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Abstract

The underlying methodology of this thesis is based on the decomposition of a time se-
ries into a deterministic and stochastic component, where the latter is assumed to follow
well-known time series models from the ARMA- as well as GARCH-class and the former
is a non-negative slowly varying function, which can be estimated via a nonparametric
smoothing method. A time series composed as described before is at best locally station-
ary. Hence, fitting a parametric model directly to such a series is in fact a misspecification.
As a remedy, the deterministic trend or scale function has to be estimated and removed
beforehand from the data, in order to fit a parametric model to the approximately station-
ary residuals. In this thesis local polynomial and penalised spline regression are employed
for the estimation of the deterministic component. Various iterative plug-in algorithms are
proposed for smoothing parameter selection and are implemented in R-packages, namely
smoots, esemifar and ufRisk. All these packages are publicly available on CRAN. The wide
applicability of these packages is illustrated with real data examples and the performance

of the algorithms is validated within the scope of thorough simulation studies.

One of the major contributions of this thesis is the development and application of a
new parametric time series model with long memory, namely the FI-Log-GARCH and
various semiparametric extensions of this model as well as of other well-known time series
models with short- and long memory. The FI-Log-GARCH is a fractional extension
of the Log-GARCH. Theoretical properties such as necessary and sufficient conditions
for stationary solutions, existence of finite fourth moments, explicit expression for the
autocorrelation and central limit theorem for the sample mean are derived. Moreover, the
FI-Log-GARCH is applied to forecast Value at Risk (VaR) and Expected Shortfall (ES)
for various return series and is compared to conventional long memory GARCH models.
All models are benchmarked via traffic light tests for both, VaR and ES, as well as via
a newly developed model selection criterion. Our results show that the FI-Log-GARCH
outperforms the other models in most cases. Subsequently, the semiparametric extension
of the FI-Log-GARCH, namely the SEMI-FI-Log-GARCH, is proposed. Analogously, the
latter and other semiparametric extensions of conventional long memory GARCH models
are employed to model VaR and ES. Their performance is tested in a comprehensive
comparative study where each model is applied to 20 different return series of major
stock indices. Estimation of the scale function is carried out by means of a modified

version of the SEMIFAR-algorithm, which is implemented in the R-package esemifar.



Our results indicate that Semi-LM-GARCH approaches are a meaningful substitute of
parametric LM-GARCH models.

Besides local polynomial regression, another nonparametric smoothing method, namely
penalised spline regression, gained more attention during the last decades due to advanc-
ing technology and especially to the upcoming complexity and scale of Big Data. So far
the application of penalised splines has mainly occurred in the field of natural sciences and
has rarely been applied in the context of empirical economic and financial research. An
automatic iterative plug-in algorithm for uncorrelated data is proposed, which is based on
an asymptotic approximation of the mean averaged squared error (MASE). Our proposal
is tested in a comprehensive simulation study. Its application to real data examples shows
that our proposal works very well in practice. Penalised spline regression under stationary
time series errors is still a very unexplored field of research. Therefore, a newly devel-
oped iterative plug-in algorithm for correlated data is investigated in another thorough
simulation study. It is found that the IPI performs very well even in scenarios where the
underlying time series is composed of a complex deterministic trend and strong serial cor-
relation in the stochastic component. In addition to that, the IPI is applied to economic
time series data and benchmarked against conventional paramteric and nonparametric
smoothing methods such as simple cubic regression, local cubic regression as well as the
Hodrick-Prescott (HP) filter, in order to exemplify its practical relevance. Under certain
conditions the HP filter is equivalent to a penalised spline. In this context, it is illus-
trated that the IPI for penalised splines may provide an attractive approach to obtain
a data-driven estimate for the smoothing parameter of the HP filter. Furthermore, a
penalised spline Log-ACD model is proposed, which is a special case of the ESEMIFAR
model without long memory, and which is applied to daily average trade durations. It is

observed that the IPI works very well in this context, too.
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Chapter

Introduction

1.1 Non- and Semiparametric regression for time series

The concept of semiparametric regression stems from the idea of decomposing a time
series into a deterministic and stochastic component, where the former is estimated by
a nonparametric smoothing technique and the latter via a parametric model (Dagum,
2010). This idea traces back to the astronomy of the seventeenth century. However,
Persons (1919) was the first to state explicit assumptions on different components. Persons
argued that a time series is composed of a secular trend, cyclical and seasonal movements
as well as residual variations. In this thesis the focus lies on the decomposition of a time
series into a nonparametric mean function and stationary errors. Let y; denote a time
series with ¢t = 1,...,n equidistantly spaced observations. A fixed design nonparametric

