

Institut für Elektrotechnik und Informationstechnik Universität Paderborn Fachgebiet Elektrische Antriebstechnik und Leistungselektronik Prof. Dr.-Ing. Joachim Böcker

Masterarbeit

Modellprädiktive effizienzoptimale Mehrmotoren-Betriebsstrategie unter besonderer Berücksichtigung der Rotorkreisdynamik von Asynchronmaschinen

von

Marius Becker

Erstgutachter: Dr.-Ing. Oliver Wallscheid Zweitgutachter: Prof. Dr.-Ing. Joachim Böcker Betreuer: Marius Stender Nummer der Arbeit: MA 126 Einreichdatum: 30. Januar 2023

Eidesstattliche Erklärung

Ich versichere, dass ich die vorliegende wissenschaftliche Arbeit selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe. Die Stellen der Arbeit, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen sind, wurden unter Angabe der Quelle als Entlehnung deutlich gemacht. Das Gleiche gilt auch für beigegebene Skizzen und Darstellungen. Diese Arbeit hat in gleicher oder ähnlicher Form meines Wissens nach noch keiner Prüfungsbehörde vorgelegen.

Paderborn,

Datum

Unterschrift

Zusammenfassung

Diese Masterarbeit befasst sich mit der Optimierung der Effizienz von Asynchronmaschinen. Es wird ein erweitertes Motormodell nach [1], [2] verwendet, dessen Parameter bereits gegeben sind. Zum einen wird für eine einzelne Maschine eine stationäre Betriebsstrategie formuliert, in der für ein gegebenes Solldrehmoment der effizienzoptimale stationäre Statorstrom und Rotorfluss berechnet werden. Die Basis für die Berechnungen stellen quadratische Approximationen wichtiger Größen und darauf aufbauend die iterative Berechnung des optimalen Arbeitspunkts dar, wie es in [3] vorgeschlagen wird.

Zum anderen wird eine modellprädiktive Betriebsstrategie für Asynchronmaschinen erarbeitet, in der die optimalen Statorstromtrajektorien im rotorflussorientierten Koordinatensystem bestimmt werden. Das Ziel ist es, das geforderte Drehmoment möglichst schnell einzuregeln und im stationären Zustand den effizientesten Arbeitspunkt zu erreichen. Dieses Verfahren wird zunächst für einen Einzelmotor hergeleitet und anschließend auf Mehrmotorenantriebssysteme erweitert. Die Begrenzungen des Statorstroms und der Statorspannung werden durch Linearisierungen realisiert. Das Drehmoment wird mit Hilfe einer weichen Einschränkung eingeregelt, in der es linear approximiert wird. Die Modellparameter des Motors werden unter Berücksichtigung der Rotorkreisdynamik über den Prädiktionshorizont nachgeführt.

Zur praktischen Implementierung der modellprädiktiven Betriebsstrategie wird Matlab/Simulink verwendet. Dortige Simulationen zeigen, dass das verwendete Verfahren prinzipiell funktioniert und gegen die Werte der stationären Betriebsstrategie konvergiert. Erste Messungen am Prüfstand mit einer einzelnen Asynchronmaschine bestätigen die Simulationsergebnisse.

Abstract

This master thesis deals with the optimization of the efficiency of induction machines. An extended model according to [1], [2] is used whose parameters are already given. On the one hand, a stationary operating strategy for a single machine is described which calculates the efficiency-optimal stationary stator current and rotor flux for a given reference torque. The calculations are based on quadratic approximations of important quantities and, based on these, the iterative calculation of the optimal operating point as proposed in [3].

On the other hand, a model predictive operating strategy is developed for induction machines that determines the optimal stator current trajectories in rotor flux-oriented coordinates. The goal is to adjust the torque as fast as possible and to reach the most efficient operating point in steady-state. At first, this procedure is derived for a single motor and then extended to multi-motor drive systems. The constraints of stator current and stator voltage are realized by linearizations. The torque is controlled by means of a soft-constraint where it is approximated linearly. The model parameters of the motor are tracked within the prediction horizon considering the rotor dynamics.

For practical implementation of the model predictive operating strategy, Matlab/Simulink is used. Simulations there show that the used procedure principally works and converges towards the values of the stationary operating strategy. First measurements on the test bench with a single induction machine confirm the simulation results.

Inhaltsverzeichnis

1	Einleitung	1
2	Grundlagen der Asynchronmaschine und der modellprädiktiven Regelung 2.1 Modell der Asynchronmaschine	5 5 9
3	Stationäre Betriebsstrategie für Einzelmotorantriebssysteme 3.1 Stationäre Gleichungen der Asynchronmaschine 3.2 Quadratische Approximation relevanter Größen 3.2.1 Quadratische Approximation des Drehmoments 3.2.2 Quadratische Approximation der Verluste 3.2.3 Quadratische Approximation der Statorspannung 3.3 Berechnung relevanter Kurven für die Betriebsstrategie 3.4 Berechnung der Schnittpunkte zweier Quadriken 3.5 Auswahl des optimalen Schnittpunkts 3.6 Iterative Berechnung des optimalen Sollstroms	 11 12 14 14 16 18 19 22 26 30
4	 Modellprädiktive Betriebsstrategie für Einzelmotorantriebssysteme 4.1 Vorüberlegungen zum Optimierungsproblem 4.2 Dynamik der Rotorflussverkettung 4.3 Beschränkungen des Systems 4.3.1 Beschränkung des Statorstroms 4.3.2 Beschränkung der Statorspannung 4.3.3 Festlegung eines minimalen Rotorflusses 4.3.4 Weiche Einschränkung zur Drehmomenteinregelung 4.4 Definition der Kostenfunktion und Herleitung des quadratischen Programms 4.5 Ablauf des Optimierungsprozesses mit Parameternachführung 	 33 34 35 37 38 39 43 43 45 49
5	Erweiterung der modellprädiktiven Betriebsstrategie auf Mehrmotoren- antriebssysteme 5.1 Herleitung der Systemdynamik 5.2 Beschränkungen des Systems 5.2.1 Beschränkungen der Statorströme 5.2.2 Beschränkungen der Statorspannungen 5.2.3 Festlegung minimaler Rotorflüsse	53 53 55 55 55 56 57

	5.2.4 Weiche Einschränkung zur Drehmomenteinregelung	58 60		
6	Simulative und messtechnische Untersuchung der modellprädiktiven			
	Betriebsstrategie	63		
	6.1 Aspekte bei der Implementierung	63		
	6.2 Simulative Untersuchung	65		
	6.3 Messtechnische Untersuchung am Prüfstand	68		
	6.4 Zu optimierende Aspekte der modell prädiktiven Betriebsstrategie	70		
7	Fazit und Ausblick	73		
A	nhang	75		
	A.1 Berechnung der Nullstellen eines kubischen Polynoms	75		
	A.2 Berechnung der Nullstellen eines quartischen Polynoms	76		
	A.3 Beweis der Konvexität des zu lösenden Optimierungsproblems	77		
Ve	erzeichnisse	81		
	Tabellenverzeichnis	81		
	Abbildungsverzeichnis	81		
	Abkürzungen	82		
	Literaturverzeichnis	82		

1 Einleitung

Im Zuge der Energiewende ist es unerlässlich, den Ausbau regenerativer Energien voranzutreiben und diese Energien möglichst effizient zu nutzen. Ein Beitrag dazu kann geleistet werden, indem die Effizienz der Regelung elektrischer Generatoren und Motoren optimiert wird, sodass sowohl bei der Erzeugung als auch bei der Nutzung elektrischer Energie die Verluste minimiert werden. Elektrische Maschinen sind weit verbreitet und aus dem heutigen Alltag nicht weg zu denken. Immerhin werden rund 70 % des industriellen Stromverbrauchs durch Antriebssysteme verursacht [4]. Es lässt sich folglich durch deren Effizienzsteigerungen viel Energie einsparen.

Im Fokus dieser Arbeit steht die Optimierung des Wirkungsgrads von Asynchronmaschinen (ASM) durch darauf angepasste Betriebsstrategien. ASM finden in vielen Bereichen Anwendung, wie Abbildung 1.1 für vier Beispiele zeigt. In manchen Windkraftanlagen finden sich bspw. doppelt gespeiste ASM, die dort als Generator fungieren [5]. ASM werden auch als Antriebsmotor in Elektroautos oder Zügen eingesetzt und in der Industrie hat sich die ASM ebenfalls etabliert, z. B. als Antrieb für Pumpen und Transportbänder [6].

Aufgrund verschiedener physikalischer Effekte unterliegt die mathematische Modellierung von ASM vielen Nichtlinearitäten, was die Optimierung des Wirkungsgrads erschwert. In dieser Arbeit wird ein erweitertes und bereits parametriertes Modell der ASM [1], [2] verwendet, das unter anderem den Skin-Effekt, also die frequenzabhängige Änderung ohmscher Widerstände, die magnetische Sättigung, thermische Einflüsse und die Verluste des Eisens berücksichtigt.

Diese Arbeit behandelt zwei Themenschwerpunkte: Zuerst wird eine stationäre Betriebsstrategie für eine ASM auf Basis des erweiterten Modells erarbeitet, die auf maximale Effizienz im stationären Zustand abzielt. Dabei werden abhängig von verschiedenen Eingangsgrößen wie Solldrehmoment und Drehzahl der optimale Sollstrom und der optimale Rotorfluss berechnet, die anschließend den Reglern übergeben werden. Diese prinzipielle Methode wird bereits in [7] auf eine ASM und in [3] auf eine Synchronmaschine angewendet. Die Grundlage in [7], [3] bilden Flusskennfelder auf Basis von Messungen. Im Gegensatz dazu werden in der vorliegenden Arbeit keine Flusskennfelder, sondern die parametrierbaren mathematischen Funktionen aus dem ASM-Modell [1], [2] verwendet.

1 Einleitung

(c) Mercedes EQA (übernommen aus [10])

(d) Pumpenantriebe (übernommen aus [11])

Abb. 1.1: Anwendungsfelder von ASM: (a) Generatoren von Windkraftturbinen, (b) Bahnantriebe, (c) Antriebsmotoren von Elektroautos und (d) Pumpenantriebe

Als zweiter Teil dieser Arbeit wird eine modellprädiktive Betriebsstrategie für ASM entworfen, die für Einzelmotorantriebssysteme (engl. single-motor drive systems) (SMDS) und Mehrmotorenantriebssysteme (engl. *multi-motor drive systems*) (MMDS) eingesetzt werden kann. Diese Betriebsstrategie basiert auf dem Verfahren der modellprädiktiven Regelung (engl. model predictive control) (MPC). Es gibt bereits einige Arbeiten zur MPC der ASM mit verschiedenen Ansätzen: In [12] wird eine MPC zur Anpassung der rotorflussbildenden Stromkomponente $i_{\rm sd}$ genutzt, um bei höheren Drehzahlen die Spannungsgrenze einzuhalten. Dort wird zwischen Schnelligkeit und Prädiktionsgenauigkeit abgewogen [12]. [13] schlägt eine MPC vor, in der die Schaltzustände der Transistoren des speisenden Umrichters die Optimierungsgröße darstellen. Ein gegebenes Drehmoment und ein gegebener Statorfluss sollen dabei eingeregelt werden [13]. Das Verfahren basiert auf der direkten Drehmomentregelung, um eine schnelle Systemantwort zu garantieren [13]. In [14] wird die Statorspannung als Stellgröße genommen. Strom- und Spannungsgrenze werden beide berücksichtigt, wobei die Stromgrenze in eine Begrenzung der Spannung umgerechnet wird [14]. Des Weiteren behandelt [15] eine MPC für den Feldschwächbereich einer ASM, in der ebenfalls die d-Komponente des Statorstroms die Stellgröße ist. Das Ziel dort ist es, die Statorspannung auf einen gegebenen Wert in der Spannungsgrenze zu regeln [15]. Der Ansatz in [16] behandelt zwei getrennte MPC für den Statorstrom im Rotorflusskoordinatensystem und für die Drehzahl. Die innere Stromregelung wird hierbei deutlich schneller als die Drehzahlregelung angenommen, sodass die Abtastzeiten für die Zeitdiskretisierung beider MPC unterschiedlich gewählt werden [16]. Für die Stromregelung werden außerdem die Drehzahl und der Rotorfluss aufgrund vergleichsweise langsamer Dynamiken als konstant angenommen [16]. Die Stromregelung soll möglichst schnell erfolgen und in der Drehzahlregelung werden die Verluste implizit in Form der Maximum-Torqueper-Current (MTPC)-Strategie minimiert [16]. Für die Effizienzoptimierung von MMDS schlägt [17] die Nutzung eines neuronalen Netzes vor, das zukünftige Betriebssituationen prädiziert und damit den Betrieb aller Motoren mit maximaler Effizienz koordiniert.

Anders als in den erwähnten Veröffentlichungen wird in der vorliegenden Arbeit eine MPC für eine ASM entworfen, die beide Statorstromkomponenten als Stellgröße berücksichtigt. Es sollen ein gegebenes Drehmoment unter minimalen Verlusten eingestellt und die Strombzw. Spannungsgrenze berücksichtigt werden, damit das Verfahren prinzipiell bei beliebigen Drehzahlen anwendbar ist. Bei diesem modellprädiktiven Ansatz wird das nichtlineare Motorverhalten erneut auf Grundlage der ASM-Modellierung [1], [2] berücksichtigt, wodurch sich die angenommene Systemdynamik über den Prädiktionshorizont verändern kann. Der aus der MPC resultierende Statorstrom wird mit Hilfe einer inneren Stromregelung eingestellt. Dieses Regelungskonzept wird anschließend auf MMDS ausgeweitet.

Im Anschluss daran folgen Simulationen der MPC mit dem ASM-Modell in Matlab/Simulink, in der eine erste Validierung des Verfahrens erfolgt und die Werte der MPC im stationären Zustand mit denen der stationären Betriebsstrategie verglichen werden. Nach einer ersten experimentellen Untersuchung folgen ein Fazit und ein Ausblick, in dem weitere Aspekte zur Verbesserung der Betriebsstrategie aufgeführt werden. 1 Einleitung

2 Grundlagen der Asynchronmaschine und der modellprädiktiven Regelung

In diesem Kapitel werden die Grundlagen des erweiterten ASM-Modells [1], [2] beschrieben, auf dessen Basis die Betriebsstrategien erarbeitet werden. Im Anschluss daran wird das grundsätzliche Konzept der MPC kurz geschildert.

2.1 Modell der Asynchronmaschine

Dieser Abschnitt beschreibt das erweiterte ASM-Modell [1], [2] und basiert auf den Darstellungen in [1], [2]. Dieses Modell lässt sich als Ersatzschaltbild (ESB) gemäß Abbildung 2.2 darstellen, wobei das rotorflussorientierte dq-Koordinatensystem, also $\psi_{\rm r} = \left[\psi_{\rm rd} \ \psi_{\rm rq}\right]^{\top} = \left[\psi_{\rm rd} \ 0\right]^{\top}$, zugrunde gelegt wird. Gegenüber dem standardmäßigen ESB der ASM [19] werden in [1], [2] folgende nichtlineare Effekte berücksichtigt:

• Die magnetische Sättigung des Blechpakets wird durch eine vom Magnetisierungsstrom abhängige Hauptinduktivität

$$L_{\rm m}(\boldsymbol{i}_{\rm m}) = k_1 + \frac{k_1 - k_2}{1 + e^{k_3 k_4}} - \frac{k_1 - k_2}{1 + e^{-k_3(\|\boldsymbol{i}_{\rm m}\| - k_4)}}$$
(2.1)

nachgebildet, die eine S-Form besitzt, wie Abbildung 2.1 darstellt.

- Die Eisenverluste werden in Form eines Verlustwiderstands $R_{\rm fe}$ repräsentiert, der parallel zur statorseitig induzierten Spannung platziert ist.
- Die Temperaturen in Stator und Rotor beeinflussen den Stator- und den Rotorwiderstand. Außerdem ändern sich aufgrund des Skin-Effekts die Widerstände mit der Frequenz. Der Skin-Effekt wird als quadratische Frequenzabhängigkeit

$$R_{\rm s}(\omega_{\rm s},\vartheta_{\rm s}) = R_{\rm dc,s} \left(1 + h_{\rm s}\omega_{\rm s}^2\right) f_{\rm s}(\vartheta_{\rm s}), \qquad (2.2)$$

$$R_{\rm r}(\omega_{\rm r},\vartheta_{\rm r}) = R_{\rm dc,r} \left(1 + h_{\rm r}\omega_{\rm r}^2\right) f_{\rm r}(\vartheta_{\rm r})$$
(2.3)

5

Abb. 2.1: Abhängigkeit der Hauptinduktivität vom Magnetisierungsstrom (in Anlehnung an [18])

und die Temperaturabhängigkeit durch die linearen Funktionen

$$f_{\rm s}(\vartheta_{\rm s}) = 1 + \alpha_{\rm s}(\vartheta_{\rm s} - 20\,^{\circ}{\rm C}), \qquad (2.4)$$

$$f_{\rm r}(\vartheta_{\rm r}) = 1 + \alpha_{\rm r}(\vartheta_{\rm r} - 20\,^{\circ}{\rm C}) \tag{2.5}$$

modelliert, wobei ω_s die Statorfrequenz und ω_r die Rotorfrequenz ist, die über die mechanische Drehzahl n in Beziehung stehen:

$$\omega_{\rm s} = p \cdot \omega_{\rm mech} + \omega_{\rm r} = p \cdot 2\pi n + \omega_{\rm r}. \tag{2.6}$$

Die Temperaturen ϑ_s und ϑ_r in den Gleichungen (2.4) und (2.5) müssen in °C gegeben sein.

Der Statorkreis, an dem die Statorspannung \boldsymbol{u}_{s} anliegt, besteht aus dem frequenz- und temperaturabhängigen Statorwiderstand R_{s} , der Statorstreuinduktivität $L_{\sigma s}$, der stromabhängigen Hauptinduktivität L_{m} und der statorseitig induzierten Spannung $\omega_{s} \boldsymbol{J} \boldsymbol{\psi}_{s}$, wobei

Abb. 2.2: ESB der ASM im rotorflussorientierten Koordinatensystem unter Berücksichtigung magnetischer Sättigung, des Skin-Effekts und von Eisenverlusten (vgl. [1], [2], [19])

$$\boldsymbol{J} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = -\boldsymbol{J}^{\top}$$
(2.7)

die Drehmatrix darstellt. Der Eisenverlustwiderstand $R_{\rm fe}$ befindet sich in der Statormasche parallel zur statorseitig induzierten Spannung. Der Statorstrom $i_{\rm s}$ wird also um den Eisenverluststrom $i_{\rm fe}$ reduziert, sodass der reduzierte Statorstrom $i_{\rm l} = i_{\rm s} - i_{\rm fe}$ für die Drehmomentbildung von Bedeutung ist.

Die rechte Masche in Abbildung 2.2 stellt den kurzgeschlossenen Rotor dar, der den frequenz- und temperaturabhängigen Rotorwiderstand R_r , die Rotorstreuinduktivität $L_{\sigma r}$, die Hauptinduktivität L_m und die rotorseitig induzierte Spannung $\omega_r J \psi_r$ enthält. Die Parameter und Nenngrößen der betrachteten ASM sind in Tabelle 2.1 aufgelistet. Die Statortemperatur ϑ_s und die Rotortemperatur ϑ_r werden in dem Modell [1], [2] geschätzt und damit die Widerstandswerte nachgeführt.

Im Folgenden werden zwecks Lesbarkeit die Abhängigkeiten der Größen vom Statorstrom i_s , von der Rotorflussverkettung ψ_r und von der Zeit t weggelassen. Aus dem ESB in Abbildung 2.2 lassen sich die Maschengleichungen

Parameterbezeichnung	Formelzeichen	Wert
Statorstreuinduktivität	$L_{\sigma s}$	$95,962\mu\mathrm{H}$
Rotorstreuinduktivität	$L_{\sigma r}$	$0{,}0302\mathrm{H}$
Induktivitätsparameter	k_1	$0,\!4763\mathrm{H}$
Induktivitätsparameter	k_2	$0,\!2139\mathrm{H}$
Induktivitätsparameter	k_3	$1,1140 \frac{1}{A}$
Induktivitätsparameter	k_4	$2,8022\mathrm{\ddot{A}}$
Eisenverlustwiderstand	$R_{ m fe}$	1500Ω
${\it Statorgleichstromwiderstand}$	$R_{ m dc,s}$	$4{,}3275\Omega$
Rotorgleichstromwiderstand	$R_{ m dc,r}$	$3{,}6212\Omega$
Materialkoeffizient	$h_{ m s}$	$1{,}0765\cdot10^{-6}{\rm s}^2$
Materialkoeffizient	$h_{ m r}$	$1,9350 \cdot 10^{-6} s^2$
Temperaturkoeffizient	$lpha_{\mathbf{s}}$	$3,93 \cdot 10^{-3} \frac{1}{\mathrm{K}}$
Temperaturkoeffizient	$lpha_{ m r}$	$4,0\cdot 10^{-3}\frac{1}{\mathrm{K}}$
Polpaarzahl	p	2
Maximaler Statorphasenstrom	$i_{ m s,max}$	$\sqrt{2} \cdot 3,\!27\mathrm{A}$
Maximale Statorphasenspannung	$u_{ m s,max}$	$\sqrt{2} \cdot 230 \mathrm{V}$
Nenndrehmoment	$T_{ m n}$	$10,\!21\mathrm{Nm}$
Nennleistung	$P_{\rm n}$	$1,5\mathrm{kW}$
Nenndrehzahl	$n_{ m n}$	$1404\mathrm{min}^{-1}$

Tab. 2.1: Modellparameter und Nenngrößen der ASM (angelehnt an [2])

2 Grundlagen der Asynchronmaschine und der modellprädiktiven Regelung

$$\boldsymbol{u}_{\mathrm{s}} = R_{\mathrm{s}}\boldsymbol{i}_{\mathrm{s}} + \boldsymbol{\psi}_{\mathrm{s}} + \omega_{\mathrm{s}}\boldsymbol{J}\boldsymbol{\psi}_{\mathrm{s}}, \qquad (2.8)$$

$$R_{\rm fe}(\boldsymbol{i}_{\rm s}-\boldsymbol{i}_{\rm l})=\dot{\boldsymbol{\psi}}_{\rm s}+\omega_{\rm s}\boldsymbol{J}\boldsymbol{\psi}_{\rm s},\qquad(2.9)$$

$$\mathbf{0}_2 = R_{\mathrm{r}} \dot{\mathbf{i}}_{\mathrm{r}} + \dot{\boldsymbol{\psi}}_{\mathrm{r}} + \omega_{\mathrm{r}} \boldsymbol{J} \boldsymbol{\psi}_{\mathrm{r}}$$
(2.10)

aufstellen. Für den Betrag des Magnetisierungsstroms gilt

$$i_{\rm m} = \|\dot{\boldsymbol{i}}_{\rm m}\| = \|\dot{\boldsymbol{i}}_{\rm l} + \dot{\boldsymbol{i}}_{\rm r}\| = \sqrt{(i_{\rm ld} + i_{\rm rd})^2 + (i_{\rm lq} + i_{\rm rq})^2}$$
 (2.11)

und für die Stator- und Rotorflussverkettung gelten die Beziehungen

$$\boldsymbol{\psi}_{\rm s} = L_{\rm s} \boldsymbol{i}_{\rm l} + L_{\rm m} \boldsymbol{i}_{\rm r}, \qquad (2.12)$$

$$\boldsymbol{\psi}_{\mathrm{r}} = L_{\mathrm{m}} \boldsymbol{i}_{\mathrm{l}} + L_{\mathrm{r}} \boldsymbol{i}_{\mathrm{r}}, \qquad (2.13)$$

wobei $L_{\rm s} = L_{\rm m} + L_{\sigma s}$ die Statorinduktivität und $L_{\rm r} = L_{\rm m} + L_{\sigma r}$ die Rotorinduktivität ist. Wird der aus Gleichung (2.13) resultierende Rotorstrom

$$\boldsymbol{i}_{\rm r} = \frac{1}{L_{\rm r}} (\boldsymbol{\psi}_{\rm r} - L_{\rm m} \boldsymbol{i}_{\rm l})$$
(2.14)

in die Rotorgleichung (2.10) eingesetzt, ergibt sich die Rotorkreisdynamik

$$\dot{\boldsymbol{\psi}}_{\mathbf{r}} = -\left(\frac{R_{\mathbf{r}}}{L_{\mathbf{r}}}\boldsymbol{I}_{2} + \omega_{\mathbf{r}}\boldsymbol{J}\right)\boldsymbol{\psi}_{\mathbf{r}} + \frac{R_{\mathbf{r}}L_{\mathbf{m}}}{L_{\mathbf{r}}}\boldsymbol{i}_{\mathbf{l}}, \qquad (2.15)$$

in der I_2 die zweidimensionale Einheitsmatrix darstellt. Da die q-Komponente null ist, lässt sich diese Gleichung vereinfachen zu

$$\frac{\mathrm{d}\psi_{\mathrm{rd}}}{\mathrm{d}t} = -\frac{R_{\mathrm{r}}}{L_{\mathrm{r}}}\psi_{\mathrm{rd}} + \frac{R_{\mathrm{r}}L_{\mathrm{m}}}{L_{\mathrm{r}}}i_{\mathrm{ld}}.$$
(2.16)

Es ist zu beachten, dass die Größen $R_{\rm r}$, $L_{\rm r}$, $L_{\rm m}$ und $i_{\rm ld}$ nichtlinear von den Statorstromkomponenten $i_{\rm sd}$ und $i_{\rm sq}$ abhängen. Damit wird der Rotorfluss nicht nur durch $i_{\rm sd}$, sondern auch $i_{\rm sq}$ beeinflusst.

Auch die Rotorfrequenz hängt indirekt vom Statorstrom und von der Rotorflussverkettung ab. Aus der q-Komponente der Rotormaschengleichung (2.10) folgt

$$\omega_{\rm r} = -\frac{R_{\rm r} i_{\rm rq}}{\psi_{\rm rd}} \tag{2.17}$$

und folglich gilt für die Statorfrequenz

$$\omega_{\rm s} = p \cdot 2\pi n - \frac{R_{\rm r} i_{\rm rq}}{\psi_{\rm rd}}.$$
(2.18)

Des Weiteren resultieren das dynamische Drehmoment

$$T = \frac{3}{2}p\boldsymbol{i}_{\mathrm{l}}^{\mathsf{T}}\boldsymbol{J}\boldsymbol{\psi}_{\mathrm{s}} = \frac{3}{2}p\frac{L_{\mathrm{m}}}{L_{\mathrm{r}}}i_{\mathrm{lq}}\psi_{\mathrm{rd}}$$
(2.19)

und die dynamischen Verluste

$$P_{\rm V} = \frac{3}{2} R_{\rm s} \| \dot{\boldsymbol{i}}_{\rm s} \|^2 + \frac{3}{2} R_{\rm r} \| \dot{\boldsymbol{i}}_{\rm r} \|^2 + \frac{3}{2} \frac{1}{R_{\rm fe}} \| \dot{\boldsymbol{\psi}}_{\rm s} + \omega_{\rm s} \boldsymbol{J} \boldsymbol{\psi}_{\rm s} \|^2, \qquad (2.20)$$

die aus den Stator-, Rotor- und Eisenverlusten bestehen. Das Betragsquadrat der dynamischen Statorspannung

$$u_{\rm s}^2 = \|R_{\rm s}\boldsymbol{i}_{\rm s} + \dot{\boldsymbol{\psi}}_{\rm s} + \omega_{\rm s}\boldsymbol{J}\boldsymbol{\psi}_{\rm s}\|^2, \qquad (2.21)$$

die sich aus der linken Masche in Abbildung 2.2 ergibt, ist durch die Speisung mittels eines Umrichters begrenzt.

2.2 Grundlagen der modellprädiktiven Regelung

Die MPC nutzt ein mathematisches Modell eines Systems, um den zukünftigen Verlauf einer oder mehrerer physikalischer Größen innerhalb dieses Systems in Abhängigkeit einer oder mehrerer Eingangsgrößen vorherzusagen bzw. zu prädizieren. Das Ziel ist die Minimierung einer vorgegebenen Funktion, der sogenannten Kostenfunktion, indem der optimale Verlauf der Eingangsgröße des Systems berechnet wird. Bei dieser Berechnung müssen Beschränkungen der Größen eingehalten werden.

Im Folgenden werden die Grundlagen der MPC aufgezeigt, die der Vorlesung [20] entnommen sind. Als System dient die lineare Differenzengleichung

$$x[k+1] = Ax[k] + Bu[k], \quad x[0] = x_0,$$
 (2.22)

die die Dynamik des Zustandsvektors \boldsymbol{x} in Abhängigkeit vom Eingangsvektor \boldsymbol{u} beschreibt. Die Matrix \boldsymbol{A} wird als Zustandsmatrix und die Matrix \boldsymbol{B} wird als Eingangsmatrix bezeichnet. Die Zustandsgleichung (2.22) wird zur Prädiktion des Zustands über den Zeitraum $1 \leq k \leq k_{\rm f}$ genutzt, wobei $k_{\rm f}$ die Anzahl der Prädiktionsschritte beschreibt. Dazu wird sie rekursiv mit Hilfe des gegebenen Anfangswerts \boldsymbol{x}_0 gelöst.

Das Ziel der Regelung wird mit Hilfe der Kostenfunktion

$$J = \boldsymbol{x}^{\top}[k_{\rm f}]\boldsymbol{S}\boldsymbol{x}[k_{\rm f}] + \sum_{k=0}^{k_{\rm f}-1} \left(\boldsymbol{x}^{\top}[k]\boldsymbol{Q}\boldsymbol{x}[k] + \boldsymbol{u}^{\top}[k]\boldsymbol{R}\boldsymbol{u}[k]\right)$$
(2.23)

definiert, die quadratisch von Zustand und Eingang abhängt. Diese Kostenfunktion soll über den betrachteten Zeitraum minimiert werden. Als Regelungsparameter können die Gewichtungsmatrizen Q, R und S den Anforderungen entsprechend variiert werden, die die Zustände und Eingänge unterschiedlich gewichten. Im einfachsten Fall sind diese Matrizen als Diagonalmatrizen zu wählen, sodass jeder Zustand und jeder Eingang einzeln gewichtet werden kann.

Die Zustände und Eingänge unterliegen bestimmten Beschränkungen, die in linearer Form vorliegen müssen:

2 Grundlagen der Asynchronmaschine und der modellprädiktiven Regelung

$$\boldsymbol{W}_{x}\boldsymbol{x}[k] \leq \boldsymbol{\omega}_{x}, \quad \boldsymbol{W}_{x_{\mathrm{f}}}\boldsymbol{x}[k_{\mathrm{f}}] \leq \boldsymbol{\omega}_{x_{\mathrm{f}}}, \quad \boldsymbol{W}_{u}\boldsymbol{u}[k] \leq \boldsymbol{\omega}_{u}.$$
 (2.24)

Die Matrizen W_x , W_{x_f} und W_u und die Vektoren ω_x , ω_{x_f} und ω_u sind hier konstant, sodass zu jedem Zeitschritt die gleichen Beschränkungen gelten mit Ausnahme des Zeitschritts k_f , der für den Zustand separat betrachtet wird. Wegen dieser Beschränkungen ist das gegebene Problem in der Regel nicht mehr analytisch lösbar und wird stattdessen in eine bestimmte Form überführt.

Wird die Systemdynamik (2.22) in die Kostenfunktion J aus Gleichung (2.23) eingesetzt, so lässt sich die zu minimierende Funktion in Abhängigkeit des Eingangs darstellen. Die Prädiktion des Zustands in Abhängigkeit eines beliebigen Eingangs ist somit direkt enthalten. Werden die Zustandsvektoren zu den Zeitpunkten $0 \le k \le k_{\rm f}$ und die Eingangsvektoren zu den Zeitpunkten $0 \le k \le k_{\rm f} - 1$ in jeweils einem Vektor zusammengefasst, ist es möglich, das Gesamtproblem in Matrix-Vektor-Form umzuwandeln. Damit verbleibt am Ende das Problem als sogenanntes quadratisches Programm (QP), das folgendermaßen definiert ist:

$$\boldsymbol{z}^* = \operatorname*{argmin}_{\boldsymbol{z}} \frac{1}{2} \boldsymbol{z}^\top \boldsymbol{H} \boldsymbol{z} + \boldsymbol{f}^\top \boldsymbol{z}, \quad \boldsymbol{G} \boldsymbol{z} \leq \boldsymbol{e}.$$
 (2.25)

Die Lösung des QP-Problems ist die optimierte Größe z^* , welche mit Hilfe von numerischen Lösern berechnet wird. Dieser Vektor enthält die optimalen Eingangsvektoren im Intervall $0 \le k \le k_{\rm f} - 1$. Damit dieses Problem mit gängigen Lösern berechnet werden kann, muss es konvex sein. Dies ist der Fall, wenn die Matrix H positiv semi-definit ist.

Auch wenn Beschränkungen für die Zustandsgrößen vorgegeben werden, kann im realen System nicht ausgeschlossen werden, dass diese immer eingehalten werden. Dabei kann es helfen, die Beschränkungen etwas abzuschwächen, was in diesem Absatz kurz beschrieben wird. Dafür werden die Quellen [21], [22] verwendet. Um sicherzustellen, dass das Optimierungsproblem trotzdem lösbar bleibt, werden die Beschränkungen aufgeweicht, indem eine zusätzliche Optimierungsvariable ε (auch Schlupfvariable genannt) eingeführt wird. Z. B. kann der Zustandsbeschränkung in (2.24) durch die Erweiterung

$$\boldsymbol{W}_{x}\boldsymbol{x}[k] \leq \boldsymbol{\omega}_{x} + \boldsymbol{\varepsilon}$$
 (2.26)

ein Toleranzbereich zugestanden werden, wobei die einzelnen Elemente des Vektors ε positiv sind und nach jeder Optimierung neu berechnet werden. Diese Art der Beschränkung wird auch weiche Beschränkung (engl. *soft-constraint*) genannt. Damit sich die weiche Beschränkung wieder der ursprünglichen Beschränkung nähert, wird die eingeführte Optimierungsvariable in der Kostenfunktion (2.23) berücksichtigt, indem sie durch eine Funktion $l(\varepsilon)$ erweitert wird:

$$J = \boldsymbol{x}^{\top}[k_{\mathrm{f}}]\boldsymbol{S}\boldsymbol{x}[k_{\mathrm{f}}] + \sum_{k=0}^{k_{\mathrm{f}}-1} \left(\boldsymbol{x}^{\top}[k]\boldsymbol{Q}\boldsymbol{x}[k] + \boldsymbol{u}^{\top}[k]\boldsymbol{R}\boldsymbol{u}[k]\right) + l(\boldsymbol{\varepsilon}).$$
(2.27)

Damit werden Abweichungen von der eigentlichen Beschränkung wieder verringert. Für die Wahl der Funktion $l(\varepsilon)$ gibt es verschiedene Möglichkeiten, für die an dieser Stelle auf die Literatur [21], [22] verwiesen wird.

3 Stationäre Betriebsstrategie für Einzelmotorantriebssysteme

Dieses Kapitel behandelt die Berechnung der optimalen Sollströme und des optimalen Rotorflusses einer ASM unter Berücksichtigung verschiedener physikalischer Effekte. Die Idee basiert auf [3], wo nichtlineare Gleichungen approximiert werden und der optimale stationäre Sollstrom für eine Synchronmaschine iterativ berechnet wird. Statt mit gemessenen Flusskennfeldern wie in [3] zu arbeiten, dient in diesem Kapitel das ASM-Modell aus Abschnitt 2.1 mit den parametrierten mathematischen Funktionen als Grundlage. Die in diesem Kapitel beschriebene Betriebsstrategie ist im separaten Beitrag [23] veröffentlicht worden, sodass sich dort einige Inhalte dieses Kapitels wiederfinden lassen.

Aus regelungstechnischer Sicht stellt die stationäre Betriebsstrategie eine Sollwertbestimmung dar, die aus dem Solldrehmoment, der Drehzahl und der Stator- und Rotortemperatur den optimalen Statorstrom und Rotorfluss berechnet, welche anschließend durch gegebene Regler eingestellt werden. Die Struktur des Regelkreises zeigt Abbildung 3.1.

