) are given by p′e1− q′en + (q′− p′)en+1 with p′ ≥ `+ 1 and q′ ≥ `+ 1, each occurring
with multiplicity at most one. By definition, the corresponding representations are Yp,q for
p, q ≥ `+ 1. Since the Poisson transform P

Y`+1,`+1
µ is injective by Proposition 5.1.3, each

K-type of the socle (see Theorem 6.2.1) has to occur in its image (restricted to the socle).
Therefore the K-types of {f ∈ C∞(G×K Y`+1,`+1) | d−,jf = 0, Djf = 0, j ∈ {1, 2}} are
given by Yp,q, p, q ≥ `+ 1, each one occurring with multiplicity one. Hence, we obtain

(soc(Hµ))K ∼= {f ∈ C∞(G×K Y`+1,`+1) | d−,jf = 0, Djf = 0, j ∈ {1, 2}}K .

Proceeding as in the case of G = SO0(n, 1) we find

Theorem 8.2.1 (Spectral Correspondence 1). Let n 6= 2 and Ex 3 µ = −(ρ + 2`α),
for ` ∈ N (i.e. ` 6= 0), be an exceptional parameter. Then the socle soc(Hµ) of Hµ is
irreducible, unitary and its K-types are given by Yp,q for p, q ≥ `+1. The minimal K-type
is Y`+1,`+1 and the corresponding Poisson transform induces an isomorphism

P
Y`+1,`+1
µ : Γ(soc(Hµ))−∞ ∼= Γ{f ∈ C∞(G×K Y`+1,`+1) : d−,jf = 0, Djf = 0, j ∈ {1, 2}}.
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8.2. The case of G = SU(n, 1), n ≥ 2

Proof. See Theorem 8.1.1.

In order to treat the remaining parameters (n = 2 or ` = 0) we will use the Fourier
characterization of the principal series. The following lemma is based on Lemma 7.2.5.

Lemma 8.2.2. Let µ := −(ρ + 2`α), ` ∈ N0, an exceptional parameter. Let ψp,q ∈
C∞(G×K Yp,q) for p, q ≥ `+ 1 be such that the equations from Lemma 7.4.1 are fulfilled
(with ψp,q instead of π∗Yp,q(f)). Assume that πY`+1,`+1(ψY`+1,`+1) ∈ C∞(G) has finite
L2-norm. Then the formal sum

f :=
∑

p,q≥`+1
ιG/M (πYp,q(ψp,q))

defines a distribution on G/M .

Proof. We abbreviate T p1,q1
p2,q2

:= T
Yp1,q1
Yp2,q2

(pYp1,q1,µ)(e) ∈ C. It suffices to prove the estimate
in Lemma 7.2.5. Using Lemma 7.5.2 (second step) and the equations from Lemma 7.4.1
(first and third step) we infer for the L2 inner product

‖πYp,q(ψp,q)‖2 = dimYp,q
dimYp−1,q

1
T p−1,q
p,q

〈πYp,q(ψp,q), πYp,q(d+,1ψp−1,q)〉

= − dimYp,q
dimYp−1,q

1
T p−1,q
p,q

〈πYp−1,q(d−,1ψp,q), πYp−1,q(ψp−1,q)〉

= −
(

dimYp,q
dimYp−1,q

)2
T p,qp−1,q

T p−1,q
p,q

〈πYp−1,q(ψp−1,q), πYp−1,q(ψp−1,q)〉.

By Proposition A.5.1, Remark A.2.2 and Remark A.2.3 this equals

(n+ p− 2)(n+ p+ q − 1)
p(n+ p+ q − 2)

n+ p

p− 1− `‖πYp−1,q(ψp−1,q)‖2.

Iteratively applying this equation we find that for each m ∈ N0

‖πY`+m,q(ψ`+m,q)‖2 =
m∏
r=2

(n+ `+ r − 2)(n+ `+ r + q − 1)
(`+ r)(n+ `+ r + q − 2)

n+ `+ r

r − 1 ‖πY`+1,q(ψ`+1,q)‖2.

The latter product equals

(n+ `+m+ q − 1)(n+ `+m− 2)!(`+ 1)!(n+ `+m)!
(n+ `+ q)(n+ `− 1)!(`+m)!(m− 1)!(n+ `+ 1)! ‖πY`+1,q(ψ`+1,q)‖2,

which grows polynomially in m (in fact it is O(m2n+`)). Interchanging the roles of p and
q this proves the estimate in Lemma 7.2.5 and therefore the lemma.

If the ψp,q from Lemma 8.2.2 happen to be Γ-invariant we can consider the πYp,q(ψp,q)
as functions in C∞(Γ\G). Choosing a (compact) fundamental domain for the action of
Γ in G, we can thus use Lemma 8.2.2 to construct a Γ-invariant distribution on G/M
respectively a distribution on the locally symmetric space Γ\G/M .
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8. Spectral correspondence

Theorem 8.2.3 (Spectral Correspondence 2). Let Ex 3 µ = −(ρ + 2`α), ` ∈ N0, be
an exceptional parameter. Then the socle soc(Hµ) of Hµ is irreducible, unitary and its
K-types are given by Yp,q for p, q ≥ ` + 1. The minimal K-type is Y`+1,`+1 and the
corresponding Poisson transform induces an isomorphism from Γ(soc(Hµ))−∞ onto

Γ{u ∈ C∞(G×K Y`+1,`+1) | properties i)− vi) below},

where the properties are as follows.
For u ∈ C∞(G×K Y`+1,`+1) let ψ`+1,`+1 := dimY`+1,`+1 · u and define recursively for

p, q ≥ `+ 1 (see Lemma 7.4.1)

ψp+1,`+1 := dimYp+1,`+1
dimYp,`+1

1
T p,`+1
p+1,`+1

d+,1ψp,`+1, ψp,q := dimYp,q
dimYp,q−1

1
T p,q−1
p,q

d+,2ψp,q−1,

where we abbreviate T p1,q1
p2,q2

:= T
Yp1,q1
Yp2,q2

(pYp1,q1 ,µ)(e) ∈ C. Then we define the properties

i) d+,1ψp,q = T p,qp+1,q
dimYp,q

dimYp+1,q
ψp+1,q, (p ≥ `+ 1, q ≥ `+ 2),

ii) d−,1ψp,q = T p,qp−1,q
dimYp,q

dimYp−1,q
ψp−1,q, (p ≥ `+ 2, q ≥ `+ 1),

iii) d−,1ψ`+1,q = 0, (q ≥ `+ 1),

iv) d−,2ψp,q = T p,qp,q−1
dimYp,q

dimYp,q−1
ψp,q−1, (p ≥ `+ 1, q ≥ `+ 2),

v) d−,2ψp,`+1 = 0, (p ≥ `+ 1),

vi) Djψp,q = 0, (p, q ≥ `+ 1, j ∈ {1, 2}).

Proof. We first prove that the Poisson transform maps into the claimed space. If
u = P

Y`+1,`+1
µ (f) for some f ∈ (soc(Hµ))−∞ we have ψ`+1,`+1 = π∗Y`+1,`+1

(f) by Lemma
7.1.4.iv). Properties i), ii), iv) and vi) are exactly the equations from Lemma 7.4.1. To
prove the third property we note that

d−,1ψ`+1,q = d−,1π∗Y`+1,q(f) = T `+1,q
`,q

dimY`+1,q
dimY`,q

π∗Y`,q(f) = 0,

since the socle does not contain the K-type Y`,q. Similarly we see that property v) is
fulfilled. Since the Poisson transform is G-equivariant it preserves Γ-invariant elements.

For the surjectivity let u ∈ ΓC∞(G×K Y`+1,`+1) with the desired properties. Define

f :=
∑

p,q≥`+1
ιG/M (πYp,q(ψp,q)).

Note first that each ψp,q is Γ-invariant since ψ`+1,`+1 is Γ-invariant and each involved
map is G-equivariant. Lemma 8.2.2 thus implies that f defines a Γ-invariant distribution
on G/M . By Theorem 7.4.11 we have f ∈ ΓH−∞µ and, since there are only terms for
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8.3. The case of G = Sp(n, 1), n ≥ 2

p, q ≥ `+ 1 in the defining sum of f , we also have f ∈ Γ(soc(Hµ))−∞. The orthogonality
of the K-types implies (see Definition 7.1.1 for the relevant definitions)

π∗Y`+1,`+1(
∑
p,q∈J

ιG/M (πYp,q(ψp,q))) =
∑
p,q∈J

ιG/M (πYp,q(ψp,q)) ◦ πY`+1,`+1 = 0

for J := {(p, q) ∈ N2
0 : (p, q) 6= (`+ 1, `+ 1)} and

π∗Y`+1,`+1(ιG/M (πY`+1,`+1(ψ`+1,`+1))) = ιY`+1,`+1(ψ`+1,`+1),

where we used Lemma 7.1.4.iii) and i). Using Lemma 7.1.4.iv) we obtain

P
Y`+1,`+1
µ (f) = 1

dimY`+1,`+1
π∗Y`+1,`+1(f) = 1

dimY`+1,`+1
ψ`+1,`+1 = u.

8.3. The case of G = Sp(n, 1), n ≥ 2

By Proposition 7.3.2 and Remark A.3.3 we have for each a, b ∈ N0 with a ≥ b

Va,b ⊗ p∗ ∼= Va+1,b ⊕ Va−1,b ⊕ Va,b+1 ⊕ Va,b−1 ⊕
⊕
β∈S

Va,b,β 6∈K̂M

Va,b,β.

We define generalized gradients dVa,bV := T
Va,b
V ◦ ∇ with T Va,bV ∈ HomK(Va,b ⊗ p∗, V ) as in

Definition 7.3.4 and abbreviate

d±,1 := dVa,bVa±1,b
, d±,2 := dVa,bVa,b±1

, Dβ := dVa,bVa,b,β

for each β ∈ S with Va,b,β 6∈ K̂M . Let µ = −(ρ + (2` − 2)α) ∈ Ex be an exceptional
parameter and recall the structure and properties of soc(Hµ) from Theorem 6.2.1. Using
Proposition 7.3.12, Proposition 7.3.8.ii) and Remark A.3.2 we infer for each a, b ∈ N0
with a ≥ b

V
ω←→/ Va,b =⇒ dVa,bV ◦ P Va,bµ = 0 and V ω←→ Va,b ⇐⇒ V ∈ {Va+1,b, Va−1,b, Va,b+1, Va,b−1}

whenever the occurring representations exist. The minimal K-type of soc(Hµ) is given
by V`+1,`+1 (see Theorem 6.2.1).

The spectral correspondence in the quaternionic case is established by using the Fourier
characterization of the principal series as in Theorem 8.2.3. By Lemma 7.2.5 we obtain
the following result.

Lemma 8.3.1. Let µ := −(ρ + (2` − 2)α), ` ∈ N0, an exceptional parameter. Let
ψa,b ∈ C∞(G×K Va,b) for a, b ≥ `+ 1 be such that the equations from Lemma 7.4.1 are
fulfilled (with ψa,b instead of π∗Va,b(f)). Assume that πV`+1,`+1(ψV`+1,`+1) ∈ C∞(G) has
finite L2-norm. Then the formal sum

f :=
∑

a≥b≥`+1
ιG/M (πVa,b(ψa,b))

defines a distribution on G/M .
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8. Spectral correspondence

Proof. We abbreviate T a1,b1
a2,b2

:= T
Va1,b1
Va2,b2

(pVa1,b1,µ
)(e) ∈ C. It suffices to prove the estimate

in Lemma 7.2.5. Using Lemma 7.5.2 (second step) and the equations from Lemma 7.4.1
(first and third step) we infer for the L2-norm as in Lemma 8.2.2

‖πVa,b(ψa,b)‖2 = −
(

dimVa,b
dimVa−1,b

)2
T a,ba−1,b

T a−1,b
a,b

‖πVa−1,b(ψa−1,b)‖2.

By Equation (7.9), Proposition A.5.1 and Proposition 7.3.8.iv) we have

T a,ba−1,b

T a−1,b
a,b

= −2n+ 1− a− `
a− `

λ(Va,b, Va−1,b)
λ(Va,b, Va−1,b)

= −2n+ 1− a− `
a− `

dimVa−1,b
dimVa,b

and thus

‖πVa,b(ψa,b)‖2 = 2n− 1 + a+ `

a− `
dimVa,b

dimVa−1,b
‖πVa−1,b(ψa−1,b)‖2.

Iteratively applying this equation we infer that for each m ∈ N0

‖πV`+m,b(ψ`+m,b)‖2 =
m∏
r=2

2n− 1 + 2`+ r

r

dimV`+r,b
dimV`+r−1,b

‖πV`+1,b(ψ`+1,b)‖2

= dimV`+m,b
dimV`+1,b

m∏
r=2

2n− 1 + 2`+ r

r
‖πV`+1,b(ψ`+1,b)‖2.

Note that ∏m
r=2

2n−1+2`+r
r = (2n−1+2`+m)!

m!(2n+2`)! is O(m2n−1+2`). Moreover, the dimension
formula from Remark A.3.3 shows that dimV`+m,b grows at most polynomially in m. A
similar argument works for the b-variable.

Theorem 8.3.2 (Spectral Correspondence). Let Ex 3 µ = −(ρ + (2` − 2)α), ` ∈ N0,
be an exceptional parameter. Then the socle soc(Hµ) of Hµ is irreducible, unitary and
its K-types are given by Va,b for a ≥ b ≥ `+ 1. The minimal K-type is V`+1,`+1 and the
corresponding Poisson transform induces an isomorphism from Γ(soc(Hµ))−∞ onto

Γ{u ∈ C∞(G×K V`+1,`+1) : properties i)− v) below},

where the properties are as follows.
For u ∈ C∞(G×K V`+1,`+1) let ψ`+1,`+1 := dimV`+1,`+1 · u and define recursively for

a ≥ b ≥ `+ 1 (see Lemma 7.4.1)

ψa+1,`+1 := dimVa+1,`+1
dimVa,`+1

1
T a,`+1
a+1,`+1

d+,1ψa,`+1, ψa,b := dimVa,b
dimVa,b−1

1
T a,b−1
a,b

d+,2ψa,b−1,

where we abbreviate T a1,b1
a2,b2

:= T
Va1,b1
Va2,b2

(pVa1,b1,µ
)(e) ∈ C. Then we define the properties

i) d+,1ψa,b = T a,ba+1,b
dimVa,b

dimVa+1,b
ψa+1,b, (a ≥ b ≥ `+ 2),
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8.4. The case of G = F4(−20)

a

b

d+,1

d−,2

`

`

Figure 8.3.: Fourier components of f ∈ ΓH−∞µ . White dots represent Fourier components
that are zero; see also Figure B.6.

ii) d−,1ψa,b = T a,ba−1,b
dimVa,b

dimVa−1,b
ψa−1,b, (a ≥ `+ 2, b ≥ `+ 1),

iii) d−,2ψa,b = T a,ba,b−1
dimVa,b

dimVa,b−1
ψa,b−1, (a ≥ b ≥ `+ 2),

iv) d−,2ψa,`+1 = 0, (a ≥ `+ 1),

v) dVa,bV ψa,b = 0, (a ≥ b ≥ `+ 1, V ↔ Va,b, V 6∈ K̂M ).

Proof. The proof is analogous to the proof of Theorem 8.2.3.

8.4. The case of G = F4(−20)

By Proposition 7.3.2 and Remark A.4.3 we have for each m, k ∈ N0 with m ≥ k and
m ≡ k mod 2

Vm,k ⊗ p∗ ∼= Vm+1,k+1 ⊕ Vm−1,k−1 ⊕ Vm+1,k−1 ⊕ Vm−1,k+1 ⊕
⊕
β∈S

Vm,k,β 6∈K̂M

Vm,k,β.

We define generalized gradients dVm,kV := T
Vm,k
V ◦ ∇ with T Vm,kV ∈ HomK(Vm,k ⊗ p∗, V ) as

in Definition 7.3.4 and abbreviate

d±,1 := dVm,kVm±1,k±1
, d±,2 := dVm,kVm±1,k∓1

, Dβ := dVm,kVm,k,β

for each β ∈ S with Vm,k,β 6∈ K̂M .
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8. Spectral correspondence

Let µ = −(ρ + (2` − 6)α) ∈ Ex, ` ∈ N0, be an exceptional parameter and recall
the structure and properties of soc(Hµ) from Theorem 6.2.1. Using Proposition 7.3.12,
Proposition 7.3.8.ii) and Remark A.4.2 we infer for each m ≥ k ∈ N0 with m ≡ k mod 2

V
ω←→/ Vm,k =⇒ dVm,kV ◦ P Vm,kµ = 0 and V

ω←→ Vm,k ⇐⇒ V ∈ {Vm±1,k±1}

whenever the occurring representations exist. The minimal K-type of soc(Hµ) is given
by V2`+2,0 (see Theorem 6.2.1).

As in the quaternionic case we use Theorem 7.4.11 to prove a spectral correspondence.
By Lemma 7.2.5 we obtain

Lemma 8.4.1. Let µ := −(ρ+ (2`− 6)α), ` ∈ N0, an exceptional parameter. Let ψm,k ∈
C∞(G×KVm,k) for m ≡ kmod 2, m−k ≥ 2(`+1), be such that the equations from Lemma
7.4.1 are satisfied (with ψm,k instead of π∗Vm,k(f)). Assume that πV2`+2,0(ψV2`+2,0) ∈ C∞(G)
has finite L2-norm. Then the formal sum

f :=
∑

m−k≥2`+2
m≡kmod 2

ιG/M (πVm,k(ψm,k))

defines a distribution on G/M .

Proof. We abbreviate Tm1,k1
m2,k2

:= T
Vm1,k1
Vm2,k2

(pVm1,k1,µ
)(e) ∈ C. It suffices to prove the

estimate in Lemma 7.2.5. Using Lemma 7.5.2 (second step) and the equations from
Lemma 7.4.1 (first and third step) we infer for the L2-norm as in Lemma 8.2.2

‖πVm,k(ψm,k)‖2 = −
(

dimVm,k
dimVm−1,k−1

)2
Tm,km−1,k−1

Tm−1,k−1
m,k

‖πVm−1,k−1(ψm−1,k−1)‖2.

By Equation (7.9), Proposition A.5.1 and Proposition 7.3.8.iv) we have

Tm,km−1,k−1

Tm−1,k−1
m,k

= −14− 2`−m− k
4− 2`+m+ k

λ(Vm,k, Vm−1,k−1)
λ(Vm,k, Vm−1,k−1) = −14− 2`−m− k

4− 2`+m+ k

dimVm−1,k−1
dimVm,k

and thus

‖πVm,k(ψm,k)‖2 = 14 + 2`+m+ k

4− 2`+m+ k

dimVm,k
dimVm−1,k−1

‖πVm−1,k−1(ψm−1,k−1)‖2.

Iteratively applying this equation we infer for a(m, k) := m+k
2 and p := a(m, k)− (`+ 1)

‖πVm,k(ψm,k)‖2 =
p−1∏
r=1

7 + `+ a(m, k)− r
2− `+ a(m, k)− r

dimVm−r,k−r
dimVm−r−1,k−r−1

‖πVm−p,k−p(ψm−p,k−p)‖2

= dimVm,k
dimVm−p,k−p

p−1∏
r=1

7 + `+ a(m, k)− r
2− `+ a(m, k)− r‖πVm−p,k−p(ψm−p,k−p)‖

2,
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8.4. The case of G = F4(−20)

m

k

d−,2 d+,1

2`2`− 6

2`

Figure 8.4.: Fourier components of f ∈ ΓH−∞µ . White dots represent Fourier components
that are zero; see also Figure B.9.

with a(m−p, k−p) = `+1. Note that ∏p−1
r=1

7+`+a(m,k)−r
2−`+a(m,k)−r = (7+2`+p)!·6

(7+2`+1)!·(2+p)! is O(p7+2`−2).
Moreover, the dimension formula from Remark A.4.3 shows that dimVm,k grows at
most polynomially in m and k. A similar argument works for the step from Vm,k
with a(m, k) = ` + 1 to V2(`+1),0 by decreasing b(m, k) := m−k

2 (by going from Vm,k to
Vm−1,k+1).

Theorem 8.4.2 (Spectral Correspondence). Let Ex 3 µ = −(ρ + (2` − 6)α), ` ∈ N0,
be an exceptional parameter. Then the socle soc(Hµ) of Hµ is irreducible, unitary and
its K-types are given by Vm,k for m ≡ kmod 2, m − k ≥ 2(` + 1). The minimal K-
type is V2`+2,0 and the corresponding Poisson transform induces an isomorphism from
Γ(soc(Hµ))−∞ onto

Γ{u ∈ C∞(G×K V2`+2,0) : properties i)− v) below},

where the properties are as follows. Let a(m, k) := m+k
2 and b(m, k) := m−k

2 . For
u ∈ C∞(G ×K V2`+2,0) let ψ`+1,`+1 := dimV2`+2,0 · u and define recursively for m ≡
kmod 2, m− k ≥ 2(`+ 1) (see Lemma 7.4.1)

ψa,`+1 := dimVm,m−2`−2
dimVm−1,m−2`−3

1
T a−1,`+1
a,`+1

d+,1ψa−1,`+1, ψa,b := dimVm,k
dimVm−1,k+1

1
T a,b−1
a,b

d+,2ψa,b−1,

where we abbreviate T a1,b1
a2,b2

:= T
Va1+b1,a1−b1
Va2+b2,a2−b2

(pVa1+b1,a1−b1,µ
)(e) ∈ C. Then we define the

properties
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8. Spectral correspondence

i) d+,1ψa,b = T a,ba+1,b
dimVm,k

dimVm+1,k+1
ψa+1,b, (a ≥ b ≥ `+ 2),

ii) d−,1ψa,b = T a,ba−1,b
dimVm,k

dimVm−1,k−1
ψa−1,b, (a ≥ `+ 2, b ≥ `+ 1),

iii) d−,2ψa,b = T a,ba,b−1
dimVm,k

dimVm−1,k+1
ψa,b−1, (a ≥ b ≥ `+ 2),

iv) d−,2ψa,`+1 = 0, (a ≥ `+ 1),

v) dVm,kV ψa,b = 0, (a ≥ b ≥ `+ 1, V ↔ Vm,k, V 6∈ K̂M ).

Proof. The proof is analogous to the proof of Theorem 8.2.3.
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9. An example: The real hyperbolic case

In this chapter we describe the case of G = SO0(n, 1), n ≥ 3, in some more detail. In
particular, we explicitly describe the projections and embeddings for tensor products, the
Fourier characterization of the spherical principal series and the generalized gradients in
this case. For the general structure of G we refer the reader to Appendix B.2.1. Recall
also the decomposition of the spherical principal series into spherical harmonics from
Appendix B.2.2.

9.1. Generalized gradients
In order to describe the generalized gradients, we first need to decompose Y` ⊗ p∗ for
[(τ`, Y`)] ∈ K̂ as a K-representation. This is done in Proposition A.1.4 and A.1.6. By
these, we have Y` ⊗ p∗ ∼= Y`+1 ⊕ Y`−1 ⊕ V` for ` ∈ N, where V` does not contain the
trivial M -representation if n 6= 3 and we write V` := Y` if n = 3, and Y0 ⊗ p∗ ∼= Y1. The
associated generalized gradients are given by

d+ := T Y`Y`+1
◦ ∇ : C∞(G×K Y`)→ C∞(G×K Y`+1),

d− := T Y`Y`−1
◦ ∇ : C∞(G×K Y`)→ C∞(G×K Y`−1),

D := prV` ◦ ∇ : C∞(G×K Y`)→ C∞(G×K V`), (9.1)

where the maps T Y`Y`±1
∈ HomK(Y` ⊗ p∗, Y`±1) are given as follows: We have p ∼= Cn as

K-representation, i.e.

Ad(diag(A, 1))Xv = XAv

for every v ∈ Cn, diag(A, 1) ∈ K (see Appendix B.2.1 for the notation). Thus, we may
identify

Y` ⊗ p∗ ∼= Y` ⊗ (Cn)∗, φ⊗X∗ej 7→ φ⊗ e∗j , (9.2)

where X∗ej (Xei) := δji =: e∗j (ei). This shows that the map

Y` ⊗ p∗ → C∞(Sn−1), φ⊗X∗ej 7→ xjφ,

is K-equivariant, where xj is the monomial on Sn−1 corresponding to e∗j . By Equation
(B.2.3) we can decompose

xjφ = φ+
j + |x|2φ−j
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9. An example: The real hyperbolic case

where φ±j ∈ Y`±1 are explicitly given by (cf. [FØ19, Equation (B.4)])

φ+
j = P(xjφ) = xjφ−

|x|2

n+ 2`− 2
∂φ

∂xj
, φ−j = 1

n+ 2`− 2
∂φ

∂xj
. (9.3)

This leads to the definition T Y`Y`−1
(φ⊗X∗ej ) := φ−j and T Y`Y`+1

(φ⊗X∗ej ) := φ+
j for φ⊗X∗ej ∈

Y` ⊗ p∗ ∼= Y` ⊗ (Cn)∗. We also define d− for ` = 0 for convenience of notation (note that
it is the zero map because of the derivative).

Note that the definition of the projections coincides with the general one from Definition
7.3.4 since the identification of K/M with Sn−1 comes from the adjoint action on p0 (see
Appendix B.2.2), ω(Xej ) = xj ∈ C∞(Sn−1) and I(Xej ) = Xej . The following lemma
turns out to be very useful for computations involving spherical harmonics.
Lemma 9.1.1. Let f be a homogeneous polynomial of degree `. Then

P(xif) = P(xiP(f)).

Proof. Writing f = P(f) + |x|2q with q homogeneous of degree `− 2 implies

xif = xiP(f) + |x|2xiq ⇒ P(xif) = P(xiP(f))

by applying P to both sides since multiples of |x|2 are in the kernel of P.

We now describe the embeddings of Y`±1 into Y` ⊗ p∗ ∼= Y` ⊗ (Cn)∗ corresponding to
T Y`Y`−1

and T Y`Y`+1
.

Lemma 9.1.2. Let

ι
Y`+1
Y`

: Y`+1 → Y` ⊗ (Cn)∗, f 7→ 1
`+ 1

n∑
j=1

∂f

∂xj
⊗ e∗j

and

ι
Y`−1
Y`

: Y`−1 → Y` ⊗ (Cn)∗, f 7→ n+ 2`− 4
`+ n− 3

n∑
j=1

P(xjf)⊗ e∗j .

Then

i) ιY`+1
Y`

and ιY`−1
Y`

are K-equivariant,

ii) T Y`Y`+1
◦ ιY`+1

Y`
= idY`+1 and T Y`Y`−1

◦ ιY`−1
Y`

= idY`−1,

iii) T Y`Y`+1
◦ ιY`−1

Y`
= 0 and T Y`Y`−1

◦ ιY`+1
Y`

= 0.
Let us first compare these definitions with Proposition 7.3.9. We shall confine ourselves

to the case ιY`−1
Y`

and obtain – due to Remark A.1.3 –

ι
Y`−1
Y`

(f)(Xej ) = 1
λ(Y`−1, Y`)

prY`(ω(Xej )f) = 1
λ(Y`−1, Y`)

P(xjf) = n+ 2`− 4
`+ n− 3 P(xjf).

A similar argument works for the projections T Y`W . Lemma 9.1.2 may also be proved in
the following direct way using only the structure of spherical harmonics.
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9.1. Generalized gradients

Proof. i) We first prove the K-equivariance of ιY`+1
Y`

. Let f ∈ Y`+1 and k ∈ K. Then

ι
Y`+1
Y`

(k.f) = ι
Y`+1
Y`

(f ◦ k−1) = 1
`+ 1

n∑
j=1

∂(f ◦ k−1)
∂xj

⊗ e∗j

and

k.ι
Y`+1
Y`

(f) = 1
`+ 1

n∑
j=1

k.
∂f

∂xj
⊗ k.e∗j = 1

`+ 1

n∑
j=1

∂f

∂xj
◦ k−1 ⊗ e∗j ◦ k−1.

Using the canonical isomorphism

Φ : Y` ⊗ (Cn)∗ ∼= Hom(Cn, Y`), Φ(f ⊗ λ)(v) := λ(v)f

we have

Φ(ιY`+1
Y`

(k.f))(ei) = 1
`+ 1

∂(f ◦ k−1)
∂xi

,

Φ(k.ιY`+1
Y`

(f))(ei) = 1
`+ 1

n∑
j=1

(
∂f

∂xj
◦ k−1

)
e∗j (k−1ei).

By the chain rule we obtain

Φ(ιY`+1
Y`

(k.f))(ei) = 1
`+ 1

n∑
j=1

(
∂f

∂xj
◦ k−1

)
∂k−1

j

∂xi
,

where k−1
j denotes the j-th component of k−1 ∈ Aut(Cn). For each x ∈ Cn we have

∂k−1
j

∂xi
(x) = lim

h→0

k−1
j (x+ hei)− k−1

j (x)
h

= k−1
j (ei) = e∗j (k−1ei)

since k−1 is linear. This proves the equivariance of ιY`+1
Y`

.
Let us now prove the equivariance of ιY`−1

Y`
. For f ∈ Y`−1 and k ∈ K we have to show

that
n∑
j=1

P(xj(k.f))⊗ e∗j =
n∑
j=1

k.P(xjf)⊗ e∗j ◦ k−1.

Evaluating at ei using Φ this is equivalent to

P(xi(k.f)) =
n∑
j=1

k.P(xjf)e∗j (k−1ei) (9.4)

for each i ∈ {1, . . . , n}. Note that

k−1.e∗i =
n∑
j=1

e∗i (kej) =
n∑
j=1

e∗j (k−1ei)e∗j (9.5)
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9. An example: The real hyperbolic case

since k is orthogonal. By the equivariance of P the left hand side of Equation (9.4) reads

P(xi(k.f)) = P(k.((k−1.xi)f)) = k.P((k−1.xi)f).

Since the monomial xi equals e∗i we can use Equation (9.5) to get

P(xi(k.f)) = k.P((k−1.e∗i )f) = k.P

 n∑
j=1

e∗j (k−1ei)e∗jf


=

n∑
j=1

k.P(e∗jf)e∗j (k−1ei) =
n∑
j=1

k.P(xjf)e∗j (k−1ei)

by the linearity of P and the linearity of the action of k. This proves Equation (9.4) and
thus the equivariance of ιY`−1

Y`
.

ii) We first prove T Y`Y`+1
◦ ιY`+1

Y`
= idY`+1 . For each f ∈ Y`+1 we have

T Y`Y`+1
(ιY`+1
Y`

(f)) = T Y`Y`+1

 1
`+ 1

n∑
j=1

∂f

∂xj
⊗ e∗j

 = 1
`+ 1

n∑
j=1

T Y`Y`+1

(
∂f

∂xj
⊗ e∗j

)

= 1
`+ 1

n∑
j=1

P
(
xj
∂f

∂xj

)
= 1
`+ 1P

 n∑
j=1

xj
∂f

∂xj

 .
Since f is a homogeneous polynomial of degree `+ 1 we have

n∑
j=1

xj
∂f

∂xj
= (`+ 1)f.

Since f is harmonic this yields

T Y`Y`+1
(ιY`+1
Y`

(f)) = 1
`+ 1P ((`+ 1)f) = P(f) = f.

Let us now prove T Y`Y`−1
◦ ιY`−1

Y`
= idY`−1 . For each f ∈ Y`−1 we have

T Y`Y`−1
(ιY`−1
Y`

(f)) = n+ 2`− 4
`+ n− 3

n∑
j=1

T Y`Y`−1
(P(xjf)⊗ e∗j )

= n+ 2`− 4
`+ n− 3

n∑
j=1

1
n+ 2`− 2

∂P(xjf)
∂xj

. (9.6)

By Equation (9.3) we have

P(xjf) = xjf −
|x|2

n+ 2(`− 1)− 2
∂f

∂xj
= xjf −

|x|2

n+ 2`− 4
∂f

∂xj
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9.1. Generalized gradients

and thus

∂P(xjf)
∂xj

= ∂

∂xj

(
xjf −

|x|2

n+ 2`− 4
∂f

∂xj

)

= f + xj
∂f

∂xj
− 1
n+ 2`− 4

(
2xj

∂f

∂xj
+ |x|2∂

2f

∂x2
j

)
.

This implies

n∑
j=1

∂P(xjf)
∂xj

= nf +
n∑
j=1

xj
∂f

∂xj
− 1
n+ 2`− 4

2
n∑
j=1

xj
∂f

∂xj
+ |x|2∆f

 ,
where ∆ denotes the standard Laplacian on Rn. Since f is homogeneous of degree `− 1
and harmonic this simplifies to

n∑
j=1

∂P(xjf)
∂xj

= nf + (`− 1)f − 1
n+ 2`− 42(`− 1)f = (`+ n− 3)(n+ 2`− 2)

n+ 2`− 4 f.

Plugging this into Equation (9.6) finishes the proof of ii).
iii) We first prove T Y`Y`+1

◦ ιY`−1
Y`

= 0. For f ∈ Y`−1 we have

T Y`Y`+1
(ιY`−1
Y`

(f)) = T Y`Y`+1

n+ 2`− 4
`+ n− 3

n∑
j=1

P(xjf)⊗ e∗j


= n+ 2`− 4

`+ n− 3

n∑
j=1

T Y`Y`+1
(P(xjf)⊗ e∗j )

= n+ 2`− 4
`+ n− 3

n∑
j=1

P(xjP(xjf)).

By Lemma 9.1.1 we have P(xjP(xjf)) = P(x2
jf). This yields

T Y`Y`+1
(ιY`−1
Y`

(f)) = n+ 2`− 4
`+ n− 3

n∑
j=1

P(x2
jf) = n+ 2`− 4

`+ n− 3 P(|x|2f) = 0.

Let us finally prove T Y`Y`−1
◦ ιY`+1

Y`
= 0. For each f ∈ Y`+1 we calculate

T Y`Y`−1
(ιY`+1
Y`

(f)) = T Y`Y`−1

 1
`+ 1

n∑
j=1

∂f

∂xj
⊗ e∗j

 = 1
`+ 1

n∑
j=1

T Y`Y`−1

(
∂f

∂xj
⊗ e∗j

)

= 1
`+ 1

n∑
j=1

1
n+ 2`− 2

∂2f

∂x2
j

= 1
(`+ 1)(n+ 2`− 2)∆f = 0

since f is harmonic.
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9. An example: The real hyperbolic case

For explicit calculations using generalized gradients we need the following two lemmas.

Lemma 9.1.3. For each f ∈ Y` we have

∂f

∂x1
(e1) = `f(e1) and P(x1f)(e1) = n+ `− 2

n+ 2`− 2f(e1).

Proof. For the first equality note that

∂f

∂x1
(e1) =

(
x1

∂f

∂x1

)
(e1) =

 n∑
j=1

xj
∂f

∂xj

 (e1) = `f(e1).

For the second equality we use Equation (9.3) to get

P(x1f)(e1) =
(
x1f −

|x|2

n+ 2`− 2
∂f

∂x1

)
(e1) = f(e1)− 1

n+ 2`− 2
∂f

∂x1
(e1).