time series model can then be formulated as
ye = m(m) + €, (L.1)

where m(7;) denotes an at least twice differentiable smooth nonparametric mean function
on [0,1] with 7» = t/n € (0,1]. Note that the standardization of 7; is required for the
consistent (nonparametric) estimation of m. The error process ¢, is assumed to be second-
order stationary with zero mean, autocovariance function (k) (k € Z) and variance 02 =
7:(0). We distinguish between three types of dependence structures of €;, namely (a) i.i.d.
(independent and identically distributed), (b) short memory and (c) long memory such
that (a) >°7 (k) = 0., (b) 0 < D7 _7c(k) < ooand (¢) D% (k) = oo, respectively.
Fitting a nonparametric regression model processes in two parts, i.e. (1.) the estimation

of the deterministic and (2.) of the stochastic component. Note that the assumption that
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y; is a stationary process is a misspecification due to the nonparametric mean m(-). For
instance, commonly used parametric models that are applied to analyse time series such
as the ARIMA (autoregressive integrated moving average) and the FARIMA (fractionally
integrated ARIMA, Granger and Joyeux, 1980) are likely to falsely capture deterministic
changes in the mean as short- or (and) long-memory, respectively. In order to exemplify
this phenomenon, we consider a simulated time series y; with the trend function m(r;) =
tanh[6(7; — 0.5)] and errors ¢, defined as White Noise with zero mean and unit variance
(see Figure 1.1). Fitting a FARIMA(O, d,0) model to the non-stationary series depicted
in Figure 1.1, where d stands for the long-memory or fractional differencing parameter,
yields d = 0.228, although d = 0. In contrast, if the FARIMA is fitted directly to the
(stationary) error process shown in Figure 1.1 (a), we obtain d & 0. Therefore, in order to
correctly apply methods like the ARIMA or FARIMA model to analyze trend stationary

processes, m(+) has to be estimated and removed beforehand from ;.

(a) Error process ¢; (i.i.d.) (b) Simulated series y;
41 4
2 2+
_24
_2
! ! ! ! ! -4 : : : :
0 250 500 750 1000 0 250 500 750 1000

t t

Figure 1.1: (a) - Generated error process ¢; modelled as White Noise with F(¢) = 0
and var (¢,) = 1. (b) - Simulated series y, = m(n) + ¢ with n = 1000 observations and
true trend function m(r;) = tanh[6(7, —0.5)] indicated by the dark-gray and black-dashed
lines, respectively.

The deterministic component in model (1.1) can be estimated by a variety of nonparamet-
ric regression approaches (see e.g. Heiler, 1999; Fan, 2005, for a summarising overview).
However, in this thesis only two modern smoothing techniques are discussed, namely local

polynomial and penalised spline regression.

Local polynomial regression can be considered a smoothing technique that combines the
local use of some parametric regression model with the moving average. Both methods
have a long history, which traces back to the nineteenth century (see Loader, 2006 and
Dagum, 2010, for a historical review). The moving average gained more attention not
before the mid 1960s, when Nadaraya (1964) and Watson (1964) independently introduced

a generalized version of the conventional moving average, namely the kernel estimator.
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Similarly, local regression was primarily employed for estimating seasonality in a time
series (see e.g Fisher, 1937; Jones, 1943) and Stone (1977) and Cleveland (1979) were the
first ones to introduce the concept of local polynomial smoothing. From this point on,
local polynomial regression rapidly became a relevant statistical tool. One of the major
advantages of this method is that it provides finite sample solutions to bias correction
problems which arise in kernel theory (see e.g. Hastie and Loader, 1993; Jones, 1993;
Cheng et al., 1997). Moreover, local regression can be approached as an extension of
kernel methods as its asymptotic properties are directly derived from results of the latter
(see e.g. Wand and Jones, 1995; Fan and Gijbels, 1996). However, theoretical results from
the era of the early stages of local polynomial regression, i.e. in the late 1980s and 1990s,
were mostly obtained under the assumption that the errors are i.i.d. (independent and
identically distributed) or at least uncorrelated random variables (see e.g Ruppert and
Wand, 1994; Fan, 1992; Fan and Gijbels, 1992; Fan et al., 1996). Statistical properties
of the local polynomial estimator under short range dependence were studied by Fan
and Gijbels (1996), Masry and Fan (1997), Masry (1996), Hérdle and Tsybakov (1997),
Hérdle et al. (1998), Vilar-Fernandez and Vilar-Fernandez (1998), Opsomer et al. (2001)
and Francisco-Fernandez and Vilar-Fernandez (2001). The extension to long-memory
errors was the next logical step, as many empirical studies revealed the presence of long-
range dependence in various types of time series such as squared returns, trade duration,
temperature and air pollution data (see e.g. Ding et al., 1993a; Ding and Granger, 1996;
Andersen and Bollerslev, 1997; Andersen et al., 1999; Baillie and Chung, 2002; Cotter,
2005; Beran et al., 2015; Beran, 2017; Gil-Alana et al., 2020). First important theoretical
results for kernel estimators with long-memory were obtained by Hall and Hart (1990)
(see also Ray and Tsay, 1997) and finally extended to local polynomial regression in Beran
and Feng (2002b), Beran and Feng (2002¢) and Beran and Feng (2002a). The authors
adapted the local polynomial estimator introduced by Stone (1977) and Cleveland (1979)
to nonparametric regression with short- or long range dependent as well as antipersistent