Abb. 3.1: Regelungsstruktur mit optimaler Sollstromberechnung, innerer Strom- und äußerer Flussregelung (angelehnt an [18])

3.1 Stationäre Gleichungen der Asynchronmaschine

In diesem Abschnitt werden die stationären Gleichungen für die ASM nach Abschnitt 2.1 aufgestellt, auf die in der stationären Betriebsstrategie zurückgegriffen wird. Stationär bedeutet, dass alle Größen im dq-Koordinatensystem zeitlich konstant sind. In diesem Fall lauten die Maschengleichungen, wenn sie in ihre d- und q-Komponenten aufgeteilt werden,

$$u_{\rm sd} = R_{\rm s} i_{\rm sd} - \omega_{\rm s} \psi_{\rm sq},\tag{3.1}$$

$$u_{\rm sq} = R_{\rm s} i_{\rm sq} + \omega_{\rm s} \psi_{\rm sd}, \qquad (3.2)$$

$$R_{\rm fe}(i_{\rm sd} - i_{\rm ld}) = -\omega_{\rm s}\psi_{\rm sq},\tag{3.3}$$

$$R_{\rm fe}(i_{\rm sq} - i_{\rm lq}) = \omega_{\rm s}\psi_{\rm sd},\tag{3.4}$$

$$0 = R_{\rm r} i_{\rm rd},\tag{3.5}$$

$$0 = R_{\rm r} i_{\rm rq} + \omega_{\rm r} \psi_{\rm rd}. \tag{3.6}$$

Zunächst folgt aus Gleichung (3.5), dass $i_{\rm rd} = 0$ ist. Die Flussverkettungsgleichungen (2.12) und (2.13) haben weiterhin Bestand und lauten dann komponentenweise

$$\psi_{\rm sd} = L_{\rm s} i_{\rm ld},\tag{3.7}$$

$$\psi_{\rm sq} = L_{\rm s} i_{\rm lq} + L_{\rm m} i_{\rm rq}, \qquad (3.8)$$

$$\psi_{\rm rd} = L_{\rm m} i_{\rm ld},\tag{3.9}$$

$$0 = L_{\rm m} i_{\rm lq} + L_{\rm r} i_{\rm rq}. \tag{3.10}$$

Aus Gleichung (3.10) resultiert die q-Komponente des Rotorstroms

$$i_{\rm rq} = -\frac{L_{\rm m}}{L_{\rm r}} i_{\rm lq},\tag{3.11}$$

womit sich der Betrag des Magnetisierungsstroms in Abhängigkeit vom reduzierten Statorstrom i_1 darstellen lässt:

$$i_{\rm m} = \sqrt{i_{\rm ld}^2 + \left(\frac{L_{\rm \sigma r}}{L_{\rm m} + L_{\rm \sigma r}}i_{\rm lq}\right)^2}.$$
(3.12)

Im nächsten Schritt wird die d-Komponente der Rotorflussverkettung (3.9) in Gleichung (3.6) eingesetzt und der Rotorwiderstand durch Gleichung (2.3) ersetzt. Dadurch resultiert eine quadratische Gleichung für die Rotorkreisfrequenz ω_r :

$$R_{\rm dc,r} \left(1 + h_{\rm r} \omega_{\rm r}^2\right) f_{\rm r}(\vartheta_{\rm r}) i_{\rm rq} + \omega_{\rm r} L_{\rm m} i_{\rm ld} = 0.$$

$$(3.13)$$

Die beiden Lösungen dieser Gleichung lauten

$$\omega_{\rm r} = -\frac{L_{\rm m} i_{\rm ld}}{2R_{\rm dc,r} h_{\rm r} f_{\rm r}(\vartheta_{\rm r}) i_{\rm rq}} \pm \sqrt{\left(\frac{L_{\rm m} i_{\rm ld}}{2R_{\rm dc,r} h_{\rm r} f_{\rm r}(\vartheta_{\rm r}) i_{\rm rq}}\right)^2 - \frac{1}{h_{\rm r}}}.$$
(3.14)

Mit der q-Komponente des Rotorstroms aus Gleichung (3.11) lässt sich die Rotorfrequenz schreiben als

3.2 Stationäre Gleichungen der Asynchronmaschine

$$\omega_{\rm r} = \frac{L_{\rm r} i_{\rm ld}}{2R_{\rm dc,r} h_{\rm r} f_{\rm r}(\vartheta_{\rm r}) i_{\rm lq}} \pm \sqrt{\left(\frac{L_{\rm r} i_{\rm ld}}{2R_{\rm dc,r} h_{\rm r} f_{\rm r}(\vartheta_{\rm r}) i_{\rm lq}}\right)^2 - \frac{1}{h_{\rm r}}}.$$
(3.15)

Mathematisch sind beide Rotorfrequenzen zulässig, allerdings ist nur die betragsmäßig kleinere physikalisch sinnvoll bzw. zu berücksichtigen. Der Betrag der Wurzel ist kleiner als der Betrag des ersten Summanden. Außerdem ist der Strom $i_{\rm ld}$ immer positiv, weil zur Stabilisierung der Regelung $i_{\rm sd} \geq 0.25$ A im stationären Zustand sein muss und sich beide Ströme aufgrund des großen Eisenverlustwiderstands nur wenig unterscheiden [2]. Weil im ersten Summanden demnach alle Größen bis auf $i_{\rm lq}$ positiv sind, wird das Vorzeichen des Wurzelterms wie folgt gewählt:

$$\omega_{\rm r} = \frac{L_{\rm r} i_{\rm ld}}{2R_{\rm dc,r} h_{\rm r} f_{\rm r}(\vartheta_{\rm r}) i_{\rm lq}} - \operatorname{sgn}(i_{\rm lq}) \cdot \sqrt{\left(\frac{L_{\rm r} i_{\rm ld}}{2R_{\rm dc,r} h_{\rm r} f_{\rm r}(\vartheta_{\rm r}) i_{\rm lq}}\right)^2 - \frac{1}{h_{\rm r}}}.$$
 (3.16)

So ist gewährleistet, dass die betragsmäßig kleinere Rotorfrequenz gewählt wird. Mit dem Zusammenhang zwischen Stator- und Rotorfrequenz (2.6) kann ein ähnlicher Ausdruck für die Statorfrequenz abgeleitet werden:

$$\omega_{\rm s} = p \cdot 2\pi n + \frac{L_{\rm r} i_{\rm ld}}{2R_{\rm dc,r}h_{\rm r}f_{\rm r}(\vartheta_{\rm r})i_{\rm lq}} - \operatorname{sgn}(i_{\rm lq}) \cdot \sqrt{\left(\frac{L_{\rm r} i_{\rm ld}}{2R_{\rm dc,r}h_{\rm r}f_{\rm r}(\vartheta_{\rm r})i_{\rm lq}}\right)^2 - \frac{1}{h_{\rm r}}}.$$
 (3.17)

Außerdem ist das stationäre Drehmoment gleich dem dynamischen aus Gleichung (2.19):

$$T = \frac{3}{2}p\boldsymbol{i}_{1}^{\top}\boldsymbol{J}\boldsymbol{\psi}_{s} = \frac{3}{2}p\frac{L_{m}}{L_{r}}i_{lq}\psi_{rd}.$$
(3.18)

Zur Berechnung der Verluste wird Gleichung (2.20) herangezogen. Stationär lauten sie

$$P_{\rm V} = \frac{3}{2} R_{\rm s} \| \mathbf{i}_{\rm s} \|^{2} + \frac{3}{2} R_{\rm r} \| \mathbf{i}_{\rm r} \|^{2} + \frac{3}{2} \frac{1}{R_{\rm fe}} \| \omega_{\rm s} \mathbf{J} \boldsymbol{\psi}_{\rm s} \|^{2}$$

$$= \frac{3}{2} R_{\rm s} \mathbf{i}_{\rm s}^{\top} \mathbf{i}_{\rm s} + \frac{3}{2} R_{\rm r} i_{\rm rq}^{2} + \frac{3}{2} \frac{1}{R_{\rm fe}} \omega_{\rm s}^{2} \boldsymbol{\psi}_{\rm s}^{\top} \boldsymbol{\psi}_{\rm s}, \qquad (3.19)$$

wobei hier ausgenutzt wird, dass $J^{\top}J = I_2$ gilt. Des Weiteren berechnet sich das Betragsquadrat der Statorspannung mit Gleichung (2.21), wobei keine zeitliche Dynamik betrachtet wird:

$$u_{\rm s}^2 = \|R_{\rm s}\boldsymbol{i}_{\rm s} + \omega_{\rm s}\boldsymbol{J}\boldsymbol{\psi}_{\rm s}\|^2$$

= $R_{\rm s}^2\boldsymbol{i}_{\rm s}^{\top}\boldsymbol{i}_{\rm s} - 2\omega_{\rm s}R_{\rm s}\boldsymbol{\psi}_{\rm s}^{\top}\boldsymbol{J}\boldsymbol{i}_{\rm s} + \omega_{\rm s}^2\boldsymbol{\psi}_{\rm s}^{\top}\boldsymbol{\psi}_{\rm s}.$ (3.20)

Die Größen T, P_V und u_s^2 sind nichtlinear vom Statorstrom abhängig. Sie werden im nächsten Schritt quadratisch approximiert, um den optimalen Statorstrom iterativ zu berechnen.

3.2 Quadratische Approximation relevanter Größen

Wie in [3] vorgeschlagen werden das Drehmoment, die Verluste und das Betragsquadrat der Statorspannung durch quadratische Funktionen approximiert. Bei diesem Vorgang müssen über die Kettenregel auch innere Größen abgeleitet werden, wie im Folgenden gezeigt wird. Obwohl alle Größen in Abhängigkeit vom Statorstrom i_s benötigt werden, ist es einfacher, zunächst die quadratische Approximation der drei genannten Größen bzgl. des reduzierten Statorstroms i_1 durchzuführen. Dann wird der reduzierte Statorstrom $i_1(i_s)$ in Abhängigkeit vom Statorstrom linearisiert und in die Approximationen eingesetzt, wodurch die benötigte quadratische Abhängigkeit vom Statorstrom resultiert.

3.2.1 Quadratische Approximation des Drehmoments

Das Drehmoment wird allgemein mit der Gleichung

$$T(\boldsymbol{i}_{l}) = \frac{3}{2} \boldsymbol{p} \boldsymbol{i}_{l}^{\top} \boldsymbol{J} \boldsymbol{\psi}_{s}(\boldsymbol{i}_{l})$$
(3.21)

berechnet, wobei die Statorflussverkettung ψ_s über die Gleichung (2.12) vom reduzierten Statorstrom i_1 abhängt. Für die quadratische Näherung der Form [3]

$$T(\boldsymbol{i}_{l}) \approx T(\bar{\boldsymbol{i}}_{l}) + \frac{\mathrm{d}T(\boldsymbol{i}_{l})}{\mathrm{d}\boldsymbol{i}_{l}^{\top}}\Big|_{\boldsymbol{i}_{l}} (\boldsymbol{i}_{l} - \boldsymbol{\bar{i}}_{l}) + \frac{1}{2}(\boldsymbol{i}_{l} - \boldsymbol{\bar{i}}_{l})^{\top} \frac{\mathrm{d}^{2}T(\boldsymbol{i}_{l})}{\mathrm{d}\boldsymbol{i}_{l}\mathrm{d}\boldsymbol{i}_{l}^{\top}}\Big|_{\boldsymbol{\bar{i}}_{l}} (\boldsymbol{i}_{l} - \boldsymbol{\bar{i}}_{l})$$
(3.22)

werden die erste und zweite Ableitung benötigt:

$$\frac{\mathrm{d}T(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\mathrm{T}}} = \frac{3}{2}p\left(\boldsymbol{i}_{\mathrm{l}}^{\mathrm{T}}\boldsymbol{J}\frac{\mathrm{d}\boldsymbol{\psi}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\mathrm{T}}} - \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{T}}\boldsymbol{J}\right),\tag{3.23}$$

$$\frac{\mathrm{d}^2 T(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\mathrm{T}}} \approx \frac{3}{2} p \left[\boldsymbol{J} \frac{\mathrm{d}\boldsymbol{\psi}_{\mathrm{s}}}{\boldsymbol{i}_{\mathrm{l}}^{\mathrm{T}}} - \left(\frac{\mathrm{d}\boldsymbol{\psi}_{\mathrm{s}}}{\boldsymbol{i}_{\mathrm{l}}^{\mathrm{T}}} \right)^{\mathrm{T}} \boldsymbol{J} \right].$$
(3.24)

Die darin enthaltenen inneren Ableitungen der Statorflussverkettungskomponenten nach den reduzierten Statorstromkomponenten

$$\frac{\mathrm{d}\boldsymbol{\psi}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} = \begin{bmatrix} \frac{\partial \boldsymbol{\psi}_{\mathrm{sd}}}{\partial i_{\mathrm{ld}}} & \frac{\partial \boldsymbol{\psi}_{\mathrm{sd}}}{\partial i_{\mathrm{lq}}}\\ \frac{\partial \boldsymbol{\psi}_{\mathrm{sq}}}{\partial i_{\mathrm{ld}}} & \frac{\partial \boldsymbol{\psi}_{\mathrm{sq}}}{\partial i_{\mathrm{lq}}} \end{bmatrix}$$
(3.25)

werden mit Hilfe der Gleichungen (3.7) und (3.8) wie folgt berechnet:

$$\frac{\partial \psi_{\rm sd}}{\partial i_{\rm ld}} = \frac{\mathrm{d}L_{\rm m}}{\mathrm{d}i_{\rm m}} \frac{\partial i_{\rm m}}{\partial i_{\rm ld}} i_{\rm ld} + L_{\rm s},\tag{3.26}$$

$$\frac{\partial \psi_{\rm sd}}{\partial i_{\rm lq}} = \frac{\mathrm{d}L_{\rm m}}{\mathrm{d}i_{\rm m}} \frac{\partial i_{\rm m}}{\partial i_{\rm lq}} i_{\rm ld},\tag{3.27}$$

$$\frac{\partial \psi_{\rm sq}}{\partial i_{\rm H}} = \frac{L_{\rm or}^2}{L^2} \frac{\mathrm{d}L_{\rm m}}{\mathrm{d}i} \frac{\partial i_{\rm m}}{\partial i_{\rm H}} i_{\rm lq},\tag{3.28}$$

$$\frac{\partial \psi_{\mathrm{sq}}}{\partial i_{\mathrm{lq}}} = \frac{L_{\mathrm{rr}}^2}{L_{\mathrm{r}}^2} \frac{\mathrm{d}L_{\mathrm{m}}}{\mathrm{d}i_{\mathrm{m}}} \frac{\partial i_{\mathrm{m}}}{\partial i_{\mathrm{lq}}} i_{\mathrm{lq}} + L_{\mathrm{s}} - \frac{L_{\mathrm{m}}^2}{L_{\mathrm{r}}}.$$
(3.29)

14

Über die Kettenregel kommen nun noch die Ableitung der Hauptinduktivität $L_{\rm m}$ nach dem Betrag des Magnetisierungsstroms $i_{\rm m}$ und die Ableitungen des Magnetisierungsstroms nach den Komponenten des reduzierten Statorstroms $i_{\rm ld}$ und $i_{\rm lq}$ hinzu, die mit den Gleichungen (2.1) und (3.12) bestimmt werden:

$$\frac{\mathrm{d}L_{\mathrm{m}}}{\mathrm{d}i_{\mathrm{m}}} = -\frac{(k_1 - k_2)k_3 e^{-k_3(i_{\mathrm{m}} - k_4)}}{(1 + e^{-k_3(i_{\mathrm{m}} - k_4)})^2},\tag{3.30}$$

$$\frac{\partial i_{\rm m}}{\partial i_{\rm ld}} = \frac{i_{\rm ld}}{i_{\rm m}} \left(1 + \frac{i_{\rm lq}^2 L_{\rm \sigma r}^2}{i_{\rm m} L_{\rm r}^3} \frac{\mathrm{d}L_{\rm m}}{\mathrm{d}i_{\rm m}} \right)^{-1},\tag{3.31}$$

$$\frac{\partial i_{\rm m}}{\partial i_{\rm lq}} = \frac{i_{\rm lq} L_{\sigma \rm r}^2}{i_{\rm m} L_{\rm r}^2} \left(1 + \frac{i_{\rm lq}^2 L_{\sigma \rm r}^2}{i_{\rm m} L_{\rm r}^3} \frac{\mathrm{d} L_{\rm m}}{\mathrm{d} i_{\rm m}} \right)^{-1}.$$
(3.32)

Diese Ableitungen werden schließlich noch in einem Arbeitspunkt (AP) gesucht. Für einen gegebenen AP \bar{i}_{ld} , \bar{i}_{lq} (dargestellt durch einen Balken über der Größe) kann eine Gleichung für die Hauptinduktivität durch Einsetzen des Magnetisierungsstroms (3.12) in Gleichung (2.1) gefunden werden:

$$k_1 + \frac{k_1 - k_2}{1 + e^{k_3 k_4}} - \frac{k_1 - k_2}{1 + e^{-k_3(i_{\rm m}(L_{\rm m}) - k_4)}} - L_{\rm m} =: f(L_{\rm m}) = 0.$$
(3.33)

Da diese Bestimmungsgleichung für $L_{\rm m}(i_{\rm l})$ analytisch nicht lösbar ist, wird sie mit Hilfe des Newton-Verfahrens, wie z. B. in [24], gelöst. Der Startwert kann bspw. durch die stromlose Hauptinduktivität vorgegeben werden, sodass die Hauptinduktivität nach *i* Iterationen berechnet werden kann:

$$L_{\mathrm{m},i+1} = L_{\mathrm{m},i} - \frac{f(L_{\mathrm{m},i})}{\frac{\mathrm{d}f(L_{\mathrm{m},i})}{\mathrm{d}L_{\mathrm{m}}}}, \quad L_{\mathrm{m},0} = L_{\mathrm{m}}(0) = k_{1}.$$
(3.34)

Nun können mit den Formeln aus Abschnitt 3.1 alle oben gezeigten Ableitungen berechnet werden, indem zuerst mit Gleichung (3.11) die q-Komponente des Rotorstroms berechnet wird, dann mit (3.16) die Rotorfrequenz und so weiter.

Da aber die Approximation des Drehmoments in Abhängigkeit vom Statorstrom i_s benötigt wird, muss noch eine Beziehung zwischen diesem und dem reduzierten Statorstrom i_1 hergestellt werden. Hierfür werden die Gleichungen (3.3) und (3.4) herangezogen, die in Vektorschreibweise und nach i_s aufgelöst

$$\boldsymbol{i}_{\rm s}(\boldsymbol{i}_{\rm l}) = \frac{1}{R_{\rm fe}} \omega_{\rm s}(\boldsymbol{i}_{\rm l}) \boldsymbol{J} \boldsymbol{\psi}_{\rm s}(\boldsymbol{i}_{\rm l}) + \boldsymbol{i}_{\rm l}$$
(3.35)

lauten. Hier sind die Statorkreisfrequenz ω_s und die Statorflussverkettung ψ_s beide über die Gleichungen (3.17) und (2.12) von i_1 abhängig. Der Statorstrom wird nun in Abhängigkeit vom reduzierten Statorstrom mit der Gleichung [3]

$$\boldsymbol{i}_{s}(\boldsymbol{i}_{l}) \approx \boldsymbol{i}_{s}(\bar{\boldsymbol{i}}_{l}) + \frac{\mathrm{d}\boldsymbol{i}_{s}(\boldsymbol{i}_{l})}{\mathrm{d}\boldsymbol{i}_{l}^{\top}}\Big|_{\bar{\boldsymbol{i}}_{l}}(\boldsymbol{i}_{l} - \bar{\boldsymbol{i}}_{l})$$
 (3.36)

15

linearisiert, wobei die Ableitung mit Hilfe der Gleichungen (3.26) bis (3.32) und unter Anwendung der Produktregel berechnet werden kann:

$$\frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} = \frac{1}{R_{\mathrm{fe}}}\boldsymbol{J}\frac{\mathrm{d}(\omega_{\mathrm{s}}\boldsymbol{\psi}_{\mathrm{s}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \boldsymbol{I}_{2} = \frac{1}{R_{\mathrm{fe}}}\boldsymbol{J}\left(\boldsymbol{\psi}_{\mathrm{s}}\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \omega_{\mathrm{s}}\frac{\mathrm{d}\boldsymbol{\psi}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}}\right) + \boldsymbol{I}_{2}.$$
(3.37)

Die noch fehlende Ableitung der Statorkreisfrequenz wird mit Hilfe von Gleichung (3.17) berechnet und entspricht auch der Ableitung der Rotorkreisfrequenz:

$$\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} = \frac{\mathrm{d}\omega_{\mathrm{r}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} = \begin{bmatrix} \frac{\partial\omega_{\mathrm{r}}}{\partial\mathbf{i}_{\mathrm{ld}}} & \frac{\partial\omega_{\mathrm{r}}}{\partial\mathbf{i}_{\mathrm{lq}}} \end{bmatrix},\tag{3.38}$$

$$\frac{\mathrm{d}\omega_{\mathrm{r}}}{\mathrm{d}i_{\mathrm{ld}}} = \frac{1}{2R_{\mathrm{dc,r}}h_{\mathrm{r}}f_{\mathrm{r}}i_{\mathrm{lq}}} \left(\frac{\mathrm{d}L_{\mathrm{m}}}{\mathrm{d}i_{\mathrm{m}}}\frac{\partial i_{\mathrm{m}}}{\partial i_{\mathrm{ld}}}i_{\mathrm{ld}} + L_{\mathrm{r}}\right) \left(1 - \frac{\mathrm{sgn}(i_{\mathrm{lq}})}{\sqrt{\left(\frac{L_{\mathrm{r}}i_{\mathrm{ld}}}{2R_{\mathrm{dc,r}}h_{\mathrm{r}}f_{\mathrm{r}}i_{\mathrm{lq}}}\right)^{2} - \frac{1}{h_{\mathrm{r}}}}\frac{L_{\mathrm{r}}i_{\mathrm{ld}}}{2R_{\mathrm{dc,r}}h_{\mathrm{r}}f_{\mathrm{r}}i_{\mathrm{lq}}}\right), \quad (3.39)$$

$$\frac{\mathrm{d}\omega_{\mathrm{r}}}{\mathrm{d}i_{\mathrm{lq}}} = \frac{i_{\mathrm{ld}}}{2R_{\mathrm{dc,r}}h_{\mathrm{r}}f_{\mathrm{r}}} \left(\frac{\mathrm{d}L_{\mathrm{m}}}{\mathrm{d}i_{\mathrm{m}}}\frac{\partial i_{\mathrm{m}}}{\partial i_{\mathrm{lq}}}\frac{1}{i_{\mathrm{lq}}} - \frac{L_{\mathrm{r}}}{i_{\mathrm{lq}}^{2}}\right) \left(1 - \frac{\mathrm{sgn}(i_{\mathrm{lq}})}{\sqrt{\left(\frac{L_{\mathrm{r}}i_{\mathrm{ld}}}{2R_{\mathrm{dc,r}}h_{\mathrm{r}}f_{\mathrm{r}}i_{\mathrm{lq}}}\right)^{2} - \frac{1}{h_{\mathrm{r}}}}}\frac{L_{\mathrm{r}}i_{\mathrm{ld}}}{2R_{\mathrm{dc,r}}h_{\mathrm{r}}f_{\mathrm{r}}i_{\mathrm{lq}}}\right).$$
(3.40)

Dadurch lässt sich nun der reduzierte Statorstrom i_1 durch den Statorstrom i_s ausdrücken

$$\boldsymbol{i}_{l}(\boldsymbol{i}_{s}) = \bar{\boldsymbol{i}}_{l} + \underbrace{\left(\frac{\mathrm{d}\boldsymbol{i}_{s}(\boldsymbol{i}_{l})}{\mathrm{d}\boldsymbol{i}_{l}^{\top}}\Big|_{\bar{\boldsymbol{i}}_{l}}\right)^{-1}}_{=:\boldsymbol{G}} \left(\boldsymbol{i}_{s} - \underbrace{\boldsymbol{i}_{s}(\bar{\boldsymbol{i}}_{l})}_{=\bar{\boldsymbol{i}}_{s}}\right) = \bar{\boldsymbol{i}}_{l} + \boldsymbol{G}(\boldsymbol{i}_{s} - \bar{\boldsymbol{i}}_{s})$$
(3.41)

und in der Approximation des Drehmoments (3.22) ersetzen, sodass folgende Drehmomentquadrik gefunden wird:

$$T(\mathbf{i}_{s}) \approx \mathbf{i}_{s}^{\top} \underbrace{\frac{1}{2} \mathbf{G}^{\top} \frac{d^{2}T(\mathbf{i}_{l})}{d\mathbf{i}_{l} d\mathbf{i}_{l}^{\top}} \Big|_{\overline{\mathbf{i}}_{l}} \mathbf{G}}_{=:\mathbf{T}} \mathbf{I}_{s} + 2 \underbrace{\frac{1}{2} \left(\frac{dT(\mathbf{i}_{l})}{d\mathbf{i}_{l}^{\top}} \Big|_{\overline{\mathbf{i}}_{l}} \mathbf{G} - \overline{\mathbf{i}}_{s}^{\top} \mathbf{G}^{\top} \frac{d^{2}T(\mathbf{i}_{l})}{d\mathbf{i}_{l} d\mathbf{i}_{l}^{\top}} \Big|_{\overline{\mathbf{i}}_{l}} \mathbf{G} \right)}_{=:\mathbf{T}} \mathbf{I}_{s} + \underbrace{T(\overline{\mathbf{i}}_{l}) - \frac{dT(\mathbf{i}_{l})}{d\mathbf{i}_{l}^{\top}} \Big|_{\overline{\mathbf{i}}_{l}} \mathbf{G} \overline{\mathbf{i}}_{s} + \overline{\mathbf{i}}_{s}^{\top} \frac{1}{2} \mathbf{G}^{\top} \frac{d^{2}T(\mathbf{i}_{l})}{d\mathbf{i}_{l} d\mathbf{i}_{l}^{\top}} \Big|_{\overline{\mathbf{i}}_{l}} \mathbf{G} \overline{\mathbf{i}}_{s}}_{=:\tau}}_{=:\tau}$$

$$= \mathbf{i}_{s}^{\top} \mathbf{T} \mathbf{i}_{s} + 2\mathbf{t}^{\top} \mathbf{i}_{s} + \tau. \qquad (3.42)$$

Die Kurve konstanten Drehmoments einer ASM mit konstanten Motorparametern wird durch eine Hyperbel in der i_{sd} - i_{sq} -Ebene beschrieben [19]. Deshalb wird Gleichung (3.42) auch als genäherte Drehmomenthyperbel bezeichnet, deren Lage vom Drehmoment T abhängt.

3.2.2 Quadratische Approximation der Verluste

Für die Effizienzoptimierung ist es essenziell, die Verlustbildung präzise zu berücksichtigen, weshalb die Verluste ebenfalls quadratisch approximiert werden. Allgemein berechnen sie sich zu

$$P_{\rm V} = \frac{3}{2} R_{\rm s}(\boldsymbol{i}_{\rm l}) \boldsymbol{i}_{\rm s}^{\top}(\boldsymbol{i}_{\rm l}) \boldsymbol{i}_{\rm s}(\boldsymbol{i}_{\rm l}) + \frac{3}{2} R_{\rm r}(\boldsymbol{i}_{\rm l}) i_{\rm rq}^{2}(\boldsymbol{i}_{\rm l}) + \frac{3}{2} \frac{1}{R_{\rm fe}} \omega_{\rm s}^{2}(\boldsymbol{i}_{\rm l}) \boldsymbol{\psi}_{\rm s}^{\top}(\boldsymbol{i}_{\rm l}) \boldsymbol{\psi}_{\rm s}(\boldsymbol{i}_{\rm l}), \qquad (3.43)$$

wobei sowohl der Stator- und Rotorwiderstand $R_{\rm s}$ bzw. $R_{\rm r}$, die q-Komponente des Rotorstroms $i_{\rm rq}$, die Statorkreisfrequenz $\omega_{\rm s}$ und die Statorflussverkettung $\psi_{\rm s}$ von $i_{\rm l}$ abhängen. Für die Näherung [3]

$$P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}}) \approx P_{\mathrm{V}}(\bar{\boldsymbol{i}}_{\mathrm{l}}) + \frac{\mathrm{d}P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \Big|_{\boldsymbol{i}_{\mathrm{l}}} (\boldsymbol{i}_{\mathrm{l}} - \boldsymbol{\bar{i}}_{\mathrm{l}}) + \frac{1}{2} (\boldsymbol{i}_{\mathrm{l}} - \boldsymbol{\bar{i}}_{\mathrm{l}})^{\top} \frac{\mathrm{d}^{2}P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \Big|_{\boldsymbol{i}_{\mathrm{l}}} (\boldsymbol{i}_{\mathrm{l}} - \boldsymbol{\bar{i}}_{\mathrm{l}})$$
(3.44)

lauten die Ableitungen

$$\frac{\mathrm{d}P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} = \frac{3}{2} \left[\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \boldsymbol{i}_{\mathrm{s}}^{\top} + 2R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\top} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \frac{\mathrm{d}R_{\mathrm{r}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \boldsymbol{i}_{\mathrm{rq}}^{2} + 2i_{\mathrm{rq}} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{rq}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \frac{2\omega_{\mathrm{s}}}{R_{\mathrm{fe}}} \left(\boldsymbol{\psi}_{\mathrm{s}}^{\top} \boldsymbol{\psi}_{\mathrm{s}} \frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \omega_{\mathrm{s}} \boldsymbol{\psi}_{\mathrm{s}}^{\top} \frac{\mathrm{d}\boldsymbol{\psi}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right) \right],$$

$$\frac{\mathrm{d}^{2}P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}d\boldsymbol{i}_{\mathrm{l}}^{\top}} \approx \frac{3}{2} \left[\left(\frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}} \frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + 2R_{\mathrm{s}} \left(\frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right)^{\top} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\top} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + 2R_{\mathrm{s}} \left(\frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\top} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + 2R_{\mathrm{s}} \left(\frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \left(\frac{\mathrm{d}\boldsymbol{k}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\top} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\top} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + 2R_{\mathrm{s}} \left(\frac{\mathrm{d}\boldsymbol{k}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\top} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\dagger} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\dagger} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} + 2R_{\mathrm{s}} \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\dagger} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}^{\top}} + \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\dagger} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}} \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}^{\top}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\dagger} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}^{\top}} \right)^{\top} \mathbf{i}_{\mathrm{s}}^{\dagger} \frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}} \right)^{\top} \boldsymbol{i}_{\mathrm{s}}^{\dagger} \mathbf{i}_{\mathrm{s$$

Die hier benötigten Ableitungen der Widerstände und der q-Komponente des Rotorstroms sind bisher noch unbekannt. Für die Widerstände werden die Gleichungen (2.2) und (2.3), die die Frequenzabhängigkeit abbilden, verwendet:

$$\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} = 2R_{\mathrm{dc,s}}h_{\mathrm{s}}f_{\mathrm{s}}\omega_{\mathrm{s}}\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}},\tag{3.47}$$

$$\frac{\mathrm{d}R_{\mathrm{r}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\top}} = 2R_{\mathrm{dc,r}}h_{\mathrm{r}}f_{\mathrm{r}}\omega_{\mathrm{r}}\frac{\mathrm{d}\omega_{\mathrm{r}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\top}}.$$
(3.48)

Die Ableitung der q-Komponente des Rotorstroms erfolgt unter Verwendung von Gleichung (3.11):

$$\frac{\mathrm{d}i_{\mathrm{rq}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathsf{T}}} = \begin{bmatrix} \frac{\partial i_{\mathrm{rq}}}{\partial i_{\mathrm{ld}}} & \frac{\partial i_{\mathrm{rq}}}{\partial i_{\mathrm{lq}}} \end{bmatrix},\tag{3.49}$$

$$\frac{\partial i_{\rm rq}}{\partial i_{\rm ld}} = -\frac{\partial L_{\rm m}}{\partial i_{\rm ld}} i_{\rm lq} \frac{L_{\rm \sigma r}}{L_{\rm r}^2},\tag{3.50}$$

$$\frac{\partial i_{\rm rq}}{\partial i_{\rm lq}} = -\frac{L_{\rm m}}{L_{\rm r}} - \frac{\partial L_{\rm m}}{\partial i_{\rm lq}} i_{\rm lq} \frac{L_{\rm \sigma r}}{L_{\rm r}^2}.$$
(3.51)

Wie bei der Herleitung der Drehmomenthyperbel wird hier Gleichung (3.41) genutzt, um die Verluste quadratisch in Abhängigkeit vom Statorstrom zu erhalten:

3 Stationäre Betriebsstrategie für Einzelmotorantriebssysteme

$$P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{s}}) \approx \boldsymbol{i}_{\mathrm{s}}^{\top} \underbrace{\frac{1}{2} \boldsymbol{G}^{\top} \frac{\mathrm{d}^{2} P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}} \mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \Big|_{\boldsymbol{i}_{\mathrm{l}}} \boldsymbol{G}}_{=:\boldsymbol{P}} \boldsymbol{i}_{\mathrm{s}} + 2 \underbrace{\frac{1}{2} \left(\frac{\mathrm{d} P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \Big|_{\boldsymbol{i}_{\mathrm{l}}} \boldsymbol{G} - \boldsymbol{i}_{\mathrm{s}}^{\top} \boldsymbol{G}^{\top} \frac{\mathrm{d}^{2} P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}} \mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \Big|_{\boldsymbol{i}_{\mathrm{l}}} \boldsymbol{G}} \boldsymbol{i}_{\mathrm{s}} + \underbrace{P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}}) - \frac{\mathrm{d} P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \Big|_{\boldsymbol{i}_{\mathrm{l}}} \boldsymbol{G} \boldsymbol{i}_{\mathrm{s}} + \boldsymbol{i}_{\mathrm{s}}^{\top} \frac{1}{2} \boldsymbol{G}^{\top} \frac{\mathrm{d}^{2} P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}} \mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \Big|_{\boldsymbol{i}_{\mathrm{l}}} \boldsymbol{G} \boldsymbol{i}_{\mathrm{s}} + \boldsymbol{i}_{\mathrm{s}}^{\top} \frac{1}{2} \boldsymbol{G}^{\top} \frac{\mathrm{d}^{2} P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}} \mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \Big|_{\boldsymbol{i}_{\mathrm{l}}} \boldsymbol{G} \boldsymbol{i}_{\mathrm{s}} + \underbrace{P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}}) - \frac{\mathrm{d} P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \Big|_{\boldsymbol{i}_{\mathrm{s}}} \boldsymbol{G} \boldsymbol{G} \boldsymbol{i}_{\mathrm{s}} + \boldsymbol{i}_{\mathrm{s}}^{\top} \frac{1}{2} \boldsymbol{G}^{\top} \frac{\mathrm{d}^{2} P_{\mathrm{V}}(\boldsymbol{i}_{\mathrm{l}})}{\mathrm{d}\boldsymbol{i}_{\mathrm{l}} \mathrm{d}\boldsymbol{i}_{\mathrm{l}}^{\top}} \Big|_{\boldsymbol{i}_{\mathrm{l}}} \boldsymbol{G} \boldsymbol{i}_{\mathrm{s}} \right)} = i \boldsymbol{p}^{\top} \boldsymbol{p} \boldsymbol{i}_{\mathrm{s}} + 2 \boldsymbol{p}^{\top} \boldsymbol{i}_{\mathrm{s}} + \boldsymbol{p}.$$
(3.52)

Die Verlustquadrik (3.52) spielt bei der Effizienzoptimierung eine wichtige Rolle.

