
Faculty for Computer Science, Electrical Engineering and Mathematics
Department of Computer Science
Research Group Secure Software Engineering

Adapting Taint Analyses for
Detecting Security Vulnerabilities

by
Goran Piskachev

Doctoral Thesis
Submitted in partial fulfillment of the requirements for the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

Advisor:
Prof. Dr. Eric Bodden

Paderborn, February 1, 2023





Abstract. The first applications of static code analysis established the foundation
for compiler optimization techniques. Recently, applications in detecting security vul-
nerabilities have gained attention, especially in industry, where security has become
more relevant for most digital companies. With that, static analysis tools, first mostly
known for code refactoring and code-smell detection, evolved into so-called, static anal-
ysis security testing (SAST) tools. Many existing SAST tools use as their core engine
a taint analysis that can be configured to detect different security vulnerabilities.
Previous empirical studies on static analysis tools reported that users face usability
issues due to many false warnings, missing essential findings, or long-running times.
However, if the users configure the tools properly, these issues can be avoided. Many
tool vendors enable the tool configuration via specification of custom taint-flow in
domain-specific languages. However, the configuration is a manual step, which re-
quires highly skilled users, who need (1) knowledge of the static analysis, (2) a good
understanding of the target program being analyzed, and (3) a solid understanding
of security vulnerabilities. In practice, the users have different backgrounds (software
developers, software architects, security experts, managers), and lack at least one of
these requirements. Therefore, when used, the tools run primarily in their default
configurations leading to the usability issues stated earlier, resulting in low acceptance
and low popularity among the users.
In this thesis, we propose methods and tools that (semi-)automate the adaptation of
taint analysis to the target programs and enable a broader range of users to configure
the tools according to their needs. In particular, we focus on software developers as
primary users, and security engineers as secondary users.
Initially, we conduct an empirical study to understand better the needs of the users
who already have experience with taint analysis or SAST tools. Our study con-
firms that the users’ background is diverse, yet most users are motivated to interact
with the SAST tools to configure and adapt them to the target program. Based on
this, we propose SWAN, a fully automatic machine-learning approach for inferring
security-relevant methods from the target program required for the specification of
taint-flows. Our experimental results show that SWAN achieves high precision and
recall for a set of popular security vulnerability types. Its limitations can be improved
via SWANAssist, a semi-automated active machine-learning approach that incorpo-
rates feedback from the user to improve the results of SWAN. Finally, to provide a
usable way for configuring the taint analysis with new security vulnerabilities, we pro-
pose fluentTQL, the first developer-oriented domain-specific language for specifying
taint-flows. In a user study, fluentTQL shows to have excellent usability in compar-
ison to a commercial state-of-the-art DSL, CodeQL. fluentTQL is independent of
the underlying taint analysis and is implemented as part of SecuCheck, our taint
analysis tool running in multiple integrated development environments, as preferred
by most software developers, confirmed in our empirical study.
The achieved results move forward the design and use of taint analysis tools. We show
that the adaptation of the tools can be improved for the end users via machine-learning
and user-centric design.



Zusammenfassung. Die ersten Anwendungen der statischen Codeanalyse bildeten die Grund-
lage für Compiler-Optimierungstechniken. Seit den letzten Jahren haben Anwendungen zum
Aufspüren von Sicherheitslücken an Aufmerksamkeit gewonnen, vor allem in der Industrie, wo
die Sicherheit für die meisten digitalen Unternehmen an Bedeutung gewonnen hat. Damit haben
sich die statischen Analysewerkzeuge, die zunächst vor allem für Code-Refactoring und Code-
Smell-Erkennung bekannt waren, zu so genannten Static Analysis Security Testing (SAST)-
Werkzeugen entwickelt. Viele bestehende SAST-Tools verwenden als Kern eine Taint-Analyse,
die so konfiguriert werden kann, dass sie verschiedene Sicherheitslücken erkennt.

Frühere empirische Studien über statische Analysewerkzeuge berichteten, dass Benutzer
aufgrund einer hohen Anzahl falscher Warnungen, fehlender wichtiger Ergebnisse oder langer
Laufzeiten Probleme mit der Benutzerfreundlichkeit haben. Wenn die Benutzer die Werkzeuge
richtig konfigurieren, können diese Probleme vermieden werden. Viele Tool-Anbieter ermöglichen
die Tool-Konfiguration über die Spezifikation eines benutzerdefinierten Taint-Flows in domä-
nenspezifischen Sprachen. Diese Konfiguration ist jedoch ein manueller Schritt, der hochquali-
fizierte Benutzer erfordert, die (1) Kenntnisse in statischer Analyse, (2) ein gutes Verständnis des
zu analysierenden Zielprogramms und (3) ein solides Verständnis von Sicherheitslücken haben
müssen. In der Praxis haben die Benutzer unterschiedliche Hintergründe (Software Entwick-
ler, Softwarearchitekten, Sicherheitsexperten, Manager) und ihnen fehlt mindestens eine dieser
Voraussetzungen. Daher laufen die Tools bei ihrer Verwendung meist in ihren Standardkonfig-
urationen, was zu den bereits erwähnten Problemen mit der Benutzerfreundlichkeit führt und
eine geringe Akzeptanz und Beliebtheit bei den Benutzern zur Folge hat.

In dieser Arbeit schlagen wir Methoden und Werkzeuge vor, die die Anpassung der Taint-
Analyse an die Zielprogramme (halb-)automatisieren und es einem breiteren Benutzerkreis er-
möglichen, die Werkzeuge nach ihren Bedürfnissen zu konfigurieren. Insbesondere konzentrieren
wir uns auf Softwareentwickler als primäre Nutzer sowie auf Sicherheitsingenieure als sekundäre
Nutzer. Zunächst führen wir eine empirische Studie durch, um die Bedürfnisse der Benutzer
besser zu verstehen, die bereits Erfahrung mit Taint-Analyse oder SAST-Tools im Allgemeinen
haben. Unsere Studie bestätigt, dass der Hintergrund der Benutzer unterschiedlich ist, die
meisten Benutzer jedoch motiviert sind, mit den SAST-Tools zu interagieren, um sie zu kon-
figurieren und an das Zielprogramm anzupassen. Auf dieser Grundlage schlagen wir SWAN
vor, einen vollautomatischen maschinellen Lernansatz zur Ableitung sicherheitsrelevanter Meth-
oden aus dem Zielprogramm, die für die Spezifikation von Taint-Flows erforderlich sind. Unsere
experimentellen Ergebnisse zeigen, dass SWAN eine hohe Präzision und Wiedererkennung für
eine Reihe von populären Sicherheitslücken erreicht. Seine Grenzen können durch SWANAssist,
einen halbautomatischen Ansatz für aktives maschinelles Lernen, verbessert werden, der das
Feedback des Benutzers einbezieht, um die Ergebnisse von SWAN zu verbessern. Schließlich
schlagen wir fluentTQL vor, die erste entwicklerorientierte, domänenspezifische Sprache zur
Spezifikation von Taint-Flows, um die Taint-Analyse mit neuen Sicherheitsschwachstellen zu
konfigurieren. In einer Nutzerstudie hat sich fluentTQL im Vergleich zu einer kommerziellen
State-of-the-Art-DSL, CodeQL, als exzellent benutzbar erwiesen. fluentTQL ist unabhängig
von der zugrundeliegenden Taint-Analyse und wird als Teil von SecuCheck implementiert,
unserem Taint-Analyse-Tool, das in mehreren integrierten Entwicklungsumgebungen läuft.

Die erzielten Ergebnisse bringen das Design und den Einsatz von Taint-Analyse-Tools voran.
Wir zeigen, dass durch maschinelles Lernen und benutzerzentriertes Design die Anpassung der
Werkzeuge für die Endbenutzer verbessert werden kann.
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Introduction
1

In our highly digitalized world, software is being used daily by many users storing and sharing
sensitive data, e.g. personal information or digital business assets. Securing users’ data is be-
coming a functional requirement in many software development companies. In many domains,
this requirement is enforced by national and international regulations, such as GDPR1. More-
over, software development is becoming highly automated. To stay competitive, companies use
automated tools for security testing. One such group of tools is Static Application Security
Testing (SAST) tools, e.g., CheckMarx [Che20a], LGTM/Semmle [Git21b], SonarQube[Son21],
and CodeSonar [Gra21]. These tools analyze the program without executing it [NNH99] and can
reason about possible security flows, i.e., data-flows related to security vulnerabilities. At its
core, many SAST tools use a data-flow analysis technique called taint analysis. Taint analysis
tracks data-flow information among program statements starting from statements that create
sensitive information, such as user inputs, named sources that reach program statements per-
forming security-critical tasks, such as database insertion, called sinks. A generic taint analysis
tool requires user-defined source/sink specifications with data-flow propagation rules to find
different security vulnerabilities, like SQL injection (SQLi) [Mit21c] and Cross-site Scripting
(XSS) [Mit21b]. In this thesis, we propose methods and tools for the users of taint analysis that
enable automation and improved creation and maintenance of security vulnerability specifica-
tions.

1.1 Motivating Example

To demonstrate the application of taint analysis in SAST context, we use the program in List-
ing 1.1 containing a code snippet of an HTTP-handler method from a given Java enterprise
application. The method doGet receives the HTTP request object, reads the provided user’s ID
stored as a parameter value in the request object, queries the SQL database for the user data,
and constructs a URL link which is sent to the client to be redirected. In Line 3, the value of
the request parameter enters the program as a return value of the method call getParameter
and should be considered as untrusted data. A taint analysis declares this statement as source,
triggering the start of the taint tracking. If the analysis is unaware of the encoder encodeForSQL
in Line 4, it will follow the data-flow through Lines 4 and 6, reporting a false warning of type
SQLi [Mit21c] vulnerability at Line 7, where the taint reaches the sink, the method call execute-

1https://gdpr-info.eu/
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1.2 Problem Statement

Query. Following the taint via Line 8, it reaches a second sink, the method call sendRedirect
where an actual vulnerability is reported of type Open Redirect [Mit21d].

1 protected void doGet( HttpServletRequest request , HttpServletResponse
response ) throws ServletException , IOException {

2 try {
3 String userId = request . getParameter (’userId ’);
4 userId = ESAPI. encoder (). encodeForSQL (new MySQLCodec (), userId );
5 Statement st = conn. createStatement ();
6 String query = " SELECT * FROM User WHERE userId =’" + userId + " ’;";
7 ResultSet res = st. executeQuery (query);
8 String url = "https ://" + userId + "." + +res. getString (1) +

". company .com";
9 response . sendRedirect (url);

10 } catch ( Exception e) { ... }
11 }

Listing 1.1: Potential SQL injection (from l.3 to l.7) and open redirect (from l.3 to l.9).

1.2 Problem Statement

All security vulnerabilities that are detectable by a taint analysis, such as SQLi and Open Redi-
rect from the previous example, are called taint-style vulnerabilities. Numerous known security
vulnerabilities are taint-style. In OWASP top-10 from 2017 [OWA21], five (A1, A3, A4, A7,
and A8) out of ten vulnerabilities are taint-style. To cover as many security vulnerabilities as
possible, most SAST tools consist of a taint analysis that runs on a transformed simplified form
of the target program. As shown in Figure 1.1, the taint analysis is designed in a generic manner,
i.e., it is not specific to any security vulnerability. Apart from the target program the taint anal-
ysis accepts a set of security vulnerability specifications as an input. These specifications guide
the taint analysis to detect taint-flows that are reported as potential security vulnerabilities.
Such a generic design allows a separation of concerns [SVC06]. On the one hand, static anal-
ysis experts can easily maintain and extend the taint analysis independently from the security
domain. Their concern on the programming language design can be easily addressed within the
taint analysis, e.g., when new abstractions are introduced to the supported language, such as
lambda expression in Java version 82. On the other hand, security experts do not need to know
the internals of the taint analysis. Their concern is how to express new security vulnerabilities
into new specifications for the taint analysis.

Another stakeholder, having one of the central roles in this thesis as a user of the SAST
tools, is the software developer. The software developers are neither experts in the static analysis
nor in security. However, they are the experts of the target program and work with the results
reported from the SAST tools. Hence, the quality of the results is highly relevant. We identify
the first challenge of this thesis.
Challenge 1 Understand how software developers use the SAST tools in practice, focusing on
taint-style security vulnerabilities.

A generic taint analysis is aware of the data-flow concepts for propagating the taint-flow
within the program’s simplified form, including particular statements such such as sources and
sinks. In Line 3 from Listing 1.1, knowing that the return value of getParameter is tainted,
the analysis propagates the taint to the left-hand side of the assignment statements by tainting

2https://www.oracle.com/java/technologies/javase/8-whats-new.html
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Chapter 1. Introduction

target program

specification 

taint analysis

source

sink

source

sink

taint-flow

Figure 1.1: Overview of a generic taint analysis

the local variable userId. However, the generic taint analysis is unaware of any security-related
information, for instance, security-relevant methods (SRM) that include source, sinks, and san-
itizers. In the previous example, for only reporting the actual vulnerability Open Redirect, the
taint analysis should be aware that:

• the return value of getParameter is tainted for both SQLi and Open Redirect

• if the second parameter of encodeForSQL is tainted, then the return value is not tainted
anymore only for SQLi, making it a vulnerability-specific sanitizer

• the first parameter of executeQuery is a SQLi-specific sink

• the first parameter of sendRedirect is an Open Redirect-specific sink

To cover multiple vulnerability types, the taint analysis accepts specifications for security vul-
nerabilities created manually by mainly security experts. These specifications can be of different
forms - from simple hard-coded lists of sources and sinks [ARF+14] to basic pattern-based entries
in XML/JSON format [Gmb, Spo] or domain-specific languages (DSLs) with different expressiv-
ity targeting different types of users [Git21a, Che20b]. Creating and maintaining the vulnerabil-
ity specifications requires expertise in the security domain and a good understanding
of the specification language. However, even when created by security experts, the results
still contain false warnings, as recent empirical studies show [CB16, JSMHB13, SJMH+15].

Creating complete specifications for known vulnerabilities is practically impossible due to
the vast number of software components used in real-world applications. SAST tools provide
only limited support for relevant libraries and frameworks. An analysis that is unaware of the
ESAPI library 3 used to encode the SQL query in Listing 1.1 will not report a false warning to
the user. Compared to technical false warnings caused by over-approximations in the data-flow
analysis (e.g., call graph construction or points-to analysis), these are contextual false warnings
and can be avoided by adapting the vulnerability specifications to the target program, which
often is the codebase in which the software developer currently works. Running a taint analysis
on real-world applications requires codebase-adaptations to the specifications. Motivated
by the need for automation of extracting security-relevant information from arbitrary codebases,
we identify the second challenge.

3https://owasp.org/www-project-enterprise-security-api/
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Challenge 2 Automate the extraction of security-relevant information, e.g., sources and sinks,
from an arbitrary codebase that is needed in the security vulnerability specifications.

The users of the SAST tools have diverse backgrounds and expertise. One of the most
studied profiles of users has been software developers [SNQDMH20, CB16, SJMH+15, JSMHB13,
SAE+18, NQDWA20, WZW+15]. They have reported that SAST tools should be well integrated
into the development workflow and detect relevant results with as few false positives and false
negatives as possible. As seen earlier in the example from Listing 1.1, the information about
the ESAPI library might be missing in the existing specifications. The software developers
who know the codebase very well can easily adapt the specifications. For this task, domain-
specific languages (DSLs) are provided by some SAST tools, e.g., CodeQL is the DSL of the
LGTM/Semmle tool [Git21b]. To our knowledge, the existing DSLs are designed for static
analysis experts and require domain knowledge that most software developers do not have.
Hence, the last challenge of this thesis targets this issue.
Challenge 3 Improve the usability of the taint analyses for software developers to enable them
in adapting the security vulnerability specifications.

Finally, this thesis addresses the problem of creating and adapting security vulnerability
specifications used by taint analyses on real-world codebases. The usage scenario in which we
address this problem is when the taint analysis runs within the IDE. Based on the identified
challenges, we formulate the following hypothesis, addressed by the contributions introduced in
the following section.

The existing taint analyses will detect more relevant security vulnerabilities, i.e., fewer
false positives and false negatives for the users when they are adapted to the codebase and
the users’ needs.

1.3 Contributions

Figure 1.2 gives an overview of the contributions of this thesis. To better understand how
taint analysis and, in general, SAST tools are used in practice (addressing Challenge 1),
we conducted an empirical study (Contribution 1) consisting of an online survey, interviews,
and a user study with semi-structured interviews. Even though our primary stakeholders are
software developers, as shown in the upper part of Figure 1.2, the empirical study also targets
other relevant stakeholders, such as static analysis experts and security experts, to address the
viewpoints of other users of SAST tools.

Each technique in our user study addresses different aspects. First, we conducted an exten-
sive study consisting of an online survey and interviews. The study, which focuses on the secure
software development practices in German companies, included a section on SAST tools to
understand how different stakeholders use the tools and their expectations. Through the online
survey, we collected valid responses from 256 participants, of which 155 completed the section on
SAST tools. The interviews were conducted with 17 experts (product owners, managers, and
architects) from German companies to understand better the internal regulations and policies
for using SAST tools. Second, we conducted a between-subjects design experiment [CGK12]
with 40 software developers, followed by semi-structured interviews to find out what configu-
ration parameters enable them to resolve taint-style vulnerabilities more effectively. The study
shows that users who engage in the tool configuration are more effective than those using only
the default configuration.
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1.3 Contributions

Through the empirical study, we learned that users, in particular software developers, are
willing to interact with the SAST tools to get better results for their codebases while better
understanding how the analysis works. This study result motivates the need for new methods
and tools that enable the users to adapt the taint analysis to their needs and context.

The following contribution is a machine-learning (ML) approach for fully automatic de-
tection of SRM, named SWAN4 (Contribution 2). SWAN extends the existing approach
SuSi [ARB13] which classifies Android methods into potential sources and sinks based on source
code information such as method signature information and intra-procedural data-flow informa-
tion. Compared to Susi, SWAN has (1) an extended list of ML-features, (2) is general to any
Java codebase, (3) apart from sources and sinks, additionally classifies methods into validators
such as sanitizers and authentication methods, and (4) performs classification of the SRM into
specific vulnerability types. In our motivating example, SWAN will classify the method getPa-
rameter into a potential source for SQLi and Open Redirect, the method encodeForSQL into a
potential sanitizer for SQLi, the method executeQuery into a potential sink for SQLi, and the
method sendRedirect into a potential sink for Open Redirect.

While SWAN reaches high precision and recall for SRM classification, the classification into
security vulnerabilities is more context-dependent and shows lower precision and recall. This
is addressed by SWANAssist (Contribution 3). SWANAssist is an active ML-approach that
fully engages the user in training the classifier with a small sample of data. It uses SWAN in
multiple iterations where users can use a tool in the IDE to label new training data or re-label
an existing data that is falsely labeled. SWANAssist tool is accompanied by SWANSuggest, an
algorithm that selects non-labeled data from the codebase for the user to label manually, which
will significantly impact the overall classifier. Using SWANSuggest compared to a random
selection of methods, users need less manual labeling to reach higher precision and recall. Both
SWAN and SWANAssist address Challenge 2.

The SRM detected by SWAN and SWANAssist are helpful only when correctly used by the
generic taint analysis. General propagation rules, such as "return value of the source is always
tainted" can be used and may lead to some results, such as data leaks in Android with Flow-
Droid [ARF+14], but SAST tools require more customizations as they tend to support multiple
vulnerabilities. Hence, SRM are combined with propagation rules to form different vulnerabil-
ity specifications. While many existing SAST tools have a DSL for the specifications, existing
studies [SNQDMH20], including our empirical study, show that these DSLs are designed for
experts and are rarely used by software developers due to their complexity. To address this, we
propose fluentTQL, an internal Java DSL for specification of rules for taint-style vulnerabilities
(Contribution 4). fluentTQL has operational semantics independent of the underlying taint
analysis. To demonstrate its versatility, we instantiate fluentTQL in two existing taint analysis
solvers, Boomerang [SAB19] and FlowDroid [ARF+14].

SecuCheck is the final contribution, a taint analysis tool allowing developers to use flu-
entTQL specifications on top of the Boomerang solver or the FlowDroid solver (Contribution
5). Using the Magpie Bridge [LDB19] framework, SecuCheck can be used among many exist-
ing IDEs and provides a user interface for further customizations. An initial version of the tool
was used in the user study introduced within the first contribution earlier. Using the customiza-
tions of entry points and security specifications, we use SecuCheck to identify the runtime
factors impacting the Boomerang solver. fluentTQL and SecuCheck address Challenge 3.

4Security methods for WeAkNess detection
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Chapter 1. Introduction

1.4 Overview
While this thesis is best to be read chronologically, the readers may refer only to specific chapters
or sections. The main contributions are detailed in Chapters 3 - 6. Each chapter is self-contained
and provides evaluation evidence for the concepts presented. The survey study and the user
study are covered in Chapter 3. The internal details of the ML approach SWAN are discussed
in Chapter 4. In the following Chapter 5, the readers can gain further details on SWANAssist
and SWANSuggest. The last two contributions fluentTQL and SecuCheck are covered in
Chapter 6. Each of these main chapters discusses and compares relevant existing work. For
background information and fundamentals, the readers can refer to Chapter 2. Final remarks
with summary and conclusions are to be found in Chapter 7.
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Background
2

This chapter provides background information on the main concepts used in the following chap-
ters and should help readers unfamiliar with any of the related areas to familiarize themselves
with the basic terms and easily understand the contributions of this thesis. First, Section 2.1
introduces the concepts from the application security domain and discusses existing methods for
detecting security vulnerabilities. Then, we discuss the relevant terms from static code analysis,
in particular, the area of data-flow analysis (in Section 2.2), and relate them to the application
of detecting security vulnerabilities. Next, in Section 2.3, we introduce the relevant terms from
machine-learning. Finally, we introduce the area of domain-specific languages in Section 2.4.

2.1 Security Vulnerabilities

According to ISO/IEC 27000:20161, a security vulnerability is a weakness of an asset that
can be exploited by one or more threats. Typical assets in software development are users’
personal data, companies’ intellectual property data, etc. When the integrity, confidentiality, or
availability of the assets are affected by a given event, this is classified as a security incident. In
application security, a security incident occurs when the software contains a known or unknown
security vulnerability, which is a poor code design that an attacker may exploit.

Known security vulnerabilities are well-documented by recognized organizations. The Com-
mon Weakness Enumeration (CWE) database2 maintained by the MITRE non-profit ograniza-
tion3, stores known security vulnerabilities under unique identifiers. For example, CWE89 refers
to the popular SQL injection (SQLi) security vulnerability. This CWE defines the behavior of
the design flow, i.e., the program allows untrusted user input to be directly passed to an SQL
query statement and executed, causing a potential SQLi. Hence, the CWE defines a type of
security vulnerability. The CWEs are organized in a hierarchical structure, where one more
concretely defined CWE is a subtype of another more general CWE, e.g., CWE89 is a child of
CWE943, which defines a design flow where untrusted user input is part of a query to a data
store, such as a database. In this thesis, we use the terms CWE and (security) vulnerability
type interchangeably.

The concrete instances of the vulnerability types are known as Common Vulnerabilities
and Exposures (CVE), and similarly to the CWEs, are well-documented 4. For example, the

1https://www.iso.org/standard/66435.html
2https://cwe.mitre.org/index.html
3https://www.mitre.org/
4https://www.cve.org/
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code in Listing 1.1 is a CVE of type CWE89. This thesis uses the terms CVE and (security)
vulnerability interchangeably.

2.1.1 Ranking Lists

Among the security community, the security vulnerabilities are periodically ranked based on
the current popularity and importance. There are two ranking lists often used within the
security community. First, the OWASP organization publishes the OWASP top ten list of
CWEs [OWA21]. Second, the SANS institute publishes the top 25 CWEs [Mit21a]. We used
these lists to select the relevant CWEs that our contributions address. Moreover, we evaluated
how many of the CWEs on these lists can be detected using taint analysis. Table 2.1 shows the
CWEs from the top 25 list from 2019 and our evaluation to express them as a taint analysis
problem. Similarly, in the OWASP top 10, most vulnerability types can be detected with taint
analysis. These vulnerabilities are known as taint-style vulnerabilities. Due to the high number
of popular vulnerabilities being taint-style, many SAST tools are based on a taint analysis, e.g.,
Fortify [Mic20], LGTM [Git21b], CheckMarx [Che20a], Xanitizer [Gmb], etc.

Table 2.1: List of the SANS top 25 CWE [Mit21a] from 2019

CWE Description Taint analysis
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer yes
CWE-79 Improper Neutralization of Input During Web Page Generation yes
CWE-20 Improper Input Validation yes
CWE-200 Information Exposure yes
CWE-125 Out-of-bounds Read no
CWE-89 Improper Neutralization of Special Elements used in an SQL Command yes
CWE-416 Use After Free no
CWE-190 Integer Overflow or Wraparound no
CWE-352 Cross-Site Request Forgery (CSRF) yes*
CWE-22 Improper Limitation of a Pathname to a Restricted Directory yes
CWE-78 Improper Neutralization of Special Elements used in an OS Command yes
CWE-787 Out-of-bounds Write yes
CWE-287 Improper Authentication yes*
CWE-476 NULL Pointer Dereference yes
CWE-732 Incorrect Permission Assignment for Critical Resource no
CWE-434 Unrestricted Upload of File with Dangerous Type yes
CWE-611 Improper Restriction of XML External Entity Reference yes
CWE-94 Improper Control of Generation of Code yes
CWE-798 Use of Hard-coded Credentials yes
CWE-400 Uncontrolled Resource Consumption no
CWE-772 Missing Release of Resource after Effective Lifetime no
CWE-426 Untrusted Search Path yes
CWE-502 Deserialization of Untrusted Data yes
CWE-269 Improper Privilege Management no
CWE-295 Improper Certificate Validation no

* this is specific to the programming language and frameworks

2.1.2 Automatic Detection of Security Vulnerabilities

Program analysis has been used to detect security vulnerabilities automatically. There are two
main areas of program analysis: static and dynamic. The former technique inspects the code
without executing it and is known as white-box testing. The latter technique runs the program
with given inputs, inspects the output without looking into the code and is known as black-box

10



Chapter 2. Background

testing. The advantage of dynamic analysis is that the findings are always true positive, and
the analysis terminates in a reasonable time when the inputs are chosen carefully. However,
choosing the right inputs is a challenging task and is currently an ongoing research topic. Even
with random inputs, dynamic analyses, primarily testing, is the most used method for quality
assurance. The disadvantage of dynamic analyses is that there is no guarantee that all possible
program execution paths have been tested. Therefore, dynamic analyses are insufficient for
specific systems, such as security-critical or safety-critical systems. The disadvantage of dynamic
analyses is the advantage of static analyses. They can guarantee that all possible program
executions satisfy or do not satisfy a given property. Nevertheless, sound static analyses are
computationally expensive, and for real-world programs, often impractical due to long-running
times. To reduce the running times, many analyses introduce sound approximations, which may
introduce false positive results, i.e., the reported finding can never happen when the program is
executed.

In the following, we give a brief overview of the static analysis techniques known from the
literature that have different strategies to approximate the runtime behavior. On the side of
sound and complete techniques, there is model checking [BK08], abstract interpretation [CC77,
Zan02], and symbolic execution [Kin76]. Model checking requires a system model as a state
machine, and it uses temporal logic (e.g., LTL and CTL) to verify if a given property holds for
a given state of the state machine. In practice, this technique is expensive as it requires a state
machine model of the program that can be created by highly skilled experts only. Therefore, it
is used only in safety-critical systems such as aerospace software. Symbolic execution statically
interprets the program using artificially created symbols instead of actual input values. Then,
the expressions with the symbols and the program variables are solved to find the exact values.
Due to path explosion, this technique does not scale well on large programs. Static analysis
with sound approximation is known as abstract interpretation. Its goal is to reason about the
program semantics.

Data-flow analysis is a static analysis technique in which the program is represented as a
control-flow graph. At each node, representing a program statement, the analysis computes the
data facts that hold before and after the node. For each type of node, the analysis writer imple-
ments a so-called flow function which defines how the facts before the statement are transformed
into facts after the statement. This computation runs until a fixed point is reached. Data-flow
analyses can introduce over- and under-approximations. The former causes false positives, while
the latter introduce false negatives. In Section 2.2.1, we cover the basics of data-flow analysis.
Next, we introduce taint analysis as a type of data-flow analysis.

2.2 Taint Analysis

Taint analysis is a type of data-flow analysis that tracks tainted data through the program
statements. Tainted data is carried through the program variables. In Listing 1.1, we can use a
taint analysis to detect the SQLi vulnerability. The return value of the method call getParameter
is untrusted and, therefore, should be considered tainted data. The goal of the analysis is to
check if there is a data-flow path between the variable userID, caring the tainted data, and
any potential method call that gets an SQL statement and executes it, such as the method call
executeQuery. An analysis writer is responsible for implementing the rules for the propagation
of all possible types of statements found in the program. For example, in line 6, Listing 1.1, the
propagation rule should define that if the right-hand side of the assignment statement carries
tainted data, then the variable on the left-hand side should be tainted after that statement is
analyzed. The statement that creates the taint is called a source. The taint analysis should
report a finding to the user if tainted data reaches a predefined statement, called a sink. A
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2.2 Taint Analysis

generic taint analysis can have different applications in the way sources and sinks are chosen.
As seen in the previous section, most vulnerabilities in Table 2.1 can be detected statically with
taint analysis when the correct sources and sinks are selected.

There are several existing taint analyses from the research community. Particularly popular
are the taint analysis tools for analyzing Android apps [ARF+14, WROR18, GdP+15]. These
tools aim at detecting potential data leaks (CWE200) within the app. Since Android is a
framework that can execute apps developed by other developers, it is essential to check if the
app does not process any sensitive information from the device (location, images, device ID, etc.)
maliciously. Hence, marketplaces for Android apps perform static checks before the apps are
accepted and distributed through the marketplace. The sources and sinks in this application are
the standard APIs from the Android platform that enable the apps to process the information
from the device. Typical sources are APIs that provide the calendar entries, contacts, location,
or device IDs, whereas sinks are APIs for storing data into shared preferences, sending messages,
logging data to files, or Bluetooth communication.

Similarly, web applications, in practice, are developed within frameworks, such as Spring [Spr]
and Struts [Apaf], or JavaEE [Ora]. Developers implement the application’s business logic in
isolated controllers executed in a predefined lifecycle by the framework. Hence, these controllers
should be checked against any potential security vulnerabilities. Compared to Android, the
number of potential sources and sinks is more significant since, in the web domain, developers
use many third-party libraries, which may contain new sources and sinks. Few research tools
have been published in this area as well [TPF+09, AFK+20].

2.2.1 Data-flow Analysis

Data-flow analysis is a technique for gathering information about possible values of given points
in the program. Typically, the program’s control-flow graph is used for this kind of analysis.
This graph models each program statement as a node. The edges model the transition of
the possible program execution during runtime. The analysis collects the information about
possible values before and after each node in the graph. This information is modeled as a
so-called data fact. The analysis writer defines how each type of statement propagates the
data facts by defining equations, named flow functions. Once the flow functions are defined, all
possible inputs and outputs of each node can be calculated. To ensure stability and termination,
the analysis writers apply a fixed-point algorithm. Due to its simplicity, we use the monotone
framework [KU77, Kil73] and the code from Listing 1.1 as an example to demonstrate a taint
analysis. For this, we first define the data-facts domain D, containing the values the analysis can
track. For taint analysis, these are the program variables. In Figure 2.1, these are shown in curly
brackets between each node. The flow function f maps values from D to D by defining the rule
of how each node takes the in-set data facts and produces the out-set data facts. For example,
the flow function of the node l3 encodes that this is a source statement, and the return value
of getParameter creates a taint that needs to be added to the out-set data facts. In Figure 2.1,
the call to encodeForSQL is not modeled as a sanitizer as the fact userID still holds after l4.
The analysis requires an initial set of data facts as in-set for the program’s entry point. In our
example, this is the empty set. Finally, for nodes with multiple incoming edges, the analysis
needs a join operator that now defines the in-set data facts of each edge that will be propagated.
When this is all defined, the monotone framework uses the meet over all paths (MOP) approach
to compute a stable set of facts at each program point. This is a sound approach, but it is
undecidable in the case of loops; hence, approximations are required. For example, the maximal
fixed point (MFP) approach can be used. MOP merges the results at the end, while MFP merges
the results at each meet point of the graph. Hence, MFP is a subset of MOP, which is still sound
but less precise. Subsection 2.2.3 discusses the soundness, precision, and other metrics relevant
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Chapter 2. Background

Figure 2.1: Control-flow graph and data facts for the example code in Listing 1.1 lines 3-7

to the quality of the taint analysis results.
An important property for the design of the analysis is whether the problem being solved

is distributive, i.e., the results are the same regardless if the join operator is applied before or
after the flow function, ∀x, y ∈ D, f(x t y) = f(x) t f(y). For many non-distributive problems,
the monotone framework assumes monotonicity, i.e., ∀x, y ∈ D, f(x t y) v f(x) t f(y). For
distributive problems such as taint analysis, MFP is equal to MOP. This allows us to compute
MOP via MFP, because, in general, MOP is uncomputable.

