
Automating the Discovery of Linking Candidates

Michael Hubert Röder

07.02.2023
Version: Publication (1.0.1)





Department of Computer Science
Data Science Group (DICE)

Doctoral Dissertation

Automating the Discovery of
Linking Candidates

A dissertation presented by

Michael Hubert Röder

to the
Faculty of Computer Science, Electrical Engineering and Mathematics

of
Paderborn University

in partial fulfillment of the requirements for the degree of
Dr.rer.nat.

1. Reviewer Prof. Dr. Axel-Cyrille Ngonga Ngomo
Department of Computer Science
Paderborn University

2. Reviewer Prof. Dr. Elena Demidova
Computer Science Institute
University of Bonn

Supervisor Prof. Dr. Axel-Cyrille Ngonga Ngomo

07.02.2023



Michael Hubert Röder

Automating the Discovery of Linking Candidates

Doctoral Dissertation, 07.02.2023

Reviewers: Prof. Dr. Axel-Cyrille Ngonga Ngomo and Prof. Dr. Elena Demidova

Supervisor: Prof. Dr. Axel-Cyrille Ngonga Ngomo

The thesis was defended on 03.02.2023 in Paderborn.

Paderborn University

Data Science Group (DICE)

Department of Computer Science

Faculty of Computer Science, Electrical Engineering and Mathematics

Warburger Str. 100

33098 and Paderborn

iv



Abstract

Like the World Wide Web, the Semantic Web has a decentralized architecture. Users
and organizations can make data available and connect it to other parts of the
Web. However, while the creation of datasets is well supported, the support for
linking new datasets to already existing datasets is poorly supported. Our work
addresses key research gaps in lifting data on the Web to structured, linked data.
A dataset creator needs to be able to 1) gather datasets from the Web, 2) explore
existing datasets of their area of interest, and 3) determine to which dataset they
should link their dataset to. For each gap, we propose an approach and evaluate
it. We propose SQUIRREL—a distributed open-source crawler for the Data Web.
The crawler supports a large set of formats of structured data and is built on a
modularized architecture that allows its extension for processing future formats. Our
evaluation shows that SQUIRREL achieves a higher recall and is able to crawl faster
than the previous state-of-the-art crawler. For the second research gap, we propose
LODCAT—an approach to support the exploration of the Data Web based on human-
interpretable topics. It creates a topic-based view on the datasets of the Semantic
Web and therewith enables dataset creators to identify interesting datasets. With our
topic evaluation framework PALMETTO, we provide measures to ensure that topic-
based views can be easily understood by humans. A user study shows that human
volunteers agree with the topics assigned to a set of sampled datasets. We tackle the
third gap using TAPIOCA—a search engine for topically similar datasets that could
be candidates for creating links. Our evaluation shows that our approach achieves
a higher F1-score than several baselines and scales well. A fourth research gap
arose from the evaluations of the approaches aforementioned: complex, distributed
systems that process Linked Data need fair benchmarks and benchmarking platforms.
Hence, we propose HOBBIT—a holistic benchmarking platform that supports the
benchmarking of all steps of the Linked Data life cycle. This platform allows the
benchmarking of distributed systems in a controlled environment. In addition,
we propose LEMMING—an approach to generate synthetic knowledge graphs of
arbitrary size that mimic real-world knowledge graphs. We further propose two
new benchmarks. ORCA is a benchmark for Data Web crawlers. GLISTEN is the
first benchmark for dataset interlinking recommendation systems. Both ORCA and
GLISTEN are used to evaluate our previously suggested approaches for the first and
the third gap, respectively.
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Kurzfassung

Wie das World Wide Web hat auch das Semantic Web eine dezentrale Architektur.
Personen und Unternehmen können Daten zur Verfügung stellen und sie mit anderen
Teilen des Web verbinden. Während es jedoch für die Erstellung von Datensätzen
bereits gute Werkzeuge gibt, wird die Verknüpfung neuer Datensätze mit bereits
bestehenden Datensätzen nur unzureichend unterstützt. Unsere Arbeit befasst sich
mit wichtigen Forschungslücken bei der Umwandlung von Daten im Web in struk-
turierte, verknüpfte Daten. Ein Erzeuger eines Datensatzes muss in der Lage sein,
1) Datensätze aus dem Web zu sammeln, 2) zu erkunden und 3) zu bestimmen,
mit welchen Datensätzen er seinen Datensatz verknüpfen sollte. Für jede dieser
Lücken schlagen wir einen Ansatz vor und evaluieren ihn. Wir präsentiern SQUIRREL

– einen verteilten Open-Source-Crawler für das Data Web. Der Crawler unterstützt
eine große Anzahl von Formaten strukturierter Daten und basiert auf einer modular-
isierten Architektur, die eine Erweiterung für die Verarbeitung zukünftiger Formate
ermöglicht. Unsere Evaluierung zeigt, dass SQUIRREL einen höheren Recall erzielt
und schneller crawlen kann als der bisherige State-of-the-Art Crawler. Für die
zweite Forschungslücke schlagen wir LODCAT vor – einen Ansatz zur Unterstützung
der Erkundung des Data Web auf der Grundlage von menschlich interpretierbaren
Themen. Unser Ansatz erzeugt eine themenbasierte Sicht auf die Datensätze des
Semantic Web und ermöglicht damit dem Ersteller eines neuen Datensatzes, für
ihn interessante Datensätze zu identifizieren. Mit PALMETTO stellen wir Kohärenz-
maße zur Verfügung, die sicherstellen, dass die verwendeten Themen von Menschen
leicht verstanden werden können. Eine Nutzerstudie zeigt, dass Freiwillige mit der
Zuordnung der Themen zu einer Reihe von Datensätzen übereinstimmen. Für die
dritte Lücke präsentieren wir TAPIOCA – eine Suchmaschine für thematisch ähnliche
Datensätze, die Kandidaten für die Erstellung von Verknüpfungen sein können.
Unsere Evaluation zeigt, dass unser Ansatz eine höhere F1-Score als mehrere Ba-
sislösungen erreicht und gut skaliert. Eine vierte Forschungslücke ergab sich aus
den Evaluierungen der oben genannten Ansätze: komplexe, verteilte Systeme, die
Linked Data verarbeiten, brauchen faire Benchmarks und Benchmarking-Plattformen.
Daher haben wir HOBBIT entwickelt – eine ganzheitliche Benchmarking-Plattform,
die das Benchmarking aller Schritte des Lebenszyklus von Linked Data unterstützt.
Diese Plattform ermöglicht das Benchmarking von verteilten Systemen in einer
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kontrollierten Umgebung. Darüber hinaus präsentieren wir LEMMING – einen Ansatz
zur Erzeugung synthetischer Wissensgraphen beliebiger Größe, die reale Wissens-
graphen imitieren. Außerdem schlagen wir zwei neue Benchmarks vor. ORCA ist ein
Benchmark für Data Web Crawler. GLISTEN ist der erste Benchmark für Systeme, die
Datensätze für Verknüpfungen empfehlen. Sowohl ORCA als auch GLISTEN werden
verwendet, um unsere zuvor vorgeschlagenen Ansätze für die erste bzw. die dritte
Lücke zu bewerten.
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11. Kleanthi Georgala, Mirko Spasić, Milos Jovanovik, Henning Petzka, Michael
Röder, and Axel-Cyrille Ngonga Ngomo: MOCHA2017: The Mighty Storage
Challenge at ESWC 2017, Semantic Web Challenges at ESWC 2017. [103]

12. Michael Röder, Tzanina Saveta, Irini Fundulaki, and Axel-Cyrille Ngonga
Ngomo: HOBBIT Link Discovery Benchmarks at Ontology Matching 2017, OM
Workshop at ISWC 2017. [235]

13. Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Bastian Haarmann, Anastasia
Krithara, Michael Röder, and Giulio Napolitano: 7th open challenge on question
answering over linked data (QALD-7), Semantic Web Challenges at ESWC
2017. [290]

14. Kunal Jha, Michael Röder, and Axel-Cyrille Ngonga Ngomo. Eaglet – a Named
Entity Recognition and Entity Linking Gold Standard Checking Tool, Demo paper
at ESWC 2017. [137]

15. René Speck, Michael Röder, Felix Conrads, Hyndavi Rebba, Catherine Camilla
Romiyo, Gurudevi Salakki, Rutuja Suryawanshi, Danish Ahmed, Nikit Sri-
vastava, Mohit Mahajan, and Axel-Cyrille Ngonga Ngomo: Open Knowledge
Extraction Challenge 2018, Semantic Web Challenges at ESWC 2018. [259]
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Introduction 1
In April 2020, the Word Wide Web had 4.6 billion users [4]. This number further
grew to 4.96 billion users in January 2022 [145]. The average time spent by users
online has also increased [31, 145]. For example, a representative study from
Germany shows that the average time a single person spent online during its free
time grew from 204 minutes per day in 2020 to 227 minutes in 2021 [31].1 In
the same study, 87% of the users reported to use a Web search engine at least
once per week [31]. In another study, “finding information” was the most often
selected reason why people use the internet [145]. Although the majority of search
queries that users type into the Google search engine comprise only 3 words on
average [98], it is known that the information need of many users is much more
complex [33, 210].2 The discrepancy between users having complex information
needs and the average length of queries is known to be due to multiple reasons:
1) the processing of complex natural language queries is challenging [26, 33, 210]
and 2) complex information needs are more unlikely to be answered with the
information from a single source [64, 148, 234]. The first reason, i.e., the challenges
in processing long natural language queries, can lead to the issue that a Web search
engine is not able to identify the main concept a user is looking for [26, 33, 210].
This often leads to an adaptation of user behavior, i.e., instead of writing long
queries with all details of their information need, more experienced users use short
keyword queries [38]. However, these users withhold detailed information that
could be helpful for the search process and this behavior adds to the cognitive
burden of these users [210]. The second reason, i.e., the necessity to combine
information from multiple sources, is particularly relevant for the work presented
herein. Hence, consider the following example of a user searching for a product
online. This example fits to the aforementioned situation since the user has a
complex information need [211] and 46% of all product searches on the Web
begin on Google [186]. To answer the product search query of the user, a Web

1The time does not only cover the Word Wide Web in its form of Web pages but also services
that are offered, e.g., messengers or streaming services. Kemp [145] has a global view on the subject
matter and reports a higher number of daily internet usage of 6 hours and 58 minutes. It should
be noted that the two studies include different activities and that their numbers are not comparable.
However, both studies report an increase in the time spent online.

2We use the Google search engine as example since it had a market share of more than 90% in
January 2022 [145].
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search engine has to collect and integrate product data. Both—the collection and
integration—are challenging if they rely solely on the Document Web. In particular,
collecting data means having to crawl the Web pages of online shops as well as
local stores. All these pages offer details about the product. In the Document Web
however, the pages offer this information only as human-readable text. While a
program that extracts the data from these pages can be written [236] it would have
to be adapted to each of these pages since it is very likely that said pages have
different Hyper Text Markup Language (HTML) trees. In addition, the maintenance
of such a program would include the adaptation to layout changes of the Web
pages. Similar challenges hold for the integration of the data. Different stores
use different names for the same products, e.g., some have a plain product name
while others include product details. This creates the need for another program for
integrating the data pertaining to any given product across Web sources into a single
representation.

Within the Semantic Web, all these functionalities can be implemented easier, if the
shops offer the data in a machine-readable form [148]. This form of data comes
with explicit semantics [35], i.e., the data does not only consist of values but also
of identifiers that express the meaning of the different values. Gathering the data
would hence be reduced to parsing standardized languages, e.g., a serialization of the
Resource Description Framework (RDF). The integration of the data is eased as well.
Web shops increasingly use a common ontology to describe products. This ontology,
called schema.org, is the result of a project started in 2011 by Google, Microsoft,
Yahoo, and Yandex. It offers a set of class hierarchies for entities from several
domains and properties for the relations that these entities can have. This common
ontology eases the work of application and Web developers to share their data [111].
Similarly, a system of common identifiers for products could be established. The
Digital Object Identifiers (DOIs) are an example for common identifiers that are
used to identify publications of several publishers within a common scheme [134].
A similar example are Global Trade Item Numbers (GTINs) [6], which most people
may know in form of product bar codes that are scanned in supermarkets. However,
even if shops use different ontologies and identifiers, there are several approaches
for the (semi-)automatic integration of their data. For example, similar ontologies
can be aligned to each other [91] and identifiers that refer to the same real-world
product can be connected with links [205].3 Based on either common ontologies
and identifiers or the aforementioned approaches, the data gathered from several

3The creation of an alignment between two ontologies is called “Ontology Matching” [91]. The
identification of entities within different datasets that represent the same real-world entity is known as
“Link Discovery” (or short “Linking”) [205]. Both areas are own active fields of research that are not
discussed in detail within this thesis.
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shops can be fused to create a single dataset [311] that serves as the basis for the
product search engine.

The aforementioned product search is only one example of many different appli-
cations which benefit from the usage of Semantic Web technologies. However, 20
years have passed since Berners-Lee et al. [35] described the idea of a Semantic
Web and while there was a considerable amount of research results published in this
area, it is arguable whether there are as many Semantic Web-based applications as
some visionaries have expected [120, 156]. In 2006, Shadbolt et al. [251] reviewed
the state of the art of the Semantic Web. They concluded that the Semantic Web had
not fulfilled its vision in the previous years. This time had been used for defining
languages and standards but the authors argue that “languages and standards are of
no consequence without uptake, and uptake requires increasing the amount of data
exposed in RDF” [251]. Hence, the success of the Semantic Web is bound to

1. The amount of data that is published and
2. The quality of the published data.

Still, The Semantic Web already has grown during recent years. The amount of
data published as knowledge graphs has clearly increased significantly since the
remarks of Shadbolt et al. [251]. The knowledge graphs available on the Web have
been growing both in number and size [22, 90, 95]. This development has been
accelerated by several governments publishing public sector data on the Web.4 At
the same time, the number of Web pages with embedded Semantic Web data grew
as well [220]. However, while the Semantic Web can easily grow by simply adding
more data, achieving the second requirement to gain uptake is not as easy. Berners-
Lee [34] points out the importance of having links between the data. A main value
of the Semantic Web is the creation of links that connect data points in a semantically
meaningful way. These links can be used by humans or machines to gather more
information. For example, a user of the aforementioned product search might be
looking for a specific camera. Imagine the search engine retrieved the information
that although the camera is sold in several Web shops, it is not available in any shop
at the moment. The user may want to continue his search for an alternative camera
by asking the search engine for similar products. In this situation, our product search
needs to be able to connect the camera of one manufacturer with other products of
other manufacturers to be able to compare them. Searching for these connections
in the moment in which the user asks for them is time-consuming [205]. The links
have to be created beforehand. This could be done by the consumer of the data (e.g.,

4Examples include the European Union (https://ec.europa.eu/digital-single-market/en/
open-data; last accessed on 31.07.2022) and the German Federal Ministry of Transport and Digital
Infrastructure (https://mobilithek.info/; last accessed on 31.07.2022)
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Figure 1.1.: The five star deployment scheme for Linked Open Data [147].

Table 1.1.: Single levels of the five star deployment scheme for Linked Open Data [132].

Stars Description

⋆ Data published on the Web in any format (e.g., PDF, JPEG) accompa-
nied by an explicit Open License (expression of rights).

⋆ ⋆ The published data is structured data in a machine-readable format
(e.g., Extensible Markup Language (XML)).

⋆ ⋆ ⋆ The published data has a documented, non-proprietary data format
(e.g., Comma Separated Value (CSV), Keyhole Markup Language
(KML)).

⋆ ⋆ ⋆ ⋆ The data is published as RDF (e.g., Turtle, Resource Description Frame-
work in Attributes (RDFa), JavaScript Object Notation for Linked Data
(JSON-LD), SPARQL Protocol And RDF Query Language (SPARQL)).

⋆ ⋆ ⋆ ⋆ ⋆ Identifiers in the published RDF data are links (Uniform Resource
Locators (URLs)) to useful data sources.

our product search) or by the data provider. The latter solution has the advantage
that the provided data already comes with existing links and, hence, has a higher
quality. Berners-Lee defines two terms to describe this lifted type of data on the
Semantic Web. Linked Data represents data that is linked to other data. Linked Open
Data (LOD) is an extension of this term that additionally includes an open license.
He proposes to measure the quality of published data on the scale of the incremental
five star deployment scheme for Linked Open Data [34] shown in Figure 1.1. The
definitions of the single levels are listed in Table 1.1.

The categories show a clear separation between three-, four- and five-star data. The
three-star data is hard to use for autonomous machines since each CSV file may
have different columns with different meanings. Even if two columns have the same
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meaning, they may come with different column headings. Imagine the different
ways the owner of a Web page could name a column that contains the product
names. This could range from generic terms like “product name” or “label” to more
specific terms like “book title”. In contrast, a four-star RDF dataset comes with
explicit identifiers for properties [250]. This enables machines to derive connections
between them, e.g., that two properties are equivalent.

Although RDF datasets are valuable, datasets that achieve all five stars are most
valuable since they are connected to other datasets. However, not all four-star
datasets are lifted to five-star quality. The LODStats project indexed 9960 RDF
datasets from the Web in 2016 [90].5 The authors found that although the number
of links between datasets increased between 2012 and 2016, only 10% of the entities
in datasets were linked to entities from other datasets. Schmachtenberg et al. [246]
analyze 1014 datasets and find that most datasets are only sparsely linked. 44% of
the analyzed datasets have no outgoing links to other datasets and thus have only
incoming links, or are completely isolated. A similar observation can be made when
comparing the number of RDF datasets available on the web. Fernández et al. [95]
gathered more than 650 thousand RDF datasets from data portals. However, the
manually curated Linked Open Data cloud project lists only 1255 datasets [177].6

One of the requirements the latter project raises for listing a dataset is that it has to
be linked to one of the already listed datasets. These examples of the large difference
between the number of four- and five-star datasets evince an important research
gap. While the Semantic Web community defined the target that a person should
reach for publishing a good dataset, it is not further clarified how a data publisher
can easily lift a dataset to five-star quality. The tasks necessary to lift a dataset from
three to five stars cover two main steps: the exploration of existing datasets and the
identification of datasets that can be used for creating links. At the moment, both
steps are mainly covered by manual tasks and not well supported by tools. Hence,
these steps are very costly and even unsolvable for non-experts.

The exploration of existing datasets enables a data publisher to be aware of datasets
and ontologies that are already available. This can give several benefits to the data
publisher. First, they can identify existing ontologies and how they are used in
practice. Second, a data provider can identify existing RDF datasets that they can
reuse. Imagine the owner of a small online shop that would like to increase the
visibility of his shop by making his offers available to the product search described
above. The main entities he would like to provide to the search engine are the
products he sells in the shop. It would remove a lot of effort if he could find an

5http://stats.lod2.eu/; last accessed on 27.07.2022.
6Status from May 2020 [177], https://www.lod-cloud.net/; last accessed on 24.08.2021.
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open dataset that describes some of the products in his shop and that he can reuse.
This can free a data provider from defining entities, classes, and properties on their
own and, hence, save costs. Bontas et al. [48] describe two case studies from
2005 and report that for creating an ontology to publish data in the domain of
e-recruitment, 15% of the time was needed to identify related ontologies. Additional
40% of the time was needed to transform the identified ontologies into the Web
Ontology Language (OWL) representation that is used in the Semantic Web. The
conclusion of the authors is that the various steps that are necessary to create an
ontology are not supported by tools. Shadbolt et al. [251] state that reusing existing
datasets and ontologies is one of the major uptakes the Semantic Web offers. As an
additional benefit, reusing entities from an already existing dataset within a new
dataset creates a link between these two datasets and can already lift the new dataset
to the targeted five star quality. However, identifying related datasets and ontologies
is an important preliminary step for reusing them. An online search that supports
the identification of ontologies and datasets that already exist in the Semantic Web
is a necessary tool that can support this. Vandenbussche et al. [295] propose a
Web search for RDF vocabularies, which covers a part of the aforementioned need.7

However, it is designed as a classic keyword-based search on the metadata and single
elements of the vocabulary combined with manually curated tags. Hence, the user
has to match exactly the right term to be able to identify a potentially interesting
vocabulary. As Chapman et al. [65] point out, such a search is not optimal to find
interesting datasets.

A similar problem arises for the second step, i.e., the identification of datasets that
can be used for creating links. When a newly created RDF dataset should be linked to
existing RDF datasets using (semi-)automatic link discovery algorithms, the dataset
provider has to know to which dataset the new dataset can be linked to. With the
growth of the number of datasets available as well as the growth of their size comes
the problem of effectively detecting not only the links between the datasets (as
studied in previous works [200]) but also of determining the datasets with which
a novel dataset should be linked. A näive approach to link these datasets would
choose two datasets and check whether they can be linked with each other. Such
an approach would need a quadratic-growing number of pairwise comparisons of
datasets to find possible candidates for linking, which is clearly impracticable. This is
hardened by the fact that the Semantic Web (as the Web itself) is decentralized and
datasets are distributed [35]. Addressing the problem of finding relevant datasets
for linking is however of crucial importance to facilitate the integration of novel

7https://lov.linkeddata.es/dataset/lov, last accessed on 31.07.2022.
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datasets into the Linked Data Cloud as well as the discovery of relevant data sources
in enterprise Linked Data [200].

We can summarize that the Semantic Web does not only need to grow but that it
also needs high-quality data to have an impact. However, the growth of the Web
increases the complexity of publishing more high-quality data. Our work addresses
four key research gaps in lifting data from three to five stars. These research gaps are
as follows:

RG1 Datasets are distributed across the Web. Existing Data Web crawlers are limited
with respect to the data formats they support and their scalability. Hence,
we need a way to gather datasets from the Web in an effective and efficient
way. We propose SQUIRREL—a distributed open-source crawler for the Data
Web that supports a large set of formats of structured data and is built on a
modularized architecture that allows the extension for future formats. Our
evaluation shows that SQUIRREL achieves a higher recall and is able to crawl
faster than the previous state-of-the-art crawler. SQUIRREL is used to gather
datasets from the Semantic Web.

RG2 Dataset creators need to be aware of already existing datasets. Hence, we need
to create a service that allows dataset creators to explore existing datasets
of their area of interest. Searching for datasets on the Web is different to a
classic Web search since keyword-based search engines only cover a single
view on datasets [65] and is in many cases limited to the dataset’s meta
data [53]. Other approaches rely on user-defined tags to offer a faceted
search [217]. However, this does not only involve manual work but may also
be bound to the subjective tags a data provider defines in the meta data of their
datasets. Within this thesis, we propose LODCAT—an approach to support
the exploration of the Semantic Web based on human-interpretable topics.
It creates a topic-based view on the datasets of the Semantic Web to enable
dataset creators to identify interesting datasets . With our topic evaluation
framework PALMETTO, we provide measures to ensure that this view can be
easily understood by humans so that it supports the identification of datasets
that are connected to a certain topic a user is interested in. A user study shows
that human volunteers agree with the topics assigned to a set of sampled
datasets.

RG3 Dataset publishers need to know to which dataset they could link their dataset
to. We tackle this research gap using TAPIOCA—a search engine for topically
similar datasets that could be candidates for link discovery. With this approach,
we index existing datasets based on extracted metadata. Given a newly created
dataset, TAPIOCA identifies candidate datasets that can be used to create links
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between both datasets using existing linking approaches. Our evaluation
shows that our approach is better than several baselines and scales well on a
large number of datasets.

RG4 Complex, distributed systems that process Linked Data like the approaches
proposed in this thesis need fair benchmarks and benchmarking platforms.
Hence, we propose HOBBIT—a holistic benchmarking platform that supports
the benchmarking of all steps of the Linked Data life cycle [23]. This platform
allows the benchmarking of distributed systems in a controlled environment. In
addition, we propose LEMMING—an approach to generate synthetic knowledge
graphs of arbitrary size that mimic real-world knowledge graphs. We use the
generated datasets to evaluate the scalability of Linked-Data-based systems. We
further propose the two benchmarks ORCA and GLISTEN. ORCA is a benchmark
for Data Web crawlers. GLISTEN is the first benchmark for dataset interlinking
recommendation systems. Both are used to evaluate our previously suggested
approaches for the first and the third gap, respectively.

The remaining of this thesis is structured as follows. First, preliminaries are defined
in Section 2. After that, we present the HOBBIT benchmarking platform and the LEM-
MING algorithm to generate synthetic graphs in Chapter 3. Chapter 4 presents our
distributed open source crawler for the Data Web named SQUIRREL, and the ORCA

benchmark that is used to evaluate it. In Chapter 5, we present our topic-based RDF
dataset search LODCAT and our coherence-based topic evaluation tool PALMETTO.
Chapter 6 presents our linking candidate recommendation approach TAPIOCA and
the fact-checking-based benchmark GLISTEN that is used for the evaluation. We
conclude the thesis in Chapter 7.

Note that parts of this thesis have been published as peer-reviewed articles at
research conferences and in scientific journals. Hence, at the beginning of the
chapters 3–6, a footnote marked with the ¶ symbol lists published articles that
overlap with the chapter’s content and the role of the thesis’ author within the
creation of these articles.
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Preliminaries 2
This chapter addresses preliminaries that are necessary for the other chapters of this
thesis. It comprises three parts—1) Semantic Web, 2) Latent Dirichlet Allocation,
and 3) statistical measures.

2.1 Semantic Web

The Semantic Web has been proposed by Berners-Lee et al. [35] as an extension
of the World Wide Web. It offers information in a structured way so that it can
be processed by machines. Its name refers to its goal that “information is given
well-defined meaning” [35]. This section introduces basic concepts of the Semantic
Web—Linked Data and the Resource Description Framework. The interested reader
is referred to Ngonga Ngomo et al. [200] for an extended introduction and to
Hogan et al. [131] for a recent survey.

2.1.1 Linked Data

The Semantic Web is built on the concept of representing content in a machine-
readable format to give programs access to it [35]. However, Berners-Lee [34] points
out that publishing large amounts of data does not create a Web. The pieces of data
that are available should be linked to each other. Hence, he suggests four Linked
Data principles [34]:

1. Internationalized Resource Identifiers (IRIs) [86] should be used as identifiers
for things.1

2. The IRIs should use the Hypertext Transfer Protocol (HTTP) to enable users
and machines to look up these identifiers.

3. When such an IRI is looked up, useful information should be provided.2

1In the original article, Berners-Lee suggests the usage of Uniform Resource Identifiers (URIs).
Nowadays the usage of their extension—IRIs [86]—is preferred [200].

2Berners-Lee suggests the usage of standards like RDF-star [18] or SPARQL [34].
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4. The data should include links to other IRIs so that users can discover more
things.

As in the World Wide Web, where documents are linked with each other via hyper-
links, the single pieces of data within the Semantic Web should be linked to each
other as well. To this end, the Semantic Web relies on established standards like
IRIs. They are used to identify items in the domain of interest [200]. These items
are also called entities or resources and are the things that are further described in
the data [200].

As stated in the Linked Data principles, HTTP IRIs are preferred in comparison
to identifier schemes like Uniform Resource Name (URN) [241] or Digital Object
Identifier (DOI) [134, 200]. Following RFC 3987 [86], the structure of an IRI is as
follows:

scheme ":" hier-part [ "?" query ] [ "#" fragment ]

The scheme is the identifier of the IRI scheme. The hierarchical part (hier-part) of
an IRI typically comprises an authority and an optional path.3 It is followed by the
optional query and fragment parts. An IRI can also be thought of as a URI that is
not restricted to the usage of ASCII symbols.

An HTTP IRI is an IRI that uses the HTTP scheme. An example for such an identifier
that could be used for Paderborn is

http://en.wikipedia.org/wiki/Paderborn .

These identifiers have two major advantages [200]. First, they allow an easy sheme
to use global identifiers for resources that has already shown its worth on the Web.
Second, they can be used to get more information about the entity, i.e., in this case
about the city of Paderborn, by using HTTP requests. The latter feature is called
dereferencability.

Definition 2.1 (Dereferencing). The process of using an identifier of a resource to
request more information about it is called dereferencing.

HTTP IRIs tend to be lengthy. Hence, we will use a prefixed writing for IRIs within
this thesis. Similar to XML namespaces, we shorten IRIs by defining a prefix which is
a local replacement for the namespace IRI [74]. The example IRI from above could

3For simplicity, we skip the usage of relative paths and similar features of IRIs.
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be shortened to wiki:Paderborn_University where wiki is a local prefix that
would be replaced with http://en.wikipedia.org/wiki/ to retrieve the original
IRI. A list of prefixes used throughout this thesis can be found on page 262.

Bernsers-Lee [34] defines a subset of Linked Data named Linked Open Data. This is
Linked Data that is published on the Web and has an open license, e.g., a Creative
Commons license.4 Within this thesis, we define the terms Web of Data [57, 296]
and Data Web [106] as synonyms for Linked Data.

2.1.2 Resource Description Framework

Means for expressing knowledge in a manner which abides by the Linked Data
principles are offered by the Resource Description Framework (RDF). RDF is a
World Wide Web Consortium (W3C) recommendation to express information about
resources. “Resources can be anything, including documents, people, physical
objects, and abstract concepts” [250]. The main building block of RDF are triples
that express facts about resources [250]. Triples can be thought of like simple
statements that comprise three parts—a subject, a predicate, and an object. The
subject is the resource for which the fact holds. The predicate expresses the property
that is further defined for this resource. The object represents the value of the
property.

In RDF, there are three basic sets that can be used for a triple—IRI resources, literals,
and blank nodes [74].

Definition 2.2 (IRI resource). An IRI resource is a resource which is identified by at
least one global identifier, i.e., an IRI [74].

Resources that are related to each other can be organized by using the same XML
namespace for their IRIs. These sets of resources are named RDF vocabulary. The
XML namespace is used as IRI of the RDF vocabulary [74].

Definition 2.3 (Literal). A literal is a basic value that is not represented as IRI [74].

A literal has a datatype [74]. The datatype defines the structure of the literal and
enables the parsing of the literal. String literals may have an additional language
tag [74].

4https://creativecommons.org/
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Definition 2.4 (Blank node). A blank node is a resource that is not further defined [74].
In contrast to an IRI resource, it does not have a global identifier. In contrast to literals,
it does not express a basic value.

Definition 2.5 (Property). A property is an IRI resource that expresses a relation
between a subject and an object [74].

Definition 2.6 (RDF Triple). Let I, B, and L be pairwise disjoint infinite sets repre-
senting IRI resources, blank nodes, and literals, respectively. Let P ⊆ I be the set of all
properties. A triple (s, p, o) ∈ (I∪B)×P× (I∪B∪L) is called an RDF triple. In this
tuple, s is the subject, the property p is the predicate, and o is the object [74, 119].5

Let T be a set of RDF triples. It should be noted that this set comes with a set of
resources R ⊂ I, properties P ⊂ P, blank nodes B ⊂ B, and literals L ⊂ L. These
sets can be derived from the set of triples as follows:

R = {s|(s, p, o) ∈ T ∧ s ∈ I} ∪ {o|(s, p, o) ∈ T ∧ o ∈ I} , (2.1)

P = {p|(s, p, o) ∈ T} , (2.2)

B = {s|(s, p, o) ∈ T ∧ s ∈ B} ∪ {o|(s, p, o) ∈ T ∧ o ∈ B} , (2.3)

L = {o|(s, p, o) ∈ T ∧ o ∈ L} . (2.4)

Definition 2.7 (Knowledge Graph). A knowledge graph G is a representation of a
set of triples as a directed edge-labelled multigraph [131].6 Each triple is represented
as directed, single-labeled edge between its subject and object. The triple’s predicate
is the label of the edge. Let V be the set of nodes within the knowledge graph with
V = R ∪B ∪ L [74]. Then, the knowledge graph can be defined as a pair of the set of
nodes and the set of edges, i.e., triples, G = (V , T ).

It should be noted that within this work, we do not differentiate between a triple
and a directed, labeled edge since their representation would be the same. We will
name sets that belong to a certain knowledge graph by using the knowledge graph
as subscript where appropriate, e.g., V G is the set of nodes of G.

5Most resources define the space of RDF triples as (I ∪ B) × I × (I ∪ B ∪ L) [74]. We use P for
the predicate position as it directly follows from the W3C recommendation “RDF 1.1 Semantics” [119]
which defines that each IRI that is used in the predicate position has the type rdf:Property and the
usage of a set of properties fits better to the research discussed within this thesis.

6It should be noted that there exist various definitions of knowledge graphs [47, 131].
Hogan et al. [131] refer to the usage of hypernodes and hypergraphs with complex edges. Boni-
fati et al. [47] discuss various extensions to property graphs to represent knowledge. However, for the
goals of this thesis, the given definition is sufficient.
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dbr:Barack_Obama

dbr:Hawaii

dbr:United_States

dbr:Democratic_Party_(United_States)

"1961-08-04"^^xsd:date

dbo:Person

dbo:Animal

dbo:PoliticalParty

dbo:Region

dbo:Place

dbo:birthPlace

dbo:birthDate
dbo:party

rdf:type

rdfs:subClassOf

rdf:type

dbo:country

rdf:type rdfs:subClassOf

Figure 2.1.: Example of an RDF knowledge graph based on an excerpt of the DBpedia [21,
162]. IRIs have been shortened by using prefixes. We will refer to this graph as
Gex.

Figure 2.1 depicts a small example knowledge graph. It comprises several IRIs, e.g.,
dbr:Barack_Obama.7 A literal can be found in the lower left corner. It has the type
xsd:date and represents Barack Obama’s birth date August 4th 1961. Triples are
depicted as arrows that connect two nodes. The predicate of the triple is printed on
the arrow.

Definition 2.8 (Classes and instances). Nodes in a knowledge graph can be organized
in groups called classes [52]. The Entities within such a group are called instances of
this class. The relationship between an instance and the class is expressed by triples
with the rdf:type property [52]. Each class is an instance of rdfs:Class and can be
an instance of further classes [52]. Let C be the global set of classes with C ⊂ I ∪B.

Within this thesis, we will use C to denote a set of classes (C ⊂ C) and CG if we want
to emphasize that the classes belong to a certain knowledge graph G. Let c : V → 2C

be a mapping function that derives for a given node v ∈ V the set of all classes. In
practice, C is not known and c is limited to the knowledge that is available, e.g.,
within a given knowledge graph. Hence, we use cG : V G → 2CG to express this. For

7We use the prefixes dbo, dbr, rdf, rdfs, and xsd for the IRIs http://dbpedia.org/ontology/,
http://dbpedia.org/resource/, http://www.w3.org/1999/02/22-rdf-syntax-ns#, http://www.
w3.org/2000/01/rdf-schema#, and http://www.w3.org/2001/XMLSchema#, respectively.
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our example graph Gex, cGex(dbr:Democratic_Party_(United_States)) gives the
set {dbo:PoliticalParty}.

Let i : C→ 2V be a mapping function that derives all instances of a given class. As
for c, the mapping is limited to a given knowledge graph when used in practice. We
will express this by using iG : CG → 2V G throughout this thesis. In the example,
iGex(dbo:PoliticalParty) gives the set {dbr:Democratic_Party_(United_States)}
since only one instance of this class is present in the example graph.

Definition 2.9 (Subclass). A class c1 can be defined as subclass of another class c2.
In this case, all instances of c1 are also instances of c2 [52]. This can be formalized as
follows:

∀v ∈ iG(c1)⇒ c2 ∈ cG(v) (2.5)

In the example graph, dbo:Person and dbo:Region are subclasses of dbo:Animal
and dbo:Place, respectively. Since dbr:Hawaii is a dbo:Region, it can be inferred
that cGex(dbr:Hawaii) = {dbo:Region, dbo:Place}. In the same way, we can infer
that cGex(dbr:Barack_Obama) = {dbo:Person, dbo:Animal}.

A property may define further restrictions with respect to the types that a subject
and an object have by defining a domain and a range.

Definition 2.10 (Domain). The domain of a property p is a set of classes defined using
the rdfs:domain property. If s is the subject of a triple with p as predicate, it can be
inferred that s is an instance of all classes in the domain of p [52].

Definition 2.11 (Range). The range of a property p is a set of classes defined using the
rdfs:range property. If o is the object of a triple with p as predicate, it can be inferred
that o is an instance of all classes in the domain of p [52].

When dereferencing the properties used in our example graph, we can derive
that dbo:birthDate and dbo:birthPlace have the domain dbo:Animal. How-
ever, dbo:birthDate has the range xsd:date while dbo:birthPlace has the range
dbo:Place.8 Based on the different ranges, we define define two classes of proper-
ties.9 Let d(p) and r(p) be functions that retrieve the domain and range of the given
property, respectively.

8The deferencing was done on August 1st, 2022. Later calls of the same IRIs may lead to different
domain and range information.

9The class of annotation properties [124] is not mentioned since it will not be used within this
thesis.
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Definition 2.12 (Object property). An object property connects two entities [124].
We define the set of object properties as follows:

PR = {pi |r(pi) ⊂ I ∪B} (2.6)

Definition 2.13 (Datatype property). A datatype property assigns a data value to an
entity [124]. We define the set of datatype properties as follows:

PL = {pi |r(pi) ⊂ L} (2.7)

In the example graph, dbo:birthDate is the only datatype property. All other
properties are object properties.

RDF can be processed in various ways. However, the W3C offers the SPARQL
Protocol And RDF Query Language (SPARQL) [17]. This language is designed to
query and manipulate RDF data [17]. We define a SPARQL endpoint as a service
that answers SPARQL queries. A software which stores RDF data and enables its
querying is called triple store throughout this thesis. Further details of SPARQL are
no prerequisites for this thesis.

2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a probabilistic topic model [43]. Topic models
are used to structure large text corpora by identifying topics and assigning these
topics to the documents in an unsupervised way. An example application is the
exclusion (or inclusion) of documents from a large collection in an investigation
based on their topics [51]. The topics can be seen as latent dimensions that structure
the large corpora. Formally, they are distributions over words. However, for humans,
they are typically represented as a set of words that are most important to that
specific topic.

Before going into the details of probabilistic topic modeling, we define some terms.
Let D be a corpus, i.e., a collection of documents. Let a document d be an ordered
bag of words d = {w1, w2, . . .}. Following Jurafsky et al. [141], we distinguish
between word tokens and word types within a corpus. Let the set of words that
occur within D be the corpus’ vocabulary VD. The elements of VD = {w1,w2, . . .}
are called word types. In contrast, word tokens are the occurrences of the word
types within the documents of the corpus. Hence, it is possible that two word tokens
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wi and wj are part of the same document d and share the same word type but are
still two distinct tokens. For example, the following example document has 14 word
tokens but only 11 word types since the types “invention”, “a”, and “door” occur
twice:10

The cat flap; invention, pure creative invention. It is a door within a door.

In this section, LDA—one of the best researched topic models—is described.11 In the
following, the generative model of LDA is presented, before the inference algorithms
are described. In Section 2.2.3, the problem to identify the number of latent topics
is briefly discussed.

2.2.1 Generative Model

LDA is a generative model for the creation of natural language documents [43]. This
process is based on probabilistic sampling rules [266] and the following assump-
tions [43]:

• Every topic is defined as a distribution over word types (ϕ) with higher proba-
bilities for words that are essential for the topic.

• A document is a mixture of topics. Thus, it has a distribution over topics θ.

The generation of a corpus D based on a given vocabulary VD as well as the hyper
parameters α and β is defined as follows [41]:

1. Create the set of topics by sampling a discrete distribution over word types ϕ
for every topic using a Dirichlet distribution (Dir) and a single prior β.12 For
the i-th topic, this is defined as

ϕi ∼ Dir(β). (2.8)

2. Create every single document d of the corpus using the following steps.

10We ignore punctuation characters within the example. The example document is an adapted
quote from Douglas Adam’s book “Dirk Gently’s Holistic Detective Agency”.

11The interested reader is referred to Blei [41] for a more detailed introduction and Boyd-
Graber et al. [51] for a more recent overview of the topic modeling research field.

12A single number as prior for the Dirichlet distribution means that all needed priors have the same
given value. These priors are sometimes also called symmetric prior since they create a symmetric
Dirichlet distribution [51]. Although it is possible to use an asymmetric prior (i.e., β would be a
vector), Wallach et al. [300] show that a symmetric prior leads to better results.
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a) Sample a discrete distribution over topics θ using a Dirichlet distribution
and a prior α = {α1, . . .} with one prior value per topic.13 For the j-th
document, this is defined as

θj ∼ Dir(α). (2.9)

b) For every word token w in the document, choose a topic that creates it by
sampling a topic index z from θj . After that, sample a word type for this
token from the ϕz distribution of the z-th topic as follows:

z ∼ θj , (2.10)

w ∼ ϕz . (2.11)

Let |D| be the number of documents and |di| the length of document di, i.e., the
number of word tokens in that document. Let wi,j be the j-th word token in the
i-th document, let wi,j be its word type, and let zi,j denote the id of the topic
from which the word type of this token has been sampled. Let ϱ be the number of
topics and let Z =

{
z1,1, . . . , z|D|,|d|D||

}
be the set of the topic indices of all word

tokens in the corpus D. Let Φ = {ϕ1, . . . , ϕϱ} be the set of word distributions and
Θ = {θ1, . . . , θ|D|} be the set of topic distributions. The generative process defines a
joint distribution that is defined as follows [41]:

P (Φ,Θ, Z,D) =
( ϱ∏

i=1
P (ϕi)

) |D|∏
i=1

P (θi)

 |di|∏
j=1

P (zi,j | θi)P
(
wi,j

∣∣∣ϕzi,j

) . (2.12)

Figure 2.2 shows the model using the plate notation. The figure as well as Equa-
tion 2.12 show several assumptions of LDA [41]:

• The words have no influence on their neighbors within a document, i.e., LDA
relies on the assumption that the order of words within the documents has no
influence. This assumption is also known as the “bag of words” assumption.

• The documents have no influence on each other. This can hold in some
situations. However, when processing documents from a longer period this
assumption may not hold.

• The number of topics ϱ is known. It is a parameter to the model and not
derived from the data. This will be further discussed in Section 2.2.3.

13While it is also possible to use a symmetric α prior, Wallach et al. citeWallach2009 showed that
using an asymmetric α and a symmetric β leads to better results.
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Figure 2.2.: LDA in plate notation [266]. White circles are hidden variables while the
gray circle is the only observed variable (i.e., the words in a document). The
plates denote repetitions, e.g., the |d| plate denotes the collection of words in
document d [41].

Equation 2.12 also shows an advantage of LDA. The usage of the Dirichlet distribu-
tion for defining ϕ and θ leads to the concentration of the distributions on single
elements with high probabilities if the hyper parameters α and β have been chosen
accordingly [51]. This sparsity means that a topic is more likely to have a small
amount of words that have a high probability within that topic. In the same way,
documents are likely to have a small amount of topics with a high probability [51].
Since both are combined by the last product in Equation 2.12, they act like contra-
dicting goals since the distributions have to be chosen in a way that they concentrate
on single elements but at the same time all documents of the given corpus can be
sampled from them [42].

2.2.2 Inference

Figure 2.2 shows that only the word tokens w are observable. All other elements
are hidden and have to be derived from the observed word tokens. This can be
formulated as finding the model that maximizes the following posterior [41]:14

P (Φ,Θ, Z|D) = P (Φ,Θ, Z,D)
P (D) . (2.13)

While the numerator is the joint distribution of all variables in a concrete model
the denominator is the marginal probability of the given corpus under any topic
model and, hence, intractable to compute [41]. Several inference algorithms have

14We skipped the hyper parameters α and β for simplicity.
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been developed, that try to estimate the hidden distributions [43, 110, 126]. Within
this work, we make use of two inference algorithms. The first is based on Gibbs
sampling [110, 176] while the second uses Variational Bayesian inference [126].

Gibbs Sampling

This approach concentrates on the topic assignments Z and derives Φ as well as Θ
from them by counting the assignments. Let ζi,k be the count of tokens in document
di that have been assigned to the k-th topic, i.e.,:

ζi,k = |{zi,j |zi,j = k ∧ 0 < j ≤ |di|}| . (2.14)

The topic distribution θi of the i-th document can be derived based on these counts
by calculating the probability for each topic as follows [51]:

θi,k = P (zi,∗ = k) ≈
(

ζi,k + αk∑ϱ
j=1 ζi,j + αj

)
. (2.15)

where αk is the k-th prior in α and ∗ denotes a wildcard, i.e., the position of the
token in the document has no influence. Let ηk,w be the count of all occurrences of
the word type w in the corpus at which it has been assigned to the k-th topic. We
define this as follows:

ηk,w = |{zi,j |zi,j = k ∧ wi,j = w ∧ 0 < i ≤ |D| ∧ 0 < j ≤ |di|}| . (2.16)

Then, the word distribution of the k-th topic can be derived from these counts by
calculating the probability as follows [51]:

ϕk,w = P (wi,j = w |zi,j = k ) ≈
(

ηk,w + β∑
w′∈VD

ηk,w′ + β

)
. (2.17)

The inference algorithm starts by randomly initializing Z, i.e., all word tokens in the
corpus are randomly assigned to a topic. After that, the algorithm iterates over all
single assignments and updates them based on all other counts. Let Z̃i,j = Z \ {zi,j}
denote all topic assignments except the assignment zi,j that is currently updated.
For this update, the following probability is calculated for each topic [51, 308]:

P
(
zi,j = k

∣∣∣Z̃i,j , wi,j = w
)

=
(

ζi,k + αk∑ϱ
j=1 ζi,j + αj

)(
ηk,w + β∑

w′∈VD
ηk,w′ + β

)
. (2.18)
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We use Z̃i,j in the equation to emphasize that zi,j is not taken into account for all ζ
and η counts. Based on the probabilities calculated for each topic, a new topic is
sampled and assigned to zi,j . This is carried out for all topic assignments Z in the
corpus to finish a single iteration. After that, it is repeated until a maximum number
of iterations is reached. Additionally, we use hyper parameter optimisation to
periodically update α and β during inference as suggested by Wallach et al. [300].

Variational Bayesian Inference

The Variational Bayesian approach approximates the intractable posterior using
a simpler distribution q(Φ,Θ, Z) [43, 126]. This distribution is restricted to a
factorized form, i.e., the parameters are assumed to be independent from each
other [20]. To this end, the variational parameters Γ = {γ1,1, . . . , γ|D|,ϱ}, X =
{χ1,1, . . . , χϱ,|VD|} and Ξ =

{
ξ1,1,1, . . . , ξ|D|,|VD|,ϱ

}
are introduced [43, 126]:

q(Φ,Θ, Z) =
( ϱ∏

k=1
q(ϕk)

) |D|∏
i=1

q(θi)

 |D|∏
i=1

|di|∏
j=1

ϱ∏
k=1

q(zi,j = k)

 , (2.19)

q(θi) = Dir(θi|γi) , (2.20)

q(ϕk) = Dir(ϕk|χk) , (2.21)

q(zi,j = k) = ξi,wi,j ,k . (2.22)

Let Eq denote the expected value according to the distribution q. To approximate the
posterior, the following Evidence Lower Bound (ELBO) has to be maximized [126]:

log(P (D|α, β)) ≥ L (D,Ξ,Γ, X) ≜ Eq (P (Φ,Θ, Z,D|α, β))− Eq (q(Φ,Θ, Z)) .
(2.23)

Hoffman et al. [126] point out that maximizing the ELBO is equivalent to minimizing
the KL divergence between the intractable posterior P (Φ,Θ, Z|D) and the simpler
distribution q(Φ,Θ, Z). The ELBO can be factorized into the following form [126]:

L (D,Ξ,Γ, X) =
|D|∑
i=0

(
Eq (P (di| θi, Zi,Φ)) + Eq (P (Zi| θi))

−Eq (q(Zi)) + Eq (P (θi|α))− Eq (q(θi))

+ 1
|D|

(
Eq (P (Φ|β))− Eq (q(Φ))

))
,

(2.24)

where Zi denotes the topic indices of the word tokens in document di. Hoff-
man et al. [126] further transform this equation by expanding the expected values
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to be functions of the variational parameters. This leads to the insight, that the
likelihood can be optimized by updating the variational parameters. Let ψi,w be the
number of times word type w occurs in document di and let Ψ denote the digamma
function. Hoffman et al. [126] define the following three update functions for the
variational parameters:

ξi,w,k ∝ exp

Ψ(γi,k)−Ψ

 ϱ∑
j=0

γi,j

+ Ψ(χk,w)−Ψ

 ∑
w′∈VD

χk,w′

 , (2.25)

γi,k = αk +
∑

w′∈VD

ψi,w′ξi,w′,k , (2.26)

χk,w = β +
|D|∑
i=0

ψi,wξi,w,k . (2.27)

Similar to the Expectation Maximization approach, the update functions can be
separated into two steps [43, 126]. During the “E” step, Γ and Ξ are optimized
while X is treated as a constant. In the “M” step, X is optimized based on the values
of Γ and Ξ. Hoffman et al. [126] further enhance this algorithm by exploiting their
formulation of the ELBO as a sum over the documents in Equation 2.24. This allows
to formulate the update functions in a way that enables the usage of mini batches,
i.e., subsets of D. In addition to that, it should be noted that the update functions
rely on ψi,w but not on Z. This means that only word counts are needed for the
inference instead of the single word tokens [126]. Both advantages—mini batches
and relying on word counts—make the Variational Bayesian approach interesting
when using large corpora.

2.2.3 Number of Topics

As described above, a central assumption of LDA is that the number of topics ϱ
is given as a parameter. If this number is too low, the topic model is not able to
describe the complexity of the training data. If it is too high, one of the model’s
main assumptions, i.e., the orthogonality of the topics, will not hold anymore. Thus,
picking a good number of topics has a high influence on the model’s performance.
However, there is no general applicable method to determine a good number of
topics for a given corpus [19]. In this section, we present two different methods
that we will apply throughout this thesis. Both methods suggest to generate topic
models with different numbers of topics. After the generation, the single models are
evaluated regarding their quality using different approaches [19, 110].
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The first approach is the calculation of P (D|Φ) proposed by Griffiths et al. [110].
This probability shows how likely it is that the model could generate the corpus
on that it has been trained. The model that maximizes this probability is the
best performing model and, hence, has the best number of topics. However, this
probability is intractable since the probabilities over all possible combinations of
topic assignments Z would have to be summed up. To this end, Griffiths et al.
present an approximation by calculating the harmonic mean of a set of P (D|Z,Φ)
where Z are topic assignments that are sampled from the posterior P (Z|D,Φ).

The second approach has been proposed by Arun et al. [19] and is based on the
observation that LDA can be regarded as a non-negative matrix factorization. This
factorization transforms the corpus Matrix M of order |D| × |VD| into two matrices
M1 of order |D| × ϱ and M2 of order ϱ× |VD| where D is the set of documents, VD

is the vocabulary and ϱ is the number of topics. The proposed measure—which we
will call A throughout this thesis—is based on the idea that the sum of assignments
to the single topics have to be the same in both matrices. Since the rows of both
matrices represent probability distributions and are thus normalized, these sums
cannot be used directly. Let KL be the Kullback-Leibler divergence, h1 the distribution
of singular values of M1, l =

{
|di|

∣∣ 0 < i ≤ |D|
}

a vector containing the lengths of
the single documents and h2 = l ×M2. Then, A is defined as

A(M1,M2) = KL (h1||h2) + KL (h2||h1) . (2.28)

Arun et al. [19] predict that with an increasing number of topics the values of A
will decrease until a minimum is reached before the measure’s value to increases
again. They argue that the lowest point inside this dip is created by the model with
the best number of topics [19].

2.3 Measures

Several measures are used throughout this thesis. This section introduces common
measures that are used in more than one chapter.

2.3.1 Pointwise Mutual Information

Let X and Y be two random variables. Their values have the marginal probabilities
P(x) and P(y), and the joint probability P(x, y). The Pointwise Mutual Information
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(PMI) is defined as the logarithm of the ratio between the measured joint proba-
bility of two random values and the joint probability they should have under the
assumption that they are independent [49], i.e.,:

PMI(x, y) = log
( P(x, y)
P(x)P(y)

)
. (2.29)

The codomain of the PMI measure is [−∞,∞]. If the independence assumption
between X and Y holds, the PMI measure has the result 0. If the measure returns a
positive result, the two values cooccur more often than by chance. A negative value
indicates that the values occur less often together than by chance.

If the probabilities are based on counts that are retrieved from some reference
data, a small value ϵ can be added to the nominator to avoid the calculation of the
logarithm of 0 [265]. Within this thesis, we will mark this variant as PMIϵ, which is
defined as:

PMIϵ(x, y) = log
(P(x, y) + ϵ

P(x)P(y)

)
. (2.30)

Bouma [49] suggests a normalized variant of this measure—the Normalized Point-
wise Mutual Information (NPMI). It is defined as follows:

NPMI(x, y) = PMI(x, y)
− log(P(x, y)) =

log
(

P(x,y)
P(x)P(y)

)
− log(P(x, y)) . (2.31)

As the PMI, the NPMI measure returns a 0 in case the values x and y are independent
of each other. However, its maximum value is 1 while its minimum value is -1, which
allows an easier interpretability of the result [49]. Similar to PMIϵ, the variant
NPMIϵ uses a small constant ϵ to avoid the logarithm of 0 and is defined as:

NPMIϵ(x, y) = PMIϵ(x, y)
− log(P(x, y) + ϵ) =

log
(
P(x,y)+ϵ
P(x)P(y)

)
− log(P(x, y) + ϵ) . (2.32)

2.3.2 Precision, Recall, and F1-measure

We will use precision, recall, and F1-measure in cases in which the result of an
algorithm can be compared to a given ground truth and the result of the comparison
is a binary value, i.e., whether the result calculated by the evaluated algorithm fits
to the ground truth. Figure 2.3 shows the schema of a confusion matrix, which can
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Figure 2.3.: Schema of a confusion matrix [93].

be used to represent the result of such comparisons. It comprises 4 counts that are
defined as follows [93]:

• True positive (TP): the number of elements that have been identified as true
by the algorithm and are marked as true in the ground truth.