errors (see also Feng, 2007).

Approximating a function by means of basis functions such as Fourier series, B-splines or
truncated polynomials has a very long history. A popular approach that stems from this
branch of literature is penalised spline (P-spline) regression. The original idea of P-splines
traces back to Parker and Rice (1985) and O’sullivan et al. (1986), who proposed to use a
set of basis functions in combination with a penalty term. Following their approach Filers
and Marx (1996) introduced the concept of P-spline regression. This smoothing method
has gained more attention during the last decades, as it offers an attractive alternative

to conventional nonparametric methods. The smoothness of a P-spline is controlled via a
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smoothing parameter. Wand (1999) adapted the direct plug-in (DPI) method proposed
by Ruppert et al. (1995) to P-spline regression and provided a closed-form asymptotic
approximation for the mean average squared error (MASE), in order to determine the
smoothing parameter directly from the data. Based on this approach Letmathe and Feng
(2022) developed a fast, simple and reliable method to select the smoothing parameter
data-driven. The authors proposed an iterative plug-in (IPI) algorithm (Gasser et al.,
1991) for cross sectional data. The properties of the P-spline model with uncorrelated
errors were e.g. discussed in Hall and Opsomer (2005), Kauermann (2005), Li and Ruppert
(2008), Claeskens et al. (2009) and Wang et al. (2011). However P-splines under stationary
time series errors are still very unexplored. Relevant studies in this context were conducted
by e.g. Krivobokova and Kauermann (2007) and Feng and Hérdle (2020). In the latter
study the authors proposed an extension of the IPI for cross sectional data to stationary

time series with short memory errors (see also Letmathe, 2022a).

The main challenge in the context of nonparametric and semiparametric regression is the
selection of a smoothing parameter or bandwidth, b say, that controls the trade-off between
variance and bias of 7(-) and affects the estimation of the dependence structure of the
trend-adjusted residuals, i.e. € =y, —m(7;), as well (see e.g. Beran, 2017). Two extreme
cases are b = 0 and b = co. The former represents the most complex possibility which
results in an estimated trend that is equal to the observations, i.e. m = y; (overfitting)
and the latter the most simple case with 7 = ¢ (undersmoothing). To exemplify the
importance of a suitably chosen smoothing parameter a local polynomial smoother with
4 different bandwidths is applied to simulated data, which is similarly generated as in
the previous example (see Figure 1.1). For this example ¢; is generated based on a
FARIMA(1, d,0) models with ¢ = 0.5, d = 0.3 and unit innovation variance. Note that ¢
denotes the AR-coefficient. The resulting fits are depicted in Figure 1.2.

Apparently, the bandwidths employed in (a) and (b) are clearly too small as the estimated
trends are too wiggly, whereas the bandwidth chosen in (d) leads to over-smoothing. The
bandwidth used in (c) produces a reasonable fit that almost coincides with the true
trend function. Fitting FARIMA(p,d,0) models to the corresponding trend adjusted
residuals & yields: (a) short- and long-memory are clearly underestimated; (b) short-
memory is overestimated whereas long-memory is underestimated; (c) short-memory and
long-memory are slightly over- and underestimated, respectively; (d) short-memory is
slightly underestimated and long-memory is overestimated. The FARIMA models are
fitted by means of the R function fracdiff from the package under the same name. The

corresponding estimates are listed in Table 1.1.
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(a) very small bandwidth (b) medium bandwidth
2.5 2.51 i al
0.0
. 0.04 i 1
—2.51 _m
-2.54
-5.01
-5.01 ‘ ‘ ‘ ‘ ‘ 0 1000 2000 3000 4000 5000
0 1000 2000 3000 4000 5000
(c) large bandwidth (d) very large bandwidth
2.5 T 2.5
> 0.0 ___/.‘— 0.0
-2.54 -2.54
-5.01 -5.01
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
t t
Vi — = m(t) — ()

Figure 1.2: All pictures show the same simulated time series y; = m(1;)+¢; with n = 5000
observations, trend function m(7;) = tanh[6(7; — 0.5)] and error process €; generated as a
FARIMA(0.5,0.3,0) with innovation variance one. In all figures local polynomial fits (red
solid lines) with an epanechnikov kernel and different bandwidths are shown: (a) very
small bandwidth; (b) medium bandwidth; (c¢) large bandwidth; (d) very large bandwidth.
The true trend m(7;) is indicated by the black-dashed line.