There are more frameworks for distributive problems that are used in the scientific commu-
nity, such as the inter-procedural, finite, distributive subset problems (IFDS) [RHS95], inter-
procedural distributive environment problems (IDE) [SRH96], and the synchronized pushdown
systems (SPDS) [SAB19]. FlowDroid [ARF+14], for example, is a popular taint analysis for
Android and uses the IFDS framework. Chapter 6 explains how we designed a taint analysis,
SecuCheck, which uses SPDS.

Intermediate representation. Another important decision for analysis writers is the actual
code representation used for the control-flow graph. Even though for taint analysis, the results
are helpful for the end user only when they are represented on the source code level, due to the
large number of instructions which are also complex, the analyses work on a lower level language,
named intermediate representation (IR). The IRs for data-flow analyses are chosen to be simple,
with a small number of instructions and often 3-address based. Figure 2.2 shows how the Java
code in line 3 from Listing 1.1 is represented in the IR for the data-flow analysis. We see that
the single node of a function call and assignment statement is broken into two IR instructions
by introducing an additional variable. For our implementation in Chapter 6, we used the Soot
framework [LBLH11] and the Jimple IR. A challenging task for many tools is how to transform
the IR results of the analysis back to the original source code and display it to the user.

2.2.2 Security-relevant Methods

When using data-flow analyses, such as taint analysis, one needs to select relevant method calls
or, in some cases, specific program statements that are relevant for the analysis. For taint
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2.2 Taint Analysis

Figure 2.2: IR for line 3 of the example code in Listing 1.1

analysis, one generally needs sources and sinks, but other methods can be used, e.g., sanitizers.
When the analysis is used to detect different security vulnerabilities, then these methods are
specific to the vulnerabilities. Therefore, we use the term security-relevant methods (SRM) in
this thesis. The following list summarizes the types of SRM that are used within this thesis.

• source - these method call creates the taint that the analysis starts to track.

• sink - if a taint reaches this method call, the analysis reports a finding to the user.

• sanitizer - at these method calls, the existing taint is killed and is not propagated further.

• authentication method - similar to a sanitizer, a taint that models the authentication
state of the program sets the state to authenticated. See Subsection 2.2.4 for further
details on these SRM.

• validator - we refer to sanitizers and authentication methods as validators.

• entry point - these methods initiate the start of the analysis and they are often not
security-specific. They may be used by the call graph algorithms or directly by the analysis.

• propagator - these are not security-specific methods. They are used to model the propa-
gation behavior of methods for which the analysis does not have the code, such as a library
or framework code.

• required propagator - these are method calls that do not influence the analysis, but are
security-specific and need to be in the path between the source and the sink to report the
finding. See Chapter 6 for further examples.

In most of the vulnerabilities shown in Table 2.1, the SRM are method calls. There are a
few exceptions. For example, in CWE798, i.e., using hard-coded credentials, the source is not
actually a method call. In this case, the analysis can model all constant variables as sources and
track whether these variables are passed to a relevant sink.

2.2.3 Quality of Taint Analysis Results

When considering static analyses in general, two characteristics are often discussed, i.e., sound-
ness and completeness. Sound analyses produce findings that hold for all possible executions of
the program, i.e., if the analysis says that a specific property holds, then this is true for all exe-
cutions of that program. On the other hand, if there is a property that is true for all executions,
then a complete analysis will produce such findings. In practice, for a whole-program analysis of
real-world programs, one analysis cannot achieve soundness and completeness. Hence, for prac-
tical applications of static analysis, the term soundy was introduced [LSS+15]. Soundy analyses
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are sound by certain assumptions. For example, many static analyses are soundy by ignoring
the Java reflection.

In the scientific community, the standard metrics used to compare different approaches for
static analysis are precision, recall, and the runtime of the analysis, often referred to as scalability.
For precision and recall, we need to measure the number of true positives TPs (findings reported
by the analysis which are actual issues), false positives FPs (findings reported by the analysis
which are not actual issues), and false negatives FNs (actual issues which the analysis was unable
to find). The precision can then be calculated with TPs/(TPs+FPs), whereas the recall with
TPs/(TPs+FNs). Based on this, for good precision, the analysis needs to reduce the number
of FPs, and for good recall, a low number of FNs is required. Generally, there is a tradeoff
between precision, recall, and runtime. One can achieve two of these with high value with the
best effort. However, for specific applications and certain tricks in the analysis design, Bodden
reported [Bod18] how one does not need to sacrifice one of the three properties.

When benchmarking a taint analysis, one requires that the given programs have documented
information of the expected findings. The OWASP Benchmark [Ben21] is the most extensive
project containing small programs with or without findings that challenge the tools regarding
different aspects of the analysis. Mainly these aspects focus on different language features or
corner cases for the alias or callgraph algorithms. Similarly, there are other benchmarks such as
DroidBench [Enga] (a set of crafted Android apps covering different capabilities of the Android
framework), TaintBench [LPP+21] (a set of real-world malware Android apps with documented
findings), PointerBench [Engb] (a set of small Java programs to test the capabilities of alias
algorithms). Based on these programs, one can calculate precision and recall and compare
different taint analysis tools.

While a benchmark with all expected findings is needed for the recall, one can also use an
arbitrary program and then classify the findings as true or false positives to test the precision.
This is the typical scenario of how end users, such as software developers, use the tools. When
classifying one finding as a false positive, there are two general groups, technical FPs, and
contextual FPs. The analysis produces the technical FPs due to the approximations in the design
of the analysis. Typically, the analysis writers will approximate specific language features or, to
gain scalability, they would select a less precise callgraph algorithm or alias algorithm. These
approximations can also lead to FNs. The contextual FPs are caused by the nature of the taint
analysis application. This depends on which context the analysis is applied and how the user
expects the findings to be. For detecting security vulnerabilities, often, the selection of SRM
leads to contextual FPs.

The usability of the taint analysis tools is essential when we involve the end users in the
studies. To test usability, the researchers use empirical methods from the software engineering
community to design experiments with a population of selected participants. As usability met-
rics, the system usability scale (SUS) [Bro13] and the net promoter score (NPS) [Rei03] are often
used.

2.2.4 Typestate Analysis

The security vulnerabilities related to access-control vulnerabilities such as CWE269, CWE732,
CWE287, or use after free CWE416 from Table 2.1 can not be detected by taint analysis or
only in some specific cases in CWE286. A more general form of taint analysis can be designed
for these cases, called typestate analysis. A typestate of a given object specifies the operations
that may be performed on this object at a given point in the program [SY86]. The typestate
analysis models a state machine of the valid states of an object of a given type, and with that,
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it can detect incorrect order of method calls. This technique detects API5 misuses, such as
cryptographic APIs with the CogniCrypt approach [KSA+18].

In the case of access-control vulnerabilities, one needs to track the program’s state and
not a single object of a given type. Hence, one specifies the state machine with the relevant
SRM, particularly the authentication methods used to track the entire program state. Au-
thCheck [PPSB20] is an example of how this technique can be applied to the Java Spring
framework.

2.3 Machine-learning

Machine-learning is a method for predicting the outcome of given events without explicitly being
programmed. It incorporates probabilistic and statistical methods to make predictions based
on provided data. There are a few branches of machine-learning, of which most known are
supervised and unsupervised learning. In supervised learning, there is a portion of data with a
known outcome, and the task is to predict the outcome of new data based on a model created
from the data with the known outcome. In unsupervised learning, all the data has an unknown
outcome, and the task is to detect specific data patterns that help predict the outcome. In this
thesis, we used supervised learning algorithms in Chapter 4; in the following, we only focus on
this branch.

In supervised learning, the provided data has a portion of labeled data. The task is to predict
the label of new data with an unknown label. For example, a data point can be a method in a
given program. If we consider the code in Listing 1.1, for a taint analysis we are interested which
of the methods called within the code of doGet are potential sources. Hence, the task of the
supervised learning is to predict for each method getParameter, encodeForSQL, createStatement,
executeQuery, getString, and sendRedirect, whether is source. In this example, the label is then
"source". To predict this, we need data with known labels, methods for which we know are
sources, and not sources. Based on this, there are different classifiers that we can build. A
classifier is a model that is later used to predict the labels of new data. Different classifiers, such
as decision trees, support vector machines, neural networks, and many more, can be used. The
data used to create the classifiers is known as training data. To validate the classifier’s results,
researchers and practitioners typically divide the labeled data into two sets, one used as training
data and the other known as testing data. Since the testing data has known labels, those are
used to compare against the predicted labels and calculate the precision and recall. Researchers
often use the k-fold validation method [Sto74] with k=10 to divide the data into k subsets and
average the precision and recall. When the classifier is then used in production, the data on
which the prediction is applied is known as a validation set.

To build the classifiers, we use the characteristics of the data. These characteristics are
known as features. For example, in the case of classifying methods as sources or not, we can use
the information we know about those methods, such as the method name and signature, the
code of the method, documentation of the method, etc. The feature is a single dimension that
describes the data. For example, a feature can be "does the method return a string value?". The
value of this feature on a given data point is yes or no, which is an example of a binary feature.
Using such features, classifiers can be created. The labels that the classifier can predict are also
known as classes.

5application programming interface
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2.3.1 AutoML

There are simple classifiers such as decision trees and more complex ones like neural networks,
requiring many parameters to be selected. For non-experts in the area of machine-learning,
this can be a challenging task. The choice of the classifier and its configuration of parameters
can be defined as an exploration problem. Therefore, the area of automated machine learning
(AutoML) has evolved. AutoML is the process of automating the tasks of applying machine
learning to real-world problems. One task of AutoML is to find the optimal machine-learning
pipeline for a given application. A popular AutoML implementations are ML-plan [MWH18]
and Auto-Weka [KTH+19]. We applied Auto-Weka in Chapter 4.

2.3.2 Active Machine-learning

In applications where the labeled data is small, selecting the data to be used for the classi-
fier’s training is crucial for the quality of the prediction. One branch of machine-learning that
addresses this problem is active machine-learning [Ang88]. In active machine-learning design,
the algorithm queries the user interactively to label data for the training set. These data are
samples from the pool of unlabeled data. Inspired by this approach, we designed one of our
contributions presented in Chapter 5.

2.4 Domain-specific languages

In contrast to general-purpose languages (GPLs), such as Java, Python, and C/C++, domain-
specific languages (DSLs) are specialized to a particular domain. They allow the users to model
the concepts from a given domain more manageable than GPLs. For example, HTML6 is a
popular DSL for creating web resources. As with any programming language, a DSL is defined
through its abstract and concrete syntax and static and dynamic semantics [SVC06]. The
abstract syntax defines the terms (entities) of the language and their relationship. The concrete
syntax defines how the DSL users specify the terms from the abstract syntax in a textual
or graphical way. Its static semantics defines additional language constraints that cannot be
expressed in the abstract syntax. Finally, the dynamic semantic formally models all possible
executions of a given DSL, i.e., the runtime behavior. DSL designers can use different methods
to define the runtime behavior, such as translational or operational semantics.

DSLs can be internal or external. Internal DSLs are part of an existing programming lan-
guage, usually a GPL. They use a host language’s infrastructure (lexer, parser, type checker, etc.)
to embed the abstract syntax. Hence, they have the same concrete syntax as the host language.
On the other hand, external DSL have their infrastructure and unique concrete syntax.

DSLs are widely used among static analysis tools to allow the users to define their custom
rules and analyses. In particular, many popular SAST tools are shipped with their DSL to
allow experts to define custom rules for new security vulnerabilities that are not covered by the
standard ruleset or to adapt it and improve the precision and recall of the tool. For example,
CodeQL is popular DSL among security experts. It is well-integrated with GitHub, and the
existing ruleset is publicly available. Other commercial tools, such as CheckMarx and its DSL
CxQL, provide similar support to their clients.

6hyper-text markup language
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3

Static application security testing (SAST) tools, as a branch of static analysis tools, ap-
peared in the early 2000s. In recent years, their popularity increased significantly, as many
commercial (CheckMarx [Che20a], Fortify [Mic20], Veracode [Ver20], SonarQube [Son21],
LGTM [Git21b], DeepCode [Sny21]) and open source (FindBugs [oM21], Infer [Fac21], Cog-
niCrypt [KSA+18]) tools became available. As discussed in the previous chapter (Section 2.1),
when configured with proper SRM, a taint analysis can detect large amounts of security vul-
nerabilities. Therefore, many SAST tools have a taint analysis as a core component.

In practice, the users of SAST tools are diverse, from software developers and quality teams
to security experts and technical leads. Furthermore, these tools are used in different contexts,
such as integrated development environments (IDEs), continuous integration pipelines, or man-
agement dashboards. Therefore, researchers have been empirically studying different aspects of
static analysis tools and SAST tools, primarily focusing on usability. In this chapter, we first
discuss the most relevant existing studies (Section 3.1). Then, we present our empirical study
and its results (Section 3.3) that motivate the contributions presented in the following chapters.

3.1 Related Work
With the increased number of new open-source and commercial tools on the market, researchers
have studied different aspects, such as usability, incorporation into users’ workflow, quality of
results, etc. In the following, we discuss existing studies on static analysis tools. We categorize
the studies into three groups: studies that focus on the usability of static analysis tools (Subsec-
tion 3.1.1), studies targeting the security aspect (Subsection 3.1.2), and studies on the quality
of the results (Subsection 3.1.3). Tables 3.1–3.3 summarize all studies by stating their goal,
methodology, and scale in terms of the number of participants, companies involved, and/or size
of the analyzed data.

3.1.1 Usability of static analysis

Within this group of studies, we identify two subgroups: studies that focus on usability and on
the adaption and integration of the tools within the companies’ processes.

Nguyen et al. [NQDWA20] performed a survey with developers from the German company
Software AG and analyzed the usage data of CheckMarx [Che20a] for two of the company’s
projects. They identified the needs and motivations that developers have while using static
analysis tools. Based on that, they provide recommendations for new features and research
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ideas for future consideration. A similar study was conducted earlier at Microsoft by Christakis
et al. [CB16]. They surveyed and interviewed developers and analyzed data from live site inci-
dents, which are highly critical bugs handled by the on-call engineers. They identified usability
issues and functionalities that program analyses should provide for better usability. Similar
results were also reported in the study by Johnson et al. [JSMHB13], in which they performed
semi-structured interviews with 16 developers from a single company and four graduate stu-
dents. Vassaleo et al. [VPP+18] studied the different contexts in which static tools are used by
developers, i.e., development environment, review, and continuous integration. Moreover, they
studied the configuration options for these contexts and found that most developers use the same
configuration among all environments (IDE, continuous integration, or review). In comparison,
our user study (Section 3.3) targets only the IDE. They performed a survey with 42 participants.
To confirm their findings, they interviewed eleven developers from six companies.

Next, we discuss two studies that target the integration of static analysis tools into the
development workflow and processes. Sadowski et al. [SvGJ+15] proposed the Tricoder platform
that Google uses to integrate different program analysis tools in one system and improve the user
experience. They explain the requirements and how the system was deployed. They collected
usage data from the deployed system to confirm the design decisions of the platform. In a
follow-up publication, Sadowski et al. [SAE+18] shared the lessons learned from the Tricoder
platform. Zampetti et al. [ZSO+17] studied how static analysis tools are integrated into the
pipeline in open-source Java projects from GitHub. They used repository mining techniques.

Table 3.1: Related studies with focus on usability: goal, methodology, and scale.

Study Goal Methodology Scale

Nguyen et al.
[NQDWA20]

identify developers’ goals and
motivations for using static anal-
ysis tools

a survey and an analysis
of company’s usage data
of CheckMarx

87 participants and data
from two internal projects
at Software AG

Christakis et
al. [CB16]

identify practitioners’ needs from
program analysis

a survey, interviews with
group managers, and an
analysis of live site inci-
dents

375 participants and 256
live site incidents reports
from 17 services at Mi-
crosoft

Johnson
et al.
[JSMHB13]

identify developers’ usability is-
sues with static analysis tools

semi-structured inter-
views

16 developers from single
company and 4 graduate
students

Vassallo
et al.
[VPP+18]

study the developers’ usage con-
text of static analysis tools

a survey and semi-
structured interviews

42 participants through
open invitation and 11 in-
terviewees from six com-
panies

Sadowski
et al.
[SvGJ+15]

provide a set of principles for
building and integrating pro-
gram analysis tools in practice

case study of Tricoder as
a platform for program
analysis tools

Tricoder usage data at
Google

Zampetti et
al. [ZSO+17]

study the CI and usage of static
analysis tools

mining repository tech-
niques

20 open source GitHub
projects

3.1.2 Studies on adaption of security tools

Next, we discuss studies focusing on detecting security vulnerabilities with static analysis tools.
Thomas et al. [TLC+16] experimented with 13 developers in which the participants were given
the task of using a tool that reports security vulnerabilities in the IDE. After interacting with
the tool, the participants were interviewed. In a similar study, Smith et al. [SJMH+15] invited
ten developers from the same project to solve four tasks using an extended version of FindBugs.
First, the participants were asked to orally explain their thoughts, which the authors used to
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formulate questions. Then, they used the card-sorting method to come to relevant conclusions.
Smith et al. [SNQDMH20] evaluated the usability of the user interfaces of four SAST tools. They
used heuristic walkthroughs and an experiment followed by an interview with twelve participants.
In a survey study with multiple stages, Witschey et al. [WZW+15] identified factors that can
predict developers’ adoption of security tools. Patnaik et al. [PHR19] have mined 2,491 Stack
Overflow questions to identify developers’ usability issues when using cryptography libraries.

A study on the security processes during software development was conducted by Thomas
et al. [TTCL18], who interviewed 32 security experts to understand the use of different tools,
including static analysis tools. This study gives a general overview of some security practicies
that are applied in the industry.

Table 3.2: Related studies with focus on security: goal, methodology, and scale.

Study Goal Methodology Scale

Thomas
et al.
[TLC+16]

study the perceptions and ac-
tions taken by developers when
they interact with static analysis
tool in the IDE

experiment with an inter-
active tool in the IDE and
an interview

13 participants from mul-
tiple companies

Smith et al.
[?]

study the information need of de-
velopers while using static anal-
ysis tool for security vulnerabili-
ties

an experiment and card
sorting

10 developers working on
the same project

Smith et al.
[SNQDMH20]

study the user interface of 4 tools
and propose areas for improve-
ments

heuristic walkthroughs, an
experiment and interviews 12 participants

Witschey
et al.
[WZW+15]

quantify the relative importance
of factors that predict security
tool adoption

a multi-staged survey
119 participants from 14
companies and 61 partic-
ipants from 5 mailing lists

Patnaik et
al. [PHR19]

identify usability issues of crypto
libraries used by developers mining techniques 2,491 Stack Overflow

questions

Thomas
et al.
[TTCL18]

understand the security pro-
cesses for application develop-
ment

semi-structured inter-
views with security
experts

phone interviews with 32
experts recruitied with
snowball technique from
different companies

3.1.3 Taint analysis results and comparison

Several previous studies focus on the quality of the analysis results in terms of recall, precision,
or runtime, reported by taint analysis tools. Luo et al. [LBS19] performed a quantitative and
qualitative analysis of the taint flows reported by FlowDroid [ARF+14] by analyzing 2,000 An-
droid apps. They identified that selecting sources and sinks was one of the main factors for
imprecision. Qui et al. [QWR18] compared the three Android taint analysis tools, FlowDroid,
Amandroid [WROR18], and DroidSafe [GdP+15]. They ran all tools under the same configura-
tion in order to gain a fair comparison of the tools’ capabilities. Their work on finding a common
configuration among the three tools to make a fair comparison provides valuable insights into the
importance of the configuration for the quality of the findings. Habib et al. [HP18] investigated
the quality of the findings from three static analysis tools Spotbugs, Infer, and Error Prone.
They used the real-world Java applications from Defects4J with 594 known bugs and inspected
the findings automatically and manually. They find that the tools detect only 4,5% of the bugs,
and the types of findings they report are complementary. Next, Zhang et al. [ZGSN17] proposed
an interactive approach for resolving the findings from static analysis tools. They experimented
with data race analysis to evaluate their approach and show a 74% reduction in the false pos-
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itive rate. They used eight real-world Java applications and a set of questions collected from
Java developers they hired from UpWork. Finally, Lee et al. [LLK+17] proposed a clustering
algorithm for static analysis findings. They compared several algorithms on the buffer overflow
findings from 14 C packages and showed a 45% reduction in the false positive rate.

Table 3.3: Related studies with focus on the results quality: goal, methodology, and scale.

Study Goal Methodology Scale
Luo et
al. [LBS19]

identify important factors for im-
precision in FlowDroid

a case study with manual
inspection

2000 analysed apps and
146 manually inspected

Qui et al.
[QWR18]

compare the results of Android
taint analysis tools and identify
strength and weaknesses

analysis and inspection of
the results by three tools
(FlowDroid, Amandroid,
and DroidSafe)

collection of microbench-
marks

Habib et al.
[HP18]

compare the results of three
static analysis tools

automatic and manual in-
spection of the bugs re-
ported from three tools

collection of 15 Java ap-
plication (Defects4J) with
known bugs

Zhang et al.
[ZGSN17]

reduce false positives by propos-
ing an interactive approach for
resolving findings from static
analysis

experiment with datarace
analysis

evaluated on 8 Java
projects and data col-
lected from Java develop-
ers hired from UpWork

Lee et al.
[LLK+17]

reduce false positives via cluster-
ing algorithms

experiment with buffer
overflow findings

evaluated on the findings
from the Sparrow static
analyzer on 14 C packages

3.2 Survey and Interviews

We next present the first part of our empirical study. We followed a triangulation methodology
consisting of an online survey and expert interviews [Sea99]. The activities were part of a more
extensive study within the research project AppSecure.NRW.1 The project’s goal is to understand
and evaluate the overall security activities in software development among German companies.
This thesis only presents the results of SAST tools. The results, not a contribution to this
thesis, are available as a white paper.2

This part of the study answers the following research questions:

RQ1 To what extent are SAST tools used in practice among software development teams in
Germany?

RQ2 How are SAST tools used in practice, and what are the problems faced by the users?

RQ3 What are typical culture and processes for using SAST tools and other security checks in
German companies?

The survey and the interviews provide valuable data to answer different aspects of the re-
search questions. We explain this in detail in the following subsection. The study targeted
software development teams in Germany; therefore, the survey and interviews were conducted
in German. Participation in the study was voluntary and without any compensation.

1https://www.appsecure.nrw/
2https://arxiv.org/abs/2108.11752
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>1000 employees

47%

251-1000 employees
14%

51-250 employees

26% 11-50 employees
9% 4-10 employees
4%

1-3 employees1%

Figure 3.1: How many employees does your company have? (N=256)

>30 employees
4%

16-30 employees
9%

6-15 employees

56%

1-5 employees

32%

Figure 3.2: How big is your team? (N=256)

3.2.1 Study Design

Survey. To understand the usage of SAST tools and the culture and processes throughout the
development process, we invited participants from all roles involved in the software development,
including developers, architects, product owners, and executives. We used three ways to gather
participants. First, we used our direct contacts from the industry and asked them to invite
their teams internally. Second, we created posts on our institution’s social media channels and
website. Third, the survey was promoted by the media of the publishing house Heise3 and
among the networks Bitkom,4 it’s OWL,5 and innozent OWL6. In total, we received responses
from 350 participants. We excluded all responses that were (1) incomplete, (2) answered in
an unrealistically short time, or (3) not from Germany. After this filtering, we gathered 256
responses. If we consider that there are roughly 900.000 software developers in Germany7, we
get a margin of error of only 6%8, which has a confidence level of 95% or a Z-value of 1.96,
making our study representative of the population of software developers.

Of all participants, 47% are from large companies with more than 1000 employees, and the
rest are from small- and medium-sized companies, see Figure 3.1. The size of most of the teams

3https://www.heise.de/
4https://www.bitkom.org/
5https://www.its-owl.de/home/
6https://www.innozent-owl.de/
7https://www.daxx.com/de/blog/entwicklungstrends/anzahl-an-softwareentwicklern-deutschland-weltweit-

usa
8https://www.surveymonkey.com/mp/margin-of-error-calculator/
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>10 years

61%

6-10 years

18%
2-5 years

15%
<2 years

6%

Figure 3.3: How many years of experience in software development do you have? (N=256)

is 6-15 persons (56%), and about one-third are small teams of 1-5 persons (32%), see Figure 3.2.
61% of the participants have long experience of more than ten years in software development,
see Figure 3.3. Of all participants, 80% have the role of software developer, followed by 12%
executive, 10% other, 8% product owner, 6% project manager, 5% data protection officer, and 4%
security analyst, where multiple answers were allowed. Finally, the participants come from 37
different industry sectors, such as automotive, electrical, chemical, insurance, internet, research,
transportation, arts, sports, law, tourism, etc.

We conducted the survey using the online tool Survey Monkey [Mon21]. The tool allowed us
to use different links for each company that we invited and one link that was shared publicly.
Among all links, we received a considerable number of responses from one large company, 59
responses from 256. This company remains anonymous, and we will refer to it with ABC. Hence,
in our results, we can compare the trends among multiple companies of mixed size and a single
large company. The survey was open for six weeks. On average, the participants needed 25
minutes to complete the questionnaire, measured based on the session duration per participant
collected by Survey Monkey.

We followed the guidelines for opinion surveys by Kitchenham et al. [KP08]. Initially, we
conducted a literature search to identify relevant related work (Section 3.1). None of the existing
studies provided a survey instrument (i.e., a questionnaire) that could have been reused. Hence,
we created a new questionnaire for a cross-sectional survey. Five researchers were involved in
creating and selecting the questions in a top-down process, starting from the research questions
and breaking them into more concrete questions. The questionnaire was reviewed by three
more researchers and then modified based on the feedback. We conducted a test phase that
included internal and external tests. We performed two internal tests with students from our
research group to verify the clarity of the questions and measure the time needed to complete
the questionnaire. After that, we performed three external tests with professionals involved in
software development from the industry.

The final questionnaire with 42 questions is available within our artifact9, and those relevant
for this chapter are listed in the Appendix 7.1.1. The questionnaire consists of seven parts:

1 Questions for all roles (general questions about security)

2 Questions related to requirements

3 Questions related to design
9Link to our Open Science Framework repository containing the artifact with our study materials and collected

data: https://osf.io/k37c9/
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4 Questions related to implementation and testing

5 Questions related to SAST tools

6 Questions related to software operation and maintenance

7 Meta-data questions

Parts 1 and 7 were answered by all participants (256). Parts 2 to 6 were optional. The most
relevant data for SAST tools was in parts 4 (answered by 220 participants) and 5 (answered by
114 participants).

Interviews. In addition to the survey, we performed 17 interviews with product owners and
executives from German companies. The intention was to collect additional qualitative data
from these roles as we could not get high number of participants with those roles in the survey.
Moreover, these roles give helpful information about the culture and processes in their companies.
Four of the interviewees were our previously known contacts. The rest were selected through
convenience sampling [Giv21]. We invited several randomly chosen companies from our region
who also participated in the survey and used the first come, first served principle to conduct
the interviews with persons that volunteered to participate. Seven interviewees were product
owners (PO), six were managers/executives (ME), and the remaining four had both roles. All
experts have been involved in software development during their professional experience.

Two researchers performed each interview. One researcher was the moderator asking the
questions and the other researcher wrote a protocol and, in rare cases, asked questions. Addi-
tionally, an audio recording of all sessions was made. After the interviews, the recordings were
automatically transcribed and used to extend the protocols created during the interview. On
average, each interview took 45 minutes. The interviews were conducted during the second half
of 2019. For the evaluation of the interviews, we used the codebook method [RBW0], where
three researchers manually annotated all transcripts.

We applied a similar process as the survey (Subsection 3.2.1) to design the questionnaire for
the interviews used as a guide during the interviews. We created two versions for each role, PO
and ME, which differ only in a few questions. The experts who had both roles were asked all
questions.

3.2.2 Results

The study reached a broad range of companies. Participants from multiple companies completed
our survey. Fifty-nine responses (23%) from the survey are from the company (ABC ).

With N, we denote the number of responses collected for each question. Note that many
participants answered different survey sections due to the optional questions. Hence, in the
following, we report the percentage and the absolute numbers. To find correlations between two
questions, we use the Cramer v value [Cra16] (where values are between 0 and 1, with values over
0.25 having a strong correlation) and, for statistical significance, the p-value. The numbering of
the questions is based on the list in the Appendix 7.1.1.

Use of static analysis tools (RQ1). Among the survey participants, there is a heterogeneous
use of IDEs and programming languages. The top three used IDEs are IntelliJ IDEA (60%),
Eclipse (53%), and Visual Studio Code (36%) (Figure 3.5). The top three used programming
languages are Java (76%), JavaScript/TypeScript (45%), and SQL (34%), see Figure 3.6. There
is a correlation that those developers who use Java also use IntelliJ IDEA (Q13-Q12, Cramer
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yes

52%

no

48%

Figure 3.4: Do you use static code analysis tools? (N=220)

Figure 3.5: Which IDEs are used among the survey participants? (N=114, Y-axis denotes
number of responses)

V=0.537 p=0, N=123) and develop web applications (Q13- Q30, Cramer V=0.385 p=0.0001,
N=114).

In total, 114 (51.8%) out of 220 responses said they use static analysis tools within their
teams. When asked which tools they use (Q16), there were 57 unique tools named, of which only
four tools were named in at least ten responses, i.e., SonarQube (50 responses), Findbugs (19),
Checkstyle (13), and OWASP Dependency-Check (10). These tools are freely available or at least
have a free version. They mostly perform simple pattern-based matching techniques to detect
issues. SonarQube additionally has a taint analysis as more complex analysis. Other tools with
more sophisticated dataflow analyses that the survey participants mentioned are: Checkmarx,
Fortify, Klockwork, and Coverity. Only two participants noted that they use internally developed
tools.

Furthermore, the participants were asked to prioritize, according to their preference, where
the warnings from the tools should be reported. From the possible options: (1) within the IDE,
(2) on an internal website, and (3) in the ticket system, 160 out of 239 responses selected the
option (1) with the highest priority.

To compare the results within a single company with multiple differently-sized companies,
we extracted the results from the company ABC. 27 out of 59 responses (45.8%) said that they
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Figure 3.6: Which programming languages are used among the survey participants? (N=114,
Y-axis denotes number of responses)

yes

61%

no

35%
do not know

4%

Figure 3.7: Do you use tools to automatically check security properties in code? (N=221)

use static analysis tools, which is lower than the 51.8% among all companies, including ABC or
54% excluding ABC.

German companies have a diversity in the use of IDEs and programming languages. Moreover,
only about half of the teams use static analysis tools, of which the most popular are SonarQube,
Findbugs, Checkstyle, and OWASP Dependency-Check.

Problems and Tools Configuration (RQ2). Previous studies [CB16] have reported that
the existing tools are not fast enough to be used in development time. The participants in our
study perceive the current situation differently. Ninety-three out of 114 respondents (82%) think
the tools they use are fast (Q18.1). This shows improvement in recent years due to new research
results and engineering efforts visible to the users. However, the number of false warnings from
the static analysis tools remains high. Sixty-five out of 114 participants (57%) have indicated
this (Q18.2). In particular, those who answered that the number of false warnings is high also
said that they program in the C language (Q18.2-Q13, Cramer V=0.305 p=0.0205, N=112).

Based on their expertise and the warnings from the tools, most participants (79 out of
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Figure 3.8: Is security automatically checked during operation? (N=134)

yes

36%

no

62% do not know
2%

Figure 3.9: Are there automatic security checks after a release is built? (N=134)

114 responses, 70%) stated that they could confirm which of the warnings were true positives
(Q18.3). The participants think that the tools find real issues regularly. Seventy percent (80
out of 114 responses) of the participants confirmed this statement (Q18.4). Finally, 81% (92 out
of 114) from the participants said that the messages reported from the warnings helped them
to fix the issues found in the code (Q18.5).