• True negative (TN): the number of elements that have been identified as false
by the algorithm and are marked as false in the ground truth.

• False positive (FP): the number of elements that have been falsly identified as
true by the algorithm but are marked as false in the ground truth.

• False negative (FN): the number of elements that have been falsly identified
as false by the algorithm but are marked as true in the ground truth.

Based on these counts, several measures can be used to describe the performance of
the evaluated algorithm. Precision (Pr) is defined as the amount of correct results in
the set of results returned by the evaluated algorithm [93]:

Pr = TP
TP + FP

. (2.33)

Recall (Re) is defined as the number of correct results returned by the evaluated
algorithm in comparison to the overall number of positive elements [93]:

Re = TP
TP + FN

. (2.34)

The F1-measure (F1) can be used to summarize the precision and the recall of an
algorithm. It is defined as the harmonic mean of precision and recall [93, 100]:

F1 = 2PrRe
Pr + Re

= 2TP
2TP + FP + FN

. (2.35)
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2.3.3 Micro and Macro Averages

When evaluating an algorithm using several datasets multiple confusion matrices are
generated—one for each dataset. Within this thesis, we distinguish two main ways to
calculate a summarizing value for precision, recall, and F1-measure in this scenario.
The micro measures are based on a confusion matrix that sums up the single TP,
TN, FP and FN counts over all datasets. Let n be the number of datasets and let TPi,
TNi, FPi and FNi be the TP, TN, FP, and FN of the i-th dataset, respectively. We
define micro precision (Prmic), micro recall (Remic), and micro F1-measure (F1mic)
as follows [100, 141]:15

Prmic =
∑n

i=1 TPi∑n
i=1 TPi +

∑n
i=1 FPi

, (2.36)

Remic =
∑n

i=1 TPi∑n
i=1 TPi +

∑n
i=1 FNi

, (2.37)

F1mic = 2× Prmic × Remic

Prmic + Remic
= 2×

∑n
i=1 TPi

2×
∑n

i=1 TPi +
∑n

i=1 FPi +
∑n

i=1 FNi
. (2.38)

Let Pri, Rei, and F1i be the precision, recall, and F1-measure calculated based on the
results for the i-th dataset, respectively. A macro average is the arithmetic average
of the measures calculated per dataset. Hence, we define macro precision (Prmac),
macro recall (Remac), and macro F1-measure (F1mac) as follows [100, 141]:16

Prmac =
n∑

i=1
Pri =

n∑
i=1

TPi

TPi + FPi
, (2.39)

Remac =
n∑

i=1
Rei =

n∑
i=1

TPi

TPi + FNi
, (2.40)

F1mac =
n∑

i=1
F1i =

n∑
i=1

2× TPi

2TPi + FPi + FNi
. (2.41)

15Forman et al. [100] use the name Ftp,fp for the micro F1-measure.
16Forman et al. [100] use the name Favg for the macro F1-measure.
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Benchmarking Linked Data
Systems

3

While the adoption of Linked Data is increasing steadily, the selection of the right
frameworks for a given application driven by this paradigm remains elusive. This
is partly due to the lack of 1) large-scale benchmarks for most steps of the Linked
Data life cycle [23] and 2) scalable benchmarking platforms able to generate uni-
form comparable evaluation results for the technologies which deal with this type
of data [231]. The usefulness of benchmarks for characterising the performance
of families of solutions has been clearly demonstrated by the varied benchmarks
made available over recent decades [109, 231, 276, 281]. For example, the TPC
family of benchmarks is widely regarded as having provided the foundation for the
development of efficient relational databases [109]. Modern examples of bench-
marks that have achieved similar effects include the QALD [281] and BioASQ [276]
benchmarks, which have successfully contributed to enhancing the performance
of question answering systems over Linked Data and in the bio-medical domain,
respectively. Modern benchmarking platforms have also contributed to the compara-
bility of measurements used to evaluate the performance of systems. For example,
benchmarking platforms such as BAT [68], GERBIL [228, 231, 286, 287, 292], and
IGUANA [67] provide implementations and corresponding theoretical frameworks
to benchmark different aspects of the Linked Data life cycle in a consistent man-
ner. Still, none of these benchmarking platforms can scale up to the requirements of
benchmarking modern Big Linked Data applications.

A major challenge of benchmarking Linked Data solutions is the ability of knowledge
graphs to grow within a short period of time. For example, the Google Knowledge
Graph grew from 3.5 billion facts to 18 billion facts in 7 months. Noy et al. [206]
point out that comparable growth rates can be observed in knowledge graphs of
other large companies. The same phenomenon is also present in open data sets. For
example, DBpedia [21, 162] crossed the mark of 23 billion triples in 20171 while it
begun with 0.1 billion triples in 2007 [21]. The ranking of corresponding storage

¶ Parts of this chapter have been published as journal and conference articles [231, 237, 240]. For
all three publications, the author developed the main ideas, designed and implemented major parts of
the solution, and wrote the majority of the publication.

1https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
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solutions w.r.t. their runtime performance has been observed to change with the size
of the knowledge graphs [67, 209]. For example, Papakonstantinou et al. [209] re-
port the performance of four triple stores on different versions of an RDF knowledge
graph ranging from 105 to 106 triples. While BlazeGraph Free version 8.5 achieves
the second-best performance on the smallest version of the knowledge graph, it
achieves the worst performance on the subsequent version, which is merely five times
larger. Similar insights can be derived from the work of Conrads et al. [67], where
Jena TDB version 2.3.0 is ranked first across three triple stores and achieves the best
performance on a 10% fragment of DBpedia version 2016-10 but is outperformed by
Virtuoso version 7.0.0 on the full version of the same dataset and even achieves the
worst performance in some high-load settings with 16 concurrent queries. Given
that the performance of Linked Data systems like triple stores changes across dataset
versions, there is a need to predict the future performance of Linked Data solutions
given existing versions of a dataset. Such a prediction can facilitate the deployment
of reliable knowledge graph infrastructures, the timely acquisition and alteration
of software components and the maintenance of quality-of-service requirements.
Benchmarking Linked Data systems hence faces the challenge of predicting the perfor-
mance and ranking of Linked Data systems on a (future) version of a knowledge graph
given previous versions of the same dataset. This task differs from that addressed
by current RDF generators, which assume a particular dataset or ontology (e.g.,
universities) and generate data based thereupon [14, 16, 89, 114, 248, 272].

Another challenge for benchmarking Linked Data systems arises from the properties
of Linked Data. Linked Data may be separated into several distinct knowledge
graphs that are linked with each other. This leads to the situation that some systems
may rely on one knowledge graph while other systems rely on another. At the
same time, a benchmarking dataset may have been manually created with a third
knowledge graph. A classic solution to this is to stick to a single knowledge graph.
For example, the BAT framework [68] translates all IRIs and other identifiers to
Wikipedia article IDs and runs its comparison only with these IDs. However, this
limits the applicability of the BAT framework to systems and datasets that either
rely on these IDs or which work with identifiers that can be translated into them.
Instead, the strengths of Linked Data should be used to provide a generic solution to
this problem.

This chapter has three main contributions. The first contribution is the presentation
that Linked Data features can be used within benchmarking platforms to solve
several challenges. To this end, we present an extension of GERBIL [228, 286, 287]—
a platform presented by Usbeck et al. [287] to benchmark knowledge extraction
systems. This extension enables the benchmarking of systems that have been
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developed for a certain knowledge graph with a dataset that has been created based
on a different knowledge graph by using links between these graphs. In addition, it
reduces the impact of changes that may arise from the aforementioned growth of
knowledge graphs on the validity of benchmarking datasets.

The second contribution is the HOBBIT (Holistic Benchmarking of Big Linked Data)
platform [237]. HOBBIT was designed to accommodate the benchmarking of Big
Linked Data applications, i.e., applications driven by Linked Data that exhibit Big
Data requirements as to the volume, velocity, and variety of data they process [61].
The platform was designed with extensibility in mind. Thus, its architecture is
modular and allows the benchmarking of any step of the Linked Data life cycle.2 The
comparability of results was the second main design pillar. Consequently, HOBBIT

abides by the FAIR data principles [306]. The practical usability of the platform
was ensured by its use in 13 challenges between 2016 and 2020 (e.g., [12, 13, 103,
104, 112, 113, 139, 197, 218, 235, 258, 259]). HOBBIT is open-source and can be
deployed locally, on a local cluster, and on computing services such as Amazon Web
Services. Additionally, we offer an online instance of the platform deployed on a
cluster and available for experimentation.3

The third contribution is LEMMING—an approach to generate synthetic knowledge
graphs of arbitrary size that mimic real-world knowledge graphs. It takes several
versions of a knowledge graph as input to determine the characteristics of the
knowledge graph. Based on these characteristics and gathered statistical information,
LEMMING generates a synthetic knowledge graph with a given size and similar
characteristics as the original graph. Hence, LEMMING can serve as a general purpose
data generator that allows the benchmarking of Linked Data systems with respect to
their scalability using synthetic data that has similar characteristics as real-world
knowledge graphs.

The rest of this chapter is structured as follows: We begin by giving an overview
of the state of the art in benchmarking Linked Data in Section 3.1. In Section 3.2,
we present our extension to the GERBIL benchmarking platform. In Section 3.3,
we present requirements for a benchmarking platform for Big Linked Data appli-
cations that were gathered from experts. We use these requirements to derive the
architecture for the HOBBIT platform and present it in Section 3.4. Section 3.5
presents our approach to generate knowledge graphs that mimic real-world graphs.
We demonstrate the use of the benchmarking platform and the knowledge graph
generation in Section 3.6. We show how the benchmarking platform can be applied

2Code and dataset generators are available at http://github.com/hobbit-project. The project
homepage can be found at https://project-hobbit.eu/ (last accessed on 03.08.2022).

3http://master.project-hobbit.eu; last accessed on 03.08.2022.
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to benchmark a knowledge extraction framework along the axes of accuracy and
scalability—a dimension that was not considered in previous benchmarking efforts.
We also present evaluation results that underline that our generated knowledge
graphs are similar to held-out real-world knowledge graphs. We present the different
applications of the benchmarking platform in Section 3.7. Finally, we discuss limita-
tions and derive future work for our approaches in Section 3.8 before concluding
this chapter with Section 3.9.

3.1 Related Work

3.1.1 Benchmarking

The work presented herein is mostly related to benchmarking platforms for RDF
and Linked-Data-based systems. Several benchmarks have been developed in the
area of linking RDF datasets [198]. A detailed comparison of instance matching
benchmarks has been published by Daskalaki et al. [76]. They show that there are
several benchmarks using either real or synthetically generated datasets. SEALS is
the best-known platform for benchmarking link discovery frameworks.4 It offers the
flexible addition of datasets and measures for benchmarking link discovery. However,
the platform was not designed to scale and can thus not deal with datasets which
demand distributed processing.

For a large proportion of existing benchmarks and benchmark generators the focus
has commonly been on creating frameworks able to generate data and query loads
able to stress triple stores [39, 67, 114, 187, 243]. For example, the Lehigh Uni-
versity Benchmark [114] is a synthetic benchmark aiming to test triple stores and
reasoners for their reasoning capabilities. SP2Bench [247] is a synthetic benchmark
for testing the query processing capabilities of triple stores. The Berlin SPARQL
Benchmark [39] is a synthetic triple store benchmark based on an e-commerce use
case in which a set of products is provided by a set of vendors and consumers post
reviews regarding those products. SRBench [309] is an RDF benchmark designed
for benchmarking streaming RDF/SPARQL engines. Przyjaciel-Zablocki et al. [221]
propose a synthetic query benchmark centered around social network data. Other,
similar benchmarks include the works of Aluç et al. [16], Morsey et al. [187, 188],
Saleem et al. [243], Schmidth et al. [249], and Tarasova et al. [273]. IGUANA [67]
is the first benchmarking framework for the unified execution of these data and

4http://oaei.ontologymatching.org/2015/seals-eval.html; last accessed on 03.08.2022.
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query loads. However, like the platforms aforementioned, IGUANA does not scale
up to distributed processing and can thus not be used to benchmark distributed
solutions at scale.

Knowledge Extraction—especially Named Entity Recognition and Linking—has also
seen the rise of a large number of benchmarks [231]. Several conferences and
workshops aiming at the comparison of information extraction systems (including
the Message Understanding Conference [268] and the Conference on Computational
Natural Language Learning [275]) have created benchmarks for this task. In 2014,
Carmel et al. [59] introduced one of the first Web-based evaluation systems for
Named Entity Recognition and Linking. The BAT benchmarking framework [68]
was also designed to facilitate benchmarking based on these datasets by combining
seven Wikipedia-based systems and five datasets. The GERBIL framework [228, 231,
286, 287] extended this idea by being knowledge-base-agnostic and addressing the
NIL error problem in the formal model behind the BAT framework. We will present
these features of GERBIL in more detail in Section 3.2. However, while these systems
all allow for benchmarking knowledge extraction solutions, they do not scale up to
the requirements of distributed systems.

In the area of Question Answering using Linked Data, challenges such as BioASQ [276],
and QALD [66, 279, 280, 281, 282, 283, 290, 291] aimed to provide benchmarks for
retrieving answers to human-generated questions. The GERBIL-QA platform [292]
is the first open benchmarking platform for question answering which abides by the
FAIR data principles. It builds upon the aforementioned GERBIL platform. GERBIL

is also used as a platform for several Semantic Web Challenges to evaluate the
performance of fact validation systems [204, 216, 260]. In a similar way, the BENG
platform [193] is an extension of GERBIL that is used in the area of natural language
generation based on RDF data. However, like its knowledge extraction companion,
both of them are not designed to scale up to large data and task loads.

Frameworks aiming at benchmarking in a generic fashion are very rare. The Peel
framework5 supports the automation of experiments on Big Data infrastructure.
However, the framework only supports systems that can be executed on one of the
supported Big Data solutions like Flink or Spark which excludes a lot of existing
Linked Data benchmarks and systems.6 Moreover, it does not support a large
portion of the specific requirements for benchmarking Big Linked Data described
in Section 3.3. A major drawback is that the results generated by the platform are
not transparent as the execution of systems and benchmarks is hidden from the

5http://peel-framework.org; last accessed on 03.08.2022.
6The complete list can be found at https://github.com/peelframework/peel#

supported-systems; last accessed on 03.08.2022.
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users. This makes a comparison of the resources used by benchmarked systems
impossible.

Also relevant according to the literature are novel Big Data benchmarks for bench-
marking relational databases (e.g., BigBench [108] and OLTP [82]). However,
although they come with scalable data and task generators, these benchmarks are
solely focused on the benchmarking of relational databases and are not benchmark-
ing frameworks.

A similar data generation-based approach is used by Plug and Play Bench [62].
However, in contrast to the other benchmarks, Plug and Play Bench aims at bench-
marking different hardware settings on which the benchmark is executed instead of
comparing different software solutions.

Table 3.1.: Comparison of Linked Data benchmarking frameworks, their applicability for all
eight steps of the Linked Data life cycle and their support of features necessary
for benchmarking Big Linked Data solutions.
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BAT [68] 2013 ✓ —
GERBIL [228, 231, 286, 287] 2014 ✓ — ✓
GERBIL-QA [292] 2018 — ✓ ✓
BENG [193] 2020 ✓ — ✓ ✓
IGUANA [67] 2017 ✓ — ✓

HOBBIT [237] 2017 ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1 compares the existing benchmarking frameworks used to benchmark
Linked Data systems regarding their applicability for all eight steps of the Linked
Data life cycle as well as their support of features necessary for benchmarking
Big Linked Data solutions. The step “Manual Revision” is mentioned only for the
completeness of the life cycle steps. The table shows that the HOBBIT platform is the
first benchmarking framework which supports all steps of the Linked Data life cycle
that can be benchmarked automatically. In addition, it is the first benchmarking
platform for Linked Data which scales up to the requirements of Big Data platforms
through horizontal scaling. The comparability of HOBBIT’s benchmarking results are
ensured by the cluster underlying the open instantiation of the platform.
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3.1.2 RDF Graph Generation

The generation of synthetic graphs that can mimic real-world graphs is an important
field of research. One of the first works in this field is the Erdös-Renyi model [88].
The model creates a random graph with a given number of nodes and a given number
of edges by randomly assigning edges to the nodes. The model assumes that each
edge is equally likely and that the edges can be sampled independently from each
other. The degrees of the nodes follow a binomial distribution. In contrast to that,
the Watts-Strogatz model [301] is able to create random graphs with small-world
properties. It starts with connecting each node to a number of neighbouring nodes
creating a lattice. After this first construction step, each edge can be removed and
replaced by a new edge connecting a node with a completely different node based on
a given probability. The Barabasi-Albert model [28] is able to create scale-free graphs
similar to the link graph of the World Wide Web. The model adds one node after the
other to the graph connecting them to the existing nodes based on the nodes degree,
i.e., highly connected nodes have a higher probability to be chosen than others.
There are several extensions of these models [153, 165]. Leskovec et al. [165]
report that networks densify and shrink with respect to their diameter over time
while Krioukov et al. [153] propose the usage of a hyperbolic geometry as basis to
simulate networks. However, all these models and their extensions aim at general
graphs and do not take special features of RDF graphs into account.

The Attribute Synthetic Generator [14] mimics social networks and takes different
types of edges and features of nodes into account. It uses the preferential attachment
model to assure the richer-get-richer phenomenon of nodes and the label homophily
measure to control the creation of edges based on node labels. In addition, the
generator applies a stochastic optimisation to fine-tune the feature distributions with
respect to statistics of the original network like the node degree distribution. In a
similar way, the Property Graph Model [245] takes node features and link types into
account. In addition, it is able to scale the generated graphs to larger sizes. However,
both approaches are not applicable for RDF as they create undirected graphs and
take only a limited set of graph features into account.

There are several generators for RDF datasets. Theoharis et al. [274] propose an
approach to generate synthetic schemas of RDF datasets. This is different to our
work since we focus on the instance data and not the schema. The Lehigh University
Benchmark [114] generates RDF graphs with a given number of triples describing
synthetic universities, their lectures etc. The LDBC [89] generator creates RDF
data describing a social network. In a similar way, SP2Bench [248] relies on the
publication domain. The Waterloo SPARQL Diversity Test Suite [16] offers a data
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generator for scalable RDF datasets relying on the WatDiv schema. PoDiGG [272] is
an RDF generator for an artificial transport network based on a given population
density. While all these generators create RDF graphs, they are bound to a certain
domain or ontology.

Some approaches support the generation of RDF datasets independently of the
dataset’s domain. Grr [44] is a generator that relies on commands written in a
domain specific language describing the single steps that are necessary to generate
the dataset. In contrast, gMark [25] offers a more comfortable generator for an RDF
dataset and a set of queries that can be used to benchmark the dataset. However,
gMark needs a large amount of statistical information about the dataset including in
and out degree distributions. Similarly, LinkGen [140] relies on a given ontology
and a set of parameters including distribution parameters. Apart from that, LinkGen
has never been evaluated with respect to the quality of the generated graphs. In
comparison, the generator proposed in this chapter relies solely on the given RDF
graphs without additional ontological data and gathers all statistical values that
are needed for the generation process by itself. In addition, LEMMING is the first
graph generation algorithm able to mimic real-world RDF datasets by determining
necessary statistics and characteristic expressions that give invariant values for the
given dataset.

3.2 Benchmarking with Linked Data

As described before, Linked Data may comprise several distinct, connected knowl-
edge graphs that may grow over time. This creates two challenges for benchmarking
Linked Data processing systems. First, different systems and benchmark datasets
might be based on different knowledge graphs. For example, some systems may use
DBpedia IRIs [284, 285] while other systems work with Wikipedia article IDs [68]
or article titles [183]. In the area of knowledge extraction, Cornolti et al. [68]
suggest to rely on Wikipedia article IDs. They implemented the BAT framework
based on the idea to translate all IRIs and other identifiers to Wikipedia article
IDs. However, while the comparison of identifiers becomes an easy comparison
of numbers, the approach can only be used for entities that have an article in the
Wikipedia. Usbeck et al. [228, 286, 287] took the idea of the BAT framework to
benchmark named entity recognition and linking systems further by implementing
GERBIL. In addition to various other enhancements, GERBIL does not rely on the
comparison of Wikipedia article IDs but on the comparison of IRIs. While this
removes the close coupling to the Wikipedia it still requires that the benchmarked
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systems and benchmark datasets rely on the same knowledge graph. In practice, this
led to the implementation of IRI translations within the single adapters that have
been implemented for the different systems and datasets. These translations ensure
that the IRI comparisons within GERBIL are always based on DBpedia IRIs. A generic
solution that is not bound to a particular knowledge graph would be preferable.

A second challenge arises from the growth of knowledge graphs and changes that
are applied to them over time. Many benchmarking platforms rely on gold standards
that have been manually created. The creation of such gold standards is expensive
since it involves the work of human experts [226, 259]. Hence, datasets that have
been made available are reused to save costs and compare the performance of
different systems on the same dataset. However, while the development of Linked
Data systems moves on, many datasets were created years ago using older versions
of knowledge graphs. Hence, the gold standard of a dataset may contain the IRI
that may not exist anymore in the latest version the reference knowledge graph
from which it was originally derived. Jah et al. [138] evaluated 13 datasets and
found outdated IRIs in all of them. In 3 of the datasets, more than 10% of the IRIs
needed an update. These IRIs must be identified and either updated or marked as
outdated.

Within this Section, we tackle both challenges. Our extended version of GERBIL [231]
is the first benchmarking platform for knowledge extraction that takes the special
features of Linked Data into account. Within this section, we present the two
following main features. First, GERBIL can bridge the gap between systems and
datasets that have been created for different knowledge graphs.7 Second, it can
identify outdated and faulty IRIs within a dataset.

In the following, we briefly describe GERBIL. After that, we describe the extensions
that we added.

3.2.1 GERBIL and D2KB

GERBIL is designed as a benchmarking platform for knowledge extraction systems,
i.e., systems that take natural language as input and provide structured data as
output. It supports different experiment types ranging from the spotting of named
entities within a text, over their linking to a given reference knowledge graph, to
the extraction of complete triples from the given text.8 In the following, we focus
on the evaluation of the entity disambiguation task (D2KB, also known as named

7We assume that links between these knowledge graphs exist and can be found by GERBIL.
8The interested reader is referred to Röder et al. [231] for a detailed description.
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Barack Obama was born in Hawaii — like Arthur Milton .I

dbr:Barack_Obama dbr:Hawaii niw:Arthur_Milton

Figure 3.1.: An example document with three named entities and the IRIs of the ground
truth.

entity linking). This task is defined as follows. A benchmarked system (dubbed
annotator) receives a text that contains marked named entities. For these named
entities, it should provide IRIs from a reference knowledge graph [68, 287]. The
evaluation is mainly based on the comparison of the system’s answer to the IRIs in
the gold standard. An example for an input is shown in Figure 3.1. The text contains
three named entities. Based on the example knowledge graph Gex presented in
Section 2.1.2, it is easy to assign the IRIs dbr:Barack_Obama and dbr:Hawaii to the
first two named entities. However, there is no IRI in this graph that represents an
entity named “Arthur Milton”—a person that might be known to the author of the
example text but not to a broader group of people. Following Hoffart et al. [125], we
name such an entity an emerging entity. For these entities, GERBIL generates a new
IRI in a separate namespace. We us the http://aksw.org/notInWiki namespace
with the prefix niw for that.9 In the example, we assign the IRI niw:Arthur_Milton
to the named entity “Arthur Milton”. We will use these three IRIs as gold standard
for the given example. Hence, the IRIs that would be assigned by a benchmarked
annotation system would be compared to these three IRIs.

However, the comparison of two IRIs cannot easily be reduced to a simple string com-
parison. As described above, annotation systems use different reference knowledge
graphs and IRIs from two different graphs could still point to the same real-world
entity. Assume two annotation systems A1 and A2 that assign IRIs to the example
text as shown in Figure 3.2. A1 relies on DBpedia IRIs while A2 uses Wikipedia
IRIs and the prefix ex: for emerging entities. The result of A1 contains only one
correct IRI. The second IRI refers to the island while the gold standard referred to
the state.10 The third annotation of A1 assigns the IRI of the English sportsman
Arthur Milton who has not been born in Hawaii and does not match the emerging
entity defined in the gold standard. It can be summarized that for the annotations of
A1, a simple string-based matching would identify matches and mismatches between
the system’s answer and the gold standard. However, this is not the case for the
result returned by A2. The first and second IRI refer to the correct real-world entities
but use Wikipedia IRIs. The third IRI shows that A2 identified the third named entity

9This namespace for emerging entities is also used by Speck et al. [259].
10The island Hawaii is the largest island of the state Hawaii. However, the state covers more than

130 other islands.
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Barack Obama was born in Hawaii — like Arthur Milton .I

dbr:Barack_Obama dbr:Hawaii_(island) dbr:Arthur_Milton

wiki:Barack_Obama wiki:Hawaii ex:Arthur_Milton

Figure 3.2.: The example document annotated by the two example systems A1 (red) and
A2 (blue).

Figure 3.3.: Schema of the four components of the entity matching process.

correctly as an emerging entity. However, a string-based comparison would not find
a single match. Hence, a more sophisticated matching is needed.

3.2.2 Extended IRI Matching

Our extension to GERBIL mainly covers the matching of IRIs. It tackles both chal-
lenges described above—different reference knowledge graphs and outdated IRIs—
by representing the meaning of a named entity as a set of IRIs and an enhanced
entity matching shown in Figure 3.3. It comprises the following four steps:

1. IRI set retrieval,
2. IRI checking,
3. IRI set classification, and
4. IRI set matching.

We explain these steps in more detail in the following.

IRI Set Retrieval

Since an entity can be described in several knowledge graphs using different IRIs,
GERBIL assigns a set of IRIs to a single annotation representing the semantic meaning
of this annotation. Initially, this set contains the single IRI that has been loaded from
the dataset or read from an annotators response. The set is expanded by crawling
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the Semantic Web graph using owl:sameAs links as well as redirects.11 These links
are retrieved using different modules that are chosen based on the domain of the IRI.
The general approach we implemented dereferences the given IRI and tries to parse
the returned triples. Although this approach works with every knowledge graph with
dereferencable IRIs, we offer some additional modules. A DBpedia-Wikipedia bridge
module transforms DBpedia IRIs into Wikipedia IRIs and vice versa. Additionally, we
implemented a Wikipedia API client module that can retrieve redirects for Wikipedia
IRIs. Moreover, one module can handle common errors like wrong domain names,
e.g., the usage of DBpedia.org instead of dbpedia.org, and the transformation of
an IRI into a URI and vice versa. The expansion of the set stops if all IRIs in the set
have been used by these modules and no new IRI could be added.

IRI Checking

As explained above, IRIs in the ground truth of a benchmark dataset can be outdated.
GERBIL tries to minimize the influence of outdated IRIs by checking every IRI in a
given dataset for its existence in the reference knowledge graph. If an IRI cannot be
found in the knowledge graph, it is marked as outdated. GERBIL offers two ways to
search for an IRI. Either it is searched in a provided index that lists all available IRIs
of a reference knowledge graph, or it is dereferenced. However, this is only possible
for IRIs of knowledge graphs that abide by the Linked Data principles and provide
dereferencable IRIs. All outdated IRIs are changed by replacing their namespace
with a namespace that marks them as emerging entities.12 However, it should be
noted that an annotation that has an outdated IRI in the gold standard, may not
end up with a set of IRIs that makes it an emerging entity. The previous step may
have already derived a new IRI from the reference knowledge graph which would be
part of the IRI set.13 The editing of the outdated IRI would not affect the previously
derived IRIs in the set.

11We use the prefix owl for theIRI http://www.w3.org/2002/07/owl#.
12This follows a similar strategy that Cornolti et al. [68] applied. They manually deleted outdated

Wikipedia links from their datasets. In comparison, our strategy is better since 1) it keeps the
information that an entity is mentioned in the text and 2) it is applied automatically without any
manual effort.

13The Wikipedia API is a good example for a source of links from outdated IRIs to new IRIs since
requests to old Wikipedia article titles are forwarded to the new articles as long as these old titles have
not been reused.
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IRI Set Classification

As explained before, the entities can be separated into two classes [125]. Entities
can be either in the reference knowledge graph or they can be emerging entities.
The third step of GERBIL’s entity matching process assigns one of these two classes
to each annotation based on the annotation’s IRI set. If at least one IRI in the
annotation’s set belongs to the reference knowledge graph, it is marked as a known
entity from that graph. If there is no such IRI, the entity is an emerging entity and
the annotation is marked accordingly.

IRI Set Matching

The final step of checking whether two entity annotations match each other is to
check whether their two IRI sets match. The match is based on two conditions. First,
both sets have to have the same class assigned, i.e., either both have to be classified
as belonging to the knowledge graph or both have to be classified as emerging
entities. Second, if they have been classified as entities of the graph, the two sets
have to overlap, i.e., there has to be at least one IRI that both sets have in common.
It should be noted that this second condition is not applied if the sets are classified
as emerging entities. The IRIs for these entities are typically generated and different
systems may use different strategies for this generation.

With this IRI matching, our extended version of GERBIL addresses the two afore-
mentioned challenges. However, as described in Section 3.1, GERBIL’s architecture
comes with several other drawbacks. It is based on the idea to benchmark knowl-
edge extraction systems that have been deployed as Web services. While this is
a lightweight approach that allows the easy comparison of prototypes or smaller
systems, it does not support a fair benchmarking of large, distributed systems. In
the following section, we will present requirements that should be fulfilled by such
a benchmarking platform.
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3.3 Requirements

We adopted a user-driven approach to develop our platform. Additionally to the
goals of the HOBBIT project, the requirements were mainly derived from an online
survey as well as a workshop—both described by Fundulaki [102].14

The survey had 61 expert participants representing their organizations. These
experts were contacted via mail using several mailing lists of the Semantic Web
community. During the survey, the participants were asked to add themselves to
one ore more of three stake holder groups. 48 participants classified themselves as
solution providers, i.e., they represent an organization which implements a Linked
Data system. 46 participants added themselves to the group of technology users,
i.e., people which are using Linked Data systems developed by a 3rd party. The third
group—the scientific community which aims at identifying problems in existing
solutions and developing new algorithms—comprised 47 participants. Asked for
the target of the Linked Data systems they are developing or using, 50 participants
stated to work in the area of storage and querying, 39 in the area of interlinking,
39 in classification and enrichment, 35 in discovery, 31 in extraction and 22 in
reasoning. The survey further asked which benchmarks the participants use. This
was further detailed with the size and type of datasets (synthetic, real-world or a
combination of both) they use as well as the Key Performance Indicators (KPIs) they
are interested in [102].

In 2016, a workshop was arranged within the programme of the Extended Semantic
Web Conference [102]. 21 conference participants took part in the workshop and
discussed the goals of the HOBBIT project as well as requirements. The participants
were separated into 4 groups—Generation & Acquisition, Analysis & Processing,
Storage & Curation as well as Visualisation & Services—covering the complete
Linked Data life cycle. Each group discussed requirements which the benchmarks of
this area as well as the benchmarking platform used to execute these benchmarks
should fulfil. To distinguish the gathered user requirements from the FAIR data
principles, we will abbreviate these user requirements with U.

3.3.1 Functional Requirements
U1 The main functionality of the platform is the execution of benchmarks.
U2 Benchmark results should be presented in human- and machine-readable form.

14Please note that [102] is also available via the Community Research and Development Information
Service of the European Commission using the grand agreement ID of the HOBBIT project: 688227.
See https://cordis.europa.eu/project/rcn/199489/results/en; last accessed on 03.08.2022.
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U3 It should be possible to add new benchmarks and new systems.
U4 The platform should offer repeatable experiments and analysis of results.
U5 The KPIs should include the effectiveness, e.g., the accuracy, and the efficiency,

e.g., runtime of systems.
U6 The platform should be able to measure the scalability of solutions. This leads

to the need of a scalable generation of both—data the evaluation is based on
as well as tasks a system has to execute.

U7 The platform should support the benchmarking of distributed systems.
U8 The platform should support the execution of benchmarking challenges. This

includes 1) the creation of challenges within the platform, 2) the registration
of users with their system for the challenge, 3) the execution of the chal-
lenge experiments at a predefined point in time, and 4) the summary of the
experiment results for this challenge.

These functional requirements predefined the corner stones for the platforms archi-
tecture. In Section 3.4, it will be shown how the platform fulfills each of them.

3.3.2 Qualitative Requirements
U9 The benchmarks should be easy to use and interfaces provided should be as

simple as possible.
U10 The platform should support different programming languages.
U11 The results should be archived safely for later reference.
U12 The platform needs to be robust regarding faulty benchmarks or systems.

Several requirements—especially U1–U4 as well as U8—addressed fundamental
functions of a benchmarking platform that supports the execution of benchmarking
challenges and were directly derived from this goal. However, the results of the
survey as well as the workshop show that the participants agreed to the goals of the
project and that especially the repeatability of experiments (U4) is of importance
to the community. The range of mentioned KPIs in the survey as well as in the
results of the workshop let to U5. The need to measure the efficiency of systems is
one reason for U6. The large range of dataset sizes used by the survey participants
was another reason.15 U7 was an important requirement to ensure the ability to
benchmark systems which achieve their scalability by horizontal scaling. U9 was
a result of the workshop. U10 and U11 were derived very early. Although not
explicitly mentioned during the workshop, the usage of different programming
languages within the community became evident. Additionally, U11 was derived

153.6% of the survey participants used datasets with less than 10 thousand triples while 35.7%
used datasets with more than 100 million triples [102].
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from the usage of existing platforms which have already been accepted by the
community, e.g., the citable IRIs of GERBIL [231]. The error tolerance of a software
is a general requirement for most developments. However, with U12 it gained
additional attention because the platform allows the upload of third party software
which might not be reliable.

We derived the degree of modularity and the error handling of the platform from
these requirements (U1, U3–U12). The result analysis component and interfaces
were designed to accommodate U2 and U9–U12. Details are provided in Sec-
tion 3.4.

3.3.3 FAIR Data Principles

From the beginning on, the platform was built to support the FAIR data princi-
ples [306].16 The following list is a literal citation of Wilkinson et al. [306] and
their summary of the principles:

F1 (Meta)data are assigned a globally unique and persistent identifier.
F2 Data are described with rich metadata (defined by R1 below).
F3 Metadata clearly and explicitly include the identifier of the data they describe.
F4 (Meta)data are registered or indexed in a searchable resource.
A1 (Meta)data are retrievable by their identifier using a standardized communica-

tions protocol.
A1.1 The protocol is open, free, and universally implementable.
A1.2 The protocol allows for an authentication and authorisation procedure,

where necessary.
A2 Metadata are accessible, even when the data are no longer available.
I1 (Meta)data use a formal, accessible, shared, and broadly applicable language

for knowledge representation.
I2 (Meta)data use vocabularies that follow FAIR data principles.
I3 (Meta)data include qualified references to other (meta)data.

R1 Meta(data) are richly described with a plurality of accurate and relevant
attributes.

R1.1 (Meta)data are released with a clear and accessible data usage license.
R1.2 (Meta)data are associated with detailed provenance.
R1.3 (Meta)data meet domain-relevant community standards.

16https://www.go-fair.org/fair-principles/; last accessed on 03.08.2022.
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The following section shows the design of the HOBBIT platform. Within this section,
we explain how the platform fulfills the user requirements and how it supports the
FAIR data principles.

3.4 Platform Architecture

3.4.1 Overview
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Figure 3.4.: Architecture of the HOBBIT platform

Figure 3.4 gives an overview of the architecture of the HOBBIT platform. The
platform is based on a container architecture, i.e., the components are implemented
as independent containers. This eases the adding of new benchmarks and systems
(U3), which can be implemented using different languages (U10). Additionally, it
eases the development and maintenance of the platform itself and adds a separation
between the platform, benchmark, and system containers, thus limiting the influence
of faulty program code to its container instead of decreasing the stability of the
whole platform (U11, U12). Using containers for benchmark and system components
also gives the possibility of scaling both by offering the deployment of additional
containers across multiple machines (U6, U7). The communication between these
components is ensured by means of a message bus. Choosing this established
communication method eases the implementation of benchmarks and systems based
on different programming languages (U9, U10).
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3.4.2 Platform Components

The platform has several components (see blue elements in Figure 3.4). They offer
the main functionality of the platform.

Platform Controller

The platform controller is the central component of the HOBBIT platform. Its main
role is to coordinate the interaction of other components as needed. This mainly
includes handling requests that come from the user interface component, starting
and stopping of experiments, observing the health of the cluster, and triggering
the analysis component. In addition, the controller manages a priority queue
that contains user-configured experiments that are to be executed in the future.
The execution order of experiment configurations is determined using 1) the time
at which they have been configured by the user (following the first-in-first-out
principle) and 2) the priority of experiments, which is derived from whether the
said experiment is part of a scheduled challenge (higher priority) or not (U8). The
internal status of the platform controller is stored in a database. This enables
restarting the controller without losing its current status, e.g., the content of the
experiment queue.

The platform controller uses features of Docker Swarm to observe the status of the
cluster that is used to execute the experiments. E.g., if one of the nodes drops out of
the cluster, the comparability between single experiments might not be given (U4).
Thus, the platform controller needs to be aware of the number of working nodes that
are available for the experiment. If there is no running experiment and the queue
is not empty, the platform controller initiates the execution of an experiment and
observes its state. If the experiment takes more time than a configured maximum,
the platform controller terminates the benchmark components and the system that
belongs to the experiment. By these means, it also ensures that faulty benchmarks
or systems cannot block the platform (U12).

Storage

The storage component contains the experiment results and configured challenges.
It comprises two containers—a triple store that uses the HOBBIT ontology to describe
results and a handler for the communication between the message bus and the
triple store. The storage component offers a public SPARQL endpoint with read-only
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access which can be queried via HTTP/HTTPS (U2, F4, A1).17 The write access is
limited to the platform controller, the user interface, and the analysis component.
The controller stores experiment results and manages running challenges. The user
interface presents the available data to the user and enables the configuration of
new challenges as well as the registration of systems for taking part in a challenge
(U8). The analysis component requests experiment results from the storage and
stores results of the analysis.

Ontology

The experiment results, the metadata of experiments and challenges as well as
the results of the analysis component are stored as RDF triples [250] (I1). Where
possible, we used established RDF vocabularies (I2, R1.3).18 However, for describing
the experiments and challenges in detail we created the HOBBIT ontology.19 In the
following, we use ho as prefix to shorten the ontology’s namespace http://w3id.
org/hobbit/vocab#.

The ontology offers classes and properties to define the metadata for the single
benchmarks and benchmarked systems. The main schema of the ontology is depicted
in Figure 3.5. For each benchmark or system a user would like to use within the
platform, a metadata file has to be provided containing some general information.
This includes the definition of an IRI for each benchmark and system (F1), a name,
a description, and an IRI of the API offered by the benchmark and implemented
by the system. Based on the API IRI the platform can map the available systems
to the benchmarks to ensure that the system is applicable for a given benchmark.
Additionally, a benchmark’s metadata include parameters and KPIs. The parameters
can be defined to be configurable through the user interface when starting an
experiment and whether the parameters should be used as feature in the analysis
component.

A system’s metadata offers the definition of several system instances with different
parameterizations. The analysis method can make use of the different parameter
values of the instances to measure the impact of the parameters on the KPIs.

Experiments are described with triples regarding 1) provenance, 2) the experiment
results, 3) the benchmark configuration, and 4) benchmark as well as 5) system

17Our endpoint can be found at https://db.project-hobbit.eu/sparql; last accessed on
03.08.2022.

18Namely, RDF [52], PROV-O [161], Data Cube [73], and XSD [60].
19The formal specification of the ontology can be found at https://github.com/hobbit-project/

ontology; last accessed on 03.08.2022.
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Figure 3.5.: Main concepts of the HOBBIT ontology.
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metadata (F2, F3, I3, R1, R1.2). The provenance information covers—additionally
to the metadata of the benchmark and system—the start and end time of the
experiment as well as details about the hardware on which the experiment has
been executed. The experiment results are generated by the implementation of the
benchmark and typically contain results for the single KPIs which are defined in the
benchmark’s metadata. Together with the metadata of the benchmark and system,
the values of the KPIs and their description are used by the analysis component
(U4). The platform controller assigns an IRI to the experiment (F1) and copies
the configuration of the benchmark as well as the metadata of the benchmark and
system into the experiment’s metadata. Note that this makes sure that even if a user
removes a benchmark or system from the platform after executing an experiment
their metadata is still available (A2).

Challenges which are carried out on the platform are modeled by separating them
into single tasks. Each task has a benchmark with a certain parameterization and
users can register their systems for the single tasks to take part in the challenge. A
challenge and its tasks have a generated IRI (F1) and come with a label as well as
a description. Additionally, the creator of the challenge can define the execution
date and the publication date of the challenge as well as a link to a Web page giving
further information about the challenge. The first date defines the point in time at
which the execution of the single experiments of the challenge should start while the
latter defines the day at which the results should be made public. The experiments
that are part of a challenge, point to the challenge task for which they have been
executed (I3). An overview of the concepts used to describe a challenge is given by
Figure 3.6.

Essentially, the ontology offers classes and properties to store the configuration and
the results of an experiment. IRIs are assigned to benchmarks, benchmarked software
systems, and KPIs. Moreover, benchmark configurations as well as benchmark and
system features, e.g., a certain parameterization, can be described. In addition to
experiments, the ontology allows for the description of challenges, tasks in challenges
and benchmarks associated with these tasks.

Analysis

This component is triggered after an experiment has been carried out successfully.
Its task is to enhance the benchmark results by combining them with the features of
the benchmarked system(s) and the data or task generators. This combination can
lead to additional insights, e.g., strengths and weaknesses of a certain system (U4).
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Figure 3.6.: Concepts of the HOBBIT ontology to describe a challenge. The rdfs:label
and rdfs:comment triples for the ho:Challenge and ho:ChallengeTask have
been left out.

While the component uses the results of benchmarks, it is modeled independently
from any benchmark implementation.

Graphical User Interface

The graphical user interface component handles the interaction with the user via
HTTP or HTTPS (A1). It retrieves information from the user management that allows
different roles enabling the user interface to offer functionality for authenticated
users as well as a guest role for unauthenticated users. For example, a guest is only
allowed to read the results of experiments and analysis (U2). Since the number
of experiments is steadily increasing, the user interface offers a filter and sorting
mechanism to increase the findability (F4). Experiments are currently visualized as
table containing their metadata, the parameter values and the KPI values. This table
view can also be used to compare several experiments with each other. Additionally,
plots as shown in Figure 3.7 are generated where applicable.20

Authenticated users have additional rights ranging from starting experiments to
organizing challenges, i.e., define experiments with a certain date at which they will

20The example is part of the experiment https://w3id.org/hobbit/experiments#
1540829047982; last accessed on 03.08.2022.
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Figure 3.7.: A screenshot of a plot generated for a KPI. It shows the F1-measure the Jena
Fuseki triple store achieved for 71 consecutive select queries during a run of
the Odin benchmark [104].

be executed (U1, U8). Additionally, experiments and challenges have dereferencable
IRIs assigned, i.e., a user can copy the IRI of an experiment or a challenge into the
browser’s URL bar and the server shows the details of this resource (F1, A1). For our
online instance, we offer w3id IRIs to enable static URLs that can be redirected.21

For each benchmark, a report can be generated. This comprises 1) a brief overview
over the results of the last experiments carried out with the benchmark, 2) scatter
plots that compare values of features and KPIs, and 3) plots showing the correlation
between benchmark features and the performance achieved by the single systems.
Such a plot is shown in Figure 3.8.

If the license of the data has been configured in the triple store, the information is
shown in the user interface (R1.1). The data of our online instance is licensed under
the Creative Commons Attribution 4.0 International Public License.22

Message Bus

This component contains the message bus system. Three different communication
patterns are used. First, labeled data queues simply forward data, e.g., the data
generated by the mimicking algorithm is transferred from several data generators to

21See https://w3id.org/; last accessed on 03.08.2022.
22License: https://creativecommons.org/licenses/by/4.0/legalcode; last accessed on

03.08.2022.. The license statement of our online instance can be found at https://master.
project-hobbit.eu/home; last accessed on 03.08.2022.
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Figure 3.8.: An example of a diagram showing the Pearson correlations between the dif-
ferent parameters of the Odin benchmark [104] and the micro F1-measure
achieved by the two triple stores Virtuoso and Jena Fuseki.

several task generators. The second pattern works like remote procedure calls. The
queue has one single receiving consumer that executes a command, e.g., a SPARQL
query, and sends a response containing the result. Third, a central broadcasting
queue is used (hobbit.command). Every component connected to this queue receives
all messages sent by one of the other connected components. This queue is used to
connect the loosely coupled components and orchestrate their activities.

User Management

The user management is based on Keycloak.23 It allows the upload of private
systems which cannot be seen by other users. Additionally, the platform makes use
of different user roles to enable single users to create challenges. Note that the user
management offers a guest role that enables unregistered users to see the publicly
available experiment results.

23https://www.keycloak.org/; last accessed on 03.08.2022.
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Repository

The repository contains all available benchmarks and systems. For our online
instance, the repository is a Gitlab instance which can be used by registered users to
upload Docker images and define the metadata of their benchmarks and systems
(U3, R1.3).24 Note that users can define the visibility of their systems, i.e., the
platform supports publicly accessible systems and benchmarks that can be used by
every registered user as well as private systems. However, the experiment results
(including the system’s metadata) will always be made public.

Resource Monitoring

The resource monitoring component uses Prometheus to collect information about
the hardware resources used by the benchmarked system.25 The benchmark can
request this information to include it into its evaluation. At the moment, the
CPU time, the disk space, and the amount of RAM used by the system can be
monitored. Based on the architecture of Prometheus, this list of metrics can be
further extended.

Logging

The logging comprises three components—Logstash, Elasticsearch, and Kibana.26

While Logstash collects the log messages from the single components, Elasticsearch
is used to store them inside a full text index. Kibana offers the user interface for
accessing this index. The logs are kept private. However, owners of systems or
benchmarks can download the logs of their components for a particular experiment
from the user interface.

3.4.3 Benchmark Components

These components are part of given benchmarks and have been colored orange
in Figure 3.4. Hence, they are instantiated for a particular experiment and are
destroyed when the experiment ends. A benchmark execution has three phases—
an initialization phase, a benchmarking phase, and an evaluation phase. The

24https://about.gitlab.com/; last accessed on 03.08.2022.
25https://prometheus.io/; last accessed on 03.08.2022.
26https://www.elastic.co/de/products/logstash, https://www.elastic.co/de/products/

elasticsearch, and https://www.elastic.co/de/products/kibana; last accessed on 03.08.2022..
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phases are described in more detail in Section 3.4.5. It should be noted that the
components described in this section represent our suggestion for the structure of
a benchmark. However, the HOBBIT platform supports a wide range of possible
benchmark structures as long as a benchmark implements the necessary API to
communicate with the platform controller.

Benchmark Controller

The benchmark controller is the central component of a benchmark. It communicates
with the platform controller and it creates and controls the data generators, task
generators, evaluation-storage, and evaluation-module.

Data Generator

Data generators are responsible for supplying the other components with the data
necessary for the experiment. Depending on the benchmark implementation, there
are two types of generators. Either, a given dataset, e.g., a real-world dataset, is
loaded from a file or the component encapsulates an algorithm able to generate
the necessary data. Importantly, data generators can be run in a distributed fashion
to ensure that the platform can create the necessary data volumes or data velocity.
Typically, data generators are created by the benchmark controller and configured
using benchmark-specific parameters. They generate data based on the given
parameters, send said data to the task generators and the system adapter, and
terminate when the required data has been submitted.

Task Generator

Task generators get data from data generators, generate tasks that can be identified
with an ID and send these tasks to the system adapter. Each task represents a single
problem that has to be solved by the benchmarked system (e.g., a SPARQL query
that should be answered by a triple store). The expected response for the generated
task is sent to the evaluation storage. Like data generators, task generators can be
scaled to run in a distributed fashion.
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Evaluation Storage

This component stores the gold standard results as well as the responses of the
benchmarked system during the benchmarking phase. During the evaluation phase
it sends this data to the evaluation module. Internally, the output of a benchmark is
stored as a set of key-value pairs. The task IDs are used as keys. Each value comprises
1) the expected result, 2) the result calculated by the benchmarked system, 3) the
timestamp at which the task was sent to the system by a task generator, and 4) the
timestamp at which the response was received by the evaluation storage.

Evaluation Module

The evaluation module is created by the benchmark controller at the beginning of
the evaluation phase and requests results from the evaluation storage. It evaluates
them by computing the KPIs associated with the benchmark. It should be noted that
the decision which KPIs will be used is mainly up to the benchmark developer. Both,
the effectiveness as well as the efficiency of systems can be measured (U5). After
computing the KPIs, the component summarizes the evaluation results and sends
them to the benchmark controller before it terminates.

3.4.4 Benchmarked System Components

Each system to be benchmarked using the HOBBIT platform has to implement the API
of the benchmark to be used and the API of the platform. Since systems are typically
not developed for the mere sake of being benchmarked with our platform, each
system is usually connected to the platform by means of a system adapter container.
The system adapter serves as a proxy translating messages from the HOBBIT platform
to the system to be benchmarked and vice versa. The system adapter of each of the
systems to benchmark is instantiated by the platform controller when an experiment
is started. Adapters can create additional containers that might contain components
of the benchmarked system. Thereafter, they send a ready signal to the platform
controller to indicate that they are ready to be benchmarked. They receive incoming
data and tasks, forward them to the system and send its responses to the evaluation
storage. Adapters stop the benchmarked system and terminate after they receive a
command indicating that all tasks have been completed.
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3.4.5 Benchmark Workflow
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Figure 3.9.: Simplified overview of the general benchmarking workflow. Parts of the plat-
form (e.g., the user interface) are left out and the benchmark controller creates
other containers directly, without sending requests to the platform controller.
Solid arrows indicate a communication via the message bus while dashed
arrows represent an interaction with Docker swarm.

Since the platform was designed for executing benchmarks (U1), we defined a
typical workflow of benchmarking a Big Linked Data system. The workflow is
abstracted to make sure that it can be used for benchmarking all steps of the Linked
Data life cycle. Figure 3.9 shows a sequence diagram containing the steps as well as
the type of communication that is used. Note that the orchestration of the single
benchmark components is part of the benchmark and can be different across different
benchmark implementations.

Initialization Phase

At the beginning of the benchmarking process, the platform controller makes sure
that a benchmark can be started. This includes a check to make sure that all
hardware nodes of the cluster are available. The platform controller then instantiates
the system adapter. The said adapter first initializes, then starts the system to be

54 Chapter 3 Benchmarking Linked Data Systems



benchmarked and makes sure that it is working properly. Finally, the adapter sends
a message to the platform controller to indicate that it is ready. Once the system
adapter has been started, the platform controller generates the benchmark controller.
The task of the benchmark controller is to ensure that the data and tasks for a given
benchmark are generated and dispatched according to a given specification. To
achieve this goal, the controller instantiates the data and task generators as well as
the evaluation storage. It then sends a message to the platform controller to indicate
that it is ready.

Benchmarking Phase

The platform controller waits until both the system adapter and the benchmark
controller are ready before starting the benchmarking phase by sending a start
signal to the benchmark controller which starts the data generators. The data
generators start the data generation algorithms to create the data that will underlie
the benchmark. The data is sent to the system adapter and to the task generators.
The task generators generate the tasks and send them to the system adapter, which
triggers the required processing of the data in the system. The system response is
forwarded to the evaluation storage by the system adapter. The task generators store
the corresponding expected result in the evaluation storage. After the data and task
generators finish their work, the benchmarking phase ends and both the generators
and the system adapter terminate.

Evaluation Phase

During the evaluation phase, the benchmark controller creates the evaluation mod-
ule. The evaluation module loads the results from the evaluation storage. This is
carried out by requesting the result pairs, i.e., the expected result and the result
received from the system for a single task, from the storage. The evaluation module
uses these pairs to evaluate the system’s performance and to calculate the KPIs. The
results of this evaluation are returned to the benchmark controller before the evalu-
ation module and storage terminate. The benchmark controller adds information
for repeating the experiment, e.g., its parameters, to the evaluation results, sends
them to the platform controller and terminates. Note that this makes sure that
all the data is still available, although the benchmark or the benchmarked system
are deleted from the servers (A2). After the benchmark controller has finished its
work, the platform controller can add additional information to the result, e.g., the
configuration of the hardware, and store the result. Following this, a new evaluation
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can be started. The platform controller sends the IRI of the new experiment result to
the analysis component. The analysis component reads the evaluation results from
the storage, processes them and stores additional information in the storage.