Conventional methods for determining the optimal smoothing parameter are for instance
Mallow’s C,, (Mallows, 1973), the Akaike information criterion (Akaike, 1974), cross vali-
dation (Mosier, 1951) or generalised cross validation (Wahba, 1977; Craven and Wahba,
1978). In the presence of correlated errors, particularly under long range dependence,
these criteria usually tend to select a bandwidth that is too small and, consequently,
overfit the data (see e.g. Opsomer, 1997; Opsomer et al., 2001). Moreover, manually
determining a bandwidth via trial and error can be misleading and prone to an erroneous
estimation of the correlation structure. As a remedy for overfitting, the dependence struc-
ture of the errors has to be taken into account as illustrated by Altman (1990a), Hart
(1991), Beran and Feng (2001), Ray and Tsay (1997), Opsomer (1997) and Opsomer et
al. (2001) as well as Beran and Feng (2002a), Beran and Feng (2002b) and Beran and
Feng (2002¢) in the context of local smoothing. Within the P-spline framework relevant
studies were conducted by e.g. Currie and Durban (2002), Durban and Currie (2003),
Krivobokova and Kauermann (2007) and Feng and Hérdle (2020). Most of the smoothing
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Table 1.1: Estimates for the long memory parameter d and AR—Coefﬁcienthb obtained by
fitting FARIMA(1,d,0) models to the trend adjusted residuals é = y; — m(7;) based on
(a) a very large bandwidth, (b) a medium bandwidth, (¢) a large bandwidth and (d) a
very large bandwidth.

(a) (b) (c) (d)
d 0.000 0.178 0.282 0.343
) 0.000 0.618 0.520 0.462

parameter selection criteria introduced before the 1990 s were corrected versions of the
residual sum of squares (RSS) and have a very slow rate of convergence. Subsequently, in-
novative approaches with higher rates of convergence, namely plug-in methods (see Gasser
et al., 1991; Ruppert et al., 1995 among others) and double-smoothing (DS) (see Miiller,
1985; Hérdle et al., 1992; Heiler and Feng, 1998), emphasized a more effective estimation
of the mean integrated squared error (MISE) and mean averaged squared error (MASE).
Despite the fact that plug-in bandwidth selectors have a slower rate of convergence in
comparison to a DS selector, plug-in algorithms are generally more simplistic and more
easily adapted to dependent errors. The main idea behind the plug-in approach is to
insert suitable estimates of unknown parameters into an explicit formula for the asymp-
totic optimal bandwidth b4, which is, for instance, based on an approximation of the
MISE or MASE. However, in the case of correlated errors, the estimation quality of the
dependence structure depends on that of m and the accuracy of m on the bandwidth
b. It was shown that modified versions of the iterative plug-in approach (Gasser et al.,
1991) where the estimation of the dependence structure and the bandwidth is improved
in each iteration work very well for semiparametric regression with time series errors (see
Beran and Feng, 2002a; Beran and Feng, 2002b; Beran and Feng, 2002c; Feng et al., 2016;
Feng et al., 2020b; Feng et al., 2021; Feng et al., 2022b). Therefore, in this thesis various
algorithms that are based on the iterative plug-in procedure are proposed. These algo-
rithms are invariant point search procedures that start with an initial bandwidth by and
converge to a fixpoint, namely the asymptotically optimal bandwidth 4. They are ap-
plied throughout this thesis and are implemented in recently published R packages called
smoots (Feng et al., 2022a), esemifar (Letmathe et al., 2021b), ufRisk (Letmathe et al.,
2022a) and quarks (Letmathe, 2022b). Moreover, various new semiparametric time series
models are introduced. The proposed algorithms and, subsequently, the corresponding R
packages can be easily applied to time series that are assumed to have a multiplicative
form (e.g. volatility models) by log-transforming the original process, in order to establish

an additive model form as given in (1.1).
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1.2 Modelling volatility

