

New Developments of Parametric and Semiparametric Volatility Models with Application to Quantitative Risk Management

Der Fakultät für Wirtschaftswissenschaften der
Universität Paderborn
zur Erlangung des akademischen Grades
Doktor der Wirtschaftswissenschaften
-Doctor rerum politicarum-
vorgelegte Dissertation
von

M.Sc. Sebastian Letmathe

(2022)

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Dr. Yuanhua Feng for constant support throughout my doctoral studies. Interesting discussions, his willingness to approach current research areas and his contributions propelled my motivation. Special thanks go to all co-authors, namely Prof. Dr. Jan Beran, Dr. Sucharita Ghosh, Prof. Dr. Thomas Gries and Prof. Dr. André Uhde, that I had the pleasure to work with within the scope of my research.

I would also like to express my sincere gratitudes to my colleagues Mr. Dominik Schulz, Dr. Bastian Schäfer, Dr. Xuehai Zhang, Dr. Sarah Forstinger and Dr. Christian Peitz for their help and encouragement.

Moreover, I really appreciate that Prof. Dr. Bernard Michael Gilroy, Prof. Dr. Matthias Pelster and Prof. Dr. André Uhde agreed to participate as members of my doctoral committee.

I am very grateful for the financial support of the *Deutsche Forschungsgemeinschaft* within the first three years of my doctoral studies.

Last but not least, I would like to thank my lovely wife Shujie, my son Lennart, my parents, my grand parents as well as all my friends from Gelnhausen and Paderborn for their unconditional love and guidance throughout my life.

Abstract

The underlying methodology of this thesis is based on the decomposition of a time series into a deterministic and stochastic component, where the latter is assumed to follow well-known time series models from the ARMA- as well as GARCH-class and the former is a non-negative slowly varying function, which can be estimated via a nonparametric smoothing method. A time series composed as described before is at best locally stationary. Hence, fitting a parametric model directly to such a series is in fact a misspecification. As a remedy, the deterministic trend or scale function has to be estimated and removed beforehand from the data, in order to fit a parametric model to the approximately stationary residuals. In this thesis local polynomial and penalised spline regression are employed for the estimation of the deterministic component. Various iterative plug-in algorithms are proposed for smoothing parameter selection and are implemented in R-packages, namely *smoots*, *esemifar* and *ufRisk*. All these packages are publicly available on *CRAN*. The wide applicability of these packages is illustrated with real data examples and the performance of the algorithms is validated within the scope of thorough simulation studies.

One of the major contributions of this thesis is the development and application of a new parametric time series model with long memory, namely the FI-Log-GARCH and various semiparametric extensions of this model as well as of other well-known time series models with short- and long memory. The FI-Log-GARCH is a fractional extension of the Log-GARCH. Theoretical properties such as necessary and sufficient conditions for stationary solutions, existence of finite fourth moments, explicit expression for the autocorrelation and central limit theorem for the sample mean are derived. Moreover, the FI-Log-GARCH is applied to forecast Value at Risk (VaR) and Expected Shortfall (ES) for various return series and is compared to conventional long memory GARCH models. All models are benchmarked via traffic light tests for both, VaR and ES, as well as via a newly developed model selection criterion. Our results show that the FI-Log-GARCH outperforms the other models in most cases. Subsequently, the semiparametric extension of the FI-Log-GARCH, namely the SEMI-FI-Log-GARCH, is proposed. Analogously, the latter and other semiparametric extensions of conventional long memory GARCH models are employed to model VaR and ES. Their performance is tested in a comprehensive comparative study where each model is applied to 20 different return series of major stock indices. Estimation of the scale function is carried out by means of a modified version of the SEMIFAR-algorithm, which is implemented in the R-package *esemifar*.

Our results indicate that Semi-LM-GARCH approaches are a meaningful substitute of parametric LM-GARCH models.

Besides local polynomial regression, another nonparametric smoothing method, namely penalised spline regression, gained more attention during the last decades due to advancing technology and especially to the upcoming complexity and scale of Big Data. So far the application of penalised splines has mainly occurred in the field of natural sciences and has rarely been applied in the context of empirical economic and financial research. An automatic iterative plug-in algorithm for uncorrelated data is proposed, which is based on an asymptotic approximation of the mean averaged squared error (MASE). Our proposal is tested in a comprehensive simulation study. Its application to real data examples shows that our proposal works very well in practice. Penalised spline regression under stationary time series errors is still a very unexplored field of research. Therefore, a newly developed iterative plug-in algorithm for correlated data is investigated in another thorough simulation study. It is found that the IPI performs very well even in scenarios where the underlying time series is composed of a complex deterministic trend and strong serial correlation in the stochastic component. In addition to that, the IPI is applied to economic time series data and benchmarked against conventional parametric and nonparametric smoothing methods such as simple cubic regression, local cubic regression as well as the Hodrick-Prescott (HP) filter, in order to exemplify its practical relevance. Under certain conditions the HP filter is equivalent to a penalised spline. In this context, it is illustrated that the IPI for penalised splines may provide an attractive approach to obtain a data-driven estimate for the smoothing parameter of the HP filter. Furthermore, a penalised spline Log-ACD model is proposed, which is a special case of the ESEMIFAR model without long memory, and which is applied to daily average trade durations. It is observed that the IPI works very well in this context, too.

Contents

List of Figures	IV
List of Tables	VI
Chapter 1 Introduction	1
1.1 Non- and Semiparametric regression for time series	1
1.2 Modelling volatility	7
1.3 Summary of contents	9
Chapter 2 The <i>smoots</i> Package in R	12
2.1 Introduction	12
2.2 Local polynomial regression for time series	14
2.3 The proposed IPI-algorithms	16
2.3.1 Data-driven estimation of c_f	16
2.3.2 The IPI-algorithm for estimating m	17
2.3.3 Data-driven estimation of m' and m''	18
2.4 Practical implementation in R	18
2.5 Simple application of <i>smoots</i>	21
2.5.1 Direct application of the Semi-ARMA	21
2.5.2 A semiparametric log-local-linear growth model	22
2.6 The Semi-Log-GARCH model	24
2.7 The Semi-Log-ACD model	29
2.8 Concluding remarks	32
Chapter 3 An Extended Exponential SEMIFAR Model	33
3.1 Introduction	33
3.2 Smoothing long memory time series	34
3.2.1 The (E)FARIMA and (E)SEMIFAR	35
3.2.2 Local polynomial regression for long memory time series	36
3.2.3 The IPI-algorithm for estimating g	37
3.2.4 Data-driven estimation of g' and g''	38
3.3 Implementation in R	38
3.4 Application of the SEMIFAR and ESEMIFAR	40
3.4.1 Application to environmental data	40
3.4.2 Application to GDP data	42
3.5 Application to financial data	43
3.6 Concluding remarks	45

Chapter 4 Fractionally Integrated Log-GARCH	46
4.1 Introduction	46
4.2 Basic properties and stationary solutions	49
4.3 Covariance structures	55
4.4 Asymptotic properties of sample means	59
4.5 Practical implementation	60
4.5.1 Estimation via the Log-FARIMA approach	60
4.5.2 Practical implementation	61
4.5.3 Prediction and rolling forecasts	62
4.6 Application to VaR and ES	63
4.6.1 Calculating VaR and ES under a conditional t -distribution	63
4.6.2 Backtesting and model selection	64
4.7 An empirical comparative study	65
4.7.1 Fitted models and practical performance of the FIL	66
4.7.2 A comparative study: Rolling forecasting of VaR and ES	67
4.8 Concluding remarks	68
Chapter 5 Semiparametric GARCH Models with Long Memory	81
5.1 Introduction	81
5.2 Modelling long memory in volatility	84
5.2.1 GARCH models with long memory	84
5.2.2 The FI-Log-GARCH model	85
5.3 Semiparametric extension of the FI-Log-GARCH	86
5.3.1 The Semi-FI-Log-GARCH model	86
5.3.2 Other Semi-LM-GARCH models	87
5.3.3 Related approaches	88
5.4 Estimation and practical implementation	89
5.4.1 Local polynomial smoothing	89
5.4.2 A plug-in algorithm for SEMIFARIMA models	91
5.4.3 Rolling one-step ahead forecasts	92
5.5 Application to VaR and ES	93
5.5.1 One-day ahead forecasts of VaR and ES	93
5.5.2 Backtesting VaR and ES	94
5.6 Empirical results	95
5.6.1 Fitted model parameters	96
5.6.2 Backtesting results	97
5.7 Conclusion	99
Chapter 6 An Iterative Plug-In for P-Spline Regression	107
6.1 Introduction	107
6.2 The model and asymptotics	109
6.2.1 Penalised spline estimation of the trend	109
6.2.2 Asymptotic properties	110
6.3 The proposed iterative plug-in algorithms	111
6.4 A simulation study	112

6.4.1	Design of the simulation study	113
6.4.2	Simulation results	113
6.4.3	Knot selection	115
6.5	Application	115
6.6	Final remarks	117
Chapter 7	Data-Driven P-Splines	137
7.1	Introduction	137
7.2	Model specification and related asymptotics	139
7.2.1	The penalised spline estimator	139
7.2.2	Asymptotic approximation	140
7.3	IPI-algorithm for correlated data	141
7.3.1	Estimating c_f	142
7.3.2	IPI-algorithm for selecting λ	143
7.4	Simulation analysis	143
7.4.1	Simulation setup	144
7.4.2	Simulation results	145
7.5	Application with real data examples	145
7.5.1	Data-driven Hodrick-Prescott filter	146
7.5.2	The penalised spline Log-ACD model	148
7.6	Conclusion	149
Chapter 8	Concluding Remarks	159
Bibliography		162

List of Figures

1.1	White Noise errors and trend function	2
1.2	Estimated trends obtained with different bandwidths	5
2.1	Estimated trend, residuals and the trend's derivatives for the NHTM series	23
2.2	Estimation results for the log-quarterly US-GDP series.	25
2.3	Results of the Semi-Log-GARCH model for DAX returns.	29
2.4	smoots applied to VIX, 1990 - July 2019.	31
3.1	Estimated trend, residuals and the trend's derivatives for the NHTM series	41
3.2	Estimated trend, residuals and the trend's derivatives for the AQI series	42
3.3	Estimated trend, residuals and the trend's derivatives for the G7-GDP series	43
3.4	Estimation results of the ESEMIFAR for the SP500 series.	44
B4.1	MA-coefficients and acfs for the FI-LOG-GARCH models of S&P and DAX	79
B4.2	VaR and ES estimates with order (1, d , 1) for DAX 01.88-03.19	80
5.1	VaR one-step ahead forecasts at 97.5% and 99% for DJI	99
A6.1	Case 31 - Simulated data and true trend functions.	120
A6.2	Case 32 - Simulated data and true trend functions.	121
A6.3	Case 31 - MASE	122
A6.4	Case 32 - MASE	123
A6.5	Boxplots for IPI_A with $\sigma_{\epsilon,2}^2$	124
A6.6	Boxplots for IPI_B with $\sigma_{\epsilon,2}^2$	125
A6.7	Case 12 - φ_λ and φ_{MASE}	126
A6.8	LIDAR data set, California test score data set and SOEP data	127
A6.9	Case 11 - MASE	128
A6.10	Case 12 - MASE	129
A6.11	Case 21 - MASE	130
A6.12	Case 22 - MASE	131
A6.13	Case 11 - φ_λ and φ_{MASE}	132
A6.14	Case 21 - φ_λ and φ_{MASE}	133
A6.15	Case 22 - φ_λ and φ_{MASE}	134
A6.16	Case 31 - φ_λ and φ_{MASE}	135
A6.17	Case 32 - φ_λ and φ_{MASE}	136
7.1	Log-data of US-GPDI	147
7.2	Original data of daily average durations of BMW and LHA	150