Importantly, the platform allows for other orchestration schemes. For example, it
is possible to generate all the data in a first step before the task generators start
to generate their tasks based on the complete data. In another variation, the task
generators can also be enabled to generate a task, wait for the response of the system
and then send the subsequent task.

3.5 Mimicking real-world RDF Graphs

As described in the previous sections, benchmarking an Linked Data system typically
relies on data, and the creation and design of datasets is a crucial part of the design of
a benchmark [85]. For example, given that the performance of triple stores changes
across dataset versions [67, 209], there is a need to predict the future performance of
storage solutions given existing versions of a dataset. Such a prediction can facilitate
the deployment of reliable knowledge graph infrastructures, the timely acquisition
and alteration of software components, and the maintenance of quality-of-service
requirements.

In this Section, we hence address the challenge of predicting the topology of future
versions of knowledge graphs given current versions. We use SPARQL queries as
a proxy to evaluate the quality of our prediction. Since benchmarking has been
traditionally associated with storage [109], we developed the mimicking algorithm
with a focus on querying performance. However, this is not an intrinsic limitation
of the algorithm, which aims to mimic graph topology. This task differs from that
addressed by current RDF generators, which assume a particular dataset or ontology
(e.g., universities) and generate data based thereupon [14, 16, 89, 114, 248, 272].

We formalize the problem as follows: Given versions G = {G1, . . . ,G|G |} of a knowl-
edge graph (e.g., WikiData, DBpedia, MusicBrainz), we aim to learn a synthetic
dataset generator which allows the prediction of the performance and ranking of
storage solutions on a version of G of size νR, where νR is the number of IRI
resources the generated version should have. We use training data in form of
G = {G1, . . . ,G|G |} to learn graph-specific invariants, which we define as functions
Λ whose results have a low variance on G and a high variance on other sets of
graphs disjoint from G . We learn these functions using a refinement operator ρ for
arithmetic functions. We show that our operator is finite, redundant, and complete.
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Figure 3.10.: Overview of the 5 steps of LEMMING.

Our experiments show that our approach is able to generate datasets with which the
ranking on real datasets can be approximated with a root mean squared error on
ranks under 0.15.

Figure 3.10 shows an overview of our approach LEMMING. It takes the set of versions
G as input. It should be noted that we assume that all graphs in the given set are fully
materialized, i.e., all implicit triples that can be inferred based on the ontology of the
graph have been made explicit. Our approach comprises the five steps depicted in
Figure 3.10. First, the given graphs are analyzed to gather necessary statistics. After
that, the graph-specific invariants Λ for G are learned using a refinement operator
ρ. In parallel, an initial graph of size νR is generated, which is further refined to
meet the values of the expressions Λ in Step 4. Finally, the graph is finalized by
adding literals and exporting it to RDF. These five steps are further detailed in the
following.

3.5.1 Graph Analysis

First, the given set of graphs G is analyzed. We assume that all graphs in G are fully
materialized. We separate the triples of each given graph into two sets. Similar to
datatype and object properties defined in Definitions 2.12 and 2.13, respectively, we
distinguish between datatype and object triples. Datatype triples have a literal as
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object while object triples have a blank node or IRI as object. For a given knowledge
graph G, these two subsets of T G are defined as follows:

TLG = {(s, p, o) |(s, p, o) ∈ T G ∧ o ∈ L} , (3.1)

TRG = {(s, p, o) |(s, p, o) ∈ T G ∧ o ∈ I ∪B} . (3.2)

We also define a subset of nodes of a given knowledge graph that contains the blank
nodes and IRI resources but not the literals as follows:

V RG = V G \ LG = RG ∪BG . (3.3)

We start the analysis with the calculation of several metrics for the object triple parts
of the given graphs. The density of each knowledge graph Gi ∈ G , denoted, δGi is
determined based on the object triples as follows:

δGi =
|TR,Gi

|
|V R,Gi

|
. (3.4)

Let CG be the set of all classes that exist in G and C ∈ 2|CG | a set of classes.
We determine the distribution over sets of classes C ∈ 2|CG | by calculating the
probability that a vertex is an instance of exactly all classes in C. This probability is
defined as

PGi (C) =

∣∣∣{vj |vj ∈ V R,Gi
∧ C = cGi(vj)

}∣∣∣∣∣∣V R,Gi

∣∣∣ , (3.5)

where cGi(vj) is the mapping function that derives the set of all classes for the node
vj according to knowledge graph Gi as defined in Section 2.1.2. In a similar way,
the probability that an edge has p as property is calculated using

PGi (p) =

∣∣∣{(s, p, o)|(s, p, o) ∈ TR,Gi

}∣∣∣∣∣∣TR,Gi

∣∣∣ . (3.6)

For pairs of class sets (Cs, Co), the probability that the subject and object vertices
of an edge are instances of the classes in Cs and Co, respectively, is determined
using

PGi ((Cs, Co)| p)

=

∣∣∣{(s, p, o)|(s, p, o) ∈ TR,Gi
∧ Cs ⊆ cGi(s) ∧ Co ⊆ cGi(o)

}∣∣∣∑
Cj⊆CG

∑
Ck⊆CG

∣∣∣{(s, p, o)|(s, p, o) ∈ TR,Gi
∧ Cj ⊆ cGi(s) ∧ Ck ⊆ cGi(o)

}∣∣∣ . (3.7)
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We also collect which types of triples occur in the graph, i.e., which combination
of sets of classes and property occur. We will use these observed combinations as
constraints for our graph generation process. Let (Cs, p, Co) be a single constraint,
i.e., a single combination of a set of classes Cs for the subject, a set of classes Co

for the object, and a property p for the predicate of a triple. The set of constraints
collected on a given graph Gi is defined as follows:

ΩGi =
{

(Cs, p, Co)|(s, p, o) ∈ TR,Gi
∧ Cs = cGi(s) ∧ Co = cGi(o)

}
. (3.8)

For each datatype property p ∈ PL,Gi
, we collect the average number of outgoing

edges with said property that the instances of a class set Cj in Gi have. We call this
number dCj ,p,Gi define it as follows:

dCj ,p,Gi =

∣∣∣{(s, p, o)|(s, p, o) ∈ TL,Gi
∧ Cj ⊆ cGi(s)

}∣∣∣
|{s|Cj ⊆ cGi(s)}|

. (3.9)

After analyzing the single graphs, the analysis results are summarized as follows:

δG = 1
|G |

∑
Gi∈G

δGi , (3.10)

PG (C) = 1
|G |

∑
Gi∈G

PGi (C) , (3.11)

PG (p) = 1
|G |

∑
Gi∈G

PGi (p) , (3.12)

PG ((Cs, Co)| p) = 1
|G |

∑
Gi∈G

PGi ((Cs, Co)| p) , (3.13)

ΩG =
⋃

Gi∈G

ΩGi , (3.14)

dCj ,p,G = 1
|G |

∑
Gi∈G

dCj ,p,Gi . (3.15)

In addition to that, we gather the degrees of the vertices that are instances of
all classes over all graphs in G . The degrees are used to determine the degree
distribution ςCj ,G for each Cj . This allows the usage of different types of distributions
for different sets Cj . For each property p in the datatype triples TL,G , we gather
data about the literal values these triples of this property have as object. This data is
used to create a literal value distribution ℓp,G for each datatype property.
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3.5.2 Learning Graph Invariants

Our approach to learning graph invariants is based on a refinement operator ρ,
which uses a specificity function as heuristic to measure the quality of an arithmetic
expression. In the following, we begin by presenting ρ and prove that it is finite,
redundant, and complete. We then present how we compute the specificity of
expressions. Finally, we combine the refinement operator and the specificity function
to learn graph invariants.

Operator

Let A(F) be the space of all arithmetic expressions over a finite set F of predefined
real-valued functions over the set of all RDF graphs and a finite set of binary
arithmetic operations O = {+,−,×, /}. We denote the i-th element of F with fi.

Example 3.1. We can imagine F to be the set of functions {fdmin , fdmax}, which return
the minimal (dmin) and maximal (dmax) degree of resources in a graph, respectively.

Every arithmetic expression λ ∈ A(F) created with the binary operators O can be
naturally represented as a binary expression tree [219]. We say that an expression
λ1 is subsumed by an expression λ2 (denoted λ1 ⊑ λ2) iff λ1’s tree representation is
a subtree of λ2’s tree representation.

Example 3.2. λ1 = (fdmax + fdmin) is subsumed by λ2 = (fdmax + fdmin)/fdmin .

The subsumption relation defines a partial ordering over A(F). Let ⊛ ∈ O be a
binary operator. We define the operator ρ : A(F)→ 2A(F) as follows:

ρ(λ) =


F if λ is the empty expression λ∅,⋃
fi∈F

⋃
⊛∈O
{λ⊛fi} else.

(3.16)

Example 3.3. Let F = {fdmin , fdmax}. Then ρ(fdmin) = {fdmin+fdmin , fdmin−fdmin , fdmin×
fdmin , fdmin/fdmin , fdmin + fdmax , fdmin − fdmax , fdmin × fdmax , fdmin/fdmax}.
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Figure 3.11.: A graphical representation of the two binary expression trees of Example 3.2’s
expressions.

We call two arithmetic expressions λ1 and λ2 in A(F) equivalent iff they return the
same value for all input graphs. Based on this definition of equivalence, we can show
that ρ is a finite, redundant, and complete refinement operator over (A(F),⊑):27

ρ is a refinement operator. By virtue of the construction of ρ, it is evident that
∀λ ∈ A(F) ∀λ′ ∈ ρ(λ) : λ ⊑ λ′. Given that ∀λ ∈ A(F) : λ∅ ⊑ λ because the tree
representation of λ∅ is the empty tree, we can conclude that ∀λ′ ∈ ρ(λ) : λ ⊑ λ′. By
virtue of the definition of refinement operators given by van der Laag et al. [294],
we can conclude that ρ is a refinement operator.

ρ is finite. A refinement operator is called finite if the set of one-step refinements, i.e.,
the number of elements created with a single application of the refinement operator
for a given input, is finite [294]. The finiteness of ρ is given by |ρ(λ)| = |O||F| <∞
for all non-empty expressions and |ρ(λ∅)| = |F| <∞ for the empty expression.

ρ is redundant. We call a refinement operator redundant if at least two differ-
ent sequences of application of the refinement operator can lead to the same
expression [294]. ρ is redundant because there are two refinement paths from
λ∅ to the equivalent expressions f1 + f2 and f2 + f1, i.e., λ∅ → f1 → f1 + f2 and
λ∅ → f2 → f2 + f1.

ρ is complete. A refinement operator is called complete if it can generate an expression
λ equivalent to any λ′ ∈ A(F) [294].28 Equation 3.3 shows that ρ refines a given
expression λ by appending a binary operation and a function on the right side. If λ
is represented as a binary expression tree the refinement changes this tree by using

27For the sake of space, we refer the interested reader to van der Laag et al. [294] for more details
on refinement operators.

28Our definition of completeness covers global completeness. We do not claim that our refinement
operator offers local completeness [195].
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the tree’s root node as left child of the newly added operator and making the new
operator the new root node with the added function as it’s right child. Figure 3.11
shows an example based on the two expressions of Example 3.2. This leads to
unbalanced trees since the left subtree of a node might be a complex expression
while the right node is always a single function. We name this a left deep tree.
Hence, ρ is complete if it is possible that every binary expression tree over O can be
represented as such a left deep tree. It is possible to transform many expressions
directly into a left deep tree. Section A.1 lists several basic examples. However, since
our refinement operator is able to generate polynomials, it can create Taylor series
that approximate expressions that cannot be transformed directly into a left deep
tree [304].29

Specificity

We can compute how characteristic an expression λ is for G by measuring the
invariance of its values over all graphs in G and by comparing it with negative
example graphs. We begin by using a set of graph generators G for generating a
set of negative examples G̃ made up of |G| × |G | graphs

{
G̃1, . . . , G̃|G|×|G |

}
. G can

comprise any off-the-shelf graph generator. During the generation, we ensure that
for each generator in G, ∀i ∈ [1, |G |] : |V Gi | = |V G̃i

|. The set of negative examples
is used to contrast the positive examples found in G during the learning of the
graph-specific invariants. First, we use the following variance-inspired measure to
compute how close λ is to being an invariant of G :

h(λ,G ) = 1−

|G |∑
i=1

|G |∑
j=1

(λ(Gi)− λ(Gj))2

max
({

(λ(G1))2 , . . . ,
(
λ(G|G |)

)2
})
|G |(|G | − 1)

. (3.17)

For invariants, h(λ,G ) = 1. h treats expressions of all lengths the same. For the
sake of computational efficiency, we would want h to prefer shorter expressions over
longer ones. To achieve this goal, we extend h by defining h′ as follows:

h′(λ,G ) = h(λ,G )− u|λ| . (3.18)

where |λ| is the number of arithmetic operators in λ and u ∈ [0, 1] is a small
constant.30

29Note that for some expressions the Taylor series does not converge [304]. Hence, the refinement
operator would have to generate an infinite long polynomial to approximate such an expression.

30We set u = 0.1 in all experiments.
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While h′ captures how close λ is to being a short invariant on G , it fails to capture
how specific this expression is for G . For example, while the expression f1 − f1 is a
trivial invariant for G , it is also an invariant for any non-empty set of graphs. We
alleviate this problem by using the following function:

s(λ,G , G̃ ) = 2h′(λ,G )(1− h′(λ, G̃ ))
h′(λ,G ) + (1− h′(λ, G̃ ))

. (3.19)

s(λ,G , G̃ ) is the harmonic mean of h′(λ,G ) and 1− h′(λ, G̃ ) and is a measure of the
specificity of λ as an invariant for G . For u = 0, s(λ,G , G̃ ) = 1 if λ is an invariant of
G (i.e., h′(λ,G ) = 1) and not an invariant for G̃ (i.e., h′(λ, G̃ ) = 0).

Learning Approach

The invariants for G can be learned as follows. We begin by generating G̃ using
off-the-shelf graph generators. As suggested by previous publications on negative
sampling (see, e.g., [264]), the choice of the models should not affect our results
and is hence not further analyzed in this work. We initialize the set of candidate
expressions Λ with {λ∅}. The set Λ′ of seen expressions is initialized with ∅. We
then iterate the following three steps a predefined number of times:31

1. Selection: λmax = argmax
λ∈Λ\Λ′

s(λ,G , G̃ ).32

2. Refinement: Λ = Λ ∪ ρ(λmax).
3. Update: Λ′ = Λ′ ∪ {λmax}.

Finally, we select the set Λmax comprising the best performing expressions as our
final output.

3.5.3 Initial Graph Generation

The initial graph generation step creates a first graph Ġ0 of the target size. To
generate the graph, the number of edges is computed based on the given number
of IRI vertices νR and the average density δG . After that, the classes and properties
are assigned to the vertices and edges based on the class and property distributions,
respectively. It should be noted that the class assignment results in the two mappings
cĠ0

and iĠ0
as defined in Section 2.1.2. Finally, the edges are used to connect the

31In our experiments, we use 50 iterations.
32Given that ρ is redundant, we exploit the commutativity and the associativity of some arithmetic

operations to detect and remove duplicate expressions from Λ in our implementation.
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vertices. We achieve this by applying the following three steps for each edge. First,
the set of possible classes for the subject and the object of the edge are determined.
Second, the classes of the two endpoints (Cs and Co) of the edge are chosen from
these sets. Third, two instances are chosen which will be connected by the edge
from the two sets of vertices that are instances of the chosen classes.

Class Set Selection

This first step uses the previously collected constraints ΩG . Let p be a property
and ωs = (p, Co) be a function that returns a set of sets of classes whose instances
are potential subjects of edges with p and a an object vi with cĠ0

(vi) = Co. Let
ωo = (p, Co) be a similar function for potential object classes. We define the two
function as follows:

ωs(p, Co) = {Cs|(Cs, p, Co) ∈ ΩG } , (3.20)

ωo(Cs, p) = {Co|(Cs, p, Co) ∈ ΩG } . (3.21)

Both functions can be used as ωs(p, ∗) and ωo(∗, p) where ∗ donates any set of
classes.

Endpoint Class Definition

We propose three different approaches for selecting the set of classes of the two
endpoints of a given edge. The approach Uniform Class Selection (UCS) randomly
draws Cs from ωs(p, ∗) using a uniform distribution. In the same way, Co is chosen
from ωo(Cs, p).

The approach Biased Class Selection (BCS) relies on the PG ((Cs, Co)| p) probabilities
of the different class sets to sample the class sets for the subject and object of the
edge. For each set of classes Ci ∈ ωs(p, ∗) the probability PG ((Cs, ∗)| p) is used. It
is determined as follows:

PG ((Ci, ∗)| p) =
∑

Cj∈ωo(Ci,p)
PG ((Ci, Cj)| p) . (3.22)

Based on these probabilities, a class set Cs is sampled for the subject of the edge.
Based on Cs, a set of classes is sampled for the object of the edge. For each possible
class set Ci ∈ ωo(Cs, p) the probability PG ((Cs, Ci)| p) is used for that.
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While UCS and BCS sample Cs before Co, the Clustered Class Selection (CCS) samples
both class sets at the same time. For each possible class set pair (Ci, Cj) with
(Ci, p, Cj) ∈ ΩG , its probability PG ((Ci, Cj)| p) is used.

Vertex Selection

After the classes for the subject and object vertices of the edge are chosen, the two
single vertices with these classes have to be sampled. For sampling two vertices, the
Uniform Instance Selection (UIS) assigns a uniform probability to all vertices of the
sets iĠ0

(Cs) and iĠ0
(Co), respectively.

In contrast, the Biased Instance Selection (BIS) approach uses the degree distributions
ςCj ,G to assign degree weights to the single vertices. For each vertex vi ∈ V , a
degree weight wi is sampled from ςcĠ0

(vi),G . Based on these weights, a probability
P (vi|Cj) is assigned to each vertex to be chosen when sampling a vertex for a given
set of classes Cj . The probability is defined as

P (vi|Cj) = wi/
∑

vk∈iĠ0
(Cj)

wk . (3.23)

The chosen vertices are connected by the given edge. However, if both vertices
are already connected with an edge that has the same property p two new vertices
have to be sampled. By combining the three approaches for selecting the subject
and object classes for an edge with the two techniques to select the single vertices,
six approaches are obtained: UCS-UIS, UCS-BIS, BCS-UIS, BCS-BIS, CCS-UIS, and
CCS-BIS.

3.5.4 Graph Amendment

The initial graph Ġ0 is further amended iteratively based on the set of characteristic
expressions determined on the set of original graphs. To this end, we define an error
score that is used to measure the difference between the values of the invariant
expressions for the original graphs G and the generated graph Ġk. Let Λmax be the
set of the best invariant expressions learned on G as described in Section 3.5.2. Let
µi be the average value the expression λi returns for the original graphs and let σi

be its standard deviation. Let a(Ġk, λi, µi, σi) be the difference function defined as
follows:

a(Ġk, λi, µi, σi) = (λi(Ġk)− µi)2

σ2
i

. (3.24)
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Let ε(Ġk) be the error of graph Ġk with respect to the characteristic expressions
defined as follows:

ε(Ġk) =
|Λmax|∑
i=1

a(Ġk, λi, µi, σi) . (3.25)

The target of the amendment phase is to optimize for the error score of the generated
graph by successive modifications. We achieve this goal by using a greedy approach.
In each iteration, the algorithm generates two new versions of Ġk by adding or
removing a random edge, respectively. Thereafter, the graph with the lower error
score is used for the next iteration. The amendment phase ends when a maximum
number of iterations is reached or no improvement has been achieved for several
iterations. The removal of an edge randomly chooses an edge and removes it. The
addition of a new edge starts with choosing a property p for the edge following the
property distribution. Based on the chosen property, the same steps as during the
generation of the initial graph are executed to assign subject and object vertices to
the newly generated edge.

3.5.5 Graph Completion

The completion phase takes the result graph Ġk of the amendment phase as input
and extends it to form the final, complete graph Ġ. First, datatype edges are created.
For each set of classes Cj and each datatype property p ∈ PL,G , the number of p
edges the instances of Cj should have is determined by multiplying the number of
instances with the average degree dCj ,p,G . Second, for each datatype edge, a literal
is generated by sampling a literal value from the previously learned distribution ℓp,G .
Third, the datatype edges are connected to a resource node within the graph. We
sample the vertex for this connection from the set of instances of Cj .

Finally, the graph is transformed into an RDF graph representation. To this end, each
resource vertex of the graph receives a generated IRI. With these IRIs, the graph can
be transformed into an RDF triple representation. After that, the rdf:type triples
are generated, i.e., for each vertex vj ∈ V Ġk

and class c ∈ cĠk
(vj) an RDF triple (vj ,

rdf:type , c) using the IRIs of vj and c, respectively.

3.6 Evaluation

The HOBBIT platform has already been used successfully in a large number of
challenges (see Section 3.7). Still, we evaluated our architecture in two different
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Table 3.2.: Platform benchmark results on a single machine (1 – 3) and a cluster (4, 5) (std.
dev. = standard deviation).

Experiments Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Data generators 2 2 2 1 3
Task generators 1 1 1 1 1
Queries 1,000 2,000 5,000 100,000 300,000

Avg. query runtime (in ms) 7,058 17,309 33,561 38,810 59,828
Query runtime std. dev. 686 4,493 3,636 22,517 24,540
Overall runtime (in s) 11.2 32.4 51.5 2,086 2,536
Queries per second (avg.) 44.9 31.0 48.6 865.1 774.2

respects. First, we simulated benchmarking triple stores using HOBBIT. These
experiments had two goals. First, we wanted to prove that the HOBBIT platform
can be used on single, lightweight hardware (e.g., for development purposes or for
benchmarks where the scalability and runtime are not of importance) as well as in a
distributed environment. Second, we wanted to evaluate the throughput of storage
benchmarks. In addition, we benchmarked several knowledge extraction tools and
studied the runtime performance of these systems for the first time.

In a third experiment, we used our graph mimicking algorithm LEMMING to generate
several synthetic graphs using the different variants of our approach. We bench-
marked triple stores based on the generated synthetic graphs and compared their
performance and ranking with the benchmark results we achieved on a held-out
dataset.

3.6.1 Triple Store Benchmark

To configure our simulation, we derived message characteristics from real data using
the Linked SPARQL Queries Dataset [242]—a collection of SPARQL query logs. This
collection of real query logs suggests that 1) the average length of a SPARQL query
is 545.45 characters and 2) the average result set comprises 122.45 bindings. We
assumed that the average size of a single result is 100 characters leading to a result
set size of approximately 12,200 characters which is created for every request by
our triple store simulation.

The platform was deployed on a small machine and on a server cluster.33 The single
benchmark runs are shown in Table 3.2. We executed the benchmark with three

33Single machine specifications: Dual Intel Core i5, 2.5 GHz, 4 GB RAM.
Cluster specifications: 1 master server (1xE5-2630v4 10-cores, 2.2GHz, 128GB RAM) hosting platform
components (including RabbitMQ message broker), 1 data server (1xE5-2630v3 8-cores, 2.4GHz,
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Figure 3.12.: Average runtime per document achieved by systems during the different
phases.

Table 3.3.: The effectiveness of the benchmarked systems (Micro measures).

System Precision (Prmic) Recall (Remic) F1-measure (F1mic)

Balie 0.321 0.293 0.306
FOX 0.505 0.543 0.523
Illinois 0.524 0.614 0.565
OpenNLP 0.351 0.233 0.280
Spotlight 0.513 0.411 0.456
Stanford 0.548 0.662 0.600

different numbers of queries on the smaller machine and two larger numbers of
queries on the cluster. Our results show that the platform can run even on the
minimalistic single machine chosen for our evaluation. Hence, the HOBBIT platform
can be used locally for smoke tests and development tests. In addition, our results
also clearly indicate the need for a platform such as HOBBIT by pointing to the
necessity to deploy benchmarking platforms in a large-scale environment to test
some of the Big Linked Data systems. Experiments with 5000 queries run on the
small machine clearly show an increase in the average runtime per query and the
standard deviation of the query runtimes due to a traffic jam in the message bus
queues. In contrast, our results on the cluster show that we are able to scale up
easily and run 20 times more queries per second than on the single machine.
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3.6.2 Knowledge Extraction Benchmark

For our second evaluation, we used Task 1B of the Open Knowledge Extraction
challenge 2017 [258] as use case. This task comprises the problem of spotting
named entities from a given text and linking them to a given knowledge graph. All
experiments were run on our cluster. We benchmarked the following named entity
recognition tools:

1. FOX [257],
2. The Ottawa Baseline Information Extraction (Balie) [196],
3. The Illinois Named Entity Tagger (Illinois) [222],
4. The Apache OpenNLP Name Finder (OpenNLP) [27],
5. The Stanford Named Entity Recognizer (Stanford) [97], and
6. DBpedia Spotlight (Spotlight) [179].

The entities that were found in the text by any of the tools are linked to a given
knowledge graph using AGDISTIS [190]. In our experiment, we used DBpedia 2015
as the reference knowledge graph.34

The aim of the benchmark was to measure the scalability and the accuracy of these
systems under increasing load, an experiment which was not possible with existing
benchmarking solutions. We used a gold standard made up of 10,000 documents
generated using the BENGAL generator included in the HOBBIT platform.35 The
evaluation module was based on the evaluation used for the Open Knowledge
Extraction challenge [258] and measured the runtime for single documents as well
as the result quality in terms of micro precision, recall, and F1-measure. We used 1
data and 1 task generator for our benchmark. The data generator was configured
to run through 5 velocity phases (2000 documents/phase) with differing delays
between single documents in each phase. The delays between the documents were
set to {1s, 1

2s,
1
4s,

1
8s, 0s} leading to an increasing workload of {1, 2, 4, 8,≈ 800}

documents per second.

The results presented in Figure 3.12 show that all approaches scale well when
provided with enough hardware. As expected, FOX is the slowest solution as it
relies on calling 5 underlying fully-fledged entity recognition tools and merging
their results. Our results also indicate that a better load balancing could lead to
even better runtimes. In particular, the runtime per document starts to increase as
soon as the tool cannot handle the incoming amount of documents in time and the

64GB RAM) hosting storages, 6 nodes (2xE5-2630v3 8-cores, 2.4GHz, 256GB RAM) divided into two
groups hosting either components of the benchmark or the benchmarked system.

34http://dbpedia.org; last accessed on 03.08.2022.
35http://github.com/dice-group/bengal; last accessed on 03.08.2022.
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documents start to be queued (see Phase 2 to 4). Additionally, the results show that
Balie is slower than the other fully-fledged entity recognition tools. Given that Balie
also has the lowest F1-score (see Table 3.3) it can be argued that removing Balie
from FOX could be an option to increase its efficiency.36

3.6.3 Graph Mimicking Experiment

We evaluate the graph generation LEMMING based on three different real-world
datasets and four different triple stores. The main aim of our evaluation is to measure
the performance of the selected triple stores based on our generated datasets and
compare it with that achieved by the same triple stores on an unseen version of the
dataset.

The three datasets we use, i.e., Semantic Web Dog Food (SWDF), Linked Geo Data
(LGD), and the International Chronostratigraphic Chart (ICC), are such that at least
three different versions are available. We use the latest version of each dataset as
held-out graph and its size as input parameter νR for our generation algorithm.
We use the six versions of LEMMING and compare it with a baseline algorithm to
generate graphs. Since all approaches are based on sampling mechanisms, we
execute each algorithm three times. After that, we evaluate four reference triple
stores—Virtuoso, Blazegraph, Fuseki, and GraphDB—on the held-out as well as the
generated datasets using IGUANA [67].37 IGUANA is a generic SPARQL benchmark
execution framework. It can be used to benchmark different triple stores with
different datasets in a comparable way. During the benchmarking, we measure the
query mixes per hour (QMpH) and queries per second (QpS). QpS is measured
for each query while QMpH summarizes the overall performance of a triple store
over all queries. The similarity between the measured values is calculated using the
Spearman rank correlation (SRC) for the QMpH values and the root mean squared
error (RMSE) for the QpS values.

36All experiment results are available at https://master.project-hobbit.eu/
experiments/1501852310576,1501852574348,1501852527351,1501852487461,1501852242060,
1501852152692; last accessed on 03.08.2022.

37The stores are available at https://github.com/openlink/virtuoso-opensource/releases,
https://blazegraph.com/, https://jena.apache.org, and https://graphDB.ontotext.com/, re-
spectively (last accessed on 03.08.2022).
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Table 3.4.: Features of the target graphs of the different datasets.

SWDF LGD ICC

Triples 445 821 3 387 842 12 742
Resources (νR) 45 423 591 649 1 423
Queries 20 43 27

Datasets

SWDF comprises data about Semantic Web conferences from 2001 to 2015.38 The
data mainly focuses on persons, events, papers, and organizations related to these
conferences. Since the dataset is designed to build one version upon the previous
version we define it to have 15 versions—one version per year. Each version
comprises the previous version and the data of the conferences of the next year. The
last version of 2015 is the held-out version. The LGD dataset is a subset of the Linked
Geo Dataset [263]. We use the Military and Craft files of the three consecutive
versions of 2013, 2014, and 2015. The latter is used as held-out version. The third
dataset, ICC, represents the chronostratigraphic chart as RDF [69, 70, 71, 72]. This
chart defines the geological time intervals including their names, start, and end dates
as well as their relations to each other. The dataset has been updated several times
leading to twelve versions in the years 2004–2018. All versions of all three datasets
are preprocessed by materializing all implicit knowledge that can be inferred based
on the ontology of the datasets. Table 3.4 shows the features of the target graphs.

We use LSQ [242] to retrieve real user queries to the datasets from query logs. We
use FEASIBLE [243] to generate benchmark queries from the LSQ queries, which
can be used to benchmark the triple stores based on the different datasets. Table 3.4
shows the number of queries generated for the different datasets. For each dataset,
the ontology is retrieved. If a dataset makes use of more than one ontology, the
intersection of the ontologies is used. For each query, every IRI that is not contained
in the respective ontology (i.e., each IRI that is neither a class nor a property) is
replaced by a template variable [67]. IGUANA replaces these variables on the fly
with resources from the graph used for benchmarking. This leads to several queries
with different resources. It is ensured that only queries with a non-empty result are
used for the benchmarking. This allows the usage of queries comprising instance IRIs
although the target graph as well as the generated graphs have different instance
IRIs.

38https://old.datahub.io/dataset/semantic-web-dog-food; last accessed on 03.08.2022.
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Table 3.5.: Set of metrics F used for the search of invariant expressions.

Metric Description

#edges The number of edges.
#vertices The number of vertices.
avgDegree Average vertex degree.
maxInDegree The highest in-degree of a vertex found in the graph.
maxOutDegree The highest out-degree of a vertex found in the graph.
stdDevInDegree Standard deviation of the vertex in-degrees.
stdDevOutDegree Standard deviation of the vertex out-degrees.
#eTriangles Number of unique triangles formed by three edges.
#vTriangles Number of unique triangles formed by three vertices.

Configuration

Table 3.5 shows the set F, i.e., the set of metrics that are used to learn the invariant
expressions of the input graphs. The refinement operator is configured to use 50
iterations for its search with u = 0.1. As a set of graph generators G for negative
examples G̃ we use generators for star, ring, grid, clique, and bipartite graphs. Our
algorithm is configured to use a maximum of 50 000 iterations to reduce the error
score during the amendment phase. The phase ends earlier if the error score does
not improve for 5 000 iterations. Further, we configure the BIS approaches to rely
on Poisson distributions to mimic the degree distributions ςCj ,G . The distribution
parameters are learned for each Cj individually.

Depending on the datatype of literals, we configure the algorithm to use different
literal value distribution types. For datatype properties with literals that have a
numeric, Date or DateTime datatype, we determine the minimum and maximum
values. After that, we define the literal value distribution ℓp,G for such a time-related
property p as uniform distribution in the determined range of the minimum and
maximum value. All other literals are treated as datatype string. For the generation
of such literals, we define a distribution that always returns a new string making all
string-based literals unique.

Baseline

An analysis of the datasets showed that they do not have a common type of degree
distribution, i.e., it is not possible to assign them to a common class of graphs like
scale-free or Poisson graphs. However, since it has been shown that the degree
distributions of a large number of RDF datasets follow a power-law distribution [94,
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Table 3.6.: Invariant characteristic expressions per dataset.

ID Expression

SW
D

F

λ1 maxInDegree /((#vertices × stdDevOutDegree)+ maxInDegree)
λ2 maxInDegree /(#vertices + maxInDegree − stdDevOutDegree)
λ3 maxInDegree /((#vertices / maxInDegree) + maxInDegree)
λ4 maxInDegree /(#edges+ maxInDegree − stdDevOutDegree)
λ5 maxInDegree /((#vertices / stdDevOutDegree)+ maxInDegree)

LG
D

λ1 (2× #vertices − #edges)/(#edges × avgDegree)
λ2 #vertices /(#edges × avgDegree2)
λ3 (#vertices − #edges)/(#edges + maxOutDegree − #vertices)
λ4 #vertices /(#edges ×(avgDegree −1.0))
λ5 (#vertices − #edges)/(#edges + maxInDegree − #vertices)

IC
C

λ1 maxInDegree /((#edges − #vertices)+ maxInDegree)
λ2 maxInDegree /((#vertices / maxOutDegree)+ maxInDegree)
λ3 maxInDegree /((#vertices − #edges)+ maxInDegree)
λ4 maxInDegree /((#vertices × stdDevInDegree)+ maxInDegree)
λ5 maxInDegree /((#vertices / maxInDegree)+ maxInDegree)

312] we use an implementation of the Barabasi-Albert model [9]. This algorithm
adds one node after the other to the graph by creating δG new directed edges. The
direction of the edge is sampled from a Bernoulli distribution with the probability
0.5 for both cases. The second vertex for each edge is sampled based on the degree
of the vertices, i.e., the higher the degree, the higher the probability that a vertex is
chosen. After the generation of the graph, the properties and node types are sampled
from PG (p) and PG (C), respectively.

Results

Tables 3.6 and 3.7 summarize the results of the graph generation process. Table 3.6
shows the graph invariants per dataset. Table 3.7 shows the final error score ε(Ġ)
and the runtimes of the different graph generation approaches—the baseline (BL)
and the six combinations of the three class selection variants Uniform Class Selection
(UCS), Biased Class Selection (BCS), and Clustered Class Selection (CCS) as well
as the two instance selection variants Uniform Instance Selection (UIS) and Biased
Instance Selection (BIS). Table 3.8 shows a summary of the triple store evaluation.
It contains the rank correlation of the QMpH values and the RMSE for the QpS
values.

Tables 3.6 and 3.7 summarize the results of the graph generation process. Table 3.6
shows the graph invariants per dataset, which clearly differ across datasets. A
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Table 3.7.: Average results of the different expressions on the original graphs, and differ-
ence of the average values on the target graph and the generated graphs in
percentages of the original graphs’ average. BL marks the baseline approach.
The last two lines of the results on a dataset contain the average error scores
ε(Ġ) of the generated graphs and the average runtimes. †,††,†††—1, 2 or all 3
runs terminated before reaching the maximum number of iterations, respec-
tively.

Exp.
Original Target UCS BCS CCS

BL
graphs graph UIS BIS UIS BIS UIS BIS

SW
D

F

λ1 0.0926 -16.05% -61.86% -63.24% 3.48% 0.00% 0.00% 0.00% -99.18%
λ2 -0.1751 -15.72% 0.79% 0.69% -0.59% -0.09% -0.09% -0.09% -99.33%
λ3 0.9997 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% -35.10%
λ4 0.1294 -11.98% 0.77% 0.69% -0.26% 0.12% 0.12% 0.12% -99.09%
λ5 0.9965 0.15% 0.28% 0.29% -0.11% -0.11% 0.00% -0.06% -35.50%

Error ε(Ġ) 0.3076 0.3195 0.0034 0.0011 0.0002 0.0004 1.4299
Runtime (in hours) 3.4 3.5 † 2.9 3.5 ††† 0.9 ††† 0.8 0.0

LG
D

λ1 -0.1250 -0.06% 0.02% 0.03% 0.02% 0.02% -0.03% 0.02% 0.03%
λ2 0.0160 -11.17% -1.00% -1.43% -0.96% -0.13% 4.19% -0.07% -4.00%
λ3 -0.9978 0.12% -0.04% -0.07% 0.17% 0.17% -0.02% 0.21% 0.18%
λ4 0.0851 -8.77% -0.77% -1.11% -0.74% -0.09% 3.26% -0.04% -3.11%
λ5 -0.7857 0.68% 0.04% 0.00% 0.04% -0.03% -0.43% -0.04% 27.22%

Error ε(Ġ) 0.0008 0.0014 0.0038 0.0035 0.0046 0.0051 6.7174
Runtime (in hours) †† 36.1 † 56.0 48.4 †† 49.1 ††† 35.3 †† 51.7 0.1

IC
C

λ1 0.0797 15.63% 0.04% 0.04% 0.04% 0.04% 0.37% 0.04% -87.79%
λ2 0.9936 -0.03% -0.11% 0.00% 0.00% 0.00% 0.00% -0.17% -14.74%
λ3 -0.0948 19.05% -0.04% -0.04% -0.04% -0.04% 0.35% -0.04% -89.54%
λ4 0.0168 3.02% 0.00% -0.05% -1.18% -0.05% -5.85% -0.23% -56.29%
λ5 0.9975 0.02% 0.04% 0.06% 0.04% 0.04% 0.04% 0.03% -14.18%

Error ε(Ġ) 0.0026 0.0020 0.0008 0.0007 0.0022 0.0056 124.8374
Runtime (in seconds) ††† 290.7 ††† 153.3 ††† 190.0 ††† 111.3 505.3 ††† 218.0 0.6
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Figure 3.13.: The course of error values during the amendment phase for the SWDF dataset
and all variants of LEMMING. The three rows are the class selection variants
while the two columns show the instance selection variants.

comparison of the values of the graph invariants for the original graphs, the target
graph and the generated graphs is shown in Table 3.7. The difference between the
values of the invariants for original graphs and the target graphs are low for most of
the graph invariants we learned. These results corroborate the assumption of the
existence of graph invariants for RDF datasets.
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Table 3.8.: SRC of the triple store systems based on their QMpH on the generated graphs
compared to the ranking on the target graph and average RMSE values of the
QpS values measured on the target graph and the generated graphs.

Approach
SWDF LGD ICC

SRC RMSE SRC RMSE SRC RMSE

UCS-UIS 0.87 81.1 1.00 111.8 1.00 280.9
UCS-BIS 0.93 82.0 1.00 115.3 0.93 219.6
BCS-UIS 0.93 88.2 1.00 115.3 1.00 261.2
BCS-BIS 0.93 64.1 1.00 117.6 1.00 242.8
CCS-UIS 1.00 72.7 1.00 117.3 1.00 255.6
CCS-BIS 0.93 95.8 1.00 115.9 0.93 229.0

BL 0.32 170.5 1.00 159.1 0.93 222.6

Table 3.7 also shows the overall error ε(Ġ) and the runtimes of the different graph
generation approaches. Note that for all three datasets the baseline leads to the
generation of graphs with the highest error score ε(Ġ). A comparison of the errors
ε(Ġ) of our generation approaches (see Table 3.7) suggests that none is better overall.
Still, our results suggest that the different approaches for selecting the tail and head
classes for an edge (UCS, BCS, and CCS) have a higher influence on the overall
error than the technique to select the single vertices (UIS and BIS). With respect to
runtime, all three approaches take several hours for the generation of larger graphs.
As expected, the runtimes are shorter for the small ICC graph. The majority of the
time is used in the amendment phase. Hence, some approaches lead to shorter
runtimes if the amendment phase is stopped earlier after 5 000 iterations without
any improvement. The course of the error values for the SWDF dataset is shown in
Figure 3.13.39

Table 3.8 shows a summary of the triple store evaluation, i.e., the rank correlation of
the QMpH values and the RMSE for the QpS values. The QMpH values suggest that
the benchmark on SWDF is harder than that on LGD. On both target graphs, Virtuoso
shows the best performance with 1,018 and 1,460 QMpH respectively. In contrast,
ICC seems to be less hard since all triple stores achieve values up to 434,911 QMpH
(GraphDB). The results in Table 3.8 suggest that our approaches show a much better
performance than the baseline for the hard SWDF dataset. For the LGD dataset,
all generators achieve the same ranking of the triple stores. However, the average
RMSE value of the baseline is significantly higher.40 This is caused by much higher
runtimes of the benchmark queries on the BL graphs than on the target graph. For

39The figures for the LGD and ICC datasets can be found in the appendix as Figures A.2 and A.3,
respectively.

40We use a Wilcoxon signed rank test with a threshold of 0.1%.
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the ICC dataset, the prediction of the order of the triple stores seems to be trivial
as well. However, because of the higher QpS values achieved by all triple stores, a
small difference in the query runtime leads to large differences in the calculated
QpS values and, hence, to large RMSE values. Although the UCS-BIS approach
achieves the smallest RMSE value, its difference to the baseline as well as several
other approaches is not significant.41 Overall, our results suggest that LEMMING

is consistently better than the off-the-shelf approach. In addition, the differences
across the benchmarks propound that the difference in the performance of LEMMING

and the baseline is positively correlated with the difficulty of the benchmark.

3.7 Application

The HOBBIT platform is now being used by more than 3000 registered users that al-
ready have executed more than 16000 experiments with more than 40 benchmarks.42

The HOBBIT platform was also used to carry out 14 benchmarking challenges for
Big Data applications. It was used for the Grand Challenge of the 11th and 12th
ACM International Conference on Distributed and Event-Based Systems (DEBS 2017
and 2018) [112, 113]. The 2017 challenge was aimed at event-based systems for
real-time analytics. Overall, more than 20 participating systems had to identify
anomalies from a stream of sensor data.

The Open Knowledge Extraction Challenges 2017 and 2018 used the platform for
benchmarking Named Entity Recognition, Entity Linking, and Relation Extraction
approaches [258, 259]. For one of the challenge tasks a setup similar to our evalua-
tion in Section 3.6.2 was used. This evaluation revealed that the scalability of some
systems decreases drastically under realistic loads. While some of the benchmarked
solutions were able to answer single requests efficiently, they became slower than
competing systems when challenged with a large amount of requests [258].

The Mighty Storage Challenges 2017 and 2018 focused on benchmarking triple
stores [103, 104]. Their RDF data ingestion tasks showed that most triple stores
are unable to consume and retrieve triples (e.g., sensor or event data) efficiently.
This insight suggests that current triple stores need to significantly improve in their
scalability before they can be used for Big Data applications out of the box. The
derivation of this insight was made possible by HOBBIT’s support of distributed
systems and its distributed implementation that allows the generation of enough
data and queries to overload the triple stores.

41We use a Wilcoxon signed rank test with with a threshold of 2%.
42See http://master.project-hobbit.eu/experiments; last accessed on 03.08.2022.
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3.8 Limitations and Future Work

The HOBBIT benchmarking platform showed its applicability during several chal-
lenges and experiments described above. However, the platform comes with some
limitations and space for future enhancements which will be discussed in this sec-
tion.

The FAIR data principles are focusing on data management. Thus, not all of them
can be solely realised by the implementation of the platform. There are principles
that are at least partly in the responsibility of the organisation hosting the platform.
The license for the experiment results has to be defined by the hosting organization
(R1.1). Similarly, the combination of globally unique, persistent identifiers (F1) and
making them retrievable (A1) is supported by the platform implementation and our
online instance is deployed to enable this feature. However, the hosting party of a
new instance will have to define another persistent IRI namespace for experiments
and organize the redirection of requests from this namespace to the newly deployed
instance.

Another limitation can be seen in the fulfillment of F2, R1.3, and I2. The platform is
programmed to enhance the metadata of an experiment by adding all metadata that
the platform has about itself as well as the metadata of the benchmark and system
with which the experiment has been executed. However, since the benchmark and
system metadata are user defined their richness as well as the used vocabularies are
mainly depending on the user.

The design of the platform comes with two bottlenecks which we addressed by using
horizontal scaling. Firstly, the message bus which is used for the communication
might not be able to handle all the data in a reasonable amount of time. We handled
this issue by using RabbitMQ as message broker.43 It supports the deployment
of a cluster of message brokers increasing the possible throughput. Secondly, the
evaluation storage may reduce the benchmarked system’s performance by consuming
the results at a much lower pace than the system is sending them. To avoid this
situation, we chose RIAK—a key-value store which can be deployed as cluster.44

This enables the consumption of several system results in parallel.

An important limitation of the platform is the necessary knowledge about several
technologies and the platform APIs which is demanded. While viewing and searching
for experiment results is straight forward, the deployment of a new benchmark or a
new system can cause some effort for users, which have not worked with the platform

43https://www.rabbitmq.com; last accessed on 03.08.2022.
44https://riak.com/products/riak-kv/; last accessed on 03.08.2022.
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before. Especially for complex benchmarks the workflow described in Section 3.4.5
may have to be adapted. We created base implementations for different benchmark
and system components, developed example benchmarks and systems as open source
projects, created video tutorials and enhanced the documentation of the platform
over time incorporating user questions and feedback we received. However, the
further lowering of this entry barrier remains an important future task.

Additionally, we received feature requests from the community. These requests are
mainly targeting the user interface. However, one feature request focuses on the
sharing of data. At the moment, it is not possible for containers executed inside
the platform to share a common directory. Instead, data which has to be shared
needs to be sent using the message queues. In the future, we want to make use of a
feature of Docker containers which allows them to share a common data container
without exposing the local hard drives of the servers to the 3rd party programs that
are executed inside the containers of the benchmarks and the systems.

With respect to LEMMING, the main target is to improve its runtime to allow the
generation of larger graphs. In addition to that, several extensions are planned.
At the moment, the distribution of vertex degrees is always modeled as Poisson
distribution. In future releases, LEMMING will learn individual distribution types
for the different types of vertices. Thereafter, we plan to use LEMMING in various
settings, e.g., to generate large graphs to evaluate the scalability of triple stores.

3.9 Conclusion

This chapter presents three major contributions to the benchmarking of Linked Data
systems. First, we present an extension of GERBIL that enables a fair comparison of
knowledge extraction systems that use different reference knowledge graphs. At the
same time, our extensions reduces the influence of outdated IRIs that occur in many
manually created gold standards.

Second, the architecture of the HOBBIT benchmarking platform is presented, which
is based on real requirements collected from experts from across the world. The
platform is designed to be modular and easy to scale up. HOBBIT is hence the
first benchmarking platform that can be used for benchmarking Big Linked Data
systems. The platform has already been used in several challenges and was shown
to address the requirements of large-scale benchmarking for storage, predictive
maintenance, knowledge acquisition, and question answering. These challenges
showed clearly that HOBBIT can be used to measure both the scalability and accuracy
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of Big Data platforms. As the platform is not limited to a particular step of the Linked
Data life cycle and can be configured to use virtually any data generator and task
generator, it is well suited for benchmarking any step of the Big Linked Data life
cycle. A fully fledged implementation of the platform is available as an open-source
solution and has started to attract the developer community. It will also serves as
one of the key stones of the Innovative Training Network (ITN) KnowGraphs during
the next years.45 We hence aim to extend it so as to build the reference point for
benchmarking Big Linked Data applications.

Third, we present LEMMING, a graph generator for creating graphs that mimic a
given, real-world RDF dataset. We propose the usage of graph invariants and a
refinement operator that is able to find these invariants based on a given set of graph
metrics. Further, we propose six different approaches for the generation of a graph
with a given size that abides to the determined graph invariants. Our evaluation
shows that LEMMING is able to generate graphs that lead to similar benchmarking
results as the real-world graph while a comparable baseline struggled to achieve this
for all datasets. The contributions of this chapter will be used in other chapters of
this thesis to evaluate Linked Data systems.

45https://knowgraphs.eu/; last accessed on 03.08.2022.
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Crawling the Web of Data 4
The data on the Web are provided through means ranging from SPARQL endpoints
over simple dump files to information embedded in Hyper Text Markup Language
(HTML) pages. An indispensable step towards automating the usage of this data
is the automated and periodic gathering of information about available open data. A
necessary technical solution towards this end is a scalable crawler for the Web of Data.
While the need for such a solution is already dire, it will become even more pressing
to manage the growing amount of data that will be made available each year into
the future. At present, the number of open-source crawlers for the Web of data that
can be used for this task is rather small and all come with several limitations.

The efficiency and effectiveness of available open-source crawlers are typically
evaluated by crawling the Web for a set amount of time while measuring dif-
ferent performance indicators such as the number of requests performed by the
crawler [122, 133]. While this kind of experiment can be performed for a crawler at
a given point in time, the experiments are virtually impossible to repeat and thus,
their results are hard to compare with results of similar experiments. This is due to
several factors, including primarily the fact that the Web is an ever-changing, evolv-
ing network of single, partly unreliable nodes. Another influence is the geographical
location of the machine on which the crawler is executed. For example, geo-blocking
can have an influence on the shape of the crawled network. Executing the same
crawler on the same hardware might also lead to different evaluation results when
various internet service providers offering different connections and bandwidths are
used. In addition, the ground truth is not known in such experiments. Since the
content of the complete Web is unknown, it is hard to measure the effectiveness of a
crawler, i.e., its ability to retrieve relevant data. Hence, a benchmark for Data Web
crawlers is needed.

We address both gaps within this chapter. First, we present SQUIRREL [236]—a
distributed, open-source crawler for the Web of data.1 SQUIRREL [236] supports

¶ Parts of this chapter have been published as conference articles [236, 239]. The author of this
thesis is also the main author of these articles. For both publications, the author developed the
main ideas, designed, and implemented major parts of the solution, and wrote the majority of the
publication.

1Our code is available at https://github.com/dice-group/squirrel and the documentation at
https://w3id.org/dice-research/squirrel/documentation. (Last accessed on 04.08.2022.)
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a wide range of RDF serializations, decompression algorithms, and formats of
structured data. The crawler is designed to use Docker2 containers to provide
a simple build and run architecture [180]. SQUIRREL is built using a modular
architecture and is based on the concept of dependency injection [101]. This allows
for a further extension of the crawler and adaptation to different use cases.

Second, we propose ORCA [239]—a benchmark for Web Data Crawlers. The basic
idea of ORCA is to alleviate the limitations of current benchmarking approaches by
1) generating a synthetic Data Web and 2) comparing the performance of crawlers
within this controlled environment. The generation of the synthetic Web is based on
statistics gathered from a sample of the real Data Web. The deterministic generation
process implemented by our approach ensures that crawlers are benchmarked in a
repeatable and comparable way.

Throughout the rest of this chapter, we model a crawler as a program that is able
to

1. Download Web resources,
2. Extract information from these resources, and
3. Identify the addresses of other Web resources within the extracted information.

It will use these (potentially previously unknown) addresses to start with step 1
again in an autonomous way. A Data Web crawler is a crawler that extracts RDF
triples from Web resources. Note that this definition excludes programs like the LOD
Laundromat [30], which download and parse a given list of Web resources without
performing the third step.

This chapter has the following main contributions.

1. We present Squirrel—a distributed, open-source crawler for the Web of data.
2. We provide an approach to generate a synthetic Data Web.
3. Based on this generator, we present ORCA—the first extensible FAIR benchmark

for Data Web crawlers, which can measure the efficiency and effectiveness of
crawlers in a comparable and repeatable way.

4. We present the first direct comparison of SQUIRREL and a state-of-the-art Data
Web crawler in a repeatable setup.

5. We show how ORCA can be used to evaluate the politeness of a crawler, i.e.,
whether it abides by the Robots Exclusion Protocol [151].

6. We evaluate Data Web crawlers on synthetic graphs that mimic real-world
graphs by combining ORCA and LEMMING, which we presented in Section 3.5.

2https://www.docker.com/; last accessed on 04.08.2022.
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This chapter is organised as follows. Section 4.1 presents related work while
Section 4.2 describes the developed crawler. In Section 4.3, the benchmark for Data
Web crawlers is described before it is used in Section 4.4 to evaluate the Data Web
crawlers. Section 4.5 discusses the evaluation results as well as limitations of the
presented work. Section 4.6 describes two applications of our crawler before 4.7
concludes the chapter.

4.1 Related work

We separate our overview of the related work into two parts. First, we present
publications related to crawlers and their evaluations with a focus on Data Web
crawlers. Second, we present a brief overview of related work, with statistics
regarding the Semantic Web.