The autoregressive conditional heteroscedasticity (ARCH) model and its generalization,
the generalized ARCH (GARCH) model, introduced by Engle (1982) and Bollerslev
(1986a), respectively, are well-known approaches for modelling non-constant conditional
volatility. Both models and corresponding extensions imply exponentially decaying au-
tocorrelations of the squared innovations and do not control for long memory in the
conditional dynamics. The phenomenon of long memory in volatility was first discovered
by Ding et al. (1993b) in the S&P 500 daily closing index. Subsequently, more evidence
for the presence of long memory in absolute or squared observations of financial time series
was found (see e.g. Ding and Granger, 1996, Andersen and Bollerslev, 1997, Andersen
et al., 1999 and Cotter, 2005, among others). Consequently, various GARCH models,
which are capable of modelling long memory, were proposed. The fractionally integrated
GARCH model (FIGARCH) was introduced by Baillie et al. (1996) and was applied in
many empirical studies to model long term dynamics in volatility of different financial
time series (see e.g. Bollerslev and Mikkelsen, 1996; Tse, 1998; Beine et al., 2002; Baillie
and Morana, 2009). Furthermore, Bollerslev and Mikkelsen (1996) proposed an extension
of the exponential GARCH (EGARCH) (Nelson, 1991) and developed the fractionally
integrated exponential GARCH (FIEGARCH). In this model the logarithm of the condi-
tional variance is modelled as a fractionally integrated process. In addition to that, the
EGARCH and FIEGARCH are capable to model so-called leverage effects, which usually
have only short-term impacts on the dependence structure. Moreover, Ding et al. (1993a)
proposed the so called asymmetric power GARCH (APARCH) model. It controls for the
power transformation of the volatility process and the asymmetric absolute residuals, in
order to avoid misspecification for non-normal data. The extension to the fractionally in-
tegrated APARCH (FTAPARCH), which was then proposed by Tse (1998), combines the
FIGARCH with the APARCH. Another model that is capable of capturing persistence in
volatility is the ARCH(co) model introduced by Robinson (1991) and further investigated
by Giraitis et al. (2000), Kazakevi¢ius and Leipus (2002) as well as Douc et al. (2008).
Recently, Feng et al. (2020a) introduced the FI-Log-GARCH model, which is a fraction-
ally integrated version of the Log-GARCH (Geweke, 1986; Milhgj, 1987a; Pantula, 1986).
Moreover, Royer (2022) proposes an ARCH(oco) extension of the APARCH that accounts
for conditional asymmetry in the presence of severe long memory. Its specification is very
general and nests the ARCH(oo) as well as the Threshold-ARCH(c0) (see Bardet and
Wintenberger, 2009).

Empirical studies have revealed that long memory GARCH (LM-GARCH) models are very
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successful in accurately forecasting the conditional volatility of asset returns and often out-
perform short memory GARCH type models (see, among others, Giot and Laurent, 2003;
Degiannakis*, 2004; Tang and Shieh, 2006; Grané and Veiga, 2008; Hirdle and Mungo,
2008; Baillie and Morana, 2009; Demiralay and Ulusoy, 2014; Aloui and Ben Hamida,
2015; Letmathe et al., 2022b; Royer, 2022). However, another branch of literature ar-
gues that long memory in the conditional volatility might partly stem from deterministic
structural shifts in the unconditional variance (see e.g. Lamoureux and Lastrapes, 1990
and Mikosch and Starica, 2004). For instance, Beran and Ocker (2001) discovered the
existence of a non-constant deterministic scale function in some volatility series by means
of the semiparametric fractional autoregressive (SEMIFAR) model (Beran and Ocker,
1999). Furthermore, Feng (2004) found that financial return series exhibit conditional
heteroscedasticity and slowly changing unconditional volatility simultaneously. Such a
series can be transformed into a weakly stationary process by removing the deterministic
component from the original series, as was illustrated by Feng (2004)and by Van Bellegem
and Von Sachs (2004). The authors assume a multiplicative decomposition of volatility
into a conditional and unconditional component. They proposed to estimate the latter
by means of a kernel smoother of the squared residuals. Engle and Rangel (2008) as well
as Brownlees and Gallo (2010) assumed another multiplicative decomposition, which is
based on exponential quadratic and penalised B-splines, respectively. Moreover, Mazur
and Pipien (2012) introduced the almost periodically correlated (APC-) GARCH, where
the scaling function is parameterized by means of the Flexible Fourier Form (Gallant,
1981; Gallant, 1984). Recently, Amado and Terdsvirta (2014) proposed the time varying
GARCH model under an equivalent assumption (see also Amado and Terasvirta, 2008;
Amado and Terdsvirta, 2013; Amado and Terésvirta, 2017) and underline the empiri-
cal significance of taking deterministic changes in the unconditional variance of financial

return series into account.