3.2.3 Quadratische Approximation der Statorspannung

Als dritte Größe wird die Statorspannung approximiert, die durch die Zwischenkreisspannung des Umrichters begrenzt ist. Diese Spannungsbegrenzung führt auch zu einer Strombegrenzung, was bei höheren Drehzahlen von Bedeutung ist. Allgemein lautet das Betragsquadrat der Statorspannung im stationären Zustand

$$u_{\rm s}^2 = R_{\rm s}^2(\boldsymbol{i}_{\rm l})\boldsymbol{i}_{\rm s}^{\top}(\boldsymbol{i}_{\rm l})\boldsymbol{i}_{\rm s}(\boldsymbol{i}_{\rm l}) - 2\omega_{\rm s}(\boldsymbol{i}_{\rm l})R_{\rm s}(\boldsymbol{i}_{\rm l})\boldsymbol{\psi}_{\rm s}^{\top}(\boldsymbol{i}_{\rm l})\boldsymbol{J}\boldsymbol{i}_{\rm s}(\boldsymbol{i}_{\rm l}) + \omega_{\rm s}^2(\boldsymbol{i}_{\rm l})\boldsymbol{\psi}_{\rm s}^{\top}(\boldsymbol{i}_{\rm l})\boldsymbol{\psi}_{\rm s}(\boldsymbol{i}_{\rm l}).$$
(3.53)

Die quadratische Approximation wird wieder nach [3] durchgeführt

$$u_{\rm s}^2(\boldsymbol{i}_{\rm l}) \approx u_{\rm s}^2(\boldsymbol{\bar{i}}_{\rm l}) + \frac{\mathrm{d}u_{\rm s}^2(\boldsymbol{i}_{\rm l})}{\mathrm{d}\boldsymbol{i}_{\rm l}^{\top}} \Big|_{\boldsymbol{\bar{i}}_{\rm l}} (\boldsymbol{i}_{\rm l} - \boldsymbol{\bar{i}}_{\rm l}) + \frac{1}{2} (\boldsymbol{i}_{\rm l} - \boldsymbol{\bar{i}}_{\rm l})^{\top} \frac{\mathrm{d}^2 u_{\rm s}^2(\boldsymbol{i}_{\rm l})}{\mathrm{d}\boldsymbol{i}_{\rm l} \mathrm{d}\boldsymbol{i}_{\rm l}^{\top}} \Big|_{\boldsymbol{\bar{i}}_{\rm l}} (\boldsymbol{i}_{\rm l} - \boldsymbol{\bar{i}}_{\rm l})$$
(3.54)

und die Ableitungen berechnen sich zu

$$\frac{\mathrm{d}u_{\mathrm{s}}^{2}(\mathbf{i}_{\mathrm{l}})}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} = 2R_{\mathrm{s}}\mathbf{i}_{\mathrm{s}}^{\mathrm{T}}\mathbf{i}_{\mathrm{s}}\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} + 2R_{\mathrm{s}}^{2}\mathbf{i}_{\mathrm{s}}^{\mathrm{T}}\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} + 2\mathbf{i}_{\mathrm{s}}^{\mathrm{T}}\mathbf{J}\boldsymbol{\psi}_{\mathrm{s}}\left(R_{\mathrm{s}}\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} + \omega_{\mathrm{s}}\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right) + 2\omega_{\mathrm{s}}R_{\mathrm{s}}\left(\mathbf{i}_{\mathrm{s}}^{\mathrm{T}}\mathbf{J}\frac{\mathrm{d}\boldsymbol{\psi}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} - \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{T}}\mathbf{J}\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right) + 2\omega_{\mathrm{s}}\left(\boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{T}}\boldsymbol{\psi}_{\mathrm{s}}\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} + \omega_{\mathrm{s}}\boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{T}}\frac{\mathrm{d}\boldsymbol{\psi}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right), \qquad (3.55)$$

$$\frac{\mathrm{d}^{2}u_{\mathrm{s}}^{2}(\mathbf{i}_{\mathrm{l}})}{\mathrm{d}\mathbf{i}_{\mathrm{l}}\mathbf{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} \approx 2R_{\mathrm{s}}\left[\left(\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} + \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right)^{\mathrm{T}}\mathbf{i}_{\mathrm{s}}\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} + \left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right)^{\mathrm{T}}\mathbf{i}_{\mathrm{s}}\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} + R_{\mathrm{s}}\left(\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right)^{\mathrm{T}}\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right) + 2\left(\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right)^{\mathrm{T}}\mathbf{i}_{\mathrm{s}}\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}} + \omega_{\mathrm{s}}\boldsymbol{\psi}_{\mathrm{s}}\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right)^{\mathrm{T}}\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right) + 2\left(\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right)^{\mathrm{T}}\mathbf{i}_{\mathrm{s}}\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{s}}} + R_{\mathrm{s}}\left(\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right)^{\mathrm{T}}\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{l}}^{\mathrm{T}}}\right) + 2\left(\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{s}}^{\mathrm{T}}}\right)^{\mathrm{T}}\mathbf{i}_{\mathrm{s}}\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{s}}}^{\mathrm{T}}\right) + 2\left(\frac{\mathrm{d}\mathbf{i}_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{s}}^{\mathrm{T}}\right\right)^{\mathrm{T}}\mathbf{i}_{\mathrm{s}}\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{s}}}^{\mathrm{T}}\right) + R_{\mathrm{s}}\left(\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{s}}^{\mathrm{T}}\right\right) + R_{\mathrm{s}}\left(\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{s}}}^{\mathrm{T}}\right) + R_{\mathrm{s}}\left(\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{s}}^{\mathrm{T}}\right\right) + R_{\mathrm{s}}\left(\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{s}}}^{\mathrm{T}}\right\right) + R_{\mathrm{s}}\left(\frac{\mathrm{d}\omega_{\mathrm{s}}}{\mathrm{d}\mathbf{i}_{\mathrm{s}}}^{\mathrm{T}}\right\right) +$$

Die inneren Ableitungen, die hierin noch enthalten sind, sind bereits in den beiden vorherigen Unterabschnitten 3.2.1 und 3.2.2 aufgeführt, sodass die für die Approximation der Statorspannung benötigten Ausdrücke alle berechnet werden können. Schließlich wird der reduzierte Statorstrom wieder durch Gleichung (3.41) substituiert:

Für die ASM mit konstanten Parametern beschreibt die Spannungsgleichung eine Ellipse in der Statorstromebene, wenn z. B. der Maximalwert der Spannung eingesetzt wird [19]. Vergleichbar dazu stellt die Quadrik

$$\boldsymbol{i}_{\mathrm{s}}^{\top}\boldsymbol{V}\boldsymbol{i}_{\mathrm{s}}+2\boldsymbol{v}^{\top}\boldsymbol{i}_{\mathrm{s}}+\nu-u_{\mathrm{s,max}}^{2}=0 \qquad (3.58)$$

die approximierte Spannungsellipse dar. Allgemein ist die Spannung nach oben hin begrenzt

$$\boldsymbol{i}_{\mathrm{s}}^{\top} \boldsymbol{V} \boldsymbol{i}_{\mathrm{s}} + 2 \boldsymbol{v}^{\top} \boldsymbol{i}_{\mathrm{s}} + \nu \leq u_{\mathrm{s,max}}^{2},$$

$$(3.59)$$

wobei die Größen V, v und ν von der mechanischen Drehzahl über $\omega_{\rm s} = p \cdot \omega_{\rm mech} + \omega_{\rm r}$ in den Gleichungen (3.55) und (3.56) abhängen. Neben der Spannung ist auch der Strom nach oben hin begrenzt

$$i_{\rm sd}^2 + i_{\rm sq}^2 = \boldsymbol{i}_{\rm s}^\top \boldsymbol{I}_2 \boldsymbol{i}_{\rm s} \le i_{\rm s,max}^2, \qquad (3.60)$$

was in der folgenden Betriebsstrategie berücksichtigt werden muss. Die Grenze

$$\boldsymbol{i}_{\mathrm{s}}^{\top}\boldsymbol{I}_{2}\boldsymbol{i}_{\mathrm{s}}-\boldsymbol{i}_{\mathrm{s,max}}^{2}=0 \tag{3.61}$$

stellt einen Kreis in der Statorstromebene dar.

3.3 Berechnung relevanter Kurven für die Betriebsstrategie

Wie aus Gleichung (3.42) ersichtlich ist, kann ein bestimmtes Drehmoment mit verschiedenen Kombinationen der Stromkomponenten $i_{\rm sd}$ und $i_{\rm sq}$ generiert werden. In diesem Abschnitt werden die MTPC-, die Maximum-Torque-per-Losses (MTPL)- und die Maximum-Torque-per-Voltage (MTPV)-Kurve berechnet, die für ein konstantes Drehmoment jeweils die Stromamplitude, die Verluste und die Spannungsamplitude minimieren. Diese Kurven werden benötigt, um den optimalen Strom unter bestimmten Voraussetzungen zu berechnen. Zur Berechnung dieser Optimierungsprobleme mit Nebenbedingung wird das Verfahren der Lagrange-Multiplikatoren wie in [3] verwendet. Zudem wird im Folgenden ausgenutzt, dass die Matrizen der drei Quadriken (3.42), (3.52) und (3.57) diagonal sind.

Berechnung der Maximum-Torque-per-Current-Kurve

Die MTPC-Kurve ist die Kurve in der i_{sd} - i_{sq} -Ebene, die die Ströme beschreibt, deren Drehmoment in Bezug auf die Stromamplitude maximal ist. Umgekehrt formuliert kann für ein Drehmoment keine Kombination i_{sd} - i_{sq} gefunden werden, dessen Amplitude kleiner ist als die der zugehörigen Kombination der MTPC-Kurve. Die Stromamplitude

$$i_{\rm s}^2 = \|\boldsymbol{i}_{\rm s}\|^2 = i_{\rm sd}^2 + i_{\rm sq}^2 = \boldsymbol{i}_{\rm s}^\top \boldsymbol{I}_2 \boldsymbol{i}_{\rm s}$$
(3.62)

ist also die zu minimierende Größe. Als Nebenbedingung soll ein bestimmtes Solldrehmoment eingestellt werden, was mit der Drehmomenthyperbel

$$\boldsymbol{i}_{\mathrm{s}}^{\top} \boldsymbol{T} \boldsymbol{i}_{\mathrm{s}} + 2 \boldsymbol{t}^{\top} \boldsymbol{i}_{\mathrm{s}} + \tau - T^* = 0 \tag{3.63}$$

ausgedrückt werden kann. Die Lagrange-Funktion zu diesem Problem lautet also

$$\mathcal{L}(\boldsymbol{i}_{\mathrm{s}},\lambda_{\mathrm{L}}) = -\boldsymbol{i}_{\mathrm{s}}^{\top}\boldsymbol{I}_{2}\boldsymbol{i}_{\mathrm{s}} + \lambda_{\mathrm{L}}(\boldsymbol{i}_{\mathrm{s}}^{\top}\boldsymbol{T}\boldsymbol{i}_{\mathrm{s}} + 2\boldsymbol{t}^{\top}\boldsymbol{i}_{\mathrm{s}} + \boldsymbol{\tau} - T^{*}).$$
(3.64)

Für die MTPC-Kurve wird die Ableitung $\frac{\partial \mathcal{L}(i_s, \lambda_L)}{\partial i_s} = \mathbf{0}_2$ gesetzt und der Lagrange-Multiplikator λ_L eliminiert [3]. Daraus resultiert die MTPC-Kurve in quadratischer Form

$$\boldsymbol{i}_{\mathrm{s}}^{\top}\boldsymbol{M}_{\mathrm{C}}\boldsymbol{i}_{\mathrm{s}} + 2\boldsymbol{m}_{\mathrm{C}}^{\top}\boldsymbol{i}_{\mathrm{s}} + \mu_{\mathrm{C}} = 0, \qquad (3.65)$$

wobei sich die einzelnen Größen

$$\boldsymbol{M}_{\mathrm{C}} := \begin{bmatrix} t_{12} & \frac{1}{2}(t_{22} - t_{11}) \\ \frac{1}{2}(t_{22} - t_{11}) & -t_{12} \end{bmatrix},$$
(3.66)

$$\boldsymbol{m}_{\mathrm{C}} := \frac{1}{2} \begin{bmatrix} t_2 \\ -t_1 \end{bmatrix}, \qquad (3.67)$$

$$\mu_{\rm C} := 0 \tag{3.68}$$

aus der Drehmomentmatrix T und dem Drehmomentvektor t ergeben. Nähere Details zur Herleitung finden sich in [3].

Berechnung der Maximum-Torque-per-Losses-Kurve

Ähnlich wie bei der MTPC-Kurve beschreibt die MTPL-Kurve die Kombination aus i_{sd} und i_{sq} für ein bestimmtes Drehmoment mit den geringsten Verlusten. Zur Berechnung dieser Kurve wird wieder ein Solldrehmoment vorausgesetzt, sodass die Gleichung

$$\boldsymbol{i}_{\mathrm{s}}^{\top}\boldsymbol{T}\boldsymbol{i}_{\mathrm{s}} + 2\boldsymbol{t}^{\top}\boldsymbol{i}_{\mathrm{s}} + \boldsymbol{\tau} - T^{*} = 0$$
(3.69)

erfüllt sein muss. Gleichzeitig sollen die Verluste in Form der in (3.52) bereits hergeleiteten Quadrik

$$P_{\rm V}(\boldsymbol{i}_{\rm s}) = \boldsymbol{i}_{\rm s}^{\top} \boldsymbol{P} \boldsymbol{i}_{\rm s} + 2\boldsymbol{p}^{\top} \boldsymbol{i}_{\rm s} + \rho \qquad (3.70)$$

minimiert werden. Wie im vorherigen Unterabschnitt wird die Ableitung der zugehörigen Lagrange-Funktion

$$\mathcal{L}(\boldsymbol{i}_{s},\lambda_{L}) = -(\boldsymbol{i}_{s}^{\top}\boldsymbol{P}\boldsymbol{i}_{s} + 2\boldsymbol{p}^{\top}\boldsymbol{i}_{s} + \rho) + \lambda_{L}(\boldsymbol{i}_{s}^{\top}\boldsymbol{T}\boldsymbol{i}_{s} + 2\boldsymbol{t}^{\top}\boldsymbol{i}_{s} + \tau - T^{*})$$
(3.71)

nach den Stromkomponenten gebildet und zu null gesetzt und dann der Multiplikator λ_L eliminiert. Als MTPL-Kurve folgt schließlich die Quadrik

$$\boldsymbol{i}_{\mathrm{s}}^{\top}\boldsymbol{M}_{\mathrm{L}}\boldsymbol{i}_{\mathrm{s}} + 2\boldsymbol{m}_{\mathrm{L}}^{\top}\boldsymbol{i}_{\mathrm{s}} + \mu_{\mathrm{L}} = 0, \qquad (3.72)$$

die folgendermaßen mit den Größen der Drehmoment- und Verlustquadrik zusammenhängt [3]:

$$\boldsymbol{M}_{\mathrm{L}} := \begin{bmatrix} p_{11}t_{12} - p_{12}t_{11} & \frac{1}{2}(p_{11}t_{22} - p_{22}t_{11}) \\ \frac{1}{2}(p_{11}t_{22} - p_{22}t_{11}) & p_{12}t_{22} - p_{22}t_{12} \end{bmatrix},$$
(3.73)

$$\boldsymbol{m}_{\mathrm{L}} := \frac{1}{2} \begin{bmatrix} p_{11}t_2 + p_1t_{12} - p_{12}t_1 - p_2t_{11} \\ p_{12}t_2 + p_1t_{22} - p_{22}t_1 - p_2t_{12} \end{bmatrix}, \qquad (3.74)$$

$$\mu_{\rm L} := p_1 t_2 - p_2 t_1. \tag{3.75}$$

Diese Kurve wird bspw. benötigt, sofern kleine Drehzahlen und kleine Drehmomente gefordert werden und im verlustminimalen Betrieb operiert werden soll. Bei hohen Drehzahlen ist dies nur bedingt möglich, da die Statorspannung ggf. nicht mehr ausreicht und die zulässigen Punkte auf der MTPL-Kurve nur sehr kleine Drehmomente liefern.

Berechnung der Maximum-Torque-per-Voltage-Kurve

Da die im Stator induzierte Spannung mit der Drehzahl zunimmt, wird der zulässige Bereich in der i_{sd} - i_{sq} -Ebene durch die Spannungsellipse (3.58) eingeschränkt. Um das maximale Drehmoment an der Spannungsgrenze zu erhalten, wird die MTPV-Kurve benötigt. Diese Kurve enthält die Betriebspunkte in der i_{sd} - i_{sq} -Ebene, die für eine gegebene Spannung das maximale Drehmoment liefern. Anders ausgedrückt ist es das Ziel, das gegebene Solldrehmoment

$$\boldsymbol{i}_{\mathrm{s}}^{\top} \boldsymbol{T} \boldsymbol{i}_{\mathrm{s}} + 2 \boldsymbol{t}^{\top} \boldsymbol{i}_{\mathrm{s}} + \tau - T^{*} = 0 \tag{3.76}$$

zu erzeugen und dabei die Statorspannung

$$u_{\rm s}^2(\boldsymbol{i}_{\rm s}) = \boldsymbol{i}_{\rm s}^\top \boldsymbol{V} \boldsymbol{i}_{\rm s} + 2\boldsymbol{v}^\top \boldsymbol{i}_{\rm s} + \boldsymbol{\nu}$$
(3.77)

zu minimieren. Analog zur MTPC- und MTPL-Kurve lautet die Lagrange-Funktion

$$\mathcal{L}(\boldsymbol{i}_{s},\lambda_{L}) = -(\boldsymbol{i}_{s}^{\top}\boldsymbol{V}\boldsymbol{i}_{s} + 2\boldsymbol{v}^{\top}\boldsymbol{i}_{s} + \nu) + \lambda_{L}(\boldsymbol{i}_{s}^{\top}\boldsymbol{T}\boldsymbol{i}_{s} + 2\boldsymbol{t}^{\top}\boldsymbol{i}_{s} + \tau - T^{*})$$
(3.78)

und nach demselben Vorgehen resultiert die MTPV-Kurve

$$\boldsymbol{i}_{\mathrm{s}}^{\top}\boldsymbol{M}_{\mathrm{V}}\boldsymbol{i}_{\mathrm{s}} + 2\boldsymbol{m}_{\mathrm{V}}^{\top}\boldsymbol{i}_{\mathrm{s}} + \mu_{\mathrm{V}} = 0, \qquad (3.79)$$

dessen Matrix, Vektor und Skalar sich folgendermaßen berechnen [3]:

$$\boldsymbol{M}_{\mathrm{V}} := \begin{bmatrix} v_{11}t_{12} - v_{12}t_{11} & \frac{1}{2}(v_{11}t_{22} - v_{22}t_{11}) \\ \frac{1}{2}(v_{11}t_{22} - v_{22}t_{11}) & v_{12}t_{22} - v_{22}t_{12} \end{bmatrix},$$
(3.80)

$$\boldsymbol{m}_{\mathrm{V}} := \frac{1}{2} \begin{bmatrix} v_{11}t_2 + v_1t_{12} - v_{12}t_1 - v_2t_{11} \\ v_{12}t_2 + v_1t_{22} - v_{22}t_1 - v_2t_{12} \end{bmatrix},$$
(3.81)

$$\mu_{\rm V} := v_1 t_2 - v_2 t_1. \tag{3.82}$$

Die MTPV-Kurve kommt hauptsächlich bei sehr hohen Drehzahlen zum Einsatz, wenn die induzierte Spannung sich der maximal möglichen Statorspannung nähert.

3.4 Berechnung der Schnittpunkte zweier Quadriken

Dieser Abschnitt präsentiert die Berechnungsvorschrift zur Ermittlung der Schnittpunkte zwischen zwei Quadriken, die für die Betriebsstrategie notwendig sind. Zu diesen Quadriken zählen

- die Drehmomenthyperbel (3.42),
- der Stromkreis (3.61),
- die Spannungsellipse (3.58),
- die MTPC-Kurve (3.65),
- die MTPL-Kurve (3.72) und
- die MTPV-Kurve (3.79).

Bevor die Berechnung der Schnittpunkte zweier Quadriken erfolgt, werden diese noch normiert, sodass alle Größen einheitenlos sind. Im Folgenden werden normierte Größen mit einer Tilde dargestellt. Z. B. ist

$$\tilde{\boldsymbol{i}}_{\mathrm{s}} := \frac{\boldsymbol{i}_{\mathrm{s}}}{\boldsymbol{i}_{\mathrm{s,max}}}$$
(3.83)

der auf sein Maximum normierte Statorstrom. Mit dieser Normierung sollen numerische Probleme bei der Schnittpunktberechnung verringert werden [3]. Der Statorstrom i_s und die Statorspannung u_s werden dabei auf ihre Maximalwerte $i_{s,max}$ bzw. $u_{s,max}$ normiert. Für das Drehmoment und die Verluste werden das Nenndrehmoment T_n und die Nennleistung P_n der ASM herangezogen (vgl. Tabelle 2.1). Wird die Drehmomenthyperbel (3.42) durch T_n dividiert, folgt die normierte Quadrik

$$\tilde{T}(\tilde{\boldsymbol{i}}_{s}) = \tilde{\boldsymbol{i}}_{s}^{\top} \underbrace{\boldsymbol{\mathcal{T}}_{s,\max}^{\tilde{\boldsymbol{i}}_{s,\max}^{2}}}_{=:\tilde{\boldsymbol{\mathcal{T}}}} \tilde{\boldsymbol{i}}_{s} + 2 \underbrace{\boldsymbol{\mathcal{t}}_{s,\max}^{\top} \underbrace{\boldsymbol{\mathcal{T}}_{s,\max}}_{T_{n}}}_{=:\tilde{\boldsymbol{\mathcal{t}}}^{\top}} \tilde{\boldsymbol{i}}_{s} + \underbrace{\boldsymbol{\mathcal{T}}_{n}}_{=:\tilde{\boldsymbol{\tau}}} = \tilde{\boldsymbol{\iota}}_{s}^{\top} \widetilde{\boldsymbol{T}} \tilde{\boldsymbol{i}}_{s} + 2 \tilde{\boldsymbol{t}}^{\top} \tilde{\boldsymbol{i}}_{s} + \tilde{\boldsymbol{\tau}}.$$
(3.84)

Die Normierung der Verlustquadrik nach Gleichung (3.52) auf die Nennleistung resultiert in

$$\tilde{P}_{V}(\tilde{\boldsymbol{i}}_{s}) = \tilde{\boldsymbol{i}}_{s}^{\top} \underbrace{\boldsymbol{\mathcal{P}}_{s,\max}^{\tilde{\boldsymbol{i}}_{s,\max}^{2}}}_{=:\tilde{\boldsymbol{P}}} \tilde{\boldsymbol{i}}_{s} + 2 \underbrace{\boldsymbol{\mathcal{P}}_{n}^{\top} \underbrace{\boldsymbol{i}_{s,\max}}_{P_{n}}}_{=:\tilde{\boldsymbol{p}}^{\top}} \tilde{\boldsymbol{i}}_{s} + \underbrace{\boldsymbol{\mathcal{P}}_{n}}_{=:\tilde{\boldsymbol{\rho}}}$$

$$= \tilde{\boldsymbol{i}}_{s}^{\top} \tilde{\boldsymbol{P}} \tilde{\boldsymbol{i}}_{s} + 2 \tilde{\boldsymbol{p}}^{\top} \tilde{\boldsymbol{i}}_{s} + \tilde{\boldsymbol{\rho}}. \qquad (3.85)$$

Darüber hinaus erfolgt die Normierung der Spannungsquadrik (3.57) zu

$$\tilde{u}_{s}^{2}(\tilde{\boldsymbol{i}}_{s}) = \tilde{\boldsymbol{i}}_{s}^{\top} \underbrace{\boldsymbol{V}}_{s,\max}^{\tilde{\boldsymbol{i}}_{s,\max}^{2}} \tilde{\boldsymbol{i}}_{s} + 2 \underbrace{\boldsymbol{v}}_{s,\max}^{\top} \underbrace{\boldsymbol{u}_{s,\max}^{2}}_{=:\tilde{\boldsymbol{v}}^{\top}} \tilde{\boldsymbol{i}}_{s} + \underbrace{\boldsymbol{v}}_{u_{s,\max}^{2}} \tilde{\boldsymbol{i}}_{s} + \underbrace{\boldsymbol{v}}_{=:\tilde{\boldsymbol{v}}^{\top}} \tilde{\boldsymbol{i}}_{s} + \tilde{\boldsymbol{v}}, \qquad (3.86)$$

woraus die normierte Spannungsellipse

$$\tilde{\boldsymbol{i}}_{s}^{\top}\tilde{\boldsymbol{V}}\tilde{\boldsymbol{i}}_{s}+2\tilde{\boldsymbol{v}}^{\top}\tilde{\boldsymbol{i}}_{s}+\tilde{\boldsymbol{\nu}}-1=0$$
(3.87)

resultiert. Neben der normierten Spannungsbegrenzung wird auch die Statorstrombegrenzung normiert:

$$\tilde{\boldsymbol{i}}_{\mathrm{s}}^{\top}\boldsymbol{I}_{2}\tilde{\boldsymbol{i}}_{\mathrm{s}}-1=0.$$
(3.88)

Analog dazu erfolgen die Normierungen der MTPC-, MTPL- und MTPV-Kurven mit folgenden Matrizen, Vektoren und Skalaren:

$$\tilde{\boldsymbol{M}}_{\mathrm{C}} := \boldsymbol{M}_{\mathrm{C}} \frac{i_{\mathrm{s,max}}^2}{T_{\mathrm{n}}}, \qquad \tilde{\boldsymbol{m}}_{\mathrm{C}} := \boldsymbol{m}_{\mathrm{C}} \frac{i_{\mathrm{s,max}}}{T_{\mathrm{n}}}, \qquad \tilde{\mu}_{\mathrm{C}} := \mu_{\mathrm{C}} \frac{1}{T_{\mathrm{n}}}, \qquad (3.89)$$

$$\tilde{\boldsymbol{M}}_{\mathrm{L}} := \boldsymbol{M}_{\mathrm{L}} \frac{i_{\mathrm{s,max}}^4}{P_{\mathrm{n}} T_{\mathrm{n}}}, \qquad \tilde{\boldsymbol{m}}_{\mathrm{L}} := \boldsymbol{m}_{\mathrm{L}} \frac{i_{\mathrm{s,max}}^3}{P_{\mathrm{n}} T_{\mathrm{n}}}, \qquad \tilde{\mu}_{\mathrm{L}} := \mu_{\mathrm{L}} \frac{i_{\mathrm{s,max}}^2}{P_{\mathrm{n}} T_{\mathrm{n}}}, \tag{3.90}$$

$$\tilde{M}_{\rm V} := M_{\rm V} \frac{i_{\rm s,max}^4}{u_{\rm s,max}^2 T_{\rm n}}, \quad \tilde{m}_{\rm V} := m_{\rm V} \frac{i_{\rm s,max}^3}{u_{\rm s,max}^2 T_{\rm n}}, \quad \tilde{\mu}_{\rm V} := \mu_{\rm V} \frac{i_{\rm s,max}^2}{u_{\rm s,max}^2 T_{\rm n}}.$$
(3.91)

Als Nächstes wird die Berechnung der Schnittpunkte zweier beliebiger Quadriken erläutert, der die normierten Größen zugrunde liegen.

Die Berechnung der Schnittpunkte zweier beliebiger Quadriken

$$\boldsymbol{i}_{s}^{\top}\boldsymbol{A}\boldsymbol{i}_{s}+2\boldsymbol{a}^{\top}\boldsymbol{i}_{s}+\alpha=0, \quad \boldsymbol{A}\in\mathbb{R}^{2\times2}, \ \boldsymbol{a}\in\mathbb{R}^{2}, \ \alpha\in\mathbb{R}$$

$$(3.92)$$

und

$$\boldsymbol{i}_{s}^{\top}\boldsymbol{B}\boldsymbol{i}_{s}+2\boldsymbol{b}^{\top}\boldsymbol{i}_{s}+\beta=0, \quad \boldsymbol{B}\in\mathbb{R}^{2\times2}, \ \boldsymbol{b}\in\mathbb{R}^{2}, \ \beta\in\mathbb{R}$$

$$(3.93)$$

erfolgt wie in [3], wo die Größen

$$\boldsymbol{D} = \begin{bmatrix} d_{11} \ d_{12} \\ d_{12} \ d_{22} \end{bmatrix} = \boldsymbol{D}^{\top}, \ \boldsymbol{d} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}, \ \boldsymbol{M} = \begin{bmatrix} m_{11} \ m_{12} \\ m_{12} \ m_{22} \end{bmatrix} = \boldsymbol{M}^{\top}, \ \boldsymbol{m} = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}, \ \boldsymbol{\mu}$$
(3.94)

eingeführt werden, die in Abhängigkeit von α und β unterschiedlich definiert sind. Im Fall $d \neq \mathbf{0}_2$ kann das Problem auf die Berechnung der Nullstellen eines Polynoms vierter Ordnung

$$c_4 z^4 + c_3 z^3 + c_2 z^2 + c_1 z + c_0 = 0, \quad z \in \mathbb{C}$$
(3.95)

zurückgeführt werden, dessen Koeffizienten nach [3] berechnet werden. Mit den Formeln aus Anhang A.1 und A.2 werden die Nullstellen z_{1-4} berechnet, aus denen sich die vier Schnittpunkte

$$i_{s,k} = -2(D - z_k J)^{-1} d, \quad k \in \{1, 2, 3, 4\}$$
(3.96)

ergeben [3]. Des Weiteren wird im Fall $d = 0_2$ eine zu [3] ähnliche, allerdings leicht modifizierte Vorgehensweise genutzt, um die Schnittpunkte zu berechnen. Diese wird im Folgenden vorgestellt.

Nach dem Vorgehen von [3] müssen im Fall $d = 0_2$ die beiden Gleichungen

$$\boldsymbol{i}_{\mathrm{s}}^{\top}\boldsymbol{D}\boldsymbol{i}_{\mathrm{s}}=0 \tag{3.97}$$

und

$$\boldsymbol{i}_{s}^{\top}\boldsymbol{M}\boldsymbol{i}_{s}+2\boldsymbol{m}^{\top}\boldsymbol{i}_{s}+\boldsymbol{\mu}=0$$
(3.98)

erfüllt werden. Bei der Lösung dieser Problemstellung werden im Folgenden drei Fälle unterschieden.

Fall $d_{11} \neq 0, \ d_{12} \neq 0$ und $d_{22} \neq 0$

Im ersten Fall wird davon ausgegangen, dass keines der Elemente der Matrix D null ist. Gleichung (3.97) wird dann erfüllt, wenn der Vektor Di_s senkrecht auf i_s^{\top} steht. Es muss also die Gleichung

$$Di_{\rm s} \stackrel{!}{=} \lambda Ji_{\rm s} \quad \Leftrightarrow \quad (D - \lambda J)i_{\rm s} = 0_2$$

$$(3.99)$$

erfüllt werden, wobei $\lambda \neq 0$ ein beliebiger Faktor ist [3]. Um nicht die Nulllösung zu erhalten, muss die Determinante det $(\mathbf{D} - \lambda \mathbf{J}) = 0$ sein. Daraus folgen für λ die beiden Lösungen [3]

$$\lambda_j = \pm \sqrt{d_{12}^2 - d_{11}d_{22}}, \quad j \in \{1, 2\}$$
(3.100)

und mit der ersten Zeile von Gleichung (3.99) dann der mit γ beliebig skalierbare Eigenvektor [3]

$$\boldsymbol{i}_{\rm s} = \gamma \begin{bmatrix} d_{12} + \lambda_j \\ -d_{11} \end{bmatrix}. \tag{3.101}$$

Der Skalierungsfaktor γ wird nun mit Hilfe der zweiten Gleichung (3.98) ermittelt. Dazu wird der Eigenvektor (3.101) in die Gleichung eingesetzt und ausmultipliziert, wodurch die quadratische Gleichung

$$c_{2,j}\gamma^2 + c_{1,j}\gamma + c_{0,j} = 0 aga{3.102}$$

mit den Koeffizienten

$$c_{0,j} := \mu,$$
 (3.103)

$$c_{1,j} := 2m_1(d_{12} + \lambda_j) - 2m_2 d_{11}, \qquad (3.104)$$

$$c_{2,j} := (d_{12} + \lambda_j)^2 m_{11} + d_{11}^2 m_{22} - 2d_{11}m_{12}(d_{12} + \lambda_j)$$
(3.105)

gefunden wird. Da es zwei quadratische Gleichungen (für j = 1 und j = 2) gibt, die jeweils die beiden Lösungen [3]

$$\gamma_{i,j} = \frac{-c_{1,j} \pm \sqrt{c_{1,j}^2 - 4c_{2,j}c_{0,j}}}{2c_{2,j}}, \quad i,j \in \{1,2\}$$
(3.106)

besitzen, gibt es also insgesamt vier Lösungen, die die Schnittpunkte der Quadriken darstellen. Diese werden berechnet, indem die beiden Faktoren λ und γ aus den Gleichungen (3.100) und (3.106) in den Eigenvektor aus Gleichung (3.101) eingesetzt werden:

$$\mathbf{i}_{s,1} = \gamma_{1,1} \begin{bmatrix} d_{12} + \lambda_1 \\ -d_{11} \end{bmatrix}, \quad \mathbf{i}_{s,2} = \gamma_{1,2} \begin{bmatrix} d_{12} + \lambda_2 \\ -d_{11} \end{bmatrix},
 \mathbf{i}_{s,3} = \gamma_{2,1} \begin{bmatrix} d_{12} + \lambda_1 \\ -d_{11} \end{bmatrix}, \quad \mathbf{i}_{s,4} = \gamma_{2,2} \begin{bmatrix} d_{12} + \lambda_2 \\ -d_{11} \end{bmatrix}.$$
(3.107)

Die Schnittpunkte müssen dabei nicht alle reell sein. Manche können auch komplex sein, je nachdem wie oft sich die Quadriken in der Statorstromebene schneiden.

Fall $d_{11} = d_{12} = 0$

Im zweiten Fall werden die beiden Elemente $d_{11} = d_{12} = 0$ angenommen. Ausmultiplizieren von Gleichung (3.97) liefert in diesem Fall $i_{sq} = 0$ als doppelte Nullstelle. Somit resultiert aus Gleichung (3.98) die quadratische Gleichung

$$m_{11}i_{\rm sd}^2 + 2m_1i_{\rm sd} + \mu = 0. \tag{3.108}$$

Abhängig davon, ob m_{11} gleich null ist oder nicht, lauten am Ende die Schnittpunkte

$$i_{\rm sd} = \begin{cases} -\frac{\mu}{2m_1}, & m_{11} = 0, \\ -\frac{m_1}{m_{11}} \pm \sqrt{\left(\frac{m_1}{m_{11}}\right)^2 - \frac{\mu}{m_{11}}}, & m_{11} \neq 0, \end{cases} \qquad (3.109)$$

Im Fall $m_{11} \neq 0$ gibt es zwei Punkte, in denen sich die Quadriken berühren.

Fall $d_{12} = d_{22} = 0$

Im dritten Fall sind die Elemente d_{12} und d_{22} null, wodurch sich Gleichung (3.97) wieder vereinfacht. Das Ergebnis ist eine doppelte Nullstelle bei $i_{sd} = 0$. Die zweite zu erfüllende Gleichung (3.98) führt damit auf die quadratische Gleichung

$$m_{22}i_{\rm sq}^2 + 2m_2i_{\rm sq} + \mu = 0. ag{3.110}$$

Das Ergebnis der Schnittpunktberechnung lautet in diesem Fall

$$i_{\rm sd} = 0, \quad i_{\rm sq} = \begin{cases} -\frac{\mu}{2m_2}, & m_{22} = 0, \\ -\frac{m_2}{m_{22}} \pm \sqrt{\left(\frac{m_2}{m_{22}}\right)^2 - \frac{\mu}{m_{22}}}, & m_{22} \neq 0. \end{cases}$$
(3.111)

wobei sich die Quadriken für $m_{22} \neq 0$ in den beiden Punkten jeweils berühren. Mit Hilfe der Schnittpunktberechnung zweier Quadriken kann der optimale aller Schnittpunkte bestimmt werden.

3.5 Auswahl des optimalen Schnittpunkts

Die quadratisch angenäherten Kurven können in einer allgemeinen Betriebsstrategie dazu genutzt werden, den optimalen Schnittpunkt aller Kurven $i_{s,opt}$ zu bestimmen. Dazu wird ähnlich zu [3] vorgegangen. Um stets einen minimalen Rotorfluss in der ASM zu gewährleisten, wird zunächst festgelegt, dass die stationäre d-Komponente des Statorstroms positiv und größer als 0,25 A sein muss, und außerdem soll das Vorzeichen der q-Komponente durch das Vorzeichen des Solldrehmoments festgelegt werden [2]:

$$i_{\rm sd} \ge 0.25 \,\mathrm{A}, \quad \mathrm{sgn}(i_{\rm sq}) = \mathrm{sgn}(T^*).$$
 (3.112)

In der i_{sd} - i_{sq} -Ebene kommen somit nur Ströme im ersten und vierten Quadranten in Frage. Für $T^* = 0$ Nm wird demnach der Strom

$$\boldsymbol{i}_{\mathrm{s,opt}} = \begin{bmatrix} 0,25 \,\mathrm{A} \\ 0 \,\mathrm{A} \end{bmatrix} \tag{3.113}$$

vorgegeben.

Wie in [3] werden die Bezeichnungen I für das Innere des Stromkreises, \mathbb{V} für das Innere der Spannungsellipse und T für die Drehmomenthyperbel eingeführt. Außerdem beschreiben MTPC, MTPL und MTPV die MTPC-, MTPL- und MTPV-Kurve. Der zulässige Bereich S bezeichnet die Schnittmenge vom Inneren des Stromkreises und vom Inneren der Spannungsellipse:

$$\mathbb{S} = \mathbb{I} \cap \mathbb{V}. \tag{3.114}$$

Analog zu [3] wird zunächst geprüft, ob das Solldrehmoment T^* größer als das im AP \bar{i}_1 maximal mögliche Drehmoment \overline{T}_{max} ist, welches im Schnittpunkt $i_{s,MTPC}$ liegt. Dieser ist derjenige Schnittpunkt zwischen MTPC-Kurve und Stromkreis, bei dem das Drehmoment das gleiche Vorzeichen wie das Solldrehmoment besitzt:

$$\overline{T}_{\max} := T(\mathbf{i}_{s,MTPC}), \quad \operatorname{sgn}(\overline{T}_{\max}) = \operatorname{sgn}(T^*).$$
(3.115)

Falls das Solldrehmoment zu groß ist, wird es folgendermaßen begrenzt:

$$T^* = \begin{cases} \overline{T}_{\max}, & |T^*| > |\overline{T}_{\max}|, \\ T^*, & |T^*| \le |\overline{T}_{\max}|. \end{cases}$$
(3.116)

Nun können ähnlich zu [3] die relevanten Schnittpunkte zwischen den quadratisch approximierten Kurven hinsichtlich ihrer Zulässigkeit überprüft und der richtige ausgewählt werden. Dies erfolgt anhand der folgenden Bedingungen (B1) bis (B4), die nacheinander geprüft werden:

(B1) Zuerst wird überprüft, ob der Schnittpunkt zwischen MTPL-Kurve und Drehmomenthyperbel im zulässigen Bereich liegt, wenn er überhaupt existiert:

$$i_{s,MTPL} := MTPL \cap T \neq \emptyset \land i_{s,MTPL} \in S?$$
 (3.117)

Ist diese Bedingung erfüllt, wird dieser Punkt als optimaler Strom betrachtet. In diesem Fall wird das geforderte Drehmoment unter minimalen Verlusten bereitgestellt. Ansonsten wird zur nächsten Bedingung übergegangen.