When it comes to the configuration of the tools, we asked the participants to what extent
they are willing to change, add, or remove the rules used by the tools to find different security
issues. Sixty percent (69 out of 114 responses) are willing to define their own custom rules to
be used by the tool (Q18.6). However, only 35% (40 out of 114 responses) have experience
defining custom rules for the tools. From them, many have answered that they have the role of
Security Analyst (Cramer V=0.377 p=0.0026, N=108). Those participants who are willing to
define custom rules are in teams that have testing responsibilities (Q18.8-Q2, Cramer V=0.313
p=0.0163, N=114). Eighty-three percent (95 out of 114 responses) of the participants are willing
to provide feedback to the tools in terms of marking false positives to get better results in future
runs of the tools (Q18.7).

When observing the results from ABC, there is a slightly higher willingness by the partici-
pants with 63% (17 out of 27 responses) to configure or with 89% (24 out of 27 responses) to
provide feedback to the tools. For the questions on the quality of the results, there are only mi-
nor differences (under 3 %) except for one: 78% (21 out of 27 responses) of the participants from
ABC think that the tools find real issues regularly, compared to 68% (59 out of 87 responses)
to the rest.
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Our results show that users consider static code analysis tools fast enough but still report high
number of false warnings. The messages of the warnings are helpful for most of the users to fix
the issues. Most users are willing to invest time in adapting the rules of the tools or provide
feedback for improved future results.

Culture and processes for using static analysis tools (RQ3). The most popular tools
listed by the participants are free tools. The most popular commercial tools listed by the
participants are CheckMarx and Fortify, listed only 5 and 4 times, respectively (Q17). We
asked the product owners and the managers/executives their opinion on open and free tools.
Fourteen have answered this question, allowing their software developers to use free and open
source SAST tools. Even most encourage the teams to use open and free SAST tools. When
asked whether there is a budget for commercial SAST tools, only one participant said there is
no budget for that purpose and only free and open source tools are possible. Ten participants
said there is a budget only when there are requests, whereas six said there is a dedicated budget
for this purpose. One participant commented, "These tools are a good investment". Most
interviewees said that it is seldom that developers request new tools.
Even though in most German companies there is a budget for SAST tools, the free SAST tools
are more popular among the developers than the commercial tools.

The participants from ABC have different opinions than the rest regarding the availability
of tools for secure software development. Fifty-nine percent (16 out of 27 responses) from ABC
think that they have the right amount of tools, whereas only 38% (33 out of 87 responses) in
the other companies.

In particular, our study targeted the security aspect of the processes. We asked for each
phase: requirements (Figure 3.11, Q4.1), design (Figure 3.12, Q6.1), and implementation/test-
ing (Figure 3.13, Q10.1), whether the security is considered. During the design and implemen-
tation/testing phases, three-quarters of the participants answered that security is considered.
During the requirements phase, security is less considered. When we asked all participants if
they use tools to check the security properties of their code (Q10.3), 52% answered positive (77
out of 221 responses) and 44% negative (134 out of 221 responses), see Figure 3.7. Moreover,
among the participants that use SAST tools, only 17% (11 out of 63 responses) answered that
they perform an official security review before each release (Q22.1), while 80% do not perform,
and 3% do not know. Similarly, only 36% (38 out of 134 responses) said that they perform
automatic security checks after the release (Q22.2), while 62% do not do and 2% do not know,
see Figure 3.9. In addition, only 29% (23 out of 134 responses) said that they perform automatic
security checks on the software while in operation (Q22.3), while 68% do not and 3% do not
know, see Figure 3.8.

Also, there is a correlation showing that the teams in which the security requirements are
checked by the developer who implemented the code need better tools to accomplish their
tasks (Q11-Q15.2, Cramer V=0.364 p=0.0444, N=67) and that these checks are done during
development time (Q14-Q10.3, Cramer V=0.376 p=0.00007, N=123). The participants who
answered that they perform security checks before the release also have a dedicated security
team (Q22.2-Q11, Cramer V=0.455 p=0.000001, N=123) and/or hire an external company for
security (Q22.2-Q11, Cramer V=0.358 p=0.0001, N=123).

Finally, many teams have responsibilities in multiple phases of the development. Figure 3.10
shows the responses from 114 participants. Only 29% of the participants (63 out of 98 responses)
have a clear process to verify the implementation of the design concerning security (Q10.4),
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whereas 64% do not (28 out of 98 responses). Eighteen percent of the participants (21 out of
114 responses) said that nobody is responsible for checking the specified security requirements
of the software (Q11). The programmer does this for 66% (75 out of 114 responses. Only for
32% (36 out of 114 responses), this is performed by a security team, or 18% (20 out of 114
responses) from an external company.

Figure 3.10: In which activities is your team involved? N=114 (Y-axis is the number of re-
sponses)

3.2.3 Ethical considerations

Participation in the study was voluntary. The participants in the interviews signed a consent
form. For most questions, we provided an option for participants not wanting to give any details
(i.e., “I don’t know”). In addition, we aligned our study to the data protection laws in Germany
and the EU. Multiple researchers reviewed the questions at our institution, including one expert
on professional trainings and surveys, the head of the department, the data protection officer,
and one of the directors.

yes

57%

no

37%
do not know

6%

Figure 3.11: Does your team perform any activities related to the requirements phase? (N=134)
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Figure 3.12: Does your team perform any activities related to the design phase? (N=134)

yes

85%

no
12%

do not know
3%

Figure 3.13: Does your team perform any activities related to the implementation and testing
phase? (N=134)

3.2.4 Threats to Validity

According to Runeson et al. [RHRR12], we discuss construct validity, external validity, and
reliability.

Construct Validity The set of questions used in the survey and the interviews are the out-
come of several workshops in which software security researchers and practitioners with medium
to high-security expertise participated. A possible threat is the level of expertise that these
persons have which influences the quality of the questions. Moreover, we avoided the possibility
that the interviewers asked wrong or irritating questions as we - the researchers that conducted
this study - held the interviews ourselves. For gaining a representative survey, we made sure
that the developers were selected as randomly as possible. Most developers of our survey were
invited by a news article from the German publishing house Heise, and the minority were de-
velopers of our industry partners. Our industry partners have small to large companies in all
branches of IT. All interview participants came from partners of Fraunhofer IEM. Thus, they
were not a random set of product owners and managers in Germany. However, these companies
differ significantly in size, domain, and business model. Moreover, we knew only four of the 17
interviewed persons upfront - thus, they were not influenced by us or our project AppSecure.nrw.
We pre-tested our survey and interviews with people from our target group to identify whether
our questions were understandable and interpreted as we intended and made changes due to this
pre-test.

External Validity As our study was conducted only with companies from Germany, it might
be the case that our results do not apply to companies outside of Germany as they have other
standards and laws that they have to consider. However, several international standards like
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ISO IEC 27001 exist.
Even though we made a pre-test to analyze whether our questions were interpreted correctly,

it might be the case that the survey participants misinterpreted our questions. In our semi-
structured interviews, this threat is reduced because our interviewees always had the chance to
ask whether they understood our questions correctly. Our survey represents the intended target
group as 256 software developers or similar roles have answered it. Nearly half of the participants
came from the industry partners in our research project AppSecure.NRW.However, all these
participants were voluntarily invited by their managers and not by us directly. Compared to the
survey participants, our number of interviews might not be sufficient to extract a representative
result as we only interviewed 17 experts that are product owner, manager, or both.

Reliability The questions of our study (survey and interviews) are based on our experience
concerning secure software engineering. Other researchers might ask these questions differently.
This is especially the case for our semi-structured interviews, as the follow-up questions depend
on the interviewer. Moreover, we might have made mistakes while analyzing the interviews,
especially when matching the interview answers to our pre-defined classes and when interpreting
the complete encoding of our interviews. Also, we might have made mistakes while analyzing the
survey, especially when analyzing the free text fields or drawing conclusions. To prevent all these
mistakes, we peer-reviewed all our work. Additionally, we contribute all our data and materials
as an open artifact for future reproductions. To minimize human errors while analyzing our
survey, we used as many automated tools as possible, e.g., we used Survey Monkey to collect
and export the survey data automatically and recorded all interviews and used a reliable voice-
to-text software for the transcription. With a self-created script, we automatically processed all
raw data wherever possible.

3.3 User Study

Most issues reported by developers can be handled by choosing the correct configuration for the
target program being analyzed. To enable this, tool vendors provide a wide range of configuration
options. For example, developers can select rules or write custom ones using a domain-specific
language, set different thresholds for the analysis engine, or select the target program’s scope.

As learned from the survey results, most participants are willing to configure their tools.
They are willing to label findings as correct or incorrect and even modify or specify their own
custom rules for the tool they use. Qui et al. [QWR18] and Mordahl et al. [MW21] reported the
impact of the configuration on the results. While these studies executed and compared different
tools to reason about the configuration impact, we decided to involve the actual users of the
tools and, in a controlled experiment, analyze how users configure a given tool. We study the
configuration options of SAST tools integrated into an IDE. Within an IDE, users often have
a specific context in which they work, e.g., the code last written or edited or a vulnerability
relevant to a specific component of the project for which the user is responsible. When this is
the case, the SAST tool can be configured to provide the results quickly by focusing on such a
limited scope [NQDAL+17].

This user study investigates the configuration options that impact precision, recall, and
analysis time. We omit other options such as filtering and prioritization of warnings, as they are
more relevant when a project is analyzed as a whole. This is often the case when the analysis
time is not that critical, e.g., during nightly builds. Instead, we investigate two specific options:
(1) selection of security rules and (2) selection of analysis scope. We chose these options based
on the insights from previous studies [NQDWA20, CB16], showing that users find them highly
relevant.
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Through the user stud, we answer the following research questions:

RQ4 Can users resolve findings in SAST tools more effectively by configuring the tools’ analysis
scope and rule selection?

RQ5 What strategies do users of static analysis tools in the IDE use to resolve the findings?

RQ6 Which configuration options in the existing tools do users find useful?

The dataset and all materials we created and used for this research are available as an artifact
via the link https://research-sast-config.github.io/.

3.3.1 Study Design

To counter-act possible learning effects by study participants, we applied a between-subjects
study design [CGK12] consisting of a lab study and a semi-structured interview to find out to
what extent the configuration options in SAST tools are helpful to end users.

We recruited the participants through our contacts in seven companies with software devel-
opment departments. We had a single point of contact that internally distributed our invitation
to potential participants, either developers or security experts. As the number of security ex-
perts was insufficient, we additionally invited Ph.D. candidates doing research in security or
program analysis. Previous studies have shown that graduate students are valid proxies for
such studies [NDGS20, NDTS18, NDG+19, NDT+17]. The participation was voluntary and
without compensation. In total, we had 40 participants (P01-P40), 24 from industry, and 16
Ph.D. candidates from academia. Twenty-three participants have mainly software development
responsibilities, while 17 are security or program-analysis experts. Table 3.4 lists the profile
of each participant. The columns From and Role were collected prior to the session with the
participant, based on the information provided by the point of contact. The columns Coding
and Security originate from a self-assessment by the participant collected during the session.
The column Study Type is the allocation of the two types of experiments, which we explain in
the following section. This allocation was done randomly, separately for each group, industry
and academic participants. Lastly, we asked for a review of the questions we used during the
user study in terms of study design and ethical opinion. Reviews were done by our team leader
and one senior external researcher with experience in empirical studies for usable security.

Usage scenario. The study focuses on users of SAST tools during development time. Our
selected tool, SecuCheck [PKB21], runs within the IDE in the background while the user can
review or edit the code before checking it into the remote repository.

The user has a fixed time to use the tool and decide which of the findings from the tool are
true positives and which are false positives. To make this scenario as realistic as possible, we
provide each participant with a relatively small project with meaningful logic and a complete
Java application (see below). Each participant was given time to familiarize herself well with the
code before performing the tasks. The moderator explicitly asked the participants whether they
were familiar enough with the code in order to be able to resolve the findings from SecuCheck.

Each participant was given a time of 15 minutes to run the tool, look into the findings, and
resolve them. The participant was asked to resolve the finding by stating if the finding is a
true positive or false positive or if the participant cannot decide due to missing expertise or any
other reason. We randomly divided the participants into two groups. One group, the treatment
group, was able to use the configuration page of our tool freely and run the tool multiple times
with different configurations. They could use two configuration options, i.e., selection of security
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Table 3.4: Participants’ profile.

From Role
Coding

experience
(years)

Security
experience Study Group

P01 industry developer 3-5 beginner control
P02 industry developer 6-9 beginner treatment
P03 industry developer 10+ knowledgeable control
P04 industry developer 6-9 knowledgeable control
P05 industry developer 10+ knowledgeable control
P06 industry developer 10+ beginner treatment
P07 industry expert 10+ knowledgeable treatment
P08 industry developer 10+ knowledgeable control
P09 industry expert 10+ knowledgeable control
P10 industry developer 6-9 knowledgeable treatment
P11 industry developer 3-5 beginner control
P12 industry developer 10+ beginner control
P13 industry developer 6-9 beginner treatment
P14 industry developer 6-9 knowledgeable control
P15 industry developer 10+ beginner control
P16 industry developer 6-9 beginner treatment
P17 academia developer 6-9 knowledgeable control
P18 academia expert 6-9 knowledgeable treatment
P19 industry developer 10+ knowledgeable treatment
P20 academia developer 6-9 beginner control
P21 academia expert 6-9 beginner treatment
P22 academia expert 3-5 beginner treatment
P23 academia expert 10+ knowledgeable control
P24 academia expert 3-5 beginner treatment
P25 academia expert 10+ beginner treatment
P26 academia expert 10+ expert treatment
P27 industry developer 3-5 beginner treatment
P28 academia expert 6-9 beginner control
P29 academia expert 6-9 knowledgeable control
P30 academia expert 6-9 beginner treatment
P31 industry developer 10+ knowledgeable treatment
P32 industry expert 10+ beginner control
P33 academia developer 6-9 expert control
P34 industry expert 10+ knowledgeable treatment
P35 industry expert 3-5 expert treatment
P36 academia expert 3-5 knowledgeable control
P37 industry developer 6-9 knowledgeable control
P38 academia expert 10+ beginner treatment
P39 academia developer 3-5 beginner control
P40 industry developer 3-5 knowledgeable treatment
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rules and selection of classes to be analyzed. Thus, depending on the selection chosen by the
participant, not all possible findings were shown by the tool at once.

The control group used only the default configuration, in which all security rules and all
classes were selected. Hence, the control group ran the tool only once and saw all possible
findings simultaneously. Our experience with SAST tools is that most default configurations
will include all available security rules and will analyze the entire project. To simplify the task,
we only used taint-style vulnerabilities in our user study. Through the program statements, a
taint analysis tracks untrusted (tainted) values from so-called source statements (such as user
input values from Http-request object) to security-relevant operations, so-called sink statements
(such as writing to file or database). We chose taint analysis because it can be used to detect
most [PDB19] of the top 25 popular vulnerabilities by the SANS institute [Mit21a].

The session was organized as follows. It starts with short introductions and clarification of
what the study is about and what data is collected. Then, the moderator performs the first two
parts of the interview (part one is general meta-questions and part two is general questions on
SAST experience). Before giving the task, the moderator explains the main concepts of taint
analysis and how it works to find an SQL injection as an example. The moderator also makes
a walkthrough with SecuCheck to demonstrate its features. Then, the participant is provided
with the Eclipse IDE and the project under analysis in the workspace. The participant is given
time to familiarize herself with the project after which the task is explained and given 15 minutes
to work. After the task, the moderator starts with the second two parts of the interview: part
three is a discussion about the task, the strategies, and feedback on the tool, and part four is
the questionnaire for the configuration options in Fortify and CheckMarx.

SAST tool Previous studies have shown that users prefer SAST tools that run within their
IDE [NQDWA20], using native features such as syntax highlighting, error view, hover messages,
etc. Such integration enables the users to quickly locate and understand the code’s findings.
For our user study, we selected the existing tool SecuCheck [PKB21] (see Chapter 6 for more
details), which is implemented with the Magpie Bridge [LDB19] framework that enables native
integration within the IDE. Due to the underlying Language server protocol [Mic21] used by
Magpie Bridge, SecuCheck can be used in multiple IDEs.

For this study, we used the Eclipse client, in which the analysis results are shown in the
error view with click navigation to the relevant file. The standard markers on the sidebar from
the editor mark relevant statements (sources and sinks) for each finding. For the configuration,
SecuCheck has a custom page that is shown in the web browser via HTTP. Using this page,
the participants can select the security rules and the classes to be analyzed via check boxes
and trigger the analysis by clicking a button. Figure 3.14 shows a screenshot of the view of
the IDE and the project given to the participants, while Figure 3.15 shows a screenshot of the
configuration page. None of the participants have used SecuCheck before the user study.

Target project and built-in vulnerabilities We considered several criteria for selecting the
target project used in the user study. First, the project should be realistic such that participants
can see clear functionalities and business logic implemented in the code. Second, it should be
relatively small so that participants can understand the code in the limited time they are given
and be comfortable resolving potential security vulnerabilities. Third, there should be multiple
security vulnerabilities that SecuCheck will report, including true and false positives. We
used an existing Java Spring10 project to showcase different security vulnerabilities. The project
implements a simple task management tool where users create, delete, and edit tasks stored in
MySQL database. The application uses the Spring MVC architecture. It consists of 35 classes

10https://spring.io/

35



3.3 User Study

Figure 3.14: IDE view of the workspace in which participants worked on the given task. The
bottom view shows the findings that the tool reports in default configuration.

Figure 3.15: Configuration page used in the tool for the user study

36



Chapter 3. Using SAST Tools in Practice

and nine findings that SecuCheck reports. The nine findings correspond to seven unique, real
vulnerabilities and two false positives. Table 3.5 lists the findings reported by the tool when all
rules and classes are selected, showing the vulnerabilities type (common weakness enumeration
- CWE11), the name of the class in which the vulnerability is located, and whether it is a true
or false positive. The taint analysis in SecuCheck uses rules specified in Java fluent interface.
These files were also available to the participant for inspection. The participant was not required
to make any changes to the rules or to the code.

Table 3.5: Findings reported by the SAST tool on the target project used in the user study.

ID CWE Name Location TP/FP
F01 20 Improper input validation LoginController.java TP
F02 22 Path traversal NewTaskController.java TP
F03 311 Missing encryption NewTaskController.java TP
F04 601 Open redirect TaskController.java TP
F05 78 OS command injection NewTaskController.java FP
F06 78 OS command injection NewTaskController.java TP
F07 79 Cross-site scripting LoginController.java TP
F08 89 SQL injection DatabaseController.java TP
F09 89 SQL injection DatabaseController.java FP

Semi-structured interview The interview consisted of four parts, (1) meta-questions, (2)
questions on the experience with SAST tools, (3) discussion and feedback, and (4) a ques-
tionnaire. In part one, we asked three questions (Q1-3) about previous coding experience and
security expertise. Part two comprised 11 questions (Q4-14) about previous experience with
SAST tools, e.g., when and how tools are used, who configures the tools, which tools are used,
and any company-related culture and processes for using SAST tools. This part was asked
before the task to give the participants more context and recall their experience with SAST
tools. The data collected in this part helps us understand the background of our population.
Part three consisted of 9 questions (Q15-23). The moderator asked about the experience with
the task and the tool to collect feedback. Additionally, the treatment group participants were
asked to explain their strategies when using the configuration page. Finally, part four included
two questions (Q24-25) that listed the configuration options available in two commercial SAST
tools, Fortify and CheckMarx and asked the participants to label each option if it is un-
derstandable, and whether it is useful for their role. The questionnaire only listed the option
names as they appear in the tools. The participants were encouraged to ask if they needed an
explanation for that option, in which case we provided them with a further description based
on the official documentation of the tools. We selected all relevant options for precision, recall,
or analysis time. We used the official documentation of the tools. The names of the tools were
not revealed. Q24 contains 18 options from Fortify and Q25 contains 11 from CheckMarx.

Calculating effectiveness We explain how we calculate the effectiveness in resolving the
findings reported by SecuCheck. In a limited time of 15 minutes, each participant was asked
to use the tool, observe the findings, and, based on the code, assess if each finding is true
positive, false positive, or cannot assess. The maximum number of findings that the tool reports
and each participant can resolve is nine. We count the ratio of correctly resolved findings out
of the total number of findings that the participant resolved. We refer to this as effectiveness
in resolving the findings (do the right thing). We prioritize quality over quantity. We do not
look into the efficiency, i.e., more number of (correct) resolutions in less time, because security

11https://cwe.mitre.org/data/index.html
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is not a property where users should compete, nor feel pressure for quantity. In other words,
to do the task effectively, we care about the quality of each resolution. When the participant
resolved X findings of which Y were resolved correctly as true or false positive, we report the
effectiveness as the ratio Y/X, expressed in percent. This way, we may get high effectiveness for
participants who resolved almost no issue. However, due to the nature of the task, we believe
that incorrect resolutions are worse than a high number of resolutions. Hence, leaving this to
the experts is better than making a wrong resolution that may lead to vulnerabilities not being
fixed. Moreover, with our study design, calculating efficiency (resolving more findings in the
given time) would give an advantage to the control group since these participants see all possible
findings at the beginning, while the treatment group may choose configurations that will not
show all findings in the application.

Data collection The user study was conducted between December 2020 and January 2021.
After the initial contact with each participant via e-mail, which provided basic information
about the study and the data we planned to collect, we arranged a virtual session over Microsoft
Teams. On average, the sessions took 75 minutes. The participants did not need to prepare
or install any software. All required tools were prepared by the moderator who shared the
screen and, when needed, gave control to the participant to perform the task. All sessions were
recorded for post-processing. We invited a researcher with experience conducting user studies to
moderate all sessions. To adapt and verify our design, we performed four test runs with students
from our group.

As an IDE, we used Eclipse, where we installed the SecuCheck tool running as a Mag-
pieBridge Server [LDB19]. For the semi-structured interview, we used Google Forms, where the
moderator collected answers. Most questions were of closed type. The answers of the few open
questions (Q16-19, 22-23), which were in part three, were collected in the post-processing phase.

3.3.2 Results

Resolving findings in configurable tools effectively (RQ4) We asked each participant
during the task to clearly state which finding is a true positive or false positive, or if the par-
ticipant cannot answer (do not know). Table 3.6 summarizes the data per finding and for each
study group. The treatment group, which consisted of participants allowed to configure the
tool, resolved 76% of SecuCheck’s findings correctly, while the control group only resolved
61% correctly (effectiveness as described in Subsection 3.3.1).

Control group Treatment group
Correct Incorrect DoNotKnow Correct Incorrect DoNotKnow

F01 12 5 2 16 1 0
F02 10 4 5 12 3 0
F03 8 7 3 9 3 2
F04 14 0 2 13 0 0
F05 8 7 1 9 4 0
F06 5 8 1 9 2 1
F07 11 3 1 8 3 3
F08 15 1 0 17 1 0
F09 6 7 0 9 7 1
Sum 89 42 15 102 24 7

Table 3.6: Number of resolved findings per study group and per finding (F01-F09). T = true
(correctly resolved), F = false (incorrectly resolved), DN = do not know.
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Participants using the configuration page resolved the findings reported by SecuCheck more
effectively than those using a single default configuration. However, using the configuration page
requires more engagement with the code and/or with security vulnerabilities.

Strategies users have when configuring static analysis tools (RQ5) To answer RQ5,
we collected the usage data of the configuration page from the participants in the treatment
group. Additionally, we gathered qualitative data from the answers in the third part of the
interview. We asked two questions about the strategies each participant used. First, What was
your strategy when you used the configuration page? (Q22), and second, Would you use the
same strategy if this was your own project? (Q23). The moderator asked further questions
based on the answers to gain more details. Among all answers, we identified four different
strategies that the participants named. During the task, all participants used one or two of
these strategies, i.e., some of them decided to change their strategy at some point. The first
strategy, AllEntriesSubsetRules, is to use all possible entry points and select only a subset of the
vulnerability rules for each run of the analysis. Most participants who used this strategy selected
a single vulnerability rule per configuration. When asked why they decided to do this, there were
only two reasons: first, to avoid being overwhelmed by a high number of findings, and
second, to avoid long running times of the analysis if everything is selected. One participant
said, "I get overwhelmed when I get too many results to resolve", and another said, "I was not
aware how long would it take to check the vulnerability so selected incrementally".

The second strategy, PairingEntryAndRule, is to select a combination of entry points and
vulnerability rules. When asked why one participant said, "I tried to match a vulnerability with
an entry point that makes sense based on the name". The third strategy, SelectAll, is to select
everything. All participants mentioned that the main reason was to ensure they did not miss
any vulnerability. The last strategy, AllRulesSubsetEntries, is to select all vulnerability rules
but make different configurations by selecting a subset of the entry points.

Table 3.7 shows the strategies that each participant used or mentioned during the interview.
The participants applied one or two strategies while solving the given task. With 13 participants
using it, AllEntriesSubsetRules was the most used strategy. With six participants, the second-
most used strategy was SelectAll. Based on the interview, we learned that the participants
did not use AllRulesSubsetEntries during the task as most of them said they were not familiar
with the code given and therefore did now know how to choose which classes would be relevant
as entry points. However, when asked if that was their own project whether they would use
a different strategy, AllRulesSubsetEntries was chosen by most participants, with 13 answers,
followed by PairingEntryAndRule with nine answers.

On average, the participants re-ran the tool, i.e., selected different configurations, 3.4 times
(with σ =1.79), with maximally six times done by four participants. Three participants ran
the tool only once (P26, P31, and P38), and they all used SelectAll. In doing so, these three
participants performed the task the same as the control group, i.e., did not make use the con-
figuration option. Interestingly, they resolved 24 findings in total and correctly resolved 14 of
them, yielding 58%, which is the lowest in the group, and conforming to the result of RQ1.
Participant P31 would always use SelectAll, saying, "All at a time, all selected! Even if the
analysis was much slower, I would leave it run over the night, and get everything. But I would
like to have a lazy loading. I should see the relevant findings for the file that I open and not the
rest".
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Table 3.7: Strategies for using the configuration page.

Strategy used during
the task

Strategy would use on
own project

Number of
configura-

tions
submitted

Inspected
the rules

P02 PairingEntryAndRule
then SelectAll

PairingEntryAndRule
then

AllRulesSubsetEntries
6 no

P06 AllEntriesSubsetRules AllRulesSubsetEntries 6 no

P07 PairingEntryAndRule
then SelectAll

PairingEntryAndRule
then SelectAll 2 no

P10
PairingEntryAndRule

then
AllEntriesSubsetRules

PairingEntryAndRule
then

AllRulesSubsetEntries
2 yes

P13 AllEntriesSubsetRules
AllEntriesSubsetRules

then
AllRulesSubsetEntries

4 no

P16 AllEntriesSubsetRules
AllEntriesSubsetRules

then
PairingEntryAndRule

6 yes

P18 AllEntriesSubsetRules
AllRulesSubsetEntries

then
PairingEntryAndRule

2 no

P19 AllEntriesSubsetRules AllEntriesSubsetRules
then SelectAll 3 yes

P21 AllEntriesSubsetRules
then SelectAll AllRulesSubsetEntries 2 yes

P22 AllEntriesSubsetRules
then SelectAll AllRulesSubsetEntries 2 yes

P24 AllEntriesSubsetRules
AllEntriesSubsetRules

then
AllRulesSubsetEntries

3 yes

P25 AllEntriesSubsetRules PairingEntryAndRule 5 yes
P26 SelectAll AllRulesSubsetEntries 1 yes

P27 AllEntriesSubsetRules
then SelectAll AllRulesSubsetEntries 4 yes

P30 AllEntriesSubsetRules
AllRulesSubsetEntries

then
PairingEntryAndRule

5 yes

P31 SelectAll SelectAll 1 yes

P33 AllEntriesSubsetRules
AllRulesSubsetEntries

then
PairingEntryAndRule

4 yes

P34 AllEntriesSubsetRules PairingEntryAndRule
then SelectAll 3 yes

P38 SelectAll
AllEntriesSubsetRules

then
AllRulesSubsetEntries

1 yes

P40 AllEntriesSubsetRules
then SelectAll

PairingEntryAndRule
then SelectAll 6 no

40



Chapter 3. Using SAST Tools in Practice

Most participants randomly selected all entry points and ran the configuration individually for
each vulnerability rule. When asked if they would use the same strategy if they used the tool
on their project, most of them would use the selection of entry points to know where to look
for particular vulnerabilities. To avoid missing findings, a few participants would only use the
default configuration, where all entry points and vulnerability rules are selected. However, these
participants were comparatively ineffective.

Configuration options in commercial tools (RQ6) To answer RQ6, we use the data
collected in part four of the questionnaire, i.e., Q24-25, where the participant was asked to
evaluate the understandability and the usefulness of the configuration options in Fortify and
CheckMarx. Figure 3.16 shows a screenshot of how these options were presented to the
participant. For the options, we used the exact formulation as defined in the user documentation
of the tools. We screened all configuration options these tools provide and selected the options
that impact the precision, recall, or analysis time. In total, we selected 18 options from Fortify
(F1-F18) and 11 options from CheckMarx (C1-C11).

Figure 3.17 shows four boxplots, two for Fortify and two for CheckMarx. Each Fortify
option is a single data point in the first two boxplots (blue and yellow). Each CheckMarx
option is a single data point in the second two boxplots (green and red). The first boxplot
(blue) shows the understandability of the Fortify options in percent. The mean is 73.53
(σ=19.69), i.e., 73.53% of the options provided to the users are found to be understandable by
the participants. There are four outliers in the upper part, F7 (noDefaultRules), F9 (rules),
F11 (dataflowMaxFunctionTimeMinutes), and F12 (maxFunctionVisits), which are options that
are found understandable by most participants (over 85%). There are also four outliers in
the lower part, F6 (noDefaultIssueRules), F10 (enableInterproceduralConstantResulution), F13
(maxTaintDefForVar), and F14 (maxTaintDefForVarAbort), which are options that were found
least understandable (under 63%). The second boxplot (yellow) shows the understandability
and usefulness of the Fortify options in percent. The mean is 78.12 (σ=13.4). There are
four outliers in the upper part (over 85%), F1 (filter), F2 (disableSourceBundling), F4 (an-
alyzers), and F9 (rules), and four in the lower part (under 70%), F3 (disableLanguage), F8
(noDefaultSinkRules), F10 (enableInterproceduralConstantResolution), and F14 (maxTaintDef-
ForVarAbort). The third boxplot (green) shows the understandability of the CheckMarx
options in percent. The mean is 73.86 (σ=17.98). There are three outliers in the upper part,
C2 (maxQueryTime), C6 (scanBinaries), and C11 (maxQueryTimePer100K ), which are op-
tions that are found understandable by most participants (over 88%). There are also three
outlies in the lower part, C2 (maxQueryTime), C3 (useRoslynParser), and C11 (maxQuery-
TimePer100K ), which are options that were found least understandable (under 60%). The
fourth boxplot (red) shows the understandability and usefulness of the CheckMarx options in
percent. The mean is 78.85 (σ=21.15). There are three outliers in the upper part (over 95%),
C1 (excludePath), C5 (maxQueryTime), and C6 (scanBinaries), and three in the lower part
(under 66%), C4 (languageThreshold), C9 (maxFileSizeKb), and C10 (maxPathLength). There
are no significant differences when comparing the mean and standard deviation between both
tools.

Finally, we categorize the options into three categories. Category (1) includes options that
are related to the analysis scope (F1-3, C1, C4-7), Category (2) includes options that impact
the approximations done by the solver or set thresholds for analysis time (F4-5, F10-18, C2-3,
C8-11), and Category (3) includes options that are related to rule selection (F6-9). The most
understandable category is (2), with an average score of 32.5 but with the least percentage of
usefulness 70%. Category (1) has an average score of 29.25 and most usefulness with 85%,
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Figure 3.16: Screenshot of Q25 of the questionnaire
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Figure 3.17: BoxPlots for percentage of participants that marked each option as understandable
and useful for each tool, Fortify (blue and yellow) and CheckMarx (green and red)

whereas (3) has a score of 28 and 74% usefulness.

A quarter of the participants find the provided options from the selected commercial SAST
tools to be not understandable. The other three quarters find the options to be, on average,
78% useful. The most useful are the options related to the analysis scope.

Recommendations for building future SAST tools. After the participants had experi-
enced the tool, in part three of the interview, we also asked questions about the experience with
the tool. In particular, we asked what features of the tool the participants liked and disliked
and what other features they would like to have when working on a similar tool within the IDE.
Moreover, in part two, we asked questions about their previous experience with SAST tools. In
the following, we present the results. Based on these results and the results from the previous
sections, we propose a list of recommendations for future SAST tools.