By the first equality this simplifies to

P(x1f)(e1) = f(e1)− `

n+ 2`− 2f(e1) = n+ `− 2
n+ 2`− 2f(e1).

Lemma 9.1.4. Let ` ∈ N. Then

i) P(x`1) is a linear combination of x`−2j
1 |x|2j , j = 0, . . . , `2 ,

ii) P(x`1)(e1) = n+`−3
n+2`−4P(x`−1

1 )(e1) and ∂
∂x1

P(x`1) = `(n+`−3)
n+2`−4 P(x`−1

1 ).

Proof. i) By Lemma 9.1.1 and Equation (9.3) we have

P(x`1) = P(x1P(x`−1
1 )) = x1P(x`−1

1 )− |x|2

n+ 2`− 4
∂

∂x1
P(x`−1

1 ).

The first part now follows by induction.
ii) Since ∂

∂x1
P(x`1) is an M -invariant, harmonic, homogeneous polynomial of degree

`− 1 it has to be a multiple of P(x`−1
1 ) (recall YM

`−1 = CP(x`−1
1 ) from Equation B.2.4).

We compute this multiple by evaluating at e1. By Lemma 9.1.3 and Lemma 9.1.1
∂

∂x1
P(x`1)(e1) = `P(x`1)(e1) = `P(x1P(x`−1

1 ))(e1) = `
n+ `− 3
n+ 2`− 4P(x`−1

1 )(e1).

We define the Poisson transform P Y`,cpt
µ : D′(K/M) → C∞(G ×K Y`) by continuous

extension of (see Definition 3.3.1)

P Y`,cpt
µ (φ)(g) :=

∫
K
aI(g−1k)−(µ+ρ)τ`(kI(g−1k))t(φ(k)) dk,

where t ∈ HomM (C, Y`) is given by t(1) := P(x`1)1. By Equation (3.5) we have

P Y`µ ◦ Qµ−ρ = P Y`,cpt
µ

1Note that this normalization deviates slightly from t(1) := φY` = P(x`
1)

P(x`
1)(e1) as introduced in Section 5.1.
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on D′(K/M) where P Y`µ : H−∞µ → C∞(G×K Y`) is given by continuous extension of

P Y`µ (f)(g) :=
∫
K
τ`(k)t(f(gk)) dk = F−1(t)(πµ(g−1)f). (9.7)

The following lemma is the direct generalization of Lemma 4.4.1 to G = SO0(n, 1).

Lemma 9.1.5. Let µ ∈ a∗ and f ∈ H−∞µ . Then

(d+ ◦ P Y`µ )(f) = ((µ+ ρ)(H) + `)P Y`+1
µ (f) ∀` ∈ N0,

(d− ◦ P Y`µ )(f) = λ` · (µ(H)− (ρ(H) + `− 1))P Y`−1
µ (f) ∀` ∈ N,

(D ◦ P Y`µ )(f) = 0 ∀` ∈ N,

where λ` := `(`+n−3)
(2`+n−4)(2`+n−2) .

Remark 9.1.6. Note that λ` 6= 0 since n ≥ 3.

Again we provide an explicit proof of Lemma 9.1.5. We first consider the first two
equalities and postpone the proof of the last equality, which completes the proof of
Proposition 7.3.12, to Section B.2.4.

Proof of the first two equalities of Lemma 9.1.5. Let δeM denote the Delta distribution
at eM on K/M . Then

P Y`,cpt
µ (δeM )(g) = aI(g−1)−(µ+ρ)τ`(kI(g−1))P(x`1) ∈ C∞(G×K Y`).

A basis of p is given by H,Xe2 , . . . , Xen (see Appendix B.2.1). We have

(∇ ◦ P Y`,cpt
µ (δeM ))(e)(H) = d

dt

∣∣∣∣
t=0

P Y`,cpt
µ (δeM )(exp tH)

= d

dt

∣∣∣∣
t=0

aI(exp−tH)−(µ+ρ)P(x`1)

= d

dt

∣∣∣∣
t=0

et(µ+ρ)(H)P(x`1) = (µ+ ρ)(H)P(x`1).

Note that, for j ∈ {2, . . . , n},

Xej =

 eTj
−ej ej

eTj

−
 eTj
−ej

 ∈ n⊕ k.

Let the latter matrix (without the minus sign) be denoted by Aj ∈ k. Then

(∇ ◦ P Y`,cpt
µ (δeM ))(e)(Xej ) = −(∇ ◦ P Y`,cpt

µ (δeM ))(e)(Aj) = Aj .P(x`1) = P(Aj .x`1).

A standard calculation shows that the elementary (n×n)-matrix Eij with (Eij)kl := δkiδlj
acts on functions f : Rn → R via the derived left regular representation by

Eij .f = −xj
∂f

∂xi
. (9.8)
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9. An example: The real hyperbolic case

Therefore

(∇ ◦ P Y`,cpt
µ (δeM ))(e)(Xej ) = P(−xj`x`−1

1 ) = (−`)P(xjx`−1
1 ).

Altogether we see that (∇ ◦ P Y`,cpt
µ (δeM ))(e) ∈ Y` ⊗ p∗ ∼= Hom(p, Y`) is given by

(∇ ◦ P Y`,cpt
µ (δeM ))(e) = (µ+ ρ)(H)P(x`1)⊗H∗ − `

n∑
j=2

P(xjx`−1
1 )⊗X∗ej .

In order to calculate the generalized gradients we have to project this tensor onto Y`±1.
More precisely, we have to decompose the corresponding polynomial

(µ+ ρ)(H)P(x`1)x1 − `
n∑
j=2

P(xjx`−1
1 )xj (9.9)

according to Equation (B.2.3). By Lemma 9.1.1 we obtain P(xjP(xjx`−1
1 )) = P(x2

jx
`−1
1 ).

Plugging this into Equation (9.9) yields

P((µ+ ρ)(H)P(x`1)x1 − `
n∑
j=2

P(xjx`−1
1 )xj) = (µ+ ρ)(H)P(x`+1

1 )− `
n∑
j=2

P(x2
jx
`−1
1 )

= P((µ+ ρ)(H)x`+1
1 − `

n∑
j=2

x2
jx
`−1
1 ) = P(((µ+ ρ)(H) + `)x`+1

1 − `|x|2x`−1
1 )

= P(((µ+ ρ)(H) + `)x`+1
1 ) = ((µ+ ρ)(H) + `)P(x`+1

1 )

= ((µ+ ρ)(H) + `)P Y`+1,cpt
µ (δeM )(e).

This shows

(d+ ◦ P Y`,cpt
µ )(δeM )(e) = ((µ+ ρ)(H) + `)P Y`+1,cpt

µ (δeM )(e)

and the first equality of the lemma follows from Corollary 3.3.5.
For the second equality of the lemma we first claim that (9.9) can be written as

((µ+ ρ)(H) + `)P(x`1)x1 − |x|2
∂

∂x1
P(x`1). (9.10)

Indeed, by the K-equivariance of P and Equation (9.8)

−`P(xjx`−1
1 ) = P(Aj .x`1) = Aj .P(x`1) =

(
x1

∂

∂xj
− xj

∂

∂x1

)
P(x`1).
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9.2. Fourier characterization

This yields

−`
n∑
j=2

P(xjx`−1
1 )xj =

n∑
j=2

xj

(
x1

∂

∂xj
− xj

∂

∂x1

)
P(x`1)

=
n∑
j=2

xjx1
∂

∂xj
P(x`1)−

n∑
j=2

x2
j

∂

∂x1
P(x`1)

= x1

 n∑
j=1

xj
∂

∂xj
P(x`1)− x1

∂

∂x1
P(x`1)

− n∑
j=2

x2
j

∂

∂x1
P(x`1)

= `x1P(x`1)− |x|2 ∂

∂x1
P(x`1),

where we used the fact that the Euler operator acts on homogeneous polynomials of
degree ` by the scalar `. This proves Equation (9.10).
We apply Equation (9.3) on (9.10) to deduce that (d− ◦ P Y`,cpt

µ )(δeM )(e) is given by

(µ+ ρ)(H) + `

n+ 2`− 2
∂

∂x1
P(x`1)− ∂

∂x1
P(x`1) = µ(H)− (ρ(H) + `− 1)

n+ 2`− 2
∂

∂x1
P(x`1)

where we used ρ(H) = n−1
2 . Finally Lemma 9.1.4 ii) implies

(d− ◦ P Y`,cpt
µ )(δeM )(e) = `(`+ n− 3)

n+ 2`− 4
µ(H)− (ρ(H) + `− 1)

n+ 2`− 2 P(x`−1
1 )

which finishes the proof since P(x`−1
1 ) = P

Y`−1,cpt
µ (δeM )(e).

9.2. Fourier characterization
In this section we characterize the spherical principal series representations by relations
between their Fourier components (Proposition 9.2.10), generalizing Lemma 4.2.1 from
the PSL(2,R) case. The explicit structure of SO0(n, 1) allows a more transparent proof
compared to the general one given in Section 7.4. We first recall the important objects
and their properties from the general case.

Definition 9.2.1. We embed C∞(G×K Y`) into the smooth right M -invariant functions
C∞(G)M by the map

πY` : C∞(G×K Y`)→ C∞(G)M , πY`(ϕ)(nak) := ϕ(na)(k.e1), n ∈ N, a ∈ A, k ∈ K,

where e1 = (1, 0, . . . , 0) ∈ Sn−1. Note that πY` is indeed injective since K acts transitively
on the sphere Sn−1 ⊆ Rn and Y` consists of polynomials on Sn−1. Since ϕ ∈ C∞(G×K Y`)
we have for each g = nak ∈ G = NAK

πY`(ϕ)(g) = ϕ(na)(k.e1) = (τ`(k−1)ϕ(na))(e1) = ϕ(g)(e1).

115



9. An example: The real hyperbolic case

We further denote by

π∗Y` : D′(G/M)→ D′(G×K Y`), π∗Y`(f)(ϕ) := f(πY`(ϕ))

the transpose of πY` defined by duality where D′(G ×K Y`) is given by the dual of
C∞c (G×K Y`). We embed smooth sections into distributional sections by

ιY` : C∞(G×K Y`)→ D′(G×K Y`), ι(f)(ϕ) :=
∫
G
πY`(f)(g)πY`(ϕ)(g) dg

and C∞(G/M) into D′(G/M) by

ιG/M : C∞(G/M)→ D′(G/M), ιG/M (f)(ϕ) :=
∫
G
f(gM)ϕ(gM) dg.

As in Lemma 7.1.2, we can uniquely expand each f ∈ C∞(G)M into a Fourier series. We
extend the definition of πY` to distributional sections as in Notation 7.1.3 and can also
decompose distributions (see Proposition 7.2.4). Let us introduce some scalars relating
the Poisson transforms to orthogonal projections.

Remark 9.2.2. There exist constants c` ∈ C \ {0} such that

c` · P Y`µ (f)(g) = prY`(f(g•))

for all µ ∈ a∗, f ∈ C∞(G)M , g ∈ G and ` ∈ N0 where we extend the Poisson transform
P Y`µ to C∞(G)M by the same formula.

Proof. By the definition of the Poisson transform from Equation (9.7) we have

P Y`µ (f)(g) = F−1(t)(f(g•)).

Now F−1(t) and prY` are non-zero elements of HomK(L2(K/M), Y`) which is one-
dimensional by Proposition 2.4.3. Thus, there exists a constant c` ∈ C \ {0} such
that prY` = c` · F−1(t).

As in Lemma 7.1.4 we have the following

Lemma 9.2.3. Recall the maps ιG/M and ιY` from Definition 9.2.1. We have

i) π∗Y`(f)(g) = prY`(f(g•)) for each f ∈ C∞(G/M), g ∈ G, so that π∗Y`(C
∞(G/M)) ⊆

C∞(G×K Y`) and π∗Y`(C
∞
c (G/M)) ⊆ C∞c (G×K Y`),

ii) f = ∑
`∈N0 πY`(π

∗
Y`

(f)) pointwise for each f ∈ C∞(G/M),

iii) πY`(ιY`(f)) = ιG/M (πY`(f)) for each f ∈ C∞(G×K Y`) and

iv) ∀µ ∈ a∗ : P Y`,cpt
µ = P Y`µ ◦ Qµ−ρ = 1

c`
π∗Y` ◦ Qµ−ρ on D′(K/M).

Proof. The first three parts follow as in Lemma 7.1.4. We prove part iv). By continuity
(recall Proposition 2.2.2) we restrict our attention to smooth functions φ ∈ C∞(K/M).
The first equality follows from Equation (3.5). For the second equality we combine
Remark 9.2.2 and i).
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9.2. Fourier characterization

Lemma 9.2.3 allows the following reformulation of Lemma 9.1.5.
Lemma 9.2.4. Let µ ∈ a∗ and f ∈ H−∞µ . Then

(d+ ◦ π∗Y`)(f) = c`
c`+1

((µ+ ρ)(H) + `)π∗Y`+1(f) ∀` ∈ N0,

(d− ◦ π∗Y`)(f) = c`
c`−1

λ`(µ(H)− (ρ(H) + `− 1))π∗Y`−1(f) ∀` ∈ N,

(D ◦ π∗Y`)(f) = 0 ∀` ∈ N,

where λ` = `(`+n−3)
(2`+n−4)(2`+n−2) .

In particular, we obtain
Remark 9.2.5. For each µ ∈ a∗ and f ∈ H−∞µ we have

d+d−π∗Y`(f) = ξ` π
∗
Y`

(f) and d−d+π
∗
Y`

(f) = ξ`+1 π
∗
Y`

(f),

where ξ` := λ` · (µ(H)2 − (ρ(H) + `− 1)2).
In order to use Lemma 9.2.4 for proving the Fourier characterization, we need to

determine the constants c` explicitly. Indeed, these constants follow a nice recursion.
Lemma 9.2.6. The scalar c` from Remark 9.2.2 is given by

c` = P(x`1)(e1)
‖P(x`1)‖2L2(Sn−1)

= dimY`
P(x`1)(e1)

,

where Sn−1 is equipped with the normalized Lebesgue measure. Moreover we have the
recursion formula

c`+1 = n+ 2`
`+ 1 c`, c0 = 1.

Proof. Let f := πY`(ϕ) ∈ C∞(G)M where ϕ ∈ C∞(G×K Y`) is given by

ϕ(g) := τ`(kNAK(g)−1)P(x`1).

By Equation (9.7) we have

P Y`µ (f)(e) =
∫
K
τ`(k)t(f(k)) dk =

∫
K
f(k)τ`(k)t(1) dk.

Since t(1) = P(x`1) by definition we get

P Y`µ (f)(e)(e1) =
∫
K
f(k)τ`(k)t(1)(e1) dk =

∫
K
f(k)P(x`1)(k−1.e1) dk

=
∫
K
ϕ(k)(e1)P(x`1)(k−1.e1) dk =

∫
K

P(x`1)(k.e1)P(x`1)(k−1.e1) dk

=
∫

SO(n)
P(x`1)(ke1)P(x`1)(k−1e1) dk

=
∫

SO(n)
P(x`1)(ke1)P(x`1)(kT e1) dk.
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9. An example: The real hyperbolic case

Now note that the first component of ke1 equals the first component of kT e1 (i.e.
〈ke1, e1〉 = 〈kT e1, e1〉). By Lemma 9.1.4 i) we infer

P(x`1)(ke1) = P(x`1)(kT e1).

Hence, since P(x`1) is real,

P Y`µ (f)(e)(e1) = ‖P(x`1)‖2L2(K) = ‖P(x`1)‖2L2(Sn−1).

On the other hand we have for each k ∈ K

f(k) = f(ek) = πY`(ϕ)(ek) = ϕ(e)(k.e1) = P(x`1)(k.e1)

so that f
∣∣
K
∈ L2(K)M ∼= L2(K/M) corresponds to P(x`1) under the isomorphism

L2(K/M) ∼= L2(Sn−1) induced by (B.2.1). We obtain

prY`(f(e•)) = prY`(P(x`1)) = P(x`1)

since P(x`1) ∈ Y` and the orthogonal projection prY` is the identity on Y`. In particular
we see that

prY`(f(e•))(e1) = P(x`1)(e1).

By Remark 9.2.2 the scalar c` is therefore given by

c` =
prY`(f(e•))(e1)
P Y`µ (f)(e)(e1)

= P(x`1)(e1)
‖P(x`1)‖2L2(Sn−1)

.

Now [Hel00, Introduction, Proposition 3.2 (ii)] yields∥∥∥∥∥ P(x`1)
P(x`1)(e1)

∥∥∥∥∥
2

L2(Sn−1)
= 1

dimY`

and thus

c` = P(x`1)(e1) dimY`
P(x`1)(e1)2 = dimY`

P(x`1)(e1)
.

As a result Lemma 9.1.4 ii) yields

c`+1
c`

= dimY`+1
dimY`

P(x`1)(e1)
P(x`+1

1 )(e1)
= dimY`+1

dimY`

n+ 2`− 2
n+ `− 2 .

Remark A.1.7 implies

dimY`+1
dimY`

=
(n+`−2
`+1

)
n+2`
n−2(n+`−3

`

)
n+2`−2
n−2

= n+ `− 2
`+ 1

n+ 2`
n+ 2`− 2

and finally
c`+1
c`

= n+ `− 2
`+ 1

n+ 2`
n+ 2`− 2

n+ 2`− 2
n+ `− 2 = n+ 2`

`+ 1 .
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9.2. Fourier characterization

We have the following expression for the sum of the generalized gradients.

Lemma 9.2.7. Let ϕ ∈ C∞(G×K Y`). Then, for each g ∈ G,

d−(ϕ)(g) + d+(ϕ)(g) =
n∑
j=1

xj(r(Xej )ϕ)(g).

In particular, evaluating both sides at e1 yields

r(H)πY`(ϕ) = πY`−1(d−ϕ) + πY`+1(d+ϕ).

Proof. This follows directly from Lemma 7.5.1 since ω(Xej ) = xj ∈ C∞(Sn−1).

The remainder of this section is devoted to the Fourier characterization of H−∞µ .

Lemma 9.2.8. Let µ ∈ a∗ and f = ∑
`∈N0 f` ∈ D

′(G/M) with f` = πY`(ψ`) ∈
πY`(C∞(G×K Y`)) such that the equations from Lemma 9.2.4 hold for f . Then r(X)f =
(µ− ρ)(X)f for every X ∈ a0, where r denotes the right regular representation of a0 on
D′(G/M).

Proof. By definition we have for every ϕ ∈ C∞c (G/M)

(r(X)f)(ϕ) = −f(r(X)ϕ) = −
∑
`∈N0

f`(r(X)ϕ) =
∑
`∈N0

(r(X)f`)(ϕ).

In particular, we infer that ∑`∈N0 r(X)f` converges absolutely to r(X)f in the weak
sense by Proposition 7.2.4. Let us prove that ψ` = π∗Y`(f). Indeed, we infer by continuity

π∗Y`(f) = π∗Y`(
∑
k∈N0

πYk(ψk)) =
∑
k∈N0

π∗Y`(πYk(ψk)),

where, for each g ∈ G,

π∗Y`(πYk(ψk))(g) = prY`(ψk(g)) = δk`ψk(g)

by Lemma 9.2.3 i). This implies ψ` = π∗Y`(f). By the last equation of Lemma 9.2.4 we
may apply Lemma 9.2.7 to get

r(H)f` = r(H)πY`(π∗Y`(f)) = πY`−1(d−π∗Y`(f)) + πY`+1(d+π
∗
Y`

(f)).

The first two equations of Lemma 9.2.4 imply that

r(H)f` = c`
c`−1

λ`(µ(H)− (ρ(H) + `− 1))πY`−1(π∗Y`−1(f))

+ c`
c`+1

((µ+ ρ)(H) + `)πY`+1(π∗Y`+1(f))

= c`
c`−1

λ`(µ(H)− (ρ(H) + `− 1))f`−1 + c`
c`+1

((µ+ ρ)(H) + `)f`+1.
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9. An example: The real hyperbolic case

Summarizing we infer that
m∑
`=0

r(H)f` =
m−1∑
`=0

a`f` + cm−1
cm

((µ+ ρ)(H) +m− 1)fm + cm
cm+1

((µ+ ρ)(H) +m)fm+1,

with

a` = c`+1
c`

λ`+1(µ(H)− (ρ(H) + `)) + c`−1
c`

((µ+ ρ)(H) + `− 1),

where we define c−1 := 0 for ` = 0. We claim that a` = (µ− ρ)(H). By Lemma 9.2.6 and
the definition of λ` we see that a` equals

n+ 2`
`+ 1

(`+ 1)(`+ n− 2)
(n+ 2`− 2)(n+ 2`)(µ(H)− (ρ(H) + `)) + `

n+ 2`− 2((µ+ ρ)(H) + `− 1)

= `+ n− 2
n+ 2`− 2(µ(H)− (ρ(H) + `)) + `

n+ 2`− 2((µ+ ρ)(H) + `− 1)

= µ(H)− `+ n− 2
n+ 2`− 2(ρ(H) + `) + `

n+ 2`− 2(ρ(H) + `− 1)

= µ(H)− ρ(H),

where we used ρ(H) = n−1
2 for the last equality. This proves the claim and we infer that

m∑
`=0

r(H)f`(ϕ) =(µ− ρ)(H)
m−1∑
`=0

f`(ϕ) + cm−1
cm

((µ+ ρ)(H) +m− 1)fm(ϕ)

+ cm
cm+1

((µ+ ρ)(H) +m)fm+1(ϕ).

We finally claim that the last two summands converge to 0 as m→∞. By Lemma 9.2.6
and the orthogonality of the Y` we have

cm−1
cm

fm(ϕ) = cm−1
cm

fm(ϕm) = cm−1
cm

f(ϕm) = m

n+ 2m− 2f(ϕm).

As in the proof of Proposition 7.2.4 we see that for each N > 0 there exists a constant C
independent of m such that

|f(ϕm)| ≤ C(1 +m2)−N .

Choosing N large enough implies the claim.

Lemma 9.2.9. Let µ ∈ a∗ and f = ∑
`∈N0 f` ∈ D

′(G/M) with f` ∈ πY`(C∞(G×K Y`))
such that the equations from Lemma 9.2.4 hold for f . Then U+f = 0 for every U+ ∈
C∞(G×M n0).

Proof. Recall from Appendix B.2.1 the basis {Ye1 , . . . , Yen−1} of n0. We write U+ ∈
C∞(G×M n0) as

U+(g) = κ1(g)Ye1 + . . .+ κn−1(g)Yen−1 , g ∈ G,
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9.2. Fourier characterization

for some real-valued smooth functions κj ∈ C∞(G). By definition we have for each
ϕ ∈ C∞c (G)M

(U+f)(ϕ) = f(U∗+ϕ) =
∑
`∈N0

f`(U∗+ϕ) =
∑
`∈N0

(U+f`)(ϕ) =
∑
`∈N0

n−1∑
j=1

(r(Yej )f`)(κjϕ).

(9.11)

Note that for each j ∈ {2, . . . , n}

n0 3 Yej−1 =

 0 eTj−1 0
−ej−1 0n−1 ej−1

0 eTj−1 0

 = Xej +

 eTj
−ej

 ∈ p0 ⊕ k0

and denote the latter matrix by Aj ∈ k0. We have

r(Yej−1)f` = r(Xej )f` + r(Aj)f` (9.12)

and first investigate the first summand. For each g ∈ G it evaluates to

r(Xej )f`(g) = r(Xej )πY`(π∗Y`(f))(g) = d

dt

∣∣∣∣
t=0

π∗Y`(f)(g exp tXej )(e1)

= (∇π∗Y`(f))(g)(Xej )(e1). (9.13)

According to Equation (7.11) we write

(∇π∗Y`(f))(g) = ι
Y`−1
Y`

(d−π∗Y`(f)(g)) + ι
Y`+1
Y`

(d+π
∗
Y`

(f)(g))

= c`
c`−1

λ`(µ(H)− (ρ(H) + `− 1))ιY`−1
Y`

(π∗Y`−1(f)(g))

+ c`
c`+1

((µ+ ρ)(H) + `)ιY`+1
Y`

(π∗Y`+1(f)(g)),

where we used the first two equations of Lemma 9.2.4. Moreover, we obtain

(∇π∗Y`(f))(g)(Xej ) = c`
c`−1

λ`(µ(H)− (ρ(H) + `− 1))ιY`−1
Y`

(π∗Y`−1(f)(g))(Xej )

+ c`
c`+1

((µ+ ρ)(H) + `)ιY`+1
Y`

(π∗Y`+1(f)(g))(Xej )

using the isomorphism Y` ⊗ p∗ ∼= Hom(p, Y`). Since Xej ∈ p corresponds to ej ∈ Cn

under the isomorphism p ∼= Cn we have by the definition of ιY`−1
Y`

and ιY`+1
Y`

that

(∇π∗Y`(f))(g)(Xej ) = c`
c`−1

λ`(µ(H)− (ρ(H) + `− 1))n+ 2`− 4
n+ `− 3 P(xjπ∗Y`−1(f)(g))

+ c`
c`+1

((µ+ ρ)(H) + `) 1
`+ 1

∂π∗Y`+1
(f)(g)

∂xj
.
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By Equation (9.3) we infer

P(xjπ∗Y`−1(f)(g)) = xjπ
∗
Y`−1(f)(g)− |x|2

n+ 2(`− 1)− 2
∂π∗Y`−1

(f)(g)
∂xj

and therefore

P(xjπ∗Y`−1(f)(g))(e1) = − 1
n+ 2`− 4

∂π∗Y`−1
(f)(g)

∂xj
(e1).

As a result we obtain

(∇π∗Y`(f))(g)(Xej )(e1) = c`
c`−1

λ`(µ(H)− (ρ(H) + `− 1))n+ 2`− 4
n+ `− 3 P(xjπ∗Y`−1(f)(g))(e1)

+ c`
c`+1

((µ+ ρ)(H) + `) 1
`+ 1

∂π∗Y`+1
(f)(g)

∂xj
(e1)

= − c`
c`−1

λ`(µ(H)− (ρ(H) + `− 1)) 1
n+ `− 3

∂π∗Y`−1
(f)(g)

∂xj
(e1)

+ c`
c`+1

((µ+ ρ)(H) + `) 1
`+ 1

∂π∗Y`+1
(f)(g)

∂xj
(e1). (9.14)

Let us now discuss the second summand of Equation (9.12). We first note that

r(Aj)f`(g) = r(Aj)πY`(π∗Y`(f))(g) = d

dt

∣∣∣∣
t=0

πY`(π∗Y`(f))(g exp tAj).

Now π∗Y`(f) ∈ C∞(G×K Y`) and exp tAj ∈ K imply that

πY`(π∗Y`(f))(g exp tAj) = π∗Y`(f)(g exp tAj)(e1) = τ`(exp−tAj)(π∗Y`(f)(g))(e1).

We conclude that

r(Aj)f`(g) = d

dt

∣∣∣∣
t=0

τ`(exp−tAj)(π∗Y`(f)(g))(e1).

Using Equation (9.8) we obtain that the matrix Ej1 − E1j ∈ so(n) acts on functions
ψ : Rn → R via the derived left regular representation by

(Ej1 − E1j).ψ = −x1
∂ψ

∂xj
+ xj

∂ψ

∂x1
.

Since τ` is the left regular representation and exp tAj .ϑ = exp t(E1j − Ej1)ϑ, ϑ ∈ Sn−1,
by the definition of the action of K on the sphere (see Appendix B.2.2) we deduce

r(Aj)f`(g) =
(
xj
∂π∗Y`(f)(g)

∂x1
− x1

∂π∗Y`(f)(g)
∂xj

)
(e1) = −

∂π∗Y`(f)(g)
∂xj

(e1). (9.15)
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Combining the Equations (9.12), (9.13), (9.14) and (9.15) we infer that

r(Yej−1)f`(g) =− c`
c`−1

λ`(µ(H)− (ρ(H) + `− 1)) 1
n+ `− 3

∂π∗Y`−1
(f)(g)

∂xj
(e1)

+ c`
c`+1

((µ+ ρ)(H) + `) 1
`+ 1

∂π∗Y`+1
(f)(g)

∂xj
(e1)−

∂π∗Y`(f)(g)
∂xj

(e1)

= c`
c`−1

λ`(µ(H)− (ρ(H) + `− 1)) 1
n+ `− 3r(Aj)f`−1(g)

− c`
c`+1

((µ+ ρ)(H) + `) 1
`+ 1r(Aj)f`+1(g) + r(Aj)f`(g).

Summarizing we conclude that ∑m
`=0(r(Yej−1)f`)(ϕ) equals

m−1∑
`=0

a`(r(Aj)f`)(ϕ) +
(

1− cm−1
cm

(µ+ ρ)(H) +m− 1
m

)
(r(Aj)fm)(ϕ)

− cm
cm+1

(µ+ ρ)(H) +m

m+ 1 (r(Aj)fm+1)(ϕ), (9.16)

where the coefficient a` ∈ C is given by

a` = c`+1
c`

λ`+1
µ(H)− (ρ(H) + `)

n+ `− 2 − c`−1
c`

(µ+ ρ)(H) + `− 1
`

+ 1

for ` 6= 0 and

a0 = c1
c0
λ1
µ(H)− ρ(H)

n− 2 + 1.

Note that π0∗(f)(g) ∈ Y0 is the restriction of a homogeneous polynomial of degree zero,
i.e. of a constant function. In particular, the partial derivative of π0∗(f)(g) with respect
to xj is zero and thus

(r(Aj)f0)(ψ) = 0.

We will now prove that a` = 0 for each ` > 0, i.e.

a` = c`+1
c`

λ`+1
µ(H)− (ρ(H) + `)

n+ `− 2 − c`−1
c`

(µ+ ρ)(H) + `− 1
`

+ 1 = 0.

Applying Lemma 9.2.6 and using the definition of λ` it follows that the first summand is
given by

n+ 2`
`+ 1 λ`+1

µ(H)− (ρ(H) + `)
n+ `− 2

=n+ 2`
`+ 1

(`+ 1)(`+ n− 2)
(2(`+ 1) + n− 4)(2(`+ 1) + n− 2)

µ(H)− (ρ(H) + `)
n+ `− 2

=n+ 2`
`+ 1

(`+ 1)(`+ n− 2)
(n+ 2`− 2)(n+ 2`)

µ(H)− (ρ(H) + `)
n+ `− 2

=µ(H)− (ρ(H) + `)
n+ 2`− 2 = −ρ(H) + `− µ(H)

n+ 2`− 2 .
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The second summand simplifies to

− `

n+ 2(`− 1)
(µ+ ρ)(H) + `− 1

`
= −(µ+ ρ)(H) + `− 1

n+ 2`− 2 .

Finally, we deduce that

a` = −ρ(H) + `− µ(H)
n+ 2`− 2 − (µ+ ρ)(H) + `− 1

n+ 2`− 2 + 1

= −ρ(H) + `− µ(H) + (µ+ ρ)(H) + `− 1
n+ 2`− 2 + 1

= −2ρ(H) + 2`− 1
n+ 2`− 2 + 1 = −n− 1 + 2`− 1

n+ 2`− 2 + 1 = 0.

By Equation (9.16) and Lemma 9.2.6 we thus infer that
m∑
`=0

(r(Yej−1)f`)(ϕ) =
(

1− cm−1
cm

(µ+ ρ)(H) +m− 1
m

)
(r(Aj)fm)(ϕ)

− cm
cm+1

(µ+ ρ)(H) +m

m+ 1 (r(Aj)fm+1)(ϕ)

=
(

1− m

n+ 2m− 2
(µ+ ρ)(H) +m− 1

m

)
(r(Aj)fm)(ϕ)

− m+ 1
n+ 2m

(µ+ ρ)(H) +m

m+ 1 (r(Aj)fm+1)(ϕ)

=−
(

1− m

n+ 2m− 2
(µ+ ρ)(H) +m− 1

m

)
fm(r(Aj)ϕ)

+ m+ 1
n+ 2m

(µ+ ρ)(H) +m

m+ 1 fm+1(r(Aj)ϕ).

Equation (9.11) therefore yields

(U+f)(ϕ) = lim
m→∞

m∑
`=0

n∑
j=2

(r(Yej−1)f`)(κj−1ϕ)

=− lim
m→∞

(
1− m

n+ 2m− 2
(µ+ ρ)(H) +m− 1

m

)
fm

 n∑
j=2

r(Aj)(κj−1ϕ)


+ lim
m→∞

m+ 1
n+ 2m

(µ+ ρ)(H) +m

m+ 1 fm+1

 n∑
j=2

r(Aj)(κj−1ϕ)

 .
Since f defines a distribution, the series

∑
`∈N0

f`

 n∑
j=2

r(Aj)(κj−1ϕ)

 = f

 n∑
j=2

r(Aj)(κj−1ϕ)


converges and especially f`(

∑n
j=2 r(Aj)(κj−1ϕ))→ 0 as `→∞. This implies that

(U+f)(ϕ) = −
(

1− 1
2

)
· 0 + 1

2 · 1 · 0 = 0.
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Proposition 9.2.10. Let µ ∈ a∗ and f = ∑
`∈N0 f` ∈ D

′(G/M) with f` ∈ πY`(C∞(G×K
Y`)). Then f ∈ H−∞µ if and only if the equations from Lemma 9.2.4 hold for f .

Proof. The if-part follows from Lemma 9.2.8 and Lemma 9.2.9. The only-if-part is given
by Lemma 9.2.4.

9.3. Explicit formulas for generalized gradients

The following two lemmas provide explicit formulas for the generalized gradients (recall
that the embeddings πY` are injective).

Lemma 9.3.1. Let u`−1 ∈ C∞(G×K Y`−1). Then

(n+ 2`− 4)πY`(d+u`−1)(g) = (n+ `− 3)(r(H)u`−1(g))(e1)−
n∑
j=2

∂(r(Xej )u`−1(g))
∂xj

(e1)

for each g ∈ G.

Proof. By definition πY`(d+u`−1)(g) = (d+u`−1)(g)(e1) equals

T
Y`−1
Y`

((∇u`−1)(g))(e1) = T
Y`−1
Y`

 n∑
j=1

(∇u`−1)(g)(Xej )⊗ e∗j

 (e1)

=
n∑
j=1

T
Y`−1
Y`

(r(Xej )u`−1(g)⊗ e∗j )(e1)

=
n∑
j=1

P(xj(r(Xej )u`−1(g)))(e1).

Equation (9.3) yields

P(xj(r(Xej )u`−1(g))) = xjr(Xej )u`−1(g)− |x|2

n+ 2`− 4
∂(r(Xej )u`−1(g))

∂xj
.

For j ∈ {2, . . . , n} we obtain

P(xj(r(Xej )u`−1(g)))(e1) = − 1
n+ 2`− 4

∂(r(Xej )u`−1(g))
∂xj

(e1)

and for j = 1 by Lemma 9.1.3

P(x1(r(Xe1)u`−1(g)))(e1) = n+ `− 3
n+ 2`− 4r(Xe1)u`−1(g)(e1).