(B2) Als Nächstes wird untersucht, ob die Schnittpunkte der erweiterten Maximum-Current (MC_{ext})-Strategie die Strom- und Spannungsgrenze verletzen:

$$\mathbf{i}_{\mathrm{s,MC_{ext}}} \coloneqq \partial \mathbb{I} \cap \mathbb{T} \in \mathbb{S}? \tag{3.118}$$

Gleichzeitig wird geprüft, ob Schnittpunkte des Bereichs der Flussschwächung (engl. *flux weakening*) (FW) existieren und im zulässigen Bereich liegen:

$$\mathbf{i}_{\mathrm{s,FW}} := \partial \mathbb{V} \cap \mathbb{T} \neq \emptyset \quad \land \quad \mathbf{i}_{\mathrm{s,FW}} \in \mathbb{S}?$$
(3.119)

Liegt nur einer dieser Punkte in der Strom- und Spannungsbegrenzung, wird der jeweilige Strom als Optimum angesehen:

$$\mathbf{i}_{s,MC_{ext}} \in \mathbb{S} \land \mathbf{i}_{s,FW} \notin \mathbb{S} \Rightarrow \mathbf{i}_{s,opt} = \mathbf{i}_{s,MC_{ext}},$$
 (3.120)

$$\mathbf{i}_{\mathrm{s,MC_{ext}}} \notin \mathbb{S} \quad \wedge \quad \mathbf{i}_{\mathrm{s,FW}} \in \mathbb{S} \quad \Rightarrow \quad \mathbf{i}_{\mathrm{s,opt}} = \mathbf{i}_{\mathrm{s,FW}}.$$
 (3.121)

Sonst wird von all diesen Schnittpunkten der Strom mit den geringsten Verlusten mit Hilfe der Verlustquadrik (3.52) berechnet und als optimaler Strom verwendet. Werden weder Gleichung (3.118) noch Gleichung (3.119) erfüllt, kann das Solldrehmoment unter den gegebenen Bedingungen nicht erreicht werden. Folglich wird die dritte Bedingung geprüft.

(B3) Als Drittes kommt die MTPV-Strategie in Frage. Es wird untersucht, ob der Schnittpunkt zwischen Spannungsellipse und MTPV-Kurve die Stromgrenze einhält:

$$\mathbf{i}_{\mathrm{s,MTPV}} := \partial \mathbb{V} \cap \mathbb{MTPV} \in \mathbb{S}?$$
(3.122)

Ist dies nicht der Fall, bleibt noch eine letzte Strategie.

(B4) Zum Schluss wird die Maximum-Current (MC)-Strategie untersucht. Dabei handelt es sich um die Schnittpunkte zwischen Stromkreis und Spannungsellipse:

$$\mathbf{i}_{s,MC} := \partial \mathbb{I} \cap \partial \mathbb{V}. \tag{3.123}$$

Befindet sich einer der Schnittpunkte im richtigen Quadranten, dann entspricht dieser dem optimalen Statorstrom.

Bei sehr kleinen Solldrehmomenten, bei denen die MTPL-Strategie zum Einsatz kommt und bei denen der optimale Sollstrom eine d-Komponente $i_{sd} < 0.25$ A besitzt, wird diese auf diesen Wert begrenzt und die q-Komponente über die Drehmomenthyperbel (3.42) ermittelt:

$$i_{\rm sd,opt} = 0.25 \,\mathrm{A},$$

$$i_{\rm sq,opt} = -\frac{t_{12}i_{\rm sd,opt} + t_2}{t_{22}} \pm \sqrt{\left(\frac{t_{12}i_{\rm sd,opt} + t_2}{t_{22}}\right)^2 - \frac{t_{11}i_{\rm sd,opt}^2 + 2t_1i_{\rm sd,opt} + \tau - T^*}{t_{22}}}.$$
(3.124)

Mit dieser Maßnahme soll gewährleistet werden, dass der Regelung stets ein minimaler Rotorfluss vorliegt [2]. Sollte kein Strom ermittelt werden können, der die Anforderungen erfüllt, wird immer der Referenzpunkt (3.113) angefahren, sodass bei einem möglichen Fehler kein Drehmoment eingeregelt wird. Abbildung 3.2 zeigt verschiedene AP bezüglich Drehzahl und Solldrehmoment und die jeweils zugehörigen Kurven und optimalen Statorströme. Dort wird illustriert, wie die Bedingungen (B1) bis (B4) nacheinander überprüft werden.

Bei der Überprüfung, ob ein Punkt innerhalb der Strom- und Spannungsgrenze liegt, können numerische Ungenauigkeiten auftreten. Daher werden die Spannungs- und Strombegrenzung (3.59) und (3.60) abgeschwächt, indem die Punkte auch außerhalb der Grenzen liegen dürfen. Ein Punkt gilt dann als zulässig, wenn er die normierten Ungleichungen

$$\tilde{\boldsymbol{i}}_{\mathrm{s}}^{\top} \tilde{\boldsymbol{V}} \tilde{\boldsymbol{i}}_{\mathrm{s}} + 2\tilde{\boldsymbol{v}}^{\top} \tilde{\boldsymbol{i}}_{\mathrm{s}} + \tilde{\nu} - 1 \le 10^{-5}$$
(3.125)

und

.

$$\tilde{\boldsymbol{i}}_{\mathrm{s}}^{\top} \boldsymbol{I}_{2} \tilde{\boldsymbol{i}}_{\mathrm{s}} - 1 \le 10^{-5} \tag{3.126}$$

erfüllt.

Abb. 3.2: Darstellung verschiedener Betriebsstrategien in der Stromebene mit den im AP $\bar{i}_{sd} = \bar{i}_{sq} = 1 \text{ A}$ quadratisch approximierten Kurven MTPC –, MTPL –, MTPV –, Strombegrenzung –, Spannungsbegrenzung –, Drehmomenthyperbel – und dem optimalen Statorstrom $i_{s,opt} \bullet$ bei $\vartheta_s = \vartheta_r = 20 \text{ °C}$ (in Anlehnung an [3, S. 1033])

3.6 Iterative Berechnung des optimalen Sollstroms

Wird die Berechnung des optimalen Schnittpunkts nach Abschnitt 3.5 einmal durchgeführt, ist der resultierende Strom nur optimal bezüglich der im AP approximierten Kurven und nicht bezüglich des gesamten Motormodells. Um sich dem tatsächlich optimalen Strom anzunähern, wird die Berechnung iterativ ausgeführt. Der in einer Näherung ermittelte optimale Statorstrom wird in der nächsten Iteration als AP zur Linearisierung herangezogen und die Berechnung erneut durchgeführt. Somit nähert sich der berechnete dem tatsächlichen optimalen Strom durch jede Iteration an.

Sowohl die Verlustquadrik (3.52) als auch die Spannungsellipse (3.58) werden durch die Stator- und die Rotortemperatur über die Funktionen $f_{\rm s}(\vartheta_{\rm s})$ und $f_{\rm r}(\vartheta_{\rm r})$ beeinflusst. Die Drehmomenthyperbel (3.42) hängt nur von der Rotortemperatur ab. Beide Temperaturen werden für jede Iteration adaptiert. Gleiches gilt auch für die mechanische Drehzahl, die ebenfalls mit den drei approximierten Größen in Zusammenhang steht.

Da es bei dieser Berechnungsmethode zu Konvergenzproblemen kommt, wenn der alte und der neue optimale Strom weit auseinander liegen, wird nicht das neu berechnete Optimum direkt als AP verwendet. Simulative Untersuchungen zeigen, dass die Konvergenzprobleme verschwinden, sobald die Differenz zwischen altem AP $i_{s,alt}$ und neuem Optimum $i_{s,opt}$ auf 40 % reduziert wird, wie Abbildung 3.3 illustriert. Damit lautet der AP der nächsten Iteration

$$\overline{i}_{s,neu} = \overline{i}_{s,alt} + 0.4 \cdot (i_{s,opt} - \overline{i}_{s,alt}).$$
 (3.127)

Die Berechnung des neuen APs $\overline{i}_{l,neu}$ aus $\overline{i}_{s,neu}$ erfolgt schließlich mit Gleichung (3.41):

$$\overline{\mathbf{i}}_{l,neu} = \overline{\mathbf{i}}_{l,alt} + \mathbf{G}(\overline{\mathbf{i}}_{s,neu} - \overline{\mathbf{i}}_{s,alt})
= \overline{\mathbf{i}}_{l,alt} + 0.4 \cdot \mathbf{G}(\mathbf{i}_{s,opt} - \overline{\mathbf{i}}_{s,alt}).$$
(3.128)

Diese Gleichung ist lediglich eine Näherung, aber je näher der optimale Strom dem tatsächlichen Optimum kommt, desto genauer wird sie, weil der Abstand zum Linearisierungspunkt geringer wird. $\bar{i}_{l,neu}$ wird in der nächsten Iteration als AP zur Approximation herangezogen. Abbildung 3.4 zeigt den Ablauf der iterativen Berechnung des Sollstroms in einem Flussdiagramm. Die iterative Berechnung wird so lange durchgeführt, bis eine vordefinierte Anzahl an Iterationen erreicht wird, die von der benötigten Berechnungszeit der Regelungshardware abhängt. Ist dies der Fall, wird der berechnete optimale Strom als Sollwert für den Statorstrom übernommen, also $i_s^* = i_{s,opt}$. Die q-Komponente i_{sq}^* wird dem Stromregler als Sollwert übergegeben und der Sollwert für den Rotorflussregler wird mit Hilfe der Rotorflussgleichung (3.9) berechnet

$$\psi_{\rm rd}^* = L_{\rm m}(\bar{i}_{\rm ld}, \bar{i}_{\rm lq})i_{\rm ld}^*, \qquad (3.129)$$

wobei der optimale reduzierte Statorstrom mit Gleichung (3.41) ermittelt wird:

$$\boldsymbol{i}_{\mathrm{l}}^{*} = \overline{\boldsymbol{i}}_{\mathrm{l}} + \boldsymbol{G}(\boldsymbol{i}_{\mathrm{s}}^{*} - \overline{\boldsymbol{i}}_{\mathrm{s}}).$$
 (3.130)

Die Werte für $\bar{i}_{l}, \bar{i}_{s}, G$ und $L_{m}(\bar{i}_{ld}, \bar{i}_{lq})$ sind der letzten Approximation zu entnehmen.

Abb. 3.3: Aktualisierung des APs mit Hilfe des alten APs und dem berechneten Optimum

Abb. 3.4: Iterativer Prozess für die Berechnung des optimalen Statorsollstroms

Abb. 3.5: Berechnete optimale Sollströme der ersten sieben Iterationsschritte (erste Iteration • bis siebte Iteration •) mit den Kurven MTPC –, MTPL – und der Drehmomenthyperbel – bei $n = 500 \text{ min}^{-1}$, $T^* = 5 \text{ Nm}$, $\vartheta_s = \vartheta_r = 20 \text{ }^\circ\text{C}$ mit der Initialisierung $\bar{i}_{\text{ld}} = \bar{i}_{\text{lq}} = 1 \text{ A}$ für die erste Iteration

Abbildung 3.5 zeigt ein Beispiel für die iterative Berechnung des optimalen Sollstroms. Dort ist das Optimum der ersten bis zur siebten Iteration für ein Beispiel enthalten und die Abbildung illustriert die schrittweise Approximation an das exakte Optimum. Es ist außerdem ersichtlich, dass nur wenige Iterationen ausreichen, um eine Genauigkeit bis auf die erste Nachkommastelle zu erhalten.

4 Modellprädiktive Betriebsstrategie für Einzelmotorantriebssysteme

In diesem Kapitel wird eine modellprädiktive Betriebsstrategie für die ASM gemäß Modellierung in Abschnitt 2.1 vorgestellt. Der Grund dafür ist, dass die stationäre Betriebsstrategie auf der analytischen Lösung von quartischen Polynomen beruht, sofern ein einzelner Motor zum Einsatz kommt. Für ein MMDS sind die Berechnungen in der vorgestellten Form nicht mehr durchführbar. Eine modellprädiktive Betriebsstrategie schafft hier Abhilfe und übernimmt zudem die Rolle eines Rotorflussreglers.

Da hier der Rotorfluss geschätzt und zurückgeführt wird und für diesen die Dynamik in Form einer Differenzengleichung vorliegt, kann dieses Verfahren auch als Rotorflussregelung bezeichnet werden. In dieser Arbeit wird allerdings allgemein von einer modellprädiktiven Betriebsstrategie oder MPC gesprochen.

Abb. 4.1: Regelungsstruktur mit äußerer MPC und innerer Stromregelung (in Anlehnung an [18])

Als Teil einer Kaskadenregelung nach Abbildung 4.1 stellt die MPC die äußere und eine Stromregelung die innere Regelung dar. Das Ziel der MPC ist zum einen das Bereitstellen eines geforderten Drehmoments und zum anderen die Minimierung der Verluste im stationären Zustand unter Einhaltung der Strom- und Spannungsbegrenzung.

Zunächst wird die grundsätzliche Herangehensweise für die Umsetzung der modellprädiktiven Betriebsstrategie beschrieben. Darauf folgt eine tiefergehende Erläuterung der einzelnen Aspekte: Dazu zählen die Herleitung der Dynamik des Systems, die Beschreibung der Beschränkungen und die Definition der Kostenfunktion. Das Kapitel wird mit einer Erläuterung der Parameternachführung abgeschlossen.

4.1 Vorüberlegungen zum Optimierungsproblem

Bevor die verschiedenen Einzelheiten der MPC näher beleuchtet werden, wird die grundlegende Vorgehensweise für deren Realisierung aufgezeigt. Zunächst wird angenommen, dass die Drehzahl n und die beiden Temperaturen ϑ_s und ϑ_r über den Prädiktionshorizont konstant sind.

Da ein Teil der Modellparameter der ASM aufgrund der berücksichtigten Effekte zeitabhängig ist, ist das vorliegende System nicht zeitinvariant. Bei der Herleitung einer Differenzengleichung der Form (2.22) werden diese Parameter allerdings zunächst als konstant angenommen und am Ende wieder als zeitabhängig betrachtet, sodass ein System verbleibt, das linear zeitvariant (engl. *linear time-variant*) (LTV) ist. Der Grund für diese Vorgehensweise ist, dass das mathematische Gesamtsystem wegen der Abhängigkeit von Zeitableitungen verschiedener Größen sonst relativ kompliziert ist.

Die Zeitabhängigkeit der Parameter wird berücksichtigt, indem sie mit Hilfe der Optimierungsgrößen für den Prädiktionszeitraum nachgeführt werden (vergleichbar zu [1]). Das bedeutet, dass die Parameter nach jeder Optimierung, also nach jeder Berechnung eines optimalen Sollstroms, korrigiert werden. Dadurch wird die explizite Abhängigkeit vom Statorstrom umgangen und das Problem vereinfacht, weil die Parameter im Prädiktionsintervall näherungsweise bekannt sind. Zu den Größen, die als Parameter betrachtet werden, zählen

- die Hauptinduktivität $L_{\rm m}$,
- der Statorwiderstand $R_{\rm s}$,
- der Rotorwiderstand $R_{\rm r}$ und
- die Rotorkreisfrequenz $\omega_{\rm r}$.

Die Rotorkreisfrequenz hängt nach Gleichung (2.17) nichtlinear von $\psi_{\rm rd}$ ab. Um eine Linearisierung zu umgehen, wird auch sie wie ein zeitabhängiger Parameter behandelt, der nachgeführt wird.

Als Stellgröße bzw. Eingang der Regelstrecke dienen die beiden Statorstromkomponenten i_{sd} und i_{sq} bzw. als Vektor geschrieben

$$\boldsymbol{i}_{\mathrm{s}}[k] = \begin{bmatrix} i_{\mathrm{sd}}[k] \\ i_{\mathrm{sq}}[k] \end{bmatrix}.$$
(4.1)

Diese Komponenten werden von der MPC ermittelt und wie in [18] jeweils von unterlagerten Stromreglern eingeregelt. Das Drehmoment wird über eine weiche Beschränkung ähnlich zu Abschnitt 2.2 eingestellt, die den zulässigen Bereich des Drehmoments iterativ auf das Solldrehmoment begrenzt. Infolgedessen wird eine Schlupfvariable ε als weitere Optimierungsvariable eingeführt, die in jeder Optimierung neu bestimmt wird. Die Rotorflussverkettung $\psi_{\rm rd}$ stellt die Zustandsgröße dar, weil deren Zeitableitung nach Gleichung (2.16) gegeben ist. Der zu optimierende Vektor besteht aus dem Statorstrom im gesamten Prädiktionsintervall und der Schlupfvariable:

$$\boldsymbol{U}_{kf} = \begin{bmatrix} i_{sd}[0] \\ i_{sq}[0] \\ \vdots \\ i_{sd}[k_{f} - 1] \\ i_{sq}[k_{f} - 1] \\ \varepsilon \end{bmatrix} \in \mathbb{R}^{2 \cdot k_{f} + 1}.$$
(4.2)

Alternativ zum Konzept weicher Beschränkungen kann auch die quadratische Abweichung vom Solldrehmoment in der Kostenfunktion direkt gewichtet werden, sodass auf eine weiche Beschränkung gänzlich verzichtet werden kann. Dafür ist allerdings eine quadratische Approximation nötig, was mehr Aufwand als eine Linearisierung bedeutet. Insofern wird die Variante mit der weichen Beschränkung verwendet.

Ferner taucht das Problem auf, dass die Verluste und das Drehmoment sowohl vom Eingang \mathbf{i}_{s} als auch vom Zustand ψ_{rd} abhängen (vgl. Gleichungen (2.19) und (2.20)). Der zeitdiskrete Zustand zum Zeitpunkt k + 1 hängt allerdings vom Eingang zum Zeitpunkt kab, wie die Differenzengleichung (2.22) zeigt, und reagiert damit nur verzögert auf den Eingang. Der Eingang $\mathbf{i}_{s}[k_{f} - 1]$ beeinflusst also den Zustand $\psi_{rd}[k_{f}]$, welcher aber in der Kostenfunktion und den Beschränkungen keine Berücksichtigung finden kann, da der Strom $\mathbf{i}_{s}[k_{f}]$ nicht existiert. Der Einfluss von $\mathbf{i}_{s}[k_{f} - 1]$ geht also nicht vollständig in die Rechnung mit ein. Um diesen Umstand zu kompensieren, werden die Kostenfunktion und die Beschränkungen um den Zeitschritt k_{f} durch Näherungen erweitert.

4.2 Dynamik der Rotorflussverkettung

Als Basis der MPC muss als Erstes eine Differenzengleichung der Form (2.22) für das System gefunden werden. Für die Herleitung der Rotorkreisdynamik werden zunächst zwei Annahmen getroffen:

- 1. Zur Vereinfachung des Optimierungsproblems wird die Statorstromdynamik vernachlässigt und der Einregelvorgang als unendlich schnell betrachtet, sodass die Ableitung des Statorstroms $\dot{i}_{s} = \mathbf{0}_{2}$ ist.
- 2. Der durch den Eisenverlustwiderstand fließende Strom i_{fe} sei so klein, dass er bei der zeitlichen Änderung des reduzierten Statorstroms vernachlässigt wird und diese somit auch null ist: $\dot{i}_1 = \mathbf{0}_2$.

Da die Rotorkreisdynamik aus Gleichung (2.16) noch nicht vom Statorstrom abhängt, muss zuerst eine Beziehung zwischen i_s und i_l gefunden werden. Dazu wird die Ableitung der Statorflussverkettung mit den Gleichungen (2.12) und (2.14) und den beiden obigen Annahmen durch

$$\dot{\psi}_{\rm s} = \frac{L_{\rm m}}{L_{\rm r}} \dot{\psi}_{\rm r} \tag{4.3}$$

ausgedrückt. Diese Gleichung wird nun in der Eisenverlustgleichung (2.9) genutzt und die Rotorkreisdynamik (2.15) und die Statorflussverkettung (2.12) eingesetzt. Umformen liefert den Zusammenhang

$$\boldsymbol{i}_{l} = \boldsymbol{G}_{i} \boldsymbol{i}_{s} + \boldsymbol{G}_{\psi} \boldsymbol{\psi}_{r}, \qquad (4.4)$$

in dem sich die Matrizen folgendermaßen berechnen:

$$\boldsymbol{G}_{i} := \left[\left(1 + \frac{R_{r}L_{m}^{2}}{R_{fe}L_{r}^{2}} \right) \boldsymbol{I}_{2} + \frac{\omega_{s}}{R_{fe}} \left(L_{s} - \frac{L_{m}^{2}}{L_{r}} \right) \boldsymbol{J} \right]^{-1}, \qquad (4.5)$$

$$\boldsymbol{G}_{\boldsymbol{\psi}} := \boldsymbol{G}_{\mathrm{i}} \frac{L_{\mathrm{m}}}{R_{\mathrm{fe}} L_{\mathrm{r}}} \left(\frac{R_{\mathrm{r}}}{L_{\mathrm{r}}} \boldsymbol{I}_{2} - \boldsymbol{p} \cdot \boldsymbol{\omega}_{\mathrm{mech}} \boldsymbol{J} \right).$$
(4.6)

Unter Zuhilfenahme dieser Beziehung lässt sich aus Gleichung (2.16) die Differentialgleichung für den Zustand, den hier die Rotorflussverkettung $\psi_{\rm rd}$ repräsentiert, in Abhängigkeit von der Stellgröße $i_{\rm s}$ ableiten:

$$\frac{\mathrm{d}\psi_{\mathrm{rd}}(t)}{\mathrm{d}t} = \underbrace{\frac{R_{\mathrm{r}}}{L_{\mathrm{r}}}(1 - L_{\mathrm{m}}g_{\psi,11})}_{=A}\psi_{\mathrm{rd}}(t) + \underbrace{\frac{R_{\mathrm{r}}}{L_{\mathrm{r}}}L_{\mathrm{m}}\left[g_{\mathrm{i},11}\ g_{\mathrm{i},12}\right]}_{=b^{\top}}\underbrace{\begin{bmatrix}i_{\mathrm{sd}}(t)\\i_{\mathrm{sq}}(t)\end{bmatrix}}_{=i_{\mathrm{s}}(t)} = A\psi_{\mathrm{rd}}(t) + \boldsymbol{b}^{\top}\boldsymbol{i}_{\mathrm{s}}(t).$$
(4.7)

Als letzter Schritt wird diese Differentialgleichung bezüglich der Zeit diskretisiert, um sie für die MPC wie in Abschnitt 2.2 nutzen zu können. Mit der Abtastzeit (engl. *sampling interval*) T_s und der exakten Zeitdiskretisierung [20]

$$A_{\rm d} = e^{AT_{\rm s}}, \quad \boldsymbol{b}_{\rm d}^{\top} = \frac{(A_{\rm d} - 1)}{A} \boldsymbol{b}^{\top}$$

$$\tag{4.8}$$

folgt schließlich die zeitdiskrete Rotorkreisdynamik

$$\psi_{\rm rd}[k+1] = A_{\rm d}\psi_{\rm rd}[k] + \boldsymbol{b}_{\rm d}^{\top}\boldsymbol{i}_{\rm s}[k], \quad \psi_{\rm rd}[0] = \psi_{\rm rd,0}, \tag{4.9}$$

wobei $\psi_{rd,0}$ den Anfangswert der Rotorflussverkettung bezeichnet.

Im Folgenden werden A_d und \boldsymbol{b}_d^{\top} als zeitabhängig betrachtet, weil die Parameter L_m , R_s , R_r und ω_r des ESBs in Abbildung 2.2 in der Realität nicht konstant sind. Für die MPC wird folglich das LTV-System

$$\psi_{\mathrm{rd}}[k+1] = A_{\mathrm{d}}[k]\psi_{\mathrm{rd}}[k] + \boldsymbol{b}_{\mathrm{d}}^{\mathsf{T}}[k]\boldsymbol{i}_{\mathrm{s}}[k]$$

$$(4.10)$$

verwendet. Durch rekursives Lösen dieser Gleichung können die zukünftigen Werte für $\psi_{\rm rd}[k]$ in Abhängigkeit der Eingangswerte $i_{\rm s}[k]$ berechnet werden. Werden die Zustände wie die Eingänge in Gleichung (4.2) in einem Vektor dargestellt, also

$$\boldsymbol{\Psi}_{k_{\mathrm{f}}} = \begin{bmatrix} \psi_{\mathrm{rd}}[0] \\ \vdots \\ \psi_{\mathrm{rd}}[k_{\mathrm{f}}] \end{bmatrix} \in \mathbb{R}^{k_{\mathrm{f}}+1}, \qquad (4.11)$$

dann lässt sich eine komprimierte Form der Rotorkreisdynamik (4.10) finden [20]:

$$\Psi_{k_{\rm f}} = \mathcal{A}_{k_{\rm f}} \psi_{\rm rd,0} + \mathcal{B}_{k_{\rm f}} U_{k_{\rm f}}. \tag{4.12}$$

Die komprimierten Systemgrößen lauten

$$\boldsymbol{\mathcal{A}}_{k_{\mathrm{f}}} = \begin{bmatrix} 1 \\ A_{\mathrm{d}}[0] \\ A_{\mathrm{d}}[1]A_{\mathrm{d}}[0] \\ A_{\mathrm{d}}[2]A_{\mathrm{d}}[1]A_{\mathrm{d}}[0] \\ \vdots \\ A_{\mathrm{d}}[k_{\mathrm{f}}-1] \cdot \ldots \cdot A_{\mathrm{d}}[0] \end{bmatrix}, \qquad (4.13)$$

$$\boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} = \begin{bmatrix} \mathbf{0}_{1,2} & \mathbf{0}_{1,2} & \cdots & \mathbf{0}_{1,2} & 0 \\ \mathbf{b}_{\mathrm{d}}^{\mathrm{T}}[0] & \mathbf{0}_{1,2} & \cdots & \mathbf{0}_{1,2} & 0 \\ A_{\mathrm{d}}[1]\mathbf{b}_{\mathrm{d}}^{\mathrm{T}}[0] & \mathbf{b}_{\mathrm{d}}^{\mathrm{T}}[1] & \cdots & \mathbf{0}_{1,2} & 0 \\ A_{\mathrm{d}}[2]A_{\mathrm{d}}[1]\mathbf{b}_{\mathrm{d}}^{\mathrm{T}}[0] & A_{\mathrm{d}}[2]\mathbf{b}_{\mathrm{d}}^{\mathrm{T}}[1] & \cdots & \mathbf{0}_{1,2} & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A_{\mathrm{d}}[k_{\mathrm{f}}-1] \cdot \ldots \cdot A_{\mathrm{d}}[1]\mathbf{b}_{\mathrm{d}}^{\mathrm{T}}[0] A_{\mathrm{d}}[k_{\mathrm{f}}-1] \cdot \ldots \cdot A_{\mathrm{d}}[2]\mathbf{b}_{\mathrm{d}}^{\mathrm{T}}[1] \cdots \mathbf{b}_{\mathrm{d}}^{\mathrm{T}}[k_{\mathrm{f}}-1] 0 \end{bmatrix} \qquad (4.14)$$

mit $\mathcal{A}_{k_{\mathrm{f}}} \in \mathbb{R}^{k_{\mathrm{f}}+1}$ und $\mathcal{B}_{k_{\mathrm{f}}} \in \mathbb{R}^{(k_{\mathrm{f}}+1)\times(2\cdot k_{\mathrm{f}}+1)}$. Somit können die Zustandsgrößen über den gesamten Prädiktionshorizont in Abhängigkeit von beliebigen Eingängen ausgedrückt werden, was nachfolgend für die Kostenfunktion und die Beschränkungen von Bedeutung ist.

4.3 Beschränkungen des Systems

Dieser Abschnitt behandelt die Beschränkungen, die die MPC einhalten muss. Neben der Beschränkung von Statorstrom und -spannung muss auch der Rotorfluss beschränkt werden, um eine stabile Regelung zu gewährleisten. Außerdem wird das Drehmoment mit Hilfe einer weichen Einschränkung eingeregelt.

4.3.1 Beschränkung des Statorstroms

Der Strom im Stator der ASM wird aus thermischen Gründen auf ein Maximum begrenzt. Es muss also die Ungleichung

$$i_{\rm sd}^2[k] + i_{\rm sq}^2[k] \le i_{\rm s,max}^2$$
 (4.15)

für jeden Zeitschritt k erfüllt werden [19]. Die Grenze der Ungleichung stellt einen Kreis dar. Da die Beschränkungen für das QP-Problem wie die Ungleichung (2.24) linear sein müssen, wird dieser Kreis durch Geraden angenähert. Es werden insgesamt fünf Geraden gewählt, da mehr Geraden die Rechenzeit erhöhen und weniger Geraden den Kreis deutlich schlechter annähern. Von den fünf Geraden sind vier Geraden fest und eine ist abhängig vom Strom i_s , der aus der vorherigen Prädiktion stammt, ähnlich wie es auch in [25] durchgeführt wird. Abbildung 4.2 demonstriert die Approximation des Kreises. Die einzelnen Beschränkungen lauten:

$$-i_{\rm s,max} \le i_{\rm sd}[k],\tag{4.16}$$

$$i_{\rm sd}[k] \le i_{\rm s,max},\tag{4.17}$$

$$-i_{\rm s,max} \le i_{\rm sq}[k],\tag{4.18}$$

$$i_{\rm sq}[k] \le i_{\rm s,max},\tag{4.19}$$

$$\frac{\dot{\boldsymbol{i}}_{s}^{'}[k]}{\|\bar{\boldsymbol{i}}_{s}[k]\|} \dot{\boldsymbol{i}}_{s}[k] \leq i_{s,\max}.$$
(4.20)

Es gibt also die vier zeitunabhängigen Beschränkungen (4.16) bis (4.19) und die zeitabhängige Beschränkung (4.20), die sich für einen beliebigen Zeitschritt in Matrixform schreiben lassen:

$$\begin{bmatrix}
-1 & 0 \\
1 & 0 \\
0 & -1 \\
0 & 1 \\
\vdots_{sq}[k] \\
\vec{i}_{sq}[k] \\
\vec{i}_{sq}[k] \\
\vec{i}_{sq}[k] \\
\vec{i}_{sq}[k] \\
\vec{i}_{sq}[k] \\
\vec{i}_{sq}[k] \\
\vec{i}_{sk}[k] \\$$

Die Beschränkungen über den gesamten Prädiktionszeitraum $0 \leq k \leq k_{\rm f}-1$ lauten dann zusammengefasst

$$\mathcal{W}_{u,1}U_{k_{\mathrm{f}}} \le \Omega_{u,1} \tag{4.22}$$

mit den Größen

$$\boldsymbol{\mathcal{W}}_{\boldsymbol{u},1} := \begin{bmatrix} \boldsymbol{W}_{\boldsymbol{u},1}[0] \ \boldsymbol{0}_{5,2} & \cdots & \boldsymbol{0}_{5,2} & \boldsymbol{0}_{5} \\ \boldsymbol{0}_{5,2} & \ddots & \vdots & \vdots \\ \vdots & \boldsymbol{W}_{\boldsymbol{u},1}[k_{\mathrm{f}}-2] & \boldsymbol{0}_{5,2} & \boldsymbol{0}_{5} \\ \boldsymbol{0}_{5,2} & \cdots & \boldsymbol{0}_{5,2} & \boldsymbol{W}_{\boldsymbol{u},1}[k_{\mathrm{f}}-1] & \boldsymbol{0}_{5} \end{bmatrix} \in \mathbb{R}^{(5\cdot k_{\mathrm{f}}) \times (2\cdot k_{\mathrm{f}}+1)}, \quad (4.23)$$

$$\boldsymbol{\Omega}_{\boldsymbol{u},1} := \left[\boldsymbol{\omega}_{\boldsymbol{u},1}^{\top}[0] \cdots \boldsymbol{\omega}_{\boldsymbol{u},1}^{\top}[k_{\mathrm{f}}-1]\right]^{\top} \in \mathbb{R}^{5 \cdot k_{\mathrm{f}}}.$$
(4.24)

Abb. 4.2: Approximation des Stromkreises – mit den AP-unabhängigen Tangenten – und der AP-abhängigen Tangente –

Überschreitet der in der MPC optimierte Statorstrom aufgrund der Näherung des Kreises nach Abbildung 4.2 das Maximum, kann er leicht angepasst werden. Die Werte, die den Stromreglern übergeben werden, müssen nur entsprechend verringert werden.

4.3.2 Beschränkung der Statorspannung

Wegen der konstanten Zwischenkreisspannung des Umrichters kann die Statorspannung nur in einem gewissen Bereich bereitgestellt werden, sodass für sie ein Maximum existiert. Im statorfesten $\alpha\beta$ -Koordinatensystem ist die Begrenzung ein Hexagon, im mitdrehenden dq-Koordinatensystem ist dies ein mit dem mechanischen Drehwinkel drehendes Hexagon [19]. Zur Vereinfachung wird das Maximum der Statorspannung durch einen Kreis mit der Ungleichung

$$u_{\rm sd}^2[k] + u_{\rm sq}^2[k] \le u_{\rm s,max}^2 \tag{4.25}$$

wie in Abbildung 4.3 vorgegeben, um die Abhängigkeit vom Drehwinkel zu beseitigen (vgl. auch [19]). Dies stellt indirekt eine Beschränkung für den Statorstrom dar. Da die Spannungsgleichung (2.21) quadratisch von i_s abhängt, eignet sie sich nicht direkt für die Herleitung von linearen Beschränkungen.

4 Modellprädiktive Betriebsstrategie für Einzelmotorantriebssysteme

Stattdessen wird ähnlich wie bei der Statorstrombeschränkung vorgegangen. Die Grenze der Ungleichung (4.25) beschreibt einen Kreis in der Statorspannungsebene, der ebenfalls durch Tangenten approximiert wird (siehe Abbildung 4.3). Im Gegensatz zum Statorstrom ist allerdings keine größere Statorspannung möglich. Da sie auch von der Rotorflussverkettung abhängt, die nur verzögert auf den Statorstrom reagiert, wird der Kreis durch acht statt vier Geraden angenähert, um den Fehler zum realen System zu verringern. Auch hier wird eine zusätzliche Gerade hinzugenommen, die von der Spannung \overline{u}_s aus der vorherigen Prädiktion abhängt.

In der zeitkontinuierlichen Statorspannung aus Gleichung (2.8) können die Statorflussverkettung (2.12) und deren Ableitung (4.3) direkt ersetzt werden. Außerdem werden noch der Rotorstrom (2.14) und die Rotorkreisdynamik (2.15) mitberücksichtigt, sodass die Statorspannung vom Statorstrom, vom reduzierten Statorstrom und von der Rotorflussverkettung abhängt:

$$\boldsymbol{u}_{s} = R_{s}\boldsymbol{i}_{s} + \underbrace{\left[\omega_{s}\left(L_{s} - \frac{L_{m}^{2}}{L_{r}}\right)\boldsymbol{J} + \frac{R_{r}L_{m}^{2}}{L_{r}^{2}}\boldsymbol{I}_{2}\right]}_{=:\boldsymbol{R}_{l}}\boldsymbol{i}_{l} + \left[-\frac{R_{r}L_{m}}{L_{r}^{2}}\boldsymbol{I}_{2} + \boldsymbol{p}\cdot\omega_{mech}\frac{L_{m}}{L_{r}}\boldsymbol{J}\right]\boldsymbol{\psi}_{r}.$$
 (4.26)

Nach Einsetzen der Beziehung (4.4) wird noch die Abhängigkeit von i_1 eliminiert:

Abb. 4.3: Approximation des Spannungskreises — mit den AP-unabhängigen Tangenten — und der AP-abhängigen Tangente —

$$\boldsymbol{u}_{s} = \underbrace{\left(R_{s}\boldsymbol{I}_{2} + \boldsymbol{R}_{l}\boldsymbol{G}_{i}\right)}_{=:\boldsymbol{V}_{i}}\boldsymbol{i}_{s} + \underbrace{\left(\boldsymbol{R}_{l}\boldsymbol{G}_{\psi} - \frac{R_{r}L_{m}}{L_{r}^{2}}\boldsymbol{I}_{2} + \boldsymbol{p}\cdot\boldsymbol{\omega}_{mech}\frac{L_{m}}{L_{r}}\boldsymbol{J}\right)}_{=:\boldsymbol{V}_{b}}\boldsymbol{\psi}_{r}.$$
(4.27)

Nach zeitlicher Diskretisierung, die aufgrund nicht vorhandener Ableitungen direkt möglich ist, kann die Gleichung

$$\boldsymbol{u}_{s}[k] = \boldsymbol{V}_{i}[k]\boldsymbol{i}_{s}[k] + \boldsymbol{V}_{\psi}[k]\boldsymbol{\psi}_{r}[k]$$
(4.28)

nun verwendet werden, um den Statorspannungskreis nach Abbildung 4.3 zu approximieren. Dies erfolgt mit den neun Ungleichungen

$$-u_{\rm s,max} \le u_{\rm sd}[k],\tag{4.29}$$

$$u_{\rm sd}[k] \le u_{\rm s,max},\tag{4.30}$$

$$-u_{\rm s,max} \le u_{\rm sq}[k],\tag{4.31}$$

$$u_{\rm sq}[k] \le u_{\rm s,max},\tag{4.32}$$

$$u_{\rm sq}[k] \le -u_{\rm sd}[k] + \sqrt{2} \cdot u_{\rm s,max},\tag{4.33}$$

$$u_{\rm sq}[k] \le u_{\rm sd}[k] + \sqrt{2} \cdot u_{\rm s,max}, \qquad (4.34)$$

$$-u_{\rm sd}[k] - \sqrt{2} \cdot u_{\rm s,max} \le u_{\rm sq}[k], \tag{4.35}$$

$$u_{\rm sd}[k] - \sqrt{2} \cdot u_{\rm s,max} \le u_{\rm sq}[k], \tag{4.36}$$

$$\frac{\overline{\boldsymbol{u}}_{\mathrm{s}}^{\mathsf{T}}[k]}{\|\overline{\boldsymbol{u}}_{\mathrm{s}}[k]\|} \boldsymbol{u}_{\mathrm{s}}[k] \le u_{\mathrm{s,max}},\tag{4.37}$$

von denen die Ungleichungen (4.29) bis (4.32) die horizontalen und vertikalen Grenzen abbilden, (4.33) bis (4.36) stellen das um 90° gedrehte Quadrat dar und die letzte Beschränkung (4.37) ist die dynamische Tangente. Für die Berechnung der Spannung

$$\overline{\boldsymbol{u}}_{\mathrm{s}}[k] = \overline{\boldsymbol{V}}_{\mathrm{i}}[k]\overline{\boldsymbol{i}}_{\mathrm{s}}[k] + \overline{\boldsymbol{V}}_{\psi}[k]\overline{\boldsymbol{\psi}}_{\mathrm{r}}[k]$$
(4.38)

stammen Strom $\overline{\mathbf{i}}_{s}[k]$ und Rotorflussverkettung $\overline{\psi}_{r}[k]$ aus der vorherigen Prädiktion. Die Berechnung von $\overline{V}_{i}[k]$ und $\overline{V}_{\psi}[k]$ zieht ebenfalls die Parameter der vorherigen Prädiktion heran.