A7.1	Simulated data of Class 1 together with true trend functions	154
A7.2	Simulated data of Class 2 together with true trend functions	155
A7.3	Simulated data of Class 3 together with true trend functions	156
A7.4	Class 2 - Estimated Kernel densities of λ_{CS} and λ_{TS}	157
A7.5	Class 3 - Estimated Kernel densities of λ_{CS} and λ_{TS}	158

List of Tables

1.1	Estimates for the long memory parameter	6
B4.1	Estimated parameters for all models and all examples	77
B4.2	Statistics for backtesting VaR and ES, and model selection	78
A5.1	Estimated long memory parameters	101
A5.2	Estimated parameters for all semi-parametric models	102
A5.3	Estimated parameters for all parametric models	103
A5.4	Results for all semi-parametric models	104
A5.5	Results for all parametric models	105
A5.6	WAD-values for all models	106
A6.1	Numerical results for all trend functions and sample sizes with $\sigma_{\epsilon,1}^2$	118
A6.2	Numerical results for all trend functions and sample sizes with $\sigma_{\epsilon,2}^2$	119
A7.1	Simulation results for Case 1	152
A7.2	Simulation results for Case 2	153
A7.3	Simulation results for Case 3	153

Introduction

1.1 Non- and Semiparametric regression for time series

The concept of semiparametric regression stems from the idea of decomposing a time series into a deterministic and stochastic component, where the former is estimated by a nonparametric smoothing technique and the latter via a parametric model (Dagum, 2010). This idea traces back to the astronomy of the seventeenth century. However, Persons (1919) was the first to state explicit assumptions on different components. Persons argued that a time series is composed of a secular trend, cyclical and seasonal movements as well as residual variations. In this thesis the focus lies on the decomposition of a time series into a nonparametric mean function and stationary errors. Let y_t denote a time series with $t = 1, \dots, n$ equidistantly spaced observations. A fixed design nonparametric time series model can then be formulated as

$$y_t = m(\tau_t) + \epsilon_t, \quad (1.1)$$

where $m(\tau_t)$ denotes an at least twice differentiable smooth nonparametric mean function on $[0, 1]$ with $\tau_t = t/n \in (0, 1]$. Note that the standardization of τ_t is required for the consistent (nonparametric) estimation of m . The error process ϵ_t is assumed to be second-order stationary with zero mean, autocovariance function $\gamma_\epsilon(k)$ ($k \in \mathbb{Z}$) and variance $\sigma_\epsilon^2 = \gamma_\epsilon(0)$. We distinguish between three types of dependence structures of ϵ_t , namely (a) i.i.d. (independent and identically distributed), (b) short memory and (c) long memory such that (a) $\sum_{-\infty}^{\infty} \gamma_\epsilon(k) = \sigma_\epsilon$, (b) $0 < \sum_{-\infty}^{\infty} \gamma_\epsilon(k) < \infty$ and (c) $\sum_{-\infty}^{\infty} \gamma_\epsilon(k) = \infty$, respectively. Fitting a nonparametric regression model processes in two parts, i.e. (1.) the estimation of the deterministic and (2.) of the stochastic component. Note that the assumption that

y_t is a stationary process is a misspecification due to the nonparametric mean $m(\cdot)$. For instance, commonly used parametric models that are applied to analyse time series such as the ARIMA (autoregressive integrated moving average) and the FARIMA (fractionally integrated ARIMA, Granger and Joyeux, 1980) are likely to falsely capture deterministic changes in the mean as short- or (and) long-memory, respectively. In order to exemplify this phenomenon, we consider a simulated time series y_t with the trend function $m(\tau_t) = \tanh[6(\tau_t - 0.5)]$ and errors ϵ_t defined as White Noise with zero mean and unit variance (see Figure 1.1). Fitting a FARIMA(0, d , 0) model to the non-stationary series depicted in Figure 1.1, where d stands for the long-memory or fractional differencing parameter, yields $\hat{d} = 0.228$, although $d = 0$. In contrast, if the FARIMA is fitted directly to the (stationary) error process shown in Figure 1.1 (a), we obtain $\hat{d} \approx 0$. Therefore, in order to correctly apply methods like the ARIMA or FARIMA model to analyze trend stationary processes, $m(\cdot)$ has to be estimated and removed beforehand from y_t .

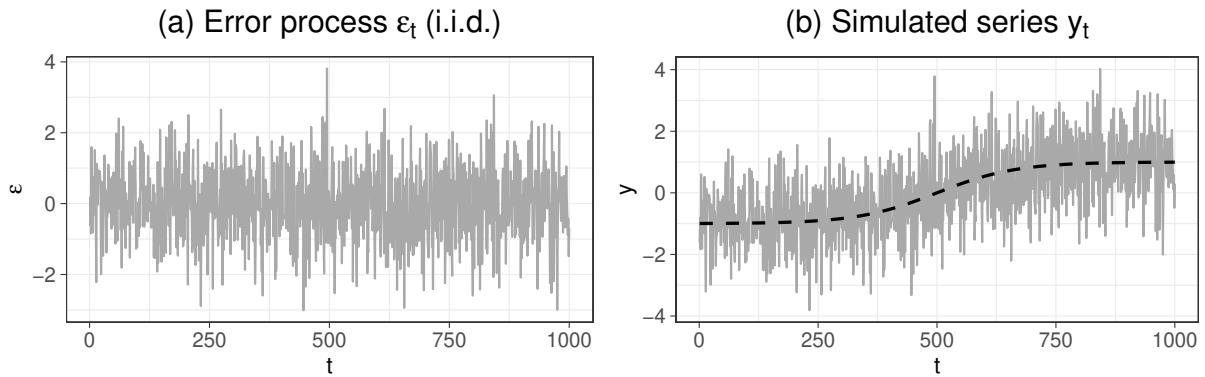


Figure 1.1: (a) - Generated error process ϵ_t modelled as White Noise with $E(\epsilon_t) = 0$ and $\text{var}(\epsilon_t) = 1$. (b) - Simulated series $y_t = m(\tau_t) + \epsilon_t$ with $n = 1000$ observations and true trend function $m(\tau_t) = \tanh[6(\tau_t - 0.5)]$ indicated by the dark-gray and black-dashed lines, respectively.

The deterministic component in model (1.1) can be estimated by a variety of nonparametric regression approaches (see e.g. Heiler, 1999; Fan, 2005, for a summarising overview). However, in this thesis only two modern smoothing techniques are discussed, namely local polynomial and penalised spline regression.

Local polynomial regression can be considered a smoothing technique that combines the local use of some parametric regression model with the moving average. Both methods have a long history, which traces back to the nineteenth century (see Loader, 2006 and Dagum, 2010, for a historical review). The moving average gained more attention not before the mid 1960s, when Nadaraya (1964) and Watson (1964) independently introduced a generalized version of the conventional moving average, namely the kernel estimator.

Similarly, local regression was primarily employed for estimating seasonality in a time series (see e.g Fisher, 1937; Jones, 1943) and Stone (1977) and Cleveland (1979) were the first ones to introduce the concept of local polynomial smoothing. From this point on, local polynomial regression rapidly became a relevant statistical tool. One of the major advantages of this method is that it provides finite sample solutions to bias correction problems which arise in kernel theory (see e.g. Hastie and Loader, 1993; Jones, 1993; Cheng et al., 1997). Moreover, local regression can be approached as an extension of kernel methods as its asymptotic properties are directly derived from results of the latter (see e.g. Wand and Jones, 1995; Fan and Gijbels, 1996). However, theoretical results from the era of the early stages of local polynomial regression, i.e. in the late 1980s and 1990s, were mostly obtained under the assumption that the errors are i.i.d. (independent and identically distributed) or at least uncorrelated random variables (see e.g Ruppert and Wand, 1994; Fan, 1992; Fan and Gijbels, 1992; Fan et al., 1996). Statistical properties of the local polynomial estimator under short range dependence were studied by Fan and Gijbels (1996), Masry and Fan (1997), Masry (1996), Härdle and Tsybakov (1997), Härdle et al. (1998), Vilar-Fernández and Vilar-Fernández (1998), Opsomer et al. (2001) and Francisco-Fernández and Vilar-Fernández (2001). The extension to long-memory errors was the next logical step, as many empirical studies revealed the presence of long-range dependence in various types of time series such as squared returns, trade duration, temperature and air pollution data (see e.g. Ding et al., 1993a; Ding and Granger, 1996; Andersen and Bollerslev, 1997; Andersen et al., 1999; Baillie and Chung, 2002; Cotter, 2005; Beran et al., 2015; Beran, 2017; Gil-Alana et al., 2020). First important theoretical results for kernel estimators with long-memory were obtained by Hall and Hart (1990) (see also Ray and Tsay, 1997) and finally extended to local polynomial regression in Beran and Feng (2002b), Beran and Feng (2002c) and Beran and Feng (2002a). The authors adapted the local polynomial estimator introduced by Stone (1977) and Cleveland (1979) to nonparametric regression with short- or long range dependent as well as antipersistent errors (see also Feng, 2007).