The lemma now follows from Xe1 = H.
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Lemma 9.3.2. Let u` ∈ C∞(G×K Y`). Then

(n+ 2`− 2)πY`−1(d−u`)(g) = `(r(H)u`(g))(e1) +
n∑
j=2

∂(r(Xej )u`(g))
∂xj

(e1)

for each g ∈ G.

Proof. By definition πY`−1(d−u`)(g) = (d−u`)(g)(e1) equals

T Y`Y`−1
((∇u`)(g))(e1) = T Y`Y`−1

 n∑
j=1

(∇u`)(g)(Xej )⊗ e∗j

 (e1)

=
n∑
j=1

T Y`Y`−1
(r(Xej )u`(g)⊗ e∗j )(e1)

=
n∑
j=1

1
n+ 2`− 2

∂(r(Xej )u`(g))
∂xj

(e1),

where we obtain
∂(r(Xe1)u`(g))

∂x1
(e1) = ∂(r(H)u`(g))

∂x1
(e1) = `(r(H)u`(g))(e1)

using Lemma 9.1.3.

We can use these explicit forms to give a direct proof of Lemma 7.5.2 for SO0(n, 1).

Lemma 9.3.3. Let ` ∈ N and u` ∈ C∞(G×K Y`). Then

〈πY`(u`), πY`(d+u`−1)〉L2(G) = −〈πY`−1(d−u`), πY`−1(u`−1)〉L2(G)

for each u`−1 ∈ C∞(G×K Y`−1) if one side exists.

Proof. By Lemma 9.3.1 we obtain

(n+ 2`− 4)〈πY`(u`), πY`(d+u`−1)〉L2(G) =
∫
G
u`(g)(e1)(n+ `− 3)(r(H)u`−1(g))(e1) dg

−
∫
G
u`(g)(e1)

n∑
j=2

∂(r(Xej )u`−1(g))
∂xj

(e1) dg.

For the first summand we have∫
G
u`(g)(e1)(r(H)u`−1(g))(e1) dg = −

∫
G

(r(H)u`(g))(e1)u`−1(g)(e1) dg.

For the second summand recall from Equation (9.15) that the elementAj :=

 eTj
−ej


of k0 acts via the left regular representation on r(Xej )u`−1(g) by

Aj .r(Xej )u`−1(g) = x1
∂(r(Xej )u`−1(g))

∂xj
− xj

∂(r(Xej )u`−1(g))
∂x1
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and thus (Aj .r(Xej )u`−1(g))(e1) = ∂(r(Xej )u`−1(g))
∂xj

(e1). Moreover, u`−1 ∈ C∞(G×K Y`−1)
implies

(Aj .r(Xej )u`−1(g))(e1) = d

dt

∣∣∣∣
t=0

r(Xej )u`−1(g)(exp−tAj .e1)

= d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

u`−1(g exp sXej )(exp−tAj .e1)

= d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

u`−1(g exp sXej exp−tAj)(e1)

= −(r(XejAj)u`−1(g))(e1),

where we extend r to the universal enveloping algebra of g. We infer that

∫
G
u`(g)(e1)

n∑
j=2

∂(r(Xej )u`−1(g))
∂xj

(e1) dg

= −
n∑
j=2

∫
G
u`(g)(e1)(r(XejAj)u`−1(g))(e1) dg

= −
n∑
j=2

∫
G

(r(AjXej )u`(g))(e1)u`−1(g)(e1) dg

= −
n∑
j=2

∫
G

(r(XejAj − [Xej , Aj ])u`(g))(e1)u`−1(g)(e1) dg.

Note that the commutator [Aj , Xej ] is given by H. It follows that

∫
G
u`(g)(e1)

n∑
j=2

∂(r(Xej )u`−1(g))
∂xj

(e1) dg

= −
n∑
j=2

∫
G

(r(XejAj)u`(g))(e1)u`−1(g)(e1) dg − (n− 1)
∫
G

(r(H)u`(g))(e1)u`−1(g)(e1) dg

=
n∑
j=2

∫
G

∂(r(Xej )u`(g))
∂xj

(e1)u`−1(g)(e1) dg − (n− 1)
∫
G

(r(H)u`(g))(e1)u`−1(g)(e1) dg.

Therefore (n+ 2`− 4)〈πY`(u`), πY`(d+u`−1)〉L2(G) equals

− (n+ `− 3)
∫
G

(r(H)u`(g))(e1)u`−1(g)(e1) dg −
n∑
j=2

∫
G

∂(r(Xej )u`(g))
∂xj

(e1)u`−1(g)(e1) dg

+ (n− 1)
∫
G

(r(H)u`(g))(e1)u`−1(g)(e1) dg

=− (`− 2)
∫
G

(r(H)u`(g))(e1)u`−1(g)(e1) dg −
n∑
j=2

∫
G

∂(r(Xej )u`(g))
∂xj

(e1)u`−1(g)(e1) dg.
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Using Lemma 9.3.2 we may rewrite this expression as

−(n+ 2`− 2)〈πY`−1(d−u`), πY`−1(u`−1)〉L2(G) + 2
∫
G

(r(H)u`(g))(e1)u`−1(g)(e1) dg.
(9.17)

According to Lemma 9.2.7 we obtain∫
G

(r(H)u`(g))(e1)u`−1(g)(e1) dg = 〈πY`−1(d−u`) + πY`+1(d+u`), πY`−1(u`−1)〉L2(G)

= 〈πY`−1(d−u`), πY`−1(u`−1)〉L2(G)

since – using the orthogonality of the Y` –

〈πY`+1(d+u`), πY`−1(u`−1)〉L2(G) =
∫
G
πY`+1(d+u`)(g)πY`−1(u`−1)(g) dg

=
∫
G/K

∫
K

(d+u`)(nak)(e1)(u`−1)(nak)(e1) dk dnaK

=
∫
G/K

∫
K

(d+u`)(na)(k.e1)(u`−1)(na)(k.e1) dk dnaK

= 0.

Finally, Equation (9.17) yields

(n+ 2`− 4)〈πY`(u`), πY`(d+u`−1)〉L2(G) = −(n+ 2`− 4)〈πY`−1(d−u`), πY`−1(u`−1)〉L2(G)

with n+ 2`− 4 ≥ 3 + 2− 4 = 1 > 0.

9.4. Spectral correspondence
In this section we state and prove a correspondence using only our Fourier characterization.
We first investigate the general case and then consider the first exceptional parameter in
some more detail. In the latter case, the minimal K-type Poisson transform is related to
one-forms and some more precise results can be shown.

9.4.1. The case of arbitrary exceptional parameters

We start with a direct proof of Theorem 6.1.1 in the case of SO0(n, 1).

Proposition 9.4.1 (see Theorem 6.1.1). Let µ := −ρ − kα ∈ a∗, for some k ∈ N0,
be an exceptional spectral parameter (see Lemma 5.2.1). Recall the unique irreducible
subrepresentation Wk of Hµ from Lemma B.2.1. Then

ΓH∗µ = Γ(Wk)∗,

where Γ()∗ denotes the Γ-invariant smooth, L2 or distribution vectors.
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Proof. Since (Wk)∗ ⊂ H∗µ, one inclusion is trivial. To prove ΓH∗µ ⊆ Γ(Wk)∗ we need to
show that

prY`(f) = 0

for every f ∈ ΓH∗µ and every ` ≤ k. By Remark 9.2.2 we have

prY`(f) = prY`(πµ(e)f) = c` · P Y`µ (f)(e)

for some c` ∈ C \ {0}. Therefore, it suffices to prove P Y`µ
∣∣∣
ΓH∗µ

= 0 for ` ≤ k. We start

with the case ` = 0. Recall from Section 3.2 that the scalar Poisson transform P Y0
µ maps

H∗µ into {
f ∈ C∞(Hn) : ∆f =

(
ρ(H)2 − µ(H)2

)
f
}
,

where Hn = G · [en+1] ∼= G/K denotes the real hyperbolic space of dimension n and
∆ denotes the positive Laplacian. Taking Γ-invariants on both sides implies that the
G-equivariant Poisson transform P Y0

µ maps ΓH∗µ into{
f ∈ C∞(M) : ∆Mf =

(
ρ(H)2 − µ(H)2

)
f
}

(9.18)

by identifying ΓC∞(Hn) ∼= C∞(Γ\Hn). By the definition of Γ we have that M = Γ\Hn

is a smooth compact Riemannian manifold. For k 6= 0, the positivity of the Laplacian
and

ρ(H)2 − µ(H)2 = −2ρ(H)k − k2 < 0 (9.19)

therefore imply that the space in (9.18) is the zero space and P Y0
µ

∣∣∣
ΓH∗µ

= 0. Let us

prove the same equality for k = 0, i.e. µ = −ρ: In this case, by Equation (9.19), P Y0
−ρ(f)

descends to a harmonic function on the compact Riemannian manifold Γ\Hn and thus
has to be constant. Lemma 9.1.5 yields

(d− ◦ P Y1
−ρ)(f) = λ1 · (−2ρ(H))P Y0

−ρ(f) = n− 1
n

P Y0
−ρ(f).

Using Lemma 9.3.3 (which is applicable by the last equation of Lemma 9.1.5) we obtain

0 ≤ ‖πY0(P Y0
−ρ(f))‖2L2 = n

n− 1〈πY0(d−P Y1
−ρ(f)), πY0(P Y0

−ρ(f))〉L2

= − n

n− 1〈πY1(P Y1
−ρ(f)), πY1(d+P

Y0
−ρ(f))〉L2 = 0,

since the derivative of the constant function P Y0
−ρ(f) is zero. Thus, πY0(P Y0

−ρ(f)) = 0 and
P Y0
−ρ(f) = 0 follows from the injectivity of πY0 . The first equation of Lemma 9.1.5 reads

∀` ∈ N0, f ∈ H∗µ : (d+ ◦ P Y`µ )(f) = (`− k)P Y`+1
µ (f)

and recursion yields P Y`µ
∣∣∣
ΓH∗µ

= 0 for ` ≤ k.
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In analogy to Proposition 2.2.3 we have the following

Proposition 9.4.2. Let µ := −ρ− kα ∈ a∗, for some k ∈ N0, be an exceptional spectral
parameter. Then there are isomorphisms of finite dimensional vector spaces

Res0
X((µ− ρ)(H)) ∼= Γ(Wk)−∞ and Res0

X∗((µ− ρ)(H)) ∼= Γ(Wk)−∞

where Γ()−∞ denotes the space of Γ-invariant distribution vectors.

To prepare for the quantum-classical correspondence, we need one more step.

Lemma 9.4.3. Let k ∈ N0, uk+1 ∈ C∞c (G×K Yk+1),

u` := c`
c`−1

1
`− (k + 1)d+u`−1 (9.20)

for each ` > k + 1 and u` := 0 for each ` < k + 1. Define the formal sum

f :=
∑
`∈N0

πY`(u`).

Then:

i) If Du` = 0 for each ` ∈ N0, then f defines a distribution on G.

ii) If Du` = 0 and

d−u` = c`
c`−1

λ`(−2ρ(H)− k − `+ 1)u`−1 (9.21)

for each ` ∈ N0, then f defines a distribution in H−∞µ with µ := −ρ− kα ∈ a∗.

Proof. We start with the first part. By Lemma 7.2.5 it suffices to show that ‖πY`(u`)‖2 is
O((1 + `)N ) for some N ∈ N as `→∞. Using Lemma 9.3.3 and Lemma 9.2.6 we obtain

‖πY`(u`)‖2
(9.20)= c`

c`−1

1
`− (k + 1)〈πY`(u`), πY`(d+u`−1)〉

= − c`
c`−1

1
`− (k + 1)〈πY`−1(d−u`), πY`−1(u`−1)〉

(9.21)= −
(
c`
c`−1

)2 λ`(−2ρ(H)− k − `+ 1)
`− (k + 1) ‖πY`−1(u`−1)‖2

= −
(
n+ 2`− 2

`

)2 `(`+ n− 3)(−(n− 1)− k − `+ 1)
(n+ 2`− 4)(n+ 2`− 2)(`− (k + 1))‖πY`−1(u`−1)‖2

= (n+ 2`− 2)(`+ n− 3)(n+ k + `− 2)
`(n+ 2`− 4)(`− (k + 1)) ‖πY`−1(u`−1)‖2.
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For every m ∈ N, iterating this equation yields that ‖πYk+m(uk+m)‖2 equals

m∏
r=2

(n+ 2(k + r)− 2)(k + r + n− 3)(n− 2 + k + k + r)
(k + r)(n+ 2(k + r)− 4)(k + r − (k + 1)) ‖πYk+1(uk+1)‖2

=
m∏
r=2

(n+ 2(k + r)− 2)(k + r + n− 3)(n− 2 + 2k + r)
(k + r)(n+ 2(k + r)− 4)(r − 1) ‖πYk+1(uk+1)‖2

= 2k + 2m+ n− 2
2k + n

m∏
r=2

(k + r + n− 3)(n− 2 + 2k + r)
(k + r)(r − 1) ‖πYk+1(uk+1)‖2

= 2k + 2m+ n− 2
2k + n

(k +m+ n− 3)!(k + 1)!(n+ 2k +m− 2)!
(k + n− 2)!(k +m)!(m− 1)!(n+ 2k − 1)! ‖πYk+1(uk+1)‖2.

Summarizing all constants that are independent of m into a constant

C := (k + 1)!
(2k + n)(k + n− 2)!(n+ 2k − 1)!

yields that ‖πYk+m(uk+m)‖2 equals

(2k + 2m+ n− 2)(k +m+ n− 3)!(n+ 2k +m− 2)!
(k +m)!(m− 1)! C‖πYk+1(uk+1)‖2.

Note that

(k +m+ n− 3)!
(k +m)! = (k +m+ n− 3) · · · (k +m+ 1)

is O(mn−3) (there are n− 3 factors) and

(n+ 2k +m− 2)!
(m− 1)! = (n+ 2k +m− 2) · · ·m

is O(mn+2k−1). Therefore ‖πYk+m(uk+m)‖2 is O(m2n+2k−3). This proves i).
Let us now prove the second part. By definition of u` we have

d+u`−1 = c`−1
c`

(−k + (`− 1))u` (9.22)

for every ` > k + 1. Note that this equation also holds for every ` ≤ k + 1. Together
with the assumptions of the second part each equation of Lemma 9.2.4 is fulfilled for
µ(H) = −ρ(H)−k. The lemma now follows from the first part and Proposition 9.2.10.

We can gain some more information about the action of the generalized gradients by
connecting them to the action of Casimir elements. This makes use of the fact that we
know the infinitesimal characters of principal series representations.
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Remark 9.4.4. For ϕ ∈ C∞(G×K Y`) with Dϕ = 0 Lemma 7.5.3 implies

1
λ(Y`+1, Y`)

d−d+ϕ+ 1
λ(Y`−1, Y`)

d+d−ϕ = r(Ωp)ϕ.

If ϕ = P Y`µ (f) for some f ∈ Hµ we thus obtain – by Remark A.1.3 and Equation (2.6) –

n+ 2`
`+ 1 d−d+ϕ+ n+ 2`− 4

n+ `− 3 d+d−ϕ = (µ(H)2 − ρ(H)2 − `(`+ n− 2))ϕ,

where we used the fact that the Casimir operator of k acts by 〈`e1 + 2ρc, `e1〉 (see e.g.
[Kna86, Lemma 12.28] for ν = `e1 + ρc with the highest weight `e1 of Y`).

We can now prove a quantum-classical correspondence which, in contrast to the
correspondence from Theorem 8.1.1, does not use the multiplicity-one result of [DGK88].

Theorem 9.4.5 (Quantum-classical correspondence for exceptional spectral parameters).
Let µ := −ρ−kα ∈ a∗, for some k ∈ N0, be an exceptional spectral parameter (see Lemma
5.2.1). Recall the unique irreducible subrepresentation Wk of Hµ from Lemma B.2.1. By
Proposition 5.2.3, the minimal K-type of Wk is given by Yk+1. Then the map

P
Yk+1
µ

∣∣∣
ΓH−∞µ

: ΓH−∞µ → H,

where H denotes the space

{u ∈ ΓC∞(G×K Yk+1) | d−u = 0, r(Ωg)u = (µ(H)2 − ρ(H)2)u, Ddm+u = 0 ∀m ∈ N0},

is an isomorphism (with µ(H)2 − ρ(H)2 = k(k + n− 1)). Moreover, we have

H ∼= Γ(Wk)−∞,

where Γ(Wk)−∞ denotes the Γ-invariant distribution vectors in Wk.

Proof. The proof is separated into the following steps:

i) im
(
P
Yk+1
µ

∣∣∣
ΓH−∞µ

)
⊆ H,

ii) P Yk+1
µ

∣∣∣
ΓH−∞µ

is injective, and

iii) im
(
P
Yk+1
µ

∣∣∣
ΓH−∞µ

)
= H.

i) The second equation of Lemma 9.2.4 shows

(d− ◦ P Yk+1
µ )(f) = −2λk+1 · (ρ(H) + k)P Ykµ (f)
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9.4. Spectral correspondence

for each f ∈ H−∞µ and therefore d−(im(P Yk+1
µ

∣∣∣
ΓH−∞µ

)) = 0 by Proposition 9.4.1. Using

Lemma 9.2.4 repeatedly proves that for each f ∈ ΓH−∞µ , dm+P
Yk+1
µ (f) is a multiple of

P
Yk+1+m
µ (f) and

Ddm+P
Yk+1
µ (f) = 0.

Finally, the scalar action of Ωg follows from the infinitesimal character of Hµ (see Equation
(2.6)) and the G-equivariance of P Yk+1

µ . This proves i).
ii) The injectivity follows from Proposition 5.1.3 since Irr(µ) = {Wk} by Lemma B.2.1

and multK(Yk+1,Wk) = 1 6= 0.
iii) For the surjectivity let u ∈ H. Recall the constants c` ∈ C \ {0} from Remark 9.2.2.

Define u` := 0 for ` < k + 1, uk+1 := ck+1 · u and recursively for ` > k + 1

u` := c`
c`−1

1
`− (k + 1)d+u`−1. (9.23)

We define the formal sum

f :=
∑
`∈N0

πY`(u`). (9.24)

Note first that – by the third property – the first equation of Remark 9.4.4 is fulfilled for
each u`. Moreover, by the second property and since uk+1 ∈ C∞(G×K Yk+1), we infer
the second equation of Remark 9.4.4, which simplifies to

n+ 2k + 2
k + 2 d−d+uk+1 = (µ(H)2 − ρ(H)2 − (k + 1)(k + n− 1))uk+1,

since d−uk+1 = 0. Substituting d+uk+1 for the corresponding scalar multiple of uk+2
(by Equation (9.23)) we obtain

d−u` = c`
c`−1

λ`(−2ρ(H)− k − `+ 1)u`−1. (9.25)

for ` = k + 2. Let us now iterate that argument to obtain this equation for all ` ∈ N0 so
that we can use Lemma 9.4.3. Note that, as G-equivariant maps, the generalized gradients
commute with Ωg so that the latter acts by µ(H)2 − ρ(H)2 on each of the u`. As above,
we thus obtain the second equation of Remark 9.4.4 for each `. Replacing again d+uk+2
with the corresponding scalar multiple of uk+3 in that equation for ` = k + 2, d+uk+3
by the one for uk+4 and so on, we iteratively infer Equation (9.25) for all ` ≥ k + 2. As
d−u = 0 implies that equation for ` = k + 1 and as it is trivially fulfilled for ` ≤ k (both
sides are zero), it holds for each ` ∈ N0.

By Lemma 9.4.3, f defines a function in H−∞µ . Since every u` is left Γ-invariant (note
that the generalized gradients are G-equivariant and uk+1 is Γ-invariant by definition),
f ∈ ΓH−∞µ . In order to prove the surjectivity we are left to prove that P Yk+1

µ (f) = u.
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9. An example: The real hyperbolic case

Equation (2.4) resp. Proposition 2.2.2 implies that there exists some f̃ ∈ D′(K/M) such
that Qµ−ρ(f̃) = f . By Lemma 9.2.3 we infer

P Y`µ (f) = P Y`µ (Qµ−ρ(f̃)) = 1
c`
π∗Y`(Qµ−ρ(f̃)) = 1

c`
π∗Y`(f) = u`

c`
.

For ` = k + 1 we especially infer

P
Yk+1
µ (f) = uk+1

ck+1
= u.

All in all we constructed f ∈ ΓH−∞µ such that P Yk+1
µ (f) = u. This finishes the proof of

the surjectivity. The isomorphism

H ∼= Γ(Wk)−∞

follows directly from Proposition 9.4.1.

9.4.2. One-forms on the real hyperbolic space
For the first exceptional parameter −ρ ∈ Ex we can say slightly more about the
correspondence. Note first that the minimal K-type of W0 is given by Y1 ∼= p such that

G×K Y1 ∼= G×K p∗ ∼= Λ1Hn := T ∗Hn,

where T ∗Hn denotes the cotangent bundle of Hn. The irreducible M -representations
occurring in τ := (Ad, p) are given by

p|M = a⊕ {Xv : v1 = 0} =: (σ0, Vσ0)⊕ (σ1, Vσ1).

Here, σ0 is the trivial representation and Vσ1
∼= n as M -representation. As in Definition

3.3.1 we define the Poisson transform P τµ : H−∞µ → C∞(G ×K p) ∼= C∞(Λ1Hn) by
continuous extension of

P τµ (f)(g) :=
∫
K
aI(g−1k)−(µ+ρ)f(k) Ad(kI(g−1k))H dk.

Note that the tensor product Y1 ⊗ p∗ is given by

Y1 ⊗ p∗ ∼= Hom(p, p) ∼= Matn(C),

where SO(n) ∼= K acts on Matn(C) by conjugation. Using this isomorphism we infer the
decomposition

Matn(C) =
{

diagonal
matrices

}
⊕
{

symmetric and traceless
matrices

}
⊕
{

skew symmetric
matrices

}
= Y0 ⊕ V1 ⊕ Y2

into irreducible K-representations.

Lemma 9.4.6. Let τ̃ := (Ad,Λ2p). Then τ̃ ∼=K V1 and especially multM (σ0, τ̃
∣∣
M

) = 0.
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9.4. Spectral correspondence

Proof. Identifying p with Cn, the adjoint representation corresponds to the defining
representation of SO(n) ∼= K on Cn. The highest weights of the representation of SO(n)
on Λ2Cn are given in [Kna02, Problems 7-10, p. 340f.] and coincide with those of V1
(note that both representations are reducible in the case of n = 4). By the branching
rules for SO(n) (cf. [Kna02, Theorem 9.16]), we see that the trivial M -representation σ0
does not occur in Λ2Cn (we always have c1 = 1 6= 0 in the notation of [Kna02]).

Thus, it is natural to consider the exterior derivative and the codifferential

d : C∞(Λ∗Hn)→ C∞(Λ∗+1Hn) and δ : C∞(Λ∗+1Hn)→ C∞(Λ∗Hn).

Note that Lemma 9.4.6 and Corollary 3.3.4 imply that d ◦ P τµ is the zero map. Moreover,
since δ ◦P τµ is a multiple of the scalar Poisson transform by Corollary 3.3.5 and the latter
one restricted to the socle soc(H−ρ) is zero by Remark 6.1.4, we infer that P τ−ρ|ΓH−∞−ρ
maps into

H1 := {η ∈ C∞(Λ1Hn) | dη = 0, δη = 0}.

It now follows from [Gai88, Theorem 2(e)] that H1 is irreducible (as well as the socle)
and we conclude as in Section 8.1 that P τ−ρ is indeed an isomorphism from ΓH−∞−ρ onto
ΓH1. In particular, we arrive at

Proposition 9.4.7. The Ruelle resonance states associated with the first exceptional
parameter µ = −ρ are given by the Γ-invariant elements in H1:

Res0
X((µ− ρ)(H)) = Res0

X(1− n) ∼= Γ{η ∈ C∞(Λ1Hn) | dη = 0, δη = 0}.

Moreover, we may also identify (recall M = Γ\Hn)

Res0
X(−2ρ(H)) ∼= {η ∈ C∞(Λ1M) : ∆1η = 0} ∼= {η ∈ C∞(Λ1M) : dη = 0, δη = 0},

where ∆1 := dδ + δd denotes the Laplace operator on one forms. In particular, the
corresponding dimension is given by the first Betti number b1(M).

Proof. The first isomorphism follows from Proposition 2.2.3. We prove the relation to
the Laplace operator. Since M = Γ\Hn is a smooth compact manifold, we have an L2

inner product on the one forms given by

〈η, ζ〉Λ1 :=
∫

M
η ∧ ?ζ,

where ? denotes the Hodge star operator. It is well-known that the codifferential δ is
the adjoint operator of the differential d with respect to this inner product. Thus, since
∆1 = dδ + δd, we obtain

〈∆1η, η〉Λ1 = 〈dδη, η〉Λ1 + 〈δdη, η〉Λ1 = 〈δη, δη〉Λ1 + 〈dη, dη〉Λ1 .

Especially, we see that dη = 0 and δη = 0 if ∆1η = 0. By the definition of ∆1, this
is even an equivalence. For the dimension note that there is an isomorphism between
harmonic one forms and the first de Rham cohomology group H1(M;R) of M by the
Hodge theorem. Finally the dimension of H1(M;R) is given by b1(M).
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9. An example: The real hyperbolic case

Following the lines of [Olb94, §5.2], we may also remark that

A′τ (σ0) = {−ρ} and A′τ (σ1) = {−(ρ− α)}.
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A. Computations of scalars relating Poisson
transforms

G K K/M mα m2α ρ(H)

SO0(n, 1), n ≥ 2 S(O(n)×O(1)) ∼= SO(n) Sn−1 n− 1 0 n−1
2

SU(n, 1), n ≥ 2 S(U(n)×U(1)) ∼= U(n) S2n−1 2n− 2 1 n

Sp(n, 1), n ≥ 2 Sp(n)× Sp(1) S4n−1 4n− 4 3 2n+ 1
F4(−20) Spin(9) S15 8 7 11

Table A.1.: Structural data of rank one groups (recall that α(H) = 1 for the unique
simple positive restricted root α of (g, a)). The isomorphism of K/M with a
sphere is given by the adjoint action of K on H ∈ a0 ⊆ p.

In order to compute the scalars T YV (pY,µ) occurring in Proposition 5.3.2 we first compute
the scalars λ(V, Y ) in each case and then conclude by using Lemma 7.3.11 and Equation
(7.9). For the explicit calculations we will use hypergeometric functions.

Definition A.0.1. The (Gaussian, ordinary) hypergeometric function F (of type (2, 1))
is defined by (if the series converges)

F (a, b, c, z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n! ,

where a, b, c, z ∈ R, c > 0, and

(q)n :=
{

1 : n = 0
q(q + 1) . . . (q + n− 1) : n > 0

denotes the Pochhammer symbol. Note that F is a polynomial in z if a or b is a
non-positive integer.

Lemma A.0.2. (cf. [JW77, Lemma 4.1]) Assume |z| < 1 or a ∈ −N0 or b ∈ −N0.
Then F has the following properties:

(i) d
dzF (a, b, c, z) = ab

c F (a+ 1, b+ 1, c+ 1, z),

(ii) (c− b− a)F (a, b, c, z) = (c− b)F (a, b− 1, c, z) + a(z − 1)F (a+ 1, b, c, z),
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(iii) (c− b− a)F (a, b, c, z) = (c− a)F (a− 1, b, c, z) + b(z − 1)F (a, b+ 1, c, z),

(iv) F (a, b+ 1, c, z)− F (a, b, c, z) = az
c F (a+ 1, b+ 1, c+ 1, z),

(v) F (a+ 1, b, c, z)− F (a, b, c, z) = bz
c F (a+ 1, b+ 1, c+ 1, z).

A.1. The Case of G = SO0(n, 1), n ≥ 3

Considering the compact picture and the isomorphism K/M ∼= Sn−1 we see that (see
Equation (B.2.2)) Hµ decomposes as the Hilbert space direct sum

Hµ
∼=K L2(K/M) ∼=K L2(Sn−1) ∼=K

⊕̂
`∈N0

Y`,

where Y` denotes the space of all spherical harmonics of degree `.

Remark A.1.1. For G = SO0(2, 1) we have Hµ
∼=K

⊕̂
`∈ZY`, with Y` := C ·z` ⊂ C∞(S1).

The Dynkin diagram of K is of type Bm if n = 2m + 1 is odd and of type Dm if
n = 2m is even:

Bm :
α1 α2 αm−2 αm−1 αm

Dm :
α1 α2 αm−3

αm−2

αm−1

αm

We choose a Cartan subalgebra t of k as in [Kna02, Chapter II, §1, Example 2, 4] with
roots

∆k = {±ei ± ej : 1 ≤ i 6= j ≤ m} ∪ {±ei : 1 ≤ i ≤ m} resp. ∆k = {±ei ± ej : 1 ≤ i 6= j ≤ m}

if K ∼= SO(2m+ 1) resp. K ∼= SO(2m) for some m ∈ N. As positive systems we consider

∆+
k = {ei ± ej : 1 ≤ i < j ≤ m} ∪ {ei : 1 ≤ i ≤ m} resp. ∆+

k = {ei ± ej : 1 ≤ i < j ≤ m}

with simple systems Π given by

Π := {α1, . . . , αm} with αj :=
{
ej − ej+1 : j < m

em : j = m

in the odd case and

Π := {α1, . . . , αm} with αj :=
{
ej − ej+1 : j < m

em−1 + em : j = m

in the even case. The corresponding half sum of positive roots is given by

ρc =
(
m− 1

2

)
e1 +

(
m− 3

2

)
e2 + . . .+ 1

2em resp. ρc = (m− 1)e1 + . . .+ em−1.

138



A.1. The Case of G = SO0(n, 1), n ≥ 3

The highest weight of Y` is `e1 (see e.g. [Kna02, Example 1 of §V.1, p. 277]). Introducing
the angular coordinates

x1 = r cos(ξ), xi = r sin(ξ)ωi, i ≥ 2,

where ∑n
i=2 ω

2
i = 1, 0 ≤ ξ ≤ π, we infer by [JW77, Theorem 3.1(2)] that

φYk = cosk(ξ)F
(
−k2 ,

1− k
2 ,

n− 1
2 ,− tan2(ξ)

)
.

In order to compute the scalars λ(V, Y ) for Y, V ∈ K̂M = {[Y`] : ` ∈ N0} it suffices to
decompose ω(H)φV by Lemma 7.3.10.

Lemma A.1.2. For each k ∈ N0 we have

ω(H)φYk = k

n+ 2k − 2φYk−1 + n+ k − 2
n+ 2k − 2φYk+1 .

Proof. Recall that the identification from Equation (B.2.1) comes from the K-action on
p, where e1 ∈ Sn−1 corresponds to H ∈ a. This implies that

ω(H) = x1 = cos(ξ)

as a function in C∞(Sn−1). Therefore,

ω(H)φYk = cosk+1(ξ)F
(
−k2 ,

1− k
2 ,

n− 1
2 ,− tan2 ξ

)
.

By Lemma A.0.2.(ii) with a = −k
2 , b = 1−k

2 , c = n−1
2 and z = − tan2 ξ we infer that

(n+ 2k − 2)F
(
−k

2 ,
1−k

2 , n−1
2 , z

)
equals

(n+ k − 2)F
(
−k + 1

2 ,−k2 ,
n− 1

2 , z

)
+ k

cos2 ξ
F

(1− k
2 ,

2− k
2 ,

n− 1
2 , z

)
.

Multiplying by cosk+1 ξ yields the result.

Remark A.1.3. Note that Lemma 7.3.10 implies that

λ(Yk, Yk+1) = prYk+1(ω(H)φYk)(eM) = n+ k − 2
n+ 2k − 2φYk+1(eM) = n+ k − 2

n+ 2k − 2 .

Similarly, we have λ(Yk, Yk−1) = k
n+2k−2 . The scalars T YkYk±1

(pYk,µ)(e) will be computed
in Proposition A.5.1.

In order to describe the generalized gradients properly we will now decompose the
relevant tensor products.
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Proposition A.1.4. Let K = SO(2m + 1), m ≥ 1. For m > 1 the tensor product
Yk ⊗ p∗ decomposes for k ∈ N into

Yk ⊗ p∗ ∼= Yk−1 ⊕ Yk+1 ⊕ Vk

where Vk is the K-representation with highest weight ke1 + e2. Moreover, we have
Yk ⊗ p∗ ∼= Yk−1 ⊕ Yk ⊕ Yk+1 if m = 1.

Proof. The coadjoint representation of K on p∗ ∼= C2m+1 is equivalent to the defining
representation (as well as Y1) and has weights ±ei, i ∈ {1, . . . ,m}, and 0. Writing

Yk ⊗ p∗ ∼= Yk ⊗ Y1 ∼=
⊕

Λi∈K̂

LiΛi,

where Li := mult(Λi, Yk ⊗ Y1) denotes the multiplicity, we have by [FS97, p.274]

Li =
∑
w∈W

sign(w) multY1(w(Λi + ρc)− ρc − ke1),

where multY1(µ) ∈ N0 denotes the multiplicity of the weight µ in Y1 and W denotes the
Weyl group of k. If Li 6= 0 there has to exist some w ∈W such that w(Λi + ρc)− ρc− ke1
is a weight of Y1, i.e.

w(Λi + ρc)− ρc − ke1 = ±ej ⇔ Λi = w−1(ρc + ke1 ± ej)− ρc

for some j ∈ {1, . . . ,m} or

w(Λi + ρc)− ρc − ke1 = 0⇔ Λi = w−1(ρc + ke1)− ρc.

Let us first consider the case m 6= 1. Since Λi is a highest weight it is dominant. Thus,
ρc + ke1 ± ej resp. ρc + ke1 must not lie on the boundary of any Weyl chamber. This
is the case if and only if the weight of Y1 is contained in {0,±e1, e2,−em}. In the first
three cases we obtain for Λi + ρc

w−1(ρc + ke1) = w−1
((

k +m− 1
2

)
e1 +

(
m− 3

2

)
e2 + . . .+ 1

2em
)

w−1(ρc + ke1 ± e1) = w−1
((

k ± 1 +m− 1
2

)
e1 +

(
m− 3

2

)
e2 + . . .+ 1

2em
)

w−1(ρc + ke1 + e2) = w−1
((

k +m− 1
2

)
e1 +

(
m− 1

2

)
e2 + . . .+ 1

2em
)

which is dominant if and only if w = id yielding Λi = ke1, (k± 1)e1, ke1 + e2 respectively.
For Λi + ρc = w−1(ρc + ke1 − em) we have

Λi + ρc = w−1
((

k +m− 1
2

)
e1 +

(
m− 3

2

)
e2 + . . .+ 3

2em−1 −
1
2em

)
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which is dominant if and only if w = sem is the reflection along em. For this w we have
Λi = ke1. Altogether we have

mult(ke1, Yk ⊗ Y1) =
∑
w∈W

sign(w) multY1(w(Λi + ρc)− ρc − ke1)

= sign(id) multY1(0) + sign(sem) multY1(−em) = 0

and similarly that the representations with highest weights (k ± 1)e1 resp. ke1 + e2
occur with multiplicity one. For m = 1 the weights of Y1 are −e1, 0 and e1. We get
Λi = (k − 1)e1, ke1 resp. (k + 1)e1 in this case, each with multiplicity one.