Die genäherte Spannungsbeschränkung lautet somit in Matrix-Vektor-Schreibweise für einen Zeitschritt

$$\boldsymbol{N}_{1}[k]\boldsymbol{i}_{s}[k] + \boldsymbol{n}_{2}[k]\psi_{rd}[k] \le \boldsymbol{\omega}_{v}[k], \qquad (4.39)$$

wobei folgende Größen eingeführt werden:

$$\boldsymbol{N}_{1}[k] := \begin{bmatrix} v_{i,11}[k] & v_{i,12}[k] \\ v_{i,21}[k] & v_{i,22}[k] \\ -v_{i,11}[k] & -v_{i,12}[k] \\ -v_{i,11}[k] & -v_{i,12}[k] \\ v_{i,11}[k] + v_{i,21}[k] & v_{i,12}[k] + v_{i,22}[k] \\ v_{i,11}[k] + v_{i,21}[k] & -v_{i,12}[k] + v_{i,22}[k] \\ -v_{i,11}[k] - v_{i,21}[k] & -v_{i,12}[k] - v_{i,22}[k] \\ v_{i,11}[k] - v_{i,21}[k] & v_{i,12}[k] - v_{i,22}[k] \\ v_{i,11}[k] - v_{i,21}[k] & v_{i,12}[k] - v_{i,22}[k] \\ \overline{u}_{sd}[k]v_{i,11}[k] + \overline{u}_{sq}[k]v_{i,21}[k] \overline{u}_{sd}[k]v_{i,12}[k] + \overline{u}_{sq}[k]v_{i,22}[k] \end{bmatrix} \in \mathbb{R}^{9 \times 2}, \quad (4.40)$$

41

$$\boldsymbol{\omega}_{\mathbf{v}}[k] := \begin{bmatrix} v_{\psi,11}[k] \\ v_{\psi,21}[k] \\ -v_{\psi,11}[k] \\ -v_{\psi,11}[k] \\ v_{\psi,11}[k] + v_{\psi,21}[k] \\ v_{\psi,11}[k] - v_{\psi,21}[k] \\ v_{\psi,11}[k] - v_{\psi,21}[k] \\ \overline{v}_{\mathrm{sd}}[k]v_{\psi,11}[k] + \overline{u}_{\mathrm{sq}}[k]v_{\psi,21}[k] \end{bmatrix} \in \mathbb{R}^{9},$$

$$\boldsymbol{\omega}_{\mathbf{v}}[k] := \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \sqrt{2} \\ \sqrt{$$

Damit auch die Rotorflussverkettung zum Zeitpunkt $k_{\rm f}$ bei der Spannungsgrenze berücksichtigt wird, wird dieser Zeitpunkt durch eine Näherung abgebildet, bei der alle Parameter und Eingänge vom vorigen Zeitpunkt verwendet werden:

$$N_{1}[k_{\rm f}-1]\boldsymbol{i}_{\rm s}[k_{\rm f}-1] + \boldsymbol{n}_{2}[k_{\rm f}-1]\psi_{\rm rd}[k_{\rm f}] \le \boldsymbol{\omega}_{\rm v}[k_{\rm f}-1].$$
(4.43)

Werden diese Größen über den gesamten Prädiktionshorizont mit

$$\mathcal{N}_{1} := \begin{bmatrix} \mathbf{N}_{1}[0] \ \mathbf{0}_{9,2} & \cdots & \mathbf{0}_{9,2} & \mathbf{0}_{9} \\ \mathbf{0}_{9,2} & \ddots & \vdots & \vdots \\ \vdots & \mathbf{N}_{1}[k_{f}-2] & \mathbf{0}_{9,2} & \mathbf{0}_{9} \\ \mathbf{0}_{9,2} & \cdots & \mathbf{0}_{9,2} & \mathbf{N}_{1}[k_{f}-1] & \mathbf{0}_{9} \\ \mathbf{0}_{9,2} & \cdots & \mathbf{0}_{9,2} & \mathbf{N}_{1}[k_{f}-1] & \mathbf{0}_{9} \end{bmatrix} \in \mathbb{R}^{(9\cdot k_{f}+9)\times(2\cdot k_{f}+1)}, \quad (4.44)$$
$$\mathcal{N}_{2} := \begin{bmatrix} \mathbf{n}_{2}[0] \ \mathbf{0}_{9} & \cdots & \mathbf{0}_{9} & \mathbf{0}_{9} \\ \mathbf{0}_{9} & \ddots & \vdots & \vdots \\ \vdots & \mathbf{n}_{2}[k_{f}-2] & \mathbf{0}_{9} & \mathbf{0}_{9} \\ \mathbf{0}_{9} & \cdots & \mathbf{0}_{9} & \mathbf{n}_{2}[k_{f}-1] & \mathbf{0}_{9} \\ \mathbf{0}_{9} & \cdots & \mathbf{0}_{9} & \mathbf{n}_{2}[k_{f}-1] \end{bmatrix} \in \mathbb{R}^{(9\cdot k_{f}+9)\times(k_{f}+1)}, \quad (4.45)$$
$$\mathbf{\Omega}_{v} := \begin{bmatrix} \boldsymbol{\omega}_{v}^{\top}[0] \cdots \boldsymbol{\omega}_{v}^{\top}[k_{f}-2] & \boldsymbol{\omega}_{v}^{\top}[k_{f}-1] & \boldsymbol{\omega}_{v}^{\top}[k_{f}-1] \end{bmatrix}^{\top} \in \mathbb{R}^{9\cdot k_{f}+9} \quad (4.46)$$

weiter zusammengefasst, wird für die komprimierten Vektoren die Ungleichung

$$\mathcal{N}_1 U_{k_{\rm f}} + \mathcal{N}_2 \Psi_{k_{\rm f}} \le \Omega_{\rm v} \tag{4.47}$$

42

gefunden. Als Letztes wird die komprimierte Zustandsgleichung (4.12) ausgenutzt, sodass

$$\underbrace{(\mathcal{N}_{1} + \mathcal{N}_{2}\mathcal{B}_{k_{\mathrm{f}}})}_{=:\mathcal{W}_{u,2}} U_{k_{\mathrm{f}}} \leq \underbrace{\Omega_{\mathrm{v}} - \mathcal{N}_{2}\mathcal{A}_{k_{\mathrm{f}}}\psi_{\mathrm{rd},0}}_{=:\Omega_{u,2}}$$
(4.48)

als Spannungsbegrenzung mit $\mathcal{W}_{u,2} \in \mathbb{R}^{(9 \cdot k_{\mathrm{f}}+9) \times (2 \cdot k_{\mathrm{f}}+1)}$ und $\Omega_{u,2} \in \mathbb{R}^{9 \cdot k_{\mathrm{f}}+9}$ verbleibt.

4.3.3 Festlegung eines minimalen Rotorflusses

Für das dynamische Drehmoment (2.19) gibt es mehr als einen optimalen Betriebspunkt, da die Vorzeichen von i_{lq} und ψ_{rd} nicht eindeutig sind. Deshalb wird zum einen das Vorzeichen von ψ_{rd} als positiv festgelegt. Zum anderen wird aber auch der Betrag der Rotorflussverkettung nach unten hin auf $\psi_{rd,min} = 0,1$ Vs beschränkt, damit stets ein Rotorfluss in der ASM vorhanden ist. Die Beschränkung des Rotorflusses

$$\psi_{\rm rd}[k] \ge \psi_{\rm rd,min} \tag{4.49}$$

kann direkt für den gesamten Prädiktionshorizont übernommen werden

$$\Psi_{k_{\rm f}} \ge \mathbf{1}_{k_{\rm f}+1} \cdot \psi_{\rm rd,min},\tag{4.50}$$

wobei $\mathbf{1}_{k_{\mathrm{f}}+1} = \begin{bmatrix} 1 \cdots 1 \end{bmatrix}^{\top} \in \mathbb{R}^{k_{\mathrm{f}}+1}$ den Einsvektor darstellt. Unter Verwendung der komprimierten Zustandsgleichung (4.12) resultiert die Beschränkung

$$\underbrace{-\mathcal{B}_{k_{\mathrm{f}}}}_{=:\mathcal{W}_{\boldsymbol{u},3}} U_{k_{\mathrm{f}}} \leq \underbrace{\mathcal{A}_{k_{\mathrm{f}}}\psi_{\mathrm{rd},0} - \mathbf{1}_{k_{\mathrm{f}}+1} \cdot \psi_{\mathrm{rd},\min}}_{=:\Omega_{\boldsymbol{u},3}}, \tag{4.51}$$

wobei $\mathcal{W}_{u,3} \in \mathbb{R}^{(k_{\mathrm{f}}+1) \times (2 \cdot k_{\mathrm{f}}+1)}$ und $\Omega_{u,3} \in \mathbb{R}^{k_{\mathrm{f}}+1}$ gilt.

4.3.4 Weiche Einschränkung zur Drehmomenteinregelung

Dadurch, dass das Solldrehmoment fest vorgegeben wird, handelt es sich hierbei nicht um eine Ungleichheitsbeschränkung der Form (2.24). Um trotzdem diese Form der Beschränkung zu erhalten, wird eine Abweichung des Drehmoments vom Sollwert durch Einführung der Schlupfvariable ε zugelassen, die auch in der Kostenfunktion berücksichtigt wird. Dadurch werden Abweichungen vom Solldrehmoment im stationären Fall möglichst niedrig gehalten.

Das Drehmoment wird gemäß Gleichung (2.19) berechnet. Wird darin i_{lq} mit Hilfe des Zusammenhangs (4.4) ersetzt, berechnet sich das Drehmoment zu

$$T(i_{\rm sd}, i_{\rm sq}, \psi_{\rm rd}) = \frac{3}{2} p \frac{L_{\rm m}}{L_{\rm r}} \psi_{\rm rd}(g_{\rm i,21}i_{\rm sd} + g_{\rm i,22}i_{\rm sq} + g_{\psi,21}\psi_{\rm rd}).$$
(4.52)

Es ist zu beachten, dass das Drehmoment hier nichtlinear vom Statorstrom und der Rotorflussverkettung abhängt. Um eine lineare Beschränkung abzuleiten, wird es analog zu den Formeln in [3] linearisiert: Die zu berechnenden Ableitungen 4 Modellprädiktive Betriebsstrategie für Einzelmotorantriebssysteme

$$\frac{\partial T}{\partial i_{\rm sd}} = \frac{3}{2} p \frac{L_{\rm m}}{L_{\rm r}} g_{\rm i,21} \psi_{\rm rd}, \qquad (4.53)$$

$$\frac{\partial T}{\partial i_{\rm sq}} = \frac{3}{2} p \frac{L_{\rm m}}{L_{\rm r}} g_{\rm i,22} \psi_{\rm rd}, \qquad (4.54)$$

$$\frac{\partial T}{\partial \psi_{\rm rd}} = \frac{3}{2} p \frac{L_{\rm m}}{L_{\rm r}} (g_{\rm i,21} i_{\rm sd} + g_{\rm i,22} i_{\rm sq} + 2g_{\psi,21} \psi_{\rm rd})$$
(4.55)

sind Teil der Drehmomentlinearisierung, sodass als Näherung der Ausdruck

$$T \approx \overline{T} + \frac{\partial T}{\partial i_{\rm sd}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} (i_{\rm sd} - \overline{i}_{\rm sd}) + \frac{\partial T}{\partial i_{\rm sq}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} (i_{\rm sq} - \overline{i}_{\rm sq}) + \frac{\partial T}{\partial \psi_{\rm rd}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} (\psi_{\rm rd} - \overline{\psi}_{\rm rd})$$

$$= \frac{\partial T}{\partial i_{\rm sd}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} i_{\rm sd} + \frac{\partial T}{\partial i_{\rm sq}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} i_{\rm sq} + \frac{\partial T}{\partial \psi_{\rm rd}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} \psi_{\rm rd}$$

$$+ \overline{T} - \frac{\partial T}{\partial i_{\rm sd}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} \overline{i}_{\rm sd} - \frac{\partial T}{\partial i_{\rm sq}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} \overline{i}_{\rm sq} - \frac{\partial T}{\partial \psi_{\rm rd}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} \overline{\psi}_{\rm rd}$$

$$= \frac{\partial T}{\partial i_{\rm sd}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} i_{\rm sd} + \frac{\partial T}{\partial i_{\rm sq}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} i_{\rm sq} + \frac{\partial T}{\partial \psi_{\rm rd}}\Big|_{\overline{i}_{\rm sd}, \overline{i}_{\rm sq}, \overline{\psi}_{\rm rd}} \psi_{\rm rd} + T_0$$

$$(4.56)$$

resultiert. Die Werte für die Entwicklungspunkte $\bar{i}_{sd}[k]$, $\bar{i}_{sq}[k]$ und $\bar{\psi}_{rd}[k]$ werden aus der vorherigen Prädiktion genutzt. Die Gleichung kann direkt zeitlich diskretisiert werden.

Die weiche Beschränkung wird so festgelegt, dass das aktuelle Drehmoment T[k] um den Wert ε nach oben und unten von der Referenz T^* abweichen darf:

$$T^* - \varepsilon \le T[k] \le T^* + \varepsilon. \tag{4.57}$$

Unter Zuhilfenahme der Linearisierung (4.56) lassen sich für einen beliebigen Zeitschrittkdie zwei Ungleichungen

$$\underbrace{\begin{bmatrix} \frac{\partial T}{\partial i_{\rm sd}}[k] & \frac{\partial T}{\partial i_{\rm sq}}[k] \\ -\frac{\partial T}{\partial i_{\rm sd}}[k] & -\frac{\partial T}{\partial i_{\rm sq}}[k] \end{bmatrix}}_{=:M_1[k]\in\mathbb{R}^{2\times2}} \underbrace{\begin{bmatrix} i_{\rm sd}[k] \\ i_{\rm sq}[k] \end{bmatrix}}_{=i_{\rm s}[k]} - \underbrace{\begin{bmatrix} 1\\ 1\\ 1\\ \vdots\\ i_{\rm sq}[k] \end{bmatrix}}_{=I_2} \varepsilon + \underbrace{\begin{bmatrix} \frac{\partial T}{\partial \psi_{\rm rd}}[k] \\ -\frac{\partial T}{\partial \psi_{\rm rd}}[k] \end{bmatrix}}_{=:m_2[k]\in\mathbb{R}^2} \psi_{\rm rd}[k] \le \underbrace{\begin{bmatrix} T^* - T_0[k] \\ T_0[k] - T^* \end{bmatrix}}_{=:\omega_{\rm t}[k]\in\mathbb{R}^2}$$
(4.58)

aufstellen. Analog zur Spannungsbeschränkung wird hier die Näherung

$$\boldsymbol{M}_{1}[k_{\rm f}-1]\boldsymbol{i}_{\rm s}[k_{\rm f}-1] - \boldsymbol{1}_{2} \cdot \boldsymbol{\varepsilon} + \boldsymbol{m}_{2}[k_{\rm f}-1]\boldsymbol{\psi}_{\rm rd}[k_{\rm f}] \leq \boldsymbol{\omega}_{\rm t}[k_{\rm f}-1]$$
(4.59)

für den Zeitpunkt $k_{\rm f}$ verwendet. Wie bei den vorherigen Beschränkungen wird auch hier eine Ungleichung für den gesamten Prädiktionshorizont gesucht. Mit den komprimierten Matrizen

$$\mathcal{M}_{1} := \begin{bmatrix} \mathcal{M}_{1}[0] \ \mathbf{0}_{2,2} & \cdots & \mathbf{0}_{2,2} & -\mathbf{1}_{2} \\ \mathbf{0}_{2,2} & \ddots & \vdots & \vdots \\ \vdots & \mathcal{M}_{1}[k_{\mathrm{f}}-2] & \mathbf{0}_{2,2} & -\mathbf{1}_{2} \\ \mathbf{0}_{2,2} & \cdots & \mathbf{0}_{2,2} & \mathcal{M}_{1}[k_{\mathrm{f}}-1] - \mathbf{1}_{2} \\ \mathbf{0}_{2,2} & \cdots & \mathbf{0}_{2,2} & \mathcal{M}_{1}[k_{\mathrm{f}}-1] - \mathbf{1}_{2} \end{bmatrix} \in \mathbb{R}^{(2 \cdot k_{\mathrm{f}}+2) \times (2 \cdot k_{\mathrm{f}}+1)}, \quad (4.60)$$
$$\mathcal{M}_{2} := \begin{bmatrix} \mathbf{m}_{2}[0] \ \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} & \mathbf{0}_{2} \\ \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} & \mathbf{0}_{2} \\ \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} & \mathbf{0}_{2} \\ \vdots & \mathbf{m}_{2}[k_{\mathrm{f}}-2] & \mathbf{0}_{2} & \mathbf{0}_{2} \\ \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} & \mathbf{m}_{2}[k_{\mathrm{f}}-1] & \mathbf{0}_{2} \\ \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} & \mathbf{0}_{2} & \mathbf{m}_{2}[k_{\mathrm{f}}-1] \end{bmatrix} \in \mathbb{R}^{(2 \cdot k_{\mathrm{f}}+2) \times (k_{\mathrm{f}}+1)} \quad (4.61)$$

und dem komprimierten Vektor

$$\boldsymbol{\Omega}_{\mathrm{t}} := \left[\boldsymbol{\omega}_{\mathrm{t}}^{\top}[0] \cdots \boldsymbol{\omega}_{\mathrm{t}}^{\top}[k_{\mathrm{f}} - 2] \, \boldsymbol{\omega}_{\mathrm{t}}^{\top}[k_{\mathrm{f}} - 1] \, \boldsymbol{\omega}_{\mathrm{t}}^{\top}[k_{\mathrm{f}} - 1]\right]^{\top} \in \mathbb{R}^{2 \cdot k_{\mathrm{f}} + 2} \tag{4.62}$$

kann dies bewerkstelligt werden, sodass als Ungleichung

$$\mathcal{M}_1 U_{k_{\rm f}} + \mathcal{M}_2 \Psi_{k_{\rm f}} \le \Omega_{\rm t} \tag{4.63}$$

folgt. Nach Ersetzen des komprimierten Rotorflussverkettungsvektors durch Gleichung (4.12) lautet die weiche Beschränkung

$$\underbrace{(\mathcal{M}_1 + \mathcal{M}_2 \mathcal{B}_{k_{\mathrm{f}}})}_{=: \mathcal{W}_{u,4}} U_{k_{\mathrm{f}}} \leq \underbrace{\Omega_{\mathrm{t}} - \mathcal{M}_2 \mathcal{A}_{k_{\mathrm{f}}} \psi_{\mathrm{rd},0}}_{=: \Omega_{u,4}}.$$
(4.64)

Die Dimension der Matrix ist $\mathcal{W}_{u,4} \in \mathbb{R}^{(2 \cdot k_f + 2) \times (2 \cdot k_f + 1)}$ und die Dimension des Vektors $\Omega_{u,4} \in \mathbb{R}^{2 \cdot k_f + 2}$.

4.4 Definition der Kostenfunktion und Herleitung des quadratischen Programms

Als letzter Teil der MPC fehlt noch die Definition der Kostenfunktion. Diese enthält zum einen die Gesamtverluste der ASM, damit im stationären Zustand der effizienteste Punkt eingeregelt wird. Zum anderen wird die Schlupfvariable ε berücksichtigt, die die Abweichung des Drehmoments vom Sollwert darstellt. Die Verluste und die Drehmomentabweichung werden separat gewichtet.

Die Gesamtverluste enthalten drei Anteile, zu denen die Statorverluste $P_{V,s}$, die Rotorverluste $P_{V,r}$ und die Eisenverluste $P_{V,fe}$ zählen:

$$P_{\rm V} = \underbrace{\frac{3}{2} R_{\rm s} \| \boldsymbol{i}_{\rm s} \|^{2}}_{= P_{\rm V,s}} + \underbrace{\frac{3}{2} R_{\rm r} \| \boldsymbol{i}_{\rm r} \|^{2}}_{= P_{\rm V,r}} + \underbrace{\frac{3}{2} \frac{1}{R_{\rm fe}} \| \dot{\boldsymbol{\psi}}_{\rm s} + \omega_{\rm s} \boldsymbol{J} \boldsymbol{\psi}_{\rm s} \|^{2}}_{= P_{\rm V,fe}}.$$
(4.65)

Diese Verluste werden für die Kostenfunktion nur in Abhängigkeit des Statorstroms i_s und der Rotorflussverkettung ψ_{rd} gesucht. Die Statorverluste

$$P_{\mathrm{V,s}} = \frac{3}{2} R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\top} \boldsymbol{i}_{\mathrm{s}}$$

$$(4.66)$$

müssen nicht weiter umgeformt werden. In den Rotorverlusten

$$P_{\mathrm{V,r}} = \frac{3}{2} R_{\mathrm{r}} \boldsymbol{i}_{\mathrm{r}}^{\top} \boldsymbol{i}_{\mathrm{r}}$$

$$(4.67)$$

muss der Rotorstrom eliminiert werden. Dafür wird dieser zunächst in Abhängigkeit von den gesuchten Größen dargestellt, indem Gleichung (4.4) in (2.14) eingesetzt wird:

$$\boldsymbol{i}_{\mathrm{r}} = -\frac{L_{\mathrm{m}}}{L_{\mathrm{r}}}\boldsymbol{G}_{\mathrm{i}}\boldsymbol{i}_{\mathrm{s}} + \underbrace{\left(\frac{1}{L_{\mathrm{r}}}\boldsymbol{I}_{2} - \frac{L_{\mathrm{m}}}{L_{\mathrm{r}}}\boldsymbol{G}_{\psi}\right)}_{=:\boldsymbol{G}_{\mathrm{r}}}\boldsymbol{\psi}_{\mathrm{r}}.$$
(4.68)

Mit dieser Formel wird der Rotorstrom in den Rotorverlusten substituiert, um die benötigten Abhängigkeiten zu erhalten. Umformen liefert:

$$P_{\mathrm{V,r}} = \frac{3}{2} R_{\mathrm{r}} \Big(\boldsymbol{\psi}_{\mathrm{r}}^{\top} \boldsymbol{G}_{\mathrm{r}}^{\top} \boldsymbol{G}_{\mathrm{r}} \boldsymbol{\psi}_{\mathrm{r}} - 2 \boldsymbol{\psi}_{\mathrm{r}}^{\top} \boldsymbol{G}_{\mathrm{r}}^{\top} \frac{L_{\mathrm{m}}}{L_{\mathrm{r}}} \boldsymbol{G}_{\mathrm{i}} \boldsymbol{i}_{\mathrm{s}} + \frac{L_{\mathrm{m}}^{2}}{L_{\mathrm{r}}^{2}} \boldsymbol{i}_{\mathrm{s}}^{\top} \boldsymbol{G}_{\mathrm{i}}^{\top} \boldsymbol{G}_{\mathrm{i}} \boldsymbol{i}_{\mathrm{s}} \Big).$$
(4.69)

Als Drittes fehlen noch die Eisenverluste

$$P_{\rm V,fe} = \frac{3}{2} \frac{\left\|\dot{\boldsymbol{\psi}}_{\rm s} + \omega_{\rm s} \boldsymbol{J} \boldsymbol{\psi}_{\rm s}\right\|^2}{R_{\rm fe}},\tag{4.70}$$

die unter Verwendung des Statorflusses aus Gleichung (2.12), dessen Ableitung (4.3), der Rotorkreisdynamik (2.15) und des Zusammenhangs (4.4) zu

$$P_{\rm V,fe} = \frac{3}{2} \frac{1}{R_{\rm fe}} \left(\boldsymbol{\psi}_{\rm r}^{\top} \boldsymbol{F}_{\boldsymbol{\psi}}^{\top} \boldsymbol{F}_{\boldsymbol{\psi}} \boldsymbol{\psi}_{\rm r} + 2 \boldsymbol{\psi}_{\rm r}^{\top} \boldsymbol{F}_{\boldsymbol{\psi}}^{\top} \boldsymbol{F}_{\rm i} \boldsymbol{i}_{\rm s} + \boldsymbol{i}_{\rm s}^{\top} \boldsymbol{F}_{\rm i}^{\top} \boldsymbol{F}_{\rm i} \boldsymbol{i}_{\rm s} \right)$$
(4.71)

umgeformt werden können. Abkürzend werden hier die beiden Matrizen

$$\boldsymbol{F}_{i} := \left[\frac{R_{r}L_{m}^{2}}{L_{r}^{2}}\boldsymbol{I}_{2} + \omega_{s}\left(L_{s} - \frac{L_{m}^{2}}{L_{r}}\right)\boldsymbol{J}\right]\boldsymbol{G}_{i},$$
(4.72)

$$\boldsymbol{F}_{\boldsymbol{\psi}} := -\left(\frac{R_{\mathrm{r}}L_{\mathrm{m}}}{L_{\mathrm{r}}^{2}}\boldsymbol{I}_{2} - \frac{L_{\mathrm{m}}}{L_{\mathrm{r}}}\boldsymbol{p}\cdot\boldsymbol{\omega}_{\mathrm{mech}}\boldsymbol{J}\right) + \left[\frac{R_{\mathrm{r}}L_{\mathrm{m}}^{2}}{L_{\mathrm{r}}^{2}}\boldsymbol{I}_{2} + \boldsymbol{\omega}_{\mathrm{s}}\left(L_{\mathrm{s}} - \frac{L_{\mathrm{m}}^{2}}{L_{\mathrm{r}}}\right)\boldsymbol{J}\right]\boldsymbol{G}_{\boldsymbol{\psi}}$$
(4.73)

eingeführt. Die Summe aus den Statorverlusten (4.66), den Rotorverlusten (4.69) und den Eisenverlusten (4.71) liefert schließlich die Gesamtverluste

$$P_{\mathrm{V}} = \mathbf{i}_{\mathrm{s}}^{\top} \underbrace{\frac{3}{2} \left(R_{\mathrm{s}} \mathbf{I}_{2} + \frac{R_{\mathrm{r}} L_{\mathrm{m}}^{2}}{L_{\mathrm{r}}^{2}} \mathbf{G}_{\mathrm{i}}^{\top} \mathbf{G}_{\mathrm{i}} + \frac{1}{R_{\mathrm{fe}}} \mathbf{F}_{\mathrm{i}}^{\top} \mathbf{F}_{\mathrm{i}} \right) \mathbf{i}_{\mathrm{s}}}_{=: \mathbf{K}_{\mathrm{ii}}}$$

$$+ \psi_{\mathrm{r}}^{\top} \underbrace{3 \left(\frac{1}{R_{\mathrm{fe}}} \mathbf{F}_{\psi}^{\top} \mathbf{F}_{\mathrm{i}} - \frac{R_{\mathrm{r}} L_{\mathrm{m}}}{L_{\mathrm{r}}} \mathbf{G}_{\mathrm{r}}^{\top} \mathbf{G}_{\mathrm{i}} \right)}_{=: \mathbf{K}_{\psi \mathrm{i}}} \mathbf{i}_{\mathrm{s}}$$

$$+ \psi_{\mathrm{r}}^{\top} \underbrace{\frac{3}{2} \left(R_{\mathrm{r}} \mathbf{G}_{\mathrm{r}}^{\top} \mathbf{G}_{\mathrm{r}} + \frac{1}{R_{\mathrm{fe}}} \mathbf{F}_{\psi}^{\top} \mathbf{F}_{\psi} \right)}_{=: \mathbf{K}_{\psi \psi}} \psi_{\mathrm{r}}$$

$$= \mathbf{i}_{\mathrm{s}}^{\top} \mathbf{K}_{\mathrm{ii}} \mathbf{i}_{\mathrm{s}} + \psi_{\mathrm{r}}^{\top} \mathbf{K}_{\psi \mathrm{i}} \mathbf{i}_{\mathrm{s}} + \psi_{\mathrm{r}}^{\top} \mathbf{K}_{\psi \psi} \psi_{\mathrm{r}}.$$

$$(4.74)$$

Diese Formel gilt sowohl zeitkontinuierlich als auch zeitdiskret. Anzumerken ist, dass wegen der Zeitabhängigkeit der Motormodellparameter auch die Matrizen K_{ii} , $K_{\psi i}$ und $K_{\psi \psi}$ zeitabhängig sind.

Bei der Umsetzung der Kostenfunktion taucht die Problematik auf, dass die Verluste nicht nur rein quadratisch in i_s und ψ_r sind, sondern dass sie in dem Ausdruck $\psi_r^{\top} K_{\psi i} i_s$ auch das Produkt aus den beiden Vektoren enthalten, was nicht einer Kostenfunktion der Form (2.23) entspricht. Damit das QP-Problem am Ende konvex ist, muss dieser Teil linearisiert werden. Die Linearisierung erfolgt wie beim Drehmoment auch auf Basis des Statorstroms und der Rotorflussverkettung aus der vorangegangenen Prädiktion. Sie wird wie in [3] durchgeführt und liefert

$$\boldsymbol{\psi}_{\mathrm{r}}^{\mathsf{T}}\boldsymbol{K}_{\mathrm{\psi}\mathrm{i}}\boldsymbol{i}_{\mathrm{s}} \approx \underbrace{\overline{\boldsymbol{\psi}}_{\mathrm{r}}^{\mathsf{T}}\boldsymbol{K}_{\mathrm{\psi}\mathrm{i}}}_{=:\boldsymbol{h}_{\mathrm{i}}^{\mathsf{T}}}\boldsymbol{i}_{\mathrm{s}} + \underbrace{\overline{\boldsymbol{i}}_{\mathrm{s}}^{\mathsf{T}}\boldsymbol{K}_{\mathrm{\psi}\mathrm{i}}^{\mathsf{T}}}_{=:\boldsymbol{h}_{\psi}^{\mathsf{T}}}\boldsymbol{\psi}_{\mathrm{r}} - \underbrace{\overline{\boldsymbol{i}}_{\mathrm{s}}^{\mathsf{T}}\boldsymbol{K}_{\mathrm{\psi}\mathrm{i}}^{\mathsf{T}}\overline{\boldsymbol{\psi}}_{\mathrm{r}}}_{=:\boldsymbol{h}_{\mathrm{P}}^{\mathsf{T}}} = \boldsymbol{h}_{\mathrm{i}}^{\mathsf{T}}\boldsymbol{i}_{\mathrm{s}} + \boldsymbol{h}_{\psi}^{\mathsf{T}}\boldsymbol{\psi}_{\mathrm{r}} - h_{\mathrm{P}} \qquad (4.75)$$

und die genäherten dynamischen Gesamtverluste berechnen sich folglich zu

$$P_{\rm V} = \boldsymbol{i}_{\rm s}^{\top} \boldsymbol{K}_{\rm ii} \boldsymbol{i}_{\rm s} + \boldsymbol{\psi}_{\rm r}^{\top} \boldsymbol{K}_{\rm \psi\psi} \boldsymbol{\psi}_{\rm r} + \boldsymbol{h}_{\rm i}^{\top} \boldsymbol{i}_{\rm s} + \boldsymbol{h}_{\rm \psi}^{\top} \boldsymbol{\psi}_{\rm r} - h_{\rm P}.$$
(4.76)

Die Schlupfvariable, die die Abweichung des aktuellen Drehmoments vom Sollwert darstellt, wird sowohl quadratisch als auch linear in der Kostenfunktion vorgesehen. Der Grund dafür ist, dass das QP-Problem ohne quadratischen Anteil nicht mehr konvex ist (siehe Anhang A.3) und ein quadratischer Term allein nicht verwendet werden sollte [21].

Die Kostenfunktion wird so gewählt, dass sowohl die Verluste als auch die Drehmomentabweichung minimiert werden, wobei die Drehmomentabweichung mit Hilfe von verschiedenen Gewichtungsfaktoren vorrangig minimiert wird. Ähnlich zu den Beschränkungen aus dem vorherigen Abschnitt wird auch die Kostenfunktion bis zum Zeitpunkt $k_{\rm f}$ aufgestellt, indem außer der Rotorflussverkettung alle Größen vom vorangehenden Zeitpunkt genommen werden. Z. B. wird der Statorstrom auch um einen Schritt verlängert: $\mathbf{i}_{\rm s}[k_{\rm f}] = \mathbf{i}_{\rm s}[k_{\rm f} - 1]$.

Des Weiteren wird der Gewichtungsfaktor der Verluste $q_1[k]$, $0 \le k \le k_f$ zeitlich variabel gelassen, um die Verluste zum Ende der Prädiktion hin anders gewichten zu können als zu Beginn. Die Drehmomentabweichung dagegen wird konstant mit q_2 gewichtet.

