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Lying, thinking
Last night
How to find my soul a home
Where water is not thirsty
And bread loaf is not stone
I came up with one thing
And I don’t believe I’m wrong
That nobody,
But nobody,
Can make it out here alone.

—Maya Angelou, excerpt from Alone
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Zusammenfassung

Digitale Kommunikation beruht in hohem Maße auf der Verwendung ver-
schiedener Arten von Codes. Heutzutage wichtige Codes sind Rang-Metrik-
Codes und Unterraumcodes – die q-Analoga von binären Codes und binären
Codes mit konstantem Gewicht. All diese Codes können als Teilmengen
klassischer Assoziationsschemata betrachtet werden. Ein zentrales codie-
rungstheoretisches Problem besteht darin, obere Schranken für die Größe von
Codes zu geben. Diese Arbeit untersucht Delsartes mächtiges lineares Opti-
mierungsproblem, dessen Optimum genau eine solche Schranke für Codes
in Assoziationsschemata ist. Die linearen Optimierungsprobleme für binäre
Codes und binäre Codes mit konstantem Gewicht wurden seit den 1970er
Jahren ausgiebig untersucht, aber ihr Optimum ist noch unbekannt. Wir bes-
timmen auf einheitliche Weise das Optimum des linearen Optimierungsprob-
lems in verschiedenen gewöhnlichen q-Analoga sowie in deren affinen Pen-
dants. Insbesondere werden Schranken und Konstruktionen für Codes in
Polarräumen hergeleitet, wobei die Schranken in mehreren Fällen bis auf einen
konstanten Faktor optimal sind. Darüber hinaus wird auf der Grundlage
dieser Resultate eine fast vollständige Klassifizierung von Steiner-Systemen
in Polarräumen gegeben, indem bewiesen wird, dass diese nur in wenigen
Spezialfällen existieren könnten.



Abstract

Digital communications relies heavily on the usage of different types of codes.
Prominent codes nowadays are rank-metric codes and subspace codes—the q-
analogs of binary codes and binary codeswith constant weight. All these codes
can be viewed as subsets of classical association schemes. A central coding-
theoretic problem is to derive upper bounds for the size of codes. This thesis
investigates Delsarte’s powerful linear program whose optimum is precisely
such a bound for codes in association schemes. The linear programs for binary
codes and binary constant-weight codes have been extensively studied since
the 1970s, but their optimum is still unknown. We determine in a unified way
the optimum of the linear program in several ordinary q-analogs as well as in
their affine counterparts. In particular, bounds and constructions for codes
in polar spaces are established, where the bounds are sharp up to a constant
factor in many cases. Moreover, based on these results, an almost complete
classification of Steiner systems in polar spaces is provided by showing that
they could only exist in some corner cases.
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Chapter 1

Introduction

This thesis investigates codes and designs as subsets of association schemes
by using a linear programming method developed by Delsarte in the 1970s.

More specifically, we will focus on rank-metric codes and subspace codes,
which gained particular interest in recent years because of their applications
in network coding [MS12]—an area on which today’s digital communications
heavily relies on. Namely, nowadays, large amounts of data are stored or
transmitted via a network of intermediate nodes, for example, if one uses
video streaming, file distribution, peer-to-peer networking, or distributed
storage. In these networks, the data can be disrupted because of noise, for
example, by electromagnetic interference in cables when sending data over
wires. Codes ensure that the original data can be recovered from the data
exposed to noise if not too many errors occurred. In [KK08] and [SKK08], it
was proposed to use matrices and finite-dimensional vector spaces over the
finite field Fq for network coding and it turned out that they are very well
suited for the task of error-correction in network communications. Rank-metric
codes and subspace codes are the q-analogs of the classical codes—the binary
codes and the binary constant-weight codes. Wewill later see in this thesis that the
notion “q-analog” comes from the fact that combinatorics of sets can be seen
as the limiting case q → 1 of combinatorics of vector spaces over Fq, where
vector spaces are replaced by sets and dimension by cardinality.

In general, one can think of a d-code Y as a finite subset in a metric space
such that d is theminimum distance that can occur between two distinct elements
of Y. Designs on the other hand are subsets of a given space that approximate
the whole space in a precise way. Design theory originated in the first half of
the 19th century, where the first example of a t-combinatorial design was given,
which is a collection Y of subsets, having the same cardinality, of a finite set V
such that every t-subset of V lies in exactly λ members of Y. For λ = 1, one
obtains a special type of a combinatorial design called t-Steiner system. As an
example, a 2-Steiner system is given in Figure 1.1, where the set V consists of
all the seven depicted points and the lines are the members of the 2-Steiner
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2 Introduction

Figure 1.1. A 2-Steiner system.

system.
From an algebraic-combinatorial viewpoint, codes and designs can be

seen as dual concepts and an immensely suitable framework to study them is
the rich theory of association schemes. As Delsarte and Levenshtein [DL98]
phrased it:

“In coding theory and related subjects, an association scheme [. . .] should
mainly be viewed as a ‘structured space’ in which objects of interest (such
as codes, or designs) are living.”

More precisely, an association scheme with n classes consists of a finite set X to-
getherwith n+ 1 relations R0, R1, . . . , Rn on X×X such that the corresponding
adjacency matrices D0, D1, . . . , Dn span a commutative matrix algebra over
the complex numbers, called Bose-Mesner algebra, where D0 is the identity
matrix, the sum of all Di is the all-ones-matrix, and DT

i lies in {D0, D1, . . . , Dn}
for all i. One can show that the Bose-Mesner algebra has a unique basis of
primitive idempotent matrices. The coefficients that occur in the change of
basis between them and the adjacency matrices are essential for the theory
of association schemes and are called P- and Q-numbers. In particular, the
P-numbers are the eigenvalues of the adjacency matrices, which are simulta-
neously diagonalizable and have exactly n + 1 maximal common eigenspaces
V0, V1, . . . , Vn.

We will focus on classical association schemes, where the notion “classical”
stems from their connection to distance-regular graphs with classical parame-
ters [BCN89, § 6]. They are special in the sense that there exist orderings of the
adjacency matrices D0, D1, . . . , Dn and of the eigenspaces V0, V1, . . . , Vn such
that the P- and Q-numbers are given as evaluations of orthogonal polynomials.
Because of these orderings, we can define a d-code as a subset Y of X such that

(Y×Y) ∩ Ri = ∅ for all i = 1, 2, . . . , d− 1

and a t-design as a subset Y of X such that its characteristic vector φY satisfies

φY 6∈ V1 + · · ·+ Vt.
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Particularly, in a classical association scheme, the relations Ri define a metric δ

on X by
δ(x, y) = i if and only if (x, y) ∈ Ri,

so that a d-code in such a classical association scheme is a d-code in the metric
space (X, δ).

The objective in coding theory is to construct d-codes with as many ele-
ments as possible since we aim for a high information rate during the transmit-
ting and storing process. This gives rise to one of the central coding-theoretic
problems.

Problem 1. What is the maximum cardinality of a d-code in a given metric space?

So, we would like to derive upper bounds on the cardinality of d-codes and
construct codes that reach these upper bounds. For designs on the other hand,
we want to give lower bounds on their cardinality since they are some kind of
approximation of their whole space leading to the following problem.

Problem 2. What is the minimum cardinality of a t-design in a classical association
scheme?

One is also interested in the existence of nontrivial designs, especially designs
that are extremal in some sense. For example, a t-Steiner system is a t-design in
an association scheme, called Johnson scheme, and is an optimal (n− t+ 1)-code.
So, we also study the following problem.

Problem 3. Do nontrivial “extremal” t-designs in a classical association scheme
exist?

In this thesis, we will focus on Problem 1 and 3.
A landmark result in Delsarte’s PhD thesis [Del73] is the linear programming

method, which treats the problem of finding the maximum cardinality of a code
as an extremum problem for subsets in association schemes. The idea behind
the linear program is to first associate an inner distribution (A0, A1, . . . , An)

with a d-code Y given by

Ai =
|(Y×Y) ∩ Ri|

|Y| for all i = 0, 1, . . . , n,

so that Ai is basically the average number of pairs from Y×Y that lie in Ri. It
can be readily verified that the inner distribution of a d-code Y satisfies

• A0 + A1 + · · ·+ An = |Y|

• A0 = 1

• Ai ≥ 0 for all i = 0, 1, . . . , n
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• Ai = 0 for all i = 1, 2, . . . , d− 1

Recall that there exist some primitive idempotents E0, E1, . . . , En that constitute
a second basis for the Bose-Mesner algebra. Hence, the matrices E0, E1, . . . , En

are positive semidefinite implying that the characteristic vector φY of Y satisfies
φT

YEkφY ≥ 0 for all k = 0, 1, . . . , n. It is readily verified that the condition
φT

YEkφY ≥ 0 can be written as
n

∑
i=0

Qk(i)Ai ≥ 0,

where Qk(i) are the Q-numbers that occur when writing Ek as a linear combi-
nation of the matrices Di. Combining all the aforementioned properties of the
inner distribution gives Delsarte’s linear program of the form

maximize A0 + A1 + · · ·+ An

subject to A0 = 1
Ai ≥ 0 for all i = d, d + 1, . . . , n
Ai = 0 for all i = 1, 2, . . . , d− 1
n
∑

i=0
Qk(i)Ai ≥ 0 for all k = 1, 2, . . . , n

The optimum of this linear program gives an upper bound on the cardinality
of a d-code in the respective association scheme. The linear program can be
solved numerically for a given set of parameters (e.g., number of classes in the
association scheme, minimum distance of the code, etc.). However, we will
see that the linear program can be also used to obtain analytic bounds and
moreover, to characterize the cases, where equality holds.

The most important classical association schemes for classical coding and
design theory are the Hamming scheme and the Johnson scheme, where codes in
the first are the q-ary codes and in the latter the binary constant-weight codes.
More concretely, the Hamming scheme consists of the set X that contains all
n-tuples with entries from {1, 2, . . . , q} and the relations Ri consist of all pairs
from X × X that differ in exactly i positions. For the Johnson scheme, the
set X contains all n-subsets of a given v-set and the relations Ri consist of
all pairs from X × X such that their intersection has exactly n− i elements.
This thesis will focus on the q-analogs of the Hamming and Johnson scheme
that are also classical association schemes. These q-analogs can be further
categorized into ordinary q-analogs and affine q-analogs. The first ones consist
of the q-Johnson scheme Jq(n, m) and six polar space schemes: two Hermitians
A2

2n−1 and A2
2n, symplectic Cn, hyperbolic Dn, parabolic Bn, and elliptic D2

n+1.
For the polar space schemes, the set X contains all maximal totally isotropic
subspaces of a finite vector space equipped with a nondegenerate form and
the relations Ri consist of all pairs from X×X such that the dimension of their
intersection is exactly n− i, where n is called the rank of the polar space and is
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defined as the dimension of the maximal totally isotropic subspaces. For the
q-Johnson scheme Jq(n, m), the set X contains all n-dimensional subspaces of
a given (m + n)-dimensional vector space over Fq and the relations Ri consist
of all pairs from X × X such the dimension of their intersection is exactly
n− i. Moreover, it is well known that the maximal totally isotropic subspaces
of the hyperbolic polar space Dn can be partitioned into two systems, called
Latin and Greek, such that each system also gives rise to a classical association
scheme denoted by 1

2 Dn and called bipartite half of Dn. The affine q-analogs
are the bilinear forms scheme Bilq(n, m) consisting of all m× n matrices over
Fq, the alternating bilinear forms scheme Altq(m) consisting of all alternating
m×m matrices over Fq, and the Hermitian forms scheme Herq(n) consisting of
all Hermitian n× n matrices over Fq2 . The relations Ri of the affine q-analogs
contain all pairs from X × X whose difference has rank i or in the case of
Altq(m), it has rank 2i. All six polar space schemes and the association schemes
Jq(n, m), 1

2 Dm, Bilq(n, m), Altq(m), and Herq(n) have n classes, where n =

bm/2c in the case of Altq(m) and 1
2 Dm. The codes in the ordinary q-analogs

are the subspace codes and in the affine q-analogs the rank-metric codes.
Throughout this thesis, we will see a remarkable resemblance between the
ordinary and affine q-analogs.

Known results

Even though at first sight, the idea behind Delsarte’s linear program might
seem simple, it is a strikingly effective method yielding “good” bounds for
different types of codes. For example, the best known asymptotic bound for the
cardinality of binary codes and of binary constant-weight codes was derived
by applying this linear program in [McE+77]. Moreover, the method was also
used to show that a d-code Y with 1 ≤ d ≤ n in the affine q-analog Bilq(n, m),
Herq(n), or Altq(m) satisfies

|Y| ≤ (cbn)n−d+1, (1.1)

where d is required to be odd in the case of Herq(n) and the parameters b and c
are defined by

(b, c) =



(q, qm−n) for Bilq(n, m)

(−q,−1) for Herq(n)

(q2, 1/q) for Altq(m) if m is even
(q2, q) for Altq(m) if m is odd,

see [Del78a], [Sch18], and [DG75]. Except for Altq(m)with even m and odd q,
there exist constructions reaching the bound (1.1), which were developed in
the three aforementioned papers. So, Problem 1 is answered in Bilq(n, m), in
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Herq(n) for odd d, and in Altq(m) except for even m and odd q. We will see in
Chapter 5 that there also exists a bound for even d in Herq(n) from [Sch18]
that looks slightly more complicated than (1.1). However, there are no known
constructions reaching the bound in Herq(n) if d is even. For the q-Johnson
scheme, a d-code Y with 1 ≤ d ≤ n in Jq(n, m) satisfies

|Y| ≤
[ m+n
n−d+1]q
[ n
n−d+1]q

. (1.2)

This bound was first proved in [WXS03] and a proof based on linear program-
ming was given in [ZJX11]. It was shown in [SKK08] that the bound (1.2)
is sharp up to a constant factor by using known optimal rank-metric codes
(MRD codes) in Bilq(n, m), answering Problem 1 for Jq(n, m) asymptotically.
In the literature, the bound (1.2) is known under different names, for example,
Wang-Xing-Safavi-Naini bound, anticode bound, and packing bound. How-
ever, we will see in this thesis that the bounds (1.2) and (1.1) deserve the
name Singleton bound.1 Delsarte’s linear programming method was also used
to derive a bound for codes consisting of symmetric matrices, which is sharp
in some cases ([Sch10], [Sch15], [Sch20]). There, the codes correspond to sub-
sets in the symmetric bilinear forms scheme, which is a nonclassical association
scheme.

Although Problem 1 concerning binary codes and binary constant-weight
codes has been studied for decades, a solution for these codes seems still out
of reach. In particular, their linear programs have been investigated exten-
sively and it is still unknown what their optima look like. This is different
for their q-analogs, for example, since the Singleton bound for codes in the
bilinear forms scheme was proved by using the linear program and there
exist constructions (MRD codes) reaching this bound [Del78a], the Singleton
bound is precisely the optimum of the linear program. Similarly for the other
rank-metric codes in the cases, where the bounds obtained in [DG75], [Sch18],
and [Sch20] are sharp. In particular, the optima are known for Altq(m) ex-
cept if m is even and q is odd and for Herq(n) if d is odd. To our knowledge,
nothing was known about the optimum of the linear program for codes in the
q-Johnson scheme.

Codes that are optimal in some sense are often some kind of a design,
for example, a d-code in Jq(n, m) of size (1.2) is an (n− d + 1)-design. The
designs in the q-Johnson scheme have a combinatorial interpretation and
were introduced in the 1970s (see [Del78b], [Cam74]). They are a q-analog
version of a combinatorial design, namely, a t-design over Fq is a collection Y of
subspaces, having the same dimension, of a finite-dimensional vector space V

1We note that there already exists a di�erent bound called Singleton bound for codes in
the q-Johnson scheme [KK08], which can be shown by using a puncturing argument similarly
to the proof of the Singleton bound for q-ary codes and rank-metric codes in Bilq(n, m).
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over Fq such that every t-dimensional subspace of V lies in exactly λ members
of Y. For λ = 1, one obtains a t-Steiner system over Fq and a d-code Y is of
size (1.2) if and only if Y is an (n− d + 1)-Steiner system over Fq.

It was shown in [Tei87] that nontrivial t-combinatorial designs exist for
all t. In [FLV14], a similar result was proved for t-designs over Fq, namely that
they exist for all t and q if the size of the ambient vector space is large enough
and if the dimension of the members of the design is large enough compared
to t. Whereas it was shown in [Kee14] that nontrivial classical Steiner systems
are abundant (see also [Glo+16] for a different proof), it is quite sobering that
nontrivial Steiner systems over Fq are so far only known to exist for one set of
parameters [Bra+16].

We will examine t-Steiner systems in polar spaces, which are sets Y of max-
imal totally isotropic subspaces such that every t-dimensional totally isotropic
subspace of the polar space lies in exactly one element of Y. The special case
of t = 1 corresponds to the well-known spreads in polar spaces. Although
spreads have been heavily studied since the 1960s, their existence question is
still not fully resolved (see [HT16, § 7.4] for the current status). For t = n− 1,
it was known that (n − 1)-Steiner systems cannot exist in A2

2n−1, Bn, and
Cn, and in A2

2n and D2
n+1 if q = 2, see [Van11, p. 160]. Moreover, it was

known that (n− 1)-Steiner systems in Dn always exist—namely they are the
two systems Latin and Greek. Not much was known about the existence of
t-Steiner systems in polar spaces with 1 < t < n− 1. Only recently, it was
shown in [Cos+22] that t-Steiner systems cannot exist if (n, t) = (4, 2) and
(n, t) = (5, 3).

New results

To state two main results of this thesis, we extend the definition of the parame-
ters b and c as follows

(b, c) =



(q, qm−n) for Bilq(n, m) and Jq(n, m)

(−q,−1) for Herq(n) and A2
2n−1

(q2, 1/q) for Altq(m) and 1
2 Dm if m is even

(q2, q) for Altq(m) and 1
2 Dm if m is odd.

Our first main result contains the optima of the linear programs for several
ordinary and affine q-analogs.

Theorem 1.

(a) Let X be the set of n-spaces in Jq(n, m) or maximal totally isotropic subspaces
in A2

2n−1 or
1
2 Dm, where n = bm/2c in the case of 1

2 Dm. Then the optimum
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of the linear program for d-codes with 1 ≤ d ≤ n in Jq(n, m), A2
2n−1, and

1
2 Dm is given by

|X|
d−2

∏
`=0

qb` − 1
qcbn+` − 1

, (1.3)

where d is required to be odd in the case of A2
2n−1.

(b) The optimum of the linear program for d-codes with 1 ≤ d ≤ n in Bilq(n, m),
Herq(n), and Altq(m) is given by

(cbn)n−d+1,

where d is required to be odd in the case of Herq(n) and n = bm/2c in the case
of Altq(m).

Observe that there is a nice resemblance between the optima for the ordi-
nary and affine q-analogs since we have

(cbn)n−d+1 = |X|
d−2

∏
`=0

qb`

qcbn+`
,

where |X| = (cbn)n is the number of matrices in Bilq(n, m), Herq(n), and
Altq(m). In the case of Jq(n, m), we have |X| = [m+n

n ]q and the optimum (1.3)
can thus be written as

[ m+n
n−d+1]q
[ n
n−d+1]q

,

which is the known bound (1.2). Therefore, the optima in Jq(n, m), Bilq(n, m),
Herq(n), and Altq(m) are precisely the Singleton bounds (1.2) and (1.1).

We will moreover obtain the optimum of the linear program for d-codes in
Herq(n) and A2

2n−1 if d is even, in Dn if d is even, and in Bn and Cn if d is odd.
The proof of Theorem 1 given in Chapter 5 will rely on unified expres-

sions of the P- and Q-numbers of Jq(n, m), A2
2n−1, and 1

2 Dm as dual q-Hahn
polynomials and q-Hahn polynomials, respectively, as well as of the P- and
Q-numbers of Bilq(n, m), Herq(n), and Altq(m) as affine q-Krawtchouk poly-
nomials.

The bound (1.3) for codes in A2
2n−1 and 1

2 Dm will be already derived in
Chapter 3. Based on this bound for A2

2n−1 and 1
2 Dm, we will then obtain

bounds for codes in all the remaining polar spaces A2
2n, Bn, Cn, Dn, and

D2
n+1. We will also use known constructions of codes in the alternating

bilinear, Hermitian, and symmetric bilinear forms scheme to construct codes
in all polar spaces. Additionally, we will exploit these constructions to show
that our obtained bounds are sharp up to a constant factor in several cases and
thus, we will answer Problem 1 for codes in polar spaces from an asymptotic
viewpoint.
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Exploiting our bounds for codes in polar spaces, we will classify nontrivial
t-Steiner systems in polar spaces by proving their nonexistence except for
some corner cases. This is remarkable since the classical Steiner systems are
ubiquitous, whereas basically nothing is known for Steiner systems over Fq.
More specifically, our second main result, which will be proved in Chapter 4,
is the following.

Theorem 2. Suppose that a polar space P of rank n contains a t-Steiner system with
1 < t < n. Then one of the following holds

(1) t = n− 1 and P = Dn;

(2) t = n− 1 and P = A2
2n or D2

n+1 for q ≥ 3;

(3) t = 2 and P = A2
2n or D2

n+1 for odd n.

Outline

Chapter 2 will introduce the required preliminaries about association schemes
and linear programming. In particular, wewill present the classical association
schemes in more detail in Section 2.3. Tabular overviews of the classical
association schemes can be found in Appendix A.

Every chapter will be preceded with an outline of its structure and a de-
tailed introduction to its contents, especially stating its main results in the
case of Chapter 4 and 5. Moreover, Chapter 3, 4, and 5 will be closed with a
discussion of open problems arising from the results of the respective chapters
or related to the topics considered therein. Finally, we will give a summary of
the new results of this thesis in Chapter 6.

A list of all the notation occurring in this thesis can be found on page 155.





Chapter 2

Association schemes

Beautiful things don’t ask for attention.
—From the movie The Secret Life of Walter Mitty

Association schemes are fundamental in algebraic combinatorics. They
give us an algebraic approach to study relations between elements of a finite
set. Namely, we can associate a commutative matrix algebra with these re-
lations if they satisfy some “nice” properties. By then using tools from, for
example, linear algebra, harmonic analysis, or optimization theory, we can
derive combinatorial properties of special subsets, called codes and designs,
of this finite set. The theory behind this, and which we will apply in this
thesis, goes back to Delsarte’s groundbreaking PhD thesis [Del73], where
he established a beautiful connection between coding and design theory by
unifying both areas in the framework of association schemes. In this setting,
codes and designs can be viewed as dual objects. For codes, one is interested
in finding large subsets in a metric space such that specified distances cannot
occur. Whereas for designs, one wants a small subset of the space such that
its characteristic vector cannot lie in some specified eigenspaces associated
with the commutative matrix algebra. Delsarte moreover developed a strong
method, based on linear programming, to obtain bounds for the size of codes
and designs and to characterize the extremal cases, when the bounds are tight.
This method will be heavily applied and investigated throughout this thesis.

We start this chapter by giving some background on association schemes
in Section 2.1. Afterwards, we will shortly look at some facts from the theory
of linear programming that are needed to introduce Delsarte’s linear program-
ming method in Section 2.2. The last part of this chapter, Section 2.3, deals
with the classical association schemes that we focus on in this thesis.

11
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2.1 Background on association schemes

In this section, we will give an overview of association schemes and present
the basic results that will be used throughout this thesis. For proofs and more
information, we refer to the books [BI84] and [Ban+21] and especially to
Delsarte’s thesis [Del73]. Gently introductions to association schemes can also
be found in [MS77, § 21] and [LW92].

2.1.1 Definition and examples

Association schemes. In the literature, various definitions of association
schemes exist. Here, we will use the following one. An association scheme
(X, (Ri)) with n classes is a finite set X with at least two elements together with
n + 1 nonempty relations R0, R1, . . . , Rn such that

(A1) all n + 1 relations Ri partition X× X and R0 = {(x, x) | x ∈ X};

(A2) for each relation Ri, its transpose RT
i = {(y, x) | (x, y) ∈ Ri} also occurs

in {R0, R1, . . . , Rn};

(A3) for every pair (x, y) ∈ Rk, the number of z ∈ X with (x, z) ∈ Ri and
(z, y) ∈ Rj is a constant pk

ij depending only on i, j, and k, but not on the
particular choice of (x, y);

(A4) pk
ij = pk

ji for all i, j, k.

The numbers pk
ij are called intersection numbers. If Ri = RT

i holds for all i,
then the association scheme is called symmetric and (A4) holds automatically.
Let Ri′ denote the transposed relation RT

i of Ri. Then we have p0
ii′ = p0

i′i. We
write vi = p0

ii′ and call this number the valency of the relation Ri. So, for every
x ∈ X, we have

vi = |{y ∈ X | (x, y) ∈ Ri}|.

The elements of X are called points and the set {R0, R1, . . . , Rn} of relations is
henceforth denoted byR.

In a symmetric association scheme, the condition (A3) can be visualized as
follows. Associate with each relation Ri a color ci. Let G be the graph, where
the vertices are the points of X and between two vertices x, y ∈ X, there is
an edge colored by ci if (x, y) lies in Ri. Condition (A3) then implies that the
number of triangles depicted in Figure 2.1 depends only on the coloring of the
edges, but not on the chosen base edge between x and y.

In the following, we look at two examples of association schemes that
are the two most important ones for classical coding and design theory—the
Hamming scheme and the Johnson scheme. These two will be used as running
examples throughout this chapter.
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z

x y
ck

ci cj

Figure 2.1. Interpretation of the condition (A3) of a symmetric association
scheme: exactly pk

ij vertices z form this type of triangle.

Example 2.1.1 (Hamming scheme). Let n and q be positive integers with q ≥ 2
and let X = Qn, where Q is a set with q elements. The Hamming distance dH(x, y)
between two points x, y ∈ X is the number of positions in which x and y differ. More
specifically, the mapping dH : X× X → N0 defined by

dH(x, y) = |{i | 0 ≤ i ≤ n, xi 6= yi}|

is a metric. The relation Ri is given by all pairs of X× X whose Hamming distance
equals i. Then there are n + 1 relations R0, R1, . . . , Rn that together with X form a
symmetric association scheme with n classes, known as the Hamming scheme and
denoted by H(n, q). The valencies are given by

vi = (q− 1)i
(

n
i

)
(2.1)

for all i = 0, 1, . . . , n. For example, H(2, 2) and H(3, 2) are depicted in Figure 2.2
and 2.3, respectively.

Figure 2.2. Hamming scheme H(2, 2) with the relations R1 and R2.

Example 2.1.2 (Johnson scheme). Let m and n be positive integers with m ≥ n.
Then the set X of all n-subsets of a given (m + n)-set together with

Ri = {(x, y) ∈ X× X | |x ∩ y| = n− i} (2.2)

for all i = 0, 1, . . . , n forms a symmetric association scheme with n classes, known as
the Johnson scheme, and is denoted by J(n, m). For all i = 0, 1, . . . , n, we have

vi =

(
n
i

)(
m
i

)
. (2.3)

As an example, the Johnson scheme J(2, 2) is depicted in Figure 2.4.
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Figure 2.3. Hamming scheme H(3, 2) with the relations R1, R2, and R3.

Figure 2.4. Johnson scheme J(2, 2) with the relations R1 and R2.

There is a nice connection between the binary Hamming scheme and the
Johnson scheme.

Remark 2.1.3. The Johnson scheme J(n, m) can be embedded into the Ham-
ming scheme H(m + n, 2) as follows. Identify an n-set x in J(n, m) with its
characteristic vector φx, defined by (φx)a = 1 if a ∈ x and (φx)a = 0 otherwise,
which lies in {0, 1}m+n. Then, for two n-sets x and y, it holds n− |x ∩ y| = i if
and only if dH(φx, φy) = 2i. Hence, this gives (x, y) ∈ Ri in J(n, m) if and only
if dH(φx, φy) = 2i.

The following proposition is often very useful to verify that a given finite
set X together with some relations forms an association scheme. It can only be
applied if the association scheme has a group as an underlying structure such
that this group G acts transitively on X; that is, for all x, y ∈ X, there exists a
g ∈ G with gx = y.

Proposition 2.1.4 ([Ban+21, Example 2.3]). Let G be a finite group and let X be a
finite set, where G acts transitively on X. Define an action of G on X×X by g(x, y) =
(gx, gy) for all x, y ∈ X and g ∈ G. Then R0 = {(x, x) | x ∈ X} is an orbit.
If R0, R1, . . . , Rn are all the orbits of X × X under G, then (X, {R0, R1, . . . , Rn})
satisfies the conditions (A1)–(A3) of an association scheme.

We can use this proposition to show that the Hamming scheme and the
Johnson scheme are really association schemes.
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Example 2.1.5. Let (X,R) be the Hamming scheme H(n, q). Its underlying group G
is the wreath product Sq o Sn. More concretely, the group G is the semidirect product of
Sq × · · · × Sq (n copies of Sq) and Sn with respect to ϕ : Sn → Aut(Sq × · · · × Sq),
where

ϕ(π)(σ1, . . . , σn) = (σπ(1), . . . , σπ(n)).

Then G acts transitively on X via

((σ, π), x) 7→ (σ1(xπ(1)), . . . , σn(xπ(n)))

for all σ ∈ Sq × · · · × Sq, π ∈ Sn, and x ∈ X. The action of G extends to X × X
componentwise and the orbits of this group action are precisely the relations Ri defined
in Example 2.1.1. Because Ri = RT

i for all i, the pair (X, {R0, R1, . . . , Rn}) is a
symmetric association scheme. It is an association scheme of type Bn or Cn since in
the binary case, the group G = S2 o Sn is the hyperoctahedral group, which is a Weyl
group of a Chevalley group2 of type Bn or Cn, see [Sta84, p. 103].

Example 2.1.6. Let (X,R) be the Johnson scheme J(n, m). The symmetric
group Sm+n acts transitively on X by permuting the elements of the (m + n)-set.
The action of Sm+n extends to X × X componentwise and the orbits of this group
action are given by R0, R1, . . . , Rn from (2.2). Because of Ri = RT

i for all i, the pair
(X, {R0, R1, . . . , Rn}) is a symmetric association scheme. It is an association scheme
of type Am+n−1 since the group Sm+n is the Weyl group of a Chevalley group of type
Am+n−1, see [Sta84, p. 101].

Strongly regular graphs. If a symmetric association scheme has only two
classes, then it is closely related to a strongly regular graph. Let G = (V, E)
denote a graph with vertex set V and edge set E. If there is an edge between
two vertices x, y ∈ V, then write x ∼ y. A simple graph G = (V, E), which
is neither empty nor complete, is called a strongly regular graph srg(v, k, θ, ρ)

if the graph G has v vertices, is k-regular (that is, every vertex has exactly k
neighbors), and if the following holds

|{z ∈ V | x ∼ z and y ∼ z}| =

θ if x ∼ y,

ρ if x 6∼ y.

The next proposition shows that symmetric association schemes with two
classes are equivalent to strongly regular graphs.

Proposition 2.1.7.

(a) Let (X, {R0, R1, R2}) be a symmetric association scheme with two classes. Then
the graph G = (X, R1) is an srg(|X|, p0

11, p1
11, p2

11).
2The definitions of Weyl and Chevalley groups are out of the scope of this thesis and they

are also not required in detail since the type is only used for a categorization of di�erent
association schemes.
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(b) Let G be an srg(v, k, θ, ρ). Define R0 = {(x, x) | x ∈ X} and let R1 be the
edge set of G and let R2 be the edge set of the complement of G. Then the pair
(X, {R0, R1, R2}) is a symmetric association scheme with two classes.

An example of a strongly regular graph can be constructed by using the
Hamming scheme H(2, q), for example, see Figure 2.5.

Figure 2.5. A strongly regular graph srg(9, 4, 1, 2) that arises from the Ham-
ming scheme H(2, 3).

2.1.2 The Bose-Mesner algebra

We now introduce an algebra associated with an association scheme and use
tools from linear algebra to further study association schemes.

Given a relation Ri of an association scheme (X,R) with n classes, let Di

be the adjacency matrix of the graph (X, Ri), that is, Di is an |X| × |X|matrix
with

(Di)x,y =

1 if (x, y) ∈ Ri,
0 otherwise

for x, y ∈ X. The conditions (A1)–(A3) are then equivalent to (A1’)–(A3’)
with

(A1’) D0 + D1 + · · · + Dn = J and D0 = I (where J and I are the all-ones-
matrix and identity matrix, respectively);

(A2’) for each i ∈ {0, 1, . . . , n}, there exists an i′ ∈ {0, 1, . . . , n} with DT
i = Di′ ;

(A3’) for each i, j ∈ {0, 1, . . . , n}, there exist nonnegative integers pk
ij such that

DiDj =
n

∑
k=0

pk
ijDk.

Consider the C-vector space B spanned by the adjacency matrices
D0, D1, . . . , Dn of an association scheme (X,R). This vector space together
with the standardmatrixmultiplication is a commutativematrix algebra, called
the Bose-Mesner algebra. The following proposition shows that B has a second
basis with some special properties.
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Proposition 2.1.8 ([Ban+21, Lemma 2.18]). Let B be the Bose-Mesner algebra of
an association scheme (X,R) with n classes. Then the algebra B has a second basis
consisting of pairwise orthogonal, idempotent, Hermitian matrices E0, E1, . . . , En that
satisfy

E0 + E1 + · · ·+ En = I and 1
|X| J ∈ {E0, E1, . . . , En}.

In what follows, we set E0 = 1
|X| J and write µk = rank(Ek), which are

known as the multiplicities of the association scheme. We call the matrices
E0, E1, . . . , En from Proposition 2.1.8 the primitive idempotents of the association
scheme.3

P- and Q-numbers. Since there are two different bases for the Bose-Mesner
algebra of an association scheme, we can use a change of basis to define complex
numbers Pi(k) and Qk(i) by

Di =
n

∑
k=0

Pi(k)Ek and Ek =
1
|X|

n

∑
k=0

Qk(i)Di.

The numbers Pi(k) and Qk(i) are called P-numbers and Q-numbers (or eigenval-
ues and dual eigenvalues) of the association scheme, respectively. The origin
of the second names comes from the fact that the P-numbers are indeed the
eigenvalues of the matrices Di because

DiEk =
n

∑
j=0

Pi(j)EjEk = Pi(k)Ek.

Moreover, the column spaces of the matrices E0, E1, . . . , En are the maxi-
mal common eigenspaces of the matrices D0, D1, . . . , Dn. We denote the
eigenspaces by Vk, that is, Vk = EkC

X. We then have the orthogonal direct sum

CX = V0 ⊥ V1 ⊥ · · · ⊥ Vn

with respect to the complex inner product, where V0 is spanned by the all-ones
vector.

Observe that the P- and Q-numbers are real if the association scheme is
symmetric.

For the Hamming scheme and the Johnson scheme, the P- and Q-numbers
are well known. For example, they were derived in [Del76a] by using semilat-
tices.

Example 2.1.9 ([Del76a, Theorem 11], [Ban+21, Theorem 2.86]). Consider
the Hamming scheme H(n, q). Then there exists a unique ordering of the primitive

3This notion comes from ring theory, where a nonzero idempotent element E in a ring R
means that E cannot be written as the sum of two nonzero orthogonal idempotents of R.
Indeed, if Ek = A + B for two orthogonal idempotents A and B of the Bose-Mesner algebra,
then Ek A = A follows and since A can be written as a linear combination of the matrices
E0, E1, . . . , En, we have A = Ek or A = 0.
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idempotents E0, E1, . . . , En such that the P- and Q-numbers are given by

Pi(k) = Qi(k) =
i

∑
j=0

(−1)j(q− 1)i−j
(

k
j

)(
n− k
i− j

)
. (2.4)

They can also be written as

Pi(k) = Qi(k) =
i

∑
j=0

(−1)i−jqj
(

n− j
n− i

)(
n− k

j

)
,

which can be proved by using generating functions, see [MS77, § 5, Theorem 15].

Example 2.1.10 ([Del76a, Theorem 10], [Del78b]). Consider the Johnson
scheme J(n, m). Then there exists a unique ordering of the primitive idempotents
E0, E1, . . . , En such that the P-numbers are given by

Pi(k) =
i

∑
j=0

(−1)i−j
(

n− j
i− j

)(
n− k

j

)(
m + j− k

j

)
(2.5)

and the Q-numbers are given by

Qk(i) = µk

k

∑
j=0

(−1)j
(

k
j

)(
m + n + 1− k

j

)(
n
j

)−1(m
j

)−1(i
j

)
, (2.6)

where µk = (m+n
k )− (m+n

k−1 ) are the multiplicities.

Below we summarize some basic facts about the P- and Q-numbers. Writ-
ing

P =


P0(0) P0(1) · · · P0(n)
P1(0) P1(1) · · · P1(n)

... ... . . . ...
Pn(0) Pn(1) · · · Pn(n)


and

Q =


Q0(0) Q0(1) · · · Q0(n)
Q1(0) Q1(1) · · · Q1(n)

... ... . . . ...
Qn(0) Qn(1) · · · Qn(n)

 (2.7)

gives PQ = QP = |X|I, which in one case means

1
|X|

n

∑
k=0

Pi(k)Qk(j) = δij for all i, j = 0, 1, . . . , n. (2.8)

The following proposition contains some special values of the P- and Q-
numbers.
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Proposition 2.1.11 ([Ban+21, Proposition 2.21]). Let Pi(k) and Qk(i) be the
P- and Q-numbers of an association scheme (X,R) with n classes. Then, for all
i = 0, 1, . . . , n, we have

(a) P0(i) = Q0(i) = 1

(b) Pi(0) = vi

(c) Qi(0) = µi

The P- and Q-numbers satisfy some orthogonality relations that will be of
importance in the next subsection.

Proposition 2.1.12 ([Ban+21, Theorem 2.22]). Let Pi(k) and Qk(i) be the P- and
Q-numbers of an association scheme (X,R) with n classes. Then we have the two
orthogonality relations

1
|X|

n

∑
k=0

µkPi(k)Pj(k) = δijvi for all i, j = 0, 1, . . . , n, (2.9)

1
|X|

n

∑
i=0

viQk(i)Qj(i) = δjkµk for all j, k = 0, 1, . . . , n. (2.10)

Moreover, the P- and Q-numbers are connected by

µkPi(k) = viQk(i) for all i, k = 0, 1, . . . , n. (2.11)

Krein numbers. We remark that the Bose-Mesner algebra of an associ-
ation scheme with the adjacency matrices D0, D1, . . . , Dn is also an algebra
with respect to the Hadamard (entrywise) product ◦, where the matrices
D0, D1, . . . , Dn form a basis consisting of pairwise orthogonal idempotent ele-
ments. Moreover, there exist complex numbers qk

ij, called Krein numbers, such
that

Ei ◦ Ej =
1
|X|

n

∑
k=0

qk
ijEk

for all i, j = 0, 1, . . . , n, where E0, E1, . . . , En are the primitive idempotents of
the association scheme. The Krein numbers satisfy similar properties as the
intersection numbers pk

ij. However, no general combinatorial interpretation
for them is known. For more details, see [Ban+21, § 2].

2.1.3 P- and Q-polynomial association schemes

In this subsection, we will consider only symmetric association schemes since
their P- and Q-numbers are real numbers.