4.1.1 Crawlers and their Evaluation

The Mercator Web Crawler [122] is an example of a general Web crawler. The
authors describe the major components of a scalable Web crawler and discuss
design alternatives. The evaluation of the crawler includes an 8-day run, which
was compared to similar runs of the Google and Internet Archive crawlers. As
performance metrics, the number of HTTP requests performed in a certain time
period, and the download rate (in both documents per second and bytes per second)
are used. Additionally, further analysis is undertaken regarding the received HTTP
status codes, different content types of the downloaded data, and in which parts
of the crawler the most CPU cycles are spent. This publication is an example of
a classical crawler evaluation, which comes with the drawbacks explained in the
previous Section. Srinivasan et al. [262] present an evaluation framework for
comparing topical crawlers, i.e., crawlers that are searching for Web pages of a
certain topic. It relies on a given topic hierarchy and the real Web, which makes
it susceptible for the aforementioned drawbacks. The BUbiNG crawler [45] was
evaluated relying on the real Web as well as a simulation. This simulation was
carried out by using a proxy that generated synthetic HTML pages. However, the
authors do not give further details about the structure of the simulated Web.

There is only a small number of open-source Data Web crawlers available that can be
used to crawl RDF datasets. An open-source Linked Data crawler to crawl data from
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the Web is LDSpider3 [133]. It can make use of several threads in parallel to improve
the crawling speed, and offers two crawling strategies. The breadth-first strategy
follows a classical breadth-first search approach for which the maximum distance to
the seed IRIs can be defined as termination criteria. The load-balancing strategy tries
to crawl IRIs in parallel without overloading the servers hosting the data. The crawler
implements a static politeness strategy and offers the configuration of the delay that
is inserted between two consecutive requests. The crawled data can be stored either
in files or can be sent to a SPARQL endpoint. It supports a limited amount of RDF
serializations (details can be found in Table 4.1 in Section 4.3.2). In addition, it
cannot be deployed in a distributed environment. Another limitation of LDSpider
is the missing functionality to crawl SPARQL endpoints and open data portals. A
detailed comparison of LDSpider and SQUIRREL can be found in Sections 4.3.2
and 4.4.

A crawler focusing on structured data is presented by Harth et al. [118]. It comprises
a 5-step pipeline and converts structured data formats like XHTML or RSS into RDF.
The evaluation is based on experiments in which the authors crawl 100 thousand
randomly selected IRIs. To the best of our knowledge, the crawler is not available as
open source project.

Hogan et al. [127, 128] use a distributed crawler to index resources for the Semantic
Web Search Engine. In the evaluation, different configurations of the crawler—
different numbers of threads as well as machines on which the crawler has been
deployed—are compared, based on the time the crawler needs to crawl a given
amount of seed IRIs. To the best of our knowledge, the crawler is not an open-source
project.

Beek et al. [30] present the LOD Laundromat—an approach to download, parse,
clean, analyze, and republish RDF datasets. The tool relies on a given list of seed
URLs and comes with a robust parsing algorithm for various RDF serializations.
Fernández et al. [95] use the LOD Laundromat to provide a dump file comprising
650 thousand datasets and more than 28 billion triples.

A Web crawler extended for processing RDF data is the open-source crawler Apache
Nutch [146].4 Table 4.1 in Section 4.3.2 shows the RDF serializations, compressions,
and forms of structured data that are supported by the Apache Nutch plugin.5

3https://github.com/ldspider/ldspider; last accessed on 04.08.2022.
4http://nutch.apache.org/; last accessed on 04.08.2022.
5The information has been gathered by an analysis of the plugin’s source code.
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However, the plugin stems from 2007, relies on an outdated crawler version and
failed to work during our tests.6

Overall, the open-source crawlers currently available are either not able to process
RDF data, are limited in the types of data formats they can process, or are restricted
in their scalability.

4.1.2 The Data Web

There are several publications analyzing the Web of data that are relevant for our
work, since we use their insights to generate a synthetic Data Web. The Linked Open
Data (LOD) Cloud diagram project periodically generates diagrams representing the
LOD Cloud and has grown from 12 datasets in 2007 to more than 1200 datasets
in 2020 [177]. These datasets are entered manually, require a minimum size, and
must be connected to at least one other dataset in the diagram.

Other approaches for analyzing the Data Web are based on the automatic gather-
ing of datasets. LODStats [22, 90] collects statistical data about more than 9 000
RDF datasets gathered from a dataset catalog.7 In a similar way, Schmachten-
berg et al. [246] use the LDSpider crawler [133] to crawl datasets in the Web,
starting from a list of 560 000 seed IRIs. These IRIs are gathered from the datahub.io
dataset catalog, the billion triple challenge [117], and dataset advertisements on
the public-lod@w3.org mailing list. Overall, the authors collect more than 900 000
documents describing 8 million resources. These are grouped to 1014 datasets. Only
77 datasets are not crawled, since it is forbidden by the server’s robots.txt file.8

When analysing the crawled datasets, Schmachtenberg et al. find that most datasets
are only sparsely linked. One large, weakly linked connected component of the
graph comprises 71.99% of all datasets. 44% of all datasets have no outgoing links
to other datasets and thus have only incoming links, or are completely isolated. At
the same time a small number of datasets are highly linked.

Hogan et al. [130] gather and analyze 3.985 million open RDF documents from
778 different domains regarding their conformity to Linked Data best practices.
On average, 70.3% of the IRIs within a dataset are dereferenceable with a high
standard deviation, i.e., for some datasets, none of its IRIs offer this feature. From
the dereferenceable IRIs, 83.6% return triples with local outgoing links, i.e., triples

6A brief description of the plugin and its source code can be found at https://issues.apache.
org/jira/browse/NUTCH-460; last accessed on 04.08.2022.

7The dataset catalog is http://thedatahub.org.
8Such a file can be hosted on a Website to allow or disallow the crawling of certain pages [151].

https://www.robotstxt.org/

4.1 Related work 85

https://issues.apache.org/jira/browse/NUTCH-460
https://issues.apache.org/jira/browse/NUTCH-460
http://thedatahub.org
https://www.robotstxt.org/


that have the queried IRI as subject. Only 55% offer back links, i.e., triples that
have the queried resource as object. Additionally, the authors find that on average
a dataset is linked to 20.4 other datasets. However, it has to be stated that highly
linked datasets are preferred during the analysis.

Paulheim et al. [215] compare different methods to identify SPARQL endpoints.
They compare the best practice proposed in the Vocabulary of Interlinked Datasets
(VoID) specification [11]—i.e., to use the /.well-known/void path on a Web server
to provide an RDF file with VoID information about datasets hosted on the server—
with the usage of a dataset catalog like datahub. Their results show that the
proposed usage of a special path for VoID information is not adopted on a large scale.
A much larger amount of SPARQL endpoints can be found using dataset catalogs.
Schmachtenberg et al. [246] confirm this finding by pointing out that only 14.69%
of the crawled datasets provide VoID metadata.

Another application of Semantic Web technologies is the usage of semantic infor-
mation embedded in Web pages. Bizer et al. [40] analyze 3 billion HTML pages to
determine the adoption of the technologies like RDFa [8], Microdata [144], and
Microformats [5]. 7.3 billion quads have been extracted from 369 million different
pages containing structured data. The JSON-LD serialization [261], which can be
used for the same task, is not taken into account by the authors.

4.2 Web of Data Crawler

This section presents our Web of Data crawler SQUIRREL. First, the requirements for
the crawler are discussed. After that, an overview of the crawler is given before the
two main components—Frontier and Worker—are described in detail.

4.2.1 Requirements

The requirements for our Web of Data crawler were gathered from nine organisations
within the scope of the projects LIMBO and OPAL [302, 303].OPAL aimed to create
an open data portal by integrating the available open data of different national and
international data sources.9 The goal of LIMBO was to collect available mobility

9See http://web.archive.org/web/20220309232608/http://projekt-opal.de/
en/welcome-project-opal/ and https://www.bmvi.de/SharedDocs/DE/Artikel/DG/
mfund-projekte/open-data-portal-germany-opal.html; last accessed on 04.08.2022.
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data of the ministry of transport, link them to open knowledge graphs, and publish
them within a data portal.10

To deliver a robust, distributed, scalable, and extensible data Web crawler, we pursue
the following goals with SQUIRREL:

CR1: The crawler should be designed to provide a distributed and scalable solution
on crawling structured and semi-structured data [303].

CR2: The crawler must exhibit “respectful” behaviour when fetching data from
servers by following the Robots Exclusion Standard Protocol [151] and using
delays between requests [1, 2, 303]. This reduces the chance that the crawler
is blocked by a server because of misbehavior, i.e., because the crawler 1) tried
to access forbidding resources or 2) sent too many requests in a short amount
of time.

CR3: Since not all data is available as structured data, crawlers for the data Web
should offer a way to gather semi-structured data [303].

CR4: The project should offer easy addition of further functionality (e.g., novel
serializations, other types of data, etc.) through a fully extensible architec-
ture [303].

CR5: The crawler should provide metadata about the crawling process, allowing
users to get insights from the crawled data [303].

In the following, we give an overview of the crawler’s components, before describing
them in more detail.

4.2.2 Overview

SQUIRREL comprises two main components: Frontier and Worker (CR1). To achieve
a fully extensible architecture, both components rely on the dependency injection
pattern [101], i.e., they comprise several modules that implement the single func-
tionalities of the components. These modules can be injected into the components,
facilitating the addition of more functionality (CR4). To support the addition of the
dependency injection, SQUIRREL is based on the Spring framework.11 Figure 4.1
illustrates the architecture of SQUIRREL.

When executed, the crawler has exactly one Frontier and a number of Workers,
which can operate in parallel (CR1). The Frontier is initialized with a list of seed

10See https://www.limbo-project.org/ and https://www.bmvi.de/SharedDocs/DE/Artikel/
DG/mfund-projekte/linked-data-services-for-mobility-limbo.html; last accessed on
04.08.2022.

11https://spring.io/; last accessed on 04.08.2022.
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Figure 4.1.: SQUIRREL Core Achitecture.

IRIs. It normalizes and filters the IRIs, which includes a check of whether the IRIs
have been seen before. Thereafter, the IRIs are added to an internal queue. Once
the Frontier receives a request from a Worker, it gives a set of IRIs to the Worker.
For each given IRI, the Worker fetches the IRI’s content, analyzes the received data,
collects new IRIs, and forwards the data to its sink. When the Worker processed all
IRIs in the given set, it sends the set back to the Frontier together with the newly
identified IRIs. The crawler implements the means for a periodic re-evaluation of
IRIs known to have been crawled in past iterations.

4.2.3 Frontier

The Frontier has the task of organising the crawling. It keeps track of the IRIs to
be crawled, and those that have already been crawled. It comprises three main
modules:

1. A normalizer that preprocesses incoming IRIs,
2. A filter that removes already seen IRIs, and
3. A queue used to keep track of the IRIs to be crawled in the future.

Normalizer

The Frontier has to be able to identify IRIs that have already been seen before. To
this end, it is necessary to be able to compare IRIs with respect to their equality. Two
IRIs could be defined to be equal if they refer to the same resource [86]. However,
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this is impractical as the resource would have to be requested by the crawler to
decide whether the IRIs are the same. RFC 3987 [86] suggests a rule-based approach
to transform a given IRI into a base form.12 If two IRIs have the same base form,
they refer to the same resource. Although this approach cannot fully eliminate false
negatives [86] it has three advantages:13

1. False positives, i.e., the classification of two IRIs as equal although they refer
to different resources, can be excluded [86].

2. The approach can be implemented without requesting and comparing the
resources to which the IRIs refer.

3. The comparison of two IRIs that have been reduced to their base form becomes
a simple string comparison.

The normalizer module transforms incoming IRIs into their base form. The IRI
normalization comprises the following actions:

• Removal of default ports, e.g., port 80 for HTTP [36, 86].
• Removal of percentage-encoding for unreserved characters [36, 86].
• Normalization of the IRI path, e.g., by removing punctuations [36, 86].
• Removal of the IRIs’ fragment part [36, 86].
• Alphanumeric sorting of key-value pairs for the IRIs’ query parts to ease the

string-based comparison.

In addition, the normalizer can be configured to remove session identifiers or similar
parts of the IRI that have no influence on the retrieved content. The strings that
mark such a part of the IRI have to be defined within the configuration.

Filter

The filter module is mainly responsible for filtering IRIs that have already been
processed. To achieve this goal, the module stores all IRIs that have been processed
in a persistent way. This ensures that SQUIRREL can be interrupted and restarted
later on. Additionally, other filters can be added to narrow the search space of the
crawler if necessary, e.g., black or white list filters.

12RFC 3986 [36] defines the term “base URI” when defining the handling of relative URIs. It should
be noted that this term is not related to the term “base form” as we define it in this work.

13A false negative in this scenario are two IRIs that are considered to be not equal although they
refer to the same resource.
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Queue

The queue module stores the IRIs that should be crawled. It groups and sorts the
IRIs, which makes it the main module for implementing crawling strategies. At
present, SQUIRREL offers two queue implementations—an IP- and a domain-based
first-in-first-out (FIFO) queue. Both work in a similar way by grouping IRIs based on
their IP address or their pay-level domain, respectively. The definition of the queue’s
sorting is a major part of the crawling strategy. The current default implementation
sorts the IRI groups according to the FIFO principle. When a Worker requests a
new set of IRIs, the next available group is retrieved from the queue and sent to
the Worker. Internally, this group is marked as blocked, i.e., it remains in the queue
and new IRIs can be added by the Frontier. However, it cannot be sent to a different
Worker. As soon as the Worker returns the requested IRIs, the group is unblocked
and the crawled IRIs are removed from it. If the group is empty, it is removed from
the queue. This implements a load-balancing strategy that aims to crawl the Web
efficiently without overloading single IP addresses or pay-level domains.

Like the filter module, the queue module relies on a persistent database. This enables
a restart of the Frontier without a loss of its internal states.

4.2.4 Worker

The Worker component performs the crawling based on a given set of IRIs. Crawling
a single IRI comprises the following four steps:

1. The IRI content is fetched,
2. The fetched content is analyzed,
3. New IRIs are collected, and
4. The content is stored in a sink.

The modules for these steps are described in the following.

Fetcher

The fetcher module takes a given IRI and downloads its content. Before accessing
the given IRI, the crawler follows the Robots Exclusion Standard Protocol [151] and
checks the server’s robots.txt file (CR2). If the IRI’s resource can be crawled, one
of the available fetchers is used to access it. At present, SQUIRREL uses four different
fetchers. Two general fetchers cover the HTTP and the FTP protocol, respectively.
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Two additional fetchers are used for SPARQL endpoints and CKAN portals, respec-
tively. However, other fetchers can be added by means of the extensible SQUIRREL

API if necessary.14

The Worker tries to retrieve the content of the IRI by using the fetchers, in the order
in which they were defined, until one of them is successful. The fetcher then stores
the data on the disk and adds additional information (e.g., the file’s MIME type)
to the IRI’s properties for later usage. Based on the MIME type, the Worker checks
whether the file has a compressed or archive file format. In this case, the file is
decompressed and extracted for further processing. In its current release, SQUIRREL

supports the formats Gzip, Zip, Tar, 7z, and Bzip2.15

Analyzer

The task of the Analyzer module is to process the content of the fetched file and
extract triples from it. The Worker has a set of Analyzers that are able to handle
various types of files. Table 4.1 lists the supported RDF serializations, the compres-
sion formats, and the different ways SQUIRREL can extract data from HTML files. It
compares the supported formats with the formats supported by Apache Nutch and
LDSpider [133]. Each Analyzer offers an isElegible method that is called with
an IRI and the IRI’s properties to determine whether it is capable of analyzing the
fetched data. The first Analyzer that returns true receives the file together with a
Sink and a Collector, and starts to analyze the data.

The following Analyzers are available in the current implementation of SQUIRREL:

1. The RDF Analyzer handles RDF files and is mainly based on the Apache Jena
project.16 Thus, it supports the following formats: RDF/XML, N-Triples, N3,
N-Quads, Turtle, TRIG, JSON-LD, and RDF/JSON.

2. The HDT Analyzer is able to process compressed RDF graphs that are available
in the HDT file format [96].

3. The RDFa Analyzer processes HTML and XHTML Documents extracting RDFa
data using the Semargl parser.17

14Details about implementing a new fetcher can be found at https://dice-group.github.io/
squirrel.github.io/tutorials/fetcher.html; last accessed on 04.08.2022.

15Details regarding the compressions can be found at https://www.gnu.org/software/
gzip/, https://www.iana.org/assignments/media-types/application/zip, https://www.gnu.
org/software/tar/manual/html_node/Standard.html, https://www.7-zip.org/7z.html, and
http://sourceware.org/bzip2/, respectively. (Last accessed on 04.08.2022)

16https://jena.apache.org; last accessed on 04.08.2022.
17https://github.com/semarglproject/semargl; last accessed on 04.08.2022.
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Table 4.1.: Comparison of RDF serializations, compressions, methods to extract data from
HTML and other methods to access data supported by Apache Nutch (including
the RDF plugin), LDSpider and SQUIRREL. Additionally, the table lists our
benchmark ORCA explained in 4.3. (✓) marks serializations in ORCA that are
supported by the benchmark but never demanded from a benchmarked crawler.
X marks serializations that are listed as processible by a crawler but were not
working during our evaluation (Section 4.4).
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RDF/XML ✓ ✓ ✓ ✓
RDF/JSON – – ✓ (✓)
Turtle ✓ ✓ ✓ ✓
N-Triples ✓ X ✓ ✓
N-Quads – ✓ ✓ (✓)
Notation 3 ✓ ✓ ✓ ✓
JSON-LD – ✓ ✓ (✓)
TriG – – ✓ (✓)
TriX – – ✓ (✓)
HDT – – ✓ –
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s ZIP ✓ – ✓ ✓
Gzip ✓ – ✓ ✓
bzip2 – – ✓ ✓
7zip – – ✓ –
Tar – – ✓ –

H
TM

L RDFa ✓ ✓ ✓ ✓
Microdata ✓ ✓ ✓ –
Microformat ✓ ✓ ✓ –
HTML (scraping) – – ✓ –

SPARQL – – ✓ ✓
CKAN – – ✓ ✓

4. The scraping Analyzer uses the Jsoup framework for parsing HTML pages
and relies on user-defined rules to extract triples from the parsed page.18

This enables the user to use SQUIRREL to gather not only structured but also
semi-structured data from the Web (CR3).

5. The CKAN Analyzer is used for the JSON line files generated by the CKAN
Fetcher when interacting with the API of a CKAN portal. The Analyzer trans-

18https://jsoup.org/; last accessed on 04.08.2022.
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forms the information about datasets in the CKAN portal into RDF triples using
the DCAT ontology [173].

6. The Any23-based Analyzer processes HTML pages, searching for Microdata or
Microformat embedded within the page.19

7. In contrast to the other Fetchers, the SPARQL-based Fetcher directly performs
an analysis of the retrieved triples.

New Analyzers can be implemented if the default API does not match the user’s
needs.20

Collector

The Collector module collects all IRIs from the RDF data. SQUIRREL offers an SQL-
based collector that makes use of a database to store all collected IRIs. It ensures the
scalability of this module for processing large data dumps. For testing purposes, a
simple in-memory collector is provided. As soon as the Worker has finished crawling
the given set of IRIs, it sends all collected IRIs to the Frontier and cleans up the
collector.

Sink

The Sink has the task to store the crawled data. Currently, a user can choose from
three different sinks that are implemented. First, a file-based sink is available. This
sink stores given triples in files using the Turtle serialization for RDF [29]. These
files can be further compressed using GZip. The second sink is an extension of the
file-based sink and stores triples in the compressed HDT format [96]. It should be
noted that both sinks separate the crawled data by creating one file for each IRI that
is crawled. An additional file is used to store metadata from the crawling process.
Both sinks have the disadvantage that each Worker has a local directory in which
the data is stored. The third sink uses SPARQL update queries to insert the data
in a SPARQL store. This store can be used by several Workers in parallel. For each
crawled IRI, a graph is created. Additionally, a metadata graph is used to store the
metadata generated by the Workers. New sinks can be added by making use of the
extensible API.21

19https://any23.apache.org/; last accessed on 04.08.2022.
20Details about implementing a new Analyzer can be found at https://dice-group.github.io/

squirrel.github.io/tutorials/analyzer.html; last accessed on 04.08.2022.
21Details about implementing a new sink can be found at https://dice-group.github.io/

squirrel.github.io/tutorials/sink.html; last accessed on 04.08.2022.
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Figure 4.2.: The metadata stored by SQUIRREL for each Activity including the extensions
of PROV-O.

Activity

The Workers of SQUIRREL document the crawling process by writing metadata to a
metadata graph (CR5). This metadata mainly relies on PROV-O [161] and has been
extended where necessary. Figure 4.2 gives an overview of the generated metadata.
The crawling of a single IRI is modelled as an activity. Such an activity comes with
data like the start and end time, the approximate number of triples received, and a
status line indicating whether the crawling was successful. The result graph (or the
result file in case of a file-based sink) is an entity generated by the activity. Both the
result graph and the activity are connected to the IRI that has been crawled.

4.3 Crawling Benchmark

In this section, the benchmark for data Web crawlers is presented. First, preliminaries
are introduced before the approach of the benchmark is presented. After that, the
implementation details of the benchmark are described.
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Table 4.2.: Different types of dataset gathered using URLs from LODStats.

Dump file
SPARQL HTML Others

Uncompressed Compressed

URLs 8536 260 593 10 660
Domains 332 138 354 9 402

4.3.1 Preliminaries

Crawlable Graph

Let G = (V ,E) be a directed graph. V = {v1, v2, . . .} is the set of nodes of the graph.
E ⊆ V 2 is the set of edges of G. Given an edge e = (vi, vj), we call vi the source
node and vj the target node of e. Let S ⊆ V be a set of seed nodes. We call a graph
G crawlable w.r.t. S iff all nodes v ∈ V can be reached from nodes vk ∈ S in a finite
number of steps by traversing the edges of the graph following their direction. It
could follow that each directed graph can be made crawlable by defining S = V .
However, following our definition of a Linked Data Crawler we are not interested in
such a trivial case. A special case of crawlable graphs are graphs that are crawlable
w.r.t. a singleton S = {vϵ}. We call vϵ an entrance node of such graphs.

Data Web Analysis

The Data Web comprises servers of varying complexity. The types of nodes in this
portion of the Web include simple file servers offering their data as dump files,
Web servers able to dereference single RDF IRIs or to serve HTML Web pages with
embedded structured data, and SPARQL endpoints that are able to handle complex
queries.

We analyze the LODStats [22, 90] dump from 2016 to collect the statistics necessary
for our benchmark by searching triples with the dcat:downloadURL property.22

These triples show which URLs have been used to download the datasets. Based on
the structure of the URL, we count the different types of sources. For example, if
a URL ends on .bz2 it is counted as a compressed dump file, while URLs ending
with /sparql are counted as SPARQL endpoint.23 Table 4.2 shows the counts of the
single URLs and domains per node type. It can be seen that the majority of datasets

22The complete IRI of the property is http://www.w3.org/ns/dcat#downloadURL.
23The regular expressions used for that can be found at https://github.com/dice-group/orca/

blob/master/orca.tools/README.md; last accessed on 04.08.2022.
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are provided as an uncompressed dump file. 5.9% of the datasets are provided as
SPARQL endpoint. From the 6.6% that are typed as Others, many are referring to
single resources, e.g., FOAF profiles.24 The servers hosting these single resources
can be seen as dereferencing nodes. Note that these numbers only give a single view
on the Data Web. Different approaches to access the Web might lead to completely
different views. This explains the small number of IRIs that can be classified as
HTML pages, since LODStats collects statistics about RDF datasets, excluding RDFa
and other formats embedded in HTML.

Another important part of the Data Web are data catalogs. Although the related
work does not mention them as part of the Data Web itself, they fulfill a crucial
role by providing pointers to existing RDF datasets, which makes the Web much
more connected. This can be seen in the fact that the list of RDF datasets analyzed
by Auer et al. [22], Ermilov et al. [90], and Schmachtenberg et al. [246] relied
at least partly on data from dataset catalogs. Another argument is given by Paul-
heim et al. [215], who show that using a data catalog to identify SPARQL endpoints
works better than relying on the best practice proposed in the VoID specification [11].
Hence, we define the different types of nodes in the synthetic Data Web that is to be
generated and used for the benchmark:

1. Dump file node. This node comprises an HTTP server offering RDF data as
a single dump file. In its current implementation, ORCA randomly chooses
one of the following RDF serializations: RDF/XML, Notation 3, N-Triples, or
Turtle. Additionally, the file might be compressed with one of three available
compression algorithms—ZIP, Gzip or bzip2.

2. Dereferencing node. This node comprises an HTTP server and answers
requests to single RDF resources by sending all triples of its RDF graph that
have the requested resource as subject. The server offers all serializations
supported by Apache Jena. When a request is received, the serialization is
chosen based on the HTTP Accept header sent by the crawler. The complete
list of serializations supported by ORCA can be seen in Table 4.1.

3. SPARQL endpoint. This node offers an API, which can be used to query the
RDF data using SPARQL via HTTP.25

4. RDFa. This node offers HTML Web pages via HTTP. The Web pages contain
structured data that is embedded in the HTML. We choose RDFa as an example
format of such type of data. Adding other types of embedded structured data
(Microdata, Microformats, and JSON-LD) is left as future work. In its current

24FOAF is the ’Friend of a Friend’ vocabulary. https://web.archive.org/web/20220701160413/
https://xmlns.com/foaf/spec/; last accessed on 04.08.2022.

25In its current implementation, ORCA uses Virtuoso instances for this type of node.
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version, the RDFa node relies on RDFa 1.0 and RDFa 1.1 test cases for HTML
and XHTML of an existing RDFa test suite.26

5. CKAN. CKAN is a dataset catalog containing meta data about datasets.27 It
offers human-readable HTML pages and an API that can be used to query the
catalog content.

Robots Exclusion Protocol

The Robots Exclusion Protocol allows the definition of rules for bots like crawlers [151].
The draft of the standard defines two rules—allow and disallow. They allow or
disallow access to a certain path on a domain, respectively. The rules are defined in
a robots.txt file, which is typically hosted directly under the domain in which the
rules have been defined. Although additional rules are not covered by the standard,
the standard allows the addition of lines. Some domain owners and crawlers make
use of a Crawl-delay instruction to define how much delay a crawler should have
between its requests to this single Web server.28

4.3.2 Approach

The main idea behind ORCA is to ensure the comparable evaluation of crawlers by
creating a local, synthetic Data Web. The benchmarked crawler is initialized with a
set of seed nodes of this synthetic cloud and asked to crawl the complete cloud. Since
the cloud is generated, the benchmark knows exactly which triples are expected to
be crawled and can measure the completeness of the crawl and the speed of the
crawler. Since the cloud generation is deterministic, a previously used cloud can be
recreated for benchmarking another crawler, ensuring that evaluation results are
comparable if the experiments are executed on the same hardware. In the following,
we describe the cloud generation in detail. An overview of the implementation and
its details is given in Section 4.3.3.

Since the synthetically generated Data Web will be used to benchmark a Data Web
crawler, we generate it as a crawlable graph w.r.t. a set of seed nodes S as defined
in Section 4.3.1. The generation of the synthetic Web can be separated into three
steps:

1. Generating the single nodes of the cloud (V ν),

26http://rdfa.info/test-suite/; last accessed on 04.08.2022.
27https://ckan.org/; last accessed on 04.08.2022.
28Examples are Bing [2] and Yandex [1].
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Table 4.3.: Connectivity matrix K used for the experiments.

from \ to Deref. Dump file SPARQL CKAN RDFa

Deref. 1 1 1 1 1
Dump file 1 1 1 1 1
SPARQL 1 1 1 1 1
CKAN 0 1 1 1 1
RDFa 1 1 1 1 1

2. Generating the node graph, i.e., the edges between the nodes, and
3. Generating the RDF data contained in the single nodes.

Node Generation

The set of nodes V ν is generated by virtue of types selected from the list of available
types in Section 4.3.1. The number of nodes in the synthetic Web (ν) and the
distribution of node types are user-defined parameters of the benchmark. The node
generation process makes sure that at least one node is created for each type with an
amount > 0 in the configuration. Formally, let Υ = {u1,u2, . . .} be the set of node
types and Υg ⊆ Υ be the set of node types to be generated. To ensure that every
type occurs at least once, the generation of the first |Υg| nodes of V ν is deterministic
and ensures every type in Υg is generated. The remaining types are assigned using a
seeded random model based on the user-defined distribution until |V ν | = ν.

Node Graph Generation

In the real-world Data Web, connections (i.e., edges) between instances of certain
node types are unlikely. For example, an open data portal is very likely to point to
dump files, SPARQL endpoints or even other open data portals. However, it is very
unlikely that it points to a single RDF resource, i.e., to a server which dereferences
the IRI of the resource. To model this distribution, we introduce a connectivity
matrix. Let K be a |Υ| × |Υ| matrix. kij = 1 means that edges from nodes of type
ui to nodes of type uj are allowed. Otherwise, kij = 0. An example of such a
connectivity matrix is given in Table 4.3 and will be used throughout this chapter.
For the node types used in the current implementation of ORCA, all connections are
allowed, except the example mentioned above.

The algorithm that generates the node graph takes the matrix K, the previously
created list of typed nodes, and the user-configured average node degree as input.
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It starts with the first |Υg| nodes of V ν and creates connections between them. For
these initial nodes, all connections allowed in K are created. This initial graph is
extended step-wise by adding the other nodes from V ν . In each step, the next node
from the list is added to the graph. The outgoing edges of the new node are added
using a weighted sampling over the nodes that are permissible from the new node
according to K. Since the Web is known to be a scale-free network, the weights
are the in-degrees of the nodes following the Barabási-Albert model for scale-free
networks [9]. In the same way, a similar number of connections to the new node
are generated.

Algorithm 4.1: Generation of the set of seeds S
Input :V ,E
Output :S

1 S, Vm ← {}
2 for vi ∈ V do
3 if inDegree(vi)== 0 then
4 S← S ∪ {vi}
5 Vm ← markNodes(vi,Vm,E)

6 Vu ← V \Vm

7 while |Vu| > 0 do
8 vi ← pop(Vu)
9 S← S ∪ {vi}

10 Vm ← markNodes(vi,Vm,E)
11 Vu ← Vu\Vm

After generating the node graph, a set of seed nodes S has to be generated to make
the graph crawlable as described in Section 4.3.1. This search is equivalent to the
set cover problem [142]. Hence, searching for the smallest set of seed nodes would
be NP-hard. Thus, we use a greedy solution (see Algorithm 4.1), which takes V
and E of the generated node graph as input. We start by defining all nodes as
unmarked nodes and the set of marked nodes Vm as empty (line 1). First, the
algorithm searches for all nodes that have no incoming edge (line 3) since these
nodes have to be seed nodes. For each of this node, the method markNodes is called.
This method is shown in Algorithm 4.2 and implements a breadth-first search which
starts at the given node and adds all connected nodes to the set of marked nodes.
When all of the nodes without incoming edges have been processed, the number of
unmarked nodes is checked. As long as unmarked nodes are left, the first unmarked
node is added to S and used to update the set of marked nodes (lines 7 – 11).29 The

29The pop method returns and removes the first element from the given set.
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algorithm terminates when all nodes are marked, i.e., reachable from the generated
set of seed nodes S.

Algorithm 4.2: Breadth-first search to update the set of marked nodes Vm starting
from the given node v.
Input :v, Vm, E
Output :Vm

1 V Q ← {v}
2 Vm ← Vm ∪ {v}
3 while |V Q| > 0 do
4 vj ← pop(V Q)
5 for ei ∈ E do
6 if (source(ei)== vj)&&(target(ei)̸∈ Vm) then
7 vk ← target(ei)
8 Vm ← Vm ∪ {vk}
9 V Q ← V Q ∪ {vk}

RDF Data Generation

The benchmark can work with any RDF data generator (see Section 3.1.2). An
approach for mimicking real-world graphs is described in Section 3.5. However,
ORCA comes with a simple generator that ensures the crawlability of the generated
graph. The generator can be configured with three parameters:

1. The average number of triples per graph (τ),
2. The distribution of the sizes of the single graphs, and
3. The average degree of the RDF resources (d̄) in the graph.

In its current version, ORCA offers a simple approach that statically assigns the given
average size to every RDF graph. However, this can be changed to use any other
distribution. Let G = (V , T ) be an RDF graph as defined in Definition 2.7. Further,
let the resources of G comprise two sets RG = Ri ∪Re. Ri is the set of internal IRI
resources of the graph. These resources are defined in detail in G and belong to the
graph’s thematic domain. Re is the set of external IRI resources. These resources
are from a different thematic domain and are described in more detail in another
graph. It can be followed that Ri∩Re = ∅. The generator focuses on creating nodes
that are important for the crawling process. Consequently, it does not make use of
any literals or blank nodes and the generated graph solely comprises IRI resources,
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i.e., V = RG . It follows, that the triples T ′ of this specific graph can be defined as
follows:

T ′ = {(s, p, o)|s ∈ Ri ∧ p ∈ P ∧ o ∈ (Ri ∪Re)} . (4.1)

T ′ can be separated into two subsets T ′ = T ′
i ∪ T ′

e. The set of graph-internal triples
T ′

i comprises triples with objects o ∈ Ri. In contrast, the set of outgoing triples T ′
e

(a.k.a. link set) contains only triples with external resources as objects (o ∈ Re).

Like the node graph, each created RDF graph has to be crawlable w.r.t. a set of
resources. For the RDF graphs, we implemented an algorithm based on the Barabási-
Albert model for scale-free networks [9]. The implemented algorithm guarantees
that all resources within the generated RDF graph can be reached from the first
resource it generates. As defined in Section 4.3.1, this resource can be used later on
as entrance node by all other RDF graph generators, which have to generate links to
this graph.

Let τ be the RDF graph size that has been determined based on the chosen param-
eters. Based on the previously created node graph, the number of outgoing edges
τ e = |T ′

e| as well as their objects, i.e., the set of external IRI resources Re, are known.
Algorithm 4.3 takes τ i = τ − τ e together with the average degree d̄ and a generated
set of properties P as input to generate an initial version of graph G. First, the first
resource of the graph is created by generating its IRI and adding it to the set of
internal nodes (lines 2 and 3). The loop (lines 4–13) adds new IRI resources to the
graph until the number of necessary triples has been reached. For each new resource
rj , an IRI is generated (line 5) and an initial degree of the new resource dj is drawn
from a uniform distribution in the range [1, 2d̄] (line 6). The dj resources the newly
created resource rj will be connected to are sampled from the previously created
resources based on their degree, i.e., the higher the degree of a resource, the higher
the probability that it will be chosen for a new connection (line 6). The result of this
step is the set Rj with |Rj | = dj .30 For each of these resources, a direction of the
newly added triple is chosen. Since the graph needs to be crawlable, the algorithm
chooses the first triple to be pointing to the newly resourced node, i.e., the new
resource is the object of the triple. This ensures that all resources can be reached,
starting from the first resource of the graph. For every other triple, the decision is
based on a Bernoulli distribution with a probability of 0.5dr−1

dr−1 being a triple that
has the new node as an object. This takes into account that the first triple is always
added as incoming edge to the newly added node. Hence, the overall probability
of an incoming edge, as well as for an outgoing edge, is 0.5 (line 9). Based on the

30In case there are less resources than the sampled dj in the graph all available resources are used.
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Algorithm 4.3: Initial RDF graph generation

Input : τ i, P , d̄
Output :G

1 T ′
i ← {}

2 r1 ← generateResource(0)
3 Ri ← {r1}
4 while |T ′

i | < τ i do
5 rj ← generateResource(|Ri|)
6 dj ←drawDegree(d̄)
7 Rj ← drawFromDegreeDist(dj , Ri, T

′
i )

8 for rk ∈ Rj do
9 if (degree(rj)== 0)||(bernoulli(0.5dj−1

dj−1 )) then
10 T ′

i ← T ′
i ∪ {generateTriple(rk,draw(P), rj)}

11 else
12 T ′

i ← T ′
i ∪ {generateTriple(rj ,draw(P), rk)}

13 Ri ← Ri ∪ {rj}
14 G ← {Ri, P ,∅, T ′

i}

Table 4.4.: Templates of resource IRIs to refer to an external resource and its dependency
on the external node type. $H$ = host name; $F$ = file format; $N$ = resource
ID.

Node type IRI template

Dereferencing http://$H$/dataset-0/resource-$N$
Dump file http://$H$/dumpFile$F$#dataset-0-resource-$N$
RDFa http://$H$/dataset-0/resource-0
SPARQL http://$H$:8890/sparql
CKAN http://$H$:5000/

chosen direction, the new triple is created with a property that is randomly drawn
from the property set P (lines 10 and 12).

After the initial version of the RDF graph is generated, the outgoing edges of T ′
e are

created. For each link to another dataset, a triple is generated by drawing a node
from the graph as subject, drawing a property from P as predicate and the given
external node as object. Both—T ′

e and Re—are added to G to finish the RDF graph
generation.
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IRI Generation

Every resource of the generated RDF graphs needs to have an IRI. To make sure that
a crawler can use the IRIs during the crawling process, the IRIs of the resources are
generated depending on the type of node hosting the RDF dataset. The different IRI
templates are available in Table 4.4. All IRIs contain the host name (marked with
$H$ in Table 4.4). At the moment, the dump file and the dereferencing node have
only one single dataset. Therefore, the IRI templates of these node types contain
the string “dataset-0”. A numeric ID is attached (marked with $N$) to make each
resource IRI unique. Additionally, the dump file node IRIs contain the file extension
representing the format (marked with $F$). This comprises the RDF serialization
and the compression (if a compression has been used). The RDFa node has only one
generated HTML page that refers to the single RDFa tests. The IRIs of the single
tests use the file structure of the used test suite. If a resource of the SPARQL node is
used in another generated RDF graph (i.e., to create a link to the SPARQL node),
the URL of the SPARQL API is used instead of a resource IRI. The resources that are
stored within the SPARQL endpoint use the IRI template of the dereferencing node.
In a similar way, the links to the CKAN nodes are created by pointing to the CKAN’s
Web interface without any additional information.

4.3.3 Implementation

Overview

ORCA is a benchmark built upon the HOBBIT benchmarking platform [237] de-
scribed in Chapter 3.31 This FAIR benchmarking platform allows Big Linked Data
systems to be benchmarked in a distributed environment. It relies on the Docker
container technology to encapsulate the single components of the benchmark and
the benchmarked system.

We adapted the suggested design of a benchmark described in Section 3.4.5 to
implement ORCA. The benchmark comprises a benchmark controller, data generators,
an evaluation module, a triple store, and several nodes that form the synthetic Data
Web. The benchmark controller is the central control unit of the benchmark. It is
created by the HOBBIT platform, receives the configuration defined by the user and
manages the other containers that are part of the benchmark. Figure 4.3 gives an
overview of the benchmark components, the data flow and the single steps of the

31https://github.com/hobbit-project/platform; last accessed on 04.08.2022.
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workflow. The workflow itself can be separated into 4 phases—creation, generation,
crawling and evaluation.32 When the benchmark is started, the benchmark controller
creates the other containers of the benchmark.33 During this creation phase, the
benchmark controller chooses the types of nodes that will be part of the synthetic
Data Web, based on the parameters configured by the user. The Docker images of
the chosen node types are started together with an RDF data generator container for
each node that will create the data for the node. Additionally, a node data generator,
a triple store, and the evaluation store are started. The node data generator will
generate the node graph. The triple store serves as a sink for the benchmarked
Linked Data crawler during the crawling phase while the evaluation module will
evaluate the crawled data during the evaluation phase.

Data 
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Figure 4.3.: Overview of the Benchmark components and the flow of data. Orange: Bench-
mark components; Grey: Synthetic Data Web generated by the benchmark;
Dark blue: The benchmarked crawler; Solid arrows: Flow of data; Dotted
arrows: Links between RDF datasets; Numbers indicate the order of steps.

32The phases can be mapped to the three phases described in Section 3.4.5. The creation and
generation phases form the initialization phase while the crawling phase equates the benchmarking
phase.

33The benchmarked crawler is created by the HOBBIT platform as described in Section 3.4.5.
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After the initial creation, the graph generation phase is started. This phase can
be separated into two steps—initial generation and linking. During the first step,
each RDF data generator creates an RDF graph for its Web node. In most cases,
we use the algorithm described in Section 9. For data portal and RDFa nodes, the
generation process differs. The portal nodes solely use the information to which
other nodes they have to be linked to, i.e., each linked node is inserted as a dataset
into the data portal node’s database. The RDFa node relies on an already existing
test suite.34 It generates an HTML page that refers to the single tests and to all other
connected nodes using RDFa. The node data generator creates the node graph as
described in Section 4.3.2. After this initial generation step, the node graph is sent
to the benchmark controller and all RDF data generators (Step 1 in Figure 4.3).
This provides the RDF data generators with the information to which other nodes
their RDF graph should be linked. Subsequently, the RDF data generators send their
metadata to each other and the benchmark controller (Step 2).35 This provides the
data generators with the necessary data to create links to the entrance nodes of
other RDF datasets during the linking step. Additionally, the benchmark controller
forwards the collected metadata to the evaluation module and the nodes in the
cloud (Step 3).36 At the end of the generation phase, the generated RDF graphs are
forwarded to the single nodes and the evaluation module (Step 4). The generation
phase ends as soon as all nodes have signalled to the benchmark controller that they
have processed the received data.

After the generation phase is finished and the HOBBIT platform signals that the
crawler has initialized itself, the benchmark controller submits the seed IRIs to
the crawler (Step 5). This starts the crawling process in which the crawler must
download RDF data from the nodes, process it to extract new, unseen IRIs, and
forward the data to its sink (Step 6) before it crawls the collected, unseen IRIs.
When the crawler finishes its crawling—i.e., all given IRIs and all IRIs found in the
crawled RDF data have been crawled—the crawler terminates and the crawling
phase ends.

During the evaluation phase, the evaluation module measures the recall of the
crawler by checking whether the RDF graphs generated by the data generators
can be found in the sink (Step 7). For smaller RDF graphs, all triples are checked.
However, ORCA offers the option to sample triples from the generated RDF graphs
to reduce the number of SPARQL queries and, hence, the runtime of the evaluation.
The result of this evaluation is sent to the benchmark controller, which adds further

34http://rdfa.info/test-suite/; last accessed on 04.08.2022.
35The submissions from each data generator to each other data generator have been omitted in the

figure to keep it clean.
36The submission to the cloud nodes has been omitted in the figure to keep it clean.
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data and results of the benchmarking process (Step 8). This can include data that
has been gathered from the single nodes of the cloud, e.g., access times. After this,
the final results are forwarded to the HOBBIT platform.

Benchmark Features

The benchmark offers several additional features. The overview already shows that
the design of the benchmark is kept scalable regarding the size of the synthetic
Data Web. It is also expandable with respect to the types of nodes that can be part
of the cloud. Additionally, the benchmark can be used to check single features of
a Data Web crawler. As an example, the current implementation checks whether
a crawler follows the rules defined in a Web server’s robots.txt file. This check
covers two features. First, the benchmark can check whether a crawler accesses an
IRI even though it has been listed as disallowed [151]. If this feature is configured
by the user, the nodes add additional triples to their graph. These triples refer
to resources listed as disallowed in the node’s robots.txt file. Second, the user
can define a Crawl-delay value, which will be added to the file. Although the
robots.txt standard [151] does not include this command, it is used by several
crawlers to define how much delay a crawler should have between its request to this
single Web server [1, 2]. During the crawling process, the nodes keep track of the
delays between requests and whether the crawler requests one of the disallowed
resources. Both are forwarded to the benchmark controller during the evaluation
phase. Another feature of ORCA is the decoupling of the synthetic cloud from
the Semantic Web. By using a DNS server within the benchmark, the crawler is
prevented from crawling the “real” Web even if IRIs might refer to it (e.g., when
using real-world data instead of generated data).

Parameters

The benchmark offers several parameters to adapt it to various scenarios.

• Number of nodes (ν): The number of nodes in the synthetic graph.
• Average node degree: The average degree of the nodes in the generated

graph.
• RDF dataset size (τ): Average number of triples of the generated RDF graphs.
• Average resource degree (d̄): The average degree of the resources in the RDF

graphs.
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• Node type amounts: For each node type, the user can define the proportion
of nodes that should have this type.

• Dump file serializations: For each available dump file serialization, a boolean
flag can be set.

• Dump file compression ratio: Proportion of dump files that are compressed.
• Average ratio of disallowed resources: Proportion of resources that are

generated within a node and marked as disallowed for crawling.
• Average crawl delay: The crawl delay of the node’s robots.txt file.
• Seed: A seed value for initializing random number generators is used to ensure

the repeatability of experiments.

Key Performance Indicators

The benchmark measures the effectiveness and efficiency of Data Web crawlers. For
this purpose, it provides the following KPIs.

• Recall: The recall of the crawler is calculated based on the triples of the
generated RDF graphs. To this end, the evaluation module counts the true
positives—i.e., the number of expected triples found in the crawler’s sink.
We define a crawler’s recall as the number of true positives divided by the
number of checked triples. Note that using recall does not punish a crawler for
additional triples that have been added to the sink, e.g., provenance data of the
crawled datasets. The benchmark offers the recall in three forms—1) per node,
2) as micro average, and 3) as macro average. Additionally, the benchmark
reports the number of true positives as well as the number of checked triples.

• Runtime: the benchmark measures the time it takes from starting the crawling
process to termination by sending the seed IRIs to the crawler. A shorter
runtime indicates greater efficiency if the recall is the same.

• Requested disallowed resources: the number of forbidden resources crawled
by the crawler, divided by the number of all resources forbidden by the
robots.txt file. The number of disallowed resources that exist in the synthetic
Data Web are also reported.

• Crawl delay fulfilment: this KPI is used to check whether a crawler respects
the Crawl-delay instruction in the robots.txt file. We define this KPI as
the average measured delay between the requests received by a single node
divided by the delay defined in the robots.txt file. If the measure is below
1.0 the crawler does not strictly follow the delay instruction.
The KPI is calculated per node. The single per-node values are summarized as
average, minimum, and maximum.
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• Consumed hardware resources: the evaluation module measures the RAM
and CPU consumption of the benchmarked crawler. The measured values are
available as diagram over time or as summary.37

• Number of evaluated triples: the exact number of triples that have been used
to calculate the recall.

• Number of disallowed resources: the exact number of resources that have
been marked as disallowed.

• Triples over time: the evaluation module keeps track of the number of triples
in the sink over time and reports the numbers.

• Cloud graph visualisation: the benchmark generates a visualization of the
generated synthetic Linked Data Web as depicted in Figure 4.4.38 It is backed
by a graph that contains meta data of the single nodes and per-node results.

4.4 Evaluation

For evaluating the approaches presented within this chapter, we use four experiments.
We start by evaluating Data Web crawlers including SQUIRREL using our benchmark
ORCA. The first experiment uses all node types available in ORCA to generate a
realistic synthetic Data Web. This experiment mainly focuses on the recall of the
benchmarked crawlers. The second experiment uses a simpler Web to measure the
crawler’s efficiency. The third experiment checks whether the crawlers abide by the
Robots Exclusion Protocol [151]. The fourth experiment uses generated graphs of
LEMMING within ORCA to benchmark data Web crawlers with RDF graphs that mimic
real-world graphs.

For all experiments, the online instance of HOBBIT is used. It is deployed on a cluster
with 3 servers that are solely used by the benchmark and 3 servers that are available
for the system. Each of the servers has 16 cores with Hyperthreading and 256 GB
RAM.39

37i.e., sum of CPU time, average RAM consumption, and maximum RAM consumption.
38The figure has been taken from a small example experiment that is available at https://master.

project-hobbit.eu/experiments/1617032707587; last accessed on 05.08.2022.
39The details of the hardware setup that underlies the HOBBIT platform can be found at https:

//hobbit-project.github.io/master#hardware-of-the-cluster; last accessed on 05.08.2022.
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Figure 4.4.: Example cloud graph visualization of an experiment with LDspider. The dotted
“seed” node points to the nodes in the graph that have been given as seed to the
crawler. The remaining nodes are colored based on the recall the benchmarked
crawler achieved. All expected triples of the green node have been crawled
while the red nodes have a recall of 0.0. The two gray CKAN nodes do not have
any outgoing link. Hence, they do not have any data that could be crawled.
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4.4.1 Benchmarked Crawlers

To the best of our knowledge, SQUIRREL and LDSpider are the only working open-
source Data Web crawlers available. Other crawlers are either not available as
open-source project or Web crawlers without the ability to process RDF data.

For our experiments, we implemented an adapter for SQUIRREL. SQUIRREL (W1),
(W3), (W9), and (W18) are instances of the crawler using 1, 3, 9 or 18 worker
instances, respectively.40

LDSpider [133] can be configured to use different numbers of Threads and different
crawling strategies. For our experiments, we dockerized LDSpider and implemented
a system adapter to make it compatible with the HOBBIT platform. We created several
LDSpider instances with different configurations. LDSpider (T1), (T8), (T16), and
(T32) use the breadth-first strategy and 1, 8, 16 or 32 threads, respectively. During
our first experiments, we encountered issues with LDSpiders’ SPARQL client, which
was not storing the crawled data in the provided triple store. To achieve a fair
comparison of the crawlers, we extended our system adapter to implement our
own SPARQL client, used LDSpider’s file sink to get the output of the crawling
process, and sent file triples to the benchmark sink. These instances of LDSpider are
marked with the addition “FS”. Additionally, we configured the LDSpider instance
(T32,FS,LBS), which makes use of the load-balancing strategy to compare the two
strategies offered by the crawler.

4.4.2 Data Web Crawling

The first experiment simulates a real-world Data Web and focuses on the effectiveness
of the crawlers. To this end, we measure the amount of correct triples they retrieve
by calculating the micro recall Remic. To define the distribution of node types, we
analyze the download URLs of the LODStats [22, 90] dump from 2016. Based on this
analysis, the generated cloud comprises 100 nodes with 40% dump file nodes, 30%
SPARQL nodes, 21% dereferencing nodes and 5% CKAN nodes. 4% are RDFa nodes
to represent the 1 billion RDFa triples identified by Bizer et al. [40] in comparison to
the 28 billion RDF triples gathered from the Semantic Web by Fernández et al. [95].
Following Hogan et al. [130], the average degree of each node is set to 20. For each
node, the RDF graph generation creates 1000 triples with an average degree of 9

40Since the HOBBIT cluster assigns 3 servers for the benchmarked crawler, we use multiples of 3 for
the number of workers.
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triples per resource.41 Based on our LODStats analysis, 30% of the dump file nodes
use one of the available compression algorithms for the dump file. The usage of
robots.txt files is disabled.

Since LDSpider does not support the crawling of SPARQL endpoints, data catalogs
like CKAN, or compressed dump files, we expect LDSpider to achieve a lower Recall
than SQUIRREL. The results of the experiment are listed in Table 4.5.42

4.4.3 Efficiency Evaluation

The second experiment focuses on the efficiency of the crawler implementations. For
this purpose, a synthetic Web comprising 200 dereferencing nodes is used since they
offer to negotiate the RDF serialization for transferring the data. This ensures that
all crawlers can crawl the complete Web. The other parameters remain as before.

For LDSpider, we use only the FS instances and configure its politeness to not insert
any delay between two requests. We expect both crawlers to be able to crawl the
complete cloud and that crawler instances with more threads or workers will crawl
faster. The results of the experiment are listed in Table 4.5.43

4.4.4 Robots Exclusion Protocol Check

In the third experiment, we evaluate whether the crawlers follow the rules defined
in a server’s robots.txt file. To this end, we configure ORCA to generate a smaller
Web comprising 25 dereferencing nodes. Each of the nodes copies 10% of its
RDF resources and marks the copies disallowed for crawling using the disallow
instruction in its robots.txt file. Additionally, we define a delay of 10 seconds
between two consecutive requests using the Crawl-delay instruction in the same

41The dataset size is roughly the average document size from Hogan et al. [130] (after excluding
an outlier). The average degree is derived from the statistics of DBpedia [21, 162], Freebase [46],
OpenCyc [164], Wikidata [298], and Yago [174] from Färber et al. [92].

42The detailed results can be seen at https://w3id.org/hobbit/experiments#1584544940477,
1584544956511,1584544971478,1585403645660,1584545072279,1585230107697,
1584962226404,1584962243223,1585574894994,1585574924888,1585532668155,
1585574716469; last accessed on 05.08.2022.

43While repeating the experiments, the measures turned out to be stable with standard deviations of
∼2% for the RAM, ∼5% for runtime, and CPU time. The detailed results can be found at https://w3id.
org/hobbit/experiments#1608306725630,1608306734009,1609758770866,1604685169129,
1608052657254,1609763993514,1609779299724,1609792299538,1608038447931; last accessed on
05.08.2022.
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Table 4.5.: Results of the Data Web crawling and efficiency experiments.