Approximating a function by means of basis functions such as Fourier series, B-splines or truncated polynomials has a very long history. A popular approach that stems from this branch of literature is penalised spline (P-spline) regression. The original idea of P-splines traces back to Parker and Rice (1985) and O'sullivan et al. (1986), who proposed to use a set of basis functions in combination with a penalty term. Following their approach Eilers and Marx (1996) introduced the concept of P-spline regression. This smoothing method has gained more attention during the last decades, as it offers an attractive alternative to conventional nonparametric methods. The smoothness of a P-spline is controlled via a

smoothing parameter. Wand (1999) adapted the direct plug-in (DPI) method proposed by Ruppert et al. (1995) to P-spline regression and provided a closed-form asymptotic approximation for the mean average squared error (MASE), in order to determine the smoothing parameter directly from the data. Based on this approach Letmathe and Feng (2022) developed a fast, simple and reliable method to select the smoothing parameter data-driven. The authors proposed an iterative plug-in (IPI) algorithm (Gasser et al., 1991) for cross sectional data. The properties of the P-spline model with uncorrelated errors were e.g. discussed in Hall and Opsomer (2005), Kauermann (2005), Li and Ruppert (2008), Claeskens et al. (2009) and Wang et al. (2011). However P-splines under stationary time series errors are still very unexplored. Relevant studies in this context were conducted by e.g. Krivobokova and Kauermann (2007) and Feng and Härdle (2020). In the latter study the authors proposed an extension of the IPI for cross sectional data to stationary time series with short memory errors (see also Letmathe, 2022a).

The main challenge in the context of nonparametric and semiparametric regression is the selection of a smoothing parameter or bandwidth, b say, that controls the trade-off between variance and bias of $\hat{m}(\cdot)$ and affects the estimation of the dependence structure of the trend-adjusted residuals, i.e. $\hat{\epsilon}_t = y_t - \hat{m}(\tau_t)$, as well (see e.g. Beran, 2017). Two extreme cases are $b = 0$ and $b = \infty$. The former represents the most complex possibility which results in an estimated trend that is equal to the observations, i.e. $\hat{m} = y_t$ (overfitting) and the latter the most simple case with $\hat{m} \equiv \bar{y}$ (undersmoothing). To exemplify the importance of a suitably chosen smoothing parameter a local polynomial smoother with 4 different bandwidths is applied to simulated data, which is similarly generated as in the previous example (see Figure 1.1). For this example ϵ_t is generated based on a FARIMA(1, d , 0) models with $\phi = 0.5$, $d = 0.3$ and unit innovation variance. Note that ϕ denotes the AR-coefficient. The resulting fits are depicted in Figure 1.2.

Apparently, the bandwidths employed in (a) and (b) are clearly too small as the estimated trends are too wiggly, whereas the bandwidth chosen in (d) leads to over-smoothing. The bandwidth used in (c) produces a reasonable fit that almost coincides with the true trend function. Fitting FARIMA(p , d , 0) models to the corresponding trend adjusted residuals $\hat{\epsilon}_t$ yields: (a) short- and long-memory are clearly underestimated; (b) short-memory is overestimated whereas long-memory is underestimated; (c) short-memory and long-memory are slightly over- and underestimated, respectively; (d) short-memory is slightly underestimated and long-memory is overestimated. The FARIMA models are fitted by means of the *R* function *fracdiff* from the package under the same name. The corresponding estimates are listed in Table 1.1.

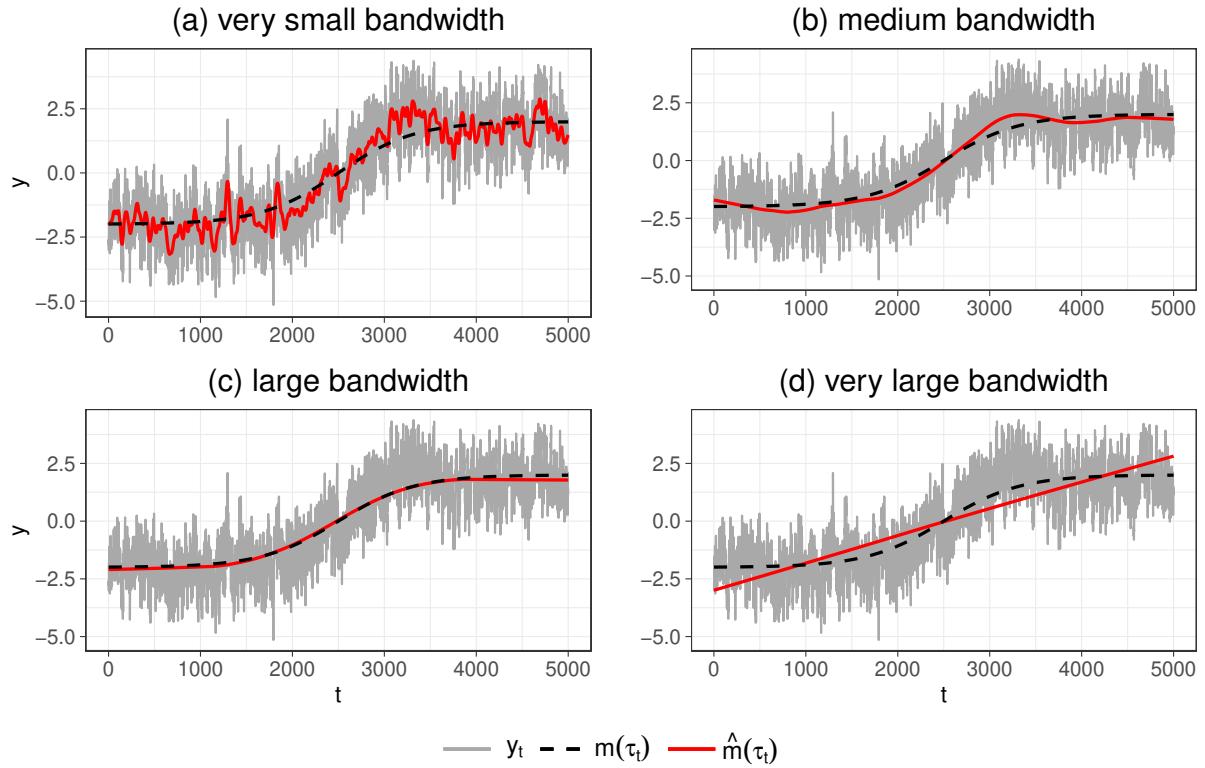


Figure 1.2: All pictures show the same simulated time series $y_t = m(\tau_t) + \epsilon_t$ with $n = 5000$ observations, trend function $m(\tau_t) = \tanh[6(\tau_t - 0.5)]$ and error process ϵ_t generated as a FARIMA(0.5, 0.3, 0) with innovation variance one. In all figures local polynomial fits (red solid lines) with an epanechnikov kernel and different bandwidths are shown: (a) very small bandwidth; (b) medium bandwidth; (c) large bandwidth; (d) very large bandwidth. The true trend $m(\tau_t)$ is indicated by the black-dashed line.

Conventional methods for determining the optimal smoothing parameter are for instance Mallow's C_p (Mallows, 1973), the Akaike information criterion (Akaike, 1974), cross validation (Mosier, 1951) or generalised cross validation (Wahba, 1977; Craven and Wahba, 1978). In the presence of correlated errors, particularly under long range dependence, these criteria usually tend to select a bandwidth that is too small and, consequently, overfit the data (see e.g. Opsomer, 1997; Opsomer et al., 2001). Moreover, manually determining a bandwidth via trial and error can be misleading and prone to an erroneous estimation of the correlation structure. As a remedy for overfitting, the dependence structure of the errors has to be taken into account as illustrated by Altman (1990a), Hart (1991), Beran and Feng (2001), Ray and Tsay (1997), Opsomer (1997) and Opsomer et al. (2001) as well as Beran and Feng (2002a), Beran and Feng (2002b) and Beran and Feng (2002c) in the context of local smoothing. Within the P-spline framework relevant studies were conducted by e.g. Currie and Durban (2002), Durbán and Currie (2003), Krivobokova and Kauermann (2007) and Feng and Härdle (2020). Most of the smoothing

Table 1.1: Estimates for the long memory parameter \hat{d} and AR-coefficient $\hat{\phi}$ obtained by fitting FARIMA(1, d , 0) models to the trend adjusted residuals $\hat{e}_t = y_t - \hat{m}(\tau_t)$ based on (a) a very large bandwidth, (b) a medium bandwidth, (c) a large bandwidth and (d) a very large bandwidth.

	(a)	(b)	(c)	(d)
\hat{d}	0.000	0.178	0.282	0.343
$\hat{\phi}$	0.000	0.618	0.520	0.462

parameter selection criteria introduced before the 1990's were corrected versions of the residual sum of squares (RSS) and have a very slow rate of convergence. Subsequently, innovative approaches with higher rates of convergence, namely plug-in methods (see Gasser et al., 1991; Ruppert et al., 1995 among others) and double-smoothing (DS) (see Müller, 1985; Härdle et al., 1992; Heiler and Feng, 1998), emphasized a more effective estimation of the mean integrated squared error (MISE) and mean averaged squared error (MASE). Despite the fact that plug-in bandwidth selectors have a slower rate of convergence in comparison to a DS selector, plug-in algorithms are generally more simplistic and more easily adapted to dependent errors. The main idea behind the plug-in approach is to insert suitable estimates of unknown parameters into an explicit formula for the asymptotic optimal bandwidth b_A , which is, for instance, based on an approximation of the MISE or MASE. However, in the case of correlated errors, the estimation quality of the dependence structure depends on that of \hat{m} and the accuracy of \hat{m} on the bandwidth b . It was shown that modified versions of the iterative plug-in approach (Gasser et al., 1991) where the estimation of the dependence structure and the bandwidth is improved in each iteration work very well for semiparametric regression with time series errors (see Beran and Feng, 2002a; Beran and Feng, 2002b; Beran and Feng, 2002c; Feng et al., 2016; Feng et al., 2020b; Feng et al., 2021; Feng et al., 2022b). Therefore, in this thesis various algorithms that are based on the iterative plug-in procedure are proposed. These algorithms are invariant point search procedures that start with an initial bandwidth b_0 and converge to a fixpoint, namely the asymptotically optimal bandwidth b_A . They are applied throughout this thesis and are implemented in recently published *R* packages called *smoots* (Feng et al., 2022a), *esemifar* (Letmathe et al., 2021b), *ufRisk* (Letmathe et al., 2022a) and *quarks* (Letmathe, 2022b). Moreover, various new semiparametric time series models are introduced. The proposed algorithms and, subsequently, the corresponding *R* packages can be easily applied to time series that are assumed to have a multiplicative form (e.g. volatility models) by log-transforming the original process, in order to establish an additive model form as given in (1.1).