Remark A.1.5. Using the Weyl dimension formula we see that (in the notation of
Proposition A.1.4)

dimYk =
(

2m+ k − 2
k

)
m+ k − 1

2
m− 1

2
, dimVk = k(2k + 2m− 1)

k + 2m− 2

(
2m+ k − 1
k + 1

)
.

Proposition A.1.6. Let K = SO(2m), m ≥ 2. The tensor product Yk ⊗ p∗ decomposes
for k ∈ N into

Yk ⊗ p∗ ∼= Yk−1 ⊕ Yk+1 ⊕ Vk,

where Vk is the K-representation with highest weight ke1 + e2 for m 6= 2 and the sum of
the K-representations with highest weight ke1 + e2 resp. ke1 − e2 for m = 2.

Proof. The coadjoint representation of K on p∗ ∼= C2m is equivalent to the defining
representation (as well as Y1) and has weights ±ei, i ∈ {1, . . . ,m}. Each weight occurs
with multiplicity one. We can now decompose Yk ⊗ p∗ ∼= Yk ⊗ Y1 using the Racah-Speiser
algorithm. Let

Yk ⊗ Y1 ∼=
⊕

Λi∈K̂

LiΛi

with Li := mult(Λi, Yk ⊗ Y1) = ∑
w∈W sign(w) multY1(w(Λi + ρc) − ρc − ke1) as in the

odd case. Since w(Λi + ρc)− ρc − ke1 = ±ei ⇔ Λi = w−1(ρc + ke1 ± ei)− ρc, the latter
expression has to be dominant since Λi is a highest weight. Thus, the weight ρc +ke1± ei
must not lie on the boundary of any Weyl chamber. For m 6= 2, this is the case if and
only if the weight ±ei is ±e1 or e2. For m = 2 we get ±e1 or ±e2. In each case the
weight ρc + ke1± ei is dominant, so w = id. Moreover, the weight w−1(ρc + ke1± ei)− ρc
is given by ke1 ± e1 = (k ± 1)e1 resp. ke1 + e2 for m 6= 2. For m = 2 we additionally get
ke1 − e2.

Remark A.1.7. Using the Weyl dimension formula we see that (in the notation of
Proposition A.1.6)

dimYk =
(

2m+ k − 3
k

)
m+ k − 1
m− 1 , dimVk = (4m+ 2k − 4)(m+ k − 1)

k + 1

(
2m+ k − 4
k − 1

)
.

141



A. Computations of scalars relating Poisson transforms

We remark that the dimensions of the constituents of Vk are both given by k(k + 2) in
the case of m = 2. The formula

dimYk =
(
n+ k − 3

k

)
n
2 + k − 1
n
2 − 1 =

(
n+ k − 3

k

)
n+ 2k − 2
n− 2

summarizes the odd and the even case.

A.2. The Case of G = SU(n, 1), n ≥ 2

By Equation (B.3.12) we can decompose Hµ as the Hilbert space direct sum

Hµ
∼=K L2(K/M) ∼=K L2(S2n−1) ∼=K

⊕̂
p,q∈N0

Yp,q. (A.2.1)

A maximal torus T in U(n) ∼= K is given by the diagonal matrices

T := {diag(eiθ1 , . . . , eiθn) : θj ∈ R}.

Although k0 is not semisimple, it is still reductive and can be decomposed as

k0 = z(k0)⊕ [k0, k0] ∼= (iR · In)⊕ su(n).

Let t0 = Lie(T ) denote the diagonal matrices in su(n, 1). Then t0 = z(k0)⊕ h0 where h0
is a Cartan subalgebra of [k0, k0] ∼= su(n) (traceless diagonal matrices). Note that h is a
Cartan subalgebra of [k, k] ∼= su(n)C ∼= sl(n,C) and that the roots of h in [k, k] ∼= sl(n,C)
determine the roots of t in k (by extending them to t by defining them to be 0 on the
center z(k) = C · In). The Dynkin diagram of sl(n,C) is of type An−1:

α1 α2 αn−2 αn−1

Denoting the dual basis of the standard diagonal matrix basis Eii, 1 ≤ i ≤ n + 1, by
(ei)i we obtain that the roots ∆k of (k, t) resp. ∆ of (g, t) are given by

∆k = {ei − ej : 1 ≤ i 6= j ≤ n} resp. ∆ = {ei − ej : 1 ≤ i 6= j ≤ n+ 1}. (A.2.2)

We choose the positive system ∆+
k = {ei − ej : 1 ≤ i < j ≤ n} with simple roots

Π := {α1, . . . , αn−1}, αj := ej − ej+1, and half sum

ρc =
(
n− 1

2

)
e1 +

(
n− 3

2

)
e2 + . . .− n− 1

2 en. (A.2.3)

By Lemma B.3.1, the highest weight of Yp,q is given by qe1−pen+(p−q)en+1. Introducing
the angular coordinates (on Cn ∼= R2n)

z1 = r cos(ξ)eiϕ, zj = r sin(ξ)ωj , 2 ≤ j ≤ n

where ∑n
j=2|ωj |2 = 1, 0 ≤ ϕ ≤ 2π and 0 ≤ ξ ≤ π

2 we have (see [JW77, Theorem 3.1(3)])

φYp,q = ei(p−q)ϕ cosp+q(ξ)F (−p,−q, n− 1,− tan2(ξ)).

We can now compute the scalars. In this case (for G = SU(n, 1)), similar computations
can be found in [Mea89, Theorem 5.6.6].
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A.2. The Case of G = SU(n, 1), n ≥ 2

Lemma A.2.1. For each p, q ∈ N0 we have

2(p+ q + n− 1)ω(H)φYp,q = (p+ n− 1)φYp+1,q + qφYp,q−1

+ (q + n− 1)φYp,q+1 + pφYp−1,q .

Proof. Write φYp,q = ei(p−q)ϕhp,q(ξ). In the angular coordinates from above we have

ω(H) = Re(z1) = cos(ξ) cos(ϕ)

as a function in C∞(S2n−1). Therefore,

ω(H)φYp,q = cos(ξ) cos(ϕ)ei(p−q)ϕhp,q(ξ)

= cos(ξ)hp,q(ξ)
2 ei(p−q+1)ϕ + cos(ξ)hp,q(ξ)

2 ei(p−q−1)ϕ. (A.2.4)

Lemma A.0.2.(iii) implies that

cos(ξ)hp,q(ξ) = p+ n− 1
p+ q + n− 1hp+1,q(ξ) + q

p+ q + n− 1hp,q−1(ξ) (A.2.5)

and Lemma A.0.2.(ii) implies that

cos(ξ)hp,q(ξ) = q + n− 1
p+ q + n− 1hp,q+1(ξ) + p

p+ q + n− 1hp−1,q(ξ). (A.2.6)

Combining the equations (A.2.4), (A.2.5) and (A.2.6) yields the result.

Remark A.2.2. As in Remark A.1.3, Lemma A.2.1 determines the scalars λ(Yp,q, V )
for each V ∈ K̂M with V ↔ Yp,q.

To decompose the relevant tensor products we use Proposition 7.3.2. By Equation
(A.2.2) we infer that the non-compact roots are given by

∆n = {±(ei − en+1) : 1 ≤ i ≤ n}.

The following remark ensures that each representation Yτ,β , β ∈ S, in Proposition 7.3.2
actually occurs.

Remark A.2.3. Using the Weyl dimension formula we see that

dimYp,q =
(
q + n− 2
n− 2

)(
p+ n− 2
n− 2

)
n+ p+ q − 1

n− 1 = dimYq,p,

dimYp,q,−en−1+en+1 =
(
q + n− 1

q

)(
p+ n− 2

p

)
(n+ p+ q − 1)p(n− 2)

(n+ q − 2)(p+ 1) = dimYq,p,e2−en+1 .

For n = 2 this has to be read as dimYp,0,−e1+e3 = p = dimY0,p,e2−e3 . We get that∑
β∈S⊆∆n

dimYp,q,β = dim p · dimYp,q = 2n · dimYp,q,

which implies that m(β) = 1 if and only if the corresponding formula for the dimension
of Yp,q,β is not zero.
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A.2.1. Alternative proof of tensor product decomposition

In this section we give another proof of the tensor product decomposition from Proposition
7.3.2 for SU(n, 1), n ≥ 2, using the Racah-Speiser algorithm. We first identify the
irreducible components of p in K̂M = {Yp,q | p, q ∈ N0}.

Lemma A.2.4. We have

Φ : p∗1 ∼= Y1,0

as K-representations.

Proof. First recall from the proof of Lemma B.3.1 that Y1,0 is spanned by z1, . . . , zn. We
claim that

Φ : p∗1 → Y1,0, Φ(ϕ)(v) := ϕ

((
0n v
0 0

))
,

Φ−1 : Y1,0 → p∗1, Φ−1(ψ)
((

0n v
0 0

))
:= ψ(v)

are K-equivariant isomorphisms. One easily sees that both maps map into the indicated
spaces and are inverses of each other. Let us prove the K-equivariance. Note that for
each k = diag(A, λ) ∈ K and v ∈ S2n−1 ⊆ Cn we have

Ad(k)
(

0n v
0 0

)
=
(

0n λ−1Av
0 0

)
=
(

0n k.v
0 0

)

with the action from Equation (B.3.11). Thus,

Φ(Ad∗(k)ϕ)(v) = ϕ

(
Ad(k−1)

(
0n v
0 0

))
= Φ(ϕ)(k−1.v) = (kΦ(ϕ))(v).

Lemma A.2.5. We have

Ψ : p∗2 ∼= Y0,1

as K-representations.

Proof. By the proof of Lemma B.3.1 we infer that Y0,1 is spanned by z1, . . . , zn. We
claim that

Ψ : p∗2 → Y0,1, Ψ(ϕ)(v) := ϕ

((
0n 0
v∗ 0

))
,

Ψ−1 : Y0,1 → p∗2, Ψ−1(ψ)
((

0n 0
v∗ 0

))
= ψ(v)
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are K-equivariant isomorphisms. Note first that Ψ maps into Y0,1 since, for λ ∈ C,

Ψ(ϕ)(λv) = ϕ

((
0n 0

(λv)∗ 0

))
= ϕ

(
λ

(
0n 0
v∗ 0

))
= λΨ(ϕ)(v).

Similarly we see that Ψ−1 maps into p∗2 since

Ψ−1(ψ)
(
λ

(
0n 0
v∗ 0

))
= Ψ−1(ψ)

((
0n 0

(λv)∗ 0

))
= ψ(λv) = λψ(v)

= λΨ−1(ψ)
((

0n 0
v∗ 0

))
.

One easily sees that Ψ and Ψ−1 are inverse to each other. Let us finally prove the
K-equivariance. Note that for each k = diag(A, λ) ∈ K and v ∈ S2n−1 ⊆ Cn we have

Ad(k)
(

0n 0
v∗ 0

)
=
(

0n 0
λv∗A−1 0

)
=
(

0n 0
(λ−1Av)∗ 0

)
=
(

0n 0
(k.v)∗ 0

)
,

where we used A∗ = A−1 and λ = λ−1. Thus,

Ψ(Ad∗(k)ϕ)(v) = ϕ

(
Ad(k−1)

(
0n 0
v∗ 0

))
=
(

0n 0
(k−1.v)∗ 0

)
= (kΨ(ϕ))(v).

Proposition A.2.6. For n 6= 2 we have: For p, q 6= 0 the tensor product Yp,q ⊗ p∗1
decomposes into

Yp,q ⊗ p∗1
∼= Yp,q−1 ⊕ Yp+1,q ⊕ V 1

p,q,

where V 1
p,q is the K-representation with highest weight qe1− en−1− pen + (p− q+ 1)en+1.

If p = 0 we have

Y0,q ⊗ p∗1
∼= Y0,q−1 ⊕ Y1,q

and for q = 0

Yp,0 ⊗ p∗1
∼= Yp+1,0 ⊕ V 1

p,0,

with Y0,0 ⊗ p∗1
∼= Y1,0. For n = 2 we have

Yp,q ⊗ p∗1
∼= Yp,q−1 ⊕ Yp+1,q

for q 6= 0,

Yp,0 ⊗ p∗1
∼= Yp+1,0 ⊕ V 1

p,0

for p 6= 0, where V 1
p,0 has highest weight −e1 − pe2 + (p+ 1)e3, and Y0,0 ⊗ p∗1

∼= Y1,0.
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Proof. We first decompose the tensor products with respect to [k, k] (i.e. we omit the
action of the center). By the proof of Lemma B.3.1 we infer that p∗1 ∼= Y1,0 has weights
−ej , j ∈ {1, . . . , n}, with respect to [k, k]. Writing

Yp,q ⊗ Y1,0 ∼=
⊕

Λi∈K̂

LiΛi,

where Li := mult(Λi, Yp,q ⊗ Y1,0) denotes the multiplicity, we have by [FS97, p. 274]

Li =
∑
w∈W

sign(w) multY1,0(w(Λi + ρc)− ρc − (qe1 − pen)),

where multY1,0(µ) ∈ N0 denotes the multiplicity of the weight µ in Y1,0,

ρc = n− 1
2 e1 + n− 3

2 e2 + . . .− n− 1
2 en

by Equation (A.2.3) and W denotes the Weyl group of k. Note that

w(Λi + ρc)− ρc − (qe1 − pen) = −ej
⇔ Λi = w−1(ρc + qe1 − pen − ej)− ρc.

Since Λi has to be dominant, ρc + qe1 − pen − ej must not lie on the boundary of any
Weyl chamber. We first discuss the case n 6= 2. Then ρc + qe1 − pen − ej is annihilated
by ej − ej+1 for j ∈ {2, . . . , n− 2}. For j = 1 it is on the boundary if and only if q = 0
and for j = n− 1 if and only if p = 0. For j = n it is never on the boundary. In each
case the weight is dominant so that we have w = id in each case. This leads to

Λi ∈ {(q − 1)e1 − pen, qe1 − en−1 − pen, qe1 − (p+ 1)en}

corresponding to the representations Yp,q−1, V
1
p,q resp. Yp+1,q, where Yp,q−1 does not

occur if q = 0 and V 1
p,q does not occur if p = 0. For the highest weights w.r.t. k we may

use [Kna02, Proposition 9.72] to obtain that each irreducible component of the tensor
product, with highest weight ∑n+1

i=1 aiei, has to fulfill ∑n+1
i=1 ai = 0 (for the weights of Yp,q

see Lemma B.3.1).
Let us finally discuss the case n = 2. Analogous to the previous calculations we obtain

ρc + qe1 − pe2 − ej ∈
{(

q − 1
2

)
e1 −

(
p+ 1

2

)
e2,

(
q + 1

2

)
e1 −

(
p+ 3

2

)
e2

}
,

where the first one lies on the boundary if p = q = 0 and thus

Λi ∈ {(q − 1)e1 − pe2, qe1 − (p+ 1)e2},

where the first one does not occur if p = q = 0. The second weight corresponds to the
representation Yp+1,q. The first weight corresponds to the representation Yp,q−1 for q 6= 0.
For q = 0 and 0 6= p it is given by −e1 − pe2. For the highest weights w.r.t. k we proceed
as above.
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A.2. The Case of G = SU(n, 1), n ≥ 2

Proposition A.2.7. For n 6= 2 the tensor product Yp,q ⊗ p∗2 decomposes as follows. If
p, q 6= 0 we have

Yp,q ⊗ p∗2
∼= Yp,q+1 ⊕ Yp−1,q ⊕ V 2

p,q,

where V 2
p,q is the K-representation with highest weight qe1 + e2 − pen + (p− q − 1)en+1.

If p = 0 we have

Y0,q ⊗ p∗2
∼= Y0,q+1 ⊕ V 2

0,q

and if q = 0

Yp,0 ⊗ p∗2
∼= Yp,1 ⊕ Yp−1,0,

with Y0,0 ⊗ p∗2
∼= Y0,1. For n = 2 we obtain

Yp,q ⊗ p∗2
∼= Yp,q+1 ⊕ Yp−1,q

for p 6= 0 and

Y0,q ⊗ p∗2
∼= Y0,q+1 ⊕ V 2

0,q,

where V 2
0,q has highest weight qe1 + e2 − (q + 1)en+1 and Y0,0 ⊗ p∗2

∼= Y0,1.

Proof. Again it suffices to decompose the tensor product with respect to [k, k] (in the
following we always denote weights w.r.t. [k, k]; for the center we proceed as in the proof
of Proposition A.2.6). By the proof of Lemma B.3.1 we infer that p∗2 ∼= Y0,1 has weights
ej for j ∈ {1, . . . , n}. Writing

Yp,q ⊗ Y0,1 ∼=
⊕

Λi∈K̂

LiΛi,

where Li := mult(Λi, Yp,q ⊗ Y0,1) denotes the multiplicity, we have by [FS97, p. 274]

Li =
∑
w∈W

sign(w) multY0,1(w(Λi + ρc)− ρc − (qe1 − pen)),

where multY0,1(µ) ∈ N0 denotes the multiplicity of the weight µ in Y0,1,

ρc = n− 1
2 e1 + n− 3

2 e2 + . . .− n− 1
2 en

by Equation (A.2.3) and W denotes the Weyl group of k. Note that

w(Λi + ρc)− ρc − (qe1 − pen) = ej

⇔ Λi = w−1(ρc + qe1 − pen + ej)− ρc.

Since Λi has to be dominant, ρc + qe1 − pen + ej must not lie on the boundary of any
Weyl chamber. We first discuss the case n 6= 2. Then ρc + qe1 − pen + ej is annihilated
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by ej−1 − ej for j ∈ {3, . . . , n− 1}. For j = 1 it is never on the boundary. For j = 2 it is
on the boundary if and only if q = 0 and for j = n if and only if p = 0. In each case the
weight is dominant so that we have w = id in each case. This leads to

Λi ∈ {(q + 1)e1 − pen, qe1 + e2 − pen, qe1 − (p− 1)en}

corresponding to the representations Yp,q+1, V
2
p,q resp. Yp−1,q, where V 2

p,q does not occur
if q = 0 and Yp−1,q does not occur if p = 0.

Let us finally discuss the case n = 2. Analogous to the previous calculations we obtain

ρc + qe1 − pe2 + ej ∈
{(

q + 3
2

)
e1 −

(
p+ 1

2

)
e2,

(
q + 1

2

)
e1 −

(
p− 1

2

)
e2

}
,

where the second one lies on the boundary if p = q = 0, and thus

Λi ∈ {(q + 1)e1 − pe2, qe1 − (p− 1)e2},

where the second summand does not occur if p = q = 0. The first weight corresponds to
the representation Yp,q+1. The second weight corresponds to the representation Yp−1,q
for p 6= 0. For p = 0 and q 6= 0 it is given by qe1 + e2.

A.3. The Case of G = Sp(n, 1), n ≥ 2

In this case we have K = Sp(n)× Sp(1) and g = sp(n, 1)C = sp(n+ 1,C). The Dynkin
diagram of K is of type Cn × C1:

α1 α2 αn−2 αn−1 αn αn+1

We choose a Cartan subalgebra of sp(n,C)×sp(1,C) and introduce notation as in [Kna02,
Chapter II, §1, Example 3 & p. 685] such that we have for the roots ∆k of (k, h) resp. ∆
of (g, h)

∆k = {±ei ± ej : 1 ≤ i 6= j ≤ n} ∪ {±2ei : 1 ≤ i ≤ n+ 1} (A.3.7)
∆ = {±ei ± ej : 1 ≤ i 6= j ≤ n+ 1} ∪ {±2ei : 1 ≤ i ≤ n+ 1}. (A.3.8)

We choose the positive system

∆+
k = {ei ± ej : 1 ≤ i < j ≤ n} ∪ {2ei : 1 ≤ i ≤ n+ 1}. (A.3.9)

with simple positive roots Π := {α1, . . . , αn+1} given by

αi := ei − ei+1 for 1 ≤ i ≤ n− 1 and αj := 2ej for j ∈ {n, n+ 1}.

The corresponding half sum of positive roots is given by

ρc = ne1 + (n− 1)e2 + . . .+ 2en−1 + en + en+1. (A.3.10)
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A.3. The Case of G = Sp(n, 1), n ≥ 2

The fundamental weights λ1, . . . , λn+1 defined by 2 〈λi,αj〉〈αj ,αj〉 = δij are given by

λj =
j∑
i=1

ei for 1 ≤ j ≤ n and λn+1 = en+1. (A.3.11)

By Equation (B.4.15) we have

Hµ
∼=K L2(K/M) ∼=K L2(S4n−1) ∼=K

⊕̂
a≥b≥0

Va,b,

where Va,b has highest weight ae1 + be2 + (a − b)en+1. We now introduce angular
coordinates on Hn ∼= R4n as in [JW77, Theorem 3.1(4)]. For (w1, . . . , wn) ∈ Hn we write

w1 = r cos(ξ)(cos(t) + y sin(t)), wi = r sin(ξ)qi, i ≥ 2

where qi, y ∈ H such that |y|2 = 1 = ∑n
i=2|qi|2, Re(y) = 0 and 0 ≤ ξ ≤ π

2 , 0 ≤ t ≤ π.
Then we have by [JW77, Theorem 3.1(4)]1 (our Va,b corresponds to V p,q of [JW77] with
p := a+ b and q := a− b by [JW77, Lemma 3.3])

φVa,b = 1
a− b+ 1

sin((a− b+ 1)t)
sin(t) cosa+b(ξ)F

(
−b,−(a+ 1), 2(n− 1),− tan2(ξ)

)
,

where the normalizing factor 1
a−b+1 follows from φVa,b(eM) = 1, where eM corresponds

to t = ξ = 0, and using limt→0
sin((a−b+1)t)

sin(t) = a− b+ 1.

Lemma A.3.1. For a, b ∈ N0 with a ≥ b we have

2(a− b+ 1)(2n− 1 + a+ b)ω(H)φVa,b = (a− b+ 2)(2n− 1 + a)φVa+1,b

+ b(a− b+ 2)φVa,b−1

+ (a− b)(2n− 2 + b)φVa,b+1

+ (a− b)(a+ 1)φVa−1,b .

Proof. Write φVa,b = 1
a−b+1χq(t)ha,b(ξ) such that χq(t) = sin((q+1)t)

sin(t) . In the angular
coordinates above we have

ω(H) = Re(w1) = cos(ξ) cos(t)

as a function in C∞(S4n−1). Note that 2 cos(t)χq(t) = χq+1(t) + χq−1(t). Therefore,

ω(H)φVa,b = cos(ξ) cos(t)χq(t)ha,b(ξ)

= cos(ξ)ha,b(ξ)
2 χq+1(t) + cos(ξ)ha,b(ξ)

2 χq−1(t). (A.3.12)

1There is a sign error in [JW77, Theorem 3.1(4)]; solving the differential equation in [JW77, p.147]
actually gives sin((q+1)t)

sin(t) cosp(ξ)F
(−p+q

2 ,− p+q+2
2 , 2(n− 1),− tan2(ξ)

)
.
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Lemma A.0.2.(iii) implies

cos(ξ)ha,b(ξ) = 2n− 2 + b

2n+ a+ b− 1ha,b+1(ξ) + a+ 1
2n+ a+ b− 1ha−1,b(ξ) (A.3.13)

and Lemma A.0.2.(ii) implies that

cos(ξ)ha,b(ξ) = 2n− 1 + a

2n+ a+ b− 1ha+1,b(ξ) + b

2n+ a+ b− 1ha,b−1(ξ). (A.3.14)

Inserting Equation (A.3.13) and (A.3.14) into Equation (A.3.12) proves the result.

Remark A.3.2. As in Remark A.1.3, Lemma A.3.1 determines the scalars λ(Va,b, V )
for each V ∈ K̂M with V ↔ Va,b.

To decompose the relevant tensor products we use Proposition 7.3.2. By Equation
(A.3.8) we infer that the non-compact roots are given by

∆n = {±ei ± en+1 : 1 ≤ i ≤ n}.

The following remark ensures that each representation Yτ,β , β ∈ S, in Proposition 7.3.2
actually occurs.

Remark A.3.3. Using the Weyl dimension formula we see that the representation
Wξ1,ξ2,ξ3 with highest weight ξ1e1 + ξ2e2 + ξ3en+1 has dimension

dimWξ1,ξ2,ξ3 = ξ1 + ξ2 + 2n− 1
(2n− 1)(2n− 2)(ξ1 − ξ2 + 1)(ξ3 + 1)

(
ξ1 + 2n− 2

2n− 3

)(
ξ2 + 2n− 3

2n− 3

)

and the representationW 1
ξ1,ξ2,ξ3

with highest weight ξ1e1+ξ2e2+e3+ξ3en+1 has dimension

dimW 1
ξ1,ξ2,ξ3 =

(
ξ1 + 2n− 1

2n− 3

)(
ξ2 + 2n− 2

2n− 1

)
(ξ1 + ξ2 + 2n− 1)(2n− 4)(ξ1 − ξ2 + 1)

2(ξ1 + 2n− 2)(ξ2 + 2n− 3) ·

· (ξ1 + 1)(ξ3 + 1)
ξ2 + 1 .

Using these dimension formulas we get (note that p ∼= Hn
C
∼= V1,0)∑

β∈S⊆∆n

dimVa,b,β = dim p · dimVa,b = 4n · dimVa,b,

so that m(β) = 1 if and only if the corresponding formula for the dimension of Va,b,β is
not zero. Alternatively, the algorithm we used in the case of SO0(n, 1) can be applied to
verify this result.

We can also compute the roots of p directly. For this we use the following
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Definition A.3.4 ([Bou05, Chapter VIII, § 7, no. 2]). A subset A of the weight lattice
is called ∆k-saturated if for all λ ∈ A and all α ∈ ∆k we have λ− tα ∈ A for all integers
t ∈ Z ∩ [0, λ(Hα)], where Hα denotes the unique element of the commutator [gα0 , g−α0 ]
with α(Hα) = 2.

Lemma A.3.5. Every weight of p has multiplicity one. There are 4n weights, given by

{±ei ± en+1 : 1 ≤ i ≤ n}.

Proof. Recall from Section B.4.2 that the highest weight of p ∼= V1,0 is given by e1 + en+1.
Following [Bou05, Chapter VIII, §7, no. 2, Proposition 5(i)], the weights H of p are the
smallest ∆k-saturated subset of the weight lattice containing e1 + en+1.
We use the realization of k ∼= sp(n,C) × sp(1,C) and its Cartan subalgebra h from

[Kna02, Chapter II, §1, Example 3]:

h = {H(h) : h ∈ Cn+1}, with
H(h) := diag(h1, . . . , hn,−h1, . . . ,−hn, hn+1,−hn+1),

ej(H(h)) := hj , 1 ≤ j ≤ n+ 1, h ∈ Cn+1,

where the signs can be chosen independently. Recall the roots ∆k from Equation (A.3.7).
The root normals Hα from Definition A.3.4 are given by

H±ei±ej = H(±ei ± ej), 1 ≤ i < j ≤ n,
H±2ei = H(±ei), 1 ≤ i ≤ n+ 1.

We will now determine H . Since e1 + en+1 ∈H and 2en+1 is a root we have

∀t ∈ Z ∩ [0, (e1 + en+1)(H2en+1)] : e1 + en+1 − t(2en+1) ∈H ⇒ e1 − en+1 ∈H ,

since (e1 + en+1)(H2en+1) = (e1 + en+1)(H(en+1)) = 1. Similarly we have e1 − ej ∈ ∆k

for 2 ≤ j ≤ n with (e1 ± en+1)(He1−ej ) = (e1 ± en+1)(H(e1 − ej)) = 1 and thus

e1 ± en+1 − (e1 − ej) = ej ± en+1 ∈H .

Finally, since ei + ej ∈ ∆k for i 6= j, 1 ≤ i ≤ n, satisfies (ej ± en+1)(H(ei + ej)) = 1 we
infer that

ej ± en+1 − (ei + ej) = −ei ± en+1 ∈H .

Summarizing, we have

∀ 1 ≤ i ≤ n : ± ei ± en+1 ∈H ,

where the signs can be chosen independently. Hence we obtained 4n different weights.
Since dim p = 4n there can be no more weights and every weight has to occur with
multiplicity one.
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A.4. The Case of G = F4(−20)

In this case we have K = Spin(9) with k0 = so(9) and rk g = rk k = 4. Therefore, we may
choose a Cartan subalgebra t of both k and g. The root system can be realized in V = R4

with the standard basis e1, e2, e3, e4 in the following way (see [Bou02, Plate VIII])

∆ = {±ei : 1 ≤ i ≤ 4} ∪ {±ei ± ej : 1 ≤ i < j ≤ 4} ∪ {1
2(±e1 ± e2 ± e3 ± e4)} (A.4.15)

∆k = {±ei : 1 ≤ i ≤ 4} ∪ {±ei ± ej : 1 ≤ i < j ≤ 4}.

We choose the positive system ∆+
k = {ei − ej : 1 ≤ i < j ≤ 4} ∪ {ei : 1 ≤ i ≤ 4} with

ρc = 7
2e1 + 5

2e2 + 3
2e3 + 1

2e4. (A.4.16)

By (B.5.17) we have

Hµ
∼=K L2(K/M) ∼=K L2(S15) ∼=K

⊕̂
m≥`≥0

m≡` mod 2
Vm,`, (A.4.17)

where Vm,` has highest weight m
2 e1 + `

2e2 + `
2e3 + `

2e4. Introducing angular coordinates
on R16 as in [Joh76, p. 275] we can write (see [Joh76, Theorem 3.1])

φVm,` = χ`(ϕ)hm,`(ξ)

with

χ`(ϕ) := cos(ϕ)`F
(
− `2 ,

−`+ 1
2 ,

7
2 ,− tan(ϕ)2

)
,

hm,`(ξ) := cos(ξ)mF
(
`−m

2 ,
−m− `− 6

2 , 4,− tan(ξ)2
)
.

Lemma A.4.1. For m, ` ∈ N0, ` ≤ m, m ≡ ` mod 2, we have

(6 + 2`)(14 + 2m)ω(H)φVm,` = (6 + `)(14 +m+ `)φVm+1,`+1 + (6 + `)(m− `)φVm−1,`+1

+ `(8 +m− `)φVm+1,`−1 + `(m+ `+ 6)φVm−1,`−1 .

Proof. In the angular coordinates of [Joh76, p. 275] we have

ω(H) = x = cos(ξ) cos(ϕ)

as a function in C∞(S15). We claim that

cos(ϕ)χ`(ϕ) = 6 + `

6 + 2`χ`+1(ϕ) + `

6 + 2`χ`−1(ϕ). (A.4.18)

Using Lemma A.0.2.(ii) and the symmetry of the hypergeometric function in the first
two variables we infer that for z := − tan(ϕ)2

(6 + 2`)F
(
− `2 ,

−`+ 1
2 ,

7
2 , z

)
= (6 + `)F

(−(`+ 1)
2 ,− `2 ,

7
2 , z

)
+ `

cos(ϕ)2F

(−`+ 1
2 ,

−`+ 2
2 ,

7
2 , z

)
.
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Multiplying both sides by cos(ϕ)`+1 now proves the claim. We now express the product
cos(ξ)hm,`(ξ) in two different forms. By Lemma A.0.2.(iii) we have

cos(ξ)hm,`(ξ) = 8 +m− `
14 + 2m hm+1,`−1(ξ) + m+ `− 6

14 + 2m hm−1,`−1(ξ) (A.4.19)

and by Lemma A.0.2.(ii) similarly

cos(ξ)hm,`(ξ) = 14 +m+ `

14 + 2m hm+1,`+1(ξ) + m− `
14 + 2mhm−1,`+1(ξ). (A.4.20)

Since ω(H)φVm,` = cos(ϕ)χ(ϕ) cos(ξ)hm,`(ξ) we arrive at the desired result by combining
Equations (A.4.18), (A.4.19) and (A.4.20).

Remark A.4.2. As in Remark A.1.3, Lemma A.4.1 determines the scalars λ(Ym,`, V )
for each V ∈ K̂M with V ↔ Ym,`.

To decompose the relevant tensor products we use Proposition 7.3.2. By Equation
(A.4.15) we infer that the non-compact roots are given by

∆n =
{1

2(±e1 ± e2 ± e3 ± e4)
}
.

The following remark ensures that each representation Yτ,β , β ∈ S, in Proposition 7.3.2
actually occurs.

Remark A.4.3. Using the Weyl dimension formula we see that the representation
Wa1,a2,a3,a4 with highest weight a1e1 + a2e2 + a3e3 + a4e4 has dimension

dimWa1,a2,a3,a4 = 1
6! · 4! · 2 · 7 · 5 · 3 · δ1 · δ2 · δ3 ·

4∏
i=1

(9 + 2(ai − i)),

with δi := ∏4
j=i+1(ai + aj + 9− i− j)(ai − aj + j − i). Using this dimension formula we

get ∑
β∈S⊆∆n

dimVm,`,β = dim p · dimVm,` = 16 · dimVm,`,

so that m(β) = 1 if and only if the corresponding formula for the dimension of Vm,`,β is
not zero. Alternatively, the algorithm we used in the case of SO0(n, 1) can be applied to
verify this result.

A.5. The scalars relating Poisson transforms
We will now compute the scalars T VY (pV,µ)(e) from Proposition 5.3.2. Since we already
computed the scalars λ(V, Y ) in each case, it suffices to determine the scalars ν(V, Y )
(see Equation (7.9) for the notation).
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Proposition A.5.1 (Scalars between Poisson transforms).

i) G = SO0(n, 1), n ≥ 3: For ` ∈ N0,

ν(Y`, Y`+1) = `λ(Y`, Y`+1), ν(Y`, Y`−1) = −(2ρ(H) + `− 1)λ(Y`, Y`−1),

ii) G = SU(n, 1), n ≥ 2: For p, q ∈ N0,

ν(Yp,q, Yp+1,q) = 2pλ(Yp,q, Yp+1,q),
ν(Yp,q, Yp,q−1) = −2(ρ(H) + q − 1)λ(Yp,q, Yp,q−1),
ν(Yp,q, Yp,q+1) = 2qλ(Yp,q, Yp,q+1),
ν(Yp,q, Yp−1,q) = −2(ρ(H) + p− 1)λ(Yp,q, Yp−1,q),

iii) G = Sp(n, 1), n ≥ 2: For a, b ∈ N0 with a ≥ b,

ν(Va,b, Va+1,b) = 2aλ(Va,b, Va+1,b),
ν(Va,b, Va,b−1) = −(4n− 2 + 2b)λ(Va,b, Va,b−1),
ν(Va,b, Va,b+1) = 2(b− 1)λ(Va,b, Va,b+1),
ν(Va,b, Va−1,b) = −(4n+ 2a)λ(Va,b, Va−1,b),

iv) G = F4(−20) : For m, ` ∈ N0, ` ≤ m, m ≡ ` mod 2,

ν(Vm,`, Vm+1,`+1) = (m+ `)λ(Vm,`, Vm+1,`+1),
ν(Vm,`, Vm−1,`+1) = −(14 +m− `)λ(Vm,`, Vm−1,`+1),
ν(Vm,`, Vm+1,`−1) = (m− `− 6)λ(Vm,`, Vm+1,`−1),
ν(Vm,`, Vm−1,`−1) = −(20 +m+ `)λ(Vm,`, Vm−1,`−1).