Metric association schemes. Let (X,R) be a symmetric association
scheme with n classes and intersection numbers pk

ij, where we assume an
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ordering of the relations R0, R1, . . . , Rn. Then (X,R) is calledmetric if pi+j
ij 6= 0

and
pk

ij 6= 0 =⇒ |i− j| ≤ k ≤ i + j for all i, j, k.

The motivation for this definition comes from the following proposition.

Proposition 2.1.13 ([Del73, § 5.2]). Let (X,R) be a symmetric association scheme
with intersection numbers pk

ij. Define a mapping δ : X × X → N0 by δ(x, y) = i
whenever (x, y) ∈ Ri. Then the following are equivalent:

(1) δ is a metric.

(2) (X,R) is metric.

Example 2.1.14. The Hamming scheme H(n, q) is metric and the Hamming distance
dH(·, ·) is the corresponding metric.

Example 2.1.15. The Johnson scheme J(n, m) is metric: Use the embedding of J(n, m)

into H(m+ n, 2) from Remark 2.1.3 and identify each set x ∈ X with its characteristic
vector φx in {0, 1}m+n. The metric δ is then given by δ(x, y) = dH(φx, φy)/2.

P-polynomial association scheme. We will see that metric association
schemes have the useful property that the P-numbers are given by polynomi-
als. A symmetric association scheme is called P-polynomial with respect to the
ordering R0, R1, . . . , Rn if there exist polynomials fi ∈ R[x] of degree i and dis-
tinct real numbers y0, y1, . . . , yn such that Pi(k) = fi(yk) for all i, k = 0, 1, . . . , n.
The following proposition gives the connection between P-polynomial and
metric association schemes.

Proposition 2.1.16 ([Ban+21, Theorem 2.76], [Del73, Theorem 5.6]). Let
(X,R) be a symmetric association scheme with the adjacencymatrices D0, D1, . . . , Dn

corresponding to the relations R0, R1, . . . , Rn. Then the following are equivalent:

(a) (X,R) is P-polynomial with respect to the ordering R0, R1, . . . , Rn of the rela-
tions.

(b) (X,R) is metric with respect to the ordering R0, R1, . . . , Rn.

(c) There exist polynomials hi(x) ∈ R[x] of degree i such that Di = hi(D1).

Q-polynomial association scheme. A definition similar to P-polynomial
association scheme can be given in terms of the Q-numbers. A symmet-
ric association scheme is called Q-polynomial with respect to the ordering
E0, E1, . . . , En of the primitive idempotents if there exist polynomials gk ∈ R[x]
of degree k and distinct real numbers z0, z1, . . . , zn such that Qk(i) = gk(zk)

for all i, k = 0, 1, . . . , n.
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Similar to Proposition 2.1.16, we have the following.4

Proposition 2.1.17. Let (X,R) be a symmetric association scheme with primitive
idempotents E0, E1, . . . , En. Then the following are equivalent:

(a) (X,R) is Q-polynomial with respect to the ordering E0, E1, . . . , En.

(b) There exist polynomials hk(x) ∈ R[x] of degree k such that |X|Ek = hk(|X|E1),
where the Hadamard product is used whenever a matrix is substituted into the
polynomial hk.

By (2.9), the polynomials fi associated with a P-polynomial association
scheme are orthogonal with respect to the inner product

( f , g) =
n

∑
k=0

µk f (yk)g(yk) for f , g ∈ R[x]

and we have ( fi, f j) = |X|viδij. Similarly, by using (2.10), the polynomials gk

associated with a Q-polynomial association scheme are orthogonal with re-
spect to the inner product

( f , g) =
n

∑
i=0

vi f (zi)g(zi) for f , g ∈ R[x] (2.12)

and we have (gj, gk) = |X|µkδjk. Therefore, for some association schemes,
there is a connection to orthogonal polynomials.

Orthogonal polynomials. In what follows, and also in Section 2.3, we
will introduce different orthogonal polynomials associated with association
schemes. We note that there exist various definitions for the orthogonal poly-
nomials used in this thesis. For the sake of consistency, we will always use the
definitions given in [KLS10]. The polynomials will be expressed by hypergeo-
metric functions, which requires the definition of the Pochhammer symbol a(i)

given by
a(0) = 1 and a(i) = a(a + 1) · · · (a + i− 1),

where a is a complex number and i is a positive integer.5 The Pochhammer
symbol can be seen as a generalization of the factorial since i! = 1(i). It is also
related to the binomial coefficient by(

a
i

)
=

(−a)(i)

1(i)
(−1)i (2.13)

4There exists a dual version of the term metric with respect to the Krein parameters,
called cometric, see [Del73, Theorem 5.16], for example.

5The Pochhammer symbol a(i) is commonly denoted by (a)i. However, we will use the
latter notation as a a short version of the q-Pochhammer symbol (a; q)i for a specific q in all
upcoming chapters.
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for all complex numbers a and all nonnegative integers i. The hypergeometric
function rFs is now defined by the series

rFs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣ z

)
=

∞

∑
k=0

(a1, . . . , ar)(k)

(b1, . . . , bs)(k)
zk

k!
, (2.14)

where
(a1, . . . , ar)

(k) = a(k)1 · · · a
(k)
r .

The parameters in (2.14) must be chosen such that the denominators in the
series are never zero. If one of the parameters ai in the numerators is a non-
positive integer, then the hypergeometric function is a polynomial in z. This is
the case for all hypergeometric functions considered in this thesis.

Wewill now look at the polynomials associated with the Hamming scheme
and the Johnson scheme.

Example 2.1.18. For the Hamming scheme H(n, q), the P-numbers Pi(k) and Q-
numbers Qi(k) can be written by using the Krawtchouk polynomial of degree i in x
with the parameters n, A given by

Ki(x; A, n) = 2F1

(
−i,−x
−n

∣∣∣∣∣ 1
A

)
for i = 0, 1, . . . , n,

see [KLS10, § 9.11]. Namely, we have

Pi(k) = Qi(k) = viKi(k; (q− 1)/q, n) = vi 2F1

(
−i,−k
−n

∣∣∣∣∣ q
q− 1

)
,

see [CS90, Equation 2.6], for example. Therefore, the Hamming scheme is P-
polynomial with respect to the ordering R0, R1, . . . , Rn and Q-polynomial with respect
to the ordering E0, E1, . . . , En that is imposed by (2.4). We call these two orderings
the standard orderings. For the P-polynomial structure, we have yk = k for all
k = 0, 1, . . . , n and in the case of the Q-polynomial structure, we have zi = i for all
i = 0, 1, . . . , n.

Example 2.1.19. For the Johnson scheme J(n, m), the P-numbers Pi(k) can be written
by using a dual Hahn polynomial (also called Eberlein polynomial) with the
parameters n, C, D given by

Ei(λ(x); C, D, n) = 3F2

(
−i,−x, x + C + D + 1

C + 1,−n

∣∣∣∣∣ 1

)
for i = 0, 1, . . . , n,

which is a polynomial of degree i in λ(x) = x(x + C + D + 1), see [KLS10, § 9.6].
The Q-numbers Qk(i) can be written by using a Hahn polynomial with the parame-
ters n, A, B given by

Hk(x; A, B, n) = 3F2

(
−x,−k, k + A + B + 1

A + 1,−n

∣∣∣∣∣ 1

)
for k = 0, 1, . . . , n,
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which is a polynomial of degree k in x, see [KLS10, Section 9.5]. Then, from (2.5),
we obtain

Pi(k) = viEi(λ(k);−m− 1,−n− 1, n) = vi 3F2

(
−i,−k, k−m− n− 1

−m,−n

∣∣∣∣∣ 1

)
and

Qk(i) = µk Hk(i;−m− 1,−n− 1, n) = µk 3F2

(
−i,−k, k−m− n− 1

−m,−n

∣∣∣∣∣ 1

)
,

see [Del76b, § 5.2] and use (2.11). Therefore, the Johnson scheme is P-polynomial with
respect to the ordering R0, R1, . . . , Rn and Q-polynomial with respect to the ordering
E0, E1, . . . , En. Similarly to the Hamming scheme, we call these two orderings the
standard orderings. For the P-polynomial structure, we have yk = k(k−m− n− 1)
for all k = 0, 1, . . . , n and in the case of the Q-polynomial structure, we have zi = i
for all i = 0, 1, . . . , n.

Different orderings. Wewill now shortly discuss the importance of the or-
derings required in the definition of P- and Q-polynomial association schemes.
We will later see in Section 3.2 why it is useful to study a symmetric association
scheme with respect to different orderings if they exist.

It is well known that a P-polynomial association scheme can have at most
two different orderings and moreover, it is known which orderings it could
have.

Proposition 2.1.20 ([BB80, Theorem 1 and 2]). A symmetric association scheme,
which is not the association scheme of an n-gon6, can only be P-polynomial with
respect to at most two orderings of its relations. Moreover, if (X, {R0, R1, . . . , Rn})
is a P-polynomial association scheme with respect to some ordering R0, R1, . . . , Rn,
then there are the following four possible patterns of a second P-polynomial ordering:

(I) R0, R2, R4, R6, . . . , R5, R3, R1

(II) R0, Rn, R1, Rn−1, R2, Rn−2, R3, Rn−3, . . .

(III) R0, Rn, R2, Rn−2, R4, Rn−4, . . . , Rn−5, R5, Rn−3, R3, Rn−1, R1

(IV) R0, Rn−1, R2, Rn−3, R4, Rn−5, . . . , R5, Rn−4, R3, Rn−2, R1, Rn

To determine whether a P-polynomial scheme has a second P-polynomial
structure or not, one can use its intersection numbers. For more details,
see [Ban+21, § 6.1].

A similar theorem holds for the Q-polynomial structure.
6This association scheme consists of the point set X = {0, 1, . . . , n− 1} together with the

relations R0, R1, . . . , Rbn/2c given by (x, y) ∈ Ri if and only if min{|x− y|, n− |x− y|} = i. It
is P-polynomial with respect to the orderings R0, R`, R2`, R3`, . . . for all ` with gcd(n, `) = 1,
where the indices in the relations are taken modulo n.
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Proposition 2.1.21 ([Suz98, Theorem 1], [MW14, Theorem 3]). A symmetric
association scheme, which is not the association scheme of an n-gon7, can only be
Q-polynomial with respect to at most two orderings of its primitive idempotents
E0, E1, . . . , En. Moreover, if an association scheme is Q-polynomial with respect to
some ordering E0, E1, . . . , En of its primitive idempotents, then there are the following
four possible patterns of a second Q-polynomial ordering:

(I) E0, E2, E4, E6, . . . , E5, E3, E1

(II) E0, En, E1, En−1, E2, En−2, E3, En−3, . . .

(III) E0, En, E2, En−2, E4, En−4, . . . , En−5, E5, En−3, E3, En−1, E1

(IV) E0, En−1, E2, En−3, E4, En−5, . . . , E5, En−4, E3, En−2, E1, En

To determine whether a Q-polynomial scheme has a second Q-polynomial
structure or not, one can use its Krein numbers. For more details, see [Ban+21,
§ 6.1].

We now look at different orderings for the Hamming scheme and the
Johnson scheme.

Example 2.1.22. It is known that the Hamming scheme H(n, q) with n ≥ 3 has two
P- or Q-polynomial structures if and only if q = 2 and n is even, see [BI84, Remark
on p. 259]. Thus, assume that n ≥ 4 is even. Then the binary Hamming scheme
H(n, 2) is P-polynomial with respect to the second ordering

R0, Rn−1, R2, Rn−3, R4, Rn−5, . . . , R1, Rn

and Q-polynomial with respect to the second ordering

E0, En−1, E2, En−3, E4, En−5, . . . , E1, En.

If we use the second P-polynomial structure, then the P-numbers P′i (k) are given by

P′i (k) =

Pi(k) for even i

Pn−i(k) for odd i,

where Pi(k) are the P-numbers with respect to the standard ordering, see [CS86,
Equations (4.14) and (4.15)]. From (2.4), we obtain P′i (n − k) = (−1)iPi(k),
which together with (2.11) and (2.1) gives

P′i (k) = (−1)kiPi(k).

Similarly, the Q-numbers Q′k(i) with respect to the second Q-polynomial ordering are
given by

Q′k(i) = (−1)kiQk(i),
7Let E0, E1, . . . , En be a Q-polynomial ordering for the association scheme of an n-gon.

Then, for all k with gcd(n, k) = 1, it is also Q-polynomial with respect to the ordering
E0, Ek, E2k, E3k, . . . , where the indices are taken modulo n.
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where Qk(i) are the Q-numbers with respect to the standard ordering.

Example 2.1.23. It is known that the Johnson scheme J(n, m) with n ≥ 3 has two
P-polynomial structures if and only if m = n + 1 or (n, m) = (3, 3). Moreover,
a second Q-polynomial structure for J(n, m) can only occur if (n, m) = (3, 3),
see [BI84, Remark on p. 259]. For m = n + 1 ≥ 4, the second P-polynomial ordering
for J(n, n + 1) is given by

R0, Rn, R1, Rn−1, R2, Rn−2, . . . .

The eigenvalues P′i (k) with respect to this ordering are determined by

P′i (k) =

Pi/2(k) for even i

Pn−(i−1)/2(k) for odd i,

where Pi(k) are the eigenvalues with respect to the standard orderings, see [CS86,
Table 1].

Bipartite association schemes. Some P-polynomial association schemes
contain “subschemes” in the following way. A P-polynomial association
scheme (X, (Ri)) with n classes, which is not an n-gon (see Footnote 6 on
p. 23), is called bipartite if

DiDj = ∑
k∈Ω

pk
i,jDk

with Ω = {0, 2, 4, . . . , bn/2c} holds for all i, j = 0, 2, 4, . . . , bn/2c. This gives
an equivalence relation

x ∼ y if and only if (x, y) ∈
⋃
i∈Ω

Ri,

which partitions X into exactly two equivalence classes X1 and X2, called bipar-
tite halves. Then the pair (Xi, (R2i)0≤i≤bn/2c) is also a P-polynomial association
scheme, denoted by 1

2 X. If (X, (Ri)) is a bipartite association scheme with
n classes and P-numbers Pi(k), then the P-numbers P′i (k) of 1

2 X are given by
P′i (k) = P2i(k), see [CS86, Theorem 4.1], for example. In Chapter 3 and 5, we
will heavily exploit a bipartite half of an association scheme associated with
the hyperbolic polar space, which will be introduced in Section 2.3.2. Here, as
an example, we will look at the bipartite half of the binary Hamming scheme.

Example 2.1.24. The binary Hamming scheme H(n, 2) is bipartite, where the bi-
partite halves Xi are given by the set of binary n-tuples with an even/odd number of
nonzero entries, see [Ban+21, § 6.4 (iv)]. For example, see Figure 2.6. The relations
of 1

2 H(n, 2) are the orbits of Xi × Xi under the transitive group action of

G = {g ∈ S2 o Sn | g has an even number of sign changes}.
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The association scheme 1
2 H(n, 2) is of type Dn since G is a Weyl group of a Chevalley

group of type Dn, see [Sta84, p. 104].
The P-numbers P′i (k) of

1
2 H(n, 2) are given by

P′i (k) = v′i 2F1

(
−2i,−k
−n

∣∣∣∣∣ 2

)

for i, k = 0, 1, . . . , bn/2c, where v′i = (n
2i) is the valency of the relation R2i of H(n, 2).

This can also be written as

P′i (k) = v′i 3F2

(
−i,−k, k− n
− n

2 , −n+1
2

∣∣∣∣∣ 1

)

for i, k = 0, 1, . . . , bn/2c, see [CS86, Equation (4.13)]. Thus, P′i (k) can be expressed
by using a Hahn polynomial, namely we have

P′i (k) = v2iEi

(
λ(k);−n + 1

2
,−n + 1

2
,

n
2

)
(2.15)

with λ(k) = k(k− n). By using (2.11) and the multiplicities µ′k = (n
k) of

1
2 H(n, 2),

we obtain the Q-numbers Q′k(i) of
1
2 H(n, 2) as follows

Q′k(i) = µ′k 3F2

(
−i,−k, k− n
− n

2 , −n+1
2

∣∣∣∣∣ 1

)
= µ′k Hk

(
i;−n + 1

2
,−n + 1

2
,

n
2

)
.

(2.16)

Figure 2.6. The bipartite halves of the Hamming scheme H(3, 2) with the
relation R1.

2.1.4 Codes and designs in association schemes

The objective of this thesis is to study special subsets of the set X of
a (P and Q)-polynomial association scheme—namely, codes and designs.
Whereas codes are dense packings in a metric space defined on X, designs
are “good” approximations of the whole set X. It will turn out that codes and
designs are dual to each other. In this subsection, we will introduce the basic
tools to study them and in Section 2.2, we will see how optimization theory
can be used to derive bounds for the size of codes.
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We start with the definitions of the inner distribution and codes.
Inner distribution and codes. Let (X,R) be an association scheme

with n classes. The inner distribution of a subset Y of X is the tuple A =

(A0, A1, . . . , An), where

Ai =
|(Y×Y) ∩ Ri|

|Y| .

So, the entry Ai is basically the average number of pairs fromY×Y that lie in Ri.
The motivation for the inner distribution comes from its connection to codes. A
D-code is a subset Y of X such that Ai = 0 for all i ∈ {1, 2, . . . , n} \D, where D
is a subset of {1, . . . , n}. If the association scheme (X,R) is P-polynomial, then
a subset Y of X is a d-code if no pair (x, y) ∈ Y×Y lies in one of the relations
R1, R2, . . . , Rd−1, that means, Y is a D-code with D = {d, d + 1, . . . , n}. Note
that the inner distribution (Ai) of a d-code satisfies

A1 = A2 = · · · = Ad−1 = 0.

It turns out that this definition of D-codes coincides with various types of
codes introduced in coding theory, as can be seen in the next example.

Example 2.1.25. The d-codes in the Hamming scheme H(n, q) and in the Johnson
scheme J(n, m) are codes defined in coding theory. Namely, we have the following
(where we take the standard ordering of the relations in both association schemes).

(1) A d-code in H(n, q) is a subset Y of Qn (where |Q| = q) such that

dH(x, y) ≥ d for all distinct x, y ∈ Y.

These codes are the classical q-ary codes that have been heavily studied since
the 1940s and which have multiple applications in communication and storage
systems and are used in, e.g., deep-space communications, solid-state drives,
QR codes, Blu-ray discs.

(2) A d-code in J(n, m) is a subset Y of n-subsets of an (m + n)-set such that

n− |x ∩ y| ≥ d for all distinct x, y ∈ Y.

Identify each n-subset x of the (m + n)-set by its characteristic vector φx

in Fm+n
2 . Then each such vector has exactly n nonzero entries and a d-code Y

satisfies
dH(φx, φy) ≥ 2d for all distinct x, y ∈ Y.

Such codes are called binary constant-weight codes, which are also used
in various digital communication systems, e.g., in barcodes or for frequency
hopping in telecommunications.
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Dual distribution. Let Qk(i) denote the Q-numbers of an association
scheme (X,R). The dual distribution of a subset Y of X is the tuple A′ =
(A′0, A′1, . . . , A′n) defined by

A′k =
n

∑
i=0

Qk(i)Ai, (2.17)

that is QA = A′, where Q is the Q-matrix from (2.7) containing the Q-
numbers Qk(i).

The inner and dual distributions have some useful properties summarized
in Table 2.1. All properties follow directly from the definitions and sometimes
by also using PQ = |X|In, except for property (f) of the dual distribution,
which follows from the expression (e) of A′k and the fact that the primitive
idempotents Ek are positive semidefinite. We emphasize property (f) of the
dual distribution since it is essential for several important proofs in the remain-
der of this thesis.

Proposition 2.1.26 ([Del73, Theorem 3.3]). All entries of the dual distribution of
a subset in an association scheme are nonnegative real numbers.

Table 2.1. Properties of the inner and dual distributions of a subset Y
of X, where (X,R) is an association scheme with the adjacency matrices
D0, D1, . . . , Dn and primitive idempotents E0, E1, . . . , En. Moreover, φY denotes
the characteristic vector of Y.

inner distribution A = (Ai) dual distribution A′ = (A′k)

(a) A0 = 1 A′0 = |Y|

(b)
n
∑

i=0
Ai = |Y|

n
∑

k=0
A′k = |X|

(c) A =
1
|X|PA′ A′ = QA

(d) Ai =
1
|X|

n
∑

k=0
Pi(k)A′k A′k =

n
∑

i=0
Qk(i)Ai

(e) Ai =
1
|Y|φ

T
Y DiφY A′k =

|X|
|Y| φ

T
YEkφY

(f) Ai ≥ 0 A′k ≥ 0

We now look at a dual concept of a code.
Designs. Proposition 2.1.26 motivates the next definition. A subset Y of X

is called a T-design if A′k = 0 for all k ∈ T, where T is a subset of {1, 2, . . . , n}.
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Figure 2.7. A 2-(2, 3, 1) orthogonal array (left) and a 2-(3, 4, 1) orthogonal
array (right).

If the association scheme is Q-polynomial with the ordered primitive idempo-
tents E0, E1, . . . , En, then a t-design is a subset of X whose dual distribution (A′k)
satisfies

A′1 = A′2 = · · · = A′t = 0.

Recall that we have CX = V0 ⊥ V1 ⊥ · · · ⊥ Vn, where Vk is the column
space of Ek. Therefore, the characteristic vector φY of a subset Y of X is spanned
by the column vectors of the primitive idempotents. In the case of a t-design,
we can apply property (e) of A′k from Table 2.1 to obtain EkφY = 0 for all
k = 1, 2, . . . , t. Thus, the characteristic vector φY of a t-design Y satisfies

φY ∈ V0 ⊥ Vt+1 ⊥ Vt+2 ⊥ · · · ⊥ Vn.

So, the eigenspaces V1, V2, . . . , Vt are forbidden, whereas for a d-code, the
relations R1, R2, . . . , Rd−1 are forbidden.

Applying a result by Roos [Roo82, Theorem 3.4], one can give a combinato-
rial interpretation of T-designs in an association scheme that is constructed by
using a group as in Proposition 2.1.4. For the Hamming and Johnson scheme,
we then obtain the following classification results.

Example 2.1.27. Designs in the Hamming scheme H(n, q) are related to orthogonal
arrays: Take X = Qn with |Q| = q ≥ 2 and 1 ≤ t ≤ n. Then a subsetY of X is called
a t-(q, n, λ) orthogonal array if every restriction of Y to any t positions contains
every t-tuple from Qt exactly λ times. For example, a 2-(2, 3, 1) orthogonal array
and a 2-(3, 4, 1) orthogonal array can be found in Figure 2.7. We have the following
classification result for the Hamming scheme: a T-design with T = {1, 2, . . . , t} for
t ≤ n in the Hamming scheme H(n, q) is equivalent to a t-(q, n, λ) orthogonal array
with λ = |Y|/qt, see [Del73, Theorem 4.4] and [Roo82, Theorem 4.1.3].

Example 2.1.28. Designs in the Johnson scheme J(n, m) are related to the (classical)
combinatorial designs: Let X be the set of n-subsets of an (m + n)-set V and let
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1 ≤ t ≤ n. Then a subset Y of X is a t-(m + n, n, λ) combinatorial design if every
t-subset of V lies in exactly λ elements of Y. For example, a 2-(7, 3, 1) combinatorial
design (called Fano plane) was depicted in Figure 1.1. We have the following classifi-
cation result for the Johnson scheme: a T-design with T = {1, 2, . . . , t} and t ≤ n in
the Johnson scheme J(n, m) is equivalent to a t-(m + n, n, λ) combinatorial design
with λ = |Y|(n

t)/(
m+n

t ), see [Del73, Theorem 4.7] and [Roo82, Theorem 4.2.2].

In some cases, a t-design in a Q-polynomial association scheme can be
used to construct a new association scheme.

Proposition 2.1.29 ([Del73, Theorem 5.25]). Let (X,R) be a Q-polynomial as-
sociation scheme with n classes such that Qk(i) = gk(zi) for all i, k = 0, 1, . . . , n.
Suppose Y is a t-design in (X,R) with |Y| ≥ 2 and that there are exactly s + 1
nonzero entries in the inner distribution of Y such that t ∈ {2s− 2, 2s− 1, 2s}. Then
the pair (Y,R|Y) becomes a Q-polynomial association scheme with s classes, where
R|Y contains all relations R fromR such that R ∩ (Y×Y) 6= ∅.

We close this section by looking at an example of Proposition 2.1.29.

Example 2.1.30. Let (X,R) be the binary Hamming scheme H(n, 2) and let Y be
the set of elements in X with an even number of nonzero entries. Then Y is an (n− 1)-
design in H(n, 2). Since all Hamming distances in Y are even, we have s = bn/2c
and thus, t ∈ {2s − 1, 2s}. From Proposition 2.1.29, we find that Y induces an
association scheme with bn/2c classes, which is the bipartite half 1

2 H(n, 2) that we
already encountered in Example 2.1.24.

2.2 Linear programming

Besides establishing a connection between association schemes and coding
theory—by showing that some codes defined in coding theory are special
subsets in association schemes—Delsarte also introduced the powerful linear
programming method in [Del73], which treats the problem of finding the
maximum size of codes as an extremum problem for subsets in association
schemes. Finding upper bounds on the size of codes is one of the main objec-
tives in coding theory since large codes correspond to a high information rate
in the transmitting or storing process of data.

This section starts with a small overview on linear programming and after-
wards, we will introduce Delsarte’s pioneering linear programming method.

2.2.1 Basics from optimization theory

In this subsection, we briefly summarize the most basic facts from the theory
of linear programming. For further information, we refer to [Sch86], [Van14],
and [GM07].
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Primal and dual LP. Let A ∈ Rn×s, b ∈ Rn, and c ∈ Rs. Then the primal
linear problem (primal LP) is the problem of finding x ∈ Rs that maximizes cTx
under the constraints that x ≥ 0 and Ax ≥ −b. We write the primal LP as
follows

max
x∈Rs

cTx

s.t. x ≥ 0
Ax ≥ −b

(2.18)

The mapping x 7→ cTx for x ∈ Rs is called the objective function. If a vector
x ∈ Rs satisfies the constraints of an LP, then x is called a feasible solution of
that LP. The LP is bounded if for all feasible solutions x, the value cTx of the
objective function at x is bounded, otherwise the LP is unbounded. If the LP is
bounded, then a feasible solution x∗ is called optimal if cTx ≤ cTx∗ holds for all
feasible solutions x. We call the objective function value cTx∗ for an optimal
solution x∗ the LP optimum.

The dual linear problem (dual LP) is the problem of finding y ∈ Rn that
minimizes yTb under the constraints that y ≥ 0 and yT A ≤ −cT. Similarly to
the primal LP, we write

min
y∈Rs

yTb

s.t. y ≥ 0
yT A ≤ −cT

(2.19)

for the dual LP. Hence, the number of variables xi in the primal LP is equal to
the number of inequalities in yT A ≤ −cT contained in the dual LP. Vice versa,
the number of inequalities in Ax ≥ −b contained in the primal LP equals the
number of variables in the dual LP.

The terms objective function, feasible solution, (un)bounded, and optimal
are analogously defined for the dual LP.

Duality theory. There is a beautiful duality theory connecting the primal
anddual LP, see [Van14, § 5], for example. Here, wewill need the two following
duality theorems.

Theorem 2.2.1 (Weak duality theorem, [Sch86, Corollary 7.1g]). Every feasible
solution of the dual LP gives an upper bound on the LP optimum of the primal LP.
More specifically, for every feasible solutions x and y of the primal LP (2.18) and
dual LP (2.19), respectively, we have

cTx ≤ yTb.

The weak duality theorem implies that the primal LP and dual LP are
bounded if both have a feasible solution.

The next theorem gives a connection between the optimal solutions of the
primal and dual LP.
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Theorem 2.2.2 (Strong duality theorem, [Sch86, § 7.9]). Let x and y be feasible
solutions of the primal LP (2.18) and dual LP (2.19), respectively. Then both solutions
x and y are optimal if and only if their objective function values coincide, that is,
cTx = yTb.

Another useful property is the complementary slackness, which follows di-
rectly from the weak and strong duality theorem.

Theorem 2.2.3 (Complementary slackness, [Sch86, § 7.9]). Let x and y be
feasible solutions of the primal and dual LP, respectively. Then x and y are optimal if
and only if yT(b + Ax) = 0 and (cT + yT A)x = 0, which means

(1) if an entry yi of y is nonzero, then the i-th inequality in Ax ≥ −b is satisfied
with equality;

(2) if the i-th inequality in Ax ≥ −b is not satisfied with equality, then the corre-
sponding entry yi of y is zero;

(3) if an entry xi of x is nonzero, then the i-th inequality in yT A ≤ −cT is satisfied
with equality;

(4) if the i-th inequality in yT A ≤ −cT is not satisfied with equality, then the
corresponding entry xi of x is zero.

One can apply LP solvers to compute the optimal solution (if it exists)
numerically. For example, one can use the package glpk in the software GNU
Octave [Eat+20], which uses so-called primal and dual simplex methods to
solve linear problems.

2.2.2 Delsarte’s linear programming method

This subsection is about the powerful linear programming method developed
by Delsarte in [Del73], which gives upper bounds for the size of codes in
symmetric association schemes. Thus, let (X,R) be a symmetric association
scheme with n classes and denote its Q-numbers by Qk(i) and its multiplicities
by µk in what follows.

LP for codes. Recall that the inner distribution (Ai) and dual distribu-
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tion (A′k) of a D-code Y in X have the following properties (see Table 2.1):
n

∑
i=0

Ai = |Y|

A0 = 1

Ai ≥ 0 for all i = 1, 2, . . . , n

Ai = 0 for all i ∈ {1, 2, . . . , n} \ D

A′k =
n

∑
i=0

Qk(i)Ai ≥ 0 for all k = 0, 1, . . . , n

Since we are interested in upper bounds for the size of a code Y, we want
to maximize the sum ∑n

i=0 Ai. This motivates the following two definitions.
The primal LP for D-codes in (X,R) is given by

max
xi∈R

n
∑

i=0
xi

s.t. x0 = 1
xi ≥ 0 for all i ∈ D
xi = 0 for all i ∈ {1, 2, . . . , n} \ D

n
∑

i=0
Qk(i)xi ≥ 0 for all k = 1, 2, . . . , n

(2.20)

Henceforth, the LP optimum of (2.20) is denoted by LP(D) and in the case of
a P-polynomial association scheme and D = {d, d + 1, . . . , n}, it is denoted by
LP(d). (We will presently see that the LP optimum of (2.20) always exists.)
Dualizing (2.20) gives the dual LP for D-codes in (X,R) of the form

min
yi∈R

n
∑

k=0
µkyk

s.t. y0 = 1
yk ≥ 0 for all k = 1, 2, . . . , n

n
∑

k=0
Qk(i)yk ≤ 0 for all i ∈ D,

(2.21)

where µk is the multiplicity.
We then have the following theorem.

Theorem 2.2.4 ([Del73, § 3.2, Theorem 3.8]). Let (X,R) be a symmetric associa-
tion scheme with n classes and Q-numbers Qk(i) and let D be a subset of {1, 2, . . . , n}.
Then the linear program (2.20) has at least one feasible solution and is bounded. More-
over, if Y is a D-code in X, then its inner distribution is a feasible solution of (2.20)
and in particular, we have |Y| ≤ LP(D).

Because of the Weak duality theorem 2.2.1 and Complementary slack-
ness 2.2.3, we obtain the following corollary.
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Corollary 2.2.5 ([Del73, Lemma 3.5, § 3.3.2]). Let (X,R) be a symmetric associa-
tion scheme with n classes and Q-numbers Qk(i) and let D be a subset of {1, 2, . . . , n}.
Then the linear program (2.21) has at least one feasible solution and is bounded. More-
over, if LP(D) is the LP optimum of (2.20), then the objective function value of every
feasible solution yk of (2.21) gives an upper bound on LP(D), that is,

LP(D) ≤
n

∑
k=0

µkyk. (2.22)

Moreover, if Y is a D-code with dual distribution (A′k) such that |Y| equals the right-
hand side of (2.22), then yk A′k = 0 for all k = 1, 2, . . . , n.

We remark that one can also construct a linear program that minimizes a
function under some constraints, whose optimal solution gives lower bounds
on the size of designs, see [Del73, § 3.4].

Polynomial LP for codes. The next theorem plays a crucial part in this
thesis. It restates Corollary 2.2.5 for Q-polynomial association schemes by
using the orthogonal polynomials associated with the Q-polynomial structure.

Theorem 2.2.6 ([Del73, § 4.3]). Let (X,R) be a Q-polynomial association scheme
with n classes, where Qk(i) = gk(zi) for some gk ∈ R[x] of degree k and some real
numbers zi. Let D be a subset of {1, 2, . . . , n}. Suppose that F ∈ R[x] is a polynomial
of degree at most n whose coefficients Fk from the expansion

F = F0g0 + F1g1 + · · ·+ Fngn

satisfy F0 = 1, Fk ≥ 0 for all k = 1, 2, . . . , n, and F(zi) ≤ 0 for all i ∈ D. Then
(F0, F1, . . . , Fn) is a feasible solution of the dual LP (2.21) with objective function
value F(z0). In particular, we have LP(D) ≤ F(z0).

The next remark shows how to compute the coefficients Fk for a chosen
polynomial F.
Remark 2.2.7. Assume that (X,R) is Q-polynomial with Q-numbers given by
Qk(i) = gk(zi) as in Theorem 2.2.6. Let Pi(k), vi, and µk be the P-numbers, the
valencies, and the multiplicities of (X,R), respectively. Then, for a polyno-
mial F with F = F0g0 + F1g1 + · · ·+ Fngn, the coefficients Fk can be computed
by using the inner product (2.12) and (2.11), namely

Fk =
(F, gk)

(gk, gk)
=

1
|X|µk

n

∑
i=0

viF(zi)Qk(i) =
1
|X|

n

∑
i=0

F(zi)Pi(k). (2.23)

We will see throughout this thesis that in the case of a (P and Q)-
polynomial association scheme, the polynomial

F(z) = c
n

∏
i=d

(z− zi) for some real constant c
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often gives “good” bounds for d-codes in the sense that they are asymptotically
optimal. We call this polynomial F the Singleton polynomial. The following
example explains the origin of this name.

Example 2.2.8 ([Del73, § 4.3.2]). Assume that Y is a d-code in H(n, q). Recall from
Example 2.1.18 that we have zi = i for all i = 0, 1, . . . , n. We apply Theorem 2.2.6
with the Singleton polynomial

F(z) = qn−d+1
n

∏
j=d

(z− j).

We have

F(zi) = F(i) = qn−d+1 (
n−i

n−d+1)

( n
d−1)

.

The P-numbers satisfy the identity

n

∑
i=0

(
n− i

j

)
Pi(k) = qn−j

(
n− k
n− j

)
(2.24)

for all j, k = 0, 1, . . . , n, see [Del76a, Theorem 9], for example. Applying this identity,
we can compute the coefficients Fk by using (2.23) and obtain

Fk =
qn−d+1

qn( n
d−1)

n

∑
i=0

(
n− i

n− d + 1

)
Pi(k) =

(n−k
d−1)

( n
d−1)

.

Therefore, the polynomial F satisfies all conditions in Theorem 2.2.6 and we deduce

LP(d) ≤ F(z0) = qn−d+1. (2.25)

This is the well-known Singleton bound from coding theory, see [MS77, Chap-
ter 17 § 4], for example.

We can moreover say something about the structure of a d-code Y that reaches the
bound. Namely, assume that Y has exactly qn−d+1 elements. Denote the dual distri-
bution of Y by (A′k). Then Corollary 2.2.5 implies Fk A′k = 0 for all k = 1, 2, . . . , n.
Since Fk 6= 0 if and only if k ∈ {1, 2, . . . , n− d + 1}, the code Y is an (n− d + 1)-
design. More specifically, it is an (n− d + 1)-(q, n, 1) orthogonal array because of
Example 2.1.27.

We close this section by also applying Theorem 2.2.6 with the Singleton
polynomial to the Johnson scheme.

Example 2.2.9 ([Del73, § 4.3.2]). Assume that Y is a d-code in J(n, m). Recall
from Example 2.1.19 that we have zi = i for all i = 0, 1, . . . , n. Similarly as in
Example 2.2.8, we apply Theorem 2.2.6 together with the Singleton polynomial

F(z) =
(m+n

n )

(m+d−1
d−1 )

n

∏
i=d

(z− i).
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This gives

F(zi) =
(m+n

n )( n−i
n−d+1)

(m+d−1
d−1 )( n

d−1)
.

The P-numbers satisfy the identity
n

∑
i=0

(
n− i

j

)
Pi(k) =

(
n− k
n− j

)(
m + n− j− k

n− j

)
(2.26)

for all j, k = 0, 1, . . . , n, see [Del76a, Theorem 9], for example. From (2.23), we
obtain

Fk =
(n−k

d−1)(
m+d−1−k

d−1 )

(m+d−1
d−1 )( n

d−1)
.

Hence, the polynomial F satisfies all conditions in Theorem 2.2.6 and we deduce

LP(d) ≤ F(z0) =
(m+n

n )

(m+d−1
d−1 )

=
( m+n

n−d+1)

( n
n−d+1)

. (2.27)

Similarly as in Example 2.2.8, we can give a combinatorial interpretation of a
d-code Y reaching this bound. Assume that |Y| equals the right-hand side of (2.27)
and let (A′k) be the dual distribution of Y. Then Corollary 2.2.5 implies Fk A′k = 0
for all k = 1, 2, . . . , n. Since Fk 6= 0 if and only if k ∈ {1, 2, . . . , n− d + 1}, the
code Y is an (n− d + 1)-design in the Johnson scheme. More specifically, it is an
(n− d + 1)-(m + n, n, 1) combinatorial design.

2.3 Classical association schemes

This section studies several q-analogs of the Hamming scheme and Johnson
scheme. These two schemes as well as all the schemes that will be introduced
in this section are classical association schemes. The notion “classical” stems
from their connection to distance-regular graphs with classical parameters
[BCN89, Table 6.1]. Moreover, “classical”makes also sense in a broader context
since these association schemes are connected to finite classical groups (linear,
symplectic, unitary, and orthogonal groups on finite vector spaces), classical
forms (bilinear, alternating bilinear, Hermitian, and quadratic forms), and
classical orthogonal polynomials (in the sense of [AA85, § 4]: polynomials that
are special cases or limiting cases of the q-Racah polynomials or Askey-Wilson
polynomials).

The first two subsections deal with the ordinary q-analogs—namely, the
q-Johnson scheme and six polar space schemes. Afterwards, we will introduce
the affine q-analogs arising from bilinear forms, alternating bilinear forms, and
Hermitian forms.8 We will end this section by giving a connection between
some ordinary q-analogs and affine q-analogs.

8We will neglect the classical association scheme arising from quadratic forms on an
m-dimensional vector space over Fq since it was shown in [Ega85] that this scheme has the
same parameters, and consequently the same P- and Q-numbers, as the alternating bilinear
forms scheme on an (m + 1)-dimensional vector space over Fq.
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A summary of all the classical association schemes occurring in this thesis
can be found in Appendix A.