1.2 Modelling volatility

The autoregressive conditional heteroscedasticity (ARCH) model and its generalization, the generalized ARCH (GARCH) model, introduced by Engle (1982) and Bollerslev (1986a), respectively, are well-known approaches for modelling non-constant conditional volatility. Both models and corresponding extensions imply exponentially decaying autocorrelations of the squared innovations and do not control for long memory in the conditional dynamics. The phenomenon of long memory in volatility was first discovered by Ding et al. (1993b) in the S&P 500 daily closing index. Subsequently, more evidence for the presence of long memory in absolute or squared observations of financial time series was found (see e.g. Ding and Granger, 1996, Andersen and Bollerslev, 1997, Andersen et al., 1999 and Cotter, 2005, among others). Consequently, various GARCH models, which are capable of modelling long memory, were proposed. The fractionally integrated GARCH model (FIGARCH) was introduced by Baillie et al. (1996) and was applied in many empirical studies to model long term dynamics in volatility of different financial time series (see e.g. Bollerslev and Mikkelsen, 1996; Tse, 1998; Beine et al., 2002; Baillie and Morana, 2009). Furthermore, Bollerslev and Mikkelsen (1996) proposed an extension of the exponential GARCH (EGARCH) (Nelson, 1991) and developed the fractionally integrated exponential GARCH (FIEGARCH). In this model the logarithm of the conditional variance is modelled as a fractionally integrated process. In addition to that, the EGARCH and FIEGARCH are capable to model so-called leverage effects, which usually have only short-term impacts on the dependence structure. Moreover, Ding et al. (1993a) proposed the so called asymmetric power GARCH (APARCH) model. It controls for the power transformation of the volatility process and the asymmetric absolute residuals, in order to avoid misspecification for non-normal data. The extension to the fractionally integrated APARCH (FIAPARCH), which was then proposed by Tse (1998), combines the FIGARCH with the APARCH. Another model that is capable of capturing persistence in volatility is the ARCH(∞) model introduced by Robinson (1991) and further investigated by Giraitis et al. (2000), Kazakevičius and Leipus (2002) as well as Douc et al. (2008). Recently, Feng et al. (2020a) introduced the FI-Log-GARCH model, which is a fractionally integrated version of the Log-GARCH (Geweke, 1986; Milhøj, 1987a; Pantula, 1986). Moreover, Royer (2022) proposes an ARCH(∞) extension of the APARCH that accounts for conditional asymmetry in the presence of severe long memory. Its specification is very general and nests the ARCH(∞) as well as the Threshold-ARCH(∞) (see Bardet and Wintenberger, 2009).

Empirical studies have revealed that long memory GARCH (LM-GARCH) models are very

successful in accurately forecasting the conditional volatility of asset returns and often outperform short memory GARCH type models (see, among others, Giot and Laurent, 2003; Degiannakis*, 2004; Tang and Shieh, 2006; Grané and Veiga, 2008; Härdle and Mungo, 2008; Baillie and Morana, 2009; Demiralay and Ulusoy, 2014; Aloui and Ben Hamida, 2015; Letmathe et al., 2022b; Royer, 2022). However, another branch of literature argues that long memory in the conditional volatility might partly stem from deterministic structural shifts in the unconditional variance (see e.g. Lamoureux and Lastrapes, 1990 and Mikosch and Stărică, 2004). For instance, Beran and Ocker (2001) discovered the existence of a non-constant deterministic scale function in some volatility series by means of the semiparametric fractional autoregressive (SEMIFAR) model (Beran and Ocker, 1999). Furthermore, Feng (2004) found that financial return series exhibit conditional heteroscedasticity and slowly changing unconditional volatility simultaneously. Such a series can be transformed into a weakly stationary process by removing the deterministic component from the original series, as was illustrated by Feng (2004) and by Van Bellegem and Von Sachs (2004). The authors assume a multiplicative decomposition of volatility into a conditional and unconditional component. They proposed to estimate the latter by means of a kernel smoother of the squared residuals. Engle and Rangel (2008) as well as Brownlees and Gallo (2010) assumed another multiplicative decomposition, which is based on exponential quadratic and penalised B-splines, respectively. Moreover, Mazur and Pipień (2012) introduced the almost periodically correlated (APC-) GARCH, where the scaling function is parameterized by means of the Flexible Fourier Form (Gallant, 1981; Gallant, 1984). Recently, Amado and Teräsvirta (2014) proposed the time varying GARCH model under an equivalent assumption (see also Amado and Teräsvirta, 2008; Amado and Teräsvirta, 2013; Amado and Teräsvirta, 2017) and underline the empirical significance of taking deterministic changes in the unconditional variance of financial return series into account.

In this thesis a new parametric and various semiparametric long memory GARCH (Semi-LM-GARCH) models, which belong to a general class of non-stationary volatility models as outlined in Sucarrat (2019), are introduced and applied. It is proposed to estimate the time varying unconditional variance by means of an adapted version of the SEMIFAR algorithm (Beran and Feng, 2002a) with a local polynomial estimator. Subsequently, the deterministic component is removed from the data and a LM-GARCH model is fitted to the approximately stationary residuals.

1.3 Summary of contents

In Chapter 2 the *R* package *smoots* is introduced. One of the main features of this package is local polynomial smoothing of trend-stationary time series with automatic bandwidth selection. In *smoots* a fully data-driven iterative plug-in algorithm for bandwidth selection under stationary time series errors is implemented. This algorithm is based on minimizing the asymptotic MISE of the bandwidth. An unknown quantity in the asymptotically optimal bandwidth is the variance factor which can be estimated parametrically by assuming that the stochastic part of the time series follows for example an ARIMA model. The variance factor can also be estimated fully nonparametrically by employing another IPI-approach for a lag-window estimator of the spectral density following Bühlmann (1996). All available options for executing the algorithm, namely the order of local polynomial, the kernel weighting functions and the so-called inflation factors are explained in detail. In addition to that, functions for data-driven estimation of the first and second derivatives of the trend are implemented (see Feng, 2007). Moreover, two new semiparametric models for financial time series are proposed, in order to demonstrate further application of this package. Firstly, a Semi-Log-GARCH model is defined by adding a scale function into the Log-GARCH (logarithmic GARCH) (Pantula, 1986; Geweke, 1986; Milhøj, 1987a). Secondly, a Semi-Log-ACD model is proposed as an extension of the Type I Log-ACD (Bauwens and Giot, 2000a), which is closely related to the Semi-Log-GARCH.

An extension of the *smoots* package to data-driven trend estimation under long memory is introduced in Chapter 3. This package is called *esemifar*, and analogously to *smoots*, incorporates a data-driven iterative plug-in algorithm, which is based on the SEMIFAR (semiparametric fractional autoregressive) algorithm. The SEMIFAR (Beran and Feng, 2002c) and its exponential version the ESEMIFAR model (Beran et al., 2015), which is applicable to non-negative time series following a semiparametric multiplicative model form, are designed for simultaneous modelling of stochastic trends, deterministic trends and stationary short- and long-memory components in a time series. And, analogously to Feng et al. (2022b) *esemifar* is used within the scope of a semiparametric log-local-linear growth model for analyzing quarterly G7 GDP data. Moreover, it was first indicated by Beran et al. (2015) that the (type 1) Log-ACD model introduced by Bauwens and Giot (2000b), Bauwens et al. (2008) and Karanasos (2008) can be represented as an EFARIMA model. Subsequently, it was shown by Feng and Zhou (2015) that the EFARIMA and ESEMIFAR can be redefined as a FI-Log-ACD and a Semi-FI-Log-ACD, respectively. The use of *esemifar* is illustrated with regards to the Semi-FI-Log-ACD by modelling log-transformed trading volume of the S&P500.

In Chapter 4 a new long memory GARCH model is introduced. Due to its construction it is coined a FI-Log GARCH model. It is a fractional integrated extension of the (symmetric) Log-GARCH. Theoretical properties of the FI-Log-GARCH are derived. Moreover, the FI-Log-GARCH(1, d , 1) is applied to carry out one-day rolling forecasts of the VaR (value at risk, Morgan, 1996) and ES (expected shortfall, Acerbi and Tasche, 2002) following the requirements of the BSBC (Basel Committee on Banking Supervision, 2016; Basel Committee on Banking Supervision, 2017) for several return series. It is found that the proposed model works very well in practice. Results of the FIGARCH, FIAPARCH and FIEGARCH models, fitted by means of the **GARCH 8.0** package implemented in the econometric software **Ox-metrics**, are used as comparisons. A reasonable model selection criterion based on different traffic light tests, including a most recently proposed traffic light test of ES by Costanzino and Curran (2018), is defined. In our empirical study the FI-Log-GARCH model often outperforms the other models, thus providing a useful alternative to existing long memory volatility models.

Semiparametric extensions of the long memory GARCH models, presented in Chapter 4, are introduced in Chapter 5. It is proposed to estimate the scale function via a modified SEMIFAR algorithm (Beran and Feng, 2002a). Practical performance is demonstrated by a comparison study, in which the parametric long memory GARCH models and their semiparametric counterparts are applied to model quantitative risk measures of daily return series of 22 major stock indices. For each model the one-step ahead out-of-sample forecasts of the value at risk (VaR) and expected shortfall (ES) at the 99%- and 97.5% confidence level with a forecast horizon of approximately one year, as required by the latest regulations proposed by the Basel committee (see Basel Committee on Banking Supervision, 2017) are calculated. The results of this comparative study reveal that the semiparametric long memory GARCH models, in particular the Semi-FI-Log-GARCH, are an attractive alternative.

The main objective of Chapter 6 is the development of an iterative plug-in algorithm for penalised spline regression under uncorrelated errors. This algorithm is based on a closed-form asymptotic approximation for the MASE obtained by Wand (1999). Moreover, the author derived a fast and simple DPI rule to determine the smoothing parameter directly from the data. Analogously to the algorithms presented in Chapter 2 and 3, we follow the idea of Gasser et al. (1991). Based on Wand's approximation three different algorithms to determine the optimal smoothing parameter are developed. In order to assess the performance of the algorithms, a comprehensive simulation study is conducted. For the estimation of the variance of the error term, a difference based variance estimator proposed by Gasser et al. (1986) is employed. The results of the simulation study and the application

to real data examples illustrate the good performance of our proposal and that it works very well in practice.

In Chapter 7 the IPI for dependent data introduced by Feng and Härdle (2020) is examined within the scope of a comprehensive simulation study, in which the estimator is tested in a total of 52 different cases. The findings in this chapter confirm that the algorithm performs very well even in scenarios where the underlying time series is composed of a complex deterministic trend and strong serial correlation in the stochastic component. Moreover, the IPI is applied to economic time series data and its performance is compared to conventional parametric and nonparametric smoothing methods such as simple cubic regression, local cubic regression as well as the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997), in order to exemplify its practical relevance. Paige and Trindade (2010) showed that under certain conditions the HP filter is equivalent to a P-spline. In this context, it is illustrated that the IPI for P-splines may provide an attractive approach to obtain a data-driven estimate for the smoothing parameter of the HP filter. Furthermore, a P-spline Log-ACD model is proposed, which is a special case of the ESEMIFAR model (Beran et al., 2015) without long memory, and which is applied to daily average trade durations. It is observed that the IPI works very well in this context, too.

Chapter 8 summarizes the contributions of this thesis and gives prospects for further research. Throughout this thesis *R* and partly *OxMetrics* are used for the empirical studies. Mainly the *R* packages *smoots*, *esemifar* and *ufRisk* and corresponding dependencies of these packages are employed. Moreover, the *G@RCH* software implemented in *OxMetrics* is used in Chapter 5.