Twenty-four of the 40 participants said they use SAST tools in their everyday workflow.
Out of these, 17 use SAST tools within the IDE. The tools that participants named are shown
in Figure 3.18. When asked if they configure those tools, 30 participants said they do not,
while only ten said they do. Only eight participants said they used domain-specific language to
configure the tools. During the task, we also made the vulnerability detection rules available to
the users and let them know they were available. Then we observed how many of them opened
the files and inspected them. As seen in Table 3.7 (page 40), most of them did. However, many
said that they would not write the rules on their own, but they like to have them available to
help them decide if the findings reported by the tool are true or false positives. For example,
one participant checked the rule to verify if the tool was aware of potential sanitizers. Another
participant said she prefers writing the rules and never uses default rules, as only then is she
sure that the tool is doing the right job. Twenty-seven participants said there are culture and
processes by the company for using SAST tools. Twenty-two participants said they are allowed
to configure the tools, while 13 answered they are not.
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Figure 3.18: Tools that participants use or used in the past and number of participants that
named each tool.

scale 5

13

scale 4

18

scale 3

8
scale 2

1

Figure 3.19: How relevant is the following statement on a scale from 1 (least relevant) to 5 (most
relevant): The issues reported by the tool should be relevant for me (the context I am currently
focused on)?

Recommendation 1: SAST tools should provide the rules of the analysis to the users for inspec-
tions or modification.

In part three of the interview, we asked the participants to name what they liked, disliked,
and missed about the tool they used to perform the given task. Most of the participants liked
the integration of the analysis within the standard features of the IDE, such as error view list,
error markers, clicking links to the findings, etc. The most disliked feature of the tool was that
the configuration page was in the web-browser and not within the IDE. This was perceived as
a usability issue due to context-switching. We contacted the authors of MagpieBridge, which
we used to build our tool, and they extended the framework to allow the page to be opened
within the IDE if the respective IDE supports this. Additionally, we pointed out a few other
usability issues and cooperated with them to make the framework support more UI elements
for the configuration page. Among the features that the participants missed, there were two
which were mentioned frequently. First, the participants wanted to better visualization of the
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method

14

class
15

package

5 other
6

Figure 3.20: On what level would you prefer the entry points selection option to be?

data-flow path between the source and the sink. Second, participants said our tool had a limited
description of the vulnerability reported in the error view. They prefer to see a feature where the
description can be expanded to show further details, examples, and possible fixes or proposals
validation libraries.
Recommendation 2: The SAST tools should have full integration within the IDE, and when
reporting, they should a have rich explainability mechanism for data-flow paths and educational
information for the vulnerabilities that are reported.

Previously, we learned that many participants would use the entry points selection if they
worked on their project (Table 3.7). Additionally, in part two of the interview, we asked the
participants to rank the following statement "The issues reported by the tool should be relevant
for me, i.e., the context I am currently working on.". Figure 3.19 shows the distribution of
the responses showing that for most participants, the reported issues should be relevant to the
context. We also asked the participants about the granularity level of the entry points. In our
study, we chose entry points to be on the class level. As answers, we offered method level, class
level, package level, or others. Figure 3.20 shows the distributions of the answers. Under Other,
we received two answers "all", two answers combination of two of the given options, one answer
"annotations", and one answer "hierarchical starting at package level". Based on this data, we
make the next recommendation.
Recommendation 3: The SAST tools in the IDE should provide options for the analysis scope
in which the users can select which parts of the project should be analyzed. Popular choices
include selection of methods or classes as entry points of the analysis.

Finally, we refer to the results from our user study, where we learned that the participants
from the treatment group were able to resolve the findings more effectively than participants
from the control group. We learned from the data that most participants used the vulnerability
rules as the primary selection criterion. They did not use the entry points as they were not very
familiar with the code. This is a realistic scenario where security or quality assurance teams are
performing the analysis for code they have not written themselves. We also observed that all
participants started with resolving the SQL injection [Mit21c] findings. This is one of the most
popular vulnerabilities nowadays. This shows that the users of SAST tools will probably focus
on the vulnerabilities they know and are more likely to solve.
Recommendation 4: The tools should enable users to selectively enable or disable the vulnera-
bility rules.
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3.3.3 Threats to Validity

Construct validity. A possible threat to the validity of the user study relates to its setup.
All participants performed the study remotely by sharing voice, video, and screen. During the
task, the moderator noted the outcome of the findings that the respective participant resolved.
To mitigate the risk of human mistakes, the first author watched all videos in the post-study
processing phase to collect and confirm the results. As a result, we had a 100% inter-rater
reliability score. Additionally, we collected notes of each session from which we created an
artifact from our study.

Internal validity. To avoid any random answers to the questionnaire, we asked the participant
to share the screen and give further comments to some questions while guided by the moderator
in an interview style. To confirm the clarity of the questions and the timing of our study, we
ran four tests with students from our research department.

External validity. Participation in the study was voluntary and without compensation. We
asked our contacts from the industry to invite their software developers and additionally, we
invited researchers, and students from Paderborn University. The invitation explained that the
user would evaluate the configuration capabilities of SAST tools. This information makes it
more likely that the participants have some interest in security and static analysis. However,
this might make our population biased towards SAST tools.

We consciously chose a study design that would yield high internal validity at the necessary
cost of limiting external validity [SSA15]. This is limited by the tool used for the study and
the choice of an example project. The tool is limited to taint analysis, while other SAST
tools also include other types of analyses. However, the most popular vulnerabilities are of
taint-style, and the core of most SAST tools is a taint analysis [PDB19]. The project we used
is artificially created, but includes different components that modern web applications would
have. The vulnerabilities within the application are inserted based on existing vulnerabilities
that we found in the OWASP benchmark [Ben21] and OWASP Webgoat [OWA]. We decided
to use our own tool as this gave us control over what features to include and exclude.

The fact that several participants noted that the analysis was fast compared to what they
expect from a SAST tool is due to the reason that our example project is relatively small
compared to most real-world projects in the industry. Since this may impact the strategies
that the participants used and discussed in Q22, we additionally asked in Q23, i.e., how they
would have used the tool if that was their project where the analysis time would be an essential
factor. This question allowed us to gain further insights relating to more real-world situations,
strengthening external validity.
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Detecting Security-Relevant
Methods

4
Lists of security-relevant methods (SRM) are generally created manually by the analysis writers
and, in larger companies, are often refined by dedicated security teams through manual work.
This is important, as even lists used in commercial tools can be incomplete and thus, can
cause the analyses to miss vulnerabilities or to signal false positives. This chapter presents
SWAN (Security methods for WeAkNess detection), an approach that directly aids analysis
users in detecting SRM in their code and the libraries they use. Compared to earlier work,
SWAN detects two additional types of SRM: validators and authentication methods. This
allows the analyses to detect more types of vulnerabilities. When compared to earlier work,
SWAN shows higher precision. In addition, SWAN provides more granularity in the SRM
lists, as it can differentiate between different vulnerability types in terms of CWEs (Common
Weakness Enumerations).

4.1 Requirements

To detect SANS 25 [Mit21a] problems, data-flow analyses need to be aware of critical method
calls in the program that influence the computation of the analysis: the SRM. In our case, those
are sources, i.e., methods that create the data that should be tracked (e.g., getParameter()
line 3), sinks, i.e., methods at which the analysis should raise an alarm (e.g., executeQuery() at
line 7 and sendRedirect() at line 9), validators, i.e., methods at which the data becomes safe
and should no longer be tracked (e.g., encodeForSQL() at line 4). In addition, authentication
methods change the program’s state from safe to unsafe or vice-versa (needed for CWE306 and
CWE862). Supporting the SANS top 25 thus yields the following requirement for SRM lists.

R1 SRM should differentiate between sources, sinks, and validators.

When analyzing a program, the choice of SRM can heavily influence the outcomes of the
analysis. For example, configuring an analysis with executeQuery() as a sink could make it
detect SQL injections. Configuring the same analysis with sendRedirect() could make it detect
Open Redirects. This is further illustrated in Table 4.1, where we detail the types of methods
considered as sources, sinks, and validation methods for each of the CWEs.

For example, in CWE306 (Missing Authentication for Critical Function), methods requiring
prior authentication are considered sinks since the analysis should report an error as soon as
they are reached without proper authentication. Authentication methods are thus considered
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validators, unlike in CWE89 (SQL Injection), where validators are typically String sanitizers.
This shows that SRM are vulnerability-type specific. An analysis configured with the wrong
sets of SRM can easily cause false positives and negatives, yielding what practitioners tend to
call a “bad signal”. To improve the signal-to-noise ratio and aid in categorization of the analysis
warnings, it is therefore essential to relate the SRM to each CWE.
R2 SRM lists should be specific to each CWE.

In past work, SRM have been extracted from particular libraries and frameworks. SuSi,
for example, lists all sources and sinks from the Android framework [ARB13]. However, this
overlooks SRM in other third-party libraries and in the source code itself. For example, external
SRM like encodeForSQL() in Listing 1.1 or custom methods defined in the source code will be
overlooked by an off-the-shelf SRM list. When analyzing a program, it is thus essential to
consider all libraries and frameworks it uses and its methods as potential SRM.
R3 SRM lists should be specific to the code base.

The Java Spring framework contains more than 30,000 methods. Considering that a reasonably-
sized program uses multiple such libraries, it is infeasible to create a complete list of SRM
manually. Therefore, it is necessary to compute SRM automatically.
R4 The detection of SRM should be automated, but R5 should also involve the code developer.

4.2 Related Work

SuSi [ARB13] is a machine-learning approach for sources and sinks in the Android framework. It
uses 26 feature types and runs two iterations of machine-learning to classify methods as sources,
sinks, or neither, and then, in different Android-specific classes such as Bluetooth, browser, etc.
SWAN extends SuSi to detect sanitizers and authentication methods on top of sources and
sinks. It also allows for classifications into CWE sub-classes. Unlike SuSi, which is specific
to Android, SWAN generalizes SuSi to Java applications. In addition, SWAN introduces
SWANAssist, which interleaves the code developer with the SRM detection task. This allows
SWAN to generate SRM more specific to the analyzed code base.

Many static analyses use SRM to configure their analyses. For example, in the domain
of Android applications, the SRM are typically computed using SuSi-like approaches. This
makes those analyses [ARF+14, MAS+17, DAL+17, MG18] susceptible to SuSi’s weaknesses.
For instance, those approaches do not consider sanitizers. SWAN and SWANAssist support
sanitizers, and include user feedback in order to refine the list and reduce the number of false
positives.

Sas et al. [SBF18] introduce the need for generalizing the detection of SRM for general Java
libraries and the classification in CWE classes. They extend SuSi, modifying its features to
achieve the former goal. However, unlike SWAN, they do not address the latter. Similar to
SuSi, Sas et al.’s approach detects sources and sinks offline. SWAN can additionally recognize
sanitizers and authentication methods and classify SRM by CWEs.

Like SWAN, Merlin [LNRB09] also detects SRM automatically. It uses probabilistic infer-
ence to detect specifications for taint-style analyses of string-based vulnerabilities. It models
information flow paths in a propagation graph using probabilistic constraints. However, the
resulting SRM are specific to the application of Merlin, i.e., string-based vulnerabilities, and
Merlin does not provide support to classify them in sub-types such as CWEs.
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Figure 4.1: Overview of SWAN and SWANAssist

SinkFinder [BLH+20] is another approach based on machine-learning using a support vector
machine to detect a pair of sinks. SinkFinder first takes one pair of well-known interesting
functions as the initial seed to infer enough positive and negative training samples using sub-
word word embeddings. As it is implemented for C and C++ programs, an example for a seed
is the pair of functions for allocating and freeing memory (kmalloc and kfree). Using this seed,
the approach can identify other pairs, such as open and close functions for a database. Due
to the nature of the problem SinkFinder addresses, it works only for method pairs. This is a
limitation, becasue many security vulnerabilities require single sink, e.g., SQL injection.

4.3 Two-phase Classification Model

SWAN runs the automated classification shown in the lower part of Figure 4.1 twice: in the first
iteration, it classifies all methods of the analyzed program and libraries into general SRM classes
(R1): sources (So), sinks (Si), sanitizers (Sa), one of the three types of authentication methods
detailed below, or none of the above. The second iteration discards the methods marked with
none, and classifies the remaining SRM into the individual CWEs (R2). This is done to avoid
classifying non-SRM methods as CWE-relevant.

In the first iteration, SWAN runs a set of four classifications, one for each type of SRM.
Since those four sets are not disjoint (e.g., getContent() can be both a source and a sink),
the classifications are run independently. For sources, sinks, and sanitizers, the classifications
are binary e.g., for the sources, each method is classified in one of the two classes: source or
not source. In the case of authentication methods, SRM are typically distributed between
four disjoint classes: auth-safe-state (Ass), auth-unsafe-state (Aus), auth-no-change (Anc), and
none. The first one refers to authentication methods that elevate the privileges of the user,
e.g., login methods. The second contains methods that lower those privileges (e.g., logout
methods). The third category marks methods that do not change the state of the program (e.g.,
isAuthenticated()).

Although exceptions are not rare, in most cases seen in our data sets, Ass and Aus tend to
be disjoint. In addition, the two types of authentication methods are semantically very similar.
As a result, running three different binary classifications yields a significantly lower precision
and recall than a single classification with both classes. Anc was thus introduced to reduce the
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number of such methods classified into Ass and Aus.
In the second iteration of the classification, the training set is kept the same, but the meth-

ods that were not classified in the SRM classes are removed from the test set. Each CWE
classification is done via binary classifier. Currently, SWAN supports seven CWEs: CWE78,
CWE79, CWE89, CWE306, CWE601, CWE862, and CWE863.

After running SWAN on the code shown in Listing 1.1, getParameter() is classified as
a source for injection vulnerabilities (CWE78 and CWE89) and open redirect (CWE601),
executeQuery() is classified as a sink for CWE89, sendRedirect() is classified as a sink for
CWE601 and encodeForSQL() is found to be a sanitizer for CWE89.

4.4 FRcode: Code Features

To help the machine-learning algorithm classify the methods into different classes, SWAN uses a
set of binary features that evaluate specific properties of the methods. For example, the feature
instance methodClassContainsOAuth is more likely to indicate an authentication method than
any other type of SRM. As a first phase of the learning, SWAN constructs a feature matrix by
computing a true/false result for each feature instance on each method of the training set. We
name this matrix a feature representation FRcode. FRcode is used to learn which combination
of features best characterizes the classes. Finally, this knowledge is used to classify the methods
of a new validation set.

We have identified 25 feature types, instantiated as 206 concrete features into SWAN’s
FRcode. We call feature types generic features such as methodClassContains and feature
instances their concrete instances (e.g., methodClassContainsOAuth). Table 4.2 shows the list
of feature types in SWAN and their number of concrete instances. Overall, 15 feature types,
and only 18 feature instances of SWAN, are derived from SuSi, where ten feature types and
188 feature instances have been added to complete the approach and make it compliant with
R1–R5. To ensure a good selection of the new feature instances, we manually selected SRM
methods from the Spring framework and created feature instances that comply with the methods’
characteristics.

Compared to SuSi, SWAN contains more general features. For instance, SWAN does not
contain Android-specific features such as Required Permission. On the other hand, SWAN
contains more features based on method and class names such as F03, F04, F10, F14, F15,
or F16. This is due to the Java naming conventions followed in major libraries, which make
functionalities explanatory through naming. Those features are beneficial for the classification
in CWEs, as both method/class names and CWEs are human-defined concepts and match their
descriptions. For example, a call to a database library is made, or when the method is called
"query", this can likely denote an SQL injection (CWE89).

SWAN features also support access control to methods: SRM are more likely to be publicly
accessible, so whether the method is public, private, protected, contained in an anonymous
class, or an inner class is covered in F01, F02, and F08, and are used to differentiate between
potential SRM and other methods. SWAN also dedicates features to parameters and return
types like F21, F23, or F25, which can help differentiate between different types of SRM (e.g.,
void methods are less likely to be sources), and between different types of CWE (e.g., Open
redirect CWE601) most likely take Strings or URLs as inputs.

Other features in SWAN aim at removing false positives, e.g., F11, which helps distinguish
constructors from sources, since they both return potentially sensitive data. Data-flow-specific
features (e.g., F19, F20, F24) also serve this purpose, refining the classifications with more
information such as whether a parameter flows to the return value (potentially indicating a
sanitizer) or if a parameter flows to a method call (denoting a potential sink).
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Table 4.2: Feature types of SWAN, and their total number of instances (#I) used within all
classifications in SWAN.

Feature #I Feature #I
F01 IsImplicitMethod 1 F14 MethodNameStartsWith 9
F02 AnonymousClass 1 F15 MethodNameEquals 3
F03 ClassContainsName 36 F16 MethodNameContains 46
F04 ClassEndsWithName 3 F17 ReturnsConstant 1
F05 ClassModifier 3 F18 ParamContainsTypeOrName 11
F06 HasParameters 1 F19 ParaFlowsToReturn 1
F07 HasReturnType 1 F20 ParamToSink 13
F08 InnerClass 1 F21 ParamTypeMatchesReturnType 1
F09 InvocationClassName 10 F22 ReturnTypeContainsName 6
F10 InvocationName 39 F23 ReturnType 5
F11 IsConstructor 1 F24 SourceToReturn 7
F12 IsRealSetter 1 F25 VoidOnMethod 1
F13 MethodModifier 4
Total 206

SWAN’s features further aim to recognize sanitizers and authentication methods. For ex-
ample, some instances of F14 are dedicated to sanitizer detection: MethodNameContainsSanit,
or MethodNameContainsReplac. Similarly, F19 finds methods that transform a parameter into
a return value. In combination with ParameterContainsTypeString, the instance of F18
applied to Strings, and this covers the most typical type of sanitizer, which replaces sensi-
tive data or strips dangerous characters in a String. Feature instances have also been cre-
ated with the three types of authentication methods in mind. Authentication methods are
mainly determined through their names or the names of their declaring classes, so they are
targeted through instances of F03 and F10, and F14 such as methodNameContainsLogin, or
methodClassContainsOAuth.

The training set in SWAN contains 235 Java methods collected from 10 popular Java
frameworks: Spring [Spr], jsoup [jso], Google Auth [Goob], Pebble [Tem], jguard [JGu], We-
bGoat [OWA], and four Apache frameworks [Apah, Apag, Apaa, Apab]. We put particular
care in ensuring that the methods were chosen so that each of the 206 feature instances of
SWAN had at least a positive and a negative example making each example relevant for the
machine-learning algorithm.

4.5 Classifiers

SWAN uses the Soot [ARB17] program analysis framework to obtain FRcode. As its machine-
learning module, it uses the SVM learner from the WEKA [WFHP16] library. The training set
is a JSON file containing the 235 Java methods mentioned above, annotated with SRM types
and CWEs. SWAN accepts a Java program or library as its test set and runs the two-phase
classification, yielding lists of classified test SRM.

WEKA contains different classifiers: linear, probabilistic, tree-based, rule-based, etc. We
have evaluated seven of them to determine which one would be most appropriate to use in
SWAN: Support Vector Machine (SVM), Bayes Net, Naive Bayes, Logistic Regression, C4.5,
Decision Stump, and Ripper. We have run a set of ten 10-fold cross-validations [Sto74] for each
of the classifiers on the training set. The median precision and recall are shown in Table 4.3. We
see that SVM yields the best precision and recall in all cases, classifying on average with 90% of
the methods correctly. Naive Bayes also yield good results, and Decision Stump has the lowest
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precision, with 62,5% for the CWE79. As a result, we chose SVM as the default classifier for
SWAN.

4.6 SWANframe: General Framework for Creating Machine-
learning Pipelines for SRM Prediction

SWAN’s architecture has three inputs (methods, labels, and a program) and one output (pre-
dicted methods). Internally, it consists of two components, one for feature extraction and another
one for model selection. The first input is a list of preselected methods. The second input is
the methods’ labels for each class present in the models. Additionally, when the models are
used with new data, the third input is the program containing new unlabeled methods. When
the pipeline runs with the methods from the program, it adds labels to them (predicted meth-
ods). The previous work SuSi followed the same architecture. However, SWAN and SuSi use
different training set. The feature extraction is also different as both approaches have differ-
ent features. Finally, they both follow a two-phase classification model, which was manually
selected as seen in the previous section, but internally there are different classifiers. In the
following sections, we explore even more variations of this architecture. Therefore, we abstract
this as general framework for creating a machine-learning pipeline of models for predicting SRM
called SWANframe.

Figure 4.2 shows an overview of SWANframe. Both SWAN and SuSi are one concrete
instance (pipeline) of this framework. When the framework is applied in training mode, the
input methods from the program and labels are combined with the features from the Feature
Extraction component to create the feature representation. Then, the Classification component
makes the predictions. The pipeline can be used in the testing mode with a new program. Then,
the methods from the program are outputted as Predicted Methods. SWANframe defines the
classes the legend as shown in the inner part of Classification in Figure 4.2.

Training

Testing

Feature 
Extraction

Program

Program Predicted Methods

Labels

Classification

JekaJeka

Classification

Jeka

Legend

None Sources

Sinks Sanitizers

Authentication (3)
▪ auth-safe-state
▪ auth-unsafe-state
▪ auth-no-change

CWE (7)
▪ OS Command Injection
▪ Cross-site Scripting
▪ SQL Injection
▪ Missing Authn.
▪ Open Redirect
▪ Missing Authz.
▪ Incorrect Authz.
 

Figure 4.2: Overview of the general framework SWANframe for creating ML-based pipelines
to classify methods into SRM and CWE classes.

The classification of SRM and CWEs is a multi-label classification problem. Each method
from the program (e.g., application or library) can be assigned one or many labels, or none at
all.

Let X denote the instance space consisting of program information. In general, the program
could be code, documentation, both, or something different. In order to make the program un-
derstandable for standard ML classifiers, each instance is represented by a feature representation
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generated by feature map f : X → RF . The finite set of class labels is denoted by L = LS ∪LC ,
i.e., the set of SRM and CWEs.

The goal is to learn a classifier h : X → 2L mapping an instance x ∈ X , i.e., a feature
representation f(x) of a program, to the correct set of class labels L ⊆ L.

To do so, SWAN is decomposed into a two-phase classification process

h(x) = hS(f(x)) ∪ hC(f(x)) . (4.1)

In the first phase hS : X → 2LS assigns any number of SRM class labels

LS = {source, sink, sanitizer , authentication} (4.2)

to a given instance x ∈ X . If the program is classified to be no SRM, i.e., hS predicts ∅, it is
assigned NONE in the first phase and therefore excluded for further investigation in the second
phase.

In second phase hC : X → 2LC assigns any number of the following CWE class labels

LC = {CWE078 ,CWE079 ,CWE089 ,CWE306 ,
CWE601 ,CWE862 ,CWE863}

(4.3)

to the instance x ∈ X . Again, if the program is classified to be no CWE, i.e., hC predicts ∅, it
is assigned NONE

Training data of the form

Dtrain = {(xi, yi)}Ni=1 ⊂ X × L (4.4)

is given, where each instance xi ∈ X represents a program, and Li ∈ 2L denotes the ground
truth set of labels assigned to xi. The classifier h is meant to generalize well beyond the training
data to also perform well on unseen data. To do so, unseen test data Dtest of the same form
than Dtrain is needed to compute the empirical performance of h, aiming to maximizing the
performance w.r.t. a given performance measure for Dtest . To this end, both classifiers hS and
hC have to perform well.

In the following sections, we propose new types of features that can be used to create new
feature representations and with that new pipelines of SWANframe. Additionally, we apply an
automatic process for model selection and evaluate it. For this, we use Auto-WEKA, an AutoML
extension of WEKA [WFHP16], which identifies machine-learning algorithms and hyperparam-
eter settings appropriate to their applications. Auto-WEKA splits the provided dataset into a
training and test set and returns the optimal classifier found in the given exploration time.

4.7 FRdoc_m: Implementing Features Based on Doc Com-
ments

In Java, in-line software documentation, called documentation comments (doc comments), can
be added to the source code by delimiting comments with /** ... */ to describe the classes,
fields, methods, constructors, or package declarations they precede. The tool that processes
these comments is called Javadoc.

We create new type of feature representation FRdoc_m based on doc comments informa-
tion. The Feature Extraction component of FRdoc_m is shown in Figure 4.3.

FRdoc_m extracts doc comments from source code, processes them with Natural Language
Processing, and instantiates new features. In the training phase, the source and JAR files
for the methods in the training set are retrieved. The source JAR files are processed using
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two doclets, namely Javadoc Coverage Doclet and the SSLDoclet. The Javadoc Coverage
Doclet calculates the documentation coverage for the source code in the source JAR files,
useful for filtering methods with no or insufficient documentation. The SSLDoclet extracts doc
comments from the source code and exports them to XML files. The exported doc comments are
processed with either CoreNLP (manual features) for FRdoc_m or DL4J (automatic features
with word embedding) for FRdoc_a (Section 4.8). In the testing phase, a list of Maven
identifiers (JAR files retrieved using Jeka) or JAR files can be provided as Program. Similar
to the training phase, the feature extraction module provides the FRdoc_m as input for the
classification.

Feature Extraction

Features

Program

Soot

DL4JCoreNLP

Doclets

Classification

Figure 4.3: Components of FRdoc_m machine learning approach to train and evaluate models
that classify Java methods into CWE classes based on source code and software documentation
features.

Although Javadoc’s standard export format is HTML, the Javadoc API can be used to create
Java programs that specify the output format of content exported by the Javadoc tool called
doclets. HTML is not ideal for natural language (NLP) processing analysis. NLP requires a
more versatile format such as XML. Therefore, we use a doclet that exports documentation
found in Java source code using an XML schema optimized for NLP. The SSLDoclet exports
syntactically and semantically models source code information, maintains relationships found
in the source code, and represents the documentation using various XML tags, attributes, and
elements. After running the SSLDoclet on a program’s source code, XML files containing the
class and method doc comments for each Java class are exported. During the doc comment
extraction, another doclet reports on the documentation coverage of the program as a useful
metric that can be used to enrich the training set with new relevant methods.

However, checking the presence of text in a doc comment is insufficient for the NLP because
the presence of method or class doc comment does not necessarily imply that it is useful. For
example, the com.mysql.jdbc.Field class from the mysql:mysql-connector-java:3.1.7 li-
brary has 21 methods with “DOCUMENT ME!” as their doc comments. Developers sometimes
write the method/class name or write the name in sentence form to ensure that documentation
is present.

For the new feature representation based on doc comments, we created a new training set,
including 153 out of SWAN’s 235 existing training examples in SWAN with proper doc com-
ments. In addition to these methods, 129 were taken from the list of methods used by a security
plugin called Early Vulnerability Detector, developed by Sampaio [Sam14]. The list contained
sources, sinks, sanitizers, and examples for CWE078, CWE079 and CWE089. Forty-two meth-
ods were taken from the SRM list used by the Find Security Bugs Plugin [AFP20]. In addition,
for validation purposes, the SRM list for Java created by OWASP was used [VdSCC+08]. Using
these lists, 171 new methods were added to the training set. Table 4.4 shows the distribution of
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the 153 existing and 171 new methods. Given that a method can belong to multiple categories
(for example, a method that is a source and a sink), the sum of the available labels can exceed
the number of methods.

Number of Examples
Category Existing New Total
Sources 27 61 88
Sinks 49 62 111
Sanitizers 21 50 71
Auth-no-
change

5 0 5

Auth-
unsafe-
state

9 0 9

Auth-safe-
State

33 0 33

CWE078 21 3 24
CWE079 37 16 53
CWE089 18 7 25
CWE306 55 0 55
CWE601 26 0 26
CWE862 47 0 47
CWE863 42 0 42
Unique
Methods

153 171 324

Table 4.4: Distribution of the 153 existing and 171 new methods in the dataset that have
method doc comments containing at least one sentence or phrase. Considering that the 324
unique methods can belong to multiple classes, the total number examples exceeds the count of
the unique methods.

When the SSLDoclet exports doc comments, they contain the block and inline tags described
in Table 4.5 and HTML characters such as <code>...</code>. For example, the doc comment
“Writes the {@link ResponseHeader header} to the output stream.” contains the link in-line
tag. Before annotating the doc comments with a Natural Language Processing library, these tags
would be removed; however, counting the number of tags used in a doc comment can be useful in
establishing relationships between SRM classes and the number of tags. The set of features based
on the preprocessed doc comments shown in Table 4.6 were implemented to utilize this informa-
tion. The four features, U1–U4, count the occurrences of the code ({@code text}), link ({@link
package.class#member label}) or ({@linkplain package.class#member label}), depre-
cated (@deprecated deprecated-text) and see (@see reference) tags. These features use
regular expressions to identify if the tags are used in the doc comments. When counting
code tags, the U1 CodeTagCount feature additionally uses a regular expression to identify
<code>...</code> patterns, another method that can also be used to enclose code in doc
comments.
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Tag Description
@author Specifies the person(s) that made significant

contributions to the design or implementation
of the documented object.

@version text Current software version release number.
@param name descr Name and description for method’s or construc-

tor’s parameters.
@return descr Description for the method’s or constructor’s re-

turn type.
@exception name descr
@throws name descr

Provides the type and description of the excep-
tion that the method may throw.

@see reference A link or text that references another part of the
software.

@since text Software release version number where the code
was contributed.

@deprecated text Informs the user that the API was deprecated.

Table 4.5: Block tags used in Javadoc

Table 4.6: Manual features that count block and in-line tags in pre-processed method and class
doc comments.

Key Description
U1 Number of code tags.
U2 Number of deprecated tags.
U3 Number of link tags.
U4 Number of see tags.

After removing in-line and block tags, all HTML characters such as <code>...</code>,
code examples, and symbols (for example, hashtags #), the doc comments are annotated using
CoreNLP’s default pipeline. The features based on the annotated doc comments are categorized
as follows: part of speech counters, data flow evaluators, word counters, and statistical features.
The list of features and the categories they belong are outlined in Table 4.7.

A subset of the features in Table 4.7 is based on implementations of feature engineering
strategies used by an open source framework called Featuretools that performs automated fea-
ture engineering by transforming datasets into feature matrices [KV15]. The framework offers
numerous functions called primitives that aggregate and transform data in order to create fea-
tures for machine-learning. Among the primitives described in Featuretools’ API reference are
the following natural language processing primitives: PartOfSpeechCount, TitleWordCount,
StopwordCount, MeanCharactersPerWord, and DiversityScore. Implementations of these prim-
itives are part of the manual features based on the annotated doc comments.

58



Chapter 4. Detecting Security-Relevant Methods

Table 4.7: Manual features based on doc comments that are annotated using CoreNLP.

Category Key Description

POS Count

F1 Number of adjectives.
F2 Number of adverbs.
F3 Number of conjunctions.
F4 Number of nouns.
F5 Number of prepositions.
F6 Number of pronouns.
F7 Number of punctuation marks.
F8 Number of verbs.

Text Statistics

F9 Number of title words.
F10 Number of stop words.
F11 Number of unique words divided by total number of words.
F12 Average number of characters for each word.
F13 Nmber of distinct lemmas.
F14 Number of characters.
F15 Number of digits.
F16 Number of sentences.
F17 Average length of sentences.
F18 Number of incomplete code words.

Word Count

F19 Weighted count of auth-safe-state words.
F20 Weighted count of auth-usafe-state words.
F21 Weighted count of auth-no-change words.
F22 Weighted count of command injection words.
F23 Weighted count of cross site scripting words.
F24 Weighted count of incorrect authentication words.
F25 Weighted count of missing authentication words.
F26 Weighted count of missing authorization words.
F27 Weighted count of open redirect words.
F28 Weighted count of sanitizer words.
F29 Weighted count of sink words.
F30 Weighted count of source words.
F31 Weighted count of SQL injections words.

Data Flow

F32 Data flow using an auth-safe-state preposition.
F33 Data flow using an auth-unsafe-state preposition.
F34 Data flow using an auth-no-change preposition.
F34 Data flow using a sanitizer data flow preposition.
F35 Data flow using a sink data flow preposition.
F36 Data flow through a source preposition.

POS Count The first category of features, POS Count, is based on the implementation of
the Featuretools PartOfSpeechCount primitive which counts the occurrences of different parts
of speeches. Accordingly, eight features are implemented that count the following part of speech
tags in the doc comments: adjective, adverb, conjunction, noun, verb, preposition, pronoun, and
punctuation marks. Counting the part of speech tags assigned to words in the doc comments can
help establish relationships between the number of a particular part of speech and a particular
SRM class. For example, the doc comments on methods and classes that perform authentication
or authorization tasks are likely to contain numerous adjectives that describe the authentication
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or authorization state such as “disconnected”, “connected”, “granted“, or “denied”. Counting
these words can therefore assist in the classification of CWEs related to authentication and
authorization, namely: CWE306 Missing Authentication, CWE862 Missing Authorisation, and
CWE-863 Incorrect Authorisation.