Proof. In view of Lemma 7.3.11 it suffices to find a closed G-invariant subspace U ≤ Hµ,
for some µ ∈ a∗, such that multK(V,U) = 0 and multK(Y,U) 6= 0. In this case we have
ν(V, Y ) = −(µ + ρ)(H)λ(V, Y ). The following table determines the Harish-Chandra
module UK of U in each case (see Appendix B).
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G V Y UK µ(H) (µ+ ρ)(H)

SO0(n, 1) Y` Y`+1 W` −ρ(H)− ` −`
Y` Y`−1 V`−1 ρ(H) + `− 1 n+ `− 2

SU(n, 1)

Yp,q Yp+1,q Wp,+ −2p− ρ(H) −2p
Yp,q Yp,q−1 Hq−1,+ ρ(H) + 2(q − 1) 2(n+ q − 1)
Yp,q Yp,q+1 Wq,− −2q − ρ(H) −2q
Yp,q Yp−1,q Hp−1,− ρ(H) + 2(p− 1) 2(n+ p− 1)

Sp(n, 1)

Va,b Va+1,b W̃a+1 −(ρ(H) + 2a) −2a
Va,b Va,b−1 Mb−1 ρ(H) + 2b− 4 4n+ 2(b− 1)
Va,b Va,b+1 M̃b −(ρ(H)− 2 + 2b) −2(b− 1)
Va,b Va−1,b Wa ρ(H)− 2 + 2a 4n+ 2a

F4(−20)

Vm,` Vm+1,`+1 W̃m+`
2 +3 −(ρ(H) +m+ `) −(m+ `)

Vm,` Vm−1,`+1 Mm−`
2 −1 ρ(H) +m− `− 8 14 +m− `

Vm,` Vm+1,`−1 M̃m−`
2

−(ρ(H)− 6 +m− `) 6−m+ `

Vm,` Vm−1,`−1 Wm+`
2 +2 ρ(H)− 2 +m+ ` 20 +m+ `
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B. Structure theory of rank one groups

B.1. Structure theory of PSL(2,R)

We have

G := PSL(2,R) := SL(2,R)/{±1},
K := PSO(2) := SO(2,R)/{±1},

A :=
{(

et 0
0 e−t

)
: t ∈ R

}
/{±1},

N :=
{(

1 x
0 1

)
: x ∈ R

}
/{±1}

andM = ZK(A) = {[I]} where we denote the equivalence class of g ∈ SL(2,R) in G by [g].
The corresponding Lie algebras (where g0 = k0 ⊕ p0 denotes the Cartan decomposition)
are given by

g0 = {X ∈ Mat(2,R) : trX = 0},

k0 =
{
tV : t ∈ R, V :=

(
0 1

2
−1

2 0

)}
,

p0 = {X ∈ g0 : X = XT },

a0 =
{
tH : H =

(
1
2 0
0 −1

2

)
, t ∈ R

}
,

n0 =
{(

0 x
0 0

)
: x ∈ R

}
.

Note that mα = 1 so that ρ(H) = 1
2α(H) = 1

2 .
Lemma B.1.1 (Composition series of the spherical principal series). The spherical
principal series representation Hµ associated to µ ∈ a∗ (see Section 2.1) is reducible if
and only if µ(H) ∈ ±(ρ(H) + N0) = ±(1

2 + N0) where H = diag(1
2 ,−

1
2). Moreover, let

ep : S1 → S1, ep(z) := zp. Then
i) if µ(H) = ρ(H) + k, k ∈ N0, the spaces (see Figure B.1)

Fk :=
k⊕

p=−k
Cep, Hk,+ :=

∞⊕
p=−k

Cep and Hk,− :=
∞⊕

p=−k
Ce−p

are the only non-trivial (g,K)-submodules of (the Harish-Chandra module of) Hµ.
Furthermore, Fk, Hk,+/Fk and Hk,−/Fk are irreducible.
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p
k−k 0

(a) Fk

p
k−k 0

(b) Hk,+

p
k−k 0

(c) Hk,−

p
k−k 0

(d) Dk,+

p
k−k 0

(e) Dk,−

p
k−k 0

(f) Dk,+ +Dk,−

τmin Invariant subspace

Figure B.1.: K-type images of the non-trivial invariant subspaces of Hµ for PSL(2,R)

ii) (dual case) if µ(H) = −ρ(H)− k, k ∈ N0, the spaces (see Figure B.1)

Dk,+ :=
∞⊕

p=k+1
Cep, Dk,− :=

∞⊕
p=k+1

Ce−p and Dk,+ ⊕Dk,−

are the only non-trivial (g,K)-submodules of (the Harish-Chandra module of) Hµ.
Furthermore, Dk,+, Dk,− and Hµ/(Dk,+ ⊕Dk,−) are irreducible.

Proof. This follows from Equation (4.11).

B.2. Structure theory of SO0(n, 1), n ≥ 3

B.2.1. General structure

Let Q := diag(1, . . . , 1,−1) ∈ Matn+1(R). Then we define

G := {g ∈ SLn+1(R) : gTQg = Q}0,

K :=
{(

A 0
0 1

)
: A ∈ SO(n)

}
∼= SO(n),

A :=


cosh(t) sinh(t)

In−1
sinh(t) cosh(t)

 : t ∈ R

 ,
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B.2. Structure theory of SO0(n, 1), n ≥ 3

N :=


1− ‖v‖

2

2 vT ‖v‖2
2

−v In−1 v

−‖v‖
2

2 vT 1 + ‖v‖2
2

 : v ∈ Rn−1


and

M := ZK(A) =


1

B
1

 : B ∈ SO(n− 1)

 ∼= SO(n− 1)

with Lie algebras (where g0 = k0 ⊕ p0 denotes the Cartan decomposition)

g0 = {X ∈ gl(n+ 1,R) : XTQ+QX = 0}

=
{(

A v
vT 0

)
∈ gl(n+ 1,R) : A+AT = 0

}
,

k0 =
{(

A 0
0 0

)
∈ gl(n+ 1,R) : A+AT = 0

}
∼= so(n),

p0 =
{
Xv :=

(
0n v
vT 0

)
∈ gl(n+ 1,R) : v ∈ Rn

}
∼= Rn,

a0 =

tH =

 t
0n−1

t

 ∈ gl(n+ 1,R) : t ∈ R

 ∼= R,

n0 =

Yv :=

 0 vT 0
−v 0n−1 v
0 vT 0

 : v ∈ Rn−1

 ∼= Rn−1,

m0 =


0

B
0

 : B +BT = 0

 ∼= so(n− 1).

The restricted root spaces

gλ0 = {X ∈ g0 : [H,X] = λ(H)X}, λ ∈ {α, 2α},

are given by

gα0 = n0, g
2α
0 = 0 with dimensions mα = n− 1, m2α = 0.

Especially we obtain

ρ = 1
2(mαα+m2α2α) = n− 1

2 α.
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B.2.2. Decomposition of Hµ into spherical harmonics

As a K-representation the spherical principal series representation Hµ, µ ∈ a∗, is
equivalent to the left regular representation of K on L2(K/M), independently of the
parameter µ. Letting diag(A, 1) ∈ K act on ϑ ∈ Sn−1 by Aϑ defines a transitive action
of K on the unit sphere Sn−1 := {x ∈ Rn : ‖x‖ = 1}. This allows us to identify

K/M ∼= Sn−1, kM 7→ k.e1, (B.2.1)

where e1 := (1, 0, . . . , 0) ∈ Sn−1. In view of Lie theory the latter isomorphism is just the
orbit-stabilizer theorem for the adjoint action of K on p0 at H. We obtain

Hµ
∼= L2(Sn−1)

as K-representation. By the theory of spherical harmonics we therefore deduce that Hµ

decomposes as the Hilbert space direct sum (denoted by ⊕̂)

Hµ
∼=
⊕̂

`∈N0
Y`, (B.2.2)

where

Y` := {p
∣∣
Sn−1 : p harmonic, homogeneous polynomial of degree `}

denotes the space of spherical harmonics of degree `. The highest weight of Y` is `e1
(see e.g. [Kna02, Chapter V, §1, Example 1, p. 277]). Note that every homogeneous
polynomial p of degree ` can be uniquely decomposed into

p = q1 + |x|2q2 (B.2.3)

where |x|2 := ∑n
i=1 x

2
i , q1 is harmonic and homogeneous of degree ` and q2 is harmonic

and homogeneous of degree `− 2. We write P for the K-equivariant projection onto the
harmonic part. By [JW77, Theorem 3.1(2)] we have

YM
` = CP(x`1). (B.2.4)

Introducing the angular coordinates

x1 = r cos(ξ), xi = r sin(ξ)ωi, i ≥ 2,

where ∑n
i=2 ω

2
i = 1, 0 ≤ ξ ≤ π, we have

φY` = cosk(ξ)F
(
−k2 ,

1− k
2 ,

n− 1
2 ,− tan2(ξ)

)
.
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τmin Invariant subspace

Vk

`k + 10

Wk

`k + 10

Figure B.2.: K-type images of the non-trivial invariant subspaces of Hµ with gray arrows
indicating the g-action

B.2.3. Composition series of Hµ

Recall from (B.2.2) the decomposition of the spherical principal series representation Hµ

into spherical harmonics:

Hµ
∼= L2(K/M) ∼= L2(Sn−1) ∼=

⊕̂
`∈N0

Y`.

Recall the definition of H ∈ a0 from page 9. We have H = E1,n+1 + En+1,1 with the
standard Ei,j-basis of Matn+1(C).

Lemma B.2.1 (Composition series of the spherical principal series). The spherical
principal series representation Hµ associated to µ ∈ a∗ (see Section 2.1) is reducible if
and only if µ(H) ∈ ±(ρ(H) + N0) = ±(n−1

2 + N0). Moreover, we have:

i) If µ(H) = ρ(H) + k, k ∈ N0, the space

Vk :=
k⊕
`=0

Y`

is an irreducible (g,K)-submodule of (the Harish-Chandra module of) Hµ. Further-
more, the quotient Hµ/Vk is irreducible.

ii) (dual case) If µ(H) = −ρ(H)− k, k ∈ N0, the space

Wk :=
∞⊕

`=k+1
Y`

is irreducible. Furthermore, the quotient Hµ/Wk is irreducible.

Proof. See [JW77, Theorem 5.1 (2)] with ν = (ρ− µ)(H) = n−1
2 − µ(H).
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B.2.4. Tensor products and proof of Proposition 7.3.12
In this section we will make the tensor product decomposition

Ym ⊗ p∗ = Ym−1 ⊕ Ym+1 ⊕ Vm

explicit and prove the last equality of Lemma 9.1.5 resp. Proposition 7.3.12 for SO0(n, 1)
with n ≥ 3. By Definition 7.3.4,

idYm±1 = T YmYm±1
◦ ιYm±1

Ym
: Ym±1 → Ym ⊗ p∗ → Ym±1.

Therefore,

Ym−1 ∼=K ι
Ym−1
Ym

(Ym−1) =
{

n∑
k=1

P(xkϕ)⊗ I(X̃k) | ϕ ∈ Ym−1

}
, (B.2.5)

Ym+1 ∼=K ι
Ym+1
Ym

(Ym+1) =
{

n∑
k=1

∂

∂xk
ψ ⊗ I(X̃k) | ψ ∈ Ym+1

}
. (B.2.6)

On Y := ⊕
k∈N0 Yk we have the Fisher inner product given by

〈p, q〉 := (∂(p)q)(0),

where ∂(p) := p( ∂
∂x1

, . . . , ∂
∂xn

). Note that Yk ⊥ Ym for k 6= m. We have 〈fg, h〉 =
〈g, ∂(f)h〉 for each f, g, h ∈ Y and especially 〈|x|2g, h〉 = 〈g,∆h〉 = 0. Moreover,
〈f, g〉 = 〈g, f〉. On Ym ⊗ p∗ we define an inner product by (identifying p∗ ∼= Y1)

〈
n∑
k=1

fk ⊗ I(X̃k),
n∑
j=1

ϕj ⊗ I(X̃j)〉 :=
n∑
k=1

n∑
j=1
〈fk, ϕj〉〈I(X̃k), I(X̃j)〉 =

n∑
k=1
〈fk, ϕk〉.

We obtain ιYm+1
Ym

(Ym+1) ⊥ ιYm−1
Ym

(Ym−1), since (for ϕ ∈ Ym−1, ψ ∈ Ym+1)

〈
n∑
k=1

P(xkϕ)⊗ I(X̃k),
n∑
k=1

∂

∂xk
ψ ⊗ I(X̃k)〉 =

n∑
k=1
〈P(xkϕ), ∂

∂xk
ψ〉

=
n∑
k=1
〈xkϕ−

|x|2

n+ 2m− 4 ,
∂

∂xk
ψ〉 =

n∑
k=1
〈xkϕ,

∂

∂xk
ψ〉 = 〈ϕ,∆ψ〉 = 0,

where we used Equation (9.3) in the second step. In order to describe Vm as the orthogonal
complement of ιYm+1

Ym
(Ym+1)⊕ιYm−1

Ym
(Ym−1) in Ym⊗p∗ we use that the Fisher inner product

is invariant under orthogonal transformations. We start with a preparatory lemma and
prove the invariance in Proposition B.2.3.

Lemma B.2.2. Let m,n ∈ N and fi, gi ∈ Rn for each 1 ≤ i ≤ m. Then we have

〈f, g〉 =
∑
σ∈Sm

m∏
i=1
〈fi, gσ(i)〉2

for f := ∏m
i=1〈x, fi〉2, g := ∏m

i=1〈x, gi〉2, where 〈·, ·〉2 denotes the euclidean inner product.
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Proof. We first denote by fi,j the j-th component of fi ∈ Rn and express f as a linear
combination of monomials by multiplying out the product

f(x) =
m∏
i=1

n∑
j=1

xjfi,j =
∑
α∈Nn
|α|=m

xα
∑

ϕ∈F([m],[n],α)

m∏
i=1

fi,ϕ(i), (B.2.7)

where F([m], [n], α) denotes the set of all maps ϕ : {1, . . . ,m} → {1, . . . , n} with |ϕ−1(k)| =
αk for each k ∈ {1, . . . , n}. Doing the same for g and using that 〈xα, xβ〉 = 0 for
α 6= β ∈ Nn and 〈xα, xα〉 = α! for the Fisher inner product we obtain that

〈f, g〉 =
∑
α∈Nn
|α|=m

α!
∑

ϕ∈F([m],[n],α)

∑
ϕ̃∈F([m],[n],α)

m∏
i=1

fi,ϕ(i)gi,ϕ̃(i).

By composing ϕ as above with an element σ of the symmetric group Sm, we may write
ϕ̃◦σ = ϕ. The choice of σ is unique up to the action of the subgroup Sα1× . . .×Sαn ≤ Sm
which stabilizes ϕ. Thus, we obtain

〈f, g〉 =
∑
α∈Nn
|α|=m

α!
∑

ϕ∈F([m],[n],α)

∑
σ∈Sm/(Sα1×...×Sαn )

m∏
i=1

fi,ϕ(i)gi,ϕ(σ−1(i))

=
∑
α∈Nn
|α|=m

∑
ϕ∈F([m],[n],α)

∑
σ∈Sm

m∏
i=1

fi,ϕ(i)gi,ϕ(σ−1(i))

=
∑
α∈Nn
|α|=m

∑
ϕ∈F([m],[n],α)

∑
σ∈Sm

m∏
i=1

fi,ϕ(i)gσ(i),ϕ(i),

since α!
|Sα1×...×Sαn |

= α!
α! = 1. Factorizing the product (as in (B.2.7)) we arrive at

〈f, g〉 =
∑
σ∈Sm

m∏
i=1

m∑
j=1

fi,jgσ(i),j =
∑
σ∈Sm

m∏
i=1
〈fi, gσ(i)〉2.

Proposition B.2.3 (Invariance of Fisher inner product). The Fisher inner product is
invariant by orthogonal transformations, i.e.

〈A.f,A.g〉 := 〈f ◦A−1, g ◦A−1〉 = 〈f, g〉

for each A ∈ O(n) and any two homogeneous polynomials f, g in n variables.

Proof. This follows from Lemma B.2.2 by taking linear combinations of the special
polynomials introduced in that lemma and using the invariance of the euclidean inner
product under orthogonal transformations.
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The invariance now implies that

Vm ∼=K (ιYm+1
Ym

(Ym+1)⊕ ιYm−1
Ym

(Ym−1))⊥ ≤ Ym ⊗ p∗

and, more precisely,

Vm ∼=K

{
n∑
k=1

fk ⊗ I(X̃k) ∈ Ym ⊗ p∗ |
n∑
k=1

∂

∂xk
fk = 0,

n∑
k=1

P(xkfk) = 0
}
,

since the inner product is non-degenerate and, for ϕ ∈ Ym−1, fk ∈ Ym, and ψ ∈ Ym+1
(recall Equation (B.2.5) and (B.2.6)),

0 = 〈
n∑
k=1

P(xkϕ)⊗ I(X̃k),
n∑
k=1

fk ⊗ I(X̃k)〉 =
n∑
k=1
〈P(xkϕ), fk〉 =

n∑
k=1
〈xkϕ, fk〉

= 〈ϕ,
n∑
k=1

∂

∂xk
fk〉,

0 = 〈
n∑
k=1

∂

∂xk
ψ ⊗ I(X̃k),

n∑
k=1

fk ⊗ I(X̃k)〉 =
n∑
k=1
〈 ∂
∂xk

ψ, fk〉 = 〈ψ,
n∑
k=1

xkfk〉.

We will finally give another characterization of ιYm+1
Ym

(Ym+1)⊕ ιYm−1
Ym

(Ym−1) ≤ Ym ⊗ p∗.
An element f ∈ Ym ⊗ p∗ is contained in this set if and only if f = ι

Ym+1
Ym

(T YmYm+1
(f)) +

ι
Ym−1
Ym

(T YmYm−1
(f)). For f = ∑n

k=1 fk ⊗ I(X̃k) this gives, for each k = 1, . . . , n,

fk
!= 1
m+ 1

∂

∂xk

n∑
j=1

P(xjfj) + n+ 2m− 4
(m+ n− 3)(n+ 2m− 2)P(xk

n∑
j=1

∂

∂xj
fj),

which, using Equation (9.3) again (note that ∂
∂xj

fj ∈ Ym−1), is seen to be equivalent to

mfk
!=

n∑
j=1

xj
∂

∂xk
fj + 1

m+ n− 3

(m− 1)xk
n∑
j=1

∂

∂xj
fj − |x|2

n∑
j=1

∂2

∂xk∂xj
fj

 . (B.2.8)

We are now able to prove Proposition 7.3.12 for G = SO0(n, 1), n ≥ 3.

Proof of 7.3.12 for G = SO0(n, 1). We have to show (B.2.8) for

f = (µ+ ρ)(H)φYm ⊗ I(H)−
n∑
j=2

`(kI(Xj))φYm ⊗ I(X̃j),

where m ∈ N0 and ` denotes the derived left regular representation (see Proposition
5.3.2). We first consider the case k = 1 and abbreviate a := (µ+ρ)(H). Since −`(kI(Xj))
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acts as x1
∂
∂xj
− xj ∂

∂x1
on Ym and by Euler’s homogeneous function theorem we obtain

n∑
j=1

xj
∂

∂xk
fj = x1

∂

∂x1
aφYm +

n∑
j=2

xj
∂

∂x1

(
x1

∂

∂xj
− xj

∂

∂x1

)
φYm

= ax1
∂

∂x1
φYm + ∂

∂x1
x1

n∑
j=2

xj
∂

∂xj
φYm −

n∑
j=2

x2
j

∂2

∂x2
1
φYm

= ax1
∂

∂x1
φYm + ∂

∂x1
x1

(
mφYm − x1

∂

∂x1
φYm

)
− (|x|2 − x2

1) ∂
2

∂x2
1
φYm .

Moreover, using ∆φYm = 0 in step three and ∂
∂x1

φYm ∈ Ym−1 in step four, we infer

n∑
j=1

∂

∂xj
fj = ∂

∂x1
aφYm +

n∑
j=2

∂

∂xj

(
x1

∂

∂xj
− xj

∂

∂x1

)
φYm

= ∂

∂x1
aφYm + x1

n∑
j=2

∂2

∂x2
j

φYm −
n∑
j=2

∂

∂xj
xj

∂

∂x1
φYm

= ∂

∂x1
aφYm − x1

∂2

∂x2
1
φYm −

n∑
j=2

xj
∂

∂xj

∂

∂x1
φYm − (n− 1) ∂

∂x1
φYm

= ∂

∂x1
aφYm − (m− 1) ∂

∂x1
φYm − (n− 1) ∂

∂x1
φYm

= (a−m− n+ 2) ∂

∂x1
φYm . (B.2.9)

Therefore, the right hand side of (B.2.8) for k = 1 is given by

ax1
∂

∂x1
φYm + ∂

∂x1
x1

(
mφYm − x1

∂

∂x1
φYm

)
− (|x|2 − x2

1) ∂
2

∂x2
1
φYm

+ a−m− n+ 2
m+ n− 3 ((m− 1)x1

∂

∂x1
φYm − |x|2

∂2

∂x2
1
φYm)

= ax1
∂

∂x1
φYm +mφYm +mx1

∂

∂x1
φYm −

∂

∂x1
x2

1
∂

∂x1
φYm − (|x|2 − x2

1) ∂
2

∂x2
1
φYm

+ a−m− n+ 2
m+ n− 3 ((m− 1)x1

∂

∂x1
φYm − |x|2

∂2

∂x2
1
φYm)

= ax1
∂

∂x1
φYm +mφYm +mx1

∂

∂x1
φYm − 2x1

∂

∂x1
φYm − |x|2

∂2

∂x2
1
φYm

+ a−m− n+ 2
m+ n− 3 ((m− 1)x1

∂

∂x1
φYm − |x|2

∂2

∂x2
1
φYm)

= mφYm + (a− 1)(n+ 2m− 4)
m+ n− 3 x1

∂

∂x1
φYm −

a− 1
m+ n− 3 |x|

2 ∂
2

∂x2
1
φYm .
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This equals mf1 = maφYm if and only if

mφYm = n+ 2m− 4
m+ n− 3 x1

∂

∂x1
φYm −

1
m+ n− 3 |x|

2 ∂
2

∂x2
1
φYm

⇔ m(m+ n− 3)φYm = (n+ 2m− 4)x1
∂

∂x1
φYm − |x|2

∂2

∂x2
1
φYm . (B.2.10)

To prove this equation we use Lemma 9.1.1 and Equation (9.3) to obtain

P(xm+1
1 ) = P(x1P(xm1 )) = x1P(xm1 )− |x|2

n+ 2m− 2
∂

∂x1
P(xm1 )

and thus

∂

∂x1
P(xm+1

1 ) = P(xm1 ) + n+ 2m− 4
n+ 2m− 2x1

∂

∂x1
P(xm1 )− |x|2

n+ 2m− 2
∂2

∂x2
1
P(xm1 ).

Together with Lemma 9.1.1 and 9.1.3 we infer that((m+ 1)(n+m− 2)
n+ 2m− 2 − 1

)
P(xm1 ) = n+ 2m− 4

n+ 2m− 2x1
∂P(xm1 )
∂x1

− |x|2

n+ 2m− 2
∂2P(xm1 )
∂x2

1
,

which is equivalent to Equation (B.2.10) since φYm is a multiple of P(xm1 ).
Let us now consider the case k 6= 1. By the product rule (third step) and Euler’s

homogeneous function theorem (fourth step) we have
n∑
j=1

xj
∂

∂xk
fj = ax1

∂

∂xk
φYm +

n∑
j=2

xj
∂

∂xk
(x1

∂

∂xj
− xj

∂

∂x1
)φYm

= ax1
∂

∂xk
φYm + xk

∂

∂xk
(x1

∂

∂xk
− xk

∂

∂x1
)φYm

+
n∑
j=2
j 6=k

xj
∂

∂xk
(x1

∂

∂xj
− xj

∂

∂x1
)φYm

= ax1
∂

∂xk
φYm − (x1

∂

∂xk
− xk

∂

∂x1
)φYm

+ ∂

∂xk

n∑
j=2

x1xj
∂

∂xj
φYm −

∂

∂xk

n∑
j=2

x2
j

∂

∂x1
φYm

= ax1
∂

∂xk
φYm − (x1

∂

∂xk
− xk

∂

∂x1
)φYm

+ ∂

∂xk
x1(mφYm − x1

∂

∂x1
φYm)− ∂

∂xk
(|x|2 − x2

1) ∂

∂x1
φYm

= (a− 1 +m)x1
∂

∂xk
φYm + xk

∂

∂x1
φYm −

∂

∂xk
|x|2 ∂

∂x1
φYm

= (a− 1 +m)x1
∂

∂xk
φYm − xk

∂

∂x1
φYm − |x|2

∂2

∂xk∂x1
φYm .
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Moreover, using Equation (B.2.9) we obtain that the right hand side of (B.2.8) is given
by

(a− 1 +m)x1
∂

∂xk
φYm − xk

∂

∂x1
φYm − |x|2

∂2

∂xk∂x1
φYm

+ (m− 1)(a−m− n+ 2)
m+ n− 3 xk

∂

∂x1
φYm −

(a−m− n+ 2) · |x|2
m+ n− 3

∂2

∂xk∂x1
φYm

= (a− 1 +m)x1
∂

∂xk
φYm +

((m− 1)(a−m− n+ 2)
m+ n− 3 − 1

)
xk

∂

∂x1
φYm

− a− 1
m+ n− 3 |x|

2 ∂2

∂xk∂x1
φYm .

We prove that this equals the left hand side of (B.2.8) for k 6= 1, which is given by
mfk = −m`(kI(Xk))φYm = m(x1

∂
∂xk
− xk ∂

∂x1
)φYm . For this it suffices to prove

Lemma B.2.4. We have

|x|2 ∂2

∂xk∂x1
P(xm1 ) = (m+ n− 3)x1

∂

∂xk
P(xm1 ) + (m− 1)xk

∂

∂x1
P(xm1 ).

Indeed, using the lemma in the first step yields (φYm is a multiple of P(xm1 ))

(a− 1 +m)x1
∂

∂xk
φYm +

((m− 1)(a−m− n+ 2)
m+ n− 3 − 1

)
xk

∂

∂x1
φYm

− a− 1
m+ n− 3 |x|

2 ∂2

∂xk∂x1
φYm

= (a− 1 +m)x1
∂

∂xk
φYm +

((m− 1)(a−m− n+ 2)
m+ n− 3 − 1

)
xk

∂

∂x1
φYm

− a− 1
m+ n− 3((m+ n− 3)x1

∂

∂xk
φYm + (m− 1)xk

∂

∂x1
φYm)

= (a− 1 +m− (a− 1))x1
∂

∂xk
φYm+((m− 1)(a−m− n+ 2)

m+ n− 3 − 1− (a− 1)(m− 1)
m+ n− 3

)
xk

∂

∂x1
φYm

= m(x1
∂

∂xk
− xk

∂

∂x1
)φYm .

It remains to prove the lemma. Using the K-equivariance of P (first step), Lemma 9.1.1
(fourth step) and Equation (9.3) (fifth step) we obtain

(x1
∂

∂xk
− xk

∂

∂x1
)P(xm1 ) = P((x1

∂

∂xk
− xk

∂

∂x1
)xm1 ) = −P(mxkxm−1

1 )

= −mP(xkxm−1
1 ) = −mP(xkP(xm−1

1 ))

= m( |x|2

n+ 2m− 4
∂

∂xk
P(xm−1

1 )− xkP(xm−1
1 )).
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Since P(xm−1
1 ) = n+2m−4

m(n+m−3)
∂
∂x1

P(xm1 ) by Lemma 9.1.4.ii) this implies

(x1
∂

∂xk
− xk

∂

∂x1
)P(xm1 ) = |x|2

n+m− 3
∂2

∂xk∂x1
P(xm1 )− xk

n+ 2m− 4
n+m− 3

∂

∂x1
P(xm1 )

⇔ (n+m− 3)(x1
∂

∂xk
− xk

∂

∂x1
)P(xm1 ) =

|x|2 ∂2

∂xk∂x1
P(xm1 )− xk(n+ 2m− 4) ∂

∂x1
P(xm1 )

⇔ |x|2∂
2P(xm1 )
∂xk∂x1

= (n+m− 3)(x1
∂

∂xk
− xk

∂

∂x1
)P(xm1 ) + xk(n+ 2m− 4) ∂

∂x1
P(xm1 )

= (n+m− 3)x1
∂

∂xk
P(xm1 ) + (m− 1)xk

∂

∂x1
P(xm1 ).

This finishes the proof.

B.3. Structure theory of SU(n, 1), n 6= 1

B.3.1. General structure

With Q = diag(1, . . . , 1,−1) ∈ Matn+1(R) we define

G := {g ∈ SLn+1(C) : g∗Qg = Q},
K := {diag(A, λ) ∈ SLn+1(C) : A ∈ U(n), |λ| = 1} ∼= U(n),

A :=


cosh(t) sinh(t)

In−1
sinh(t) cosh(t)

 : t ∈ R

 ,
N := 〈exp(X) : X ∈ n0〉,
M := ZK(A) = {diag(b, B, b) ∈ SLn+1(C) : B ∈ U(n− 1)}

with Lie algebras (where g0 = k0 ⊕ p0 denotes the Cartan decomposition)

g0 =
{
X =

(
A v
v∗ w

)
∈ gl(n+ 1,C) : A+A∗ = 0, w + w = 0, trX = 0

}
,

k0 =
{(

A 0
0 w

)
∈ g0

}
∼= u(n) via

(
A 0
0 w

)
7→ A,

p0 =
{
Xv :=

(
0n v
v∗ 0

)
∈ gl(n+ 1,C) : v ∈ Cn

}
∼= Cn,

a0 =

tH =

 t
0n−1

t

 ∈ gl(n+ 1,R) : t ∈ R

 ∼= R,

n0 := gα0 ⊕ g2α
0 ,
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gα0 =


 0 v∗ 0
−v 0n−1 v
0 v∗ 0

 : v ∈ Cn−1

 ∼= Cn−1,

g2α
0 =


w 0 −w

0 0n−1 0
w 0 −w

 : w ∈ iR

 ∼= R,

m0 =


w B

w

 : B +B∗ = 0, 2w + trB = 0

 ∼= u(n− 1).

The dimensions of gα0 resp. g2α
0 are given by

mα = 2n− 2, m2α = 1.

Thus, ρ = 1
2(mαα+m2α2α) = nα.

B.3.2. Decomposition of Hµ into spherical harmonics
As in the orthogonal case we have

Hµ
∼= L2(K/M)

as K-representation, where L2(K/M) carries the left regular representation. Consider
the real (2n− 1)-sphere(z1, . . . , zn) ∈ Cn :

n∑
j=1
|zj |2 = 1

 ∼= S2n−1

in Cn embedded by the isomorphism

Cn ∼= R2n, (z1, . . . , zn) 7→ (Re(z1), Im(z1), . . . ,Re(zn), Im(zn)).

We also write S2n−1 for this sphere and define a transitive K-action on it by

k.ϑ := 1
λ
Aϑ, k = diag(A, λ) ∈ K, ϑ ∈ S2n−1 ⊆ Cn. (B.3.11)

The stabilizer at e1 = (1, 0, . . . , 0) ∈ S2n−1 is given by M . Hence,

K/M ∼= S2n−1, kM 7→ k.e1.

We can decompose Hµ as the Hilbert space direct sum (cf. [JW77, Theorem 3.1 (3)])

Hµ
∼=K L2(K/M) ∼=K L2(S2n−1) ∼=K

⊕̂
k∈N0

Yk ∼=K

⊕̂
k∈N0

⊕
p,q∈N0
p+q=k

Yp,q, (B.3.12)
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where

Yp,q := {f ∈ Yp+q : f(αz) = αpαqf(z) ∀α ∈ C, |α| = 1, z ∈ S2n−1} (B.3.13)

with f(z) := f(Re(z1), Im(z1), . . . ,Re(zn), Im(zn)). Moreover, again by [JW77, Theorem
3.1(3)], each Yp,q is irreducible and

YM
p,q = CP(zp1z1

q). (B.3.14)

For the convenience of the reader we give a detailed proof for the highest weights.
Lemma B.3.1 (cf. [Kna02, Chapter V, §1, Example 1]). The highest weight of the
irreducible K-representation Yp,q from Equation B.3.13 with respect to t is given by
qe1 − pen + (p− q)en+1.

Proof. Let f ∈ Yp,q. By definition, f has the following two properties:
i) f ∈ Yp+q, i.e. f is a harmonic, homogeneous, complex-valued polynomial of degree
p+ q in 2n real variables x1, . . . , x2n,

ii) defining f(z) := f(Re(z1), Im(z1), . . . ,Re(zn), Im(zn)) for z = (z1, . . . , zn) ∈ Cn it
holds that f(αz) = αpαqf(z) for every α ∈ C.

Defining zj := x2j−1 + ix2j , j = 1, . . . , n, we may consider f as a polynomial in the
variables z1, . . . , zn, z1, . . . , zn which is still homogeneous of degree p+ q. By the second
property, f is a linear combination of monomials of the form

zk1
1 · . . . · z

kn
n z1

`1 · . . . · zn`n with p =
n∑
j=1

kj and q =
n∑
j=1

`j .

By [Kna02, Chapter V, §1, Example 1] these monomials are weight vectors of weight∑n
j=1(`j − kj)ej with respect to (su(n)C, h). This expression is maximal with respect to

∆+ for `1 = q, kn = p and `j = kj = 0 otherwise (so that the highest weight is qe1 − pen
with respect to (su(n)C, h)). The corresponding weight vector is given by the monomial

h(z) := zpnz1
q = (x2n−1 + ix2n)p(x1 − ix2)q.

We finally check that h ∈ Yp,q:
i) h ∈ Yp,q: Every monomial occurring in the first factor of h(z) is of degree p and every

monomial occurring in the second factor is of degree q. Thus, f is a homogeneous
polynomial of degree p+ q. It is also harmonic because

(∆h)(x1, . . . , x2n) =
((

∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
2n−1

+ ∂2

∂x2
2n

)
h

)
(x1, . . . , x2n)

= q(q − 1)(x2n−1 + ix2n)p(x1 − ix2)q−2

− q(q − 1)(x2n−1 + ix2n)p(x1 − ix2)q−2

+ p(p− 1)(x2n−1 + ix2n)p−2(x1 − ix2)q

− p(p− 1)(x2n−1 + ix2n)p−2(x1 − ix2)q

= 0.
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ii) h(αz) = (αzn)pαz1
q = αpαqh(z).