In this thesis a new parametric and various semiparametric long memory GARCH (Semi-
LM-GARCH) models, which belong to a general class of non-stationary volatility models
as outlined in Sucarrat (2019), are introduced and applied. It is proposed to estimate
the time varying unconditional variance by means of an adapted version of the SEMIFAR
algorithm (Beran and Feng, 2002a) with a local polynomial estimator. Subsequently, the
deterministic component is removed from the data and a LM-GARCH model is fitted to

the approximately stationary residuals.



1.3. SUMMARY OF CONTENTS 9

1.3 Summary of contents

In Chapter 2 the R package smoots is introduced. One of the main features of this package
is local polynomial smoothing of trend-stationary time series with automatic bandwidth
selection. In smoots a fully data-driven iterative plug-in algorithm for bandwidth selection
under stationary time series errors is implemented. This algorithm is based on minimizing
the asymptotic MISE of the bandwidth. An unknown quantity in the asymptotically opti-
mal bandwidth is the variance factor which can be estimated parametrically by assuming
that the stochastic part of the time series follows for example an ARIMA model. The
variance factor can also be estimated fully nonparametrically by employing another TPI-
approach for a lag-window estimator of the spectral density following Biithlmann (1996).
All available options for executing the algorithm, namely the order of local polynomial,
the kernel weighting functions and the so-called inflation factors are explained in detail.
In addition to that, functions for data-driven estimation of the first and second derivatives
of the trend are implemented (see Feng, 2007). Moreover, two new semiparametric models
for financial time series are proposed, in order to demonstrate further application of this
package. Firstly, a Semi-Log-GARCH model is defined by adding a scale function into
the Log-GARCH (logarithmic GARCH) (Pantula, 1986; Geweke, 1986; Milhgj, 1987a).
Secondly, a Semi-Log-ACD model is proposed as an extension of the Type I Log-ACD
(Bauwens and Giot, 2000a), which is closely related to the Semi-Log-GARCH.

An extension of the smoots package to data-driven trend estimation under long memory
is introduced in Chapter 3. This package is called esemifar, and analogously to smoots,
incorporates a data-driven iterative plug-in algorithm, which is based on the SEMIFAR
(semiparametric fractional autoregressive) algorithm. The SEMIFAR (Beran and Feng,
2002¢) and its exponential version the ESEMIFAR model (Beran et al., 2015), which is
applicable to non-negative time series following a semiparametric multiplicative model
form, are designed for simultaneous modelling of stochastic trends, deterministic trends
and stationary short- and long-memory components in a time series. And, analogously to
Feng et al. (2022b) esemifar is used within the scope of a semiparametric log-local-linear
growth model for analyzing quarterly G7 GDP data. Moreover, it was first indicated by
Beran et al. (2015) that the (type 1) Log-ACD model introduced by Bauwens and Giot
(2000b), Bauwens et al. (2008) and Karanasos (2008) can be represented as an EFARIMA
model. Subsequently, it was shown by Feng and Zhou (2015) that the EFARIMA and
ESEMIFAR can be redefined as a FI-Log-ACD and a Semi-FI-Log-ACD, respectively.
The use of esemifar is illustrated with regards to the Semi-FI-Log-ACD by modelling
log-transformed trading volume of the S&P500.
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In Chapter 4 a new long memory GARCH model is introduced. Due to its construction it is
coined a FI-Log GARCH model. It is a fractional integrated extension of the (symmetric)
Log-GARCH. Theoretical properties of the FI-Log-GARCH are derived. Moreover, the
FI-Log-GARCH(1, d, 1) is applied to carry out one-day rolling forecasts of the VaR (value
at risk, Morgan, 1996) and ES (expected shortfall, Acerbi and Tasche, 2002) following
the requirements of the BSBC (Basel Committee on Banking Supervision, 2016; Basel
Committee on Banking Supervision, 2017) for several return series. It is found that
the proposed model works very well in practice. Results of the FIGARCH, FIAPARCH
and FIEGARCH models, fitted by means of the GORCH 8.0 package implemented in the
econometric software Ox-metrics, are used as comparisons. A reasonable model selection
criterion based on different traffic light tests, including a most recently proposed traffic
light test of ES by Costanzino and Curran (2018), is defined. In our empirical study
the FI-Log-GARCH model often outperforms the other models, thus providing a useful

alternative to existing long memory volatility models.