Text Statistics The second category of features, text statistics, contains implementations
of the remaining primitives mentioned above. Feature F9 counts the number of words that
start with capital letters, title words, in the doc comments. The next feature, F10, computes
the number of stopwords in the doc comment. Stop words are often referred to as function
words which are mostly articles (“the”, “a”, “this”, etc.), prepositions (“at”, “for”, “of”, etc.),
pronouns (“he”, “it”, “them”, etc.) and verb articles (“am”, “be”, “was”, etc.). CoreNLP’s list
of stopwords is used in F10 feature and other features that evaluate stopwords. Feature F11
evaluates the complexity of the doc comment by dividing the sum of unique words by the total
number of words in the doc comment. This feature ignores stopwords and punctuation marks.
The last feature in this category, based on the Featuretools primitive F12, calculates the average
number of characters for each word in the doc comments. For this feature, punctuations are not
considered.

In the text statistics category, there are also features that count the number of unique
lemmas F13, characters F14, digits F15, and sentences F16 within the doc comments. Feature
F16 calculates the average sentence length by dividing the sentence length by the number of
sentences. These statistical features and the ones previously discussed using the logical structure
of the doc comments to extract quantitative information for classification.

The last feature in the text statistics category, F18, evaluates if words that convey incomplete
code or implementation, such as “fixme”, “todo”, “backdoor”, “trick”, etc., are used in the doc
comments. This list of words was created by Van der Stock et al. and these words may point
to possible software vulnerabilities as they imply incomplete or fault-prone implementations
[VdSCC+08]. Such implementations are likely to be vulnerable to software attacks becasue a
developer may not have followed best practices when developing, or the solution may not be
foolproof.

Word Count The previously discussed features use structural information of the doc com-
ments to classify the methods. However, more helpful information can be extracted using the
content or semantics of the doc comments. When classifying methods according to software
vulnerability classes, helpful clues can be derived based on the words used in the doc comments.
Domain experts classifying methods based on doc comments would base their selections signifi-
cantly on what verbs and nouns appear in a doc comment. Specific words infer the possibility of
certain vulnerabilities. Moreover, the frequency of the words and their function in the sentence
plays a pivotal role. For example, the words “database” and “insert” are more readily associated
with SQL Injection in comparison to the words “browser” and “redirect” which are more likely
associated to Cross-site scripting.

The verbs in a doc comment convey useful information about possible data operations per-
formed by a method. They describe the action applied to an object or the state of the object.
For example, words such as “insert”, “query” and “select” can be readily associated with CWE89
SQL Injection, while verbs such as “redirect”, “send” or “request” are more aligned with CWE601
Open Redirect. The nouns in a doc comment are the objects to which the method applies its
data operations. Nouns such as “file”, “network”, “hardware”, “cookie”, “email”, “internet”,
“printer”, “server”, or “string” provide contextual information that can be insightful for clas-
sification. Therefore, the phrase “inserts string” implies data insertion that could be relevant
for SQL Injection, while the phrase “redirects to provided string” is more relevant for the Open
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Redirect vulnerability.
Based on this observation, a vocabulary of verbs and nouns for each CWE and SRM class

was created using words used in FRcode. Other words were extracted by generating a list of
verbs and nouns used in the Java Runtime library and assigning the words to the applicable
vocabularies. The vocabularies were also augmented with words from the Computer Science
Word List (CSWL), a technical vocabulary of computer science words [Min13]. The vocabular-
ies contain the lemmatized versions of words to ensure that even if a word is morphed because
of pluralization or tense, it could still be recognized after using CoreNLP’s lemmatization an-
notator.

Using the predefined vocabularies of nouns and verbs for the CWE and SRM classes, the
features F19-F31 count the number of times the words from the vocabularies appear in the doc
comments. The features do not merely count how many words from a particular vocabulary
are in the sentence. Instead, the dependency graph, which captures the semantic meaning of
the sentence, is used to calculate the weighted count for each feature. The depth of a word in
the dependency graph implies the importance of the word in ascertaining the meaning of the
sentence. The verb in the sentence is predominantly the root of the graph, and the nouns or
noun phrases would be its children. With this insight, the features were created to model the
sentences’ semantic meaning. Using this approach, the most essential words in a sentence would
impact the final sum more.

As an example, Figure 4.4 shows the dependency graph for the doc comment of the void
writeResponseHeader(RequestData, int) method . The root of the dependency graph is
“writes” (depth = 0), which has two children “header” and “.” (depth = 1). The node “header”
has three children “the”, “response”, and “stream” (depth = 2). The remaining words, “to”,
“the” and “output” are children of “stream” and have a depth of 3. Each depth of the dependency
graph is assigned a weight such that: depth(0) = 100, depth(1) = 30, depth(2) = 10, and
depth(>=3) = 2. Evaluating the example sentence with the F28 feature would result in 100
(writes) + 30 (header) + 10 (stream) + 2 (output) = 142 given that the lemmas “write”,
“header”, “stream” and “output” belong to the sink vocabulary. However, applying the F26
feature returns 30 (header) + 10 (response) = 40 given that only the words “response” and
“header” are present in the open redirect vocabulary. Based on the doc comment, the method
would be more relevant for a sink than an open redirect vulnerability, and the weighted count
captures this expectation.

14.10.20, 01:05

Seite 1 von 2http://corenlp.run/

Part-of-Speech:

Writes the response header to the output stream .
VBZ DT NN NN IN DT NN NN .

1

Named Entity Recognition:

Writes the response header to the output stream .
TITLE

1

Basic Dependencies:

Writes the response header to the output stream .
VBZ DT NN NN IN DT NN NN .compoundcompound

detdet
caseobj

nmod
punct

1

Enhanced++ Dependencies:

Writes the response header to the output stream .
VBZ DT NN NN IN DT NN NN .compoundcompound

detdet
caseobj

nmod:to
punct

1

Open IE:
Writes the response header to the output stream .1

CoreNLP Tools:

— Text to annotate —

Writes the response header to the output stream.

— Annotations —
parts-of-speech named entities dependency parse openie

— Language —
English Submit

TokensRegex Semgrex Tregex

Figure 4.4: Dependency graph for the doc comment of the void
writeResponseHeader(RequestData, int) method.

The word count category of features uses these principles to represent the semantics of the
doc comments. For example, doc comments that contain a certain set of words are more likely
to be related to a particular CWE than doc comments that do not. Capturing These features
evaluate the nouns and verbs in the sentences and assign a weight based on the depth of the
word in the dependency graph.

Data Flow The fourth category of features, data flow, evaluates if there are data flows in
the sentence based on the prepositions used. Prepositions are placed before pronouns, nouns
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or noun phrases and convey information about direction (“to”, “into”, “on”, etc.), place (“at”,
“inside”, “in”, etc.), location (“in”, “at”, “on”, etc.), and spatial relationships (“from”, “out of”,
“through”, etc.) [Cen]. In doc comments, these words can describe what data operations (for
example, writing, reading, deleting, etc.) are being done by a method or in a class. They can
also indicate where the data is located (for example, “in a file”, “on the server”, etc.). Using the
context implied by the nouns and pronouns in the doc comments, the preposition “from” could
imply a source operation, while “to” might imply a sink operation.

For example, the method doc comment for void writeResponseHeader(RequestData, int)
is “Writes the response header to the output stream”. In this doc comment, a data flow is im-
plied by the use of the preposition “to” with the nouns “response header” is written to the
”output stream”. Given these clues, this method would be classified as a sink. As seen with
this example, the implied data flow depends on the nouns or pronouns used in the sentence, and
the data flow features also check what nouns or pronouns are used with the preposition. For
example, using the prepositions “to” and “from” with the word database implies two different
data operations. “To” in this context would likely imply a sink operation, while “from” might
be a source operation. Identifying possible data flows implied in the sentence can help to detect
possible vulnerabilities that a method or class may be prone to.

4.8 FRdoc_a: Automated Features Based on Doc Comments
In this section, we describe the feature extraction approach that analyses the doc comments
with automatic feature engineering. It is represented as fixed-length vectors, which are used as
the FRdoc_a feature representation. A common fixed-length vector representation for text is
the bag-of-words approach which is a simple, efficient, and accurate approach often used in text
classifications scenarios [Har54]. However, the major disadvantage with bag-of-words is that the
ordering of words is lost, which means that sentences that have the same words but different
meanings would have the same representation. An improvement to the bag-of-words method is
word-embeddings, in which the semantic and syntactic information of the text is represented as
a vector of real numbers based on the relationship of words in the text [Hel19].

Paragraph Vector is an algorithm that creates word-embeddings as a fixed-length vector
representation of a variable-length text such as phrases, sentences, paragraphs, and docu-
ments [LM14]. Paragraph vectors use a machine learning to learn the vector representation
for the given text while considering the text’s semantics. Mikolov et al. showed that paragraph
vectors outperformed bag-of-words models by 30% [LM14]. This is accomplished by concate-
nating the word vectors from a paragraph into a paragraph vector by predicting what the next
word should be in a given context. After the training completes, paragraph vectors for the text
are inferred based on the word vectors that were calculated. These vectors can then be used as
features for machine learning instead of, or in addition to, bag-of-words.

FRdoc_a uses the paragraph vector algorithm from the Deeplearning4J (DL4J) library,
a framework of learning libraries and tools written for Java [Tea17]. We use the algorithm
initialized with all method and class doc comments and configured with the default parameters
recommended in the algorithm’s documentation [Tea17]. After fitting the paragraph vector
algorithm, the vector representations for the doc comments can be queried and a 100 dimension
vector is obtained for each method in the dataset.

4.9 Pipelines
Based on the general framework SWANframe we proposed in Section 4.6, and the possible
feature representations, we created and evaluated the pipelines shown in Table 4.8.
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Table 4.8: SWANframe instances used to answer the research questions

Pipeline Feature representation Classification
Pipe-1 FRcode manual
Pipe-2 FRdoc_m manual
Pipe-3 FRdoc_a manual
Pipe-4 FRcode+doc_m manual
Pipe-5 FRcode+doc_a manual
Pipe-6 FRcode+doc_m automatic

4.10 Evaluation
In this section, we answer the following research questions:

• RQ7 How does SWAN (Pipe-1) compare to existing approaches?

• RQ8 What is SWAN (Pipe-1) precision on real-world libraries?

• RQ9 Is it possible to use CoreNLP features in FRdoc_m (Pipe-2) and achieve a perfor-
mance comparable to the existing approaches based on code information (Pipe-1)?

• RQ10 How does FRdoc_a (Pipe-3), the automatic word-embedding feature representa-
tion technique for doc comments, compares to the manual variant FRdoc_m (Pipe-2)?

• RQ11 How does the combined feature representations FRcode+doc_m (Pipe-4) and
FRcode+doc_a (Pipe-5) compare to individual feature representations?

• RQ12 What is the optimal classifier for each class when using FRcode+doc_m (Pipe-
6)?

To answer the research questions RQ9, RQ10, RQ11, and RQ12, we used the extended
training dataset from SWAN. We run a 10-fold cross-validation on the training dataset and
recorded the precision, recall, and F1 measure (harmonic mean of the precision and recall). The
values we report in the following are averaged over ten runs of the cross-validation with WEKA.
Due to readability, we report the F1 measure only, wheareas our artifact contains the precision
and recall as well. When running the pipelines with manual classification, i.e., Pipe-1 to Pipe-
5, we set up our tool to run seven classifiers from WEKA in their default configuration. The
classifiers are NaiveBayes, SMO (suport vector machine algorithm), DecisionStump, BayesNet,
JRip, Logistic, and J48 (decision tree algorithm). The experiments with Pipe-6, where we use
Auto-WEKA, we explored the configuration space for three hours using F1 as internal metric for
performance. We used Lenovo Thinkpad T14 Gen 1 withg with 16 GB RAM, AMD Ryzen Pro
4750U CPU, and 8 Cores.

4.10.1 Comparison (RQ7)

We know of the following three approaches to have open-sourced their SRM: SuSi [ARB13], Sas
et al.’s approach [SBF18], and JoanAudit [TSBB17]. In the evaluation for this research question
we use the pipeline Pipe-1 (Table 4.8).

SuSi and Sas et al. We compare the lists of sources and sinks from SuSi [ARB13] and
its extension by Sas et al. [SBF18] to the lists of sources and sinks generated by SWAN on
the Android framework (version 4.2). The number of sources and sinks detected by the three
approaches is shown in Figure 4.5. SWAN reports a total of 25,085 sources and 13,798 sinks,
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Figure 4.5: Two venn diagrams showing the number of methods detected by the three approaches
SuSi, Sas et al., and SWAN in the Android framework. Each venn diagram contains three sets
and their intersection. The diagram on the left side shows the number of sources. The diagram
on the right side shows the number of sinks.

SuSi 18,044 sources and 8,278 sinks, and the tool by Sas et al., 3,035 sources and 7,311 sinks.
SWAN reports more SRM than the other two approaches, which we attribute to two reasons
after a manual investigation. First, SWAN’s features target a broader range of vulnerabilities
than SuSi’s and Sas et al.’s data privacy focus. Second, SuSi reports methods from abstract
classes and interfaces, SWAN reports their concrete implementations, which allows for better
precision. Sas et al. are stricter and only report warnings belonging to certain classes: database,
gui, file, web, xml, and io. Unlike SWAN and SuSi, Sas et al. report more sinks than sources.
This is due to the larger number of sink features than source features contained in their approach.
Both SWAN and SuSi contain enough features and training instances to overcome this.

To compare the precision of the three approaches, we randomly selected 50 sources and
50 sinks in the lists produced by the three tools and manually classified them. The selected
methods of each tool were labeled by a different researcher, two of the authors, and one external
researcher. SWAN shows a precision of 0.99 for sources and 0.92 for sinks (confirming our
findings of RQ1), whereas SuSi yields respective precisions of 0.96 and 0.88, and Sas et al.’s
tool has 0.88 and 0.88, respectively.

JoanAudit. The authors of JoanAudit have manually created lists of 177 SRM classified in
five injection vulnerabilities for taint analysis, including sources, sinks, and validators. JoanAu-
dit’s SRM are taken from various Java applications, two of which are in common with SWAN:
Spring and Apache Commons. Applying to the Spring framework, SWAN can detect two of
the three methods listed in JoanAudit, the third being an interface method of which SWAN
reports the concrete implementations. On Apache, SWAN detects seven of the ten JoanAudit
methods. Two of the missing three are related to the XML injection vulnerability, which is not
yet included in the classification of SWAN. This indicates that SWAN can be used to create
lists of SRM whose quality is comparable to hand-crafted lists such as JoanAudit’s.

SWAN yields a higher precision for sources and sinks than SuSi and Sas et al.’s approach. It
can detect SRM with a quality comparable to hand-crafted lists.
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4.10.2 Real-world Applications (RQ8)

We ran SWAN (PIP1) on a benchmark of twelve popular Java libraries. The benchmark ap-
plications were selected to be real-world, open-source Java programs that contain at least 500
methods and have evidence of maintenance and development over a recent time (i.e., at least
two years and five contributors). They are composed of two frameworks from the mobile domain
(Android v4.2 [Gooa] and Apache Cordova v2.4 [Apac]), eight web frameworks (Apache Lucene
v6.6.5 [Apad], Apache Stratos v4.0 [Apae], Apache Struts v1.2.4 [Apaf], Dropwizard v1.3 [Dro],
Eclipse Jetty v9.2 [Ecla], GWT v2.8.2 [GWT], Spark v2.7.2 [Jav], and Spring v4.3.9 [Spr]), one
framework from the home automation domain (Eclipse SmartHome v0.9 [Eclb]), and one utility
framework (Apache Commons1 v19 [Apab]).

Table 4.9 presents the number of SRM detected by SWAN in each Java library. Over the
290,791 methods of the twelve frameworks, SWAN classified 74,603 of them as SRM. We see that
many methods are classified as sources and sinks. This is due to the broad definition of sources
and sinks, as they should allow an analysis to detect any type of SANS top 25 sources and sinks.
However, restricting the SRM to particular CWEs significantly reduces the number of methods
to consider (e.g., from 20.39% source SRM to under 1% source/sink/validator/authentication
methods for all CWE-specific SRM), and therefore decreases the complexity of the analyses
that use them.

Because of the high number of reported SRM, we did not manually verify the complete
classification. For each framework, we randomly selected 50 methods from each category of
SRM and CWE (or fewer if the number of methods detected by SWAN was lower) and manually
verified their classification. The verification was done by two of the authors and one external
researcher. Each person verified one-third of the selected methods. The resulting precision of
SWAN for each category is presented in Table 4.10.

Over the different classes, SWAN yields a precision of 0.826 for the SRM classes and of 0.677
for the CWE classes. SWAN is most precise (0.91) when detecting sources. Misclassifications
for this category are mostly due to the presence of getter methods in plain old Java objects,
which share similarities with source methods (e.g., returning a String). This can be improved
by training the model with more counter-examples in the training set. SWAN is least precise
for CWE862 (0.574), particularly on Spark (0), which is based only on three methods detected
making the value an outlier to the dataset. Even though CWE862 and CWE863 are similar,
making their SRM overlapping, the precision of CWE863 is better as there are more examples
available and more specific. Any authorization information available such as credentials and
tokens, are considered in CWE863, but not in CWE862 and the frameworks generally have
more related methods.

Other misclassifications cannot be improved by modifying the training set. For example, the
Spring method Connection.getConnection() has a different behaviour when overwritten in
its subclasses: in SingleConnectionFactory, it is an authentication method of type Ass, and
in ConnectionHolder it does not perform an authentication behavior. This information cannot
be inferred from the source code, as those two methods are too similar. The differentiation
information can be found in the API documentation of the methods. We conclude that SWAN
could be improved by adding features that go beyond the code.

Over the twelve libraries, SWAN yields a precision of 0.76. While it is naturally lower than
the 0.9 found with the 10-fold cross-validation (Table 4.3), it shows that the generalization of the
approach to Java projects is still able to classify SRM with a good precision. The low standard
deviation (σ = 0.075) denotes the stability of SWAN’ precision over the different Java projects.

SWAN is most precise on Eclipse Smarthome, which is explained by the fact that the library

1This also includes Apache XML-Xalan, XML-Xerces, XMl-Rcp, HttpComponents, and Oltu-OAuth2
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is aimed at home automation and does not contain the web CWEs that SWAN currently
supports. Therefore, SWAN could only detect sources and sinks, for which it is strongest.
One of the libraries for which SWAN performs the weakest is Android, with low precision for
authentication methods and methods for CWE306, CWE862, and CWE863. This is due to
the keywords used in SWAN’ features (e.g., dis/connect), which overlap with domain-specific
methods (e.g., Wi-Fi connection, Bluetooth, or NFC adapter). On our training set, such methods
are typically used for authentication, which is not the case for Android. We can conclude that
despite its good precision, SWAN still needs more domain-specific information, motivating the
need for user input and of SWANAssist.

Over 12 Java libraries, SWAN yields a precision of 0.76. It is more precise for detecting SRM
types (0.826) than for CWEs (0.677). SWAN can be improved by adding non-source code-
specific features, a complete training set, and domain-specific information. The latter two can
be provided by the code developer using SWANAssist.

4.10.3 Utilizing doc comments (RQ9)

To answer whether the feature representation based on doc comments achieve comparable results
to previous approaches based on source code information, we use the results from Pipe-1 and
Pipe-2. Pipe-1 uses the features from SWAN with the new training dataset to build the feature
representation FRcode. Pipe-2 uses only the new feature representation based on doc comments
created manually, FRdoc_m. The F1 measures for each class (SRM and CWE) and each
classifier are shown in Table 4.11 for Pipe-1 and Table 4.12 for Pipe-2. Comparing the highest
values (i.e., bold valued in the tables) for each class, we can see that FRcode is in most cases
with higher value than FRdoc_m, e.g., for sources 0.8 compared to 0.67. There is an exception
for CWE079, where FRdoc_m has F1 value of 0.49 for J48 and FRcode has 0.28 for BayesNet.

We can observe that for different classes, different classifiers show the best F1 measures.
Decision Stump classifier does no reach the highest value for any class in Pipe-1, whereas Naive-
Bayes for Pipe-2.

For most classes, FRcode outperforms FRdoc_m. Hence, using only feature representation
based on doc comments does not improve the state-of-the-art approaches based on source code
information, such as SWAN and SuSi.

4.10.4 Automatic vs. manual features based on doc comments (RQ10)

To compare the performance based on the F1 measure between the manually and automatically
created feature representations based on doc comments, i.e., FRdoc_m and FRdoc_a, we
use the results from Pipe-2 and Pipe-3. Table 4.12 shows the F1 measure values per class for
FRdoc_m and Table 4.13 for FRdoc_a. In the SRM classes, we observe that FRdoc_m
outperforms FRdoc_a. However, for CWE classes, we cannot conclude which feature repre-
sentation is better. In general, both approaches perform with lower F1 measures, especially for
CWE078 and CWE601 with values lower than 0.5.

In terms of classifiers, in Pipe-3, we can observe that DecisionStump, Logistic, and JRip do
not show the best performance for any class. Naive Bayes and SMO perform the best among
most classes.
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Table 4.11: F1 measure of Pipe-1 for different classifiers per class based on 10-fold cross-
validation averaged over ten runs (the highest values in each row are highlighted)

Class N
ai
ve
B
ay
es

SM
O

D
ec
isi
on

St
um

p

B
ay
es
N
et

JR
ip

Lo
gi
st
ic

J4
8

Sources 0.75 0.8 0.46 0.75 0.54 0.68 0.65
Sinks 0.74 0.76 0 0.79 0.66 0.77 0.66

Sanitizers 0.87 0.91 0.74 0.89 0.87 0.91 0.93
Auth-unsafe 0.05 0.43 0 0.36 0.66 0.49 0.58
Auth-no-cng 0 0.51 0 0 0.04 0.56 0.24

Auth-safe 0.78 0.95 0.83 0.81 0.88 0.84 0.88
CWE078 0.31 0.33 0.29 0.46 0.27 0.37 0.23
CWE079 0.26 0.15 0 0.28 0 0.22 0.03
CWE089 0.32 0.44 0.19 0.4 0.4 0.49 0.33
CWE306 0.79 0.81 0.75 0.84 0.8 0.85 0.84
CWE601 0.16 0 0 0.16 0 0.05 0
CWE862 0.71 0.71 0.47 0.79 0.68 0.75 0.71
CWE863 0.73 0.71 0.57 0.77 0.79 0.72 0.71

Table 4.12: F1 measure of Pipe-2 for different classifiers per class based on 10-fold cross-
validation averaged over ten runs (the highest values in each row are highlighted)

Class N
ai
ve
B
ay
es

SM
O

D
ec
isi
on

St
um

p

B
ay
es
N
et

JR
ip

Lo
gi
st
ic

J4
8

Sources 0.52 0.67 0.57 0.58 0.57 0.61 0.64
Sinks 0.66 0.68 0.62 0.61 0.62 0.69 0.71

Sanitizers 0.54 0.86 0.84 0.79 0.79 0.76 0.8
Auth-unsafe 0.15 0 0 0.36 0.06 0.08 0.09
Auth-no-cng 0.04 0 0 0.25 0 0.03 0.07

Auth-safe 0.63 0.5 0.66 0.72 0.79 0.62 0.7
CWE078 0.21 0 0 0 0.37 0.26 0.3
CWE079 0.35 0.2 0.06 0.24 0.47 0.39 0.49
CWE089 0.28 0 0.07 0 0.34 0.29 0.35
CWE306 0.63 0.53 0.78 0.69 0.7 0.57 0.67
CWE601 0.17 0 0 0 0.18 0.26 0.21
CWE862 0.73 0.68 0.76 0.78 0.77 0.62 0.74
CWE863 0.73 0.53 0.77 0.74 0.71 0.61 0.7

The manual feature representation based on doc comments outperforms the automatic approach
for the SRM classes, whereas for the CWE classes the F1 measure is comparable and, therefore,
no approach can be declared as better.
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Table 4.13: F1 measure of Pipe-3 for different classifiers per class based on 10-fold cross-
validation averaged over ten runs (the highest values in each row are highlighted)
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Sources 0.46 0.61 0.27 0.49 0.49 0.61 0.58
Sinks 0.61 0.63 0.38 0.55 0.54 0.6 0.57

Sanitizers 0.8 0.79 0.31 0.75 0.57 0.76 0.6
Auth-unsafe 0.18 0.18 0 0.18 0.08 0.16 0.06
Auth-no-cng 0 0.05 0 0.05 0 0 0

Auth-safe 0.78 0.81 0.66 0.76 0.66 0.64 0.59
CWE078 0.34 0.22 0 0.03 0.12 0.22 0.14
CWE079 0.42 0.46 0.04 0.38 0.42 0.43 0.47
CWE089 0.63 0.39 0 0.29 0.26 0.33 0.36
CWE306 0.6 0.61 0.43 0.61 0.52 0.51 0.52
CWE601 0.32 0.16 0 0.03 0.04 0.29 0.21
CWE862 0.72 0.81 0.32 0.71 0.54 0.64 0.58
CWE863 0.76 0.62 0.4 0.64 0.61 0.62 0.57

4.10.5 Hybrid feature representations (RQ11)

To answer this research question, we investigate the hybrid approaches FRcode+doc_m and
FRcode+doc_a. FRcode+doc_m (Pipe-4) combines FRdoc_m and FRcode, whereas
FRcode+doc_a (Pipe-5) combines FRdoc_a and FRcode. Table 4.14 shows the F1 mea-
sures for Pipe-4 and Table 4.15 for Pipe-5. When comparing the values of the best classifiers
per class between Pipe-4 and Pipe-5 there is no significant difference. For example, for Sources,
SMO was the best classifier in both pipelines, in Pipe-4 with 0.81 and in Pipe-5 with 0.85. For
eight classes Pipe-4, got higher values, whereas Pipe-5 for five. Among the classifiers, Decision
Stump has the lowest values in both pipelines.

When observing the F1 values of Pipe-4 and Pipe-5, compared to the previous pipelines,
Pipe-1, Pipe-2, and Pipe-3, the hybrid approaches FRcode+doc_m and FRcode+doc_a
outperform the approaches with individual fearture representations in all classes.

The hybrid approach feature representations from source code and doc comments information
shows to perform better than the individual feature representations, i.e., FRcode+doc_m and
FRcode+doc_a outperform FRcode and FRdoc_m.
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Table 4.14: F1 measure of Pipe-4 for different classifiers per class based on 10-fold cross-
validation averaged over ten runs (the highest values in each row are highlighted)
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Sources 0.55 0.81 0.54 0.72 0.66 0.67 0.69
Sinks 0.69 0.84 0.62 0.8 0.76 0.7 0.74

Sanitizers 0.73 0.91 0.84 0.88 0.83 0.88 0.9
Auth-unsafe 0.31 0.3 0 0.66 0.69 0.5 0.6
Auth-no-cng 0 0.29 0 0.28 0.04 0.48 0.15

Auth-safe 0.67 0.92 0.68 0.78 0.83 0.85 0.87
CWE078 0.22 0.37 0.12 0.43 0.48 0.42 0.42
CWE079 0.35 0.45 0.04 0.43 0.39 0.46 0.53
CWE089 0.29 0.49 0.15 0.4 0.48 0.48 0.52
CWE306 0.7 0.8 0.75 0.75 0.78 0.74 0.84
CWE601 0.16 0.02 0 0.16 0.14 0.24 0.2
CWE862 0.75 0.81 0.76 0.8 0.79 0.79 0.76
CWE863 0.76 0.8 0.77 0.78 0.75 0.72 0.77

Table 4.15: F1 measure of Pipe-5 for different classifiers per class based on 10-fold cross-
validation averaged over ten runs (the highest values in each row are highlighted)
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Sources 0.53 0.85 0.46 0.62 0.62 0.76 0.69
Sinks 0.68 0.82 0.03 0.75 0.57 0.7 0.72

Sanitizers 0.86 0.9 0.74 0.85 0.79 0.86 0.93
Auth-unsafe 0.18 0.32 0.0 0.38 0.46 0.53 0.6
Auth-no-cng 0.0 0.29 0.0 0.14 0.5 0.47 0.24

Auth-safe 0.83 0.87 0.83 0.84 0.87 0.82 0.84
CWE078 0.4 0.4 0.08 0.43 0.37 0.46 0.37
CWE079 0.44 0.53 0.04 0.45 0.43 0.48 0.4
CWE089 0.66 0.64 0.0 0.44 0.27 0.48 0.36
CWE306 0.65 0.73 0.75 0.73 0.72 0.62 0.79
CWE601 0.34 0.21 0.0 0.18 0.09 0.29 0.14
CWE862 0.75 0.82 0.38 0.76 0.61 0.67 0.73
CWE863 0.78 0.77 0.58 0.7 0.58 0.68 0.72

4.10.6 Optimal classifier (RQ12)

SWANframe integrates the Auto-WEKA tool, which is an implementation of the AutoML
approach. In three hours exploration, we got the results for each class as shown in Table 4.16.
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In this experiment, we used FRcode+doc_m (Pipe-6), as it showed the best results among
the manual variants that we tested previously. Considering the F measure, Pipe-6 found nearly
the perfect classifiers in SWANframe. For Sanitizers, CWE089, and CWE862, it found the
optimal classifiers reaching perfect accuracy of 1. The lowest values were reached for CWE078
with 0.51 and CWE601 with 0.69. These two classes performed badly in all other pipelines.

Furthermore, AutoWEKA found few classifiers as optimal which we manually did not test
with. Logistic Model Tree (LMT) was selected for Sources, AdaBoostM1 for all authentication
classes, Locally weighted learning (LWL) for CWE078, CWE089, and CWE601, SimpleLogistic
for CWE306 and CWE863, and MultilayerPerceptron for CWE862. From those that we man-
ually selected only BayesNet for Sinks and CWE079 and SMO for Sanitizers were selected as
optimal.
Using the automatic selection of classifiers with AutoML, SWANframe finds the optimal clas-
sifiers for each class, which significantly improves the performance of the F1 measure when
compared to the manual approach.

Table 4.16: Best classifiers per class based on F1 measure of Pipe-6 after running Auto-WEKA
for three hours

Class Classifier F-Measure
Sources LMT 0,9
Sinks BayesNet 0,95
Sanitizers SMO 1
Auth-unsafe AdaBoostM1 0,86
Auth-no-cng AdaBoostM1 0,84
Auth-safe AdaBoostM1 0,98
CWE078 LWL 0,51
CWE079 BayesNet 0,94
CWE089 LWL 1
CWE306 SimpleLogistic 0,86
CWE601 LWL 0,69
CWE862 MultilayerPerceptron 1
CWE863 SimpleLogistic 0,82

4.11 Threats to Validity

According to Runeson et al. [RHRR12], we discuss internal, external, and construct validity.

Internal validity The results shown in our 10-fold cross-validation RQ9-12 depend on a
random variable that is used to create the folds during the 10-fold cross-validation. This means
the values of the F measure may have different values with each iteration. To mitigate this, we
reported an average value over ten runs.

External validity The main threat of our evaluation is that the results from RQ9-12 may
apply to only the labeled dataset we used. To mitigate this we used a well-established technique
the 10-fold cross-validation. However, the conclusions made do not have statistical significance.
Nevertheless, the experiment in RQ8 with manual checks showed that SWAN achieves compa-
rable results also for new datasets.
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Construct validity The training datasets were constructed by the author and one more
researcher, and reviewed by a third researcher. Selecting methods and labeling them with SRM
and CWE information requires knowledge in security vulnerabilities. All researchers completed
this task to best of their knowledge. They are all involved in application security research for
several years.
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vant Methods

5
This chapter introduces SWANAssist, an extension of SWAN for integrating developer feedback
in the training set to improve the precision of the SRM detection by adapting to the codebase.

5.1 Related Work

Past approaches have included post-processing of the static analysis results or have incorporated
developers’ feedback to refine static analysis results. In the first group, Fry et al. [FW13] use
machine-learning to cluster analysis warnings into similarly actionable warning groups. Heckman
et al. [HW09] propose a process for building false positive mitigation models to classify static
analysis alerts as actionable items for the user. In such approaches, the machine-learning step
is used offline, i.e., after the static analysis is run, and before the results are shown to the
developer. They do not include developer feedback.

The second group includes developer feedback during or after the static analysis. For ex-
ample, Aletheia [TGPA14] filters the results it displays to the user by learning the needs of
developers. It shows the developer a portion of the warnings and asks them to classify them.
Based on this information, it instantiates features for the machine-learning algorithms. This
classification is used as a filter in the UI. Lucia et al.’s approach [LLJB12] uses incremental
machine-learning to detect false positives in real-time. The system first presents a few findings
from a tool in its default ordering. Users then either classify them as true or false positive. Based
on the feedback, the system automatically and iteratively refines a classification model and re-
sorts the rest of the findings. Similarly, Nguyen Quang Do et al. proposed Cheetah [DAL+17], an
incremental approach for displaying the tools’s findings as soon as they are generated. Cheetah
does not incorporate any feedback from the user.