Alle Gewichtungsfaktoren werden positiv gewählt. Die aus den vorherigen Überlegungen hervorgehende Kostenfunktion lautet schlussendlich

$$J = q_2(\varepsilon^2 + \varepsilon) + q_1[k_f] P_V[k_f] + \sum_{k=0}^{k_f - 1} (q_1[k] P_V[k])).$$
(4.77)

Die linearisierten Verluste (4.76) werden hierin eingesetzt. Zudem wird deren Konstante $h_{\rm P}$ vernachlässigt, um die Kostenfunktion übersichtlicher zu halten. Dies ist möglich, weil konstante Terme innerhalb der Kostenfunktion ohnehin keinen Einfluss auf den optimalen Eingangsverlauf haben [20]. Für die vereinfachte Kostenfunktion $J_{u,1}$ folgt:

$$J_{u,1} = q_{2}(\varepsilon^{2} + \varepsilon) + \mathbf{i}_{s}^{\top}[k_{f} - 1]\mathbf{R}[k_{f}]\mathbf{i}_{s}[k_{f} - 1] + Q[k_{f}]\psi_{rd}^{2}[k_{f}] + \mathbf{v}^{\top}[k_{f}]\mathbf{i}_{s}[k_{f} - 1] + t[k_{f}]\psi_{rd}[k_{f}] + \sum_{k=0}^{k_{f}-1} \left(\mathbf{i}_{s}^{\top}[k]\underbrace{q_{1}[k]}\mathbf{K}_{ii}[k] + \mathbf{i}_{s}[k] + \underbrace{q_{1}[k]k_{\psi\psi,11}[k]}_{=Q[k]}\psi_{rd}^{2}[k] + \underbrace{q_{1}[k]\mathbf{h}_{i}^{\top}[k]}_{=\mathbf{v}^{\top}[k]}\mathbf{i}_{s}[k] + \underbrace{q_{1}[k]h_{\psi,1}[k]}_{=Q[k]}\psi_{rd}[k]\right) = q_{2}(\varepsilon^{2} + \varepsilon) + \mathbf{i}_{s}^{\top}[k_{f} - 1]\mathbf{R}[k_{f}]\mathbf{i}_{s}[k_{f} - 1] + Q[k_{f}]\psi_{rd}^{2}[k_{f}] + \mathbf{v}^{\top}[k_{f}]\mathbf{i}_{s}[k_{f} - 1] + t[k_{f}]\psi_{rd}[k_{f}] + \sum_{k=0}^{k_{f}-1} \left(\mathbf{i}_{s}^{\top}[k]\mathbf{R}[k]\mathbf{i}_{s}[k] + Q[k]\psi_{rd}^{2}[k] + \mathbf{v}^{\top}[k]\mathbf{i}_{s}[k] + t[k]\psi_{rd}[k]\right).$$

$$(4.78)$$

Die Größen, die für die Verlängerung der Kostenfunktion um den Zeitschritt $k_{\rm f}$ nötig sind, unterscheiden sich vom vorhergehenden Zeitpunkt nur durch den Gewichtungsfaktor q_1 und sehen folgendermaßen aus:

$$\boldsymbol{R}[k_{\rm f}] = q_1[k_{\rm f}]\boldsymbol{K}_{\rm ii}[k_{\rm f}-1], \qquad (4.79)$$

$$Q[k_{\rm f}] = q_1[k_{\rm f}]k_{\psi\psi,11}[k_{\rm f}-1], \qquad (4.80)$$

$$\boldsymbol{v}^{\top}[k_{\rm f}] = q_1[k_{\rm f}]\boldsymbol{h}_{\rm i}^{\top}[k_{\rm f}-1], \qquad (4.81)$$

$$t[k_{\rm f}] = q_1[k_{\rm f}]h_{\psi,1}[k_{\rm f} - 1]. \tag{4.82}$$

Um die Kostenfunktion dem Problem anzupassen, werden wieder alle Matrizen und Vektoren jeweils zusammengefasst. Dann lässt sich die Funktion schreiben als

$$J_{u,1} = \boldsymbol{U}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}} \boldsymbol{U}_{k_{\mathrm{f}}} + \boldsymbol{\Psi}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}} \boldsymbol{\Psi}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{U}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{T}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\Psi}_{k_{\mathrm{f}}}, \qquad (4.83)$$

in der die folgenden komprimierten Matrizen und Vektoren eingeführt werden:

$$\boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}} = \begin{bmatrix} \boldsymbol{R}[0] \ \boldsymbol{0}_{2,2} & \cdots & \boldsymbol{0}_{2,2} & \boldsymbol{0}_{2} \\ \boldsymbol{0}_{2,2} & \ddots & \vdots & \vdots \\ \vdots & \boldsymbol{R}[k_{\mathrm{f}}-2] & \boldsymbol{0}_{2,2} & \boldsymbol{0}_{2} \\ \boldsymbol{0}_{2,2} & \cdots & \boldsymbol{0}_{2,2} & \boldsymbol{R}[k_{\mathrm{f}}-1] + \boldsymbol{R}[k_{\mathrm{f}}] \ \boldsymbol{0}_{2} \\ \boldsymbol{0}_{1,2} & \cdots & \boldsymbol{0}_{1,2} & \boldsymbol{0}_{1,2} & q_{2} \end{bmatrix} \in \mathbb{R}^{(2 \cdot k_{\mathrm{f}}+1) \times (2 \cdot k_{\mathrm{f}}+1)}, \quad (4.84)$$

$$\boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}} = \begin{bmatrix} Q[0] \ 0 & \cdots & 0 \\ 0 & \ddots & \vdots \\ \vdots & Q[k_{\mathrm{f}} - 1] \ 0 \\ 0 & \cdots & 0 & Q[k_{\mathrm{f}}] \end{bmatrix} \in \mathbb{R}^{(k_{\mathrm{f}} + 1) \times (k_{\mathrm{f}} + 1)}, \tag{4.85}$$

$$\boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{\top} = \begin{bmatrix} \boldsymbol{v}^{\top}[0] \cdots \boldsymbol{v}^{\top}[k_{\mathrm{f}} - 2] \ \boldsymbol{v}^{\top}[k_{\mathrm{f}} - 1] + \boldsymbol{v}^{\top}[k_{\mathrm{f}}] \ q_{2} \end{bmatrix} \in \mathbb{R}^{1 \times (2 \cdot k_{\mathrm{f}} + 1)}, \tag{4.86}$$

$$\boldsymbol{\mathcal{T}}_{k_{\mathrm{f}}}^{\top} = \left[t[0] \cdots t[k_{\mathrm{f}} - 1] t[k_{\mathrm{f}}]\right] \in \mathbb{R}^{1 \times (k_{\mathrm{f}} + 1)}.$$
(4.87)

Durch Anwendung der zusammengefassten Zustandsgleichung (4.12) wird die Abhängigkeit vom Zustandsvektor eliminiert. Im Folgenden wird nur der $U_{k_{\rm f}}$ -abhängige Anteil $J_{u,2}$ betrachtet, da der konstante Anteil, wie bereits erwähnt, auf die Optimierung keinen Einfluss hat [20]. Durch Umstellen lautet dieser Anteil

$$J_{u,2} = \boldsymbol{U}_{k_{\mathrm{f}}}^{\top} \Big[\boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}} \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} \Big] \boldsymbol{U}_{k_{\mathrm{f}}} + \Big[2\psi_{\mathrm{rd},0} \boldsymbol{\mathcal{A}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}} \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{\top} + \boldsymbol{\mathcal{T}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} \Big] \boldsymbol{U}_{k_{\mathrm{f}}}.$$
(4.88)

Hieraus lassen sich die Größen für das QP-Problem

$$\boldsymbol{U}_{k_{\mathrm{f}}}^{*} = \operatorname*{argmin}_{\boldsymbol{U}_{k_{\mathrm{f}}}} \frac{1}{2} \boldsymbol{U}_{k_{\mathrm{f}}}^{\top} \boldsymbol{H} \boldsymbol{U}_{k_{\mathrm{f}}} + \boldsymbol{f}^{\top} \boldsymbol{U}_{k_{\mathrm{f}}}, \quad \boldsymbol{G} \boldsymbol{U}_{k_{\mathrm{f}}} \leq \boldsymbol{e}$$
(4.89)

ablesen und die vier Beschränkungen (4.22), (4.48), (4.51) und (4.64) werden zu einer Ungleichung zusammengefasst. Die Größen des zu lösenden QP-Problems (4.89) lauten schließlich

$$\boldsymbol{H} = 2 \Big[\boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}} \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} \Big] \in \mathbb{R}^{(2 \cdot k_{\mathrm{f}} + 1) \times (2 \cdot k_{\mathrm{f}} + 1)},$$
(4.90)

$$\boldsymbol{f}^{\top} = \left[2\psi_{\mathrm{rd},0} \boldsymbol{\mathcal{A}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}} \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{\top} + \boldsymbol{\mathcal{T}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} \right] \in \mathbb{R}^{1 \times (2 \cdot k_{\mathrm{f}} + 1)},$$
(4.91)

$$\boldsymbol{G} = \begin{bmatrix} \boldsymbol{\mathcal{W}}_{\boldsymbol{u},1} \\ \boldsymbol{\mathcal{W}}_{\boldsymbol{u},2} \\ \boldsymbol{\mathcal{W}}_{\boldsymbol{u},3} \\ \boldsymbol{\mathcal{W}}_{\boldsymbol{u},4} \end{bmatrix} \in \mathbb{R}^{(17\cdot k_{\mathrm{f}}+12)\times(2\cdot k_{\mathrm{f}}+1)}, \quad \boldsymbol{e} = \begin{bmatrix} \boldsymbol{\Omega}_{\boldsymbol{u},1} \\ \boldsymbol{\Omega}_{\boldsymbol{u},2} \\ \boldsymbol{\Omega}_{\boldsymbol{u},3} \\ \boldsymbol{\Omega}_{\boldsymbol{u},4} \end{bmatrix} \in \mathbb{R}^{17\cdot k_{\mathrm{f}}+12}. \tag{4.92}$$

Anhang A.3 zeigt, dass das obige QP-Problem konvex ist. Der nächste Abschnitt widmet sich der Nachführung der Parameter und erläutert den genauen Ablauf einer Optimierung detaillierter.

4.5 Ablauf des Optimierungsprozesses mit Parameternachführung

Da die Modellparameter der ASM zum Teil nicht konstant sind, sondern vom Statorstrom abhängen, ist die Rotorflussdynamik (4.10) ein LTV-System. Die Abhängigkeit der Parameter vom Statorstrom wird allerdings nicht direkt berücksichtigt, sondern die Parameter werden mit Hilfe der vorherigen Prädiktionen der Parameter und Statorströme in die

4 Modellprädiktive Betriebsstrategie für Einzelmotorantriebssysteme

Abb. 4.4: Schematische Darstellung der Parameteraktualisierung; 1. Schritt (grün): Prädiktion der Rotorflussverkettung; 2. Schritt (blau): Aktualisierung der Parameter; 3. Schritt (rot): Berechnung des optimalen Eingangsverlaufs; 4. Schritt (lila): Weitergabe des ersten Stromvektors an die Stromregler

Zukunft berechnet. Damit sind die Parameter im Voraus für den Prädiktionszeitraum bekannt. Sie werden wie in [1] nach jeder Iteration, also nach jeder Berechnung des optimalen Statorstroms, aktualisiert.

Der allgemeine Ablauf einer Iteration ist in Abbildung 4.4 abgebildet. Sie zeigt die durchzuführenden Rechenschritte, die nach der Weitergabe des optimalen Stroms aus der vorherigen Iteration durchgeführt werden. Die Zeitachse oben zeigt den Prädiktionshorizont der MPC, der um einen Zeitschritt erweitert ist. Der Prädiktionshorizont der aktuellen Iteration ist zur vorigen Iteration in der Zeit zwar um einen Schritt nach hinten versetzt, aber Abbildung 4.4 zeigt das zeitunabhängige Prädiktionsintervall, in dem k_p einen beliebigen Zeitpunkt innerhalb dieses Intervalls beschreibt. Unter der Zeitachse sind die Rotorflussverkettung $\psi_{\rm rd}$, der Parametervektor $\boldsymbol{p}_{\rm par}$, in dem die Parameter

$$\boldsymbol{p}_{\text{par}}[k_{\text{p}}] := \left[L_{\text{m}}[k_{\text{p}}] \,\omega_{\text{r}}[k_{\text{p}}] \,R_{\text{r}}[k_{\text{p}}] \,R_{\text{s}}[k_{\text{p}}] \right], \quad 0 \le k_{\text{p}} \le k_{\text{f}} - 1 \tag{4.93}$$

des Prädiktions intervalls enthalten sind, und der optimale Strom $i_{s,opt}$ aus der vorherigen und der aktuellen Iteration aufgeführt.

Die aktualisierten Größen, die jeweils für die aktuelle Optimierung gelten, werden im Folgenden durch einen Apostroph gekennzeichnet. Z. B. ist $\psi'_{rd}[k_p]$ die aktualisierte und

 $\psi_{\rm rd}[k_{\rm p}]$ die nicht aktualisierte Rotorflussverkettung. Zu Beginn des Optimierungsprozesses sind sowohl der Schätzwert der Rotorflussverkettung $\hat{\psi}_{\rm rd}$ zum Anfangszeitpunkt als auch die Parameter $\boldsymbol{p}_{\rm par}[k_{\rm p}]$ und der optimierte Statorstrom $\boldsymbol{i}_{\rm s,opt}[k_{\rm p}]$ im Prädiktionszeitraum $0 \leq k_{\rm p} \leq k_{\rm f} - 1$ aus der vorherigen Optimierung bekannt (schwarze Punkte in Abbildung 4.4). Auf Basis dieser Größen wird nun die Optimierung in vier Schritten durchgeführt:

1. Zuerst wird aufbauend auf dem Schätzwert $\hat{\psi}_{rd}$ die Rotorflussverkettung für das Intervall $1 \le k_p \le k_f$ prädiziert:

$$\psi'_{\rm rd}[1] = A_{\rm d}[0]\hat{\psi}_{\rm rd} + \boldsymbol{b}_{\rm d}^{\top}[0]\boldsymbol{i}_{\rm s,opt}[0],$$

$$\psi'_{\rm rd}[k_{\rm p}+1] = A_{\rm d}[k_{\rm p}]\psi'_{\rm rd}[k_{\rm p}] + \boldsymbol{b}_{\rm d}^{\top}[k_{\rm p}]\boldsymbol{i}_{\rm s,opt}[k_{\rm p}], \quad 1 \le k_{\rm p} \le k_{\rm f} - 1.$$

$$(4.94)$$

Als Grundlage für die Größen $A_d[k_p]$ und $\mathbf{b}_d^{\top}[k_p]$ dienen die Gleichungen (4.7) und (4.8) und die Parameter $\mathbf{p}_{par}[k_p]$ aus der vorherigen Iteration, wie Abbildung 4.4 in grün illustriert. Der aktualisierte Rotorfluss der vorherigen Iteration im Intervall $1 \leq k_p \leq k_f$ entspricht dem Rotorfluss im Intervall $0 \leq k_p \leq k_f - 1$ der aktuellen Iteration.

2. Als Zweites folgt die Aktualisierung der Parameter, die in Abbildung 4.4 in blau dargestellt ist. Die Parameter und Ströme sind nur für den Zeitraum $0 \le k_p \le k_f - 1$ bzgl. der vorherigen Iteration bekannt, während die Parameter für das Intervall $0 \le k_p \le k_f - 1$ der aktuellen Iteration gesucht werden. Da der Zeitschritt k_f der vorherigen Iteration dem Zeitschritt $k_f - 1$ der aktuellen Iteration entspricht, fehlen also noch die alten Werte zu diesem Zeitpunkt, mit denen die Aktualisierung stattfindet. Aus diesem Grund werden die Parameter und der Strom konstant verlängert, wie Abbildung 4.4 zeigt: $\boldsymbol{p}_{par}[k_f] = \boldsymbol{p}_{par}[k_f - 1], \, \boldsymbol{i}_{s,opt}[k_f] = \boldsymbol{i}_{s,opt}[k_f - 1].$ Die aktualisierte Rotorflussverkettung aus Schritt 1 wird nun verwendet, um den reduzierten Statorstrom

$$\dot{\boldsymbol{i}}_{l}^{'}[k_{p}] = \boldsymbol{G}_{i}[k_{p}]\boldsymbol{i}_{s,opt}[k_{p}] + \begin{bmatrix} g_{\psi,11}[k_{p}]\\ g_{\psi,21}[k_{p}] \end{bmatrix} \boldsymbol{\psi}_{rd}^{'}[k_{p}]$$
(4.95)

und den Rotorstrom

$$\dot{i}_{\rm rd}'[k_{\rm p}] = \frac{1}{L_{\rm r}[k_{\rm p}]} \Big(\psi_{\rm rd}'[k_{\rm p}] - L_{\rm m}[k_{\rm p}]\dot{i}_{\rm ld}'[k_{\rm p}]\Big),\tag{4.96}$$

$$\dot{i}_{rq}'[k_{p}] = -\frac{L_{m}[k_{p}]}{L_{r}[k_{p}]}\dot{i}_{lq}'[k_{p}]$$
(4.97)

für die aktuelle Iteration zu aktualisieren. Die Matrizen $G_i[k_p]$ und $G_{\psi}[k_p]$ werden nach den Gleichungen (4.5) und (4.6) auf Basis der alten Parameter ermittelt. Darauf aufbauend können der Magnetisierungsstrom

$$i'_{\rm m}[k_{\rm p}] = \sqrt{\left(i'_{\rm ld}[k_{\rm p}] + i'_{\rm rd}[k_{\rm p}]\right)^2 + \left(i'_{\rm lq}[k_{\rm p}] + i'_{\rm rq}[k_{\rm p}]\right)^2} \tag{4.98}$$

und folglich die Hauptinduktivität

4 Modellprädiktive Betriebsstrategie für Einzelmotorantriebssysteme

$$L'_{\rm m}[k_{\rm p}] = k_1 + \frac{k_1 - k_2}{1 + e^{k_3 k_4}} - \frac{k_1 - k_2}{1 + e^{-k_3 (i'_{\rm m}[k_{\rm p}] - k_4)}}$$
(4.99)

aktualisiert werden. Schließlich folgen noch die Rotorkreisfrequenz

$$\omega_{\rm r}'[k_{\rm p}] = -\frac{R_{\rm r}[k_{\rm p}]i_{\rm rq}'[k_{\rm p}]}{\psi_{\rm rd}'[k_{\rm p}]}$$
(4.100)

und die Statorkreisfrequenz

$$\omega'_{\rm s}[k_{\rm p}] = p \cdot \omega_{\rm mech} + \omega'_{\rm r}[k_{\rm p}] \tag{4.101}$$

und die beiden Widerstände

$$R'_{\rm r}[k_{\rm p}] = R_{\rm dc,r} \Big(1 + h_{\rm r} \omega'_{\rm r}^{\,2}[k_{\rm p}] \Big) f_{\rm r}(\vartheta_{\rm r}), \qquad (4.102)$$

$$R'_{\rm s}[k_{\rm p}] = R_{\rm dc,s} \Big(1 + h_{\rm s} \omega'^{2}_{\rm s}[k_{\rm p}] \Big) f_{\rm s}(\vartheta_{\rm s})$$
(4.103)

für den Rotor und den Stator. Damit steht der aktualisierte Parametervektor

$$\boldsymbol{p}_{\rm par}'[k_{\rm p}] = \left[L_{\rm m}'[k_{\rm p}] \, \omega_{\rm r}'[k_{\rm p}] \, R_{\rm r}'[k_{\rm p}] \, R_{\rm s}'[k_{\rm p}] \right], \quad 0 \le k_{\rm p} \le k_{\rm f} - 1 \tag{4.104}$$

für die aktuelle Iteration.

- 3. Nach der Aktualisierung der Parameter kann das QP-Problem nach den Formeln (4.89) bis (4.92) aufgestellt und der optimale Eingangsvektor $i'_{s,opt}[k_p]$ berechnet werden (siehe Abbildung 4.4 in rot). Sowohl für die Linearisierungen des Drehmoments und der Verluste als auch für die AP-abhängigen Näherungen des Strom- und des Spannungskreises werden die aktualisierte Rotorflussverkettung und der Stromvektor der vorherigen Prädiktion herangezogen: $\bar{i}_s[k_p] = i_{s,opt}[k_p], \ \overline{\psi}_{rd}[k_p] = \psi'_{rd}[k_p]$.
- 4. Schließlich wird der erste Eingangsvektor der Optimierung wie in Abbildung 4.4 an die Stromregler übergeben:

$$i_{\rm s}^* = i_{\rm s,opt}^{'}[0].$$
 (4.105)

Gleichzeitig wird der nächste Schätzwert der Rotorflussverkettung $\hat{\psi}_{rd}$ bestimmt und die aktualisierten Größen werden der nächsten Iteration als alte Größen zugewiesen: $\psi'_{rd} \rightarrow \psi_{rd}, \, \mathbf{p}'_{par} \rightarrow \mathbf{p}_{par}, \, \mathbf{i}'_{s,opt} \rightarrow \mathbf{i}_{s,opt}$. Danach wird die nächste Iteration wieder mit Schritt 1 gestartet.

Der gesamte Optimierungsprozess von Schritt 1 bis 4 findet jeweils im Intervall $0 < k_{\rm p} < 1$ aus Sicht der vorherigen Iteration statt. Die Berechnungen müssen also innerhalb einer Abtastzeit $T_{\rm s}$ von der Regelungshardware ausgeführt werden.

5 Erweiterung der modellprädiktiven Betriebsstrategie auf Mehrmotorenantriebssysteme

Die MPC aus dem vorherigen Kapitel wird nun in diesem Kapitel auf ein MMDS erweitert, welches sich im Folgenden aus insgesamt $n_{\rm M}$ verschiedenen ASM zusammensetzt. Jede ASM wird nach Abschnitt 2.1 modelliert und ist durch die Parameter nach Tabelle 2.1 definiert, die von Motor zu Motor variieren können. Das Ziel ist wie im Fall eines SMDS die Bereitstellung eines geforderten Drehmoments bei höchster Effizienz unter Berücksichtigung der Strom- und Spannungsgrenzen jedes Motors. Das Vorgehen und die Herleitung des QP-Problems sind dabei analog zu Kapitel 4: Nach der Herleitung der Systemdynamik werden die Beschränkungen und die Kostenfunktion aufgestellt und zum QP-Problem zusammengefasst.

Aus Gründen der Lesbarkeit wird im Folgenden auf die Kennzeichnung der Dimensionen der Null- und Einsvektoren und Nullmatrizen in den meisten Fällen verzichtet. Außerdem werden die Entwicklungspunkte i_{sd} , i_{sq} , und $\overline{\psi}_{rd}$, in denen die Linearisierungen stattfinden, nicht aufgeführt. Die Größen eines einzelnen Motors, wie z. B. Ströme oder Spannungen, werden mit einem oberen Index in Klammern gekennzeichnet. Bspw. stellt $i_{s}^{(1)}$ den Statorstromvektor des Motors 1 dar.

5.1 Herleitung der Systemdynamik

Als Eingänge der Regelstrecke dienen die Statorströme aller Motoren $i_{\rm s}^{(1)}$ bis $i_{\rm s}^{(n_{\rm M})}$ und die Rotorflussverkettungen $\psi_{\rm rd}^{(1)}$ bis $\psi_{\rm rd}^{(n_{\rm M})}$ stellen die Zustandsgrößen dar. Des Weiteren ist die Schlupfvariable ε Teil des Optimierungsproblems, um das gewünschte Drehmoment einzustellen. Um bei der Herleitung der Systemdynamik auf die bereits hergeleiteten Zusammenhänge aus Kapitel 4 zugreifen zu können, wird der Optimierungsvektor wie folgt aufgebaut:

5 Erweiterung der modellprädiktiven Betriebsstrategie auf Mehrmotorenantriebssysteme

$$\boldsymbol{U}_{k_{\mathrm{f}}} = \begin{bmatrix} \boldsymbol{i}_{\mathrm{s}}^{(1)}[0] \\ \vdots \\ \boldsymbol{i}_{\mathrm{s}}^{(1)}[k_{\mathrm{f}} - 1] \\ \vdots \\ \boldsymbol{i}_{\mathrm{s}}^{(n_{\mathrm{M}})}[0] \\ \vdots \\ \boldsymbol{i}_{\mathrm{s}}^{(n_{\mathrm{M}})}[k_{\mathrm{f}} - 1] \\ \varepsilon \end{bmatrix} \in \mathbb{R}^{2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}} + 1}.$$
(5.1)

Die zeitdiskrete Rotorkreisdynamik aus Gleichung (4.10) gilt für jeden Motor gleichermaßen:

$$\psi_{\rm rd}^{(i)}[k+1] = A_{\rm d}^{(i)}[k]\psi_{\rm rd}^{(i)}[k] + \left(\boldsymbol{b}_{\rm d}^{(i)}[k]\right)^{\top} \boldsymbol{i}_{\rm s}^{(i)}[k], \quad i \in \{1,\dots,n_{\rm M}\}.$$
(5.2)

Für die Größen $A_{d}^{(i)}[k]$ und $\boldsymbol{b}_{d}^{(i)}[k]$ werden die entsprechenden Motorparameter herangezogen. Durch die Definition des komprimierten Rotorflussverkettungsvektors

$$\Psi_{k_{\rm f}} = \begin{bmatrix} \Psi_{k_{\rm f}}^{(1)} \\ \vdots \\ \Psi_{k_{\rm f}}^{(n_{\rm M}-1)} \\ \Psi_{k_{\rm f}}^{(n_{\rm M})} \end{bmatrix} = \begin{bmatrix} \psi_{\rm rd}^{(1)}[0] \\ \vdots \\ \psi_{\rm rd}^{(1)}[k_{\rm f}] \\ \vdots \\ \psi_{\rm rd}^{(n_{\rm M})}[0] \\ \vdots \\ \psi_{\rm rd}^{(n_{\rm M})}[k_{\rm f}] \end{bmatrix} \in \mathbb{R}^{n_{\rm M} \cdot (k_{\rm f}+1)}, \quad \Psi_{k_{\rm f}}^{(i)} = \begin{bmatrix} \psi_{\rm rd}^{(i)}[0] \\ \vdots \\ \psi_{\rm rd}^{(i)}[k_{\rm f}] \end{bmatrix}$$
(5.3)

kann eine komprimierte Zustandsgleichung abgeleitet werden, in der Gleichung (4.12) für jeden Motor Verwendung findet:

$$\Psi_{k_{\rm f}} = \underbrace{\begin{bmatrix} \mathcal{A}_{k_{\rm f}}^{(1)} \ \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \ddots & \vdots \\ \vdots & \mathcal{A}_{k_{\rm f}}^{(n_{\rm M}-1)} \ \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathcal{A}_{k_{\rm f}}^{(n_{\rm M})} \end{bmatrix}}_{= \mathcal{A}_{k_{\rm f}}} \underbrace{\begin{bmatrix} \psi_{\rm rd,0}^{(1)} \\ \vdots \\ \psi_{\rm rd,0}^{(n_{\rm M}-1)} \\ \psi_{\rm rd,0}^{(n_{\rm M})} \end{bmatrix}}_{= \psi_{\rm rd,0}} + \underbrace{\begin{bmatrix} \mathcal{B}_{k_{\rm f}}^{(1)} \ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \vdots & \vdots \\ \vdots & \mathcal{B}_{k_{\rm f}}^{(n_{\rm M}-1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathcal{B}_{k_{\rm f}}^{(n_{\rm M})} \mathbf{0} \end{bmatrix}}_{= \mathcal{U}_{k_{\rm f}}} \underbrace{\begin{bmatrix} i_{\rm s}^{(1)}[0] \\ \vdots \\ i_{\rm s}^{(n_{\rm M})}[k_{\rm f}-1] \\ \varepsilon \end{bmatrix}}_{= \mathcal{U}_{k_{\rm f}}} \\ = \mathcal{A}_{k_{\rm f}}\psi_{\rm rd,0} + \mathcal{B}_{k_{\rm f}}U_{k_{\rm f}}. \tag{5.4}$$

Die komprimierte Systemmatrix besitzt die Dimension $\mathcal{A}_{k_{\mathrm{f}}} \in \mathbb{R}^{(n_{\mathrm{M}} \cdot (k_{\mathrm{f}}+1)) \times n_{\mathrm{M}}}$ und die komprimierte Eingangsmatrix ist $\mathcal{B}_{k_{\mathrm{f}}} \in \mathbb{R}^{(n_{\mathrm{M}} \cdot (k_{\mathrm{f}}+1)) \times (2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}}+1)}$. Die System- und Eingangsmatrix des *i*-ten Motors besitzen die Gestalt

$$\boldsymbol{\mathcal{A}}_{k_{\mathrm{f}}}^{(i)} = \begin{bmatrix} 1 \\ A_{\mathrm{d}}^{(i)}[0] \\ A_{\mathrm{d}}^{(i)}[1]A_{\mathrm{d}}^{(i)}[0] \\ A_{\mathrm{d}}^{(i)}[2]A_{\mathrm{d}}^{(i)}[1]A_{\mathrm{d}}^{(i)}[0] \\ \vdots \\ A_{\mathrm{d}}^{(i)}[k_{\mathrm{f}}-1] \cdot \ldots \cdot A_{\mathrm{d}}^{(i)}[0] \end{bmatrix}, \qquad (5.5)$$

$$\boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}}^{(i)} = \begin{bmatrix} \mathbf{0}_{1,2} & \mathbf{0}_{1,2} & \cdots & \mathbf{0}_{1,2} \\ \left(\mathbf{b}_{\mathrm{d}}^{(i)}[0] \right)^{\mathrm{T}} & \mathbf{0}_{1,2} & \cdots & \mathbf{0}_{1,2} \\ A_{\mathrm{d}}^{(i)}[1]\left(\mathbf{b}_{\mathrm{d}}^{(i)}[0] \right)^{\mathrm{T}} & \left(\mathbf{b}_{\mathrm{d}}^{(i)}[1] \right)^{\mathrm{T}} & \cdots & \mathbf{0}_{1,2} \\ A_{\mathrm{d}}^{(i)}[1]\left(\mathbf{b}_{\mathrm{d}}^{(i)}[0] \right)^{\mathrm{T}} & A_{\mathrm{d}}^{(i)}[2]\left(\mathbf{b}_{\mathrm{d}}^{(i)}[1] \right)^{\mathrm{T}} & \cdots & \mathbf{0}_{1,2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{\mathrm{d}}^{(i)}[2]A_{\mathrm{d}}^{(i)}[1]\left(\mathbf{b}_{\mathrm{d}}^{(i)}[0] \right)^{\mathrm{T}} & A_{\mathrm{d}}^{(i)}[2]\left(\mathbf{b}_{\mathrm{d}}^{(i)}[1] \right)^{\mathrm{T}} & \cdots & \mathbf{0}_{1,2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{\mathrm{d}}^{(i)}[k_{\mathrm{f}}-1] \cdot \ldots \cdot A_{\mathrm{d}}^{(i)}[1]\left(\mathbf{b}_{\mathrm{d}}^{(i)}[0] \right)^{\mathrm{T}} & A_{\mathrm{d}}^{(i)}[k_{\mathrm{f}}-1] \cdot \ldots \cdot A_{\mathrm{d}}^{(i)}[2]\left(\mathbf{b}_{\mathrm{d}}^{(i)}[1] \right)^{\mathrm{T}} & \cdots & \left(\mathbf{b}_{\mathrm{d}}^{(i)}[k_{\mathrm{f}}-1] \right)^{\mathrm{T}} \end{bmatrix}$$

$$(5.6)$$

wobei die Matrix $\mathcal{B}_{k_{\mathrm{f}}}^{(i)}$ nur durch die fehlende letzte Spalte von Gleichung (4.14) abweicht.

5.2 Beschränkungen des Systems

Für jeden einzelnen der $n_{\rm M}$ Motoren gelten neben den Strom- und Spannungsbeschränkungen auch Beschränkungen der Rotorflussverkettungen, die analog zu SMDS umgesetzt werden können, wie nachfolgend gezeigt wird. Einzige Ausnahme ist die weiche Einschränkung zur Drehmomentregelung, die schließlich die Kopplung aller Motoren darstellt, weil sie zusammen das Systemdrehmoment zur Verfügung stellen.

5.2.1 Beschränkungen der Statorströme

Jeder Motor unterliegt einer Begrenzung des Statorstroms der Form

$$(i_{\rm sd}^{(i)}[k])^2 + (i_{\rm sq}^{(i)}[k])^2 \le (i_{\rm s,max}^{(i)})^2, \quad i \in \{1,\dots,n_{\rm M}\},\tag{5.7}$$

die einen Kreis in der Statorstromebene darstellt (vgl. Abbildung 4.2). Für jeden Motor wird die Beschränkung wie in Unterabschnitt 4.3.1 separat durchgeführt und am Ende zusammengefasst. Am Ende lautet die Beschränkung in gleicher Weise

$$\boldsymbol{\mathcal{W}}_{\boldsymbol{u},1}\boldsymbol{U}_{k_{\mathrm{f}}} \leq \boldsymbol{\Omega}_{\boldsymbol{u},1},\tag{5.8}$$

aber die Größen dieser Gleichung sind anders definiert:

5 Erweiterung der modellprädiktiven Betriebsstrategie auf Mehrmotorenantriebssysteme

$$\boldsymbol{\mathcal{W}}_{\boldsymbol{u},1} := \begin{bmatrix} \boldsymbol{\mathcal{W}}_{\boldsymbol{u},1}^{(1)} \ \boldsymbol{0} & \cdots & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \ddots & \vdots & \vdots \\ \vdots & \boldsymbol{\mathcal{W}}_{\boldsymbol{u},1}^{(n_{\mathrm{M}}-1)} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \cdots & \boldsymbol{0} & \boldsymbol{\mathcal{W}}^{(n_{\mathrm{M}})} \boldsymbol{0} \end{bmatrix} \in \mathbb{R}^{(5 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}}) \times (2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}}+1)},$$
(5.9)

$$\boldsymbol{\Omega}_{\boldsymbol{u},1} := \left[\left(\boldsymbol{\Omega}_{\boldsymbol{u},1}^{(1)} \right)^{\top} \cdots \left(\boldsymbol{\Omega}_{\boldsymbol{u},1}^{(n_{\mathrm{M}})} \right)^{\top} \right]^{\top} \in \mathbb{R}^{5 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}}}.$$
(5.10)

Beide Größen setzen sich aus den Beschränkungen der einzelnen Motoren zusammen, die ähnlich zu den Gleichungen (4.23) und (4.24) definiert sind:

$$\boldsymbol{\mathcal{W}}_{\boldsymbol{u},1}^{(i)} := \begin{bmatrix} \boldsymbol{W}_{\boldsymbol{u},1}^{(i)}[0] \, \boldsymbol{0}_{5,2} & \cdots & \boldsymbol{0}_{5,2} \\ \boldsymbol{0}_{5,2} & \ddots & & \vdots \\ \vdots & \boldsymbol{W}_{\boldsymbol{u},1}^{(i)}[k_{\mathrm{f}}-2] \, \boldsymbol{0}_{5,2} \\ \boldsymbol{0}_{5,2} & \cdots & \boldsymbol{0}_{5,2} & \boldsymbol{W}_{\boldsymbol{u},1}^{(i)}[k_{\mathrm{f}}-1] \end{bmatrix} \in \mathbb{R}^{(5 \cdot k_{\mathrm{f}}) \times (2 \cdot k_{\mathrm{f}})}, \quad (5.11)$$

$$\boldsymbol{\Omega}_{\boldsymbol{u},1}^{(i)} := \left[\left(\boldsymbol{\omega}_{\boldsymbol{u},1}^{(i)}[0] \right)^{\top} \cdots \left(\boldsymbol{\omega}_{\boldsymbol{u},1}^{(i)}[k_{\mathrm{f}}-1] \right)^{\top} \right]^{\top} \in \mathbb{R}^{5 \cdot k_{\mathrm{f}}}.$$
(5.12)

Die Matrizen $\boldsymbol{W}_{\boldsymbol{u},1}^{(i)}[k]$ und Vektoren $\boldsymbol{\omega}_{\boldsymbol{u},1}^{(i)}[k]$ berechnen sich ähnlich zu denen in Ungleichung (4.21) mit dem Unterschied, dass die verschiedenen Stromamplituden $i_{\mathrm{s,max}}^{(i)}$ und die AP $\boldsymbol{\bar{i}}_{\mathrm{s}}^{(i)}$ verwendet werden müssen.