Calculating the action of k := diag(it1, . . . , itn,−i
∑
ti) on h as in [Kna02, Chapter V,

§1, Example 1] using Equation (B.3.11) we obtain

(k.h)(ϑ) = d

dr

∣∣∣∣
r=0

f(e−it1r−i
∑

tirϑ1, . . . , e
−itnr−i

∑
tirϑn)

= q(it1)− p(itn) + (p− q)(−i
∑

ti)

so that the highest weight of Yp,q with respect to (k, t) is given by qe1−pen+(p−q)en+1.

B.3.3. Composition series of Hµ

Recall from (B.3.12) the decomposition of the spherical principal series representation
Hµ into spherical harmonics:

Hµ
∼= L2(K/M) ∼= L2(S2n−1) ∼=

⊕̂
k∈N0

⊕
p,q∈N0
p+q=k

Yp,q.

We have H = E1,n+1 + En+1,1 ∈ a with the standard Ei,j-basis of Matn+1(C).

Lemma B.3.2 (Composition series of the spherical principal series). The spherical
principal series representation Hµ associated to µ ∈ a∗ (see Section 2.1) is reducible if
and only if µ(H) ∈ ±(ρ(H) + 2N0) = ±(n+ 2N0). Moreover we have

i) If µ(H) = ρ(H) + 2k, k ∈ N0, the spaces (see Figure B.3)

Fk :=
k⊕

p,q=0
Yp,q, Hk,+ :=

∞⊕
p=0

k⊕
q=0

Yp,q, Hk,− :=
k⊕
p=0

∞⊕
q=0

Yp,q, Hk,+ +Hk,−

are the only non-trivial (g,K)-submodules of (the Harish-Chandra module of) Hµ.
Furthermore, Fk, Hk,+/Fk, Hk,−/Fk and Hµ/(Hk,+ +Hk,−) are irreducible.

ii) (dual case) If µ(H) = −ρ(H)− 2k, k ∈ N0, the spaces (see Figure B.4)

Ik :=
∞⊕

p,q=k+1
Yp,q, Wk,+ :=

∞⊕
p=k+1

∞⊕
q=0

Yp,q, Wk,− :=
∞⊕
p=0

∞⊕
q=k+1

Yp,q, Wk,+ +Wk,−

are the only non-trivial (g,K)-submodules of (the Harish-Chandra module of) Hµ.
Furthermore, Ik, Wk,+/Ik,Wk,−/Ik and Hµ/(Wk,+ +Wk,−) are irreducible.

Proof. See [JW77, Theorem 5.1 (3)] with ν = (ρ− µ)(H) = n− µ(H).
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τmin Invariant subspace

Fk

p

q

k

k

Hk,+

p

q

k

k

Hk,−

p

q

k

k

Hk,±

p

q

k

k

Figure B.3.: K-type images of the non-trivial invariant subspaces of Hµ in the case
µ(H) = ρ(H) + 2k, k ∈ N0, with Hk,± := Hk,+ +Hk,−
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τmin invariant subspace

Ik

p

q
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k + 1
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k + 1
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k + 1

k + 1
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q
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k + 1

Figure B.4.: K-type images of the non-trivial invariant subspaces of Hµ in the case
µ(H) = −(ρ(H) + 2k), k ∈ N0, with Wk,± := Wk,+ +Wk,−
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B.4. Structure theory of Sp(n, 1), n 6= 1

B.4.1. General structure
Let H denote the quaternions and recall Q = diag(1, . . . , 1,−1) ∈ Matn+1(R). If g is a
matrix over H we define g∗ := gT where the bar denotes the componentwise conjugation
in H. Then let

G := {g ∈ GLn+1(H) : g∗Qg = Q},
K := {diag(A, λ) ∈ GLn+1(H) : AA∗ = In, |λ| = 1} ∼= Sp(n)× Sp(1),

A :=


cosh(t) sinh(t)

In−1
sinh(t) cosh(t)

 : t ∈ R

 ,
N := 〈exp(X) : X ∈ n0〉,
M := ZK(A) = {diag(b, B, b) ∈ GLn+1(H) : B ∈ Sp(n− 1), |b| = 1} ,

where the symplectic group Sp(m), m ∈ N, is defined by

Sp(m) := {A ∈ GLm(H) : AA∗ = Im}.

The corresponding Lie algebras (where g0 = k0 ⊕ p0 denotes the Cartan decomposition)
are given by

g0 =
{
X =

(
A v
v∗ w

)
∈ gl(n+ 1,H) : A+A∗ = 0, w + w = 0

}
,

k0 =
{(

A 0
0 w

)
∈ g0

}
∼= sp(n)⊕ sp(1),

p0 =
{
Xv :=

(
0n v
v∗ 0

)
∈ gl(n+ 1,H) : v ∈ Hn

}
∼= Hn,

a0 =

tH =

 t
0n−1

t

 ∈ gl(n+ 1,R) : t ∈ R

 ∼= R,

n0 := gα0 ⊕ g2α
0 ,

gα0 =


 0 v∗ 0
−v 0n−1 v
0 v∗ 0

 : v ∈ Hn−1

 ∼= Hn−1,

g2α
0 =


w 0 −w

0 0n−1 0
w 0 −w

 : w + w = 0

 ∼= R3,

m0 =


w B

w

 : B +B∗ = 0, w + w = 0

 ∼= sp(n− 1)⊕ sp(1).
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The dimensions of gα0 resp. g2α
0 are given by

mα = 4n− 4, m2α = 3.

Thus, ρ = 1
2(mαα+m2α2α) = (2n+ 1)α.

B.4.2. Decomposition of Hµ as K-representation and description of K̂M

As before we have

Hµ
∼= L2(K/M)

as K-representation, where L2(K/M) carries the left regular representation. We view
Hn as a right H-vector space and consider the real (4n− 1)-sphere(w1, . . . , wn) ∈ Hn :

n∑
j=1
|wj |2 = 1

 ∼= S4n−1

in Hn embedded by the isomorphism

Hn ∼= R4n, (w1, . . . , wn) 7→ (Φ(w1), . . . ,Φ(wn)),
Φ : H = C⊕ jC ∼= R4, w = z1 + jz2 7→ (Re(z1), Im(z1),Re(z2), Im(z2))

where {1, i, j, k} ⊆ H is the standard R-basis of H. We also write S4n−1 for this sphere
and define a transitive K-action on it by

k.ϑ := Aϑ
1
λ
, k = diag(A, λ) ∈ K,ϑ ∈ S4n−1 ⊆ Hn.

The stabilizer at e1 = (1, 0, . . . , 0) ∈ S4n−1 is given by M inducing the isomorphism

K/M ∼= S4n−1, kM 7→ k.e1.

By [Kna02, Chapter IX.8, Problem 12], Hµ decomposes as the Hilbert space direct sum

Hµ
∼=K L2(K/M) ∼=K L2(S4n−1) ∼=K

⊕̂
a≥b≥0

Va,b, (B.4.15)

where Va,b has highest weight ae1 + be2 + (a − b)en+1. By [JW77, Theorem 3.1] we
moreover have (note that our Va,b corresponds to V p,q of [JW77] with p := a + b and
q := a− b by [JW77, Lemma 3.3])

Yk =
⊕
a≥b≥0
a+b=k

Va,b

and the space Va,b with k = a+ b is given by the K-cyclic space

Va,b = K · P(fa,b) ⊆ Yk, (B.4.16)

where

fa,b :=
bk/2c∑
i=b

(−1)i−b
(
k − b− i
i− b

)
rk−2i

1 r2i
2

with r1 := 2 Re(w1) and r2
2 := |w1|2 for w = (w1, . . . , wn) ∈ S4n−1 ⊆ Hn.
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B.4.3. Composition series of Hµ

Recall from (B.4.15) the decomposition of the spherical principal series representation
Hµ as K-representation:

Hµ
∼=K L2(K/M) ∼=K L2(S4n−1) ∼=K

⊕̂
a≥b≥0

Va,b.

We have H = E1,n+1 + En+1,1 ∈ a with the standard Ei,j-basis of Matn+1(H).

Lemma B.4.1 (Composition series of the spherical principal series). The spherical
principal series representation Hµ associated to µ ∈ a∗ (see Section 2.1) is reducible if
and only if µ(H) ∈ ±(ρ(H)− 2 + 2N0) = ±(2n− 1 + 2N0). Moreover, we have:

i) If µ(H) = ρ(H)− 2 + 2k, k ∈ N, the spaces (see Figure B.5)

Wk :=
⊕

b≤a≤k−1
Va,b, Mk :=

⊕
a≥b≤k

Va,b

are the only non-trivial (g,K)-submodules of (the Harish-Chandra module of) Hµ.
Furthermore, Wk, Mk/Wk and Hµ/Mk are irreducible.

ii) (dual case) If µ(H) = −(ρ(H)− 2 + 2k), k ∈ N, the spaces (see Figure B.6)

W̃k :=
⊕

b≤a>k−1
Va,b, M̃k :=

⊕
a≥b>k

Va,b

are the only non-trivial (g,K)-submodules of (the Harish-Chandra module of) Hµ.
Furthermore, M̃k, W̃k/M̃k and Hµ/W̃k are irreducible.

iii) If µ(H) = ρ(H)− 2 the space (see Figure B.7a)

T :=
∞⊕
a=0

Va,0

is the only non-trivial (g,K)-submodule of (the Harish-Chandra module of) Hµ.
Furthermore, T and Hµ/T are irreducible.

iv) (dual case) If µ(H) = −(ρ(H)− 2) the space (see Figure B.7b)

T̃ :=
⊕
a≥b>0

Va,b

is the only non-trivial (g,K)-submodule of (the Harish-Chandra module of) Hµ.
Furthermore, T̃ and Hµ/T̃ are irreducible.

Proof. See [JW77, Theorem 5.1 (4)] with ν = (ρ− µ)(H) = 2n+ 1− µ(H).
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τmin Invariant subspace
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Figure B.5.: K-type images of the non-trivial invariant subspaces of Hµ in the case
µ(H) = ρ(H)− 2 + 2k, k ∈ N
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Figure B.6.: K-type images of the non-trivial invariant subspaces of Hµ in the case
µ(H) = −(ρ(H)− 2 + 2k), k ∈ N
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T

a

b

0

(a) µ(H) = ρ(H)− 2

a

b

T̃

0

(b) µ(H) = −(ρ(H)− 2)

Figure B.7.: K-type images of the non-trivial invariant subspaces of Hµ in the case
µ(H) = ρ(H)− 2 resp. µ(H) = −(ρ(H)− 2)

B.5. Structure theory of F4(−20)

B.5.1. Decomposition of Hµ as K-representation and composition series
By [Joh76, Theorem 3.1] we see that Hµ decomposes as the Hilbert space direct sum

Hµ
∼=K L2(K/M) ∼=K L2(S15) ∼=K

⊕̂
m≥k≥0

m≡k mod 2
Vm,k, (B.5.17)

where Vm,k is the K-representation with highest weight m
2 e1 + k

2e2 + k
2e3 + k

2e4 (see
[Joh76, p. 278]).

Lemma B.5.1 (Composition series of the spherical principal series). The spherical
principal series representation Hµ associated to µ ∈ a∗ (see Section 2.1) is reducible if
and only if µ(H) ∈ ±(ρ(H)− 6 + 2N0) = ±(5 + 2N0). Moreover, we have:

i) If µ(H) = ρ(H)− 6 + 2`, ` ∈ N≥3, the spaces (see Figure B.8)

W` :=
⊕

m+k≤2`−6
Vm,k, M` :=

⊕
m−k≤2`

Vm,k

are the only non-trivial (g,K)-submodules of (the Harish-Chandra module of) Hµ.
Furthermore, W`, M`/W` and Hµ/M` are irreducible.

ii) (dual case) If µ(H) = −(ρ(H)− 6 + 2`), ` ∈ N≥3, the spaces (see Figure B.9)

W̃` :=
⊕

m+k>2`−6
Vm,k, M̃` :=

⊕
m−k>2`

Vm,k
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τmin Invariant subspace

W`

m

k

2`2`− 6

2`

M`

m

k

2`2`− 6

2`

Figure B.8.: K-type images of the non-trivial invariant subspaces of Hµ in the case
µ(H) = ρ(H)− 6 + 2`, ` ∈ N≥3

are the only non-trivial (g,K)-submodules of (the Harish-Chandra module of) Hµ.
Furthermore, M̃`, W̃`/M̃` and Hµ/W̃` are irreducible.

iii) If µ(H) = ρ(H)− 6 + 2`, ` ∈ {0, 1, 2}, the space (see Figure B.8)

M` :=
⊕

m−k≤2`
Vm,k

is the only non-trivial (g,K)-submodule of (the Harish-Chandra module of) Hµ.
Furthermore, M` and Hµ/M` are irreducible.

iv) (dual case) If µ(H) = −(ρ(H)− 6 + 2`), ` ∈ {0, 1, 2}, the space (see Figure B.9)

M̃` :=
⊕

m−k>2`
Vm,k

is the only non-trivial (g,K)-submodule of (the Harish-Chandra module of) Hµ.
Furthermore, M̃` and Hµ/M̃` are irreducible.

Proof. See [JW77, Theorem 5.1 (4)] with ν = (ρ− µ)(H) = 11− µ(H).
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τmin Invariant subspace

W̃`

m

k

2`2`− 6

2`

M̃`

m

k

2`2`− 6

2`

Figure B.9.: K-type images of the non-trivial invariant subspaces of Hµ in the case
µ(H) = −(ρ(H)− 6 + 2`), ` ∈ N≥3
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In this chapter we correct some misprints and fill in some omitted proofs from [Kos83]
in the case of G = F4(−20), H = Spin(1, 8). There, the K-types are denoted by Hp,q

for p, q ∈ N0, corresponding to Vp+2q,p in our notation. We first prove that (−1)r+1θr
resp. its corresponding kernel (−1)r+1Θr is a positive definite spherical distribution resp.
kernel for each r ∈ N0 (see [Kos83, p. 81] for the definition and [Far79, Theorem 1.1] for
the correspondence). Indeed, by [Kos83, p. 84] we may write, for each φ(x) = F (t)Y (b) ∈
C∞c (G/H) as in [Kos83, p. 68], i.e. F ∈ C∞c (R) even and Y ∈ Hp,q,

Θr(φ, φ) = lim
s→ρ+2r

τ(−s)αp,q(s)
s− ρ− 2r βp,q(−ρ− 2r)2

∣∣∣∣∫ ∞
0

F (t)Ψp,q(t, ρ+ 2r)A(t) dt
∣∣∣∣2 ·

·
∫
B
|Y (b)|2 db, (C.0.1)

where τ(s) := Γ( 1
2 (s−ρ)+8)

Γ( 1
2 (−s−ρ)+8) , A(t) := sinh(t)7 cosh(t)15,

αp,q(s) :=
p+q∏
j=1

−s+ ρ+ 2j − 2
s+ ρ+ 2j − 2

q∏
k=1

−s+ ρ+ 2k − 8
s+ ρ+ 2k − 8 ,

βp,q(s) :=
7 · Γ(4) · Γ(7

2) · 26
√
π · Γ(p+ 4)

(1
2(s− ρ)− p− q + 1) · · · (1

2(s− ρ))
Γ(1

2(s− ρ) + q + 8)

and

Ψp,q(t, s) := cosh(t)p+2q sinh(t)pF
(
−s− ρ2 + p+ q,

s− ρ
2 + p+ q + 11, p+ 4,− sinh(t)2

)
.

Note first that βp,q(−ρ − 2r) 6= 0 if and only if q ≥ r + 4 (see also [Kos83, p. 71] with
h = r + 3). Therefore, and since the remaining terms are non-negative, it suffices to
consider the sign of lims→ρ+2r

τ(−s)αp,q(s)
s−ρ−2r for q ≥ r + 4 and prove that it is independent

of p and q. We have

lim
s→ρ+2r

τ(−s)αp,q(s)
s− ρ− 2r

= lim
s→ρ+2r

1
s− ρ− 2r

Γ(1
2(−s− ρ) + 8)

Γ(1
2(s− ρ) + 8)

p+q∏
j=1

−s+ ρ+ 2j − 2
s+ ρ+ 2j − 2

q∏
k=1

−s+ ρ+ 2k − 8
s+ ρ+ 2k − 8

= lim
s→ρ+2r

1
s− ρ− 2r

Γ(1
2(−s− ρ) + 8)

Γ(r + 8)
−s+ ρ+ 2r
s+ ρ+ 2r

p+q∏
j=1
j 6=r+1

−2r + 2j − 2
2ρ+ 2r + 2j − 2 ·

181



C. Relative discrete series for F4(−20)

· −s+ ρ+ 2r
s+ ρ+ 2r ·

q∏
k=1
k 6=r+4

−2r + 2k − 8
2ρ+ 2r + 2k − 8

= 1
(2ρ+ 4r)2

1
Γ(r + 8)

p+q∏
j=1
j 6=r+1

−2r + 2j − 2
2ρ+ 2r + 2j − 2

q∏
k=1
k 6=r+4

−2r + 2k − 8
2ρ+ 2r + 2k − 8 ·

· lim
s→ρ+2r

(s− ρ− 2r)Γ(1
2(−s− ρ) + 8).

Defining ϕ(s) := 1
2(−s− ρ) + 8 yields

lim
s→ρ+2r

(s− ρ− 2r)Γ(1
2(−s− ρ) + 8) = Ress=ρ+2r Γ(ϕ(s)) =

Resz=ϕ(ρ+2r) Γ(z)
ϕ′(ρ+ 2r)

= (−1)−r−3

(r + 3)!(−1
2)

= 2 (−1)r
(r + 3)! ,

since ϕ(ρ+ 2r) = ϕ(11 + 2r) = −r − 3. Thus, we obtain that

lim
s→ρ+2r

τ(−s)αp,q(s)
s− ρ− 2r

= 1
(2ρ+ 4r)2

1
Γ(r + 8)2 (−1)r

(r + 3)!

r+3∏
k=1

−r + k − 4
ρ+ r + k − 4

q∏
k=r+5

−2r + 2k − 8
2ρ+ 2r + 2k − 8 ·

·
p+q∏
j=1
j 6=r+1

−2r + 2j − 2
2ρ+ 2r + 2j − 2

= − 1
ρ+ 2r

1
2ρ+ 4r

1
Γ(r + 8)

1
(r + 3)!

(r + 3)!(r + 7)!
(ρ+ 2r − 1)!

q∏
k=r+5

−2r + 2k − 8
2ρ+ 2r + 2k − 8 ·

·
p+q∏
j=1
j 6=r+1

−2r + 2j − 2
2ρ+ 2r + 2j − 2

= − 1
2ρ+ 4r

1
(ρ+ 2r)!

q∏
k=r+5

−r + k − 4
ρ+ r + k − 4 ·

p+q∏
j=1
j 6=r+1

j − (r + 1)
ρ+ r + j − 1

has sign (−1)r+1 independent of p and q so that (−1)r+1θr is a positive definite spherical
distribution for each r ∈ N0.
We now state the Plancherel formula.

Theorem C.0.1 ([Kos83, Theorem 3.13.1]). For each φ ∈ C∞c (G/H) we have
1
C2

∫
X
|φ(x)|2 dx = 1

2π

∫ ∞
0

Ziν(φ, φ) dν
|c(iν)|2 +

∑
0<ρ+2r<ρ

Zρ+2r(φ, φ) Ress=ρ+2r

( 1
c(s)c(−s)

)
+

+
∑

ρ≤ρ+2r
Θr(φ, φ)c−2

( 1
c(s)c(−s) , ρ+ 2r

)
,
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where

c(s) := 2ρ−s · 7! · Γ(s)
Γ( s−ρ+8

2 )Γ(11+s
2 )Γ(5+s

2 )
, C := 6! · 25 ·

√
π

Γ(4)Γ(7
2)

,

Ress=s0(f) denotes the residue of f at s0 and c−2(f, s0) denotes the coefficient of (s−s0)−2

in the Laurent series for f near s0.

Remark C.0.2. This formulation differs from Kosters’s formulation only in that here
the point ρ is also allowed in the last summand.

Proof. The proof of [Kos83] mimics the proof of Faraut, [Far79, p. 428-431] and is based
on the Plancherel formula of the Fourier Jacobi transform, which has been worked out by
Flensted-Jensen in [FJ77, Appendix 1]. We first let φ denote a K-finite function, write∫

X
|φ(x)|2 dx = 2−2(α+β+1)

∫
B
|Y (b)|2 db

∫ ∞
0
|F (t)|2∆α,β(t) dt

with α := p+ 3, β := p+ 2q + 7 and put

∆α,β(t) := 22(α+β+1) sinh(t)2α+1 cosh(t)2β+1

as in [Kos83, Proof of Theorem 3.13.1]. Then, we use the Plancherel formula from [FJ77,
Equation (A.11)] to write (note the condition s > 0 in contrast to [Kos83])∫ ∞

0
|F (t)|2∆α,β(t) dt = 1

2π |F̂ (ν)|2 dν
|C(ν)|2 − 2πi

∑
ν0=is∈iR
C(−ν0)=0

s>0

|F̂ (ν)|2 Resν=ν0
1

C(ν)C(−ν) ,

where

C(ν) := 2α+β+1−iνΓ(iν)Γ(α+ 1)
Γ(1

2(α+ β + 1 + iν))Γ(1
2(α− β + 1 + iν))

and F̂ denotes the Fourier Jacobi transform of F , given by

F̂ (ν) := 1
2π

∫ ∞
0

F (t)φ(α,β)
ν (t)∆α,β(t) dt

with the Jacobi function

φ(α,β)
ν (t) = Ψp,q(t, iν)

sinh(t)p cosh(t)p+2q .

In order to connect the discrete part of the Plancherel formula to the discrete part of the
theorem, we need a last ingredient from [Kos83] and can then follow [Far79, p. 428-431]
to fill in the omitted proof of Kosters. As in [Kos83], we first observe that for each
ν ∈ [0,∞[

1
|C(ν)|2

|c(iν)|2
2π2−2(α+β+1)|βp,q(iν)|2

= C2.
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Since all involved functions are meromorphic on C, we can use the identity theorem to
obtain

c(iν)c(−iν)
C(ν)C(−ν)2π2−2(α+β+1)βp,q(iν)βp,q(−iν)

= C2 (C.0.2)

for each ν ∈ C. For the discrete part of the Plancherel formula we have to describe the
residue of 1

C(ν)C(−ν) at some ν0 ∈ iR. By Equation (C.0.2), we may write

Resν=ν0

( 1
C(ν)C(−ν)

)
= C22π2−2(α+β+1) Resν=ν0

(
βp,q(iν)βp,q(−iν)
c(iν)c(−iν)

)
.

Now we can proceed as in [Far79, p. 431]. The zeros of C(−ν0) for ν0 = is ∈ iR with
s > 0 are given by s = ρ+ 2r, r ∈ Z, with (recall ρ = 11)

0 < ρ+ 2r ≤ 2q + 3⇔ r ≤ q − 4.

If r < 0 then 1
c(s)c(−s) has a simple pole at s = ρ+ 2r. Moreover, βp,q(−(ρ+ 2r)) = 0 if

ρ+ 2r > 2q + 3⇔ r > q − 4. For each r < 0 and each p, q ∈ N0 we may thus write

Resν=ν0

(
βp,q(iν)βp,q(−iν)
c(iν)c(−iν)

)
= βp,q(ρ+ 2r)βp,q(−ρ− 2r) Resν=ν0

( 1
c(iν)c(−iν)

)

and in turn get contributions of Zρ+2r for r < 0. On the contrary, for r ∈ N0, 1
c(s)c(−s)

has a pole of order two at ρ+ 2r. For r ≤ q − 4 we have

βp,q(ρ+ 2r) = 0 and βp,q(−ρ− 2r) 6= 0.

Thus,

Resν=ν0

(
βp,q(iν)βp,q(−iν)
c(iν)c(−iν)

)
= β′p,q(ρ+ 2r)βp,q(−ρ− 2r)c−2

( 1
c(iν)c(−iν) , ν0

)
and we get a contribution of Θr in these cases.

We call invariant Hilbert subspaces in L2(G/H) resp. its corresponding positive definite
distributions relative discrete series if they are not embedded into the complementary
series. The corresponding distributions are then given by ζρ+2r (corresponding to the
kernel Zρ+2r) for 5 ≤ ρ + 2r < ρ and (−1)r+1θr (corresponding to Θr) for r ∈ N0 (see
also [Kos83, Remark 3.13.4], where ζ5 and −θ0 are excluded). We conclude this chapter
by proving that the representations corresponding to these distributions are given by the
socle representations of the spherical principal series representations in the exceptional
cases. We first recall some notation from [Kos83]. The distribution θr is defined by

∀φ ∈ C∞c (G) : θr(φ) :=
∫
B
Vr(b)(π′−ρ−2r(φ)u−ρ−2r)(b) db,
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where Vr(ξ) := P1(ξ)r
Γ(r+4) log(P1(ξ)) for ξ ∈ B ∼= K/M and P1 : G/MN → R is defined in

[Kos83, p. 60]. Moreover, the spherical principal series is realized on Ξ := G/MN by

Es(Ξ) := {f ∈ C∞(Ξ) | ∀t ∈ R, g ∈ G : f(gatξ0) = e(s−ρ)(t)f(gξ0)}

where ξ0 ∈ Ξ is the element used to identify K/M ∼= B, kM 7→ k.ξ0 such that the
stabilizer of ξ0 in G equals MAN . Finally, we define the H-spherical element us of
E′s(Ξ) := (E−s(Ξ))′ by

us(f) := 1
Γ( s−ρ+8

2 )

∫
B
P1(b)

1
2 (s−ρ)f(b) db

and set

(π′s(φ)us)(f) :=
∫
G

(π′s(g)us)(f)φ(g) dg.

By [Kos83, p. 62], π′s(φ)us ∈ Es(Ξ) is actually smooth.
We now describe the realizations of the relative discrete series. Let

Φ: E′ρ+2r(Ξ)→ D′(G), ϕ 7→ (φ 7→ ϕ(π′−ρ−2r(φ)u−ρ−2r))

and

ϕ0 : E−ρ−2r(Ξ)→ C, f 7→
∫
B
Vr(b)f(b) db.

Then we have θr = Φ(ϕ0). Note that Φ is G-equivariant since, for each g ∈ G,

Φ(π′ρ+2r(g)ϕ)(φ) = (π′ρ+2r(g)ϕ)(π′−ρ−2r(φ)u−ρ−2r) = ϕ(π−ρ−2r(g−1)π′−ρ−2r(φ)u−ρ−2r)
= ϕ(π′−ρ−2r(g−1φ))u−ρ−2r = Φ(ϕ)(g−1φ) = (gΦ(ϕ))(φ).

Therefore, the representation generated by θr is equal to the image under Φ of the
representation Gϕ0 generated by ϕ0, which in turn is given by Gϕ0/ ker(Φ|Gϕ0

). Since
Gθr is unitary and irreducible, the latter quotient is a unitary, irreducible subquotient of
E′ρ+2r(Ξ). Hence, it has to be the unique maximal quotient of E′ρ+2r(Ξ) = (E−ρ−2r(Ξ))′.
This however is isomorphic to the unique irreducible subrepresentation of E−ρ−2r. The
case of Zρ+2r for 5 ≤ ρ+ 2r < ρ can be treated in an analogous fashion.
We can also verify that the occurring K-types match those of the socle. Let us first

consider the case of θr for r ∈ N0. On the one hand we get from Equation (C.0.1) and
since βp,q(−ρ− 2r) 6= 0 if and only if q ≥ r + 4 (by [Kos83, p. 71] with h = r + 3) that
only K-types Hp,q = Vp+2q,p with q ≥ r + 4 can occur in the representation generated
by θr. On the other hand, in the notation of Lemma B.5.1, the exceptional parameter
−ρ− 2r = −(ρ− 6 + 2`) corresponds to ` = r+ 3, where the K-types in the socle M̃` are
(again) given by Vm,k with q = m−k

2 > ` = r + 3.
Let us finally consider the case of ζρ+2r for 5 ≤ ρ + 2r < ρ. In this case, [Kos83,

Proposition 3.9.4] implies that ζs vanishes identically if and only if βp,q(s)β0,q(−s) vanishes.
By [Kos83, (i), (iii) on p. 70f.] we infer that

βp,q(ρ+ 2r) 6= 0 for all p, q ∈ N0 and β0,q(−ρ− 2r) 6= 0⇔ q ≥ r + 4.

Thus, again only K-types Hp,q = Vp+2q,p with q ≥ r + 4 occur.
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D. An example: G = SU(n, 1), n ≥ 2

In this chapter we consider the complex case in more detail. First, we describe the gener-
alized gradients more explicitly using the structure of complex spherical harmonics and
determine the corresponding embeddings ιYa,bYp,q

from Definition 7.3.4. Then, after proving
some facts about spherical harmonics, we give a proof of the Fourier characterization
and provide a more explicit spectral correspondence in Theorem D.5.4. For the general
structure of G and the decomposition of the spherical principal series into spherical
harmonics we refer to Appendix B.3.1 resp. Appendix B.3.2.

D.1. Generalized gradients

In order to describe the generalized gradients, we have to decompose Yp,q ⊗ p∗ for
[(τp,q, Yp,q)] ∈ K̂ as a K-representation. Note first that p∗ is reducible and decomposes as

p∗ = p∗1 ⊕ p∗2,

where

p1 :=
{(

0n v
0 0

)
: v ∈ Cn

}
, p2 :=

{(
0n 0
v∗ 0

)
: v ∈ Cn

}
.

Then, by Proposition A.2.6 and A.2.7, Yp,q ⊗ p∗ generically (for some special choices of p
and q some of the subrepresentations have dimension zero) decomposes as

Yp,q ⊗ p∗ ∼= Yp−1,q ⊕ Yp+1,q ⊕ Yp,q−1 ⊕ Yp,q+1 ⊕ V 1
p,q ⊕ V 2

p,q.

Before defining the associated generalized gradients we first introduce a useful notation.

Notation D.1.1.

zj : Cn → C, (v1, . . . , vn)T 7→ vj ,

zj : Cn → C, (v1, . . . , vn)T 7→ vj ,

|z|2 =
n∑
j=1

zjzj : Cn → C, (v1, . . . , vn)T 7→
n∑
j=1

vjvj .

187



D. An example: G = SU(n, 1), n ≥ 2

Next we define the generalized gradients

d+,hol := T
Yp,q
Yp+1,q

◦ ∇ : C∞(G×K Yp,q)→ C∞(G×K Yp+1,q),

d−,ahol := T
Yp,q
Yp,q−1

◦ ∇ : C∞(G×K Yp,q)→ C∞(G×K Yp,q−1),

d+,ahol := T
Yp,q
Yp,q+1

◦ ∇ : C∞(G×K Yp,q)→ C∞(G×K Yp,q+1),

d−,hol := T
Yp,q
Yp−1,q

◦ ∇ : C∞(G×K Yp,q)→ C∞(G×K Yp−1,q),
Dj := pr

V jp,q
◦∇ : C∞(G×K Yp,q)→ C∞(G×K V j

p,q), j = 1, 2,

where T Yp,qYp±1,q
∈ HomK(Yp,q⊗p∗, Yp±1,q) and T Yp,qYp,q±1

∈ HomK(Yp,q⊗p∗, Yp,q±1) are chosen
as follows: Using the K-equivariant maps

Yp,q ⊗ Y1,0 → C∞(S2n−1), ϕ⊗ zj 7→ zjϕ,

Yp,q ⊗ Y0,1 → C∞(S2n−1), ϕ⊗ zj 7→ zjϕ,

and the isomorphisms Φ, Ψ from Lemma A.2.4 resp. A.2.5 we obtain K-equivariant maps

Yp,q ⊗ p∗1
∼= Yp,q ⊗ Y1,0 → C∞(S2n−1), Yp,q ⊗ p∗2

∼= Yp,q ⊗ Y0,1 → C∞(S2n−1).

By [FØ19, Equation (B.7)], we have for each ϕ ∈ Yp,q

zjϕ = ϕ+,hol
j + |z|2ϕ−,ahol

j , zjϕ = ϕ+,ahol
j + |z|2ϕ−,hol

j , (D.1.1)

with ϕ±,hol
j ∈ Yp±1,q, ϕ

±,ahol
j ∈ Yp,q±1 given by

ϕ+,hol
j = P(zjϕ) = zjϕ−

|z|2

p+ q + n− 1
∂ϕ

∂zj
, ϕ−,hol

j = 1
p+ q + n− 1

∂ϕ

∂zj
, (D.1.2)

ϕ+,ahol
j = P(zjϕ) = zjϕ−

|z|2

p+ q + n− 1
∂ϕ

∂zj
, ϕ−,ahol

j = 1
p+ q + n− 1

∂ϕ

∂zj
. (D.1.3)

Finally we set

T
Yp,q
Yp+1,q

(ϕ⊗ Φ−1(zj)) := ϕ+,hol
j , T

Yp,q
Yp,q−1

(ϕ⊗ Φ−1(zj)) := ϕ−,ahol
j ,

T
Yp,q
Yp,q+1

(ϕ⊗Ψ−1(zj)) := ϕ+,ahol
j , T

Yp,q
Yp−1,q

(ϕ⊗Ψ−1(zj)) := ϕ−,hol
j ,

and extend the definitions to Yp,q ⊗ p∗ by defining T Yp,qYp+1,q
and T Yp,qYp,q−1

to be 0 on Yp,q ⊗ p∗2

and T Yp,qYp,q+1
and T Yp,qYp−1,q

to be 0 on Yp,q ⊗ p∗1.
In order to be able to do most of the necessary computations in C∞(S2n−1), we discuss

how p∗ embeds into C∞(S2n−1) using Lemma A.2.4 and A.2.5.

Lemma D.1.2. Let Xej , X̃ej , j ∈ {1, . . . , n}, be the basis of p defined by

Xej :=
(

0n ej
eTj 0

)
, X̃ej :=

(
0n iej
−ieTj 0

)
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and consider the corresponding dual basis X∗ej , X̃
∗
ej ∈ p∗. Then the isomorphism

p∗ ∼= p∗1 ⊕ p∗2
∼= Y1,0 ⊕ Y0,1

maps

X∗ej 7→
1
2(zj , zj), X̃∗ej 7→

i

2(−zj , zj).

Proof. For each v ∈ Cn we have(
0n v
0 0

)
=
(

0n v
2

vT

2 0

)
+
(

0n i(−iv2 )
−i(−ivT2 ) 0

)
=

n∑
m=1

vm
2 Xem − i

vm
2 X̃em

and thus

X∗ej

((
0n v
0 0

))
= vj

2 and X̃∗ej

((
0n v
0 0

))
= −ivj2 .

Moreover we obtain(
0n 0
v∗ 0

)
=
(

0n v
2

v∗

2 0

)
+

 0n i
(
i
2v
)

−i
(
i
2v
∗
)

0

 =
n∑

m=1

vm
2 Xem + i

vm
2 X̃em

and thus

X∗ej

((
0n 0
v∗ 0

))
= vj

2 and X̃∗ej

((
0n 0
v∗ 0

))
= i

vj
2 .