5.2 Approach

Because SWAN is designed for general Java applications, running on one particular program
may not be sufficiently precise to correctly classify all methods in the codebase. In particular,
this is the case in the classification of some CWEs, where SWAN achieves lower precision, such
as CWE862 with an average precision of 0.574 in Table 4.10 (Page 68). To improve its precision,
we have extended SWAN to query the code developer for their knowledge of the codebase.

SWAN is extended with the component SWANAssist (as shown in the upper part of Fig-
ure 4.1), which allows developers to edit SWAN’ training set directly in their Integrated Devel-
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Figure 5.1: Active machine-learning in SWANAssist

opment Environment (IDE). The developer can add or remove methods of the training set or
change the classification of a method. The new training set is then fed to SWAN for another
classification iteration. To continuously refine the list of SRM, SWANAssist uses the active
machine-learning approach, by integrating the user. Typical users are software developers seek-
ing to configure a static analyzer or members of security teams actively using and configuring
SAST tools.

In this particular instance of active learning, SWANAssist integrates the developer in the
loop. It runs SWAN at each iteration by changing the training set. This system allows devel-
opers to further adapt the classification of the methods in their codebase after the original run
of SWAN by improving the training set. Since the user is involved in the process, SWANAssist
is a tool-assisted approach.

To help the developer identify methods that are most useful to the classification, SWANAssist
generates a list of methods that—if classified —would yield the most impact on the next run
of SWAN, based on the feature matrix generated for the training set. Overall, SWANAssist
uses the automated mechanism of SWAN to detect SRM and enhances it with developer-based
information to improve the precision of the SRM detection.

5.3 Tool

We have implemented SWANAssist as a plug-in component for the IntelliJ IDEA IDE [Jet].
SWANAssist provides an interface for editing the SRM lists and executing SWAN, updating
the SRM classification on demand. Figure 5.2 presents SWANAssist’s Graphical User Interface
(GUI), which we detail below.

SWAN’s training set is shown on the rightmost view of the GUI, called the SWANAssist
view. Methods in this view can be filtered by classification class or by file. The pop-up dialog in
the center allows the developer to edit the training set. It is accessible through the SWANAssist
view or the context menu when a method in the code editor is selected. The developer can
add or remove classes for the method with this dialog. Likewise, methods can be added to the
training set through the context menu, and removed through the context menu or using the
SWANAssist view.

SWANAssist also allows the developer to re-run the classification by clicking on the icon
in the toolbar of the SWANAssist view. This update configures the inputs for SWAN, runs it
in the background, and updates the list of SRM. This is shown as the dotted edge in the upper
part of Figure 4.1 (Page 50). The methods that were just removed are displayed in gray, at the
bottom of the list, and can be returned into the training set by using the restore functionality
from the context menu. Otherwise, they are removed from the list on the next run. We have
made the re-running of SWAN manual because of its running times. Re-computing the SRM
for smaller libraries containing about a thousand methods (e.g., Eclipse Smarthome) takes under
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Figure 5.2: Graphical User Interface (GUI) of SWANAssist
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one minute. Larger libraries with thousands of methods (e.g., Android) can take up to a few
minutes.

5.4 Suggesting Methods

To help developers classify methods more efficiently, the SWANSuggest module provides them
suggestions of methods from the codebase. The suggested methods are likely to have the most
impact on the classification (dashed edge in Figure 4.1). We developed two strategies for sug-
gesting methods, FeatureBasedSuggester and ModelChangeSuggester.

Algorithm 1 presents the FeatureBasedSuggester strategy: it selects a pair of methods that
will be the most impactful in the next classification round. The pair of methods is calculated
by iterating over all method pairs. For all features of SWAN, if the method pairs have different
values in the feature matrix (i.e., they are a pair of example/counter-example for that feature),
the weight of that pair increases. In the end, the pair with the best weight is returned to the
user. This is repeated until all features are covered, which is monitored by the global features
set. When this point is reached, features is emptied and the loop starts again until all methods
are classified, or until the user decides to stop.

Algorithm 1 Choosing the most impactful pair of methods with FeatureBasedSuggester
1: alreadySuggested← ∅
2: features← ∅ . Keep covered features globally.
3: function suggest(Boolean[Methods][Features] testSet)
4: if features = swanFeatures() then
5: features← ∅ . Reinitialize coverage.
6: (Method m1, Method m2)← ∅ . Most impactful pair.
7: for Method m1’ in methods do
8: for Method m2’ in methods do
9: if alreadySuggested.contains(m1′,m2′) then

10: continue
11: for Feature f in swanFeatures() do . Add to the pair’s impact if they have

opposite evaluations.
12: if testSet[m1’][f] 6= testSet[m2’][f] then
13: updateFeaturesAndWeight(m1′,m2′)
14: (m1,m2)← max((m1,m2), (m1′,m2′))
15: features← features \ (m1,m2).features
16: alreadySuggested = alreadySuggested ∪ {m1,m2}

return (m1, m2)

The weight added to a pair for a particular feature depends on the feature: some features
in SWAN are more likely to be impactful than others. We have determined this by evaluating
the impact of the individual SWAN features through a One-At-a-Time (OAT) analysis. In this
analysis, we ran ten 10-fold cross-validations on SWAN’s training set per class (four SRM and
seven CWE classes), disabling one feature instance at a time. For each run of the SVM classifier,
we marked the F-measure (harmonic mean of precision and recall) averaged over all repetitions
with randomly distributed folds. We used the F-measure to rank the offsets to obtain the feature
weights with which we initialize. This rank of features is calculated only once and later reused
for each project where the FeatureBasedSuggester is used. This is becasue the OAT analysis is
based on the training set, which is used to build the classifier.
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FeatureBasedSuggester strategy has quadratic complexity. More complex strategies could
be used to suggest methods with a better impact, considering several iterations at once. The
ideal solution can be reduced to a knapsack problem over all combinations of features, running
in an exponential complexity. Since SWANAssist is designed to run in the IDE, we privileged
the faster running method to satisfy the need for responsiveness.

Since the next strategy ModelChangeSuggester has higher complexity than FeatureBasedSug-
gester resulting in much longer running-times, and both show similar results in our evaluation
in Section 5.5; we chose the FeatureBasedSuggester to be the default strategy for SWANAssist.
We refer to FeatureBasedSuggester as SWANSuggest.

Algorithm 2 presents the ModelChangeSuggester strategy: it selects a pair of methods that
make the most significant change to the model based on the F measure over 10-fold validation
compared to all other method pairs. When a pair is selected, the models of all possible pairs of
unlabeled methods are computed. Finally, the pair with the most significant change in precision
is selected. Due to the complexity of this strategy to compute the models of all possible pairs of
unlabeled methods, it is not part of the SWANAssist tool as the running times are long, making
the tool unusable in the GUI context.

Algorithm 2 Choosing the most impactful pair of methods with ModelChangeSuggester
1: function suggest(Set<Methods> testSet, Set<Method> trainSet)
2: maxPair ← ∅
3: maxImpact← 0
4: allUnlabaled← removeAlreadyLabeledMethods(testSet)
5: for method1 ∈ allUnlabeled do
6: for method2 ∈ allUnlabeled do
7: if method1! = method2 then
8: trainSet.add(method1)
9: trainSet.add(method2)

10: model← createModel(trainSet)
11: impact← run10foldCrossV alidation(trainSet,model) . F-measure as

impact
12: if impact > maxImpact then
13: maxImpact← impact
14: maxPair ← (method1,method2)
15: trainSet.remove(method1)
16: trainSet.remove(method2)
17: trainSet.add(maxPair)
18: return maxPair

5.5 Evaluation
• RQ13 How much manual training does SWANAssist require until it reaches optimal pre-
cision?

• RQ14 How usable is the tool SWANAssist?

5.5.1 Manual Training

To answer RQ13, we next seek to evaluate how well SWANAssist helps improve the classifiers’
precision, particularly how much manual training these improvements require. We consider both
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strategies, FeatureBasedSuggester andModelChangeSuggester, and compare them with a random
selection. To evaluate the precision of the active machine-learning approach, we selected a (1)
well-maintained, (2) open-source project that contains (3) a high number of SRM, and (4) fewer
than 2,000 methods so we could classify all of them manually. We used the GitHub mining tool
BOA [DNRN13] and selected the Gene Expression Atlas (GXA) [Ins] application, a popular tool
in the domain of bioinformatics maintained by the European Bioinformatics Institute (EMBL-
EBI) [EE]. We chose GXA since it showed lower precision with the base SWAN (e.g., the
precision for sources is 0.75) compared to other libraries we evaluated in the previous chapter
(see Table 4.10 with an average precision for sources of 0.91). This allows us to showcase the
potential of the active machine-learning approach in the worst case compared to an application
that already has a good precision, to begin with.

We manually classified and labeled the 1,663 methods of GXA with one or more of the
following classes: sources, sinks, CWE89, and none. Two hundred eighty-six methods were
identified as sources, 183 as sinks, and 29 as relevant to CWE89, and we consider this our
ground truth. The methods were labeled twice, first by the author of this thesis and then by one
external researcher. The Cohen’s Kappa value for sources is 0.605, 0.725 for sinks, and 0.919
for CWE89, which are above the significant agreement threshold of 0.6 [LK77]. For the cases
with disagreement, they were discussed between the raters to reach an agreement.

To evaluate how different suggesting strategies help improve the results of SWAN, we com-
pare the resulting SRM lists when feeding SWANAssist randomly selected method pairs, and
when using FeatureBasedSuggester and ModelChangeSuggester to select those pairs.

Initially, we create two equal sets of methods. We use one for validation to calculate the
precision of the resulting model with new data. The other set is used as testing set to feed
the training set iteratively. We first run SWAN with its initial training set and calculate the
precision of source, sinks, and CWE89 on the validation set. Then, we add a new method pair
from the testing set to the training set and continue until we run out of methods. For every 410
iterations, we report the classification’s precision of sources in Figure 5.3, sinks in Figure 5.4,
and CWE89 in Figure 5.5. The precision shown for the random suggester is averaged over ten
runs.

We see the evolution of the precision for the random suggester is steady linear. This shows
that the suggester does not help the classification: the precision increases naturally as a new
pair is added to the training set. On the other hand, there is a quick increase in precision at the
beginning when FeatureBasedSuggester and ModelChangeSuggester are used. Both strategies
are efficient in selecting the methods with the most impact first. This maximizes the impact of
the classification and minimizes the developer’s work to tune SWAN to their codebase.

When FeatureBasedSuggester and ModelChangeSuggester are compared, ModelChangeSug-
gester has more fluctuations (bigger spikes in the graph) and, on average, has lower values
than FeatureBasedSuggester. In the case of sources, the precision reaches 0.8 at iteration 31 for
FeatureBasedSuggester (from 0.75 at iteration 1), making 60 methods labeled (4% of the total
number of methods in the application). For FeatureBasedSuggester this precision is reached
at iteration 42. Afterward, the growth slows down, reaching a precision of 0.9 after 91 itera-
tions. ModelChangeSuggester reaches this precision at iteration 103. In the random case, the
growth is slower, reaching a precision of 0.8 at iteration 68 and 0.9 at iteration 249. For sinks,
the precision of 0.8 is reached at iteration 10 for FeatureBasedSuggester and iteration 25 for
ModelChangeSuggester. Precision 0.9 is reached at iteration 54 by FeatureBasedSuggester and
iteration 76 by ModelChangeSuggester. FeatureBasedSuggester requires the developer to label
less than 1% of the total number of methods in the application to reach a precision of 0.9. For
the random suggester, this precision is only reached at iteration 234.

We see a similar trend in the case of CWE89. Here, we can note that FeatureBasedSug-
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Figure 5.3: Precision of the sources over 401 iterations of SWAN by adding methods with
FeatureBasedSuggester, ModelChangeSuggester, and with random selection

Figure 5.4: Precision of the sinks over 401 iterations of SWAN by adding methods with Fea-
tureBasedSuggester, ModelChangeSuggester, and with random selection
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Figure 5.5: Precision of the CWE89 over 401 iterations of SWAN by adding methods with
FeatureBasedSuggester, ModelChangeSuggester, and with random selection

gester and ModelChangeSuggester behave very similarly. Precision 0.8 is reached faster by
FeatureBasedSuggester.

In all three cases, we note regular drops in the precision. Further investigation reveals that
those drops occur when a problematic method is added to the training set. For example, method
void uk.ac.ebi.gxa.utils.EfvTree.put(uk.ac.ebi.gxa.utils.EfvTree) is expected by the classifier to be
a sink method, since it does not return anything, contains “put” in its name, and accepts an
argument. However, the method is a simple accessor method and does not constitute a sink.
Such methods pollute the training set and make the classification less precise until enough
methods are added to compensate for the uncertainty. This issue can be mitigated by improving
SWAN’s features or through smarter handling of the problematic methods and when to add
them to the training set to minimize pollution. The presence of such methods also shows one
more reason why a user-guided approach such as SWANAssist is useful, particularly in the
presence of imperfect training sets.
Using SWANSuggest on GXA yields high precision significantly faster than with a random
selection of methods.

5.5.2 Usability

To evaluate the usability of the SWANAssist plugin (RQ14), we ran a 45-minutes user study
with 22 participants who had experience with static analysis tools. The study included a 20-
minutes cognitive walkthrough where participants performed 19 tasks from the following cate-
gories: executing the analysis, updating method classifications, and managing the method list.
The participants were then asked to provide feedback on the best and worst features, possible
improvements, and the plugin’s usefulness. After the interview, participants responded digitally
to the System Usability Scale (SUS) ten-item questionnaire [Bro13], which assesses product us-
ability. In addition to the SUS questions, the Net Promoter Score (NPS) question [Rei03] that
evaluates how likely participants are to recommend the plugin to others was also included.
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The average SUS score was 82.39, which corresponds to the 90-95th percentile range (scores
better than 90-95% of the scores in the database) and an adjective rating [BKM09] of "excellent".
The NPS score was 50, which indicates that most of the participants are promoters (59%) who
would recommend the plugin to others.

The participants identified the following as the best features: code analysis and an initial list
of security-relevant methods (59%); SRM icon designs and their visibility in the editor (50%);
navigating from plugin tool window to method declaration (45%). Most participants considered
the initial list of SRM to be most useful as it shows "what could be possible security lapses
and leaks" in the code and this is a "good headstart". The plugin’s "very straightforward and
minimalistic" design allows users to "easily make out sources, sinks, and sanitizers based on
the icons". Some participants commended the "tight integration between [editor] and the plugin
window" which allows users "to easily check if the method’s classification is correct or not".
The plugin "is integrated into my workflow as a developer" and "most users would figure out
how to use the plugin quickly". The tool’s use of machine-learning "tries to make [developers]
more productive, and it does the work for [developers]". These reactions to the plugin indicate
that most users are satisfied with its design and consider its features useful in creating and
maintaining a SRM list.

The participants’ feedback suggested improvements in the following areas: user experience,
workflow, and IDE integration. As a result, the following changes have already been implemented
to the tool which is available as an open-source project on GitHub1:

• Standard menu icons, consistent with IntelliJ UI guidelines [Int] relating to design and
colour palette, are now used. These icons are less ambiguous and meet user expectations.

• SRM icons were redesigned using more fitting colours and graphics to make categories
easier to identify.

• List of reported classes/methods is now sorted for easier navigation and finding of methods

• Tool window action bar updated such that more popular buttons appear first in the menu.

• Dialog and menu labels updated to ensure that features/settings are better explained and
less ambiguous

These improvements will enhance the plugin’s usability and user experience as they meet
user expectations and follow recommended design guidelines. Other suggestions relating to the
plugin’s workflow and integration have been recorded as GitHub Issues and will be worked on
for future releases.

1https://github.com/secure-software-engineering/swan
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6

This chapter presents fluentTQL, a Java-internal domain-specific language (DSL) for specify-
ing taint-flows. First, we identify requirements that motivated the design of this new DSL.
Second, we discuss related existing DSLs. Afterward, we present the design and the semantics
of fluentTQL, followed by implementation details and evaluation.

6.1 Requirements

Listing 6.1 shows an excerpt of the Java code of an HTTP handler. The method doGet is
called upon a GET-request from a web browser when a user changes the password by providing
the username, the old password, and the new password. The method calls a helper method
changePassword shown in Listing 6.2, which verifies the user and changes the database. The code
in doGet contains a potential cross-site scripting vulnerability (XSS) [Mit21b]. The username
value from the request in the variable uName is added to the created HTML page for the
response object to inform the user if the password was changed successfully (line 16). There
is no sanitization check if the value contains any malicious behavior before it is added to the
generated HTML page.
12 protected void doGet( @RequestParam (" user ") String uName , HttpServletRequest

request , HttpServletResponse response ) {
13 String oldPass = request . getParameter (’oldKey ’);
14 String newPass = request . getParameter (’newKey ’);
15 if ( changePassword (uName , oldPass , newPass ))
16 response . getWriter (). append (’<html >... Password changed for user ’ +

uName + ’... </ html >’));
17 else
18 response . getWriter (). append (’<html >...
19 Wrong credentials .... </ html >’);
20 }

Listing 6.1: Java code with potential XSS vulnerability (from line 1 to line 5)

The code in the helper method changePassword contains a potential NoSQL injection vul-
nerability (NoSQLi) [Mit20b]. A single atomic action performs the user authentication and a
password change in line 31, in which two database documents (filter and set), one with $where
clause and one with $set clause, are executed. To report the taint-flow precisely, both values
should be marked as tainted. We explain both XSS and NoSQLi vulnerabilities throughout this
section.
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21 protected boolean changePassword ( String uName , String oldPass ,
String newPass ) {

22 MongoClient myMongoClient = new MongoClient (" localhost ",
8990);

23 MongoDatabase credDB = myMongoClient . getDatabase (’CREDDB ’);
24 MongoCollection <Document > credCollection =

credDB . getCollection (’CRED ’, Document .class);
25 BasicDBObject filter = new BasicDBObject ();
26 filter .put(’$where ’, ’( username == \"’ + uName + ’\") \&

( password == \"’ + oldPass + ’\") ’);
27 BasicDBObject newPassDoc = new BasicDBObject ();
28 newPassDoc .put(’password ’, newPass );
29 BasicDBObject set = new BasicDBObject ();
30 set.put(’$set ’, newPassDoc );
31 UpdateResult res = credCollection . updateOne (filter , set);
32 return (res. getMatchedCount () == 1);
33 }

Listing 6.2: Potential NoSQLi vulnerability (lines 1-3 to line 20)

Figure 6.1: Data-flow graphs for (a) XSS and (b) NoSQLi vulnerabilities from Listing 6.1 and
Listing 6.2

6.1.1 Selection of Sensitive Methods

To detect such vulnerabilities using a taint analysis, one must configure the analysis with any
security-relevant methods (SRM), such as sources, sinks, and sanitizers.

Consider the example of the XSS vulnerability in Listing 6.1. Here, untrusted data flows
from the parameter uName of the method doGet to the sink in line 16, where method append()
is called with a string value of a request. Figure 6.1 (a) shows the data-flow graph extracted
from the code. To fix this vulnerability, a software developer should apply a sanitizer such as
encodeHTML() to clear potential malicious inputs from the variable uName before appending
the contents to the HTML string. This leads to our first requirement:
R1: The DSL must allow one to express the following security-relevant methods (SRM): source,
sanitizer, propagator, and sink.

6.1.2 Selection of In- and Out-Values

Apart from selecting the call sites, the actual values flowing in or out of the methods (return
values, parameters, and receiver) must be selected. For example, for the source of the XSS
vulnerability in Listing 6.1, the developer must select the argument value of the first parameter
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of the method doGet. At the call to the sink of the vulnerability, the developer needs to provide
the possibility to select a parameter of a called method.

R2: The DSL must allow one to express the data-flow propagation of each SRM to a granularity
of a single argument, a return value, and a receiver.

6.1.3 Composition of Taint-Flows

The presented XSS vulnerability is detected by a “single-step taint analysis”. It is relatively easy
to detect, even manually. However, many real-world taint-analysis problems comprise a sequence
of multiple events. For example, consider the NoSQL injection vulnerability in Listing 6.2 and
its data-flow graph in Figure 6.1 (b).

The NoSQLi vulnerability occurs in line 31 when the method updateOne is called under the
condition that the Mongo database has a record with the username and the old password that
matches the values coming from the request object (uName in line 12 and oldPass in line 14).
The filter value contains the document that checks the existing password for the given username
by calling the method put in line 26 with a $where-clause. The value of set contains the document
that sets the new password by calling the method put in line 18 with a $set-clause. When the
method put is called in line 26 and line 28, the uName and oldPass taint the filter, whereas the
newPass taints the set. For the taint-flow to be complete, both calls to the method put must
occur before the set and filter flow to the sink updateOne() in line 31. Thus, we desired a feature
to compose complex queries consisting of multiple single-step taint analyses.

R3: The DSL must allow one to express complex multi-step taint-flow queries.

6.1.4 Detailed Error Message

When findings are reported, the analysis tool usually provides a description to the user to
help understand the vulnerability. The study by Christakis et al. [CB16] showed that software
developers struggle to understand those descriptions. For different vulnerabilities and types of
data-flow, the DSL shall present the results of the taint analysis with fine-grained error messages
that help developers quickly identify and fix the vulnerability. The user that specifies the taint-
flow should be able to define a custom error message that can be reported at different locations.

R4: The DSL must allow one to specify error messages for each type of finding.

6.1.5 Integration into Developer’s Workflow

Empirical studies show that software developers need static analysis tools integrated into their
workflow [CB16, JSMHB13]. Most software developers use integrated development environments
(IDEs) and prefer static analyses directly integrated into the IDE. The results of the analysis
should be shown within the IDE, preferably visible near the editor for the code. Therefore, a
DSL designed for software developers should be integrated with appropriate tooling and usability
in this workflow.
R5: The DSL must integrate well with the software developers’ workflow.
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6.1.6 Independence of Concrete Taint Analysis

Software developers desire to reuse taint-flow specifications for static and dynamic taint analyses.
Moreover, some analysis tools are only part of the continuous integration, whereas others can
be integrated into different workflows, e.g., the IDE. To enable reusability of the specifications
among different tools, the DSL semantics must therefore be independent of any concrete static
or dynamic analysis. Thus, any limitations due to the approximations of the underlying solver
are transferred to the results reported by fluentTQL.

R6: The specified taint-flow queries can be reused among existing taint analysis tools, i.e., the
DSL is independent of the underlying taint analysis.

Due to its specific structure, the NoSQLi vulnerability from the example in this section, can
not be detected by default with the existing tools. Such complex taint-flows require the user to
specify a custom query. fluentTQL introduced in the following section aims to provide a usable
and easy approach for mainly software developers specifying custom queries. The existing DSLs
are designed for experts who understand data-flow analysis, which most developers do not have.
Moreover, based on our evaluation of the existing DSLs in the following section, indicates that
none of them completely fulfills all requirements.

6.2 Related Work

With few exceptions, such as DroidSafe [GdP+15], which has hard-coded SRM, the SRM of
the existing static analyses can be customized by the user to some extent. In this section, we
discuss the related approaches summarized in Table 6.1, which shows the design principles of
each approach and the level of fulfillment of the requirements from Section 6.1.

Table 6.1: List of related approaches, their design characteristic, and their support of the re-
quirements in Section 6.1. - fullfilled, - partially fullfilled, - not fullfilled
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R1 R2 R3 R4 R5 R6

Graph-based

CxQL [Che20a] X X
CodeQL [Git21b] X X X
PIDGIN [JWMC15] X X
IncA [SEV16] X X

Typestate CrySL [KSA+19] X X
PQL [MLL05] X X

Other

CheckersF. [DDE+11] X
Apposcopy [FADA14] X X
Athena [LS11] X X X
AQL [PBW18] X X
WAFL [SAP+11] X X
Saluki [GvTB18] X X X
fluentTQL X
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6.2.1 Graph-based approaches

In this category, we group DSLs allowing users to explicitly manipulate graph structures to
specify code patterns.

CxQL, the DSL of the tool Checkmarx [Che20a], is a general-purpose-like and object-oriented
language. It supports a wide range of SRM (R1). The flow propagation is done implicitly via
the graph patterns (R2). As a commercial tool, it provides a well-integrated workflow for the
users (R4 and R5). Since CxQL can express a broad range of graph properties, it is hard to
integrate it into a generic taint analysis (R6) as it is bound to the tool’s core analysis.

CodeQL has good integration in the developers’ workflow (R5) with plugins for popular
IDEs and a web-based interface. It is a declarative language with support for predicates and
object-oriented design. The DSL can express a wide range of properties similar to CxQL.

PIDGIN [JWMC15] follows the object-oriented design. It is not designed for taint analysis;
therefore, it is hard to integrate it in a generic way (R6). PIDGIN does not provide tool
integrations for software developers.

IncA [SEV16] is a DSL specifying the rules for incremental execution of static analyses.
Compared to the other DSL in this category, it is the least expressive and targets a particular
domain. The SRM and flow propagation can be expressed through the graph patterns (R1,
R2). User-defined messages are not supported (R4).

6.2.2 Typestate approaches.

This category consists of two DSLs, i.e., CrySL and PQL, designed for typestate analysis and
detecting incorrect API usage.

CrySL [KSA+19] enables cryptography experts to specify the crypto API’s correct usage,
making it unsuitable for generic taint analysis (R6). The DSL is declarative with a mechanism
based on predicates and constraints. It has full support for SRM and flow propagation (R1,
R2). The tool support is maintained.

PQL [MLL05] is declarative DSL with specifications comparable to CrySL. Compared to flu-
entTQL, the PQL’s syntax significantly differs from regular Java syntax, making it challenging
for non-experts. PQL does not ship with available tooling support for the users (R6).

6.2.3 Other approaches.

The approach used in CheckersFramework [DDE+11] is based on the annotations @tainted and
@untainted, which developers can use to annotate their code to mark custom SRM. The an-
notation specification requires additional manual work, which is even infeasible in the case of
legacy code (R5). The CheckersFramework allows to configure the messages that are reported
(R4).

Apposcopy [FADA14] is an Android-specific taint analysis (R6) with a Datalog-based DSL
for data-flow and control-flow predicates. The sources, sinks, and propagators are specified in
the form of annotations (R1, R2). We were not able to find tooling support (R5) for the
language.

Athena [LS11] is a declarative DSL based on patterns and constraints with explicit support
for SRM and flow propagations (R1, R2). Athena does not support user-defined messages and
is tightly coupled to a generator of analysis configurations.

AQL [PBW18] is an Android-specific (R6) querying language for taint flow results from
different taint analysis tools. It supports specifications of sources and sinks (R1) and flow
propagations (R2) and provides workflow with tool support for developers to query taint results
from multiple tools (R5).
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WAFL is the DSL of the F4F approach [SAP+11] and is a general-purpose-like language with
an object-oriented design that allows the specification of reflective behavior in frameworks so that
static analyses can propagate the flow. WAFL partially supports SRM and flow propagation
(R1, R2). Its main purpose is the modeling of frameworks.

Finally, Saluki [GvTB18] is a declarative DSL where method patterns can be specified. SRM
and flow propagation are supported (R1, R2), but complex flows are not (R3).

6.3 Design

Next, we define the domain-specific language fluentTQL through its abstract and concrete
syntax [SVC06].

6.3.1 Concrete Syntax

As a concrete syntax for fluentTQL, we use a Java fluent-interface syntax. Since Java is one
of the most popular programming languages, software developers can learn the DSL with little
effort. Moreover, in interviews with nine software developers [PKB21]1, we asked what concrete
syntax they would prefer if given the choice of (1) a fluent interface, (2) a graphical syntax, or
(3) a textual syntax for taint-flow queries, six participants chose the fluent interface, and only
two chose the graphical and one the textual syntax.

In the following, we explain the concrete syntax by specifying the fluentTQL queries for
detecting the XSS and NoSQLi code in Listing 6.1 and Listing 6.2. The specification is presented
in Listing 6.3, where lines 34–42 contain the SRM declaration and lines 43–49 contain the taint-
flow queries.
34 Method source1 = new Method (" String

getParameter ( String )").out (). return ();
35 Method source2 = new Method ("void doGet(String , HttpServletRequest ,

HttpServletResponse )").out ().param (0);
36 MethodSet sources = new MethodSet ().add( source1 ).add( source2 );
37 Method sanitizer = new Method (" String encodeHTML

( String )").in().param (0).out (). return ();
38 Method reqPropagator1 = new Method (" BasicDBObject put(String ,

String )").in().param (1).out (). thisObject ();
39 Method reqPropagator2 = new Method (" DBObject put(String ,

DBObject )").in().param (1).out (). thisObject ();
40 MethodSet reqPropagatorsPut = new MethodSet ().

add( reqPropagator1 ).add( reqPropagator2 );
41 Method sinkXss = new Method (" PrintWriter

append ( CharSequence )").in().param (0);
42 Method sinkNoSql = new Method (" FindIterable

updateOne ( BasicDBObject ,
BasicDBObject )").in().param (0).param (1);

43 TaintFlowQuery xss = new
TaintFlowQuery ().from( source1 ). notThrough ( sanitizer )
.to( sinkXss ). report (" Reflective XSS
vulnerability .").at( Location . SOURCE );

44 TaintFlowQuery noSQLi1 = new
TaintFlowQuery ().from( source1 ). through (
reqPropagatorsPut ).to( sinkNoSql ). report (
"No -SQL - Injection .").at( Location .SINK);

45 TaintFlowQuery noSQLi2 = new TaintFlowQuery ();
46 noSQLi2 .from( source1 ). through ( reqPropagator1 ).to(

sinkNoSql ).and ().from( source2 ). through (

1https://github.com/secucheck/secucheck.github.io/blob/master/docs/SecuCheck_Interviews_Results.pdf
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47 reqPropagator1 ).to( sinkNoSql ).and ().from( source1 ).
48 through ( reqPropagator2 ).to( sinkNoSql ). report (
49 "No -SQL - Injection vulnerability with multiple

taint -flows ").at( Location . SOURCEANDSINK );

Listing 6.3: fluentTQL specification for XSS and NoSQLi in Listings 6.1 and 6.2. To simplify, fully
qualified method names are omitted.

In the code, there are two potential sources. One source is the return value of the getParam-
eter() method which in Listing 6.3 is specified in line 34. The first argument to the constructor
of Method() takes a method signature as a String argument. Next, using the fluent interface
of fluentTQL, we append out() indicating that the method generates a sensitive data-flow.
Eventually, by appending return(), we select the return value as the generated out-value. The
other source is the first parameter of the doGet() method (line 35), indicated by out() and
param(0).

The fluent interface of fluentTQL allows calling out() or in() on a Method object. After
out() there has to be at least one more call to return(), thisObject() and/or one or more
calls to param(int) with the integer referring to the parameter index of the out-value. After
in() there must be a call to thisObject() and/or one or more calls to param(int).

Both sources in line 34 and line 35 are potential sources for SQLi and XSS, i.e., they are
not specific to the vulnerability type. Thus, they are grouped into a MethodSet object (line 36).
Afterward, the method encodeHTML is specified as sanitizer, which is only relevant to the XSS
vulnerability. The method put() is a propagator (i.e., only propagates the taint) but a required
one because it has to be called between the source and the sink for this specific vulnerability. It
can be called with two different parameter types. Hence, it is specified twice (lines 38 and 39).
They are grouped in the method set reqPropagatorsPut. Finally, the sinks are specified (lines 41
and 42). They are specific to each vulnerability type.

The taint-flow query for XSS is specified in line 43 where the class TaintFlowQuery is in-
stantiated after which from(...), to(...), and report(...) are called. The sanitizer is also
specified for the XSS taint-flow query by calling the method notThrough(...). Each of these
methods expects an object of type Method or MethodSet.

In the end, there is a call to at(Location.SOURCE), which is optional and expresses where the
report message should be shown in the code. Location is an enumeration with values SOURCE,
SINK, and SOURCEANDSINK. The taint-flow query can be read as follows: If there is a taint-
flow from the source source1 not propagating through the sanitizer and reaching any of the
sinkXss, then report a finding with "‘Reflective XSS vulnerability"’ at the source location.