5.2.2 Beschränkungen der Statorspannungen

Genauso wie die Ströme sind auch die Statorspannungen der Motoren auf ein Maximum begrenzt:

$$(u_{\rm sd}^{(i)}[k])^2 + (u_{\rm sq}^{(i)}[k])^2 \le (u_{\rm s,max}^{(i)})^2, \quad i \in \{1,\dots,n_{\rm M}\}.$$
(5.13)

Diese Beschränkungen, die wie in Abbildung 4.3 Kreise in der Statorspannungsebene darstellen, werden identisch zu Unterabschnitt 4.3.2 genähert. Das bedeutet, dass pro Motor neun Beschränkungen als Näherung existieren. Die Beschränkungen jedes einzelnen Motors der Form (4.47) werden zur Ungleichung

$$\mathcal{N}_1 U_{k_{\rm f}} + \mathcal{N}_2 \Psi_{k_{\rm f}} \le \Omega_{\rm v} \tag{5.14}$$

zusammengefasst, in der die Matrizen und der Vektor folgenden Aufbau besitzen:

$$\mathcal{N}_{1} := \begin{bmatrix} \mathcal{N}_{1}^{(1)} \ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \vdots & \vdots \\ \vdots & \mathcal{N}_{1}^{(n_{M}-1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathcal{N}_{1}^{(n_{M})} & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(n_{M} \cdot (9 \cdot k_{f} + 9)) \times (2 \cdot n_{M} \cdot k_{f} + 1)}, \quad (5.15)$$
$$\mathcal{N}_{2} := \begin{bmatrix} \mathcal{N}_{2}^{(1)} \ \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \ddots & \vdots \\ \vdots & \mathcal{N}_{2}^{(n_{M}-1)} & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathcal{N}_{2}^{(n_{M})} \end{bmatrix} \in \mathbb{R}^{(n_{M} \cdot (9 \cdot k_{f} + 9)) \times (n_{M} \cdot (k_{f} + 1))}, \quad (5.16)$$

5.2 Beschränkungen des Systems

$$\boldsymbol{\Omega}_{\mathbf{v}} := \left[\left(\boldsymbol{\Omega}_{\mathbf{v}}^{(1)} \right)^{\top} \cdots \left(\boldsymbol{\Omega}_{\mathbf{v}}^{(n_{\mathrm{M}})} \right)^{\top} \right]^{\top} \in \mathbb{R}^{n_{\mathrm{M}} \cdot (9 \cdot k_{\mathrm{f}} + 9)}.$$
(5.17)

Die hier enthaltenen Matrizen und Vektoren werden für den i-ten Motor wie folgt berechnet

$$\boldsymbol{\mathcal{N}}_{1}^{(i)} := \begin{bmatrix} \boldsymbol{\mathcal{N}}_{1}^{(i)}[0] \, \boldsymbol{0}_{9,2} & \cdots & \boldsymbol{0}_{9,2} \\ \boldsymbol{0}_{9,2} & \ddots & \vdots \\ \vdots & \boldsymbol{\mathcal{N}}_{1}^{(i)}[k_{\mathrm{f}}-2] & \boldsymbol{0}_{9,2} \\ \boldsymbol{0}_{9,2} & \cdots & \boldsymbol{0}_{9,2} & \boldsymbol{\mathcal{N}}_{1}^{(i)}[k_{\mathrm{f}}-1] \\ \boldsymbol{0}_{9,2} & \cdots & \boldsymbol{0}_{9,2} & \boldsymbol{\mathcal{N}}_{1}^{(i)}[k_{\mathrm{f}}-1] \end{bmatrix} \in \mathbb{R}^{(9\cdot k_{\mathrm{f}}+9)\times(2\cdot k_{\mathrm{f}})}, \quad (5.18)$$

$$\boldsymbol{\mathcal{N}}_{2}^{(i)} := \begin{bmatrix} \boldsymbol{n}_{2}^{(i)}[0] \, \boldsymbol{0}_{9} & \cdots & \boldsymbol{0}_{9} & \boldsymbol{0}_{9} \\ \boldsymbol{0}_{9} & \ddots & \vdots & \vdots \\ \vdots & \boldsymbol{n}_{2}^{(i)}[k_{\mathrm{f}}-2] & \boldsymbol{0}_{9} & \boldsymbol{0}_{9} \\ \boldsymbol{0}_{9} & \cdots & \boldsymbol{0}_{9} & \boldsymbol{n}_{2}^{(i)}[k_{\mathrm{f}}-1] & \boldsymbol{0}_{9} \\ \boldsymbol{0}_{9} & \cdots & \boldsymbol{0}_{9} & \boldsymbol{n}_{2}^{(i)}[k_{\mathrm{f}}-1] & \boldsymbol{0}_{9} \\ \boldsymbol{0}_{9} & \cdots & \boldsymbol{0}_{9} & \boldsymbol{0}_{9} & \boldsymbol{n}_{2}^{(i)}[k_{\mathrm{f}}-1] \end{bmatrix} \in \mathbb{R}^{(9\cdot k_{\mathrm{f}}+9)\times(k_{\mathrm{f}}+1)}, \quad (5.19)$$

$$\boldsymbol{\Omega}_{\mathrm{v}}^{(i)} := \begin{bmatrix} \left(\boldsymbol{\omega}_{\mathrm{v}}^{(i)}[0]\right)^{\mathsf{T}} \cdots \left(\boldsymbol{\omega}_{\mathrm{v}}^{(i)}[k_{\mathrm{f}}-2]\right)^{\mathsf{T}} \left(\boldsymbol{\omega}_{\mathrm{v}}^{(i)}[k_{\mathrm{f}}-1]\right)^{\mathsf{T}} \left(\boldsymbol{\omega}_{\mathrm{v}}^{(i)}[k_{\mathrm{f}}-1]\right)^{\mathsf{T}} \right]^{\mathsf{T}} \in \mathbb{R}^{9\cdot k_{\mathrm{f}}+9}, \quad (5.20)$$

wobei hier die Erweiterungen für den Zeitschritt $k_{\rm f}$ nach Kapitel 4 enthalten sind und die verschiedenen Spannungsmaxima der Motoren $u_{\rm s,max}^{(i)}$ und die AP $\overline{u}_{\rm s}^{(i)}$ eingesetzt werden müssen. Unter Ausnutzung der komprimierten Rotorkreisdynamik (5.4) werden die Zustände in Ungleichung (5.14) eliminiert und es wird die Beschränkung

$$\underbrace{(\mathcal{N}_1 + \mathcal{N}_2 \mathcal{B}_{k_{\rm f}})}_{=: \mathcal{W}_{u,2}} U_{k_{\rm f}} \leq \underbrace{\Omega_{\rm v} - \mathcal{N}_2 \mathcal{A}_{k_{\rm f}} \psi_{\rm rd,0}}_{=: \Omega_{u,2}}$$
(5.21)

erhalten, wobei $\mathcal{W}_{u,2} \in \mathbb{R}^{(n_{\mathcal{M}} \cdot (9 \cdot k_{\mathcal{f}} + 9)) \times (2 \cdot n_{\mathcal{M}} \cdot k_{\mathcal{f}} + 1)}$ und $\Omega_{u,2} \in \mathbb{R}^{n_{\mathcal{M}} \cdot (9 \cdot k_{\mathcal{f}} + 9)}$ gelten.

5.2.3 Festlegung minimaler Rotorflüsse

Als dritte Beschränkung des MMDS wird für die Rotorflussverkettungen ein Minimum festgelegt, das für jeden Motor einen anderen Wert besitzen kann:

$$\psi_{\rm rd}^{(i)}[k] \ge \psi_{\rm rd,min}^{(i)}, \quad i \in \{1, \dots, n_{\rm M}\}.$$
 (5.22)

Durch Zusammenfassung zu Vektoren lassen sich die Flüsse für den gesamten Prädiktionshorizont und für alle $n_{\rm M}$ Motoren in einer Ungleichung darstellen:

$$\underbrace{\begin{bmatrix} \Psi_{k_{\mathrm{f}}}^{(1)} \\ \vdots \\ \Psi_{k_{\mathrm{f}}}^{(n_{\mathrm{M}})} \end{bmatrix}}_{=\Psi_{k_{\mathrm{f}}}} \geq \underbrace{\begin{bmatrix} \mathbf{1}_{k_{\mathrm{f}}+1} \cdot \psi_{\mathrm{rd,min}}^{(1)} \\ \vdots \\ \mathbf{1}_{k_{\mathrm{f}}+1} \cdot \psi_{\mathrm{rd,min}}^{(n_{\mathrm{M}})} \end{bmatrix}}_{=:\Psi_{k_{\mathrm{f}},\mathrm{min}}}.$$
(5.23)

57

Die Beschränkung für den Optimierungsvektor $U_{k_{\rm f}}$ wird durch Einsetzen von Gleichung (5.4) gefunden:

$$\underbrace{-\mathcal{B}_{k_{\mathrm{f}}}}_{=:\mathcal{W}_{\boldsymbol{u},3}} U_{k_{\mathrm{f}}} \leq \underbrace{\mathcal{A}_{k_{\mathrm{f}}}\psi_{\mathrm{rd},0} - \Psi_{k_{\mathrm{f}},\mathrm{min}}}_{=:\Omega_{\boldsymbol{u},3}}.$$
(5.24)

5.2.4 Weiche Einschränkung zur Drehmomenteinregelung

Bei der Einschränkung für das Drehmoment wird das Gesamtdrehmoment des MMDS, das sich durch die Summe der Drehmomente aller Motoren

$$T_{\rm MMDS} = \sum_{i=1}^{n_{\rm M}} T^{(i)}, \quad T^{(i)} = \frac{3}{2} p^{(i)} \frac{L_{\rm m}^{(i)}}{L_{\rm r}^{(i)}} \psi_{\rm rd}^{(i)} i_{\rm lq}^{(i)}$$
(5.25)

berechnet, genommen. Damit lautet die Einschränkung

$$T^* - \varepsilon \le T_{\text{MMDS}}[k] \le T^* + \varepsilon.$$
 (5.26)

Wie in Gleichung (4.56) wird das Drehmoment für jeden Motor linearisiert, sodass die Näherung

$$T_{\rm MMDS} \approx \sum_{i=1}^{n_{\rm M}} \frac{\partial T^{(i)}}{\partial i_{\rm sd}^{(i)}} i_{\rm sd}^{(i)} + \frac{\partial T^{(i)}}{\partial i_{\rm sq}^{(i)}} i_{\rm sq}^{(i)} + \frac{\partial T^{(i)}}{\partial \psi_{\rm rd}^{(i)}} \psi_{\rm rd}^{(i)} + T_0^{(i)}$$
(5.27)

für das Systemdrehmoment resultiert, wobei die Ableitungen im AP $i_{sd}^{(i)}$, $\bar{i}_{sq}^{(i)}$, $\bar{\psi}_{rd}^{(i)}$ zu berechnen sind. Die Einschränkung (5.26) kann damit in eine Ungleichung der Form

$$\mathcal{M}_1 U_{k_{\rm f}} + \mathcal{M}_2 \Psi_{k_{\rm f}} \le \Omega_{\rm t} \tag{5.28}$$

für die komprimierten Vektoren überführt werden. Um die Struktur der Matrizen \mathcal{M}_1 und \mathcal{M}_2 zu erläutern, werden zunächst folgende Größen definiert, die die Ableitungen im jeweiligen AP enthalten:

$$\boldsymbol{M}_{1}^{(i)}[k] := \begin{bmatrix} \frac{\partial T^{(i)}}{\partial i_{\mathrm{sd}}^{(i)}}[k] & \frac{\partial T^{(i)}}{\partial i_{\mathrm{sq}}^{(i)}}[k] \\ -\frac{\partial T^{(i)}}{\partial i_{\mathrm{sd}}^{(i)}}[k] -\frac{\partial T^{(i)}}{\partial i_{\mathrm{sq}}^{(i)}}[k] \end{bmatrix} \Big|_{\boldsymbol{\overline{i}}_{\mathrm{sd}}^{(i)}, \boldsymbol{\overline{i}}_{\mathrm{sd}}^{(i)}, \boldsymbol{\overline{\psi}}_{\mathrm{rd}}^{(i)}} \in \mathbb{R}^{2 \times 2},$$
(5.29)

$$\boldsymbol{m}_{2}^{(i)}[k] := \begin{bmatrix} \frac{\partial T^{(i)}}{\partial \psi_{\mathrm{rd}}^{(i)}}[k] \\ -\frac{\partial T^{(i)}}{\partial \psi_{\mathrm{rd}}^{(i)}}[k] \end{bmatrix} \Big|_{\boldsymbol{\bar{i}}_{\mathrm{sd}}^{(i)}, \boldsymbol{\bar{i}}_{\mathrm{sd}}^{(i)}, \boldsymbol{\bar{\psi}}_{\mathrm{rd}}^{(i)}} \in \mathbb{R}^{2}.$$

$$(5.30)$$

Diese Größen werden nun zu Untermatrizen zusammengefasst, die die Anteile des *i*-ten Motors über den Prädiktionshorizont inklusive Erweiterung um den Zeitschritt $k_{\rm f}$ enthalten:

$$\mathcal{M}_{1}^{(i)} := \begin{bmatrix} \mathcal{M}_{1}^{(i)}[0] \ \mathbf{0}_{2,2} & \cdots & \mathbf{0}_{2,2} \\ \mathbf{0}_{2,2} & \ddots & \vdots \\ \vdots & \mathcal{M}_{1}^{(i)}[k_{\mathrm{f}}-2] & \mathbf{0}_{2,2} \\ \mathbf{0}_{2,2} & \cdots & \mathbf{0}_{2,2} & \mathcal{M}_{1}^{(i)}[k_{\mathrm{f}}-1] \\ \mathbf{0}_{2,2} & \cdots & \mathbf{0}_{2,2} & \mathcal{M}_{1}^{(i)}[k_{\mathrm{f}}-1] \end{bmatrix} \in \mathbb{R}^{(2 \cdot k_{\mathrm{f}}+2) \times (2 \cdot k_{\mathrm{f}})}, \quad (5.31)$$

$$\mathcal{M}_{2}^{(i)} := \begin{bmatrix} \mathbf{m}_{2}^{(i)}[0] \ \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} & \mathbf{0}_{2} \\ \mathbf{0}_{2} & \ddots & \vdots & \vdots \\ \vdots & \mathbf{m}_{2}^{(i)}[k_{\mathrm{f}}-2] & \mathbf{0}_{2} & \mathbf{0}_{2} \\ \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} & \mathbf{m}_{2}^{(i)}[k_{\mathrm{f}}-1] & \mathbf{0}_{2} \\ \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} & \mathbf{0}_{2} & \mathbf{m}_{2}^{(i)}[k_{\mathrm{f}}-1] \end{bmatrix} \in \mathbb{R}^{(2 \cdot k_{\mathrm{f}}+2) \times (k_{\mathrm{f}}+1)}. \quad (5.32)$$

Schließlich werden die Untermatrizen aller Motoren in jeweils einer Matrix zusammengefasst, wobei in der Matrix \mathcal{M}_1 die Einträge der Schlupfvariable in der letzten Spalte berücksichtigt werden müssen:

$$\mathcal{M}_{1} := \left[\mathcal{M}_{1}^{(1)} \cdots \mathcal{M}_{1}^{(n_{\mathrm{M}})} - \mathbf{1}_{2 \cdot k_{\mathrm{f}} + 2}\right] \in \mathbb{R}^{(2 \cdot k_{\mathrm{f}} + 2) \times (2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}} + 1)},\tag{5.33}$$

$$\mathcal{M}_2 := \left[\mathcal{M}_2^{(1)} \cdots \mathcal{M}_2^{(n_{\mathrm{M}})} \right] \in \mathbb{R}^{(2 \cdot k_{\mathrm{f}} + 2) \times (n_{\mathrm{M}} \cdot (k_{\mathrm{f}} + 1))}.$$
(5.34)

Der Vektor $\mathbf{\Omega}_{t}$ setzt sich aus den Vektoren

$$\boldsymbol{\omega}_{t}[k] := \begin{bmatrix} T^{*} - \sum_{i=1}^{n_{M}} T_{0}^{(i)}[k] \\ \sum_{i=1}^{n_{M}} T_{0}^{(i)}[k] - T^{*} \end{bmatrix} \in \mathbb{R}^{2}$$
(5.35)

für alle Zeitschritte im Prädiktionsintervall wie folgt zusammen:

$$\boldsymbol{\Omega}_{\mathrm{t}} := \left[\boldsymbol{\omega}_{\mathrm{t}}^{\top}[0] \cdots \boldsymbol{\omega}_{\mathrm{t}}^{\top}[k_{\mathrm{f}}-2] \, \boldsymbol{\omega}_{\mathrm{t}}^{\top}[k_{\mathrm{f}}-1] \, \boldsymbol{\omega}_{\mathrm{t}}^{\top}[k_{\mathrm{f}}-1]\right]^{\top} \in \mathbb{R}^{2 \cdot k_{\mathrm{f}}+2}.$$
(5.36)

Die letzten beiden Zeilen in $\mathcal{M}_1^{(i)}$, $\mathcal{M}_2^{(i)}$ und Ω_t stellen die Erweiterung für den Zeitschritt $k_{\rm f}$ dar, die analog zur MPC von SMDS durchgeführt wird (siehe Kapitel 4). Abschließend wird die komprimierte Zustandsgleichung (5.4) in die Beschränkung (5.28) eingesetzt und es verbleibt die Beschränkung

$$\mathcal{W}_{u,4}U_{k_{\rm f}} \le \Omega_{u,4} \tag{5.37}$$

mit den Größen

$$\mathcal{W}_{u,4} := \mathcal{M}_1 + \mathcal{M}_2 \mathcal{B}_{k_{\mathrm{f}}},\tag{5.38}$$

$$\boldsymbol{\Omega}_{\boldsymbol{u},4} := \boldsymbol{\Omega}_{\mathrm{t}} - \boldsymbol{\mathcal{M}}_2 \boldsymbol{\mathcal{A}}_{k_{\mathrm{f}}} \boldsymbol{\psi}_{\mathrm{rd},0}.$$
(5.39)

Die Matrix $\mathcal{W}_{u,4}$ besitzt die gleiche Dimension wie die Matrix \mathcal{M}_1 und der Vektor $\Omega_{u,4}$ hat so viele Zeilen wie der Vektor Ω_t .

5.3 Kostenfunktion und quadratisches Programm

Wie im vorherigen Kapitel sind die Verluste und die Schlupfvariable Teil der Kostenfunktion, welche mit den Gewichtungsfaktoren q_1 und q_2 gewichtet werden. Die Systemverluste berechnen sich durch die Summe der Verluste aller Motoren

$$P_{\rm V,MMDS} = \sum_{i=1}^{n_{\rm M}} P_{\rm V}^{(i)}, \tag{5.40}$$

wobei die Verluste eines Motors von seinen jeweiligen Parametern abhängt (vgl. Gleichung (4.76)):

$$P_{\rm V}^{(i)} = \left(\boldsymbol{i}_{\rm s}^{(i)}\right)^{\top} \boldsymbol{K}_{\rm ii}^{(i)} \boldsymbol{i}_{\rm s}^{(i)} + \left(\boldsymbol{\psi}_{\rm r}^{(i)}\right)^{\top} \boldsymbol{K}_{\psi\psi}^{(i)} \boldsymbol{\psi}_{\rm r}^{(i)} + \left(\boldsymbol{h}_{\rm i}^{(i)}\right)^{\top} \boldsymbol{i}_{\rm s}^{(i)} + \left(\boldsymbol{h}_{\psi}^{(i)}\right)^{\top} \boldsymbol{\psi}_{\rm r}^{(i)} - h_{\rm P}^{(i)}.$$
(5.41)

Die Schlupfvariable ε wird wie im SMDS quadratisch und linear in der Kostenfunktion vorgesehen, damit das QP-Problem konvex ist (siehe Anhang A.3). Außerdem wird die Gewichtung der Verluste $q_1[k]$ wieder zeitlich variiert. Die Kostenfunktion besitzt also folgende Form:

$$J = q_2(\varepsilon^2 + \varepsilon) + \sum_{k=0}^{k_{\rm f}} \left(q_1[k] P_{\rm V,MMDS}[k] \right) = q_2(\varepsilon^2 + \varepsilon) + \sum_{k=0}^{k_{\rm f}} \left(q_1[k] \left(\sum_{i=1}^{n_{\rm M}} P_{\rm V}^{(i)}[k] \right) \right).$$
(5.42)

Nach einigen Umformungen lassen sich die beiden Summen durch Matrix-Vektor-Schreibweise ersetzen und die Kostenfunktion durch die einfache Gleichung

$$J_{u,1} = \boldsymbol{U}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}} \boldsymbol{U}_{k_{\mathrm{f}}} + \boldsymbol{\Psi}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}} \boldsymbol{\Psi}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{U}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{T}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\Psi}_{k_{\mathrm{f}}}$$
(5.43)

beschreiben, in der die Konstanten $h_{\rm P}^{(i)}$ vernachlässigt werden, da sie keinen Einfluss auf die Optimierung haben [20]. Hier werden die Matrizen und Vektoren

$$\boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}} = \begin{bmatrix} \boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}}^{(1)} \ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \vdots & \vdots \\ \vdots & \boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}}^{(n_{\mathrm{M}}-1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}}^{(n_{\mathrm{M}})} & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & q_{2} \end{bmatrix} \in \mathbb{R}^{(2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}}+1) \times (2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}}+1)}, \quad (5.44)$$

$$\boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}} = \begin{bmatrix} \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}}^{(1)} \ \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \ddots & \vdots \\ \vdots & \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}}^{(n_{\mathrm{M}}-1)} \ \boldsymbol{0} \\ \boldsymbol{0} & \cdots & \boldsymbol{0} & \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}}^{(n_{\mathrm{M}})} \end{bmatrix} \in \mathbb{R}^{(n_{\mathrm{M}} \cdot (k_{\mathrm{f}}+1)) \times (n_{\mathrm{M}} \cdot (k_{\mathrm{f}}+1))}, \quad (5.45)$$

$$\boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{\top} = \left[\left(\boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{(1)} \right)^{\top} \cdots \left(\boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{(n_{\mathrm{M}}-1)} \right)^{\top} \left(\boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{(n_{\mathrm{M}})} \right)^{\top} q_{2} \right] \in \mathbb{R}^{1 \times (2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}}+1)}, \tag{5.46}$$

$$\boldsymbol{\mathcal{T}}_{k_{\mathrm{f}}}^{\mathsf{T}} = \left[\left(\boldsymbol{\mathcal{T}}_{k_{\mathrm{f}}}^{(1)} \right)^{\mathsf{T}} \cdots \left(\boldsymbol{\mathcal{T}}_{k_{\mathrm{f}}}^{(n_{\mathrm{M}}-1)} \right)^{\mathsf{T}} \left(\boldsymbol{\mathcal{T}}_{k_{\mathrm{f}}}^{(n_{\mathrm{M}})} \right)^{\mathsf{T}} \right] \in \mathbb{R}^{1 \times (n_{\mathrm{M}} \cdot (k_{\mathrm{f}}+1))}$$
(5.47)

eingeführt, die die Zusammenfassung der Matrizen und Vektoren des i-ten Motors darstellen:

$$\boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}}^{(i)} = \begin{bmatrix} \boldsymbol{R}^{(i)}[0] \ \boldsymbol{0}_{2,2} & \cdots & \boldsymbol{0}_{2,2} \\ \boldsymbol{0}_{2,2} & \ddots & \vdots \\ \vdots & \boldsymbol{R}^{(i)}[k_{\mathrm{f}}-2] & \boldsymbol{0}_{2,2} \\ \boldsymbol{0}_{2,2} & \cdots & \boldsymbol{0}_{2,2} & \boldsymbol{R}^{(i)}[k_{\mathrm{f}}-1] + \boldsymbol{R}^{(i)}[k_{\mathrm{f}}] \end{bmatrix} \in \mathbb{R}^{(2 \cdot k_{\mathrm{f}}) \times (2 \cdot k_{\mathrm{f}})}, \quad (5.48)$$

$$\begin{bmatrix} Q^{(i)}[0] \ 0 & \cdots & 0 \end{bmatrix}$$

$$\boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}}^{(i)} = \begin{bmatrix} 0 & \ddots & \vdots \\ 0 & \ddots & 0 \\ \vdots & Q^{(i)}[k_{\mathrm{f}} - 1] & 0 \\ 0 & \cdots & 0 & Q^{(i)}[k_{\mathrm{f}}] \end{bmatrix} \in \mathbb{R}^{(k_{\mathrm{f}} + 1) \times (k_{\mathrm{f}} + 1)},$$
(5.49)

$$\left(\boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{(i)}\right)^{\top} = \left[\left(\boldsymbol{v}^{(i)}[0]\right)^{\top} \cdots \left(\boldsymbol{v}^{(i)}[k_{\mathrm{f}}-2]\right)^{\top} \left(\boldsymbol{v}^{(i)}[k_{\mathrm{f}}-1]\right)^{\top} + \left(\boldsymbol{v}^{(i)}[k_{\mathrm{f}}]\right)^{\top}\right] \in \mathbb{R}^{1 \times (2 \cdot k_{\mathrm{f}})}, \quad (5.50)$$

$$\left(\boldsymbol{\mathcal{T}}_{k_{\rm f}}^{(i)}\right)^{\top} = \left[t^{(i)}[0] \cdots t^{(i)}[k_{\rm f}-1] t^{(i)}[k_{\rm f}]\right] \in \mathbb{R}^{1 \times (k_{\rm f}+1)}.$$
(5.51)

Die Berechnung von $\mathbf{R}^{(i)}[k]$, $Q^{(i)}[k]$, $\mathbf{v}^{(i)}[k]$ und $t^{(i)}[k]$ erfolgt wie in Abschnitt 4.4 durch Einsetzen der entsprechenden Motorparameter. Darüber hinaus enthalten die Matrix $\mathbf{\mathcal{R}}_{k_{\rm f}}^{(i)}$ und der Vektor $\mathbf{\mathcal{V}}_{k_{\rm f}}^{(i)}$ die $k_{\rm f}$ -Erweiterung analog zu Kapitel 4. Unter Ausnutzung der komprimierten Rotorflussdynamik (5.4) lässt sich das QP-Problem

$$\boldsymbol{U}_{k_{\mathrm{f}}}^{*} = \operatorname*{argmin}_{\boldsymbol{U}_{k_{\mathrm{f}}}} \frac{1}{2} \boldsymbol{U}_{k_{\mathrm{f}}}^{\top} \boldsymbol{H} \boldsymbol{U}_{k_{\mathrm{f}}} + \boldsymbol{f}^{\top} \boldsymbol{U}_{k_{\mathrm{f}}}, \quad \boldsymbol{G} \boldsymbol{U}_{k_{\mathrm{f}}} \leq \boldsymbol{e}$$
(5.52)

ableiten mit den Größen

$$\boldsymbol{H} = 2 \Big[\boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}} \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} \Big],$$
(5.53)

$$\boldsymbol{f}^{\top} = \begin{bmatrix} 2\boldsymbol{\psi}_{\mathrm{rd},0}^{\top}\boldsymbol{\mathcal{A}}_{k_{\mathrm{f}}}^{\top}\boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}}\boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{V}}_{k_{\mathrm{f}}}^{\top} + \boldsymbol{\mathcal{T}}_{k_{\mathrm{f}}}^{\top}\boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} \end{bmatrix},$$
(5.54)

$$\boldsymbol{G} = \begin{bmatrix} \boldsymbol{\mathcal{W}}_{\boldsymbol{u},1} \\ \boldsymbol{\mathcal{W}}_{\boldsymbol{u},2} \\ \boldsymbol{\mathcal{W}}_{\boldsymbol{u},3} \\ \boldsymbol{\mathcal{W}}_{\boldsymbol{u},4} \end{bmatrix}, \quad \boldsymbol{e} = \begin{bmatrix} \boldsymbol{\Omega}_{\boldsymbol{u},1} \\ \boldsymbol{\Omega}_{\boldsymbol{u},2} \\ \boldsymbol{\Omega}_{\boldsymbol{u},3} \\ \boldsymbol{\Omega}_{\boldsymbol{u},4} \end{bmatrix}.$$
(5.55)

Damit erweitert sich die Dimension des QP-Problems im Vergleich zu SMDS:

$$\boldsymbol{H} \in \mathbb{R}^{(2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}} + 1) \times (2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}} + 1)}, \quad \boldsymbol{f} \in \mathbb{R}^{2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}} + 1},$$
(5.56)

$$\boldsymbol{G} \in \mathbb{R}^{(15 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}} + 10 \cdot n_{\mathrm{M}} + 2 \cdot k_{\mathrm{f}} + 2) \times (2 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}} + 1)}, \quad \boldsymbol{e} \in \mathbb{R}^{15 \cdot n_{\mathrm{M}} \cdot k_{\mathrm{f}} + 10 \cdot n_{\mathrm{M}} + 2 \cdot k_{\mathrm{f}} + 2}.$$
(5.57)

Für ein MMDS mit vielen Motoren ist nicht nur die numerische Berechnung des optimalen Eingangsvektors aufwendiger, sondern auch die Berechnung der Größen H, f^{\top} , G und e des QP-Problems selbst, weil die Matrixoperationen für größere Dimensionen durchgeführt werden müssen.

5 Erweiterung der modellprädiktiven Betriebsstrategie auf Mehrmotorenantriebssysteme

6 Simulative und messtechnische Untersuchung der modellprädiktiven Betriebsstrategie

Dieses Kapitel handelt von ersten Untersuchungen der modellprädiktiven Betriebsstrategie einer ASM. Nach der Erläuterung praktischer Aspekte bei der Implementierung folgen Simulationen in Matlab/Simulink, in denen auch die stationären Werte der modellprädiktiven Betriebsstrategie mit denen der stationären Betriebsstrategie verglichen werden. Im Anschluss daran wird eine am Prüfstand durchgeführte erste experimentelle Validierung [2] präsentiert.

6.1 Aspekte bei der Implementierung

In diesem Abschnitt werden einige Aspekte aufgeführt, die zum einen die MPC aus Kapitel 4 verbessern, auch wenn sie nicht grundlegend benötigt werden. Zum anderen werden Aspekte behandelt, die zur Implementierung in Matlab/Simulink nötig sind. Folgende Aspekte werden bei der praktischen Umsetzung berücksichtigt:

• Die q-Komponente des APs \bar{i}_{sq} für die Linearisierungen wird etwas modifiziert, um die Reaktion auf Änderungen des Vorzeichens des Solldrehmoments zu verbessern. Zudem wird sie betragsmäßig nach unten hin begrenzt, wodurch sich der Einregelvorgang verbessert, wenn sich das Drehmoment von null zu einem anderen Wert hin ändert. Sie wird folgendermaßen geändert:

$$\bar{i}_{\rm sq}[k_{\rm p}] = \begin{cases} {\rm sgn}(T^*) \cdot |i_{\rm sq,opt}[k_{\rm p}]|, & |i_{\rm sd,opt}[k_{\rm p}]| \ge 0.5 \,\mathrm{A}, \\ {\rm sgn}(T^*) \cdot 0.5 \,\mathrm{A}, & |i_{\rm sd,opt}[k_{\rm p}]| < 0.5 \,\mathrm{A}. \end{cases}$$
(6.1)

Die AP für die dynamischen Tangenten der Strom- und Spannungsgrenzen werden hingegen gleich gelassen.

• Wegen der Linearisierungen des Drehmoments und der Verluste können in der MPC Konvergenzprobleme bei höheren Drehzahlen auftreten, sodass die optimierten Ströme keinen stationären Endwert für ein festes Solldrehmoment erreichen. Daher wird der neue optimale Stromverlauf $\dot{\mathbf{i}}'_{s,\text{opt}}[k_p]$ nicht direkt an die nächste Iteration weitergegeben, sondern die Ströme werden, vergleichbar zu Gleichung (3.127) in der stationären Betriebsstrategie, zu jedem Zeitpunkt mit Ausnahme von k = 0 nur abgeschwächt weitergegeben:

$$\dot{\bm{i}}_{\rm s,opt,neu}^{'}[0] = \dot{\bm{i}}_{\rm s,opt}^{'}[0], \\ \dot{\bm{i}}_{\rm s,opt,neu}^{'}[k_{\rm p}] = \dot{\bm{i}}_{\rm s,opt}[k_{\rm p}] + (\dot{\bm{i}}_{\rm s,opt}^{'}[k_{\rm p}] - \dot{\bm{i}}_{\rm s,opt}[k_{\rm p}]) \cdot 0.8, \quad 1 \le k_{\rm p} \le k_{\rm f} - 1.$$
(6.2)

Dieser korrigierte optimierte Stromvektor wird dann am Ende einer Iteration an die nächste übergeben: $i'_{s,opt,neu} \rightarrow i_{s,opt}$.

• Liegt der optimale Sollstrom i_s^* außerhalb des Stromkreises, wird dessen q-Komponente vor der Weitergabe an den Regler so angepasst, dass der Stromvektor auf dem Stromkreis liegt:

$$i_{\rm sq}^* = \begin{cases} i_{\rm sq}^*, & \|\boldsymbol{i}_{\rm s}^*\| \le i_{\rm s,max}, \\ \operatorname{sgn}(i_{\rm sq}^*) \cdot \sqrt{i_{\rm s,max}^2 - (i_{\rm sd}^*)^2}, & \|\boldsymbol{i}_{\rm s}^*\| > i_{\rm s,max}. \end{cases}$$
(6.3)

Die d-Komponente i_{sd}^* , die maßgeblich am Aufbau des Rotorflusses beteiligt ist (vgl. [19]), wird konstant gelassen, damit der Rotorfluss nicht verzögert aufgebaut wird.

- Der Gewichtungsfaktor für die Verluste $q_1[k_p]$ wird zum Ende des Prädiktionsintervalls linear fallend gewählt, damit die Verluste am Ende des Intervalls weniger in die Rechnung eingehen. Der Grund dafür ist, dass die Prädiktionen umso ungenauer werden, je weiter in die Zukunft prädiziert wird, weil sich z. B. Modellierungsungenauigkeiten stärker aufsummieren.
- Für die erste Iteration, also beim Starten der MPC, werden als Initialwerte des Parametervektors die stromlose Hauptinduktivität sowie eine Rotorfrequenz von null und die Gleichstromwiderstände herangezogen:

$$\boldsymbol{p}_{\text{par}}[k_{\text{p}}] = \begin{bmatrix} 0,4763 \,\mathrm{H} \ 0 \,\mathrm{Hz} \ 3,6212 \,\Omega \ 4,3275 \,\Omega \end{bmatrix}, \quad 0 \le k_{\text{p}} \le k_{\text{f}} - 1.$$
 (6.4)

Der Stromvektor wird mit

$$\boldsymbol{i}_{\mathrm{s,opt}}[k_{\mathrm{p}}] = \begin{bmatrix} 0.5 \,\mathrm{A} \\ 0.5 \,\mathrm{A} \end{bmatrix}, \quad 0 \le k_{\mathrm{p}} \le k_{\mathrm{f}} - 1 \tag{6.5}$$

initialisiert. Diese Werte sind willkürlich gewählt, da kleinere Ströme Probleme beim ersten AP bereiten können. Für die Rotorflussverkettung wird der Initialwert $\psi_{\rm rd,0} = 0.2 \,\rm Vs$ verwendet.

• In Matlab wird zur Lösung des QP-Problems (4.89) der Löser *mpcActiveSetSolver* verwendet. Die maximale Anzahl an Iterationen zur Berechnung der Lösung wird auf 100 limitiert, um den Berechnungsaufwand nach oben hin zu begrenzen.
$k_{ m p}$	0	1	2	3	4	5	6	7	8
$q_1[k_{\rm p}]$ in $\frac{1}{{\rm W}}$	1	0,975	0,95	0,925	0,9	0,875	0,85	0,825	0,8

Tab. 6.1: Gewählte Verlustgewichtungsfaktoren über den Prädiktionshorizont

- Folgende Reglerparameter werden auf Basis erster simulativer Tests ausgewählt:
 - $-k_{\rm f} = 8,$
 - $T_{\rm s} = 50 \,{\rm ms},$
 - $-q_1$ nach Tabelle 6.1,

$$-q_2 = 500 \, \frac{1}{\mathrm{Nm}}.$$

Die Abtastzeit wird so gewählt, weil für die Berechnungsdauer des Optimierungsprozesses ein Maximalwert von 50 ms angenommen wird. Die oben genannten Parameter werden auch für die Messungen am Prüfstand verwendet.

6.2 Simulative Untersuchung

Für die Validierung der erarbeiteten Betriebsstrategien werden Simulationen für ein SMDS in Matlab/Simulink durchgeführt. Eine ASM, die nach Abschnitt 2.1 modelliert ist, wird mit der in Kapitel 4 beschriebenen modellprädiktiven Betriebsstrategie betrieben. Hierzu wird ein bereitgestelltes Basis-Simulationsmodell mit einer inneren Stromregelung [2] erweitert. Es wird eine feste Drehzahl vorgegeben und das Solldrehmoment variiert. An Stelle einer Rotorflussschätzung wird der Rotorfluss des ASM-Modells herangezogen. Um den Vergleich beider Betriebsstrategien zu erhalten, werden außerdem die optimalen stationären AP mit der Betriebsstrategie nach Kapitel 3 berechnet und in den Simulationsergebnissen aufgeführt.

Die Abbildungen 6.1 und 6.2 zeigen die Simulationsergebnisse für die beiden Drehzahlen $n = 500 \text{ min}^{-1}$ und $n = 1500 \text{ min}^{-1}$. Dort sind oben die Sollwerte der Statorstromkomponenten, die von der MPC berechnet werden, abgebildet. Die gestrichelten Linien stellen die Werte dar, die aus der stationären Betriebsstrategie resultieren. In der Mitte sind das Drehmoment des ASM-Modells und das Solldrehmoment aufgeführt. Darunter befinden sich die Verlustleistung im ASM-Modell und die Verluste gemäß der stationären Betriebsstrategie.

Es ist erkennbar, dass die Reaktion der Regelung stets 50 ms nach der Änderung des Sollwerts erfolgt. Das liegt daran, dass die Berechnung der optimalen Stromtrajektorien direkt nach der Sollwertänderung gestartet und 50 ms später beendet wird - erst im Anschluss daran werden die neuen Ströme aufgeschaltet. In den meisten Fällen konvergieren die Ströme der MPC gegen diejenigen der stationären Betriebsstrategie. Zum Teil liegt eine kleine Abweichung vor. Diese Abweichung resultiert aber nicht in einer Regelabweichung

6 Simulative und messtechnische Untersuchung der modellprädiktiven Betriebsstrategie

Abb. 6.1: Simulation der von der MPC berechneten Sollwerte $i_{\rm sd}^*$ und $i_{\rm sq}^*$ mit den zugehörigen Strömen der stationären Betriebsstrategie $i_{\rm sd,st}$ und $i_{\rm sq,st}$ (oben), des Drehmoments T mit dem Solldrehmoment T* (Mitte) und der Verlustleistung $P_{\rm V}$ mit den zugehörigen Verlusten gemäß der stationären Betriebsstrategie $P_{\rm V,st}$ (unten) bei $n=500\,{\rm min^{-1}}$ und $\vartheta_{\rm s}=\vartheta_{\rm r}=20\,^{\circ}{\rm C}$

Abb. 6.2: Simulation der von der MPC berechneten Sollwerte $i_{\rm sd}^*$ und $i_{\rm sq}^*$ mit den zugehörigen Strömen der stationären Betriebsstrategie $i_{\rm sd,st}$ und $i_{\rm sq,st}$ (oben), des Drehmoments T mit dem Solldrehmoment T^* (Mitte) und der Verlustleistung $P_{\rm V}$ mit den zugehörigen Verlusten gemäß der stationären Betriebsstrategie $P_{\rm V,st}$ (unten) bei $n = 1500 \,{\rm min^{-1}}$ und $\vartheta_{\rm s} = \vartheta_{\rm r} = 20\,^{\circ}{\rm C}$

im Drehmoment, wie das Diagramm in der Mitte verdeutlicht. Stationär wird das Solldrehmoment stets erreicht. Stattdessen resultiert die Abweichung in höheren Verlusten, weil nicht der optimale AP eingeregelt wird.