With the isomorphisms from Lemma A.2.4 and A.2.5 this yields

X∗ej = Φ−1
(
zj
2

)
+ Ψ−1

(
zj
2

)
and X̃∗ej = Φ−1

(
−izj2

)
+ Ψ−1

(
i
zj
2

)
.

We can now describe the embeddings ιYp,qYa,b
from Definition 7.3.4.

Lemma D.1.3. Let

ι
Yp+1,q
Yp,q

: Yp+1,q → Yp,q ⊗ p∗1, f 7→ 1
p+ 1

n∑
j=1

∂f

∂zj
⊗ Φ−1(zj)

ι
Yp,q+1
Yp,q

: Yp,q+1 → Yp,q ⊗ p∗2, f 7→ 1
q + 1

n∑
j=1

∂f

∂zj
⊗Ψ−1(zj)

and

ι
Yp−1,q
Yp,q

: Yp−1,q → Yp,q ⊗ p∗2, f 7→ n+ p+ q − 2
n+ p− 2

n∑
j=1

P(zjf)⊗Ψ−1(zj)

ι
Yp,q−1
Yp,q

: Yp,q−1 → Yp,q ⊗ p∗1, f 7→ n+ p+ q − 2
n+ q − 2

n∑
j=1

P(zjf)⊗ Φ−1(zj).

Then
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i) ιYp±1,q
Yp,q

and ιYp,q±1
Yp,q

are K-equivariant,

ii) T Yp,qYp±1,q
◦ ιYp±1,q

Yp,q
= idYp±1,q and T Yp,qYp,q±1

◦ ιYp,q±1
Yp,q

= idYp,q±1,

iii) T Yp,qYa,b
◦ ιYc,dYp,q

= 0 for each (a, b) 6= (c, d).

Let us again briefly explain how these embeddings are related to Proposition 7.3.9. We
confine ourselves to the case ιYp+1,q

Yp,q
and obtain

ι
Yp+1,q
Yp,q

(f) = 1
λ(Yp+1,q, Yp,q)

n∑
j=1

prYp,q
(
zj
2 f
)
⊗ Φ−1(zj) + prYp,q

(
zj
2 f
)
⊗Ψ−1(zj)

= 2(p+ q + n)
p+ 1

n∑
j=1

prYp,q
(
zj
2 f
)
⊗ Φ−1(zj)

= 1
p+ 1

n∑
j=1

∂f

∂zj
⊗ Φ−1(zj),

where we used Remark A.2.2, Equation (D.1.1) and the fact that

ω

((
0n ej
0 0

))
(kM) = 1

2 tr
(

Ad(k−1)
(

0n ej
0 0

)
H

)

corresponds to zj
2 ∈ C

∞(S2n−1) after identifying K/M ∼= S2n−1 (see Equation (B.3.11)).
As in the case of SO0(n, 1), we give a direct proof of Lemma D.1.3 using only the structure
of complex spherical harmonics.

Proof. i) We first show the K-equivariance of ιYp+1,q
Yp,q

. Let k = diag(A, λ) ∈ K and
f ∈ Yp+1,q. Then

ι
Yp+1,q
Yp,q

(k.f) = ι
Yp+1,q
Yp,q

(f ◦ k−1) = 1
p+ 1

n∑
j=1

∂(f ◦ k−1)
∂zj

⊗ Φ−1(zj)

and

k.ι
Yp+1,q
Yp,q

(f) = 1
p+ 1

n∑
j=1

k.
∂f

∂zj
⊗ k.Φ−1(zj) = 1

p+ 1

n∑
j=1

∂f

∂zj
◦ k−1 ⊗ Φ−1(k.zj).

Note that there exists a canonical homomorphism

Θ : Yp,q ⊗ p∗1
∼= Hom(Cn, Yp,q), Θ(f ⊗ λ)(v) = Φ(λ)(v)f.

It thus suffices to prove that

Θ(ιYp+1,q
Yp,q

(k.f))(em) = 1
p+ 1

∂(f ◦ k−1)
∂zm
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equals

Θ(k.ιYp+1,q
Yp,q

(f))(em) = 1
p+ 1

n∑
j=1

(k.zj)(em) ∂f
∂zj
◦ k−1

for each m ∈ {1, . . . , n}. By the chain rule we obtain

∂(f ◦ k−1)
∂zm

=
n∑
j=1

(
∂f

∂zj
◦ k−1

)
∂k−1

j

∂zm
+
(
∂f

∂zj
◦ k−1

)
∂k−1

j

∂zm

=
n∑
j=1

(
∂f

∂zj
◦ k−1

)
∂k−1

j

∂zm
,

since k−1
j (the j-th component of k−1 ∈ Aut(Cn)) is linear. It remains to prove that

∂k−1
j

∂zm
= (k.zj)(em) = zj(k−1.em).

However, this follows directly from the definition of the derivative. This proves the
equivariance of ιYp+1,q

Yp,q
and the equivariance of ιYp,q+1

Yp,q
is proven analogously.

For the K-equivariance of ιYp−1,q
Yp,q

we have to show that for f ∈ Yp−1,q

n∑
j=1

P(zjk.f)⊗Ψ−1(zj) =
n∑
j=1

k.P(zjf)⊗ k.Ψ−1(zj).

Let Θ̃ be the isomorphism given by

Θ̃ : Yp,q ⊗ p∗2
∼= Hom(Cn, Yp,q), Θ̃(f ⊗ λ)(v) = Ψ(λ)(v)f,

where Cn denotes Cn with the opposite complex structure. It suffices to prove

P(zmk.f) =
n∑
j=1

k.P(zjf)(k.zj)(em)

for each m ∈ {1, . . . , n}. Note that

k−1.zm =
n∑
j=1

zm(k.ej)zj ,

with, since k acts unitary,

zm(k.ej) = 〈k.ej , em〉Cn = 〈ej , k−1.em〉Cn = zj(k−1.em) = k.zj(em).
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By the K-equivariance of P we thus obtain that

P(zmk.f) = P(k.(k−1.zm)f) = k.P((k−1.zm)f) = k.P

 n∑
j=1

(k.zj)(em)zjf


=

n∑
j=1

k.P(zjf)(k.zj)(em).

This finishes the proof of the first part.
ii) For each f ∈ Yp+1,q we have

T
Yp,q
Yp+1,q

(ιYp+1,q
Yp,q

(f)) = 1
p+ 1T

Yp,q
Yp+1,q

 n∑
j=1

∂f

∂zj
⊗ Φ−1(zj)


= 1
p+ 1P

 n∑
j=1

zj
∂f

∂zj

 = P(f) = f.

The proof of T Yp,qYp,q+1
◦ ιYp,q+1

Yp,q
= idYp,q+1 is analogous.

For T Yp,qYp−1,q
◦ ιYp−1,q

Yp,q
= idYp−1,q let f ∈ Yp−1,q. Then

T
Yp,q
Yp−1,q

(ιYp−1,q
Yp,q

(f)) = n+ p+ q − 2
n+ p− 2 T

Yp,q
Yp−1,q

 n∑
j=1

P(zjf)⊗Ψ−1(zj)


= n+ p+ q − 2

n+ p− 2
1

p+ q + n− 1

 n∑
j=1

∂P(zjf)
∂zj

 .
By Equation (D.1.2) we infer

n∑
j=1

∂P(zjf)
∂zj

=
n∑
j=1

f + zj
∂f

∂zj
− 1
p+ q + n− 2

(
zj
∂f

∂zj
+ |z|2 ∂2f

∂zj∂zj

)

= nf + (p− 1)f − 1
p+ q + n− 2(qf + |z|2∆f)

= (n+ p− 2)(n+ p+ q − 1)
n+ p+ q − 2 f.

The proof of T Yp,qYp,q−1
◦ ιYp,q−1

Yp,q
= idYp,q−1 is analogous.

iii) For each f ∈ Yp,q−1 we have

T
Yp,q
Yp+1,q

(ιYp,q−1
Yp,q

(f)) = T
Yp,q
Yp+1,q

(n+ p+ q − 2
n+ q − 2

n∑
j=1

P(zjf)⊗ zj)

= n+ p+ q − 2
n+ q − 2

n∑
j=1

P(zjP(zjf))

= n+ p+ q − 2
n+ q − 2 P(|z|2f) = 0,
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where we used Lemma 9.1.1. This also proves T Yp,qYp,q+1
◦ ιYp−1,q

Yp,q
= 0.

For each f ∈ Yp,q+1 we have, since f is harmonic,

T
Yp,q
Yp−1,q

(ιYp,q+1
Yp,q

(f)) = 1
q + 1

n∑
j=1

T
Yp,q
Yp−1,q

(
∂f

∂zj
⊗Ψ−1(zj)

)

= 1
(q + 1)(p+ q + n− 1)

n∑
j=1

∂2f

∂zj∂zj
= 0.

This also proves T Yp,qYp,q−1
◦ ιYp+1,q

Yp,q
= 0 and the other equalities are clear.

D.2. Computations for spherical harmonics
In this section we prove some interesting relations in the spaces Yp,q of complex spherical
harmonics. We will use these relations for the computation of the scalars relating the
Poisson transforms to the generalized gradients and for the Fourier characterization of
the principal series.

Lemma D.2.1. We have the following expressions for the derived representation τp,q on
Yp,q for 1 ≤ j,m ≤ n

τp,q(diag(Ejm − Emj , 0)) = zj
∂

∂zm
+ zj

∂

∂zm
− zm

∂

∂zj
− zm

∂

∂zj
,

τp,q(diag(iEjm + iEmj , 0)) = i

(
zm

∂

∂zj
− zm

∂

∂zj
+ zj

∂

∂zm
− zj

∂

∂zm

)
, j 6= m,

τp,q(diag(−i,0n−1, i)) = −i

 n∑
j=2

zj
∂

∂zj
− zj

∂

∂zj
+ 2

(
z1

∂

∂z1
− z1

∂

∂z1

) .
Proof. Let ϕ ∈ Yp,q. We first assume that j 6= m and extend the definition of τp,q to
Matn+1(C). Then we have for every z = (z1, . . . , zn) ∈ S2n−1 ⊂ Cn

τp,q(diag(Ejm, 0))ϕ(z) = d

dt

∣∣∣∣
t=0

ϕ(exp(−t diag(Ejm, 0)).z)

(B.3.11)= d

dt

∣∣∣∣
t=0

ϕ(exp(−tEjm)z)

= d

dt

∣∣∣∣
t=0

ϕ(z − tzmej).

Writing zr = x2r−1 + ix2r ∈ R + iR we obtain

τp,q(diag(Ejm, 0))ϕ(z) = −i
(
x2m−1

∂

∂x2j−1
− x2m

∂

∂x2j

)
ϕ(z)

= −
(
zm

∂

∂zj
+ zm

∂

∂zj

)
ϕ(z).
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This proves the first equation. The second equation follows for j 6= m from

τp,q(diag(iEjm, 0))ϕ(z) = d

dt

∣∣∣∣
t=0

ϕ(exp(−t diag(iEjm, 0)).z)

= d

dt

∣∣∣∣
t=0

ϕ(z − itzmej)

=
(
x2m

∂

∂x2j−1
− x2m−1

∂

∂x2j

)
ϕ(z)

= i

(
zm

∂

∂zj
− zm

∂

∂zj

)
ϕ(z).

For the last equation we first obtain

τp,q(diag(−i,0n−1, i))ϕ(z) = d

dt

∣∣∣∣
t=0

ϕ(exp(−t diag(−i,0n−1, i)).z)

= d

dt

∣∣∣∣
t=0

ϕ(diag(e2it, eit, . . . , eit)z)

= −
n∑
j=2

l(iEjj)ϕ(z)− 2l(iE11)ϕ(z),

where l denotes the derived left regular representation. For each j ∈ {1, . . . , n} we have

l(iEjj)ϕ(z) = d

dt

∣∣∣∣
t=0

ϕ(z1, . . . , zj−1, e
−itzj , zj+1, . . . , zn)

=
(
x2j

∂

∂x2j−1
− x2j−1

∂

∂x2j

)
ϕ(z)

= i

(
zj

∂

∂zj
− zj

∂

∂zj

)
ϕ(z).

This finishes the proof of the last two equations.

Lemma D.2.2. For each f ∈ Yp,q we have

∂f

∂z1
(e1) = pf(e1), ∂f

∂z1
(e1) = qf(e1)

and

P(z1f)(e1) = p+ n− 1
p+ q + n− 1f(e1), P(z1f)(e1) = q + n− 1

p+ q + n− 1f(e1).

Proof. We have

∂f

∂z1
(e1) =

 n∑
j=1

zj
∂f

∂zj

 (e1) = pf(e1)
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and the second equality follows analogously. Using Equation (D.1.2) we obtain

P(z1f)(e1) =
(
z1f −

|z|2

p+ q + n− 1
∂f

∂z1

)
(e1) = f(e1)− q

p+ q + n− 1f(e1)

and the claimed equality follows. The formula for P(z1f)(e1) follows similarly.

Lemma D.2.3. Let p, q ∈ N0. Then

i)

P(zp1z1
q)(e1) = p+ n− 2

p+ q + n− 2P(zp−1
1 z1

q)(e1),

P(zp1z1
q)(e1) = q + n− 2

p+ q + n− 2P(zp1z1
q−1)(e1),

∂

∂z1
P(zp1z1

q) = p(p+ n− 2)
p+ q + n− 2P(zp−1

1 z1
q),

∂

∂z1
P(zp1z1

q) = q(q + n− 2)
p+ q + n− 2P(zp1z1

q−1),

ii) P(zp1z1
q) is a linear combination of zp−j1 z1

q−j |z|2j , j = 0, . . . ,min(p, q).

Proof. Considering zp1z1
q ∈ Yp,q as an element of Yp+q (see Equation (B.3.13)) we can

use Lemma 9.1.1 to obtain

P(zp1z1
q)(e1) = P(z1P(zp−1

1 z1
q))(e1).

Now Lemma D.2.2 finishes the proof of the first equation. For the third equation note that
∂
∂z1

P(zp1z1
q) is anM -invariant element of Yp−1,q and therefore a multiple of P(zp−1

1 z1
q) by

Equation (B.3.14). We compute this multiple by evaluating at e1. Lemma D.2.2 implies

∂

∂z1
P(zp1z1

q)(e1) = pP(zp1z1
q)(e1) = p(p+ n− 2)

p+ q + n− 2P(zp−1
1 z1

q)(e1).

The remaining equations can be proved analogously.
For the second part we use Equation (D.1.2) to get

P(zp1z1
q) = P(z1P(zp−1

1 z1
q)) = z1P(zp−1

1 z1
q)− |z|2

p+ q + n− 2
∂

∂z1
P(zp−1

1 z1
q)

= z1P(zp−1
1 z1

q)− |z|2

p+ q + n− 2
q(q + n− 2)
p+ q + n− 3P(zp−1

1 z1
q−1)

and the result follows by induction.

Lemma D.2.4. For every p, q ∈ N0 we have(
z1

∂

∂z1
− z1

∂

∂z1

)
P(zp1z1

q) = (p− q)P(zp1z1
q).
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Proof. By the proof of Lemma D.2.1 we first obtain that(
z1

∂

∂z1
− z1

∂

∂z1

)
= il(iE11),

where l denotes the derived left regular representation of U(n) on Yp,q. Since P is
O(2n)-equivariant and linear we have

il(iE11)P(zp1z1
q) = P(il(iE11)zp1z1

q) = P(pzp1z1
q − qzp1z1

q).

D.3. Poisson transforms
In this section we define vector-valued Poisson transforms and describe their relationship
to the generalized gradients. For each p, q ∈ N0 we define the Poisson transform
P
Yp,q ,cpt
µ : D′(K/M)→ C∞(G×K Yp,q) by continuous extension of (see Definition 3.3.1)

P Yp,q ,cpt
µ (φ)(g) :=

∫
K
aI(g−1k)−(µ+ρ)τp,q(kI(g−1k))t(φ(k)) dk,

where t ∈ HomM (C, Yp,q) is given by t(1) := P(zp1z1
q). By Equation (3.5) we have

P Yp,qµ ◦ Qµ−ρ = P Yp,q ,cpt
µ

on D′(K/M) where P Yp,qµ : H−∞µ → C∞(G×K Yp,q) is given by continuous extension of

P Yp,qµ (f)(g) :=
∫
K
τp,q(k)t(f(gk)) dk = F−1(t)(πµ(g−1)f). (D.3.4)

The following lemma generalizes Lemma 4.4.1 to SU(n, 1).

Lemma D.3.1. Let µ ∈ a∗ and f ∈ H−∞µ . Then

(d+,hol ◦ P Yp,qµ )(f) =
((µ+ ρ)(H)

2 + p

)
P
Yp+1,q
µ (f) ∀p, q ∈ N0,

(d+,ahol ◦ P Yp,qµ )(f) =
((µ+ ρ)(H)

2 + q

)
P
Yp,q+1
µ (f)∀p, q ∈ N0,

(d−,ahol ◦ P Yp,qµ )(f) = λp,q(q)(µ(H)− ρ(H)− 2(q − 1))P Yp,q−1
µ (f) ∀p ∈ N0, q ∈ N,

(d−,hol ◦ P Yp,qµ )(f) = λp,q(p)(µ(H)− ρ(H)− 2(p− 1))P Yp−1,q
µ (f)∀p ∈ N, q ∈ N0,

(Dj ◦ P Yp,qµ )(f) = 0 ∀p ∈ N0, q ∈ N, j ∈ {1, 2},

where λp,q(x) := x(n+x−2)
2(p+q+n−2)(p+q+n−1) .

Proof. Let δeM denote the Delta distribution at eM on K/M . Then

P Yp,q ,cpt
µ (δeM )(g) = aI(g−1)−(µ+ρ)τp,q(kI(g−1))P(zp1z1

q) ∈ C∞(G×K Yp,q).
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D.3. Poisson transforms

Recall the basis Xej , X̃ej , j ∈ {1, . . . , n}, from Lemma D.1.2. Since Xe1 = H ∈ a0,

(∇P Yp,q ,cpt
µ (δeM ))(e)(H) = P Yp,q ,cpt

µ (δeM )(exp tH)

= d

dt

∣∣∣∣
t=0

aI(exp−tH)−(µ+ρ)P(zp1z1
q)

= d

dt

∣∣∣∣
t=0

et(µ+ρ)(H)P(zp1z1
q) = (µ+ ρ)(H)P(zp1z1

q).

Note that for each j ∈ {2, . . . , n}

X̃e1 =

−i 0 i
0 0n−1 0
−i 0 i

− diag(−i,0n−1, i) ∈ n0 ⊕ k0,

Xej =

 0 eTj−1 0
−ej−1 0n−1 ej−1

0 eTj−1 0

−
 eTj
−ej

 ∈ n0 ⊕ k0,

X̃ej =

 0 −ieTj−1 0
−iej−1 0n−1 iej−1

0 −ieTj−1 0

−
 −ieTj
−iej

 ∈ n0 ⊕ k0.

Let the latter matrices (without the minus sign) be denoted by Z̃1, Zj , Z̃j ∈ k0 respectively.
Since P Yp,q ,cpt

µ (δeM ) is constant on N we have

(∇P Yp,q ,cpt
µ (δeM ))(e)(Xej ) = −(∇P Yp,q ,cpt

µ (δeM ))(e)(Zj) = τp,q(Zj)P(zp1z1
q)

and

(∇P Yp,q ,cpt
µ (δeM ))(e)(X̃ej ) = τp,q(Z̃j)P(zp1z1

q).

Therefore we deduce that (∇P Yp,q ,cpt
µ (δeM ))(e) ∈ Yp,q ⊗ p∗ is given by

(∇P Yp,q ,cpt
µ (δeM ))(e) = (µ+ ρ)(H)P(zp1z1

q)⊗H∗ +
n∑
j=2

τp,q(Zj)P(zp1z1
q)⊗X∗ej

+
n∑
j=1

τp,q(Z̃j)P(zp1z1
q)⊗ X̃∗ej . (D.3.5)

By Lemma D.1.2 the projection of the right hand side of (D.3.5) onto Yp,q ⊗ p∗1 equals

(µ+ ρ)(H)P(zp1z1
q)⊗ Φ−1

(
z1
2

)
+

n∑
j=2

τp,q(Zj)P(zp1z1
q)⊗ Φ−1

(
zj
2

)

+
n∑
j=1

τp,q(Z̃j)P(zp1z1
q)⊗ Φ−1

(
− izj2

)
∈ Yp,q ⊗ p∗1.
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In order to calculate the images under d+,hol and d−,ahol we therefore have to decompose
the polynomial

z1
2 (µ+ ρ)(H)P(zp1z1

q) +
n∑
j=2

zj
2 τp,q(Zj)P(zp1z1

q)−
n∑
j=1

izj
2 τp,q(Z̃j)P(zp1z1

q) (D.3.6)

with respect to the decomposition from Equation (D.1.1). Lemma D.2.1 yields
n∑
j=2

zj
2 τp,q(Zj)P(zp1z1

q)− izj
2 τp,q(Z̃j)P(zp1z1

q)

=
n∑
j=2

zj
2

(
z1

∂

∂zj
+ z1

∂

∂zj
− zj

∂

∂z1
− zj

∂

∂z1

)
P(zp1z1

q)

+ izj
2 i

(
zj

∂

∂z1
− zj

∂

∂z1
+ z1

∂

∂zj
− z1

∂

∂zj

)
P(zp1z1

q)

=
n∑
j=2

(
z1zj

∂

∂zj
− zjzj

∂

∂z1

)
P(zp1z1

q)

= z1

 n∑
j=1

zj
∂

∂zj
− z1

∂

∂z1

P(zp1z1
q)− (|z|2 − z1z1) ∂

∂z1
P(zp1z1

q)

= pz1P(zp1z1
q)− z1

(
z1

∂

∂z1
− z1

∂

∂z1

)
P(zp1z1

q)− |z|2 ∂

∂z1
P(zp1z1

q).

Using Lemma D.2.4 this simplifies to

qz1P(zp1z1
q)− |z|2 ∂

∂z1
P(zp1z1

q).

Moreover we have by the K-equivariance of P and Lemma D.2.1

τp,q(Z̃1)P(zp1z1
q) = P(−2i(q − p)zp1z1

q) = 2i(p− q)P(zp1z1
q). (D.3.7)

This proves that the polynomial from Equation (D.3.6) is given by((µ+ ρ)(H)
2 + p

)
z1P(zp1z1

q)− |z|2 ∂

∂z1
P(zp1z1

q).

By Equation (D.1.1) and Lemma 9.1.1 we may write the polynomial in the form((µ+ ρ)(H)
2 + p

)(
P(zp+1

1 z1
q) + |z|2

p+ q + n− 1
∂

∂z1
P(zp1z1

q)
)
− |z|2 ∂

∂z1
P(zp1z1

q)

=
((µ+ ρ)(H)

2 + p

)
P(zp+1

1 z1
q) +

((µ+ ρ)(H) + 2p
2(p+ q + n− 1) − 1

)
|z|2 ∂

∂z1
P(zp1z1

q).

Using Lemma D.2.3 we infer that this equals((µ+ ρ)(H)
2 + p

)
P(zp+1

1 z1
q) + λp,q(q)(µ(H)− ρ(H)− 2(q − 1))|z|2P(zp1z1

q−1)
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since ((µ+ ρ)(H) + 2p
2(p+ q + n− 1) − 1

)
q(q + n− 2)
p+ q + n− 2 = λp,q(q)(µ(H)− ρ(H)− 2(q − 1)),

where we used ρ(H) = n. Since P Yp+1,q ,cpt
µ (δeM )(e) = P(zp+1

1 z1
q) and P Yp,q−1,cpt

µ (δeM )(e) =
P(zp1z1

q−1) the proof of the first and third equation follows from Corollary 3.3.5.
For the second and fourth equation we first describe the projection of the right hand

side of Equation (D.3.5) onto Yp,q ⊗ p∗2. By Lemma D.1.2 it is given by

(µ+ ρ)(H)P(zp1z1
q)⊗Ψ−1

(
z1
2

)
+

n∑
j=2

τp,q(Zj)P(zp1z1
q)⊗Ψ−1

(
zj
2

)

+
n∑
j=1

τp,q(Z̃j)P(zp1z1
q)⊗Ψ−1

(
izj
2

)
∈ Yp,q ⊗ p∗2.

By the definition of d+,ahol and d−,hol we have to decompose the polynomial

z1
2 (µ+ ρ)(H)P(zp1z1

q) +
n∑
j=2

zj
2 τp,q(Zj)P(zp1z1

q) +
n∑
j=1

izj
2 τp,q(Z̃j)P(zp1z1

q) (D.3.8)

with respect to the decomposition from Equation (D.1.1). By Lemma D.2.1 we infer that
n∑
j=2

zj
2 τp,q(Zj)P(zp1z1

q) + izj
2 τp,q(Z̃j)P(zp1z1

q)

=
n∑
j=2

zj
2

(
z1

∂

∂zj
+ z1

∂

∂zj
− zj

∂

∂z1
− zj

∂

∂z1

)
P(zp1z1

q)

− izj
2 i

(
zj

∂

∂z1
− zj

∂

∂z1
+ z1

∂

∂zj
− z1

∂

∂zj

)
P(zp1z1

q)

=
n∑
j=2

(
z1zj

∂

∂zj
− zjzj

∂

∂z1

)
P(zp1z1

q)

= z1

 n∑
j=1

zj
∂

∂zj
− z1

∂

∂z1

P(zp1z1
q)− (|z|2 − z1z1) ∂

∂z1
P(zp1z1

q)

= qz1P(zp1z1
q) + z1

(
z1

∂

∂z1
− z1

∂

∂z1

)
P(zp1z1

q)− |z|2 ∂

∂z1
P(zp1z1

q)

which simplifies to

qz1P(zp1z1
q)− |z|2 ∂

∂z1
P(zp1z1

q)

by Lemma D.2.4. Using Equation (D.3.7) we deduce that the polynomial from Equation
(D.3.8) is given by ((µ+ ρ)(H)

2 + q

)
z1P(zp1z1

q)− |z|2 ∂

∂z1
P(zp1z1

q).
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Now we continue as in the previous case to obtain that it equals((µ+ ρ)(H)
2 + q

)
P(zp1z1

q+1) + λp,q(p)(µ(H)− ρ(H)− 2(p− 1))|z|2P(zp−1
1 z1

q).

Corollary 3.3.5 finishes the proof of the second and fourth equation.
The last equality follows from the fact that Dj maps into sections of the bundle associ-

ated to the K-representation V j
p,q which does not contain the trivial M -representation

and Corollary 3.3.4.

Remark D.3.2. There exist constants cp,q ∈ C such that

cp,q · P Yp,qµ (f)(g) = prYp,q(f(g•))

for all µ ∈ a∗, f ∈ C∞(G)M , g ∈ G and p, q ∈ N0, where we extend the Poisson transform
to C∞(G)M by the same formula. The constants are given by

cp,q = dimYp,q
P(zp1z1q)(e1) .

This leads to the recursion formulas

c0,0 = 1, cp+1,q = n+ p+ q

p+ 1 cp,q, cp,q+1 = n+ p+ q

q + 1 cp,q.

Proof. The existence and the first expression follow as in Remark 9.2.2 and Lemma 9.2.6.
By Remark A.2.3 and Lemma D.2.3 we have

cp+1,q
cp,q

= dimYp+1,q
dimYp,q

P(zp1z1
q)(e1)

P(zp+1
1 z1q)(e1)

=
(p+n−1
n−2

)(p+n−2
n−2

) n+ p+ q

n+ p+ q − 1
n+ p+ q − 1
p+ n− 1 = n+ p+ q

p+ 1

and the second formula is analogous.

D.4. Fourier characterization

In this section we characterize the spherical principal series representations by relations
between their Fourier components (Proposition D.4.8), generalizing Lemma 4.2.1 from
the PSL(2,R) case. We first repeat some notation.

Definition D.4.1. We embed C∞(G×KYp,q) into the smooth rightM -invariant functions
C∞(G)M by the map

πYp,q : C∞(G×K Yp,q)→ C∞(G)M , πYp,q(ϕ)(nak) := ϕ(na)(k.e1), n ∈ N, a ∈ A, k ∈ K,
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D.4. Fourier characterization

where e1 = (1, 0, . . . , 0) ∈ S2n−1 ⊂ Cn. Since ϕ ∈ C∞(G ×K Yp,q) we have for each
g = nak ∈ G = NAK

πYp,q(ϕ)(g) = ϕ(na)(k.e1) = (τp,q(k−1)ϕ(na))(e1) = ϕ(g)(e1).

We further denote by

π∗Yp,q : D′(G/M)→ D′(G×K Yp,q), π∗Yp,q(f)(ϕ) := f(πYq,p(ϕ))

the transpose of πYp,q defined by duality where D′(G ×K Yp,q) denotes the dual of
C∞c (G×K Yq,p). We embed smooth sections into distributional sections by

ιYp,q : C∞(G×K Yp,q)→ D′(G×K Yp,q), ιYp,q(f)(ϕ) :=
∫
G
πYp,q(f)(g)πYq,p(f)(g) dgK.

Using the same methodology as in the real case, we obtain analogous statements to
Lemmas 7.1.2, 9.2.3 and Proposition 7.2.4. In particular we obtain, for each µ ∈ a∗, that
P
Yp,q ,cpt
µ = P

Yp,q
µ ◦ Qµ−ρ = 1

cp,q
π∗Yp,q ◦ Qµ−ρ on D′(K/M) as in Lemma 9.2.3 iv). This

allows the following reformulation of Lemma D.3.1.

Lemma D.4.2. Let µ ∈ a∗ and f ∈ H−∞µ . Then

(d+,hol ◦ π∗Yp,q)(f) = cp,q
cp+1,q

((µ+ ρ)(H)
2 + p

)
π∗Yp+1,q(f) ∀p, q ∈ N0,

(d+,ahol ◦ π∗Yp,q)(f) = cp,q
cp,q+1

((µ+ ρ)(H)
2 + q

)
π∗Yp,q+1(f)∀p, q ∈ N0,

(d−,ahol ◦ π∗Yp,q)(f) = cp,q
cp,q−1

λp,q(q)(µ(H)− ρ(H)− 2(q − 1))π∗Yp,q−1(f) ∀p ∈ N0, q ∈ N,

(d−,hol ◦ π∗Yp,q)(f) = cp,q
cp−1,q

λp,q(p)(µ(H)− ρ(H)− 2(p− 1))π∗Yp−1,q(f) ∀p ∈ N, q ∈ N0,

(Dj ◦ π∗Yp,q)(f) = 0 ∀p ∈ N0, q ∈ N, j ∈ {1, 2},

where λp,q(x) = x(n+x−2)
2(p+q+n−2)(p+q+n−1) .

Before proving the Fourier characterization, we first prove two preparatory lemmas,
the first of which yields the explicit form of Lemma 7.5.1 in the complex case.

Lemma D.4.3. For each f ∈ C∞(G×K Yp,q) we have

(d+,hol + d−,ahol + d−,hol + d+,ahol)f(g) =
n∑
j=1

r(Xej )f(g)zj + zj
2 + r(X̃ej )f(g)zj − zj2i .

Proof. By definition, the gradient ∇ is given by

∇f(g) =
n∑
j=1

r(Xej )f(g)⊗X∗ej + r(X̃ej )f(g)⊗ X̃∗ej ∈ Yp,q ⊗ p∗.
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Lemma D.1.2 yields that

X∗ej = 1
2(Φ−1(zj) + Ψ−1(zj)), X̃∗ej = 1

2i(Φ
−1(zj)−Ψ−1(zj)).

By Equation (D.1.1) we obtain for each ϕ ∈ Yp,q, f1 ∈ Y1,0 and f2 ∈ Y0,1 (as identities
on the sphere S2n−1 ⊂ Cn)

ϕf1 = (T Yp,qYp+1,q
+ T

Yp,q
Yp,q−1

)(ϕ⊗ Φ−1(f1)),

0 = (T Yp,qYp+1,q
+ T

Yp,q
Yp,q−1

)
∣∣∣
Yp,q⊗p∗2

,

ϕf2 = (T Yp,qYp,q+1
+ T

Yp,q
Yp−1,q

)(ϕ⊗Ψ−1(f2)),

0 = (T Yp,qYp,q+1
+ T

Yp,q
Yp−1,q

)
∣∣∣
Yp,q⊗p∗1

.

Thus we obtain that (d+,hol + d−,ahol + d−,hol + d+,ahol)f(g) equals

n∑
j=1

r(Xej )f(g)zj2 + r(X̃ej )f(g) 1
2izj + r(Xej )f(g)zj2 − r(X̃ej )f(g) 1

2izj

=
n∑
j=1

r(Xej )f(g)zj + zj
2 + r(X̃ej )f(g)zj − zj2i .

Lemma D.4.4. Let up,q ∈ C∞(G×K Yp,q). Then r(H)πYp,q(up,q) equals

πYp−1,q(d−,holup,q) + πYp+1,q(d+,holup,q) + πYp,q−1(d−,aholup,q) + πYp,q+1(d+,aholup,q).

Proof. This follows directly from Lemma D.4.3 by evaluating both sides at e1.

Lemma D.4.5. Let µ ∈ a∗ and f = ∑
p,q∈N0 fp,q ∈ D

′(G/M) with fp,q = πYp,q(π∗Yp,q(f)) ∈
πYp,q(C∞(G ×K Yp,q)) such that the equations from Lemma D.4.2 hold for f . Then
r(X)f = (µ− ρ)(X)f for every X ∈ a0, where r denotes the right regular representation
of a0 on D′(G/M).

Proof. By definition we have for every ϕ ∈ C∞c (G/M)

(r(X)f)(ϕ) = −f(r(X)ϕ) = −
∑

p,q∈N0

fp,q(r(X)ϕ) =
∑

p,q∈N0

(r(X)fp,q)(ϕ).

By the last equation of Lemma D.4.2 we may apply Lemma D.4.4 to obtain

r(H)fp,q = r(H)πYp,q(π∗Yp,q(f))
= πYp+1,q(d+,holπ

∗
Yp,q(f)) + πYp,q+1(d+,aholπ

∗
Yp,q(f))

+ πYp,q−1(d−,aholπ
∗
Yp,q(f)) + πYp−1,q(d−,holπ

∗
Yp,q(f)).
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The equations from Lemma D.4.2 imply that

r(H)fp,q = cp,q
cp+1,q

((µ+ ρ)(H)
2 + p

)
fp+1,q

+ cp,q
cp,q+1

((µ+ ρ)(H)
2 + q

)
fp,q+1

+ cp,q
cp,q−1

λp,q(q)(µ(H)− ρ(H)− 2(q − 1))fp,q−1

+ cp,q
cp−1,q

λp,q(p)(µ(H)− ρ(H)− 2(p− 1))fp−1,q.