For the NoSQLi vulnerability, there are two taint-flow queries in Listing 6.3, in lines 44–49.
The object noSQLi1 will report a finding with a message "‘No-SQL-injection vulnerability"’ for
the source getParameter, defined with source1, propagating through any required propagator
from the set reqPropagatorsPut reaching the sinkNoSql. If applied to the code example from
Listing 6.1 and Listing 6.2, two traces found will be found, which will be reported as separate
findings. The taint-flow from the first parameter of doGet carrying the username will be missed.
To detect this taint-flow, one can also use the method set sources instead of the single method
source1. On the other hand, a taint analysis specified as defined though noSQLi2 will report a
single finding: For this specification, the three single taint-flows are joined by a call to and(),
which means all separate taint-flows need to occur individually.

6.3.2 Abstract Syntax

We discuss the abstract syntax through the meta-model shown in Figure 6.2. The DSL has a
root node (class RootNode) containing all objects. An object of this class represents a single
instance of the DSL that can contain multiple top-level elements. For example, the abstract class
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TopLevelElement is a superclass of the main concepts in fluentTQL, i.e., the classes Method and
TaintFlowQuery.

Methods The class Method represents a reference to a method from the analyzed code. It
contains information about the method signature and the data-flow propagation when that
method is called in a given context (conforming to R1 and R2). This is expressed through
the references to InputDeclaration and OutputDeclaration. A Method object has to have one
or both InputDeclaration or OutputDeclaration references. An InputDeclaration contains an
in-value (abstract class Input), whereas OutputDeclaration contains an out-value (abstract class
Output). In-values can be a parameter of a method call (class Parameter) or a receiver of the
method (class ThisObject). Out-values can be a parameter, a receiver, or a return value (class
Return). In-values flow into the method call, and out-values flow out of the method call.

The class Method, in combination with the classes InputDeclaration and OutputDeclaration,
can model sources, sinks, and sanitizers (R1). Source is a combination of Method and Output-
Declaration specifying which values become tainted through a method call. Sink is an instance
of Method and InputDeclaration specifying which values must be tainted for the sink to be
considered “reached”. Sanitizer is a combination of a Method and InputDeclaration, specifying
which tainted value flowing in the method call will get untainted.

Required propagators Required propagators are method calls that have to be on the path
between a source and a sink for a given vulnerability to be present. For instance, the method
put() in the running example from Section 6.1 has to be on the taint-flow trace from the source
to the sink. It only propagates the taint from the in-value to the out-value. In fluentTQL, a
required propagator is modeled as a combination of Method, InputDeclaration, and OutputDec-
laration. This model allows propagating out-values once an in-value reaches a method. The
analyses aware of these methods know how to propagate the data-flow without analyzing them,
for example for improving scalability or handling calls for which the source code is unavailable.

Taint-flow queries The class TaintFlowQuery represents a taint-flow query. It contains all
the information one needs to trigger a taint analysis. It contains one or more TaintFlow ob-
jects and a user-defined message (R4). The class TaintFlow has four references to the class
FlowParticipant. The from reference defines the set of sources, the through reference defines
the required propagators, the notThrough reference defines the sanitizers, and the to reference
defines the sinks. For any valid TaintFlow, there should be at least one source and one sink. A
FlowParticipant is either a Method or a MethodSet, i.e., a collection of methods. Similarly, the
QueriesSet is a collection of taint-flow queries.

Imports and reuse The root node can contain imports from other models defined in other
locations. This is modeled via the class Import, which allows references of methods and taint-
flow queries from different files. The classes Import, MethodSet, and QueriesSet are provided
for maintenance, reusability, and structure of fluentTQL specifications, enabling software de-
velopers to define categories of methods and taint-flow queries and share them (R5). As Java
internal DSL, the users of fluentTQL get all advantages of Java compared to any external
DSL or XML/JSON-based DSL often used in the existing tools. From Java, users can reuse
existing abstractions such as packaging, modules, and object-oriented design to improve the
maintenance, readability, and accessibility of the rules.
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Figure 6.2: fluentTQL meta-model (UML class diagram, gray-filled classes are abstract). The
constraints of the cardinalities of the classes are shown as messages, since the semantics of UML
class diagram can not express all of them.

6.4 Semantics
A taint-flow query, an instance of the class TaintFlowQuery, is a fluentTQL specification that
describes which traces of the program should be returned as findings to the user when a given
taint analysis is triggered with that taint-flow query. In the following, we define the relevant
terms and how fluentTQL refers to them.

We denoteM as the set of all method signatures where a signature includes the fully qualified
method name, parameter types, and a return type. A sensitive value is a type definition with
information about the direction of propagation (in- or out-) and location (return, receiver, or
parameter index). Hence, in- and out-values are sensitive values with in- and out-propagation.

Definition 6.1. A sensitive method is a tuple (m,SV), where m ∈ M and SV is a set of sensitive
values. SV contains subset SVin for in-values and subset SVout for out-values.

Definition 6.2. A taint analysis specification TAS consists of the tuple (Sources, Sanitizers,
RequiredPropagators, Sinks), where

1. Sources is a set of sensitive methods (m,SVout) for which SV contains at least one out-
value, (SVout 6= ∅),
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2. Sanitizers and Sinks are sets of sensitive methods (m,SVin) for which SV contains at least
one in-value, (SVin 6= ∅), and

3. RequiredPropagators is a set of sensitive methods (m,SVin, SVout) containing at least one
in-value and one out-value (SVin 6= ∅, SVout 6= ∅).

Given a taint analysis specification TAS, some black-box taint analysis T , and a program
P , we assume the execution of T returns a set of traces for the data-flow, i.e., T (P,TAS) =
{t1 . . . , tn} where each ti is a data-flow trace. A trace is a sequence of program statements, i.e.,
ti = s1

i s
2
i . . . s

n
i . For each individual trace ti it holds that

• the first statement is a source statement, s1
i ∈ Sources,

• the last statement is a sink, sn
i ∈ Sinks

• none of the statement sj
i is a sanitizer, sj

i /∈ Sanitizers, and

• if RequiredPropagators is non empty, there exists exactly one element from RequiredProp-
agators that appears at statement sj

i , where j ∈ {1, . . . , n}.

Note that in the case the analysis T is a dynamic taint analysis, the set of traces is a singleton
set, while static analyses, which simulate all possible executions, may generate multiple traces.

Example: A TAS can detect rudimentary data-flows modeled with the class TaintFlow from
Figure 6.2, such as the XSS vulnerability in Listing 6.1. The TaintFlowQuery xss in line 43
specifies a TaintFlow with

sources - {(getParameter(String),returnout), (doGet(String, ...), 0out)}
sanitizers - {(encodeHTML(String),0in)}

r. propagators - {}
sinks - {(append(CharSequence),0in)}

fluentTQL allows one to specify these sets with respective syntax elements from(...),
notThrough(...), and to(...). Running a taint analysis with the fluentTQL specification
for xss on the code in Listing 6.1 returns the single trace consisting of the two statements2

t1 = 12 16.
Additionally, the syntax element through(...) allows specifying the set of RequiredPropa-

gators.
For instance, the taint-flow query noSQLi1 in line 44 specifies a non-empty set Required-

Propagators.

sources - {(getParameter(String),returnout)}
sanitizers - {}

r. propagators - {(put(String, String),1in, returnout), (put(String, BasicDBObject), 1in, returnout)}
sinks - {(updateOne(BasicDBObject, BasicDBObject),0in, 1in), returnout}

The result of the taint-flow query noSQLi1 is

TracenoSQLi1 = 13 15 21 26 31, 14 15 21 28 30 31

and consists of two traces. Each of these traces is reported as a separate finding to the user. A
“simple” finding is a single trace with a single message. For instance, the findings of noSQLi1
are FindingsnoSQLi1 = { F1

noSQLi1, F2
noSQLi1}, where

2 We use line numbers from Listing 6.1 and Listing 6.2 to represent traces.
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F 1
noSQLi1 = ({13 15 21 26 31}, "No-SQL-Injection vulnerability.")
F 2

noSQLi1 = ({14 15 21 28 30 31}, "No-SQL-Injection vulnerability.")
Yet, for more complex queries one can use the and() operator, which combines findings over
individual traces to a single finding over multiple traces.

Combining taint-flow queries: The and() operator allows one to merge multiple TAS as a
single query. This is through an object of type TaintFlowQuery (from Figure 6.2) that contains
multiple objects of type TaintFlow. The operator computes the cross-product of the traces of
the individual TAS. For example, the taint-flow query noSQLi2 in line 45 defines three TAS
specifications:

sources - {(getParameter(String),returnout)}
sanitizers - {}

r. propagators - {(put(String, String),1in), returnout}
sinks - {(updateOne(BasicDBObject, BasicDBObject),0in, 1in)}

sources - {(put(String, String),returnout)}
sanitizers - {}

r. propagators - {}
sinks - {(updateOne(BasicDBObject, BasicDBObject),0in, 1in)}

sources - {(getParameter(String),returnout)}
sanitizers - {}

r. propagators - {(put(String, BasicDBObject),1in, returnout))}
sinks - {(updateOne(BasicDBObject, BasicDBObject),0in, 1in)}]

The first one returns the trace “13 15 21 26 31”, the second one returns the trace “12 15 21 26 31”,
and the last one returns the trace “14 15 21 28 30 31”. Yet, the result of the query noSQLi2
will be a single finding, FindingsnoSQLi2 = {F 1

noSQLi2}, where
F 1

noSQLi2 = ({13 15 21 26 31, 12 15 21 26 31, 14 15 21 28 30 31}, "No-SQL-Injection
vulnerability with multiple taint-flows.").

Calculating traces: By its definition, fluentTQL has precise runtime semantics. However,
when applied in a static context, the traces need to be approximated by the underlying data-flow
engine. Thus, reported traces of different tool implementations can differ.

To explain the precise runtime semantics for trace construction, we define a taint analysis
core language similar to previous works [SAB10, Liv12]. Though simple, the core language covers
relevant statements that can be mapped one-to-one with Java statements. The statements are
listed in Table 6.2. A program of the language contains a sequence of statements with line
numbers. For simplicity, we decided to exclude method calls from the language. These can be
compiled to the language by storing the memory address of the return statement and transferring
the control flow. This rule is not applied to the four statements in Table 6.2, which are special
method calls.

We denote variables with x and y, a field of an object with f , and an i-th index of an array
with a[i]. We model all memory locations through a shadow heap: The shadow-heap value for
a memory location v is true if the value is tainted and false otherwise. The execution context Σ
has the parameters listed in Table 6.3. Σ.∆[x] stores the current taint value of variable x. We
write Σ ` x→ v to extract that value into v. Similarly, notations like src(x) ` (m,SV ) extract
the method m with its sensitive values SV , when a method call src is matched. Additionally,
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Table 6.2: Statements of the core language for constructing fluentTQL traces

Statement Description
src(x) call to a sensitive method (m,SVout) ∈Sources with sensitive parameter x
snk(x) call to a sensitive method (m,SVin) ∈Sinks with leaked parameter x
san(x) call to a sensitive method (m,SVin) ∈Sanitizers sanitizing parameter x
rpr(x) call to a sensitive method (m,SVin,SVout) ∈RequiredPropagators
x = y assignment
x = y.f field load
x.f = y field store
x = a[i] read from array at index i
a[i] = x write to array at index i
skip skip and continue

Σ stores all traces t ∈ T that will be created during the execution. t is a sequence of statements
(which we here denote by line numbers).

Table 6.3: Paremeters used within the core language for constructing fluentTQL traces

Parameter Description
∆ match a variable, a field, an array element or a sensitive value to

its taint value
λ match a given statement to its line number
θ returns the set of all traces created

Figure 6.3 shows fluentTQL’s semantics through inference rules. We use a syntax akin to
the one used by Schwartz et al. [SAB10]. The semantics essentially define a regular dynamic
taint analysis which collects un-sanitized traces from sources to sinks as a side-effect. For
instance, given the statement x = y, the ASSIGN rule’s computation comprises four parts.
First, Σ ` y → v evaluates and extracts the taint value v for variable y. Due to the assignment,
the rule updates the taint value of x with v. The rule then extracts each trace in t ∈ θ and
adds the current statement, identified by its line number. The rules for load/store and array
accesses are equivalent. The rule SOURCE creates a new trace and taints the out-value; the
rule SINK gracefully terminates a trace by untainting the sensitive value. The rule SANITIZER
also discontinues the tracing. The rule PROPAGATOR taints the out-value if the in-value is
tainted. SKIP advances to the following statement, whereas SEQ enables the progression of the
semantics covering the recursive case. The semantics must enforce one aspect that we found
hard to capture with inference rules: for such fluentTQL specifications that define required
propagators, the taint analysis must ensure to report only such traces that contain all required
propagators. Finally, the notion of a user-defined message is skipped in the formal semantics
due to simplicity, but we explain it in the following through our example.

Report message: As seen in the previous examples, the queries specified in fluentTQL contain
a user-defined message added to each finding (R4). In the concrete syntax, the mandatory
syntax element report(...) takes the string message as an argument. Optionally, the user
may specify the location for the reporting message by using the syntax element at(...). As
an argument, the enumeration Location can be used, which contains three elements SOURCE,
SINK, and SOURCEANDSINK. SOURCE and SINK define that the reporting message should
be shown at the source and the sink location respectively. For SOURCEANDSINK the message
should be shown at the source and sink locations in the code. The reporting message is shown
for each trace individually if the finding has multiple traces. For example, for noSQLi2, the
error message will be shown at each source and sink location, i.e., lines 1, 2, 3, and 20, because
SOURCEANDSINK is used in the query specification (Listing 6.3, line 49). Tools can use this
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Σ ` y → v Σ.∆′ = Σ.∆[x← v] t ∈ Σ.θ Σ.θ′ = Σ.θ[t← 〈t, λ[x = y]〉]
(Σ, x = y) (Σ′, skip)

(ASSIGN)

Σ ` y.f → v Σ.∆′ = Σ.∆[x← v] t ∈ Σ.θ Σ.θ′ = Σ.θ[t← 〈t, λ[x = y.f ]〉]
(Σ, x = y.f) (Σ′, skip)

(LOAD)

Σ ` y → v Σ.∆′ = Σ.∆[x.f ← v] t ∈ Σ.θ Σ.θ′ = Σ.θ[t← 〈t, λ[x.f = y]〉]
(Σ, x.f = y) (Σ′, skip)

(STORE)

Σ ` a[i]→ v Σ.∆′ = Σ.∆[x← v] t ∈ Σ.θ Σ.θ′ = Σ.θ[t← 〈t, λ[x = a[i]]〉])
(Σ, x = a[i]) (Σ′, skip)

(READ-ARRAY)

Σ ` x→ v Σ.∆′ = Σ.∆[a[i]← v] t ∈ Σ.θ Σ.θ′ = Σ.θ[t← 〈t, λ[a[i] = x]〉]
(Σ, a[i] = x) (Σ′, skip)

(WRITE-ARRAY)

src(x) ` (m,SVout) sv ∈ SVout Σ.∆′ = Σ.∆[sv = true] Σ.θ′ = Σ.θ ∪ {λ[src(x)]〉}
(Σ, src(x)) (Σ′, skip)

(SOURCE)

snk(x) ` (m,SVin)
sv ∈ SVin Σ ` sv → true t ∈ Σ.θ Σ.θ′ = Σ.θ[t← 〈t, λ[snk(x)]〉]

(Σ, snk(x)) (Σ′, skip)
(SINK)

san(x) ` (m,SVin) sv ∈ SVin Σ.∆′ = Σ.∆[sv = false]
(Σ, san(x)) (Σ′, skip)

(SANITIZER)

rpr(x) ` (m,SVin, SVout) sv1 ∈ SVin

sv2 ∈ SVout Σ ` sv1 → true Σ.∆′ = Σ.∆[sv2 = true] Σ.θ′ = Σ.θ[t← 〈t, λ[rpr(x)]〉]
(Σ, rpr(x)) (Σ′, skip)

(PROPAGATOR)

(Σ, skip;S) (Σ, S)
(SKIP)

(Σ, S1) (Σ′, S′
1)

(Σ, S1;S2) (Σ′, S′
1;S2)

(SEQ)

Σ `v→ false
(FALSE)

Figure 6.3: Inference rules of the operational semantics of the traces construction in fluentTQL
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information for visualization purposes. E.g., an IDE plug-in may display error markers in the
editor at the source location, the sink location, or both.

Usability versus expressiveness: fluentTQL is a DSL for users without deep expertise in the
static analysis, as most software developers. Its purpose is to enable users to specify a custom
taint analysis for their codebase and detect many popular security vulnerabilities. Hence, the
usability and simplicity of the language are the primary aim. A trade-off to this design decision
is the lower expressiveness compared to some existing DSLs such as CodeQL. fluentTQL does
not provide the users a fine-grained manipulation of the abstract syntax tree. Program analysis
experts use such expressive DSLs. Our evaluation shows that the most popular security vul-
nerabilities can be expressed in fluentTQL. On the side of expressiveness, fluentTQL supports
R3, which is only partially supported by other DSLs. Complex multi-step taint-flow queries are
particularly relevant for stored versions of SQLi and XSS vulnerabilities.

6.5 Implementation

We implemented fluentTQL as an internal Java DSL which can be easily used in any Java
project by implementing the interface FluentTQLSpecification. Hence, any Java editor can be
used to write and edit fluentTQL queries.

fluentTQL is implemented as a standard Java library using the builder pattern to allow
method chaining as a user interface. All queries need to be implemented within a class that
implements the interface FluentTQLSpecification. Using the Java classloader, the classes are
located and the queries correctly loaded and provided as input to the analysis.

To instantiate fluentTQL with concrete analyses, we first implemented a taint analysis
built on top of the Boomerang solver [SAB19], an efficient and precise context-, flow-, and
field-sensitive data-flow engine with demand-driven pointer analysis. Boomerang provides an
API to query all traces from given seeds. The API of the seed is expressible to cover the
fluentTQL semantics of the sensitive methods. However, the basic API of Boomerang does
not support sanitizers or required propagators. To support the sanitizers, we transformed the
bodies of the sanitizers to empty, a terminal case of the Boomerang data propagation solver. To
support required propagators, we break the TAS specification into multiple TAS specifications
containing only sources and sinks. A TAS with a required propagator is broken to two TAS
where the first one has the original source and the required propagator as sink, whereas the
second one has the required propagator as source and the original sink as sink. Boomerang
returns the traces of the individual TAS, and our implementation merges them.

Moreover, we instantiated fluentTQL with the existing taint analysis of FlowDroid [ARF+14].
This, however, was not possible without limitations. Specifically, the default component for
defining sources and sinks in FlowDroid is limited and supports only return as out-value of
sources and parameter index as in-value of sinks. This can be extended by adding a new im-
plementation of the SourceSinkManager, which we left as future work. Furthermore, Sanitizers
by default are not supported, but we applied the same solution as in our Boomerang implemen-
tation. In contrast, required propagators are not supported and require either extension of the
taint analysis or post-processing of the findings, which we also consider as future work.

Finally, both instances of fluentTQL have some limitations in how the traces are constructed
and reported. Since fluentTQL has precise runtime semantics, it is expected that static anal-
ysis engines like Boomerang and FlowDroid will approximate. In particular, both engines will
unsoundly underapproximate the constructed traces. For example, both apply different strate-
gies for merging conditional paths of the program. Thus, these limitations are part of our
implementation, too.
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6.6 SecuCheck

SecuCheck is the tool that integrates fluentTQL with the available taint analyses using the
Magpie Bridge [LDB19] framework. The tool addresses the following requirements:

R1 Workflow integration: Software developers reported that the tools should be well integrated
within their daily used development environments (IDEs) to develop new applications.
They should appear as part of the IDEs and only provide the necessary findings reported
from the analysis using the standard IDE features, such as error view, editor markers, and
syntax highlighting.

R2 Configurable tools: One of the known weaknesses of static analysis, including taint analy-
sis, is the reporting of false findings, which causes usability issues [CB16]. One approach
to improve this is by configuring the rules of the analyses through domain-specific lan-
guages (DSLs). This allows the specification of custom rules for company-specific contexts.
Even though many tools provide such DSLs, their stakeholders are static analysis experts.
Therefore, software developers need developer-centric DSLs.

R3 Explainability: The messages of the findings shown to the users should be understandable.
The tools should provide additional information about the findings when needed. Referring
to R2, the DSL should also be understandable for software developers.

R4 Fast results: Taint analysis can run long on real-world applications measured in minutes
and even hours, which is not practical in the IDEs. Hence, a taint analysis running in the
IDE should provide means to analyze only parts of the code relevant to the user in the
current context a few minutes or seconds.

SecuCheck is open source under https://github.com/secure-software-engineering/
secucheck. A video is available under https://www.youtube.com/watch?v=3ivgsibOmXo.

6.6.1 Architecture

Figure 6.6 shows the internal components of SecuCheck and their interaction with the external
components. The components in orange are directly accessible to the users through provided
interfaces. The SecuCheck-core analysis runs the main analysis process. It uses Soot to
generate the Jimple format from the bytecode being analyzed and calls the Boomerang or the
FlowDroid APIs to run one of the solvers. SecuCheck-Magpie integrates the SecuCheck-
core into Magpie Bridge. An alternative way to run SecuCheck is through the command line
tool SecuCheck-cmd. The fluentTQL-DSL is a DSL for specifying taint-flows queries for the
analysis. fluentTQL-classloader uses the JCL-core to load the taint-flow specifications into the
JVM. The maven-plugin-api provides APIs for running tools as a Maven plugin. This is used by
fluentTQL-maven-plugin to run a semantic check of the fluentTQL specifications. Finally, the
fluentTQL2English transforms the fluentTQL specifications into English sentences to provide
the user with a more detailed description of the queries (R3). The components SecuCheck-
Magpie and SecuCheck-cmd use fluentTQL2English to display it in the error message (R1).

6.6.2 UI Features

In the following, we discuss the three primary user interface features SecuCheck provides to
the users of multiple IDEs clients.
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Figure 6.4: Configuration first page

Figure 6.5: Configuration second page

Configuration page For managing the analysis, SecuCheck has two configuration pages
(R2), created with the Bootstrap 3.3.5 framework3. This is supported through the Magpie
Bridge server using the HTTP protocol. When the project in the IDE opens, SecuCheck will
create the first configuration page, as shown in Figure 6.4. The project name is shown on the top
1 . Two tabs 2 and 4 are available on this page. 1 is for setting the path of the external
jar with fluentTQL specification 3 . 4 is for customizing the view of the queries on the next
page. When the first page is submitted, the second one will automatically appear (Figure 6.5).
This page shows six buttons for submitting a configuration 5 , triggering the analysis 6 ,
canceling already started analysis 7 , clearing the results from the previous analysis in the IDE
8 , selecting all elements from the list 9 , and deselecting all elements from the list 10 . The

page has three lists of elements, one in each tab. 11 shows a list of all taint-flow queries (R2)

3https://bootstrapdocs.com/v3.3.5/docs/getting-started/
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Figure 6.6: SecuCheck architecture.

that are available. 12 lists all classes from the codebase that can be selected as entry points

for the call graph construction (R2). With 13 the user can select the solver, Boomerang, or
FlowDroid. These selections allow the user to run the analysis for a specific context and get fast
results (R4).

Figure 6.7: Eclipse IDE view.

IDE standard UI features Figure 6.7 shows a screenshot of the Eclipse as an example IDE
that indicates the standard editor features (R1) that SecuCheck uses to display the analysis
results. The results are listed in the standard error view 3 . Error markers are shown on
the side of the editor 2 . A hover over the error item or the marker shows a more detailed
description of the found taint-flow 14 . This message is an English translation of the fluentTQL
specification for the found taint-flow. We explain this translation in the following.

Explainability of the findings To improve the explainability of the result messages in Se-
cuCheck, we implemented fluentTQL2Eng, a translator to English sentences. fluentTQL2Eng
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parses a taint-flow query object and visits each field. It maps each field to a predefined phrase
recursively. Within the sentence, it adds information about the found taint-flow by the analysis,
such as the source and sink locations. The final sentence is provided to SecuCheck-Magpie
which maps the message to the corresponding findings. An example is shown in the yellow
message box 14 in Figure 6.7.

6.7 Evaluation
We evaluated the usability of fluentTQL by conducting a comparative user study between
fluentTQL and CodeQL. We chose CodeQL because it is part of LGTM, a state-of-the-art
security tool, which has, in our perspective, very good tool support, and the query specifications
are open-source. There is also an Eclipse plugin, a web console for queries, and integration
with GitHub, a popular versioning system among developers. Additionally, we evaluated the
applicability of fluentTQL by specifying queries for a different set of applications: a catalog
of eleven Java programs, each demonstrating different security vulnerability, the deliberately
insecure application OWASP WebGoat aims to teach developers about relevant security vulner-
abilities, an insecure version of the Spring Demo application PetClinic, and randomly selected
five real-world Android apps with known malicious taint-flows part of TaintBench[LPP+21]. All
selected applications have known expected taint-flows that can be used to evaluate how the
analysis performs in finding real vulnerabilities. We answer the following research questions:

• RQ15 How usable is fluentTQL for software developers?

• RQ16 How does fluentTQL compare to CodeQL for specifying taint-flow queries for
taint-style security vulnerabilities?

• RQ17 Are fluentTQL syntax elements sufficient to express queries for popular taint-style
security vulnerabilities?

• RQ18 Can fluentTQL express and detect the known security vulnerabilities Java/Android
applications?

To answer the research questions, we use corresponding metrics. For RQ15, we use the
System Usability Scale and Net Promoter Score. The same metrics are also used in RQ16 to
compare both DSLs. Additionally, we measure the time needed for the participants to complete
the given tasks. We count only the solutions which are complete queries. The partial solutions
are not counted due to the nature of the task. In a similar realistic scenario, incomplete queries
will not return results from the tools. For RQ17, we evaluate how each fluentTQL construct
contributes in specifying the most popular Java security vulnerabilities. Moreover, we identify
security vulnerabilities for which fluentTQL can not express the required constructs. Finally,
for RQ18, we count how many expected taint-flows in the selected applications are found when
fluentTQL runs with adequate queries.

The following subsection explains our methodology for the user study used to answer RQ15
and RQ16. The following subsections discuss the results of each research question individually.
Finally, we discuss threats to validity.

6.7.1 Study Design

Setup: The user study was conducted over teleconferences where each participant shared the
screen. Each study took, on average, 80 minutes. The session was recorded for post-processing
purposes. We invited 35 software developers to participate in the study, of which 26 accepted the
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invitation, referred to as P01-P26. We invited professional developers via our contacts from the
industry as well as researchers and master-level students. Additionally, we asked three students
to participate in a test session, which helped us to estimate the time and adjust the difficulty
of the tasks.

Due to the limited number of participants, we chose a within-subjects design. Hence, each
participant worked in Eclipse with available tool support for both DSLs. The fluentTQL imple-
mentation used the more versatile instantiation based on Boomerang. To avoid bias, we referred
to the DSLs as DSL-1 and DSL-2. Initially, the participants received a project with all files
needed for the practical part. Then, the moderator introduced taint analysis and showed a Java
code example with an SQL injection vulnerability [Mit21c] to ensure that the participant un-
derstands the required concepts such as source, sanitizer, required propagator, and sink. Then,
the exercises for DSL-1 and DSL-2 followed.

Each exercise consisted of a tutorial and a task. The tutorial for each DSL was based on the
SQL injection vulnerability. Then, the participants had ten minutes to write a specification in
the same DSL for a new vulnerability explained by the moderator. We chose the vulnerability
types open redirect [Mit21d] for fluentTQL and cross-site scripting [Mit21b] for CodeQL. We
selected an example with the same pattern in the form of source-sanitizer-sink for either type.
This ensures that writing a specification for each vulnerability is equally hard, i.e., the effort is
the same regardless of the vulnerability.

We provided a Java code example for each vulnerability type as a reference. The participant
was allowed to use any of the files provided that included the Java classes and the files with
example specifications of fluentTQL and CodeQL. For each task, we additionally provided a
file with a skeleton code in which the participant wrote the solution. During the tasks, the
participants were allowed to ask questions for clarification.

After the tasks, we let the participants fill out a web form. The moderator guided the
participant in the discussion and collected the data for the questionnaire.

Questionnaire: In total, the questionnaire asked 28 questions, of which two were of open type
and optional (Q26 and Q27). The complete list of questions is part of our artifact. Each of the
questions asks for feedback for each DSL by the participant. Of the 26 mandatory questions of
closed type, four are informational, 20 are related to the System-Usability-Scale (SUS) [Bro13],
and two are related to the Net Promoter Score (NPS) [Rei03]. The SUS value is a usability
metric derived from ten simple questions in a predefined format. The SUS-related questions
(Q4-Q23) are the same ten questions per DSL with answering options on an agreement scale
from one to five. SUS expresses the usability of a single DSL. Hence, for comparison, we use
the same questions for each DSL. The NPS metric expresses how likely the participant would
recommend something to a colleague. NPS identifies so-called promoters and detractors among
the participants to calculate a value. The NPS-related questions (Q24-Q25) ask for the likelihood
of DSL1 being recommended over DSL2 for specifying taint-flow queries and vice versa. The
informational questions ask about participant coding experience (Q1), security expertise (Q2),
willingness to learn new DSLs (Q3), and preferred way of learning new languages (Q28).

Participants: The study population of 26 participants is larger than the size of related studies
that have been performed earlier, e.g., 10 in [SJMH+19], 12 in [SNQDMH20], and 22 in [NB20].
We chose participants with diverse backgrounds. Ten of them are professional developers, six are
computer science students on the master-level, and ten are researchers in computer science. The
participants have different experiences in programming. Twelve of the participants have 10+,
nine have 6-10, four have 3-5, and one has 1-2 years of programming experience. They rated
their experience with security vulnerabilities. Three consider themselves beginners, 16 have
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basic knowledge, five regularly inform themselves about the topic, and two consider themselves
as experts.

6.7.2 Usability (RQ15)

fluentTQL was positively received by the participants of our user study. It received an excellent
System Usability Score of 80,77 (with p=0,0094 < 0,05) on a scale from 0 to 100, where 68
is considered average usability and 100 is imaginary perfect. For the given task, 20 out of
26 participants finished with a correct solution in 10 minutes (on average 472 seconds, with
σ =99,05). Table 6.4 shows the exact time in seconds for each participant. In the open questions
(Q26-Q27), many participants gave additional feedback on what they liked and what they would
improve in fluentTQL. Many participants said that they could learn the language quickly; one
of them said "‘with simple tutorial, I can learn it (fluentTQL) even without an expert. (...) it
was very intuitive"’ and other said, "‘I didn’t have to learn a lot"’. Few participants mentioned
that they like that the queries are compact and have the right level of abstraction.

Table 6.4: List of participants: coding experience and position, time in solving each task and
DSL used in the first task (X means the participant did not task in 10 minutes)

Coding
(years) Position Security

experience
fluentTQL
(seconds)

CodeQL
(seconds) 1st DSL

P01 3-5 developer basic 554 X fluentTQL
P02 >10 developer basic 499 X fluentTQL
P03 6-10 student expert 482 588 fluentTQL
P04 >10 researcher basic 560 590 CodeQL
P05 >10 researcher basic X 591 fluentTQL
P06 >10 researcher advanced 544 562 fluentTQL
P07 3-5 researcher basic X 595 fluentTQL
P08 >10 student advanced 449 495 CodeQL
P09 6-10 student basic X 587 CodeQL
P10 >10 researcher basic 545 567 CodeQL
P11 1-2 researcher beginner 558 585 CodeQL
P12 6-10 researcher basic X X fluentTQL
P13 3-5 researcher beginner 473 541 CodeQL
P14 6-10 researcher basic 305 434 CodeQL
P15 6-10 researcher basic 571 X fluentTQL
P16 6-10 student beginner 412 558 CodeQL
P17 >10 developer basic X X fluentTQL
P18 >10 developer basic 328 600 CodeQL
P19 6-10 developer basic 594 X fluentTQL
P20 6-10 developer expert 375 492 CodeQL
P21 6-10 student basic 455 467 CodeQL
P22 >10 developer advanced X X CodeQL
P23 >10 developer advanced 507 600 fluentTQL
P24 >10 developer advanced 206 425 CodeQL
P25 3-5 student basic 531 X fluentTQL
P26 >10 developer basic 492 X fluentTQL

We noted a few points that many participants disliked. Most dislike that the method sig-
natures are specified as a string value. One participant said "‘method calls are prone to typos
or cumbersome to create"’. We have already added a check in the editor to inform the users if
their string is an invalid method signature. We support Java and Soot signatures. We even plan
to add suggestions for existing methods from the workspace to the code completion feature of
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the editor. Some participants gave suggestions for improving the names of some keywords. For
example, the class ThisObject, which in fluentTQL is called with thisObject(), was earlier called
This and confused many participants with the this keyword in Java.
fluentTQL as a new DSL is found to be very usable. The participants of our user study gave a
score of 80,77 on the System Usability Score system.