In what follows, we will frequently use the q-binomial coefficient defined by[
n
k

]
q
=

k

∏
j=1

qn−j+1 − 1
qj − 1

,

which is a polynomial in q.

2.3.1 q-Johnson scheme

Let m and n be positive integers with m ≥ n and let q be a prime power.
Choose X to be the set of all n-dimensional9 subspaces (n-spaces for short)
of an (m + n)-dimensional vector space over the finite field Fq. We have
|X| = [m+n

n ]q. The group GLm+n(q) acts transitively on X and this action
extends to X× X componentwise, where the orbits of the latter group action
are given by

Ri = {(U, W) ∈ X× X | dim(U ∩W) = n− i}

for all i = 0, 1, . . . , n. By Proposition 2.1.4, (X, (Ri)) is an association scheme
with n classes, which is known as the q-Johnson scheme (also called Grassmann
scheme) and denoted by Jq(n, m). It is an association scheme of type Am+n−1

since GLm+n(q) is a Chevalley group of type Am+n−1, see [Sta84, p. 110]. We
refer to [BI84, § 3.6], [BCN89, § 9.3], and [Ban+21, § 6.4] for more information
on this association scheme.

The valencies are
vi = qi2

[
n
i

]
q

[
m
i

]
q

for all i = 0, 1, . . . , n. The P-numbers are given by [Del76a, Theorem 10]

Pi(k) =
i

∑
j=0

(−1)i−j
[

n− j
i− j

]
q

[
n− k

j

]
q

[
m + j− k

j

]
q
qjk+(i−j

2 ) (2.28)

and the Q-numbers are given by [Del78b, § 2]

Qk(i) = µk

k

∑
j=0

(−1)jq(
j
2)

[
k
j

]
q

[
m + n + 1− k

j

]
q

[
n
j

]−1

q

[
m
j

]−1

q

[
i
j

]
q
q−ij, (2.29)

where the multiplicities are µk = [m+n
k ]q − [m+n

k−1 ]q. The q-Johnson scheme is
the q-analog of the Johnson scheme; namely by taking the limit q→ 1, the P-
and Q-numbers as well as the valencies and multiplicities equal those of the
Johnson scheme J(n, m), cf. (2.3), (2.5), and (2.6).

9We always use algebraic and not projective (geometric) dimension in this thesis.



38 Association schemes

The P-number Pi(k) from (2.28) is a polynomial of degree i in the variable
[k]q[m + n + 1− k]q, where [n]q is the q-number defined by

[n]q =
qn − 1
q− 1

.

Therefore, the q-Johnson scheme is P-polynomial with respect to the ordering
R0, R1, . . . , Rn. Moreover, the Q-number Qk(i) is a polynomial of degree k
in q−i. Thus, the q-Johnson scheme is also Q-polynomial with respect to the
ordering E0, E1, . . . , En of the primitive idempotents that is imposed by (2.29).

We can also write the P- and Q-numbers in a different form by using
the q-analogs of the Hahn and dual Hahn polynomials. This requires some
definitions. We define the q-Pochhammer symbol10 (a; q)n by

(a; q)0 = 1, (a; q)n =
n−1

∏
i=0

(1− aqi)

for a positive integer n and a real number a and the q-hypergeometric function rφs

by

rφs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣ q, z

)
=

∞

∑
`=0

(a1; q)` · · · (ar; q)`
(b1; q)` · · · (bs; q)`

(−1)(1+s−r)`q(1+s−r)(`2)
z`

(q; q)`
.

Observe that the q-binomial coefficient and the q-Pochhammer symbol are
connected as follows [

n
k

]
q
=

(q−n; q)k

(q; q)k
(−1)kqkn−(k

2). (2.30)

This can be seen as the q-analog of (2.13). The dual q-Hahn polynomial11 with
parameters n, q, C, D is defined by

Ei(µ(x); C, D, n; q) = 3φ2

(
q−i, q−x, CDqx+1

Cq, q−n

∣∣∣∣∣ q; q

)
,

which is a polynomial of degree i in µ(x) = q−x +CDqx+1, see [KLS10, § 14.7].
The q-Hahn polynomial12 with parameters n, q, A, B is defined by

Hk(q−x; A, B, n; q) = 3φ2

(
q−x, q−k, ABqk+1

Aq, q−n

∣∣∣∣∣ q; q

)
,

which is a polynomial of degree k in q−x, see [KLS10, § 14.6]. Then the P- and
Q-numbers can be written as

Pi(k) = viEi(µ(k); q−m−1, q−n−1, n; q)

= vi 3φ2

(
q−i, q−k, qk−m−n−1

q−m, q−n

∣∣∣∣∣ q; q

)
(2.31)

10This is the q-analog of the Pochhammer symbol in the sense that (qa; q)n/(1− q)n = a(n)

for q→ 1.
11This is indeed the q-analog of the dual Hahn polynomial since Ei(µ(x); qC, qD, n; q) =

Ei(λ(x); C, D, n) for q→ 1.
12We have Hk(q−x; qA, qB, n; q) = Hk(x; A, B, n) for q→ 1, which justifies the name q-Hahn

polynomial.
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and

Qk(i) = µk Hk(q−i; q−m−1, q−n−1, n; q)

= µk 3φ2

(
q−i, q−k, qk−m−n−1

q−m, q−n

∣∣∣∣∣ q; q

)
. (2.32)

see [Del76b, § 5.2] and [Del78b, § 2].

2.3.2 Polar space schemes

Finite classical polar spaces play an important role in finite geometry. In this
thesis, we will study codes and special designs in polar spaces. We start by
giving some basic facts from finite geometry. For further background, we refer
to [Cam92], [Tay92], [BCN89, § 9.4], [Bal15, § 4.2], and [HT16, § 5.1].

Different forms. Let V be a finite-dimensional vector space over Fq and
let σ be a field automorphism of Fq. A sesquilinear form on V is a mapping
f : V ×V → Fq that is linear in its first argument and semilinear in its second
argument, that is,

f (av1 + w1, v2) = a f (v1, v2) + f (w1, v2)

f (v1, av2 + w2) = aσ f (v1, v2) + f (v1, w2)

for all v1, v2, w1, w2 ∈ V and a ∈ Fq. A sesquilinear form f on V is called
reflexive if f (v, w) = 0 implies f (w, v) = 0 for all v, w ∈ V. A reflexive
sesquilinear form f is nondegenerate if f (v, w) = 0 for all w ∈ V implies
v = 0, or equivalently if f (v, w) = 0 for all v ∈ V implies w = 0. If a
mapping f : V ×V → Fq is linear in both arguments, then f is a bilinear form.
A sesquilinear form f is Hermitian if σ is a nontrivial involution (i.e., σ2 = 1)
and if f (v, w) = f (w, v)σ for all v, w ∈ Fq, which requires that q is a square and
σ(a) = a

√
q for all a ∈ Fq. A bilinear form f is symmetric if f (v, w) = f (w, v)

for all v, w ∈ V and alternating if f (v, v) = 0 for all v ∈ V. In the case of an
alternating form, the vector space V must have even dimension. A quadratic
form on V is a mapping Q : V → Fq such that Q(av) = a2Q(v) for all v ∈ V,
a ∈ Fq and (v, w) 7→ Q(v + w) − Q(v) − Q(w) is a bilinear form on V. A
quadratic form Q on V is nondegenerate if Q(v + w) = Q(w) for all w ∈ V
implies v = 0.

An isometry is a bijective linear mapping ϕ between two finite-dimensional
vector spaces V1 and V2 equipped with reflexive sesquilinear forms f1 and f2,
respectively, such that ϕ transforms one form into the other, that is, f1(v, w) =

f2(ϕ(v), ϕ(w)) for all v, w ∈ V1. The same definition holds if the vector spaces
are equipped with quadratic forms, where the condition for being an isometry
is replaced by f1(v) = f2(ϕ(v)) for all v ∈ V1.

Polar spaces. We can now define polar spaces. A subspace U of V is called
totally isotropicwith respect to a sesquilinear or quadratic form on V if the form
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vanishes completely on this subspace U, that is, f (u, v) = 0 for all u, v ∈ U, or
in the case of a quadratic form, f (u) = 0 for all u ∈ U. A finite classical polar
space with respect to a nondegenerate form f consists of all totally isotropic
subspaces of V. We will consider only finite classical polar spaces in this thesis
and therefore, we will refer to them as polar spaces.

The totally isotropic subspaces that are maximal with respect to inclusion
in a polar space are called generators. It turns out that all generators have the
same dimension, which is called the rank of the polar space. This comes from
the following theorem as can be seen in the corollary thereafter.

Theorem 2.3.1 ([Tay92, Theorem 7.4]). Let V be a finite-dimensional vector
space over Fq equipped with a nondegenerate quadratic, symmetric, alternating, or
Hermitian form. Then every isometry between two subspaces of V extends to an
isometry of V.

Corollary 2.3.2 ([Tay92, p. 59]). Every two generators of a polar space have the
same dimension.

Proof. Assume that there are two generators U and W in a polar space defined
on a vector space V with dim(U) < dim(W). Then there exists a bijective
mapping from U to a subspace W ′ of W, which is an isometry since both spaces
U and W are totally isotropic. By Theorem 2.3.1, this isometry extends to an
isometry ϕ : V → V. Thus, U lies in the totally isotropic space ϕ−1(W), which
is a contradiction to U being maximal.

Since the form f on a vector space V associated with a polar space P is
nondegenerate, we can apply the dimension formula dim(U) + dim(U⊥) =
dim(V) for U ∈ P , where

U⊥ = {u ∈ V | f (u, v) = 0 for all v ∈ U},

and U ⊆ U⊥ to obtain that the rank of P is at most 1
2 dim(V).

A polar space P has the parameter e if every (n − 1)-space in P lies in
exactly pe+1 + 1 generators.

Types of polar spaces. We will now look at the different types of polar
spaces of rank n. Let V(m, p) be an m-dimensional vector space over Fp,
where p is a prime power. It is well known that up to a change of the coordinate
system, the polar spaces can be described as follows.

• The Hermitian polar spaces A2
2n−1 and A2

2n. They consist of all totally
isotropic subspaces of V(2n, q2) and V(2n + 1, q2), respectively, where
the form associated with V(m, q2) is Hermitian and given by

x1yq
1 + x2yq

2 + · · ·+ xmyq
m.

The group of isometries of A2
m−1 is the unitary group Um(q2).
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Figure 2.8. Symplectic polar space C2 of rank 2, where the points are the
1-spaces and the lines are the 2-spaces (generators).

• The symplectic polar space Cn. It consists of all totally isotropic subspaces
of V(2n, q), where the form is alternating and given by

x1y2 − x2y1 + · · ·+ x2n−1y2n − x2ny2n−1.

The group of isometries is the symplectic group Sp2n(q). For example,
the symplectic polar space C2 of rank 2 is depicted in Figure 2.8.

• The hyperbolic polar space Dn. It consists of all totally isotropic subspaces
of V(2n, q), where the form is quadratic and given by

x1x2 + x3x4 + · · ·+ x2n−1x2n.

The group of isometries is the orthogonal group O+
2n(q). For example,

the hyperbolic polar space D2 of rank 2 is depicted in Figure 2.9.

• The parabolic polar space Bn. It consists of all totally isotropic subspaces
of V(2n + 1, q), where the form is quadratic and given by

x2
1 + x2x3 + · · ·+ x2n−2x2n−1 + x2nx2n+1.

The group of isometries is the orthogonal group O2n+1(q).

• The elliptic polar space D2
n+1. It consists of all totally isotropic subspaces

of V(2n + 2, q), where the form is quadratic and given by

g(x1, x2) + x3x4 + · · ·+ x2n−1x2n + x2n+1x2n+2

with an irreducible homogeneous polynomial g over Fq of degree two.
The group of isometries is the orthogonal group O−2n+2(q).

Table 2.2 contains a summary of all these six polar spaces together with
their parameter e.13 We remark that there are different notations for these

13In some literature (for example, [Van11]), one finds the parameters 1/2, 3/2, 1, 0, 1, 2
instead of −1/2, 1/2, 0, −1, 0, 1.
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Figure 2.9. Hyperbolic polar space D2 of rank 2, where the points are the
1-spaces and the lines are the 2-spaces (generators).

Table 2.2. List of all six finite classical polar spaces.

name form notation group dim(V) p e

Hermitian Hermitian A2
2n−1 U2n(q2) 2n q2 −1/2

Hermitian Hermitian A2
2n U2n+1(q2) 2n + 1 q2 1/2

symplectic alternating Cn Sp2n(q) 2n q 0
hyperbolic quadratic Dn O+

2n(q) 2n q −1
parabolic quadratic Bn O2n+1(q) 2n + 1 q 0
elliptic quadratic D2

n+1 O−2n+2(q) 2n + 2 q 1

six polar spaces.14 Here, we use the notation that comes from identifying the
corresponding projective groups of isometries with the Chevalley groups of
type A2

m, Cn, Dn, Bn, and D2
n+1, see [Car89, Theorems 11.3.2, 14.5.1, 14.5.2].

There exist various embeddings of the polar spaces into each other.
Remark 2.3.3. LetP be a polar space consisting of the totally isotropic subspaces
of an m-dimensional vector space V over Fp equipped with a nondegener-
ate form f . By choosing a hyperplane H of V such that f restricted to this
hyperplane is still nondegenerate, we obtain the following embeddings by
intersecting the polar space with this hyperplane H:

(a) the Hermitian polar space A2
2n−1 into the Hermitian polar space A2

2n;

(b) the hyperbolic polar space Dn into the parabolic polar space Bn;

(c) the parabolic polar space Bn into the elliptic polar space D2
n+1;

(d) the Hermitian polar space A2
2n into the Hermitian polar A2

2n+1;

(e) the parabolic polar space Bn into the hyperbolic polar space Dn+1;

(f) the elliptic polar space D2
n+1 into the parabolic polar space Bn+1.

14The notation based on the embedding of the polar spaces A2
m, Cn, Dn, Bn, and D2

n+1
into a projective space is given by H(m, q2), W(2n− 1, q), Q+(2n− 1, q), Q(2n, q), and Q−(2n+
1, q), respectively. The last three are sometimes also denoted by Ω+(2n, q), Ω(2n + 1, q), and
Ω−(2n + 2, q) in the literature.
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For example in (a), (b), and (d), the corresponding hyperplane can be chosen
to be H = {(x1, x2, . . . , xm) ∈ V | x1 = 0}. Observe that in (a)–(c) the ranks
of the polar spaces stay the same, whereas in (d)–(f) they decrease by 1.

If q is even, then the symplectic polar space Cn and the parabolic polar
space Bn are isomorphic, see [De 16, Corollary 7.129] for a proof.

Polar space schemes. We will now study the association schemes that
arise from polar spaces. Let P be a polar space of rank n and let G be the
corresponding group from Table 2.2. Then G acts transitively on the set X of
generators of P . The action of G extends to X × X componentwise and the
orbits of this group action are given by

Ri = {(U, W) ∈ X× X | dim(U ∩W) = n− i} (2.33)

for i = 0, 1, . . . , n, see [Sta80, Proposition 4.9]. Proposition 2.1.4 implies that
(X, (Ri)) is an association scheme with n classes. For more information on the
polar space schemes, we refer to [BI84, § 3.6], [BCN89, § 9.4], and [Ban+21,
§ 6.4]. An example of an association scheme arising from a polar space is given
in Figure 2.10.

Figure 2.10. Association scheme arising from the hyperbolic polar space D2
with the relations R1 and R2.

It is well known that

|X| =
n

∏
i=1

(1 + pi+e) (2.34)

see [BCN89, Lemma 9.4.1], for example. The P- and Q-numbers of (X, (Ri))

are given by

Pi(k) = vi

[
n
k

]−1

p

i

∑
`=0

(−1)`
[

n− i
k− `

]
p

[
i
`

]
p
p`(`−i−e−1) (2.35)

and

Qk(i) = µk

[
n
k

]−1

p

i

∑
`=0

(−1)`
[

n− i
k− `

]
p

[
i
`

]
p
p`(`−i−e−1), (2.36)

where

vi = p(
i+1

2 )+ie
[

n
i

]
p

(2.37)
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and

µk = pk(k−n)
[

n
k

]
p

(−pe+1; p)n

(−pe−k+1; p)n−k(−pn−k−e−1; p)k
(2.38)

are the valencies and themultiplicities, respectively, see [Sta80, Equation (8.1)],
[Sta81, Proposition 2.4].15,16

The P-number Pi(k), given in (2.35), is a polynomial of degree i in p−k,
and the Q-number Qk(i), given in (2.36), is a polynomial of degree k in p−i.
These polynomials can be written by using q-Krawtchouk polynomials17, which
are defined by

Ki(q−x; A, n; q) = 3φ2

(
q−x, q−i,−Aqi+1

0, q−n

∣∣∣∣∣ q; q

)
for k = 0, 1, . . . , n,

see [KLS10, § 14.15]. Namely, we have

Pi(k) = viKk(p−i; p−n−e−2, n, ; p)

= vi 3φ2

(
p−k, p−i,−p−n−e−1+k

0, p−n

∣∣∣∣∣ p; p

)
(2.39)

and

Qk(i) = µkKk(p−i; p−n−e−2, n; p)

= µk 3φ2

(
p−k, p−i,−p−n−e−1+k

0, p−n

∣∣∣∣∣ p; p

)
. (2.40)

The association scheme (X, (Ri)) is thus P-polynomial with respect to
the ordering R0, R1, . . . , Rn and Q-polynomial with respect to the ordering
E0, E1, . . . , En of the primitive idempotents that is imposed by (2.33) and (2.39).
We call both orderings the standard orderings.

Note that the association schemes arising from Bn and Cn have the same
parameters (e.g., size of X, eigenvalues), however they are isomorphic only
when q is even, see [BCN89, § 9.4.A] or [Ban+21, § 6.4].

A2
2n−1 and a second ordering. The association scheme A2

2n−1 is
Q-polynomial with respect to two different orderings: the standard order-
ing E0, E1, . . . , En and E0, En, E1, En−1, E2, En−2, . . . [CS86]. We continue to use
Pi(k) and Qk(i) to denote the P- and Q-numbers with respect to the standard

15It should be noted that p is assumed to be odd in [Sta80] and [Sta81]. However, all
parameters of the association scheme as well as Pi(k) and Qk(i) are polynomials in p. Hence,
the expressions for Pi(k) and Qk(i) hold for all p.

16A computation of the P-numbers can also be found in [Van11, Theorem 4.3.6] and [Eis99,
Theorem 3.8].

17The name comes from the fact that by taking the limit q→ 1, a q-Krawtchouk polynomial
becomes a Krawtchouk polynomial, more concretely, Ki(q−x; A, n; q) = Ki(x; (A + 1)−1, n)
for q→ 1. A resemblance can also be seen between (2.4) and (2.35).
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ordering and we write P′i (k) and Q′k(i) for the P- and Q-numbers with re-
spect to the second ordering. Then Pi(k) is given in (2.39) and P′i (k) is given
by [CS86]

P′i (2k) = Pi(k) for i = 0, . . . , n and k = 0, 1, . . . ,
⌊n

2

⌋
,

P′i (2k + 1) = Pi(n− k) for i = 0, . . . , n and k = 0, 1, . . . ,
⌊n− 1

2

⌋
.

By applying the quadratic transformation for hypergeometric functions
(see [KLS10, (1.13.28)], for example)

4φ3

(
A2, B2, C, D

ABq1/2,−ABq1/2,−CD

∣∣∣∣∣ q; q

)
= 4φ3

(
A2, B2, C2, D2

A2B2q,−CD,−CDq

∣∣∣∣∣ q2; q2

)
(2.41)

to Pi(k) and Pi(n− k) from (2.39), we obtain

P′i (k) = vi 3φ2

(
(−q)−i, (−q)−k, (−q)−2n+k−1

(−q)−n,−(−q)−n

∣∣∣∣∣−q;−q

)
, (2.42)

where vi = qi2
[ni ]q2 is the valency of Ri. Using (2.11) gives

Q′k(i) = µ′k 3φ2

(
(−q)−i, (−q)−k, (−q)−2n+k−1

(−q)−n,−(−q)−n

∣∣∣∣∣−q;−q

)
(2.43)

with

µ′k =

µk/2 for even k

µn−(k−1)/2 for odd k,

where µk denotes the multiplicities of A2
2n−1 with respect to the standard

ordering of E0, E1, . . . , En. Observe that P′i (k) and Q′k(i) can be expressed with
a dual q-Hahn polynomial and a q-Hahn polynomial, respectively. Namely,
we have

P′i (k) = viEi(µ(k); (−q)−n−1, (−q)−n−1, n;−q)

Q′k(i) = µ′k Hk((−q)−i; (−q)−n−1, (−q)−n−1, n;−q).

Bipartite halves 1
2 Dn of Dn. The hyperbolic polar space Dn gives rise

to another association scheme, called the bipartite half of Dn, in the following
way. Let X be the set of generators of Dn and define two generators in X to be
equivalent if the dimension of their intersection has the same parity as n. This
induces two equivalence classes, X1 and X2, which are called Latin and Greek.
See Figure 2.11 for the bipartite halves of D2. Each pair (Xi, (R2j)0≤j≤b n

2 c) is a
P- and Q-polynomial association scheme with bn/2c classes [BCN89, § 9.4.C],
denoted by 1

2 Dn. The corresponding group that acts transitively on 1
2 Dn is

the special orthogonal group SO+
2n(q), see [Sta80, p. 635] and [Tay92, Theo-

rem 11.61], which is a Chevalley group of type Dn. Therefore, the association
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= ∪

Figure 2.11. The bipartite halves of the hyperbolic polar space D2.

scheme is of type Dn. In what follows, we put n = bm/2c and treat 1
2 Dm. We

still denote by Pi(k) and Qk(i) the P- and Q-numbers of Dm and by P′i (k) and
Q′k(i) the P- and Q-numbers of 1

2 Dm. From [CS86] we find that
P′i (k) = P2i(k) for i, k = 0, 1, . . . , n.

Applying (2.41) to P2i(k) given in (2.39) implies

P′i (k) = v2i 3φ2

(
q−2i, q−2k, q−2m+2k

q−m, q−m+1

∣∣∣∣∣ q2; q2

)
, (2.44)

where v2i = q(
2i
2 )[m2i]q is the valency of the relation R2i of Dm. Using (2.11)

implies

Q′k(i) = µk 3φ2

(
q−2i, q−2k, q−2m+2k

q−m, q−m+1

∣∣∣∣∣ q2; q2

)
, (2.45)

where µk is the multiplicity of Dm. Observe that similar to A2
2n−1 with respect

to the second ordering, the numbers P′i (k) and Q′k(i) can be expressed with a
dual q-Hahn polynomial and a q-Hahn polynomial, respectively. Namely, we
have

P′i (k) = v2iEi(µ(k); q−m−1, q−m−1, m; q2)

Q′k(i) = µk Hk(q−2i; q−m−1, q−m−1, m; q2).

1
2 Dn+1 and Bn/Cn. In the cases of Bn and Cn, one obtains a new association

scheme with the classes
R0, R1 ∪ R2, R3 ∪ R4, . . . ,

see [IMU89]. Then the bipartite half 1
2 Dn+1 is isomorphic to this new asso-

ciation scheme arising from Bn, which also implies that 1
2 Dn+1 has the same

parameters as the new association scheme arising from Cn and they are isomor-
phic if q is even. The first part can be seen as follows. Recall that we can embed
Bn into Dn+1 by intersecting the space Dn+1 with a nondegenerate hyper-
plane H. Since e = 1 for Dn+1, every n-space of Dn+1 lies in exactly two (n+ 1)-
spaces—one from each bipartite half. Because of dim(H) = 2n + 1, every
n-space contained in H lies in a uniquely determined (n + 1)-space in 1

2 Dn+1.
For two n-spaces U1 and U2 in H, we have dim(U1 ∩U2) ∈ {n− k, n− k− 1}
if and only if dim(V1 ∩V2) = n− k, where V1 and V2 are the corresponding
(n + 1)-spaces containing U1 or U2, respectively. See also [BCN89, § 9.4.C].
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2.3.3 A�ne schemes

It remains to introduce the affine schemes, which consist of the matrix groups of
type Am+n−1, Dn, and A2

n together with relations defined by the rank metric.
It will turn out later that the affine schemes are closely related to the q-Johnson
scheme (which is of type Am+n−1), the hyperbolic bipartite half 1

2 Dn, and the
association scheme arising from the Hermitian polar space A2

2n−1 and we will
see a remarkable resemblance between these schemes in Subsection 2.3.4 and
throughout Chapter 5.

Let m and n be integers with m ≥ n ≥ 1 and let X be the set of m × n
matrices over Fq. The group G = X o (GLm(q)×GLn(q)) acts transitively
on X via

G× X → X

((D, (M, N)), A) 7→ MAN−1 + D.

The action of G extends to X× X componentwise and the orbits of this group
action are given by

Ri = {(A, B) ∈ X× X | rank(A− B) = i}

for i = 0, 1, . . . , n. By Proposition 2.1.4, (X, (Ri)) is an association scheme with
n classes, which is known as the bilinear forms scheme (or q-Hamming scheme)
since the matrices in Fm×n

q are in 1-to-1-correspondence with the set of bilinear
forms on Fm

q × Fn
q . We denote this association scheme by Bilq(n, m). Note

that |X| = qmn. For more information, we refer to [Del78a], [BI84, § 3.6 (II)],
[BCN89, § 9.5.A], and [Ban+21, § 6.4.1].

Figure 2.12. Bilinear forms scheme Bil2(2, 2), where only the relation R1 is
depicted to keep the graph more clearly represented.

An m × m matrix A = (aij) over Fq is called alternating if it is skew-
symmetric with zero main diagonal, that is, ai,i = 0 and ai,j + aj,i = 0 for
all i, j. Every alternating matrix has even rank. Let X now be the set of alter-
nating m× m matrices. The group G = X o GLm(q) acts transitively on X
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via

G× X → X

((D, M), A) 7→ MAM−1 + D.

The action of G extends to X× X componentwise and the orbits of this group
action are given by

Ri = {(A, B) ∈ X× X | rank(A− B) = 2i}

for i = 0, 1, . . . , n. By Proposition 2.1.4, (X, (Ri)) is an association scheme
with n = bm/2c classes. This scheme is known as the alternating bilinear forms
scheme since a matrix is alternating if and only if the corresponding bilinear
form is alternating. We denote this association scheme by Altq(m). Note
that |X| = q(

m
2 ). For more information, we refer to [DG75], [BI84, § 3.6 (II)],

[BCN89, § 9.5.B], and [Ban+21, § 6.4.1].
An n × n matrix A over Fq2 is called Hermitian if A∗ = A, where A∗ is

obtained from A by conjugation x 7→ xq of each entry x of A and transpo-
sition. Let X be the set of n × n Hermitian matrices over Fq2 . The group
G = X o GLn(q2) acts transitively on X via

G× X → X

((D, M), A) 7→ MAM∗ + D.

The action of G extends to X× X componentwise and the orbits of this group
action are given by

Ri = {(A, B) ∈ X× X | rank(A− B) = i}

for i = 0, 1, . . . , n. By Proposition 2.1.4, (X, (Ri)) is an association scheme
with n classes, which is known as the Hermitian forms scheme since a matrix is
Hermitian if and only if the corresponding form is Hermitian. We denote it by
Herq(n). For example, Her2(2) is depicted in Figure 2.13. Note that |X| = qn2 .
For more information, we refer to [Sch18], [BI84, § 3.6 (II)], [BCN89, § 9.5.C],
and [Ban+21, § 6.4.1].

In what follows, we write

(b, c) =



(q, qm−n) for Bilq(n, m)

(−q,−1) for Herq(n)

(q2, 1/q) for Altq(m) if m is even
(q2, q) for Altq(m) if m is odd.

(2.46)

For all three affine schemes Bilq(n, m), Herq(n), and Altq(m), the valencies
and multiplicities are given by

vi = µi = b(
i
2)

[
n
i

]
b

i−1

∏
j=0

(cbn−j − 1)
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Figure 2.13. Hermitian forms scheme Her2(2), where the edges represent the
relation R2 and R1 is neglected for keeping it simple.

and the P- and Q-numbers are given by

Pi(k) = Qi(k) =
i

∑
j=0

(−1)i−jb(
i−j
2 )

[
n− j
n− i

]
b

[
n− k

j

]
b
(cbn)j, (2.47)

see [Del78a], [DG75], and [Sch18]. Observe that Pi(k) is a polynomial of de-
gree i in b−k. Therefore, these three schemes are P- and Q-polynomial with re-
spect to the ordering R0, R1, . . . , Rn of relations and the ordering E0, E1, . . . , En

of the primitive idempotents imposed by (2.47). The corresponding polyno-
mials are related to affine q-Krawtchouk polynomials defined by

Kaff
i (q−x; B, n; q) = 3φ2

(
q−x, q−i, 0

Bq, q−n

∣∣∣∣∣ q; q

)
,

see [KLS10, § 14.16]. Namely, we have

Pi(k) = Qi(k) = viKaff
i (q−k; c−1b−n−1, n; b)

= vi 3φ2

(
b−k, b−i, 0

c−1b−n, b−n

∣∣∣∣∣ b; b

)
. (2.48)

2.3.4 Connection between a�ne and ordinary q-analogs

The affine schemes Bilq(n, m), Herq(n), and Altq(m) are related to the ordinary
q-analogs Jq(n, m), A2

2n−1, and 1
2 Dm in the following way. For a vector space V

over Fp, let Pn(V) be the set of n-spaces of V. Define the mapping

v : Fm×n
p → Pn(F

m+n
p )

A 7→
{(

x
Ax

)
| x ∈ Fn

p

}
.

(2.49)

It is well known [BCN89, § 9.5.E] that, after an appropriate choice of the form,
v(A) is in A2

2n−1 if and only if A is Hermitian, and v(A) is in Dn if and only
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if A is alternating (as before, p = q2 for A2
2n−1 and p = q otherwise). The

mapping v satisfies

n− dim(v(A) ∩ v(B)) = rank(A− B)

for all A, B ∈ Fn×n
q , so in particular v is injective. We therefore obtain the

following embeddings:

Bilq(n, m) ↪→ Jq(n, m)

Herq(n) ↪→ A2
2n−1

Altq(m) ↪→ 1
2 Dm

(2.50)

The P- and Q-numbers of these six association schemes are also quite
connected. Recall that we defined the parameters b and c in (2.46), which we
used to express the P- and Q-numbers of the affine schemes in a unified way.
We can use these parameters b and c for the ordinary q-analogs as well to also
write their P- and Q-numbers in a unified way. We thus expand the definition
of b and c as follows

(b, c) =



(q, qm−n) for Bilq(n, m) and Jq(n, m)

(−q,−1) for Herq(n) and A2
2n−1

(q2, 1/q) for Altq(m) and 1
2 Dm if m is even

(q2, q) for Altq(m) and 1
2 Dm if m is odd.

(2.51)

Observe that because of (2.31), (2.32), (2.44), (2.45), (2.42), and (2.43) the
P- and Q-numbers P′i (k) and Q′k(i) of Jq(n, m), A2

2n−1 (with respect to the sec-
ond Q-polynomial ordering), and 1

2 Dm are given by dual q-Hahn polynomials
and q-Hahn polynomials as follows

P′i (k) = v′i 3φ2

(
b−i, b−k, q−1c−1b−2n+k

b−n, c−1b−n

∣∣∣∣∣ b; b

)
(2.52)

and

Q′k(i) = µ′k 3φ2

(
b−i, b−k, q−1c−1b−2n+k

b−n, c−1b−n

∣∣∣∣∣ b; b

)
, (2.53)

where the corresponding valencies v′i and multiplicities µ′k are stated in Ta-
ble 2.3.

Note that the parameters of the hypergeometric functions in (2.52)
and (2.53) are similar to those in (2.48).

We close this chapter by shortly looking at a nonclassical affine scheme that
is connected to the symplectic polar space Cn. Namely, the set of symmetric
n × n matrices over Fq gives rise to an association scheme, known as the
symmetric bilinear forms scheme Symq(n), where a relation is indexed by the
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Table 2.3. Valencies and multiplicities occurring in (2.52) and (2.53), where
µk for A2

2n−1 and 1
2 Dm is given in (2.38).

Jq(n, m) A2
2n−1

1
2 Dm

v′i qi2
[

n
i

]
q

[
v− n

i

]
q

qi2
[

n
i

]
q2

q(
2i
2 )

[
m
2i

]
q

µ′k

[
m + n

k

]
q
−
[

m + n
k− 1

]
q

µk/2 for k even
µn−(k−1)/2 for k odd µk

rank of the difference of any matrix pair from the relation and also by the type
of this difference if the rank is even, see [Sch15], for example. This association
scheme is of type Cn [Sta84, p. 117] and it is neither P- nor Q-polynomial since
the P- and Q-numbers are not determined from evaluations of orthogonal
polynomials. However, they are given by a linear combination of evaluations
of affine q-Krawtchouk polynomials, see [Sch15] and [Sch20]. As above, after
an appropriate choice of the form, the space v(A) with A ∈ Fn×n

q is in Cn if
and only if A is symmetric and we additionally have the embedding

Symq(n) ↪→ Cn, (2.54)

see [BCN89, § 9.5.E].
We note that according to Stanton [Sta84, p. 118] a natural additive matrix

group of type Bn or A2
2n does not seem to exist.

In Chapter 5, we will encounter more similarities between the eight associ-
ation schemes occurring in (2.50) and (2.54). Moreover, we will exploit these
embeddings to construct codes in the polar space schemes.





Chapter 3

Codes in polar spaces

“Hope” is the thing with feathers -
That perches in the soul -
And sings the tune without the words -
And never stops - at all -

—Emily Dickinson

This chapter studies codes in polar spaces. We will derive upper bounds
for the size of codes in all polar spaces and show that most of these bounds
are sharp up to a constant factor by giving constructions of codes.

The results of this chapter can also be found in [SW22].

3.1 Introduction

Since the last century codes in the Hamming scheme and Johnson scheme
have been heavily exploited in different areas of digital communications. How-
ever, today’s communications are mostly done via a network of intermedi-
ate nodes. This requires new types of codes. It turned out that by using
combinatorics of vector spaces over a finite field, one can construct suitable
codes for network communications. One then studies rank-metric codes and
subspace codes [KK08], which are, for example, codes in the bilinear forms
scheme [Del78a], the alternating bilinear forms scheme [DG75], the Hermitian
forms scheme [Sch18], and the q-Johnson scheme. Here, we introduce another
type of subspace codes; namely, we define a d-code in a polar space P to be a
set of generators Y of P such that n− dim U ∩W ≥ d for all distinct U, W ∈ Y
(the mapping (U, W) 7→ n− dim U ∩W agrees with the subspace metric, also
known as Grassmann metric, used by coding theorists). This chapter focuses
on one of the main coding-theoretic problems for codes in polar spaces:

What is the maximum cardinality of a d-code in a polar space of rank n?

This question will be answered for various polar spaces by showing that the
bounds are asymptotically sharp. Namely, our main result in this chapter,

53
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Theorem 3.2.1 and Corollary 3.2.4, is a bound on the size of a d-code in a
polar space, which is sharp up to a constant factor in many cases. The proof
of the bound relies on Delsarte’s linear programming method introduced in
Section 2.2. In Chapter 4, we will apply the bound obtained here to show the
nonexistence of Steiner systems in polar spaces in most cases.

We will start with the derivation of the bound in Section 3.2. Afterwards,
we will construct codes in all polar spaces in Section 3.3, and lastly, we will
give a list of open problems related to the topic at hand in Section 3.4.

3.2 Bounds

To derive bounds for d-codes in all polar spaces, we begin with bounds for
d-codes in the Hermitian polar space A2

2n−1 and the bipartite half 1
2 Dn of the

hyperbolic polar space Dn. We proceed in this way because by taking the
second Q-polynomial ordering for A2

2n−1 and studying 1
2 Dn instead of Dn, we

can express the resulting Q-numbers Qk(i) by q-Hahn polynomials of degree k
in b−i, see Section 2.3.4. This allows us to treat A2

2n−1 and 1
2 Dn in a unified

way. We will then use the bounds in A2
2n−1 and 1

2 Dn to establish bounds for
codes in the remaining polar spaces.

Recall the definition of b and c from (2.51). We write (x)i = (x; b)i in what
follows.

It will turn out that the bound for A2
2n−1 and 1

2 Dm has a similar form as
the Singleton bound18 for the q-Johnson scheme Jq(n, m), which is given by19

|Y| ≤
[ m+n
n−d+1]q
[ n
n−d+1]q

=
[m+n

n ]q(q)d−1

(qcbn)d−1
(3.1)

for d-codes Y in Jq(n, m), see [WXS03, Theorem 5.2], [ZJX11], and [EV11,
Theorem 1]. We will give a different proof of (3.1) in the following theorem—
which is the main result of this chapter—where we also derive a bound for

A2
2n−1 and 1

2 Dm.

Theorem 3.2.1. Let X be the set of n-spaces in Jq(n, m) or generators in A2
2n−1

or 1
2 Dm, where n = bm/2c in the case of 1

2 Dm, and let Y be a d-code in X with
1 ≤ d ≤ n. Then we have

|Y| ≤ |X|(q)d−1

(qcbn)d−1
,

where d is required to be odd in the case of A2
2n−1. For even d in A2

2n−1, we have

|Y| ≤ |X|(q)d−1

(qcbn)d−1

(bn−d+2 − 1) + q bn+d−2−1
qbd−2−1 (bn−d+1 − 1)

(bn−d+2 − 1) + q bn+d−2−1
bn+d−1−1 (b

n−d+1 − 1)
.

18Also known as the Wang-Xing-Safavi-Naini, anticode bound, or packing bound.
19Observe the resemblance between (3.1) and the Singleton bound (2.27) for the Johnson

scheme.



3.2 Bounds 55

Moreover, these bounds also hold for d-codes in association schemes with the same
P- and Q-numbers as Jq(n, m), A2

2n−1, or
1
2 Dm.

Before we can prove Theorem 3.2.1, we need the following identity for the
Q-numbers. In the case of Jq(n, m), a different proof for this identity can be
found in [Del76a].

Lemma 3.2.2. Let X be the set of n-spaces in Jq(n, m) or generators in A2
2n−1 or

1
2 Dm, where we put n = bm/2c in the latter case. Let Q′k(i) be as in (2.53). Then
we have

n

∑
k=0

bk(n−j)
[

n− k
n− j

]
b

(qcbn−k)n−j

(q)n−j
Q′k(i) = |X|

[
n− i

j

]
b

(3.2)

for all i, j = 0, 1, . . . , n.

The proof of Lemma 3.2.2 requires some identities involving the
q-Pochhammer symbol. For a real number a and nonnegative integers n, k, we
have

(a2; q2)k = (a; q)k(−a; q)k (3.3)
(a; q)2k = (a; q2)k(aq; q2)k (3.4)

(a; q)n+k = (a; q)n(aqn; q)k (3.5)

(a; q)n−k =
(a; q)n

(a−1q1−n; q)k
(−a)−kq(

k
2)−nk+k for a 6= 0. (3.6)

These identities can be found in [KLS10, § 1.8], for example. We will moreover
frequently use the well-known identity[

k
j

]
q

[
j
i

]
q
=

[
k
i

]
q

[
k− i
j− i

]
q

(3.7)

without specific reference in the upcoming proof.