Crawler
Data Web Efficiency

Remic Runtime Remic Runtime CPU RAM
(in s) (in s) (in s) (in GB)

LDSpider (T8) 0.00 67 – – – –
LDSpider (T16) 0.00 73 – – – –
LDSpider (T32) 0.00 74 – – – –
LDSpider (T1,FS) 0.31 1 798 1.00 1 847 627.2 1.8
LDSpider (T8,FS) 0.30 1 792 1.00 1 717 658.9 5.2
LDSpider (T16,FS) 0.31 1 858 1.00 1 753 1 677.1 1.6
LDSpider (T32,FS) 0.31 1 847 1.00 1 754 1 959.1 4.0
LDSpider (T32,FS,LBS) 0.03 66 0.01 56 – –

SQUIRREL (W1) 0.98 6 663 1.00 12 051 1 096.7 3.5
SQUIRREL (W3) 0.98 2 686 1.00 4 096 992.0 7.7
SQUIRREL (W9) 0.98 1 412 1.00 1 500 652.0 16.6
SQUIRREL (W18) 0.97 1 551 1.00 893 424.0 24.0

Table 4.6.: Results for a Data Web with robots.txt files including disallow and crawl-delay
rules. CDF = Crawl delay fulfilment; RDR = Requested disallowed resources.

Crawler
CDF

RDR
Runtime

Min Max Avg (in s)

LDSpider (T32,FS) 0.052 0.122 0.089 0.0 224
LDSpider (T32,FS,LBS) 0.002 0.007 0.004 0.0 43
SQUIRREL (W18) 0.697 0.704 0.699 0.0 2384

file. The average node degree of the nodes is configured as 5 while the average
resource degree is set to 6. Table 4.6 shows the results of this experiment.44

4.4.5 Evaluation with Lemming Graphs

For the last experiment, we integrate graphs generated by LEMMING into the ORCA

benchmark. To this end, we generate 10 graphs. We use the Semantic Web dog food
dataset described in Section 3.6.3 as input for LEMMING and generate graphs with
45 398 vertices using the BCS-BIS mode and 50000 optimization steps. We use these
graphs to generate a synthetic data Web. The ORCA benchmark is configured to use
the pre-generated datasets and extend them with external triples as explained in
Section 9. These triples are necessary to connect the 10 graphs with each other and
create a crawlable Web. This Web comprises 4 dereferencing nodes and 6 dump file

44The detailed results can be seen at https://w3id.org/hobbit/experiments#1575626666061,
1575592492658,1575592510594; last accessed on 05.08.2022.
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Table 4.7.: Results of the fourth experiments measured on a synthetic Web comprising RDF
graphs generated by LEMMING. Std. dev. = standard deviation.

Crawler Remic
Runtime (in s) RAM (in GB)

Average Std. dev. Average Std. dev.

LDSpider (T1,FS) 1.0 10 295 95 2.7 0.1
LDSpider (T8,FS) 1.0 11 525 41 3.2 0.9
LDSpider (T16,FS) 1.0 12 177 67 3.9 1.0
LDSpider (T32,FS) 1.0 13 748 190 2.7 0.1

SQUIRREL (W1) 1.0 30 248 2 274 9.8 0.5
SQUIRREL (W3) 1.0 12 391 396 15.4 0.2
SQUIRREL (W9) 1.0 6 619 91 35.6 0.6
SQUIRREL (W18) 1.0 4 845 205 80.0 1.4

nodes. We executed each experiment three times and report the average results and
the standard deviations in Table 4.7.45

4.5 Discussion

The experiment results give several insights. As expected, none of the instances
of LDSpider were able to crawl the complete synthetic Linked Data Web during
the first experiment. Apart from the expected reasons previously mentioned (i.e.,
the missing support for SPARQL, CKAN nodes and compressed dump files), we
encountered two additional issues. First, as mentioned in Section 4.4.1, the SPARQL
client of LDSpider did not store all the crawled triples in the provided triple store.
This leads to the different recall values of the LDSpider instances with and without
the “FS” extension. Second, although we tried several content handler modules
and configurations, LDSpider did not crawl dump files provided as N-Triples. In
comparison, the SQUIRREL instances crawl the complete cloud, except for some
triples of RDFa and CKAN nodes.

The second experiment reveals that overall, LDSpider is more resource-efficient
than SQUIRREL. In nearly all cases, LDSpider crawls the Web faster and uses less

45The detailed results can be found at https://w3id.org/hobbit/experiments#1636536652973,
1636708996546,1636998810648, https://w3id.org/hobbit/experiments#1636452031325,
1636709034488,1636998838887, https://w3id.org/hobbit/experiments#1636452042712,
1636709009010,1636998818625, https://w3id.org/hobbit/experiments#1636452058515,
1636709024625,1636998827415, https://w3id.org/hobbit/experiments#1636566308274,
1636709047446,1637163281570, https://w3id.org/hobbit/experiments#1636536685922,
1636709056292,1637163292990, https://w3id.org/hobbit/experiments#1636649328186,
1636998790922,1637163321762, and https://w3id.org/hobbit/experiments#1636659475867,
1636998800768,1637252026055; last accessed on 05.08.2022.
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resources than the SQUIRREL instances. Only with 9 or more workers SQUIRREL

is able to crawl faster. For the size of the graph, the number of threads used by
LDSpider do not seem to play a major role when employing the breadth-first strategy.
It could be assumed that the synthetic Web, with 200 nodes, provides only rare
situations in which several nodes are crawled by LDSpider in parallel. However, this
assumption can be refuted since SQUIRREL achieves lower runtimes. Therefore, the
load-balancing strategy of SQUIRREL seems to allow faster crawling of the Web than
the breadth-first strategy of LDSpider. However, the LDSpider (T32,FS,LBS) instance
implementing a similar load-balancing strategy aborts the crawling process very
early in all three experiments. Therefore, a clearer comparison of both strategies is
not possible.

The third experiment shows that both crawlers follow the Robots Exclusion Protocol
as both did not request disallowed resources. However, SQUIRREL seems to insert
delays between it’s requests following the Crawl-delay instruction—although it
reaches on average only 69.9% of the delay the server asked for—while LDSpider
does not take this instruction into account and solely relies on its static politeness
strategy with a configurable default delay of 500ms.

The fourth experiments shows that both benchmarked crawlers are able to handle
larger datasets that are close to real-world datasets. In addition to that, it confirms
the findings of the second experiment. Again, SQUIRREL instances with a large
amount of workers are faster than the LDSpider instances. However, they consume
much more memory (RAM). In addition, the results suggest that although the
experiments are complex and take several hours, the measured values are stable
across several runs leading to comparably low standard deviations. This finding
underlines that ORCA supports the reproducibility of experiment results.

4.6 Application

The knowledge graphs available on the Web have been growing over recent years
both in number and size [95, 177]. This development has been accelerated by
governments publishing public sector data on the Web [90].46 SQUIRREL is used
within several research projects, of which two are of national importance in Germany
and are both tackling the increased amount of data provided in the public sector. The
OPAL project created an integrated portal for open data by integrating datasets from

46Examples include the European Union at https://ec.europa.eu/digital-single-market/
en/open-data and the German Federal Ministry of Transport and Digital Infrastructure with data at
https://mobilithek.info/; last accessed on 31.07.2022.
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Table 4.8.: Crawling statistics of the OPAL project.

Datasets Triples Run time Type

mCLOUD.de 1 394 19 038 25min HTML
govdata.de 34 057 138 669 4h CKAN
europeandataportal.eu 1 008 379 13 404 005 36h SPARQL
OpenDataMonitor.eu 104 361 464 961 7h CKAN

several data sources from all over Europe.47 The project focused on public sector data
and mainly on the portals mCLOUD.de, govdata.de, and europeandataportal.eu.
In addition, several sources found on OpenDataMonitor.eu were integrated. SQUIR-
REL was used to regularly gather information about available datasets from these
portals. Table 4.8 lists the number of datasets that were extracted from the portals,
the time the crawler needed to gather them, and the way the crawler accessed
data. It should be noted that the run times include the delays SQUIRREL inserts
between single requests to ensure that the single portals are not stressed. The
portals evidently used different ways to offer their data. Two of them were CKAN
portals, while mCLOUD.de had to be scraped using SQUIRREL’s HTML scraper. Only
europeandataportal.eu offered a SPARQL endpoint to access the dataset’s meta-
data. The data integrated by OPAL were to be written back into the mCLOUD.de portal
and cater for the needs of private and public organisations requiring mobility data.
Users of this data range from large logistic companies needing to plan transport of
goods, to single persons mapping their movement with pollen concentration.

Another project that made use of SQUIRREL to collect data from the Web was
LIMBO.48 Its aim was to unify and refine mobility data of the German Federal
Ministry of Transport and Digital Infrastructure. The refined data was made available
to the general public to create the basis for new, innovative applications. To this end,
SQUIRREL was used to collect this and related data from different sources.

4.7 Conclusion

This chapter presented SQUIRREL, a scalable, distributed and extendable crawler
for the Data Web, which provides support for several different protocols and data
serializations. Other open-source crawlers currently available are either not able
to process RDF data, are limited in the types of data formats they can process, or

47http://web.archive.org/web/20220309232608/http://projekt-opal.de/en/
welcome-project-opal/; last accessed on 04.08.2022.

48https://www.limbo-project.org/; last accessed on 04.08.2022.
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are restricted in their scalability. SQUIRREL addresses these drawbacks by providing
an extensible architecture adaptable to supporting any format of choice. Moreover,
the framework was implemented for simple deployment both locally and at a large
scale.

In Addition, we presented ORCA—the first extensible FAIR benchmark for Data Web
crawlers, which measures the efficiency and effectiveness of crawlers in a comparable
and repeatable way. Using ORCA, we compared SQUIRREL with LDSpider in a
repeatable setup. We showed that ORCA revealed strengths and limitations of both
crawlers. SQUIRREL was able to crawl data from different sources (HTTP, SPARQL,
and CKAN) and compression formats (zip, gzip, bz2), leading to a higher recall
than LDSpider. LDSpider was more resource efficient throughout the experiments.
Additionally, we showed that ORCA can be used to evaluate the politeness of a
crawler, i.e., whether it abides by the Robots Exclusion Protocol.

Both approaches will be extended in various ways in future work. For SQUIRREL,
it’s efficiency is the main focus for future development and improvement. Future
versions of ORCA will include HTML pages with Microdata, Microformat or JSON-LD.
A similar extension will be the addition of further compression algorithms to the
dump nodes (e.g., tar), as well as the HDT serialization [96]. The generation step
will be further improved by adding literals and blank nodes to the generated RDF
datasets and altering the dataset sizes. A simulation of network errors will round up
the next version of the benchmark.
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A Topic Model for the Data
Web

5
With crawlers like the one described in the previous chapter, we are able to access a
large amount of data of the Semantic Web. However, with the size of the available
data comes the need to process this data in a scalable way. The large number of
datasets that are available online and their sheer size make it costly or even infeasible
to handle each of these datasets manually without support of proper tools. One
major issue that arises is that even the identification of datasets that are of interest
for a particular task may become challenging since experts are able to read RDF data
but may not have the time to look into hundreds of thousands of datasets. Hence,
we need to be able to characterize RDF datasets so that users can easily find datasets of
interest.

A similar problem is already known from the processing of large amounts of human-
readable documents. Most users might be able to read all books within a library.
However, they may not have the time to do so just to identify the books that they
are interested in. Although there are search engines that allow the indexing of
documents, users would have to know the right keywords to find documents that
they are interested in [123]. Hence, “search engines are not the perfect tool to
explore the unknown in document collections” [123]. Instead, topic modeling
algorithms can be used to infer latent topics in a given document collection. These
topics can be used to structure the document collection and enable users to focus on
subsets of the collection.

In this chapter, we apply topic modeling to a large set of RDF datasets. Our approach
allows users to explore datasets already available on the Web. To this end, we
tackle the challenge of transforming the RDF datasets into a form that allows the
application of a topic modeling inference algorithm.

A second challenge arises from the inferred topic model itself. The unsupervised
topic modeling inference algorithm gives no guarantees on the interpreteability of its
output. Topics that are generated by a topic modeling inference algorithm might

¶ Parts of this chapter have been published as conference article [227]. The author of this thesis is
also the main author of the published article and developed the idea, designed and implemented the
solution, and wrote the majority of the publication.
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be hard to understand by a user. Thus, they might not be of any use for the task
at hand. Since a manual check of generated topics leads to a large effort, an
automatic approach for the evaluation of generated topics is needed. We develop
the idea of topic coherence presented by Newman et al. [199] further and present a
common framework for topic coherence measures dubbed PALMETTO [227]. We use
the framework to evaluate 555 660 measures and identify a new topic coherence
measure that shows a better performance than previous state-of-the-art measures.

Based on the solutions for both challenges, we present LODCAT—an approach to
support the exploration of the Data Web based on human-interpretable topics. Our
evaluation shows that this approach can be applied to hundreds of thousands of
RDF datasets. The results of a questionnaire suggest that humans generally agree
with the topics that our approach assigned to a sample of example datasets.

The following section describes related work before Section 5.2 describes the sin-
gle steps of our approach dubbed LODCAT. Section 5.3 describes the PALMETTO

framework and the evaluation of topic coherence measures. The best topic coher-
ence measure is used within LODCAT during its evaluation, which is described in
Section 5.4. Section 5.5 concludes this chapter.

5.1 Related Work

We split the related work into two parts. First, we look at dataset portals and their
related work. After that, we list work related to the evaluation of topics.

5.1.1 RDF Dataset Search

In recent years, the Web became a growing source for valuable datasets. While it
was originally created to share documents and link these with each other, people
started to use the Web for many other activities. This includes the sharing of
data [22, 90, 220].

A survey of data search engines was recently published by Chapman et al. [65]. They
divide these search engines into four categories. The first category are database
search engines. They are used with structured queries that are executed against a
database back end. The authors emphasize that vertical search engines that try to
access the deep Web are part of this category. In this context, they define the deep
Web as the data that cannot be accessed directly by calling a Web page but can be
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accessed by using a Web form or some similar functionality. The second set of search
engines are information retrieval engines. These are integrated into data portals
like CKAN1 and offer a keyword-based search on the metadata of datasets. This
metadata can include tags defined by the creator of the dataset. The third category
are entity-centric search engines. The query of such an engine comprises entities of
interest and the search engine derives additional information about these entities.
The last category is named tabular search. A user of such a search engine tries to
extend or manipulate one or more existing tables by executing search queries.

The second category of Chapman et al. [65] represents the most common approach
to tackle the search for datasets on the Web. Several open data portals exist that
offer a list of datasets and a search on the dataset’s metadata. Examples are the
aforementioned CKAN, kaggle2 or open government portals like the european data
portal3. The Google dataset search presented by Brickley et al. [53] works in a
similar way. It collects metadata of datasets from various portals and offers a search
on this collected metadata. However, in contrast to a data portal, the Google crawler
collects the data from different sources. Internally, it is based on the established RDF
vocabularies DCAT [173] and Schema.org.4 Data providers can embed the metadata
of their datasets into their Web page using microdata [144], JSON-LD [261] or
RDFa [8]. The Google crawler extracts this information during its Web crawl and
forwards it to the Google dataset search engine. Our approach differs to these
approaches as we focus on RDF datasets and rely on the dataset itself instead of only
using metadata. In addition, we do not rely on a keyword search or user created
tags but automatically generated topics that are assigned to the datasets.

Singhal et al. [255] present DataGopher—a dataset search that is optimized for
research datasets. The authors tackle the problem that most datasets do not have
a long textual description and, hence, cannot be found easily in a classic keyword-
based search. They make use of a search engine for scientific articles to retrieve
articles that mention a dataset. These articles are further processed to generate a
context for the dataset. When a user executes a keyword-based search the extracted
context of the datasets is taken into account in addition to classical features like title
or description.

Devaraju et al. [81] propose a personalized recommendation of datasets based
on user behavior. Their approach combines a similarity measure that is based on
datasets’ metadata and their co-occurrence, i.e., how many users downloaded both

1https://ckan.org/; last accessed on 05.08.2022.
2https://www.kaggle.com/datasets; last accessed on 05.08.2022.
3https://data.europa.eu/en; last accessed on 05.08.2022.
4https://schema.org/; last accessed on 05.08.2022.
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Figure 5.1.: A part of the Linked Open Data cloud diagram [177]. Each circle represents an
RDF dataset. The black lines indicate links between two datasets.

datasets. The metadata as well as the access to datasets is gathered from an open
dataset portal.

A related project is the Linked Open Data cloud project [177]. It maintains an
overview of central datasets of the Semantic Web—dubbed Linked Open Data
cloud. Figure 5.1 depicts a part of the diagram generated based on the project data.
Although the project gives a nice first idea of a part of the Semantic Web it comes
with several drawbacks. First and foremost, the whole data is curated manually.
Dataset creators have to submit the metadata of their datasets through a form. This
manual curation will become infeasible as soon as we try to do the same for the
whole Semantic Web. With the form, the data creator assigns the dataset to one
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of 9 pre-defined categories that are listed in the upper left corner of Figure 5.1.
This manual classification of the dataset is another drawback. In comparison, our
approach LODCAT handles datasets automatically and assigns a mixture of topics,
which allows a more precise representation of the datasets.

Wagner et al. [299] propose an approach to enable users to query across multiple,
separated structured data sources. A user starts by defining an information need as
SPARQL query or keyword search based on a certain dataset. The system suggests
the addition of further datasets based on the similarity of datasets. This similarity is
calculated with an entity-centric approach. Entities are extracted from the single
datasets together with all their triples. Based on the triples, a similarity with entities
of other datasets is calculated. Based on the pair-wise entity similarities, entity
clusters are created which are used to characterize the datasets. Finally, given a
dataset, a score for each other dataset can be calculated based on 1) the amount of
new but similar entities the second dataset has and 2) the amount of new properties
the second dataset offers for these entities. The authors also provide a user interface
with a keyword search to enable non-experts to interact with their system. With
this search, users can identify possible entities of interest. Starting from an entity,
they can further include entities of other sources into their search. However, our
approach is not based on keywords and not centered on entities. Hence, we offer a
different perspective on the datasets.

Vandenbussche et al. [295] present a Web search for RDF vocabularies.5 However, it
is designed as a classic keyword-based search on the metadata and single elements of
the vocabulary combined with manually curated tags. Hence, the user has to match
exactly the right term to be able to identify a potentially interesting vocabulary.

Several approaches exist to explore RDF datasets. Tzitzikas et al. [278] define a
theoretical framework for these explorative search engines and compare several
approaches. However, all these approaches focus on exploring a single RDF dataset
while our goal is to explore a set of RDF datasets. Thus, in our use case, the user
starts on a higher level with much more data. However, this does not exclude that
our approach could be combined with existing explorative searches for RDF datasets.
With such a combination, a user could start to choose one or a small number of RDF
datasets using LODCAT and further explore these datasets using existing tools.

Kunze et al. [155] propose an explorative search engine for a set of RDF datasets.
This engine is mainly based on filters that work similar to a faceted search. For
ranking, the authors use a similarity function that comprises different aspects. One
of these aspects is called topical aspect and is based on the RDF vocabularies that are

5https://lov.linkeddata.es/dataset/lov; last accessed on 05.08.2022.
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used inside the different datasets. The more vocabularies are similar, the higher is
the topical similarity.

LODAtlas [217] combines several features of the previously mentioned systems into
a single user interface. The user can run complex key-word-based queries or do
an explorative search based on several dataset features like RDF vocabularies, RDF
classes, user defined tags and others. In addition, the user can create plots, e.g., to
compare several selected datasets with respect to their size or their links to each
other.

Kopsachilis et al. [149] propose GeoLOD—a dataset catalog that focuses on geo-
graphical RDF datasets. It extends the metadata of datasets with geo-spatial data
that is extracted from the dataset. This enables the user to perform search queries
via maps and geo-spatial features. Our approach analyses the given RDF dataset as
well but is not limited to geo-spatial data.

Sleeman et al. [256] proposed an approach to use topic modeling with RDF data.
While their work has a similar basis it differs in many ways since it aims at other use
cases. Their approach generates a single document for every entity described in a
dataset while our approach creates a single document for every RDF dataset. Thus,
their documents are based on a different set of triples and on different textual data
gathered from the dataset.

5.1.2 Topic Evaluation

The evaluation of topic models can be carried out on two levels: 1) the complete
topic model can be evaluated or 2) the single topics can be checked independently
from each other. The classic approach for evaluating a topic model is to calculate the
likelihood of held-out data [41, 63]. The higher the likelihood of the data, the higher
is the quality of the model. However, for evaluating single topics, topic modeling
experts relied on looking at the most important words of a topic. Each topic is a
distribution over all words. We sort the words in descending order based on their
probability within the topic’s distribution to retrieve the topic’s top words. Based on
these most important words, a human expert decides whether a topic has a good
or bad quality. However, this manual process to check whether topics are coherent
is very expensive. Additionally, Chang et al. [63] showed that measures like the
likelihood of held-out data are not or sometimes even negatively correlated with
human ratings. Thus, the evaluation of topic models needs an additional measure
that can rate topics automatically with respect to human understandability and
interpretability [63].
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Alsumait et al. [15] propose to check whether a topic distribution has features that
identify it as a bad topic. To this end, they define that a topic is bad if its distribution
is:

1. Similar to an even distribution,
2. Similar to the corpus’ background distribution, or
3. Likely to be a mixture of several topics instead of a single topic.

Another approach that also focuses on the topic distributions is proposed by Mimno
et al. [184] and is called posterior prediction checks. The main idea is to sample
observations from the generated topic model and check whether the sampled data
differs from the original corpus. For each word in a topic, the difference between
its predicted occurrence and its real occurrence can be measured to achieve an
evaluation of the single topics. However, both aforementioned approaches are
difficult to link with manually generated gold standards.

Newman et al. [199] propose to focus on the topic’s top words. An example of such
a set is {game, sport, ball, team}, which we will use for the purpose of illustration
throughout the section. In the paper, the authors begin by collecting human ratings
(good, neutral or bad) for sets of top words of generated topics. Several automatic
topic ranking methods that measure topic coherence are evaluated by comparison to
these human ratings. The evaluated topic coherence measures take the set of n top
words of a topic and sum a confirmation measure over all word pairs. A confirmation
measure depends on a single pair of top words. Several confirmation measures are
evaluated by the authors. The coherence based on PMI gives largest correlations
with human ratings during their evaluation. Let W = {w1, . . . ,wn} be the ordered
set of n top words of a given topic, i.e., they are the word types with the n highest
probabilities in the topic’s word distribution ϕ. The set is ordered in descending
order by the word type’s probabilities in the topic’s word distribution ϕ starting with
w1 as the word type with the highest probability. The UCI coherence proposed by
Newman et al. [199] is calculated by:6

CUCI(W ) = 2
n(n− 1)

n−1∑
i=1

n∑
j=i+1

PMIϵ(wi,wj) . (5.1)

Formally, probabilities are estimated based on word co-occurrence counts [199].
Those counts are derived from documents that are constructed by a sliding window
that moves over articles of the Wikipedia, which is used as external reference corpus.

6We adapt the equation and make use of PMIϵ as defined in Equation 2.30 to avoid the logarithm
of zero. Note that Newman et al. [199] do not only mention the arithmetic mean but also the median
as technique to summarize the values of the pairwise comparisons.
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Each window position defines such a document. Let W ex be the set of top words of
the example topic described above. For this example topic, the coherence proposed
by Newman et al. [199] would be calculated as follows:

CUCI(W ex) = 1
6
(
PMIϵ(game, sport) + PMIϵ(game, ball)

+ PMIϵ(game, team) + PMIϵ(sport, ball)

+ PMIϵ(sport, team) + PMIϵ(ball, team)
)
.

(5.2)

Mimno et al. [185] propose to use the smoothed conditional probability as asym-
metrical confirmation measure between top word pairs. The summation of UMass
coherence accounts for the ordering among the top words of a topic. The coherence
can be calculated as follows:7

CUMass(W ) = 2
n(n− 1)

n∑
i=2

i−1∑
j=1

log P (wi,wj) + ϵ

P (wj) . (5.3)

The word probabilities are estimated based on document frequencies of the original
documents used for learning the topics [185]. The calculation for our example
would be:

CUMass(W ex) = 1
6

(
log

(P (sport, game) + ϵ

P (game)

)
+ log

(P (ball, game) + ϵ

P (game)

)
+ log

(P (ball, sport) + ϵ

P (sport)

)
+ log

(P (team, game) + ϵ

P (game)

)
+ log

(P (team, sport) + ϵ

P (sport)

)
+ log

(P (team, ball) + ϵ

P (ball)

))
.

(5.4)

Stevens et al. [265] found that both—UCI and UMass coherence—perform better if
the parameter ϵ is chosen to be rather small instead of ϵ = 1 as in respective original
publications.

Aletras et al. [10] introduce topic coherence based on context vectors for every top
word. A context vector of a word type w is created using word co-occurrence counts
determined using context windows that contain all words located ±5 tokens around

7Note that ideally, one would want to compute log(P (wi, wj) /P (wj)). However, this can lead to
numerical errors when P (wi, wj) = 0. ϵ is hence set to be a small positive value, which ensures that
our computations are sound.
Note that Mimno et al. [185] originally define the coherence as the sum of the pairwise comparisons
while we define it as the arithmetic mean. We do that since the sum and arithmetic mean are equivalent
aggregation techniques with respect to the topic coherence task. Both techniques will lead to the same
order of rated topics with the same relative distance to each other as long as a constant number of top
words is used.
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the occurrences of the word type w in the reference corpus. Largest correlation to
human topic coherence ratings were found when defining the elements of these
vectors as NPMI [49] of the word pairs. Additionally, they showed that restricting
the word co-occurrences to those words that are part of the same topic performs
best (top word space). Thus, the j-th element of the context vector v⃗i of word type
wi has the following value:

vij = NPMIϵ(wi,wj)κ =

 log P(wi,wj)+ϵ
P(wi)P(wj)

− log(P(wi,wj) + ϵ)

κ

. (5.5)

κ is a weight parameter. An increase of κ gives higher NPMI values more weight.
For our example topic, the vector of its top word game would be calculated as:

v⃗game =
{
NPMIϵ(game, game)κ,NPMIϵ(game, sport)κ,

NPMIϵ(game, ball)κ,NPMIϵ(game, team)κ} . (5.6)

Confirmation measures between pairs of context vectors are vector similarities like
cosine, Dice or Jaccard [10] that are averaged over all pairs of a topic’s top words as
suggested by Newman et al. [199]. The cosine coherence for the example top words
would be calculated as:

Ccos(W ex) = 1
6
(
cos(⃗vgame, v⃗sport) + cos(⃗vgame, v⃗ball)

+ cos(⃗vgame, v⃗team) + cos(⃗vsport, v⃗ball)

+ cos(⃗vsport, v⃗team) + cos(⃗vball, v⃗team)
)
.

(5.7)

Alternatively, topic coherence is computed as average similarity between top word
context vectors and their centroid v⃗c [10]:

v⃗c = v⃗game + v⃗sport + v⃗ball + v⃗team , (5.8)

Ccen(W ex) = 1
4
(
cos(⃗vgame, v⃗c) + cos(⃗vsport, v⃗c)

+ cos(⃗vball, v⃗c) + cos(⃗vteam, v⃗c)
)
.

(5.9)

Additionally, Aletras et al. [10] show that the UCI coherence CUCI performs better if
the PMI is replaced by the NPMI. We name the latter coherence CNPMI.

Lau et al. [159] structure the topic evaluation in two different tasks—word intrusion
and observed coherence. In the first task, an intruder word has to be identified
among the top words of a topic. For the second task, topics have to be rated
regarding their coherence, while ratings are compared to human ratings. Both
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tasks can be carried out for single topics or the whole topic model. Lau et al. [159]
confirm that CNPMI performs better than the original CUCI.

Theoretical work on coherence of sets of statements in a broader sense are reviewed
by Douven et al. [83]. We follow their notation but adapt the presentation of
measures to word coherence. Shogenji’s [254] and Olsson’s [207] coherences are
defined as:

CS(W ) = P (w1, . . . ,wn)∏n
i=1 P (wi)

, (5.10)

CO(W ) = P (w1, . . . ,wn)
P (w1 ∨ . . . ∨ wn) . (5.11)

The usage of these coherences for our example is straight forward:

CS(W ex) = P(game, sport, ball, team)
P(game)P(sport)P(ball)P(team) , (5.12)

CO(W ex) = P(game, sport, ball, team)
P(game ∨ sport ∨ ball ∨ team) . (5.13)

Fitelson [99] evaluates a single word in the context of all subsets that can be
constructed from the remaining words. The set of all subsets without the word type
wi is denoted by Wi and defined as:

Wi =
{
W k|W k ⊆W \ {wi} ∧W k ̸= ∅

}
. (5.14)

Fitelson’s coherence is defined by comparing the probability of the i-th word with
every single set in Wi:

CF (W ) =

n∑
i=1

2n−1−1∑
j=1

mf (wi,Wi,j)

n(2n−1 − 1) . (5.15)

The measure used for the comparison is:

mf (wi,Wi,j) = P(wi|Wi,j)− P(wi|¬Wi,j)
P(wi|Wi,j) + P(wi|¬Wi,j) . (5.16)

Note that this approach takes relationships between word sets into account and goes
beyond averaging confirmations between word pairs.8

8In Section 5.3.1, we will give an example for Sone
any which is the equivalent to the (wi,Wi,j) pairs

of Fitelson’s coherence.
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Douven et al. [83] take the idea to go beyond word pairs further by creating pairs
of word subsets Si = (W ′,W ′′). These pairs of subsets are used to test whether
the existence of the subset W ′′ supports the occurrence of the subset W ′. This
support is measured using several confirmation measures and has been adapted to
the evaluation of topics by Rosner et al. [233]. The authors found that using larger
subsets W ′ and W ′′ can lead to better performing topic coherence measures.

While several coherence measures have been proposed, there is no work that creates
a unifying framework for their definition. Additionally, a comparative evaluation of
all the coherences is missing. We provide both in Section 5.3.

5.2 LODCat

Figure 5.2 shows an overview of our proposed approach LODCAT. It relies on a large
reference text corpus (e.g., the English Wikipedia) as a source of general knowledge
and uses topic modeling to assign human-readable topical labels to the single RDF
datasets. First, we use the reference corpus to generate topic models. After that, each
generated model is evaluated and the best model is chosen for further processing.
In parallel, the RDF datasets are transformed into a textual representation (i.e.,
documents). Based on the chosen topic model, a topic distribution is assigned to
each of the generated documents. In addition, a label is generated for each of
the topics. These labels are used to make the complex topic distributions human-
readable. At the end, each RDF dataset has a set of topics that are dominant for that
dataset and that are described by their labels. This data is used to provide a faceted
search, which helps a data provider to find datasets related to their own data. The
single steps of our approach are described in more detail in the following.

5.2.1 Topic Inference

The given reference corpus is pre-processed by converting it into plain text. The plain-
text documents are further preprocessed using a tokenizer and a lemmatizer [175].
The tokenizer separates a given text into single tokens. The lemmatizer transforms
all tokens into a basic word form called lemma [141]. This helps to reduce the
number of different word types in the corpus, e.g., by transforming plural forms of
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Figure 5.2.: Overview of the workflow of LODCAT.
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nouns into their singular form. After that, we remove stop words from the corpus.
These include common stop words but also RDF-related terms like “subject”.9

After the preprocessing, an LDA inference algorithm is applied. We expect the
reference corpus to be large and, hence, use the Variational Bayesian inference
proposed by Hoffman et al. [126] and described in Section 2.2.2. Since the best
number of topics ϱ is unknown, we generate models with different ϱ values.

5.2.2 Model Evaluation

From the set of generated topic models, the best model has to be chosen. Several
strategies can be employed to achieve this goal. A classic way to evaluate a topic
model is to predict the probability of existing documents. One such measure is
the perplexity, which is calculated on held-out data [43, 126]. Another approach
proposed by Griffiths et al. [110] would be to calculate P (D|Φ) as explained in Sec-
tion 2.2.3. However, both approaches focus on the statistical correctness of the model
but not on the human readability and interpretability by users. Chang et al. [63]
showed that some classic statistical measures are even negatively correlated with
human interpretability. Hence, several topic coherence measures have been pro-
posed [10, 159, 185, 199, 225, 233, 265]. These measures are used to evaluate
a single topic. Section 5.3 defines a framework for topic coherence measures and
presents the results of a detailed comparison of the available coherence measures
and more than 500 thousand other measures. In the following, we will use the mea-
sure that performed best in the experiments reported in the section aforementioned.
For each generated topic model, we calculate the coherence values of the single
topics and the average topic coherence of the complete model.

Note that this step does not only select the best model, but also assigns a coherence
value to each topic of the selected model. These coherence values are interesting for
the presentation of the topics since they enable us to exclude topics that have a low
coherence value and, hence, are not easy to interpret by users.

9The used stop word list can be found at https://github.com/MichaelRoeder/
topicmodeling/blob/master/topicmodeling.lang/src/main/resources/english.stopwords
and https://github.com/dice-group/lodcat/blob/develop/lodcat.model/src/main/
resources/stopwords.txt; last accessed on 05.08.2022.
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5.2.3 Topic Labeling

After identifying the best topic model, LODCAT creates labels for each of the model’s
topics to summarize the meaning of the topics for the users. The task of generating
such labels—dubbed topic labeling—is a known field of research and LODCAT

can use any of the available labeling methods [152, 157, 158]. For our current
implementation, we chose the Neural Embedding Topic Labelling (NETL) approach
of Bathia et al. [37] since 1) their evaluation shows that NETL outperformed the
approach of Lau et al. [158] and 2) the approach is available as an open-source
project.10 NETL comprises two steps. First, label candidates are generated for a
given topic. Second, the candidates are ranked according to a trained model.

The candidate generation is mainly based on the reference corpus. Bathia et al. [37]
propose the English Wikipedia and use it as input to generate two embedding models
using the doc2vec [160] and word2vec [181] algorithms. The first can represent
a natural language phrase as a vector in an embedding space while the latter does
the same for single words. The NETL algorithm extracts the document titles from
the same reference corpus and rates them according to their similarity to the top
words of the given topic. Let W be the set of top words of the given topic as defined
in Section 5.1.2 and WL the topic label candidate. Further, let ew

w2v and ew
d2v be the

embedding functions that embed a given word into a word2vec and doc2vec model,
respectively.11 Let ed

d2v be the embedding function that embeds a given phrase into
a doc2vec model and let simcos be the cosine similarity between two vectors. The
algorithm calculates the overall similarity simlt between a label candidate and a set
of top words as sum of the cosine similarities between the embeddings of the label
candidate and the top words in doc2vec and word2vec, respectively. The similarity
is defined as follows:

simlt(WL,W ) = 1
|W |

∑
w∈W

(
simcos

(
ed
d2v(WL), ew

d2v(w)
)

+

simcos

(
ew
w2v(WL), ew

w2v(w)
))

.

(5.17)

In the second step, NETL reranks the best 19 label candidates for a topic using
a supervised regression algorithm. This reranking is based on the following fea-
tures [37]:

10https://github.com/sb1992/NETL-Automatic-Topic-Labelling-; last accessed on
05.08.2022.

11It is possible to use other embedding algorithms for the representation of words and documents.
However, we stick to the embedding algorithms suggested by Bathia et al. [37].
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• The letter trigram similarity of W and WL [152],
• The page rank [208] of the document from which the label candidate was

taken,
• The number of words in the label [158], and
• The number of overlapping words of W and WL [158].

Bathia et al. [37] train a support vector regression model to rank the label candidates
based on a dataset comprising 228 topics with human-rated labels. In our current
implementation, we use the pre-generated embedding models, the page rank scores,
and the pre-trained classification model of NETL [37].

After this step, each topic has a human-readable representation. This representation
comprises the label derived with NETL and the topic’s 10 top words, which are used
as additional description of the topic.

5.2.4 RDF Dataset Transformation

The given RDF datasets are transformed into a textual representation that can be
used in combination with the generated topic model. This step relies on the IRIs
that occur in the datasets. We determine the frequency of each IRI in the dataset
(either as subject, object or predicate of a triple). IRIs of well-known namespaces
that do not have any topical value like rdf, rdfs, and owl are filtered out. After
that, the labels of each IRI are retrieved. The label retrieval is based on the list of
IRIs identified as label-defining properties by Ell et al. [87]. If there are no labels
available, the namespace of the IRI is removed and the remaining part is used
as label. If this generated label is written in camel case or contains symbols like
underscores, it is split into multiple words. If an IRI has a description, i.e., a triple
with the rdf:comment property, it is treated as additional label. The derived labels
are further preprocessed using a tokenizer and a lemmatizer [175] as described in
5.2.1. We create a list of word types that are used for the label(s) of each IRI. For
each word type w, we determine a frequency count fw by summing up all counts of
all IRIs, which have this word type in their list. However, we do not use the counts
directly for generating a document since some IRIs may occur hundreds of thousand
times. Their words would dominate the generated document and marginalize the
influence of other words. In addition, large count values would lead to very long
documents that could create problems with respect to the memory consumption
and the runtime of the inference. To reduce the influence of words with very high
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f values we determine the frequency of word type w for the document of the i-th
dataset as follows:

ψi,w = r(log2(fw) + 1) , (5.18)

where r is the rounding function which returns the closest integer value preferring
the higher value in case of a tie [3].12 The result of this step is a bag of words
representation of one document for each RDF dataset.

5.2.5 Topic Assignment

The last step of our approach is the assignment of topics to the documents that
represent the RDF datasets. For each document, a topic inference is executed, similar
to the inference described in Section 2.2.2. However, this inference is limited to
the documents generated in the previous step, i.e., for each document, only the “E”
step of the inference is executed. Hence, only the document’s γ and ξ are optimized
while the topic model’s χ is treated as a constant.13 The inference provides us with
a distribution over the topics for each document. This distribution is further used
together with the topic labels and top words as a human-readable representation of
the RDF dataset that is represented by this document.

5.3 Topic Evaluation

The evaluation of a topic with respect to its human understandability and inter-
pretability is crucial for topic-modeling-based approaches like LODCAT. Since our
approach relies on presenting topics to the user, it is important that the topics are
helpful for the user and can be understood easily. Since classic topic modeling
algorithms do not give any guarantees with respect to the quality of their topics,
Chang et al. [63] argue that an automatic measure for the coherence of a given
word set is needed.

The automatic calculation of the coherence of a set is researched in other areas as
well. Generally, a set of statements or facts is said to be coherent if the statements in
the set support each other [50]. Thus, a coherent fact set can be interpreted in a
context that covers all or most of the facts. An example of a coherent fact set is {“the
game is a team sport”, “the game is played with a ball”, “the game demands great

12The transformation of counts into occurrences in a synthetic document is similar to the logarithmic
variant of TAPIOCA described in Section 6.2.2.

13The meanings of γ, ξ, and χ are explained in Section 2.2.2.
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physical effort”}. A long-standing open question is how to quantify the coherence
of a fact set [50]. Approaches proposed in scientific philosophy have formalized
measures as functions of joint and marginal probabilities associated with the facts.
Bovens et al. [50] discuss many examples that lead to a demanding set of complex
properties such a measure needs to fulfill. An example is the non-monotonic behavior
of coherence in case of growing fact sets. The coherence of the two statements
“the animal is a bird” and “the animal cannot fly” can be increased by adding the
fact “the animal is a penguin”. The non-monotonicity becomes apparent when the
coherence is lowered again by adding non-related facts [50]. The discussion of
coherence measures in that community deals mainly with schemes that estimate the
hanging and fitting together of the individual facts of a larger set. Examples of such
schemes are 1) to compare each fact against the rest of all other fact, 2) compare
all pairs against each other, and 3) compare disjointed subsets of facts against
each other. Such theoretical work on coherence from scientific philosophy—see
Douven et al. [83] for an overview—has potential to be adapted for the coherence
of word sets.

The seminal work of Newman et al. [199] proposes automatic coherence measures
that rate topics regarding to their understandability. The proposed measures reduces
a topic to its top words. This important restriction will apply to all analyses presented
in this section. Furthermore, Newman et al. [199] restrict coherence to be always
based on comparing word pairs. Our analyses will go beyond this limitation.

Evaluations proposed by Newman et al. [199] are based on human-generated
topic rankings and showed that measures based on word co-occurrence statistics
estimated on Wikipedia outperform measures based on WordNet [182] and similar
semantic resources. Subsequent empirical works on topic coherence proposed a
number of measures based on word statistics that differ in several details [159, 185,
265]: definition, normalization, and aggregation of word statistics and reference
corpus. In addition, a method based on word context vectors has been proposed by
Aletras et al. [10].

Looking at the two lines of research on coherence—scientific philosophy and topic
modelling—we note that the contributions are mainly complementary. While the
former proposes a good number of schemes for comparing facts or words, the latter
proposes useful methods for estimating word probabilities and normalizing numeric
comparisons. However, a systematic, empirical evaluation of the methods of both
worlds and their yet unexplored combinations is still missing.

Human topic rankings serve as the gold standard for coherence evaluation. However,
they are expensive to produce. There are three publicly available sources of such
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rankings at the time of writing: 1) Chang et al. [63] that have been prepared
by Lau et al. [159] for topic coherence evaluation, 2) Aletras et al. [10], and
3) Rosner et al. [233]. A systematic, empirical evaluation should take all these
sources into account. For this reason, we choose the concept of a framework
providing an objective platform for comparing the different approaches. Following
our research agenda, this can lead to completely new insights into the behavior
of different algorithms with regard to the available benchmarks. Hence, it will be
possible to finally evaluate the reasons for specific behavior of topic coherences on a
comparable basis.

Our contributions within this section are the following:

1. We propose a unifying framework that spans a configuration space of topic
coherence definitions. The signature of this space will be explained in the
Section 5.3.1.

2. We exhaustively search this space for the coherence definition with the best
overall correlation with respect to all available human topic ranking data.
This search empirically evaluates published coherence measures as well as
unpublished ones based on combinations of known approaches.

3. Our results reveal a coherence measure based on a new combination of known
approaches that approximates human ratings better than the state of the art.14

5.3.1 Framework of Coherence Measures

Our new unifying framework represents a coherence measure as composition of parts
that can be freely combined. Hence, existing measures as well as yet unexplored
measures can be constructed. The parts are grouped into dimensions that span the
configuration space of coherence measures. Each dimension is characterized by a
set of exchangeable components. The first dimension is the kind of segmentation
that is used to divide a word set into smaller pieces. These pieces are compared
against each other, e.g., segmentation into word pairs. The set of different kinds of
segmentation is S. The second dimension is the confirmation measure that scores
the agreement of a given pair, e.g., the NPMI of two words. The set of confirmation
measures is M. Confirmation measures use word probabilities that can be computed
in different ways, which forms the third dimension of the configuration space. The
set of methods to estimate word probabilities is P. Last, the methods of how to

14Data and tools for replicating our coherence calculations are available at https://github.com/
dice-group/palmetto.
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Figure 5.3.: Overview over the unifying coherence framework—its four parts and their
intermediate results.

aggregate scalar values computed by the confirmation measure forms the fourth
dimension. The set of aggregation functions is A.

The workflow of our framework as shown in figure 5.3 comprises four steps. First,
the word set W is segmented into a set of pairs of word subsets S. Second, word
probabilities P are computed based on a given reference corpus. Both, the set
of word subsets S as well as the computed probabilities P are consumed by the
confirmation measure to calculate the agreements φ of elements of S. Last, those
values are aggregated to a single coherence value C(W ).

In summary, the framework defines a space of configurations that is the cross
product of the four sets C = S ×P ×M× A. In the following subsections, these
four dimensions are explained in more detail.

Segmentation of word subsets

Following Douven et al. [83], coherence of a word set measures the degree that a
subset is supported by another subset. The result of the segmentation of a given
set of top words W is a set of pairs of subsets of W . The definition of a subset
pair consists of two parts that are differently used by the following confirmation
measures. The first part of a pair is the subset for which the support by the second
part of the pair is determined.
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Definition 5.1 (Segmentation). A segmentation S∗
∗ of a given word set W is a set of

pairs of subsets:

S∗
∗ =

{
(W ′,W ′′)

∣∣∣W ′ ⊆W ∧W ′′ ⊆W
}
. (5.19)

The notation of the segmentation contains two ∗ symbols which are replaced by two
labels. The upper label expresses the definition of W ′ while the lower label defines
W ′′. We use Si to denote a single pair of word subsets, i.e., Si = (W ′,W ′′) and
Si ∈ S∗

∗.

Most proposed coherence measures for topic evaluation compare pairs of single
words, e.g., CUCI defined in Section 5.1.2. Every single word is paired with every
other single word. Those segementations are called one-one and are defined as
follows:

Sone
one =

{
(W ′,W ′′)

∣∣∣W ′ = {wi} ∧W ′′ = {wj}∧

wi ∈W ∧ wj ∈W ∧ i ̸= j
}
.

(5.20)

Mimno et al. [185] propose to take the order of words within the set of top words
into account. The following two segmentations are variations of Sone

one and compare
a word only to the preceding or succeeding words, respectively:

Sone
pre =

{
(W ′,W ′′)

∣∣∣W ′ = {wi} ∧W ′′ = {wj}∧

wi ∈W ∧ wj ∈W ∧ i > j
}
,

(5.21)

Sone
suc =

{
(W ′,W ′′)

∣∣∣W ′ = {wi} ∧W ′′ = {wj}∧

wi ∈W ∧ wj ∈W ∧ i < j
}
.

(5.22)

Douven et al. [83] proposed several other segmentations that have been adapted to
topic evaluation by Rosner et al. [233]. These definitions allow one or both subsets
to contain more than one single word:

Sone
all =

{
(W ′,W ′′)

∣∣∣W ′ = {wi} ∧ wi ∈W ∧W ′′ = W \ {wi}
}
, (5.23)

Sone
any =

{
(W ′,W ′′)

∣∣∣W ′ = {wi} ∧ wi ∈W ∧W ′′ ⊆W \ {wi} ∧W ′′ ̸= ∅
}
, (5.24)

Sany
any =

{
(W ′,W ′′)

∣∣∣W ′ ⊂W ∧W ′′ ⊂W ∧W ′ ∩W ′′ = ∅ ∧

W ′ ̸= ∅ ∧W ′′ ̸= ∅
}
.

(5.25)
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Sone
all compares every single word to all other words of the word set. Sone

any extends
Sone

all by using every subset as condition. Sany
any is another extension that compares

every subset with every other disjoint subset. Figure 5.4 shows the different sets of
subset pairs produced by applying the different segmentations to an example word
set.

The approach of Aletras et al. [10] compares words to the complete word set W
using word context vectors. Therefore, we define another segmentation

Sone
set =

{
(W ′,W )

∣∣∣W ′ = {wi} ∧ wi ∈W
}
. (5.26)

Note that this segmentation does not obey the requirement W ′ ∩W ′′ = ∅ stated by
Douven et al. [83].

Further, we define Sall
one and Sset

set as follows:

Sall
one =

{
(W ′,W ′′)

∣∣∣W ′ = W \ {wi} ∧W ′′ = {wi} ∧ wi ∈W
}
, (5.27)

Sset
set =

{
(W,W )

}
. (5.28)

These special segmentation schemes are used to represent Shogenji’s and Olsson’s
coherence measures within our framework.

Probability Estimation

The method of probability estimation defines the way how the probabilities are
derived from the underlying data source. Boolean document (Pbd) estimates the
probability of a single word as the number of documents in which the word occurs
divided by the total number of documents. In the same way, the joint probability
of two words is estimated by the number of documents containing both words
divided by the total number of documents. This estimation method is called boolean
as the number of occurrences of words in a single document as well as distances
between the occurrences are not considered. The UMass coherence is based on
an equivalent kind of estimation [185]. Text documents with some formatting
allow simple variations, namely the boolean paragraph (Pbp) and boolean sentence
(Pbs). These estimation methods are similar to boolean document except instead of
documents paragraphs or sentences are used respectively.

The boolean sliding window (Psw(∗)) determines word counts using a sliding window.
The window moves over the documents one word token per step. Each step defines a
new virtual document by copying the window content. Boolean document is applied
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|Football| |is| |a| |team| |game| |played| |outside.|

Figure 5.5.: An example document with sliding windows of Psw(3) (orange) and context
windows of Pcw(2) (blue) for the searched words team and game. Note that
only windows relevant for the searched words are shown. That means that
sliding windows should contain at least one of the searched words and context
windows are centered on one of these words.

to these virtual documents to compute word probabilities. Note that boolean sliding
window captures the proximity between word tokens to some degree. The window
size defines how many words are located within the window and is added to the
name, e.g., Psw(10) for a sliding window of size 10.

The boolean context window (Pcw(∗)) used by Aletras et al. [10] is always centered
on a searched word. All words within the window range to the left and the right of
the word are counted as cooccurrence. However, it suffers the problem that it can
create counts for larger subsets that are higher than the counts of smaller sets that
are subsets of the larger sets. This is counter-intuitive as the occurrence of larger
subsets is expected to be lower. We add the window size to the name, e.g., Pcw(5)

for a context window that covers ±5 words.

Figure 5.5 shows an example document with the sliding windows of size 3 and the
context windows with size ±2 that are used for the search of the cooccurrence of
the words team and game. The sliding window approach would count 3 occurrences
of each of the single words and 2 cooccurrences, since they occur only in 2 windows
together. The context windows would count 2 occurrences of the single words and
2 cooccurrences. To transform the counts into a probability, the window-based
approaches would divide the counts by the maximum number of windows. If we
assume that this is the only document in our reference corpus, there are 5 sliding
windows of size 3 and 3 context windows of size ±2. Pbd, Pbp, and Pbs would count
this example as 1 occurrence of both terms and 1 cooccurrence. The difference
between these three probability estimations would become only visible for larger
examples that comprise several paragraphs.

5.3 Topic Evaluation 139



Confirmation Measure

Definition 5.2 (Confirmation measure). A confirmation measure takes a single pair
Si = (W ′,W ′′) of word subsets as well as the corresponding probabilities to compute
how strong the conditioning word set W ′′ supports W ′.

The calculation can be carried out either directly [83, 185, 199] or indirectly [10].

Direct confirmation measures. Measures to directly compute the confirmation of a
single pair Si of words or word subsets are:

mc(Si) = P(W ′,W ′′)
P(W ′′) , (5.29)

mlc(Si) = log P(W ′,W ′′) + ϵ

P(W ′′) , (5.30)

md(Si) = P(W ′|W ′′)− P(W ′) , (5.31)

mr(Si) = P(W ′,W ′′)
P(W ′)P(W ′′) , (5.32)

mlr(Si) = log P(W ′,W ′′) + ϵ

P(W ′)P(W ′′) , (5.33)

mnlr(Si) = mlr(Si)
− log (P(W ′,W ′′) + ϵ) , (5.34)

ml(Si) = P(W ′|W ′′)
P(W ′|¬W ′′) + ϵ

, (5.35)

mll(Si) = log P(W ′|W ′′) + ϵ

P(W ′|¬W ′′) + ϵ
, (5.36)

mP(Si) = P(W ′,W ′′) , (5.37)

mJac(Si) = P(W ′,W ′′)
P(W ′ ∨W ′′) , (5.38)

mlJac(Si) = log P(W ′,W ′′) + ϵ

P(W ′ ∨W ′′) . (5.39)

Douven et al. [83] call the confirmation measures md, mr, and ml difference, ratio,
and likelihood measure, respectively. There, log likelihood (mll) and log ratio
measure (mlr) are also defined—the latter is the PMI, the central element of the
UCI coherence. The normalized log ratio measure (mnlr) is the NPMI. The log
conditional probability measure (mlc) is equivalent to the calculation used by the
UMass coherence [185]. The joint probability (mP) of the two sets is proposed
by Aletras et al. [10]. The last two confirmation measures are the Jaccard and
log Jaccard measures. A small constant ϵ is added to prevent the logarithm of
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zero, where necessary. Following Stevens et al. [265], we set it to a small value
(ϵ = 10−12).15 Olsson’s and Fitelson’s coherences as well as a logarithmic variant of
Shogenji’s coherence (Equations 5.11, 5.16 and 5.10) are denoted by mo, mf and
mls, respectively.

Indirect confirmation measures. Instead of directly computing the confirmation of
Si = (W ′,W ′′), an indirect computation of confirmation assumes that given some
word of W , direct confirmations of words in W ′ are close to direct confirmations of
words in W ′′ with respect to this given word. Thus, indirect confirmations compute
the similarity of words in W ′ and W ′′ with respect to direct confirmations to all
words of the set of top words. Their advantage can be explained with an example.
Assume word wi semantically supports word wj but they do not appear frequently
together in the reference corpus and have therefore a low joint probability. Thus,
their direct confirmation would be low as well. However, the confirmations of these
words correlate with respect to many other words in W . These two words could be
competing brands of cars, which semantically support each other. However, both
brands are seldom mentioned together in documents in the reference corpus. But
their confirmations to other words like “road” or “speed” do strongly correlate. This
would be reflected by an indirect confirmation measure. Thus, indirect confirmation
measures may capture semantic support that direct measures would miss.