6.7.3 Comparison (RQ16)

In terms of usability, with a SUS value of 38,56 CodeQL is perceived with bad usability (with
p=8,37e-36 < 0,05). On the questions of how likely will the participant recommend one DSL
over the other, for the task they were given (Q24-Q25), fluentTQL over CodeQL has a Net
Promoter Score value of 30,77, whereas CodeQL over fluentTQL has a value of -86,96, where
on the scale from -100 to 100, positive values are considered good. It follows that for specifying
taint-flow queries, participants would more likely recommend fluentTQL over CodeQL.
50 class XSSConfig extends TaintTracking2 :: Configuration {
51 XSSConfig () { this = " XSSConfig " }
52 override predicate isSource ( DataFlow :: Node source ) { source

instanceof RemoteFlowSource }
53 override predicate isSink ( DataFlow :: Node sink) { sink

instanceof XssSink }
54 override predicate isSanitizer ( DataFlow :: Node node) {
55 node. getType () instanceof NumericType or

node. getType () instanceof BooleanType }
56 }
57 from DataFlow2 :: PathNode source , DataFlow2 :: PathNode sink ,

XSSConfig conf
58 where conf. hasFlowPath (source , sink)
59 select sink. getNode (), source , sink , "Cross -site scripting due to

$@.", source . getNode (), "user - provided value"
60 }

Listing 6.4: CodeQL specification for XSS

To compare both languages, let us consider the CodeQL example for XSS in Listing 6.4.
This is a solution for the task given to the participants. The query (lines 57- 59) consists of three
sections, from, where, and select. In the from section, the user defines objects from predefined or
self-defined classes. In the where section, constraints are defined that may also contain calls to
predicates. In the select section, the results of the query are defined. For taint analysis, CodeQL
provides a module. The class XSSConfig extends from the configuration class for taint analysis,
where the sources, sanitizers, and sinks are defined. Additionally, the classes RemoteFlowSource
and XssSink are provided and can be used to detect sources and sinks for XSS. The stub code
with relevant imports given to each participant contained information that these classes exist
and can be used. A user who needs other SRM that the provided classes cannot detect will
need to write a new implementation. Note that the provided classes RemoteFlowSource and
XssSink will match more sources and sinks than the fluentTQL query solution. To have an
equivalent query in fluentTQL, the participants would have to write additional code for the
isSource (Line 52) and isSink (Line 53) methods instead of using the provided classes.

Few participants mentioned the amount of code they would need to write in CodeQL is
large. One participant said, "’...way too much code to get to the actual thing that needs to be
written."’.

Furthermore, we observed how each participant performed in solving the tasks. The task with
CodeQL was solved by 17 participants, compared to 20 with fluentTQL. Fourteen participants
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solved both tasks. We measured the time each participant needed for each task, which is given
in Table 6.4. On average participants solved the task with CodeQL in 546 seconds (σ =57,89),
which is by 13,4% slower than with fluentTQL with p=0,01 (p<0,05). Concerning the time and
the other four independent variables, i.e., 1st DSL, Coding, Position, and Security experience,
the p-value of the chi-square tests is much smaller than the threshold of 0,05. An exception
is only the variable Position for the tasks with CodeQL with p=0,097 and a minimal effect
(Cramer’s V is 0,043), where the researchers are slightly slower than the developers and the
students.

Finally, we look into the outcome of each task. Using the ANOVA [?] test, we find out that
there is no difference between the means of the outcomes of the first task and the second task
(p=0,131 > 0,05).

While CodeQL is a more expressive DSL for multiple types of static analyses, fluentTQL is
more preferred among software developers due to its user-friendliness. CodeQL scored a bad
SUS value of 38,56. On the NPS system, fluentTQL is preferred over CodeQL with a score
of 30,77, whereas CodeQL is preferred over fluentTQL with a negative value of 86,96. When
specifying a taint-flow for given known vulnerability, the participants in our user study were
13,4% faster when using fluentTQL compared to CodeQL.

6.7.4 Expressiveness (RQ17)

To evaluate whether fluentTQL syntax elements are sufficient to express popular Java taint-
style vulnerabilities, we created a catalog with Java code examples accompanied by fluentTQL
specifications. The catalog contains eleven types of security vulnerabilities (Table 6.5). Each
Java code example has a variant with and without sanitization. The catalog demonstrates
different language syntax elements of fluentTQL and how they can be used for specifying
vulnerabilities. The Java examples and the SRM are manually collected from several sources,
including the Mitre and OWASP [OWA21] databases, OWASP benchmark project[Ben21], and
other publicly available SRM lists [ARB13, Bro13, PDB19, TSBB17].

Table 6.5: List of vulnerability types implemented in the fluentTQL catalog (so - sources, sa -
sanitizers, rp - required propagators, si - sinks)

Vulnerability type flows so sa rp si SRM
SQL injection [Mit21c] 3 13 3 6 10 32
XPath [Mit20a] 1 12 1 0 12 25
Command injection [Mit20c] 1 12 1 1 1 15
XML injection [Mit20h] 1 12 1 0 4 17
LDAP injection [Mit20d] 1 12 1 0 8 21
Cross-site scripting [Mit21b] 2 13 1 1 3 18
Open redirect [Mit21d] 2 13 1 0 2 16
NoSQL injection [Mit20b] 2 5 2 3 2 12
Trust boundary violation [Mit20g] 1 12 1 0 1 15
Path traversal [Mit20f] 2 12 1 1 2 16
Log injection [Mit20e] 2 12 1 1 4 18
Total (unique): 18 46 14 13 49 122

Many taint-style vulnerabilities from the Mitre and OWASP databases can be modeled
with single taint flow queries. Nevertheless, we found examples such as the noSQLi2 query in
Listing 6.3, where the and() operator is needed.
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Taint flows that require multiple intermediate source-sinks steps were necessary for the spec-
ification of many taint flows, i.e., the feature of multi-step taint analysis is ubiquitous. For
example, the OWASP Benchmark test 000014 contains Path Traversal vulnerability [Mit20f].
A File object is constructed using a String parameter as the file’s location. If the String is
user-controllable, i.e., tainted, and the File object is passed to a FileInputStream constructor, a
path traversal vulnerability occurs. The file constructor, in this case, is a required propagator
that ensures the order of SRM calls.

When it comes to the SRM specifications, we observed that most of the sources have a
Return object as an out-value. For sinks, most of the in-values are Parameter objects.

We also inspected the vulnerability types (Common Weakness Enumerations - CWEs) in the
SANS-25 list [Mit21a]. 17 of 25 vulnerability types can be expressed as taint-style. 13 of those
can be modeled in fluentTQL.

The remaining four CWEs are CWE-119, CWE-787, CWE-476, and CWE-798. CWE-119
and CWE-787 are related to buffer overflows, which do not apply to Java. The CWE-476
cannot be expressed because the potential sources are new-expressions, which cannot currently
be modeled. Also, constant values cannot currently be modeled as potential sources, which is
needed for CWE-798 where these values should be detected as hard-coded credentials. Extending
fluentTQL to support new-expressions and constant values is possible in the abstract syntax by
modeling them with a new class that extends the class FlowParticipant. The semantics need to
be extended to define how these values will be detected and the appropriate concrete syntax.

Even though our implementation of fluentTQL is bound to Java only, fluentTQL can also
express taint-style vulnerabilities in other languages. The only requirement to specify a query for
other languages is that the sources, sanitizers, and sinks are defined as method calls. Like Java,
fluentTQL can be adapted to work for C/C++, C#, other JVM-hosted languages and cover
many taint-style vulnerabilities. In languages such as JavaScript, the coverage of vulnerabilities
is smaller since the sources and sinks are often not method calls.
fluentTQL can express all taint-style vulnerabilities in which the key constructs of the taint-flows
are method calls. Our implementation shows that at least 11 types of security vulnerabilities
can be specified with fluentTQL. These are the most popular security vulnerabilities for Java.
Theoretically, one can express many more.

6.7.5 Analyzing Java/Android Applications (RQ18)

To answer RQ18, we ran fluentTQL queries on two Java applications, OWASP WebGoat and
PetClinic, and seven Android applications from TaintBench [LPP+21].

The OWASP WebGoat is a deliberately insecure application that teaches developers about
relevant security vulnerabilities. As a Java Spring application5, it is popular in the community
and has been used for evaluating static analyses [AFK+20]. We used this application to evaluate
the applicability of fluentTQL in a real-world scenario, including specifying taint-flow queries
and running our Boomerang-based and FlowDroid-based taint analysis.

We chose to work with the SQL injection as an example since it has the most taint-flows in
WebGoat. We documented all 17 SQL injection taint-flows in OWASP WebGoat and used them
as ground truth. This was manually done by following the directions of the lessons present in
WebGoat and inspect the source code.

4https://github.com/OWASP/Benchmark/blob/master/src/main/java/org/owasp/benchmark/testcode/
BenchmarkTest00001.java

5https://spring.io/

107

https://github.com/OWASP/Benchmark/blob/master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00001.java
https://github.com/OWASP/Benchmark/blob/master/src/main/java/org/owasp/benchmark/testcode/BenchmarkTest00001.java


6.7 Evaluation

Next, we specified the sensitive methods, which include 17 sources, one sanitizer, two required
propagators, and two sinks. We only needed to create two taint-flow queries to be able to
cover all types of taint-flows. The Boomerang-based implementation was able to detect all 17
taint-flows. The official FlowDroid implementation (we used version 2.8) could not to find any
taint-flow in WebGoat. So, we investigated and found that FlowDroid defines only the return
values of the sources as taints. For all taint-flows in WebGoat, the taints are the parameters of
the sources. Hence, we adapted FlowDroid to support this, and after doing so, the FlowDroid
implementation detected 13 taint-flows. Those that were missed are the types that contain a
required propagator, which is currently not supported by FlowDroid.

For the second Java application, PetClinic, we followed the same steps as for OWASP We-
bGoat. We identified and documented five taint-flows of type hibernate injection and two
taint-flows of type cross-site request forgery. In this application, all taint-flows were detected by
our implementation with Boomerang and our updated version of FlowDroid. Table 6.6 shows
summary of the Java applications.

TaintBench is a collection of real-world Android apps that contain malicious behavior in the
form of taint-flows. These apps have well-documented information about the expected taint-flows
and should help analyses writers evaluate their tools rigorously and fairly. Table 6.7 summarizes
the findings of running our fluentTQL implementation with Boomerang as well as with Flow-
Droid. Out of 25 expected taint-flows among all apps, the Boomerang-based implementation
found 18, whereas FlowDroid-based implementation found 13. We manually inspected those
that were not found and identified two causes which are due to the existing solvers and not the
inability of fluentTQL to express them. The first cause is the inability to analyze taint-flows
through different threads in the code. Due to the implicit data-flow behavior of the threads, the
existing call graph algorithms have limitations in modeling this correctly. This second cause is
that the existing data-flow analyses do not analyze the expressions within path constraints. In
the case of our experiments, we found that the call of the source method is within the condition
of an IF statement, which is not analyzed by Boomerang nor by FlowDroid.

The runtime values reported in Table 6.6 and Table 6.7 are the average values over ten runs
on a system with Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz, 16 GB RAM with Win-10 OS.
61 private void loadClass ( Context context ) {
62 ...
63 try {
64 InputStream is = getAssets ().open("ds");
65 int len = is. available ();
66 byte [] encrypeData = new byte[len ];
67 is.read( encrypeData , 0, len);
68 byte [] rawdata = new DesUtils (

DesUtils . STRING_KEY ). decrypt ( encrypeData );
69 FileOutputStream fos = new

FileOutputStream ( sourcePathName );
70 fos.write( rawdata );
71 fos.close ();
72 } catch ( Exception e) {
73 e. printStackTrace ();
74 }
75 try {
76 Object [] argsObj = new Object []{ sourcePathName ,

outputPathName , Integer . valueOf (0) };
77 DexFile dx = ( DexFile ) Class. forName (

" dalvik . system . DexFile "). getMethod (" loadDex ",
new Class []{ String .class , String .class ,
Integer .TYPE }). invoke (null , argsObj );

78 ...
79 } catch ( Exception e2) {
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80 }
81 }

Listing 6.5: Malisious taint-flow through a file in the dsencrypt app from TaintBench

Detecting taint-flows through files. The code in Listing 6.5 shows the loadClass method
from the app dsencrypt 6, which contains the malicious taint-flow. It reads an encrypted zip
file from the asset folder (source in Line 64), decrypts it, and extracts class.dex which contains
malicious code (intermediate statements in the trace are lines 67, 68, and 69). The malicious
code is called via reflection (sink in Line 77). As reported in work by Luo et al.[LPP+21], these
kinds of taint-flows going through files, databases, etc., can not be detected by the existing
Android taint analysis tools. However, with fluentTQL, we can now model and detect these
taint-flows using the and() operator.

Table 6.6: Overview of the evaluated Java projects. Flows/B/F is number of expected taint-
flows (vulnerability instances) and those found by Boomerang and FlowDroid, CWE is number
of common weakness enumerations (vulnerability types), Runtime is average over ten runs.

Project #Classes #Flows/B/F #CWE #Runtime(s) B/F
Catalog 36 27/27/25 11 52.8/43.7
PetClinic 42 4/4/4 1 10.9/14.4
WebGoat 35 17/17/13 1 30.3/36.7

Table 6.7: Overview of the evaluated Android apps from TaintBench. Flows/B/F is number of
expected taint-flows (vulnerability instances) and those found by Boomerang and FlowDroid,
Runtime is average over ten runs.

App #Classes #Flows/B/F #Runtime(s) B/F
blackfish 338 13/11/11 18.6/29.8
beita_com_beita_contact 379 3/1/1 11.2/25.5
phospy 236 2/2/0 8.6/11.5
repane 5 1/1/0 3/4.8
dsencrypt 4 1/1/1 10.2/4.9
fakeappstore 402 3/2/0 23/16.5
fakemart 868 2/0/0 27.3/34.9

Our Boomerang-based implementation of fluentTQL can detect all expected taint-flows in the
Java Spring applications: OWASP WebGoat and the PetClinic. Among seven real-world An-
droid apps with malicious taint-flows, fluentTQL can detect 18 out of 25 expected taint-flows.
Those that can not be detected are complex threads modeling and not considering path condi-
tions.

6.7.6 Threats to Validity

External validity. Participation in the study was voluntary. We asked our contacts in in-
dustry to invite their software developers. The invitation mentioned that the study would try

6https://github.com/TaintBench/dsencrypt_samp/blob/master/src/main/java/com/kbstar/
kb/android/star/ProxyApp.java
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to compare two domain-specific languages for static analysis. This information makes it more
likely that the participants are interested in the design of programming languages and/or static
analysis. Hence, there is a threat of having a subject not representative of the entire population
of software developers.

Internal validity. Apart from professional software developers, we invited researchers and
master-level students from the university. Previous work has shown that graduate students are
valid proxies for software developers in such studies [NDGS20, NDTS18, NDG+19, NDT+17].
Also, our results confirm that there is no significant correlation between the position of the partic-
ipant and the performance in the task, thus also confirming that—for such studies—researchers
and master-level students have coding knowledge comparable to professional developers.

Moreover, the format of within-subjects study design has its limitations. For example, as
both tasks were the same, but for a different DSL and context (vulnerability example), partic-
ipants may have been influenced by the first task, known as carryover effects when solving the
second task. To deal with this, we applied randomization of the order of the tasks.

Construct validity. Another threat to validity is the fairness of the tasks. Both DSLs are
not equally expressible. This means one may need more or less time to learn a new DSL. To
address this, we took into consideration the following points. First, we used vulnerabilities that
have the same taint-flow pattern. The Java code shown as an example for each task had the
same complexity. Second, for each task, we provided a stub code for the solution. In the case of
CodeQL, which is a more expressible DSL than fluentTQL and has support for taint analysis
and other analyses, too, we asked the participants to focus only on the taint analysis module.
Finally, we had three test sessions to adjust the tasks and define what exact information the
participants will need to solve each task in under ten minutes. Similarly, a possible threat to
validity comes from the design of our study to use the open redirect vulnerability with fluentTQL
and XSS for CodeQL for all participants without switching among half of the participants. To
mitigate the threat, we have selected the code examples used in the tasks to have the same
structure, i.e., the taint was in both cases created by a call to an HTTP request object, and only
the sink method differs for each vulnerability. Additionally, while explaining each task, we also
explained the vulnerability. While the participants were performing the task, we encouraged
them to to share their thoughts verbally. After processing the recorded material, we found that
none of the participants struggled with understanding the vulnerability.
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7

The application of static analysis in detecting security vulnerabilities has been used in many
cases in the research community. These results have initiated the development of open-source as
well as commercial tools. With this development, the branch of static application security testing
(SAST) tools has evolved from the pool of static analysis tools. However, designing a tool that
is sound, precise, scalable, and at the same time usable for the intended user is a challenging
task. Each of these properties can be addressed in a specific way through customizations of
the analysis in the given context, which requires highly skilled experts in multiple domains, i.e.,
static analysis, security, and software engineering.

The scope of this thesis was limited to a specific data-flow analysis technique, namely, taint
analysis. This type of analysis is most versatile in detecting different security vulnerabilities.
It can detect many popular security vulnerabilities such as SQL injection, cross-site scripting,
log injection, etc. Taint analysis is the core analysis of many SAST tools on the market, such
as CheckMarx, and Fortify, and proper adaptation to the context can be very useful. As
primary users, we targeted software developers. We studiedhow to improve the adaptation of
taint analysis tools within their workflow at development time, with the intention to early detect
security vulnerabilities before they land on the central repository or even work in production.

Initially, as the first contribution of this thesis, we performed empirical studies to uncover
the current state of the usage of SAST tools in practice. We conducted a study among German
companies of different sizes to find that about half of the participants do not use SAST tools.
The study confirmed the results of a few earlier studies that false warnings remain a relevant
issue for users. The participants reported that the configuration of the tools is complex, but most
are willing to provide feedback to the tool and improve the findings. Contrary to earlier studies
that reported that static analyses are too slow, the participants in our study perceive that the
tools they have used are fast enough to be used in their development workflow. Moreover, we
performed a user study to investigate how effective users can resolve the findings of a given taint
analysis tool. The study showed that the participants who adapted the configuration were more
effective in resolving the findings than those who only used the default configuration.

The findings of our studies motivated the need to improve how the users adapt taint analysis
tools for detecting security vulnerabilities. We addressed two challenges: (1) how to automate
the extraction of security-relevant methods (SRM) from arbitrary codebases and (2) how two
improve the usability of the configuration of the taint analysis tools for software developers.

The second contribution, SWAN, enables the users to use machine-learning algorithms to
extract SRM from their codebase, which their taint analysis can use. This is a fully automatic
approach. Compared to earlier approaches, SWAN supports additional SRM types such as
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validators, and it is the first approach that further classifies the SRM into security vulnerability
categories. The results show high precision and recall, but the accuracy still leaves room for
improvement in some instances. The third contribution, SWANAssist, improves the results of
SWAN by adding a manual step where the user provides feedback to the classifier used in
SWAN. This is an active machine-learning approach. We additionally developed a strategy
that proposes the most impactful data to the user that needs to be manually labeled. Our
experiments show that the classifier can adapt fast to the codebase and make better predictions
with low manual effort.

The last contribution addresses the usability of the configuration of taint analysis. We
propose fluentTQL, a new domain-specific language (DSL) that can express taint-style vulner-
abilities. It is the first developer-centric DSL. Compared to a state-of-the-art DSL, CodeQL,
based on our usability user study, fluentTQL is more usable. Moreover, the semantics of the lan-
guage is independent of the underlying data-flow analysis, and hence we show that fluentTQL
can be instantiated to different data-flow analysis solvers. Along with fluentTQL, we developed
the open-source taint analysis tool, SecuCheck, as a plug-in that can run in multiple IDEs.

While the contributions of this thesis have moved forward the state-of-the-art adapting taint
analysis tools by their users, there are several areas for future exploration. We list possible
research directions for the future:

Regular studies. The studies we conducted indicated the current state of use of the tools,
mainly in one given region, Germany. However, similar studies may be conducted in other regions
as well. Moreover, our studies confirmed some results of previous studies but also showed that
some previous results are now changing. This shows that the area of SAST tools is evolving,
and repeating these studies in the future can give different results.

Studies for evaluating feedback and configuration features of SAST tools. To what
extent can the users provide feedback to the tools or configure them, and how effective is this
in detecting security vulnerabilities? This question should be explored in more depth. User-
controlled experiments can be used to answer this. Some tools already provide features for
providing feedback, e.g., CheckMarx enables the user to label the findings as false positives.

Extracting more types of SRM. With SWAN, we have shown that validators, such as
sanitizers and authentication methods, can be extracted through classification. To cover more
vulnerabilities types, such as required propagators, cryptographic misuses, or other types of API
misuses, we need other types of SRM. Further, in SWAN, we showed that the SRM could be
classified into seven CWEs. This certainly can be extended to more CWEs. However, it is
unknown how well these classifiers work and the challenges of implementing them. Whether the
code and doc comments information is sufficient for particular CWEs is yet to be researched.

Extracting SRM with more information. The existing machine-learning approaches such
as SWAN, classify the methods into SRM as a whole. However, as seen in fluentTQL, the
specification of taint-flows requires further information about the taints, which is the relevant
part of the method call. In taint analysis, for example, we need to know the actual taint created
by the source method, such as the return value or the object on which the source method is
called. Currently, this information still needs to be specified manually. FlowDroid [ARF+14], for
example, assumes that sources always taint the return value, and sinks should report a finding
if any of the parameters is tainted. However, this is insufficient as it can produce false results
for many vulnerability types. Hence, one can explore whether the relevant party of the SRM
can also be learned automatically.
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Chapter 7. Conclusion

Extracting complete taint-flows. fluentTQL is designed with reusability in mind. For one
team that regularly uses a given set of libraries or frameworks, many taint-flow queries can
be reused in multiple projects, and only minor adaptations are needed. However, for a new
codebase with many unknown libraries, creating the taint-flow queries can still be a tedious
task. A future research topic is to explore whether we can apply machine-learning to learn the
complete taint-flows based on previously known examples.

Usable Typestate DSLs. fluentTQL showed that in terms of usability, it outperforms
the state-of-the-art DSL CodeQL. However, the expressiveness of fluentTQL compared to
CodeQL is limited. In the future, we plan to extend fluentTQL with new constructs that can
support other types of analyses, such as typestate analysis or value analysis to express even more
types of vulnerabilities. Nevertheless, it is unknown if these extensions will impact its usability.
Therefore, one may also consider whether a new, more expressive DSL for software developers
is needed or only extensions of fluentTQL are sufficient.
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Appendix

7.1 Supplementary matherial for Chapter 3

7.1.1 Survey Questions

The survey from the study described in Section 3.2 consists of 7 parts. We list all questions
from the survey that are relevant for this paper.

Part 1: Questions for all roles

1 To what extent do you agree with the following statements? [likert scale: "strongly agree",
"agree", "disagree", "strongly disagree", "do not know"]

1.1 For the topic Secure Software Engineering (SSE) our team invests the right amount
of time.

1.2 In our team, we have members who are responsible for Security.
1.3 We have clearly defined regulations and policies how to develop secure software.
1.4 We have the right amount of tools to support us in developing secure software.
1.5 Our development process and the existing tools are enough for our needs.
1.6 Security requirements (e.g. secure processing of confidential data) are clearly defined

in our team.

2 What is your team responsible for regarding your software product? [multiple choice:
"Deployment/Server configuration", "Programming", "Testing", "Build processes", "Soft-
ware product operation", "Requirements", "Architecture and design"]

Part 2: Questions related requirements

3 Is your role involved in requirements elicitation? [single choice: "Yes", "No" (if no, then
part 2 is skipped)]

4 Please answer the following questions [single choice: "Yes", "No", "I don’t know"]

4.1 Is security considered during activities related to requirements management?
4.2 Do you have security experts that check the security requirements?

5 To what extent do you agree with the following statement related to security requirements?
[likert scale: "strongly agree", "agree", "disagree", "strongly disagree", "do not know"]

5.1 Our current processes should be more precise and clear.
5.2 More or better tools would help us to perform our tasks with higher quality.
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Part 3: Questions related design and architecture

6 Is your role involved in design and architecture? [single choice: "Yes", "No" (if no, then
part 3 is skipped)]

7 Please answer the following questions [single choice: "Yes", "No", "I don’t know"]

7.1 Is security considered during activities related to design and architecture?
7.2 Do you have a process to check the security properties of the design with respect to

the implemented program?
7.3 Do you have security experts that check the architecture from security perspective?

8 To what extent do you agree with the following statement related to secure design and
architecture? [likert scale: "strongly agree", "agree", "disagree", "strongly disagree", "do
not know"]

8.1 Our current processes should be more precise and clear.
8.2 More or better tools would help us to perform our tasks with higher quality.

Part 4: Questions related to implementation and testing

9 Is your role involved in implementation and testing? [single choice: "Yes", "No" (if no,
then part 4 is skipped)]

10 Please answer the following questions [single choice: "Yes", "No", "I don’t know"]

10.1 Is security considered during implementation?
10.2 Are there templates, in particular standards for implementing secure software?
10.3 Do you use tools to automatically check security checks of the implemented code?
10.4 Do you have a process to check the security properties of the code?

11 Who checks the code agains security vulnerabilities? [multiple choice with option for free
text: "Same person who wrote the code", "Another person from the team who did not
write the code", "Internal security team", "External security team", "Nobody", "Other"]

12 Which IDEs are used within your team? [multiple choice with option for free text:
"Eclipse", "IntelliJ Idea", "NetBeans", "Visual Studio Code", "Visual Studio", "vi / vim",
"Notepad++ (or similar editor)", "Apple Xcode", "Other"]

13 Which programming languages are used primarily within your team? [multiple choice
with option for free text: "Java", "JavaScript/TypeScript", "C#", "C", "C++", "Kotlin",
"Objective-C", "Python", "Ruby", "PHP", "Go", "SQL", "Swift", "Rust", "R", "Other"]

14 When is the program checked against security vulnerabilities? [multiple choice with option
for free text: "During implementation in the IDE", "Before each commit in the repository",
"After each commit from the server pipeline", "Before official release", "During one sprint",
"Never", "Other"]

15 To what extent do you agree with the following statement related to secure software
implementation and testing? [likert scale: "strongly agree", "agree", "disagree", "strongly
disagree", "do not know"]

15.1 Our current processes should be more precise and clear.
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15.2 More or better tools would help us to perform our tasks with higher quality.

Part 5: Questions related to static analysis tools

16 Does your team use static analysis tools, such as static analysis tools? [single choice: "Yes",
"No" (if no, then part 5 is skipped)]

17 Which static analysis tools are used within your team? [open question]

18 To what extent do you agree with the following statements? [likert scale: "strongly agree",
"agree", "disagree", "strongly disagree", "do not know"]

18.1 The tools we use return the results fast enough for our needs.
18.2 The number of reported warnings that are false (false positives) is too high.
18.3 I can confirm the true warnings (true positives) easily.
18.4 The tools we use often report true warnings.
18.5 The messages of the warnings help me to fix the issues in the code.
18.6 I am willing to write our project-specific custom rules for the static analysis tools.
18.7 I am willing to label the false warnings to give feedback to the tools so that the tools

can improve in the future.
18.8 I have experience in writing custom rules for some of the tools.

19 Please sort the following statements based on importance, where 1 has the highest impor-
tance. [sorting of statements from 1 to 4]

– The analysis should finish within few seconds.
– The messages of the reported findings should be understandable and provide hints

how to fix the issues.
– It should be easy for me to understand and adapt the rules of the tools according to

my needs.
– The tool should return only very few false warnings.

20 Where should the warnings from the static analysis tools be reported? [sorting of state-
ments from 1 to 3]

– In my IDE (e.g. Eclipse)
– On an internal website (e.g. Jenkins)
– In our ticket system (e.g. Jira)

Part 6: Questions related to software operation and maintenance

21 Is your role involved in software operation and maintenance? [single choice: "Yes", "No"
(if no, then part 6 is skipped)]

22 Please answer the following questions [single choice: "Yes", "No", "I don’t know"]

22.1 Does your team performs a final security review before each release?
22.2 Are there automatic security checks for each release?
22.3 Are there automatic security checks during operation?

129



7.1 Supplementary matherial for Chapter 3

23 To what extent do you agree with the following statements related to secure software
operation and maintenance? [likert scale: "strongly agree", "agree", "disagree", "strongly
disagree", "do not know"]

23.1 Our current processes should be more precise and clear.
23.2 More or better tools would help us to perform our tasks with higher quality.

Part 7: Meta-data questions

24 How many employees has your company? [single choice: "1-3", "4-10", "11-50", "51-250",
"251-1000", "> 1000"]

25 In which domain operate your company? [open question]

26 How many employees work in software development? [single choice: "1-50", "51-250", ">
250"]

27 What is your position? [multiple choice with option for free text: "Management", "Project
lead", "Product owner", "Software development (requirements, implementation, testing)",
"Security analyst", "Information security officer", "Other"]

28 How many years of experience in software development do you have? [single choice: "< 2
years", "2-5 years", "6-10 years", "> 10 years"]

29 How many members has your team? [single choice: "1-5", "6-15", "16-30" "> 30"]

30 What type of applications do you develop? [multiple choice with option for free text:
"Mobile", "Desktop", "Web", "Embedded", "Server", "Other"]

7.1.2 Interview Questions

The semi-structured interviews from the study described in Section 3.2 were conducted with
product owners (PO) and executives (E). The questions are grouped into topics. Each question
is marked with PO and/or ME, indicating that it was asked to interviewees with the specific
role.

Introduction

1 Please describe your role. What are the main tasks you perform on a daily basis? [PO/E]

2 Do you actively participate in the software development? If yes, in which of the following
areas: Requirements, Design, Implementation, Testing, and Operations? [PO/E]

3 IT-Security - what priority has this topic for you personally, privatley and professionally?
[PO/E]

Product

4 Do you define security requirements for your products? If yes, which? Do you priotirize
security requirements in the beginning of the design of a new product? Do you require a
final penetration test? Do you require security certifications and standards? [PO]

5 Do you define user stories from the perspective of an attacker (evil-user-stories)? Do you
define "evil" roles in the team? [PO]

6 Which security requirements come from the users of your products? [PO]
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Development process

7 Is Security an important topic during sprint planning and retrospective? If yes, what is
usually discussed? [PO]

Organization and personel

8 In your opinion, are the software developers aware of security? If no, do you take any
actions to increase the awareness? [PO/E]

9 Do you think that the software developers need trainings for new competences in SSE? Do
the software developers have the same opinion? [PO/E]

10 Do you wish more expertize in SSE for yourself? [PO/E]

11 Which skills with respect to SSE do you expect from the software developers? [PO/E]

12 Are there resources for external or internal trainings for the software developers in SSE
topics? Do software developers have time for self-learning in SSE topics? [PO/E]

13 Which actions do you take to ensure that the software developers have the right compe-
tences in SSE? [E]

Tools

14 What is your opinion in using free tools during software development? Do the software
developers use free tools? [PO/E]

15 Do you think that the software developers in your team need more tools to improve the
security of the software? [PO/E]

16 Is there a reserved budget for tools that are focused on security? [E]

17 What is your opinion when software developers using SAST tools invest time in providing
feedback to the tools, for example labeling false warnings in the tool? [E]

Optional

18 Are there clear responsibilities when security incidence happen? If yes, are you involved
in those events? [PO/E]

19 Are you involved in defining the processes for software development? If yes, is security
addressed in the processes? [E]

20 Do you or your team attend events with focus on security? [E]

21 Are you aware of the offers in security trainings in Germany? If yes, are you happy with
these offers? Do you know if your team shares your opinion? [E]
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Supervised theses

The following is a list of bachelor and master theses at Paderborn University (co-)supervised by
the author of this thesis.

• Explorative research on taint analysis for Kotlin, master thesis by Ranjith Krishnamurthy,
2022

• Soot-based configuration generator for analysis writers, master thesis by Shreyas Kottur
Shivananda, 2021

• Extending fluentTQL: Specifying taint-flows through a domain-specific language, master
thesis by Enri Ozuni, 2021

• Evaluation of Call Graph Construction for Python, master thesis by Sriteja Kummita,
2020

• Transformation of Taint and Typestate Specifications, master thesis by Alexander Lorisch,
2020

• Detection of methods of interest for security based on software documentation, master
thesis by Oshando Johnson, 2020

• Authentication and authorization checker for Java web systems, bachelor thesis by Tobias
Petrasch, 2018

• Evaluation of machine learning algorithms for automatic detection of security-relevant
methods, bachelor thesis by Parviz Nasiry, 2018
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