Proof of Lemma 3.2.2. Let P′i (k) and Q′k(i) be as in (2.52) and (2.53), respec-
tively, for Jq(n, m), 1

2 Dm and A2
2n−1. We will show that20

n

∑
i=0

[
n− i

j

]
b
P′i (k) = bk(n−j)

[
n− k
n− j

]
q

(qcbn−k)n−j

(q)n−j
. (3.8)

By multiplying (3.8) with Q′k(`), taking the sum over k, and using (2.8), we
obtain the identity in the lemma. It remains to prove (3.8). First, we rewrite

20In the case of Jq(n, m), the identity (3.8) can be written as

n

∑
i=0

[
n− i

j

]
q
P′i (k) = qk(n−j)

[
n− k
n− j

]
q

[
m + n− j− k

n− j

]
q
.

Observe that this is the q-analog of (2.26).
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the valencies v′i, given in Table 2.3, such that we have a similar form for P′i (k)
in both association schemes. For Jq(n, m), we use (2.30) to obtain

vi = qi2
[

n
i

]
q

[
m
i

]
q
= (−1)iqi2−( i

2)+mi
[

n
i

]
q

(q−m; q)i

(q; q)i
.

For A2
2n−1, we use (2.30) and (3.3) to obtain

v′i = qi2
[

n
i

]
q2
= (−1)iqi2−2( i

2)+2ni ((−q)−n;−q)i(−(−q)−n;−q)i

(−q;−q)i(q;−q)i

= (−1)i(−q)(
i
2)+i+ni

[
n
i

]
−q

(−(−q)−n;−q)i

(q;−q)i
.

For 1
2 Dm, we use (2.30) and (3.4) to obtain

v′i = q(
2i
2 )

[
m
2i

]
q
= q2im (q−m; q2)i(q−m+1; q2)i

(q2; q2)i(q; q2)i
.

For even m = 2n, we have

v′i = (−1)iq2in+2( i
2)

[
n
i

]
q2

(q−2n+1; q2)i

(q; q2)i

and for odd m = 2n + 1, we obtain

v′i = (−1)iq2in+2i+2( i
2)

[
n
i

]
q2

(q−2n−1; q2)i

(q; q2)i
.

Hence, in all cases, we can write

v′i = (−q)icib(
i
2)+ni

[
n
i

]
b

(c−1b−n)i

(q)i
.

To simplify notation, we set a = q−1c−1b−2n. Now, from the expression (2.52)
for P′i (k), we find

n

∑
i=0

[
n− i

j

]
b
P′i (k)

=
n

∑
i=0

[
n− i

j

]
b
(−q)icib(

i
2)+ni

[
n
i

]
b

(c−1b−n)i

(q)i
3φ2

(
b−i, b−k, abk

b−n, c−1b−n

∣∣∣∣∣ b; b

)

=

[
n
j

]
b

∑
i,`≥0

[
n− j

i

]
b
(−q)icib(

i
2)+ni+` (c

−1b−n)i(b−i)`(b−k)`(abk)`
(q)i(b−n)`(c−1b−n)`(b)`

.

From (2.30) we have[
n− j

i

]
b

(b−i)`
(b)`

= (−1)`b(
`
2)−i`

[
n− j
`

]
b

[
n− j− `

i− `

]
b
,

and therefore
n

∑
i=0

[
n− i

j

]
b
P′i (k) =

[
n
j

]
b
∑
`≥0

(−1)`b(
`
2)+`

[
n− j
`

]
b

(b−k)`(abk)`
(b−n)`(c−1b−n)`

S`, (3.9)
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where
S` = ∑

i≥0
(−q)icib(

i
2)+i(n−`)

[
n− j− `

i− `

]
b

(c−1b−n)i

(q)i
.

By interchanging the order of summation and then applying (3.5), we obtain

S` =
n−`
∑
i=0

(−q)i+`ci+`b(
i+`

2 )+(i+`)(n−`)
[

n− j− `

i

]
b

(c−1b−n)i+`

(q)i+`

=
n−`
∑
i=0

(−q)i+`ci+`b(
i+`

2 )+(i+`)(n−`)
[

n− j− `

i

]
b

(c−1b−n)`(c−1b−n+`)i

(q)`(qb`)i
.

By using (2.30), this sum becomes

S` = (−q)`c`b(
`
2)−`2+n` (c

−1b−n)`
(q)`

n−`
∑
i=0

(qcb2n−j−`)i (b
−(n−j−`))i(c−1b−n+`)i

(b)i(qb`)i

= (−q)`c`b(
`
2)−`2+n` (c

−1b−n)`
(q)`

2φ1

(
b−(n−j−`), c−1b−n+`

qb`

∣∣∣∣∣ b; qcb2n−j−`
)

.

The hypergeometric function 2φ1 can be evaluated by using the q-Chu-
Vandermonde identity

2φ1

(
b−k, x

y

∣∣∣∣∣ b;
ybk

x

)
=

(x−1y)k

(y)k

(see [KLS10, (1.11.4)], for example), which implies that

S` = (−q)`c`b(
`
2)−`2+n` (c

−1b−n)`(qcbn)n−j−`

(q)`(qb`)n−j−`
.

Substitute into (3.9) to obtain
n

∑
i=0

[
n− i

j

]
b
P′i (k) =

[
n
j

]
b
∑
`≥0

q`c`bn`
[

n− j
`

]
b

(b−k)`(abk)`(qcbn)n−j−`

(b−n)`(q)`(qb`)n−j−`
. (3.10)

From (3.5) we have

(qb`)n−j−` =
(q)n−j

(q)`
(3.11)

and from (3.6) we find that

(qcbn)n−j−` =
(qcbn)n−j

(q−1c−1b−2n+1+j)`
(−qcbn)−`b(

`
2)−(n−j)`+`. (3.12)

By substituting (3.11) and (3.12) into (3.10) and using (2.30), we have
n

∑
i=0

[
n− i

j

]
b
P′i (k)

=

[
n
j

]
b
∑
`≥0

(−1)`b(
`
2)−(n−j)`+`

[
n− j
`

]
b

(b−k)`(abk)`(qcbn)n−j

(b−n)`(q)n−j(q−1c−1b−2n+1+j)`

=

[
n
j

]
b

(qcbn)n−j

(q)n−j
∑
`≥0

b`
(b−(n−j))`(b−k)`(abk)`

(b)`(b−n)`(q−1c−1b−2n+1+j)`

=

[
n
j

]
b

(qcbn)n−j

(q)n−j
3φ2

(
b−(n−j), b−k, abk

b−n, q−1c−1b−2n+1+j

∣∣∣∣∣ b; b

)
.
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The hypergeometric function 3φ2 on the right-hand side can be computed via
the q-Pfaff-Saalschütz formula

3φ2

(
b−i, x, y

z, xyz−1b1−i

∣∣∣∣∣ b; b

)
=

(x−1z)i(y−1z)i

(z)i(x−1y−1z)i

(see [KLS10, (1.11.9)], for example). Note that qcbn = a−1b−n. Therefore, we
obtain

n

∑
i=0

[
n− i

j

]
b
P′i (k) =

[
n
j

]
b

(b−(n−k))n−j(qcbn−k)n−j

(q)n−j(b−n)n−j
.

Applying (2.30) to [nj ]b
= [ n

n−j]b
and using (2.30) one more time leads to the

identity (3.8).

We can now prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Suppose that Y is a d-code in Jq(n, m), A2
2n−1, or 1

2 Dm.
Let (A0, A1, . . . , An) and (A′0, A′1, . . . , A′n) be the inner and dual distribution
of Y, respectively, in terms of the orderings imposed by the P- and Q-numbers
given in (2.52) and (2.53). From (2.17) and Lemma 3.2.2, we obtain for all
j = 0, 1, . . . , n that

j

∑
k=0

bk(n−j)
[

n− k
n− j

]
b

(qcbn−k)n−j

(q)n−j
A′k

=
n

∑
i=0

Ai

j

∑
k=0

bk(n−j)
[

n− k
n− j

]
b

(qcbn−k)n−j

(q)n−j
Q′k(i)

= |X|
n

∑
i=0

Ai

[
n− i

j

]
b
. (3.13)

First, assume that d is odd in the case of A2
2n−1. Since A1 = · · · = Ad−1 = 0

and [ n−i
n−d+1]b = 0 for i ≥ d, we find from (3.13) with j = n− d + 1 that

n−d+1

∑
k=0

bk(d−1)
[

n− k
d− 1

]
b

(qcbn−k)d−1

(q)d−1
A′k = |X|

[
n

d− 1

]
b
A0.

Since A0 = 1 and A′0 = |Y|, we obtain
n−d+1

∑
k=1

bk(d−1)
[

n− k
d− 1

]
b

(qcbn−k)d−1

(q)d−1
A′k =

[
n

d− 1

]
b

(
|X| − (qcbn)d−1

(q)d−1
|Y|
)

.

(3.14)

Recall that A′k ≥ 0 for all k ≥ 0. For A2
2n−1, the sign of (qcbn−k)d−1/(q)d−1

is (−1)(d−1)(n−k+1) and the sign of [n−k
d−1]b is (−1)(d−1)(n−k−d+1). Since d is odd,

both signs are thus positive. Hence, all summands on the left-hand side
of (3.14) are nonnegative implying

|Y| ≤ |X|(q)d−1

(qcbn)d−1
,
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as required.
Now, consider A2

2n−1 for even d. Put

xk = bk(d−1)+d−2 (b
n−k+1)d−1(bn)d−2

(q)d−1(q)d−2

[
n− k
d− 1

]
b

[
n− 1
d− 2

]
b

yk = bk(d−2)+d−1 (b
n−k+1)d−2(bn)d−1

(q)d−2(q)d−1

[
n− k
d− 2

]
b

[
n− 1
d− 1

]
b
.

(3.15)

Use (3.13) with j = n− d + 1 and j = n− d + 2 to obtain

n−d+2

∑
k=0

(xk − yk)A′k

= |X|bd−2 (b
n)d−2

(q)d−2

([
n− 1
d− 2

]
b

[
n

d− 1

]
b
+ q
[

n− 1
d− 1

]
b

[
n

d− 2

]
b

bn+d−2 − 1
qbd−2 − 1

)
.

(3.16)

Next, we show that the summands on the left-hand side are nonnegative. The
sign of [m` ]b is (−1)`(m−`) and the sign of (bm)`/(q)` is (−1)m`. Hence, we have
sign(xk) = (−1)k and sign(yk) = −1, which implies that the left-hand side
of (3.16) equals

n−d+2

∑
k=0

((−1)k|xk|+ |yk|)A′k.

From
xk

yk
= bk−1 (b

n−k−d+2 − 1)(bn−k+d−1 − 1)
(bn+d−2 − 1)(bn−d+1 − 1)

,

we see that |xk| ≤ |yk| for all k ≥ 1. Therefore, the left-hand side of (3.16) can
be bounded from below by (x0− y0)A′0, which is also positive. Since A′0 = |Y|,
we thus find from (3.16) that

|Y| ≤
|X|bd−2 (bn)d−2

(q)d−2

(
[n−1
d−2]b[

n
d−1]b + q[n−1

d−1]b[
n

d−2]b
bn+d−2−1
qbd−2−1

)
(

bd−2 (bn+1)d−1(bn)d−2
(q)d−1(q)d−2

[ n
d−1]b[

n−1
d−2]b − bd−1 (bn+1)d−2(bn)d−1

(q)d−2(q)d−1
[ n
d−2]b[

n−1
d−1]b

) .

We can now deduce the second inequality of the theorem after elementary
manipulations. This completes the proof.

In what follows, we use Theorem 3.2.1 to obtain bounds for d-codes in the
remaining polar spaces A2

2n, Bn, Cn, Dn, and D2
n+1. To do so, we write

α(n, d) =
( n

∏
i=1

(1 + q2i−1)

)( d−1

∏
i=1

1 + (−q)i

1− (−q)n+i

)
ε(n, d),

where ε(n, d) = 1 for odd d and

ε(n, d) =
((−q)n−d+2 − 1) + q (−q)n+d−2−1

q(−q)d−2−1 ((−q)n−d+1 − 1)

((−q)n−d+2 − 1) + q (−q)n+d−2−1
(−q)n+d−1−1 ((−q)n−d+1 − 1)
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for even d. Moreover, we write

β(m, d) =


(

m−1
∏
i=1

(1 + qi)

)(
d−1
∏
i=1

1− q2i−1

1− qm+2i−2

)
for even m(

m−1
∏
i=1

(1 + qi)

)(
d−1
∏
i=1

1− q2i−1

1− qm+2i−1

)
for odd m.

Observe that, using (2.34), the bounds in Theorem 3.2.1 for A2
2n−1 and 1

2 Dm

equal α(n, d) and β(m, d), respectively.
First, we make the following observation about d-codes in Dn if d is even.

Proposition 3.2.3. Every d-code in Dn with even d and 2 ≤ d ≤ n induces a d
2 -code

in 1
2 Dn of the same size.

Proof. The strategy of this proof is depicted in Figure 3.1.
Let Y be a d-code in Dn with even d and 2 ≤ d ≤ n. Recall that the set of

generators is partitioned into two equivalence classes X1 and X2, where two
generators lie in the same class if and only if the dimension of their intersection
has the same parity as n. For each y ∈ Y, choose an (n− 1)-space contained
in y. Because Y is a d-code with d > 1, all these chosen (n− 1)-spaces are
distinct and moreover, the dimension of their intersection is at most n − d.
Since e = −1, each of these (n− 1)-spaces lies in exactly two generators—one
from X1 and one from X2. Let Ŷ be the set of all generators in X1 corresponding
to the chosen (n− 1)-spaces. Then it holds

dim(x̂ ∩ ŷ) ≤ n− d + 1

for all x̂, ŷ ∈ Ŷ. However, the case dim(x̂∩ ŷ) = n− d + 1 cannot occur since d
is even and dim(x̂ ∩ ŷ) must have the same parity as n. Hence, Ŷ ⊆ X1 is a
d
2 -code in 1

2 Dn with |Y| = |Ŷ|, as required.

We now derive bounds for codes in all polar spaces.

Corollary 3.2.4. Let P be a polar space of rank n and let Y be a d-code in P with
1 ≤ d ≤ n. Put δ = dd/2e.

(a) If P = A2
2n−1, then |Y| ≤ α(n, d).

(b) If P = A2
2n, then |Y| ≤ α(n + 1, d).

(c) If P = Bn or Cn, then |Y| ≤ β(n + 1, δ).

(d) If P = Dn and d is odd, then |Y| ≤ 2β(n, δ).

(e) If P = Dn and d is even, then |Y| ≤ β(n, δ).

(f) If P = D2
n+1, then |Y| ≤ β(n + 2, δ).
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X1 X2

Y

Ŷ

n-spaces

n-spaces

(n− 1)-spaces

Figure 3.1. Idea for the proof of Proposition 3.2.3—a d-code Y in X induces a
d-code Ŷ in the equivalence class X1 of X.

Proof. The bound in (a) follows directly from Theorem 3.2.1 by using (2.34).
A d-code in Dn induces δ-codes in each of the two bipartite halves of Dn,

so it is at most twice as large as a δ-code in 1
2 Dn. Theorem 3.2.1 then gives (d).

Proposition 3.2.3 immediately implies (e).
Recall from Section 2.3.2 (see p. 46) that in the cases of Bn and Cn, one

obtains a new association scheme with the classes

R0, R1 ∪ R2, R3 ∪ R4, . . .

and this new association scheme has the same P- and Q-numbers as
1
2 Dn+1 [IMU89]. Therefore, the size of a d-code in Bn or Cn is at most the
upper bound for a δ-code in 1

2 Dn+1 given in Theorem 3.2.1, which proves (c).
To establish the remaining cases (b) and (f), note that D2

n+1 and A2
2n

arise by intersecting Bn+1 and A2
2n+1, respectively, with a hyperplane (see

Remark 2.3.3). Hence, D2
n+1 can be embedded into Bn+1 and A2

2n can be
embedded into A2

2n+1. Note that Bn+1 and A2
2n+1 are of rank n + 1 and

each generator in D2
n+1 or A2

2n becomes an n-space in Bn+1 or A2
2n+1 under

these embeddings. In Bn+1 and A2
2n+1, every n-space is contained in exactly

pe+1 + 1 = q + 1 generators. For each embedded element of Y, we choose one
of these q + 1 generators giving a subset Ỹ of Bn+1 or A2

2n+1. Then Ỹ is also a
d-code and (c) implies (f) and (a) implies (b).

We close this section by giving the followingmore useful bounds on α(n, d)
and β(n, d).

Lemma 3.2.5. For 1 ≤ d ≤ n, we have

α(n, d) <

 14
5 qn(n−d+1) for odd d
14
5 qn(n−d+2) for even d,

(3.17)
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and

β(n, d) <

 5
2 q(n−1)(n−2d+2)/2 for even n
5
2 qn(n−2d+1)/2 for odd n.

(3.18)

To prove Lemma 3.2.5, we use the identity

x− 1
y− 1

≤ x
y

for y ≥ x ≥ 1 with y 6= 1 (3.19)

and the following lemma.

Lemma 3.2.6. Let n ≥ 1 and q ≥ 2 be integers. Then we have

n

∏
i=1

(
1 +

1
qi

)
<

5
2

,
n

∏
i=1

(
1 +

1
q2i

)
<

7
5

and
n

∏
i=1

(
1 +

1
q2i−1

)
< 2.

(3.20)

Proof. We use 1 + x < exp(x) to obtain
n

∏
i=1

(
1 +

1
qi

)
<

(
1 +

1
q

)
exp

(
1

q(q− 1)

)
≤
(

1 +
1
q

)
exp

(
1
q

)
.

Applying (1 + x) exp(x) < 5
2 for all x ∈ [0, 1

2 ] leads to the first inequality.
Using a similar approach gives us

n

∏
i=1

(
1 +

1
q2i

)
< exp

(
1

q2 − 1

)
≤ exp

(
1
3

)
<

7
5

,

and
n

∏
i=1

(
1 +

1
q2i−1

)
< exp

(
q

q2 − 1

)
≤ exp

(
2
3

)
< 2,

as required.

We can now prove Lemma 3.2.5.

Proof of Lemma 3.2.5. For β(n, d) and even n, use (3.19) and (3.20) to obtain

β(n, d) <

(
n−1

∏
i=1

qi
(

1 +
1
qi

))
q(−n+1)(d−1)

≤ 5
2

q(n−1)(n−2d+2)/2.

The bound for β(n, d) and odd n can be obtained similarly. For α(n, d), we
write

α(n, d) =
( n

∏
i=1

(1 + q2i−1)

)( d−1

∏
i=1

qi + (−1)i

qn+i − (−1)n+i

)
(−1)(n+1)(d−1)ε(n, d).

(3.21)
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We have

d−1

∏
i=1

qi + (−1)i

qn+i − (−1)n+i =


d−1

2

∏
i=1

(q2i+1)(q2i−1−1)
(qn+2i−(−1)n)(qn+2i−1+(−1)n)

for odd d

qd−1−1
qn+d−1+(−1)n

d−2
2

∏
i=1

(q2i+1)(q2i−1−1)
(qn+2i−(−1)n)(qn+2i−1+(−1)n)

for even d.

(3.22)
Using (3.19) and (3.20), we obtain for each r ≥ 1,

r

∏
i=1

(q2i + 1)(q2i−1 − 1)
(qn+2i − (−1)n)(qn+2i−1 + (−1)n)

≤
r

∏
i=1

(q2i + 1)(q2i−1 − 1)
(qn+2i + 1)(qn+2i−1 − 1)

≤
r

∏
i=1

q−2n
(

1 +
1

q2i

)
<

7
5

q−2nr.

Substitute into (3.22) to give

d−1

∏
i=1

qi + (−1)i

qn+i − (−1)n+i <


7
5 q−n(d−1) for odd d
7
5 q−n(d−2) qd−1−1

qn+d−1+(−1)n for even d.
(3.23)

From (3.20) we have

n

∏
i=1

(1 + q2i−1) =
n

∏
i=1

q2i−1
(

1 +
1

q2i−1

)
< 2qn2

. (3.24)

Substitute (3.23) and (3.24) into (3.21) to obtain

α(n, d) <


14
5 qn(n−d+1) for odd d

14
5 qn(n−d+2) qd−1−1

qn+d−1+(−1)n (−1)(n+1)(d−1)ε(n, d) for even d.
(3.25)

For even d, we have

(−1)(n+1)(d−1)ε(n, d)

=
q qn+d−2−(−1)n

qd−1−1 (qn−d+1 + (−1)n)− (−1)n(qn−d+2 − (−1)n)

(qn−d+2 − (−1)n) + q qn+d−2−(−1)n

qn+d−1+(−1)n (qn−d+1 + (−1)n)

=
q (qn+d−2−(−1)n)(qn−d+1+(−1)n)

(qd−1−1)(qn−d+2−(−1)n)
− (−1)n

q (qn+d−2−(−1)n)(qn−d+1+(−1)n)
(qn+d−1+(−1)n)(qn−d+2−(−1)n)

+ 1

<
qn+d−1 + (−1)n

qd−1 − 1
, (3.26)

by using (3.19), so that (3.25) gives the required bound for α(n, d).
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3.3 Constructions

We now discuss the sharpness of the bounds in Corollary 3.2.4 by giving
constructions of codes in polar spaces. For a vector space V, let Pn(V)

be the set of n-spaces of V. Recall the definition of the injective mapping
v : Fn×n

p → Pn(F2n
p ) from (2.49) in Section 2.3.4. We already stated that, after

an appropriate choice of the form, v(A) is in A2
2n−1 if and only if A is Hermi-

tian, v(A) is in Dn if and only if A is alternating, and v(A) is in Cn if and only
if A is symmetric (as before, p = q2 for A2

2n−1 and p = q otherwise). Also
recall that the mapping v satisfies

n− dim(v(A) ∩ v(B)) = rank(A− B)

for all A, B ∈ Fn×n
q . Accordingly, to construct codes in polar spaces,

we can use different types of codes in Fn×n
q . Such objects were studied

in [Sch18], [Sch10], [Sch15], and [DG75] for Hermitian, symmetric, and al-
ternating matrices, and are precisely the codes in affine schemes Herq(n),
Symq(n), and Altq(m). This implies the following corollary.

Corollary 3.3.1. The bound in Corollary 3.2.4 for a d-code in a polar space P of
rank n with 1 ≤ d ≤ n is sharp up to a constant factor if

(a) P = A2
2n−1 and d is odd;

(b) P = Cn and d is odd;

(c) P = Bn, d is odd, and q is even;

(d) P = Dn except possibly when n is even and q is odd.

Observe that in the case of Dn, the constructed code actually lies in the
bipartite half 1

2 Dn since alternating matrices always have even rank.

Proof of Corollary 3.3.1. From [Sch18] and the injection v, we find that for
odd d, there exists a d-code Y in A2

2n−1 satisfying |Y| = qn(n−d+1). In view
of Lemma 3.2.5, this shows that the bound in Corollary 3.2.4 (a) for odd d is
sharp up to a constant factor. Likewise from [Sch10] and [Sch15] we find that,
for odd d, there exists a d-code Y in Cn satisfying

|Y| =

q(n+1)(n−d+1)/2 for even n

qn(n−d+2)/2 for odd n,

showing that the bound in Corollary 3.2.4 (c) for P = Cn and odd d is sharp
up to a constant factor. Since Bn and Cn are isomorphic for even q, the same is
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true when P = Bn and q is even. From [DG75] we find that, for even d, there
exists a d-code Y in Dn satisfying

|Y| =

q(n−1)(n−d+2)/2 for even n and even q

qn(n−d+1)/2 for odd n.

Since a d-code is trivially also a (d− 1)-code, this shows that the bound in
Corollary 3.2.4 (d) and (e) is sharp up to a constant factor except possibly
when n is even and q is odd.

We note that in all other cases, one can obtain constructions of d-codes in a
similar fashion, showing that the remaining bounds in Corollary 3.2.4 are met
up to a small power of qn.

3.4 Open problems

We close this chapter by looking at some open problems that directly arise
from our results or are related to codes in polar spaces.

Problem 3.4.1. Is there a combinatorial proof for the bounds from Corollary 3.2.4?

In the case of the q-Johnson scheme, wewill see in Chapter 5 that Theorem 2.2.6
with the Singleton polynomial gives the Singleton bound (also known as
Wang-Xing-Safavi-Naini bound, anticode bound, or packing bound, see [WXS03,
Theorem 5.2] and [EV11, Theorem 1 and 2]), which can also be proved
combinatorially. Applying the same combinatorial proof for the polar spaces
gives the size of an (n − d + 1)-Steiner system in the polar space as an
upper bound for d-codes, see Proposition 5.1.2. However, we will see in
Chapter 4 that the bounds from Corollary 3.2.4 are smaller than the size of
Steiner systems in most cases. Since we gave only an algebraic proof for the
bounds in Corollary 3.2.4, it would be interesting to see whether they can
still be proved purely combinatorially. This problem is similar to Problem 5.4.5.

Problem 3.4.2. Improve the bounds in Corollary 3.2.4 that are not asymptotically
optimal, or construct new codes whose sizes reach these bounds up to constant factor.

Related to Problem 3.4.2 is the following.

Problem 3.4.3. Can some of the bounds in Corollary 3.2.4 be improved by using
semidefinite programming?

In 2005, Schrijver [Sch05] improved some of Delsarte’s linear programming
bounds for codes in the binary Hamming scheme H(n, 2) by using semidefi-
nite programming (SDP). Schrijver’s method gave new bounds for different
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types of codes as well (see [Val21] for a survey of this method). In the linear
programming (LP), one looks at constraints for pairs of codewords, whereas
in the SDP the constraints are for triples, quadruples, etc. of codewords. In the
case of the q-Johnson scheme, Schrijver’s SDP method did not give new upper
bounds for the size of codes so far, which was checked by Ihringer, see his
blog post [Ihr18] on this. It would be interesting to see whether SDP yields
better bounds than LP for codes in polar spaces.

Problem 3.4.4. Let P be a polar space of rank n. What is the maximum number of
elements in a subsetY of k-spaces inP with 1 ≤ k < n such that k−dim(x∩ y) ≥ d
for all distinct x, y ∈ Y?

Such subsets Y can be seen as a generalization of our definition of a code in
a polar space. One possibility to tackle this problem could be to study the
nonclassical association scheme arising from the action of the corresponding
group from Table 2.2 on the k-spaces (with k < n) instead of the generators.
This was shown by Stanton [Sta80], who proved that the orbits under this
action are indexed by two parameters and who also computed the eigenvalues
of this scheme, as did Eisfeld [Eis99].

Problem 3.4.5. Do 1-perfect codes in Bn and Cn exist if n = 2m − 1 for some
integer m ≥ 3?

An e-perfect code in a polar space P is a subset of generators such that for every
generator x in P , there is a unique generator from Y, whose intersection with x
has dimension at least n− e. The existence of e-perfect codes was solved in
most cases by using Lloyd’s theorem [Del73, Theorem 5.7]. More precisely,
it was proved by Chihara [Chi87] that nontrivial e-perfect codes do not exist
except possibly in Bn or Cn with e = 1 and n = 2m − 1 for some integer m
(where nontrivial means that the code is neither a singleton nor the full set of
generators). A 1-perfect code Y in Cn and Bn is a 3-code with

|Y| = |X|
v0 + v1

=

( n

∏
i=1

(1 + qi)

)(
q− 1

qn+1 − 1

)
,

where vi denotes the valency (2.37). The size of Y is precisely the value of the
respective bound in Corollary 3.2.4(c). For n = 3, a 1-perfect code in C3 or B3

is a so-called spread, whose existence question is affirmatively solved in C3 and
still not completely settled in B3, for example. (See [HT16, § 7.4 and 7.5] for
an overview on the existence of spreads.) So far, nothing seems to be known
in the case of n = 2m − 1 with m ≥ 3.



Chapter 4

Steiner systems in polar spaces

Some things will drop out of the public eye
and will go away, but there will always be
science, engineering and technology. And
there will always, always be mathematics.

—Katherine Johnson

In this chapter, we will give an almost complete classification of Steiner
systems in polar spaces by showing that such objects can only exist in some
corner cases. This classification result will be proved by using the bounds for
codes in polar spaces that were obtained in Chapter 3.

The results of this chapter can also be found in [SW22].

4.1 Introduction

A t-Steiner system is a collection Y of n-subsets of a v-set V such that each
t-subset of V is contained in exactly one member of Y. The long-standing
existence question for t-Steiner systems has been settled recently: it was shown
in [Kee14] and [Glo+16] that, for all t ≤ n and all sufficiently large v, a t-Steiner
system exists, provided that some natural divisibility conditions are satisfied.
Observe that a t-Steiner system is a t-(v, n, 1) combinatorial design and by
Example 2.1.28 and 2.2.9, a t-design and an optimal (n− t + 1)-code in the
Johnson scheme J(n, v− n).

It is well known that combinatorics of sets can be regarded as the lim-
iting case q → 1 of combinatorics of vector spaces over Fq. Indeed, fol-
lowing [Cam74] and [Del78b], a t-Steiner system over Fq is a collection Y of
n-dimensional subspaces (n-spaces for short) of a v-space V over Fq such that
each t-space of V is contained in exactly one member of Y. It is remarkable
that, in the nontrivial case 1 < t < n < v, Steiner systems over Fq are only
known for a single set of parameters [Bra+16], namely for (t, n, v) = (2, 3, 13)
and q = 2. Similar to Steiner systems of sets, a t-Steiner system over Fq is

67
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a t-design over Fq and an optimal (n− t + 1)-code in the q-Johnson scheme
Jq(n, v− n), as we will see in Chapter 5.

Wemay consider these objects as q-analogs of Steiner systems of type An−1,
as V together with the action of GLn(q) is of this type. We study q-analogs of
Steiner systems in finite vector spaces of type A2

2n−1, A2
2n, Bn, Cn, Dn, and

D2
n+1 (using the notation of [Car89]), which are the polar spaces introduced

in Section 2.3. Namely, a t-Steiner system in a polar space P is a collection Y of
generators in P such that each totally isotropic t-space of V is contained in
exactly one member of Y. These objects are sometimes called regular systems or
1-regular systems in the literature. Examples of Steiner systems in polar spaces
are given in Figure 4.1 and 4.2.

Figure 4.1. Two 1-Steiner systems (spreads) in the hyperbolic polar space D2
from Figure 2.9.

Figure 4.2. A 1-Steiner system (spread) in the symplectic polar space C2 from
Figure 2.8.

A 1-Steiner system in a polar space is known as a spread, whose exis-
tence question has been studied for decades (see [Seg65], [Dye77], [Tha81],
[Kan82b], [Kan82a], [Cal+97], for example), but is still not fully resolved
(see [HT16, § 7.4] for the current status). The only other known nontrivial
t-Steiner systems in polar spaces occur for t = n− 1 in the hyperbolic polar
space Dn and equal one of the two bipartite halves 1

2 Dn of Dn, see p. 45.
We prove the following classification result.
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Theorem 4.1.1. Suppose that a polar space P of rank n contains a t-Steiner system
with 1 < t < n. Then one of the following holds

(1) t = n− 1 and P = Dn;

(2) t = n− 1 and P = A2
2n or D2

n+1 for q ≥ 3;

(3) t = 2 and P = A2
2n or D2

n+1 for odd n.

It is unknownwhether t-Steiner systems exist in the remaining possibilities
and we conjecture the following.

Conjecture 4.1.2. If a polar space P of rank n contains a t-Steiner system Y with
1 < t < n, then P = Dn and Y is a bipartite half of Dn.

The special cases (n, t) = (4, 2) and (n, t) = (5, 3) in Theorem 4.1.1 were
recently obtained in [Cos+22] and the results in the cases t = n − 1 are
essentially known (see Case (C1) in Section 4.2). All other cases appear to be
new.

An elementary counting argument shows that the size of a t-Steiner system
in a polar space necessarily equals the total number of totally isotropic t-spaces
divided by the number of t-spaces contained in a generator. Our proof of
Theorem 4.1.1 is based on the fact that a set Y of generators in a polar space is
a t-Steiner system if and only if Y has the correct size and dim U ∩W < t for
all distinct U, W ∈ Y. Therefore, the intersection of two distinct members of a
t-Steiner system can have dimension at most t− 1 and so a t-Steiner system is
an (n− t + 1)-code and its size must satisfy the bounds derived in Chapter 3.
However, we will show that in most cases the bound is too small for a t-Steiner
system to exist, eventually leading to Theorem 4.1.1. Numerical evidence
suggests that in all cases remaining in Theorem 4.1.1, the LP optimum in
the corresponding association scheme equals the size of the putative Steiner
system. Hence, it seems that entirely new techniques are required to deal with
the remaining cases.

After giving a proof of Theorem 4.1.1 in Section 4.2, we will discuss some
open problems related to the topic of this chapter in Section 4.3.

4.2 Proof of the classification results

Here, we prove Theorem 4.1.1. The proof is split into the following cases:

(C1) t = n− 1 and P = A2
2n, D2

n+1 for q = 2 or P = A2
2n−1, Bn, Cn;

(C2) P = Dn with 1 < t < n− 1;

(C3) P = Bn or Cn with t = 2 and even n or 2 < t < n− 1;
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(C4) P = D2
n+1 with t ∈ {2, 3} and odd n or 3 < t < n − 1, but

(n, t) 6∈ {(7, 4), (8, 5)};

(C5) P = A2
2n−1 with 1 < t < n− 1;

(C6) P = A2
2n with t = 2 and even n, or 2 < t < n − 1 except for

(n, t) = (6, 3);

(C7) t = 2 and P = Bn or Cn for odd n > 3 or P = D2
n+1 for even n > 3;

(C8) P = D2
n+1 with t = 3 and even n > 4;

(C9) P = D2
n+1 with (n, t) = (7, 4) or (8, 5), or P = A2

2n with (n, t) = (6, 3).

The case (C1) is essentially known [Van11, p. 160] and a proof is sketched
below for completeness. The cases (C2)–(C6) will follow from Theorem 3.2.1
and Corollary 3.2.4. The cases (C7)–(C9) are some corner cases, which need
special treatment.

We begin with a sketch for a proof of (C1).

Proof of (C1). By taking the elements of an (n− 1)-Steiner system in a polar
space of rank n that contain a fixed isotropic 1-space v and taking the quotient
by v, one obtains an (n− 2)-Steiner system in a polar space of the same type
but rank n− 1. This reduces the existence question to 2-Steiner systems in
rank 3 or 1-Steiner systems, namely spreads, in rank 2. There are no spreads
in B2 for odd q, A2

4 for q = 2, and A2
5 for all q [HT16, § 7.4] and there are no

2-Steiner systems in D2
4 for q = 2 [Pan98] and C3 for all q [Tho96], [CP03].

Since Bn and Cn are isomorphic if q is even, there are also no 2-Steiner systems
in B3 for even q.

To prove (C2)–(C6), we note that the number of totally isotropic t-spaces
in a polar space of rank n is [

n
t

]
p

t−1

∏
i=0

(1 + pn−i+e) (4.1)

(see [BCN89, Lemma 9.4.1], for example). Since every generator contains
exactly [nt ]p subspaces of dimension t, the size of a t-Steiner system is thus
given by

t−1

∏
i=0

(1 + pn−i+e). (4.2)

Recall that a t-Steiner system is an (n − t + 1)-code. Henceforth, we thus
write d = n − t + 1. Let B denote the corresponding bound of a d-code in
Corollary 3.2.4. We denote the size of an (n− d+ 1)-Steiner system by S, hence

S =
n−d

∏
i=0

(1 + pn−i+e), (4.3)
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and in particular
S ≥ p

1
2 (n−d+1)(n+d+2e). (4.4)

We set R = B/S and show that R < 1.

Proof of (C2). In this case, we assume that P = Dn and 2 < d < n. Use
Corollary 3.2.4 (d) and (e), (4.4), and (3.18) to obtain

R <



5
2 q

1
2 (d−2)(d−n) for even n and even d

5q
1
2 (d−1)(d−n−1) for even n and odd d

5
2 q

1
2 (d−2)(d−n−1) for odd n and even d

5q
1
2 (d−1)(d−n−2) for odd n and odd d.

(4.5)

If n and d have the same parity, then (4.5) implies R < 1. If n and d have a
different parity, then (4.5) implies R < 1, except when (n, d) = (4, 3). In the
latter case, Corollary 3.2.4 (d) and (4.3) give

R =
2

1 + q2 < 1.

This completes the proof.

Proof of (C3). In this case, we assume that P = Bn or Cn and 2 < d < n− 1 or
d = n− 1 is odd. Use Corollary 3.2.4 (c), (4.4), and (3.18) to obtain

R <



5
2 q

1
2 (d(d−1)−(n+1)(d−2)) for even n and even d

5
2 q

1
2 (d(d+1)−(n+1)(d−1)) for even n and odd d

5
2 q

1
2 (d(d−1)−n(d−2)) for odd n and even d

5
2 q

1
2 (d(d+1)−n(d−1)) for odd n and odd d.

It is the readily verified that R < 1, except if (i) d = 4 and n = 6, 7, or (ii)
d = 3 and n = 6, 7, or (iii) d = n− 2 is odd, or (iv) d = n− 1 is odd. For (i)
and (ii), Corollary 3.2.4 (c) and (4.3) imply that R equals (1+ q3)/(1+ q4) and
1/(1+ q4), respectively, giving R < 1 in both cases. For (iii), Corollary 3.2.4 (c)
and (4.3) imply that

R =

( n−2

∏
i=1

(1 + qi)

)( n
2−1

∏
i=1

1− q2i−1

(1− q
n
2 +i)(1 + q

n
2 +i)

)

=
1

1 + qn−1

( n
2

∏
i=1

(1 + qi)

)( n
2−1

∏
i=1

1− q2i−1

1− q
n
2 +i

)

<
5
2

q
1 + qn−1 < 1,

by using (3.19), (3.20), and n ≥ 4. Similarly, for (iv), we deduce

R <
5
2

q
1 + qn−2 < 1,

which completes the proof.



72 Steiner systems in polar spaces

Proof of (C4). In this case, we assume that P = D2
n+1 and 2 < d < n − 2

or d = n − 2 is odd or d = n − 1 is even, but (n, d) 6∈ {(7, 4), (8, 4)}. Use
Corollary 3.2.4 (f), (4.4), and (3.18) to obtain

R <



5
2 q

1
2 (d(d+1)−(n+1)(d−2)) for even n and even d

5
2 q

1
2 (d(d+1)−(n+1)(d−1)) for even n and odd d

5
2 q

1
2 (d(d+1)−(n+2)(d−2)) for odd n and even d

5
2 q

1
2 (d(d+1)−(n+2)(d−1)) for odd n and odd d.

Then we have R < 1, except for (i) d = 3 and n = 5, 6, or (ii) d = 4 and
n = 9, 10, or (iii) d = 6 and n = 9, 10. Corollary 3.2.4 (f) and (4.3) imply that,
in the respective cases, R equals

1 + q3

1 + q4 ,
(1 + q3)(1− q8)

1− q12 ,
(1− q8)(1 + q5)

1− q14 .

In all cases, we have R < 1, as required.