This idea can be formalized by representing the word sets W ′ and W ′′ as vectors of
length n. Such vectors—dubbed context vectors—can be computed with respect to
any direct confirmation measure m. In case W ′ and W ′′ consist of single words, the
vector elements are just the direct confirmations as suggested by Aletras et al. [10].
For the case that a vector for a set of words is needed, we define the vector elements
as the sum of the direct confirmations of the single words. Based on a direct
confirmation measure m and a weight parameter κ the context vector for a subset of
top words, e.g., W ′, is calculated as follows:

v⃗m,κ,W ′ =

 ∑
wi∈W ′

m(wi,wj)κ

 j=1,...,n

wj∈W

. (5.40)

Following Aletras et al. [10], the vector elements can be non-linearly distorted. Let
v⃗′ and v⃗′′ be the context vectors of the two word sets W ′ and W ′′, respectively. For
the word sets of a pair Si = (W ′,W ′′), the indirect confirmation is computed as

15Additionally to the measures discussed by Stevens et al. [265], we use ϵ for ml and mll as well to
prevent a division by 0.
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vector similarity. Following Aletras et al. [10], we equip our framework with the
vector similarities cosine, Dice, and Jaccard, which are defined as follows:

simcos(⃗v′, v⃗′′) =
∑n

i=1 v′
iv′′

i

∥v⃗′∥2∥v⃗′′∥2
, (5.41)

simDice(⃗v′, v⃗′′) =
∑n

i=1 2min(v′
i, v′′

i )∑n
i=1 v′

i + v′′
i

, (5.42)

simJac(⃗v′, v⃗′′) =
∑n

i=1 min(v′
i, v′′

i )∑n
i=1 max(v′

i, v′′
i ) . (5.43)

Thus, given a similarity measure sim, a direct confirmation measure m and a value
for κ, an indirect confirmation measure m̃ is defined as

m̃sim,m,κ(W ′,W ′′) = sim
(
v⃗m,κ,W ′ , v⃗m,κ,W ′′

)
. (5.44)

Aggregation

Finally, all confirmations φ⃗ = {φ1, . . . , φ|S|} of all subset pairs Si are aggregated to a
single coherence score C(W ). The arithmetic mean (aa) and median (am) have been
used in the literature [199]. Additionally, we evaluate the geometric mean (ag),
harmonic mean (ah), quadratic mean (aq), minimum (an), and maximum (ax).

Representation of existing measures

In the following, we will show how to describe all coherence measures from Sec-
tion 5.1.2 as instances within our framework. The UCI, UMass, and NPMI coherences
are defined as follows:

CUCI =
(
Psw(10), S

one
one,mlr, aa

)
, (5.45)

CUMass =
(
Pbd, S

one
pre ,mlc, aa

)
, (5.46)

CNPMI =
(
Psw(10), S

one
one,mnlr, aa

)
. (5.47)

The coherences defined by Douven et al. [83] and adapted by Rosner et al. [233]
are written as follows:

Cone-all = (Pbd, S
one
all ,md, aa) , (5.48)

Cone-any =
(
Pbd, S

one
any,md, aa

)
, (5.49)

Cany-any =
(
Pbd, S

any
any,md, aa

)
. (5.50)
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Shogenji’s [254], Olsson’s [207], and Fitelson’s [99] coherences do not define
how the probabilities are computed. Therefore, these measure definitions can be
combined with every method of probability estimation. We indicate this with the
wildcard symbol ∗ in their definitions:

CS =
(
∗, Sall

one,mls, aa

)
, (5.51)

CO =
(
∗, Sset

set,mo, ∗
)
, (5.52)

CF =
(
∗, Sone

any,mf , aa

)
. (5.53)

All of the defined aggregation functions can be used for CO since the Sset
set segmenta-

tion leads to the creation of a single pair of word sets.

Using the context-window-based probability estimation Pcw described in Section 5.1.2,
we are able to formulate the context-vector-based coherences defined by Ale-
tras et al. [10] within our framework:

Ccos =
(
Pcw(5), S

one
one, m̃cos,mnlr,κ, aa

)
, (5.54)

CDice =
(
Pcw(5), S

one
one, m̃Dice,mnlr,κ, aa

)
, (5.55)

CJac =
(
Pcw(5), S

one
one, m̃Jac,mnlr,κ, aa

)
, (5.56)

Ccen =
(
Pcw(5), S

one
set , m̃cos,mnlr,κ, aa

)
. (5.57)

We showed that the framework can cover all existing topic coherence measures.
However, it also allows the definition of new coherence measures that combine the
ideas of existing measures.

5.3.2 Evaluation Setup

The evaluation follows a common scheme that has already been used in the related
work [10, 159, 199, 233]. Coherence measures are computed for topics given as
word sets that have been rated by humans with respect to understandability. Each
measure produces a ranking of the topics that is compared to the ranking induced
by human ratings. Following Lau et al. [159], both rankings are correlated using the
Pearson correlation. Thus, good quality of a coherence measure is indicated by a
high correlation with human ratings.

In the literature, other evaluation methods have been used as well, e.g., humans
were asked to classify word sets using different given error types [185]. However,
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since the necessary data is not freely available, we cannot use such methods for our
evaluation.

A dataset used for our evaluation comprises a corpus, topics, and human ratings.
Topics are computed using the corpus and are given by word sets consisting of the
topics top words. Human ratings for topics had been created by presenting these
word sets to human raters. Topics are rated regarding interpretability and under-
standability using three categories—good, neutral or bad [199]. The generation of
such a dataset is expensive due to the necessary manual work to create human topic
ratings. Several datasets have been published [10, 63, 159, 233]. Additionally, the
creation of such a dataset is separated from the topic model used to compute the
topics, since the humans rate just plain word sets without any information about
the topic model [10, 63, 159, 224, 233]. This opens the possibility to reuse them
for evaluation.

The 20NG dataset contains the 20 Newsgroups corpus that consists of Usenet mes-
sages of 20 different groups.16 The Genomics corpus comprises scientific articles of
49 MEDLINE journals and is part of the TREC-Genomics Track.17 Aletras et al. [10]
published 100 rated topics for both datasets, each represented by a set of 10 top
words. Further, they published 100 rated topics that have been computed using
47 229 New York Times articles (NYT). Unfortunately, this last corpus is not available
to us.

Chang et al. [63] used two corpora, one comprising New York Times articles (RTL-
NYT) and the other is a Wikipedia subset (RTL-Wiki). A number of 900 topics were
created for each of these corpora. Lau et al. [159] published human ratings for
these topics. Human raters evaluated word subsets of size five randomly selected
from the top words of each topic. We aggregated the ratings for each word set.
Word sets with less than three ratings or words with encoding errors are removed.18

The RTL-Wiki corpus is published in a bag-of-words format that is unsuitable for
paragraph-, sentence- or window-based probability estimations. Therefore, we have
retrieved the articles in version of May 2009 from Wikipedia history records. Not
all of the original 10 000 articles were available anymore. Therefore, the recreated
corpus comprises only 7 838 documents.

16http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.data.html; last accessed
on 05.08.2022.

17http://web.archive.org/web/20141020171050/http://ir.ohsu.edu/genomics/; last ac-
cessed on 05.08.2022

18The RTL-Wiki dataset contains 23 word sets with 6 words and more than 3 ratings that were
removed as well to ensure comparability of ratings.
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Table 5.1.: Datasets used for the evaluation.

Name 20NG Genomics NYT RTL-NYT RTL-Wiki Movie

Topics 100 100 100 1095 1096 100
Top words 10 10 10 5 5 5

Documents 19 952 29 833 — — 7 838 108 952
Paragraphs 155 429 2 678 088 — — 319 859 2 136 811
Sentences 341 583 9 744 966 — — 1 035 265 6 583 202
Tokens 2 785 319 114 065 923 — — 13 679 052 86 256 415
Vocabulary 109 610 1 640 456 — — 591 957 1 625 124

Rosner et al. [233] published the Movie corpus—a Wikipedia subset—and 100 rated
topics. Topics are given as sets of five top words. Like the RTL-Wiki corpus this
corpus was recreated and has only 108 952 of the original 125 411 documents.

Table 5.1 shows an overview of the statistics of the different datasets used for
evaluation. Word counts and probabilities necessary to calculate the coherence
values are derived from the English Wikipedia. In case the corpus, which was used
as training data for topic learning, is available, we compute coherence measures
a second time using counts derived from that corpus. All corpora as well as the
complete Wikipedia used as reference corpus are preprocessed using lemmatization
and stop word removal. Additionally, we removed portal and category articles,
redirection and disambiguation pages as well as articles about single years.

During our evaluation, we test a wide range of different parameter settings. We use
the values {10, 20, . . . , 300} and {5, 10, . . . , 150} for the sliding and the context win-
dow size, respectively. The parameter κ varied in {1, 2, 3}. Overall, our evaluation
comprises a total of 555 660 different coherences and parameterizations.

5.3.3 Results and Discussion

Table 5.2 shows the best performing coherence measures with respect to the different
datasets. The largest correlations for all datasets (except for the Movie dataset)
were reached, when the coherence measures relied on probabilities derived from
the Wikipedia instead of the corpus used for topic learning. We focus our discussion
on these calculations.

Following Demsar [78], a direct comparison of achieved correlation values on
datasets from different domains is not suggested. Hence, we compare the different
approaches using ranks. For each of the datasets, we sort all 555 660 coherence
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Table 5.2.: Coherence measures with strongest correlations with human ratings. The upper
part shows results for using the original corpus and the lower part those when
using the Wikipedia to derive probabilities, respectively.

C
oh

er
en

ce
s Name CV 2 CP CUMass Cone-any CUCI CNPMI Ccos

S Sone
all Sone

pre Sone
pre Sone

any Sone
one Sone

one Sone
one

P Psw(110) Psw(70) Pbd Pbd Psw(10) Psw(10) Pcw(5)
M m̃cos,mnlr,1 mf mlc md mlr mnlr m̃cos,mnlr,1
A aa aa aa aa aa aa aa

O
r.

co
rp

us 20NG 0.665 0.756 0.395 0.563 0.312 0.486 0.563
Genomics 0.671 0.652 0.514 0.549 0.624 0.630 0.632
RTL-Wiki 0.627 0.615 0.272 0.545 0.527 0.573 0.542
Movie 0.548 0.549 0.093 0.453 0.473 0.438 0.431

W
ik

ip
ed

ia n
=

10 20NG 0.832 0.825 0.555 0.822 0.747 0.809 0.790
Genomics 0.726 0.721 0.461 0.452 0.602 0.671 0.640
NYT 0.820 0.757 0.519 0.612 0.751 0.798 0.733

n
=

5 RTL-NYT 0.736 0.720 0.099 0.438 0.544 0.659 0.630
RTL-Wiki 0.684 0.645 0.336 0.499 0.548 0.609 0.579
Movie 0.542 0.533 0.143 0.454 0.447 0.452 0.465

Average rank 2 685.0 4 677.2 170 129.2 50 099.5 32 093.4 16 442.0 20 019.8
Standard dev. 4 287.6 5 304.1 120 432.8 34 769.6 22 373.6 20 132.6 14 970.6

measures in descending order based on the correlation that they achieved on that
dataset. Based on this order, we assign ranks to the coherence measures.19 Then,
we calculate the average rank and the standard deviation that the measures achieve
across the six datasets when the Wikipedia is used as reference corpus. Table
5.2 shows these values in the last two lines. In addition, we use a Wilcoxon
signed rank test [305] to compare a chosen set of coherence measures across their
performance on all six datasets.20 Table 5.3 shows the results of the pairwise
comparisons. Looking at already proposed coherence measures (five most right
columns of Tables 5.2 and 5.3), our results confirm that on average the UCI coherence
performs better with NPMI. Among already proposed coherence measures, CNPMI

shows the best performance and is able to significantly outperform CUMass and
CUCI. Slightly lower correlations and, hence, a higher average rank are obtained
by Ccos, which is the best performing vector-based coherence of those proposed
by Aletras et al. [10] within our experiment. However, the difference to CNPMI

is not significant. The UMass coherence has lower correlations and the highest
average rank in Table 5.2. Especially for smaller word sets, this coherence measure

19We make use of shared ranks, i.e., if two or more coherence measures achieve the same correlation
value, we assign the average of their ranks to these measures. Coherence measures for which the
correlation is not defined (e.g., because a coherence measure assigns the same value to all word sets
of the dataset) are put at the end of the ranked list.

20We use a Wilcoxon signed rank test with a threshold of 0.05%. As Demsar [78] point out,
a coherence measure has to achieve better correlation values on all six datasets to significantly
outperform another coherence measure.
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Table 5.3.: Results of the pairwise Wilcoxon signed-rank tests. + means that the coherence
measure in the row significantly outperforms the measure in the column. −
expresses the opposite. 0 means that the differences of both coherences are not
significant.

CV 2 CP CUMass Cone-any CUCI CNPMI Ccos

CV 2 + + + + + +
CP − + + + 0 +
CUMass − − 0 − − −
Cone-any − − 0 0 0 0
CUCI − − + 0 − 0
CNPMI − 0 + 0 + 0
Ccos − − + 0 0 0

does not seem to achieve good results. Shogenji’s (average rank 276 893.5) and
Olsson’s (267 729.5) coherences (not shown in Table 5.2) have high average ranks
and correlations close to zero, while Fitelson’s coherence (57 190.7) is comparable
to Cone-any proposed by Rosner et al. [233].21

The best performing coherence measure (the leftmost column) is a new combination
found by our systematic study of the configuration space of coherence measures.
This measure (CV 2) combines the indirect cosine measure with the NPMI and the
boolean sliding window.22 This combination has been overlooked so far in the litera-
ture and significantly outperforms all previously proposed coherence measures. Also,
the best direct coherence measure (CP ) found by our study is a new combination.
It combines Fitelson’s confirmation measure with the boolean sliding window. CP

shows a significantly better performance than all other previously proposed coher-
ence measures except CNPMI. While CP achieves a higher correlation than CNPMI for
five datasets, it has a lower correlation on the NYT dataset.

Among probability estimation methods, the boolean paragraph, boolean sentence,
and context window methods perform better than the boolean document (see
Table 5.4). The boolean sliding window performs best, but the window size should
be larger than the size proposed by Newman et al. [199]. Figure 5.6 shows the
average ranks achieved by variants of CV 2, CP , CUCI, and CNPMI with different window
sizes. It shows that only the CP coherence achieves a good average rank with a small
window (s = 10). It reaches its best average ranks with a window size of 40 to 70
word tokens. The ranks of CV 2 and CNPMI remain on a low level, when the window

21More detailed results for the already proposed coherence measures can be found in the appendix
in Section A.3.

22We name the coherence CV 2 since the name CV (for vector-based coherence) has been used by
us in [227]. However, the CV coherence showed severe performance issues.
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Table 5.4.: Best average ranks for the probability estimations, segmentations, and aggre-
gations if they were combined with a direct or indirect confirmation measure
(standard deviation in parenthesis).

Name Direct Indirect

Name Avg. rank Std. dev. Avg. rank Std. dev.

Pbd 21 186.7 (20 287.4) 14 736.2 (16 346.6)
Pbp 15 974.8 (13 854.7) 9 001.0 (7 555.2)
Pbs 11 384.3 (9 043.4) 8 296.8 (13 536.0)
Psw(70) 4 677.2 (5 304.1) 3 150.7 (5 644.1)
Psw(110) 5 275.7 (5 621.6) 2 685.0 (4 287.6)
Pcw(15) 16 908.3 (12 029.4) 11 358.7 (17 454.2)
Pcw(20) 16 994.3 (12 758.9) 10 488.0 (14 823.2)

Sall
one 85 393.8 (79 805.3) 2 685.0 (4 287.6)

Sany
any 26 508.5 (22 316.8) 2 753.2 (3 864.4)

Sone
all 85 393.8 (79 805.3) 2 685.0 (4 287.6)

Sone
any 21 186.7 (20 287.4) 3 023.5 (4 757.7)

Sone
one 4 809.2 (5 383.1) 4 286.0 (4 758.2)

Sone
pre 4 677.2 (5 304.1) 4 286.0 (4 758.2)

Sone
set 183 405.1 (85 810.1) 2 778.7 (4 169.6)

Sone
suc 5 350.5 (5 484.2) 4 286.0 (4 758.2)

Sset
set 258 283.6 (141 447.3) 306 677.3 (88 002.8)

aa 4 677.2 (5 304.1) 2 685.0 (4 287.6)
ag 81 130.2 (36 979.5) 28 430.7 (18 998.7)
ah 97 568.8 (67 942.5) 36 584.3 (19 231.1)
am 12 524.2 (7 955.2) 2 753.2 (3 864.4)
an 86 219.2 (34 504.0) 51 933.0 (11 386.2)
aq 20 378.5 (31 065.3) 5 217.2 (5 894.5)
ax 83 088.4 (80 401.4) 8 587.5 (9 714.3)
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Figure 5.6.: The influence of the sliding window’s size on the average ranks of variants of
different sliding-window-based coherences (lower values are better).

size is larger than 50. CUCI benefits from a larger window size, too, and reaches its
best average rank at 40. An explanation for the good performance of the boolean
sliding window is that it implicitly represents distances between word tokens within
large documents. Further, large documents that are known to have good quality
in Wikipedia, are implicitly up weighted because they contain more windows than
smaller documents.

Among the segmentation methods, if a direct confirmation measure is used the
single-word-based segmentation methods (Sone

one, Sone
pre , and Sone

suc) achieve good ranks,
while Sone

set and Sset
set have high ranks. This changes when an indirect confirmation

measure is used. Nearly all segmentation methods reach a very good rank with
indirect confirmation measures. Sset

set is the only exception with a very high rank.

The arithmetic mean is the aggregation with the best average ranks. Combined with
indirect confirmation measures the median achieves a comparable average rank.

Among the direct confirmation measures, mf achieves the best average rank, fol-
lowed by mnlr (see Table 5.5). With some distance, md and mlr follow. The last
three benefit from a combination with an indirect measure, while the rank of mf

drops slightly. In most cases, the indirect measures achieve a better average rank if
they use the cosine similarity instead of Dice or Jaccard.

The small differences in correlation of coherences with 1) different window sizes
and 2) segmentation methods that are very similar to each other, leads to a large
number of coherences having high correlation values that are only slightly lower
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Table 5.5.: Best average ranks for the confirmation measures with their standard deviation
in parenthesis.

Name Direct
Indirect

m̃cos m̃dice m̃jac

mc
58 288.3 48 310.3 42 063.2 44 833.4

(77 905.9) (74 366.5) (59 068.0) (55 144.0)

md
24 998.0 14 552.0 11 014.0 13 397.3

(14 889.2) (16 444.6) (11 469.3) (12 478.7)

mf
4 650.0 5 519.0 88 348.8 49 917.0

(5 127.1) (5 558.0) (44 531.7) (48 673.2)

mJac
80 164.7 46 320.0 41 621.0 46 474.8

(36 472.6) (48 007.4) (46 860.9) (44 594.1)

ml
152 167.7 137 029.2 142 200.3 142 203.5
(91 790.2) (82 525.2) (109 696.7) (109 696.7)

mlc
71 655.0 146 413.8 226 692.2 226 772.0

(58 241.4) (57 809.7) (90 988.1) (90 303.1)

mlJac
53 171.5 224 282.7 254 230.5 259 565.2

(32 661.9) (126 293.7) (110 838.5) (109 446.3)

mll
46 740.2 55 885.8 119 478.0 94 395.0

(26 951.3) (35 941.5) (98 626.2) (67 974.3)

mlr
29 162.5 10 863.0 13 670.0 12 763.8

(17 744.9) (11 944.6) (8 545.8) (10 902.0)

mls
223 416.3 55 566.5 71 119.2 70 952.2

(137 333.9) (32 509.4) (36 545.4) (36 395.9)

mnlr
8 368.2 2 685.0 10 488.0 12 606.9

(9 349.4) (4 287.6) (14 823.2) (13 245.4)

mo
80 164.7 46 320.0 41 621.0 46 474.8

(36 472.6) (48 007.4) (46 860.9) (44 594.1)

mP
229 723.2 61 007.7 38 867.4 42 623.6
(72 142.1) (86 917.5) (41 944.7) (40 162.3)

mr
157 698.8 48 310.3 46 959.7 50 603.2

(118 045.0) (74 366.5) (42 903.9) (43 382.9)

Table 5.6.: Coherence measures with the best ranks if one dataset has been left out.

Corpus Coherence Average Standard

left out P S M A rank deviation

20NG (Psw(110), S
any
any, m̃cos,mnlr,1, am) 2 985.6 4 333.3

Genomics (Psw(290), S
any
any, m̃cos,mnlr,1, am) 2 188.0 2 566.7

NYT (Psw(120), S
one
all , m̃cos,mnlr,1, aa) 3 219.7 4 542.1

RTL-NYT (Psw(120), S
one
all , m̃cos,mnlr,1, aa) 3 191.7 4 558.1

RTL-Wiki (Psw(120), S
one
all , m̃cos,mnlr,1, aa) 3 193.1 4 557.3

Movie (Psw(70), S
one
all , m̃cos,mnlr,1, aa) 650.5 2 640.6
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Table 5.7.: Coherence runtime results on the NYT dataset and the Wikipedia reference
corpus in seconds.

Name Runtime Std. dev.

CV 2 302.1 2.5
CP 305.2 2.4
CUMass 6.3 0.1
Cone-any 6.3 0.1
CUCI 307.9 1.8
CNPMI 310.2 2.1
Ccos 288.2 1.6

than the best performing coherence CV 2. Thus, there are many variants of CV 2 that
perform well as long as they use a sliding window with a large window size (≥ 20).
We confirm this by generating leave one out averages, i.e., we calculate the average
ranks using only five of the six datasets. Table 5.6 shows that independently from
the dataset left out, coherence measures that are very similar to CV 2 achieve the
best average ranks.

5.3.4 Runtimes

Next to the effectiveness of the coherence measures, we are interested in their
efficiency. To this end, we measure the runtimes of all coherence measures.23 For
this experiment, we use the 100 topics of the NYT dataset and the Wikipedia as
reference corpus. We use the coherence measures of Table 5.2 to calculate coherence
values for all topics and measure the runtime. We repeat this experiment five times
with a random order of the coherence measures to reduce the influence of the order
on the results. Table 5.7 shows the overall time it takes to calculate the coherence
values for all 100 topics for each of the coherence measures.

For the runtime of a coherence measure, the most important component is the
probability estimation. The fastest estimation is the boolean document. It needs
only 6.2s to retrieve all necessary probability values. The boolean paragraph and the
boolean sentence based estimation methods need 15.5s and 62.5s, respectively. Both
suffer from the fact that there are much more paragraphs and sentences than single
documents. However, they are still faster than the window-based approaches since
the reference corpus can be divided into paragraphs or sentences while preprocessing
the corpus. In contrast, both window-based estimation methods have the highest

23We use a single machine with an Intel Core i5-7300U, 2.60GHz and 16 GB RAM for this experiment.
The software was used in a sequential setup, i.e., it did not make use of parallel processing.
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Table 5.8.: Different segmentation schemes, the number of subset pairs Si they contain
(|S|), and examples of their influence on runtimes of confirmation measures
and aggregations when calculating the coherence values for all 100 topics of
the NYT dataset. All values in seconds.

Name |S| m̃cos,mnlr,1 aa

Runtime Std. dev. Runtime Std. dev.

Sset
set 1 0.041 0.005 0.003 0.000

Sone
all n 0.242 0.037 0.004 0.000

Sone
set n 0.080 0.006 0.004 0.000

Sone
pre

n(n−1)
2 0.168 0.027 0.008 0.000

Sone
suc

n(n−1)
2 0.166 0.005 0.008 0.000

Sone
one n(n− 1) 0.298 0.074 0.013 0.000

Sone
any n(2(n−1) − 1) 38.979 2.716 0.592 0.001

Sany
any

n−1∑
i=1

((
n

i

)
(2i − 1)

)
196.660 14.574 6.616 0.038

runtimes. This is caused by the need of retrieving the single positions of the words
inside the documents to check whether these words are within the same window. The
context-window-based approach needs 258.9s to retrieve all counts with a window
size of 5. The sliding window needs 275.5s and 271.7s with a window size of 10 and
110, respectively.24 We conclude that the number of windows that are processed has
an influence on the runtime. The context-window-based approach has to take the
lowest number of windows into account, since the number of windows is directly
bound to the number of occurrences of the top words within the documents. The
sliding window approach has to take a larger number of windows into account if the
windows are small. Hence, the approach is slightly faster in our evaluation if the
window size is large. Other parameters for the runtime of all probability calculation
are 1) the number of topics that have to be evaluated, 2) the number of top words
per topic (n), and 3) the size of the reference corpus.

Another important component is the segmentation. While the segmentation of a
specific topic is very fast, it controls the number of confirmation values that have
to be calculated. Thus, it has an impact on the time needed by the confirmation
measure and the aggregation component. We measure the impact on variations of
the CV 2 coherence measure that make use of different segmentations. Table 5.8
shows the number of subset pairs Si that the different segmentations create and
the measured influence of this number on the runtime of confirmation measures

24The difference between these runtimes is significant. We used a Wilcoxon signed-rank test with a
significance threshold of 0.05.
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and aggregations on the NYT dataset. The table shows that the segmentations have
an increasing complexity up to an exponential complexity for Sone

any and Sany
any. The

measured runtimes of the aggregation follow exactly this increasing complexity.
However, the measured runtime of the confirmation measure has an intermediate
peak for Sone

all with a higher runtime than Sone
pre and Sone

suc although the latter have
a higher number of subset pairs. This effect is caused by the need to calculate a
single context vector that represents the W ′′ subset. While Sone

pre and Sone
suc lead to

W ′′ subsets with a single element for which a vector is already available, the Sone
all

segmentation leads to W ′′ subsets of size n − 1, which is also different for each
of the top words. Hence, additional time is consumed to calculate the vector that
represents this set. However, the measured runtimes show that in practice, the
influence of the majority of segmentations on the overall runtime is low compared
to the probability estimation.

5.3.5 Application in LODCat

As described in Section 5.2.2, we infer several topic models with different numbers
of topics. To choose the best model, we rely on the best performing topic coherence
measures CV 2 and CP . We define the human understandability of a topic model as
the understandability of its topics. Hence, we can calculate the quality of a model as
the average coherence of its topics. In addition, we use these coherence measures to
identify low-quality topics that should not be shown to the user since it is unlikely
that a user will find them helpful.

5.4 Evaluation of LODCat

We evaluate LODCAT in a setup close to a real-world scenario. That means that we
start with the English Wikipedia as corpus and process more than 600 thousand RDF
datasets using LODCAT following the steps described in Section 5.2. The evaluation
can be separated into the following three consecutive experiments:

1. The first experiment comprises the generation of the topic model that will be
used for the further process. This includes the generation of topic models, the
selection of the best model and the application of the topic labeling algorithm.

2. The second experiment uses the best topic model generated within the first
experiment and more than 600 thousand RDF datasets as input. It comprises
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the transformation of the RDF datasets and the assignment of topics from the
topic model.

3. The third experiment finally evaluates the assignment of topics to the RDF
datasets based on a user study.

5.4.1 Datasets

For our evaluation, we use two types of data—a reference corpus to generate
the topic model and the set of RDF datasets, which should be represented in a
human-interpretable way. We use the English Wikipedia as reference corpus.25 We
preprocess the dump file by removing Wikimedia markup from the single articles.
After that, we remove redirect articles and handle each remaining article as an own
document. Each document is preprocessed as described in Section 5.2.1.26 From
the created set of documents, we derive all word types and count their occurrence.
Then, we filter the word types by removing 1) common English terms based on a
stop word list, and 2) all word types that occur in more than 50% of the documents
or 3) in less than 20 documents.27 From the remaining word types, we select the
100 000 word types with the highest occurrence counts and remove all other from
the documents. After that, we remove empty documents and randomly sample 10%
of the remaining documents. Finally, we get a corpus with 619 475 documents and
190 million word tokens.

We gather 623 927 real-world RDF datasets from the LOD Laundromat project [30].28

These are the datasets that we want to represent in a human-interpretable way. This
data has a large overlap with the LOD-a-lot dataset of Fernandez et al. [95] since
both rely on cleaned RDF datasets of the LOD Laundromat. However, the number
of RDF datasets we use is slightly smaller and the datasets are separated from each
other. Using one large dataset like the LOD-a-lot dataset would not fit to our use
case. Figure 5.7 shows the size of the RDF datasets. The majority of datasets in
the figure have between 100 and 10 000 triples. The largest dataset has 43 million
triples. The sum of all triples in these RDF files is 3.7 billion.29

25We use the dump of the English Wikipedia from September 1st 2021.
26In our current implementation, we use the Stanford CoreNLP library [175].
27The stop word list can be found at https://github.com/dice-group/lodcat/blob/develop/

lodcat.model/src/main/resources/stopwords.txt; last accessed on 06.08.2022.
28We downloaded the datasets in January 2018.
29Note that we do not deduplicate the triples across the datasets.
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Figure 5.7.: The size of the RDF datasets.

5.4.2 Setup

Experiment I

In the first experiment, we infer the topic models based on the English Wikipedia
corpus. As described in Sections 5.2.2 and 5.3.5, we infer several models with differ-
ent numbers of topics.30 For this evaluation, we use ϱ = {80, 90, 100, 105, 110, 115,
120, 125, 135}. We generate three models for each number of topics and configure
the inference to use hyper parameter optimization for both hyper parameters. The
single models are rated by calculating the average quality of their topics using the
CV 2 and CP topic coherence measures. For each coherence measure, we rank the
models based on their average coherence value. We choose the model that achieves
the best rank on average for both coherence measures.

We further analyze the chosen topic model in more detail with respect to the quality
of the single topics. As described in Section 5.3.5, the topic coherence values can
be used to distinguish topics with high and low coherence values. To this end, we
define a topic quality threshold. All topics with a minimum CV 2 value of 0.125
and a minimum CP value of 0.25 are high quality topics while all topics with lower
coherence values are low quality topics. In practice, the latter are topics that would
not be shown to the user.

30We use the Gensim library for the inference [223]. https://radimrehurek.com/gensim/index.
html; last accessed on 06.08.2022.
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In addition, we use the models generated within this experiment to compare our
coherence-based results with the two approaches described in Section 2.2.3, which
have been proposed by related work to identify a good number of topics.

Experiment II

Based on the best topic model created in the first experiment, we process each
of the 623 927 RDF datasets by LODCAT as described in Section 5.2. During this
step, we remove datasets that lead to an empty document. The result of LODCAT

comprises a document for each RDF dataset and a topic distribution based on the
used topic model. After that, we analyze the results by looking at the topics that
have been assigned to the documents. Let DRDF be the corpus that is created by
LODCAT based on the given RDF datasets and let DWiki be the corpus that has been
used to generate the topic model in the first experiment. Let ζi,k be the count of
word tokens in the i-th document di that have been assigned to the k-th topic as
defined in Section 2.2.2. We define the measure b(k,DRDF, DWiki) to measure the
importance of the k-th topic for corpus DRDF in comparison to its importance for
corpus DWiki as follows:

b(k,DRDF, DWiki) =


|DRDF|∑

i=1
ζi,k

ϱ∑
j=1

|DRDF|∑
i=1

ζi,j




|DWiki|∑
i=1

ζi,k

ϱ∑
j=1

|DWiki|∑
i=1

ζi,j


. (5.58)

The importance of a topic is expressed as the number of word tokens that are
assigned to this topic while determining the topic distributions for the corpus’
documents. Assuming that DWiki, i.e., the English Wikipedia, represents a broad,
general set of topics, this measure can help to identify topics that might be over or
underrepresented within the DRDF corpus, i.e., within the RDF datasets.

Experiment III

Finally, we evaluate the assignment of the topics to the datasets. Chang et al. [63]
propose the topic intruder experiment to evaluate whether the assignment of topics
to a document is good. They determine the top topics of a document (i.e., the
topics that have received the highest probabilities for the document) and insert a
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randomly chosen topic from the same topic model that is not one of the document’s
top topics. This randomly chosen topic is called intruder topic. After that, volunteers
are given the created list of topics and the document, and are asked to identify the
intruder. The more often the intruder is successfully identified, the better is the topic
assignment of the topic model. We use the same approach to evaluate whether a
topic model can assign meaningful topics to an RDF dataset.

We sample 60 datasets that have more than 100 and less than 10 000 triples. For
each of the sampled datasets, we derive the three topics with the highest probability.
Based on the dataset content and the quality of their top topics, we choose 10
datasets that 1) have at least two good topics among the top three topics, 2) have a
good quality topic as highest ranked topic, 3) have a content that can be understood
without accessing further sources, and 4) have not exactly the same top topics as the
already chosen datasets. For each chosen dataset, we sample an intruder topic from
the set of high quality topics that are not within the top three topics of the dataset.

We create a questionnaire with 10 questions. Each question gives the link to one
of the chosen datasets and a list of topics comprising the top topics of the dataset
and the intruder topic in a random order. 5 chosen datasets have three good top
topics while the other 5 datasets have one top topic with a low coherence value. We
remove the topics with the low values. Hence, 5 question comprise 4 topics and
the other 5 questions have 3 topics from which a user should choose the intruder
topic.31 For the questionnaire, the topics are represented in the human-readable way
described in Section 5.2.3, i.e., with their label and their top words. The participants
of the questionnaire are encouraged to look into the RDF dataset. However, they
should not include further material. A user may answer all 10 questions. However,
all answers are weighted equally even if a user only gave an answer for one or two
questions. We send this questionnaire to several mailing lists to encourage experts
and experienced users of the Semantic Web to participate.

Following Chang et al. [63], we calculate the topic log odds to measure the agree-
ment between the topic model and the human judgments that we gather with our
questionnaire. Let θi be the topic distribution of i-th document di. Let θi,k be the
probability of the k-th topic for document di. Let Ui = {ui,1, . . .} be the bag of all
user answers for document di, i.e., the j-th element is the id of the topic that the
j-th user has chosen as intruder topic for this document. Let xi be the id of the real
intruder topic for document di. Chang et al. [63] define the topic log odds ϑ as the

31The 10 questions and their answers can be found in Section A.5 of the appendix.
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average difference between the probabilities of the chosen intruder topics compared
to the real intruder topic:

ϑ(θi,Ui, xi) = 1
|Ui|

|Ui|∑
j=1

(
log(θi,xi)− log(θi,ui,j )

)
. (5.59)

A perfect agreement between the human participants and the topic model would
lead to ϑ = 0. In practice, this is only reached if all participating volunteers always
find the correct intruder topic.32

5.4.3 Results

Experiment I
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Figure 5.8.: Boxplots for CV 2 coherence values of different topic models with different
numbers of topics. The marked topic model is the model chosen for further
processing. The diamond shaped points mark the arithmetic means.

Figures 5.8 and 5.9 show the topic coherence values of the topic models generated
with varying values for ϱ, respectively. We rank the topic models according to their
coherence score for CV 2 and CP , respectively, and assign the sum of the ranks to the
topic models. We pick the model with the best overall ranking. This model is ranked

32In theory, this is not necessary. It is sufficient if the human judges choose topics that have the
same probability θi,j as the intruder topic. However, this case does not occur often in practice since
the number of top topics used for this experiment is low and these topics typically have a higher
probability for the document than the intruder topic.
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Figure 5.9.: Boxplots for CP coherence values of different topic models with different
numbers of topics. The marked topic model is the model chosen for further
processing. The diamond shaped points mark the arithmetic means.

as second best model by both coherences measures and has ϱ = 115. The chosen
topic model is marked in Figures 5.8 and 5.9. The latter figure, shows another topic
model with ϱ = 110 next to the chosen model with a higher average coherence.
However, this model is ranked as 11th best model by the CV 2 coherence measure.
A similar result achieves the model that got the best CV 2 coherence value. For the
remainder of this section, we will focus our evaluation on the chosen model.

The chosen topic model comprises 115 topics. Figures 5.10 and 5.11 show the
coherence values of the topics for both coherence measures. Table 5.9 shows the
top words of 10 example topics. These topics have been chosen based on their
CV 2 coherence values. They represent the topics with the 5 highest and 5 lowest
coherence values. While the first 5 topics seem to focus on a single topic the topics
with the low coherence scores comprise words that seem to have no strong relation
to each other.

We compare our approach to choose the best model with the approaches described
in Section 2.2.3. Figure 5.12 shows the P (D|Φ) values for the generated models.
Griffiths et al. [110] propose to choose the model with the highest value. However,
our results suggest that this approach prefers models with many topics. This obser-
vation is in line with the results of Wallach et al. [300], who already showed that an
optimized asymmetric α hyper parameter is more robust against too many topics.
Figure 5.13 shows the values of the A measure proposed by Arun et al. [19]. The
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Figure 5.10.: Topics of the best performing model sorted by their CV 2 coherence value.
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Figure 5.11.: Topics of the best performing model sorted by their CP coherence value.

authors predict that with an increasing number of topics the values of A should
decrease until a minimum is reached before the measure’s value increases again.
The model that has the minimum A should be chosen. In the figure, we cannot
see the described behavior. This could be caused by several factors. Either our grid
of ϱ values is too coarse-grained, or the minimum is outside of our search range.
A similar experiment with a smaller subset of our reference corpus suggests that
the minimum described by Arun et al. [19] is achieved by a model that has much
less topics. The detailed results of this experiment can be found in Section A.4
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Table 5.9.: The top words of the 5 topics of the best performing topic model with the
highest and lowest CV 2 values, respectively.

CV 2 W

0.60942 canadian, canada, quebec, ontario, montreal, toronto, ottawa, nova, scotia, alberta
0.59273 album, song, release, band, music, chart, record, single, track, records
0.56269 age, population, household, female, city, male, family, census, average, year
0.55282 chinese, china, singapore, li, wang, shanghai, chen, beijing, hong, zhang
0.51424 league, club, player, football, season, cup, play, goal, team, first

0.06969 rank, time, men, advance, event, final, result, athlete, heat, emperor
0.05900 use, language, word, name, form, one, english, see, greek, two
0.03767 use, system, one, number, two, function, set, space, model, time
0.02269 use, health, may, child, include, provide, would, act, make, public
0.00000 j., a., m., c., r., s., l., e., p., d.
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Figure 5.12.: Values of log(P (D|Φ)) calculated for the generated models.

of the appendix. We can conclude that both measures for choosing the number
of topics do not seem to lead to the same model choice as our coherence-based
approach. However, both measures are solely based on the idea of comparing
the generated models with an expected, statistical behavior. Griffiths et al. [110]
propose to measure whether the model assigns a high probability to the reference
corpus that has been used for the inference. Arun et al. [19] base their measure
on the interpretation of LDA as a non-negative matrix factorisation and that the
created matrices should have the same sum of topic assignments per topic. However,
Chang et al. [63] show that achieving a good performance in measures similar to the
two aforementioned measures does not have to correlate with high quality topics.
Hence, our approach seems to fit better to the goals of LODCAT than those suggested
by Griffiths et al. [110] or Arun et al. [19].
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Figure 5.13.: Values of the measure A calculated for the generated models.

Experiment II

We use the best topic model of the first experiment to process the RDF datasets
with LODCAT. We received topics for 561 944 datasets. After generating the topic
distributions for the documents created from the RDF datasets, we analyze these
distributions. For each dataset, we determine its main topic, i.e., the topic with the
highest probability for this dataset. Figure 5.14 shows the number of datasets for
which the single topics are the main topic. The figure shows that a single topic covers
more than 410 thousand datasets. It also shows the prominence of some low-quality
topics. Since these topics would not be shown to the user, we repeated this analysis
and included only high-quality topics. The results are plotted in Figure 5.15. It
shows the same concentration of a high number of datasets on a single topic. We also
compare the importance of the topics for the documents generated from the RDF
datasets in comparison to their importance for the Wikipedia corpus. Figure 5.16
shows the results of this comparison. We observe that a small number of topics has
values above 1.0. The highest point shows that for one of the topics the percentage
of tokens that are assigned to it is 17 times higher within the RDF corpus than in the
Wikipedia corpus. On the contrary, a large number of topics is underrepresented in
the RDF corpus.

Table 5.10 shows the 5 topics that have the highest values in Figure 5.15, i.e., the
5 topics that are most often the top topic of a dataset. We can see that a weather-
related topic covers roughly 90% of the datasets to which LODCAT could assign
topics. The next biggest topics are transportation- and car-related topics and each of
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Figure 5.14.: Number of datasets per topic for which this topic has the highest probability.
Topics with no datasets have been left out.
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Figure 5.15.: Number of datasets per topic for which this topic has the highest probability
after removing topics with a low coherence score. Topics with no datasets
have been left out.

Table 5.10.: The topics which are the top topics for most of the datasets.

Id Datasets W

1 508 095 water, storm, wind, tropical, nuclear, temperature, hurricane, damage, cause, system
2 9 828 station, road, route, line, street, bridge, railway, city, highway, east
3 9 794 car, engine, model, vehicle, first, use, point, motor, design, safe
4 7 328 use, system, software, user, datum, computer, include, information, support, service
5 5 946 airport, international, brazil, portuguese, são, romanian, portugal, brazilian, language, romania
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Figure 5.16.: Comparison of the importance (i.e., the number of tokens assigned) of a topic
in the RDF dataset divided by the importance the topic has in the Wikipedia
corpus. Values > 1 indicate an increase of importance while a value < 1
means that the topic is less important.

them covers nearly 10 thousand datasets. They are followed by a computer- and a
travel-related topic.

We further analyze the RDF datasets with respect to the claim that the majority of
them is related to weather. We analyze the namespaces that are used within the RDF
datasets and count the number of datasets in which they occur. Figure 5.17 shows
the result of this analysis for all 623 thousand RDF datasets. In the lower right
corner of the figure, we can see that there is only a small number of namespaces that
are used in many datasets. Table 5.11 shows the 12 namespaces that occur in more
than 100 thousand datasets. The most often used namespace is the rdf namespace,
which is expected. However, the namespaces on position 2–4 occur in more than 450
thousand RDF datasets. These three namespaces belong to datasets with sensor data
described by Patni et al. [214]. A further search revealed that the datasets mainly
contain weather data [213]. These datasets also make use of the fifth namespace
from Table 5.11. The sixth namespace is the Data Cube namespace that is used
to described statistical data in RDF [73]. This namespace occurs often together
with the remaining namespaces (7–12). They occur in datasets that origin from
the Climate Change Knowledge Portal of the World Bank Group.33 These dataset
contain climate data, e.g., the temperature for single countries and their forecast
with respect to different climate change scenarios. We summarize that our analysis

33https://climateknowledgeportal.worldbank.org/; last accessed on 08.08.2022.
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Figure 5.17.: The number of namespaces (y-axis) that occur in a number of datasets (x-
axis).

shows that the majority of the datasets contain sensor data and statistical data that
are related to weather.

Figure 5.17 gives another insight. The point in the left upper corner of the plot
shows that there are more than 51 million namespaces that occur only in one out of
the 623 thousand RDF datasets. Additional 11 million namespaces occur only in two
datasets. These are already 99% of the 62.5 million namespaces that occur within
the 623 thousand RDF datasets. This large number of rare namespaces reflects one
of the difficulties that users may face when they try to identify the topic of an RDF
dataset without using LODCAT. There are a lot of namespaces that a user would
have to look up and even if a user understands the topic of the namespace, it is
not very likely that it will occur again in another dataset. Hence, a user may try to
rely on namespaces that occur often. However, only 4 out of the 12 namespaces in
Table 5.11 are dereferencable. These four namespaces (1, 5, 6, and 8 in the table)
are generic. The other namespaces are more topic-related but cannot simply be
opened since non of the domains exists at the time we carry out these experiments.
A user would have to invest additional effort to find information about them. This
underlines the need for a tool like LODCAT that helps the user to avoid this effort.
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Table 5.11.: The namespaces that occur in more than 100 000 datasets.

ID Namespace IRI Datasets

1 http://www.w3.org/1999/02/22-rdf-syntax-ns# 620 653
2 http://knoesis.wright.edu/ssw/ont/weather.owl# 452 453
3 http://knoesis.wright.edu/ssw/ont/sensor-observation.owl# 452 453
4 http://knoesis.wright.edu/ssw/ 452 453
5 http://www.w3.org/2006/time# 442 719
6 http://purl.org/linked-data/cube# 147 731
7 http://worldbank.270a.info/property/ 147 348
8 http://purl.org/linked-data/sdmx/2009/dimension# 147 305
9 http://worldbank.270a.info/dataset/world-bank-climates/ 139 865

10 http://worldbank.270a.info/classification/variable/ 139 865
11 http://worldbank.270a.info/classification/scenario/ 114 064
12 http://worldbank.270a.info/classification/percentile/ 103 202

Experiment III

Our questionnaire received 225 answers from 65 participants.34 20 participants
went through all questions while the remaining 45 participants gave answers for
a subset of questions. Figure 5.18 shows the results. The left side of the figure
summarizes the results for the two groups of questions—those with 3 and 4 topics,
respectively. The right side of the figure shows the detailed results for each of the
questions. The plot shows that in the majority of cases, the intruder was successfully
identified by the participants. The results look slightly different for datasets 4 and
5. In both cases, the third topic is not strongly related to the dataset and has been
chosen quite often as intruder. However, since the first and second topic have been
chosen much less often for these datasets, the result shows that the ranking of the
topics make sense, i.e., the participants were able to identify the first two topics
have a relation to the given dataset.

Figure 5.19 shows a box plot for the topic log odd values that have been measured
for the single documents. The average value across the 10 datasets is −1.23 with
dataset 4 getting the worst value. This value is visible as an outlier on the left side of
the plot. This result is comparable to the results Chang et al. [63] present for various
topic modeling models on two different corpora. This confirms our finding that the
human-readable topics fit to the RDF datasets to which they have been assigned.
However, the experiment setup comes with two restrictions that have to be made
with respect to this result. First, RDF datasets are mainly created to be processed by

34We use LimeSurvey for the questionnaire (https://www.limesurvey.org/; last accessed on
08.08.2022.). The questionnaire allows users to skip questions. These skipped questions are not taken
into account for the number of answers.
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Figure 5.18.: Results of the questionnaire. Left: Average amount of topics that where
chosen as intruder topic by the survey participants. Right: amount of topics
that where chosen for each of the single datasets.
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Figure 5.19.: The topic log odds ϑ per document. Values close to 0 are better. The diamond
shaped point marks the arithmetic mean.
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machines. We manually chose the datasets for this experiment with the requirement
that the participants of the questionnaire have to be able to easily understand the
content of the chosen datasets. This may have introduced a bias. However, it can
be assumed that the results would be less reliable if the datasets would have been
selected randomly since the experiment setup suggested by Chang et al. [63] relies
on the assumption that the participants understand the target object to which the
topics have been assigned (in our case, the RDF dataset). Second, we made use
of topic coherence measures to filter low quality topics and we chose datasets that
have at least two high quality topics within their top-3 topics. It can be assumed
that the topic loss odd values would be lower if we would have included low quality
topics, since they are less likely interpretable by humans. However, a dataset that
has mainly low quality topics assigned as top topics could cause issues in a user
application relying on LODCAT since no human-interpretable description of the
dataset could be provided. We measure the impact of this issue by counting the
number of datasets that have not a single high quality topic within their top-3 topics.
We find that out of the 561 944 RDF datasets, to which LODCAT could assign topics,
only 220 datasets have this problem. Hence, the filtering of low quality topics
seems to have a minor impact on the number of RDF datasets for which LODCAT is
applicable.

5.5 Conclusion

The aim of this chapter was twofold. First, we presented LODCAT—an approach to
support the exploration of the Data Web based on human-interpretable topics. With
this approach, we ease the identification of RDF datasets that might be interesting
to a user since they neither have to go through all available datasets nor need
to read through the single RDF triples. Instead, LODCAT provides the user with
human-interpretable topics that are automatically derived from a reference corpus
and give the user an impression of a dataset’s content. At the same time, our
approach does not rely on manually created tags or classification systems and can be
easily combined with existing explorative search engines or integrated into dataset
portals.

Second, we presented PALMETTO—a framework for topic coherence measures. Based
on this framework, we evaluated 555 660 coherence measures and identified two
new topic coherence measures that perform better than the previous state of the
art.
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Our future work has two main targets. First, the application of other topic modeling
inference algorithms can be beneficial. At the moment, the user is provided with
a sorted list of topics for each dataset. However, these topics have a flat hierarchy.
Introducing a hierarchy of topics that can be used for a coarse or fine grained
exploration could offer more opportunities to a user. Second, the application of the
two coherence measures CV 2 and CP , shows that they do not always agree with
respect to the quality of single topics. Hence, a combination of these two measures
might lead to a better performance.
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Dataset Search for Linking 6
The Web of Data and the Linked Open Data Cloud have grown considerably in
recent years. 1.5 billion Web pages with 82 billion embedded RDF triples and
several thousands of RDF datasets can already be found online [22, 90, 220]. With
the growth of the number of datasets available as well as the growth of their size
comes the problem of effectively detecting not only the links between the datasets
(as studied in previous works [200, 205]) but also of determining the datasets
with which a novel dataset should be linked. A naive approach to linking these
datasets would choose two datasets and check whether they can be linked with each
other. Such an approach would lead to a quadratic number of pairwise comparisons
with respect to the number of datasets. This is clearly impracticable when the
effort entailed by the linking of two datasets is taken into account. Addressing the
problem of finding relevant datasets for linking is however of crucial importance
to facilitate the integration of novel datasets into existing Linked Data [34] as well
as the discovery of relevant data sources in enterprise Linked Data [200] (RG3).
Lopes et al. [170] name this the dataset interlinking recommendation problem. In this
chapter, we address this problem and study the search for similar RDF datasets given
an input dataset. In this context, we define two datasets as being similar if they
cover the same topics and should thus be linked to each other. In particular, we aim
to elucidate the question whether topic modeling (in particular LDA [43]) can be
used to improve the search of similar datasets. To address this research question, we
present six different approaches pertaining to how RDF datasets can be modeled for
dataset search. We then compare these different modeling possibilities against the
state of the art. Our findings are implemented into TAPIOCA [230]—a search engine
that takes a description of a dataset and searches for topically similar datasets that
could be candidates for link discovery. Our engine computes topics of datasets by
analyzing their ontologies. It then uses these topics to map datasets to domains in a
fuzzy manner. Based on this representation, TAPIOCA can compare the topic vector
of an input dataset to datasets in its index so as to suggest topically similar datasets,

¶ Parts of this chapter have been published as conference article [230]. The author of this thesis is
also the main author of the article and developed the main idea, designed and implemented major
parts of the solution, and wrote the majority of the publication. A first attempt for GLISTEN is described
within the master thesis of Kuhlmann [154]. The author of this PhD thesis defined the topic for said
master thesis and was the advisor of the master student. Later, the approach has been further refined
by the author of this thesis to reach the state described within this chapter.
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which are assumed to be good candidates for linking. Note that we do not study
the link discovery problem herein and address exclusively the search for data for
linking under the assumption that datasets should be linked if they describe similar
topics.1

We measure the effectiveness of TAPIOCA based on an intrinsic and an extrinsic
evaluation [141]. The intrinsic evaluation uses a hand-crafted gold standard. Since
the creation of such a gold standard is expensive, we also develop an external
benchmark for the extrinsic evaluation of the dataset interlinking problem. Our new
benchmark, dubbed GLISTEN, measures the effectiveness of a recommendation by
linking the recommended dataset to the dataset for which it has been recommended.
After that, the linked datasets are used as input to a system that solves an external
task. The change in performance of the system fulfilling the external task is used as
metric to measure whether the recommendation was good.

Our contributions within this chapter are as follows:

• We present six combinations of approaches for modeling data in RDF datasets
that can be used for dataset search.

• We apply topic modeling to these combinations, compare them with state-
of-the-art baselines, and show that topic modeling does lead to significant
improvements over several baseline methods.

• We present GLISTEN—the first benchmark for dataset interlinking recommen-
dation systems.

Since our work focuses on RDF datasets and these can be represented as knowledge
graphs, we use the terms knowledge graph and dataset interchangeably. The rest
of this chapter is structured as follows: First, we present other approaches related
to our work in Section 6.1. In Section 6.2, our novel approach for a dataset
recommendation engine is presented. We describe the proposed benchmark in
Section 6.3 and subsequently evaluate TAPIOCA in Section 6.4. We conclude the
chapter in Section 6.5.2

1The interested reader is referred to the survey of Nentwig et al. [198]. We also refer to the more
recent work of Li et al. [166] who present an approach relying on embeddings.

2More information on TAPIOCA and the data we use for the evaluation can be found at http://aksw.
org/projects/tapioca; last accessed on 14.08.2022. The detailed experiment results can be found
at https://hobbitdata.informatik.uni-leipzig.de/homes/mroeder/tapioca/; last accessed on
14.08.2022.
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6.1 Related Work

Link discovery is a task of central importance when publishing Linked Data [200].
While a large number of approaches have been devised for discovering links between
datasets [205, 297], the task at hand is a precursor of link discovery and can be
regarded as a similarity computation task. The usage of document similarities that
are based on topic modeling is well known and have been widely studied in previous
works, e.g., by Steyvers et al. [266]. Especially for information retrieval applications,
topic modeling has been used for documents containing natural language. Buntime
et al. [56] developed an information retrieval system that is based on a hierarchical
topic modeling algorithm to retrieve documents topically related to a given query.
Lu et al. [171] analyzed the effect of topic modeling for information retrieval. Their
results show that while its performance is not good for a keyword search, it has
a good performance for clustering and classification tasks in which only a coarse
matching is needed and training data is sparse. Our results support the intuition
underlying this chapter, i.e., that the task of retrieving similar linked datasets matches
this task description.