Concluding Remarks

The contribution of this thesis can be considered an incremental process progressing from chapter to chapter. Proposed methods and models are continuously adapted, improved and extended. The development of IPI-algorithms for automatic smoothing parameter selection, their implementation in R-packages and, subsequently, the publication on CRAN enables academics and practitioners to easily work with trend stationary time series. The wide applicability of these algorithms is illustrated by their application within the scope of various semiparametric time series models throughout this work, particularly in Chapters 2, 3, 5, and 7. Moreover, a new long memory GARCH model, namely the FI-Log-GARCH, is introduced in Chapter 4. The employment of this model and its semiparametric extension, the Semi-FI-Log-GARCH (Chapter 5), to measure quantitative risk demonstrates that these models provide attractive substitutes to conventionally used approaches in this context. The main contributions of this thesis are summarized in detail as follows:

The methodological background of the R package *smoots* (version 1.0.1) is summarized in Chapter 2. The main functions in this package are explained in detail. Two new semiparametric models, namely the Semi-Log-GARCH and the Semi-Log-ACD, are introduced and applied to different kinds of non-stationary financial time series. Overall the employment of *smoots* within the scope of both models works very well. Further research based on the proposals of this chapter, such as the development of suitable forecasting procedures and stationary tests of the errors or significance of the deterministic trend, are interesting topics and it is planned to incorporate those features in following versions of the *smoots* package. Although *smoots* has been developed under the assumption of short memory errors, it is found that the errors of some real data examples used in Chapter 2 might exhibit clear long range dependence.

Subsequently, in Chapter 3 the development of a supplementing *R*-package for the *smoots* package, namely *esemifar*, is exemplified. In this regard an adapted version of the SEMIFAR-algorithm is introduced. Moreover, the implementation of this package is comprehensively described. The usage of two main functions is explained and illustrated by application to various non-stationary time series with long-memory. Analogously to Chapter 3, *esemifar* is used in the context of a Semi-FI-Log-ACD model, which is employed to model trade duration of two financial assets. Overall, the estimation results are quite satisfactory and illustrate the wide applicability of our proposal. Extensions of *esemifar* are the implementation of a forecasting procedure and the non-parametric estimation of the stochastic part of the model by means of e.g. a local Whittle-, GPH- or wavelet-estimator. A further, more comprehensive adaptation is the generalisation of the SEMIFAR-algorithm to smooth functional time series. The reader is referred to Schäfer and Feng (2021), Schäfer (2021a) and the corresponding R-package *DCSmooth* (Schäfer, 2021b). The authors propose double conditional smoothing schemes for the nonparametric estimation of functional time series under non-dependent and spatial ARMA errors. The extensions to spatial FARIMA errors is implemented in *DCSmooth*, however, only at an experimental stage. The methodological development of this extension will be subject to future studies.

In Chapter 4 a new long-memory volatility model (FI-Log-GARCH) is proposed and its theoretical properties are investigated in detail. Furthermore, the FI-Log-GARCH is employed to obtain one-day rolling forecasts of the VaR and ES for several return series. In addition to that, a new model selection criterion is proposed, in order to assess the forecasting quality for both risk measures. A small comparative study indicates that the FI-Log-GARCH provides an attractive alternative to existing long memory volatility models. Possible extensions of the FI-Log-GARCH are the implementation of long memory in the conditional mean, analogously to the FARIMA-FIGARCH, or the inclusion of asymmetric volatility effects. Moreover, the simultaneous consideration of a slowly changing unconditional mean and variance is an interesting topic for future research as well.

The semiparametric extension of the FI-Log-GARCH is discussed in Chapter 5. Different classes of semiparametric long memory GARCH models are proposed, in order to simultaneously model conditional heteroscedasticity and a slowly changing unconditional variance. The latter is estimated by means of a SEMIFARIMA model with a local polynomial smoother and, consequently, bandwidth selection is carried out by means of the corresponding algorithm, which is introduced in Chapter 3 and implemented in *esemifar*. All models are employed to obtain out-of-sample forecasts of VaR and ES. The performance of our proposals is assessed via traffic light tests and a new model selection

criterion introduced in Chapter 4. A comparative study is conducted and the results show that Semi-LM-GARCH approaches are meaningful substitutes to parametric LM-GARCH models. A more comprehensive empirical study in which our proposals are benchmarked against conventional methods, e.g. nonparametric approaches such as historical simulation, is yet to be conducted. Moreover, the quality of VaR and ES forecasts might be even further improved by modifying our approach to conditional distributions that allow for modelling skewness. Another possibility is to simply bootstrap the empirical distribution function of the observed return series or estimate VaR and ES based on the empirical quantiles of the residuals.

New IPI-algorithms for selecting the smoothing parameter in the penalised spline framework are proposed in Chapter 6. A comprehensive simulation study is conducted and the corresponding results reveal the convincing performance of these algorithms. The application to real data examples illustrates the wide applicability of our proposal and that it works very well in practice. A further development of our proposal could be the estimation of the variance of the residuals, which is estimated via a difference based variance estimator. A possible improvement could be the repeated estimation of the variance based on the residuals or a combination of both approaches, where the difference based estimator is used in the first one or two iterations and an estimator obtained from the trend-adjusted residuals in the remainder. Moreover, the development of a P-spline IPI-algorithm for time series data could offer an interesting topic for future research. Possible extensions of our proposal could be the short memory and the long memory case.

The extension of the IPI-algorithm for uncorrelated data to time series with short memory errors is proposed in Chapter 7. The algorithm is tested within the scope of a comprehensive simulation study and it is revealed that the IPI performs well, even if it is applied to complex time series processes. Moreover, it is shown that our proposal may provide an attractive approach to obtain a data-driven estimate for the smoothing parameter of the Hodrick Prescott filter. A more thorough investigation on this matter is an interesting topic for future studies. Furthermore, a P-spline Log-ACD model is proposed, which is a special case of an ESEMIFAR without long memory and where the deterministic component is estimated via P-spline regression. Two application examples show that the IPI works very well in this context, too. In addition to that, our proposal can easily be applied within the scope of a P-spline GARCH and, subsequently, could be employed to model VaR and ES. Moreover, the extension of our proposal to the long memory case is another relevant topic for further research.

Bibliography

- [1] Acerbi, C. and Tasche, D. (2002). Expected Shortfall: A Natural Coherent Alternative to Value at Risk. *Economic notes* 31, 379–388.
- [2] Aerts, M., Claeskens, G. and Wand, M. P. (2002). Some theory for penalized spline generalized additive models. *Journal of Statistical Planning and Inference* 103, 455–470.
- [3] Akaike, H. (1974). A New Look at the Statistical Model Identification. *IEEE transactions on automatic control* 19, 716–723.
- [4] Allen, D. M. (1974). The Relationship Between Variable Selection and Data Augmentation and a Method for Prediction. *Technometrics* 16, 125–127.
- [5] Aloui, C. and Ben Hamida, H. (2015). Estimation and Performance Assessment of Value-at-Risk and Expected Shortfall Based on Long-Memory GARCH-Class Models. *Finance a Uver: Czech Journal of Economics & Finance* 65.
- [6] Altman, N. S. (1990a). Kernel Smoothing of Data with Correlated Errors. *Journal of the American Statistical Association* 85, 749–759.
- [7] Altman, N. S. (1990b). Kernel Smoothing of Data with Correlated Errors. *Journal of the American Statistical Association* 85, 749–759.
- [8] Amado, C. and Teräsvirta, T. (2008). Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure. *CREATES Research Paper*.
- [9] Amado, C. and Teräsvirta, T. (2013). Modelling Volatility by Variance Decomposition. *Journal of Econometrics* 175, 142–153.

- [10] Amado, C. and Teräsvirta, T. (2014). Modelling Changes in the Unconditional Variance of Long Stock Return Series. *Journal of Empirical Finance* 25, 15–35.
- [11] Amado, C. and Teräsvirta, T. (2017). Specification and Testing of Multiplicative Time-Varying GARCH Models with Applications. *Econometric Reviews* 36, 421–446.
- [12] Amiri, E. (2014). Empirical Study of GARCH Models with Leverage Effect in an Environmental Application. *Environmental and ecological statistics* 21, 125–141.
- [13] Andersen, T. G. and Bollerslev, T. (1997). Intraday Periodicity and Volatility Persistence in Financial Markets. *Journal of empirical finance* 4, 115–158.
- [14] Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. (2003). Modeling and Forecasting Realized Volatility. *Econometrica* 71, 579–625.
- [15] Andersen, T. G., Bollerslev, T., Diebold, F. X. and Wu, G. (2006). Realized beta: Persistence and predictability. *Econometric Analysis of Financial and Economic Time Series*. Emerald Group Publishing Limited.
- [16] Andersen, T. G., Bollerslev, T. and Lange, S. (1999). Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon. *Journal of empirical finance* 6, 457–477.
- [17] Baillie, R. T., Bollerslev, T. and Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. *Journal of econometrics* 74, 3–30.
- [18] Baillie, R. T. and Chung, S.-K. (2002). Modeling and forecasting from trend-stationary long memory models with applications to climatology. *International Journal of Forecasting* 18, 215–226.
- [19] Baillie, R. T. and Morana, C. (2009). Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach. *Journal of Economic Dynamics and Control* 33, 1577–1592.
- [20] Balcilar, M. (2019). *mFilter: Miscellaneous Time Series Filters*. R package version 0.1-5.

[21] Bardet, J.-M. and Wintenberger, O. (2009). Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes. *The Annals of Statistics* 37, 2730–2759.

[22] Basel Committee on Banking Supervision (1996). *Supervisory Framework For The Use of Backtesting in Conjunction With The Internal Models Approach to Market Risk Capital Requirements*.

[23] Basel Committee on Banking Supervision (2013). *Fundamental review of the trading book: A revised market risk framework*.

[24] Basel Committee on Banking Supervision (2016). *Minimum capital requirements for market risk*.

[25] Basel Committee on Banking Supervision (2017). *Finalizing post-crisis reforms*.

[26] Bauwens, L. and Giot, P. (2000a). The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks. *Annales d'Economie et de Statistique*, 117–149.

[27] Bauwens, L., Galli, F. and Giot, P. (2008). Moments of the Log-ACD model. *Quantitative and Qualitative Analysis in Social Sciences* 2, 1–28.

[28] Bauwens, L. and Giot, P. (2000b). The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks. *Annales d'Economie et de Statistique*, 117–149.

[29] Baxter, M. and King, R. G. (1999). Measuring business cycles: Approximate band-pass filters for economic time series. *Review of Economics and Statistics* 81, 575–593.