Proof of (C5). In this case, we assume that P = A2
2n−1 with 2 < d < n. Use

Corollary 3.2.4 (a), (4.4), and (3.17) to obtain

R <

 14
5 q(d−1)(d−n−1) for odd d
14
5 q(d−1)(d−n−1)+n for even d.

Then we have R < 1, except for (n, d) = (5, 4). In the latter case, we find from
Corollary 3.2.4 (a), (3.21), (4.3), and (3.26) that

R <
q8 − 1
q3 − 1

3

∏
i=1

(q2i−1 + 1)
qi + (−1)i

q5+i + (−1)i

=
(q4 − 1)(q5 + 1)
(q7 + 1)(q3 − 1)

≤ 2q−1 ≤ 1,

as required.

Proof of (C6). In this case, we assume that P = A2
2n with 2 < d < n − 1

or d = n− 1 is odd, where the case (n, d) = (6, 4) is excluded. Use Corol-
lary 3.2.4 (b), (4.4), and (3.17) to obtain

R <

 14
5 q(d−1)(d−n−2)+2d−1 for odd d

14
5 qd(d−n−1)+2n+2 for even d.

(4.6)

For odd d, it follows R < 1, except when (n, d) = (4, 3). In the latter case, we
find from Corollary 3.2.4 (b) and (4.3) that

R =
(q4 − 1)(q5 + 1)
(q3 − 1)(q7 + 1)

<
q2 + q−3

q3 − 1
< 1.
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If d is even, then (4.6) implies R < 1, except when (n, d) = (8, 6) (re-
call that we excluded (n, d) = (6, 4)). In this case, we find from Corol-
lary 3.2.4 (b), (3.21), and (4.3) that

R =

( 6

∏
i=1

(1 + q2i−1)

)( 4

∏
i=1

qi + (−1)i

q9+i + (−1)i

)
q5 − 1
q14 − 1

ε(9, 6)

with

ε(9, 6) =
q5 + 1 + q q13+1

q5−1 (q
4 − 1)

q5 + 1 + q q13+1
q14−1 (q

4 − 1)

=
(q14 − 1)
(q5 − 1)

(q18 − q14 + q10 + q5 − q− 1)
(q19 + q18 − q− 1)

<
(q14 − 1)
(q5 − 1)

1
q

.

This gives

R <
1
q

( 6

∏
i=1

(1 + q2i−1)

)( 4

∏
i=1

qi + (−1)i

q9+i + (−1)i

)
=

1
q

(q8 − 1)(q7 + 1)(q9 + 1)
(q5 − 1)(q6 + 1)(q13 − 1)

< q−3 q7 + 1
q5 − 1

< 1,

by using (3.19), which completes the proof.

Now, it remains to prove the corner cases (C7)–(C9). This is done by
showing that the dual distribution of the Steiner system has a negative entry,
which contradicts Proposition 2.1.26. In what follows, all inner and dual
distributions (in particular those in A2

2n−1) are determined with respect to
the standard orderings imposed by (2.33) and (2.35). We require the following
result on the inner and dual distributions of t-Steiner systems.

Proposition 4.2.1. Let X be the set of generators in a polar space of rank n and
suppose that Y is a t-Steiner system in X with 1 ≤ t ≤ n. Let (Ai) and (A′k) be the
inner distribution and dual distribution of Y, respectively, in terms of the standard
orderings imposed by (2.33) and (2.35). Then we have

An−i =
t−1

∑
j=i

(−1)j−i p(
j−i
2 )

[
j
i

]
p

[
n
j

]
p

(
t−1

∏
`=j

(1 + pn−`+e)− 1

)

for all i = 0, 1, . . . , n− 1 and A′1 = A′2 = · · · = A′t = 0.

To prove Proposition 4.2.1, we use the following counterpart of Lemma 3.2.2
for the Q-numbers of the association scheme of polar spaces.
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Lemma 4.2.2. Let X be the set of generators in a polar space of rank n and let Qk(i)
be the corresponding Q-numbers given by (2.36). Then we have

n

∑
k=0

pk(n−j)
[

n− k
n− j

]
p

n−j

∏
`=1

(1 + p`−k+e)Qk(i) = |X|
[

n− i
j

]
p

for all i, j = 0, 1, . . . , n.

Proof. We will frequently use the identity (3.7) without specific reference in
this proof.

Let Pi(k) and Qk(i) be as in (2.35) and (2.36), respectively. We will prove
n

∑
i=0

[
n− i

j

]
p
Pi(k) = pk(n−j)

[
n− k
n− j

]
p

n−j

∏
`=1

(1 + p`−k+e). (4.7)

Bymultiplying (4.7) with Qk(`), taking the sum over k, and using (2.8), we ob-
tain the identity in the lemma. It remains to prove (4.7). For all i, j = 0, 1, . . . , n,
we have

n

∑
i=0

[
n− i

j

]
p
Pi(k)

=
n

∑
i=0

i

∑
`=0

(−1)`
[

n
k

]−1

p

[
n− i

j

]
p

[
n− i
k− `

]
p

[
n
i

]
p

[
i
`

]
p
p`(`−i−e−1)+(i+1

2 )+ie,

which becomes
n

∑
i=0

[
n− i

j

]
p
Pi(k)

=
n

∑
i=0

i

∑
`=0

(−1)`
[

n
k

]−1

p

[
n− i

j

]
p

[
n
`

]
p

[
n− `

k− `

]
p

[
n− k
i− `

]
p
p`(`−i−e−1)+(i+1

2 )+ie.

Interchanging the order of summation by putting m = i− ` gives us
n

∑
i=0

[
n− i

j

]
p
Pi(k)

=
n−k

∑
m=0

(
k

∑
`=0

(−1)`p(
`
2)

[
k
`

]
p

[
n−m− `

j

]
p

)[
n− k

m

]
p
p(

m
2 )+m(e+1). (4.8)

To evaluate the inner sum, we use the q-Chu-Vandermonde identity[
x + y

z

]
p
=

x

∑
i=0

pi(y−z+i)
[

x
i

]
p

[
y

z− i

]
p
, (4.9)

where x, y, z are integers, see [GJ83, § 2, 2.6.3(c)]. Applying the q-binomial
inversion formula

k

∑
j=i

(−1)j−i p(
j−i
2 )

[
j
i

]
p

[
k
j

]
p
= δik (4.10)
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for nonnegative integers i, k to (4.9), which can be deduced from the q-binomial
theorem

k

∑
i=0

p(
i
2)

[
k
i

]
p
zi =

k−1

∏
i=0

(1 + zpi) (4.11)

for example, reveals that
x

∑
`=0

(−1)`p(
`
2)

[
x
`

]
p

[
x− `+ y

z

]
p
= px(y−z+x)

[
y

z− x

]
p
.

Put x = k, y = n− k−m, and z = j to obtain
k

∑
`=0

(−1)`p(
`
2)

[
k
`

]
p

[
n−m− `

j

]
p
= pk(n−m−j)

[
n− k−m

j− k

]
p
.

Substitute into (4.8) to give
n

∑
i=0

[
n− i

j

]
p
Pi(k) =

n−k

∑
m=0

pk(n−m−j)
[

n− k−m
j− k

]
p

[
n− k

m

]
p
p(

m
2 )+m(e+1)

=

(
n−j

∑
m=0

[
n− j

m

]
p
p(

m
2 )+m(e+1)−km

)
pk(n−j)

[
n− k
j− k

]
p
. (4.12)

Applying the q-binomial theorem (4.11) to the sum on the right-hand side
of (4.12) leads to the identity (4.7).

We can now prove Proposition 4.2.1.

Proof of Proposition 4.2.1. From (2.17) and Lemma 4.2.2, we find that, for
all j ≥ 0,

j

∑
k=0

A′k pk(n−j)
[

n− k
n− j

]
p

n−j

∏
`=1

(1 + p`−k+e) = |X|
n

∑
i=0

Ai

[
n− i

j

]
p
. (4.13)

Since Y is an (n− t + 1)-code, we have A0 = 1 and A1 = · · · = An−t = 0 and
therefore obtain, by setting j = t in (4.13),

t

∑
k=0

A′k pk(n−t)
[

n− k
n− t

]
p

n−t

∏
`=1

(1 + p`−k+e) = |X|
[

n
t

]
p
.

From A′0 = |Y|, we find that
t

∑
k=1

A′k pk(n−t)
[

n− k
n− t

]
p

n−t

∏
i=1

(1 + p`−k+e) =

[
n
t

]
p

(
|X| − |Y|

n−t

∏
`=1

(1 + p`+e)

)
.

From the expression (2.34) for |X| and the expression (4.2) for |Y|, we see that
the right-hand side is zero. Since A′k ≥ 0 by Proposition 2.1.26, we conclude
A′1 = A′2 = · · · = A′t = 0. Moreover, (4.13) simplifies to[

n
j

]
p

n−j

∏
`=1

(1 + p`+e)|Y| = |X|
([

n
j

]
p
+

n

∑
i=n−t+1

Ai

[
n− i

j

]
p

)
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for all j = 0, 1, . . . , t− 1. Using (2.34) and the expression (4.2) for |Y| again,
we obtain

t−1

∑
i=0

An−i

[
i
j

]
p
=

[
n
j

]
p

(
t−1

∏
`=j

(1 + pn−`+e)− 1

)
.

Applying the q-binomial inversion formula (4.10) gives the desired expression
for An−i.

We now prove (C7)–(C9). Henceforth, we denote by (Ai) and (A′k) the
inner and dual distribution, respectively, of a putative t-Steiner system Y.

Proof of (C7). We now assume that t = 2 and P = Bn or Cn for odd n > 3 or
P = D2

n+1 for even n > 3. We will show that A′n−1 < 0 in the first case and
A′n < 0 in the second case. By (2.17) and (2.11), we have

A′k
µk

= 1 +
Pn−1(k)

vn−1
An−1 +

Pn(k)
vn

An.

By Proposition 4.2.1, we have

An−1 = qn−1+e
[

n
1

]
q

and

An = (qn+e + 1)(qn−1+e + 1)−
[

n
1

]
q
qn−1+e − 1.

From (2.35) and (2.37), we find for Bn and Cn that
Pn−1(n− 1)

vn−1
=

[
n
1

]−1

q

(
q−n+1 − q−2n+4

[
n− 1

1

]
q

)
and

Pn(n− 1)
vn

= q−2n+2,

and for D2
n+1 that

Pn−1(n)
vn−1

= −q−2n+2 and Pn(n)
vn

= q−2n.

Here, we have crucially used the assumed parity of n. For Bn and Cn, we then
obtain

A′n−1

µn−1
= 2− qn − 1

(q− 1)qn−1 −
1

q2n−2 −
qn−1 − 1

(q− 1)qn−3 +
(qn + 1)(qn−1 + 1)

q2n−2 .

For n > 3, we have

2− qn − 1
(q− 1)qn−1 −

1
q2n−2 =

q2n−1 − 2q2n−2 + qn−1 − q + 1
(q− 1)q2n−2

<
q2n−1 − 2qn+1 + qn−1 − q + 1

(q− 1)q2n−2

=
qn−1 − 1

(q− 1)qn−3 −
(qn + 1)(qn−1 + 1)

q2n−2
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and therefore A′n−1 < 0 if P = Bn or Cn, which completes the proof in the first
case. For D2

n+1, we obtain

A′n
µn

= 1− qn − 1
(q− 1)qn −

1
q2n −

(qn − 1)q2

(q− 1)qn +
(1 + qn+1)(1 + qn)

q2n .

For n > 2, we have

1− qn − 1
(q− 1)qn −

1
q2n =

q2n+1 − 2q2n + qn − q + 1
(q− 1)q2n

<
q2n+1 − 2qn+2 + qn − q + 1

(q− 1)q2n

=
(qn − 1)q2

(q− 1)qn −
(1 + qn+1)(1 + qn)

q2n ,

and therefore A′n < 0 in the case P = D2
n+1. This completes the proof.

Proof of (C8). We now assume P = D2
n+1 for t = 3 and even n > 4. As in

(C7) we compute

A′n−1(q− 1)2(q + 1)
2µn−1

= −q(q + 1)(1− q2−n)(1− q4−n) + q5−3n(1 + q−2),

from which it is readily verified that A′n−1 < 0, as required.

Proof of (C9). As in (C7) we compute the following. For P = D2
8 and t = 4,

we have
A′6
µ6

= −2q−5(q + 1)2(q2 + 1)(q3 + q + 1) < 0,

for D2
9 and t = 5, we have

A′7
µ7

= −2q−5(q + 1)4(q2 − q + 1)(q2 + 1)2 < 0,

and for A2
12 and t = 3, we have

A′5
µ5

= −q−7(q + 1)3(q2 − q + 1)(q4 − q3 + q2 + 1) < 0.

In all cases, we obtain the required nonexistence of t-Steiner systems.

This completes the proof of Theorem 4.1.1.

4.3 Open problems

We close this chapter by discussing some open problems that are related to
Steiner systems in polar spaces.
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Problem 4.3.1. Prove Conjecture 4.1.2.

This conjecture is true if there are no t-Steiner systems in A2
2n and D2

n+1 in
the case t = n− 1 and q ≥ 3, and in the case t = 2 and odd n. For the first
case, recall from the proof of (C1) in Section 4.2 that an (n− 1)-Steiner system
in a polar space of rank n induces a 2-Steiner system in a polar space of the
same type of rank 3, or a 1-Steiner system, hence a spread, in rank 2. Thus,
showing the nonexistence of spreads in A2

4 and D2
3 for q ≥ 3 could prove

the conjecture. However, for D2
3 and all q ≥ 2, there always exists a spread,

whereas nothing is known for A2
4 with q ≥ 3. Similarly, for the second case,

a 2-Steiner system in odd rank n induces a spread in even rank n− 1. The
existence question for spreads in a general rank in D2

n+1 and A2
2n is also not

completely settled yet, see [HT16, § 7.4 and 7.5]. The case A2
2n with q ≥ 3 is

the most important open case concerning spreads in polar spaces since only
the special case A2

4 with q = 2 has been solved so far.
Problem 4.3.1 is also related to the existence of strongly regular graphs

with specific parameters. Namely, a putative 2-Steiner system Y in rank 3
is a 2-design and a 2-code and, by Proposition 2.1.29, it induces a sym-
metric association schemewith two classes and hence a strongly regular graph.

Problem 4.3.2. Do nontrivial t-designs in polar spaces exist for all t ≥ 2?

A t-(v, n, λ) design over Fq is a collection Y of n-subspaces of Fv
q such that

every t-subspace of Fv
q lies in exactly λ members of Y. These are precisely the

t-designs in the q-Johnson scheme. Using a probabilistic argument, it was
shown in [FLV14] that t-designs over Fq exist for all t and q if n > 12(t + 1)
and v is sufficiently large. The definition of a design over Fq can be extended
to polar spaces: a t-(v, n, λ) design in a polar space P of rank n is a collection
of generators of P such that every t-space of P lies in exactly λ members
of Y. Nontrivial designs in polar spaces were recently found by computer
constructions in [Lan20] and by Kiermaier, Schmidt, Wassermann, which was
announced in [Was]. See also [Cos+22] for more information on designs in
polar spaces. However, a general existence result for designs in polar spaces is
presently not known.

Problem 4.3.3. Let P be a polar space of rank n, and let k, t be integers with
1 ≤ t < k < n. Do collections Y of k-spaces in P exist such that every t-space in P
lies in exactly one member of Y?

Such collections Y can be seen as a generalization of a t-Steiner system in a
polar space. This problem is related to Problem 3.4.4
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Problem 4.3.4. Do nontrivial t-Steiner systems over Fq exist for all t ≥ 2?

Recall from Section 4.1 that so far, nontrivial t-Steiner systems over Fq, which
are designs in the q-Johnson scheme, are only known for a single set of parame-
ters. In the case of t-Steiner systems in the Johnson scheme, the existence ques-
tion was open for over 150 years and has been only settled recently in [Kee14]
and [Glo+16]. It would be interesting to see whether the methods from these
papers could be modified for the q-analog case. However, this is certainly a
very challenging problem and the methods applied in these two papers are
way out of scope of this thesis.





Chapter 5

Optimal solution of
the linear program

I can see that, without being excited,
mathematics can look pointless and cold.

—Maryam Mirzakhani

This chapter focuses on Delsarte’s linear program for codes in various
classical association schemes. We will derive the LP optimum in the bilinear
forms scheme, Hermitian forms scheme, and alternating bilinear forms scheme
as well as in several ordinary q-analogs. This is done by using the duality
theory of linear programming.

5.1 Introduction

It is well known that Delsarte’s linear programming method, which was intro-
duced in Section 2.2, yields asymptotically optimal bounds inmany association
schemes. In particular, the best known asymptotic bound for codes in the bi-
nary Hamming scheme H(n, 2) and in the Johnson scheme J(n, m) arises from
Delsarte’s linear program (2.20), see [McE+77]. However, even though the
linear program for d-codes in H(n, q) and J(n, m) has been studied since the
1970s no explicit expression for the LP optimum is known so far except for the
special case that q ≥ max{d, n− d + 2} for H(n, q), see [Del73, § 4.3.2]. For
the bilinear forms scheme, Hermitian forms scheme, and alternating bilinear
forms scheme, Delsarte’s linear program was used to derive bounds that are
sharp in most cases implying that in these respective cases, the bounds are
precisely the LP optima, see [Del78a], [DG75], and [Sch18]. For the ordinary
q-analogs, nothing was known about the LP optimum so far. Here, we will
give an explicit expression for the LP optimum for codes in several classical as-
sociation schemes. We will see that these LP optima are sharp up to a constant
factor in most cases.

81
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The main result of this chapter is the following theorem. Recall the defini-
tion of the parameters b and c from (2.51).

Theorem 5.1.1.

(a) Let X be the set of n-spaces in Jq(n, m) or generators in A2
2n−1 or

1
2 Dm, where

n = bm/2c in the case of 1
2 Dm. Then the LP optimum for d-codes with

1 ≤ d ≤ n in Jq(n, m), A2
2n−1, and

1
2 Dm is given by

LP(d) =
|X|(q)d−1

(qcbn)d−1
, (5.1)

where d is required to be odd in the case of A2
2n−1. For even d with 2 ≤ d ≤ n,

the LP optimum for d-codes in A2
2n−1 is given by

LP(d) =
|X|(q)d−1

(qcbn)d−1

(bn−d+2 − 1) + q bn+d−2−1
qbd−2−1 (bn−d+1 − 1)

(bn−d+2 − 1) + q bn+d−2−1
bn+d−1−1 (b

n−d+1 − 1)
. (5.2)

Moreover, both LP optima (5.1) and (5.2) also hold for association schemes
with the same P- and Q-numbers as Jq(n, m), A2

2n−1, and
1
2 Dm.

(b) The LP optimum for d-codes with 1 ≤ d ≤ n in Bilq(n, m), Herq(n), and
Altq(m) is given by

LP(d) = (cbn)n−d+1, (5.3)

where d is required to be odd in the case of Herq(n) and n = bm/2c in the
case of Altq(m). For even d with 2 ≤ d ≤ n, the LP optimum for d-codes in
Herq(n) is given by

LP(d) = (cbn)n−d+1 (bn−d+2 − 1) + bn(bn−d+1 − 1)
bn−d+2 − bn−d+1 . (5.4)

Observe that the LP optima in Theorem 5.1.1(a) are exactly the bounds we
obtained in Chapter 3. In particular, we want to emphasize that for Jq(n, m),
the LP optimum is the well-known Singleton bound

LP(d) =
[ m+n
n−d+1]q
[ n
n−d+1]q

,

see p. 54 formore information on this bound. Moreover, it was known that (5.3)
and (5.4) are upper bounds for the size of d-codes in Bilq(n, m), Herq(n), and
Altq(m). Namely, they are also the Singleton bounds, which were derived by
using Delsarte’s linear program in [Del78a], [DG75], and [Sch18]. Therefore,
it seems reasonable to use a similar approach for the six polar space schemes
to obtain some kind of a Singleton bound. This is done in Proposition 5.1.2,
wherewe derive an upper bound for d-codes in all six polar space schemeswith
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respect to the standard ordering by using a Singleton polynomial together
with Theorem 2.2.6. Moreover, we also give a purely combinatorial proof
of Proposition 5.1.2. It will turn out that the bound therein is precisely the
number of elements in a Steiner system. Since we showed in Chapter 4 that
Steiner systems cannot exist in most cases, the bound of Proposition 5.1.2 is
weaker than the one in Corollary 3.2.4 in most cases, motivating our approach
to study A2

2n−1 with respect to the second ordering and 1
2 Dm.

Proposition 5.1.2. Let P be a polar space of rank n with parameter e and let Y be a
d-code in P with 1 ≤ d ≤ n. Then we have

|Y| ≤
n−d

∏
i=0

(1 + pn−i+e).

Algebraic proof of Proposition 5.1.2. Let X be the set of generators in P , let Pi(k)
be the P-numbers of the corresponding association scheme given in (2.35)
and consider the standard ordering of the Q-polynomial structure. We apply
Theorem 2.2.6 with the Singleton polynomial

F(z) =
[

n
d− 1

]
p

n

∏
j=d

pj z− zj

pj − 1
,

where zj = p−j. Then we have F(zi) = 0 for all i = d, d + 1, . . . , n and we also
obtain

F(zi) =

[
n

d− 1

]
p

n

∏
j=d

pj p−i − p−j

pj − 1
=

[
n− i

n− d + 1

]
p

for all i = 0, 1, . . . , n. By using (2.23) and (4.7), we have

Fk =
1
|X|

n

∑
i=0

[
n− i

n− d + 1

]
p
Pi(k) =

1
|X| p

k(d−1)
[

n− k
d− 1

]
p

d−1

∏
i=1

(1 + p`−k+e).

Hence, it holds Fk ≥ 0 for all k = 0, 1, . . . , n. The polynomial F/F0 thus satisfies
all conditions of Theorem 2.2.6 giving the desired bound by using (2.34).

Combinatorial proof of Proposition 5.1.2. Every element of the d-code Y contains
exactly [ n

n−d+1]p totally isotropic subspaces of dimension n− d + 1. A given
(n− d + 1)-space in P is contained in at most one element of Y since otherwise
there would exist distinct x, y ∈ Y such that n− dim(x ∩ y) ≤ d− 1, contra-
dicting to Y being a d-code. By (4.1), the number of (n− d + 1)-spaces in P
is [

n
n− d + 1

]
p

n−d

∏
i=0

(1 + pn−i+e).

Therefore, we have

|Y| ≤
[ n
n−d+1]p

n−d
∏
i=0

(1 + pn−i+e)

[ n
n−d+1]p

=
n−d

∏
i=0

(1 + pn−i+e),

as stated.
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Theorem 5.1.1 also gives the LP optimum in Bn, Cn, and Dn in the following
way. First, recall from Section 2.3.2 (see p. 46) that Bn and Cn induce new
association schemes with the classes

R0, R1 ∪ R2, R3 ∪ R4, . . . ,

which have the same P- and Q-numbers as 1
2 Dn+1. Therefore, without loss of

generality for odd d, we can study the linear program for d+1
2 -codes in 1

2 Dn+1

instead of the linear program for d-codes in Bn and Cn. Second for even d,
by Proposition 3.2.3, we can require without loss of generality that the inner
distribution (A0, A1, . . . , An) of a d-code in Dn satisfies Ai = 0 for all odd i.
Thus, without loss of generality for even d, we can add this constraint to the
linear program (2.20) for d-codes in Dn and can study the linear program
for d

2 -codes in 1
2 Dn instead. These observations imply the following corollary

from Theorem 5.1.1.

Corollary 5.1.3.

(a) Let X be the set of generators in Bn or Cn. Assume that d is odd with 1 ≤ d ≤ n.
Then the LP optimum for d-codes in Cn and Bn is given by

LP(d) =


|X|

d−1
2

∏
i=1

1− q2i−1

1− qn+2i−1 for odd n

|X|
d−1

2

∏
i=1

1− q2i−1

1− qn+2i for even n.

(5.5)

(b) Let X be the set of generators in Dn. Assume that d is even with 2 ≤ d ≤ n.
Then the LP optimum for d-codes in Dn is given by

LP(d) =


|X|
2

d
2−1

∏
i=1

1− q2i−1

1− qn+2i−1 for odd n

|X|
2

d
2−1

∏
i=1

1− q2i−1

1− qn+2i−2 for even n.

We pose the following conjecture that the bound from Corollary 3.2.4(d)
for Dn is precisely the LP optimum if n is odd. This was checked with a
computer for many small values of q, n, and d.

Conjecture 5.1.4. Let X be the set of generators in Dn. Assume that n and d are odd
integers with 1 ≤ d ≤ n. Then the LP optimum for d-codes in Dn is given by

LP(d) = |X|
d−1

2

∏
i=1

1− q2i−1

1− qn+2i−1 .

Observe that the LP optima in Corollary 5.1.3 and in Conjecture 5.1.4 are
exactly the bounds we obtained in Chapter 3.
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We will see in the next remark that there is a nice similarity between the
LP optimum in the ordinary q-analogs and their affine counterparts.
Remark 5.1.5. The LP optimum (5.3) can also be written as

LP(d) =
|X|

(cbn)d−1 ,

where |X| is the number of matrices in the corresponding association scheme
Bilq(n, m), Herq(n), and Altq(m) with

|X| = (cbn)n. (5.6)

We can then write (5.1) and (5.3) as

LP(d) = |X|
d−2

∏
`=0

qb` − 1
qcbn+` − 1

(5.7)

LP(d) = |X|
d−2

∏
`=0

qb`

qcbn+`
,

respectively. If we neglect the ones in the fractions of the right-hand side
in (5.7), then both LP optima have the same form. This resemblance also
occurs in A2

2n−1 and Herq(n) for even d by neglecting some ones in the long
fraction appearing in (5.2) in a similar way.

In [Sch10] and [Sch15], it was shown that a d-code Y in the association
scheme Symq(n) of symmetric n× n matrices overFq with odd d, whichmeans
that rank(x− y) ≥ d for all distinct x, y ∈ Y, satisfies

|Y| ≤

|X|q−n(d−1)/2 for odd n

|X|q−(n+1)(d−1)/2 for even n

with |X| = qn(n+1)/2. Since these bounds are sharp and were proved by using
Delsarte’s linear programming method, they are precisely the LP optimum for
d-codes in Symq(n) if d is odd. Observe that we again have a nice resemblance
to the LP optimum in Cn by neglecting theminus ones in the fractions occurring
in (5.5).

Since it was known that (5.3) and (5.4) are upper bounds for the size of
d-codes in Bilq(n, m), Herq(n), and Altq(m) that were derived by using Del-
sarte’s linear program in [Del78a], [DG75], and [Sch18] and moreover, sharp
constructions were given in the aforementioned papers except for Altq(m) if
m is even and q is odd and for Herq(n) if d is even, the LP optimum (5.3) was
basically known, except in the latter cases. Here, we derive the LP optimum
for Bilq(n, m), Herq(n), and Altq(m) without using the known constructions.
In particular, we obtain as a new result the LP optimum in the case of Altq(m)

with even m and odd q and in the case of Herq(n) with even d. We note that
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for the latter case, it was conjectured in [Sch18] that (5.4) is precisely the LP
optimum.

We already saw in Section 3.3 that the LP optimum (5.1) is reached up
to a constant factor for A2

2n−1 and 1
2 Dm except possibly when m is even and

q is odd in the case of 1
2 Dm. It is well known that the Singleton bound—and

thus the LP optimum—for Jq(n, m) is also reached up to a constant factor,
see [SKK08, § IV.A.]. Moreover, a d-code Y in Jq(n, m) is of size (5.1) if and
only if Y is an (n− d + 1)-Steiner system over Fq.

Proof strategy for Theorem 5.1.1. The proof of Theorem 5.1.1 is split
into two parts. First, in Section 5.2, we will give a feasible solution of the
dual LP (2.21) whose objective function value coincides with (5.1), (5.2), (5.3),
or (5.4). Second, in Section 5.3, we will compute the inner distribution of a
d-code whose size is precisely the stated LP optimum in Theorem 5.1.1 and
show that the inner distribution is a feasible solution of the primal LP (2.20).
The Strong duality theorem 2.2.2 then proves Theorem 5.1.1.

At the end of this chapter, we will discuss some related open problems in
Section 5.4.

We close this section by stating some preliminaries that are needed for the
proof of Theorem 5.1.1.

Identities for the P- and Q-numbers. Crucial for the proofs in Section 5.2
and 5.3 are the following identities for the P-numbers in the studied classical
association schemes.

• Recall from (3.8) that the P-numbers (2.52) of Jq(n, m), A2
2n−1, and 1

2 Dm

satisfy

n

∑
i=0

[
n− i

j

]
b
P′i (k) = bk(n−j)

[
n− k
n− j

]
b

(qcbn−k)n−j

(q)n−j
(5.8)

for all j, k = 0, 1, . . . , n, where n = bm/2c in the case of 1
2 Dm.

• The P-numbers (2.47) of Bilq(n, m), Herq(n), and Altq(m) satisfy

n

∑
i=0

[
n− i

j

]
b
Pi(k) =

[
n− k
n− j

]
b
(cbn)n−j (5.9)

for all j, k = 0, 1, . . . , n, where n = bm/2c in the case of Altq(m). This
follows by using the P-numbers (2.47) and the q-binomial inversion
formula of the form

k

∑
j=i

(−1)k−jb(
k−j

2 )

[
j
i

]
b

[
k
j

]
b
= δik. (5.10)
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The identities (5.8) and (5.9) can be also written as

n

∑
i=0

[
n− i

j

]
b
P′i (k) =

[
n− k
n− j

]
b

n−j−1

∏
`=0

bk qcbn−k+` − 1
qb` − 1

n

∑
i=0

[
n− i

j

]
b
Pi(k) =

[
n− k
n− j

]
b

n−j−1

∏
`=0

qcbn+`

qb`
.

We have a similar resemblance between these identities as for the correspond-
ing LP optima: by neglecting the ones in the fractions of the first identity, the
terms on the right-hand side of both identities become the same.

Finally, for the sake of convenience, we rewrite the inequality (3.19) as

y− 1
x− 1

≥ y
x

for y ≥ x > 1. (5.11)

5.2 Feasible solution of the dual LP

In this section, we will apply Theorem 2.2.6 together with a suitable Sin-
gleton polynomial or variations of it to construct a feasible solution of the
dual LP (2.21) for the ordinary q-analogs Jq(n, m), A2

2n−1, and 1
2 Dm as well

as for the affine q-analogs Bilq(n, m), Herq(n), and Altq(m). We start with
the latter three. Recall from (2.47) that Bilq(n, m), Herq(n), and Altq(m) are
Q-polynomial with zi = b−i.

Proposition 5.2.1. There exists a feasible solution of the dual LP (2.21) for d-codes in
Bilq(n, m), Herq(n), and Altq(m) with objective function value (5.3) for 1 ≤ d ≤ n,
where d is required to be odd in the case of Herq(n) and n = bm/2c in the case
of Altq(m).

Proof. Let Pi(k) be given in (2.47). Take the Singleton polynomial

F(z) = (cbn)n−d+1
[

n
d− 1

]
b

n

∏
j=d

bj z− zj

bj − 1

with zj = b−j. Then we have F(zi) = 0 for all i = d, d + 1, . . . , n. Moreover, we
obtain

F(zi) = (cbn)n−d+1
[

n
d− 1

]
b

n

∏
j=d

bj b−i − b−j

bj − 1
= (cbn)n−d+1

[
n− i

n− d + 1

]
b

for all i = 0, 1, . . . , n. Together with (2.23), (5.6), and (5.9), we have

Fk =
(cbn)n−d+1

(cbn)n

n

∑
i=0

[
n− i

n− d + 1

]
b
Pi(k) =

[
n− k
d− 1

]
b
.

Observe that in the case of Herq(n), the sign of [n−k
d−1]b is (−1)(d−1)(n−k+d−1) = 1

since d is odd. We thus obtain Fk ≥ 0 for all k = 0, 1, . . . , n. Therefore, the
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polynomial F/F0 satisfies all conditions of Theorem 2.2.6 with

F(z0)

F0
= (cbn)n−d+1,

which implies the stated result.

We now look at Herq(n) with even d and proceed similarly as in Propo-
sition 5.2.1, but we take a linear combination of two Singleton polynomials
instead of just one Singleton polynomial.

Proposition 5.2.2. Let n and d be integers with 2 ≤ d ≤ n and even d. Then there
exists a feasible solution of the dual LP (2.21) for d-codes in Herq(n) with objective
function value (5.4).

Proof. Take
F(z) =

[
n− 1
d− 2

]
b
β1(z)−

[
n− 1
d− 1

]
b
β2(z)

with

β1(z) = qn(n−d+1)
[

n
d− 1

]
b

n

∏
j=d

bj z− zj

bj − 1

β2(z) = (−1)n+1qn(n−d+2)
[

n
d− 2

]
b

n

∏
j=d−1

bj z− zj

bj − 1
,

where zj = b−j. We then have F(zi) = 0 for all i = d, d + 1, . . . , n and also
obtain

β1(zi) = qn(n−d+1)
[

n− i
n− d + 1

]
b

β2(zi) = (−1)n+1qn(n−d+2)
[

n− i
n− d + 2

]
b

for all i = 0, 1, . . . , n. This gives

F(zi) = qn(n−d+1)
[

n− 1
d− 2

]
b

[
n− i

n− d + 1

]
b

+ (−1)nqn(n−d+2)
[

n− 1
d− 1

]
b

[
n− i

n− d + 2

]
b

for all i = 0, 1, . . . , n. From (2.23), (5.6), and (5.9), we find

Fk = (−1)n+1
([

n− 1
d− 2

]
b

[
n− k
d− 1

]
b
−
[

n− 1
d− 1

]
b

[
n− k
d− 2

]
b

)
.

The sign of [n−1
d−2]b[

n−k
d−1]b and [n−1

d−1]b[
n−k
d−2]b is (−1)n−k+1 and (−1)n, respectively,

which gives

Fk = (−1)k

∣∣∣∣∣
[

n− 1
d− 2

]
b

[
n− k
d− 1

]
b

∣∣∣∣∣+
∣∣∣∣∣
[

n− 1
d− 1

]
b

[
n− k
d− 2

]
b

∣∣∣∣∣.
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For even k, we immediately have Fk ≥ 0. For k = 1, we obtain F1 = 0 and for
all odd k ≥ 3, we have∣∣∣∣∣ [

n−1
d−1]b[

n−k
d−2]b

[n−1
d−2]b[

n−k
d−1]b

∣∣∣∣∣ =
∣∣∣∣∣ (−q)n−d+1 − 1
(−q)n−k−d+2 − 1

∣∣∣∣∣ ≥ qn−d+1 − 1
qn−k−d+2 + 1

≥ 1.

Hence, we obtain Fk ≥ 0 for all k = 0, 1, . . . , n. Therefore, the polynomial F/F0

satisfies all conditions of Theorem 2.2.6 with

F(z0)

F0
=

qn(n−d+1)
(
[n−1
d−2]b[

n
d−1]b + bn[n−1

d−1]b[
n

d−2]b

)
(−1)n+1

(
[n−1
d−2]b − [n−1

d−1]b[
n

d−2]b

) .

After some elementary manipulations, this gives the stated objective function
value and thus proves the proposition.

We will now look at the ordinary q-analogs Jq(n, m), A2
2n−1, and 1

2 Dm

and again use Theorem 2.2.6 with a Singleton polynomial. Similarly to
Herq(n), we will distinguish between even and odd d in the case of A2

2n−1.
Recall from (2.53) that the association schemes Jq(n, m), A2

2n−1, and 1
2 Dm are

Q-polynomial with zi = b−i, where we take the second ordering for A2
2n−1.

Proposition 5.2.3. Let X be the set of n-spaces in Jq(n, m) or generators in A2
2n−1

or 1
2 Dm, where n = bm/2c in the case of 1

2 Dm. Then there exists a feasible solution of
the dual LP (2.21) for d-codes in Jq(n, m), A2

2n−1, and
1
2 Dm with objective function

value (5.1) for 1 ≤ d ≤ n, where d is required to be odd in the case of A2
2n−1.

Proof. Let P′i (k) be given in (2.52). Take the Singleton polynomial

F(z) =
[

n
d− 1

]
b

n

∏
j=d

bj z− zj

bj − 1

with zj = b−j. This gives F(zi) = 0 for all i = d, d + 1, . . . , n and

F(zi) =

[
n

d− 1

]
b

n

∏
j=d

bj b−i − b−j

bj − 1
=

[
n− i

n− d + 1

]
b

for all i = 0, 1, . . . , n. From (2.23) and (3.8), we find that

Fk =
1
|X|

n

∑
i=0

[
n− i

n− d + 1

]
b
P′i (k) =

1
|X|b

k(d−1)
[

n− k
d− 1

]
b

(qcbn−k)d−1

(q)d−1
.

For Jq(n, m) (since m ≥ k) and 1
2 Dm, we see that

(qcbn−k)d−1

(q)d−1
≥ 0

and thus, we have Fk ≥ 0 for all k = 0, 1, . . . , n. For A2
2n−1, the sign of

(qcbn−k)d−1

(q)d−1
=

((−q)n−k+1;−q)d−1

(q;−q)d−1
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is (−1)(n−k+1)(d−1) and [n−k
d−1]b has the sign (−1)(d−1)(n−k−d+1). Since d is odd

for A2
2n−1, we also obtain Fk ≥ 0 for all k = 0, 1, . . . , n. Therefore, the polyno-

mial F/F0 satisfies all conditions of Theorem 2.2.6 with

F(z0)

F0
=
|X|(q)d−1

(qcbn)d−1
.

This concludes the proof.

It remains to look at A2
2n−1 with even d, wherewe take a linear combination

of two Singleton polynomials like in the proof of Proposition 5.2.2 for Herq(n)
with even d.

Proposition 5.2.4. Let X be the set of generators in A2
2n−1 and let d be an even

integer with 2 ≤ d ≤ n. Then there exists a feasible solution of the dual LP (2.21) for
d-codes in A2

2n−1 with objective function value (5.2).

Proof. Take
F(z) =

[
n− 1
d− 2

]
b
β1(z)−

[
n− 1
d− 1

]
b
β2(z)

with

β1(z) =
[

n
d− 1

]
b

n

∏
j=d

bj z− zj

bj − 1

β2(z) = b
(bn+d−2 − 1)
(qbd−2 − 1)

[
n

d− 2

]
b

n

∏
j=d−1

bj z− zj

bj − 1
,

where zj = b−j. We then obtain F(zi) = 0 for all i = d, d + 1, . . . , n. Moreover,
we have

β1(zi) =

[
n− i

n− d + 1

]
b

β2(zi) = b
(bn+d−2 − 1)
(qbd−2 − 1)

[
n− i

n− d + 2

]
b

for all i = 0, 1, . . . , n. Therefore, we find

F(zi) =

[
n− 1
d− 2

]
b

[
n− i

n− d + 1

]
b
− b

(bn+d−2 − 1)
(qbd−2 − 1)

[
n− 1
d− 1

]
b

[
n− i

n− d + 2

]
b

for all i = 0, 1, . . . , n. Using (2.23) and (3.8) gives

Fk =
1
|X|

(
bk(d−1) (b

n−k+1)d−1

(q)d−1

[
n− 1
d− 2

]
b

[
n− k
d− 1

]
b

− bk(d−2)+1 (b
n+d−2 − 1)

(qbd−2 − 1)
(bn−k+1)d−2

(q)d−2

[
n− 1
d− 1

]
b

[
n− k
d− 2

]
b

)
.
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Since the sign of [m` ]b and (bm)`/(q)` is (−1)`(m−`) and (−1)m`, respectively,
we obtain

Fk =
1
|X|

(
(−1)k

∣∣∣∣bk(d−1) (b
n−k+1)d−1

(q)d−1

[
n− 1
d− 2

]
b

[
n− k
d− 1

]
b

∣∣∣∣
+

∣∣∣∣bk(d−2)+1 (b
n+d−2 − 1)

(qbd−2 − 1)
(bn−k+1)d−2

(q)d−2

[
n− 1
d− 1

]
b

[
n− k
d− 2

]
b

∣∣∣∣
)

.