The Semantic Web is already used for information retrieval tasks. For example,
Hogan et al. [129] as well as Tummarello et al. [277] present approaches for
Semantic Web search engines retrieving single entities and consolidated information
about them given a keyword query. One of the problems that have to be solved for
this task is the consolidation of retrieved entities. Since a single entity can have
different IRIs in different datasets, the workflow of such a search engine has to have
a consolidation step identifying IRIs mentioning the same entity. In both approaches,
two resources are assumed to mention the same entity if 1) they are connected
by an owl:sameAs property or 2) both resources have an Web Ontology Language
(OWL) inverse functional property with the same value. The values of such inverse
functional properties are typically assumed to be unique, e.g., an e-mail address.
This problem is further studied by Herzig et al. [121]. These approaches differ from
our dataset recommendation engine, since they cannot be used to identify topically
similar datasets for linkage, because the entities must have been already linked—
directly or indirectly by inverse functional properties. The aforementioned search
engine proposed by Tummarello et al. [277] has an additional consolidation step
summarizing properties that are assumed to describe the same fact. This summary
is created by using the name of the property, i.e., the last part of its IRI. Additionally,
the authors wrote that they want to use the labels of the properties in a future
release of their search engine. This usage of labels or names of properties to decide
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whether they stand for a similar fact overlaps with our approach to detect topically
similar datasets based on the labels of their properties or classes.

Kunze et al. [155] propose a search engine for RDF datasets that is mainly based on
filters that work similar to a faceted search. For ranking, the authors use a similarity
function that comprises different aspects. One of these aspects is called topical
aspect and is based on the vocabularies, that are used inside the different datasets.
We will use this aspect as a baseline for comparison and explain it in more detail in
Section 6.4.1.

Sleeman et al. [256] propose an approach to use topic modeling with RDF data.
While their work has a similar basis it differs in many ways since it aims at other use
cases. Their approach generates a single document for every entity described in a
dataset while our approach creates a single document for every RDF dataset. Thus,
their documents are based on a different set of triples and on different textual data
gathered from the dataset.

Wagner et al. [299] propose an entity-centric search for datasets that are related to a
user-defined keyword query. As described in Section 5.1.1, it relies on characterizing
datasets by using entity clusters. Ellefi et al. [32] point out that this type of dataset
characterization could be used to identify linking candidates.

Mehdi et al. [178] present an approach to recommend RDF datasets for linking with
a new dataset based on keyword lists created by a domain expert. The keywords
are used to run SPARQL queries on the available RDF datasets. After that, the
datasets are ranked based on the number of matches that have been found. While
the approach is comparable to TAPIOCA, it comes with two disadvantages. First, the
keywords have to be created manually. Second, because of limitations in SPARQL,
only exact matches are found. The authors propose the extension of the keyword
list by generating different writings of the keywords. However, TAPIOCA has the
advantage that it is based on a topic modeling approach and, hence, is not bound to
single keywords.

Lopes et al. [170] present two approaches for recommending datasets for linking,
which are built on previous publications. The first approach uses a Bayesian classifier
and a set of features [163, 170]. The authors use the occurrence of properties,
classes, and vocabularies IRIs as features. Hence, the main idea of the classifier
is that datasets that are linked to a third datasets which is similar to the given
query dataset are good candidates for linking. This approach is different to TAPIOCA

since 1) it is a supervised approach and 2) it solely relies on IRIs. Especially the
latter limits its usage for datasets that make use of different and sometimes even
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automatically generated ontologies. The second approach relies on two metrics of
the social network analysis area [169, 170]. The preferential attachment metric
favors datasets that are already linked with many other datasets. The resource
allocation metric favors datasets that have many common neighbors with the query
dataset. Thus, the second approach mainly works for datasets that already have
links to other datasets. This is not the scenario we look at since a newly created RDF
dataset may not have any connection to other already published datasets.

Ellefi et al. [32] developed an approach similar to ours concurrently to our works.
They suggest to rely on the concepts that are used within the datasets to generate
documents that represent the datasets. For the comparison of two datasets, they
rely on the WordNet-based measures Wu-Palmer [307] and Lin [167]. However,
within their evaluation the best results are achieved using the UMBC similarity
measure [115], which is a mixture of a WordNet-based similarity and a statistical
similarity. All datasets that have a higher similarity than a given threshold are ranked
based on their cosine similarity of their document’s tf-idf vectors. In contrast to
our approach, they use the concepts’ natural language description in addition to
concept labels. Another major difference is that they do not take properties into
account. However, the source code of the approach is not available. Hence, a direct
comparison with TAPIOCA is not possible at the time of writing.

Liu et al. [168] propose a supervised machine learning approach for the prediction
of links between datasets. The approach relies on unsupervised link prediction
algorithms. The results of these algorithms are used as input for a random forest
classifier which is trained using examples from the Linked Open Data cloud. The
unsupervised link prediction algorithms mainly rely on statistical similarities of
the datasets within the graph [172]. These are the number of common neighbors
(e.g., Adamic-Adar [7] or the Jaccard coefficient of common neighbors [172]), the
number and length of paths that connect the datasets (e.g., Katz [143]), the number
of connections the datasets already have (e.g., preferential attachment index [172]),
or a random-walk-based metric (e.g., PageRank [54] or SimRank [136]). Hence,
all these algorithms assume that both datasets already have connections with other
datasets within the graph. This is not the case in the scenario we look at since a
newly created RDF dataset may not have any connection to other already published
datasets. Thus, the approach proposed by Liu et al. can only be used to increase the
number of links between already linked datasets while our approach can also be
used for newly, unconnected datasets.

Kopsachilis et al. [149, 150] propose a recommendation algorithm to identify po-
tential geo-spatial RDF datasets for linking. To this end, they analyze RDF datasets,
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extract geo-spatial data for each class that is used in the dataset and calculate
the similarity of classes from different datasets based on the geo-spatial data. In
comparison, our approach is not limited to geo-spatial data and access the search
for similar datasets on a topical level.

6.2 Our Approach

The goal of TAPIOCA is to detect topically similar datasets with the aim of supporting
the link discovery process. Ergo, given a query dataset represented as knowledge
graph GQ and a set of datasets G = {G1,G2, . . .}, our aim is to rank the datasets
by their likelihood of containing resources that should be linked to resources in
GQ [170]. The basic assumption behind our approach towards this goal is that
datasets that should be linked should have similar topics. Hence, we adopt a
topic-based modeling of the problem.

The TAPIOCA recommendation engine comprises three major components:

1. An index that contains known datasets,
2. A way to formulate a query, and
3. A method to calculate the topical similarity between a given query and the

indexed datasets.

Of these three, the most challenging component is the definition of topical similarity
between datasets. A definition of a similarity automatically results in requirements
for the indexing and querying components. Therefore, we concentrate on this similar-
ity calculation and present our new probabilistic topic-modeling-based approach. We
will use the two example datasets esd-columbia-gorge and esd-south-coast to
explain our approach. These examples are derived from real RDF datasets generated
from open government data published by the State of Oregon. They contain con-
tracts that have been concluded by different education service districts in 2013. The
Listings 6.1 and 6.2 show the concise bounded descriptions [267] of two example
entities of these datasets.3

3We use the prefixes cg and sc for the IRIs http://data.oregon.gov/resource/
i3bn-rwu4/ and http://data.oregon.gov/resource/qhct-wumz/, respectively. The
original datasets have been available at http://catalog.data.gov/dataset/
contracts-esd-columbia-gorge-fiscal-year-2013-c3848 and http://catalog.data.
gov/dataset/contracts-esd-south-coast-fiscal-year-2013-3cb8d, respectively. The
first can still be accessed via http://web.archive.org/web/20150928212350/https:
//catalog.data.gov/dataset/contracts-esd-columbia-gorge-fiscal-year-2013-c3848
while the latter does not seem to be available anymore (checked on 08.08.2022). For a better
explanation of our approach, we made minor changes, e.g., we added two contract classes.
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An RDF dataset contains two types of information that are relevant for our purposes:
The first ones are the individuals that are described inside a dataset. However,
data about individuals is not a good starting point for finding topically similarities
between two datasets, since there would have to be at least one individual both
datasets have in common. With respect to our example, this could lead to the
comparison of data from the dataset, e.g., names, titles, keywords, and numbers,
without the knowledge that the data comprises contract data. In such a case, we
would only be able to identify these two datasets as similar if we are able to find
individuals with the same name, title or other literals that occur in both datasets.

1 @prefix cg: <http :// data. oregon .gov/ resource /i3bn -rwu4/> .
2
3 cg:1
4 a cg: Contract ,
5 cg: type_of_contract_subcontract " Material " ,
6 cg: esd_name " Columbia Gorge Education Service District " ,
7 cg: award_title " Technology Equipment " ,
8 cg: award_type "Price Agreement " ,
9 cg: contractor_name " TelCompany " ,

10 cg: original_start_amendment_date "03 -07 -12" ,
11 cg: original_award_value 32456.92 ,
12 cg: total_award_value_amendments 32456.92 .

Listing 6.1: Concise bounded description of an example entity of the esd-columbia-gorge
dataset.

1 @prefix sc: <http :// data. oregon .gov/ resource /qhct -wumz/> .
2
3 sc:1
4 a sc: Contract ,
5 sc: esd_name "South Coast ESD" ,
6 sc: award_title " Server " ,
7 sc: award_type "Lease" ,
8 sc: contractor_information " computer company " ,
9 sc: start_date_expiration_date "7/1/10 -6/30/14" ,

10 sc: award_amount 5181.87 .

Listing 6.2: Concise bounded description of an example entity of the esd-south-coast
dataset.

A much more promising approach is to look at the structure of the datasets. By
doing so, we would know that both datasets contain a class and properties related
to contracts. Following these assumptions, our approach is based on 1) extracting
this structural metadata from a dataset and 2) transforming it into a description of
the topically content of the dataset.
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Figure 6.1.: The single steps of our approach. The upper part shows the index phase in
which the topic model is generated while the lower part shows the handling of
a query dataset.

Our approach is thus based on the three steps shown in Figure 6.1. First, the
metadata of every single dataset in G is extracted. In the second step, the metadata
is used to create a document describing the dataset. In the last step, a topic model
is created based on the documents of the datasets. The resulting topic model
and distributions enable a similarity calculation between single datasets based on
their topic distribution. Additionally, the topic model can be used to determine
the topic distribution of documents derived from new, unseen datasets. Thus, our
approach is able to handle user input containing datasets that where not known
during model inference. The steps underlying TAPIOCA are explained in more detail
in the following subsections.

6.2.1 Metadata Extraction

Our approach for finding topical similarities between datasets is based on the
metadata of these datasets and the RDF [52, 250] and OWL [124] semantics which
underlie the Linked Data Web. The metadata comprises classes and properties used
or defined inside a dataset. A frequency count f is assigned to every IRI of a class
or property. This count stands for the number of entities of an extracted class or
the number of triples of an extracted property. If a dataset contains metadata, i.e.,
triples with elements of the VoID vocabulary, then this information are extracted
as well. After the extraction, classes and properties of the well-known vocabularies
RDF, RDFS, OWL, Simple Knowledge Organization System (SKOS), and VoID are
removed because these vocabularies do not contain any information about the topic
of a dataset. Table 6.1 contains the IRIs that we extract from the two example
datasets. Note, that the table does not contain the rdf:type property, because it has
been removed as part of the RDF vocabulary.
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Table 6.1.: Example IRIs extracted from the two example datasets for the triples shown in
Listings 6.1 (upper part) and 6.2 (lower part of the table). The frequency count
f is 1 for all of them in the example and is omitted in the table.

IRI Type

cg:Contract class
cg:type_of_contract_subcontract property
cg:esd_name property
cg:award_title property
cg:award_type property
cg:contractor_name property
cg:original_start_amendment_date property
cg:original_award_value property
cg:total_award_value_amendments property

sc:Contract class
sc:esd_name property
sc:award_title property
sc:award_type property
sc:contractor_information property
sc:start_date_expiration_date property
sc:award_amount property

6.2.2 Document Generation

The generation of a document describing a certain dataset is based on the metadata
extracted from this dataset. First, IRIs and their frequency counts f are selected from
the metadata. After that, the labels of the IRIs are retrieved. The last step comprises
the generation of the document corresponding to the dataset at hand by filtering
stop words and determining the frequency of the single words.

There are three different possibilities to use the IRIs contained in the metadata of a
dataset, leading to three different variants. Variant VC uses only the class IRIs of
the dataset, while VP uses its property IRIs. VA uses both IRI types—classes and
properties. Depending on the variant, the IRIs and their counts are selected for the
next step.

The labels of each of the selected IRIs are retrieved and tokenized. This label
retrieval is based on the list of IRIs that have been identified as label containing
properties by Ell et al. [87]. If there are no labels available, the vocabulary part of
the IRI is removed and the remaining part is used as label. If this generated label is
written in camel case or contains symbols like underscores, it is split into multiple
words. The derived words inherit the counts f of their IRI. If more than one IRI
created the same word, their counts are summed up.
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After generating a list of words all stop words are removed4. After that the words
are inserted into the document based on their frequency counts. Since LDA uses the
bag-of-words assumption, only the frequency of the words matters while their order
makes no difference. However, using the extracted counts directly could result in
large documents, because a dataset can contain millions of triples. We tested two
different variants to reduce the counts f to a manageable number of times the word
type w occurs in the document of the i-th dataset. The first variant V∗U inserts every
word only once, therewith creating a list of unique words with ψi,w = 1. The second
variant V∗L uses the logarithm of the counts leading to ψi,w = r(log2(f) + 1) where r
is the rounding function which results the closest integer value preferring the higher
value in case of a tie [3].

Thus, the whole document generation has six different variants—the product of three
different IRI selections and two different word frequency definitions. Throughout
this chapter we will use their abbreviations—VCU , VP U , and VAU for the variants
that use lists of unique words as well as VCL, VP L, and VAL for the logarithm-based
variants.

At the end of the Document Generation every dataset is represented by a single
document. With the variant VAU , the following two documents are created for the
two example datasets.

contract type subcontract esd name award title contractor
original start amendment date value amendments

contract esd name award title type contractor information
start date expiration amount

6.2.3 Topic Model Inference

At this stage of our approach, there is a corpus containing a single document for every
dataset. This corpus is used to generate a topic model using the Gibbs-Sampling-
based inference algorithm for LDA explained in Section 2.2.2.5 As a result of the
inference, we get a distribution over topics for every document di of the corpus (θi)
and a distribution over words for every topic of the model (ϕi for the i-th topic). The
second type of distribution allows the inference of a distribution over topics θGQ

for

4The stop word list used can be found at https://github.com/AKSW/topicmodeling/
blob/master/topicmodeling.lang/src/main/resources/english.stopwords; last accessed on
13.08.2022.

5We use Mallet [176] for our implementation of TAPIOCA.
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a new document that has been created for a new dataset GQ even if this document is
not contained in the training corpus. However, this inference has two differences to
the inference of a complete topic model described in Section 2.2.2. First, the word
distributions Φ of the topic model are used to derive the probability that a topic
can create a word. Second, only the topic indexes ZdGQ

are updated during the
iterations while the word distributions Φ of all topics are treated as constants. This
changes the calculation of the probability that a word token w at the j-th position
in document dGQ

and the word type w has the k-th topic assigned (Equation 2.18)
to:

P (z1,j = k |Φ, w1,j = w) =
(

ζ1,k + αk∑ϱ
i=1 ζ1,i + αi

)
P (w|ϕk) . (6.1)

Note that we replaced the document indexes in the equation with 1 since this
inference is run per query document and the position of the query document within
a larger corpus has no influence. Finally, the topic distribution θdGQ

of the document
is calculated based on the final ZdGQ

.

In our simple example, there might be three topics. While the words subcontract,
original, amendment, amendments, and value are marked with the first topic, the
second topic could contain the words information, expiration, and amount. The third
topic contains the remaining words. To visualize this better, we apply a different
format to the single word tokens in the example documents for the different topics.

contract type subcontract esd name award title contractor
original start amendment date value amendments

contract esd name award title type contractor information
start date expiration amount

6.2.4 Similarity Calculation

The last part of TAPIOCA is the definition of the similarity of two datasets Gi and Gj .
We define this similarity as the similarity of their topic distributions θi and θj . Since
the topic distributions can be seen as vectors, we use the cosine similarity of these
vectors as proposed by Steyvers et al. [266].6 This similarity is defined as:

simcos(Gi,Gj) = θi·θj

|θi| |θj |
, (6.2)

6Since we compare distributions, it is possible to use the Jensen-Shannon divergence instead of
the cosine similarity. However, during the evaluation of our approach both similarity calculations have
a similar performance.
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where · denotes the dot product.

According to the example topic model we described above, The esd-columbia-gorge
document would have θcg =

(
5
14 , 0,

9
14

)
while the esd-south-coast document has

θsc =
(
0, 3

12 ,
9
12

)
. Thus, the similarity of our example datasets would be 0.829.

6.3 Benchmarking Dataset Linking
Recommendation Systems

The evaluation of a linking recommendation system like TAPIOCA is challenging. To
measure the quality of the recommendations, a ground truth has to be available.
Lopes et al. [170] and Ellefi et al. [32] suggest to use existing links between datasets
in the LOD cloud as ground truth. However, this includes the assumption that
only links that already exist in the cloud are good links and that all further linking
between existing datasets is not good. This assumption is very strong and is unlikely
to hold for the LOD cloud. Hence, it has to be assumed that such a ground truth
would be incomplete.

Another approach proposed by us in our first experiments is to rely on domain
experts and their decision whether two datasets of a given set of datasets are good
candidates for linking. While we used 2 experts and measured their inter-rater
agreement, the creation of the ground truth is closely bound to the opinion of these
experts. Hence, it could be deduced that the created ground truth is subjective.
A counter measure for this subjectivity is to involve more experts. However, this
increases the costs of the creation of the ground truth.

Our goal is to create a benchmark for dataset linking recommendation systems
that avoids the aforementioned drawbacks. To this end, we propose GLISTEN—a
benchmark for dataset linking recommendation which relies on an external task to
measure the quality of the recommendations. This follows the schema of an extrinsic
evaluation [141], i.e., to evaluate the performance of an approach like TAPIOCA, it is
embedded into an application. The approach that improves the overall performance
of the application the most is the best approach among the evaluated approaches.
Let f be a function that takes an RDF dataset as input, e.g., a classification task.
Let e be a KPI that measures the performance of f , e.g., the F1 measure. The
main idea of GLISTEN is to measure the performance of f when it receives only
the query dataset. After that, the start dataset is extended by linking and fusing it
with recommended datasets. The extended dataset is used as new input for f and

182 Chapter 6 Dataset Search for Linking



the performance is measured again. This is repeated until a maximum number of
recommended datasets has been linked and fused with the start dataset. The earlier
the measured performance increases and the larger the increase is, the better are
the recommendations generated by the recommendation algorithm.

GLISTEN is based on a given set of RDF datasets from which at least one query
dataset is chosen. The following steps are performed for each query dataset:

1. The benchmarked recommendation system is queried with the query dataset.
A ranking of all other datasets is received.

2. The query dataset is linked to the datasets within the order of the ranking.
Starting with the top rank, a fused dataset is created for each rank. This fused
dataset comprises the query dataset and all recommended datasets that have a
better or equal rank to the current rank.

3. The fused datasets are used as input for the external task system that im-
plements f . In our current implementation of GLISTEN, we make use of the
unsupervised fact checking algorithm COPAAL [270]. This system is executed
once with the query dataset and each fused dataset. For each run, the perfor-
mance of the system is measured using a chosen KPI. We follow the evaluation
of Syed et al. [270] and use the AUC-ROC as e.

4. Finally, based on the measured performance for each of the input datasets, a
rating for the recommendations is calculated.

The steps 2–4 are explained in more detail in the following. We start with a short
introduction of fact checking, which is used as external task. This includes an
explanation of COPAAL, which is the system for which the performance is measured
depending on the query dataset and the fused datasets. After that, we explain
the linking and fusion of the datasets before we introduce the measurements that
GLISTEN uses.

6.3.1 Fact Checking

Syed et al. define the task of validating a statement as follows: “Given a fact,
compute the likelihood that the given fact is true” [270]. In the context of the
Semantic Web, a fact is a synonym for a triple as defined in Definition 2.6. Fact
checking approaches for single facts can be separated into two groups. The first
group are text-based approaches. These approaches rely on a reference corpus
and use it to identify textual evidence for the given fact [269]. The second group
comprises approaches that rely on a reference knowledge graph. Such a knowledge-
graph-based fact checking approach makes use of structured information of the
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reference knowledge graph to identify pieces of evidence that support or refute
the given fact. These pieces of evidence can be paths that connect the subject
and object of the given fact and have a statistical relation to the fact’s predicate.
Syed et al. [270, 271] present a fact checking approach named COPAAL that relies
on this idea. We will use fact checking as external task and COPAAL as external
system within GLISTEN and explain its functionality in the following.

COPAAL

Definition 6.1 (Path). A path of length l in a knowledge graph G is a cycle-free
sequence of triples from G of the form {(v0, p1, v1), (v1, p2, v2), . . . , (vl−1, pl, vl)}, where
∀i ∈ [0, l − 1] : (vi, pi+1, vi+1) ∈ G ∨ (vi+1, pi+1, vi) ∈ G. This also means that
∀i, j ∈ [0, l], i ̸= j → vi ̸= vj and l > 0 [270].7

There can be several paths between two nodes v0 and vl with the length l within
a knowledge graph. We use Π(l, v0, vl) to denote the set of all paths of length l

between the nodes v0 and vl in G. We refer to the k-th path within this set with
πk(l, v0, vl) [270].

Definition 6.2 (Typed paths). Let Cs and Co be two sets of RDF classes. The set of
typed paths Π′(l, Cs, Co) of length l between vertices that are instances of all classes Cs

and Co in a knowledge graph G, respectively, are defined as follows [270]:

Π′(l, Cs, Co) = {πk(l, v0, vl)| Cs ⊆ cG(v0) ∧ Co ⊆ cG(vl)} . (6.3)

These typed paths are used by Syed et al. [270] to identify paths that corroborate
the correctness of the given fact (s, p, o).

Definition 6.3 (Corroborative paths). Using the domain and range of the given
fact’s predicate p the set of corroborative paths with a maximum length of l is defined
as [270]:

Π(l, p) =
l⋃

j=1
Π′(j, d(p), r(p)) . (6.4)

Following Syed et al. [270], we further restrict typed paths by using a vector of
properties q⃗ = {q1, . . . , ql}.

7Syed et al. [270] distinguish between directed and undirected paths. Since their evaluation shows
that undirected paths give the best results, we only use undirected paths within this thesis.
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Figure 6.2.: Example paths for checking the given triple (dbr:Barack_Obama ,
dbo:nationality , dbr:United_States) [270].

Definition 6.4 (⃗q-restricted typed paths). We define the set of q⃗-restricted typed paths
Π′(l, Cs, Co, q⃗) ⊆ Π′(l, Cs, Co) as follows [270]:

Π′(l, Cs, Co, q⃗) =
{
πk(l, v0, vl)

∣∣ πk(l, v0, vl) ∈ Π′(l, Cs, Co)∧

∀i ∈ [0, l− 1] : (vi, pi+1, vi+1) ∈ πk(l, v0, vl)

∧ pi+1 = qi+1
}
.

(6.5)

The implementation of COPAAL comprises three main steps. The first step is the
search for corroborative paths Π(l, p). We use a breadth-first search that identifies
all paths between s and o of the given triple (s, p, o).8 As expressed in Equation 6.4
the search identifies paths with a length up to l. Figure 6.2 shows an example
for the triple (dbr:Barack_Obama, dbo:nationality, dbr:United_States). The
search identified several paths that have a maximum length of l = 3 and connect
the subject and object. Based on the identified paths, a set of q⃗-restricted typed
paths is created by extracting the properties of the paths. Listing 6.3 shows the
restrictions that would be extracted for the example above. It is worth noticing that
the first restriction is only taken into account once although there are two paths in

8Although using s and o as start for the search will not identify all possible corroborative paths for
p, it will identify those paths that exist between s and o. Only those paths will have an effect on the
final score that is calculated by COPAAL. Hence, the focus on s and o will find all paths that are used
by the calculation and is less costly than searching for all possible corroborating paths for p.
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1 dbo:birthPlace/dbo:country
2 dbo:birthPlace/dbo:subdivision/dbo:country
3 dbo:almaMater/dbo:city/ˆdbo:largestCity

Listing 6.3: The path restrictions q⃗ extracted for the example graph (written as property
paths following Harris et al. [116]).

the example that fulfill this restriction. One of the two paths goes via dbr:Honolulu
while the second goes via dbr:Hawaii.

The second step comprises the scoring of each q⃗-restricted typed path. The calculated
score expresses to which extend a path supports the existence of the given fact.
Syed et al. [270] suggest to measure the co-occurrence of paths with the same q⃗

that connect the same subject and object as facts with p. Their measure is inspired
by the NPMI [49]. However, they argue that the calculation of the exact NPMI is
computationally expensive and suggest an approximation. Instead of counting the
exact number of subject and object pairs, the approximation is based on the idea to
count the number of paths. Although this number is higher than the number of pairs,
it is computationally cheaper to determine. However, this approximation leads to an
overestimation of the probability of the paths. We identified this as a drawback and
adapt COPAAL to count the exact number of pairs. Hence, we calculate the NPMI
for a q⃗-restricted typed path and a given property p as follows:

P
(
Π′(l, d(p), r(p), q⃗)

)
=
∣∣{(vi, vj)

∣∣πk(l, vi, vj) ∈ Π′(l, d(p), r(p), q⃗)
}∣∣

|iG(d(p))||iG(r(p))| , (6.6)

P
(
Π′(l, d(p), r(p), q⃗), p

)
=∣∣{(vi, vj)
∣∣πk(l, vi, vj) ∈ Π′(l, d(p), r(p), q⃗) ∧ (vi, p, vj) ∈ G

}∣∣
|iG(d(p))||iG(r(p))| ,

(6.7)

NPMI
(
Π′(l, d(p), r(p), q⃗), p

)
=

log
(

P(Π′(l,d(p),r(p),⃗q),p)
P(Π′(l,d(p),r(p),⃗q))P(p)

)
− logP

(
Π′(l, d(p), r(p), q⃗), p

) . (6.8)

Equation 6.6 defines the probability that two nodes, which fulfill the domain and
range of the property of the given triple, are connected by a path with a given
restriction vector q⃗. Equation 6.7 defines the joint probability of such a pair being
connected with the property of the given triple in addition to the path. Finally,
Equation 6.8 defines the NPMI of a q⃗-restricted typed path and the property of
the given triple. We define the probability P (p) as the probability that a randomly
chosen triple of G has p as predicate.
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The third and last step of COPAAL is to summarize the scores of the identified paths.
We do not use the summarization function proposed by Syed et al. [270] since it
does not handle negative NPMI values well. Instead, we separate the paths based on
their NPMI scores in two groups. Let Q+

j be the set of all restrictions q⃗ with length j
that have been identified in the first step and that have got an NPMI value larger
0. Let Q−

j be defined in a similar way for paths with a negative NPMI value.9 The
veracity score z of a given triple (s, p, o) is defined as:

z(s, p, o) =

1−
l∏

j=1

∏
q⃗∈Q+

j

(
1− NPMI

(
Π′(j, d(p), r(p), q⃗), p

))
−

1−
l∏

j=1

∏
q⃗∈Q−

j

(
1 + NPMI

(
Π′(j, d(p), r(p), q⃗), p

)) .

(6.9)

Integration

To integrate a fact validation system like COPAAL into GLISTEN’s workflow, we
have to evaluate the fact validation system’s performance given different knowledge
graphs. These knowledge graphs will be used as reference knowledge graphs by
COPAAL to evaluate a set of RDF statements. To this end, we create a set of RDF
statements S for which the veracity is known. It consists of two subsets S + and S −

comprising true and false statements, respectively. The true statements are taken
from the given query dataset, i.e., S + ⊂ T GQ

. The false statements are generated
as suggested by Gerber et al. [107]. We use a triple from the query dataset and
replace either the subject or the object with another resource from the dataset. This
takes into account that the domain and range of the chosen triple’s property have to
be fulfilled by the resources used for the replacement. After the creation of a new
triple, it is ensured that the triple does not already exist in the query dataset.

After creating the test dataset S , we use COPAAL to determine the veracity scores of
all statements in the test set based on the different reference knowledge graphs that
are created by linking and fusing the query dataset with the recommended datasets.
It is important to note that before running COPAAL, the set of true statements S + is
removed from the reference knowledge graph. Otherwise, the validation task would
be trivial.

9The definition of these two sets implies that paths with an NPMI score of exactly 0 are ignored.
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The performance of COPAAL is measured using the area under receiver operating
characteristic curve (AUC-ROC) [269, 270]. We make use of an established GERBIL

instance to calculate this metric [204, 216, 260].

6.3.2 Linking and Fusion

The second step of the GLISTEN workflow has the goal to create new, fused datasets
which comprise the query dataset and the recommended datasets according to their
order. This can be separated into two smaller steps: 1) the generation of links
between the two RDF knowledge graphs GS and GT and 2) their fusion to create a
new, fused dataset. The first step is named Link Discovery (or just linking).

Definition 6.5 (Link Discovery). Given two sets of source and target resources RGS and
RGT , respectively, and a property p, Link Discovery has the goal to find the following
set L [205]:

L = {(vi, vj)|(vi, vj) ∈ RGS ×RGT ∧ (vi, p, vj) is true } . (6.10)

Within GLISTEN, we are interested in linking resources of the query dataset GQ with
resources of the recommended datasets using the owl:sameAs relation. This relation
expresses that two resources stand for the same real-world entity [189, 212]. Hence,
the result of the linking will be a link set that comprises pairs of resources that
represent the same real-world entity.

Assume the linking of the two knowledge graphs DBpedia [21, 162] and Wiki-
data [298]. Figure 6.3 shows an excerpt of these two graphs.10 On the left, there
are triples from the DBpedia that are mainly about the resource dbr:Barack_Obama.
On the right, there are two Wikidata resources to which the resource from the left
could be linked. A linking algorithm typical relies on additional information about
the resources that it gathers from the source and target knowledge graphs. The
example includes the names (rdfs:label) and birth names (dbo:birthName and
wdt:P1477) of the entities. Based on this additional information, a linking algorithm
may identify dbr:Barack_Obama and wd:Q76 as the same real-world entity. Based
on further information, it may also link dbr:United_States to wd:Q30.

There are several linking frameworks and approaches available [166, 198, 205, 297].
For GLISTEN, we make use of the Wombat [252] algorithm implemented in the LIMES

10We use the prefixes wd and wdt for the IRIs http://www.wikidata.org/entity/ and http:
//www.wikidata.org/prop/direct/, respectively.
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dbo:country
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Figure 6.3.: Example entities from DBpedia (left) and Wikidata (right). IRIs have been
shortened using prefixes.

framework [205]. Wombat is a supervised machine-learning approach that solely
relies on positive examples. It uses link specifications which are defined as a set of
conditions under which it is assumed that the relation p between vi and vj holds.
It starts with a set of atomic link specification and generates combinations of them
searching of the the least general generalization of the given positive examples [252].
In a more recent version, Wombat is available as unsupervised machine learning
algorithm [84] and can be used by GLISTEN.

The fusion step merges the two linked datasets into a single, new dataset.11 Hence,
we define the fusion operation as follows:

Definition 6.6 (Fusion). Given two knowledge graphs GS and GT, and a link set L,
knowledge graph fusion creates a new knowledge graph GF with a set of merged triples
that is defined as follows:

T GF
= {(b(vi), p, b(vj))|(vi, p, vj) ∈ T GS ∪ T GT} , (6.11)

11Note that the term “knowledge graph fusion” is used with different meanings in the literature. In
a recent survey, Zhao et al. [311] distinguish 4 different types of knowledge graph fusion approaches.
The term fusion as we define it fits best into the “multi-knowledge graph fusion” category. However,
in difference to Zhao et al. [311], we separate the fusion from the linking (which is named entity
alignment in their work) and do not align the properties or classes of the two datasets.
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"Barack Obama"

"Barack Hussein Obama II"

dbo:birthPlace

rdfs:label

dbo:birthName
wdt:P1477

wdt:P27

Figure 6.4.: Example entities from the fused dataset. IRIs have been shortened using
prefixes.

where b is a replacement function.12 This function replaces all resources from RGT with
their linked resource from RGS . We define the replacement function as follows:

b(vi) =

vk if (vk, vi) ∈ L ,

vi else .
(6.12)

For the example in Figure 6.3, the linking created the link pairs (dbr:Barack_Obama,
wd:Q76) and (dbr:United_States, wd:Q30). Figure 6.4 shows the result of the
fusion based on these links with a focus on the resource dbr:Barack_Obama.13 It can
be seen that as a result of the fusion the resource dbr:Barack_Obama has a direct
link to the resource dbr:United_States via the “country of citizenship” property
(wdt:P27). This is a piece of information that is not part of the DBpedia but comes
from the Wikidata knowledge graph.

The linking and fusion step is computationally costly. First, a naive approach for
linking two datasets GS and GT has a complexity of O(|V GS ||V GT |). This complexity
can be reduced [205]. However, linking remains a costly operation. Second, linking
approaches rely on the idea of pairwise linking, i.e., only two datasets are linked to
each other at a time. If more than two datasets are linked, the order in which the

12Our definition of fusion is bound to a link set that represents links which express that two linked
nodes represent the same real-world entity. This allows the usage of the replacement function.

13We removed the resource wd:Q649593 from the example, to keep it small. The linking algorithm
would link it to the DBpedia resource dbr:Barack_Obama_Sr. and the fusion would merge their
triples.
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datasets are linked pairwise and fused into the newly created dataset can have an
influence on the result.

The first challenge could be solved by precomputing the results of the linking and
fusion step. In this case, the linking would have to be performed only once and
the implemented benchmark could rely on the already generated fused datasets.
However, the second challenge prohibits this. Since the order of the datasets has
an influence on the result and intermediate results are needed for the evaluation,
there are |G |! different possible combinations that would have to be generated. The
amount of datasets that would have to be precomputed becomes intractable even
for a small G .

Kistowski et al. [293] point out that the design of a benchmark has to take usability
into account. To keep the runtime of the benchmark low and, hence, ensure the
usability of the benchmark we make the following assumptions:

1. The linking of a new dataset to the fused dataset should only take resources of
the query dataset into account.

2. The order in which datasets are linked to the query dataset has no influence
on the result.

For the first assumption, we argued that the benchmarked recommendation systems
suggest datasets that should be linked to the query dataset. Taking possible con-
nections between the suggested datasets into account is not an explicit part of the
recommendation task.

These assumptions allow to tackle the linking and fusion step in a computationally
efficient way. We link and fuse only the query dataset with each of the other datasets.
For fusing more than one dataset, we will use the already created fusions of the
query dataset with the single datasets. Let ⊞ denote the binary operator that links
and fuses two datasets and let G1 and G2 be the first and second recommended
dataset, respectively.14 Based on our assumptions, we define that the fusion of these
two datasets with the query dataset GQ can be formulated as follows:

((GQ⊞G1)⊞G2) = (GQ⊞G1) ∪ (GQ⊞G2) . (6.13)

14The task to discover links between two datasets and fuse them are own fields of research [166,
198, 205, 311]. However, this thesis does not focus on them and we rely on existing implementations
like the LIMES framework [205] and Wombat [252].
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where ∪ creates the union of the triples of the fusion operations’ results. We further
extend this up to the fusion of the query dataset and all other datasets by defining:

(((GQ⊞G1)⊞ . . .)⊞G|G |) = (GQ⊞G1) ∪ . . . ∪ (GQ⊞G|G |) , (6.14)

Further, it should be noted that the second assumption leads to:

(GQ⊞G1) ∪ (GQ⊞G2) = (GQ⊞G2) ∪ (GQ⊞G1) . (6.15)

These assumptions give two advantages. First, it reduces the number of possible
combinations of datasets to O(|G |). Second, it allows the precomputation of all pairs
(GQ⊞Gi) (with Gi ∈ G ).

6.3.3 Measurement

Let GQ be the query dataset and let GN be the result of the fusion step, i.e., the
result of linking and fusing GQ with the first N recommended datasets. GLISTEN

measures the performance of a recommender by comparing the performance that
the external function f achieves with and without the recommended datasets. To
this end, we use the given performance metric e to measure the performance of f on
the fused dataset and compare it with its performance on the query dataset. We call
this measure ∆e. For the first N recommended datasets, the value of the measure is
formally define it as follows:

∆e@N = e(f(GN ))− e(f(GQ)) . (6.16)

This measure gives a value for each rank in the produced list of recommended
datasets. To summarize these values, we use the area under the curve that ∆e

defines for consecutive values of N . We name this metric area under delta curve (▲).
For the first j recommended datasets, we calculate this area using the following
equation:

▲e,j =
∫ j

1
∆e =

j∑
N=1

∆e@N . (6.17)

As explained above, the AUC-ROC is used to measure the performance of fact
checking algorithms [269, 270]. Hence, we use this metric as e and measure
the performance of linking recommendation approaches with ∆AUC-ROC@Nand
▲AUC-ROC,j .
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6.4 Evaluation

The aim of our evaluation is fourfold. In the first experiment, we focus on the
evaluation of the different variants of TAPIOCA. We compare their performance
against three baselines. In our second experiment, we evaluate the two approaches
for detecting the best number of topics presented in Section 2.2.3 to test whether
they can be applied to TAPIOCA. In the third experiment, we repeat the first two
experiments at a larger scale to show that our approach works with a larger amount
of data as well. In the fourth experiment, we test whether GLISTEN can be used to
compare linking recommendation approaches.

The dataset used for the first three experiments is based on RDF datasets that have
been indexed by LODStats [22, 90]. We remove those datasets that have no English
description or not at least one class IRI or one property IRI of a vocabulary, that is
not filtered out by our approach. The remaining evaluation dataset contains 1680
RDF datasets with 776 213 346 triples.

6.4.1 Baselines

We compare our approach with three baselines from the field of Information Retrieval
as well as the Semantic Web. The first baseline is tf-idf [24] for which we extract the
metadata and generate a document for every dataset as described in Sections 6.2.1
and 6.2.2. Let D be the set of known documents and VD the corpus vocabulary
containing all known word types w. Let ψi,w be the number of times the word type
w occurs inside the i-th document. Then, a vector of length |V| can be generated for
every document di by calculating a tf-idf value for every word type w using

tf-idf (w, di, D) = ψi,w log
(

|D|
|{di|di ∈ D ∧ ψi,w > 0}|

)
. (6.18)

The first factor is called term frequency. The second factor in the equation is called
inverse document frequency and reduces the impact of words that occur in many
documents. Since tf-idf uses term frequencies and an instantiation of the single
words is not needed, we use the pure frequencies instead of the logarithm or unique
variant. After generating a vector for every document, the cosine similarity can be
calculated.

The second baseline is the topical aspect (BLT ) used by Kunze et al. [155] as part
of their RDF search engine described in Section 6.1. The main idea of this topical
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aspect is to identify topically similar datasets based on the vocabularies that are used
inside the datasets, i.e., similar datasets are expected to contain IRIs of the same
vocabularies. Let G be the set of all known datasets and Gi,Gj ∈ G . Let V be the
union of the vocabularies used in G1 or G2 and let G v ⊆ G be the set of all known
datasets that use the vocabulary v. Then, the BLT is defined as

BLT (Gi,Gj) =
∑
v∈V

− log
( |G v|
|G |

)
u(Gi, v)u(Gj , v) , (6.19)

where u(G, v) is a function that returns 1 if the vocabulary v is used inside the
dataset G or 0 otherwise. the first term in the sum is a weight of the vocabulary
inspired by the inverse document frequency of tf-idf . Thus, the more datasets use
the vocabulary, the less important it is for the topical similarity and the lower its
weighting [155].

The last baseline uses Apache Lucene15. The generated documents are indexed using
the standard analysis of Lucene, i.e., the documents are tokenized, the tokens are
transformed into their lower-cased form and Lucene’s stop word filter is applied. For
every dataset, its document is used to generate a weighted boolean query containing
the words of the documents and their counts as weights. This query is used to
retrieve similar documents from the index together with Lucene’s similarity score
for them.

6.4.2 Experiment I

For the first experiment, we randomly select 100 RDF datasets to generate a gold
standard. Two researchers independently determine topically similar datasets. For
solving this task, they get the description of those datasets as well as the possibility to
take a deeper look inside the data itself. We compared the ratings of both researchers
and measured an inter-rater agreement of 97.58%.16 Cases in which the ratings
differ are discussed to compile a final rating. With this approach 86 dataset pairs
are identified as topically similar.17 Table 6.2 shows the features of the corpora that
have been created by the different variants of our approach based on these 100
datasets (3 659 152 triples).

15http://lucene.apache.org/; last accessed on 13.08.2022.
16We measured the inter-rater agreement as the number of dataset combinations for which both

raters made the same decision divided by the number of all possible dataset combinations.
17The gold standard can be found at https://hobbitdata.informatik.uni-leipzig.de/homes/

mroeder/tapioca/experiment_1/; last accessed on 13.08.2022.
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Table 6.2.: Features of the corpora generated by the different variants.

Variant Word types Word tokens

VAL 10 182 252 406
VAU 10 182 34 264
VCL 9 500 239 108
VCU 9 500 32 020
VP L 1 173 14 078
VP U 1 173 2 501

For all six approaches presented above, we calculate the similarities of every dataset
to every other dataset using the leave-one-out method: we use one dataset as
query while the different approaches are trained using the other 99 datasets of the
gold standard. The result of this step is a ranked and scored list of corresponding
datasets for each of the datasets in our gold standard. We then search for a similarity
threshold that leads to a maximal micro F1-score over all datasets. For every
variation of our approach, we run experiments in the range of [2, 200] topics. Since
the F1-score of the variant VAL is still rising near 200 topics, we further increase the
maximum number of topics for this variant to 500.18

The best micro F1-scores achieved by the different variants and the different baselines
are shown in Table 6.3. Based on this data, our approach achieves a higher F1-
score than all baselines if the document generation is based on properties and
logarithmic counts. The variant with logarithmic counts for classes and properties
works nearly as good as the variant that only uses properties. Moreover, our approach
performs much better with logarithmic counts than with unique word frequencies.
In Figure 6.5, we also see that with varying numbers of topics VAU and VCU stay
at a low level. Only VP U achieves competitive F1-scores. We think that this has
two causes. First, the unique-based variants do not assign a weight to the labels
regarding the importance that a class or a property has inside a dataset. Secondly,
it has already been shown that LDA does not perform well on short documents
in which many different words appear rarely, e.g., messages of short messaging
services [310].

Regarding the IRIs used for the document creation, it can be seen that all approaches
show a poor performance if they are only based on classes. These variants are only
able to find similar datasets if the similarity is very obvious, e.g., different datasets of

18For all topic numbers, the inference was carried out with 1040 iterations, an asymmetric α = 0.1
for each topic, β = 0.01 and a hyper parameter optimization after every 50-th iteration starting after
iteration 200.
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Table 6.3.: F1-scores achieved by the different variants and the baselines. In the most left
column, there are the results for the variants VCL, VP L, and VAL while the
results of VCU , VP U , and VAU are in the second most left column.

IRIs used TAPIOCA (log.) TAPIOCA (unique) tf-idf BLT Lucene

classes 0.128 0.083 0.103 0.292 0.096
properties 0.505 0.350 0.436 0.356 0.418

both 0.495 0.078 0.444 0.333 0.241
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Figure 6.5.: The F1-scores of the three unique word based variants for different numbers of
topics in the range [2, 200].

the eagle-i that use the same vocabularies.19 Additionally, they have the drawback,
that only 88 out of the 100 datasets define or use classes which makes them unable
to calculate similarities for 12 datasets.

Another observation of the experiment is that BLT does not perform well. Thus, the
assumption that topically similar datasets use the same vocabularies does not hold
for all real-world datasets in our experiment. One core reason might be that many
of the datasets we consider have been generated automatically from tables or CSV
files. Every generated dataset has an own, generated vocabulary IRI like the two
example datasets in Section 6.2.

The Figures 6.5, 6.6, and 6.7 show the influence of the number of topics on the
models performance. For VP L, VAL, and VP U , there is a range of numbers of topics
in which the F1-score is maximized. Models with too few topics have a much worse
performance while—especially for VP L and VAL—the performance deterioration
caused by too many topics is rather small. Thus, we can summarize that finding a
good number of topics is important for our approach. However, in case an exact

19The gold standard contains datasets of the eagle-i project. https://open.catalyst.harvard.
edu/products/eagle-i/; last accessed on 13.08.2022.

196 Chapter 6 Dataset Search for Linking

https://open.catalyst.harvard.edu/products/eagle-i/
https://open.catalyst.harvard.edu/products/eagle-i/


20 40 60 80 100 120 140 160 180 2000
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ϱ

F1
m

ea
su

re

VAL VCL VP L

Figure 6.6.: The F1-scores of the three logarithm based variants for different numbers of
topics in the range [2, 200].
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Figure 6.7.: The F1-scores of VAL for different numbers of topics in the range [2, 500].
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number cannot be determined, a high number of topics should be preferred. This
is in line with the findings of Wallach et al. [300], who show that hyper parameter
optimization can lead to a higher robustness against a high number of topics.

6.4.3 Experiment II

Based on the results of the first experiment, we evaluate whether the two approaches
for determining a good number of topics presented in Section 2.2.3 are useful in
the present use case. Thus, for the topic range [2, 200], we generate topic models
using all documents of the gold standard datasets that have been generated by
the VP L variant of our approach. For every number of topics we generate five
models, calculate P (D|Φ) as well as A and determine the average values of these
five runs.
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Figure 6.8.: Average log(P (D|Φ)) calculated on the gold standard corpus for different
models of the VP L variant with different numbers of topics.

Figure 6.8 shows the average logarithm of P (D|Φ) and reveals that the probability
increases steadily with an increasing number of topics. Thus, this method would
recommend a much higher number of topics than the 61 topics with which the VP L

variant performs best. The average value of A is shown in Figure 6.9. The curve
shows a dip as described by Arun et al. [19]. But the minimum value of this dip has
been achieved by models with 11 topics with which VP L has only an F1-score of
0.21.

From this experiment, we can summarise that none of these approaches seems to
be appropriate to determine a good number of topics for our use case. Therefore,
we have to fall back on a simple alternative that we will present during the third
experiment.
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Figure 6.9.: Average values of the measure A calculated on the gold standard corpus for
different models of the VP L variant with different numbers of topics.

6.4.4 Experiment III

To evaluate whether our approach can handle a larger number of datasets, we repeat
the first two experiments but train the model on the complete LODStats dataset.
In detail, this means that for every query dataset of the gold standard, we remove
this dataset from the set of all 1 680 LODStats datasets. We train the variant VP L of
our approach on the 1 679 remaining datasets and calculate the similarity between
the removed query dataset and the other 99 datasets contained in the model. After
that we compare the similarities with the gold standard and search the similarity
threshold that maximizes the F1-score. Using the VP L document creation, the 1 680
documents of the complete LODStats dataset comprise 175 080 word tokens of 5 816
different word types.

Table 6.4.: F1-scores of TAPIOCA and the baselines on the complete LODStats corpus.

Approach Classes Properties Both

TAPIOCA (log.) — 0.538 —
tf-idf 0.103 0.436 0.444
BLT 0.014 0.014 0.014

Lucene 0.214 0.241 0.385

Figure 6.10 shows the F1-score achieved by VP L. The maximum F1-score of 0.538
is achieved by a model with 284 topics. The results in Table 6.4 show that even
with a much larger input our approach is able to achieve an F1-score that is higher
than the scores of the baselines and comparable to the score achieved in the first
experiment.
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Figure 6.10.: The F1-scores of VP L calculated on the complete LODStats corpus for different
numbers of topics.
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Figure 6.11.: Average log(P (D|Φ)) calculated on the complete corpus for different models
of the VP L variant with different numbers of topics.
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Figure 6.12.: Average values of the measure A calculated on the complete corpus for
different models of the VP L variant with different numbers of topics.
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The Figures 6.11 and 6.12 show the average logarithm of P (D|Φ) as well as the
average value of the measure A, respectively. While the average value of P (D|Φ)
increases steadily with a larger number of topics, the minimum of the average value
of A is at 33 where the F1-score is only 0.336. However, since the gold standard is
part of the dataset our search engine indexes, we can use it as a pragmatic way to
determine a good number of topics. This pragmatic method assumes that a good
topic model that has been trained on the datasets of the gold standard and additional
datasets should give a high F1-score if it is compared to the gold standard. Thus,
in practice we shall train multiple models with different numbers of topics on the
same large dataset that comprises the gold standard datasets and use the model that
achieves the highest F1-score compared to the gold standard.

6.4.5 Experiment IV

In this fourth experiment, we use GLISTEN to compare the logarithm-based variants
of TAPIOCA with two of the aforementioned baselines, namely BLT and tf-idf .

Dataset

We use the DBpedia [21, 162] as basis to create datasets from which we know that
they are related to each other.20 We gather the domain and range information for
all dbo properties and all sub class and super class relations of the classes of the
dbo namespace. Then, we use the domain and range as well as the class hierarchy
information to add class information to single entities if they are not already explicitly
stated. The result of this is a so-called materialized version of the DBpedia. We split
this DBpedia into subsets according to the classes of entities. For each class that is
high up in the class hierarchy and that has more than 10 000 instances, we extract
the instances of the class and all triples in which they occur.21 Since dbo:Agent
has a comparatively large number of instances compared to the other classes, we
use three of its subclasses instead, namely dbo:Person, dbo:Organisation and
dbo:FictionalCharacter. We further preprocess the created subsets by removing
triples that have a predicate with a different namespace than rdf, rdfs, and dbo. In
addition, we only keep object properties since COPAAL does not make use of literals.
Table 6.5 lists the 16 created datasets together with their size.

20We use the DBpedia dump of July 2021.
21We use the DBpedia dashboard to identify the top classes in the class hierarchy and to get their

instance counts. See https://github.com/dbpedia/gsoc-2020-dashboard/wiki for details (last
accessed on 13.08.2022).
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Table 6.5.: The DBpedia classes for which subsets have been created, and the name and
size of the subset in number of triples.

DBpedia ontology class Dataset name Dataset size

dbo:Activity Activity 44 876
dbo:Award Award 60 824
dbo:Biomolecule Biomolecule 53 316
dbo:ChemicalSubstance Chemical 47 498
dbo:Device Device 121 405
dbo:Event Event 1 452 273
dbo:FictionalCharacter Fictional 210 448
dbo:Language Language 74 332
dbo:MeanOfTransportation Transport 506 162
dbo:Organisation Organisation 4 367 669
dbo:Person Person 25 760 123
dbo:Place Place 8 667 962
dbo:Species Species 1 788 086
dbo:SportsSeason Sports 1 331 468
dbo:TimePeriod Time 6 736 126
dbo:Work Work 6 050 491
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Setup

We use the Person and Place datasets as query datasets. For each query dataset,
we use all other datasets as possible link candidates, i.e., they are the datasets that
can be recommended by the different approaches given the query dataset. We use
different values ϱ = [2, 20] for the TAPIOCA variants and execute the whole TAPIOCA

process (i.e., the creation of the index and the querying using the query dataset)
three times since the index creation is based on random numbers that are used
within the topic modeling inference algorithm. We combine the results of the three
different models by calculating the arithmetic mean of the similarities between the
query dataset and each of the recommended datasets. Table 6.7 shows the features
of the corpora generated by the TAPIOCA variants.

Table 6.7.: Features of the corpora generated by the different TAPIOCA variants.

GQ Variant Word types Word tokens

Person
VAL 79 393 769 077
VCL 72 375 710 710
VP L 11 516 87 143

Place
VAL 83 326 866 571
VCL 76 222 809 643
VP L 11 392 85 241

In addition, we create a test and a train dataset for each query dataset that is used to
measure the performance of COPAAL as described in Section 6.3.1. To this end, we
take the five properties, that occur the most in this dataset and that have a domain
and range within the dbo namespace. Table 6.6 shows these chosen properties for
the two query datasets. For each chosen property, we randomly select 20 triples
that have the property as predicate. These chosen triples will be used as positive
examples in the test dataset (S +) and are removed from the query dataset to form
the training dataset. We create the same amount of negative examples similar to
the approach presented by Gerber et al. [107]. For each chosen property p, we
randomly select two entities s′ and o′ which fulfill the properties domain and range
restrictions, respectively. If the triple (s′, p, o′) does not exist in the query dataset, it
is used as negative example in the test dataset.22 This leads to a test dataset (S )
with 100 true and 100 false triples for each query dataset.

We follow the GLISTEN workflow as described in Section 6.3. However, since all
datasets already origin from the DBpedia, the linking and fusion are replaced with a
trivial concatenation of the dataset’s triples.

22It is worth noticing that this approach follows the closed world assumption.
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Table 6.8.: The first five recommended datasets of the different approaches for the query
datasets. For each variant of TAPIOCA, we show only the best performing
parameterizations of the TAPIOCA variants (all have ϱ = 2, except VCL with
ϱ = 4 for the Person dataset).