[30] Beine, M., Laurent, S. and Lecourt, C. (2002). Accounting for conditional leptokurtosis and closing days effects in FIGARCH models of daily exchange rates. *Applied Financial Economics* 12, 589–600.

[31] Beran, J., Feng, Y. and Heiler, S. (2009). Modifying the Double Smoothing Bandwidth Selector in Nonparametric Regression. *Statistical Methodology* 6, 447–465.

[32] Beran, J. (2017). *Statistics for long-memory processes*. Routledge.

- [33] Beran, J. and Feng, Y. (2001). Local Polynomial Estimation with a FARIMA-GARCH Error Process. *Bernoulli* 7, 733–750.
- [34] Beran, J. and Feng, Y. (2002a). Iterative plug-in algorithms for SEMIFAR models—definition, convergence, and asymptotic properties. *Journal of Computational and Graphical Statistics* 11, 690–713.
- [35] Beran, J. and Feng, Y. (2002b). Local polynomial fitting with long-memory, short-memory and antipersistent errors. *Annals of the Institute of Statistical Mathematics* 54, 291–311.
- [36] Beran, J. and Feng, Y. (2002c). SEMIFAR models—a semiparametric approach to modelling trends, long-range dependence and nonstationarity. *Computational Statistics & Data Analysis* 40, 393–419.
- [37] Beran, J., Feng, Y. and Ghosh, S. (2015). Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models. *Statistical Papers* 56, 431–451.
- [38] Beran, J., Feng, Y., Ghosh, S. and Kulik, R. (2013). *Long-Memory Processes*. Springer.
- [39] Beran, J. and Ocker, D. (1999). SEMIFAR forecasts, with applications to foreign exchange rates. *Journal of Statistical Planning and Inference* 80, 137–153.
- [40] Beran, J. and Ocker, D. (2001). Volatility of stock-market indexes—an analysis based on SEMIFAR models. *Journal of Business & Economic Statistics* 19, 103–116.
- [41] Bollerslev, T. (1986a). Generalized Autoregressive Conditional Heteroskedasticity. *Journal of Econometrics* 31, 307–327.
- [42] Bollerslev, T. (1986b). Generalized autoregressive conditional heteroskedasticity. *Journal of econometrics* 31, 307–327.
- [43] Bollerslev, T. and Mikkelsen, H. O. (1996). Modeling and pricing long memory in stock market volatility. *Journal of Econometrics* 73, 151–184.
- [44] Breidt, F. J., Crato, N. and De Lima, P. (1998). The detection and estimation of long memory in stochastic volatility. *Journal of Econometrics* 83, 325–348.

[45] Breiman, L. (1965). On Some Limit Theorems Similar to the Arc-Sin Law. *Theory of Probability & Its Applications* 10, 323–331.

[46] Brockwell, P. J. and Davis, R. A. (2009). *Time Series: Theory and Methods. Second Edition*. Springer.

[47] Brownlees, C. T. and Gallo, G. M. (2010). Comparison of volatility measures: a risk management perspective. *Journal of Financial Econometrics* 8, 29–56.

[48] Bühlmann, P. (1996). Locally Adaptive Lag-Window Spectral Estimation. *Journal of Time Series Analysis* 17, 247–270.

[49] Carrasco, M. and Chen, X. (2002). Mixing and Moment Properties of Various GARCH and Stochastic Volatility Models. *Econometric Theory* 18, 17–39.

[50] Cheng, M.-Y., Fan, J. and Marron, J. S. (1997). On Automatic Boundary Corrections. *The Annals of Statistics* 25, 1691–1708.

[51] Chung, C.-F. (1999). Estimating the fractionally integrated GARCH model. *National Taiwan University* 1, 20.

[52] Claeskens, G., Krivobokova, T. and Opsomer, J. D. (2009). Asymptotic properties of penalized spline estimators. *Biometrika* 96, 529–544.

[53] Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatter-plots. *Journal of the American statistical association* 74, 829–836.

[54] Conrad, C. and Karanasos, M. (2006). The impulse response function of the long memory GARCH process. *Economics Letters* 90, 34–41.

[55] Costanzino, N. and Curran, M. (2015). Backtesting General Spectral Risk Measures with Application to Expected Shortfall. *Journal of Risk Model Validation* 9, 21–31.

[56] Costanzino, N. and Curran, M. (2018). A Simple Traffic Light Approach to Backtesting Expected Shortfall. *Risks* 6.

[57] Cotter, J. (2005). Uncovering long memory in high frequency UK futures. *The European Journal of Finance* 11, 325–337.

[58] Craven, P. and Wahba, G. (1978). Smoothing noisy data with spline functions. *Numerische Mathematik* 31, 377–403.

[59] Currie, I. D. and Durban, M (2002). Flexible smoothing with P-splines: a unified approach. *Statistical Modelling* 2, 333–349.

[60] Dagum, E. B. (2010). Time series modeling and decomposition. *Statistica* 70, 433–457.

[61] Dahlhaus, R. (1989). Efficient Parameter Estimation for Self-Similar Processes. *The Annals of Statistics* 17, 1749–1766.

[62] Davis, R. A. and Mikosch, T. (2009a). Extremes of stochastic volatility models. *Handbook of Financial Time Series*. Springer, 355–364.

[63] Davis, R. A. and Mikosch, T. (2009b). Probabilistic properties of stochastic volatility models. *Handbook of financial time series*. Springer, 255–267.

[64] Degiannakis*, S. (2004). Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model. *Applied Financial Economics* 14, 1333–1342.

[65] Demiralay, S. and Ulusoy, V. (2014). Value-at-risk predictions of precious metals with long memory volatility models. *MPRA Paper No. 53229*.

[66] Demmler, A and Reinsch, C (1975). Oscillation matrices with spline smoothing. *Numerische Mathematik* 24, 375–382.

[67] Ding, Z. and Granger, C. W. (1996). Modeling volatility persistence of speculative returns: A new approach. *Journal of econometrics* 73, 185–215.

[68] Ding, Z., Granger, C. W. and Engle, R. F. (1993a). A long memory property of stock market returns and a new model. *Journal of Empirical Finance* 1, 83–106.

[69] Ding, Z., Granger, C. W. and Engle, R. F. (1993b). A long memory property of stock market returns and a new model. *Journal of Empirical Finance* 1, 83–106.

[70] Douc, R., Roueff, F. and Soulier, P. (2008). On the existence of some ARCH (∞) processes. *Stochastic Processes and their Applications* 118, 755–761.

[71] Doukhan, P. (1994). *Mixing: Properties and Examples*. Vol. Lecture Notes in Statistics 85. Springer, New York.

[72] Duan, N. (1983). Smearing estimate: a nonparametric retransformation method. *Journal of the American Statistical Association* 78, 605–610.

[73] Durbán, M. and Currie, I. D. (2003). A note on P-spline additive models with correlated errors. *Computational Statistics* 18, 251–262.

[74] Eilers, P. H. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. *Statistical science*, 89–102.

[75] Eilers, P. H., Marx, B. D. and Durbán, M. (2015). Twenty years of P-splines. *SORT-Statistics and Operations Research Transactions* 39, 149–186.

[76] Engle, R. F. and Russell, J. R. (1998). Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data. *Econometrica* 66, 1127–1162.

[77] Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. *Journal of Business & Economic Statistics* 20, 339–350.

[78] Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. *Econometrica*, 987–1007.

[79] Engle, R. F., Ghysels, E. and Sohn, B. (2013). Stock Market Volatility and Macroeconomic Fundamentals. *The Review of Economics and Statistics* 95, 776–797.

[80] Engle, R. F. and Rangel, J. G. (2008). The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes. *The Review of Financial Studies* 21, 1187–1222.

[81] Escribano, A. and Sucarrat, G. (2018). Equation-by-equation estimation of multivariate periodic electricity price volatility. *Energy Economics* 74, 287–298.

[82] Fan, J. (1992). Design-adaptive nonparametric regression. *Journal of the American statistical Association* 87, 998–1004.

[83] Fan, J. (2005). A selective overview of nonparametric methods in financial econometrics. *Statistical Science*, 317–337.

[84] Fan, J. and Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. *The Annals of Statistics*, 2008–2036.

[85] Fan, J. and Gijbels, I. (1996). *Local polynomial modelling and its applications: monographs on statistics and applied probability 66*. Vol. 66. CRC Press.

[86] Fan, J., Gijbels, I., Hu, T.-C. and Huang, L.-S. (1996). A study of variable bandwidth selection for local polynomial regression. *Statistica Sinica*, 113–127.

[87] Feng, Y. (2004). Simultaneously Modeling Conditional Heteroskedasticity and Scale Change. *Econometric Theory* 20, 563–596.

[88] Feng, Y. (2007). On the Asymptotic Variance in Nonparametric Regression with Fractional Time-Series Errors. *Nonparametric Statistics* 19, 63–76.

[89] Feng, Y. and Heiler, S. (2009). A Simple Bootstrap Bandwidth Selector for Local Polynomial Fitting. *Journal of Statistical Computation and Simulation* 79, 1425–1439.

[90] Feng, Y. and Beran, J. (2013). Optimal convergence rates in non-parametric regression with fractional time series errors. *Journal of Time Series Analysis* 34, 30–39.

[91] Feng, Y., Beran, J. and Letmathe, S. (2021). *esemifar: Smoothing Long-Memory Time Series*. R package version 1.0.1.

[92] Feng, Y., Beran, J., Letmathe, S. and Ghosh, S. (2020a). *Fractionally integrated Log-GARCH with application to value at risk and expected shortfall*. Working Papers CIE. Paderborn University, CIE Center for International Economics.

[93] Feng, Y., Forstinger, S. and Peitz, C. (2016). On the iterative plug-in algorithm for estimating diurnal patterns of financial trade durations. *Journal of Statistical Computation and Simulation* 86, 2291–2307.

[94] Feng, Y., Gries, T. and Fritz, M. (2020b). Data-Driven Local Polynomial for the Trend and Its Derivatives in Economic Time Series. *Journal of Nonparametric Statistics* 32, 510–533.

[95] Feng, Y., Gries, T., Letmathe, S. and Schulz, D. (2022a). *smoots: Nonparametric Estimation of the Trend and Its Derivatives in TS*. R package version 1.1.3.

[96] Feng, Y., Gries, T., Letmathe, S. and Schulz, D. (2022b). The *smoots* Package in R for Semiparametric Modeling of Trend Stationary Time Series. *The R Journal* 14, 182–195.

[97] Feng, Y. and Härdle, W. K. (2020). A data-driven P-spline smoother and the P-Spline-GARCH-models. *arXiv preprint arXiv:2010.09376*.

[98] Feng, Y. and Schulz, D. (2019). *smoots: Nonparametric Estimation of the Trend and Its Derivatives in TS*. R package version 1.0.1.