We have Fk ≥ 0 for all even k. Assume that k is odd. This gives∣∣∣∣∣∣
bk(d−2)+1 (bn+d−2−1)

(qbd−2−1)
(bn−k+1)d−2

(q)d−2
[n−1
d−1]b[

n−k
d−2]b

bk(d−1) (bn−k+1)d−1
(q)d−1

[n−1
d−2]b[

n−k
d−1]b

∣∣∣∣∣∣
=

∣∣∣∣b−k+1(bn+d−2 − 1)(bn−d+1 − 1)
(bn−k+d−1 − 1)(bn−k−d+2 − 1)

∣∣∣∣ .

For k = 1, this becomes 1 and for k ≥ 3, it can be bounded from below by

q−k+1 (qn+d−2 + 1)(qn−d+1 − 1)
(qn−k+d−1 − 1)(qn−k−d+2 + 1)

≥ 1.

Hence, we also have Fk ≥ 0 for all odd k. Thus, the polynomial F/F0 satisfies
all conditions of Theorem 2.2.6 with

F(z0)

F0
=

[n−1
d−2]b[

n
d−1]b − b (bn+d−2−1)

(qbd−2−1) [
n−1
d−1]b[

n
d−2]b

1
|X|

(
(bn+1)d−1
(q)d−1

[n−1
d−2]b[

n
d−1]b − b (bn+d−2−1)

(qbd−2−1)
(bn+1)d−2
(q)d−2

[n−1
d−1]b[

n
d−2]b

) .

After some elementary manipulations, this gives the stated objective function
value and thus proves the proposition.

5.3 Feasible solution of the primal LP

The goal of this section is to show the existence of a feasible solution of the
primal LP (2.20) whose objective function value equals the stated LP optimum
in Theorem 5.1.1 for the affine q-analogs Bilq(n, m), Herq(n), Altq(m), and for
the ordinary q-analogs Jq(n, m), A2

2n−1, 1
2 Dm. The strategy is to first compute

the inner and dual distribution of a code whose size equals the respective
stated LP optimum in Theorem 5.1.1. Afterwards, we will show that these
distributions are nonnegative and therefore, the inner distribution (Ai) is a
feasible solution of the primal LP (2.20) such that its objective function value—
the sum of the entries Ai—is precisely the stated LP optimum in Theorem 5.1.1.

This is done in Section 5.3.1 and 5.3.2 for the affine and ordinary q-analogs,
respectively, where d is required to be odd for Herq(n) and A2

2n−1. The case
d even in the latter two association schemes is treated separately in Section 5.3.3
and 5.3.4.
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5.3.1 A�ne q-analogs

In this subsection, we will prove the existence of a feasible solution of the
primal LP (2.20) for Bilq(n, m), Herq(n), and Altq(m), where d is required
to be odd in the case of Herq(n). In all these three cases, the inner distribu-
tion of a code whose size equals (5.3) was computed in [Del78a], [DG75],
and [Sch18]. Moreover, it was shown therein that a d-code of size (5.3) is an
(n− d + 1)-design. Here, we use these results to determine the corresponding
dual distributions and show that both distributions are nonnegative implying
that the inner distribution is a feasible solution of the primal LP (2.20). It
actually suffices to look at Altq(m) with even m and odd q since for all the
other cases, there are known constructions of codes in Bilq(n, m), Herq(n),
and Altq(m) whose sizes equal the respective stated LP optimum (5.3), see
[Del78a], [DG75], and [Sch18]. Nevertheless, we will give a proof for the
nonnegativity of the inner and dual distributions without using the known
constructions. The case of Herq(n) with even d is handled in Section 5.3.3.

The main result of this subsection is the following proposition.

Proposition 5.3.1. There exists a feasible solution of the primal LP (2.20) for d-codes
with 1 ≤ d ≤ n in Bilq(n, m), Herq(n), and Altq(m) with objective function
value (5.3), where d is required to be odd in the case of Herq(n) and n = bm/2c in
the case of Altq(m).

Observe that Proposition 5.3.1 and 5.2.1 together with the Strong duality
theorem 2.2.2 imply the first part of Theorem 5.1.1(b).

To prove Proposition 5.3.1, we first derive the dual distribution of a code
of size (5.3) by using the inner distribution that was computed in [Del78a],
[DG75], and [Sch18].

Proposition 5.3.2. Let Y be a d-code with 1 ≤ d ≤ n in Bilq(n, m), Herq(n),
or Altq(m) of size (5.3), where d is required to be odd in the case of Herq(n) and
n = bm/2c in the case of Altq(m). Then the inner distribution (Ai) of Y satisfies

An−i =
n−d

∑
j=i

(−1)j−ib(
j−i
2 )

[
j
i

]
b

[
n
j

]
b
((cbn)n−d+1−j − 1)

for all i = 0, 1, . . . , n− 1, and the dual distribution (A′k) of Y satisfies

A′n−i = (cbn)n−d+1
d−2

∑
j=i

(−1)j−ib(
j−i
2 )

[
j
i

]
b

[
n
j

]
b
((cbn)d−1−j − 1)

for all i = 0, 1, . . . , n− 1. In particular, Y is an (n− d + 1)-design.

Proof. Let (Ai) and (A′k) be the inner and dual distribution of Y, respectively.
Then (Ai) was determined in [Del78a, Theorem 5.6], [DG75, Theorem 4],
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and [Sch18, Theorem 3] and moreover, it was shown that Y is an (n− d + 1)-
design. It remains to compute (A′k). By using (2.17), Qk(i) = Pk(i), and (5.9),
we obtain

j

∑
k=0

[
n− k
n− j

]
b
A′k =

n

∑
i=0

Ai

j

∑
k=0

[
n− k
n− j

]
b
Pk(i)

= (cbn)j
n

∑
i=0

[
n− i

j

]
b
Ai

for all j = 0, 1, . . . , n. We have A1 = A2 = · · · = Ad−1 = 0 and

A′1 = A′2 = · · · = A′n−d+1 = 0.

Because of A0 = 1, A′0 = |Y|, and [n−i
j ]

b
= 0 if i ≥ d and j ≥ n− d + 2, we

obtain
j

∑
k=n−d+2

[
n− k
n− j

]
b
A′k =

[
n
j

]
b
((cbn)j − (cbn)n−d+1)

for all j = n− d + 2, . . . , n. Interchanging the order of summation gives

d−2

∑
k=j

[
k
j

]
b
A′n−k = (cbn)n−d+1

[
n
j

]
b
((cbn)d−1−j − 1)

for all j = 0, 1, . . . , d− 2. Applying the q-binomial inversion formula (4.10)
implies the desired expression of A′n−k.

We need the following lemma to show that both distributions (Ai) and
(A′k) are nonnegative.

Lemma 5.3.3. Let q be an integer with q ≥ 2 and b = −q.

(a) For all nonnegative integers n, i, j with n− i ≥ j + 2, we have∣∣[n−i
j ]

b

∣∣∣∣[n−i
j+2]b

∣∣ ≥ q−2n+4j+2i+2. (5.12)

(b) Let n and i be nonnegative integers. If n− i ≥ 1, then we have∣∣∣∣[n− i
1

]
b

∣∣∣∣ ≤ qn−i−1. (5.13)

If n− i ≥ 2, then we have∣∣∣∣[n− i
2

]
b

∣∣∣∣ ≤ 1
3

q2n−2i−2. (5.14)
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Proof. (a) We have∣∣[n−i
j ]

b

∣∣∣∣[n−i
j+2]b

∣∣ =
∣∣∣∣∣ ((−q)j+2 − 1)((−q)j+1 − 1)
((−q)n−i−j − 1)((−q)n−i−j−1 − 1)

∣∣∣∣∣
≥ (qj+2 + 1) (qj+1 − 1)

(qn−i−j − 1) (qn−i−j−1 + 1)
.

This gives ∣∣[n−i
j ]

b

∣∣∣∣[n−i
j+2]b

∣∣ ≥ q−2n+4j+2i+2,

as stated.

(b) For n− i ≥ 1, by using (5.11), we have∣∣∣∣[n− i
1

]
b

∣∣∣∣ = |(−q)n−i − 1|
q + 1

≤ qn−i + 1
q + 1

≤ qn−i−1.

For n− i ≥ 2, by again using (5.11), we obtain∣∣∣∣[n− i
2

]
b

∣∣∣∣ ≤ (qn−i − 1)(qn−i−1 + 1)
(q + 1)(q2 − 1)

≤ 1
3

q2n−2i−2,

as wanted.

We can now prove Proposition 5.3.1.

Proof of Proposition 5.3.1. Let 1 ≤ d ≤ n. For d = 1, the set of all matrices in the
respective affine scheme is a 1-code and thus, there exists a feasible solution of
the primal LP with the required objective function value.

Assume now that d ≥ 2. Let (Ai) and (A′k) be given in Proposition 5.3.2.
We will show that all entries of (Ai) and (A′k) are nonnegative, which implies
that (Ai) is a feasible solution of the primal LP (2.20). First, we rewrite An−i

by applying (3.7) and interchanging the order of summation and obtain

An−i =

[
n
i

]
b

n−d−i

∑
j=0

(−1)jb(
j
2)

[
n− i

j

]
b
((cbn)n−d+1−j−i − 1)

for all i = 0, 1, . . . , n− d.
We start with Bilq(n, m) and Altq(m). Observe that it suffices to show that

the inner distribution is nonnegative because by taking n− d + 2 instead of d,
the dual distribution becomes a positive multiple of the inner distribution. For
n = d, we immediately have An ≥ 0. Assume now that 2 ≤ d < n. Write

ai,j = b(
j
2)

[
n− i

j

]
b
((cbn)n−d+1−j−i − 1)
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for all i = 0, 1, . . . , n− d and j = 0, 1, . . . , n− d− i. Take i ∈ {0, 1, . . . , n− d}.
For all j = 0, 1, . . . , n− d− i− 1, we have

ai,j

ai,j+1
=

b(
j
2)[n−i

j ]
b
((cbn)n−d+1−j−i − 1)

b(
j+1

2 )[n−i
j+1]b

((cbn)n−d−j−i − 1)

= b−j (bj+1 − 1)
(bn−i−j − 1)

((cbn)n−d+1−j−i − 1)
((cbn)n−d−j−i − 1)

.

From (5.11) we find
ai,j

ai,j+1
> cbi+j ≥ 1

for all i, j ≥ 0 except for Altq(m) with even m and (i, j) = (0, 0), where we
have

a0,0

a0,1
=

(q2 − 1)(q(2n−1)(n−d+1) − 1)
(q2n − 1)(q(2n−1)(n−d) − 1)

≥ q2 − 1
q

> 1.

This completes the proof for Bilq(n, m) and Altq(m).
Now, consider Herq(n) with odd d ≥ 3. Write

ai,j = (−1)jb(
j
2)

[
n
i

]
b

[
n− i

j

]
b
((cbn)m−j−i − 1)

with m ∈ {n− d+ 1, d− 1} for all i = 0, 1, . . . , m− 1 and j = 0, 1, . . . , m− i− 1.
The sign of ai,j is (−1)(

j
2)+ij+j since (−1)(n+1)m = 1. Therefore, we have ai,2j ≥ 0

if j ≥ 0 is even, and ai,2j+1 ≥ 0 if j + i ≡ 1 (mod 2). Thus, in what follows, we
look at ai,2j = |ai,2j| and ai,2j+1 = |ai,2j+1| in the respective cases. For n = d, we
immediately have An ≥ 0. Henceforth, assume that 3 ≤ d < n. We will show
that

ai,0 ≥ |ai,2| for all odd i ≥ 1

ai,0 ≥ |ai,1|+ |ai,2| for all even i ≥ 0,

ai,2j ≥ |ai,2j+2| for all i ≥ 0 and all even j ≥ 2

ai,2j+1 ≥ |ai,2j+3| for all i, j ≥ 0 with i + j ≡ 1 (mod 2).

(5.15)

Observe that the nonnegativity of the inner and dual distribution follows by
showing that (ai,j) satisfies (5.15).

Take i ∈ {0, 1, . . . , m− 1}. For all j = 0, 1, . . . , m− i− 3, by using (5.12),
we have

|ai,j|
|ai,j+2|

=

∣∣∣∣∣∣
b(

j
2)[n−i

j ]
b
((cbn)m−j−i − 1)

b(
j+2

2 )[n−i
j+2]b

((cbn)m−j−i−2 − 1)

∣∣∣∣∣∣ ≥ q2j+2i+1 1− q−n(m−j−i)

1 + q−n(m−j−i−2)
.

Since n ≥ 4 and 3 ≤ m− j− i ≤ m, we obtain

|ai,j|
|ai,j+2|

<
47
50

q2j+2i+1 > 1
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for all i, j. It remains to show that
|ai,0|

|ai,1|+ |ai,2|
≥ 1

if i is even. Let i be an even number with 0 ≤ i ≤ m− 2. We have
|ai,0|

|ai,1|+ |ai,2|
=

|(cbn)m−i − 1|∣∣[n−i
1 ]b((cbn)m−i−1 − 1)

∣∣+ q
∣∣[n−i

2 ]b((cbn)m−i−2 − 1)
∣∣

≥ qn(m−i) − 1
qn−i−1(qn(m−i−1) + 1) + 1

3 q2n−2i−1(qn(m−i−2) + 1)
,

by using (5.13) and (5.14). This becomes
|ai,0|

|ai,1|+ |ai,2|
≥ 1− q−n(m−i)

q−i−1(1 + q−n(m−i−1)) + 1
3 q−2i−1(1 + q−n(m−i−2))

.

For n ≥ 4, we obtain
|ai,0|

|ai,1|+ |ai,2|
> 1

if i ≤ m− 4, and if i = m− 2 (where ai,2 cannot occur), we have
|ai,0|
|ai,1|

> 1.

This completes the proof.

5.3.2 Ordinary q-analogs

The goal of this subsection is to prove the following proposition.

Proposition 5.3.4. Let X be the set of n-spaces in Jq(n, m) or generators in A2
2n−1 or

1
2 Dm, where n = bm/2c in the case of 1

2 Dm. Then there exists a feasible solution of the
primal LP (2.20) for d-codes in Jq(n, m), A2

2n−1, and
1
2 Dm with objective function

value (5.1) for 1 ≤ d ≤ n, where d is required to be odd in the case of A2
2n−1.

Observe that Proposition 5.3.4 and 5.2.3 together with the Strong duality
theorem 2.2.2 imply the first part of Theorem 5.1.1(a).

To prove Proposition 5.3.4, we start with the derivation of the inner distri-
bution of a code whose size equals the stated LP optimum (5.1).

Proposition 5.3.5. Assume that Y is a d-code with 1 ≤ d ≤ n in Jq(n, m),
A2

2n−1, or
1
2 Dm of size (5.1), where d is required to be odd in the case of A2

2n−1 and
n = bm/2c in the case of 1

2 Dm. Then Y is an (n− d + 1)-design, where the ordering
of the dual distribution is imposed by (2.53)—in particular, the second ordering is
taken for A2

2n−1. Moreover, the inner distribution (Ai) of Y satisfies

An−i =
n−d

∑
j=i

(−1)j−ib(
j−i
2 )

[
j
i

]
b

[
n
j

]
b

(
(qcbn)n−j(q)d−1

(qcbn)d−1(q)n−j
− 1
)

(5.16)

for all i = 0, 1, . . . , n− 1.
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Beforewe prove this proposition, we rephrase the design property obtained
therein in the case of A2

2n−1 with respect to the standard ordering. Namely,
if Y is a d-code in A2

2n−1 for odd d whose size equals (5.1), then its dual
distribution with respect to the standard ordering satisfies

A′i = A′n−i+1 = 0 for all i = 1, 2, . . . , n−d+1
2

if n− d + 1 is even, and

A′i = A′n−i+1 = 0, A′n− n−d
2

= 0 for all i = 1, 2, . . . , n−d
2

if n− d + 1 is odd.

Proof of Proposition 5.3.5. Let X be the set of n-spaces in Jq(n, m) or generators
in A2

2n−1 or 1
2 Dm. Then we have

|Y| = |X|(q)d−1

(qcbn)d−1
. (5.17)

Let (Ai) and (A′k) denote the inner and dual distribution of Y, respectively, in
terms of the orderings imposed by (2.52) and (2.53). Recall the formulae (3.13)
and (3.14) from the proof of Theorem 3.2.1, namely we have

j

∑
k=0

bk(n−j)
[

n− k
n− j

]
b

(qcbn−k)n−j

(q)n−j
A′k = |X|

n

∑
i=0

Ai

[
n− i

j

]
b

(5.18)

for all j = 0, 1, . . . , n and in particular,
n−d+1

∑
k=1

bk(d−1)
[

n− k
d− 1

]
b

(qcbn−k)d−1

(q)d−1
A′k =

[
n

d− 1

]
b

(
|X| − (qcbn)d−1

(q)d−1
|Y|
)

,

(5.19)

where all coefficients of A′k on the left-hand side of (5.19) are nonnegative.
Observe that the bracket on the right-hand side of (5.19) equals zero because
of (5.17). Therefore, we have A′1 = A′2 = · · · = A′n−d+1 = 0, which means
that Y is an (n− d + 1)-design.

By using A′0 = |Y| and (5.17), we then find from (5.18) that the inner
distribution is determined by the equations[

n
j

]
b

(qcbn)n−j(q)d−1

(qcbn)d−1(q)n−j
=

[
n
j

]
b
+

n

∑
i=d

[
n− i

j

]
b
Ai

for all j = 0, 1, . . . , n− d. This can be rewritten as
n−d

∑
k=0

[
k
j

]
q
An−k =

[
n
j

]
q

(
(qcbn)n−j(q)d−1

(qcbn)d−1(q)n−j
− 1
)

(5.20)

for all j = 0, 1, . . . , n− d. Applying the q-binomial inversion formula (4.10)
gives the desired expression of the inner distribution.
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The derivation of the dual distribution requires the following lemma. To
simplify the notation, we set a = q−1c−1b−2n.

Lemma 5.3.6. Let C and Q be the n× n matrices defined by Q = (Q′k(i))k,i and
C = (cji)j,i with Q′k(i) as in (2.53) and cj,i = [n−i

j ]
b
for all i, j, k = 0, 1, . . . , n. Then

C is invertible and the product QC−1 is given by

(QC−1)k,j = µ′kakbk2+( j
2)(−bc)j (b−k)j(abk)j(qbn−k)k

(b−n)j(q−1b1−n)j(c−1b−n)k
(5.21)

for all k, j = 0, 1, . . . , n with µ′k given in Table 2.3.

To prove Lemma 5.3.6, we need an extension of the q-Pochhammer symbol
for negative subscripts as follows

(a; q)−k =
k

∏
i=1

(1− aq−i)−1

for k = 1, 2, 3, . . . if a 6= q, q2, . . . , qk.

Proof of Lemma 5.3.6. The inverse of C is given by

(C−1)i,j = (−1)i+j−nb(
i+j−n

2 )

[
j

n− i

]
b

(5.22)

for all i, j = 0, 1, . . . , n since the q-binomial inversion formula (5.10) implies
n

∑
i=0

[
n− i

k

]
b
(−1)i+j−nb(

i+j−n
2 )

[
j

n− i

]
b
= δk,j.

Let k, j ∈ {0, 1, . . . , n}. By substituting (5.22) and (2.53), we have

(QC−1)k,j =
n

∑
i=0

Q′k(i)(C
−1)i,j

=
n

∑
i=0

µ′k 3φ2

(
b−i, b−k, abk

b−n, c−1b−n

∣∣∣∣∣ b; b

)
(−1)i+j−nb(

i+j−n
2 )

[
j

n− i

]
b
.

Use the definition of the q-hypergeometric function and (2.30) to obtain

(QC−1)k,j = µ′k ∑
i,`≥0

(b−i)`(b−k)`(abk)`
(b−n)`(c−1b−n)`(b)`

(−1)i+j−nb(
i+j−n

2 )+`

[
j

n− i

]
b

= µ′k ∑
`≥0

(b−k)`(abk)`
(b−n)`(c−1b−n)`

(−1)`b(
`
2)+`S`, (5.23)

where
S` =

n

∑
i=0

(−1)i+j−nb(
i+j−n

2 )−i`
[

i
`

]
b

[
j

n− i

]
b
.

Interchanging the order of summation gives

S` = b−n`
n

∑
i=0

(−1)j−ib(
j−i
2 )+i`

[
n− i
`

]
b

[
j
i

]
b
.
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To compute this sum, we use the q-Chu-Vandermonde identity[
x + y

z

]
b
=

x

∑
i=0

bi(y−z+i)
[

x
i

]
b

[
y

z− i

]
b

(5.24)

(see [GJ83, § 2, 2.6.3(c)], for example). Applying the q-inversion formula (5.10)
to (5.24) reveals that

x

∑
k=0

(−1)kb(
k
2)

[
x
k

]
b

[
x− k + y

z

]
b
= bx(y−z+x)

[
y

z− x

]
b
.

Put x = i, y = n− i, and z = n− ` to obtain
i

∑
k=0

(−1)kb(
k
2)

[
i
k

]
b

[
n− k
n− `

]
b
= bi`

[
n− i
`

]
b
,

which, by again applying the q-binomial inversion formula (5.10), gives
j

∑
i=0

(−1)j−ib(
j−i
2 )+i`

[
n− i
`

]
b

[
j
i

]
b
= (−1)jb(

j
2)

[
n− j
n− `

]
b
.

Therefore, we have
S` = (−1)jb(

j
2)−n`

[
n− j
n− `

]
b
.

Substitute into (5.23) to obtain

(QC−1)k,j = µ′k(−1)jb(
j
2) ∑

`≥0

(b−k)`(abk)`
(b−n)`(c−1b−n)`

(−1)`b(
`
2)−(n−1)`

[
n− j
n− `

]
b
.

Interchanging the order of summation gives

(QC−1)k,j = µ′kbj2−nj
n

∑
`=0

(b−k)`+j(abk)`+j

(b−n)`+j(c−1b−n)`+j
(−1)`b(

`
2)−(n−j−1)`

[
n− j
`

]
b
.

By (2.30), this becomes

(QC−1)k,j = µ′kbj2−nj
n

∑
`=0

(b−k)`+j(abk)`+j(b−(n−j))`
(b−n)`+j(c−1b−n)`+j(b)`

b`.

Applying (3.5) gives

(QC−1)k,j = µ′kbj2−nj (b−k)j(abk)j

(b−n)j(c−1b−n)j

n

∑
`=0

(b−k+j)`(abk+j)`
(c−1b−n+j)`(b)`

b`

= µ′kbj2−nj (b−k)j(abk)j

(b−n)j(c−1b−n)j
2φ1

(
b−(k−j), abk+j

c−1b−n+j

∣∣∣∣∣ b; b

)
.

Using the q-Chu-Vandermonde identity of the form

2φ1

(
b−i, x

y

∣∣∣∣∣ b; b

)
=

(x−1y)i

(y)i
xi
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(see [KLS10, Eq. (1.11.5)], for example) implies

(QC−1)k,j = µ′kak−jbk2−nj (b
−k)j(abk)j(a−1c−1b−n−k)k−j

(b−n)j(c−1b−n)j(c−1b−n+j)k−j
.

From (3.5) we have (c−1b−n+j)k−j = (c−1b−n)k/(c−1b−n)j and from (3.6) we
find

(a−1c−1b−n−k)k−j =
(a−1c−1b−n−k)k

(acbn+1)j
(−a−1c−1b−n−k)−jb(

j
2)−kj+j.

Substituting these and using a = q−1c−1b−2n give the required value of
(QC−1)k,j.

We are now in position to derive the dual distribution.

Proposition 5.3.7. Let Y be a d-code with 1 ≤ d ≤ n in Jq(n, m), A2
2n−1, or

1
2 Dm

of size (5.1), where d is required to be odd in the case of A2
2n−1 and n = bm/2c

in the case of 1
2 Dm. Let (A′k) be the dual distribution of Y in terms of the ordering

imposed by (2.53)—in particular, the second ordering is taken for A2
2n−1. Then we

have

A′n−k = ck

d−2−k

∑
j=0

(−1)jb(
n−k−j

2 ) (qbk)j

(qcb2k+1)j

[
n− k

j

]
b

(
1−

(qbk+j)d−k−j−1

(qcbn+k+j)d−k−j−1

)
(5.25)

for all k = 0, 1, . . . , n− 1, where

ck = µ′n−k(−q−1b−n+1)n−k (qbk)n−k(abn−k)n−k

(c−1b−n)n−k(q−1b1−n)n−k

with µ′n−k given in Table 2.3.

Proof. Similarly to the derivation of the inner distribution, we solve a system
of linear equations. Because of (5.18) and A0 = 1, A1 = · · · = Ad−1 = 0, we
have

j

∑
k=0

bk(n−j)
[

n− k
n− j

]
b

(qcbn−k)n−j

(q)n−j
A′k = |X|

([
n
j

]
b
+

n

∑
i=d

Ai

[
n− i

j

]
b

)
for all j = 0, 1, . . . , n. Since [n−i

j ]
b
= 0 if i ≥ d and j ≥ n− d + 1, we see that

j

∑
k=0

bk(n−j)
[

n− k
n− j

]
b

(qcbn−k)n−j

(q)n−j
A′k = |X|

[
n
j

]
b

(5.26)

for all j = n− d+ 1, . . . , n. Recall fromProposition 5.3.5 thatY is an (n− d+ 1)-
design. Therefore, we have A′1 = A′2 = · · · = A′n−d+1 = 0. Because of
A′0 = |Y|, we obtain

j

∑
k=n−d+2

bk(n−j)
[

n− k
n− j

]
b

(qcbn−k)n−j

(q)n−j
A′k = |X|

[
n
j

]
b

(
1−

(qcbn)n−j(q)d−1

(qcbn)d−1(q)n−j

)
(5.27)
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for all j = n− d + 2, . . . , n. In the case of the inner distribution, we simply
applied the q-binomial inversion formula to solve the system (5.20). Here, we
need a slightly different approach. Recall that the Q-numbers are determined
by (3.2). Define the n× n matrices Q = (Q′k(i))k,i, B = (bjk)j,k, and C = (cji)j,i

by
bjk = bk(n−j)

[
n− k
n− j

]
b

(qcbn−k)n−j

(q)n−j
, cji =

[
n− i

j

]
b

for all i, j, k = 0, 1, . . . , n. Thenwe canwrite (3.2) as BQ = |X|C, which implies
that the inverse of B is determined by B−1 = 1

|X|QC−1. Multiplication of (5.27)
with B−1 gives

A′k =
n

∑
j=n−d+2

(QC−1)k,j

[
n
j

]
b

(
1−

(qcbn)n−j(q)d−1

(qcbn)d−1(q)n−j

)
for all k = n− d + 2, . . . , n. Substituting (5.21) and using (2.30) imply

A′k = µ′kakbk2 (qbn−k)k

(c−1b−n)k

n

∑
j=n−d+2

(bn+1c)j (b−k)j(abk)j

(b)j(q−1b1−n)j

×
(

1−
(qcbn)n−j(q)d−1

(qcbn)d−1(q)n−j

)
.

Using (2.30) and interchanging the order of summation give

A′k = µ′kak (qbn−k)k

(c−1b−n)k

k−n+d−2

∑
j=0

(−bn+1c)k−jb(
k−j

2 )+kj (abk)k−j

(q−1b1−n)k−j

[
k
j

]
b

×
(

1−
(qcbn)n−k+j(q)d−1

(qcbn)d−1(q)n−k+j

)
.

Apply (3.6) and a = q−1c−1b−2n to obtain

A′n−k = ck

d−2−k

∑
j=0

(−1)jb(
n−k−j

2 ) (qbk)j

(qcb2k+1)j

[
n− k

j

]
b

(
1−

(qcbn)k+j(q)d−1

(qcbn)d−1(q)k+j

)
with ck as stated in the proposition. The desired expression of A′n−k now
follows by using (3.5).

It remains to show that both distributions (Ai) and (A′k) are nonnegative.
This requires the following lemma.

Lemma 5.3.8. Let n and q be integers with n ≥ 1 and q ≥ 2. Then we have
n

∏
i=1

(
1− 1

qi

)
≥ 1

4
. (5.28)

Proof. Use 1− x ≥ 4−x for all x ∈ [0, 1
2 ] to obtain

n

∏
i=1

(
1− 1

qi

)
≥

n

∏
i=1

(
1− 1

2i

)
≥

n

∏
i=1

4−1/2i ≥ 4−∑∞
i=1 2−i

=
1
4

,

as stated.
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We start with the nonnegativity of the inner distribution.

Proposition 5.3.9. For 1 < d ≤ n, all entries of the inner distribution (Ai) given
in (5.16) are nonnegative.

Proof. Let (Ai) be given in (5.16). By using (3.5) and (3.7), and interchanging
the order of summation, we have

An−i =
n−d−i

∑
j=0

(−1)jb(
j
2)

[
n
i

]
b

[
n− i

j

]
b

(
(qcbn+d−1)n−i−j−d+1

(qbd−1)n−i−j−d+1
− 1

)

for all i = 0, 1, . . . , n− d. Set

ai,j = (−1)jb(
j
2)

[
n
i

]
b

[
n− i

j

]
b

(
(qcbn+d−1)n−i−j−d+1

(qbd−1)n−i−j−d+1
− 1

)
for all i = 0, 1, . . . , n− d and j = 0, 1, . . . , n− d− i.

We begin with Jq(n, m) and 1
2 Dm. Observe that An ≥ 0 if n = d. Assume

now that n > d. We will show that the sequence (|ai,j|)j is decreasing for all
i = 0, 1, . . . , n− d, which implies An−i ≥ 0. Take i ∈ {0, 1, . . . , n− d}. For all
j = 0, 1, . . . , n− d− i− 1, we have

|ai,j|
|ai,j+1|

=

b(
j
2)[n−i

j ]
b

(
(qcbn+d−1)n−i−j−d+1

(qbd−1)n−i−j−d+1
− 1
)

b(
j+1

2 )[n−i
j+1]b

(
(qcbn+d−1)n−i−j−d

(qbd−1)n−i−j−d
− 1
)

= b−j (bj+1 − 1)
(bn−i−j − 1)

(
(qcb2n−i−j−1−1)
(qbn−i−j−1−1)

(qcbn+d−1)n−i−j−d

(qbd−1)n−i−j−d
− 1
)

(
(qcbn+d−1)n−i−j−d

(qbd−1)n−i−j−d
− 1
) .

Since (qcb2n−i−j−1 − 1)/(qbn−i−j−1 − 1) > 1, we can apply (5.11) to obtain
|ai,j|
|ai,j+1|

> b−j (b
j+1 − 1)(qcb2n−i−j−1 − 1)

(bn−i−j − 1)(qbn−i−j−1 − 1)
.

Then again from (5.11) we find
|ai,j|
|ai,j+1|

> cbi+j+1
(

1− 1
bj+1

)
≥ cb

(
1− 1

b

)
≥ 1

for all i, j ≥ 0, as required.
Now, consider A2

2n−1 with odd d ≥ 3. Write

a′i,j = (−1)jb(
j
2)

[
n
i

]
b

[
n− i

j

]
b

and ε i,j =
(bn+d)n−i−j−d+1

(−bd)n−i−j−d+1
,

so that ai,j = a′i,j(ε i,j − 1). Observe that the signs of a′i,j and ε i,j are
(−1)(

j
2)+(i+j)(n−i) and (−1)(n+1)(i+j), respectively, which implies

sign(ai,j) = (−1)(
j
2)+ij+j.
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For all i ≥ 0, we have ai,2j ≥ 0 for all even j ≥ 0 and ai,2j+1 ≥ 0 for all j
with j + i ≡ 1 (mod 2). Hence in what follows, we look at ai,2j = |ai,2j| and
ai,2j+1 = |ai,2j+1| in the respective cases. If n = d, then we immediately obtain
An ≥ 0. Assume now that n > d. We will show that ai,j satisfies (5.15).
Observe that this will prove the nonnegativity of the inner distribution.

Take i ∈ {0, 1, . . . , n− d}. For all j = 0, 1, . . . , n− d− i− 2, use (5.12) to
obtain

|a′i,j|
|a′i,j+2|

=
q(

j
2)
∣∣∣[n−i

j ]
b

∣∣∣
q(

j+2
2 )
∣∣∣[n−i

j+2]b

∣∣∣ ≥ q−2n+2j+2i+1. (5.29)

For all j = 0, 1, . . . , n− d− i, we have

|ε i,j| =
n−j−i−d

∏
`=0

qn+d+` − (−1)n+d+`

qd+` − (−1)`

≥
n−j−i−d

∏
`=0

qn+d+` − 1
qd+` + 1

≥ q(n−2)(n−j−i−d+1) ≥ 4

because of i + j ≤ n− d and 3 ≤ d < n. Since ε i,j and ε i,j+2 have the same sign,
we thus either have

|ε i,j − 1|
|ε i,j+2 − 1| =

|ε i,j|+ 1
|ε i,j+2|+ 1

or |ε i,j − 1|
|ε i,j+2 − 1| =

ε i,j − 1
ε i,j+2 − 1

.

Because of |ε i,j| ≥ |ε i,j+2|, we find in both cases that
|ε i,j − 1|
|ε i,j+2 − 1| ≥

|ε i,j|
2|ε i,j+2|

=
1
2

(q2n−j−i − (−1)j−i)(q2n−j−i−1 − (−1)j−i−1)

(qn−j−i − (−1)n−j−i−1)(qn−j−i−1 − (−1)n−j−i)
,

from which we obtain
|ε i,j − 1|
|ε i,j+2 − 1| ≥

1
2
(q2n−j−i + 1)(q2n−j−i−1 − 1)
(qn−j−i − 1)(qn−j−i−1 + 1)

≥ 1
2

q2n−1

by using (5.11). Combining this with (5.29) gives
|ai,j|
|ai,j+2|

≥ 1
2

q2j+2i ≥ 2

for all (i, j) 6= (0, 0).
It remains to prove that

|ai,0|
|ai,1|+ |ai,2|

≥ 1

for all even i. Let i be an even number in {0, 1, . . . , n− d− 1}. Using (5.13)
and (5.14) gives

|ai,0|
|ai,1|+ |ai,2|

=
(ε i,0 − 1)∣∣[n−i

1 ]b
∣∣ |ε i,1 − 1|+ q

∣∣[n−i
2 ]b
∣∣ (ε i,2 − 1)

≥

(
1− 1

εi,0

)
D
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with
D = qn−i−1

(∣∣∣∣ ε i,1

ε i,0

∣∣∣∣+ 1
ε i,0

)
+

1
3

q2n−2i−1
(

ε i,2

ε i,0
− 1

ε i,0

)
.

We have ∣∣∣∣ ε i,1

ε i,0

∣∣∣∣ = ∣∣∣∣ bn−i − 1
b2n−i − 1

∣∣∣∣ ≤ qn−i + 1
q2n−i − 1

and
ε i,2

ε i,0
=

(bn−i − 1)(bn−i−1 − 1)
(b2n−i − 1)(b2n−i−1 − 1)

≤ q−n+1 (q
n−i−1 + 1)

(q2n−i − 1)
.

We thus obtain

D ≤ q−i−1

(
1 +

1
qn−i

)
(

1− 1
q2n−i

) +
1
3

q−2i−1

(
1 +

1
qn−i−1

)
(

1− 1
q2n−i

)
− 1

ε i,0

(
1
3

q2n−2i−1 − qn−i−1
)

.

From 2n− i ≥ 7, n− i ≥ 3, and i ≥ 0, we see that

q−i−1

(
1 +

1
qn−i

)
(

1− 1
q2n−i

) +
1
3

q−2i−1

(
1 +

1
qn−i−1

)
(

1− 1
q2n−i

) ≤ 296
381

< 1.

Since n− i ≥ 3, we also have
1
3

q2n−2i−1 − qn−i−1 > 1.

This gives
D < 1− 1

ε i,0

and thus,
|ai,0|

|ai,1|+ |ai,2|
> 1

for all i ≤ n− d− 2, and in particular,

|ai,0|
|ai,1|

> 1

for i = n − d − 1 since ai,2 does not exist in this case. This completes the
proof.

Using a similar approach as in the preceding proof, we will now show that
the dual distribution is also nonnegative.

Proposition 5.3.10. For 1 < d ≤ n, all entries of the dual distribution (A′k) given
in (5.25) are nonnegative.
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Proof. Let (A′k) be given in (5.25). Write

bk,j = ck(−1)jb(
n−k−j

2 ) (qbk)j

(qcb2k+1)j

[
n− k

j

]
b

(
1−

(qbk+j)d−k−j−1

(qcbn+k+j)d−k−j−1

)

for all k = 0, 1, . . . , d− 2 and j = 0, 1, . . . , d− 2− k.
We start with Jq(n, m) and 1

2 Dm. Observe that for all k, the factor ck in
A′k is nonnegative. We will show that the sequence (|bk,j|)j is decreasing for
all k = 0, 1, . . . , d− 2 implying A′n−k ≥ 0. Take k ∈ {0, 1, . . . , d− 2}. For all
j = 0, 1, . . . , d− 3− k, we have

|bk,j|
|bk,j+1|

=

b(
n−k−j

2 ) (qbk)j

(qcb2k+1)j
[n−k

j ]
b

(
1− (qbk+j)d−k−j−1

(qcbn+k+j)d−k−j−1

)
b(

n−k−j−1
2 ) (qbk)j+1

(qcb2k+1)j+1
[n−k

j+1 ]b

(
1− (qbk+j+1)d−k−j−2

(qcbn+k+j+1)d−k−j−2

)

= bn−k−j−1 (qcb2k+j+1 − 1)(bj+1 − 1)
(qbk+j − 1)(bn−k−j − 1)

(
1− (qbk+j)d−k−j−1

(qcbn+k+j)d−k−j−1

)
(

1− (qcbn+k+j−1)(qbk+j)d−k−j−1

(qbk+j−1)(qcbn+k+j)d−k−j−1

) .