Semiparametric extensions of the long memory GARCH models, presented in Chapter 4,
are introduced in Chapter 5. It is proposed to estimate the scale function via a modified
SEMIFAR algorithm (Beran and Feng, 2002a). Practical performance is demonstrated
by a comparison study, in which the parametric long memory GARCH models and their
semiparametric counterparts are applied to model quantitative risk measures of daily
return series of 22 major stock indices. For each model the one-step ahead out-of-sample
forecasts of the value at risk (VaR) and expected shortfall (ES) at the 99%- and 97.5%
confidence level with a forecast horizon of approximately one year, as required by the
latest regulations proposed by the Basel committee (see Basel Committee on Banking
Supervision, 2017) are calculated. The results of this comparative study reveal that the
semiparametric long memory GARCH models, in particular the Semi-FI-Log-GARCH,

are an attractive alternative.

The main objective of Chapter 6 is the development of an iterative plug-in algorithm for
penalised spline regression under uncorrelated errors. This algorithm is based on a closed-
form asymptotic approximation for the MASE obtained by Wand (1999). Moreover, the
author derived a fast and simple DPT rule to determine the smoothing parameter directly
from the data. Analogously to the algorithms presented in Chapter 2 and 3, we follow the
idea of Gasser et al. (1991). Based on Wand’s approximation three different algorithms
to determine the optimal smoothing parameter are developed. In order to assess the
performance of the algorithms, a comprehensive simulation study is conducted. For the
estimation of the variance of the error term, a difference based variance estimator proposed

by Gasser et al. (1986) is employed. The results of the simulation study and the application
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to real data examples illustrate the good performance of our proposal and that it works

very well in practice.

In Chapter 7 the IPI for dependent data introduced by Feng and Hérdle (2020) is examined
within the scope of a comprehensive simulation study, in which the estimator is tested
in a total of 52 different cases. The findings in this chapter confirm that the algorithm
performs very well even in scenarios where the underlying time series is composed of
a complex deterministic trend and strong serial correlation in the stochastic component.
Moreover, the IPI is applied to economic time series data and its performance is compared
to conventional paramteric and nonparametric smoothing methods such as simple cubic
regression, local cubic regression as well as the Hodrick-Prescott (HP) filter (Hodrick and
Prescott, 1997), in order to exemplify its practical relevance. Paige and Trindade (2010)
showed that under certain conditions the HP filter is equivalent to a P-spline. In this
context, it is illustrated that the IPI for P-splines may provide an attractive approach to
obtain a data-driven estimate for the smoothing parameter of the HP filter. Furthermore,
a P-spline Log-ACD model is proposed, which is a special case of the ESEMIFAR model
(Beran et al., 2015) without long memory, and which is applied to daily average trade

durations. It is observed that the IPI works very well in this context, too.

Chapter 8 summarizes the contributions of this thesis and gives prospects for further re-
search. Throughout this thesis R and partly OxMetrics are used for the empirical studies.
Mainly the R packages smoots, esemifar and ufRisk and corresponding dependencies of
these packages are employed. Moreover, the G@RCH software implemented in OxMetrics
is used in Chapter 5.



Chapter

Concluding Remarks

The contribution of this thesis can be considered an incremental process progressing from
chapter to chapter. Proposed methods and models are continuously adapted, improved
and extended. The development of IPI-algorithms for automatic smoothing parameter se-
lection, their implementation in R-packages and, subsequently, the publication on CRAN
enables academics and practitioners to easily work with trend stationary time series. The
wide applicability of these algorithms is illustrated by their application within the scope of
various semiparametric time series models throughout this work, particularly in Chapters
2,3, 5,and 7. Moreover, a new long memory GARCH model, namely the FI-Log-GARCH,
is introduced in Chapter 4. The employment of this model and its semiparametric exten-
sion, the Semi-FI-Log-GARCH (Chapter 5), to measure quantitative risk demonstrates
that these models provide attractive substitutes to conventionally used approaches in this

context. The main contributions of this thesis are summarized in detail as follows:

The methodological background of the R package smoots (version 1.0.1) is summarized in
Chapter 2. The main functions in this package are explained in detail. Two new semipara-
metric models, namely the Semi-Log-GARCH and the Semi-Log-ACD, are introduced and
applied to different kinds of non-stationary financial time series. Overall the employment
of smoots within the scope of both models works very well. Further research based on
the proposals of this chapter, such as the development of suitable forecasting procedures
and stationary tests of the errors or significance of the deterministic trend, are interesting
topics and it is planned to incorporate those features in following versions of the smoots
package. Although smoots has been developed under the assumption of short memory
errors, it is found that the errors of some real data examples used in Chapter 2 might