[99] Feng, Y. and Zhou, C. (2015). Forecasting financial market activity using a semi-parametric fractionally integrated Log-ACD. *International Journal of Forecasting* 31, 349–363.

[100] Fernandes, M. and Grammig, J. (2006). A family of autoregressive conditional duration models. *Journal of Econometrics* 130, 1–23.

[101] Fernández, C. and Steel, M. F. J. (1998). On Bayesian Modeling of Fat Tails and Skewness. *Journal of the American Statistical Association* 93, 359–371.

[102] Fisher, A. (1937). A brief note on seasonal variation. *Journal of Accountancy (pre-1986)* 64, 174.

[103] Flaig, G. (2015). Why we should use high values for the smoothing parameter of the Hodrick-Prescott filter. *Jahrbücher für Nationalökonomie und Statistik* 235, 518–538.

[104] Forstinger, S. (2018). Modelling and Forecasting Financial and Economic Time Series Using Different Semiparametric ACD Models. PhD thesis. Paderborn, Universität Paderborn.

[105] Francisco-Fernández, M., Opsomer, J. and Vilar-Fernández, J. M. (2004). Plug-in Bandwidth Selector for Local Polynomial Regression Estimator with Correlated Errors. *Nonparametric Statistics* 16, 127–151.

[106] Francisco-Fernández, M. and Vilar-Fernández, J. M. (2001). Local polynomial regression estimation with correlated errors. *Communications in Statistics-Theory and Methods* 30, 1271–1293.

[107] Francq, C. and Sucarrat, G. (Oct. 2017). An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation*. *Journal of Financial Econometrics* 16, 129–154.

[108] Francq, C. and Sucarrat, G. (2018). An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation*. *Journal of Financial Econometrics* 16, 129–154.

[109] Francq, C., Wintenberger, O. and Zakoïan, J.-M. (2013). GARCH Models Without Positivity Constraints: Exponential or Log GARCH? *Journal of Econometrics* 177, 34–46.

[110] Francq, C., Wintenberger, O. and Zakoïan, J.-M. (2016). Goodness-of-fit tests for extended Log-GARCH models. *arXiv preprint arXiv:1601.05560*.

[111] Gallant, A. R. (1981). On the bias in flexible functional forms and an essentially unbiased form: the Fourier flexible form. *Journal of Econometrics* 15, 211–245.

[112] Gallant, A. R. (1984). The Fourier flexible form. *American Journal of Agricultural Economics* 66, 204–208.

[113] Gasser, T., Kneip, A. and Köhler, W. (1991). A Flexible and Fast Method for Automatic Smoothing. *Journal of the American Statistical Association* 86, 643–652.

[114] Gasser, T. and Müller, H.-G. (1979). Kernel estimation of regression functions. *Smoothing techniques for curve estimation*. Springer, 23–68.

[115] Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. *Biometrika*, 625–633.

[116] Geweke, J (1986). Comment On: Modelling the Persistence of Conditional Variances. *Econometric Reviews* 5, 57–61.

[117] Ghalanos, A. (2017). *Introduction to the rugarch package. (Version 1.3-8)*. Tech. rep. Manuscript.

[118] Ghosh, S. (2003). Estimating the moment generating function of a linear process. *Student* 4, 211–218.

[119] Ghosh, S. and Beran, J. (2006). On estimating the cumulant generating function of linear processes. *Annals of the Institute of Statistical Mathematics* 58, 53–71.

[120] Gil-Alana, L. A., Yaya, O. S., Awolaja, O. G. and Cristofaro, L. (2020). Long Memory and Time Trends in Particulate Matter Pollution (PM_{2.5} and PM₁₀) in the 50 US States. *Journal of Applied Meteorology and Climatology* 59, 1351–1367.

[121] Giot, P. and Laurent, S. (2003). Value-at-risk for long and short trading positions. *Journal of Applied Econometrics* 18, 641–663.

[122] Giraitis, L., Kokoszka, P. and Leipus, R. (2000). Stationary ARCH models: dependence structure and central limit theorem. *Econometric Theory* 16, 3–22.

[123] Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. *The Journal of Finance* 48, 1779–1801.

[124] Grané, A. and Veiga, H. (2008). Accurate minimum capital risk requirements: A comparison of several approaches. *Journal of Banking & Finance* 32, 2482–2492.

[125] Granger, C. W. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. *Journal of time series analysis* 1, 15–29.

[126] Hall, P. and Hart, J. D. (1990). Nonparametric regression with long-range dependence. *Stochastic Processes and their Applications* 36, 339–351.

[127] Hall, P. and Heyde, C. C. (1980). *Martingale Limit Theory and Its Application*. Academic Press, New York.

[128] Hall, P. and Opsomer, J. D. (2005). Theory for penalised spline regression. *Biometrika* 92, 105–118.

[129] Härdle, W. and Tsybakov, A. (1997). Local polynomial estimators of the volatility function in nonparametric autoregression. *Journal of Econometrics* 81, 223–242.

[130] Härdle, W., Tsybakov, A. and Yang, L. (1998). Nonparametric vector autoregression. *Journal of Statistical Planning and Inference* 68, 221–245.

[131] Härdle, W. K. and Mungo, J. (2008). Value-at-Risk and Expected Shortfall when there is long range dependence. *Discussion Papers from Humboldt University*.

[132] Hart, J. D. (1991). Kernel regression estimation with time series errors. *Journal of the Royal Statistical Society: Series B (Methodological)* 53, 173–187.

[133] Harvey, A., Ruiz, E. and Shephard, N. (Apr. 1994). Multivariate Stochastic Variance Models. *The Review of Economic Studies* 61, 247–264.

[134] Harvey, A. C. (2007). 16 - Long memory in stochastic volatility. *Forecasting Volatility in the Financial Markets (Third Edition)*. Ed. by J. Knight and S. Satchell. Third Edition. Quantitative Finance. Oxford: Butterworth-Heinemann, 351–363.

[135] Hastie, T. and Loader, C. (1993). Local regression: Automatic kernel carpentry. *Statistical Science*, 120–129.

[136] Heiler, S. (1999). *A survey on nonparametric time series analysis*. Tech. rep. CoFE Discussion Paper.

[137] Heiler, S. and Feng, Y. (1998). A simple root n bandwidth selector for nonparametric regression. *Journal of Nonparametric Statistics* 9, 1–21.

[138] Herrmann, E. and Maechler, M. (2021). *lokern: Kernel Regression Smoothing with Local or Global Plug-in Bandwidth*. R package version 1.1-9.

[139] Hodrick, R. J. and Prescott, E. C. (1997). Postwar US business cycles: An empirical investigation. *Journal of Money, Credit and Banking* 29, 1–16.

[140] Hosking, J. R. (1981a). Fractional Differencing. *Biometrika* 68, 165–176.

[141] Hosking, J. (1981b). Lagrange-multiplier tests of multivariate time-series models. *Journal of the Royal Statistical Society: Series B (Methodological)* 43, 219–230.

[142] Härdle, W., Hart, J., Marron, J. S. and Tsybakov, A. B. (1992). Bandwidth Choice for Average Derivative Estimation. *Journal of the American Statistical Association* 87, 218–226.

[143] Jones, H. L. (1943). Fitting polynomial trends to seasonal data by the method of least squares. *Journal of the American Statistical Association* 38, 453–465.

[144] Jones, M. C. (1993). Simple boundary correction for kernel density estimation. *Statistics and computing* 3, 135–146.

[145] Karanasos, M (2008). The statistical properties of exponential ACD models. *Quantitative and Qualitative Analysis in Social Sciences* 2, 29–49.

[146] Karanasos, M., Psaradakis, Z. and Sola, M. (2004). On the Autocorrelation Properties of Long-Memory GARCH Processes. *Journal of Time Series Analysis* 25, 265–282.

[147] Kauermann, G. (2005). A note on smoothing parameter selection for penalized spline smoothing. *Journal of statistical planning and inference* 127, 53–69.

[148] Kazakevičius, V. and Leipus, R. (2002). On stationarity in the ARCH (∞) model. *Econometric Theory* 18, 1–16.

[149] Krivobokova, T. (2013). Smoothing parameter selection in two frameworks for penalized splines. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 75, 725–741.

[150] Krivobokova, T. and Kauermann, G. (2007). A Note on Penalized Spline Smoothing With Correlated Errors. *Journal of the American Statistical Association* 102, 1328–1337.

[151] Lamoureux, C. G. and Lastrapes, W. D. (1990). Persistence in Variance, Structural Change, and the GARCH Model. *Journal of Business & Economic Statistics* 8, 225–234.

[152] Letmathe, S. (2022a). *Data-driven P-Splines under Short-Range Dependence*. Tech. rep. Paderborn University, CIE Center for International Economics.

[153] Letmathe, S. (2022b). *quarks: Simple Methods for Calculating and Backtesting Value at Risk and Expected Shortfall*. R package version 1.1.3.

[154] Letmathe, S., Beran, J. and Feng, Y. (2021a). *An Extended Exponential SEMIFAR Model with Application in R*. Tech. rep. Paderborn University, CIE Center for International Economics.

[155] Letmathe, S. and Feng, Y. (2022). *An Iterative Plug-In Algorithm for P-Spline Regression*. Tech. rep. Paderborn University, CIE Center for International Economics.

[156] Letmathe, S., Feng, Y. and Beran, J. (2021b). *esemifar: Smoothing Long-Memory Time Series*. R package version 1.0.1.

[157] Letmathe, S., Feng, Y., Li, S., Schulz, D., Zhang, X. and Peitz, C. (2022a). *ufRisk: Risk Measure Calculation in Financial TS*. R package version 1.0.6.

[158] Letmathe, S., Feng, Y. and Uhde, A. (2022b). Semiparametric GARCH Models with Long Memory Applied to Value at Risk and Expected Shortfall. *Journal of Risk* 25.

[159] Li, Y. and Ruppert, D. (2008). On the asymptotics of penalized splines. *Biometrika* 95, 415–436.

[160] Loader, C. (2006). *Local regression and likelihood*. Springer Science & Business Media.

[161] Lopes, S. R. and Prass, T. S. (2014). Theoretical results on fractionally integrated exponential generalized autoregressive conditional heteroskedastic processes. *Physica A: Statistical Mechanics and its Applications* 401, 278–307.

[162] Mallows, C. L. (1973). Some comments on C_p . *Technometrics* 15, 661–675.

[163] Masry, E and Fan, J (1997). Local polynomial estimation of regression functions for mixing processes. *Scandinavian journal of statistics* 24, 165–179.

[164] Masry, E. (1996). Multivariate regression estimation local polynomial fitting for time series. *Stochastic Processes and their Applications* 65, 81–101.