We infer that
m∑

p,q=0
r(H)fp,q =

m−1∑
p,q=0

ap,qfp,q

+
m−1∑
p=0

(ap,m −
n+ p+m

m+ 1 λp,m+1(m+ 1)(µ(H)− ρ(H)− 2m))fp,m

+
m−1∑
q=0

(am,q −
n+ q +m

m+ 1 λm+1,q(m+ 1)(µ(H)− ρ(H)− 2m))fm,q

+ (am,m − 2n+ 2m
m+ 1 λm,m+1(m+ 1)(µ(H)− ρ(H)− 2m))fm,m

+
m∑
p=0

m+ 1
n+ p+m

((µ+ ρ)(H)
2 +m

)
fp,m+1

+
m∑
q=0

m+ 1
n+ q +m

((µ+ ρ)(H)
2 +m

)
fm+1,q, (D.4.9)

where ap,q is given by (recall Remark D.3.2 and the definition of λp,q)

ap,q = cp−1,q
cp,q

((µ+ ρ)(H)
2 + p− 1

)
+ cp,q−1

cp,q

((µ+ ρ)(H)
2 + q − 1

)
+ cp,q+1

cp,q
λp,q+1(q + 1)(µ(H)− ρ(H)− 2q)

+ cp+1,q
cp,q

λp+1,q(p+ 1)(µ(H)− ρ(H)− 2p)

= p

n+ p+ q − 1

((µ+ ρ)(H)
2 + p− 1

)
+ q

n+ p+ q − 1

((µ+ ρ)(H)
2 + q − 1

)
+ n+ p+ q

q + 1
(q + 1)(n+ q − 1)

2(p+ q + n− 1)(p+ q + n)(µ(H)− ρ(H)− 2q)

+ n+ p+ q

p+ 1
(p+ 1)(n+ p− 1)

2(p+ q + n− 1)(p+ q + n)(µ(H)− ρ(H)− 2p)

= p

n+ p+ q − 1

((µ+ ρ)(H)
2 + p− 1

)
+ q

n+ p+ q − 1

((µ+ ρ)(H)
2 + q − 1

)
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+ n+ q − 1
2(p+ q + n− 1)(µ(H)− ρ(H)− 2q)

+ n+ p− 1
2(p+ q + n− 1)(µ(H)− ρ(H)− 2p)

= µ(H)− ρ(H),

where we used ρ(H) = n for the last equality.
We finally claim that the remaining terms in Equation (D.4.9) converge to 0 as m→∞.

Note that every remaining term only involves fp,q with p + q ≥ m. Moreover, by the
orthogonality of the Yp,q, we have for each ϕ ∈ C∞c (G/M) that

fp,q(ϕ) = fp,q(ϕp,q) = f(ϕp,q).

As in the proof of Proposition 7.2.4 we see that for each N > 0 there exists a constant C
independent of m such that

|f(ϕp,q)| ≤ C(1 + (p+ q)2)−N ≤ C(1 +m2)−N for p+ q ≥ m.

Choosing N large enough implies the claim since there are only polynomially many terms
and the growth of the coefficients is polynomial.

Lemma D.4.6. Let ϕ ∈ Yp,q. Then, for j ∈ {2, . . . , n},

P(zjf)(e1) = − 1
p+ q + n− 1

∂f

∂zj
(e1), P(zjf)(e1) = − 1

p+ q + n− 1
∂f

∂zj
(e1).

Proof. This is a direct consequence of Equation (D.1.2) and (D.1.3).

We now prove the relation between the Fourier recursions and the action of n0 to
complete the characterization of the spherical principal series by its Fourier components.

Lemma D.4.7. Let µ ∈ a∗ and f = ∑
p,q∈N0 fp,q ∈ D

′(G/M) with fp,q ∈ πYp,q(C∞(G×K
Yp,q)) such that the equations from Lemma D.4.2 hold for f . Then U+f = 0 for every
U+ ∈ C∞(G×M n0).

Proof. For v ∈ Cn−1 let

Yv :=

 0 v∗ 0
−v 0n−1 v
0 v∗ 0

 ∈ gα0 and Y2α :=

−i 0 i
0 0n−1 0
−i 0 i

 ∈ g2α
0 .

By Appendix B.3.1,

Ye1 , . . . , Yen−1 , Yie1 , . . . , Yien−1 , Y2α

is a R-basis of n0. We write U+ ∈ C∞(G×M n0) as

U+(g) =
n−1∑
j=1

(κ1
j (g)Yej + κ2

j (g)Yiej ) + κ(g)Y2α, g ∈ G,
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for some real-valued smooth functions κkj , κ ∈ C∞(G). For each ϕ ∈ C∞c (G)M we obtain

(U+f)(ϕ) = f(U∗+ϕ) =
∑

p,q∈N0

fp,q(U∗+ϕ) =
∑

p,q∈N0

(U+fp,q)(ϕ)

=
∑

p,q∈N0

n−1∑
j=1

((r(Yej )fp,q)(κ1
j (g)ϕ) + (r(Yiej )fp,q)(κ2

j (g)ϕ) + (r(Y2α)fp,q)(κ(g)ϕ).

For v = (0, v2, . . . , vn) ∈ Cn we write

Zv :=

 v∗

−v

 ∈ k0 and Z2α := diag(−i, 0, . . . , 0, i) ∈ k0.

Using the notation from Appendix B.3.1 we obtain for j ∈ {2, . . . , n}

Yej−1 = Xej + Zej , Yiej−1 = Xiej + Ziej , Y2α = Xie1 + Z2α ∈ p0 ⊕ k0.

Let us first consider

r(Yej−1)fp,q = r(Xej )fp,q + r(Zej )fp,q.

The first summand is given by

r(Xej )fp,q(g) = r(Xej )πYp,q(π∗Yp,q(f))(g) = d

dt

∣∣∣∣
t=0

π∗Yp,q(f)(g exp tXej )(e1)

= (∇π∗Yp,q(f))(g)(Xej )(e1) (D.4.10)

for every g ∈ G. We claim that

(∇π∗Yp,q(f))(g) = ι
Yp+1,q
Yp,q

(d+,holπ
∗
Yp,q(f)(g)) + ι

Yp−1,q
Yp,q

(d−,holπ
∗
Yp,q(f)(g))

+ ι
Yp,q+1
Yp,q

(d+,aholπ
∗
Yp,q(f)(g)) + ι

Yp,q−1
Yp,q

(d−,aholπ
∗
Yp,q(f)(g)).

Indeed, note that both sides are equal after applying some T Yp,qYa,b
by Lemma D.1.3. Thus,

using Djπ∗Yp,q(f) = 0 for j ∈ {1, 2}, the claim follows by using the tensor product
decompositions from Propositions A.2.6 and A.2.7. Therefore we may write

(∇π∗Yp,q(f))(g) = ι
Yp+1,q
Yp,q

(d+,holπ
∗
Yp,q(f)(g)) + ι

Yp−1,q
Yp,q

(d−,holπ
∗
Yp,q(f)(g))

+ ι
Yp,q+1
Yp,q

(d+,aholπ
∗
Yp,q(f)(g)) + ι

Yp,q−1
Yp,q

(d−,aholπ
∗
Yp,q(f)(g))

= cp,q
cp+1,q

((µ+ ρ)(H)
2 + p

)
ι
Yp+1,q
Yp,q

(π∗Yp+1,q(f)(g))

+ cp,q
cp−1,q

λp,q(p)(µ(H)− ρ(H)− 2(p− 1))ιYp−1,q
Yp,q

(π∗Yp−1,q(f)(g))

+ cp,q
cp,q+1

((µ+ ρ)(H)
2 + q

)
ι
Yp,q+1
Yp,q

(π∗Yp,q+1(f)(g))

+ cp,q
cp,q−1

λp,q(q)(µ(H)− ρ(H)− 2(q − 1))ιYp,q−1
Yp,q

(π∗Yp,q−1(f)(g)),

(D.4.11)
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where we used the equations from Lemma D.4.2. Recall from Lemma D.1.2 that

Φ−1(zj) = X∗ej + iX∗iej and Ψ−1(zj) = X∗ej − iX
∗
iej .

Identifying Yp,q ⊗ p∗ with Hom(p, Yp,q) we thus obtain by Lemma D.1.3

(∇π∗Yp,q(f))(g)(Xej ) = cp,q
cp+1,q

((µ+ ρ)(H)
2 + p

) 1
p+ 1

∂π∗Yp+1,q
(f)(g)

∂zj

+ cp,q
cp−1,q

λp,q(p)(µ(H)− ρ(H)− 2(p− 1))

n+ p+ q − 2
n+ p− 2 P(zjπ∗Yp−1,q(f)(g))

+ cp,q
cp,q+1

((µ+ ρ)(H)
2 + q

) 1
q + 1

∂π∗Yp,q+1
(f)(g)

∂zj

+ cp,q
cp,q−1

λp,q(q)(µ(H)− ρ(H)− 2(q − 1))

n+ p+ q − 2
n+ q − 2 P(zjπ∗Yp,q−1(f)(g)).

Lemma D.4.6 yields that r(Xej )fp,q(g) = (∇π∗Yp,q(f))(g)(Xej )(e1) equals

cp,q
cp+1,q

((µ+ ρ)(H)
2 + p

) 1
p+ 1

∂π∗Yp+1,q
(f)(g)

∂zj
(e1)

− cp,q
cp−1,q

λp,q(p)(µ(H)− ρ(H)− 2(p− 1))n+ p+ q − 2
n+ p− 2

1
p+ q + n− 2

∂π∗Yp−1,q
(f)(g)

∂zj
(e1)

+ cp,q
cp,q+1

((µ+ ρ)(H)
2 + q

) 1
q + 1

∂π∗Yp,q+1
(f)(g)

∂zj
(e1)

− cp,q
cp,q−1

λp,q(q)(µ(H)− ρ(H)− 2(q − 1))n+ p+ q − 2
n+ q − 2

1
p+ q + n− 2

∂π∗Yp,q−1
(f)(g)

∂zj
(e1)

= cp,q
cp+1,q

((µ+ ρ)(H)
2 + p

) 1
p+ 1

∂π∗Yp+1,q
(f)(g)

∂zj
(e1)

− cp,q
cp−1,q

λp,q(p)(µ(H)− ρ(H)− 2(p− 1)) 1
n+ p− 2

∂π∗Yp−1,q
(f)(g)

∂zj
(e1)

+ cp,q
cp,q+1

((µ+ ρ)(H)
2 + q

) 1
q + 1

∂π∗Yp,q+1
(f)(g)

∂zj
(e1)

− cp,q
cp,q−1

λp,q(q)(µ(H)− ρ(H)− 2(q − 1)) 1
n+ q − 2

∂π∗Yp,q−1
(f)(g)

∂zj
(e1).

Let us now investigate the term r(Zej )fp,q. We have

r(Zej )fp,q(g) = r(Zej )πYp,q(π∗Yp,q(f))(g) = d

dt

∣∣∣∣
t=0

πYp,q(π∗Yp,q(f))(g exp tZej ).
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Since π∗Yp,q(f) ∈ C∞(G×K Yp,q) and exp tZej ∈ K we infer

πYp,q(π∗Yp,q(f))(g exp tZej ) = π∗Yp,q(f)(g exp tZej )(e1) = τp,q(exp−tZej )(π∗Yp,q(f)(g))(e1)

and conclude that

r(Zej )fp,q(g) = τp,q(−Zej )(π∗Yp,q(f)(g))(e1).

Therefore the first equation of Lemma D.2.1 implies that

r(Zej )fp,q(g) = −
(
∂π∗Yp,q(f)(g)

∂zj
+
∂π∗Yp,q(f)(g)

∂zj

)
(e1).

Altogether r(Yej−1)fp,q(g) = r(Xej )fp,q(g) + r(Zej )fp,q(g) equals

cp,q
cp+1,q

((µ+ ρ)(H)
2 + p

) 1
p+ 1

∂π∗Yp+1,q
(f)(g)

∂zj
(e1)

− cp,q
cp−1,q

λp,q(p)(µ(H)− ρ(H)− 2(p− 1)) 1
n+ p− 2

∂π∗Yp−1,q
(f)(g)

∂zj
(e1)

+ cp,q
cp,q+1

((µ+ ρ)(H)
2 + q

) 1
q + 1

∂π∗Yp,q+1
(f)(g)

∂zj
(e1)

− cp,q
cp,q−1

λp,q(q)(µ(H)− ρ(H)− 2(q − 1)) 1
n+ q − 2

∂π∗Yp,q−1
(f)(g)

∂zj
(e1)

−
(
∂π∗Yp,q(f)(g)

∂zj
+
∂π∗Yp,q(f)(g)

∂zj

)
(e1).

Therefore we have
m∑

p,q=0
r(Yej−1)fp,q(g) =

m−1∑
p,q=0

ap,q
∂π∗Yp,q(f)(g)

∂zj
(e1) + bp,q

∂π∗Yp,q(f)(g)
∂zj

(e1) + Err,

where Err consists of terms
∂π∗Yp,q (f)(g)

∂zj
(e1),

∂π∗Yp,q (f)(g)
∂zj

(e1) for p + q ≥ m with at most
polynomially growing coefficients and

ap,q = cp−1,q
cp,q

((µ+ ρ)(H)
2 + p− 1

) 1
p
− cp,q+1

cp,q
λp,q+1(q + 1)µ(H)− ρ(H)− 2q

n+ q − 1 − 1

bp,q = cp,q−1
cp,q

((µ+ ρ)(H)
2 + q − 1

) 1
q
− cp+1,q

cp,q
λp+1,q(p+ 1)µ(H)− ρ(H)− 2p

n+ p− 1 − 1.

We claim that ap,q = bp,q = 0. Indeed, Remark D.3.2 and the definition of λp,q imply

ap,q = p

n+ p+ q − 1

((µ+ ρ)(H)
2 + p− 1

) 1
p

− n+ p+ q

q + 1 λp,q+1(q + 1)(µ(H)− ρ(H)− 2q) 1
n+ q − 1 − 1
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= 1
n+ p+ q − 1

((µ+ ρ)(H)
2 + p− 1

)
− n+ p+ q

q + 1
(q + 1)(n+ q − 1)

2(p+ q + n− 1)(p+ q + n)(µ(H)− ρ(H)− 2q) 1
n+ q − 1 − 1

= 1
n+ p+ q − 1

((µ+ ρ)(H)
2 + p− 1

)
− 1

2(p+ q + n− 1)(µ(H)− ρ(H)− 2q)− 1

= 0,
where we used ρ(H) = n for the last equality. The proof of bp,q = 0 is identical with the
roles of p and q interchanged.

Similar to the calculation above we get
m∑

p,q=0
r(Yiej−1)fp,q(g) =

m−1∑
p,q=0

iap,q
∂π∗Yp,q(f)(g)

∂zj
(e1)− ibp,q

∂π∗Yp,q(f)(g)
∂zj

(e1) + Err2

= Err2,

where the error term Err2 has the same properties as Err.
Let us finally compute r(Y2α)fp,q = r(Xie1)fp,q + r(Z2α)fp,q. Similar to Equation

(D.4.10) we have
r(Xie1)fp,q(g) = (∇π∗Yp,q(f))(g)(Xie1)(e1)

for each g ∈ G. Using Equation (D.4.11), Lemma D.1.3 and Lemma D.1.2 we obtain

(∇π∗Yp,q(f))(g)(Xie1) = cp,q
cp+1,q

((µ+ ρ)(H)
2 + p

) 1
p+ 1

∂π∗Yp+1,q
(f)(g)

∂z1
i

+ cp,q
cp−1,q

λp,q(p)(µ(H)− ρ(H)− 2(p− 1))

n+ p+ q − 2
n+ p− 2 P(z1π

∗
Yp−1,q(f)(g))(−i)

+ cp,q
cp,q+1

((µ+ ρ)(H)
2 + q

) 1
q + 1

∂π∗Yp,q+1
(f)(g)

∂z1
(−i)

+ cp,q
cp,q−1

λp,q(q)(µ(H)− ρ(H)− 2(q − 1))

n+ p+ q − 2
n+ q − 2 P(z1π

∗
Yp,q−1(f)(g))i.

By Lemma D.2.2 the evaluation at e1 is given by

r(Xie1)fp,q(g) = cp,q
cp+1,q

((µ+ ρ)(H)
2 + p

)
iπ∗Yp+1,q(f)(g)(e1)

+ cp,q
cp−1,q

λp,q(p)(µ(H)− ρ(H)− 2(p− 1))π∗Yp−1,q(f)(g)(e1)(−i)

+ cp,q
cp,q+1

((µ+ ρ)(H)
2 + q

)
π∗Yp,q+1(f)(g)(e1)(−i)

+ cp,q
cp,q−1

λp,q(q)(µ(H)− ρ(H)− 2(q − 1))π∗Yp,q−1(f)(g)(e1)i.
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Since r(Z2α)fp,q(g) = τp,q(−Z2α)(π∗Yp,q(f)(g))(e1), Lemmas D.2.1 and D.2.2 imply

r(Z2α)fp,q(g) = 2i
(
∂π∗Yp,q(f)(g)

∂z1
−
∂π∗Yp,q(f)(g)

∂z1

)
(e1) = 2i(q − p)π∗Yp,q(f)(g)(e1).

Altogether we obtain that r(Y2α)fp,q(g) = r(Xie1)fp,q(g) + r(Z2α)fp,q(g) equals

r(Y2α)fp,q(g) = cp,q
cp+1,q

((µ+ ρ)(H)
2 + p

)
ifp+1,q(g)

+ cp,q
cp−1,q

λp,q(p)(µ(H)− ρ(H)− 2(p− 1))fp−1,q(g)(−i)

+ cp,q
cp,q+1

((µ+ ρ)(H)
2 + q

)
fp,q+1(g)(−i)

+ cp,q
cp,q−1

λp,q(q)(µ(H)− ρ(H)− 2(q − 1))fp,q−1(g)i

+ 2i(q − p)fp,q(g).

We infer that
m∑

p,q=0
r(Y2α)fp,q(g) =

m−1∑
p,q=0

ηp,qfp,q(g) + Err3,

where Err3 only consists of terms fp,q(g) for p+q ≥ m with at most polynomially growing
coefficients and

(−i)ηp,q = cp−1,q
cp,q

((µ+ ρ)(H)
2 + p− 1

)
− cp+1,q

cp,q
λp+1,q(p+ 1)(µ(H)− ρ(H)− 2p)

− cp,q−1
cp,q

((µ+ ρ)(H)
2 + q − 1

)
+ cp,q+1

cp,q
λp,q+1(q + 1)(µ(H)− ρ(H)− 2q)

+ 2(q − p).

We claim that ηp,q = 0. Indeed, by Remark D.3.2 and the definition of λp,q we obtain

(−i)ηp,q = p

n+ p+ q − 1

((µ+ ρ)(H)
2 + p− 1

)
− n+ p+ q

p+ 1 λp+1,q(p+ 1)(µ(H)− ρ(H)− 2p)

− q

n+ p+ q − 1

((µ+ ρ)(H)
2 + q − 1

)
+ n+ p+ q

q + 1 λp,q+1(q + 1)(µ(H)− ρ(H)− 2q) + 2(q − p)

= p

n+ p+ q − 1

((µ+ ρ)(H)
2 + p− 1

)
− n+ p− 1

2(p+ q + n− 1)(µ(H)− ρ(H)− 2p)

− q

n+ p+ q − 1

((µ+ ρ)(H)
2 + q − 1

)
+ n+ q − 1

2(p+ q + n− 1)(µ(H)− ρ(H)− 2q) + 2(q − p)

= 0,
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where we used ρ(H) = n for the last equality. Let us finally prove that the error terms
converge to zero when tested against some test function ϕ ∈ C∞c (G)M . We first prove
that ∫

G

∂π∗Yp,q(f)(g)
∂zj

(e1)ϕ(g) dg → 0 (D.4.12)

for p, q →∞. Lemma D.2.1 yields

(z1
∂

∂zj
− zj

∂

∂z1
)π∗Yp,q(f)(g) = −1

2(τp,q(Ej1 − E1j , 0)− iτp,q(iEj1 + iE1j , 0))π∗Yp,q(f)(g)

and thus, by Proposition 2.4.4 ii) and iii),
∂π∗Yp,q (f)(g)

∂zj
(e1) equals

−1
2〈(τp,q(Ej1 − E1j , 0)− iτp,q(iEj1 + iE1j , 0))π∗Yp,q(f)(g), φYp,q〉dimYp,q.

Thus,∫
G

∂π∗Yp,q(f)(g)
∂zj

(e1)ϕ(g) dg

= − dimYp,q
2 〈(

∫
G
τp,q(Ej1 − E1j , 0)− iτp,q(iEj1 + iE1j , 0))π∗Yp,q(f)(g)ϕ(g) dg, φYp,q〉.

Taking absolute values on both sides and using the Cauchy-Schwarz inequality we infer

|
∫
G

∂π∗Yp,q(f)(g)
∂zj

(e1)ϕ(g) dg|

≤ dimYp,q
2 |〈

∫
G
τp,q(Ej1 − E1j , 0)π∗Yp,q(f)(g)ϕ(g) dg, φYp,q〉|

+ dimYp,q
2 |〈

∫
G
τp,q(iEj1 + iE1j , 0)π∗Yp,q(f)(g)ϕ(g) dg, φYp,q〉|

= dimYp,q
2 |〈

∫
G
r(E1j − Ej1, 0)π∗Yp,q(f)(g)ϕ(g) dg, φYp,q〉|

+ dimYp,q
2 |〈

∫
G
r(−iEj1 − iE1j , 0)π∗Yp,q(f)(g)ϕ(g) dg, φYp,q〉|

= dimYp,q
2 |〈

∫
G
π∗Yp,q(f)(g)r(Ej1 − E1j , 0)ϕ(g) dg, φYp,q〉|

+ dimYp,q
2 |〈

∫
G
π∗Yp,q(f)(g)r(iEj1 + iE1j , 0)ϕ(g) dg, φYp,q〉|

= dimYp,q
2 ‖

∫
G
π∗Yp,q(f)(g)r(Ej1 − E1j , 0)ϕ(g) dg‖L2(K)‖φYp,q‖L2(K)

+ dimYp,q
2 ‖

∫
G
π∗Yp,q(f)(g)r(iEj1 + iE1j , 0)ϕ(g) dg‖L2(K)‖φYp,q‖L2(K)

=
√

dimYp,q
2 ‖

∫
G
π∗Yp,q(f)(g)r(Ej1 − E1j , 0)ϕ(g) dg‖L2(K)
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+
√

dimYp,q
2 ‖

∫
G
π∗Yp,q(f)(g)r(iEj1 + iE1j , 0)ϕ(g) dg‖L2(K)

≤
√

dimYp,q
2 sup

k∈K
|
∫
G
π∗Yp,q(f)(g)(k.e1)r(Ej1 − E1j , 0)ϕ(g) dg|

+
√

dimYp,q
2 sup

k∈K
|
∫
G
π∗Yp,q(f)(g)(k.e1)r(iEj1 + iE1j , 0)ϕ(g) dg|

≤
√

dimYp,q
2 sup

k∈K
|
∫
G
π∗Yp,q(f)(g)(e1)r(Ej1 − E1j , 0)ϕ(gk−1) dg|

+
√

dimYp,q
2 sup

k∈K
|
∫
G
π∗Yp,q(f)(g)(e1)r(iEj1 + iE1j , 0)ϕ(gk−1) dg|.

Now the functions r(Ej1−E1j , 0)ϕ(• k−1) and r(iEj1 + iE1j , 0)ϕ(• k−1) are again smooth
and compactly supported and by Remark 7.2.2 and the polynomial growth of dimYp,q
(see Remark A.2.3) and ‖πYp,q(π∗Yp,q(f))‖L2(G) we obtain (D.4.12). The convergence of
the remaining error terms can be treated in an analogous manner.

Proposition D.4.8. Let µ ∈ a∗ and fp,q ∈ πYp,q(C∞(G ×K Yp,q)) be such that f =∑
p,q∈N0 fp,q ∈ D

′(G/M). Then f ∈ H−∞µ if and only if the equations from Lemma D.4.2
hold for f .
Proof. The if-part follows from Lemma D.4.5 and Lemma D.4.7. The only-if-part is given
by Lemma D.4.2.

Let us finally mention that, using the embeddings πYp,q from Definition D.4.1, the
generalized gradients d+,(a)hol and −d−,(a)hol are adjoint with respect to the L2-inner
product.
Lemma D.4.9. For up,q ∈ C∞c (G×K Yp,q) we have

〈πYp,q(up,q), πYp,q(d+,holup−1,q)〉L2(G) = −〈πYp−1,q(d−,holup,q), πYp−1,q(up−1,q)〉L2(G)

〈πYp,q(up,q), πYp,q(d+,aholup,q−1)〉L2(G) = −〈πYp,q−1(d−,aholup,q), πYp,q−1(up,q−1)〉L2(G)

for each ua,b ∈ C∞c (G×K Ya,b) whenever no index is negative.
Proof. The orthogonality of the Yp,q implies that

〈πYp,q(up,q), πYp′,q′ (up′,q′)〉L2(G) = 0

for (p, q) 6= (p′, q′) ∈ N2
0 by splitting the integral into G/K and K. Using Lemma D.4.4

we thus obtain
〈πYp,q(up,q), πYp,q(d+,holup−1,q)〉L2(G) = 〈πYp,q(up,q), r(H)πYp−1,q(up−1,q)〉L2(G).

The right invariance of the Haar measure on G implies that
〈πYp,q(up,q), r(H)πYp−1,q(up−1,q)〉L2(G) = −〈r(H)πYp,q(up,q), πYp−1,q(up−1,q)〉L2(G).

Another application of Lemma D.4.4 and the orthogonality gives
−〈r(H)πYp,q(up,q), πYp−1,q(up−1,q)〉L2(G) = −〈πYp−1,q(d−,holup,q), πYp−1,q(up−1,q)〉L2(G).

This proves the first equation and the second is proven analogously.

211



D. An example: G = SU(n, 1), n ≥ 2

D.5. Spectral correspondence
Without using Theorem 6.1.1, we can still determine constraints on the location of
Γ-invariant elements using only the mapping properties of the scalar Poisson transform
and the relations between the Fourier coefficients from Lemma D.3.1.

Proposition D.5.1. Let µ := −ρ−2kα ∈ a∗, for some k ∈ N0, be an exceptional spectral
parameter (see Lemma 5.2.4). Then

P Yp,qµ (f) = 0 ∀(p, q) ∈ {0, . . . , k}2, f ∈ ΓH−∞µ .

Proof. Note first that the scalar Poisson transform P
Y0,0
µ maps H−∞µ into

{f ∈ C∞(CHn) : ∆f = (ρ(H)2 − µ(H)2)f},

where ∆ denotes the Laplacian. Thus, ΓH−∞µ is mapped into

{f ∈ C∞(Γ\CHn) : ∆f = (ρ(H)2 − µ(H)2)f}, (D.5.13)

by identifying ΓC∞(CHn) ∼= C∞(Γ\CHn). Since Γ\CHn is a smooth compact Rieman-
nian manifold the positivity of the Laplacian and

ρ(H)2 − µ(H)2 = −4kρ(H)− 4k2 < 0 if k 6= 0

imply that the space in Equation (D.5.13) is the zero space if k 6= 0 and P Y0,0
µ

∣∣∣
ΓH−∞µ

= 0
in this case. Let us prove the same equality for k = 0, i.e. µ = −ρ. In this case we have
ρ(H)2 − µ(H)2 = 0 so that P Y0,0

µ (f) is constant as a harmonic function on a compact
Riemannian manifold. The fourth equation of Lemma D.3.1 for p = 1, q = 0 shows that

(d−,hol ◦ P
Y1,0
µ )(f) = −P Y0,0

µ (f)

and we obtain by Lemma D.4.9 that

‖πY0,0(P Y0,0
µ (f))‖2L2(G) = −〈πY0,0(d−,holP

Y1,0
µ (f)), πY0,0(P Y0,0

µ (f))〉L2(G)

= 〈πY1,0(P Y1,0
µ (f)), πY1,0(d+,holP

Y0,0
µ (f))〉L2(G)

= 0,

where we used d+,holP
Y0,0
µ (f) = 0 since P Y0,0

µ (f) is constant and d+,hol is a differential
operator. Thus, πY0,0(P Y0,0

µ (f)) = 0 and, since πY0,0 is injective, P Y0,0
µ (f) = 0.

Finally the first two equations of Lemma D.3.1 read

(d+,hol ◦ P Yp,qµ )(f) = (p− k)P Yp+1,q
µ (f)∀p, q ∈ N0,

(d+,ahol ◦ P Yp,qµ )(f) = (q − k)P Yp,q+1
µ (f) ∀p, q ∈ N0,

and the proposition follows by recursion.
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We now turn to the spectral correspondence. To make the description clearer, we
introduce the following rescaled versions of the generalized gradients.

Notation D.5.2. For each p, q ∈ N0 we define the generalized gradients

d̃+,hol := 2(p+ q + n− 1)(p+ q + n)d+,hol, d̃−,hol := 1
p(n+ p− 2)d−,hol,

d̃+,ahol := 2(p+ q + n− 1)(p+ q + n)d+,ahol, d̃−,ahol := 1
q(n+ q − 2)d−,ahol

on C∞(G×K Yp,q). Moreover, we define the constants ξ1
p,q, ξ

2
p,q, ξ

3
p,q and ξ4

p,q by

ξ1
p := 1

2(µ(H)2 − (ρ(H) + 2(p− 1))2),

ξ2
p := 1

2(µ(H)2 − (ρ(H) + 2p)2),

ξ3
q := 1

2(µ(H)2 − (ρ(H) + 2q)2),

ξ4
q := 1

2(µ(H)2 − (ρ(H) + 2(q − 1))2).

Lemma D.5.3. Let µ ∈ a∗ and f ∈ H−∞µ . Then

d̃+,hold̃−,holπ
∗
Yp,q(f) = ξ1

pπ
∗
Yp,q(f)

d̃−,hold̃+,holπ
∗
Yp,q(f) = ξ2

pπ
∗
Yp,q(f)

d̃−,ahold̃+,aholπ
∗
Yp,q(f) = ξ3

qπ
∗
Yp,q(f)

d̃+,ahold̃−,aholπ
∗
Yp,q(f) = ξ4

qπ
∗
Yp,q(f)

d̃+,hold̃+,aholπ
∗
Yp,q(f) = d̃+,ahold̃+,holπ

∗
Yp,q(f)

d̃−,hold̃+,aholπ
∗
Yp,q(f) = d̃+,ahold̃−,holπ

∗
Yp,q(f)

d̃+,hold̃−,aholπ
∗
Yp,q(f) = d̃−,ahold̃+,holπ

∗
Yp,q(f)

d̃−,hold̃−,aholπ
∗
Yp,q(f) = d̃−,ahold̃−,holπ

∗
Yp,q(f).

Proof. This follows from Lemma D.4.2.

Theorem D.5.4 (Quantum-classical correspondence for exceptional spectral parameters).
Let µ := −ρ − 2kα ∈ a∗, for some k ∈ N0, be an exceptional spectral parameter (see
Lemma 5.2.4). Recall the irreducible subrepresentation Ik of Hµ from Lemma B.3.2. By
Proposition 5.2.6, the minimal K-type of Ik is given by Yk+1,k+1. Then the map

P
Yk+1,k+1
µ

∣∣∣
ΓH−∞µ

: ΓH−∞µ → HC,

where HC denotes the space

{u ∈ ΓC∞(G×K Yk+1,k+1) | properties i)− vii)},

is an isomorphism, where the properties are given by
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i) d̃+,hold̃q+,ahold̃
p
+,holu = d̃q+,ahold̃

p+1
+,holu ∀(p, q) ∈ N0 × N,

ii) d̃−,hold̃q+,ahold̃
p
+,holu = ξ2

k+pd̃
q
+,ahold̃

p−1
+,holu ∀(p, q) ∈ N× N0,

iii) d̃−,ahold̃q+,ahold̃
p
+,holu = ξ3

k+qd̃
q−1
+,ahold̃

p
+,holu ∀(p, q) ∈ N0 × N,

iv) d̃−,ahold̃p+,holu = d̃p+,hold̃−,aholu ∀p ∈ N0,

v) Djd̃q+,ahold̃
p
+,holu = 0 ∀(p, q) ∈ N2

0, q ∈ {1, 2},

vi) d−,aholu = 0,

vii) d−,holu = 0.

Moreover, we have

HC ∼= ΓI−∞k ,

where ΓI−∞k denotes the Γ-invariant distribution vectors in Ik.

Proof. The proof is separated into the following steps:

i) im
(
P
Yk+1,k+1
µ

∣∣∣
ΓH−∞µ

)
⊆ HC,

ii) P Yk+1,k+1
µ

∣∣∣
ΓH−∞µ

is injective, and

iii) im
(
P
Yk+1,k+1
µ

∣∣∣
ΓH−∞µ

)
= HC.

i) The properties i) − v) follow from Lemma D.5.3 respectively Lemma D.4.2. For
property vi) note that

d−,aholP
Yk+1,k+1
µ (f)

is a multiple of P Yk+1,k
µ (f) by Lemma D.4.2 and Proposition D.5.1 implies that P Yk+1,k

µ (f)
is zero. Property vii) follows from an analogous argument.

ii) The injectivity follows from Proposition 5.1.3 since Irr(µ) = {Ik} by Lemma B.3.2
and multK(Yk+1,k+1, Ik) = 1 6= 0.
iii) For the surjectivity let u ∈ HC. Recall the constants cp,q ∈ C \ {0} from

Remark D.3.2. Define up,q := 0 for (p, q) ∈ N0 × {0, . . . , k} ∪ {0, . . . , k} × N0 and
uk+1,k+1 := ck+1,k+1 · u. Fitting the equations from Lemma D.4.2 we recursively define

uk+1+`,k+1 := ck+1+`,k+1
ck+`,k+1

1
`
d+,holuk+`,k+1

for ` ∈ N and

up,k+1+` := cp,k+1+`
cp,k+`

1
`
d+,aholup,k+`
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for ` ∈ N and p ∈ N≥k+1. Let f denote the formal sum

f :=
∑

p,q∈N0

πYp,q(up,q). (D.5.14)

We claim that f defines a distribution and that the equations from Lemma D.4.2 hold
for f . Then Proposition D.4.8 implies that f ∈ H−∞µ and by construction (recall
P
Yp,q
µ = 1

cp,q
π∗Yp,q from Section D.4) we have

P
Yk+1,k+1
µ (f) = 1

ck+1,k+1
uk+1,k+1 = u,

finishing the proof of iii) (note that f is Γ-invariant since u is Γ-invariant and the
generalized gradients are G-equivariant).

Let us finally prove the claim. First, a straightforward calculation using the definition
of the up,q and Notation D.5.2 yields that

up,q = cp,q
1

m1!m2! d̃
m2
+,ahold̃

m1
+,holu ·

1
2m1+m2(p+ q + n− 1)(2k + n+ 1)∏p+q−2

`=2k+2(`+ n)2
,

where m1 := p− (k + 1) and m2 := q − (k + 1). Using this formula it is now direct to
see that the properties i)− vii) ensure that the equations from Lemma D.4.2 hold for
each up,q. For a proof of the fact that f defines a distribution, we refer the reader to
Lemma 8.2.2.
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