Since (qcbn+k+j − 1)/(qbk+j − 1) > 1, we obtain

|bk,j|
|bk,j+1|

≥ bn−k−j−1 (qcb2k+j+1 − 1)(bj+1 − 1)
(qbk+j − 1)(bn−k−j − 1)

. (5.30)

By using (5.11), we have

|bk,j|
|bk,j+1|

≥ cbk+j ≥ 1

for all k, j ≥ 0 except for 1
2 Dm with even m and k = j = 0, in which case (5.30)

gives
|b0,0|
|b0,1|

≥ q2n−2(q + 1)(q2 − 1)
(q2n − 1)

≥ q2 − 1
q

> 1,

as required.
Now, consider A2

2n−1 with odd d ≥ 3. The sign of ck is (−1)(
n−k

2 ). For
0 ≤ k + j ≤ d− 2 and 3 ≤ d ≤ n, we obtain

|δk,j| ≤
d−k−j−2

∏
`=0

qk+j+`+2

qn+k+j+`
= q(n−2)(k+j+1−d) (5.31)

and therefore,

|δk,j| ≤
1

qn−2 <
1
2

. (5.32)

Hence, the entry bk,j has the sign (−1)(
j
2)+kj+j. Thus, we have bk,2j = |bk,2j| if

j is even and bk,2j+1 = |bk,2j+1| if k + j ≡ 1 (mod 2) for all k, j. Similarly to the
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inner distribution, we will show that (bk,j) satisfies (5.15). Observe that this
will prove the nonnegativity of (A′k). Set

b′k,j = b(
n−k−j

2 ) (qbk)j

(b2k+2)j

[
n− k

j

]
b

and δk,j =
(qbk+j)d−k−j−1

(bn+k+j+1)d−k−j−1
,

so that bk,j = ck(−1)j b′k,j(1 − δk,j). Take k ∈ {0, 1, . . . , d − 2}. For all
j = 0, 1, . . . , d− 4− k, we have

|b′k,j|
|b′k,j+2|

=

q(
n−k−j

2 )

∣∣∣∣ (qbk)j

(b2k+2)j
[n−k

j ]
b

∣∣∣∣
q(

n−k−j−2
2 )

∣∣∣ (qbk)j+2

(b2k+2)j+2
[n−k

j+2 ]b

∣∣∣
= q2(n−k−j)−3

∣∣∣(b2k+j+2 − 1)(b2k+j+3 − 1)[n−k
j ]

b

∣∣∣∣∣∣(qbk+j − 1)(qbk+j+1 − 1)[n−k
j+2 ]b

∣∣∣ .

Using (5.12) and (5.11) gives

|b′k,j|
|b′k,j+2|

≥ q2(n−k−j)−3 (q
2k+j+2 − 1)(q2k+j+3 + 1)

(qk+j+1 + 1)(qk+j+2 − 1)
q−2n+4j+2k+2 ≥ q2k+2j.

From (5.32) we see that 1
2 < 1− δk,j <

3
2 , which gives

|1− δk,j|
|1− δk,`|

>
1
3

for all j, ` = 0, 1, . . . , d− 2− k. Hence, we find

|bk,j|
|bk,j+2|

≥ 1
3

q2k+2j > 1

for all (k, j) 6= (0, 0), as required.
It remains to show that

|bk,0|
|bk,1|+ |bk,2|

≥ 1

for all even k. Let k be an even number in {0, 1, . . . , d− 3}. We have

|bk,0|
|bk,1|+ |bk,2|

=

∣∣∣b(n−k
2 )(1− δk,0)

∣∣∣∣∣∣b(n−k−1
2 ) (qbk)1

(b2k+2)1
[n−k

1 ]b(1− δk,1)
∣∣∣+ ∣∣∣b(n−k−2

2 ) (qbk)2
(b2k+2)2

[n−k
2 ]b(1− δk,2)

∣∣∣ ,
which becomes

|bk,0|
|bk,1|+ |bk,2|

=
|1− δk,0|

q−n+k+1

(qk+1+1) |[
n−k

1 ]b| |1− δk,1|+ q−2n+2k+3(qk+2+1)
(qk+1+1)(q2k+3+1) |[

n−k
2 ]b| |1− δk,2|

.
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Applying (5.13) and (5.14) gives

|bk,0|
|bk,1|+ |bk,2|

≥ (qk+1 + 1)|1− δk,0|
|1− δk,1|+ 1

3 q−k
(

1 + 1
qk+2

)
|1− δk,2|

≥ 3|1− δk,0|
|1− δk,1|+ 1

3

(
1 + 1

4

)
|1− δk,2|

.

From (5.31) and k ≤ d− 3, we find

|δk,0| ≤ q(n−2)(k+1−d) ≤ 1
q2n−4 ≤

1
4

|δk,1| ≤ q(n−2)(k+2−d) ≤ 1
qn−2 ≤

1
2

|δk,2| ≤ q(n−2)(k+3−d) ≤ 1
q2n−4 ≤

1
4

,

where the latter follows from k ≤ d− 5 since otherwise j = 2 cannot occur.
This implies

|bk,0|
|bk,1|+ |bk,2|

≥
3
(
1− 1

4

)
1 + 1

2 +
1
3

(
1 + 1

4

)2 > 1

for k ≤ d− 5 and
|bk,0|
|bk,1|

> 1

for k = d− 3 since bk,2 does not exist in this case. This completes the proof.

We can now prove the existence of a feasible solution of the primal LP with
the required objective function value.

Proof of Proposition 5.3.4. For d = 1, takeY = X and thus, there exists a feasible
solution of the primal LP (2.20) with the required objective function value.
For d > 1, combine Proposition 5.3.9 and 5.3.10.

5.3.3 The Hermitian matrices and even d

The following proposition is the main result of this subsection.

Proposition 5.3.11. There exists a feasible solution of the primal LP (2.20) for
d-codes in Herq(n) with objective function value (5.4) for all even d with 2 ≤ d ≤ n.

Observe that Proposition 5.3.11 and 5.2.2 together with the Strong duality
theorem 2.2.2 imply the second part of Theorem 5.1.1(b).

As in the previous sections, wewill compute the inner and dual distribution
of a d-code with even d whose size equals (5.4). Afterwards, we will show
that these distributions are nonnegative implying the existence of a feasible
solution of the primal LP.

We start with the computation of the inner distribution.
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Proposition 5.3.12. Let n and d be integers with 2 ≤ d ≤ n and even d. Assume
that Y is a d-code in Herq(n) of size (5.4). Let (Ai) and (A′k) be the inner and dual
distribution of Y, respectively. Then we have

An−i =
n−d

∑
j=i

(−1)j−ib(
j−i
2 )

[
j
i

]
b

[
n
j

]
b

×
(
(−1)j |Y|

bnj − 1− bj − 1
bn−d+1 − 1

(
(−1)j |Y|

bnj + (−1)n+jbn(n−d+1−j)
))

for all i = 0, 1, . . . , n− 1. Moreover, we have A′2 = · · · = A′n−d+2 = 0 and

A′1 =
bn − 1

bn−d+1 − 1

(
(−1)n+1qn(n−d+1) − |Y|

)
. (5.33)

Proof. By using (2.47), (2.17) and (5.9), we obtain for all j = 0, 1, . . . , n

j

∑
k=0

[
n− k
n− j

]
b
A′k = (−1)jbnj

n

∑
i=0

Ai

[
n− i

j

]
b
. (5.34)

Put
xk =

[
n− k
d− 1

]
b

[
n− 1
d− 2

]
b

and yk =

[
n− k
d− 2

]
b

[
n− 1
d− 1

]
b
.

Using (5.34) with j = n− d + 1 and j = n− d + 2 gives

(−1)n+1
n−d+2

∑
k=0

(xk − yk) A′k

= qn(n−d+1)
([

n
d− 1

]
b

[
n− 1
d− 2

]
b
+ bn

[
n

d− 2

]
b

[
n− 1
d− 1

]
b

)
.

It was shown in [Sch18, Proof of Theorem 2] that the coefficients of A′k on the
left-hand side are nonnegative. Since Y is of size (5.4), we have

n−d+2

∑
k=1

(xk − yk)A′k = 0.

Because of x1 = y1 and xk 6= yk for all k = 2, 3, . . . , n− d + 2, we obtain

A′2 = A′3 = · · · = A′n−d+2 = 0.

From (5.34) we thus find[
n
j

]
b
|Y|+

[
n− 1
j− 1

]
b
A′1 = (−1)jbnj

([
n
j

]
b
+

n−d

∑
k=0

An−k

[
k
j

]
b

)
for all j = 0, 1, . . . , n− d. Applying the q-binomial inversion formula (4.10)
gives

An−i =
n−d

∑
j=i

(−1)j−ib(
j−i
2 )

[
j
i

]
b

([
n
j

]
b

(−1)j|Y|
bnj +

[
n− 1
j− 1

]
b

(−1)j A′1
bnj −

[
n
j

]
b

)
(5.35)
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for all i = 0, 1, . . . , n− d. It remains to compute A′1. Set j = n− d + 1 in (5.34)
to obtain [

n
d− 1

]
b
|Y|+

[
n− 1
d− 1

]
b
A′1 = (−1)n+1qn(n−d+1)

[
n

d− 1

]
b
.

This gives

A′1 =
bn − 1

bn−d+1 − 1

(
(−1)n+1qn(n−d+1) − |Y|

)
.

By substituting this into (5.35) and doing some elementary manipulations, we
have

An−i =
n−d

∑
j=i

(−1)j−ib(
j−i
2 )

[
j
i

]
b

([
n
j

]
b

(
(−1)j |Y|

bnj − 1
)

−
[

n− 1
j− 1

]
b

bn − 1
bn−d+1 − 1

(
(−1)j |Y|

bnj + (−1)n+jbn(n−d+1−j)
))

for all i = 0, 1, . . . , n− d. After some elementary manipulations, the desired
expression of the inner distribution follows.

We now derive the dual distribution.

Proposition 5.3.13. Let n and d be integers with 2 ≤ d ≤ n and even d. Assume
that Y is a d-code in Herq(n) of size (5.4). Then the dual distribution (A′k) of Y
satisfies

A′1 =
bn − 1

bn−d+1 − 1

(
(−1)n+1qn(n−d+1) − |Y|

)
and for all k = 0, 1, . . . , n− 2,

A′n−k =
d−k−3

∑
j=0

(−1)n−kb(
j
2)+n(n−j−k)

[
n
k

]
b

[
n− k

j

]
b
(1− δk,j),

where

δk,j = (−1)n−j−k |Y|
bn(n−j−k)

− (−1)n−j−k (b
n−j−k − 1)

(bn−d+1 − 1)
(|Y|+ (−1)nqn(n−d+1))

bn(n−j−k)

for all j = 0, 1, . . . , d− k− 3.

Proof. Let (Ai) and (A′k) denote the inner and dual distribution of Y, respec-
tively. Recall from Proposition 5.3.12 that A′1, A′2, . . . , A′n−d+2 were already
determined with A′2 = · · · = A′n−d+2 = 0. Since Y is a d-code, we also have
A1 = · · · = Ad−1 = 0. Combine this with (5.34) to obtain

j

∑
k=n−d+3

[
n− k
n− j

]
b
A′k =

[
n
j

]
b
((−1)jbnj − |Y|)−

[
n− 1
j− 1

]
b
A′1
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for all j = n− d + 3, . . . , n. Changing the index j and interchanging the order
of summation give

d−3

∑
k=j

[
k
j

]
b
A′n−k =

[
n
j

]
b

(
(−1)n−jbn(n−j) − |Y|

)
−
[

n− 1
j

]
b
A′1

for all j = 0, 1, . . . , d− 3. By applying the q-binomial inversion formula (4.10),
we have

A′n−k =
d−3

∑
j=k

(−1)j−kb(
j−k

2 )

[
j
k

]
b

([
n
j

]
b

(
(−1)n−jbn(n−j) − |Y|

)
−
[

n− 1
j

]
b
A′1

)

for all k = 0, 1, . . . , d− 3. Using (5.33) and doing some manipulations give

A′n−k =
d−3

∑
j=k

(−1)j−kb(
j−k

2 )

[
j
k

]
b

[
n
j

]
b

×
(
(−1)n−jbn(n−j) − |Y| − bn−j − 1

bn−d+1 − 1

(
(−1)n+1qn(n−d+1) − |Y|

))
.

Interchanging the order of summation implies the stated expression of the
dual distribution.

To show that the inner and dual distribution given in Proposition 5.3.12
and 5.3.13, respectively, are nonnegative, we write

γ(n, d) = (−bn)n−d+1δ(n, d)

with
δ(n, d) =

(bn−d+2 − 1) + bn(bn−d+1 − 1)
bn−d+2 − bn−d+1 ,

where d is assumed to be even. Observe that (5.4) equals γ(n, d). We first
need some bounds on γ(n, d).

Lemma 5.3.14. Let n and d be integers, where 2 ≤ d ≤ n and d is even. Then we
have

1
3

qn(n−d+2)−1 ≤ γ(n, d) ≤ 1
2

qn(n−d+2). (5.36)

Proof. For odd n, we have

γ(n, d) = qn(n−d+1) qn−d+2 + 1 + qn(qn−d+1 − 1)
qn−d+2 + qn−d+1 , (5.37)

and for even n,

γ(n, d) = qn(n−d+1) −qn−d+2 + 1 + qn(qn−d+1 + 1)
qn−d+2 + qn−d+1 . (5.38)
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Hence, we obtain

γ(n, d) ≤ qn(n−d+1) q2n−d+1 + qn − qn−d+2 + 1
qn−d+1(q + 1)

≤ 1
3

qn(n−d+1) q2n−d+1 + qn

qn−d+1 .

This gives

γ(n, d) ≤ 1
3

qn(n−d+2)
(

1 +
1

qn−d+1

)
≤ 1

2
qn(n−d+2).

From (5.37) and (5.38), we see that

γ(n, d) ≥ qn(n−d+1) q2n−d+1 − qn + qn−d+2 + 1
qn−d+1(q + 1)

.

We have

q2n−d+1 − qn + qn−d+2 + 1
qn−d+1(q + 1)

≥ q2n−d+1 − qn

qn−d+1(q + 1)
= qn−1

(
1− 1

qn−d+1

)
(

1 + 1
q

) ≥ 1
3

qn−1.

Thus, we obtain
γ(n, d) ≥ 1

3
qn(n−d+2)−1,

which completes the proof.

To prove the nonnegativity of the inner distribution (Ai) given in Propo-
sition 5.3.12, we rewrite it by doing some elementary manipulations and
interchanging the order of summation and obtain

An−i =
n−d−i

∑
j=0

ai,j (5.39)

with ai,j = a′i,j(1− ε i,j), where

a′i,j = (−1)ib(
j
2)−n(j+i)

[
n
i

]
b

[
n− i

j

]
b
|Y| (5.40)

and
ε i,j = (−1)j+i bn(j+i)

|Y| +
bj+i − 1

bn−d+1 − 1

(
1 + (−1)n qn(n−d+1)

|Y|

)
for all i = 0, 1, . . . , n− d and j = 0, 1, . . . , n− d− i.

We start by deriving bounds on 1− ε i,j.

Lemma 5.3.15. Let n and d be integers, where 2 ≤ d < n and d is even. For
0 ≤ i + j ≤ n− d, we have

1− ε i,j ≥



29
32 for n and i + j odd
125
128 for n and i + j even
186
256 for odd n and even i + j
31
64 for even n and odd i + j
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and

1− ε i,j ≤



2 for n and i + j odd
27
16 for n and i + j even

1 for odd n and even i + j
2051
2048 for even n and odd i + j.

Moreover, for odd n ≥ 3, we have

1− ε0,0 ≥
253
256

.

Proof. We have to look at four different cases depending on the parity of n
and i + j.

Assume that n ≥ 3 and i + j are odd, hence 1 ≤ i + j ≤ n− d. We have

1− ε i,j = 1− qn(j+i)

|Y| +
qj+i + 1

qn−d+1 − 1

(
1− qn(n−d+1)

|Y|

)
. (5.41)

By using the lower bound from (5.36), we obtain

1− ε i,j ≥ 1− 3
qn(n−d−j−i+2)−1

≥ 29
32

.

Moreover, applying the lower bound from (5.36) to (5.41) gives

1− ε i,j ≤ 1 +
qj+i + 1

qn−d+1 − 1
≤ 1 +

qn−d + 1
qn−d+1 − 1

≤ 2,

where the last inequality holds since n− d ≥ 1.
Assume that n ≥ 4 and i + j are even, thus 0 ≤ i + j ≤ n− d. We have

1− ε i,j = 1− qn(j+i)

|Y| +
qj+i − 1

qn−d+1 + 1

(
1 +

qn(n−d+1)

|Y|

)
. (5.42)

Because of the lower bound from (5.36), we obtain

1− ε i,j ≥ 1− 3
qn(n−d−j−i+2)−1

≥ 125
128

.

Applying the lower bound from (5.36) to (5.42) gives

1− ε i,j ≤ 1 +
qj+i − 1

qn−d+1 + 1

(
1 +

3
qn−1

)
≤ 27

16
.

Assume that n ≥ 3 is odd and i + j is even, thus 0 ≤ i + j ≤ n− d− 1.
Then we have

1− ε i,j = 1− qn(j+i)

|Y| −
qj+i − 1

qn−d+1 − 1

(
1− qn(n−d+1)

|Y|

)
.
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The bounds from (5.36) imply

1− ε i,j ≥ 1− 3
qn(n−d−j−i+2)−1

− qj+i − 1
qn−d+1 − 1

.

Applying (3.19) and i + j ≤ n− d− 1 gives

1− ε i,j ≥ 1− 3
q3n−1 −

1
q2 ≥

186
256

.

Moreover, we obtain

1− ε0,0 = 1− 1
|Y| ≥ 1− 3

qn(n−d+2)−1
≥ 253

256
.

Because of the lower bound from (5.36), we also have

1− ε i,j ≤ 1.

Assume that n ≥ 4 is even and i + j is odd, hence 1 ≤ i + j ≤ n− d− 1.
Then we have

1− ε i,j = 1 +
qn(j+i)

|Y| −
qj+i + 1

qn−d+1 + 1

(
1 +

qn(n−d+1)

|Y|

)
.

Using the lower bound from (5.36) gives

1− ε i,j ≥ 1− qj+i + 1
qn−d+1 + 1

(
1 +

3
qn−1

)
≥ 1− 1

q2

(
1 +

1
qn−d−1

)(
1 +

3
qn−1

)
≥ 31

64
.

We also obtain

1− ε i,j ≤ 1 +
3

qn(n−d−j−i+2)−1
≤ 1 +

3
q3n−1 <

2051
2048

.

This finishes the proof.

We can now prove the nonnegativity of the inner distribution.

Proposition 5.3.16. For 2 ≤ d ≤ n, all entries of the inner distribution (Ai) given
in Proposition 5.3.12 are nonnegative.

Proof. Let (Ai) be given in (5.39).
First, assume that n = d. Then n is even and we only have to show that

An ≥ 0. We have
An = |Y| − 1 ≥ 1

3
q2n−1 ≥ 0.

So, we henceforth assume that 2 ≤ d < n. Since 1− ε i,j > 0 for all i, j by
Lemma 5.3.15, the sign of ai,j is (−1)(

j
2)+ij+j. Hence, for all i = 0, 1, . . . , n− d,
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we have sign(ai,2j) = 1 if j ≥ 0 is even and sign(ai,2j+1) = 1 if j + i ≡ 1
(mod 2). In all other cases, we have sign(ai,j) = −1. We will show that ai,j

satisfies (5.15). Observe that this will prove the nonnegativity of the inner
distribution.

Take i ∈ {0, 1, . . . , n− d}. For all j = 0, 1, . . . , n− d− i− 2, by using (5.12),
we obtain

|a′i,j|
|a′i,j+2|

=
q(

j
2)−n(j+i)

∣∣[n−i
j ]

b

∣∣
q(

j+2
2 )−n(j+i+2)

∣∣[n−i
j+2]b

∣∣ ≥ q2j+2i+1. (5.43)

Assume that n ≥ 4. By using Lemma 5.3.15, we deduce

1− ε i,j

1− ε i,j+2
≥



29
64 for n and i + j odd
125
216 for n and i + j even
186
256 for odd n and even i + j
992

2051 for even n and odd i + j

for all i, j with 0 ≤ i + j ≤ n− d. We thus obtain
|ai,j|
|ai,j+2|

=
|a′i,j|(1− ε i,j)

|a′i,j+2|(1− ε i,j+2)
≥ q2j+2i+1 1− ε i,j

1− ε i,j+2
≥ 1

for all i, j with i + j ≥ 0.
It remains to show that

|ai,0|
|ai,1|+ |ai,2|

≥ 1

for all even n ≥ 3 and i ≥ 0. Thus, let i ≥ 0 be even. Then, by using (5.13)
and (5.14), we have

|ai,0|
|ai,1|+ |ai,2|

=
1− ε i,0

q−n|[n−i
1 ]b|(1− ε i,1) + q1−2n|[n−i

2 ]b|(1− ε i,2)

≥ 1− ε i,0

q−i−1(1− ε i,1) +
1
3 q−2i−1(1− ε i,2)

.

Together with Lemma 5.3.15, this gives
|ai,0|

|ai,1|+ |ai,2|
≥ 1

for all n ≥ 3 and all even i ≥ 0 except for odd n ≥ 3 and i = 0. In the latter
case, by using (5.13), (5.14), and Lemma 5.3.15, we obtain

|a0,0|
|a0,1|+ |a0,2|

=
1− ε0,0

q−n|[n1]b|(1− ε0,1) + q1−2n|[n2]b|(1− ε0,2)

≥ 1− ε0,0
(1+q−n)
(q+1) (1− ε0,1) +

(1+q−n)
(q+1)(q2−1) (1− ε0,2)

≥ 1.

This completes the proof.
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It remains to show the nonnegativity of the dual distribution.

Proposition 5.3.17. For 2 ≤ d ≤ n, all entries of the dual distribution (A′k) given
in Proposition 5.3.13 are nonnegative.

Proof. Let (A′k) be given in Proposition 5.3.13.
First, we have

A′1 =
bn − 1

bn−d+1 − 1

(
(−1)n+1qn(n−d+1) − |Y|

)
=

qn − (−1)n

qn−d+1 + (−1)n

(
|Y|+ (−1)nqn(n−d+1)

)
.

From Lemma 5.3.14, we find A′1 ≥ 0. In particular, this proves the proposition
for d = 2. Henceforth, we assume 4 ≤ d ≤ n. We write

A′n−k =
d−k−3

∑
j=0

bk,j

with bk,j = b′k,j(1− δk,j), where δk,j as in Proposition 5.3.13 and

b′k,j = (−1)n−kb(
j
2)+n(n−j−k)

[
n
k

]
b

[
n− k

j

]
b

for all k = 0, 1, . . . , d− 3 and j = 0, 1, . . . , d− k− 3.
First, we look at δk,j. For 0 ≤ k + j ≤ d− 3, applying the upper bound

from (5.36) gives

|δk,j| ≤
|Y|

qn(n−j−k)
+

(qn−j−k + 1)(|Y|+ qn(n−d+1))

qn(n−j−k)(qn−d+1 − 1)

≤ qn(n−d+2)

2qn(n−j−k)
+

(qn−j−k + 1)( 1
2 qn(n−d+2) + qn(n−d+1))

qn(n−j−k)(qn−d+1 − 1)
.

Using k + j ≤ d− 3 and doing some elementary manipulations imply

|δk,j| ≤
1

2qn +

(
1

qd−3 +
1
qn

)(
1
2
+

1
qn

)
≤ 89

256

for all n ≥ 4. This gives

1− |δk,j|
1 + |δk,`|

≥ 167
345

(5.44)

for all k, j, ` ≥ 0 with k + j ≤ d − 3 and k + ` ≤ d − 3. In particular, we
have 1 − δk,j > 0 and hence, the sign of bk,j is (−1)(

j
2)+kj+j. Thus, for all

k = 0, 1, . . . , d− 3, we have sign(bk,2j) = 1 if j is even and sign(bk,2j+1) = 1 if
j + k ≡ 1 (mod 2). In the other cases, we have sign(bk,j) = −1.

Wewill now show that bk,j has the same properties as ak,j in (5.15). Observe
that this will prove the nonnegativity of the dual distribution.
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We have b′k,j =
qn2

|Y| a
′
k,j for a′k,j as in (5.40). Because of (5.43), we conclude

|bk,j|
|bk,j+2|

≥
|a′k,j|
|a′k,j+2|

(1− |δk,j|)
(1 + |δk,j+2|)

≥ 167
345

q2j+2k+1 > 1

for all k, j ≥ 0 with (k, j) 6= (0, 0).
It remains to show that

|bk,0|
|bk,1|+ |bk,2|

≥ 1

for all even k ≥ 0. Let k ≥ 0 be even. From (5.44), (5.13), and (5.14), we have

|bk,0|
|bk,1|+ |bk,2|

≥ 167
345

1(
q−n|[n−k

1 ]b|+ q1−2n|[n−k
2 ]b|

)
≥ 167

345
1

(q−k−1 + 1
3 q−2k−1)

.

This gives
|bk,0|

|bk,1|+ |bk,2|
≥ 1

for all k ≥ 2. Similarly to the estimation of |δk,j|, we obtain

|δ0,0| ≤
1

2qn(d−2)
+

(
1

qn(d−3)
+

1
qn(d−2)

)(
1
2
+

1
qn

)
≤ 161

4096

for all n, d with 4 ≤ d ≤ n. Hence, we have

|b0,0|
|b0,1|+ |b0,2|

≥ 1
(q−1 + 1

3 q−1)

(1− 161
4096 )

(1 + 89
256 )

≥ 1.

This completes the proof.

Combining Proposition 5.3.16 and 5.3.17 proves Proposition 5.3.11.

5.3.4 The Hermitian polar space A2
2n−1 and even d

The goal of this subsection is to prove the following proposition.

Proposition 5.3.18. Let X be the set of generators in A2
2n−1 and let d be an even

integer with 2 ≤ d ≤ n. Then there exists a feasible solution of the primal LP (2.20)
for d-codes in A2

2n−1 with objective function value (5.2).

Observe that Proposition 5.3.18 and 5.2.4 together with the Strong duality
theorem 2.2.2 imply the second part of Theorem 5.1.1(a).

We will use the same approach as for odd d and compute the inner and
dual distribution of a d-code in A2

2n−1 of size (5.2). However, the expressions
for the inner and dual distribution are slightly more complicated if d is even.
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This comes from the fact that for even d, the first entry of the dual distribution
is nonzero whereas for odd d, we obtain an (n− d + 1)-design.

We start by computing the inner distribution. To do so, we write the LP
optimum (5.2) as

LP(d) = |X| (q)d−1

(bn+1)d−1
ε(n, d),

where d is assumed to be even and

ε(n, d) =
((−q)n−d+2 − 1) + q (−q)n+d−2−1

q(−q)d−2−1 ((−q)n−d+1 − 1)

((−q)n−d+2 − 1) + q (−q)n+d−2−1
(−q)n+d−1−1 ((−q)n−d+1 − 1)

. (5.45)

Thus, a code Y of size (5.2) satisfies

|Y| = |X| (q)d−1

(bn+1)d−1
ε(n, d). (5.46)

We can now derive the inner distribution.

Proposition 5.3.19. Let X be the set of generators in A2
2n−1 and let d be an even

integer with 2 ≤ d ≤ n. Assume that Y is a d-code in A2
2n−1 of size (5.2). Let

(Ai) and (A′k) be the inner and dual distribution of Y, respectively, in terms of the
orderings imposed by (2.52) and (2.53). Then we have

An−i =
|Y|
|X|

n−d

∑
j=i

(−1)j−ib(
j−i
2 )

[
j
i

]
b

[
n
j

]
b

(bn+1)n−j

(q)n−j

×
(

1− (1− ε(n, d)−1)bn−j−d+1 (bn+d−1 − 1)(bj − 1)
(bn−d+1 − 1)(b2n−j − 1)

−
(qbd−1)n−j−d+1

(bn+d)n−j−d+1
ε(n, d)−1

)
for all i = 0, 1, . . . , n− 1. Moreover, we have A′2 = · · · = A′n−d+2 = 0 and

A′1 = |X|b−d+1 (q)d−1

(bn)d−1

(bn − 1)
(bn−d+1 − 1)

(1− ε(n, d)). (5.47)

Proof. Recall the formulae (3.13) and (3.16) from the proof of Theorem 3.2.1,
namely we have

j

∑
k=0

bk(n−j)
[

n− k
n− j

]
b

(bn−k+1)n−j

(q)n−j
A′k = |X|

n

∑
i=0

Ai

[
n− i

j

]
b

(5.48)

for all j = 0, 1, . . . , n and
n−d+2

∑
k=0

(xk − yk)A′k

= |X|bd−2 (b
n)d−2

(q)d−2

([
n− 1
d− 2

]
b

[
n

d− 1

]
b
+ q
[

n− 1
d− 1

]
b

[
n

d− 2

]
b

bn+d−2 − 1
qbd−2 − 1

)
(5.49)
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with xk and yk as in (3.15), where all coefficients of A′k on the left-hand side of
(5.49) are nonnegative. Using A′0 = |Y| and doing some elementary manipu-
lations give

n−d+2

∑
k=1

(xk − yk)A′k = 0.

Since x1 = y1 and xk 6= yk for all k ≥ 2, we obtain

A′2 = A′3 = · · · = A′n−d+2 = 0.

We therefore find from (5.48) that[
n
j

]
b

(bn+1)n−j

(q)n−j
|Y|+ bn−j

[
n− 1
j− 1

]
b

(bn)n−j

(q)n−j
A′1 = |X|

([
n
j

]
b
+

n−d

∑
k=0

An−k

[
k
j

]
b

)

for all j = 0, 1, . . . , n− d. Applying the q-binomial inversion formula (4.10)
gives

An−i =
1
|X|

n−d

∑
j=i

(−1)j−ib(
j−i
2 )

[
j
i

]
b

×
([

n
j

]
b

(bn+1)n−j

(q)n−j
|Y|+ bn−j

[
n− 1
j− 1

]
b

(bn)n−j

(q)n−j
A′1 − |X|

[
n
j

]
b

)
(5.50)

for all i = 0, 1, . . . , n− d. It remains to compute A′1. Set j = n− d + 1 in (5.48)
to obtain[

n
d− 1

]
b

(bn+1)d−1

(q)d−1
|Y|+ bd−1

[
n− 1
d− 1

]
b

(bn)d−1

(q)d−1
A′1 = |X|

[
n

d− 1

]
b
.

This implies

A′1 = b−d+1 (q)d−1

(bn)d−1

[ n
d−1]b
[n−1
d−1]b

(
|X| − (bn+1)d−1

(q)d−1
|Y|
)

.

Using (5.46) gives

A′1 = |X|b−d+1 (q)d−1

(bn)d−1

(bn − 1)
(bn−d+1 − 1)

(1− ε(n, d)).

By substituting this into (5.50) and doing some elementary manipulations, we
obtain

An−i =
|Y|
|X|

n−d

∑
j=i

(−1)j−ib(
j−i
2 )

[
j
i

]
b

[
n
j

]
b

(bn+1)n−j

(q)n−j
×
(

1− |X||Y|
(q)n−j

(bn+1)n−j

+
|X|
|Y| (1− ε(n, d))bn−j−d+1 (bj − 1)(bn − 1)

(bn−d+1 − 1)(b2n−j − 1)
(q)d−1

(bn)d−1

)
Using (5.46) and applying (3.5) give the desired expression of An−i.

We can now compute the dual distribution.
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Proposition 5.3.20. Let X be the set of generators in A2
2n−1 and let d be an even

integer with 2 ≤ d ≤ n. Assume that Y is a d-code in A2
2n−1 of size (5.2). Let (A′k)

be the dual distribution of Y in terms of the second ordering imposed by (2.53). Then
we have

A′1 = |X|b−d+1 (q)d−1

(bn)d−1

(bn − 1)
(bn−d+1 − 1)

(1− ε(n, d)),

and for all k = 0, 1, . . . , n− 2,

A′n−k = ck

d−k−3

∑
j=0

b(
j
2)−nj (b

−n−1−k)n−k−j

(−b−n)n−k−j

[
n− k

j

]
b
(1− δk,j), (5.51)

where ck = µ′n−kb(
n−k

2 )−n(n−k) (qbk)n−k
(−b−n)n−k

with µ′n−k given in Table 2.3 and

δk,j = ε(n, d)
(qbk+j)d−k−j−1

(bn+k+j+1)d−k−j−1

+ (1− ε(n, d))bk+j−d+1 (b
n−k−j − 1)

(bn−d+1 − 1)
(qbk+j)d−k−j−1

(bn+k+j)d−k−j−1
(5.52)

for all j = 0, 1, . . . , d− k− 3. In particular, we have A′2 = A′3 = · · · = A′n−d+2 = 0.

Proof. First, observe that A′1, A′2, . . . , A′n−d+2 were already determined in
Proposition 5.3.19 with A′2 = A′3 = · · · = A′n−d+2 = 0. To obtain A′n−k

for k = 0, 1, . . . d− 3, we proceed similarly as in the case of odd d and solve a
system of linear equations by using the inverse matrix from Lemma 5.3.6. As
in (5.26), we have

j

∑
k=0

bk(n−j)
[

n− k
n− j

]
b

(bn−k+1)n−j

(q)n−j
A′k = |X|

[
n
j

]
b

for all j = n− d + 1, . . . , n. Use A′2 = A′3 = · · · = A′n−d+2 = 0 to obtain

j

∑
k=n−d+3

bk(n−j)
[

n− k
n− j

]
b

(bn−k+1)n−j

(q)n−j
A′k

= |X|
[

n
j

]
b
−
[

n
j

]
b

(bn+1)n−j

(q)n−j
|Y| − bn−j

[
n− 1
n− j

]
b

(bn)n−j

(q)n−j
A′1 (5.53)

for all j = n− d + 3, . . . , n. By using (5.46) and (5.47), the right-hand side
of (5.53) can be written as

|X|
[

n
j

]
b

(
1− ε(n, d)

(bn+1)n−j(q)d−1

(bn+1)d−1(q)n−j

− (1− ε(n, d))bn−j−d+1 (bj − 1)
(bn−d+1 − 1)

(bn)n−j(q)d−1

(bn)d−1(q)n−j

)
.
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By applying (3.5), we have
j

∑
k=n−d+3

bk(n−j)
[

n− k
n− j

]
b

(bn−k+1)n−j

(q)n−j
A′k

= |X|
[

n
j

]
b

(
1− ε(n, d)

(qbn−j)d−n+j−1

(b2n−j+1)d−n+j−1

− (1− ε(n, d))bn−j−d+1 (bj − 1)
(bn−d+1 − 1)

(qbn−j)d−n+j−1

(b2n−j)d−n+j−1

)
.

Similarly as in the case of odd d, we multiply the matrix QC−1 from
Lemma 5.3.6, which gives

A′k = µ′kb−(2n+1)k+k2 (qbn−k)k

(−b−n)k

n

∑
j=n−d+3

b(
j
2)+j (b

−k)j(b−2n−1+k)j

(b−n)j(−b−n)j

[
n
j

]
b

×
(

1− ε(n, d)
(qbn−j)d−n+j−1

(b2n−j+1)d−n+j−1

− (1− ε(n, d))bn−j−d+1 (bj − 1)
(bn−d+1 − 1)

(qbn−j)d−n+j−1

(b2n−j)d−n+j−1

)
.

Apply (2.30) to obtain

A′n−k = µ′n−kb−(n−k)(n+k+1) (qbk)n−k

(−b−n)n−k

n−k

∑
j=n−d+3

b(
j
2)+j+kj (b

−n−1−k)j

(−b−n)j

[
n− k

j

]
b

×
(

1− ε(n, d)
(qbn−j)d−n+j−1

(b2n−j+1)d−n+j−1

− (1− ε(n, d))bn−j−d+1 (bj − 1)
(bn−d+1 − 1)

(qbn−j)d−n+j−1

(b2n−j)d−n+j−1

)
.

Changing the order of summation and doing some elementary manipulations
give the stated expression of A′n−k.

Proving the nonnegativity of both distributions requires the following
bounds on ε(n, d).

Lemma 5.3.21. Let n and d be integers, where 2 ≤ d ≤ n and d is even. Then we
have

ε(n, d) >


−qn+d−1 + 1

qd−1 − 1
for even n

1
2 qd−2(qn−d+1 − 1) for odd n

(5.54)

and

ε(n, d) <


− qn

q + 1
for even n

qn+d−1 − 1
qd−1 − 1

for odd n.
(5.55)
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Proof. Since d is even, we find from (5.45) that

(−1)n+1ε(n, d) =
−qn−d+2 + (−1)n + (−1)nq qn+d−2−(−1)n

qd−1−1 (qn−d+1 + (−1)n)

(−1)nqn−d+2 − 1 + (−1)nq qn+d−2−(−1)n

qn+d−1+(−1)n (qn−d+1 + (−1)n)
.

In (3.26), it was shown that

(−1)n+1ε(n, d) <
qn+d−1 + (−1)n

qd−1 − 1
,

which implies the stated lower and upper bound for even n and odd n, respec-
tively. Assume that n is even. Then we have

(−1)n+1ε(n, d) =
−qn−d+2 + 1 + q qn+d−2−1

qd−1−1 (qn−d+1 + 1)

qn−d+2 − 1 + q qn+d−2−1
qn+d−1+1 (q

n−d+1 + 1)
.

Using (5.11) gives

qn+d−2 − 1
qd−1 − 1

≥ qn−1

and we also have
qn+d−2 − 1
qn+d−1 + 1

≤ 1
q

.

We thus obtain

(−1)n+1ε(n, d) ≥ −qn−d+2 + 1 + q2n−d+1 + qn

qn−d+2 + qn−d+1

>
q2n−d+1

qn−d+2 + qn−d+1

=
qn

q + 1
,

as stated. For odd n, we have

(−1)n+1ε(n, d) =
qn−d+2 + 1 + q qn+d−2+1

qd−1−1 (qn−d+1 − 1)

qn−d+2 + 1 + q qn+d−2+1
qn+d−1−1 (q

n−d+1 − 1)
.

Because of
qn+d−2 + 1

qd−1 − 1
≥ qn−1 and qn+d−2 + 1

qn+d−1 − 1
≤ 1,

we obtain

(−1)n+1ε(n, d) ≥ qn−d+2 + 1 + qn(qn−d+1 − 1)
qn−d+2 + 1 + q(qn−d+1 − 1)

.

Observe that it holds

qn−d+2 + 1 >
1
2
(−qn + qn−1 + qd−1 − qd−2)
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since −qn + qn−1 + qd−1 ≤ 0. This can be used to show, by elementary manip-
ulations, that

qn−d+2 + 1 + qn(qn−d+1 − 1)

>
1
2

qd−2(qn−d+1 − 1)
(

qn−d+2 + 1 + q(qn−d+1 − 1)
)

,

which implies

(−1)n+1ε(n, d) >
1
2

qd−2(qn−d+1 − 1),

as required.

To prove the nonnegativity of the inner distribution given in Proposi-
tion 5.3.19, we rewrite it as

An−i =
|Y|
|X|

n−d−i

∑
j=0

ai,j (5.56)

with ai,j = a′i,j(1− ε i,j), where

a′i,j = (−1)jb(
j
2)

[
n
i

]
b

[
n− i

j

]
b

(bn+1)n−j−i

(q)n−j−i

and

ε i,j = (1− ε(n, d)−1)bn−j−i−d+1 (bn+d−1 − 1)(bj+i − 1)
(bn−d+1 − 1)(b2n−j−i − 1)

+
(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
ε(n, d)−1

for all i = 0, 1, . . . , n− d and j = 0, 1, . . . , n− d− i.
We first give lower and upper bounds on ε i,j.