[165] Mazur, B. and Pipień, M. (2012). On the Empirical Importance of Periodicity in the Volatility of Financial Returns - Time Varying GARCH as a Second Order APC(2) Process. *Central European Journal of Economic Modelling and Econometrics* 4, 95–116.

[166] McCurdy, T. H. and Michaud, P. K. (1996). Capturing long memory in the volatility of equity returns: a fractionally integrated asymmetric power ARCH model. *International Conference of the French Finance Association*.

[167] McNeil, A. J., Frey, R. and Embrechts, P. (2015). *Quantitative Risk Management: Concepts, Techniques and Tools-revised edition*. Princeton University Press.

[168] Mikosch, T. and Stărică, C. (2004). Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects. *Review of Economics and Statistics* 86, 378–390.

[169] Milhøj, A. (1987a). A Conditional Variance Model for Daily Deviations of an Exchange Rate. *Journal of Business & Economic Statistics* 5, 99–103.

[170] Milhøj, A. (1987b). *A Multiplicative Parameterization of ARCH Models*. University of Copenhagen, Department of Statistics.

[171] Modarres, R. and Ouarda, T. B. (2014). Modeling the relationship between climate oscillations and drought by a multivariate GARCH model. *Water Resources Research* 50, 601–618.

[172] Mokkadem, A. (1988). Mixing properties of ARMA processes. *Stochastic Processes and their Applications* 29, 309–315.

[173] Morgan, J. (1996). *RiskMetricsTM–Technical Document*.

[174] Mosier, C. I. (1951). The need and means of cross validation. I. Problems and designs of cross-validation. *Educational and Psychological Measurement*.

[175] Müller, H.-G. (1988a). Longitudinal Data and Regression Models. *Nonparametric Regression Analysis of Longitudinal Data*. Springer, 6–14.

[176] Müller, H.-G. (1988b). *Nonparametric Regression Analysis of Longitudinal Data*. New York, NY: Springer.

[177] Müller, H. (1985). Empirical bandwidth choice for nonparametric kernel regression by means of pilot estimators. *Statistical Decisions* 2, 193–206.

[178] Nadaraya, E. A. (1964). On estimating regression. *Theory of Probability & Its Applications* 9, 141–142.

[179] Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. *Econometrica* 59, 347–370.

[180] Ojeda Cabrera, J. L. (2018). *locpol: Kernel Local Polynomial Regression*. R package version 0.7-0.

[181] Opsomer, J. (1997). Nonparametric regression in the presence of correlated errors. *Modelling Longitudinal and Spatially Correlated Data*. New York, NY: Springer, 339–348.

[182] Opsomer, J., Wang, Y. and Yang, Y. (2001). Nonparametric Regression with Correlated Errors. *Statistical Science* 16, 134–153.

[183] O’sullivan, F., Yandell, B. S. and Raynor Jr, W. J. (1986). Automatic smoothing of regression functions in generalized linear models. *Journal of the American Statistical Association* 81, 96–103.

[184] Paige, R. L. and Trindade, A. A. (2010). The Hodrick-Prescott Filter: A special case of penalized spline smoothing. *Electronic Journal of Statistics* 4, 856–874.

[185] Pantula, S. G. (1986). Modeling the Persistence of Conditional Variances: A Comment. *Econometric Reviews* 5, 71–74.

[186] Parker, R. and Rice, J. (1985). Discussion of “Some aspects of the spline smoothing approach to nonparametric curve fitting” by BW Silverman. *Journal of the Royal Statistical Society, Series B* 47, 40–42.

[187] Pham, T. D. and Tran, L. T. (1985). Some mixing properties of time series models. *Stochastic processes and their applications* 19, 297–303.

[188] Piegorsch, W. W. and Casella, G. (1985). The Existence of the First Negative Moment. *The American Statistician* 39, 60–62.

[189] Pipiras, V. and Taqqu, M. S. (2017). *Long-Range Dependence and Self-Similarity*. Vol. 45. Cambridge University Press.

[190] Qiu, D. (2015). *rmaf: Refined Moving Average Filter*. R package version 3.0.1.

[191] R Core Team (2021). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria.

[192] Ravn, M. O. and Uhlig, H. (2002). On adjusting the Hodrick-Prescott filter for the frequency of observations. *Review of Economics and Statistics* 84, 371–376.

[193] Ray, B. K. and Tsay, R. S. (Dec. 1997). Bandwidth selection for kernel regression with long-range dependent errors. *Biometrika* 84, 791–802.

[194] Robinson, P. M. (1991). Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. *Journal of Econometrics* 47, 67–84.

[195] Romilly, P. (2005). Time series modelling of global mean temperature for managerial decision-making. *Journal of Environmental Management* 76, 61–70.

[196] Royer, J. (2022). Conditional asymmetry in Power ARCH (∞) models. *Journal of Econometrics*.

[197] Ruppert, D. (2002). Selecting the number of knots for penalized splines. *Journal of computational and graphical statistics*.

[198] Ruppert, D., Sheather, S. J. and Wand, M. P. (1995). An effective bandwidth selector for local least squares regression. *Journal of the American Statistical Association* 90, 1257–1270.

[199] Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. *The annals of statistics*, 1346–1370.

[200] Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). *Semiparametric regression*. Cambridge university press.

[201] Sarma, M., Thomas, S. and Shah, A. (2003). Selection of Value-at-Risk models. *Journal of Forecasting* 22, 337–358.

[202] Schäfer, B. (2021a). *Bandwidth selection for the Local Polynomial Double Conditional Smoothing under Spatial ARMA Errors*. Tech. rep. Paderborn University, CIE Center for International Economics.

[203] Schäfer, B. and Feng, Y. (2021). *Fast Computation and Bandwidth Selection Algorithms for Smoothing Functional Time Series*. Tech. rep. Paderborn University, CIE Center for International Economics.

[204] Schäfer, B. (2021b). *DCSmooth: Nonparametric Regression and Bandwidth Selection for Spatial Models*. R package version 1.1.2.

[205] Schwarz, K. and Krivobokova, T. (2016). A unified framework for spline estimators. *Biometrika* 103, 121–131.

[206] Stone, C. J. (1977). Consistent nonparametric regression. *The annals of statistics*, 595–620.

[207] Sucarrat, G., Grønneberg, S. and Escribano, A. (2016). Estimation and Inference in Univariate and Multivariate log-GARCH-X Models When the Conditional Density Is Unknown. *Computational Statistics & Data Analysis* 100, 582–594.

[208] Sucarrat, G. (2015). *lgarch: Simulation and Estimation of Log-GARCH Models*. R package version 0.6-2.

[209] Sucarrat, G. (2019). The log-GARCH model via ARMA representations. *Financial Mathematics, Volatility and Covariance Modelling*. 1st ed. Vol. 2. London: Routledge, 336–359.

[210] Sucarrat, G. and Escribano, A. (2018). Estimation of log-GARCH models in the presence of zero returns. *The European Journal of Finance* 24, 809–827.

[211] Surgailis, D. and Viano, M.-C. (2002). Long memory properties and covariance structure of the EGARCH model. *ESAIM: Probability and Statistics* 6, 311–329.

[212] Tang, T.-L. and Shieh, S.-J. (2006). Long memory in stock index futures markets: A value-at-risk approach. *Physica A: Statistical Mechanics and its Applications* 366, 437–448.

[213] Tse, Y. K. (1998). The conditional heteroscedasticity of the yen–dollar exchange rate. *Journal of Applied Econometrics* 13, 49–55.

[214] Van Bellegem, S. and Von Sachs, R. (2004). Forecasting economic time series with unconditional time-varying variance. *International Journal of Forecasting* 20, 611–627.

[215] Vilar-Fernández, J. and Vilar-Fernández, J. (1998). Recursive estimation of regression functions by local polynomial fitting. *Annals of the Institute of Statistical Mathematics* 50, 729–754.

[216] Wager, C., Vaida, F. and Kauermann, G. (2007). Model selection for penalized spline smoothing using Akaike information criteria. *Australian & New Zealand Journal of Statistics* 49, 173–190.

[217] Wahba, G. (1977). Optimal smoothing of density estimates. *Classification and Clustering* 1, 423–458.

BIBLIOGRAPHY

- [218] Walck, C. (2007). *Hand-book on Statistical Distributions for experimentalists*. Vol. 10, 96–01.
- [219] Wand, M. P. (1999). On the optimal amount of smoothing in penalised spline regression. *Biometrika* 86, 936–940.
- [220] Wand, M. P. (2021). *KernSmooth: Functions for Kernel Smoothing Supporting Wand & Jones (1995)*. R package version 2.23-20.
- [221] Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing, London: Chapman & Hall. *Chapman and Hall*.
- [222] Wang, X., Shen, J., Ruppert, D. et al. (2011). On the asymptotics of penalized spline smoothing. *Electronic Journal of Statistics* 5, 1–17.
- [223] Watson, G. S. (1964). Smooth regression analysis. *Sankhyā: The Indian Journal of Statistics, Series A*, 359–372.
- [224] Zakoian, J.-M. (1994). Threshold heteroskedastic models. *Journal of Economic Dynamics and Control* 18, 931–955.
- [225] Zhang, M. Y., Russell, J. R. and Tsay, R. S. (2001). A nonlinear autoregressive conditional duration model with applications to financial transaction data. *Journal of Econometrics* 104, 179–207.
- [226] Zhang, X., Feng, Y. and Peitz, C. (2017). *A general class of SemiGARCH models based on the Box-Cox transformation*. Working Papers CIE. Paderborn University, CIE Center for International Economics.

Declaration

I hereby declare that I prepared this thesis entirely on my own and have not used outside sources without declaration in the text. Any concepts or quotations applicable to these sources are clearly attributed to them. This thesis has not been submitted in the same or substantially similar version, not even in part, to any other authority for grading and has not been published elsewhere.

Erklärung

Hiermit versichere ich, durch eigenhändige Unterschrift, dass ich die vorliegende Arbeit selbstständig und ohne unerlaubte Hilfe Dritter angefertigt habe. Alle Stellen, die inhaltlich oder wörtlich aus Veröffentlichungen stammen, sind kenntlich gemacht. Diese Arbeit lag nach meinem Informationsstand in gleicher oder ähnlicher Weise noch keiner Prüfungsbehörde vor und wurde bisher nicht veröffentlicht.

Paderborn, October 20, 2022

M.Sc. Sebastian Letmathe

Chapter 2

Feng, Y., Gries, T., Letmathe, S. and Schulz, D. (2022). The smoots Package in R for Semiparametric Modeling of Trend Stationary Time Series. *The R Journal* 14, 182-195.

DOI: 10.32614/RJ-2022-017

Chapter 5

Letmathe, S., Feng, Y. and Uhde, A. (2022). Semiparametric GARCH Models with Long Memory Applied to Value at Risk and Expected Shortfall. *Journal of Risk* 25 (2).

DOI: 10.21314/JOR.2022.044