Wenn das Solldrehmoment betragsmäßig ansteigt, sind die transienten Verluste zu Beginn des Einregelvorgangs höher, weil das Drehmoment möglichst schnell zum Endwert gebracht werden soll, wozu tendenziell eine betragsmäßig hohe q-Komponente i_{sq}^* benötigt wird. Außerdem schwingt das Drehmoment im Transienten leicht über oder unter den Sollwert abhängig davon, ob das Solldrehmoment steigt oder fällt. Bei der höheren Drehzahl nimmt zudem das Über- bzw. Unterschwingen zu.

Auffällig ist, dass das Drehmoment beim Lastwechsel von $T^* = -1$ Nm auf $T^* = 7$ Nm bei $n = 1500 \text{ min}^{-1}$ erst deutlich verzögert eingeregelt und dadurch hohe Verluste bei dem Vorgang entstehen. Zunächst wird die Komponente i_{sq}^* von der MPC nahe der Stromgrenze vorgegeben, um das Drehmoment umgehend zu erhöhen. Die Komponente i_{sd}^* hingegen steigt erst später an, wodurch der Rotorfluss aufgebaut und der Sollwert des Drehmoments erreichbar wird. Ein Grund für dieses Verhalten kann in der Linearisierung des Drehmoments liegen, die bei hohen Drehmomentsprüngen tendenziell schlechter ausfällt als bei kleinen Sprüngen. Zum anderen sind die gewählten MPC-Parameter noch zu optimieren. Mit Ausnahme dieses Lastwechsels wird innerhalb einer halben Sekunde der neue stationäre AP erreicht.

6.3 Messtechnische Untersuchung am Prüfstand

Die erarbeitete modellprädiktive Betriebsstrategie ist vom Betreuer dieser Arbeit, Marius Stender, in dessen Regelung integriert und von ihm am Prüfstand in einem ersten Experiment untersucht worden. Die Ergebnisse dieser ersten Untersuchung [2] werden in diesem Abschnitt kurz beschrieben. Bei den Messungen ist das Drehmoment der zu testenden ASM durch die MPC in Verbindung mit der unterlagerten Stromregelung eingeregelt und die Drehzahl von einem Lastmotor eingestellt worden. Insgesamt sind 17 verschiedene AP-Wechsel mit jeweils drei Sekunden aufgenommen worden, welche einzeln gemessen und in den Abbildungen 6.3 und 6.4 an den vertikalen gestrichelten Linien zusammengefügt worden sind. Für die modellprädiktive Betriebsstrategie sind die Reglerparameter aus Abschnitt 6.1 verwendet worden. Die Messwerte des Drehmoments $T_{\rm mess}$ sind gefiltert und zudem der Einfluss des Reibdrehmoments bereits herausgerechnet worden.

Die Messungen in den Abbildungen 6.3 und 6.4 zeigen jeweils im oberen Diagramm die von der MPC berechnete d- und q-Komponente des Sollstroms und darunter das gemessene Drehmoment bzw. den Referenzwert. Hieraus ist ersichtlich, dass die ASM das Solldrehmoment immer unterhalb einer Sekunde und ohne signifikante stationäre Abweichungen erreicht. Darüber hinaus ist ein kleines Über- oder Unterschwingen im Einregelvorgang zu erkennen. Dies lässt sich unter anderem durch eine relativ langsam eingestellte Lastmotorregelung begründen, wodurch die Drehzahl bei sprungförmigen Drehmomentänderungen deutlich einbricht [2]. Auffällig in den Messergebnissen sind in

Abb. 6.3: Ergebnisse der Prüfstandsmessung (erste Messreihe): Von der MPC vorgegebene Sollströme i_{sd}^* und i_{sq}^* (oben) und gemessenes Drehmoment T_{mess} und Solldrehmoment T^* (unten) bei $n = 500 \text{ min}^{-1}$

Abbildung 6.3 die beiden Spitzen von i_{sq}^* bei den ersten beiden Lastwechseln. Außerdem schwingt die Komponente i_{sd}^* bei manchen AP-Wechseln wie z. B. nach einer Sekunde in Abbildung 6.3 oder bei 32 Sekunden in Abbildung 6.4, kurz bevor sie ihren Endwert erreicht. Die stationären Sollstromkomponenten stimmen mit den stationären Werten der Simulationen aus Abbildung 6.1, die auf demselben Solldrehmoment basieren, überein und dementsprechend konvergieren sie gegen diejenigen der stationären Betriebsstrategie. Die modellprädiktive Betriebsstrategie erfüllt somit prinzipiell seine Aufgabe für das gegebene Drehmomentprofil und bei der vorgegebenen Drehzahl.

6 Simulative und messtechnische Untersuchung der modellprädiktiven Betriebsstrategie

Abb. 6.4: Ergebnisse der Prüfstandsmessung (zweite Messreihe): Von der MPC vorgegebene Sollströme i_{sd}^* und i_{sq}^* (oben) und gemessenes Drehmoment T_{mess} und Solldrehmoment T^* (unten) bei $n = 500 \text{ min}^{-1}$

6.4 Zu optimierende Aspekte der modellprädiktiven Betriebsstrategie

Folgende Aspekte der MPC, die bei den Simulationen identifiziert werden, bieten weiteres Optimierungspotential:

• Bei großen Sprüngen des Solldrehmoments kann es zu Problemen kommen und ein großer stationärer Fehler verbleiben, wie Abbildung 6.5 zeigt. Durch Anpassung des Gewichtungsfaktors q_2 , der die Drehmomentabweichung gewichtet, kann das Problem zumindest für niedrige Drehzahlen behoben werden. Abbildung 6.5 vergleicht das Verhalten bei einer sprungförmigen Änderung des Solldrehmoments für zwei

unterschiedliche Gewichtungsfaktoren und verdeutlicht diesen Zusammenhang. Für hohe Drehzahlen kann ein geringerer Gewichtungsfaktor allerdings dazu führen, dass auch kleine Drehmomente nicht mehr eingeregelt werden. Aus diesem Grund ist es ggf. sinnvoll den Faktor q_2 drehzahlabhängig zu definieren.

- Wenn sich die ASM, die mit der modellprädiktiven Betriebsstrategie betrieben wird, im stationären Zustand befindet, sind die von der MPC berechneten optimalen Stromtrajektorien nicht immer konstant. Abbildung 6.6 zeigt z. B. die von der MPC berechneten optimalen Stromtrajektorien für Abbildung 6.1 bei 3,9 s. Durch die Erweiterungen um den Zeitschritt $k_{\rm f}$ in den Gleichungen (4.43), (4.59) und (4.78) verbessert sich dieses Problem, aber es wird nicht grundsätzlich gelöst.
- Ein weiterer zu optimierender Aspekt ist das Verhalten der MPC bei hohen Drehzahlen ab ca. 3500 min⁻¹. In diesem Fall bleiben im stationären Zustand teils deutliche

Abb. 6.5: Simulation eines Solldrehmomentsprungs für verschiedene Gewichtungsfaktoren der Drehmomentabweichung bei $n = 500 \text{ min}^{-1}$ und $\vartheta_s = \vartheta_r = 20 \text{ }^{\circ}\text{C}$

6 Simulative und messtechnische Untersuchung der modellprädiktiven Betriebsstrategie

Abb. 6.6: Von der MPC berechneter optimaler Verlauf der Statorstromkomponenten $i_{\rm sd,opt}$ und $i_{\rm sq,opt}$ über den Prädiktionshorizont im stationären Zustand mit den optimalen Werten der stationären Betriebsstrategie $i_{\rm sd,st}$ und $i_{\rm sq,st}$ bei $T^* = 7 \,\rm Nm, \ n = 500 \,\rm min^{-1}$ und $\vartheta_{\rm s} = \vartheta_{\rm r} = 20 \,\rm ^{\circ}C$

Abweichungen vom Solldrehmoment bestehen, wie Abbildung 6.7 für ein Beispiel zeigt.

Abb. 6.7: Simulation einer Drehmomentabweichung bei höherer Drehzahl bei $n=4500\,{\rm min^{-1}}$ und $\vartheta_{\rm s}=\vartheta_{\rm r}=20\,{\rm ^\circ C}$

7 Fazit und Ausblick

Diese Arbeit behandelt die Ausarbeitung einer stationären und einer modellprädiktiven Betriebsstrategie auf Basis eines parametrierbaren ASM-Modells [1], [2]. Das Ziel beider Strategien ist es, ein vorgegebenes Drehmoment unter Berücksichtigung der Drehzahl und thermischer Gegebenheiten mit höchster Effizienz bereitzustellen. Es werden verschiedene physikalische Effekte bei der Herleitung der Verfahren betrachtet, sodass die Effizienz im Vergleich zu vereinfachten Modellen erhöht werden kann. Im Gegensatz zur stationären Betriebsstrategie, die nur für SMDS in Frage kommt, kann die modellprädiktive Betriebsstrategie auch für MMDS eingesetzt werden. Erste simulative und experimentelle Untersuchungen zeigen, dass das Verfahren in der Praxis für SMDS prinzipiell funktioniert, wobei zum Teil noch Optimierungspotential besteht.

Um die Auflösung im dynamischen Bereich zu erhöhen und gleichzeitig den stationären Zustand innerhalb des Prädiktionshorizonts zu erhalten, könnte es sich zukünftig anbieten, die Abtastzeit $T_{\rm s}$ nicht konstant zu lassen, sondern im Prädiktionsintervall zu variieren, indem sie zu Beginn des Intervalls kleiner als am Ende gewählt wird [2]. Darüber hinaus sollten für die Auslegung der Reglerparameter ausführliche simulative Optimierungen angestellt werden. Zu den Parametern gehören

- der Prädiktionshorizont $k_{\rm f}$,
- die Gewichtungsfaktoren $q_1[k_p]$ und q_2 und
- die Abtastzeit $T_{\rm s}[k_{\rm p}]$.

Durch Auswertung der Kostenfunktion für dynamische Solldrehmoment- und Drehzahlprofile können die optimalen Reglerparameter bestimmt werden. Neben den in Kapitel 6 dargestellten Größen sollten auch die Verluste gemessen werden, um die Effizienz besser bewerten zu können. Eine simulative und experimentelle Untersuchung für MMDS wäre ebenfalls noch interessant.

Ein weiterer Aspekt ist die Betrachtung der Rotorkreisfrequenz ω_r . In dieser Arbeit wird sie wie ein zeitabhängiger Parameter behandelt. Alternativ kann sie wie z. B. das Drehmoment linearisiert werden, um den Einfluss der Rotorkreisdynamik auch hier miteinzubeziehen.

Wenn die Regelungshardware die Optimierung innerhalb eines Regelungszyklus mehrmals berechnen kann, lässt sich dies ausnutzen, um die optimalen Stromtrajektorien und die Parameterprädiktionen zu verbessern: Anstatt die Sollströme nach einer Optimierung an die Regler zu übergeben, kann eine zweite Parameteraktualisierung und Optimierung durchgeführt werden, wodurch sich wahrscheinlich das transiente Verhalten der MPC weiter verbessern würde.

Anhang

A.1 Berechnung der Nullstellen eines kubischen Polynoms

Gegeben ist das kubische Polynom

$$z^3 + d_2 z^2 + d_1 z + d_0 = 0 \tag{A.1}$$

mit der Variable z und den konstanten Koeffizienten $d_0, d_1, d_2 \in \mathbb{R}$. Zur Lösung dieser Gleichung werden die Quellen [26] und [27] herangezogen. Es werden folgende Größen definiert:

$$p = d_1 - \frac{d_2^2}{3}, \quad q = \frac{2d_2^3}{27} - \frac{d_1d_2}{3} + d_0, \quad D = \left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3, \tag{A.2}$$

$$u = \sqrt[3]{-\frac{q}{2} + \sqrt{D}}, \quad v = \sqrt[3]{-\frac{q}{2} - \sqrt{D}}.$$
 (A.3)

Für die Berechnung der drei Nullstellen müssen vier Fälle unterschieden werden:

1)
$$D > 0$$

$$z_1 = u + v - \frac{d_2}{3}, \quad z_{2,3} = -\frac{u+v}{2} - \frac{d_2}{3} \pm \frac{u-v}{2}j\sqrt{3}$$
 (A.4)

2) D = p = 0

$$z_{1,2,3} = -\frac{d_2}{3} \tag{A.5}$$

3) $D = 0, p \neq 0$

$$z_1 = \frac{3q}{p} - \frac{d_2}{3}, \quad z_{2,3} = -\frac{3q}{2p} - \frac{d_2}{3}$$
 (A.6)

4) D < 0

$$z_1 = \sqrt{-\frac{4}{3}p} \cdot \cos\left\{\frac{1}{3}\arccos\left(-\frac{q}{2}\sqrt{-\frac{27}{p^3}}\right)\right\} - \frac{d_2}{3},$$
 (A.7)

$$z_{2} = -\sqrt{-\frac{4}{3}p} \cdot \cos\left\{\frac{1}{3}\arccos\left(-\frac{q}{2}\sqrt{-\frac{27}{p^{3}}}\right) + \frac{\pi}{3}\right\} - \frac{d_{2}}{3},$$
 (A.8)

$$z_3 = -\sqrt{-\frac{4}{3}p} \cdot \cos\left\{\frac{1}{3}\arccos\left(-\frac{q}{2}\sqrt{-\frac{27}{p^3}}\right) - \frac{\pi}{3}\right\} - \frac{d_2}{3}$$
(A.9)

75

Mehr Details zur Herleitung dieser Formeln sind z. B. in [26] und [27] enthalten.

A.2 Berechnung der Nullstellen eines quartischen Polynoms

Gegeben ist das quartische Polynom

$$c_4 z^4 + c_3 z^3 + c_2 z^2 + c_1 z + c_0 = 0 (A.10)$$

mit der Variable z und den konstanten Koeffizienten $c_0, c_1, c_2, c_3, c_4 \in \mathbb{R}$. Mit den Definitionen

$$\tilde{p} = \frac{1}{c_4^2} \left(c_2 c_4 - \frac{3c_3^2}{8} \right), \quad \tilde{q} = \frac{1}{c_4^3} \left(\frac{c_3^3}{8} - \frac{c_2 c_3 c_4}{2} + c_1 c_4^2 \right), \tag{A.11}$$

$$\tilde{r} = \frac{1}{c_4^4} \left(-\frac{3c_3^4}{256} + c_4^3 c_0 - \frac{c_4^2 c_3 c_1}{4} + \frac{c_4 c_3^2 c_2}{16} \right)$$
(A.12)

lässt sich das quartische Polynom in das kubische Polynom

$$x^{3} + 2\tilde{p}x^{2} + (\tilde{p}^{2} - 4\tilde{r})x - \tilde{q}^{2} = 0$$
(A.13)

umwandeln, dessen Nullstellen x_1 , x_2 und x_3 wie in Anhang A.1 berechnet werden [3]. Daraus resultieren vier Lösungen für das quartische Polynom

$$z_1 = \frac{(-1)^l}{2} \left(\sqrt{x_1} + \sqrt{x_2} + \sqrt{x_3} \right) - \frac{c_3}{4c_4}, \tag{A.14}$$

$$z_2 = \frac{(-1)^l}{2} \left(\sqrt{x_1} - \sqrt{x_2} - \sqrt{x_3} \right) - \frac{c_3}{4c_4},\tag{A.15}$$

$$z_3 = \frac{(-1)^l}{2} \left(-\sqrt{x_1} + \sqrt{x_2} - \sqrt{x_3} \right) - \frac{c_3}{4c_4},\tag{A.16}$$

$$z_4 = \frac{(-1)^l}{2} \left(-\sqrt{x_1} - \sqrt{x_2} + \sqrt{x_3} \right) - \frac{c_3}{4c_4},\tag{A.17}$$

wobei für $l \in \{0, 1\}$ die Gleichung

$$\operatorname{sgn}\left((-1)^{l}\right) = \operatorname{sgn}(-\tilde{q}) \tag{A.18}$$

erfüllt sein muss [28]. In Abhängigkeit von der Diskriminante

$$\Delta = 256c_4^3c_0^3 - 192c_4^2c_3c_1c_0^2 - 128c_4^2c_2^2c_0^2 + 144c_4^2c_2c_1^2c_0 - 27c_4^2c_1^4 + 144c_4c_3^2c_2c_0^2 - 6c_4c_3^2c_1^2c_0 - 80c_4c_3c_2^2c_1c_0 + 18c_4c_3c_2c_1^3 + 16c_4c_2^4c_0 - 4c_4c_2^3c_1^2 - 27c_4^3c_0^2 + 18c_3^3c_2c_1c_0 - 4c_3^3c_1^3 - 4c_3^2c_2^3c_0 + c_3^2c_2^2c_1^2$$
(A.19)

gibt es verschieden viele reelle und komplexe Nullstellen [3].

A.3 Beweis der Konvexität des zu lösenden Optimierungsproblems

Das zu lösende QP-Problem aus Kapitel 4

$$\boldsymbol{U}_{k_{\mathrm{f}}}^{*} = \operatorname*{argmin}_{\boldsymbol{U}_{k_{\mathrm{f}}}} \frac{1}{2} \boldsymbol{U}_{k_{\mathrm{f}}}^{\top} \boldsymbol{H} \boldsymbol{U}_{k_{\mathrm{f}}} + \boldsymbol{f}^{\top} \boldsymbol{U}_{k_{\mathrm{f}}}, \quad \boldsymbol{G} \boldsymbol{U}_{k_{\mathrm{f}}} \leq \boldsymbol{e}$$
(A.20)

mit der Matrix

$$\boldsymbol{H} = 2 \Big[\boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}}^{\top} \boldsymbol{\mathcal{Q}}_{k_{\mathrm{f}}} \boldsymbol{\mathcal{B}}_{k_{\mathrm{f}}} + \boldsymbol{\mathcal{R}}_{k_{\mathrm{f}}} \Big]$$
(A.21)

ist dann konvex, wenn die Matrix H positiv semi-definit ist [20]. Da der Gewichtungsfaktor q_2 größer null ist, reicht zu zeigen, dass $\mathbf{R}[k]$ symmetrisch und positiv definit und Q[k] größer oder gleich null ist [20].

Als Erstes wird gezeigt, dass die Matrix

$$\boldsymbol{R}[k] = q_1[k]\boldsymbol{K}_{\rm ii}[k] \tag{A.22}$$

für jeden Zeitschritt k
 symmetrisch und positiv definit ist. Da die Gewichtungsfaktoren $q_1[k]$ positiv und ungleich null sind, bleibt nur zu zeigen, dass die Matrix

$$\boldsymbol{K}_{\mathrm{ii}}[k] = \frac{3}{2} \left(R_{\mathrm{s}}[k] \boldsymbol{I}_{2} + \frac{R_{\mathrm{r}}[k] L_{\mathrm{m}}^{2}[k]}{L_{\mathrm{r}}^{2}[k]} \boldsymbol{G}_{\mathrm{i}}^{\top}[k] \boldsymbol{G}_{\mathrm{i}}[k] + \frac{1}{R_{\mathrm{fe}}} \boldsymbol{F}_{\mathrm{i}}^{\top}[k] \boldsymbol{F}_{\mathrm{i}}[k] \right)$$
(A.23)

eine symmetrische und positiv definite Matrix ist. Für die beiden Matrizen

$$\boldsymbol{G}_{i}[k] = \left[\underbrace{\left(1 + \frac{R_{r}[k]L_{m}^{2}[k]}{R_{fe}L_{r}^{2}[k]}\right)}_{=:\alpha_{1}}\boldsymbol{I}_{2} + \underbrace{\frac{\omega_{s}[k]}{R_{fe}}\left(L_{s}[k] - \frac{L_{m}^{2}[k]}{L_{r}[k]}\right)}_{=:\beta_{1}}\boldsymbol{J}\right]^{-1} = \frac{1}{\alpha_{1}^{2} + \beta_{1}^{2}} \begin{bmatrix}\alpha_{1} & \beta_{1}\\ -\beta_{1} & \alpha_{1}\end{bmatrix},$$

$$\boldsymbol{F}_{i}[k] = \left[\underbrace{\frac{R_{r}[k]L_{m}^{2}[k]}{L_{r}^{2}[k]}}_{=:\gamma_{1}} \boldsymbol{I}_{2} + \underbrace{\omega_{s}[k]\left(L_{s}[k] - \frac{L_{m}^{2}[k]}{L_{r}[k]}\right)}_{=:\delta_{1}} \boldsymbol{J}\right]\boldsymbol{G}_{i}[k]$$

$$= \frac{1}{\alpha_{1}^{2} + \beta_{1}^{2}} \begin{bmatrix} \alpha_{1}\gamma_{1} + \beta_{1}\delta_{1} & \beta_{1}\gamma_{1} - \alpha_{1}\delta_{1} \\ -(\beta_{1}\gamma_{1} - \alpha_{1}\delta_{1}) & \alpha_{1}\gamma_{1} + \beta_{1}\delta_{1} \end{bmatrix}$$
(A.25)

gilt, dass aus dem Produkt der transponierten Matrix mit sich selbst eine Diagonalmatrix resultiert:

$$\boldsymbol{G}_{i}^{\top}[k]\boldsymbol{G}_{i}[k] = \begin{bmatrix} \frac{1}{\alpha_{1}^{2}+\beta_{1}^{2}} & 0\\ 0 & \frac{1}{\alpha_{1}^{2}+\beta_{1}^{2}} \end{bmatrix}, \qquad (A.26)$$

$$\boldsymbol{F}_{i}^{\top}[k]\boldsymbol{F}_{i}[k] = \begin{bmatrix} \frac{(\alpha_{1}\gamma_{1}+\beta_{1}\delta_{1})^{2}+(\beta_{1}\gamma_{1}-\alpha_{1}\delta_{1})^{2}}{(\alpha_{1}^{2}+\beta_{1}^{2})^{2}} & 0\\ 0 & \frac{(\alpha_{1}\gamma_{1}+\beta_{1}\delta_{1})^{2}+(\beta_{1}\gamma_{1}-\alpha_{1}\delta_{1})^{2}}{(\alpha_{1}^{2}+\beta_{1}^{2})^{2}} \end{bmatrix}.$$
 (A.27)

77

(A.24)

Weil $\alpha_1, \gamma_1 \in \mathbb{R}^+$ und $\beta_1, \delta_1 \in \mathbb{R}$ gilt, sind die Matrizen aus den Gleichungen (A.26) und (A.27) positiv definite Diagonalmatrizen mit den Hauptdiagonalelementen als Eigenwerte. Also ist $\mathbf{R}[k]$ symmetrisch und positiv-definit.

Als Zweites wird gezeigt, dass der Skalar

$$Q[k] = q_1[k]k_{\psi\psi,11}[k]$$
(A.28)

für alle k positiv ist. Dabei ist $k_{\psi\psi,11}$ das erste Element der Matrix

$$\boldsymbol{K}_{\boldsymbol{\psi}\boldsymbol{\psi}}[k] = \frac{3}{2} \left(R_{\mathrm{r}}[k] \boldsymbol{G}_{\mathrm{r}}^{\top}[k] \boldsymbol{G}_{\mathrm{r}}[k] + \frac{1}{R_{\mathrm{fe}}} \boldsymbol{F}_{\boldsymbol{\psi}}^{\top}[k] \boldsymbol{F}_{\boldsymbol{\psi}}[k] \right), \tag{A.29}$$

wobei die hier enthaltenen Matrizen folgendermaßen definiert sind:

$$\boldsymbol{G}_{\mathrm{r}}[k] = \underbrace{\frac{1}{L_{\mathrm{r}}[k]}}_{=: \alpha_{2}} \boldsymbol{I}_{2} - \underbrace{\frac{L_{\mathrm{m}}[k]}{L_{\mathrm{r}}[k]}}_{=: \beta_{2}} \boldsymbol{G}_{\psi}[k], \qquad (A.30)$$

$$\mathbf{F}_{\psi}[k] = -\left(\underbrace{\frac{R_{\mathrm{r}}[k]L_{\mathrm{m}}[k]}{L_{\mathrm{r}}^{2}[k]}}_{=: \gamma_{2}} \mathbf{I}_{2} - \underbrace{\frac{L_{\mathrm{m}}[k]}{L_{\mathrm{r}}[k]} p \cdot \omega_{\mathrm{mech}}[k]}_{=: \delta_{2}} \mathbf{J}\right) \\
+ \left[\underbrace{\frac{R_{\mathrm{r}}[k]L_{\mathrm{m}}^{2}[k]}{L_{\mathrm{r}}^{2}[k]}}_{= \gamma_{1}} \mathbf{I}_{2} + \underbrace{\omega_{\mathrm{s}}[k]\left(L_{\mathrm{s}}[k] - \frac{L_{\mathrm{m}}^{2}[k]}{L_{\mathrm{r}}[k]}\right)}_{= \delta_{1}} \mathbf{J}\right] \mathbf{G}_{\psi}[k].$$
(A.31)

Mit Gleichung (A.24) folgt, dass die Matrix

$$\boldsymbol{G}_{\psi}[k] = \boldsymbol{G}_{i}[k] \left(\underbrace{\frac{R_{r}[k]L_{m}[k]}{R_{fe}L_{r}^{2}[k]}}_{=\infty} \boldsymbol{I}_{2} - \underbrace{\frac{L_{m}[k]}{R_{fe}L_{r}[k]} \boldsymbol{p} \cdot \boldsymbol{\omega}_{mech}[k]}_{=\infty} \boldsymbol{J} \right)$$
(A.32)

$$= \frac{1}{(\alpha_1^2 + \beta_1^2)} \begin{bmatrix} \alpha_1 \gamma_2 - \beta_1 \delta_2 & \alpha_1 \delta_2 + \beta_1 \gamma_2 \\ -(\alpha_1 \delta_2 + \beta_1 \gamma_2) & \alpha_1 \gamma_2 - \beta_1 \delta_2 \end{bmatrix} = \begin{bmatrix} \zeta & \theta \\ -\theta & \zeta \end{bmatrix}$$
(A.33)

die gleiche Form wie G_i und F_i besitzt, wobei im letzten Schritt die Größen

$$\zeta := \frac{\alpha_1 \gamma_2 - \beta_1 \delta_2}{(\alpha_1^2 + \beta_1^2)}, \quad \theta := \frac{\alpha_1 \delta_2 + \beta_1 \gamma_2}{(\alpha_1^2 + \beta_1^2)}$$
(A.34)

abkürzend eingeführt werden. Durch Umformen kann gezeigt werden, dass auch die Matrizen $\boldsymbol{G}_{\mathbf{r}}^{\top}[k]\boldsymbol{G}_{\mathbf{r}}[k]$ und $\boldsymbol{F}_{\boldsymbol{\psi}}^{\top}[k]\boldsymbol{F}_{\boldsymbol{\psi}}[k]$ positiv definite Diagonalmatrizen sind:

$$\boldsymbol{G}_{\mathbf{r}}^{\mathsf{T}}[k]\boldsymbol{G}_{\mathbf{r}}[k] = \begin{bmatrix} (\alpha_2 - \beta_2 \zeta)^2 + (\beta_2 \theta)^2 & 0\\ 0 & (\alpha_2 - \beta_2 \zeta)^2 + (\beta_2 \theta)^2 \end{bmatrix},$$
(A.35)

$$\boldsymbol{F}_{\psi}^{\top}[k]\boldsymbol{F}_{\psi}[k] = \begin{bmatrix} (\gamma_{1}\zeta + \delta_{1}\theta - \gamma_{2})^{2} + (\gamma_{1}\theta - \delta_{1}\zeta - \delta_{2})^{2} & 0\\ 0 & (\gamma_{1}\zeta + \delta_{1}\theta - \gamma_{2})^{2} + (\gamma_{1}\theta - \delta_{1}\zeta - \delta_{2})^{2} \end{bmatrix}$$
(A.36)

78

Es gilt $\alpha_2, \beta_2, \gamma_2 \in \mathbb{R}^+$ und $\delta_2, \zeta, \theta \in \mathbb{R}$ und die Konsequenz daraus ist, dass das erste Element der beiden obigen Matrizen größer oder gleich null ist. Da auch der Statorwiderstand nach Gleichung (2.2) immer positiv ist, bedeutet das, dass $k_{\psi\psi 1,1}[k] \ge 0, \forall k$ und folglich auch $Q[k] \ge 0, \forall k$ gilt. Damit ist schließlich gezeigt, dass das Gesamtproblem konvex ist. Analog lässt sich die Konvexität für MMDS zeigen. Anhang

Verzeichnisse

Tabellenverzeichnis

2.1	Modellparameter und Nenngrößen der ASM	7
6.1	Gewählte Verlustgewichtungsfaktoren über den Prädiktionshorizont $\ .\ .\ .$	65

${f Abbildungsverzeichnis}$

1.1	Anwendungsfelder von ASM	2
$2.1 \\ 2.2$	Abhängigkeit der Hauptinduktivität vom Magnetisierungsstrom ESB der ASM im rotorflussorientierten Koordinatensystem	6 6
3.1 3.2 3.3	Regelungsstruktur mit optimaler Sollstromberechnung, innerer Strom- und äußerer Flussregelung	11 29
$3.4 \\ 3.5$	Optimum	31 31 32
4.1 4.2 4.3 4.4	Regelungsstruktur mit äußerer MPC und innerer StromregelungApproximation des Stromkreises	33 39 40 50
$6.1 \\ 6.2 \\ 6.3 \\ 6.4$	Simulation der modellprädiktiven Betriebsstrategie bei $n = 500 \text{ min}^{-1} \dots$ Simulation der modellprädiktiven Betriebsstrategie bei $n = 1500 \text{ min}^{-1} \dots$ Ergebnisse der Prüfstandsmessung (erste Messreihe) $\dots \dots \dots \dots \dots$ Ergebnisse der Prüfstandsmessung (zweite Messreihe) $\dots \dots \dots \dots \dots \dots$	66 67 69 70
6.5 6.6	Simulation eines Solldrehmomentsprungs für verschiedene Gewichtungsfaktoren der Drehmomentabweichung	71
6.7	über den Prädiktionshorizont im stationären Zustand	72 72

Abkürzungen

AP	Arbeitspunkt
ASM	Asynchronmaschine
ESB	Ersatzschaltbild
\mathbf{FW}	Flussschwächung (engl. flux weakening)
LTV	linear zeitvariant (engl. linear time-variant)
MC	Maximum-Current
$\mathrm{MC}_{\mathrm{ext}}$	erweiterter Maximum-Current
MMDS	Mehrmotorenantriebssystem (engl. multi-motor drive system)
MPC	modellprädiktive Regelung (engl. model predictive control)
MTPC	Maximum-Torque-per-Current
MTPL	Maximum-Torque-per-Losses
MTPV	Maximum-Torque-per-Voltage
\mathbf{QP}	quadratisches Programm
SMDS	Einzelmotorantriebssystem (engl. <i>single-motor drive system</i>)

Literaturverzeichnis

- M. Stender, O. Wallscheid und J. Böcker, "Combined Electrical-Thermal Gray-Box Model and Parameter Identification of an Induction Motor," in *IECON 2021 – 47th* Annual Conference of the IEEE Industrial Electronics Society, 2021.
- [2] M. Stender, O. Wallscheid und J. Böcker, Dokumente, parametrierte Modelle und Prüfstandsmessungen zur elektrisch-thermischen Modellbildung eines Asynchronmotors (interne Ressourcen), 2023.
- [3] D. Schröder und J. Böcker, *Elektrische Antriebe Regelung von Antriebssystemen*. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021.
- [4] M. Pehnt, M. Arens, M. Duscha, W. Eichhammer, T. Fleiter, A. Gerspacher, F. Idrissova, D. Jessing, E. Jochem, F. Kutzner, U. Lambrecht, U. Lehr, C. Lutz, A. Paar, F. Reitze, B. Schlomann, F. Seefeldt, N. Thamling, F. Toro, R. Vogt, B. Wenzel und M. Wünsch, Energieeffizienz: Potenziale, volkswirtschaftliche Effekte und innovative Handlungs- und Förderfelder für die Nationale Klimaschutzinitiative, Kurzzusammenfassung des Projektes "Wissenschaftliche Begleitforschung zu übergreifenden technischen, ökologischen, ökonomischen und strategischen Aspekten des nationalen Teils der Klimaschutzinitiative", 2011.

- [5] V. Quaschning, *Regenerative Energiesysteme*, 10., aktualisierte und erweiterte Auflage. München: Carl Hanser Verlag GmbH & Co. KG, 2019.
- [6] A. Binder, Elektrische Maschinen und Antriebe: Grundlagen, Betriebsverhalten. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017.
- [7] A. Thommessen und C. Hackl, "Optimal feedforward torque control for nonlinear induction machines considering stator and rotor copper losses and current and voltage limits," in 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), 2021.
- [8] Windräder erzeugen so viel Strom wie noch nie. Adresse: https://www.faz.net/aktuell/wirtschaft/klima-nachhaltigkeit/windraeder-erzeugen-so-viel-strom-wie-noch-nie-16511780.html (besucht am 27. 10. 2022).
- [9] Wikipedia, *ICE 3 Wikipedia, die freie Enzyklopädie*, [Online; Stand 27. Oktober 2022], 2022. Adresse: https://de.wikipedia.org/w/index.php?title=ICE_3&oldid= 226611495.
- [10] S. Leichsenring, Mercedes EQA: Geänderte Technik und Preise der Fronttriebler. Adresse: https://insideevs.de/news/585973/mercedes-eqa-technikanderungen-preise/ (besucht am 27. 10. 2022).
- [11] Experten bewerten Motorkonzepte für Pumpen und Kompressoren. Adresse: https:// wirautomatisierer.industrie.de/motion-control/experten-bewerten-motorkonzeptefuer-pumpen-und-kompressoren/#slider-intro-1 (besucht am 27. 10. 2022).
- [12] N. Chen, Z. Zheng, J. Zhou, Y. Li und K. Wang, "A novel MPC flux weakening method for induction motor applied in electric wheel," in 2013 International Conference on Electrical Machines and Systems (ICEMS), 2013.
- [13] F. Wang, S. A. Davari, D. A. Khaburi und R. Kennel, "Sensorless model predictive torque control for induction machine by using the sliding mode full-order observer," in 2011 Symposium on Sensorless Control for Electrical Drives, 2011.
- [14] J. Zou, W. Xu, X. Yu, Y. Liu und C. Ye, "Multistep Model Predictive Control With Current and Voltage Constraints for Linear Induction Machine Based Urban Transportation," *IEEE Transactions on Vehicular Technology*, Jg. 66, Nr. 12, 2017.
- [15] J. Su, R. Gao und I. Husain, "Model Predictive Control Based Field-Weakening Strategy for Traction EV Used Induction Motor," *IEEE Transactions on Industry Applications*, Jg. 54, Nr. 3, 2018.
- [16] O. Wallscheid, E. F. Bouna Ngoumtsa und J. Böcker, "Hierarchical Model Predictive Speed and Current Control of an Induction Machine Drive with Moving-Horizon Load Torque Estimator," in 2019 IEEE International Electric Machines & Drives Conference (IEMDC), 2019.
- [17] M. Strop, Entwurf einer intelligenten Betriebsstrategie für Mehrmotorenantriebssysteme und ihre Anwendung auf Kautschukinnenmischer. Shaker Verlag GmbH, 2018.
- [18] M. Stender, O. Wallscheid und J. Böcker, "Accurate Torque Control for Induction Motors by Utilizing a Globally Optimized Flux Observer," *IEEE Transactions on Power Electronics*, Jg. 36, Nr. 11, 2021.
- [19] J. Böcker, *Geregelte Drehstromantriebe Skript zur Vorlesung*, Universität Paderborn - Fachgebiet Leistungselektronik und Elektrische Antriebstechnik, 2018.

- [20] O. Wallscheid, Advanced Control Lecture Notes, Universität Paderborn Fachgebiet Regelungs- und Automatisierungstechnik, 2021.
- [21] F. Borrelli, A. Bemporad und M. Morari, *Predictive Control for Linear and Hybrid Systems*. Cambridge University Press, 2016.
- [22] E. Kerrigan und J. Maciejowski, "Soft Constraints And Exact Penalty Functions In Model Predictive Control," Sep. 2000.
- [23] M. Stender, M. Becker, O. Wallscheid und J. Böcker, "Adaptive Operating Strategy for Induction Motors Under Changing Electrical-Thermal Conditions," in *IECON* 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 2022.
- [24] L. Papula, Mathematik für Ingenieure und Naturwissenschaftler Band 1: Ein Lehrund Arbeitsbuch für das Grundstudium. Wiesbaden: Springer Fachmedien Wiesbaden, 2018.
- [25] A. Brosch, O. Wallscheid und J. Böcker, "Time-Optimal Model Predictive Control of Permanent Magnet Synchronous Motors Considering Current and Torque Constraints," Dez. 2022, DOI: 10.36227/techrxiv.21688091.
- [26] J. Bewersdorff, Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theorie. Wiesbaden: Springer Fachmedien Wiesbaden.
- [27] H. Dörrie, Kubische und biquadratische Gleichungen. Berlin, Boston: Oldenbourg Wissenschaftsverlag, 1948. Adresse: https://doi.org/10.1515/9783486775990.
- [28] R. W. D. Nickalls, "The quartic equation: invariants and Euler's solution revealed," *The Mathematical Gazette*, Jg. 93, Nr. 526, 2009.