Lemma 5.3.22. Let n and d be integers with even d such that 2 ≤ d < n and n ≥ 4.
For all integers i, j with 0 ≤ i + j ≤ n− d, we have

1− ε i,j >



31
32 for n and i + j odd
61
64 for n and i + j even
191
256 for odd n and even i + j
109
128 for even n and odd i + j

and

1− ε i,j <



2 for n and i + j odd
51
32 for n and i + j even

1 for odd n and even i + j
259
256 for even n and odd i + j.
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Moreover, we have
1− ε0,0 >

255
256

for odd n.

Proof. From (5.54) and (5.55), we find

−q + 1
qn < ε(n, d)−1 < − qd−1 − 1

qn+d−1 + 1
for even n (5.57)

and
qd−1 − 1

qn+d−1 − 1
< ε(n, d)−1 < 2

q−d+2

qn−d+1 − 1
for odd n. (5.58)

Note that the sign of (qbd−1)n−j−i−d+1/(bn+d)n−j−i−d+1 is (−1)(n+1)(n−j−i+1).
Moreover, we have∣∣∣∣∣ (qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1

∣∣∣∣∣ =
∣∣∣∣∣n−j−i−d

∏
`=0

qbd−1+` − 1
bn+d+` − 1

∣∣∣∣∣
≤

n−j−i−d

∏
`=0

qd+` + 1
qn+d+` − 1

≤ q−(n−2)(n−j−i−d+1) (5.59)

for all i, j with 0 ≤ i + j ≤ n− d.
We have to look at four different cases depending on the parity of n and i+ j.
Assume that n ≥ 5 and i + j are odd. We have

1− ε i,j = 1 + (1− ε(n, d)−1)qn−j−i−d+1 (qn+d−1 − 1)(qj+i + 1)
(qn−d+1 − 1)(q2n−j−i + 1)

−
(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
ε(n, d)−1. (5.60)

Use that the second summand is nonnegative and

(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
≥ 0

together with the upper bound from (5.58) to obtain

1− ε i,j > 1−
(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1

2q−d+2

(qn−d+1 − 1)

> 1−
(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
2q−n+2.

Because of (5.59), we have

1− ε i,j > 1− 2
q(n−2)(n−j−i−d+2)

.
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Since n ≥ 5 and i + j ≤ n− d, we deduce

1− ε i,j >
31
32

.

From (5.60) we also obtain

1− ε i,j < 1 + (1− ε(n, d)−1)qn−j−i−d+1 (qn+d−1 − 1)(qj+i + 1)
(qn−d+1 − 1)(q2n−j−i + 1)

.

Using the lower bound from (5.58) gives

1− ε i,j < 1 + qn−j−i (qn − 1)(qj+i + 1)
(qn−d+1 − 1)(q2n−j−i + 1)

< 1 +
qj+i + 1

qn−d+1 − 1
.

Because of i + j ≤ n− d and n− d ≥ 1, we have

1− ε i,j < 1 +
qn−d + 1

qn−d+1 − 1
≤ 2,

as required.
Assume now that n and j + i are even. We have

1− ε i,j = 1 + (1− ε(n, d)−1)qn−j−i−d+1 (qn+d−1 + 1)(qj+i − 1)
(qn−d+1 + 1)(q2n−j−i − 1)

−
(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
ε(n, d)−1. (5.61)

The second summand is nonnegative, whereas ε(n, d)−1 and

(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1

are negative. Therefore, we obtain

1− ε i,j ≥ 1−
∣∣∣∣∣ (qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1

∣∣∣∣∣ |ε(n, d)−1|.

Using (5.59) and the lower bound from (5.57) gives

1− ε i,j > 1− q + 1
qn+(n−2)(n−j−i−d+1)

≥ 61
64

,

where the last inequality follows from j + i ≤ n− d and n ≥ 4. From (5.61)
we also obtain

1− ε i,j < 1 + (1− ε(n, d)−1)qn−j−i−d+1 (qn+d−1 + 1)(qj+i − 1)
(qn−d+1 + 1)(q2n−j−i − 1)

.

Using the lower bound from (5.57) gives

1− ε i,j < 1 + q−j−i−d+1 (q
n + q + 1)(qn+d−1 + 1)(qj+i − 1)
(qn−d+1 + 1)(q2n−j−i − 1)

.
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By (3.19) and (5.11), we have

1− ε i,j < 1 +
qn + q + 1

q2n−d−j−i+1 .

Since i + j ≤ n− d and n ≥ 4, we obtain

1− ε i,j < 1 +
1
q
+

1
qn +

1
qn+1 ≤

51
32

.

Assume that n ≥ 5 is odd and i + j is even, which implies i + j ≤ n− d− 1.
We have

1− ε i,j = 1− (1− ε(n, d)−1)qn−j−i−d+1 (qn+d−1 − 1)(qj+i − 1)
(qn−d+1 − 1)(q2n−j−i − 1)

−
(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
ε(n, d)−1. (5.62)

Since (qbd−1)n−j−i−d+1/(bn+d)n−j−i−d+1 ≥ 0, we use the bounds from (5.58)
to obtain

1− ε i,j > 1− qn−j−i (qn − 1)(qj+i − 1)
(qn−d+1 − 1)(q2n−j−i − 1)

− 2
q−d+2

(qn−d+1 − 1)
(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
. (5.63)

From (3.19) we find

qn − 1
q2n−j−i − 1

≤ q−n+j+i

qj+i − 1
qn−d+1 − 1

≤ q−n+j+i+d−1,

which implies

1− ε i,j > 1− 1
qn−j−i−d+1 − 2

q−d+2

(qn−d+1 − 1)
(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
.

Using (5.59) gives

1− ε i,j > 1− 1
qn−j−i−d+1 −

2
q(n−2)(n−j−i−d+2)

.

Because of n ≥ 5 and j + i ≤ n− d− 1, we have

1− ε i,j > 1− 1
4
− 1

28 =
191
256

.

In particular, from (5.63) we find similarly

1− ε0,0 > 1− 1
28 =

255
256

.



126 Optimal solution of the linear program

By applying 1− ε(n, d)−1 > 0 and

(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
ε(n, d)−1 > 0

to (5.62), we obtain 1− ε i,j < 1.
Assume now that n is even and i + j is odd, which implies n− d ≥ 2 and

i + j ≥ 1. We have

1− ε i,j = 1− (1− ε(n, d)−1)qn−j−i−d+1 (qn+d−1 + 1)(qj+i + 1)
(qn−d+1 + 1)(q2n+j+i + 1)

−
(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
ε(n, d)−1. (5.64)

Since ε(n, d)−1 < 0 and (qbd−1)n−j−i−d+1/(bn+d)n−j−i−d+1 ≥ 0, the third sum-
mand is nonnegative. Together with the lower bound from (5.57) we obtain

1− ε i,j > 1− q−j−i−d+1 (q
n + q + 1)(qn+d−1 + 1)(qj+i + 1)
(qn−d+1 + 1)(q2n+j+i + 1)

.

By (5.11) we have
qn+d−1 + 1
qn−d+1 + 1

< q2d−2,

which gives us

1− ε i,j > 1− qn + q + 1
q2n+j+i−d

= 1− 1
qn+j+i−d −

1
q2n+j+i−d−1 −

1
q2n+j+i−d .

Because of n− d ≥ 2, n ≥ 4, and i + j ≥ 1, we deduce

1− ε i,j >
109
128

.

The second summand in (5.64) is nonpositive since ε(n, d)−1 < 0. Together
with the lower bound from (5.57), we obtain

1− ε i,j < 1 +
(q + 1)

qn

(qbd−1)n−j−i−d+1

(bn+d)n−j−i−d+1
.

Using (5.59) and i + j ≤ n− d− 1 as well as n ≥ 4 gives

1− ε i,j < 1 +
(q + 1)

qn q−(n−2)(n−j−i−d+1) ≤ 1 +
q + 1
q3n−4 ≤

259
256

,

which completes the proof.

We now show that the inner distribution is nonnegative.

Proposition 5.3.23. For 2 ≤ d ≤ n, all entries of the inner distribution (Ai) given
in Proposition 5.3.19 are nonnegative.
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Proof. Let (Ai) be given in (5.56).
First, assume that d = n. Then n is even and we only have to show that

An ≥ 0. By using (5.46), we have

An =
|Y|
|X|

(bn+1)n

(q)n

(
1− (qbn−1)1

(b2n)1
ε(n, n)−1

)
=

(q)n−1(bn+1)n

(bn+1)n−1(q)n
ε(n, n)− (q)n−1(bn+1)n(qbn−1)1

(bn+1)n−1(q)n(b2n)1

= −(qn + 1)ε(n, n)− 1.

From (5.54) we obtain

An >
qn(qn + 1)

q + 1
− 1 > 0.

Assume now that 2 ≤ d < n. Since 1− ε i,j > 0 for all i, j by Lemma 5.3.22
and the sign of (bn+1)n−j−i/(q)n−j−i is (−1)(n+1)(n−j−i), the sign of ai,j is
(−1)(

j
2)+ij+j. Hence for all i = 0, 1, . . . , n− d, we have sign(ai,2j) = 1 if j ≥ 0

is even and sign(ai,2j+1) = 1 if j + i ≡ 1 (mod 2). In all other cases, we have
sign(ai,j) = −1. Similarly as in the case of odd d, we will show that (ai,j)

satisfies (5.15). Observe that this will prove the nonnegativity of the inner
distribution.

Take i ∈ {0, 1, . . . , n− d}. For all j = 0, 1, . . . , n− d− i− 2, by using (5.12),
we obtain

|a′i,j|
|a′i,j+2|

=
q(

j
2)
∣∣∣[n−i

j ]
b

(bn+1)n−j−i
(q)n−j−i

∣∣∣
q(

j+2
2 )
∣∣∣[n−i

j+2]b
(bn+1)n−j−i−2

(q)n−j−i−2

∣∣∣
≥ q2j+2i−2n+1 |(b2n−j−i−1 − 1)(b2n−j−i − 1)|

|(qbn−j−i−2 − 1)(qbn−j−i−1 − 1)|
.

Applying (5.11) gives
|a′i,j|
|a′i,j+2|

≥ q2j+2i−2n+1 (q2n−j−i−1 − 1)(q2n−j−i + 1)
(qn−j−i−1 + 1)(qn−j−i − 1)

> q2j+2i.

Assume that n ≥ 4. By using Lemma 5.3.22, we deduce

1− ε i,j

1− ε i,j+2
>



31
64 for n and i + j odd
61

102 for n and i + j even
191
256 for odd n and even i + j
218
259 for even n and odd i + j

for all i, j with 0 ≤ i + j ≤ n− d− 2. For all i, j with 1 ≤ i + j ≤ n− d− 2, we
thus obtain

|ai,j|
|ai,j+2|

=
|a′i,j|(1− ε i,j)

|a′i,j+2|(1− ε i,j+2)
> q2i+2j 1− ε i,j

1− ε i,j+2
> 1,
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as wanted. In the case of n ≥ 4, it remains to show that
|ai,0|

|ai,1|+ |ai,2|
≥ 1

for all even i ≥ 0. Thus, let i ≥ 0 be even. We have

|ai,0|
|ai,1|+ |ai,2|

=

∣∣∣ (bn+1)n−i
(q)n−i

∣∣∣ (1− ε i,0)∣∣∣[n−i
1 ]b

(bn+1)n−i−1
(q)n−i−1

∣∣∣ (1− ε i,1) + q
∣∣∣[n−i

2 ]b
(bn+1)n−i−2
(q)n−i−2

∣∣∣ (1− ε i,2)
.

It holds that ∣∣∣∣ (bn+1)n−i−1

(q)n−i−1

∣∣∣∣ = (qn−i + (−1)n)

(q2n−i − 1)

∣∣∣∣ (bn+1)n−i

(q)n−i

∣∣∣∣
and ∣∣∣∣ (bn+1)n−i−2

(q)n−i−2

∣∣∣∣ = (qn−i + (−1)n)(qn−i−1 − (−1)n)

(q2n−i − 1)(q2n−i−1 + 1)

∣∣∣∣ (bn+1)n−i

(q)n−i

∣∣∣∣ .

Combining this with∣∣∣∣[n− i
1

]
b

∣∣∣∣ = qn−i − (−1)n

q + 1∣∣∣∣[n− i
2

]
b

∣∣∣∣ = (qn−i − (−1)n)(qn−i−1 + (−1)n)

(q + 1)(q2 − 1)

gives

|ai,0|
|ai,1|+ |ai,2|

=
1− ε i,0

(q2n−2i−1)
(q+1)(q2n−i−1) (1− ε i,1) +

q(q2n−2i−1)(q2n−2i−2−1)
(q+1)(q2−1)(q2n−i−1)(q2n−i−1+1) (1− ε i,2)

.

Because of (3.19) and i ≥ 0, we obtain
|ai,0|

|ai,1|+ |ai,2|
≥ 1− ε i,0

q−i

(q+1) (1− ε i,1) +
q−2i

(q+1)(q2−1) (1− ε i,2)

>
1− ε i,0

1
3 (1− ε i,1) +

1
18 (1− ε i,2)

.

Using the lower and upper bounds on 1− ε i,j from Lemma 5.3.22 gives

|ai,0|
|ai,1|+ |ai,2|

> 1

for all n ≥ 4 and even i ≥ 0, as required.
It remains to look at n = 3 and d = 2. Because of the sign of a1,0, we

immediately have A2 = |Y|
|X| a1,0 ≥ 0. For the entry A3, we only need to show

|a0,0|/|a0,1| ≥ 1. We have

|a′0,0|
|a′0,1|

=

∣∣∣ (q4)3
(q)3

∣∣∣∣∣∣[31]b (q4)2
(q)2

∣∣∣ = q + 1 ≥ 3.
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We also require bounds on 1 − ε0,0 and 1 − ε0,1. Use the upper bound
from (5.58) to obtain

1− ε0,0 = 1− (q2 + 1)
(q5 + 1)(q3 + 1)

ε(3, 2)−1

≥ 1− 2(q2 + 1)
(q5 + 1)(q3 + 1)(q2 − 1)

≥ 1− 2
q6

≥ 31
32

.

Applying the lower bound from (5.58) gives

1− ε0,1 = 1 + (1− ε(3, 2)−1) q
(q4 − 1)(q + 1)
(q2 − 1)(q5 + 1)

− (q2 + 1)
(q5 + 1)

ε(3, 2)−1

≤ 1 +
(

1− q− 1
q4 − 1

)
q
(q2 + 1)(q + 1)

(q5 + 1)

= 1 +
q2(q3 − 1)

(q− 1)(q5 + 1)

≤ 2.

In summary, we conclude

|a0,0|
|a0,1|

=
|a′0,0|
|a′0,1|

(1− ε0,0)

(1− ε0,1)
> 1.

This completes the proof.

It remains to show that the dual distribution is nonnegative.

Proposition 5.3.24. For 2 ≤ d ≤ n, all entries of the dual distribution (A′k) given
in Proposition 5.3.20 are nonnegative.

Proof. Let (A′k) be given in Proposition 5.3.20. We first show that A′1 ≥ 0 for
2 ≤ d ≤ n. The sign of (q)d−1/(bn)d−1 is (−1)n and from (5.47), we thus find

A′1 = |X|q−d+1
∣∣∣∣ (q)d−1

(bn)d−1

∣∣∣∣ (qn − (−1)n)

(qn−d+1 + (−1)n)
((−1)n − (−1)nε(n, d)).

From Lemma 5.3.21, we see that ε(n, d) ≥ 1 for odd n and ε(n, d) < 0 for
even n. Thus, we have (−1)n− (−1)nε(n, d) ≥ 0 implying A′1 ≥ 0, as required.
Observe that we can now consider d ≥ 4 since for d = 2, we only need to show
A′1 ≥ 0.

Set bk,j = b′k,j(1− δk,j) with δk,j as in (5.52) and

b′k,j = b(
j
2)−nj (b

−n−1−k)n−k−j

(−b−n)n−k−j

[
n− k

j

]
b
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for all k = 0, 1, . . . , d− 3 and j = 0, 1, . . . , d− k− 3, so that

A′n−k = ck

d−k−3

∑
j=0

bk,j

as in (5.51). Since the sign of (qbk)n−k/(−b−n)n−k is (−1)(
n−k

2 )+(n−k)(k+1), we
obtain ck ≥ 0. Hence, we need to show that ∑d−k−3

j=0 bk,j ≥ 0. Observe that
this will follow from proving that (bk,j) satisfies (5.15). The proof is split into
some intermediate results, starting with bounds for |δk,j|.

Claim 1. For all q ≥ 2 and n ≥ 8, we have

|δk,j| ≤

0.0032 if 0 ≤ k + j ≤ d− 4,

0.05 if k + j = d− 3.

For all q ≥ 4 and n ≥ 4, we have

|δk,j| ≤

0.014 if 0 ≤ k + j ≤ d− 4,

0.095 if k + j = d− 3.

Proof of Claim 1. For 0 ≤ k + j ≤ d− 3, we have

|δk,j| ≤ |ε(n, d)|
∣∣∣∣∣ (qbk+j)d−k−j−1

(bn+k+j+1)d−k−j−1

∣∣∣∣∣
+ (1 + |ε(n, d)|)qk+j−d+1 (q

n−k−j + 1)
(qn−d+1 − 1)

∣∣∣∣∣ (qbk+j)d−k−j−1

(bn+k+j)d−k−j−1

∣∣∣∣∣ .

Using |ε(n, d)| ≤ (qn+d−1 + 1)/(qd−1 − 1) from Lemma 5.3.21 gives

|δk,j| ≤
(qn+d−1 + 1)
(qd−1 − 1)

∣∣∣∣∣ (qbk+j)d−k−j−1

(bn+k+j+1)d−k−j−1

∣∣∣∣∣
+ qk+j (qn + 1)(qn−k−j + 1)

(qd−1 − 1)(qn−d+1 − 1)

∣∣∣∣∣ (qbk+j)d−k−j−1

(bn+k+j)d−k−j−1

∣∣∣∣∣ . (5.65)

For m ∈ {n, n + 1}, by using (3.20) and (5.28), we find∣∣∣∣∣ (qbk+j)d−k−j−1

(bm+k+j)d−k−j−1

∣∣∣∣∣ ≤ d−k−j−2

∏
`=0

qk+j+1+` + 1
qm+k+j+` − 1

≤ 10q−(m−1)(d−k−j−1).

This gives us

|δk,j| ≤ 10q−n(d−k−j−1) qn+d−1 + 1
qd−1 − 1

+ 10qk+j−(n−1)(d−k−j−1) (qn + 1)(qn−k−j + 1)
(qd−1 − 1)(qn−d+1 − 1)

,
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which becomes

|δk,j| ≤ 10q−n(d−k−j−2) 1 + q−n−d+1

1− q−d+1

+ 10q−(n−1)(d−k−j−2)+1 (1 + q−n)(1 + q−n+k+j)

(1− q−d+1)(1− q−n+d−1)
.

For all n ≥ 8, q ≥ 2, and 0 ≤ k + j ≤ d− 4, we obtain |δk,j| ≤ 0.0032. For all
n ≥ 4, q ≥ 4, and 0 ≤ k + j ≤ d− 4, we obtain |δk,j| ≤ 0.014. In the case of
k + j = d− 3, we find from (5.65) that

|δk,j| ≤
qd−2 + 1

qn+d−2 − 1
+ qd−3 (qn + 1)(qn−d+3 + 1)(qd−2 + 1)

(qn−d+1 − 1)(qn+d−3 − 1)(qn+d−2 + 1)

≤ q−n 1 + q−d+2

1− q−n−d+2 + q−n+2 (1 + q−n)(1 + q−n+d−3)(1 + q−d+2)

(1− q−n+d−1)(1− q−n−d+3)

For all n ≥ 8 and q ≥ 2, we obtain |δk,j| ≤ 0.05, and for all n ≥ 4 and q ≥ 4,
we obtain |δk,j| ≤ 0.095. This completes the proof of Claim 1.

Claim 2. For all q ≥ 2, n ≥ 4, k = 0, 1, . . . , d− 3, and j = 0, 1, . . . , d− k− 3,
we have

|b′k,j|
|b′k,j+2|

≥ q2j+2k+1 1− q−2k−j−2

1 + q−k−j−1 .

Proof of Claim 2. Using the definition of the q-Pochhammer symbol, we see
that

|b′k,j|
|b′k,j+2|

=

∣∣∣∣∣∣
b(

j
2)−nj[n−k

j ]
b
(1− b−2k−j−3)(1− b−2k−j−2)

b(
j+2

2 )−n(j+2)[n−k
j+2 ]b

(1 + b−k−j−2)(1 + b−k−j−1)

∣∣∣∣∣∣ .

Applying (5.12) gives

|b′k,j|
|b′k,j+2|

≥ q2j+2k+1 (1 + q−2k−j−3)(1− q−2k−j−2)

(1− q−k−j−2)(1 + q−k−j−1)
≥ q2j+2k+1 1− q−2k−j−2

1 + q−k−j−1 ,

as wanted.

Claim 3. For all q ≥ 2 and n ≥ 8, we have |bk,0|/|bk,1| ≥ 2 for all k ≥ 1. For
all q ≥ 4 and n ≥ 4, we have |bk,0|/|bk,1| ≥ 2 for all k ≥ 0.
Proof of Claim 3. By using the definition of the q-Pochhammer symbol, we have

|b′k,0|
|b′k,1|

=

∣∣∣∣∣ 1− b−2k−2

b−n(1 + b−k−1)[n−k
1 ]b

∣∣∣∣∣ = (1− q−2k−2)(q + 1)
q−n(1 + q−k−1)(qn−k + 1)

.

For q ≥ 2, n ≥ 8, and k ≥ 1, we have

|b′k,0|
|b′k,1|

≥ (1− q−4)(q + 1)
q−n(1 + q−2)(qn−1 + 1)

≥ 128
43

.



132 Optimal solution of the linear program

For q ≥ 4, n ≥ 4, and k ≥ 0, we obtain

|b′k,0|
|b′k,1|

≥ (1− q−2)(q + 1)
q−n(1 + q−2)(qn + 1)

≥ 960
257

.

Together with Claim 1, this proves Claim 3.

Claim 4. The sign of bk,j is (−1)(
j
2)+kj+j for all j, k ≥ 0 if q ≥ 2 and n ≥ 8, or if

q ≥ 4 and n ≥ 4.
Proof of Claim 4. This follows from Claim 1, which gives 1− δk,j ≥ 0, and from

(b−n−1−k)n−k−j

(−b−n)n−k−j
≥ 0.

We now combine the results from the previous claims to show that bk,j

satisfies (5.15). Assume that q ≥ 2 and n ≥ 8, or that q ≥ 4 and n ≥ 4.
Because of Claim 4, we then have

bk,2j

|bk,2j+2|
=
|bk,2j|
|bk,2j+2|

for all k ≥ 0 and even j ≥ 0

and
bk,2j+1

|bk,2j+3|
=
|bk,2j+1|
|bk,2j+3|

for all k, j ≥ 0 with k + j ≡ 1 (mod 2).

We can thus look at |bk,j|/|bk,j+2|. Claim 1 and 2 imply

|bk,j|
|bk,j+2|

≥
|b′k,j|
|b′k,j+2|

(1− |δk,j|)
(1 + |δk,j+2|)

≥ 2

for all k, j ≥ 0 if q ≥ 4, n ≥ 4, or for all k, j ≥ 0 with k + j 6= 0 if q ≥ 2, n ≥ 8,
which also gives

|bk,0|
|bk,1|+ |bk,2|

≥ 1

in the respective cases by using Claim 3.
It remains to look at q ≥ 2, n ≥ 8, and k = j = 0, that is

|b0,0|
|b0,1|+ |b0,2|

.

Using the definition of the q-Pochhammer symbol, we see that

|b0,0|
|b0,1|+ |b0,2|

=
1− δ0,0

q−n (1−q−1)
(1−q−2)

∣∣[n1]b∣∣ (1− δ0,1) + q1−2n (1−q−1)(1+q−2)
(1−q−2)(1+q−3)

∣∣[n2]b∣∣ (1− δ0,2)

≥ 1− δ0,0

q−n 1
(1−q−2)

∣∣[n1]b∣∣ (1− δ0,1) + q1−2n (1+q−2)
(1−q−2)

∣∣[n2]b∣∣ (1− δ0,2)
.
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By applying∣∣∣∣[n
1

]
b

∣∣∣∣ ≤ qn + 1
q + 1

and
∣∣∣∣[n

2

]
b

∣∣∣∣ ≤ (qn − 1)(qn−1 + 1)
(q + 1)(q2 − 1)

,

we find
|b0,0|

|b0,1|+ |b0,2|
≥ 1− δ0,0

(1+q−n)
(1−q−2)(q+1) (1− δ0,1) +

(1+q−2)(1+q−n+1)
(1−q−2)(q+1)(q2−1) (1− δ0,2)

.

By using q ≥ 2 and Claim 1, this becomes

|b0,0|
|b0,1|+ |b0,2|

≥ 1− |δ0,0|
257
576 (1 + |δ0,1|) + 215

1152 (1 + |δ2,2|)
≥ 1,

as wanted.
For the remaining cases with q ∈ {2, 3}, n ∈ {4, 5, 6, 7}, and d ∈ {4, . . . , n},

the dual distribution is nonnegative as well, which was checked with a com-
puter. This concludes the proof.

Combining Proposition 5.3.23 and 5.3.24 proves Proposition 5.3.18.

5.4 Open problems

We close this chapter by giving a list of open problems related to the LP
optimum in classical association schemes.

Problem 5.4.1. Prove Conjecture 5.1.4 concerning the LP optimum in Dn for odd d
and odd n.

Problem 5.4.2. Determine the LP optimum for d-codes in a polar space P of rank n if

(a) P = Bn or Cn and d is even

(b) P = D2
n+1

(c) P = A2
2n

Numerical computations of the LP optimum for small values of q, n, and d
suggest that the LP optimum is strictly smaller than the bound of Corol-
lary 3.2.4 in the cases (a)–(c).

Problem 5.4.3. Determine the LP optimum for d-codes in the symmetric bilinear
forms scheme Symq(n) if q is odd and n and d are even or if q is even and d is even.

This problem goes back to a conjecture given in [Sch15, p. 647]. A d-code Y in
Symq(n) is a set of symmetric n× n matrices overFq such that rank(x− y) ≥ d
for all distinct x, y ∈ Y. In [Sch15], the case q odd was studied and sharp
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bounds were proved for d-codes with odd d, which were obtained by using
linear programming and are thus exactly the LP optimum. Moreover, it was
conjectured in [Sch15] that the LP optimum for even n and even d is given by

q(n+1)(n−d+2)/2 1 + q−n+d−1

q + 1
.

For odd n and even d, a bound was also determined in [Sch15], but it is
unknown so far what the LP optimum might look like. In [Sch10], the case q
even was treated and sharp bounds were obtained for odd d by using linear
programming as well. Thus, the LP optimum is also known for odd d and
even q. But the LP optimum for even d and even q is unknown.

Problem 5.4.4. Determine the LP optimum in the Hamming scheme H(n, q) and
the Johnson scheme J(n, m).

It was stated in [Del73, p. 55] that the LP optimum in H(n, q) is precisely
the Singleton bound (2.25) if q ≥ max{d, n − d + 2}. Otherwise, it is still
unknown what the LP optimum in H(n, q) looks like. The case q = 2 for the
Hamming scheme is the most important and challenging problem concerning
the LP optimum in classical association schemes. Here, one also looks at
the asymptotic behavior of the maximal number A(n, d) of elements in a
d-code in H(n, 2), when n → ∞ and 0 ≤ d/n ≤ 1. A comparison of this
asymptotic behavior for various bounds in the binary Hamming scheme is
given in Figure 5.1, where the Gilbert-Varshamov bound (GV bound) is a
lower bound and the others are all upper bounds. In Figure 5.1, we used
a weaker version of the McEliece-Rodemich-Rumsey-Welch bound (MRRW
bound), which equals its stronger version for δ > 0.273 and we note that for
δ ≤ 0.273, the Elias bound is not as good as the stronger version of the MRRW
bound [McE+77], see also [MS77, § 17] or [Lin99, § 5] for an overview of the
bounds occurring in Figure 5.1. It is known that the asymptotic version of
the LP optimum strictly exceeds the GV bound and is at least as large as the
arithmetic mean of the weaker MRRW bound and the GV bound, see the gray
area in Figure 5.1. It was conjectured in [Sam01] that this arithmetic mean
of the weaker MRRW bound and the GV bound is precisely the LP optimum.
However, it was pointed out in [BJ01] that this conjecture might be false and
that the stronger MRRW bound might be the asymptotic LP optimum.

Similarly, for the Johnson scheme, there exists a GV bound and an MRRW
bound for binary constant-weight codes and the asymptotic version of the LP
optimum is as large as the arithmetic mean of the MRRW bound and the GV
bound [Sam01].
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Figure 5.1. A comparison of the asymptotic bounds for codes in the binary
Hamming scheme, where a(δ) = lim sup

n→∞
n−1 log2 A(n, dδne) for 0 ≤ δ ≤ 1/2.

Problem 5.4.5. Is there a combinatorial proof for the Singleton bound for Herq(n)
and Altq(m)?

In the case of Bilq(n, m), there exists a combinatorial proof for the Singleton
bound (1.1). Presently, it is unknownwhether the Singleton bound for Herq(n)
and Altq(m) can be proved purely combinatorially. This problem is similar
to Problem 3.4.1.
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Chapter 6

Summary

The most notable results of this thesis are briefly summarized below in a
simplified version. (See Table A.1 for the notation of the association schemes.)
Open problems related to the investigated topics can be found in Section 3.4,
4.3, and 5.4, which pose future research directions.

(R1) In Theorem 3.2.1 on p. 54, a bound for codes in Jq(n, m), A2
2n−1, and

1
2 Dm was derived in a unified way, where in the case of Jq(n, m), it is the
well-known bound from [WXS03], showing that there exists a bound
of a similar form for A2

2n−1 and 1
2 Dm as for Jq(n, m). The proof of Theo-

rem 3.2.1 relies on the fact that the P- and Q-numbers of Jq(n, m), A2
2n−1,

and 1
2 Dm can be written in a similar way as dual q-Hahn polynomials

and q-Hahn polynomials, where we used the second ordering of the
primitive idempotents in the case of A2

2n−1.

(R2) In Corollary 3.2.4 on p. 60, we applied the bounds for codes in A2
2n−1

and 1
2 Dn from (R1) to derive bounds for codes in all the remaining polar

spaces Bn, Cn, Dn, A2
2n, and D2

n+1.

(R3) In Section 3.3, we constructed codes in all polar spaces by “lifting” known
codes in the alternating bilinear, Hermitian, and symmetric bilinear
forms schemes. Moreover, we proved that the constructed codes reach
the respective bound obtained in (R1) and (R2) up to a constant factor
for A2

2n−1 with odd d; Cn with odd d; Bn with odd d and even q; and Dn

except possibly for even n and odd q; whereas in the remaining cases for
all polar spaces, the bounds are met up to a small power of qn.

(R4) In Proposition 4.2.1, we computed the inner distribution of Steiner sys-
tems in polar spaces.

(R5) In Theorem 4.1.1 on p. 68, we provided an almost complete classification
of nontrivial Steiner systems in polar spaces; namely for 1 < t < n, if
a t-Steiner system in a polar space of rank n exists, then we are in Dn

137
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with t = n− 1 (and in this case, it is one of the bipartite halves 1
2 Dn) or

possibly in A2
2n or D2

n+1 with t = n− 1 and q ≥ 3, or in A2
2n or D2

n+1

with odd n and q ≥ 2. We moreover posed Conjecture 4.1.2 on p. 69
stating that t-Steiner systems with 1 < t < n can only exist in Dn for
t = n− 1.

(R6) Theorem 5.1.1 on p. 82 contains the optimum of the linear program for
codes in Jq(n, m), 1

2 Dm, and A2
2n−1 as well as for their affine counterparts

Bilq(n, m), Altq(m), and Herq(n). In the last three cases, the optimum
was basically known except for Altq(m) with even m and odd q and for
Herq(n)with even d. We gave a proof for all parameters. It is remarkable
that the optimum in Jq(n, m), 1

2 Dm, and A2
2n−1 has a similar form as the

optimum in their affine counterpart. Moreover, we derived the optimum
for d-codes in Dn if d is even and in Bn and Cn if d is odd. The optimum
for Jq(n, m) is precisely the bound from [WXS03] and the optima for
1
2 Dm, A2

2n−1, Dn, Bn, and Cn are precisely the bounds obtained in (R1)
and (R2). Additionally, we posed Conjecture 5.1.4 stating the optimum
in Dn if d and n are odd.



Appendix A

List of classical association
schemes

This chapter contains a tabular overview of the studied classical association
schemes.
Table A.1. Summary of the studied classical association schemes divided into
three categories: (a) basic, (b) ordinary q-analog, and (c) affine q-analog,
together with their type and group.

association scheme type group

Johnson scheme J(n, m) Am+n−1 Sm+n

(a) Hamming scheme H(n, q) Bn or Cn Sn
q o Sn

bipartite half 1
2 H(n, 2) of H(n, 2) Dn Sn−1

2 o Sn

q-Johnson scheme Jq(n, m) Am+n−1 GLm+n(q)

parabolic polar space scheme Bn SO2n+1(q)

symplectic polar space scheme Cn Sp2n(q)

(b) elliptic polar space scheme D2
n+1 SO−2n+2(q)

Hermitian polar space schemes A2
m SUm(q2)

hyperbolic polar space scheme Dn O+
2n(q)

bipartite half 1
2 Dn of Dn Dn SO+

2n(q)

bilinear forms scheme Bilq(n, m) Am+n−1 X o (GLm(q)×GLn(q))

(c) Hermitian forms scheme Herq(n) A2
m X o GLn(q2)

alternating bilinear
forms scheme Altq(m)

Dn X o GLm(q)
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schem
es

Table A.2. Classical association schemes and their orthogonal polynomials fi(z) of degree i evaluated at yk such that Pi(k) = vi fi(yk).

association
scheme

polynomial fi(yk) vi

H(n, q) Krawtchouk 2F1

 −i,−k

−n

∣∣∣∣∣∣ q
q− 1

 (q− 1)i
(

n
i

)

J(n, m) dual Hahn 3F2

 −i,−k, k−m− n− 1

−m,−n

∣∣∣∣∣∣ 1

 (
n
i

)(
m
i

)

1
2 H(n, 2) dual Hahn 3F2

 −i,−k, k− n

− n
2 , −n+1

2

∣∣∣∣∣∣ 1

 (
n
2i

)

Bn, Cn, Dn,
D2

n+1, A2
2n−1, A2

2n

q-Krawtchouk 3φ2

 p−k, p−i,−p−n−e−1+k

0, p−n

∣∣∣∣∣∣ p; p

 p(
i+1

2 )+ie
[

n
i

]
p

Jq(n, m) dual q-Hahn 3φ2

 q−i, q−k, qk−m−n−1

q−m, q−n

∣∣∣∣∣∣ q; q

 qi2
[

n
i

]
q

[
m
i

]
q
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1
2 Dm dual q-Hahn 3φ2

 q−2i, q−2k, q−2m+2k

q−m, q−m+1

∣∣∣∣∣∣ q2; q2

 q(
2i
2 )

[
m
2i

]
q

A2
2n−1

(2nd ordering)
dual q-Hahn 3φ2

 (−q)−i, (−q)−k, (−q)−2n+k−1

(−q)−n,−(−q)−n

∣∣∣∣∣∣−q;−q

 qi2
[

n
i

]
q2

Bilq(n, m)
affine

q-Krawtchouk 3φ2

 q−k, q−i, 0

q−m, q−n

∣∣∣∣∣∣ q; q

 q(
i
2)

[
n
i

]
q

i−1

∏
j=0

(qm−j − 1)

Altq(m)
affine

q-Krawtchouk 3φ2

 q−2k, q−2i, 0

q−m, q−m+1

∣∣∣∣∣∣ q2; q2

 qi2−i
[
bm/2c

i

]
q2

i−1

∏
j=0

(q2dm/2e−2j−1 − 1)

Herq(n)
affine

q-Krawtchouk 3φ2

 (−q)−k, (−q)−i, 0

(−q)−n,−(−q)−n

∣∣∣∣∣∣−q;−q

 (−q)(
i
2)

[
n
i

]
−q

i−1

∏
j=0

(−(−q)n−j − 1)
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schem
es

Table A.4. Classical association schemes and their orthogonal polynomials gk(z) of degree k evaluated at zk such that Qk(i) = µkgk(zi).

association
scheme

polynomial gk(zi) µk

H(n, q) Krawtchouk 2F1

 −i,−k

−n

∣∣∣∣∣∣ q
q−1

 (q− 1)k
(

n
k

)

J(n, m) Hahn 3F2

 −i,−k, k− v− 1

−v + n,−n

∣∣∣∣∣∣ 1

 (
m + n

k

)
−
(

m + n
k− 1

)

1
2 H(n, 2) Hahn 3F2

 −i,−k, k− n

− n
2 , −n+1

2

∣∣∣∣∣∣ 1

 (
n
k

)

Bn, Cn, Dn,
D2

n+1, A2
2n−1, A2

2n

q-Krawtchouk 3φ2

 p−k, p−i,−p−n−e−1+k

0, p−n

∣∣∣∣∣∣ p; p

 pk(k−n)
[

n
k

]
p

(−pe+1; p)n

(−pe−k+1; p)n−k(−pn−k−e−1; p)k

Jq(n, m) q-Hahn 3φ2

 q−i, q−k, qk−m−n−1

q−m, q−n

∣∣∣∣∣∣ q; q

 [
m + n

k

]
q
−
[

m + n
k− 1

]
q
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1
2 Dm q-Hahn 3φ2

 q−2i, q−2k, q−2m+2k

q−m, q−m+1

∣∣∣∣∣∣ q2; q2

 qk(k−m)

[
m
k

]
q

(−1; q)m

(−q−k; q)m−k(−qm−k; q)k

A2
2n−1

(2nd ordering)
q-Hahn 3φ2

 (−q)−i, (−q)−k, (−q)−2n+k−1

(−q)−n,−(−q)−n

∣∣∣∣∣∣−q;−q

 µk/2 or µn−(k−1)/2 from
the natural ordering

Bilq(n, m)
affine

q-Krawtchouk 3φ2

 q−k, q−i, 0

q−m, q−n

∣∣∣∣∣∣ q; q

 q(
k
2)

[
n
k

]
q

k−1

∏
j=0

(qm−j − 1)

Altq(m)
affine

q-Krawtchouk 3φ2

 q−2k, q−2i, 0

q−m, q−m+1

∣∣∣∣∣∣ q2; q2

 qk2−k
[
bm/2c

k

]
q2

k−1

∏
j=0

(q2dm/2e−2j−1 − 1)

Herq(n)
affine

q-Krawtchouk 3φ2

 (−q)−k, (−q)−i, 0

(−q)−n,−(−q)−n

∣∣∣∣∣∣−q;−q

 (−q)(
k
2)

[
n
k

]
−q

k−1

∏
j=0

(−(−q)n−j − 1)
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