exhibit clear long range dependence.
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Subsequently, in Chapter 3 the development of a supplementing R-package for the smoots
package, namely esemifar, is exemplified. In this regard an adapted version of the
SEMIFAR-algorithm is introduced. Moreover, the implementation of this package is
comprehensively described. The usage of two main functions is explained and illustrated
by application to various non-stationary time series with long-memory. Analogously to
Chapter 3, esemifar is used in the context of a Semi-FI-Log-ACD model, which is em-
ployed to model trade duration of two financial assets. Overall, the estimation results
are quite satisfactory and illustrate the wide applicability of our proposal. Extensions
of esemifar are the implementation of a forecasting procedure and the non-parametric
estimation of the stochastic part of the model by means of e.g. a local Whittle-, GPH- or
wavelet-estimator. A further, more comprehensive adaptation is the generalisation of the
SEMIFAR-algorithm to smooth functional time series. The reader is referred to Schifer
and Feng (2021), Schifer (2021a) and the corresponding R-package DCSmooth (Schifer,
2021b). The authors propose double conditional smoothing schemes for the nonparamet-
ric estimation of functional time series under non-dependent and spatial ARMA errors.
The extensions to spatial FARIMA errors is implemented in DCSmooth, however, only at
an experimental stage. The methodological development of this extension will be subject

to future studies.

In Chapter 4 a new long-memory volatility model (FI-Log-GARCH) is proposed and its
theoretical properties are investigated in detail. Furthermore, the FI-Log-GARCH is em-
ployed to obtain one-day rolling forecasts of the VaR and ES for several return series.
In addition to that, a new model selection criterion is proposed, in order to assess the
forecasting quality for both risk measures. A small comparative study indicates that the
FI-Log-GARCH provides an attractive alternative to existing long memory volatility mod-
els. Possible extensions of the FI-Log-GARCH are the implementation of long memory in
the conditional mean, analogously to the FARIMA-FIGARCH, or the inclusion of asym-
metric volatility effects. Moreover, the simultaneous consideration of a slowly changing

unconditional mean and variance is an interesting topic for future research as well.

The semiparametric extension of the FI-Log-GARCH is discussed in Chapter 5. Differ-
ent classes of semiparametric long memory GARCH models are proposed, in order to
simultaneously model conditional heteroscedasticity and a slowly changing unconditional
variance. The latter is estimated by means of a SEMIFARIMA model with a local poly-
nomial smoother and, consequently, bandwidth selection is carried out by means of the
corresponding algorithm, which is introduced in Chapter 3 and implemented in esemsi-
far.  All models are employed to obtain out-of-sample forecasts of VaR and ES. The

performance of our proposals is assessed via traffic light tests and a new model selection
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criterion introduced in Chapter 4. A comparative study is conducted and the results show
that Semi-LM-GARCH approaches are meaningful substitutes to parametric LM-GARCH
models. A more comprehensive empirical study in which our proposals are benchmarked
against conventional methods, e.g. nonparametric approaches such as historical simula-
tion, is yet to be conducted. Moreover, the quality of VaR and ES forecasts might be even
further improved by modifying our approach to conditional distributions that allow for
modelling skewness. Another possibility is to simply bootstrap the empirical distribution
function of the observed return series or estimate VaR and ES based on the empirical

quantiles of the residuals.

New IPI-algorithms for selecting the smoothing parameter in the penalised spline frame-
work are proposed in Chapter 6. A comprehensive simulation study is conducted and
the corresponding results reveal the convincing performance of these algorithms. The
application to real data examples illustrates the wide applicability of our proposal and
that it works very well in practice. A further development of our proposal could be the
estimation of the variance of the residuals, which is estimated via a difference based vari-
ance estimator. A possible improvement could be the repeated estimation of the variance
based on the residuals or a combination of both approaches, where the difference based
estimator is used in the first one or two iterations and an estimator obtained from the
trend-adjusted residuals in the remainder. Moreover, the development of a P-spline IPI-
algorithm for time series data could offer an interesting topic for future research. Possible

extensions of our proposal could be the short memory and the long memory case.

The extension of the IPI-algorithm for uncorrelated data to time series with short memory
errors is proposed in Chapter 7. The algorithm is tested within the scope of a compre-
hensive simulation study and it is revealed that the IPI performs well, even if it is applied
to complex time series processes. Moreover, it is shown that our proposal may provide
an attractive approach to obtain a data-driven estimate for the smoothing parameter of
the Hodrick Prescott filter. A more thorough investigation on this matter is an interest-
ing topic for future studies. Furthermore, a P-spline Log-ACD model is proposed, which
is a special case of an ESEMIFAR without long memory and where the deterministic
component is estimated via P-spline regression. Two application examples show that the
IPI works very well in this context, too. In addition to that, our proposal can easily be
applied within the scope of a P-spline GARCH and, subsequently, could be employed to
model VaR and ES. Moreover, the extension of our proposal to the long memory case is

another relevant topic for further research.
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