GQ N BLT tf-idf VAL VCL VP L

Pe
rs

on

1 Activity Organisation Organisation Organisation Time
2 Device Work Place Event Award
3 Language Fictional Time Sports Activity
4 Chemical Place Sports Time Language
5 Fictional Event Event Place Fictional

Pl
ac

e

1 Activity Organisation Organisation Organisation Organisation
2 Device Event Person Person Sports
3 Language Person Sports Sports Event
4 Chemical Transport Time Event Person
5 Transport Work Event Time Time

Results

1 dbr:Aaron_Manasses_McMillan dbo:almaMater dbr:Bishop_College .
2 dbr:2016_UCLA_shooting dbo:deathPlace dbr:Westwood,_Los_Angeles .

Listing 6.4: The two triples that are identified as true by COPAAL after adding the Organi-
sation dataset.

1 dbo:almaMater/dbo:type/dbo:type
2 dbo:almaMater/dbo:country/ˆdbo:country

Listing 6.5: The q-restricted typed paths that give evidence for the first triple from Listing 6.4
(written as property paths following Harris et al. [116]).

Table 6.8 shows the first five recommended datasets. For the TAPIOCA variants,
we report the results for the models that achieve the best performance. It can be
seen that the different approaches lead to different recommendations. Table 6.9
shows the measured AUC-ROC of COPAAL for the query dataset (N = 0) and the
fused datasets that include the recommended datasets for N ≤ 5. The effect of
fusing additional recommended datasets can be also seen in Figure 6.13 which
shows the KPI difference (∆AUC-ROC@N). For both query datasets, the effect of
adding additional datasets is similar. Only a small number of datasets improve the
performance of COPAAL. For the Person dataset, these are the Time, Organisation or
Place datasets while COPAAL’s performance on the Place dataset profits from fusing
the Person or Organisation dataset. These improvements can be seen as an increase
in the curve of a recommendation approach in Figure 6.13 and are typically caused
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Table 6.9.: COPAAL’s performance on the fused datasets for the first 5 ranks (N). The
approaches share the result for N = 0. For each dataset, we also report the
summary for the first 5 ranks for each approach (▲AUC-ROC,5).

GQ N BLT tf-idf VAL VCL VP L
Pe

rs
on

0 0.8435
1 0.8435 0.8537 0.8537 0.8537 0.9023
2 0.8434 0.8537 0.8649 0.8536 0.9023
3 0.8434 0.8537 0.9251 0.8537 0.9023
4 0.8435 0.8651 0.9249 0.9125 0.9041
5 0.8434 0.8655 0.9251 0.9251 0.9023

▲AUC-ROC,5 -0.0003 0.0742 0.2762 0.1811 0.2958

Pl
ac

e

0 0.8319
1 0.8319 0.8338 0.8338 0.8338 0.8338
2 0.8317 0.8339 0.8395 0.8395 0.8338
3 0.8319 0.8393 0.8397 0.8397 0.8338
4 0.8319 0.8396 0.8397 0.8391 0.8391
5 0.8317 0.8398 0.8397 0.8397 0.8397

▲AUC-ROC,5 -0.0004 0.0276 0.0329 0.0323 0.0207

by a small number of triples in S . For example, the improvement after fusing the
Organisation dataset is caused by the two triples shown in Listing 6.4. Both are
true facts from the DBpedia.23 For both facts, COPAAL is not able to identify any
evidence based on the Person dataset. However, when fused with the Organization
dataset, COPAAL finds two paths as evidence for each of these triples. Listing 6.5
shows the two q-restricted typed paths that give evidence for the first triple from
Listing 6.4. The paths express that dbr:Aaron_Manasses_McMillan has several
alma maters which share the same type of school and the same country.24 Although
these paths do not achieve high NPMI values with 0.36 and 0.40, respectively, they
increase the triple’s veracity score from 0.0 to 0.78. Similarly, the second triple’s
veracity score is increased from 0.0 to 0.62.25 Improving the score of only one of
these two triples leads to an increase of COPAAL’s AUC-ROC from 0.8435 to 0.8484.
Both improvements together lead to an AUC-ROC of 0.8533. A similar observation
can be made when fusing the Place or Time dataset. The Place dataset leads to an
improvement of 0.0112 while the Time dataset gives the highest improvement of

23The subject of the second triple has the type dbo:Person in the DBpedia. It seems like the
person-related facts collected to this entity belong to the perpetrator of the crime.

24The Bishop College and the Meharry Medical College, which is another alma mater of Aaron
Manasses McMillan, are both located in the United States and have the type “Historically black colleges
and universities”.

25The paths that are found for this triple are dbo:almaMater/dbo:city and
dbo:almaMater/ˆdbo:headquarter/dbo:location with an NPMI of 0.57 and 0.49, respectively.

206 Chapter 6 Dataset Search for Linking



0.0588 AUC-ROC points. This improvement origins from identifying 12 facts with
the dbo:careerStation as true for which no evidence could be found without the
Time dataset. When the Place dataset is used as query dataset, the Organisation
dataset gives an improvement of 0.0019 while fusing the Person dataset leads to a
0.0057 points better AUC-ROC value.

BLT tf-idf VAL VCL VP L
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Figure 6.13.: The ∆AUC-ROC@N values achieved by COPAAL based on the query dataset
(@N = 0, Person left, Place right) and the datasets recommended by the
different approaches. The diagrams only contain the best performing runs of
the TAPIOCA variants (all have ϱ = 2, except VCL with ϱ = 4 for the Person
dataset).

Figure 6.13 shows that all three variants of TAPIOCA lead to an early improvement
of the AUC-ROC value. The tf-idf approach leads to some improvements as well,
especially for the Place dataset. However, for the Person dataset, the important Time
dataset is ranked only as the 10-th dataset in the recommendation list of the tf-idf
baseline. The first five recommendations of BLT do not lead to any improvement for
both query datasets.

We execute COPAAL on fusing all available datasets with the query dataset and
achieve an AUC-ROC value of 0.9253 and 0.8397 for Person and Place, respectively.
While all approaches except BLT achieve this score with N ≤ 5 for the Place dataset,
only VAL and VCL recommend the three important datasets for the Person dataset
within the first 5 ranks. Table 6.9 also shows the summary of the difference measure
for the first 5 ranks (▲AUC-ROC,5). VP L achieves the highest ▲AUC-ROC,5 score for the
Person dataset. At a first glance, this might be contradicting the statement that this
variant does not achieve the best AUC-ROC score within N ≤ 5. However, the ▲,5

takes into account the rank of the recommendation, i.e., the earlier a good dataset is
recommended, the more often its positive effect on the AUC-ROC value is added to
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Figure 6.14.: The ▲AUC-ROC,5 values achieved by the log-based TAPIOCA variants for different
numbers of topics with the Person query dataset. The value achieved by tf-idf
is visualized as horizontal line in the background for comparison.
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Figure 6.15.: The ▲AUC-ROC,5 values achieved by the log-based TAPIOCA variants for different
numbers of topics with the Place query dataset. The value achieved by tf-idf
is visualized as horizontal line in the background for comparison.
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the score. The best performing VP L variant has the Time dataset on the first place
of its recommendation list. Because this dataset has the highest impact, the area
under the ∆AUC-ROC@N curve of VP L shown in Figure 6.13 is slightly larger than
the area under the curve of VAL. For the Place dataset, VAL achieves the ▲AUC-ROC,5

best score. Figures 6.14 and 6.15 show the ▲AUC-ROC,5 values that the three TAPIOCA

variants achieve for different ϱ values.

6.5 Conclusion

The aim of this chapter was twofold. First, we presented TAPIOCA—a search engine
that tackles the problem of recommending topically similar datasets for linking.
With this approach, we address the gap between creating an RDF dataset and
linking it to other datasets. Our evaluation shows that our approach is better
than several baselines and performs well on a large number of datasets. We could
identify different parts of a datasets metadata and show that the properties are
most important for determining the datasets topic. Second, we presented GLISTEN—
the first extrinsic benchmark for dataset linking recommendation. It relies on an
external task to measure the quality of the recommendations. Our evaluation
showed that an extrinsic evaluation can be used to measure the performance of
linking recommendation approaches. We used the task of Fact Checking but GLISTEN

is not bound to that particular task.

A challenging future task is the search for a good number of topics that can be
used to generate the topic model for TAPIOCA and that is not bound to the gold
standard created by us. Besides this, another challenge is the handling of classes
and properties that only have labels in foreign languages instead of English. With
respect to the evaluation, we aim to include other tasks into GLISTEN.
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Summary 7
Within this thesis, we looked at the Semantic Web and its two prerequesites to
have an impact. It needs to have more data and the data needs to have a high
quality [34, 251]. However, the growth of the Web increases the complexity of
publishing more five-star datasets. Our work tackles this dilemma by looking at four
research gaps. First, we look at the benchmarking of complex, distributed systems
that process Linked Data and the need for fair benchmarks and benchmarking
platforms (RG4). We propose HOBBIT—a holistic benchmarking platform that
supports the benchmarking of all steps of the Linked Data life cycle [23]. This
platform allows the benchmarking of distributed systems in a controlled environment.
In addition, we propose LEMMING—an approach to generate synthetic knowledge
graphs of arbitrary size that mimic real-world knowledge graphs. Both proposed
approaches create the basis for our evaluations within this thesis.

Second, we address the distributed nature of the Semantic Web (RG1). We propose
SQUIRREL—a distributed open-source crawler for the Data Web that supports a
large set of formats of structured data and is built on a modularized architecture
that allows the extension for future formats. We also present ORCA—the first
extensible FAIR benchmark for Data Web crawlers, which measures the efficiency and
effectiveness of crawlers in a comparable and repeatable way. Our evaluation shows
that SQUIRREL outperforms a competing crawler with respect to the efficiency. In
addition, SQUIRREL is able to crawl faster when provided with enough computational
resources.

Third, we look at the creators of datasets and their need to be aware of already
existing datasets (RG2). Searching for datasets on the Web is different to a classic
Web search [65]. Existing solutions are mainly based on the dataset’s meta data [53]
or user-defined tags [217]. We propose LODCAT—an approach to support the
exploration of the Data Web based on human-interpretable topics. LODCAT provides
the user with human-interpretable topics that are automatically derived from a
reference corpus and give the user an impression of a dataset’s content. Additionally,
we present PALMETTO—a framework for topic coherence measures. Based on this
framework, we evaluate 555 660 coherence measures and identify two new topic
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coherence measures. One of them performs better on all and the second on five out
of six datasets than the previous state of the art.

Fourth, we address the situation of dataset publishers that need to know other, rele-
vant datasets to which they can link their newly published dataset to (RG3). Address-
ing this gap is important to lift newly published datasets to five-star datasets [34]
and, hence, improve the quality of the datasets on the Web. We propose TAPIOCA—a
search engine that tackles the problem of recommending topically similar datasets
for link discovery. Our evaluation shows that our approach is better than several
baselines and performs well on a large number of datasets. We also present GLIS-
TEN—the first extrinsic benchmark for dataset linking recommendation. It relies on
an external task to measure the quality of the recommendations. Our evaluation
shows that an extrinsic evaluation can be used to measure the performance of linking
recommendation approaches.

Our work shows that the process of publishing data as five-star dataset can be eased
with our presented solutions. Several steps can be either automated or the user can
be supported with tools to ease the work. However, an adoption of the presented
techniques may take some time. For example, a study from August 2016 showed
that the usage of structured data in form of schema.org annotations on business
web pages was limited. Only 17% of the participating marketers stated that they
make use of these annotations to improve their ranking in search results [55]. This
is surprising since the schema.org project exists since 2011 and is supported by
major search engines. The study authors argue that the marketers might not be
aware of this modern technique [55]. Hence, one of the next steps after easing
the publication of data as five-star dataset could be to increase the awareness of
non-experts about the possibilities that arise with the usage of machine-readable
data.

Our work mainly focuses on Linked Open Data. Although the same techniques
are interesting for other areas, we do not take the special needs of companies and
private persons into account. A company may want to link its internal datasets with
each other or with external datasets, without sharing its internal data with other
parties. In a similar way, a private person might be interested in linking its private
data with other datasets while keeping privacy. Future work will have to look at
legal regulations like the General Data Protection Regulation of the European Union.
It will also have to take the technical solutions for data accessibility into account.
These may range from classic access control lists [253] to recent developments like
the data pods of the Solid project [58].
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Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée

240 BIBLIOGRAPHY

https://doi.org/10.1145/3357236.3395489
https://doi.org/10.1145/3406522.3446035
https://doi.org/10.1145/3406522.3446035
http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/
http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/
https://web.archive.org/web/20190816202119/http://wiki.knoesis.org/index.php/SSW_Datasets
https://web.archive.org/web/20190816202119/http://wiki.knoesis.org/index.php/SSW_Datasets
http://ceur-ws.org/Vol-1035/iswc2013_poster_17.pdf
http://ceur-ws.org/Vol-1035/iswc2013_poster_17.pdf
http://iswc2018.semanticweb.org/semantic-web-challenge-2018/index.html
http://iswc2018.semanticweb.org/semantic-web-challenge-2018/index.html


Kaffee, and Elena Simperl, editors, The Semantic Web – ISWC 2018, pages
137–153, Cham, 2018. Springer International Publishing. ISBN 978-3-030-
00668-6. doi: 10.1007/978-3-030-00668-6_9.

[218] Mina Abd Nikooie Pour, Alsayed Algergawy, Reihaneh Amini, Daniel Faria,
Irini Fundulaki, Ian Harrow, Sven Hertling, Ernesto Jiménez-Ruiz, Clement
Jonquet, Naouel Karam, Abderrahmane Khiat, Amir Laadhar, Patrick Lambrix,
Huanyu Li, Ying Li, Pascal Hitzler, Heiko Paulheim, Catia Pesquita, Tzanina
Saveta, Pavel Shvaiko, Andrea Splendiani, Elodie Thiéblin, Cássia Trojahn,
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LGD Linked Geo Data. 70, 71, 73, 74, 76,
283, 284

LOD Linked Open Data. 4, 85, 182

MIME Multipurpose Internet Mail Extensions. 91

NETL Neural Embedding Topic Labelling. 130, 131
NPMI Normalized Pointwise Mutual Information. 23, 125, 134, 140,

146, 147, 186,
187, 206
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NYT A dataset based on a set of New York Times arti-
cles [10].

144–147, 150–
153

OWL Web Ontology Language. 6, 173, 178

PMI Pointwise Mutual Information. 22, 23, 123, 125,
140

PROV-O Provenance Ontology. 45, 94

QMpH query mixes per hour. 70, 73, 76
QpS queries per second. 70, 73, 76, 77

R Reuse—one of the FAIR data principles. 42, 45, 47, 49, 51,
78

RAM Random Access Memory. 51, 108, 111–114
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RDR Requested disallowed resources. 112
RFC Request for Commons. 10, 89
RG Research gap. The 4 research gaps that are tackled

within this thesis are defined in Chapter 1.
7, 8, 171, 211,
212

RMSE root mean squared error. 70, 73, 76, 77
RSS Really Simple Syndication. 84
RTL-NYT A dataset based on a set of New York Times arti-

cles [63].
144–146, 150

RTL-Wiki A dataset based on a set of Wikipedia articles [63]. 144–146, 150

SKOS Simple Knowledge Organization System. 178
SPARQL SPARQL Protocol And RDF Query Language. 4, 9, 15, 30, 33,

44, 50, 52, 56,
67, 70, 81, 84,
86, 91–93, 95, 96,
98, 102, 103, 105,
110, 111, 113,
115, 116, 121,
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SRC Spearman rank correlation. 70, 76
SWDF Semantic Web Dog Food. 70, 71, 73–76

TN true negative. 24, 25
TP true positive. 24, 25

U User requirement for the HOBBIT platform. 40–45, 47–49, 51,
53, 54

UCS Uniform Class Selection. 64, 65, 73–77,
284, 285

UIS Uniform Instance Selection. 65, 73–76, 284,
285

URI Uniform Resource Identifier. 9, 10, 38, 89
URL Uniform Resource Locator. 4, 49, 84, 95, 103,

110
URN Uniform Resource Name. 10

VoID Vocabulary of Interlinked Datasets. 86, 96, 178
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W3C World Wide Web Consortium. 11, 12, 15

XHTML Extensible Hypertext Markup Language. 84, 91, 97
XML Extensible Markup Language. 4, 10, 11
XSD XML Schema Datatypes. 45
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cg http://data.oregon.gov/resource/
i3bn-rwu4/.
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dbo http://dbpedia.org/ontology/. 13–15, 185,
186, 188–190,
201–207

dbr http://dbpedia.org/resource/. 13, 14, 36, 37,
185, 186, 188–
190, 205, 206

dcat http://www.w3.org/ns/dcat#. 95

ex http://example.org/. 36, 37

ho http://w3id.org/hobbit/vocab#. 45, 46, 48

niw http://aksw.org/notInWiki. 36

owl http://www.w3.org/2002/07/owl#. 38, 131, 173, 188,
267

prov http://www.w3.org/ns/prov#. 94

rdf http://www.w3.org/1999/02/
22-rdf-syntax-ns#.

12, 13, 46, 66,
131, 164, 178,
201
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201
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sc http://data.oregon.gov/resource/
qhct-wumz/.
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sq http://w3id.org/dice-research/squirrel/
vocab#.
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wd http://www.wikidata.org/entity/. 188–190
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wiki http://en.wikipedia.org/wiki/. 11, 37
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∗ A symbol that works like a wildcard, i.e., it is used
for parameters or suffixes to express that any valid
value could be inserted.

19, 64, 136, 137,
139, 143, 180,
278, 287

· The symbol used for the dot product operation. 181, 182
⊛ An arbitrary binary operator of O. 60, 281, 282
⊞ An operator that links and fuses two given RDF

datasets.
191, 192

⊕ An arbitrary binary operator of O. 281, 282
† This symbol marks a run of LEMMING that stopped

early.
74

@N A suffix for a metric that is measured for the N -th
element in an ordered list.

xxiii, 192, 205,
207, 209

$F$ Placeholder for the file format in an IRI template. 102, 103
$H$ Placeholder for the host name in an IRI template. 102, 103
$N$ Placeholder for the resource ID in an IRI template. 102, 103
¶ The publication information for a chapter. 8, 27, 81, 117,

171
α The hyper parameter that is used as prior for the

Dirichlet distribution over topics.
16–21, 159, 181,
195

β The hyper parameter that is used as prior for the
Dirichlet distribution over words.

16–21, 195

χ A value of the variational parameter X. 20, 21, 132
X A variational parameter used to approximate Φ. 20, 21, 263
δ The density of a graph. 58, 59, 63, 73
∆ The difference of KPI values across several runs. xxiii, 192, 205,

207, 209, 263
▲ The area under the curve that is created by the of

the ∆ method across several runs.
xxiii, 192, 206–
209

ϵ A small constant that is added to avoid the calcula-
tion of the logarithm of 0.

23, 124, 125, 140,
141
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ε An error function returning the sum of the dif-
ferences of the invariant expression values of the
original graphs and a generated graph.

66, 73–76, 284,
285

η The number of times a token with a particular
word type has been assigned to a particular topic
over all documents.

19, 20

γ A value of the variational parameter Γ. 20, 21, 132
Γ A variational parameter used to approximate Θ. 20, 21, 264
κ Exponent proposed by Aletras et al. [10] to give

higher values more weight.
125, 141–143,
145

λ An (invariant) arithmetic expression. 60–63, 65, 66, 73,
74, 264, 281–283

λ∅ The empty expression. 60, 61, 63
Λ A set of (invariant) arithmetic expressions. 56, 57, 63, 65, 66,

264
Λmax The set of the best performing invariant expres-

sions.
65, 66

µ The average value an expression returns for a set
of graphs.

65, 66

ν The number of nodes of a graph. 56, 57, 63, 70, 71,
98, 106, 264

νR The number of nodes of a knowledge graph that
are either blank nodes or IRI resources of that
graph.

56, 57, 63, 70, 71

ωo A function that returns a set of class sets from Ω. 64
ωs A function that returns a set of class sets from Ω

for a given property and a set of classes for the
subject.

64

Ω A set of constraints for a graph. 59, 64, 65, 264
φ The result of a confirmation measure for a single

subset pair S.
135, 142

ϕ A topic’s distribution over words. 16–20, 123, 180,
181, 265
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Φ The set of word distributions (ϕ) of a topic model. xxii, xxiii, 17–20,
22, 129, 159, 161,
181, 198, 200,
201, 263, 290,
291

π a single path of a certain length between two single
nodes in a knowledge graph.

184–186

Π A set of paths in a knowledge graph. Depending
on the number of additional arguments, it is either
a set of paths between two given nodes or a set of
corroborative paths for a given property.

184–187, 265

Π′ A set of paths between sets of instances of a given
set of classes. If a restriction q⃗ is given in addition,
the set contains only typed paths that fulfill the
restriction.

184–187

ψ The number of times a particular word type occurs
in a certain document.

21, 132, 180, 193

Ψ The digamma function, i.e., the first derivative of
the logarithm of the gamma function [126].

21

ϱ The number of topics in a topic model. 17–22, 129, 155,
156, 158–162,
181, 196–200,
204, 205, 207–
209, 289, 290

ρ A refinement operator. 56, 57, 60–63,
281

ς A distribution over node degrees. 59, 65, 72
σ The standard deviation an expression has for a set

of graphs.
65, 66

τ The number of triples. 100–102, 106,
265

τ e The number of external triples of a graph. 101
τ i The number of internal triples of a graph. 101, 102
θ A document’s distribution over topics. 16–20, 157, 158,

180–182, 266
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ϑ The topic log odds for a document to measure
the agreement between a topic model and human
judgments.

xxii, 157, 158,
167

Θ The set of topic distributions (θ) of a topic model. 17–20, 264
Υ The set of node types. 98, 99, 266, 271
Υg The set of node types to be generated. 98, 99
ξ A value of the variational parameter Ξ. 20, 21, 132
Ξ A variational parameter used to approximate Z. 20, 21, 266
ζ The number of tokens that are assigned to a par-

ticular topic in a particular document.
19, 20, 156, 181

a An aggregation function. 142, 143, 146,
148, 150, 152,
266, 287, 288

A The global set of aggregation functions. 135, 146, 150,
287, 288

ag The geometric mean. 142, 148
ah The harmonic mean. 142, 148
ax The maximum as aggregation function. 142, 148
am The median. 142, 148, 150
an The minimum as aggregation function. 142, 148
aq The quadratic mean. 142, 148
aa The arithmetic mean. 142, 143, 146,

148, 150, 152,
287, 288

a A difference function that calculates the difference
of an expression value in comparison to the aver-
age and normalizes the result by the expression’s
standard deviation.

65, 66

A1 An example annotation system. 36, 37
A2 An example annotation system. 36, 37
A(F) The space of all arithmetic expressions over a given

finite set of real-valued functions.
60, 61

A A measure to find a good number of topics for an
LDA model proposed by Arun et al. [19].

xxii, xxiii, 22,
159, 160, 162,
198–201, 290,
291
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b A replacement function which replaces resources
in triples of the target graph with resources of the
source graph if these resources are connected with
an owl:sameAs link.

189, 190

b The ratio of the normalized number of tokens as-
signed to a topic in one corpus divided by the
normalized number assigned to the same topic in
another corpus.

156, 164

B The global set of blank nodes as defined in Defini-
tion 2.4.

12, 13, 15, 58,
267

B A set of blank nodes (a subset of B). 12, 58
BLT The topical aspect used by Kunze and Auer [155]

as part of their RDF search engine.
193, 194, 196,
199, 201, 205–
207

c An RDF class. 14, 66
c A mapping function that derives for a given node

of an RDF graph the set of all classes the node
belongs to.

13, 14, 58, 59,
63–66, 184, 271

cos The cosine function. 125, 130, 142,
143, 146, 147,
150–152, 181,
268, 275, 287,
288

C The global set of classes. 13, 14, 267
C A set of classes (a subset of C). 13, 14, 58, 59,

64–66, 72, 73,
184, 185

C A topic coherence. xxii, xxiii, 123–
126, 135, 136,
142, 143, 146,
147, 149, 151–
153, 155, 158–
161, 169, 267,
268, 287–289

C The global set of topic coherences. 135
Cany-any The any-any coherence. 142, 288
Ccen The Centroid coherence. 125, 143, 288
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Ccos The Cosine coherence. 125, 143, 146,
147, 151, 288

CDice The Dice coherence. 143, 288
CF Fitelson’s coherence. 126, 143, 287
CJac The Jaccard coherence. 143, 288
CNPMI The NPMI coherence. 125, 126, 142,

146, 147, 149,
151, 287

CO Olsson’s coherence. 126, 143, 287
Cone-all The one-all coherence. 142, 288
Cone-any The one-any coherence. 142, 146, 147,

151, 288
CP The proposed coherence which relies only on a

direct confirmation measure.
xxii, xxiii, 146,
147, 149, 151,
153, 155, 158–
160, 169, 287,
289

CS Shogenji’s coherence. 126, 143, 287
CUCI The UCI coherence. 123–126, 136,

142, 146, 147,
149, 151, 287

CUMass The UMass coherence. 124, 142, 146,
147, 151, 287

CV 2 The proposed vector-based coherence. xxii, 146, 147,
149, 151–153,
155, 158–161,
169, 287

Dice The Dice function. 142, 143, 268,
275, 288

d A document. 15–22, 156, 157,
180, 181, 193

d A function that retrieves the domain of a given
property.

14, 184, 186, 187

d The degree of an RDF resource in a graph. 59–61, 66, 100–
102, 106, 268

d̄ The average degree of RDF resources. 100–102, 106
Dir The Dirichlet distribution. 16, 17, 20
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D A corpus (i.e., a set of documents). xxii, xxiii, 15–22,
129, 156, 159,
161, 164, 193,
198, 200, 201,
269, 273, 280,
290, 291

DRDF A corpus generated from a given set of RDF
datasets.

156, 164

DWiki A corpus generated from the English Wikipedia. 156, 164
e An edge of a graph. 95, 100
e A function that maps a given element to a vector

in the embedding space of the embedding model
to which this function belongs to.

130, 269

ed
d2v A function that maps a given word phrase to a

vector in the embedding space of a doc2vec em-
bedding model.

130

ew
d2v A function that maps a given word to a vector

in the embedding space of a doc2vec embedding
model.

130

ew
w2v A function that maps a given word to a vector in

the embedding space of a word2vec embedding
model.

130

e A KPI to measure the performance of f . 182, 183, 192
E A set of edges. 95, 99, 100
E The expected value of a probability distribution. 20
f A function that takes an RDF dataset as input. 182, 183, 192,

269
f A frequency count. 131, 132, 178–

180
f A real-valued function. 60, 61, 63
F1 The F1-measure as defined in Equation 2.35. 24, 25, 182
F1mac The macro F1-measure as defined in Equa-

tion 2.41.
25

F1mic The micro F1-measure as defined in Equation 2.38. 25, 68
FN The count of false negatives. 24, 25
FP The count of false positives. 24, 25
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F A set of real-valued functions. xxv, 60, 61, 72,
266

s A measure for the specificity of an expression if
it is used as an invariant for a set of knowledge
graphs.

63

G A knowledge graph. 12–14, 36, 56,
58, 59, 62–66,
73–76, 100–102,
176, 180, 181,
184, 186–192,
194, 203–206,
270, 277, 284,
285

G A directed graph. 95
Gex An example knowledge graph shown in Figure 2.1. 13, 14, 36
Ġ A generated knowledge graph. 63–66, 73–76,

284, 285
G A set of graph generators. 62, 72
G̃ A negative example graph. 62
GQ The query dataset for which linking candidates

should be retrieved.
176, 180, 181,
187, 188, 191,
192, 203–206

G A set of knowledge graphs. 56–59, 62–66, 72,
73, 176, 178, 191,
192, 194, 270

G̃ A set of negative example graphs. 62, 63, 72
GS The source knowledge graph in Link Discovery. 188–190
GT The target knowledge graph in Link Discovery. 188–190
h A measure for the variance of an expression for a

set of knowledge graphs.
62, 270

h′ An extension of h that takes the length of the given
expression into account.

62, 63, 277

h1 The distribution of singular values of the matrix
M1 as proposed by Arun et al. [19].

22

h2 A vector based on the length vector of the
documents and the matrix M2 as proposed by
Arun et al. [19].

22
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i This letter is used to represent an index to enumer-
ate elements of a set or similar.

15–17, 19–22,
58–60, 62, 64–66,
95, 98–100, 123–
127, 132, 136,
137, 140–142,
152, 156–158,
164, 180, 181,
184–186, 188–
190, 192–194,
277, 279, 280

i A mapping function that derives for a given set of
classes all nodes that are instances of all the given
classes (the inverse of c).

14, 63, 65, 186

I The global set of IRI resources as defined in Defini-
tion 2.2.

12, 13, 15, 58,
275

j This letter is used to represent an index to enumer-
ate elements of a set or similar.

16, 17, 19–21, 58,
59, 62, 64–66, 72,
95, 98, 100–102,
123–126, 136,
141, 156–158,
181, 184, 186–
189, 192, 194,
279, 280

Jac The Jaccard function. 140, 142, 143,
150, 268, 272,
275, 288

k This letter is used to represent an index to enumer-
ate elements of a set or similar.

19–21, 58, 65, 66,
95, 100, 102, 126,
156, 157, 181,
184–186, 190

k An element of the connectivity matrix K. 98
KL The Kullback-Leibler divergence. 22
K The |Υ| × |Υ| connectivity matrix. xxv, 98, 99, 271
l A vector with the lengths of the single documents

of a corpus.
22

ℓ A distribution over literal values. 59, 66, 72
l The length of a path. 184–187
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L The Likelihood of something. In this thesis, it is
mainly used for the ELBO.

20

L A link set, i.e., a set of pairs of resources that are
linked via a given relation.

188–190

L The global set of literals as defined in Defini-
tion 2.3.

12, 15, 58, 272

L A set of literals (a subset of L). 12, 15, 58, 59, 66,
274, 277

m A confirmation measure. 126, 140–143,
146, 149, 150,
152, 272, 273,
287, 288

m̃ An indirect confirmation measure. 142, 143, 146,
150, 152, 287,
288

mc Conditional confirmation measure. 140, 150
md Difference confirmation measure. 140, 142, 146,

149, 150, 288
mf Fitelson’s confirmation measure. 126, 141, 143,

146, 149, 150,
287

mJac Jaccard confirmation measure. 140, 150
mP A simple confirmation measure that solely relies

on the joint probability.
140, 150

ml Likelihood confirmation measure. 140, 141, 150
mlc Log-conditional confirmation measure. 140, 142, 146,

150, 287
mlJac Log-jaccard confirmation measure. 140, 150
mll Log-likelihood confirmation measure. 140, 141, 150
mlr Log-ratio confirmation measure. 140, 142, 146,

149, 150, 287
mls Logarithmic variant of Shogenji’s confirmation

measure.
141, 143, 150,
287

mnlr Normalized log-ratio confirmation measure. 140, 142, 143,
146, 149, 150,
152, 287, 288
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mo Olsson’s confirmation measure. 141, 143, 150,
287

mr Ratio confirmation measure. 140, 150
M The global set of confirmation measures. 134, 135, 146,

150, 287, 288
M The corpus matrix of order |D| × |V|. 22, 270
n The number of datasets in an evaluation. 25
n The number of top words of a topic. 123, 124, 126,

141, 142, 146,
152, 153

NPMI The normalized pointwise mutual information
measure as defined in Equation 2.31.

23, 186, 187

NPMIϵ The normalized pointwise mutual information
measure for probabilities based on counts as de-
fined in Equation 2.32.

23, 125

N The rank of an element within a ranking. xxiii, 192, 205–
207, 209, 263

o The object of a triple as defined in Definition 2.6. 12, 14, 58, 59, 64,
65, 101, 184, 185,
187, 204, 264

O This symbol marks the big O notation. 190, 192
O A set of binary arithmetic operations. 60–62, 263, 281
p A property as defined in Definition 2.5. 12, 14, 15, 58,

59, 64–66, 72,
73, 101, 184–189,
204

PMI The pointwise mutual information measure as de-
fined in Equation 2.29.

23

PMIϵ The pointwise mutual information measure for
probabilities based on counts as defined in Equa-
tion 2.30.

23, 123, 124

Pr The precision value as defined in Equation 2.33. 24, 25
Prmac The macro precision value as defined in Equa-

tion 2.39.
25

Prmic The micro precision value as defined in Equa-
tion 2.36.

25, 68
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P A probability. xxii, xxiii, 17–20,
22, 23, 58, 59, 64,
65, 73, 124–126,
129, 140, 150,
159, 161, 181,
186, 198, 200,
201, 272, 290,
291

P The method of probability estimation that defines
the way how probabilities are derived from the
underlying data.

134, 135, 137,
139, 142, 146,
148, 150, 274,
287, 288

P The space of all probability estimations. 134, 135, 146,
287, 288

Pbd The boolean document probability estimation. 137, 139, 142,
146, 148, 287,
288

Pbp The boolean paragraph probability estimation. 137, 139, 148
Pbs The boolean sentence probability estimation. 137, 139, 148
Pcw The context window probability estimation. The

number attached to the subscript indicates the size
of the window.

139, 146, 148,
288

Psw The sliding window probability estimation. The
number attached to the subscript indicates the size
of the window.

137, 139, 142,
146, 148, 150,
287

P A set of probabilities. 135
P The global set of properties as defined in Defini-

tion 2.6.
12, 274

P A set of properties (a subset of P). 12, 15, 59, 66,
101, 102, 274

PL A set of datatype properties. 15, 59, 66
PR A set of object properties. 15
q A distribution introduced by the Variational

Bayesian approach.
20

q A property which is used as a restriction for a set
of paths.

xxix, 184–187,
205, 206, 265,
275
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q⃗ An ordered set of properties that are used to re-
strict a set of paths.

xxix, 184–187,
265

Q A set of restrictions. 187
r A function that retrieves the range of a given prop-

erty.
14, 15, 184, 186,
187

r An IRI resource. 101, 102
r A rounding function, which results the next integer

value.
132, 180

Re The recall value as defined in Equation 2.34. 24, 25
Remac The macro recall value as defined in Equation 2.40. 25
Remic The micro recall value as defined in Equation 2.37. 25, 68, 110, 112,

113
Re The set of external IRI resources, i.e., resources

belonging to a different RDF graph.
100–102

Ri The set of internal IRI resources. 100–102
R A set of IRI resources (a subset of I). 12, 15, 56–59, 63,

70, 71, 100–102,
188, 190, 264,
274, 275, 277,
278

sim A function that measures the similarity of two
given things.

130, 142, 181,
275

simcos The cosine similarity function that calculates the
similarity of two given vectors based on the cosine
of the angle between the two vectors.

130, 142, 181

simDice The Dice similarity function that calculates the
similarity of two given vectors.

142

simJac The Jaccard similarity function that calculates the
similarity of two given vectors.

142

simlt A function to measure the similarity between a
label candidate and the top words of a topic.

130

s The subject of a triple as defined in Definition 2.6. 12, 14, 58, 59, 64,
65, 101, 184, 185,
187, 204, 264

S A set of seed nodes. xxvii, 95, 97, 99,
100
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S A segmentation. xxi, 126, 127,
135–138, 140–
143, 146, 148–
150, 152, 153,
264, 276, 287,
288

S The set of all segmentation schemes. 134, 135, 146,
150, 287, 288

Sall
one The all-one segmentation. 137, 138, 143,

148, 287
Sany

any The any-any segmentation. xxi, 136–138,
142, 148, 150,
152, 153

Sone
all The one-all segmentation. xxi, 136–138,

142, 146, 148,
150, 152, 153,
287, 288

Sone
any The one-any segmentation. xxi, 126, 136–

138, 142, 143,
146, 148, 152,
153, 287, 288

Sone
one The one-one segmentation. xxi, 136, 138,

142, 143, 146,
148, 149, 152,
287, 288

Sone
pre The one-preceding segmentation. xxi, 136, 138,

142, 146, 148,
149, 152, 153,
287, 288

Sone
set The one-set segmentation. xxi, 137, 138,

143, 148, 149,
152, 288

Sone
suc The one-succeding segmentation. xxi, 136, 138,

148, 149, 152,
153

Sset
set The set-set segmentation. 137, 143, 148,

149, 152, 287
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S A set of RDF statements for which the veracity is
known.

187, 204, 206,
277

S − A set of RDF statements that are known to be false. 187
S + A set of RDF statements that are known to be true. 187, 204
tf-idf The “term frequency, inversed document fre-

quency” function.
175, 193, 194,
196, 199, 201,
205–208

T The set of triples. 12, 58, 59, 100,
187, 189, 277

T ′
e The set of generated external triples, i.e., triples

that have an external resource as object.
101, 102

T ′ The set of generated triples that only contain IRI
resources as subjects and objects.

101

T ′
i The set of generated internal triples, i.e., triples

that have an internal resource as object.
101, 102

TL The set of triples that have only literals as objects. 58, 59
TR The set of triples that have only blank nodes or IRI

resources as objects.
58, 59

TN The count of true negatives. 25
TP The count of true positives. 24, 25
u The weight of the length for the result of h′. 62, 63, 72
u A node type. 98
u The id of a topic that has been chosen by a user as

intruder topic.
157, 158

u A function that returns 1 if the given RDF vocabu-
lary v is used in the given dataset G or 0 otherwise.

194

U The bag of user answers. 157, 158
v⃗ A context vector of a subset of W . 125, 141, 142,

277
v⃗c The centroid vector of the context vectors of a

subset of W .
125

v A single value of a context vector of a subset of W . 125
v⃗′ The context vector of W ′. 141, 142, 277
v′

i The i-th element of the context vector v⃗′. 142
v⃗′′ The context vector of W ′′. 141, 142, 277
v′′

i The i-th element of the context vector v⃗′′. 142
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Notation Description Page List

v A node in a graph. xxvii, 13, 14, 58,
64–66, 95, 99,
100, 184–186,
188–190, 278

vϵ The entrance node of a graph. 95
v An RDF vocabulary. 194, 277
V The vocabulary of a corpus. 15, 16, 19–22,

193, 273
V A set of nodes. 12–14, 58, 62, 65,

66, 95, 97–101,
190, 278

Vm The set of marked nodes in a graph. xxvii, 99, 100
V R The set of nodes of a knowledge graph that com-

prises the blank nodes and IRI resources of that
graph but not the its literals.

58

V Q A queue for graph nodes. 100
V ν The set of nodes of the synthetic Data Web. 97–99
Vu The set of unmarked nodes in a graph. 99
V The union of RDF vocabularies. 194
V∗L A variant of TAPIOCA’s document generation that

logarithmic on unique counts.
180

V∗U A variant of TAPIOCA’s document generation that
relies on unique counts.

180

VA A variant of TAPIOCA’s document generation that
relies on class and property counts.

179

VAL A variant of TAPIOCA’s document generation that
relies on logarithmic class and property counts.

xxii, 180, 195–
197, 204–209

VAU A variant of TAPIOCA’s document generation that
relies on unique class and property counts.

180, 195, 196

VC A variant of TAPIOCA’s document generation that
relies on class counts.

179

VCL A variant of TAPIOCA’s document generation that
relies on logarithmic class counts.

180, 195–197,
204–208

VCU A variant of TAPIOCA’s document generation that
relies on unique class counts.

180, 195, 196

VP A variant of TAPIOCA’s document generation that
relies on property counts.

179
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Notation Description Page List

VP L A variant of TAPIOCA’s document generation that
relies on logarithmic property counts.

xxii, 180, 195–
200, 204–209

VP U A variant of TAPIOCA’s document generation that
relies on unique property counts.

180, 195, 196

w The weight of a node when sampling a node for
an edge.

65

w A word token, i.e., the single occurrence of a word
type.

15–19, 181

w A word type, i.e., a (natural language) word from
a vocabulary.

15, 17, 19–21,
123–126, 130–
132, 136, 137,
141, 180, 181,
193, 279

WL The set of words of a topic label candidate. 130, 131
Wi The set of all subsets of a given word set that do

not contain the word type wi.
126, 279

Wi,j The j-th element of Wi, i.e., the j-th set of all
subsets of a given word set that do not contain the
word type wi.

126

W A set of words. 123–127, 130,
131, 135–137,
140–142, 153,
161, 163, 277,
279

W ′ The set of words whose occurrence might be sup-
ported by W ′′.

127, 136, 137,
140–142, 277,
279

W ′′ The set of supporting words, i.e., words that are
tested whether they support the occurrence of W ′.

127, 136, 137,
140–142, 153,
277, 279

W The set of top words of a topic. 123–126, 130,
131, 135–137,
141, 142, 161,
163, 277, 279

W ex A set of top words of an example topic. 124–126
x The id of the real intruder topic. 157, 158
x A random value of X . 22, 23
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Notation Description Page List

X A random variable. 22, 23, 279
y A random value of Y. 22, 23
Y A random variable. 22, 23, 280
z The topic assignment of a word, i.e., the index of

a topic that created this word.
17–20, 181, 280

z The veracity score that is calculated for a given
triple.

187

Z The set of all topic indexes of a corpus D. 17–22, 181, 266,
280

Z̃i,j The set of all topic assignments except the assign-
ment zi,j .

19, 20
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Appendix A
A.1 Expression Transformation

This leads to unbalanced trees since the left subtree of a node might be a complex
expression while the right node is always a single function. We name this a left deep
tree. Hence, ρ is complete if it is possible that every binary expression tree over O

can be represented as such a left deep tree.

As described in Section 3.5.2, our refinement operator ρ is complete since it is able
to generate Taylor series.1 These series can approximate other expressions [304].
However, a lot of expressions can be directly transformed into a left-deep tree. Let
λ1 and λ2 be two expressions which are connected by a binary operation ⊛ which
can be any of the binary operations in O. Their binary expression tree is shown in
Figure A.1a. If λ2 is a single function the tree already has the form of a left-deep
tree. If λ2 comprises more than a single function, it can be represented by its two
subexpressions λ2,1 and λ2,2 that are connected by the operator ⊕ ∈ O as follows:

λ2 = λ2,1⊕λ2,2 . (A.1)

As shown in Figure A.1b, the binary expression tree of the two connected expressions
λ1 and λ2 is not a left-deep tree:

λ1⊛λ2 = λ1⊛(λ2,1⊕λ2,2) . (A.2)

In a left-deep tree, the left operator has to be executed before the right operator.
However, because of the parenthesis in the expression, this does not hold in our
example.

Since |O| = 4, there are 16 different combinations that the two operators ⊛ and ⊕
can have in the equation above. We demonstrate for 14 of the 16 combinations how

1Our definition of completeness covers global completeness. We do not claim that our refinement
operator offers local completeness [195].
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⊛

λ1 λ2

(a) Binary expression tree with two
expressions.

⊛

λ1 ⊕

λ2,1 λ2,2

(b) λ2 represented by its subexpressions and its
binary arithmetic operation.

×

± λ2,2

/ λ1

× λ2,2

λ1 λ2,1

(c) The left-deep tree for the case that ⊛ = × and ⊕ ∈ {+, −} (expressed
by ±) as shown in equation A.13.

Figure A.1.: A graphical representation of binary expression trees.
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the expression can be transformed to create a left-deep tree. In the following, we
use ± in cases in which plus or minus could be used:

λ1 + (λ2,1 + λ2,2) = (λ1 + λ2,1) + λ2,2 , (A.3)

λ1 − (λ2,1 − λ2,2) = (λ1 − λ2,1) + λ2,2 , (A.4)

λ1 × (λ2,1 × λ2,2) = (λ1 × λ2,1)× λ2,2 , (A.5)

λ1/(λ2,1/λ2,2) = (λ1/λ2,1)× λ2,2 , (A.6)

λ1 + (λ2,1 − λ2,2) = (λ1 + λ2,1)− λ2,2 , (A.7)

λ1 − (λ2,1 + λ2,2) = (λ1 − λ2,1)− λ2,2 , (A.8)

λ1 × (λ2,1/λ2,2) = (λ1 × λ2,1)/λ2,2 , (A.9)

λ1/(λ2,1 × λ2,2) = (λ1/λ2,1)/λ2,2 , (A.10)

λ1 ± (λ2,1 × λ2,2) = ((λ1 × λ2,2)/λ2,2)± (λ2,1 × λ2,2)

= ((λ1/λ2,2)± λ2,1)× λ2,2 ,
(A.11)

λ1 ± (λ2,1/λ2,2) = ((λ1 × λ2,2)/λ2,2)± (λ2,1/λ2,2)

= ((λ1 × λ2,2)± λ2,1)/λ2,2 ,
(A.12)

λ1 × (λ2,1 ± λ2,2) = (λ1 × λ2,1)± (λ1 × λ2,2)

= ((λ1 × λ2,1)× (λ2,2/λ2,2))± (λ1 × λ2,2)

= (((λ1 × λ2,1)/λ2,2)± λ1)× λ2,2) .

(A.13)

A.2 Lemming Error Plots

Figures A.2 and A.3 show the error scores for the LGD and ICC dataset, respectively.
The diagrams show the reduction of the error scores throughout the experiment
described in Section 3.6.3. Each diagram comprises three curves for the three
runs.
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Ġ)

fo
r

U
C

S
(×

10
−

3 )

UIS BIS

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ε(
Ġ)
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Figure A.2.: The course of error values during the amendment phase for the LGD dataset
and all variants of LEMMING. The three rows are the class selection variants
while the two columns show the instance selection variants.
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Figure A.3.: The course of error values during the amendment phase for the ICC dataset
and all variants of LEMMING. The three rows are the class selection variants
while the two columns show the instance selection variants.
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A.3 Detailed Correlation Results

Tables A.1 and A.1 show the detailed results of the new coherence measures and
coherence measures that have been proposed by related work. The description
of the latter can be found ins Section 5.3.1. The experiment description can be
found in Section 5.3.2. The discussion of the most important results can be found in
Section 5.3.3.
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Figure A.4.: Box plots of the topic coherence values (CP ) of different topic models with
different numbers of topics.

A.4 Detailed Measure Comparison

In an additional experiment, we compare the coherence-based evaluation of topic
models with the measures proposed by Griffiths et al. [110] and Arun et al. [19],
which are explained in detail in Section 2.2.3. First, we create a subset of the
Wikipedia corpus comprising 337 754 documents with 236 million word tokens
and 4.4 million different word types. In a first step, we generate topic models
with ϱ = {50, 100, 150, 200, 250, 300, 400} and measure their coherence. We measure
the coherence of the generated models using the CP measure. Then, we generate
additional models with different numbers of topics in areas in which the coherence
seems to be high. This holds especially for the range [150, 200]. In addition, we use
the measures proposed by Griffiths et al. [110] and Arun et al. [19] for the same
models to compare the results. For each number of topics, we generate three models
and report the average across these models.
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Figure A.6.: Average values of the measure A calculated for the generated models.
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Figure A.4 shows the results of the coherence measure as box plots. The average
coherence value increases with the number of topics until it reaches a plateau with
around 150 topics. All models with less than 400 topics seem to have a similar
coherence value. From 400 topics on, the average coherence value of the models
drops. To ensure that this observation is not solely based on a single model, we
added models with 500, 750 and 1000 topics.2 They confirm the observation.
Figures A.5 and A.6 show the values of P (D|Φ) and A, respectively. Both values
increase with the number of topics. Hence, the probability P (D|Φ) would choose
the topic model with 400 topics as best model. The A measure instead would choose
the topic model with 10 topics. These observations confirm the results from our
experiment in Section 5.4.3.

A.5 Questionnaire

This section shows the 10 questions of the LODCat questionnaire of the third
experiment described in Section 5.4. All questions in the questionnaire have the
same structure. An example of these questions is the following:

Given the dataset 0ca, which of the following 4 topics does not fit to the dataset?

In the online questionnaire, the name of the dataset in the question is linked to the
RDF file to give the user access to the dataset. The question is followed by the list of
topics. The topics have been ordered randomly when creating the questions. We list
the topics in this order, but mark the meaning of the topics, i.e, whether their are 1st,
2nd, 3rd or the intruder topic (I). Each topic comes with a title and 10 top words.

1. Dataset https://hobbitdata.informatik.uni-leipzig.de/lodcat/lodalot/
evaluation/rdf/0ca881a1fc5817a3575d2ff6191cc622%3Ftype=hdt.n3

I College basketball
state, basketball, conference, university, ncaa, kentucky, carolina, tourna-
ment, man, college

2nd Philosophy
language, study, social, theory, university, work, culture, history, press,
philosophy

3rd Information
use, system, software, user, datum, computer, include, information, sup-
port, service

2We do not report the values of P (D| Φ) and A for these models since the evaluation of the large
models consumed too much RAM.
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1st University
university, college, research, science, institute, professor, award, work,
study, society

2. Dataset https://hobbitdata.informatik.uni-leipzig.de/lodcat/lodalot/
evaluation/rdf/0df3609cdd77b40d2a06ea88d09f656b%3Ftype=hdt.n3
1st Nausea

disease, patient, may, cause, treatment, use, cancer, blood, symptom,
include

I Train
railway, station, line, train, service, locomotive, rail, passenger, bus,
transport

2nd Philosophy
language, study, social, theory, university, work, culture, history, press,
philosophy

3rd Football
player, footballer, football, expatriate, fc, people, bear, play, birth, club

3. Dataset https://hobbitdata.informatik.uni-leipzig.de/lodcat/lodalot/
evaluation/rdf/6f3341506ee83bd28b787c8e2f6858c1%3Ftype=hdt.n3
1st Information

use, system, software, user, datum, computer, include, information, sup-
port, service

2nd Physicist
prize, physics, award, design, mitchell, research, science, physicist, quan-
tum, brain

3rd University
university, college, research, science, institute, professor, award, work,
study, society

I Sweden
danish, norwegian, norway, denmark, club, swedish, sweden, copen-
hagen, sc, people

4. Dataset https://hobbitdata.informatik.uni-leipzig.de/lodcat/lodalot/
evaluation/rdf/c89db4032b3809c7ef9e57e5485ca2f8%3Ftype=hdt.n3

I Genus
species, genus, describe, family, find, name, fish, genera, plant, america
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3rd Sir
john, london, son, king, william, british, sir, english, die, death

2nd Building
building, house, new, park, street, area, south, build, town, centre

1st University
university, college, research, science, institute, professor, award, work,
study, society

5. Dataset https://hobbitdata.informatik.uni-leipzig.de/lodcat/lodalot/
evaluation/rdf/df7e479638564102139dc1ff359ebc15%3Ftype=hdt.n3
2nd University

university, college, research, science, institute, professor, award, work,
study, society

1st Information
use, system, software, user, datum, computer, include, information, sup-
port, service

I Flower
plant, bird, flower, species, leaf, long, flora, grow, name, tree

3rd Atlantic
album, song, release, band, music, chart, record, single, track, records

6. Dataset https://hobbitdata.informatik.uni-leipzig.de/lodcat/lodalot/
evaluation/rdf/113e514ef0a94b738ce37350525cae0d%3Ftype=hdt.n3
2nd Portugal

airport, international, brazil, portuguese, são, romanian, portugal, brazil-
ian, language, romania

1st China
chinese, china, singapore, li, wang, shanghai, chen, beijing, hong, zhang

I Season
game, team, season, win, first, league, play, point, second, record

7. Dataset https://hobbitdata.informatik.uni-leipzig.de/lodcat/lodalot/
evaluation/rdf/1d6c4d4a80a507331801dda33f631097%3Ftype=hdt.n3
1st Upland

river, island, area, mountain, park, north, south, forest, water, land
I Govinda (actor)

film, indian, tamil, singh, role, kumar, actor, hindi, award, telugu
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2nd Portugal
airport, international, brazil, portuguese, são, romanian, portugal, brazil-
ian, language, romania

8. Dataset https://hobbitdata.informatik.uni-leipzig.de/lodcat/lodalot/
evaluation/rdf/b056341b71e7ecb9ed12f144c085dc60%3Ftype=hdt.n3

I Painting
art, museum, work, artist, painting, gallery, exhibition, painter, collection,
new

1st Germany
german, der, die, und, germany, flag, berlin, austrian, vienna, work

2nd Philosophy
language, study, social, theory, university, work, culture, history, press,
philosophy

9. Dataset https://hobbitdata.informatik.uni-leipzig.de/lodcat/lodalot/
evaluation/rdf/79d5ea832dd19745b7707644af618ef1%3Ftype=hdt.n3
2nd Portugal

airport, international, brazil, portuguese, são, romanian, portugal, brazil-
ian, language, romania

I American hockey league
hockey, player, season, team, ice, toronto, nhl, league, new, play

1st Business
company, bank, business, million, market, financial, industry, year, group,
tax

10. Dataset https://hobbitdata.informatik.uni-leipzig.de/lodcat/lodalot/
evaluation/rdf/979c3e5c7aa2f1937a6939ec9e16b965%3Ftype=hdt.n3
1st Upland

river, island, area, mountain, park, north, south, forest, water, land
2nd Australia

australia, australian, south, sydney, wales, melbourne, victoria, new,
queensland, western

I Uttar pradesh
india, indian, state, delhi, pradesh, bangladesh, bengal, tamil, national,
nepal
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